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INTRODUCTION

The aim of this book is to provide a comprehensive introduction to the theory of
distributions through solved problems. It was originally written for undergraduate
students in Mathematics but it can be used by a wider audience, engineers, physicists
and also by more advanced students.

The first six chapters deal with the classical theory with special emphasis on the
concrete aspect. The reader will find many examples of distributions and learn how to
work with them.

The last chapter, written for more advanced readers, is a very short introduction to
a very wide and important field in analysis which can be considered as the most
natural application of distributions, namely the theory of partial differential equa-
tions. The reader will find exercises on the classical differential operators (Laplace,
heat, wave 0, elliptic operators), on fundamental solutions, on hypoellipticity,
analytic hypoellipticity, on Sobolev spaces, local solvability, on the Cauchy problem
etc. At the beginning of each chapter the theoretical material used in it is briefly
recalled. Moreover, the more difficult problems are indicated by one (or more)
star(s).

At the end of the book the interested reader will find an index of words, an index of
notations and a short bibliography where he will be able to find material for further
study.






Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

CONTENTS

Preliminaries

Basics . . . .
Statements of exercises I 1o 8
Solutions of exercises 1 to 8

Distributions

Basics . . . .
Statements of exercises 9 to 20
Solutions of exercises 9 to 20

Differentiation in the space of distributions
Basics . . . .

Statements of exercises 21 to 41

Solutions of exercises 21 to 41

Convergence in the spaces of distributions
Basics . . . .

Statements of exercises 42 to 52

Solutions of exercises 42 1o 52

Convolution of distributions
Basics . . . .
Statements of exercises 53 to 65
Solutions of exercises 53 to 65

Fourier and Laplace transforms of distributions
Basics . . . .

Statements of exercises 66 1o 89

Solutions of exercises 66 to 89

Applications
Statements of exercises 90 to 109
Solutions of exercises 90 to 109

BIBLIOGRAPHY

INDEX

INDEX OF NOTATIONS

13
16
18

27
29
33

53
54
61

89
89
94

113
114
118

137
141
149

185
201

241
243
245






CHAPTER 1

Preliminaries

PROGRAMME
Spaces whose topology is defined by a collection of semi-norms

Space C* () (0 < k < + ) of k-times differentiable functions on an open subset Q
of R”

Space Z(Q2) (or C5'(£2)) of C* functions with compact support in Q.
The Leibniz formula

The Taylor formula with integral remainder.







CHAPTER 1, BASICS

BASICS CHAPTER 1

a) Notations
A multi-index a € N" can be written a = («,, ..., a,), a; € N. We shall denote

ld = oy + - +a,; a=wtl-al o a-f=(@ — b, .. ..% = B)

(a) _ al
B Bl — P

If @ and B are two multi-indices in N" we write a < fifa, < ;i =1,...,n. ForxeR"
and @ € N" we set x* = x}' ... x¥ Moreover we shall set
0* = @1 --- O3 where 0, = 0
= 0} i where 0, = =

J

The expression P = Y a,(x)d" will be called a differential operator of order me N
jaf <m

and the functions a,(x) the coefficients of the operator.
The support of a function f, denoted by supp f, will be the closure of the set
{x: f(x) # 0}

b) Spaces whose topology is defined by a collection of semi-norms.
Let E be a vector space on a field K (R or C). A semi-norm on E is a map p from E to
R, = {x e R, x > 0} such that

i) p(ix) = |Alp(x) Vxe E VieK
i) px + 1) < p(x) + p(3) VxeE VyekE

We say that p is a norm if moreover p(x) = 0 implies x = 0.
Let / be a subset of R and (p)),, a collection of semi-norms on E. For every x, € E,
¢ > 0 and for all finite subset F of 7 we set

V(xo. 2, F) = {x € E, p{x — xo) < &, i€ F}

The collection V(x,, €, F), when ¢ > 0 and F ranges over the finite subset of 7,
defines a filter of neighborhoods of x, and thus generates a topology on E
which is compatible with the linear structure on E (which means that the maps
(x, ) x+ yfrom E x E to E and (4, x)+ Ax from K x E to E are continuous).
We say then that E is a locally convex topological vector space (l.c.t.v.s). Let us

13



CHAPTER 1, BASICS

assume that / is countable (we may take / = N) then the topology defined by the
collection (p)),.y is metrizable. Indeed if for x and y in E we set

-yl _px-y

WD = L3 T+ pe = »
one can show that dis a distance on E and that the topology defined by d is equivalent
to the one defined by the collection (p,),.x-
Let (E, (p))c1), (F, (g,);e ) be two l.c.t.v.s. Let T be a linear map from E to F. Then T'is
continuous if and only if:
For every semi-norm g¢; there exists a positive constant C and a semi-norm p, such
that:

9(Tx) £ Cp(x)

for every x € E.
The reader interested in these questions may consult reference [4].

¢) The spaces C* (Q)
Let Q be an open subset of R and k € N (or & = + o0). We denote by C* () the space
of functions defined in Q with values in C which are k times (or infinitely)
differentiable. It is equipped with the semi-norms

px(w) = Y sup|d"u(x)| where K is a compact subset of Q (if k € N)

ja| sk xek

Pru) = Y sup|0®u(x)| where K is a compact subset of Q and j e N
lalsj xeK

(fk = +a0)

They give the topology of uniform convergence, on every compact, of the derivatives
of order less or equal to &k (if k & N} and of 2ll derivatives (if k = + o).

These topologies are metrizable and then the spaces C*Q) are complete for
0 <k < .

d) The space 2(Q2) or C5(Q)

It is the space of all C* functions on Q with compact support. To define the topology
of 2(Q) one has to introduce the notion of inductive limit topology. The reader may
consult [4]. For the sequel it will be sufficient to know how the sequences converge.
One has the following result. '

A sequence (@), of elements of 2(Q) converges to zero in 2(Q) if and only if:

i) There exists a compact subset K of Q such that for every j € N, supp 9, c K.
i) For every a € N” the sequence (8"g;),.n converges uniformly in X to zero.

14



CHAPTER 1, BASICS

If ais a C* function on Q the maps ¢ ++ ag and ¢ g—z are continuous from 2(Q)

J
to itself.

If K is a fixed compact subset of Q we shall denote by 2,(Q) the space of all u in 2(Q)
such that supp u < K.

e) The Leibniz formula
Let u and v be two functions in C*(Q). Then for all « € N” such that |a| < k one has

Fu-v)=7Y (;) oy - Py

f<a

f) The Taylor formula with integral remainder
Let xoe R" and @ be a C* function in a neighborhood of x,. Then for every N e N and
all x in a neighborhood of x, we have

W) = T 0= X @) +

lajgN A+

. .
+ '[ a - Y N+l (x = x0)*(@%@)(ex + (1 — Dx,)dr
0

tw=mer O

g) The polar coordinates in R".
They are defined for x = (x;, ..., x,) € R" and (r, 6,, ..., 8,) €
10, oo x 10, [ % --- x 10, n[ x )0, 2x[, by the formulas

x, = rcos 8,
x, = rsin 8, cos 6,

rsin#, sinf, ---sinf,_,cos b,_,

X
<
1

x, =rsinf,sinf, ---sinf,_,

Then we have dx = r" !(sin 8,) *(sin 8,)""*---sin 0,_, drd0, --- df,_,. We shall
write shortly x = r - w, w = (wy, - . ., w,), and one can see that |w} = 1, which means
that @ belongs to the unit sphere $"'. Then dx = r"”' dr dw where dw is the measure
on $" . If f € L'(R") one can write

'[ f(x)dx = '[ '[ fr- o)r" 'drdw
R 0o Js!
15



CHAPTER 1, STATEMENTS, EXERCISES 1-4

STATEMENTS OF EXERCISES* CHAPTER 1

Exercise 1: Borel’s theorem
Our purpose is to prove that given a sequence (g;),.5 of complex humbers there

./
exists a function f € C*(R) such that [:7 f] 0 =4a,7=012, ...

a) Let p € 2(]—2, 2[) such that ¢ = 1 for |x] < 1.
Prove that we can find a sequence (4,),.n of real numbers such that if we set

() £ = 2 x"9(4,%)

d k
(a;) Ja(x)

b) Prove that the series 3} f£,(x) defines a function f(x) which is C* and solves our
n=0

then

(2) sup <2 for0<k<n-—1

xeR

original problem.

Exercise 2

Let Q be an open set. of R", k and m be two positive integers such that & 2 m and

P(x,8)= Y a,(x)0" be a differential operator of order m whose coefficients are in
laj<m

ck Q).

Prove that P is continuous from C*(Q) in C*"™(Q).

Exercise 3

Prove that there is no function é in C?(R) (the space of continuous functions with
compact support) (resp. in L'(R)) such that 6 « f = f for all fin C°(R) (resp. in
L' (R)). . '

(Hint: Use the equality f(0) = j'f(x)é(—x) dx).

Exercise 4
Letp e 2(R)and M > 0 such that supp ¢ <« {xe R: |x] < M}. If ne N we set

n o
;,,lr. {¢(X) -y ;—'wm(O)} forx #0
=E

yx) =
e"*(0) forx =0

1
(n+ I
*Solutions pp 18 to 24

16



CHAPTER 1, STATEMENTS, EXERCISES 5-8

Prove that ¥ is continuous on R and that we can find C > 0 such that

(1) sup |y(x)| < C sup |¢"*"(x)|
Ixls M Ixls M

Exercise 5
Let ¢ € 2(R"), h € R"\{0}. For ¢ in R\{0} we set

px + th) — o(x)

?(x) = r

a) Show that ¢, € 2(R") for 1 # 0.
b) Prove that when ¢ tends to zero, ¢, converges in 2(R") to a function. Compute this
function.

Exercise 6: The Poincaré inequality
a) Let ¢ € D(R"). Prove that fori = 1, 2, ..., n we have

M j lp(x))* dx = -2 Re (j Xi9(x) %(X) dX>
R R ox;
b) Let Q be a bounded set in R”. Show, using a), that we can find C > 0 such that

2
dx

@ f bl dx < € 3
0 i=1 J02

d¢
o, x)

for all ¢ in 2(Q)

Exercise 7
Let Q be an open sct in R”, E be a subspace of 2’(Q) and k € N. Show that the
following claims are equivalent:
a) ue 2'(Q) and d*pu € E |a| < k, for all g in 2(Q).
b) ue 2'(Q) and yd’u e E |B| < k, for all y in 2(Q).
(Hint: For a) = b) use an induction on k and the Leibniz Formula).

Exercise 8
Give a sequence (g,),., of elements in 2(R) such that
a) For each x € R, the set {n € Z: ¢,(x) # 0} is finite.

b) iq),,(x) =1 VYxeR

-x

17



CHAPTER 1, SOLUTION 1

SOLUTIONS OF THE EXERCISES CHAPTER 1

Solution 1
k
We shall set g = (d%) g, and we shall use the Leibniz formula

< (k
3 @-oyW=1Y% ( )u"” T

p=0 \P

a) If0 < k£ < n — | we have, using (3):

j;v(k)(x) = _a_,', Z n(n m - p+ XM PA" g (U p)u x)
n p=0
Since supp ¢ < ]2, 2[, ¢*"™(4,x) = 0 for |x| > m then
Sup If k ( 2 )"_ |A, lk r] Sup ‘Q(k ’,)(y)|
Por S U p)' 14l vel-
Let us set
-1
M, =% sup Q)
J=0 yej-2.2]
We get

«
M X PR
k) < n k 1.
sup |1, < lal et X 6 o=

=0

Since 0 < k < n — 1 we have the following estimates:

2"F 1 1
k< K — 1 i
C,skl<s(n—1), ———r—y < 2%, P < ] if |4, =21
thus
sup |, 0(0) < 1Mo 200

R j4.l
If we take

14, = Max (1, |a,|M,4"n)
we get

sup AP0 2" o0<k<n-—1

18



CHAPTER 1, SOLUTION 2

b) By question a) the series } f,(x) is uniformly convergent and therefore defines a
[}

continuous function f(x) = ¥ f,(x).
o

N © . -
Moreover if k € X the series Y. f® is uniformly convergent since
0 i

a0 k O
L) = 3 P+ Y [P
0 n=0 n=k+1

and in the second sum in the right hand side we have k < n — 1 hence

L9001 £ 27

This proves that fe C* and that f*'(x) = ¥ £,®(x) for all k € N, therefore fe C*.
0
On the other hand
k o« k
9 = T )@ + Y Y By 2 e P, x)
n=o 1 n=k+1p=0
The second sum in the right hand side vanishes at x = 0 because each of its terms
contains x as a factor sincen > k + land p < k.
Then we have

-

&
[P = (%{) [ao(p(lox) + -t m)‘k—l(ﬂ(lkqx)]

+(4Y ‘i’fiq;u x)| + R(x) where R(0) = 0
dx k! k

The first term in the right hand side vanishes at x = 0 because we have ¢*(0) = 0 for

all j > I since ¢ = 1| for |x| < 1. The second term is equal to

k
S Ch 8 A PR
P=0 :

Ifk — p > 0then ¢*"”(0) = 0. The only non vanishing term corresponds to p = k

a

and Cf o

(xH® = % - k! = a,. Therefore f*(0) = a,.

Solution 2
The application u 1 Pu being linear, it is sufficient to prove that for every compact
K < Q we can find a compact K’ in Q and a constant C > 0 such that

(M Y sup|@Pu)(x)l S C Y, sup [(@u)(x)|

Blsk-m xeK <k |xek’

19



CHAPTER 1, SOLUTION 3

Now by the Leibniz formula -
#FPu=Y Y ¢4o"a,0% Po%u
lalsm Bi<h
So
Y supldPuls Y Y Y Chosuplota, sup |9t Ay

1Blsk-m K 1Bisk~m |alsm B, <p X LY

since |8, < |f] < k — mand a, € C*"™(Q) we have sup sup |#%a,| = C, and
lejsm 1.4
1Biisk-m

Y supldfPul<Ce Y Y Y supla®tFhul £ Cy Y sup |dTul
1Blsk-m K IBisk-mlalsm BsE K Misk K
since |a + 8 — Byl = la| + |8l — |1B,] £ m + k — m = k. Indeed we have bounded
some derivatives of order <k, repeated a finite number of times, by a constant which
is multiplied by the sum of all derivatives of order <k.)

‘

Solution 3
Indeed we must have for all f/

J = J'f(x)é(l - x)dx so

M 1O = J'f(X)J(—X)dx

Let us consider the sequence (¢,) defined by

9. (x) = n’x + n —leSO ! 1 f
n 1 1
- .
0. (x) = —n’x +n Osxs;
oalx) = 0 Il >
n

Then ¢, € CO(R) and |5, ¢,(x)dx = 1. By (1) we have

in
n=g(0) = J' Pa(x)0(— x)dx

=1n

lin in
SO J' 0.(x)0(—x)dx = n J' o,(x)dx

—1fn ~1/n

therefore
1n
2 '[ 9.(0[n — d(=x)]dx = 0
~tn

20



CHAPTER 1, SOLUTION 4

If 6 was in C?(R) we should have a constant C > 0 such that

sup Jo(x} = C

xeR
For n large enough we should have

11
n— d(x) >0, xe]—;,;[

and : ‘
ol = 521 >0, <)

which is in contradiction with (2).
Let us prove that d ¢ L!(R). We consider the sequence (g,) defined by

Pa(x) =

n = 9,0 = [, g.(08(-x)dx = n [}, 6(—x)dx s0
tn

3) S()dx = 1

—lin
Now if 6 € L'(R) we should have, by the Lebesgue theorem:
In
4) lim J' d(x)dv=10

nsx J ~ln

Indeed 1;_,, ;,46(x) s 0 and [1)_),,6(x)} < |6(x)| € LY(R).
It follows from (3) and (4) that J ¢ L'(R).

Remark:
Actually we can prove that é cannot belong to any well known space (suchas L* . . .).
This fact is clarified by the distribution theory.

Solution 4
The Taylor formula, (with integral remamder) applied to the C* function g, up to the
order n + 1, gives

" j nel 1
pxy = Y ;—,w”’m) = xT J' (1 = 0"e"*(x)ds
! ],

=0

21



CHAPTER 1, SOLUTION &
Therefore for x # 0,
1
1 "o
2 yx) = ;I (1 = n"p"*"(ex)de
P Jo

On the other hand we obviously have
1

lim y(x) = —I—' (1 — 0" lim ¢*"*"(tx)dr =
x-0 nJo x=0

)] ")

The function v is therefore continuous on R (since it is obviously continuous for
x # 0). Now (2) implies that, for every x # 0, we have

l (n+1) l (n+1) —
3 vl = GF D lgmw 16915 PERINS e ()l = 4
x#0
Since y(0) = o :_ Iy " (0), |w(0)| is also bounded by A which, together with (3),

gives the inequality (1).

Solution §
a) ¢ having a compact support there exists M > 0 such that ¢ = 0if |x] = M. If
Ix| > M + |th] then |x| = M thus ¢ = O and |x + th| > |x| — |thl = M thus
(p(x\ + th) = 0. This implies that the support of ¢, is contained in the ball
B0, M + |th]).
b) First we have to prove that, for small ¢, the supports of all ¢, are contained ina
same compact K. For this purpose we just have to remark using a), that for |¢| < 1,
supp @, < B(0, M + |th|) < B(0O, M + |h]).

Let « be a multi-index. We have

a l a 1]
e fx) = ;10%(x + th) — Fp(x)]
By the Taylor formula at the order two applied to the function 8°p, we have

@o)x + th) ~ @R = 1 3 h oo @R +
i=1 i

n 1
+2 Y J‘ (1 — whh (5%;;;) (0*9)(2)du

=1 Jo

where z = x + uth. Therefore

@) — X hi—";(a’w)(X) < Cli- 1> Y sup|Pe(y)

1Blslal+2 yekK

22



CHAPTER 1. SOLUTION 6

" therefore when ¢ — 0, 8%, converges uniformly on K to the function

Y h,(%) (2*9)(x). This proves that @, converges in 2(Q) to the function x
i=l (] .

L] a¢
1-21 h 5;’ (x).

Solution 6 )
a) Function ¢ having a compact support, we can use the Fubini theorem and write

op 09
L_ xp(x) % dx = I I (I xo(x) ;,% dx.) dx, - dx,_,dx,,, - dx,

In the integral with respect to x; (the other variables are considered as parameters) let
us make an integration by parts. We get

3 _ _ e | O . _
L xi¢(X)5;i (x)dx; = [xp(x)p()) 3 L 7x, (xp(x) - @(x)dx;

Since ¢ has a compact support, ¢(F o0) = 0. So we get

L x9(x) ;’—f Wdx, = - I oGl dx, - I % 3—2 ()(x) dx,

- I IpCoOF dx, - I x§() 52 (94,
Thus
%
—2Re I xp(x) T (x)dx; = I l@(x))? dx;
® Xi »

To get (1) we just have to integrate with respect to the other variables.
b) Using (1) and the Cauchy-Schwarz inequality we get

1”7 1 12
<2 (I Ixe(x)|? dx) (I dx)
0 0

Since Q is bounded we can find a constant C; > 0 such that sup |x] < C,. Hence

xef}
12 (7¢ 2 172
3 J‘ lp()I?dx < 2 C, (I I(P(X)FdX) (I ‘——(x) dx)
I I a |0x
If fo l@(x)|? dx = O the inequality (2) is obvious. Otherwise we just have to divide both

sides of (3) by (Jole(x)]?dx)"? to get (2).

%
ox;

I oGl dx <2 I %00 22 (x)dx
Q 0 6x,-

23



CHAPTER 1, SOLUTION 8

Solution 7
b) = a):
ou = Y C! Ppo*Pu
Bsa
since p € 2(Q) and |a — B| < |&| < k, using b) we get (#%p) - (8* Pu) € E for every
B < o, which implies that 6°(pu) € E for all a, |a| < k.
a) = b) We make an induction on k. The statement is obvious fork = 0 and fork = 1

it is a consequence of
ou _ 0 (v
Yax = 5;('/’ u) (b;) u

i

Let us suppose that a) = b) up to the order k — 1 and that a) is true for k; in
particular a) is true for k — 1 and by the induction b) is true for k — 1. We have to
prove that wd®u e E for all B, |f| = k and all y € D(Q). By the Leibniz formula

wu=0yuw- ¥ CIy)
O<y<p
Using a) at the order k we get 3 wu € E. On the other side in the above sum |y] # 0 so
|8 — 71 < k — 1; since (0'w) € D(Q) we get (I’w)d* 7u € E by the induction
hypothesis. So wo®u € E, || = k. q.e.d.

Solution 8
Let0e 2(]0,2[),6 20,0 =1if} < |x|< 3. For n e N let us set
* 7,0(x) = 6(x + n)
{ * y(x) = ¥ 7,0(x)

nel .
Then w(x) 2 1 and the sum defining y is locally finite so ¥ € C*(R).
Therefore ¢(x) = %((% is a C* function with compact support. Moreover
T,0(x) _ 7,0(x)

Ly(x)  w(x)

?.0%) = 1,0(x) =

since 7,y = y. So we get

Tui) |y _

Lo =0 Ty

24



CHAPTER 2

The distributions

PROGRAMME

Examples of distributions; order and support of a distribution
Distribution with compact support

Image of a distribution by a linear map

Product of a distribution by a C* function

Division by x in 2'(R)







CHAPTER 2, BASICS

BASICS CHAPTER 2

a) Distributions on an open set in R”
A lincar map T from 2(Q) to C is called a distribution if for every sequence (¢;);n in
2() converging to zero in 2(Q), the sequence T(g) (which will be denoted by
(T, p;>) converges to zero in C or if:

For every compact K contained in Q we can find C > 0 and k € N such that

(1) KT.¢)| £ C ) sup|dp(x)]
fa|<k ek

for every ¢ € 2(Q) such that supp ¢ < K.

See exercise 9 for the equivalence of these two definitions.
The distribution is said to be of order k, if the inequality (1) is satisfied with a k,
which is independant of the compact K. The space of distributions of order <k, is
denoted by 2'*(Q). It is the dual of the space of functions which are C* and have
compact support. The support of a distribution T (denoted by supp T) is the closure
of the set of x in € such that:

For every neighborhood V of x, we can find ¢ € 2(V) such that (T, ¢> # 0.
The singular support of the distribution T, denoted by sing supp 7, is the
complementary of the set of x in Q in the neighborhood of which T'is a C* function.

Remark
It is not sufficient, as one might believe, to take, in the right hand side of the inequality
(1), the supremum on :he support of T. See exercise 10.

b) Distributions with compact support:

We shall denote by &’(2) the space of distributions with compact support. One can
prove that £'(Q) is the dual of the space C*(Q) (whose topology is described in
chapter 1 b)).

If Te &(Q) and ¢ € C*(Q2) we shall denote (T, ¢) instead of T(p).

Let us give a characterisation of the space #’(Q). A distribution T is in £'(Q) if and
only if we can find C > 0, an integer m > 0 and compact K in Q such that for every
9 e C*(Y)

KT, ¢>] £ C Y sup |8%p(x)]

lal<m xek

Exercise 10 shows that this compact is not, in general, the support of T.

27



CHAPTER 2, BASICS

¢) Image of a distribution by a linear map

Let A be a linear bijective map from , to Q, (open sets in R"). Let T be in 2'(Q, ); we
define the image of T by the map A, which is a distribution on Q, denoted by T o 4,
by the formula

@ (To4,p =|~dgﬂ<r,¢oA">

When T is a locally integrable function, this definition agrees with the usual one
which is

(T o A)(x) = T(4x)

d) Product of a distribution by 2 C” function
If Te 2'(Q) and a € C*(Q) we define the distribution aT by

(aT, @) = (T, ap)

for all ¢ in 2(Q).
The map T + aT is continuous from 2'(Q) to 2'(Q).

e) Division by x in 2'(€).
Let a be a C® function which does not vanish in Q. Let S be in 2'(Q). The unique

solution of the equation aT = Sis T = % S which makes sense since % e C7(Q). Itis

not the case if a vanishes.
In the particular case where Q = R and a(x) = x we have the following result:
Let S be in 2’(R). The general solution in 2’(R) of the equation

(3) xT=S§

is given by T = T, + CJ where C is a constant, d the Dirac distribution and T, is a
particular solution of (3). It can be obtained by the formula

T o = < 5 90 = ¢(0)w(x)>

x
where v € 2(R) and w(0) = 1.
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CHAPTER 2, STATEMENTS, EXERCISES 9-10

STATEMENTS OF EXERCISES* CHAPTER 2

Exercise 9

We recall that a linear form 7 on 2(Q) is called a distribution if for every sequence (¢;)
in 2(Q) which converges to zero in 2(Q), the sequence (T, ¢;> converges to zero in C.
Prove that a linear form T on Q(Q) is a distribution if and only if

: {vl(compacl, KcQ 3C>0 3keN:
KT, o)l < C ¥ Sup 10%0(x)] Vo eD,Q)

lal<k

(Hint: to show that a distnbution T satisfies (1), use a contradiction argument and

a sequence (¢,),.y in 2(Q) which satisfies [<T, ¢,>| = j Y sup |3%,(x)]).
lalsj K

Exercise 10
1°) Show that the application

2R 3¢ (T, @) = lim { Yo G) — mp(0) — Log m - w’(O)}

LR j=1
is a distribution on R
Find its support S.
2°) We consider a sequence (¢;)ien in Z(R) such that

0 < gu(x) s:/—_ forall xe R
(x) =0 fi <_I orx =2
o (x _orx*k+1rxA
1 1
¢o(x)=— forr <x <1

JE RS
Show that:

a) (¢,) converges uniformly on R to zero.
b) "¢, = 0OonSforallae N, a # 0,and all ke N.
¢) lim (T, ¢,> = +o0.

k-0

3°) What can you conclude?

1 1 '
We recall that lim {1 + -+ T Logm} =CoeR

mox 2

*Solutions pp 33 to 50.
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CHAPTER 2, STATEMENTS, EXERCISES 11-12

| Exercise 11
Show that the following applications are distributions

1 o o(x)
smwre=(nLe) -t

b) 9(IR)3(0~>"<fp -);7,¢> = lim I:'[ | w_(f)dx — 2¢_(60_):|

e-0 x
H 7 ox) 0)

. X

c) 2R)3 ¢ -.><fp = ¢> = lim [J ¢_2dx _*0 + ¢’(0) Log e]
. x -0 e X &
pv = principal value; fp = finite part; H = Heaviside function
1 x>0

Hx) = {o x<0

d) Define fp%,[pg for k integer, k > 3.

Exercise 12: Singular integrals
Let u be a continuous function on R" — {0} such that

(1) u(tx) = t "u(x) t>0,x#0
a) Show that

@ e = lim'[ u(x)p(x)dx
|x|ze

&0

exists for all ¢ € 2(R") if and only if

3) J. u(w)dw = 0
lel=1

(Hint: Use the polar coordinates: (r, w) € 10, +oof x 87!, for {x} = e).
Show that formula (2) defines a distribution on R".
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CHAPTER 2. STATEMENTS, EXERCISES 13-16

Exercise 13
Let f be a function which is locally integrable on R™\{0} and satisfies:

(1) 3C > 03Ime N\{0}: [f(x)] < W vx:|x] £ 1.
Prove that we can find a distribution Té 2'(R") such thzit:
2 (T ¢>= L S(x)p(x)dx

for every ¢ € 2(R") with supp ¢ < R"\{0}

Exercise 14
Show that there is no distribution T e 2'(R) such that

(1) (T, 9> = I '™ - p(x)dx
R

for all ¢ in 2(R\0}).
(Hint: Find a sequence (¢,),.n.» in 2(R), whose support is contained in

{% < |x| < %} which tends to zero in 2(R) and such that (T, ¢,> tends to infinity.)

Exercise 15
a) Show that for complex A € C with Re4 > —1 the functions

. {x‘ x>0 : {le‘1 x<0
- o=

**~ x<o 0 x20

define distributions on R.
b) Using that, for ReA > —1, we have

L)

o0 1
) _[ x‘p(x)dx = _[ xp(x) — 9(0)]dx + '[ x*p(x)dx +
0 1

0

¢(0)
A+ 1

prove that we can define x* as a distribution for ReA > —2and 4 # —1.
Extend this procedure to the case. where Red > —n— 1,1 # —1,..., —=n

Use the same melhod to define x* for these A.

) Let x%, x* be the distributions so defined for ReA > —n — 1, 4 # -1,
-2,...,-n

Compute x - x*, x - x*.
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CHAPTER 2, STATEMENTS, EXERCISES 16-18

Exercise 16: Homogeneous distributions :
For ¢ € @(R") and 4 > 0 we set A4, = Ald where Id is the identity matrix in R". A
distribution T € @’'(R") is said to be homogeneous of degree p € R if

Tod,=¥T

a) Prove that, when T is a locally integrable function, the definition (1) is
equivalent to

(2) T(ux) = p’T(x) for every u > 0 and almost everywhere in x.
b) For ¢ in 2(R”), A and 4, in R*, 1 # A, we set g;(x) = p(ix) and

) - ) = o)
Vi 1 — '10

Prove that when A goes to i, ¥, converges in 2(R"); compute the limit.
c) Prove that the distributions x%, , x” ,pe R, p # —1, —2, ... (which were defined
in exercise 15) are homogeneous.

Prove that it is also the case for the distribution fp;l,; defined by

L R p(x)dx _ m (—1)""/‘ -1 w(i—l)(o):l
<fpx'"’ ¢> 1‘:1:[.'::&; x" ,;1 G=—me7 (G- 1)

9 e 2(R), me N*.
d) Prove that homogeneous distributions of different degrees are linearly
independant.

Exercise 17: Distributions of infinite order

Prove that the map, 2(R) 3 9 - (T, ¢) = Y ¢™(n), defines a distribution
n=0

which is not of finite order. { Hint: Assuming that T is of order k, consider the

sequence (p,) given by g,(x) = ¢(f—'~f——”—~l) pe2(-1, u).)

Exercise 18
For A real and & in N\{0} we set

/2
cos Ax
I

k-1 X
M A9 = I [w(X) - ,Z:,) 9(0) - ﬁ]dx
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CHAPTER 2, SOLUTION 9

a) Prove that ¢ 5 (4, ,, @) is a distribution of order less than or equal to k. What
is its support? i
b) Find all the solutlons in 2'(R) of the equation

xu = Al'ls

Exercise 19

Let T be a distribution on R" and f be a C* function such that / = 0 on the support
of T.Do we have /- T = 0?

Exercise 20
Prove that we cannot define the product of the distributions & and pv£ in the

sense that it cannot be commutative and distributive with respect to the multiplication
by C* functions.

SOLUTIONS OF THE EXERCISES CHAPTER 2

Solution 9
If T satisfies (1) it is a distribution, because if g; tends to zero in 2(Q) then, for

J 2 Jo, suppy; = K and (8°¢)) tends to zero uniformly for every a, thus using (1)
T, g;> tends to zero.
Let now 7 be a distribution. Let us suppose that we can find a compact X such that (1)

is not true for all C > 0 and every k. Take C = k = j, then we can find ¢, in 2,(Q)
such that:

KT.op1 2 Y sup |09 x)

jaj<f xeK
Let us set y; = KT then KT,y;»] = 1 and:
12 3% sup [0%w,l
lals;
Therefore su:p 0%y, < - forj lx| and supp y; = suppg, = K; now for every

the sequence (0°y,), tends to zero in 2(Q) but (T, y,> = 1 which is a contradiction.
So if T is a distribution it satisfies (1).
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CHAPTER 2, SOLUTION 10

Solution 10
1°) If ¢ € 2(R) we can write (see Exercise 4)

o(x) = 9(0) + x¢'(0) + x2y(x)
where y is continuous on R and sup |y (x)] € Csup|e”(x)|. So we have
R R

% 4’(!1) = mp(0) — Logm - ¢'0) = . {(P(—.) - 4’(0)} — Log mg’(0)

i=1 J=1 J
- | , < 1 1
={ L --Logmlo@+ 3 v
=1 J j=1J
Now
lim ( y l — Log m) = C, (The Euler constant)
mosac \ j=1 .’
! " " e (1), :
On the other hand [y{ - )| < C¥sup|p”(x)), so the series Y = ¥\ ~ ] is convergent
and J R j=1J J
o 1 1 - 1 1
lim - bl B 3 =
moct ,Zl J? W(/) ,Zl /’w(/>
Therefore

=1 {1
(T, 9> = Cop'(0) + Z‘ Fw(;)

The definition of {T,, @), given in the statement of the exercise, makes sense; moreover
it is linear in. ¢ and if K is a compact in R and ¢ € 2,(R) we have

o

KT.9] < Cosuple'(x)| + C( Y jl,)supw"(xn
N K K

=1

thus o b (T,p)isa distribution of order less or equal to 2.
Let us show now that its support is '

1 1
S——{O, ]’5""’;"“}

Indeed if ¢ € D(R\S) we have {T,¢) = 0,sosuppT < S.
Now let x = 1 € S and V be a neighborhood of x. Let ¢ be in 2(R) with

1 1 ' 1 ,
supp ¢ Vn];)—_—_—l, m[ and p=1 at x. We have ¢(0)—¢(7>—0 for j#p so
(T,e) = 1

which proves that x e supp T.
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CHAPTER 2, SOLUTION 10

Let us prove that 0 e supp T. Indeed the support of T is a closed set which contains
the points (/1 which tend to zero. The limit is therefore in the support of T.
2°) Let k € N\{0} and y, be a function in 2(R) such that

I x> l
k
vi(x) = [
0 xsk+l and x > 2
0<yx) <1
We just have to set ¢,(x) = ﬁw,‘(x)

a) By definition we have

1
suploy(x)| < —=

xek’ ﬁ

so (¢,) converges uniformly to zero.
b) If « # 0, the support of 8%, is contained in [El—l-,{l v [1,2] and

« (1Y _ . . o (1Y _ e 1 e
0 ¢*<f> = 0forj # kandj # k + 1. Moreover d qp,‘(,;) =J q"‘(k—+_f> = 3°p(0)
= 0ie 0%, = Oon S.

c) Let k be fixed. If m is large enough (m > k + 1) the points /l Which are in

the support of g, are ! l, 1. Moreover ¢,(0) = ¢;(0) = 0. So

PR
: 1
(o> = Y, ol -
i=1 J
. 1 1 1 1
Since ¢, (x) = 7_; for x > i we have ¢ ; = —,;, thus

(T.od = k-—== Jk

)

and
lim (T, ¢,> = +®

ka0
3°) We deduce from the above questions that the inequality
() KT, )| £ C Y, supld®e(x)|
lal<p xeS§
is impossible.
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CHAPTER 2, SOLUTION 11

Indeed let us take ¢ = @,, then by a), b) and ¢) we get-
im<{T, 9> = +©
k-
‘;md
Y. sup|d*g,(x)| < suplg(x)] —» 0
la[<p xeS xeR

in other words, inequality (1) is not equivalent to say that T is a distribution.
Moreover if T is a distribution with compact support X we know that one can find
C > 0, a compact X’ and k e N such that

IKT.¢d| < C ¥, sup |0°p(x)|

lal<k xeK’

So this problem shows that in general we cannot take X = X',

Solution 11
Let ¢ be in 2(R) and let us suppose that K = suppy < {xe R: |x| < M}.
a) We can write (see Exercise 4)

p(x) = ¢(0) + xy(x) where y € C°(R) and sup |w(x)| < C sup |¢’(x)]
Ix]<M .

lxisM

It follows that

f ox)dx _ o) 9’—‘+f w(x)dx
eslx[s M eS[x|<M :

x ecivisM X

f d_x=f“95+f”d_x=o
esixsM X -M X e X

On the other hand, by the Lebesgue theorem, since y € L. (R):

limJ. v(x)dx = f w(x)dx
-0 Jesix|s M Ix[<M

1
o) = d
(i) =], v

Therefore pvi is a distribution of order <1.

Now

So

< Csuply(x)| < C'suple’(x)|
IxlsM xeX
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CHAPTER 2, SOLUTION 11

b) We use the same method as above. We write:

o(x) = ¢(0) + x¢'(0) + x?*y(x), y € C°(R), sup Iy} < C sup |p”}|

g M

Thus

<fp 30 ¢>—llm[f ¢(0)zd\x+f mdx+f, W(x)dx_z_@:l
0L Jesimisy X7 ssidsM X eSS M £

Now

x? £ M

sism X

f 00, f " p@dx | f “o@dx _ 20(0) _ 20(0)
& -M x2 ' £
and

f mdx = 0 since the function i is odd, then

slxism X

1 N _200)] _ _ 2p(0)
(i) =[] vse =] [ e -2

So
1
<fP D ¢’>

c) By the same argument as in b)

<fp ;’1¢> = lim U #Qax + f PO + f vwax - 20 (O)Loga]

2
< G Foswplo¥(9)  QED.

j=0

-0

Now

f”w«»dx _ 20, 9O
. M [

x2
M ’
f @dx = ¢'(0)Log M — ¢'(0) Loge
So
H \ . M (0)
Ir e ¢ ) = lim wi(x)dx + ¢’(0) LogM —

-0 e

therefore ¢

2
< C Y supip¥(x)) QED.
j 1.4

=0

H
o2
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CHAPTER 2, SOLUTION 11

d) The method of construction of distributions in a), b) and ) is as follows. We
consider the integral over x| = & which in general does not have a limit when ¢ goes to
zero, (see b) and c)) but if we remove some terms from this integral, we get an
expression which has a limit when & — 0. That is why we call it a finite part of the
integral. Let us extend this procedure to the case k > 3. Let us set

1 o e(x)
(e} = m| ], as - s

To calculate f(g) we write

p) = 9(0) + xp'O) + -+ s 070 + X
where ¥ € CO(R) and sup |y| < C suplp™(x)|. We get
ixisM I 4
o(x) dx dx
—dx = ¢(0) =+ 90 -
.[smsu x* eSixisM x* esixisM Xt
k-1
" (0) J dx
+ ot — + w(x)dx
E= D oaaen * + Juran Y
s0:
o(x) LIEDT 10 20
X ax = RIS . AU\ S S 4
L.,.su Fa Pl e i I (TS TP R
+ .[ w(x)dx
esix|<M
If we set

_ k-1 (_l)k‘l -1 ) q,(i'l)(o)
1O =Y GooF G-Iy

-2
lim [J. w—(?dx - f(s)] = J. v(x)dx + kz Cio(0)
exixisM X <M j=0

-0

(The C;'s are constants which depend only on M and are independant of ¢.) So

<fp ;1,; ¢>

1. L
therefore fp i a distribution of order <k.

K
< C Y, sup lo” ()
0 K

By analogy we shall set

(r20)- [ e ]
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CHAPTER 2, SOLUTION 12

with
~ k-1 U |)(0) 1 X (l’-.l)(o)
gle) = — Z(_,—k)e*’(j—l)' k — 1)

=1

Loge

We get a distribution of order <k.

Solution 12

Let ¢ be in 2(R"). The function u(x)@(x) is then integrable on {x: |x| = &}. Let us
perform the change of coordinates x = r - w where r € ]0, + oo and w belongs to the
unit sphere $"' (polar coordinates).

Assuming that the support of ¢ is contained in {x: |x] < M} we get:

M
.[ u(x)p(x)dx = .[ .[ u(r - w)p(r - )" 'drdw
e<|xis M € lepi=1

By hypothesis (1) we have u(r - w) = r "u(w). So

"1
.[ —(.[ u(w)efr - w)da))dr
e 7 |w|=1

.[ (1 = Dx,p(ex)de
1 [}

.[ u(x)p(x)dx
e<ix|sM

Using the Taylor formula

M:

p(x) = ¢(0) +

i

4

0
where y;, = aw-, we get

N n

1
plrw) = ¢(0) + Y r J (1 - Doyt r w)dt
i [1]

i=1

Now

M
@ [ uona - ¢(0)j L e
eslx(s M ] lwl=1
R

4,

+i .[ (.[ w; - u(w) (.[ - 9yp(-r- w)dt)dw)d
im1 & losp= 14, )

4,

u being continuous in R"\{0} and the sphere $"! being compact we get:

sup |u(@)| < C, < +©
jowl=1 :
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CHAPTER 2, SOLUTION 13

On the other hand

%

s

(5) sup sup ) jwpltrow)l < sup ),
tef0.1] Jwl=1 i=1 xeR" i=1
rel0, M]

We can apply the Lebesgue theorem to the sequence
, E
L= l(rzs)"(w) Z oyt r-w)
i=]

and conclude that the second term of the right hand side of (4) has a limit, when ¢
tends to zero, which is:

. M Pl a
y f f f wu@)(l = 0 Z ¢ r- w)doddr
i=1 Jo Jo Jiwi=1 ox;

Therefore the left hand side of (4) has a limit, when ¢ — 0, if and only if the term 4,
has a limit.

If §i,. u(@)dw = 0 then 4, = 0. Conversely if . u(@)dw = C # 0 then
A, = Cl[LogM — Logelp(0). For all functions ¢ such that ¢(0) # 0 we have
lim4, = +. Q.E.D.

e—0

When 4, = 0, using (5) we can write

dp
5;‘_ (x)

KU, )l 5 C ¥ sup

i=1 xeR"

so U, which is of course linear, is a distribution of order <1.

Solution 13
There are several ways to define 7. Here is one of them. Let us set

() (T, 9= J‘H ]f(x)w(x)dx

+ ﬂnbm— )) éfwm@}x=h+h

xi<1 laj<m—1

By the Taylor formula we get

1 — m=1
@ o - Z&wwmw=£17%1;xwwmm

lajsm~1 I=m

Using (4), the inequality |x*| < |x|'* and that suppe < {x: |x| < M} we get:

m 1
Ll £ G J~ ud (f a-o"y |3'¢(fx)|df)dx S G Y supldtp(x)
| 0 la

xI<1 [x]™ j=m lg=m xeR
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CHAPTER 2, SOLUTION 14

and

I = f e f(x)dx < (J‘ |f(x)|dx) sup | @(x)] < C; sup |@(x)|
igidsM IgidsM xeR xeR

Therefore formula (3) defines a linear map on 2(R") such that:

KT, 03l < Cu ¥ sup 0%l
; lalsm  xeR
thus it is a distribution of order £m.
Now for ¢ € 2(R") with supp ¢ = R"\{0} we have 8*¢(0) = 0 V and the formula (3)
reduces to (2). Q.E.D.

Remark:
If in formula (3) we cut the integral in another point we obtain ‘another distribution
Tysuchthat T~ T, = Y (%, where C,e C.

laj<m—1
This is not surprising because if T, and T, satisfy condition (2), then (T, — T;, ¢>=0
for all ¢ such that suppp < R"\{0}, so supp(T, — T,) = {0} which implies that
T,-T,= Y a6%a¢eC,NeN.

lal<N

Solution 14
Let ¢ bein 2(R) such that suppe = {1 < x < 2},0 < ¢(x) < land g(x) = 1 fora <
x < bwhere | < a < b < 2. If n e N\{0} we set

9a(x) = e "p(nx)
1 2 .
then ¢, € 2(R), suppg, = <X <o Moreover if k € N,

0.0(x) = e""n"9¥(nx)
SO
(@ sup lp(x)| < n*e™" sup lp®(y)|
ek . 1<y<2

From inequality (2), since suppg, < [0, 2}, we deduce that sequence (g,) tends to zero
in 2(R). . .
Let us assume that there exists T € 2'(R) which coincides with e"* in R\ {0} then:

3) lim(T,¢9,>=0

Since the support of g, is contained in R\{0} by (1) we must have

. 2/n ;
(T, 0 = f "o, (x)dx = f e p,(x)dx
R 1n
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CHAPTER 2, SOLUTION 15

Now ¢, is positive and for g < x < g we have ¢,(x) = e™", so
bin A
(T, 0> 2 e"'J. e dx

ajn

Finally for 0 < x < §We have e > ¢ and [¥rdx = b ; 0

T 2t teer > 2" St torn 2 20

which implies that

lim (T, ¢,) = +®©

A
and is a contradiction to (3).

Remark:
Instead of €'’ we could use any function f which is C” outside the origin and
which satisfies, near the origin,

1
x)| > —=
>
for every me N. ‘
We just have to take ¢, = C,¢(nx), C, = n where x, is a point in I:a é] where
.’ ¢n L) * n lf(x")l n p n’ n

f is minimum. Then

£l > P‘% > (g) for all m

so n*C, tends to zero for all k in N.
We can compare this remark with exercise 13.

Solution 15 _
a) For Red > —1 the functions x* and x* are locally integrable so the formulas

A, 0y = [ xie)dx, (xh, 9) = [, |xI*p(x) define distributgons.

b) Formula (1) follows from the fact that for Rei > —1, J‘ x*dx = -1%
0
A same formula follows for x*, for ReA > —1, from :
L) = (X, ) where ¢(x) = ¢(=x)

The right hand side of (1) makes sense for Red > —2,4 # —1.
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CHAPTER 2, SOLUTION 16

Indeed in the first integral we have @(x) — @(0) = xy(x) where v € C°(0, 1) so
fox'le(x) — @(0)]dx = Jgx**'y(x)dx makes sense for Re(A+1) > — 1.

The second integral is well defined for any 4 since x 2 1, and the third term makes
sense for 4 # — 1.

Therefore forRei > —2,4 # — 1 weshalltake(l)asa deﬁmuon for the distribution
xi. .

In the same way, if Red > —n ~ 1,4 # —1, =2, ..., —n we have:

x . ~ 1 . n xk—lw(k—l)(o)]
9)) J‘o x‘p(x)dx = J‘o x [w(x) - ,‘Z NEDE dx

d (k I)O
+J‘ o(x)dx + Z mﬁl—c(-)——l)‘

0

and the right hand side of equality (2) is well defined for ReA > —-n — 1,

A# —1, =2, ..., —n. We shall take the right hand side of (2) as a definition for x*%
when Red > —n —1,4 # —1, ..., —n.
We deduce x* by the formula (x*, p) = (x4, @), ¢(x) = @(—x) Vg € 2(R).

c) ForReA > —n~ 1,4 # —1, =2, ..., —n we have:

A A I g Ez(k l)(ol
(xxi ) = "‘*""")=L [w— DM T T
w© n *k-1) 0)
R . (xp)* "
J‘. oW+ X T bk - b

Now i(xqz)""(O) = (k — 1" 2(0) for k > 2 and (x¢)(0) =
! " k-1, (k-2)
i _ i _ X 9 )
(X4, xe) = L x I:xq) k; k= ]dx
R 9“0
¥ J‘ v + T o ow -

1 a1 k-1 _tk=1)
i - i+l — x ¢ O
(X%, x@) J‘o X [V’(") k; k — 1) ]dx

R v i )
+ J‘, pO)dx + ¥ o P DK = 1)

NowifReA > —n~ I,Re(d+ 1) > —nand A # —1, ..., ~n + 1.
Then, by definition, the right hand side is (x."', ). Therefore
xxt = xi*!
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CHAPTER 2, SOLUTION 16

Let us compute xx*
xty @y = (6, xp) = XL () = = (X
Gxtg) = =y, @y = =~ gy = G )
S0

xxt = — !

Solution 16
a) If T is a homogeneous distribution given by f e L\ we have using (1)

(Tod,e) =42 (T9p0d,>=41" Jf(X)(a(;—‘)dX =X Jf(X)w(X)dx

X . .
Let us set i in the first integral, we get:

Jf(l}‘)(ﬂ(}’) dy = A JI’(XW(X) dx

SO

'[[f(iX) - Af(0]p(x)dx = 0 Vee 2R

therefore f(Ax) = A”f(x) almost everywhere, since 2(R") is dense in L .(R"). The
converse follows easily from the lines above.

b) For 4 in a neighborhood of 1, > 0, the supports of the y, are contained
in a fixed compact K. Indeed let us assume that suppe < {x: |x] < N} and that
1A — A] < ewith0 < & < 4y. Then if

2] > (Ag — &) - |x] > N

Il > lox| > (o — ) - 1] > N

io—}\ig we have {

50 p(Ax) = @(lox) = 0 and y,(x) = 0. Therefore

N
suppy; < Xt |x| < 5

o — €

We have to prove now that all the derivatives of y; converge uniformly on K. By the
Taylor formula up to the order two we have for all y, y° in supp y:

. a
p(3) =00 + Y. 0, — ) *af 0°)
k=1 Xi

™=

+

t
oo
Dy — OV ~ O , — 0
I '[‘ (1 02y — Wy yl)ﬁxiax, @+ 0y°)de

if



CHAPTER 2, SOLUTION 16

Let us take y = Ax and »° = A x. We get

pAx) — p(dex) & _ O
=i 1o k; ‘(A-ox)

Zu—%d(rwvuaauw

ij=1

where z = [tA + (1 — 0)i,]x.

Therefore

S|4 = Aol- Y sup
Rn

iLj=1

p(Ax) — p(dox) & _Op
2) Sl’l(p B R S 7 i; X;a()-ox)

IA

e
0x,0x; x)

which proves that y; converges uniformly on K to Z X; S_Z (40x). Let us prove the
i=1 i

same result for the derivatives of y,. We have

A%@9) (Ax) — 25'(3%9) (Aox)

Fu(x) =
Fyi(x) p—
i!a!! — fa a &
@ Fu = SR e + ap TOEI - EOED
A 0
A=
le— converges to |a|A5 "' when 4 tends to 4,.
0

* (0%p)(Ax) converges uniformly on K to (6"¢) (4, x) since, by the Taylor formula up
to the order one applied at Ax and i,x, we have:
1

HE*@)(Ax) — (@) (RoX) S 1A = 2ol | (1 = 0} x|
0 i=1

d¢
7 (thx + (1 = DAgx)ide

sup [(*p)(4x) = ("@}{4eX)| < |4 — Ao/ C sup Z —(X)
K R" =

* By the inequality (2) applied to (¢%¢). the second term of the right hand side of (3)
converges uniformly on K to

2| u a 3
Y % @00y
i=1 i
So 8"y, converges uniformly on K to the function

a . < a a
la 25" (3*9) (Rox) + 45" X X530 (@9)(dox)  QED.
i=1 i
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CHAPTER 2, SOLUTION 16
c) We have

1
(X%, 9) = L X’ [w(lx) = ¢(0) —

+f°

n

x’p(Ax)dx + Z

«

+ /1”’”'[
)

At [f y’ [w(y) -
0

+ j y [w(y) Z 4

1 o
+ f Ye(dy + ,[ y”w(y)dy] +
A k

Now
1

'[ V() =3 --1dy + f Ye(dy = - ¥
i k=1

SO

1
AT R [L y [w(y) - ¢(0) -

1
+ J Ye(y)dy +
0

The same calculus can be used for (x*

Let m e N. We have by definition:

<fp xl—m ¢;> Wlx)

[]..%

= lim

e—0

46

/l’”"'[) Y [w(y) = ¢(0) — yp’'(0) -

"o(y)dy + Z

k=1

k— lw{k l)(O)

k=1 @+ k)(k =1

Anlnl

Axp'(0) - TR

- ”(0)] dx

Ak_ b (k- l)(O)

(p+k)(k— n

}.k 1 (l( l)(O)
i (p + k)(k -1y
Yl 0)

& = 1) ]dy+

:Idy +

)

3

- I

}_k—xq](kq)(o)
(p+ k)yk -

n i

prk—1 (P(ki”(o)
k=1

dy

(’(‘l)(o) n—1 Ap+k¢(k—l)(0)
Z P+ k-1 5@+ k= 1)
L ()
= 1)!]‘”

0% 1(0) ] = 1L 9D

9>

— |)m | w(J"l)(o) }.j—l
(/ —m}e" 7 (j= )

]

=1



CHAPTER 2, SOLUTION 17

Let us perform the change of variable Ax = y in the integral and let us set 1z = a; we
get:

N [ edy S DT = 1] A g ) ,-l]
<f” x”"”‘> 'Ji'é[‘ j. A Gom @I G-

- (o)

. T 1.
which proves that the distribution fp s homogeneous of degree —m.

d) Let T,, ..., T, be homogeneous distribution of different degrees p,, ..., p,. We
can assume p; > p, > -+ > p,. Let Cy, ..., C, be constants such that

T, + -+ CT, =0
Let ¢ be in 2(R"). We have
0=C(Ty,p>+ -+ ClT, 0> = CLA """ T, 0>+ --- + CA™ " P(T,, 0>
so
CiAT"Ty, o)+ -+ CGA™(T, 9> =0 vi>0,Vpe2

Let us multiply this equality by A™ et let A tend to + oo. Since p, — p, < 0 for
i=12 ...k~ 1, weget C,(T,,¢> = 0.Since T, # 0 we can find a function ¢ such
that (T,, ¢> # 0so C, = 0. In the same way C,_,, ..., C; = 0. Q.E.D.

Solution 17
a) It is a distribution since for ¢ € 2(R) we can find N(¢) € N such that suppe <
{lx| < N(¢)}. Since suppd®¢ < supp ¢ for all « we have

Ne)

To> = 3 o)

0

soKT, o)l < C Y, sup|d®p(x)l.

lal< N(p) xeR

b) Let us assume that T has a finite order k. Let ¢ € 2()— 1, 1) be such that
9**%0) = 1. For ¢ > 0 let us set: p,(x) = ¢ (i—'—:i—_——'> Then fore < 1

suppg, c k+ 1 -k + 1+ clkk+2[=K

) (T.o>= )(;w}’"(n) =k + 1) = ekl+| p“*0(0) = ekl+l

(All the other terms vanish since points n # k& + 1 do not belong to supp ¢,).
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CHAPTER 2, SOLUTION 18
On the other hand

1
@ ¥ supld®e()l= Y -5

jal
<k K i<k €

|

2

x £
o

IIA

1 . C
i sup ™| < ¢
sk € yeR £

where C, is independant of ¢. Since T is supposed to have a finite order k we have:

KT, e < C; Y 10%0.()

laf <k

1
so by (1) and (2) we get pEsl < C'- e]_"’ where C’ is independant of ¢. This implies that
I < C'¢ for all £ € ]0, 1], which is impossible.

Therefore T has infinitc ordcr.

Solution 18
a) First of all expression {4, ,, ¢> makes sense since we have

k-1 ) x' .
o) = % 970 = X v

where y is continuous on R and supjy(x)] < Cj sup|e™(x)| where K > supp . So
xe K xek

I

{Ai» 9 = '[ cos Ax - w(x)dx

-ni2

and

K4, 40 03| < Cr sup [p®(x)|

xeK

Which proves that formula (1) defines a distribution of order <k.

k)

On the other hand supp 4,, < -z 7—’] since if we had suppey < ]—oo, -

2’2
]

Let us show that supp 4, = [-—

ST ]

, + oo[ it would be obvious, using (1), that {4,,, ¢> = 0.
rz

> 2]; we prove it by contradiction; let us

n n

2]. We can find x, € [—g, 5]’ Xo € supp A4, ;; since

supp A4, is closed we can find ¢ > Osuchthat ¥, =]x, — & xo + e[ = supp4;;
Sl e ifxe= —C |2 -2 |ifx, =12
or- 55 7% ¢ Xo 5|5~ &3 o =3)

48
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CHAPTER 2, SOLUTION 18

Let x, € V_ be a point such that x;, # 0and cos Ax; # 0 (such a point exists since the
roots of cos Ax are isolated). Let ¥, < ¥, be a neighborhood of x,, which does not
contain the origin and such thatcos Ax # 0in V. Let W c V, ,9pe (V. ), ¢ 2 0
and ¢ = 1 on W. We have

e p(x)dx
14

X

{A;p,0> =0 = '[ cos Ax

s Ax

. €Ol .
In V_ the function »(x) has a constant sign. So we have

J dx =0 and J
Vn W

which implies cosdx = 0 in W, which is impossible‘ So supp4;, = |:—

k

cos Ax
*

cos Ax - g(x)

T dx =90

X

[ ]

’

[ TiE)

|

is the sum of a particular solution of (3) and of the general solution of the equation
xu = 0 which is Cd,.
A particular solution of (3) is given by

o o = < 4,00 - ¢(0)w(x)> where {we@(R)

b) The general solution of the equation .

(3) xu= 4,

x w(0) =1
Cu, @) = '[ - cosx {‘”_(‘ﬂ_: 2O (,,'(0)}(1.,‘
I x
since lim o) — eOw(x) _ »'(0).

X

x—0

So we have

2
Cu, 0y = J 0~ pOyx) ~ xp' (@) dx

-ni

ni2 n/2 .
u, @) = f BT (p(x) — 0(0) — x¢'(0))dx + J 3L 001 - p(x)dx

2
-m2 X a2 X

Let us take wsuch that y'(0) = 0. We have y = 1 — x2y,(x) where y, € C°. So

2 /2
J OSX (1 - p(x)dx = J cosx - y,(x)dx = C, = C*

2
-a2 X ~2

therefore

u, 9> = (A5 9> + C1K9, 0
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CHAPTER 2, SOLUTION 20

so 4,, + C,0 is a particular solution and a general solution of (3) is then
u= A, + Cé.

Solution 19
Of course not! Let us give an example on R:

T=6,feC%f(0)=0 f(0) =1 (f(x)= xforinstance)
Then

since if p € 2(R)
o oy = (8 fo> = . (fo)) = —(So)(0) = —p(0) = <6, 9>

Solution 20
Indeed let us suppose that

Y

1 1
o po—=pos

For all @ € C* we would have

1 . 1 1
a(&-pv;)— (a-())~pr;~ 6(:1 plrx)

Let us take a(x) = x. Then

1 1 I
_r<6~pv;)—(x-6)~pz';—0 [IL;—O

which is impossible.
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CHAPTER 3, BASIC

BASICS CHAPTER 3

a) Derivative in 2’°(Q2)

Let T be in 2'(2) then the distribution g%,j = 1,2, ..., nis defined by
7

aT _ o9
(o) - -(r2)
for all ¢ in 2%Q).

Any distribution has derivatives of all orders.

b) Distributions with support at the origin

Let T be in 2'(R"). Then these two claims are equivalent.
1) supp 7T = {0}.
W Tr= Y o, c,eC,meN.

la|<m

¢) Fundamental solution of a differential operator

Let P = Y a,(x)¢* be a differential operator with C* coefficients in Q. A

lafsm

distribution E € 2'(Q) is called a fundamental solution of P if we have in 2'(Q)
() PE=94

A fundamental solution is in general not unique since E + u, where u € 2'(Q) satisfies
Pu = 0, is another one.

d) Primitive of a distribution

I.ct S bein 27(Q2). Then there exists an infinite number of distributions T e 2’ () such
dr

that d_; = 8.

Two of them differ by a constant.

Distribution T is called a primitive of S.

Moreover if Sis a C”* function in an open set w, then T has the same property.

¢) Green’s Formula
Givene > O weset , = {xe R™ |x| > &}.
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CHAPTER 3, STATEMENTS, EXERCISE 21
For every fin C*(R"\{0}) and every ¢ in 2(R") we have:

@ L {f(X)M(X)dx - L Af()e(x)dx =

-[xl-l (w(X) ‘Z‘{(X) - f(x) g_? (x)) da,

L az
Here A = Y, Fet 56; is the radial derivative and do, is the measure on the sphere
i=1 (]

ix| = e. Formula (2) is called Green’s Formula.

f) Transpose of a differential operator
Let P = Y a,(x)d% a, € C*(Q), be a differential operator. The operator

jal<m
Tr PT= Y (~1)"8(aT)

lal<m
is called the transpose of P. It satisfies

(PT, 9> = (T, 'Pp)
for all ¢ in 2(Q).

g) Local structure of distributions
Any distribution with compact support T € £'(Q) can be written (in a non unique
way) as
T= %

. Ipl<m
where each f,isa continuous fuaction with compact support contained in an arbitrary
small neighborhood of the support of T.
There is an analogue for general distribution.
Every distribution T € 2°( = a locally finite sum of derivatives of continuous
functions (see exercise 64).

STATEMENTS OF THE EXERCISES® CHAPTER 3

Exercise 21
Let p and ¢ be in N. Compute

T = xl'a(qb

where 8 is the derivative of order i of the Dirac measure on R.

* Solutions pp. 61 to 86
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CHAPTER 3, STATEMENTS, EXERCISES 22-26

Exercise 22 .
Let a € C and j € N. Compute

where & is the Dirac distribution on R.

Exercise 23
We consider the linear map T from 2(R?) to C

2R3 (T, 9> = I e(x, —x)dx

R
a) Show that T € 2" 9(R?).
b) What is the support of T? Prove that T is not a continuous function on R2.

. e e, 0 0
¢) Compute, in the distribution’s sense, (6x 5) T.

Exercise 24

Let ¢ € 2(Q) and T € 2'(Q). Does one of the following statements imply the other?
a) (T, ¢> = 0.
b) ¢T = 0 in 2'(Q).

Exercise 25
We consider the following differential operator on R
d? d
= — +a—+
P e a ix b, a,beC
Let / and g be two C? functions which satisfy
i) (Pf)x) = (Pg)(x) = 0, xeR

i) f10) = g(0)
iii) f°(0) — g'(0) = 1
We set

_[flx) x<0
hx) = {g(x) x>0
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CHAPTER 3, STATEMENTS, EXERCISES 26-30
and we consider the distribution T defined for ¢ € 2(R) by

{T, o> - —j h (x)p(x)dx -
! R

Compute PT in the distribution’s sense

Exercise 26 .
Compute the derivative in the distribution’s sense of the locally integrable function
Log |x| on R.

Exercise 27 (see exercises 11 and 15)
Compute the derivatives, in 2’(R), of the following distributions:

5)T=pu£; b) T = x?t -l<l<0

Exercise 28
We consider, in the plane, the distribution defined by the locally integrable function.

_ 1 ife=1x1>0
Ex, 1) {0 ifr—|x <0

2 62
We set [0 = i

Pl (wave operator). Compute in the distribution’s sense O E.

Exercise 29

. . . 1 .
a) Prove that the function f(x, + ix;) = T e defines a distribution on R2.
1 2
il

5 1 . d .
b) Weset ¢ = §<0-x~l + ’a_x) (CauchyfR{emann operator)
Prove that éf = nd (Hint: use polar coordinates)

Exercise 30
We consider the function in R?

H(r) x?
E(x,t) = —=exp| —=
( LT p[ 4’:|
where H(1) is the Heaviside function: H(f) = Lif¢ > 0, H(t) = 0if 1 < 0.
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CHAPTER 3, STATEMENTS, EXERCISES 31-33

a) Prove that E is a distribution on R2.
. ]

" . o
b) We set P = Fri %5 (heat operator). Prove that in 2’(R?) we have

PE=/§

Exercise 31

P " 12
Wesetwithr=(2x}) #0
J

_flogr ifn
E. = {r“ if n

[\
w N

a) Prove that E, belongs to 2'(R".
n 2

b) LetA = ¥ %3 Compute AE, in the sense of distributions (Hint: Use
j=1 Y% ! .

Green’s formula and polar coordinates)

Exercise 32
We work in R? and we set r = |x|.

a) Compute Af when fis a function of r.

b) Let /= f(r) a function which satisfies, in R*\0, the equation (A + a?)f = 0
where a € R\{0}. Write down the differential equation satisfied by g(r) = rf(r).
Deduce the expression of the solutions in R3\{0} of (A + a?)f = 0.

¢) Let /= f(r) be such a solution. Prove that if we set [ = lim [rf(r)] we have in
y,(N]) '3 ‘ . 0

»

A+ ad)f = Cld

»
where C is a constant. Compute C. (Hint: Use Green’s formula and the method of
exercise 31).

Exercise 33
We consider, in the interval I = ]a, b[, two C™ functions f and g. Our purpose is to
prove that if T e 2'(]) satisfies

dr B
) L +IT=¢

then 7 is a C™ function which satisfies (1) in the usual sense.
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CHAPTER 3, STATEMENTS, EXERCISES 34-35

a) Find a solution u,, of equation (1), which is C” in [,
b) Write any solution of (1)as T = u, + Se” " where 4 is a primitive of fand S an
unknown distribution and conclude.

Exercise 34* (This exercise follows exercise 16)

a) Prove that the derivatives 8“9, of the Dirac distribution in R", are homogeneous.
Deduce, when n = 1, that the distributions 8, 8, .. ., 6* are linearly independants
(Use question a) of exercise 16.)

b) Prove that a distribution T e 2'(R") is homogeneous of degree p € R if and
only if: ’

L 8T _
M % xgze = o7

i

(Hint: Use question b) of exercise 16)
c) Using (1), question a) above, question c) of exercise 16 and the fact that the
distributions solutions, outside the origin, of the equation

dT
Xa; pT— 0

are the usual C! solutions, prove that every homogeneous distribution on R is one of
the following:

T = cyxf + cx°, pem, p#* -1, -2 ... ¢,c,eC

or

i _
T= clfp;—’; +¢,0""  meN, ¢,ce€C

Exercise 35 (see exercise 13)
Let P be a differential operator with constant coefficients in R” which has a
fundamental solution E and such that for every open set w of R:

(H) (ue 2'(w), Pu = 0) = (ue C(w))
Let u € 2'(R"\{0}) be a solution of Pu = 0 in R™\{0} such that

m |u(x)|§%, 0<lxi<l, meN

a) Using exercise 13, prove that we can find T € 2’(R") such that T = u in R"\{0}.
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CHAPTER 3, STATEMENTS, EXERCISES 36-38

b) Prove that we have

T=g+ Y a,D’E  a,eC

lpIsN

where g € C*(R") and Pg = 0.

Exercise 36* (sce exercise 29)
1°) Let Se &'(R"), Te 2'(R"). We set U = sing supp S, V = smg supp 7 and we
suppose that U N V = ¢.
Prove that we can define a bilinear bracket ¢S, T') such that
a) {5, T» =0 ifsuppSNsuppT = ¢.
b) S, TY» =<5, Ty ifTeC”.

9 <<gf- r>>= <<sz—:>> i=1 .

2°) Let D = {ze C:|z| < 1}, D be its closure and 6D = {ze C: |z| =
Let u € C™(D) be a holomorphic function in D. We set

_fux)y xeD —_li .0
f(x)—{o x¢éD and 6_2(6x+‘5>

Prove that df is the measure —le”’u(e"’)d() on dD.

3°) Using 1°), 2°) and the formula 6( ! ) = ¢ (see exercise 29), deduce the Cauchy

formula
1 [ w2
u(0) = 2 = J. . ——dz

Exercise 37
a) Let Q be an open set in R. What is the general solution of the equation in 2'(Q)

14
(d—‘i>r=o, peN*

b) Prove that the Dirac distribution on R cannot be equal to the derivative of some
order of only one continuous function with compact support in R.

Exercise 38
Find all the solutions of the differential equation in 2’ (IR)
m x“;—x—f= keN* meN
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CHAPTER 3. STATEMENTS, EXERCISES 39-41

Exercise 39

a) Show that the distribution with compact support, Y. a,8%, a,€ C, vanishes in
la|<m

&'(R") if and only if e, = C "orall & e N".
b) Find all the distributions in R” with support at the origin which are invariant by
the maps fi: (xy, ..., X; ..., X)) b (X, ..o, —x; o, x,), = 1,2, ..., n

Exercise 40
We consider the function F: R? > R given by

F(yi.y2) = yiH(y)H(y,) exp y,

and the differential operator

Jd 0 02/
=Nz3) =557 — 1
Q Q<5y1 ﬁh) i <0y2 )
a) Compute QF in 2'(R?).
b) We consider the map 4: R? » R?
A(xy, x2) = (3y, y2) withy, = x; + -’Cza,Vlz =X T X

Let P be the differential operator

| A, a N\ 0 8
= _f — + — [ U —
P 8((7x, 6x2> <(7x, 0x, 2)
Show that for every u € 2'(R?) we have:

Pluo A] = (Qu) o> A4

¢) Compute § © 4 and give a fundamental solution of P.

Exercise 41*

Let Q be an open set of R” and P be a differential operator with C* coefficients. We
shall denote by ‘P its transpose. Let us suppose that for every continuous semi norm p
on 2(Q) we can find a continuous semi norm g on 2(£2) such that for every ¢ € 2(Q):

(1) plp) £ q('Py)

Let us denote by F the space {y = 'Pp where ¢ € 2(Q)).
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CHAPTER 3, SOLUTION 21

a) Let 7e 22'(Q). Show that the map
Eay ='Ppi> (T, 0

is continuous from E, equipped with the 2(Q) topology, in C.
b) Using the Hahn-Banach theorem, deduce that P is surjective from 2'(Q2) to
2'(Q).

SOLUTIONS OF THE EXERCISES CHAPTER 3

Solution 21
First of all x” € C* so x"6'” has a meaning.
Let ¢ be in 2(R). Then by definition

() <89, gy = (= 1%, ()™ = (- 1)“[<%>q(xﬂw)] ©

By the Leibniz formula

d\ q dy da\ g
) <a> o) = % C?<d—x> M(a) 0= L Fa

a)lfp >gq

In that case the term (2) vanishes at x = 0. Indeed <d—d~> (x?) = C,,x’"andp — iis
strictly positive *

b) If p < ¢. Then
p-1 q
2= Y F ()1 Y Fx)
i=0 i=p

The first of the two sums vanishes at the origin for the same reason as in a). The
second sum can be written:

4 d ! d roi d r d q9-r
i N r o = 4y - —
Ea(g)oola) o= o) o) s
. dy "
since ax (xf) = 0ifi > p + 1. By (1) we get

(9. gy = (= 1yCpg o) = L gn
r (g — pt
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CHAPTER 3, SOLUTIONS 22-23

Therefore we get

0 ifp > q
K60 =4 (< 1Yg! 0
o s

Solution 22
Let ¢ € 2(R) then

i dy ) )
T,¢> = (- 1)J<ls, (a;) eu¢> = (— 1)Y(e%p)Y(0)
Now

(ea1¢)(l') = i (i)(en.r)(k)wﬂr‘j)

k=0

SO

Toy= (1Y § (’)a*«»‘*‘f’(w -'E (’f)a*(— DG
k=0 k k=0 J

Therefore

= i (—]’;)(_a)ké(kvj) .

k=0

Solution 23
a) Let K be a compact in R? and ¢ € 2 ,(R?). We have

KT, ¢l = (J dx) sup lg(x, —x)| £ C¢ sup lo(x, )
K, K,

(x.Nek

where K; = {(x: (x, —x) € K}; it is compact in R? since K, is the projection of the
intersection of K with the line { = —x in RZ.
b) Let us show that the support of T is the line + = —x in R2. First

(1) suppTc{(x,)eR:yt=—-x} =D

Indeed let ¢ € 2(R?) the support of which is contained in R*\D then ¢(x, —x) = 0
for all x € R so (T, ¢> = 0, which means that T vanishes in R2\D and proves

(1). Conversely let (xo, to) € D, V = B((xo, to), 8), ¥V, = B((xo, o), g) Letpe D(V),

9 20,9 = 1on ¥V; then

(T,p) = J o(x, —x)dx
4
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CHAPTER 3, SOLUTION 24

where ¥ = {x: (x, —x) € V} and (T, @) # 0 since
(T, p> 2 J o(x, —x)dx = measure (#;) >0 QUE.D.
s

If T was continuous, since it does not vanish identically, the support of T would
contain an open set. (If T(x,) # 0 then T(x) # 0 near x,); but it is not the case since
line D has an empty interior. So T is not continuous on R2.

c) Let ¢ be in 2(R?)

oT _ T o dp _Op _
(= o) = [ - 5 o

6¢__¢_3£

= olx. — dv = (%
Let us set y(x) = ¢(x, —x) then dx x) = ( 3% 3

)(x, —x) and it follows that

d 0
(& 5)re) = [, Fwar = -tz = -t =212 = 0
SO

oT oT

R T

Solution 24 .
Let us prove that a) does not imply b) in general. Indeed let us take Q = R, T = §’,
v € D(R), p = 1 in a neighborhood of the origin. Then

,0>= -0 9)>=—90)=0
On the other hand for ¢ € Z(R)
08", w>=(&', oy>= = (3, (ew) > = —(¢'(0) w(0) + p(0)y(0))= — v’ (0)
We just have to take y such that y’'(0) # 0 to get
pd',y) # 0

which proves that é’ does not vanish identically in 2’(R).
Let us prove that b) implies a).
Let v € 92(), w = 1 on the support of ¢; then py = ¢. From b) we get

0=<oT,v)> = (T, py> =T, p>

which proves a).
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CHAPTER 3, SOLUTION 25

Solution 25
We have by definition

.oy = (Greo) + (o) + 6T 0>
d2e de
.0 = (1.52) - < T)+pT e

) (PT (p) = f h(x) - ¢"(x)dx + af h(x) - ¢'(x)dx

-b f h(x) - p(x)dx

R

Let us compute each term

f h(x) - ¢"(x)dx = f J(x)e"(x)dx + f g(x)p"(x)dx
R ~® 1)

By integrating twice by parts, in each integral, we get:

0 @
J h(x) - ¢"(x)dx = J S7(x) - plx)dx + J g"(x) - gp(x)dx
R - ]

+ f(0)¢'(0) — f'(0) - 9(0) — g(0)p'(0) + £'(0)p(0)

since g( + ) = 0.

Using the hypothesis i) and iii) we get:

0 o
@ J h(x)- ¢"(x)dx = J S7(x¥) e(x)dx + J g"(x) (x)dx — ¢(0)
R -® 0

By integrating by parts and using ii) we find:

3) j hx) - @'(x)dx = —J. J(x) - ply)dx —~ j g'(x) - p(x)dx
R ‘ - o 0
By (1), (2) and (3) we get

(PT, > = ¢(0) - J (f7(x) + af'(x) + bf(x)) - p(x)dx

-J (8"(x) + ag'(x) + bg(x)) - p(x)dx
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CHAPTER 3, SOLUTION 28

which implies by i) that for every ¢ € 2(R):

<PT, 9> = ¢(0) = (4, >
so PT = § in 2'(R).

Solution 26 ‘
The function Log | x| for x # 0 is integrable in a neighborhood of the origin since for

1
every¢ < 1, }x|*|Log | x} tends to zero when | x| goes to zero, therefore |Log | x|| < xF
for non zero x in a neighborhood of the origin.

Let ¢ € 2(R) then by definition:

d
mn <Ei¥ Log1x|.¢> = —<Log|xl,%> = —f Loglxl%(x)dx
) g R

We would like to integrate by parts but the derivative of Log |x| is the function
| . L.

o which is not integrable near the origin.

So we use the following trick. By Lebesgue’s theorem

@ f Log |x| - ¢'(x)dx = limj Log |x| - ¢'(x)dx = lim 1,
R Ix|ze

-0 &0

since 1;,,,|Log |xlg(x)| < |Log |x| - ¢(x)l € L'. On the other hand

+ a0

I, = J Log |x] - ¢'(x}dx + J Log |x] - ¢'(x)dx

il
It

. = [Log |x] - ¢(0)] ™, + [Log |x| - p(x)];™ — J o) 4y
|xize

i

I, = Log e(p(—¢) — 9(e)) —f 09 4

Ix|ze

But |@(e) — @(—¢)] < 2 - ¢ - sup |¢'(x)], therefore
R

(3) limJ, —lim plx) X
=0 0 Jixize X

We deduce from (1), (2), (3), and from exercise 11 that

It

d 1
ax Log |x| = e
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CHAPTER 3, SOLUTION 27

Solution 27
a) Let ¢ € 2(R), then by definition

d 1 _ | T ox), _ ..
[t (o) =t [ e

Let us integrate by parts in /,. We get
I = J. LS
|x|ze

Now ¢(x) = 9(0) + x¢'(0) + x?y(x) where y € C°(R), it follows that
o(e) = 9(0) + 2ep'(0) + 2p(e), o(—e) = 9(0) — ep'(0) + 2y(—¢)

o)y _ 90 _ 900

|xjze x € €

SO

1 = J. “’(iz)dx - 2@ + elw(e) + w(—2)
|xjze

b N [ [ Q- 229 - (L
@)= wml ], Pe 2] ()

- since lim g[y(e) + w(—¢)] = 0. Therefore

&0

and

b)
—xt = —(xt, 9 = — i x'o'(x)dx
PRE @ +1 @ . (4

Since for A € ]— 1, O[, x*p is integrable it follows from Lebesgue’s theorem that
ir‘ = -lim ) x'o'(x)dx
dx' + (0 . . [A¢

Let us make an integration by parts setting

¢'(x)dx = dv, x* = u. Then v = p(x) + C,du = Ax*~". [f we take C = — ¢(0) we
shall get

dx £=0

<_‘!_xx+, ¢> = lim [ij‘ 7 p(x) — @@)]dx — [x*(p(x) — @O)I ]
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CHAPTER 3, SOLUTION 28

On one hand, since x*'[p(x) ~ ¢(0)] = x'y (where y € C %) is locally integrable on
10, + o[ we get

lim r X p(x) — p(0)]dx = r X p(x) — 9(0)]dx
-0 ¢ 0

On the other hand
~[x[o(x) — @OIF = £'[p(e) — ¢(0)] = &**'9p'(6,) = 0 sinced + 1 >0

It rO"OW S that
—.Xi ['4 = }. .X'i I[q’(x) q)(O)] d.x
d.x ’ 0

The right hand side is, by definition, what we called in exercise 15 1 ¢ x%7', ¢)
for A — 1e€]-2, ~1[. So we get

a‘.i;xi, = 2e]-1,00
Solution 28 .
Let O = g; aa We have for every ¢ € Z(R?)
(OE, ¢y = %L rl ‘Zf’dzd J J dxdr
A o] o4 o]
= —% L( >(x, |x|)dx — %L ( >(l f)der + ;Lm (a—z>(—1, f)de
TN R ] T
+ % J.: <-gg>(—t, fde
(OE, ¢) = —% Lx <g-?>(x7 x) - %Lm <%)(—x, x)dx

RYSCLOW 1 (= (oo,
iL <a>(1, ndr + EL <a_>( 1, 1)di
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CHAPTER 3, SOLUTION 29
On the other hand for g € R:

d%[w(ay, = a<g€) (ay, y) + <%)(ay, »

1t follows that
1(=d 1 (*d: -
COE, ¢) = —EL d—ylw(y, Mdy - EL 5[¢( » »ldy

(DE, 9} = 19(0.0) + 300,0) = 90, 0) = (5,95 Vo € IR

s0
OF = d in 2'(R?)
Solution 29
. 1
a) First of all |f(x,, xz)l = z-x—z‘m = i}—l where x = (x,, xz).
We know that the function —- is integrable near the origin in R” if & < n. Here

[x|* I"
= 1, n = 2 so fe L} (R?). This implies that f defines a distribution on R2,
b) Letgp e Q(Rz). We have:

- % ;%
1) <af o = =</ a(ﬂ) = “’J. m(axl + lax2>dx1 dx,
We use the polar coordinates
Xy = rcosf, ix, = rsin  then dx,dx, = rdrdf
We have
0 4 _sinfa 0 . .0 [ cos@d
S g _ 2= —+ 27
s @ a0yt

_ 0P 0%
(@f, 0> J. I < 60) rdrdé

where @(r, ) = ¢(r cos 8, r'sin 8). By Fubini’s theorem: .

2x
Gf, 0> = —%I U a“’dr]do I ;I a¢d0d
[0 0
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CHAPTER 3, SOLUTION 30

Since @0, 8) = ¢(0, 0) and since @(r, 8) is 2r-periodic we get:

@, 9> = =5 % 20 X (=90, 0) = 79(0, 0) = 7o, 9

Therefore

of = né,

Solution 30

a) we have E(x, 1) < H® and the function © is locally integrable in R?; so
Jant Jant
E € L} _(R?) and it defines a distribution on R2.

b) Let ¢ € 2(R?), we have
a_ & _ 99 09\ _ _ [ ]aq: i)

<<5 W)E’ ‘”>_ <E 3x‘>' ” Jani <ar ox? )d xdi

4] ik

exp| — =~

@ 4t

J. J. a(pdxdt = llmJ. 3_(0dt
R

/471 ot a0 . /47" 61 dx = lim I‘
by Lebesgue’s theorem since
exp[ ] < Clote Dl .oy

| P, =< =
fe,o[xR \/4— (0( ) = \/l

We can make an mtegratlon by parts in /, and it follows that

x1> X2 1=+
o ex -

J’ J‘ al TP\ 4, - pdrd exP( 4t>

- 5| ——"|o(x. ndrdx + —_—

T v L i o | @

Now

dfexp ()] 1 1
ol | aalarm )0 O

x?

®IL=— x? exp 4¢
IS W
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CHAPTER 3, SOLUTION 30
In the same way

x 2

j j P )P0 dr = tim e"p( )a‘fd di = fim J,

0 \ /4nt Ox -0 ox -0

Let us integrate twice by parts in J,. Since
— A

S e (“m)

o x (e
ox| e afar™ Pl &

( g
€X
o p, 41 1 x?
S N (”iy;}i s\/ r )“"( z;)
1 T x? 15 x?
=— 2~ Jexp| -5 )e(x, ndxd
g 4/n IR L (2’5/2 ,zxz) txp( 4')¢(t, Hdxdr
x? =+
. "P( ) A
a(p =t

— — d+ dr
+j} Tam a0 j [fwexp( )«»(w)]‘" ’

0
and since ¢( ¥ o0, 1) = :3—(:(1 0, 1) = 0 we get

2
(x*)J, = ij j ( 55T PR )exp(—%)w(x, f)derdx

It follows from () and (**) that

xZ
exp i~ 4o
IL+J = ——plx g)dx
R Jane
S0
xZ
exp| —+—
4 pz E, hi ¥ d. I K,
—_ = + S — =
Wz = [ rli!(;l ] = o(x, ) dx 1m

Let us perform the change of variables y = ff in the integral. Then dx = 2\/;dy
€

and

2. /e j e 1 j .
K =—"X"—| e’pJey,e)dy = —=| ¢ ’w(Zﬁy, e)dy
N0 A
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CHAPTER 3, SOLUTION 31

Now ¢(2/ey. &) — (0, 0) and [e "g(2./ey, £)] < sup [p(x)le *" € L'(R) so by
R

Lebesgue’s theorem K, — L(j e ” dy)(a(O, 0) = ¢(0, 0). Therefore
Ja\
0 02
(a - a‘z)E =0
Solution 31

a) Itis easy to see that the function E, is locally integrable in R". Indeed if we use
polar coordinates we get

|
*21:[ r Log rdr = d
0

2
j |E,(x)dx = )

2n rdr=n
0

b) We have (AE,, ¢> = (E,, ApdVyp € Z2(R") so

(AE,, 9> = j E (x)Ap(x)dx

R

Since not all the derivatives of E, are locally integrable we cannot integrate by
parts in the above integral. We shall overcome this difficulty in the following way.
Since E, is locally integrable then, by Lebesgue’s theorem, we can write

=0 -0

(AE,, ¢> = limj E (x)Ap(x)dx = lim I,
lx|ze

Now E, e C” for|x| = r > ¢ and ¢ € 2(R") so we can apply formula (I) to compute

I.. We have
do JE
I = AE,(x)p(x)dx — R
' j\xm AP dx jldﬂ (E" or ~ Var )da£

Let us compute AE, in {x: |x| > &}.

n=2
T Lo (e + ) = 7,2—;‘7
Bir o S
(%25 Log (x? + »?) = (2:%:_%;

So AE, = 0.
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CHAPTER 3, SOLUTION 3t
2)Ifnz3:
02

—_—= — -n — _—_'1 Lopon2
a QCQ-nmr "+ Q2 - nx 3 2x; - r

SoAE, =2 —n)-nr"" — n2 - n)(Z x,z)r"'~2 = Osince ) x? = r?ie AE, = 0.
1

= % _ &
lt - J‘le=: (Enar ¢ ar)dat

To compute /, we use polar coordinates

Thereflore

x;=r fi@, ....0,.) i=1,...,n
so we get
dx = F@,, ...,0,.)r"'d6, ---dd,.,
and the measure on the sphere of radius ¢ is equal to
do, = " 'F@,, ..., 0,.,)d0, ---db,_, = &" 'do,

where do, = F(6,, .., 0,.,)d6, ... df,_, is the measure on the unit sphere.
(We did not compute the f;’s nor F since we do not need it)
On the other hand:

*I?‘

J Ox; " il
DI i il W

Pl
I
||M=

. 0x; x
since = fi0,, ....0,)) = T

Let us compute now the limit of J, when ¢ goes to zero.
Dn=2

-1, = I (Log eg— - l)eda1 = I ¢ Log ag do, — I pda,
Ixl=¢ ix{=g 1x|= ¢ Sy’
O] Q

.

X
We have since

< 1 so we get

op =
Yt

X;
r

0
o= “‘m:: ¢ Log a—éf_—,dal

< Cle Log ¢} - Idal
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CHAPTER 3, SOLUTION 32

So this term tends to zero when ¢ — 0. For the second term we write
—I(ﬁ(a, 0)do, where @(r, 8) = @(r cos 6, r sin 6)

When ¢ = 0, by Lebesgue’s theorem @ — — (0, 8) j'dal and since (0, 8) = (0, 0)
we get

lim I, = 27¢(0, 0) = 2rn{d, @)

-0

Nn=3

-1, = I l_ @e""da, - I ée 0y, ...,0,.)2 —n)- " 'de,

e 1or

_15 J‘ EZ—?dU| + (" - 2)J‘ ﬁ(ﬁ’ gla ey gn—l)dal

o
é-x—'l < C.
By Lebesgue’s theorem the second term tends to
(n = 2)40(0){ Idax}

lim /, = C,(2 — me(0) = 2 — nC.<5, 9>

£-0

. de
The first term tends to zero since ‘El <y sup

SO

where C, is the measure of the unit sphere in R".
Therefore in all cases we have AE, = a,d where a, is a constant.

Solution 32
3 2
a) We have A = ) 66 7 Let us compute A in the polar coordinates.

i=1
Since f = f(r) itis suﬁiclent to compute the part which contains only derivatives with
respect to r.

We have
xy = rf,1(0, @)
x, = rf3(0, 9)
x3 = 1/3(0, ¢)

=9 T _X40 o, xtof
a_x,.f(’) T or ax,- r 6rf( % axzf(’) ( )6r 2 or?

& 1 _x\of, $8
'(-E?f(’)=< —x)f+x——f

r or  rior?
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CHAPTER 3. SOLUTION 32

SO
3 18 a 1(2 &
Af(r)=<; ,—,Z‘jx,’)a—{ ,—2<E]) ’)a—,{
a2 d
M0 = 3T

b) Letf = f(r) be such that (A + a?)f = 0in R3\{0}. Let usset g = rf(r). We get
g = fin) + /() g"(r) = 2/'() + 1f" ().

Now by a) we have
S0+ 2@ + @) = 0 in RO
so multiplying by r we get:

if"(r) + 2f'(r) + a?rf(r) = 0

therefore: g”(r) + a%g(r) = 0.
The generat solution of this equation in R*\{0} is

g(r) = ¢, cos ar + ¢, sinar
so the general solution of (A + a?)f(r) = 0 in R3\{0} is the C* function

) cos ar sin ar
m fln=c¢ T t g

r
¢) With the notations used in the statement of this cxercise ¢y = ! so

fiy = 1O S

Let us show now that in Z'(R) we have (A + a?)f(r) = Cld,.

ar

N . sin ar v . ., ,cosar . .
Function ¢,—— in a € function of r € R (while /——— is not defined at
r r

sin .
r = 0). So we can compite (A + d?) %" in the usual sense. Now by 2°)
r

SMLAT s a solution in R*\{0} of (A + a?)f = 0 (take ¢, = 0): since it is a C~
r

sin ar

function we have (A + a?) LT 0 in all R,

Let us compute in 2'(R) (A + az)g%ar' Let ¢ € 2(R),

<(A + a2 w> = <°°Sr‘"-. A+ azw> = J“’S T (A + at)pdx

r
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CHAPTER 3, SOLUTION 32

S ar
r

. . . co
As in exercise 31, since e L}, we get

-0 r

<(A + aZ)&r”’, ¢> = limJ SO A + a)p(x)dx = lim I,
rze

By Green’s formula we have:
I - J‘ @+ az)<cos ar)w(x)dx _ J‘ [cos arde _ (pi(cos ar)]daE
roe r - r or ar\ r

@’f—r = 0 (see (1) with ¢, = 0) so

Now in R3\{0} (A + a?)

- cosardp _ (d\(fcosar
oL () e

£2dw where dw is the measure on the unit sphere; moreover

Now do, =
8 (cosar\ _ —arsinar — cosar
or\ r rk
Finally
Op Ix.{| 99 o L lxd
=l <Y R £ =—| = M since — < 1|
ory — ) roox,) — S?;pz Ox; mnee = s
dp .
-1, = ¢cosa 3 dw + ac sin ae pdw + cos ae edw
( ) roon
N~ N e ——
© o O]

6] gslcosaalMJ dw - 0 wheree - 0

fel—1

dw - 0 wheree - 0

|xj=1

|@1 < lalelcos az| sup |p(x)] - j
R

The third term can be written as:

cos ac J @ 0, )dw  where @(r, 0, 9) = @(rf1(0, 9), rf3, rf3)
ka1

By Lcbesgue's theorem @ -+ @(0)f,, ,dw thus

<(A b ,,,> - <4 J dw)(é, 0 Vpea®
[x{=1

therefore
(A + &®)f(r) = —4nld



CHAPTER 3. SOLUTION 33-34

cos
4nrl

. C ar . . .
In particular the distribution is a fundamental solution of the operator

A + a*in R3.

Solution 33 ‘ .
a) When g = 0, the general solution of (1), which is C®, is uo(x) = Ce ** where
C is a constant and A(x) a primitive of f. ’

A(x)

If C = C(x) we are led to the equation %g = e*¥g so the solution is

Up(x) = e_‘(")J‘ e'g(ndr = J‘ exp (J‘ f(a)da)g(t) de

which is a C® function on I.
b) Let usset T = uy + e *“S then

dT du, a0dS —andS
= =2 4 + 22 + =g + ¢ 0
£= 4 +fT fu, + e e S+ fS=g+e i
S0 e""‘)——gf = 0 and —gf = 0since e "™ 3 0. So Sis a constant and it follows that

T=u, + Ce "™

therefore T € C*(I) and satisfies (1) in the usual sense.

Solution 34

a) 9%, ¢;> = (=16, 3%;> = (1)) = 235, ) s0 3% is
homogeneous of degree p such that —(n + p) = |a|sop = —n — |a|. Whenn = 1,
&% is homogeneous of degree —1 — k. The distributions &, &, ..., 6* are

homogeneous of different degrees. They are therefore linearly independent, by
question d) in exercise 16.
b) Let us suppose that T is homogeneous of degree p. By question b) in exercise 16

: P17 Oa\ 99
i (i) - A ()

2l SR _ _ AR g
<T’ 12— 2, > 1= loKT‘ 7 {T, ¢Ao>] 2= 1, —L(T, ¢)

so <T, %T—;ﬁ> - —(n + p)ho"*P* (T, ¢). Therefore
—— .
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CHAPTER 1, SOLUTION 1

N S

i=1
oo\ _ .-, 0
(o). 4 (va),

i 1J‘<T, (xi%>l> = —(n + pA ", ¢)

Since T is homogeneous we have:

@ Z i (n+p+l)< '§¢> = -+ p)l—(n+p+l)<T, o

On the other hand

dp
@ x3h = o) -

Now it is obvious that

SO

Dividing by lo“”"*” in (2) and using (3) we get
z a
IZI <T,5;(xi¢)> — T, ¢> = —(n + pKT, >

SO
"/ T : '
- Zl <X.-5;, ¢> = -KT,p> Vpe2R"

which proves (1).

a—T——pre[R Then

Conversely let us suppose that Z Xi5e

e = - (nan) - -nctin> - § (rnfes
=] i

Now

dg,, _ op
5;-1 Ao (ax,- o

so —(n + p)T, 9,> = J.(,<T, y x,(é’—f) > . Now by. question b) in exercise 16
i=1 i1,

we have in 2(R")

im 200 =04 _ %, ()

A—-de i=1
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CHAPTER 3. SOLUTION 34

therefore

KTy = Ao lim (1,927 P | = i ST 022 = KT 030
¢ =i, - l -2, - )-o

Let us consider the function 1 — f(4) = (T, ¢,>. By the above equality it has a
derivative at each 4, € R*. Moreover it satisfies

Af'(Ao) = ~(n + p)fidy) fori, >0
Q) = (T, 9>

This is a differential equation which can be easily solved.

[0 _ _(a+p)
Ry To

50 f(do) = C4, "7, C = A1)

therefore
(T, 9., = """(T, 9> QED.

¢) The homogeneous distributions on R are the distributions which are solutions
of the equation

dT _
4) xd—x =

Outside the origin, x being # 0, the solution of (4) are the usual ones which can be
obtained by the customery method.
We get

cyx” ifx >0

Rop# 1 -
c(—x) ifx<0 forpeRp# —1

(5 T()~{

m

(6) T(x)=;c— if pi= ——'m and meN

The general solution coincides w1th ¢y x”, (for x > 0)and ¢, x” (for x < 0) whenpeR,

p;é—l, ~2, andwnhfp—whenp——m me N.

Therefore the support of T — ¢,x% — ¢;x". (or T - fp;) is at the origin so
N
T=cx, +cox’ + Y adé® p+-1,-2, ..
k=0

1 M
T= Cfp; + ¥ ad® p=-mmeN
k=0
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CHAPTER 3, SOLUTIONS 35-36

1. Ifp # —1, =2, ... 6" being homogeneous of degree —k — 1 we have by a),
a = =ay=0s0T=cx) + cx".
2. If p= —m, me N, the derivative of order (m — 1) of d is homogeneous of degree

. . 1 _
—m the others have a different degree of homogeneity so T = clfpx—m + ¢,0™ 0,

Solution 35

a) since Pu = 0in R"\{0} we have u € C*(R™\{0}). So on every compact contained
in R"™\{0} u is integrable and satisfies (1). By exercise 13 we can find T € 2’(R") such
that T = u in 2'(R"\{0}).

b) since Pu = 0 in R"\{0} we have supp PT < {0} so

PT =Y a,D% a,eC

(PISN
Letusset S = Y a,D"E. Then we bave
tplsN
PD)T - S1= Y aD%~ Y a,D’PD)E =0
ipPlsN IpI<N

Since P satisfies condition (H) we conclude that g = T — S e C*(R") i.e.

T=g+ Y a,DE

[pisN
Solution 36
1°) Let ¥, and V, be two open sets such that ¥ <= V, < Vyand V, N U = . Let
a e PR") be such that @ = 1 on V,, a = 0 in{} V.. Then «S € CP(R") and

(1 — a)T e C*(R"). Let us set
() &S, TY =(T,aS) +<S, (1 — )T>

which has a meaning since Te 2',aSe€ 2,Se &', (1 — )T e C*.
Let us show that this definition is independant of a. Let # € 2(R") having the same
properties as a. Then

(T, aS> + (S, (1 — q)T) = KT, BS> + (S, (1 — B)T>
=T, (@ = B)S) = <5, (@ = AT)

which has a meaning since (@ — f)Se 2 and (a — f)T e C™.
Let us choose y € 2(R") such that = 1 on the supportof a — £, w = 0 on U, then
w(a — B) = (x — P); it is easy to see that such a y exists.
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CHAPTER 3, SOLUTION 38

Since ySe P and (x — f)T e C* we get
(T, (@ = B)S> = KT, (@ — PS> = (o — ﬂ)T wS) = (ys, (a - BT
=<8, y(@ — PYT) = (S, (@ = BT

Therefore the definition of €S, T?) is independant of a.
a) Ifsupp SN supp T = & wehave (T, aS) = (S, (1 — a)T} 0so ((S =0
b) Let us assume T € C® then ¥V = ¢ and ¥, is any open set such that
V, n U = (. Since T, aS are C* we have

(T, aS) = '[T(x)(aS)(x)dx = <aS, T) = (S, aT)

S0

8, TH =<8, aT) + (5, (1 —)T) =<5, T)

Let usset @ = i
0x

£8S, Ty = (T, adS)> + (35, (1 — o)T)
= (T, 8aS) ~ (T, (02)S) + (S, (0)T) — (S, (1 — x)oT)
50
&S, Ty = —(0T, aS) — (T, (da)S) + (S, (0)T) — £S, (1 — a)T)

" Now () = Oon Uand Vso (da)Se D, (0a)Te C*. Lety, € 2, y, = 0onV, (0o~
= (da). Then

(S, (@)T) = (S, @)y, T> = {(8)S, v:T) = Ly T, B)S) = (T, (0x)S>
K0S, TY = —[K0T, aS) + (S, (1 — a)d0T>] = —KS, dTH Q.E.D.
2°) Let us compute 1_3f in 2'(R?). Let ¢ € 2(R?)
@o> = =L Be) = —j u(x + iy)(@p)(x, y)dxdy
D

Let us set x = rcos 8, y = rsin 0, then dxdy = rdrdf and

- 00 . €"d
0= [ or + IT@

Let us set @(r, 8) = ¢(r cos 0, r sin 8). We get

<0f o) = ——I I u(r e“’){e'”-a—’f +i e—?f}rdrda

. 1 pr4
G 0> = —%I U m(re"’)—] ¢?do — %J U ePure”) ¥ "’da]d
0 0 [ [
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CHAPTER 1, SOLUTION 1

Integrating by parts in each term we get éasily

x

@ 0> = —%j'

[

, 2 o
u(€®)e’d(1, 9)do = —% I u(e®)e’p(cos 6, sin §)dd

So 3f is the measure -%u(e"")e’”d(} on oD.

3°) Let us set E = i Then 0F = 6 (see exercise 29).

By question 1°) we can define €3, E. Indeed S = &f is in &'(R?), E € 2'(R?) and
sing supp E = {0}, since f vanishes in D we have sing supp E N sing supp (. . .) (),
= @.

On the other hand by 1°) ¢):

Ko, Ey = —<<f,55>>‘
Since JE = & we get
KU EYy=~KL8y = ~Gaf> = {fi (1 —a)d) = =3, f)

(*) €9f, EYy = —f(0) = —u(0)

Now, since E € LL(R?) and &f is a measure, we get

8f, EY = (E,adf> + <of, (1 — @)E> = J Eadf + '[ i - o)E
D D

= -0
¥, EY =J Edf = _%L " fue)ds
D

ES = — ) = . 1 u(z)
() <9f ED = 27‘,[0 ue’)do = -z ,,D_z—dz
Using (*) and (**) we get:

L I (€))
w0) = 2in w 2 dz

‘ Solution 37

a) We know that the general solution of equation (1) j—: = S is the sum of the

. T . . .
general solution of %x— = 0 and of a particular solution of equation (1).
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, h dy dr'r d ""T
Let T € 2'(Q) be such that (a;) T = 0. Then (E}"__r) = 0so (a;) =Gy

d dy? dy ' . .
therefore (a;)[(d_x-) T] = Cp SO (a-;) T = Cox + C,. By induction

we deduce that T is a polynomial of order p — 1 with complex coefficients.

w8l

b) Let fe CYR) and p € N\{0} such that (dd—x)pf = ¢ in 2'(R).

In Q = R\{0} the function f must satisfy
dl‘

2) a;,.fz 0

The general solution, in 2°(R\{0}), of equation (2) is a polynomial of order <p — l:

fix) = Cox™' + Cx" 2+ ...+ CpnCieC
Since f has compact support we conclude that f must vanish in R\{0}.

Indeed

f(f‘), O 9% for x € R\{0}
x?P x xP
On one hand lim % = 0 since f vanishes for | x| large
fx|—=o
On the other hand lim { C, + Gy Lt C"f‘ = C,.
|xi—+cc X xP !
Therefore C, = 0 and in the same way C;, = --- C,_ = 0.

Since f is continuous on R we conclude that f = 0 in R which is impossible since
d P
(a) r=4.

Remark

Here is another shorter solution of b):

Let K be the support of fand let us suppose K < {x: |x| < M}. Forevery p € 2(R) we
have

dl’
(1) <3, 9> = 9(0) = (—Wj S0 GH e dx
k

If we take p equal to I for |x] < M then the left hand side of the above equality is
equal to 1 but the right hand side vanishes.
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Solution 38

J
We shall set in the following %5 = T*. The general solution of the equation x*S = 0

P
is § = ¥ C,6'. Indeed let us use an induction on k.
r=0
It is obviously true when k = 1. Let us suppose that the general solution of x* 'S = 0
k-2
is ¥ C,8"”. Equation (1) is equivalent to x(x*~'S) = 0, and therefore equivalent

=0
to x*"'S = (4. The general solution of this equation is the sum of the general
solution of x* 'S = 0 and of a particular solution of x*~'S = C4.
Now ¢* 6% Y = a,4. Indeed

<xk I(s(L I)' w) - (_l)kfl<6, (xl' |¢)(k |i> - (_l)k—-l(xk-lw)(k'l)(o)
= (= 1)""tk = D'p(0)

k—2 k-1
Then the general solution of x*™'S = Cdis ¥ C, 07 + C,_ 6% " = ¥ C,6".
p=0 pP=0
Q.E.D.
k-1
Equation (1) is then equivalent to: (2) T = Y C,6'”. The general solution of
r=0 .
this equation is the sum of the general solution of 7% = 0 and of 4 particular solution
of (2). The general solution of 7" = 0 is a polynomial of degree m — 1. Let us look
for a particular solution of (2).
aAam<k—1 T"=Cd+Cd+...+C, 8" "+C 6"+ ... +

C,.,6% " First of all for every /e N (x'H)" = a,H. Indeed

=1 »
CHY=1MH+ Y -1 ...(0-p+ Dx?6"" = IH

p=0
because x' 76Y" """ = Osince I — p >/ -1 — p.
We deduce that (x'H)'*' = 4,6 so (x'H)"*” = a,6”"". Therefore

" HY™ = a,, (8, (x" )™ = a, 8, . (XOH)™ = qp6"
So
To = by(x" "HY + by(x™ 2H) + ... + b, H + b, 6+ ... + by 6%

is a particular solution of (2) and T = T, + P,,_,, where P, _, is a polynomial of
order m — 1 is the general solution of (1).
(b) m > k — 1: In this case:

Ty = b(x" 'H) + by(x" *H) + ... + b(x" *H)
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and the general solution of (1) is

T=T,+ P,., whereP,_,isa polynomial of degree m — |

Solution 39
Let ao e N", |ag| < m. The functlon x™ being C* we have

(T, x*) = Z ,(—l)'“'la"(x"’)](o) =0

lalsm

Now it is easy to see that

oo = {0 el
We conclude that
(T, x*y = (= 1)"ala, =0
So'a, = 0 for all a, |a} < m.
b) The application f; corresponds to the matrix 4, = which is

-1
0o .
such that |det 4,) = land 4;' = A;fori=1...,n
On the other hand the support of T being at the origin we have T = ) 5,0%.
Moreover we must have lalsm

() ToAd,=T= Y bo*i=1,...n

le|sm

Let us compute T o A4,. For ¢ € C*(R")
(To A, 9> =<T, 90 A) = Y b(—1)"(p o 4)0)

Now o
3*(p 0 A)0) = (- D™3%)0) = (—1)*(— )", v)
SO
(To A, 0> = 3 (—1)b (3%, ¢)
{at<m
and
) ToA Z (— D%b,0%6

lalsm

From (1) and (2) we' deduce
Y (=%~ 1}5,0% = 0

lajgm
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CHAPTER 3, SOLUTION 40

We deduce from question a) that for every a € N"and all i = 1, .. .,,n
{(-1n% = 1}b, =0
which implies that for a such that b, # 0, @, must be even fori = 1, ..., n, i.e.
() T=Ybyu, uo"... 63-6

Conversely by (2), every distributioh giveri by (3) is invaria_nt by tﬁe applications I

Solution 40
‘ 02 )
a) QF = m(h”(h))((?—y: - 1)(”()'2) exp y)

d »
=—(p H(y,) = H(y)) + 38,0 = Hyy) so x5 H()) = J,-
o %

5 .
(5y— - l)(H(yz) exp ;) = 8, oexpy, + H(y;) expy, — H(y:))expy, = 6,0
2

Therefore QF = 6, . ® J,,.0 = .
b) (P(uo A), 9> = (uo A, Pyp> = |det A| " (u, (Pyp) 0 A™")

(o . aN(o o ..
P‘"§(K+E)(5Z_E+2)

Let us compute (P,¢) © A~'. We have
J _ 66y1+ 00y2_0+ 0

K oy, 0x, Oy, 0x, o 52- R
a d oy 0 0y, _ 0 a

= 2y 22

0x; 0y, 0x; 0y, 0x; oy oy,

where

SO

Ppoa = —4(2- 2<2i +2)poda = -i(i+ o4
8\ "oy, 3y, dyi\ 9y,
=Qpo0A4")

We deduce that
(Puo A),¢) = |det A]7'(u, Qi(p 0 A7) = |det A]"'(Qu,p0 A"
SO

(P(uo A),¢> = {(Qu) o 4, ¢)
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CHAPTER 3, SOLUTION 41

for all p € 2(R?); so
Puo A) = (Qu)o A

O (50 4,9 = 1det AI”'(5, 9 0 A = 2914710, 0) = 1¢00.0)

800,004 = %6,,0.

By duestions 1) and 2) we have
P(FoA)=(QF)oA=060A4=:6

So P(2F o A) = 4. Let us compute F o 4. We have
(Fo A)xy, x3) = Flxy + x3, % — x2) = (x; + x)H(x, + x;)H(x, — x)e" "
So we obtain a fundamental solution of P setting

E = 20x, + x)H(x, + x)H(x, — x;) exp (x; — X2)

Solution 41
a) Tis a distribution on Q so for every continuous semi norm p on () we can
find a constant C > 0 such that for every ¢ € 2(Q)

@) KT, 931 < Cple)
From (1) and (2) we deduce that for every ¢ € 2(Q})
KT, ¢>| < Cq('Pp) = Cq(w)

which proves a).

b) The application @ being linear and continuous from E, subspace of 2(2), to C,
by the Hahn-Banach theorem it can be extended to a continuous linear map from
2(Q) to C which means to a distribution on Q. Therefore we can find S € 2'(Q) which
coincides with ® on E. Let ¢ € 2(£), since 'Pp € E we have:

(S, 'Ppy = ®('Pp) = (T, 9>
But by definition
(S, 'Pp)> = (PS, 9>
50 (PS, 9> = (T, 9> Vpe2(Q)ie.
PS=T in2@®)
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CHAPTER 4, BASICS

'BASICS ' CHAPTER 4

Convergence of sequences of distributions
e Let (7). be a sequence of distributions in an open set Q of R". We say that it
converges in 2’(Q) to a distribution T € 2'(Q) if
() lim (T, 0> = (T, 9>
jc
for all p € 2(Q).
o If the distributions T are in £'(2), we say that the sequence T, converges to T in
&'(Q) if we have (1) for every g € C*(Q).
e Let us note that it is not necessary to know the limit in order to say that the
sequence (T),.y converges in 2'(Q) as the following result shows:
Let us suppose that for every ¢ in 2(2), the sequence of complex numbers
(KT, 9>),en converges in C then there exists a distribution T € 2'(Q) such that
lim T; =T
joa
in 2'(Q).
e The limit of a sequence of distributions is unique.
e Convergence in 2(Q), C*(Q), L”(Q) (0 < k < o0; 1 < p < o) implies convergence
in 2'(Q).

STATEMENTS OF EXERCISES CHAPTER 4

Exercise 42
Fore > Oweset T, = %le‘f'. Compute in 2'(R)
T=1mT,

e—~0

Exercise 43
Determine a sequence (T,),,, of distributions with support at the origin such that the
sequence (S,),,, defined, for ¢ € 2(R), by

(.05 = (Tood = ¥ w(%)
k=1

converges in 2'(R)

* Solutions pp. 94 to 109
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CHAPTER 4, STATEMENTS, EXERCISES 44-47

Exercise 44

1°) Construct a sequence ( f,),.n of functions on R such that
a) (f.(x)), converges to zero almost everywhere.
b) (f,) does not converge in 2'(R).

2°) Construct a sequence (g}, Of functions on R such that
a) (g,), converges to d in 2'(R).
b) (g.(x)), converges to zero almost everywhere.

Exercise 45
We denote by &, the distribution 2(R) 3 ¢ ~» {J,, ¢> = p(x).

a) Prove that for all a € R the series Z n[8,,, — 6_,.) converges in 2'(R\0). We

n=1
shall denote its sum by T,.
b) Prove that this series converges in 2'(R) if and only if a < 0.
c) For0 € a < | find S, € 2'(R) such that S,po = 7.

Exercise 46
Let A4, be the distribution defined for 4 € R, k € N\{0} by
nj2
" cos Ax ()
<A;,k,¢>=j o { Zq’() }x ¢ € D(R)
-nj2

Compute in 2'(R)

lim A, , lim A4, ,

A-r00 i-0

Exercise 47 (see exercise 26)
For x e R and ¢ > 0 we set

fux) = Log (x + ie) = Logix + ie| + i Arg (x + i)

a) Show that when ¢ — 0, f, converges in 2'(R) to the distribution f; given by

£ = Log x x>0
° Logix| +in x <0

fo

b) Compute =% in the distributions sense. (Use exercise 26)
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CHAPTER 4, STATEMENTS, EXERCISES 48-60

¢) Deduce that we have in 2'(R)

- = —ind + pp—
x+ 0 l::? x + ind + po
e>0
d) Prove that L lim . ind + 1 K
? x+ 0 £—0" x.+ i pvx
. 1 :
Deduce that 1211101 gt 9.

>0

Exercise 48 (see exercise 47)
Using the following result (see exercise 47)

' 1
= ind + pv—
TR ind po

show that

We recall that J’

0

Exercise 49

Letae R*, 8, = J,_,. Investigate the convergence of Y, 44, in 2'(R) and in &'(R).

neN

Exercise 50
a) Let (a,) be a sequence of complex numbers such that

la,| £ Cn” peN

N
Prove that the sequence Ty = Y. a,e™™ converges in 2'(R). We shall denote by
«© n=-N
T =Y a,e”™ its limit.
b) Show that
dr & ;
P ¥ Qinn)a, e

—®

and that ©,T = T where {7, T, ¢) = (T, t_,¢) = (T, p(x + 1)).
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CHAPTER 4, STATEMENTS, EXERCISE 61

c) Weset S = Y e
Prove that (1 — e2™) S = 0. Deduce that § = Y. ¢.9, and using b) prove that ¢, = ¢
forallne Z.

d) Let us consider the continuous function

hed 1

fx) = Z 1 + n?

A=~

2imnx

€

Investigate a differential equation in 2'(R) satisfied by f. Prove that in ]0, I[
f(x) = .a(eln(x—l/Z) + e—Zn(x—-l/Z)).

¢€) Applying to f’ the jumps formula and using the differential equation found in d)
find a relation between a and c. :

f) Compute the constant a by evaluating Ll, Sf(x)dx in two different ways. Prove
thatc = 1.

Exercise S1*

Let P = Y 4a,0°% a, € C, be a differential operator with constant coefficients
lafsm
in an open set Q in R".

a) Let Q, be a bounded open subset of Q; we set
E = {ue LAQ,): Pu = 0in 2'(,))

Prove that E is a closed subspace of L3(£2,).

b) We assume that P satisfies the following property:
(H) For every open set w in Q: u € 2'(w), Pu = 0 in 2'(w) imply that u e C*(w).
Let 2, be a relatively compact open subset of Q,. Prove that we can find a constant
C > 0 such that for every u in F

) zj
i1 Jh

. ou . . . .
(Hint: Show that the map u éTu in continuous from £, equipped with the
X

topology of L2(£,), to L*(£2,), using the closed graph theorem.)
c) Prove that if Pis a differential operator with constant coefficients satisfying (H),
for every sequence ({;)icn in C” such that

au : 2 -
Tr, dx < CJ.(L Ju|?dx

PEC) = Y ai)*=0 and lim [{] = +oo

laj<m koo

we must have: lim [Im {,| = + 0.
k-
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CHAPTER 4, STATEMENTS, EXERCISE 52

(Hint: Apply inequality (1) to the function u(x) = " where (x, {,) = Y x i
i=1

forxeQand{, = ({,l,? --+.{x) € C", then use the inequality
~M|Im{] £ —(x, Im{,) < M|Im (|

for xe Q,.) :
d) Give one (or several) operator which does not satisfy (H)

Remark: A differential operator w1th constant coefficients satisfying (H) is called
hypoelliptic.

Exercise 52*
Let f'be a holomorphic function in the subset of C, D = ]a, b[ x ]0, 5] where & < 1.
We assume that there exist two constants C > 0, 4 > 0 such that

C d
< — e
m /@Il < im 27 for every z such that |Im z| < 3

For y € 10, o[ we define the function f,: ]a, 5[ — C by
| 1, = fix + iy)

Our purpose is to prove that:
(*) When y tends to zero, f, converges in 2'(Ja, b[) to a distribution Te 2’'(1a, b[).
a) Prove that in (1) we may assume that 4 is not an intege: 4 = N+ a, Ne N,

€0, 1L a+b 1)
b) For k € N and z € D we denote by y, the subset of C: I: 5 + i?, z:l and we
set

(Pyf Nz) = J Sty du
ik

Moreover we set
Po = Identity Py = Psy, Py = Py, 0P, Po=PiuoPyyio.. 0P,
and

uz) = (Pyf)2),  0(2) = (Py S N2) = (Pyproi1)(2)
Prove that P, fis holomorphic in |Im z| < ¢ and satisfies the same inequality as
(1) for every z such that |Im z| < g and with 4 —~ 1 instead of A4.
Prove by induction that

é C
(2) 3C, > 0:Vz: [Im 2| < s @l < |Imlz|"
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CHAPTER 4, SOLUTION 42
¢) Prove that
. . 3 ‘ 1-a 1-a 5
3C, > 0 S?Pbllv(x +iyy) —o(x + i) £ Gy - 70 [¥:l, 12l S In+1

Show that the sequence (v,) defined by »,(x) = o(x + iy) converges in 9'(]a, b[).

k
d) Show that for every k > 1, (%) (P.f) = fand conclude.

SOLUTIONS OF THE EXERCISES CHAPTER 4

Solution 42
First of all, for ¢ > 0, the function |x|*"' is locally integrable so it defines a
distribution on R.

Let ¢ € 2(R), supp ¢ < {|x}] < M}. We have

M 0
(T,.9> = fj x| 'p(x) dx = fj x*p(x)dx + fj (— ) 'p(x)dx
2 Ja 2], 2.,
so
M

(T 05 = gj X + o(=xdx

0

Now
@(x) = ¢(0) + xy(x)

with w € CO(R) and suply| < C, suple’(x)]. So we have
Ixts M

Ixls M
@(x) + o(—x) = 20(0) + x(y(x) — w(—x))

i
therefore

M

(T 9> = 0(0) e_[ X dx + g_[ X (W) — w(-0)dx

0
Now forz < 1
M

J x(w(x) — w(—x)dx| <e-Cosup(M, 1) - M- ‘ |sulslw’()c)l
0 x| <

£
2

and
M
aJ. x'dx = M*
0
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CHAPTER 4, SOLUTION 43-44

Therefore
lim <T,, > = (lim M*) - ¢(0) = @(0) = <3, @>
-0 =0
so lim T, = 4.
e—0
Solution 43

For ¢ € 2(R) we can write

o(x) = 9(0) + x¢'(0) + x*y(x)
where y € C°(R) and sup |y(x)] < C, sup |¢”(x)]

1 {1
Therefore q)(i) = ¢(0) + %(p'(O) + FV,(;) so

n n l l
(S, 9> = (T, 0> = npl0) — (Z %)w'(O) - X pw(;)

k=1

. 1 1 C
Since ——l W(E) =

< ED the last term in the right hand side has a limit when

k2
n — + oo. Therefore if we set

k=1

Ty =m0 + (3 i)«)'(m

the sequence (S,) will converge in 2'(R) when n —» + o and the limit will be a
distribution. So we must take

L |
T,=n-6— ~)&
o= (33)

One should remark that there are infinitely many sequence (T,) which work. One just
has to take more terms in the Taylor expansion of ¢.

Solution 44
1°) Let us set
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CHAPTER 4, SOLUTION 45

a) Then for all x # 0, f,(x) converges to zero. Indeed for a fixed x, # 0 there exists
an integer n, such that for every n > n, we have ’_l, < |xol 50 f3(xo) = 0 ¥n 2 n,.

b) Let us show that (f,) does not converge in 2’(R). Let ¢ be in 2(R)

1in

o> = 'IZJ- p(x)dx

~ln

Let us assume that ¢(x) = 1 for |x| < 1; then for n > 1 one has (f,, 9> = 2n.
2°) Let us set

g.(x) =

NI

a) Let ¢ be in 2(R)

1/n
n n2 1
& o> =3 J/ pL)dx = 3-p(¢,) where ¢, <
therefore when n goes to infinity, {g,, > tends to ¢(0).

b) Of course (g,(x)) converges to zero for every x # 0.

Solution 45
a) If g € P(R\{0}) then ¢®(0) = 0, Yk € N. By the Taylor formula for [x] < M,
o(x) = 0(]x|"), Yp € N. So we have

RBIRE

Therefore the sequence

ifp=2a+?2
N N 1
(5 w10, - ) § o)
n=1 n=1

_l
n
converges in C for every a € R.
b) Let us assume ¢ < 0. For ¢ € 2(R) we have ¢(x) = ¢(0) + xy(x) where v €

C°(R), then
w(%) = ¢(0) + %w(%)

1 1 1
¢<_’—l> = p(0) — ;W(‘;)

<
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< |STlp| (%) Il - Since @ < 0, this proves that the series
x| <

(o)1)

converges for all g € 2(R).
Let us assume a > 0, Let y € 2(R) be such that y = 1 for{x| € 1,y = 0ifx| > 2.
Let us set g(x) = xy(x) then

_ 2 1 1 2
noyn = Oy 9> = "n;("’(;> * V(_;» T e
]

Since a is non negative the series
given in the statement.
c) For ¢ € 2(R) let us set

(S, 9> = i n"(w(%) - ¢(—%> - ;lz-w'(O)>

This series is convergent in 2'(R) and defines a distribution S, € 2'(€) since

Aol - of 1) = 2, <
o) - o(5) b5 55
and a€ [0, 1[.
Moreover if ¢ € 2(R\{0}), ¢'(0) = 0 so

(S, 9> = Z. n“[w(%) - ¢(—%>] =(T,, 9>
ie., S,lpo = T,

a-

Solution 46

l!)
When A— 0, 4;  tends to zero in 2'(R). Indeed ¢(x)= Z ( )x +x* w(x) so
22 i=0 °

() <A4,;.0> = J cos Ax - w(x)dx

. . non - . .

where y is continuous on 505 Therefore it is the Fourier coefficient of an
integrable function. The Riemann—Lebesgue theorem implies that (1) tends to zero
when 4 - co.

When 1 — 0, by the Lebesgue theorem and formula (1) we have

2
lim <A4;,, > = J y(x)dx

40 -n2
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1 ko 3 1
Now w(x) = I [(p(x) -y (p"'(O):—'J, x#0
i=0 .
Therefore A, , tends, when 1 — 0, to the distribution

/2 k-1 i
1
¢ = <T. 0> = j ;[w(x) ) w"’(O)%]dx
i=0 4

-n/2

Solution 47
a) For ¢ > 0/ is locally intcgrable so it defines a distribution.
If|x + ic] > | we have

—

|L0glx+ie|l=Log|x+ie|§§Log(x2+ 1) ife <1

If |x + ig] < 1

< Log - = [Log x|

jLog |x + ig|| =
[ x|

Log ————
Oglx + g}

Let ¢ € 2(R). Then
Jf,(x)q)(x)dx = J.Log |x + iglp(x)dx + iJ.Arg (x + ieyp(x)dx = I, + il,

By the above inequalities and since Log |x + ie| converges almost everywhere to
Log | x| when ¢ — 0 we deduce that I, — { Log | xjg(x)dx by the Lebesgue theorem.
On the other hand:

ifx >0, lim Arg(x + ie) = 0Oand if x < 0, lim Arg (x + i) = 7. Now
£-0” e-0"

|Arg (x + ig)] € 2n x+igx <0 x +ieex >0

The Lebesguc theorem then implies that M

0
lim/, = inj~ p(x)dx Q.ED

-0

b) We can write f, = Log |x| + inH(— x) where H is the Heaviside function. By

exercise 26, (Log |x|) = pv ! and (/1(—x))’ = —4. Therefore

X

dfe _
- " ind
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d 1
ey = Log (x + ir) = - - . Indeed
c) dx og (¥ i) Yt
d x
— Lo + il = 50—
xL g |x + iel -
and
€ € 1 -
— Arctg - = ——
dx gx x? e? x* + g
1+ -
SO
x - e _ 1

d
kel + )= e =
dx Log (x + ie) x2 4+ e x+i
Since the derivation is continuous on @’(R) we deduce from question a) and b) that

1 od o d 1
a;fz—d';fo—lw; ind

1
where ye R, y = —x.

d) Letusset e = —a, @ > 0. Then -
x + i y +
From c) we get
1 1
li = pv— — ind
Iy
so
lim =—v1+im5= vl+i1u5 for —pv = vl
cp X T i py px p-—x px
Therefore
1 1 1 €
0= | — I = lim —————
2i7z|;iTo x — ie Eiror} x + ie] Eliror} n(x? + %)
ob = W im im = lim ——
reT caot Xt B gt X — i cot X2+ €2
Solution 48
First of all

ixt i ) l
(1) ;i_*';ﬁ = jge'Vd + e""[m}



CHAPTER 4, SOLUTION 48

Now

ine™s, 9> = in(d, e™ ¢> = inp(0) = in(d, 9> for p € A(R)
so

(2) ine™s = ind

On the other hand for ¢ € 2(R), supp ¢ < {|x| < M} we have

ixt
<ei"pvl, ¢> - <pv1, Ci"(ﬂ> - limj € (/’(X)dx
X X 0 JegixigM x

J o)y (Metety (e M=),
c<ixls M . x . X '

X

Since p(x) = @(0) + xy(x) where y is continuous on R, we get

eul (‘,) M elxr _ e*lxl M
J =8 4x = (0) J ——dx + J [e™w(x) + e "y (~ )] dx
csixls M X & X I3 ,
Y sin xz Y
= 2i¢(0)J~ r' dx + J [e™w(x) + e (- x))dx
£ N &
I, J,
¥ sin xt ™ sin y
I = 2iw(0)J sy daw) = 2i¢(0)J ; ;’}’d)'

ny

is continuous at the origin the Lebesgue theorem gives

M. (2 A
. sin y sin v
lim —dy = et dy
0 J ) 0 )

SO |

. . sl
Since the function

™,
lim 7, = 2i¢(0)J MYy
o

-0
Using once more the Lebesgue theorem we get
M
lim J, = J [e™w(x) + e ™y(—x)]dx
-0 ¢

Therefore
M

ML
<eixlpL,};, ¢> = 2,'¢(0)J ﬂ]y—}—dy + j [emw(x) + e""w(——x)]d-\’

[

100



CHAPTER 4, SOLUTION 50

When ¢ goes to infinity we get

™ sin ¥ *sin n
lim Yo ody = —Zdy = %
i [, e = [, e

By the Riemann-Lebesgue theorem we get

(R

M

lim J e y(x)dx = 0
[}

)

3) Iim <c“’pvf—(. {/)> = ing(0) = in(d, ¢)

ety

and the result follows from (1), (2), and (3).

Solution 49

N

e Letusset Sy, = Y a"6,. Letpe (R), and M > 0 such that supp ¢ < {|x| < M}.

n=0
N M

(S 0> = Y dp(n) so lim (Sy, 0> = ). a"p(m)

-0 n=9

therefore S, converges to a distribution T when N goes to infinity, for allae R*.
o Il ¢ e C"(R) we have
N

(Sy.0> = Y d'p(n) soSyeé&’

n=0

N
Ifa > 1letustake ¢ = 1 then (S, > = Y a" which tends to infinity when N — 0.
0

Ifa < 1 let us take ¢(v) = exp (.\' - Log ]> = (1> . Then
a a

N l ”
(Spod =Y a"(;) =N+1

n=0

Therefore in all cases the series X a"d, diverges in &'.

Solution 50
N

a, 2innx
——"— "™ If n # 0, we have
n=~N (2""‘),”'2 ’

n#0

a) Let us consider the sequence S’ =

A
(2imn)r?

A
10
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Therefore when N —» o, S converges uniformly, so in 2'(R), to a continuous
function S$'”. Morcover

d pt2 N
(P — 2innx _
(a> SP =% a,e™ =Ty~ a
: "< TN
nr0

Since the derivation is continuous on 2'(R) it follows that T, converges in 2'(R) to

d\*?
the distribution (—) S” + a,.
dx
dTN d N Zinnvx . +1 M
b) ic = Y. Qinnya, ™. Now |(2inn)a,] < Cn"*! so by question a) the
- N

+ oo

d .
sequence ax T, converges in Z'(R) to g—: and to Z Qinn)a, ™™

By definition, if ¢ € 2(R) we have:

x

N
T, 0> = (T. 19> = lim (Ty, 7 9> = lim Y J a, e’ p(x + 1)dx
N—a Nox -N JR
N .
= lim ) a,,-[ e¥™p(x)dx = lim (Ty, 9> = (T, 9>
Nox —N R Nox

ie, 7,7 = Tin 2'(R).
¢) First of all by question a) S makes sense. On the other hand we have in 2'(R):

(1 — e*)$ = lim (1 — e"™)Sy

N
N N+1
= lim Z o2 _ Z g2
Nooo \n=-N n=-N+1
. - 2i 2in(N+ 1);
= lim (e 2inNx e in(N l)() = (
N

Indeed for ¢ in 2(R) we get:

<e— 2inNx _ c:iﬂ(h’*”\" ¢> — -[ conan(p(x)dx — -[ cZin(N+I).\‘¢(x)dx
R R

. . 1 R
~2inNx _ 2in(N+Dx _ ~ 2imNx, 1 _ LN+ D
{e e ")) - JR e ¢'(x)dx 2N _L e o'(x)dx

SO

[<e MmN — MY gy] < %J lp'()ldx » 0 if N = oo

In the interval ]~ N, N[ the zeroes of the function e?™ — 1 are

~“N+1,-N+2..,01,2 ..,N~-1
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Ifxe]~N N wegete™ — | = alx)(x + N = 1)+ (x — N + D) with a(x) # 0,
therefore in this interval

x+N-D--(x=N+1DS=0
Now if a, ... a, are distinct real numbers, the general sotution of
x—a) (x—aq)S=0
in the distribution S = C,4, + G4, + --- + C\d,,.

It follows that:

N-
S.¢> = ) C,pm) VpeZ(]-N,N|)
N+

soS =Y CJ,

On the other hand 17,5 = S, i.e. (S, 1,0) = (S, ¢), Vo € 2(R).
Let o € 2(In — 1, n + i[) be such that ¢(n) = 1. We get

St =C,,=(S¢p=C, VnelZ

which implies that C, = C,Vne Z,s0 S = C Y 4,
d) By question b) we have in 2'(R)

df & 2imn . A& dmimd
i LT T a0 @ T LT

2innx

2

. d¥f
e, 453 4n*f = —4n?S.

Since § = C Z é8,, for ¢ € 2(]0, 1[) we have (S, ¢> = 0, so in 2'(]0, I[)

d¥f )
== — 4n*f =0
dx? /
We know that the distributions solutions of this equation are C* functions and that
this equation can be solved by the usual methods so

flx) = C,e™ + Cye ¥
letusset C; = a;e ", C, = a,e” we get
’(x_) — Hl cZnh 12y + llzc 2n(xv 1/2)
Since f is periodic with period 1 we have f(0) = /(1) so
n

ae " + a,e" = ae" + @€

and g, = a, = a.
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¢) The jump’s formula applied to fin ]— 1, 1] gives:
ST =S+ 00 6

where /" is the second derivative of fin 2’, { f”} the distribution given by the function
S intheset]—1,0[ U0, 1[and g, is the jump of the first derivative at the origin. Now

(%) = aQuer™ 1D — g1y
SO
0o = ['(0) — f/(1) = aQne ™ — 2me" — 2ne + 2me ")

= 4nae”™™ — €")

Q
<
|

J= S drate " - €,
therefore
J' =4 =A{f"} = An*{f} + 4dna(e " — €")d,
Now " — 4n%f = —4n2Cépin]— 1, l[and {f/"} — 4n%{f} = 0.

SO
dra(e " — e")0, = —4n2(Cd,

and

f) First of all, by the uniform convergence of the series, we have

I 1
. - 1 dinnv L
L f(x)dx = 2 i j e dy = 1

\l

i

On the other hand
i

! i
'[ S(x)dx = a<'[ ety + I e‘Zn(.v-'l/Z)dx>
0 0 .

SO

It follows that € = < _n X — = =1 Q.E.D.
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Solution 51
a) Let (u,) be a sequence in E which converges to u in L3(Q,).
Then it converges to u in 2°(Q,). Indeed if ¢ € 2(Q,) we have

[Kuy ~ u, @] =

I (u(x) — u(x))p(x)dx
Q,

< < f i, (x) — u(x)|2dx> < f |¢»<x)|2dx>
Q, Q,

The derivation being a continuous map in 2°(Q,), the operator P is continuous from
2'(Q)) to itself. It follows that (Pu,) converges to Puin 2°(Q,). Since Pu, = 0, for all
k, it follows that Pu = 0 sou e E.

b) By question a) E is a complete subspace of L(Q,).

. L 0
If P satisfies (H) then every u in E is actually a C* function in Q,. It follows that % €

e

L2(Q,), 1 <j < n, where Q, cc Q,.

1
If we can show that the map
Esub 9}‘_ e LX(Q,)
ox,

has a closed graph it will follow from the closed graph theorem (which can be used
here since £ and L?(Q,) are complete) that this map is continuous, which proves (1).
Ju,

Let (1,) = E be a sequence such that (u,) converges to uin E and <6_> converges to v
x.
7

. u

in L2(Q,). We have to prove that ¢ = -
x
i

Since convergence in L? implies convergence in 2’ it follows that (1, ) converges to u

du

Ox;

J

in 2°(Q,). By the continuity of the derivation in 2’, <%> converges to -—in 2'(Q,)

]

and then in 2'(Q,). Since <%%5 converges to v in 2'(Q,) we get v = 6-“
X; . X,

c) Letl, =&, + in, €2, ¢, e R, n, € R”. Let us assume that P(,) = 0. Let us set

n

u=c“%where (x,{) = ¥ x;-{’ Since u e C*(R" it belongs to LX(Q,) since Q,is
i=1

bounded. On the other hand

e < ) aaf”)e“m = Y ) e = PEYe = 0

la}sm lal<m
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So u € E. Applying incquality (1) we get:

iA

@ 3 |C“2J e Xmdx C’J e Mo dy
k=1 Q, Q,

since |e"V| = ¢ <", Now by the Cauchy Schwarz inequality
x|l € —Camy £ 1x)- 77,

Since , is bounded we have |x| < M (where M is a constant) for xin Q,. Then
() =M-in) < oy < Mgl
It follows from (2) and (3) that
[aPe ™ (@) < Cu(@y) - e
where u(Q,) is the measure of ;, i = 1, 2. So we get

< C#(Ql)esw-w

= @)

therefore it &4 -+ oo, 1Im & = dnpe] = o
d) Let us consider the differential operator in R?

» 2 14 2\
P(D),D,):IF+L—:I( '<l()

ior T axt iar \idx
The polynomial associed with this operator is
PEm =10~ &
1t follows that
PE.ED) =0 forall e R

The sequence &, = ({1, {#) in C? where {} = ¢, € R, { = (£,)? € R satisfies
P() = 0,10 — 0 il || — o but Im . = 0. By question c) this operator is not
hypoelliptic.

Solution 52
a) If 4 € N one has just to remark that inequality (1) is also true with 4 + « where
o €0, [ since & < L.
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b) P, f is holomorphic since it is a primitive of a holomorphic function. As a
parametrization of y, we shall take

a+ b
2

xD=1x+ -1

o =1y + (1= 03

then du = dx + idy = [xX'(r) + iy'(n]dt = [(vc -4 ; b) + i(y - -g—)]dt

We get

- t
(PN = [<\ - ";I’> + i(_\' - ';)} L _/‘(:.\» +(1 - :)"Eb + i(ly +(1 - :)g>>d:

The inequality (1) applied to f gives
a+ b . )
(=)l 3)

s k(- l)g

e by e

2 YA T 2,

C_aEBY L, ! Lo
' 2 ) T PR E

J
Now x| < Ja| + |bl.0 < » £ %lheng -y > =30

t
dt
P ) £ 1ty + 0 — 03211
(P = L Ity + (1 — /2|4

Let us set

we get

[Py /)] <

SO

(P, )] <

)

’

. C
[(PL N2 < ;;”.

for all y such that 0 < y < g
Let us assume now that
. Ci 4]
AIC>0 (PN = T2 for |Im z| < S
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In the same way as before we get
1 e
(4 =k = I = )" T

[P YN = Py (P S)2) £ Cy

and for 0 < y < 3x73 We get

C
[P @) < 50 fory < 57

Incquality (2) follows from the above incquality with k = N — lsincc 4 — N = a,

A
c) Let »y, y, be such that
‘6_7 P Vi
Y2 x + iy,
 t i3

We have " N h7

bl <

elx 4 oay) ooe(y b ody,) = J w(o)doe — J wfydp

where

a+ b o at+b 5 .
n= ““54+ 2N+|,x+1}1 , V2 = 3 +'W,X+U’z

Since u is holomorphic in D we have

v(x + iyy) — vlx + iyy) = j u(x + is)ds
By (2)
. . & C ' |- [
sup lo(x + iyy) — olx + iy))] < J A=< Ot -l

Therefore the sequence (v,) defined by v (x) = v(x + iy)is a Cauchy sequence in the
complete space C°(]a, b[). So it converges i.e. there exists v, € C°(Ja, b[) such that v,
converges uniformly, on every compact in Ja, [, to re. In particular v, converges in
<2'(la, b)) to r,.

d) (**)(1’ ) i

= lmﬁH /(c)dc‘ff(c)dc] HE B
0 [ X v Re

108



CHAPTER 4, SOLUTION 52

where

R O S L A I O S
i 5 Xt htal y=(— i3, % + iy

Therefore

v+ h

(3)(1",0(:) = lim 1 f e+ ipyde = flx + iy) = f(x)
ox Y N
Let us prove, by induction, that

AN . .

(a) (P.f)2) = 1,00

We saw that this is true for n = 1. Let us assume this is true for n — 1. Then

3\" a n-1 a
(i) (P.f)2) = (5;> [(@ Py (P .f)(Z)]

In the same way we have

a

<«,£>P,s;z~(”,. SN = (P )

(%

and from the induction we get:

o\ a\!
(ﬁ) (P, Nz) = (0—") (P,_ fNz) = flx + iy

Fl N+1 B Fl N+1 _
(;;) (PN+,,f>~(5;) v=s
3 \N+1
(g) v, =1,

Since v, converges to vy in Z'(Ja, b[) and since the derivation is continuous in

It follows that

N+1
2'(Ja, b)) it follows that f, converges to (K) vo in 2’(Ja, b[) when y — 0.

Q.E.D.
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CHAPTER 5, BASICS

BASICS CHAPTER 5

a) Convolution of distributions and functions
Let Te &'(R")and p € C*(R") (or Te.2'(R") and ¢ € 2(R")). The convolution of T
and ¢ is the C* function T * ¢ defined by

(1) (Txg)x) =T, @y — 1)
In particular we have

(2) (T *o)0) = (T.g> where ¢(1) = ¢(—1)

b) Convolution of a distribution and a distribution with compact support
Let T e &'(R"), S € 2'(R"); the convolution T * § is the distribution which is
defined for ¢ € 7(R") by

(3) (TS, 0> =TS, 0lx + 30>
This is another definition for T * ¢:
4) (T*S, 0> =[T*(S*pl0)

One can prove the equivalence of these two definitions.
When S e C*(R") or T € 2(R"), the definitions (1), (3). (4) coincide, which implies in
particular that if Te &'(R") and Se C*(R"), T * S € C*(R").

c) Properties of the convelution
Let S and T be two distributions, one of them with compact support.

o Commutativity: S+ T = T+ §
o Associativity: If U € &'(R") we have

S*T)y+«U=S8*(T=*U)
o Differentiation: For every a € N" we have
S+ T) = (°S)+ T = S+ (8°T)
o Unit element: For all T in 2'(R")

o*»T =T

113



CHAPTER 5, STATEMENTS, EXERCISES 53-56

o Support: supp (S* T) csupp S + supp T = {x e R", x = » + =, y e supp S,
zesupp T}

o Singular support: sing supp (S = T) < sing supp S + sing supp T

d) Remark:

One can define the convolution of two distributions in other cases than the onc given
in b), keeping the properties described in c) (See exercise 63). But we cannot define in
general the convolution of two distributions keeping the properties c).
See exercise 55.

STATEMENTS OF THE EXERCISES* CHAPTER b

Exercise 53
Let Se £'(R) and T € %'(R). Show that for k € N:

k
(N ds+=1=Y% (?)(xfs,) x (X" 'T)

j=0

Exercise 54 (see exercise 21)
Let p, g, m, n e N. Compute

T = [xr'étln] - [.\""5(")]

Exercise 55

Show that we cannot define the convolution of three general distributions in the sense
that it cannot be associative.

(Hint: Findue 2'.ve 8, we 2 such that (u * ) * w # u * (0 * w)).

Exercise 56
Let A4 be a linear map from 2(R") to C*(R") such that

a) If (p;) is a sequence in 2(R") which converges to zero, the sequence (Ag,)
converges to zero in C*(R").

* Solutions pp. 118-134.
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CHAPTER 5, STATEMENTS, EXERCISES 57-59
b) 1,4p = At,p for every ¢ € 2(R") and every h e R", where 1, f(x) = f(x — h).
Show that there exists 7 e 2'(R") such that for every ¢ € 2(R").

(1) Ap(x) = (T * p)(x)
(Hint: Use the formula (T, ¢) = (T * ¢)(0) where ¢(x) = o(— x).)

Exercise 57
a) Compute in 2'(R")

n 2\
lim £ ,(1 - '-"-) = lim P,(x)
p

w3
poax U P

b) Deduce that every distribution with compact support is a limit, in the
distribution’s sense, of a sequence of polynomials.

Exercise 58
a) Let S e &'(R"), T e 2'(R"). Show that for every a € R one has

e(u.\r)(S * T) —_ (e(a..wS) - (e<a.r>T)

b) Let P(D) = Y a,0" where a, € C. Find an operator Q such that
lai<2

e“PPD)T = Q(D)e“ T} for every T € 2'(R")

¢) Assuming that E € 9'(R") is a fundamental solution of P(D), find a differential
operator whose fundamental solution is e E.

Exercise 59 (see exercise 31)
We recalil (see exercise 31) that the distribution in R”, n > 2,

po - floer e
" " ifn=3
n 62
satisfies AE, = (Z W)E" = (,0 where C, is a constant.
i=1 U4y

a) Let ¢ € 2(R") be such that ¢ = | near the origin. Prove that y = A(pE,) - C,6
belongs to 2(R").

b) Show that fori = 1, ..., n, ;T(wE,,) e LY (R").
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C _?—T are elements of L2(R").

n

3
¢) Let T be a distribution on R” such that (LT

ax,
Deduce from a) and b) that T belongs to L% (R").

Fxerclse 60
Let P =% a,0" be a diffcrential operator with constant coeflicients in R” such that

l2t<m
(*) P has a fundamental solution which i8 a4 ¢ function in the complement of
the origin,
a) Letpe 7(R") besuch that ¢ = 1 for|x| < 1. Show that ¢ = P(pF) ~ J belongs
to A(R").

b) Deduce that if w e &'(R”) is such that Pne C*(R") then uis itself a C” function
in R".
¢) Give examples (from Chapter 3) of operators satisfying ().

Exercise 61
Let p e &(R") be such that p = 0 and L«” p(x)dx = 1. For ¢ > 0 we set.

pAx) = ;1;/J<i(>, and for u e 2'(R"), u, = u * p,. Show that when ¢ — 0:
e\ €

a) Ifue 2'(R"), n, > nin 2'(R")

b) If ue CYR"), u, - u uniformly

¢) fue L"(R"), 1 < p < +00, u, » uin L'(R"). (Hint: Use b) and prove the
inequality ||z * p l,» < lloll,r, Vv € LT(RY).

Exercise 62
We consider the space
n w O .
HY(R") = {ue LX(R ),a—e LAR™Y, i=1,...,n

X

i

with the norm

n

My Nulld = lulldgm + Y
i=1

2

Ju

ox,

LAR")

a) Let 0 e Z(R"), 0 = 1if |x] < 1,0 < 0(x) < 1. We set 0,(x) = 0(2) Let

u e H'(R"); show that u,(x) = (0,u)(x) converges to u in H'(R").
Deduce that H1(R") N &'(R") is dense in H(R").
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b) Prove that 2(R") is dense in H'(R") N &’(R"). Deduce that 2(R") is dense in
HY(R"). (Hint: Usc cxercise 61, question ¢) with p = 2).

Excrcise 63
We set &, = {Te #(R"), supp T < [0, + o[}

a) Prove that if S and T are in 2, one can define the convolution of S and T by

(S*T. 0> = (S KT, plx + 1)

and that § * T e &', . What is the unit element for the convolution in 2°,?

b) If Te &, we shall denote by T ' the unique distribution X such that T+ X = 4.
Compute H ', (&) ', (" — As)" "

c) Let P(D) be a differential operator with constant coefficients. What does the
distribution [P(D)d] ' represent?
Let oy, .. ..z, be the roots of the cquation P(z) = 0. Show that

[P(D)(S] |- He:lx * He:z,\ ok HC:’"X

Deduce that every differential operator (non identical to zero) with constant
coefficients on R has a fundamental solution.

Exercise 64
NS
a) Find a fundamental solution for the operator d(ix . le N\O.

Ox,y 0x,
LeNNO,j =1, ..., n Assuming /, = -+ = [, = k + 2, prove that P has a
fundamental solution which is a C* function in R".

¢) Letfe &'(R") be a distribution with compact support of order k € N. Show that

k+2 k+2
there cxists v e CO°(R") such that (i> s (i) u=f
Jx, dx,

d) Let T e 2'(R"). Using ¢) and a partition of unity, prove that there cxist

functions u, € C°(R") such that T = ) &*u, in 2'(R") in the following sense:

3 I
b) Deduce a fundamental solution for the operator P = <i> s ( g ) where

VKc c R.IN, = N: (T, 9>= ¥ (-1)“‘J~ u,0%pdx Vo e D (R
w

lel s ¥

17
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Exercise 65 (See exercises 47 and 61)
Let Te &'(R) and K supp 7. Forz = x + iy € C\K we set

~ 1 1
T(Z) = E<T,, _l — Z>

a) Prove that T'is holomorphic in C\K.

Hint: Prove that T'e C'in (x, ») and or + i(')‘l' = 0.
. dx oy

. d "~.. — 1_'_ oy
b) Prove that (d—z> T(z) <T,, (2in)(’ ) >

¢) Show that T(z) = 0(#’]) when |z| - o

d) Let ¢ € 2(R). We set

o*(x + i) = ; I o) - dt

R (1 — x)? + &2
Using exercise 47, d) and exercise 61, b), show that ¢*(x + i) converges to ¢
in C”.
e) Let Te &'(R) and ¢ € 2(R). We set
T*z) = {T(z) — T()] forlmz > 0

Show that
J THx + inp(x)dy = (T, *(x + i)}
11

f) Deduce that for all T e &’(R) we have in 9'(R)
T = lim [T(x + ig) — T(x — ig)]
0

SOLUTIONS OF THE EXERCISES CHAPTER b

Solution 53

By definition, for ¢ € 2(R),
GHS* T), 9> = (S* T, x*e> = (S, (T,, (x + »olx + 9>
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CHAPTER 5, SOLUTION 54
Now

It follows that

(S T) o) = <s,, <T Z (?)xfyk"’w(x + y)>>
ko (k . AN .
<Tv.-~ Y <j>-¥’y“’¢(x + y)> =3y <.>x’<T,my Jo(x + ¥
i=0

e

Now

and
(T, ¥ olx + )y = OFT,, ox + )

(S,, X'W¥y = (IS, ¥y forall ¥ e C*(R)
It follows that

k
GHSeT).ed = ) (f.)<x’sx, G, 0x + )

j=0

-~

=

= (/‘)<(fo) * (X7, 0>

i
=3

so (1) is proved.

Solution 54

We know from exercise 21 that

0 ifp>gqg
xﬁ&(q) = — 1

It follows that

a) Ifp>qorm>nthenT = 0.
b) Assume p < ¢ and m < n; then

= q-p) (n-m)
T= Aﬁ.q.m,na *0
where

p _ _(=1ytmgin!
pemn (g — p)(n — m)
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On the other hand if Te &', S € 2’ we have

%NS * T) = (3*S) * (')
§+S=35§

S0

d\Nr/aN
T = Aka(.ln.n(E}) (a}) J*d) = A,,_q‘,,,_,,(s(“" pom

Solution 55
Assumnc that we can define the convolution of three distributions w, ¢, w in such a
manner that (1 * ) * w = u* (v x w). Letustake u = 1, p = &, w = H. Then we

would have
d . d
u*u=l*6’=a(l*b)=d-xl=0
)
(uxvy*w =0+ H =290
On the other hand
d d .
1**u'=§'*H=-&(§*H)=aH:b
SO
ux(*xw)=1*6 =1

which is imposstble.

Solution 56
If T cxists it must satisfy (T, ¢> = (T * ¢)(0) = (A¢)(0).
Now. by hypothesis a) the map from Z(R") to C

@ b (4¢)0)
determines a distribution. Let us denote it by 7. We have
(Ap)0) = (T * )(0)
S0

(Ap)xX) = 1 (Ap)0) = A(x o)) = [T+ (r o)D) = (T + p)(x)

120



CHAPTER 5, SOLUTION 57

Indecd
(T 9)0) = (T, (. . @)0)) = (T, p(x + 0> = (T * p)x)

which proves (1).

Solution 57
Let ¢ be in 2(R") and M > 0 be such supp ¢ < {x:|x] < M}. Let us set

7y Ry
I = X) 1 — — ] dx
p J‘MS” o( an( I

Let us set 3 = pxsody = p"dx. We get

V|2 rt ) 1 2\’ ,
I, = : - : lx 14 Y dy = 2 [ ! el par! 1 - lll; ¥ g dy
TR I P P LA I P

Let 1 € R” be fixed. For p big enough we have

2\ 2
R )

M [ylz ," — \'1
» lim lu.‘f:p,an(l ) Ce g
2\
-

»
. ¥y DY (¥
Since ¢{ = | - @(0) and I(l - =] o=
¢<I’> | s P

theorem we get

SO

c*\vl2

< Ce™" e LY(R") by the Lebesgue

. 1 e
im 1, = - f e " dy - 9l0) = p(0)

Py 5"

n 2\
lim ’:,2<1 - 1i> =
posx 7 P

b) Let Te &'(R") then T = P, is well defined and is a C* function. On the other
hand

which means in 2'(R")

d(T*P)=T=03"P, =0 if|a] > 2p°

so T+ P, is a polynomial
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Let us prove that T « P, converges to T in 2'(R").
Indeed if Ue @' (or &) and ¢ € D (or C*) we have (T, > = (T * ¢)(0) then

(TP, 0y =[(T*P)sg)0) =[P, +(T+)0)

since (T » P,) e C* and ¢ € 2. It follows that

v
o .

(T*P,p>=(P,T*e

and T * ¢ is in 2(R"). By question a) we have

lim (P, T*¢) = T+ ¢0) = T ¢(0)

poso
SO

lim (T+P,p)=(T+)0) =T, 9> VoeIQ

P

It follows that in 2'(R") one has
limT+«P, =T QED.

p—o

Solution 58
a) (S*T. 9> = (S, (T, p(x + ¥)>>, Vp € Z(R"). It follows that
(€478) + (€90T), 9y = (@S, (€ T, plx + 1))
— <S” <e<a,x>+(a.y>7—~y w(x + y)>>
= (S, (T, e 0lx + p)))
= (ST, e“p)
=S+ T), ) Vge 2R
Q.ED

: 02 d
h = o+ -
b) We have P(D) .‘,,'E:l C"ax,-axj i:§| d'ax + e and

i

= oT or
D)fe<e®? — afax> Aa . {a.x>
P(D)[e““~'T) = e“““P(D)T + E C"<a'6x] + a’”ax,-)e
+ |:

ij=1

M:

d-a,AT;Ie“""> + ee®T
i
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It follows that

2 a7 a7
{a.x> DT = D (a.x)T Z + (ﬂ.»\')
e TAD) PD)Le I+ (”<a'0x] %o )

ij=1

<Z c,aa, + Y da, + e)e<'”>T
i=1

ij=1

i d d
{a.x)y _ {a.x) Pl R {a,x)
e“VPD)T = P(D)e“"T] + ¥ C”<a’6x] + a]aX,)[e T)

ij=1

(Z c,,,l+Zd +e—226,],])[e<’”>T]
=1

So we get

e(u..r)P(D)T - I:P(D) + Z ( %-{— a]%) + Z d - Z c,]a,a,+ e]c(ax)T
i i i=1

e =
e P(D)T = Q(D)[e* " T]
¢) Using b) we get
e“PP(D)E = Q(D)e“"E)
Since P(D)E = & and " = & we get
QDY E) =

Solution 59
a) Let us compute ¥ = A(pE,) — C,6. We have

AGE) = (ADE, + WAE,) +2 % gf =
Now

¢(AE,) = ¢C,6 = C,9(0)6 = C,0
since @(0) = 1. It follows that

Op JE,

= A(pE,) - C,0 = (Ap)E, + 2 Z ax, ox.

) Ox;
C™* functions outside the origin it follows that y € C*. Moreover the support of y is
compact since it is contained in the support of ¢.

A
0x
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b) We have
4 o dp JE,
o, 0E) = APt e
- Op "
First of all 5;5,, € 2(R") < L' Moreover
{
al ith =2
6E, )
ax, x

2-m= iln>3

. L X .
We just have to prove that the function ¢” e L' for n > 2. Let us use the polar
r

coordinates x = r - w, r €10, + oo, w e $*"'. Then dx = r" 'drdw and

W('Y)'B"lex = Joolr - (U)|L,,wil <" 'drdew
r o Js! r
= J J le(r - w)| - jw,|drdw < + o0
0 § !

since p € 2(R") and {o;] < 1.
¢) Let T e 2'(R"). With the notations used in question a) we have

T=Ted= 2T+ AGE) = T+ y)

First of all w e 2(R")so T * y € C*(R") < LL (R").
Morcover
" oT 0
TxMyE,) = MT*¢E) = } 5 *=-(¢E,)

0
2
1 CY

cT . a
Now Fr L2(R") and by qucstion b) af((aE,,) e LY(R") so
cx, e

n aT ju
Y 5ot a(0E) € LR < L (R)

i=1 Yy

since the convolution of a function in L' and a function in L? is in 2. Thereflore
Te 12 (R").

Toe
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Solution 60
a) It follows from the Leibniz formula that

PWE)= ¥ a, ¥ (;)J”«; @IE

|xl=m fza

S0

(1) P(E) = gPE+ ¥ a, ¥ <;>ﬁ”¢ S IE
|2l <m Bsa

A#0
Since E is a fundamental solution of P we have PE = 6 so
(2) (/”’If (/Hs (/J(())(i =4
It follows from (1) and (2) that
w=PwE)—d= 3 a,y <Z>a/’¢ -PE
lzl<m f<a
##0
In R™\0. Eis a C” function. Therefore ¢ € C*(R™\0). But for § # 0, &’¢ = 0 for
|x] < Isince ¢ = 1 there, so w = 0 for |x| < . It follows that y € C*(R").
Since supp w is included in supp ¢ we have y € 2(R").
b) Let u € &'(R") be such that Pue C*(R"). We have
u=00+u=[PgE) — yl*xu=PyE)*+u— yx*u

This has a meaning since P(pE) € & and y € 2(R"). Now

P(pE) * u = (pE) * Pu
and
u=(pE)* Pu — yxue CR"

Indeed pE € £'(R"), Pue C*(R") and y € F(R"), u € 2'(R").
c) By cxcreises 29, 30. 31, the operators

é é .
P=o+i- in R?
cx oy
[& 02 .
P=+ - — in R?2
ct cx?
Y '
P = Z a2 in R" n>2
=1 XY

possess the property (*).

125



CHAPTER 5, SOLUTION 61

Exercises 23, 28, 51 give examples of operators which do not have the property
described in question b).

Solution 61
First of all p, = 8 in &’ when ¢ — 0. Indeed supp p < {|x| < M}and

J.ps(X)fﬂ(X) dx = J p(x)pex)dx  Vee C(R)
lxls M
Then: o p(x)p(ex) = p(x)(0) ae. ife — 0.
o {lgemp(elex)] = sup lo(»)|p(x) € LY(R")

The result follows from the Lebesgue theorem and from the fact that {p(x)dx = 1.
a) Letue 2 (R and p € D(R")sou * p e C” and

Cu*p, o) = [u=p)so)0) = [p. * (u* PO = (p, u*¢>

Now u + e C” and p, — d in &'(R") so

-
———

lim (usp,. o) = (S, u*x¢) =us@0) = up) QED.
b) Let u € C2(R")

usp(x) — ulx) = Jp(l)u(x — ende — Jp(l)dt - u(x)
50

lu* p,(x) — u(x)] < J p(D|u(x — &) — u(x)|d¢

sM

Since u is uniformly continuous on its support we have:

va > 0, 3g: Vx, Vy, lx =yl <np=lux) - uy)l <a

Let us takee < %lhenlx — et — x| =¢|t] <eM < nsolu(x — &) — u(x)| < a. This
implies
sup |u * p, (X} — u(x)| < a jp(t)dt = Q.ED
X
¢) Letue L(R"). Since CO(R") is densein L’, there exists a sequence (&) in C9such
that '

() Va>037 j=2J=ly - u||u<§
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Let j, be fixed, j, = J. Then

Q@) Nu*p, —ully S lurp, = u s pllyr + gt o, = willer + lluy, = ully
1t follows from (1)

@, = ullwry < 3
Moreover by question b) we get

Vo > 0,36y & < go = sup |u, * p(x) — u(x)] < 4
Now

1ip
lu, * p. = wlr = (I lu, * p.(x) = u,.o(xwdx)
X

1A

ey, * p. — wllyp £ C Sl’l(p fu;, * p(x) — u, (x)] < Co

Soife < g

o
@ N, vp ~ulle <3

Let us assume the following inequality has been proved
(5) fexplly <llolly  Woelr
Then we shall have

4

©) llu*p, — u; = pellr < llu;, — ullp < 3

Using (2), (3), (4) and (6) we shall get

va >0 3g: e<eg=>lurp, —ully <a Q.E.D.
Let us prove (6). We have

P lp
(M e *pdly = (j dX>
LN

Since p, > 0 we can write p, = p” - p! ""if 1 < p < + 0.
By Hoélder’s inequality

/p 1/
_[pg(t)v(x ~ndr £ (_[m(t)!v(x - t)l”dt) (I[pl(t)]“"‘””""’dt) '

1 1 1
where — + — = 1. Since g{ 1 — -] = 1 and { p,()dr = 1 we get
P 9 q( P) 5 ¢ 8

j p(Do(x — 1)dt
-

1

P

‘ I p(Du(x — ndr

< Ipmlr(x - lrdi

127



CHAPTER 5, SOLUTION 62

qu(r)lv(x - t)I"dt>dx = jp,(t)qlv(x - t)l"dx>dt = lolitr

by the Fubini’s theorem. Therefore

lospllr £ livll,r  QED.

For p = 1 one has to use Fubini's theorem in (7).

Now

Sohlution 62
a) Let 0 e 2(R"), 0 = 1il|x] < 1,0 = 0if[x] = 2, 0(x) €0, 1]. Let us set

0,(x) = 0(2)

and forue H'(R"): u, = 0,u. Then u, € &'(R") since 0, = 0 for|x| > 2k. Let us prove
that v, € H'(R") and converges to u in H'(R"). Indeed

a_u’i = 1&0_ f + @ Ou
ax,  kax\k)" T Yoy,

so u, € H'(R") since:

Ou, | Ou (2
24+ |2 < 14 | =
hal? + |50 = C<|u| B, )
since
0
sup |0,| < 1, sup £2(x) < C,
R xeR" axi

Moreover we can write:

I & || el x
Ny = ullz = 160 = ull g, + = 5 <2V
& 1 & LY®R™) k2 l; éx\k |
@ o)
o

ox,  ax;

®

n

+ )

i=1

6,

LAR™)

If v € L2(R") we have

o O (x)(x) — v(x) - 0 ac ifk - w0

o [0,0 — v|? £ 4]r|* e LY(R") sincesup |0} < 1
It follows from Lebesgue’s theorem that [|0,v — v} ;2@7) = 0 when k — oc; this proves
that @ and ® converge to zero. Term @ is such that
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L

Thercfore u, ¢ H'(R") N &'(R") and |Ju, ~ ul|, » 0 when k - oo. Q.E.D.
b) Let ¢ € Z(R"), ¢ 2 0, be such that [, p(x)dx = 1. Let us set

e

and forue H'(RM N &' (R"): u, = u* ¢, Thenu, e 2(R") = HY(R")since ¢, € 2(R")
and u € §(R"). Let us prove that u, - u in HY{(R").

d\ < k,llull, since sup
xeR"

(\)
Oox

n

e, wlld = Hooru wlligey, b %
1

e

('714 u

» —
v ox, Ox,

LYR™

It follows from exercise 61 that ¢, * v - vin L2(R") whene » O and v € L2(R") so
llu, — u|l; —» O when e - 0. Q.E.D.

Denoting by E the closure of E in H'(R"), it follows from a) and b)

2R = H@®R)NE and H N E = H so R = H(RY

Solution 63

a) Indeed. for a fixed x in the support of §, ¢(T,. p(x + »)) has a meaning
since 7_.¢(y) = gp(x + y) has compact support in y. Moreover function x
(T,.e(x + y)>is C* with compact support. Indeed x + yesupp ¢, yesupp T,
x €supp Scan be written: x > 0,y > Oand |[x + y| < Ms0o0 < x < x +ty< M
and the formula is well defined. Moreover as in the case where S e &', Te 2 wehave:
supp (S * T) < supp S + supp T < [0, + oof.
Finally § € ', and (5 « T =T,VTe2,.

dé dH .

b) X+« H = <5so~-(XtH) AAsz*E— =d'ie. X*5=¢6"and X = §'. In the
same way (6) ' = H. Finally
X*(0' — i0) = SsoX*d — AX*5 =4, ie.

dx

Let us set X = ¢* ”lhen:,( dsou = Hand X = He™
¢) [P(D)5] ' = Xissuch that X = P(D)é = 4 so
PD)X+8]=4 ie PID)X =6

Therefore [P(D)J] ' represents a fundamental solution of P(D).
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If z,, .... z,, are the roots of P(z) = 0 we have
P -a(z—z) (z—z2,) a#0

o d
Since P(D) is obtained from P(z) by substituting O to z we have

d d
P(D) = a(a - z')(d_x - z,,,)

P(D) = a(—d— - zl>(i - z,,,)ﬁ = (0 — z,0)*---*(d — z,0)
dx dx

Since we are in an algebra

Then

l
[P(D)I] ()’ —z0) 'r (8 - 20) !
Since the convolution is commutative, using b) we get
[P(D)S] ' = ZliHc:" + - x He™™

and

P(D)[ He" + - xHem | =4 Q.E.D.

Solution 64

a) For/= 1we have %I; = ¢ where H is the Heaviside function. If / = 2, we obtain

1 -1
a fundamental solution of ((%) by solving the equation (;;) E = H. A solution

is given by the formula E; = (I——ll—)‘XHH(X)' Indeed by the Leibniz formula
dy"' v | i I gt 1)
(a) E = g (**—) Cio(x )'H
= ‘ Cl 1( i- l)(/ IH + 12:2 l Cj (xl l)(])é(/ 2—-j)
-1 (I — =

-1 i ] o
H + Z( l)'(ll ]l(xl l)(/ I)(S(I -5

i

-~

=H+ Y a,‘jxlf"&”""”
=1

H

d -1
e E,
(&) =
since x' /8¢ = Q.
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It follows that for / € N\{0}

AN v ]
@)= )=

b) We deduce from a) that

&\ (N x¢'H(x) - xp ' H(x,) _ _
((T> ) (5-2) T oD e ® @00 =

For{, = --- = I, = k + 2 the fundamental solution is
1
»»»»» G g T H () - Hx)
It is a C* function. Indeed let us compute its derivatives up to the order k. It is

sufficient to compute (;‘) (UD for0 < j < k. in R

(%),(xk+lH) _ i C;(xkﬂ)u)H(j—l)
/ =0

j-1
— (Xk+l)(j)H + Z C{(xl(i»l)(l)a(jfl‘l)
=0

It

-1
ak_j.tk l/H + Zbk‘jxk+lflé(]"l’l)
=0
Sincek + 1 — 1 >j— 1~ 1 ie k + 2> jit follows that x**'7'6Y=D = 0 s0

dVv )
(a;> (kaH) - a,(_ijIﬁH

Since k + 1 — j > 0 the right hand side is a continuous function on R. It follows that
FTH(x) e CH®) and XX - xXEYTH(x)) -+ H(x,) € CKR™).

c) Let fe &% the space of distribution with compact support of order <k. Let
P =&"7-. 2 and E be the fundamental solution of P given in b). Let us set

u=f+E

then Pu = f+ PE = [+ J = f. Since f € & *(R") which is the dual of C*(R") the
function u is given by

ulx) = {f,, Ex — 1)

¢, ) denoting the duality between &'® and C*. It follows that u is continuous since if
x, = x, E(x, = 1) = E(x — 1) in C* s0 u(x,) tends to u(x).
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d) Let (p,) be a partition of unity subordinated to a cover of R", i.e. R" = U Q,,
¢, ¢ (8, and for cvery x € R, Z ¢,(x) = 1 the sum being, for cach x, finite.

I
Let Te 2'(R") then f, = ¢,T € &'(R"). It follows from c) that there exists u; e C°(R")
such that 0%u; = f, where a, = (k; + 2, ..., k;, + 2), k; being the order of f,.
Let K < R" be a compact. Then K meets at most a finite number N, of Q;. Moreover
for ¢ € 2,():

Ny Ny Ny
(T.p> = <T~ Y w,w> =Y <pT. 9> = Z. G

Ny Na
o> = % (0™, évpd> = Y (- I)“"‘J‘ 1, () (v) dx Q.ED.
7l ;1 u"

Solution 65

1
a) Since z e C\K we have |1 — z| > 0. Let us set f(¢, z) = PR We are going to
prove that T'e C' in x. We have

T(x+h+iy) - T(x + iy) _ <T S, x+h+iy) =, x + iy) >

(1 h h

/(tr+h+n)—f((r+n)

Now the sequence /1 7R converges in C7(R,).

. 2\,
Indecd by the Taylor formula applied to g = (;;) 1 we get:
«
. ; 0g .
git.x + h+iy) —glt.x +iy) = hﬂ(t, x + iy) +

| 5
+ J (1 - s)hzﬁfg(t, stx + A+ (1 — s)x + iy)ds
4 N

It follows, with z = x + iy

+ohtiy) - gltox i
glt, x + h 1}]: j(" x + iy) (lg(’ iy

= ClAl sup
o=zl

0? ,
)

converges uniformly on

glt,x + h+iy) — glt. x + iy)
h

This inequality shows that -

a . .
cvery compact to 73(!. x + iy), which proves our claim.
ox

Morcover it follows from (1) that
0T 0
2) %Z‘(x + iy) = <T, %I(I, x + iy)>
Ox Ox
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or. .
In the same way we prove that Tis C'in y and that <> in given by the same formula
dy

as (2). It follows that
oT af _
ﬁm‘<ﬂ£“”>_
5f

since the function f{1, z) = 1s holomorphic in C\K = = 0.

t -
Therefore T'is holomorphic in C\K.

b) Let us prove the formula by induction on ». The formula being true forn = 0
we can suppose that

dy ' (n - 1 .
<E> 7@)—<T”w2m (r=2 >

n~— 1
2in

d_1/o6 .0

dz 2\dx Oy

-~ 1 18
(M () = A AR _ o
e 2m <T"2<(7x 6y>(’ 2 >

70 = M (T -9y QED.
I

As in question a), taking (1, 2) =
function and since

(t — )", we deduce that 7" Visa C!

we get

¢) Since T e §'(R) we can find an integer &, a compact K and C > 0 such that

(i to)] = c E o) <

Since r € K we have [1| < M and if z is big enough, |z| > 2M, we get

< C-p! Zsup

p=0 (€K It - ZI’HI

=zl — 2l =1zl = |e} 2 |2} = M =}
If we take |z| > sup (2M, 2) we get
=z = Az 2 2

SO

~ C
1T = iz for |z] » a0
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d) Using question d) in exercise 47 we get

. € _
]lmm—(s

£—00

Now for ¢ € 2(R),

—+¢ and (@e*)x + i) = x kg

£

a(x? + #2) n(x? + ¢&?)
From question b) in exercise 61, since d*¢ € C° for each k, we deduce that
((3*¢*)(x + ic)) converges uniformly on every compact to dtpVk, ie. p*(x + ie)
converges in C™ to ¢. Q.E.D.

o x + ig) =

- ~ 1 1 i

? e = T1e = 5‘<T AN f>
~ - 1 y . R
T(z) — T(2) = ;<T,, (T:*;;;‘;_—F> ifz=1x+1iy

It follows that
1

TH(x + ig) = (T, P.(x — 1)) where P(x) = -27;?
Since (u, w) = (u * ¥)0) where ¥(x) = w(—x) we get
(T, p*> = (T * ¢*}0) now ¢* = (§)* (change f to — 1)

and ¢*(x + ie) = ¢ * P, so (T, 9*) = (T * ¢+ P )0}

(T.g*> = [T+ P,)* ¢)0)
since the convolution is commutative and associative for T e &', p € 2'. It follows

(T,p*> =T+ P9
since Te & then T* P(x) = (T, P(x — 0)) = T*(x + ig) so
(T, p*> = (T*(x + iv), 9> Q.ED.
f) From e) we get
(Fx + ie), 9> = (Tx — ie), 9> = (T, p*(x + ie))
By d) ¢*(x + ig) converges to ¢ in C*. Since T'e £'(R) the right hand side converges
when e = 0%, to (T, ), i.e.
(T.p> = rlir(:} KT + ie), ) — (Tlx — i), 9] Vpe 2R)

SO
T = lim (KT(x + ie) — T(x — ie)) in2(R) QED.

o o0
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CHAPTER 6. BASICS

BASICS CHAPTER 6

a) The space #(R")
It is the space of all ¥ € C™(R") such that for all @ and # in N” we have:

M) lim |x*u(x)| = 0

Il

The topology on /'(R") is defined by the denumbrable set of semi norms

(2) p.s) = sup |x*3%u(x)|

eR"

This topology is metrizable and gives to ¥(R") the structure of a complete metric
space.
We have the inclusions

AR = PR") = C*(R")

b) The space &'(R") of tempered distributions
&'(R") denotes the topological dual space of #(R"), in other terms the space of linear
continuous forms on S (R").
One can show that we have the inclusions

E&'(R") « L (R") « 2'(R")

SR < LR < (R l<p<w
This is a characterisation of ’(R"). A distribution T belongs to &'(R") if and only if
it is a linear form on $(R") and we can find C > 0, a, f € N" such that

(3) IKT. >} £ Csup [x*dp(x)|

n
xeR

for all g in F(R") (or [T, ¢>| < Csup (1 + |x|»)* Y 10%e(x)).

xeR” lajs?

¢) Structure of elements in & '(R")
A distribution T belongs to %#'(R") if and only if there exist m e N, a € N" and a
function f continuous and bounded on R” such that

@ T =201+ |x13)7f]
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d) Fourler transform in &'(R™
e For ¢ € #(R") we shall denote by #¢ or ¢ the Fourier transform of ¢:

®) $O =j e O p(x) dx
-

where {x, &) = ¥ x;£,.
Jj=1
We shall denote by #F¢ the function defined by

Fo0) = #(-0) = Jez'w-%(x) dx

Then & and & are automorphisms of $(R") and for every ¢ € #(R") we have
6) FFo)=FFp)=¢
e Let T be in &'(R"). We define the Fourier transform # T (or ) of T by:
(N (FT, 9> =T, Foy forallpe F(R")
In the same way
(FT, 0> =T, Fo>
The maps # and # are automorphisms of .%'(R") and
8y FT = F(T)ywhere (T, 9> = (T, ¢> and ¢(Q) = 9(=)
©) FFT=FFT=T forall Te F'(R")
o If fe LAR") « &'(R") then fe LA(R"), Ffe L}(R") and
10) 1/ wn = WMoy = IS Mewn
o If Te&'(R") < &'(R"), the Fourier transform of T'is a C® function and is given by

(1 @) = (T, e ™)

€) The Paley—Wiener—Schwartz theorem
Let T e &'(R™), the Fourier transform of T can be extended to C" as an entire function
given by F(z) = (T, ¢ Iy Moreover:

There exist constants C, A, an integer N € N such that for all z € cr

(12) |F2)| < €1 + |z)N e
Conversely for cvery entire function on C” satisfying (12) there exists T'e &'(R") such

that T(z) = F(z) forallz e C".
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f) Fourier transform and convolution
If ue &R"), ve S (R") then u » v e ¥'(R") and
(13) Fusv) = Fu-Fv

This makes sense since Fu € C*(R").

g) Fourier transform, derivative and i)rodl;c( by x,
In what follows we shall denote

1 0
(14) D, = %n 6-;,
and fora = (ay, ..., a,) € N"

D* = DT! D:n
Then, for all T e ¥'(R")

(1) F(D'T) = EFT
F(x'T)y = (- D)'DYFT)

h) Differential operators and Fourier transform
To each polynormial P(¢) = Y, a,&* of order m in R", with complex coefficients

lafsm

we associate the differential operator with constant coefficients:

PD)= Y a,D"

fal<m

where D* = D} --- Dy"and D, = %TE;;—
j

We have

P

(P(DYu)(&) = P(E(E)
for all w in .¥'(R").

Remark: .
Scveral authors define the Fouricr transform of a function ¢ € (R") by

¥ = J e “Pp(x)dx

Then Fp(&) = @(2n&), and all the formulas differ from the above formulas by
constants which are powers of 27.
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i) Laplace transform of a distribution:

Let T be a distribution on R whose support is contained in R, = {xe R, x > 0}. Let
us assume that there exists & € R such that e "**7 € &'(R); then we define the Laplace
transform .& T of the distribution 7 by the formula

(16) (LT)p) =<T, e’

which makes sense for p e C, Re p > ¢&. Indeed let o be a C™ function with support in
R,, equal to 1 in a neighborhood of the support of T. For Re p > £, the function
a(x)e "9 belongs to .#(R) and (16) can be written

(Toe ™ = (e ' Toae 7 9%

The right hand side makes sense thanks to our hypothesis.

j) Properties of the Laplace transform:
1) The Laplace transform of a distribution 7 is a holomorphic function in the
domain where it is defined.

2) f[(%) T](p) = " H(TXp) meN.

d\" ' mep
3) [(df;) f/’(T)J(P) = (=p)"L(T)p).
4) If S and T arc two distributions with support in {X: x > 0} having a Laplace
transform for Re p > &, and Re p > £,, one can define § * T (see exercise 63);
moreover S * T has a Laplace transform defined in Re p > Max (&, &,) and

L(S* T)(p) = L(SHp) - L(T)p)

5) If L(T) vanishes for Re p > & then the distribution 7 vanishes.

k) Inverse Laplace transform
We have the following result:
6) A necessary and sufficient condition for a function F(p) to be the Laplace
transform of a distribution with support in {x: x > 0} is that:
* F be holomorphicin Rep > &, e R
*|FAp) < PUpl) Rep>¢

where P(]pl) is a polynomial in |p|.
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CHAPTER 6, STATEMENTS, EXERCISES 66-67

STATEMENTS OF THE EXERCISES* CHAPTER 6

Exercise 66
Let 4 be a real symetric matrix such that

(1) 3Ja > 0: Vx e R(Ax, x) > af x|l?

1°) Show that the function e % is in L!(R)

2°) Our purpose is to compute the Fourier transform of e

a) Discuss the case n = 1. (Hint: Integrate the holomorphic functione~
appropriatc contour. We recall that e Vdx = ﬁ).

b) Discuss the case where A4 is diagonal.

¢) Using an orthogonal matrix U (i.e. ‘U = U™") to put 4 into a diagonal form,
deduce from b) that

~(Ax.%)

az

2
along an

ni2

_ . n o4 e
Fle (Ax. ))(C) — . P RG]

Jl]det 4]

Exercise 67
For m € N we define the Hermite polynomials H,, by

(l) (£;>m(c 3"'“) — (_‘I)m\/;n'?zm I"ﬂmsz(A\‘)C 2t

and the Hermite functions by
) H,(x)=¢e "H(x)

1°) a) Compute H(x) i =0,1,2, 3.
b) Show that for m > 1 one has:

d\™' L. d\" e d\" e
3) <a;> (c ) + 47zx<d—x> (e ) + 4mn<a> (e )=0
Deduce that
d o
4) (a})[ﬂm(-\’)l = 2/mnH,_\(x).

(5) 2/n(m + HYH,,  (x) — 4nxH (x) + 2./maH, _(x) = 0.

(continuation page 142)
* Solutions pp. 149-181.
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¢) Compute //,,(0). Show that

m

© Hy©) = 2D en

n2"

2°) a) Show that 5, is an element of the space .#(R) and that
N j H () ()dy =5, e = Lifp=gq =0ifp # q)
[}

(Hint: integrate by parts)

b) Using the valuc of #e ™ found in exercise 66, show that [Z.# &) =
(—D)" A, (&) '
3% If T e (R) we shall call “developpement of T in Hermite functions™ the series

.

2 an(T)#, where a,(T) = (T. #,)

m=(}
a) Determine the development of § in Hermite functions.
b) If T e ¥’(R) we consider the transformations 4, and 7 defined by

g, T= g + 2nxT, g T= 'g + 2nxT
dx dx

Show that
T (H,y=2yme X, , form>1
g (H,) =2/ /nm + ]_)mel form > 0

¢) Using the transformations .7, and 7 , show that if ¢ € &, the sequence
(a,,{(9))cn 1s rapidly decreasing.
Show that the development of J found in a) converges in &%’ to a distribution S.
Compute .7, (S), 7 _(S). Deduce that S = C§ and using (7) show that C = 1.

Exercise 68
Give an example of a €7 function on R such that
a) There is no polynomial P in R such that

(1) 1f(x) £ |P(x)| for all xin R,

b) The map ¥ (R)3 ¢ '[ f(x)p(x)dx determines a tempered distribution.
R
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Exercise 69

We recall that a distribution T is said to be even (resp. odd) if (T, ¢) = (T. ¢)
(resp. = — (T, ¢)) for all p € Z2(R) where ¢g(x) = o(— x).

Show that if T is an even tempered distribution (resp. odd) then $7 = T .
(resp. #T = —.7T1).

Exercise 70
Let A be an (n, n) real non singular matrix.
a) Let Te #(R). Show that To 4 € ¥'(R") and that:

/\ -1 1
Tod=|det 4] 'T o (‘4)

where ‘A4 is the transposed of A.

b) T e &'(R) is said to be even (resp. odd) if (T, ¢> = (T, ¢)> (resp. — (T, ¢))
Vo € S (R") where ¢(x) = ¢(—x).
Deduce from a) that if T is even (resp. odd), T is even (resp. odd)

c) Te &'(R") is said to be invariant by rotation if 7o 4 = T for all orthogonal
matrix 4. Deduce from a) that the Fourier transform of a distribution invariant by
rotation is invariant by rotation.

Exercise 71
We recall that a distribution T e 2'(R") is said to be homogeneous of degree 1 € R if

(T, 0> =t""*UT, 9> Vpe2R") Vi>0

where ¢ (x) = ¢(1x).
Show that the Fourier transform of a tempered distribution homogeneous of degree 1
is homogeneous of dcgree —n — A.

Exercise 72

a) Let fand g be two elements of #(R"). We assume that f * g vanishes identically.
Can we assert that f or g vanishes? and if f = g?

b) Same question for Te &', S€ §".
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Exercise 73 (see exercises 11, 70)
Compute the Fourier transform of the distribution T = pv% defined in exercise 11.
Deduce # H and & H where H is the Heaviside function.

(Hinl: Usc x - pvlr = 1 and question b) of exercise 704)

Exercise 74 (see exercises 27, 73)
Using the equality | x| = xH(x) — xH(—x) (where H is the Heaviside function), the

1 B . . . d . .
values of FH. # H found in exercise 73 and the expression of azpvé found in exercise

27, find #|x| and deduce # "Fp¢,2

Exercise 75 (sec excrcises 29, 71)
a) Compute the Fourier transform of the tempered distribution in R2, § = 2"
where z = x + iyand ne N.

. 1/0 ) 1 . . .
b) Using the formula f(ﬂ{; + i(-~>(;[;> = J (scc excrcise 29), the identity

dy
1 1 l i .
z-= = l and the homogeneity off show that # = —Z where { = & + in.
Exercise 76

We shall denote in the sequel, d, the Dirac measure at the point a. We define by
induction the sequence of distributions (T, ), . by:

T, =4, +J )
T, =Ty * Ty

a) Write T, as a linear combination of Dirac measures.
b) Compute the Fourier transform T, of the distribution with compact support T, .

¢c) ForkeN, k > 1, we set:

£) = n(z f)

Prove that the sequence { f,} converges in 2’'(R) to a function / and compute f.
(continuation p. 145)
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d) We denote by g, the distribution whose f, is the Fourier transform. Prove
that the sequence {g,} converges, in an appropriate sense, to a distribution g and
compute g.

Exercise 77* (see exercises 15, 34, 69, 70, 71)
1°) Our purposc is to compute the Fourier transform of the distribution |x}* for
Ael-1L0f.

1°) Let f(x) = |x|", xe R, Ae}-1 —}i[.

a) Prove that there exist u € L2(R), v € L'(R) such that f = u + ».

b) Deduce lhatfis a function and, using exercise 71, that:

e - CEHN Es
/(k - Cz'fl G+ h §<0

¢) Prove that fis even. Deduce that C, = C, = C. Compute C (Hint: use the fact
that Z¢ ™ = ¢ ™ and the function I defined by I'(s) = f& x e ™ dx).

2°) Using the inverse Fourier transform extend this result to A e J—1, 0f.

3°) Using cxercises 15, 34, compute the Fourier transform of distribution
[x|” = x% + & defined in excrcise 15 for 1 ¢ Z. (Computation of constants
M) = (x)’. e ™) is not required.)

Exercise 78* (scc exerciscs 33, 70)
1°) Let 4 be a complex number such that Re 2 > 0. Compute the integral

KAy = J. e “dx
[

(Hint: Compute /(4) for 2 € R, and use an analytic continuation argument).
2°) We consider function f(x) = ¢™ where a € R\{0}.

a) Show that /' determincs an clement of .¥’(R).

b) Find a diflerential equation in &'(R) satisficd by /7

¢) Deduce that f satisfies a diflerential equation and show that f(¢) = (e "o
where C € C. (Hint: Use cxercise 33.)

d) Compute constant C by applying f to the function e "**'. We recall that # ¢ ™
= e ™. (Hint: use 1°)). Deduce that

%e"""’e“”""’“w ifa>0
a
fo =

A P

1
Jlal

(Continuation page 146)
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3) Let D bearcal diagonal matrix D = (1), ,  ,withl, >0,j=1,....k 1 <0,
J=k+ 1, ...,n
Prove that if T = ¢™”*" we have

(¢ = ﬁ 1 @ik mrd g kD e
-1 14,1
4°) Let A be a real symetric non singular matrix. Deduce from 3°) that
g;(einuno) - |det Al'l/zei(""’)“‘e""(‘ Lo

where ¢, is the signature of A, i.e. the number of positive eigenvalues minus the
number of ncgative cigenvalues.
(Hint: Put A into a diagonal form and usc exercise 70).

Exercise 79

For u € ¥'(R) we set Du = —l-% and for # € R we define t,u € ¥'(R) by
2in dx

{t,u, @) = Lu, 1_,p) for all p € #(R) where 1_,p(x) = ¢(x + h).

We consider operator P,: #'(R) - &'(R) given by
Py = Du t t,u

Determine the values of 4 for which P, in injective and find the kerncl of P, for the
other values.

Exercise 80

Let P(£) be a polynomial in R" which does not vanish identically.

We denote by P(D) the corresponding differential operator with constant coefficients.
Show that if u € £'(R") Salisﬁe? P(DYu = 0thenu = 0.

Exercise 81
Let T be a distribution with compact support such that for each a € N,

(T, x*) = 0.

Prove that T = 0.
(Hint: Use the Paley—Wiener-Schwartz theorem and compute @*F(0) where F is the
entire function which extends 7°)
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Exercise 82
Let P= Y a,D”be a differential operator with constant coefficients in R” such that

lal<m

{é eR:PQ = ) al*= 0} = {0

la|<m

Prove that the kernel of P in &’(R") contains only polynomials.

Exercise 83
Let k be a strictly positive real number and v € #’(R) such that

d*u
ot Rue LA®)
d’u .
Prove that o€ LXR) for0 <j < 4.

Exercise 84* (see exercise 52)
a) Let T e &'(R). Prove that the formulas

y 0
fi2) = f M T(E) dE (rcsp./‘ ) = f e f(é)dé)
0 .
define holomorphic functions in Im = > 0 (resp. Im z < 0) such that
. C R
/ool € == , AeR” and |Im z|small
* |lm z|*

b) Using exercise 52 prove that
T=f.(x+i0)+ f_(x — i0)

¢) Deduce that for every distribution Te 2'(Ja, b[, —o0 < a < b < + o0 and for
cach Ja,. b [ & Ja. B, there exist two functions f, (resp. /) holomorphicinIm z > 0

(resp in Im = < 0) such that |/, ()] < ITECW AeR* and

T=fAx+i0)+ f (x — i0) in 2'(Ja,, bi]).

Exercise 85
Compute the Laplace transform of the following distributions
a) ), b) H(x); ¢) H(x) Log x.
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Exercise 86 (sce exercise 85)

H()

Let k € N\{0} and F

. FHx) - w(r) k- PR o*~1(0)
<Fp xt 'w> o U ; =i - o T T E}

a) Compute in the distributions sense

H(x)

d
—&;(H(x) Log x) and a—Fp

b) From the value of «’(H(x) Log x) found in excrcise 85 and using qucstion a)
deduce that the Laplace transform of the distribution Fpﬂ? is for Re p > 0:
X
( x) (—D* w1
& B = e Logp + C — =), k=12 ...
( = &= ),p g p IZ] ;

where C is the Euler constant.

FExercise 87
a) Let @ € C. Compute the Laplace transform, in Re p > Re a, of the distribution

T = x*e*H(x), keN
b) Deduce the inverse Laplace transform of the following functions:

pr+i

Fp) = Rep > —1; Hp) = P P

_p
p+1’

Exercise 88
For @ € R we shall denote by J, the Dirac measure at «.
a) Prove that the quantity
T=1Y €,
. k=0
determines a distribution which possesses a Laplace transform and compute this
Laplace transform.
b) Deduce the Laplace i:...sform of T * T and compute T * T.
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Exercise 89 (sce exercise 87)
Find a distribution T which posseses a Laplace transform and satisfies

(xe*H(x)) * T = H(x) sin x

(Hint: Use question a) of exercise 87.)

SOLUTIONS OF THE EXERCISES CHAPTER 6

Solution 66

1°) Functione
e Ve LY(R).
2°) For fe L'(R") lct us recall that

EIAY S

is in L'(R) when a is strictly positive so, using (1), it follows that

fo) = Je B fx) dx

where (x. &) = Y x¢.
1l

a) In the case where n = 1, A is a positive constant a.

) e 2 2
Fe alxt? J. PR dx = J. exp I:_a(x + lEé> — léZ]d\,
R R a a

) F( "}“:)(é) = e (™ U):JJ‘ @ T alxritnDd? 4 o
R

Function e " is holomorphic in C. Y 4\ A
Its integral on contour I (see Fig. 1) is equal ~ —~€
to zcro. \ AT
J.e":ldz=0 - A A x
r Fig. |
SO

A
J. e “dr + J e ““dx + J. e dz + j e dz =0
[is - 4. A) 4 {A.ii+ A4} lid+ A.ii - A)

When 4 — oc the first and the third integral tend to zero. Therefore

X xX .
3) J e “dx = J e TR
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We deduce from (2) and (3) that

=
Fle ) = e - J e “dx
G

Finally

: I ) n
e “dx = — e “dx = /-
ju ﬁ,[ﬂ a

SO

Fle W) = \/Zc i

b) If A is diagonal, 4 = (a,), a;, > 0, we have

e—um) =e axi+ o daxgy e"‘"% ,..e*un*f.
It follows from Fubini’s theorem that
Fe NG = Fle N - Fle TNED
so by question a)
)
_ n el e
Flc Mnr))(é) i e ettt (n7lan )5

Jay o a,

_y . .1 . .
Now A~' is the diagonal matrix (;). Moreover the determinant of A is equal to

a, --- a,. So we can write K

nf2

Fe' W) = —me”
Jdet A

" les

¢) Let us now discuss the general casc.
We can find an orthogonal matrix U (i.e. ‘UU = 1d) such that

UAU™ = D
where D is diagonal.
Then
e HxD = o~ 'DUxx) _ o (UDURX) . - (DUXU
so

f(ef(“"))(rf) — J\efzm(x.z) e-A{DUx‘Ux)dx
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Since ‘U - U = Id we have
(x, & = (U Ux, &) = (Ux, Ud)

SO

Qg;(e —(Ax, r))(é) —_ je— 2in{ Ux, Ut)e*(DUx.Ux) dX
Let us set, in the integral, y = Ux. Then dy = |det Uldx = dx and
(“?'.(C 1.4n\'))(é)v — jc Zm(vr.l’f)e (l?r.)')dy — a;(e (D(.v))(Ué)

Now we know, by the previous question, the Fourier transform of e P*% We have

nf2 2
-7 v vs " - 'p tueve)

I {Ax.x) =
Fle TN = e piE® [det D|72°

Now |det D| = |det Ajand D™' = UA™'U'so U"'D™'U = 4~". Then
2 .
- ANV EY — EPSELVRUYS
Flc (9] |delA|”Zc

Solution 67
1°) a) We find easily:

Ho(x) = 2", Hyx) = 2%/n-x, Hyx) =2""@nx? — 1)
Hy(o) = —23“—%\/;(—47“3 + 3x)
b) The formula is obvious for m = 1. Let us assume it is true up to the order m and

let us differentiate this formula; then we get the case m + 1.
Let us prove (4). By definition

(%)m(e "=y = C(m)H (x)e ™
SO

A\ e dH,, 50 ,
(E) (e ™) = Clm)—g e = AnC(m)H (x)xe ™
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Using formula (3), the definition of H,(x) and the above formula we get

C(m)%ﬂe“z“‘ — 4dnxH,_ e ™ + daxC(m)H, e ™ +
+ dmaC(m — DH,_, e ™ =0

SO
dH, _ _4mnCim = 1)
Tdx C(m) m-
Now
Cm~-1) _ _ 1
C(m) 2/ mn
SO

(—d—)H,,,(x) = 2/mnH,_(x) so(4).
dx

Let us prove (5). We have

mtl e
(—"~) (e )= Com + DH,, (e ™' = =2 /a(m + 1) CmH,,, e *"

4nx(ad;) (e™™) = dnxC(mH, (x)e "

m-1
4mn(%) (€)= dmnClm — HH, . (x)e" ™ = =2 /maC(m)H,,_ e "™

Adding these formulas and using (3) we get (5).

c) We use an induction on m. If p < m we assume that
p odd H,0) =0

241y, /G

p even p=2n H,(0) = S TEa—
By formula (5)
H, .0 = _Jon I‘IH ©) = S+ 120+ 2 (= pr2eay”
e Jin+2 " An+ 1 i

(=1™"2"%0n + 22

H2n+2(0) = o+ ])!2”1

which prove the formula up to the order 2n + 2. Now

Hyi(0) = C2Hy, ((0) =0 Q.E.D.
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2°) a) K, (x) = H,(x)e " where H, is a polynomial. It follows easily from this fact
that Vp,Vge N,3re N 3C> 0:

d Vs
rf =
x(dx).)f

We deduce that #, € #(R). Let usset I, = _[‘fm H,,()c)H‘,()c)e'-2’"’2 dx.
Let us assume p # ¢, p > ¢. Then by definition

hi = e f ( )(e )H ,(x)dx

Integrating by parts we get:

—_ l d ! - 2nx? * - 1 d - —2nx? dH
I,= [vC—(IT)(H;> (c )Hq(x):lvm a‘p—) fﬂ (a) € (d—xq dx

Cp -1 s |0 ] AV e
I, = |: C(p) ﬂ'-l(x)Hq(x)e :Imﬂ E(_P)L (dx) (e )

SO
o AV .. dH,
l[hq = h—C(p) J; (a) (C ) ?; dx

, , . , ' : dy ' .
Tterating p — 1 times this integration by parts we find 7, , = 0 for (a H, = 0since

< Clx'revlnx’

2|5

- dx

p > g and H, is a polynomial of degree ¢ (this follows from (4) and from the fact
that H, is of degrec zero).
If p = ¢, integrating as above we get

— (_ 1y * __I_ = 2nx? ‘(‘i_ "
l,=(1 f ark (d'x> H,(x)dx

-

Now by (4) N

.= 2/pnH,

Y
Sle
N——
=
i

SO

dx Z”n”fz\/p(p - 1) 1Hy, = 2"”’47£""p'”2

TN
[=9
N—
S
X
il

It follows that

7 2”” " f e I g e M 4y =
rr /_2, 142 f =1

(we recall that [,e “dx = /7.
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b) We recall that #F(e ™) = e ™.
Let us set F(#,)(E) = A ,(£). Then
KXo = FlH,,\] = Fle ™H,.\]
and from (5)
2/nm + DA, = Flanxe ™H,| - F[2/mne "“H,_|]

Now
4nxe "'H, = —-2~df[c "H.]+ 2e w4l and from (4)
dx dx
4nxe "H, = -" :[c H,}+ 2e ™2 /mnH,
d oy s a ,
dnxe " H, = 2d N, + 4\/mn)f \
We deduce

2/am + D) KA,y = —2/[‘1” ] + A FH, |~ 2 mm FH,,_
2/am + W, —4inéXH, + 2/mn X,

Let us divide both sides by (—i)"*'. We get

K oms 2 /mn
n(m + l)(_l)m:»l + 4lﬂé( l)m+| (_’)m+lf 0
m+l fm / _
2 /n (m + |)~~DMJrI é-——(—i)”' + 2 (——t)"' ;=0

i.e. (—?”"F also satisfies (5). MorFover'
Hy = F(H) = 2 FEe ™) = 2" =

= iF) = iFle "™H\ = 2" /nFlxe "]

d

Xy s, - — rx? si4 - gt
L —F|— =2 2
2 lﬁ o= ax€ \/_ inte

|

{_1_ = 25/4\/7_[66‘15’ = M,

—i

So {;%é;) = K (&) iec. FH, = (—i)"H. ().
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3°) a) The development of & is Y, #5,(0)8,, = Y. H,,(0)#),.
=0

a=0
dH,,
b) T (H) = 57

T (K, =2 /mn A, mz ]

m I

e "™ - 2nxH,e ™ + 2nxK, = dH

—=-me " and from (4)
dx

T (H#,) = ~ad—‘(‘)fm) + 2nxH, = —2/ma K, , + AnxH,

T_(H,) =2/n(m + 1) K,,, by(5)

¢) The functions (.¥’,),, are orthonormal in L2(R); one has

n

Yla, @ < el
o

On the other hand p € ¥ so ¢’, x p e L? and I ,¢ € L.
a,(T 9+ @) =(T .0+ @ H)=Lp,T K,

= (9,2 /nm + DK, > = 2/a(m + Da,, (9

SO

Y Anim + 1)la,. (9)|* < ©
0
In this way we can prove that m*|a,,(p)} < C,  Va e N.

¥ N
Let S = Y a,(8)#, and Sy = 3 a,(0)X,,. Let ¢ € & then
0 Q

«©

{Sy. 0 =Y a,(8)a,(9)
0
and

2"~ 1), /(2p)!
a,(8) = H,,(0) = —(——p%ﬂ

Now (2p)! < 2°p!? s0 1a,,(d)| < C where C is independent of p and a,, () is rapidly
decreasing, therefore (S, ¢) has a limit when N - co.
Moreover

x

ds
T (S) = ¥ ay(02/2mn Ky, , = 3 + 2nxS

1
7 (S) = ¥ @, (02/an + DA, = —gg + 2nxS
[t
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Therefore

AnxS = Y (@, (52 2n(n + 1) + a,,(8)2/n(2n + DA .,
o}
Now
Ay (0) 20 T D + ay (@S F 1= Hy 10020 + 2+ Hy(0)/2n ¥+ 1 =0

s0 xSy = 0ie. § = (4.
Now (S, #5,5 = a,,(6) = CH,,(0) = H#),(0) therefore C = I.

Solution 68
Let us set f{x) = ¢* cos e” for real x.
a) Let us suppose that there exists a polynomial P satisfying (1). Then for every

veR
Jcose'| < -Pg)l
so him [eos e'| = 0 which is impossible. Indeed if
o x, = Log 2kn
then |cos e**| = 1 and x, tends to infinity with k.

b) Let p € #(R). An integration by parts shows that

~J sin e‘dedx = J e’ cos e'p(x)dx
" dx u

It follows that

x

J ¢" cos e“p(xydx
F

= JI(/J'(»Y)Idx S Csup (1 + xHg'(x)].
eR

Solution 69
Let us assume T is even. By definition we have

(FT, 9y = (T, F¢> forall g e F(R")

Now

(Fo)é) = Jez’"“'%(x)dx = Je"“"“‘“w(—v) dx = Fe(—)
SO

(FT, 9> =T, Fp> = (T, Fo)> = (FT, 9> foralipey

therefore T = #T.
If Tisodd: (F T, p) = LT, Fo) = —(T, Fop) = —(FT,p)ie. FT = ~FT.
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Solution 70
Let us recall that distribution T © 4 is defined by:

(1) (Teodg)=|detd] {T.9g04 "> VpeF R
W W T e s (1"
) KTowdl s Csup (I + [xD 3 1D™w(0] Yy e S (R)
o

Izt

By (1). (2) applicd to ¥ = ¢ © A4 ' and since we have ¢ © 47! € #(R") and

Do A 'y= Y CuD'%)c A" wededuce To 4 e & (R").
ifl<ix|
Moreover. for cvery ¢ € ¥ (R") we have by (1)

T

(3) (T A gy =<(ToA,¢> = |det A" KT, 6o 4™
Now

P4 o) = Je< Dp(x)d

iAo = f’:'m" Oy dr
Performing the change of coordinates ‘(4 " ')x = y we have, since ‘(4" = (4"

- l¢ /T
4) ¢4 &) = {det A]g o 'A(&)
It follows from (3) and (4) that

T T "
(TeA, 9y =(T.po'd) =T, 904
Now from (1) applied to T we get
(Topo'dy =|det A" (To(a) ¢>

SO
T RN
(To A ) =|det A]"CTo(A) ", p> forall pe F(R
Le.
T .
ToA =|det Al 'To(4)"!
b) If n = 1, Ais a real number a. Let us take @ = — 1, then T is cven (resp. odd)

ifToA = T(resp. —T).
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T N
If T is even we have To A = T. Since |det A| = 1 and (‘A)""' = A we deduce from

question a) that T = Fod=ToAsoTiseven. Nowif Tisodd To 4 = —Tso

- /\ 2 -
T=—-ToA= ~ToAie Tisodd.

a) Let us suppose that 4 is orthogonal. Then ‘4 - 4 = Id. If To 4 = T, by
question a) we can write:
- /\ -
T=Tod={detdl 'To(A4)"
Now (‘d) ' = A and |det A|? = 1, therefore for all orthogonal matrices,
T=7ToA4

so T is invariant by rotation.

Selution 71
Let p € #(R"), then by definition

(FT.pp =T, Fo)

Now

‘4/7¢[(é) — J.e*Zix(x.Ow(’X)dX = 4" J.evlm(_r.(/'>¢(y)dy
)

f%(é) =1 ‘"(ffﬂ)m
Therefore
) . ., l -n—i

FT, 9> =t KT, (Fo)p = 1 (’) T, Fo>

SO
(FT.9) = (XFT 9>

Therefore # T is homogeneous of degree p where A = —(n + p)ie.p = —n — A

Solution 72

a) The first question has a negative answer. Indeed:
Let ¢ and y two non zero elements of 2(R") such that supp ¢ N supp ¥ = .
Theng- -y = 0. Let f = Fo,g = Fy. Then f, g € #(R") and

F(f+p=FFg=9-yv =0
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since the Fourier transform is an isomorphism on . we deduce that f+ g = 0 but nor
/ neither g vanishes identically for then ¢ = Oor y = 0.

Iff*f=0then(¥f)X =0soFf=0andf = 0.
b) Letustake T = l € &', 8§ = 6" € & then 1 x §’ =:—Xlt6=0.

Solution 73
Let ¢ € 2(R). Then

<x.,,ul,,,,> = <,wl, x<o> = limj o(x) = jq:(x)dx = (Lo
R X 0 Nze

by Lebesgue’s theorem. So x - pv% = |. Therefore

I -1d . -
G . Y — e e = =
J(x pLX> indéT 1=26

ar_ _ 2ind which implies that 7'is equal to —~2inH + C where H is the Heaviside

d¢

function and C a constant.

SO

Now T = pv{ is odd for (- x)dx = _L.wz: o(x)dx, therefore T is an odd

functionso —2in + C = —Cand C = in. Then
7= *2inH+in:{_l,n €>0
in <0

Let us take the Fourier transform of both sides of the above equality.

FT = =2inFH + F(in)
Now # T = Tand #(in) = inF| = ind so .
FH = — ! T+ 15
’ 2in 2

Now T = pz‘%isodd soT = -T, s0

1 o1
FH = =6 + —po—
FH 26 2%
and

FFT = 2inFH + inZFl but FF =1d and F1 =4
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SO

Solution 74
We obviously have |x| = H(x)x —~ xH(—x) since for x > 0 the right hand side is
equal to x and for x < 0 to —.x. Therefore

Flx| = F[xH(x)] — FxH(—x)]

—-1d 1 d
Flx| = E;&fH(x) + Ed—éﬁ[H(—x)]

By cxercise 73 FH() = 5(5 + ﬁpvé.
Morcover Z [H(- V)] = FH = FII Indeed for every g e ¥(R)

(FH.p) = (H. Foy = (H, Fpy = (H, Fp) = (FH. ¢)
for
5?@):.¢w—f)=:fe““mndx= Foid)

Using exercise 73 we get

_ 1 1
FH = -§ — — pp—
FH 2(5 2[_an6
S0
-1d]|1 | 1 1. 1 1
Flx| = =——| 26 + =—pro — 20 + —pv,
P = o dg[z‘s P L T c]
Fx| = td l‘l
TN o el
Now from excrcisc 27 d zl F ! SO
ow Lol = —Fp—
e oz
PR |
2n? péz
Therefore
FFIx| = x| = ﬁ'/«FPT
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thercfore
1
9Fp§ = —2n?|x|
Solution 75
a) Forn = 0, #1 = 6. Forn = 1, #(x + iv) = Fx + iFy. Now for To_;—_.‘/" we
have:
F(xT) = ~-La—(?T) F(yT) = —Li(.@'T)
o 2im o T 7 F 2in on
so
1 (36 00
Fx + 0y) = Flx- 1)+ iF( = ==t iz
F(x iy) (x- 1)+ iFQ- 1) 2i7z<6{ lﬁr))

Since = is €7 and slowly increasing at infinity we get:

(F2)« (Fz)* - % (Fz2) = F"

F" = *_L"Qé+i@ oo ok @4_6_6
g 2in ) Y& T oy ¢ " oy

Using the properties of the convolution we can write

L G (L 7 TP R W R A (A
: _( 2in> (8é+l@r)> 0rds-0) ( 2m> <a¢+’aq>‘5

.1 . . .
b) The function i locally integrable and bounded for |z| > 1, so it determines a

SO

N

S . 1
tempered distribution in R2. Moreover setting T = - we have
z

~

=1

= .
z

SO

F(zT)
(0 . oN_..
n —§;£<&+15;I>,/T“5

A particular solution of (1) is, by exercise 29: S, = —

Fl=34

i
4
The general solution of equation (1), when the right hand side is zero, is S = F(()
where Fis a holomorphic function of { = & + in. We deduce that

(1 —i
/(;)—T+F(O

where { = & +. in.
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TR I . .
But the distribution - is homogeneous of degree —1 and the same is true for its
z

. . .1, .
Fouricer transform (see exercise 71). Since ¢ is homogeneous of degree — 1 the same is

.
Z

true for F; but F is holomorphic so F = 0 and ”7(1> = %’
Indecd if we had
FQ) = 4 'F({) for{eC and i> 0
we should have
F)y =2 "'"Al) forl>0
But Fis C* in R? while lim F(1) = + o.

ieR
A0

Solution 76

a) First of all T, having a compact support the same is true for T, since we have
supp (4 * B) < supp A + supp B.
Now, by definition of the convolution, for a, b € R we have:

(8, % 8y, 9> = {8, {0y, plx + 3> = {6, pla + y)> = pla + b) = {8,140 9>
which proves that
(I) (sa * (5,, = (suﬂx

Now, denoting by T** ths distribution T * - - - + T (convolution of T k times) we
have from the commuiativity and the associativity of the consolution:

1 & kN L .
SN LI
2k ,;, (J) k !

k
i)(slr -k
by formula (1).
b) Since T, € &', its Fourier transform T, is a C™ function which is given by

1. = (1.

I

1
T, = ?(61 + 5-1)“

SO

1 k
R

N . .
sincceA*B=A -BforA, Beé'.

162
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Let us compute &, for a € R. If ¢ € & we have:
o g = (8, 6> = §la) = 'f e p(O)dE = (e M, )
sod, = ¢ ™ ey Therefore
T(¢) = %(e’z”’“‘ + e¥™) = cos 2né
T = (cos 2n&Y

é k
¢) We have f,(&) = (cos 7) )

V

/k

For cach fixed & there exists a large & such that < 1 thus

Y

o

Q

n

I

i
TN
hJ!J\
> 0

+

<
TN
= |
—
~

v

[

2 2
Log f,(&) = k Log (l - jk + o(%))
Therefore
. &2
lim Log fi(6) = =%
kot x
or

lm £,(8) = ) = ¢
On the other hand for ¢ € 2(R) (or ¢ € ¥(R))
1@ < le(d) e L

so by Lebesgue’s theorem

lim J LiQw(D)dE = J e “p(E)de
cex Ju o

X ’

which means that sequence ( f,) converges in 2'(R) (or in &’) to e "%/

d) Letg, = F/,.Since f,e &, for| f,(&)| < 1forall ¢, we have g, € #’. Moreover
(/) converges to fin &’ and the Fourier transform is continuous from %’(R) to
&'(R). It follows that (g,) converges in #'(R) to Fe 2 = \/fi‘ze_z”z"l.
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Solution 77
a) Since 4 > —1, the function |x|* is locally integrable and determines a
distribution. Let us set

yo < 0 <
u(x) = { il > | r(x) [xI” lxl =1

Since Ae -1, ~d[,ue L'(R),re L} (R)and /' = u + v.

b) We deduce lhalf = 4 + ¢ is a function for & € C°R), & € L*R). Since f
is homogeneous of degree A it follows from exercise 71 that fis homogeneous of
degree —(4 + 1) ie.

() fudy =+ 08, 1>0.¢eR
Then

Indeed fet us take in (1), & = 1, > O then
Juy =7y = €Y
Ifr<Oletussets;, = —¢r > 0and ¢ = — 1. We get
Jy = (=1 = 0= 1) = Cpep 70
¢) Since /'is even it follows that fis even. Indeed
by = L PO = Foy = s Foy = oo
where ¢(x) = ¢(—x). In other words for all ¢ € ¥(R)

jf(i)w(*é)dé = f./‘(é)w(é)dé 50 j[f(é) =~ J(~Olp(&)dE = 0

therefore /(&) = f(—¢) ace. _
We deduce from b) that C, = C, = C; i.e.

A

A&y =gt LeR
Let us compute C. We have
Q) (fe ™ ={fe™)

Since f and _fare functions we get

<f Ci"tl> =C; j

o€

eI Ve e = 2sz grie e ge

R’ 0
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Let us set £ = \ﬁ we get
n
x

(e ™y = ZCAJ [y—((u1)/2)nu‘+n/z]e-yn—1/2 dy

0 2\/,;

1

A

3) <i:c "s”> — CinADJ. y wir ) o ‘dy = Cﬂlmr(—i)

1

Morcover
w

x
(foe ™y = ZJ. xe ™dx = nf«“mzj‘ ye e rdy
0

o
(4) </C n\1> =7 ((/‘_H;/zr(}_;z}»])

It follows from (2). (3). (4) that

2°) There remains the case where =4 < 4 < 0. Let us start with the case A€ ]—4,0[.
We use the inverse Fourier transform. We have —(4 + 1) € ]—1, —}[ therefore
F(lx] OV = Cyoplel = F(x} #*") since the function |x|”“*" is even (see
exercise 69).

We deduce that

| £l [x] 4"
FL1) =
C*li*l)
Now
A
"(-3)
c = ;Hl/z___z_ _ I
e r A+ 1 C,
2
50
FUE) = ClxI74*" for1e]—1, 0
Let us finally examine the case A = —3.If 2 » —}, 2 < —} then |x]* - |x| "% in

Z'(R). Indeed let p € L(R).

jl.rl‘qo(x)dx = j + j =L+ 1
[MES Tai>1
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In /, taking -3 < A < —} we have

Ix*o(0)] < 1x|" el € LI~ 1, 1])

it2

In I, since p € S (R) we have ||x}* “g(x)| < M forjx| > | so

, M

[ |@(x)] < =5 € L' inl|x| > 1
| x]?

It follows from Lebesgue’s theorem that j’ 1x)'e(x)dx — j‘ <l "p(x) dx.

The Fourier transform being continuous in .%'(R)

2

Fx|) = F(x]
Rv the firs osti F( vl PERTLE ¢ ) NP
v the first question .#(|x]") - =« _FUS’SI 50
4

F(lxl™y = 1¢ "

(We compute the limit using the same method when A - —} with 1 > —1)

Let |x]* = x4 + x* defined in exercise 15. It is a homogeneous distribution of
degree 1. It follows from exercisc 71 that its Fourier transform is a homogencous
distribution of degree — (1 + 1). But exercise 34 gave the form of all homogeneous
distributions of degree — (4 + 1). Since A¢ Z. — (A + 1) is not a negative integer so by

cxercise 34

;(I\IA) = Cléo”‘” + Cy¢ Grn

Since |x|* is even its Fourier transform is also even (see exercise 70). Therefore

C,=C,=C,ie.
F(xlh = CE4" + 2. = et

nxt - né?

Since Fe =€ we get:

FlxP) e ™ = dxlte ™
SO

B

Cae e Ty s e T

Let us set M(u) = (JE% e ™ > We get
M(1)

FATMCA D)

M)

«6’—("‘“) = Wm

jgeey
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Solution 78
1°) 1t follows from Fubini's thcorem that, for real and positive A, we have

ni2

' ' i d ’ ‘ ’ nar? l
Iy = 4-[ J e Iy dy = 4-[ J ¢ “rdrdo = -
0 1] 0 0

SO

for I(4) > 0.
Function 4 — [(1) extends to a holomorphic function in Re 4 > 0. Indeed let us set
i = a + if with @ > 0. Thanks to the factor ¢ %, it is easy lo see that we

can differentiate /(4) with respect to « and f and that (—6— + i )1(/1) = (.

B
L 1 . Lo
In the same way function 4 - — extends to a holomorphic function in Re 1 > 0.

These two functions coincide, by (1), on the positive real axis. They coincide there-
fore for Re 4 > 0.

2°) a) Indced |f{x)] = 1 so f defines an clement of &’(R) by the formula
SR 59~ fopd = [ AP0 dx.

d[( r) = 2inaxf(x)

c) Let us take the Fourier transform of both sides of the above equation. We get:

2inéf = 2ina(— 5:; ;7:) f

50

S 2
) d_/‘ | md — 0
dé& a

We know from exercise 33 that fis then a C* function. Let us set /' = ¢ ™' S. Then

if f satisfies (2) we have j—? = ( so Sis a constant and

3) f\(é) = (‘c’f(n“g)tz
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d) Let us apply / to the function e e & We get

(Flie ™y =(f Fe™y=(_fie™)= Ie""-"’“’dx =1

<‘);/,C ﬂ£’> — ('<C l(x'u):"c lk”) - (‘J‘c itna)§? n:’dé —_ ("2

Using the notation of question 1°) we get:

I, = I(1 — ia) =

|
ST =i

I, = I(l + i) = I(i(l - ia)) = -———————1
a a (i ]
E(l — ia)

Taking the determination of the square root for which /Fi = e¥™ and using
I, = CI, we find:

+Ifa>0 C=Le““'

a

1 ‘
*fla<0 C= —=¢ inid)

Jlal

k n
° 1 = 2 2
3°) It is easy to see that (Dx, x> = Y Ax? + Y ZAx?so
i=1 j=k+1
. k n
(Dx.xy _ inax? ins;xt
e = ] e e/t
j=1 jek+1
where cach exponential depends on only one real variable. Using question 2°) we
obtain

(Dx.x) _ ini, xt i i N Z
f‘.e”’ XX _*g‘—ne”“m®“'®’#‘le AA®,¢

Ay g 7 inr, vk
€T @ @ F e

-

n
elk(m’dbel(m‘i,k'{ n ! e (n = k)in4) Lomii )G}

I
— e ¢
1 \/}: s+t JIA]

n
F P - n 1 ei(Zk-n)(n/d)eiMD"t‘{)
ji=1 l).,l

1

4

since D! is the diagonal matrix (%) Q.ED.
IV n
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4°) There exists an orthogonal matrix U (i.e. 'U = U™ " such that
(4 UAU™' = D (diagonal matrix)
Then
(Ax. XY = KU 'DUx, x) = (DUx, (U ")x) = (DUx, Ux)
Therefore 7
™Y = To U(x) where T = ™%

We deduce from exercise 70

—T

ToU=|det Ul 'To(U)'=ToU
therefore by the preceding question we have:
Fe™MDYy = ’lfll\/_'lije«zkwmuemm vevey
Now f] [4] "7 = |det D| '? = |det A|"'?, (2k ~ n) = o, (since the signature of
two si/:nlilar matrices is the same) and by (4)
(D7'UE, UEY = ('UD'UE &Y = U 'DTIUE &) =<47'¢, O
Therefore

9—(CM<A\‘Y)) - Idel A[f |J2e:(n/4)a,eiu<A 166

Solution 79
Let us compute #(t,u) for h € R and u € #'(R). We have for every ¢ € #(R)

(F(ru), ) = (1w @) = (i, 1460

(T ONE) = §E + h) = jc P gy dx = Fle )

sO
(F(r,u), 9> = (u, Fe ™) = (e Fu, p)Vp € F(R)
ie. Flru) = e "™ Fu.

If P,u = Du + t,u we have, taking the Fourier transform
xi+e™y=0

ie. ((x + cos 2rxh) — isin 2nxh)i = 0,
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Now we have x + cos 2nxh — isin 2axh = 0 if and only if

sin 2nxh = 0
x + cos 2nxh = 0

e if 2nxh = kn, ke Z and x + cos 2axh = 0 i.e.

2axh = k=, keZ

c+cosaxh=x+coskn=x+ (=)' =0

(-D*'and h = (—1)“'%. Therefore:

i

SO x

Ifh # (_1)k+|§ where ke Z we have (x + e ™) £ 0

so # = 0 and since the Fourier transform is an isomorphism in #'(R), u =
is injective. Conversely P, injective implies (x + ¢ >™") # 0so h # (= D'
kel.

Indeed lct us assume A = (— I)"”g where k € Z then u is in the kernel

and only if

(x + cos knx — isin (—1)*"'kax)d = 0

Oie. P,

’% where

of P, if

Now function f(x) = x + cos kax — isin (— 1)**'knx vanishes only at the point
x, = (— D*"" and this is a simple root since the derivative of x + cos knxisequalto 1

at that point. So we can wriie in a neighborhood of x,:
S = (x = (=" el
with g € C* and g(x) # 0. Dividing by g(x) near x, we obtain
x—-(-H""Ya=0
which implies that & = C_p+.
Therefore if h = (— I)"”g thé kernel of P, is constituted by the functions

kot

u= Cf(é(,”kn) = Ce(‘l) 2iné

e Ifk =2p h = —p,u= Ce ™

il

o Ifk

I

1 2ins
2p+ 1 h= §(2p + ), u=Ce™™
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Solution 80
The distribution u has a compact support so its Fourier transform # is a C” function.
Moreover since P(D)u = 0 we must have:

S
() PD = POuE) =0

Let w € #'(R") be such that P(D)u = 0. By Fourier transform we get:

In R"™\Z we have P(¢&) # 0; it follows from (1) that & = 0 in R"\X.

Morcover R\ X is dense in R, since the set of zeroes of a polynomial is a closed set
with empty interior. Since # is continuous then 4 = 0V¢ € R". By inverse Fourier
transform (since # € ¢'(R")) we deduce that u = 0.

Solution 81
If Te &, we know that T extends to an entire function F on C" given by

F(z) = (T, e 2% e C"
We deduce that for all @ e N”,
@ F)z) = (T, d%e Dy = (= 2ig) (T, x* ¢ 3D
so
(1) (2F)0) = (~2im)"™"(T, x*) = 0
(To prove that (£: F)(z) = <T, (%je‘z"”""”> we write 56; = %(;x_ + l%) and we

4 7 I

usc the method of question a) in cxercise 65.
Since F is entire

al
@ Fe =y O,

3

forall ze C".
From (1) and (2) we deduce that F = 0so T = 0. Finally we get in &#'(R")

T=%T=0

Solution 82
Let u € ¥'(R") be such that P(D)u = 0. By Fouricr transform we get:

(M Pay =0
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Since P(E) is different from zero for & # 0t follows from (1) that the support of 4 is at
the origin. Therefore

Q@) = Y b5™  beC

finite

By inversc Fourier transform we deduce that

ulx) = Y C,x% C,eC

x
finite

which means that u is a polynomial.

Solution 83
‘The Fourier transform in /7 is an isomorphism {rom L3 (R) to L(IR).
PN

du N . . o
Morcover M 2in&u. Then. since & is positive. we have:
X

4
3-\,’1 Fkie LAR) < ((2r8)* + ki e L3(W) < (&4 + Die LA(R)

Now for 0 = j < 4 we have [E] < (F + &Y Indeed [E] < T or €] » 1 and in this

case & o &

d/
Therefore &%t € LA(R) for j = 0, ..., 4. So a;"/ e L¥(R) for 0< j < 4.

Solution 84
a) If Te & then Tis a C* function and there exists k e N, C > 0 such that:

1T = KT.e ™ < C Y ¢

|zl <k
We deduee that we can find N ¢ N, € > 0 such that for |&] > R = 1,
() 17 < Cle”

et us consider /7, (2). We have
,'(:) - J‘ CmeRc:eflnflm:rf(é)dés Imz >0
0

From (1) we get

Cy . C, 1

‘:”H Z(IITI :),\:43|€| < —— for ‘il Iargc.

Saimr ooy«
2) ¢ | T = = Nm ¥ 272
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Therefore the function ¢ T(&) is integrable on 10, + o[ for Im = > 0 and f, is well
defined. Let us show that it is a holomorphic function. Indeed in Im = > ¢, using the
Lebesgue theorem, we can differentiate f'with respect to x = Re z, y = Im - under the
integral sign. It follows that

(fw’ + f%).m:) = 2nj (i — i) e“T()d¢ =0
ix Cy 0
therefore /, is holomorphic in Im z > 0.
The proof is the same for /' (z) in Im = < 0.
IFrom cstimate (2) we get
K Ao
[/’(_)l < [ ¢ ,‘r;lm-lf«(:)'di + J‘ ¢ Iﬂflnl:']"-(s)'di
0 R
Cy j dé < C+ C

im e [, Qe = € fim e

R
< j I T() dE +
0

c
and for |Im =| small we have C < IT—-—W so
m z|**®

. 2C7
/)] < [t 2[¥+

The same is truc for /' (z).

b) It follows from exercise 52 that lim f,(x + iy) and lim / (x + iy) exist in
yo0 ! yoat)

«'(R), we denote them by /', (x + i0) and f* (x — i0). Let us compute them.
Let ¢ € Z(R) .

{fily +0), 9> = lim j j e"Me T T(E)p(x)dEdy
R JO

[

2imad

¢ " T(&E)p(x) is integrable, with respect to the product measure, for
all fixed ro We can then apply the Fubini theorem and write

Function e

vt

Cfx + 10), > = lim j ¢ ™ f‘(é)(j cz""‘fw(x)d_\)dg
[i] 24

= lim j e TG~ &) de
IR

Now p e Z(R) < #(R) 50 ¢ e S(R). Since | T(&)] < C[¢|" for |&] > R the function

#—ET(E) is integrable on 10, + . It follows from the Lebesguc theorem that:

2

Sl + i0). ) = j T - g(—¢&)de

0
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In the same way we obtain

It

Sfx = i0), @) J T(&yp(— & de

Therefore
Sfolx —80) + f (x = i0), 9> = J
3

where ¢, ) is the duality bracket between ¥ and /7. Morcover

TE@(—de = (T, (= &)

(Tog(=8)y = (T Fi—~)> = (T, 9>

since F(Fp)~ &) = p().
This is true for all ¢ € #(R) therefore

fily +0) + f (x —i0) =T
&) let TeZ'(Na, b[)and Ja,. b,[ < la. A Let ye Z(Ja. bl). w = Von]a,. h,[. Then
w o &), Applying the above result to w1 we get:

wT = [o(x + 0) + [ (x — i0) in %' (R)

T=/.(x+i0)+ f (x—i0) inZ(ay, b]).

Solution 85
a) 6™ possess a Laplace transform since it has a compact support. Morcover

SENNP) = PP, keN

and Z(0)(p) = (6. ¢ ™> = 1s0
L@ ) =0
0} so it has a Laplace

b) H(x) is in &' and its support is contained in {x >

I

transform in Re p > O:
’ 1
(ZH)(p) = (H,c ™) = J e Mdx = -
0 p
0 and for Rep > 0 we

¢) H(x) Log x is a tempered distribution. We can take {

have
Log xe "dx

Y(H(x) Log x)(p) = (H(x) Logx,c ™) = J
0
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First of all for real and positive p we can set y = px so

J Log x-e "dx = Logxe vdy _ ~Logp ~ C
0 0 r P r

where C = — {7 Logy-e "dp.
Thercfore for real and positive p
—Lo - C
L(H(x) Log x)(p) = — 2L ==

We know that .2’ (H{x) Log x) is holomorphic in Re p > 0. In the same way the

function “Logp = C is holomorphic in Re p > 0 when we take the usual
r

determination for the Logarithm. Since these two holomorphic functions coincide

on the positive real axis, they coincide cverywhere. So for Re p > 0

—Lo -C
P(H(x) Log x)(p) = %’L—
. I
Let us note that C is the Euler constant, C = lim (l + 3 + . % — Log n>

Solution 86
a) Letusset T = H(x) Log x. For ¢ € 2(R)

dar N\ _ _/ode\ _ . I :
<a¢> = <T. a;>v L Log x - p(x)dx = —lim L Log x - ¢'(x)dx

£-0

by the Lebesgue theorem. Integrating by parts we get:

dT .
<a;, ¢> = “lcl,[](: {—Jc (/7(:) x — Loge- q)(s)}
) <3v:, ¢> = lim {J olx )dx + Loge- q)(s)}

But we know that

(2) <prl_’(;._r)’ qz> = lim {J w(x)dr + ¢(0) Log s}
B £0 .

Writing p(¢) Log e = ¢(0) Log ¢ + £ Log & - w(e), and using the fact that ¢ Log ¢ tends
to zero with &, we deduce from (1) and (2) that
H(x)

4

d
3 aH(x) Log x = Fp
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In the same way, for ¢ € Z(R)

H 1. ) e
4 <d Fr— (x) > = ‘<FI’ x(kv)w w’(-v)> = _’:i’; ” gr(%zdx +

k-1 ()} ()]
¢(0) ¢ _
PR GENG R Tk T B 5} = ~himi,

Now
" '(x) “ plx) (e)
(5 j & dx = k j O AR

=1 (0 20
6) op(e) = /Z 5')8 + X p(e) with hm wie) = - kf )

It follows from (4), (5), (6)

K o0
7n 1 = kj ’l’ff)l Z e A( }-- w(e) +

\_V__/
0]
L ) “)
+ o0 90
+ ’ (- i)'([ - ki,;/« / k U\ i Log ¢
<

Q

k=1 (/)
A 11\ _ e
@02 ((_/ IV j!) o

j=

Now

k=1 117
B _ 0 k90
©-0=L%T o n
We deduce that:

" pl(x) & o) o(0) | ¢*(0)
I = k{j” ;Zﬁ'd"' + /Z] T = ke ket + Log e ku/(s)

7 g k-1 1/'0 (k)
I = "{J fff)ld‘x + _Zﬁj + k( )Log 6} — wl(e)

=17

Let us note that

R () N ¢ "0
LG - R ,; (= DI — k — Dek+1~7
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00
Using the fact that lim y(g) = = ( ), H( )
o 0

(4) that

d Hx)_ ,_HX (- 1) *)

(@) an = kax"” +-——94

By induction. using (3) and (7) we get:

L H) (=1 o o 1\ 5w

= == + -
Ep i i [(d.r) (H(x) Log x) </Z| i )

It follows that

— 1) k
(r ﬂg?) = (Aldl[p“'f{’(H(.\') log x) + (Z ;),;"]
! =

K+l £
J’( 72‘?)( ) = (o ” <logp +C -y 7)
i

Solution 87
a) It is easy to sce that T has a Laplace transform in Re p > Re a since
¢ Rerrr = " (%) € 'R). Moreover

L(TNp) = T.e ™) = J e ™Mdx = I,
0
Let us compute / in terms of /, | by integrating by parts for k > 1:

— ! k *
I, = "jlf"—‘ e MxF N dx + _—‘;_eu«p)x
(@ =p)J, x—-p 0

Since Re (x — p) < 0, the last term in the right hand side vanishes, so

k
]
=t

and

m I =

(r - a)kl"
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Let us compute I,. We have
I, = e P dx = o Rep > Rea
0 p -«
We deduce from (1) that

LT p) = G—;a)_"*-‘ forRep > Rea
b) It follows from question a) that

L "H(x)) = ——, Rep > —1
dT
Moreover a{?(a)(p) = p&(T)p) so

o 7_97 v — rd A = _7,_)”'
"/[dx“ H(x»J(p) p#e M) =

By the uniqueness of the Laplace transform we can write

_ d
v <,Ti“'1> = G H)

Now

%(e ‘H(x)) = —e "H(x) + e 6 = —e¢’ ‘H(x) + 0

and

and

1 pr+i af r +igp! ! of P cp-tf 1
— )= L r— -2 —-i¥
o <p2~3p+2> . (p‘2> R Ve p=1) " I

Using question a), the following formula
d"T m
Y( >(p) = p"L(TXp)

dx”
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and the uniqueness of the Laplacc transform we get

2 ; 2 2
¢ (p_z = 2) = L e+ iH ™ = e H) - ite T H)

Moreover
d? )
d'if(c TH(x) = & ~ 20 + de FH(x)

2
a%(e"H(.\')) =4 — 0+ e "H(x)

It follows that

1 prti . - 2x L2 ,
LN (p) =6 — 20+ de "H(x) + ie "H(x) — & + 5 —
— e "H(x) — ic "H(x)

2 + ; R N
> ]<Fi r 5 ';3> = —3+ 4+ ijc PHX) — (I + e “Hw)

Solution 88
a) Let ¢ € 2(R,) then

a

(T.g> = Y colk)

k=0

the sum being finite. Then T is a distribution of order zero.
Morcover

o xX aC
e T=Y e 5, =Y ees, =Y 5
k=0 k=0 k=0

since ¢ “6, = e *J,. Therefore e T € #'(R) and T has a Laplace transform in
Re p > 1. By definition, if L€ C” and 4 = | on supp 7, we have:

LTYNp) = e ‘T, Mx)e 7 "> = ie ok Rep > 1
k=0
b) We know that
x 2
LT+ T)p) = [LTHp)? = [Z e*(p*lik]
k=0

But

(Z ak>~ = Y b, where Y aa;

n=0 i+i=n
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Here

h" — Z e"(l"”(i*l) . e’iﬁ*l)n Z | = (n + 1)e’(l"|)n

i+j=n itj=n
Therefore we have
LT*TYpy =3 (n+ e v
no0
By inverse Laplace transform we get:

Tl =Y (n+ D e ™ =3 (n+ 1)e',

n 0 n-0

Solution 89
All the distributions described in the statement have a Laplace transformin Re p > 1.
We can write

Llxe H(x) = T = L(H(x) sin x)

But
1
Llxe’H(x) = T(p) = Lx e Hp)L(T)p) = TN L(T)p), Rep>1
by exercise 87.
Moreover
L(H(x) sin x) = sin xe "dx = l e Mdx — e "Mdx
o 2I 0 0
P(H(x) sin )=-1— oo = L Rep >0
’ xpsinx 2\p — i p+i pr+1 7 P
We deduce that
(p— 1) _pP+1 -2 2p
G = = = —_
2} p:+ 1 pr+1 ! pr+ 1

To find T, using the uniqueness of the Laplace transform, we just have to take the
inverse Laplace transform.
Now

ary _
z(a;> = p#(T)
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SO

(d . N
L% (-‘;H(.\f) sin x) = p¥(H(x) sin x) = 7T

Then

- | Caep | P Y= _ 7i . _ _
T=9¢ () -2% <p2+ 1) J 'dx(H(x) sin x) = § — 2H(x) cos x
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CHAPTER 7, STATEMENTS, EXERCISES 30-91

STATEMENTS OF THE EXERCISES* CHAPTER 7

Exercise 90: Sobolev spaces
For s € R we denote by H'(R") the space

{ue P (RY: (1 + &30 e LA(R™)}

with the scalar product

() (wo), = J (1 + [£12)()i(E) dg

and the norm ||u||? = (u, u),.
a) Prove that H'(R") is a Hilbert space and that if s, and s, are real numbers such
that s, > s, we have H"(R") <« H™*(R").

b) Let me N\{0}. Show that forevery e N”, 0 < |a| < m, there exists C > 0 such
that

[Tier sa+ip < c<1 + 3 11 I@I“’) vie R
j=1 O<latgm j=1
¢) Deduce that, when s = m e N, the space H"(R") coincides with the space
E = {ue LAR"): D°ue LXR"), la} £ m)

and that the norm [ju]}2 is equivalent to the norm

m

lul2, = 3 1Dl 7y

|x|=m

Exercise 91
We recall that if u e L'(R") then Fu and Fu € CYR").

a) Let k € N; prove that if s > g + k, IP(R") < CYR").
b) Let Q be an open set of BR” and s € R. We set
I tuc ') gue 1R, Yo ¢ 2(€))
Deduce from a) that () 115, = () Hin(Q) = C*(Q).

loc loc
seR meN

* Solutions pp. 192-213.
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Exercise 92 (see exercise 91)
Let U be an open set in R? x R?and f: U - C a function such that:

(1) fis C* separately in x and y

2) Dif, Df.f are bounded on every compact in U, for all « € N” and all
peN?

Show that f belongs to C*(U).
(Hint; show that f e Hf_(U) for every k € N and use exercise 91.)

Exercise 93
a) Let k € N. Show that the space £'*(R"), of distributions with compact support
of order <k is contained in H'(R") where s < ~g — k.

b) Deduce that &'(R") = [ H*(R").

seR

Exercise 94
a) Let s ¢ IR, prove the inequality

(4 €12 S 450+ (18— A + 7)Y vineR

b) Let y € 2(R"). Prove that the map 4 — yu is continuous from H*(R") to H(R")
for all s € R.

Exercise 95

Let k € R\{0}. Show that the differential sperator —A + k2 is an isomorphism from
n 2

H™ 2 (R") to H(R"), for all 5 € R. (Here A=Y 9 )

ox?

i=1

Exercise 96 (see exercises 7 and 91)
a) Show that there exist F e L2(R") and N € N such that

() 6=0—-A'F
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b) Show that there exist functions f, € L*(R") N &'(R"), |a| < m, such that
2 o6=73% DY

lalsm
(Hint: Note that ¢ - 6 = ¢ if ¢ € 2(R") and ¢(0) = 1.)
c) Let u € 2(R") be a distribution such that for all f e L2(R") U &’
(3) (D'u)+felL? forallaeN"

Prove that ¥ € C*(R"). (Hint: use exercises 7 and 91.)

Exercise 97 (scc cxcrcise 60) Parametrices of elliptic differential operators with constant
coeflicients
Let P(D) be an cliiptic differential opcrator with constant coefficients in R" which
means that
P& = 1|Z " #0  vie R\{0}
x|<m

a) Prove that | P, (&)] = C|&|™, V& e R". Deduce that there exist K > 0and R > 0
such that | P(&)| = K|&|™, V& {&l > R.
<y,
P&
there exists a distribution E € &'(R") and w € ¢ such that

b) Let x € #(R"), x = 1 [£] < R. Show that v € Y"(R"). Deduce that

PDE =6 - o

(E is called a parametrice of P).

¢) Prove that for every k € N there exists @ € N” such that x*E € C*(R").
(Hint: prove that #(D’x*E) e L'(R") if |a| is big enough and |8| < k.)

d) By the mcthod used in excrcisc 60, prove that if v € 2'(R") is such that
Pue C*(R") then u € C*(R").

Exercise 98**: Fundamental solutions of differential operators with constant coefficients
The purpose of this exercise is to prove that every differential operator with constant
coefficients in R, non identically zero, has a fundamental solution.

1°) Weshall denote D, = {z€ C, |z] < p} and H,, the space of holomorphic functions
in D,, which are continuous in 5,.
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a) Letfe H, and g(z) = z — A where A€ C. We assume that g(z) = l@ isalsoin H .

q(z)

Prove that there cxists a constant C > 0 independant of 4 such that

n
(1 [gO] < —f If(pe™)do
0

Hint: start with p = 1 and apply the rcsult to the functions f{pz) and %q(pz).)

b) Let ¢ € @(R"). Prove that ¢ can be extended to an entire function (i.e.
holomorphic in C") which satisfies |¢(¢ + in)| < Cc” where ¢ and C are positive
constants.

o) Let (D) = Y a,D" a,eC. Weset P(&) = Y al%

lapi<m || m
Compute F[P(E + im@(& + ip)] in terms of P(D) and ¢.
0P
2%) Let us set Pi(&) = - (&).
(Y}

a) Let ¢ € A(R"), show that:

e ax o P)e(Q)
PUOS) = ) 5
&) ,; £ = 4

Deduce, for z € C, the expression of
P& +in + 2,8+ i) +in + 2,8+ i)

b) Prove, applying the results of questions 1° a) and 2° a) to the functions

where & = (&, ..., ¢&,)

)= P&, + gy + 2.8+ i), F ip + oz, &+ in)
and
gz) =z + & + iy — AL+ i)

that

sup J [PUE + @& + im]PdE £ C, SUPJ [P+ im@(& + in)|* d
" : 8

[ s pi2 Ir=<p

¢) Deduce that for every a = («. .... «,) € N" there exists 4, > 0 such that
ay . . . o

sup J [((7) P](é + M@ + im|*dd < C, sup JIP(é + g + im)|*dg

i< pi, ¢ 1ni<p

(Hint: Iterate the inequality proved in question 2° b).)

(continued p. 189)
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d) Using 1°) ¢) and 2° ¢) show that for every p > 0 one can find C, > 0 such that:
ol ey £ Gl PDYONl oy, Vo € Z(R")
3) Weset E = {u = ¢"""P(D) where g e 2(R"} and P(D) = ) a,D"

[zt <m

a) Let f'e L*(R"). We define a linear form G on E by
Ge"'P(D)p) = (9. /)1

Prove that G is continuous on E considered as a subspace of L2(R").
b) Using the Hahn-Banach thcorem prove that we can find & € L%(R") such that

G(c" ' P(D)p) = (h, e P(D)p), -,

¢) Deduce that: Vp > 0.V/e L3(R"), Ju such thate Mye LR and P(D)u = f
in 2'(R").
4°) a) Prove the cxistence of /€ L*(R") and of a differential operator Q(D) such that
d = Q(D)f. (Sce exercisc 96.)

b) Let P(D) be a dilferential operator with constant coefficients, non identically
zero. Deduce from what precedes that there exists E € 2'(R") such that

P(D)E = ¢
¢) Let g € Cg(R"), prove that one can find ¥ € C*(R") such that
P(Du = g

Exercise 99* (sce exercises 91, 93, 94)
Let P(D) = Z a,D” be a differential operator of order m with constant coefficients

lat<m

Ap
in an open sct Q of R". For fe N" we set PP(¢) = g

7l
We shall denote by P(D) the diflerential operator with constant cocfficients
associated to the polynomial P¥(¢&).
The purposc of this problem is to prove that if the polynomial P(¢) satisfics the
following condition.

(C) There exist £ > 0, R > 0 and C > 0 such that for all &, |£] > R,

IPPOI + E12) < CIPE)

then for every open subset w of Q, u € 2'(Q) and P(D)u e C*(w) imply u e C” (w).
We shall call these operators hypoelliplic.

>(§)where P& =Y al”

laj<m
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a) Let g € 2(Q) and v e 2'(Q). Deduce from the Leibniz formula that
1
(1) P(D)gv) = ¢P(D} + ¥ IWD”“’ - PO(D)w
p40 P+

In the sequel we fix s € R and we want to show that if u is a distribution on Q such that
Pu e () then u e H (w).

Let ' be an open subset of @ such that @’ is a compact included in . Then for every
N e N one can find open sets w,, w,, ..., wy included in @ such that

) O =Wy S Oy, S C Wy =0
w, is a compact contained inw,.,,j = 1,2, ..., N

Forj =0 ..., N — 1, we shall denote by ¢, a function of #(w;), ¢, = 1 on w,,,.
b) Using exercise 93, prove that there exists 7 € R such that g,u € H'(R").

Deduce that for g # 0, PP(D)geu) € H' ™ "(R"). (We assume ¢ < s otherwise

ue Hi (w).)

We define the integer N in the following way

3 t—(m—-D+N-Du<s
3 t—(m-—-1)+ Nu=s

¢) Using (1), with g = ¢, v = ¢,_,u, the exercise 94 then the condition (C), prove
by induction that P*(g,u), # # 0 is in H'~ ™ "**R"). Deduce that u € H;, ().

d) Prove the claim of the beginning of this exercise. (Hint: use exercise 91.)

e) Prove that if Pisellipticie. Y a,&* # 0for & # 0, then P satisfies (C).

laj=m

Prove that the heat operator P = satisfies (C) but that the operators

& o
P = ﬁ + ﬁ d P = ﬁ - ﬁ do not satisfy (C). Compare with exercise 51
BT PR ot ox? y ’ pa ’

Exercise 100**: Analytic hypoellipiticity of the elliptic operators

We recall that a function v which is C* in an open set Q of R” is said to be analytic
in Qif:

For every compact K of € there exists a constant C > 0 such that for every « € N”

(1) sup |8%u(x)} < C™* 't
xeK

190



CHAPTER 7, STATEMENTS, EXERCISE 100

a) Using question a) of exercise 91 prove that there exists ko € N such that for every
compact K’ <  there exists C’ > 0 such that for every v € 2(Q)

)] su’glv(x)l SC Y Nvlog

lzl <k,

We consider in what follows a differential operator of order m with constant
coefficients, which is elliptic, i.e. '

PO = Y a,&" # 0 forall £e R\{0}

laj=m

b) Prove that there exists C, > 0 such that for all £ € R”

P (&) = CJ&I™
Deduce that one can find C, > 0 and R > 0 such that for all £ € R". |£] > R

[P = ClE1m
¢) Prove that there exists C; > 0 such that for all v e 2(Q)

3) "l'”fl"'m") < C3{”P(D)U”L1(m + “U“um)}

Let & be an open subset of Q and « a distribution on Q such that P(D)u is an analytic
function on @. Let w bc an open set such that w < @; we know from exercise 99
that w is a C" function in . Our purpose is to show that « is actually an analytic
function in w.

Fore > QO weset w, = {x € w: d(x, cw)> ey
d) Let g, & > 0 and y be the characteristic function of w, ), i.€.

. £ .
x(3) = 1ifd(y. fw) > & + 30 X = 0ifd(y, o) <& + %
Let ¢ € 2(R") be such that:

p 20, -[ p(x)dx =1,  suppy < {x:|xf < I}
gon

We set

I X -y £
. = o ; — i h = =
®,.,.(x) 5 J~R” x(})w( 5 )d» where ¢ 3
Prove that ¢, , € Nw, ), 9., = | on w,,,, and:
For every a € N”, there exists a constant C, > 0 independant of ¢, &, such that

@ sup|dp,, ()] S Ce ™

YEw,
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e) Prove that one can find C > 0 such that, for every w e C” (w), for every positive
£, &y, ¢ €10, 1] and every a € N" such that |a] < m, we have:

(5 1:‘1‘”1)1“'”L‘|w1,,‘l = C(E""iP(D)W”I’(m,‘) + Z 5‘/”'|D/{“",le,‘)>

[Bl<m

(Hint: Apply inequality (3) to ¢ = ¢, w and use the Leibniz formula.)
f) Deduce, from the analyticity of Py in &, that

IM > 0:VjeN: je <1 ND* PDYull 1o, S M7 el <5

g) Prove by induction on je N, j > 1, that there exists a constant B > 0 such that
for every ¢ € 10, 1] and every j e N such that je < 1.
(6), "D ull e, £ BT Iyl <m 4
(Hint: Notc that (6), is true if Bis big enough, then increase B if necessary so that (6),
implics (6),, . Use the fact that (6), implics (6),, , for [y} < m + jthen apply (5) with
g, = jo,w = D%u, |ag| = j.

h) Let K be a compact subset of Q and a € [0, 1 be such that K < w,. Taking

J = |yland & = ‘; in (6), prove that:

Iyt
(M Dully,,, < B ‘('—1‘>

a

1) Deduce from (2) and (7) that u is analytic in .
We rccall that it follows from Stirling formula that for p, ¢ € N big enough we have
Cyp! < p” < Cip! where €, C, are independant of p and (p + g)! < 27" ‘plg!

Exercise 101**; (sec exercises 6 and 90)

Let P(x. DY = Z a,(x}D” be a differential operator of order m > 2 in an open
x|~ m
set Q of R",
Weset p(x. &) = Y a ()& and
ta| = m .

I = {(x, &) e Q x R\0: p,(x, &) = 0}
We shall say that the operator P is of principal type if

. P

(*) VY(x,H)eX dje{l.2.....n}: e

=

(x, &) # 0.
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The purpose of this problem is to prove the following result:

«If P is an operator of principal type with C* coefficients and if Pm(x, &) has real
coefficicnts then P is locally solvable i.e. For every a e Q and every fe Cq near a there
exists u € %'(Q) such that Pu = fin a neighborhood of a.»

1°) Using the homogencity in & of p,, prove that P is of principal type if and only if

(+*) V(x.eQ x R\O 3je(l 2 ...,n}:%(x. & # 0.
}

2°) Let R > 0, a € Q be such that

Bla, Ry = {xeQ:|x —a| < R} = Q.
Let s € N*. Prove that there exists a positive constant C(R) such that lim C(R) = 0
and "

M ez < R T I1D*0ll2

fer|= s

if R is small enough and ¢ € C§ (B(a, R)).
(Hint: Discuss first the case s = 1, supp ¢ < {x: |x, — a,| < R} and write

S
o(xy, ..., x,) = j %(r, Xa, . .n, X,)dE

1 R

3") Assumec that the coeflicients of P arc C* in Q. Let P* be its adjoint in L? and
R > 0. Show that we can find C,(R) > 0, satisfying lim C(R) = 0, such that for
R 0

every ¢ € Cy (B(a, R))

Q) X P DyllE < CURIPOlIZ + I1P*0ll2 + llpll3m 1}
j=l

5
. . ap,
where P(x, D) is the operator whose symbol is ,’Z"(x. &).
'S

(Hint: Note that P}’ = i[P, . x, — a]. Then write || Pp||? = (P'p. P, (x, — a)p) ~
(Py'o. i(x, — a)P,p), and use question 2°).)

4°) Let us assume that P is of principal type. Using question 2°) prove that:

n

3) gl + < C Y NP a, DYll}:  Voe C5(Ba, R))

i=1
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Deduce
3) el < C Y IIPPx, Dypliz: Vo e C5(Bla, R)).
|

(Hint: Use the fact that if P is of principal type then

)

j=1

2
P, 6 2 Clefn? VERN0)

;

5%) Let us assume moreover that p, has real coefficients. Show that one can find a
constant My > 0 such that

@) |IPeliz: < IP*oli: + Mollell}~ 1 VYo e Co(B(a, R).

(Hint: P — P*is of order m — 1.)
Deduce from the preceding questions that there exists C > 0 such that

(5) Mol v < CliP*ollz..
6°) Let fe CZ (). We consider the subspace of L2(B(a, R)) defined by
E = {y = P*¢ where ¢ e Cg(B(a, R)}
and the map /: E - C defined by: w = P*¢ — l(w) = {f, o).

Let £ be the completion of Ein L2. Prove that / can be extended to a continuous linear
form on E. Deduce that P is locally solvable.
(Hint: Use inequality (5) and the Hahn-Banach theorem.)

7°) Give examples of differential operators which satisfy the conditions required in
this problem.

Exercise 102*

Let I be an open interval in R and Q be an open subset of R". We shall denote by
(1, x) the point in / x Q. We shall denote by C*(/, 2'()) the space {ue 2'(] x Q):
Diue COU, #'()),0 < j < k}wherek = 0,1, ..., + o and C°(, 2'()) is the
space of all w € (I x ) which can be locally written as u = Y D?u, where

u € COI x Q).

tal < p

Let P be a second order differential operator, with constant coefficients, on the form
pP=D+ ¥ a,szDf. The purpose of this problem is to prove the following

lal+js2
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claim:

*) ue2'(I x Q), Pu=0=ueC*(, 2'Q)).
a) Let ue @2'(I x Q) such that D,u € C°(I, 2°(Q)). Prove that u € C%(I, 2'(Q)).
b) Show that u e C'(I, 2’'(Q)) and Pu = 0 imply u e C*(I, 2'(Q)).
c) Show that if ue 2'(I x Q) satisfies Pu = 0 then u € C'(I, 2'(Q)).
Remark:

This result is still true when P is a differential operator of order m > 1 with C*
coeflicients. 1t implies in particular that the traces on a hyperplan ¢ = constant of the
distributions solutions of Pu = 0 are well defined and are distributions.

Exercise 103*: The Cauchy problem for the wave equation (see exercise 70).

We shall denote, in what follows, by (¢, x) the variable in R x R" and O =
2 n 2
> .; ;;? The Green function of the Cauchy problem for the operator (I is the

or?
distribution G(t, x) in R x R” solution of the problem
§ . n oG : .
*y OG=0inR x R, G},.,, = 0-5’- = §, (the Dirac measure at x = 0)
t=0

The purpose of the first part of this exercise is to prove that the existence of G allows
us to solve the Cauchy problem: :

ou

(*+) Qu=/f inR", ul,_,= "% =y

=0

where fe CX(R"*') and ¢, y are in CJ'(R").
1. a) Show that the existence of G is sufficient to solve the problem

ﬁuq

() tlug =0 wgl,.q =0 W = y.

1=0

b) Let v be the solution of the problem

v
(I Ov=0 vl,=0 %

=0
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and w = 4,v. Find a problem for which w is a solution. Deduce from a) the solution of

Ouy

(2) Ou =0 ul,., =9, ot

=y

=0

¢) (Duhamel principle).
Let € R* and v(x, 1, 7) be the solution of the problem

3) Ov=0 v].,=0 o = flx, 1)
at 1=0
Wesetu, = v(x, 1 — 7, 7)d7. Find a problem for which u, is a solution and deduce

0
the solution of the problem (#x).
I1. In this part we are going to compute the Green function G in R x R3.

a) Let G(1, &) be the partial Fouricr transform in x of G(¢, x). What differential
cquation does G satisfy? Deduce G, &).

b) We consider a real number a € R* and the distribution in R?, §(a — |x|) defined

by da — |x|), ¢) = p(x)dx. Compute the Fourier transform of this
Ixl=a

distribution. (Hint: Use exercise 70.) Deduce G(t, x).

¢} Write down the solution of the Cauchy problem (*+) in R*.

Exercise 104
2 n 2

. 0
I. We consider the wave operator O = = ~ )

a2 mn

2
0x?

i=1
R =4, )t > 0
and we are going to prove that if u is a C? real solution of the Cauchy problem:

du

(1) Du=0inR ul,, = F

=0
in By = {x:]|x ~ xo| < 1o} then u vanishes in
Q={(t,x)0 <1<ty |x — xol <ty — 1t}

a) Give a geometric interpretation in R? of this result.
du\? < [ 0u\?

b) We set B, = {x: [x — xo| < o — o}, [Vul? = {Z2) + $ (22} and
ot S\ 0x;
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E(1) =

! f |Vu|?dx. Show that
2 ],

dE Oud?u ooou QPu 1 ,
dr ~ f [” it L a,J x zL,,'V“' do
where ¢B, is the boundary of B, and do the measure on it.

c) Using equation (1) and the Gauss-Green formula (*) deduce that

dE Oudu 1 N
Fri f (‘,‘ 3!Vl )d”

P " . ‘ . .
- =Yy L= (+;) being the unitary normal to éB,.
v x

vy

where

d) Show then that %’; < 0, deduce that E(7) = 0 in Q and conclude.

1. Let ue C*(R7'') be a real solution of the Cauchy problem

. a
Ou=0in R ul,_p = to, =
at -0

= u,

We sct I'y = supp 1y L supp u,. Prove that suppu = I' = {(x, 0): d(x, [')) < 1.
(Hint: Show that{iI" < {} supp u using the result proved in the first part).
(*) We recall the Gauss-Green formula: if f = (f}, ..., f,)

if ff’dvc”f {fiv)da
a X 0

i1

&

Exercise 105
Let Q. and Q, be two open subsets of R” and & a distribution on Q, x Q. To this
distribution corresponds the operator K: Cg (Q,) —» 2'(R2,) given by

Ku(x) = <k, u(p))

We say that & is semi-regular in x if K maps C§ (©,)in C*(R,). We say that k is semi-
regular in p if K extends to a continuous linear map from &(Q,) to 2'(Q,). Finally k
is said to be very regular if it is semi-regular in x and y and moreover it is a C*
function outside the diagonal x = y.
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Let P(x, D,) be a differential operator with C* coefficients in an open set Q of R”. A
distribution k € 2'(Q x Q) is called a parametrix of P if

P(x, D))k — 6(x — y)e C*(Q x Q)

(Here é(x — y) is defined by {d(x — ), ¢(x)> = e(y)).

Our purpose is to show that if ‘P, the transpose of P, has a very regular parametrix
then P is hypoelliptic in Q (‘P is defined by

('Pu, 9> = (u, Pp), ue 2'(Q). ¢ € C5 (D).

Let u € 2'(€2) be such that Pu is C* in a neighborhood ¥ of a point x, € Q. Let
9 € Co(V), p = | in a neighborhood ¥, « = V of x,. Let pe CH(R"), p = 0 for
|x| > & p = 1 near the origin.

a) Prove that the expression
v(x) = (p(x — Yk, P(y, D Ne(»)u(»)]>

is well defined. Noting that P(pu) = @Pu in V,, prove that if ¢ is small enough, v is a
C* function in a neighborhood W of x,.

b) Using the hypothesis, show that v — gu is a C* function in Q and conclude.

Exercise 106: Singular spect:-um of a distribution

Let u € 2°(Q) and (x4, &) a point in @ x R™0. We say that (x,, &) is not in the
singular spectrum of u, for short (xo, &) ¢ ss(w), if there exist a neighborhood ¥ of
Xo, a conic neighborhood I’ of ¢, such that for every p € Cq (V)

M) = 0(El™)  VYNeN VEeT, |¢ > +oo.
a) Let n: Q x R" — Q be the projection (x, &)  x. Show that
nss(u) = sing supp (1)

b) Let R% = {(x’, x,)e R"™' x R: x, > 0}. Let y be the characteristic function of
R". Show that ss(x) = 4 = {(x’, x,,, &, &) x, = 0, & =0, &, # 0)
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Exercise 107* .
Let fe #(R" ') and pe C*(R) be such thatp = Ofort < I,p = | fort > 2.

Foré = (7, ) e R"' x R we set g5 = f(y”—;)p(r).

a) Prove that g € ¥'(R") n C"(R").

b) Prove that g is rapidly decreasing in a conic neighborhood of the following
points: (75, 7o) with 5, # 0 and (0, 7,) with 1, < 0.
(Hint: Note that in a small enough conic neighbbrhood of the first (resp. second)
point we have |1 < Clgn| (resp. t < 0).

c) Show that for |¢]| big enough

ol
IDED3g(E) < Co(1 + &) * 2.
(Hint: Distinguish the cases |t| < |#] and |5} < |].)
d) We consider the distribution « = £ “'g where %' in the inverse Fourier
transform. Computing #(x*D”u) show that u is C* outside the origin.

e) Let w € (R") and he L*(R") n C*(R"). We assume that there exist a point &,
and a conic neighborhood T’ of £, in which 4 decreases rapidly. Show that wxhis
rapidly decreasing in a cone I, c < T,.

(Hint: Use the fact that for ¢ € l::o and { ¢ T, we have |£ — (| = e|&)).

f) Deduce that

ss) < A ={(x,:x=0,p=0,7t> 0}.
g) Show that ss(u) = A.

Exercise 108 (see exercises 106, 94)
a) We consider the distribution on R defined by

2inv & . Al

+x e

Prove that ss(u) = {x = 0, ¢ > 0}.
(Hint: use inequality a) from exercise 94.)
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b) For (7, x) € R? we set

+ o i
- e—ulztehnr.t
u(t, x) = J‘ 75 dE.
o (37

Show that v is a C?! function solution of the equation Lu = (é - it~>v = 0.
¢

¢) Deduce that L is not hypoelliptic.

Exercise 109
We give two C! functions a and wu, (rom R to R, u, with compact support. We
consider the non linear Cauchy problem

u du
0 a (x, ) + a(u(x, t))&(.\, =20
u(x, 0) = ug(x)

We want to prove that this problem has a C! solution uin R% = {(x, ) e R?, ¢t > 0} if
and only if

2) ad'(g(xNuglx) = 0 Vye R

a) Show that every solution u of (1) is constant, equal to u(x,), on the curve
(1(1), r) where y is the solution of the differential equation

dy }
3) Fri a(u(y(1), )
y(0) = x,

Deduce that the solution of (3) is }(?) = xo + ta(ue(x,)).

b) For + > 0 we consider the map F,: R — R defined by x = F/(x,) =
xo + ta(ug(x,)). Show that this map is a C* diflemorphism from R to R for every
t > 0if and only if condition (2) is satisfied.

¢) Let us assume (2) satisfied ant let x, = G,(x) be the inverse of F,. We sct (4)
u(x, 1) = ug(G,(x)). Show that u is a solution of problem (1) in R2.

d) Conversely, let us assume that (2) is not satisfied; 4, having a compact support
the function a'(uy(x)). ug(x) reaches a minimum m < 0 at a point y,.

-1
.. Prove that formula (4) still defines a C! solution u of problem (1) for 0 < ¢ < T
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4

Ju

— +o0 whent » —.
m

such that

Ox

e) Deduce that the largest T such that a C! solution exists for 0 < ¢ < T'is given

1
by T = Max (—a’(ug(x))uo(x))’
veR

SOLUTIONS OF THE EXERCISES CHAPTER 7

Solution 90

a) We just have to show that H’(R") is complete. Let (f))en be a Cauchy sequence
in H'(R"); it follows that {(1 + Iélz)"zj;}, is a Cauchy sequence in L2(R") which
is complete. Therefore (1 + |C|2)“'zjj' - g in LXR"); g € LA(R") c ¥'(R")
and (I + [&2) g € ¥'(R"). Then there exists £ € &' (R") such that
(1 + {&]?) ““g = [ (isomorphism of the Fourier transform in S'(R™). So
SeF' (R and (1 + |&]2)7 = ge LA(R"), ie. fe H(R") and (1 + Iélz)”zfj -
(I + €12 in LARY), ie f,— fin H(R").
If s, > s, we have

L+ <+ K7 vieR

so H" — H* with continuous injection.

b) Since o; + -+ + a, £ m we have, setting (I + &2 + -+ + £2) = 4 > I:

v
Am g Al.Alz...Aln
But 4 2 & loralli = 1,2, ..., nsot A" 2 & -+ 2 which prove the first
inequality.
By the binomial expansion

. m P P D PPy TP 2 5 ) ) B
(+E - +)7=F § 3 - S Crpgy g g2 e
P=0p =0p,=0 Pp-t=0
where C,, arcconstants. Sincep, + p, + -+ (p—p, — 0 — Pny) =
p < m we have:
m
(1 + (&))" < C[l + ,.Z. E L. éﬁ“m]; where Max C,, < C
=

which proves the second inequality.
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¢) Letue H™(R") then [4(&)f? < (1 + [E[2Y"#(&)?; s0 de LA(R") and u € L3(R").
Moreover by b) we have:

Y Jéf" S EEE)1PdE £ C J(l + [E1H)"a(&)1* dg
laj<m
Now F(D7u) = &7 -+ - £24 <o by the Parseval formula

» f ID*u(xP dx S Clull

lal<m

which proves that H"(R") < E and that |u{2 < C,|lull%.
In the same way, by the second inequality

1<lalsm

f(l + 1EA)TMaO1P S = C[llqu_z + Y ID’u(X)IZdX]

ie. E< H™(R") and ||ullZ < Clul2.

Solution 91

a) Let ue H*(R"). It is sufficient to prove that D®u, derivatives in the distributions
sense, are in Co(R") for |a} < k. This will be true if we prove that D*u, for |a| < k,
are the Fourier transform of functions in LY(R"). Now in %'(R") we have
P*u = F[F(D*u)]. Let us prove that F(D"u) € L'(R"). We have

|Z D )] = (€1l = [0+ €17 2+ (¢4l
and by the Holder inequality

2

1:2
[|«7<D«uxé>|df < (fmzu + |é[2)"dé> (I(] + Iéll)‘lﬁ(é)lzdé)

Now |¢*]2 = & - & < (1 + [€)2)* < (1 + |£]?)" il Ja] < k and we have
1
(14 Q&gpey

b) Il s > & + k we have H(Q) < C*(Q). Indced let xo € Q and ¥, be a
2 loc N

€ LURY) M 2As — k) > mic s = ; s

neighborhood of x,. Let o € (), ¢ = 1 on V' and u € H},(Q). Then pu e H'(R")
and by a) pu € CX(R"); since ¢ = 1 on ¥, ue C*(V, ) for all ¥, which proves that
u e CHQ). Tt follows that

N H.(Q) < C*(Q)

seR

e C(Q) and p € P(Q) then pu e AR < S (R") « H'(R") for all 5.
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Indeced if pu € ¥ (R"), (1 + |é|2)”2|(@)(é)j < C,forallpeNandall £ e R".

J(l + 1212)(pu)(&)|? d < J(l + IR I@NORA + 1217y 7 de

SO

foull? < C7 J(l +1£12) PdE < t oo

if2p — 5) > nieiflp > g + 5.
Therefore C*(Q) < () Hi\ ().

seR

Finally () Hi,.(Q) < () Hi(Q) and we have the inverse inclusion. Indeed if
seR

keN
ue () Hf_and s e R, let k, be an integer such that k, > s; by exercise 90 we have
keN

HE(Q) < HL.(Q) soue () Hi ()

seR

Solution 92
Let ¢ € 2(U) and K = supp ¢. Let us show first that D3(¢f) and Df(q)f) are in
L3R’ x RY). Indeed supp D*(¢f) < K, supp Di(¢f) = K and:

Dief) = Y. CIDY *¢DIf (akso for Di(gf))

E-4-4

SO

sup IDipHl < C Y Sl’l(plfol < C,

‘=

by the second hypothesis. Therefore D(pf) € L™ N & <= L*(R” x R?) (also for
Df’((af)). By Fourier transform we get for all « and §

Eof) e LR x WY, nfe) e LARY x RY)

Since |¢)' (resp. |7]’) are finite linear combinations of expressions such as &* (resp. ")
it follows that

3) lg'|'(q/z7) € L*(R" x RY and |n|’((;7) € L*(R” x R foralli jeN

Moreover

k k n
(412 + 12 = % CLOER + 11" = 3% % GCRIE™nl* ™
n-0

n=0 m=0
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From the inequality a - b < 1(a? + b?) we get

N VA o ,
@ (eI + ) < 5(2 Y Ceng T+ ¥y cerin )
n=0m=0 n=0 m=0

From (3) and (4) we deduce that (1 + [&]|2 + |r7|2)"’2(;f\) € LX(R" x RY), so

of € HY(®R" x RY) for all g € B(U), i.e. fe€ HE(U) for all k € N,

Now by exercise 91, () Hi (U) = C*(U); so fe C™(U). Q.E.D.
keN

Solution 93
a) If T has compact support, T is a C* function and

T() = (T, e ™)
Since T has finite order there exist a compact subset K of R" and C > 0 such that

1@ £ C Y, sup|D e ™9 < ¢, ¥ 1&7

<k K le| <k

Now

(2 =& g+ &+ -+ 8 sincewy + 0 o, <k

n

It follows that

2
ITQPr < C( ) Ié’l) SC Y IEN1 20U+ g2

la} <k lel <k

and

(A + 1EPYITEO1 £ 0+ 1812

The function (1 + J&E12) % isin LY(R") if —2(s + k) > n,ie. s < «g - k.

b) Since every distribution with compact support has a finite order it follows from
a) that for each T e £'(R") there exists s € R such that Te H'(R")so &' < U H(R").

seR

Solution 94

o 1+ &2
a) First of all c—~" 20 < 21 + |5]?).
1) lirst of a FEE = g < 21 + |5]?). Indecd

(I <HE = nl+ gl sol&)? <& —nl? + [n2 + 21 = nl- |9t < 2(1€ ~ 7* + {1]?)
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since 2ab < a? + b2. It follows that
2 —_ 2 + 2 2 + —_ 2 2
l+lélzsl+2lé 1 2lrllS 1+ 'IIZJr2 Il i
1+ £ =l 1 +1& = nl 1+ 1& - n 1L+ ]& -
<2+ 202 =201 + |5]%)

Which proves the inequality for s > 0.
For s < 0 the proof is the same.

b) Let w € (R") and u € H'(R") = L2(R"). Then wue LA(R") and yu = ¢ = i;
here y € ¥ so y € 1.', 1 € L.? so the convolution is well defined. Moreover

2
Nwullf = I (1 + [E12) gu(e)|2de = I (r+ Iélz)‘Hu?(n)ﬁ(é - 'I)dﬂ‘ d¢
28 rR"

lhwully = '[ 1+ lilz)\[IIW(V)Idﬂ][IIV‘/('I)I lag - 'I)lzdﬂ]di
o

(We have applied the Holder inequality to | ()| - la(ﬂ)l”2 E = ml)
So

Nwulle < v, 2° J:[(l +1E = YA+ 1912y L] - 1aE ~ n)|> dpde

Using the inequality proved in a) and the Fubini theorem which can be applied here
since all functions are positive. Then

lwullze < ¥ ll. (I(l + Iﬂl’)‘lV‘/(ﬂ)l)(I(l + & = al?)lag —- ﬂ)l’dé) dn

SO

Nyullfe < Mgl (I(l + I'llz)“W/('I)Id'I)' lullf  QED

Solution 95 .
a) Let us prove that —A + k? is a continuous operator from H***(R") to H*(R").

Letwe HARY) © /(R F(—Au + k*u) = (4n2|E)? + k?)i e F'(R") so

() (1 + EID)7IF(—Au + Ku)| = (1 + [E2)P@r2(E12 + k2)|d)
and

@ (1 + [E)@E17 + k) < Max (@2, k2)(1 + [¢])!
Since ue H'*I(R™), (1 + [&[2)"?* e LAR") so (1 + [E)2)PF(—Au + k*u)is in
L*(R"), i.c. —Au + k*ue H'(R"). Moreover by (1) and (2)

= Au + K2ullf < Clull:
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b) —A + k?is a bijective operator from H*"*(R") to H'(R").
1t is injective forue H* 2and —Au + k?u = 0 = (4n2|&|2 + k)i = 0in &'(R") but
(An)E]2 + k) # 0son = 0 and v — 0 since the Fourier transform is an
isomorphism in &(R").
It is surjective. Indeed let f e HY(R") then 0 = (r2|&]2 + k2) 'fe #(R"), ie.
(4m2|&)2 + k) = [. By inverse Fourier transform we get

(-A + k) Fr = f
Thenw = Fee H''YR") and (-A + k?)u = f. Indeed

L indl )
RE+ k)

+ 1¢1? It
slncc e | BN < Max preab el |

Therefore —A + k2 is a continuous bijective linear operator from H*"*(R") 1o
11'(R") which are Banach spaces. The continuity of its inverse follows then from
the Banach theorem. Thercfore —A + k2 is an isomorphism from H''*(R") to
HR").

(1 + [ ) = If1 < O+ &)1 ]

Solution 96
a) Using the Fourier transform we sce that (1) is equivalent to

1= (1 + 4n2|¢|2)"F

If N is big enough (4N > n) the function - ¥ lfl 3 is in L2(R").

Then we take F = F[(1 221812y M e LYR).

b) Let ¢ € 2(R") such that ¢(0) = 1. Then ¢ - & = d since {pd, > = (b, py) =
i )p(0) w() 4O,y for atl w o Z2(IR")
It follows from (1) that

=9 Y a,D*Fwhere Fe L3(R")

iz|< 2N

By the Leibniz Formula we can write

Y a,D'9F)= Y a, Y CID'oD* 'F

|al< 2N lal < 2N fsx
Y ap'tPy=9¢ Y aD'F+ Y a,¥ a,CiDD" 'F
x|« 2N |al 2N |2« 2N fca

fired
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So we have

p Y a,D'F =Y a,D'F)+ Y @:D*F whereple 2(R")

|xt- 2N laf« 2N lad 22N 1
Now

@ID*F = D*(plF) + ¥ CEDolD"'F

0<fica

SO

g DF= % DYeiF)+ ) @ID°F

Izl < 2N (LIRS fx| < 2N=-2

At each step the remaining term has a lower order so at the &™ step we shall have

3=y aD@F)+ Yy DR+ Y D@HF+- -+ Y etDF
Tab< 2N |2l <IN} |z| <2N-2 lal<2N -k
If we continue until k = 2N the last term will be cqual to 2" F, so setting a,¢ = ¢ we
get
W

d=3 ¥  D%¢iF)

k=0 [al<2N-k
and ¢ € Z(R") so ¢ Fe LAR") N &'
¢) From (2) and (3) we get
Dy = Durs = 3 (D« (D) = Y DDy fie 12,
ixlem la|<m
from which we conclude that for all y € Z(R"), wD’ue L2(R"). But by exercise 7, this
is equivalent to say that D" wu e L2(R") for all fic. we H} (R") for all k e N+~
By exercise 91 () Hi (R") = C”(R"). Q.E.D.

kel
Solution 97
a) We have |2 (6] = Cif &) 1 since {1 - I} s compact and  is a non
vanishing continuous function. Let &£ € R™\{0} then m € Sso
¢ .
) I N | e
il "¢l

(If ¢ = 0 the inequality is still true since both sides vanish).
Moreover

P& =P (&) + P, .(é) + o+ Po() where P(8) = Y al”

fal =k
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and

IPOI £ Y 1aiE™ £ Y lalEl™ = Cilel*

fal=k la)=k

Then

1PN 2 1Pn(@] = 1P (D] = - = [Po(O)] 2 CIEI™ — ceem + o+ 1

Butif || > R>1landk =0, ..., m — lwehavelél"§%|é|’"so

mC’ C
> v m __ T ms = m
PO 2 Clem = e 2 S1el
..mC_C . ..
er < 5 L. 1( R is big enough.
. _ 1= x o
b) Since y = 1 for |¢| < R, function TN defines a distribution. Moreover
L-x@) o 2 _ 2
PE) | T KIEIm T KR™

since |£| > R.

l —
So - p X e L*(R") ¢ ¥'(R"). Therefore we can find E € &'(R") such that

;o 1 —X(Q
S )

We deduce that
POE =1~y
and by inverse Fourier transform
PDE=6-w

where w = 7€ £(R") since y € 2(R") = L(R").
c) Let B, @ € N". The Fourier transform of D’x*E is

b e — s el = X
(DY E = (= Dy = K

It is easy to see that

[E"(=D)EL < ClgI™-1¢) ™ for {¢] > R
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(This cxpression vanishes for |£] < R since y = 1)

If m + |a| — |B] > n the function is in LY(R") for |&] > R.

|
[E|FTal-1A
Soifm + |a| > n + |8, &*(— D)*E € L'(R") and since
D’x*E = #(*(—D)*E)

we conclude that Dx*E e C%(R"). (Fourier transform of a function in LY(R™).)
So, for a given k£ we choose o such that || + m > n + k. Then we shall have
x*E e C*(R").

d) From question ¢) we deduce that Ee C*(R™\{0}). (Indeed we just have to take a
such that x* # 0if x # 0.)

Let g € 2(R") such that ¢ = | for ]x] < 1. Using the same method as in exercise 60 we
show that

P(E) = PE + y

where y € 2(R").
Since PE = 4 + w and ¢d = 4, we get

P(pE) =0 + pw + ¢
S0
u=u*d=u*PE)y — u*(pw) — u*y
u=PuxpE —ux*(pw) — uryeC”
since Pue C™, g € Z(R") and y € 2(R").

Solution 98

1°) a) Lel g(z) = ;f—(_“’—)i. Ifj4] > 1 we have |g(0)] = %0'—)' < | (0)].

By the Cauchy formula we have, setting D = {z e C: |z| = 1}
1 1(2) 1 (”
_ _ i
S0) = 5 LD——dZ _27:_[ fe")do

z 0

SO

1 2n Y
LA O} < EL 1 f(e”)1do
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If 0 < |A| < 1, let us consider the following function h € H:
W) = (1 = 1)g(2)
Then
h0) = g(®)
and

_ - 1z
) =

/@I =1f()] forjz| =1

Using the Cauchy formula we get

2

| ‘ | ,
g = |AO0)] < ij th(e”)do = #J |fe") do
n 2n §,

o

If 2 = 0 we apply the Cauchy formula to g. We get

! o 1
l#(0)] < 2;;[ lgte)1d0 = ﬁj

0 {

2n

A"yl do
)

. . 1 . .
Let us assume p 5 1 and let us consider the functions f{pz) and /;q( pz) which are in
H,. Then

T
ple0) < ﬂj [f(pe™lé0  QE.D.
0

b) Letus set for & + ine C”

@ §& + in) = J e ) dy = J e et p(x)d
R" Ixi<a
This formula makes sense for every ¢ + in € C" since we integrate a continuous
function on a compact set. If 7 = 0 we recover the Fourier transform of ¢. Finally we
£

can derive under the integral sign with respeet to ¢ and n and we get

-~ N\

- ‘3 14 > s .
(rr(r—+i,:-)¢(é+m) = J (—ix+ix)e e pgdy =0 j=1,...n
l”[ ivi<d

o,
Therefore ¢ is holomorphic in C". Moreover

[6(< + in)| < CMJ lp(x)|dx = Ce™

N<e

”n

for o> =3 xn, < x|~ |gl < a-inl.

i1
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T
c) We have P(D)p(¢) = (Pg)(&). By formula (2) we get

PE A ing(E A i) f ¢ e P(DYp(x) dx

o
= F [ P(D)y]

Therefore

FAPE + img& + i) = e P(D)p(x)
2°) a) We have P(&) = (&, — LN — AE€)) - (& — A.(&") since Pisa

polynomial in &, of order m with coefficients depending on & e R” .
It follows that

Pid) _ ¢ 1
P(S) ,; &~ AL

Therefore

PUE) o 2 PG
A Y ¥y

PO =
So we shall have
P +iny + 2,8 +in )&, +iny + 2,8 ) =

LR G i 5 )

= &y +in +z— L&+ i)

For every j, | < j < m, the functions.
@) = P& +in + 2,8+ i )@l +iny + 2,8+ i)
g(2) =z + & +ip = A+ i)
f)

g2 = 2.) are holomorphic functions in every set D, = {z e C: [z] < p}.
/

Applying, for every j, the estimate found in question 1°) a), in D, , we get

[PHE + ime(& i) =

R

-
0

where the constant C is independant of & and #. It follows from the Cauchy-Schwarz

P(;. +in, + %’c"’, &+ m')g;(:l + i, + gc’", &+ m/)ido

inequality that

TP + ipg(& + ipl? <

2

-
0

N

do

)
P(;, + i, + gc'", &+ 1,7’)(,3(51 + iny, + %c"', £+ m’)
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Integrating in & we get

f [PL(E + Mg + in)|*dS =
&

[ (.

In the integral with respect to ¢, in the right hand side, let us perform the change of

A

2
P<§,+i;7,+/;ei0, é’+i}7> <§,+m,+ Zel & +m>‘ dé)d(i

variable & = £, + gcos 0. We get

IIPS(C +img(e + imtdd =

Y 1
of |
0

SO

2
dédo

P(éi +iny +if sind, & +m'>¢<¢; iy +i8 sind. ¢’+m’)

sup JIPQ(C + im@(¢ + ip|*d¢ < C, sup JIP(C + g€ + im|*dg

Il <p2 nl<p

¢) By the same argument as used in question 2°) c) we prove that

su
‘q\££2 J‘ é

i.c. the case o] = 1. Taking

dé < C,sup JIP(é +img(¢ + i de

Int<p

oP
(?é—- instead of P we prove the inequality with || =

and f—; instead ofg and so on. We can take A4, = 2.

d) There exists &, ] = m such that (66) P = C* # 0. For this & we obtain using
290

sup J|¢(C +ip)*dd = G, » Sup J“’(C + im@(¢ + in)|*de
Inlspi2” nl<p

The function & ~ P& + ing(¢ + in) is in ¥ (R"). Using the Parscval formula, the
question 1°) ¢) and the following incquality.

[4E)N < sup |¢(¢ + imP

i< p2™

19
(3]
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we gel

A

”W”L-’qu") < C,.‘S}IP ||5<”'>P(D)¢”LJ(R") s Cpl'ep|XIP(D)¢"L’(Rn)
n<pe
3°) a) We have

IGE”™ P(D)p)| = 1/ o) < IS Nles el < S M - Clle”™ P(DYolL

using 2°) d) for the operator P(D).

b) Gis continuous on E considered as a subspace of L*(R"). By the Hahn—~Banach
theorem G can be extended to a continuous linear form on L2(R"). Therefore there
exists b e LY(R") such that G(u) = (u. h), Vu € L2, Then

A

G P(D)p) = (" (D), h)
c) Let p > 0 and fe L¥R"), from a) and b) we have
G P(D)p) = (p.[) = (" P(D)p, b} = (p, P(D)e”"'h) Voe9

So we have (P(D)c""h, g> = (f. @), Vo & Z(R"), where {, ) is the duality bracket
between 2 and 2’'. Therefore

P(D)e™h = f in 9'(R")

Let us set u = e”"h, thene ”“'u = h e L*(R") so in particular u € 2'(R").
4°) a) See exercise 96.

b) Since /' € L*R") there exists u € 2'(R") such that P(D)u = f, then
P(D)Q(DY)u = Q(D)P(D)u = Q(D)f = 6. Then we take E = Q(D)u € 2'(R").

c) Letge CS(R"): letus set u = E * ge C*(R"). Then

P(Dyu = (P(D)E)*g = 6*g = g

Solution 99
a) From the Leibniz formula we get

4 PD)p-v) = Y aDp-v)

lal<m

It

oPDW + ¥ a, ¥ (“)Dﬂq; - D*

lal<m f<a ﬂ
fi#0
Morcover
ol
PG = Y a, et
\1§m 1((1 - ﬂ)'

a=fi
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so the right hand side of (1) can be written

(5) PO} + Y Y a o D7 Iy

al
17 T i D
P R A A )
|zl2m
The incquality (1) follows from the fact that the sums appearing in (4) and (5) arc
cqual.
b) Since gou € &'(R") there oxists. by question b) of exercise 93, a real number ¢
such that gou € H'(R").
For f # 0 the operator PP(D)yis of order <m — 1. ie.
POE) = Y b,

[pl<m 1

VRS VI S VO R I = S UM R T b

iy am o1 vlem-1

since |7 < |€]7. Moreover [ < (1 + &2} " Horif|&] < 1, < and if
[&1 > 1 then €)% < {&|" 'since |y] < m — L. So
(6) IPM'D(é)l < (~(l + lélz)(m h2

It follows from (6)

2y (me (/VT\ Y] 2 — zy2y imo Iy pth /\; 24
(r+1&%) [PEDY X OPdE = | (1 + |E}?) [ PPUEY - pou(D)|? dE <

e
- (:Ju FIEE Y g2 dE = Cllgoulli,

which proves that P*(D)geu)ye 11" " "(R") if g # 0.
¢y it follows from (1)

; I .
(M) PDYp,9a) = @, P(DYgor) + ) B]Dﬂ(/’l'Pm(D)WoU)
f#0 i

B<m
Now P(D)u e H;, (w). Moreover since g, = 1 on the support of ¢, we have ¢,0, = ¢,
and @, P(D Yo} = ¢, P(DYu e IN(R").
From question b). P™(D)gow) € H' " "(R"). Since D'y, e #(R"). excrcise
94 shows that (D' )P (DXeow) € H' " "(R"). It follows from (7) that
P(DYp,ue H' " (R").
The condition (C) then implies that

Vi # 0 PP(DY @) e H "™ VTR
Indeed :

/\
f“ + 1Y PP @, u N dE =

f“ FEDR)Y T I PO - g @) dE = f F&)de + f F&)de
|it< R e R
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Now

f HOdE £ ('Rf |¢/|>(f)lldi < +o
<R INE .4

Indeed
(L g™ PPl £ (0 RN b R
and ¢,u being a distribution with compact support, ¢,u is a C” function so square

integrable on every compact.
Moreover by condition (C), (1 + |&])"PP ()2 < CIP&)]2, so

f H&de < J.(l FIERY ™ PR - 3 NdE = [ PN punllEy ety <0
)
So we have proved that P(D)g,u)e H' " "(R"yand PP(D)g,u)e H' " " (R™).
Let us assume that
P(DXg,u) e H' oo brG-Di(pmy and P(/”(D)((ﬂ,u) e H'"t PR
We have
(8) P(D)g, u) = P(DY)@;.104)
]!

S P Y 2
) /}
By the same argument as before ¢, P(D)o,u € H(R"). Using the induction
hypothesis the sum of the right hand side of (8) is in the space H' "~ "*"(R") (we
have also used exercise 94).
Therefore P(D)g,. w)e H' " "**(R"). Condition (C) implies, by the same method
as above, that:

D/’V:/,,I"/”(D)(w/n)

P””(D)((p,ﬂu) € HI"(M*I)*(/HM(Rn) Vﬂ # 0
which proves the next step of the induction. It follows that
) P‘/”(D)(qz\u)e How |)o;v,.(Rn) c H'(R")

Moreover since P(¢) is a polynomial there exists 8, |8| < m, such that P**(¢)is a non
zero constant. Then P#(D) = € - Identity. It follows from (9) that ¢ u € H (R")
where ¢, € Z{(w’). This implies that u € H]_(w). Indeed if ¢ € Z(w) then the support of
¢ is contained in w’ with @’ < w. So we use the method described above with ¢, = ¢,
so pu € H'(R").
d) From exercise 91
N Hilw) = C*(w)

seR
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Ifue 2'(Q) and Pue C*(w) then Pue H, (w) for all s R. We have proved in c) that
u e H; (w) for all s € R thus u € C*(w).

e) If Pis elliptic we have sc2n in exercise 97 that there exist R > 0 and C > 0 such
that

[P 2z Cigi" for I] =2 R

Moreover for f # 0, P is a polynomial of degree <m — 1. We have proved in
question b) that [P(&)] < C( + |€])" "7 for |&] > 1.
Now for [£] > 1

27" = (1 + g
Therefore if g = 1 for |£| big enough:

N O et S S Ul A el S S
'P(é)l = Ly (a+ |fl3)'"2 = Y

0 0? . .
Let P = 5 A Then P(&, ) = 4n%|E|? + 2in - n.
IPE I = 2r(n® + 4r2|E|H)' ~ |g] + [E]> for |n] + |£] big cnough,

(a ~ b means that % is bounded for big 7] + |¢&]).

Let us compute the P for [ < 2,8 # 0.

0
= B = 2 = 2
f=(0,0) P! aéP((f) 8n2¢

f= (0.1 PP = 2in
p=02.0 P"=38r% p=(0.2or(l,l) PP=0

Letustake g = 4. Then (1 + &2 + |n]2)'“*is cquivalent to (|&] + |n])"* for |&] + |n]
big enough. Then

PP L - (g + D" clelder + |71)"?

< < C’
(12 + Inj (12 + inl
Indced
[EIPAEE+ 17D < (€12 + InD)? for big (£, |n]
since
IS+ InlIE1? < [E1* + 218120l + Inl?
for [&] > 1.
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2

3
Let us consider P = :—t + i;—;. Then P&, n) = 2inp — 4in?&? and
( 0x

1P, m) = 2nln — 2md?|
Let us take § = (1, 0) the P = 2in

[PPOIA + (€12 + 11" _ (L + (€12 + gD
| P ln — 2=&?|
This expression is never bounded for i > 0 since it goes to infinity when |71, |£] are
-big and |y — 2n¢?]| tends to zero.

;2 02 . .
In the samc way if P = % T P(&, ) = 472(E2 — n?) and condition (C) is not
9 (o

satisfied if |£]. |n] are big but |£* — »?| tends to zero.

We showed in exercisc 51 that these operators are not hypocelliptic.

Solution 100

a) It is proved in cxercise 91 that for kg e N, ky > ;

H"(R") « CO(R")
with continuous injection. Thus:
for every compact subset K of  there exists C > 0 such that for every v € H*(R")

112
sup [e(x)] £ Cllellfogn = C( Z Haal’”flm";)
vi N

Iz <k
Indeed the semi norms which define the topology in C° are pg(u) = sup ju(x)|, so-
12 xeK
this incquality follows from #(Q) < H*(R") and (Z (l,2> <Sa,aeR’.
b) See solution of exercise 97 question a).
c) Since v € Z(Q2) we have v € F(R") and P(D)v € ¥ (R").

el ey = f(l + IS8 dg

f(l SO AE = J (1 + )™M dE + J (1 + (&7 de
[t Ry [NEER. 1)

where Ry > Max (1. R). For [¢] < R,, (1 + [£]?)” < (1 + R¥)" and for |£] > R,

(1 + 12y < 2m|é|2m; 50

IS1< R,

J(l +1EPY6Q)1dE = (1 + R%)'"J (12 dE + 2'"f 1S1718(&))2 d&

1> R,
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By question b), for {£] > F e have |P({)]* 2 C2)&)*";, moreover we know that
fell 32y = 15H}@, for v € LA(R") (Parseval formula). So

1
J-(l + 1712 dE = MillvllBwy ”-C‘gj-ll’(é)ﬁ(é)lzdi

P
Since P(D)(&) = P(&E)3(E), the Parseval formula implies that

ol mery < Cad P(D)Yelifgny + lef F2mm
which proves (3) since (¢* + hY'? < a + b

d) Firstof all g, is the convolution of x with the function J;(a(%) Sogp,, isC”.

We have 9
1
P () = J-)f())w< 5 )d»

If x ¢ w, then d(x,[:w) < ¢,; morcover in the above integral we must have

v — 1yl < ; since the support of ¢ is contained in {x: {x| < 1}. It follows that

£ >
dy.fw) e +3<e +3
so y(¥) = 0 for all y which proves that ¢, (x) = 0, so supp ¢, < @, .

Nowifxew,,

L

€ . .
we have d(x,ﬂw) >e+egand|x — p| < 5; so in the above iategral
we have

£
> e t

d(y,l:w) > d(x,[:w) —d(x,y) > ¢+ & — 3
so x(y) = 1; and

1 —
Pep, (X) = (;jw(x 5 })dy = j-w(t)dr =1
a* =y 0° 1
Poe, = X * |50

11 X -
0%, (x) = ﬁgmjx()')(ﬁ’w)('( 5 y>d}'

(M)(" = y)‘dy -

Finally

| =

thus

‘dr

,, I
18%0,., () = 3"*—"'_’-
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T < 1 Since 8 = %weget

setting 5T
<j-|((qz¢)([)‘d[>3lﬂg' 2l _ CIE*IZT

sup |07, ()] <
a) Let w e C” (w); the function ¢, - w belongs to Z(w), and since ¢, is equal to

one on w,,, we have for every a

(8) ”Dz“'”l.'u,,,.“) < 1D%,..,wll 12

¢, - w. Then

Let us apply incquality (3) to v =
= CS{“P(D)(pc.c\w"L’(w) + ”%.c.W”LZ(w)}

(9) Z " Dl(ﬂc.c. W” Lw)

lzl<m
Moreover

P(D)¢,, w) = ¥ a,(Z)D“’”(ag_h - D*w + g, P(D)w

fzj<m f<a
iBl<m

SO
"P(’))‘/’/;_L,“'”L!u,,) = z z b;_ﬂ”(Dl ﬂ(”u,)Dﬂ' “'“L:(w) + ”%,g, P(D)W”U(m)

lxj<m f<a
Ipl<m

But, from d)
sup 1D7p,.,| < C,e ™

Yew,,

SO
(10 WPDYw s £ X0 T Cape™ D i, +

lal<m [fl<m
f<a

+ Coll P(D)w| Liw,)

From inequalities (8), (9). (10) we get

() 10"l < a{uP(D)wlm,,,, +

——

+ z Z C,ﬂelmflﬂ‘”DﬂW"L*(n)nl)+ ”W"quh)

laf<m |Bl<m
B<a

If |af < m, the inequality (5) is obvious for w,, . being included in w, we have

5‘1‘|lD’wllL1(mr_uly < Ell‘"D!W”L!(wnl)
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For |a] = m, let us multiply both sides of (11) by £"”. We get

EWHDL’W”LZW = C, {EMHP(D)W”LZ(«,:,I)

!’F,)
+ Z Z Cuycm40(“”””Dﬂ“’”:ﬁ(m,) + EI"“W“LZ(«“,}
a |fi<m ! '

Since 0 < ¢ < 1 we have ¢” < ] thus

i m | .
"Dl s, < Cs {e IPDWl s, + 3 s“'uD’meﬁ»}

Iyl<m

which proves (5). .
f) Since Pu is analytic on @& and @ < @, there exists 4 > 0 such that for every j,

sup| D™ Pu| < sup |[D™Pu| < A"t < A7 < €Y

W @
So we vgcl
dHD™ Pully g,y = (j d.\'> celesuplDe Pl < M) < M
since je < L.

g) Since u € C ™ (w), the inequality (6), is true for if [y| < m

"D ull 1oy S IID7ulls,, S sup sup ID*u(x)| = C,

wherc w, © 0, € W, @, < o.

Let us assume that there exists B such that (6), is truc and let us prove (6),,,

for |y] < m + j + 1. Let us note that (6); implies (6),,, when |y| < m + j for

Dl i < 170l - T remains to prove (6), for |y = m + f. Letus take y
(o xoy with o] = o] = f Letus apply (S) withey = joow = D*wand x| m

"3‘:‘”1); “”[‘1(111(/0 T CmH"DIDI”MHL'(«;(H )

A

Cs’{8'"||P(D)Dﬂnu||,z(,,/,; + Y "D ull,,,

1< m

IIA

C{S’IIP(D)D"’ulll,z(,,),,) + ) 6""”IlD”D’"MHL:((,,,,}
1Bl<m
Now P(D)D*u = D™ P(D)u and Pu is analytic in &. By ) we can find M > 0 such
that for every ¢ and every j such that je < 1
SIPDID™ull 5, < M
Moreover since [ + ao| = [B] + o] = j + |B] < m + j, the induction hypothesis
gives

o ’”DﬁD”“qu."(l"v’ < BA+H!
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SO
8:;\”071‘” < CM]” + C Z BVIH/H

LYoy 1)) = iZm
Let us increase B in order that B > 1; then
DUl e, S cM 4 C( Y 1)8"'*’ for|fl <m—1
(fl<m
For the induction to be satisfied we must have
13 5 I+ _ m 1
8' ‘HD “"Llw.,.m < BI +1 — B +i+
It is enough to take

~ el 4+
cM' < 1B

C( Z I>Bm+/' < %Bnmﬁl or C( Z 1> < %B
<m i <m

which is always possible. So (6),, is satisfied.

h) Ifwesete = 2,/ = |y], (6); gives

J
Il
a . .
<B‘I> ”D7u”L1(m“) < B!

SO

. B\ .
12y 1%l 1, S B(»{;) )" Ly

i) Let K be a compact subset of @ and @ > 0 such that K < w; from (2) applicd to

a*
v Dowand Qo we pet

sup [D7u()| < €Y [1D*D7ull s,
P’ y

lxl <k,
From (12) we have
sup [Diu(x)| < ¢ Y LV 4 a)
e

|2} s ko

IIA

CfL\r\ Z lel*l . 2““”1'(1!})!

laj<k,

since (@ + p)! < 2" Walyl Letusset M = Y L™*"'2'%a we get
et < ko

sup [D7u(x)| € €' M- L)yl < 4741y
K

where 4 = Max (C’ - M, 2L). Therefore u is analytic in w.
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Solution 101
1°) Obviously we have (#+) = (). Moreover since p,, is homogeneous of degree min

)
& we have Z p,,, x, &) = mp,(x, &) thusifp, (x, &) # O there exists je {1, 2, n}
such that 6!;,,, M x, & # 0. This proves that (*) = (**).

2°) Ifsupp ¢ < {x:)x, — a,| < R} we write
va
o) = I ?‘t”,(,_ xydr.
Ju g 0N
The Cauchy-Schwarz inequality implics

Y 12 A
lp(v)] < (I dr) (I i
a4, R g [C4

thus lo(x)* £ (v — a + R)I
R

12
dt)

dp  A|?
h’_;;(’» X’)

Since supp ¢ < {x:|x, — a;| < R}

<R

f ‘. ()} dy dx, :f f ()2 dy'dx,

wJpt ! a-R JR
a+R

Sf (.\',*a1+R)ff
a, R wJR !

cp

~

cQ

7([ xX’) dx'dt

ax,

n

Pl :::J ry
" 1

In the general case supp ¢ < {|x —.a| < Rj,sosupp ¢ < {x:|x; — a,| < Rj.
T.et us apply the above incquality to D7¢ with fx] < m — 1. We get

Cop
oy

2R

-
Ay

Y D%l < 2R ==-D7¢p
Drlem- em -1 1O A
< ZRZ{ >0l Y I|D’wlli:}
T Ixl < - |

2

W )
thus llellZ_, = 1738 Y IID%ell} QED

\z|=m

3°) We shall use the Leibniz formula

m m

r) = Z D’ uPiy'v.
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Then P, (xu) = x,Pu + } y (j_,LE’"(x. D)u. This proves that
i=1 O

=i

P = i[P,, x] = i[P,. x, — a]. Moreover

1PLolZ. = (P, Po)
= (P, iP,(x, — a)p) — (PV¢. ix; — a)P,0)

0] @
Since supp ¢ < B{a, R) we have:

R
o1 £ RIP ol Pl = i(lle.f’wllis + 1 Papli)

Moreover
® = (IP% PPN, iCx, = @) + (P iP*, x, = alg) + (Pro.itx, = a)Pilp).

o ton

Q@ @ ®
Since [P,,. P!/ is of order 2m — 2 we have:
@1 S WP Pl o lite, = @oll,,
< Cllell,, (e, = ol -
Now D’(x,  ap ~ (x, - @)D7p + R,p where R, is of order [a] — 1. thus

hevawlh, = 2 My, oD%l b Cliel, s

a0

Then

Iy, = aell,, + £ Rllell, + + Cllell, -

From the inequality in question 2%) we get

||(,\, = agll, S Rllell,,  t CRell, + = (‘I(R)”(ﬂ”m 1

It follows that |®] < C,(Rl¢llZ . Now
@] = CIhPEoll - lloll, .. < CRIPLell el -
In the same way

@1 S 1Pl - Iy, — aPlell: £ RUPTeN - ol
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From these incqualities we get

R
WPellz = 5 UPLoE + IPTel2) + CURUPLelE + el ).

. . R . .
Taking R small enough to absorb the expression '2‘” P12, of the right hand side by
the left hand side, we get, since P — P, and P* — P} have orders at most m — 1

1PDpl12. € C(RY1IPoliZ. + |P*ellZ + lloll2 |

where tim C(R) = 0.

& -0
4%y First of all

n

)

it

/PPN &
A (”‘s)

({S

= Cole ",

Indecd denoting by f{(¢&) the left hande side we have by hypothesis /(&) > 0 V¥ # 0
thus we can find a positive constant C, such that f(¢) = C, for || = 1. By
homogeneity in & we get /(&) = Co|&]™" ™" for & e R"™\0.

Moreover Z 1E%12 < C(1 + (&1 D). Indeed if |£] < 1 this sum is bounded by

laf<m - 1
a constant and if |£] = 1 we have &% < [&]'" < [&™ "
1t follows that

RN (S <‘(l Y, ¢>|-‘).
lx|<m | i

Multiplying by |¢]* and integrating over IR we get

lolls. ) < (Z P (@, Dipliz: + Il(ﬂH%)-
From question 2°) we have “(17”20 < C(R)|lell2 ., if m = 2 so we can absorb ||¢||3 by
ol | = <'<Z WP o Dellz 3 1P D) = P mwui:)
i1 11

If Q(x, D) is a differential operator of order m — 1 with C* coefficients and if
supp ¢ < B(a, R) we have [|Q(x. D)p — Qa. D)ol = CR?|lgl|Z_,. It follows thatif
R is small enough

llollz < C Y 1P (x, Dyell?
j=1
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511 P =% a,D*wchave P* = Y D?q, = P, + R,_,.If P, has real
l2lsm 2] <m

coefficients P* — P is of order m — 1 so
[P} < CUliP*ell, + llolll | Vo e Cq (B(a, R)
It follows from questions 3°) and 4°) that

llelZ < CliP*ell}: Ve e Cg(Bla, R))

6°) Let fe Cy (). E={y = P*¢.pe Cq (Bla, R)} < L*(B(a, R)and : E - C
given by I(P*p) = (f. ¢),.. We have

Pl = W o o ol S CUA gl Pl

which proves that / is a continuous antilinear form on E equipped with the topology
induced by 2. Let E be the completion of £: it is a Hilbert subspace of L2. By the
Hahn-Banach theorem / can be extended to E as a continuous antilinear form.
Therefore there cxists u € £ such that /(w) = (u, v),. Vwye Elfy = P*pe E we get

) = IP*) = (/L @) = (o) = (u, P*9) = (Pu, 9)

which proves that Pu = fin &' (B(a, R)).

7°) Every elliptic operator is of principal type since the set p,, = 0 is then empty.
Nz "

07 . .
The wave operator P = é;i - ZI (;‘;} is of principal type. Indeed
! i
-2
2,
grad p(x, &) = #0 & #0.
2,

Solution 102
a) By hypothesis locally Dae = Y DIf f, 6 CU % Q). Let g, e C'(I x Q)

Il p
be such that D,g, = /, then Dl<u -y nga) = 0thus v = Y Dlg, +
lalgp laigp
h(x) e C°(I, 2'(Y)).
b) Let us assume by induction that u € C*(I. 2'()), k > 1. Then

Y a,D/Diue C''(I &'()) and since Pu = 0 we have D2u e C*" (I, 2'())
ryss)
j<2

thus w e C** (L /(D).
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¢) We can reason locally, thus assume thatu = Y, D/D%u, whereu, e C°(I x Q).
jo

la|<p

Case I'v = 0ie. ue C°(, 2'(Q)). since Pu = 0 we get:

D,(D,u + ¥ a,Dt+ bu) e Co(I, 2'(Q)).

{aj=1

By question a) we deduce that Du + Y, a,Diu + bue C°(, 2'(Q)) thus
lal=1

Due CIL, 2'Q)ie ue C'(U, 2'(€).

Case H:v > tandu = Y Y DIDlu,, u, € C°U, 2'(Q)

a j€v

Diu=73% % DiD%v;, = Y. Divg, + Y DiDl,.

@ y<vt ! 1gjgrt!

Let w, € C'(I, 2'(Q)) be such that D,w, = v, then

D,(D/u -yy D,’Df’w,,) =90

P
)
FARE Z Z DIDIw, = wix) iec.
x g
Du =373 DD, + Y Diw, wye COQ)
x iy
fterating this argument we get

n,(u - vy D;D:/‘,,) 0

jsr-t a

thus

u Y% DD, g, e CHL ).

AN

Distribution u has the same form as in the beginning of case [T but with v — | instcad
of v. Therefore after a finite number of steps we shall have v = 0 but then we shall be
in case [ where we concluded that u e C'(J, 2'(Q)).
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Solution 103
1) a) If we set uy(1, x) = w(x) * G(t, x), where = is the convolution in x, we shall

have Oug = w+ G =0, ul,., = w*Gl,- 0,?—1—‘—9 =w~§ =w*d=y.
a' =0 at =0
v ow 0% r 0%
00 T G| TP e T 3 08

b) Wehave (w = ¢,0v
=Yy o z(vl, o) = 0. With the function u, defined in question a) let us set

a

i=1
+ w, then u, is clearly a solution of (2).

Uy, = u

]
¢) Letu, = j v(x, t — 1, 1)d7t then
0
Ju, " ov '
- = 0,0 + —(x, t dr = —(x,
5 v(x, 0,0 J‘n a'(x 7, 1)dt .3 (x 7, 1)dt
since v|,., = 0. Moreover
u,  Ov g
S 7;( 0,1 + L };’—Z(.r,l 7, 1)dt
and
02 )
rﬂy; = j (?vvlv(\' t — 1, 1)dt
R o
thus
Du, = fix, 1) + j Ov(x, 1t — 1, 1)dt = f(x, 1)
0
du, . .
= (), the function ¥ = u, + u; + u, is a solution to problem

Since uy|,_o = ==
=0 (-;’ o

0 with the initial conditions

(an),
20
ion .0 477 |E)2G =

) a) G &) satisfies the cquation
(«
sin 2mt|¢&|

¢ that G(l, é) =
1. We deduce ha

Gli.o = 0, |,
b) The distribution T = &(|x| — a) has a compact support and is invariant by

rotation.
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By exercise 70 its Fourier transform is a C* function invariant by rotation, in
particular T, &2, &) = 710, 0, |&£]) and we can write

(&) = (3(|x] — a). ¢ WDy = (§(|x| ~ a). e WDy J ¢ ullgy
(R

We use the polar coordinates

i

x; = asinfcos g
X, = asinfsing
v, = acos

and dx = o? sin ¢d0 thus

N

() = a? J J ¢ mee™gin 0d0de
0

0

T() = 2na? J ¢ raeestlielgin @do.
]

Let us set u = cos 0, we gel

1 B ’
N 5 . ¢ 2imanl | |
Ty = 2ma? ¢ Ml = dpg? e
. = 2inal&} |

. ¢ Wil o glimail] sin 2nalé|
TAE) = DRU? oo e 2 2 i 2
S T U
We deduce from question a)
I 4 'sin 2nall| ~
——=T(&) = — === = Gla, &
4na © 2n|&| (a. )
. Lo . 1
By inverse Fourier transform we get G(r, x) = j—;xs(l = |xp.
4

¢) We have

i

u + v + of1 (v)d
= g bl Adie
! Ho Ho ot\4nt | “:’(p_\) +

1
ug = Gy = (G(t,x =y w(y)) = TJ w3 dy

Then

228



CHAPTER 7, SOLUTION 103-104

Finally

’ I .
U, = j) li;l(f = :[3 J‘h . :‘f(.l. T)d_l dr
thercfore

1 c [ 1
u(x, 1) = 477J w()dy + i(ﬁ‘[ w(,l')d,1'>
(AN Ivevl—y

‘ I )
+ L P ,[\ ‘;:.,W,f(}‘ )drdr

Solution 104

. . . Cu A
a) The claimed result asserts that if u], ,and vanish in the ball {x: fx - x,
! -0

< 1y}, then w vanishes in the cone ¢ + |x — x| < 1,.

b) qf(l) = lim —l/—<J‘ [Vu|?(t + h, x)dx — J |V} 2 (1, x)d.\')
B, B,

dr ho 20
But B, = B,,, v C,, where

Co v, (1t )=y - vyl 1, 1

dFE ] 1 . , 5
o= lim UVl + hox)y = |Vul?(r, x)dx — I {Vu(r, )| dx
ds aoo . 2 21 /

L d
The first integral tends. by the Lebesgue theorem, to / = % J E;(IVulz)dx.
H/

1 Aucu ofu u
1:5 2:_‘543-*2?‘:.'\. dx.
=1 cr et Ty Xy expet

To compute the limit of the sccond integral we use the polar coordinates, i.c. we sct

0ol

v Xy #ore, e S

I I "
J, = 5 J( |Vu(t, x)|?dx = h JS ]J IVu(t, x, + ro)|2r" 'drdw

to (1M

Now

o

limj |Vu(r, xo + ro)12r" Ndr = |Vu(r, xo + (1o = D) (1t — O

W etin
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SO

hmJ, =

|
P EJ‘ I|Vu|2(l‘. Xo t (1, — D)2ty ~ 0y 'de
i o

k-0

. i
limJ, = 3 j [Vie|2(1, x)do
I iy o °

and {|x — x,| = {, — t} = éB,, this proves the result.
A2 "oo32
. fu i

¢) Since =

orl N2

dF " o CPu TR L[

v Y N P TN [ A, [Vu|? da
df i1 Jn, [ A - Cx, o ox el = S

! ¢ Culu
=y j = (N ;7_—> dv = j [Vul? de
1 J s, CX A\ CICY; on,

and using the divergence thcorem we get:

dE Jucu 1 ,
Fri j (5;5; 51Vl )d“

1D =

d) We have

Cucu < 1| [ du’ N i Cu \?
~ oA = 3 ~ Vg
crer ARRE] ~ Iex
i1 )
P 2 " 0 /A N2
oucu 1| /du ((/u 2 i
L= . 1 e N < S|Vul?
atce 2[(1‘!) ,ZI ! /Zl X, - 2' '

. . . . dE
since v has norm LIt follows from the preceding question that d < 0.
t

1 . 0 ¢ ¢ -
But £(0) = 5 |Vul?do = 0 since ‘,—“ and :_u = ﬂi»(u|,,(,) vanish in B,.
= Jn, | S P CXilya AT
We conclude that (1) < 0so E(f) = 0.0 < ¢ £ 14, since obviously £(1) = 0. This
implies that |Vi(x. ] = 0in @ = | ) B, thus uis constant in Q and since u = 0

0<rsi,

in B, it follows that u = 0 in Q.
1) Let us assume (x,. f,) € [. Then onc can find ¢ > 0 such that the set
. . u .
By = tni|v = x| £ 1 &) does not interseet Fy. Then wf, , = y = 01in

[Py

B,. By the result proved above we have v = 0in Q = {(x, ): 0 < 1 < £, t+ ¢
|x = Xo| < to + & — . In particular . = 0 in a ncighborhood of (x,. 75) therefore

(Xa, 1p) ¢ Supp u.
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Solution 105

a) k being semi-regular in y, the same is true for p(x — p)k and the expression
which gives v is well defined since P(y. D, )e(»)u(3)] € £'(Q,). Now ¢ = 1 on V, thus
the Leibniz formula shows that P(pu) = ¢Puin V. Assume {y € Q: |y — xo| < d} <
V.. On the support of p(x — y) we have|x — v| < & H|x — xo] < aandilgand a are
small, weshall have [y — x| < |y — x| + |v — x| < ¢ + a < dsoye V,. Therelore
if
X = ol < 2 e(v) 2 ply — Pk () Py, D)u(r)). Since Pue C” and pk is semi-
regular in v then v e C7 for|x — xof < 2.

b) We have
e(x) = P D)p(x — k] o()u(y)

Since kts C7 for x # yand p = 1 for x = y the Leibniz formula shows that
wily, 1) = Py, DIIp(x — yk] — plx — ¥)P(y, D)k is a C* flunction of
(x, ¥). Now, k being a parametrix of 'P and since p(0) = 1 we have w,(x, y) =
plx = )Py, D))k — d(x — y) e CT(Q x Q). Therclore

v(x) = 00y = x) o(Mu(r)y + {wilx, y) + owalx, p), e()u()d
thus
o(x) = p(u(x) = Gy, ) + w3, e(nu(y) > e C7 ()

From question @) we deduce that g e C7 near vy and sinceg = 1in b, uis C" ina
neighborhood of v, thus P is hypoclliptic.

Solution 106

a) Let x ¢ sing supp (v) which means that  is C” near x. Il ¢ € C” has a compact
support contained in a small neighborhood of x then gu € C5(R") « £ (R") thus
PuE) = 0(1&] V) VN, VE e R, |& - +oo s0 (x, &) ¢ ss(uy VE ie. x ¢ mss(u).
This proves that mss(u) < sing supp («). Conversely let x ¢ nss(u) i.c. V& e R,
(v. & ¢ ss() then: 3V A, such that g = 0] M) YN, VEe T [&] » w
and Vg € Cy (V). The sphere in RY is compact thus there exists a finite numnber

%

of & &, ..., & such that |J I, = R} then Vg € CJ(V,), pu(¢) = 0(1E1 ™)
i ‘

VN Vel thusVce R".1&] —» + o which proves that gu € (R”") thus we C” near

N Le. x ¢ sing supp (u).
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b) We show first that {4 <} ss(x).

1°) Let (x4, x9, &, £,) be such that x0 # 0. Then y is C' ™ near x° thus (x, &) ¢ ss(u)
for all £ e RM0.

2%y Let (xq. x2, &5, €,°) be such that &G # 0. Let us set é—' 2 and consider the
0

following conic neighborhood of &°:

= r
.- i 5 So ol
N A (N
, ,
Ireéet, . é - »'ﬁﬂ- < a thus
1<) 1ol
(&0l — CRlEIT < abs] - 10l
SO
PO 1aal > 11861 a“Hknl (ot oD
therefore

TR ('“'w)lasaléi Veer,

1]
Moreover
MRS J Y Pl d
J 2inv, &, J ‘é,‘j\ o mv (/)(X)dX’dX,,.
i -1) N o, 2imvE : i 1
Since we have |&] e ¢ = a )wA\ e ~™' . integrating by parts in the x' integral
RS}
we get
11 @) = (J J e AN p) ) dy dy,
0 Rn t
thus

lex(&)) £ Cyule
it follows from (1) that

GREN < CRel Y vEeT,
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Let us prove now the converse, i.c.
{('. 0.0, 8 < ss(u).
w(x)dx' = |
1

Let p(x'. x,) = ¢o(x,)w(x’) where y € Cy, J
0

1o <

.. |
and poe O [ 0 i) s 2

- 3 ) . ' / (" Qinx, . & ’
0.8, = J W) J sra e ey, dy, dx

L - Y. |
L0 = [ W) [ e D0 dx, dy
gt ! o R

tss [ w(x)e gy, dy
[

2n not

i f t . 5] i
- ¢ e l//(.\"){ V,VQ(,\',,)dA\*,,dA\" - w(x)dy'.
st Jo 27‘[ o

L0, &) = o i
&ox(0. <) 55 ox, .

. . NG . . . .
Since the support of w(x) qu docs not contain the points (x’, 0), using the same
[ ‘N

argument as in the first part (i.e. multiplication by & and integration by parts)
we see that the first integral in the right hand side is rapidly decreasing in &, when | &, |

— + x thercfore
. —=i ;
L@0.&,) = 5+ 00l YN

which proves that gy is not rapidly decreasing.

Solution 107
a) On the support of p we have 1 > 1 thus_/'(q/\/;) is C” in (4, 7). Moreover

gel’ therefore ge LR~ C*(R).
b) Let I be a conic nichgborhood of &, = (n,. 75) with 7, # 0. We have

Se}.

= Jremmo: S — So
r {SGR\O"ICI %l
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CHAPTER 7. SOLUTION 107

7,]¢|
Then 220 < elE] so
&l |
[7ol

1 €€ +

Izl < &l¢} iz |Ié| Ifl I4F
Since n, # 0wehavelé i = 1-qwith0 < a < 1. Ifgisso small that —a+& = i<l

0
we have (1 — 0)|t] < 8|yl so 1] < TT(ET;"" = Clnl.

Moreover

Mgl < Y Cylnllel!
1+k=N

.
f(\ﬁ)‘lp(r)l
Nk — (1 ' Tyt
It (\7;>(v_)

and since in I';, we have [1| < Cln|, we have \/; <C Ml . It follows that
T
2+ 2
M@l < ¥ € ("") f(i) (1] < Cy
IR AWC

since fe S(R" ") and |p| < 1

Near the points (0, 1) where 7, < 0 we have © < 0. Indeed

< «l¢|

implies

LIS ﬁlél +eld] = (l Z| + F)Iél <0

if = is small enough. But p(r) = 0if 7 < 0 thus g vanishesin T, .

) Dj[f(l’ﬁﬂ =1 Llf{(D"f)(%) thus by the Leibniz formula
T
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CHAPTER 7, SOLUTION 107

1= D D:[f(%)mﬂ:l
V T

=l _ .
= Y Gkl T k‘Dfl[(Duf)< 7 )]Dtxp(t)-
ky+kyHky=k . \/; 4

We show easily, by induction on k, that

It follows that

@l L

’(2 - —
I < Z Z Z akk,ﬂ./ﬁ"’" 1 ‘ '

Ky kot hy=k =1 1BI=1

D“”f( )'ID‘ p(o).

Since supp p’ = {1 S 1t £ 2} we have [DYp(n)] = Ct M|D%p(1)] £ Ck‘t”“.
Morcover 7 2||'D**ff (””F> Cop- since f€ S(R"™'). Then
3 e k- _lal
I < Z Z Cik,ap? 3 kokoh < Mt 2 *

kytkythy=k =1 )\H=1
1 If 7] < |tl then 1 + [¢] € Crthus I < C,(1 + 1.f|)‘7’*
27) If |1] £ Inithen 1 + |{] £ Clnl.
The expression which bounds 7 is a sum of terms of the form 7 “In

)

Nf2 N ) (—v N
-~-T'r'é<l"lrlf> NS =R <o+ 1Ep T YN 20
[n} JT :

The later is bounded by

d) 1Z(x*D"w)| = | DXl < ¥ C,IDIE" - DE gl

rea

- - - N
Using the previous question we have | D; Yg| £ C(1 + [&]) and D}¢P = ¢ 0777
ify < fand DIE" = 0ify > B It follows that

”) (z/lg” <C Z (] + |é|)}ﬁ!'lﬂ(l + Ié') Hiel- 15D < C'(l + M')'NGI*IM.
yox
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CHAPTER 7, SOLUTION 107
e _ , . . .
Therefore 1f% — |8l > n, F(x*D*u) € L\(R") thus x*D*u is a continuous function

on R" and D*u e CO(R™\0) for all 8. Q.E.D.

e) y*h() = '[h(C)W(C-C)dC

(&% *« h) = Iél"’f

selg,

O Jw(€ — OldL + ICI“I‘J. WO (&~ OIdd.
el

0] @

® = C{ J ISR W€ — OIdE + J 1& = SIPHONwE — O1dE.
cele, el

a) b)
Term a) is bounded for 4 is rapidly decreasing in 1, . The same is true for b) since

y is in S(R""'). Concerning expression @ if ¢ e I’;ﬂ « < T and { ¢ T, we have
[€ — ] 2 c|&]. Indeed we have

£ _ % . & _ <o
R I TR N
| I L
thus 121 e E: &l )
Then
3¢ < ]c - Iéli% - ‘c — cg-lgl"f' <IE =0+ 11E] - I8 < 21 - 2.

It follows that
@ = CJ O 1S = {Mw@ - Dlde £ ¢
W,

for wis in S(R" '),

We deduce that setting ¢ = , i = h, puis rapidly decreasing in every cone where 4 is
rapidly decreasing.

f) It follows from questions b), d), €) that the points (x, #, ) such that x # 0 or
In]l # 0 or v < 0 are not in the singular spectrum of u thus

ssu) < {x,n,1):x=0,7=0,71> 0}
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CHAPTER 7. SOLUTION 107-108

g) Let p e C5 (R"), ¢ = 1 near the origin. We have

G0, 0, 1) = ”fﬁ(m t)f<%)p(l - 7)dydr.

Now p(A — 1) = 0if 4 — 7 < 1 thus

Pu(0, 0, 2) = f J. ¢(n, T)f< )/)(4 — 1)dpdr.
' J -

Let us set f;(q, 1) = /(*% )p(i — 0, Doy
We have

o |/, D] < Mgy, 1) L'

o fi(n. 1) - f(0)p(n, 1), A — +c0.

Thus ¢1i(0, 0, 2) - f(0) | ¢(&)d¢ # 0if f(0) # 0 and J.(ﬁ(gy) d& # 0 which proves

that @u(0, 0, 4) is not rapidly decreasing for 4 — + % thus (0, 0. 4) € ss(w) for
A >0

Solution 108

a) Let us show that (xo, &) ¢ ss(u) if &, < 0. Let ¥, be a neighborhood of x, and
peCo(V,).

Since u = 7 "R} where X, is the characteristic function of R, we have
(a+ &y
) = ¢« i) - Jm« (")(l( +_,,:I))': dy

IJ' L N A (s
o U= J (T +E— (P

thus [pi(¢)| < I [@(D)d{. Since p € FS(R) we get

1] S Cu(l + 3701
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CHAPTER 7, SOLUTION 108

1
If & < 0, since { < & in the integral, we have {* > 2 and ——— < +—. Then

€
lou(&)] < Cy(1 + éz)"NJ‘ -l—i% < N1+ ) VNeN.

Let us prove that (xo, &) ¢ ss(u) if xo # 0. Indeed

+
B N, . dE
- i A O g 46
x'u im) L (06)6 (d + &)

Integrating by parts we get

. by oo 1 ) ) a k-1 . 1 +x
e _ R k B 2inx. & 2 2inx
xXu~= (2im) (J‘(‘ k(}é) € g(é)dé + [(66) € a -+ éz)z:L )
+ F] k-t
xu = —(Zin)"k(f <&> ™ g(&)dE — (im)* ' xt ’)

C
where [g(O) < ¥ Eg .

Tterating k times this integration we see that, modulo a C™ function, we have

+x

A A 1
N e O 1
x*u = ¢, f“ € (ﬁi) i :Z)zdﬁ.

A\ s
a¢ see that the function x*u belongs to C***(R)

(
Since (l + By S R
thus u € ('“’([R\O) for all k € N. Therefore u € C”"(R\0).

Let us show now that (0, &,) € ss(u) if £, > 0.

Let ¥, be a neighborhood of the origin, w € Cg ' (¥,) such that ¢(0) = 1and y > 0.
Let us set ¢ = (1 — A)?w. By the previous computation and from question a) of

cxcercise 94

4 g
P HOdC HO AL
pae) = f a+1e- g ZJ T oy + oy

ng a+ 8y v

Lavop ar et

2
()
o0



CHAPTER 7. SOLUTION 108-109

But lim f w()d¢ = fﬁ({)d{ = y(0) = 1 thus for positive and large  we have

Eatx

x

(I + &)%) > 5 QED

b) If we differentiate v with respect to ¢ or x then a £ appears in the numerator

11

c . .
a ay < a+ éz)mltfollowsthalveC

inside the integral. Sincee ™ < 1 and

and it is easy to see that Ly = 0.

¢) Since the singular spectrum of v(x, 0) = u(x) contains points of the form (0, &)
it follows clearly that L is not hypoelliptic.

Solution 109
dudy

d 0
a) 3, [y, 0] = ((m; + ;},‘)(ym. )
0 0
= (7{ + a(u)ai,‘)u(:), n=0

by (3) and (1). Thus u(}(1), 1) = u(¥(0), 0) = ue(x,). It then follows from (3) that

d

= auolx). 20) = xo thus y(1) = Xo + talue(xo))

b) The map F,: R - R is a ' diffcomorphism if and only if a%—F, # 0 on R.
Xo

But a%—F,(xo) = 1 + ta'(up(xo))1'(x,). This expression does not vanish for all + and
0

all x, if and only if (2) is satisfied.
) Let u(x, 1) = u(G,(x)). Setting G(x, f) = G,{x), we have by definition

x = G(x, 1) + ta(uy(G(x, 1)).

Diflerentiating both sides with respect to x and ¢ we get

oG G
I = 6_x(x’ 1) + ta o ug)'(G(x, 1)) - E(x’ )
= ‘;—f(x, 1) + a(ue(G(x,1) + f{a o u)(G(x, 1)) - (23_?("’ 0
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CHAPTER 7, SOLUTION 109

therefore

N T PN T atuy(GLY, 0) 1
(ﬂrl { "(")5}>(‘\' 0= ualGly, ’)))[l + 1a’ (gl G(x, DNug(G(x, !))] '
1

 alug(Gx, ONual(Glx, 0) - T e G )

d) Let us assume that Min (a(ug(xo))ug(xe)) = alug(yo))u'(ye) = m.
We have by the previous computaton

du ug(yo)
5 —(x, =
R e N PX RGN DA

] N . . . . .
When 0 €t <~ the same lfunction defines a Cf solution since
m

I+ ta’(ue(3Nug(y) 2 1 + tm > 0

Ju

= + .
0x

and from (5) lim
o}

m

e) It follows that the largest T such that the solution exists in [0, 7] is given by

-1 |
T o= e = : .
l_nnf (a’(uo(3Duo(1) M'c‘;x (= a' (ol v))
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