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Introduction

Studies on q-difference equations appeared already at the beginning of the

last century in intensive works especially by F H Jackson [32], R D Carmichael
[22], T E Mason [46], C R Adams [5], W J Trjitzinsky [54] and other authors
such us Poincare, Picard, Ramanujan. Unfortunately, from the thirties up
to the beginning of the eighties, only nonsignificant interest in the area was

observed.

Since years eighties [30], an intensive and somewhat surprising inter-
est in the subject reappeared in many areas of mathematics and applica-

tions including mainly new difference calculus and orthogonal polynomi-
als, q-combinatorics, q-arithmetics, q-integrable systems and variational q-
calculus.

However, though the abundance of specialized scientific publications and

a relative classicality of the subject, a lack of popularized publications in
the form of books accessible to a broad public including under and upper
graduated students is very sensitive. This book is intended to participate to

the bridging of this gap.

It is to be understood that the choice of approach to be followed in the
book as well as that of material to be treated in most of chapters are mainly

dictated by the center of interest of the author. However, in preparing the
present text, our underlying motivation does’nt consist in any kind of spe-
cialization but in our wish of making available a most possibly coherent and

self contained material, that should appear very useful for graduate students
and beginning researchers in the area itself or in its applications.

The first five chapters are concerned with an introduction to q-difference
equations and q-Laplace transform, while the subsequent chapters are con-
cerned with applications to orthogonal polynomials and mathematical con-
trol theories.
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2 Introduction

Among existing books on the subject, we can cite for the interested reader

the well known books on q-series and their applications [6, 28] and the more
recent ones on q-calculus [27, 33].

Acknowledgments. The Professor Alphonse P. Magnus (UCLouvain) is
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”special nonuniform lattices” (snul). He is also acknowledged for many com-
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F Ndayiragije (University of Burundi), M N Hounkonnou (IMSP, Benin) and
M Foupouagnigni (University of Yaounde I, Cameroun) are remembered.
Last but not least, I greatly appreciate the support from ICTP (Trieste,

Italy) and CUD (Belgium) having, these years, benefited me a few grants
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Chapter 1

Elements of q-difference

calculus

1.1 Introduction

Following [43, 45], mathematical analysis can be considered on special lat-
tices:
-The constant x(s) = cte,
-The uniform x(s) = s,

-The q-uniform x(s) = qs,
-The q-nonuniform x(s) = (qs + q−s)/2, s ∈ Z, 0 < |q| < 1, the subja-
cent theory being founded on the corresponding divided difference derivative

[42, 43]:

Df(x(s)) =
f(x(s+ 1

2
))−f(x(s− 1

2
))

x(s+ 1
2
)−x(s− 1

2
)

. (1.1)

The basic property of this derivative is that it sends a polynomial of degree
n to a polynomial of degree n−1. In this connection it seems to be the most
general one having this vital characteristic. When x(s) is given by the first

three lattices, the corresponding divided derivative gives respectively

Df(x) = d
dxf(x) (1.2)

∆ 1
2
f(x) = ∆f(t) = f(t+ 1) − f(t) = (e

d
dt − 1)f(t); t = x− 1

2 (1.3)

D
q

1
2
f(x) = Dqf(t) = f(qt)−f(t)

qt−t = e
(q−1)t d

dt −1
qt−t f(t); t = q−

1
2x. (1.4)

3



4 Introduction

When x(s) is given by the latest lattice, the corresponding derivative is

usually referred to as the Askey-Wilson first order divided difference operator
[7] that one can write:

Df(x(z)) = f(x(q
1
2 z))−f(x(q−

1
2 z))

x(q
1
2 z)−x(q−

1
2 z)

, x(z) = z+z−1

2 , z = qs (1.5)

This book is concerned with studies of q-difference equations that is q-
functional equations of the form

F (x, y(x),Dqy(x), . . . ,D
k
q y(x)) = 0, x ∈ C (1.6)

where Dq is the derivative in (1.4), the so-called Jackson derivative [32],

Dqf(x) = f(qx)−f(x)
qx−x , x(s) = qs, s ∈ Z. (1.7)

The functional equations implying the first two derivatives in (1.2)-(1.3)

correspond respectively to the very classical popularized differential (con-
tinuous) and difference equations while those implying the Askey-Wilson
derivative in (1.5) is essentially at its embryonic state, except for numerous
applications in orthogonal polynomials theory [44, 49] and a few applications

in others area (see, e.g., [6, 10, 9]).
In this connection, our book is concerned with a fairly developed matter of
mathematical analysis on lattices.
It is worth to be noted that the q-difference equations theory considered in

this book is a special case of the general q-functional equations

F (x, y(x), y(qx), . . . , y(xqk)) = 0, x ∈ C (1.8)

(studied e.g., in [17, 51]), since in our case, x belongs necessary to the q-
uniform lattice qs, s ∈ Z. In this book, for concreteness, it will be under-
stood, unless the contrary is noted, that q is real and 0 < q < 1.
Hence our lattice reads

T = [0 = q∞, . . . , qs+1, qs, . . . , q2, q, q0 = 1,

q−1, q−2, . . . , q−s, q−s−1, . . . , q−∞ = ∞]. (1.9)

This is clearly a geometric progression with a proportion equals to q. For

this reason, q-difference equations are some times referred to as geometric
difference equations [30].
Examples of geometric variables can be found in any area of life or social
sciences (here q may be ≥ 1).
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1. Suppose given the simplest model of evolution of species

p(s+ 1) = rp(s); p(0) = p0 (1.10)

where p(s) is the population of the species at the period s and r is the
constant rate of change. (1.10) gives

p(s) = rsp0. (1.11)

p(s) is clearly a geometric variable with q = r, p0 = 1.

2. In economy or epidemiology, we can consider a certain quantity that
increases or decreases at every period s, in a rate equal to r. We get the

difference equation

q(s+ 1) = (1 + r)q(s); q(0) = q0 (1.12)

so that

q(s) = (1 + r)sq0. (1.13)

which is a geometric variable with q = 1 + r and q0 = 1.

3. In a national economy, let R(s), I(s), C(s) and G(s) be respectively the

national income, the investment, the consumer expenditure and the govern-
ment expenditure in a given period s. We have [26]

R(s+ 2) − α(1 + β)R(s+ 1) + αβR(s) = 1, (1.14)

with the assumptions that

C(s) = αR(s− 1), α > 0, (1.15)

I(s) = β[C(s) − C(s− 1)]β > 0 (1.16)

and G(s) = const. The general solution of (1.14) reads

R(s) = c1λ
s
1 + c2λ

s
2 + c3. (1.17)

where λ1 and λ2 are roots of

λ2 − α(1 + β)λ+ αβ = 1. (1.18)

We can clearly get geometric variables by convenient choices of the constants
c1, c2, and c3. In the particular case when αβ = 1, we can take λ1 = q and
λ2 = 1/q and (1.17) is nothing else than a form of the q-nonuniform variable
noted in the beginning of this section.



6 q-Hypergeometric Series

4. Consider the amortization of a loan that is the process by which a loan

is repaid by a sequence of periodic payments, each of which is part pay-
ment of interest and part payment to reduce the outstanding principal. Let
p(s) represent the outstanding principal after the sth constant payment T
and, suppose that the interest charges compound at the rate r per payment

period. In this case, we have the equation

p(s+ 1) = (1 + r)p(s) − T ; p(0) = p0 (1.19)

which solution reads

p(s) = (p0 −
T

r
)(1 + r)s +

T

r
. (1.20)

This is also a generalized geometric variable and it can be found in any
phenomenon with similar evolution process.

1.2 q-Hypergeometric Series

When dealing with q-difference equations, arise naturally series solutions of

the type

y(x) =
∞
∑

n=0

cnx
n. (1.21)

Among them, are of particular interest these for which

cn+1

cn
(1.22)

is a rational function in qn. If for example

cn+1

cn
=

∏r
i=1(αi − q−n)

∏s
i=1(βi − q−n)(q − q−n)

, (1.23)

such series are seen to have the form

rϕs

(

α1, α2, . . . , αr

β1, β2, . . . , βs

∣

∣

∣

∣

∣

q; z

)

=
∑∞

k=0
(α1;q)k(α2;q)k ...(αr;q)k

(β1;q)k(β2;q)k...(βs;q)k

[

(−1)kq
k(k−1)

2

]1+s−r
zk

(q;q)k
, (1.24)
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where (a1, . . . , ap; q)k := (a1; q)k . . . (ap; q)k, (a; q)0 = 1, (a; q)k = (1−a)(1−
aq)(1 − aq2) . . . (1 − aqk−1), k = 1, 2 . . .. These series are referred to as the

q-(basic)hypergeometric series [28]. Since limq→1
(qa;q)k

(1−q)k = (a)k, we have

limq→1 rϕs

(

qα1 , qα2, . . . , qαr

qβ1, qβ2 , . . . , qβs

∣

∣

∣

∣

∣

q; (q − 1)1+s−rz

)

= rFs

(

α1, α2, . . . , αr

β1, β2, . . . , βs

∣

∣

∣

∣

∣

z

)

, (1.25)

where

rFs

(

α1, α2, . . . , αr

β1, β2, . . . , βs

∣

∣

∣

∣

∣

z

)

=
∑∞

k=0
(α1)k(α2)k...(αr)k

(β1)k(β2)k...(βs)k

zk

k! , (1.26)

where (a1, . . . , ap)k := (a1)k . . . (ap)k, (a)0 = 1, (a)k = a(a+1) . . . (a+k−1) =
Γ(a+k)

Γ(a) , series referred to as hypergeometric series. As well for the generalized
hypergeometric series as for the basic ones , the radius of convergence is given
by

ρc =











∞, r < s+ 1
1, r = s+ 1
0, r > s+ 1.

(1.27)

Take for example the simplest q-difference equation

Dqy(x) = y(x). (1.28)

Its solution reads

y(x) =
∞
∑

n=0

((1− q)x)n

(q; q)n
=1 ϕ0(0;−; q, (1 − q)x), (1.29)

a q-version of the exp(x) function [35] (see also section 2.1 below).

1.3 q-Derivation and q-integration

Basic formulae for the q-derivation and q-integration are concerned, similarly
to the differential or difference situations.
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Derivative and integral

We define the q-derivative also referred to as the Jackson derivative [32] as

follows

Dqf(x) =
f(qx) − f(x)

qx− x
. (1.30)

This derivative sends naturally a polynomial of degree n in a polynomial of

degree n− 1, since Dqx
k = qk−1

q−1 x
k−1 and if p(x) =

∑n
k=0 akx

k, then

Dqp(x) =
n−1
∑

k=0

ak+1
qk+1 − 1

q − 1
xk. (1.31)

Together with the question of the q-derivative, arises naturally that of the

q-primitive or q-indefinite integral of a given function. This is equivalent to
solving the following simplest q-difference equation in g with known f

Dqg(x) = f(x). (1.32)

Detailing (1.32) gives

1 −Eq

(1 − q)x
g(x) = f(x), Eqh(x) = h(qx) (1.33)

or

g(x) = (1 −Eq)
−1[(1− q)xf(x)] = (1 − q)

∞
∑

i=0

Ei
q[xf(x)], (1.34)

or

g(x) = (1 − q)x
∞
∑

i=0

qif(qix). (1.35)

The preceding calculus is clearly valid only if the series in the rhs of (1.35)
is convergent. To say that if the series in the rhs of (1.35) is convergent, the
function in the rhs of that equality is a certain primitive of f(x), namely

that primitive that vanishes at x = x0 = 0. Hence we can write

∫ x

0
f(x)dqx = (1 − q)x

∞
∑

i=0

qif(qix). (1.36)
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It is easily seen that the expression on the rhs of (1.36) is a Riemann integral

sum of the function f on [0, x], x 6= ∞, where the segmentation is given by
the geometric lattice qs, s = 0, . . . ,∞. This means that if f(x) is Riemann
integrable (RI) around x0 = 0, then we can naturally give its primitive as in
(1.36) which is defined for x ∈ T , x 6= ∞.

However, if the function f(x) is not RI around x0 = 0 but is RI around
x0 = ∞, then one will find a primitive of f(x) under the form

∫ x
∞ f(x)dqx = (1 − q−1)x

∑∞
i=0 q

−if(q−1−ix),

= (q − 1)x
∑∞

i=1 q
−if(q−ix) (1.37)

which is defined on the lattice T in (1.9) except for x = 0. Furthermore, if
the function f(x) is not RI neither around x0 = 0, nor around x0 = ∞, but
RI around some x0 = c = qd, d ∈ Z, then the primitive of f(x) reads

∫ x
c f(x)dqx = (q − 1)

∑s−1
i=d q

if(qi), c = qd ≥ x = qs

= (q − 1)
∑q−1x

t=c tf(t). (1.38)

For example taking c = q0 = 1, we get
∫ x
c f(x)dqx = (q − 1)

∑s−1
i=0 q

if(qi). (1.39)

Note that the integral in (1.36) is clearly a particular case of the more general
integral

∫ x

a
f(t)dqt =def (x− a)(1− q)

∞
∑

0

qif(a+ qi(x− a)). (1.40)

where we set a = 0 to obtain (1.36).
Next we define the definite integral as

∫ b
a f(x)dqx = (1 − q)

∑β
i=α q

if(qi), b = qα ≥ a = qβ+1

= (1 − q)
∑b

x=q−1a xf(x). (1.41)

If the function f(x) is RI around x0 = 0, (1.41) can be written another way:
∫ b
a f(x)dqx = [

∫ b
0 −

∫ a
0 ]f(x)dqx. (1.42)

Clearly, if the function f(x) is differentiable on the point x, the q-derivative
in (1.30) tends to the ordinary derivative in the classical analysis when q
tends to 1. Identically, if the function f(x) is RI on the concerned intervals,

the integrals in (1.36), (1.37), (1.39) and (1.40) tend to the Riemann integrals
of f(x) on the corresponding intervals when q tends to 1. Moreover, one
easily remarks that the q-integral admits the general properties of Riemann
integral on finite or infinite intervals.
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Example 1. Evaluate
∫

xαdqx

Solution. One distinguishes
a) α > −1: f(x) = xα is RI around x0 = 0. Hence,

∫ x
0 x

αdqx = (1 − q)x
∑∞

0 qiqαixα

= 1−q
1−qα+1x

α+1
;

xα+1

α+1 =
∫ x
0 x

αdx, q ; 1. (1.43)

b) α < −1: f(x) = xα is not RI around x0 = 0 but is RI around x0 = ∞.

Hence, using (1.37), one has
∫ x
∞ xαdx = (q − 1)x

∑∞
0 q−(i+1)xαq−(i+1)α =

1−q
1−qα+1x

α+1
;

xα+1

α+1 =
∫ x
0 x

αdx, q ; 1.

c) α = −1: In this case, the function f(x) = 1
x is not RI neither around

x0 = 0 nor around x0 = ∞. Hence the formulas (1.36) and (1.37) don’t work.

However using (1.39), one gets
∫ x
1

dqx
x = (q−1)

∑s−1
i=0 (1) = (q−1)s = q−1

lnq lnx

; lnx =
∫ x
1

dx
x , q ; 1.

It follows in particular from a) that the indefinite integral of a polynomial
of degree n is a polynomial of degree n+ 1.

Example 2. Evaluate
∫∞
0 f(x)dqx for a function f RI on [0,∞].

Solution. Considering (1.36) and (1.37) with x = 1, we have
∫ ∞

0
f(x)dqx =

∫ 1

0
f(x)dqx+

∫ ∞

1
f(x)dqx

= (1− q)
∞
∑

0

qif(qi) + (1 − q)
∞
∑

1

q−if(q−i)

= (1 − q)
∞
∑

−∞

qif(qi) (1.44)

Note that the last expression in (1.44) is a Riemann integral sum of f on
[0,∞] with the segmentation in (1.9).

Derivative of a product

Dq(fg)(x) = g(qx)Dqf(x) + f(x)Dqg(x)

= f(qx)Dqg(x) + g(x)Dqf(x). (1.45)

Derivative of a ratio

Dq(
f
g )(x) = g(x)Dqf(x)−f(x)Dqg(x)

g(qx)g(x) . (1.46)
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Chain rule

Dq(f(g))(x) = f(g(qx))−f(g(x))
g(qx)−g(x) .g(qx)−g(x)

qx−x

= Dq,gf(g).Dq,xg(x) (1.47)

Derivative of the inverse function

Let y = f(x). In that case, x = f−1(y) where f−1 is the inverse function to

f . Applying the q-derivative on each side of the equality, one gets

1 = Dqx = Dqf
−1(y) = f−1(y(qx))−f−1(y(x))

y(qx)−y(x) .y(qx)−y(x)
qx−x

= Dq,yf
−1(y).Dq,xy(x). (1.48)

Consequently

Dq,yf
−1(y) = 1

Dq,xy . (1.49)

Fundamental principles of the q-analysis

(i)

Dq[
∫ x
a f(x)dqx] = Dq{(1 − q)[x

∑∞
0 qif(qix) − a

∑∞
0 qif(qia)]}

= (1 − q)x[
∑∞

0 qif(qix) −∑∞
0 qi+1f(qi+1x]/[(1 − q)x] = f(x) (1.50)

(ii)

∫ x
a Dqf(x)dqx =

∫ x
a

f(qx)−f(x)
qx−x dqx

= (1− q)x
∑∞

0 qi f(qix)−f(qi+1x)
(1−q)xqi − (1 − q)a

∑∞
0 qi f(qia)−f(qi+1a)

(1−q)aqi

= f(x) − f(a). (1.51)

Clearly, (1.51) is a q-version of the Newton-Leibniz formula

Integration by parts

Consider the equality

f(x)Dqg(x) = Dq(fg) − g(qx)Dqf(x). (1.52)
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Let h(x) = f(x)g(x). We have

∫ b
a Dqhdqx =

∑∞
0 (h(qib) − h(qi+1b)) −∑∞

0 (h(qia) − h(qi+1a))

= h(b) − h(a)

Hence

∫ b
a f(x)Dqg(x)dqx = [fg]ba −

∫ b
a g(qx)Dqf(x)dqx (1.53)

Clearly, when q ; 1, the formulae (1.30)-(1.53) converge to the correspond-
ing formulae of the continuous analysis.

1.4 Exercises

1. Prove that

Dn
q (fg)(x) =

n
∑

k=0

(

n
k

)

q

Dk
q (f)(xqn−k)Dn−k

q (g)(x) (1.54)

(q − Leibnizformula) where

(

n
k

)

q

=
(q; q)n

(q; q)k(q; q)n−k
(1.55)

and evaluate successively Di
q(fg)(x) i = 1, 2, . . . , n.

2. Evaluate explicitly the operators A and B such that

a)

Di
q(fy) = [A(f)]y, i = 1, 2, . . . , n (1.56)

b)

n
∏

i=1

(Dq − ai)(fy) = [B(f)]y. (1.57)

3. [27] Prove the reciprocal formulae
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a)

Dn
q (f)(x) =

(q − 1)−nx−nq

−

(

n
2

)

n
∑

k=0

(

n
k

)

q

(−1)kq

(

k
2

)

f(qn−kx) (1.58)

b)

f(qnx) =
n
∑

k=0

(q − 1)kxkq

(

k

2

)

(

n

k

)

q

Dn
q (f)(x). (1.59)

4. Write formally the solution y of

y(qx) − ay(x) = f(x). (1.60)

5. Integrate by parts

∫ b

a
p(x)f(x)dqx; p(x) = ax2 + bx+ c; f(x) = ln x. (1.61)

6. Let f(x) = xm; m > 0. Calculate

∫ b

a
xmdqx (1.62)

a) By definition,

b) Using the q-Newton-Leibniz formula.

7. [27] Let g(x) = cxk and f(x) a given function. Prove thatDq(f ◦g)(x) =
(Dqk(f))(g(x))Dq(g)(x).

8. [27] Prove that (now q ∈ C and |q| = 1) if qp = 1 and p is prime, then
Dp

q(f) = 0.
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9. [27] Prove that if p is a polynomial, then

[Dqx− qxDq]p(x) = p(x)

[Dqx− xDq]p(x) = p(qx) (1.63)

and

[Dqx
k − qkxkDq]p(x) = {k}qx

k−1p(x)

[Dqx
k − xkDq]p(x) = {k}qx

k−1p(qx) (1.64)

where {k}q =
∑n

k=1 q
k−1, {0}q = 0.

10. [27] Prove the q-Pascal identity

(

n+ 1
k

)

q

=

(

n
k

)

q

qk +

(

n
k − 1

)

q

=

(

n
k

)

q

+

(

n
k − 1

)

q

qn+1−k (1.65)

and the equivalent dual identities

Dk
qx− qkxDk

q = {k}qD
k−1
q

Dk
qx− xDk

q = Eq{k}qD
k−1
q . (1.66)

11. Let

Pn(x, y) = (x− y)(x− qy) . . . (x− qn−1y). (1.67)

Prove that

a)

Dq,xPn(x, y) = [n]qPn−1(x, y), (1.68)

b)

Dq,yPn(x, y) = −[n]qPn−1(x, qy). (1.69)



Chapter 2

q-Difference equations of first

order

By a q-difference equation of first order, one can understand an equation of

the form

f(x, y(x),Dqy(x)) = 0, (2.1)

but also an equation of the form

g(x, y(x), y(qx)) = 0. (2.2)

The difference between (2.1) and (2.2) is that the former is first order in

the operator Dq, while the later is first order in Eq, with Eqf(x) = f(qx).
Clearly, from an equation of the type (2.1), one can derive an equivalent
equation of the type (2.2) and conversely. However, for their apparent adapt-
ability in discretization of differential equations, we will consider in this book

mainly equations of type (2.1) instead of equations of type (2.2).
Although there is no general analytical method for solving general q-difference
equations of first order, some of their special cases can be solved explicitly.
This is the cases of linear q-difference equations and equations transformable

to them, as we shall see in the following sections.

2.1 Linear q-difference equations of first order

Consider the q-difference equation

Dqy(x) = a(x)y(qx) + b(x). (2.3)

15
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This is a first order nonconstant coefficients linear non homogenous q-difference

equation. Its study is clearly equivalent to that of

Dqy(x) = a(x)y(x) + b(x). (2.4)

Indeed, (2.3) is equivalent to ,

Dqy(x) = ã(x)y(x) + b̃(x). (2.5)

where

ã(x) = a(qx); b̃(x) = b(qx), (2.6)

in that sense that (2.5) can be obtained from (2.3) by replacing x by q−1x
and then q by q−1 and vice versa.
Consider for example the equation (2.3). The corresponding homogenous
equation reads

Dqy(x) = a(x)y(qx). (2.7)

Detailing the Dq derivative in (2.7), the equation reads

y(x) = [1 + (1 − q)xa(x)]y(qx). (2.8)

Repeating the recurrence relation in (2.8) N times, one gets

y(x) = y(x0)
∏x

t=q−1x0
[1 + (1 − q)ta(t)]

= y(qNx)
∏N−1

i=0 [1 + (1 − q)xqia(qix)]. (2.9)

If N ; ∞, with 0 < q < 1, then qN
; 0, and one obtains

y(x) = y(0)
∏∞

i=0[1 + (1 − q)qixa(qix)]. (2.10)

Example. Suppose that a(x) = qk−1
q−1 .

1
qkx−1

, k ∈ N. Clearly, we have the

solution y(x) = y(0)
∏∞

i=0[1 + (1 − q)qixa(qix)] = y(0)
∏k−1

0 (1 − qix) =def

y(0)(x; q)k.
Consider next the non homogenous equation (2.3). According to the method
of ”variation of constants”, let

y(x) = c(x)y0(x) (2.11)
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be its solution where y0(x) is the solution of the corresponding homogenous

equation (2.7) and c(x) is an unknown function to be determined. Loading
(2.11) in (2.3), and solving the obtained equation, one obtains

c(x) =

∫ x

x0

y−1
0 (t)b(t)dqt+ c (2.12)

Hence the general solution of (2.3) reads

y(x) = y0(x)c+

∫ x

x0

y0(x)y
−1
0 (t)b(t)dqt (2.13)

with c = y−1
0 (x0)y(x0). Taking x0 = 0, we get respectively

c(x) = (1 − q)x
∑∞

0 qiy−1
0 (qix)b(qix) + c (2.14)

and

y(x) = y0(x)c+ (1 − q)x
∑∞

0 qiy0(x)y
−1
0 (qix)b(qix). (2.15)

Note that, when applied to the equation (2.4), the method of undetermined

constants leads to the solution

y(x) = y0(x)c+

∫ x

x0

y0(x)y
−1
0 (qt)b(t)dqt (2.16)

or

y(x) = y0(x)c+ (1 − q)x
∑∞

0 qiy0(x)y
−1
0 (qi+1x)b(qix). (2.17)

for x0 = 0.
We now observe that the solutions in (2.9) or (2.10) will remain formal as

long as we will not succeed to calculate the related product explicitly, a
task which is far from being elementary. However, in certain situations, the
coefficient a(x) could suggest a particular method of resolution. When for

example, a(x) is a polynomial in x, we are suggested to search the solution
in form of series, as show the following few simple cases:

Case 1. Equations of the form

Dqy(x) = ay(x), (2.18)

with a, some constant. To solve such an equation, we rewrite it as

y(qx) = [1 + (q − 1)xa]y(x) (2.19)
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and search the solution under the form

y(x) =
∑∞

0 cnx
n. (2.20)

Loading (2.20) in (2.19), one obtains

cn = (
∏n

k=1
1−q
1−qk )an . (2.21)

In view of the fact that [k]q =def 1−qk

1−q ; k, q ; 1, one can write (2.21) as

cn = c0
an

[n]q! , (2.22)

where [n]q! =def ∏n
k=1

1−qk

1−q . Hence the solution in (2.20) is a q-version of the

exponential function c0exp(ax):

yq(x) = c0e
ax
q = c0

∑∞
n=0

an

[n]q!x
n. (2.23)

Case 2. Similarly, an equation of the form

Dqy(x) = ay(qx), (2.24)

or equivalently

y(x) = [1 + (1 − q)xa]y(qx), (2.25)

has a solution of the form

yq−1(x) = c0e
ax
q−1 = c0

∑∞
0

an

[n]q−1 !x
n, (2.26)

where [n]q−1 ! is obtained from [n]q! by replacing q by q−1.
The functions exq and exq−1 are clearly q-versions of the usual exponential
function ex. A natural question that arises here consists in finding their
respective inverse q-functions. The answer to this question can be easily

found using the following

Theorem 2.1.1 If

Dqy = a(x)y(x)

Dqz = −a(x)z(qx) (2.27)

y(x0)z(x0) = 1 (2.28)

then

y(x)z(x) = 1 (2.29)
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Proof. We have Dq(zy) = z(qx)Dqy(x) + Dqz(x).y(x) = z(qx)a(x)y(x) −
z(qx)a(x)y(x) = 0. Hence y(x)z(x) = cte. Use of (2.28) gives (2.29).

Corollary 2.1.1 The functions exq and exq−1 satisfy

exq e
−x
q−1 = 1. (2.30)

Similar q-versions of the exp(x) and its inverse can be found considering the
following

Theorem 2.1.2 [35] Let

∞
∑

k=0

(a; q)kx
k

(q; q)k
=1 ϕ0(a;−; q, x); |x| < 1 (2.31)

be the q-binomial series. We have

∑∞
k=0

(a;q)kxk

(q;q)k
= (ax;q)∞

(x;q)∞
(2.32)

where (α; q)∞ =
∏∞

1 (1 − qk−1α).

Proof. Let ha(x) be the series in the lhs of (2.32). Then, one easily verifies
that (1 − x)ha(x) = (1 − ax)ha(qx), or equivalently ha(x) = 1−ax

1−x ha(qx).

Which leads recursively to ha(x) = (az;q)∞
(z;q)∞

and the theorem is proved.

Corollary 2.1.2 [35] Let ẽq(x) =
∑∞

k=o
xk

(q;q)k
=1 ϕ0(0;−; q, x), |x| < 1 and

Eq(x) =
∑∞

k=o
qk(k−1)/2xk

(q;q)k
=0 ϕ0(−;−; q,−x), x ∈ T . We have that

ẽq(x)Eq(−x) = 1. (2.33)

Proof. Loading a = 0 in (2.32), one obtains that ẽq(x) = 1
(x;q)∞

, |x| < 1. On

the other side, replacing in the same identity, x = x/a and letting a ; ∞,

one gets Eq(x) = (−x; q)∞, and the corollary follows.
Note that

limq→1 ẽq((1− q)x) = limq→1Eq((1 − q)x) = ex. (2.34)

Hence ẽq((1 − q)x) and Eq((1 − q)x) are q-versions of the ordinary exp(x)
function. It is interesting to remark that

exq = ẽq((1 − q)x); exq−1 = Eq((1− q)x). (2.35)
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Case 3. Equations of the form

Dqy(x) = ay(x) + b. (2.36)

According to the case 1 and the method of undetermined coefficients with
x0 = 0, its solution reads

y(x) = eax
q [y(0) + b

∫ x

0
e−aqt
q−1 dqt]

= eax
q [y(0) − b

a
e−ax
q−1 +

b

a
]. (2.37)

Hence using (2.30), we get

y(x) = eax
q y(0) − b

a
+
b

a
eax
q . (2.38)

Case 4. Equations of the form

Dqy(x) = ay(qx) + b. (2.39)

Here also, according to the case 2 and the method of undetermined coeffi-
cients with x0 = 0, its solution reads

y(x) = eax
q−1 [y(0) + b

∫ x

0
e−at
q dqt]

= eax
q−1 [y(0) −

b

a
e−ax
q +

b

a
], (2.40)

and using (2.30), we get

y(x) = eax
q−1y(0) −

b

a
+
b

a
eax
q−1 . (2.41)

Case 5. Equations of the form

Dqy(x) = αxy(x). (2.42)

Searching the solution under the form

y(x) =
∑∞

0 cnx
n, (2.43)
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on gets

c2n = α
c2n−2

1−q2n

1−q

= αn c0
1−q2n

1−q
1−q2n−2

1−q . . . 1−q2

1−q .1

= αn c0
[2n]q!!

; n = 1, 2, . . . (2.44)

where

[2n]q!! =def 1 − q2n

1 − q

1 − q2n−2

1 − q
. . .

1 − q2

1 − q
.1; (2.45)

and c2n+1 = 0, n = 0, 1, 2, . . .. Its is easily seen that [2n]q!! = [n]q!(2)
n
q where

(2)n
q =def (1 + q)(1 + q2) . . . (1 + qn) and that limq→1[2n]q!! = (2n)!! =def

(2n)(2n− 2)(2n− 4) . . . .2.1 = 2nn! = limq→1[n]q!(2)
n
q . Hence the solution of

(2.42) reads

y(x) = c0E
αx2

2
q (2.46)

where

E
αx2

2
q =

∞
∑

0

αnx2n

[n]q!(2)n
q

(2.47)

is a q-version of the function e
αx2

2 (see another q-version of this function in
[25]).

2.2 Nonlinear q-difference equations transformable

into linear equations

Here, we consider nonlinear q-difference equations of type (2.1) or (2.2) trans-
formable in linear equations.

Case 1. Riccati type equations:

Dqy(x) = a(x)y(qx) + b(x)y(x)y(qx). (2.48)

To solve this equation, we set y(x) = 1/z(x) and obtain

Dqz(x) = −[a(x)z(x) + b(x)]. (2.49)
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Example. Solve the equation

y(qx)y(x) − y(qx) + y(x) = 0. (2.50)

Letting y(x) = 1/z(x), it gives z(x) = z(qx) + 1 which solution is z(x) =
− ln x/ ln q. Hence y(x) = − ln q/ lnx.

Case 2. Homogenous equations of the form

f(
Dqy(x)

y(x) , x) = 0. (2.51)

They can be transformed into linear equations in z(x) with z(x) =
Dqy(x)

y(x) .

Example. Solve the equation

[Dqy(x)]
2 − 2y(x)Dqy(x) − 3[y(x)]2 = 0. (2.52)

We have

[
Dqy(x)

y(x)
]2 − 2[

Dqy(x)

y(x)
] − 3 = 0, (2.53)

or z2(x) − 2z(x) − 3 = 0, z(x) = Dqy(x)
y(x) . This gives z(x) = 3 and z(x) = 1,

or y(x) = ce3x
q and y(x) = cexq , respectively.

Case 3. Equations of the form

[y(qx)]c1[y(x)]c2 = g(x), (2.54)

c1 and c2, some constants. In that case, we apply the ln function and get

c1 ln(y(qx)) + c2 ln(y(x)) = ln(g(x)) (2.55)

and set z(x) = ln(y(x)) to obtain

c1z(qx) + c2z(x) = ln(g(x)) (2.56)
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Example. Contemplate the equation

[y(x)2]/y(qx) = ex
2
. (2.57)

Applying the ln function, one gets

2z(x) − z(qx) = x2, z(x) = ln y(x) (2.58)

The solution of the homogenous equation is z(x) = xln 2/ ln q. The particular
solution can be found by inverting the operator in the lhs 1 − 1

2Eq, to get

z(x) = (1 − 1
2Eq)

−1x2/2 = x2

2

∑∞
0 2−iq2i = x2

2−q2 . (2.59)

Hence the solution of (2.58) reads z(x) = cxln 2/ ln q + x2

2−q2 . Consequently,

y(x) = exp(cx
ln 2
ln q + x2

2−q2 )

= exp(c2
x

ln q + x2

2−q2 ). (2.60)

2.3 Exercises

1. Let be defined the following q-versions of the cos(x), sin(x), cosh(x) and
sinh(x) functions

cosq(x) =
eixq + e−ix

q

2
; sinq(x) =

eixq − e−ix
q

2i

coshq(x) =
exq + e−x

q

2
; sinhq(x) =

exq − e−x
q

2
, (2.61)

cosq−1(x) =
eixq−1 + e−ix

q−1

2
; sinq−1(x) =

eixq−1 − e−ix
q−1

2i

coshq−1(x) =
exq−1 + e−x

q−1

2
; sinhq−1(x) =

exq−1 − e−x
q−1

2
, (2.62)

cosqq−1(x) =
eixq + e−ix

q−1

2
; sinqq−1(x) =

eixq − e−ix
q−1

2i

coshqq−1(x) =
exq + e−x

q−1

2
; sinhqq−1(x) =

exq − e−x
q−1

2
. (2.63)

Prove that
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a) Dq cosq(x) = − sinq(x),

b) Dq sinq(x) = cosq(x),

c) Dq coshq(x) = sinhq(x),

d) Dq sinhq(x) = coshq(x),

e) cos2qq−1(x) + sin2
qq−1(x) = 1,

f) cosh2
qq−1(x) − sinh2

qq−1(x) = 1,

g) cosq(x)cosq−1(x) + sinq(x) sinq−1(x) = 1,

h) coshq(x)coshq−1(x) − sinhq(x) sinhq−1(x) = 1.

2. Find the general solution of

(Dqy(x))
2 − 2y(x)Dqy(x) − 3y2(x) = 0 (2.64)

3. Solve

a) Dqy(x) = xy(x)

b) (Dqy(x))
2 − (2 + x)y(x)Dqy(x) + 2xy2(x) = 0

4. Solve

a) Dqy(x) = ay(x) + x2

b) Dqy(x) = ay(x) + exq

c) Dqy(x) = p2(x)y(x); p2(x) = ax2 + bx+ c.
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5. Let f(x) =
∑+∞

n=−∞Anx
n and put

f [x± y]q =
+∞
∑

n=−∞

Anx
n(∓y

x
; q)n. (2.65)

i.e

f [x± y]q =
+∞
∑

n=−∞

Anx
n(1 ± y

x
)(1 ± q

y

x
) . . . (1 ± qn−1 y

x
)

=
+∞
∑

n=−∞

An(x± y)(x± qy) . . . (x± qn−1y). (2.66)

Prove that

eq(x)eq−1(y) = eq[x+ y]q

eq(y)

eq(x)
= eq[y − x]q. (2.67)
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Chapter 3

Systems of linear q-difference

equations

In this chapter, we are concerned with systems of linear q-Difference equa-

tions of first order. The methods of solving such equations are in big parts
similar to that of solving linear scalar first order q-difference equations dis-
cussed in the section 2.1. The general theory however is more rich since the

space state is now multidimensional.

3.1 General theory

Consider the system of linear q-difference equations

Dqy(x) = A(x)y(qx) + b(x), (3.1)

where

y(x) = (η1(x), . . . , ηk(x))
t, b(x) = (b1(x), . . . , bk(x))

t ∈ Rk,

A(x) = (ai,j(x))
k
i,j=1, (3.2)

such that the matrix I+(1−q)xA(x) is nonsingular. The latter requirement

can naturally be achieved by taking q sufficiently close to 1. Remark that
the notation DqZ(x), where Z(x) is a vector or a matrix means the vector
or the matrix for which the elements are the q-derivatives of the elements of

the concerned vector or matrix.
As in the scalar case, the system (3.1) is equivalent to the following

Dqy(x) = Ã(x)y(x) + b̃(x) (3.3)

27
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where Ã(x) = A(qx) and b̃(x) = b(qx), in the sense that one can be obtained

from the other by first replacing x by q−1x and then q by q−1. But for
question of convenience, we consider the system (3.1) here.
The system (3.1) is said to be non homogenous and non autonomous since
respectively, the independent term (also called input or external force) is

not vanishing, and its coefficients are dependent on x.
Thus, the corresponding to (3.1) homogenous equation is

Dqy(x) = A(x)y(qx), (3.4)

As in the case of scalar equation, one can rewrite the equations (3.1) and
(3.4) respectively in the recurrent forms

y(x) = [I + (1 − q)xA(x)]y(qx) + (1 − q)xb(x). (3.5)

and

y(x) = [I + (1 − q)xA(x)]y(qx). (3.6)

Consider first the homogenous equation (3.4). According to (3.6), the solu-
tion of this system reads:

y0(x) = (
∏x

t=q−1x0
[I + (1 − q)tA(t)])y(x0). (3.7)

Taking x0 = 0, (3.7) gives

y(x) = (
∏∞

0 [I + (1 − q)qixA(qix)])y(0). (3.8)

From this, one deduces the following

Theorem 3.1.1 For any vector v0 ∈ Rk, there exists a unique solution of

(3.4) satisfying y(x0) = v0.

Let y1(x), . . . , yk(x) be a system of k vectors in Rk and let Y (x) be the k.k
matrix which columns are constituted by the vectors y1(x), . . . , yk(x). The
following proposition is easily verified.

Theorem 3.1.2 The matrix Φ(x) is a solution of the homogenous system
(3.4) iff every vector of the set {y1(x), . . . , yk(x)} is.

From theorems (3.1.1) and (3.1.2) follows clearly the

Theorem 3.1.3 For any kxk-matrix V0, there exists a unique matrix solu-
tion of (3.4) satisfying Y (x0) = V0.
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Considering (3.6), such solution reads

Y (x) = (
∏x

t=q−1x0
[I + (1 − q)tA(t)])V0, (3.9)

or for x0 = 0

Y (x) = (
∏∞

0 [I + (1 − q)qixA(qix)])V0. (3.10)

Theorem 3.1.4 Let Y and Z be such that

DqY (x) = A(x)Y (x)

DqZ(x) = −Z(qx)A(x) (3.11)

Y (x0)Z(x0) = I (3.12)

then

Y (x)Z(x) = I. (3.13)

where I is the unit matrix.

Proof. Dq(Z(x)Y (x)) = Z(qx).DqY (x) + DqZ(x).Y (x) = Z(qx).Ay(x) −
Z(qx).AY (x) = 0 i.e. ZY = const and by (3.12), we get ZY = I.
Similarly, one easily proves the following

Theorem 3.1.5 Let Y and Z be such that

DqY (x) = A(x)Y (qx)

DqZ(x) = −Z(x)A(x) (3.14)

Y (x0)Z(x0) = I (3.15)

then

Y (x)Z(x) = I. (3.16)

The following corollaries are direct consequences of the preceding theorem

Corollary 3.1.1 The matrices Y (x) and Z(x) in (3.12)-(3.16) are mutually

inverse.

Corollary 3.1.2 The matrix solution of

DqY (x) = A(x)Y (x) (3.17)

is nonsingular iff it is nonsingular for x = x0.
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Definition 3.1.1 A set of k linear independent solutions {y1(x), . . . , yk(x)}
of (3.4) is said to be a fundamental system of solutions. The corresponding
matrix Y (x), which is clearly nonsingular, is also said to be a fundamental
matrix of the system.

Theorem 3.1.6 Any system of linear q-difference equations like (3.4) ad-
mits always a fundamental system of solutions or equivalently a fundamental

matrix.

Proof. Consider then a system of k linear independent in Rk vectors
v1, . . . , vk, and following (3.1.1), let {y1(x), . . . , yk(x)} be solutions of (3.4)
satisfying yi(x0) = vi, i = 1, . . . , k. This means that the set of solutions

yi(x), i = 1, . . . , k are linear independent on the point x = x0, or equiv-
alently, the corresponding matrix Y (x) is nonsingular for x = x0. By the
corollary 3.1.2, this means that Y (x) is nonsingular for every x and the
corresponding system of solutions {y1(x), . . . , yk(x)} is fundamental which

proves the theorem.

Corollary 3.1.3 The space of solutions of the homogenous system (3.4) is
a k-dimensional linear space.

Consider now the non homogenous equation (3.1). Suppose that the matrix
Y (x) is a fundamental matrix for the corresponding homogenous system
(3.4). In that case, similarly to the scalar case, the method of variation

of constants suggests to search the general solution for (3.1) under the form
y(x) = Y (x)C(x), where C(x) is an unknown k-dimensional vector. Loading
this in (3.1) gives the system

Y (x)DqC(x) = b(x). (3.18)

The result reads

C(x) = C +

∫ x

x0

Y −1(t)b(t)dqt (3.19)

and

y(x) = Y (x)C +

∫ x

x0

Y (x)Y −1(t)b(t)dqt (3.20)

where C = Y −1(x0)y(x0), or equivalently

y(x) = Φ(x, x0)y(x0) +

∫ x

x0

Φ(x, t)b(t)dqt (3.21)
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with

Φ(x, y) = Y (x)Y −1(y), (3.22)

the q-State transition matrix. In the controllability theory (see chapter 7),
one writes (3.21) in the convenient form

y(x) = Φ(x, x0)[y(x0) +

∫ x

x0

Φ(x0, t)b(t)dqt]. (3.23)

When x0 = 0, (3.19), (3.20), (3.21) and (3.23) take the forms

C(x) = C + (1 − q)x
∑∞

0 qiY −1(qix)b(qix), (3.24)

y(x) = Y (x)C + (1 − q)x
∑∞

0 qiY (x)Y −1(qix)b(qix), (3.25)

y(x) = Φ(x, 0)y(0) + (1 − q)x
∑∞

0 qiΦ(x, xqi)b(qix), (3.26)

and

y(x) = Φ(x, 0)[y(0) + (1 − q)x
∑∞

0 qiΦ(0, xqi)b(qix)]. (3.27)

The function

yp(x) =
∫ x
x0

Φ(x, t)b(t)dqt (3.28)

is a particular solution of (3.1). Hence we have the following

Theorem 3.1.7 The general solution of the non homogenous q-difference
equation (3.1) is a sum of its particular and the general solution of the

corresponding homogenous equation (3.4).

3.2 Autonomous systems

Let distinguish the following most interesting cases.

Case 1. Equations of the form

Dqy(x) = Ay(x), (3.29)

where A is a constant matrix. Searching its solution in series form

y(x) =
∑∞

0 znx
n, (3.30)

with zn is a k-dimensional vector, one gets

yq(x) = eAx
q z0. (3.31)
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Case2. Equations of the form

Dqy(x) = Ay(qx). (3.32)

According to the same notation as in the first case , its solution reads

yq−1(x) = eAx
q−1z0

=
∑∞

n=0
An

[n]q−1 !x
nz0. (3.33)

According to theorem 3.1.1 and the preceding, we have the following

Theorem 3.2.1

eq(Ax)eq−1(−Ax) = I. (3.34)

As a consequence, the q-State transition matrix for time constant systems
takes the form:

Φ(x, t) = eq(Ax)eq−1(−At). (3.35)

It is to be noted that the q-Cauchy problems related to the systems (3.29)
and (3.32) can be solved using the q-Picard approximations. Let solve for

example the following problem

Dqy(x) = Ay(x); y(0) = y0. (3.36)

From (3.36), one gets easily the formal relation

y(x) = (1 − q)xA
∑∞

i=0 q
iy(qix) + y(0). (3.37)

Hence the q-Picard approximations read

yn+1(x) = (1 − q)xA
∑∞

i=0 q
iyn(qix) + y(0); y0 = y(0), (3.38)

leading to

y1(x) = (xA+ I)y0, y2(x) = ( x2

1+qA
2 + xA + I)y0

. . .

yn(x) = [I +
∑n

i=1
xi

[n]q
Ai]y0,

. . . (3.39)

and for n→ ∞, we get the solution

y(x) = [I +
∑∞

i=1
xi

[n]q
Ai]y0

= eAx
q y0. (3.40)
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3.3 Exercises

1. Given the non homogenous linear system

Dqy(x) = A(x)y(x) + b(x). (3.41)

a) Write down the general solution of the corresponding homogenous equa-
tion

Dqy(x) = A(x)y(x), (3.42)

b) Prove that its general solution is found as y(x) = Y (x)C(x) where

Y (qx)DqC(x) = b(x) (3.43)

and reads

y(x) = Φ(x, x0)[y(x0) +

∫ x

x0

Φ(x0, qt)b(t)dqt], (3.44)

with

Φ(x, y) = Y (x).Y −1(y), (3.45)

Y (x) being the fundamental matrix of (3.42).

2. For a 2x2-matrix A and a 2-vector b, solve

a) Dqy(x) = Ay(x) + b;

b) Dqy(x) = Ay(x) + bx2.
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Chapter 4

Linear q-difference equations

of higher order

4.1 General theory

Consider the equation

[Dk
q−1 + a1(x)D

k−1
q−1 + . . .+ ak−1(x)Dq−1 + ak(x)]y(x) = g(x). (4.1)

It is said to be a k-order nonconstant coefficients linear non homogenous
q-difference equation of order k. The corresponding homogenous equation

reads

[Dk
q−1 + a1(x)D

k−1
q−1 + . . .+ ak−1(x)Dq−1 + ak(x)]y(x) = 0. (4.2)

The general theory of a scalar equation such as (4.1) is reduced to the general
theory for a system of equations such as (3.1). The reason for this is that
an equation such as (4.1) can be reduced to a system such as (3.1). Indeed,
supposing

z1(x) = y(x); z2(x) = Dq−1y(x); . . . ; zk(x) = Dk−1
q−1 y(x), (4.3)

we obtain the system

Dq−1z1(x) = z2(x),

Dq−1z2(x) = z3(x),

. . .

Dq−1zk−1(x) = zk(x)

Dq−1zk(x) = −(a1(x)zk(x) + . . .+ ak(x)z1(x)) + g(x) (4.4)

35
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In matrices terms, we have

Dqz(x) = A(x)z(qx) +G(x) (4.5)

where z(x) = (z1(x), . . . , zk(x))
t,

A(x) =















0 1 0 0 . . . 0
0 0 1 0 . . . 0

. . . . . .
0 . . . 0 1

−ak(qx), . . . . −a1(qx)















(4.6)

and G(x) = (0, . . . , 0, g(qx))t. So, from (4.3), it follows that the exis-

tence of a unique solution of (4.1) under the initial constraints y(x0) = y0,
Dq−1y(x0) = y1, . . ., D

k−1
q−1 y(x0) = yk−1, is equivalent to the existence

of a unique solution of (4.5) under the constraints (z1(x0), . . . , zk(x0))
t =

(y0, . . . , yk−1)
t. As a consequence, the existence of a fundamental system of

solutions y1(x), . . . , yk(x) of (4.2) is equivalent to the existence of a funda-
mental system (y1(x),Dq−1y1(x), . . . ,D

k−1
q−1 y1(x))

t, . . ., (yk(x),Dq−1yk(x), . . . ,D
k−1
q−1 yk(x))

t

of the homogenous part of(4.5)

Dqz(x) = A(x)z(qx), (4.7)

with the fundamental matrix

Φ(x) =











y1(x) y2(x) . . . yk(x)
Dq−1y1(x) Dq−1y2(x) . . . Dq−1yk(x)

. . . .

Dk−1
q−1 y1(x) Dk−1

q−1 y2(x) . . . Dk−1
q−1 yk(x)











. (4.8)

Indeed, if

∑k
i=1 αiyi(x) = 0 (4.9)

then

∑k
i=1 αiDq−1yi(x) = 0

. . .
∑k

i=1 αiD
k−1
q−1 yi(x) = 0 (4.10)

or

Φ(x)α = 0 (4.11)
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where Φ(x) is in (4.8) and α = (α1, . . . , αk)t. Hence the system yi, i =

1, . . . , k is linear independent iff the matrix Φ(x) in (4.8) is non singular.
The matrix Φ(x) can naturally be called the q-Wronskian or q-Casoratian
of the equation (4.2), correspondingly to the continuous or discrete cases.
Consider now the question of deriving the solution of the non homogenous

(4.1). If y1(x), . . . , yk(x) is a fundamental system of solution of the homoge-
nous equation (4.2), corresponding to the fundamental matrix Φ(x), then
according to the general theory of q-difference systems, the general solution
of (4.5) is found as

z(x) = Φ(x).C(x) (4.12)

where C(x) = (C1(x), . . . , Ck(x))
t is the solution of the system

Φ(x)DqC(x) = G(x), (4.13)

and reads

C(x) = C + (1 − q)x
∑∞

0 qiΦ−1(qix)G(qix), (4.14)

and the general solution of (4.1) reads

y(x) = z1(x) =
∑k

i=1Ci(x)yi(x). (4.15)

Note that for the q-difference equation

[Dk
q + a1(x)D

k−1
q + . . .+ ak−1(x)Dq + ak(x)]y(x) = g(x), (4.16)

the solution of the corresponding system reads z(x) = φ(x)C(x) where

Φ(x) =











y1(x) y2(x) . . . yk(x)
Dqy1(x) Dqy2(x) . . . Dqyk(x)

. . . .
Dk−1

q y1(x) Dk−1
q y2(x) . . . Dk−1

q yk(x)











, (4.17)

and C(x) is the solution of the system

Φ(qx)DqC(x) = h(x), (4.18)

with h(x) = (0, . . . , 0, g(x))t, giving

C(x) = C + (1 − q)x
∑∞

0 qiΦ−1(qi+1x)h(qix). (4.19)
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4.2 Linear q-difference equations with constant co-

efficients

Consider now the equations (4.1) and (4.2) in the cases when the coefficients
ai are not dependent of x. We have

[Dk
q−1 + a1D

k−1
q−1 + . . .+ ak−1Dq−1 + ak]y(x) = g(x) (4.20)

and

[Dk
q−1 + a1D

k−1
q−1 + . . .+ ak−1Dq−1 + ak]y(x) = 0. (4.21)

In this case, the equations can be solved explicitly whether or not it is
true for the corresponding algebraic equation. Consider first the equation
Dq−1y(x) = λy(x). According to the treatment of the chapter 1, its solution

reads y(x) = expq−1(λx). Loading this function in (4.21), one obtains the
following algebraic equation in λ called the characteristic equation of (4.21):

λk + a1λ
k−1 + . . .+ ak−1λ+ ak = 0. (4.22)

Here we distinguish two cases:

Theorem 4.2.1 (i) If the equation (4.22) has k distinct roots, λ1, λ2, . . .,
λk, then, the equation (4.21) admits as k linear independent solutions the
functions yi(x) = expq−1(λix), i = 1, . . . , k.

(ii) If some of the roots of the characteristic equation are not distinct, then
in that case also, the equation (4.21) admits k linear independent solutions.
If for example a given root λ admits a multiplicity equal to m, so the corre-

sponding independent solutions need to be searched among functions of the
form

y(x) =
∑∞

n=0 cnx
n (4.23)

where the coefficients cn satisfies

∑m
i=0

[

(
i

m
)(−λ)m−i(

∏i−1
k=0

1−q−(n+i)+k

1−q−1 )

]

cn+i = 0 (4.24)

a difference homogenous equation of order m.



Linear q-Difference equations of higher order 39

Proof. The first part of the theorem is proved straightforwardly. To prove

the second part, it suffices also to load (4.23) in the following auxiliary
equation

(Dq−1 − λ)my(x) = 0 (4.25)

Note finally that the particular solution of (4.20) can be obtained by the
method of variation of constants as in the case of non constant coefficients.

The equation (4.1) admits another interesting particular cases. Consider for
example the case when all the coefficients ai(x) have the form ai(x) = xidi

i = 0, . . . , k, where the di are constants. After simplifying, the equation
reads

∑k
i=0 biy(q

ix) = g(x), (4.26)

for some constants bi, i = 0, . . . , k. The homogenous version naturally reads

∑k
i=0 biy(q

ix) = 0, (4.27)

To solve it, one first solves the equation y(qx) = λy(x). Its solution was seen
in the first chapter to be

y(x) = x
ln λ
ln q . (4.28)

Loading (4.28) in (4.27), one gets a k-order algebraic equation called char-
acteristic equation for (4.27)

∑k
i=0 biλ

i = 0. (4.29)

Here as well two possible situations arise, as shows the following

Theorem 4.2.2 (i) If the characteristic equation (4.29) has k distinct roots,
λi, i = 1, . . . , k. In that case, (4.27) admits k linear independent solutions

yi(x) = x
ln λi
ln q , i = 1, . . . , k.

(ii) If some roots are multiple, then the equation (4.27) admits as well k

linear independent solutions: If a root say λ is m-iple, then to it correspond

m solutions reading yi(x) = x
ln λ
ln q

lni x

lni q
, where i = 0, . . . ,m− 1.

Proof. The proof of the first part of the theorem is straightforward. For
the second part, it suffices to prove that

(Eq − λ)mx
ln λ
ln q

lni x

lni q
= 0; 0 ≤ i ≤ m− 1. (4.30)
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Indeed,

(Eq − λ)mx
ln λ
ln q

lni x

lni q

= λmx
ln λ
ln q (Eq − 1)m lni x

lni q
= 0; 0 ≤ i ≤ m− 1. (4.31)

Example. Solve the q-difference equation

D2
qy − 5Dqy + 6y = x2. (4.32)

Solution. The characteristic equation of that equation reads

λ2 − 5λ+ 6 = 0 (4.33)

and have solutions λ1 = 3 and λ2 = 2. This leads to the fundamental

system of the corresponding homogenous equation y1 = e3x
q , y2 = e2x

q and
the general solution of (4.32) is y(x) = c1(x)y1 + c2(x)y2, where

Φ(qx)

(

Dqc1(x)

Dqc2(x)

)

=

(

0

x2

)

, (4.34)

and

Φ(x) =

(

e3x
q e2x

q

3e3x
q 2e2x

q

)

. (4.35)

This leads to Dqc1 = x2e−3qx
q−1 and Dqc2 = −x2e−2qx

q−1 . q-Integrations by parts
give

c1(x) = c1 + e−3x
q−1 [(−1

3
)x2 − (

1

3
)2(q + 1)x− (

1

3
)3(q + 1)] + (

1

3
)3(q + 1)

(4.36)

and

c2(x) = c2 + e−3x
q−1 [(−1

2
)x2 − (

1

2
)2(q + 1)x− (

1

2
)3(q + 1)] + (

1

2
)3(q + 1).

(4.37)

Consequently, the general solution of (4.32) is

y(x) = e3x
q c1 + [(−1

3
)x2 − (

1

3
)2(q + 1)x− (

1

3
)3(q + 1)] + (

1

3
)3(q + 1)e3x

q

+e2x
q c2 + [(−1

2
)x2 − (

1

2
)2(q + 1)x− (

1

2
)3(q + 1)] + (

1

2
)3(q + 1)e3x

q .

(4.38)
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4.3 Nonlinear q-difference equations transformable

into linear equations of higher order

As in the case of first order, some nonlinear q-difference equations are trans-
formable into linear ones.

Case 1. q-Difference equations of the form

∏k
i=0[D

i
q−1y(x)]ri = 0 (4.39)

or equivalently

∏k
i=0[y(q

ix)]ri = 0. (4.40)

It is made linear by applying the ln function on the lhs of the equality.

Case 2. The Riccati type equation:

a0(x)Dqy(x) = b0(x)y(x)y(qx) + c0(x)
y(x) + y(qx)

2
+ d0(x). (4.41)

This equation can be written in the following homographic form

y(qx) = a(x)y(x)+b(x)
c(x)y(x)+d(x) . (4.42)

To make (4.42) linear, it suffices to suppose

z(qx)/z(x) = c(x)y(x) + d(x). (4.43)

The resulting second order linear q-difference equation reads

[c(x)]z(q2x) + [−c(x)d(qx) − c(qx)a(x)]z(qx)

+[c(qx)a(x)d(x) − c(qx)b(x)c(x)]z(x) = 0. (4.44)

4.4 Linear q-difference equations of second order

As in the case of differential or difference equations, linear second order q-
difference equations are of particular interest in the theory and applications
of q-difference equations. Examples of such applications can be found in
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the chapter 6 in connection with orthogonal polynomials. We can write a

general linear q-difference equation of second order in the form:

a0(x)D
2
qy + a1(x)Dqy + a2(x)y = b(x). (4.45)

This is a non homogenous equation while the corresponding homogenous one
reads

a0(x)D
2
qy + a1(x)Dqy + a2(x)y = 0. (4.46)

However, in some investigations, it is appropriate to consider the equations
of the forms

a0(x)Dq−1Dqy + a1(x)Dqy + a2(x)y = b(x) (4.47)

and

a0(x)Dq−1Dqy + a1(x)Dqy + a2(x)y = 0 (4.48)

respectively. As it appeared in the theory of general higher order linear q-
difference equations, the essential part of the study of (4.45) or (4.47) consists
in the one done for (4.46) or (4.48). Hence, the crux of the matter in this
section will concern the equation (4.46). Here we consider particularly some

questions of solvability and orthogonality of solutions of (4.46) or (4.48).

Solvability

For the questions to be treated here, we can consider quite simply the nor-

malized form of (4.46):

D2
qy + a1(x)Dqy + a2(x)y = 0. (4.49)

1. According to the general theory of linear q-difference equations, the

equation (4.49) admits two linear independent solutions forming a funda-
mental system of solutions. But when the coefficients a1 and a2 are not
constant, there is generally no way for finding in quadratures these solu-
tions. However, when one solution of the equation is known, this allows as

in general, to decrease by one the degree of the equation and consequently
to find the second solution. Indeed, let y1 = y1(x) be one of the solutions.
The second solution will be searched under the form:

y2 = z(x)y1(x) (4.50)
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where z(x) is an unknown function to be determined. Loading (4.50) in

(4.49) and taking in account the fact that y1 is a solution of (4.49), one
obtains the following equation for z:

y1(q
2x)D2

qz + {a1y1(qx) +Dq[y1(qx)] + [Dqy1](qx)}Dqz = 0. (4.51)

Letting

Dqz = t(x) (4.52)

one obtains a first order q-difference equation for t(x), which can naturally

be solved explicitly in quadratures.

2. Another way of finding the second solution y2, once one solution y1 of
(4.49) is known, consists in using a q-version of the so called in differential
equations theory Liouville-Ostrogradsky formula. To establish the formula,

let write (4.49) in the form

y(q2x) + ã1(x)y(qx) + ã2(x)y(x) = 0, (4.53)

where ã1(x) = a1(q−1)xq−q−1 and ã2(x) = a2(q−1)2x2q−a1(q−1)xq+q.
Since y1 and y2 are solutions of (4.53), we have







y(x) y1(x) y2(x)

y(qx) y1(qx) y2(qx)
y(q2x) y1(q

2x) y2(q
2x)













1

ã1(x)
ã2(x)






=







0

0
0






(4.54)

⇔

∣

∣

∣

∣

∣

∣

∣

y(x) y1(x) y2(x)
y(qx) y1(qx) y2(qx)

y(q2x) y1(q
2x) y2(q

2x)

∣

∣

∣

∣

∣

∣

∣

= 0 (4.55)

Developing the determinant by the first column and comparing the resulting

equation with (4.49) gives

V (qx) = ã2(x)V (x), (4.56)

with V (x) = y1(x)y2(qx) − y2(x)y1(qx). Let

W (x) =

∣

∣

∣

∣

∣

y1(x) y2(x)

Dqy1(x) Dqy2(x)

∣

∣

∣

∣

∣

= y1(x)Dqy2(x) − y2(x)Dqy1(x). (4.57)
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We have

V (x) = (q − 1)xW (x). (4.58)

Using (4.56), we get

DqW (x) = [(q − 1)xa2(x) − a1]W (x). (4.59)

Clearly, for q ; 1, (4.59) tends to the Liouville-Ostrogradsky formula in the
differential calculus. Hence we can refer to (4.59) as q-Liouville-Ostrogradsky

formula. On the other side if in (4.59), y1 is known, the second solution y2

satisfies a first order q-difference equation and consequently can be found in
quadratures.

3. Solutions in series (here we suppose that the variable x ∈ C, as we

are concerned with analytic functions). Contemplating the nature of the
coefficients ai, i = 0, 1, 2, in (4.46), one can guess which kind of solutions is
involved. For example, if the related coefficients in (4.46) are polynomials,

so one can expect that the solutions are of polynomial type. This case will
be discussed in details in the chapter 6. Consider here the situation when
the coefficients in (4.46) are analytic functions at the origin i.e. they can be
developed in convergent entire powers series:

f(x) =
∞
∑

n=0

fnx
n; g(x) =

∞
∑

n=0

gnx
n. (4.60)

and attempt to prove that the equation admits analytic solutions. We have

the following

Theorem 4.4.1 The second order q-difference equation

D2
qy + f(x)Dq + g(x)y = 0 (4.61)

with f(x) and g(x) analytic functions say at the origin, admits two linear
independent analytic solutions at the origin.

Proof. As f(x) and g(x) are analytic at the origin, they can be developed

in entire powers series:

f(x) =
∞
∑

n=0

fnx
n; g(x) =

∞
∑

n=0

gnx
n. (4.62)
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As the solutions are expected to be analytic at the origin, we write

y =
∞
∑

n=0

anx
n. (4.63)

Loading (4.62) and (4.63) in (4.61) and equating the coefficients to zero, one
gets

an+2
qn+2 − 1

q − 1

qn+1 − 1

q − 1
=

−
n
∑

k=0

(fn−kak+1
qk+1 − 1

q − 1
+ gn−kak), n = 0, 1, 2, . . . (4.64)

This equation allows to determine the coefficients an, n = 2, 3 . . . in (4.63).
The coefficients a0 and a1 being arbitrarily, they can be chosen so that the

corresponding solutions be linear independent, and the theorem is proved.

4. Constant coefficients. As noted for the higher order case, second order
linear q-difference equations can be solved explicitly. Consider the equation
(4.49) with a1 and a2 constant in x:

D2
qy + a1Dqy + a2y = 0. (4.65)

Suppose that the function eq(λx) is a solution of (4.65). We get

λ2 + a1λ+ a2 = 0, (4.66)

which is said to be the characteristic equation of (4.65). Let a and b be the

roots of (4.66). This means that (4.65) can be written as

(Dq − b)(Dq − a)y = (Dq − a)(Dq − b)y = 0. (4.67)

There is here two possibilities:
Case 1. The roots are distinct. In this case, the two independent solutions
of (4.65) read clearly

y1(x) = eq(ax); y2(x) = eq(bx) (4.68)

Case 2. The equation (4.66) has a double root and we need to solve

(Dq − a)2y = D2
q + a1Dqy + a2y = 0, (4.69)
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with a1 = −2a and a2 = a2. Here the first solution reads clearly y1 = eq(ax).

Let search next the second solution under the form y2 = z(x)y1(x). Loading
this expression in (4.69), one gets

y1(qx)D
2
qz(x) + [a1y1(qx) +Dqy1(qx)]Dqz(x) +Dq[y1(qx)]Dqz(qx) = 0.(4.70)

Letting Dqz(x) = t(x), one gets

y1(qx)Dqt(x) + [a1y1(qx) +Dqy1(qx)]t(x) +Dq[y1(qx)]t(qx) = 0. (4.71)

Considering the value of y1(x) and taking in account the fact thatDqeq(λx) =
λeq(λx), (4.71) simplifies in

Dqt(x) + [a1 + a]t(x) + aqt(qx) = 0 (4.72)

or

Dqt(x) − at(x) + aqt(qx) = 0. (4.73)

Searching the solution of (4.73) under the form

t(x) =
∞
∑

n=0

tnx
n (4.74)

we get the recurrence equation for the coefficients

qn+1

q − 1
tn+1 + a(qn+1 − 1)tn = 0 (4.75)

which solution reads

tn = (1 − q)nant0. (4.76)

Consider next the equation

Dqz(x) = t(x) = t0

∞
∑

0

(1 − q)nanxn (4.77)

and letting z(x) =
∑∞

0 znx
n, one gets

zn+1
qn+1 − 1

q − 1
= t0(1 − q)nan (4.78)
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or

zn = t0
((1 − q)a)n

a(1 − qn)
= t0

(1 − q)n−1an−1

1 + q + q2 + . . .+ qn−1
, n = 1, 2 . . . (4.79)

z0 being arbitrarily. Hence

y2 = z(x)y1(x) (4.80)

with

z(x) = z0 + t0x+ t0(1− q)
∞
∑

2

(1 − q)n−2an−1

1 + q + q2 + . . .+ qn−1
xn (4.81)

It is worth remarking that for q ; 1, z(x) ; z0 + t0x and y1 and y2 take the
form of solutions of a constant coefficients second order differential equation
whose characteristic equation has a double root.

Classification of Singularities. Solutions in the neighborhood of a

regular singularity

(here also, we suppose that the variable x ∈ C)

1. z = z0, finite. Consider the equation

D2
qy(x) + f(x)Dqy(x) + g(x)y(x) = 0 (4.82)

where x ∈ C and let x0 be a given point in C. If the functions f(x) and g(x)
are analytic at the point x = x0, then x0 is said to be an ordinary point of
the q-difference equation (4.82). On the other side, if x0 is not an ordinary

point but the functions (x−x0)f(x) and (x−x0)
2g(x) are analytic at x = x0,

then x = x0 is said to be a regular singular point for the equation (4.82). If
x = x0 is a pole for both f(x) and g(x), and l is the least integer such that
(x− x0)

lf(x) and (x− x0)
2lg(x) are both analytic at x = x0, then x = x0 is

said to have a singularity of rank l−1. Thus for example, a regular singular
point is of rank zero. If either f(x) or g(x) has an essential singularity at
x = x0, then x = x0 is said to have a singularity of infinite rank.

Consider now the question of solvability of (4.82) in series around a regular
singular point x = x0. For simplicity, we let x0 = 0. We remember from
the preceding section that if x = 0 is an ordinary point, then the equation
(4.82) admits a pair of independent solutions given in form of series. We now
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extend this result in the situation when x = 0 is a regular singular point.

Clearly, when x = 0 is a regular singular point, (4.82) may be written as

D2
qy(x) +

f(x)

x
Dqy(x) +

g(x)

x2
y(x) = 0 (4.83)

where f(x) and g(x) are analytic functions at x = 0. Let f(x) =
∑∞

k=0 fkx
k

and g(x) =
∑∞

k=0 gkx
k and try the following form for the solution

y(x) =
∞
∑

k=0

akx
k+α (4.84)

Loading these expressions in (4.83), and equating the resulting coefficient to
zero, we get

Q(qα+k)ak = −
k−1
∑

j=0

(fk−j
qα+j − 1

q − 1
+ gk−j)aj (4.85)

k = 1, 2, . . . (4.86)

where

Q(qα) =
qα − 1

q − 1

qα−1 − 1

q − 1
+ f0

qα − 1

q − 1
+ g0. (4.87)

The equation

E(α) = Q(qα) = 0 (4.88)

is called the indicial equation and its roots indices or exponents. From
(4.86) it appears that if the roots of the indicial equation are distinct and do
not differ by an integer, then one gets two distinct sequences of coefficients

ak, corresponding to two distinct solutions of (4.83) in form (4.84). In other
cases, only one solution of this type is available, unless the rhs of (4.86)
vanishes at the same value of the positive integer k for which E(α + k) =

Q(qα+k) = 0.

2. z0 = ∞. Consider again the equation (4.82). To precise that the q-
derivative is performed along the variable x, we will write Dqx instead of

Dq. Thus we write (4.82) as

D2
qxy(x) + f(x)Dqxy(x) + g(x)y(x) = 0 (4.89)
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To discuss the character of the point at the infinity, we need to make the

transformation x = 1/t. At the same time the parameter q is replaced by
q−1. Considering the relation

Dqxw(x) = −qt2Dqtw(1/t) (4.90)

the equation (4.82) becomes

D2
qty(1/t) + p(t)Dqty(1/t) + q(t)y(1/t) = 0 (4.91)

where

p(t) =
q + 1

q2t
− 1

q3t2
f(1/t); q(t) =

1

q4t4
g(1/t). (4.92)

Hence we have

(1) z = ∞ is an ordinary point for the equation (4.89) iff the point t = 0

is an ordinary point for the equation (4.91), i.e. the functions p(t) and q(t)

are analytic at the point t = 0 or equivalently the functions q+1
q x − x2

q3 f(x)

and x4

q4 g(x) are analytic at the point x = ∞.

(2) z = ∞ is a regular singular point for the equation (4.89) iff the point
t = 0 is a regular singular point for (4.91) that is the functions

tp(t) =
q + 1

q2
− 1

q3t
f(1/t); t2q(t) =

1

q4t2
g(1/t) (4.93)

are analytic at the point t = 0 or equivalently xf(x) and x2g(x) are analytic

at x = ∞. This suggests that

f(x) =
1

x

∞
∑

k=0

f−kx
−k (4.94)

g(x) =
1

x2

∞
∑

k=0

g−kx
−k. (4.95)

Loading (4.94) and (4.95) in (4.89), we get (4.86) with k and α replaced by

−k and −α respectively. For f(x) = f0
x ; g(x) = g0

x2 ; y(x) = x−α, we get

q−α − 1

q − 1

q−α−1 − 1

q − 1
+
q−α − 1

q − 1
f0 + g0 = 0 (4.96)

also called indicial equation.
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3. Example. Consider for example the q-hypergeometric equation [35]

x(qc − qa+b+1x)D2
qy(x) + [

1 − qc

1 − q
− (qb1 − qa

1 − q
+ qa 1 − qb+1

1 − q
)x]Dqy(x)

−1 − qa

1 − q

1 − qb

1 − q
y(x) = 0.(4.97)

This is a q-version of the classical hypergeometric differential equation

x(1 − x)y′′(x) + (c− (a+ b+ 1)z)y′(x) − aby(x) = 0 (4.98)

having as particular solutions

y1(x) =2 F1(a, b; c;x); y2(x) = x1−c
2 F1(a− c+ 1, b− c+ 1; 2 − c;x).(4.99)

The equation (4.97) can clearly be written in the form (4.82) with

f(x) =
(1 − qc) − (qb(1 − qa) + qa(1 − qb+1))x

(1 − q)x(qc − qa+b+1x)

g(x) =
(qa − 1)(1 − qb)

(1 − q)2x(qc − qa+b+1x)
. (4.100)

The equation (4.97) has three regular singularities at the points x = 0,

x = qc−a−b−1 and x = ∞ corresponding to the regular singularities x = 0,
x = 1 and x = ∞ of (4.98) .
Considering the indicial equation (4.88), that one can write

[α]2q − (1 − qf0)[α]q + qg0 = 0, (4.101)

where

[α]q =
1 − qα

1 − q
, (4.102)

we have

(1) For x = 0:

f0 = −(q−c − 1)/(−1 + q); g0 = 0 (4.103)

and

[α]q,1 = 0; [α]q,2 = (−1 + q−c+1)/(−1 + q). (4.104)
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(2) For x = qc−a−b−1:

f0 = −(−q−c+1 + q−a − 1 + q−b)/(q(−1 + q)); g0 = 0 (4.105)

and

[α]q,1 = 0; [α]q,2 = −(q−c+1 − q−a + 2 − q − q−b)/(−1 + q). (4.106)

For the regular singular point at x = ∞, we consider the indicial equation
(4.96), that one can write

[−α]2q − (1 − qf0)[−α]q + qg0 = 0, (4.107)

where

[−α]q =
1 − q−α

1 − q
, (4.108)

for

f0 = −(q−a − 1 + q−b − q)/(q(−1 + q));

g0 = −(−q−a−b + q−a + q−b − 1)/((−1 + q)2q) (4.109)

and obtain

[−α]q,1 = 1/2(2q − q2 − q−a + 1 − q−b

−sqrt((−2q2 − 4q3 + q4 − 4q−a+1 + 6q−a+2 + 4q

−4q−b+1 + 6q−b+2 + q−2a − 2q−a + 2q−a−b

+1 − 2q−b + q−2b − 4q2−a−b)/(q2(−1 + q)2))q

+sqrt((−2q2 − 4q3 + q4 − 4q−a+1 + 6q−a+2 + 4q − 4q−b+1

+6q−b+2 + q−2a − 2q−a + 2q−a−b

+1 − 2q−b + q−2b

−4q2−a−b)/(q2(−1 + q)2))q2)/(q2(−1 + q)) (4.110)

and

[−α]q,2 = −1/2(−2q + q2 + q−a − 1 + q−b

−sqrt((−2q2 − 4q3 + q4 − 4q−a+1 + 6q−a+2

+4q − 4q−b+1 + 6q−b+2 + q−2a − 2q−a + 2q−a−b

+1 − 2q−b + q−2b − 4q2−a−b)/(q2(−1 + q)2))q

+sqrt((−2q2 − 4q3 + q4 − 4q−a+1 + 6q−a+2 + 4q − 4q−b+1

+6q−b+2 + q−2a − 2q−a + 2q−a−b

+1 − 2q−b + q−2b

−4q2−a−b)/(q2(−1 + q)2))q2)/(q2(−1 + q)). (4.111)
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Consider for example the simplest case when the regular singularity is located

at x = 0. Searching the solution under the form

y(x) =
∞
∑

s=0

csx
s (4.112)

we get

cs+1

cs

=
(1 − qa+α+s)(1 − qb+α+s)

(1 − qc+α+s)(1 − q1+α+s)
(4.113)

which lead to the particular solutions of (4.97)

y1(x) =2 φ1(q
a, qb; qc; q, x), y2(x) = x1−c

2 φ1(q
1+a−c, q1+b−c; q2−c; q, x),(4.114)

(q-analogues of (4.99)), corresponding to the roots of the indicial equations

[α]q,1 = 0 and [α]q,2 = [1 − c] respectively.

Orthogonality

For this purpose, we write the second order linear q-difference equation in
the form

a0(x)Dq−1Dqy + a1(x)Dqy + a2(x)y = 0. (4.115)

This equation can be written as

A(x)y(x) = [u(x)Eq + v(x) + w(x)E−1
q ]y(x) = λy(x), (4.116)

where Eqf(x) = f(qx) and E−1
q f(x) = Eq−1f(x) = f(x/q). Let yn(x) and

ym(x) be two sequences of its eigenfunctions corresponding to two distinct
sequences of eigenvalues λn and λm respectively. We will search the condi-
tions under which yn(x) and ym(x) are orthogonal. The usual receipt is to

find the conditions under which

(A(x)yn(x), ym(x))ρ(x) = (yn(x), A(x)ym(x))ρ(x) (4.117)

where (f(x), g(x))ρ(x) stands for the q-discrete weighted inner product:

(f(x), g(x))ρ(x) =def
∫ b
a f(x)g(x)ρ(x)dqx. (4.118)
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Subtracting member with member the equalities

(Ayn)ym = λnynym (4.119)

and

(Aym)yn = λmynym (4.120)

one gets

(λn − λm)ynym = (Ayn)ym − (Aym)yn. (4.121)

Multiplying next the two members of the equality by ρ(x) and q-integrating
from 0 to x, we obtain

(λn − λm)(1 − q)x
∑∞

i=0 q
iyn(xqi)ym(xqi)ρ(xqi)

= (1 − q)x
∑∞

i=0 q
i[(Ayn)(xqi)ym(xqi) − (Aym)(xqi)yn(xqi)]ρ(xqi).(4.122)

Simplifications give

(λn − λm)(1 − q)x
∑∞

i=0 q
iyn(xqi)ym(xqi)ρ(xqi)

= (1 − q)xq−1u(xq−1)ρ(xq−1)[yn(xq−1)ym(x) − yn(x)ym(xq−1)],(4.123)

under the constraint defining the q-discrete weight ρ(x):

ρ(qx)
ρ(x) = u(x)

qw(qx) . (4.124)

As a consequence we get

(λn − λm)
∫ b
a yn(x)ym(x)ρ(x)dqx

= (1 − q)xq−1u(xq−1)ρ(xq−1)[yn(xq−1)ym(x) − yn(x)ym(xq−1)] |ba .(4.125)

From where we obtain the condition of q-orthogonality for yn and ym, n 6= m:

u(xq−1)ρ(xq−1)[yn(xq−1)ym(x) − yn(x)ym(xq−1)] |ba= 0. (4.126)

4.5 Exercises

1. Prove that
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a) the functions cosq(x), sinq(x) are solutions of

D2
qy(x) + y(x) = 0,

D4
qy(x) − y(x) = 0, (4.127)

b) the functions coshq(x), sinhq(x) are solutions of

D2
qy(x) − y(x) = 0,

D4
qy(x) − y(x) = 0, (4.128)

c) the functions cosq−1(x), sinq−1(x) are solutions of

D2
q−1y(x) + y(x) = 0,

D4
q−1y(x) + y(x) = 0, (4.129)

d) the functions coshq−1(x), sinhq−1(x) are solutions of

D2
q−1y(x) − y(x) = 0,

D4
q−1y(x) − y(x) = 0, (4.130)

e)the functions cosqq−1(x), sinqq−1(x) are solutions of

(Dq + 1)(Dq−1 + 1)y(x) = 0, (4.131)

f) the functions coshqq−1(x), sinhqq−1(x) are solutions of

(Dq − 1)(Dq−1 − 1)y(x) = 0. (4.132)

2. Solve

a) D2
qy(x) = ay(x) + b,

b) D2
qy(x) − 3Dqy(x) + 2y(x) = x3

c)

y(q−1x) =
ay(x) + b

cy(x) + d
. (4.133)
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3. Find two q-operators A = D3
q + u1(x)D

2
q + u2(x)Dq + u3(x) and B =

D2
q + v1(x)Dq + v2(x) such that their q-commutation

[A,B] = A.B − qB.A (4.134)

is an operator of degree zero in Dq.

4. Prove that the functions sinq−1(x) and cosq−1(x) are solutions of

(q − 1)2D2
qy(x) + qy(q2x) = 0 (4.135)

and that the functions sinq(x) and cosq(x) solve

(q − 1)2D2
qy(x) + y(x) = 0. (4.136)
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Chapter 5

q-Laplace transform

Laplace transform of an exponential type function f(x) is given by

F (p) = L{f(x)} =

∫ +∞

0
e−pxf(x)dx, p = a+ ib ∈ C. (5.1)

and plays a major role in pure and applied analysis, specially in solving
differential equations. If we consider f(x) as a function of a discrete variable
i.e. t ∈ Z, then the transformation (5.1) reads

F (z) = Z{f(x)} =
+∞
∑

j=0

f(j)z−j, z = e−p. (5.2)

It is referred to as Z transform and plays similar role in difference analysis
as Laplace transform in continuous analysis, specially in solving difference
equations.

In this chapter, we are concerned with a q-version of the Laplace trans-
form (5.1) which is expected to play similar role in q-difference analysis as

Laplace transform in continuous analysis or Z transform in difference anal-
ysis, specially in solving q-difference equations.

Studies of q-versions of Laplace transform go back up to Hahn [31]. Re-
searches in the area were then pursued in many works by W H Abdi [1, 2, 3, 4]
and more recently in [37]. However, there is very significant difference be-

tween the approach in the latter work and the previous ones. Indeed, in the
studies by Hahn and Abdi, the q-version of the Laplace transform consists
in choosing a q-version of the exponential function e−px and then replace
the integral in (5.1) by the corresponding q-integral. On the other side, in

57
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work of Lenzi and coauthors, the q-version of the Laplace transform consists

in replacing simply the e−px function in (5.1) by its certain q-deformation.

In this chapter, we are clearly concerned with the first of the two ap-

proaches. The definitions of the ”q-Laplace transform” by Hahn [31] are
cited by Abdi in Equation (1.1) and Equation (1.2) in [1]. The first one
replaces e−px by e−px

1/q and the q-integral is performed from 0 to p−1; The

second replaces e−px by e−px
q and the q-integral is performed from 0 to ∞ as

usual. Abdi gives details for the two types of q-Laplace transform. As noted
Abdi, each option has advantages and drawbacks: For the first choice, the
convolution product property works but the theorem of Goldstein does’nt
while for the second, the situation is conversed. The q-Laplace transform

approach of this chapter replaces e−px by e−px
1/q and the q-integral is per-

formed from 0 to ∞, as usual. This version is closer to the 2nd option
of Hahn not only from the point of view of similarity in forms but also in
properties. Thus the properties of attenuation, translation and convolution

product work only formally (presence of p in the calculated originals or x in
the images). Also, the three properties aren’t available in the second version
of Hahn-Abdi (they are absent in [1]) while only the third among the three

properties-the convolution product-is available in the case of the first version.
However all the three properties works in the version of Lenzi, although for
example the transformation of xn works with difficulties. Moreover Lenzi
works with q-deformation of the continuous case as noted above. Summary,

the q-version of this chapter is less or more equivalent to the second option
of Hahn-Abdi. Both are feasible given that each function e−px

q or e−px
1/q tends

to zero when x tend to ∞, which makes possible the integration by parts
from 0 to ∞. However,it seemed to us natural to take e−px

q−1 , as the q-version

of e−px, since e−px
q−1 is the exact inverse of epx

q , as e−px is the exact inverse of
epx.

More exactly, for a given function f(x) on the lattice (1.9), we define its
q-Laplace transform as the function

F (p) = Lq{f(x)} =

∫ +∞

0
e−px
q−1 f(x)dqx, p = s+ iσ ∈ C. (5.3)

and we denote f(x) ⇀↽q F (p). Here, f(x) is referred to as the q-original of
F (p), while F (p) is referred to as the q-image of f(x) by the q-Laplace trans-
form operation. In the following paragraphes, we study its basic properties
and apply it to certain q-difference equations.
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5.1 Properties of the q-Laplace transform

1. Linearity. Clearly

Lq{αf(x) + βg(x)} = αLq{f(x)} + βLq{g(x)} (5.4)

2. Scaling. Let

F (p) =

∫ +∞

0
e−px
q−1 f(x)dqx. (5.5)

We get

F (
p

α
) =

∫ +∞

0
e
−

p
α

x

q−1 f(x)dqx

= α

∫ +∞

0
e−px
q−1 f(αx)dqx. (5.6)

Or

1

α
F (

p

α
) =

∫ +∞

0
e
− p

α
x

q−1 f(x)dqx

=

∫ +∞

0
e−px
q−1 f(αx)dqx. (5.7)

Hence

f(αx) ⇀↽q
1

α
F (

p

α
). (5.8)

3. Attenuation, or Substitution. We have

F (p− p0) =

∫ +∞

0
e
−(p−p0)x
q−1 f(x)dqx

=

∫ +∞

0
e−px
q−1 [e−px+p0x

q−1 epx
q f(x)]dqx

= Lq{e−px+p0x
q−1 epx

q f(x)}. (5.9)

Hence, formally

e−px+p0x
q−1 epx

q f(x) ⇀↽q F (p− p0). (5.10)
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4. Translation. Consider the function

η(x) =

{

0, x < 0
1, x ≥ 0

. (5.11)

It is clear that f(x) = f(x)η(x) for x ≥ 0. Hence we have

Lq{f(x− x0)} =

∫ ∞

x0

e−px
q−1 f(x− x0)η(x− x0)dqx. (5.12)

Supposing x− x0 = t, we get

Lq{f(x− x0)} =

∫ ∞

0

x+ x0

x
e
−p(x+x0)
q−1 f(x)dqx

= e−px0

q−1 Lq{
x + x0

x
epx0
q epx

q e
−p(x+x0)
q−1 f(x)}. (5.13)

5. Transform of derivatives. Let

f(x) ⇀↽q F (p). (5.14)

We have

G(p) =

∫ +∞

0
e−px
q−1 [Dqf(x)]dqx

= [e−px
q−1 f(x)]+∞

0 + p

∫ ∞

0
f(qx)e−pqx

q−1 dqx

= −f(0) + p

∫ ∞

0
f(qx)e−pqx

q−1 dqx

= −f(0) + pq−1
∫ ∞

0
f(x)e−px

q−1 dqx

=
p

q
F (p) − f(0), (5.15)

where we used the q-integration by parts and the change of variable x :=
xq−1. Thus

Dqf(x) ⇀↽q
p

q
F (p) − f(0). (5.16)

As a consequence, we get

D2
qf(x) ⇀↽q

p

q
[
p

q
F (p) − f(0)] −Dqf(0)

=
p2

q2
F (p) − p

q
f(0) −Dqf(0), (5.17)
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D3
qf(x) ⇀↽q

p3

q3
F (p) − p2

q2
f(0) − p

q
Dqf(0) −D2

qf(0), (5.18)

. . . . . . . . . (5.19)

Dn
q f(x) ⇀↽q

pn

qn
F (p) − pn−1

qn−1
f(0) − pn−2

qn−2
Dqf(0) − . . .−Dn−1

q f(0). (5.20)

Hence

Dn
q f(x) ⇀↽q

pn

qn
F (p) −

n−1
∑

j=0

(
p

q
)n−1−jDj

qf(0). (5.21)

6. Derivative of transforms. Again, let

F (p) =

∫ +∞

0
e−px
q−1 f(x)dqx. (5.22)

Calculate

Dq,pe
−px
q−1 = −xe−pqx

q−1 , (5.23)

D2
q,pe

−px
q−1 = (−x)(−qx)e−pq2x

q−1 , (5.24)

D3
q,pe

−px
q−1 = (−x)(−qx)(−q2x)e−pq3x

q−1 , (5.25)

. . . . . . . . . (5.26)

Dn
q,pe

−px
q−1 = (−x)(−qx)(−q2x) . . . (−qn−1x)e−pqnx

q−1

= (−x)nq
n
2
(n−1)e−pqnx

q−1 . (5.27)

Thus

Dn
q,pF (p) =

∫ +∞

0
(−x)nq

n
2
(n−1)e−pqnx

q−1 f(x)dqx (5.28)
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Using the summation form of the integral and then making the replacing

x := xq−n gives

Dn
q,pF (p) = (1 − q)

+∞
∑

x=0

x(−x)nq
n
2
(n−1)e−pqnx

q−1 f(x)

= q−n(1 − q)
+∞
∑

x=0

xe−px
q−1 (−xq−n)nq

n
2
(n−1)f(xq−n)

= q−n
∫ +∞

0
e−px
q−1 (−xq−n)nq

n
2
(n−1)f(xq−n)dqx

=

∫ +∞

0
e−px
q−1 [(−x)nq

−n
2

(n+3)f(xq−n)]dqx

= Lq{(−x)nq
−n
2

(n+3)f(xq−n)}. (5.29)

Hence

(−x)nq
−n
2

(n+3)f(xq−n) ⇀↽q D
n
q,pF (P ). (5.30)

7. Transform of integrals. We have

Lq{
∫ x

0
f(x)dqx} =

∫ ∞

0
e−px
q−1 [

∫ x

0
f(x)dqx]dqx

= −q
p

∫ ∞

0
[

∫ x

0
f(x)dqx][Dqe

−p
q
x

q−1 ]dqx

= −q
p
[(

∫ x

0
f(x)dqx)e

−
p
q
x

q−1 ]∞0 +
q

p

∫ ∞

0
e−px
q−1 f(x)dqx

=
q

p

∫ ∞

0
e−px
q−1 f(x)dqx = q

F (p)

p
. (5.31)

Hence

∫ x

0
f(x)dqx ⇀↽q q

F (p)

p
(5.32)

8. Integral of transforms. q-Integrating (5.5) both sides from p to ∞, and
interchanging the integrals (supposing that the conditions for this are satis-
fied), we get

∫ ∞

p
F (p)dqp =

∫ ∞

0
(

∫ ∞

p
e−px
q−1 dqp)f(x)dqx
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= q

∫ ∞

0

e
−

p
q
x

q−1

x
f(x)dqx

= q

∫ ∞

0
e−px
q−1

f(qx)

x
dqx = qLq{

f(qx)

x
}. (5.33)

Hence
∫ ∞

p
F (p)dqp ⇀↽q q

f(qx)

x
. (5.34)

This formula is especially useful for the calculus of infinite integrals. Indeed,
letting p→ 0 in (5.34), we get the useful formula

∫ ∞

0
F (p)dqp = q

∫ ∞

0

f(qx)

x
dqx = q

∫ ∞

0

f(x)

x
dqx. (5.35)

9. Product of transforms.
Let define the q-convolution product between f and g as

f(x) ∗q g(x) =def
∫ x

0
f(x)g̃(x− τ )dqx (5.36)

where the relation between g(x) and g̃(x) is to be determined latter, in order

that be fulfilled the condition

f(x) ∗q g(x) ⇀↽q Lq{f(x)}Lq{g(x)} = F (p)G(p). (5.37)

We have

f(x) ∗q g(x) ⇀↽q

∫ ∞

0
e−px
q−1 (

∫ x

0
f(t)g̃(x− t)dqt)dqx

=

∫ ∞

0

∫ x

0
e−px
q−1 f(t)g̃(x− t)dqtdqx

=

∫ ∞

0
f(t)(

∫ ∞

qt
e−px
q−1 g̃(x− t)dqx)dqt.

(5.38)

We calculate

I1 =

∫ ∞

qt
e−px
q−1 g̃(x− t)dqx

= (1 − q)
∞
∑

x=qt

q−1xe−pq−1x
q−1 g̃(q−1x− t)
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= (1 − q)
∞
∑

x=t

xe−px
q−1 g̃(x− t)

= (1 − q)
∞
∑

r=0

(r + t)e
−p(r+t)
q−1 g̃(r)

= (1− q)
∞
∑

r=0

r[
r + t

r
e
−p(r+t)
q−1 g̃(r)]

=

∫ ∞

r=0

r + t

r
e
−p(r+t)
q−1 g̃(r)dqr

= e−pt
q−1

∫ ∞

r=0
e−pr
q−1 [

r + t

r
e
−p(r+t)
q−1 ept

q e
pr
q g̃(r)]dqr (5.39)

Thus, if we set

g̃(r) =
r

r + t
ep(r+t)
q e−pt

q−1e
−pr
q−1 g(r), (5.40)

or

g̃(x− t) =
x− t

x
epx
q e−pt

q−1e
−p(x−t)
q−1 g(x− t), (5.41)

we get

f(x) ∗q g(x) ⇀↽q (

∫ ∞

0
e−pt
q−1f(t)dqt)(

∫ ∞

0
e−pr
q−1 g(r)dqr)

= F (p)G(p). (5.42)

In other words, if we define formally the q-convolution product between f
and g as

f(x) ∗q g(x) =def
∫ x

0
f(x)

x− t

x
epx
q e

−pt
q−1e

−p(x−t)
q−1 g(x− t)dqx, (5.43)

we get

f(x) ∗q g(x) ⇀↽q F (p)G(p). (5.44)

5.2 q-Laplace transforms of some elementary func-

tions

1. f(x) = 1. We have

F (p) =

∫ ∞

0
e−px
q−1 dqx = −q

p

∫ ∞

0
Dqe

−p
q
x

q−1 dqx

= −q
p
[e

−
p
q
x

q−1 ]∞0 =
q

p
(5.45)
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2. f(x) = x. We calculate

F (p) =

∫ ∞

0
e−px
q−1 xdqx = −q

p

∫ ∞

0
xDqe

−
p
q
x

q−1 dqx

= −q
p
{[xe−

p
q
x

q−1 ]∞0 −
∫ ∞

0
e−px
q−1 dqx}

=
q

p

∫ ∞

0
e−px
q−1 dqx =

q2

p2
. (5.46)

3. f(x) = xn. Contemplate the formula (5.30) and consider the case when
f(t) = 1. Then, using (5.45), we obtain the following

(−x)n ⇀↽q q
n
2
(n+3)Dn

q,p(
q

p
). (5.47)

Next, using iteratively the fact that

Dqp
−k =

q−k − 1

q − 1
p−(k+1), k = 1, 2, . . . , (5.48)

one easily finds that

Dn
q p

−1 = (−1)nq−
n
2
(n+1)[n]q!p

−(n+1). (5.49)

Finally (5.47) and (5.49) leads to

xn ⇀↽q [n]q!(
q

p
)n+1. (5.50)

4. f(x) = δ(x− x0) = {1, x=x0=qs0

0, x 6=x0
. We have

F (p) =

∫ ∞

0
e−px
q−1 δ(x− x0)dqx

= (1 − q)
∞
∑

i=−∞

qie−pqi

q−1 δ(q
i − qs0)

= (1 − q)qs0e−pqs0

q−1 = (1 − q)x0e
−px0

q−1 . (5.51)

5. f(x) = eax
q . Since eax

q =
∑∞

n=0
anxn

[n]q! , we get

F (p) =
∞
∑

0

an

[n]q!
Lq{xn} =

q

p

∞
∑

0

(
qa

p
)n

=
q

p− qa
, |p| > |aq| (5.52)

where we used (5.50).
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6. f(x) = eax
q−1 . Since

eax
q−1 =

∞
∑

n=0

anxn

[n]q−1!
=

∞
∑

n=0

q
n
2
(n−1)a

nxn

[n]q!
, (5.53)

we have

F (p) =
∞
∑

0

q
n
2
(n−1) a

n

[n]q!
Lq{xn} =

q

p

∞
∑

0

q
n
2
(n−1)(

qa

p
)n. (5.54)

7. f(x) = cosqwx =
eiwx
q +e−iwx

q

2 . Now

F (p) = Lq{cosqwx} =
Lq{eiwx

q } + Lq{e−iwx
q }

2

=
qp

p2 + q2w2
(5.55)

8. f(x) = sinqwx =
eiwx
q −e−iwx

q

2i . We get

F (p) = Lq{sinqwx} =
Lq{eiwx

q } − Lq{e−iwx
q }

2i

=
q2w

p2 + q2w2
. (5.56)

9. f(x) = coshqwx =
ewx
q +e−wx

q

2 . We have

F (p) = Lq{coshqwx} =
Lq{ewx

q } + Lq{e−wx
q }

2

=
qp

p2 − q2w2
. (5.57)

10. f(x) = sinhqwx =
ewx
q −e−wx

q

2 . We get

F (p) = Lq{sinqwx} =
Lq{ewx

q } − Lq{e−wx
q }

2

=
q2w

p2 − q2w2
. (5.58)
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11. f(x) =
∑∞

0 anx
n. We get

F (p) =
∞
∑

0

anLq{xn} =
q

p

∞
∑

0

an[n]q!(
q

p
)n. (5.59)

5.3 Inverse q-Laplace transform

In most of the cases, the search of the q-original of a given q-image is per-
formed using the results of the transformation of basic elementary functions

combined with the application of the properties of the q-Laplace transform.
In other cases, it is useful to refer to the so called first or second theorems
of development or simply to the inversion integral formula. We discus these
concepts in this section.

Theorem 5.3.1 (First theorem of development) If the q-image of the un-
known q-original can be developed in an integer series of powers of 1

p of the
form

F (p) =
∞
∑

j=0

ajp
−j−1 (5.60)

(this series is convergent to F (p) for |p| > R, where R = limn→∞ |an+1

an
| 6=

∞.), then the q-original f(x) is given by the formula

f(x) =
∞
∑

j=0

aj

qj+1[j]q!
xj (5.61)

the series being convergent for every value of x.

Proof. Note first that if a function g(x) is given by the power series g(x) =
∑∞

j=0 cjx
j , then clearly cj =

Dj
qg(0)
[j]q! . Hence, if F (p) =

∑∞
j=0 ajp

−j−1, then

aj =
Dj

q [p−1F (p−1)]p=0

[j]q!
. Next, denoting the inverse of the q-Laplace transform

by f(t) = L−1
q {F (p)}, we calculate

f(t) = L−1
q {F (p)} =

∞
∑

0

Dj
q[p

−1F (p−1)]p=0

[j]q!
L−1

q {p−j−1}

=
∞
∑

0

Dj
q[p

−1F (p−1)]p=0

[j]q!
(

xj

[j]q!qj+1
)

=
∞
∑

0

Dj
q[p

−1F (p−1)]p=0

[j]2q!q
j+1

xj =
∞
∑

j=0

aj

qj+1[j]q!
xj (5.62)
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and the theorem is proved.

Example. Using the first theorem of development, find the inverse of

F (p) = 1
p−p0

.

Solution. We have F (p) =
∑∞

j=0 p
j
0p

−j−1. Hence f(x) =
∑∞

j=0
pj
0

[j]q!qj+1x
j =

1
q

∑∞
j=0

(p0q−1x)j

[j]q! = q−1ep0q−1x
q .

The second theorem of development gives the possibility of determining
the q-original of a q-image that is a rational function of p:

F (p) =
u(p)

v(p)
, (5.63)

where u(p) and v(p) are polynomial functions of p of degree m and k (m < k),
respectively. If the development of the function v(p) in simple factors has
the form

v(p) =
r
∏

i=1

(p− pi)
ki , (

r
∑

i=1

ki = k), (5.64)

then it is known that F (p) can be developed in sum of simple fractions of

the form

A

(p− p0)n
(5.65)

where A is a constant, p0 a root of v(p) and n is ≤ the algebraic multiplicity
of that root. Hence, to handle the inversion of a function of type (5.63), it

suffices to handle that of functions of type

1

(p− p0)n
(5.66)

If all the roots of v(p) are simple, then n ≡ 1 and the problem is reduced to
the inversion of

1

p− p0
. (5.67)

In this case, one quickly thinks about (5.52) and gets

q−1ep0q−1t
q

⇀↽q
1

p− p0
. (5.68)
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On the other side, if some of the roots of v(p) are not simple, one should

have to deal with the inversion of (5.66) with n > 1. In this case, one can
also attempt to use the combining of (5.42) and (5.10) which formally gives

1

(p− p0)n+1
⇀↽q

e−pt+p0t
q−1 ept

q t
n

qn+1[n]q!
. (5.69)

However, considering even the simplest case of n = 0 in (5.69), we have

ep0q−1t
q

⇀↽q
q

p− p0

⇀↽q e
−pt+p0t
q−1 ept

q (5.70)

or equivalently

eat
q
⇀↽q

q

p− qa
⇀↽q e

−pt+qat
q−1 ept

q (5.71)

and one should be quickly disenchanted noting that the right hand side of

(5.71) is not a solution of the q-difference equation

Dqy(x) = ay(x) (5.72)

which its self leads to the left hand side of (5.71).
To handle a little better the difficulty, we must push father our thinking

in the q-world. For that we need remark that as the function

(−1)nn!

(p− p0)n
(5.73)

is obtained from (5.67) by deriving it n times, the q-version of (5.73) should
be determined by q-deriving (5.67) n times also. This gives

Dn
q

1

p− p0
=

(−1)n[n]q!
∏n

i=0(pq
i − p0)

(5.74)

Next, putting (5.68) in 5.30) and using 5.74), we get

1
∏n

i=0(pq
i − p0)

⇀↽q

tnq−
n
2
(n+3)ep0q−n−1t

q

q[n]q!
(5.75)

But,
∏n

i=0(pq
i − p0), tough it is a natural q-deformation of (p− p0)

n, it has

no multiple roots. Hence, we can summarize the thinking as follows: (i) If all

the roots v(p), F (p) = u(p)
v(p) , degu(p) < degv(p), are simple, so we can either
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use (5.75) if the roots are in the form q−ip0, i = ¯1, n, or develop F (p) in sum

of simple fractions and use (5.68), (ii) If some roots of v(p) are multiple, so
one should resort to the first theorem of development or to the more general
inversion formula that we now derive:

For that, consider the equation (5.60) and q-integrate the both sides on a

closed path γ+ containing and positively oriented with respect to, the origin
p = 0. We get

aj =
1

2πi

∮

γ+
F (p)pjdp (5.76)

Putting this in (5.61) gives

f(x) =
1

q

1

2πi

∮

γ+
F (p)e

p
q
x

q dp (5.77)

which is the inversion integral formula for type (5.60) complex functions.
More generally, we show that the formula remains valid for any function

F (p) analytic outside the disk |p| < R and F (∞) = 0. For that, calculate

the q-Laplace transform of the function in (5.77) where now F (p) is any
function that is zero at infinity and analytic outside the disk |p| < R, where
lies now the path γ+. We have

∫ ∞

0
e−zx
q−1 f(x)dqx =

1

q

1

2πi

∫ ∞

0
(

∮

γ+
F (p)e−zx

q−1 e
p
q
x

q dp)dqx (5.78)

=
1

q

1

2πi

∮

γ+
F (p)(

∫ ∞

0
e−zx
q−1 e

p
q
x

q dqx)dp (5.79)

=
1

2πi

∮

γ+
F (p)

1

z − p
dp; |z| > |p| (5.80)

=
1

2πi

∮

γ−

F (p)
1

p− z
dp (5.81)

where now γ− is now positively oriented with respect to the domain con-
taining the infinity. By the Cauchy integral formula we get get

1

2πi

∮

γ−

F (p)
1

p− z
dp = F (z) − F (∞) = F (z) (5.82)

which proves the expected inversion integral formula.
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5.4 Application of q-Laplace transform to certain

q-difference equations

As Laplace transform and Z-transform are largely applied in solving dif-
ferential and difference equations respectively, the q-Laplace transform is
expected to play the same role but now in q-difference equations. The prin-
ciple lying behind is always the same:

1. Given a k-order linear constant coefficients q-difference equation, with
initial conditions

a0D
k
qy(x) + a1D

k−1
q y(x) + . . .+ ak−1Dqy(x) + aky(x) = b(x),

y(0) = y0,Dqy(0) = y1, . . . ,D
k−1y(0) = yk−1, (5.83)

we apply the q-Laplace transform on both sides of the equation, algebraically
solve for Y (p) ⇀↽q y(x) and then carefully use the inverse q-Laplace transform
to find the unknown function y(x).

Consider for example the second order case:

a0D
2
qy(x) + a1Dqy(x) + . . .+ a2y(x) = b(x)

y(0) = y0,Dqy(0) = y1. (5.84)

Suppose y(x) ⇀↽q Y (p), f(x) ⇀↽q B(p). Next, using (5.21), one gets

Dqy(x) ⇀↽q
p

q
Y (p) − y(0),

D2
qy(x) ⇀↽q (

p

q
)2Y (p) − p

q
y(0) −Dqy(0) (5.85)

Loading (5.85) in (5.84), one gets

Y (p) =
B(p) + a0y0

p
q + (a0y1 + a1y0)

a0(
p
q )2 + a1

p
q + a2

. (5.86)

The remaining task consists in finding the explicit version of y(t) = L−1
q {Y (p)},

i.e. that not containing the parameter p (for example the lhs of (5.71) in-
stead of its rhs, when solving the first order q-difference equation (5.72))
which is the expected solution of (5.84).
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2. Given a constant coefficients linear system of q-difference equations of

the form

Dqy(x) = Ay(x) + b(x),

y(0) = y0, (5.87)

where A is a k.k. matrix, y(x) and b(x), k-vectors. Applying the q-Laplace
transform on both sides leads to

p

q
Y (p) − y(0) = AY (p) +B(p), (5.88)

where we used the rule that if z(x) = (z1(x), . . . , zk(x)), then
Lq{z(x)}=(Lq{z1(x)}, . . . ,Lq{zk(x)}). From (5.88), we get

Y (p) = (
p

q
I −A)−1(y0 + B(p)), (5.89)

which gives y(t) = L−1
q {Y (p)}.

Example. Using the q-Laplace transform, solve the equations

a)

D2
qy(x) + y(x) = 0, y(0) = 1,Dqy(0) = 0 (5.90)

b)

D2
qy(x) − y(x) = 0, y(0) = 0,Dqy(0) = 1 (5.91)

Solution. a) Using (5.86) and the data in (5.90), we get Y (p) = qp
p2+q2 , which

by (5.55) with w = 1, gives y(t) = cosq(x).

b) Similarly, using (5.86) and the data in (5.94), we get Y (p) = q2

p2−q2 , which

by (5.58) with w = 1, gives y(t) = sinhq(x).

5.5 Exercises

1. Find the q-original of

a) F (p) = p+1
p(p−1)(p−2)(p−3) ,
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b) F (p) = a
∏5

i=0
(pqi−a)

,

c) F (p) = 2p+3
p(p2+1)

,

d) F (p) = 1
p(p2+1)(p2+4)

.

2. Using the q-Laplace transform, solve the equations

a)

D2
qy(x) = ay(x) + b, y(0) = 1,Dqy(0) = 0 (5.92)

b)

D2
qy(x) − 3Dqy(x) + 2y(x) = 0, y(0) = 0,Dqy(0) = 1 (5.93)

c)

(q − 1)2D2
qy(x) + y(x) = 0, y(0) = 1,Dqy(0) = 2. (5.94)

3. Find the q-image of

a)

h(x) = Dqy(x) + y(x) +

∫ x

0
y(t)dqt;

y(0) = 1, y(t) ⇀↽q Y (p) (5.95)

b)

h(x) = Dqy(x) −
∫ x

0
y(t)dqt;

y(0) = 0, y(t) ⇀↽q Y (p). (5.96)

4. Solve
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a) The q-difference equation

D2
qy(x) +Dqy(x) − 2y(x) = e−x;

y(0) = 0,Dqy(0) = 1 (5.97)

b) The q-integral equation

y(x) =

∫ x

0
y(t)dqt+ 1. (5.98)

5. Solve the system of q-difference equations

{

Dqx(t) = x(t) + 2y(t)
Dqy(t) = 2x(t) + y(t) + 1

, x(0) = y(0 == 0. (5.99)

6. Solve the q-difference equation with variable coefficients

(x2 + a2
0)D

2
qy(x) + a1xDqy(x) + a2y(x) = b(x); (5.100)

y(0) = Dqy(0) = 0. (5.101)



Chapter 6

q-Difference orthogonal

polynomials

As in the case of differential and difference equations, orthogonal polynomi-
als are probably the most beautiful and applicable solutions of q-difference

equations. The main method of deriving or transforming polynomial solu-
tions of q-difference equations are special versions of the famous factorization
method also known as Darboux transformation [23]. In this chapter, we will
focused on polynomial solutions of the linear second order q-difference equa-

tions. In the first section we first use the factorization method to obtain
(polynomial) solutions of the equations. In the second we show how to use
the factorization method for transforming a solvable linear equation into a
new one. In each section the general theory is illustrated by the case of the

hypergeometric q-difference equations.

6.1 The factorization method for the solvability of

q-difference equations

6.1.1 The general theory

Consider the general second order q-difference eigenvalue equation

[u(x)Eq + v(x) + w(x)E−1
q ]yn(x) = λnyn(x), (6.1)

where v(x) = −(u(x) + w(x)). Our objective is to study the solvability of
such an equation. Here, a type [15, 14, 11] factorization method will be used.

75
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First, write (6.1) under the form

Lyn(x) = [a(x)Eq + b(x) + c(x)E−1
q ]yn(x) = λ(n)θ(x)yn(x), (6.2)

where

a(x) = θ(x)u(x); b(x) = θ(x)v(x); c(x) = θ(x)w(x) (6.3)

for some θ(x) 6= 0. Consider next the operator

H(x, n) = Eq[ρ(L− λθ)ρ−1] = E2
q + (b(qx) − λ(n)θ(qx))Eq + d(qx), (6.4)

where

ρ(qx)/ρ(x) = a(x); d(x) = a(x/q)c(x). (6.5)

So the eigenvalue equation (6.2) is ”equivalent” to the equation

H(x, n)yn(x) = 0, (6.6)

in the sense that if yn(x) is a solution of (6.2), then ρ(x)yn(x) is a solution

of (6.6) and conversely if yn(x) is a solution of (6.6), then ρ−1(x)yn(x) is a
solution of (6.2).

Consider now for H , the following type of factorization

H(x, n) − µ(n) = (Eq + g(x, n))(Eq + f(x, n)),

H(x, n+ 1) − µ(n) = (Eq + f(x, n))(Eq + g(x, n)), (6.7)

for some functions f(x, n), g(x, n), and constants (in x) λ(n), µ(n). Consider
next the eigenvalue equation

L̃ỹn(x) = [g(x,−1)Eq − b(x) + f(x/q,−1)E−1
q ]yn(x) = −λ(n)θ(x)ỹn(x),(6.8)

and the operator

H̃(x, n) = Eq[ρ̃(L̃− λθ)ρ̃−1] = E2
q + (b(qx) − λ(n)θ(qx))Eq + d̃(qx), (6.9)

where

ρ̃(qx)/ρ̃(x) = −g(x,−1); d̃(x) = g(x/q,−1)f(x/q,−1). (6.10)

It is easily seen in this case also that the eigenvalue equation (6.8) is ”equiv-
alent” to the equation

H̃(x, n)ỹn(x) = 0. (6.11)
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Consider also for H̃ , the factorization

H̃(x, n) − µ̃(n) = (Eq + g(x, n))(Eq + f(x, n)),

H̃(x, n+ 1) − µ̃(n) = (Eq + f(x, n))(Eq + g(x, n)), (6.12)

with µ̃(n) = µ(n) − µ(−1), and some f(x, n), g(x, n), and constants (in x)

λ(n), µ(n) as in (6.7). We can now give the main statement of this section

Theorem 6.1.1 Suppose that
There exist functions f(x, n), g(x, n), constants (in x) λ(n), µ(n), for which
H admits the factorization (6.7) with f and g such that

f(x, n) − g(x, n− 1) = c1(n)x+ c2(n), (6.13)

c1(n) 6= 0, ∞.

In that case, the following situations hold:
(i) The eigenvalue equation (6.8) admits a sequence of polynomial solutions
satisfying the difference relations

ỹn+1(x) = (−g(x,−1)Eq + f(x, n))ỹn(x)

−µ̃(n− 1)ỹn−1(x) = (−g(x,−1)Eq + g(x, n− 1))ỹn(x), n = 0, 1, 2 . . .(6.14)

and the three-term recurrence relations (TTRR)

ỹn+1(x) + µ̃(n− 1)ỹn−1(x) = (c1(n)x+ c2(n))ỹn(x), (6.15)

ỹ0 = 1, ỹ1 = c1(0)x+ c2(0). (6.16)

(ii) The eigenvalue equation (6.2) admits a sequence of eigenfunctions sat-
isfying the difference relations

ψn+1(x) = (a(x)Eq + f(x, n))ψn(x),

−µ(n− 1)ψn−1(x) = (a(x)Eq + g(x, n− 1))ψn(x), n = 0, 1, 2, . . . (6.17)

and the TTRR

ψn+1(x) + µ(n− 1)ψn−1(x) = (c1(n)x+ c2(n))ψn(x), (6.18)

n = 0, 1, 2, . . . .

(iii) If µ(−1) = 0, the equations (6.8) and (6.2) as well as their solutions in
(i) and (ii), become identical .
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Proof.

(i)Note first that from the relations in (6.7) follow in particular the equations

f(x, n)g(x, n) = d(qx) − µ(n), (6.19)

f(qx, n) + g(x, n) = b(qx) − θ(qx)λ(n), (6.20)

with

f(qx, n+ 1) + g(x, n+ 1) = f(x, n) + g(qx, n), (6.21)

f(x, n+ 1)g(x, n+ 1) = f(x, n)g(x, n) + µ(n) − µ(n+ 1), (6.22)

or equivalently the equations (6.19) and (6.20) together with the q-difference
equation

∆q(f(x, n) − g(x, n)) = (λ(n+ 1) − λ(n))θ(x); ∆q = Eq − 1. (6.23)

Remark next that from (6.4), (6.9), (6.10) and (6.19) (with n = −1), it
follows that H = H̃ + µ(−1). Hence from (6.7) follows (6.12). On the other
side, from (6.12) follows the interconnection relations

H̃(x, n+ 1)(Eq + f(x, n)) = (Eq + f(x, n))H̃(x, n),

H̃(x, n)(Eq + g(x, n)) = (Eq + g(x, n))H̃(x, n+ 1), (6.24)

from which one deduces a sequence of solutions of (6.12) satisfying

φn+1(x) = (Eq + f(x, n))φn(x),

−µ̃(n− 1)φn−1(x) = (Eq + g(x, n− 1))φn(x), n = 0, 1, 2, . . . (6.25)

On the other side from (6.20) (with n = 0) and (6.21) (with n = −1) follows
that ỹ0 = 1 is a solution of (6.8) with n = 0. Hence from (6.9) and (6.10)
follows that ρ̃(x) is a solution of (6.12) with n = 0. Hence from (6.25) follows

(6.14) and consequently (6.15). To obtain the remaining relation which is
the second equality in (6.16), one needs only consider (6.13) (with n = 0)
and the first relation in (6.14) (with n = 0).
(ii) To obtain (6.17) and then obviously (6.18), one needs to use intercon-

nection relations for H similar to the ones in (6.24) for H̃.
(iii) This is a direct consequence of the fact that if µ(−1) = 0 then H̃ = H .

Note that if the polynomials ỹn(x) satisfy (6.15), then their normalized

monic forms Pn = ỹn(x)/̺(n) where

̺(n+ 1)/̺(n) = c1(n) (6.26)
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satisfies

Pn+1 + a2
nPn−1 = (x− bn)Pn (6.27)

where

a2
n =

µ(n− 1)

c1(n)c1(n− 1)
; bn = −c2(n)/c1(n). (6.28)

6.1.2 The hypergeometric q-difference equation

Consider the hypergeometric q-difference equation

[σ(x)Dq−1Dq + τ (x)Dq]yn(x) = λnyn(x), (6.29)

where σ(x) = σ0x
2 + σ1x+ σ2, τ (x) = τ0x+ τ1, τ0 6= 0. This equation may

be written as in (6.2):

[a(x)Eq + b(x) + c(x)E−1
q ]yn(x) = θ(x)λ(n)yn(x) (6.30)

with

a(x) = (σ0 + (1− 1/q)τ0)x+ σ1 + (1− 1/q)τ1 + σ2/x;

c(x) = q(σ0x+ σ1 + σ2/x); b(x) = −(a(x) + c(x));

θ(x) = (1 − 1/q)x. (6.31)

Theorem 6.1.2 The operator

H(x, n) = E2
q + (b(qx) − λ(n)θ(qx))Eq + d(qx), (6.32)

d(x) = a(x/q)c(x), admits a factorization of the type (6.7) with

f(x, n) = −σ2/x− 1/2(−τ1 − qc0(n) + τ1q + qσ1 + q2σ1)/q − (−τ0
+q2σ0 + qσ0 + τ0q + λ(n)q − λ(n+ 1))x/(1 + q);

g(x, n) = −σ2/x− 1/2(−τ1 − qc0(n) + τ1q + qσ1 + q2σ1)/q − c0(n)

+(−(−τ0 + q2σ0 + qσ0 + τ0q + λ(n)q − λ(n+ 1))/(1 + q)

−λ(n+ 1) + λ(n))x; (6.33)

µ(n) = 1/4(−q6σ2
1 + 2τ 2

1 q
2 − 8q4σ2σ0 + 4q3σ2τ0 + c20(n)q4 − q2σ2

1

+c20(n)q2 + 2τ1qσ1 − 4τ1q
3σ1 − τ 2

1 − τ 2
1 q

4 + 2q4σ2
1 + 2c20(n)q3

+4q2σ2λ(n) + 4q2σ2τ0 − 4qτ0σ2 + 4q2σ0σ2 + 4q2λ(n+ 1)σ2 − 4q4σ2τ0

−4q4σ2λ(n+ 1) − 4q4λ(n)σ2 + 2τ1q
5σ1 + 4q6σ2σ0)/(q

2(1 + q)2) (6.34)
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where

c0(n) = (−2τ1q
4σ0 + q3σ1λ(n) + q3σ1λ(n+ 1) + 2τ1q

3σ0 + q2λ(n)τ1

+2τ1q
2σ0 + τ1q

2λ(n+ 1) + 2τ1q
2τ0 − qλ(n+ 1)σ1 − 2qλ(n+ 1)τ1

−2τ1qλ(n) − qσ1λ(n) − 4τ1qτ0 − 2τ1qσ0 + λ(n+ 1)τ1

+τ1λ(n) + 2τ1τ0)/(q(1 + q)(λ(n+ 1) − λ(n))) (6.35)

and

λ(n) = ((1− q)q−n + q2σ0/k)(q
nqσ0 + qnτ0q − kq − qnτ0 + k)(q − 1)−2,(6.36)

where k is a free parameter.

Proof. The proof of the theorem consists in direct computations.

We will note that the functions f and g satisfy the condition (6.13).
(6.36) can equivalently be written as

λ(n) = −[1 − tq−n][
q2σ0

q − 1
− (

qσ0

q − 1
+ τ0)t

−1qn], (6.37)

where t = q−1
q2σ0

k. Note finally that all the functions of the variable n (f, g, µ)

are explicit functions in λ(n) and λ(n+ 1) but implicit in n.
Next, let f , g, µ and λ be given in the theorem 6.1.2. We have the following

Corollary 6.1.1 (a) Type (6.8) equation admits a sequence of polynomial
solutions satisfying type (6.14) and (6.15)-(6.16) relations.
(b) For t 6= 1, we have µ(−1) 6= 0 and λ(0) 6= 0. However equation (6.30)

admits a sequence of eigenfunctions satisfying type (6.17) and (6.18) rela-
tions where µ(n) = µ̃(n + r) = µ̃(n) + µ(−1), t = qr, that is r-associated
relations to the ones in (a).
(c) For t ; 1, we obtain µ(−1) = λ(0) = 0, µ(n) = µ̃(n), H = H̃, £̃ = −£

and the cases (a) and (b) become identical.

Example 1. The q-Hahn case.

In the q-Hahn case, we have

a(x) = α(x− 1)(xβq − q−N )/(x);

b(x) = (x2 − xq−N − xαq + q−N+1α)/x (6.38)
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and the formulas for f(x, n), g(x, n), µ(n), λ(n) for the factorization are ob-

tained from the ones above by substituting

σ0 = 1/q;σ1 = −(q−N + qα)/q;σ2 = q−Nα; τ0 = (αβq2 − 1)/(q − 1);

τ1 = −(αβq2 + q−N+1α− q−N − qα)/(q − 1). (6.39)

Example 2. The q-Big Jacobi case.

In the q-Big Jacobi case, we have

a(x) = aq(x− 1)(bx− c)/x;

b(x) = (x− aq)(x− cq)/x (6.40)

and the formulas for f(x, n), g(x, n), µ(n), λ(n) for the factorization are ob-
tained from the ones above by substituting

σ0 = 1/q;σ1 = −(a+ c);σ2 = aqc; τ0 = (aq2b− 1)/(q − 1);

τ1 = (q(a+ c) − aq2(b+ c))/(q − 1). (6.41)

The data above for the q-Hahn and q-Big Jacobi cases are clearly identical

up to the correspondence: a = α, b = β, c = q−1−N .

6.1.3 The Askey-Wilson second order q-difference equation

case.

Consider now the Askey-Wilson second order q-difference equation (the
equation can also be written using the derivative in (1.5) (see e.g. [14])):

Lyn(x) = [a(x)Eq − [a(x) + b(x)] + b(x)E−1
q ]yn(x) = λ(n)θ(x)yn(x) (6.42)

where

a(x) = a−2x−2+a−1x−1+a0+a1x+a2x2

qx−x−1 ; b(x) = a2x−2+a1x−1+a0+a−1x+a−2x2

x−qx−1

a−2 = 1; a−1 = −(a+ b+ c+ d); a0 = ab+ ac+ ad+ bc+ bd+ cd

a1 = −(abc+ abd+ bcd+ acd); a2 = abcd; θ(x) = x− x−1. (6.43)

The operator

H(x, n) = E2
q + (b(qx) − λ(n)θ(qx))Eq + d(qx), (6.44)
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d(x) = a(x/q)c(x), admits a factorization as the one in (6.7), with

f(x;n) = f−2x−2+f−1x−1+f0+f1x+f2x2

qx−x−1 ;

g(x;n) = (f−2−β−1)x−2+(f−1−β0)x−1+f0+(f1+β0q)x+(f2+β1q)x2

qx−x−1 ; (6.45)

where

f−2(n) = λ(n)−qλ(n+1)
q2−1

− q+a2

q2+q
; f2(n) = λ(n)q−λ(n+1)

1−q2 q2 − q2+qa2
q+1 ;

β0(n) = 1−q
(λ(n)−λ(n+1))q3 {(2λ(n)q−λ(n+1)

1−q2 q2 + λ(n+1)−λ(n)
1−q q2;

−2q2+qa2
1+q )(a1 + qa−1) + (2a1q

2 + 2a2a−1q)};

β−1 = λ(n+1)−λ(n)
1−q ; β1 = qβ−1;

f−1(n) = β0(n)
2 − a1+qA−1

2q ; f1(n) = −qβ0(n)
2 − a1+qa−1

2 ;

f0(n) = 1
q+q2 {q2 − q3 − a0(q + q2) + a2(q − 1) + q2(λ(n) + λ(n+ 1))};

(6.46)

while

µ(n) = a0 + a1a−1q
−1 + a0a2q

−2 + f0(n)β−1(n) + f−1(n)β0(n)

−2f−2(n)f0(n) − f2
−1(n), (6.47)

and

λ(n) = −(1 − tq−n)(1− abcdt−1qn−1). (6.48)

Here also, as one can verify, for t = 1, we have µ(−1) = λ(0) = 0 (and
f(x/q,−1) = −c(x); g(x,−1) = −a(x)), and the corresponding polynomials
in (6.15)-(6.16) are of classical type. Taking t = q−r, we obtain Laguerre-
Hahn polynomials r-associated to classical polynomials. Otherwise (if such

an exponential expression is not allowed for t), the corresponding polynomi-
als are Laguerre-Hahn ones, not necessary r-associated to classical polyno-
mials.

It is worth noting that these results are surely characteristic for the ”clas-
sical” polynomials since they are valid not only for the q-hypergeometric
and the Askey-Wilson second order q-difference equations but also for the
difference hypergeometric ones (see [15]).
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6.2 The factorization method for the transforma-

tion of q-difference equations

6.2.1 The general theory

Consider the general second-order q-difference operator

H(x) = u(x)Eq + v(x) + w(x)E−1
q . (6.49)

Suppose next that it is ”bispectral” in the sense that it admits two sequences
of distinct systems of eigenelements say (λn, yn) and (γn, zn):

Hyn(x) = λnyn(x)

Hzn(x) = γnzn(x), n = 0, 1, . . . . (6.50)

In that case, one can use one of the two eigenelements , say for example
(γn, zn), to transform H into another solvable operator H̃ in the following
manner. Factorize H and define H̃ as follows,

H − γm = LmRm

H̃ − γm = RmLm, m = 0, 1, . . . . (6.51)

where

Rm = 1 + f(x,m)E−1
q Lm = u(x)Eq + g(x,m)

f(x,m) = − zm(x)
zm(x/q) g(x,m) = −w(x) zm(x/q)

zm(x) . (6.52)

It follows from (6.51) that the functions ỹn(x,m), m,n = 0, 1, . . . defined by

[u(x)Eq + g(x,m)]ỹ0(x,m) = 0,

ỹn(x,m) = [1 + f(x,m)E−1
q ]yn−1(x), m = 0, 1, . . . , n = 1, 2 . . . ,(6.53)

are eigenfunctions of H̃(x,m) corresponding to the eigenvalues γm, λn, for
m = 0, 1, . . .,n = 0, 1, . . . respectively. We will refer here to H and yn as the

transformable operator and functions respectively, zn as the transformation
functions and finally H̃ and ỹn as the transformed operator and functions
respectively. The point here is that if

yn(x)
yn(x/q) 6=

zn(x)
zn(x/q) (6.54)
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so, for a fixed m, the transformed functions ỹn(x,m), n = 0, 1, . . . are non-

trivial solutions of the transformed operator H̃ . Moreover under some ad-
ditional conditions, the transformed functions ỹn admit most of the math-
ematical properties of the transformable yn, such as polynomial character,
difference eigenvalue equations, closure and orthogonality, difference and re-

currence relations, duality, transformability property [12]:

Difference equations

Clearly, the functions ỹn(x,m) satisfy the eigenvalue equation

H̃(x,m)ỹ0(x,m) = γmỹ0(x,m)

H̃(x,m)ỹn(x,m) = λn−1ỹn(x,m), n = 1, 2, . . . (6.55)

for

H̃(x,m) = u(x)Eq + ṽ(x,m) + w̃(x,m)E−1
q (6.56)

where

ṽ(x,m) = g(x,m) + f(x,m)u(x/q) + γm

= v(x) + f(x,m)u(x/q) − u(x)f(qx,m)

w̃(x,m) = f(x,m)g(x/q,m) = w(x)g(x/q,m)
g(x,m) . (6.57)

Orthogonality, closure

Consider the functions ρ(x) and ρ̃(x) defined by

ρ2(qx)
ρ2(x) = u(x)

qf(qx,m)g(qx,m) = u(x)
qw(qx) ;

ρ̃2(qx,m)
ρ̃2(x,m) = u(x)

qf(qx,m)g(x,m) = u(x)g(qx,m)
qw(qx)g(x,m) ; (6.58)

Interesting relations exist between ρ(x), ρ̃(x,m) and ỹ0(x,m). One has

ρ̃2(x,m) = ρ2(x)g(x,m);

ỹ0(x,m) = 1

ρ2(x)g(x,m)zm(x)(xq−
1
2 −xq

1
2 )

= 1

ρ̃2(x,m)zm(x)(xq−
1
2 −xq

1
2 )

(6.59)

Next, as it is easily seen, the similarity reductions ρHρ−1 and ρ̃H̃ρ̃−1 send

H and H̃ respectively, in their formal symmetric form , that is like

qc(qx)Eq + b(x) + c(x)E−1
q (6.60)
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or

a(x)Eq + b(x) + q−1a(x/q)E−1
q . (6.61)

Denote by ℓ2(qβ, qα; ρ2) the linear space of q-discrete functions

ψ(x), x = qβ , qβ−1, . . . , qα; α, β ∈ Z ∪ {−∞,∞} (6.62)

in which is defined a discrete-weighted inner product

(ψ, φ)ρ2 = (1 − q)
∫ qα

qβ ψ(x)φ(x)ρ2(x)dhx =
∑β−1

α qiψ(qi)φ(qi)ρ2(qi) (6.63)

The similar space for ρ̃2 will be denoted by ℓ̃2(qβ̃, qα̃; ρ̃2). Moreover, one
easily verifies, using the q-summation by parts, that for ψ and φ satisfying
boundary constraints

u(xq−1)̺(xq−1)[ψ(x)φ(xq−1) − ψ(xq−1)φ(x)]|qβ

qα = 0 (6.64)

for ̺2 equals ρ2 and ρ̃2 respectively, we have

(Hψ,φ)ρ2 = (ψ,Hφ)ρ2 ; (H̃ψ, φ)ρ̃2 = (ψ, H̃φ)ρ̃2 . (6.65)

Also, for ψ and φ satisfying

u(xq−1)ρ(xq−1)φ(x)ψ(xq−1)|qβ

qα

= 0 (6.66)

we have

(φ,Rmψ)ρ̃2 = (Lmφ,ψ)ρ2 . (6.67)

The following theorem defers the properties of orthogonality and closure of
{ỹn}n≥0 in ℓ̃2(qβ̃, qα̃; ρ̃2) to these of {yn}n≥0 in ℓ2(qβ, qα; ρ2).

Theorem 6.2.1 If (6.66) is satisfied for ψ = yj and φ = ỹi, i, j = 0, 1, . . .
then
(i) From the orthogonality of {yn}n≥0 in ℓ2(qβ, qα; ρ2) follows that of {ỹn}n≥0

in ℓ̃2(qβ̃, qα̃; ρ̃2)

(i) From the completeness of {yn}n≥0 in ℓ2(qβ, qα; ρ2) follows that of {ỹn}n≥0

in ℓ̃2(qβ̃, qα̃; ρ̃2)
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Proof. (i) In (6.67) take φ = Rmyi and ψ = yj . We obtain (Rmyi, Rmyj)ρ̃2 =

(LmRmyi, yj)ρ2 = (γm − λj)(yi, yj)ρ2 = 0. Hence ỹi+1 = Rmyi ⊥ ỹj+1 =
Rmyj , i, j = 0, 1, . . .. Taking φ = ỹ0 and ψ = yj , we have (ỹ0, Rm)yj)ρ̃2 =
(Lmỹ0, yj)ρ2 = 0, j = 1, . . . (since Lmỹ0 =def 0). Hence ỹ0 ⊥ ỹj , j = 0, 1 . . ..
In sum ỹi ⊥ ỹj , i, j = 0, 1 . . ..

(ii) Suppose that exists a certain y such that y ⊥ ỹj ,  = 1, . . .. Take φ = y
and ψ = ỹj . We get 0 = (y, ỹj)ρ̃2 = (y,Rmyj)ρ̃2 = (Lmy, yj)ρ2 . From the
closure of {yj}j≥0, it follows that Lmy = 0. In other words y = ỹ0. Hence

the system {ỹn}n≥0 is closed ℓ̃2(qβ̃, qα̃; ρ̃2) and the theorem is completely
proved.

Difference and recurrence relations

Suppose that the transformable functions satisfy the difference relations

αnyn+1 = H−
n yn

βnyn = H+
n yn+1, n = 0, 1, . . . (6.68)

On the other side, from (6.51), one has

ỹn+1 = Rmyn

(λn − γm)yn = Lmỹn+1, n = 0, 1, . . . (6.69)

A combination of (6.68) and (6.69) leads to the following three-term differ-
ence relations for ỹn, n = 1, 2, . . .

αn(λn − γm)ỹn+2 = RmH
−
n Lmỹn+1

βn(λn+1 − γm)ỹn+1 = RmH
+
n Lmỹn+2. (6.70)

Using the difference eigenvalue equation satisfied by the ỹn (see (6.55)) and
the preceding relations, one can naturally reach first order difference rela-
tions connecting ỹn, n = 1, 2, . . ..

Suppose now that the transformable functions yn satisfy a three-term recur-
rence relation

yn+1 + (bn − x)yn + a2
nyn−1 = 0, (6.71)

so, using the first relation in (6.69), one shows that the transformed ỹn,

n = 1, 2, . . ., satisfy the following five-term recurrence relation

ỹn+4 + [bn+2 + bn+1 − x− x/q]ỹn+3

+[(bn+1 − x)(bn+1 − x/q) + a2
n+1 + a2

n+2]ỹn+2

+a2
n+1[bn+1 + bn − x− x/q]ỹn+1 + a2

n+1a
2
nỹn = 0. (6.72)
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We remark however that the preceding relations do not include ỹ0. If for

a2
n in (6.71), one has a2

0 = 0, or if one suppose that y−1 = 0, so using the
second relation in (6.69), one establishes the following difference-recurrence
relations for the system of transformed functions ỹn, n = 0, 1, 2, . . .

(λn−1 − γm)(λn − γm)Lmỹn+2

+(λn−1 − γm)(λn+1 − γm)(bn − h(x))Lmỹn+1

+(λn+1 − γm)(λn − γm)Lmỹn = 0. (6.73)

Duality

Suppose that the transformable functions yn(x) = yn(qs) are also explicit
functions of n. In that case, one can consider the functions θs(n) = ỹn(qs,m)
dual to the transformed ỹn(x,m), n = 0, 1, . . . defining

θs(0) = ỹ0(q
s,m);

θs(n) = Rmyn(qs) = yn(qs) + f(qs,m)yn(qs−1), n = 1, 2, . . . (6.74)

From (6.51), one finds that the functions θs(n) satisfy the three-term recur-

rence relation

θs+1(n) + (ṽ(qs) − δn)θs(n) + w̃(qs)u(qs−1)θs−1(n) = 0,

δ0 = γm, δn = λn−1, n ≥ 1. (6.75)

If w̃(1)u(q−1) = 0, then the functions in (6.75) are up to a multiplication
by θ0(n), polynomials in δn of degree s. If ṽ(qs) is real for s ≥ 0 and
w̃(qs)u(qs−1) > 0, s > 0, so the polynomials are naturally orthogonal with
positive discrete weight (Favard theorem).

A typical example

Consider the eigenvalue equation

[a(x)Eq + b(x) + c(x)E−1
q ]ȳn(x) = γnȳn(x). (6.76)

where b(x) = −(a(x) + c(x)).
Consider the situation when c(x) doesn’t depend explicitly on q and a(x) =
dc(x), d, a constant (a similar reasoning should be developed considering
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that a(x) does not depend explicitly on q and c(x)=d a(x) ). In that case

(6.76) reads

[dc(x)Eq − (dc(x) + c(x)) + c(x)E−1
q ]ȳn(x, q) = γn(q)ȳn(x, q). (6.77)

Substituting q by q−1 in (6.77), and performing a similarity reduction on the
obtained operator in the left hand side, one gets

[dc(x)Eq − (dc(x) + c(x)) + c(x)E−1
q ]π(x)ȳn(x, q−1)

= γn(1/q)π(x)ȳn(x, q−1). (6.78)

where

π(qx)/π(x) = 1/d. (6.79)

This means that the operator in the left hand side of (6.77) and (6.78)
is ”bispectral” with two distinct systems of eigenelements (γn(q), ȳn(x, q))
and (γn(q−1), z̄n(x, q)) where z̄n(x, q) = π(x)ȳn(x, q−1). Hence it can be

transformed according to the scheme studied in the first subsection. But as
one can see, if a(x) is for example a polynomial, the functions ȳn(x, q) are not
in general orthogonal (the interval of orthogonality is empty). That is why we
rewrite (6.77) and (6.78) in a more convenient form for the transformation.

For that, supposing that λn(q) 6= 0, for n > 0 (this is generally the case for
polynomial type of solutions), we define the functions yn(x, q) by

yn(x, q) = 1
γn+1(q) [dEq − (d+ 1) +E−1

q ]ȳn+1(x, q)

n = 0, 1, . . . (6.80)

As one can verify, the functions yn(x, q) are given by

yn(x, q) = ȳn+1(x,q)
c(x) , n = 0, 1 . . . (6.81)

and satisfy the eigenvalue equation

[u(x)Eq + v(x) + w(x)E−1
q ]yn(x, q) = λn(q)yn(x, q). (6.82)

where

u(x) = dc(qx); v(x) = −(d+ 1)c(x) − γ1(q);

w(x) = c(x/q);λn(q) = γn+1(q) − γ1(q). (6.83)
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In particular, if y0(x, q) ≡ const, then v(x) = −(u(x)+w(x)). Similarly, the

functions

zn(x, q) = π(x)yn(x, q−1) (6.84)

satisfy the equation

[u(x)Eq + v(x) + w(x)E−1
q ]zn(x, q) = νn(q)zn(x, q). (6.85)

where νn(q) = γn+1(q
−1)−γ1(q). Thus, the operator in the left hand side of

(6.82) and (6.85) is ”bispectral” and under additional boundary constraints,

the functions yn(x, q) are orthogonal with the weight

ρ(x) = w(qx)
xπ(x) . (6.86)

Hence the considerations from the first subsection can be reported here.

6.2.2 The hypergeometric q-difference equation

The transformable and transformation functions.

Applying the preceding considerations to the q-hypergeometric case,

[ā(x)Eq + b̄(x) + c̄(x)E−1
q ]ȳn(x) = γnȳn(x), (6.87)

with

ā(x) = [(σ0 + (1 − 1/q)τ0)x
2 + (σ1 + (1 − 1/q)τ1)x+ σ2]/x

2;

c̄(x) = [q(σ0x
2 + σ1x+ σ2)]/x

2; b̄(x) = −(ā(x) + c̄(x)), (6.88)

one is led to the following simple ”bispectral” situation

[u(x)Eq + v(x) + w(x)E−1
q ]yn(x, q) = λn(q)yn(x, q)

[u(x)Eq + v(x) + w(x)E−1
q ]zn(x, q) = γn(q)zn(x, q), (6.89)

where

u(x) = −c(q3x− 1)/x;w(x) = −(xq − 1)/x; v(x) = −(u(x) + w(x))(6.90)

λn = q1−n(1 − qn)(cq2+n − 1); γn = q1−n(q2+n − 1)(c− qn) (6.91)
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and the functions yn(x, q) are a special case of the Little q-Jacobi pn(qx; c, q|q)
or equivalently Big q-Jacobi Pn(q3x; q, c, 0; q) polynomials. The transforma-
tion functions zn(x, q) being on the other side defined as in (6.79) and (6.84).
For their use in the formulas (6.70) and (6.72), we give here for the poly-
nomials yn(x, q) the difference relations (in literature, they are not given in

this form) and recurrence ones. We have

c1(n)yn+1(x, q) = [r(x)Eq + fn(x)]yn(x, q)

−a2
n+1c1(n+ 1)c1(n)yn(x, q) = [r(x)Eq + gn(x)]yn+1(x, q), (6.92)

yn+1(x, q) + (bn − x)yn(x, q) + a2
nyn−1(x, q) = 0 (6.93)

where (Q = qn)

c1(n) = − cQ2q3+cQ2q2+Q6c3q7−c2Q4q6−c2Q4q4−q−q5c2Q4+q4Q2c
Q(cQ2q3−1)(cQ2q−1)

(6.94)

bn = (Q2c2q2−Qcq2+cQ2q2−2Qcq+c−Qc+1)Q
(cQ2q−1)(cQ2q3−1)q

(6.95)

a2
n = Q2(Qc−1)(Qcq−1)(−1+Q)(−1+qQ)c

(−1+cQ2)(cQ2q−1)2(−1+cQ2q2)q3 ; r(x) = −c(q3x− 1) (6.96)

fn(x) = qx
Q − −1−c+Qcq2+Qcq

cQ2q3−1 ; gn(x) = xcq4Q− cqQQq2+Qcq2−q−1
cQ2q3−1 .(6.97)

Note finally that the polynomials yn(x) are orthogonal on the interval [0, q−
5
2 ]

with respect to the weight ρ(x) given by (6.86) where w(x) is given by (6.90)
and π(x) by (6.79). As the interval of orthogonality is finite, they are also

closed in the corresponding inner product space.

The transformed functions. For a given m, the properties of the trans-

formed functions ỹn(x,m), n = 0, 1, . . . are those derived in the first sub-
section of the current section: They satisfy type (6.55) difference equations,
type (6.70), (6.72) and (6.73) difference and recurrence relations. And since
the conditions of orthogonality of the theorem (6.2.1) are satisfied, they are

orthogonal in the inner product space ℓ̃22(0, q
− 5

2 ; ρ̃2) where ρ̃2 is given by

the formula in (6.59). For the closure, we have that the system ỹn(x,m),
n = 0, 1, . . . is closed in the space since the unique element ỹ0(x,m) orthog-
onal to it in its totality is not quadratically integrable.
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How seem the transformed objects? Let us note that, using simple proce-

dures in Maple computation system for example, allows to evaluate explicitly
any one of them at least for no very higher m and n (as long as the software
and the computer capacities allow).
The case m = 1 illustrates the first non-classical situation for the trans-

formed objects. As only in this case, the required volume to display the
main data is admissible, we consider only this case here. The main data are
(m = 1, n = 0, 1, 2):

f(x, 1) = − (cq−q4)x−c+q
((c−q3)x−c+q)c

; g(x, 1) = (xq−1)c(xc−q3x−c+q)
(xcq−c−xq4+q)x

(6.98)

ṽ(x, 1) = [(c3q4 − 2q7c2 + c2q2 + cq10 − 2cq5 + q8)x3 + (−c3q4 − c3q3

−qc3 + q7c2 + q6c2 + 2q5c2 + c2q4 − 2qc2 − 2cq8 + cq5 + 2cq4 + q3c

+cq2 − q8 − q6 − q5)x2 + (c3q3 + qc3 + c3 − 3c2q4 − c2q3 + qc2 + cq5

−q3c− 3cq2 + q6 + q3 + q5)x− c3 + qc2 + cq2 − q3]/

[((cq − q4)x− c+ q)((c− q3)x− c+ q)x] (6.99)

w̃(x, 1) = − (xcq−c−xq4+q)(x−1)(xc−q3x−cq+q2)
(xc−q3x−c+q)2x (6.100)

ρ̃2(x, 1) = c1ρ
2(x)g(x, 1) = c2

q2x−1
x3π(x)

(xq−1)(xc−q3x−c+q)
(xcq−c−xq4+q)

(6.101)

ỹ0(x, 1) = c3

ρ̃2(x,1)π(x)y1(x,1/q)(h(xq−
1
2 )−h(xq

1
2 ))

= c4
(xq−1)(xc−q3x−c+q)

(q2x−1)(xcq−c−xq4+q)2
(6.102)

where ci, i = 1, . . . , 4 are some constants of integration,

ỹ1(x, 1) = (−q+c)(xc−c−q3x+1)
(xc−q3x−c+q)c (6.103)

ỹ2(x, 1) = [q(c2q2x+ c− c2q2 − c2x2q − q + xc2q4 − xc3q

+q3c2x+ cq7x2 − c2q4x2 + c2q5x+ c3q4x2 − c2q7x2 − xc3q4

+x2cq − q5cx− xcq − q3cx− xcq4 + cq2 + qc3 − qc2 + c2x+ xq4

−q4x2 + xq + xc2q + cq4x2 − c2 + cq − cq2x− xc)]/

[(q3c− 1)(xc− q3x− c+ q)c] (6.104)

We will remark that if w(x) ∼ xα while x ; ∞, so ỹ0(x,m) ∼ 1
xm+α and

ỹn(x,m) ∼ xm+n−1, n = 1, 2, . . . (in our particular case, α = 0 and m = 1).



92 Exercises

6.3 Exercises

1. Using the corresponding difference and three term recurrence relations,
write down the first five polynomials for the q-Hahn, q-Big Jacobi and Askey-

Wilson cases (use a computer algebra system).

2. Find a special case of the Askey-Wilson second order q-difference equa-
tion that can be transformable following the factorization method given in
section 6.2.

3. Find the interconnection between the factorization method given in sec-

tion 6.2 and that given in [29].

4. Use (4.124) and (4.126) to find the weights and the intervals of orthog-
onality of the q-Hahn, q-Big Jacobi and Askey-Wilson polynomials.



Chapter 7

q-Difference linear control

systems

7.1 Introduction

Linear control systems theory consists in study of controllability of linear

systems, that is a set of well defined interconnected objects which interac-
tions can be modeled by mathematically linear systems of divided difference
functional equations. Thus a divided difference linear control system can be
modeled as

(Dy)(x(s)) = A(x(s))y(x(s+ 1
2)) + B(x(s))u(x(s)) (7.1)

where y is a k-vector, A a k.k matrix, B, a k.m matrix, and u, a m-vector.
The divided difference derivative and the variable x = x(s), s ∈ Z+, are
given the section 1.1. The vector y stands for the state variable of the sys-

tem, describing the state of the system at a given time s, while u stands for
the input or the external force constraining the system that is the resulting
trajectory to adopt a predetermined behavior. Thus, u controls the system
from which one says of controlled systems. The matrices A and B are in-

trinsic characterization or description of the system. In (7.1), the state of
the system is described by k variables and the external forces act with m
inputs.

When x = x(s) = x0, or x = x(s) = s (7.1) is an usual differential [16]

y′(x) = A(x)y(x) + B(x)u(x), (7.2)

93
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or difference[26]

y(x+ 1) = A(x)y(x) + B(x)u(x). (7.3)

linear control system. In this book, we are concerned with the case when
x = x(s) = qs. In this case, (7.1) is a q-difference linear control system that
one can write:

Dqy(x) = A(x)y(qx) +B(x)u(x). (7.4)

Clearly, the differentiation between (7.2), (7.3), and (7.4) resides in how
varies the time s and how vary the independent variable x at the time
s. However, the idea acting behind the controllability concept remains the

same: How to choose the input u so that to bring the state of the system
from a given position to a predetermined second one.
In practice, it is often difficult even impossible to determine the state of a
system its self because it is generally characterized by very numerous vari-

ables. Instead, one observes the out put of the system z(x), characterized
by a small number of variables. For example, to inquire of the health of his
patient, the doctor collect some indicator data such as the blood pressure,
the color of eyes, and so on. Hence, a mathematical model more suitable

than (7.4) for the study of the systems controllability reads

Dqy(x) = A(x)y(qx) +B(x)u(x)

z(x) = C(x)y(x). (7.5)

with c, a r.k matrix and z, a r-vector. In the subsequent sections, we will
study the controllability and observability and the interconnection between

these concepts and that of mutually prime polynomials.

7.2 Controllability

There are many versions of definition of the concept of controllability in
mathematical control theory: The controllability of the state, controllability
of the output, controllability at the origin, complete controllability and so
on. The following definition that we adopt in this book, consists in the

complete controllability of the state system.

Definition 7.2.1 The system (7.5) is said to be completely controllable (c.c.)
if for any given value of x = x0 = qs0, and any initial value of y = y0 =
y(x0), and any final value of y = yf , there exists a finite value x = x1 = qs1,
and a control u(x), x0 ≤ x ≤ x1 such that y(x1) = yf .
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According to (3.23), the solution of (7.5) reads

y(x) = Φ(x, x0)[y0 +
∫ x
x0

Φ(x0, t)B(t)u(t)dqt] (7.6)

Hence, the system is c.c. if for any q-discrete value x0 = qs0 and any values
y0 and yf , there exists a finite q-discrete value x1 = qs1 and a q-discrete

function u(x), x0 ≤ x ≤ x1, such that

yf = y(x1) = Φ(x1, x0)[y0 +
∫ x1
x0

Φ(x0, t)B(t)u(t)dqt] (7.7)

Example. Is the scalar system

Dqy(x) = ay(qx) + bu(x)

z(x) = cy(x). (7.8)

c.c.?

Solution : The solution of the first order linear non homogenous q-
difference equation reads (as the system is of constant coefficients, one can

take x0 = 0)

y(x) = eax
q [
∫ x
t=0 e

−at
q−1bu(t)dqt]

= eax
q [(1 − q)x

∑∞
i=0 e

−aqix
q−1 bu(qix)] . (7.9)

and clearly for any yf there exists finite x1 and a control u(x) such that

∑∞
i=0 e

−aqix1

q−1 u(qix1) = e−ax1

q−1 yf/[b(1 − q)x1] . (7.10)

Such a function can be defined for example as

u(x) = { 0, x 6= x1

yf/[b(1 − q)x1], x = x1.
(7.11)

As we shall see in the subsequent sections, even higher order linear q-
difference equations are always c.c.
However, it is not difficult to imagine an example of non c.c. system. The
classical one is similar to the following:
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Example.

Dqy1(x) = a11y1(qx) + a12y2(qx) + u(x)

Dqy2(x) = a22y2(qx). (7.12)

This system is not c.c. since y2(x) = const.ea22x
q−1 and consequently u(x) has

not any control on y2(x).

Suppose next that the q-State transition matrix transfers y(x0) in yf =

y(x1). In this case we have

y(x1) = Φ(x1, x0)[y0 +
∫ x1
x0

Φ(x0, t)B(t)u(t)dqt] (7.13)

⇔ 0 = Φ(x1, x0)[y0 − Φ(x0, x1)yf +
∫ x1
x0

Φ(x0, t)B(t)u(t)dqt] (7.14)

This means that at the same interval of time, the state y0 − Φ(x0, x1)yf is
transferred to 0. As y0 is arbitrary, one can always suppose that yf = 0.

Consider next the case when the matrices A, B and C are constant:

Dqy(x) = Ay(qx) +Bu(x)

z(x) = Cy(x). (7.15)

In this case, we get a simple but powerful criterion of c.c:

Theorem 7.2.1 The system (7.15) is c.c. iff the controllability matrix

U(A,B) = [B,AB, . . . , Ak−1B] (7.16)

is of rank = k.

Proof. Necessity. Suppose the contrary, i.e. rankU < k. It follows that
there exists a k-dimensional row vector p 6= 0 such that

pB = 0, pAB = 0, . . . , . . . , pAk−1B = 0 (7.17)

Let (7.6) be the solution of (7.15) with Φ(x, t) = eAt
q e−At

q−1 . As the system is

constant, we can take x0 = 0. However, the system being c.c., there exists
x1:

0 = y(x1) = Φ(x1, 0)[y0 +
∫ x1
0 Φ(0, t)B(t)u(t)dqt]

= eAx
q [y0 +

∫ x1
0 e−At

q−1 B(t)u(t)dqt]

⇔ 0 = y0 +
∫ x1
0 e−At

q−1 B(t)u(t)dqt. (7.18)
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On the other side e−At
q−1 (by the Cayley-Hamilton theorem) can be expressed

as r(A), where r(λ) is a polynomial of degree ≤ k − 1. Hence e−Ax
q−1 Bu(t) =

(r0I + r1A+ . . .+ rk−1A
k−1)Bu(t) = (r0B + r1AB + . . .+ rk−1A

k−1B)u(t).
And consequently

0 = y0 +
∫ x1
0 (r0I + r1A+ . . .+ rk−1A

k−1)Bu(t)dqt (7.19)

Multiplying both side of the equality by p and considering (7.17), one obtains
py0 = 0 which implies that p = 0, since y0 is arbitrary, contradicting the
fact that rank U < k.

Sufficiency. Suppose now that rankU = k and show that the system is c.c.
Consider again the equation

y(x1) = Φ(x1, 0)[y0 +
∫ x1
0 Φ(0, t)B(t)u(t)dqt] (7.20)

⇔ eq−1−Ax1y(x1) = y0 +
∫ x1
0 r(A)Bu(t)dqt (7.21)

= y0 +Bs0 + ABs1 + . . .+Ak−1Bsk−1; si =
∫ x1
x0
riudqt (7.22)

As rankU = k, there exists a solution s = [s0, . . . , sk−1] of the system

Us = −y0 ⇔ y(x1) = 0, and the theorem is completely proved.

In [8], in an appendix section, is given a simple Maple Procedure [47]
that allows to detect the controllability of any type (7.15) system using the

preceding c.c. criterion. This procedure removes clearly any suspicion that
one may cast on the non calculability character of the criterion for large
matrices. The procedure is tested on the following examples:

1.

Dqy1(x) = −2y1(qx) + y2(qx) + u2(x)

Dqy2(x) = −2y2(qx) + y3(qx)

Dqy3(x) = −2y3(qx) + 3u1(x)

Dqy4(x) = −5y4(qx) + y5(qx)

Dqy5(x) = −5y5(qx) + 2u1(x) + u2(x) (7.23)

which is found to be c.c. and

2.

Dqy1(x) = y1(qx) + 2y2(qx) − y3(qx)

Dqy2(x) = y2(qx)

Dqy3(x) = y1(qx) − 4y2(qx) + 3y3(qx) + u(x) (7.24)
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which is found to be non c.c.

The following controllability criterion is valid not only for constant sys-
tems but also for varying ones. Moreover it gives an explicit expression for
the control function u(x).

Theorem 7.2.2 The system (7.5) is c.c. iff the k.k symmetric matrix

U(x0, x1) =
∫ x1
x0

Φ(x0, t)B(t)BT (t)Φ(x0, t)
Tdq(t) (7.25)

is nonsingular. In the latter case, the control function is given by

u(x) = −BT (x)Φ(x0, x)
TU−1(x0, x1)[y0 − Φ(x0, x)yf ]

x0 ≤ x ≤ x1 (7.26)

and transfers y0 = y(x0) to yf = y(x1).

Proof. Necessity. By contradiction: Suppose that the system is c.c. while
the matrix U(x0, x1) is singular. As U(x0, x1) is symmetric, we have that
for an arbitrary k − vector α:

αTUα =
∫ x1
x0
φT (t, x0)φ(t, x0)dqt

=
∫ x1
x0

‖ φ ‖2 dqt ≥ 0 (7.27)

where φ(x, x0) = BT (x)ΦT (x0, x)α. Thus U is positive semi-definite. It
remains to show that the inequality is rigorous. Suppose that there exists

α̂ : α̂TUα̂ = 0. In that case

∫ x1
x0

‖ φ̂ ‖2 dqt = 0; φ̂ = BT (x)ΦT (x0, x)α̂⇔‖ φ̂ ‖= 0 ⇔ φ̂ = 0. (7.28)

As the system is c.c. let û(x) be the control that transfers y(x0) = α̂ in

y(x1) = 0. We get

α̂ = −
∫ x1
x0

Φ(x0, t)B(t)û(t)dqt. (7.29)

Hence

‖ α̂ ‖2

= α̂T α̂ = −
∫ x1
x0
ûT (t)BT (t)ΦT (x0, t)α̂dqt = 0 ⇔ α̂ = 0. (7.30)

Thus U is positive definite hence it is nonsingular.
Sufficiency. If U is nonsingular, the control in (7.26) is defined and we need
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to show that it transfers y0 = y(x0) to yf = y(x1). Loading (7.26) in (7.7)

gives

y(x1) = Φ(x, x0)[y0 − (
∫ x1
x0

Φ(x0, t)B(t)BT (t)ΦT (x0, t)dqt)U
−1(x0, x1)(y0 − Φ(x0, x1)yf )]

= Φ(x, x0)[y0 − (y0 − Φ(x0, x1)yf )] = yf (7.31)

and the theorem is proved.
If the system is not c.c., for some y0 and yf , there can be or not a control
u(x) that joins them. The existence of such a connection control between

two given states is given by the following

Theorem 7.2.3 If for given (x0, y0) and (x1, yf ), there exists a k-vector γ
such that

U(x0, x1)γ = y0 − Φ(x0, x1)yf (7.32)

then the control u(x) = BT (x)ΦT (x0, x)γ transfers y0 = y(x0) in yf = y(x1).

Proof. Loading u(x) in (7.7) gives

y(x1) = Φ(x, x0)[y0 − (
∫ x1
x0

Φ(x0, t)B(t)BT (t)ΦT (x0, t)γ]

= Φ(x, x0)[y0 − (y0 − Φ(x0, x1)yf )] = yf . (7.33)

We now analyze the impact of the transformation of coordinates on the
controllability propriety of a q-difference system. Let S be a k.k nonsingular
matrix and let

ŷ(x) = Sy(x). (7.34)

From

Dqy = A(x)y(qx) +B(x)u (7.35)

we have Dqŷ = Dq(Sy) = SDqy = S(Ay(qx) +Bu) = SAy(qx) + SBu that

is Dqŷ = [SAS−1]ŷ(qx) + [SB]u or

Dqŷ = Âŷ(qx) + B̂u

Â = SAS−1; B̂ = SB (7.36)

The system (7.36) is said to be algebraically equivalent to (7.35). For alge-
braically equivalent systems we have the following property
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Theorem 7.2.4 If Φ(x, x0) is the q-State transition matrix for (7.35) then

Φ̂(x, x0) = SΦ(x, x0)S
−1is the one for (7.36).

Proof. We need to prove thatDqΦ̂(x, x0) = ÂΦ̂(qx, x0) providedDqΦ(x, x0) =
AΦ(qx, x0). In other words, we need to prove that Dq[SΦ(x, x0)S

−1] =
[SAS−1]SΦ(qx, x0)S

−1. The rhs equals SAΦ(qx, x0)S
−1 and the lhs is

[SDqΦ(x, x0)]S
−1 = SAΦ(qx, x0)S

−1 and the theorem is proved.

Important for the sequel is the invariance of controllability propriety given
by the following

Theorem 7.2.5 If the system (7.35) is c.c. then (7.36) is also c.c.

Proof. Loading the values of B̂ and Φ̂ in

Û(x0, x1) =
∫ x1
x0

Φ̂(x0, t)B̂(t)B̂T (t)Φ̂T (x0, t) (7.37)

we get

Û(x0, x1) =
∫ x1
x0
SΦ(x0, t)S

−1SB(t)BT (t)ST (S−1)T ΦT (x0, t)S
Tdqt.(7.38)

This means that

Û(x0, x1) = SU(x0, x1)S
T . (7.39)

Hence Û(x0, x1) is nonsingular iff U(x0, x1) is like that, and the theorem is
proved.

7.2.1 Controllability canonical forms

Consider the following constant coefficients linear q-difference equation of
order k

Dk
q−1y(x) + a1D

k−1
q−1 y(x) + . . .+ ak−1Dq−1y(x) + aky(x) = u(q−1x). (7.40)

By the change of dependent variables

z1 = y, z2 = Dq−1y, . . . , zk = Dk−1
q−1 y, (7.41)

write (7.40) in the matrix form

Dqz(x) = Ĉz(qx) + du(x), (7.42)
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with

Ĉ =















0 1 0 . . . 0
0 0 1 . . . .

. . . . . . .

. . . . . . 1
−ak −ak−1 −ak−2 . . . −a1















, (7.43)

and

z = [z1, . . . , zk]
T , d = [0, . . . , 1]T . (7.44)

By the way, note that the matrix Ĉ has the same characteristic equation as

the equation (7.40):

λk + a1λ
k−1 + . . .+ ak = 0. (7.45)

Thus, the question of controllability of the scalar q-difference equation (7.40)
is reducible to that of the controllability of the linear system in canonical
form (7.42). To inquire about the controllability of (7.42), we naturally refer

to the theorem 7.2.1 and evaluate the rank of U(Ĉ, d). We have

U(Ĉ, d) = [d, Ĉd, . . . , Ĉk−1d] (7.46)

=

























0 0 0 . 0 1

0 0 0 . 1 v1

. . . . . .

. . . . . .
0 0 1 . . vk−3

0 1 v1 . . vk−2

1 v1 v2 . . vk−1

























, (7.47)

where

vj = −
j−1
∑

i=0

ai+1vj−i−1,

j = 1, 2, . . . , k − 1; v0 = 1. (7.48)

The matrix U(Ĉ, d) is in triangular form and clearly has rank k. Hence the
system (7.42) is completely controllable. The matrix Ĉ in (7.43) is generally
said to have a companion form and the system (7.42) with Ĉ and d given by



102 Controllability

(7.43) and (7.44) is said to be in controllability canonical form.

Thus, any q-difference linear scalar equation of the form (7.40) is equivalent
to a system in the controllable canonical form and consequently is necessary
c.c. The converse is also valid that is to say if the system

Dqy(x) = Ay(qx) + bu(x), (7.49)

with A a kxk-matrix, b a k-vector, is c.c., then it is algebraically equivalent
to a system in controllability canonical form such as (7.42). To see this,
consider the kxk controllability matrix for (7.49): U = [b,Ab, . . . , Ak−1b]. As

the system is c.c., the matrix U is nonsingular and consequently invertible.
Let write U−1 in terms of its rows as

U−1 = [w1, . . . , wk]
T . (7.50)

Next, consider the set wk, wkA, . . . , wkA
k−1 and show that it is linearly in-

dependent. For this suppose that for some constants a1, . . . , ak, we have

a1wkb+ a2wkAb+ . . .+ akwkA
k−1b = 0. (7.51)

Since U−1U = I, we have wkb = wkAb = dots = wkA
k−2b = 0 and

wkA
k−1b = 1. Hence it follows from (7.51) that ak = 0. One may re-

peat this procedure by multiplying (7.51) by A with ak = 0 to conclude

that ak−1 = 0. Continuing this procedure, one may show that ai = 0 for
1 ≤ i ≤ k. This proves that the vectors wk, wkA, . . . , wkA

k−1 are linearly
independent. Hence the matrix

P =



















wk

wkA
.
.

.
wkA

k−1



















(7.52)

is nonsingular. Next, define a change of variables for the system (7.49) by

ŷ(x) = Py(x) (7.53)

to obtain

Dqŷ(x) = Ãŷ(qx) + b̃u(x), (7.54)
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with

Ã = PAP−1, b̃ = Pb. (7.55)

Clearly

b̃ = Pb = (0, 0, . . . , 0, 1)T . (7.56)

Next

Ã = PAP−1 =



















wkA
wkA

2

.

.

.
wkA

k



















P−1. (7.57)

since wkA is the second row in P , it follows that

wkAP
−1 = (0, 1, 0, . . . , 0). (7.58)

Similarly

wkA
2P−1 = (0, 0, 1, . . . , 0) (7.59)

...

wkA
k−1P−1 = (0, 0, . . . , 1), (7.60)

while

wkA
kP−1 = (−pk,−pk−1, . . . ,−p1), (7.61)

with −pk,−pk−1, . . . ,−p1, some constants. Thus

Ã =















0 1 0 . . . 0
0 0 1 . . . .
. . . . . . .

. . . . . . 1
−pk −pk−1 −pk−2 . . . −p1















, (7.62)

with the same characteristic equation as A,

λk + p1λ
k−1 + . . .+ pk = 0. (7.63)

The preceding leads to the following
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Theorem 7.2.6 The system

Dqy(x) = Ay(qx) + bu(x), (7.64)

is c.c. iff it is equivalent to a kth order q-difference equation of the form

(7.40).

Another controllable canonical form is the following c.c. (due to the corol-
lary 7.4.1 below) system

Dqŷ(x) = Ãŷ(qx) + b̃u(x), (7.65)

with

Ã =



















0 0 0 . . . . −pk

1 0 0 . . . . −pk−1

0 1 0 . . . . −pk−2

. . . . . .
0 . 0 1 0 −p2

0 . . . 1 −p1



















(7.66)

and

b̃ = (1, 0 . . . , 0)T . (7.67)

It is a more popular form among engineers due to its simple derivative.

7.3 Observability

The concept of observability is closed related to that of controllability. Gen-

erally speaking, a system is completely observable iff the knowledge of the
input and output suffices to determine the state of the system.

Definition 7.3.1 The system (7.5) is completely observable (c.o.) if for
any x0, there exists a finite x1 such that the knowledge of z(x) and u(x) for

x0 ≤ x ≤ x1 suffice to determine y0 = y(x0).

Similarly to the theorem 7.2.2, the basic observability criterion for time
varying systems reads
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Theorem 7.3.1 The system (7.5) is c.o. iff the symmetric matrix

V (x0, x1) =
∫ x1
x0

ΦT (t, x0)C
T (t)C(t)Φ(t, x0)dqt (7.68)

is nonsingular. In the latter case, we have

y0 = V −1(x0, x1)
∫ x1
x0

ΦT (t, x0)C
T (t)z(t)dqt. (7.69)

Proof. Necessity. The proof is similar to the corresponding one in theorem
7.2.2.
Sufficiency. Supposing that u(x) ≡ 0 (this does’t decrease the generalities),
x0 ≤ x ≤ x1 , we have y(x) = Φ(x, x0)y0. Hence z(x) = C(x)y(x) =

C(x)Φ(x, x0)y0. Multiplying on the left by ΦT (x, x0)C
T (x), we obtain

∫ x1
x0

ΦT (t, x0)C
T (t)z(t)dqt

= (
∫ x1
x0

ΦT (t, x0)C
T (t)C(t)Φ(t, x0)dqt)

= V (x0, x1)y0. (7.70)

Thus if V (x0, x1) is nonsingular, we have

y0 = V −1(x0, x1)
∫ x1
x0

ΦT (t, x0)C
T (t)z(t)dqt. (7.71)

The controllability and observability are two concepts with distinct physi-
cally meanings but that are mathematically equivalent as shows the following
”q-duality theorem”:

Theorem 7.3.2 The system (7.5) is c.c. iff the dual system

Dqy(x) = −AT (x)y(x) + CT (x)u(x)

z(x) = BT (x)y(x) (7.72)

is c.o. and conversely.

Proof. Considering (7.5),(7.25),(7.68), and (7.72), we remark that it suffices
to prove that ifDqΦ(x, x0) = A(x)Φ(qx, x0) thenDqΦ

T (x0, x) = −AT (x)ΦT (x0, qx).
Indeed from the theorem 3.1.5 follows that if Φ(x, x0) satisfies DqY (x) =

A(x)Y (qx) then its inverse that is Φ(x0, x) satisfies DqZ(x) = −Z(x)A(x).
Carrying out the transpose on both sides, one gets the required equality.

This duality allows greatly to relate most of results in controllability
and observability theories. In particular, the controllability criterion for
time constant systems given in theorem 7.2.1 leads to the following one for
observability:
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Theorem 7.3.3 The system (7.15) is c.o. iff the observability matrix

V (A,C) = [C,CA, . . . , CAk−1]T (7.73)

has rank = k.

7.3.1 Observability canonical forms

Consider the system

Dqy(x) = Ay(qx) + bu(x),

z(x) = cy(x) (7.74)

with A a constant kxk matrix, b = (b1, b2, . . . , bk)
T and c = (c1, c2, . . . , ck),

and suppose that it is c.o. In subsection 7.2.1, we derived two canonical
forms of (7.49) reading as (7.42) and (7.65). By exactly parallel procedures,
we can obtain two observability canonical forms of (7.74). Both procedures

are based on the nonsingularity of the observability matrix

V = [c, cA, . . . , cAk−1]T . (7.75)

By the change of variables

ŷ(x) = V y(x) (7.76)

one obtains the first observability canonical form

Dqŷ(x) = Ãŷ(qx) + b̃u(x),

z(x) = c̃ŷ(x) (7.77)

with

Ã =















0 1 0 . . . 0

0 0 1 . . . .
. . . . . . .
. . . . . . 1

−ak −ak−1 −ak−2 . . . −a1















, (7.78)

and

b̃ = V b, c̃ = (1, 0, . . . , 0, 0). (7.79)
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This canonical form is c.o. due to the complete controllability of (7.65) and

the q-duality theorem.

The second observability canonical form of (7.74) reads as

Dqŷ(x) = Ãŷ(qx) + b̃u(x),

z(x) = c̃ŷ(x) (7.80)

with

Ã =



















0 0 0 . . . . −pk

1 0 0 . . . . −pk−1

0 1 0 . . . . −pk−2

. . . . . .

0 . 0 1 0 −p2

0 . . . 1 −p1



















(7.81)

and

c̃ = (0, 0, . . . , 0, 1). (7.82)

This canonical form is c.o. due to the complete controllability of (7.42) and
the q-duality theorem.

7.4 Controllability and polynomials

Here we derive interesting interconnection between the concepts of controlla-
bility (similar results can be obtained for observability) and that of mutually
prime polynomials. Consider the time constant system

Dqy(x) = Ay(x) + bu(x)

z(x) = Cy(x), (7.83)

with scalar input and suppose that A is in the ”companion form”

A =



















0 0 0 . . . . −ak

1 0 0 . . . . −ak−1

0 1 0 . . . . −ak−2

. . . . . .
0 . 0 1 0 −a2

0 . . . 1 −a1



















. (7.84)

We have the following
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Theorem 7.4.1 The system (7.83) is c.c. iff the polynomials k(λ) = det(λI−
A) = λk + a1λ

k−1 + . . . + ak and p(λ) = bkλ
k−1 + bk−1λ

k−2 + . . . + b1 are
relatively prime.

Proof. We have that if λ1, . . . , λk are characteristic roots of A, so p(λ1), . . . , p(λk)
are characteristic roots of p(A). Hence det(p(A)) = p(λ1) . . . p(λk). Hence
p(A) is singular iff p(λ) and k(λ) have common roots. It remains to prove
that p(A) = U(A, b): Let ei and fi be the ith columns of I and p(A) re-

spectively. One easily verifies: f1 = [b1, . . . , bk] = b. Moreover ei = Aei−1,
i = 2, . . . , k and fi = p(A)ei. Hence fi= p(A)ei= p(A)Aei−1= Ap(A)ei−1=
Afi−1, i = 2, . . . , k. We get fi = Ai−1b, i = 2, . . . , k. In other words
p(A) = U(A, b), and the theorem is proved.

In the particular case when b = b̃ in (7.67), then p(λ) = 1 and it is
necessary relatively prime with k(λ). Hence consequently to the theorem

7.4.1, we have the following

Corollary 7.4.1 The system (7.65) is completely controllable.

7.5 Exercises

1. Show that the change of variables ŷ = Uy(x) in (7.64), where U is its
controllability matrix, transforms it in (7.64).

2. Find a change of variable that transforms (7.74) in (7.80).

3. Derive an analog theory by considering not the system (7.5) but

Dqy(x) = A(x)y(x) +B(x)u(x)

z(x) = C(x)y(x). (7.85)

4. Show that the system

Dqy1(x) = ay1(x) + by2(x)

Dqy1(x) = cy2(x) (7.86)

is not C.c.
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5. Discuss the c.c. of the system

Dqy1(x) = ay1(x) + by2(x)

Dqy1(x) = cy1(x) + dy2(x) (7.87)

6. Contemplate the system

Dqy(x) = Ay(x) + bu(x). (7.88)

with

A =

(

0 1
2 1

)

; b =

(

1
1

)

(7.89)

a) Is it c.c.?

b) Find the control u(x) and the time x1, necessary to reach the state

(

−4
0

)

(7.90)

from
(

0

0

)

. (7.91)
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Chapter 8

q-Difference variational

calculus

In this chapter we discuss some fundamental concepts of the variational

calculus on the q-uniform lattice x(s) = qs, such as the q-Euler equations and
its applications to the isoperimetric and Lagrange problem and commutation
equations [10]. Basically, we are concerned with the extremum problem for

the following functional

J(y(x)) =
∫ b
a F (x, y(x),Dqy(x), . . . ,D

k
q y(x))dqx

=def (1 − q)
∑qβ

qα xF (x, y(x),Dqy(x), . . . ,D
k
q y(x)) (8.1)

under the boundary constraints

y(qα) = y(qβ+1) = c0

Dqy(q
α) = Dqy(q

β+1) = c1

. . .

Dk−1
q y(qα) = Dk−1

q y(qβ+1) = ck−1 (8.2)

where

a = qβ+1 ≤ b = qα (8.3)

and the summation is performed by x on the set (we shall sometimes write

simply
∑qβ

qβ or
∑

L)

L = {qβ , qβ−1, . . . , qα+1, qα}, 0 ≤ α < β ≤ +∞. (8.4)

111
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For α ; 0, β ; +∞, (8.1) and (8.2) read

J(y(x)) =
∫ 1
0 F (x, y(x),Dqy(x), . . . ,D

k
q y(x))dqx

=def (1 − q)
∑1

0 xF (x, y(x),Dqy(x), . . . ,D
k
q y(x)) (8.5)

and

Di
qy(0) = Di

qy(1), i = 0, . . . , k − 1 (8.6)

respectively. If the function F̃ (x) = F (x, y(x),Dy(x), . . . ,Dky(x)) is Riemann-
integrable on the interval [0, 1], then it is easily seen that for q ; 1, the q-

integral in eq. (8.5) and the constraints in eq. (8.6) tends to the continuous
integral

J(y(x)) =

∫ 1

0
F (x, y(x),Dy(x), . . . ,Dky(x))dx (8.7)

where Df(x) = d
dxf(x), and the boundary constraints

y(0) = y(1) = c0

Dy(0) = Dy(1) = c1

. . .

Dk−1y(0) = Dk−1y(1) = ck−1 (8.8)

respectively. Hence the functional in eq. (8.5) can be considered as a natural
q-version of the one in eq. (8.7).
Remark 1. By carrying out in (8.1) the linear change of variable

t(s) = a+ x(s)(b− a) = a+ qs(b− a) (8.9)

(a , b, finite for simplicity), we obtain a q-version of the integral obtained
from (8.7) by the linear change of variable

t = a+ x(b− a), (8.10)

and both the two new integrals have now a and b as boundaries of integration.
Clearly the converse to (8.9) and (8.10) transformations are also valid. Hence

in that sense, there is no lost of generalities considering in this book integrals
of type (8.5) or (8.7) or even the little bit more general integral in (8.1).
This allows to avoid cumbersome treatments unessential in addition in the
reasoning.
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8.1 The q-Euler-Lagrange equation

We consider the q-integral functional,

J(y(x)) = (1 − q)
∑qβ

qα xF (x, y(x),Dqy(x), . . . ,D
k
q y(x)). (8.11)

Here the function F (x, y0(x), . . . , yk(x)) is defined on A as a function of x,
together with its first partial derivatives relatively to all its arguments. Let

E be the linear space of functions y(x) (qβ ≤ x ≤ qα) in which is defined the
norm

‖y‖ = max
0≤i≤k

(max
x∈L

|Di
qy(x)|) (8.12)

and let E′ be the linear manifold of functions belonging in E and satisfying to
the constraints in (8.2). We study the extremum problem for the functional
J , on the manifold E′. We first calculate the first variation of the functional

J on the linear manifold E′:

δJ(y(x), h(x)) = d
dtJ(y(x) + th(x))|t=0

= (1 − q) d
dt

∑qβ

qα [xF (x, y(x) + th(x), . . . ,Dk
qy(x) + tDk

qh(x))]|t=0

= (1 − q)
∑qβ

qα [
∑k

i=0[xFi(x, y(x),Dqy(x), . . . ,D
k
q y(x))D

i
qh(x)] (8.13)

where

Fi = ∂F
∂yi

(F = F (x, y0, y1, . . . , yk)), i = 0, . . . , k. (8.14)

The variation is dependent of an arbitrary function h(x). Since the variation
is performed on the linear manifold E′, h(x) is such that y(x)+th(x) belongs

also to the linear manifold E′ and in particular satisfies the constraints (8.2).
A direct consequence of this is that the function h(x) satisfies the constraints:

h(qα) = h(qβ+1) = 0

Dqh(q
α) = Dqh(q

β+1) = 0

. . .

Dk−1
q h(qα) = Dk−1

q h(qβ+1) = 0 (8.15)

From the relation Dq(fg)(x) = f(qx)Dqg(x) + g(x)Dqf(x), one obtains the
formula of the q-integration by parts:

(1 − q)
∑qβ

qα xf(qx)Dqg(x) =

(1 − q)
∑qβ

qα xDq(fg) − (1 − q)
∑qβ

qα xg(x)Dqf(x). (8.16)
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Using (8.15), and (8.16), (8.13) gives

δJ(y(x), h(x)) =

(1 − q)
∑qβ

qα x[
∑k

0(−1)iq
(i−1)

2
iDi

q[Fi(q
−ix, y(q−ix),Dqy(q

−ix), . . .

. . . ,Dk
q y(q

−ix)]]h(x) (8.17)

(Very important to distinguish Dqf(kx) which means here [Dqf ](kx) with
Dq[f(kx)] meaning Dqg(x) for g(x) = f(kx)). Next, it is necessary to note
that the boundary constraints in eq. (8.15) are equivalents to the following

h(qα+i) = h(qβ+1+i) = 0, i = 0, 1, . . . , k − 1. (8.18)

Consequently, (8.17) gives

δJ(y(x), h(x)) =

(1 − q)
∑qβ

qα+k x[
∑k

0(−1)iq
(i−1)

2
iDi

q[Fi(q
−ix, y(q−ix),Dqy(q

−ix), . . .

. . . ,Dk
q y(q

−ix)]h(x). (8.19)

For deriving the corresponding q-Euler-Lagrange equation, we need the fol-
lowing lemma, which constitutes a q-version of what is called ”fundamental
lemma of variational calculus”.

Lemma 8.1.1 Consider the functional

I(f̂) = (1 − q)
∑

B

xf̂(x)h(x) (8.20)

where B = {qr, qr+1, . . . , qs}. If I(f̂) = 0, for all h defined on B, then
f̂(x) ≡ 0 on B.

Proof. As I(f̂) = 0, ∀h defined on B, we have that:

qrf̂(qr)h1(q
r)+ . . . +qsf̂(qs)h1(q

s) = 0

qrf̂(qr)h2(q
r)+ . . . +qsf̂(qs)h2(q

s) = 0

. . .

qrf̂(qr)hs−r+1(q
r)+ . . . +qsf̂(qs)hs−r+1(q

s) = 0 (8.21)

for any choice of the (s− r + 1)2 numbers

aij = hi(q
j+r−1), i, j = 1, . . . , s− r + 1. (8.22)
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This is a linear homogenous system with the matrix

(aij)
s−r+1
i,j=1 (8.23)

and the vector [Tj = qj+r−1f̂(qj+r−1)]s−r+1
j=1 . Choosing the numbers

hi(q
j+r−1), i, j = 1, . . . , s− r + 1 (8.24)

in such a way that the corresponding matrix in (8.23) doesn’t be singular,
(8.21) gives Tj = 0, j = 1, . . . , s − r + 1 or equivalently, f̂(qj+r−1) = 0, j =
1, . . . , s− r + 1 which proves the lemma.

Next, remark that (8.19) is written under the form

δJ(y(x), h(x)) = I(f̂) = (1 − q)
∑qβ

qα+k xf̂(x)h(x) (8.25)

where f̂ represents the expression within the external brackets. Hence the

necessary condition for the extremum problem (8.1)-(8.4) can be written

I(f̂) = 0 (8.26)

and this for all h(x) defined on

B = {qr, qr+1, . . . , qs}, r = α+ k, β = s (8.27)

By the fundamental lemma of the variational q-calculus (see Lemma 8.1.1),
this leads to

f̂(x) ≡ 0. (8.28)

Thus the necessary condition for the extremum problem (8.1)-(8.4) reads

∑k
0(−1)iq

(i−1)
2

iDi
q[Fi(q

−ix, y(q−ix),Dqy(q
−ix), . . . ,Dk

q y(q
−ix)]

= 0,

Di
qy(q

α) = Di
qy(q

β+1) = ci, i = 0, . . . , k − 1. (8.29)

For k = 1 and k = 2, for example, we have respectively:

F0(x, y(x),Dqy(x)) −Dq[F1(q
−1x, y(q−1x),Dqy(q

−1x))] = 0,

y(qα) = y(qβ+1) = c0 (8.30)



116 Applications

and

F0(x, y(x),Dqy(x),D
2
qy(x))

−Dq[F1(q
−1x, y(q−1x),Dqy(q

−1x),D2
qy(q

−1x))]

+qD2
q [F2(q

−2x, y(q−2x),Dqy(q
−2x),D2

qy(q
−2x))] = 0,

y(qα) = y(qβ+1) = c0; Dqy(q
α) = Dqy(q

β+1) = c1 (8.31)

Let us note that while the q-integral (8.1) tends to the continuous integral
(8.7) for q ; 1, α ; 0, β ; +∞, the q-equation in (8.29) tends to the

corresponding to (8.7) differential Euler-Lagrange equation:

∑k
0(−1)iDiFi(x, y(x),Dy(x), . . . ,D

ky(x)) = 0,

Diy(0) = Diy(1)) = ci, i = 0, . . . , k − 1. (8.32)

That is why it is convenient to call (8.29), the q-Euler-Lagrange equation

corresponding to the q-integral (8.1). The equation (8.29) is a q-difference
equation of degree 2k which is in principle solved uniquely under the 2k
boundary constraints.
Remark 2. If the functional in (8.11) is dependent of more that one variable

i.e. J = J(y1, . . . , yn), then the necessary extremum condition leads to type
(8.29) n q-Euler-Lagrange equations with y replaced by yi, i = 1, . . . , n.

8.2 Applications

8.2.1 On the continuous variational calculus

The direct application of the variational q-calculus is its application on the
continuous (differential) variational calculus: Instead of solving the Euler-
Lagrange equation (8.32) for finding the extremum of the functional (8.7),
it suffices to solve the q-Euler-Lagrange equation (8.29) and then pass to

the limit while q ; 1. Remark that thought this can appear at the first
glad as a contradiction (by the fact of the phenomenon of discretization),
the variational q-calculus is a generalization of the continuous variational

calculus due to the presence of the extra-parameter q (which may be physical,
economical or another) in the first and its absence in the second.

Example. Suppose it is desirable to find the extremum of the integration
functional

J(y(x)) =
∫ 1
0 (xνy + 1

2(Dy)2)dx, ν > 0, (8.33)
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under the boundary constraints y(0) = c ; y(1) = c̃. The q-version of the

problem consists in finding the extremum of the q-integration functional

J(y(x)) = (1 − q)
∑1

0 x[x
νy + 1

2(Dqy)
2], ν > 0, (8.34)

under the same boundary constraints. According to (8.30), the q-Euler-
Lagrange equation of the latter problem reads:

xν −Dq[Dqy(q
−1x)] = 0 (8.35)

which solution is

y(x) = xν+2[ (1−q)2qν+1

(1−qν+1)(1−qν+2)
] + [y(1) − y(0) − (1−q)2qν+1

(1−qν+1)(1−qν+2)
]x

+y(0). (8.36)

As it can be verified, for q ; 1, the function in (8.36) tends to the function

y(x) = xν+2

(ν+1)(ν+2) + [y(1) − y(0) − 1
(ν+1)(ν+2) ]x+ y(0), (8.37)

solution of the Euler-Lagrange equation of the functional in (8.33).

8.2.2 The q-isoperimetric problem

Suppose that it is required to find the extremum of the functional

J(y(x)) = (1 − q)
∑qβ

qα xf(x, y(x),Dqy(x), . . . ,D
k
q y(x))

Di
qy(q

α) = Di
qy(q

β+1) = ci, i = 0, 1, . . . , k − 1 (8.38)

under the constraints

J̃i(y(x)) = (1 − q)
∑qβ

qα xf i(x, y(x),Dqy(x), . . . ,D
k
qy(x)) = Ci,

i = 1, . . . ,m. (8.39)

To solve this problem we needs to consider the following generalities. Let
J(y) and J̃1(y), . . . , J̃m be some differentiable functionals on the normed

space E, or on its manifold E′. We have the following theorem (see for ex.
[34])

Theorem 8.2.1 If a functional J(y) attains its extremum in the point ȳ
under the additional conditions J̃i(y) = Ci, i = 1, . . . ,m and ȳ is not a

stationary point for any one of the functionals J̃i (δJ̃i(ȳ, h) 6= 0, i = 1, . . . ,m,
identically) while the functionals δJ̃i, (i = 1, . . . ,m) are linearly independent,
then ȳ is a stationary point for the functional J−∑m

i=1 λiJ̃i where the λi are
some constants.
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Thus by this theorem, the necessary extremum condition for the functional

J(y) under the additional constraints J̃i(y) = Ci, i = 1, . . . ,m, verifying the
conditions of the theorem (let us note that considering the formula (8.17),
a type (8.11) functional i.e. satisfying the same definition conditions, is
differentiable on E′), is given by the equation (8.29) with

F = f −∑m
i=1 λif

i (8.40)

It is a q-difference equation of order 2k containing m unknown parameters.
It is in principle solved uniquely under the 2k boundary constraints and the
additional m conditions.

Example. Suppose it required to solve the problem of finding the ex-
tremum of the q-integration functional

J(y(x)) = (1 − q)
∑qβ

qα x[ax2(D2
qy)

2 + b(Dqy)
2], a, b > 0 (8.41)

under the boundary constraints

Di
qy(q

α) = Di
qy(q

β+1) = ci, i = 0, 1, (8.42)

and an additional condition that J1(y(x)) = c, c some constant, where J1 is

a q-integration functional given by

J1(y(x)) = (1 − q)
∑qβ

qα x2y. (8.43)

According to the theorem 8.2.1, the problem is equivalent to that of finding

the extremum of the q-integration functional

J(y(x)) = (1 − q)
∑qβ

qα x[ax2(D2
qy)

2 + b(Dqy)
2 − λxy], (8.44)

for some constant λ, under the same boundary constraints (8.42). The cor-
responding q-Euler-Lagrange equation reads

−λx− 2bDq[Dqy(q
−1x)] + 2aq−3D2

q [x
2D2

qy(q
−2x)] = 0 (8.45)

or equivalently after reduction and integration (c1, c2, constants of integra-
tion)

y(x) − [q(q − 1)2b/a+ q + 1]y(q−1x) + qy(q−2x) = (1−q)2

2a (c1x+ c2

+ λx3

(q+1)(q2+q+1)). (8.46)

This is a constant coefficients linear nonhomogeneous second-order q-difference
equation which can be solved uniquely (under the constraints (8.42)) by
methods similar to that of analogous differential or difference equations.
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8.2.3 The q-Lagrange problem

Suppose now that it is required to find the extremum of the functional

J(y1(x), . . . , yn(x))

= (1 − q)
∑qβ

qα xf(x, y1(x), . . . , yn(x),Dqy1(x), . . . ,Dqyn(x)) (8.47)

under the constraints

f i(x, y1(x), . . . , yn(x),Dqy1(x), . . . ,Dqyn(x)) = 0, i = 1, . . . ,m;m < n,

yi(q
α) = yi(q

β+1) = ci, i = 1, . . . , n. (8.48)

This problem can be transformed in the q-isoperimetric one as follows:
First, multiply every ith equation in (8.48) by an arbitrary function λi(x)

defined as all the remaining on L = {qβ , . . . , qα} and then apply the q-
integration on L on the result:

J̃i(y1(x), . . . , yn(x))

= (1 − q)
∑qβ

qα xλi(x)f
i(x, y1(x), . . . , yn(x),Dqy1(x), . . . ,Dqyn(x)) = 0,

i = 1, . . . ,m (8.49)

The remaining question is that of knowing if the two constraints (8.48) and
(8.49) are equivalent. The answer is yes since obviously from (8.48) follows

(8.49). Finally, it is by the fundamental lemma of the variational q-calculus
(see Lemma 8.1.1) that (8.48) follows from (8.49).

Example. Suppose that the problem consists in finding the extremum of
the functional

J(x(t), u(t)) = 1
2(1 − q)

∑qβ

qα t[u2(t) − x2(t)] (8.50)

under the constraints

D2
qx = u

x(qα) = x(qβ+1) = c;Dqx(q
α) = Dqx(q

β+1) = c̃. (8.51)

The problem is equivalent to the q-Lagrange problem of finding the ex-
tremum of the functional

J(x(t), y(t), z(t)) = 1
2(1 − q)

∑qβ

qα t[z2(t) − x2(t)] (8.52)
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under the constraints

Dqx = y; Dqy = z

x(qα) = x(qβ+1) = c; y(qα) = y(qβ+1) = c̃. (8.53)

Hence the problem is equivalent to that of finding the extremum of the
functional

J(x, y, z, λ1, λ2) = (1 − q)
∑qβ

qα tF (x(t), y(t), z(t), λ1(t), λ2(t)) (8.54)

where

F (x(t), y(t), z(t), λ1(t), λ2(t))

= 1
2(z2(t) − x2(t)) + λ1(t)(Dqx(t) − y(t)) + λ2(t)(Dqy(t) − z(t))(8.55)

under the boundary constraints

x(qα) = x(qβ+1) = c; y(qα) = y(qβ+1) = c̃. (8.56)

The corresponding q-Euler-Lagrange equations give

y(t) = Dqx(t); z(t) = λ2(t) = D2
qx(t); λ1(t) = −q2D3

q [x(q
−1t)], (8.57)

−x(t) + q5D4
q [x(q

−2t)] = 0. (8.58)

Hence it is sufficient to solve the equation (8.58). Searching its solution as
an integer power series x(t) =

∑∞
0 Cnt

n, one is led to the following fourth

order difference equation for the coefficient cn:

Cn = q2n−5( 1−q
1−qn )( 1−q

1−qn−1 )( 1−q
1−qn−2 )( 1−q

1−qn−3 )Cn−4 (8.59)

with the coefficients C0, C1, C2, C3 determined by the four boundary con-

straints (8.56).The solution of (8.59) reads

Cn =
∏n

i=nc
( 1−q
1−qi )

∏

n−nc
4

i=1 q2(nc+4i)−5Cnc (8.60)

where n ≡ nc mod 4, 0 ≤ nc ≤ 3.
To obtain the four basic elements for the space of solutions of (8.58), one can
make the following four independent choices for the constants C0, C1, C2, C3:
Choosing (a) Cn = 1

n! for n = 0, . . . , 3 leads to x(t) = êtq; (b) Cn = (−1)n

n! for

n = 0, . . . , 3 leads to x(t) = ê−t
q ; (c) Cn = (−1)

n
2 [(1)n+(−1)n]

2n! for n = 0, . . . , 3
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leads to x(t) = cosqt; (d) Cn = (−1)
n−1

2 [(1)n−(−1)n]
2n! for n = 0, . . . , 3 leads to

x(t) = sinqt.
The functions êtq, ê

−t
q , cosqt and sinqt have in the integer power series, the

indicated coefficients for n = 0, . . . , 3 and the coefficients in (8.60) for n > 3.
As it can be verified, for q ; 1, these functions have as limits the functions

et, e−t, cost and sint, respectively. The latter are nothing else than a basis
of the space of solutions of a similar to (8.58) differential equation for the
corresponding continuous problem.

8.2.4 A q-version of the commutation equations

Let L = −D2 +y(x), where Df(x) = df(x)
dx = f ′(x), be the Schrodinger oper-

ator and let Am be a sequence of differential operators of order 2m+1,m =

0, 1, 2, . . ., which coefficients are arbitrary differential polynomials of the po-
tential y(x). By commutation equations, one understands the equations
[L,Am] = LAm −AmL = 0, in the coefficients of the operators. It is known
since [19, 20] that for any m,m = 0, 1, 2, . . . there exists such an operator

Am of order 2m + 1, such that the operator [L,Am] = LAm − AmL is an
operator of multiplication by a scalar function fm(y, y′, y′′, . . .): [L,Am] =
fm(y, y′, y′′, . . .). The corresponding commutation equations then read

[L,Am] = fm(y, y′, y′′, . . .) = 0 (8.61)

Its non-trivial solutions are elliptic or hyperelliptic (or their degenerate cases)
functions for m = 1 and m > 1 respectively (see [19, 20]). Since years
seventies of the last century (see for ex. [24], paragr. 30), it is known that the

commutation equations (8.61) are equivalent to type (8.32) Euler-Lagrange
equations for the functionals

Jm(y(x)) =

∫ b

a
Lm(y(x), y′(x), . . . , y(k)(x))dx (8.62)

with Lm related to Am in a known way (see for ex. [24]).
If m = 1 for example, L1(y, y

′) = y′2/2 + y3 + c1y
2 + c2y, (c1, c2: con-

stants), and the corresponding Euler-Lagrange equation (commutation equa-
tion) reads:

y′′ = 3y2 + 2c1y + c2 . (8.63)

Up to a linear transformation y → c3y + c4, its solution is the well known
Weierstrass function P(x).
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Considering now the q-functional

Jm(y(x)) = (1 − q)
∑qβ

qα xLm(y(x),Dqy(x), . . . ,D
k
q y(x)) (8.64)

we obtain that the corresponding to type (8.29) q-Euler-Lagrange equations
are q-versions of the commutation equations (8.61). For example for m = 1,

we have L1(y(x),Dqy(x)) = [Dqy]
2/2+y3+c1y

2+c2y and the corresponding
q-Euler-Lagrange equation reads

3y2 + 2c1y + c2 − qD2
q [y(q

−1x)] = 0 (8.65)

or equivalently

y(qx) = (q + 1)y(x) + (qx− x)2(3y2(x) + 2c1y(x) + c2) − qy(q−1x) .(8.66)

Obviously, the q-Euler-Lagrange equation(8.65) (or (8.66)) tends to the
Euler-Lagrange one in (8.63), while q ; 1. A particular solution (c1 =

c2 = 0) of (8.66) is given by the function

y(x) = (1+q)(1+q+q3)
3q2x2 , (8.67)

a q-version of the degenerate case of the Weierstrass function P(x) (solution
of (8.63)) while its periods tend to ∞. One will note that even without giving

an analytical general resolution of this equation, its solution satisfying given
boundary constraints, can be found recursively. Here is naturally the main
advantage of the analysis on lattices.

8.3 Exercises

1. Determine the extremals of the functionals

J(y) =

∫ 1

0
[(Dqy)

2 − y2]dqx; y(0) = 0 (8.68)

2. Find the extremals of the functional

J(y) =

∫ 1

0
[(Dqy)

2 + x2]dqx (8.69)

under the constraints

J(y) =

∫ 1

0
y2dqx = 2; y(0) = y(1) = 1 (8.70)
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3. Find the extremals of the isoperimetric problems

J(y) =

∫ x2

x1

(Dqy)
2dqx; J(y) =

∫ x2

x1

y2dqx = 0 (8.71)
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Chapter 9

q-Difference optimal control

In chapter 7, we were dealing with controllability problems, that is the prob-
lem of determining either exists a control that could transfers the trajectories
from a given sate to another predetermined one. We were fully indifferent

toward the quality of the control function. However, in many practical prob-
lems, one is interested not only by the existence of a control function but in
an optimal control function, that is that control which among others consti-
tutes the extremum element for a given functional.

9.1 The q-optimal control problem

Suppose that it is given a k-dimensional q-controlled system

Dqz(x) = f̃0(x, z(x), u(x))

z(qα) = z(qβ) = C (9.1)

and the q-functional of the form

J̃(z(x), u(x)) = (1 − q)
∑qβ

qα xf̃(x, z(x), u(x)) (9.2)

The optimal control problem consists in that among all admissible con-
trol functions u(x), find that for which the corresponding solution of the
q-boundary problem (9.1) is an extremum for the functional in (9.2). Thus

following the q-Lagrange problem, our extremum problem consists in finding
the extremum of the functional under the constraints below (remark that as
there is no any derivative of u(x), no boundary constraints for it are needed):

Ĵ(y(x), u(x)) = (1 − q)
∑qβ

qα x{f̃(x, z, u) − λ(x)[f̃0(x, z, u) −Dqz]},
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z(qα) = z(qβ) = C (9.3)

According to (8.30), the corresponding q-Euler-Lagrange system reads

(f̃z − λ(x)f̃0
z ) −Dq[λ(q

−1x)] = 0

f̃u − λ(x)f̃0
u = 0 (9.4)

Combining (9.4) with the first eq. in (9.1), we conclude that the solution of
the problem satisfies the system:

Dqz = +Hλ

Dq[λ(q
−1x)] = −Hz

0 = Hu (9.5)

where

H(x, z, λ, u) = −f̃(x, z, u) + λ(x)f̃0(x, z, u) (9.6)

Seen the similarities of the problem posed and the formula obtained (eqs.(9.5)-
(9.6)), with their analogs in the continuous optimal control, one can say that
we were dealing with a q-version of one of the version of the ”maximum prin-

ciple” [50]. Hence we can refer to H in (9.6) as the q-Hamilton-Pontriaguine
function, (9.5) as the q-Hamilton-Pontriaguine system. Recall that the ref-
erence to L S Pontriaguine is linked to the ”maximum principle” in [50], the
one to Hamilton is linked to the fact that in the case of pure calculus of

variation (the control function and system are not present explicitly), the
Hamilton and Hamilton-Pontriaguine systems are equivalent (see the follow-
ing subsection for the q-situation).

Example. (q − Linear − quadraticproblem) Suppose that the problem is
that of finding a control function u(x) such that the corresponding solution
of the controlled system

Dqy = −ay(x) + u(x), a > 0 (9.7)

satisfying the boundary conditions y(qα) = y(qβ+1) = c, is an extremum
element for the q-integral functional (q-quadratic cost functional)

J(y(x), u(x) = 1
2(1 − q)

∑qβ

qα x(y2(x) + u2(x)). (9.8)
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According to (9.5) and (9.6), the solution of the problem satisfies

Dqy = Hλ

Dq[λ(q
−1x)] = −Hy

Hu = 0, (9.9)

where

H(y, λ, u) = −1

2
(y2 + u2) + (−ay + u)λ(x). (9.10)

(9.9) and (9.10) give

Dqy = −ay + u

Dqλ(x) = qy(qx) + aqλ(qx)

λ = u. (9.11)

In term of y(x), this system can be simplified in the following

D2
qy(x) + aDqy(x) = (a2 + 1)qy(qx) + aqDqy(qx). (9.12)

Searching the solution of (9.12) under the form of an integer power series

y(x) =
∑∞

0 cnx
n (9.13)

one is led to a variable coefficient linear homogenous second-order difference

equation for cn:

cn = a(q − 1)cn−1 + q(a2 + 1) (1−q)2

(1−qn−1)(1−qn)
cn−2. (9.14)

This difference equation can naturally be solved recursively starting from
the initial data c0 and c1.
However, even without solving it, we can search for what give the corre-

sponding function in (9.13), in the the limiting case when q ; 1. In (9.14),

for q ; 1, the factor of cn−1 give zero, while that of cn−2 give a2+1
n(n−1) . Hence

for q ; 1, (9.14) give

cn = a2+1
n(n−1)cn−2; n = 2, . . . . (9.15)

Choosing c0 and c1 (this equivalent to that choosing y(qα) and y(qβ+1) )
as c0 = 1 and c1 =

√
a2 + 1 or c1 = −

√
a2 + 1, (9.15) give as solutions

cn = (a2+1)
n
2

n! or cn = (−1)n (a2+1)
n
2

n! and the corresponding power series give

y(x) = exp(
√
a2 + 1x) or y(x) = exp(−

√
a2 + 1x) respectively. As it can be

verified, the latter are the solutions for y(x) in the corresponding continuous
problem.
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9.2 Interconnection between the variational q-calculus,

the q-optimal control and the q-Hamilton sys-

tem

Here, we have the following

Theorem 9.2.1 For the simplest functional

J(y(x)) = (1 − q)
∑qβ

qα xF (y(x),Dqy(x)),

y(qα) = y(qβ+1) = c0 (9.16)

the q-Euler-Lagrange equation, the q-Hamilton-Pontriaguine and the q-Hamilton

systems are equivalent.

Proof. We show this in three steps:
a)We first show how to obtain the q-Hamilton system from the q-Euler-

Lagrange equation. For the functional in (9.16), the q-Euler-Lagrange equa-
tion reads

F0(y(x),Dqy(x)) −Dq[F1(y(q
−1x),Dqy(q

−1x))] = 0. (9.17)

Letting

λ(x) = F1(y(x),Dqy(x)), (9.18)

and

H = −F + λ(x)Dqy, (9.19)

then we get from (9.17),(9.18) and (9.19) the q-Hamilton system

Dqy = +Hλ(y(x), λ,Dqy)

Dq[λ(q
−1x)] = −Hy(y(x), λ,Dqy) (9.20)

b) To get the q-Hamilton-Pontriaguine system from q-Hamilton system (9.20),
it suffices to suppose u(x) = Dqy(x) to be the control q-equation for the given
initial non controlled extremum problem. In that case, (9.20) gives

Dqy = +Hλ(y(x), λ, u(x))

Dq[λ(q
−1x)] = −Hy(y(x), λ, u(x)) (9.21)
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with

H(y(x), λ(x), u(x)) = −F (y(x), u(x)) + λ(x)u(x), (9.22)

the q-Hamilton-Pontriaguine function, and from (9.18) we get the third equa-
tion in (9.5):

Hu = 0. (9.23)

c) We finally show how to obtain the q-Euler-Lagrange equation (9.17) from

the q-Hamilton-Pontriaguine system (9.21), (9.22) and (9.23). From (9.22)
and (9.23), we have

λ(x) = F1(y(x), u(x)) = F1(y(x),Dqy(x)), (9.24)

while from (9.21) we get

Dq[λ(q
−1x)] = F0(y(x), u(x)) = F0(y(x),Dqy(x)). (9.25)

Finally, (9.24) and (9.25) give the q-Euler-Lagrange equation (9.17), which
proves the theorem.

9.3 Energy q-optimal control

Consider again the linear control system (7.5). In theorem 7.2.2 it was shown
that under the condition of the theorem, the control function (7.26) transfers
y =0 to y =f in time x0 ≤ x ≤ x1. It is interesting to note that in fact that

control is optimal in the sense that it minimizes the integral

∫ x1
x0

‖ u(t) ‖2 dqt =
∫ x1
x0

(u2
1 + . . .+ u2

m)dqt, (9.26)

seen as a measure of ”control” energy involved.

Theorem 9.3.1 If ũ(x) is another control transferring y = y0 = y(x0) to
y = yf = y(x1) then

∫ x1
x0

‖ ũ ‖2>
∫ x1
x0

‖ u ‖2 dqt, (9.27)

provided ũ 6= u
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Proof. We have

y(x1) = Φ(x, x0)[y0 +
∫ x1
x0

Φ(x0, x)B(t)u(t)] (9.28)

y(x1) = Φ(x, x0)[y0 +
∫ x1
x0

Φ(x0, x)B(t)ũ(t)] (9.29)

Subtracting members by members:

0 =
∫ x1
x0

Φ(x0, t)B(t)[ũ(t) − u(t)] (9.30)

Multiplying on the left by [y0 − Φ(x0, x1)yf ]T [U−1(x0, x1)]
T and use the

transpose of (7.26):

0 =
∫ x1
x0
y0 − Φ(x0, x1)yf ]T [U−1(x0, x1)]

T Φ(x0, t)B(t)[ũ(t) − u(t)]dqt

⇔ 0 =
∫ x1
x0
uT [ũ(t) − u(t)]dqt (9.31)

We have next
∫ x1
x0

‖ ũ(t) − u(t) ‖2 dqt =
∫ x1
x0

(ũ(t) − u(t))T (ũ(t) − u(t))dqt

= −
∫ x1
x0
ũT (ũ(t) − u(t))dqt =

∫ x1
x0

‖ ũ ‖2 dqt −
∫ x1
x0

‖ u ‖2 dqt. Hence
∫ x1
x0

‖ ũ ‖2 dqt =
∫ x1
x0

‖ u ‖2 dqt +
∫ x1
x0

‖ ũ − u ‖2 dqt, which proves the
theorem.

9.4 Exercises

1. Given the example in section 8.2.1, write down and solve the equivalent

Hamilton and Hamilton-Pontriaguine systems.

2. Given the example in section 9.1, write down and solve the equivalent
q-Euler-Lagrange equation and Hamilton system.

3. Given the system

Dqx = v

Dqv = u (9.32)

describing the moving of a point in the plan x, v. Determine the control
function u(t) such that a point A(x0, v0) reaches the position B(0, 0) in the
smallest time under the condition |u| ≤ 1.



Bibliography

[1] W H Abdi, On q-Laplace transform, Proc.Acad.Sci.India 29A, (1960)

389-408.

[2] W H Abdi, On certain q-difference equations and q-Laplace trans-
forms, Proc.nat.inst.Sci.India Acad. 28A, (1962) 1-15.

[3] W H Abdi, Application of q-Laplace transforms to the solution of
certain q-integral equations, Rend.Circ.mat.Palermo 11, (1962) 1-13.

[4] W H Abdi, Cetain inversion and representation formulae for q-Laplace

transforms, Math.Zeitschr. 83, (1964) 238-249.

[5] C R Adams, On the linear ordinary q-difference equation, Am. Math.
Ser. II, 30 (1929) 195-205.

[6] G. E. Andrews, Q-Series: Their Development and Application in Anal-

ysis, Number Theory, Combinatorics, Physics and Computer Alge-
bra,Regional Conf Srs in Math, No 6, 1986.

[7] R. Askey, J. Wilson, Some basic hypergeometric orthogonal polynomi-

als that generalize the Jacobi polynomials, Mem. Am. Math. Soc. 54

(1985) 1-55.

[8] G Bangerezako, q-Difference linear control systems, Preprint, 2007.

[9] G Bangerezako, Variational calculus on q-nonuniform lattices, J. Math.

Anal. Appl. 306 (2005) 161-179.

[10] G Bangerezako, Variational q-calculus J. Math. Anal. Appl. 289 (2004)
650-665.

131



132 Bibliography

[11] G. Bangerezako, M. N. Hounkonnou, The factorization method for

the general second-order q-difference equation and the Laguerre-Hahn
polynomials on the general q-lattice, J. Phys. A: Math. Gen. 36 (2003)
765-773.

[12] G. Bangerezako, M.N. Hounkonnou,, The transformation of polyno-

mial eigenfunctions of linear second-order q-difference operators: a spe-
cial case of q-Jacobi polynomials. Contemporary problems in mathe-
matical physics (Cotonou, 2001), 427-439, World Sci. Publishing, River
Edge, NJ, 2002.

[13] G. Bangerezako, The fourth order difference equation for the Laguerre-
Hahn polynomials orthogonal on special non-uniform lattices, The Ra-
manujan journal, 5, 167-181, 2001.

[14] G Bangerezako, The factorization method and the Askey-Wilson poly-

nomials, J. Comp. Appl. Math. 107 (1999) 219-232.

[15] G Bangerezako, Discrete Darboux transformation for discrete poly-
nomials of hypergeometric type, J. Phys. A: Math. Gen. 31 (1998)

1-6.

[16] S Barnett, Introduction to mathematical control theory, Oxford Press
1975.

[17] J.-P. Bezivin, On functional q-difference equations (in french) Aequa-

tiones Math. 43 (1992), 159-176.

[18] Bochner M, Unal M, Kneser theorem in quantum calculus, J. Phys.
A: Math. Gen. 38 (2005) 6729-6739.

[19] Burchnall J L, Chaundy T W, Commutative ordinary differential op-

erators I, Proc. Lond. Math. Soc. 21 (1922) 420-440.

[20] Burchnall J L, Chaundy T W, Commutative ordinary differential op-
erators II, Proc. R. Soc.Lond. 118 (1928) 557-583.

[21] Cadzow J A, Discrete calculus of variations, Int. J. Control, Vol. 11,

no3 (1970) 393-407.

[22] R D Carmichael, The general theory of linear q-difference equations,
Am. J. Math. 34 (1912) 147-168.



Bibliography 133

[23] G. Darboux, Sur une proposition relative aux equations lineaires,

Compt, Rend. Acd. Sci. 94 1456 (1882).

[24] Dubrovin B A, Novikov S P, Fomenko A T, Modern geometry, methods
and applications Part II. The geometry and topology of manifolds,
(Springer-Verlag, New York, 1985).

[25] Diaz R, Pariguan E, Examples of Feynman-Jackson integrals,

arXiv:math-ph/0610079v1 26 oct 2006.

[26] Elaydi S, An introduction to difference equations, (Springer-Verlag,
New York, 1995).

[27] Ernst T, The history of q-calculus and a new method, (Preprint, 2001).

[28] Gasper G, Rahman M, Basic hypergeometric series, (Cambridge Uni-
versity Press, Cambridge 1990).

[29] Grunbaum F A, Haine L, Orthogonal polynomials satisfying differen-
tial equations: the role of the Darboux transformation. Symmetries

and integrability of difference equations (Esterel, PQ, 1994), 143-151,
CRM Proc. Lectures Notes, 9, Amer. Math. Soc., Providence, RI, 1996.

[30] Hahn W, Geometric difference equations, 1980. (in germanic, not pub-
lished).

[31] Hahn W, Math. Nachr 2 (1949) 340-370.

[32] Jackson H F, q-Difference equations, Am. J. Math. 32, (1910) 305-314.

[33] Kac V, Cheung P, Quantum calculus, Universitext. Springer-Verlag,
New Yprk (2002).

[34] Kartaschev A P, Rojestvinie, Differential equations and variational
calculus, (Nauka, Moscou, 1986).

[35] T Koornwinder, q-Special functions, a tutorial, Preprint, 1995.

[36] Kwasniewski A K, On simple characterizations of Sheffer ψ-

polynomials and related propositions of the calculus of sequences, Bull.
Soc. Sci. Let. Lodz, Ser. Rech. Deform., Vol. 36 (2002) 45-65.

[37] E K Lenzi, E P Borges, R Mendes, A generalization of Laplace trans-
forms, J. Phys. A: Math. Gen. 32 (1999) 8551-8561.



134 Bibliography

[38] Logan J D, First integrals in the discrete variational calculus, Acquat.

Math. 9, (1973) 210-220.

[39] Maeda S, Canonical structures and symmetries for discrete systems,
Math. Japonica 25, no4 (1980) 405-420.

[40] Maeda S, Lagrangian formulation of discrete systems and concept of
difference space, Math. Japonica 27, no3 (1982) 345-356.

[41] Maeda S, Completely integrable symplectic mapping proc. Japan Acad.
63, Ser. A (1987).

[42] Magnus A P, Associated Askey-Wilson polynomials as Laguerre-
Hahn orthogonal polynomials, Springer Lectures Notes in Math. 1329

(Springer, Berlin 1988) 261-278.

[43] Magnus AP, Special nonuniform lattices (snul) orthogonal polynomials

on discrete dense sets of points, J. Comp. Appl. Math. 65 (1995) 253-
265.

[44] Magnus A P, New difference calculus and orthogonal polynomials,
Cours de 3e cycle, UCL.

[45] Marco M, Parcet J, A new approach to the theory of classical hyper-
geometric polynomials, Trans. Amer. Math. Soc. 358 (2006), 183-214.

[46] T E Mason, On properties of the solution of linear q-difference equa-
tions with entire fucntion coefficients, Am. J. Math. 37 (1915) 439-444.

[47] Monagan M B, Geddes K O, Labahn G, Vorkoetter S, Maple V
Programming Guide (Springer-Verlag New York, Berlin, Heidelberg,
1996).

[48] Moser J, Veselov A P, Discrete versions of some integrable systems and
factorization of matrix polynomials, Comm. Math. Phys. 139, (1991)
217-243.

[49] Nikiforov A F, Suslov S K, Uvarov U B, Classical orthogonal polyno-
mials of a discrete variable, Springer-Verlag (Berlin, 1991).

[50] Pontriaguine L S et al., The mathematical theory of optimal processes
(New York, Wiley, 1962).



Bibliography 135

[51] J. P. Ramis, J. Sauloy, C. Zhang, q-Difference equations (in french),

Gaz. Math. 96 (2003) 20-49.

[52] Samarsky A A, Lazarov R D, Makarov B L, Difference schemes for
differential equations with generalized solutions, (Vishaya Schkola,
Moscow 1987).

[53] E. Schrödinger, A method for determining quantum mechanical eigen-
values and eigenfunctions, Proc. Roy. Irish. Acad. A 46 (1940) 9-16.

[54] W J Trjitzinsky, Analytic theory of linear q-difference equations, Acta
Mathematica, (1933).

[55] Veselov A P, Integrable maps, Russian Math. Surveys 46:5 (1991) 1-51.


