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PREFACE

Audience and Prerequisites

This edition, like its predecessors, is written from the viewpoint of the applied mathe-
matician, whose interest in differential equations may sometimes be quite theoretical,
sometimes intensely practical, and often somewhere in between. We have sought to
combine a sound and accurate (but not abstract) exposition of the elementary theory
of differential equations with considerable material on methods of solution, analysis,
and approximation that have proved useful in a wide variety of applications.

The book is written primarily for undergraduate students of mathematics, science,
orengineering, who typically take a course on differential equations during their first
or second year of study. The main prerequisite for reading the book is a working
knowledge of calculus, gained from a normal two- or three-semester course sequence
orits equivalent. Some familiarity with matrices will also be helpful in the chapters
on systems of differential equations

The environment in which instructors teach, and students learn, differential equa-
tions has changed enormously in the past several years and continues to evolve at
a rapid pace. Computing equipment of some kind, whether a graphing calculator, a
notebook computer, or a desktop workstation is available to most students of dif-
ferential equations. This equipment makes it relatively easy to execute extended
numerical calculations, to generate graphical displays of a very high quality, and, in
many cases, to carry out complex symbolic manipulations. A high-speed internet
connection offers an enormous range of further possibilities.

The fact that so many students now have these capabilities enables instructors, if
they wish, to modify very substantially their presentation of the subject and their

vil
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expectations of student performance. Not surprisingly, instructors have widely vary-
ing opinionsas to how a course on differential equations should be taught under these
circumstances. Nevertheless, at many colleges and universities courses on differen-
tial equations are becoming more visual, more quantitative, more project-oriented,
and less formula-centered than in the past.

A Flexible Approach

To be widely useful a textbook must be adaptable to a variety of instructional strate-
gies. This implies at least two things. First, instructors should have maximum flexi-
bility to choose both the particular topics that they wish to cover and also the order
in which they want to cover them. Second, the book should be useful to students
having access to a wide range of technological capability.

Modular Chapters

With respect to content, we provide this flexibility by making sure that, so far as
possible, individual chapters are independent of each other. Thus, after the basic
parts of the first three chapters are completed (roughly Sections 1.1 through 1.3,
2.1 through 2.5, and 3.1 through 3.6) the selection of additional topics, and the order
and depth in which they are covered, is at the discretion of the instructor. For example,
an instructor who wishes to emphasize a systems approach to differential equations
can take up Chapter 7 (Linear Systems) and perhaps even Chapter 9 (Nonlinear
Autonomous Systems) immediately after Chapter 2. Or, while we present the basic
theory of linear equations first in the context of a single second order equation
(Chapter 3), many instructors have combined this material with the corresponding
treatment of higher order equations (Chapter 4) or of linear systems (Chapter 7). Or,
while the main discussion of numerical methods is in Chapter 8, an instructor who
wishes to emphasize this approach can introduce some of this material in conjunction
with Chapter 2. Many other choices and combinations are also possible and have
been used effectively with earlier editions of this book.

Technology

With respect to technology, we note repeatedly in the text that computers are ex-
tremely useful for investigating differential equations and their solutions, and many
of the problems are best approached with computational assistance. Nevertheless,
the book is adaptable to courses having various levels of computer involvement,
ranging from little or none to intensive. The text is independent of any particular
hardware platform or software package. More than 450 problems are marked with
the symbol &2 to indicate that we consider them to be technologically intensive.
These problems may call for a plot, or for substantial numerical computation, or for
extensive symbolic manipulation, or for some combination of these requirements.
Naturally, the designation of a problem as technologically intensive is a somewhat
subjective judgment, and the g/ is intended only as a guide. Many of the marked
problems can be solved, at least in part, without computational help, and a computer
can be used effectively on many of the unmarked problems.
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Homework Problems

From a student’s point of view, the problems that are assigned as homework and that
appear on examinations drive the course. We believe that the most outstanding fea-
ture of this book is the number, and above all the variety and range, of the problems
that it contains. Many problems are entirely straightforward, but many others are
more challenging, and some are fairly open-ended, and can serve as the basis for in-
dependent student projects. There are far more problems than any instructor can use
in any given course, and this provides instructors with a multitude of possible choices
in taitoring their course to meet their own goals and the needs of their students.

One of the choices that an instructor now has to make concerns the role of com-
puting in the course. For instance, many more or less routine problems, such as those
requesting the solution of a first or second order initial value problem, are now easy to
solve by a computer algebra system. This edition includes quite a few such problems,
just as its predecessors did. We do not state in these problems how they should be
solved, because we believe that it is up to each instructor to specify whether their stu-
dents should solve such problems by hand, with computer assistance, or perhaps both
ways. Also, there are many problems that call for a graph of the solution. Instructors
have the option of specifying whether they want an accurate computer-generated
plot or a hand-drawn sketch, or perhaps both.

Mathematical Modeling

Building from Basic Models

The main reason for solving many differential equations is to try to learn something
about an underlying physical process that the equation is believed to model. It is
basic to the importance of differential equations that even the simplest equations
correspond to useful physical models, such as exponential growth and decay, spring-
mass systems, or electrical circuits. Gaining an understanding of a complex natural
process is usually accomplished by combining or building upon simpler and more
basic models. Thus a thorough knowledge of these basic models, the equations that
describe them, and their solutions, is the first and indispensable step toward the
solution of more complex and realistic problems. We describe the modeling process
in detail in Sections 1.1, 1.2, and 2.3. Careful constructions of models appear also in
Sections 2.5,3.8,and in the appendices to Chapter 10. Differential equations resulting
from the modeling process appear frequently throughout the book, especially in the
problem sets. '

A Combination of Tools-Analytical and Numerical

Nonroutine problems often require the use of a variety of tools, both analytical and
numerical. Paper and pencil methods must often be combined with effective use of
a computer. Quantitative results and graphs, often produced by a computer, serve
to illustrate and clarify conclusions that may be obscured by complicated analyti-
cal expressions. On the other hand, the implementation of an efficient numerical
procedure typically rests on a good deal of preliminary analysis—to determine the
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qualitative features of the solution as a guide to computation, to investigate limit-
ing or special cases, or to discover which ranges of the variables or parameters may
require or merit special attention. Thus, a student should come to realize that investi-
gating a difficult problem may well require both analysis and computation; that good
judgment may be required to determine which tool is best-suited for a particular task;
and that results can often be presented in a variety of forms.

Gaining Insight into the Behavior of a Process

We believe that it is important for students to understand that {except perhaps in
courses on differential equations) the goal of solving a differential equation is seldom
simply to obtain the solution. Rather, one is interested in the solution in order to
obtain insight into the behavior of the process that the equation purports to mode}.
In other words, the solution is not an end in itself Thus, we have included a great
many problems, as well as some examples in the text, that call for conclusions to be
drawn about the solution. Sometimes this takes the form of asking for the value of the
independent variable at which the solution has a certain property, or to determine the
long term behavior of the solution. Other problems ask for the effect of variations in
a parameter, or for the determination of a critical value of a parameter at which the
solution experiences a substantial change. Such problems are typical of those that
arise in the applications of differential equations, and, depending on the goals of the
course, an instructor has the option of assigning few or many of these problems.

table Cha he ith Editi

Readers familiar with the preceding edition will observe that the general structure of
the book is unchanged. The revisions that we have made in this edition have several
goals: to enlarge the range of applications that are considered, to make the presen-
tation more visual by adding some new figures, and to improve the exposition by
including several new or improved examples. More specifically, the most important
changes are the following:

1. 'There are approximately 65 new problems scattered throughout the book. There are also
about 15 new figures and 8 new or modified examples,

2. Section 2.1, “Linear Equations, Method of Integrating Factors,” has been substantially
rewritten, with two new examples, to reduce repetition.

3. Section 2.5, “Autonomous Equations and Population Dynamics,” has been modified to
give more prominence to the phase line as an aid to sketching solutions.

4. InSection 3.9 the general case of damped vibrations is considered before the special case
of undamped vibrations, reversing the order of previous editions. The presentation is more
detailed and there are three new figures.

5. The proof of the convolution theorem in Section 6.6 has been rewritten and six new
problems on integral and integro-differential equations have been added.

6. To illustrate the occurrence of systems of higher than second order a new example on
coupled oscillators has been added to Section 7.6, with three accompanying figures and
several related problems.

7. Anexample has been added to Section 7.9 to demonstrate the use of Laplace transforms
for nonhomogeneous linear systéms.
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8. There are several new problems in Sections 2.5, 9.4, and 9.7 to illustrate the occurrence of
bifurcations in one- and two-dimensional nonlinear systems.

9. There are new problems in Section 10.6 on heat conduction in the presence of external
heat sources, in Section 10.7 on dispersive' waves, and in Section 10.8 on the flow through
an aquifer.

As the subject matter of differential equations continues to grow, as new tech-
nologies become commonplace, as old areas of application are expanded, and as new
ones appear on the horizon, the content and viewpoint of courses and their textbooks
must also evolve. This is the spirit we have sought to express in this book,

William E. Boyce -
Grafton, New York
February 23,2004
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Supplemental Resources for Instructors and Students

The ODE Architect CD is included with every copy of the text, ODE Architect is
a prize-winning, state-of-the-art NSF-sponsored learning software package, which is
Windows-compatible. A solver tool allows you to build your own models with ODEs
and study them in a truly interactive point-and-click environment. The Architect
includes an interactive library of more than one hundred model differential equation
systems with graphs of solutions. The Archifect also has 14 interactive multimedia
modules, which provide a range of models and phenomena, from a golf game to
chaos,

An Instructor’s Solutions Manual, ISBN 0-471-67972-0, includes solutions for all
problems in the text.

A Student Solutions Manual, ISBN 0-471-43340-3, includes solutions for selected
problems in the text.

A Companion Web site, www.wiley.com/college/boyce, provides a wealth of re-
sources for students and instructors, including:

® PowerPoint slides of important ideas and graphics for study and note taking.

® Review and Study Outlines to help students prepare for guizzes and exams.

® Online Review Quizzes to enable students to test their knowledge of key con-
cepts. For further review diagnostic feedback is provided that refers to pertinent
sections in the text.

® Getting Started with ODE Architect. This guide introduces students and pro-
fessors to ODE Architect’s simulations and multimedia.

® Additional problems for use with Mathematica, Maple, and MATLAB, allowing
opportunities for further exploration of important ideas in the course utilizing
these computer algebra and numerical analysis packages.

eGrade Plus

eGrade Plus is a powerful online tool that provides instructors with an integrated
suite of teaching and learning resources in one easy-to-use Web site.
eGrade Plus is organized around the essential activities you perform in class:

® Prepare & Present: Create class presentations using a wealth of Wiley-provided
resources—such as an online version of the textbook, PowerPoint slides, and
interactive simulations-making your class preparation more efficient. You may
easily adapt, customize, and add to this content to meet the needs of your course.

® Create Assignments: Automate the assigning and grading of homework or
quizzes by using Wiley-provided question banks, or by writing your own. Stu-
dent responses will be graded automatically and the results recorded in your
gradebook. eGrade Plus can link homework problems to the relevant section
of the online text,.providing students with context-sensitive help.

* Track Student Progress: Keep track of your students’ progress via an instructor’s
gradebook, which allows you to analyze individual and overall class results to
determine their progress and level of understanding,
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® Administer Your Course: eGrade Plus can easily be integrated with another
course management system, gradebook, or other resources you are using in
your class, providing you with the flexibility to build your course, your way,

For more information about the features and benefits of eGrade Plus, please view
our online demo at www.wiley.com/college/egradeplus.
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CHAPTER

1

[ meem e et e o

[ntroduction

In this chapter we try in several different ways to give perspective to your study of
differential equations. First, we use two problems to illustrate some of the basic ideas
that we will return to and elaborate upon frequently throughout the remainder of
the book. Later, we indicate several ways of classifying equations, in order to provide
organizational structure for the book. Finally, we outline some of the major trends
in the historical development of the subject and mention a few of the outstanding
mathematicians who have contributed to it. The study of differential equations has
attracted the attention of many of the world’s greatest mathematicians during the
past three centuries. Nevertheless, it remains a dynamic field of inquiry today, with
many interesting open questions.

1.1 Some Basic Mathematical Models; Direction Fields

Before embarking on a serious study of differential equations (for example, by read-
ing this book or major portions of it), you should have some idea of the possible
benefits to be gained by doing so." For some students the intrinsic interest of the
subject itself is enough motivation, but for most it is the likelihood of important
applications to other fields that makes the undertaking worthwhile.

Many of the principles, or laws, underlying the behavior of the natural world are
statements or relations involving rates at which things happen. When expressed
in mathematical terms, the relations are equations and the rates are derivatives.
Equations containing derivatives are differential equations. Therefore, tounderstand
and to investigate problems involving the motion of fluids, the flow of current in
electric circuits, the dissipation of heat in solid objects, the propagation and detection

1
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A Falling
Object

of seismic waves, or the increase or decrease of populations, among many others, it
is necessary to know something about differential equations,

A differential equation that describes some physical process is often called a math-
ematical model of the process, and many such models are discussed throughout this
book. In this section we begin with two models leading to equations that are easy to
solve. It is noteworthy that even the simplest differential equations provide useful
models of important physical processes.

Suppose that an object is falling in the atmosphere near sea level. Formulate a differential
equation that describes the motion,

We begin by introducing letters to represent various quantities that may be of interest in this
problem. The motion takes place during a certain time interval, so let us use ¢ to denote time.
Also, let us use v to represent the velocity of the falling object. The velocity will presumably
change with time, so we think of v as a function of ¢, in other words, ¢ is the independent
variable and v is the dependent variable. The choice of units of measurement is somewhat
arbitrary, and there is nothing in the statement of the problem to suggest appropriate units,
so we are free to make any choice that seems reasonable. To be specific, let us measure time
t in seconds and velocity v in meters/second. Further, we will assume that v is positive in the
downward direction—that is, when the object is falling,

The physical law that governs the motion of objects is Newton's second law, which states
that the mass of the object times its acceleration is equal to the net force on the object. In
mathematical terms this law is expressed by the equation

F= ma, (1)

where m is the mass of the object, a is its acceleration, and F is the net force exerted on the
object, To keep our units consistent, we will measure  in kilograms, 2 in meters/second?, and
F in newtons. Of course, a is related to v by a = dv/dt, so we can rewrite Eq. (1) in the form

F = m(dv/dr). 2

Next, consider the forces that act on the object as it falls, Gravity exerts a force equal to
the weight of the object, or mg, where g is the acceleration due to gravity. In the units we
have chosen, g has been determined experimentally to be approximately equal to 9.8 m/sec?
near the earth’s surface. There is also a force due to air resistance, or drag, that is more
difficult to model. This is not the place for an extended discussion of the drag force; suffice
it to say that it is often assumed that the drag is proportional to the velocity, and we will
meke that assumption here. Thus the drag force has the magnitude y v, where ¥ is a constant
called the drag coefficient. The numerical value of the drag coefficient varies widely from one
object to another; smooth streamlined objects have much smaller drag coefficients than rough
blunt ones. :

In writing an expression for the net force F, we need to remember that gravity always acts
in the downward (positive) direction, whereas drag acts in the upward (negative) direction, as
shown in Figure 1.1.1. Thus

F=mg—yv 3
and Eq, (2) then becomes
m‘—;; =mg—yv. (4)

Equation (4) is a mathematical model of an object falling in the atmosphere near sea level.
Note that the model contains the three constants m, g, and y. The constants 1 and y depend
very much on the particular object that is falling, and they are usually different for different
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A Falling
Object
(continued)

objects. It is common to refer to them as parameters, since they may take on a range of values
during the course of an experiment. On the other hand, the value of g is the same for all

objects,
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FIGURE 1.1.1 Free-body diagram of the forces on = falling object.

To solve Eq. (4) we need to find a function v = v(f) that satisfies the equation. It
is not hard to do this, and we will show you how in the next section. For the present,
however, let us see what we can learn about solutions without actually finding any
of them. Our task is simplified slightly if we assign numerical values to m and y, but
the procedure is the same regardless of which values we choose. So, let us suppose
that m = 10 kg and y = 2 kg/sec. If the units for y seem peculiar, remember that yv
must have the units of force, namely, kg-m/sec?. Then Eq. (4) can be rewritten as

= =98, (5)

Investigate the behavior of solutions of Eq. (5) without solving the differential equation.

We wilt proceed by locking &t Eq. (5) from a geometrical viewpoint. Suppose that v has
a certain value. Then, by evaluating the right side of Eq. (5), we can find the corresponding
value of du/dr. For instance, if v = 40, then dv/dt = 1.8, This means that the slope of a
solution v = v(f) has the value 1.8 at any point where v = 40. We can display this information
graphically in the tu-plane by drawing short line segments with slope 1.8 at several points on
the line v = 40. Similerly, if v = 50, then dv/dt = —0.2, so we draw line segments with slope
—0.2 at several points on the line v = 50. We obtain Figure 1.1.2 by proceeding in the same
way with other values of v. Figure 1.1.2 is an example of what is called a direction field or
sometimes a slope field.

The importance of Figure 1.1.2 is that each line segment is a tangent line to the graph of
e solution of Eg. (5). Thus, even though we have not found any solutions, and no graphs of
solutions appear in the figure, we can nonetheless draw some qualitative conclusions about
the behavior of solutions. For instance, if v is fess than a certain critical value, then all the line
segments have positive slopes, and the speed of the falling object increases as it falls. On the
other hand, if v is greater than the critical vaiue, then the line segments have negative slopes,
and the falling object slows down as it falls. What is this critical value of v that separates objects
whose speed is increasing from those whose speed is decreasing? Referring again to Eq. (5),
we ask what value of v will cause dv/dr to be zero. The answer i3 v = (5)(9.8) = 49 m/sec.

In fact, the constant function v(f) = 49 is a solution of Eq. (5). To verify this statement,
substitute v(t) = 49 into Eq. (5) and observe that each side of the equation is zero. Because
it does not change with time, the solution v(t) = 49 is called an equilibrium solution.It is the
solution that corresponds to & balance between gravity and drag. In Figure 1.1.3 we show
the equilibrium solution ¥(f) = 49 superimposed on the direction field. From this figure we
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can draw another conclusion, namely, that all other solutions seem to be converging to the
equilibrium solution as ¢ increases,
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FIGURE 113 Direction field and equilibrium solution for Eq. (5).

The approach illustrated in Example 2 can be applied equally well to the more
general Eq. (4), where the parameters m and y are unspecified positive numbers. The
results are essentially identical to those of Example 2, The equilibrium solution of
Eq. (4) is v(t) = mg/y. Solutions below the equilibrium solution increase with time,
those above it decrease with time, and all other solutions approach the equilibrium
solution as ¢ becomes Jarge.
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Direction Fields. Direction fields are valuable tools in studying the solutions of differ-
ential equations of the form _

d

=y, (6)
where f is a given function of the two variables t and y, sometimes referred to as the
rate function. A useful direction field for equations of the form (6) can be constructed
by evaluating f at each point of a rectangular grid consisting of at least a few hundred
points. Then, at each point of the grid, a short line segment is drawn whose slope is
the value of f at that point. Thus each line segment is tangent to the graph of the.
solution passing through that point. A direction field drawn on a fairly fine grid gives
a good picture of the overall behavior of solutions of a differential equation. The
construction of a direction field is often a useful first step in the investigation of a
differential equation.

Two observations are worth particular mention. First, in constructing a direction
field, we do not have to solve Eq. (6), but merely to evaluate the given function f (t, y)
many times. Thus direction fields can be readily constructed even for equations that
may be quite difficult to solve. Second, repeated evaluation of a given function is a
task for which a computer is well suited, and you should usually use a computer to
draw a direction field. All the direction fields shown in this book, such as the one in
Figure 1.1.2, were computer-generated.

Field Mice and Owls. Now let us look at another, quite different example. Consider
a population of field mice who inhabit a certain rural area. In the absence of
predators we assume that the mouse population increases at a rate proportional
to the current population. This assumption is not a well-established physical law
(as Newton’s law of motion is in Example 1), but it is a common initial hypothesis'
in a study of population growth. If we denote time by t and the mouse popula-
tion by p(t), then the assumption about population growth can be expressed by
the equation '

dp

df - rp! (7)
where the proportionality factor r is called the rate constant or growth rate. To be
specific, suppose that time is measured in months and that the rate constant r has the
value 0.5/month. Then each term in Eq. (7) has the units of mice/morith.

Now let us add to the problem by supposing that several owls live in the same
neighborhood and that they kill 15 field mice per day. To incorporate thisinformation
into the model, we must add another term to the differential equation (7), so that it
becomes J .

/4 i
i 0.5p — 450. 8
QObserve that the predation term is —450 rather than —15 because time is measured
in months and the monthly predation rate is needed.

1A somewhat better modet of popuiation growth is discussed in Section 2.5.
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Investigate the solutions of Eq. (8) graphically.

A direction field for Eq. (8) is shown in Figure 1.1.4. For sufficiently large values of p it can
be seen from the figure, or directly from Eq. (8) itself, that dp/dt is positive, so that solutions
increase. On the other hand, for small values of p the opposite is the case. Again, the critical
value of p that separates solutions that increase from those that decrease is the value of p for
which dp/dt is zero. By setting dp/dt equal to zero in Eq. (8) and then solving for p, we find the
equilibrium solution p{f) = 900 for which the growth term and the predation term in Eq. (8)
are exactly balanced. The equilibrium solution is also shown in Figure 1.1.4.
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FIGURE 114 Direction field and equilibrium solution for Eq. (8).

Comparing Examples 2 and 3, we note that in both cases the equilibrium solution
separates increasing from decreasing solutions. In Example 2 other solutions con-
verge to, or are attracted by, the equilibrium solution, so that after the object falls far
enough, an observer will see it moving at very nearly the equilibrium velocity. On
the other hand, in Example 3 other solutions diverge from, or are repelled by, the
equilibrium solution. Solutions behave very differently depending on whether they
start above or below the equilibrium solution. As time passes, an observer might see
populations either much larger or much smaller than the equilibrium population, but
the equilibrium sojution itself will not, in practice, be observed. In both problems,
however, the equilibrium solution is very important in understanding how solutions
of the given differential equation behave.

A more general version of Eq. (8) is

dp
— =rm—k 9
L -k ©)

where the growth rate r and the predation rate k are unspecified. Solutions of this
more general equation behave very much like those of Eq. (8). The equilibrium
solution of Eq. (9) is p(f) = k/r. Solutions above the equilibrium solution increase,
while those below it decrease. -

You should keep in mind that both of the models discussed in this section have
their limitations. The model (5) of the falling object is valid only as long as the
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~ -object is falling freely, without encountering any obstacles. The population model
(8) eventually predicts negative numbers of mice (if p < 900} or enormously large
numbers (if p > 900}). Both these predictions are unrealistic, so this model becomes
unacceptable after a fairly short time interval.

Constructing Mathematical Models. In applying differential equations to any of the nu-
merous fields in which they are useful, it is necessary first to formulate the appropriate
differential equation that describes, or models, the problem being investigated. In
this section we have looked at two examples of this modeling process, one drawn
from physics and the other from ecology. In constructing future mathematical mod-
els yourself, you should recognize that each problem is different, and that successful
modeling is not a skill that can be reduced to the observance of a set of prescribed
rules. Indeed, constructing a satisfactory mode] is sometimes the most difficult part
of the problem. Nevertheless, it may be helpful to list some steps that are often part
of the process:

1. Identify the independent and dependent variables and assign letters to represent them.
Often the independent variable is time.

2. Choose the units of measurement for each variable. In a sense the choice of units is
arbitrary, but some choices may be much more convenient than others, For example,
we chose to measure time in seconds in the falling-object problem and in months in the
population problem.

3. Articulate the basic principle that underlies or governs the problem you are investigating.
This may be a widely recognized physical law, such as Newton’s law of motion, or it may be
amore speculative assumption that may be based on your own experience or observations.
In any case, this step is likely not to be a purely mathematical one, but will require you to
be familiar with the field in which the problem originates.

4, Express the principle or law in step 3 in terms of the variables you chose in step 1. This
may be easier said than done. It may require the introduction of physical constants or
parameters (such as the drag coefficient in Example 1) and the determination of appro-
priate values for them. Or it may involve the use of auxiliary or intermediate variables
that must then be related to the primary variables.

5. Make sure that each term in your equaticn has the same physical units. If this is not the
case, then your equation is wrong and you should seek to repair it. If the units agree, then
your equation atleast is dimensionally consistent, although it may have other shortcomings
that this test does not reveal.

6. Inthe problems considered here, the result of step 4 is a single differential equation, which
constitutes the desired mathematical model. Keep in mind, though, that in more complex
problems the resulting mathematical model may be much more complicated, perhaps
involving a system of several differential equations, for example.

—— o o T

PROBLEMS In each of Problems 1 through 6 draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y as t — co. If this behavior depends
on the initial value of y at ¢ = 0, describe the dependency.

& 1Ly=3-2 & 2y=2-3

& 3.y =3+2 & o Ay=-1-2%
[ 22

5.y =1+2 & 6.y=y+2
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In each of Problems 7 through 10 write down a differential equation of the form dy/dt = ay + b
whose solutions have the required behavior as { — co.

7. All solutions approach y = 3. 8. All solutions approach y = 2/3.

9. All other solutions diverge from y = 2.  10. All other solutions diverge from y = 1/3.

In each of Problems 11 through 14 draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y as t — co. If this behavior depends
on the initial value of y at r = 0, describe this dependency. Note that in these problems the
equations are not of the form y’ = ay + b, and the behavior of their solutions is somewhat
more complicated than for the equations in the text.

1.y =y4 - Fo 12. ¥ =-y(5-)
13. y =y & 4.y =y(y -2
Consider the following list of differential equations, some of which produced the direction

fields shown in Figures 1.1.5 through 1.1.10. In each of Problems 15 through 20 identify the
differentia) equation that corresponds to the given direction field.

(@) ¥y =21 (b) y=2+y
() y=y-2 (d) y = y(y+3)
(e) y=y(-3 ) y=1+2y
(8 y=-2-y ) Yy =yG3-p
() y=1-2 - 0 y=2-y

15. The direction field of Figure 1.1.5.

16. The direction field of Figure 1.1.6.

17. The direction field of Figure 1.1.7.

18. The direction field of Figure 1.1.8.

19. The direction field of Figure 1.1.9.

20. The direction field of Figure 1,1.10,

21. A pond initially contains 1,000,000 gal of water and an unknown amount of an undesirable
chemical. Water containing 0.01 gram of this chemical per gallon flows into the pond at a
rate of 300 gal/hr, The mixture flows out at the same rate, 5o the amount of waterin the pond
remains constant, Assume that the chemical is upiformly distributed throughout the pond,
(a) Write a differential equation for the amount of chemical in the pond at any time.

(b) How much of the chemical will be in the pond after a very long time? Does this
limiting amount depend on the amount that was present initially?

22. A spherical raindrop evaporates at a rate proportional to its surface area. Write a differ-
ential equation for the volume of the raindrop as a function of time.

23. Newton's law of cooling states that the temperature of an object changes at a rate propor-
tional to the difference between the temperature of the object itself and the temperature
of its surroundings (the ambient air temperature in most cases). Suppose that the am-
bient temperature is 70°F and that the rate constant is 0.05 (min)~!. Write a differential
equation for the temperature of the object at any time.

24. A certain drug is being administered intravenously to a hospital patient. Fluid containing
5 mg/em® of the drug enters the patient’s bloodstream at a rate of 100 cm*/hr. The drug
is absorbed by body tissues or otherwise leaves the bloodstream at a rate proportional to
the amount present, with a rate constant of 0.4 (hr)~.

{a) Assuming that the drug is always uniformly distributed throughout the bloodstream,
write a differential equation for the amount of the drug that is present in the bloodstream
at any time.

(b) How much of the drug is present in the bloodstream after a Jong time?
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proportional to the velocity is a good one. For larger, more rapidly falling objec

(a) Write a differential equation for the velocity of a falling obj

more accurate to assume that the drag force is propor
force is proportional to the square of the velocity.

FIGURE 1.1.9 Direction field for
(b) Determine the |

Problem 19
2See Lyle N. Long and Howard Weiss, "The Velocity Dependence of Aerodynamic Drag: A Primer for

@’2, 25. For small, slowly falling objects, the assumption made in the text that the drag force is
Mathematicians,” American Mathematical Monthly 106 (1999), 2, pp. 127-135.
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{c¢) If m = 10kg, find the drag coefficient so that the limiting velocity is 49 m/sec.
(d) Using the data in part (¢), draw a direction field and compare it with Figure 1.1.3.

In each of Problems 26 through 33 draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y as t — co. If this behavior depends
on the initial value of y at t = 0, describe this dependency. Note that the right sides of these
equations depend on t as well as y; therefore their solutions can exhibit more complicated
behavior than those in the text.

o % y=-24t-y
& 8. y=e'+y

& 30 y =3sint+1+y
& 2.y =~Qt+ /2y

FL 21 y=te¥ -2
&L 29 y=1+2

Fl N y=2-1-y
& B.y=y/6-y—1£/3

EXAMPLE

1

Field Mice
e and Owls
) (continued)

In the preceding section we derived the differential equations

dv

—_— —_ 1

mdt mg — yv 1)
and J
'p

—~ =rp—Lk. 2

dt p—k @

Equation (1) models a falling object and Eq. (2) a population of field mice preyed
on by owls. Both these equations are of the general form
dy

=ay—b 3
i 3

where a and b are given constants. We were able to draw some important qualitative
conclusions about the behavior of solutions of Egs. (1) and (2) by considering the
associated direction fields. To answer questions of a quantitative nature, however,
we need to find the solutions themselves, and we now investigate how to do that.

Consider the equation ,
dp

2 . 0.5p 450, 4
= P @

which describes the interaction of certain populations of field mice and owls [see Eq. (8) of
Section 1.1]. Find solutions of this equation.

To solve Eq. (4) we need to find functions p{r) that, when substituted into the equation,
reduce it to an obvious identity. Here is one way to proceed. First, rewrite Eq. (4) in the form

dp p-—900
o S 5
o 7 (5)
or,if p # 900,

dp/dt 1 )

p-900 2
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By the chain rule the left side of Eq. (6) is the derivative of In |p — 900| with respect to ¢,50 we
have
1

d
Elnlp*?OOI—-z-- )]
Then, by integrating both sides of Eq. (7), we obtain
Inlp - 900 = 7 + C, ®)

where C is an arbitrary constant of integration, Therefore, by taking the exponential of both
sides of Eq. (8), we find that

lp — 900f = "€ = ¢C'P?, (%)
or
p - 900 = £e€e'”, (10)
and finally
p =900+ ce'?, (11)

where ¢ = £¢® isalso an arbitrary (nonzero) constant. Note that the constant function p = 900
is also a solution of Eq. (5) and that it is contained in the expression (11) if we allow ¢ to take
the value zero. Graphs of Eq. (11) for several values of ¢ are shown in Figure 1.2.1,

P
1200

1100
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-
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Ly : - (IS , N . N
Tt 2 o 3 4 st
FIGURE 121 Graphs of Eq. (11) for several -vah::-es of c. -

Note that they have the character inferred from the direction fleld in Figure 1.14. For
instance, solutions lying on either side of the equilibrium solution p = 900 tend to diverge
from that solution. -

In Example 1 we found infinitely many solutions of the differential equation (4},
corresponding to the infinitely many values that the arbitrary constant ¢ in Eq. (11)
might have. This is typical of what happens when you solve a differential equa-
tion. The solution process involves an integration, which brings with it an arbitrary
constant, whose possible values generate an infinite family of solutions.
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Frequently, we want to focus our attention on a single member of the infinite family
of solutions by specifying the value of the arbitrary constant. Most often, we do this
indirectly by specifying instead a point that must lie on the graph of the solution. For
example, to determine the constant ¢ in Eq. (11), we could require that the population
have a given value at a certain time, such as the value 850 at time ¢ = 0. In other
words, the graph of the solution must pass through the point (0, 850). Symbolically,
we can express this condition as

p(0) = 850. (12)
Then, substituting t = 0 and p = 850 into Eq. (11), we obtain
850 = 900 + c.

Hence c = —50, and by inserting this value in Eq, (11}, we obtain the desired solution,
namely,
p =900 — 50¢'/2, (13)

The additional condition (12) that we used to determine c is an example of an initial
condition. The differential equation (4) together with the initial condition (12) form

an initial value problem.
Now consider the more general problem consisting of the differential equation (3)
dy
B—t- =ay— b
and the initial condition
y(0) = yo, (14)

where yy is an arbitrary initial value. We can solve this problem by the same method
as in Example 1. If 2 # O and y # b/a, then we can rewrite Eq. (3) as

dyfdt
" —a 15
y—(b/a) 1%
By integrating both sides, we find that
Infy — (b/a)| = at + C, (16)

where C is arbitrary. Then, taking the exponential of both sides of Eq. (16} and
solving for y, we obtain
y = (b/a) + ce”, (17)

where ¢ = :£e® is also arbitrary. Observe that ¢ = 0 corresponds to the equilibrium
solution y = b/a. Finally, the initial condition (14} requires that ¢ = yo — (b/a), so
the solution of the initial value problem (3), (14) is

y = (b/a) + [yo ~ (b/a)}e”. (18)

The expression (17) contains all possible solutions of Eq. (3} and is called the
general solufion. The geometrical representation of the general solution (17) is an
infinite family of curves called integral curves. Each integral curve is associated with
a particular value of ¢ and is the graph of the solution corresponding to that value of
c. Satisfying an initial condition amounts to identifying the integral curve that passes
through the given initial point,
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A Falling
Object
(continued)

To relate the solution (18) to Eq. (2), which models the field mouse population,
we need only replace a by the growth rate r and b by the predation rate k. Then the
solution (18) becomes

p=(k/r)+[po— (k/n)]e", (19)

where pg is the initial population of ficld mice. The solution (19) confirms the con-
clusions reached on the basis of the direction field and Example 1. If pg = k/7, then
from Eq. (19) it follows that p = k/r for all ¢; this is the constant, or equilibrium,
solution. If pg # k/r, then the behavior of the solution depends on the sign of the
coefficient pg ~ (k/r) of the exponential term in Eq. (19). If po > k/r, then p grows
exponentially with time #;if py < k/r,then p decreases and eventually becomes zero,
corresponding to extinction of the field mouse population. Negative values of p,
while possible for the expression (19), make no sense in the context of this particular
problem.

To put the falling-object equation (1) in the form (3), we must identify @ with —y /m
and b with —g. Making these substitutions in the solution (18), we obtain

v = (mg/y) + [vo — (mg/yYle "™, (20)

where v is the initial velocity. Again, this solution confirms the conclusions reached
in Section 1.1 on the basis of a direction field. There is an equilibrium, or constant,
solution v = mg/y,and all other solutions tend to approach this equilibrium solution.
The speed of convergence to the equilibrium solution is determined by the exponent
—y/m. Thus, for a given mass m, the velocity approaches the equilibrium value more
rapidly as the drag coefficient y increases.

Suppose that, as in Example 2 of Section 1.1, we consider a falling object of mass m = 10 kg
and drag coefficient y = 2 kg/sec. Then the equation of motion (1) becomes

dv v
5 =98 (21}
Suppose this object is dropped from & height of 300 m. Find its velocity at any time {. How
long will it take to fall to the ground, and how fast will it be moving at the time of impact?
The first step is to state an appropriate initial condition for Eq. (21). The word “dropped” in
the statement of the problem suggests that the initial velocity is zero, so we will use the initial
condition

¥(0) = 0. (22)

The solution of Eq. (21) can be found by substirtuting the values of the coefficients into the
solution (20), but we will proceed instead to solve Eq. (21) directly. First, rewrite the equation
as

duv/dt 1 .
v—49 5. (23)
By integrating both sides we obtain
Injv— 49] = -§+c, (24)

and then the general solution of Eq. (21} is
v =49 4 ce™3, (25)
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where ¢ is arbitrary. To determine ¢, we substitute t = 0 and v = 0 from the initial condition
(22) into Eq. (25), with the result that c = —49. Then the solution of the initial value problem
(21),(22) is

v =491 — %), (26)

Equation (26) gives the velocity of the falling object at any positive time (before it hits the
ground, of course}.

Graphs of the solution (25) for several values of ¢ are shown in Figure 1.2.2, with the solution
{(26) shown by the heavy curve. It is evident that all solutions tend to approach the equilibrium
solution v = 49, This confirms the conclusions we reached in Section 1.1 on the basis of the
direction fields in Figures 1.1.2 and 1.1.3.

(1051, 43.01)
L u =49 (1-e )

L N L . [
2.0 4 .6 - 8 10 12t

FIGURE 1.2.2 Gréphs of the solution (25) for several values of c.

To find the velocity of the object when it hits the ground, we need to know the time at
which impact occurs. In other words, we need to determine how long it takes the object to fall
300 m. To do this, we note that the distance x the object has fallen is related to its velocity v
by the equation v = dx/dt, or

dx

o =90~ ey, 27

Consequently, by integrating both sides of Eq. (27), we have
x =491 + 24567 ¢, (28)

where ¢ is an arbitrary constant of integration. The object starts to fall when r = 0,50 we know
that x = 0 when 7 = 0. From Eq. (28) it follows that ¢ = —245, so the distance the object has
fatlen at time ¢ is given by

x = 49¢ + 245¢™5 — 245, (29)

Let 7 be the time at which the object hits the ground; thenx = 300 when¢ = T, By substituting
these values in Eq. (29), we obtain the equation

407 + 245¢™T/5 — 545 = (. (30)



1.2 Solutions of Some Differential Equations 15

The value of T satisfying Eq. (30) can be readily approximated by a numerical process using
a scientific calculator or computer, with the result that T = 10.51 sec. At this time, the corre-
spondmg velocity vr is found from Eq. (26) to be vr = 43.01 m/sec. The point (10 51,43.01)
is also shown in Figure 1.2.2.

Further Remarks on Mathematical Modeling. Up to this point we have related our discus-
sion of differential equations to mathematical models of a falling object and of a
hypothetical relation between field mice and owls, The derivation of these models
may have been plausible, and possibly even convincing, but you should remember
that the ultimate test of any mathematical model is whether its predictions agree
with observations or experimental results. We have no actual observations or exper-
imental results to use for comparison purposes here, but there are several sources of
possible discrepancies.

In the case of the falling object, the underlying physical principle (Newton's law of
motion) is well established and widely applicable. However, the assumption that the
drag force is proportional to the velocity is less certain. Even if this assumption is
correct, the determination of the drag coefficient y by direct measurement presents
difficulties. Indeed, sometimes one finds the drag coefficient indirectly—for example,
by measuring the time of fall from a given height and then calculating the value of y
that predicts this observed time.

The model of the field mouse population is subject to various uncertainties. The
determination of the growth rate r and the predation rate & depends on observa-
tions of actual populations, which may be subject to considerable variation. The
assumption that r and k are constants may also be questionable. For example, a
constant predation rate becomes harder to sustain as the field mouse population be-
comes smaller. Further, the model predicts that a population above the equilibrium
value will grow exponentially larger and larger. This seems at variance with the be-
havior of actual populations; see the further discussion of population dynamics in
Section 2.5. :

If the differences between actual observations and a mathematical model’s pre-
dictions are too great, then you need to consider refining the model, making more
careful observations, or perhaps both. There is almost always a tradeoff between ac-
curacy and simplicity. Both are desirable, but a gain in one usually involves a loss in
the other. However, even if a mathematical model is incomplete or somewhat inac-
curate, it may nevertheless be useful in explaining qualitative features of the problem
under investigation. It may also give satisfactory results under some circumstances
but not others. Thus you should always use good judgment and common sense in
constructing mathematical models and in using their predictions.

P ROBLEMS @% 1. Solve each of the following initial value problems and plot the solutions for several values

of yg. Then describe in a few words how the solutions resemble, and differ from, each
other.

(a) dyfdt=-y+5  y0) =
(b) dyjdt=-2y+5, y(O)=xn
(¢) dyfdt=-2y+10, y(®)=
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é‘?, 2. Follow the instructions for Problem 1 for the following initial value problems:
(a) dy/dt=y-5, yO) =y
(b) dyjdr =2y -5, ¥(0) = yo
(c) dy/dt=2y-10,  y(0) =y

3. Consider the differential equation
dyfdt = —ay + b,

where both a and b are positive numbers,
(a) Solve the differential equation.
(b) Sketch the solution for several different initial conditions.
(c) Describe how the solutions change under each of the following conditions:
i. aincreases.
ii. bincreases.
ili. Both g and b increase, but the ratio b/a remains the same.

4. Consider the differential equation dy/dt = ay — b.
(a) Find the equilibrium solution y..
(b) Let Y(r) =y — y.; thus Y (¢) is the deviation from the equilibrium selution. Find the
differential equation satisfied by Y'().

5. Undetermined Coefficients. Here is an alternative way to solve the equation

dy/di = ay — b. ()

(a) Solve the simpler equation
dy/dr = ay. ii)

Call the solution y, (r).
(b) Observe that the only difference between Egs. (i) and (ii) is the constant —b in Eq. (i).
Therefore it may seem reasonable to assume that the solutions of these two equations
also differ only by a constant. Test this assumption by trying to find a constant k such that
¥ = y1(f) + k is a solution of Eq. (i).
(¢) Compare your solution from part (b) with the solution given in the text in Eq. (17).

Nore: This method can also be used in some cases in which the constant b isreplaced by a
function g(1). It depends on whether you can guess the general form that the solution is
likely to take. This method is described in detail in Section 3.6 in connection with second
order equations.

6. Use the method of Problem 5 to solve the equation
dy/dt = —ay+ b.
7. The field mouse population in Example 1 satisfies the differential equation
dp/dr = 0.5p — 450.

(a) Find the time at which the population becomes extinct if p(0) = 850.
(b) Find the time of extinction if p(0) = py, where 0 < pg < 900.
(c) Find the initial population py if the population is to become extinct in 1 year.
8. Consider a population p of field mice that grows at a rate proportional to the current
population, so that dp/dt = rp.
(a) Find the rate constant 7 if the population doubles in 30 days.
(b) Find r if the population doubles in N days.
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9. The falling object in Example 2 satisfies the initial valve problem

10.

12,

13,

14,

15.

16.

dvfdi = 9.8 — (v/5), v(0) =0.

(a) Find the time that must elapse for the object to reach 98% of its limiting velocity.
(b) How far does the object fall in the time found in part (a)?

Modify Example 2 so that the falling object experiences no air resistance.

(a) Write down the modified initia} value problem.

(b} Determine how long it takes the object to reach the ground.

(c) Determine its velocity at the time of impact.

. Consider the falling object of mass 10 kg in Example 2, but assume now that the drag force

is proportional to the square of the velocity.
(a} If the limiting velocity is 49 m/sec (the same as in Example 2), show that the equation
of motion can be written as

dv/dt = [(49)2 — v?)/245.

Also see Problem 25 of Section 1.1.

(b) If v(0) =0, find an expression for v(¢) at any time.

(c) Plot your solution from part (b) and the solution (26) from Example 2 on the same
axes.

(d) Based on your plotsin part (c}, compare the effect of a guadratic drag force with that
of a linear drag force.

(e} Find the distance x(f) that the object falls in time ¢.

(f) Find the time T it takes the object to fall 300 meters.

A radioactive material, such as the isotope thorium-234, disintegrates at a rate proportional
tothe amount currently present. If Q(r) is the amount present at time {, then dQ/dt = —r(,
where r > 0 is the decay rate.

(a} If 100 mg of thorium-234 decays to 82.04 mg in 1 week, determine the decay rate r.
(b} Find an expression for the amount of thorium-234 present at any time ¢,

(c) Find the time required for the thorium-234 to decay to one-half jts original amount.
The half-life of a radioactive material is the time required for an amount of this material
to decay to one-half its original value. Show that for any radioactive material that decays
according tothe equation (¥ = —-r(Q, the haif-life r and the decay rate r satisfy the equation
rt=In2

Radium-226 has a half-life of 1620 years. Find the time period during which a given
amount of this material is reduced by one-quarter.

According to Newton’s law of cooling (see Problem 23 of Section 1.1), the temperature
u(t) of an object satisfies the differential equation

z;’u/dr =k(u—T),

where T is the constant ambient temperature and & is a positive constant. Suppose that
the initial temperature of the object is u(0) = u,.

(a) Find the temperature of the object at any time.

(b) Let t be the time at which the initial teraperature difference 4o — T has been reduced
by half. Find the relation between k and +.

Suppose that a building loses heat in accordance with Newton’s law of cooling (see Prob-
lem 15) and that the rate constant k has the value 0.15 hr™'. Assume that the interior
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17.

19.

temperature is 70°F when the heating system fails. If the external temperature is 10°F,
how Jong will it take for the interior temperature to fail to 32°F?
Consider an electric circuit containing a capacitor, resistor, and battery; see Figure 1.2.3,
The charge Q(f) on the capacitor satisfies the equation®
dQ @

RE‘ + E =V,
where R is the resistance, C is the capacitance, and V is the constant voltage supplied by
the battery.
{a) If Q(0) = 0, find Q(r) at any time 7, and sketch the graph of  versus 1.
(b} Find the limiting value O, that (J(f) approaches after a long time.
{c} Suppose that Q(f;) = (J; and that at time f = f, the battery is removed and the circuit
closed again. Find Q() for f > 1, and sketch its graph.

R
Ay
V )
-

[
FIGURE 1.23 The electric circuit of Problem 16.

. A pond containing 1,000,000 gal of water is initially free of a certain undesirable chemical

{see Problem 21 of Section 1.1}. Water containing 0.01 g/gal of the chemical flows info the
pond at a rate of 300 gal/hr, and water also flows out of the pond at the same rate. Assume
that the chemical is uniformly distributed throughout the pond.

{a) Let Q(f) be the amount of the chemical in the pond at time r. Write down an initial
value problem for Q(r).

(b} Solve the problem in part (a) for Q(r). How much chemical is in the pond after 1
year?

(¢} At the end of 1 year the source of the chemical in the pond is removed; thereafter
pure water flows into the pond, and the mixture flows out at the same rate as before. Write
down the initial value problem that describes this new situation.

(d) Solve the initial value problem in part (¢}. How much chemical remains in the pond
after 1 additional year (2 years from the beginning of the problem)?

(e) Bow long does it take for Q(r) to be reduced to 10 g?

(f) Plot Q@) versus f for 3 years. ’

Your swimming pool containing 60,000 gal of water has been contaminated by 5 kg of
a nontoxic dye that leaves a swimmer’s skin an unattractive green. The pool’s filtering
system can take water from the pool, remove the dye, and return the water to the pool at
a flow rate of 200 gal/min.

{a) Write down the initial value problem for the filtering process; let g(f) be the amount
of dye in the pool at any time r.

{b} Solve the problem in part (a).

3This equation results from Kirchhof{'s laws, which are discussed in Section 3.8.
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(¢) You have invited several dozen friends to a pool party that is scheduled to begin in
4 hr. You have also determingd that the effect of the dye is imperceptible if its con-
centration is less than 0.02 g/gal. Is your filtering system capable of reducing the dye
concentration {o this level within 4 hr?

(d) Find the time T at which the concentration of dye first reaches the value 0.02 g/gal.

(e) Find the fiow rate that is sufficient to achieve the concentration 0.02 g/gal within 4 hr.

1.3 Classification of Differential Equations
]
The main purpose of this book is to discuss some of the properties of solutions of
differential equations, and to present some of the methods that have proved effective
in finding solutions or, in some cases, approximating them. To provide a framework
for our presentation, we describe here several useful ways of classifying differential
equations.

Ordinary and Partial Differential Equations. One of the more obvious classifications is
based on whether the unknown function depends on a single independent variable
or on several independent variables. In the first case, only ordinary derivatives appear
in the differential equation, and it is said to be an ordinary differential equation. In
the second case, the derivatives are partial derivatives, and the equation is called a
partial differential equation.

All the differential equations discussed in the preceding two sections are ordinary
differential equations. Another example of an ordinary differential equation is

QW . dow 1
L—a +R— =+ 500 = EQ, 1)

for the charge Q(f) on a capacitor in a circuit with capacitance C, resistance R, and
inductance L; this equation is derived in Section 3.8. Typical examples of partial
differential equations are the heat conduction equation

o 3%ulx,f) _ dulx,n
ax2 at

)

and the wave equation

Rux)  ulxr)
2 ¥ ¥

= . 3
T a2 ®)

Here, a® and a? are certain physical constants. The heat conduction equation de-
scribes the conduction of heat in a solid body, and the wave equation arises in a
variety of problems involving wave motion in solids or fluids. Note that in both
Egs. (2) and (3) the dependent variable « depends on the two independent variables
xandf.

Systems of Differential Equations. Another classification of differential equations de-
pends on the number of unknown functions that are involved. If there is a single
function to be determined, then one equation is sufficient. However, if there are two
or more unknown functions, then a system of equations is required. For example, the
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Lotka-Volterra, or predator-prey, equations are important in ecological modeling.
They have the form
dx/dt = ax — axy

4
dy/dt = —cy + yxy, “)

where x(f) and y(¢) are the respective populations of the prey and predator species.
The constants a,a, ¢, and y are based on empirical observations and depend on the
particular species being studied. Systems of equations are discussed in Chapters 7
and 9; in particular, the Lotka—Volterra equations are examined in Section 9.5. In
some areas of application it is not unusual to encounter very large systems containing
hundreds, or even many thousands, of equations.

Order. The order of a differential equation is the order of the highest derivative that
appears in the equation. ‘The equations in the preceding sections are all first order
equations, whereas Eq. (1) is a second order equation. Equations (2) and (3) are
second order partial differential equations. More generally, the equation

Flt,u(t),d'(®,..., )] =0 (5)

isan ordinary differential equation of the nith order. Equation (5) expresses a relation
between the independent variable ¢ and the values of the function u and its firsi
derivatives ', u”,...,u®. It is convenient and customary in differential equations
to write y for u(f), with y', ", ..., ¥ standing for u'(¢), " (), ..., u" (). Thus Eq.
(5) is written as

F@,y,y,....y" =0. (6)
For example,

ym + zeryu +yy1 — l,4 (7)

is a third order differential equation for y = u(f). Occasionaily, other letters will be
used instead of f and y for the independent and dependent variables; the meaning
should be clear from the context.
We assume that it is always possible to solve a given ordinary differential equation
for the highest derivative, obtaining 7
YP =fyy sy (8)

We study only equations of the form (8). This is mainly to avoid the ambiguity
that may arise because a single equation of the form. (6) may correspond to several
equations of the form (8). For example, the equation

Y2ty +4y =0 ©®)
leads to the two equations

_t+ /P Toy - JAT6
y'zﬂ_z’ﬂ or y = T VE10Y (10)

2

Linear and Nonlinear Equations. A crucial classification of differential equations is
whether they are linear or nonlinear. The ordinary differential equation

Ft,p,y, ...,y =0
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is said to be linear if F is a linear function of the variables y,y’,...,y"™; a similar
definition applies to partial differential equations. Thus the general linear ordinary
differential equation of order # is

ag()y™ + a (Oy® P + -+ 4 a,()y = g(0). (11)

Most of the equations you have seen thus far in this book are linear; examples are
the equations in Sections 1.1 and 1.2 describing the falling object and the field mouse
population. Similarly, in this section, Eq. (1) is a linear ordinary differential equation
and Egs. (2) and (3) are linear partial differential equations. An equation that is not
of the form (11) is a nonlinear equation. Equation (7) is nonlinear because of the
term yy’. Similarly, each equation in the system (4) is nonlinear because of the terms
that involve the product xy.

A simple physical problem that leads to a nonlinear differential equation is the
oscillating pendulum. The angle @ that an oscillating pendulum of lenpth L makes
with the vertical direction (see Figure 1.3.1) satisfies the equation

d%o

0.8

dr L
whose derivation is outlined in Problems 29 through 31. The presence of the term
involving sin @ makes Eq. (12) nonlinear.

sind =0, (12)

FIGURE 1.3.1 An oscillating pendulum.

The mathematical theory and methods for solving linear equations are highly de-
veloped. In contrast, for nonlinear equations the theory is more complicated, and
methods of solution are less satisfactory. In view of this, it is fortunate that many
significant problems lead to linear ordinary differential equations or can be approx-
imated by linear equations. For example, for the pendulum, if the angle 8 is small,
then sin @ = 6 and Eq. (12) can be approximated by the linear equation

a% -

7+ %9 = 0. (13)
This process of approximating a nonlinear equation by a linear one is cailed lineariza-
tion; it is an extremely valuable way to deal with nonlinear equations. Nevertheless,
there are many physical phenomena that simply cannot be represented adequately
by linear equations. To study these phenomena it is essential to deal with nonlinear
equations.
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In an elementary text it is natural to emphasize the simpler and more straight-
forward parts of the subject. Therefore the greater part of this book is devoted to
linear equ ations and various methods for solving them. However, Chapters 8 and 9,
as well as parts of Chapter 2, are concerned with nonlinear equations. Whenever it
is appropriate, we point out why nonlinear equations are, in general, more difficult
and why many of the techniques that are useful in solving linear equations cannot
be applied to nonlinear equations.

Solutions. A solution of the ordinary differential equation (8) on the interval
@ <! < Bis a function ¢ such that ¢’,¢", ..., " exist and satisfy

¢ = FILG (1,4’ W, .., 00D (@) (14)

for every f in @ <t < 8. Unless stated otherwise, we assume that the function f
of Eq. (8) is a real-valued function, and we are interested in obtaining real-valued
solutions y = ¢ (1).

Recall that in Section 1.2 we found solutions of certain equations by a process of
direct integration. For instance, we found that the equation

dp
it - 15
” 0.5p — 450 (15)
has the solution
p = 900 4 ce'?, (16)

where ¢ is an arbitrary constant. Itis often not so easy to find solutions of differential
equations. However, if you find a function that you think may be a solution of a given
equation, it is usually relatively easy to determine whether the function is actually a
solution simply by substituting the function into the equation. For example, in this
way it is easy to show that the function y, (f) = cost is a solution of

y”+y =0 (17)

forallz. Toconfirm this, observe that y| (f) = — sinrand yy(¢) = — cos #;then it follows
that y{{t) + y1(t) = 0. In the same way you can easily show that y,(f) = sin1 is also
a solution of Eq. (17). Of course, this does not constitute a satisfactory way to solve
most differential equations, because there are far too many possible functions for you
to have a good chance of finding the correct one by a random choice. Nevertheless,
you should realize that you can verify whether any proposed solution is correct by
substituting itinto the differential equation. For any problem thatisimportantto you,
this can be a very useful check. It is one that you should make a habit of considering.

Some Important Questions. Although for the equations (15) and (17) we are able to
verify that certain simple functions are solutions, in general we do not have such
solutions readily available. Thus a fundamental question is the following: Does an
equation of the form (8) always have a solution? The answer is “No.” Merely writing
down an equation of the form (8) does not necessarily mean that there is a function
y = ¢{t) that satisfies it. So, how can we tell whether some particular equation has
a solution? This is the question of existence of a solution, and it is answered by
theorems stating that under certain restrictions on the function f in Eq. (8), the
equation always has solutions. However, this is not a purely mathematical concern,
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for at least two reasons. If a problem has no solution, we would prefer to know that
fact before investing time and effort in a vain attempt to solve the problem. Further,
if a sensible physical problem is modeled mathematically as a differential equation,
then the equation should have a solution. If it does not, then presumably there is
something wrong with the formulation. In this sense an engineer or scientist has
some check on the validity of the mathematical model.

If we assume that a given differential equation has at least one solution, the ques-
tion arises as to how many solutions it has, and what additional conditions must be
specified to single out a particular solution. This is the question of uniqueness. In
general, solutions of differential equations contain one or more arbitrary constants
of integration, as does the solution (16) of Eq. (15). Equation (16) represents an in-
finity of functions corresponding to the infinity of possible choices of the constant c.
As we saw in Section 1.2, if p is specified at some time ¢, this condition will determine
a value for c; even so, we have not yet ruled out the possibility that there may be
other solutions of Eq. (15) that also have the prescribed value of p at the prescribed
time t. The issue of uniqueness also has practical implications. If we are fortunate
enough to find a solution of a given problem, and if we know that the problem has a
unique solution, then we can be sure that we have completely solved the problem. If
there may be other solutions, then perhaps we should continue to search for them.

A third important question is: Given a differential equation of the form (8), can
we actually determine a solution, and if so, how? Note that if we find a solution of the
given equation, we have at the same time answered the question of the existence of
a solution. However, without knowledge of existence theory we might, for example,
use a computer to find a numerical approximation to a “solution” that does not exist.
On the other hand, even though we may know that a solution exists, it may be that the
solution is not expressible in terms of the usual elementary functions—polynomial,
trigonometric, exponential, logarithmic, and hyperbolic functions. Unfortunately,
this is the situation for most differential equations. Thus, we discuss both elemen-
tary methods that can be used to obtain exact solutions of certain relatively simple
problems, and also methods of a more general nature that can be used to find ap-
proximations to solutions of more difficult problems.

Computer Use in Differential Equations. A computer can be an extremely valuable tool
in the study of differential equations. For many years computers have been used
to execute numerical algorithms, such as those described in Chapter 8, to construct
numerical approximations to solutions of differential equations. These algorithms
have been refined to an extremely high level of generality and efficiency. A few lines
of computer code, writtenin a high-level programming language and executed (often
within a few seconds) on arelatively inexpensive computer,suffice to approximate to
a high degree of accuracy the solutions of a wide range of differential equations. More
sophisticated routines are also readily available. These routines combine the ability
to handle very large and complicated systems with numerous diagnostic features that
alert the user to possible problems as they are encountered,

The usual output from a numerical algorithm is a table of numbers, listing selected
values of the independent variable and the corresponding values of the dependent
variable. With appropriate software it is easy to display the solution of a differential
equation graphically, whether the solution has been obtained numerically or as the
result of an analytical procedure of some kind. Such a graphical display is often
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much more illuminating and helpful in understanding and interpreting the solution
of a differential equation than a table of numbers or a complicated analytical for-
mula. There are on the marketseveral well-crafted and relatively inexpensive special-
purpose software packages for the graphical investigation of differential equations.
The widespread availability of personal computers has brought powerful computa-
tional and graphical capability within the reach of individual students. You should
consider, in the light of your own circumstances, how best to take advantage of the
available computing resources. You will surely find it enlightening to do so.

Another aspect of computer use that is very relevant to the study of differential
equations is the availability of extremely powerful and general software packages
that can perform a wide variety of mathematical operations. Among these are Maple,
Mathematica,and MATLAB, each of which can be used on various kinds of personal
computers or workstations. All three of these packages can execute extensive nu-
merical computations and have versatile graphical facilities. Maple and Mathematica
also have very extensive analytical capabilities. For example, they can perform the
analytical steps involved in solving many differential equations, often in response to
a single command. Anyone who expects to deal with differential equations in more
than a superficial way shouid become familiar with at least one of these products and
explore the ways in which it can be used.

For you, the student, these computing resources have an effect on how you shouid
study differential equations. To become confident in using differential equations, it
is essential to understand how the solution methods work, and this understanding is
achieved, in part, by working out a sufficient number of examples in detail. However,
eventually you shouid plan to delegate as many as possible of the routine (often
repetitive) details to a computer, while you focus on the proper formulation of the
problem and on the interpretation of the solution. Qur viewpoint is that you should
always try to use the best methods and tools available for each task. In particular,
you should strive to combine numerical, graphical, and analytical methods so as to
attain maximum understanding of the behavior of the solution and of the underlying
process that the problem models. You should also remember that some tasks can
best be done with pencil and paper, while others require a calculator or computer.
Good judgment is often needed in selecting a judicious combination.

PROBLEM

In each of Problems 1 through 6 determine the order of the given differential equation; also
state whether the equation is linear or nonlinear.

&y | dy dy  d

L2y oy Y e

o7 Ty, H iy =sint 2. (Hyl)dﬂ“dr” e
dy dy dy dy dy

3. 87, 8y 2y AN
dr‘+dr3+d12+dr+y 4 dr+'y1 0
d¥y X d’y dy

5 yr sin(t + y) = sint 6. =ttt (cos? f}y = £

In each of Problems 7 through 14 verify that each given function is a solution of the differ-
ential equation.

7.y —y=0, y®)=¢, ) =cosht
B.y'+2y-3y=0; nm)y=e> @) =¢
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9.ty —y=1%  y=3+1

10, y™ +4y" + 3y =1¢; nity=t/3, y()=¢'+1/3

11 20y 43ty —y =0, 150, yO)=072 yp@=r"
12. 2" + 50y +4y =0, t>0;, wm=1t2 yp(t)=t7Int
13. y'+y=sect, 0<t<mf2; ¥ = {cosf)Incoss +¢sint

i
4.y —2y=1; y=e"f e ds e
1]

In each of Problems 15 through 18 determine the values of r for which the given differential
equation has solutions of the form y =_¢".

15. y+2y=0 16. ¥ —y=0

17.y'+y —6y=0 18 y" -3y 42y =0

In each of Problems 19 and 20 determine the values of r for which the given differential
equation has solutions of the form y = 1" fort > 0.

19. %y + 4ty +2y =0 20. #y" —dty +4y =0

In each of Problems 21 through 24 determine the order of the given partial differential equa-
tion; also state whether the equation is linear or nonlinear. Partial derivatives are denoted by

subscripts.
21, bz o+ Uy Uy =0 22, Hyy Uy + Uiz - wtty +u =0
23, Ugrer + 2Maayy -+ lyyyy =0 24w =1 gy

in each of Problems 25 through 28 verify that each given function is a solution of the given
partial differential equation.
25. U + Uy, =0; uy(x,y) = cosxcoshy, uz(x,y) =In(x* + y?

26. oty = u,, (e, ) = e 'sinx, wn(x,1) = et gin Jx, Xareal constant
27. @ty = Uy, ) (x,¢) = sindxsinAat, u(x,1) = sin{x —~ at), A arealconstant
28, ouy = uy) u= (/0271 150

29. Follow the steps indicated here to derive the equation of motion of a pendulum, Eg. (12)
in the text. Assume that the rod is rigid and weightless, that the mass is a point mass, and
that there is no friction or drag anywhere in the system.

() Assume that the mass is in an arbitrary displaced position, md:cated by the angle 6.
Draw a free-body diagram showing the forces acting on the mass.

(b) Apply Newton's law of motion in the direction tangential to the circular arc on which
the mass moves. Then the tensile force in the rod does not enter the equation. Observe
that you need to find the component of the gravitational force in the tangentiai direc-
tion. Observe also that the linear acceleration, as opposed to the angular acceleration, is
Ld%@/di*, where L is the length of the rod.

(c) Simplify the result from part (b) to obtain Eq. (12) in the text.

30. Another way to derive the pendulum equation (12) is based on the principle of conserva-
tion of energy.
(a) Show that the kinetic energy T of the pendulum in motion is

2
1 dé
T=mL* —1].
2™ ( dr )
(b) Show that the potential energy V of the pendulum, relative to its rest position, is

V = mgL(1 —cos8).
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(c) By the principle of conservation of energy, the total energy E = T + V is constant,
Calculate dE/d!, set it equal to zero, and show that the resulting equation reduces to
Eq. (12).

31. A third derivation of the pendulum equation depends on the principle of angular momen-
tum: the rate of change of angular momentum about any point is equal to the net external
moment about the same point.

{a) Show that the angular momentum M, or moment of momentum, about the point of
support is given by M = mL2de/dt.

(b) Set dM/dt equal to the moment of the gravitational force, and show that the resulting
equation reduces to Eq. (12). Note that positive moments are counterclockwise.

1.4 Estor_i_@l Remarks

Without knowing something about differential equations and methods of solving
them, it is difficult to appreciate the history of this important branch of mathematics.
Further, the development of differential equations is intimately interwoven with the
general development of mathematics and cannot be separated from it. Nevertheless,
to provide some historical perspective, we indicate here some of the major trends in
the history of the subject and identify the most prominent early contributors. Other
historical information is contained in footnotes scattered throughout the book and
in the references listed at the end of the chapter,

The subject of differential equations originated in the study of calculus by Isaac
Newton {1642-1727) and Gottfried Wilhelm Leibniz {1646-1716) in the seventeenth
century. Newton grew up in the English countryside, was educated at Trinity Col-
lege, Cambridge, and became Lucasian Professor of Mathematics there in 1669. His
epochal discoveries of calculus and of the fundamental laws of mechanics date from
1665. They were circulated privately among his friends, but Newton was extremely
sensitive to criticism and did not begin to publish his results until 1687 with the ap-
pearance of his most famous book, Philosophiae Naturalis Principia Mathematica.
Although Newton did relatively little work in differential equations as such, his devel-
opment of the calculus and elucidation of the basic principles of mechanics provided
a basis for their applications in the eighteenth century, most notably by Euler. New-
ton classified first order differential equations according to the forms dy/dx = f (x),
dy/dx = f(y), and dy/dx = f(x,y). For the latter equation he developed a method
of solution using infinite series when f(x,y) is a polynomial in x and y. Newton’s
active research in mathematics ended in the early 1690s, except for the solution of
occasional “challenge problems” and the revision and publication of results obtained
much earlier. He was appointed Warden of the British Mint in 1696 and resigned his
professorsmp a few years later. He was knighted in 1705 and, upon his death, was
buried in Westminster Abbey.

Leibniz was born in Leipzig and completed his doctorate in pthosophy at the age
of 20 at the University of Altdorf. Throughout his life he engaged in scholarly work
in several different fields. He was mainly self-taught in mathematics, since his in-
terest in this subject developed when he was in his twenties. Leibniz arrived at the
fundamental results of calculus independently, although a little later than Newton,
but was the first to publish them, in 1684. Leibniz was very conscious of the power
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of good mathematical notation, and our notation for the derivative, dy/dx, and the
integral sign are due to him. He discovered the method of separation of variables
(Section 2.2) in 1691, the reduction of homogeneous equations to separable ones
(Section 2.2, Problem 30) in 1691, and the procedure for solving first order linear
equations (Section 2.1) in 1694, He spent his life as ambassador and adviser to sev-
eral German roya! families, which permitted him to travel widely and to carry on an
extensive correspondence with other mathematicians, especially the Bernoulli broth-
ers. In the course of this correspondence many problems in differential equations
were solved during the latter part of the seventeenth century.

The brothers Jakob (1654-1705) and Johann (1667-1748) Bernoulli of Basel did
much to develop methods of solving differential equations and to extend the range
of their applications. Jakob became professor of mathematics at Basel in 1687, and
Johann was appointed to the same position upon his brother’'s death in 1705. Both
men were quarrelsome, jealous, and frequently embroiled in disputes, especially with
each other. Nevertheless, both also made significant contributions to several areas of
mathematics. With the aid of calculus, they solved a number of problems in mechanics
by formulating them as differential equations. For example, Jakob Bernoulli solved
the differential equation y’ = [a*/(b%y — a*)]"/? in 1690 and in the same paper first
used the term “integral” in the modern sense. In 1694 Johann Bernoulli was able
to solve the equation dy/dx = y/ax. One problem which both brothers solved, and
which led to much friction between them, was the brachistochrone problem (see
Problem 32 of Section 2.3). The brachistochrone problem was also solved by Leibniz,
Newton and the Marquis de L’'Hopital. It is said, perhaps apocryphally, that Newton
learned of the problem late in the afternoon of a tiring day at the Mint and solved it
that evening after dinner. He published the solution anonymously, but upon seeing
it, Johann Bernoulli exclaimed, “Ah, I know the lion by his paw.”

Daniel Bernoulli (1700-1782), son of Johann, migrated to St. Petersburg as a young
man to join the newly established St. Petersburg Academy but returned to Basel in
1733 as professor of botany and, later, of physics. His interests were primarily in
partial differential equations and their applications. For instance, it is his name that
is associated with the Bernoulli equation in fluid mechanics. He was also the first
to encounter the functions that a century later became known as Bessel functions
(Section 5.8).

The greatest mathematician of the eighteenth century, Leonhard Euler (1707-
1783), grew up near Basel and was a student of Johann Bernoulli. He followed his
friend Daniel Bernoulli to St. Petersburg in 1727. For the remainder of his life he
was associated with the St, Petersburg Academy (1727-1741 and 1766-1783) and
the Berlin Academy (1741-1766). Euler was the most prolific mathematician of
all time; his collected works fill more than 70 large volumes, His interests ranged
over all areas of mathematics and many fields of application. Even though he was
blind during the last 17 years of his life, his work continued undiminished until the
very day of his death. Of particular interest here is his formulation of problems
in mechanics in mathematical language and his development of methods of solving
these mathematical problems. Lagrange said of Euler's work in mechanics, “The first
great work in which analysis is applied to the science of movement.” Among other
things, Euler identified the condition for exactness of first order differential equations
(Section 2.6) in 1734-35, developed the theory of integrating factors (Section 2.6) in
the same paper, and gave the general solution of homogeneous linear equations with
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constant coefficients (Sections 3.1, 3.4, 3.5, and 4.2) in 1743. He extended the latter
results tononhomogeneous equationsin 1750-51. Beginning about 1750, Euler made
frequent use of power series (Chapter 5) in solving differentiat equations. He also
proposed a numerical procedure (Sections 2.7 and 8.1) in 1768-69, made important
contributionsin partial differential equations, and gave the first systematic treatment
of the calculus of variations.

Joseph-Louis Lagrange (1736-1813) became professor of mathematics in his na-
tive Turin at the age of 19. He succeeded Euler in the chair of mathematics at the
Berlin Academy in 1766, and moved on to the Paris Academy in 1787. He is most fa-
mous for his monumental work Mécanigue analytique, published in 1788, an elegant
and comprehensive treatise of Newtonian mechanics. With respect to elementary
differential equations, Lagrange showed in 1762-65 that the general solution of an
nth order linear homogeneous differential equation is a linear combination of » inde-
pendent solutions (Sections 3.2, 3.3, and 4.1). Later, in 1774-75, he gave a complete
development of the method of variation of parameters (Sections 3.7 and 4.4). La-
grange is also known for fundamental work in partial differential equations and the
calculus of variations.

Pierre-Simon de Laplace (1749-1827) lived in Normandy as a boy but came to
Paris in 1768 and quickly made his mark in scientific circles, winning election to the
Académie desSciences in 1773. He was preeminent in the field of celestial mechanics;
his greatest work, Traité de mécanique céleste,was published in five volumes between
1799 and 1825. Laplace’s equation is fundamental in many branches of mathematical
physics, and Laplace studied it extensively in connection with gravitational attraction.
The Laplace transform {Chapter 6) is also named for him, aithough its usefulness in
solving differential equations was not recognized until much later.

Bythe end of the eighteenth century many elementary methods of solving ordinary
differential equationshad been discovered. In the nineteenth century interest turned
more toward the investigation of theoretical questions of existence and uniqueness
and to the development of less elementary methods such as those based on power
series expansions (see Chapter 5). These methods find their natural setting in the
complex plane. Consequently, they benefitted from, and to some extent stimulated,
the more or less ssmultaneous development of the theory of complex analytic func-
tions. Partial differential equations also began to be studied intensively, as their
crucial role in mathematical physics became clear. In this connection a number of

- functions, arising as solutions of certain ordinary differential equations, occurred re-

peatedly and were studied exhaustively. Known collectively as higher transcendental
functions, many of them are associated with the names of mathematicians, including
Bessel, Legendre, Hermite, Chebyshev, and Hankel, among others.

The numerous differential equations that resisted solution by analytical means led
to the investigation of methods of numerical approximation (see Chapter 8). By
1900 fairly effective numerical integration methods had been devised, but their im-
plementation was severely restricted by the need to execute the computations by
hand or with very primitive computing equipment. In the last 50 years the devel-
opment of increasingly powerful and versatile computers has vastly enlarged the
range of problems that can be investigated effectively by numerical methods. Ex-
tremely refined and robust numerical integrators were developed during the same
period and are readily available. Versions appropriate for personal computers have
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REFERENCES

brought the ability to solve a great many significant problems within the reach of
individual students. )

Another characteristic of differential equations in the twentieth century was the
creation of geometrical or topological methods, especially for nonlinear equations.
The goal is to understand at least the qualitative behavior of solutions from a geo-
metrical, as well as from an analytical, point of view. If more detailed information is
needed, it can usually be obtained by using numerical approximations. An introduc-
tion to geometrical methods appears in Chapter 9.

Within the past few years these two trends have come together. Computers, and
especially computer graphics, have given a new impetus to the study of systems of non-
linear differential equations. Unexpected phenomena (Section 9.8), such as strange
attractors, chaos, and fractals, have been discovered, are being intensively studied,
and are leading to important new insights in a variety of applications. Although it is
an old subject about which much is known, differential equations at the dawn of the
twenty-first century remains a fertile source of fascinating and important unsolved
problems,

Computer software for differential equations changes too fast for particulars to be given in a book such as
this. A good source of information is the Software Review and Computer Corner sections of The College
Mathematics Journal, published by the Mathematical Association of America. There are many books on
the use of computer algebra systems, some of which emphasize their use for differential equations

For further reading in the history of mathematics, see books such as those listed below:

Boyer, C. B, and Merzbach, U. C., A History of Mathematics (2nd ed.) (New York: Wiley, 1989).

Kline, M., Mathematical Thought from Ancient to Modern Times (New York: Oxford University Press,
1972).
A usefu] historical appendix on the early development of differential equations appears in

Ince, E. L., Ordinary Differential Equations (London: Longmans, Green, 1927; New York: Dover, 1956).

An encyclopedic source of information about the lives and achievements of mathematicians of the
pastis
Gillespie, C. C.. ed., Dictionary of Scientific Biography (15 vols) (New York: Scribner’s, 1571).

Much historical information can be found on the Internet. One excellent site is
www-gap.des.st-and.ac.ulk/~history/BiogIndex.html

created by John J. O’Connor and Edmund F. Robertson, Department of Mathematics and Statistics,
University of St. Andrews, Scotland.
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First Order
Differential E.quations

This chapter deals with differential equations of first order,

dy

where f is a given function of two variables. Any differentiable function y = ¢(t)
that satisfies this equation for all ¢ in some interval is called a solution, and our
object is to determine whether such functions exist and, if so, to develop methods
for finding them. Unfortunately, for an arbitrary function f, there is no general
method for solving the equation in terms of elementary functions. Instead, we will
describe several methods, each of which is applicable to a certain subclass of first
order equations. The most important of these are linear equations (Section 2.1),
separable equations (Section 2.2), and exact equations (Section 2.6). Other sections
of this chapter describe some of the important applications of first order differential
equations, introduce the idea of approximating a solution by numerical computation,
and discuss some theoretical questions related to the existence and uniqueness of
solutions. The final section includes an example of chaotic solutions in the context of
first order difference equations, which have some important points of similarity with
differential equations and are simpler to investigate.

2.1 Linear Equations; Method of Integrating Factors

If the function f in Eq. (1) depends linearly on the dependent variable y, then Eq. (1)
is called a first order linear equation. In Sections 1.1 and 1.2 we discussed a restricted
type of first order linear equation in which the coefficients are constants. A typical

31
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EXAMPLE

1

example is

dy

= b, 2
i s )
where a and b are given constants. Recall that an equation of this form describes the
motion of an object falling in the atmosphere. Now we want to consider the most
general first order linear equation, which is obtained by replacing the coefficients a
and b in Eq. (2) by arbitrary functions of r. We will usually write the general first
order linear equation in the form

dy
dt
where p and g are given functions of the independent variable 1.
Equation (2) can be solved by the straightforward integration method introduced
in Section 1.2. That is, provided that 2 # 0 and y # b/a, we rewrite the equation as

dy/dt
y— @l " )

+p()y =g(0), (3)

Then, by integration we obtain
In|y — (b/a)| = —at + C,
from which it follows that the general solution of Eg. (2) is
y = (b/a) + ce™, (5)

where ¢ i$ an arbitrary constant.

Unfortunately, this direct method of solution cannot be used to solve the general
equation (3), so we need to use a different method of solution for it. We owe this
method to Leibniz; it involves multiplying the differential equation (3) by a certain
function p(t}, chosen so that the resulting equation is readily integrable. The function
1(t} is called an integrating factor, and the main difficulty is to determine how to find
it. We will introduce this method in a simple example, later showing how to extend
it to other first order linear equations, including the general equation (3).

Solve the differential equation

d

3{ +ly=1en (6)

Plot several solutions, and find the particular solution whose graph contains the point (0, 1).
The first step is to multiply Eq. (6) by a function u(f), as yet undetermined; thus

d
u(r)d—}; + sty = tu(e's. (7

The question now is whether we can choose g(r) so that the left side of Eq. {7) is recognizable
as the derivative of some particular expression. If so, then we can integrate Eq. (7), even
though we do not know the function y. To guide our choice of the integrating factor w(f),
observe that the left side of Eq. (7) contains two terms and that the first term is part of the
result of differentiating the product ye(¢)y. Thus, let us try to determine p(f) so that the left
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side of Eq. (7) becomes the derivative of the expression u(f)y. If we compare the left side of
Eq. (7) with the differentiation formula

d dy dplr)

— [yl = A N alakd

dr[ﬂ( = u) 2 t— (8
we note that the first terms are identical and that the second terms also agree, provided we
choose w(t) to satisfy

' du()
— = 1u.

Therefore our search for an integrating factor will be successful if we can find a solution of
Eq. (9). Perhaps you can readily identify a function that satisfies Eq. (9): What well-known
function from calculus has a derivative that is equal to one-half times the original function?
More systematically, rewrite Eq. (9) as

du(t)/dt

=1
uey ¥ (10)
which is equivalent to
d
= I lu)] = §. (11)
Then it follows that
Inju() =i+ C, (12)
or
p(t) = ce'. (13)

The function u (/) given by Eq. (13) is an integrating factor for Eq. (6). Since we do not need
the most general integrating factor, we will choose ¢ to be one in Eq. (13) and use p(f) = &2,
Now we return to Eq. (6), multiply it by the integrating factor €%, and obtain

dy
it — +jely = je¥S. (14)

By the choice we have made of the integrating factor, the left side of Eq. (14) is the derivative
of ¢y, so that Eq. (14) becomes

d

2@y =1 1)
By integrating both sides of Eq. (15) we obtain

iy = 1M 1, (16)

where ¢ is an arbitrary constant. Finally, on solving Eq. (16) for y, we have the general solution
of Eq. (6), namely,
y=13eP fee an

To find the solution passing through the point (0,1), we set t = 0 and y =1 in Eq. (17),
obtaining I = (3/5) + ¢. Thus ¢ = 2/5, and the desired solution is

y= 1P 4 2. (18)

Figure 2.1.1 includes the graphs of Eq. (17) for several values of ¢ with a direction field in
the background. The solution passing through (0,1) is shown by the heavy curve.
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Integral curves of y’

Let us now extend the method of integrating factors to equations of the form

dy
@ +ay =g(), (19)

where a is a given constant, and g(f) is a given function, Proceeding as in Example
1, we find that the integrating factor u(f) must satisfy

di
I au 20
dt ks (20)

rather than Eq. (9). Thus the integrating factor is u(f) = e*. Multiplying Eq. (19) by
(), we obtain

e"% + ae®y = e"'g(1),

or

d !

—(e™y) = e"g(1). 21

€ =g (21)
By integrating both sides of Eq. (21) we find that

= / eflgtydt+¢, (22)

where ¢ is an arbitrary constant, For many simple functions g(¢) we can evaluate the
integral in Eq. (22) and express the solution y in terms of elementaty functions, as

in Example 1. However, for more complicated functions g(r), it is necessary to leave
the solution in integral form. In this case

!
y=e9 f e g(s)ds + ce™™. (23)
f
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Note that in Eq. (23) we have used s to denote the integration variable to distinguish
it from the independent variable ¢, and we have chosen some convenient value #o as
the lower limit of integration.

Solve the differential equation

dy
-2 -
2= 4—1 (24)
and plot the graphs of several solutions. Discuss the behavior of solutions as f — co.
Equation (24) is of the form (19) with @ = -2, therefore the integrating factor is u(f) = e
Multiplying the differential equation (24) by x(f), we obtain

d
e*”?f — 27Uy = 4o g7, (25)

or p
C—i;(e‘z" y)=4de7¥ — 7, (26)

Then, by integrating both sides of this equation, we have
—21 —2 1,,-2 1l -2
4 y:—-Ze +5fe +;E +c,

where we have used integration by parts on the last term in Eq. (26). Thus the general solution
of Eq. (24) is
y=—1+1r+ce™ (27

A direction field and graphs of the solution (27) for several values of ¢ are shown in Figure
2.1.2. The behavior of the solution for large values of f is determined by the term ce¥. If ¢ #£ 0,
then the solution grows exponentially large in magnitude, with the same sign as c itself. Thus
the solutions diverge as f becomes large. The boundary between solutions that ultimately grow
positively from those that ultimately grow negatively occurs when ¢ = 0. If we substitute c = 0
into Eq. (27) and then set t =0, we find that y = —7/4 is the separation point on the y-axis.
Note that, for this initial value, the solution is y = — + }¢; it grows positively, but linearly
rather than exponentially.
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Now we return to the general first order linear equation (3),

dy _
x + p(0)y = g(1),

where p and g are given functions. To determine an appropriate integrating factor,
we multiply Eq. (3) by an as yet undetermined function p.(t), obtaining

d
.u(t)d—); +pOut)y = pg(®). (28)

Following the same line of development as in Example 1, we see that the left side
of Eq. (28) is the derivative of the product wu(f)y, provided that p(t) satisfies the
equation

du(t)
7 =p(u(e). (29)

If we assume temporarily that p(¢) is positive, then we have

du(t)/dt

() p(),

and consequently
Inp@) = fp(t) dr+ k.

By choosing the arbitrary constant k to be zero, we obtain the simplest possible
function for u, namely,

() = exp f p(tydr. (30)
Note that u(t) is positive for all £, as we assumed. Returning to Eq. (28), we have
d
E[P«(‘))’] = p(t)g(t). (31)
Hence
p)y = f,u(t)g(t) dt+c, (32)

where cis an arbitrary constant. Sometimes the integral in Eqg. (32) can be evaluated
in terms of elementary functions. However, in general this is not possible, so the
general solution of Eq. (3) is

1 {
y= m [[fo w(s)g(s) ds + c:[ , (33)

where again £y is some convenient lower limit of integration. Observe that Eq. (33)
involves two integrations, one to obtain . (t) from Eg. (30) and the other to determine
y from Eg. (33).
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Solve the initial value problem
C oty 42y =48, (34)
y(y=2. (35)
In order to determine p(f) and g(1) correctly, we must first rewrite Eq. (34) in the standard

form (3). Thus we have
Y+ @y=4, (36)

so p(t) = 2/t and g(r) = 4. Tosolve Eq. {36) we first compute the integrating factor u(r):
pin = exp[ % dr = el — g2,

On multiplying Eq. (36) by u(f) = 1%, we obtain
2y + 2y = (Py) =47,

and therefore
Py=1t"+e,

where c is an arbitrary constant. It follows that
¢
y=r+5 (37)

is the general solution of Eq. (34). Integral curves of Eq. (34) for several values of ¢ are shown
in Figure 2.1.3. To satisfy the initial condition (35} it is necessary to choose ¢ = 1; thus

1
y=12+r—2. t>0 (38)

is the solution of the initial value problem (34}, (35). This solution is shown by the heavy curve
in Figure 2.1.3. Note that it becomes unbounded and is asymptotic to the positive y-axis as
t > 0 from the right. This is the effect of the infinite discontinuity in the coefficient p(f) at
the origin. The function y == 1* + (1/1?) for t < Ois not part of the solution of this initial value
problem.

This is the first example in which the solution fails to exist for some values of 1. Again, this
is due to the infinite discontinuity in p{f) at f = 0, which restricts the solution to the interval
0 <t <o0.

FIGURE 2.1.3 Integfal curves of ty + 2); — 4, |
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Looking again at Figure 2.1.3, we see that some solutions (those for which ¢ > 0} are asymp-
totic to the positive y-axis as t — 0 from the right, while other solutions {for which ¢ < 0)
are asymptotic to the negative y-axis. The solution for which ¢ = 0, namely, y = ¢%, remains
bounded and differentiable even at t = 0. If we generalize the initial condition (35) to

¥ = yo (39
then ¢ = yo — 1 and the solution (38) becomes

. o — I

As in Example 2, this is another instance where there is a critical initial value, namely, yo = 1,
that separates solutions that behave in two quite different ways.

Solve the initial value problem

2y +ey=2, (41)
yO =1 @)

First divide the differential equation (41} by two, obtaining
Y+ /2y =1 (43)

Thus p(f) = ¢/2,and the integrating factor is p(r) = exp(12/4). Then multiply Eq. (43) by (1),
so that

e Hy + fz-e'z"y =" (44)

The left side of Eq. (44) is the derivative of ¢y, so by integrating both sides of Eq. (44) we
obtain

ety = f ¢ dt +c. (45)

The integral on the right side of Eq. (45) cannot be evaluated in terms of the usual elementary
functions, so we leave the integral unevaluated. However, by choosing the lower limit of
integration as the initial point ¢t = 0, we can replace Eq. (45) by

]
ey = [ s +c, - (46)
4]

where ¢ is an arbitrary constant. It then follows that the general solution y of Eq. (41) is given
by

]
y—e f e ds 4 ce ', (47)
0

The initial condition (42} requires thatc = 1.

The main purpose of this example is to illustrate that sometimes the solution must be
left in terms of an integral. This is usuaily at most a slight inconvenience, rather than a
serious obstacle. For a given value of ¢ the integral in Eq. (47) is a definite integral and
can be approximated 1o any desired degree of accuracy by using readily available numerical
integrators. By repeating this process for many values of ¢ and plotting the results, you can
obtain a graph of a solution. Alternatively, you can use a2 numerical approximation method,
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such as those discussed in Chapter 8, that proceed directly from the differential equation and
need no expression for the solution. Software packages such as Maple and Mathematica
readily execute such procedures and produce graphs of solutions of differential equations.
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FIGURE 214 Integral curves of 2y’ +ty = 2.
Figure 2.1.4 displays graphs of the solution (47) for several values of ¢. From the figure it

may be plausible to conjecture that ali solutions approach a limit as f — oo. The limit can be
found analytically (see Problem 32).

VRATG s o b WAL AP T AT A M I VAL AT 4/ 1A

PROBLEMS In each of Problems 1 through 12:

=== (a} Draw a direction field for the given differential equation.

(b) Based on an inspection of the direction field, describe how solutions behave for large ¢.
(c) Find the general solution of the given differential equation, and use it to determine how
solutions behave as ¢ — oo.

& 1 y+3y=t+e? & 2y-2y=re&

G 3 yty=te'+1 & 4 y+Q/ny=3cos2%, >0
g 5. y-2y=3¢ & 6.ty +2y=sint, >0
& 1.y +uy=2" L B Ly tay=(1+77?
& 9. 27 +y=3 0.ty —y=2e", >0
&2 11 y +y=S5sin2 & 12.2y +y=3¢

In each of Problems 13 through 20 find the solution of the given initial value problem.
13.y—y=2% y0)=1

4. y +2y =te¥, yH=0

15. 0 +2y =12 —1 +1, y(1)=%, t>0

16. y + (2/0)y = (cos)f?,  y(m)=0, t>0

17.y-2y=¢" yO=2
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18. #y' + 2y = sin{, yrf2y=1, >0
19. £y + 4%y = ¢, y(-13=0, t<0
20, iy + (t+ 1y =1, y(In2)=1, >0

In each of Problems 21 through 23:

(a) Draw a direction field for the given differential equation. How do solutions appear to
behave as ¢ becomes large? Does the behavior depend on the choice of the initial value a?
Let ag be the value of a for which the transition from one type of behavior to another occurs,
Estimate the value of ap.

(b) Solve the initial value problem and find the critical value ap exactly.

(c) Describe the behavior of the solution corresponding to the initial value ap.

(ﬁ?, 21. y — 1y =2cost, yO) =a

& 2.
& 2.

2y’—y=e"’3, y(Oy=a
3y -2y=e"2  y0)=a

In each of Problems 24 through 26:

(a) Draw a direction field for the given differential equation.” How do solutions appear to
behave as t — 07 Does the behavior depend on the choice of the initial value a? Let a; be
the vatue of a for which the transition from one type of behavior to another occurs. Estimate

the value of ag.
(b) Solve the initial value problem and find the critical value ap exactly.

(©)

& 24
& 5.
& 2.
&l 21.

30.

31

Describe the behavior of the solution corresponding to the initial value ap.
o+ (1 + Dy =2, yd)y=a, t>0

1y + 2y = (sin /1, y—n/2y=a, t<0

(sinf)y’ + (cosf)y = ¢, yly=a, O<t<m

Consider the initial value problem

Y+iy=2cost, y0)=-1

Find the coordinates of the first local maximum point of the sclution for t > 0.

. Consider the initial value problem

y+iy=1-14, 0 =y.

Find the value of yp for which the solution touches, but does not cross, the r-axis.

. Consider the initial vaive problem

¥+ 1y =3+2cos, y(0y=0.

(a) Find the solution of this initial value problem and describe its behavior for large 1.
(b) Determine the value of ¢ for which the solution first intersects the line y = 12.

Find the value of y, for which the solution of the initial value problem
¥ —y=1+3sint, y(©0)=yo~

remains finite as t — co.
Consider the initial value problem

y —2y=3t+2¢, ¥(0) = yo.
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Find the value of y, that separates solutions that grow positively as  — o0 from those
that grow negatively. How does the solution that corresponds to this critical value of yg
behave asf — oo?

32. Show that all solutions of 2y’ +ty =2 [Eq (41) of the text]} approach a limit as t —» oo,
and find the limiting value.
Hint: Consider the general solution, Eq. (47), and use I”Hospital’s rule on the first term.

33. Show that if @ and A are positive constants, and b is any real number, then every solution
of the equation
¥y +ay = be™™

has the property that y — 0 as — oo.
Hint: Consider the cases 2 = A and a # A separately.

In each of Problems 34 through 37 construct a first order linear differential equation whose
solutions have the required behavior as f -» oo. Then solve your equation and confirm that
the solutions do indeed have the specified property.

34. All solutions have the limit 3 as ¢t —» oo.

35. All solutions are asymptoticto the liney =3 —rasf — o0,
36. All solutions are asymptotic to the line y = 2r — 5 asf — oo.
37. All solutions approach the curve y =4 —~ 2 as { — oo,

38. Variation of Parameters, Consider the following method of solving the general linear
equation of first order:

Y +p0y = g(). )

(a) If g() = 0 for all r, show that the solution is
y=Aesp| - [poat]. (i)

where A is a constant.
(b) If g(r) is not everywhere zero, assume that the solution of Eq. () is of the form

y=A(Dexp [H fp(r) dr:l , (iii)

where A is now a function of r. By substituting for y in the given differential equation,
show that A(f) must satisfy the condition

A =g exp l: f pin dr] . . (iv)

(c) Find A(f) from Eq. (iv). Then substitute for A(Y) in Eq. (iti) and determine y. Verify
that the solution obtained in this manner agrees with that of Eq. (33) in the text. This
technique is known as the method of variation of parameters; it is discussed in detail in
Section 3.7 in connection with second order linear equations. -

In each of Problems 39 through 42 use the method of Problem 38 to solve the given differential
equation.

39. y —2y = *e¥ 40. y + (1/0y =3cos2t, (>0

41 1y +2y=sint, >0 42. 2y +y =3
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2.2 Separable Equations

EXAMPLE

1

In Sections 1.2 and 2.1 we used a process of direct integration to solve first order
linear equations of the form

% =ay+b, (1)
where z and b are constants, We will now show that this process is actually applicable
to a much larger class of equations.

We will use x, rather than ¢, to denote the independent variable in this section for
two reasons. Inthe first place, different letters are frequently used for the variables in
a differential equation, and you should not become too accustomed to using a single
pair. In particular, x often occurs as the independent variable. Further, we want to
reserve ¢ for another purpose later in the section.

The general first order equation is

d
ﬁ =f(x,y). (2

Linear equations were considered in the preceding section, but if Eq. (2) is nonlinear,

then there is no universally applicable method for solving the equation. Here, we

consider a subclass of first order equations that can be solved by direct integration.
To identify this class of equations, we first rewrite Eq. (2) in the form

M(x,») + N(x,y)% =0, 3)

Itis always possible to do this by setting M(x, y) = —f(x,y)and N (x, y) = 1, but there
may be other ways as well. If it happens that M is a function of x only and N is a
function of y only, then Eq. {3) becomes

M(X)+N(}’)%=0- @

Such an equation is said to be separable, because if it is written in the differential
form

M@ dx+ Ny dy=0, (5)

then, if you wish, terms involving each variable may be separated by the equals sign.
The differential form (5) is also more symmetric and tends to diminish the distinction
between independent and dependent variables.

A separable equation can be solved by integrating the functions M and N. We
illustrate the process by an example and then discuss it in general for Eq. (4).

Show that the equation

dy  x?

dx ~ 1—y? ©)

is separable, and then find an equation for its integral curyes,
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If we write Eq. (6) as

dx

then it has the form (4) and is therefore separablg. Next, observe that the first term in Eq. (7)
is the derivative of —x?/3 and that the second term, by means of the chain rule, is the derivative
with respect to x of y — y*/3. Thus Eq. (7) can be written as

£(3)56-9)0

x4+ (1-yH dy _ 0, (N

or

d { © y
a(‘§+y‘?)—°
Therefore by integrating we obtain
—x3+3y—y’=c, (8)

where c is an arbitrary constant. Equation (8} is an equation for the integral curves of Eq.
(6). A direction field and several integral curves are shown in Figure 2.2.1. Any differentiable
function y = ¢{x) that satisfies Eq. (8) is a solution of Eq. (6). An equation of the integral
curve passing through a particular point (xo, yo) can be found by substituting xo and y, for x
and y, respectively, in Eq. (8) and determining the corresponding value of c.

RS
e S

|
F-9

VY vr #F el s

PR T
(S

/7
/
/
/
/
YRy
7_ 4

FIGURE 2.2.1 Direction field and integral curves of y’ =x2/(1 - ).

Essentially the same procedure can be followed for any separable equation. Re-
turning to Eq. (4), let H; and H, be any antiderivatives of M and N, respectively.
Thus

Hi@ =M, H)=No), ©)
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% EXAMPLE

2

and Eq. (4) becomes

f f d
H(x) + Hz(y)ay =0. (10)
According to the chain rule,
N
02 = 2 H0). (an

Consequently, we can write Eq. (10) as

d
~THI) + ) =0. (12)
By integrating Eq. (12) we cobtain
Hi(x) + Hy(y) = ¢, (13)

where ¢ is an arbitrary constant. Any differentiable function y = ¢(x) that satisfies
Eg. (13) is a solution of Eq. (4); in other words, Eq. (13) defines the solution implic-
itly rather than explicitly. In practice, Eq. {13) is usually obtained from Eq. (5) by
integrating the first term with respect to x and the second term with respect to y.

If, in addition to the differential equation, an initial condition

y(xo} = yo (14)
is prescribed, then the solution of Eq. (4) satisfying this condition is obtained by
setting x = xg and y = yg in Eq. (13). This gives

c= HI(XQ)+H2(YQ). (15)

Substituting this value of ¢ in Eq. (13) and noting that

x ¥y
Hy(x) — Hi(xo) = f M(syds, Ha(y) - Ha(yo) = f NGs) ds,
X0

Yo

we obtain
z ¥
[ M(s) ds + ] N(s)ds =0. (16)
x Yo

Equation (16) isan implicit representation of the solution of the differential equation
(4) that also satisfies the initial condition (14). You should bear in mind that the
determination of an explicit formula for the solution requires that Eq. (16) be solved
for y as a function of x. Unfortunately, it is often impossible to do this analytically;
in such cases one can resort to numerical methods to find approximate values of y
for given values of x.

Solve the initial value problem

ﬂv_ ___3x2+4x+2

= aon YO (17}

and determine the interval in which the solution exists.
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The differential equation can be written as
2(y — Ddy = (3¢ + 4x + 2) dx.
Integrating the left side with respect to y and the right side with respect to x gives
Y -2y=x +22 +2x +c, (18)

where ¢ is an arbitrary constant. To determine the solution satisfying the prescribed initial
condition, we substitute x = 0 and y = —1 in Eq. {18), obtaining ¢ = 3. Hence the solution of
the initial value problem is given implicitly by

Y =2y =x 424" +2x 43 (19)

To obtain the solution explicitly, we must solve Eq. (19) for y in terms of x. Thal is a simple
matter in this case, since Eq. {19) is quadratic in y, and we obtain

y=12v2 1227 4 2c + 4. (20)

Equation {20) gives two solutions of the differential equation, only one of which, however,
satisfies the given initial condition. This is the solution corresponding to the minus sign in Eq.
(20), so we finally obtain

Cy=¢m =1V AT L2+ 4 (21)

as the solution of the initial value problem (17). Note that if the plus sign is chosen by mistake
in Eq. {20), then we obtain the solution of the same differential equation that satisfies the
initial condition y{0) = 3. Finally, to determine the interval in which the solution (21) is valid,
we must find the interval in which the quantity under the radical is positive. The only real zero
of this expression is x = —2, 50 the desired interval is x > —2. The solution of the initial value
problem and some other integral curves of the differential equation are shown in Figure 2.2.2.
Observe that the boundary of the interval of validity of the solution {21) is determined by the
point {—2,1) at which the tangent line is vertical.

FIGURE 2.2.2 Int-egral curves of y - G2 +4x+2)2(y - 1.
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EXAMPLE

3

Solve the equation
dy 4x—x

Al =2 (22)

and draw graphs of several integral curves. Also find the solution passing through the point
(0,1) and determine its interval of validity.
Rewriting Eq. (22) as
@+ Y dy = (4x — X"y dx,

integrating each side, multiplying by 4, and rearranging the terms, we obtain
Y +16y+x* —8x'=¢, (23)

where c is an arbitrary constant. Any differentiable function y = ¢ (x) that satisfies Eq. (23)
is a solution of the differential equation (22). Graphs of Eq. (23) for several values of ¢ are
shown in Figure 2.2.3,

To find the particular solution passing through (0, 1), we set x = 0 and y = 1in Eq. (23) with
the result that ¢ = 17. Thus the solution in question is given implicitly by

y 16y + x4 — 82 =17. (24)

It is shown by the heavy curve in Figure 2.2.3. The interval of validity of this solution ex-
tends on either side of the initial point as long as the function remains differentiable. From
the figure we see that the interval ends when we reach points where the tangent line is verti-
cal. It follows from the differential equation (22) that these are points where 4 +y? =0, or
y = (—4)"/3 = —1.5874. From Eq. (24) the corresponding values of x are x = +3.3488. These
points are marked on the graph in Figure 2.2.3.

FIGURE 2.23 Integral curves-of y' = (4x — x%)/(4y + y*). The solution passing through
(0, 1) is shown by the heavy curve.



2.2 Separable Equations 47

Sometimes an equation of the form (2),

dy
a _.f(x)y))

has a constant solution y = yp. Such a solution is usually easy to find because if
f(x,yo) = 0 for some value yp and for all x, then the constant function y = yg is a
solution of the differential equation (2). For example, the equation

d_y _ (y—3)cosx

dx 142y
has the constant solution y = 3. Other solutions of this equation can be found by
separating the variables and integrating.

The investigation of a first order nonlinear equation can sometimes be facilitated
by regarding both W and y as functions of a third variable t. Then

(25)

dy dyjdt

dx  dxjdt’ (26)
If the differential equation is

d F

& _EFxy @7

dx  Glx,y)
then, by comparing numerators and denominators in Eqs. (26) and (27), we obtain
the system

dx/dt = G(x,y), dy/dt = F(x,y}. (28)

At first sight it may seem unlikely that a problem will be simplified by replacing a
single equation by a pair of equations, but, in fact, the system (28) may well be more
amenable to investigation than the single equation (27). Chapter 9 is devoted to
nonlinear systems of the form (28).

Note: In Example 2 it was not difficult to solve explicitly for y as a function of x.
However, this situation is exceptional, and often it will be better to leave the solution
in implicit form, as in Examples 1 and 3. Thus, in the problems below and in other
sections where nonlinear equations appear, the words “solve the following differ-
ential equation” mean to find the solution explicitly if it is convenient to do so, but
otherwise to find an equation defining the solution implicitly.

PROBLEMS In each of Problems 1 through 8 solve the given differential equation.

1. }/ =12/y 2. Y’=12/)'(1+13)
3.y +ysinx =0 ) 4, ¥ == 3x2 - 1)/(3 +2p)
5. y = (cos? x)(cos? 2y) 6. xy = (1 — y*)i?
.dl _x—e~” 8 dy _ x2
Tdx T y+e Tdx T 142

In each of Problems 9 through 20:

(a) Find the solution of the given initial value problem in explicit form.

(b) Plot the graph of the solution.

(c) Determine (at least approximately) the interval in which the solution is defined.
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§o 9 y=0-2)% yO=-1/6 &2 10.y=(1-20/, yl)=-2
& 11 xdxe+yerdy=0, yO=1 @2 12.drjdé=r*/8, r(1)=2
& B y=u/p+xY),  yO=-2 14 y=x)U+D,  y0)=1
& 15 y=2/(1+2y), y@2) =0 &2 16,y =x(x*+ 1/4y,  y(0)=-1/V2
& 17. y=03"-e/2y-5), y0)=1
& 18 y=(e -3 +4y), 0 =1
&2 19, sin2vdx+cos3ydy =0,  y(n/2)=#/3
é@ 20. y*(1 - x®2dy = arcsin x dx, y0y=1
Some of the results requested in Problems 21 through 28 can be obtained either by solving

the given equations analytically or by plotting numerically generated approximations to the
solutions. Try to form an opinion as to the advantages and disadvantages of each approach.

&°2 21. Solve the initial value problem
Y=0+37/@ -6),  yO)=1

and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where the integral curve has a
vertical tangent.

& 22. Solve the initial value problem
Y =3/ -4,  yh=0

and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where the integral curve has a
vertical tangent.

&#¢ 23. Solve the initial value problem
Y =2 +x,  y0) =1

and determine where the solution attains its minimum value.
&/ 24. Solve the initial value problem

y=02-e5/3+2y), yO0)=0

and determine where the solution attains its maximum value,
&2 25. Solve the initial value problem

¥y =2cos2x/(3+2y), y(0) = -1

and determine where the solution attains its maximum value.
&2 26. Solve the injtial value problem

yY=20+00+y), y0)=0

and determine where the solution attains its minimum value.
&2 27. Consider the initial value problem

Y=tyd-y/3  y0) =y

(a) Determine how the behavior of the solution as ¢ increases depends on the initial
value yq.

(b) Supposethatyy = 0.5. Find thetime T at which the solution first reaches the value 3.98.
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& 28

25.

&' 30

Consider the initial value problem
Yy=tyd—-y/d+8, yO)=x>0

{2) Determine how the solution behaves as ¢ 7"00.
(b) If yo = 2, find the time T at which the solution first reaches the value 3.99,
{¢) Findtherange ofinitial values for whichthe solutionliesin theinterval3.99 < y < 4,01
by the time £ = 2.
Solve the equation
dy ay+b
dx oy +d’

where a, b, ¢, and d are constants,

Homogeneous Equations, If the right side of the equation dy/dx = f(x,y) can be ex-
pressed as a function of the ratio y/x only, then the equation is said to be homogeneous.!
Such equations can always be transformed into separable equations by a change of the
dependent variable. Problem 30 illustrates how to solve first order homogeneous equa-
tions.

Consider the equation

dy y-—4dx .
i ®
(a) Show that Eq. (i) can be rewritten as
dy _ (/x)—4 .
dx  1-(/x) (i)

thus Eq. (i) is homogeneous.
{b) Introduce a new dependent variable v 50 that v = y/x, or y = xu(x). Express dy/dx
in terms of x, v, and dv/dx.
(c) Replace y and dy/dx in Eq, (ii) by the expressions from part (b) that involve v and
dv/dx. Show that the resulting differential equation is

dy v—4

v+xa=1—u'

or
dv vt —4
x— =

dx 1—vu’

(i)

Observe that Eq. (iii) is separable.

(d) Solve Eq. (iii), obtaining v implicitly in terms of x.

{e) Find the solution of Eq. (i) by replacing v by y/x in the solution in part (d).

{f) Draw a direction field and some integral curves for Eq. (i). Recall that the right side
of Eq. (i) actually depends only on the ratio y/x. This means that integral curves have the
same slope at all points on any given straight line through the origin, although the slope
changes from one line to another. Therefore the direction field and the integral curves are
symmetric with respect to the origin. Is this symmetry property evident from your plot?

1The word "homogeneous” has different meanings in different mathematical contexts. The homogeneous
equations considered here have nothing to do with the homogeneous equations that will occur in Chapter 3
and elsewhere.
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2.3 Modeling with First Order Equations

The method outlined in Problem 30 can be used for any homogeneous equation. That is,
the substitution y = xv(x) transforms a homogeneous equation into a separable equation.
The Iatter equation can be solved by direct integration, and then replacing v by y/x gives
the solution to the original equation. In each of Problems 31 through 3&:

{a) Show that the given equation is homogeneous.
{b) Solve the differential equation.
{c) Draw a direction field and some integral curves. Are they symmetric with respect to

the origin?
&31.%:% & 2. %:Izngyz
& 3. %:1‘_? & 34 %:—2‘:3:
ﬁ?, 35. % =J;_+;3; &2 36 (X +3xy+)y)dr —xtdy =0
6‘?,37.%:"2—?;3)& @38.%:3”22;’2

Differential equations are of interest to nonmathematicians primarily because of the
possibility of using them to investigate a wide variety of problems in the physical,
biological, and social sciences. One reason for this is that mathematical models and
their solutions lead to equations relating the variables and parameters in the prob-
lem. These equations often enable you to make predictions about how the natural
process will behave in various circumstances. It is often easy to vary parameters in
the mathematical model over wide ranges, whereas this may be very time-consuming
or expensive, if not impossible, in an experimental setting. Nevertheless, mathemat-
ical modeling and experiment or observation are both critically important and have
somewhat complementary roles in scientific investigations. Mathematical models are
validated by comparison of their predictions with experimental results. On the other
hand, mathematical analyses may suggest the most promising directions to explore
experimentally, and they may indicate fairly precisely what experimental data will
be most helpful.

In Sections 1.1 and 1.2 we formulated and investigated a few simple mathemat-
ical models. We begin by recapitulating and expanding on some of the conclu-
sions reached in those sections. Regardless of the specific field of application, there
are three identifiable steps that are always present in the process of mathematical
modeling.

Construction of the Model. In this step you translate the physical situation into mathe-
matical terms, often using the steps listed at the end of Section 1.1. Perhaps most
critical at this stage is to state clearly the physical principle(s) that are believed to
govern the process. For example, it has been observed that in some circumstances
heat passes from a warmer to a cooler body at a rate proportional to the temperature
difference, that objects move about in accordance with Newton’s Jaws of motion,and
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that isolated insect populations grow at a rate proportional to the current population.
Each of these statements involves a rate of change (derivative) and consequently,
when expressed mathematically, leads to a differential equation. The differential
equation is a mathematical model of the process.

It is important to realize that the mathematical equations are almost always only
an approximate description of the actual process. For example, bodies moving at
speeds comparable to the speed of light are not governed by Newton's laws, insect
populations do not grow indefinitely as stated because of eventual limitations on
their food supply, and heat transfer is affected by factors other than the temperature
difference. Alternatively, one can adopt the point of view that the mathematical
equations exactly describe the operation of a simplified physical model, which has
been constructed (or conceived of) so as to embody the most important features of
the actual process. Sometimes, the process of mathematical modeling involves the
conceptual replacement of a discrete process by a continuous one. For instance, the
number of members in an insect population changes by discrete amounts; however,
if the population is large, it seems reasonable to consider it as a continuous variable
and even to speak of its derivative.

Analysis of the Model. Once the problem has been formulated mathematically, you are
often faced with the problem of solving one or more differential equations or, fail-
ing that, of finding out as much as possible about the properties of the solution. It
may happen that this mathematical problem is quite difficult, and if so, further ap-
proximations may be indicated at this stage to make the problem mathematically
tractable. For example, a nonlinear equation may be approximated by a linear one,
or a slowly varying coefficient may be replaced by a constant. Naturally, any such
approximations must also be examined from the physical point of view to make sure
that the simplified mathematical problem still reflects the essential features of the
physical process under investigation. At the same time, an intimate knowledge of the
physics of the problem may suggest reasonable mathematical approximations that
will make the mathematical problem more amenable to analysis. This interplay of
understanding of physical phenomena and knowledge of mathematical techniques
and their limitations is characteristic of applied mathematics at its best, and it is
indispensable in successfully constructing useful mathematical models of intricate
physical processes.

Comparison with Experiment or Observation. Finally, having obtained the solution (or at
least some information about it), you must interpret this information in the context
in which the problem arose. In particular, you should always check that the math-
ematical solution appears physically reasonable. If possible, calculate the values of
the solution at selected points and ¢compare them with experimentally observed val-
ues, Or ask whether the behavior of the solution after a long time is consistent with
observations. Or examine the solutions corresponding to certain special values of pa-
rameters in the problem. Of course, the fact that the mathematical solution appears
to be reasonable does not guarantee that it is correct. However, if the predictions of
the mathematical model are seriously inconsistent with observations of the physical
system it purports to describe, this suggests that errors have been made in solving
the mathematical problem, that the mathematical model itself needs refinement, or
that observations must be made with greater care.
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EXAMPLE

1

Mixing

The examples in this section are typical of applications in which first order differ-
ential equations arise.

At time f = 0 a tank contains Qg 1b of salt dissolved in 100 gal of water; see Figure 2.3.1.
Assume that water confaining % Ib of salt/gal is entering the tank at a rate of r gal/min and
that the well-stirred mixture is draining from the tank at the same rate. Set up the initial
value problem that describes this flow process. Find the amount of salt Q(f) in the tank at any
time, and also find the limiting amount Q. that is present after a very long time. If ¥ = 3 and
Qo =20, find the time T after which the salt level is within 2% of Q;. Also find the fiow
rate that is required if the value of T is not to exceed 45 min,

rgal/min, % Ib/gal

FIGURE 23,1 The water tank in Example 1.

We assume that salt is neither created nor destroyed in the tank. Therefore variations in
the amount of salt are due solely to the flows in and out of the tank. More precisely, the rate
of change of salt in the tank, dQ/dr, is equal to the rate at which salt is flowing in minus the
rate at which it is flowing out. In symbols,

d
d—? = rale in — rate out. (1)

The rate at which sait enters the tank is the concentration % lb/gal times the flow rate r gal/min,
or (7/4) Ib/min. To find the rate at which salt leaves the tank, we need to multiply the concen-
tration of salt in the tank by the rate of outflow, r gal/min. Since the rates of flow in and out
are equal, the volume of water in the tank remains constant at 100 gal, and since the mixture
is “well-stirred,” the concentration throughout the tank is the same, namely, [Q(£)/100] 1b/gal.
Therefore the rate at which salt leaves the tank is [rQ(f)/100] lb/min. Thus the differential

equation governing this process is

-2 @

The initial condition is

Q0) = Qo 3
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Upon thinking about the problem physically, we might anticipate thateventually the mixture
originally in the tank will be essentially replaced by the mixture fiowing in, whose concentration
is 1 Ib/gal. Consequently, we might expect that ultimately the amount of salt in the tank would
be very close to 25 1b. We can also find the limiting amount Q; = 25 by setting dQ/dt equal
to zero in Eq. (2) and solving the resulting algebraic equation for Q.

To solve the problem anglytically, note that Eq. (2) is both linear and separable. Rewriting
it in the usual form for a linear equation, we have

a o T
dr 100 s “)
Thus the integrating factor is &*/!% and the general solution is
Q) =25 + ce ™%, (5)

where ¢ isan arbitrary constant. Tosatisfy the initial condition (3) we must choose ¢ = Qp — 25.
Therefore the solution of the initial value problem (2), (3) is

0(1) = 25+ (Qo — 25)e™™'%, (6)

or
O@) = 25(1 — e™™"®y 4 Qe 1%, N

From Eqg. (6) or (7), you can see that Q) — 25 (Ib) as ¢ — o0, so the limiting value Q is
25, conftrming our physical intuition. Further, O(t) approaches the limit more rapidly as r
increases. In interpreting the solution (7), note that the second term on the right side is the
portion of the original salt that rematns at time ¢, while the first term gives the amount of salt in
the tank due to the action of the flow processes. Plots of the solution for r = 3 and for several
values of Qp are shown in Figure 2.3.2.

Now suppose that r = 3 and Qp =20, = 50; then Eq. (6) becomes

Q) =25 +25¢7°0%, (8)
Q
50
40
30
20 _
10
I A T
20 a0 60 80 100 ¢

FIGURE 2.3.2 Solutions of the initial value problem (2), (3) for r =3 and several values
of Qo.
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2

Compound
Interest

Since 2% of 25 is 0.5, we wish to find the time T at which Q(¢) has the value 25.5. Substituting
t = T and Q = 25.5in Eq. (8) and solving for T, we obtain

T = (In 50)/0.03 = 130.4 (min). (9)

To determine 7 so that T = 45, return to Eq. (6), sett = 45, 0o = 50, Q{f) = 25.5, and solve
for 7. The result is
r = (100/45) In 50 = 8.69 gal/min. (10)

Since this example is hypothetical, the validity of the model is not in question. If the flow
rates are as stated, and if the coricentration of salt in the tank is uniform, then the differential
equation (1) is an accurate description of the flow process. Although this particular example
has no special significance, models of this kind are often used in problems involving a pollutant
in a lake, or a drug in an organ of the body, for example, rather than a tank of salt water. In
such cases the flow rates may not be easy to determine or may vary with time. Similarly, the
concentration may be far from uniform in some cases. Finally, the rates of inflow and outflow
may be different, which means that the variation of the amount of liquid in the problem must
also be taken into account.

Suppose that a sum of money is deposited in a bank or money fund that pays interest at an
annual rate r. The value S{f) of the investment at any time ¢ depends on the frequency with
which interest is compounded as well as on the interest rate. Financial institutions have various
policies concerning compounding: some compound monthly, some weekly, some even daily.
If we assume that compounding takes place continuously, then we can set up a simplé initial
value problem that describes the growth of the investment.

The rate of change of the value of the investment is dS/dt, and this quantity is egqual to
the rate at which interest accrues, which is the interest rate r times the current value of the
investment S(f). Thus

dS/dt = rS (11)

is the differential equation that governs the process. Suppose that we also know the value of
the investment at some particular time, say,

S(0) = So. (12)

Then the solution of the initial value problem (11), (12) gives the balance S(¢) in the account
at any time /. This initial value problem is readily solved, since the differential equation (11)
is both linear and separable. Consequently, by solving Eqgs. (11) and (12), we find that

S() = Spe™. (13)

‘Thus a bank account with continuously compounding interest grows exponentially.

Let us now compare the results from this continuous model with the situation in which
compounding occurs at finite time intervals. If interest is compounded once a year, then after
{ years

S0y = St + 1)

Ifinterest is compounded twice a year, then at the end of 6 months the value of the investment
is So[1 + (r/2)], and at the end of 1 year it is So{1 + (r/2)]2. Thus, after ¢ years we have

A2
st =51+ 5) .
In general, if interest is compounded m times per year, then

S() = So (1 + é)m'. (14)
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The relation between formulas (13) and (14) is clarified if we recall from calculus that
. . rom
hm,,.u.m SQ (1 + "—) = Soen
. m

The same model applies equally well to more general investments in which dividends and
perhaps capital gains can also accumulate, as well as interest. In recognition of this fact, we
will from now on refer to r as the rate of return.

Table 2.3.1 shows the effect of changing the frequency of compounding for a return rate
r of 8%. The second and third columns are calculated from Eq. (14) for quarterly and daily
compounding, respectively, and the fourth column is calculated from Eq. {13) for continuous
compounding. The results show that the frequency of compounding is not particularly im-
portant in most cases. For example, during a 10-year period the difference between quarterly
and continuous compounding is $17.50 per $1000 invested, or less than $2/year. The differ-
ence would be somewhat greater for higher rates of return and less for lower rates. From the
first Tow in the table, we see that for the return rate r = 8%, the annual yield for quarterly
compounding is 8.24% and for daily or continuous compounding it is 8.33%.

TABLE 2.3.1 Growth of Capital at a2 Return Rate r = 8%
for Several Modes of Compounding

S(t)/S(to) from Eq, (14)

$(1)/5 (o)
Years m=4 m = 365 from Eq. (13)

1 1.0824 1.0833 1.0833

2 1.1717 11735 1.1735

5 1.4859 1.4918 1.4918
10 2.2080 22253 2.2255
20 4.8754 49522 4.9530
30 10.7652 11.0203 11.0232
40 23.7699 24.5239 24,5325

Returning now to the case of continuous compounding, let us suppose that there may be
deposits or withdrawals in addition to the accrual of interest, dividends, or capital gains. If
we assume that the deposits or withdrawals take place at a constant rate k, then Eq. {11) is
replaced by

d5fdt =rS + k,

or, in standard form,
dsjde —rS = k, (15)

where k is positive for deposits and negative for withdrawals.
Equation (15} is linear with the integrating factor €™, so its general solution is

S() = ce™ ~ (k/r),

where ¢ is an arbitrary constant. To satisfy the initial condition (12} we must choose
¢ = So + (k/r). Thus the solution of the initial value problem (15}, (12} is

S(6) = Soe" + (k/r)(E" — 1). (16)

The first term in expression (16} is the part of S(f) that is due to the return accumulated on
the initial amount Sp, and the second term is the part that is due to the deposit or withdrawal
rate k.
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3

{ Chemicalsin

a Pond

The advantage of stating the problem in this general way without specific values for
So, r, or k lies in the generality of the resulting formula (16) for S(f). With this formula
we can readily compare the results of different investment programs or different rates of
refurn.

For instance, suppose that one opens an individual retirement account (IRA) at age 25 and
makes annual investments of $2000 thereafter in a continuous manner. Assuming a rate of
return of 8%, what will be the balance in the IRA at age 657 We have Sy = 0, r = 0.08, and
k = $2000, and we wish to determine S(40). From Eq. (16) we have

$(40) = (25,000)(e>* — 1) = $588,313. an

Itis interesting to note that the total amount invested is $80,000, so the remaining amount of
$508,313 results from the accumulated return on the investment. The balance after 40 years
is also fairly sensitive to the assumed rate. For instance, $(40) = $508,948 if r = 0.075 and
S(40) = $681,508 if r = 0.085. .

Let us now examine the assumptions that have gone into the model. First, we have assumed
that the return is compounded continuously and that additional capital is invested continu-
ously. Neither of these is true in an actual financial situation. We have also assumed that the
return rate r is constant for the entire period involved, whereas in fact it is likely to fluctuate
considerably. Although we cannot reliably predict future rates, we can use expression (16) to
determine the approximate effect of different rate projections. It is also possible to consider 7
and k in Eg. (15) to be functions of ¢ rather than constants; in that case, of course, the solution
may be much more complicated than Eq. (16).

The initial value problem (15), (12) and the solution {16) can also be used to analyze a
number of other financial situations, including annuities, mortgages, and automobile loans.

Consider a pond that initially contains 10 million gal of fresh water. Water containing an
undesirable chemical flows into the pond at the rate of 5 million gal/yr, and the mixture in the
pond flows out at the same rate. The concentration y (f) of chemical in the incoming water
varies periodicaily with time according to the expression y (f) = 2 + sin 2t g/gal. Construct a
mathematical model of this fiow process and determine the amount of chemical in the pond
at any time. Plot the solution and describe in words the effect of the variation in the incoming
concentration.

Since the incoming and outgoing flows of water are the same, the amount of water in the
pond remains constant at 107 gal. Let us denote time by 1, measured in years, and the chemical
by Q(r), measured in grams. This example is similar to Example 1, and the same inflow/outflow
principle applies. Thus

aQ .

—— =rate In — rate out,

dt
where “rate in” and “rate out” refer to the rates at which the chemical flows into and out of
the pond, respectively. The rate at which the chemical flows in is given by

rate in = (5 x 10°%) galiyr (2 + sin 2¢) g/gal. (18)
The concentration of chemical in the pond is @(r)/107 g/gal, so the rate of flow out is
rate out = (5 x 10°) galfyr {Q(1)/107) g/gal = Q(1)/2 g/yr. (19)
Thus we obtain the differential equation

%?- - (5 x 10%)(2+ sin26) — %. (20)

where each term has the units of g/yr.
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To make the coefficients more rranageable, it is convenient to introduce a new dependent
variable defined by g(r) = Q(1)/10° or O(r) = 10° g(r). This means that g(r) is measured in
millions of grams, or megagrams. If we make this substitution in Eq. (20), then each term
contains the factor 10, which can be canceled. If we also transpose the term involving g(r) to
the left side of the equation, we finally have

dq
dr
Originally, there is no chemical in the pond, so the initial condition is

q(0) =0, 22)

Equation (21) is linear, and although the right side is a function of time, the coefficient of
g is a constant. Thus the integrating factor is ¢/2. Multiplying Eq. (21) by this factor and
integrating the resulting equation, we obtain the general solution

+4g=10+5sin2t. (21)

g(n) =20 — £ cos2r + S sin2r + ce™?, (23)

The initial condition (22) requires that ¢ = —300/17, so the solution of the initial value problem
(21),(22) is
g(r) =20 — § cos2r + {2 sin2r — —e"f2 24

A plot of the solution (24) is shown in Figure 2.3,3, along with the line ¢ = 20. The exponential
term in the solution is important for small ¢, but it diminishes rapidly as ¢ increases. Later, the
solution consists of an oscillation, due to the sin 2t and cos 2t terms, about the constant level
g = 20. Note that if the sin2f term were not present in Eq. (21), then g = 20 would be the
equilibrium solution of that equation.

FIGURE 233 Solution of the initial value problem (21), (22).

Let us now consider the adequacy of the mathematical modei itself for this problem. The
model rests on several assumptions that have not yet been stated explicitly. In the first place,
the amount of water in the pond is controlled entirely by the rates of flow in and out—none
is lost by evaporation or by seepage into the ground, and none is gained by rainfall. The same
is true of the chemical; it flows into and out of the pond, but none is absorbed by fish or other
organisms living in the pond. In addition, we assume that the concentration of chemical in
the pond is uniform throughout the pond. Whether the results obtained from the model are
accurate depends strongly on the validity of these simplifying assumptions.
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4

Escape
Velocity

A body of constant mass # is projected away from the earth in a direction perpendicular to the
earth's surface with an initial velocity v. Assuming that there is no air resistance, but taking
into account the variation of the earth’s gravitational field with distance, find an expression for
the velocity during the ensuing motion. Also find the initial velocity that is required to lift the
body to a given maximum altitude ¢ above the surface of the earth, and find the Jeast initial
velocity for which the body will not return to the earth; the latter is the escape velocity.

Let the positive x-axis point away from the center of the earth along the line of motion with
x = 0lying on the earth’s surface; see Figure 2.3.4. The figure is drawn horizontally to remind
you that gravity is directed toward the center of the earth, which is not necessarily downward
from a perspective away from the earth’s surface, The gravitational force acting on the body
{that is, its weight) is inversely proportional to the square of the distance from the center of
the earth and is given by w(x) = —k/(x + R)?, where k is a constant, R is the radius of the
earth, and the minus sign signifies that w(x) is directed in the negative x direction. We know
that on the earth’s surface w(0) is given by —mg, where g is the acceleration due to gravity at
sea level. Therefore k = mgR? and

mgR?
=~ 25
w(x) R+ 01 (25)
Since there are no other forces acting on the body, the equation of motion is
dv mgR?
b AP - e 26
"a T TR 26
and the initial condition is
v(0) = vp. @7

FIGURE 2.34 A body in the carth’s gravitational field.

Unfortunately, Eq. (26) involves too many variables since it depends on ¢, x, and v. To
remedy this situation, we can eliminate ¢ from Eq. (26) by thinking of x, rather than ¢, as the
independent variable. Then we must express dv/dt in terms of dv/dx by the chain rule; hence

dv dvdx Q

and Eq. (26) is replaced by
(28)

Equation (28} is separable but not linear, so by separating the variables and integrating, we
obtain ’

2 2
v_ 8’ L. (29)
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Since x = 0 when ¢ = 0, the initial condition {27) at f = 0 can be replaced by the condition that
v = v whenx = 0. Hence ¢ = (v3/2) — gR and

' 2gR?
v=:hJu§—2gR+Rg+x. (30)

Note that Eq. (30) gives the velocity as a function of altitude rather than as a function of time.
‘The plus sign must be chosen if the body is rising, and the minus sign if it is falling back to
earth.

To determine the maximum altitude £ that the body reaches, we set v=0and x =£ in
Eq. (30) and then solve for £, obtaining

_ 4R
T 2R - v}’

£ (31)

Solving Eq. (31) for v, we find the initial velocity required to lift the body to the altitude £,

namely,
_ £
vo = /2gR-—*~_R TE (32)

The escape velocity v, is then found by letting £ — oo. Consequently,
v, = 2gR. (33)

The numerical value of v, is approximately 6.9 milesfsec, or 11.1 km/sec.

The preceding calculation of the escape velocity neglects the effect of air resistance, so the
actual escape velocity (including the effect of air resistance) is somewhat higher. On the other
hand, the effective escape velocity can be significantly reduced if the body is transported a
considerable distance above sea level before being launched. Both gravitational and frictional
forces are thereby reduced; air resistance, in particular, diminishes quite rapidly with increasing
altitude. You should keep in mind also that it may well be impractical to impart too large an
initial velocity instantaneously; space vehicles, for instance, receive their initial acceleration
during a period of a few minutes.

e

PROBLEMS

1. Consider a tank used in certain hydrodynamic experiments. After one experiment the
tank contains 200 liters of a dye solution with a concentration of 1 gfliter. To prepare
for the next experiment, the tank is to be rinsed with fresh water flowing in at a rate of
2 liters/min, the well-stirred solution flowing out at the same rate, Find the time that will
elapse before the concentration of dye in the tank reaches 1% of its original value.

2. A tank initially contains 120 liters of pure water. A mixture containing a concentration of

y glliter of salt enters the tank at a rate of 2 liters/min, and the well-stirred mixture leaves

the tank at the same rate. Find an expression in terms of y for the amount of salt in the

tank at any time ¢. Also find the limiting amount of salt in the tank as f — oc.

A tank originally contains 100 gal of fresh water. Then water containing 1 1b of salt per

gallon is poured into the tank at a rate of 2 gal/min, and the mixture is allowed to leave at

the same rate. After 10 min the process is stopped, and fresh water is poured into the tank
at a rate of 2 gal/min, with the mixture again leaving at the same rate. Find the amount of
salt in the tank at the end of an additional 10 min.

w
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A tank with a capacity of 500 gal originally contains 200 gal of water with 100 1b of salt
in solution. Water containing 1 1b of salt per gallon is entering at a rate of 3 gal/min, and
the mixture is allowed to flow out of the tank at a rate of 2 gal/min. Find the amount
of salt in the tank at any time prior to the instant when the solution begins to overflow.
Find the concentration (in pounds per gallon) of salt in the tank when it is on the point
of overflowing. Compare this concentration with the theoretical limiting concentration if
the tank had infinite capacity.

. A tank contains 100 gallons of water and 50 oz of salt. Water containing asalt concentration

of 1(1 + L sinr) oz/gal flows into the tank at a rate of 2 gal/min, and the mixture in the
tank flows out at the same rate.

{a) Find the amount of salt in the tank at any time.

(b) Plot the solution for a time period long enough so that you see the ultimate behavior
of the graph,

(¢) The long-time behavior of the solution is an oscillation about a certain constant level.
What is this level? What is the amplitude of the oscillation?

. Suppose that a tank containing a certain liquid has an outlet near the bottom. Let h{f) be

the height of the liquid surface above the outlet at time ¢. Torzicelli's® principle states that
the outflow velocity v at the outlet is equal to the velocity of a particle falling freely (with
no drag) from the height A.

(a) Show that v = /2gh, where g is the acceleration due to gravity.

(b) By equating the rate of outflow to the rate of change of liquid in the tank, show that
h{s) satisfies the equation

A(h)%]:- = —aay/2gh, (i)

where A(h) is the area of the cross section of the tank at height /1 and a is the area of
the outlet. The constant « is a contraction coefficient that accounts for the observed fact
that the cross section of the (smooth) outflow stream is smaller than a. The value of & for
water is about 0.6.

(c) Consider a water tank in the form of a right circular cylinder that is 3 m high above
the outlet. The radius of the tank is 1 m and the radius of the circular outlet is 0.1 m. If
the tank is initially full of water, determine how long it takes to drain the tank down to
the level of the outlet.

. Suppose that a sum Sp is invested at an annual rate of return 7 compounded continuously.

{a) Find the time T required for the original sum to double in value as a function of r.
(b) Determine T if r = 7%.

{c) Find the return rate that must be achieved if the initial investment is to double in 8
years.

. A young person with no initial capital invests k dollars per year at an annual rate of return

r. Assume that investments are made continuously and that the return is compounded
continuously.

(a) Determine the sum S{r) accumulated at any time .
{b) Ifr = 7.5%,determine k so that $1 million will be available for retirement in 40 years,

2Evangelista Torricelli (1608-1647), successor to Galileo as court mathematician in Florence, published
this result in 1644. He is also known for conStructing the first mercury barometer and for making important
contributions to geometry.
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{c) Mk = $2000/year, determine the return rate r that must be obtained to have $1 million
available in 40 years.

. A certain college graduate borrows $8000 to buy a car. The lender charges interest at

an annual rate of 10%. Assuming that interest is compounded continuously and that
the borrower makes payments continuously at a constant annual rate k, determine the
payment rate k that is required to pay off the loan in 3 years. Also determine how much
interest is paid during the 3-year period.

A home buyer can afford to spend no more than $800/month on mortgage payments.
Suppose that the interest rate is 9% and that the term of the mortgage is 20 years. Assume
that interest is compounded continuously and that payments are also made continuously.
{(a) Determine the maximum amount that this buyer can afford to borrow.

(b) Determine the total interest paid during the term of the mortgage.

A recent college graduate borrows $100,000 at an interest rate of 9% to purchase a con-
dominium. Anticipating steady salary increases, the buyer expects to make payments at a
monthly rate of 800(1 + t/120), where ¢ is the number of months since the loan was made.
(a) Assuming that this payment schedule can be maintained, when will the loan be fully
paid?

(b) Assuming the same payment schedule, how large a loan could be paid off in exactly
20 years?

Animportant tool in archeclogical research is radiocarbon dating, developed by the Amer-
ican chemist Willard F. Libby? This is 2 means of determining the age of certain wood
and plant remains, hence of animal or human bones or artifacts found buried at the same
levels. Radiocarbon dating is based on the fact that some wood or plant remains contain
residual amounts of carbon-14, a radioactive isotope of carbon. This isotope is accumu-
lated during the lifetime of the plant and begins to decay at its death. Since the half-life
of carbon.14 is long (approximately 5730 years*), measurable amounts of carbon-14 re-
main after many thousands of years. If even a tiny fraction of the original ameunt of
carbon-14 is still present, then by appropriate laboratory measurements the proportion
of the original amount of carbon-14 that remains can be accurately determined. In other
words, if Q(1) is the amount of carbon-14 at time ¢ and Qy is the original amount, then
the ratio Q(f)/Q0p can be determined, at least if this quantity is not too small. Present
measurement techniques permit the use of this method for time periods of 50,000 years
or more.

{(a) Assuming that Q satisfies the differential equation Q' = —~rQ, determine the decay
constant r for carbon-14.

(b) Find an expression for O(¢) at any time ¢, if O(0) = Q.
(c) Suppose that certain remains are discovered in which the current residual amount of
carbon-14 is 20% of the original amount. Determine the age of these remains.

The population of mosquitoes in a certain area increases at a rate proportional to the
current population, and in the absence of other factors, the population doubles each
week. There are 200,000 mosquitoes in the area initially, and predators (birds, bats, and

3willard F. Libby (1908-1980) was born in rural Colorado and received his education at the University of
California at Berkeley. He developed the methed of radiocarbon dating beginning in 1947 while he was
at the University of Chicage. For this work he was awarded the Nobel Prize in chemistry in 1950.
4MeGraw-Hill Encyclopedia of Science and Technology (8th ed.) (New York: McGraw-Hill, 1997), Vel.
5,p. 48.
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so forth) eat 20,000 mosquitoes/day. Determine the population of mosquitoes in the area
at any time.

. Suppose that a certain population has a growth rate that varies with time and that this

population satisfies the differential equation
dyjdt = (0.5 + sin f)y/5.

(a) 1fy(0) = 1,find (or estimate) the time t at which the population has doubled. Choose
other initial conditions and determine whether the doubling time r depends on the initjal
population. .

(b} Suppose that the growth rate is replaced by its average value 1/10. Determine the
doubling time 7 in this case.

{c) Suppose that the term sinf in the differential equation is replaced by sin 2x¢; that is,
the variation in the growth rate has a substantially higher frequency, Whateffect does this
have on the doubling time =7

(d) Plot the solutions obtained in parts (a}, (b), and (c) on a single set of axes.

. Suppose that a certain population satisfies the initial value problem

dyfdt =r()y -k,  y(0) =y

where the growth rate r(f) is given by r(f) = (1 +sin¢)/5, and k represents the rate of
predation.

(a) Suppose that k = 1/5. Plot y versus f for several values of y; between 1/2 and 1.

(b) Estimate the critical initial population y, below which the population will become
extinct.

(c) Choose other values of k and find the corresponding y. for each one.

(d) Use the data you have found in parts (b) and (c) to plot y, versus k.

Newton'’s law of cooling states that the temperature of an object changes at a rate pro-
portional to the difference between its temperature and that of its surroundings. Suppose
that the temperature of a cup of coffee obeys Newton's law of cooling. If the coffee has a
temperature of 200°F when freshly poured, and | min later has cooled to 130°F in a room
at 70°F, determine when the coffee reaches a temperature of 156°F.

. Heat transfer from a body to its surroundings by radiation, based on the Stefan-

Boltzmann® law, is described by the differential equation

2 = —aw* - 19, )
where u(f) is the absolute temperature of the body attime ¢, T is the absolute temperature
of the surroundings, and « is a constant depending on the physical parameters of the body.
However, if 1 is much larger than T, then solutions of Eq. (i) are well approximated by
solutions of the stmpler equation

‘—15:- = -—au"‘ (11)

3Jozef Stefan (1835-1893), professor of physics at Vienna, stated the radiation law on empirical grounds
in 1879. His student Ludwig Boltzmann (1844-1906) derived it theoretically from the principles of ther-
modynamics in 1884. Boltzmann is best known for his pioneering work in statistical mechanics.
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Suppose that a body with initial temperature 2000°K is surrounded by a medium with
temperature 300°K and thata = 2.0 x 10712 °K-3/sec.

(a) Determine the temperature of the body at any time by SOlVlng Eq. (ii).
(b) Plot the graph of u versus ¢.

(¢) Find the time t at which u(r) = 600, that is, twice the ambient temperature, Up to
this time the error in using Eq. (i) to approximate the solutions of Eq. (i) is no more
than 1%.

. Consider an insulated box (a building, perhaps) with internal temperature u(t). According

to Newton's law of cooling, u satisfies the differential equation

du

—=—kiu—-T i
dr {u— T (B
where T(f) is the ambient (external) temperature. Suppose that T(f) varies sinusoidally;
for example, assume that T(f) = T + T; cos .

(a) Solve Eq. (i) and express u(t) in terms of ¢, k, Ty, T3, and @. Observe that part of
your solution approaches zero as f becomes large; this is called the transient part, The
remainder of the solution is called the steady state; denote it by S(¢).

(b) Suppose that t is measured in hours and that w = /12, corresponding a period of
24 hours for T(t). Further, let To = 60°F, T} = 15°F and & = 0.2/hr. Draw graphs of S(f)
and T'(f) versus ¢ on the same axes. ¥rom your graph estimate the amplitude R of the
oscillatory part of S(f). Also estimate the time lag t between corresponding maxima of
T(#) and S(1).

(¢) Letk, Ty, T1,and @ now be unspecified. Write the osciilatory part of S(t) in the form
Reos{w(t - 1)). Use trigonometric identities to find expressions for R and 7. Let Ty and
w have the values given in part (b), and plot graphs of R and t versus k.

Consider a lake of constant volume ¥ containing at time ¢ an amount Q(f) of pollutant,
evenly distributed throughout the lake with a concentration ¢(¢), where ¢(f) = O(1)/V.
Assume that water containing a concentration k of pollutant enters the lake at a rate r,
and that water leaves the lake at the same rate. Suppose that pollutants are also added
directly to the lake at a constant rate P. Note that the given assumptions neglect a num-
ber of factors that may, in some cases, be important—for example, the water added or
lost by precipitation, absorption, and evaporation; the stratifying effect of temperature
differences in a deep lake; the tendency of irregularities in the coastline to produce shel-
tered bays; and the fact that pollutants are not deposited evenly throughout the lake but
(usually) atisolated points around its periphery, The results below must be interpreted in
the light of the neglect of such factors as these.

(a) If at time t = O the concentration of pollutant is ¢y, find an expression for the concen-
tration c(f) at any time. What is the limiting concentration as t —» co?

{b) If the addition of pollutants to the lake is terminated (k =90 and P =0 for ¢ > 0),
determine the time interval T that must elapse before the concentration of poliutants is
reduced to 50% of its original value; to 10% of its original value,

(c) Table 2.3.2 on page 64 contains data® for several of the Great Lakes. Using these
data, determine from part (b) the time T necessary to reduce the contamination of each
of these Jakes to 10% of the original value.

®This problem is based on R. H. Rainey, “Natural Displacement of Pollution from the Great Lakes,”
Science 155 (1967), pp. 1242-1243; the information in the table was taken from that source.
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TABLE 2.3.2 Volume and Flow Data for the Great

Lakes
Lake V (km? x 10%) r {(km?/year)
Superior 12.2 65.2
Michigan 49 158
Erie 0.46 175
Ontario 1.6 209

A ball with mass 0.15 kg is thrown upward with initial velocity 20 ny/sec from the roof of
a building 30 m high. Neglect air resistance.

(a) Find the maximum height above the ground that the ball reaches.

(b) Assuming that the ball misses the building on the way down, find the time that it hits
the ground.

(c) Plot the graphs of velocity and position versus time.

. Assume that the conditions are as in Problem 20 except that there is a force due to air

resistance of [v{/30, where the velocity v is measured in m/fsec.

(2) Find the maximum height above the ground that the ball reaches.

(b) Find the time that the ball hits the ground.

{(c) Plot the graphs of velocity and position versus time. Compare these graphs with the
corresponding ones in Problem 20.

Assume that the conditions are as in Problem 20 except that there is a force due to air
resistance of v?/1325, where the velocity v is measured in m/sec.

(a) Find the maximum height above the ground that the ball reaches.

{b) Find the time that the ball hits the ground.

{c) Plot the graphs of velocity and position versus time. Compare these graphs with the
corresponding ones in Problems 20 and 21,

. A sky diver weighing 180 Ib (including equipment) falis vertically downward from an

altitude of 5000 ft and opens the parachute after 10 sec of free fall. Assume that the force
of air resistance is 0.75|v| when the parachute is closed and 12{y| when the parachute is
open, where the velocity v is measured in ft/sec.

{a) Find the speed of the sky diver when the parachute opens.

{b) Find the distance fallen before the parachute opens.

(c) What is the limiting velocity v, after the parachute opens?

{d) Determine how long the sky diver is in the air after the parachute opens.

{e) Plot the graph of velocity versus time from the beginning of the fall until the skydiver
reaches the pround.

A rocket sled having an initial speed of 150 mi/hr is slowed by a channel of water. Assume
that, during the braking process, the acceleration a is given by a(v} = —uv?, where v is the
velocity and g is a constant.

{a) Asin Example 4 in the text, use the relation dv/dt = v{dv/dx) to write the equation
of motion in terms of v and x.

(b) If it requires a distance of 2000 ft to slow the sled to 15 mi/hr, determine the value
of u.

(c) Find the time  required to slow the sled to 15 mi/hr.
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25.

26.

27.

A body of constant mass m is projected vertically upward with an initial velocity vg in a
medium offering a resistance klyl, where k is a constant. Neglect changes in the gravita-
tional force.

(a) Find the maximum height x,, attained by the body and the time f, at which this
maximum height is reached.

(b) Show thatif kvg/mg < 1, then fn and x, can be expressed as

2
rm=..u.9. l_lﬂqq}.l k_l)o -],
g 2mg  3\mg

2 2
e[ 2w 1wy T
Zg 3mg  2\mg
(c) Show that the quantity kvy/mg is dimensionless,

A body of mass m is projected vertically upward with an initial velocity v in a medium
offering a resistance k|vl, where k is a constant. Assume that the gravitational attraction
of the earth is constant.

(a) Find the velocity v(f) of the body at any time.

(b) Use the result of part (a) to calculate the limit of v(¢f) ask — 0, that is, as the resistance
approaches zero. Does this result agree with the velocity of a mass m projected upward
with an initial velocity vo in a vacuum?

(¢) Use the resuit of part (a) to calculate the limit of v(f) as m — 0, that is, as the mass
approaches zero,

A body falling in a relatively dense fluid, cil for example, is acted on by three forces (see
Figure 2.3.5): a resistive force R, a buoyant force B, and its weight w due to gravity. The
buoyant force is equal tothe weight of the fluid displace d by the object. For aslowlymoving
sphericai body of radius a, the resistive force is given by Stokes'? law, R = 6 ua|v|, where
v is the velocity of the body, and  is the coefficient of viscosity of the surrounding fluid.

FIGURE 2,35 A body falling in a dense fluid.

"George Gabriel Stokes (1819-1903), professor at Cambridge, was one of the foremost applied mathe-
maticians of the nineteenth century. The basicequations of fluid mechanics (the Navier-Stokes equations)
are named partly in his honor, and one of the fundamental theorems of vector calculus bears his name.
He was also one of the pioneers in the use of divergent (asymptotic) Series, a subject of great interest and
importance today.
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{a) Find the limiting velocity of a solid sphere of radius a and density p falling freely in a
medium of density o’ and coefficient of viscosity u.

(b) In 1910 R. A. Millikan® studied the motion of tiny draplets of oil falling in an electric
field. A field of strength E exerts a force Ee on a droplet with charge e. Assume that E
has been adjusted so the droplet is held stationary (v = 0) and that w and B are as given
above. Find an expression for e. Millikan repeated this experiment many times, and from
the data that he gathered he was able to deduce the charge on an electron.

&?/ 28. A mass of 0.25 kg is dropped from rest in a medium offering a resistance of 0.2}v|, where

29.

&2 30

& 3L

v is measured in m/sec.

{(a) If the mass is dropped from a height of 30 m, find its velocity when it hits the ground.
(b) If the mass is to attain a velocity of no more than 10 m/sec, find the maximum height
from which it can be dropped.

(c) Suppose that the resistive force is kfu{, where v is measured in m/sec and k is a con-
stant. If the massis dropped from a height of 30 m and must hit the ground with a velocity
of no more than 10 m/sec, determine the coefficient of resistance & that is required.

Suppose that a rocket is launched straight up from the surface of the earth with initial
velocity vy = /2gR, where R is the radius of the earth. Neglect air resistance.

{a) Find an expression for the velocity v in terms of the distance x from the surface of the
earth.

{b) Find the time required for the rocket to po 240,000 miles (the approximate distance
from the earth to the moon). Assume that R = 4000 miles,

Let v(r) and w(r), respectively, be the horizontal and vertical components of the velocity of
a batted (or thrown) baseball. In the absence of air resistance, v and w satisfy the equations

dufdt =0, dw/fdt = —g.

{a) Show that
v=1ucosA, w=—gr+usinA,

where u is the initial speed of the ball and A is its initial angle of elevation.

{b) Letx(f) and y(), respectively, be the horizontal and vertical coordinates of the balil at
time ¢, If x(0) = 0 and y(0) = k, find x{r) and y(f) at any time t.

(c) Letg = 32ft/sec?,ie = 125 ft/sec,and &t == 3ft. Plot the trajectory of the ball for several
values of the angle A; that is, plot x(?) and y{f) parametrically.

{d) Suppose the outfield wall is at a distance L and has height H. Find a relation between
u and A that must be satisfied if the ball is to clear the wall.

(e) Suppose that L = 350 ft and # = 10ft. Using the relation in part (d}, find (or estimate
from a plot) the range of values of A that correspond to an initial velocity of u = 110 ft/sec.
(f) For L =350 and H = 10, find the minimum initial velocity 1 and the corresponding
optima! angle A for which the ball will clear the wall.

A more realistic model (than that in Problem 30) of a baseball in flight includes the effect
of air resistance. In this case the equations of motion are

dvfdt = —rv, dw/dt = —g—rw,

where r is the coefficient of resistance.

ERobert A. Millikan (1868-1953) was educated at Oberlin College and Columbia University. Later he
was a professor at the University of Chicago and California Institute of Technology. His determination of
the charge on an electron was published in 1910. For this work, and for other studies of 1he photoclectric
effect, he was awarded the Nobel Prize in 1923.



2.3 Modeling with First Order Equations 67

{a) Determine v(#) and w(r) in terms of initial speed u and initial angle of elevation A.
{b) Find x(r) and y(r) if x(0) = 0 and y(0) = A.

{c) Plot the trajectory of the ball for r = 1/5,u = 125,k = 3, and for several values of A.
How do the trajectories differ from those ‘in Problem 31 with r = 07

(d) Assuming that r = 1/5 and 4 = 3, find the minimum initial velocity u and the optimal
angle A for which the ball will clear a wall that is 350 ft distant and 10 ft high. Compare
this result with that in Problem 30(f).

32. Brachistochrone Problem. One of the famous problems in the history of mathematics is
the brachistochrone® problem: to find the curve along which a particle will slide without
friction in the minimum time from one given point P to another (3, the second point being
lower than the first but not directly beneath it (see Figure 2.3.6). This problem was posed
by Johann Bernoulli in 1696 as a challenge problem to the mathematicians of his day.
Correct solutions were found by Johann Bernoulli and his brother Jakob Bernoulli and
by Isaac Newton, Gottiried Leibniz, and the Marquis de L'Hospital. The brachistochrone
problem js important in the development of mathematics as one of the forerunners of the
calculus of variations.

In solving this problem it is convenient to take the origin as the upper peint P and to
orient the axes as shown in Figure 2.3.6. The lower point Q has coordinates (xg,yq). It is
then possible to show that the curve of minimum time is given by a function y = ¢(x) that
satisfies the differential equation

(14 y2y = &2, Q)

where 42 j5 a certain positive constant to be determined later,

' Q(x},, ylo) :

¥y ’
FIGURE 2.3.6 The brachistochrone.

(a) Solve Eq. (i) for y’. Why is it necessary to choose the positive square root?
(b) Introduce the new variable ¢ by the relation

y = ksin’t. - (if)
Show that the equation found in part {a) then takes the form

2k sin? tdt = dx. (iii)

9The word “brachistochrone” comes from the Greek words brachistos, meaning shortest, and chronos,
meaning time,
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(c) Letting & = 21, show that the solution of Eq. (iii) for which x =0 when y =0 is
given by
x=k¥B —sin6)/2, y=4k*(l—cos6)/2. (iv)

Eguations (iv) are parametric equations of the solution of Eq. (i) that passes through
(0,0). The graph of Egs. {iv) is called a cycloid.

(d) If we make a proper choice of the constant k, then the cycloid also passes through
the point (xy, yo) and is the solution of the brachistochrone problem. Find k if xg = 1 and
Yo=2.

) Theorem 2.4.1

Up to now, we have been primarily concerned with showing that first order differ-
ential equations can be used to investigate many different kinds of problems in the
natural sciences, and with presenting methods of solving such equations if they are
either linear or separable. Now it is time to turn our attention to some more general
questions about differential equations and to explore in more detail some important
ways in which nonlinear equations differ from linear ones.

Existence and Uniqueness of Solutions. Sofar,we have discussed a number of initial value
problems, each of which had a solution and apparently only one solution. This raises
the question of whether this is true of all initial value problems for first order equa-
tions. In other words, does every initial value problem have exactly one solution?
This may be an important question even for nonmathematicians. If you encounter
an initial value problem in the course of investigating some physical problem, you
might want to know that it has a solution before spending very much time and effort
in trying to find it. Further, if you are successful in finding one solution, you might
be interested in knowing whether you should continue a search for other possible
solutions or whether you can be sure that there are no other solutions. For linear
equations the answers to these questions are given by the following fundamental
theorem.

If the functions p and g are continuous on an open interval I:' ¢ < f < § contain-
ing the point ¢ = tp, then there exists a umqua function y = ¢(¢) that satisfies the
differential equation

Y +p)y =g 1)
for each t in 7, and that also satisfies the initial condition
¥{to) = yo, 2

where yg is an arbitrary prescribed initial value.

Observe thatTheorem 2.4.1 states that the given initial value problem sas a solution
and also that the problem has onfy one solution. In other words, the theorem asserts
both the existence and uniqueness of the solution of the initial value problem (1), (2).
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In addition, it states that the solution exists throughout any interval I containing the
initial point ¢ in which the coefficients p and g are continuous. That is, the solution
can be discontinuous or fail to exist only at points where at least one of p and g is
discontinuous. Such points can often be identified at a glance.

The proof of this theorem is partly contained in the discussion in Section 2.1 leading
to the formula [Eq. (32) in Section 2.1]

p)y = f plgltyde +c, (3

where [Eq. (30) in Section 2.1]

pt) = expfp(t) dt. 4

The derivation in Section 2.1 shows that if Eq. (1) has a solution, then it must be
given by Eq. (3). By looking slightly more closely at that derivation, we can also
conclude that the differential equation (1) must indeed have a solution. Since p is
continuous for o < ¢ < 8, it follows that p is defined in this interval and is a nonzero
differentiable function. Upon multiplying Eq. (1) by u(f) we obtain

[e@y) = un)g@). (%)

Since both u and g are continuous, the function ug is integrable, and Eq. (3) follows
from Eq. (5). Further, the integral of ug is differentiable, so y as given by Eq. (3)
exists and is differentiable throughout the interval @« < ¢ < 8. By substituting the
expression for y from Eq. (3) into either Eq. (1) or Eq. (5), you can easily verify that
this expression satisfies the differential equation throughout the interval e < 1 < 8.
Finally, the initial condition (2) determines the constant ¢ uniquely, so there is only
one solution of the initial value problem, thus completing the proof.

Equation (4) determines the integrating factor u(f) only up to a multiplicative
factor that depends on the lower limit of integration. If we choose this lower limit to
be #p, then

t
pity =exp / pfs) ds, (6)
f

and it follows that u{fg) = 1. Using the integrating factor given by Eq. (6), and
choosing the lower limit of integration in Eq. (3) also to be , we obtain the general
solution of Eq. (1) in the form

1 r
= — . 7
y= 5| [ morerds e ™

To satisfy the initial condition (2) we must choose ¢ = yo. Thus the solution of the
initial value problem (1), (2) is

1 !
y=—| [ worg@rds ). ®
ﬂ’(‘) fo
where u(f) is given by Eq. (6).

Turning now to nonlinear differential equations, we must replace Theorem 2.4.1
by a more general theorem, such as the following.
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Theorem 2.4.2 Letthefunctionsf and 3f /3y be continuousinsome rectangle @ <t < B,y <y <&
containing the point (f9,y0). Then, in some interval fy — k < < to + h contained in
o <t < fB,there is a unique solution y = ¢ () of the initial value problem

yY=fty,  ylto)=yo. 9)

Observe that the hypotheses in Theorem 2.4.2 reduce to those in Theorem
2.4.1 if the differential equation is linear. For then f(t,y) = —p(f}y + g{t) and
af (t,y)/8y = —p(t), so the continuity of f and 3f /3y is equivalent to the continu-
ity of p and g in this case. The proof of Theorem 2.4.1 was comparatively simple
because it could be based on the expression (3) that gives the solution of an arbi-
trary linear equation. There is no corresponding expression for the solution of the
differential equation (9), so the proof of Theorem 2.4.2 is much more difficult. It is
discussed to some extent in Section 2.8 and in greater depth in more advanced books
on differential equations.

Here we note that the conditions stated in Theorem 2.4.2 are sufficient to guarantee
the existence of a unique solution of the initial value problem (9) in some interval
1o - I <t < to+ I, but they are not necessary. That is, the conclusion remains true
under slightly weaker hypotheses about the function f. In fact, the existence of a
solution (but not its uniqueness) can be established on the basis of the continuity of
f alone.

An important geometrical consequence of the uniqueness parts of Theorems 2.4.1
and 2.4.2 is that the graphs of two solutions cannot intersect each other. Otherwise,
there would be two solutions that satisfy the initial condition corresponding to the
point of intersection, in violation of Theorem 2.4.1 or 2.4.2.

We now consider some examples.

Use Theerem 2.4.1 to find an interval in which the initial value problem
EXAMPLE
1 ty 4 2y = 4%, (10)

y(1) =2 11

has a unique solution.
Rewriting Eq. (10) in the standard form (1), we have

¥+ @iny'=a,

o
X
i
=
3
x
i
3
2
i
-
A
o

sop(t) = 2/t and g(r) = 4¢. Thus, for this equation, g is continuous for all ¢, while p is continuous
only fort < Oorfort > 0. The intervalt > O contains the initial point; consequently, Theerem
2.4.1 guarantees that the problem (10}, (11} has a unique soluticn on the interval 0 < ¢ < co.
In Example 3 of Section 2.1 we found the solution of this initial value problem to be

I AL Tt

Iy

y=t’+tlz. ) (12)

IIRYO,

Now suppose that the initial condition (11} is changed to y(—1) = 2. Then Theorem 2.4.1
asserts the existence of a unique solution for f < 0. As you can readily verify, the solution is
again given by Eq. (12), but now on.the interval —oo < t < 0.

e

=
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Apply Theorem 2.4.2 to the initial value problem

dy 3x? 4 4x 42

a = 2—@_—1)-“ , y(0) = -1. (13)

Note that Theorem 2.4.1 is not applicable to this problem since the differential equation is
nonlinear. To apply Theorem 2.4.2, observe that

3x? 4 4x+2 g(x - 32 +4x 42
20— YT T o1

Thus each of these functions is continuous everywhere except on the line y = 1. Consequently,
arectangle can be drawn about the initial point (0, —1) in which both f and 3f /8y are continu-
ous. Therefore Theorem 2.4.2 guarantees that the initial value problem has a unique solution in
some interval about x = 0. However, even though the rectangle can be stretched infinitely far
in both the positive and negative x directions, this does not necessarily mean that the solution
exists for all x. Indeed, the initial value problem (13} was solved in Example 2 of Section 2.2
and the solution exists only forx > —2.

Now suppose we change the initial condition to y(0) = 1. The initial point now lies on
the line y = 1 so no rectangle can be drawn about it within which f and 3f/8y are contin-
uous. Consequently, Theorem 2.4.2 says nothing about possible solutions of this modified
problem. However, if we separate the variables and integrate, as in Section 2.2, we find
that

f,y) =

¥ -2y=x+27+2x te.
Further, if x = 0 and y = 1, then ¢ = —1. Finally, by solving for y, we obtain
y=14x+222 + 2x. (14)

Equation (14} provides two functions that satisfy the given differential equation forx > 0 and
also satisfy the initial condition y{0) = 1.

Consider the initial value problem
y=y7  y0=0 (15)

for t = 0. Apply Theorem 2.4.2 to this initial value problem and then solve the problem.

The function f(f,y) = y'? is continuous everywhere, but 3f /3y does not exist when y = 0,
and hence is not continuous there. Thus Theorem 2.4.2 does not apply to this problem and
no conclusion can be drawn from it. However, by the remark following Theorem 2.4.2 the
continuity of f does assure the existence of solutions, but not their uniqueness.

To understand the situation more clearly, we must actually solve the problem, which is easy
to do since the differential equation is separable. Thus we have

ydy = dt,

pie]
1,273
P =t+c

and
y=[e+o]".

The initial condition is satisfied if ¢ = 0, so

y=h=02)", 120 (16)
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satisfies both of Egs. (15). On the other hand, the function

y=hO=—0)", 120 (17)
is also a solution of the initial value problem. Moreover, the function
y=9@0=0 120 (18)

is yet another solution. Indeed, it is not hard to show that, for an arbitrary positive fy, the
functions
0, if0=<r <,

19
:t[%(rmrn)]m, ifr =1 (19)

y=x(t)=l

are continuous, differentiable (in particular at f = ), and are solutions of the initial value
problem (15). Hence this problem has an infinite family of solutions; see Figure 2.4.1, where
a few of these solutions are shown.

Asalready noted, the nonuniqueness of the solutions of the problem (15) does not contradict
the existence and uniqueness theorem, since the theorem is not applicable if the initial point
lies on the t-axis. If (tp, yp) is any point not on the r-axis, however, then the theorem guarantees
that there is a unique solution of the differential equation y' = y'/? passing through (tg, yo).

FIGURE 2.4.1 Several solutions of the initia] value problem y = y'3, y(0) = C.

Interval of Definition. AccordingtoTheorem 2.4.1,the solution ofa linear equation (1),

Y +pt)y =g,

subject to the initial condition y(fp) = yo, exists throughout any interval about r = 19
in which the functions p and g are continuous. Thus, vertical asymptotes or other
discontinuities in the solution can occur only at points of discontinuity of p or g. For
instance, the solutions in Example 1 (with one exception) are asymptotic to the y-
axis, corresponding to the discontinuity at # = 0 in the coefficient p(f) = 2/¢,but none
of the solutions has any other point where it fails to exist and to be differentiable.
The one exceptionalsolution shows that solutions may sometimes remain continuous
even at points of discontinuity of the coefficients.
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On the other hand, for a nonlinear initial value problem satisfying the hypotheses
of Theorem 2.4.2, the interval in which a solution exists may be difficult to determine.
The solution y = ¢(t) is certain to exist as long as the point [¢, ¢(f)] remains within a
region in which the hypotheses of Theorem 2.4.2 are satisfied. This is what determines
the value of /1 in that theorem. However, since ¢(¢) is usually not known, it may be
impossible to locate the point [¢, ¢(#)] with respect to this region. In any case, the
interval in which a solution exists may have no simple relationship to the function f
in the differential equation y’ = f(¢, y). This is illustrated by the following example.

Solve the initial value problem
Y=y, »®=1, (20)

and determine the interval in which the sclution exists.

Theorem 2.4.2 guarantees that this problem has a unigue solution since f(1,¥) = y* and
3f /@y = 2y are continuous everywhere. To find the solution we separate the variables and
integrate with the result that

yidy =dt 1)
and
-—-y‘1 =t+c.
Then, solving for y, we have
1
Y= e (22)
To satisfy the initial condition we must choose ¢ = —1, 50
1
y=1— (23)

is the solution of the given initial value problem. Clearly, the solution becomes unbounded as
t = 1; therefore, the solution exists only in the interval —oco < t < 1. There is no indication
from the differential equation itself, however, that the point f = 1 is in any way remarkable.
Moreover, if the initial condition is replaced by

y(0) = yq, (24)
then the constant ¢ in Eq. (22) must be chosen to be ¢ = —1/yy, and it follows that

Yo
Y= T 54 (25)
is the solution of the initial value problem with the initial condition (24). Observe that the
solution (25) becomes unbounded as ¢ — 1/yg, so the interval of existence of the solution is
—o0 <t < 1/yyifyo > 0,andis 1/ye < ¢ < oo if yo < 0. This example illustrates another fea-
ture of initial value problems for nonlinear equations; namely, the singularities of the soiution
may depend in an essential way on the initial conditions as well as on the differential equation.

General Solution. Another wayin which linear and nonlinear equations differ concerns
the concept of a general solution. For a first order linear equation it is possible to
obtain a solution containing one arbitrary constant, from which all possible solutions
follow by specifying values for this constant. For nonlinear equations this may not be
the case; even though a solution containing an arbitrary constant may be found, there
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may be other solutions that cannot be obtained by giving values to this constant. For
instance, for the differential equation ' = y2 in Example 4, the expression in Eq. (22)
contains an arbitrary constant, but does not include all solutions of the differential
equation. To show this,observe that the function y = Qforall{ iscertainly asolution of
the differential equation, but it cannot be obtained from Eq. (22) by assigning a value
to ¢. In this example we might anticipate that something of this sort might happen
because to rewrite the original differential equation in the form (21), we must require
that y is not zero. However, the existence of “‘additional” solutions is not uncommon
for nonlinear equations; a less obvious example is given in Problem 22. Thus we will
use the term “general solution” only when discussing linear equations.

Implicit Solutions. Recall again that, for an initial value problem for a first order linear
equation, Eq. (8) provides an explicit formula for the solution y = ¢(f). Aslong as
the necessary antiderivatives can be found, the value of the solution at any point can
be determined merely by substituting the appropriate value of ¢ into the equation.
The situation for nonlinear equations is much less satisfactory. Usually, the best that
we can hope for is to find an equation

Fit,y)=0 (26)

involving f and y that is satisfied by the solution y = ¢(¢). Even this can be done only
for differential equations of certain particular types, of which separable equations
are the mostimportant, The equation (26) is called an integral, or first integral, of the
differential equation, and (as we have already noted) its graph is an integral curve, or
perhaps a family of integral curves. Equation (26), assuming it can be found, defines
the solution implicitly; that is, for each value of ¢ we must solve Eq. (26) to find the
corresponding value of y. If Eq. (26) is simple enough, it may be possible to solve
it for y by analytical means and thereby obtain an explicit formula for the solution.
However, more frequently this will not be possible, and you will have to resort to a
numerical calculation to determine the value of y for a given value of £. Once several
pairs of values of f and y have been calculated, it is often helpful to plot them and
then to sketch the integral curve that passes through them. You should arrange for
a computer to do this for you, if possible.

Examples 2, 3, and 4 are nonlinear problems in which it is easy to solve for an
explicit formula for the solution y = ¢(f). On the other hand, Examples 1 and 3 in
Section 2.2 are cases in which it is better to leave the solution in implicit form, and to
use numerical means to evaluate it for particular values of the independent variable.
The latter situation is more typical; unless the implicit relation is quadratic in y, or
has some other particularly simple form, it is unlikely that it can be solved exactly
by analytical methods. Indeed, more often than not, it is impossible even to find an
implicit expression for the solution of a first order nonlinear equation.

Graphical or Numerical Construction of Integral Curves. Because of the difficulty in obtain-
ing exact analytical solutions of nonlinear differential equations, methods that yield
approximate solutions or other qualitative information about solutions are of cor-
respondingly greater importance. We have already described, in Section 1.1, how
the direction field of a differential equation can be constructed. The direction field
can often show the qualitative form of solutions and can also be helpful in identi-
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fying regions of the ty-plane where solutions exhibit interesting features that merit
more detailed analytical or numerical investigation. Graphical methods for first or-
der equations are discussed further in Section 2.5. An introduction to numerical
methods for first order equanons is given in Section 2.7, and a systematic discussion
of numerical methods appears in Chapter 8. However, it is not necessary to study
the numerical algorithms themselves in order to use effectively one of the many
software packages that generate and plot numerical approximations to solutions of
initial value problems.

Summary. The linear equation y' + p(f)y = g(f) has several nice properties that can
be summarized in the folowing statements:

1, Assuming that the coefficients are continuous, there is a general solution, containing an
arbitrary constant, that includes all solutions of the differential equation. A particular
solution that sansﬁcs a given initial condition can be picked out by choosing the proper
value for the arbitrary constant.

2. ‘There is an expression for the solution, namely, Eq. (7) or Eq. (8). Moreover, although it
involves two integrations, the expression is an explicit one for the solution y = ¢({t) rather
than an equation that defines ¢ implicitly.

3, The possible points of discontinuity, or singularities, of the solution can be identified (with-
out solving the problem) merely by finding the points of discontinuity of the coefficients.
Thus, if the coefficients are continuous for all £, then the solution also exists and is contin-
uous for all 1.

None of these statements is true, in general, of nonlinear equations. Although a
noalinear equation may well have a solution involving an arbitrary constant, there
may also be other solutions. There is no general formula for solutions of nonlinear
equations. Ifyouare able to integrate a nonlinear equation, you are likely to obtain an
equation defining solutions implicitly rather than explicitly. Finally, the singularities
of solutions of nonlinear equations can usually be found only by solving the equation
and examining the solution. It islikely that the singularities will depend on the initial
condition as well as the differential equation.

In each of Problems 1 through 6 determine (without solving the problem) an interval in which

PROBLEMS

the solution of the given initial value problem is certain to exist.
1. (¢t -3y +(nt)y =2t, y(1) =
2.1 -4y +y=0, y2)=1
3. ¥ + (tanf)y = sin!?, yr)=0 . 4. (4 - D)y +2ty =312, y-3=1
5. G-y +2y=32, yl)=-3 6. nny +y=cots, y2)=3

In each of Problems 7 through 12 state where in the fy-plane the hypotheses of Theorem 2.4.2
are satisfied.

_ -y PR S 18 T,
1y = ﬂ+® B.y=(1-t"-y)
9. y = In |fy| 10. Y — (Iz +y2)3ﬂ

1_12+y2
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dy _ 1+7 12 dy _ (cott)y
Tdt 3y—y? Tdt T 14y
In each of Problems 13 through 16 solve the given initial vaiue problem and determine how
the interval in which the solution exists depends on the initial value y;.

1B.y=—dtfy, yOQ=x» 14 y =202, yO =yp
15. ¥4y =0, yO) =y 16. ¥y =fyd+1),  y© =y
In each of Problems 17 through 20 draw a direction field and plot (or sketch) several solutions

of the given differential equation. Describe how solutions appear to behave as f increases and
how their behavior depends on the initial value y; whent = 0.

11

& 1. y=003-y) @ 18 y =y3—1y)
& 19 y=—y(3-1) &2 y=t—1-y

21. Consider the initial value problem y’ = y*?, y(0) = 0 from Example 3 in the text.
{a) Is there a solution that passes through the point (1,1)? If so, find it.
{b) Is there a solution that passes through the point (2,1)7 If so, find it.

{c} Consider all possible solutions of the given initiai value problem. Determine the set
of values that these solutions have at ¢t = 2.

22. (a) Verify that both y;(f) =1 — ¢ and y.(f) = —*/4 are solutions of the initial value
problem
—~t + (2 + 4y)17?
y=—

Where are these solutions valid?

{b} Explain why the existence of two solutions of the given problem does not contradict
the uniqueness part of Theorem 2.4.2.

{c) Show thaty = ct + c2, where c is an arbitrary constant, satisfies the differential equa-
tion in part (a) for > —2¢. If ¢ = —1, the initial condition is also satisfied, and the
solution y = y1(f) is obtained. Show that there is no choice of ¢ that gives the second
solution y = y,(1).

y(2) = —-1.

23. (a) Show that ¢(t) = € is a solution of ¥ — 2y = 0 and that y = c¢(t) is also a solution
of this equation for any value of the constant ¢.

{b) Show that ¢(r) = 1/t is a solution of ¥ + ¥* = 0 for r > 0 but that y = cd(f) is not
a solution of this equation unless ¢ = 0 or ¢ = 1. Note that the equation of part (b} is
nonlinear, while that of part {a) is linear.

24. Show that if y = ¢(r) is a solution of ¥’ + p(#)y = 0, then y = c¢(?) is also a solution for
any value of the constant c.

25. Let y = y1(#) be a solution of
¥y +p®)y=0, ¢

and let y = y, (¢ be a solution of

Y +p0y =g@). (ii)
Show that y = y,(f) + y2(#) is also a solution of Bq. (ii).

26. (a)} Show that the solution (7) of the general linear equation (1} can be written in the
form

y=cn(0 +yaA0), 1)

where ¢ is an arbitrary constant. Identify the functions y; and y..
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(b} Show that y; is a solution of the differential equation
Y +py =0, (i)

corresponding to g(r) = 0.

(c) Show that y, is a solution of the full linear equation (1). We see later (for example,
in Section 3.6) that solutions of higher order linear equations have a pattern similar to
Eq. (i).

Bernoulli Equations. Sometimes it is possible to solve a nonlinear equation by making a
change of the dependent variable that converts it into a linear equation. The most important
such equation has the form

Y +p0y=q@®y",

and is called a Bernoulli equation after Jakob Bernoulli. Problems 27 through 31 deal with
equations of this type.

27. (a} Solve Bernoulli's equation when n = G; whenn = 1.

(b} Show that if n 3 0, 1, then the substitution v = y'~" reduces Bernoulli’s equation to a
linear equation. This method of solution was found by Leibniz in 1636.

In each of Problems 28 through 31 the given equation is a Bernoulli equation. In each case

solve it by using the substitution mentioned in Problem 27(b).

28. Ay 42y —y' =0, r>0

29. ¥ = ry — ky*, r > O and k > 0. This equation is important in population dynamics and is
discussed in detail in Section 2.5.

0. y =ey— gy, € > 0and ¢ > 0. This cquation occurs in the study of the stability of fluid
flow.

31. dy/dt = (T'cost + T)y — ¥, where " and T are constants. This equation also occurs in
the study of the stability of fiuid flow.

Discontinuous Coefficients. Linear differential equations sometimes occur in which one or
both of the functions p and g have jump discontinuities. If 4, is such a point of discontinuity,
then it is necessary to solve the equation separately for ¢ < 1, and ¢ > . Afterward, the two
solutions are matched so that y is continuous at ; this is accomplished by a proper choice of
the arbitrary constants. The following two problems illustrate this situation. Note in each case
that it is impossible also to make y' continuous at fo.

32. Solve the initial value problem
Y+2y=g, yO=0,
where
1, 0=<t=1,

g = [0, > 1.

33. Solve the initial value problem
y+py=0, y0=1,

where

2, 0=<t=<1,

Pm:[l, > 1.
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2.5 Autonomous Equations and Population Dynamics

An important class of first order equations consists of those in which the independent
variable does not appear explicitly. Such equations are called autonomous and have
the form

dy/dt = f(y). 1)

We will discuss these equations in the context of the growth or decline of the popula-
tion of a given species, an important issue in fields ranging from medicine to ecology
to global economics. A number of other applications are mentioned in some of the
problems. Recall that in Sections 1.1and 1.2 we considered the special case of Eq. (1)
in which f(y) = ay + b.

Equation (1) is separable, so the discussion in Section 2.2 is applicable to it, but
the main purpose of this section is to show how geometrical methods can be used
to obtain important qualitative information directly from the differential equation,
without solving the equation. Of fundamental importance in this effort are the
concepts of stability and instability of solutions of differential equations. These ideas
were introduced informally in Chapter 1, but without using this terminology. They
are discussed further here and will be examined in greater depth and in a more
general setting in Chapter 9.

Exponential Growth. Let y = ¢(f) be the population of the given species at time ¢. The
simplest hypothesis concerning the variation of population is that the rate of change
of y is proportional'® to the current value of y; that is,

dy/di =ry, (2)

where the constant of proportionality r is called the rate of growth or decline, de-
pending on whether it is positive or negative. Here, we assume that r > 0, so the
population is growing.

Solving Eq. (2) subject to the initial condition

we obtain
y =yoe”. (4)

Thus the mathematical model consisting of the initial value problem (2), (3) with
r > 0 predicts that the population will grow exponentially for all time, as shown
in Figure 2.5.1 for several values of yo. Under ideal conditions, Eq. (4) has been
observed to be reasonably accurate for many populations, at least for limited periods
of time. However, it is clear that such ideal conditions cannot continue indefinitely,
eventually,limitations onspace,food supply, or other resources will reduce the growth
rate and bring an end to uninhibited exponential growth.

101t was apparently the British economist Thomas Malthus (1766-1834) who first observed that many
biological populations increase at a rate proportional to the population. His first paper on populations
appeared in 1798,
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Yt
IOL

1r 2f 3ir 4irt
FIGURE 2.5.1 Exponential growth: y versus t for dy/dt = ry.

Logistic Growth. To take account of the fact that the growth rate actually depends on
the popuiation, we replace the constant r in Eq. (2) by a function A(y) and thereby
obtain the modified equation

dy/dt = h(y)y. (5)

We now want to choose A(y) so that A(y) = r > 0 when y is small, A(y) decreases as
y grows larger, and h(y) < 0 when y is sufficiently large. The simplest function that
has these properties is #(y) = r — ay, where a is also a positive constant. Using this
function in Eq. (5), we obtain

dy/dt = (r — ay)y. (6)

Equation (6) is known as the Verhulst! equation or the logistic equation. It is often
convenient to write the logistic equation in the equivalent form

&= g

where K = r/a. The constant r is called the intrinsic growth rate, that is, the growth
rate in the absence of any limiting factors. The interpretation of X will become clear
shortly.

We will investigate the solutions of Eq. (7) in some detail later in this section.
Before doing that, however, we will show how you can easily draw a qualitatively
correct sketch of the solutions. The same methods also apply to the more general

Eq. (1).

UP F. Verhulst (1804-1849) was a Belgian mathematician who introduced Eq. (6) as a model for human
population growth in 1838. He referred to it as logistic growth; hence Eq. {6) is often called the logistic
equation. He was unabie to test the accuracy of his model because of inadequate census data, and it did
not receive much attention until many years later. Reasonable agreement with experimental data was
demonstrated by R. Pearl {1930) for Drosophila melanogaster {fruit fly) populations and by G. E Gause
(1935) for Paramecium and Tribolium (Rour beetle) populations.
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We first seek solutions of Eq. (7) of the simplest possible type, that is, constant
functions. For such a solution dy/dt = 0 for all ¢, so any constant solution of Eq. (7)
must satisfy the algebraic equation

r(l— y/K)y =0,

Thus the constant solutions are y = ¢ (f) = 0 and y = ¢(f) = K. These solutions
are called equilibrium solufions of Eq. (7) because they correspond to no change or
variation in the value of y a5 ¢ increases. [n the same way, any equilibrium solutions
of the more general Eq. (1) can be found by locating the roots of f(y) = 0. The zeros
of f(y) are also called critical points.

To visualize other solutions of Eq. (7) and to sketch their graphs quickly, we start
by drawing the graph of f(y) versus y. In the case of Eq. (7), f(») = r(1 — y/K)y,
so the graph is the parabola shown in Figure 2.5.2. The intercepts are (0,0) and
(K,0), corresponding to the critical points of Eq. (7), and the vertex of the parabola
is (K/2,rK/4). Observe that dy/dt > 0 for 0 < y < K therefore, y is an increasing
function of ¢+ when y is in this interval; this is indicated by the rightward-pointing
arrows near the y-axis in Figure 2.5.2. Similarly, if y > K, then dy/dt < 0; hence y is
decreasing, as indicated by the leftward-pointing arrow in Figure 2.5.2.

fin

il (K/2, rK/4).
r. o .

T K2, K\_ oy

¥IGURE 2.52 f(y) versus y for dy/dt = r(1 — y/K)y.

In this context the y-axis is often called the phase line, and it is reproduced in its
mare customary vertical orientation in Figure 2.5.3a. The dotsaty =0andy =K
are the critical points, or equilibrium solutions. The arrows again indicate that y is
increasing whenever 0 < y < K and that y is decreasing whenever y > K.

Further, from Figure 2.5.2, note that if y is near zero or K, then the slope f(y) is
near zero, so the solution curves are relatively flat. They become steeper as the value
of y leaves the neighborhood of zero or X.

To sketch the graphs of solutions of Eq. (7) in the ty-plane, we starf with the equi-
librium solutions y = 0 and y = K, then we draw other curves that are increasing
when 0 < y < K, decreasing when y > K, and flatten out as y approaches either of
the values 0 or K. Thus the graphs of solutions of Eq. (7) must have the general
shape shown in Figure 2.5.35, regardless of the values of r and K.
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(a) b
FIGURE 2.53 Logistic growth: dy/dt = r(1 — y/K}y. (a) The phase line. (b) Plots of y
VEIsus f.

Figure 2.5.3b may seem to show that other solutions intersect the equilibrium
solution y = K, but is this really possible? No, the uniqueness part of Theorem 2.4.2,
the fundamental existence and uniqueness theorem, states that only one solution
can pass through a given point in the fy-plane. Thus, although other solutions may
be asymptotic to the equilibrium solution as ¢ - oo, they cannot intersect it at any
finite time.

To carry the investigation one step further, we can determine the concavity of the
solution curves and the location of inflection points by finding d2y/df?>. From the
differential equation (1) we obtain (using the chain rule)

dy ddy d_ . . dy
a2 adr dtf(y) =f (Y)E = f'Mf ). (8)

The graph of y versus ¢ is concave up when y” > 0, that is, when f and f’ have the
same sign. Similarly, it is concave down when y” < 0, which occurs when f and f
have opposite signs. The signs of f and f’ can be easily identified from the graph of
f(y) versus y. Inflection points may occur when f'(y) = 0.

In the case of Eq. (7),solutions are concave up for 0 < y < K /2 where f is positive
and increasing (see Figure 2.5.2), so that both f and f’ are positive. Solutions are
also concave up for y > K where f is negative and decreasing (both f and f’ are
negative). For K/2 < y < K, solutions are concave down since here f is positive and
decreasing, so f is positive but f is negative. There is an inflection point whenever
the graph of y versus ¢ crosses the line y = K /2. The graphs in Figure 2.5.3) exhibit
these properties.

Finally, observe that K is the upper bound that is approached, but not exceeded,
by growing populations starting below this value. Thus it is natural to refer to K as
the saturation fevel, or the environmental carrying capacity, for the given species.

A comparison of Figures 2.5.1 and 2.5.3b reveals that solutions of the nonlinear
equation (7) are strikingly different from those of the linear equation (1), at least
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for large values of t. Regardless of the value of K, that is, no matter how small the
nonlinear term in Eq. (7), solutions of that equation approach a finite value as f — oo,
whereas solutions of Eq. (1) grow (exponentially) without bound as r — oo. Thus
even a tiny nonlinear term in the differential equation has a decisive effect on the
solution for large &.

In many situatjons it is sufficient to have the qualitative information about a solu-
tion y = ¢(¢) of Eq. (7) that is shown in Figure 2.5.3b. This information was obtained
entirely from the graph of f (y) versus y, and without solving the differential equation
(7). However, if we wish to have a more detailed description of logistic growth—for
example, if we wish to know the value of the population at some particular time—
then we must solve Eq. (7) subject to the initial condition {3). Provided that y # 0
and y # K, we can write Eq. {7) in the form

dy

————— =rdt.
A —y/K)y
Using a partial fraction expansion on the left side, we have
(l + IIK )dy-:.rdt.
y 1-y/K
Then, by integrating both sides, we obtain
Y|~
m;y1—1n|1—E|_r:+c, (9)

where ¢ is an arbitrary constant of integration to be determined from the initial
condition y(0) = y5. We have already noted that if 0 < yg < K, then y remains in
this interval for all time. Thus in this case we can remove the absolute value bars in
Eq. (9),and by taking the exponential of both sides, we find that

= O, (10)
1-0/K)
where C = ¢°. In order to satisfy the initial condition y(0) = y,, we must choose
C = yo/[1 — (o/K)). Using this value for C in Eq. (10) and solving for y, we obtain

S| L S a1
Yo+ (K —yo)e"
We have derived the solution (11) under the assumption that 0 < yp < K. If

yo > K, then the details of dealing with Eq. (9) are only slightly different, and we

leave it to you to show that Eq. (11) is also valid in this case. Finally, note that

Eq. (11) also contains the equilibrium solutions y = ¢;(f) =0 and y = ¢z(t) = K

corresponding to the initial conditions yp = 0 and yp = K, respectively.

All the qualitative conclusions that we reached earlier by geometrical reason-
ing can be confirmed by examining the solution (11). In particular, if yo = 0, then
Eq. (11) requires that y(f) = 0 for all . If yy > 0, and if we let  — oo in Eq. (11),
then we obtain

y

im0 Y1) = yoK /y0 = K.

Thus,for each yg > 0, the solution approaches the equilibrium solution y = ¢,(f} = K
asymptotically as ¢ - oco. Therefore we say that the constant solution ¢;(f) = K is
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an asymptotically stable solution of Eq. (7) or that the point y = K is an asymp-
totically stable equilibrium or critical point. After a long time, the population is
close to the saturation level X regardless of the initial population size, as long as
it is positive. Other solutions approach the equilibrium solution more rapidly as r
increases.

On the other hand, the situation for the equilibrium solution y = ¢, (f) = 0is quite
different. Even solutions that start very near zero grow as f increases and, as we
have seen, approach K as ¢ - oo. We say that ¢;(f) = 0 is an unstable equilibrium
solution or that y = 0 is an unstable equilibrium or critical point. This means that the
only way to guarantee that the solution remains near zero is to make sure its initial
value is exactly equal to zero,

The logistic model has been applied to the natural growth of the halibut population in certain
areas of the Pacific Ocean.’? Let y, measured in kilograms, be the total mass, or biomass, of
the halibut population at time ¢. The parameters in the logistic equation are estimated to have
the values r = 0.71/year and K = 80.5 x 10° kg. If the initial biomass is yo = 0.25K, find the
biomass 2 years later. Also find the time v for which y(r) = 0.75K.

It is convenient to scale the solution (11) to the carrying capacity K; thus we write Eq. (11)
in the form

Y »/K 12)
K (o/K)+11 - @o/K)le
Using the data given in the problem, we find that
Y@ _ 0.25 —
K 0254075142 0.5797.
Consequently, y(2) = 46.7 x 10° kg.
To find t we can first solve Eq. (12) for 1. We obtain
| o _ Go/KO = 6/K)]
/KM ~ (v/K))
hence
1 Kl -
f=—= Wo/KOM - (¥/K)] (13)

r WK - /K]
Using the given values of r and yo/K and setting y/K =0.75, we find that

1 (0.25(0.25) 1 —~
T o in m =571 In 9 = 3.095 years.

The graphs of y/K versus ¢ for the given parameter values and for several initial conditions
are shown in Figure 2.5.4.

124 good source of information or the population dynamics and economics involved in making efficient
use of a renewable resource, with particular emphasis on fisheries, is the book by Clark listed in the
references at the end of this chapter. The parameter values used here are given on page 53 of this book
and were obtained from a study by H. 8. Mchring.
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A Critical Threshold. We now turm to a consideration of the equation

d
d_); = —r (1 _ %) ¥ (14)
where r and T are given positive constants. Observe that (except for replacing the
parameter K by T) this equation differs from the logistic equation (7) only in the
presence of the minus sign on the right side. However, as we will see, the solutions
of Eq. (14) behave very differently from those of Eq. (7).

For Eq. (14) the graph of f(y) versus y is the parabola shown in Figure 2.5.5.
The intercepts on the y-axis are the critical points y = 0 and y = T, corresponding
to the equilibdum solutions ¢1(f) =0 and ¢ (1) = T. If0 <y < T, then dy/df < 0,
and y decreases as ! increases. On the other hand, if y > T, then dy/dt > 0, and y
grows as 7 increases. Thus ¢, (f) = 0 is an asymptotically stable equilibrium sojution
and ¢,(t) = T is an unstable one. Further, f'(y) is negative for 0 <y < T/2 and
positive for T/2 < y < T,so the graph of y versus ¢ is concave up and concave down,
respectively, in these intervals. Also, f'(y) is positive for y > T, so the graph of y
versus { is also concave up there.

oy

T (172, TH)T :
FIGURE 2.55 f(y) versus y for dy/dt == —r(1 — y/T)y.
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Figure 2.5.6a shows the phase line (the y-axis) for Eq. (14). The dots at y = 0 and
y = T are the critical points, or equilibrium solutions, and the arrows indicate where
solutions are either increasing or decreasing.

Solution curves of Eq. (14) can now be sketched quickly. First draw the equi-
librium solutions y = 0 and y = T. Then sketch curves in the strip 0 < y < T that
are decreasing as f increases and change concavity as they cross the line y = T/2.
Next draw some curves above y = T that increase more and more steeply as f and
y increase. Make sure that all curves become flatter as t approaches either zero or
T. The result is Figure 2.5.6b, which is a qualitatively accurate sketch of solutions of
Eq. (14) for any r and 7. From this figure it appears that as time increases, y either
approaches zero or grows without bound, depending on whether the initial value y,
is less than or greater than T. Thus T is a threshold level, below which growth does
not occur.

of

(a) ()
FIGURE 2.5.,6 Growth with a threshold: dyfdt = —r(1 — y/T)y. (a) The phase line.
(b) Plots of y versus ¢.

We can confirm the conclusions that we have reached through geometrical rea-
soning by solving the differential equation (14). This can be done by separating the
variables and integrating, just as we did for Eq. (7). However, if we note that Eq. (14)
can be obtained from Eq. (7) by replacing K by T and r by -r, then we can make
the same substitutions in the solution (11) and thereby obtain

yoT
=— 15
YT p (T — oy (1)
which is the solution of Eq. (14) subject to the initial condition y{(0) = y.
If 0 < yp < T,then it follows from Eq. (15) that y — 0 ast — oc. This agrees with
our qualitative geometric analysis. If yg > T, then the denominator on the right side
of Eq. (15) is zero for a certain finite value of {. We denote this value by ¢* and
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calculate it from

Yo — 0’0 - T)eﬂ' = 01
which gives

= }-ln o
r Yo — T

Thus, if the initial population yg is above the threshold T, the threshold model predicts
that the graph of y versus f has a vertical asymptote at ¢ = ¢*, in other words, the
population becomes unbounded in a finite time, whose value depends on yq, T,and r.
The existence and location of this asymptote were not apparent from the geometric
analysis, so in this case the explicit solution yields additional important qualitative,
as well as quantitative, information.

The populations of some species exhibit the threshold phenomenon. If too few
are present, then the species cannot propagate itself successfully and the popula-
tion becomes extinct. However, if a population larger than the threshold level can
be brought together, then further growth occurs. Of course, the population can-
not become unbounded, so eventually Eq. (14) must be modified to take this into
account.

Critical thresholds also occurin other circumstances. For example, in fluid mechan-
ics, equations of the form (7) or (14) often govern the evolution of a small disturbance
y in a laminar (or smooth) fluid flow. For instance, if Eq. (14) holds and y < T, then
the disturbance is damped out and the laminar flow persists. However,if y > T, then
the disturbance grows larger and the laminar flow breaks up into a turbulent one. In
this case T is referred to as the critical amplitude. Experimenters speak of keeping

the disturbance level in a wind tunnel sufficiently low so that they can study laminar
flow over an airfoil, for example.

(16)

Logistic Growth with a Threshold. As we mentioned in the last subsection, the threshold
model (14) may need to be modified so that unbounded growth does not occur when
y isabove the threshold T. The simplest way to do this is to introduce another factor
that will have the effect of making dy/dt negative when y is large. Thus we consider

Y- - &

wherer > 0and0 < T < K.

The graph of f{y) versus y is shown in Figure 2.5.7. In this problem there are three
critical points, y =0,y = T, and y = X, corresponding to the equilibrium solutions
$1(1) =0, ¢n() =T, and ¢3(f) = K, respectively. From Figure 2.5.7 it is clear that
dy/dt > Ofor T < y < K,and consequently y is increasing there. The reverse is true
fory < T and fory > X. Consequently, the equilibrium solutions ¢, (f) and ¢ (t) are
asymptotically stable, and the solution ¢, (f) is unstable.

The phase hine for Eq. (17) is shown in Figure 2.5.8a, and the graphs of some
solutions are sketched in Figure 2.5.8b. You should make sure that you understand
the relation between these two figures, as well as the relation between Figures 2.5.7
and 2.5.8a. From Figure 2.5.8b we see that if y starts below the threshold T, then
y declines to ultimate extinction. On the other hand, if y starts above T, then y
eventually approaches the carrying capacity K. The inflection points on the graphs
of y versus # in Figure 2.5.8b correspond to the maximum and minimum points, y,
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{a) (b)
FIGURE 2.5.8 Logistic growth with a threshold: dy/dr = —r(1 — y/T)}(1 — y/K}y. (a) The
phase line. (&) Plots of y versus ¢,

and y,, respectively, on the graph of f{y) versus y in Figure 2.5.7. These values can
be obtained by differentiating the right side of Eq. (17) with respect to y, setting the
result equal to zero, and solving for y. We obtain

yi2 = (K+ T+ VK2 — KT + T2)/3, (18)

where the plus sign yields y; and the minus sign yz.

A model of this general sort apparently describes the population of the passenger
pigeon,!® which was present in the United States in vast numbers until late in the
nineteenth century. It was heavily hunted for food and for sport, and consequently
its numbers were drastically reduced by the 1880s. Unfortunately, the passenger pi-
geon could apparently breed successfully only when present in alarge concentration,
corresponding to a relatively high threshold T, Although a reasonably large number
of individual birds remained alive in the late 1880s, there were not enough in any one

BSee, for example, Oliver L. Austin, Jr., Birds of the World (New York: Golden Press, 1983), pp. 143-145,



88

Chapter 2. First Order Differential Equations

PROBLEMS

place to permit successful breeding, and the population rapidly declined to extinc-
tion. The last survivor died in 1914. The precipitous decline in the passenger pigeon
population from huge numbers to extinction in a few decades was one of the early
factors contributing to a concern for conservation in this country.

Problems 1 through 6 involve equations of the form dy/dt = f(y). In each problem sketch
the graph of f(y) versus y, determine the critical (equilibrium) points, and classify each one as
asymptotically stable or unstable. Draw the phase line, and sketch several graphs of solutions
in the fy-plane.

i BRE= AT TS O N N R

. dyfdt = ay + by?, a>0, b>0, y=20

. dy/dt = ay + by?, a>0, b>0, ~mw<y<ow
cdyldt=yy-Dly—-2), =20

L dyfdt =¢ — 1, —00 < Yp < OO

. dyfdt = eV -1, —00 < Yy < 00

. dyfdt = —2(arctan y)/(1 + y?), —00 < Yg < 00

. Semistable Equilibrium Solutions. Sometimes a constant equilibrium solution has the

property that solutions lying on one side of the equilibrium solution tend to approach it,
whereas solutions lying on the other side depart from it (see Figure 2.5.9). In this case the
equilibrium solution is said to be semistable.

7

{e) b

FIGURE 2,59 In both cases the equilibrium solution ¢(r) = k is semistable. (a) dy/dt < 0;
(b) dy/dt > 0.

{(a) Consider the equation
dy/dt = k(1 - y7, (i)

where k& is a positive constant. Show that y = 1 is the only critical point, with the corre-
sponding equilibrium solution ¢(f) = 1.

(b) Sketch f(y) versus y. Show that y is increasing as a function of t for y < 1 and also
for y > 1. The phase line has upward-pointing arrows both below and above y = 1. Thus
solutions below the equilibrium solution approach it, and those above it grow farther away.
Therefore ¢ (f) = 1 is semistable.

(c) Solve Eq. (i) subject to the initial condition y(0) = y¢ and confirm the conclusions
reached in part (b).

Problems 8 through 13 involve equations of the form dy/dr = f(y). In each problem sketch
the graph of f(y}) versus y, determine the critical (equilibrium) points, and classify each one
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as asymptoticaily stable, unstable, or semistable (see Probiem 7). Draw the phase line, and
sketch several graphs of solutions in the ry-plane,

8.

9.
10.
1L
12,
13.
14.

15.

16.

17.

18

dyfdt=—k(y— 1!, k>0, —co<yy<co

dyfdt =y (y* — 1), —0 <Y €00 '

dyfdt=y(1-y"), —e0<ys<oo

dy/dt = ay — b /¥, a>0, b>0, y=0

dy/dt =y*(4 -y, -~ww<y<oo

dyfdt =y*(1 - y)?, —o0<yp <00

Consider the equation dy/dt = f(y) and suppose that y, is a critical point, that is, f (y;) = 0.

Show that the constant equilibrium solution ¢ (f) = y, is asymptoticaily stable if fly) <0

and vnstable if f'(y;) > 0.

Suppose that a certain population obeys the logistic equation dy/df = ry{1 — (y/K)).

(a) U yp = K/3,find the time t at which the initial population has doubled. Find the value

of 1 corresponding to r = 0.025 per year,

(b) If yo/K = a, find the time T at which y(T)/K = 8, where 0 < a, 8 < 1. Observe that

T > ooasa —» 0oras f —» 1. Find the value of T for r = 0.025 per year, @ = 0.1, and

B=109.

Another equation that has been used to model population growth is the Gompertz!

equation:
: dy/dt = ryIn(K/y),

where 7 and X are positive constants.

(a) Sketch the graph of f(y) versus y,find the critical points, and determine whether each
is asymptotically stabte or unstable.

(b) For 0 <y < K, determine where the graph of y versus ¢ is concave up and where it is
concave down.

(¢) Foreachyin0 < y < K, show that dy/d as given by the Gompertz equation is never
less than dy/dt as given by the logistic equation.

(a) Solve the Gompertz equation
dy/dt = ryIn(K/y),

subject to the initial condition y(0) = ;.

Hint: You may wish to let u = In(y/K).

(b) For the data given in Example 1 in the text (r = 0.71 per year, K = 80.5 x 10° kg,
¥o/K = 0.25), use the Gompertz model to find the predicted value of y{2).

(¢) For the same data as in part (b}, use the Gompertz model to find the time t at which
(1) = 0.75K. -

A pond forms as water collects in a conical depression of radiuvs a and depth h. Suppose
that water flows in at a constant rate k and is lost throngh evaporation at a rate proportional
to the surface area. ' .

(a) Show that the volume V{¢) of water in the pond at time ¢ satisfies the differential

equation
dVdt = k — ar(3a/mh)PV,

where o is the coefficient of evaporation.

4Benjamin Gompertz (1779-1865) was an English actuary. He developed his mode! for population
growth, published in 1825, in the course of constructing mortality tables for his insurance company.



90

Chapter 2. First Order Differential Equations

(b) Find the equilibrivm depth of water in the pond. Is the equilibrium asymptotically
stable?

(¢) Find a condition that must be satisfied if the pond is not to overflow.

19. Consider a cylindrical water tank of constant cross section A. Water is pumped into the
tank at a constant rate k and leaks out through a small hole of area g in the bottom of the
tank. FromTorricelli’s principle in hydrodynamics (see Problem 6 in Section 2.3} it follows
that the rate at which water flows through the hole is aa,/2gh, where h is the current depth
of water in the tank, g is the acceleration due to gravity, and « is a contraction coefficient
that satisfies 0.5 < a < 1.0,

(a) Show that the depth of water in the tank at any time satisfies the equation

dhfdt = (k —aa/2gh)/A.

(b} Determine the equilibrivm depth h, of water, and show that it is asymptotically stable.
Observe that h, does not depend on A.

Harvesting a Renewable Resource. Suppose that the population y of a certain species of fish
(for example, tuna or halibut) in a given area of the ocean is described by the logistic equation

dy/dt = r(1 —y/K)y.

Although it is desirable to utilize this source of food, it is intuitively clear that if too many

fish are caught, then the fish population may be reduced below a useful level and possibly

even driven to extinction. Problems 20 and 21 explore some of the questions involved in

formulating a rational strategy for managing the fishery!s

20. At a given level of effort, it is reasonable to assume that the rate at which fish are caught
depends on the population y: The more fish there are, the easier it is to catch them. Thus
we assume that the rate at which fish are caught is given by Ey, where E is a positive
constant, with units of 1/time, that measures the total effort made to harvest the given
species of fish. To include this effect, the logistic equation is replaced by

dyfdt = r(1 - y/K)y — Ey. ()

This equation is known as the Schaefer model after the biologist M. B. Schaefer, who
applied it to fish populations.

(a) Show thatif E < r, then there are two equilibrium points, y; = 0 and
y2=K(d—-E/r)> 0.

(b) Show that y = y, is unstable and y = y, is asymptotically stable.

(c) A sustainable yield Y of the fishery is & rate at which fish can be caught indefinitely.
It is the product of the effort E and the asymptotically stable population y;. Find Y as a
function of the effort E; the graph of this function is known as the yield—effort curve,

(d) Determine E so as to maximize Y and thereby find the maximum sustainable yield Y.

21. Inthis problem we assume that fish are caught at a constant rate /i independent of the size
of the fish population. Then y satisfies

dyjdt =r(1—y/K)y - h. 6]

15An excellent treatment of this kind of problem, which goes far beyond what is outlined here, may be
foundin the book by Clark mentioned previously, especially in the first two chapters. Numerous additional
references are given there.
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The assumption of a constant catch rate h may be reasonable when y is large but becomes
less s0 when y is small.

(a) If h < rK /4, show that Eq. (i) has two equilibrium points y, and y, with y; < ys;
determine these points. .

(b) Show that y, is unstable and y; is asymptotically stable.

(c) From a plot of f(y) versus y, show that if the initial population yp > y;, theny - y;
as t —» 0o, but that if yo < y;, then y decreases as ¢ increases. Note that y = 0 is not an
equilibrium point, 50 if yp < y;, then extinction will be reached in a finite time.

(d) If h > rK/4,show that y decreases to zero as ¢ increases regardless of the value of yp.
(e) If h = rK/4,show that there is a single equilibrium point y = X /2 and that this point
is semistable (see Problem 7). Thus the maximum sustainable yield is h,, = rK /4, corre-
sponding to the equilibrium value y = K /2. Observe that h,, has the same value as Y,,
in Problem 20(d). The fishery is considered to be overexploited if y is reduced to a level
below K /2.

Epidemics. The use of mathematical methods to study the spread of contagious diseases goes
back at least to some work by Daniel Bernoulli in 1760 on smallpox. In more recent years
many mathematical models have been proposed and studied for many different diseases.!s
Problems 22 through 24 deal with a few of the simpler models and the conclusions that can be
drawn from them. Similar models have also been used to describe the spread of rumers and
of consumer products.

22,

23.

Suppose that a given population can be divided into two parts: those who have a given
disease and can infect others, and those who do not have it but are susceptible. Let x be the
proportion of susceptible individuals and y the proportion of infectious individuals; then
x +y = 1. Assume that the disease spreads by contact between sick and well members
of the population and that the rate of spread dy/dt is proportional to the number of such
contacts. Further, assume that members of both groups move about freely among each
other, so the number of contacts is proportional to the product of x and y. Sincex =1 —y,
we obtain the initial value problem

dy/dt =ay(1—y),  y(0) =y, ®

where e is a positive proportionality factor, and yy is the initial proportion of infectious
individuals.

(a) Find the equilibrium points for the differential equation (i) and determine whether
each is asymptotically stable, semistable, or unstable.

(b) Solve the initial value problem (i) and verify that the conclusions you reached in
part (a) are correct. Show that y(t) -> 1 as f — oo, which means that ultimately the dis-
ease spreads through the entire population.

Some diseases (such as typhoid fever) are spread largely by carriers, individuals who can
transmit the disease but who exhibit no overt symptoms. Let x and y, respectively, denote
the proportion of susceptibles and carriers in the population. Suppose that carriers are
identified and removed from the population at a rate 8, so -

dy/dt = —By. (1

18 A standard source is the book by Bailey listed in the references The medels in Problems 22 through 24
are discussed by Bailey in Chapters 5, 10, and 20, respectively.
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Suppose also that the disease spreads at a rate proportional to the product of x and y; thus
dx/dt = —axy. (i)

(a) Determine y at any time ¢ by solving Eq. (1) subject to the initizl condition y(0) = yo.
(b) Use the result of part (a} to find x at any time ¢ by solving Eq. (ii) subject to the initial
condition x () = xg.
(c) Find the proportion of the population that escapes the epidemic by finding the limiting
value of x as  — co.

24. Danie! Bernoulli’s work in 1760 had the goal of appraising the effectiveness of a contro-
versial inoculation program against smallpox, which at that time was a major threat to
public health. His model applies equally well to any other disease that, once contracted
and survived, confers a lifetime immunity.

Consider the cohort of individuals born in a given year (f =0), and let n(r) be the
number of these individuals surviving f years later. Let x(r) be the number of members of
this cohort who have not had smallpox by year r and who are therefore still susceptible.
Let B be the rate at which susceptibles contract smallpox, and let v be the rate at which
people who contract smallpox die from the disease. Finally,let u(r) be the death rate from
all causes other than smallpox. Then dx/dt, the rate at which the number of susceptibles
declines, is given by

dx/dt = —[B + u()x. @

The first term on the right side of Eq. (i) is the rate at which susceptibles contract smallpox,
and the second term is the rate at which they die from all other causes. Also

dnjdt = —vBx - p()n, (i)

where dn/d! is the death rate of the entire cohort, and the two terms on the right side are
the death rates due to smallpox and to all other causes, respectively.

(a) Let z == x/n and show that z satisfies the initial value problem
dzfdt = —-Bz(1 — vz), z(0) = 1. (iii)

Observe that the initial value problem (iii) does not depend on x(f).

(b} Find z(r) by solving Eq. (iii).

(c) Bernoulli estimated that v = 8 = . Using these values, determine the proportion of
20-year-olds who have not had smallpox.

Note: On the basis of the modet just described and the best mortality data available at
the time, Bernoulli calculated that if deaths due to smalipox could be eliminated (v = 0),
then approximatety 3 years could be added to the average life expectancy (in 1760) of 26
years 7 months. He therefore supported the inoculation program.

Bifurcation Points. For an equation of the form -

dy/dt = f(a, ), (i)

where ¢ is a real parameter, the critical points (equilibrium solutions) usually depend on the
value of 2. As a steadily increases or decreases, it often happens that at a certain value of a,
called a bifurcation point, critical points come together, or separate, and equilibrium solutions
may either be lost or gained. Bifurcation points are of great interest in many applications,
because near them the nature of the solution of the underlying differential equation is under-
going an abrupt change. For example, in fiuid mechanics a smooth (laminar) flow may break
up and become turbulent, Or an axially loaded column may suddenly buckle and exhibit a
large lateral displacement. Or, as the amount of one of the chemicals in a certain mixture is in-
creased, spiral wave patterns of varying color may suddenly emerge in an originally quiescent
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fluid. Problems 25 through 27 describe three types of bifurcations that can occur in simple
equations of the form (i).

25.

26

27.

Consider the equation

{a) Find all of the critical points for Eq. (if). Observe that there are no critical points if
a < 0, one critical point if 2 = 0, and two critical points ifa > 0.

{b) Draw the phase line in each case and determine whether each critical point is asymp-
totically stable, semistable, or unstable.

(c) In each case sketch several solutions of Eq. (ii) in the fy-plane.

(d) Ifwe plot the location of the critical points as a function of 2 in the ay-plane, we obtain
Figure 2.5.10. This is called the bifurcation diagram for Eq. (ii). The bifurcationate =0
is called a saddle-node bifurcation. This name is more natural in the context of second
order systems, which are discussed in Chapter 9.

b SSL 7 Unstable’ [

RS

S 2 T D e T
FIGURE 2.510 Bifurcation diagram for y = a — y2.

Consider the equation

dyfdt = ay —y’ = y(a — y). (i)

(a) Again consider the casesa < 0,a =0, and @ > 0. In each case find the critical points,
draw the phase line, and determine whether each critical point is asymptotically stable,
semistable, or unstable.

(b) In each case sketch several solutions of Eq. (iii) in the fy-plane.

(c) Draw the bifurcation diagram for Eq. ({ii}, that is, plot the location of the critical points
versus a. For Eq. (iii) the bifurcation point at @ = 0 is called a pitchfork bifurcation; your
diagram may suggest why this name is appropriate.

Consider the equation

dyfdt =ay -y =y(a-y). (iv)
{a) Again consider the cases 2 < 0,2 =0, and a > 0. In each case find the critical points,
draw the phase line, and determine whether each critical point is asymptotically stable,
semistable, or unstable.
{b) In each case sketch several solutions of Eq. (iv) in the ty-plane.
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EXAMPLE

1

(c) Draw the bifurcation diagram for Eq. (iv). Observe that for Eq. (iv) there are the
same number of critical points for @ < 0 and a > 0 but that their stability has changed,
For a < 0 the equilibrium solution y = { is asymptotically stable and y = 2 is unstable,
while for ¢ > 0 the situation is reversed. Thus there has been an exchange of stability as a
passes through the bifurcation point a = 0. This type of bifurcation is called a transcritical
bifurcation.

28. Chemical Reactions. A second order chemical reaction involves the interaction (colli-
sion) of one molecule of a substance P with one molecule of a substance Q to produce
one molecule of a new substance X; this is denoted by P+ O -» X. Suppose that p and
q,where p # g, are the initial concentrations of P and , respectively, and let x(r) be the
concentration of X at time ¢. Then p — x(f) and g — x(t) are the concentrations of P and
@ at time 1, and the rate at which the reaction occurs is given by the equation

dx/dt = alp — x)(g — x), @

where « is a positive constant.

(a) If x(0) = 0, determine the limiting value of x(f) as f — co without solving the differ-
ential equation. Then solve the initial value problem and find x(¢) for any .

{b) If the substances P and () are the same, then p = g and Eq. (i) is replaced by
dxfdt = a(p — x). (i)

If x{0) = 0, determine the limiting value of x(f) as  -> oo without solving the differential
equation. Then solve the initial value problem and determine x(f) for any .

For first order equations there are a number of integration methods that are applica-
ble to various classes of problems. The most important of these are linear equations
and separable equations, which we have discussed previously. Here, we consider a
class of equations known as exact equations for which there is also a well-defined
method of solution. Keep in mind, however, that those first order equations that
can be solved by elementary integration methods are rather special; most first order
equations cannot be solved in this way.

Sotve the differential equation
2x+ Y2+ 2xyy’ = 0. (1)

The equation is neither linear nor separable, so the methods suitable for those types of
equations are not applicable here. However, observe that the function ¥ (x,y) = x* + xy? has
the property that

Y Iy

24y = — 2y = —. 2
Y=o Y= @)

Therefore the differential equation can be written as

3y  dydy
vt 0. 3
-ax-*_-aydx 0 ©)
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Theorem 2.6.1

Assuming that y is a function of x and calling upon the chain rule, we can write Eq. (3) in the
equivalent form

var d

o dx(f +xyb) =0. 4)
Therefore

vy =x*+x' =c, (5)

where ¢ is an arbitrary constant, is an equation that defines solutions of Eq. (1) implicitly.

In solving Eq. (1) the key step was the recognition that there is a function  that
satisfies Eqs. (2). More generally, let the differential equation

M(x,y) + N(x,y)y =0 (6)

be given. Suppose that we can identify a function y such that

oy _ oy _

9x (X,Y) —M(x:)’): ?y‘(x:J’) ‘_'N(x!y): (7)
and such that ¥(x,y) = ¢ defines y = ¢(x) implicitly as a differentiable function
of x. Then T p

' Yy _
N = rxx_°c
Mx,y)+ N(x,y)y' = x + 3y dx xllf[x,tﬁ(x)]

and the differential equation (6) becomes

d
Y e@]=0. (8)

In this case Eq. (6) is said to be an exact differential equation. Solutions of Eq. (6),
or the equivalent Eq. (8), are given implicitly by

v,y =c, )

where c is an arbitrary constant.

In Example 1 it was relatively easy to see that the differential equation was exact
and, in fact, easy to find its solution, by recognizing the required function y. For
more complicated equations it may not be possible to do this so easily A systematic
way of determining whether a given differential equation is exact is pr0v1dcd by the
foilowmg theorem.

Let the functions M, N, M,, and N,, where subscripts denote partial derivatives, be
continuous in the rectangular!? region R:e < x < 8,y <y < 8. Then Eq. (6),

M@,y + N,y =0,

171t is not essential that the region be rectangular, only that it be simply connected. In two dimensions
this means that the region has no holes in its interior. Thus, for example, rectangular or circular regions
are simply connected, bul an annular region is not. More details can be found in most books on advanced
calculus.
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is an exact differential equation in R if and only if
My(x,y) = Nx(x,) (10)
at each point of R. That is, there exists a function ¥ satisfying Eqs. (7),

Tl’x(xa)’)=M(x-)’), wy(x,)’)=N(x,}'),
if and only if M and N satisfy Eq. (10).

The proof of this theorem has two parts. First, we show that if there is a function
¥ such that Eqgs. (7) are true, then it follows that Eq. (10) is satisfied. Computing M,
and N, from Eqs. (7), we obtain

M).(.x,y) = wxy(x,)’), Ny(x,y) = ¥ye(x, ¥). (11)

Since M, and N are continuous, it follows that ¥y, and y,, are also continuous. This
guarantees their equality, and Eq. (10) follows.

We now show that if M and N satisfy Eq. (10), then Eq. (6) is exact. The proof
involves the construction of a function y satisfying Eqs. (7),

Y2, y) = M(x,y), Yy(x,y) = N(x, y).

We begin by integrating the first of Eqgs. (7) with respect to x, holding y constant. We
obtain

¥ix,y) = Qx,y) +h(), (12)

where Q(x,y) is any differentiable function such that 3Q(x,y}/8x = M(x,y). For
example, we might choose

0(x,y) = j M(s,y)ds, (13)

where xp is some specified constant in & < x5 < 8. The function 4 in Eq. (12) is an
arbitrary differentiable function of y, playing the role of the arbitrary constant. Now
we must show that it is always possible to choose A(y) so that the second of Eqgs. (7)
is satisfied, that is, ¥, = N. By differentiating Eq. (12) with respect to y and setting
the result equal to N(x, y), we obtain

]
Yy(x,y) = a—f(x,y) +H () =Nx,y).
Then, solving for A'(y), we have
' d
K@) =N,y) - a—f(x,y)- (14)

In order for us to determine A(y) from Eq. (14), the right side of Eq. (14), despite
its appearance, must be a function of y only. To establish that this is true, we can
differentiate the quantity in question with respect to x, obtaining

8 a0
- 5;@0‘-)’)- (15)

By interchanging the order of differentiation in the second term of Eq. (15), we have
aN 8 aQ

_E-(x:y.) - 5;‘5(1’-)’),

aN
a'(X,Y)
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or, since d4Q/dx = M,

aN aM
‘5‘;(37;)’) - a_y'(xiy)r

which is zero on account of Eq. (10). Hence, despite its apparent form, the right
side of Eq. (14) does not, in fact, depend on x, Then we find k(y) by integrating Eq.
(14), and upon substituting this function in Eq. (12), we obtain the required function
¥ (x,y). This completes the proof of Theorem 2.6.1.

It is possible to obtain an explicit expression for y(x,y) in terms of integrals (see
Problem 17), but in solving specific exact equations, it is usually simpler and easier just
to repeat the procedure used in the preceding proof. That is, integrate v, = M with
respect to x, including an arbitrary function of h(y) instead of an arbitrary constant,
and then differentiate the result with respect to y and set it equal to N. Finally, use
this last equation to solve for i(y). The next example illustrates this procedure.

Solve the differential equation
(ycosx + 2xe”) + (sinx + x%¢” — 1)y =0. (16)

It is easy to see that
M,(x,)) = cosx +2xe’ = Ne(x,y),

so the given eguation is exact. Thus there is a y(x, y) such that
Ve lx,y) = ycosx + 2xe”,
Vy(x,y) =sinx + x%" — 1.
Integrating the first of these equations, we obtain
¥ (x,y) = ysinx + x’¢’ + h(y). an
Setting ¥, = N gives
“Yy(x,y) = sinx + X' + I'(y) =sinx + x%¢’ — 1.

Thus A'(y) = —1and h(y) = —y. The constant of integration can be omitted since any solution
of the preceding differential equation is satisfactory; we do not require the most general one,
Substituting for h(y) in Eq. (17) gives

Wix,y) = ysinx +x%e —y.
Hence solutions of Eq, (16) are given implicitly by
ysinx +xtef —y =c, (18)

Solve the differential equation
Cry+ )+ +x)y =0 (19)

Here,
My(x,y) =3x+2y, Nxy)=2x+y,

since M, # N;, the given equationis not exact. Tosee that it cannot be solved by the procedure
described above, let us seek a function y such that

Velr, ) =3xy+ 55 dyxy) =27 +xy. (20)
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Integrating the first of Egs. (20) gives
v,y =58y +xy2 +h(y), (21)

where A is an arbitrary function of y only. To try to satisfy the second of Egs. (20), we compute
¥, from Eq. (21) and set it equal to ¥, obtaining

Ity + KO =x+xy

or

Ry = —%12 —xy. (22)

Since the right side of Eq. (22) depends on x as well as y, it is impossible to solve Eq. (22) for
h(y). Thus there is no ¥ {x, y} satisfying both of Egs, (20).

Integrating Factors. It is sometimes possible to convert a differential equation that is
not exact into an exact equation by multiplying the equation by a suitable integrating
factor. Recall that this is the procedure that we used in solving linear equations in
Section 2.1. To investigate the possibility of implementing this idea more generally,
let us multiply the equation

M@, »)dx+ N(x,y)dy =0 (23)
by a function u and then try to choose u so that the resulting equation
p(x, )M (x,y) dx + p(x,y)N(x, y)dy =0 (24)
is exact. By Theorem 2.6.1, Eq. (24) is exact if and only if
(eM)y = (uN);. (25)

Since M and N are given functions, Eq. (25) states that the integrating factor « must
satisfy the first order partial differential equation

My, —Np, + (M, — N)p =0. (26)

If a function p satisfying Eq. (26) can be found, then Eq. (24) will be exact. The
solution of Eq. (24) can then be obtained by the method described in the first part of
thissection. The solution found in this way also satisfies Eq. (23), since the integrating
factor u can be canceled out of Eq. (24).

A partial differential equation of the form (26) may have more than one solution;
if this is the case, any such solution may be used as an integrating factor of Eq. (23).
This possible nonuniqueness of the integrating factor is illustrated in Example 4.

Unfortunately, Eq. (26), which determines the integrating factor u, is ordinarily at
least as hard to solve as the original equation (23). Therefore, although in principle
integrating factors are powerful tools for solving differential equations, in practice
they can be found only in special cases. The most important situations in which
simple integrating factors can be found occur when  is a function of only one of the
variables x or y, instead of both. Let us determine necessary conditions on M and N
so that Eq. (23) has an integrating factor u that depends on x only. Assuming that p
is 2 function of x only, we have

du

(PLM)y = Ju'ﬂ{y» (uN)z = uN; + NELX“ .
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Thus, if (uMj}, is to equa‘l.(p.N)x, it is necessary that

duy My —N,
d«  .N
If (M, — N,)/N is a function of x only, then there is an integrating factor u that also
depends only on x; further, 1 (x) can be found by solving Eq. (27), which is both linear
and separable.
A similar procedure can be used to determine a condition under which Eq. (23}
has an integrating factor depending only on y; see Problem 23.

(27}

Find an integrating factor for the equation

EXAMPLE
X Gxy+y) + (2 +xy)y’ =0 (19)

4

and then solve the equation.
In Example 3 we showed that this equation is not exact. Let us determine whether it has an
integrating factor that depends on x only. On computing the quantity (M, — N,)/N, we find

that
My(ry) - Nelxy) _ 3x+2y—-(@2x+y) 1 28)
Nix,y) x4 xy Tx’
Thus there is an integrating factor u that is a function of x only, and it satisfies the differential
equation
du u
ol (29)
Hence
mix)y =x. 3o
Multiplying Eq. (19) by this integrating factor, we obtain
Bty +xy") + (2 + 2Py)y = 0. (31)
The latter equation is exact, and it is easy to show that its sclutions are given implicitly by
Ay + iy =c. (32)

Solutions may also be readily found in explicit form since Eq. (32) is quadratic in y.
You may also verify that a second integrating factor of Eq. (19) is

1
xy(2x +y)'

and that the same solution is obtained, though with much greater difficulty, if this integrating
factor is used (see Problem 32).

pix,y) =

PROBLEM Determine whether each of the equations in Problems 1 through 12 is exact. If it is exact, find
the solution.
L x+3)+@2y—2)y =0 2. (2x +4y) + 2x —2y)y =0

3. (32 —2xy +2)dx + (6> —x* + 3)dy =0
4. (xy £2y) + @xty + 20y =0
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5. .dl:__.ax-{—by 6. Qz_ax-—by
dx bx + cy dx bx — ¢y

7. (e*siny - 2ysinx) dx + (e*cosy + 2cosx)dy =0

8. (e*siny +3y)dx — (3x — e*siny)dy =0

9. (ye" cos2x — 2% sin 2x + 2x) dx + (xe*” cos2x — 3)dy =0
10. (¢/x+6x)dx+ (Inx —-2)dy =0, x>0
11. (xIny+xy)dx+ (¥Inx +xy)dy =0; x>0, y>0

xdx ydy 0

. (xz + },2)3,0‘2 (xz _*_},2)3..-2 =
In each of Problems 13 and 14 solve the given initial value problem and determine at least
approximately where the solution is valid.

13, x—y)dx+ (y—-x)dy =0, y(Hh=3

14, (92 +y—Ddx—(dy —x)dy=0, »(1)=0

12

In each of Problems 15 and 16 find the value of b for which the given equation is exact, and
then solve it using that value of b.

15. (xy* + bx®y)dx + (x + y)x*dy =0

16. (ye*™ + x)dx + bxe™ dy =0

17. Assume that Eq. (6) meets the requirements of Theorem 2.6.1 in a rectangle R and is
therefore exact. Show that a possible function ¥ (x,y) is

x ¥
YY) = f M(s,yo)ds + f N, dr,
x0 0

where (xp, yp) is a point in R.
18. Show that any separable equation

ME+ NGy =0

is also exact.
Show that the equations in Problems 19 through 22 are not exact but become exact when
multiplied by the given integrating factor. Then solve the equations.
19. x% +x(1+ 7 =0,  ulk,y) =1/x’

: —x

2. (m;ly Py sinx) dr + (cosy+2e cosx)
21, ydx+ (2x—ye)dy =0, pukx,y=y
22, (x+2)siny dx+xcosy dy =0, wlx,y) = xet
23. Show that if (N, — M,)/M = Q, where Q is a function of y only, then the differential

equation

dy=0, puky)=ye

M+ Ny =0
has an integrating factor of the form
ko =exp [ Q) dy.

24, Show thatif (N; — M,)/(xM — yN) = R, where R depends on the quantity xy only, then
the differential equation

M+N'=0
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has an integrating factor of the form p(xy). Find a general formula for this integrating
factor.
In each of Problems 25 through 31 find an integrating factor and solve the given equation.
25, By +2xy +y)dx + (X +yD)dy =0 26, y =" +y-—-1
27. dx+ (x/y —siny)dy =0 28 ydx+ (2xy—eP)dy =0
29. &dx+{e"coty +2ycscy)dy =10
30. [4O/YY + G/)dx + Bx/y) +4yldy =0

2
31, (3x+§)+(x—+33)53 =0
¥ ¥ x/ dx

Hint; See Problem 24,
32. Solve the differential equation

Gy + Y1) + (& +xy)y' =0

using the integrating factor u(x,y) = [xy(2x + y)]™!. Verify that the solution is the same
as that obtained in Example 4 with a different integrating factor.

Recall two important facts about the first order initial value problem

d
Z=f»  ye =y )

First, if f and 3f /3y are continuous, then the initial value problem (1) has a unique
solution y = ¢(¢) in some interval surrounding the initial point f = f. Second, it is
usually not possible to find the solution ¢ by symbolic manipulations of the differen-
tial equation. Up to now we have considered the main exceptions to this statement:
differential equations that are linear, separable, or exact or that can be transformed
into one of these types. Nevertheless, it remains true that solutions of the vast ma-
jority of first order initial value problems cannot be found by analytical means such
as those considered in the first part of this chapter.

Therefore it is important to be able to approach the problem in other ways. As we
have already seen, one of these ways is to draw a direction field for the differential
equation (which does not involve solving the equation) and then to visualize the
behavior of solutions from the direction field. This has the advantage of being a
relatively simple process, even for complicated differential equations. However, it
does not lend itself to quantitative computations or comparisons, and this is often a
critical shortcoming, - h

Another alternative is to compute approximate values of the solution y = ¢(¢) of
the initial value problem (1) at a selected set of ¢-values. Ideally, the approximate
solution values will be accompanied by error bounds that ensure the level of accuracy
of the approximations. Today there are numerous methods that produce numerical
approximations to solutions of differential equations, and Chapter 8 is devoted to a
fuller discussion of some of them. Here, we introduce the oldest and simplest such
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method, originated by Euler about 1768. It is called the tangent line method or the
Euler method.

Let us consider how we might approximate the solution y = ¢(r) of Eqs. (1) near
t = tp. We know that the solution passes through the initial point (fy, yo), and from
the differential equation, we also know that its slope at this point is f{fg, yo}. Thus
we can write down an equation for the line tangent to the solution curve at (g, yg},
namely,

y = Yo + flto, yoX(t — o). ()

The tangent line is a good approximation to the actual solution curve on an interval
short enough so that the slope of the solution does not change appreciably from its
value at the initial point; see Figure 2.7.1. Thus, if #; is close enough to £, we can
approximate ¢(f;) by the value y; determined by substituting ¢ = 1 into the tangent
line approximation at t = #p; thus

y1= Yo + f{to, yo)(t1 — o). - (3)

. Tangentiine” " Lo
S 3 =yo+ftg 30t ~i).
) S N S
O Sy S Y
P ST Ty =
- yo %;_‘ SR i - i
1 1
4 o
I - ] .
4L
v ) tOV-' T .tl T

J FIGURE 2.71 A téngént line abpréximation.

To proceed further, we can try torepeat the process. Unfortunately, we do notknow
the value ¢(f;) of the solution at 7;. The best we can do is to use the approximate
value y; instead. Thus we construct the line through (#1, y1) with the slope f(t1, y1),

y=y1+ft,y) —1). 4)
To approximate the value of ¢ (1) at a nearby point #;, we use Eq. (4) instead, obtaining
y2 = y1 + L, (e — ). ’ (5)

Continuing in this manner, we use the value of y calculated at each step to deter-
mine the slope of the approximation for the next step. The general expression for
Ynyt interms of #,, 1,41, and y,, is

Yotl = Yan ‘i‘f(’n-)’n)(ﬂ!-&-l — 1), n=012,.... (6)
If we introduce the notation f, = f(t,, ¥»), then we can rewrite Eq. (6) as

Y+l = Yn +-f;l'(fn+1""n): n:0:1-2--“- (7)
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Finally, if we assume that there is a uniform step size & between the points ty, 1), 12, . . .,
then t,4+1 = t, + h for each n, and we obtain Euler's formaula in the form

Yart =yn+foh, T n=012,.... t)

To use Euler’s method you simply evaluate Eq. (7) or Eq. (8) repeatedly, depending
on whether or not the step size is constant, using the result of each step to execute the
next step. In this way you generate asequence of values y1, y2,ys, . . . that approximate
the values of the solution ¢{(¢) at the points t;,f,, . ... If, instead of a sequence of
points, you need an actual function to approximate the solution ¢{¢), then you can
use the piecewise linear function constructed from the collection of tangent line
segments. That is, let y be given by Eq. (2) in [#, #1], by Eq. (4) in [#, %), and in
general by

Y =yn+f(ta,yn)t — 1) &)

in {tn, fay1].

Consider the initial value problem

dy -
E{-::S-{-e f~ i y(0y =1, (10)

Use Euler’s method with stepsize i = 0.1 to find approximate values of the solution of Egs. (10)
att =0.1,02,0.3,and 0.4. Compare them with the corresponding values of the actual solution

of the initial value problem.
Proceeding as in Section 2.1, we find the solution of Eqgs. (10) to be

y=¢@#) =6-2" -3¢ (11)

To use Euler’s method, we note that in this case f(f, y) = 3 -- ™' — y/2. Using the initial values
ty =0and yy = 1, we find that

fo=flo,y) =f0,1)=3+e"-05=3+1-05=35
and then, from Eq. (8) withn =0,
n=yo+foh=1+435)01) =135
At the next step we have
fi = £0.1,1.35) = 3 4 7% — (0.5)(1.35) == 3 + 0.904837 — 0.675 = 3.229837

and then
y2 =y 4 fih = 1.35 4 (3.229837)(0.1) = 1.672984.

Repeating the computation two more times, we obtain
fr =2.982239, ys =1.971208

and
f3 = 2755214, ys = 2.246729.

Table 2.7.1 shows these computed values, the corresponding values of the solution (11), and
the differences between the two, which is the error in the numerical approximation.
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EXAMPLE

TABLE 2.7.1 A Comparison of Exact Solution with
Euler’s Method for h = 0.1for y' =3+ ¢™" — 1y,

yy=1
Euler

t Exact with A = 0.1 Error
0.0 1.0000 1.0000 0.0000
0.1 1.3366 1.3500 0.0134
0.2 -1.6480 1.6730 0.0250
0.3 1.9362 1.9712 0.0350
0.4 2.2032 2.2467 0.0435

The purpose of Example 1is to show you the details of implementing a few steps of
Euler’s method so that it will be clear exactly what computations are being executed.
Of course, computations such as those in Example 1 are usually done on a computer.
Some software packages include code for the Euler method, while others do not. In
any case, it is easy to write a computer program to carry out the calculations required
to produce results such as those in Table 2.7.1. The outline of such a program is
given below; the specific instructions can be written in any high-level programming
lanpuage.

The Euler Method

Step 1. define f(1,y)

Step 2. input initial values 0 and y0

Step 3. input step size 4 and number of steps n
Step 4. output r0 and y0

Step 5. forjfrom 1tondo

Step 6. k1l =f(y

y=y+hxkl

t=t+h
Step 7. output f and y
Step 8. end

The output of this algorithm can be numbers listed on the screen or printed on
a printer, as in the third column of Table 2,7.1. Alternatively, the calculated results
can be displayed in graphical form.

Consider again the initial value problem (10), -

dy 1 _
dr"3+e -3 y(0) =1,

Use Euler's method with various step sizes to calculate approximate values of the solution
for 0 <=t <5. Compare the caiculated results with the corresponding values of the exact
solution (11), '

y=¢)=6—2e"— 3772,

We used step sizes & = 0.1, 0.05,0.025, and 0.01, corresponding réspectively to 50, 100, 200,
and 500 steps, to go from r = 0to f = 5. The results of these calculations, along with the values
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of the exact solution, are presented in Table 2.7.2. All computed entries are rounded to four
decimal places, although more digits were retained in the intermediate calculations.

TABLE 2.7.2 A Comparison of Exact Solution with Euler's Method for Several
Step Sizeshfory =3+ — 1y, y(0 =1

¢ Exact h=01 h =005 h=0.025 h=001
0.0 1.6000 1.0000 1.0000 1.0000 1.0000
1.0 3.4446 3.5175 3.4805 3.4624 3.4517
2.0 4.6257 4.7017 4.6632 4.6443 4.6331
30 5.2310 5.2918 5.2612 5.2460 5.2370
40 5.5574 5.6014 5.5793 5.5683 5.5617
5.0 5.7403 5.7707 5.7555 5.7479 5.7433

What conclusions can we draw from the datain Table 2.7.27 In the first place, for afixed value
of t, the computed approximate values become more accurate as the step size i decreases. This
is what we would expect, of course, but it is encouraging that the data confirm our expectations,
For example, for t = 1 the approximate value with A = 0.1 is too large by about 2%, whereas
the value with A = 0.01 is too large by only 0.2%. In this case, reducing the step size by a
factor of 10 (and performing 10 times as many computations) also reduces the error by a
factor of about 10. A second observation from Table 2.7.2 is that, for a fixed step size h, the
approximations become more accurate as f increases, For instance, for - = 0.1 the error for
t = Sisonly about 0.5%, compared with 2% for ¢ = 1. An examination of data at intermediate
points not recorded in Table 2.7.2 would reveal where the maximum error occurs for a given
step size and how large it is.

All in all, Euler's method seems to work rather well for this problem. Reasonably good
results are obtained even for a moderately large step size h = 0.1, and the approximation can
be improved by decreasing h.

Let us now look at another example.

Consider the initial value problem

d
d—’;=4—r+2y, ¥(0) = 1. (12)
The general solution of this differential equation was found in Example 2 of Section 2.1, and

the solution of the initial value problem (12) is
y=-1+k+ i (13)

Use Euler's method with several step sizes to find approximate values of the solution on the
interval 0 < ¢t < 5. Compare the results with the corresponding vaiues of the soiution (13).
Using the same range of step sizes as in Example 2, we obtain the results presented in
Table 2.7.3.
The data in Table 2.7.3 again confirm our expectation that, for a given value of ¢, accuracy
improves as the step size h is reduced. For example, for t = 1 the percentage error diminishes
from 17.3% when £ = 0.1 t0 2.1% when /i = 0.01. However, the error increases fairly rapidly
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TABLE 2.7.3 A Comparison of Exact Solution with Euler’s Method for Several Step Sizes h
fory =4—1+2y, y0)=1

t Exact h=01 h=10.05 h =0.025 h=0.01
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
1.0 19.06990 15.77728 17.25062 18.10997 18.67278
2.0 149.3949 104.6784 123.7130 135.5440 143.5835
3.0 1109.179 652.5349 837.0745 959.2580 1045.395
4.0 8197.884 4042.122 5633.351 6755.175 7575.577
50 60573.53 25026.95 37897.43 47555.35 54881.32

as ¢ increases for a fixed h. Even for h = 0.01, the error at t =5 is 9.4%, and it is much
greater for larger step sizes. Of course, the accuracy that is needed depends on the purpose
for which the results are intended, but the errors in Table 2.7.3 are too large for most scientific
or engineering applications. To improve the situation, one might either try even smaller step
sizes or else restrict the computations to a rather short interval away from the initial point.
Nevertheless, it is clear that Euler's method is much less effective in this example than in
Example 2.

To understand better what is happening in these examples, let us look again at

Euler’s method for the general initial value problem (1)
d

?): =flt,y),  yto) = yo,
whose solution we denote by ¢(t}. Recall that a first order differential equation has
an infinite family of solutions, indexed by an arbitrary constant ¢, and that the initiat
condition picks out one member of this infinite family by determining the value of
c. Thus ¢(f) is the member of the infinite family of solutions that satisfies the initial
condition ¢(ty) = yp.

At the first step Euler’s method uses the tangent line approximation to the graph of
y = ¢(t) passing through the initial point (g, yo), and this produces the approximate
value y; at f;. Usually y, # ¢ (1), so at the second step Euler’s method uses the
tangent line approximation not to y = ¢(f}, but to a nearby solution y = ¢, {f} that
passes through the point (#;,y;1). So it is at each following step. Euler's method
uses a succession of tangent line approximations to a sequence of different solutions
(1), d1(t), ¢2(r), ... of the differential equation. At each step the tangent line is
constructed to the solution passing through the point determined by the result of
the preceding step, as shown in Figure 2.7.2. The quality of the approximation after
many steps depends strongly on the behavior of the set of solutions that pass through
the points (ty,yn)} forn =1,2,3,....

In Example 2 the general solution of the differential equation is

y=6—2e" 4 ce'? (14)

and the solution of the initial value problem (10) corresponds to ¢ = —3. This family
of solutions is a converging family since the term involving the arbitrary constant ¢
approaches zero as t — oo. It does not matter very much which solutions we are
approximating by tangent lines in the implementation of Euler’s method, since ail
the solutions are getting closer and closer to each other as f increases.
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PROBLEMS o the prob

FIGURE 272 The Euler method.

On the other hand, in Example 3 the general solution of the differential equation is
y=—%+%t+cez‘, (15)

and this is a diverging family. Note that solutions corresponding to two nearby values
of c separate arbitrarily far as ¢ increases. In Example 3 we are trying to follow the
solution for ¢ = 11/4, but in the use of Euler’s method we are actually at each step
following another solution that separates from the desired one faster and faster as
increases. This explains why the errors in Example 3 are so much larger than those
in Example 2. '

In using a numerical procedure such as the Euler method, one must always keep
in mind the question of whether the results are accurate enough to be useful. In
the preceding examples, the accuracy of the numerical results could be ascertained
directly by a comparison with the solution obtained analytically. Of course, usually
the analytical solution is not available if a numerical procedure is to be employed, so
what is needed are bounds for, or at least estimates of, the error that do not require
a knowledge of the exact solution. In Chapter 8 we present some information on
the analysis of errors and also discuss several algorithms that are computationally
more efficient than the Euler method. However, the best that we can expect, or
hope for, from a numerical approximation is that it reflect the behavior of the actual
solution. Thus a member of a diverging family of solutions will always be harder to
approximate than a member of a converging family. Finally, remember that drawing a
direction field is often a helpful first step in understanding the behavior of differential
equations and their solutions. '

Many of the problems in this section call for fairly extensive numerical computations. The
amount of computing that it is reasonable for you to do depends strongly on the type of
computing equipment that you have. A few steps of the requested calcuiations can be carried
outon almost any pocket calculator—or even by hand if necessary. To do more, you will find at
least a programmable calculator desirable, and for some problems a computer may be needed.
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Remember also that numerical results may vary somewhat depending on how your program
is constructed and on how your computer executes arithmetic steps, rounds off, and so forth.
Minor variations in the last decimal place may be due to such causes and do not necessarily
indicate that something is amiss. Answers in the back of the book are recorded to six digits in
most cases, although more digits were retained in the intermediate calculations.

In each of Problems 1 through 4:

(a) Find approximate values of the solution of the given initial value problem at r = 0.1,0.2,
0.3, and 0.4 using the Ruler method with A = 0.1.

(b) Repeat part (a) with & = 0.05. Compare the results with those found in (a).
(c) Repeat part (a) with A = 0.025. Compare the results with those found in (a} and (b).
(d) Find the solution y = ¢(¢) of the given problem and evaluate ¢ (r) at ¢ = 0.1,0.2,0.3, and
0.4. Compare these values with the results of (a), (b), and (c).
&l Ly=3+t-y, y0=1 & 2y=2-1 y0=1
e 3 y=05~t+2y, yO)=1 & 4 y=3cost-2y, yO0)=0

In each of Problems 5 through 10 draw a direction field for the given differential equation and
state whether you think that the solutions are converging or diverging,

&2 5)’ 5-3/7 &2 6 y=y3-1
& 1Y =@-p/0+y & 8 y=-ty+01y
&L 9.y’=t’+y2 & 10, Yy =2 +2)/3+ 1)

In each of Problems 11 through 14 use Euler's method to find approximate values of the
solution of the given initial value problem at r = 0.5, 1, 1.5,2,2.5,and 3:

(a) With s =0.1. (b) With & = 0.05.
(c) With h = 0.025. (d) With 4 = 0.01.
&1L y=5-3/, y0)=2
2 12.y=y3-1), y0 =05
L 13 y=6d-p/a+y), yO0)=-
G 14 Yy =~y 401y,  y0)=1
ﬁa 15. Consider the initial value problem

Y=3G -4, yl=
(a) Use the Euler formula (6) with i = 0.1 to obtain approximate values of the solution
atf=12,14,1.6,and 1.8,
(b) Repeat part (a) with i = 0.05.
(c) Compare the results of parts (a) and (b). Note that they are reasonably close for
t =12, 1.4, and 1.6 but are quite different for 1 = 1.8. Also note (from the differential
equation) that the line tangent to the solution is parallel to the y-axis when y = £2/+/3
= +1.155. Explain how this might cause such a difference in the calculated values.

&¢ 16. Consider the initial value problem

y=£0+y, y0=1

Use Euler’s method with A = 0.1, 0.05, 0.025, and 0.01 to explore the solution of this
problem for 0 < ¢ < 1, What is your best estimate of the value of the solution at £ = 0.87
At r = 17 Are your results consistent with the direction field in Problem 97

&2 17. Consider the initial value problem

Y=0"+20)/3+1), yl)=2
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&' 18.

20.

Use Euler’s method with A = 0.1, 0.05, 0.025, and 0.01 to explore the solution of this
problem for 1 <t < 3. What is your best estimate of the value of the solution at 1 = 2.5?
At t =37 Are your results consistent with the direction field in Problem 10?

Consider the initial value problem
Y=-+01y, y0)=aq,

where ¢ is a given number.

(a) Draw a direction field for the differential equation (or reexamine the one from Prob-
lem 8). Observe that there is a critical value of & in the interval 2 < o < 3 that separates
converging solutions from diverging ones. Call this critical value ag.

(b) Use Euler’s method with » = 0.01 to estimate ap. Do this by restricting o to an
interval [a, b], where b — a = (.01

. Consider the initial value problem

Y=y-f y0=e,
where o is a given number.
{a) Draw a direction field for the differential equation. Observe that there is & <ritical
value of « in the interval 0 < o < 1 that separates converging solutions from diverging
ones. Call this critical value ap.
{b) Use Euler's method with &= 0.01 to estimate ay. Do this by restricting og to an
interval [a, b), where b — @ = 0.01.
Convergence of Euler’s Method. [t can be shown that, under suitable conditions on f,
the numerical approximation generated by the Euler method for the initial value problem
¥y = f(t, ), y(fa) = yo converges to the exact solution as the step size  decreases. This is
illustrated by the following example. Consider the initial value problem

y=1-t+ty, »)=y.
(a) Show that the exact solution is y = ¢{f) = (yo — fp)e'™® + 1.
(b} Using the Euler formula, show that
=0 +Ryer +h—h, k=12
{c) Noting that y; = (1 + k)(yo — ty) + t;, show by induction that
¥o=1+8"0~ 1) +1 )

for each positive integer n.

{d) Consider a fixed point ¢ > fo and for a given n choose A = {(t — fo}/n. Then f, =t for
every n. Note also that # — 0 as n — o0o. By substituting for & in Eq. (i) and letting
n — oo, show that y, - ¢(f) asn — oco.

Hint: im (1 4+ a/n)" = ¢&°.
oo

In each of Problems 21 through 23 use the technique discussed in Problem 20 to show that
the approximation obtained by the Euler method converges to the exact solution at any fixed
pointas A — 0.

21.
22
23.

Y= )’(U)=1
y=2-1, yO=1 Hinty=(1+21)/2+1/2
Y=3—t+2, 0 =1 Hint: y; = (1 4 2R) + /2
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2.8 The Existence and Uniqueness Theorem

Theorem 2.8.1

In this section we discuss the proof of Theorem 2.4.2, the fundamental existence and
uniqueness theorem for first order initial value problems. This theorem states that
under certain conditions on f (¢, y), the initial value problem

y=f.y, yto=y 1)

has a unique solution in some interval containing the point #.

In some cases (for example, if the differential equation is linear) the existence
of a solution of the initial value problem (1) can be established directly by actually
solving the problem and exhibiting a formula for the solution. However, in general,
this approach is not feasible because there is no method of solving the differential
equation that applies in all cases. Therefore, for the general case, it is necessary to
adopt an indirect approach that demonstrates the existence of a solution of Eqs. (1)
but usually does not provide a practical means of finding it. The heart of this method is
the construction of a sequence of functions that converges to a limit function satisfying
the initial value problem, although the members of the sequence individually do
not. As a rule, it is impossible to compute explicitly more than a few members
of the sequence; therefore the limit function can be determined only in rare cases.
Nevertheless, under the restrictions on f(t, y) stated in Theorem 2.4.2, it is possible
to show that the sequence in question converges and that the limit function has
the desired properties. The argument is fairly intricate and depends, in part, on
techniques and results that are usually encountered for the first time in a course on
advanced calculus. Consequently, we do not go into all the details of the proof here;
we do, however, indicate its main features and point out some of the difficulties that
must be overcome.

First of all, we note that it is sufficient to consider the problem in which the initial
point (fp, yp) is the origin; that is, we consider the problem

y=fty, y0=0 - 2)

If some other initial point is given, then we can always make a preliminary change
of variables, corresponding to a translation of the coordinate axes, that will take the
given point (fy, yo) into the origin. The existence and uniqueness theorem can now
be stated in the following way.

If f and af /3y are continuous in a rectangle R: [f] < a, ]y} < b, then there is some
interval [t| <} < a in which there exists a unique solution y = ¢(f) of the initial
value problem (2).

For the method of proof discussed here it is necessary to transform the initial value
problem (2) into a more convenient form. If we suppose temporarily that there is a
function y = ¢(¢) that satisfies the initial value problem, then f[¢, ¢ (f)] is a continuous
function of ¢ only. Hehce we can integrate y' = f(¢, y} from the initial point ¢ = 0 to
an arbitrary value of ¢, obtaining

[4
6(0) = fo fls. ()] ds, 3)
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where we have made use of the initial condition ¢ (0) = 0. We also denote the dummy
variable of integration by s. )

Since Eq. (3) contains an integral of the unknown function ¢, it is called an integral
equation. This integral equation is not a formula for the solution of the initial value
problem, but it does provide another relation satisfied by any solution of Egs. (2).
Conversely, suppose that there is a continuous function y = ¢(¢) that satisfies the
integral equation (3); then this function also satisfies the initial value problem (2). To
show this, we first substitute zero for 1 in Eq. (3), which shows that the initial condition
is satisfied. Further, since the integrand in Eq. (3) is continuous, it follows from the
fundamental theorem of calculus that ¢’(t) = f{t, ¢ ()]. Therefore the initial value
problem and the integral equation are equivalent in the sense that any solution of
one isalso a solution of the other. Itis more convenient to show that there is a unique
solution of the integral equation in a certain interval |f| < . The same conclusion
will then hold also for the initial value problem.

One method of showing that the integral equation (3) has a unique solution is
known as the method of successive approximations or Picard’s!® iteration method.
In using this method, we start by choosing an initial function ¢, either arbitrarily or
to approximate in some way the solution of the initial value problem. The simplest
choice is

$o(t) = 0; (4)

then ¢ at least satisfies the initial condition in Egs. (2), although presumably not the
'differential equation. The next approximation ¢, is obtained by substituting g¢y(s)
for ¢ (s) in the right side of Eq. (3) and calling the result of this operation ¢;(t). Thus

#= [ s, o) ds. )
Similarly, ¢ is obtained from ¢:
00 = [ Sl 0io1as, ®)
and, in general,
Pnt1(t) = fo !f [5, du(s)] ds. (7)
In this manner we generate the sequence of functions {$,) = ¢o, 1, - - -, én,.. .. Each

member of the sequence satisfies the initial condition, but in general none satisfies
the differential equation. However, if at some stage, say for n = k, we find that
Gr+1 (1) = ¢e(f),thenit follows that ¢y is a solution of the integral equation (3). Hence
¢ is also a solution of the initial value problem (2}, and the sequence is terminated
at this point. In general, this does not occur, and it is necessary to consider the entire
infinite sequence. B

18Charles-Emile Picard (1856-1914), except for Henri Poincaré, perhaps the most distinguished French
mathematician of his generation, was appointed professor at the Sorbonne before the age of 30. He
is known for important theorems in complex variables and algebraic geometry as well as differential
equations. A special case of the method of successive approximations was first published by Liouville
in 1838. However, the method is usually credited to Picard, who established it in a general and widely
applicable form in a series of papers beginning in 1850
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To establish Theorem 2.8.1 we must answer four principai questions:

1. Do all members of the sequence {¢,)} exist, or may the process break down at some stage?
Does the sequence converge?

3. What are the properties of the limit function? In particular, does it satisfy the integral
equation (3) and hence the initial value problem (2)?

4, Isthis the only solution, or may there be others?

We first show how these questions can be answered in a specific and relatively simple
example and then comment on some of the difficulties that may be encountered in
the general case.

Solve the initial value problem
y=2(1+y), y0)=0 )

by the method of successive approximations.
Note first that if y = ¢ (¢), then the corresponding integral equation is

t
60 = [ 25114 p0as. ©
If the initial approximation is ¢ (f) = 0, it follows that
1] [
1) =f 251 + do(s)] ds =[ 25ds = 12, (10)
[ 0
Similarly,
' ' 4
¢z(:)=f 2s[1-+-¢l(s)]ds=f 29[1+s2]ds=z2+-'2u (1)
0 +]
and
t t 54 t‘ [6
¢,(r)=f29[1+¢2(s)}ds=[29[1+s2+—]d; =024 = {12)
A A 2 2 2.3
Equations (10), (11), and (12) suggest that
4 IG r?.u
$n() =0 + stmtot (13)

for each n > 1, and this result can be established by mathematical induetion, Equation (13)
is certainly true for n = 1; see Eq. (10). We must show that if it is true for n = k, then it also
holds for n = k -+ 1. We have

Brnat) = [0 25{1 + ge(s))1 ds

! 5 :2*
=f02s(l+s +2,+ k!)ds

, (2542 (14
=t .
byt RETTSV] )
and the inductive proof is complete.
A plot of the first four iterates, ¢, (f), ..., d4(r), is shown in Figure 2.8.1. As k increases,
the jterates seem to remain close over a gradually increasing interval, suggesting eventual
convergence to a limit function.
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FIGURE 2.8.1 Plots of ¢, (1},...,¢4(r) for Example 1.

Tt follows from Eq. (13) that ¢, (¢) is the nth partial sum of the infinite series

pIEE (15)

hence linul° ¢a (1) exists if and only if the series (15) converges. Applying the ratio test, we see

that, for each t,

2%k+2 1 2
! k" © L0 as ko oo (16)

kDI x|~ k+1

Thus the series (15) converges for all ¢, and its sum ¢ (¢) is the limit of the sequence {¢,(1)].
Further, since the series (15) is a Taylor series, it can be differentiated or integrated term by

term as long as f remains within the interval of convergence, which in this case is the entire
o9

t-axis. Therefore, we can verify by direct computation that ¢ (f) = Y t*/k! is a solution of the
k=1

integral equation (9). Alternatively, by substituting ¢ (1) for y in Egs. (8), we can verify that
this function satisfies the initial value problem. In this example it is also possible, from the
series (15), to identify ¢ in terms of elementary functions, namely, ¢(1) = & ~1. However,
this is not necessary for the discussion of existence and unigueness.

Explicit knowledge of ¢(1) does make it possible to visualize the convergence of the se-
quence of iterates more clearly by plotting ¢ (1) — ¢ (#) for various values of k. Figure 2.8.2
shows this difference for k = 1,...,4. This figure clearly shows the gradually increasing inter-
val over which successive iterates provide a good approximation to the solution of the initial

value problem.
Finally, to deal with the question of uniqueness, let us suppose that the initial value problem

has two solutions ¢ and . Since ¢ and y both satisfy the integrai equation (9), we have by
subtraction that

r
¢ —¥it)= f 2s[@ (s) — ()] ds.
0
Taking absolute vaiues of both sides, we have, if # > 0,

< f 251605 — ¥ ()] d.
Q

l¢lt) — ¥l = U; (g () — ¥(9lds
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FIGURE 2.8.2 Plots of ¢(f) — ¢« (r) for Example 1 for k =1,...,4.

If we restrict £ to le in the interval 0 < r £ A/2, where A is arbitrary, then 2f < A4, and

ARG 2 MR N AR T Y 5 5 e N S

() — ¥ (O] SAj:IMS)—IIJ(S)IdS- an
It is now convenient to introduce the function U defined by
] vo = [ 166 - voras (18)
E Then it follows at once that
: Uo =0, (19)
i U@ >0, for 12>0. (20)

Further, U is differentiable, and U’(f) = |¢(r) — ¥ (6)|. Hence, by Eq. (17),
Uy — AU < 0. (21)
Multiplying Eq. (21) by the positive quantity =4 gives
e UMY <0. (22)
Then, upon integrating Eq. (22) from zero to t and using Eqg. (19), we obtain
e MU <0 for t>0.

Hence U(r) < Ofort > 0, andin conjunction with Eg. (20), this requires that U(¢) = 0for each
t > 0. Thus U'(1) =0, and therefore ¢ (1) = ¢ (), which contradicts the original hypothesis.
Consequently, there cannot be two different solutions of the initial value problem for ¢t > 0.
A slight modification of this argument leads to the same conclusion for ¢ < 0.

Returning now to the general problem of solving the integral equation (3}, let us
consider briefly each of the questions raised earlier:
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1. Do all members of the sequence (¢,} exist? In the example, f and 3f /3y were continuous
in the whole ty-plane, and each.member of the sequence could be explicitly calculated.
In contrast, in the general case, f and 3f/3y are assumed to be continuous only in the
rectangle R: |1| < a, |y| < b (see Figure 2.8.3). Furthermore, the members of the sequence
cannot as & rule be explicitly determined. The danger is that at some stage, say forn = k,
the graph of y = ¢, (f) may contain points that lie outside the rectangle R. Hence at the
next stage—in the computation of ¢, (t}—it would be necessary to evaluate f(f, y) at
points where it is not known to be continuous or even to exist. Thus the calculation of
$r41 () might be impossible.

{~a, b} (a, b)

¥

{-a,-b) (a, -b)
FIGURE 2.8.3 Region of definition for Theorem 2.8.1.

To avoid this danger it may be necessary to restrict ¢ to a smaller interval than [f] < a.
To find such an interval we make use of the fact that a continuous function on a closed
bounded region is bounded. Hence f is bounded on R; thus there exists a positive number
M such that

fa»l <M, @yinR. (23)

We have mentioned before that

¢a(0) =

for each n. Since f[r @«(0)]is equal to ¢, (), the maximum absolute slope of the graph
of the equation y = ¢, 41(t) is M. Since this graph contains the point (0,0), it must lie
in the wedge-shaped shaded region in Figure 2.8.4. Hence the point [t, ¢¢.1(f)) remains
in R at least as long as R contains the wedge-shaped region, which is for |t| < b/M. We
hereafter consider only the rectangle D: |t| < h, |y{ < b, where h is equal either to a or to
b/M,whichever is smaller. With this restriction, all members of the sequence {¢a(f)} exist.
Note that whenever b/M < a, then you can try to obtain & larger value of h by finding a
better (that is, smaller) bound M for |f(t, y)|, if this is possible.

y = $alt} y=alt) 5,
N 74

\\\

(@) ®»
FIGURE 2.8.4 Regions in which successive iterates lie. () b/M < a; (b) /M > a.
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2

3

Does the sequence {¢.(r)} converge? As in the example, we can identify ¢, (f) = ¢, () +
[a(r) — &1 (1) + -+ + [@al®) ~ a1 (£)] as the nth partial sum of the series

GO+ ) e ) ~ (D) (24)

k=1

The convergence of the sequence {g, (1)} is established by showing that the series (24)
converges. To do this, it is necessary to estimate the magnitude jge ., (2) — @i (7)| of the
general term. The argument by which this is done is indicated in Problems 15 through
18 and will be omitted here. Assuming that the sequence converges, we denote the limit
function by ¢, so that

6@ = lim $a(). (25)

What are the properties of the limit function ¢7 In the first place, we would like to know
that ¢ is continuous, This is not, however, a necessary consequence of the convergence
of the sequence {¢n (1)}, even though each member of the sequence is itself continuous.
Sometimes a sequence of continuous functions converges to a limit function that is dis-
continuous. A simple example of this phenomenon is given in Problem 13. One way to
show that ¢ is continuous is to show not only that the sequence {¢,} converges, but also
that it converges in a certain manner, known as uniform convergence. We do not take up
this question here but note only that the argument referred to in paragraph 2 is sufficient
to establish the uniform convergence of the sequence {¢,} and, hence, the continuity of
the limit function ¢ in the interval )t| < h.
Now let us return to Eq. (7),

bpar () = fu F15. a(s)] ds.

Allowing n to approach oo on both sides, we obtain

60 = lim [ fis enionds. 26)

We would like to interchange the operations of integrating and taking the limit on the
right side of Eq. (26) so as to obtain

f
¢ -“—‘f lim fs, ¢n(5)] ds. 27)
0 n-+00
In general, such an interchange is not permissible (see Problem 14, for example), but once
again, the fact that the sequence {¢, (1)} converges uniformly is sufficient to allow us to

take the limiting operation inside the integral sign. Next, we wish to take the limit inside
the function f, which would give

o) = f fi5, im én(9)ds (28)
a n—+o0
and hence
6= fo fls.6(5)) ds. (29)

The statement that lim f[s, ¢, (s)] = f[5, lim ¢,(5)] is equivalent to the statement that f is
n—+ o0 n-»00
continuous in its second variable, which is known by hypothesis. Hence Bq. (29) is valid,
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PROBLEM

and the function ¢ satisfies the integral equation (3). Thus ¢ is also a solution of the initial
value problem {2). )

4. Are there other solutions of the integral equation (3) besides y = ¢(t)? To show the
uniqueness of the solution y = ¢(t), we can proceed much as in the example. First, assume
the existence of another solution y = y(#). It is then possible to show (see Problem 19)
that the difference ¢(#) — v (t) satisfies the inequality

) — (0] SA[o 16(5) — v ()| ds (30)

for 0 < t < h and a suitable positive number A. From this point the argument is identical
to that given in the example, and we conclude that there is no solution of the initial value
problem {2) other than the one generated by the method of successive approximations.

In each of Problems 1 and 2 transform the given initial value problem into an equivalent
problem with the initial point at the origin.

1, dyfdi =+, yy=2 2.dyfdt=1-y, y(-1)=3
In each of Problems 3 through 6 let ¢y(t) = 0 and use the method of successive approximations
to solve the given initial value problem.
{a) Determine ¢,(f) for an arbitrary value of n.
(b) Plot ¢,(r) forn =1,...,4. Observe whether the iterates appear to be converging,
{c) Express nlﬂla $a(t) = ¢ (1) in terms of elementary functions; that is, solve the given ini-
tial value problem.

{d) Plot [¢(t) — ¢a(t)| forn=1,...,4. For each of ¢;(1),...,¢s(t), estimate the interval in
which it is a reasonably good approximation to the actual solution.

& 3 y=2p+1, y0=0 &l 4y=-y-1, yO=0
& S y=-y2+t  y0)=0 & 6.y=y+1-t,  yO®=0
In each of Problems 7 and 8 let ¢y (f) = O and use the method of successive approximations to
solve the given initial value problem,
(a) Determine ¢,(r) for an arbitrary value of n.
{b) Plot ¢,(t) forn =1,...,4. Observe whether the iterates appear to be converging.

& 1 y=n+1, yO=0 & 8 y=ty-1, =0
In each of Problems 9 and 10 let ¢g(¢) = 0 and use the method of successive approximations
to approximate the solution of the given initiai value problem.

(2) Calculate ¢1(1),. .., ¢ (1).
{b) Plot ¢(t), ..., ¢s(t) and observe whether the iterates appear to be converging.

& 9 y=r+y,  y0=0 10 y=1-)}, y®=0
In each of Problems 11 and 12 let ¢y(¢) = 0 and use the method of successive approximations
to approximate the solution of the given initial value problem.
{2) Calculate ¢;(t),...,¢4(D), or (if necessary) Taylor approximations to these iterates. Keep

terms up to order six.
{b) Plot the functions you found in part {2) and observe whether they appear to be converging.

&2 11 y=—siny+1, yO=0 & 12y =GR +4+2/20-1), yO) =0
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13.

14.

Let ¢n(x) = x" for 0 < x < 1 and show that

0, 0<sx<]l,

J i =
"_LE.I"¢"(X) [1, x=1.

This example shows that a sequence of continuous functions may converge to a Jimit
function that is discontinuous.

Consider the sequence ¢,(x) = 2nxe’"‘1, O<x<1.
(2) Show that lim ¢,(x) = Ofor0 <x < 1;hence
aA—00 .

1
f lim ¢, 00) dx = 0.
D =00
t
(b) Show thatf 2nxe™ dx = 1— e "; hence
0

!
limf G () dx = 1.
A—00 [

Thus, in this example, R R
lim [ a0 s # [ lim 603
n—+opd a a A— 00

even though lim $,(x) exists and is continuous.
n->

In Problems 15 through 18 we indicate how to prove that the sequence {¢.(f)}, defined by
Egs. (4) through (7), converges.

15.

16.

17.

If 8f /3y is continuous in the rectangle D, show that there is a positive constant X such
that
U y) — f(t.y2)] < Kiyy — y2l, ()

where (£,y1) and (1,y2) are any two points in D having the same f coordinate. This inequality
is known as a Lipschitz!® condition.

Hint: Hold  fixed and use the mean value theorem on f as a function of y only. Choose
K to be the maximum value of |3f /dy] in D.

If ¢,_1(t) and @,(t) are members of the sequence {¢,()}, use the result of Problem 15 to

show that
VIt a0 = fI1, $a1 (OH < K[alt) — ¢o-1 (DI
(a) Show thatif [f| < h, then
fee ()] = Mitl,
where M is chosen so that [f(1,))] < M for (£,y) in D.
(b) Use the results of Problem 16 and part (a) of Problem 17 to show that

MKt
() — )] < ;”.

(c) Show, by mathematical induction, that
ME™ e MK
n! = '

nl

l¢n(r) - ¢n71(l)l =

15Rudolf Lipschitz {1832-1903), professor at the University of Bonn for many years, worked in several
areas of mathematics. The inequality (i) can replace the hypothesis that 3f /3y is continuous in Theo-
rem 2.8.1; this results in a slightly stronger theorem.
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18. Note that
G0 = (0 + (D20 — 1)+ 4 [Pa(t) — Dur (D).

(a) Show that
l6a @] < [y ]+ 12() =y +- - + [$n(t) — Py (D).
(b) Use the results of Problem 17 to show that

M
I¢n(f)l = ‘k— [Kh +

4.+

(Kh)* Kh)"
2! n

(c) Show that the sum in part (b) converges as n — oo and, hence, the sum in part (2)
also converges as # — co. Conclude therefore that the sequence {¢,(f)} converges since
it is the sequence of partial sums of a convergent infinite series.

19. In this problem we deal with the question of uniqueness of the solution of the integral
equation (3},

¢
s0= [ fisp@1ds
(2) Suppose that ¢ and y are two solutions of Eq. (3). Show that, fort > 0,
t
¢M -y = j; {fls, ¢ ()] — fls, ¥ ()} ds.

(b) Show that
t
IB) — ()l < fo IFls, 6 @] — fIs, ()]l ds.

(c)} Use the result of Problem 15 to show that
4
80~ vl <X [ 166)- ool ds,

where K is an upper bound for [3f /8y in D. This is the same as Eq. (30), and the rest of
the proof may be constructed as indicated in the text.

2.9 First Order Difference Equations

Although a continuous model leading to a differential equation is reasonable and
attractive for many problems, thefe are some cases in which a discrete model may
be more natural. For instance, the continuous model of compound interest used
in Section 2.3 is only an approximation to the actual discrete process. Similarly,
sometimes population growth may be described more accurately by a discrete than
by a continuous model. This is true, for example, of species whose generations do
not overlap and that propagate at regular intervals, such as at particular times of
the calendar year. Then the population y.1 of the species in the year n 4 1 is some
function of # and the population y, in the preceding year; that is,

Yn+l =f(",)’n)’ n=01,2,.... (1)
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Equation (1) is called a first order difference equation. It is first order because the
value of y,+1 depends on the value of y, but not on earlier values y,_1, y,-2, and so
forth. As for differential equations, the difference equation (1) is linear if f is a linear
function of y,; otherwise, it is nonlinear. A solution of the difference equation (1} is
a sequence of numbers yg, y1, y2,. . . that satisfy the equation for each »n. In addition
to the difference equation itself, there may also be an initial condition

o=« (2)

that prescribes the value of the first term of the solution sequence,
We now assume temporarily that the function f in Eq. (1) depends only on y,, but
not on #. In this case

Y+l =f0’n): ’120,1,2,.... (3)
If yg is given, then successive terms of the solution can be found from Eq. (3). Thus
n =f(), '

and

y2=f0n) = flif 0o)].

The quantity f{f(yp)} is called the second iterate of the difference equation and is
sometimes denoted by f2(yo). Similarly, the third iterate y; is given by

i =f0n) =fFFOn = (),

and so on. In general, the nth iterate y, is

yn =fOn-1) =" (0).

This procedure is referred to as iterating the difference equation. It is often of pri-
mary interest to determine the behavior of y, as n — co; in particular, does y, ap-
proach a limit, and if so, what is it?

Solutions for which y, has the same value for all # are called equilibrium solufions.
Theyare frequently of specialimportance, just asin the study of differential equations.
If equilibrium solutions exist, one can find them by setting y,.1 equal to y, in Eq. (3)
and solving the resulting equation

Yn =f () (4)
for y,.

Linear Equations. Suppose that the population of a certain species in a given region in
year n -+ 1, denoted by y, 41, is a positive multiple p, of the population y, in year n;
that is,

Yn+1 = PnYn, n=90,172,.... (5)
Note that the reproduction rate p, may differ from year to year. The difference
equation (5) is Jinear and can easily be solved by iteration. We obtain
Yi = pPoXo,
Y2 = P1¥1 = P1P0Y0,
and, in general, '
Yn=Pp-icopoYo, =12, (6)
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Thus, if the initial population yp is given, then the population of each succeeding
generation is determined by Eq. (6). Although for a population problem p,, is intrin-
sically positive, the solution (6) is also valid if p, is negative for some or all values of
n. Note, however, that if p, is zero for some n, then y,,, and all succeeding values of
y are zero; in other words, the species has become extinct.

If the reproduction rate p, has the same value p for each n, then the difference
equation {5) becomes

Ynel = PY¥n )]
and its solution is
A Yn = £"Y0. ®)
Equation (7) also has an equilibrium solution, namely, y, = 0 for all n, corresponding
to the initial value yg = 0. The limiting behavior of y, is easy t0 determine from
Eq. (8). In fact,
0, ifjpl < 1;
lilnn—roo Yn=4Y0, lfp = 1: (9)
does not exist, otherwise.

In other words, the equilibrium solution y, = 0 is asymptotically stable for [o| < 1
and unstable if [p[ > 1.

Now we will modify the population model represented by Eq. (5) to include the
effect of immigration or emigration. If b, is the net increase in population in year
n due to immigration, then the population in year n + 1 is the sum of those due to
natural reproduction and those due to immigration. Thus

Yn+1 = p¥n + bn, n=012,..., (10)
where we are now assum'mg that the reproduction rate p is constant. We can solve
Eq. (10) by iteration in the same manner as before. We have

Y1= pyo + bo,
y2 = p(pyo + bo) + b1 = p’yo + pbo + b1,
¥3 = p(p2y0 + pbo + b1) + by = p’yo + p2bo + pby + by,
and so forth. In general, we obtain

n-1I

Yn=P"yo+ 0" bo +- -+ b2+ b =p"yo+ ) p" b (A1)
j=0

Note that the first term on the right side of Eq. (11) represents the descendants of
the original population, while the other terms represent the population in year n
resulting from immigration in all preceding years.

In the special case where b, = b # 0 for all n, the difference equation is

Yn+1 = pyn +b, (12)
and from Eq. (11) its solution is

Yn=p"Yo+A4p+p 4+ +0" Db (13)
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If p # 1, we can write this solution in the more compact form

1~p"
Yn=#"yot T pb, (14)
where again the two terms on the right side are the effects of the original population
and of immigration, respectively. Rewriting Eq. (14) as

Yn = (yo - IL) + % (15)
makes the long-time behavior of y, more evident. It follows from Eq. (15) that
Y=+ b/(1—p)if [p|<1l. If |p|>1 or if p=—1 then y, has no limit unless

= b/(1 — p). The quantity b/{(1 — p), for p # 1, is an equilibrium solution of
Eq. (12), as can readily be seen directly from that equation. Of course, Eq. (14)
isnotvalid for p = 1. To deal with that case, we must return to Eq. (13) and let p = 1

there. It follows that
Yn=Yyo +nb, (16)

so in this case y, becomes unbounded as n — oo.

The same model also provides a framework for solving many problems of a finan-
cial character. For such problems y, is the account balance in the nth time period,
pn =1+ rs, where r, is the interest rate for that period, and b, is the amount
deposited or withdrawn. The following example is typical.

A recent college graduate takes out a $10,000 loan to purchase a car. If the interest rate is
12%, what monthly payment is required to pay off the loan in 4 years?

The relevant difference equation is Eq. (12), where y, is the loan balance outstanding in the
nth month, p = 1 -+ r, where r is the interest rate per month, and b is the monthly payment.
Note that b must be negative and p = 1.01, corresponding to a monthly interest rate of 1%.

The solution of the difference equation {12} with this value for p and the initial condition
¥o = 10,000 is given by Eq. (15); that is,

¥ = (1.01)"(10,000 + 100b) — 100b. an

The payment b needed to pay off the loan in 4 years is found by setting ys;3 = 0 and solving
for b. This gives
(1.01)*%
= -100—— = -263.34, 18
b 00(1.01)48 1 (18)
The total amount paid on the loan is 48 times b, or $12,640.32, Of this amount, $10,000 is
repayment of the principal and the remaining $2640.32 is interest.

Nonlinear Equations. Nonlinear difference equations are much more complicated and
have much more varied solutions than linear equations. We will restrict our attention
to a single equation, the logistic difference equation

Ynil = PYn (1 - %) ; (19)
which is analogous to the logistic differential equation
dy y
-2 = — 2
ar = ( K ) 20)
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that was discussed in Section 2.5. Note that if the derivative dy/d! in Eq. (20) is
replaced by the difference (y,+1 — y»)/h, then Eq. (20) reduces to Eq. (19) with
p=1-+hrand k = (1-+ hr)K/hr, To simplify Eq. (19) a little more, we can scale the
variable y, by introducing the new variable u, = y,/k. Then Eq. (19) becomes

Unp1 = pun(l — up), (21)

where p is a positive parameter.

We begin our investigation of Eq. (21) by seeking the equilibrium, or constant, so-
lutions. These can be found by setting u,, equal to u, in Eq. (21), which corresponds
to setting dy/dt equal to zero in Eq. (20). The resulting equation is

Un = pu — pus, (22)
so it follows that the equilibrium solutions of Eq. (21) are
p—-1
u, =0, Up = ——. 23
” (4 p ( )

The next question is whether the equilibrium solutions are asymptotically stable or
unstable. That is, for an initial condition near one of the equilibrium solutions, does
the resulting solution sequence approach or depart from the equilibrium solution?
One way to examine this question is by approximating Eq. (21) by a linear equation
in the neighborhood of an equilibrium solution. For example, near the equilibrium
solution u, = 0, the quantity u2 is small compared to uj, itself, so we assume that we
can neglect the quadratic term in Eq. (21) in comparison with the linear terms, This
leaves us with the linear difference equation

Upy) = Plp, (24)

which is presumably a good approximation to Eq. (21) for u, sufficiently near zero.
However, Eq. (24) is the same as Eq. (7), and we have already concluded, in Eq. (9),
that u, ~> 0 as n — oo if and only if [p| <1, or (since p must be positive) for
0 < p < 1. Thusthe equilibrium solution u, = 01is asymptotically stable for the linear
approximation (24) for this set of p values, so we conclude that it is also asymptoti-
cally stable for the full nonlinear equation (21). This conclusion is correct, aithough
our argument is not complete. What is lacking is a theorem stating that the solutions
of the nonlinear equation (21) resemble those of the linear equation (24) near the
equilibrium solution &, = 0. We will not take time to discuss this issue here; the same
question is treated for differential equations in Section 9.3.

Now consider the other equilibrium solution u, = (2 — 1)/p. To study solutions
in the neighborhood of this point, we write

-1
Uy, = pT -+ Uy, (25)

where we assume that v, is small. By substituting from Eq. (25) in Eq. (21) and
simplifying the resulting equation, we eventually obtain

Unp1 = (2 — P)tn — PV (26)

Since v, is small, we again neglect the quadratic term in comparison with the linear
terms and thereby obtain the linear equation

Untt = (2 — p)Vn. 27
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Referring to Eq. {9) once more, we find that v, — 0 asn — oo for |2 — p] < 1, that
is, for 1 < p < 3. Therefore we conclude that, for this range of values of g, the
equilibrium solution i, = {p — 1)/p is asymptotically stable.

Figure 2.9.1 contains the graphs of solutions of Eq. (21) for p = 0.8, p = 1.5, and
£ = 2.8, respectively. Observe that the solution converges to zero for o = 0.8 and
to the nonzero equilibrium solution for p = 1.5 and p = 2.8. The convergence is
monotone for p = 0.8 and p = 1.5 and is oscillatory for p = 2.8. The graphs shown
are for particular initial conditions, but the graphs for other initial conditions are
similar.

(a}

B n

FIGURE 2.9.1 Solutions of ity = pttn(1 —utn): (@) p =08, (b) p = 1.5:(c) p=2.8.

Another way of displaying the solution of a difference equation is shown in
Figure 2.9.2. In each part of this figure the graphs of the parabola y = px(1 — x)
and of the straight line y = x are shown. The equilibrium solutions correspond to
the points of intersection of these two curves. The piecewise linear graph consisting
of successive vertical and horizontal line segments, sometimes called a stairstep di-
agram, represents the solution sequence. The sequence starts at the point ug on the
x-axis. The vertical line segment drawn upward to the parabola at ug corresponds to
the calculation of pug{l — ug) = wy. This value is then transferred from the y-axis to
the x-axis; this step is represented by the horizontal line segment from the parabola
to the line y = x. Then the process is repeated over and over again. Clearly, the
sequence converges to the origin in Figure 2.9.22 and to the nonzero equilibrium
solution in the other two cases. '

To summarize our results so far: The difference equation (21) has two equilib-
rium solutions, u, = 0 and u, = (0 — 1)/p; the former is asymptotically stable for
0 < p < 1,and the latter is asymptotically stable for 1 < p < 3. When p = 1 the two
equilibrium solutions coincide at u = 0; this solution can be shown to be asymptoti-
cally stable. In Figure 2.9.3 the parameter p is plotted on the horizontal axis and x on
the vertical axis. The equilibrium solutions 1 = 0 and u = (p — 1)/p are shown. The
intervals in which each one is asymptotically stable are indicated by the solid portions
of the curves. There is an exchange of stability from one equilibrium solution to the
otherat p = 1.
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o . uo:= 0_3 -
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{e)
FIGURE 2.9.2 Iterates of u,. = pity(1 — u,). {a) p=0.8;(b} p = 1.5;(c} p == 2.8.

FIGURE 293 Exchange of stébility foru,,1 = bu,,(l - Iy).



126

Chapter 2. First Order Differential Equations

(a)

-

{b)
FIGURE 294 A solution of i, = pita(1 — u,) for p = 3.2; period 2. (a) u, versus n;
(b) a two-cycle.

For p > 3 neither of the equilibrium solutions is stable, and the solutions of
Eq. (21) exhibit increasing complexity as p increases. For p somewhat greater than 3,
the sequence u, rapidly approaches a steady oscillation of period 2; that is, u, oscil-
lates back and forth between two distinct values. For p = 3.2 a solution is shown in
Figure 2.9.4. For n greater than about 20, the solution alternates between the values
0.5130 and 0.7995. The graph is drawn for the particular initial condition ugp = 0.3,
but it is similar for all other initial values between 0 and 1. Figure 2.9.4b also shows
the same steady oscillation as a rectangular path that is traversed repeatedly in the
clockwise direction. At about p = 3.449, each state in the oscillation of period 2 sep-
arates into two distinct states, and the solution becomes periodic with period 4; see
Figure 2.9.5, which shows a solution of period 4 for p = 3.5. As p increases further,
periodic solutions of period 8, 16, . .. appear. The appearance of a new solution at a
certain parameter value is called a bifurcation.
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(a)

(B
FIGURE 2.9.5 A solution of u,; = pus{1 — ut,) for p = 3.5; period 4, (@) u, versus n;
(b) a four-cycle.

The p-values at which the successive period doublings occur approach a limit that
is approximately 3.57. For p > 3.57 the solutions possess some regularity, but no
discernible detailed pattern for most values of p. For example, a solution for p = 3.65
is shown in Figure 2.9.6. Tt oscillates between approximately 0.3 and 0.9, but its fine
structure is unpredictable. The term chaotic is used to describe this situation. One of
the features of chaotic solutions is extreme sensitivity to the initial conditions. This
is illustrated in Figure 2.9.7, where two solutions of Eq. (21) for p = 3.65 are shown.
One solution is the same as that in Figure 2.9.6 and has the initial value up = 0.3,
while the other solution has the inifial value g = 0.305. For about 15 iterations the
two solutions remain close and are hard to distinguish from each other in the figure.
After that, although they continue to wander about in approximately the same set
of values, their graphs are quite dissimilar. It would certainly not be possible to use
one of these solutions to estimate the value of the other for values of n larger than
about 15.

Itis only comparatively recently that chaotic solutions of difference and differential
equations have become widely known. Equation (20) was one of the first instances
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FIGURE 2.9.6 A solution of 1,y = pu,(1 — u,) for p = 3.65; a chaotic solution,
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FIGURE 29.7 Two solutions of u,.; = pu,(t — u,) for p = 3.65; 15 = 0.3 and 1y = 0.305.

of mathematical chaos to be found and studied in detail, by Robert May® in 1974
On the basis of his analysis of this equation as a model of the population of certain
insect species, May suggested that if the growth rate p is too large, then it will be
impossible to make effective long-range predictions about these insect populations.

R, M. May, “Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and
Chaos,” Science 186 (1974), pp. 645-647; "Biological Populations Obeying Difference Equations: Stable
Points, Stable Cycles, and Chaos,” Journal of Theoretical Biology 51 (1975), pp. 511-524.
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The occurrence of chaotic solutions in simple problems has stimulated an enormous
amount of research in recent years, but many questions remain unanswered. It is
increasingly clear, however, that chaotic solutions are much more common than was
suspected at first and that they may be a part of the investigation of a wide range of
phenomena.

PROBLEMS

In each of Problems 1 through 6 solve the given difference equation in terms of the initial
value yg. Describe the behavior of the solution as n — co.

n+41
1. Yae1 =-0.9y, - 2. Yyt = nt 2)’n
n+3
3. yap =/~ Tion 4. yny1 = (=1)"*1y,
5. ¥ap1 = 0.5y, + 6 6. yu41 =03y, + 6

7. Find the effective annual yield of a bank account that pays interest at a rate of 7%,
compounded daily; that is, divide the difference between the final and initial balances by
the initial balance.

8. An investor deposits $1000 in an account paying interest at a rate of 8% compounded
monthly, and also makes additional deposits of $25 per month. Find the balance in the
account after 3 years.

9. A certain college graduate borrows $8000 to buy a car. The lender charges interest at an
annual rate of 10%. What monthly payment rate is required to pay off the loan in 3 years?
Compare your result with that of Problem 9 in Section 2.3,

10. A homebuyer wishes to take out a mortgage of $100,000 for a 30-year period. What
monthly payment is required if the interest rate is (a) 9%, (b) 10%, (c) 12%?

11. A homebuyer takes outa mortgage of $100,000 with an interest rate of 9%. What monthly
payment is required to pay off the loan in 30 years? In 20 years? What is the total amount
paid during the term of the loan in each of these cases?

12. If the interest rate on a 20-year mortgage is fixed at 10% and if a monthly payment of
$1000 is the maximum that the buyer can afford, what is the maximum mortgage loan that
can be made under these conditions?

13. A homebuyer wishes to finance the purchase with a $95,000 mortgage with a 20-year term.
What is the maximum interest rate the buyer can afford if the monthly payment is not to
exceed $3007

The Logistic Difference Equation. Problems 14 through 19 deal with the difference equation

(21), gy = puta(l — u,).

14. Carry out the details in the linear stability analysis of the equilibrium solution
ity = (p ~ 1)/p. That is, derive the difference equation (26) in the text for the pertur-
bation v,. -

é& 15. (a) For p = 3.2 plot or calculate the solution of the logistic equation (21) for several

initial conditions, say, iy = 0.2, 0.4, 0.6, and 0.8. Observe that in each case the solution
approaches a steady oscillation between the same two values. This illustrates that the
long-term behavior of the solution is independent of the initial conditions.

(b) Make similar calculations and verify that the nature of the solution for large n is
independent of the initial condition for other values of p, such as 2.6,2.8,and 3.4.
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16.

& 1.

& 18.

Assume that p > 1in Eq. (21).

(a) Draw a qualitatively correct stairstep diagram and thereby show that if 115 < 0, then
Ity —> —00 85 N —> 0.

{b) In a similar way, determine what happens asn - co if up > 1.

The solutions of Eq. (21) change from convergent sequences to periodic oscillations of
period 2 as the parameter p passes through the value 3. To see more clearly how this
happens, carry out the following calculations.

(2) Plot or calculate the solution for p = 2.9, 2.95, and 2.99, respectively, using an initial
value 15 of your choice in the interval {0,1). In each case estimate how many iterations
are required for the solution to get “very close” to the limiting value. Use any convenient
interpretation of what “very close™ means in the preceding sentence.

{b) Plot or calculate the solution for p = 3.01, 3.05, and 3.1, respectively, using the same
initial condition as in part {a). In each case estimate how many iterations are needed to
reach a steady-state oscillation. Also find or estimate the two values in the steady-state
oscillation. ‘

By calculating or plotting the sotution of Eq. (21) for different values of p, estimate the
value of p at which the solution changes from an oscillation of period 2 to one of period
4. In the same way, estimate the vaiue of p at which the solution changes from period 4
to period 8.

. Let px be the value of p at which the solution of Eq. {21) changes from period 2¢-! to

period 2%, Thus, as poted in the text, py = 3, p» = 3.449, and p3 = 3.544.

{a) Using these values of py, g2, and ps, or those you found in Problem 18, calculate
(P2 — o) (P3 ~ pa).

{b) Let 8, = (pn — Pn-1)/{Prsr — pn). It has been shown that 5, approaches a limit & as

n — 0o, where & = 4.6692 is known as the Feigenbaum * number. Determine the per-
centage difference between the limiting value & and §;, as calculated in part (a).

{c) Assumethat$; = & and use this relation to estimate py, the value of p at which solutions
of period 16 appear,

{d) By plotting or calculating solutions near the value of p found in part {c), try to detect
the appearance of a period 16 solution.

{e) Observe that
pm=ptpr—p)+@m—pm)+- -+ (00— pr-1)

Assuming that (py — p3) = (23 — 22087, (p5 ~ pa) = (g3 — £2367%, and so forth, express p,
as a geometric sum. Then find the limit of p, as # —> co. This is an estimate of the value
of p at which the onset of chaos occurs in the solution of the logistic equation {21).

2This result for the logistic difference equation was discovered by Mitchell Feigenbaum (1944 - )
in August 1975, while he was working at the Los Alamos National Laboratory. Within a few weeks he
had established that the same limiting value also appears in a large class of period-doubling difference
equations. Feigenbaum, who has a doctorate in physics from M.LT, is now at Rockefeller University.
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Miscellaneous Problems. One of the difficulties in solving first order equations is that there
are several methods of solution, each of which can be used on a certain type of equation. It
may take some time to become proficient in matching solution methods with equations. The
first 32 of the following problems are presented to give you some practice in identifying the
method or methods applicable to a given equation. The remaining problems involve certain
types of equations that can be solved by specialized methods.

PROBLEMS

In each of Problems 1 through 32 solve the given differential equation. If an initial condition

is given, also find the solution that satisfies it.

1

11.
13.

15.

17.
19.

21.

dy_x3—2y
dx ~  x
dy 2 +y
, = = T, 0 =0
dx 3+3y'—x Y0
dy 2ty +1
dx x2 4 2xy
dy b .
2= Hint: Let u = x%.
dx  xy+y? "
dy __2.ry+l
dx x4+

(X +yde+(x+e)dy=0
xdy ~ydx = (xy) dx
dy
& et
(e'+1)dx y—y
dy 2
2= 3
dx e+ .
xdy —ydx =2x%dy, y()=-2

xy =y +xet*

23 xy +y—ye¥ =0

2
x y x x
oY Va2 Yy =0

25. (2), _tz_,_yz) t'i'(xz_,_yz J',z) Y

26,

28,

30.

32.

2 _
2y +Ddx + (.tx_y) dy=0

dy 3xt-2y—y

dx ~  2x+3xy?

dy 2

—_—— e, 0 =1

- 1-2xp y(©)

d 3¢

b _39AY )=
dx 2x3 + 3xy

2.

10.

12,

14,

16.

18.

20.

22,

24,

(x+y)de —(x—y)dy=0

.(x+e)dy— dx=0

dy
A =1-y, _
xdx+xy y y(1)=0
dy sinx
L x—=~+2y=—-, 2)=1
xdx 4 x ¥

(35 +2xy) dx — (2xy + x*)dy =0

dy 1.

&’ 1¥e
(x+y)dx+ (x+2y)dy =0,
dy _x+y

de  x?

y(2)

2y +3x)dx = —xdy

y":e“’y
dy x*—-1
s UG bk

2sinycosxdx + cosysinxdy =0

=3

27, (cos2y —sinx)dx —2tanxsin2ydy = 0

29.

Q_2y+\lxz—y2
de 2x

31, (Fy+xy—ydx+ Py —2%)dy=0
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33. Riccati Equations, The equation
d
2 = a0+ a0y + a0y’

is known as a Riccati?? equation. Suppose that some particular solution y, of this equation

is known. A more peneral solution containing one arbitrary constant can be obtained

through the substitution

1
y=n+ 0

Show that v(¢) satisfies the first order linear equation

dv

b 2 — ga.
7 (92 +2g3y1)v — ¢
Note that v(f) will contain a single arbitrary constant.

34. Using the method of Problem 33 and the given particular solution, solve each of the
following Riccati equations:

(a) ¥ =141 -2ty 4y} M =t

1 1
(b) y‘=—t—,_—x+y’; nw=-

{
dy
(©) dr

2cos? { — sin”
cos tzc::r; t+y2; S = sin
35. The propagation of a single action in a large population (for example, drivers turning on
headlights at sunset) often depends partly on external circumstances (gathering darkness)
and partly on a tendency to imitate others who have already performed the action in
question. In this case the proportion y(f) of people who have performed the action can
be described? by the equation

dy/fdt = (1 — y)[x(t) + by], (i)

where x(r) measures the external stimulus and b is the imitation coefficient.

{a) Observe that Eq. (i) is a Riccati equation and that y; (f) = 1 is one solution. Use the
transformation suggested in Problem 33, and find the linear equation satisfied by v{?).

{b) Find v{f) in the case that x(f) = af, where a is a constant. Leave your answer in the
form of an intepral.

Some Special Second Order Equations. Second order equations involve the second deriva-
tive of the unknown function and have the peneral form y” = f(r, y, ). Usually such equations
cannot be solved by methods designed for first order equations. However, there are two types
of second order equations that can be transformed into first order equations by a suvitable
change of variable. The resulting equation can sometimes be solved by the methods presented
in this chapter. Problems 36 through 51 deal with these types of equations.

ZRiccati equations are named for Jacopo Francesco Riccati (1676-1754), 2 Venetian nobleman, who
declined university appointments in Italy, Austria, and Russia to pursue his mathematical studies privately
at home. Riccali studied these equations extensively; however, it was Euler (in 1760) who discovered the
Tesult stated in this problem.

BSee Anatol Rapoport, "Contribution to the Mathematical Theory of Mass Behavior: 1. The Propagation

of Single Acts,” Bulletin of Mathematical Biophysics 14 (1952), pp. 159169, and John Z. Hearon, "Note
on the Theory of Mass Behavior,” Bulletin of Mathematical Biophysics 17 (1955}, pp. 7-13.
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REFERENCES

Equations with the Dependent Variable Missing. For a second order differential equation
of the form y” == f(1,y'), the substitution v = y’, v’ = y” leads to a first order equation of the
form v' = f(r, v). If this equation can be solved for v, then y can be obtained by integrating
dy/dt = v. Note that one arbitrary constant is 6btained in solving the first order equation for
v, and a second is introduced in the integration for y. In each of Problems 36 through 41 use
this substitution to solve the given equation.

6 2y +2ay—-1=0, >0 My +y=1, >0
38y +1(y)? =0 9.2+ ()Y =2y, >0
0 y+y=e¢" 4L 2y’ =(», >0

Equations with the Independent Variable Missing. Consider second order differential equa-
tions of the form y” = f(y, y'),in which the independent variable t does not appear explicitly, If
welet v = y/,then we obtain dv/df = f(y, v). Since the right side of this equation depends on y
and v, rather than on t and v, this equation contains too many variables. However, if we think
of y as the independent variable, then by the chain rule, dv/dt = (dv/dy)(dy/dt) = v(dv/dy).
Hence the original differential equation can be written as v(dv/dy) = f(y,v). Provided that
this first order equation can be solved, we obtain v as a function of y. A relation between y
and t results from solving dy/dt = w(y), which is a separable equation. Again, there are two
arbitrary constants in the final result. In each of Problems 42 through 47 use this method to
solve the given differential equation,

2. yy'+ (P =0 43.y+y=0
4. y' +y(¥» =0 45 2%y + 2p(y) =1
46. yy' — (¥)’ =0 4. y'+ (Y =2e7

Hint: In Problem 47 the transformed equation is a Bernoulli equation. See Problem 27 in
Section 2.4.

In each of Problems 48 through 51 solve the given initial value problem using the methods of
Problems 36 through 47.

48, yy' =2, yo0y =1, yd =2

49. y' =3y =0, y(0)=2, y@)=4

50. (1+2)y"+2ty +3t72 =0, yy=2, yd)y=-1

51 yy'—1 =0, y=2 yi)=1

The two books mentioned in Section 2.5 are
Bailey, N. T. 1, The Mathematical Theory of Infectious Diseases and Iis Applications (2nd ed.) (New York:
Hafner Press, 1975).

Clark, Colin W., Mathematical Biceconomics (2nd ed.) (New York: Wiley-Interscience, 1990).

A good introduction to population dynamics in general is
Frauenthal, J. C.,, Introduction to Population Modeling (Boston: Birkhauser, 1980).

A fuller discussion of the proof of the fundamental existence and uniqueness theorem can be found in
many more advanced books on differential equations. Two that are reasonably accessible to elementary
readers are
Coddington, E. A., An Intreduction to Ordinary Differential Equations (Englewood Cliffs, NJ: Prentice-

Hall, 1961; New York: Dover, 1989).

Brauer, F, and Nohel, )., The Qualitative Theory of Ordinary Differential Equations (New York: Benjamin,

1969; New York: Dover, 1989).
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A valuable compendium of methods for solving differential equations is
Zwillinger, D., Handbook of Differential Equations (3rd ed.) (San Diego: Academic Press, 1998).

For further discussion and examples of nonlinear phenomena, including bifurcations and chaos, see
Strogatz, Steven H., Nonlinear Dynamics and Chaos (Reading, MA: Addison-Wesley, 1994).

A general reference on difference equations is

Mickens, R. E., Difference Equations, Theory and Applications (2nd ed.) (New York: Van Nostrand
Reirhold, 1990).
An elementary treatment of chaotic solutions of difference equations is

Devaney, R. L., Chaos, Fractals, and Dynamics (Reading, MA: Addison-Wesley, 1990).
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3

Second Order Linear

F.quations

Linear equations of second order are of crucial importance in the study of differential
equations for two main reasons. The first is that linear equations have a rich theo-
retical structure that underlies a number of systematic methods of solution, Further,
a substantial portion of this structure and of these methods is understandable at a
fairly elementary mathematical level. In order to present the key ideas in the sim-
plest possible context, we describe them in this chapter for second order equations,
Another reason to study second order linear equations is that they are vital to any
serious investigation of the classical areas of mathematical physics. One cannot go
very far in the development of fluid mechanics, heat conduction, wave motion, or
electromagnetic phenomena without finding it necessary to solve second order lin-
ear differential equations. As an example, we discuss the oscillations of some basic
mechanical and electrical systems at the end of the chapter.

3.1 Homogeneous Equations with Constant Coefficients

A second order ordinary differential equation has the form

2 =r(.2). o

where f is some given function. Usually, we will denote the independent variable
by ¢ since time is often the independent variable in physical problems, but some-
times we will use x instead. We will use y, or occasionally some other letter, to
designate the dependent variable. Equation (1) is said to be linear if the function f
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has the form p d
DN _ iy —pn® 2
f(t,y, dt) =gt —p( 7 gy, (2)

thatis,if f islinearin yand y'. In Eq. (2) g,p, and g are specified functions of the inde-
pendent variable ¢ but do not depend on y. In this case we usually rewrite Eq. (1) as

¥y +p@y +q0y =g®, (3)

where the primes denote differentiation with respect to t. Instead of Eq. (3), we
often see the equation

Py" + Qy + R@)y = G(). (4)

Of course, if P(f) # 0, we can divide Eq. (4) by P(f) and thereby obtain Eq. (3} with
_ o _Ro GO

p)= 0" g{t) = Q) gl) = PO) ()

In discussing Eq. (3} and in trying to solve it, we will restrict ourselves to intervals in
which p, g, and g are continuous functions.!

If Eq. (1) is not of the form (3} or (4), then it is called nonfinear. Analytical
investigations of nonlinear equations are relatively difficult, so we will have little to
say about them in this book. Numerical or geometical approaches are often more
appropriate, and these are discussed in Chapters 8 and 9.

An initial value problem consists of a differential equation such as Eq. (1), (3), or
(4) together with a pair of initial conditions

y(to) =yo,  ¥'(to) =¥o (6)

where yp and y, are given numbers. Observe that the initial conditions for a second
order equation prescribe not only a particular point (fy, yo) through which the graph of
the solution must pass, but also the slope y, of the graph at that point. Itis reasonable
to expect that two initial conditions are needed for a second order equation because,
roughly speaking, two integrations are required to find a solution and each integration
introduces an arbitrary constant. Presumably, two initial conditions will suffice to
determine values for these two constants.

A second order linear equation is said to be homogeneous if the term g(f) in
Eq. (3), or the term G(r) in Eq. (4), is zero for all 1. Otherwise, the equation is
calied nonhomogeneous. As a result, the term g(f), or G(¢), is sometimes called
the nonhomogeneous term. We begin our discussion with homogeneous equations,
which we will write in the form

Pyy" + Q)Y + Ry =0. (7)

Later, in Sections 3.6 and 3.7, we will show that once the homogeneous equation
has been solved, it is always possible to solve the corresponding nonhomogeneous
equation (4), or at least to express the solution in terms of an integral. Thus the
problem of solving the homogeneous equation is the more fundamental one.

YThere is a corresponding treatment of higher order linear equations in Chapter 4. Jf you wish, you may
read the appropriate parts of Chapter 4 in parallel with Chapter 3.
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In this chapter we will concentrate our attention on equations in which the func-
tions P, O, and R are constants. In this case, Eq. (7) becomes

ay’ +by +cy=0, (8)

where a, b, and ¢ are given constants. It turns out that Eq. (8) can always be solved
easily in terms of the elementary functions of calculus. On the other hand, it is
usually much more difficult to solve Eq. (7) if the coefficients are not constants, and
a treatment of that case is deferred until Chapter 5.

Before taking up Eq. (8), let us first gain some experience by looking at a simple,
but typical, example. Consider the equation

)"”“)’30. (9)

which is just Eq. (8) witha=1,b =0, and ¢ = —1, In words, Eq. (9) says that we
seek a function with the property that the second derivative of the function is the
same as the function itself. A little thought will probably produce at least one well-
known function from caleulus with this property, namely, yi (f) = ¢’, the exponential
function. A little more thought may also produce a second function, y,;(¢) = .
Some further experimentation reveals that constant multiples of these two solutions
are also solutions. For example, the functions 2e' and Se™* also satisfy Eq. (9), as
you can verify by calculating their second derivatives. In the same way, the functions
ery1(t) = c1€' and ¢y, (f) = coe” satisfy the differential equation (9) for all values of
the constants ¢; and ¢;. Next, it is of paramount importance to notice that any sum
of solutions of Eq. (9) is also a solution. In particular, since ¢1y1 () and cay2(t) are
solutions of Eq. (9), so is the function

y =cyi(t) + caya(t) = cre' + e’ (10)

for any values of ¢; and ¢;. Again, this can be verified by calculating the second
derivative y” from Eq. (10). We have y’ = ¢j¢' — ¢3¢ and y* = ¢’ + c2¢7*; thus y”
is the same as y, and Eq. (9) is satisfied.

Let us summarize what we have done so far in this example. Once we notice
that the functions y; (f) = e’ and y,(f) = e~ are solutions of Eq, (9), it follows that
the general linear combination (10) of these functions is also a solution. Since the
coefficients ¢; and ¢; in Eq. (10) are arbitrary, this expression represents an infinite
family of solutions of the differential equation (9).

It is now possible to consider how to pick out a particular member of this infinite
family of solutions that also satisfies a given set of initia] conditions. For example,
suppose that we want the solution of Eq. (9) that also satisfies the initial conditions

y0) =2, y(0)=-1 (11)

In other words, we seek the solution that passes through the point (0, .2) and at that
point has the slope —1. First,weset? = 0and y = 2in Eq. (10); this gives the equation

cLter=2. (12)
Next, we differentiate Eq. (10) with the result that

¥y =1 — e,
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Then, setting f = 0 and y' = —1, we obtain
1 — ¢y = —1. (13)
By solving Egs. (12) and (13) simultaneously for ¢, and ¢, we find that
a=31 =31 (14)

Finally, inserting these values in Eq. (10), we obtain
y=3¢+3e7, (15)

the solution of the initial value problem consisting of the differential equation (9)
and the initial conditions (11).
We now return to the more general equation (8),

ay’' +by +cy=0,

which has arbitrary (real) constant coefficients. Based on our experience with Eq. (9),
let us also seek exponential solutions of Eq. (8). Thus we suppose that y = ¢, where
r is a parameter to be determined. Then it follows that y’ = re™ and y” = r?e™. By
substituting these expressions for y,y’, and y” in Eq. (8), we obtain

(ar 4+ br + c)e” =0,

or, since g #£ 0,
ar’+br+c =0, (16)

Equation (16) is called the characteristic equation for the differential equation (8).
Its significance lies in the fact that if 7 is a root of the polynomial equation (16), then
y =€” is a solution of the differential equation (8). Since Eq. (16) is a quadratic
equation with real coefficients, it has two roots, which may be real and different, real
but repeated, or complex conjugates. We consider the first case here and the latter
two cases in Sections 3.4 and 3.5.

Assuming that the roots of the characteristic equation (16) are real and different,
Jet them be denoted by r, and ry, where r; # r2. Then yy(t) = e™ and y,(f) = " are
two solutions of Eq. (8). Just as in the preceding example, it now follows that

y = cyil®) + e2y2(f) = cr1e™ + c2e™ (a7
is also a solution of Eq. (8). To verify that this is so, we can differentiate the expression
in Eq. (17); hence

¥y =c1rie™ + carae™ (18)

and
y' = cyrie + corie’™. (19)

Substituting these expressions for y, y', and y” in Eq. (8) and rearranging terms, we
obtain
ay” + by’ + ¢y = ciar? + by + c)e™ + c2ar; + bry + c)e™. (20)

The quantity in each of the parentheses on the right side of Eq. (20) is zero because
r1 and r; are roots of Eq. (16); therefore, y as given by Eq. (17) is indeed a solution
of Eg. (8), as we wished to verify.
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Now suppose that we want to find the particular member of the family of solutions
(17) that satisfies the initial conditions (6),

Yto) =yo, ° ¥'(t) = y;-
By substituting t = #p and y = yp in Eq. (17), we obtain
c1€"® 4 260 = yq. (21)
Similarly, setting t = tp and y' = y; in Eq. (18) gives
c1r1e"™® 4 ¢carpe™ =y, (22)
On solving Eqgs. (21) and (22) simultaneously for c; and ¢, we find that

— yor r —
yl-i—"l yf Zgrih, y—-f_ ! r}’f: g2, (23)
-1 1—=rn

] =

Recall that ry — r, # 0 so that the expressions in Eq. (23) always make sense. Thus,
no matter what initial conditions are assigned—that is, regardless of the values of 1,
o, and yg in Eqs. (6)—it is always possible to determine ¢; and ¢; so that the initial
conditions are satisfied. Moreover, there is only one possible choice of ¢; and ¢
for each set of initial conditions. With the values of ¢; and ¢; given by Eq. (23), the
expression (17) is the solution of the initial value problem

ay"+by +ey=0, yllo)=yo. Yto) =Y, (24)

It is possible to show, on the basis of the fundamental theorem cited in the next
section, that all solutions of Eq. (8) are included in the expression (17), at least for the
case in which the roots of Eq. (16) are real and different. Therefore, we call Eq. (17)
the general solution of Eq. (8). The fact that any possible initial conditions can be
satisfied by the proper choice of the constants in Eq. (17) makes more plausible the
idea that this expression does include all solutions of Eq. (8).

Find the general solution of
Y +5/ +6y=0. (25)

We assume that y = ¢, and it then follows that r must be a root of the characteristic equation
P4Sr46=0+2r+3)=0.
Thus the possible values of r are r; = -2 and r; = --3; the general solution of Eq. (25) is

y=cre ¥ e, (26)

Find the solution of the initial value problem
Y45 +6y=0  y0)=2, y(0)=3 27)

The general solution of the differential equation was found in Example 1 and is given by
Eq. {26). To satisfy the first initial condition we set f = 0 and y = 2 in Eq. (26); thus ¢; and ¢

must satisfy
ag+eg=2 (28)
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To use the second initial condition we must first differentiate Eq. (26). This gives
y = —260e7¥ — 3. Then, setting t = 0 and y’ = 3, we obtain

-—2C1 —_ 3C2 =3, (29)

By solving Egs. (28) and (29) we find that ¢; = 9 and ¢; = ~7. Using these values in the
expression (26), we obtain the solution

y=9¢ ¥ -7¢¥ (30)

of the initial value problem (27). The graph of the solution is shown in Figure 3.1.1.
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FIGURE 311 Solutionofy”"+5y +6y=0, y0) =2, y(0)=3.

Find the solution of the initial value problem

EXAMPLE . , '
If y = €7, then the characteristic equation is
4 —8r4+3=0
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FIGURE 312 Solution of 4" — 8y + 3y =0, y(0) =2, ¥(0) = 0.5.
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and its roots are r = 3/2 and r = 1/2. Therefore the general solution of the differential equa-
tion is

j; =17 ez (32)
Applying the initial conditions, we obtain the following two equations for ¢; and ¢z
C|+C2=2, %C1+%C2=%.
‘The solution of these equations is¢; = —3,¢; = 2, and the solution of the initial value problem
(31)is
y=—3&7 + 3% (33)

Figure 3.1.2 shows the graph of the solution.

The solution (30) of the initial value problem (27) initially increases (because its initial slope
is positive) but eventually approaches zero (because both terms involve negative exponential
functions). Therefore the solution must have a maximum point, and the graph in Figure 3.1.1
confirms this, Determine the location of this maximum point.

One can estimate the coordinates of the maximum point from the graph, but to find them
more precisely, we seek the point where the solution has a horizontal tangent line. By differ-
entiating the solution (30), y = 9e=¥ — 7=, with respect to £, we obtain

y =—18e7¥ 4 217 (349

Setting y’ equal to zero and multiplying by e, we find that the critical value 1, satisfies &' = 7/6;

hence
1. = In(7/6) = 0.15415. (35)

The correspohding maximum value Y, is given by
108
yu =97 —Te7e = 25 = 2:20408. (36)

In this example the initial slope is 3, but the solution of the given differential equation
behaves in a similar way for any other positive initial slope. In Problem 26 you are asked to
determine how the coordinates of the maximum point depend on the initial slope.

Returning to the equation ay” + by’ + ¢y = 0 with arbitrary coefficients, recall
that when r| # rs, its general solution (17) is the sum of two exponential functions.
Therefore the solution has a relatively simple geometrical behavior: as ¢ increases,
the magnitude of the solution either tends to zero (when both exponents are neg-
ative) or else grows rapidly (when at least one exponent is positive). These two
cases are illustrated by the solutions of Examples 2 and 3, which are shown in
Figures 3.1.1 and 3.1.2, respectively. There is also a third case that occurs less of-
ten: the solution approaches a constant when one exponent is zero and the other is
negative.

In Sections 3.4 and 3.5, respectively, we return to the problem of solving the equa-
tionay” + by’ + cy = 0 when the roots of the characteristic equation either are com-
plex conjugates or are real and equal. In the meantime, in Sections 3.2 and 3.3, we
provide a systematic discussion of the mathematical structure of the solutions of all
second order linear equations,
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PROBLEMS

In each of Problems 1 through 8 find the general solution of the given differential equation.

1Ly +2y —3y=0 2.y 43y 4+2y=0
3.6~y —y=0 4.2y -3y +y=0
5.y +5/=0 6. 4y" =9y =0

7.y 9% +% =0 8. y'—2y'—2y=0

In each of Problems 9 through 16 find the solution of the given initial value problem. Sketch
the graph of the solution and describe its behavior as ¢ increases.

9. y'+y-2y=0, y0=1 y@©O=1

10. y'+4y +3y=0, y@) =2, y@O=-1

11 6y -5y +y=0, YO =4, Yy =0

12. y' 43y =0, y0)=-2, y0)=3

13, y" 45y +3y =0, y =1, yO®=0

14, 2y +y —4dy =0, y0)=0, yO)=1

15, y+ 8y -8y =0, =1 yn=0

16. 4" —y =0, y~2)=1, y(-2)=-1

17. Find a differential equation whose general solution is y = cie” + cze*.
18. Find a differential equation whose general solution is y = ¢je7'% + cpe™%.
19. Find the solution of the initial value problem

Y —y=0, y®=% y@O=-3.

Plot the solution for 0 < r < 2 and determine its minimum value.
20. Find the solution of the initial value problem

Zy” - 3y‘ + y= 0, )!(0) = 2, y'(O) = ,1—,,

Then determine the maximum value of the solution and also find the point where the
solution is zero. '

21. Solve the initial value problem y” -~ y' - 2y = 0, y(0) = a, ¥’(0) = 2. Then find « so that
the solution approaches zero as t — co.

22. Solve the initial value problem 4y” — y = 0, y(0) = 2, y’(0) = §. Then find § so that the
solution approaches zero as f — co.

In each of Problems 23 and 24 determine the values of a, if any, for which all solutions tend to
zero asf — oo;also determine the values of a, if any, for which all (nonzero) solutions become
unbounded as f — co.

23. y'—Qa -1y +ala—1)y=0
2. y'+ (3 -a)y -2 —-1Dy=0

& 25. Consider the initial vaiue problem

2y" 43y —2y =0, y0) =1, Yy =-8,

where 8 > 0.
(a) Soive the initial value problem,

(b} Plot the solution when 8 = 1. Find the coordinates (f, o) of the minimum point of
the solution in this case.

(¢) Find the smallest value of # for which the solution has no minimum point.
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& 26. Consider the initial value problem (see Example 4)
Y'+55 +6y=0,  y0) =2, y(©0) =8,

where 8 > 0.
{a) Solve the initial value problem.
(b) Determine the coordinatesf,, and y,, of the maximum point of the solution as functions
of B.
{c) Determine the smallest value of g for which y,, > 4.
{(d) Determine the behavior of 1, and y as 8 - o0.
27. Consider the equation ay”’ + by + cy = d, where a, b, ¢, and d are constants.
(a) Find all equilibrium, or constant, solutions of this differential equation.
{b) Lety. denote an equilibrium solution, and let Y = y — y,. Thus Y is the deviation of
a solution y from an equilibrium solution. Find the differential equation satisfied by ¥.
28. Consider the equation ay” + by’ + cy = 0, where a, b, and ¢ are constants witha > 0. Find
conditions on &, b, and c such that the roots of the characteristic equation are:
(a) real,different, and negative.
{b) real with opposite signs.
{c) real, different, and positive.

3.2 Fundamental Solutions of Linear Homogeneous Equations

In the preceding section we showed how to solve some differential equations of the
form
ay" +by' + ¢y =0,

where a, b, and ¢ are constants. Now we build on those results to provide a clearer
picture of the structure of the solutions of all second order linear homogeneous
equations. In turn, this understanding will assist us in finding the solutions of other
probiems that we will encounter later.

In developing the theory of linear differential equations, it is helpful to introduce
a differential operator notation. Let p and g be continuous functions on an open
interval I, thatis, fora <t < 8. The cases a = —00, or 8 = 00, or both, are included.
Then, for any function ¢ that is twice differentiable on I, we define the differential
operator L by the equation

Lig}=¢" + p¢’ + q¢. (1)
Note that L[¢] is a function on I. The value of L[] at a point ! is )
L[gI(0) = ¢"(0) + p(D¢"()) + q(0)8 ().
For example, if p(t) = {2, g(t) = 1+ £, and ¢ {f) = sin 3¢, then

L{#1(t) = (sin 30" + f*(sin 3¢)’ + (1 -+ ) sin 3¢
= —9sin3¢ -+ 3% cos 3 + (1 +£)sin3t.
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Theorem 3.2.1

The operator L is often written as L = D? + pD 4 g, where D is the derivative
operator.

In this section we study the second order linear homogeneous equation
L[¢](t) = 0. Since it is customary to use the symbol y to denote ¢(f), we will usually
write this equation in the form

Liyl=y"+p@y + q(tyy = 0. (2)
With Eq. (2) we associate a set of initial conditions

(o) = yo, y'(to) = yq, (3

where f; is any point in the interval I, and yp and y;, are given real numbers. We
would like to know whether the initial value problem (2), (3) always has a solution,
and whether it may have more than one solution. We would also like to know whether
anything can be said about the form and structure of solutions that might be helpful
in finding solutions of particular problems. Answers to these questions are contained
in the theorems in this section.

The fundamental theoretical result for initial value problems for second order
linear equations is stated in Theorem 3.2.1, which is analogous to Theorem 2.4.1
for first order linear equations. The result applies equally well to nonhomogeneous
equations, so the theorem is stated in that form.

Consider the initial value problem

Y 4+p0y +aey=g®), Y=y, Y=y (4)

where p, g, and g are continuous on an open interval I that contains the point .
Then there is exactly one solution y == ¢ (¢) of this problem, and the solution exists
throughout the interval 7,

We emphasize that the theorem says three things:

1. The initial value problem has a solution; in other words, a solution exists.
2. The initial value problem has only one solution; that is, the solution is unigue.

3. The solution ¢ is defined throughout the interval I where the coefficients are continuous
and is at least twice differentiable there.

For some problems some of these assertions are easy to prove. For example, we
found in Section 3.1 that the initial value problem

y'-y=0  y0=2 yO=-1 (5)

has the solution
y=1e'+3e. (6)

The fact that we found a solution certainly establishes that a solution exists for this
initial value problem. Further, the solution (6) is twice differentiable, indeed differen-
tiable any number of times, throughout the interval (—oo, 00) where the coefficients
in the differential equation are continuous. On the other hand, it is not obvious, and
is more difficult to show, that the initial value problem (5) has no solutions other
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Theorem 3.2.2

than the one given by Eq. (6). Nevertheless, Theorem 3.2.1 states that this solution
is indeed the only solution of the initial value problem (5).

However, for most problems of the form (4), it is not possible to write down a
useful expression for the solution. This is a major difference between first order and
second order linear equations. Therefore, all parts of the theorem must be proved
by general methods that do not involve having such an expression. The proof of
Theorem 3.2.1 is fairly difficult, and we do not discuss it here.> We will, however,
accept Theorem 3.2.1 as true and make use of it whenever necessary.

Find the longest interval in which the solution of the initial value problem
(=30 +1y —(+3)y=0, yl)=2 y=1

is certain to exist.

If the given differential equation is written in the form of Eq. (4), then p(f) = 1/(t — 3),
g(t) = —(t +3)/t{t — 3), and g(t) = 0. The only points of discontinuity of the coefficients are
t =0 and t = 3. Therefore, the longest open interval, containing the initial point ¢ = 1, in
which all the coefficients are continuous is 0 < ¢ < 3. Thus, this is the longest interval in which
Theorem 3.2.1 guarantees that the solution exists.

Find the unique solution of the initial value problem
Y'+p®)y +q0)y =0,  y(t)=0, y(to)=0,

where p and g are continuous in an open interval I containing fo.

The function y = ¢(¢) = O forall ¢t in ] certainly satisfies the differential equation and initial
conditions. By the uniqueness pant of Theorem 3.2.1, it is the only solution of the given
problerm.

Let us now assume that y; and y, are two solutions of Eq. (2); in other words,
Liyd=yi+py1+ay1 =0, (7)
and similarly for y,. Then, just as in the examples in Section 3.1, we can generate

more solutions by forming linear combinations of y; and y,. We state this result as a
theorem.

(Principle of Superposition) If y; and y, are two solutions of the differential equa-

tion (2), ' ]
Liy}=y"+p)y +q(t)y =0, '

then the linear combination ¢y + ¢zy2 is also a solution for any values of the

constants ¢; and ¢;.

A proof of Theorem 3.2.1 may be found, for example, in Chapter 6, Section 8 of the book by Coddington
listed in the references at the end of this chapler.
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A special case of Theorem 3.2.2 occurs if either ¢ o1 ¢; is zero. Then we conclude
that any multiple of a solution of Eq. (2) is also a solution.
To prove Theorem 3.2.2 we need only substitute

y = c1yi(0) + cay2(1) (8)

for y in Eq. (2). The result is

Liciys + c2y2] = [e1ys + caya]” +plerys + caya] + qlerys + cayed
= c1yy + co¥y + C1pYy + Copys + C1gys + 2gy
= c5lyy + Py, + g1l + by + py; + gya)
=Lyl + caLiyal.

Since L[y;] =0 and L[y, =0, it follows that L{c1y; + ¢2y2] = 0 also. Therefore,
regardless of the values of ¢; and ¢3, y as given by Eq. (8) does satisfy the differential
equation (2), and the proof of Theorem 3.2.2 is compiete.

Theorem 3.2.2 states that, beginning with only two solutions of Eq. (2), we can
construct an infinite family of solutions by means of Eq. (8). The next question is
whether all solutions of Eq. (2) are included in Eq. (8) or whether there may be
other solutions of a different form. We begin to address this question by examining
whether the constants ¢, and ¢; in Eq. (8) can be chosen so as to satisfy the initial
conditions (3). These initial conditions require ¢; and ¢, to satisfy the equations

c1Y1{te) 4 c2y2(to) = yo,

' (2 7 (9)
c1y1(fo) + c2y5{to) = y;.
Upon solving Egs. (9) for ¢y and ¢3, we find that
o) = —Yalto) — Yox2 (fo) oy = YY1 (0) +Yon1 (o) (10)
Y1{to)y; (t) — ¥ {todya(to) ' Y1{to)y; (to) — Yy (to)y2(to)
or, in terms of determinants,
yo y2(to) i) Yo
Yo Y3t (t) ¥t
o =0 T2 ACZZ__y’i__L, (11)

y1lto)  y2(to)
YRR ALY,

yi{fo)  y2(te)
LYY

With these values for ¢; and c¢;, the expression (8) satisfies the initial conditions (3)
as well as the differential equation (2).

In order for the expressions for ¢; and ¢, in Eqs. (10) or (11) to make sense, it is
necessary that the denominators be nonzero. For both ¢, and ¢; the denominator is
the same, namely, the'determinant '

Y1 {fo) Y2 (to)
yilte) y;(fo)

= y1(to)y3 (o) — ¥} (to)y2(te)- (12),
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The determinant W is called the Wronskian® determinant, or simply the Wron-
skian, of the solutions y; and y,. Sometimes we use the more extended notation
W (y1,y2)(fo) to stand for the expression on the right side of Eq. (12), thereby empha-
sizing that the Wronskian depends on the functions y; and ys, and that it is evaluated
at the point f;. The preceding argument establishes the following resuit.

Theorem 3.2.3 Suppose that y; and y, are two solutions of Eq. (2),

T Lyl =y +p®y +qny =0,
and that the Wronskian

W =y1ys — 2

is not zero at the point o where the initial conditions (3),

Yt =yo,  Y'(to) =¥,

are assigned. Then there is a choice of the constants ¢;, ¢; for which y = ¢y (f) +
c2y2 (1) satisfies the differential equation (2) and the initial conditions (3).

In Example 1 of Section 3.1 we found that y;(f) = e and y.(f) = e~ are solutions of the
-i EXAMPLE differential equation
! 3 Y +5y +6y=0.

]
$ Find the Wronskian of y; and y,.
i The Wronskian of these two functions is
Pt
i - o3

—5r
—2e ¥ 3 ¥ :

W= = —e

' Since W is nonzero for all values of ¢, the functions y, and y; can be used to construct solutions
’ of the given differential equation, together with initial conditions prescribed at any value of ¢.
B One such initial value problem was solved in Example 2 of Section 3.1.

The next theorem justifies the term “general solution” that we introduced in Section
3.1 for the linear combination c;y; + c2ys.

Theorem 3.2.4 If y1 and y; are two solutions of the differential equation (2),

[ R |

T Liyl=y" +p)y + gy =0,

and if there is a point £, where the Wronskian of y; and y; is nonzero, then the
family of solutions

y = cyi(t) + czya ()

with arbitrary coefficients ¢; and ¢; includes every solution of Eq. (2).

MWronskian determinants are named for Jésef Maria Hokné-Wronski (1776-1853), who was born in
Poland but spent most of his life in France. Wronski was a gifted but troubled man, and his Jife was
marked by frequent heated disputes with other individuals and institutions.
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Let ¢ be any solution of Eq. (2). To prove the theorem we must show that ¢ is
included in the linear combination ¢; y; + c2y2; that is, for some choice ofthe constants
¢1 and ¢;, the linear combination is equal to ¢. Let #p be a point where the Wronskian
of y; and y; is nonzero. Then evaluate ¢ and ¢’ at this point and call these values yg
and yg, respectively; thus

Yo = ¢(f), Yo = ¢'(to).
Next, consider the initial value problem

Y'+p®)y +9@y =0,  y(to) =y, yto)=y. (13)

The function ¢ is certainly a solution of this initial value problem. On the other hand,
since W (y1,y2) (to} is nonzero, it is possible (by Theorem 3.2.3) to choose ¢; and c3 s0
that y = ¢1y1(f) 4 cay2(¢) is also a solution of the initial value problem (13). In fact,
the proper values of ¢; and c; are given by Egs. (10) or (11). The uniqueness part of
Theorem 3.2.1 guarantees that these two solutions of the same initial value problem
are actually the same function; thus, for the proper choice of ¢; and ¢3,

¢} =ay(t) +cayt),

and therefore ¢ is included in the family of functions of ¢iy; + c2y2. Finally, since
¢ is an arbitrary solution of Eq. (2), it follows that every solution of this equation is
included in this family. This completes the proof of Theorem 3.2.4.

Theorem 3.2.4 states that, as long as the Wronskian of y; and y» is not everywhere
zero, the linear combination cyy; + c2y2 contains all solutions of Eq. (2). It is there-
fore natural (and we have already done this in the preceding section) to call the
expression

y =cy(e) + caye()

with arbitrary constant coefficients the general solution of Eq. (2). The solutions y;
and y,, with a nonzero Wronskian, are said to form a fundamental set of solutions of
Eq. (2).

We can restate the result of Theorem 3.2.4 in slightly different language: to find the
general solution, and therefore all solutions, of an equation of the form (2), we need
only find two solutions of the given equation whose Wronskian is nonzero. We did
precisely this in several examples in Section 3.1, although there we did not calculate
the Wronskians. You should now go back and do that, thereby verifying that all the
solutions we called “general solutions” in Section 3.1 do satisfy the necessary Wron-
skian condition. Alternatively, the following example includes all those mentioned
in Section 3.1, as well as many other problems of a similar type.

Suppose that y; (f) = "' and y,(f) = €™ are two solutions of an equation of the form (2). Show
that they form a fundamental set of solutions if r; # rs.
We calculate the Wronskian of y; and y;:

et L4

rleﬂl rzergr = (ri ~n) exp[(rl + )1l

Since the exponential function is never zero, and since we are assuming thatr, —r; #£0, it
follows that W is nonzero for every value of f. Consequently, y; and y, form a fundamental
set of solutions. '
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Show that y, (f) = 1'/2 and y2(t) = 1! form a fundamental set of solutions of

EXAMPLE 20 43ty —y=0, >0 (14)

5

We will show in Section 5.5 how to solve 'Eq. {14); see also Problem 38 in Section 3.4.
However, at this stage we can verify by direct substitution that y; and y» are solutions of the
differential equation. Since y; (1) = 4712 and y{(f) = — 3173, we have

(5 F UG P = (- + ] - D =0,

R

Similarly, y5(t) = —t~ and y5 (1) = 213,50
20 + 33— - = (4-3- D! =0.
Next we calculate the Wronskian W of y; and y,:

12 !

W=
i 2

=3 (15)

%
2
2
2
H
g:
?
i
2

Since W # 0 for t > 0, we conclude that yy and y» form a fundamental set of solutions there.

In several cases we have been able to find a fundamental set of solutions, and
therefore the general solution, of a given differential equation. However, this is
often a difficult task, and the question may arise as to whether a differential equation
of the form (2) always has a fundamental set of solutions. The following theorem
provides an affirmative answer to this question.

Theorem 3.2.5 Consider the differential equation (2),
L=y +p®y +q@®y =0,

whose coefficients p and g are continuous on some open interval I. Choose some
point fg in 1. Let y; be the solution of Eq. (2) that also satisfies the initial conditions

yito) =1,  y{to) =0,
and let y; be the solution of Eq. (2) that satisfies the initial conditions
y) =0,  yit) =1

Then y; and y; form a fundamental set of solutions of Eq. (2).

First observe that the existence of the functions y; and y; is ensured by the existence
part of Theorem 3.2.1. To show that they form a fundamental set of solutions, we
need only calculate their Wronskian at #:

yi{to) ya(to)
Yilto)  y3{to)

Since their Wronskian is not zero at the point f, the functions y; and y; do form a
fundamental set of solutions, thus completing the proof of Theorem 3.2.5.

Note that the potentially difficult part of this proof, demonstrating the existence
of a pair of solutions, is taken care of by reference to Theorem 3.2.1. Note also that
Theorem 3.2.5 does not address the question of howto solve the specified initial value

WOy {t) = = ll 0

~ o 1]:1‘
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problems so as to find the functions y, and y; indicated in the theorem. Nevertheless,
it may be reassuring to know that a fundamental set of solutions always exists.

Find the fundamental set of solutions specified by Theorem 3.2.5 for the differential equation

¥y —y=0, (16)

using the initial point ty = 0.

In Section 3.1 we noted that two solutions of Eq. (16) are yi(f) = € and y,(f) = e™*. The
Wronskian of these solutions is W{y,,p:)(t) = —2 # 0, so they form a fundamental set of so-
lutions. However, they are not the fundamental solutions indicated by Theorem 3.2.5 because
they do not satisfy the initial conditions mentioned in that theorem at the point ¢ = 0.

To find the fundamental solutions specified by the theorem, we need to find the solutions
satisfying the proper initial conditions. Let us denote by y3(r) the solution of Eq. (16) that
satisfies the initial conditions

yO=1 YO =0 : an
The general solution of Eq. (16) is
y =€ +ce”, (18)
and the initial conditions (17) are satisfied if ¢; = 1/2 and ¢; = 1/2. Thus
yst) = 1¢' + 4e"* = coshr.
Similarly, if y4(¢) satisfies the initial conditions
0 =0, YO =1, (19)

then

ya(t) = L — %e“ = sinht,

Since the Wronskian of y, and y4 is
W (y3.04)(1) = cosh?t —sinh®t =1,

these functions also form a fundamental set of solutions, as stated by Theorem 3.2.5. Therefore,
the general solution of Eq. (16) can be written as

y = ky cosh? + ky sinh, (20)

as well as in the form (18). We have used k; and k; for the arbitrary constants in Eq. (20)
because they are not the same as the constants ¢; and ¢z in Eq. (18). One purpose of this
example is to make clear that a given differential equation has more than one fundamental
set of solutions; indeed, it has infinitely many. As a rule, you should choose the set that is most
convenient.

We can summarize the discussion in this section as follows: to find the general
solution of the differential equation

Y +p)y +q)y=0, @ <t<f,

we must first find two functions y; and y, that satisfy the differential equation in
e <! < . Then we must make sure that there is a point in the interval where the
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Wronskian W of y; and y; is nonzero. Under these circumstances y; and y; form a
fundamental set of solutions and the general solution is

y = cnll) + cay(t),

where ¢) and c; are arbitrary constants. If initial conditions are prescribed at a
pointin @ <t < B where W # 0, then ¢; and ¢, can be chosen so as to satis{y these
conditions.

PROBLEMS In each of Problems 1 through 6 find the Wronskian of the given pair of functions.

1.
3.
5.

e, g2 2. cost, sint
e ¥, te ¥ 4, x, x&
¢'sinf, €& cos! 6. cos?f, 14 cos26

1n each of Problems 7 through 12 determine the longest interval in which the given initial value
problem is certain to have a unique twice differentiable solution. Do not atterpt to find the
solution.

7.
8.
9.
10.
11.
12.
13.

14.

15.

16.

17.
18.
19.

20.

' +3y=t, yl=1 yl)=

-1y =3ty +4y=sintf, y(-2)=2, y(-2)=1

te— Dy + 3y +4dy =2, y3@ =0 y@F=-

Y+ (ost)y +3nthy =0, y@)=3, y@)=1

(x=3)y" +xy +@nlxhy=0 y1)=0 yly=1

(x=2)y" +y + (x —2)(tanx)y =0, y3=1 y@d=

Verify that y;(f) = and y,(f) =1~ are two solutions of the differential equation
2y’ —2y =0 for r > 0. Then show that ¢, - ¢;¢7! is also a solution of this equation
for any ¢; and c;.

Verify that y1 (£) = 1 and y,(f) = ¢/? are solutions of the differential equation

yy" + ()2 =0 for ¢ > 0. Then show that ¢; + ;' is not, in general, a solution of this
equation. Explain why this result does not contradict Theorem 3.2.2.

Show that if y = ¢(¢) is a solution of the differential equation y” + p(t)y’ + g(t)y = g(1),
where g(f) is not always zero, then y = cg (t), where cis any constant other than 1,is not a
solution. Explain why this result does not contradict the remark following Theorem 3.2.2.
Can y = sin(r?) be a solution on an interval containing ¢ = 0 of an equation

¥+ p)y + g(t)y = 0 with continuous coefficients? Explain your answer.

1f the Wronskian W of f and g is 3¢*, and if () = ¢*, find g(1).

1f the Wronskian W of f and g is £2¢/, and if f(t) = ¢, find g(1).

If W(f,g) is the Wronskian of f and g, and if # = 2f — g, v = f + 2g, find the Wronskian
W, v) of u and v in terms of W(f, g).

Ifthe Wronskianof f and gistf cos ¢ — sinf,andifu = f 4 3g,v = f — g,ﬁnd the Wronskian
of u and v.

In each of Problems 21 and 22 find the fundamental set of solutions specified by Theorem 3.2.5
for the given differential equation and initial point.

21.
22.

Yy —-2=0, t4=0
Y44y +3y=0, =1
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In each of Problems 23 through 26 verify that the functions y; and y, are solutions of the given

differential equation. Do they constitute a fundamental set of solutions?

23. Y +4y=0; »n{t) =cos2t, w()=sin2t

8.y -2%+y=0, pWi=¢, pn=t

25 2y —x(x+ 2y + (x4 2y =0, x>0 yix)=1x, yi(x) =xé*

26. 1—xcotx)y’' —xy'+y=0, O<xr<m »@X =x, y(x) =sinx

27. Consider the equation y” —y' — 2y = 0.

(a) Show that y\(f) = e apd ¥2(t) = ¥ form a fundamental set of solutions.

(b) Let y3(r) = —2€%, yo(t) = y1 (1) -+ 2y2(), and ys(1) = 2y1 (1) — 2y3(0). Are y3(1), ya(0),
and ys(f) also solutions of the given differential equation?

(c) Determine whether each of the following pairs form a fundamental set of sclutions:
Dra (0, y3 (00 [y2 (0, y3(0)3; 1), ya ()] [ya(t), ys ().

28. Exact Equations. The equation P(x)y" + Q(x)y + R(x)y = 0is said to be exact if it can
be written in the form [P(x)y’] + [f(x)y]’ = 0, where f(x) is to be determined in terms of
P(x),Q(x), and R(x). The latter equation can be integrated once immediately, resulting
in a first order linear equation for y that can be solved as in Section 2.1. By equating the
coefficients of the preceding equations and then eliminating f(x), show that a necessary

condition for exactness is P"(x) — (’(x) + R(x) = 0. It can be shown that this is also a
sufficient condition.

In each of Problems 29 through 32 use the result of Problem 28 to determine whether the

given equation is exact. If so, solve the equation.

9. ¥ 4+xy+y=0 30 ¥y 4+ 3xY 4 xy=0

31 xy" — (cosx)y + (sinx)y=0, x>0 32, % +xy' —y=0, x>0

33. The Adjoint Equation. If a second order linear homogeneous equation is not exact, it
can be made exact by multiplying by an appropriate integrating factor p(x). Thus we
require that p(x} be such that p(x)P(x)y” -+ p(x) Q)Y + p(x)R(x)y = 0 can be written
in the form [u(x)P(x)y') + [f(x)y]' = 0. By equating coefficients in these two equations
and eliminating f(x},show that the function x must satisfy

Pu’+ QP = Q'+ (P"— O+ Ry =0.

This equation is known as the adjoint of the original equation and is important in the
advanced theory of differential equations. In general, the problem of solving the ad-
joint differential equation is as difficuit as that of solving the original equation, so only
occasionally is it possible to find an integrating factor for a second order equation.

In each of Problems 34 through 36 use the result of Problem 33 to find the adjoint of the given

differential equation,

34. 1%y +xy + (@~ 1y =0, Bessel's equation

35. -2y — 2y +e(e+ 1)y =0, Legendre’s equation

36. y'—xy=0,  Airy’sequation

37. For the second order linear equation P(x)y" -+ Q(x)y + R(x)y = 0, show that the adjoint
of the adjoint equation is the original equation.

38. A second order linear equation P(x)y” 4+ Q(x)y’ + R(x)y = 0 is said to be self-adjoint if
its adjoint is the same as the original equation. Show that a necessary condition for this
equation to be self-adjointis that P’(x) == Q(x). Determine whether each of the equations
in Problems 34 through 36 is self-adjoint.
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2

Wronskian

In this section we will relate the ideas of 2 general solution and a fundamental set
of solutions of a linear differential equation to the concept of linear independence,
which is central to the study of linear algebra. This relation between differential
equations and linear algebra is more significant for higher order equations and for
systems of equations, but we will explain it here first in a simpler context, The results
presented here will reappear in more general forms in Section 4.1 and Section 7.4.

We will refer to the following basic property of systems of linear homogeneous
algebraic equations. Consider the two-by-two system

anx + apx; =0,
M
anx, +azpx; =0,
and let A = ay 1423 — anpaz; be the corresponding determinant of coefficients, Then
x; = 0,x2 = 0 is the only solution of the systém (1) if and only if A # 0. Further, the
system (1) has nonzero solutions if and only if A = 0.
Two functions f and g are said to be linearly dependent on an interval [ if there
exist two constants &, and k3, not both zero, such that

kif () + kog(ty =0 (2)

forall¢in . The functions f and g are said tobe linearly independent onan interval I if
they are not linearly dependent; that is, Eq. (2) holds for allt in  only if ky = k; = 0.
In Section 4.1 these definitions are extended to an arbitrary number of functions.
Although it may be difficult to determine whether a large set of functions is linearly
independent or linearly dependent, it is usually easy to answer this question for a set
of only two functions: they are linearly dependent if they are proportional to each
other and are lincarly independent otherwise. The following examples illustrate
these definitions.

Determine whether the functions sin¢ and cos(t — /2) are linearly independent or linearly
dependent on an arbitrary interval.
'The given functions are linearly dependent on any interval since

kysint 4 ks cos{t - 7 /2) =0

for all t if we choose ky =1and ky = —1.

Show that the functions ¢ and e¥ are linearly independent on any interval. _
To establish this result we suppose that

ke + kpe* =0 3)

for allt in the interval; we must then show that k; = ks = 0. Choose two points f and £, in the
interval, where n # f,. Evaluating Eqg. (3) at these points, we obtain

k;e’° + k;e% =0,

4
kye® +k1e2" =0. ¢ )
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] The determinant of coefficients is

]

E et — gelt = hell (¢ - %),

4

3

b Since this determinant is not zero, it foliows that the only solution of Eq. (4) is by =k, = 0.
l.'-,i

Hence ¢’ and e” are linearly independent.

The following theorem felates linear independence and dependence to the
Wronskian.

Theorem 3.3.1 If f and g are differentiable functions on an open interval I, and if W(f, g)(fo} # 0
EEEERTET == for some point ¢ in I, then f and g are linearly independent on I. Moreover, if f
and g are linearly dependent on 7, then W(f,g){#) = 0 for every fin I. '

To prove the first statement in Theorem 3.3.1, consider a linear combination
kif () + k2g(t), and suppose that this expression is zero throughout the interval.
Evaluating the expression and its derivative at #, we have

kif (o) + kag(to) =0,

' (5)
kif'(to) + kg’ (t0) = 0.

The determinant of coefficients of Eqs. (5) is precisely W(f, g){fp), which is not zero
by hypothesis. Therefore, the only solution of Eqgs. (5) is k1 = k, =0,s0 f and g are
linearly independent,

The second part of Theorem 3.3.1 follows immediately from the first. Let f and
g be linearly dependent, and suppose that the conclusion is false—that is, W(f, g) is
not everywhere zero in I. Then there is a point fg such that W(f, g} (fo} # O; by the
first part of Theorem 3.3.1, this implies that f and g are linearly independent, which
is a contradiction, thus completing the proof.

We can apply this result to the two functions f(f) = ¢’ and g(¢) = e* discussed in
Example 2. For any point fy we have

e’

e
o 2e%| " e #0. (6)

The functions e’ and e* are therefore linearly independent on any interval.

You should be careful not to read too much into Theorem 3.3.1. In particular, two
functions f and g may be linearly independent even though W(f, g}{t) = 0 for every
t in the interval I. This is illustrated in Problem 28.

Now let us examine further the properties of the Wronskian of two solutions of
a second order linear homogeneous differential equation. The following theorem,
perhaps surprisingly, gives a simple explicit formula for the Wronskian of any two
solutions of any such equation, even if the solutions themselves are not known.
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Theorem 3.3.2 (Abels Theorem)* If y; and yz are solutions of the differential equation

L) =y"+p®)y +4y =0, )
where p and g are continuous on an open interval f, then the Wronskian W (y;, y2) ()
is given by

W(Yl ,)’2)(’) =c exp [—. fp(t) dt] ] (8)

where ¢ is a certain constant that depends on y, and y,, but not on {. Further,
W (y1, y2)(t) either is zero for all 7in I (if ¢ = 0) or else is never zero in I (if ¢ # 0).

To prove Abel’s theorem, we start by noting that y; and y; satisfy
Y1 +p(yy + 9O =0,
Y2 +p(0y; + 90y, =0.

If we multiply the first equation by —y,, multiply the second by y;, and add the
resulting equations, we obtain

9)

Qys — Yiy2) + pOOn1ys ~ yiy2) =0. (10)
Next, we let W(t) = W(y;,y2)(#) and observe that
W' = y1y; — ¥y2. (11)
Then we ¢an write Eq. (10) in the form
W'+ p(HW = 0. (12)

Equation (12) can be solved immediately since it is both a first order linear equation
(Section 2.1) and a separable equation (Section 2.2). Thus

W(t) =cexp [— fp(t) dt], (13)

where c is a constant. The value of ¢ depends on which pair of solutions of Eq. (7)
is involved. However, since the exponential function is never zero, W(¢) is not
zero unless ¢ = 0, in which case W(f) is zero for all ¢, which completes the proof of
Theorem 3.3.2.

“The result inTheorem 3.3.2 was derived by the Norwegian mathematician Niels Henrik Abel (1802-1829)
in 1827 and is known as Abel's formula. Abel also showed that there is no general formula for solving a
quintic, or fifth degree, polynomial equation in terms of explicit algebraic operations on the coefficients,
thereby resolving a question that had been open since the sixteenth century. His greatest contributions,
however, were in analysis, particularly in the study of elliptic functions Unfortunately, his work was
not widely noticed until after his death. The distinguished French mathematician Legendre called it a
“monument more lasting than bronze.”
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Theorem 3.3.3

Note that the Wronskians of any two fundamental sets of solutions of the same
differential equation can differ only by a multiplicative constant, and that the Wron-
skian of any fundamental set of solutions can be determined, up to a multiplicative
constant, without solving the differential equation.

In Example 5 of Section 3.2 we verified that y, (r) = 1172 and y;(#) = ™! are solutions of the
equation

2 n

2% +3' —y=0, >0 (14)

Verify that the Wronskian of y; and y; is given by Eq. (13).

From the example just cited we know that W (yy, y2)(f) = —(3/2)r~>2. To use Eq. (13) we
must write the differential equation (14) in the standard form with the coefficient of y” equal
to 1. Thus we obtain

3 1
Ty S y=0
Y+ oy —5ay=0
sop(r) = 3/2t. Hence

WO, y)() =cexp [—[ % d!] =2 cexp (—% In r)
=cr32, (15)

Equation (15) gives the Wronskian of any pair of solutions of Eq. (14). For the particular
solutions given in this example we must choose ¢ = —3/2.

A stronger version of Theorem 3.3.1 can be established if the two functionsinvolved
are solutions of a second order linear homogeneous differential equation.

Let y; and y, be the solutions of Eq. (7),

Liyl=y"+p@)y +q(y =0,

where p and ¢ are continuous on an open interval J. Then y; and y, are linearly
dependent on [ if and only if W(y,, y2)(#) is zero for all 7 in I. Alternatively, y; and
y2 are linearly independent on I if and only if W(yy, y2)(#) is never zero in 1.

Of course, we know by Theorem 3.3.2 that W(yy, y2)(r) is either everywhere zero or
nowhere zero in I. In proving Theorem 3.3.3, observe first thatif y; and y; are linearly
dependent, then W (yi, y2)(r) is zero for allf in / by Theorem 3.3.1. It remains to prove
the converse, that is, if W(yy, y2)(t) is zero throughout 7, then y; and y; are linearly
dependent. Let fy be any point in /; then necessarily W(yy, y2)(t) = 0. Consequently,
the system of equations

c1y1{to) -+ ¢2y2(f0) =0,
c1yy{to) + c2s(to) =0

(16)
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for c; and ¢; has a nontrivial solution. Using these values of ¢; and ¢, let
@ (1) = a1 (8) + c2y2(). Then ¢ is a solution of Eq. (7), and by Egs. (16), ¢ also
satisfies the initial conditions

$() =0,  ¢'(to) =0. (17)

Therefore, by the uniqueness part of Theorem 3.2.1, or by Example 2 of Section 3.2,
¢() =0 for all t in I. Since ¢(t) = c1yy(f) 4 c2y2(¢) with ¢ and ¢2 not both zero,
this means that y, and y, are linearly dependent. The alternative statement of the
theorem follows immediately.

We can now summatize the facts about fundamental sets of solutions, Wronskians,
and linear independence in the following way. Let y; and y2 be solutions of Eq. (7),

Y +p@)y +aq@)y =0,

where p and g are continuous on an open interval I. Then the following four state-
ments are equivalent, in the sense that each one implies the other three:

1. The functions y; and y, are a fundamental set of solutions on 1.
2. The functions y; and y, are linearly independent on 1.

3. Wiy, y){t) # 0 for some fp in 1.

4. W(y,y)t) #0foralltinl,

It is interesting to note the similarity between second order linear homogeneous
differential equations and two-dimensional vector algebra. Two vectors a and b are
said tobe linearly dependent if there are two scalars k; and k2, not bothzero, such that
kia + k;b = 0; otherwise, they are said to be linearly independent. Leti and j be unit
vectors directed along the positive x- and y-axes, respectively. Since kji+ k;j =0
only if ky = k> = 0, the vectors i and j are linearly independent. Further, we know
that any vector a with components g, and a, can be written as a = a;i + ayj, that s, as
a linear combination of the two linearly independent vectors i and j. It is not difficult
to show that any vector in two dimensions can be expressed as a linear combination
of any two linearly independent two-dimensional vectors (see Problem 14). Such a
pair of linearly independent vectors is said to form a basis for the vector space of
two-dimensional vectors.

The term vector space is also applied to other collections of mathematical objects
that obey the same laws of addition and multiplication by scalars that geometric
vectors do. For example, it can be shown that the set of functions that are twice
differentiable on the open interval I forms a vector space. Similarly, the set V' of
functions satisfying Eq. (7) also forms a vector space.

Since every member of V' can be expressed as a linear combination of two linearly
independent members y; and y,, we say that such a pair forms a basis for V. This
leads to the conclusion that V is two-dimensional; therefore, it is analogous in many
respects to the space of geometric vectors in a plane. Later we find that the set of
solutions of an nth order linear homogeneous differential equation forms a vector
space of dimension 7, and that any set of » linearly independent solutions of the
differential equation forms a basis for the space. This connection between differen-
tial equations and vectors constitutes a good reason for the study of abstract linear
algebra.
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PROBLEMS 1

—— e e

each of Problems 1 through 8 determine whether the given pair of functions is linearly

independent or linearly dependent.

1
2

LD =245, gty =2 —5t
. f(6) =cos28 —2cos’9,  g(f) =cos28 +2sin’ 8

3. f(r) =ée¥cospt, gin=¢€"sinur, p#0

o

10.

11.

12

13.

14.

In

L f) =€, glx) = =1
Lf=3-5  g=%—-15 6. f(N=t, g(f)=r7!
. f =3, g =t 8. f(x) =x°, gx) = Ix}*

, The Wronskian of two functions is W(r) = rsin’r. Are the functions linearly independent
or linearly dependent? Why?

The Wronskian of two functions is W(r) = 1> — 4. Are the functions linearly independent
or linearly dependent? Why?

If the functions y, and y, are linearly independent solutions of y* + p(f)y + g(f)y =0,
prove that ¢1y; and ¢y, are also linearly independent solutions, provided that neither ¢;
nor ¢; is zero.

If the functions y; and y, are linearly independent solutions of y' + p(f)y’ + q(f)y =0,
prove that y3 = y; + y» and y4 = yy — )7 also form a linearly independent set of solutions.
Conversely, if y; and y,4 are linearly independent solutions of the differential equation,
show that y; and y, are also.

If the functions y; and y; are linearly independent solutions of y" + p(f)y + g(t)y = 0,
determine under what conditions the functions y; = @1y + gay» and ys = byyy + bayz also
form a linearly independent set of solutions.

{(a} Prove that any two-dimensional vector can be written as a linear combination of
i+jandi-j.

(b} Prove that if the vectors X = xji + X2j and y = y;i -+ y»j are linearly independent, then
any vector z = zii + z,j can be expressed as a linear combination of x and y. Note that if
x and y are linearly independent, then x3y; — x2y; # 0. Why?

each of Problems 15 through 18 find the Wronskian of two solutions of the given differential

equation without solving the equation,

15.
17.
18.
19.

20.

21,

22.

23,

In
Y2
24

2y — 1+ 2y +(t+2)y=0 16. (cos )y" + (sinf)y —ty =10

Y by + (k- v)y =0, Bessel’s equation

-2y —2xy +ale+ 1)y =0, Legendre’s equation

Show that if p is differentiable and p(r) > 0, then the Wronskian W(r) of two solutions of
()Y -+ g()y = 0is W() = ¢/p(1), where ¢ is a constant,

If y; and y; are linearly independent solutions of ty" +2y +re'ly=0 and if
W(y:,2)(1) = 2, find the value of W{y;, y2)(5).

If y; and y, are linearly independent solutions of r2y" —2y + (34 )y =0 and if
W(y1,y2)(2) = 3, find the value of W(y1,y2)(4).

If the Wronskian of any two solutions of y* + p(£)y’ + g(t)y = 01is constant, what does this
imply about the coefficients p and g7

If f, g, and / are differentiable functions, show that W(fg, fi) = f*W(g,h).

Problems 24 through 26 assume that p and ¢ are continuous and that the functions y; and

are solutions of the differential equation y” + p(f)y’ + ¢(f)y = 0 on an open interval [.

. Prove that if y; and y; are zero at the same point in /, then they cannot be a fundamental
set of solutions on that interval.
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25. Prove that if y; and y; have maxima or minima at the same point in 7, then they cannot
be a fundamental set of solutions on that interval.

26. Prove that if yy and y; have a common point of inflection 1, in I, then they cannot be a
fundamental set of solutions on J unless both p and ¢ are zero at f.

27. Show that ¢ and £* are linearly independent on —1 < ¢ < 1; indeed, they are linearly
independent on every interval. Show also that W(r,r?) is zero at t = 0. What can you
conclude from this about the possibility that 1 and 12 are solutions of a differential
equation ¥’ + p(t)y + q(r)y = 0?7 Verify that ¢ and * are solutions of the equation
12y’ — 21y’ + 2y = 0. Does this contradict your conclusion? Does the behavior of the
‘Wronskian of r and 2 contradict Theorem 3.3.2?

28. Show that the functions f(f) = ¢*|r| and g(¢) = ° are linearly dependenton 0 < 1 < 1 and
on —1 < ¢ < Obut are linearly independent on ~-1 < 7 < 1. Although f and g are linearly
independent there, show that W(f, g) iszeroforallrin —1 < t < 1. Hence f and g cannot
be solutions of an equation y” + p(r)y’ + g(f)y = O with p and g continuouson —1 < ¢ < 1.

3.4 Complex Roots of the Characteristic Equation

We continue our discussion of the equation
ay" + by +cy=0, (1)

where a, b, and ¢ are given real numbers. In Section 3.1 we found that if we seek
solutions of the form y = ¢”, then » must be a root of the characteristic equation

art + br+c =0, 2

If the roots »; and r, are real and different, which occurs whenever the discriminant
b? — 4ac is positive, then the general solution of Eq. (1) is

y = e 4 cre™. 3)

Suppose now that b — dac is negative. Then the roots of Eq. (2) are conjugate
complex numbers; we denote them by

n=»xi+ipg, rp=>A—iu, 4)

where A and u are real, The corresponding expressions for y are
yi() = exp[x +iw)],  ya(t) = e;ip[(k — ). &)
Our first task is to explore what is meant by these expressions, which involve evaluat-
ing the exponential function for a complex exponent. For example,if A = ~1, 2 =2,

and 1 = 3, then from Eq. (5), . ‘
y1(3) = e 38, - (6)

What does it mean to raise the number e to a complex power? The answer is provided
by an important relation known as Euler's formula.

Euler's Formula. To assign a meaning to the expressions in Eqs. (5) we need to give a
definition of the complex exponential function. Of course, we want the definition to
reduce to the familiar real exponential function when the exponent is real. There
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are several ways to accomplish this extension of the exponential function. Here we
use a method based on infinite series; an alternative is outlined in Problem 28.
Recall from calculus that the Taylor series for ¢’ about ¢ = 0 is

=Y -, —00 <t < 00, N

If we now assume that we can substitute if for ¢ in Eq. (7), then we have

p e )"
Efzz nt

=0
(~1)ne? (=1)1-1g2n-1
; et z en-1) ° )

where we have separated the sum into its real and imaginary parts, making use of the
fact that i = —1,# = —i,i* = 1, and so forth. The first series in Eq. (8) is precisely
the Taylor series for cos ¢ about # = 0, and the second is the Taylor series for sin ¢
about ¢ = 0. Thus we have

e" = cost + isint. (9

Equation (9) is known as Fuler’s formula and is an extremely important mathe-
matical relationship. Although our derivation of Eq. (9) is based on the unverified
assumption that the series (7) can be used for complex as well as real values of the
independent variable, our intention is to use this derivation only to make Eq. (9)
scem plausible. We now put matters on a firm foundation by adopting Eq. (9) as the
definition of e*. In other words, whenever we write e, we mean the expression on
the right side of Eq. (9).

There are some variations of Euler’s formula that are also worth noting. If we
replace f by ~¢ in Eq. (9) and recall that cos(—¢) = cos? and sin(~#) = —sin¢, then
we have

e == cost — isint. (10)

Further, if ¢ is replaced by ut in Eq. (9), then we obtain a generalized version of
Euler's formula, namely,

e == cos pt + i sin put. (11)

Next, we want to extend the definition of the exponential function to arbitrary com-
plex exponents of the form (A + ix)f. Since we want the usual properties of the ex-
ponential function fo hold for complex exponents, we certainly want exp[(x + iu)!]
to satisfy ]

e(AH,u).r — euei,u:. (12)

Then, substituting for e from Eq. (11), we obtain
ePH = eM(cos pt + i sin put)
= ™ cos ut + ie* sin ut. (13)

We now take Eq. (13) as'the definition of exp[(* + iu)t]. The value of the exponential
function with a complex exponent is a complex number whose real and imaginary
parts are given by the terms on the right side of Eq. (13). Observe that the real
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and imaginary parts of exp[(A + iu)r] are expressed entirely in terms of elementary
real-valued functions. For example, the quantity in Eq. (6) has the value

e~ = 6730086 + ie~? sin 6 = 0.0478041 — 0.0139113;.

With the definitions (9) and (13) it is straightforward to show that the usual laws
of exponents are valid for the complex exponential function. It is also easy to verify
that the differentiation formula

d
€ =r" (14)
also holds for complex values of r.

Real-Valued Solations. The functions y;(r) and y,(f), given by Egs. (5) and with the
meaning expressed by Eq. (13), are solutions of Eq. (1) when the roots of the char-
acteristic equation (2) are complex numbers A & iu. Unfortunately, the solutions y;
and y, are complex-valued functions, whereas in general we would prefer to have
real-valued solutions, if possible, because the differential equation itself has real co-
efficients. Such solutions can be found as a consequence of Theorem 3.2.2, which
states that if y; and y; are solutions of Eq. (1), then any linear combination of y; and
2 is also a solution. In particular, let us form the sum and then the difference of y;
and y2. We have

Y1) + y2(t) = €(cos jut + isin ur) + M (cos ur — i sin pr)
=26 cos ut
and
(1) — y2(2) = (cos put + i sin ut) — e (cos pt — isin Ut
= 2ieM sin pr.

Hence, neglecting the constant multipliers 2 and 2, respectively, we have obtained a
pair of real-valued solutions

u(t) = e cos ut, v(t) = €' sin ut. (15)

Observe that u and v are simply the real and imaginary parts, respectively, of y;.
By direct computation you can show that the Wronskian of v and v is

W, v)(t) = ue®™. (16)

Thus, as long as ¢ # 0, the Wronskian W is not zero, so « and v form a fundameantal
set of solutions. (Of course, if & = (, then the roots are real and the discussion in this
section is not applicable.) Consequently, if the roots of the characteristic equation
are complex numbers A & iu, with ¢ # 0, then the general solution of Eq. (1) is

y = c1€™ cos ut + coe* sin ut, (17)

where ¢; and c; are arbitrary constants. Note that the solution (17) can be written
down as soon as the values of A and g are known.
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Find the general solution of
Y'+y+y=0. (18)

The characteristic equation is
Pr+r+1=0,

and its roots are

,_clxd-9 1, .43
= 2 T2
Thus A = —-1/2and p = ﬁ/Z_, so the general solution of Eq. (18) is
y=ce'? cos(s@r/?.) + e sin(s@r/?.) . (19
Find the general solution of
yrr + 9); = 0_ (20)

The characteristic equation is 72 + 9 = 0 with the roots r = £3§; thus A = 0 and » = 3. The
general solution is
¥ =Cicos3t+ ¢ sin3g (21)

note that if the real part of the roots is zero, as in this example, then there is no exponential
factor in the solution.

Find the solution of the initial value problem
16y" — 8" + 145y =0, yOy=-2, y(O0)=1 (22)

The characteristic equation is 16r2 — 8¢ + 145 = 0 and its roots are r = 1/4 £ 3i. Thus the
general solution of the differential equation is

y =1 cos 3t + e sin 31, (23)
To apply the first initial condition we set ¢ = 0 in Eq. (23); this gives
y0)=¢ =-2.
For the second initial condition we must differentiate Eq. (23) and then set ¢ = 0. In this way

we find that
YO =ia+36=1,

from which ¢; = 1/2. Using these values of ¢; and ¢; in Eq. (23), we obtain
y=--2¢""cos 3t + 1e¥sin 3 24

as the solution of the initial value problem (22).

We will discuss the geometrical properties of solutions such as these more fully in
Section 3.8, so we will be very brief here. Each of the solutions « and v in Egs. (15)
represents an oscillation, because of the trigonometric factors, and also either grows
or decays exponentially, depending on the sign of A (unless A = 0). In Example 1
we have A = —1/2 < 0, so solutions are decaying oscillations. The graph of a typical
solution of Eq. (18) is shown in Figure 3.4.1. On the other hand, A = 1/4 > 0 in
Example 3, so solutions of the differential equation (22) are growing oscillations. The
graph of the solution (24) of the given initial value problem is shown in Figure 3.4.2.
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The intermediate case is illustrated in Example 2, in which A = 0. In this case the
solution neither grows nor decays exponentially but, rather, oscillates steadily; a
typical solution of Eq. (20) is shown in Figure 3.4.3.

10 L y=2ecos3r+desindt f N

Y S T
S

-10

FIGURE 3.42 Solution of 16y" — 8y + 145y =0, y(0) = -2, y(@) =1.

¥4

FIGURE 343 A typicalsolution of " + 9y =0.
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PROBLEMS

In each of Problems 1 through 6 use Euler's formula to write the given expression in the form
a+ ib.

1, exp(1+420) 2. exp(2-130)
3. & 4, g2/
5. 2 6. i+

In each of Problems 7 through 16 find the general solution of the given differential equation.

7.9 =2y +2y =0 , 8. y'—2y +6y=0
9.y 42y —8y=0 10 y 42y +2y =0
11 y"+6y +13y =0 12. 4y" + 9y =0

13. y' +2y + 1.25y = 0 14. 9y 4+ 9y —4y =0
15. ' +y +125y =0 16. y' +4y +625y =0

In each of Problems 17 through 22 find the solution of the given initial value problem. Sketch
the graph of the solution and describe its behavior for increasing ¢,

17. y" + 4y =0, YOy =0 y(0)=1

18. y"+4y' 4+ 5y =0, y0) =1, y(O=0

19. y' =2y +5y=0, y&/2)=0, y(@m/2)=2
20, yy4+y=0, y(rf3)=2, y@x/3)=-4

21 Y'+y +125y =0, y0)=3, yO) =1

2. Y+ 2 =0, yor/d) =2, y(r/d)=—2

@ 23. Consider the initial value problem

W —u'+2u=0, w(0) =2, u'(0) =0,

{a) Find the solution 1(f) of this problem.
(b) Find the first time at which [u(f)} = 10,

@?/ 24. Consider the initial value problem

S5u” 4+ 21’ + Tu =0, u®=2 «O0)=1

(2) Find the solution u(t) of this problem.
(b} Find the smallest T such that |u(r)] < 0.1 forallt > 7.

& 25. Consider the initial value problem

Yy +2y +6y =0, yO =2, Y0 =ea=0
{a) Find the solution y(f) of this problem.
(b} Find o 50 that y = 0 when ¢ = 1. )
{c) Find, as a function of e, the smallest positive value of ¢ for which y = 0.
(d) Determine the limit of the expression found in part (c) as & —> c0.

& 26. Consider the initial value problem

Y42y +@+Dy=0 y0)=1, y@O=0.
(a) Find the solution y(f) of this problem.
(b) For a = 1find the smailest T such that |y(t)] < 0.1 fort > T.
(c) Repeat part (b} for a =174,1/2, and 2.

(d) Usingtheresultsofparts (b)and (c), plot T versus @ and describe the relation between
T and a.
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2%
28.

29.

30.
31

32,

33.

Show that W(e* cos uf, e sin ity = pe?.
In this problem we outline a different derivation of Euler’s formula.

(a) Show that y(f) =cosf and y:(f) =sint are a fundamental set of solutions of
¥" + y = 0; that is, show that they are solutions and that their Wronskian is not zero.

(b) Show (formally) that y = e is also a solution of y* -+ y = 0, Therefore,
e" = ¢ cost +¢psint (i)

for some constants ¢; and ¢c;. Why is this so?

(c) Sett=20inEq. (i) to show that ¢; = 1.

(d) Assuming that Eq. (14) is true, differentiate Eq. (i) and then set f = 0 to conclude that
¢z = i, Use the values of ¢; and ¢; in Eq. (i) to arrive at Euler’s formula.

Using Euler’s formula, show that
cost = (¢" +e7y/2,  sint = (e — e™")/2i.

If e is given by Eq. (13), show that ¢*1+2) = ¢'i¢" for any complex numbers ry and rs.
1If ¢ is given by Eq. (13), show that

— e =re"
dt "
for any cofnplex number r.

Let the real-valued functions p and g be continuous on the open interval I, and let
y = ¢(t) = u(t) -+ iv(?) be a complex-valued solution of

Yy +p)y + gy =0, @

where u and v are real-valued functions, Show that v and v are also solutions of Eq. (i).
Hint: Substitute y = ¢(f) in Eq. (i) and separate into real and imaginary parts.

If the functions y; and y; are linearly independent solutions of y” + p{f}y’ + g(t)y =0,
show that between consecutive zeros of y; there is one and only one zero of y;. Note
that this result is illustrated by the solutions ¥, (f) = cos? and y2{#) = sin of the equation
Y'+y=0.

Hinr: Suppose that f; and {; are two zeros of y; between which there are no zeros of y;.
Apply Rolle's theorem to y,/y; to reach a contradiction.

Change of Variables. Often a differential equation with variable coefficients,

Y +py' + gty =0, ¢)]

can be put in a more suitable form for finding a solution by making a change of the independent
and/or dependent variables. We explore these ideas in Problems 34 through 42. In particular, in
Problem 34 we determine conditions under which Eq. (i) can be transformed into a differential
equation with constant coefficients and thereby becomes easily solvable Problems 35 through
42 give specific applications of this procedure.

34,

In this problem we determine conditions on p and ¢ that enable Eq. (i) to be transformed
into an equation with constant coefficients by a change of the independent variable. Let
x = u(t) be the new independent variable, with the relation between x and f to be specified

later.
{a) Show that

dy dxdy dy (dx)za'zy d*x dy
dt — dr dx’ T

%) Y E L

dx? 7 odr? dx’
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(b} Show that the differential equation (i) becomes

dx\*d?y [(dx dx\ dy .
(E) T ("d_ﬂ' +p(r)2;) o +4q(t)y=0. (i)

(¢) Inorder for Eq. (ii) to have constant coefficients, the coefficients of d?y/dx? and of y
must be proportional. If g(f) > 0, then we can choose the constant of proportionality to
be 1; hence

x=ult) = f lq())? dt. (i)

(d) With x chosen as in part (¢}, show that the coefficient of dy/dx in Eq. (ii) is also a
constant, provided that the expression

2[qnPr
is a constant. Thus Eq. (i) can be transformed into an equation with constant coefficients

by a change of the independent variable, provided that the function (¢’ + 2pq)/g¢*? is a
constant. How must this result be modified if g(r) < 0?

(iv)

In each of Problems 35 through 37 try to transform the given equation into one with constant
coefficients by the method of Problem 34. If this is possible, find the general solution of the
given equation.

35. Y 4ty + ey =0, —00 <t <00

36. y'+3ty+rfy=0, —00<t<oo

7.y + (= Dy + P2y =0, 0<t<oo

38. Euler Equations. An equation of the form

2.

2y 4oty + By =0, t>0,

where a and § are real constants, is called an Euler equation. Show that the substitution
x = Int transforms an Euler equation into an equation with constant coefficients. Euler
equations are discussed in detail in Section 5.5.

In each of Problems 39 through 42 use the result of Problem 3B to solve the given equation

fort = 0.
39. 2y 41y +y=0 40. 22y + 4ty + 2y =0
41. £y 4 3ty' + 125y =0 42. %' —dty — 6y =0

3.5 Repeated Roots; Reduction

In earlier sections we showed how to solve the equation

ay’ +by +cy=0 (1)
when the roots of the characteristic equation
ar! +br+c=0 (2)

either are real and different or are complex conjugates. Now we consider the third
possibility, namely, that the two roots r; and r; are equal. This case is transitional
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EXAMPLE

between the other two and occurs when the discriminant b2 — 4qc is zero. Then it
follows from the quadratic formula that

rn=nrn= —b/2a (3)
The difficulty is immediately apparent; both roots yield the same solution
np =ebrm @)

of the differential equation (1), and it is not obvious how to find a second solution.

Solve the differential equation
Y +4y' +4y=0. (5)

The characteristic equation is
Pydr+d=0+2¢=0,

§0 r, = r; = —2. Therefore one solution of Eq. (5) is y;(f) = e~*. To find the general solution
of Eq. (5) we need a second solution that is not a multiple of y;. This second solution can
be found in several ways (see Problems 20 through 22); here we use a method originated by
D’Alembert’ in the eighteenth century. Recall that since y; (¢) is a solution of Eq. (1), so is
cy; () for any constant c. The basic idea is to generalize this observation by replacing ¢ by a
function v(¢) and then trying to determine v(r) so that the product v(r)y, (r) is also a solution
of Eq. (1).

To carry out this program we substitute y = v(#)y; (r) in Eq. (1) and use the resulting equation
to find v(¢#). Starting with

y = vy () = v(t)e ™, (6)
we have
¥ =vne ¥ - 2u(t)e N
and
Y = v e ¥ —4v' (e ¥ + du(r)e ™. (8)

By substituting the expressions in Eqs. (6), (7), and (8) in Eq. (5) and collecting terms, we
obtain
[V(8) — 4V'(6) + du(0) + 4v°(1) — Bu(r) + du(N])e™ =0,

which simplifies to

vy = 0. [£2)]
Therefore
v =16
and }
v(t) == ¢yl + ¢z, (10)

3Jean d'Alembert (1717-1783), a French mathematician, was a contemporary of Euler and Daniel
Bemoulli and is known primarily for his work in mechanics and differential equations. D'Alembert’s
principle in mechanics and d'Alembert’s paradox in hydrodynamics are named for him, and the wave
equation first appeared in his paper on vibrating strings in 1747. In his later years he devoted himself
primarily to phitosophy and to his duties as science editor of Diderot’s Encyclopédie.
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where ¢; and ¢, are arbitrary constants. Finally, substituting for »{f} in Eq. (6), we obtain
y=cyte ¥ + e, (11)

The second term on the right side of Eq. (11) corresponds to the original solution
y1 (1) = exp(—21), but the first term arises from a second solution, namely, y» {f) = t exp(—21).
These two solutions are obviously not proportional, but we can verify that they are linearly
independent by calculating their Wronskian:

e te~¥
—2¢7¥ (1-2n)e¥

=V _ At =" £0.

WLyt =

Therefore
ny =%  pO =t (12)

form a fundamental set of solutions of Eq. (5), and the general solution of that equation is
given by Eq. (11). Note that both y;{f} and y,(t) tend to zero as t — oo; consequently, all
solutions of Eq. (5) behave in this way. The graph of a typical solution is shown in Figure 3.5.1.

oy g Ty T
0.5 1 1.5 2 t
FIGURE 3.5.1 A typical solution of y* + 4y’ + 4y = 0.

The procedure used in Example 1 can be extended to a general equation whose
characteristic equation has repeated roots. That is, we assume that the coefficients
in Eq. (1) satisfy b2 -- 4ac = 0, in which case

Nt = e
is a solution. Then we assume that
¥y = v(O)y1() = v(B)e /™ (13)
and substitute for y in Eq. (1) to determine v(t). We have
yl — vr(t)e—br/Za _ _b_v(r)e—bfﬂﬂ (14)
2a
and )
yu - u”(t)e_b'p‘a _ Evr(t)e—b:ﬂa + b—zv(t)e_b'lz". (15)
. a 4a

Then, by substituting in Eq. (1), we obtain

" b f b2 i b —bef2a
{a [v (- =0+ mv(!)} +b [v © - .-2;1;(:)} + cv(t)] et 0, (16)
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Canceling the factor exp(—bt/2a), which is nonzero, and rearranging the remaining

terms, we find that
2 2

" I A
av ‘”*“”“”"“’*(a—5;“)"“)=°' | a7

The term involving v'(f) is obviously zero. Further, the coefficient of v(f) is
¢ — (b*/4a), which is also zero because b2 —4dac =0 in the problem that we are
considering. Thus, just as in Example 1, Eq. (17) reduces to

V(1) = 0;

therefore,
v(t) = ¢t + .

Hence, from Eq. (13), we have

y= leenb’m + Czé_bllza. (18)
Thus y is a linear combination of the two solutions
() = e () = te™H2, (19)
The Wronskian of these two solutions is
e—bi/2a te-bi2a
— __ a-btfa
Wiy, y) ) = b b AP L /e, (20)
2a 2a

Since W(y1,y2)(1) is never zero, the solutions y; and y; given by Eq. (19) are a
fundamental set of solutions. Further, Eq. (18) is the general solution of Eq. (1)
when the roots of the characteristic equation are equal. In other words, in this case,
there is one exponential solution corresponding to the repeated root, and a second
solution is obtained by multiplying the exponential solution by ¢.

Find the solution of the initial value problem
Y-y +025y=0, y0)=2 yO0=1% (21)

The characteristic equation is
P —r+025=0,

so the roots are 51 = r; = 1/2. Thus the general solution of the differential equation is
y = e + cpte?, (22)
The first initial condition requires that *
y0y=c; =2.

To satisfy the second initial condition, we first differentiate Eq. (22) and then set ¢ = 0. This

gives
YO =ta+ea=1,

s0 €2 = —2/3. Thus the solution of the initial value problem is

y=2¢"— e, (23)

The graph of this solution is shown in Figure 3.5.2.
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FIGURE 352 Solutionsofy” -y 4025y =0, y(0) = 2, with y'(0) = 1/3 and with
¥ (0) = 2, respectively.

Let us now modify the initial value problem (21) by changing the initial slope; to be specific,
let the second initial condition be y'(0) = 2. The solution of this modified problem is

y =2e" 112,

and its graph is also shownin Figure 3.5,2. The graphs shown in this figure suggest that thereisa
critical initial slope, with a value between £ and 2, that separates solutions that grow positively
from those that ultimately grow negatively. In Problem 16 you are asked to determine this
critical jnitial slope.

The geometrical behavior of solutions is similar in this case to that when the roots
are real and different. If the exponents are either positive or negative, then the
magnitude of the solution grows or decays accordingly; the linear factor ¢ has little
influence. A decaying solution is shown in Figure 3.5.1 and growing solutions in
Figure 3.5.2. However, if the repeated root is zero, then the differential equation is
y” = 0 and the general solution is a linear function of ¢,

Summary. We can now summarize the results that we have obtained for second order
linear homogeneous eguations with constant coefficients,

ay” + by +cy=0. (1)
Let ry and r; be the roots of the corresponding characteristic polynomial
ar* + br4c=0. (2)

If ry and r, are real but not equal, then the general solution of the differential
equation (1) is '
y = ¢ 4 cpe™. (24)
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If r and r2 are complex conjtigates A iy, then the general solution is
y = ¢,&" cos ut + c2e™ sin ut. (25)
If r1 = r2, then the general solution is .
y = ¢ + cpte’". (26)
Reduction of Order. Itisworthnoting that the procedure used earlier in this section for

equations with constant coefficients is more generally applicable. Suppose we know
one solution y; (¢}, not everywhere zero, of

Yy +p)y +4qy=0. (27)
To find a second solution, let
y=v(y () (28)
then
Y =vOn@) + vy
and

Y =" Oy ) + 20Oy (0 + vy 0.
Substituting for y, ', and y” in Eq. (27) and collecting terms, we find that

yv' + @y + pyov' + O +pyy +gy)v =0. (29)

Since y, is a solution of Eq. (27), the coefficient of v in Eq. (29) is zero, so that Eq. (29)
becomes
yv" + @y + pny’ =0. (30)

Despite its appearance, Eq. (30) is actually a first order equation for the function v’
and can be solved either as a first order linear equation or as a separable equation,
Once v has been found, then v is obtained by an integration. Finally, y is determined
from Eq. (28). This procedure is called the method of reduction of order, because the
crucial step is the solution of a first order differential equation for v’ rather than the
original second order equation for y. Although it is possible to write down a formula
for v(¢f), we will instead illustrate how this method works by an example.

Given that y; () = ! is a solution of
208y + 31y’ —y =0, t>0, (31)
find a second linearly independent solution.
We set y = u(f)r}; then
y=vrt—w? Y=yt —2vtt p2ud
Substituting for y, ¥, and y” in Eq. (31) and collecting terms, we obtain
200" — 20 4 20y 4 3 — vy — !
=20+ (43 W -3 -
= 21" — v =0. (32)

Note that the coefficient of v is zero, as it shouid be; this provides a useful check on our algebra.
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Separating the variables in Eq. (32) and solving for v'(f), we find that
V() =o'

then
U(f) = %Cfsﬂ + k.

It follows that
y= %ctlﬂ + &kt (33)

where ¢ and k are arbitrary constants, The second term on the right side of Eq. (33) is a
multiple of y, () and can be dropped, but the first term provides a new independent solution.
Neglecting the arbitrary multiplicative constant, we have y; (f) = 112,

SRR TR ST e Y ek T T

PROBLEMS In each of Problems 1 through 10 find the general solution of the given differential equation.

1Ly -2y+y=0 2.9 +6y+y=0
3 4y -4y ~3y=0 4, 4y" +12¢y + 9y =0
5.y =2y +10y=0 6. y' -6y +9% =0
7. 4" +17y +4y=0 8. 16y" +24y +9y =0
9. 25y — 20y +4y =0 10. 2" +2y +y=0

In each of Problems 11 through 14 solve the given initial value problem. Sketch the graph of
the solution and describe its behavior for increasing ¢.

1L 9" - 12y’ + 4y =0, yO =2 yO)=-1

12. y'— 6y +9y=0, y0) =0, y®)=2

13. 9 +6y +82y =0, y(0)=-1, y© =2

14, y" +4y' + 4y =0, y—1=2, y-1=1
&f2 15. Consider the initial value problem

4" +12y + 9y =0, yO) =1, y0) =-4

(a) Solve the initial value problem and plot its solution for0 < r < S.

(b) Determine where the solution has the value zero.

(¢) Determine the coordinates (i, yo) of the minimum point.

{d) Change the second initial condition to y’(0) = b and find the solution as a function

of b. Then find the critical value of b that separates solutions that always remain positive
from those that eventually become negative,

16. Consider the following modification of the initial value problem in Example 2:
¥y -y +025y=0, y0)y =2, ¥(0)=5.

Find the solution as a function of b and then determine the critical value of b that separates
solutions that grow positively from those that eventually grow negatively.

@?, 17. Consider the initial value problem
' +4yY +y=0, y0)=1, y©O) =2

(2) Solve the initial value problem and plot the solution.
(b) Determine the coordinateés (fy, ¥ar) of the maximum point.

(c) Change the second initial condition to y'(0) = b > 0 and find the solution as a function
of b. -
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18.

19.

(d) Find the coordinates (#,¥s) of the maximum point in terms of b. Describe the
dependence of #), and yy on b as b increases.

Consider the initial value problem
9},': + 12y‘ +4y =0, y(O) =a>0, y’(O) = 1.

{a) Solve the initial value problem.
{b) Find the critical value of 4 that separates solutions that become negative from those
that are always positive.

If the roots of the characteristic equation are real, show that a solution of
ay’ +by + cy = O can take on the value zero at most once.

Problems 20 through 22 indicate other ways of finding the second solution when the charac-
teristic equation has repeated roots.

20.

21.

22,

(a) Consider the equation y” + 2ay’ + a”y = 0. Show that the roots of the characteristic
equation are r; = r, = —a, 30 that one solution of the equation is e~*,

(b) Use Abel's formula [Eq. (8) of Section 3.3] to show that the Wronskian of any two
solutions of the given equation is

W) = yi(ty5(0) — yi(0Dy2(0) = cre™,

where ¢; is 2 constant.

{c) Lety,(t) = e and use the result of part (b) to obtain a differential equation satisfied
by a second solution y, (f). By solving this equation, show that y,(f) = te=*.

Suppose that r; and r, are roots of ar® +br +¢ =0 and that ry # rp; then exp(r!)
and exp(rf) are solutions of the differential equation ay” + by’ +cy =0. Show that
@ (t; 1y, 12) = lexp(ryf) — exp(r1f)}/(r, — r1) is also a solution of the equation for r, # .
Then think of r, as fixed and use L'Hospital's rule to evaluate the limit of ¢(t;r, ;) as
r, — r, thereby obtaining the second solution in the case of equal roots.

(a) If ar® + br + ¢ = 0 has equal roots ry, show that
Lle"} = a(e")" + b(e"Y +ce™ = alr — ry)te". 6]

Since the right side of Eq. (i) is zero when r = ry, it follows that exp(rf) is a solution of
Liyl=ay"+ by +cy=0.

(b) Differentiate Eq. (i) with respect to r and interchange differentiation with respect to
r and with respect to 1, thus showing that o

iL[t?"] =L [ie"] = L{te") = ate” (r — r1)? + 2a€" (r — ry). (ii)
ar ar

Since the right side of Eq. (ii) is zero when r = r;, conclude that r exp(r1¢) is also a solution
of L[y] = 0.

In each of Problems 23 through 30 use the method of reduction of order to find a second
solution of the given differential equation.

23.
24,
2s.
26.
27.
28.
29.

2y — 4ty +6y =0, >0 n{) =

2y’ +2ty ~2y=0, t>0 yi =t

2y +3ty +y=0, t>0; y@=t"

2y —tt+2)y ++2y=0 >0 yn=t
xy —y 44y =0, x>0,  y(x)=sinx’
x—-1y' —xy+y=0, x>1; nx)y=¢

2y - (x—01875)y =0, x>0,  y(x) =xM¥er7
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30, 2y +xy + (0 —025)y =0, x>0 nix)=x1sinx
31. The differential equation
xy' —(x + N +Ny=10,

where N is a nonnegative integer, has been discussed by several authors® One reason
why it is interesting is that it has an exponential solution and a polynomial solution.

(a) Verify that one solution is y; (x) = €*.

(b) Show that a second solution has the form y,(x) = ce* | x¥e™* dx. Calculate y;(x) for
N =1and N = 2;convince yourself that, with ¢ = —1/NY,

2 XN
LU

nE=1+3+5 N

Note that y,(x) is exactly the first N + 1 terms in the Taylor series about x = 0 for €, that
is, for y; (x).

32. The differential equation
Y +éxy' +y) =0

arises in the study of the turbulent flow of a uniform stream past a circular cylinder, Verify
that y; (x) = exp(—8x?/2) is one solution and then find the general solution in the form of
an integral.

33. The method of Problem 20 can be extended to second order equations with variable
coefficients. If y1 is a known nonvanishing solution of y” + p(£)y’ + g(t)y = 0, show that
a second solution y, satisfies (y2/y1)’ = W (31, y2)/¥3, where W(y,, ) is the Wronskian of
y1 and y;. Then use Abel's formula [Eq. (8) of Section 3.3] to determine y,.

In each of Problems 34 through 37 use the method of Problem 33 to find a second independent

solution of the given equation.

M.y +3y +y=0, t>0;, )=t

5.0 —y +4°%y =0, >0, y() =sin@?)

6. x=1y'—xy+y=0, x>1, nx=¢

T A +xy+(x2=025y=0, x>0 yi(x) = x ¥ sinx

Behavior of Solutions as £ —+ oo, Problems 38 through 40 are concerned with the behavior

of solutions as f — oo,

38. Iia,b,and ¢ are positive constants, show that all solutions of ay” + by’ + ¢y = 0 approach
Zero as ¢ — oo.

39. (a) Ifa > 0andc > 0,but b = 0,show that the result of Problem 38 is no longer true, but
that all selutions are bounded as t — oc.

(b) Ifa > 0 and b > 0,but ¢ = 0,show that the result of Problem 38 is no longer true, but
that all solutions approach a constant that depends on the initial conditions as t — co.
Determine this constant for the initial conditions y(0) = yo,y' (0) = y;.

4). Show that y = sint is a solution of

y' + (ksin® )y’ + (1 — kcostsinf)y =0

°T. A. Newton, “On Using a Differential Equation to Generate Polynomials,” American Mathematical

Monthly 81 (1974}, pp. 592-601. Also See the references given there.
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Theorem 3.6.1

3.6 Nonhomogeneous Equations; Method of

for any value of the constant k. ¥f 0 < k < 2,showthatl — kcostsins > Oand ksin’¢ > 0.
Thus observe thateven though the coefficients of this variable-coefficient differential equa-
tion are nonnegative (and the coefficient of ¥ is zero only at the points t = 0, r, 2rr, .. ),
it has a sclution that does not approach z&ro as t — oo. Compare this situation with the
result of Problem 38. Thus we observe a not unusual situation in the theory of differential
equations: equations that are apparently very similar can have quite different properties.

Euler Equations. Use the substitution introduced in Problem 38 in Section 3.4 to solve each
of the equations in Problems 41 and 42.

41, Py" -3ty +4y =0, t=>0

42. Py" 42ty 4025y =0, >0

We now return to the nonhomogeneous equation
Ly} =y"+p®)y + gy =g}, 1)

where p, ¢, and g are given (continuous) functions on the open interval /. The
equation
Ly1=y"+p®y +q)y =0, @

in which g{¢) = 0 and p and ¢ are the same as in Eq. (1), is called the homogeneous
equation corresponding to Eq. (1). The following two results describe the structure
of solutions of the nonhomogeneous equation (1) and provide a basis for constructing
its general solution.

If Y1 and Y; are two solutions of the nonhomogeneous equation (1), then their
difference Y; — ¥> is a solution of the corresponding homogeneous equation (2).
If, in addition, y; and y; are a fundamental set of solutions of Eq. (2), then

Y1{t) — Yo () = ey (8) + caya(1), (3)

where ¢; and ¢; are certain constants.

To prove this result, note that Y7 and Y) satisfy the ¢quations

Ll =gt), LX) =g®. ' (4)
Subtracting the second of these equations from the first, we have -
L{Y1)() — LIY2(0) = g(t) — 8(t) = C. &)

However,
LiY1]1 - L{Y ) = L[Y1 - Y2},

so Eq. (5) becomes
LiY1 - Y,}(t) = 0. (6)
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Theorem 3.6.2

Equation (6) statesthat Y1 — Y- is a solution of Eq. {2). Finally, since all solutions of
Eq. (2) can be expressed as linear combinations of a fundamental set of solutions by
Theorem 3.2.4, it follows that the solution ¥; — Y5 can be so written. Hence Eq. (3)
holds and the proof is complete.

The general solution of the nonhomogeneous equation (1) can be written in the
form
y=¢{) =cn) + )+ Y@, N

where y; and y; are a fundamental set of solutions of the corresponding homoge-
neous equation (2}, ¢; and ¢; are arbitrary constants, and Y is some specific solution
of the nonhomogeneous equation (1).

The proof of Theorem 3.6.2 follows quickly from the preceding theorem. Note
that Eq. (3) holds if we identify ¥, with an arbitrary solution ¢ of Eq. (1) and Y with
the specific solution Y. From Eq. (3) we thereby obtain

&) — Y (1) = coy1 (1) + caya (1), (8)

which is equivalent to Eq. (7). Since ¢ is an arbitrary solution of Eq. (1), the expres-
sion on the right side of Eq. (7) includes all solutions of Eq. {1); thus it is natural to

call it the general solution of Eq. (1).
In somewhat different words, Theorem 3.6.2 states that to solve the nonhomoge-
neous equation (1}, we must do three things:

i. Find the general solution ¢ y1{f) + c2y2(f) of the corresponding homogeneous eguation.
This solution is frequently called the complementary solution and may be denoted by y. (1).

2. Find some single solution Y (f) of the nonhomogeneous equation. Often this solution is
referred to as a particular solution,

3. Add together the functions found in the two preceding steps.

We have aiready discussed how to find y. (1), at least when the homogeneous equa-
tion (2} has constant coefficients. Therefore, in the remainder of this section and in
the next, we will focus on finding a particutar solution ¥ (#) of the nonhomogeneous
equation (1). There are two methods that we wish to discuss. They are known as
the method of undetermined coefficients and the method of variation of parameters,
respectively. Each has some advantages and some possible shortcomings.

Method of Undetermined Coefficients. The method of undetermined coefficients requires
that we make an initial assumption about the form of the particular solution Y (1),
but with the coefficients Jeft unspecified. We then substitute the assumed expression
into Eq. (1) and attempt to determine the coefficients so as to satisfy that equation. If
we are successful, then we have found a solution of the differential equation (1) and
can use it for the particular solution Y (). If we cannot determine the coefficients,
then this means that there is no solution of the form that we assumed. In this case
we may modify the initial assumption and try again.

The main advantage of the method of undetermined coefficientsis that it is straight-
forward to execute once the assumption is made as to the form of Y {f). Its major
limitation is that it is useful primarily for equations for which we can easily write
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down the correct form of the particular solution in advance. For this reason, this
method is usually used only for problems in which the homogeneous equation has
constant coefficients and the nonhomogeneous term is restricted to a relatively small
class of functions. In particular, we consider only nonhomogeneous terms that con-
sist of polynomials, exponential functions, sines, and cosines. Despite this limitation,
the method of undetermined coefficients is useful for solving many problems that
have important applications. However, the algebraic details may become tedious,
and a computer algebra system can be very helpful in practical applications. We will
illustrate the method of undetermined coefficients by several simple examples and
then summarize some rules for using it.

Find a particular solution of

Y' =3y —dy =3 ®

We seek a function Y such that the combination Y*{f) — 3Y'(f) — 4Y(¢) is equal to 3e¥.
Since the exponential function reproduces itself through differentiation, the most plausible
way to achieve the desired result is to assume that Y (¢) is some multiple of €%, that is,

Y(1) = Ae?,
where the coefficient A is yet to be determined. To find A we calculate
Y'() =24e%,  Y'(t) = 4AeY,
and substitute for y, ¥, and y” in Eq. {9). We obtain
(44 ~ 6A — 4A)e” =3¢,
Hence —6A¢¥ must equal 3¢¥,50 A = ~1/2. Thus a particular solution is
Y () = -3t (10)

Find a particular solution of
¥ =3y — 4y = 2sint, (i1

By analogy with Example 1, let us first assume that Y(t) = Asint,where A is a constant to
be determined. On substituting in Eq. (11) and rearranging the terms, we obtain

—5Asint — 3Acost = 2sint¢,

or
(2+5A)sint +3Acost = 0. (12)

“The functions sin? and cos{ are linearly independent, so Eg. (32) can hold on an intervai only
if the coefficients 2 + 5A4 and 34 are both zero. These contradictory requirements mean that
there is no choice of the constant A that makes Eq. (12) true for all ¢. Thus we conclude that
our assumption concerning Y (¢) is inadequate. The appearance of the cosine term in Eq. (12)
suggests that we modify our original assumption to include a cosine term in Y (¢); that is,

Y (1) = Asint + Bceost,
where A and B are to be determined. Then

Y'(t) = Acost — Bsint, Y“(t) = —Asint — Bcost.
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By substituting these expressions for y, ', and y” in Eq, (11) and collecting terms, we obtain
(—A +38B—4A)sint + (—B —3A —4B) cost = 2sint, (13)

To satisfy Eq. (13) we must match the coefficients of sinf and cos? on each side of the equation;
thus A and B must satisfy the equations

—5A+3B=2, —3A-58=0.
Hence A = —5/17 and B = 3/17, 50 a particular solution of Eq. {11) is

Y(1) =—3 sint+ 3 cost.

The method illustrated in the preceding examples can also be used when the right
side of the equation is a polynomial. Thus, to find a particular solution of

y' =3y —4y=4rr -1, (14)

we initially assume that Y (r) is a polynomial of the same degree as the nonhomoge-
neous term, that is, Y{t) = A2 + Bt + C.

To summarize our conclusions up to this point: if the nonhomogeneous term g(f)
in Eq. (1) is an exponential function ¢*, then assume that Y(f) is proportional to
the same exponential function; if g(¢) is sin 8¢ or cos B¢, then assume that Y {f) is a
linear combination of sin 8¢ and cos Bt; if g(t) is a polynomial, then assume that Y (f)
is a polynomial of like degree. The same principle extends to the case where g{f} is
a product of any two, or all three, of these types of functions, as the next example
illustrates.

Find a particular solution of
¥ =3y —4y=—8ccos2t, (15)

In this case we assume that Y (¢) is the product of ¢’ and a linear combination of cos 2r and
sin2t, that 1s,

Y(r) = A€ cos2t + B sin2t.
The algebra is more tedious in this example, but it follows that
Y'(f) = (A+ 2B)é cos 2t + (—2A + B)ée'sin 2t

and
Y1) = (—3A + 4B)¢ cos2t + (—4A — 3B)é' sin2t.

By substituting these expressions in Eq,. (15), we find that A and B must satisfy
104 + 2B =8, 2A —10B =0.
Hence A = 10/13 and B = 2/13; therefore a particular solution of Eq. (15) is

Y (1) = 3¢ cos 2t + A ¢ sin2t.
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Now suppose that g(r) is the sum of two terms, g(r) = g, (¢) + g2(¢), and suppose
that Y, and Y» are solutions of the equations

ay’ + by’ +cy = g1(0) (16)
and

ay’ + by + ¢y = ga(), (17)
respectively. Then Y) + Y3 is a solution of the equation

ay” + by’ +cy = g(). (18)

To prove this statement, substitute Yi(¢) + Y3(¢) for y in Eq. (18) and make use
of Egs. (16) and (17). A similar conclusion holds if g() is the sum of any finite
number of terms. The practical significance of this result is that for an equation
whose nonhomogeneous function g(¢) can be expressed as a sum, one can consider
instead several simpler equations and then add the results together. The following
example is an illustration of this procedure.

Find a particular solution of
y' =3y — 4y =3e” + 2sins — 8¢' cos2r., (19)
By splitting up the right side of Eq. (19), we obtain the three equations
Y' =3y —dy =3¢,
¥y — 3y ~ 4y =2sint,
and
¥ -3y —4y = —8e¢'cost.

Solutions of these three equations have been found in Examples 1, 2, and 3, respectively.
Therefore a particular solution of Eq. (19) is their sum, namely,

Y() =—Le"+ Jcost — Fsint + Be' cos2t + Le' sin2e.

The procedure illustrated in these examples enables us to solve a fairly large class
of problems in a reasonably efficient manner. However, there is one difficulty that
sometimes occurs. The next example illustrates how it arises.

Find a particular solution of
y =3y —dy=2e". (20)

Proceeding as in Example 1, we assume that Y(f) = Ae™. By substitutin—g in Eq. (20), we
then obtain
(A +34 — 4A)e™ =2, (21)

Since the left side of Eq. (21) is zero, there is no choice of A that satisfies this equation,
Therefore, there is no particular solution of Eq. (20) of the assumed form. The reason for this
possibly unexpected result becomes clear if we solve the homogeneous equation

¥ -3y —dy=0 (22)
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that corresponds to Eq. (20). A fundamental set of solutions of Eq. {22) is y1 () = e~ and
y2(f) = e*. Thus our assumed particular solution of Eq. (20) is actually a solution of the
homogeneous equation (22); consequently, it cannot possibly be a solution of the nonhomo-
geneous equation (20). To find a solution of Eq. {20) we must therefore consider functions of
a somewhat different form.

At this stage we have several possible alternatives. One is simply to try to guess the proper
form of the particular solution of Eq. (20). Another is to solve this equation in some different
way and then to use the result to guide our assumptions if this situation arises again in the
future; see Problems 27 and 33 for other solution methods. Still another possibility is to
seek a simpler equation where this difficulty occurs and to use its solution to suggest how we
might proceed with Eq. (20). Adopting the latter approach, we look for a first order equation
analogous to Eq. (20). One possibility is

y+y=2" (23)

If we try to find 2 particuiar solution of Eq. (23) of the form Ae™, we will fail because e~ is
a solution of the homogeneous equation y* + y = 0. However, from Section 2.1 we already
know how to solve Eq. (23). An integrating factor is u(f) = €', and by multiplying by £() and
then integrating both sides, we obtain the solution

y=2" +ce, (24)

The second term on the right side of Eq. (24) is the general solution of the homogeneous
equation y’ 4+ y = 0, but the first term is a solution of the full nonhomogeneous equation (23).
Observe that it involves the exponential factor e~ multiplied by the factor ¢. This is the clue
that we were looking for.

We now return to Eq. (20) and assume a particular solution of the form Y (f) = Are™. Then

Y = Ae™ — Ate™, YU = —24e™" + Are™'. (25)

Substituting these expressions for y, y’, and y” in Eq. {20), we obtain ~54 = 2,50 A = —2/5,
Thus a particular solution of Eq. (20) is

YO = -1 (26)

The outcome of Example 5 suggests a modification of the principle stated pre-
viously: if the assumed form of the particular solution duplicates a solution of the
corresponding homogeneous equation, then modify the assumed particular solution
by multiplying it by ¢. Occasionally, this modification will be insufficient to remove
all duplication with the solutions of the homogeneous equation, in which case it is
necessary to multiply by ¢ a second time. For a second order equation, it will never
be necessary to carry the process further than this.

Summary. We now summarize the steps involved in finding the solution of an initial
value problem consisting of a nonhomogeneous equation of the form

ay” + by + cy =g(t), (27)

where the coefficients q, b, and c are constants, together with a given set of initial
conditions:
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1. Find the general solution of the corresponding homogeneous equation,

2. Make sure that the function g(#) in Eq. (27) belongs to the class of functions discussed
in this section; that is, be sure it involves nothing more than exponential functions, sines,
cosines, polynomials, or sums or products of such functions. If this is not the case, use the
method of variation of parameters (discussed in the next section).

3, Ifg(t) =g +--- +ga(0), that is, if g(r) is & sum of »n terms, then form n subproblems,
each of which contains only one of the terms g1 (1), .. ., g(f). The ith subproblem consists
of the equation

ay" + by +cy =gi(n),

where i runs from 1 to n.

4, For the ith subproblem assume a particular solution Y;(f) consisting of the appropriate
exponential function, sine, cosine, polynomial, or combination thereof, If there is any
duplication in the assumed form of ¥;(1) with the solutions of the homogeneous equation
(found in step 1), then multiply Y;(1) by 1, or (if necessary) by 72, 50 as 10 remove the
duplication. See Table 3.6.1.

TABLE 3.6.1 The Particular Solution of ay” + by’ +cy = gi(t
& Y0
P =apt" +ay" '+ +a, FlA" + A" 14+ .-+ Ay

P.(e PlApt" + A"l 4+ 4 A

sin Bt

Fl(Aot® + A" - - + A cos Bt
cos Bt

P,,(:)e‘"[
+ (Bot" + By" ! + .- + B,)e™ sin 1]

Notes. Here 5 is the smallest nonnegative integer (s = 0,1, or 2) that will ensure that no
term in ¥;(1) is a solution of the corresponding homogeneous equation. Equivalently,
for the three cases, 5 is the number of times 0 is a root of the characteristic equation, et is
a root of the characteristic equation, and o + i8 is a root of the characteristic equation,
respectively.

5. Find a particular solution ¥;(t) for each of the subproblems. Then the sum
Yi(t) + - - + Ya(#) is a particular solution of the full nonhomogeneous equation (27).

6. Form the sum of the general solution of the homogeneous equation (step 1) and the
particular solution of the nonhomogeneous equation (step 5). This is the general solution
of the nonhomogeneous equation.

7. Use the initial conditions to determine the values of the arbitrary constants remaining in
the general solution.

For some problems this entire procedure is easy to carry out by hand, but in many
cases it requires considerable algebra. Once you understand clearly how the method
works, a computer algebra system can be of great assistance in executing the details.

The method of undetermined coefficients is self-correcting in the sense that if one
assumes too little for Y (¢), then a contradiction is soon reached that usually points the
way to the modification that is needed in the assumed form. On the other hand, if one



182

Chapter 3. Second Order Linear Equations

assumes too many terms, then some unnecessary work is done and some coefficients
turn out to be zero, but at least the correct answer is obtained.

Proof of the Method of Undetermined Coefficients. In the preceding discussion we have de-
scribed the method of undetermined coefficients on the basis of several examples.
To prove that the procedure always works as stated, we now give a general argu-
ment, in which we consider several cases corresponding to different forms for the
norhomogeneous term g(1).
g) = Py(f) = apt” + ayt® 1 + . .+ 4 a,. In thiscase Eq. (27) becomes
ay’ + by +cy=aof" + 1" P + .-+ ay (28)
To obtain a particular solution we assume that
Y(O) =Ag" + A1 4+ Apat? + At + A (29)
Substituting in Eq. (28), we obtain
aln(n — DA + - + 24, 5] + b(nAg" ™ 4+ + Ay )
+ (Ao + A" o A) =apt" + -+ an (30)
Equating the coefficients of like powers of ¢ gives

cAg = ag,
cAy + nbAg = ay,

CAn+ DAy +20A,_2 = a,.

Provided that ¢ # 0, the solution of the first equation is Ag = ap/c, and the remaining
equations determine A,,.. ., A, successively. If ¢ = 0 but b # 0, then the polynomial
on the left side of Eq. (30) is of degree n — 1, and we cannot satisfy Eq. (30). To be
sure that aY”(f) + bY’(¢) is a polynomial of degree n, we must choose Y (f) to be a
polynomial of degree n + 1. Hence we assume that

Y(O) =1(Apt" + - -- + Ap).

There is no constant term in this expression for Y (#), but there is no need to include
such a term since a constant is a solution of the homogeneous equation when ¢ = 0.
Since b # 0, we have Ay = ap/b(n + 1), and the other coefficients A), ..., A, can be
determined similarly. If both ¢ and b are zero, we assume that

Y (1) = 2(Aof" + - + A,).

The term a¥Y”(¢) gives rise to a term of degree n, and we can proceed as before.
Again the constant and linear terms in Y (f) are omitted, since in this case they are
both solutions of the homogeneous equation.

g(t) = e** P, (). The problem of determining a particular solution of

ay” + by +cy = e P,(1) (31)
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can be reduced to the preceding case by a substitution. Let
Y1) = eulr);

then
Y1) = ™ [td (1) + aeue(1]

and
Y (1) = e[ (1) + 20t (1) + ®u(n)].

Substituting for y,y’, and y” in Eq. (31), canceling the factor e, and collecting terms,

we obtain
a’(1) + (2ae + b) (1) + (ac® + ba + ull) = P,(1). (32)

The determination of a particular solution of Eq. (32) is precisely the same problem,
except for the names of the constants, as solving Eq. {28). Therefore, if ac® + ba + ¢
is not zero, we assume that u(f) = Agt" + - - + A,; hence a particular solution of
Eq. (31) is of the form

Y1) = e (Aot" + A1 4 - + A)). (33)

On the other hand, if aa? + b + ¢ is zero but 2aa + b is not, we must take u(f)
to be of the form f(Apt" + .-+ + A,). The corresponding form for Y () is ¢ times
the expression on the right side of Eq. (33). Note that if ao? + ba + ¢ is zero, then
¢* is a solution of the homogeneous equation. If both ao® + ba + ¢ and 2a0 + b
are zero (and this implies that both e* and f¢*' are solutions of the homogeneous
equation), then the correct form for u(f) is £2(Agf” + - - - + A,). Hence Y (1) is /2 times
the expression on the right side of Eq. {33).

g(t) = e Py(f) cos Bt or e P,(r) sin Br. These two cases are similar, so we con-
sider only the latter. We can reduce this problem to the preceding one by noting that,
as a consequence of Euler’s formula, sin 8 = (e/# — e~y /2i. Hence g(f) is of the
form

e(a-Hﬁ)! - e(a—r'ﬁ)l

g(’) =Pn(f) 2

k]

and we should choose
Y(1) = et AG" + - + An) + €= P (Bor" 4+ + By),
or, equivalently,
Y(t) = e*(Aot" +-- - + An) cos Bt + €*(Bot” + -+ + By)sin .

Usually, the latter form is preferred. If o + i satisfy the characteristic equation
corresponding to the homogeneous equation, we must, of course, multlply each of
the polynomials by ¢ to increase their degrees by one.

If the nonhomogeneous function involves both cos At and sin ft, it is usually con-
venient to treat these terms together, since each one individually may give rise to the
same form for a particular solution. For example, if g(t) = tsin? + 2cos?, the form
for ¥ (f) would be

Y () = (Aot + A)sint + (Bgf + Bi) cost,

provided that sin ¢ and cos/ are not solutions of the homogeneous equation.



Chapter 3. Second Order Linear Equations

In each of Problems 1 through 12 find the general solution of the given differential equation.

1y —2y —3y=3e 2. y"+2y + 5y =3sin2t
3.y —2y 3y =3t 4.y +2y =3+ 4sin2

5. +9% =1 +6 6.y +2y +y=2¢"

7. 2y" + 3y +y =12+ 3sint B ¥ +y=3sin2r+rcost
9w +olu=cosel, @ #w} 10. " + wiu = coswyl

11. " 4y + 4y = Zsinht Hint: sinht = (e' — e7*)/2
12. y¥ —y — 2y =cosh 2t Hint: cosht = (& + ) /2

In each of Problems 13 through 18 find the solution of the given initial value problem.
13.y'+y —29=2  y0 =0, y(@O) =1

4. y"+4y =43, 30 =0, y©0)=2

15. y' =2y +y =te' -4, yo =1, y@ =1

16. y" — 2y - 3y = 3re¥, yO =1, y(0) =0

17. y" + 4y = 3sint, Yy =2 y0)=-1

18. " +2y' + 5y =4de 'cos 21, yO)y=1, y@=0

In each of Problems 19 through 26:

(a) Determine a suitable form for Y (r) if the method of undetermined coefficients ic to be
used.

{b) Use a computer algebra system to find a particular solution of the given equation.

&0 19. y" 43y =2t + Fe™ 45in 3

&2 20. y' +y=1(1+sinr)

&2 21. y' — Sy + 6y = e cos 2t + €% (3t + 4) sint

&L 22. y" + 2y +2y =3¢+ 2¢ 7" cost + de~'tsint
& 23y —dy + 4y =2 1+ dte¥ + tsin2t

&2 24. y' + 4y = *sin2r + (61 + 7) cos 2t

& 25. ¥ +3y +2y = €' (* + 1) sin 2t + 3e~' cost + de*
&2 26. y' + 2y + Sy =131e7 cos 2t — 2e~¥ cos !

27. Consider the equation
Y =3y —dy=2¢" ®

from Example 5. Recall that y, (f) = ™" and y; (r) = " are solutions of the corresponding
homogeneous equation. Adapting the method of reduction of order (Section 3.5), seek a
solution of the nonhomogeneous equation of the form Y (1) = v(Ny () = v{Ne™, where
v(f) is to be determined.

(a) Substitute Y1), Y'(), and Y”(t) into Eq.(i) and show that v(f) must satisfy
v~ 5V = 2.

(b) Let w(r) = v'(r) and show that w(t) must satisfy w’ — Sw = 2. Solve this equation
for w(r).

(c) Integrate w(f) to find v(r) and then show that
Y = —%re" + %c;e" + e,

The first term on the right side is the desired particular solution of the nonhomogeneous
equation. Note that it is a product of f and e™".



3.6 Nonhomogeneous Equations; Method of Undetermined Coefficients 185

28,

& 2.

& 30.

Determine the general solution of

¥y + Az Zam sinmmt,
m=1
where A > QandA #mrform=1,...,N.

In many physical problems the nonhomogeneous term may be specified by different for-
mulas in different time periods. As an example, determine the solution y = ¢ (f) of

. I O<t<n,
’V’+y'_ln'e”‘ t>m,

satisfying the initial conditions y(0) = 0 and ¥ (0) = 1. Assume that y and y' are also
continuous at/ = 7. Plotthe nonhomogeneous term and the solution as functions of time.
Hint: First solve the initial value problem for ¢ < ;then solve for ¢ > n, determining the
constants in the latter solution from the continuity conditions at ¢ = .

Follow the instructions in Problem 29 to solve the differential equation

) _Jt, O=t=<af2,
y+2y’+5y“[o, t> /2

with the initial conditions y(0) = 0 and y'(0) =

Behavior of Solutions as f = co. In Problems 31 and 32 we continue the discussion started
with Problems 38 through 40 of Section 3.5, Consider the differential equation

ay” + by +cy =g, (i)

where a, b, and ¢ are positive.

31

32,

33.

If Y1 (#) and Y2(f) are solutions of Eq. (i), show that ¥1(#) — Ya(f) = Dast — oo. Is this
result true if b = 07

If g(¢) = d,a constant, show that every solution of Eq. (i) approaches d/c ast — oo, What
happens if ¢ = 07 What if b = 0 also?

In this problem we indicate an alternative procedure’ for solving the differential equation
Y +by +cy=(D*+bD +c)y =g, (i

where b and c are constants,and D denotes differentiation with respect to t. Letryand r»
be the zeros of the characteristic polynomial of the corresponding homogeneous equation.
These roots may be real and different, real and equal, or conjugate complex numbers.

(a) Verify that Eq. (i) can be written in the factored form
(D~ n)(D—r2)y =g,

where i + n=—bandnn =c.
(b) Letu = (D — r2)y. Then show that the solution of Eq (i) can be found by solving the
following two first order equations:

D-nu=g®, [D-r)y=u@.

TR. S. Luthar, “Another Approach to 2 Standard Differential Equation,” Two Year College Mathematics
Journal 10 (1979), pp. 200-201; also see D. C. Sandell and F. M. Stein, “Factorization of Operators of
Second Order Linear Homogeneous Ordinary Differential Equations,” Tivo Year College Mathematics
Journal 8 (1977), pp. 132-141, for a more general discussion of factoring operators.
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In each of Problems 34 through 37 use the method of Problem 33 to solve the given differential
equation.

34,y -3y —4y=23¢¥  (see Example 1)

35 2y"+ 3y +y =1 +43sinz  (see Problem 7)

36, y' 42y 4+ y=2e" (see Problem 6)

37. y' 4+ 2y =34+ 4sin2t (see Problem 4)

3.7 Variation of Parameters

In this section we describe another method of finding a particular solution of a non-
homogeneous equation. This method, known as variation of parameters, is due to
Lagrange and complements the method of undetermined coefficients rather well.
The main advantage of variation of parameters is that it is a general method; in prin-
cipleatleast,itcan be applied to any equation, and it requires no detailed assumptions
about the form of the solution. In fact, later in this section we use this method to
derive a formula for a particular solution of an arbitrary second order linear non-
homogeneous differential equation. On the other hand, the method of variation
of parameters eventually requires that we evaluate certain integrals involving the
nonhomogeneous term in the differential equation, and this may present difficulties.
Before looking at this method in the general case, we illustrate its use in an example.

Find a particular solution of
¥ +dy =3csct. (1)

Observe that this problem is not a good candidate for the method of undetermined coeffi-
cients, as described in Section 3.6, because the nonhomogeneous term g(1) = 3¢sct involves
a quotient (rather than a sum or a product) of sint or cosr. Therefore, we need a different
approach. Observe also that the homogeneous equation corresponding to Eq. (1) is

Y +4y=0, ()
and that the general solution of Eq. (2) is
¥elt) = ¢ cos 2t 4 €3 5in 2t 3)

The basic idea in the method of variation of parameters is to replace the constants ¢; and ¢
in Eq. (3) by functions u; (r) and u; (1), respectively, and then to determine these functions so
that the resulting expression

¥ = 1y (1) cos 2t + 1(1) sin 2t (4)

is a solution of the nonhomogeneous equation (1).

To determine w) and u; we need to substitute for y from Eq. (4) in Eq, (1). However,even
without carrying out this substitution, we can anticipate that the result will be a single equation
involving some combination of i, u,, and their first two derivatives, Since there is only one
equation and two unknown functions, we can expect that there are many possible choices of
u; and u, that will meet our needs. Alternatively, we may be able to impose a second condition
of our own choosing, thereby obtaining two equations for the two unknown functions u; and
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;. We will soon show (following Lagrange) that it is possible to choose this second condition
in a way that makes the computation markedly more efficient.
Returning now to Eq. (4), we differentiate it and rearrange the terms, thereby obtaining

¥ = —2uy (1) sin 2t + 2uz(r) €0 24 + ) (1) cOS 2t + 16y (1) sin 21. 5

Keeping in mind the possibility of choosing a second condition onu and u, let us require the
sum of the last two terms on the right side of Eq. (5) to be zero; that is, we require that

u () cos2t + uy(t)ysin2t = 0. (6)
It then follows from Eq. (5) that
Y = —2uy(t) sin 2t + 2us (1) cos 2t. )

Although the ultimate effect of the condition (6) is not yet clear, at the very least it has simplified
the expression for y. Further, by differentiating Eq. (7), we obtain

¥' = —4u1 (1) cos 20 — dup (1) sin 2t — 20, (1) Sin 24 + 214, (f) cos 21. ®

Then, substituting for y and y” in Eq. (1) from Eqs. {4) and (8), respectively, we find that 1,
and 2 must satisfy
=2u (1) sin 21 + 2u (1) cos 2t = 3escr. 9

Summarizing our results 1o this point, we want to choose #; and 1 $0 as to satisfy Eqs. {6)
and (9). These equations can be viewed as a pair of linear algebraic equations for the two
unknown quantities #; (1} and (). Equations (6) and (9) can be solved in various ways. For
example, solving Eq. (6) for 1 (f}, we have

cos 2t

w1 = —:ll(r)—sinzr. 10)
Then, substituting for &4 (¢} in Eq. (9) and simplifying, we obtain
(1) = ~£Si';’ﬂ = —3cost. (11)

Further, putting this expression for ] (t) back in Eq. (10) and using the double-angle formulas,

we find that
3costcos2t _ 3(1 —2sin’ ) 3

1451 = Sl TsinT = 5 o8t — Isint. {12)
Having obtained 1/, () and 5 (), we next integrate so as to find 1 (f) and uz(f). The resuit is
w (Y = —3sint +¢; (13)
and
(1) = 2In | esct — cot | + 3cost + ca. (19

On substituting these expressions in Eq. (4), we have
y = —3sintcos 2t + 3 In|escr — cots|sin2¢ + 3costsin 2t
+ ¢ cos2t + ¢ sin 2t ’
Finally, by using the double-angle formulas once more, we obtain
y =3sint + % In|csct —cott|sin2f + ¢; cOs2f + ¢, sin2¢. (15)

The terms in Eq. (15) involving the arbitrary constants ¢; and ¢; are the general solution of the
corresponding homogeneous equation, while the remaining terms are a particular solution of
the nonhomogeneous equation (1). Thus Eq. (15) is the general solution of Eq. (1).
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In the preceding example the method of variation of parameters worked well in
determining a particular solution, and hence the general solution, of Eq. (1). The next
question is whether this method can be applied effectively to an arbitrary equation.
Therefore we consider

Y+ p(y + ey =g, (16)

where p, q, and g are given continuous functions. As a starting point, we assume that
we know the general solution

Ye(t) = a1t} + cay2(t) 17
of the corresponding homogeneous equation
Y +p®y +q9(ty=0. (18)

This is a major assumption because so far we have shown how to solve Eq. (18) only if
it has constant coefficients. If Eq. (18) has coefficients that depend on ¢, then usually
the methods described in Chapter 5 must be used to obtain y. (). '

The crucial idea, as illustrated in Example 1, is to replace the constants ¢; and c;
in Eq. (17) by functions 1, (f) and u,(f), respectively; this gives

¥y = (O30 + w2 (Dy2(0). (19

Then we try to determine i (¢) and u; (f) so that the expression in Eq. (19)is a solution
of the nonhomogeneous equation (16) rather than the homogeneous equation (18).
Thus we differentiate Eq. (19), obtaining

Y = w0y () + i (DY) + 15Oy (1) + 1a(Dy5 (0. (20)

Asin Example 1, we now set the terms involving 14 (t) and 5 (¢} in Eq. (20) equal to
zero; that is, we require that

1 (O + 16Oy = 0. (21)
Then, from Eq. (20), we have
¥ = (DY) + w0y, (0. (22)
Further, by differentiating again, we obtain
Y = O @)+ m OO + w00 + wa(0y; (). (23)

Now we substitute for y, ¥, and y” in Eq. (16) from Egs. (19), (22), and (23),
respectively. After rearranging the terms in the resulting equation, we find that
1 (DD () + pOYI () + g ()]
+ w202 (1) + PO (0 + gy (0]
+ 1 (OO + 1 (O3 = g (24)

Each of the expressions in square brackets in Eq. (24) is zero because both y; and y,
are solutions of the homogeneous equation (18). Therefore Eq. (24) reduces to

w (DY () + 15 ()y5 () = g(n). (25)

Equations (21) and (25) form a system of two linear algebraic equations for the
derivatives u; (t) and u5(t) of the unknown functions. They correspond exactly to
Egs. (6) and (9) in Example 1.
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Theorem 3.7.1

By solving the system (21), (25) we obtain

y2(0)g(t) () = yie)
Wom®' T Wonmo”
where W(y1, y2) is the Wronskian of y; and y,. Note that division by W is permissible

since y1 and y, are a fundamental set of solutions, and therefore their Wronskian is
nonzero. Byintegrating Egs. (26) we find the desired functions #; (f) and u» (), namely,

u(fy =~ (26)

7080 TG
W01y dten L= [ o =E

If the integrals in Egs. (27) can be evaluated in terms of elementary functions, then
we substitute the results in Eq. (19), thereby obtaining the genera! solution of Eq.
(16). More generally, the solution can always be expressed in terms of integrals, as
stated in the following theorem.

() = — di+c. (27

If the functions p, ¢, and g are continuous on an open interval f, and if the functions
y1 and y, are linearly independent solutions of the homogeneous equation (18)
corresponding to the nonhomogeneous equation (16),

Y +pW®y +q)y =g,

then a particuiar solution of Eq. {16) is

"on)gE) f’ y1(5)g()
Y= —w(t =<2 ds ————ds, 28
® ”‘“f,., Wonm® =10 | Wonme (28)

where fo is any conveniently chosen point in . The general solution is

y=cayi(®) +caya() + Y (1), (29)

as prescribed by Theorem 3.6.2.

By examining the expression (28) and reviewing the process by which we derived
it, we can see that there may be two major difficulties in using the method of variation
of parameters. As we have mentioned eartier, one is the determination of y,(t) and
y2(), a fundamental set of solutions of the homogeneous equation (18), when the
coefficients in that equation are not constants. The other possible difficulty is in the
evaluation of the integrals appearing in Eq. (28). This depends entirely on the nature
of the functions y;, y2, and g. In using Eq. (28), be sure that the differential equation
is exactly in the form (16); otherwise, the nonhomogeneous term g(r) will not be
correctly identified.

A major advantage of the method of variation of parameters is that Eq. (28) pro-
vides an expression for the particular solution Y (r) in terms of an arbitrary forcing
function g(f). This expression is a good starting point if you wish to investigate the
effect of variations in the forcing function, or if you wish to analyze the response of
a system to a number of different forcing functions.
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In each of Problems 1 through 4 use the method of variation of parameters to find a particular
solution of the given differential equation. Then check your answer by using the method of
undetermined coefficients.

1y — 5y + 6y = 22 2y —y —2y=2e"
3y 42y +y=3e" 4. 4y — 4y +y=16¢"

In each of Problems 5 through 12 find the general solution of the given differential equation,
In Problems 11 and 12, g is an arbitrary continuous function.

5. ¥'+ y=tani, 0<t<x/2 6. ¥ + 9y = 9sec?3t, 0<t<xf6
1.y +4y +4y=r¥ >0 8 y'+4y=3csc2t, O<t<n/2
9. 4y" + y = 2sec(t/2), —r <t 10. y" =2y +y=€/(1+ 1)

11. y" — 5y + 6y =g} 12. y' + 4y = g()

In each of Problems 13 through 20 verify that the given functions y; and y; satisfy the corre-
sponding homogeneous equation; then find a particular solution of the given nonhomogeneous
equation. In Problems 19 and 20, g is an arbitrary continuous function.

13. 3y —2y=32~1, (>0, yi=r nit=t?
14, 2y —1(+2)y + U+ )y =282, >0 n =t wi=t
15 0" —(A+0y +y=02e, >0, nM=1+1, nty=¢
16. 1—0y' +1y —y=20-1%", 0<r<] vty =¢, wnH=t
17. Xy’ - 3ay' 4+ dy =x%Inx, x>0 nE) =22, ypE)=xhx
18. 2%y 4 xy' 4 (x2 ~ 0.25)y = 3x*2sinx, x> 0;
y1(x) =xYsinx, y,(x)=x"cosx
19. A—x)y"+xy —-y=px), O<x<l; nx)=¢€, yE)=x
20. X2y +xy + (x2—028)y =gx), x>0, y1(x) =x"Wsinx, y(x) =x""2 cosx
21. Show that the solution of the initial value problem

Liy}=y'+p@)y +q@)y = gt), Y =yo, Y) =y (i)
can be written as y = u(f) + v(r), where # and v are soluti;)ns of the two initial value
problems

Lul=0, u(te)=ys, u'{to)=7y, (i)
Livj=g®, vl =0, vt =0, (iii)

respectively. In other words, the nonhomogeneities in the differential equation and in
the initial conditions can be dealt with separately. Observe that « is easy to find if a
fundamental set of solutions of L{z] = 0 is known.

22. By choosing the lower limit of integration in Eq. (28) in the text as the initial point f,
show that Y(1) becomes

t —_—
Yo = [ NORO =1 On6) o
o

nHy, ) — ¥ ()y2(s)
Show that Y (1) is a solution of the initial value problem
Liy)=g®, yt)=0, Y(t)=0.

Thus Y can be identified with v in Problem 21.
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23,

24,

25.

26.

27.

28.

(a) Use the result of Problem 22 to show that the solution of the initial value problem
Y'+y=g), y)=0, y(t)=0 ()
is '
t
y= [ sin(f — 5)g(s) ds. (ii)
o

(b) Use the result of Problem 21 to find the solution of the initial value problem
Y'+y=8) yO =y, y0O =,
Use the result of Problem 22 to find the solution of the initial value problem
Ly)=D-~a)D~by=380), y)=0, yY(to)=0,

where a and & are real numbers with a # b.
Use the result of Problem 22 to find the solution of the initial value problem

Lyl=[D*— 22D+ 2+ x)ly=g01),  yt) =0, y'(r0)=0.

Note that the roots of the characteristic equation are A + ig.
Use the result of Problem 22 to find the solution of the initial value problem

Lyl=(D~-aly=gt), yt)=0, ¥() =0,

where a is any real number.
By combining the results of Problems 24 through 26, show that the solution of the initial
value problem

Lyl=(D*+bD+c)y=g(t), y(t)=0, ¥(t)=0,

where b and ¢ are constants, has the form
!
y=¢() = [ K(t —5)g(s) ds. (i)
o

The function K depends only on the solutions y; and y; of the corresponding homogene ous
equation and is independent of the nonhomogeneous term. Once K is determined, ail
nonhomogeneous problems involving the same differential operator L are reduced to the
evaluation of an integral. Note also that although K depends on both r and s, only the
combination ! — s appears, so X is actually a function of a single variable. When we think
of g(t) as the input to the problem and of ¢(f) as the output, it follows from Eq. (i) that the
output depends on the input over the entire interval from the initial point # to the current
value t. The integral in Eq. (i) is called the convolution of K and g, and X is referred to as
the kernel.

The method of reduction of order (Section 3.5) can also be used for the nonhomogeneous
equation : -

Y +p®y + q(t)y =g, (i)

provided one solution y; of the corresponding homogeneous equation is known. Let
y = v(f)y1(¢) and show that y satisfies Eq. (i) if v is a solution of

» O + 2y, () + p@)y1 (O = g(0). (ii)

Equation (ii) is a first order linear equation for v’. Solving this equation, integrating the
result, and then multiplying by y, () lead to the general solution of Eq. ().
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In each of Problems 29 through 32 use the method outlined in Problem 28 to solve the given
differential equation.

29. 2y -2y 2y =4, t>0;  y(O)=t

0. Y+ 7Y + Sy =1, (>0, y(t)=r"!

Ly —(+0y+y=1%* >0, y(@)=1+r (see Problem 15)
32.A-0y"+1y —y=2(1—1)%", 0<t<]; »on=¢€ (see Problem 16)

3.8 Mechanical and Electrical Vibrations

One of the reasons why second order linear equations with constant coefficients are
worth studying is that they serve as mathematical models of some important physical
processes. Two important areas of application are in the fields of mechanical and
electrical oscillations. For example, the motion of a mass on a vibrating spring, the
torsional oscillations of a shaft with a flywheel, the flow of electric current in a simple
series circuit, and many other physical problems are all described by the solution of
an initial value problem of the form

ay” + by’ + cy = g(1), y(©0) =yo, Y'(0) =y 1)

This illustrates a fundamental relationship between mathematics and physics:
Many physical probleins may have the same mathematical model. Thus, once we
know how to solve the initial value problem (1), it is only necessary to make appro-
priate interpretations of the constants a, b, and ¢, and of the functions y and g, to
obtain solutions of different physical problems.

We will study the motion of a mass on a spring in detail because an understanding
of the behavior of this simple system is the first step in the investigation of more
complex vibrating systems. Further, the principles involved are common to many
problems. Consider a mass m hanging on the end of a vertical spring of original
length /, as shown in Figure 3.8.1. The mass causes an elongation L of the spring in
the downward (positive) direction. There are two forces acting at the point where
the mass is attached to the spring; see Figure 3.8.2. The gravitational force, or weight
of the mass, acts downward and has magnitude /ng, where g is the acceleration due to
gravity. There is also a force F;,due to the spring, that acts upward. If we assume that
the elongation L of the spring is small, the spring force is very nearly proportional
to L; this is known as Hooke’s? law. Thus we.write F; = —&L, where the constant of
proportionality k is called the spring constant, and the minus sign is due to the fact
that the spring force acts in the upward (negative) direction. Since the mass is in
equilibrium, the two forces balance each other, which means that

mg — kL =0. 2

8Robert Hooke (1635-1703) was an English scientist with wide-ranging interests. His most important
book, Micrographia, was published in 1665 and described a variely of microscopical observations Hooke
first published his law of elastic behavior in 1676 as ceiiinosssttuv, in 1678 he gave the interpretation ut
tensio sic vis, which means, roughly, “as the force so is the displacement.”
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For a given weight w = mg, one can measure L and then use Eq. (2) to determine k.
Note that k has the units of force/length.

FIGURE 38.1 A spring-mass system.

F,=-kL

w=mg
FIGURE 3.8.2 Force diagram for a spring-mass system.

In the corresponding dynamic problem, we are interested in studying the motion
of the mass when it is acted on by an external force or is initially displaced. Let
u(), measured positive downward, denote the displacement of the mass from its
equilibrium p0sitioh at time t; see Figure 3,8,1. Then u(t) is related to the forces
acting on the mass through Newton'’s law of motion,

i @) = £@), 3)

where u” is the acceleration of the mass and f is the net force acting on the mass.
Observe that both u and f are functions of time. In determining f there are four
separate forces that must be considered:

1. The weight w = mg of the mass always acts downward.

2. The spring force F; is assumed to be proportional to the total elongation L + i of the
spring and always acts to restore the spring to its natural position. If L + & > 0, then the
spring is extended, and the spring force is directed upward. In this case

Fy = —k(L +u). €Y

On the other hand, if L + u < 0, then the spring is compressed a distance [L + «], and
the spring force, which is now directed downward, is given by F; = k|L + u|. However,
when L + u < 0, it follows that [L + u| = —(L + u), so F, is again given by Eq. (4). Thus,
regardless of the position of the mass, the force exerted by the spring is always expressed

by Eq. (4).
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3. The damping or resistive force F; always acts in the direction opposite to the direction of
motion of the mass. This force may arise from several sources: resistance from the air or
other medium in which the mass moves, internal energy dissipation due to the extension or
compression of the spring, friction between the mass and the guides (if any) that constrain
its motion to one dimension, or a2 mechanical device (dashpot) that imparts a resistive
force to the mass. In any case, we assume that the resistive force is proportional to the
speed |du/dt| of the mass; this is usually referred to as viscous damping. If du/dt > 0,then
u is increasing, so the mass is moving downward. Then F; is directed upward and is given
by

Fy(t) = —ypu' (1), ()

where y is a positive constant of proportionality known as the damping constant. On
the other hand, if du/df < 0, then u is decreasing, the mass is moving upward, and Fy is -
directed downward. In this case, Fy = y [u/'(t}]; since [u'(t}] = —1 (1}, it follows that Fu(t)
is again given by Eq. (5). Thus, regardless of the direction of motion of the mass, the
damping force is always expressed by Eq. (5).

The damping force may be rather complicated, and the assumption that it is modeled
adequately by Eq. (S) may be open to question. Some dashpots do behave as Eq. (5)
states, and if the other sources of dissipation are small, it may be possible to neglect
them altogether or to adjust the damping constant y to approximate them, An important
benefit of the assumption (5) is that it leads to a linear (rather than a nonlinear) differential
equation. In turn, this means that a thorough analysis of the system is straightforward, as
we will show in this section and the next.

4. An applied external force F(f) is directed downward or upward as F(f) is positive or
negative. This could be a force due to the motion of the mount to which the spring is
attached, or it could be a force applied directly to the mass. Often the external force is
periodic.

Taking account of these forces, we can now rewrite Newton's law (3) as

mu"(t) = mg + F;(£) + F4 () + F(?)

=mg — k[L + u(®)] — yu'(t) + F(t). (6)
Since mg — kL = 0 by Eq. (2), it follows that the equation of motion of the mass is
mu” () + yu'(t) + ku(ty = F(@), ()]

where the constants 1, y, and k are positive. Note that Eq. (7) has the same form as
Eq. (D).

It is important to understand that Eq. (7) is only an approximate equation for
the displacement u(f). In particular, both Egs. (4) and (5) should be viewed as
approximations for the spring force and the damping force, respectively. In our
derivation we have also neglected the mass of the spring in comparison with the
mass of the attached body.

The complete formulation of the vibration problem requires that we specify two
initial conditions, namely, the initial position i and the initial velocity vy of the mass:

u(0) = uy, 1 (0) == vy, (8)

It follows from Theorem 3.2.1 that these conditions give a mathematical problem that
has a unique solution. This is consistent with our physical intuition that if the mass is
set in motion with a given initial displacement and velocity, then its position will be
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determined uniquely at all future times. The position of the mass is given (approxi-
mately) by the solution of Eq. (7) subject to the prescribed initial conditions (8).

A mass weighing 4 1b stretches a spring 2 in. Suppose that the mass is displaced an additional

i} EXAMPLE 6in. in the positive direction and then released. The mass is in a medium that exerts a viscous
r 1 resistance of 6 Ib when the mass has a velocity of 3 ft/sec. Under the assumptions discussed in
this section, formulate the initial value problem that governs the motion of the mass.

ﬂ The required initial value problem consists of the differential equation (7) and initial condi-
tions (8), so our task is to determine the various constants that appear in these equations. The
g first step is to choose the units of measurement. Based on the statement of the problem, it is
natural to use the English rather than the metric system of units. The only time unit mentioned
is the second, so we will measure ¢ in seconds. On the other hand, both the foot and the inch
3 appear in the statement as units of length. It is immaterial which one we use, but having made
5 a choice, we must be consistent. To be definite, let us measure the displacement u in feet.

Ef Since nothing is said in the statement of the problem about an external force, we assume
1 that F(t) = 0. To determine m note that

=

oY 41b 1 Ib-sec

b = — = = - .

A g 32ftfsec2 B ft

r The damping coefficient y is determined from the statement that yu' is equal to 6 1b when &'
3 is 3 ft/sec. Therefore

; y = 6lb  _ lb-sec

| T 3ftfsec  ft

: The spring constant k is found from the statement that the mass stretches the spring by 2 in.,
2 or 1/6 ft. Thus

E 4]

i k= _b_ = &

% 1/6 ft fr

:: Conseguently, Eq. (7) becomes

I£ .

su' 420 +24u =0,

or

2 u” + 160"+ 192u = 0. )]
r The initial conditions are

3 u@ =1, (0 =0 (10)
Lf The second initial condition is implied by the word “released" in the statement of the problem,
2 which we interpret to mean that the mass is set in motion with no initial velocity.

Undamped Free Vibrations. If there is no external force, then F(f) = 0 in Eq. (7). Let
us also suppose that there is no damping, so that y = 0; this is an idealized config-
uration of the system, seldom (if ever) completely attainable in practice. However,
if the actual damping is very small, then the assumption of no damping may yield
satisfactory results over short to moderate time intervals. In this case the equation
of motion (7) reduces to

mu” + ku =0, (11)
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The general solution of Eq. (11) is
u = A coswyt + B sin wot, (12)

where

w§ = kfm. (13)
The arbitrary constants A and B can be determined if initial conditions of the form
(8) are given.

In discussing the solution of Eq. (11) it is convenient to rewrite Eq. (12) in the
form

u = Rcos(wgt — §), (14)
or
u = R cosé cos wyt + Rsiné sinwpt. (15)

By comparing Eq. (15) with Eq. (12), we find that A, B, R, and § are related by the
equations

A = Rcosé, B = Rsiné. (16)
Thus
R=+A2F B,  tané=B/A. 17

In calculating §, we must take care to choose the correct quadrant; this can be done
by checking the signs of cos § and siné in Egs. (16).

The graph of Eq. (14), or the equivalent Eq. (12),for a typical set of initial conditions
isshown in Figure 3.8.3. The graph s a displaced cosine wave that describes a periodic,
or simple harmonic, motion of the mass. The period of the motion is

T=—=2n (fl’g)m. (18)

The circular frequency wgy = /k/m, measured in radians per unit time, is called the
natural frequency of the vibration. The maximum displacement R of the mass from
equilibrium is the amplitude of the motion. The dimensionless parameter § is called
the phase, or phase angle, and measures the displacement of the wave from its normal
position corresponding to § = 0.

FIGURE 3.8.3 Simple harmonic motion; u = R cos(we? — 8).
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Note that the motion described by Eq. (14) has a constant amplitude that does not
diminish with time. This reflects the fact that, in the absence of damping, there is no
way for the system to dissipate the energy imparted to it by the initial displacement
and velocity. Further, for a given mass m and spring constant k, the system always
vibrates at the same frequency wy, regardless of the initial conditions. However, the
initial conditions do help to determine the amplitude of the motion. Finally, observe
from Eq. (18) that T increases as m increases, $o larger masses vibrate more siowly.
On the other hand, T decreases as k increases, which means that stiffer springs cause
the system to vibrate more rapidly.

Suppose that a mass weighing 10 1bstretches a spring 2in. If the mass is displaced an additional
2 in. and is then set in motion with an initial upward velocity of 1 ft/sec, determine the position
of the mass at any later time. Also determine the period, amplitude, and phase of the motion.

The spring constantisk = 101b/2in. = 601b/ft,and the mass ism = w/g = 10/32 Ib-sec?/ft.
Hence the equation of motion reduces to

1" +192u =0, (19)
and the general solution is
u = A cos(8+/31) + Bsin(8+/31).
The solution satisfying the initial conditions u(0) = 176 ft and «’(0) = —1 ft/secis

1 1
# = - cos(8v31) ~ —— sin 8/31). 20
. )~ 575 n6V30 (20)
The natural frequency is wg = /192 = 13.856 rad/sec, so the period is T = 2r /wg = 0.45345
sec. The amplitude R and phase § are found from Eqgs. (17). We have

=L, 1 _ 18

) 36 192 576'
The second of Egs. (17) yields tané = --\/5/4. There are two solutions of this equation, one
in the second quadrant and one in the fourth. In the present problem cos 8 > 0 and siné < 0,
50 & is in the fourth quadrant, namely,

8 = —arctan(~/3/4) = —0.40864 rad.

so R =0.18162 1t

The graph of the solution (20} is shown in Figure 3.8.4,

FIGURE 3.8.4 V An ﬁndéﬁlpéd free ‘;ibfatlon; ' -+ 19;’214 = 0; u(O) = 1/6,- #(0) = ~1
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Damped Free Vibrations. If we include the effect of damping, the differential equation
governing the motion of the mass is

mu” + yu' + ku=90. 2D

We are especially interested in examining the effect of variations in the damping
coefficient y for given values of the mass i and spring constant k. The roots of the
corresponding characteristic equation are

4 ST dkm
”iz"’n k’":-—’i(—u 1—‘”‘—’"). 22)

2m y?

r,r =

Depending on the sign of y? — 4km, the solution u has one of the following forms:
y2 —4km > 0, u= Ae" 4 Be'"'; (23)
y?—dkm =0, wu=(A+ Be v, (24)

dkm — y2)1/2

vy —4km <0, u=e"""(Acosut+ Bsinut), u= .
y

> 0. (25)
Since m, y, and k are positive, y* —4km is always less than y2. Hence, if
y?—4km > 0, then the values of r; and r; given by Eq.(22) are negative. If
y? — 4km < 0, then the values of n and r; are complex, but with negative real part.
Thus, in all cases, the solution u tends to zero as ¢ — oo; this occurs regardless of the
values of the arbitrary constants 4 and B, that is, regardless of the initial conditions.
This confirms our intuitive expectation, namely, that damping gradually dissipates
the energy initially imparted to the system, and consequently the motion dies out
with increasing time.

The most important case is the third one, which occurs when the damping is small.
If we Jet A = Rcosé and B = Rsin 6 in Eq. {25), then we obtain

u = Re™ V' cos(ut — §). (26)

The displacement « lies between the curves u == £Re"¥*/2™; hence it resembles a
cosine wave whose amplitude decreases as ¢ increases. A typical example is sketched
in Figure 3.8.5. The motion is called a damped oscillation or a damped vibration.
The amplitude factor R depends on m, y, k, and the initial conditions.

_Re T2’

FIGURE 38.5 Damped vibration; u = Re """ cos(ut — §).
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Although the motion is not periodic, the parameter y determines the frequency
with which the mass oscillates back and forth; consequently, . is called the quasi
frequency. By comparing p with the frequency wp of undamped motion, we find that

L2 2\ 12 2
B Gkm -y /2”'=(1-—»——" ) 1Y 27)
@p k/m dkm

The last approximation is valid when y?/4km is small; we refer to this situation as
“small damping.” Thus the effect of small damping is to reduce slightly the frequency
of the oscillation. By analogy with Eq. (18), the quantity Ty = 2x/u is called the
quasi perjod. It is-the time between successive maxima or successive minima of
the position of the mass, or between successive passages of the mass through its
equilibrium position while going in the same direction. The relation between T and

T is given by
-2 2
Ta y? Y
41— =14 2—
T ( dkm t 8km /)’ 28)

where again the last approximation is valid when y?/4km is small. Thus small damp-
ing increases the quasi period.

Equations (27) and (28) reinforce the significance of the dimensionless ratio
y2/4km. It is not the magnitude of ¥ alone that determines whether damping is
large or small, but the magnitude of ¥2 compared to 4km. When y?/4km is small,
then damping has a small effect on the quasi frequency and quasi period of the mo-
tion. On the other hand, if we want to study the detailed motion of the mass for all
time, then we can never neglect the damping force, no matter how small.

As y2/4km increases, the quasi frequency p decreases and the quasi period Ty
increases. Infact, ;. — Oand T4 — coasy — 2+/km. Asindicated by Egs. (23):}24_1),
and (25), the nature of the solution changes as y passes through the value 2+/km.
This value is known as critical damping, while for larger values of y the motion is said
to be overdamped. In these cases, given by Eqs. (24) and (23), respectively, the mass
creeps back to its equilibrium position but does not oscillate about it, as for small y.
Two typical examples of critically damped motion are shown in Figure 3.8.6, and the
situation is discussed further in Problems 21 and 22.

R e U O R R R
u=

(Lo g2 "
(e2)er

-8~ 10 ~ ¢

B N R P
. R L N - \{u= (12_ Qt)e—ﬂ?r-_'?,'.

FIGURE 3.8.6 Critically damped motions: « + ' +0.25u = 0; 1 = (A + Btje~'~.
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The motion of a certain spring-mass system is governed by the differential equation
u" +0.125¢' + u =0,

where 1 is measured in feet and £ in seconds. If u(0) = 2 and 1’(0) == 0, determine the position
of the mass at any time. Find the quasi frequency and the quasi period, as well as the time
at which the mass first passes through its equilibrium position. Also find the time r such that

ju(ty) < 0.1forallt > r.
The solution of Eq, (29) is

(29)

V255 JZ_SE}

- krjlﬁ N,
H=e [Aco ST t + Bsin 16

To satisfy the initial conditions we must choose A = 2and B = 2//255; hence the solution of
the initial value problem is

w=e"%[2cos 2551+ 2 sin 2551
- 16 J255 16

= 2 e [ Y2, 4 (30)
/255 16 '

where tan § = 1/4/255, s0 § = 0.06254. The displacement of the mass as a function of time is
shown in Figure 3.8.7. For purposes of comparison, we also show the motion if the damping

term is neglected.

5 Z: I g 12?5 v + u= 0} u(O) 2 w (0)=0
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o
1 i
1
[ |
a b
{ )
! r
! {
R

A
1
N
g
R
LT
-1
By
)
|

FIGURE 38.7 Vibration with small damping (solid curve) and with no damping (dashed
curve).

The quasi frequencyis ji = +/255/16 = 0.998 and the quasi period is 7, = 2 /¢  6.295 sec.
These values differ only slightly from the corresponding values (1 and 2, respectively) for
the undamped osciliation. This is evident also from the graphs in Figure 3.8.7, which rise
and fall almost together. The damping coefficient is small in this example, only one-sixteenth
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FIGURE 3.'8.8 Solufion bf Example 3; determinaﬁon-ofu r-.-

of the critical value, in fact, Nevertheless, the amplitude of the oscillation is reduced rather
rapidly. Figure 3.8.8 shows the graph of the solution for 40 < r < 60, together with the graphs
of u = £0.1. From the graph it appears that r is about 47.5, and by a more precise calculation
we find that t = 47.5149 sec.

To find the time at which the mass first passes through its equilibrium position, we refer to
Eq. (30) and set +/255¢/16 — § equal to /2, the smallest positive zero of the cosine function.
Then, by solving for ¢, we obtain

16 /=
t= E ('i‘ + 8) =~ 1.637sec.

Electric Circaifs. A second example of the occurrence of second order linear differen-
tial equations with constant coefficients is their use as a model of the flow of electric
current in the simple series circuit shown in Figure 3.8.9. The current I, measured in
amperes, is a function of time ¢. The resistance R (ohms), the capacitance C (farads),
and the inductance L {(henrys) are all positive and are assumed to be known con-
stants. The impressed voltage E (volts) is a given function of time. Another physical
quantity that enters the discussion is the total charge Q (coulombs) on the capacitor
at time ¢. The relation between charge ( and current [ is

1=dQydr. (31)

Resistance R Capacitance C
AV {¢
( I inductance L

Impressed voltage El¢)
FIGURE 3.8.9 A simple electric circuit.
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The flow of current in the circuit is governed by Kirchhoff's? second law: In a
closed circuit the impressed voltage is equal to the sum of the voltage drops in the rest
of the circuit.

According to the elementary laws of electricity, we know that

The voltage drop across the resistor is IR.
The voltage drop across the capacitor is Q/C.

The voltage drop across the inductor is LdI/dr.
Hence, by Kirchhoff’s law,
df 1
L— 4+ RI+—=Q = E(1). 32
o TR+ 52 =E0 (32)

The units have been chosen so that 1 volt = 1 ohm - 1 ampere = 1 coulomb/1 farad
=1 henry - 1 ampere/1 second.
Substituting for I from Eq. (31), we obtain the differential equation

1
LQ"+RQ' + =0 =EW® (33)
for the charge @. The initial conditions are
Qo) =Qo, Q'Uo)=1I(0)=1l. (34)

Thus we must know the charge on the capacitor and the current in the circuit at some
initial time .

Alternatively, we can obtain a differential equation for the current I by differenti-
ating Eq. (33) with respect to t, and then substituting for 4Q/dt from Eq. (31). The
result is

1
LI" + RI' + EI=E'(t), (35)
with the initial conditions
Ity =1lo,  I'(to) =1, (36)
From Eq,. (32) it follows that

E(to) — Rl — (1/C
- (f0) (}‘(/ )Qo. 37)

Hence [j is also determined by the initial charge and current, which are physically
measurable quantities.

The most important conclusion from this discussion is that the flow of current in
the circuit is described by an initial value problem of precisely the same form as
the one that describes the motion of a spring-mass system. This is a good example
of the unifying role of mathematics: Once you know how to solve second order

®Gustav Kirchhoff (1824-1887), professor at Breslau, Heidelberg, and Berlin, was one of the leading
physicists of the nineteenth century. He discovered the basic laws of electric circuits about 1845 while
still a student at Kénigsberg. He is also famous for fundamental work in electromagnetic absorption and
emission and was one of the founders of spectroscopy.
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linear equations with constant coefficients, you can interpret the results in terms of
mechanical vibrations, electric circuits, or any other physical situation that leads to
the same problem.

PRO

1.
3.

& s

& .

&2 10,

11.

12,
13.

14.

LEMS In each of Problems 1 through 4 determine wo, R, and & so as to write the given expression in
===———=ex  the form k& = R cos(wyt — &).

u=73cos2t+4sin2t 2. u= —cost+ +3sint
u =4cos3t —2sin3t 4, u=—2cosxt—3sinnt

A mass weighing 2 1b stretches a spring 6 in. If the mass is pulled down an additional 3 in.
and then released, and if there is no damping, determine the position u of the mass at any
time . Plot u versus 1. Find the frequency, period, and amplitude of the motion.

. A mass of 100g stretches a spring 5cm. Ifthemass is set in motionfrom its equilibrium posi-

tion with a downward velocity of 10 cm/sec, and if there is no damping, determine the posi-
tion  of the mass at any time . When does the mass first return to its equilibrium position?

. A mass weighing 3 Ib stretches a spring 3 in. If the mass is pushed upward, contracting

the spring a distance of 1 in., and then set in motion with a downward velocity of 2 ft/sec,
and if there is no damping, find the position u of the mass at any time ¢. Determine the
frequency, period, amplitude, and phase of the motion.

. A series circuit has acapacitor of 0.25 x 10~ farad and an inductor of 1 henry. If the initial

charge on the capacitor is 10~ coulomb and there is no initial current, find the charge Q
on the capacitor at any time ¢.

A mass of 20 g stretches a spring 5 cm. Suppose that the mass is also attached to a vis-
cous damper with a damping constant of 400 dyne-sec/em. If the mass is pulled down
an additional 2 cm and then released, find its position i at any time 1. Plot u versus 1.
Determine the quasi frequency and the quasi period. Determine the ratio of the quasi
period to the period of the corresponding undamped motion. Also find the time r such
that Ju(t)| < 0.05cm foraltt > r.

A mass weighing 16 1b stretches a spring 3 in. The mass is attached to a viscous damper
with a damping constant of 2 Ib-sec/ft. If the mass is set in motion from its equilibrium
position with a downward velocity of 3 in./sec, find its position u at any time ¢. Plot 4
versus f. Determine when the mass first retoms to its equilibrium position. Also find the
time 1 such that |u(f)] < 0.01 in. for allf > .

A spring is stretched 10 ¢cm by a force of 3 newtons. A mass of 2 kg is hung from the
spring and is also attached to a viscous damper that exerts a force of 3 newtons when the
velocity of the mass is 5 m/sec. If the mass is pulled down 5 ¢cm below its equilibrium
position and given an initial downward velocity of 10 cm/sec, determine its position u at
any time ¢. Find the quasi frequency u and the ratio of u to the natural frequency of the
corresponding undamped motion.

A series circuit has a capacitor of 10~° farad, a resistor of 3 x 10> ohms, and an inductor
of 0.2 henry. The initial charge on the capacitor is 10-¢ coulomb and there is no initial
current. Find the charge { on the capacitor at any time 1.

A certain vibrating system satisfies the equation #” -+ y#' +u = 0. Find the value of the
damping coefficient y for which the quasi period of the damped motion is 50% greater
than the period of the corresponding undamped motion.

Show that the period of motion of an undamped vibration of a mass hanging from a ver-
tical spring is 2 /L/g, where L is the elongation of the spring due to the mass and g is
the acceleration due to gravity.
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15.

16.

17.

18.

19.

20.

21.

22,
23,

24.

Show that the solution of the initial value problem
mu'+yu +ku=0, ull)=u, uH)=u

can be expressed as the sum w =v+ w, where v satisfies the initial conditions
v(to) = ug, V'(fp) = 0, w satisfies the initial conditions w(fp) = 0, w' (i) = 1}, and both v
and w salisfy the same differential equation as w. This is another instance of superposing
solutions of simpler problems to obtain the solution of a more general problem.

Show that A cos wy! + Bsinwgt can be written in the form rsin(wgt — #). Determine r
and £ in terms of A and B. If R cos(wot — 8) == rsin{wy! — &), determine the relationship
among R, r,8,and 6.

A mass weighing 8 1b stretches a spring 1.5 in. The mass is also attached to a damper with
coefficient y. Determine the value of y for which the system is critically damped; be sure
to give the units for y.

If a series circuit has a capacitor of C = 0.8 x 107¢ farad and an inductor of L = 0.2 henry,
find the resistance R so that the circuit is critically damped.

Assume that the system described by the equation mu” + yu’ + ku = 0 is either critically
damped or overdamped. Show that the mass can pass through the equilibrium position
at most once, regardless of the initial conditions.

Hint: Determine all possible values of ¢ for which u = 0.

Assume that the system described by the equation mue” + yu’ + ku = Qis critically damped
and that the initia] conditions are u{0) = uo,1'(0) = vy. If vy = 0, show that u — 0 as
{ —» oo but that u is never zero. If ug is positive, determine a condition on vy that will
ensure that the mass passes through its equilibrium position after it is released.
Logarithmic Decrement. (a) For the damped oscillation described by Eq. (26), show
that the time between successive maxima is Ty = 2w /u.

(b) Show that the ratio of the displacements at two successive maxima is given by
exp(y T4/2m). Observe that this ratio does not depend on which pair of maxima is
chosen. The natural logarithm of this ratio is called the logarithmic decrement and is
denoted by A,

(c) Show that A = wry /mp. Since m, i, and A are quantities that can be measured easily
for a mechanical system, this result provides a convenient and practical method for de-
termining the damping constant of the system, which is more difficult to measure directly.
In particular, for the motion of a vibrating mass in a viscous fluid, the damping constant
depends on the viscosity of the fluid; for simple geometric shapes the form of this depen-
dence is known, and the preceding relation allows the experimental determination of the
viscosity. This is one of the most accurate ways of determining the viscosity of a gas at
high pressure.

Referring to Problem 21, find the logarithmic decrement of the system in Problem 10.

For the system in Problem 17 suppose that A'= 3 and T; = 0.3sec. Referring 10 Problem
21, determine the value of the damping coefficient y.

The position of a certain spring-mass system satisfies the initial value problem
¥ ku=0, u(0) =2, @O =v.

Ifthe period and amplitude of the resulting motion are observed to be # and 3, respectively,
determine the values of k and v.

. Consider the initial value problem

Wyl +u=0, u0) =2, ') =0.

We wish to explore how long a time interval is required for the solution to become “neg-
ligible” and how this interval depends on the damping coefficient y. To be more precise,
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26.

27

&0 28

&2 29.

let us seek the time v such that [u(f)| < 0.01 for ali r > v. Note that critical damping for
this problem occurs for y = 2.

(a) Let y =0.25 and determine 7, or at least estimate it fairly accurately from a plot of
the solution.

(b) Repeat part (a) for several other values of y in the interval 0 < y < 1.5. Note that ¢
steadily decreases as y increases for y in this range.

(c) Create a graph of v versus y by plotting the pairs of values found in parts (a) and (b).
Is the graph a smooth curve?

(d) Repeat part (b) for values of y between 1.5 and 2, Show that t continues to de-
crease unti) y reaches a certain critical value y, after which v increases. Find g and the
corresponding minimum vaiue of t to two decimal places.

(e) Another way {o proceed is to write the solution of the initial value problem in the
form (26). Neglect the cosine factor and consider only the exponential factor and the
amplitude R. Then find an expression for 7 as a function of y. Compare the approximate
results obtained in this way with the values determined in parts (a), (b), and (d).

Consider the initial value problem
m’ e +ku=0 w0 =u, 0 =uv.

Assume that y? < 4km.

(a) Solve the initial value problem.

(b) Write the solution in the form u(r) = Rexp(—yt/2m) cos(ut — §). Determine R in
terms of i, y, k, ttg, and vy.

(c) Investigate the dependence of R on the damping coefficient y for fixed values of the
other parameters.

A cubic block of side { and mass density p per unit volume is floating in a fluid of mass
density po per unit volume, where py > p. If the block is slightly depressed and then re-
leased, it oscillates in the vertical direction. Assuming that the viscous damping of the
fluid and air can be neglected, derive the differential equation of motion and determine

the period of the motion.
Hint: Use Archimedes’ principle: An object that is completely or partially submerged in
a fluid is acted on by an upward (buoyant) force equal to the weight of the displaced fluid.

The position of a certain undamped spring-mass system satisfies the initial value problem
u+2u=0, u@® =0 o@=2

(a) Find the solution of this initial value problem.

(b) Plot 1 versus f and #’ versus f on the same axes.

(c) Plot i versus u; that is, plot u(f) and u'(¢) parametrically with t as the parameter. This
plot is known as a phase plot, and the uw'-plane is called the phase plane. Observe that
a closed curve in the phase plane corresponds to a periodic solution u(¢). What is the
direction of motion on the phase plot as ¢ increases?

The position of a certain spring-mass system satisfies the initial value problem
w i +2u=0, u@=0, W(O)=2

(a) Find the solution of this initial value probiem.
(b) Plot i versus f and 1’ versus f on the same axes.

(c) Plotu’ versus i in the phase plane (see Problem 28). Identify several corresponding
points on the curves in parts (b) and (c). What is the direction of motion on the phase

plot as ¢ increases?
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30.

31

In the absence of damping the motion of a spring-mass system satisfies the initial value
problem

mu'+ku=0, u(@=a, u@=>b.
(a) Show that the kinetic energy initially imparted to the mass is #1b%/2 and that the po-

tential energy initially stored in the spring is ka?/2, so that initially the total energy in the

system is (ka® + mb?) /2.

(b) Solve the given initial value problem.

{c) Using the solution in part (b), determine the total energy in the system at any time r.
Your result should confirm the principle of conservation of energy for this system.

Suppose that a mass m slides without friction on a horizontal surface. The mass is at-
tached to a spring with spring constant k, as shown in Figure 3.8.10, and is also subject
to viscous air resistance with coefficient y. Show that the displacement u(f) of the mass
from its equilibrium position satisfies Eq. (21). How does the derivation of the equation
of motion in this case differ from the derivation given in the text?

ult)
! k S
S
. i

FIGURE 3.8.10 A spring—mass system,

. In the spring-mass system of Problem 31, suppose that the spring force is not given by

Hooke's law but instead satisfies the relation
F, = —(ku + e,

where k > 0 and ¢ is small but may be of either sign. The spring is called a hardening
spring if ¢ > 0 and a softening spring if ¢ < 0. Why are these terms appropriate?

(a) Show that the displacement u(r) of the mass from its equilibrium position satisfies the
differential equation
mu’ + yu' + ku+ e’ =0.

Suppose that the initial conditions are
ul) =0, ' (0)=1.

In the remainder of this problem assume that m =1,k = 1,and y =0.
(b) Find u(r) when ¢ = 0 and also determine the amplitude and period of the motion.

(c) Lete =0.1. Plot a numerical approximation to the solution. Does the motion appear
1o be periodic? Estimate the amplitude and period.

(d) Repeat part (c) fore = 0.2 and ¢ = 0.3.

(e) Plot your estimated values of the amplitude A and the period T versus e. Describe
the way in which A and 7', respectively, depend on e.

{f) Repeat parts (c), (d), and (e) for negative values of €.
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3.9 Forced Vibrations

We will now investigate the situation in which a periodic external force is applied
to a spring—mass system. The behavior of this simple system models that of many
oscillatory systems with an external force due, for example, to a motor attached to
the system. We will first consider the case in which damping is present and will look
later at the idealized special case in which there is assumed to be no damping.

Forced Vibrations with Damping. Suppose that the external force is given by Fgcos wt,
where Ky and w are positive constants representing the amplitude and frequency,
respectively, of the force. Then the equation of motion is

mu” + yu' + ku = Fycos wi, ¢

where m, y, and & are the mass, damping coefficient, and spring constant of the
spring-mass system. The general solution of Eq. (1) must be of the form

u = c iy (1) + caua () + Acoswt + Bsinwt = u () + U(r). )

The first two terms on the right side of Eq. (2) form the general solution u.(f) of the
homogeneous equation corresponding to Eq. (1), while the latter two terms are a
particular solution U(f) of the full nonhomogeneous equation. The coefficients A
and B can be found, as usual, by substituting these termsinto the differential equation
(1), while the arbitrary constants ¢; and c; are available to satisfy initial conditions,
if any are prescribed. The solutions u;(f) and 12(f) of the homogeneous equation
depend on the roots 71 and r; of the characteristic equation mr? + yr + k = 0. Since
m, y, and k are all positive, it follows that r, and r, either are real and negative or
are complex conjugates with negative real part. In either case, both u; (f) and u;(¢)
approach zero as t — o0. Since u.(¢) dies out as ¢ increases, it is called the transient
solution. In many applications, it is of little importance and (depending on the value
of y) may well be undetectable after only a few seconds.

The remaining terms in Eq. (2), namely U(t) = A coswt + Bsin wt, do not die out
as f increases but persist indefinitely, or as long as the external force is applied. They
represent a steady oscillation with the same frequency as the external force and
are called the steady-state solution or the forced response. The transient solution
enables us to satisfy whateverinitial conditions may be imposed; with increasing time,
the energy put into the system by the initial displacement and velocity is dissipated
through the damping force, and the motion then becomes the response of the system
to the external force. Without damping, the effect of the initial conditions would
persist for all time.

It is convenient to express U(f) as a single trigonometric term rather than as a sum
of two terms. Recall that we did this for other similar expressions in Section 3.8.

Thus we write
U(t) = Rcos(wt — 8). 3

The amplitude R and phase 8§ depend directly on A and B and indirectly on the
paramecters in the differential equation (1). It is possible to show, by straightforward
but somewhat lengthy algebraic computations, that

m(wg — @?)
A

Fo

g YO
R= A cOsé = , sinéd = A C))
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where

A= mH o} — o) 4 ylw? and o) = k/m. (5)

We now investigate how the amplitude R of the steady-state oscillation depends
on the frequency w of the external force. For low-frequency excitation, that is, as
w — 0, it follows from Eqs. (4) and (5) that R — Fo/k. At the other extreme, for
very high-frequency excitation, Eqs. (4) and (5) imply that R — 0 as @ — co. Atan
intermediate value of @ the amplitude may have a maximum. To find this maximum
point, we can differentiate R with respect to @ and set the result equal to zero. In
this way we find that the maximum amplitude occurs when w = wpay, Where

2 2 }’2 2 }’2
=wi- L = - Z—1. 6
Pmax = @0 < 57 = 40 (1 ka) )
Note that wmay < wg and that wpay is close 10 wg when y is small. The maximum
value of R is
F E 2

Rupax = g = 2 (1 + }’_) ) (7)

ywo/l — (y3/dmk) Yoo Bmk

where the last expression is an approximation for small y. If y2/mk > 2, then wgpay as
given by Eq. (6} is imaginary; in this case the maximum value of R occurs for w =0,
and R is a monotone decreasing function of w. Recall that critical damping occurs
when y2/mk = 4.

For small y it follows from Eq. (7) that Ry = Fo/ywo. Thus, for lightly damped
systems, the amplitude R of the forced response when w is near wy is quite large
even for relatively small external forces, and the smaller the value of y, the more
pronounced is this effect. This phenomenon is known as resonance, and it is often an
important design consideration. Resonance can be either good or bad, depending
on the circumstances. It must be taken very seriously in the design of structures,
such as buildings and bridges, where it can produce instabilities that might lead to
the catastrophic failure of the structure. On the other hand, resonance can be put
to good use in the design of instruments, such as seismographs, that are intended to
detect weak periodic incoming signals,

Figure 3.9.1 contains some representative graphs of Rk/Fg versus w/wy for several
values of I' = y2/mk. The quantity Rk/F; is the ratio of the amplitude R of the
forced response to Fo/k, the static displacement of the spring produced by a force
Fgo. The graph corresponding to I" = 0.015625 is included because this is the value
of I that occurs in Example 1 below. Note particularly the sharp peak in the curve
corresponding to I" = 0.015625 near w/wg = 1. The limiting case as I' — 0 is also
shown. It follows from Egs. (4) and (5) that R — Fp/m|w} — w?|as y -> Oand hence
Rk/Fpisasymptotic to the vertical line @ = wyg,as shown in the figure. Asthe damping
in the system increases, the peak response gradually diminishes.

Figure 3.9.1 also illustrates the usefulness of dimensionless variables. You can
easily verify that each of the quantities Rk/Fp, w/axp, and I'" is dimensionless. The
importance of this observation is that the number of significant parameters in the
problem has been reduced to three rather than the five that appear in Eq. (1). Thus
only one family of curves, of which a few are shown in Figure 3.9.1, describes the
response-versus-frequency behavior of all systems governed by Eq. (1).
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FIGURE 3.9.1 Forced vibration with damping: amplitude of steady-state response versus
frequency of driving force; I' = y2/mik.

The phase angle § also depends in an interesting way on w. For @ near zero, it fol-
lows from Eqgs. (4) and (5) that cos§ = 1 and sin § = 0. Thus & = 0, and the response
is nearly in phase with the excitation, meaning that they rise and fall together and,
in particular, assume their respective maxima nearly together and their respective
minima nearly together. For @ = wp we find that cosd = O and siné = 1,508 = x/2.
In this case the response lags behind the excitation by x/2; that is, the peaks of the
response occur x /2 later than the peaks of the excitation, and similarly for the val-
leys. Finally, for @ very large, we have cos§ = —1 and sin § = 0. Thus § = 7, so that
the response is nearly out of phase with the excitation; this means that the response
is minimum when the excitation is maximum, and vice versa. Figure 3.9.2 shows

P BN L i

0 2 3 4 olw,

FIGURE 3.9.2 Forced vibration with damping: phase of steady-state response versus fre-
quency of driving force; I' = y?/mk.
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EXAMPLE

1

the graphs of § versus w/wy for several values of I". For small damping, the phase
transition from near § = 0 to near § = » occurs rather abruptly, whereas for larger
values of the damping parameter, the transition takes place more gradually.

Consider the initial value problem
u” + 01250 + 1 = 3cos wt, w(0) =2, u'(0)=0. &

Show plots of the selution for different values of the forcing frequency w, and compare them
with corresponding plots of the forcing function.

For this system we have wy = 1 and T = 1/64 = 0.015625. Its unforced motion was dis-
cussed in Example 3 of Section 3.8, and Figure 3.8.7 shows the graph of the solution of the
unforced problem. Figures 3.9.3,3.9.4, and 3.9.5 show the solution of the forced problem (8)
for w = 0.3, w =1, and w = 2, respectively. The graph of the corresponding forcing function
is also shown in each figure. In this example the static displacement, Fy/k, is equal to 3.

Solutwn o '- Forcmg functlon
FIGURE 393 A forced vibration with damping; solution of «” + 0.125’ + u = 3¢os0.3¢,
w0 =2, u'(0)=0.

Figure 3.9.3 shows the low-frequency case, w/wy = 0.3. After the initial transientresponse is
substantially damped out, the remaining steady-state response is essentially in phase with the
excitation, and the amplitude of the response is somewhat larger than the static displacement.
To be specific, R = 3.2939 and § = 0.041185.

The resonant case, w/wy = 1, is shown in Figure 3.9.4. Here the amplitude of the steady-
state response is eight times the static displacement, and the figure also shows the predicted
phase lag of ;r/2 relative to the external force.

The case of comparatively high-frequency excitation is shown in Figure 3.9.5. Observe that
the amplitude of the steady forced response is approximately one-third the static displacement
and that the phase difference between the excitation and response is approximately x. More
precisely, we find that R = 0.99655 and that § = 3.0585.
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- 'Forcmg .ft;nctlon l _Solﬁtion
FIGURE 394 A forced vibration with damping; solution of u" 4 0.125¢' 4+ u = 3 cos1,
u(0 =2, u'(0)=0.
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FIGURE 39.5 A forced vibration with damping; solution of u" + 0.125¢' 4 1 = 3cos 2t,
a0y =2, =0 :

Forced Vibrations Without Damping. We now assume that y = 0 in Eq. (1), thereby ob-
taining the equation of motion of an undamped forced oscillator, ~

mu” + ku = Fy cos wt. (9

The form of the general solution of Eq. (9) is different, depending on whether the
forcing frequency w is different from or equal to the natural frequency wy = /k/m
of the unforced system. First consider the case w # wp; then the general solution
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of Eq. (9) is

u = ¢y cos wyf + c3 sin wy? + cos i, (10)
m

F

(@ — 0?)
The constants ¢; and c; are determined by the initial conditions. The resulting motion
is, in general, the sum of two periodic motions of different frequencies (wp and w)
and amplitudes.

It is particularly interesting to suppose that the mass is initially at rest, so that the
initial conditions are u(0) = 0 and «’(0) = 0. Then the energy driving the system
comes entirely from the external force, with no contribution from the initial con-
ditions. In this case it turns out that the constants ¢, and ¢; in Eq. {10) are given
by

F

—'m, C3 =0, (11)

C) =

and the solution of Eq. (9) is
u= Fo
T m(@d - w?)
This is the sum of two periodic functions of different periods but the same amplitude.

Making use of the trigonometric identities for cos{(A * B) with A = (wyp + w)?/2 and
B = (wy — w)t/2, we can write Eq. (12) in the form

[ 2F . (wo~w)f] . (wp + )t

= SIn .

m(wg mpE> sin ) 2

{cos wt — coswypl). (12)

(13)

If |y — @] is small, then @y + @ is much greater than fwy — w|. Consequently,
sin{wp + w)t/2 is a rapidly oscillating function compared to sin(wp — w)?/2. Thus
the motion is a rapid oscillation with frequency {wg + @)/2 but with a slowly varying
sinusoidal amplitude

2Fy . (wp — o)t
> sin .
miwf — ?| 2

This type of motion, possessing a periodic variation of amplitude, exhibits what is
called a beat. For example, such a phenomenon occurs in acoustics when two tfuning
forks of nearly equal frequency are excited simultaneously. In this case the peri-
odic variation of amplitude is quite apparent to the unaided ear. In electronics, the
variation of the amplitude with time is called amplitude modulation.

Solve the initial value problem
' +u=05cos0.8¢, @ =0, ') =0, {14)

and plot the solution.
In this case wy = 1, = 0.8, and Fy = 0.5, so from Eq. (13) the solution of the given problem
is
i =2.777785in0.1rsin 0.91. {15)

A graph of this solution is shown in Figure 3.9.6. The amplitude variation has a slow frequency
of 0.1 and a corresponding sicw period of 20;r. Note that a half-period of 10x corresponds to
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a single cycle of increasing and then decreasing amplitude. The displacement of the spring—
mass system oscillates with a relatively fast frequency of 0.9, which is only slightly less than
the natural frequency wy.

Now imagine that the forcing frequency w is further increased, say to w = 0.9. Then the
slow frequency is halved to 0.05, and the corresponding slow half-period is doubled to 20m.
The multiplier 2.7778 alsc increases substantially, to 5.2632. However, the fast frequency is
only marginally increased, to 0.95. Can you visualize what happens as w takes on values closer
and closer to the natural frequency ey = 17

i = 277778 5in 0.1¢ 5in 0.9¢ -

W ==2.77778sin 0.1

BT e e B
FIGURE 396 A beat; solution of #” +u = 0.5c050.8¢, u(0) =0,
i =2.77778sin0.1¢sin 0.9¢.

‘0t

Now let us return to Eq. (9) and consider the case of resonance, where o = ¢x; that
is, the frequency of the forcing function is the same as the natural frequency of the
system. Then the nonhomogeneous term Fg cos wt is a solution of the homogeneous
equation. In this case the solution of Eq. (9) is

u = €1 COS wol + €2 sin ewpl + F tsin wyl. (16)
2mey

Because of the term ¢ sin wyt, the solution (16) predicts that the motion will become
unbounded as t — oo regardless of the values of ¢; and c3; see Figure 3.9.7 for a
typical example. Of course, in reality, unbounded oscillations do not occur. As scon
as u becomes large, the mathematical model on which Eq. (9) is based is no longer
valid, since the assumption that the spring force depends linearly on the displacement
requires that & be small. As we have seen, if damping is included in the model, the
predicted motion remains bounded; however, the response to the input function
Fy coswt may be quite large if the damping is small and w is close to wp.
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FIGURE 3.9.7 Reéonance;- solution of u” + u =0.5cosr, u(0)=0, u'(O)-: 0;
1 =0.25rsint.

e e e ]

PROBLEMS In each of Problems 1 through 4 write the given expression as a product of two trigonometric

functions of different frequencies.
1.
3.
5.

cos 9t — cos Tt 2. sin 7t — sin 6t

coSe + cos2mt 4. sin 3¢ + sind;

A mass weighing 4 1b stretches a spring 1.5 in. The mass is displaced 2 in. in the positive
direction from its equilibrium position and released with no initial velocity. Assuming
that there is no damping and that the mass is acted on by an external force of 2 cos 3t 1b,
formulate the initial value problem describing the motion of the mass.

. A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an external force of

10sin(t/2) N (newtons) and moves in a medium that imparts a viscous force of 2 N when
the speed of the mass is 4 cm/sec. If the mass is set in motion from its equilibrium position
with an initial velocity of 3 cm/sec, formulate the initial value problem describing the
motion of the mass.

. (a) Find the solution of Problem 5.

{b) Plot the graph of the solution.

(c) Ifthe given external force is replaced by a force 4 sin wt of frequency w, find the value
of @ for which resonance occurs,

. (a) Find the solution of the initial value problem in Problem 6.

(b) Identify the transient and steady-state parts of the solution.
(c) Plot the graph of the steady-state solution.

(d) If the given external force is replaced by a force of 2 cos w! of frequency w, find the
value of w for which the amplitude of the forced response is maximum,

. If an undamped spring-mass system with a mass that weighs 6 Ib and a spring constant

11bfin. is suddenly set in motion at f = 0 by an external force of 4 cos 7t Ib, determine the
position of the mass at any time and draw a graph of the displacement versus 7.



3.9 Forced Vibrations 215

10.

1L

12,

13,
14,

15.

16.

&2 17.

A mass that weighs 8 Ib stretches a spring 6 in. The system is acted on by an external force
of 8sin 8¢ Ib. If the mass is pulled down 3 in. and then released, determine the position of
the mass at any time. Determine the first four times at which the velocity of the mass is
Zero. ’

A spring is stretched 6 in. by a mass that weighs 8 lb. The mass is attached to a dashpot
mechanism that has a damping constant of 0.25 lb-sec/ft and is acted on by an external
force of 4cos 2t Ib.

(2) Determine the steady-state response of this system,

(b) If the given mass is replaced by a mass m, determine the value of m for which the
amplitude of the steady-state response is maximum.

A spring-mass system has a spring constant of 3 N/m. A mass of 2 kg is attached to the
spring, and the motion takes place in a viscous fluid that offers a resistance numerically
equal to the magnitude of the instantaneous velocity. If the system is driven by an external
force of (3cos 3t — 2sin 3f) N, determine the steady-state response. Express your answer
in the form R cos(wt — 8). .
Furnish the details in determining when the steady-state response given by Eq. (3) is
maximum; that is, show that @2, and Ry, are given by Egs. (6) and (7), respectively.
Find the velocity of the steady-state response given by Eq. (3). Then show that the velocity
is maximum when w = wy.

Find the solution of the initial value problem

w4 u=F@, u) =0, &0 =0,

where
Fyt, 0=<t=nm,
Fih={FKQ@2r~1), m<t<2n,
0, 2m <.

Hint: Treat each time interval separately, and match the solutions in the different intervals
by requiring that « and «’ be continuous functions of ¢.

A series circuit has a capacitor of 0.25 x 10° farad, a resistor of 5 x 10° ohms, and an
inductor of 1 henry. The initial charge on the capacitor is zero. If a 12-volt battery is
connected to the circuit and the circuit is closed at 1 = 0, determine the charge on the
capacitor at ¢ = 0.001 sec, at r = 0.01 sec, and at any time . Alsc determine the limiting

charge ast — co.
Consider a vibrating system described by the initial value problem

'+ 3 +2u =2cos o, =0 wd=2

() Determine the steady-state part of the solution of this problem.

(b) Find the amplitude A of the steady-state solution in terms of w.

(c) Plot A versus w. .

(d) Find the maximum value of A and the frequency w for which it cccurs.

. Consider the forced but undamped system described by the initial value problem

w” +u=3coswt, w0 =0, (0 =0

(2) Find the solution «(?) for w # 1.

(b) Plot the solution u(f) versus t for w = 0.7, w = 0.8, and w = 0.9. Describe how the
response u{f) changes as w varies in this interval. What happens as @ takes on values
closer and closer to 17 Note that the natural frequency of the unforced system is @y = 1.
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&2

&

&2
&
&2
&2

&

19. Consider the vibrating system described by the initial value problem
W4 u=3coswl, u@=1 v =1

(a) Find the solution for @ # 1.
(b) Plot the solution u(r) versus t for @ = 0.7, w = 0.8, and @ = 0.9. Compare the results
with those of Problem 18; that is, describe the effect of the nonzero initial conditions.

20. For the initial value problem in Problem 18 plot ¥’ versus u for @ = 0.7, @ = 0.8, and
w = 0.9; that is, draw the phase plot of the solution for these values of . Use a f interval
that is long enough so the'phase plot appears as a closed curve, Mark your curve with
arrows to show the direction in which it is traversed as f increases.

Problems 21 through 23 deal with the initia] value problem
u” +0.1251' + 4u = F(1), u(0 =2, (0 =0.

In each of these problems:

(a) Plot the given forcing function F(f) versus ¢, and also plot the solution u{t) versus f on the
same set of axes. Use a ¢ interval that js long enough so the initial transients are substantially
eliminated. Observe the relation between the amplitude and phase of the forcing term and
the amplitude and phase of the response. Note that wy = Jk/m = 2.

(b) Draw the phase plot of the solution; that is, plot &’ versus u.

21. F(f) = 3cos(t/4)

22, F(t) =3cos2r

23. F(t) =3cos6r

24. A spring-mass system with a hardening spring (Problem 32 of Section 3.8) is acted on by

a periodic external force. In the absence of damping, suppose that the displacement of
the mass satisfies the initial value problem

' +u+ P =coser, w0 =0, u(0)=0.
(a) Let =1 and plot a computer-generated solution of the given problem. Does the
system exhibit a beat? ‘
(b) Plotthe solution for several values of @ between 1/2 and 2. Describe how the solution
changes as w increases.

25. Suppose that the system of Problem 24 is modified to include a damping term and that
the resulting initial value problem is

u' + %u’ +u+ %us = cos !, u(® =0, 'O =0.
(a) Plot a computer-generated solution of the given problem for several values of @

between 1/2 and 2, and estimate the amplitude R of the steady response in each case.

(b) Using the data from part (a), plot the graph of R versus w. For what frequency w is
the amplitude greatest?

(¢) Compare the results of parts (a) and (b) with the corresponding results for the linear
Spring.
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CHAPTER

4

Higher Order Linear

F.quations

The theoretical structure and methods of solution developed in the preceding chapter
for second order linear equations extend directly to linear equations of third and
higher order. In this chapter we briefly review this generalization, taking particular
note of those instances where new phenomena may appear, because of the greater
variety of situations that can occur for equations of higher order.

4.1 General Theory of nth Order Linear Equations

An nth order linear differential equation is an equation of the form

a— -1

d,,f+ 4 P 1(0 >+ Pa(y = GO). )

‘We assume that the functions Py, ..., P, and G are continuous real-valued functions
on some interval I: a < ¢ < B, and that Py is nowhere zero in this interval. Then,
dividing Eq. (1) by Py(t}, we obtain

n—ly
dt" din-1

The linear differential operator L of order n defined by Eq. (2) is similar to the second
order operator introduced in Chapter 3. The mathematical theory associated with
Egq. (2) is completely analogous to that for the second order linear equation; for this
reason we simply state the resuits for the nth order problem. The proofs of most of
the results are also similar to those for the second order equation and are usually left
as exercises.

Liy] =

+P1(l‘)

+- - Pae l(t) +pn(t)y g(t). (2)

219
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Theorem 4.1.1

Since Eq. (2) involves the nth derivative of y with respect to ¢, it will, so to speak,
require n integrations to solve Eq. (2). Each of these integrations introduces an
arbitrary constant. Hence we can expect that, to obtain 2 unique solution, it is
necessary to specify n initial conditions,

Yoy =yo, Ylo)=yp ..., y"Vlo)=y{", (3)
where #p may be any point in the interval / and yg, y, . . ., yg'_” is any set of prescribed

real constants. That there does exist a solution of the initial value problem (2), (3) and
that it is unique are guaranteed by the following existence and uniqueness theorem,
which is similar to Theorem 3.2.1.

If the functions p1, p2,...,Pa, and g are continuous on the open interval 7, then
there exists exactly one solution y = ¢ (¢) of the differential equation (2) that also
satisfies the initial conditions (3). This solution exists throughout the interval .-

We will not give a proof of this theorem here. However, if the coefficients py, ..., pa
are constants, then we can construct the solution of the initial value problem (2), (3)
much as in Chapter 3; see Sections 4.2 through 4.4. Even though we may find a
solution in this case, we do not know that it is unique without the use of Theorem
4.1.1. A proof of the theorem can be found in Ince (Section 3.32) or Coddington
{Chapter 6).

The Homogeneous Equation. As in the corresponding second order problem, we first
discuss the homogeneous equation

Liyl =y £ o1y DV 4 oo paci )Y + palt)y = 0. (4)

If the functions yy, y3,. .., y» are solutions of Eq. (4), then it follows by direct com-
putation that the linear combination

y=cy1t) + cy:(f) + -+ caya 1), (5)

where¢i,..., ¢, are arbitrary constants, is also a solution of Eq. (4). It is then natural
to ask whether every solution of Eq. (4) can be expressed as a Jinear combination
of y1,...,¥,. This will be true if, regardless of the initial conditions (3) that are pre-
scribed, it is possible to choose the constants ¢y, . . ., ¢, so that the linear combination
(5) satisfies the initial conditions. That is, for any choice of the point £ in 7, and for
any choice of yg, yp,.. ., yg'_n, we must be able to determine ¢y,. . ., ¢, so that the
equations

ayi(fo) + - - + ca¥allo) = yo
eyt (o) + - + cull (o) = yg

(6)
ey Ditg) + - + eyl Pine) = e

are satisfied. Equations (6) can be solved uniquely for the constants c,.. ., Ca,
provided that the determinant of coefficients is not zero. On the other hand, if
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_Theorem 4.1.2

the determinant of coefficients is zero, then it is always possible to choose values
of yo, ¥, -+ - y(()"'” so that Egs. (6) do not have a solution. Hence a necessary and
sufficient condition for the existence of a solution of Egs. (6) for arbitrary values of

¥0,¥hs - - -»y3 Y is that the Wronskian

Y1 y2 s Yn
Vi Y2 e Y

Wt yn) = ‘ ] (7
yiﬂ—l) yé"_l) v y‘(‘ﬂ—l)

is not zero at t = fo. Since f can be any point in the interval 7, it is necessary and
sufficient that W(yy,y2,...,¥n) be nonzero at every point in the interval. Just as for
the second order linear equation, it can be shown that if yy, y,,..., y, are solutions
of Eq. (4),then W (y1,¥2,...,ya) either is zero for every ¢ in the interval I or else is
never zero there; see Problem 20. Hence we have the following theorem.

If the functions p1, p2, . . ., Pa are continuous on the open interval I, if the functions
¥1, Y2, . - -, ¥n are solutions of Eq. (4), and if W(y1,y2,...,¥,) () # O for at least one
point in 7, then every solution of Eq. (4) can be expressed as a linear combination
of the solutions y;, y2,..., Va.

A set of solutions y1,...,y, of Eq. (4) whose Wronskian is nonzero is referred to
as a fundamental set of solufions. The existence ofa fundamental set of solutions can
be demonstrated in precisely the same way as for the second order linear equation
(see Theorem 3.2.5). Since all sclutions of Eq. (4) are of the form (5), we use the
term general solution to refer to an arbitrary linear combination of any fundamental
set of solutions of Eq. (4).

The discussion of linear dependence and independence given in Section 3.3 can
also be generalized. The functions f},f2,.. ., f» are said to be linearly dependent on
I if there exists a set of constants &y, k3, .. ., ks, not all zero, such that

kifi tkafo+ o Hkafa =0 (8)

for all f in I, The functions fi, ..., f. are said to be linearly independent on 7 if they
are not linearly dependent there. If yy, ..., y, are solutions of Eq. (4), then it can be
shown that a necessary and sufficient condition for them to be linearly independent
isthat W(y,...,y,){t%) # O for some t; in 7 (see Problem 25). Hence a fundamental
set of solutions of Eq. (4) is linearly independent, and a linearly independent set of
n solutions of Eq. (4) forms a fundamental set of sclutions.

The Nonhomogeneous Equation. Now consider the nonhomogeneous equation (2),
L =y® + py(0y® Y ... + pa(D)y = 8(0).

If Yy and Y are any two solutions of Eq. (2), then it follows immediately from the
linearity of the operator L that

LYy — Y2100 = L[Y1)(1) — L{Y2)(0) = g(©) — g(©) = 0.
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Hence the difference of any two solutions of the nonhomogeneous equation (2) isa
solution of the homogeneous equation (4). Since any solution of the homogeneous
equation can be expressed as a linear combination of a fundamental set of solutions
¥1s- .., Yn, it follows that any solution of Eq. (2) can be written as

y=cayn(t)+cyr(t) + - - +cuyn(t) + Y (1), ®

where Y is some particular solution of the nonhomogeneous equation (2). The linear
combination (9) is called the general solution of the nonhomogeneous equation (2).

Thus the primary problem is to determine a fundamental set of solutions y1,. .., ya
of the homogeneous equation (4). If the coefficients are constants, this is a fairly
simple problem;it is discussed in the next section. If the coefficients are not constants,
it is usually necessary to use numerical methods such as those in Chapter 8 or series
methods similar to those in Chapter 5. These tend to become more cumbersome as
the order of the equation increases.

The method of reduction of order (Section 3.5) also applies to nth order linear
equations. If y; is one solution of Eq. (4), then the substitution y = v(#)y1(¢) leads to
a linear differential equation of order n — 1 for v’ (see Problem 26 for the case when
n = 3). However, if n > 3, the reduced equation is itself at least of second order, and
only rarely will it be significantly simpler than the original equation. Thus,in practice,
reduction of order is seldom useful for equations of higher than second order.

o o e

e e e e ey

PROBLEMS

In each of Problems 1 through 6 determine intervals in which solutions are sure to exist.
1 y® +4y" + 3y =1 2. " + (sinf)y” + 3y = cost
3.1 —1)y® +ely" + 42y =0 4 y'+0/ +2y + Py =int
5. x—1y® + (x +1)y" + (tanx)y =0 6. (x> —4)y©® +x%" +9y =0
In each of Problems 7 through 10 determine whether the given set of functions is linearly

dependent or linearly independent. If they are linearly dependeant, find a linear relation
among them.

T HAO=2-3, fH(=02+1 fHO)=22-1
B AM=2-3, K{=20+1, fitd =3P +1
9. i) =2—-3, HO=02+1, L) =20—t filh=r+r+1
10 i) =2t-3, p0=0+1, il =202-1, i =1 +t+1
Ineachof Problems 11 through 16 verify that the given functions are solutions of the differential
equation, and determine their Wronskian.
11 y"+y =0, 1, cost, sint
12 y®4y"=0; 1, t, cost, sint
1B y"+2y" -y —29y=0;, ¢, et e¥
14 y9W 429" 4y =0; 1, 1, e, e
15 xy" —y' =0; 1, x, X!
16. Xy +x2y" — 2xy +2y =0; x, x%, 1/x
17. Show that W(5,sin®#,cos2f) =0 for all #. Can you establish this result without direct
evaluation of the Wronskian?
18. Verify that the differential operator defined by

L[}'] — y(ﬂ) +P1 ([)y("_n + ... +pn (f))’
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19.

20.

is a linear differential operator. That is, show that
Lleyyy # c2y2] = a Ly ] + e Lly.),

where y1 and y; are n times differentiable functions and ¢; and ¢; are arbitrary constants.
Hence, show that if yi, ¥2,..., ¥, are solutions of L[y] = 0, then the linear combination
ciy1 + - - - + ca¥n is also a solution of Ly] = 0.

Let the linear differential operator L be defined by
Liyl = agy™ + a1y ™ + - +ay,
where ag, dy, . . ., @, 81€ real constants.
(a) Find L[:"}.
(b) Find L[e").

(¢) Determine four solutions of the equation y*¥ — Sy 4- 4y = 0. Do you think the four
solutions form a fundamental set of solutions? Why?

In this problem we show how to generalize Theorem 3.3.2 (Abel’s theorem) to higher
order equations. We first outline the procedure for the third order equation

¥ o Oy + ()Y + pa(t)y = 0.

Let y1, ¥2, and y; be solutions of this equation on an interval 1.
(a) If W = W(y1.¥2, y3),show that

Y Y2 ¥
W=n »n »ni
lll )rlzﬂ‘ Y;"

Hint: The derivative of a 3-by-3 determinant is the sum of three 3-by-3 determinants
obtained by differentiating the first, second, and third rows, respectively.

(b) Substitute for ¥}',¥5', and y§' from the differential equation; multiply the first row by
pa, multiply the second row by p2, and add these to the last row to obtain

W =-—p(OW.
{c) Show that
Wy, yz, ya)(1) = cexp [— f i) dr] )

It follows that W is either always zero or nowhere zero on L.
(d) Generalize this argument to the nth order equation

YO Ep Oy b b palt)y =0
with solutions yy, ..., ¥,. That is, establish Abel's formula,

Wt )0 = cexp [— / pl(r)dr],

for this case.

In each of Problems 21 through 24 use Abe!’s formula (Problem 20) to find the Wronskian of
a fundamental set of solutions of the given differential equation.

21,
23,

Yy +2y'—y —~3y=0 2. y® 4y=0
Y+ -y bty =0 2. BYO 4y by —dy=0
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25. The purpose of this problemis to show thatif W{y1,...,y.)(fo) # Oforsome fyinaninterval
I, then yy,. ..,y are linearly independent on [, and if they are linearly independent and
solutions of

Lyl =y + o1y + - 4+ pa(iy = 0 @)
on I, then W(y1,...,¥,) is nowhere zero in 1.
() Suppose that W(¥y,...,ys){fo) # 0, and suppose that
e+ eaya(t) =0 (“)

for all¢ in I. By writing the equations corresponding to the first 22 — 1 derivatives of Eq. (ii)
at fp, show that ¢; = ... = ¢, = 0. Therefore, yy,. .., ¥, are lincarly independent.

(b) Suppose that y,...,y, are linearly independent solutions of Eq. (i).
If W(¥1,...,¥:)(to) = O for some fy, show that there is 2 nonzero solution of Eg. (i) satis-
fying the initial conditions .

y(fo) = y‘(fo) R y("kn(fg) = 0.

Since y = Oisa solution of this initial value problem, the uniqueness part of Theorem 4.1.1
yields a contradiction. Thus W is never zero.

26. Show that if y; is a solution of
Y+ Py +pat)y +ps)y =6,
then the substitution y = y, (f)v(r) leads to the following second order equation for v":
Yo" + GYi + prydv” + Gyy + 2psy;y + pay v’ = 0.

In each of Problems 27 and 28 use the method of reduction of order (Problem 26) to solve the
given differential equation,

2. Q—-0)y"+ (2 -3)y" -ty +y=0, 1t <2 ni=¢

28. 2+ 3y 3+ DYy +6(L+1)y —6y=0, (>0; n =12 ypn=>1

AT e r—— —_ s

Consider the nth order linear homogeneous differential equation
Liy) = apy® + ay™ U+ o+t ap1y' +any =0, M

where ag,ay,...,a, are real constants. From our knowledge of second order linear
equations with constant coefficients, it is natural to anticipate that y = "' is a solution
of Eq. (1) for suitable values of r. Indeed,

L[e"] = e"(t’l()rrl + allﬁ"l + -t a,qr+a) = 8"2(?’) (2)

for all r, where
Ziny =aor" + a4 - - anar + an. (3)

For those values of r for which Z(r) = 0, it follows that L[] =0 and y = ¢" is a
solution of Eq. (1). The polynomial Z(r) is called the characteristic polynomial, and
the equation Z(r) = 0 is the characteristic equation of the differential equation (1).
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A polynomial of degree n has n zeros,! say r, 72, . .., rn, some of which may be equal,
hence we can write the characteristic polynomial in the form
Z(n) =ay(r —~r)(r—r2)---(r — ry). 4)
Real and Unequal Roots. If the roots of the characteristic equation are real and no two
are equal, then we have n distinct solutions e, e?',. ., & of Bq. (1). If these
functions are linearly independent, then the general solution of Eq. (1) is
y=c1&" +ce™ ... 4 ¢ ™. &)
One way to establish the linear independence of ¢V, &%, ..., e is to evaluate their

Wronskian determinant. Another way is outlined in Problem 40.

Find the general solution of
EXAMPLE

1 YO 4y — Ty —y +6y=0. ©
Also find the solution that satisfies the initial conditions
y0 =1, y(©) =0, Y0 = -2, y'(0) = -1 M
and plot its graph.
Assuming that y = ¢”, We must determine r by solving the polynomial equation
r+r =T —r+6=0. (8)

The roots of this equation are r; =1, = —1, r; = 2, and ry = —3. Therefore the general
solution of Eq. (6) is
y=c1€ + e + 3¢ + e, (9)

The initial conditions (7) require that €1,-. ., €4 satisfy the four equations

g+t 3+ o= 1,
e —cz4+20— 3es= 0,

; 10
%-{ €y + € 4+ dey + Yo = =2, (19)
%i (o] —Cz+8€3—27€‘= -1

*% By solving this system of four linear algebraic equations we find that

5 a=% a=% a=-} ca=-}

% Therefore the solution of the initial value problem is

¥

S T P a

The graph of the solution is shown in Figure 4.2.1.

1A n important question in mathematics for more than 200 years was whether every polynomial equation
has at least one root. The affirmative answer to this question, the fundamental theorem of algebra, was
given by Carl Friedrich Gauss (1777-1855) in his doctoral dissertation in 1799, aithough his proof does
not meet modern standards of rigor. Several other proofs have been discovered since, including three
by Gauss himself Today, students often meet the fundamental theorem of algebra in a first course on
complex variables, where it can be established as a consequence of some of the basic properties of complex
analytic functions.
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T O B o ey P D S T et

FIGURE 4.2.1 Sorlutioh of the initial-value prroblrem of Example 1.

As Example 1 illustrates, the procedure for solving an ath order linear differential
equation with constant coefficients depends on finding the roots of a corresponding
nth degree polynomial equation. If initial conditions are prescribed, then a system
of n linear algebraic equations must be solved to determine the proper values of the
constantscy,. . ., c,. Although each ofthese tasks becomes much more complicated as
nincreases, they can often be handled without difficulty with a calculator or computer.

For third and fourth degree polynomials there are formulas? analogous to the
formula for quadratic equations but more complicated, that give exact expressions for
the roots. Root-finding algorithms are readily available on calculators and computers.
Sometimes they are included in the differential equation solver, so that the process of
factoring the characteristic polynomial is hidden and the solution of the differential
equation is produced automatically.

If you are faced with the need to factor the characteristic polynomial by hand, here
is one result that is sometimes helpful. Suppose that the polynomial

a" + @ o tagrta, =0 (12)

has integer coefficients. If r = p/q is a rational root, where p and g have no common
factors, then p must be a factor of a,, and ¢ must be a factor of a5. For example, in
Eq. (8) the factors of ap are 1 and the factors of a, are £1, 2, 43, and 46. Thus
the only possible rationai roots of this equation are +1, 42, 43, and +6. By testing
these possible roots, we find that 1, —1,2, and —3 are actual roots. In this case there
are no other roots, since the polynomial is of fourth degree. If some of the roots
are irrational or complex, as is usually the case, then this process will not find them,
but at least the degree of the polynomial can be reduced by dividing out the factors
corresponding to the rational roots.

*The method for solving the cubic equation was apparently discovered by Scipione dal Ferro (1465~
1526) about 1500, although it was first published in 1545 by Girolamo Cardano (1501-1576) in his Ars
Magna. This book also contains a method for solving quartic equations that Cardano attributes to his
pupil Ludovico Ferrari (1522~1565). The question of whether analogous formulas exist for the roots of
higher degree equations remained open for more than two centuries, until in 1826 Niels Abel showed that
no general solution formulas can exist for polynomial equations of degree five or higher. A more general
theory was developed by Evariste Galois (1811-1832) in 1831, but unfortunately it did not become widely
known for several decades. :
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If the roots of the characteristic equation are real and different, we have seen that
the general solution (5) is simply a sum of exponential functions. For large values of ¢
the solution will be dominated by the term corresponding to the algebraically largest
root. If this root is positive, then solutions will become exponentially unbounded,
whereas if it is negative, then solutions will tend exponentially to zero. Finally, if the
largest root is zero, then solutions will approach anonzero constant as¢ becomes large.
Of course, for certais initial conditions, the coefficient of the otherwise dominant
term will be zero; then the nature of the solution for large ¢ is determined by the next
largest root.

Complex Roots. If the characteristic equation has complex roots, they must occur in
conjugate pairs, A + iy, since the coefficients ao, ..., a, are real numbers. Provided
that none of the roots is repeated, the general solution of Eq. (1) is still of the form
(5). However, just as for the second order equation (Section 3.4), we can replace the
complex-valued solutions e®+#) and ¢~ by the real-valued solutions

e cos ut, e* sin pt (13)

obtained as the real and imaginary parts of e**+#*_ Thus, even though some of the
roots of the characteristic equation are complex, it is still possible to express the
general solution of Eq. (1) as a linear combination of real-valued solutions.

Find the general solution of

y® —y=0. (14)
Also find the solution that satisfies the initial conditions
y0 =172, yO=-4 YyO0=572 = yO=-2 (15)

and draw its graph.
Substituting e” for y, we find that the characteristic equation is

Aol=-DE+ ) =
Therefore the roots are r = 1, —1,{, —i, and the general solution of Eq. (14) is
y=c1e' +ce”’ +cycost+ ¢ysint.
If we impose the initial conditions (15), we find that
=0, =3, c3=1/2, cq4 = —1;
thus the solution of the given initial value problem is
=3¢ +  cost —sint. . (16)

The graph of this solution is shown in Figure 4.2.2.

Observe that the initial conditions (15) cause the coefficient ¢; of the exponentlally growing
term in the general solution to be zero. Therefore this term is absent in the solution (16),
which describes an exponential decay to a steady oscillation, as Figure 4.2.2 shows. However,
if the initial conditions are changed slightly, then ¢; is likely to be nonzero, and the nature of
the solution changes enormously. For example, if the first three initial conditions remain the
same, but the value of y"(0) is changed from —2 to —15/8, then the solution of the initial value
problem becomes

y= e+ Le' + Leost — Lsint. a7
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The coefficients in Eq. (17) differ only slightly from those in Eq. (16), but the exponentially
growing term, even with the relatively small coefficient of 1/32, completely dominates the
solution by the time t is larger than about 4 or 5. This is clearly seen in Figure 4.2.3, which
shows the graphs of the two solutions (16) and (17).

FIGURE 4.2.2 A plot of the solution (16).

"”2/4 6 \t

FIGURE 4.2.3 Plots of thc solut:ons (16) (hght curve) and (17) (heavy curve).

N s W

Repeated Roots. If the roots of the characteristic equation are not distinct—that is,
if some of the roots are repeated—then the solution (5) is clearly not the general
solution of Eq. (1). Recall that if r, is a repeated root for the second order linear
equation agy” + aty’ + a;y = 0, then two linearly independent solutions are €™ and
te"’. For an equation of order n, if a root of Z(r) = 0, say r = r;, has multiplicity s
(where s < n), then

e, te™, e, ..., et (18)

are corresponding solutions of Eq. (1); see Problem 41 for a proof of this statement.

If a complex root A + iy is repeated s times, the complex conjugate A — iy is
also repeated s times. Corresponding to these 2s complcx—valued solutions, we can
find 2s real-valued solutions by noting that the real and imaginary parts of e+,
ek | p-lgGHin) are also linearly independent solutions:

eMcospr, eMsinur, reMcosur, teMsin ut,
ooy PleMcosur,  £leMsinut.

Hence the general solution of Eq. (1) can always be expressed as a linear combination
of n real-valued solutions. Consider the following example.
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EXAMPLE

3

EXAMPLE

Find the general solution of
Y9+ y=o0. (19)

The characteristic equation is
A2+ l1= 2+ DR+ =0.
The roots are r = i, i, —i, —i, and the general solution of Eq. (19) is

Y= cost+Casint + c3tcost + cyfsint.

In determining the roots of the characteristic equation, it may be necessary to
compute the cube roots, the fourth roots, or even higher roots of a (possibly com-
plex) number. This can usually be done most conveniently by using Euler’s formula
¢ = cost + isin¢ and the algebraic laws given in Section 3.4. This is illustrated in
the following example.

Find the general solution of
yYW4y=0. (20)

The characteristic equation is
r*+1=0.

To solve the equation we must compute the fourth roots of —1. Now —1, thought of as a
complex number, is —1 + 0. It has magnpitude 1 and polar angle x. Thus

—1 =cosn +isinn = €*.
Moreover, the angle is determined only up to a multiple of 2. Thus
—1 =cos(r + 2mn} + isin(m + 2mn) = &+
where n1 is zero or any positive or negative integer. Thus

(—1)1/4 = glxrdtmard) . oo (."; + T_’.‘_) + isin (E + ﬂ) )

2 4 2
The four fourth roots of —1 are obtained by setting m = 0, 1,2, and 3; they are
i+ -1+ —-1-i 1-i
Ji 1 Ji 1 Ji L Ji .

It is easy to verify that, for any other value of m, we obtain one of these four roots. For example,
corresponding to m = 4, we obtain (1 + i)/+/2. The general solution of Eq. (20) is

ééfﬁ(c cos — +¢ sinL)+e"’ﬁ(c €05 —= + cysi —tq) 21
y 1cos —z+ 6 ' 7z 3 Ji+ 4st2_ (21)

In conclusion, we note that the problem of finding ail the roots of a polynomial
equation may not be entirely straightforward, even with computer assistance. For
instance, it may be difficult to determine whether two roots are equal or merely
very close together. Recall that the form of the general solution is different in these
two cases.

Ifthe constantsag, a1, . . . ,a, in Eq. (1) are complex numbers, the solution of Eq. (1)
is still of the form (4). In this case, however, the roots of the characteristic equation
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are, in general, complex numbers, and it is no longer true that the complex conjugate
of a root is also a root. The corresponding solutions are complex-valued.

PROBLEMS In each of Problems 1 through 6 express the given complex number in the form

R(cos 8 + isinf) = Re®.

114 _ 2. —143i

3. -3 4. —i

5. V3—i 6. —1—i
In each of Problems 7 through 10 follow the procedure illustrated in Example 4 to determine
the indicated roots of the given complex number.

7. 112 8 (1-p2

9, 14 10. [2(cosm/3 + isinm/3)]'?
In each of Problems 11 through 28 find the general solution of the given differential equation.
1L y" —y' —y +y=0 12 y" —3y" 43y —y=10

13. 2y" — 4y’ — 2y + 4y =0 14, Y —4y" 4 4y" =0

15. y9 4y =0 16. <‘> Sy' +4y=0

17. y® ~3y® 4. 3y y =10 18. y(ﬁ) —y'=0

19. y© — 3y 4 3y" —3y" + 2y =0 20. y® -8y =0
21. y® 4 8y® 4 16y =0 2. y “’ +2y'+y=0
3.y —5y"+3y+y=0 24. y’”+5y"+6y’+2y=0

& 25. 18y" + 21y" + 14y’ + 4y =0 &0 26. y® —7y” + 6y" + 30y — 36y =0

& 27 12y 4. 31y "+ 75y + 3Ty + Sy =0 0 28. y© + 6y + 17y +22Y + 14y =0

In each of Problems 29 through 36 find the solution of the given initial value problem, and
plot its graph. How does the solution behave as t — co?

§ 29 y'+y=0 y0=0 y® =1 y©O =

G230y +y=0, y0©)=0, y(©=0, y©=-1 y"©®=0

& 31 yO _ 4y 44y = yl=~1, y(D=2 y(L=0 y"(1)=0

&Ry —yiy-y=0 y0=2 y®=-1, yO=-2

€2 33 20—y 9y 4 4y +4y=0; y0)=-2 y0) =0, y'©0=-2»y“0)=0
L3 4y +y+5y=0 y0=2 yO=1 »(0)=-

&35 6y 15 +y =0, yO=-2 y®=2 y(@0)=0

@2 36. y¥ 4 6y + 177 + 22y + 14y =D, ¥{0) = 1, YOy=-2, y'(Oh=0 y"(0=3

37. Show that the general solution of y®* — y = 0 can be written as
¥ =¢)c0st + C; sint + ¢y cosht + ¢y sinhi.

Determine the solution satisfying the initial conditions y(0) =0, y'(0) =0, y"(0) = 1,
¥"(0) = 1. Why is it convenient to use the solutions cosh t and sinh ¢ rather than e’
and e~¥7?

38. Consider the equation y® — y == (),
(a) Use Abel’s formula [Problem 20(d) of Section 4.1] to find the Wronskian of a funda-
mental set of solutions of the given equation.
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(b) Determine the Wronskian of the solutions &, e, cost, and sin¢.
(c) Determine the Wronskian of the solutions cosh?, sinh ¢, cost, and sin¢.
39. Consider the spring-mass system, shown' in Figure 4.2.4, consisting of two unit masses

suspended from springs with spring constants 3 and 2, respectively. Assume that there is
no damping in the system.

FIGURE 4.24 A two spring, two mass system,

(a) Show that the displacements i and i, of the masses from their respective equilibrium
positions satisfy the equations

] + Suy = 2wy, 1y + 2y = 2uy. ®

(b) Solve the first of Eqs. (i) for 1, and substitute into the second equation, thereby
obtaining the following fourth order equation for &;:

ui" + iy + 61y = 0. (i)

Find the general solution of Eq. (ii).
(c) Suppose that the initial conditions are

w0 =1, 1,(0) =0, 12(0) = 2, 165(0) = 0. (i)

Use the first of Egs. (i) and the initial conditions (iii) to obtain values for i (0) and u}’(0).
Then show that the solution of Eq. (ii) that satisfies the four initial conditions on 1, is
t1{!) = cost. Show that the corresponding solution uz is uz{t) = 2cos?.

(d) Now suppose that the initial conditions are
(0 = -2, 1 (0) =90, n0) =1, 150 =10. (iv)

Proceed as in part (¢} to show that the corresponding solutions are t;(f) = -2 cos V61
and u,(f) == cos V61.

(e) Observe that the solutions obtained in parts (¢) and (d) describe two distinct modes
of vibration. In the first, the frequency of the motion is 1, and the two masses move in
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40.

41.

phase, both moving up or down together. The second motion has frequency /6, and the
masses move out of phase with each other, one moving down while the other is moving
up, and vice versa. For other initial conditions, the motion of the masses is a combination
of these two modes.

In this problem we outline one way toshow thatif ry,...,r, are all real and different, then
e, ..., e are linearly independent on —oo < t < co. To do this, we consider the linear
relation

e 4 e =0, —00 <t <00 )
and show that all the constants are zero.
(a) Multiply Eq. (i) by e™"!* and differentiate with respect to 1, thereby obtaining
Ca(ry = r)e"> ™ 4o ¢ (ra — )Y = 0.
(b) Multiply the result of part {a} by e~2~"1) and differentiate with respect to  to obtain
calrs — 72)(rs — )T 4o (n — 127 — )EPTP =0,
{c) Continue the procedure from parts (a) and (b), eventually obtaining

Calrn = Tac1) -+ (rn — ry)e%2m-00 = 0,

Hence ¢, = 0, and therefore
eV + - ey =0,

{d) Repeat the preceding argument to show that ¢,_; = 0. In a similar way it follows that
¢n-2 == - -- = €1 = 0. Thus the functions ¢'',...,e™ are linearly independent.

In this problem we indicate one way to show that if r = r; is & root of muitiplicity s of the
characteristic polynomial Z(r), then e'*f, fe",..., £~'e"V are solutions of Eq. (1). This
problem extends to nth order equations the methed given in Problem 22 of Section 3.5
for second order equations. We start from Eq. (2) in the text,

Lle") = e"Z(n), ®

and differentiate repeatedly with respect to r, setting r = ry after each differentiation.
{a) Observe that if ; is a root of multiplicity s, then Z(r) = (r — r1)*q(r), where g(r) is
a polynomial of degree n — s and g(r;) # 0. Show that Z(n,), Z'(r1),..., Z¢ V() are all
zero, but Z¥(r)) £ 0.

{b) By differentiating Eq. (1) repeatedly with respect to r, show that
% ey L| 2e| = Lise)
ar I FTa '

as—l

5 LI = LIP ¢,

(c) Show that ¢!, e, ..., *~len’ are solutions of Eq. (1).
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EXAMPLE

1

A particular solution Y of the nonhomogeneous nth order linear equation with con-
stant coefficients

Ly} =apy™ + a1y D + ...+ a1y +any = g(1) (v

can be obtained by the method of undetermined coefficients, provided that g(f) is of
an appropriate form. Although the method of undetermined coefficients is not as
general as the method of variation of parameters described in the next section, it is
vsually much easier to use when it is applicable,

Just as for the second order linear equation, when the constant coefficient linear
differential operator L is applied to a polynomial Agt™ + A ™1 4 ... + A,,,an ex-
ponential function e, a sine function sin ¢, or a cosine function cos ¢, the result
is a polynomial, an exponential function, or a linear combination of sine and cosine
functions, respectively. Hence, if g(f) is a sum of polynomials, exponentials, sines, and
cosines, or products of such functions, we can expect that it is possible to find Y (£
by choosing a suitable combination of polynomials, exponentials, and so forth, mul-
tiplied by a number of undetermined constants. The constants are then determined
by substituting the assumed expression into Eq. (1).

The main difference in using this method for higher order equations stems from
the fact that roots of the characteristic polynomial equation may have multiplicity
greater than 2. Consequently, terms proposed for the nonhomogeneous part of the
solution may need to be multiplied by higher powers of f to make them different from
terms in the solution of the corresponding homogeneous equation. The following
examples illustrate this. In these examples we have omitted numerous straightfor-
ward algebraic steps, because our main goal is to show how to arrive at the correct
form for the assumed solution.

Find the general solution of
ym _ 3yrr + 3yr _ y = 48'. (2)

The characteristic polyno:n‘ial for the homogeneous equation corresponding to Eq. (2) is
r-3+3r-1=(¢-1%
so the general solution of the homogeneous equation is
V(1) = 1€ + cate’ + cat®e’. 3)

To find a particular solution Y (£} of Eq. (2}, we start by assuming that Y(r) = A¢'. However,
since ¢, 1¢, and r%¢ are all solutions of the homogeneous equation, we must multiply this
initial choicg by 3. Thus our final assumption is that Y () == Af’¢’, where A is an undetermined
coefficient. To find the correct value for A, we differentiate ¥(r) three times, substitute for y
and its derivatives in Eq. {2}, and collect terms in the resulting equation. In this way we obtain

6Ae =4¢.
Thus A = % and the particular solution is

Y1) =3P 4)
The general solution of Eq. (2) is the sum of y.(t) from Eq. (3} and Y (r) from Eq. (4).



234 Chapter 4. Higher Order Linear Equations

Find a particular solution of the equation
EXAMPLE
2 ¥y 12" +y=3sint — Scost. (5)
The general solution of the homogeneous equation was found in Example 3 of Section 4.2;
itis
Y (£} =€) coS{ + C2Sin{ 4 €3£ COSI + cof Sinf, (6)

corresponding to the roots r =i, i, —i, and —i of the characteristic equation. Qur initial
assumption for a particular solution is ¥ (f} = Asin¢ + B cos ¢, but we must multiply this choice
by 2 to make it different from all solutions of the homogeneous equation. Thus our final
assumption is

Y(t) = Af sint + Bt® cost.

Next, we differentiate Y(f) four times, substitute into the differential equation (4), and coilect
terms, obtaining finally
—8Asint — 8Bcost = 3sint — Scost.

Thus A = —~3, B = 3,and the particular solution of Eq. (4) is

Y = —-glz sinf + 212 cost. @)

If g(1) is a sum of several terms, it may be easier in practice to compute separately
the particular solution corresponding to each term in g(r). As for the second order
equation, the particular solution of the complete problem is the sum of the particular
solutions of the individual component problems. This is illustrated in the following
example,

Find a particular solution of

EXAMPLE . , o
3 Yi—4y' =+ 3cost+e. (8)

First we solve the homogeneous equation. The characteristic equation is r’ — 4r = 0, and
the roots are 0, 3:2; hence

Yt)y=oqc + Czeﬂ + Cgfuz'.

We can write a particular solution of Eq, (8) as the sum of particular solutions of the differential
equations

R I Rl AT R R AL A R

ym _ 4)/ =1, ym _ 4yr = 3 cos ! ym _ 4yr — E_Z‘-

ot SRR L

Qur initial choice for a particular solution ¥, (f) of the first equation is Agf + A;, but since a
constant is & solution of the homogeneous equation, we multiply by £. Thus

Yi(0) = t{Agl + AL).

For the second equation we choose
Y2(r) = Bcost + Csint,

and there is no need to modify this initial choice since cost and sint are not solutions of
the homogeneous equation., Finally, for the third equation, since ¢=% is a solution of the
homogeneous equation, we assume that

R 4 g Ve 1 ]

Yi(t) = Ete™®.
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The constants are determined by substituting into the individual differential equations; they
are Ay = —}, Ay =0, B=0, C=—1,and E = §. Hence a particular solution of Eq. (8) is

Y(t) = -} — Isint + Lee (9)

You should keep in mind that the amount of algebra required to calculate the
coefficients may be quite substantial for higher order equations, especially if the
nonhomogeneous term is even moderately complicated. A computer algebra system
can be extremely helpful in executing these alpebraic calculations.

The method of undetermined coefficients can be used whenever it is possible to
guess the correct form for Y (f). However, this is usually impossible for differential
equations not having constant coefficients, or for nonhomogeneous terms other than
the type described previously. For more complicated problems we can use the method
of variation of parameters, which is discussed in the next section.

e e e

PROBLEMS In each of Problems 1 through 8 determine the general solution of the given differential

equation.

Ly -y —y+y=2e"43 2. y® —y =13t +cost

3y kY Yty =et bt 4. y" —y =2sint

5. 9% 4y =2 ¢ 6. y* 42y 4+y =3 4 cos 2t
7. y& 4y =t 8. y¥ 4y =sin2t

In each of Problems 9 through 12 find the solution of the given initial value problem. Then
plot a graph of the solution.

& 9y +dy=6 YO =y@O =0, yO=1
&L 0.y 42y +y=3+4 O =y©®=0 yO=y0=1
Fo 1Ly -3y 4y Sted,  yO=1, yO=-} yO=-}
@ 12,y 42y 4y +8y — 12y =12sint —e™;  y(0) =3, y(0)=0,
Yo =-1, y0=2
In each of Problems 13 through 18 determine a suitable form for Y (f) if the method of unde-
termined coefficients is to be used. Do not evaluate the constants.

13, y" =2y by = £+ 2¢ 14, y" —y =te" +2cost
15. y® —2y" 4+ y =& +sin¢ 16. ¥ 4- 4y = sin 2t + te' + 4
17. y® .y —y" 4y = + 4 +tsint 18. y® 42y 4 2y" =3¢’ + 2te™" + €' sint

19. Consider the nonhomogeneous nth order linear differential equation
apy™ + @y 4 b2y = g0), ' )
where ag, .. ., a, are constants. Verify that if g{t) is of the form
€ (bot™ 4 -+t by),
then the substitution y = ¢™u(t) reduces Eq. (i) to the form

kou(") + klu(nﬁl) S knu = bﬂfm R REEE o brm (U)
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where ky,..., k&, are constants. Determine &y and k, in terms of the a's and «. Thus
the problem of determining a particular solution of the original equation is reduced to
the simpler problem of determining a particular solution of an equation with constant
coefficients and a polynomial for the nonhomogeneous term.

Method of Annihilators, In Problems 20 through 22 we consider another way of arriving
at the proper form of Y () for use in the method of undetermined coefficients. The proce-
dure is based on the observation that exponential, polynomial, or sintsoidal terms (or sums
and products of such terms) can be viewed as solutions of certain linear homogeneous dif-
ferential equations with constant coefficients. It is convenient to use the symbol D for d/dr.
Then, for example, e~' is a solution of (D + 1)y = 0; the differential operator D + 1 is said to
annihilate, or 1o be an annihilator of, e, Similarly, D* + 4 is an annihilator of sin2f or cos 2,
(D —3) = D? _ 6D 4 9 is an annihilator of ¥ or t£¥, and so forth.

20, Show that linear differential operators with constant coefficients obey the commutative

iaw. That is, show that

(D —a)D - b)f = (D--b)(D~a)f

for any twice differentiable function f and any constants 4 and b.* The result extends at
once to any finite number of factors.
21. Consider the problem of finding the form of a particular solution Y (f) of

(D— 2D+ 1)Y =3e* —te™, @

where the left side of the equation is written in a form corresponding to the factorization
of the characteristic polynomial.
(a) Show that D — 2 and (D + 1)?, respectively, are annihilators of the terms on the right
side of Eq. (i), and that the combined operator (D — 2)(I* + 1)? annihilates both terms on
the right side of Eq. (i) simultaneously.
(b) Apply the operator (D —2)(D + 1)? to Eq. (i) and use the result of Problem 20 to
obtain

(D -2%D+17°Y =0. (ii)

Thus Y is a solution of the homogeneous equation (ii). By solving Eg. (i}, show that
Y() = i + cate® + cat?e? + ct®e* + cse' + cgte™ + opt’e”, (i)

where ¢, ..., ¢ are constants, as yet undetermined.

(c) Observe that ¢, te¥, 2¢¥, and e are solutions of the homogeneous equation cor-
responding to Eq. (i); hence these terms are not useful in solving the nonhomogeneous
equation. Therefore, choose ¢;, €2, ¢3, and ¢s to be zero in Eq. (iii), so that

Y() = cot®e® +cgte™ + crte™, (iv)

This is the form of the particular solution ¥ of Eq. (i). The values of the coefficients ¢4, <5,
and ¢; can be found by substituting from Eq. (iv) in the differential equation (i).

Suminary. Suppose that
L(D)y =g, )

where L(D) is a linear differential operator with constant coefficients, and g(r) is a sum or
product of exponential, polynomial, or sinusoidal terms. To find the form of a particular
solution of Eq. (v), you can proceed as follows;
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(2) Find a differential operator H(D) with constant coefficients that annihilates g(t}, that is,
an operator such that H(D)g(£) = 0.

(b) Apply H(D) to Eq. (v), oblaining
H(D)L(D)y =0, (vi)

which is a homogeneous equation of higher order.

(c) Solve Eq. (vi).

(d) Eliminate from the solution found in step (c) the terms that also appear in the solution of
L{D)y = 0. The remaining terms constitute the correct form of a particular solution of Eq. (v).

22. Use the method of annihilators to find the form of a particular solution Y () for each of
the equations in Problems 13 through 18. Do not evaluate the coefficients.

4.4 The Method of Variation of

ameters

The method of variation of parameters for determining a particular solution of the
nonhomogeneous nth order linear differential equation

L) =y £ 10y D 4 o 4 pu i (0F + Paldly = g (1) (1)

is a direct extension of the method for the second order differential equation (see
Section 3.7). As before, to use the method of variation of parameters, it is first nec-
essary to solve the corresponding homogeneous differential equation. In general,
this may be difficult unless the coefficients are constants. However, the method of
variation of parameters is still more general than the method of undetermined coef-
ficients in that it leads to an expression for the particular sclution for any continuous
function g, whereas the method of undetermined coefficients is restricted in practice
to a limited class of functions g.

Suppose then that we know a fundamental set of solutions y;, y2,..., ¥y, of the
homogeneous equation. Then the general solution of the homogeneous equation is

yelt) = ayr(t) + eaya(t) + -+ - + enyn (D). (2)

The method of variation of parameters for determining a particular solution of Eq. (1)
rests on the possibility of determining »n functions u, u, .. ., 4, such that Y () is of
the form

Y1) = ta(Oy1(0) + w2(0y2 (D) + - - - + wa(Dya(1). (3)

Since we have n functions to determine, we will have to specify » copditions. One
of these is clearly that Y satisfy Eq. (1). The other n -1 conditions are chosen
so as to make the calculations as simple as possible. Since we can hardly expect a
simplification in determining Y if we must solve high order differential equations for
¥y,...,Hn, it is natural to impose conditions to suppress the terms that lead to higher
derivatives of uy,...,u,. From Eq. (3) we obtain

Y’ = Gay) + tayy + - 4 tayn) + Uy + ihyr + - 1), (4)
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where we have omitted the independent variable ¢ on which each function in Eq. (4)
depends. Thus the first condition that we impose is that

U 4+ 1y2+ -+t yn = 0. (5)
Continuing this process in a similar manner through » — 1 derivatives of ¥ gives
YO = y™ Ly 4 uy™, m=0,1,2,...,n--1, (6)

and the following » — 1 conditions on the functions uy, .. ., s

Wy D by Lyl =0, m=12,...,n—1. D

The nth derivative of ¥ is
YO = Gyl + o 4 ey + @ 4+ gy, ®

Finally, we impose the condition that ¥ must be a solution of Eq. (1). On substi-
tuting for the derivatives of ¥ from Egs. (6) and (8), collecting terms, and making
use of the fact that L[y;] = 0,i=1,2,...,n, we obtain

w7 4y T 4 iy = g ®
Equation (9), coupled with the n — 1 equations (7}, gives n simultaneous linear non-
homogeneous algebraic equations for 11}, 145, . . ., 1,

iy + yauy + -+ yu, = 0,
Yiuy + youh + -+ - + ypup =0,

L

Vi + yous + - 4 yau, =0, (10

WP 4y, = .

The system (10) is a linear algebraic system for the unknown quantities uf, ..., u.
By solving this system and then integrating the resulting expressions, you can obtain
the coefficients u), . .., u,. A sufficient condition for the existence of a solution of the
system of equations (10) is that the determinant of coefficients is nonzero for each
value of t. However, the determinant of coefficients is precisely W{y1,y2.....yn)s
and it is nowhere zero since y,,.. .,y, are linearly independent solutions of the ho-
mnogeneous equation. Hence it is possible to determine 1}, . . ., u,. Using Cramer’s’®
rule, we can write the solution of the system of equations (10) in the form

_gOYWn(n)

u, () = W m=12,...,n (11)

Cramer's rule iscredited to Gabriel Cramer (1704-1752), professor at the Académie de Calvin in Geneva,
who published it in a general form (but without proof) in 1750. For small systems the result had been
known earlier. :
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EXAMPLE

Here W(1) = W(y1,y2,...,ys)(t), and W, is the determinant obtained from W by
replacing the rmth column by the column (0,0, . . ., 0, 1). With this notation a particular
solution of Eq. (1) is given by

_ g8 Wpi (s) (s)
LY Zym(r) /., W (12)

where fp is arbitrary. Although the procedure is straightforward, the algebraic com-
putations involved in determining ¥ (r) from Eq. (12) become more and more com-
plicated as n increases. In some cases the calculations may be simplified to some
extent by using Abel’s identity (Problem 20 of Section 4.1),

W) = Wiyy,...,y)(t) = cexp [— /Pl Q) dt} :

The constant ¢ can be determined by evaluating W at some convenient point.

Given that y1(f) = &', v (f) = t¢’, and y3(t) = e are solutions of the homogeneous equation
corresponding to

Y=y =y +y=¢g@, (13)

determine a particular solution of Eg. (13) in terms of an integral.
We use Eq. (12). First, we have

¢ te! et
W =W te,e M= (+1)e —e|.
¢ (t+2) et

Factoring ¢’ from each of the first two columns and ¢~ from the third column, we obtain

1 { 1
Wi =e1 +1 -1f.
1 1+2 1

Then, by subtracting the first row from the second and third rows, we have

1 ¢ 1
wep=€0 1 -2
0 2 0

Finally, evaluating the latter determinant by minors associated with the first column, we find
that
W) =4¢'.

Next,
0 te! e

Wi =10 @+le —e.
1 ¢+2) et
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Using minors associated with the first column, we obtain

-t
Wi = =-2r-1.
10 ((f + e —et
In a similar way
4 0 e!
-, e e’
W,o() = | 0 —e'|=— ¢ et =2,
¢ 1 e’
and
e tef 0
wwm=le crne o= © 2
3 = = =
e (+ e
¢ ¢+ 1 +1)

Substituting these results in Eq. (12), we have

Y(:):.;'f'MdH,e.'/“ g(s)(z)ds”_,j‘ g
o o de o

des der
1

_.Ern

(e [-1 420 — ) + e gls) ds.

g

PROBLEMS In each of Problems 1 through 6 use the method of variation of parameters to-determine the
general solution of the given differential equation.

1. "4y =taniy, O<tenm 2.y -y =t
3. ym__zyr_y_*_zy:eﬁ 4. y" 4y =secy, —nf2<t<m/2
5.y —y'+y —y=e"sint 6. y(¢3+2y"+y=sinf

In each of Problems 7 and 8 find the general solution of the given differential equation. Leave
your answer in terms of one or more integrals.

T. ¥ —y'+y —y=sect, —nf2 <t <mf2
8 ¥y —y =cscu, O<ten
In each of Problems 9 through 12 find the solution of the given initial value problem. Then
plot a graph of the solution.
& 9 y'+y=secr; yO=2 yO=1 yO0=-2
éga 10 y™ 4 2y 4 ¥y = Ssint; y©@® =2, yd=0, yO)=-1, yO=1
G 1Ly —y 4y —y=secr; O =2 yO)=-1, y©O=1
Fl 12y —y=cct; YR =2, ya/D=1, y@/)=-1
13, Given that x,x?, and 1/x are solutions of the homogeneous equation corresponding to
Y Xy -y 2y =2 x>0,

determine a particular solution.
14. Find a formula involving integrals for a particular solution of the differential equation

- ym”)’"'*')"—y=g(f)-
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15. Find a formula involving integrals for a particular solution of the differential equation

yO -y =g@).

Hint: The functions sin 1, cos ¢, sinh ¢, and cosh ¢ form a fundamental set of solutions of the
homogeneous equation.
16. Find a formula involving integrals for a particular solution of the differential equation

Y =3 +3y —y=g).

If g(t) = %€, determine Y (1).
17. Find a formula involving integrals for a particular solution of the differential equation

xay’"q3x2y"+6xy'~6y=g(x), x>0.
Hint: Verify that x, x?, and x* are solutions of the homogeneous equation.

Coddington, E. A., An Introduction to Ordinary Differential Equations (Englewood Cliffs, NJ: Preatice-
Hall, 1961; New York: Dover, 1989).

Ince, E. L., Ordinary Differential Equations (London: Longmans, Green, 15927; New York: Dover, 1953).
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CHAPTER
5

Series Solutions
of Second Order

[Linear Equations

Finding the general solution of a linear differential equation depends on determining
a fundamental set of solutions of the homogeneous equation. So far, we have given
a systematic procedure for constructing fundamental solutions only if the equation
has constant coefficients. To deal with the much larger class of equations that have
variable coefficients, it is necessary to extend our search for solutions beyond the
familiar elementary functions of calculus. The principal tool that we need is the
representation of a given function by a power series. The basic idea is similar to
that in the method of undetermined coefficients: we assume that the sclutions of a
given differential equation have power series expansions, and then we attempt to
determine the coefficients so as to satisfy the differential equation.

5.1 Review of Power Series

In this chapter we discuss the use of power series to construct fundamental sets of
solutions of second order linear differential equations whose coefficients are func-
tions of the independent variable. We begin by summarizing very briefly the pertinent
results about power series that we need. Readers who are familiar with power series
may go on to Section 5.2. Those who need more details than are presented here
should consuit a book on calculus.

243
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EXAMPLE

1

oo
1, A power series }_ a,(x — x0)" is said to converge at a point x if
n=0

Hm Z a,{x — xp)"
m-+0o n=0

exists for that x. The series certainly converges for x = xo; it may converge for all x, or it
may converge for some values of x and not for others.

[~
2, The series ¥ a,(x — xp)" is said to converge absolutely at a point x if the series

n={
Y o 1aatx —x0)"[ = Y laallx — xol”
n=0 nal}

converges. It can be shown that if the series converges absolutely, then the series also
converges; however, the converse is not necessarily true.

3. One of the most useful tests for the absolute convergence of a power series is the ratio
test. If a, # 0, and i, for a fixed value of x,

@ni1{x — x0)"*!
an(x - xO)n

. n41
lim ._".+_.

n—+00

=[x — xp| lim = |x — xolL,
n—oo

then the power series converges absolutely at that value of x if [x — xp|L < 1 and diverges
if Jx - xo|L > 1. I [x — xp| L =1, the test is inconclusive.

For which values of x does the power series

oo

E (_1)n+ln(x — 2):1

n=1
converge?
To test for convergence we use the ratio test. We have

(=1)"*2(n + 1)(x —2)"*
(-1rHla(x -2)

n+1
n

=x-2|

=[x — 2| lim
n—+oo n—+oo
According to statement 3 the series converges absolutely for [x - 2] <1,0r1 < x < 3, and
diverges for |x — 2| > 1. The values of x correspondingto ]x —2| =1 arex = 1and x == 3. The
series diverges for each of these values of x since the nth term of the series does not approach
Zero asn — oo.

oo
4. If the power series ). a,{x — xp)" converges at x = x;, it converges absolutely for
n=0
[x — xol < |x1 — xol; and if it diverges at x = x,, it diverges for |x — xpf > |x1 — xp|.
5. There is a nonnegative number p, called the radius of convergence, such that

ol
Y an(x - xp)" converges absolutely for |x — xp] < p and diverges for |x —xp] > p. For

a series that converges only at xp, we define p to be zero; for a series that converges for
all x, we say that p i¢ infinite. If p > 0, then the interval |x — xp| < p is called the interval
of convergence; it is indicated by the hatched lines in Figure 5.1.1. The series may either
converge or diverge when [x —xg| = p.
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Series Series Series
— . e converges ——p——* —_—
diverges . absolutely diverges
Xg—p X X+ p x

\ Series may /

converge or diverge
FIGURE 5.1.1 The interval of convergence of a power series.

Determine the radius of convergence of the power series
EXAMPLE ' o

(x+1)"
2 Z n2n

n=1

We apply the ratio test:

. (X+ l)nH. n2n
n—vea | (n 4+ 1)27H (x + 1)7 -

LS L )

2 mseon+41l 2

o
1
L

which diverges. Atx = -3 we have

b
¥
N
M
¥
:-5;
=
=,
b
a4
2
2
£}
3

il
B
&i
ra
]
k4
o
i3
3
b

(=3 HD" N (-1
g nan =§ n '

|03 LRI

Thus the series converges absolutely for [x+1] <2, or —3 < x < 1, and diverges for
{x + 1} > 2. The radius of convergence of the power series is p = 2. Finally, we check the
endpoints of the interval of convergence. At x = 1 the series becomes the harmonic series

which converges but does not converge absolutely. The series is said to converge conditionally
at x = —3. To summarize, the given power series converges for —3 < x < 1 and diverges
otherwise. It converges absolutely for —3 < x < 1 and has a radius of convergence 2.

(=] o0
Suppose that 3 a.(x — xp)" and Y b,(x — xp)" converge to f(x) and g(x), respec-

. n=0 n=0
tively, for [x — xg[ < p,p > 0.

6. The series can be added or subtracted termwise, and
. -]
F) Hg(x) =) (an & ba)(x — x0)
- n=0

the resulting series converges at least for |x — xg| < p.
7. 'The series can be formally multiplied, and

Flogln) = [Za (x— Io)"] [Z balx — xo)"] = ) ealx — xo)",
n=0 n=0

where ¢, = aghn + @1bn1+--- +ansbo. The resulting series converges at least for

[x —xp5] < p.
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Further, if g(x;) # 0, the series can be formally divided, and

f® .
2 = 2 nx =o'

=0

In most cases the coefficients d, can be most easily obtained by equating coefficients in
the equivalent relation

Y aatx —x0)" = [Z dy(x — xn)"J [Z b (x — xo)"}
n=0 n=0 n=0
= Z (debn—k) {x —xp)".
n=0 \ k=0

In the case of division the radius of convergence of the resulting power series may be less
than p.

8. The function f is continuous and has derivatives of all orders for [x — x3} < p. Further, f’,
f",... can be computed by differentiating the series termwise; that is,

f’(x) = +2a2(x—x0) +.-.+na"(x_xo)nﬁl +--

= inan (I - xU)n_l'

a=l

fr(x)=2a + 6as(x —x0) +--- + n(n — Dagfx ~xp)" 2 + -

(=]
= Zn(n — Dan(x — x)" 2,
n=2
and so forth, and each of the series converges absolutely for |x — xo] < p.

9. The value of a, is given by
_ S xo)

" n!

The series is called the Taylor! series for the function f about x = xo.
o0 [
10, If 3 a.(x — xg)" = ). balx — xo)" for each x in some open interval with center xo, then
n={ n=0

o0

a, = b, for n=0,1,2,3,.... In particular, if ¥ a,(x — x)" = 0 for each such x, then
n=0

agp=m=--=a,=---=0.

A function f that bas a Taylor series expansion about x = xp,

R £l (g,
feo = y L0

n

(x - 1’0)“:

n=0

with a radius of convergence p > 0, is said to be analytic at x = xg. All of the familiar
functions of calculus are analytic except perhaps at certain easily recognized points.

1Brock Taylor {1685-1731) was the leading English mathematician in the generation follawing Newton.
In 1715 he published a general statement of the expansion theorem that i named for him, a result that is
fundamental in all branches of analysis. He was also one of the founders of the calculus of finite differences
and was the first to recognize the existence of singular solutions of differential equations.
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EXAMPLE

3

EXAMPLE

4

For example, sinx and e* are analytic everywhere, 1/x is analytic except at x = 0, and
tanx is analytic except at odd multiples of 7/2. According to statements 6 and 7, if
f and g are analytic at xo, then f + g, f - g, and f /g [provided that g(x,) # 0] are also
analytic at x = xo. In many respects the ratural context for the use of power series
is the complex plane. The methods and results of this chapter nearly always can be
directly extended to differential equations in which the independent and dependent
variables are complex valued.

Shift of Index of Summation. The index of summation in an infinite series is a dummy
parameter just as the integration variable in a definite integral is a dummy variable.
Thus it is immaterial which letter is used for the index of summation. For example,

i 27" V¥
! i
=" pr L
Just as we make changes of the variable of integration in a definite integral, we find
it convenient to make changes of summation indices in calculating series solutions of
differential equations. We illustrate by several examples how to shift the summation
index.

a9
Write ) a,x" as a series whose first term corresponds to n = Q rather than n =2,

n=1

Letm =n—2;thenn =m+2,and n = 2 corresponds to m = 0. Hence
oo oo
Za,,x" = Zﬂmnf"“- (#))]
=2 m=0

By writing out the first few terms of each of these series, you can venfy that they contain
precisely the same terms. Finally, in the series on the right side of Eq. (1), we can replace the
dummy index m by n, obtaining

Za,,x" = Z @npzx"tE 3]
=2 n=0

In effect, we have shifted the index upward by 2 and have compensated by starting to count
at a level 2 lower than originally.

Write the series
D 2 + Danx — xo)" (3)
n=2 -

as a series whose generic term involves (x — xg)" rather than (x — xp)" 2.
Again, we shift the index by 2 so that n is replaced by n + 2 and start counting 2 lower. We
obtain

Y 01+ 01 + 3)anez(x — x0)". (4
n=0

You can readily verify that the terms in the series (3) and (4) are-exactly the same.
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EXAMPLE

EXAMPLE

6

Write the expression
o0
xt Z r + ma,xtt (s)
n=0

as a series whose generic term involves x'*".
First, take the x? inside the summation, obtaining

E (r + L, (6)
n=l
Next, shift the index down by 1 and start counting 1 higher. Thus
oo o0
DA Mt =Y - Dap (7)
=l el

Apain, you can easily verify that the two series in Eq. (7) are identical and that both are exactly
the same as the expression (5).

Assume that
) naxt =3 "anx” (8)
A=l r=0

for all x, and determine what this implies about the coefficients a,,.

We want to use statement 10 to equate corresponding coefficients in the two series. In order
to do this, we must first rewrite Eq. (8) so that the series display the same power of x in their
generic terms. For instance, in the series on the left side of Eq. (8), we can replacenby n+1
and start counting 1 lower. Thus Eq. (8) becomes

Z (n+ Dapx" = Ea,f’. (&)
n={ n=(

According to statement 10, we conclude that
(n+1Dapy =a,, n=01,23,...

or

[+
il =0,1273,... 10
n+1l n 01111 ( )

Hence, choosing successive values of # in Eq. (10), we have

Ihy) =

a ag - a +f
ay = dop, ﬂz:?lzioj a;;:-z——o
and so forth. In general,
a,:ﬂ, n=12.73,.... (11)
n!
Thus the relation (8) determines all the following coefficients in terms of ap. Finally, using the
coefficients given by Eq. (11), we cbtain

Zz.oa,,x" :aogi—: = age®,

where we have followed the usual convention that 0! = 1.
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PROBLEMS In each of Problems 1 through 8 determine the radius of ébn_vergence of the given power series.

00 ® n
1L Y x-3)" 2L 5

n=0 . n=0

00 yln 0 e
3 ) 4.3 2

n=0 n! n=(

® (2x+1)" = (x —xg)"
5. —_ 6. e

,,):z:l n? ,El n

00 {_1\pl n o0 [
7-Z(l)n(x+2) 8.2"

ne=l 3n a1 N7

In each of Problems 9 through 16 determine the Taylor series about the point xq for the given
function. Also determine the radius of convergence of the series

9. sinx, x=0 10. &, xp=0
11. x, =1 12, 22, xo=—1
1
3.1 =1 14. =
13. Inx, X T3% a=10
1 1
15. , x=0 16. , xg =2
1-—x 1—x

o0
17. Giventhat y = ¥ nx*, compute ¥ and ¥ and write out the first four terms of each series

n=l)
as well as the coefficient of x® in the general term.

18. Given that y = ): a,x", compute ¥y and y’ and write out the first four terms of each

series as well as the coefficient of x* in the general term. Show that if y' =y, then the
coefficients ag and a, are arbitrary, and determine a; and &5 in terms of 4 and a;. Show
thata,,, = a/(n+2)(n+1), n=0,1,2,3,....

In each of Problems 19 and 20 verify the given equation.

19. )::a,.(x—l)"‘H ):a,, 1x—=1"

20. Z Qg x* + Z ax¥tl =qa; + ):(ak.n + Ay )t
kol k=) k=1

In each of Problems 21 through 27 rewrite the given expression as a sum whose generic term

involves x*.
oo . 00
21. Y on{n- Dax? 22, ¥ agxt?
nm=2 n=0
00 o0 \ [
23, x Y nanxtt 4 Z apx* '\24. 1—x) Y nn— a2
=1 - n=2
[ o0
25. Z m(m — Dax"* 4 x ): kayx* 26. Y na,x*'+x Y axt
=2 n=1 n=0

27. x ): nin — Dax™? 4 ): @, x"
n=2 n=0
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2.2 Series Solutions Near an Ordinary Point, Part |

@ctermine the a, so that the equation

ina,,x"" +2 ia,x" =0
n=0

n=]

o0
is satisfied. Try to identify the function represented by the series 3 a,x".
Rl

In Chapter 3 we described methods of solving second order linear differential equa-
tions with constant coefficients. We now consider methods of solving second order
linear equations when the coefficients are functions of the independent variable. In
this chapter we will denote the independent variable by x. It is sufficient to consider
the homogeneous equation

d? d
””E}; + Q(x)a% + R(x)y =0, (1)

since the procedure for the corresponding nonhomogeneous equation is similar.
Many problems in mathematical physics lead to equations of the form (1) having
polynomial coefficients; examples include the Bessel equation

xzyﬂ _*_xyf + (x2 _ UZ)), — 0,

where v is a constant, and the Lependre equation
(1—xB)y" —2xy +ala + 1y =0,

where « is a constant. For this reason, as well as to simplify the algebraic com-
putations, we primarily consider the case in which the functions P, @, and R are
polynomials. However, as we will see, the method of solution is also applicable when
P, 0, and R are general analytic functions.

For the present, then, suppose that P, 0, and R are polynomials and that they have
no common factors. Suppose also that we wish to solve Eq. (1) in the neighborhood
of a point xy. The solution of Eq. (1) in an interval containing xp is closely associated
with the behavior of £ in that interval.

A point xg such that P(xg) # 0is called an ordinary point. Since P is continuous, it
follows that there is an interval about x¢ In which P(x) is never zero. In that interval
we can divide Eq. (1) by P(x) to obtain

Y +px)y +q(x)y =0, (2)

where p(x) = Q(x)/P(x) and g(x) = R(x)/P(x) are continuous functions. Hence,
according to the existence and uniqueness Theorem 3.2.1, there exists in that inter-
val a unique solution of Eq. (1) that also satisfies the initial conditions y(xg) = yo,
¥'(x0) = ¥, for arbitrary values of yo and yy. In this and the following section we
discuss the solution of Eq. (1) in the neighborhood of an ordinary point. _
On the other hand, if P(xp) = 0, then xg is called a singular point of Eq. (1). In
this case at least one of Q(xp) and R(xy) is not zero. Consequently, at least one of
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the coefficients p and g in Eq. (2) becomes unbounded as x — xg, and therefore
Theorem 3.2.1 does not apply in this case. Sections 5.4 through 5.8 deal with finding
solutions of Eq. (1) in the neighborhood of a singular point.

We now take up the problem of solving Eq. (1) in the neighborhood of an ordinary
point xo. We look for solutions of the form

y=ago+a@E—xo)+ -+ anx—x0)" - = Y a,(x — x0)", 3
n=0

and assume that the series converges in the interval [x — xg| < p for some p > 0.
While at first sight it may appear unattractive to seek a solution in the form of a
power series, this is actually a convenient and useful form for a solution. Within their
intervals of convergence, power series behave very much like polynomials and are
easy to manipulate both analytically and numerically. Indeed, even if we can obtain
a solution in terms of elementary functions, such as exponential or trigonometric
functions, we are likely t0 need a power series or some equivalent expression if we
want to evaluate them numerically or to plot their graphs.

The most practical way to determine the coefficients a, is to substitute the series
(3) and its derivatives for y, ¥, and y” in Eq. (1). The following examples illustrate this
process. The operations, such as differentiation, that are involved in the procedure
are justified so long as we stay within the interval of convergence. The differential
equations in these examples are also of considerable importance in their own right.

Find a series solution of the equation
y'+y=0, —00 < X < CO. {4)

As we know, two linearly independent solutions of this equation are sin x and cos x, so series
methods are not needed to solve this equation. However, this example illustrates the use of
power series in a refatively simple case. For Eq. (4), P{x) = 1, (x) = 0,and R{x) = 1; hence
every point is an ordinary point.

We look for a solution in the form of a power series about xp = 0,

-]
y=ao+alx+azxz+---+a,,x"+---=Za,.x". (5
n=0

and assume that the series converges in some interval |x| < p.
Differentiating Eq. (5) term by term yields

0
y.':al+2a2x+“‘+nﬂnl}‘_l+--.=Znanﬂ-l' (6)
. a=l
o«
yu =2a+--+nn— l)anﬂﬁz $oo= Z"(?l . l)a"f'gz_ (7)
ne2

Substituting the series (5) and (7) for y and y” in Eq. (4) gives

in(n — Dax"t + ianx" =0,

n=l n=0
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To combine the two series, we need to rewrite at least one of them so that both series display
the same generic term. Thus, in the first sum, we shift the index of summation by replacing n
by 1 + 2 and starting the sum at 0 rather than 2. We obtain

o0 -2
Z (n+2)(n 4 Dap,2" + Ea,.x" =0
n=0 n=0

or

> [0+ 2)(1 + Datgyz +a,) 2" =0.-
n=0

For this equation to be satisfied for all x, the coefficient of each power of x must be zero; hence
we conclude that

4+ 2Y(n+ 1apyz +a, =0, n=20123,.... (8)

Equation (8) is referred to as a recurrence relation. The successive coefficients can be
evaluated one by one by writing the recurrence relation first for n = 0, then for n =1, and
so forth. In this example Eq. (B) relates each coefficient to the second one before it. Thus
the even-numbered coefficients (ag, a3, 24, ...) and the odd-numbered ones (a,,a3,as,...) are
determined separately. For the even-numbered coefficients we have

=TI a T T T3 T T T e s T T

These results suggest that in general, if n = 2k, then

(—-1)*

T k=123.... (9)

an = a3 =

We can prove Eq. (9) by mathematical induction. First, observe that it is true for & = 1. Next,
assume that it is true for an arbitrary value of k and consider the case k + 1. We have

_ Oy _ (=1* G Vs
2k +22k+1 T Qk+2)Q2k+ Do ® = 2+ i

O2k47 =

Hence Eq. (9) is also true for & 4 1, and consequently it is true for all positive integers k.
Similarly, for the odd-numbered coefficients

o a a3 2y a o
y = —r—7F = — 5 —_—— = 4= ay = —

2.3 3 5.4 51" 7.6

and in general, if 1 = 2k + 1, then?

(—-1)*

(2—k+-“——‘1)|ﬂh k:1,2,3,.... (10)

4y = 8241 =

*The resuit given in Eq. (10) and other similar formulas in this chapter can be proved by an induction
argument resembling the one just given for Eq. (9). We assume that the results are plausible and omit the
inductive argument hereafter,
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Substituting these coefficients into Eq. (5), we have

1 a a
,V“%-i-a:x-—gxz ©4 2 0‘ Ly

TR T tar
(—1)"aq (=1)"a; 2
2m! (2n 4 1)'
x! X‘ (-1 )n
—.ao[l—ﬁ+ﬂ+‘ B +]
x:‘l IS (_l)n -
+a1[x—§+—+ +mx +]
-1 (=" g2
02(2 )lx"+ ‘Z(2n+1)- : (11)

Now that we have formally obtained two series solutions of Eq. (4), we can test them for
convergence. Using the ratio test, it is easy to show that each of the series in Eq. (11) converges
for all x, and this justifies retroactively all the steps used in obtaining the solutions. Indeed,
we recognize that the first series in Eq. (11) is exactly the Taylor series for cosx aboutx =0
and that the second is the Taylor series for sinx about x = 0. Thus, as expected, we obtain the
solution y = ag cosx -+ a; sinx.

Notice that no conditions are imposed on ag and @y; hence they are arbitrary. From Egs. (5)
and (6) we see that y and y’ evaluated at x = 0 are @, and a, respectively. Since the initial
conditions y(0) and y'(0) can be chosen arbitrarily, it follows that aq and a, should be arbitrary
until specific initial conditions are stated.

Figures 5.2.1 and 5.2.2 show how the partial sums of the seriesin Eq. (11) approximate cos x
and sinx. As the number of terms increases, the interval over which the approximation is
satisfactory becomes longer, and for each x in this interval the accuracy of the approximation
improves. However, you should always remember that a truncated power series provides only
a local approximation of the solution in a neighborhood of the initial point x = 0; it cannot
adequately represent the solution for large |x|.

TN R

_n=4 n=8 n=12 n=16 ‘n'_=_2:_0'_

_ n2n'6n10n14n'18
FIGURE 5.2. 1 Polynom:al approximations to cosx. The value of n is the degree of the
approximating polynomial.
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FIGURE 5.2.2 Polynomial approximations to sinx. The value of n is the degree of the
approximating polynomial.

In Example 1 we knew from the start that sin x and cosx form a fundamental set of
solutions of Eq. (4). However, if we had not known this and had simply solved Eq. (4)
using series methods, we would still have obtained the solution {11). In recognition
of the fact that the differential equation (4) often occurs in applications, we might
decide to give the two solutions of Eq. (11) special names, perhaps

C(x) = i (_].)""le1 S(x) — i _E_.__l.)_:_bu'l
£ 2! ’ — (2n+1)! ’

Then we might ask what properties these functions have. For instance, it follows
at once from the series expansions that C(0) =1, S(0) =0, C(—x) = C(x), and
S(—x) = —8(x). It is also easy to show that

S'(x) = Cx), C'(x) = —S(x).

Moreover, by calculating with the infinite series,’ we can show that the functions C(x)
and S(x) have all the usual analytical and algebraic properties of the cosine and sine
functions, respectively.

Although you probably first saw the sine and cosine functions defined in a more
elementary manner in terms of right triangles, it is interesting that these functions
can be defined as solutions of a certain simple second order linear differential equa-
tion. To be precise, the function sinx can be defined as the unique solution of the
initial value problem y” +y =0, y(0) = 0, y'(0) = 1, similarly, cosx can be defined
as the unique solution of the initial value problem y” +y =0, y(0) =1, y'(0) = 0.
Many other functions that are important in mathematical physics are also defined as
solutions of certain initial value problems. For most of these functions there is no
simpler or more elementary way to approach them.

3Such an analysisis given in Section 24 of K. Knopp, Theory and Applications of Infinite Series (New York:
Hafner, 1951).



5.2 Series Solutions Near an Ordinary Point, Part 1 255

Find a series solution in powers of x of Airy's® equation
¥y —xy=0, —00 < X < 00 (12)

For thisequation P(x) = 1, Q{(x) = 0,and R()..’) = —x; hence every point is an ordinary point.
We assume that

y= i 2,0" (13)
n=0

and that the series converges in some intervat |x| < p. The series for y” is given by Eq. (7); as
explained in the preceding example, we can rewrite it as

Y =2 (n+ 2+ Dapx". (14)
n=g

Substituting the series (13) and (14) for y and y” in Eq. (12), we obtain

DA+ DX =1 ax" =y ax™t, (15)

n=l n=0 =0

Next, we shift the index of summation inthe series on the right side of this equation by replacing
n by n — 1 and starting the summation at 1 rather than zero. Thus we have

216+ ) (1 +2)(1 + Danox” = ) ap1x".

nA=] n=1

Again, for this equation to be satisfied for all x, it is necessary that the coefficients of like
powers of x be equal; hence @, = 0, and we obtain the recurrence relation

(n+2)(n+1)an = 25 for n=12,3,.... (16)

Since a,,; is given in terms of @, ;, the @'s are determined in steps of three. Thus aqg
determines @3, which in turn determines g, .. .;a; determines ay, Which in turn determines
@7,...; and a; determiines 25, which in turn determines ag, . ... Since a; = 0, we immediately
conclude thatas =ag =ay =--- =0.

For the sequence g, @3, ag,as,... Wesetn = 1,4,7,10,. .. in the recurrence relation:

gp a3 2y ag 4

“B=373 %=356-73.56 PT59-735689 "

These results suggest the general formula

dg

= >
@3n 2356(3""1)(3.?1), n>4,
For the sequence a1, a4, 7,815, ..., we set 1 = 2,5,8,11,. .. in the recurrence relation:
2 = gy — 4 0 g T a
4H34’ 7_67_3467’ 10”910_3'4679'10.

4Sir George Riddell Airy (1801-1892), an English astronomer and mathematician, was director of the
Greenwich Observatory from 1835 to 1881. One reason why Airy’s equation is of interest is that for
x negative the solutions are oscillatory, similar to trigonometric functions, and for x positive they are
monotonic, similar to hyperbolic functions. Can you explain why it is reasonable to expect such behavior?
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Having obtained these two series solutions, we can now investigate their convergence. Be-
cause of the rapid growth of the denominators of the terms in the series (17), we might expect
these series to have a large radius of convergence, Indeed, it is eagy to use the ratio test to
show that both these series converge for ail x; see Problem 20.

Assuming for the moment that the series do converge for all x, let y; and y, denote the
functions defined by the expressions in the first and second sets of brackets, respectively, in
Eq. (17). Then, by choosing first apg = 1, a; = 0 and then gy = 0,81 = 1, it follows that y,
and y, are individually solutions of Eq. (12). Notice that y, satisfies the initial conditions
i@ =1, y{(0) =0 and that y, satisfies the initial conditions y,(0) =0, y3(0) =1. Thus
Wy, y2)(0) =1 # 0,and consequently y, and y, are linearly independent. Hence the general
solution of Airy's equation is

y= QOY1(I) + ayyz(x), —00 < X < 00.

In Figures 5.2.3 and 5.2.4, respectively, we show the graphs of the solutions y; and y; of
Airy's equation, as well as graphs of several partial sums of the two series in Eq. (17). Again,
the partial sums provide local approximations to the solutions in a neighborhood of the origin.
Although the quality of the approximation improves as the number of terms increases, no
polynomial can adequately represent y, and y, for large |x|. A practical way to estimate the
interval in which a given partial sum is reasonably accurate is to compare the graphs of that
partial sum and the next one, obtained by including one more term. As soon as the graphs

FIGURE 5.2.3 Polynomiéi approﬁmations to the solution y, (xj of Airy’s equation. The
value of n is the degree of the approximating polynomial.

 nias|.
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3

begin to separate noticeably, we can be confident that the original partial sum is no longer
accurate. For example, in Figure 5.2.3 the graphs for » = 24 and n = 27 begin to separate
at about x = —9/2. Thus, beyond this point, the partial sum of degree 24 is worthless as an
approximation to the solution. '

i iad BRREL A BEh S RTCr ) = FAGTREAH
FIGURE 524 Polynomial approximations to the solution
value of n is the degree of the approximating polynomial,

yzh(x)' cr)f‘ Ai?y sj.t.*.qlixz'l{ion. The

Observe that both y, and y; are monotone for x > 0 and oscillatory for x < 0. One can
also see from the figures that the oscillations are not uniform but, rather, decay in amplitude
and increase in frequency as the distance from the origin increases. In contrast to Example 1,
the solutions y; and y; of Airy’s equation are not elementary functions that you have aiready
encountered in calculus. However, because of their importance in some physical applications,
these functions have been extensively studied, and their properties are well known to applied
mathematicians and scientists.

Find a solution of Airy's equation in powers of x — 1.
The point x = 1is an ordinary point of Eq. (12), and thus we ook for a solution of the form

oo
y= Zaﬂ(x - 1)"1
1
where we assurne that the series converges in some interval |x — 1§ < p. Then

Y= na,i— 1" =) "(n+ Dape x — 1)

n=l n={

and

Y =3 n0n— Daa(x =12 =Y (1 +2(n + Datnalx — "

n=32 n=d
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Substituting for y and y” in Eq. (12), we obtain

o0 oo

S+ D+ Dagalx ~1)" =x)_ap(x-- 1" (18)

n=0 n=0
Now to equate the coefficients of like powers of (x — 1) we must express x, the coefficient of y
in Bq. (12}, in powers of x — 1; that is, we write x = 1 4 (x — 1), Note that this is precisely the
Taylor series for x about x = 1. Then Eq. (18) takes the form

Y+ 201+ Dagaalx — 1" =1+ (x = D] ) an(x—1)"
n=0 n={

=) anlx— 1"+ 3 g, — D™,
n=0 A=}

Shifting the index of summation in the second series on the right gives

D+ D+ Dapalx — 1" = Y a,(x— 1)+ ) a, 1 (- 1)".

=0 =0 =l
Equating coefficients of like powers of x — 1, we obtain
2ay = ay,
(3-2)ay =a, +ay,
(4-3as=ay +ay,
(5-4)as = ay +ay,

The general recurrence relation is

n+2(n+1a =a, + a8, for n>1. a9

Solving for the first few coefficients a,, in terms of ap and a;, we find that
an a fp az ay an a a4 a _ io. i
w=5, @a=gte Msptp=atn ST ntanT3ntne

Hence
_ c~102 -1 -1 x-1)°
y«—ao[l+ bttt
k-1 (x-1* (x-—1)°

_ Bl - 20
+m[u D4+ g oo F (20)

In general, when the recursence relation has more than two terms, as in Eq. (19), the
determination of a formula for a, interms ap and a, will be fairly complicated, if not impossible.
In this example such a formula is not readily apparent. Lacking such a formula, we cannot test
the two series in Eq. (20} for convergence by direct methods such as the ratio test. However,
we shall see in Section 5.3 that even without knowing the formula for a,, it is possible to
establish that the series in Eq. (20) converge for all x. Further, they define functions ys and y4
that are linearly independent solutions of the Airy equation (12). Thus

-y = agya(x) + ay ys(x)

Is the general solution of Airy’s equation for —oo < x < co.
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It is worth emphasizing, as we saw in Example 3, that if we look for a solution

o0

of Eq. (1) of the form y = ) a,(x — x0)", then the coefficients P(x), Q(x), and R(x)
n=0 .

in Eq. (1) must also be expressed in powers of x — xo. Alternatively, we can make

the change of variable x — xy = 7, obtaining a new differential equation for y as a

function of ¢, and then look for solutions of this new equation of the form f: a,!”.
n=0
When we have finished the calculations, we replace ¢ by x — x, (see Problem 19).

In Examples 2 and 3 we have found two sets of solutions of Airy’s equation. The
functions y; and y, defined by the series in Eq. (17) are linearly independent solutions
of Eq. (12) for all x, and this is also true for the functions y; and y4 defined by the series
in Eq. (20). According to the general theory of second order linear equations each
of the first two functions can be expressed as a linear combination of the latter two
functions and vice versa—a result that is certainly not obvious from an examination
of the series alone.

Finally, we emphasize that it is not particularly important if, as in Example 3, we
are unable to determine the general coefficient a, in terms of ap and ¢;. What is
essential is that we can determine as many coefficients as we want. Thus we can find
as many terms in the two series solutions as we want, even if we cannot determine
the general term. While the task of calculating several coefficients in a power series
soluticn is not difficult, it can be tedious. A symbolic manipulation package can be
very helpful here; some are able to find a specified number of terms in a power series
solution in response to a single command. With a suitable graphics package one can
also produce plots such as those shown in the figures in this section.

PROBLEMS

In each of Problems 1 through 14 solve the given differential equation by means of a power
senies about the given point xo. Find the recurrence relation; also find the first four terms in
each of two linearly independent solutions (unless the series terminates sooner). If possible,
find the general term in each solution.

1. v/ —-y=0, x=0 2.y —xy—-y=0, xg=0

Ly —xy—-y=0 x=1 4, y'+kxly =0, 1x =0, kaconstant
S 1—x)y+y=0, x=0 6. Q4xB)y —xy +4y=0, x =0

Ay 4xy+2y =0, X =0 8 xy'+y +xy=0, =1

9. (14X —dxy +6y=0, x=0 10. @—xD)y +2y=0, x=0

11. 3 —x2)y" —3xy —y =0, x =0 (A-x)y"+xy—-y=0, xg=0

13. 2 +xy +3y =0, x=0 -~ 1420 + (x+ 1)y 43y =0, x9=2

In each of Problems 15 through 18:

(a) Find the first five nonzero terms in the solution of the given initial value problem.

(b) Plot the four-term and the five-term approximations to the solution on the same axes.
{c) From the plot in part (b) estimate the interval in which the four-term approximation is
reasonably accurate.

&L 15 y—xy—y=0, y(0)=2 y© =1, seeProblem?
&2 16 @42y —xy +4y=0, y0)=-1, y(©0)=3; seeProblem6
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o1 y+xy+2y=0, y0) =4, y(0)=-1; seeProblem7
5 18)(1 ~x)y" +xy —y=0, 0 =-3, y© =2 seeProblem 12

2
@ y making the change of variable x — 1 = ¢ and assuming that y has a Taylor series in
powers of ¢, find two linearly independent series solutions of

YV'Fa—DY 4+~ 1Dy=0

in powers of x — 1. Show that you obtain the same result directly by assuming that y has
a Taylor series in powers of x — 1 and also expressing the coefficient x? — 1 in powers of
x—1L

20. Show directly, using the ratio test, that the two series solutions of Airy's equation about
x = 0 converge for all x; see Eq. (17) of the text.

21. Fhe Hermite Equation. The equation

Y—2xy + Ay =0, —00 < X < 00,

where ) is a constant, is known as the Hermite® equation. It is an important equation in
mathemalical physics.

{a) Find the first four terms in each of two linearly independent solutions about x = 0.

{b) Observe that if ) is 2 nonnegative even integer, then one or the other of the series
solutions terminates and becomes a polynomial. Find the polynomial solutions for A =0,
2,4,6, 8, and 10. Note that each polynomial is determined only up to a multiplicative
constant.

(c) The Hermite polynomial H,(x) is defined as the polynomial solution of the Hermite
equation with A == 2n for which the coefficient of x* is 2", Find Hp(x),. .., Hs(x).

22. Consider the initial value problem y' = /1 — y2,y(0) = 0.
(a) Show that y = sin x is the solution of this initial value problem.

(b) Look for a solution of the initial value problem in the form of a power series about
x = 0. Find the coefficients up to the term in x* in this series.

In each of Problems 23 through 28 plot several partial sums in a series solution of the given
injtial value problem about x = {, thereby obtaining graphs analogous to those in Figures 5.2.1
through 5.2.4,

é‘?, 23, ¥y —xy -y =0, =1, yO0)=0; see Problem 2

§FL 24 2+ -1y +4y=0, y0O =1, yO) =0 see Problem 6
éQ, 25. Y +xy +2y =0, Y0 =0, yO=1I; see Problem 7

& 26. 4Dy’ +2y=0, y@0 =0, y©®)=1; seeProblem I0
& 21 y 43ty =0, yO=1 yO) =0 see Problem 4

&0 28 -y +xy—2y=0, y0) =0, y(@OQ =1

3Charles Hermite (1822-1901) was an influentia} French analyst and algebraist. He introduced the Her-
mite functions in 1864 and showed in 1873 that ¢ is a transcendental number (that is, e is not a root of any
polynomial equation with rational coefficients). His name is also associated with Hermitian matrices (see
Section 7.3), some of whose properties he discovered.
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5.3 Series Solutions Near an Ordinary Point, Part II

In the preceding section we considered the problem of finding solutions of
Py’ + Q(x)y' + R(x)y =0, (0

where P, Q, and R are pelynomials, in the neighberhood of an ordinary point x.
Assuming that Eq. (1) does have a solution y = ¢(x) and that ¢ has a Taylor series

o0
y=¢x) =) anlx—x)", @)
n=0
which converges for [x — xg] < p, where p > 0, we found that the a, can be deter-
mined by directly substituting the series (2) for y in Eq. (1).

Let us now consider how we might justify the statement that if xg is an ordinary
point of Eq. (1), then there exist solutions of the form (2). We also consider the
question of the radius of convergence of such a series. In doing this we are led to a
generalization of the definition of an ordinary point.

Suppose, then, that there is a solution of Eq. (1) of the form (2). By differentiating
Eq. (2) m times and setting x equal to x, it follows that

mlay = ¢ (xo).

Hence, to compute g, in the series (2), we must show that we can determine ¢ (x,)
for n =0,1,2,... from the differential equation (1).

Suppose that y = ¢(x) is a solution of Eq. (1) satisfying the initial conditions
y(x0) = yo, ¥'(x0) =¥,. Then ap = yo and a; = y;. If we are solely interested in
finding a solution of Eq. (1) without specifying any initial conditions, then ap and a;
remain arbitrary. To determine ¢ (xo) and the corresponding a, for n =2,3,. ..,
we turn to Eq. (1). Since ¢ is a solution of Eq. (1), we have

P)g"(x) + Q(0)¢'(x) + R(x)¢ (x) = 0.

For the interval about xq for which P is nonvanishing, we can write this equation in
the form

¢"(x) = —p()¢'(x) — g (x), ()
where p(x) = Q(x)/P(x} and g(x) = R(x)/P(x). Setting x equal to xo in Eq. (3) gives
¢"(x0) = —p(x0)¢'(x0) — g(x0) (x0).
Hence a; is given by
2la, = ¢ (x0) = —p(xa)ar — q(xo)a0. , @)
To determine a3 we differentiate Eq. (3) and then set x equal to xg, obtaining
3lay = ¢ (x0) = ~[p¢” + (@' + Q)¢' + ¢'¢] rozo

= —2p(x0)az — [P’ (x0) + 9(x0)1a; — ¢’ (x0)ap. ()

Substituting for o; from Eq. (4) gives a3 in terms of #) and ay. Since P, 2, and R are
polynomials and P(xp)} # 0, all the derivatives of p and g exist at xo. Hence, we can
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Theorem 5.3.1

continue to differentiate Eq. (3) indefinitely, determining after each differentiation
the successive coefficients a4, as, . . . by setting x equal to xp.

Notice that the important property that we used in determining the a, was that we
could compute infinitely many derivatives of the functions p and ¢g. It might seem
reasonable to relax our assumption that the functions p and q are ratios of polyno-
mials and simply require that they be infinitely differentiable in the neighborhood
of x5. Unfortunately, this condition is too weak to ensure that we can prove the con-
vergence of the resulting series expansion for y = ¢ (x). What is needed is to assume
that the functions p and g are analytic at xg; that is, they have Taylor series expansions
that converge to them in some interval about the point xg:

PE)=po+pilx—~x0)+- +palx—x0)"+ - =D pulx—x0)",  (6)
n=0

g() =qo+ q1(x —x0) + -+ galx —x0)" + -+ = Y _ gnlx — x0)". (M
n=-0

With this idea in mind, we can generalize the definitions of an ordinary point and
a singular point of Eq. (1) as follows: If the functions p = Q/P and ¢ = R/P are
analytic at xp, then the point xg is said to be an ordinary point of the differential
equation (1); otherwise, it is a singular point.

Now let us turn to the question of the interval of convergence of the series solution.
One possibility is actually to compute the series solution for each problem and then
to apply one of the tests for convergence of an infinite series to determine its radius
of convergence. However, the question can be answered at once for a wide class of
problems by the following theorem.

If xg is an ordinary point of the differential equation (1),
Px)y" + Q(y' + Rix)y =0,

that is, if p = Q/P and ¢ = R/P are analytic at xp, then the general solution of
Eq.(1)is -

Y= an(x — x0)" = aoy1 () + @y (x), (8)

n=0

where g and a, are arbitrary,and y; and y; are linearly independent series solutions
that are analytic at xg. Further, the radius of convergence for each of the series
solutions y; and y, is at least as large as the minimum of the radii of convergence
of the series for p and ¢.

Notice from the form of the series solution that y; (x) = 1+ by (x x0)2 + - and
y2{x) = (x — x0) + c2(x — x0)* + - --. Hence y, is the solution satisfying the initial
conditions y1(xo) = 1,.y{(x0) =0, and y, is the solution satisfying the initial con-
ditions y;(xg) = 0, y;(x¢) = 1. Also note that although calculating the coefficients
by successively differentiating the differential equation is excellent in theory, it is
usually not a practical computational procedure. Rather, one should substitute the
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2

series (2) for y in the differential equation (1) and determine the coefficients so that
the differential equation is satisfied, as in the examples in the preceding section.

We will not prove this theorem, which.in a slightly more general form was estab-
lished by Fuchs.® What is important for our purposes is that there is a series solution
of the form (2) and that the radius of convergence of the series solution cannot be
iess than the smaller of the radii of convergence of the series for p and g; hence we
need only determine these.

This can be done in either of two ways. Again, one possibility is simply to compute
the power series for p and ¢ and then to determine the radii of convergence by
using one of the convergence tests for infinite series. However, there is an easier
way when P, (, and R are polynomials. It is shown in the theory of functions of a
complex variable that the ratio of two polynomials, say O/P, has a convergent power
series expansion about a point x = xp if P(xp) # 0. Further, if we assume that any
factors common {0 Q and P have been canceled, then the radius of convergence of
the power series for Q/P about the point xq is precisely the distance from xp to the
nearest zero of P. In determining this distance we must remember that P(x) = 0 may
have complex roots, and these must also be considered.

What is the radius of convergence of the Taylor series for (1 + x¥)~! about x = 07
One way to proceed is to find the Taylor series in question, namely

1
1+x?
Then it can be verified by the ratio test that p = 1. Another approach is to note that the zeros

of 1 +x?are x = :i. Since the distance in the complex plane from 0 to i orto —i is 1, the radius
of convergence of the power series about x = Qs 1.

=l-x+x' =+ ()P 4

What is the radius of convergence of the Taylor series for (x* — 2x + 2)"! about x = 0? About
x=17
First notice that
X —2x+2=0

has solutions x = 1 /. The distance in the complex plane from x = 0to eitherx =1 +ior

[
x =1 — i is +/2; hence the radius of convergence of the Taylor series expansion ¥ a,x" about

=0
x=0is 2.
The distance in the complex plane from x = 1 to eitherx =1 +iorx =1 —iis1;hence the

oo
radius of convergence of the Taylor series expansion 3 b,(x — 1)" aboutx = 1is 1.
) n=0

$Immanuel Lazarus Fuchs (1833-1902) was a Student and later a professor at the University of Berlin.
He proved the result of Theorem 5.3.1 in 1866. His most important research was on singular points of
linear differential equations, He recognized the significance of regular singular points (Section 5.4), and
equations whose only singularities, including the point at infinity, are regular singular points are known as
Fuchsian equations,
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3

EXAMPLE

4

EXAMPLE

According to Theorem 5.3.1 the series solutions of the Airy equation in Examples
2 and 3 of the preceding section converge for all values of x and x — 1, respectively,
since in each problem P{x) = 1 and hence is never zero.

A series solution may converge for a wider range of x than indicated by Theorem
5.3.1, so the theorem actually gives only a lower bound on the radius of convergence
of the series solution. This is illustrated by the Legendre polynomial solution of the
Legendre equation given in the next example.

Determine a lower bound for the radius of convergence of series solutions about x = 0 for the
Legendre equation
- (1 -2y — 2y +ale +1)y =0,

where o is a constant.
Note that P(x) = I ~ x?, @(x) = —2x, and R(x) = a(x + 1) are polynomials, and that the
zeros of P, namely x = 1, are a distance 1 from x = 0. Hence a series solution of the form

oo
Y anx" converges for |x] < 1 at least, and possibly for larger values of x. Indeed, it can be

gwoown that if o is a positive integer, one of the series solutions terminates after a finite number
of terms and hence converges not just for |x| < 1 but for all x. For example, if @ =1, the
polynomial solution is y = x. See Problems 22 through 29 at the end of this sectjon for a more
comprehensive discussion of the Legendre equation.

Determine a lower bound for the radius of convergence of series solutions of the differential
equation
(1+ 22y + 2y + 4%y =0 )

about the point x = 0; about the point x = —1.

Again P, (2, and R are polynomials, and P has zeros at x = :£i. The distance in the complex
plane from 0 to +i is 1, and from —} to i is \/1+ 4 = +/S/2. Hence in the first case the

=] o0
series ) a,x" converges at least for |x| < 1, and in the second case the series 3 b, (x + 1)”
n=0 =0

converges at least for |x + }| < V572,

An interesting observation that we can make about Eq. (9) follows from Theorems 3.2.1
and 5.3.1, Suppose that initial conditions y(0) = yo and y'(0) = ¥} are given. Since 1 +x* #0 -
for all x, we know from Theorem 3.2.1 that there exists a unique solution of the initial value
problem on —~oo < x < 0o. On the other hand, Theorem 5.3.1 only guarantees a series solution

00
of the form ) a,x" (with ag = yg, a1 = y}) for -1 < x < 1. The unique solution on the interval

n=0
—00 < X < oo may not have a power series about x = 0 that converges for all x.

Can we determine a series solution about x = 0 for the differential equation
Y+ sinx)y’ + (1 +xN)y =0,

and if so, what is the radius of convergence?

For this differential equation, p(x) = sinx and g(x) = 1 +x2. Recall from calculus that
sinx has a Taylor series expansion about x = 0 that converges for all x. Further, ¢ also has
a Taylor series expansion about x =0, namely g(x) = 1 4 x?, that converges for all x. Thus
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oo
there is a series solution of the form y = ) @,x" with @ and a; arbitrary, and the series
n=0

converges for all x.

" PROBLEMS

In each of Problems 1 through 4 determine ¢”(xo), ¢ (xo), and ¢'¥ (xo) for the given point x;
if y = ¢(x) is a solution of the given initial value problem.

Ly +xy+y=0  y0=1 y@0=0

2. y'+ Ginx)y + (cosx)y=0, y(0) =0, y0=1

3.2 + (L +0y +3(n0y=0; y1)=2, y)=0

4.y +x%y +(sinx)y=0; p(0) =a, Y(0)=a
In each of Problems 5 through 8 determine a lower bound for the radius of convergence of
series solutions about each given point x; for the given differential equation.

5. )’"-{-4}"4—61)?:0; x=0 x=4

@(x’—?.x—ii)y"+xy+4y=0; xo=4, xo=-4, x=0

7. 1+ +4xy +y=0, x=0, x=2

B xy"+y=0 xg=1

9. Determine a lower bound for the radius of convergence of series solutions about the given
xp for each of the differential equations in Problems 1 through 14 of Section 5.2.

10. The Chebyshev Equation. The Chebyshev’ differential equation is
-2y —xy +a’y =0,

where & is a constant.

(a) Determine two linearly independent solutions in powers of x for |x] < 1.

(b) Show that if & is a nonnegative integer n, then there is a polynomial solutior of
degree n. These polynomials, when properly normalized, are called the Chebyshev
polynomials. They are very useful in problems that require a polynomial approximation
to a function definedon —1 < x < 1,

{(c) Find a polynomial solution for each of the cases e =n=10,1,2,3.

For each of the differential equations in Problems 11 through 14 find the first four nonzero

terms in each of two linearly independent power series solutions about the origin. What do

you expect the radius.of convergence to be f?,g ch solution?

11, y’ + (sinx)y =0 V12 )y +xy=0

13. (cosx)y” +xy —2y =0 4. ey +In(l +x)y —xy =0

15. Suppose that you are told that x and x* are solutions of a differential equation
Px)y’ + Q)Y + R{x)y = 0. Can you say whether the point x = 0 is an ordinary point
or a singular point?
Hint: Use Theorem 3.2.1, and note the values of x and x? atx = 0.

TPafnuty L. Chebyshev (1821-1894), professor at Petersburg University for 35 years and the most influen-
tial nineteenth-century Russian mathematician, founded the so-called Petersburg school, which produced
a long line of distinguished mathematicians. His study of Chebyshev polynomials began about 1854 as
part of an investigation of the approximation of functions by polynomials. Chebyshev is also known for
his work in number theory and probability.
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&

First Order Equations. The series methods discussed in this section are directly applicable

to the first order linear differential equation P(x)y’ + Q(x)y = 0 at a point xg, if the function

p = Q/P has a Taylor series expansion about that point. Such a point is called an ordinary
o0

point, and further, the radius of convergence of the series y = ¥ a,(x -~ x¢)"® is at least as

=0
large as the radius of convergence of the series for Q/P. In each of Problems 16 through 21
solve the given differential equation by a series in powers of x and verify that ay is arbitrary
in each case. Problems 20 and 21 involve nonhomogeneous differential equations to which
series methods can be easily extended. Where possible, compare the series solution with the
solution obtained by using the methods of Chapter 2.

16. y —y=0 17. ¥ —xy=0
18. ¥ = e’ly. three terms only 19. (1—x)y =y
200y —y=x? 21 y4+xy=1+x

The Legendre Equation. Problems 22 through 29 deal with the Legendre® equation
(1 —xb)y’ — 2xy’ + afee + 1)y = 0.

Asindicated in Example 3,the pointx = 0is an ordinary point of this equation, and the distance

from the origin to the nearest zero of P(x) = 1 — x? is 1. Hence the radius of convergence of

series solutions about x = 0 is at least 1. Also notice that we need to consider only @ > —1

because if @ < —1, then the substitution @ = —(1 + y), where y = 0, leads to the Legendre

equation (1 —x%)y’ — 2xy' + y(y + D)y = 0.

22. Show that two linearly independent solutions of the Legendre equation for |x| <1
are

_ a(a2-|f- 1)ch + ala — 2)(&4—:— (e + 3).1:‘

nx) =1

it (o= 2m+2)a +1)--- (& +2m —1)
+ Z(_l) (2r)! x,

mel

(o — I;Erx +2)13 + (o — 1){a — 3;(;1 + 2)(x +4)x§

) =x—

2y @D @=2m A D@ +2) (@4 2m)
+§( b 2m + 1)! S

23. Show that, if « is zero or a positive even integer 2n, the series solution y, reduces to a
polynomial of degree 2n containing only even powers of x. Find the polynomials corre-
sponding to a = 0, 2, and 4. Show that, if o is a positive odd integer 2n + 1, the series
solution y, reduces to a polynomial of degree 2n + 1 containing only odd powers of x.
Find the polynomials corresponding toa = 1,3, and 5.

24, The Legendre polynomial P,(x) is defined as the polynomial solution of the Legendre
equation with & = n that also satisfies the condition P,(1) = 1.
(a) Using the results of Problem 23, find the Legendre polynomials Po(x), ..., Ps(x).
(b) Plot the graphs of Py(x),...,Ps(x) for—1 < x < 1.
(¢) Find the zeros of Py(x), ..., Ps(x).

#Adrien-Marie Legendre (1752-1833) held various positions in the French Académie des Sciences from
1783 anward. His primary wark was in the fields of elliptic functions and number theory. The Legendre
functions,solutionsof Legendre’s equation, first dppeared in 1784 in hisstudy of the attraction of spheroids.
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25. It can be shown that the general formula for P,(x) is

(2] k
B (=D@n-2k) o
FPolx) = —Z;kzz.;k!(nqk)g("-zk)! '

where [n/2} denotes the greatest integer less than or equal to n/2. By observing the form
of Pn(x) for n even and n odd, show that P,(—1) = (—1)".

26. The Legendre polynomials play animportant role in mathematical physics. For example, in
solving Laplace’s equation (the potential equation) in spherical coordinates, we encounter
the equation

aF(p) dF(p)

g +COI‘P7“0—+"(H+1)F(¢)=0. O<p<n,

where n is a positive integer. Show that the change of variable x = cos p leads to the
Legendre equation with @ = n for y = f(x) = F(arccos x).
27. Show that for n = 0, 1, 2, 3, the corresponding Legendre polynomial is given by

- 2 _1y®
T 2mpl dxe o - 1)

Pa(x)

This formula, known as Rodrigues’ formula,? is true for all positive integers .
28. Show that the Legendre equation can also be written as

(1 —xyY = —ale + Dy.
Then it follows that
(1 =xHPi(x)) = —nn + DP,(x) and [(1 —xA)P, (0] = —m(m + 1) Py, (x).

By multiplying the first equation by Pn(x) and the second equation by P, (x}, integrating
by parts, and then subtracting one equation from the other, show that

1
[ Po(x)Ppr(x)dx =10 if n#m.
-1

This property of the Legendre polynomials is known as the orthogonality property. If
m = n, it can be shown that the value of the preceding integral is 2/(2n + 1),

29. Given a polynomial f of degree n, it is possible to express f as a linear combination of
PU-PhPZ’---:Pn:

) =) aPelx).
=0

Using the result of Problem 28, show that

2k 4+1 1
a = ——; [ F)Py(x) dx.
-1

QOlinde Rodrigues (1794-1851) published this result as part of his doctoral thesis from the Ecole Normale
in Paris in 1816. He later became a banker and social reformer.
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5.4 Regular Singular Points

EXAMPLE

In this section we will consider the equation
Py” + Qoy + Rixy =0 )]

in the neighborhood of a singular point xy. Recall that if the functions P, O, and
R are polynomials having no common factors, the singular points of Eq. (1) are the
points for which P{x) = 0.

Determine the singular points and ordinary points of the Bessel equation of order v
2y +xy + (2 =)y =0. 2)

The point x = 0is asingular point since P(x) = x? is zero there. All other points are ordinary
points of Eq. {2).

Determine the singular points and ordinary points of the Legendre equation
(1 —x)y' — 2xy +ale + 1)y =0, 3

where « is a constant.
The singular points are the zeros of P(x) = 1 — x2, namely, the points x = 1. All other
points are ordinary points.

Unfortunately, if we attempt to use the methods of the preceding two sections to
solve Eq. (1) in the neighborhood of a singular point xq, we find that these methods
fail. This is because the solution of Eq. (1) is often not analytic at xg and consequently
cannot be represented by a Taylor series in powers of x — x;. Instead, we must use a
more general series expansion.

Since the singular points of a differential equation are usually few in number, we
might ask whether we can simply ignore them, especially since we already know how
to construct solutions about ordinary points. However, this is not feasible because
the singular points determine the principal features of the solution to a much larger
extent than one might at first suspect. In the neighborhood of a singular point the so-
Jution often becomes large in magnitude or experiences rapid changes in magnitude.
Thus the behavior of a physical system modeled by a differential equation frequently
is most interesting in the neighborhood of a singular point. Often geometric singu-
larities in a physical problem, such as corners or sharp edges, lead to singular points
in the corresponding differential equation. Thus, although at first we might want to
avoid the few points where a differential equation is singular, it is precisely at these
points that it is necessary to study the solution most carefully.

As an alternative to analytical methods, one can consider the use of numerical
methods, which are discussed in Chapter 8 However, these methods are ill suited
for the study of solutions near a singular point. Thus, even if one adopts a numerical
approach, it is advantageous to combine it with the analytical methods of this chapter
in order to examine the behavior of solutions near singular points.
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EXAMPLE

[ RN A M e O R AR

EXAMPLE

4

EXAMPLE

5

Without any additional information about the behavior of O/P and R/P in the
neighborhood of the singular point, it is impossible to describe the behavior of the
solutions of Eq. (1) near x = xq. It may be that there are two linearly independent
solutions of Eq. (1) that remain bounded as x — xq; or there may be only one, with
the other becoming unbounded as x — xgp; or they may both become unbounded
as x > xg. Examples 3, 4, and 5 below illustrate these possibilities. If Eq. (1) has
solutions that become unbounded as x — ¥y, it is often important to determine how
these solutions behave as x — xg. For example, does y — oo in the same manner as
(x — x0)~ or |x — x9] /2, or in some other manner?

The differential equation

2y —2y=0 @

has a singular point at x = 0. It can be easily verified by direct substitution that y; (x) == x?
and y,(x) = 1/x are linearly independent solutions of Eq. (4) forx > 0 or x < 0. Thus, in any
interval not containing the origin, the general solution of Eq. (4) is y = ¢;x2 + c2x~'. The only
solution of Eq. (4) that is bounded as x — 0 is y = c;x?. Indeed, this solution is analytic at
the origin even though if Eq. {(4) is put in the standard form, y” — (2/x?)y = 0, the function
g(x) = ~2/x% is not analytic at x = 0 and Theorem 5.3.1 is not applicable. On the other hand,
notice that the solution y,(x) = x™! does not have a Taylor series expansion about the origin
(is not analytic at x = 0); therefore, the method of Section 5.2 would fail in this case.

The differential equation
2y — 2y +2y=0 (5)

also has a singular point at x = 0. It can be verified that y, {(x) = x and y;(x) = x* are linearly
independent solutions of Eq. (5), and both are analytic at x = 0. Nevertheless, it is still not
proper to pose an inifial value problem with initial conditions at x = 0. It is impossible to
satisfy arbitrary initial conditions at x = 0, since any linear combination of x and x? is zero at
x=0.

The differential equation
2y +5xy +3y=0 (6

also has a singular point at x = 0. You can verify that y; (x) = 1/x and y,(x) =: 1/ are linearly
independent solutions of Eq. (6) and that neither is analyticat x = 0. Indeed, every (nonzero)
solution of Eq. (6) becomes unbounded as x — 0.

QOur goal is to extend the method already developed for solving Eq. (1) near an
ordinary point so that it also applies to the neighborhood of a singular point xq. To
do this in a reasonably simple manner, it is necessary to restrict ourselves to casesin
which the singularities in the functions /P and R/P at x = x¢ are not too severe—
that is, to what we might call “weak singularities.” At this stage it is not clear exactly
what is an acceptable singularity. However, as we develop the method of solution,
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EXAMPLE

you will see that the appropriate conditions (see also Section 5.7, Problem 21) to
distinguish “weak singularities” are

hm (x xo) % is finite {7
and
XILH;ID(A —xq) %J% is finite. (8)

This means that the singularity in Q/P can be no worse than (x —xp)~! and the
singularity in R/P can be no worse than (x — xo)~2. Such a point is catled a regular
singular point of Eq. {1). For more general functions than polynomials, x; is a regular
singular point of Eq. {1) if it is a singular point and if both!'®

(x) 2 R(x)
PO and (x —2xg)* —— PR
have convergent Taylor series about xo—that is, if the functions in Eq. {9) are analytic
at x = x9. Equations (7) and (8) imply that this will be the case when P, O, and R
are polynomials. Any singular point of Eq. (1) that is not a regular singular point is
called an irregular singular point of Eq. (1).

In the following sections we discuss how to solve Eq. (1) in the neighborhood of a
regular singular point. A discussion of the solutions of differential equations in the
neighborhood of irregular singular points is more complicated and may be found in
more advanced books.

(x — xp)

®

In Example 2 we observed that the singular points of the Legendre equation
(1=xBy — 2y +ale+1y=0

are x = 1, Determine whether these singular points are regular or irregular singular points.
We consider the point x = 1 first and also observe that when we divide by 1 — %, the coef-
ficients of ¥ and y are —2x/(1 — x?) and a(a + 1)/(1 — x%), respectively. Thus we calculate

@G- . X

—ox
. ~ i — =1
AT =R e A T
and
, 2a(c¢'+1) . wm
=D =M o
pn GoDERED
x—1 1+x

Since these limits are finite, the point x = 1 is a regular singular point. It can be shown in a
similar manner that x = —1 is also a regular singular point.

10The functions given in Bg. (9) may not be defined at xg, in which case their values at xg are to be assigned
as their Hmits as x — xg.
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Determine the singular points of the differential equation

EXAMPLE
2x(x — 2% +3xy + (x —2)y =0

and classify them as regular or irregular.
Dividing the differential equation by 2x(x — 2)?, we have

3 1

Y45 Y ma oy

sop(x) = O(x)/P(x) = 3/2(x — 2)* and g(x) = R(x)/P(x) = 1/2x(x -- 2). The singular points
are x = 0 and x = 2, Consider x = 0. We have )

y =0,

LS H AR O AR M e TR A T L o U G A

. 3
il_l"l’tl)xp(x) ]unx‘Z(T—-—Z‘)—z- =0,
- 1
llmx glx) = ?_x(x 2 ={.

Since these limits are finite, x = 0 is a regular singular point. For x = 2 we have

' . 3 ,
limx - 2p) = limx —2) 53— = Im o5

so the limit does not exist; hence x = 2 is an irregular singular point.

Determine the singular points of
EXAMPLE

! 8 (v - —) ¥+ (cosx)}y + (sinx)y =0
;ﬁg and classify them as regular or irregular.
g’ The only singular point is x = x /2. To study it we consider the functions
5 Q(x) cosx
; ( "_) )= ( )P(x)_x—n/2
,:éf and
g _x _w\R@)
g ( ) q(x) = ( ) Poy o
H Starting from the Taylor series for cos x about x = »/2, we find that
g cos x :__1+(x~n/2)2ﬁ(x—rr/Z)‘+_”,
I x-—-nf2 3 51
B which converges for all x. Similarly, sin x is analytic at x = /2. Therefore, we conclude that
5 /2 is a regular singular point for this equation.

PROBLEMS In each of Problems 1 through 18 find all singular points of the given equation and determine
s=—gm—me—awem whether each one is regular or irregular.

Lxy"+(L—x)y+xy=0 2 M1 —x)?y" +2xy +4y =0

320 -0y +(x—2)y ~3xy=0 4. 21—y + /0y +4y =10
50—y +x(1-x)y +Q+xy=0
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6. x%y" +xy + (2 - vy =0, Bessel equation

7. x4+ 2y +(1—xB)y=0

Bl ~xBy' + (1 -2y + 2(1 +x)y =0

9 (x +2)Mx — 1)y +3(x— 1)y —2(x +2)y =0
10 x3—x)y" +x + 1)y =2y =0

I P 4x—2)y"+(x+1)y +2y=0 12, xy" + ey + (3cosx)y = 0

13.y" +(n[xD)y +3xy=0 14. x?y" 4 2(" — 1)y' + (e cosx)y =0
15. x%y" = 3Ginx)y + (L +xB)y =0 16. xy’ +y' + (cotx)y =0

17. (sinx)y” +xy' +4y =0 18. (xsinx)y"+3y +xy=10

In each of Problems 19 and 20 show that the point x = 0 is a regular singular point. In

o0

each problem try to find solutions of the form }_ a,x". Show that there is only one nonzero
A=l

solution of this form in Problem 19 and that there are no nonzero solutions of this form in

Problem 20. Thus in neither case can the general solution be found in this manner. This is
typical of equations with singular points,

19. 20" + 3y +xy =10
20. 2%y +3xy' — (1 +x)y =0

21. Singularities at Infinity, The definitions of an ordinary point and a regular singular point
given in the preceding sections apply only if the point x; is finite. In more advanced work
in differential equations it is often necessary to consider the point at infinity. This is done
by making the change of variable £ = 1/x and studying the resulting equation at £ = 0.
Show that, for the differential equation P{x)y” + Q(x)y’ + R(x)y = 0, the point at infinity
is an ordinary point if

1 [2P(1/E)_Q(1/E)] g RO/
PA/E L ¢ Z EP(/E)

have Taylor series expansions about £ = 0. Show also that the point at infinity is a regular
singular point if at least one of the above functions does not have a Taylor series expansion,

but both
¢ [21’(1/6) _ Q(I/E)] and R(1/¢)
P(1/6) ¢ £? EP(1/8)

do have such expansions.

In each of Problems 22 through 27 use the results of Problem 21 to determine whether the
point at infinity is an ordinary point, a regular singuiar point, or an irregular singular point of
the given differential equation.

2.y +y=0

23, 3y +xy —dy=0

24. (1 —xDy" — 2xy + (e + 1)y =0, Legendre equation
25. xty" +xy 4+ (x2 - vy =0, Bessel equation

26. y'—2xy’ +2y =0,  Hermite equation

27y —xy =0, Air.y equation
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§.5 Eule;;_E_quations

A relatively simple differential equation that has a regular singular point is the Euler
equation !!

Lyl =2 +axy' + By = 0, (1)
where « and f are real constants. It is easy to show that x = 0 is a regular singular
point of Eq. (1). Because the solution of the Euler equation is typical of the solutions
of all differential equations with a regular singular point, it is worthwhile considering
this equation in detail before discussing the more general problem.

In any interval not including the origin, Eq. (1) has a general solution of the form

y = ciy1(x) + c2y2(x), where y; and y; are linearly independent. For convenience

we first consider the interval x > 0, extending our resuits later to the interval x < 0.

First, we note that (") = rx"~! and (x")" = r(r — 1)x"~2, Hence, if we assume that
Eq. (1) has a solution of the form

y=x, (2)

then we obtain

LX) = x* (XY + ax(X’) + px"
=x"[r(r— 1) +ar + B]. 3

If r is a root of the quadratic equation
Firy=rr—-D+ar+8=0, 4)

then L[x'] is zero,and y = x" is a solution of Eq. (1). The roots of Eq. (4) are

(-1 +/l@—1)2—48 5
2 ]

n,n=

and F(r) = (r — r1)(r — r2). As for second order linear equations with constant coef-
ficients, it is necessary to consider separately the cases in which the roots are real and
different, real but equal, and complex conjugates. Indeed, the entire discussion in
this section is similar to the treatment of second order linear equations with constant
coefficients in Chapter 3, with ™ replaced by x; see also Problem 23.

Real, Distinct Roots. If F(r) = 0 has real roots r; and ry, with r1 # rp, then y(x} = x"
and y,(x) = x? are solutions of Eq. (1). Since W(x",x") = (r; — ry)x"*"*"! js non-
vanishing for r; # r; and x > 0, it follows that the general solution of Eq. (1) is

y =c1x" + cax?, x>0, ) (6)

Note that if 7 is not a rational number, then x’ is defined by x” = ¢’'8*,

11This equation is sometimes called the Cauchy-Euler equation or the equidimensional equation. Tt was
studied by Euler about 1740, but its solution was known to Johann Bernoulli before 1700,
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2

Solve
2% +3xy' —y=0, x>0 (7)
Substituting y = x” in Eq. (7) gives
X2rr - 4+3r - =x2r+r-D=x2r-Dr+1)=0.
Hence r, = % and r, = -1, 50 the peneral solution of Eq. (7) is

y=c x4 ox, x>0 {8)

Equal Roots. If the roots r; and r; are equal, then we obtain only one solution
»1(x) = x" of the assumed form. A second solution ¢an be obtained by the method
of reduction of order, but for the purpese of our future discussion we consider an
alternative method. Since ry = r», it follows that F(r) = (r — r1)%. Thus in this case
not only does F(ry) = Obut also F'(r;) = 0. This suggests differentiating Eq. (3) with
respect to r and then setting r equal to r;. Differentiating Eq. (3) with respect to r
gives

a a
—LiX} = —[x"F(r).
ar or
Substituting for F(r), interchanging differentiation with respect to x and with respect
to r, and noting that 8(x"}/dr = x" Inx, we obtain
Li¥Inx]=(r—r)?x Inx+2(r —n)x'. (9)
The right side of Eq. (9) is zero for r = r;; consequently,
y2(x) = x"t Inx, x>0 (10)

is a second solution of Eq. (1). It is casy to show that W(x",x" Inx) = x*1~!, Hence
x™ and x™ In x are linearly independent for x > 0, and the general solution of Eq. (1)
is

y= (e, +c;Inx)x", x>0 (11)

Solve
2y 450y +4y =0, x>0, (12)

Substituting y = x" in Bq. (12) gives
XIrr—=D+5r+4)=xX+4r+4 =0

Hencery =, = —2,and
y=x2( +¢lnx), x>0 (13)

Complex Roots. Finally, suppose that the roots r; and r; are complex conjugates, say,
rn=>X+iuand r, =X < ig, with g # 0. We must now explain what is meant by x"
when 7 is complex. Remembering that

x = erlnx (14)
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when x > 0 and r is real, we can use this equation to define x" when r is complex.
Then

f'l-fﬂ = e(k+i.u)lnx — eunxel,u 1nx,= xleln Inx
= Meos(ulnx) +isin(uInx)), x> 0. (15)

With this definition of x* for complex values of 7, it can be verified that the usual
laws of algebra and the differential calculus hold, and hence x and x are indeed
solutions of Eq. (1). The general solution of Eq. (1) is

y = et 4 o, (16)

The disadvantage of this expression is that the functions x**** and x~* are complex-
valued. Recall that we had a similar situation for the second order differential equa-
tion with constant coefficients when the roots of the characteristic equation were
complex. In the same way as we did then, we observe that the real and imaginary
parts of x**# namely

x*cos(xlnx) and x*sin(ulnx), an
are also solutions of Eq. (1). A straightforward calculation shows that
Wix* cos(pInx), x* sin(u Inx)] = pux®*t.

Hence these solutions are also linearly independent for x > 0, and the general solu-
tion of Eq. (1) is

y = ¢1X* cos(p2 Inx) + cz2x* sin{u In x), x>0 (18)

Solve
2y 4 xy +y=0. (19

Substituting y = x"in Eq. (19) gives
XD +rell=x(* +1=0.
Hence r = 4i, and the general solution is

y = ¢ cos(ln x) + ¢ sin(ln x), x> 0. (20)

Now let us consider the qualitative behavior of the solutions of Eq. (1) near the
singular point x = 0. This depends entirely on the nature of the exponents r; and r,.
First, if r is real and positive, then x” — 0 as x tends to zero through positive values.
On the other hand, if 7 is real and negative, then x* becomes unbounded. Finally, if
r =0, then x" = 1. Figure 5.5.1 shows these possibilities for various values of 7. If  is
complex, then a typical solution is x* cos( In x). This function becomes unbounded
or approaches zero if A is negative or positive, respectively, and also oscillates more
and more rapidly as x — 0. This behavior is shown in Figures 5.5.2 and 5.5.3 for
selected values of A and p. If A = 0, the oscillation is of constant amplitude. Finally,
if there are repeated roots, then one solution is of the form x"Inx, which tends to
zero if r > 0 and becomes unbounded if » < 0. An example of each case is shown in
Figure 5.54.
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05 1 15 2 =x
FIGURE 5.5.1 Solutions of an Euler equation; real roots.

L y=aMeosBIiEy .

FIGURES5.3 SohtionofanEulerequa-  FIGURES.S5.4 Solutions ofan Euler equa-
tion; complex roots with positive real part. tion; repeated roots.

The extension of the solutions of Eq. (1) into the interval x < 0 can be carried out
in a relatively straightforward manner. The difficulty lies in understanding what is
meant by x” when x is negative and r is not an integer; similarly, In x has not been
defined for x < 0. The solutions of the Euler equation that we have given for x > 0
can be shown to be valid for x < 0, but in general they are complex-valued. Thus jn
Example 1 the solution x*/? is imaginary for x < 0.
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Theorem 5.5.1

It is always possible to obtain real-valued solutions of the Euler equation (1) in
the interval x < 0 by making the following change of variable. Let x = —&, where
£ > 0,and let y = u(¢). Then we have

dy dudf  du dy d ( du\df du 21
& (@) e w )

de  dE dx  dt’  dx
Thus Eq. (1), for x < 0, takes the form

2
52:—; +a§:—:+ﬁu=0, & >0. (22)

But this is exactly the problem that we have just solved; from Eqgs. (6), (11), and (18)
we have
1" + k"
u(€) = { (@ +eInf)n (23)
c1&* cos(uIng) + 6 sin(uin ),

depending on whether the zeros of F(r) = r(r — 1) + ar + § are real and different,
real and equal, or complex conjugates. To obtain u in terms of x, we replace § by —x
in Egs. (23).

We can combine the results for x > 0 and x < 0 by recalling that |x] = x when
x > 0 and that |x] = --x when x < 0. Thus we need only replace x by |x| in Egs. (6),
(11), and (18) to obtain real-valued solutions valid in any interval not containing the
origin (also see Problems 30 and 31). These results are summarized in the following
theorem.

The general solution of the Euler equation (1),
2y +axy' + By =0,

in any interval not containing the origin is determined by the roots r; and r; of the
equation
Fry=rir—1D+ar+8=0.

If the roots are real and different, then
y = calx|" + colx|™. (24)
If the roots are real and equal, ther'l
y= (e +elnix)lx™. (25)
If the roots are complex conjugates, then
y = |x]* [e; cos(u In{x|) + ¢z sinfu In [x])], {(26)

where r,rz = A L iu.
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The solutions of an Euler equation of the form
(x = x0)%y" + a(x — x0)y' + By =0 , 27

are similar to those given in Theorem 5.5.1. If one looks for solutions of the form
¥y = (x — xp)", then the general solution is given by Eq. (24}, Eq. (25), or Eq. (26) with
x replaced by x — xg. Alternatively, we can reduce Eq. (27) to the form of Eq. (1) by
making the change of independent varjable t = x — xg.

The situation for a general second order differential equation with a regular sin-
gular point is analogous to that for an Euler equation. We consider that problem in
the next section.

PROBLEMS In each of Problems 1 through 12 determine the general solution of the given differential

equation that is valid in any interval not including the singular point.

L x*y" +dxy +2y=0 2, (x4 12" 30x + )y'+ 0.75y = 0
3. xty —3xy 4+4y=0 4. xty" +3xy + 5y =0
5. 0% —xy +y=0 6. (x-1%y" +8x—1)y +12y=0
7. x%y' +6xy —y=0 8. 2%y’ —4xy + 6y =0
9. x2y" —5xy' 4+ 9y =0 10, (x =25+ 56 —2)y + 8y =0
11 xy" +2xy +4y =0 12, x3y" — 4xy +4y =0

In each of Problems 13 through 16 find the solution of the given initial value problem. Plot
the graph of the solution and describe how the solution behavesasx —+ 0.

& 13 Yy 4xy ~3y=0, yly=1, y(1)=4
S 14 &Y 48y +1Ty =0, y1)y=2, y@)=-3
& 15 Xty ~ 3y +4y =0, y-1=2 y(1=3
& 16, X2y +3xy +5y =0, =1 yQ)=-1
17. Find all values of & for which all solutions of x2y" + exy’ -+ (5/2)y = 0 approach zero as
x = 0.
18. Find all values of 8 for which all solutions of x%y" + By = 0 approach zero as x — 0.
19. Find y so that the solution of the initial value problem x?y” ~ 2y = 0,y(1} = L,y (1) =y
is bounded as x —+ 0.
20. Find all values of & for which ail solutions of x2y" + axy' + (5/2)y = 0 approach zero as
x -+ 00,
21. Consider the Euler equation x2y” + axy + By = 0. Find conditions on & and 8 so that:
(a} Allsolutions approach zero asx — 0.
(b) All solutions are bounded asx — 0.
(c) Allsolutions approach zero as x - oo.
(d) Al solutions are bounded as x — oo,
(e) All solutions are bounded both as x -+ 0 and asx — co.
22. Using the method of reduction of order, show that if ry is a repeated root of r(r — 1) +
ar + § = {, then x" and x In x are solutions of x*y" + axy’ + By = 0forx > 0.

23. Transformation to a Constant Coefficient Equation. The Euler equation x2y” + axy’ -+
By = 0 can be reduced to an equation with constant coefficients by a change of the inde-
pendent variable. Let x = e? or z = Inx, and consider only the interval x > 0.
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(2) Show that
dy 1ldy ﬁﬂldzy 1 dy

ax T xdz M @ T Edr Pdr
(b) Show that the Euler equation becomes

d*y

dy
d—z2+(ﬂf"1)2—z‘+.3)'—0-

J.etting r; and r, denote the roots of r* + (@ — 1)r + B = 0, show that:
(c) Ifr; and r, are real and different, then
_ ¥y = 1€+ e = X7 + Cx.
(d) If r; and ry are real and equal, then
y=(c1 + cz)et = (c1 + ¢ Inx)x.
(e) If r; and ry are complex conjugates, r; = A -+ iy, then

y = €[, cos(uz) + ¢ sin(uz)] = x*[c; cos(Inx) + ca sinfu In x)).

In each of Problems 24 through 29 use the method of Problem 23 to solve the given equation

forx > 0.

24 x%y" -2y =0 25. 2y’ — 3xy +4y =Inx

2. 2y +Txy + Sy =x 27. Ry —2xy +2y =322 +2Inx
28. X2y" +xy + 4y = sin(lnx) 29, 3%y 4+ 12xy 4 9y =0

30. Show that if L[y] = x2y" + axy’ + By, then
LI{-x)]=(-x)'F(n)

forall x < 0, where F(r) = r(r — 1) + ar + 8. Hence conclude that if r; # r» are roots of
F(r) = 0, then linearly independent solutions of L[y] = 0 for x < 0 are (—x)"t and (—x)".

31. Suppose that x .and x"2 are solutions of an Euler equation for x > 0, where r # rs, and
ry is an integer. According to Eq. (24), the general solution in any interval not containing
the origin is y = ¢; x| + ¢2|x|"?. Show that the general solution can also be written as
y=kx" + ky|x|?.

Hint: Show by a proper choice of constants that the expressions are identical for x > 0,
and by a different choice of constants that they are identical for x < 0.

9.6 Series Solutions Near a Regular Singular Point, Part I

We now consider the question of solving the general second order linear equation
P()y" + Q)Y + R(x)y =0 1)

in the neighborhood of a regular singular point x = x¢. For convenience we assume
that xg = 0. If xp # 0, we can transform the equation into one for which the regular
singular point is at the origin by letting x — xg equal «.

The fact that x = 0 is a regular singular point of Eq. (1) means that xQ(x)/P(x) =
xp(x) and x?R(x)/P(x) = x?q(x) have finite limits as x — 0 and are analytic at
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x = 0. Thus they have convergent power series expansions of the form
(=] o)
@ =3 pux, g =Y g, )
=0 n=0
on some interval [x| < p about the origin, where p > 0. To make the quantities xp(x)
and x?q(x) appear in Eq. (1), it is convenient to divide Eq. (1) by P(x) and then to
muitiply by x?, obtaining
x'y" + xDp(0ly’ + [P0y =0, (3)

or

xzy”+x(P0+Plx+"'+ann+"')yl
+(qo+@x b+ gax" +- )y =0, “)

If all of the coefficients p, and g, are zero, except possibly

. 20 . xX*R(x)
= = v 5
po=lim-pr- and qo=lm-po= )
then Eq. (4) reduces to the Euler equation
2y" + poxy’ + qoy = 0, (6)

which was discussed in the preceding section. In general, of course, some of the
Dn and g, n > 1, are not zero. However, the essential character of solutions of
Eq. (4) is identical to that of solutions of the Euler equation (6). The presence of
the terms pyx + -+ +ppx" + - -+ and ¢1x + - - - + g,x" + - - - merely complicates the
calculations,

‘We restrict our discussion primarily to the interval x > 0. The interval x < 0 can
be treated, just as for the Euler equation, by making the change of variable x = —¢
and then solving the resulting equation for £ > 0.

Since the coefficients in Eq. (4) are "Euler coefficients” times power series, it is
natural to seek solutions in the form of “Euler solutions” times power series. Thus
we assume that

o o0
y=x@+ax+ - +ax"+.-) :xrzﬂnxn = Zanxr+n- 7

ns=0 n=0
where ag # 0. In other words, r is the exponent of the first term in the series, and a

is its coefficient. As part of the solution we have to determine:

1. The values of r for which Eq. (1) has a solution of the form (7).
2. The recurrence relation for the coefficients a,,.

[
3, The radius of convergence of the series . a,x”.
=0
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The general theory was constructed by Frobenius'? and is fairly complicated.
Rather than trying to present this theory, we simply assume in this and the next
two sections that there does exist a solution of the stated form. In particular, we
assume that any power series in an expression for a solution has a nonzero radius of
convergence and concentrate on showing how to determine the coefficients in such
a series. To illustrate the method of Frobenius we first consider an example,

Solve the differential equation
2%y —xy' + (1 +x)y =0. (8)

It is easy to show that x == 0 is a regular singular point of Eq. (8). Further, xp(x) = -1/2
and x3g(x) = (1 + x)/2. Thus pg = —1/2, 40 = 1/2,¢q: = 1/2, and all other p's and ¢’s are zero.
Then, from Eq. (6), the Euler equation correspending to Eq. (8) is

26 —xy 4y =0, ©)

To solve Eq. (8) we assume that there is a solution of the form (7). Then y’ and y” are
given by

Y= an(r +mxtnt ' (10)
ne={)
and
Y'= ) anlr +m)(r +n—Dx+2, 11)
n=0

By substituting the expressions for y, ¥, and y” in Eq. (8), we obtain

2%y —xy'+ (L+x)y = Y 2a,(r + ) + 1 — '+
n=0

[+ ] o 29
= Y+t Y e+ Y et (12)
n=0 n=0 n=0

0Q
The last term in Eg. (12) can be written as ) a,_1x"*", so by combining the terms in Eq. (12),

n=xl

we obtain

2y —xy + (1 +x)y=aol2r(r — 1) —r + 11x"

+ Y {2 +m) + -1 — ¢ + 1) + e +a,,} X+ =0. (13)

n=]

2Ferdinand Georg Frobenius (1849-1917) was (like Fuchs) a student and eventually a professor at the
University of Berlin. He showed how to construct series solutions about regular singular points in 1874.
His most distinguished work, however, was in algebra, where he was one of the foremost eatly developers
of group theory.
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If Eq. (13) is to be satisfied for all x, the coefficient of each power of x in Eq. (13) must be
zero. From the coefficient of x” we obtain, since ag # 0,

rr—D—r4+1=20-3r+1=(-D2r-1)=0. (14)

Equation (14) is called the indicial equation for Eg. (8). Note that it is exactly the polynomial
equation we would obtain for the Euler equation (9) associated with Eq. (8). The roots of the
indicia) equation are

n =1, rn =1/2. (15)

These values of r are called the exponents at the singularity for the regular singular point
x = 0. They determine the qualitative behavior of the solution (7) in the neighborhood of the
singular point.

Now we return to Eq. (13) and set the coefficient of x'*" equal to zero. This gives the relation

[2(r+n)(r+”— D-+m+1la,+a,1 =0 (16)
or
Qn-1
a, = —
2 +n —3r+n)+1
S a1 n> 1. (17)

[r+ny— 120 +m) - 1) -

For each root ry and r, of the indicial equation, we use the recurrence relation (17} to determine

a set of coefficients ay, a3, ... Forr = r; = 1, Eq, (17) becomes
[}
p = — 1.
4 Ra+1)n nz
Thus
a — _—L‘O__
1 3 1!
4y == a1 _ o
PETEZ T 3UHG Y
and
a 29
O3 5= —p—r | ————————
7-3 @B:5-7(1-2-3)
In general, we have
oy = 1) > 4, (18)

B.5s 7 @utpmre "F

Multiplying the numerator and denominator of the right side of Eq. (18) by
2-4.6---2n = 2"n!, we can rewrite @, as

( 1)1‘21“
- > 1.
ay = 2n+ ! ag, 2

Hence, if we omit the constant multiplier a,, one solution of Eq. (8) is

y,(x) =x [1 + E ((Z—nli ?i)'xn] x>0 (19)
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To determine the radius of convergence of the series in Eq. (19) we use the ratio test:

apx"H 2|x|

= ot entd

lim

H— o0

anx"

for all x. Thus the series converges for all x.
Cormresponding to the secondrootr =r = %, we proceed similarly. From Eq. (17) we have

a. = ap-) _ ap-1 n>1
"7 2m(n-1) a@n-1) ="
Hence
ag
“= T
@ = i . a0
T T3 T a3y
an = ay do
T T35 T Td2-1a-3-5)
and, in general,
-1
an 1) n>4. (20)

S 3.5@n-1]™

Just as in the case of the first root r, we multiply the numerator and denominator by
2-4.6-..2n = 2"n!. Then we have

(Hl)n2n
n = , > 1.
N Tamy o "2
Again omitting the constant multiplier ag, we obtain the second solution
(-]
-—1)"2"
=45
ya(x) =x [ + z_; o x"jl, x> 0. (21)

As before, we can show that the series in Eq. (21) converges for all x. Since the leading terms
in the series solutions y; and y» are x and x!/?, respectively, it follows that the solutions are
linearly independent. Hence the generai solution of Eq. (8) is

y=ah )+ caya(x), x>0,

The preceding example illustrates that if x = 0 is a regular singular point, then
sometimes there are two solutions of the form (7) in the neighborhood of this point.
Similarly, if there is a regular singular point at x = xq, then there may be two solutions
of the form

y=(x—X) Y an(x — xo)" 22)

n=0

that are valid near x = xo. However, just as an Euler equation may not have two
solutions of the form y = x”, s0 a more general equation with a regular singular point
may not have two solutions of the form (7) or (22). In particular, we show in the next
section that if the roots ; and r; of the indicial equation are equal, or differ by an
integer, then the second solution normally has a more complicated structure. In all
cases, though, it is possible to find at least one solution of the form (7) or (22); if
and r; differ by an integer, this solution corresponds to the larger value of r. If there
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PROBLEMS

is only one such solution, then the second solution involves a logarithmic term, just as
for the Euler equation when the roots of the characteristic equation are equal. The
method of reduction of order or some other procedure can be invoked to determine
the second solution in such cases. This is discussed in Sections 5.7 and 5.8.

If the roots of the indicial equation are complex, then they cannot be equal or
differ by an integer, so there are aiways two solutions of the form (7) or (22). Of
course, these solutions are complex-valued functions of x. However, as for the Euler
equation, it is possible to obtainreal-valued solutions by taking the real and inaginary
parts of the complex solutions.

Finally, we mention a practical point. If P, O, and R are polynomials, it is often
much better to work directly with Eq. (1) than with Eq, (3). This avoids the necessity
of expressing x(Q(x)/P(x) and x2R(x)/P(x) as power series. For example, it is more
convenient to consider the equation

x(Q+xy"+2y 4+ xy=0
than to write it in the form
2

2x

2.4

sl =0,
Y +1+xy’+1+xy

which would entail expanding 2x/(1 + x) and x2/(1 + x) in power series.

e e s —K—nlaT: e

Ineachof Problems I through 10show that the given differential equation has a regular singular
point at x = 0. Determine the indicial equation, the recurrence relation, and the roots of the
indicial equation. Find the series solution (x > 0) corresponding to the larger root. If the
roots are unequal and do not differ by an integer, find the series solution corresponding to the
smalier root also.

L2y +y +xy=0 2. Xy +xy' + (- §)y=0
Ly +y=0 4. xy"+y —y=0

5.y 2y +x?y =0 6. xIy" +xy + (x—2)y="0

T xy+(1-xy-y=0 8 2y 43y + (2 -y =0
9. X2y ~x(x+3)y + (x +3)y =0 10. *y" +{x*+ Ly =0

11. The Legendre equation of order o is
(1 ~xy" ~2xy +ala +1)y=0.

The solution of this equation near the ordinary point x = 0 was discussed in Problems 22
and 23 of Section 5.3. In Example 6 of Section 5.4 it was shown that x = +1 are regular
singular points. Determine the indicial equation and its roots for the point x = 1. Find a
series solution in powersof x ~ 1 forx — 1 > Q.

Hint: Write 1 +x =2+ (x — 1) and x = 1 + (x — 1). Alternatively, make the change of
variable x — 1 = r and determine a series solution in powers of ¢.

12. The Chebyshev equation is
(1 ~xy' - xy +a?y =0,

where & i5 a constant; see Problem 10 of Section 5.3.
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{a) Show that x =1 and x = —1 are repular singular points, and find the exponents at
each of these singularities.
(b) Find two linearly independent solutions about x = 1.

13. The Laguerre® differential equation is

14.

15.

16.

'+ —x)y +iy=0

Show that x = 0 is a regular singular point. Determine the indicial equation, its roots, the
recurrence relation, and one solution (x > 0). Show that if A = m, a positive integer, this
solution reduces to a polynomial. When properly normalized, this polynomial is known
as the Laguerre polynomial, L, (x).

The Bessel equation of order zero is

2y +xy + 2y =0.

Show that x = 0 is a regular singular point, that the roots of the indicial equation are
ry = r, =0, and that one solution for x > O is

oo (_l)nxzn
hly=1+ E W
n=l1

Show that the series converges for all x. The function Jg is known as the Bessel function
of the first kind of order zero.

Referring to Problem 14, use the method of reduction of order to show that the second
solution of the Bessel equation of order zero contains a logarithmic term.
Hint: If y2 (x) = Jo(x)v(x), then

dx
y2(xX) HJO(X)f M

Find the first term in the series expansion of 1/x[Jo(x)]%.
The Bessel equation of order one is

2y xy 4 (x2—-1y=0.

{a) Show that x = 0 is a regular singular point, that the roots of the indicial equation are
ri =1 and r, = —1, and that one solution for x > O is

e
hoy = 2E(n+1)rn|22n

Show that the series converpes for all x. The function J; is known as the Bessel function
of the first kind of order one.
(b) Show that it is impossible to determine a second solution of the form

x‘libnx”, x> 0.

[}

B Edmond Nicolas Laguerre (1834-1886), 2 French geometer and analyst, studied the polynomials named
for him about 1879.
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5.7 Series Solutions Near a Regular Singular Point, Part I1

Now let us consider the general problem of determining a solution of the equation

Ly} = %" + xLpmly + [£2g(0)ly = 0, (1
where
xp(x) = anxn: -’-‘zq(x) == Zqﬂ"'}lr (2)
n=0 n=0

and both series converge in an interval [x| < p for some p > 0. The point x = 0is a
regular singular point, and the corresponding Euler equation is

x2y" -+ poxy' + goy = 0. 3)

We seek a solution of Eq. (1) for x > 0 and assume that it has the form

oo [+=
y=¢(@rx)=x E anx” = Z duxr+u, (4)

n=0 n=0

where ag # 0, and we have written y = ¢(r, x) to emphasize that ¢ depends on r as
well as x. It follows that

y = Z (r +n)ax’ "1, y' = Z (r +n)(r +n— Dax"t2, (5)

n=0 n=0
Then, substituting from Egs. (2), (4), and (5) in Eq. (1) gives

ar(r — DX + ay(r+ D™ o gy (r - m)(r -0 — DX -
+ @0 +p1x b pax” )
x [aprx” + ay(r + DX + - @, r +mx™ 4.0
+(go+qix+ - +gux" +--0)
x (@ + a4 Xt ) =0,

Multiplying the infinite series together and then collecting terms, we obtain

B F (DX + [ F(r +1) + ap(prr + qOIx
+ {@F(r +2) + ao(par + q2) +alpr (7 + 1) + q1]} 2
+ -+ {@nF(r + 1) + @ @n? + gn) + A1 [Pn1(r + 1) + gu-1]
+ A aplp - D+ @]}t 4 =0,

or, in a more compact form,

Lig)(r,x) = apF (r)x”

0o n—1
+ > [ F(r+ma+ ) axl(r+ kpns + gkl } ¥ =0, (6)

n=1 k=0
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where
F(ry=r(r — 1) + por + qo. (7

For Eq. (6) to be satisfied identically, the coefficient of each power of x must be zero.

Since ag # 0, the term involving x* yields the equation F(r) = 0. This equation is
called the indicial equation; note that it is exactly the equation we would obtain in
looking for solutions y = x of the Euler equation (3). Let us denote the roots of
the indicial equation by r; and r; with r; > rp if the roots are real. If the roots are
complex, the designation of the roots is immaterial. Only for these values of r can we
expect to find solutions of Eq. (1) of the form (4). The roots r; and r; are called the
exponents at the singularity, they determine the qualitative nature of the solution in
the neighborhood of the singular point.

Setting the coefficient of x’*" in Eq. (6) equal to zero gives the recurrence relation

n—1

Frama,+y el +kpni+ g} =0, n>1 (8)
k=0

Equation (8) shows that, in general, 4. depends on the value of r and all the pre-
ceding coefficients ag,a;,...,a,—y. It also shows that we can successively compute
a1,ay,...,0n, ... 0 terms of ap and the coefficients in the series for xp(x) and x2g(x),
provided that F(r -+ 1), F(r +2),...,F(r +n),... are not zero. The only values of
r for which F(r) = 0 are r = r; and r = r»; since r| > ry, it follows that r; + n is not
equal to r; or r; for n > 1. Consequently, F(r; + n) # 0 for n > 1. Hence we can
always determine one solution of Eq. (1) in the form (4), namely

yi(x) =x" I:l + Ea,.(rl)x"] , x>0, (9

n=1

Here we have introduced the notation a,(ry) to indicate that a, has been determined
from Eq. (8) with r = r;. To specify the arbitrary constant in the solution we have
taken ag to be 1.

If 7 is not equal to 1y, and ry — r; is not a positive integer, then r» + n is not equal
to r; for any value of n > 1; hence F(r, +n) # 0, and we can also obtain a second
solution

ya(v) =x? [1 +E a,,(rz)x":] ) x> 0. (10)

n=1

Just as for the series solutions about ordinary points discussed in Section 5.3, the
series in Eqs. (9) and (10) converge at least in the interval [x| < p where the series for
both xp(x) and x%g(x) convcrgc Within their radii of convergence the power series

1+ E ay(ri)x®and 1+ Z an(r2)x" define functions that are analytic at x = 0. Thus

n=1
the smgular behavior, if there is any, of the solutions y; and y» is due to the factors

x" and x™ that multiply these two analytic functions. Next, to obtain real-valued
solutions for x < 0, we can make the substitution x = —¢ with £ > 0. As we might
expect from our discussion of the Euler equation, it turns out that we need only
replace x" in Eq. (9) and x™ in Eq. (10) by [x}["* and |x|'2, respectively. Finally, note
that if r, and r; are complex numbers, then they are necessarily complex conjugates
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EXAMPLE

and r; # r; + N. Thus, in this case we can always find two series solutions of the form
(4); however, they are complex-valued functions of x. Real-valued solutions can be
obtained by taking the real and imaginary parts of the complex-valued solutions.
The exceptional cases in which r; = r; or ry — r, = N, where N is a positive integer,
require more discussion and will be considered later in this section.

Itis important to realize that r; and r3, the exponents at the singular point, are easy
to find and that they determine the qualitative behavior of the solutions. To calculate
ry and r; it is only necessary to solve the quadratic indicial equation

rr— 1)+ por+qo=0, (11)
whose coefficients are given by
po=limip(x),  qo=lim x*q(x). (12)
x> =

Note that these are exactly the limits that must be evaluated in order to classify the
singularity as a regular singular point; thus they have usually been determined at an
earlier stage of the investigation.

Further, if x = 0 is a regular singular point of the equation

P(x)y" + Q(x)y' + Rx)y =0, (13)

where the functions P, O, and R are polynomials, then xp{x) = xQ(x)/P(x) and
x2g(x) = x?R(x)/P(x). Thus
£9)

po“llme qozlim R( x)

250" P(x)’ 0" P(x) (14

Finally, the radii of convergence for the series in Eqs. (9) and (10) are at least equal
to the distance from the origin to the nearest zero of P other than x = 0 itself.

Discuss the nature of the solutions of the equation
A+ +G+xy —xy=0

near the singular points.

This equation is of the form {13) with P(x) = 2x(1 + x), Q(x) =3 + x, and R(x) = —x. The
points x = 0 and x = —1 are the only singular points. The point x = 0 is a regular singular
point, since

Oy . 3+x 3

fimr—— X -2
e Ay 2

4 R(x) T . _
lim * Py T

Further, from Eq. (14),pg = 2 2 and g = 0. Thus the indicial equationis r¢r — 1) + 3r = 0,and
theroots are ry =0,r; = 2 Since these roots are not equal and do not differ by an integer,
there are two linearly independent solutions of the form

)’1(I)-1+Ean(0)x" and y(x) = Ix| 1”]:14.2“" (-1 :’

=1 n=1
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for 0 < |x{ < p. A lower bound for the radius of convergence of each series is 1, the distance
from x = 0 to x = —1, the other zero of P(x}. Note that the solution y; is bounded as x —> 0,
indeed is analytic there, and that the second solution y; is unbounded as x — 0.

The point x = —1 is also a regular singular point, since

QW _ . &+DB+x
Py =-1 2(1+x)
2R o (x+1)H—x)
P(x) = Jim, (1l +xy

In this case py = —1,4 = 0,50 the indicial equationis7(r — 1) — r = 0. The roots of the indicial
equation are r; = 2and r; = 0. Corresponding to the larger root there is a solution of the form

liml(x +1)

lim (x + 1)
-1

ne=G+17? [1 +Yan(@x + 1)"] :

n=l

The series converges at least for Jx 4+ 1] < 1,and y; is an analytic function there. Since the two
roots differ by a positive integer, there may or may not be a second solution of the form

oo
RE =1+ a0 +1)"
=1
We cannot say more without further analysis.
Observe that no complicated calculations were required to discover the information about
the solutions presented in this example. All that was needed was to evaluate a few limits and
solve two quadratic equations.

We now consider the cases in which the roots of the indicial equation are equal, or
differ by a positive integer,r; — r» = N. As we have shown earlier, there is always one
solution of the form (9) corresponding to the larger root r; of the indicial equation.
By analogy with the Euler equation, we might expect that if r; = r;, then the second
solution contains a logarithmic term. This may also be true if the roots differ by an

integer.

Equal Roots. The method of finding the second solution is essentially the same as the
one we used in finding the second solution of the Euler equation (see Section 5.5)
when the roots of the indicial equation were equal. We consider r to be a continuous
variable and determine a, as a function of r by solving the recurrence relation (8).
For this choice of a,(r) for n > 1, Eq. (6) reduces to

L[1(r,x) = aF ()X = ap(r - n)’x, (15)

since r, is a repeated root of F(r). Setting r=r in Eq. (15), we find that
L[¢](r1,x) = 0; hence, as we already know, y(x) given by Eq. (9) is one solution
of Eq. (1). But more important, it also follows from Eq. (15), just as for the Euler
equation, that

=r

]
L [?] (r1,%) = ap—[¥' (r — n)*]
r al' r

= aol(r — )% Inx +2(r —n)¥')} _ =0. (16)
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Hence, a second solution of Eq. (1) is

= 53; [x’ [ao + ian(r)f'”

n=1

dg(r,x)
ar

y2(x) =

r=n r=n

= (x" ]nx) [ﬂg + E an (rl)x":l +xn E a, (ri)x"

n=1 n=1
= y1(x) Inx + x™ Za:, (r)x*, x>0, (17
n=1

where a,(r;) denotes da,, /dr evaluated at r = .

It may turn out that it is difficult to determine a,(r) as a function of r from the
recurrence relation (8) and then to differentiate the resulting expression with respect
tor. An alternative is simply to assume that y has the ferm of Eq. (17). That is, assume
that

y=yn®hx+x1y b, x>0, (18)

n=1

where y; (x) has already been found. The coefficients b, are calculated, as usual, by
substituting into the differential equation, collecting terms, and setting the coefficient
of each power of x equal to zero. A third possibility is to use the method of reduction
of order to find y; (x) once y; (x) is known.

Roots Differing by an Integer. For this case the derivation of the second solution is con-
siderably more complicated and will not be given here. The form of this solution is
stated in Eq. (24) in the following theorem. The coefficients ¢,(r2) in Eq. (24) are
given by

d
) = Ll —r)a®)| ., n= 1,2,..., (19)
r r=
where a,(r) is determined from the recurrence relation (8) with ag = 1. Further, the
coefficient a in Eq. (24) is
a= liﬁrl!(f — r)an(r). (20)
r—+

If ap (r>) is finite, then @ = 0 and there is no logarithmic term in y;. A full derivation
of formulas (19) and (20) may be found in Coddington (Chapter 4).

In practice, the best way to determine whether a is zero in the second solution is
simply to try to compute the a, corresponding to the root r» and to see whether it is
possible to determine apn(r2). If so, there is no further problem. If not, we must use
the form (24) witha # 0.

When r; — rp = N, there are again three ways to find a second solution. First, we
can calculate a and ¢, (r2) directly by substituting the expression (24) for y in Eq. (1).
Second, we can caleulate ¢,(r2) and a of Eq. (24) using the formulas (19) and (20).
If this is the planned procedure, then in calculating the solution corresponding to
r = r, be sure to obtain the general formula for a,(r) rather than just a,(r;). The
third alternative is to use the method of reduction of order. !
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Theorem 5.7.1 Consider the differential equation (1),

XYy 4 xixp(Oly + [¥2g(x)]y = 0,

where x = 0 is a regular singular point. Then xp(x) and x*g(x) are analytic at x = 0
with convergent power series expansions

xp(xy =) pox",  xg(x) =) gx"
=0

n=0

for |x| < p, where p > 0 is the minimum of the radii of convergence of the power
series for xp(x) and xzq (x). Let r; and r; be the roots of the indicial equation

Fry=r(r—1}+por+go=0,

with r; > r» if r; and r; are real. Then in either the interval —p < x < 0 or the
interval 0 < x < p, there exists a solution of the form

»0) =[x [1 +3 an(nw’] , (21)

n=1

where the a,(r,} are given by the recurrence relation (8) with g = 1 and r = ry.

If r; — r; is noOt zero or a positive integer, then in either the interval —p < x < 0
orthe interval 0 < x < p,there exists a second linearly independent solution of the
form

Y2(x) = i [1 +3 an(rz)x"] . (22)

n=1

The ap{r;) are also determined by the recurrence relation (8) withay = landr = r3.
The power series in Eqs. (21) and (22) converge at least for |x| < p.
If r; = 3, then the second solution is

y2(x)y = y1 @y Infxl + [x7 3 balr)x". (23)

A==1

If 1 — r; = N, a positive integer, then

Ya(x) = ay1 (x) InJx{ + jx|” [1 + ch(fz)x"] - (24)

n—1

The coefficients a,(r1}, Pr(r1), €2 (r2), and the constant a can be determined by sub-
stituting the form of the series solutions for y in Eq. (1). The constant 2 may turn out
to be zero, in which case there is no logarithmic term in the solution (24). Each of
the series in Egs. (23) and (24) converges at least for x| < p and defines a function
that is analytic in some neighborhood of x = Q.



292 Chapter 5. Series Solutions of Second Order Linear Equations

PROBLEM In each of Problems 1 through 12 find all the regular singular points of the given differential
equation. Determine the indicial equation and the exponents at the singularity for each regular
singular point.

1 xy" + 2y + 6y =0 2.0 —x(24+ )Y + (2+x)y=0

3ox(x =1y + 6y +3y=0 4.y +4xy + 6y =0

5. X2y 4+ 3(sinx)y — 2y =0 6. 2x(x 4+ 21" +y —xy=0

7. 2% + j(x+sinx)y +y =0 B x4+ 1%y 4302 —1)y +3y=0

9. 21 —-x}y' —(+x)y+22y=0 10. =2 (x+2)y"+2xy +3(x - 2)y =0
1L (- + 2xy' + 3y =0 12, x(e + 3% —2(x 4+ 3)y —xy =0

In each of Problems 13 through 17:

(a) Show that x = 0 is a regular singular point of the given differential equation.
(b) Find the exponents at the singular pointx = 0.

(¢} Find the first three nonzero terms in each of two linearly independent solutions about
x=0.

3 xy"+y-—-y=0

14, xy" + 2xy' + 6e"y = 0; see Problem 1

15. x(x —1)y" + 6x%y + 3y =0 see Problem 3

16. xy" +y =0

17. x*y" + (sinx)y’ — (cosx}y =0

18. Show that

(nx)y’ + 3y +y=0

has a regular singular point at x = 1. Determine the roots of the indicial equation atx = 1.
o0

Determine the first thrée nonzero terms in the series-) _ a,(x — 1)** corresponding to the
’ 7 p=d

larger root. Take x — 1 > 0. What would you expect the radius of convergence of the

series to be? :

19. Inseveral problems in mathematical physics it is necessary to study the differential equa-
tion

x(1—x)y" +{y — (1 +a+ By —afy =0, (i)

where o, 8,and y are constants. This equation is known as the hypergeometric equation,
(a) Show that x = 0 is a regular singular-point and that the roots of the indicial equation
are Dand 1 —y.

(b) Show that x = 1is a regular singular point and that the roots of the indicial equation
areQandy —a — 8.

(c) Assumingthatl — y is not a positive integer, show that, in the neighborhood of x = 0,
one solution of (i) is

_ af ala+ 1B+1) , ]
}’1(1)—.1+y_1!x+ TSV x4

What would you expect the radius of convergence of this series to be?
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20.

21.

(d) Assumingthatl — y isnotaninteger orzero,show that a second solution for0 < x < 1
is
(@—y+ 1B -y+1)

@2 -y

ya(x) =x7Y [1 +

@—y+De-y+2B-y+1E-y+2) , ]
+ 2 - 1G- 2 e

{e) Show that the point at infinity is a regular singular point and that the roots of the
indicial equation are « and 8. See Problem 21 of Section 5.4,

Consider the differential equation
13){” + otxy' +,8y = 0'

where o and 8 are real constants and o # 0.
(a) Show that x = 0 is an irregular singular point.

00
(b) By attempting to determine a solution of the form )" a,x"*", show that the indicial

n=0
equation for r is linear and that, consequently, there is only one formal solution of the
assumed form.
(c) Showthatif 8/¢ = —1,0,1,2,...,then the formalseriessolution terminatesand there-
fore is an actual solution. For other values of 8/e, show that the formal series solution has
a zero radius of convergence and 50 does not represent an actual solution in any interval.

Consider the differential equation
L] o ' ﬁ ' »
Yoyt ay=0 (i)

where o # 0 and 8 # 0 are real numbers, and s and ¢ are positive integers that for the
moment are arbitrary.

(a) Showthatif s > 1or¢ > 2, then the point x = 0 is an irregular singular point.

(b) Try to find a solution of Eq. (i) of the form

y=) ax*, x>0 (if)
=0

Show that if s = 2 and ¢ = 2, then there is only one possible value of r for which thereisa
formal solution of Eq. (i) of the form (ii).

(c) Show thatif s =1 and ¢ = 3, then there are no solutions of Eq. (i) of the form (ii).
(d) Showthat the maximum values'of s and f for which the indicial equation is quadratic in
r [and hence we can hope to find two solutions of the form (ii)} are s = 1and ¢ == 2. These
are precisely the conditions that distinguish a “weak singularity,” or a regular singular
point, from an irregular singular point, as we defined them in Section 5.4.

As a note of caution, we point out that although it is sometimes possible to obtain a formal
series solution of the form (ii) at an irregular singular point, the series may not have a
positive radius of convergence. See Problem 20 for an example.
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5.8 Bessel’s Equation

In this section we consider three special cases of Bessel’s!* equation,

Py 4 xy + (o — vy =0, (1)

where v is a constant, which illustrate the theory discussed in Section 5.7. It is easy to
show that x == 0 is a regular singular point. For simplicity we consider only the case
x>0 .

Bessel Equation of Order Zero. This example illustrates the situation in which the roots
of the indicial equation are equal. Setting v = 0in Eq. (1) gives

Liy] = x3" +xy + x%y = 0. (2)
Substituting
oo
y=¢(rx) =ax + Y anx"*", (3)
n=1
we obtain

LI 0) = D au[r +m)(r + 1 — 1) + (r + I+ 4 ) g+
=0

n=0

=aglr(r— D +rIx" +a{r+ Dr+ (¢ + l)]x’+I

(e +]
+ ) {alr+me+n-1++m]+a. 2} =0 (@)
n=2
The roots of the indicial equation F(r) = r(r — 1)+ r = Oarer; = Oand r, = 0;hence
we have the case of equal roots. The recurrence relation is

ay_2(r) e ay_3(r)
r+mr+n-—1D+(+n) (r +n)?’
To determine y;(x) we set r equal to 0. Then, from Eq. (4), it follows that for

the coefficient of x'*! to be zero we must choose a; = 0. Hence, from Eq. (5),
a3 = as = a7 = --- = 0. Further,

n>2. (5)

a,{r=—

a,(0) = —a, 2(0)/n?, © n=2,4,68,...,
or, letting n = 2m, we obtain

@2m(0) = —a2m—2(0)/(2m)?, m=1203,....

14Friedrich Wilhelm Bessel (1784-1845) embarked on a career in business as a youth but soon became
interested in astronomy and mathematics He was appointed director of the observatory at K6nigsbergin
1810 and held this position until his death. His study of planetary perturbations led him in 1824 to make
the first systematic analysis of the solutions, known as Bessel functions, of Eq. (1). He is also famous for
making, in 1838, the first accurate determination of the distance from the earth to a star.
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Thus
. ap ao
ax(0) = —-55, aq(0) = TR ag(0) = “2%3. 97
and, in general,
_ (=1)"ag _
ax, (0) = 2 ()2’ m=1213,.... (6)
Hence
. 2\ (—~1)ymxm
yl(X)=ao[1+,§22m—(’”!)2—], x> 0. (7)

The function in brackets is known as the Bessel function of the first kind of order
zero and is denoted by Jy(x). It follows from Theorem 5.7.1 that the series converges
for all x and that Jj is analytic at x = 0. Some of the important properties of Jp are
discussed in the problems. Figure 5.8.1 shows the graphs of y = Jo(x) and some of
the partial sums of the series (7).

 n=41p28 n=12 n=16 1220
L S PO IR AU S

"-':"’; n 2 n\s : n 10 n 14 18

FIGURE 5.8.1 Polynomlal approxunatlons to Jo(x) The value of nis the degree of the
approximating polynomial.

To determine y;(x) we will calculate a/,(0).!% First we note from the coefficient of
x"+in Eq. (4) that (r + 1)%a,(r) = 0. It follows that not only does a, (0) = 0 but also
ay(0) = 0. It is easy to deduce from the recurrence relation (5) that a5(0) = a5(0) =

v =y 1 (0) = ... =0, hence we need only compute a,,,(0),m = 1,2,3,.... From
Eq. (5) we have

@un(r) = —Qun_2(N)/(r +2m)?, m=1273,....

15Probiem 10 outlines an alternative procedure, in which we simply substitute the form (23} of Section 5.7
in Eq. (2) and then determine the by,
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By solving this recurrence relation we obtain

o) = ——2 () = ——
’ e+ T i+ 47
and, in general,
(1) = (=1)"ag m> 3.

(r+2)2..-(r +2m)*

®)

The computation of a,,(r) can be carried out most conveniently by noting that if

f) =@ —a)Px—a)2(x — )P . (x — ),
and if x is not equal to &, ¢, .. ., &,, then

r®_ B B B

fx) x—o; x—az X —oy

Applying this result to a,,,(r) from Eq. (8), we find that

ay,,, (r) ( 1 1 1 )
2m o — 4., ,
(1) r—i—2+r-i—4+ +r+2m

and setting r equal to 0, we obtain

.o 11 1
02",(0) =-2 [§+Z++ E?_‘I;] ag,,,(O).

Substituting for a,,,(0) from Eq. (6), and letting

1 1 1
H,=14-4+=-4..-4+—
m +3 + 3 +eet g
we obtain, finally,
(—1)"ag
! = -— .
,,(0) = "H’“zzm(m!)v m=123,....

()

The second solution of the Bessel equation of order zero is found by setting @y = 1
and substituting for y; (x) and a3, (0) = b,,,(0) in Eq. (23) of Section 5.7. We obtain

(_ 1)m+l Hm

yl(x)‘: Jolx) IDX"""X::I zm(m!)?_ H

x > 0.

(10)

Instead of y», the second solution is usually taken to be a certain linear combina-
tion of Jy and y;. Tt is known as the Bessel function of the second kind of order zero
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and is denoted by ¥,. Following Copson (Chapter 12), we define!®
2
Yo(x) = ;D'z(x) F (v — In2)/o(x)]. (11)

Here y is a constant known as the Euler-Mascheroni!” constant; it is defined by the
equation
y = lim (H, — Inn) 2 0.5772, 12)

Substituting for y;(x) in Eq. (11), we obtain

2 x S (D)™ Hom o
Yolx) = ~ [(y +In 5) Jolx) + E Wx , x>0, (13)

The general solution of the Bessel equation of order zero for x > 0 is
y =alo(®) + & Yo(x).

Note that Jo(x) — 1asx — Oand that Y(x) has a logarithmic singularity at x = 0,
that is, ¥o(x) behaves as (2/7)In x when x — 0 through positive values. Thus, if we
are interested in solutions of Bessel's equation of order zero that are finite at the
origin, which is often the case, we must discard Y. The graphs of the functions Jy
and ¥ are shown in Figure 5.8.2.

e

FIGURE 5.8.2 The Bessel functions Jo and Yp.

It is interesting to note from Figure 5.8.2 that for x large, both Jo(x) and Y(x) are
oscillatory. Such a behavior might be anticipated from the original equation; indeed

160Other authors use other definitions for ¥g. The present choice for Yo is also known as the Weber
function, after Heinrich Weber (1842-1913), who taught at several German universities.

UL orenzo Méscheroni (1750-1800) was an Italian priest and professor at the University of Pavia, He
correctly calculated tl}e first 19 decimal places of ¥ in 1790.
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it is true for the sclutions of the Bessel equation of order v. If we divide Eq. (1) t

x2, we obtain

1, v?

For x very large it is reasonable to suspect that the terms (1/x)y" and (v2/x¥)y a
small and hence can be neglected. If this is true, then the Bessel equation of order
can be approximated by

yﬂ'+y=0.

The solutions of this equation are sin x and cos x; thus we might anticipate that tk
solutions of Bessel’s equation for large x are similar to linear combinations of sin
and cos x. This is correct insofar as the Bessel functions are oscillatory; however, it

only partly correct. For x large the functions /s and Yy also decay as x increases; thy
the equation y” + y = 0 does not provide an adequate approximation to the Bess:
equation for large x, and a more delicate analysis is required. In fact, it is possible
show that

2\ x
Jo(x) = (;) cos( - E) as x — 00, (1«

and that

(2 2 - ‘
Yolx) = (E) sm( - Z) as x — 00, (1

These asymptotic approximations, as x — oo, are actually very good. For exampl
Figure 5.8.3 shows that the asymptotic approximation (14) to Jo(x) is reasonabl
accurate for all x > 1. Thus to approximate Jo(x) over the entire range from zero {
infinity, one can use two or three terms of the series (7) for x < 1 and the asymptot
approximation (14) for x > 1.

FIGURE 5.8.3 Asymptotic appfdximation to‘Jo(x).
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Bessel Equation of Order One-Half. This example illustrates the situation in which the
roots of the indicial equation differ by a positive integer but there is no logarithmic
term in the second solution. Setting v = %_in Eq. (1) gives

Lyl =x%" +xy' + (x — ;‘—)y 0. (16)

When we substitute the series (3) for y = ¢(r, x}, we obtain

Lig)(r,x) = Z [ 4 40— 14 4 n) — ) a4 Z:a,,x"”’+2
n=0 n=0

= (r2 - %) agx” + [(1’+ 1)2 — %] ale-l

oo
4+ {[r+m* — {lan +ana} ¥ = 0. (17)
n=2
The roots of the indicial equation are r, = %, = —%; hence the roots differ by an
integer. The recurrence relation is
[(r +m)? — ay = —ana, n>2, (18)
Corresponding to the largerrootr) = 5 1,we find from the coefficient of x”+! in Eq. (17)
that a; = 0. Hence, from Eq. (18), @3 = as = .-+ = @an41 =+ -- = 0. Further, for
r=4
an_2
- =2 e
n (n + 1) r n ) 4! 6 ¥

or, letting n = 2m, we obtain

-2

_a?.m=—m, m=1,23,....
By solving this recurrence relation we find that
ag ag
= — 3' a4=§!—,...
and, in general,
azm=(‘(,2—m-1+)~+‘—;%, m=1,23,....

Hence, taking ap = 1, we obtain >

_ap (- l)m gy, (- 1)m 2m+1 -
yl(x) x I+ Z m Z (2ﬂ1+ 1)' s x> 0. (19)

The power series in Eq. (19) is precisely the Taylor series for sin x; hence one solution

of the Bessel equation of order one-half is x~!/2 sin x. The Bessel function of the first
kind of order one-half, /3, is defined as (2/r)!/%y,. Thus

Jip2(x) = (;;) sin x, x>0, (20
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Corresponding to the root r; = —%, it is possible that we may have difﬁculty i1
computing a; since N = ry — r; = 1. However, from Eq. (17) for r = —1, the coef
ficients of x* and x*! are both zero regardless of the choice of ap and al Hence a
and &, can be chosen arbitrarily. From the recurrence relation (18) we obtain a se
of even-numbered coefficients corresponding to ag and a set of odd-numbered coef
ficients corresponding to a;. Thus no logarithmic term is needed to obtain a seconc

solution in this case. It is left as an exercise to show that, forr = —%,
az,,=(.—(—;,)1—;!—a9, az,,+1=((2;1—:_";;!, n=12....
Hence
y2(0) =x7172 [ao ; ( (;)n): Z ((21,,)’:2;;}
=ag%;+a1%, x> 0. (21

The constant a; simply introduces a multiple of y;(x). The second linearly inde
pendent solution of the Bessel equation of order one-half is usually taken to be the
solution for which ap = (2/7)}% and a; = 0. It is denoted by J.,;>. Then

5\ 12
J_yp(x) = (E) COs X, x> 0. (22

The general solution of Eq. (16) is y = e1/12(x) + €2/ 12(x).

By comparing Eqs. (20) and (22) with Eqs. (14) and (15), we see that, except for :
phase shift of » /4, the functions J_,; and J,,, resemble Jo and Yo, respectively, for
large x. The graphs of J1,; and J_;,; are shown in Figure 5.84.

FIGURE 5.8.4 The Bessel functions J1,26 and J_y 2.
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Bessel Equation of Order One. This example illustrates the situation in which the roots
of the indicial equation differ by a positive integer and the second sol