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Preface

This is the third volume in a series devoted to self contained and up-to-date surveys in the
theory of ordinary differential equations, written by leading researchers in the area. All
contributors have made an additional effort to achieve readability for mathematicians and
scientists from other related fields, in order to make the chapters of the volume accessible
to a wide audience. These ideas faithfully reflect the spirit of this multi-volume and the
editors hope that it will become very useful for research, learning and teaching. We express
our deepest gratitude to all contributors to this volume for their clearly written and elegant
articles.

This volume consists of seven chapters covering a variety of problems in ordinary differ-
ential equations. Both, pure mathematical research and real word applications are reflected
pretty well by the contributions to this volume. They are presented in alphabetical order
according to the name of the first author. The paper by Andres provides a comprehensive
survey on topological methods based on topological index, Lefschetz and Nielsen num-
bers. Both single and multivalued cases are investigated. Ordinary differential equations
are studied both on finite and infinite dimensions, and also on compact and noncompact
intervals. There are derived existence and multiplicity results. Topological structures of
solution sets are investigated as well. The paper by Bonheure and Sanchez is dedicated
to show how variational methods have been used in the last 20 years to prove existence
of heteroclinic orbits for second and fourth order differential equations having a varia-
tional structure. It is divided in 2 parts: the first one deals with second order equations and
systems, while the second one describes recent results on fourth order equations. The con-
tribution by De Coster, Obersnel and Omari deals with qualitative properties of solutions
of two kinds of scalar differential equations: first order ODEs, and second order parabolic
PDEs. Their setting is very general, so that neither uniqueness for the initial value prob-
lems nor comparison principles are guaranteed. They particularly concentrate on periodic
solutions, their localization and possible stability. The paper by Han is dedicated to the
theory of limit cycles of planar differential systems and their bifurcations. It is structured
in three main parts: general properties of limit cycles, Hopf bifurcations and perturbations
of Hamiltonian systems. Many results are closely related to the second part of Hilbert’s
16th problem which concerns with the number and location of limit cycles of a planar
polynomial vector field of degree n posed in 1901 by Hilbert. The survey by Hartung,
Krisztin, Walther and Wu reports about the more recent work on state-dependent delayed
functional differential equations. These equations appear in a natural way in the modelling
of evolution processes in very different fields: physics, automatic control, neural networks,
infectious diseases, population growth, cell biology, epidemiology, etc. The authors empha-
size on particular models and on the emerging theory from the dynamical systems point
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vi Preface

of view. The paper by Korman is devoted to two point nonlinear boundary value problems
depending on a parameter λ. The main question is the precise number of solutions of the
problem and how these solutions change with the parameter. To study the problem, the
author uses bifurcation theory based on the implicit function theorem (in Banach spaces)
and on a well known theorem by Crandall and Rabinowitz. Other topics he discusses in-
volve pitchfork bifurcation and symmetry breaking, sign changing solutions, etc. Finally,
the paper by Rachůnková, Staněk and Tvrdý is a survey on the solvability of various non-
linear singular boundary value problems for ordinary differential equations on the compact
interval. The nonlinearities in differential equations may be singular both in the time and
space variables. Location of all singular points need not be known.

With this volume we end our contribution as editors of the Handbook of Differential
Equations. We thank the staff at Elsevier for efficient collaboration during the last three
years.
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CHAPTER 1

Topological Principles for Ordinary Differential
Equations

Jan Andres∗
Department of Mathematical Analysis, Faculty of Science, Palacký University, Tomkova 40,

779 00 Olomouc-Hejčín, Czech Republic
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1. Introduction

The classical courses of ordinary differential equations (ODEs) start either with the Peano
existence theorem (see, e.g., [54]) or with the Picard–Lindelöf existence and uniqueness
theorem (see, e.g., [71]), both related to the Cauchy (initial value) problems

{
ẋ = f (t, x),

x(0)= x0,
(1.1)

where f ∈ C([0, τ ] ×R
n,Rn), and

∣∣f (t, x)− f (t, y)
∣∣ � L|x − y|, for all t ∈ [0, τ ] and x, y ∈R

n, (1.2)

in the latter case.
In fact, if f satisfies the Lipschitz condition (1.2), then “uniqueness implies existence”

even for boundary value problems with linear conditions that are “close” to x(0) = x0,
as observed in [53]. Moreover, uniqueness implies in general (i.e. not necessarily, under
(1.2)) continuous dependence of solutions on initial values (see, e.g., [54, Theorem 4.1 in
Chapter 4.2]), and subsequently the Poincaré translation operator Tτ : Rn → R

n, at the
time τ > 0, along the trajectories of ẋ = f (t, x), defined as follows:

Tτ (x0) :=
{
x(τ) | x(.) is a solution of (1.1)

}
, (1.3)

is a homeomorphism (cf. [54, Theorem 4.4 in Chapter 4.2]).
Hence, besides the existence, uniqueness is also a very important problem. W. Orlicz

[92] showed in 1932 that the set of continuous functions f :U →R
n, where U is an open

subset relative to [0, τ ]×R
n, for which problem (1.1) with (0, x0) ∈U is not uniquely solv-

able, is meager, i.e. a set of the first Baire category. In other words, the generic continuous
Cauchy problems (1.1) are solvable in a unique way. Therefore, no wonder that the first ex-
ample of nonuniqueness was constructed only in 1925 by M.A. Lavrentev (cf. [71] and, for
more information, see, e.g., [1]). The same is certainly also true for Carathéodory ODEs,
because the notion of a classical (C1-) solution can be just replaced by the Carathéodory
solution, i.e. absolutely continuous functions satisfying (1.1), almost everywhere (a.e.).
The change is related to the application of the Lebesgue integral, instead of the Riemann
integral.

On the other hand, H. Kneser [80] proved in 1923 that the sets of solutions to continuous
Cauchy problems (1.1) are, at every time, continua (i.e. compact and connected). This
result was later improved by M. Hukuhara [75] who proved that the solution set itself is
a continuum in C([0, τ ],Rn). N. Aronszajn [41] specified in 1942 that these continua are
Rδ-sets (see Definition 2.3 below), and as a subsequence, multivalued operators Tτ in (1.3)
become admissible in the sense of L. Górniewicz (see Definition 2.5 below).

Obviously if, for f (t, x) ≡ f (t + τ, x), operator Tτ admits a fixed point, say x̂ ∈ R
n,

i.e. x̂ ∈ Tτ (x̂), then x̂ determines a τ -periodic solution of ẋ = f (t, x), and vice versa. This
is one of stimulations why to study the fixed point theory for multivalued mappings in
order to obtain periodic solutions of nonuniquely solvable ODEs. Since the regularity of
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(multivalued) Poincaré’s operator Tτ is the same (see Theorem 4.17 below) for differential
inclusions ẋ ∈ F(t, x), where F is an upper Carathéodory mapping with nonempty, convex
and compact values (see Definition 2.10 below), it is reasonable to study directly such
differential inclusions with this respect. Moreover, initial value problems for differential
inclusions are, unlike ODEs, typically nonuniquely solvable (cf. [42]) by which Poincaré’s
operators are multivalued.

In this context, an interesting phenomenon occurs with respect to the Sharkovskii cycle
coexistence theorem [95]. This theorem is based on a new ordering of the positive integers,
namely

3 � 5 � 7 � · · · � 2 · 3 � 2 · 5 � 2 · 7 � · · · � 22 · 3 � 22 · 5 � 22 · 7 � · · ·
� 2n · 3 � 2n · 5 � 2n · 7 � · · · � 2n+1 · 3 � 2n+1 · 5 � 2n+1 · 7 � · · ·
� 2n+1 � 2n � · · · � 22 � 2 � 1,

saying that if a continuous function g : R→ R has a point of period m with m � k (in the
above Sharkovskii ordering), then it has also a point of period k.

By a period, we mean the least period, i.e. a point a ∈R is a periodic point of period m

if gm(a)= a and gj (a) �= a, for 0 < j <m.
Now, consider the scalar ODE

ẋ = f (t, x), f (t, x)≡ f (t + τ, x), (1.4)

where f : [0, τ ] ×R→R is a continuous function.
Since

T m
τ = Tτ ◦ · · · ◦ Tτ︸ ︷︷ ︸

m times

= Tmτ

holds for the Poincaré translation operator Tτ along the trajectories of Eq. (1.4), defined in
(1.3), there is (in the case of uniqueness) an apparent one-to-one correspondence between
m-periodic points of Tτ and (subharmonic) mτ -periodic solutions of (1.4). Nevertheless,
the analogy of classical Sharkovskii’s theorem does not hold for subharmonics of (1.4). In
fact, we only obtain an empty statement, because every bounded solution of (1.4) is, under
the uniqueness assumption, either τ -periodic or asymptotically τ -periodic (see, e.g., [94,
pp. 120–122]).

This handicap is due to the assumed uniqueness condition. On the other hand, in the
lack of uniqueness, the multivalued operator Tτ in (1.3) is admissible (see Theorem 4.17
below) which in R means (cf. Definition 2.5 below) that Tτ is upper semicontinuous (cf.
Definition 2.4 below) and the sets of values consist either of single points or of compact
intervals. In a series of our papers [16,29,36], we developed a version of the Sharkovskii
cycle coexistence theorem which applies to (1.4) as follows:

THEOREM 1.1. If Eq. (1.4) has an mτ -periodic solution, then it also admits a kτ -periodic
solution, for every k 	 m, with at most two exceptions, where k 	 m means that k is less
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Fig. 1. Braid σ .

than m in the above Sharkovskii ordering of positive integers. In particular, if m �= 2k , for
all k ∈N, then infinitely many (subharmonic) periodic solutions of (1.4) coexist.

REMARK 1.1. As pointed out, Theorem 1.1 holds only in the lack of uniqueness; other-
wise, it is empty. On the other hand, the right-hand side of the given (multivalued) ODE
can be a (multivalued upper) Carathéodory mapping with nonempty, convex and compact
values (see Definition 2.10 below).

REMARK 1.2. Although, e.g., a 3τ -periodic solution of (1.4) implies, for every k ∈ N,
with a possible exception for k = 2 or k = 4,6, the existence of a kτ -periodic solution of
(1.4), it is very difficult to prove that such a solution exists. Observe that a 3τ -periodic
solution of (1.4) implies the existence of at least two more 3τ -periodic solutions of (1.4).

The Sharkovskii phenomenon is essentially one-dimensional. On the other hand, it fol-
lows from T. Matsuoka’s results in [87–89] that three (harmonic) τ -periodic solutions of
the planar (i.e. in R

2) system (1.4) imply “generically” the coexistence of infinitely many
(subharmonic) kτ -periodic solutions of (1.4), k ∈ N. “Genericity” is this time understood
in terms of the Artin braid group theory, i.e. with the exception of certain simplest braids,
representing the three given harmonics.

The following theorem was presented in [8], on the basis of T. Matsuoka’s results in
papers [87–89].

THEOREM 1.2. Assume that a uniqueness condition is satisfied for planar system (1.4).
Let three (harmonic) τ -periodic solutions of (1.4) exist whose graphs are not conjugated
to the braid σm in B3/Z, for any integer m ∈N, where σ is shown in Fig. 1, B3/Z denotes
the factor group of the Artin braid group B3 and Z is its center ( for definitions, see, e.g.,
[22, Chapter III.9]). Then there exist infinitely many (subharmonic) kτ -periodic solutions
of (1.4), k ∈N.

REMARK 1.3. In the absence of uniqueness, there occur serious obstructions, but Theo-
rem 1.2 still seems to hold in many situations; for more details see [8].

REMARK 1.4. The application of the Nielsen theory considered in Section 3.2 below
might determine the desired three harmonic solutions of (1.4). More precisely, it is more
realistic to detect two harmonics by means of the related Nielsen number (see again Sec-
tion 3.2 below), and the third one by means of the related fixed point index (see Section 3.3
below).
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For n > 2, statements like Theorem 1.1 or Theorem 1.2 appear only rarely. Nevertheless,
if f = (f1, f2, . . . , fn) has a special triangular structure, i.e.

fi(x)= fi(x1, . . . , xn)= fi(x1, . . . , xi), i = 1, . . . , n, (1.5)

then Theorem 1.1 can be extended to hold in R
n (see [35]).

THEOREM 1.3. Under assumption (1.5), the conclusion of Theorem 1.1 remains valid
in R

n.

REMARK 1.5. Similarly to Theorem 1.1, Theorem 1.3 holds only in the lack of unique-
ness. Without the special triangular structure (1.5), there is practically no chance to obtain
an analogy to Theorem 1.1, for n � 2.

There is also another motivation for the investigation of multivalued ODEs, i.e. differ-
ential inclusions, because of the strict connection with

(i) optimal control problems for ODEs,
(ii) Filippov solutions of discontinuous ODEs,

(iii) implicit ODEs, etc.
ad (i): Consider a control problem for

ẋ = f (t, x,u), u ∈U, (1.6)

where f : [0, τ ] × R
n × R

n→ R
n and u ∈ U are control parameters such that u(t) ∈ R

n,
for all t ∈ [0, τ ]. In order to solve a control problem for (1.6), we can define a multivalued
map F(t, x) := {f (t, x,u)}u∈U . The solutions of (1.6) are those of

ẋ ∈ F(t, x), (1.7)

and the same is true for a given control problem. For more details, see, e.g., [27,79].
ad (ii): If function f is discontinuous in x, then Carathéodory theory cannot be applied

for solving, e.g., (1.1). Making, however, the Filippov regularization of f , namely

F(t, x) :=
⋂
δ>0

⋂
r⊂[0,τ ]×R

n

μ(r)=0

convf
(
Oδ

(
(t, x) \ r)), (1.8)

where μ(r) denotes the Lebesgue measure of the set r ⊂R
n and

Oδ(y) :=
{
z ∈ [0, τ ] ×R

n | |y − z|< δ
}
,

multivalued F is well known (see [60]) to be again upper Carathéodory with nonempty,
convex and compact values (cf. Definition 2.10 below), provided only f is measurable
and satisfies |f (t, x)|� α + β|x|, for all (t, x) ∈ [0, τ ] ×R

n, with some nonnegative con-
stants α,β . Thus, by a Filippov solution of ẋ = f (t, x), it is so understood a Carathéodory
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solution of (1.7), where F is defined in (1.8). As an example from physics, dry friction
problems (see, e.g., [84,91]) can be solved in this way.

ad (iii): Let us consider the implicit differential equation

ẋ = f (t, x, ẋ), (1.9)

where f : [0, τ ] × R
n × R

n → R
n is a compact (continuous) map and the solutions are

understood in the sense of Carathéodory. We can associate with (1.9) the following two
differential inclusions:

ẋ ∈ F1(t, x) (1.10)

and

ẋ ∈ F2(t, x), (1.11)

where F1(t, x) := Fix(f (t, x, ·)), i.e. the (nonempty, see [22, p. 560]) fixed point set of
f (t, x, ·) w.r.t. the last variable, and F2 ⊂ F1 is a (multivalued) lower semicontinuous (see
Definition 2.4 below) selection of F1. The sufficient condition for the existence of such a
selection F2 reads (see, e.g., [22, Chapter III.11, pp. 558–559]):

dim Fix
(
f (t, x, ·))= 0, for all (t, x) ∈ [0, τ ] ×R

n, (1.12)

where dim denotes the topological (covering) dimension.
Denoting by S(f ), S(F1), S(F2) the sets of all solutions of initial value problems to

(1.9), (1.10), (1.11), respectively, one can prove (see [22, p. 560]) that, under (1.12),
S(f )= S(F1)⊂ S(F2) �= ∅. For more details, see [19] (cf. [22, Chapter III.11]).

Although there are several monographs devoted to multivalued ODEs (see, e.g., [22,42,
45,58,61,74,79,91,96,97]), topological principles were presented mainly for single-valued
ODEs (besides [22,45,58] and [61] for differential inclusions, see, e.g., [62,64,65,82,83,
90]). Hence our main object will be topological principles for (multivalued) ODEs; whence
the title. We will consider without special distinguishing differential equations as well as
inclusions; both in Euclidean and Banach spaces. All solutions of problems under our con-
sideration (even in Banach spaces) will be understood at least in the sense of Carathéodory.
Thus, in view of the indicated relationship with problems (i)–(iii), many obtained results
can be also employed for solving optimal control problems, problems for systems with
variable structure, implicit boundary value problems, etc.

The reader exclusively interested in single-valued ODEs can simply read “continuous”,
instead of “upper semicontinuous” or “lower semicontinuous”, and replace the inclusion
symbol ∈ by the equality =, in the given differential inclusions. If, in the single-valued
case, the situation simplifies dramatically or if the obtained results can be significantly
improved, then the appropriate remarks are still supplied.

We wished to prepare an as much as possible self-contained text. Nevertheless, the reader
should be at least familiar with the elements of nonlinear analysis, in particular of fixed
point theory, in order to understand the degree arguments, or so. Otherwise, we recom-
mend the monographs [69] (in the single-valued case) and [22] (in the multivalued case).



8 J. Andres

Furthermore, one is also expected to know several classical results and notions from the
standard courses of ODEs, functional analysis and the theory of integration like the Gron-
wall inequality, the Arzelà–Ascoli lemma, the Mazur Theorem, the Bochner integral, etc.

We will study mainly existence and multiplicity of bounded, periodic and anti-periodic
solutions of (multivalued) ODEs. Since our approach consists in the application of the fixed
point principles, these solutions will be either determined by, (e.g., τ -periodic solutions
x(t) by the initial values x(0) via (1.3)) or directly identified (e.g., solutions of initial value
problems (1.1)) with fixed points of the associated (Cauchy, Hammerstein, etc.) operators.

Although the usage of the relative degree (i.e. the fixed point index) arguments is rather
traditional in this framework, it might not be so when the maps, representing, e.g., prob-
lems on noncompact intervals, operate in nonnormable Fréchet spaces. This is due to the
unpleasant locally convex topology possessing bounded subsets with an empty interior. We
had therefore to develop with my colleagues our own fixed point index theory. The applica-
tion of the Nielsen theory, for obtaining multiplicity criteria, is very delicate and quite rare,
and the related problem is named after Jean Leray who posed it in 1950, at the first Interna-
tional Congress of Mathematics held after World War II in Cambridge, Mass. We had also
to develop a new multivalued Nielsen theory suitable for applications in this field. Before
presenting general methods for solvability of boundary value problems in Section 4, we
therefore make a sketch of the applied fixed point principles in Section 3. Hence besides
Section 4, the main results are contained in Section 5 (Existence results) and Section 6
(Multiplicity results). The reference sources to our results and their comparison with those
of other authors are finally commented in Section 7 (Remarks and comments).

2. Preliminaries

2.1. Elements of ANR-spaces

In the entire text, all topological spaces will be metric and, in particular, all topological
vector spaces will be at least Fréchet. Let us recall that by a Fréchet space, we understand
a complete (metrizable) locally convex space. Its topology can be generated by a countable
family of seminorms. If it is normable, then it becomes Banach.

DEFINITION 2.1. A (metrizable) space X is an absolute neighbourhood retract (ANR) if,
for each (metrizable) Y and every closed A⊂ Y , each continuous mapping f :A→ X is
extendable over some neighbourhood of A.

PROPOSITION 2.1.
(i) If X is an ANR, then any open subset of X is an ANR and any neighbourhood

retract of X is an ANR.
(ii) X is an ANR if and only if it is a neighbourhood retract of every (metrizable) space

in which it is embedded as a closed subset.
(iii) X is an ANR if and only if it is a neighbourhood retract of some normed linear

space, i.e. if and only if it is a retract of some open subset of a normed space.
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(iv) If X is a retract of an open subset of a convex set in a Fréchet space, then it is an
ANR.

(v) If X1, X2 are closed ANRs such that X1 ∩X2 is an ANR, then X1 ∪X2 is an ANR.
(vi) Any finite union of closed convex sets in a Fréchet space is an ANR.
(vii) If each x ∈X admits a neighbourhood that is an ANR, then X is an ANR.

DEFINITION 2.2. A (metrizable) space X is an absolute retract (AR) if, for each (metriz-
able) Y and every closed A⊂ Y , each continuous mapping f :A→X is extendable over Y .

PROPOSITION 2.2.
(i) X is an AR if and only if it is a contractible (i.e. homotopically equivalent to a one

point space) ANR.
(ii) X is an AR if and only if it is a retract of every (metrizable) space in which it is

embedded as a closed subset.
(iii) If X is an AR and A is a retract of X, then A is an AR.
(iv) If X is homeomorphic to Y and X is an AR, then so is Y .
(v) X is an AR if and only if it is a retract of some normed space.

(vi) If X is a retract of a convex subset of a Fréchet space, then it is an AR.
(vii) If X1, X2 are closed ARs such that X1 ∩X2 is an AR, then X1 ∪X2 is an AR.

Furthermore, it is well known that every ANR X is locally contractible (i.e. for each
x ∈X and a neighbourhood U of x, there exists a neighbourhood V of x that is con-
tractible in U ) and, as follows from Proposition 2.2(i) that every AR X is contractible (i.e.
if idX :X→X is homotopic to a constant map).

DEFINITION 2.3. X is called an Rδ-set if, there exists a decreasing sequence {Xn} of
compact, contractible sets Xn such that X =⋂{Xn | n= 1,2, . . .}.

Although contractible spaces need not be ARs, X is an Rδ-set if and only if it is an
intersection of a decreasing sequence of compacts ARs. Moreover, every Rδ-set is acyclic
w.r.t. any continuous theory of homology (e.g., the Čech homology), i.e. homologically
equivalent to a one point space, and so it is in particular nonempty, compact and connected.

The following hierarchies hold for metric spaces:

contractible⊂ acyclic

∪
convex⊂AR⊂ANR,

compact + convex ⊂ compact AR ⊂ compact + contractible ⊂ Rδ ⊂ compact + acyclic,
and all the above inclusions are proper.

For more details, see [47] (cf. also [22,67,69]).
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2.2. Elements of multivalued maps

In what follows, by a multivalued map ϕ :X � Y , i.e. ϕ :X→ 2Y \{0}, we mean the one
with at least nonempty, closed values.

DEFINITION 2.4. A map ϕ :X � Y is said to be upper semicontinuous (u.s.c.) if, for every
open U ⊂ Y , the set {x ∈X | ϕ(x)⊂U} is open in X. It is said to be lower semicontinuous
(l.s.c.) if, for every open U ⊂ Y , the set {x ∈X | ϕ(x) ∩U �= ∅} is open in X. If it is both
u.s.c. and l.s.c., then it is called continuous.

Obviously, in the single-valued case, if f :X → Y is u.s.c. or l.s.c., then it is con-
tinuous. Moreover, the compact-valued map ϕ :X � Y is continuous if and only if it
is Hausdorff-continuous, i.e. continuous w.r.t. the metric d in X and the Hausdorff-
metric dH in {B ⊂ Y | B is nonempty and bounded}, where dH (A,B) := inf{ε > 0 | A⊂
Oε(B) and B ⊂ Oε(A)} and Oε(B) := {x ∈ X | ∃y ∈ B: d(x, y) < ε}. Every u.s.c. map
ϕ :X � Y has a closed graph 
ϕ , but not vice versa. Nevertheless, if the graph 
ϕ of a
compact map ϕ :X � Y is closed, then ϕ is u.s.c.

The important role will be played by the following class of admissible maps in the sense
of L. Górniewicz.

DEFINITION 2.5. Assume that we have a diagram X
p⇐� 


q−→ Y (
 is a metric space),
where p :
⇒X is a continuous Vietoris map, namely

(i) p is onto, i.e. p(
)=X,
(ii) p is proper, i.e. p−1(K) is compact, for every compact K ⊂X,

(iii) p−1(x) is acyclic, for every x ∈ X, where acyclicity is understood in the sense of
the Čech homology functor with compact carriers and coefficients in the field Q of
rationals,

and q :
→ Y is a continuous map. The map ϕ :X � Y is called admissible if it is induced
by ϕ(x)= q(p−1(x)), for every x ∈X. We, therefore, identify the admissible map ϕ with
the pair (p, q) called an admissible (selected) pair.

DEFINITION 2.6. Let X
p0⇐� 
0

q0−→ Y and X
p1⇐� 
1

p1−→ Y be two admissible maps, i.e.
ϕ0 = q0 ◦ p−1

0 and ϕ1 = q1 ◦ p−1
1 . We say that ϕ0 is admissibly homotopic to ϕ1 (written

ϕ0 ∼ ϕ1 or (p0, q0)∼ (p1, q1)) if there exists an admissible map X× [0,1] p⇐� 
0
q−→ Y

such that the following diagram is commutative:

X

ki

pi


i

fi

qi

Y

X× [0,1]
p




q

for ki(x)= (x, i), i = 0,1, and fi :
i → 
 is a homeomorphism onto p−1(X× i), i = 0,1,
i.e. k0p0 = pf0, q0 = qf0, k1p1 = pf1 and q1 = qf1.
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Thus, admissible maps are always u.s.c. with nonempty, compact and connected val-
ues. Moreover, their class is closed w.r.t. finite compositions, i.e. a finite composition of
admissible maps is also admissible. In fact, a map is admissible if and only if it is a fi-
nite composition of acyclic maps with compact values, i.e. u.s.c. maps with acyclic and
compact values.

The class of admissible maps so contains u.s.c. maps with convex and compact val-
ues, u.s.c. maps with contractible and compact values, Rδ-maps (i.e. u.s.c. maps with
Rδ-values), acyclic maps with compact values and their compositions.

The class of compact admissible maps ϕ :X � Y , i.e. ϕ(X) is compact, will be denoted
by K(X,Y ), or simply by K(X), provided ϕ is a self-map (an endomorphism). If the ad-
missible homotopy in Definition 2.6 is still compact, then we say that ϕ0 ∈ K(X,Y ) and
ϕ1 ∈K(X,Y ) are compactly admissibly homotopic.

Another important class of admissible maps are condensing admissible maps denoted by
C(X,Y ). For this, we need to recall the notion of a measure of noncompactness (MNC).

Let E be a Fréchet space endowed with a countable family of seminorms ‖.‖s , s ∈ S

(S is the index set), generating the locally convex topology. Denoting by B = B(E) the set
of nonempty, bounded subsets of E, we can give

DEFINITION 2.7. The family of functions α = {αs}s∈S :B→ [0,∞)S , where αs(B) :=
inf{δ > 0 | B ∈ B admits a finite covering by the sets of diams � δ}, s ∈ S, for B ∈ B,
is called the Kuratowski measure of noncompactness and the family of functions γ =
{γs}s∈S :B→ [0,∞)S , where γs(B) := inf{δ > 0 | B ∈ B has a finite εs -net}, s ∈ S, for
B ∈ B, is called the Hausdorff measure of noncompactness.

These MNC are related as follows:

γ (B) � α(B) � 2γ (B), i.e. γs(B) � αs(B) � 2γs(B), for each s ∈ S.

Moreover, they satisfy the following properties:

PROPOSITION 2.3. Assume that B,B1,B2 ∈ B. Then we have (component-wise):
(μ1) (regularity) μ(B)= 0⇔ B is compact,
(μ2) (nonsingularity) {b} ∈ B⇒{b} ∪B ∈ B and μ({b} ∪B)= μ(B),
(μ3) (monotonicity) B1 ⊂ B2 ⇒ μ(B1) � μ(B2),
(μ4) (closed convex hull) μ(convB)= μ(B),
(μ5) (closure) μ(B)= μ(B),
(μ6) (Kuratowski condition) decreasing sequence of closed sets Bn ∈ B with

lim
n→∞μ(Bn)= 0 �⇒

⋂
{Bn | n= 1,2, . . .} �= ∅,

(μ7) (semiadditivity) μ(B1 +B2) � μ(B1)+μ(B2),
(μ8) (union) μ(B1 ∪B2)=max{μ(B1),μ(B2)},
(μ9) (intersection) μ(B1 ∩B2)=min{μ(B1),μ(B2)},
(μ10) (seminorm) μ(λB) = |λ|μ(B), for every λ ∈ R, and μ(B1 ∪ B2) � μ(B1) +

μ(B2),
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where μ denotes either α or γ .

DEFINITION 2.8. A bounded mapping ϕ :E ⊃ U � E, i.e. ϕ(B) ∈ B, for B � B ⊂ U , is
said to be μ-condensing (shortly, condensing) if μ(ϕ(B)) < μ(B), whenever B � B ⊂ U

and μ(B) > 0, or equivalently, if μ(ϕ(B)) � μ(B) implies μ(B)= 0, whenever B � B ⊂
U , where μ= {μs}s∈S :B→[0,∞)S is a family of functions satisfying at least conditions
(μ1)–(μ5). Analogously, a bounded mapping ϕ :E ⊃U � E is said to be a k-set contrac-
tion w.r.t. μ = {μs}s∈S :B→ [0,∞)S satisfying at least conditions (μ1)–(μ5) (shortly, a
k-contraction or a set-contraction) if μ(ϕ(B)) � kμ(B), for some k ∈ [0,1), whenever
B � B ⊂U .

Obviously, any set-contraction is condensing and both α-condensing and γ -condensing
maps are μ-condensing. Furthermore, compact maps or contractions with compact values
(in vector spaces, also their sum) are well known to be (α,γ )-set-contractions, and so
(α,γ )-condensing.

Besides semicontinuous maps, measurable and semi-Carathéodory maps will be also of
importance. Hence, assume that Y is a separable metric space and (�,U, ν) is a measur-
able space, i.e. a set � equipped with σ -algebra U of subsets and a countably additive
measure ν on U . A typical example is when � is a bounded domain in R

n, equipped with
the Lebesgue measure.

DEFINITION 2.9. A map ϕ :� � Y is called strongly measurable if there exists a se-
quence of step multivalued maps ϕn :� � Y such that dH (ϕn(ω),ϕ(ω))→ 0, for a.a.
ω ∈ �, as n→∞. In the single-valued case, one can simply replace multivalued step
maps by single-valued step maps and dH (ϕn(ω),ϕ(ω)) by ‖ϕn(ω)− ϕ(ω)‖.

A map ϕ :� � Y is called measurable if {ω ∈� | ϕ(ω)⊂ V } ∈ U , for each open V ⊂ Y .
A map ϕ :� � Y is called weakly measurable if {ω ∈ � | ϕ(ω) ⊂ V } ∈ U , for each

closed V ⊂ Y .

Obviously, if ϕ is strongly measurable, then it is measurable and if ϕ is measurable, then
it is also weakly measurable. If ϕ has compact values, then the notions of measurability and
weak measurability coincide. In separable Banach spaces Y , the notions of strong measur-
ability and measurability coincide for multivalued maps with compact values as well as for
single-valued maps (see [78, Theorem 1.3.1 on pp. 45–49]). If Y is a not necessarily sep-
arable Banach space, then a strongly measurable map ϕ :� � Y with compact values has
a single-valued strongly measurable selection (see, e.g., [58, Proposition 3.4(b) on pp. 25–
26]). Furthermore, if Y is a separable complete space, then every measurable ϕ :� � Y

has, according to the Kuratowski–Ryll-Nardzewski theorem (see, e.g., [22, Theorem 3.49
in Chapter I.3]), a single-valued measurable selection.

Now, let �= [0, a] be equipped with the Lebesgue measure and X, Y be Banach.

DEFINITION 2.10. A map ϕ : [0, a]×X � Y with nonempty, compact and convex values
is called u-Carathéodory (resp. l-Carathéodory, resp. Carathéodory) if it satisfies

(i) t � ϕ(t, x) is strongly measurable, for every x ∈X,
(ii) x � ϕ(t, x) is u.s.c. (resp. l.s.c., resp. continuous), for almost all t ∈ [0, a],
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(iii) ‖y‖Y � r(t)(1+‖x‖X), for every (t, x) ∈ [0, a]×X, y ∈ ϕ(t, x), where r : [0, a]→
[0,∞) is an integrable function.

For X =R
m and Y =R

n, one can state

PROPOSITION 2.4.
(i) Carathéodory maps are product-measurable (i.e. measurable as the whole (t, x) �

ϕ(t, x)), and
(ii) they possess a single-valued Carathéodory selection.

It need not be so for u-Carathéodory or l-Carathéodory maps. Nevertheless, for
u-Carathéodory maps, we have at least (again X =R

m and Y =R
n).

PROPOSITION 2.5. u-Carathéodory maps (in the sense of Definition 2.10) are weakly
superpositionally measurable, i.e. the composition ϕ(t, q(t)) admits, for every q ∈
C([0, a],Rm), a single-valued measurable selection. If they are still product-measurable,
then they are also superpositionally measurable, i.e. the composition ϕ(t, q(t)) is measur-
able, for every q ∈ C([0, a],Rm).

REMARK 2.1. If X,Y are separable Banach spaces and ϕ :X � Y is a Carathéodory
mapping, then ϕ is also superpositionally measurable, i.e. ϕ(t, q(t)) is measurable, for
every q ∈ C([0, a],X) (see [78, Theorem 1.3.4 on p. 56]). Under the same assumptions,
Proposition 2.4 can be appropriately generalized (see [73, Proposition 7.9 on p. 229 and
Proposition 7.23 on pp. 234–235]).

If ϕ :X � Y is only u-Carathéodory and X,Y are (not necessarily separable) Banach
spaces, then ϕ is weakly superpositionally measurable, i.e. ϕ(t, q(t)) admits a single-
valued measurable selection, for every q ∈ C([0, a],X) (see, e.g., [58, Proposition 3.5
on pp. 26–27] or [78, Theorem 1.3.5 on pp. 57–58]).

For more details, see [22,40,58,67,73,78].

2.3. Some further preliminaries

Assume we have again a diagram (see Definition 2.5)

X
p⇐� 


q−→ Y

where p :
 �⇒X is a Vietoris map and q :
 −→ Y is continuous.
Taking ϕ(x)= q(p−1(x)), for every x ∈X, and denoting as

Fix(p, q)= Fix(ϕ) := {
x ∈X | x ∈ ϕ(x)

}
,

C(p,q) := {
z ∈ 
 | p(z)= q(z)

}
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the sets of fixed points and coincidence points of the admissible pair (p, q), it is clear that
p(C(p,q))= Fix(p, q), and so

Fix(p, q) �= ∅ ⇐⇒ C(p,q) �= ∅.

The following Aronszajn–Browder–Gupta-type result (see [21, Theorem 3.15]; cf. [22,
Theorem 1.4]) is very important in order to say something about the topological structure
of Fix(ϕ).

PROPOSITION 2.6. Let X be a metric space, E a Fréchet space, {Uk} a base of open
convex symmetric neighbourhoods of the origin in E, and let ϕ :X � E be a u.s.c proper
map with compact values. Assume that there is a convex symmetric subset C of E and a
sequence of compact, convex-valued u.s.c. proper maps ϕk :X � E such that

(i) ϕk(x)⊂ ϕ(O1/k(x))+Uk , for every x ∈X, where

O1/k(x)=
{
y ∈X | d(x, y) < 1

k

}
,

(ii) for every k � 1, there is a convex, symmetric set Vk ⊂Uk ∩C such that Vk is closed
in E and 0 ∈ ϕ(x) implies ϕk(x)∩ Vk �= ∅,

(iii) for every k � 1 and every u ∈ Vk , the inclusion u ∈ ϕk(x) has an acyclic set of
solutions.

Then the set S = {x ∈X | ϕ(x)∩ {0} �= ∅} is compact and acyclic.

Now, let us assume that E is a Fréchet space, C is a convex subset of E, U is an open
subset of C, μ :B→[0,∞)S is a measure of noncompactness satisfying at least conditions
(μ1)–(μ5) in Proposition 2.3 (see Definitions 2.7 and 2.8).

If ϕ ∈ C(U,C), then Fix(ϕ) can be proved relatively compact. We can say more about
Fix(ϕ).

DEFINITION 2.11. Let (p, q) ∈ C(U,C). A nonempty, compact, convex set S ⊂ C is
called a fundamental set if:

(i) q(p−1(U ∩ S))⊂ S,
(ii) if x ∈ conv(ϕ(x)∪ S), then x ∈ S.

For a homotopy χ ∈C(U × [0,1],C), S ⊂ C is called fundamental if it is fundamental to
χ(., λ), for each λ ∈ [0,1].

PROPOSITION 2.7. Assume (p, q) ∈C(U,C).
(i) If S is a fundamental set for (p, q), then Fix(p, q)⊂ S.

(ii) Intersection of fundamental sets, for (p, q), is also fundamental, for (p, q).
(iii) The family of all fundamental sets for (p, q) is nonempty.
(iv) If S is a fundamental set for χ ∈ C(U × [0,1],C) and P ⊂ S, then the set

conv(χ((U ∩ S)× [0,1])∪ P) is also fundamental.

For more details, see [22,67], and the references therein.
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3. Applied fixed point principles

3.1. Lefschetz fixed point theorems

We start with the Lefschetz theory, because it is a base for our further investigation. More
precisely, the generalized Lefschetz number can be used for the definition of essential
classes in the Nielsen theory as well as the possible normalization property of the fixed
point index. We restrict ourselves only to the presentation of necessary facts.

Consider a multivalued map ϕ :X � X and assume that
(i) X is a (metric) ANR-space, e.g., a retract of an open subset of a convex set in a

Fréchet space,
(ii) ϕ is a compact (i.e. ϕ(X) is compact) composition of an Rδ-map p−1 :X � 
 and

a continuous (single-valued) map q :
→ X, namely ϕ = q ◦ p−1, where 
 is a
metric space.

Then an integer �(ϕ)=�(p,q), called the generalized Lefschetz number for ϕ ∈K(X),
is well-defined (see, e.g., [12; 22, Chapter I.6; 67]) and �(ϕ) �= 0 implies that

Fix(ϕ) := {
x ∈X | x ∈ ϕ(x)

} �= ∅.
Moreover, � is a homotopy invariant, namely if ϕ is compactly homotopic (in the same
class of maps) with ϕ̃ :X � X, then �(ϕ)=�(ϕ̃).

In order to define the generalized Lefschetz number, one should be familiar with the
elements of algebraic topology, in particular, of homology theory. Therefore, we only
briefly sketch this definition without proofs. For more details, we recommend [51,68] (in
the single-valued case) and [12,22,67] (in the multivalued case).

At first, we recall some algebraic preliminaries. In what follows, all vector spaces are
taken over Q. Let f :E→E be an endomorphism of a finite-dimensional vector space E.
If v1, . . . , vn is a basis for E, then we can write

f (vi)=
n∑

j=1

aij vj , for all i = 1, . . . , n.

The matrix [aij ] is called the matrix of f (with respect to the basis v1, . . . , vn). Let A =
[aij ] be an (n× n)-matrix; then the trace of A is defined as

∑n
i=1 aii . If f :E→ E is an

endomorphism of a finite-dimensional vector space E, then the trace of f , written tr(f ), is
the trace of the matrix of f with respect to some basis for E. If E is a trivial vector space
then, by definition, tr(f ) = 0. It is a standard result that the definition of the trace of an
endomorphism is independent of the choice of the basis for E.

Hence, let E = {Eq} be a graded vector space of a finite type.
If f = {fq} is an endomorphism of degree zero of such a graded vector space, then the

(ordinary) Lefschetz number λ(f ) of f is defined by

λ(f )=
∑
q

(−1)q tr(fq).
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Let f :E→E be an endomorphism of an arbitrary vector space E. Denote by f n :E→
E the nth iterate of f and observe that the kernels

kerf ⊂ kerf 2 ⊂ · · · ⊂ kerf n ⊂ · · ·
form an increasing sequence of subspaces of E. Let us now put

N(f )=
⋃
n

kerf n and Ẽ =E/N(f ).

Clearly, f maps N(f ) into itself and, therefore, induces the endomorphism f̃ : Ẽ→ Ẽ on
the factor space Ẽ =E/N(f ).

Let f :E→ E be an endomorphism of a vector space E. Assume that dim Ẽ <∞. In
this case, we define the generalized trace Tr(f ) of f by putting Tr(f )= tr(f̃ ).

LEMMA 3.1. Let f :E→E be an endomorphism. If dimE <∞, then Tr(f )= tr(f ).

For the proof, see [22].
Let f = {fq} be an endomorphism of degree zero of a graded vector space E = {Eq}.

We say that f is a Leray endomorphism if the graded vector space Ẽ = {Ẽq} is of finite
type. For such an f , we define the (generalized) Lefschetz number �(f ) of f by putting

�(f )=
∑
q

(−1)q Tr(fq).

It is immediate from Lemma 3.1 that

LEMMA 3.2. Let f :E → E be an endomorphism of degree zero, i.e., f = {fq} and
fq :Eq → Eq is a linear map. If E is a graded vector space of finite type, then �(f ) =
λ(f ).

Now, the Lefschetz number will be defined for admissible compact mappings. For our
needs in the sequel, it is enough to consider only the compact compositions of Rδ-maps and
continuous single-valued maps as above (by which Lefschetz sets simplify into Lefschetz
numbers). Let ϕ :E � E be an admissible compact map and (p, q)⊂ ϕ be a selected pair
of ϕ. Then the induced homomorphism q∗ ◦ p−1∗ :H∗(E)→ H∗(E) is an endomorphism
of the graded vector space H∗(E) into itself. So, we can define the Lefschetz number
�(p,q) of the pair (p, q) by putting �(p,q)=�(q∗ ◦p−1∗ ), provided the Lefschetz num-
ber �(q∗ ◦ p−1∗ ) is well-defined.

It allows us to define the Lefschetz set � of ϕ as follows:

�(ϕ)= {
�(p,q) | (p, q)⊂ ϕ

}
.

In what follows, we say that the Lefschetz set �(ϕ) of ϕ is well-defined if, for every
(p, q)⊂ ϕ, the Lefschetz number �(p,q) of (p, q) is defined.

Moreover, from the homotopy property of �, we get:
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LEMMA 3.3.
(i) If ϕ,ψ :E � E are compactly homotopic (ϕ ∼ψ), then: �(ϕ)∩�(ψ) �= ∅.

(ii) If ϕ :E � E is admissible and E is acyclic, then the Lefschetz set �(ϕ) is well-
defined and �(ϕ)= {1}.

It is useful to formulate

THEOREM 3.1 (Coincidence theorem). Let U be an open subset of a finite dimensional
normed space E. Consider the following diagram:

U
p⇐� 


q−→U

in which q is a compact map. Then the Lefschetz number �(p,q) of the pair (p, q), given
by the formula

�(p,q)=�
(
q∗ ◦ p−1∗

)
,

is well-defined, and �(p,q) �= 0 implies that p(y)= q(y), for some y ∈ 
.

Theorem 3.1 can be reformulated in terms of multivalued mappings as follows.
Let U ⊂ E be the same as in Theorem 3.1 and let ϕ :U � U be a compact, admissible

map, i.e., ϕ ∈K(U). We let �(ϕ)= {�(p,q) | (p, q)⊂ ϕ}, where �(p,q)=�(q∗ ◦p−1∗ ).
Then we have:

THEOREM 3.2.
(i) The set �(ϕ) is well-defined, i.e. for every (p, q) ⊂ ϕ, the generalized Lefschetz

number �(p,q) of the pair (p, q) is well-defined, and
(ii) �(ϕ) �= {0} implies that the set Fix(ϕ) := {x ∈U | x ∈ ϕ(x)} is nonempty.

Theorem 3.2 can be generalized, by means of the Schauder-like approximation technique
(for more details, see [22]), for compact admissible maps ϕ ∈K on ANR-spaces, e.g., on
retracts of open subsets of convex sets in Fréchet spaces, as follows.

THEOREM 3.3 (The Lefschetz fixed point theorem). Let X be an ANR-space, e.g., a
retract of an open subset U of a convex set in a Fréchet space. Assume, furthermore, that
ϕ ∈K(X). Then:

(i) the Lefschetz set �(ϕ) of ϕ is well-defined,
(ii) if �(ϕ) �= {0}, then Fix(ϕ) �= ∅.

REMARK 3.1. If admissible map ϕ ∈K(X) is a composition of an Rδ-map and a contin-
uous single-valued map, then �(ϕ) is an integer. If, in particular, X is an AR-space, then
�(ϕ)= 1.

REMARK 3.2. The definition of a generalized Lefschetz number for condensing maps is
far from to be obvious, and so it can not be used as a normalization property for the related
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fixed points index. Roughly speaking, it requires to assume additionally the existence of a
compact attractor or to impose some additional restrictions on the set X like to be a special
neighbourhood retract of a Fréchet space (cf. [68]).

3.2. Nielsen fixed point theorems

The standard Nielsen theory allows us to obtain the lower estimate of the number of fixed
points. More precisely, if f :X→ X is a compact (continuous) map on a (metric) ANR-
space X, then a nonnegative integer N(f ), called the Nielsen number of f , is defined such
that
• N(f ) � # Fix(f ) := card{x̂ ∈X | f (x̂)= x̂},
• N(f )=N(f̃ ), for any compact f̃ :X→X which is compactly homotopic to f , i.e. if

there is a compact map h :X× [0,1]→X such that h0 = f , h1 = f̃ , where ht (x) :=
h(x, t), for t ∈ [0,1].

Given a compact f :X→X on X ∈ANR, we say that x, y ∈ Fix(f ) are Nielsen related
if there exists a path u : [0,1] → X such that u(0) = x, u(1) = y, and u,f (u) are ho-
motopic keeping the endpoints fixed. Since the Nielsen relation is an equivalence, Fix(f )

splits into fixed point classes. Since the classes are open and f is compact, we have a finite
number of fixed point classes.

If, for a Nielsen class N ⊂ Fix(f ), we have ind(N , f ) �= 0, i.e. if the associated fixed
point index is nontrivial, then N is called essential. The Nielsen number N(f ) is then
defined to be the number of essential Nielsen classes. For more details, see, e.g., [77].

To compute N(f ) can be a difficult task. In the multivalued case, the situation is even
more delicate, because the above definition can not be directly generalized. Thus, we only
indicate this subtle definition again. Nevertheless, in the single-valued case, these defini-
tions are equivalent.

Consider a multivalued map ϕ :X � X and assume that
(i) X is a connected ANR-space, e.g., a connected retract of an open subset of a convex

set in a Fréchet space,
(ii) X has a finitely generated abelian fundamental group,

(iii) ϕ is a compact (i.e. ϕ(X) is compact) composition of an Rδ-map p−1 :X � 
 and
a continuous (single-valued) map q :
→ X, namely ϕ = q ◦ p−1, where 
 is a
metric space.

Then a nonnegative integer N(ϕ)=N(p,q),1 called the Nielsen number for ϕ ∈K, exists
(see [24] and [22, Chapter I.10] or [12]) such that N(ϕ) � #C(ϕ), where

#C(ϕ)= #C(p,q) := card
{
z ∈ 
 | p(z)= q(z)

}

and N(ϕ0)=N(ϕ1), for compactly homotopic maps ϕ0 ∼ ϕ1.

REMARK 3.3. Condition (ii) is satisfied, provided X is the torus T
n (π1(T

n)= Z
n) and it

can be avoided if X is compact and q = id is the identity (cf. [5]).

1We should write more correctly NH (ϕ)=NH (p,q), because it is in fact (mod H)-Nielsen number, as can be
seen below. For the sake of simplicity, we omit the index H in the following sections.
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REMARK 3.4 (Important). We have a counter-example in [24] (cf. [22, Example 10.1 in
Chapter I.10]) that, under the above assumptions (i)–(iii), the Nielsen number N(ϕ) is
rather the topological invariant for the number of essential classes of coincidences than of
fixed points. On the other hand, for a compact X and q = id, N(ϕ) gives even without (ii)
a lower estimate of the number of fixed points of ϕ (see [5]), i.e. N(ϕ) � # Fix(ϕ), where
Fix(ϕ) := card{x ∈X | x ∈ ϕ(x)}. We have conjectured in [38] that if ϕ = q ◦p−1 assumes
only simply connected values, then also N(ϕ) � # Fix(ϕ).

The following sketch demonstrates how subtle is the definition of the Nielsen number
for multivalued maps. Let

X
p0⇐� 


q0−→ Y and X
p1⇐� 


q1−→ Y

be two admissible maps.
If (p0, q0) ∼ (p1, q1), i.e. if (p0, q0) is admissibly homotopic to (p1, q1) (see Defin-

ition 2.6), and h :Y → Z is a continuous map, then we write (p0, hq0) ∼ (p,hq). We

say that a multivalued map X
p⇐� 


q−→ Y represents a single-valued map ρ :X→ Y if
q = pρ. Now, we assume that X = Y and we are going to estimate the cardinality of the
coincidence set

C(p,q) := {
z ∈ 
 | p(z)= q(z)

}
.

We begin by defining a Nielsen-type relation on C(p,q). This definition requires the fol-

lowing conditions on X
p⇐� 


q−→ Y :
(i′) X, Y are connected, locally contractible metric spaces (observe that then they

admit universal coverings),
(iii′) p :
 �⇒X is a Vietoris map,
(iii′′) for any x ∈ X, the restriction q1 = q|p−1(x) :p−1(x)→ Y admits a lift q̃1 to the

universal covering space (pY : Ỹ → Y):

Ỹ

pY

p−1(x)

q̃1

q1
Y

Let us note that the following implications hold: (i)⇒ (i′), (iii)⇒ (iii′), (iii′′).
Consider a single-valued map ρ :X→ Y between two spaces admitting universal cov-

erings pX : X̃⇒ X and pY : X̃⇒ Y . Let θX = {α : X̃→ X̃ | pXα = pX} be the group of
natural transformations of the covering pX . Then the map ρ admits a lift ρ̃ : X̃→ Ỹ . We
can define a homomorphism ρ̃! : θX→ θY by the equality

q̃(α · x̃)= q̃!(α)̃q(̃x)
(
α ∈ θX, x̃ ∈ X̃

)
.
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It is well known that there is an isomorphism between the fundamental group π1(X)

and θX which may be described as follows. We fix points x0 ∈ X, x̃ ∈ X̃ and a loop
ω : I → X based at x0. Let ω̃ denote the unique lift of ω starting from x̃0. We subordi-
nate to [ω] ∈ π1(X,x0) the unique transformation from θX sending ω̃(0) to ω̃(1). Then
the homomorphism ρ̃! : θX → θY corresponds to the induced homomorphism between the
fundamental groups ρ# :π1(X,x0)→ π1(Y,ρ(x0)).

It can be shown that, under the assumptions (i′), (iii′), (iii′′), a multivalued map (p, q)

admits a lift to a multivalued map between the universal coverings. These lifts will split
the coincidence set C(p,q) into Nielsen classes. Besides that the pair (p, q) induces a
homomorphism θX→ θY giving the Reidemeister set.

We start with the following lemma.

LEMMA 3.4. Suppose we are given Y , a locally contractible metric space, 
 a metric
space, 
0 ⊂ 
 a compact subspace, q :
→ Y , q̃0 :
0 → Y continuous maps for which
the diagram


0

i

q̃0

Ỹ

pY



q

Y

commutes (here, pY : Ỹ → Y denotes the universal covering). In other words, q̃0 is a partial
lift of q . Then q̃0 admits an extension to a lift onto an open neighbourhood of 
0 in 
.

Consider again a multivalued map X
p←− 


q−→ Y satisfying (i′). Define (a pullback)


̃ = {
(̃x, z) ∈ X̃× 
 | pX(̃x)= p(z)

}
.

Now, we can apply Lemma 3.4 to the multivalued map X̃
p̃⇐� 
̃

qp
−→ Y , and so we get a
lift q̃ : 
̃→ Ỹ such that the diagram

X̃

pX

p̃


̃

p


q̃

Ỹ

pY

X
p



q

Y

is commutative, where p̃(̃x, z)= x̃ and p
(̃x, z)= z. Let us note that the lift p̃ is given by
the above formula, but q̃ is not precised. We fix such a q̃ .
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Observe that p :
 �⇒ X and the lift p̃ induce a homomorphism p̃! : θX → θ
 by the
formula p̃!(α)(̃x, z)= (αx̃, z). It is easy to check that the homomorphism p̃! is an isomor-
phism (any natural transformation of 
̃ is of the form α · (̃x, z) = (αx̃, z)) and that p̃! is
inverse to p̃!. Recall that the lift q̃ defines a homomorphism q̃! : θ
 → θY by the equality
q̃(λ)= q̃!(λ)̃q .

In the sequel, we will consider the composition q̃!p̃! : θX→ θY .

LEMMA 3.5. Let a multivalued map (p, q) satisfying (i′) represent a single-valued map
ρ, i.e. q = ρp. Let ρ̃ be the lift of ρ which satisfies q̃ = ρ̃p̃. Then ρ̃!p̃! = ρ!.

Now, we are in a position to define the Nielsen classes. Consider a multivalued self-

map X
p⇐� 


q−→ X satisfying (i′). By the above consideration, we have a commutative
diagram


̃

p


p̃,̃q

X̃

pX



p,q

X

Following the single-valued case (see, e.g., [77]), we can prove (see [24] and cf. [22]) the
following lemma.

LEMMA 3.6.
• C(p,q)=⋃

α∈θX p
C(p̃,αq̃),
• if p
C(p̃,αq̃) ∩ p
C(p̃,βq̃) is not empty, then there exists a γ ∈ θX such that β =

γ ◦ α ◦ (̃q!p̃!γ )−1,
• the sets p
C(p̃,αq̃) are either disjoint or equal.

Define an action of θX on itself by the formula γ ◦α = γ α(̃q!p!γ ). The quotient set will
be called the set of Reidemeister classes and will be denoted by R(p,q). The above lemma
defines an injection:

set of Nielsen classes→R(p,q),

given by A→[α] ∈R(p,q), where α ∈ θX satisfies A= p
(C(p̃,αq̃)).
One can prove that our definition does not depend on q̃ .
Let us recall that the homomorphism q̃! : θ
 → θY is defined by the relation q̃α = q̃!(α)̃q ,

for α ∈ θ
 . If q̃ ′ = γ q̃ is another lift of q (γ̃ ∈ θ
), then the induced homomorphism
q̃ ′! : θ
 → θY is defined by the relation q̃ ′α = q̃ ′! (α)̃q

′.
One can also show that the Reidemeister sets obtained by different lifts of q are canoni-

cally isomorphic. That is why we write R(p,q) omitting tildes.

PROPOSITION 3.1. If X × [0,1] p←− 

q−→ Y is a homotopy satisfying (i′), (iii′), (iii′′),

then the homomorphism q̃t !p̃!t : θX→ θY does not depend on t ∈ [0,1], where the lifts used
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in the definitions of these homomorphisms are restrictions of some fixed lifts p, q of the
given homotopy.

REMARK 3.5. If (p, q) represents a single-valued map ρ :X→ Y (q = ρp), then q̃!p̃!
equals ρ̃! (here the chosen lifts satisfy q̃ = ρ̃p̃).

Let us point out that the above theory can be modified into the relative case (i.e. modulo
a normal subgroup H ⊂ θX). The index H will denote the relative modification.

Assuming X = Y , we can give

LEMMA 3.7.
(i) C(p,q)=⋃

α∈θXH
p
HC(p̃H ,αq̃H ),

(ii) if p
HC(p̃H ,αq̃H ) ∩ p
HC(p̃H ,βq̃H ) is not empty, then there exists a γ ∈ θXH

such that β = γ ◦ α ◦ (̃qH !p̃!Hγ )−1,
(iii) the sets p
HC(p̃H ,αq̃H ) are either disjoint or equal.

Hence, we get the splitting of C(p,q) into the H -Nielsen classes and the natural in-
jection from the set of H -Nielsen classes into the set of Reidemeister classes modulo H ,
namely, RH(p,q).

Now, we would like to exhibit the classes which do not disappear under any compact
(admissible) homotopy. For this, we need however (besides (i′), (iii′), (iii′′)) the following

two assumptions on the pair X
p⇐� 


q−→ Y :
(i′′) Let X be a connected ANR-space, e.g., a connected retract of an open subset of

(a convex set in) a Fréchet space, p is a Vietoris map and cl(q(
))⊂X is compact,
i.e. q is a compact map.

(ii′) There exists a normal subgroup H ⊂ θX of a finite index satisfying q̃!p̃!(H)⊂H .
Let us note that the following implications hold: (i), (ii)⇒ (ii′), (i), (iii)⇒ (i′′).

DEFINITION 3.1. We call a pair (p, q) N -admissible if it satisfies (i′), (i′′), (ii′), (iii′),
(iii′′) (⇐ (i)–(iii)).

Let us recall that, under the assumption (ii′), the Lefschetz number �(p,q) ∈Q is de-
fined (see Section 3.1). This is a homotopy invariant (with respect to the homotopies satis-
fying (ii′)) and �(p,q) �= 0 implies C(p,q) �= ∅ (cf. Section 3.1).

Let A = p
HC(p̃,αq̃) be a Nielsen class of an N -admissible pair (p, q). We say that
(the N -Nielsen class) A is essential if �(p̃,αq̃) �= 0. This definition it correct, i.e. does
not depend on the choice of α.

DEFINITION 3.2. Let (p, q) be an N -admissible multivalued map (for a subgroup
H ⊂ θX). We define the Nielsen number modulo H as the number of essential classes
in θXH

. We denote this number by NH(p,q).

The following theorem is an easy consequence of the homotopy invariance of the Lef-
schetz number.
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THEOREM 3.4. NH(p,q) is a homotopy invariant (with respect to N -admissible homo-
topies

X× [0,1] p⇐� 

q−→X).

Moreover, (p, q) has at least NH(p,q) coincidences.

The following theorem shows that the above definition is consistent with the classical
Nielsen number for single-valued maps.

THEOREM 3.5. If an N -admissible map (p, q) is N -admissibly homotopic to a pair
(p′, q ′), representing a single-valued map p (i.e. q ′ = ρp′), then (p, q) has at least
NH(ρ) coincidences (here H denotes also the subgroup of π1X corresponding to the given
H ⊂ θX in (ii′)).

Although in the general case the theory requires special assumptions on the considered
pair (p, q), in the case of multivalued self-maps on a torus it is enough to assume that this
pair satisfies only (i′′), i.e. it is admissible. This is due to the fact that any pair satisfying
(i′′) is homotopic to a pair representing a single-valued map.

THEOREM 3.6. Any multivalued self-map (p, q) on the torus satisfying (i′′) is admissibly
homotopic to a pair representing a single-valued map.

THEOREM 3.7. Let T
n p⇐� 


q−→ T
n be such that p is a Vietoris map. Let ρ : Tn→ T

n

be a single-valued map representing a multivalued map homotopic to (p, q) (according to
Theorem 3.6, such a map always exists). Then (p, q) has at least N(ρ) coincidences.

REMARK 3.6. Let us also recall that, on the torus T
n, N(ρ) = |�(ρ)| = |det(I − A)|,

where A is an integer (n× n)-matrix representing the induced homotopy homomorphism
ρ# :π1T

n→ π1T
n. Moreover, if det(I −A) �= 0, then

card
(
π1

(
T
n
)
/ Im(ρ#)

)= ∣∣det(I −A)
∣∣.

In particular, for ρ = id, we have

N(id)= ∣∣�(id)
∣∣= ∣∣χ(Tn

)∣∣= |detO| = 0,

while for ρ =− id, we have N(− id)= |�(− id)| = |det 2I | = 2n.
For more details, see [22,12].

3.3. Fixed point index theorems

Consider a multivalued map ϕ :X � X and assume, similarly as in Section 3.1, that
(i) X is ANR-space, e.g., a retract of an open subset of a convex set in a Fréchet space,
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(ii) ϕ is a compact composition of an Rδ-map � :X � Y and a continuous single-
valued map f :Y →X, namely ϕ = f ◦�, where Y is an ANR-space.

Let D ⊂X be an open subset of X with no fixed points of ϕ on its boundary ∂D. Then
and integer ind(ϕ,X,D), called the fixed point index over X w.r.t. D exists such that the
following proposition holds (see, e.g., [12,22,44]).

PROPOSITION 3.2. Let ϕ :X � X be a map satisfying (i), (ii). Then ind(ϕ,X,D) ∈ Z is
well-defined satisfying the following properties:
• (Existence) If ind(ϕ,X,D) �= 0, then Fix(ϕ) �= ∅.
• (Localization) If D1 ⊂D are open subsets of X such that Fix(ϕ)⊂D1 ⊂D, then

ind(ϕ,X,D)= ind(ϕ,X,D1).

• (Additivity) If Dj , j = 1, . . . , n, are open disjoint subsets of D and all fixed points
of ϕ|D are located in

⋃n
j=1 Dj , then ind(ϕ,X,Dj ), j = 1, . . . , n, are well-defined

satisfying

ind(ϕ,X,D)=
n∑

j=1

ind(ϕ,X,Dj ).

• (Homotopy) If there is a compact homotopy χ :X× [0,1]� X (in the same class of
maps under consideration) with χ(·,0)= ϕ, χ(·,1)= ψ , and ∂D is fixed point free
w.r.t. χ , then

ind(ϕ,X,D)= ind(ψ,X,D).

• (Multiplicity) If ψ : X̃ � X̃ satisfies (i), (ii) and an open D̃ ⊂ X̃ is fixed point free
w.r.t. ψ , then

ind
(
ϕ ×ψ,X× X̃,D× D̃

)= ind(ϕ,X,D) · ind
(
ψ, X̃, D̃

)
.

• (Contraction) If X′ ⊂ X are ANR-spaces such that ϕ(X)⊂ X′ and ϕ|X′ satisfies (ii)
with Fix(ϕ|X′)∩ ∂(D ∩X′)= ∅, then

ind(ϕ,X,D)= ind
(
ϕ|X′,X′,D ∩X′

)
.

• (Normalization) If X =D, then

ind(ϕ,X,D)= ind(ϕ,X,X)=�(ϕ).

Because of possible applications, it is very useful to formulate sufficiently general con-
tinuation principles.

For compact admissible maps from open subsets of a neighbourhood retract of a Fréchet
space E into E, the fixed point index was just indicated.
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Now, we will apply Proposition 3.2 to formulating the appropriate continuation princi-
ples. We restrict ourselves only to a particular class of admissible maps, namely to Rδ-maps
� :D � E (written here � ∈ J (D,E)), i.e. u.s.c. maps with Rδ-values.

We often need to study fixed points for maps defined on sufficiently fine sets (possibly
with an empty interior), but with values out of them. Making use of the previous results,
we are in position to make the following construction.

Assume that X is a retract of a Fréchet space E and D is an open subset of X. Let
� ∈ J (D,E) be locally compact, Fix(�) be compact and let the following condition hold:

∀x ∈ Fix(�) ∃Ux � x, Ux is open in D such that �(Ux)⊂X. (A)

The class of locally compact J -maps from D to E with the compact fixed point set and
satisfying (A) will be denoted by the symbol JA(D,E). We say that �,� ∈ JA(D,E)

are homotopic in JA(D,E) if there exists a homotopy H ∈ J (D × [0,1],E) such that
H(·,0)=�, H(·,1)=� , for every x ∈D, there is an open neighbourhood Vx of x in D

such that H |Vx×[0,1] is compact, and

∀x ∈D ∀t ∈ [0,1][
x ∈H(x, t)⇒∃Ux � x, Ux is open in D, H

(
Ux × [0,1])⊂X

]
. (AH )

Note that the condition (AH ) is equivalent to the following one:
• If {xj }j�1 ⊂D converges to x ∈H(x, t), for some t ∈ [0,1], then H({xj }× [0,1])⊂

X, for j sufficiently large.
Let � ∈ JA(D,E). Then Fix(�) ⊂⋃{Ux | x ∈ Fix(�)} ∩ V =:D′ ⊂D and �(D′) ⊂

X, where V is a neighbourhood of the set Fix(�) such that �|V is compact (by the com-
pactness of Fix(�) and local compactness of �) and Ux is a neighbourhood of x as in (A).
Define

IndA(�,X,D)= ind
(
�|D′ ,X,D′

)
,

where ind(�|D′ ,X,D′) is defined as in Proposition 3.2. This definition is independent of
the choice of D′.

In the following theorem, we give some properties of IndA which will be used in the
proof of the continuation Theorem 3.8. The simple proof is omitted.

PROPOSITION 3.3.
(i) (Existence) If IndA(�,X,D) �= 0, then Fix(�) �= ∅.

(ii) (Localization) If D1 ⊂ D are open subsets of a retract X of a space E, � ∈
JA(D,E) is compact, and Fix(�) is a compact subset of D1, then

IndA(�,X,D)= IndA(�,X,D1).

(iii) (Homotopy) If H is a homotopy in JA(D,E), then

IndA
(
H(·,0),X,D

)= IndA
(
H(·,1),X,D

)
.
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(iv) (Normalization) If � ∈ J (X) is a compact map, then IndA(�,X,X)= 1.

THEOREM 3.8 (Continuation principle). Let X be a retract of a Fréchet space E, D be
an open subset of X and H be a homotopy in JA(D,E) such that

(i) H(·,0)(D)⊂X,
(ii) there exists H ′ ∈ J (X) such that H ′|D =H(·,0), H ′ is compact and Fix(H ′)∩ (X \

D)= ∅.
Then there exists x ∈D such that x ∈H(x,1).

PROOF. Applying the localization property (ii), we obtain

IndA
(
H(·,0),X,D

)= IndA
(
H(·,0),X,X

)
.

By the normalization property (iv), IndA(H(·,0),X,X)= 1. Thus, by the homotopy prop-
erty (iii), IndA(H(·,0),X,D)= IndA(H(·,1),X,D)= 1, which implies by (i) that H(·,1)
has a fixed point. �

COROLLARY 3.1. Let X be a retract of a Fréchet space E and H be a homotopy in
JA(X,E) such that H(x,0) ⊂ X, for every x ∈ X, and H(·,0) is compact. Then H(·,1)
has a fixed point.

COROLLARY 3.2. Let X be a retract of a Fréchet space E,D be an open subset of X and
H be a homotopy in JA(D,E). Assume that H(x,0) = x0, for every x ∈ D. Then there
exists x ∈D such that x ∈H(x,1).

COROLLARY 3.3. Let X be a retract of a Fréchet space E and � ∈ J (X) be compact.
Then � has a fixed point.

REMARK 3.7. If E = X is a Banach space, then it follows from Proposition 3.2 that the
“pushing” condition (AH ), related to JA(D,E), can be reduced to Fix(ϕ)∩ ∂D �= ∅.

Some applications motivate us to consider weaker than (AH ) condition on H . Unfor-
tunately, we cannot use the fixed point index technique described above. The proof of the
following theorem is based on a Schauder-type approximation technique (for more details,
see [19,22]).

THEOREM 3.9 (Continuation principle). Let X be a closed, convex subset of a Fréchet
space E and let H ∈ J (X× [0,1],E) be compact. Assume that

(i) H(x,0)⊂X, for every x ∈X,
(ii) for any (x, t) ∈ ∂X × [0,1) with x ∈H(x, t), there exist open neighbourhoods Ux

of x in X and It of t in [0,1) such that H((Ux ∩ ∂X)× It )⊂X.
Then there exists a fixed point of H(·,1).

REMARK 3.8. Note that the convexity of X in Theorem 3.9 is essential only in the infinite-
dimensional case. For the proof, we have namely to intersect X with a finite-dimensional
subspace L.
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Now, we would like to consider condensing maps. Hence, let this time ϕ :X � X be a
multivalued map such that

(I) X is a closed, convex subset of a Fréchet space E,
(II) ϕ is a condensing composition of an Rδ-map � :X � Y and a continuous single-

valued map f :Y →X, namely ϕ = f ◦�, where Y is an ANR-space.
Assume that Fix(ϕ) ∩ ∂D �= ∅, for some open subset D ⊂X. Since ϕ is condensing, it

has a nonempty compact fundamental set T (see Definition 2.11 and Proposition 2.7(iii)).
Let ind(ϕ,X,D) = 0, whenever Fix(ϕ) = ∅. Since T is an AR-space, we may choose a
retraction r :X→ T in order to define the fixed point index, for the composition

ϕ̃ :D ∩ T
�
� Y

r◦f
� T ,

by putting

ind(ϕ,X,D) := ind
(
ϕ̃, X̃,D ∩ T

)
,

where ind on the right-hand side is defined as in Proposition 3.2. This correct definition is
independent of the chosen fundamental set, and so the index has all the appropriate prop-
erties as in Proposition 3.2, but (see Remark 3.2 and cf. [37]) the normalization property.
Instead of it, a weak normalization property can be formulated as follows:
• (Weak normalization) If f in ϕ = f ◦� is a constant map, i.e. f (y) = a /∈ ∂D, for

each y ∈ Y , then

ind(ϕ,X,D)=
{

1, for a ∈D,
0, for a /∈D.

As already pointed out above, in the applications of the fixed point theory, we often need
to consider maps with values in a Fréchet space and not in a closed convex set. We will
also extend our theory to this case.

Again, let E be a Fréchet space and X be a closed and convex subset of E. Let U ⊂X

be open and consider the map ϕ ∈ JA(U,E), where the symbol JA(U,E) is again re-
served for J -maps from U to E satisfying condition (A). The notion of homotopy in JA
will be understood analogously. Thus, Fix(ϕ) is compact and ϕ has a compact fundamen-
tal set T (see Section 2.3). Set IndA(ϕ,X,U) = 0, whenever Fix(ϕ) = ∅. Otherwise, let
x1, . . . , xn ∈ Fix(ϕ) such that Fix(ϕ) ⊂⋃n

i=1 Uxi =: V , where Uxi are neighbourhoods
of xi such that Uxi ⊂ U and satisfy condition (A). Then ϕ|V :V � X is a J -map with
compact fundamental set T and satisfies Fix(ϕ)∩ ∂V = ∅. Thus, we can define

IndA(ϕ,X,U) := ind(ϕ|V ,X,V ).

The independence of this definition of the chosen set V follows from the additivity
property. Furthermore, if ϕ :U � X has a compact fundamental set and Fix(ϕ)∩ ∂U = ∅,
then IndA(ϕ,X,U) is defined and

IndA(ϕ,X,U)= ind(ϕ,X,U).
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The following proposition easily follows from the above argumentation.

PROPOSITION 3.4.
(i) (Existence) If IndA(ϕ,X,U) �= 0, then Fix(ϕ) �= ∅.

(ii) (Additivity) Let Fix(ϕ) ⊂ U1 ∪ U2, where U1, U2 are open disjoint subsets of U .
Then

IndA(ϕ,X,U)= IndA(ϕ|U1 ,X,U1)+ IndA(ϕ|U2,X,U2).

(iii) (Homotopy) Let ψ :U � E be homotopic in JA to the map ϕ. Assume that the
homotopy χ :U × [0,1]� E has a compact fundamental set and the set

� := {
(x, t) ∈U × [0,1] | x ∈ χ(x, t)

}

is compact. Then

IndA(ϕ,X,U)= IndA(ψ,X,U).

(iv) (Weak normalization) Assume that ϕ :U →E is a constant map ϕ(x)= a ∈E, for
all x ∈U . Then

IndA(ϕ,X,U)=
{

1, for a ∈U ,
0, for a /∈U .

Using Proposition 3.4, we can easily formulate a continuation principle which is conve-
nient for various applications.

THEOREM 3.10 (Continuation principle). Let X be a closed, convex subset of a Fréchet
space E, let U ⊂X be open and let χ :U × [0,1]� E be a homotopy in JA such that �
(see (iii) above) is compact. Let χ be condensing and assume that there is a condensing
ϕ ∈ J (X) such that ϕ|U = χ(·,0) and Fix(ϕ)∩ (X \U)= ∅. Then χ(·,1) has a fixed point.

PROOF. The proof follows, in view of the existence property (i) in Proposition 3.4, from
the following equations:

IndA
(
χ(·,1),X,U

)= IndA
(
χ(·,0),X,U

)
,

by the homotopy property (iii),

IndA
(
χ(·,0),X,U

)= IndA(ϕ|U ,X,U)= IndA(ϕ,X,X),

by the additivity property (ii). Finally, we see that

IndA(ϕ,X,X)= ind(ϕ,X,X)= 1. �
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COROLLARY 3.4. Let χ :X × [0,1] � E be a condensing homotopy in JA such that
χ(x,0)⊂X, for every x ∈X. Then χ(·,1) has a fixed point.

REMARK 3.9. If E =X is a Banach space, then it follows from the properties of the above
fixed point index ind(χ,X,D) that the “pushing” condition (AH ), related to JA(D,E), can
be reduced to Fix(χ)∩ ∂D �= ∅. If, in particular, U ⊂E is an open convex subset such that
χ(·,0)= ϕ|U :U � U , then the same is true even without requiring Fix(ϕ)∩ (X \U)= ∅.

4. General methods for solvability of boundary value problems

4.1. Continuation principles to boundary value problems

In this part, fixed point principles in Section 3 will be applied to differential equations and
inclusions.

At first, we are interested in the existence problems for ordinary differential equations
and inclusions in Euclidean spaces on not necessarily compact intervals. Let us start with
some definitions.

Let J be an interval in R. We say that a map x :J →R
n is locally absolutely continuous

if x is absolutely continuous on every compact subset of J . The set of all locally absolutely
continuous maps from J to R

n will be denoted by ACloc(J,R
n).

Consider the inclusion

ẋ ∈ F(t, x), (4.1)

where F is a set-valued u-Carathéodory map, i.e. it has i.a. the following properties:
• the set of values of F is nonempty, compact and convex, for all (t, x) ∈ J ×R

n,
• the map F(t, ·) is u.s.c., for almost all t ∈ J ,
• the map F(·, x) is measurable, for all x ∈R

n.
By a solution of the inclusion (4.1), we mean a locally absolutely continuous function x

such that (4.1) holds, for almost all t ∈ J .
We recall two known results which are needed in the sequel.

PROPOSITION 4.1 (Cf. [42, Theorem 0.3.4] and Lemma 4.4 below). Assume that the se-
quence of absolutely continuous functions xk :K→R

n (K is a compact interval) satisfies
the following conditions:
• the set {xk(t) | k ∈N} is bounded, for every t ∈K ,
• there is an integrable function (in the sense of Lebesgue) α :K→R such that

∣∣ẋk(t)∣∣ � α(t), for a.a. t ∈K and for all k ∈N.

Then there exists a subsequence (denoted just the same) {xk} convergent to an absolutely
continuous function x :K→R

n in the following sense:
(i) {xk} uniformly converges to x, and

(ii) {ẋk} weakly converges in L1(K,Rn) to ẋ.
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The second one is the well-known (see, e.g., [22, Theorem 1.33 in Chapter I.1]) Mazur
theorem.

The following result is crucial.

PROPOSITION 4.2. Let G :J ×R
n ×R

m � R
n be a u-Carathéodory map and let S be a

nonempty subset of ACloc(J,R
n). Assume that

(i) there exists a subset Q of C(J,Rn) such that, for any q ∈Q, the set T (q) of all
solutions of the boundary value problem

{
ẋ(t) ∈G

(
t, x(t), q(t)

)
, for a.a. t ∈ J ,

x ∈ S
(4.2)

is nonempty,
(ii) T (Q) is bounded in C(J,Rn),

(iii) there exists a locally integrable function α :J →R such that

∣∣G(
t, x(t), q(t)

)∣∣= sup
{|y| | y ∈G

(
t, x(t), q(t)

)}
� α(t), a.e. in J,

for any pair (q, x) ∈ 
T , where 
T denotes the graph of T .
Then T (Q) is a relatively compact subset of C(J,Rn). Moreover, under the assumptions
(i)–(iii), the multivalued operator T :Q � S is u.s.c. with compact values if and only if the
following condition is satisfied:

(iv) given a sequence {(qk, xk)} ⊂ 
T , if {(qk, xk)} converges to (q, x) with q ∈Q, then
x ∈ S.

PROOF. For the relative compactness of T (Q), it is sufficient to show that all elements of
T (Q) are equicontinuous.

By (iii), for every x ∈ T (Q), we have |ẋ(t)|� α(t), for a.a. t ∈ J , and

∣∣x(t1)− x(t2)
∣∣ �

∣∣∣∣
∫ t2

t1

α(s)ds

∣∣∣∣.
This implies an equicontinuity of all x ∈ T (Q).

We show that the set 
T is closed (cf. Section 2.1).
Let 
T ⊃ {(qk, xk)} → (q, x). Let K be an arbitrary compact interval such that α is

integrable on K . By conditions (ii) and (iii), the sequence {xk} satisfies the assumptions of
Proposition 4.1.

Thus, there exists a subsequence (denoted just the same) {xk}, uniformly convergent to
x on K (because the limit is unique) and such that {ẋk} weakly converges to ẋ in L1.
Therefore, ẋ belongs to the weak closure of the set conv{ẋm |m � k}, for every k � 1. By
the mentioned Mazur theorem, ẋ also belongs to the strong closure of this set. Hence, for
every k � 1, there is zk ∈ conv{ẋm |m � k} such that ‖zk − ẋ‖L1 � 1/k. This implies that
there exists a subsequence zkl → ẋ a.e. in K .

Let s ∈K be such that

G(s, ·, ·) is u.s.c., lim
l→∞ zkl (s)= ẋ(s), ẋk(s) ∈G

(
s, xk(s), qk(s)

)
.



Topological principles for ordinary differential equations 31

Let ε > 0. There is δ > 0 such that G(s, z,p)⊂Nε(G(s, x(s), q(s))), whenever |x(s)−
z|< δ and |q(s)−p|< δ. But we know that there exists N � 1 such that |x(s)−xm(s)|< δ

and |q(s)− qm(s)|< δ, for every m � N . Hence,

ẋk(s) ∈G
(
s, xk(s), qk(s)

)⊂Nε

(
G
(
s, x(s), q(s)

))
.

By the convexity of G(s, x(s), q(s)), for kl � N , we have

zkl (s) ∈Nε

(
G
(
s, x(s), q(s)

))
.

Thus, ẋ(s) ∈Nε(G(s, x(s), q(s))), for every ε > 0. This implies

ẋ(s) ∈G
(
s, x(s), q(s)

)
.

Since K was arbitrary, ẋ(t) ∈G(t, x(t), q(t)), a.e. in J . �

We can now state one of the main results of this subsection.

THEOREM 4.1. Consider the boundary value problem

{
ẋ(t) ∈ F

(
t, x(t)

)
, for a.a. t ∈ J ,

x ∈ S,
(4.3)

where J is a given real interval, F :J × R
n � R

n is a u-Carathéodory map and S is a
subset of ACloc(J,R

n).
Let G :J ×R

n ×R
n × [0,1]� R

n be a u-Carathéodory map (cf. Definition 2.10) such
that

G(t, c, c,1)⊂ F(t, c), for all (t, c) ∈ J ×R
n.

Assume that
(i) there exist a retract Q of C(J,Rn) and a closed bounded subset S1 of S such that

the associated problem

{
ẋ(t) ∈G

(
t, x(t), q(t), λ

)
, for a.a. t ∈ J ,

x ∈ S1
(4.4)

is solvable with an Rδ-set of solutions, for each (q,λ) ∈Q× [0,1],
(ii) there exists a locally integrable function α :J →R such that

∣∣G(
t, x(t), q(t), λ

)∣∣ � α(t), a.e. in J,

for any (q,λ, x) ∈ 
T , where T denotes the set-valued map which assigns to any
(q,λ) ∈Q× [0,1] the set of solutions of (4.4),

(iii) T (Q× {0})⊂Q,
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(iv) if Q � qj → q ∈Q, q ∈ T (q,λ), then there exists j0 ∈ N such that, for every j �
j0, θ ∈ [0,1] and x ∈ T (qj , θ), we have x ∈Q.

Then problem (4.3) has a solution.

PROOF. Consider the set

Q′ = {
y ∈ C

(
J,Rn+1) ∣∣ y(t)= (

q(t), λ
)
, q ∈Q, λ ∈ [0,1]}.

By Proposition 4.2, we obtain that the set-valued map T :Q × [0,1]� S1 is u.s.c., and
so it belongs to the class J (Q× [0,1],C(J,Rn)). Moreover, it has a relatively compact
image. Assumption (iv) implies that T is a homotopy in JA(Q,C(J,Rn)). Corollary 3.1 in
Section 3 now gives the existence of a fixed point of T (·,1). However, by the hypothesis,
it is a solution of (4.3). �

Note that the conditions (iii) and (iv) in the above theorem hold if S1 ⊂Q.

COROLLARY 4.1. Consider the boundary value problem (4.3).
Let G :J ×R

n ×R
n � R

n be a u-Carathéodory map such that

G(t, c, c)⊂ F(t, c), for all (t, c) ∈ J ×R
n.

Assume that
(i) there exists a retract Q of C(J,Rn) such that the associated problem

{
ẋ(t) ∈G

(
t, x(t), q(t)

)
, for a.a. t ∈ J ,

x ∈ S ∩Q
(4.5)

has an Rδ-set of solutions, for each q ∈Q,
(ii) there exists a locally integrable function α :J →R such that

∣∣G(
t, x(t), q(t)

)∣∣ � α(t), a.e. in J,

for any (q, x) ∈ 
T ,
(iii) T (Q) is bounded in C(J,Rn) and T (Q)⊂ S.

Then problem (4.3) has a solution.

Making use of the special case of Theorem 3.3 and modifying appropriately the proof
of Theorem 4.1, we can easily obtain the following:

COROLLARY 4.2. Consider problem (4.3) and assume that all the assumptions of Corol-
lary 4.1 hold with the convex closed set Q and nonempty acyclic sets of solutions (4.5).
Then the problem (4.3) has a solution.

Let us note that in applications solution sets are, in fact, Rδ-sets.
If, in particular, J = [a, b] (i.e. compact), then Theorem 4.1 can be easily reformulated

(see Remark 3.7) as follows.
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COROLLARY 4.3. Consider the boundary value problem (4.3), where J = [a, b] is a com-
pact interval, F :J ×R

n � R
n is a u-Carathéodory map and S ⊂AC(J,Rn).

Let G :J ×R
n ×R

n × [0,1]� R
n be a u-Carathéodory map such that G(t, c, c,1)⊂

F(t, c), for all (t, c) ∈ J ×R
n. Assume that

(i) there exist a (bounded) retract Q of C(J,Rn) such that Q \ ∂Q is nonempty (open)
and a closed bounded subset S1 of S such that the associated problem (4.4) is solv-
able with an Rδ-set of solutions, for each (q,λ) ∈ Q × [0,1], and conditions (ii)
and (iii) in Theorem 4.1 hold true,

(ii) the solution map T (defined in condition (ii) of Theorem 4.1) has no fixed points on
the boundary ∂Q of Q, for every (q,λ) ∈Q× [0,1].

Then problem (4.3) has a solution.

REMARK 4.1. In the (single-valued) case of Carathéodory ODEs, we can only assume
in Theorem 4.1(i), Corollary 4.1(i), Corollary 4.2 and Corollary 4.3(i) that the related lin-
earized problems are uniquely solvable.

Since C(n−1)(J ) can be considered as a subspace of C(J,Rn), we can also apply the
previous results to nth-order scalar differential equations and inclusions. To solve an exis-
tence problem, one should check suitable a priori bounds for all the derivatives up to the
order n− 1. Our technique simplifies a work. Let us describe it below.

We need the following lemma [52, Lemma 2.1] related to the Banach space Hn,1(I ):2

LEMMA 4.1. Let I be a compact real interval and let a0, a1, . . . , an−1 : I × R
n → R be

u-Carathéodory functions. Given any q ∈ C(n−1)(I ), consider the following linear nth-
order differential operator Lq :Hn,1(I )→ L1(I ):

Lq(x)(t)= x(n)(t)+
n−1∑
i=0

ai
(
t, q(t), . . . , q(n−1)(t)

)
x(i)(t).

Assume there exists a subset Q of C(n−1)(I ) and an L1-function β : I → R such that, for
any q ∈Q and any i = 0,1, . . . , n− 1, we have

∣∣ai(t, q(t), . . . , q(n−1)(t)
)∣∣ � β(t), a.e. in I.

Then the following two norms are equivalent in Hn,1(I ):

‖x‖ =
n−1∑
i=0

sup
t∈I

∣∣x(i)(t)∣∣+
∫
I

∣∣x(n)(t)∣∣dt,

‖x‖Q = sup
t∈I

∣∣x(t)∣∣+ sup
q∈Q

∫
I

∣∣Lq(x)(t)
∣∣dt.

2By Hn,1(I ), we denote the Banach space of all C(n−1)-functions x : I → R, where I is a compact interval,
with absolutely continuous (n− 1)th derivatives.
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COROLLARY 4.4. Consider the scalar problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(n)(t) ∈
n−1∑
i=0

ai
(
t, x(t), . . . , x(n−1)(t)

)
x(i)(t)

+ F
(
t, x(t), . . . , x(n−1)(t)

)
, for a.a. t ∈ J,

x ∈ S,

(4.6)

where J ⊂R, S ⊂ C(J ) and ai , F are u-Carathéodory maps on J ×R
n.

Suppose that there exists a u-Carathéodory map G :J × R
n × R

n × [0,1]� R
n such

that, for every c ∈ R
n and λ ∈ [0,1], G(t, c, c,1)⊂ F(t, c), a.e. in J . Then problem (4.6)

has a solution, provided the following conditions are satisfied:
(i) there is a retract Q of the space C(n−1)(J ) such that, for every (q,λ) ∈Q× [0,1],

the following problem,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(n)(t) ∈
n−1∑
i=0

ai
(
t, q(t), . . . , q(n−1)(t)

)
x(i)(t)

+G
(
t, x(t), . . . , x(n−1)(t), q(t), . . . , q(n−1)(t), λ

)
, for a.a. t ∈ J,

x ∈ S ∩Q,

(4.7)

has an Rδ-set of solutions,
(ii) there is a locally integrable function α :J →R such that, for every i = 0, . . . , n−1:

∣∣ai(t, q(t), . . . , q(n−1)(t)
)∣∣ � α(t), a.e. in J,

and
∣∣G(

t, x(t), . . . , x(n−1)(t), q(t), . . . , q(n−1)(t), λ
)∣∣ � α(t), for a.e. t ∈ J,

for each (q,λ, x) ∈Q× [0,1] ×C(n−1)(J ) satisfying (4.7),
(iii) T (Q×{0})⊂Q, where T denotes the set-valued map which assigns to any (q,λ) ∈

Q× [0,1] the set of solutions of (4.7),
(iv) the set T (Q× [0,1]) is bounded in C(J ) and its C(n−1)-closure is contained in S

(in particular, this holds if S ∩C(n−1)(J ) is closed in C(n−1)(J )),
(v) if {qj } ⊂Q converges to q ∈Q, q ∈ T (q,λ) in C(n−1)(J ), then there exists j0 ∈N

such that, for every j � j0, θ ∈ [0,1] and x ∈ T (qj , θ), we have x ∈Q.

PROOF. We construct a new problem in the following way:
Define F̃ :J ×R

n � R
n,

F̃
(
t, x(t), . . . , x(n−1)(t)

) = F
(
t, x(t), . . . , x(n−1)(t)

)

+
n−1∑
i=0

ai
(
t, x(t), . . . , x(n−1)(t)

)
x(i)(t).



Topological principles for ordinary differential equations 35

Denote x(t)= (x(t), . . . , x(n−1)(t)) ∈R
n and define F ′ :J ×R

n � R
n,

F ′
(
t, x(t)

)= {(
ẋ(t), . . . , x(n−1)(t), y

) | y ∈ F̃
(
t, x(t), . . . , x(n−1)(t)

)}
.

So, we have a problem

{
ẋ(t) ∈ F ′

(
t, x(t)

)
, for a.a. t ∈ J ,

x ∈ S,
(4.8)

where S is an image of S ∩C(n−1)(J ) via the inclusion i :C(n−1)(J )→ C(J,Rn).
Analogously, we find the associated problem

{
ẋ(t) ∈G′

(
t, x(t), q(t), λ

)
, for a.a. t ∈ J ,

x ∈ S ∩Q.
(4.9)

Notice that
(1) G′(t, x(t), q(t),1)⊂ F ′(t, x(t)),
(2) the set Q= i(Q) is a retract of C(J,Rn),
(3) S ⊂ACloc(J,R

n),
(4) for every (q,λ) ∈Q× [0,1], the sets of solutions of the problems (4.7) and (4.9)

are the same,
(5) T (Q× [0,1])⊂ S, where T is a suitable map corresponding to T

and

∣∣G′(t, x(t), q(t), λ)∣∣ �
∣∣G(

t, x(t), . . . , x(n−1), q(t), . . . , q(n−1)(t), λ
)∣∣

+
n−1∑
i=0

∣∣ai(t, q(t), . . . , q(n−1)(t)
)∣∣∣∣x(i)(t)∣∣

� α(t)+ α(t)

n−1∑
i=0

∣∣x(i)(t)∣∣.

Since T (Q × [0,1]) is bounded in C(J ), there exists a positive continuous function
m :J → R such that |x(t)| � m(t), for all t ∈ J and any x ∈ T (Q × [0,1]). We will
show that T (Q × [0,1]) is also bounded in C(n−1)(J ). It is sufficient to prove that, for
any compact subinterval I in J , there is a constant M > 0 such that

pI (x)=
n−1∑
i=0

sup
∣∣x(i)(t)∣∣ � M, for all x ∈ T

(
Q× [0,1]).

Let I ⊂ J be an arbitrary compact interval. Using the notation in Lemma 4.1, we see that
pI (x) � ‖x‖ and, by the equivalence of norms,

‖x‖� c‖x‖Q � c

(
max
t∈I m(f )+

∫
I

α(t)dt

)
� M.



36 J. Andres

We conclude that T (Q×[0,1]) is bounded in C(n−1)(J ) which implies that T (Q×[0,1])
is bounded in C(J,Rn). Moreover, there exists a continuous function ϕ :J →R such that

∣∣G′(t, x(t), q(t), λ)∣∣ � α(t)
(
1+ ϕ(t)

)
.

Obviously, the right-hand side of the above inequality is a locally integrable function.
Finally, an easy computation shows that the condition (iv) in Theorem 4.1 holds for Q

and T . By Theorem 4.1, there exists a solution of (4.8) as well as the one of (4.6). �

The same argument as in Corollary 4.1 shows how to modify Corollary 4.4 for the fol-
lowing scalar problem, namely

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(n)(t) ∈
n−1∑
i=0

ai
(
t, x(t), . . . , x(n−1)(t)

)
x(i)(t)

+ F
(
t, x(t), . . . , x(n−1)(t)

)
, for a.a. t ∈ J,

x ∈ S,

(4.10)

where J ⊂ R, S ⊂ C(J ) and ai , F are u-Carathéodory maps on J ×R
n, by means of the

following linearized problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(n)(t) ∈
n−1∑
i=0

ai
(
t, q(t), . . . , q(n−1)(t)

)
x(i)(t)

+G
(
t, x(t), . . . , x(n−1)(t), q(t), . . . , q(n−1)(t)

)
, for a.a. t ∈ J,

x ∈ S ∩Q,
(4.11)

where Q is a retract of the space C(n−1)(J ).
Theorem 3.9 in Section 3.3 gives similar consequences as those of Theorem 3.8 in Sec-

tion 3.3. Unfortunately, the weakness of the assumption on solutions causes that we have
to assume the convexity of the set Q. In spite of it, the results given below are important
because of the applications.

THEOREM 4.2. Consider the boundary value problem (4.3), where J is a given real inter-
val, F :J ×R

n � R
n is a u-Carathéodory map and S is a subset of ACloc(J,R

n).
Let G :J ×R

n ×R
n × [0,1]� R

n be as in Theorem 4.1. Assume that the assumptions
(i)–(iii) of Theorem 4.1 hold, with the convexity of the set Q, and

(iv) if ∂Q × [0,1] ⊃ {(qj , λj )} converges to (q,λ) ∈ ∂Q × [0,1], q ∈ T (q,λ), then
there exists j0 ∈N such that, for every j � j0, and xj ∈ T (qj , λj ), we have xj ∈Q.

Then problem (4.3) has a solution.

The proof can be obtained immediately by using our continuation principle presented in
Theorem 3.9 in Section 3.3.
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REMARK 4.2. In the (single-valued) case of Carathéodory ODEs, we can again only as-
sume in Corollary 4.4(i) and Theorem 4.2 that the linearized problems are uniquely solv-
able. If the associated problem (4.4) for G is so uniquely solvable, for every (q,λ) ∈
Q× [0,1], then, by continuity of T , we can reformulate the above condi tion (iv) as fol-
lows:

(iv′) if {(xj , λj )} is a sequence in S1×[0,1], with λj → λ ∈ [0,1) and xj is converging
to a solution x ∈Q of (4.4) (corresponding to (x,λ)), then xj belongs to Q, for j
sufficiently large.

Now, we are interested in the existence of several solutions of problem (4.3). For this,
the Nielsen theory developed in Section 3.2 will be applied. It will be convenient to use the
following definition.

DEFINITION 4.1. We say that the mapping T :Q � U is retractible onto Q, where U is
an open subset of C(J,Rn) containing Q, if there is a (continuous) retraction r :U →Q

and p ∈U \Q with r(p)= q implies that p /∈ T (q).

Its advantage consists in the fact that, for a retractible mapping T :Q � U onto Q with
a retraction r in the sense of Definition 4.1, its composition with r , r|T (Q) ◦ T :Q � Q,
has a fixed point q̂ ∈Q if and only if q̂ is a fixed point of T .

The following principal statement characterizes the matter.

THEOREM 4.3. Let G :J ×R
n ×R

n � R
n be u-Carathéodory map (cf. Definition 2.10)

and assume that
(i) there exists a closed, connected subset Q of C(J,Rn) with a finitely generated

abelian fundamental group such that, for any q ∈Q, the set T (q) of all solutions
of the linearized problem (4.2) is Rδ ,

(ii) T (Q) is bounded in C(J,Rn) and T (Q)⊂ S,
(iii) there exists a locally integrable function α :J →R such that

∣∣G(
t, x(t), q(t)

)∣∣ := sup
{|y| | y ∈G

(
t, x(t), q(t)

)}
� α(t), a.e. in J,

for any pair (q, x) ∈ 
T , where 
T denotes the graph of T .
Assume, furthermore, that

(iv) the operator T :Q � U , related to (4.2), is retractible onto Q with a retraction r

in the sense of Definition 4.1.
At last, let

G(t, c, c)⊂ F(t, c) (4.12)

for a.a. t ∈ J and any c ∈R
n. Then the original problem (4.3) admits at least N(r|T (Q)◦T )

solutions belonging to Q, where N stands for the Nielsen number defined in Definition 3.2
in Section 3.2.

PROOF. By the hypothesis, Q is a connected (metric) ANR-space with a finitely gener-
ated abelian fundamental group and T (q) is an Rδ-mapping. Since T is also, according to
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Proposition 4.2, u.s.c. and such that T (Q) is compact, r ◦ T is compact and admissible.
This follows from the commutativity of the following diagram:

Q
T

U
r

Q


T

pT

qT
r◦qT

where (pT , qT ) is a pair of natural projections of the graph 
T and pT is Vietoris.
Therefore, according to Theorem 3.4 in Section 3.2, (pT , r|T (Q) ◦ qT ) admits at least
N(r|T (Q) ◦ T (·)) coincidence points. Because of Definition 4.1, they represent the solu-
tions of problem (4.2) and, in view of (4.12), they also satisfy the original problem (4.3). �

REMARK 4.3. In the (single-valued) case of Carathéodory ODEs, we can only assume
in Theorem 4.3(i) that the linearized problem (4.2) is uniquely solvable. Moreover, the
requirement that the fundamental group π(Q) of Q to be finitely generated and abelian
can be then omitted (see Section 3.2).

Furthermore, we will consider boundary value problems on arbitrary (possibly infinite)
intervals for differential inclusions in Banach spaces. We start with some definitions.

Let E be a Banach space with the norm ‖ · ‖. Denote by C(J,E) the space of all con-
tinuous functions x :J → E with the locally convex topology generated by the uniform
convergence on compact subintervals of J (possibly, the whole R). This topology is com-
pletely metrizable, and thus C(J,E) is a Fréchet space.

Recall that a mapping x :J →E is locally absolutely continuous if x is absolutely con-
tinuous on every compact subinterval of J . Unfortunately, in general, on each interval
[a, b] ⊂ J , there need not exist ẋ(t) (in the sense of Fréchet), for almost all (a.a.) t ∈ [a, b]
with ẋ ∈ L1([a, b],E) (the set of all Bochner integrable functions [a, b]→E) and so need
not be

x(t)= x0 +
∫ t

a

ẋ(s)ds.

It is so if E satisfies the Radon–Nikodym property, in particular, if E is reflexive. Moreover,
we have the following result (cf. [48]).

LEMMA 4.2. Suppose x : [a, b]→E is absolutely continuous, ẋ exists a.e., and

∥∥ẋ(t)∥∥ � y(t), a.e., for some y ∈ L1([a, b],R)
.

Then ẋ ∈ L1([a, b],E) and

∫ t

τ

ẋ(s)ds = x(t)− x(τ)
(
t, τ ∈ [a, b]). (4.13)
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The set of all locally absolutely continuous functions from J to E, satisfying all the
above properties, will be denoted by ACloc(J,E).

Consider now the differential inclusion

ẋ ∈ F(t, x), (4.14)

where F :J ×E � E is a u-Carathéodory map, i.e.
(C1) F(t, x) is nonempty, compact and convex, for every (t, x) ∈ J ×E,
(C2) F(t, ·) is u.s.c., for a.a. t ∈ J ,
(C3) F(·, x) is strongly measurable (cf. Definition 2.9), on every compact interval

[a, b], for each x ∈E.
By a solution of this differential inclusion we mean again a map x ∈ ACloc(J,E) satis-

fying (4.14), for a.a. t ∈ J .
To a u-Carathéodory map F , we associate the Nemytskiı̆ (or superposition) operator

NF : C(J,E) � L1
loc(J,E) given by

NF (x) :=
{
f ∈ L1

loc(J,E) | f (t) ∈ F
(
t, x(t)

)
, a.e. on J

}
,

for each x ∈ C(J,E).
In the sequel, we will need the following lemma (see [100, p. 88] and cf. Remark 2.1).

LEMMA 4.3. Let [a, b] be a compact interval. Let F : [a, b]×E � E be a u-Carathéodory
mapping and assume in addition that, for every nonempty bounded set �⊂E, there exists
ν = ν(�) ∈ L1([a, b]) such that

∥∥F(t, x)
∥∥ := sup

{‖z‖ | z ∈ F(t, x)
}

� ν(t),

for a.e. t ∈ [a, b] and every x ∈�. Then the Nemytskiı̆ operator

NF :C
([a, b],E)

� L1([a, b],E)

has nonempty, convex values. Moreover, given sequences {xn} ⊂ C([a, b],E) and {fn} ⊂
L1([a, b],E), fn ∈NF (xn), n � 1, such that xn→ x in C([a, b],E) and fn→ f weakly
in L1([a, b],E), then f ∈NF (x).

The following lemma extends Proposition 4.1 to infinite-dimensional spaces (see again
[42, Theorem 0.3.4]).

LEMMA 4.4. Assume that a sequence {xk | [a, b]→E} of AC-maps satisfies the following
conditions:

(i) {xk(t)} is relatively compact, for each t ∈ [a, b],
(ii) there exists α ∈ L1([a, b]) such that ‖ẋk(t)‖� α(t), for a.a. t ∈ [a, b].

Then there exists a subsequence (again denoted by {xk}) that converges to an absolutely
continuous map x : [a, b]→E in the following sense:

(iii) xk → x in C([a, b],E),
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(iv) ẋk → ẋ weakly in L1([a, b],E).

PROPOSITION 4.3. Let G :J × E × E � E be a u-Carathéodory map and let S be a
nonempty subset of ACloc(J,E). Assume that:

(i) there exists a closed Q ⊂ C(J,E) such that, for any q ∈ Q, the boundary value
problem

{
ẋ(t) ∈G

(
t, x(t), q(t)

)
, for a.a. t ∈ J ,

x ∈ S,

has a solution. Denote by T :Q � S the solution mapping.
(ii) There exist α, β , γ ∈ L1

loc(J ) such that

∥∥G(t, x, y)
∥∥ � α(t)+ β(t)‖x‖ + γ (t)‖y‖,

for a.a. t ∈ J and every (x, y) ∈E2.
(iii) If {(qn, xn)} is a sequence in the graph of T and (qn, xn)→ (q, x), then x ∈ S.

Then T :Q � S has a closed graph (S is endowed with the topology of C(J,E)).

PROOF. Let {(qn, xn)} be an arbitrary sequence in the graph of T , i.e. xn ∈ T (qn), for
every n ∈N, and assume that (qn, xn)→ (q0, x0). Thus, we see that

ẋn(t) ∈G
(
t, xn(t), qn(t)

)
, for a.a. t ∈ J,

and xn ∈ S. Then q0 ∈Q and, by assumption (iii), x0 ∈ S.
Now, let [a, b] be an interval in J . Using assumption (ii), we see that the sequence {xn}

satisfies the assumptions of Lemma 4.4. Thus, {xn} converges uniformly on [a, b] to x0
(because this limit is unique) and {ẋn} converges to ẋ0, weakly in L1([a, b],E). Using
Lemma 4.3, it follows that ẋ0(t) ∈ G(t, x0(t), q0(t)), for a.a. t ∈ [a, b]. Since [a, b] was
arbitrary, we see that indeed ẋ0(t) ∈G(t, x0(t), q0(t)), for a.a. t ∈ J and x0 ∈ T (q0). �

As another of the main results of this subsection, we can formulate the following con-
tinuation principle.

THEOREM 4.4. Consider the boundary value problem (e.g., in a reflexive Banach space E;
cf. Lemma 4.2):

{
ẋ(t) ∈ F

(
t, x(t)

)
, for a.a. t ∈ J ,

x ∈ S,
(4.15)

where F :J × E � E is a u-Carathéodory map and S is a subset of ACloc(J,E). Let
G :J ×E ×E × [0,1]� E be a u-Carathéodory map (cf. Definition 2.10) such that

G(t, c, c,1)⊂ F(t, c), for all (t, c) ∈ J ×E. (4.16)

Assume that:
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(i) there exists a closed, convex Q⊂ C(J,E) and a closed subset S1 of S such that the
problem

{
ẋ(t) ∈G

(
t, x(t), q(t), λ

)
, for a.a. t ∈ J ,

x ∈ S1

is solvable with an Rδ-set T (q,λ), for each (q,λ)⊂Q× [0,1].
(ii) There exist α, β , γ ∈ L1

loc(I ) such that

∥∥G(t, x, y,λ)
∥∥ � α(t)+ β(t)‖x‖ + γ (t)‖y‖,

for a.a. t ∈ J , every (x, y) ∈E2 and every λ ∈ [0,1].
(iii) T is quasi-compact, i.e. T maps compact subsets onto compact subsets, and there

exists a measure of noncompactness μ in the sense of Definitions 2.7 and 2.8 in
Section 2.2 such that, for each �⊂Q, if

μ
(
T
(
�× [0,1])) � μ(�),

then � is relatively compact.
(iv) T (Q× {0})⊂Q.
(v) For each λ0 ∈ [0,1] and q ∈ T (q0, λ0), if qn→ q0 in Q, then there is n0 ∈N such

that, for each n � n0, λ ∈ [0,1] and x ∈ T (qn,λ), we have x ∈Q.
Then problem (4.15) has a solution.

PROOF. Using Proposition 4.3, we see that the map T :Q × [0,1] � S1 has a closed
graph. Since T is also quasi-compact (assumption (iii)), we can easily derive that T is
indeed an u.s.c. set-valued map (see, e.g., [78, Theorem 1.1.12]). From assumption (i), we
get therefore that T ∈ J (Q× [0,1],C(R,E)) and assumption (iii) implies that T is also
μ-condensing. By (v), we finally see that T is a homotopy in JA, and thus Corollary 3.4
in Section 3.3 implies the existence of a fixed point of T (·,1). However, by the inclusion
(4.16), it is a solution of (4.15). �

REMARK 4.4. As we can see, Theorem 4.4 extends Theorem 4.1 into the infinite-
dimensional setting, when replacing R

n by a real Banach space. On the other hand, this is
possible with some loss, namely Q is only convex and the solution operator T is assumed
to be quasi-compact, additionally. Because of those restrictions, we are unfortunately un-
able to establish a full infinite dimensional analogy of Theorem 4.1.

If, in particular, J = [a, b] (i.e. compact), then Theorem 4.4 can be simplified, in view
of Remark 3.9, similarly as Corollary 4.3 w.r.t. Theorem 4.1, as follows.

COROLLARY 4.5. Consider the problem

{
ẋ(t) ∈ F

(
t, x(t)

)
, for a.a. t ∈ [a, b],

x ∈ S,
(4.17)
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where F : [a, b]×E � E is a u-Carathéodory map and S is a subset of absolutely contin-
uous functions x : [a, b]→E, all in a reflexive Banach space E. Let G : [a, b] ×E ×E ×
[0,1]� E be a u-Carathéodory map such that

G(t, c, c,1)⊂ F(t, c), for all (t, c) ∈ [a, b] ×E. (4.18)

Furthermore, assume that
(i) there exists a convex, bounded subset Q ⊂ C([a, b],E) such that Q \ ∂Q is non-

empty and a closed subset S1 of S such that the problem

{
ẋ(t) ∈G

(
t, x(t), q(t), λ

)
, for a.a. t ∈ [a, b],

x ∈ S1

is solvable with Rδ-set T (q,λ), for each (q,λ) ∈Q× [0,1].
(ii) There exists α,β, γ ∈ Ł1([a, b]) such that

∥∥G(t, x, y,λ)
∥∥ � α(t)+ β(t)‖x‖ + γ (t)‖y‖,

for a.a. t ∈ [a, b], every (x, y) ∈E2 and every λ ∈ [0,1].
(iii) T is quasi-compact, i.e. T maps compact subsets onto compact subsets, and there

exists a measure of noncompactness μ (see Definitions 2.7 and 2.8) such that, for
each �⊂Q, if

μ
(
T
(
�× [0,1])) � μ(�),

then � is relatively compact.
(iv) T (Q× {0})⊂Q.
(v) The map T has no fixed points on the boundary ∂Q of Q, for every (q,λ) ∈Q×

[0,1].
Then problem (4.17) has a solution.

PROOF. We can proceed quite analogously as in the proof of the foregoing Theorem 4.4.
The only difference consists of modifying Corollary 3.4 in the sense of Remark 3.9, both
in Section 3.3. �

REMARK 4.5. In the (single-valued) case of Carathéodory ODEs, we can again only as-
sume in Theorem 4.4(i) and Corollary 4.5(i) that the linearized problems are uniquely
solvable.

Sometimes it is convenient to consider the asymptotic problems sequentially. For this
purpose, it can be useful to employ

PROPOSITION 4.4. Let J1 ⊂ J2 ⊂ · · · be compact intervals such that J =⋃∞
m=1 Jm and

t0 ∈ J1. Let F :J × E � E be a u-Carathéodory mapping with nonempty, compact and
convex values. Assume, furthermore, that
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(i) There are α,β ∈ L1
loc(J,R) with

∥∥F(t, x)
∥∥ � α(t)+ β(t)‖x‖.

(ii) There is some Carathéodory mapping g :J × [0,∞)→ [0,∞) (called a Kamke
function) such that the only nonnegative measurable solution of

x(t) �
∣∣∣∣
∫ t

t0

g
(
s, x(s)

)
ds

∣∣∣∣
is 0 (a.e.), and such that, for a.a. t ∈ J , γ (F ({t}×C)) � g(t, γ (C)), for countable,
bounded subsets C ⊂ E, where γ denotes the Hausdorff measure of noncompact-
ness.

(iii) E has the so called retraction property in the sense of [99], e.g., E is separable or
reflexive.

If xm ∈AC(Jm,E) satisfies

ẋm(t) ∈ F
(
t, xm(t)

)
, for a.a. t ∈ Jm, m ∈N,

and {xm(t0) |m ∈ N} is a relatively compact set, then there is a solution x ∈ ACloc(J,E)

of the inclusion ẋ(t) ∈ F(t, x(t)), for a.a. t ∈ J , such that, for some subsequence,

xmk
→ x, uniformly on each Jm,

and

ẋmk
→ ẋ, weakly in L1(J,E).

If still
(iv) sup{‖xm(t)‖ |m ∈N, t ∈ Jm}<∞

and the values of xm, m ∈ N, are located in a closed subdomain D of E, then there exists
an entirely bounded solution x on J with x(t) ∈D, for all t ∈R.

PROOF. By (i) and the well-known Gronwall inequality (see, e.g., [72]), we get the a priori
estimates

∥∥xm(t)∥∥ � x̃(t) and
∥∥ẋm(t)∥∥ � x̃(t),

for some x̃ ∈ L1
loc(J,R).

We claim that {xm(t) | m � mt } is a relatively compact set, for a.a. t ∈ J , where mt =
min{m | t ∈ Jm}. To show it, put h(t) := γ ({xm(t) |m � mt }). Then h is measurable (for
more details, see Proposition 11.12 in [99]). Moreover, by means of Proposition 11.12
in [99] and (ii), we obtain

h(t) = γ
({
xm(t)− xm(t0) |m � mt

})= γ

({∫ t

t0

ẋm(s)ds
∣∣∣m � mt

})
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�
∣∣∣∣
∫ t

t0

γ
({
ẋm(s) |m � mt

})
ds

∣∣∣∣ �
∣∣∣∣
∫ t

t0

g
(
s, h(s)

)
ds

∣∣∣∣.

Applying (ii) again, we arrive at h(t)= 0, for a.a. t ∈ J , as claimed.
Since F(t, ·) maps compact sets into compact sets, {ẋm(t) |m � mt } becomes relatively

compact as well, for a.a. t ∈ J . An application of the standard diagonalization argument
implies, jointly with Lemma 4.4, the existence of a subsequence such that xmk

→ x, uni-
formly on each Jm, and ẋmk

→ ẋ, weakly in L1(J,E), where x ∈ACloc(J,E).
It follows from Lemma 4.3 that ẋ(t) ∈ F(t, x(t)). Since the remaining part of the asser-

tion is implied by the foregoing one (just proved) and (iv), the proof is completed. �

REMARK 4.6. Let E be a Banach space and assume that F : R × E � E is a
u-Carathéodory mapping (cf. Definition 2.10) such that

μ
(
F(t,B)

)
� k(t)μ(B), for bounded subsets B ⊂E, t ∈R,

where k ∈ L1
loc(R) and μ denotes either the Kuratowski MNC α or the Hausdorff MNC γ .

Then it is well known (see, e.g., [58, Theorem 9.2 and Remark 9.5.4 in Chapter 4.9.3]) that
the initial value problem

{
ẋ(t) ∈ F

(
t, x(t)

)
, for a.a. t ∈ [−m,m], m ∈N,

x(0)= x0,

admits a solution xm ∈ AC([−m,m]), for each m ∈ N, i.e. x ∈ ACloc(R,E). If, in par-
ticular, the values of xm, m ∈ N, are located in a given bounded, closed subdomain D of
E, then there exists an entirely bounded solution x ∈ ACloc(R,E) on R, x(0) = x0, with
values in D, provided E is separable or reflexive. It is namely enough to apply Proposi-
tion 4.4, for t0 = 0 and g(t, x) := 2k(t)x. Such special g is a Kamke function by means of
the Gronwall inequality.

If in particular, E = R
n, then (ii) and (iii) hold automatically. Hence, Proposition 4.4

can be then simplified as follows.

PROPOSITION 4.5. Let F : R×R
n � R

n be a u-Carathéodory mapping with nonempty,
compact and convex values, satisfying (i) in Proposition 4.4, for J = (−∞,∞). Then, for
every x0 ∈R

n, there exists a solution x ∈ACloc(R,Rn) of the Cauchy problem

{
ẋ(t) ∈ F

(
t, x(t)

)
, for a.a. t ∈ (−∞,∞),

x(0)= x0.

Let {xm(t)} be a sequence of absolutely continuous functions such that
(i) For every m ∈N, xm ∈AC([−m,m],Rn) is a solution of

ẋ(t) ∈ F
(
t, x(t)

)
, for a.a. t ∈ [−m,m],
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(ii) sup{|xm(t)| | m ∈ N, t ∈ [−m,m]} :=M <∞ and xm(t) ∈ D ⊂ R
n, for every t ∈

[−m,m].
Then there exists an entirely bounded solution x ∈ACloc(R,Rn) of the inclusion

ẋ(t) ∈ F
(
t, x(t)

)
, for a.a. t ∈ (−∞,∞),

such that

sup
t∈R

∣∣x(t)∣∣ � M (<∞) and x(t) ∈D, for all t ∈R.

4.2. Topological structure of solution sets

In this part, various methods for investigating the topological structure of solution sets, re-
quired in statements of the foregoing subsection, will be presented. Both initial and bound-
ary value problems will be considered.

The classical result, due to F.S. De Blasi and J. Myjak in [57], deals with Cauchy prob-
lems for the u-Carathéodory differential inclusions in Euclidean spaces:

{
ẋ ∈ F(t, x),

x(0)= x0,
(4.19)

where F :J ×R
n � R

n is a u-Carathéodory mapping, i.e. a multivalued mapping, satisfy-
ing conditions from the beginning of Section 4.1 (cf. Definition 2.10), and such that

∣∣F(t, x)
∣∣ � α + β|x|, for all t ∈ J, x ∈R

n,

where α, β are nonnegative constants.

THEOREM 4.5. Problem (4.19), where J is a compact interval, has under the above as-
sumptions an Rδ-set of solutions.

We omit the proof of this theorem, because below we will prove its generalized version
(cf. Theorem 4.9).

We recall that a multivalued mapping F :J ×R � R
n is said to be integrably bounded

(resp. locally integrably bounded) if there exists an integrable (resp. locally integrable)
function μ :J →[0,∞) such that |y|� μ(t), for every x ∈R

n, t ∈ J and y ∈ F(t, x). We
say that F has at most a linear growth (resp. a local linear growth) if there exist integrable
(resp. locally integrable) functions μ,ν :J →[0,∞) such that

|y|� μ(t)|x| + ν(t),

for every x ∈R
n, t ∈ J and y ∈ F(t, x).

It is obvious that F has at most a linear growth if there exists an integrable function
μ :J →[0,∞) such that |y|� μ(t)(|x| + 1), for every x ∈R

n, t ∈ J and y ∈ F(t, x).
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Let us also recall that a single-valued map f :J × R
n→ R

n is said to be measurable-
locally Lipschitz (mLL) if, for every x ∈ R

n, there exists a neighbourhood Vx of x in R
n

and an integrable function Lx :J →[0,∞) such that

∣∣f (t, x1)− f (t, x2)
∣∣ � Lx(t)|x1 − x2|, for every t ∈ J and x1, x2 ∈ Vx,

where f (·, x) is measurable, for every x ∈R
n.

Now, for the considerations below, fix J as the halfline [0,∞) and assume that
F :J ×R

n � R
n is again a multivalued u-Carathéodory map. Consider the Cauchy prob-

lem (4.19). By S(F,0, x0), we denote the set of solutions of (4.19). For the characteri-
zation of the topological structure of S(F,0, x0), it will be useful to recall the following
well-known uniqueness criterion (see, e.g., [60, Theorem 1.1.2]).

THEOREM 4.6. If f is a single-valued, integrably bounded, measurable-locally Lipschitz
map, then the set S(f,0, x0) is a singleton, for every x0 ∈R

n.

The following result will be employed as well.

THEOREM 4.7. If F is locally integrably bounded, mLL-selectionable (i.e. if there exists a
measurable-locally Lipschitz single-valued selection), then S(F,0, x0) is contractible, for
every x0 ∈R

n.

PROOF. Let f ⊂ F be measurable-locally Lipschitz. By Theorem 4.6, the following
Cauchy problem

{
ẋ = f (t, x),

x(t0)= x0,
(4.20)

has exactly one solution, for every t0 ∈ J and x0 ∈ R
n. For the proof, it is sufficient to

define a homotopy h :S(F,0, x0)× [0,1]→ S(F,0, x0) such that

h(x, s)=
{
x, for s = 1 and x ∈ S(F,0, x0),
x̃, for s = 0,

where x̃ = S(f,0, x0) is exactly one solution of the problem (4.20).
Define γ : [0,1)→[0,∞), γ (s)= tan(πs/2) and put

h(x, s)(t)=
{
x(t), for 0 � t � γ (s), s < 1,
S
(
f,γ (s), x

(
γ (s)

))
(t), for γ (s) � t <∞, s < 1,

x(t), for 0 � t <∞, s = 1.

Then h is a continuous homotopy, contracting S(F,0, x0) to the point S(f,0, x0). �

Analogously, we can get the following result.
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THEOREM 4.8. If F is locally integrably bounded, Ca-selectionable (i.e. if there exists a
Carathéodory single-valued selection), or in particular c-selectionable (i.e. if there exists a
continuous single-valued selection), then S(F,0, x0) is Rδ-contractible, for every x0 ∈R

n.

Observe that, if F :J × R
n � R

n is an intersection of the decreasing sequence of
Fk :J ×R

n � R
n, F(t, x)=⋂∞

k=1 Fk(t, x) and Fk+1(t, x)⊂ Fk(t, x), for almost all t ∈ J

and for all x ∈R
n, then

S(F,0, x0)=
∞⋂
k=1

S(Fk,0, x0). (4.21)

From Theorems 4.7 and 4.8, we obtain

PROPOSITION 4.6. Let F :J × R
n � R

n be a multivalued map with nonempty, closed
values.

(i) If F is σ -mLL-selectionable (i.e. it is an intersection of a decreasing sequence of
mLL-selectionable mappings), then the set S(F,0, x0) is an intersection of a de-
creasing sequence of contractible sets,

(ii) if F is σ -Ca-selectionable, i.e., it is an intersection of a decreasing sequence of Ca-
selectionable mappings, then the set S(F,0, x0) is an intersection of a decreasing
sequence of Rδ-contractible sets.

Before formulating the following important theorem, recall that, for two metric spaces
X, Y and the interval J , the multivalued map F :J × X � Y is almost upper semi-
continuous (a.u.s.c.), if for every ε > 0 there exists a measurable set Aε ⊂ J such that
m(J \Aε) < ε and the restriction F |Aε×X is u.s.c., where m stands for the Lebesgue mea-
sure.

It is clear that every a.u.s.c. map is u-Carathéodory. In general, the reverse is not true. The
following Scorza–Dragoni type result describing possible regularizations of Carathéodory
maps (see, e.g., [76]) will be employed.

PROPOSITION 4.7. Let X be a separable metric space and J be an interval. Suppose that
F :J ×X � R

n is a nonempty, compact, convex valued u-Carathéodory map. Then there
exists an a.u.s.c. map ψ :J × X � R

n with nonempty compact convex values and such
that:

(i) ψ(t, x)⊂ F(t, x), for every (t, x) ∈ J ×X,
(ii) if � ⊂ J is measurable, u :�→ R

n and v :�→ X are measurable maps and
u(t) ∈ F(t, v(t)), for almost all t ∈�, then u(t) ∈ψ(t, v(t)), for almost all t ∈�.

The proof of the following statement can be found in [67].

PROPOSITION 4.8. Let E,E1 be two separable Banach spaces, J be an interval and
F :J × E � E be an a.u.s.c. map with compact convex values. Then F is σ -Ca-
selectionable (i.e. it is an intersection of a decreasing sequence of Ca-selectionable map-
pings Fk :J ×E � E1). The maps Fk :J ×E � E1 are a.u.s.c., and we have Fk(t, e)⊂
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conv(
⋃

x∈E F(t, x)), for all (t, e) ∈ J × E. Moreover, if F is integrably bounded, then
F is σ -mLL-selectionable, i.e., it is an intersection of a decreasing sequence of mLL-
selectionable mappings.

Now, we are ready to give

THEOREM 4.9. If F :J ×R
n � R

n is a u-Carathéodory map with compact convex values
having at most the linear growth, then S(F,0, x0) is an Rδ-set, for every x0 ∈R

n.

PROOF. By the hypothesis, there exists an integrable function μ :J → [0,∞) such that
sup{|y| | y ∈ F(t, x)} � μ(t)(|x| + 1), for every (t, x) ∈ J × R

n. By means of the well-
known Gronwall inequality (see [71]), we obtain that |x(t)| � (|x0| + γ ) exp(γ ) = M ,
where x ∈ S(F,0, x0) and γ = ∫∞

0 μ(s)ds.
Take r >M and define F :J ×R

n � R
n as follows:

F̃ (t, x)=
⎧⎨
⎩
F(t, x), if |x|� r ,

F

(
t, r

x

|x|
)
, if |x|> r .

One can see that F̃ is an integrably bounded u-Carathéodory map and

S
(
F̃ ,0, x0

)= S(F,0, x0).

By Proposition 4.7, there exists an a.u.s.c. map G :J × R
n � R

n with nonempty, con-
vex, compact values such that S(G,0, x0)= S(F̃ ,0, x0). Applying Proposition 4.8 to the
map G, we obtain the sequence of maps Gk . As in Proposition 4.6, we see that S(G,0, x0)

is an intersection of the decreasing sequence S(Gk,0, x0) of contractible sets. By the well-
known Arzelà–Ascoli lemma and Theorem 4.6, we obtain that, for every k ∈ N, the set
S(Gk,0, x0) is compact and nonempty, which completes the proof. �

Using the above results and the unified approach to the u.s.c. and l.s.c. case due to
A. Bressan (cf. [49,50]), we can obtain the following result.

PROPOSITION 4.9. Let G :J ×R
n � R

n be a l.s.c. bounded map with nonempty closed
values. Then there exists a u.s.c. map F :J ×R

n � R
n with compact convex values such

that, for any x0 ∈R
n, the set S(G,0, x0) contains an Rδ-set S(F,0, x0) as a subset.

REMARK 4.7. In [22], topological structure of solution sets is also treated, provided F

is not necessarily convex-valued. However, the absence of convexity seems to be a big
handicap, because to prove the connectedness and compactness of the related solution set
can be a difficult task (see, e.g., [22, Example 2.18 on p. 258]).

REMARK 4.8. It follows from the result in [98] (cf. also [55] or [78, Corollary 5.3.1],
where mild solutions were considered for semilinear differential inclusions) that, in a
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real separable Banach space E, the solution sets to initial value problems are Rδ , pro-
vided conditions in Remark 4.6 hold. In general Banach spaces E, it is at least so when
F(t, .) :E � E is completely continuous (cf. [58, Corollary 9.1(b) on pp. 118–119]).

We can also say something about the covering (topological) dimension of solution sets
to the Cauchy problem (4.19).

Let � be an open set in R
n+1 such that [t0, t0 + h] × B(x0, r) ⊂ �, where B denotes

the closed ball centered at x0 and with the radius r . Assume that F :� � R
n satisfies the

following conditions:
(C1) the set of values of F is nonempty, compact and convex, for all (t, x) ∈�,
(C2) F(t, ·) :B(x0, r) � R

n is continuous, for a.a. t ∈ [t0, t0 + h],
(C3) F(·, x) : [t0, t0 + h]→R

n is measurable, for all x ∈ B(x0, r),
(C4) there exist Lebesgue-integrable nonnegative functions α,β : [t0, t0 + h] → [0,∞)

such that, for any x ∈ B(x0, r), |F(t, x)|� α(t)+ β(t)|x|, for a.a. t ∈ [t0, t0 + h],
where |F(t, x)|� sup{|y| | y ∈ F(t, x)}.

Denote by S([t0, t0 + d], x0) the set of solutions x ∈ AC([t0, t0 + d],Rn) of (4.19) on the
interval [t0, t0 + d], 0 < d � h.

The following two theorems are due to B.D. Gel’man [66] (cf. [22, Theorems 2.60
and 2.61 in Chapter III.2]).

THEOREM 4.10. Let the assumptions (C1)–(C4) be satisfied. Assume that the set

A= {
t ∈ [t0, t0 + h] | dim

(
F(t, x)

)
� 1, for any x ∈ B(x0, r)

}

is measurable and

lim
h→0

μ(A∩ [t0, t0 + h])
h

> 0,

where dim(·) denotes the covering dimension and μ(·) stands for the Lebesgue measure.
Then there exists a number d0 such that, for any 0 < d � d0, we have S = S([t0, t0 +
d], x0) �= {∅} and dim(S)=∞.

THEOREM 4.11. Let the assumptions of Theorem 4.10 be satisfied jointly with
(C2′) F(t, ·) :B(x0, r) � R

n is Lipschitz-continuous.
Then there exists a number d0 such that, for any 0 < d � d0, any ε > 0 and any solution
x ∈ S([t0, t0 + d], x0) ( �= {∅}), we have dim(Sx,ε)=∞, where Sx,ε = {y ∈ S | ‖x − y‖�
ε}.

Now, we shall study the reverse Cauchy problem when, instead of the origin, the value
of solutions is prescribed at infinity, namely

{
ẋ(t) ∈ F

(
t, x(t)

)
, for a.a. t ∈ [0,∞),

lim
t→∞x(t)= x∞ ∈R

n, (4.22)

where F : [0,∞)×R
n � R

n is a u-Carathéodory map, i.e.
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(i) values of F are nonempty, compact and convex, for all (t, x) ∈ [0,∞)×R
n,

(ii) F(t, ·) is upper semicontinuous, for a.a. t ∈ [0,∞),
(iii) F(·, x) is measurable, for all x ∈R

n.
We will prove acyclicity of the solution set of problem (4.22).
Recalling that any contractible set is acyclic, we can give

THEOREM 4.12. Consider the target (terminal) problem (4.22), where F : [0,∞)×R
n �

R
n is a u-Carathéodory map and x∞ ∈R

n is arbitrary. Assume that there exists a globally
integrable function ν : [0,∞)→[0,∞), where

∫∞
0 ν(t)dt =E < 1, such that

dH
(
F(t, x),F (t, y)

)
� ν(t)|x − y|, for all t ∈ [0,∞) and x, y ∈R

n. (4.23)

Moreover, assume that dH (F (·,0),0) can be absolutely estimated by some globally in-
tegrable function. If E is a sufficiently small constant, then the set of solutions to prob-
lem (4.22) is compact and acyclic, for every x∞ ∈R

n.

PROOF. Observe that condition (4.23) implies the existence a globally integrable function
α : [0,∞)→[0,∞) and a positive constant B such that

∣∣F(t, x)
∣∣ � α(t)

(
B + |x|), for every x ∈R

n and a.a. t ∈ [0,∞), (4.24)

where |F(t, x)| = sup{|y| | y ∈ F(t, x)}. Thus, problem (4.22) can be equivalently replaced
by the problem

{
ẋ(t) ∈G

(
t, x(t)

)
, for a.a. t ∈ [0,∞),

lim
t→∞x(t)= x∞ ∈R

n, (4.25)

where G is a suitable Carathéodory map which can be estimated by a sufficiently large
positive constant M , i.e.

∣∣G(t, x)
∣∣ � M, for every x ∈R

n and a.a. t ∈ [0,∞),

and which satisfies condition (4.23) as well. In other words, the solution set S for problem
(4.22) is the same as for problem (4.25), where

S = {
x ∈ C

([0,∞),Rn
) ∣∣ ẋ(t) ∈ F

(
t, x(t)

)
,

for a.a. t ∈ [0,∞) and x(∞)= x∞
}
.

For the structure of S , we will modify the approach from above. Observe that, under the
above assumptions, F as well G are well known to be product-measurable (see Proposi-
tion 2.4), and subsequently having a Carathéodory selection g ⊂G which is Lipschitzian
with a not necessarily same, but again sufficiently small constant (see, e.g., [73, pp. 101–
103]). By the sufficiency we mean that, besides others,

∣∣g(t, x)− g(t, y)
∣∣ � γ (t)|x − y|
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holds, for all x, y ∈ R
n and a.a. t ∈ [0,∞), with a Lebesgue integrable function

γ : [0,∞)→[0,∞) such that
∫∞

0 γ (t)dt < 1.
Considering the single-valued problem (g ⊂G)

{
ẋ(t)= g

(
t, x(t)

)
, for a.a. t ∈ [0,∞),

lim
t→∞x(t)= x∞, (4.26)

we can easily prove the existence of a unique solution x(t) of problem (4.26). The unique-
ness can be verified in a standard manner by the contradiction, when assuming the existence
of another solution y(t) of that problem, because so we would arrive at the false inequality

sup
t∈[0,∞)

∣∣x(t)− y(t)
∣∣ = sup

t∈[0,∞)

∣∣∣∣
∫ t

∞
g
(
s, x(s)

)
ds −

∫ t

∞
g
(
s, y(s)

)
ds

∣∣∣∣
�

∫ ∞

0

∣∣g(s, x(s))− g
(
s, y(s)

)∣∣dt

�
∫ ∞

0
γ (t) sup

t∈[0,∞)

∣∣x(t)− y(t)
∣∣dt

� sup
t∈[0,∞)

∣∣x(t)− y(t)
∣∣ ∫ ∞

0
γ (t)dt

< sup
t∈[0,∞)

∣∣x(t)− y(t)
∣∣.

Hence, according to the definition of contractibility in Section 2.1, it is sufficient to show
that the solution set S of problem (4.25) is homotopic to a unique solution x(t) of prob-
lem (4.26), which is at the same time a solution of problem (4.25) as well. The desired
homotopy reads (λ ∈ [0,1])

h(x,λ)(t)=
{
x(t), for t � 1/λ− λ, λ �= 0,
z(t), for 0 < t � 1/λ− λ, λ �= 0,
x(t), for λ= 0,

where z is a unique solution to the reverse Cauchy problem

{
ẋ(t)= g

(
t, z(t)

)
, for a.a. t ∈ [0,1/λ− λ],

z(1/λ− λ)= x(1/λ− λ),

for each λ ∈ [0,1]. Then h is a continuous homotopy such that h(x,0)= x, h(x,1)= x, as
required, and subsequently, the set S is acyclic. Using the convexity assumption on values
of F , we can prove by the standard manner [22, Mazur’s Theorem 1.33 in Chapter I.1]
that S is closed in C([0,∞),Rn). By Arzelà–Ascoli’s lemma, this set is compact, and the
proof is complete. �



52 J. Andres

Now, we shall consider the boundary value problem

{
ẋ(t)+A(t)x(t) ∈ F

(
t, x(t)

)
, for a.a. t ∈ [0, T ],

Lx = r,
(4.27)

where
(i) A : [0, T ]→ L(Rn,Rn) is a measurable linear operator such that |A(t)|� γ (t), for

all t ∈ [0, T ] and some integrable function γ : [0, T ]→ [0,∞),
(ii) the associated homogeneous problem

{
ẋ(t)+A(t)x(t)= 0, for a.a. t ∈ [0, T ],
Lx = 0

has only the trivial solution,
(iii) F : [0, T ] ×R

n � R
n has nonempty, compact, convex values,

(iv) F(·, x) is measurable, for every x ∈R
n,

(v) there is a constant M � 0 such that

dH
(
F(t, x),F (t, y)

)
� M|x − y|, for all x, y ∈R

n and a.a. t ∈ [0, T ],
where dH stands for the Hausdorff metric,

(vi) there are two nonnegative Lebesgue-integrable functions δ1, δ2 : [0, T ] → [0,∞)

such that,

∣∣F(t, x)
∣∣ � δ1(t)+ δ2(t)|x|, for a.a. t ∈ [0, T ] and all x ∈R

n,

where |F(t, x)| = sup{|y| | y ∈ F(t, x)}.
In [43], the authors have proved the functional generalization of following theorem.

THEOREM 4.13. Under the assumptions (i)–(vi), a certain “critical” value λ exists such
that if M <λ, then the set of solutions of (4.27) is a (nonempty) compact AR-space. More-
over, if the Lebesgue measure of the set {t | dimF(t, x) < 1, for some x ∈ R} is still zero,
then the set of solutions of (4.27) is an infinite dimensional compact AR-space, where
dimX denotes the covering (topological) dimension of a space X.

REMARK 4.9. Observe that for A ≡ 0 and Lx = x(0), the related Cauchy problem can
have, under the assumptions of Theorem 4.13, infinitely many linearly independent solu-
tions on the whole interval [0, T ].

REMARK 4.10. The first assertion of Theorem 4.13 can be still improved (see [22, Theo-
rem 3.13 in Chapter III.3]), namely that, for the problem

{
ẋ(t)+A(t)x(t) ∈ αF

(
t, x(t)

)
, for a.a. t ∈ [0, T ],

Lx = θ,
(4.28)

where α � λ, when λ is the critical value in Theorem 4.13, the set of solutions of (4.28) is
nonempty, compact and acyclic.



Topological principles for ordinary differential equations 53

REMARK 4.11. In the case of ODEs, the solution set in Theorem 4.13 consists, unlike
in the critical case for α = λ in Remark 4.10, of a unique solution. The same is true for
Theorem 4.12.

In view of Remark 4.11, a nontrivial structure of solution sets to single-valued boundary
problems can be seen as a delicate problem. The following result in this field in [46] is
rather rare.

THEOREM 4.14. Consider the Floquet problem

{
ẋ(t)= f

(
t, x(t)

)
, for a.a. t ∈ [a, b],

x(a)+ λx(b)= ξ
(
λ > 0, ξ ∈R

n
)
,

(4.29)

where f : [a, b] × R
n → R

n is a bounded Carathéodory function. Assume, furthermore,
that f satisfies

∣∣f (t, x)− f (t, y)
∣∣ � p(t)|x − y|, for a.a. t ∈ [a, b] and x, y ∈R

n, (4.30)

where p : [a, b]→ [0,∞) is a Lebesgue-integrable function such that

∫ b

a

p(t)dt �
√
π2 + ln2 λ. (4.31)

Then the set of solution to (4.29) is an Rδ-set.

REMARK 4.12. As pointed out in [46], if the sharp inequalities take place in (4.31), then
problem (4.29) has a unique solution. On the other hand, for equalities (4.31), problem
(4.29) can possess more solutions, respectively.

Unlike in the above theorems, the following problems can be regarded as those with
“limiting” boundary conditions. In [53], the following result has been proved (as Theo-
rem 3.1) for the boundary value problem

{
ẋ = f (t, x),

Lx = r,
(4.32)

where f : I ×R
n→ R

n is a continuous function, L :C1(I,Rn)→ R
n is a linear operator

and I = [a, b] is a compact interval.

PROPOSITION 4.10. Let f : I × R
n → R

n be a fixed continuous function such that, for
every t0 ∈ I and x0 ∈ R

n, there exists a unique (smooth) solution x(t) of the equation
ẋ = f (t, x), satisfying x(t0)= x0.

Let U be an open (in the norm topology) subset of the Banach space of all continu-
ous linear operators L :C0

1(I,R
n)→R

n, where C0
1 denotes the set C1(Rn)⊂ C0(I,Rn),

topologized by the induced topology of C0(I,Rn) (:= C(I,R)).
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If, for every L ∈ U and r ∈ R
n, the boundary value problem (4.32) has at most one

solution, then, for every L ∈ U and r ∈R
n, problem (4.32) has exactly one solution.

Our aim is to prove, by means of Proposition 2.6 in Section 2.3, the following theorem.

THEOREM 4.15. Let f : I ×R
n→ R

n be a fixed continuous function and p : I → R
n be

a continuous function such that, for every t0 ∈ I , x0 ∈R
n and p ∈ C(I,Rn) with ‖p‖� 1,

there exists a unique solution x(t) of

ẋ = f (t, x)+ p(t), (4.33)

satisfying x(t0)= x0.
Let U be an open (in the norm topology) subset of the Banach space of all continuous lin-

ear operators L :C0
1(I,R

n)→R
n, where C0

1 has the same meaning as in Proposition 4.10.
Assume that, for every L ∈ U , r ∈R

n and p ∈ C1(Rn) with ‖p‖� 1, the boundary value
problem

{
ẋ = f (t, x)+ p(t),

Lx = r,
(4.34)

has at most one solution and that, for every L ∈ U , all solutions of problem (4.32) are
uniformly (i.e. independently of L ∈ U ) a priori bounded, where U denotes the closure of
U in the C1

0 -topology.
Then, for every L ∈ ∂U and r ∈ R

n, where ∂U denotes the boundary of U in the
C0

1 -topology, problem (4.32) has an Rδ-set of solutions.

PROOF. Since all assumptions of Proposition 4.10 are satisfied, problem (4.34) is solvable,
for every L ∈ U , r ∈R

n and p ∈ C(I,Rn) with ‖p‖� 1.
Furthermore, since U is a closed subset of the Banach space of all continuous linear

operators, each element L̃ ∈ ∂U can be regarded as a uniform limit of a suitable sequence
{Lk} such that L̃= limk→∞Lk , where Lk ∈ U (= intU ), for every k ∈N.

Fix such an L̃ ∈ ∂U and consider the compact operators �k , � :B→ C0
1(I,R

n):

�k(x)(t)= x(a)+Lkx − r +
∫ t

a

f
(
s, x(s)

)
ds

and

�(x)(t)= x(0)+ L̃x − r +
∫ t

a

f
(
s, x(s)

)
ds,

where B ⊂ C0(I,Rn) is a suitable closed ball centered at the origin, which is implied by the
assumption of a uniform a priori boundedness of solutions. The compactness of operators
follows directly by means of the well-known Arzelà–Ascoli lemma.
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One can readily check the one-to-one correspondence between the fixed points of � and
the solutions of problem (4.32) as well as those of �k and the solutions of the equation
ẋ = f (t, x(t)), satisfying

Lkx = r.

Thus, one can associate to �k and � the proper maps ϕk = id−�k and ϕ = id−�, respec-
tively, where id denotes the identity, namely

ϕk(x)(t)= x(t)− x(a)−Lkx + r −
∫ t

a

f
(
s, x(s)

)
ds

and

ϕ(x)(t)= x(t)− x(a)− L̃x + r −
∫ t

a

f
(
s, x(s)

)
ds.

So, the nonempty kernel ϕ−1(0) of ϕ corresponds to the fixed points of �, and subse-
quently to solutions of (4.32), i.e.

x ∈�(x) ⇐⇒ 0 ∈ x −�(x)= (id−�)(x)= ϕ(x).

We can assume without any loss of generality that, for a sufficiently large k ∈ N, we
have

∣∣ϕk(x)(t)− ϕ(x)(t)
∣∣= ∣∣Lkx − L̃x

∣∣= ∣∣(Lk − L̃
)
x
∣∣ � 1

k
, (4.35)

because, otherwise, we can obviously select a subsequence with this property.
Since ‖ϕk(x)(t) − ϕ(x)(t)‖ � 1/k holds, for every x ∈ B, condition (i) of Proposi-

tion 2.6 in Section 2.3 is satisfied.
In order to prove (ii) in Proposition 2.6, it is sufficient to verify the following inequalities

∣∣ϕk(x)(t)
∣∣ � 1

k
and

∣∣(ϕk(x)
)
(t)

∣∣ � 1

k
, k ∈N,

for every x with ϕ(x)= 0.
However, since (ϕk(x))(t) = ẋ(t)− f (t, x(t)) = 0, k ∈ N, and the first inequality fol-

lows from (4.35), we are done.
In order to verify (iii) in Proposition 2.6, we should realize that, for any u ∈ Vk = {u ∈

C1(I,Rn) :‖u‖C0 � 1/k and ‖u̇‖C0 � 1/k}, for some k ∈ N, x(t) is a solution of the
equation u(t)= ϕk(x)(t), i.e.

u(t)= x(t)− x(a)−Lkx + r −
∫ t

a

f
(
s, x(s)

)
ds,
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if and only if it satisfies

{
ẋ = u̇(t)+ f (t, x),

Lkx = r − u(a).
(4.36)

By the hypothesis, problem (4.36) has a unique solution, for every Lk ∈ U , r ∈R
n and u ∈

C1(I,Rn) with ‖u‖ � 1, as required. Therefore, applying Proposition 2.6 in Section 2.3,
the set {ϕ(0)} is Rδ . In other words, the solution set of the original problem (4.32) is Rδ as
well. �

REMARK 4.13. One can observe that the sole existence can be easily proved by means of
the well-known Schauder fixed point theorem.

EXAMPLE 4.1. According to Example 2 in [85], problem

{
ẋi = fi(t, x1, x2)+ pi(t), i = 1,2,
ax1(0)+ x2(0)= r1, bx1(1)+ x2(1)= r2,

(4.37)

is uniquely solvable, for every a2 < 1, b2 > 1, ri ∈ R (i = 1,2) and p = (p1,p2) ∈
C([0,1],R), provided fi ∈ C1([0,1],R), i = 1,2, and

∂f1

∂x1
u2

1 +
∂f1

∂x2
u1u2 − ∂f2

∂x1
u1u2 − ∂f2

∂x2
u2

2 � 0 (i = 1,2),

for each triple (t, x1, x2) ∈ [0,1] ×R
2 and each double (u1, u2) ∈R

2.
Therefore, according to Theorem 4.15 (more precisely, according to its modified version,

where the set of all continuous linear operators can be restricted (see [85]) to the set of all
real (n× n)-matrices), problem

{
ẋi = fi(t, x1, x2), i = 1,2,
ax1(0)+ x2(0)= r1, bx1(1)+ x2(1)= r2,

(4.38)

has an Rδ-set of solutions, for certain (a, b) ∈ R
2 in a closed subset of R

2 with a2 = 1,
b2 � 1 or a2 � 1, b2 = 1 (r1, r2 can be arbitrary), whenever all solutions of problem (4.38)
are uniformly a priori bounded, for such a2 � 1, b2 � 1.

This can be achieved for a �= b, i.e. particularly with the exception of a = b = 1 or
a = b=−1, and b2 � b2∗, for some b∗ > 1, when, e.g.,

∣∣f (t, x)
∣∣ � α|x| + β, for all (t, x) ∈ [0,1] ×R

2, (4.39)

where α, β are suitable nonnegative constants (α must be sufficiently small as below) and
x = (x1, x2), f = (fi, f2).

Indeed. Since the linear homogeneous problem

{
ẋi = 0, i = 1,2,
ax1(0)+ x2(0)= 0, bx1(1)+ x2(1)= 0,
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Fig. 2.

has for a �= b obviously only a trivial solution, every solution x(t)= (x1(t), x2(t)) of (4.38)
takes the form (see, e.g., [22, Lemma 5.136 in Chapter III.5])

xi(t)=
∫ 1

0
Gi(t, s, a, b)fi

(
s, x1(s), x2(s)

)
ds + x̃i , i = 1,2,

where G= (G1,G2) is the related Green function of the linearized problem (4.38), namely

{
ẋi = fi(t, x1, x2), i = 1,2,
ax1(0)+ x2(0)= 0, bx1(1)+ x2(1)= 0,

i.e.

G(t, s, a, b)=

⎧⎪⎪⎨
⎪⎪⎩

1

b− a

(
b 1
−ab −a

)
, for 0 � t � s � 1,

1

b− a

(
a 1
−ab −b

)
, for 0 � s � t � 1,

and x̃ = (̃x1, x̃2) is a unique solution of the problem

{
ẋi = 0, i = 1,2,
ax1(0)+ x2(0)= r1, bx1(1)+ x2(1)= r2,

i.e. x̃1 = (r2 − r1)/(b− a), x̃2 = r1 − a(r2 − r1)/(b− a).
Let us fix (a, b) at the boundary ∂U = {(a, b) ∈R

2 | a2 = 1, b2 � 1 or a2 � 1, b2 = 1}
with a �= b, for which we intend to get the result and cut off appropriately the corners with
a = b, jointly with those (a, b) with b2 > b2∗ for some b∗ > 1, as in Fig. 2. The bold curve
in Fig. 2 so indicates the part of the boundary of our interest.
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Denoting g =max
(a,b)∈U∗ ga,b , ga,b =maxt,s∈[0,1] |G(t, s, a, b)|, where U∗ is indicated

in Fig. 2 by the shaded region (observe that since U∗ is compact, g certainly exists), we
obtain by means of (4.39) that

∥∥x(t)∥∥ � g
(
α
∥∥x(t)∥∥+ β

)+ max
(a,b)∈U∗

|̃x|,

i.e.

∥∥x(t)∥∥ �
βg +max

(a,b)∈U∗ |̃x|
1− αg

,

whenever α < g−1, as claimed. This completes the example.

REMARK 4.14. One can easily check that, for fixed values of (a, b) ∈ ∂U with a �= b, the
condition α < g−1 can take, e.g., the form

α <
|b− a|

|b| +max(1, |ab|) .

A continuous function f : I ×R
n→R

n can be approximated with an arbitrary accuracy
by locally Lipschitzian (in the second variable) functions (see, e.g., [22, Theorem 3.37 in
Chapter I.3] or [71]), say (f + εk), k ∈N, such that limk→∞‖εk‖ = 0. Therefore, applying
at first, for fixed k ∈N, Theorem 4.15 to the system

ẋ = f (t, x)+ εk(t, x), (4.40)

we can still avoid (for more details, see [22, Chapter III.3]) the uniqueness assumption in
Theorem 4.15 as follows.

THEOREM 4.16. Let f : I ×R
n→ R

n be a fixed continuous function and εk : I ×R
n→

R
n, k ∈ N, be continuous functions with ‖εk‖� ε (ε − a sufficiently small constant) such

that (f + εk)(t, ·) : Rn→R
n, k ∈N, are locally Lipschitzian, for every t ∈ I , and p : I →

R
n be a continuous function with ‖p‖� 1.
Let U be an open (in the norm topology) subset of the Banach space of all continuous

linear operators L :C0
1(I,R

n)→R
n.

Assume that, for every L ∈ U , r ∈R
n, k ∈N and p ∈ C(I,Rn) with ‖p‖� 1, the bound-

ary value problem

{
ẋ = f (t, x)+ εk(t, x)+ p(t),

Lx = r

has at most one solution and that, for every L ∈ U and k ∈N, all solutions of the problem

{
ẋ = f (t, x)+ εk(t, x),

Lx = r
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are uniformly (i.e. independently of L ∈ U) a priori bounded, where U denotes the closure
of U in the C0

1 -topology.
Then, for every L ∈ ∂U and r ∈ R

n, where ∂U denotes the boundary of U in the
C0

1 -topology, the problem (4.32), i.e.

{
ẋ = f (t, x),

Lx = r

has a (nonempty) compact acyclic set of solutions.

4.3. Poincaré’s operator approach

By the Poincaré operators, we mean the translation operators along the trajectories of
the associated differential systems. The translation operator is sometimes also called as
Poincaré–Andronov or Levinson or, simply, T -operator.

In the classical theory, these operators are defined to be single-valued, when assuming
among other things, the uniqueness of the initial value problems. At the absence of unique-
ness, one usually approximates the right-hand sides of the given systems by the locally
Lipschitzian ones (implying already uniqueness), and then applies the standard limiting
argument (for more details, see, e.g., [71,81]).

On the other hand, set-valued analysis allows us to handle directly with multivalued
Poincaré operators which become, under suitable natural restrictions imposed on the right-
hand sides of given differential systems, admissible in the sense of Definition 2.5 in Sec-
tion 2.2.

Hence, consider the u-Carathéodory system

ẋ ∈ F(t, x), x ∈R
n, (4.41)

where F : [0, τ ] ×R
n � R

n satisfies all conditions in Definition 2.10.
By a solution x(t) of (4.41), we mean an absolutely continuous function x(t) ∈

AC([0, τ ],Rn) satisfying (4.41), for a.a. t ∈ [0, τ ], i.e. the one in the sense of Carathé-
odory, such solutions of (4.41) exist on [0, τ ].

Hence, if x(t, x0) := x(t,0, x0) is a solution of (4.41) with x(0, x0) = x0 ∈ R
n, then

the translation operator Tτ : Rn � R
n at the time τ > 0 along the trajectories of (4.41) is

defined as follows:

Tτ (x0) :=
{
x(τ, x0) | x(·, x0) is a solution of (4.41) with x(0, x0)= x0

}
.

(4.42)

More precisely, Tτ can be considered as the composition of two maps, namely Tτ =ψ ◦ϕ,

R
n

ϕ
� AC

([0, τ ],Rn
) ψ−→R

n,
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where ϕ(x0) :x0 � {x(t, x0) | x(t, x0) is a solution of (4.41) with x(0, x0) = x0} is well
known to be an Rδ-mapping (see Theorem 4.5) and ψ(y) :y→ y(τ) is obviously a con-
tinuous (single-valued) evaluation mapping.

In other words, we have the following commutative diagram:

R
n

ϕ ◦ AC
([0, τ ],Rn

)
ψ.. .

Tτ ◦ R
n

The following characterization of Tτ has been proved on various levels of abstraction in
several papers (see, e.g., [22, Theorem 4.3 in Chapter III.4] and the references therein).

THEOREM 4.17. Tτ defined by (4.42) is admissible and admissibly homotopic (see Defi-
nitions 2.5 and 2.6) to identity. More precisely, Tτ is a composition of an Rδ-mapping and
a continuous (single-valued) evaluation mapping.

PROOF. According to Theorem 4.5, the mapping ϕ has an Rδ-set of values. We will show
that it is u.s.c. by proving the closedness of the graph 
ϕ of ϕ (cf. Section 2.2).

Let (xn, yn) ∈ 
ϕ , i.e. yn ∈ ϕ(xn), and (xn, yn)→ (x, y) as n→∞. Since the func-
tions yn are absolutely continuous on [0, τ ], the application of the well-known Gronwall
inequality (see, e.g., [71]) leads to the estimates (cf. (iii) in Definition 2.10)

‖yn‖� M := sup
n∈N

(|xn| + γ τ
)

exp(γ τ) and ‖ẏn‖� γ (1+M),

where γ =max{α,β}. It follows that {yn} are equibounded.
Proposition 4.1 guarantees the existence of a sequence {yn} such that yn→ y, uniformly,

and ẏn→ ẏ, weakly in L1([0, τ ],Rn). According to Mazur’s theorem (see, e.g., [22, The-
orem 1.33 in Chapter I.1]), ẏ belongs to the strong closure ẏ ∈ conv{ẏn | n � l}, for all
l � 1. Thus, there also exists a subsequence {zl} such that zl → ẏ, in the L1-topology,
where zl ∈ conv{ẏn | n � l}. Moreover, there exists a subsequence (for the simplicity, de-
noted again by {zl}) satisfying zl → ẏ, a.e. on [0, τ ].

Let I ⊂ [0, τ ] be a set of a full measure on [0, τ ], i.e. μ(I) = τ , where μ denotes the
Lebesgue measure, such that zl → ẏ as l→∞, for all t ∈ I . It follows from the definition
of zl that zl(t) ∈∑

i λiF (t, yni (t)), where
∑

i λi = 1.
Since F(t, ·) is u.s.c., for a.a. t ∈ [0, τ ], and yni (t) is sufficiently close to x(t) as well as

zl(t) to ẋ(t), we obtain

ẋ(t) ∈
∑
i

λiF
(
t, x(t)

)+ εB

for an arbitrary ε > 0, where B is an open unit ball. This already means that ẋ(t) ∈
F(t, x(t)), and subsequently the graph 
ϕ of ϕ is closed. Since the arbitrary closed set
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{(x, y), (x1, y1), . . . , (xn, yn), . . .} is, according to the well-known Arzelà–Ascoli lemma,
compact, ϕ is u.s.c.

For the remaining part of the proof, it is sufficient to consider the admissible homotopy
Tλτ , λ ∈ [0,1]. �

REMARK 4.15. Since a composition of admissible maps is admissible as well (see Sec-
tion 2.2), Tτ can be still composed with further admissible maps φ such that φ◦Tτ becomes
an (admissible) self-map on a compact ENR-space (i.e. homeomorphic to ANR in R

n), for
computation of the well-defined (cf. Section 3.1) generalized Lefschetz number:

�(φ ◦ Tτ )=�(φ).

Tτ considered on ENRs can be even composed, e.g., with suitable homeomorphisms H
(again considered on ENRs), namely H ◦ Tτ , for computation of the well-defined (cf. Sec-
tion 3.3) fixed point index:

ind(H ◦ Tτ )= indH,

provided the fixed point set of H ◦ Tλτ is compact, for λ ∈ [0,1].

REMARK 4.16. In [10] (cf. also [22, Chapter III.4]), translation operators are also studied,
e.g., for systems with constraints, systems in Banach spaces, for directionally semicontin-
uous systems, etc. In particular, in real separable Banach spaces, one can check that, under
the conditions in Remark 4.6 (cf. also Remark 4.8 and [58, Corollary 9.1 in Chapter 9.4]),
the related translation operator Tτ is like in Theorem 4.17. In order Tτ to be also con-
densing, one should however impose some further restrictions. Since these restrictions are
rather technical (cf. [78, Theorem 6.3.1] or [22, Theorem 4.16 in Chapter III.4]), and so
this Poincaré’s translation operator will not be more employed, we omit them here.

5. Existence results

5.1. Existence of bounded solutions

We start with the application of Theorem 4.4. Hence, let (E,‖ · ‖) be a reflexive Banach
space and let L(E) be the space of all linear continuous transformations in E. The Haus-
dorff measure of noncompactness (MNC) will be denoted by γ .

We are interested in the existence of a bounded solution to the semilinear differential
inclusion

ẋ(t)+A(t)x(t) ∈ F
(
t, x(t)

)
, for a.a. t ∈R (5.1)

with A(t) ∈ L(E) and a set-valued transformation F .
Our assumptions concerning the inclusion (5.1) will be the following:
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(A1) A : R→ L(E) is strongly measurable (cf. Definition 2.9) and Bochner integrable,
on every compact interval [a, b].

(A2) Assume that

ẋ +A(t)x = 0 (5.2)

admits a regular exponential dichotomy (cf. Remark 5.3 below; for more details
see, e.g., [56]). Denote by G the principal Green’s function for (5.2).

(F1) Let F : R×E � E be a u-Carathéodory set-valued map (cf. Definition 2.10) such
that
∥∥F(t, x)

∥∥ � m(t), for a.a. t ∈R, x ∈E.

Here m ∈ L1
loc(R) is such that, for a constant M ,

sup

{∫ t+1

t

m(s)ds
∣∣∣ t ∈R

}
<M.

(F2) Assume that

γ
(
F(t,�)

)
� g(t)h

(
γ (�)

)
, for a.a. t ∈R

and each bounded �⊂ E, where g,h, are positive functions, g is measurable, h
is nondecreasing such that

L := sup

{∫
R

∥∥G(t, s)
∥∥
L(E)

g(s)ds
∣∣∣ t ∈R

}
<∞

and qh(t)L < t , for each t > 0, with a constant q = 1, if E is separable, and q = 2,
in the general case.

THEOREM 5.1. Under the assumptions (A1), (A2), (F1), (F2), the semilinear differential
inclusion (5.1) admits a bounded solution on R.

The main obstruction in the application of Theorem 4.4 will be the estimation of a suit-
ably chosen MNC. For this purpose, we recall the following rule of taking the MNC under
the sign of the integral (see [78, Corollary 4.2.5]).

LEMMA 5.1. Let {fn} ⊂ L1([a, b],E) be a sequence of functions such that
(i) ‖fn(t)‖� ν(t), for all n ∈N and a.a. t ∈ [a, b], where ν ∈ L1([a, b]),

(ii) γ ({fn(t)}) � c(t), for a.a. t ∈ [a, b], where c ∈ L1([a, b]).
Then we have the estimate

γ

({∫ t

a

fn(s)ds

})
� q

∫ t

a

c(s)ds,

for each t ∈ [a, b], with q = 1, if E is separable, and q = 2, in general case.
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PROOF OF THEOREM 5.1. We carry out the proof in several steps.
(i) Let

Q :=
{
x ∈ C(R,E)

∣∣∣ ∥∥x(t)∥∥ � K, for each t ∈R,
∥∥x(t1)− x(t2)

∥∥
� K

∫ t2

t1

∥∥A(s)
∥∥
L(E)

ds +
∫ t2

t1

m(s)ds, for all t1, t2 ∈R, t1 � t2

}

with a constant K to be specified below. Clearly Q is a closed convex subset of C(R,E).
For a given q ∈Q, we are interested in bounded solutions to the differential inclusion

ẋ(t)+A(t)x(t) ∈ F
(
t, q(t)

)
, for a.a. t ∈R. (5.3)

Take f ∈NF (q) (recall that such f exists, in view of Lemma 4.3), where NF denotes the
Nemytskiı̆ operator. Since A admits an exponential dichotomy, we know that the problem

ẋ(t)+A(t)x(t)= f (t), for a.a. t ∈R,

has a unique, entirely bounded solution given by

x(f )=
∫

R

G(t, s)f (s)ds

(cf. [56,86]). Thus, problem (5.3) has a nonempty set of solutions T (q). Using Lemmas 4.3
and 4.4, it is also clear that this set is closed convex, and since its compactness will become
clear in the subsequent steps of the proof, it is in fact an Rδ-set.

(ii) We will show that, for each q ∈Q, we actually have T (q)⊂Q. Let x ∈ T (q). Then,
for suitable f ∈NF (q), we have

∥∥x(t)∥∥ �
∫

R

∥∥G(t, s)
∥∥
L(E)

∥∥f (s)
∥∥ds

� k

∫ t

−∞
e−μ(t−s)m(s)ds + k

∫ ∞

t

e−μ(s−t)m(s)ds

= k

∞∑
j=0

∫ j+1

j

e−μσm(t − σ)dσ + k

∞∑
j=0

∫ j+1

j

e−μσm(t + σ)dσ

� k

∞∑
j=0

e−μj
∫ j+1

j

m(t − σ)dσ + k

∞∑
j=0

e−μj
∫ j+1

j

m(t + σ)dσ

� k

∞∑
j=0

e−μj
∫ t−j

t−j−1
m(s)ds + k

∞∑
j=0

e−μj
∫ t+j+1

t+j
m(s)ds

� 2kM
∞∑
j=0

e−μj = 2kM
(
1− e−μ

)−1 =:K. (5.4)
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In this estimation, we have used the fact that, by assumption (A2), there exist positive
constants k, μ such that

∥∥G(t, s)
∥∥
L(E)

� ke−μ|t−s|.

Now, let t1, t2 ∈R. Then

∥∥x(t1)− x(t2)
∥∥ �

∫ t2

t1

∥∥ẋ(s)∥∥ds

�
∫ t2

t1

∥∥A(s)
∥∥
L(E)

∥∥x(s)∥∥ds +
∫ t2

t1

∥∥f (s)
∥∥ds

� K

∫ t2

t1

∥∥A(s)
∥∥
L(E)

ds +
∫ t2

t1

m(s)ds.

Consequently, T (q)⊂Q.
(iii) Let M be the power set of Q and define, for each � ∈M, the real-valued MNC ψ

by

ψ(�) := max
D∈D

(�)
(

sup
t∈R

γ
(
D(t)

))
,

where D(Q) denotes the collection of all denumerable subsets of � and D(t) = {d(t) |
d ∈ D} ⊂ E. Then ψ is well-defined and from the corresponding properties of γ it is
clear that ψ has monotone and nonsingular properties of measure of noncompactness (see
Proposition 2.3 in Section 2.2). Finally, observe that ψ is regular in view of the Arzelà–
Ascoli lemma.

We wish to show that the mapping T given in step (i) is condensing w.r.t. the MNC ψ .
Take � ∈M. Considering T (�), we see that by the definition of ψ there exists a se-

quence {xn} ⊂ T (�) such that

ψ
(
T (�)

)= sup
t∈R

γ
({
xn(t)

})
.

Thus, for each n ∈N, there is zn ∈� and fn ∈NF (zn) such that

xn(t)=
∫

R

G(t, s)fn(s)ds. (5.5)

Let ε > 0 be fixed. Choose a number a > 0 such that Ke−μa < ε. Analogously to the
estimation (5.4), one shows that

∥∥∥∥
∫ t−a

−∞
G(t, s)fn(s)ds +

∫ ∞

t+a
G(t, s)fn(s)ds

∥∥∥∥ � ε,
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for every n ∈N. Using (5.5), we thus infer for an arbitrary t ∈R that

γ
({
xn(t)

})
� ε+ γ

({∫ t+a

t−a
G(t, s)fn(s)ds

})
.

Now, from assumption (F1), we get that

∥∥G(t, s)fn(s)
∥∥ �

∥∥G(t, s)
∥∥
L(E)

m(s),

for a.a. s ∈R and each n ∈N. Furthermore, using assumption (F2) and properties of γ (see
Proposition 2.3 in Section 2.2), we see that the following estimate holds, namely

γ
({
G(t, s)fn(s)

})
�

∥∥G(t, s)
∥∥
L(E)

γ
({
fn(s)

})
�

∥∥G(t, s)
∥∥
L(E)

g(s)h
(
γ
({
zn(s)

}))
�

∥∥G(t, s)
∥∥
L(E)

g(s)h
(
ψ(�)

)
,

for a.a. s ∈R. Hence, an application of Lemma 5.1 gives us

γ
({
xn(t)

})
� ε+ qh

(
ψ(�)

)∫ t+a

t−a
∥∥G(t, s)

∥∥
L(E)

g(s)ds.

It follows that

ψ
(
T (�)

)
� ε+ qh

(
ψ(�)

)
L,

and subsequently, since ε > 0 was arbitrary,

ψ
(
T (�)

)
� qh

(
ψ(�)

)
L. (5.6)

Let us now assume that � is not relatively compact. Then ψ(�) > 0 and so, by assump-
tion (F2) and (5.6), we obtain

ψ
(
T (�)

)
� ψ(�).

Finally, observe that the estimate (5.6) also implies the quasi-compactness of the map-
ping T which subsequently justifies the compactness of the solution set to (5.3), as claimed.

Hence, we have verified all the assumptions of Theorem 4.4 (cf. also Definition 2.8) and
we can establish the existence of a bounded solution to problem (5.1). �

REMARK 5.1. One can easily check that the assumption (F1) can be replaced by a weaker
one, namely

∥∥F(t, x)
∥∥ � m(t)+K‖x‖, for a.a. t ∈R, x ∈E, (5.7)

where K � 0 is a sufficiently small constant and m is the same as above.
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REMARK 5.2. If A :E→E is a linear, bounded operator whose spectrum does not inter-
sect the imaginary axis, then the constant K in (5.7) can be easily taken as K < 1/C(A),
where

sup
t∈R

∣∣∣∣
∫ ∞

−∞
∥∥G(t, s)

∥∥ds

∣∣∣∣ � C(A), G(t, s)=
{

e−A(t−s)P−, for t > s,
e−A(t−s)P+, for t < s

(5.8)

and P−, P+ stand for the corresponding spectral projections to the invariant subspaces
of A.

REMARK 5.3. For E =R
n (⇒ (F2) holds automatically), condition (A2) is satisfied, pro-

vided there exists a projection matrix P (P = P 2) and constants k > 0, λ > 0 such that

{∣∣X(t)PX−1(s)
∣∣ � k exp

(−λ(t − s)
)
, for s � t ,∣∣X(t)(I − P)X−1(s)

∣∣ � k exp
(−λ(s − t)

)
, for t � s,

(5.9)

where X(t) is the fundamental matrix of (5.2), satisfying X(0)= I , i.e., the unit matrix.

If A in (A1) is a piece-wise continuous and periodic, then it is well known that (5.9)
takes place, whenever all the associated Floquet multiplies lie off the unit cycle. If A in
(A1) is (continuous and) almost-periodic, then it is enough (see [93, p. 70]) that (5.9) holds
only on a half-line [t0,∞) or even on a sufficiently long finite interval.

Now, the information concerning the topological structure of solution sets in Section 4.2
will be employed for obtaining existence criteria, on the basis of general methods estab-
lished in Section 4.1.

EXAMPLE 5.1. Consider the system

{
ẋ1 ∈ F1(t, x1, x2)x1 + F2(t, x1, x2)x2 +E1(t, x1, x2),

ẋ2 ∈−F2(t, x1, x2)x1 + F1(t, x1, x2)x2 +E2(t, x1, x2),
(5.10)

where E1,E2,F1,F2 : [0,∞)×R
2 � R

2 are product-measurable u-Carathéodory maps.
Assume, furthermore, the existence of positive constants Ẽ1, Ẽ2, F̃1, F̃2, λ such that

ess sup
t∈[0,∞)

[
sup

|xi |�D,i=1,2
F1(t, x1, x2)

]
�−λ, (5.11)

ess sup
t∈[0,∞)

[
sup

|xi |�D,i=1,2

∣∣F1(t, x1, x2)
∣∣] � F̃1, (5.12)

ess sup
t∈[0,∞)

[
sup

|xi |�D,i=1,2

∣∣F2(t, x1, x2)
∣∣] � F̃2, (5.13)

ess sup
t∈[0,∞)

[
sup

|xi |�D,i=1,2

∣∣E1(t, x1, x2)
∣∣] � Ẽ1, (5.14)
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ess sup
t∈[0,∞)

[
sup

|xi |�D,i=1,2

∣∣E2(t, x1, x2)
∣∣] � Ẽ2, (5.15)

where D = 1/λ(Ẽ1, Ẽ2). Observe that, under the assumptions (5.12)–(5.15), we have

ess sup
t∈[0,∞)

∣∣ẋi (t)∣∣ � D′, i = 1,2, (5.16)

where D′ = (F̃1 + F̃2)D + max(Ẽ1, Ẽ2), so long as the solution (x1(t), x2(t)) of (5.10)
satisfies

sup
t∈[0,∞)

∣∣xi(t)∣∣ � D, i = 1,2. (5.17)

Our aim is to prove, under the assumptions (5.11)–(5.15), the existence of a solution
x(t)= (x1(t), x2(t)) satisfying

x(0)= 0 and sup
t∈[0,∞)

∣∣xi(t)∣∣ � D, i = 1,2. (5.18)

In order to apply Corollary 4.1 for this goal, define two sets

Q :=
{
r(t)= (

r1(t), r2(t)
) ∈ C

([0,∞)× [0,∞),R2) ∣∣ sup
t∈[0,∞)

∣∣ri(t)∣∣ � D,

i = 1,2
}
,

S := {
s(t)= (

s1(t), s2(t)
) ∈ C

([0,∞)× [0,∞),R2)∩Q
∣∣ ∣∣si(t)∣∣ � D′t,

i = 1,2
}

(observe that s(0)= 0), where Q is a closed convex subset of C([0,∞)× [0,∞),R2) and
S is a bounded closed subset of Q.

For q(t)= (q1(t), q2(t)) ∈Q, consider still the family of systems

{
ẋ1 = p1(t)x1 + p2(t)x2 + r1(t),

ẋ2 =−p2(t)x1 + p1(t)x2 + r2(t),
(5.19)

where p1(t)⊂ F1(t, q(t)), p2(t)⊂ F2(t, q(t)), r1(t)⊂E1(t, q(t)), r2(t)⊂E2(t, q(t)) are
measurable selections (see Proposition 2.5).

To show the solvability of (5.10) and (5.18) by means of Corollary 4.1, we need to verify
that, for each q ∈Q, the linearized system

{
ẋ1 ∈ F1

(
t, q(t)

)
x1 + F2

(
t, q(t)

)
x2 +E1

(
t, q(t)

)
,

ẋ2 ∈−F2
(
t, q(t)

)
x1 + F1

(
t, q(t)

)
x2 +E2

(
t, q(t)

) (5.20)

has an Rδ-set of solutions in S.
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It is well known that the general solution x(t,0, ξ) of (5.19), where ξ = (ξ1, ξ2) ∈ R
2,

reads as follows:

x1(t,0, ξ) =
[
ξ1 cos

(∫ t

0
p2(s)ds

)
+ ξ2 sin

(∫ t

0
p2(s)ds

)]
exp

∫ t

0
p1(s)ds

+
∫ t

0

[
r1(s) exp

∫ t

s

p1(w)dw cos

(∫ t

s

p2(w)dw

)]
ds

+
∫ t

0

[
r2(s) exp

∫ t

s

p1(w)dw sin

(∫ t

s

p2(w)dw

)]
ds,

x2(t,0, ξ) =
[
−ξ1 sin

(∫ t

0
p2(s)ds

)
+ ξ2 cos

(∫ t

0
p2(s)ds

)]
exp

∫ t

0
p1(s)ds

−
∫ t

0

[
r1(s) exp

∫ t

s

p1(w)dw sin

(∫ t

s

p2(w)dw

)]
ds

+
∫ t

0

[
r2(s) exp

∫ t

s

p1(w)dw cos

(∫ t

s

p2(w)dw

)]
ds.

Because of (5.11), (5.14) and (5.15), we get

sup
t∈[0,∞)

∣∣∣∣
∫ t

0

[
ri(s)ds exp

∫ t

s

p1(w)dw cos

(∫ t

s

p2(w)dw

)]
ds

∣∣∣∣

� Ẽi sup
t∈[0,∞)

∫ t

0
exp

[
−

∫ t

s

∣∣p1(w)
∣∣dw

]
ds � Ẽi

λ
,

sup
t∈[0,∞)

∣∣∣∣
∫ t

0

[
ri(s)ds exp

∫ t

s

p1(w)dw sin

(∫ t

s

p2(w)dw

)]
ds

∣∣∣∣

� Ẽi sup
t∈[0,∞)

∫ t

0
exp

[
−

∫ t

s

∣∣p1(w)
∣∣dw

]
ds � Ẽi

λ
,

for i = 1,2, and subsequently we arrive at

sup
t∈[0,∞)

∣∣xi(t,0, ξ)
∣∣ � |ξ1| + |ξ2| +D, i = 1,2, (5.21)

and x(0,0, ξ)= ξ .
According to Theorem 4.9 (see also Proposition 2.5 and estimate (5.21)), problem

(5.17) ∩ (5.20) has the Rδ-set of solutions x(t,0,0). Moreover, in view of the indicated
implication ((5.17) ⇒ (5.16)), these solutions x(t,0,0) belong obviously to S, for every
q ∈Q, as required.

Thus, it follows from Corollary 4.1 that problem (5.10) ∩ (5.18) has, under the assump-
tions (5.11)–(5.15), at least one solution.
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If the inequality (5.11) or both inequalities (5.14) and (5.15) are sharp, then the same
conclusion is true for x(0) = 0 in (5.18) replaced by x(0) = ξ , where |ξ | is sufficiently
small. For bigger values of |ξ |, the above assumptions can be appropriately modified as
well.

THEOREM 5.2. Consider the target problem

{
ẋ(t) ∈ F

(
t, x(t)

)
, for a.a. t ∈ [0,∞),

lim
t→∞x(t)= x∞ ∈R

n (5.22)

and assume that F : [0,∞) × R
n � R

n is a product-measurable u-Carathéodory map.
Let, furthermore, there exist a globally integrable function α : [0,∞)→[0,∞) and a pos-
itive constant β such that, for every x ∈ R

n and for a.a. t ∈ [0,∞), we have |F(t, x)| �
α(t)(β + |x|), where |F(t, x)| = sup{|y| | y ∈ F(t, x)}, and

∫∞
0 α(t)dt <∞. Then prob-

lem (5.22) admits a (bounded) solution, for every x∞ ∈R
n.

PROOF. It is convenient to consider, instead of problem (5.22), the equivalent problem

{
ẋ(t) ∈G

(
t, x(t)

)
, for a.a. t ∈ [0,∞),

lim
t→∞x(t)= x∞ ∈R

n, (5.23)

where

G(t, x)=
⎧⎨
⎩
F(t, x), for |x|� D and t ∈ [0,∞),

F

(
t,D

x

|x|
)
, for |x|� D and t ∈ [0,∞),

D �
(|x∞|+AB

)
expA, A=

∫ ∞

0
α(t)dt <∞.

Moreover, there certainly exists a positive constant γ such that

|x0| +
∣∣G(t, x)

∣∣ � |x0| +A(B +D) � γ,

for all x ∈R
n and a.a. t ∈ [0,∞). (5.24)

Besides problem (5.23), consider still a one-parameter family of linear problems

{
ẋ(t) ∈G

(
t, q(t)

)
, for a.a. t ∈ [0,∞), q ∈Q,

x ∈Q∩ S,
(5.25)

where

S =
{
x ∈ C

([0,∞),Rn
) ∣∣ lim

t→∞x(t)= x∞
}
,

Q = {
q ∈ C

([0,∞),Rn
) ∣∣ ∣∣q(t)∣∣ � |x∞|+A(B +D), for t � 0

}
.
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Consider the set

S1 =
{
x ∈Q

∣∣∣ ∣∣x(t)− x∞
∣∣ � (B +D)

∫ ∞

t

α(s)ds, for t � 0

}
⊂ S.

It is evident that S1 is a closed subset of S and all solutions to problem (5.25) belong to S1.
At first, we assume that G= g is single-valued. Then we have a single-valued continu-

ous operator

T (q)= x∞ +
∫ t

∞
g
(
s, q(s)

)
ds, for every q ∈Q.

Thus, to apply Corollary 4.2, only the condition T (Q) ⊂ Q should be verified. But this
follows immediately from (5.24), because

sup
t∈[0,∞)

∣∣∣∣x∞ +
∫ t

∞
G
(
s, q(s)

)
ds

∣∣∣∣ � |x∞|+
∫ ∞

0

∣∣G(
t, q(t)

)∣∣dt

� |x∞|+ (B +D)

∫ ∞

0
α(t)dt

= |x∞|+A(B +D) <∞. (5.26)

By Corollary 4.2, we obtain a solution to the problem with g as a right-hand side. This exis-
tence result can be used jointly with Theorem 4.12 which is needed to prove our statement
in a general case. In fact, in view of the (just proved) existence result and Theorem 4.12
(cf. also Proposition 2.5), the map T which assigns to every q ∈ Q the set of solutions
to the linear problem (5.25), has nonempty, acyclic sets of values. Once more, we use
Corollary 4.2, obtaining a solution to problem (5.22), and the proof is complete. �

5.2. Solvability of boundary value problems with linear conditions

Now, we shall deal with boundary value problems of the type

{
ẋ(t)+A(t)x(t) ∈ F

(
t, x(t)

)
, for a.a. t ∈ [0, τ ],

Lx =�,
(5.27)

where
(i) A : [0, τ ]→ L(Rn,Rn) is a measurable linear operator such that |A(t)|� γ (t), for

all t ∈ [0, τ ] and some integrable function γ : [0, τ ]→ [0,∞),
(ii) the associated homogeneous problem

{
ẋ(t)+A(t)x(t)= 0, for a.a. t ∈ [0, τ ],
Lx = 0

has only the trivial solution,
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(iii) F : [0, τ ] × R
n � R

n is a u-Carathéodory mapping with nonempty, compact and
convex values (cf. Definition 2.10),

(iv) there are two nonnegative Lebesgue-integrable functions δ1, δ2 : [0, τ ] → [0,∞)

such that

∣∣F(t, x)
∣∣ � δ1(t)+ δ2(t)|x|, for a.a. t ∈ [0, τ ] and all x ∈R

n,

where |F(t, x)| = sup{|y| | y ∈ F(t, x)}.
Applying Theorem 4.13 (cf. also Proposition 2.5) to replace condition (i) in Corol-

lary 4.3 for (5.27), we can immediately give

PROPOSITION 5.1. Consider problem (5.27) with (i)–(iv) above and let G : [0, τ ] ×R
n ×

R
n×[0,1]→R

n be a product-measurable u-Carathéodory map (cf. Definition 2.10) such
that

G(t, c, c,1)⊂ F(t, c), for all (t, c) ∈ [0, τ ] ×R
n.

Assume, furthermore, that
(v) there exists a (bounded) retract Q of C([0, τ ],Rn) such that Q \ ∂Q is nonempty

(open) and such that G(t, x, q(t), λ) is Lipschitzian in x with a sufficiently small
Lipschitz constant (see Theorem 4.13), for a.a. t ∈ [0, τ ] and each (q,λ) ∈Q ×
[0,1],

(vi) there exists a Lebesgue integrable function α : [0, τ ]→ [0,∞) such that

∣∣G(
t, x(t), q(t), λ

)∣∣ � α(t), a.e. in [0, τ ],

for any (x, q,λ) ∈ 
T (i.e. from the graph of T ), where T denotes the set-valued
map which assigns, to any (q,λ) ∈Q× [0,1], the set of solutions of

{
ẋ(t)+A(t)x(t) ∈G

(
t, x(t), q(t), λ

)
, for a.a. t ∈ [0,1],

Lx =�,

(vii) T (Q× {0})⊂Q holds and ∂Q is fixed point free w.r.t. T , for every (q,λ) ∈Q×
[0,1].

Then problem (5.27) has a solution.

REMARK 5.4. Rescaling t in (5.27), the interval [0, τ ] can be obviously replaced in Propo-
sition 5.1 by any compact interval J , e.g., J = [−m,m], m ∈N. Therefore, the second part
of Proposition 4.5 can be still applied for obtaining an entirely bounded solution.

EXAMPLE 5.2. Consider problem (5.27). Assume that conditions (i)–(iv) are satisfied.
Taking (for a product-measurable F : [0, τ ] ×R

n � R
n)

G
(
t, q(t)

)= F
(
t, q(t)

)
, for q ∈Q,



72 J. Andres

where Q = {μ ∈ C([0, τ ],Rn) | maxt∈[0,τ ] |μ(t)| � D} and D > 0 is a sufficiently big
constant which will be specified below, we can see that (v) holds trivially. Furthermore,
according to (iv), we get

∣∣G(
t, q(t)

)∣∣ � δ1(t)+ δ2(t)D, for a.a. t ∈ [0, τ ], (5.28)

i.e. (vi) holds as well with α(t)= δ1(t)+ δ2(t)D. At last, the associated linear problem

{
ẋ(t)+A(t)x(t) ∈ F

(
t, q(t)

)
, for a.a. t ∈ [0, τ ],

Lx =�

has, according to Theorem 4.13, for every q ∈Q, an Rδ-set of solutions of the form

T (q)=
∫ τ

0
H(t, s)f

(
s, q(s)

)
ds,

where H is the related Green function and f ⊂ F is a measurable selection (see again
Proposition 2.5).

Therefore, in order to apply Proposition 5.1 for the solvability of (5.27), we only need
to show (cf. (vii)) that T (Q)⊂Q (and that ∂Q is fixed point free w.r.t. T , for every q ∈Q,
which is, however, not necessary here). Hence, in view of (5.28), we have that

max
t∈[0,τ ]

∣∣T (q)
∣∣ = max

t∈[0,τ ]

∣∣∣∣
∫ τ

0
H(t, s)f

(
s, q(s)

)
ds

∣∣∣∣
� max

t∈[0,τ ]

∫ τ

0

∣∣H(t, s)
∣∣(δ1(s)+ δ2(s)D

)
ds

= max
t,s∈[0,τ ]

∣∣H(t, s)
∣∣[∫ τ

0
δ1(t)dt +D

∫ τ

0
δ2(t)dt

]
,

and subsequently the above requirement holds for

D �
maxt,s∈[0,τ ] |H(t, s)| ∫ τ

0 δ1(t)dt

1−maxt,s∈[0,τ ] |H(t, s)| ∫ τ

0 δ2(t)dt
,

provided

∫ τ

0
δ2(t)dt <

1

maxt,s∈[0,τ ] |H(t, s)| .

(Observe that for D strictly bigger than the above quantity, ∂Q becomes fixed point free.)
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5.3. Existence of periodic and anti-periodic solutions

Now, consider the following special cases of Floquet boundary value problems in a reflex-
ive Banach space E:

{
ẋ(t)+A(t)x(t) ∈ F

(
t, x(t)

)
, for a.a. t ∈ [0, τ ],

x(τ)=Mx(0), where M = id or M =− id.
(5.29)

Besides (A1), (A2), assume still

A(t)≡A(t + τ) and F(t, x)≡ F(t + τ, x) or F(t, x)≡−F(t + τ,−x)

for some τ > 0, (5.30)

and, instead of (F1), that only

∥∥F(t, x)
∥∥ � α0(t)+ α1(t)‖x‖ (5.31)

holds for a u-Carathéodory map F : [0, τ ] × E � E, for a.a. t ∈ [0, τ ] and every x ∈ E,
where α0, α1 ∈ L1([0, τ ]). Then one can check, as in the proof of Theorem 5.1, that the
solution operator T :Q×[0,1]� E, where Q= {q ∈ C(R,E) | q(t)≡ q(t+τ) or q(t)≡
−q(t + τ)}, associated with the fully linearized problem

{
ẋ(t)+A(t)x(t) ∈ λF

(
t, q(t)

)
, for a.a. t ∈ [0, τ ], λ ∈ [0,1],

x(τ)=Mx(0), where M = id or M =− id,
(5.32)

is condensing and that the set of (bounded, after τ -periodic or 2τ -periodic prolongation)
solutions is convex and compact, provided an analogy of (F2) holds.

Therefore, taking G(t, c, c,0)≡−A(t)c, Corollary 4.5 can be simplified as follows.

COROLLARY 5.1. Assume that conditions (5.30) and (5.31) hold, jointly with
(i) A : [0, τ ] → L(E) is strongly measurable (cf. Definition 2.9) and Bochner inte-

grable on the interval [0, τ ].
(ii) The linear equation ẋ(t)+ A(t)x(t) = 0 admits a regular exponential dichotomy.

Denote by G the related principal Green’s function.
(iii) F : [0, τ ] ×E � E is a u-Carathéodory map with nonempty, compact and convex

values.
Assume, furthermore, that there exists a nonempty, bounded, closed, convex subset Q of

{q ∈ C(R,E) | q(t) ≡ q(t + τ) or q(t) ≡ −q(t + τ)} with nonempty interior intQ such
that

(iv) γ (F (t,�)) � g(t)h(γ (�)), for a.a. t ∈ [0, τ ], and each � ⊂ {q(t) ∈ E | t ∈
[0, τ ], q ∈ Q}, where g, h are positive functions, g is measurable, h is nonde-
creasing such that

L := sup

{∫ τ

0

∥∥G(t, s)
∥∥
L(E)

g(s)ds
∣∣∣ t ∈ [0, τ ]

}
<∞
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and gh(t)L < t , for each t ∈ [0, τ ], with a constant q = 1, if E is still separable,
and q = 2, in general case.

(v) {0} ⊂ intQ and the boundary ∂Q of Q is fixed point free w.r.t. T , for every (q,λ) ∈
Q × (0,1], where T is the map assigning, to any (q,λ) ∈ Q × [0,1], the set of
solutions of the fully linearized problem (5.32).

Then problem (5.29) admits a solution.

REMARK 5.5. Obviously, under the assumptions (i), (ii), (iii), (5.7), (5.30) and (F2) in
Section 5.1, problem (5.29) admits a solution, provided K in (5.7) is sufficiently small.

For periodic and anti-periodic problems, Proposition 5.1 can be easily simplified as fol-
lows (cf. Remark 5.3).

COROLLARY 5.2. Consider problem

{
ẋ(t)+A(t)x(t) ∈ F

(
t, x(t)

)
, for a.a. t ∈ [0, τ ],

x(0)= x(τ),

where F(t, x) ≡ F(t + τ, x) satisfies conditions (iii) and (iv) in Proposition 5.1. Let
G : [0, τ ] × R

n × R
n × [0,1]� R

n be a product-measurable u-Carathéodory map such
that

G(t, c, c,1)⊂ F(t, c), for all (t, c) ∈ [0, τ ] ×R
n.

Assume that A is a piece-wise continuous (single-valued) bounded τ -periodic (n × n)-
matrix whose Floquet multipliers lie off the unit cycle, jointly with (v)–(vii) in Proposi-
tion 5.1, where Lx = x(0) − x(τ) and � = 0. Then the inclusion ẋ + A(t)x ∈ F(t, x)

admits a τ -periodic solution.

COROLLARY 5.3. Consider problem

{
ẋ(t) ∈ F

(
t, x(t)

)
, for a.a. t ∈ [0, τ ],

x(0)=−x(τ),

where F(t, x) ≡ −F(t + τ,−x) satisfies conditions (iii) and (iv) in Proposition 5.1. Let
G : [0, τ ] × R

n × R
n × [0,1]� R

n be a product-measurable u-Carathéodory map such
that

G(t, c, c,1)⊂ F(t, c), for all (t, c) ∈ [0, τ ] ×R
n.

Assume that (v)–(vii) in Proposition 5.1 hold, where Lx = x(0)+ x(τ) and �= 0. Then
the inclusion ẋ ∈ F(t, x) admits a 2τ -periodic solution.

In the case of ODEs, Corollary 5.3 can be still improved, in view of Theorem 4.14,
where λ= 1 and ξ = 0, as follows.
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COROLLARY 5.4. Consider problem

{
ẋ(t)= f

(
t, x(t)

)
, for a.a. t ∈ [0, τ ],

x(0)=−x(τ),

where f (t, x) ≡ −f (t + τ,−x) is a Carathéodory function. Let g : [0, τ ] × R
n × R

n ×
[0,1]→R

n be a Carathéodory function such that

g(t, c, c,1)= f (t, c), for all (t, c) ∈ [0, τ ] ×R
n.

Assume that
(i) there exists a bounded retract Q of C([0, τ ],Rn) such that Q \ ∂Q is nonempty

(open) and such that g(t, x, q(t), λ) satisfies

∣∣g(t, x, q(t), λ)− g
(
t, y, q(t), λ

)∣∣ � p(t)|x − y|, x, y ∈R
n

for a.a. t ∈ [0, τ ] and each (q,λ) ∈ Q × [0,1], where p : [0, τ ] → [0,∞) is a
Lebesgue integrable function with (see (4.31))

∫ τ

0
p(t)dt � π,

(ii) there exists a Lebesgue integrable function α : [0, τ ]→ [0,∞) such that

∣∣g(t, x(t), q(t), λ)∣∣ � α(t), a.e. in [0, τ ],

for any (x, q,λ) ∈ 
T , where T denotes the set-valued map which assigns, to any
(q,λ) ∈Q× [0,1], the set of solutions of

{
ẋ(t)= g

(
t, x(t), q(t), λ

)
, for a.a. t ∈ [0, τ ],

x(0)=−x(τ),

(iii) T (Q× {0})⊂Q holds and ∂Q is fixed point free w.r.t. T , for every (q,λ) ∈Q×
[0,1].

Then the equation ẋ = f (t, x) admits a 2τ -periodic solution.

REMARK 5.6. Since in Corollaries 5.2 and 5.3 the associated homogeneous problems
(cf. (ii) at the beginning of Section 5.2) have obviously only the trivial solution, the require-
ment T (Q×{0})⊂Q reduces to {0} ⊂Q, provided G(t, x, q,λ)= λG(t, x,λ), λ ∈ [0,1].

REMARK 5.7. The requirement concerning a fixed point free boundary ∂Q of Q in Propo-
sition 5.1, Corollaries 5.1, 5.2, 5.3 and 5.4 can be verified by means of bounding (Liapunov-
like) functions (see [11,32–34] and cf. [22, Chapter III.8]).
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EXAMPLE 5.3. Consider the anti-periodic problem

{
ẋ ∈ F1(t, x)+ F2(t, x),

x(a)=−x(b),
(5.33)

where x = (x1, . . . , xn), F = F1 + F2 = (f11, . . . , f1n)+ (f21, . . . , f2n), F1,F2 : [a, b] ×
R

n � R
n are globally upper semicontinuous multivalued functions with nonempty, con-

vex, compact values which are bounded in t ∈ [a, b], for every x ∈ R
n, and linearly

bounded in x ∈R
n, for all t ∈ [a, b].

Assume, furthermore, that there exist positive constants Ri , i = 1, . . . , n such that

∣∣f1i
(
t, x(±Ri)

)∣∣> max
t∈[a,b]
x∈K

∣∣f2i (t, x)
∣∣, i = 1, . . . , n, t ∈ (a, b),

where x(±Ri) = (x1, . . . , xi−1,±Ri, xi+1, . . . , xn), |xj | � Rj and K = {x ∈ R
n | |xi | <

Ri , i = 1, . . . , n},
[
f1i

(
a, x(±Ri)

)+ f2i (a, y)
] · [f1i

(
b,−x(±Ri)

)+ f2i (b, z)
]
< 0,

i = 1, . . . , n,

where x, y, z ∈K ,

F1(t, ·) is Lipschitzian with a sufficiently small constant L,

for every t ∈ [a, b]; in the single-valued case, when F ∈ C([a, b] ×R
n,Rn), it is enough

to take L � π/(b− a) (see condition (i) in Corollary 5.4).
It can be checked (see [32]; cf. [22, Example 8.40 in Chapter III.8]) that all assumptions

of Corollary 5.3 (in the single-valued case, of Corollary 5.4) are satisfied, and so problem
(5.33) admits a solution.

6. Multiplicity results

6.1. Several solutions of initial value problems

Let us recall that in order to apply Theorem 4.3, the following main steps have to be taken:
(i) the Rδ-structure of the solution set to (4.2) must be verified,

(ii) the inclusion T (Q) ⊂ S or, most preferably, T (Q) ⊂Q ∩ S must be guaranteed,
together with the retractibility of T in the sense of Definition 4.1,

(iii) N(r|T (Q) ◦ T ) must be computed.
For initial value problems, condition (i) can be easily verified, provided G is still

product-measurable. In fact, since u-Carathéodory inclusions (cf. Definition 2.10) with
product-measurable right-hand sides G possess (according to Theorem 4.9; cf. also Propo-
sition 2.5), for each q ∈Q⊂ C(I,Rn), an Rδ-set of solutions x(·, x0) with x(0, x0)= x0,
for every x0 ∈R

n, such a requirement can be, in Theorem 4.3 with S := {x ∈ACloc(I,R
n) |



Topological principles for ordinary differential equations 77

x(0, x0) = x0}, simply avoided. Moreover, if Q is still compact and such that T (Q) ⊂
Q∩ S, then (see Remark 4.3) π1(Q) need not be abelian and finitely generated.

Thus, Theorem 4.3 simplifies, for initial value problems, as follows:

COROLLARY 6.1. Let G : I × R
n × R

n � R
n be a product-measurable u-Carathéodory

mapping, where I = [0,∞) or I = [0, τ ], τ ∈ (0,∞). Assume, furthermore, that there
exists a (nonempty) compact, connected subset Q ⊂ C(I,Rn) which is a neighbourhood
retract of C(I,Rn) such that |G(t, x(t), q(t))|� μ(t)(|x| + 1) holds, for every (t, x, q) ∈
I ×R

n ×Q. Let the initial value problem

{
ẋ(t) ∈G

(
t, x(t), q(t)

)
, for a.a. t ∈ I ,

x(0)= x0

have, for each q ∈Q, a nonempty set of solutions T (q) such that T (Q) ⊂Q ∩ S, where
S := {x ∈ACloc(I,R

n) | x(0)= x0}. Then the original initial value problem

{
ẋ(t) ∈ F

(
t, x(t)

)
, for a.a. t ∈ I ,

x(0)= x0

admits at least N(T ) solutions, provided G(t, c, c) ⊂ F(t, c) holds a.e. on I , for any
c ∈R

n.

EXAMPLE 6.1. Consider the scalar (n = 1) initial value problem with x0 = 0 and I =
[0, τ ], τ > 0. Letting

Q := {
q ∈AC

([0, τ ],R) | q(0)= 0 and δ2 � q̇(t) � δ1

or − δ1 � q̇(t) �−δ2, for a.a. t ∈ [0, τ ]},
where 0 < δ2 < δ1 are suitable constants, Q can be easily verified to be a disjoint (!)
union of two convex, compact sets, and consequently Q is a compact ANR, i.e. also a
neighbourhood retract of C([0, τ ],R). Unfortunately, Q is disconnected which excludes
the direct application of Corollary 6.1.

Nevertheless, e.g., the inclusion

ẋ(t) ∈ δ Sgn
(
x(t)

)
, for a.a. t ∈ [0, τ ], δ > 0, (6.1)

where

Sgn(x)=
{−1, for x ∈ (−∞,0),
[−1,1], for x = 0,
1, for x ∈ (0,∞),

admits obviously two classical solutions x1(t)= δt with x1(0)= 0 and x2(t)=−δt with
x2(0)= 0, satisfying the given inclusion everywhere.
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The linearized inclusion

ẋ(t) ∈ δ Sgn
(
q(t)

)
, for a.a. t ∈ [0, τ ], δ > 0,

possesses, for each q ∈Q, either the solution x1(t) = δt with x1(0) = 0 or x2(t) = −δt

with x2(0) = 0, depending on sgn(q(t)), provided δ2 � δ � δ1. Observe that there are no
more solutions, for each q ∈ Q. Thus, we also have T (Q) ⊂ Q ∩ S (i.e. condition (ii)),
where S := {x ∈ACloc(I,R

n) | x(0)= 0}.
The only handicap is related to the mentioned disconnectedness of Q. However, since

T :Q→Q, where

T (q)=
{
δt, for q � 0,
−δt, for q � 0,

is obviously single-valued, the application of the multivalued Nielsen theory, in the proof
of Theorem 4.3 (and subsequently of Corollary 6.1), can be replaced by the single-valued
one, where Q ∈ANR can be disconnected (see the definition of the Nielsen number at the
beginning of Section 3.2). We can, therefore, conclude, on the basis of the appropriately
modified Corollary 6.1, that the original inclusion (6.1) admits at least N(T )= 2 solutions
x(t) with x(0)= 0, as observed by the direct calculations. In fact, it must therefore have,
according to Theorem 4.5, a nontrivial Rδ-set of infinitely many piece-wise linear solutions
x(t) with x(0) = 0. The computation of N(T ) = 2 (i.e. condition (iii)) is trivial, because
Q=Q+ ∪Q−, where

(AR �) Q+ := {
q ∈AC

([0, τ ],R) | q(0)= 0 and

δ2 � q̇(t) � δ1, for a.a. t ∈ [0, τ ]},
(AR �) Q− := {

q ∈AC
([0, τ ],R) | q(0)= 0 and

− δ1 � q̇(t) �−δ2, for a.a. t ∈ [0, τ ]},
and so for the computation of the generalized Lefschetz numbers we have �(T |Q+) =
�(T |Q−)= 1, where T |Q+ :Q+ →Q+ and T |Q− :Q− →Q−.

The same is obviously true for the inclusion

ẋ(t) ∈ [
δ+ f

(
t, x(t)

)]
Sgn

(
x(t)

)
, for a.a. t ∈ [0, τ ], δ > 0,

where f : [0, τ ] × R→ R is a Carathéodory and locally Lipschitz function in x, for a.a.
t ∈ [0, τ ], such that δ2 � δ+f (t, x) � δ1, for some 0 < δ2 < δ1, because again T :Q→Q.

Of course, we could arrive at the same conclusion even without an explicit usage of the
Nielsen theory arguments, just through double application (separately on Q+ and Q−) of
Theorem 3.3 (i.e. of the Lefschetz theory arguments).

REMARK 6.1. In view of Example 6.1, it is more realistic to suppose in Corollary 6.1 that
(at least, for n= 1) the solution operator T is single-valued and that Q can be disconnected
and not necessarily compact. Naturally, the first requirement seems to be rather associated
with differential equations than inclusions.
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6.2. Several periodic and bounded solutions

Now, Theorem 4.3 will be applied to boundary value problems associated with semilinear
differential inclusions.

Hence, consider the problem

{
ẋ +A(t)x ∈ F(t, x),

Lx =�.
(6.2)

Since the composed multivalued function F(t, q(t)), where F :J ×R
n � R

n is a product-
measurable u-Carathéodory mapping with nonempty, compact and convex values and q ∈
C(J,Rn), is, according to Proposition 2.5, measurable, we can also employ Theorem 4.13
to the associated linearized system

{
ẋ +A(t)x ∈ F

(
t, q(t)

)
,

Lx =�,
(6.3)

provided

∣∣F(t, x)
∣∣ � μ(t)

(|x| + 1
)
, (6.4)

where μ :J →[0,∞) is a suitable (locally) Lebesgue integrable bounded function.
We can immediately give

THEOREM 6.1. Consider boundary value problem (6.2) on a compact interval J . Assume
that A :J → R

n2
is a single-valued continuous (n× n)-matrix and F :J ×R

n � R
n is a

product-measurable u-Carathéodory mapping with nonempty, compact and convex values
satisfying (6.4). Furthermore, let L :C(J,Rn)→ R

n be a linear operator such that the
homogeneous problem

{
ẋ +A(t)x = 0,
Lx = 0

has only the trivial solution on J . Then the original problem (6.2) has at least N(r|T (Q) ◦
T (·)) solutions (for the definition of the Nielsen number N , see Definition 3.2 in Sec-
tion 3.2), provided there exists a closed connected subset Q of C(J,Rn) with a finitely
generated abelian fundamental group such that

(i) T (Q) is bounded,
(ii) T (q) is retractible onto Q with a retraction r in the sense of Definition 4.1,

(iii) T (Q)⊂ {x ∈AC(J,Rn) | Lx =�},
where T (q) denotes the set of (existing) solutions to (6.3).

REMARK 6.2. In the single-valued case, we can obviously assume the unique solvability
of the associated linearized problem. Moreover, Q need not then have a finitely generated
abelian fundamental group (see Remark 4.3). In the multivalued case, the latter is true,
provided Q is compact and T (Q)⊂Q (see again Remark 4.3).
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Before presenting a nontrivial example, it will be convenient to have the following re-
duction property (see [6] and cf. [22, Lemma 6.6 in Chapter III.6]).

LEMMA 6.1 (Reduction). Let X and its closed subset Y be ANR-spaces. Assume that
f :X→ X is a compact map, i.e. f (X) is compact, such that f (X) ⊂ Y . Denoting by
f ′ :Y → Y the restriction of f , we have

(i) Fix(f ′)= Fix(f ),
(ii) the Nielsen relations coincide,

(iii) ind(C,f ′)= ind(C,f ), for any Nielsen class C ⊂ Fix(f ).
Thus, N(f ′)=N(f ).

Consider the u-Carathéodory system (the functions e, f , g, h have the same regularity
as in Theorem 6.1)

{
ẋ + ax ∈ e(t, x, y)y(1/m) + g(t, x, y),

ẏ + by ∈ f (t, x, y)x(1/n) + h(t, x, y),
(6.5)

where a, b are positive numbers and m,n are odd integers with min(m,n) � 3. Let suitable
positive constants E0, F0, G, H exist such that

∣∣e(t, x, y)∣∣ � E0,
∣∣f (t, x, y)

∣∣ � F0,∣∣g(t, x, y)∣∣ � G,
∣∣h(t, x, y)∣∣ � H,

hold, for a.a. t ∈ (−∞,∞) and all (x, y) ∈R
2.

Furthermore, assume the existence of positive constants e0, f0, δ1, δ2 such that

0 < e0 � e(t, x, y), (6.6)

for a.a. t , all x and |y|� δ2, jointly with

0 < f0 � f (t, x, y), (6.7)

for a.a. t , |x|� δ1 and all y.
As a constraint S, consider at first the periodic boundary condition

(
x(0), y(0)

)= (
x(ω), y(ω)

)
. (6.8)

More precisely, we take S =Q=Q1 ∩Q2 ∩Q3, where

Q1 =
{
q(t) ∈ C

([0,ω],R2) ∣∣
∥∥q(t)∥∥ :=max

{
max
t∈[0,ω]

∣∣q1(t)
∣∣, max

t∈[0,ω]
∣∣q2(t)

∣∣} � D
}
,
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Fig. 3.

Q2 =
{
q(t) ∈ C

([0,ω],R2) ∣∣ min
t∈[0,ω]

∣∣q1(t)
∣∣ � δ1 > 0

or min
t∈[0,ω]

∣∣q2(t)
∣∣ � δ2 > 0

}
,

Q3 =
{
q(t) ∈ C

([0,ω],R2) ∣∣ q(0)= q(ω)
}
,

the constants δ1, δ2, D will be specified below. For (Q1 ∩ Q2) ∩ R
2, the situation is

schematically sketched in Fig. 3.
Important properties of the set Q can be expressed as follows.

LEMMA 6.2. The set Q defined above satisfies:
(i) Q is a closed connected subset of C([0,ω],R2),

(ii) Q ∈ ANR,
(iii) π1(Q)= Z.

PROOF. Since Q is an intersection of closed sets Q1, Q2, Q3, we conclude that Q is a
closed subset of C([0,ω],R2) as well. The connectedness follows from the proof of (iii)
below.

For (ii), it is enough to realize (see [69, Corollary 4.4 on p. 284]) that Q is the union
of four closed, convex sets in the Banach space C([0,ω],R2), namely Q= (Q1 ∩Q21 ∩
Q3)∪ (Q1 ∩Q22 ∩Q3)∪ (Q1 ∩Q23 ∩Q3)∪ (Q1 ∩Q24 ∩Q3), where

Q21 =
{
q(t) ∈ C

([0,ω],R2) ∣∣ min
t∈[0,ω]q1(t) � δ1 > 0

}
,

Q22 =
{
q(t) ∈ C

([0,ω],R2) ∣∣ min
t∈[0,ω]q2(t) � δ2 > 0

}
,
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Q23 =
{
q(t) ∈ C

([0,ω],R2) ∣∣ min
t∈[0,ω]q1(t) �−δ1 < 0

}
,

Q24 =
{
q(t) ∈ C

([0,ω],R2) ∣∣ min
t∈[0,ω]q2(t) �−δ2 < 0

}
.

At last, we will show (iii). It is obvious that π1(A)= Z, where

A= {
(x, y) ∈R

2
∣∣ max

(|x|, |y|) � D and
[|x|� δ1 or |y|� δ2

]}
.

At the same time, A = Q ∩ R
2, when regarding R

2 as a subspace of constant functions
of Q3. For (iii), it is sufficient to show that A is a deformation retract of Q.

We define ρ :Q× [0,1]→A by the formula

ρ(q,λ)= (
λq1 + (1− λ)q1, λq2 + (1− λ)q2

)
,

where q = (q1, q2) ∈ Q and q1 = q1(0), q2 = q2(0). One can readily check that ρ is a
deformation retraction, which completes the proof of our lemma. �

Besides (6.5) consider still its embedding into
{
ẋ + ax ∈ [

(1−μ)e0 +μe(t, x, y)
]
y1/m +μg(t, x, y),

ẏ + by ∈ [
(1−μ)f0 +μf (t, x, y)

]
x1/n +μh(t, x, y),

(6.9)

where μ ∈ [0,1] and observe that (6.9) reduces to (6.5), for μ= 1.
The associated linearized system to (6.9) takes, for μ ∈ [0,1], the form

{
ẋ + ax ∈ [

(1−μ)e0 +μe
(
t, q1(t), q2(t)

)]
q2(t)

1/m +μg
(
t, q1(t), q2(t)

)
,

ẏ + by ∈ [
(1−μ)f0 +μf

(
t, q1(t), q2(t)

)]
q1(t)

1/n +μh
(
t, q1(t), q2(t)

)
,

(6.10)

or, equivalently,
{
ẋ + ax = [

(1−μ)e0 +μet
]
q2(t)

1/m +μgt ,

ẏ + by = [
(1−μ)f0 +μft

]
q1(t)

1/n +μht ,
(6.11)

where et ⊂ e(t, q1(t), q2(t)), ft ⊂ f (t, q1(t), q2(t)), gt ⊂ g(t, q1(t), q2(t)), ht ⊂
h(t, q1(t), q2(t)) are measurable selections. These exist, because the u-Carathéodory func-
tions e, f , g, h are weakly superpositionally measurable (see Proposition 2.5).

It is well known that problem (6.11) ∩ (6.8) has, for each q(t) ∈ Q and every fixed
quadruple of selections et , ft , gt , ht , a unique solution X(t)= (x(t), y(t)), namely

X(t)=

⎧⎪⎪⎨
⎪⎪⎩
x(t)=

∫ ω

0
G1(t, s)

[(
(1−μ)e0 +μes

)
q2(s)

1/m +μgs
]

ds,

y(t)=
∫ ω

0
G2(t, s)

[(
(1−μ)f0 +μfs

)
q1(s)

1/n +μhs
]

ds,
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where

G1(t, s)=

⎧⎪⎪⎨
⎪⎪⎩

e−a(t−s+ω)

1− e−aω
, for 0 � t � s � ω,

e−a(t−s)

1− e−aω
, for 0 � s � t � ω,

G2(t, s)=

⎧⎪⎪⎨
⎪⎪⎩

e−b(t−s+ω)

1− e−bω
, for 0 � t � s � ω,

e−b(t−s)

1− e−bω
, for 0 � s � t � ω.

In order to verify that Tμ(Q) ⊂ S =Q, where Tμ(·) is the solution operator to (6.10) ∩
(6.8), it is just sufficient to prove that Tμ(Q) ⊂Q, μ ∈ [0,1], because S =Q is closed.
Hence, the Nielsen number N(Tμ) is well-defined, for every μ ∈ [0,1], provided only
product-measurability of e, f , g, h and Tμ(Q)⊂Q.

Since X(0)=X(ω), i.e. Tμ(Q)⊂Q3, it remains to prove that Tμ(Q)⊂Q1 as well as
Tμ(Q)⊂Q2. Let us consider the first inclusion. In view of

min
t,s∈[0,ω]G1(t, s) � e−aω

1− e−aω
> 0 and min

t,s∈[0,ω]G2(t, s) � e−bω

1− e−bω
> 0,

we obtain, for the above solution X(t), that

max
t∈[0,ω]

∣∣x(t)∣∣ � max
t∈[0,ω]

∫ ω

0

∣∣G1(t, s)
∣∣[[(1−μ)e0 +μes

]
q2(s)

1/m +μgs
]

ds

�
[
(e0 +E0)D

1/m +G
] ∫ ω

0
G1(t, s)ds

= 1

a

[
(e0 +E0)D

1/m +G
]

and

max
t∈[0,ω]

∣∣y(t)∣∣ � max
t∈[0,ω]

∫ ω

0

∣∣G2(t, s)
∣∣[[(1−μ)f0 +μfs

]
q1(s)

1/n +μhs
]

ds

�
[
(f0 + F0)D

1/n +H
] ∫ ω

0
G2(t, s)ds

= 1

b

[
(f0 + F0)D

1/n +H
]
.

Because of

∥∥X(t)
∥∥ = max

{
max
t∈[0,ω]

∣∣x(t)∣∣, max
t∈[0,ω]

∣∣y(t)∣∣}
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� max

{
1

a

[
(e0 +E0)D

1/m +G
]
,

1

b

[
(f0 + F0)D

1/n +H
]}

,

a sufficiently large constant D certainly exists such that ‖X(t)‖ � R, i.e. Tμ(Q) ⊂ Q1,
independently of μ ∈ [0,1] and et , ft , gt , ht .

For the inclusion Tμ(Q)⊂Q2, we proceed quite analogously.
Assuming that q(t) ∈Q2, we have

either min
t∈[0,ω]

∣∣q1(t)
∣∣ � δ1 > 0 or min

t∈[0,ω]
∣∣q2(t)

∣∣ � δ2 > 0.

Therefore, we obtain for the above solution X(t) that (see (6.6))

min
t∈[0,ω]

∣∣x(t)∣∣ = min
t∈[0,ω]

∫ ω

0

∣∣G1(t, s)
∣∣[[(1−μ)e0 +μes

]
q2(s)

1/m +μgs
]

ds

�
∣∣e0δ

1/m
2 −G

∣∣ ∫ ω

0
G1(t, s)ds = 1

a

∣∣e0δ
1/m
2 −G

∣∣> 0,

provided G< e0δ
1/m
2 , for |q2|� δ2, or (see (6.7))

min
t∈[0,ω]

∣∣y(t)∣∣ = min
t∈[0,ω]

∫ ω

0

∣∣G2(t, s)
∣∣[[(1−μ)f0 +μfs

]
q1(s)

1/n +μhs
]

ds

�
∣∣f0δ

1/n
1 −H

∣∣ ∫ ω

0
G2(t, s)ds = 1

b

∣∣f0δ
1/n
1 −H

∣∣> 0,

provided H < f0δ
1/n
1 , for |q1|� δ1.

So, in order to prove that X(t) ∈ Q2, we need to fulfill simultaneously the following
inequalities:

{
(1/a)

∣∣e0δ
1/m
2 −G

∣∣ � δ1 > (H/f0)
n

(1/b)
∣∣f0δ

1/m
1 −H

∣∣ � δ2 > (G/e0)
m.

(6.12)

Let us observe that the “amplitudes” of the multivalued functions g, h must be sufficiently
small. On the other hand, if e0 and f0 are sufficiently large (for fixed quantities a, b, G, H ),
then we can easily find δ1, δ2 satisfying (6.12).

After all, if there exist constants δ1, δ2 obeying (6.12), then we arrive at X(t) ∈ Q2,
i.e., Tμ(Q) ⊂Q2, independently of μ ∈ [0,1] and et , ft , gt , ht . This already means that
Tμ(Q)⊂Q, μ ∈ [0,1], as required.

Now, since all the assumptions of Theorem 6.1 are satisfied, problem (6.9) ∩ (6.8) pos-
sesses at least N(Tμ(·)) solutions belonging to Q, for every μ ∈ [0,1]. In particular, prob-
lem (6.5) ∩ (6.8) has N(T1(·)) solutions, but according to the invariance under homotopy,
N(T1(·))= N(T0(·)). So, it remains to compute the Nielsen number N(T0(·)) for the op-
erator T0 :Q→Q, where

T0(q)=
(
e0

∫ ω

0
G1(t, s)q2(s)

1/m ds, f0

∫ ω

0
G2(t, s)q1(s)

1/n ds

)
. (6.13)



Topological principles for ordinary differential equations 85

Hence, besides (6.13), consider still its embedding into the one-parameter family of oper-
ators

T ν(q)= νT0(q)+ (1− ν)r ◦ T0(q), ν ∈ [0,1],
where r(q) := (r(q1), r(q2)) and

r(qi)= qi(0), for i = 1,2.

One can readily check that r :Q→ Q ∩ R
2 is a retraction and T0(q) :Q ∩ R

2 → Q is
retractible onto Q ∩ R

2 with the retraction r in the sense of Definition 4.1. Thus, r ◦
T0(q) :Q∩R

2 →Q∩R
2 has a fixed point q̂ ∈Q∩R

2 if and only if q̂ = T0(̂q). Moreover,
r ◦ T0(q) :Q→Q ∩R

2 has evidently a fixed point q̂ =Q ∩R
2 if and only if q̂ = T0(̂q).

So, the investigation of fixed points for T 0(q)= r ◦ T0(q) turns out to be equivalent with
the one for T 0(q) :Q∩R

2 →Q∩R
2.

Since, in view of invariance under homotopy, we have

N
(
T1(·)

)=N
(
T0(·)

)=N
(
T 1(·))=N

(
T 0(·)),

where

T 0(q)=
(

e0e−aω

1− e−aω

∫ ω

0
easq2(s)

1/m ds,
f0e−bω

1− e−bω

∫ ω

0
ebsq1(s)

1/n ds

)

and

T 0(q) =
(
e0

a
q2

(1/m),
f0

b
q1

(1/n)
)
,

for q = (q1, q2)=
(
q1(0), q2(0)

) ∈Q∩R
2,

it remains to estimate N(T 0(·)). It will be useful to do it by passing to a simpler finite-
dimensional analogy, namely by the direct computation of fixed points of the operator

T 0(q) :Q∩R
2 →Q∩R

2,

belonging to different Nielsen classes.
There are two fixed points q̂+ = (̂q1, q̂2) and q̂− = (−q̂1,−q̂2) in Q∩R

2, where

q̂1 =
(
e0

a

)mn/(mn−1)(
f0

b

)1/(mn−1)

,

q̂2 =
(
e0

a

)m/(mn−1)(
f0

b

)mn/(mn−1)

.

These fixed points belong to different Nielsen classes, because any path u connecting them
in Q∩R

2 and its image T 0(u) are not homotopic in the space Q∩R
2, as it is schematically
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Fig. 4.

sketched in Fig. 4. Thus, according to the equivalent definition of the Nielsen number from
the beginning of Section 3.2, N(T 0(q))= 2. By means of the reduction property which is
true here (see Lemma 6.1), we have, moreover,

N
(
T1(·)

)=N
(
T 0(·))=N

(
T 0(q)

)= 2

and so, according to Theorem 6.1, system (6.5) admits at least two solutions belonging
to Q, provided suitable positive constants δ1, δ2 exist satisfying (6.12) and e, f , g, h are
product-measurable.

In fact, system (6.5) possesses at least three solutions satisfying (6.8), when the sharp
inequalities appear in (6.12), by which the lower boundary of Q becomes fixed point free.
Indeed. Since

�
(
T1(·),Q

)=�
(
T 0(·),Q)= λ

(
T 0(q),Q∩R

2)

holds for the generalized and ordinary Lefschetz numbers (see Section 3.1 and cf. [22,
Chapter I.6]) and one can easily check that

∣∣λ(T 0(q),Q∩R
2)∣∣= 2,

we obtain

∣∣�(
T1(·),Q

)∣∣= 2.

Furthermore, since for the self-map T1(·) on the convex set Q1∩Q3 such that T1(Q1 ∩Q3)

is compact we have (see Remark 3.1)

�
(
T1(·),Q1 ∩Q3

)= 1,



Topological principles for ordinary differential equations 87

it follows from the additivity, contraction and existence properties of the fixed point index
(see Proposition 3.2 in Section 3.3 and cf. [22, Chapter I.8]) that the mapping T1(·) has the
third coincidence point in Q1 ∩Q3 \Q representing a solution of problem (6.5) ∩ (6.8)
and belonging to Q1 \Q.

As we could see, problem (6.5) ∩ (6.8) admits at least two solutions in Q1 ∩Q2, for an
arbitrary ω > 0. Furthermore, because of rescaling (6.5), when replacing t by t + (ω/2),
there are also two solutions of (6.5) satisfying X(−ω/2)=X(ω/2), for an arbitrary ω > 0,
and belonging to Q1 ∩Q2.

Therefore, according to Proposition 4.5 and by obvious geometrical reasons, related
to the appropriate subdomains of Q1 ∩Q2, system (6.5) possesses at least two entirely
bounded solutions in Q1 ∩Q2.

Of course, because of replacing t by (−t), the same result holds for (6.5) with negative
constants a, b as well.

Finally, let us consider again system (6.5), where a, b, m, n are the same, but e, f , g, h
are this time l.s.c. in (x, y), for a.a. t ∈ (−∞,∞), multivalued functions with nonempty,
convex, compact values and with the same estimates as above. Since each such mapping
e, f , g, h has, under our regularity assumptions including the product-measurability, a
Carathéodory selection (see, e.g., [22,73]), the same assertion must be also true in this new
situation.

So, after summing up the above conclusions, we can give finally:

THEOREM 6.2. Let suitable positive constants δ1, δ2 exist such that the inequalities

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

|a|
∣∣e0δ

1/m
2 −G

∣∣ � δ1 >

(
H

f0

)n

,

1

|b|
∣∣f0δ

1/n
2 −H

∣∣ � δ2 >

(
G

e0

)m
(6.14)

are satisfied for constants e0, f0, G, H estimating the product-measurable u-Carathéodory
or l-Carathéodory multivalued functions (with nonempty, convex and compact values) e, f ,
g, h as above, for constants a, b with ab > 0 and for odd integers m, n with min(m,n) � 3.
Then system (6.5) admits at least two entirely bounded solutions. In particular, if multival-
ued functions e, f , g, h are still ω-periodic in t , then system (6.5) admits at least tree
ω-periodic solutions, provided the sharp inequalities appear in (6.14).

REMARK 6.3. Unfortunately, because of the invariance (w.r.t. the solution operator T1) of
the subdomains

{
q(t) ∈ C

([
−ω

2
,
ω

2

]
,R2

) ∣∣∣ 0 < δ1 � q1(t) � R ∧ 0 < δ2 � q2(t) � R

}

and
{
q(t) ∈ C

([
−ω

2
,
ω

2

]
,R2

) ∣∣∣−R � q1(t) �−δ1 < 0∧−R � q2(t) �−δ2 < 0

}
,
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for each ω ∈ (−∞,∞), the same result can also be obtained, for example, by means of the
fixed point index.

In order to avoid the handicap in Remark 6.3, let us still consider the planar system
of integro-differential inclusions. For the sake of transparency, our presentation will be as
simple as possible. Thus, the right-hand sides can apparently take a more general form and
the multiplicity criteria in terms of inequalities can be improved.

Hence, let xi : [0,ω] → R, for i = 1,2, x = (x1, x2), ϕ ∈ [0, π
4 ], a > 0 and consider the

following system of integro-differential inclusions

ẋ1 + ax1 ∈ 3
√
p2(x) cosϕ − 3

√
p1(x) sinϕ + ϕe, (6.15)

ẋ2 + ax2 ∈ 3
√
p1(x) cosϕ + 3

√
p2(x) sinϕ + ϕe, (6.16)

where e : [0,ω] × R
2 � R is a product-measurable u-Carathéodory map with nonempty,

convex and compact values with |e(t, x)|� E, for a.a. t ∈ [0,ω] and all x ∈R
2, and

pi(x)= 1

ω

∫ ω

0
xi(s)ds −B

(
1

ω

∫ ω

0
xi(s)ds − xi

)
,

with B > 0. For ϕ = π
4 , the system takes the form

ẋ1 + ax1 ∈
√

2

2

(
3
√
p2(x)− 3

√
p1(x)

)
+ π

4
e, (6.17)

ẋ2 + ax2 ∈
√

2

2

(
3
√
p1(x)+ 3

√
p2(x)

)
+ π

4
e, (6.18)

while, for ϕ = 0, it reduces to

ẋ1 + ax1 = 3
√
p2(x), ẋ2 + ax2 = 3

√
p1(x).

We shall be again looking for the lower estimate of the number of ω-periodic solutions
to (6.17), (6.18).

Let us define sets S =Q ⊂ C([0,ω],R2) as follows. Function q = (q1, q2) belongs to
Q if the following conditions are satisfied:

(i) q(0)= q(ω) (ω-periodicity),
(ii) |q(t)|� R, for all t ∈ [0,ω] (boundedness),

(iii) |q1(t)|� δ or |q2(t)|� δ, for all t ∈ [0,ω] (uniform boundedness of one component
from below),

(iv) q(t) = q + q̃(t), where q := 1
ω

∫ ω

0 q(s)ds is the integral average of q on [0,ω]
(thus, 1

ω

∫ ω

0 q̃(s)ds = 0) and |̃q(t)| � ε, for all t ∈ [0,ω] (function q differs from
its integral average by less than ε).

Values of a and ω are given, we shall specify the values of B , δ, R, E and ε in the subse-
quent parts.
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Set Q is again a union of four closed, convex sets in the Banach space C([0,ω],R2),
namely Q=Q+1 ∪Q+2 ∪Q−1 ∪Q−2 , where

Q±i =
{
q(t) ∈ C

([0,ω],R2) | q satisfies (i), (ii), (iv) and

min
t∈[0,ω]±qi(t) � δ > 0

}
, i = 1,2.

Thus, as in the proof of Lemma 6.2, it is a closed connected ANR-space such that
π1(Q)= Z.

For homotopic parameter ϕ = 0, system (6.15), (6.16) reduces to a simpler case, which
can be easily handled (in fact, we can explicitly compute two constant fixed points). For
ϕ = π

4 , the situation becomes non-trivial. We shall show that set Q is invariant under
the solution operator, which takes a parameter q ∈ Q to the solution x of the linearized
inclusion. In this case, no obvious or easily detectable subset of Q can be recognized to be
separately invariant.

In order to apply a slightly modified special case of Theorem 6.1 (cf. [18]), we use again
the method of Schauder linearization. Let us take an arbitrary q ∈Q. The system of fully
linearized inclusions takes the form:

ẋ1 + ax1 ∈ 3
√
p2(q) cosϕ − 3

√
p1(q) sinϕ + ϕe(t, q), (6.19)

ẋ2 + ax2 ∈ 3
√
p1(q) cosϕ + 3

√
p2(q) sinϕ + ϕe(t, q), (6.20)

where

pi(q)= 1

ω

∫ ω

0
qi(s)ds −B

(
1

ω

∫ ω

0
qi(s)ds − qi

)
, (6.21)

for i = 1,2.
Denoting q := 1

ω

∫ ω

0 q(s)ds the integral average of q on [0,ω], we can write p :Q ⊂
C([0,ω],R2)→ C([0,ω],R2) in the form

p(q)= q −B(q − q). (6.22)

For B = 1, operator p reduces to identity. For B < 1, the operator “shrinks” function q

closer to its integral average. Indeed, if q = q + q̃ , where |̃q(t)|� ε, for all t ∈ [0,ω], then
operator p takes q to p(q)= q −Bq̃ .

The fully linearized system (6.19), (6.20) possesses, for any q ∈Q, and any Lebesgue
integrable (single-valued) selection e0 ⊂ {e(t, q)}, t ∈ [0,ω], a unique solution x(t) which
is given by the known convolution with the Green operator

xi(t)=
∫ ω

0
G(t, s)fi(s)ds, (6.23)
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where

f1(s) := 3
√
p2(q) cosϕ − 3

√
p1(q) sinϕ + ϕe0, (6.24)

f2(s) := 3
√
p1(q) cosϕ + 3

√
p2(q) sinϕ + ϕe0. (6.25)

Let us denote by Tϕ the solution operator which takes q ∈Q to the solutions x, given by
(6.23), of the linearized system (6.19), (6.20). We shall prove that Q is invariant under Tϕ ,
namely that Tϕ(q)⊂Q, for each q ∈Q.

Let us take q ∈ Q arbitrary. Operator p defined by (6.22) takes q to p(q) such that
p(q)= q + p̃, where |p̃(t)|� Bε. Substituting this p(q) into (6.24) and (6.25), we obtain
fi(t)= Fi(t)+ f̃ (t), where

F1 := 3
√
q2 cosϕ − 3

√
q1 sinϕ, F2 := 3

√
q1 cosϕ + 3

√
q2 sinϕ, (6.26)

and |f̃i (t)|� 3 3
√
Bε+ πE

4 for all t ∈ [0,ω].
This estimate can be shown as follows. For |qi | � 1, one can get by direct calculation

that | 3
√
qi + p̃i − 3

√
qi |� 3

√
Bε, provided that |p̃i |� Bε � 1. For |qi |� 1, a careful exam-

ination of function | 3
√
qi + p̃i − 3

√
qi | reveals that it is bounded from above by the value

22/3 3
√
Bε, provided again |p̃i |� Bε � 1. Altogether, fi differs from Fi not more than by

2

√
2

2
22/3 3

√
Bε+ πE

4
� 3 3
√
Bε+ πE

4
,

as claimed.
The Green’s function G in (6.23) takes the form

G(t, s)=

⎧⎪⎪⎨
⎪⎪⎩

1

1− e−aω
e−ateas, for 0 � s � t ,

1

1− e−aω
e−ate−aωeas, for t � s � ω.

(6.27)

Substituting (6.26) and (6.27) into (6.23), we obtain xi(t)= Fi

a
+ x̃i (t), where x̃i satisfies

the inequality

∣∣̃xi(t)∣∣ �
3 3
√
Bε+ π

4 E

a
,

for all t ∈ [0,ω]. We can now take B and E small enough to fulfill

√
2(3 3
√
Bε+ π

4 E)

a
� ε

2
, (6.28)

for example

B �
(

a

12

)3
ε2

√
2

and E � aε

π
√

2
.
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This means that function x differs from a constant function by less than ε
2 , which implies

that it differs from its integral average by less than ε. The above calculations ensure that
the solution x satisfies condition (iv) of the definition of the parameter set Q, indepen-
dently on q ∈Q and ϕ ∈ [0, π

4 ]. Condition (i) is trivially satisfied by the form of the Green
function G.

We must further ensure that, for each q ∈Q, function x satisfies conditions (ii) and (iii).
Since both q and x differ from their integral averages by less than ε, let us first deal with
constant functions. This is easy, because the solution mapping Tϕ takes constant functions
to functions that differ from a constant function by less than πE

4a and it is a composition of
• reflection (q1, q2)→ (q2, q1),
• re-scaling (q1, q2)→ 1

a
( 3
√
q1,

3
√
q2),

• rotation (q1, q2)→ (q1 cosϕ − q2 sinϕ,q2 cosϕ + q1 sinϕ) by angle ϕ in the anti-
clockwise direction.

The re-scaling part of the composition ensures that constants R and δ can be specified
so that the solution operator Tϕ takes constant functions satisfying (ii) and (iii) to functions
that again satisfy (ii) and (iii). Since functions in Q differ from their integral averages by
less than ε, we need to find R, δ and ε such that the following conditions are satisfied:

1

a

3
√
R � R − ε− πE

4a
and

√
2

2a
3
√
δ � δ +√2ε+ πE

4a
. (6.29)

Inequalities (6.29) guarantee that x satisfies conditions (ii) and (iii) of the definition
of the parameter set Q. Taking further ε � δ

2 ensures that Q is a non-trivial ANR-space
(leaving the “hole” inside).

Starting from a > 0 and ω > 0, we have specified constants R, δ, B , E and ε such
that set Q becomes invariant under the solution operator Tϕ which takes any q ∈ Q to
the solutions x of the linearized problem (6.19), (6.20), for ϕ ∈ [0, π

4 ]. Moreover, observe
that, for ϕ = π

4 , there are no easily detectable subdomains of Q separately invariant under
operator Tπ/4. Figure 5 shows how operator Tπ/4 treats constant functions in Q, for a
particular choice of R and δ and helps understanding why we can not easily detect any
subinvariant domains of Q.

Hence, a slightly modified special case of Theorem 6.1 (cf. [18]) ensures that system
(6.15), (6.16) admits at least N(Tπ/4) solutions. Since Tπ/4 is compactly admissibly ho-
motopic to T0, we have N(Tπ/4)=N(T0).

Let us further consider the retraction r :Q→ Q which sends a function q ∈ Q to its
integral average q . Let us define the homotopy T μ : [0,1] ×Q→Q by

T μ(q) := μT0(q)+ (1−μ)r
(
T0(q)

)
.

This compact homotopy guarantees that N(T 1) = N(T0) equals to N(T 0) = N(r ◦ T0).
We can thus restrict ourselves to the computation of N(r ◦ T0). Let us denote by Q the
subset of Q consisting of constant functions. Since r ◦ T0 :Q→Q, all the fixed points of
r ◦T0 have to belong to Q. Let us therefore deal with the restriction L := r ◦T0|Q :Q→Q,
which can be explicitly written in the form
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Fig. 5. Behaviour of Tπ/4 on constant functions on Q for R = 10, δ = 1 and a =
√

2
4 . Rectangular grids of points

represent constant functions q ∈Q, the irregular grid represents their images under Tπ/4. For simplicity, we take
here E = 0, so that the images of constant functions become constant again. No easily detectable regions of the

domain are subinvariant.

L
(
q1, q2

) := 1

a

(
3
√
q2,

3
√
q1

)
.

One can easily check by an explicit computation that L has two fixed-points in Q

which belong to different Nielsen classes. Therefore, according to (reduction) Lemma 6.1,
N(L) = N(r ◦ T0) = 2. This finally shows that system (6.17), (6.18) admits at least two
ω-periodic solutions.

We are in the position to formulate the multiplicity criterion for ω-periodic solutions to
system (6.17), (6.18).

THEOREM 6.3. Let the following inequalities be satisfied:

δ <
0.247

a3/2
,

3
√
R

a
� R − 5δ

8
, E � aδ

2
√

2π
, B �

(
a

12

)3
δ2

4
√

2
, (6.30)

and take ε = δ
2 . Then system (6.17), (6.18) admits at least three ω-periodic solutions.
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PROOF. The assumptions guarantee that inequalities (6.28) and (6.29) are satisfied. Thus,
two ω-periodic solutions have been already obtained by means of the Nielsen number, as
above. The third can be proved quite analogously as in the proof of Theorem 6.2, by the
additivity property of the fixed point index (see Proposition 3.2). �

REMARK 6.4. The inequalities in Theorem 6.3 are satisfied, e.g., for a =
√

2
4 , δ = 1, R =

10, B � 1
2433 , and E � 1

4π , as in Fig. 5, where E = 0.

REMARK 6.5. If the equality appears for δ in (6.30), then in the lack of periodicity, at least
two entirely bounded solutions can be proved as in Theorem 6.2.

6.3. Several anti-periodic solutions

The following approach is via the Poincaré translation operator treated in Section 4.3.
Hence, consider the system of differential inclusions

ẋ ∈ F(t, x), (6.31)

where F : Rn+1 � R
n is a u-Carathéodory mapping with nonempty, compact and convex

values, satisfying (6.4). Then all solutions of (6.31) exist in the sense of Carathéodory,
namely they are locally absolutely continuous and satisfy (6.31) a.e.

If x(t, x0) := x(t,0, x0) is a solution of (6.31) with x(0, x0) = x0, then we can define
the Poincaré map (translation operator at the time T > 0) along the trajectories of (6.31) as
follows:

�T : Rn � R
n, �T (x0) :=

{
x(T , x0) | x(t, x0) satisfies (6.31)

}
. (6.32)

The goal is to represent the admissible (see Theorem 4.17) map �T in terms of an admis-
sible pair (see Definition 2.5 in Section 2.2). We let ϕ : Rn � C([0, T ],Rn), where

ϕ(X) := {
x ∈ C

([0, T ],Rn
) ∣∣ x(0)=X and x satisfies (6.31)

}
and C([0, T ],Rn) is the Banach space of continuous maps. According to Theorem 4.17, ϕ
is an Rδ-mapping.

Now, we let

eT :C
([0, T ),Rn

)→R
n, eT (x)= x(T ),

where eT is evidently continuous.
One can readily check that �T = eT ◦ ϕ. Moreover, H ◦�T =H ◦ ϕ ◦ eT is admissible

for any homeomorphism H : Rn→R
n (see Remark 4.15).

In fact, we have the diagram

R
n pϕ←− 
ϕ

qϕ−→ C
([0, a],Rn

) eT−→R
n H−→R

n,

where pϕ , qϕ are natural projections.
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In what follows, we identify the Poincaré map �T or its composition with H, i.e. H ◦
�T , with the admissible pair (pϕ, eT ◦ qϕ) or (pϕ,H ◦ eT ◦ qϕ), i.e. we let

�T = (pϕ, eT ◦ qϕ) or H ◦�T = (pϕ,H ◦ eT ◦ qϕ), (6.33)

respectively.
Let C(H ◦�T ) denote the set of coincidence points of the pair (pϕ,H ◦ eT ◦ qϕ), while

Fix(H ◦�T )= {X ∈R
n |X ∈H(eT (qϕ(p

−1
ϕ (X))))}.

A pair for �T can be easily shown to be homotopic to the identity map, so that the
pair (pϕ,H ◦ eT ◦ qϕ) is homotopic to H (see Theorem 4.17). We have a one-to-one
correspondence between coincidence points and solutions. Since a coincidence point of
(pϕ,H ◦ eT ◦ qϕ) gives us in this way a solution x(t) of (6.31) such that x(0)=H(x(T )),
the following proposition is self-evident.

PROPOSITION 6.1. If #C(pϕ,H ◦ eT ◦ qϕ)= cardC(H ◦�T ) � k, then system (6.31) has
at least k solutions x1(t), . . . , xk(t) such that xi(0)=H(xi(T )), i = 1, . . . , k.

The following lemma immediately follows from Theorem 4.17.

LEMMA 6.3. Assume that Y ⊂R
n is a compact connected ANR-space such that �s(Y )⊂

Y , for every s ∈ [0, T ] and H(Y ) ⊂ Y . Then the pair (pϕ,H ◦ eT ◦ qϕ) restricted to Y is
admissibly homotopic to H|Y .

As a consequence of Theorems 3.4 and 3.7 in Section 3.2, Proposition 6.1 and
Lemma 6.3, we have the following

PROPOSITION 6.2. Assume that �s , for every s ∈ [0, T ] in (6.32) is a self-map on the
torus T

n = R
n/Zn. Then system (6.31) has at least N(H) solutions x(t) such that x(0)=

H(x(T )) on T
n, where N(H) denotes the Nielsen number of a homeomorphism H : Tn→

T
n.

PROOF. The proof follows directly from Theorems 3.4 and 3.7 in Section 3.2, Proposi-
tion 6.1, Lemma 6.3 and the properties of the Nielsen number mentioned in Section 3.2. �

If in particular H= id, then according to Remark 3.6,

N(id)= ∣∣λ(id)∣∣= ∣∣χ(·)∣∣
holds on tori, and consequently the problem considered in Proposition 6.2 should have at
least |χ(·)| solutions, where λ is the Lefschetz number and χ denotes the Euler–Poincaré
characteristic of T

n. Since, unfortunately, χ(·) = 0 for tori, this is not a suitable case for
applications. In other words, we are not able to establish several T -periodic solutions in
this way.

On the other hand, as the simplest application of Proposition 6.2, we can give immedi-
ately
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THEOREM 6.4. Assume that

F(t, . . . , xj + 1, . . .)≡ F(t, . . . , xj , . . .), for j = 1, . . . , n, (6.34)

where x = (x1, . . . , xn) and consider system (6.31) on the set [0,∞) × T
n, where T

n =
R

n/Zn. Then system (6.31) admits, for every positive constant T , at least N(H) solutions
x(t) such that

x(0)=H
(
x(T )

)
(mod 1),

where H is a continuous self-map on T
n and N(H) denotes the associated Nielsen number.

As a consequence, we obtain for H=− id easily:

COROLLARY 6.2. If, in addition to the assumptions of Theorem 6.4,

F(t + T ,−x)≡−F(t, x),

then system (6.31) admits at least 2n anti-T -periodic (or 2T -periodic) solutions x(t)

on T
n, namely x(t + T )≡−x(t) (mod 1).

PROOF. According to Theorem 6.4, system (6.31) admits at least N(− id) anti-T -periodic
solutions on T

n. On T
n, the following formula holds (see Remark 3.6), N(− id) =

|λ(− id)| = |det 2I | = 2n, which completes the proof. �

7. Remarks and comments

7.1. Remarks and comments to general methods

Theorems 4.1, 4.2 and Corollaries 4.1, 4.2, 4.3 are taken from [19]. Corollaries 4.1 and 4.4
generalize many single-valued situations, e.g., in [52] and [63], where the parameter set Q
was only convex. Corollary 4.3 was employed for the first time in [32,33]. Corollary 4.4
generalizes the single-valued case in [39].

Theorem 4.3, for the lower estimate of the number of solutions, comes from [23]. Its
slightly modified version (cf. Remark 4.3) was presented in [5]. As far as we know, there
are no other general methods, using the Nielsen number, as our Theorem 4.3.

Theorem 4.4, extending Theorem 4.1 to Banach spaces, was published in [14]. Corol-
lary 4.5 is formally new. Intuitively clear Propositions 4.4 and 4.5 (see also Remark 4.6)
are contained in [22, Chapter III.1].

In view of Remark 4.6, one can check by means of the Gronwall inequality (cf. [71])
that differential inclusion ẋ ∈ F(t, x) admits an entirely bounded solution x ∈ACloc(R,E)

with x(0)= x0 such that

∥∥x(t)∥∥ �
(
‖x0‖ +

∫ ∞

−∞
r(t)dt

)
exp

∫ ∞

−∞
r(t)dt, t ∈R,
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provided E is a separable or reflexive Banach space and F : R × E � E is a u-
Carathéodory mapping (cf. Definition 2.10) such that:

(i) μ(F(t,B)) � k(t)μ(B), for bounded subsets B ⊂E, t ∈R, where μ= α or μ= γ ,
and k ∈ L1

loc(R),
(ii) ‖y‖� r(t)(1+ ‖x‖), for every (t, x) ∈ R× E, y ∈ F(t, x), where r : R→ [0,∞)

is an integrable function such that
∫∞
−∞ r(t)dt <∞.

Many alternative continuation principles for ODEs can be found, e.g., in [45,58,61,62,
64,65,82,83,90], and the references therein.

Theorems 4.6, 4.8, 4.9 and Proposition 4.9, dealing with the topological structure of
solution sets are taken from [19]. Theorem 4.9 extends Theorem 4.5 in [57] for arbitrary
(possibly infinite) intervals. In [20,21], we have developed and applied a powerful inverse
limit method for the investigation of the topological structure of the solution sets. In these
papers, the structure was also systematically studied for less regular right-hand sides of
multivalued ODEs than those in Section 4.2.

Theorems 4.10 and 4.11 concerning the topological dimensions of solution sets come
from [66]. An extension to multivalued ODEs in Banach spaces was recently published
in [45]. For further results concerning the solution sets to initial value problems, see, e.g.,
[42,55,58,59,67,74,78,97].

Unlike for initial value problems, there are only several results concerning the topolog-
ical structure of solution sets to boundary value problems. One of the most important is
Theorem 4.13 in [43] which was improved by us (cf. Remark 4.10) in [21]. Theorem 4.12
comes from [20], Theorem 4.14 from [46] and Theorems 4.15, 4.16 from [7]. In [22, Chap-
ter III.3], we collected for the first time practically all results in this field (cf. also [59,
Chapter 6]). Paper [43] contains also the information about the topological dimension of
the solution sets.

Theorem 4.17 about admissibility of Poincaré’s operators appeared on various levels
of abstraction in many papers (cf. [22, Chapter III.4 and the related comments on pp.
592–593]). For some generalizations and extensions, see [2,10,28], and the references
therein.

7.2. Remarks and comments to existence results

Theorem 5.1 from [14] can be regarded as an infinite-dimensional extension of our earlier
results in [3,4], where under suitable additional restrictions also almost-periodic solutions
were detected. In [15], the methods applied to Theorem 5.1 were modified for obtaining
almost-periodic solutions with values in separable Banach spaces. Theorem 5.2 is con-
tained in [20].

Proposition 5.1, for solvability of a rather general class of boundary value problems with
linear conditions, was presented for the first time in [3].

There is an enormous amount of results about the existence of periodic and anti-periodic
solutions (see, e.g., [22,62,64,65,70,74,78,81,82,90]). Our Corollary 5.1 is formally new.
Corollaries 5.2, 5.3, 5.4 can be found in [22, Chapter III.5]. As pointed out in Remark 5.7,
the requirement concerning a fixed point free boundary of a parameter set Q were satisfied
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in [11,32–34] by means of bound sets. An alternative approach for satisfying this require-
ment can be found, e.g., in [30,31], where canonical domains or upper and lower solutions
technique were applied, in the single-valued case (cf. also [65,70,81,82,90]).

7.3. Remarks and comments to multiplicity results

Our multiplicity results are based on the application of the Nielsen theory in Section 3.2,
eventually combined with the additivity property of the fixed point index in Section 3.3. For
further Nielsen theories which can be also used here, see [12,22–26,38], and the references
therein. Practically all results obtained in this way were collected in [13].

Corollary 6.1 is from [5]. Variants of Theorems 6.1 and 6.2 can be found in [5,6,9], and
[23], while Theorem 6.3 is a multivalued generalization of a single-valued version in [17].
Theorem 6.4 and Corollary 6.2 were presented for the first time in [24].

As pointed out in Section 1, the delicate problem of application of the Nielsen theory to
differential equations is associated with the name of J. Leray.

For further multiplicity results obtained by different methods, see, e.g., [22, Chap-
ter III.6; 62; 82, Chapter 6], and the references therein.
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1. Introduction

In qualitative theory of differential equations, a prominent role is played by special classes
of solutions, like periodic solutions or solutions to some kind of boundary value problem.
When a system of ordinary differential equations has equilibria (i.e. constant solutions)
whose stability properties are known, it becomes significant to study the connections be-
tween them by trajectories of solutions of the given system. These are called homoclinic or
heteroclinic solutions (sometimes pulses or kinks) according to whether they just describe
a loop based at one single equilibrium or they “start” and “end” at two distinct equilibria.

In addition to their intrinsic mathematical interest (for autonomous second order sys-
tems, for instance, homoclinics and heteroclinics act in the phase portrait as separatrices
between regions where solutions behave differently; when they appear as connections be-
tween saddles they prevent structural stability, see, e.g., [38]), homoclinic and heteroclinic
solutions appear in the context of a number of mathematical models for problems arising
in Mechanics, Chemistry and Biology.

The study of existence of homoclinic and heteroclinic solutions has a long history. Be-
sides phase plane analysis, whose applicability is confined to second order autonomous
equations, the study of such solutions has been often made with resource to the geometric
theory of ordinary differential equations and dynamical systems techniques. In the nine-
teenth century, Poincaré [64] already studies perturbed time periodic systems. Poincaré’s
results have been the outbreak of many works. In particular, Melnikov’s theory provides
instruments for the analysis of how homoclinics and heteroclinics are affected by pertur-
bations on an Hamiltonian system. The main idea is that existence of loops or connections
at some rest points can be proved by analyzing the intersection properties of the stable and
unstable manifolds through those equilibrium points. In the 60’s, Melnikov [54] proves by
analytical method the existence of homoclinics for non conservative perturbations, lead-
ing to chaos. Smale [81,82] then shows that in presence of a transverse homoclinic point,
the Poincaré map admits a Bernouilli shift structure. Similar ideas are present in works of
Birkhoff [15]. We refer to Moser [57] and Wiggins [92] for further developments.

However, starting mainly in the 80’s, a functional analytic approach added powerful
tools to the research in this field. Variational methods, combining classical ideas with
modern critical point theory, have thus provided a wealth of new results. A large num-
ber of contributions are devoted to this topic, the main developments being due to Am-
brosetti, Bolotin, Coti Zelati, Ekeland, Rabinowitz and Séré [16,66,27,28,17,9,79,67]. The
advantage of this approach comes from the fact that we can often bypass the question of
transversality of the stable and unstable manifolds whose verification is delicate in prac-
tice, or obtain weaker nondegeneracy conditions. Moreover, it leads to results of a global
nature. Some comparison with geometric methods and variational interpretation of Mel-
nikov and Smale–Birkhoff theorems are studied by Ambrosetti and Badiale [7,8], see also
[56,86].

This monograph is devoted mainly to the existence of heteroclinics in several types of
differential equations and systems of the second and fourth orders. We divide our survey
in two parts. Part 1 deals with second order equations and systems, while Part 2 concerns
several important types of fourth order equations.
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Part 1 starts with the analysis of classical conservative systems arising in Mechanics,
like

u′′ = ∇V (u), (1.1)

where V ∈ C1(RN,R) is a potential (according to the usual classical mechanics termi-
nology, −V should be called the potential) with several equilibria at the same (minimum)
level. We have selected a basic set of results for this and similar problems, where V may
also depend on time and be periodic in each variable. We present them with some detail.
These results are due mainly to P.H. Rabinowitz and to T.O. Maxwel. Further results are
mentioned without proofs. Roughly speaking, the common underlying idea is the follow-
ing: suppose that V has two minima, say ξ and η; we look for heteroclinic connections
between ξ and η as minimizers of the action functional

∫ +∞

−∞

( |u′(t)|2
2

+ V
(
u(t)

))
dt (1.2)

in an appropriate class of functions u defined in R so that u(−∞) = ξ and u(+∞) = η.
Then u appears as a solution of (1.1) since this is the Euler–Lagrange equation of (1.2).

We then proceed to a different kind of problem. To state it in a simple form, we recall
the Fisher–Kolmogorov type equation,

∂u

∂t
= ∂2u

∂x2
+ g(u), (1.3)

proposed as a model of diffusion in Biomathematics [34]. Here g is a positive, continuous
function in [0,1] such that g(0)= g(1)= 0. In the original model, g(u)= u(1−u). A sig-
nificant feature of the dynamics of (1.3) is the existence of travelling wave fronts, which
are solutions of the form

u(x, t)=U(x − ct) (1.4)

for some constant c > 0. The meaning of c is the speed of wave propagation. The front
profile U(s) solves then the ordinary differential equation

U ′′ + cU ′ + g(U)= 0, (1.5)

where we look at c as a parameter. It is required that the profile satisfies U(−∞) = 1,
U(+∞)= 0. Hence this is a problem of existence of heteroclinics for (1.5) and it is a clas-
sical one with a very rich literature. Its mathematical treatment began with Kolmogorov,
Petrovski and Piskounov [45] and reached a highlight with the paper by Aronson and Wein-
berger [11]. However, it has continually attracted the interest of many mathematicians up
to nowadays. We give an account of the most basic features of this problem dealing with
more general equations than (1.5). We present a proof of the existence of a threshold speed
c∗ such that the heteroclinic exists if and only if c � c∗. Following an approach similar to
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that of Malaguti and Marcelli [48] and introducing some variational procedures like those
developed in Arias, Campos, Robles-Pérez and Sanchez [10] we essentially reduce the
problem to a first order ordinary differential equation and use the elementary theory of the
Cauchy problem. We show that the same method is efficient in the treatment of equations
in combustion theory, which differ from (1.3) in that g(u) changes sign in [0,1] while
keeping its integral positive; in this case, it is curious that the heteroclinic appears for just
one value of c.

In the second part, we consider a class of fourth order autonomous differential equations
of the form

u′′′′ − βu′′ + u3 − u= 0, (1.6)

where β is a real parameter. This equation admits three equilibrium states: −1,0 and +1
and we focus on the existence of heteroclinic solutions going from −1 to +1. The set of
bounded solutions of (1.6) has been the object of much research in the past ten years. In an
impressive series of papers [59–62], Peletier and Troy have performed a systematic study
of periodic, homoclinic, heteroclinic and chaotic solutions of the model equation (1.6)
for the parameter range β � 0. In Section 4 we present an overview of results obtained
concerning heteroclinic solutions. These include the pioneer works of Peletier and Troy
and later results of Kalies and VanderVorst [43], Kalies, Kwapisz and VanderVorst [42] and
van den Berg [87]. We give a first insight of methods that can be used to track heteroclinic
orbits. It is convenient for simplicity to first restrict our attention to the simple model (1.6).
The existence of heteroclinics for (1.6) for any β � 0 has been first proved by Peletier and
Troy using a shooting method. We briefly describe their arguments in Section 4.1.

Equation (1.6) has also a variational structure. It is an elementary fact that heteroclinic
solutions of (1.6) correspond to critical points of the functional

Fβ(u) :=
∫ +∞

−∞

(
1

2

(
u′′2 + βu′2

)+ 1

4

(
u2 − 1

)2
)

dx

in an appropriate functional space. The existence of heteroclinics via variational arguments
was first investigated by Peletier, Troy and VanderVorst [58] and Kalies and VanderVorst
[43]. For β � 0, Fβ is a positive functional. It is therefore natural to look for heteroclinics
as minimizers of Fβ . Section 4.2 deals with a global minimization procedure which works
fine for all β � 0.

When 0 � β �
√

8, more heteroclinics are obtained via local minimization in well-
chosen homotopy classes. Kalies, Kwapisz and VanderVorst [42] have defined precise
types of functions that describe the complex structure of those solutions. In Section 4.3,
we describe these homotopy classes and the profiles of the corresponding minimizers.

Many of the arguments used in the minimization process (both in the whole space and
in homotopy classes) rely on the positivity of the Lagrangian

L
(
u,u′, u′′

)= 1

2

(
u′′2 + βu′2

)+ 1

4

(
u2 − 1

)2
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and therefore on the positivity of the parameter β . A first attempt to consider changing sign
Lagrangian is made in [20,37]. The authors consider the more general functional

Fg(u) :=
∫ +∞

−∞

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx (1.7)

whose Euler–Lagrange equation is given by

u′′′′ − g(u)u′′ − 1

2
g′(u)u′2 + f ′(u)= 0. (1.8)

Here f is assumed to be a double-well potential with bottoms at ±1 and g is neither
necessarily constant nor positive. The main idea of [37] is to impose a condition on g to
ensure a lower bound on the action Fg(u). In Section 5.1 and Section 5.2, we use the
ideas of [19,20,37] to prove the existence of a global minimizer of Fg under convenient
assumptions.

In Section 6, we discuss the case of an equation similar to (1.8) where f is a triple-well
potential and address the following question. Does the dynamics possess a heteroclinic
orbit connecting the extremal equilibria? Let us take a look at a classical mechanics anal-
ogy. Consider a moving particle in a potential characterized by three hills of equal height.
To fix the ideas, suppose the tops of the peaks are located at −1, 0 and +1 and consider
a motion starting from −1 at time t →−∞. As the potential energy is identical at the
top of each hill, the law of energy conservation implies that the particle needs an infinite
amount of time to reach the top of the second hill and therefore cannot pass through the
middle-equilibrium. For the fourth order equation (1.8), the energy reads

E
(
u, u′, u′′, u′′′

)= u′′′u′ − 1

2
u′′2 + g(u)

2
u′2 + f (u).

For this equation of motion, a particle does not need to come at rest at the top of the second
hill as the constant of motion can be satisfied with a non-zero u′ due to the presence of the
new terms u′′′u′ − 1

2u
′′2. In other words, the intersection of the zero energy manifold and

the space u= 0 does not reduce to a point.
We answer positively the above question at least when the middle-equilibrium is of

saddle-focus type. We mention that this question is relevant in the study of Ginzburg–
Landau models of amphiphilic systems [36]. We refer to Section 6 for a brief description
of these models.

We come back to equations with a double-well potential in Section 7. We present an
existence result of multi-transition connections for Eq. (1.8). These solutions are obtained
as local minimizers in classes of functions with prescribed profiles. We describe these
subsets and explain briefly how the local minimization process works.

Each section is followed by some remarks and complementary results that we have cho-
sen not to consider in details. We also give references for some extensions of results pre-
sented here in a simplified version, we refer to open questions, problems for which less is
known or simply mention some related topics that did not find their way in this monograph.
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Part 1. Second Order Equations and Systems

2. Second order Hamiltonian systems

2.1. Heteroclinics for some scalar second order differential equations

Recall that a good description of the various kinds of solutions of the mathematical pendu-
lum equation

u′′ + a sinu= 0 (a > 0) (2.1)

is provided by the representation of the corresponding trajectories in the phase plane
(u,u′). These are level curves of the energy, that is, they are a locus of points (u,u′) of the
form

u′2

2
+ a(1− cosu)= k (2.2)

for some constant k ∈R
+. That the energy function

E
(
u,u′

) := u′2

2
+ a(1− cosu)

is constant along solutions of (2.1) is an elementary consequence of multiplying Eq. (2.1)
by u′.

When k = 0 in (2.2), we obtain the stable equilibria u= 2kπ (k ∈ Z). If 0 < k < 2a, the
trajectories are closed curves corresponding to periodic solutions. For k > 2a, we obtain
unbounded trajectories corresponding to solutions with periodic derivative. Finally, k = 2a
in (2.2) yields a locus consisting of the unstable equilibria (u= (2k + 1)π , k ∈ Z) and the
graphs of the functions

u′ = ±√
2a(1+ cosu), u �= (2k + 1)π for all k ∈ Z. (2.3)

For instance, the solutions having as trajectories the graph of this function in ]−π,π[ have
the property that

lim
t→+∞u(t)= π, lim

t→−∞u(t)=−π

and

lim
t→±∞u′(t)= 0

or the same conditions with the roles of +∞ and −∞ reversed. Hence these trajectories
connect two distinct (consecutive) unstable equilibria. They are called heteroclinics and



110 D. Bonheure and L. Sanchez

Fig. 1. The pendulum phase-plane.

any underlying solution is called a heteroclinic solution of (2.1). In this example it is ap-
parent that they separate regions of the (u,u′)-plane where the solutions of (2.1) have a
different nature, see Fig. 1.

Of course, given the physical meaning of (2.1), it is sometimes preferable to depict
trajectories not in a plane but in a cylinder (which is a plane where the points (u,u′)
and (v, v′) are identified if and only if u ≡ v (mod 2π ) and u′ = v′. Then (−π,0) and
(π,0) are in fact the same equilibrium and a trajectory connecting these points in the plane
becomes a trajectory with equal limits at±∞. We would then rather speak of a homoclinic.
However, if one forgets the 2π -periodicity of the potential a(1− cosu), or, for that matter,
if one modifies it outside, say, the interval ]−π,π[, the consideration of heteroclinics is
meaningful.

Let us consider a more general autonomous scalar equation

u′′ = f (u), (2.4)

where f ∈ C(R,R) is a function such that
(A1) f (±1)= 0;
(A2) there exists a primitive F of f such that F(−1)= F(1)= 0 and F(u) > 0 for all

u ∈ ]−1,1[.
Hence Eq. (2.4) has two equilibria, u=±1, at the (same) zero level of the potential. As

for solutions of (2.4) energy is conserved, that is

u′2

2
− F(u)=K (2.5)
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for some constant K , it makes sense to look for heteroclinic solutions connecting−1 and 1,
i.e. solutions such that

u(±∞) := lim
x→±∞u(x)=±1 and u′(±∞) := lim

x→±∞u′(x)= 0

or the same properties with the roles of the +∞ and −∞ reversed. In fact, for such solu-
tions we must have K = 0 in (2.5) and the corresponding phase plane trajectories are given
explicitly by

u′ = ±√
2F(u), −1 < u< 1.

These are equations with separable variables. With the + sign, for example, integrating we
obtain

∫ u

0

dv√
2F(v)

= t +C, (2.6)

for some constant C. In particular, the equilibria±1 are not reached in finite time whenever

∫ ±1

0

dv√
F(v)

diverges. This condition is obviously satisfied provided that f is locally Lipschitz. More
generally, it also holds if F is at most quadratic near its minima, that is if there exists c > 0
so that

F(u) � c(u± 1)2

in a neighborhood of −1 and +1, respectively.
Now we look for a heteroclinic of (2.4) from another angle. Instead of using elementary

integration techniques, we show that such a solution can be characterized by a variational
property. Needless to say, it may seem cumbersome to treat that simple problem in such an
involved way, but since the variational method has an important role to play in the search
of heteroclinics for systems and non-autonomous equations, it is worth to grasp the main
ideas in an uncomplicated case.

Formally, (2.4) is the Euler–Lagrange equation of the functional

I(u) :=
∫ +∞

−∞

(
u′2

2
+ F(u)

)
dt, (2.7)

where F(u) is the primitive of f as given in (A2). We look for the heteroclinics of (2.4) as
minimizers of I in the functional space

E := {
u ∈H 1

loc(R,R) | u(±∞)=±1
}
.
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In fact it will be clear that we may confine ourselves to functions taking values in [−1,1]
by simply assuming that F is extended by 0 on ]−∞,−1[∪ ]+1,+∞[. We therefore make
this hypothesis from now on.

FACT 1. Let ε ∈ ]0,1[ and

βε :=min

{
F(z)

∣∣ 1− ε � z � 1− ε

2
or −1+ ε

2
� z �−1+ ε

}
.

If u ∈ E has the property that there exist t1, t2 ∈R such that u(t1)= 1− ε
2 and u(t2)= 1−ε

(or u(t1)=−1+ ε
2 and u(t2)=−1+ ε), then we have

I(u) �
∣∣∣∣
∫ t2

t1

(
u′2

2
+ F(u)

)
dt

∣∣∣∣ � ε
√
βε√
2

.

PROOF. We may assume t1 < t2 and 1− ε � u(t) � 1− ε
2 or −1+ ε

2 � u(t) �−1+ ε for
t ∈ [t1, t2]. Using the positivity of the integrand and Schwarz’s inequality we write

I(u) �
∫ t2

t1

(
u′2

2
+ F(u)

)
dt � ε2

8(t2 − t1)
+ βε(t2 − t1)

and the conclusion follows from the elementary inequality a2

x
+ b2x � 2ab which holds

for all x � 0. �

With these preliminaries we can state and prove:

THEOREM 2.1. If f ∈ C([−1,1],R) satisfies the assumptions (A1), (A2) and is extended
by 0 outside the interval ]−1,1[, the functional I defined by (2.7) attains a minimum in E .
A minimizer is a heteroclinic solution of (2.4) connecting −1 and 1.

PROOF. Let (un)n ⊂ E be a minimizing sequence that is I(un)→ infE I . By passing to
vn = sup(−1, inf(un,1)) and observing that I(vn) � I(un), we may assume without loss
of generality −1 � un � 1.

For each ε > 0, we find an interval [sn, tn] such that un(sn) = −1+ ε, un(tn) = 1− ε

and

−1+ ε � un(t) � 1− ε for all t ∈ [sn, tn].
If un takes values greater than−1+ε in ]−∞, sn], we may choose s′n < sn so that un(s′n)=−1 + ε and −1 � un � −1 + ε in ]−∞, s′n]. In the same way we find t ′n � tn so that
un(t

′
n)= 1− ε and 1− ε � un � 1 in [t ′n,+∞[. Define a new function

Un(t)=

⎧⎪⎨
⎪⎩
un(t − sn + s′n) if t � sn,

un(t) if sn � t � tn,

un(t + t ′n − tn) if t � tn.
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By the translation invariance of the integrals and the fact that the integrand is positive it is
clear that

I(Un) � I(un)

so that (Un)n ⊂ E is again a minimizing sequence which in addition satisfies −1 � Un �
−1+ ε in ]−∞, sn] and 1 − ε � Un � 1 in [tn,+∞[. The sequence tn − sn is bounded
since

I(Un) �
(

min−1+ε�z�1−ε F (z)
)
(sn − tn).

Observe also that as I is translation invariant, we may assume that sn = 0.
Now, since supn ‖Un‖L∞ � 1 and supn ‖U ′n‖L2 is bounded, we may apply the diagonal

procedure to extract a subsequence that we still denote by (Un)n, and we obtain a function
u ∈H 1

loc(R) such that

Un
Cloc(R)−→ u

i.e. uniformly in compact intervals and

U ′n
L2(R)
⇀ u′.

In addition, we have tn→ t̄ > 0.
Combining weak lower semicontinuity of the L2-norm and Fatou’s lemma we infer

I(u) � lim inf
n→∞

∫ +∞

−∞
U ′n

2

2
dt + lim inf

n→∞

∫ +∞

−∞
F(Un)dt

� lim
n→∞I(Un)= inf

E
I. (2.8)

By uniform convergence, we have −1 � u(t) �−1+ ε for t � 0 and 1− ε � u(t) � 1 for
t > t̄ . On the other hand, the fact that

∫ +∞
−∞ F(u)dt <+∞ implies that

lim inf
t→−∞ u(t)=−1 and lim sup

t→+∞
u(t)= 1.

In fact we have limt→±∞ u(t)=±1. Otherwise there exist δ > 0 and infinitely many dis-
joint intervals [t1, t2] in the conditions of Fact 1 (with ε = δ), implying I(u) = +∞ and
contradicting (2.8). It follows that u ∈ E and therefore

I(u)=min
E

I.
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The fact that u is a solution of (2.4) follows by the usual argument that gives the Euler–
Lagrange equation of a functional. For each ϕ ∈ C1

c (R), and τ ∈ R, the function u+ τϕ

belongs to E ; we compute

d

dτ

∣∣∣∣
τ=0

I(u+ τϕ)=
∫ +∞

−∞
(
u′ϕ′ + f (u)ϕ

)
dt = 0

and, by the Du Bois–Reymond lemma, u satisfies (2.4).
Finally, since u satisfies (2.5) for some K and there exist sequences tn →±∞ with

u′(tn)→ 0, we infer that K = 0 and we then conclude that u′(±∞)= 0. �

We next apply the above method to a less trivial situation: let us consider the second
order non-autonomous differential equation

u′′ = a(t)f (u), (2.9)

where f ∈ C(R,R) satisfies the assumptions (A1), (A2) and a ∈ L∞(R,R) is such that
(A3) there exist a1, a2 ∈R so that 0 < a1 � a(t) � a2 for all t ∈R.
We look for a heteroclinic connection between the equilibria −1 and +1. In the absence

of a conservation law, the variational argument appears as a natural device. So we now
consider the functional

J (u) :=
∫ +∞

−∞

(
u′2

2
+ a(t)F (u)

)
dt (2.10)

and seek conditions that allow to minimize it in E . If a(t) is a T -periodic function then
the proof of Theorem 2.1 can be easily adapted. While we cannot completely mimic the
powerful modification arguments used in the autonomous case, the periodicity of a allows
to localize a transition from a small neighborhood of −1 to a small one of +1. Indeed,
keeping the notations of the proof of Theorem 2.1, the sequence of left endpoints of the
intervals [sn, tn] can be placed in the interval [0, T ] by time translations whose length is a
multiple of T . The remaining of the proof is then similar.

If a does not possess any symmetry or periodicity property then we have to face a possi-
ble loss of compactness as the interval [sn, tn] could escape to+∞ or−∞ so that the weak
limit of un could either be one equilibrium or a homoclinic solution. The natural way to
avoid such behaviours is to impose some coercivity assumption on the function a at ±∞.
In some sense this penalizes transitions tending to ±∞.

Note that Fact 1 proved above has an obvious extension for this new functional: under

condition (A3), it suffices to replace, in the right-hand side of the inequality, ε
√
βε√
2

with
ε
√
a1βε√
2

, namely we have:

FACT 1′ . Under the assumptions of Fact 1, we have

J (u) �
∣∣∣∣
∫ t2

t1

(
u′2

2
+ a(t)F (u)

)
dt

∣∣∣∣ � ε
√
a1βε√
2

.
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The following two facts are useful to ensure that the quasi-minimizers stay close to ±1
once they enter a sufficiently small neighborhood of ±1.

FACT 2. Let ε ∈ ]0,1[ and

Et̄ ,1−ε :=
{
u ∈ C

([
t̄ ,+∞[

,R
) ∣∣ u(t̄)= 1− ε, u(+∞)= 1, u′ ∈ L2([t̄ ,+∞[)}

.

Then, setting

J[t̄ ,+∞[(u) :=
∫ +∞

t̄

(
u′2

2
+ a(t)F (u)

)
dt,

there exists v ∈ Et̄ ,1−ε so that 1− ε � v(t) � 1 for all t � t̄ and

J[t̄ ,+∞[(v) � ε2

2
+ a2 max

z∈[1−ε,1]
F(z).

PROOF. It suffices to compute J[t̄ ,+∞[(v) where

v(t)=
{

1− ε+ ε
(
t − t̄

)
, if t̄ � t � t̄ + 1,

1, if t � t̄ + 1. �

Analogously we have:

FACT 3. Let ε ∈ ]0,1[ and

Et̄ ,−1+ε :=
{
u ∈ C

(]−∞, t̄
]
,R)

∣∣ u(t̄)=−1+ ε, u(−∞)=−1,

u′ ∈ L2(]−∞, t̄
])}

.

Then, setting

J]−∞,t̄](u) :=
∫ t̄

−∞

(
u′2

2
+ a(t)F (u)

)
dt,

there exists v ∈ Et̄ ,−1+ε such that −1 � v(t) �−1+ ε for all t � t̄ and

J]−∞,t̄](v) � ε2

2
+ a2 max

z∈[−1,−1+ε]
F(z). �

The family of functionals

Iα(u) :=
∫ +∞

−∞

(
u′2

2
+ αF(u)

)
dt,
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where α > 0 is constant, is useful in what follows. According to Theorem 2.1, Iα has a
minimum in E . Hence we may define uα ∈ E such that

ϕ(α) :=min
u∈E

Iα(u)= Iα(uα).

FACT 4. The function ϕ is a strictly increasing, continuous function in ]0,+∞[.
PROOF. The first statement is obvious. The second is a consequence of the inequalities

ϕ(α)+ (β − α)

∫ +∞

−∞
F(uβ)dt � ϕ(β) � ϕ(α)+ (β − α)

∫ +∞

−∞
F(uα)dt

together with the fact that, when β is close to α,
∫ +∞
−∞ F(uβ)dt is uniformly bounded from

above. �

We can now state the following theorem.

THEOREM 2.2. Assume that f ∈ C(R,R), a ∈ L∞(R,R) satisfy (A1)–(A3). If, in addi-
tion,

lim|t |→∞a(t)= a2

and a(t) < a2 in some set of nonzero measure, then (2.9) has a heteroclinic solution from
−1 to 1. This solution takes values in [−1,1].
PROOF. Observe first that we clearly have infE J < ϕ(a2) and using Fact 4, we may find
α ∈ ]0, a2[ so that infE J < ϕ(α).

Fix ε̄ ∈ ]0,1[ and then choose ε > 0 sufficiently small to satisfy ε < ε̄/2 and

(
1+ a2

a1

)(
ε2

2
+ a2με

)
< min

(
ε̄
√
a1βε̄√
2

,
ϕ(α)− infE J

2

)
(2.11)

where βε̄ is defined as in Fact 1 and

με := max
z∈[−1,−1+ε]∪[1−ε,1]

F(z).

Let un ∈ E be a minimizing sequence for J . Define the interval [sn, tn] with respect to un
and ε as in the proof of Theorem 2.1. According to the choice of ε, Fact 1′, Fact 2 and
Fact 3 and modifying un(t) in ]−∞, sn] ∪ [tn,+∞[ if necessary, we may assume that

−1 � un(t) �−1+ ε̄ if t � sn, 1− ε̄ � un(t) � 1 if t � tn

and

sup
(
J]−∞,sn](un), J[tn,+∞[(un)

)
� ε2

2
+ a2με.
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As in the proof of Theorem 2.1, tn − sn is bounded. We claim that sn is bounded from
above and tn is bounded from below. Let us prove this for sn, the proof for tn being similar.
If the claim is not true there exists s0 ∈ R such that a(t) � α whenever t � s0 so that
a(t) � α whenever t � sn for large n. We then compute

J (un) �
∫ +∞

sn

(
u′2n
2
+ αF(un)

)
dt

� ϕ(α)− a2

a1

(
ε2

2
+ a2με

)

and by our choice of ε in (2.11) we infer that

J (un) � ϕ(α)+ infE J
2

,

a contradiction with the assumption J (un)→ infE J .
It now follows that along some subsequence

un
Cloc(R)−→ u, u′n

L2(R)
⇀ u′, sn→ s̄, tn→ t̄

and in particular

−1 � u(t) �−1+ ε for all t � s̄, 1− ε � u(t) � 1 for all t � t̄ .

Arguing as in the proof of Theorem 2.1, it is easily shown that u ∈ E , J (u)= infE J and
u is a solution of (2.9).

It remains to show that u′(±∞)= 0. Assume, by contradiction, that there exist τn→∞
and �> 0 with |u′(τn)|� �. As from (2.9) we have u′′(±∞)= 0, we may assume that,
for n sufficiently large, |u′(t)|� �/2 for all t ∈ [τn, τn+1]. But then |u(τn)−u(τn+1)|�
�/2, which is impossible since u(±∞)=±1. �

2.2. Autonomous Hamiltonian systems

In this section we consider a basic situation for systems, adapted from the results of Rabi-
nowitz [66]. We concentrate on the autonomous system

u′′ = ∇V (u), (2.12)

where u= (u1, . . . , uN) and V ∈ C1(RN,R) is a non-negative potential with several iso-
lated equilibria at minimum level. Precisely, we assume

(A4) V � 0, M := V −1(0) contains at least two points and

inf
{|ξ1 − ξ2| | ξ1, ξ2 ∈ V −1(0) and ξ1 �= ξ2

}
> 0;
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(A5) for each ε > 0, inf{V (u) | dist(u,M) � ε}> 0.
As in the previous section, we investigate the existence of heteroclinic connections be-

tween elements of M. A solution u(t) of (2.12) such that there exist ξ, η ∈M, ξ �= η

and

u(−∞)= ξ, u(+∞)= η, u′(±∞)= 0

is called a heteroclinic solution of (2.12) from ξ to η or a heteroclinic connection between
ξ and η. We say also that u starts at ξ and ends at η.

Clearly, if u(t) is a heteroclinic of (2.12) from ξ to η, for every c ∈R u(t + c) is also a
heteroclinic from ξ to η, and u(−t) is a heteroclinic from η to ξ .

Let us fix an element in M which we may assume without loss of generality to be 0.
Then we search for heteroclinics from 0 to some ξ ∈M \ {0}. They appear as suitable
minimizers of the functional

J (u) :=
∫ +∞

−∞

( |u′|2
2
+ V (u)

)
dt. (2.13)

Given ξ ∈M \ {0}, it is natural to consider the class of vector functions


(ξ) := {
u ∈H 1

loc

(
R,RN

) | u(−∞)= 0, u(+∞)= ξ
}
.

Let us set

c(ξ) := inf
u∈
(ξ)J (u).

The following fact is proved with a computation quite similar to the proof of Fact 3 in
Section 2.1.

FACT 1. Assume that (A5) holds. Let ε > 0, and z ∈H 1((t1, t2),R
N) be such that

dist
(
u(t),M

)
� ε for all t ∈ [t1, t2].

Then

∫ t2

t1

( |u′|2
2
+ V (u)

)
dt �

√
2αε

∣∣u(t2)− u(t1)
∣∣,

where αε := inf{V (u) | dist(u,M � ε)}> 0.

FACT 2. Assume that V satisfies (A4) and (A5). Let u ∈H 1
loc(R,RN) be such that J (u) <

+∞. Then u(−∞), u(+∞) exist and belong to M.

PROOF. As
∫ +∞
−∞ V (u(t))dt <+∞, we have

lim inf
t→−∞ V

(
u(t)

)= lim inf
t→+∞ V

(
u(t)

)= 0.
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By assumption (A5), there exist sequences tn→−∞, sn→+∞ so that

lim
n→∞dist

(
u(tn),M

)= lim
n→∞dist

(
u(sn),M

)= 0.

Let us prove that limt→+∞ u(t) exists (a similar argument applies at−∞): if the limit does
not exist we are able to find

0 < ε < γ := 1

3
inf

{|ξ1 − ξ2| | ξ1 �= ξ2 and ξ1, ξ2 ∈M
}

(2.14)

and disjoint intervals [τn, σn] such that dist(u(τn),M) = ε,dist(u(σn),M) = 2ε and
dist(u(t),M) � ε for all t ∈ [τn, σn]. But then, by virtue of Fact 1, we infer that

J (u) �
∑
n

∫ σn

τn

( |u′|2
2
+ V

(
u(t)

))
dt

�
∑
n

√
2αε min(ε, γ − ε)=+∞

which is a contradiction. �

FACT 3. If V has infinitely many minima, then

lim|ξ |→+∞ c(ξ)=+∞.

PROOF. It suffices to prove that, given M � 0, there exists another number N = N(M)

so that J (u) � M and u ∈ 
(ξ) implies |ξ | � N . Fix ε > 0 as in (2.14). For u as stated,
let us call [a, b] a transition interval from ξa ∈M to ξb ∈M (ξa �= ξb) if |u(a)− ξa| =
ε = |u(b) − ξb| and for all t ∈ [a, b], dist(u(t),M) � ε. By definition of 
(ξ) we find
(disjoint) transition intervals [ti , si], from ξi to ηi , i = 1, . . . , k, so that ξ1 = 0, ξj+1 = ηj
and the {ξj } are all distinct. Fact 1 implies that

J (u) �
k∑

i=1

√
2αεγ = k

√
2αεγ.

Hence the number k of such intervals has an upper bound, k � M/(
√

2αεγ ). Since u(t)

reaches B(ξ, ε), we may assume that ηk = ξ . The length of each transition interval has an
upper bound that depends only on M , since

M �
∫ si

ti

V
(
u(t)

)
dt � αε(si − ti ).

We then infer that

∣∣u(ti)− u(si)
∣∣ � M

√
2

αε

.
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Therefore

|ξ |< 2ε+ 2ε(k − 2)+ (k − 1)M

√
2

αε

and we obtain an upper bound for |ξ | depending on M . �

THEOREM 2.3. Let V ∈ C1(RN,R) satisfy the assumptions (A4) and (A5), with 0 ∈M.
Then the system (2.12) has a heteroclinic solution starting at 0, and another one ending
at 0.

PROOF. By reversing time, it suffices to show that the system (2.12) possesses a hetero-
clinic starting at 0. By the assumption (A4) and Fact 3 (if M is not finite) it is clear that

c := min
ζ∈M\{0}

c(ζ )

exists, since a bounded domain intersects M in a finite set. Hence there exists ξ ∈M \ {0}
such that c= c(ξ). Now let (un) be a minimizing sequence, so that

un ∈ 
(ξ) and J (un)→ c(ξ)= c.

By translation invariance we may assume (with ε as in (2.14))
∣∣un(0)∣∣= ε,

∣∣un(t)∣∣ � ε for all t � 0 and all n ∈N. (2.15)

From the boundedness of J (un) it follows immediately that (u′n)n is bounded for the L2-
norm, and the arguments of the proof of Fact 3 imply that ‖un‖L∞ is also bounded. Hence
for each finite interval [a, b], ‖un‖H 1(a,b) is bounded and, by the diagonal procedure we
may extract a subsequence, also labelled (un)n, and find a function u ∈ H 1

loc(R,RN) so
that

un
Cloc(R,RN)−→ u and u′n

L2(R,RN)
⇀ u′.

The weak lower semicontinuity of the norm and Fatou’s lemma imply

J (u) � lim inf
n→∞ J (un)= c.

By Fact 2, u(±∞) exist and belong to M. From (2.15), using local uniform convergence
we have u(−∞)= 0. We now prove that u(+∞)= ξ . This follows from the following two
claims.

CLAIM 1. u(+∞) �= 0. Suppose by contradiction that u(+∞) = 0. Fix δ > 0 so that
4δ < ε and

2δ2 + sup
B2δ(0)

V <
ε

4

√
2αε/2, (2.16)
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where αε/2 has been defined in Fact 1. There exists tδ so that u(t) ∈ Bδ(0) for all t � tδ ,
and therefore um(tδ) ∈ B2δ(0) for all m sufficiently large. As |um(0)| = ε, Fact 1 implies
that

J (um) � ε

2

√
2αε/2 +

∫ +∞

tδ

( |u′m|2
2

+ V (um)

)
dt. (2.17)

Define a new function Um ∈ 
(ξ) by

Um(t) :=
⎧⎨
⎩

0 if t � tδ − 1,

(t − tδ + 1)um(tδ) if tδ − 1 � t � tδ,

um(t) if t � tδ .

We clearly have the estimate

J (Um) � 1

2
(2δ)2 + sup

B2δ(0)
V +

∫ +∞

tδ

( |u′m|2
2

+ V (um)

)
dt. (2.18)

From (2.16)–(2.18) we conclude that

J (um)−J (Um) � ε

4

√
2αε/2 ,

which yields a contradiction since

c � lim sup
m→∞

J (Um) � c− ε

4

√
2αε/2 < c.

CLAIM 2. If η ∈M \ {0, ξ}, u(+∞) �= η. Suppose, by contradiction, that u(+∞)= η ∈
M \ {0, ξ}. We then fix δ > 0 so that 2δ < ε and

2δ2 + sup
B2δ(η)

V <
γ

2

√
2αε.

Let tδ be such that um(tδ) ∈ B2δ(η) for all m sufficiently large. We introduce the new
function Um ∈ 
(η) defined by

Um(t) :=
⎧⎨
⎩
um(t) if t � tδ ,

(1− t + tδ)um(tδ)+ (t − tδ)η if tδ � t � tδ + 1,

η if t � tδ + 1.

As um ∈ 
(ξ), there exists tm < t̄m with tδ < tm, so that |um(tm)−η| = ε,dist(um(t̄m),M)

= ε and dist(um(t),M) � ε for all t ∈ [tm, t̄m]. Hence we have

J (um) �
∫ tδ

−∞

( |u′m|2
2

+ V (um)

)
dt + γ

√
2αε.
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On the other hand, we infer that

J (Um) � 2δ2 + sup
B2δ(η)

V +
∫ tδ

−∞

( |u′m|2
2

+ V (um)

)
dt

and we therefore conclude that

J (um)−J (Um) � γ

2

√
2αε.

It now follows that

lim sup
m→∞

J (Um) � c− γ

2

√
2αε < c,

which again contradicts the definition of the level c.

Having shown that u ∈ 
(ξ), it follows that c= J (u) is a minimum. The usual elemen-
tary argument of the Calculus of Variations shows that u is a solution of (2.12). At last
we must check that u′(±∞)= 0. For the autonomous system , this is particularly simple.
Indeed, since u is a solution of (2.12), it satisfies the energy identity

|u′|2
2
+ V (u)=K

for some constant K , and it is easy to see that K = 0. �

In presence of symmetries something else can be said. Let us consider the important
case where V is periodic in each coordinate. For definiteness, we assume the period is the
same for all coordinates and that the minimizers of V are the translates of 0:

(A6) V ∈ C1(RN,R) is a potential periodic in each variable ui with period 1,
minRN V = 0 and M= V −1(0)= Z

N .
Of course, the condition (A6) implies that (A4) and (A5) hold, so that Theorem 2.3

applies to this class of potentials.

THEOREM 2.4. If V ∈ C1(RN,R) satisfies (A6) then for each β ∈M there are at least
2N heteroclinic solutions of (2.12) starting from β and at least 2N heteroclinic solutions
of (2.12) ending at β .

IDEA OF THE PROOF. We may assume that β = 0 and we keep the notation introduced
before. Whenever c(ξ) is attained for some ξ ∈M \ {0}, the minimizer is a heteroclinic
from 0 to ξ . Let G be the subgroup of Z

N spanned by the elements ξ ∈M\{0} so that c(ξ)
is attained. It follows from Theorem 2.3 that G �= 0. If G �= Z

N , we can select ζ ∈ Z
N \G

so that

c(ζ )= min
ζ ′∈ZN\G

c
(
ζ ′
)
.
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Then we prove that c(ζ ) is attained, by mimicking the proof of Theorem 2.3. The main
difference is in the proof of Claim 2. When we take η ∈M \ {0, ζ } we have to allow the
possibility that η ∈ G. But this implies that ζ − η ∈ Z

N \ G. The minimizing sequence
(um) is then modified to a sequence in 
(ζ − η), given by

Um(t) :=
⎧⎨
⎩

0 if t � tδ − 1,
(t − tδ + 1)

(
um(tδ)− η

)
if tδ − 1 � t � tδ,

um(t)− η if t � tδ.

The appropriate choice of δ and the fact that V (um(t)− η)= V (um(t)) lead to the usual
contradiction with the choice of ζ . Therefore we conclude that G = Z

N . This yields N

Z-independent elements ξ so that there exist heteroclinics u form 0 to ξ . For each such ξ ,
u(−t)− ξ is a heteroclinic from 0 to −ξ . �

2.3. Periodic Hamiltonian systems: Multiplicity. Multibump solutions

In this section we are interested in non-autonomous systems of the form

u′′ = ∇uV (t, u), (2.19)

where the potential is periodic in the time variable as well as in each spatial variable ui
(i = 1, . . . ,N ). For simplicity, the period is supposed to be the same for all the variables.
The results of the previous section carry over to this kind of systems provided the assump-
tions on the potential are adequately rephrased. Namely, V (t, ·) must have equilibria at the
minimum level of the potential that are independent of t .

Let us state the assumptions on V :
(A7) V ∈ C2(R×R

N,R) is 1-periodic in each variable t, ui , i = 1, . . . , n;
(A8) V (t,0)= 0 <V (t, u) for all t ∈R, u ∈R

N \Z
N .

Clearly, we may consider different given periods in each variable of V by rescaling. Note
also that the assumptions (A7) and (A8) imply that M := {u ∈ R

N : V (t, u) = 0} = Z
N

independently of t .
We easily recognize that Fact 1 and Fact 2 of the preceding section extend to the class of

potentials we are considering by now. We only have to replace V (u) by V (t, u) and define

αε := inf
{
V (t, u) | t ∈R, dist(u,M) � ε

}
. (2.20)

As before, we make use of the functional J given by

J (u) :=
∫ +∞

−∞

( |u′|2
2
+ V (t, u)

)
dt. (2.21)

For each given pair of elements ξ, η ∈M, consider the class of functions


(ξ, η) := {
u ∈ C

(
R,RN

) ∣∣ u(−∞)= ξ, u(+∞)= η and u′ ∈ L2(R)
}
.
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Obviously, 
(ξ, η)⊂H 1
loc(R, R

N). Set

c(ξ, η) := inf
u∈
(ξ,η)J (u). (2.22)

We cannot guarantee, in general, that c(ξ, η) is attained at a heteroclinic from ξ to η.
However it is attained at a heteroclinic chain between ξ and η in the sense of the following
statement which, according to Rabinowitz [70], was first obtained by Strobel in his Ph.D.
dissertation.

THEOREM 2.5. Assume V ∈ C2(R×R
N,R) satisfies (A7) and (A8). For each pair ξ, η ∈

M (ξ �= η) there exists a finite family {w1, . . . ,wj } ⊂M with w1 = ξ , wj = η, and a
corresponding family of heteroclinics vi of (2.19), with

J
(
vi
)= c(wi,wi+1), vi ∈ 
(wi,wi+1), i = 1, . . . , j − 1

and

j−1∑
i=1

J
(
vi
)= c(ξ, η).

It is easily seen by (A7)–(A8) that the vi ’s may be assumed to be basic heteroclinics by
which we mean that none of the heteroclinic chains, with more than one element, joining
wi and wi+1, achieve the value J (vi).

Variational methods have proved to be fruitful in investigating the existence of multiple
heteroclinics for Hamiltonian systems of the type (2.19). Different approaches have been
proposed by several authors but all of them share a common feature: at the start these al-
ways require some nondegeneracy assumption, like stating that some solution of (2.19) is in
a sense isolated. This kind of assumption naturally excludes autonomous systems whereas
it is commonly conjectured it is generically fulfilled when V depends on t although it is
quite complicate to check it on concrete examples.

We shall take advantage from the existence of a basic heteroclinic chain from ξ to η in
order to describe, following [70], how true heteroclinics from ξ to η may be obtained. We
shall see that we can impose these solutions to spend arbitrarily large amounts of time near
the “vertices” wi . Hence there are infinitely many such solutions. This is one of several
multiplicity results where solutions are distinguished by means of their behaviour with
respect to the equilibria of the system (2.19): one therefore refers to “multibump” solutions.

Before stating the theorem, we first introduce a nondegeneracy condition. Given ξ �= η ∈
M, set

S(ξ, η) := {
q(0) ∈R

N | q ∈ 
(ξ, η), J (q)= c(ξ, η)
}
.

As q(0) ∈ S(ξ, η) implies q(k) ∈ S(ξ, η) for any integer k, we infer that ξ and η belong to
S̄(ξ, η). Denote respectively by Cξ (ξ, η) and Cη(ξ, η) the connected components of ξ and
η in S̄(ξ, η). We assume
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Cwi
(wi,wi+1)= {wi} and Cwi+1(wi,wi+1)= {wi+1},

for i = 1, . . . , j − 1. (N)

It is shown in [70] that when these conditions fail then

Cwi
(wi,wi+1)= Cwi+1(wi,wi+1),

which can be interpreted as a strongly degenerate situation.

THEOREM 2.6. Assume V ∈ C2(R × R
N,R) satisfies (A7) and (A8). Let there exist a

basic heteroclinic chain of (2.19), consisting in the basic heteroclinics vi with vertices
ξ = w1, . . . ,wj = η, as described in Theorem 2.5. Then if (N) holds, the system (2.19)
has infinitely many heteroclinic solutions connecting ξ and η. The time a solution spends
in a neighbourhood of the vertices may be prescribed to exceed any arbitrary positive
number.

PROOF OF THEOREM 2.6. If I is an interval in R, we write

JI (u) :=
∫
I

( |u′|2
2
+ V (t, u)

)
dt.

By the nondegeneracy condition (N), given ρ > 0 we can fix open neighbourhoods Ai of
wi , Bi+1 of wi+1 with diameter smaller than ρ and so that

∂(Ai ∪Bi+1)∩ S̄(wi,wi+1)= ∅, for 1 � i � j − 1. (2.23)

We now consider a vector z ∈ Z
2j−2 with coordinates

z1 < z′2 < z2 < z′3 < · · ·< z′j

and define

Xz =
{
q ∈ 
(ξ, η)

∣∣ q(zi) ∈ Āi , q
(
z′i+1

) ∈ B̄i+1, i = 1, . . . , j − 1
}
.

The solutions we look for will be solutions of the following minimization problem:

bz = inf
u∈Xz

J (u) (2.24)

provided that ρ is sufficiently small and the differences between the successive coordinates
of z are sufficiently large. By the way, observe that the coordinates of z may be translated
by any integer without affecting the variational problem.
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CLAIM 1. If 0 < r < 1
3 and ρ > 0 is sufficiently small, bz is attained at a function uz ∈Xz

such that |uz(t)−wi |� r for all t ∈ Ii , where Ii = [z′i , zi], i = 2, . . . , j−1, I1 = ]−∞, z1]
and Ij = [z′j ,∞[.

Taking a minimizing sequence (un)n ⊂Xz for (2.24), the claim follows from arguments
similar to those we used in the proof of Theorem 2.3 that enable us to extract a convergent
subsequence, still denoted by (un)n, such that

un
Cloc(R,RN)−→ uz and u′n

L2(R,RN)
⇀ u′z,

together with the fact that we may assume that the minimizing sequence satisfies the in-
equalities in the above statement. To see this last fact with respect to I1, let K(s, t;x, y)
denote the affine map

τ → x + τ − s

t − s
(y − x), s � τ � t,

and consider the modified sequence (Un)n ⊂Xz defined by

Un(t)=
⎧⎨
⎩
w1(t) if t � z1 − 1,

K
(
z1 − 1, z1;w1, un(z1)

)
(t) if z1 − 1 < t < z1,

un(t) if t � z1.

A straightforward computation yields JI1(Un) = o(ρ) as ρ→ 0. However if un reaches
the boundary of Br(w1) at some instant t ∈ I1, the adaptation of Fact 1 of Section 2.2 to the
present situation allows to prove JI1(un) is bounded from below by a constant depending
only on r . Hence, if ρ is chosen sufficiently small, we may substitute Un for un and the
inequality follows. The same argument enables us to deal with the remaining intervals.
This proves Claim 1.

CLAIM 2. Let 0 < σ < ρ. If the differences zi − z′i are large enough, there exist subinter-
vals Ji = [ai, ai + 2] ⊂ Ii , such that |uz(t)−wi |� σ for all t ∈ Ji and 2 � i � j − 1. In
addition JJi (uz)= o(σ ) as σ → 0.

By Claim 1, taking zi − z′i large, we cannot have |uz(t)−wi |� σ/2 for all t ∈ Ii , since
otherwise

ασ/2
(
zi − z′i

)
� JIi (uz)= o(ρ) for ρ→ 0,

where ασ/2 is defined according to (2.20). In fact, the same argument shows that a subin-
terval L ⊂ Ii with length greater than a certain l > 0 must contain at least one instant t
such that |uz(t)−wi |< σ/2.

Suppose the first statement of Claim 2 is false. Then, each subinterval Ji = [ai, ai +
2] ⊂ Ii containing an instant t where |uz(t)−wi |< σ/2 also contains an instant t ′ where
|uz(t ′)−wi |� σ . If k is the number of such disjoint intervals, applying again the arguments
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of Fact 1 of Section 2.2 and the computations in the proof of Claim 1, we deduce a bound
on k. Namely, we have

k
σ

2

√
2ασ/2 < o(ρ), for ρ→ 0.

But, by the above remark, if zi − z′i grows to infinity, so does k. This shows that the first
statement of Claim 2 is true.

The second statement of Claim 2 is checked by noting that

JJi (uz) � JJi (ψ)= o(σ ), as σ → 0,

where ψ is defined by

ψ(t) :=
{
uz(t) if t ∈ ]−∞, ai[ ∪ ]ai + 2,∞[,
K
(
ai, ai + 2, uz(ai), uz(ai + 2)

)
(t) if t ∈ [ai, ai + 2].

Let us now complete the proof. It is clear that uz(t) is a solution of (2.19) for t �= zi, z
′
i .

To prove that it is indeed a solution, we have to show that u(zi) ∈Ai and u(z′i+1) ∈ Bi+1,
for 1 � i � j − 1. To this purpose, an auxiliary variational problem is introduced: define

�(wi,wi+1) :=
{
u ∈ 
(wi,wi+1) | u(0) ∈ ∂(Ai ∪Bi+1)

}

and

d(wi,wi+1) := inf
u∈�(wi,wi+1)

J (u).

It is easily seen that this infimum is attained at some S ∈�(wi,wi+1) and

d(wi,wi+1) > c(wi,wi+1).

Indeed, if there holds an equality, then S(0) ∈ ∂(Ai ∪ Bi+1) ∩ S̄(wi,wi+1), contradict-
ing (2.23).

Arguing by contradiction, assume that for some i ∈ {1, . . . , j − 1}, we have, say,

uz
(
z′i+1

) ∈ ∂Bi+1. (2.25)

The other case may be handled in a similar way. By integer translation, we may suppose
z′i+1 = 0. Also, we can translate the time variable in the basic heteroclinic vi thus obtaining
a new basic heteroclinic V i such that V i(t) ∈ Āi for t � zi and V i(t) leaves Āi at some
time in [zi, zi+1]. Taking large differences zi − z′i we may assume V i(t) ∈ B̄i+1 for t �
z′i+1 as well. Hence V i(t) ∈ Āi for t ∈ Ji and V i(t) ∈ B̄i+1 for t ∈ Ji+1.

Let us call Uz the modification of uz outside ]−∞, ai]∪[ai+1+2,∞[ obtained by gluing
together the following pieces: K(ai, ai + 1;uz(ai),wi); K(ai + 1, ai + 2;wi,V

i(ai + 2));
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the restriction of V i to the interval [ai + 2, ai+1]; K(ai+1, ai+1 + 1;V i(ai+1),wi+1) and
K(ai+1 + 1, ai+1 + 2;wi+1, uz(ai+1 + 2)).

Finally we compute the difference

J (uz)−J (Uz)= J[ai ,ai+1+2](uz)−J[ai ,ai+1+2](Uz)

in the following way. Define an auxiliary curve γz by gluing together the constant wi on
]−∞, ai]; K(ai, ai + 1;wi,uz(ai + 1)); uz restricted to [ai + 1, ai+1]; K(ai+1, ai+1 +
1;uz(ai+1),wi+1) and the constant wi+1 in [ai+1+ 1,∞[. Note that γz ∈�(wi,wi+1) by
our assumption (2.25). Then we write

J[ai ,ai+1+2](uz)−J[ai ,ai+1+2](Uz) =
(
J[ai ,ai+1+2](uz)−J[ai ,ai+1+2](γz)

)

+ (
J[ai ,ai+1+2](γz)−J[ai ,ai+1+2](Uz)

)
.

Using Claim 2, we may check that the first difference on the right-hand side is an o(σ ) as
σ → 0. On the other hand, we clearly have

J[ai ,ai+1+2](γz) � bz

and

J[ai ,ai+1+2](Uz) � J[ai ,ai+1+2]
(
V i

)+ o(σ ), as σ → 0.

Hence, we finally deduce that

J (uz)−J (Uz) = J[ai ,ai+1+2](uz)−J[ai ,ai+1+2](Uz)

� b(wi,wi+1)− c(wi,wi+1)+ o(σ ), as σ → 0,

leading to a contradiction with the minimizing property of uz.

Conclusion. From what precedes, we conclude that for each 0 < r < 1
3 and each vector

(z1, z
′
2, z2, z

′
3, . . . , z

′
j ) ∈ Z

2j−2 such that the distances zi − z′i , 2 � i � j − 1, are large
enough, there exists a heteroclinic solution uz of (2.19) with the particularity that

∣∣uz(t)−wi

∣∣ � r, if t ∈ [
z′i , zi

]
, for i = 2, . . . , j − 1

and

∣∣uz(t)− ξ
∣∣ � r if t � z1,

∣∣uz(t)− η
∣∣ � r if t � z′j . �

Several methods adapted to the search of multibump solutions may be found in the
literature. For instance, in [67] Rabinowitz considers a system with two equilibria 0 and
ξ and, starting from a pair of heteroclinics, v from 0 to ξ and w from ξ to 0, constructs
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heteroclinics that oscillate an arbitrary number of times between neighbourhoods of the
equilibria. The method uses the functional u→ J (v + u) defined in H 1(R,RN). The
concentration of Palais–Smale sequences with respect to homoclinics and heteroclinics is
a crucial tool.

In [72], Coti Zelati and Rabinowitz give a variant of the result of Strobel for poten-
tials of the form V (t, u)= a(t)W(u) where W is periodic, a is slowly oscillating and not
necessarily periodic.

The almost periodic case has been considered by Alessio, Bertotti and Montechiari [3]
for fairly general Lagrangian systems. In particular, they show that, in presence of a slowly
oscillating extra term, chaotic multibump dynamics arises.

2.4. Notes and further comments

1. In Theorem 2.1, the minimizer u takes values in [−1,1]. If (2.4) has uniqueness or if
F(u) lies below some quadratic function c(u± 1)2 in the neighborhood of ∓1, we have
u(t) ∈ ]−1,1[ for all t ∈R. The heteroclinic of (2.4) is essentially unique (up to translation)
as a consequence of (2.5) with k = 0.

2. If (2.9) has uniqueness of solutions for the Cauchy problem, the heteroclinics assume
values in ]−1,1[. In addition, if f has only one zero in ]−1,1[, it can be checked that the
minimizers of the functional J defined by (2.10) are strictly increasing. On the other hand,
the presence of the function a(t) in the functional rules out an easier argument which in
the autonomous case shows that the elements of a minimizing sequence may assumed to
be increasing functions.

3. In comparison with Theorem 2.2, the next theorem illustrates what can be said about
second order systems where the potential depends on time and has no particular symmetry
properties. For definiteness, consider the system

u′′ = ∇uV (t, u), (2.26)

where u : R→R
N , V ∈ C2(R×R

N,R) and ∇u is the gradient with respect to the variable
u ∈R

N . Assume that
(A9) V (t, u) � 0 for all t ∈R and all u ∈R

N , and there exist ξ �= η such that V (t, u)=
0 if and only if u ∈ {ξ, η};

(A10) there exist constants a1, a2 > 0 and ε > 0 such that a1|u − z|2 � V (t, u) �
a2|u− z|2 if z ∈ {ξ, η} and |u− z|< ε;

(A11) lim inf|u|→∞ V (t, u) > 0 uniformly in t ∈R.
Then one can prove:

THEOREM 2.7. If V ∈ C2(R×R
N,R) satisfies the assumptions (A9)–(A11) and

t
∂V

∂t
(t, u) > 0
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whenever t �= 0 and u �∈ {ξ, η}, then (2.26) has a heteroclinic solution from ξ to η.

This theorem is a particular case of the results proved by Chen and Tzeng [26]. In their
paper, further examples of existence, and results on multiplicity of heteroclinics, may be
found. Thus in this respect the non-autonomous equation behaves quite differently from the
autonomous one. We also mention that the system considered there may have an infinite
set of equilibria.

4. It is, however, interesting to note that, in contrast to Theorems 2.2 and 2.7, Korman and
Lazer [46] consider a special scalar equation

u′′ = a(t)
(|u|p−1u− u

)
, p > 1, (2.27)

and they find a heteroclinic from −1 to 1 assuming that a(t) is even, a′(t) < 0 if t < 0 and
a(∞) > 0. They exploit the symmetry of (2.27), solve the approximate two point problem
with boundary conditions u(0)= 0, u(T )= 1 and then they pass to the limit as T →+∞.

5. Many other properties of heteroclinics of Hamiltonian systems have been established
by means of variational methods. Let us list a few of them:

(i) Heteroclinics to periodics. Consider a system of the form

u′′ = ∇uV (t, u)+ f (t), (2.28)

where V is a function of class C2, 1-periodic in t and in the spacial variables, and f is
continuous, 1-periodic and of zero mean value. Assume in addition that the system is re-
versible, namely that V and f are even in t . Then it is known that (2.28) has periodic solu-
tions at the minimum level of the action functional corresponding to the periodic boundary
value problem for (2.28). In [68] Rabinowitz gives conditions for the existence of hete-
roclinics connecting two such periodic solutions. In [53] Maxwell proves that there are
heteroclinic chains between any two periodic solutions, the “vertices” of the chain being
also periodic solutions.

Calanchi and Serra [24] use a constrained minimization approach for the existence of
connections between consecutive periodic solutions. For ordinary differential equation,
Bosetto and Serra [21] obtain multi-bump heteroclinics between consecutive periodic mo-
tions without any reversibility assumption.

(ii) Heteroclinics to almost periodic solutions. Alessio, Carminati and Montecchiari
[4] prove the existence of heteroclinic connections joining almost periodic solutions of a
Lagrangian system.

(iii) Heteroclinics with an endpoint at infinity. For potentials V ∈ C1(RN,R) with one
zero at the origin and vanishing at infinity like some power |u|−α , α > 0, the system
(2.12) has at least one “heteroclinic at infinity”, i.e. a solution u(t) such that u(−∞)= 0,
|u(+∞)| = +∞ and u′(±∞) = 0. We refer to Serra [80]. A similar result holds for a
potential with a finite singularity when N � 3.

(iv) Almost periodic systems. Bertotti and Montecchiari [14] and Alessio, Bertotti and
Montecchiari [3] consider almost periodic Lagrangian systems. Under suitable conditions,
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they obtain infinitely many heteroclinic solutions connecting possibly degenerate equilib-
ria.

(v) Singular potentials. Many authors consider homoclinic solutions to equilibrium
points of Hamiltonian systems with a singular potential, see [85,69,13,25] and the refer-
ences therein. In case of a potential in R

2 singular at some unique point, the basic result
is the existence of many homoclinics classified according to their winding number around
the singularity. It seems that only few attention was paid to heteroclinic connections with
such settings. In [25] an autonomous system in R

2 is considered. The origin is a minimum
of the potential and a strong force at the singularity ξ is assumed. The authors obtain a cer-
tain periodic solution ū with index 1 with respect to ξ , homoclinics with arbitrarily large
indexes with respect to ξ and a heteroclinic from 0 to ū which is built upon an infinite se-
quence of homoclinics. We already mentioned the result of Serra [80] about heteroclinics
at infinity which holds in some singular frameworks. But up to our knowledge, no mul-
tiplicity results were obtained for heteroclinic solutions in the spirit of those concerning
homoclinics.

(vi) Heteroclinic connections between minima at different levels of the potential. V. Coti
Zelati and Rabinowitz [29] give conditions for the existence of a heteroclinic from χ to η

for a system of the form

u′′ = a(t)∇V (u),

where a is periodic and bounded away from zero and χ, η are isolated minima of V at
different levels.

(vii) Spatial heteroclinics. Consider the PDE

�u= a(x, y)f (u) in R
2, (2.29)

where a is periodic in both variables and f is a non-negative smooth function such that
f (0) = f (1) = 0. There are solutions u(x, y) of (2.29) periodic in y and “heteroclinic
in x” from 0 to 1, i.e. approaching respectively 0 and 1 as x→−∞ and x→+∞. This
and a lot more of related results can be consulted in Rabinowitz and Stredulinsky [73,
74] and Rabinowitz [71]. See also the papers by Alessio, Jeanjean and Montecchiari [5,
6].

3. Heteroclinics as front wave profiles in reaction diffusion equations

An efficient model for many chemical and biological phenomena is provided by the partial
differential equation

∂u

∂t
+ ∂

∂x
H(u)= ∂

∂x

[
p(u)

∂u

∂x

]
+ g(u), (3.1)
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where H,p ∈ C1(R), p > 0 and following the terminology used in [49], g is a function of
type A in [0,1] by which we mean that

g is continuous in [0,1], g(0)= g(1)= 0 and
g(u) > 0 if u ∈ ]0,1[. (Type A)

Hence the constants u= 0 and u= 1 are solutions of (3.1).
The first term in the right-hand side represents density dependent diffusion, while the

term ∂
∂x

H(u) accounts for convection effects.
An important problem related to this equation is that of finding positive travelling wave

solutions, that is, positive solutions of the form u(t, x)= U(x − ct) for some c > 0. Here
c is the propagation speed of the wave. It is in addition required that the wave front U(s)

is defined in ]−∞,+∞[ and satisfies U(−∞)= 1, U(+∞)= 0. This amounts to look at
the solutions of the second order ordinary differential equation

(
p(u)u′

)′ + (
c−H ′(u)

)
u′ + g(u)= 0 (3.2)

satisfying the limit conditions

u(−∞)= 1, u(+∞)= 0.

We are therefore close to the problem of finding a heteroclinic between the equilibria 1
and 0.

The simplest and most classical case corresponds to H ≡ 0, p ≡ 1, the associated equa-
tion being then

u′′ + cu′ + g(u)= 0. (3.3)

This (or the corresponding evolution equation) is usually referred as Fisher’s equation, al-
though in Fisher’s original model g(u) is the function u(1− u). Among the vast literature
on the existence of heteroclinics for (3.3) at least two contributions should be singled out:
the pioneering work of Kolmogorov, Petrovsky and Piskounoff [45] and the paper by Aron-
son and Weinberger [11]—the latter concerning also diffusion in n-dimensional space. It is
shown in [11] that, for g ∈ C1[0,1], there exists a heteroclinic connection of (3.3) between
1 and 0 if and only if c � c∗, where c∗ is a positive number such that

2
√
g′(0) � c∗ � 2

√
sup

0<u<1

g(u)

u
.

The lower bound is clear, since linearizing (3.3) around u= 0 shows that for c < 2
√
g′(0)

the origin cannot act as an attractor of positive solutions. This result has been recently
extended by Malaguti and Marcelli [48,49] for the more general problem (3.2) (in fact for
even more general equations).
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In this monograph we shall concentrate on the existence of heteroclinics and some
bounds for the minimal speed c∗. Many other interesting problems concerning the equa-
tion (3.3) or systems of equations of this type have been dealt with in the literature. Some
examples will be mentioned at the end of the section.

3.1. Reduction to a first order equation

Maybe the simplest way to obtain existence results for heteroclinic solutions of (3.2) or
(3.3) consists in studying an equivalent first-order problem. This device may be found in
[76] and has been extensively used in [49,50]. We modify it slightly, in the spirit of the
approach given in [10].

Let us consider the equation (3.2) written as

(
p(u)u′

)′ + h(u)u′ + g(u)= 0 (3.4)

and assume
(B1) p ∈ C1([0,1]) and p(u) > 0 for all u ∈ [0,1];
(B2) h ∈ C[0,1] and h(u) > 0, for all u ∈ [0,1];
(B3) g is a function of type A in [0,1].
We first notice that monotone solutions of (3.4) such that 0 < u(s) < 1 have no criti-

cal points. Indeed, if u′(t0) = 0 and 0 < u(t0) < 1, then (3.4) implies u′′(t0) < 0. On the
other hand, we observe that any decreasing solution u(s) of (3.4) such that u is defined in
]−∞,+∞[, u(−∞)= 1 and u(+∞)= 0 has the property

lim
s→±∞u′(s)= 0, (3.5)

so that u is indeed a heteroclinic between the equilibria 1 and 0. To prove (3.5) first remark
that lim sups→±∞ u′(s) = 0 by the boundedness of u(s). Suppose, by contradiction, that
lim infs→+∞ u′(t) < 0, the limit at −∞ is handled in a similar way. Let tn→+∞ be a se-
quence so that u′(tn)→ 0. Integrating (3.4) in [0, tn] shows that

∫ tn
0 g(u(s))ds is bounded,

whence by the positivity of g, we deduce that
∫ +∞

0 g(u(s))ds is finite. Now let tn→+∞
and sn →+∞ be sequences so that tn < sn < tn+1, u′(tn)→ 0 and u′(sn)→−δ < 0.
From (3.4) we derive, for some τn ∈ [tn, sn]

[
p
(
u(sn)

)
u′(sn)− p

(
u(tn)

)
u′(tn)

]+ h
(
u(τn)

)(
u(sn)− u(tn)

)

+
∫ sn

tn

g
(
u(s)

)
ds = 0.

In the above equation the term in brackets has limit −p(0)δ, while the remaining terms
tend to 0, leading to a contradiction.

Now let u= U(t) be a monotone decreasing heteroclinic of (3.4) and let ]t−, t+[ be the
maximal interval where

0 <U(t) < 1.
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Then we have U ′(t) < 0 for t ∈ ]t−, t+[ and thus we can define t (u), the inverse function
of u=U(t). Set

ϕ(u) := p
[
U
(
t (u)

)]
U ′

(
t (u)

)
. (3.6)

Then ϕ is a C1 function in ]0,1[ which can be continuously extended to [0,1] with ϕ(0)=
ϕ(1)= 0. Moreover, ϕ satisfies

ϕ′(u)ϕ(u)+ h(u)ϕ(u)+ p(u)g(u)= 0.

Observe that the boundedness of h and the positivity of p and g implies that

∣∣ϕ(u)∣∣ � ku

for some positive constant k. From Gronwall’s inequality we then infer this rules out the
possibility that t+ <+∞. Since ϕ < 0, we find that ψ(u) := ϕ(u)2 is a solution of the first
order differential equation

ψ ′(u)= 2h(u)
√
ψ(u)− 2p(u)g(u) (3.7)

in [0,1], together with the endpoint conditions

ψ(0)=ψ(1)= 0. (3.8)

In particular, ψ is of type A in [0,1].
Conversely, if (3.7) has a solution ψ of type A in [0,1], we use it to define the solution

u(t) of the Cauchy problem

u′ = −
√
ψ(u)

p(u)
, u(0)= 1

2
. (3.9)

The domain of this solution is ]t−, t+[, where

t− =−
∫ 1

1/2

p(u)du√
ψ(u)

, t+ =
∫ 1/2

0

p(u)du√
ψ(u)

.

The boundedness of h and (3.7) imply that in a neighborhood of u= 0, we have

√
ψ(u) � ku

for some positive constant k. Therefore it follows from assumption (B1) that t+ =+∞. If
we assume in addition that

(B4) there exists  > 0 such that for all u ∈ [0,1], g(u) �  (1− u),
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then we infer from (3.7) that there exists some constant k1 > 0 so that ψ(u) � k1(1− u)2

in a neighborhood of u= 1. Hence under the condition (B4) we also have t− =−∞.
A straightforward computation shows that u(t) satisfies (3.4) in ]t−, t+[, and it is clear

that

lim
t→t−

u(t)= 1, lim
t→t+

u(t)= 0, lim
t→t±

u′(t)= 0.

Therefore we have shown:

PROPOSITION 3.1. Assume (B1)–(B4) hold and let ϕ be the function defined by (3.6).
Then u= U(t) is a (strictly) decreasing heteroclinic solution of (3.4) between 1 and 0 if
and only if ϕ(u)2 is a solution of type A of (3.7) in [0,1].

REMARK. Under weaker hypotheses, namely if we allow a singularity at zero, i.e. p(0)=
0, or in the absence of (B4), t− or t+, or both, may be finite. In these cases, we still obtain
a heteroclinic by trivially extending U(t) with the value 1 to the left and with the value 0
to the right.

Proposition 3.1 reduces the existence of heteroclinics for (3.4) to the existence of type A
solutions of (3.7). Therefore it is useful to have criteria that ensure existence of such solu-
tions.

PROPOSITION 3.2. Assume (B1)–(B3) hold.
(i) Suppose that s(u) is a C1 function in [0,1] such that s(0)= 0, s(u) > 0 if u ∈ ]0,1[

and for all u ∈ [0,1],

s′(u) � 2h(u)
√
s(u)− 2p(u)g(u). (3.10)

Then Eq. (3.7) has a solution of type A.
(ii) Equation (3.7) has at most one solution of type A.

PROOF. (i) The assumption (3.10) which means s is a lower solution of the initial value
problem

ψ ′ = 2h(u)
√
ψ − 2p(u)g(u),

ψ(0)= 0,
(3.11)

implies, as is well known (see, e.g., [91]), that (3.11) has a solution ψ(u) such that ψ(u) �
s(u). If ψ(1)= 0 then ψ is a type A solution of (3.7) and we are done.

If ψ(1) > 0, we consider the solution ψ̄ of the initial value problem

ψ̄ ′ = 2h(u)
√∣∣ψ̄∣∣− 2p(u)g(u),

ψ̄(1)= 0.
(3.12)
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It is clear that we may assume ψ̄ � 0 in [0,1], since 0 is a lower solution for the initial
value problem (3.12) in [0,1]. We claim that 0 < ψ̄(u) < ψ(u) for all u ∈ ]0,1[. In fact, if
u0 is the largest zero of ψ̄ in ]0,1[, then (3.12) implies ψ̄ ′(u0) < 0, which is impossible. If
u1 ∈ ]0,1[ is such that ψ̄(u1)= ψ(u1), then ψ̄ ≡ ψ , which is also impossible. Hence the
claim is proved and by continuity, ψ̄(0)= 0 so that ψ̄ is the desired solution of type A.

(ii) Assume by contradiction that ψ1 and ψ2 are distinct type A solutions of (3.7). By
uniqueness of the solution of the Cauchy problem, these two solutions are ordered, say
ψ1(u) < ψ2(u) for all u ∈ ]0,1[. But then (3.7) shows that ψ2 −ψ1 is increasing and this
contradicts ψ1(1)=ψ2(1)= 0. �

The results we have established have straightforward consequences:

PROPOSITION 3.3.
(i) The decreasing heteroclinic of (3.4), if it exists, is unique up to translation.

(ii) Consider two equations

(
pi(u)u

′)′ + hi(u)u
′ + gi(u)= 0, i = 1,2, (∗)i

where pi, hi, gi satisfy assumptions (B1)–(B4). Then if h1 � h2, p1 � p2 and
g1 � g2, and (∗)1 has a decreasing heteroclinic, then so does (∗)2.

REMARK. If c1 < c2 the heteroclinics u1, u2 of (3.3) with respectively c = c1, c2 satisfy
ψ2 <ψ1 by the above ordering argument.

EXAMPLES. (1) Suppose H ′ in (3.2) is continuous. Then there exists a number c∗ ∈ R

such that (3.2) admits a decreasing solution if and only if c � c∗. In particular, for (3.3) we
have the classical estimate

0 < c∗ � 2

√
sup

0<u<1

g(u)

u
. (3.13)

In fact, if there exists M > 0 so that for all u ∈ [0,1], g(u) � Mu, then we can choose a
constant β > 0 so that s(u)= βu2 is a lower solution of (3.11) with h(u)≡ c, p(u) ≡ 1,
provided that c2 � 4M .

(2) Consider the autonomous case

u′′ + cu′ + g(u)= 0

in which there exists M > 0 and α � 2 so that

g(u) � Muα(1− u).

(This type of nonlinear term appears in many applications.) It is easy to see that s =
βuα(1− u)2 is a lower solution of (3.11) with h(u)≡ c, p(u)≡ 1, if for all u ∈ [0,1],

αβuα/2−1 + (
2M − β(α + 2)

)
uα/2 � 2c

√
β.
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Elementary but tedious computations show that such a number β > 0 exists if c �√
2M

(
α−1
α+2

)(α−1)/2. We thus obtain

c∗ �
√

2M

(
α − 1

α + 2

)(α−1)/2

,

an estimate which improves, for small values of α (e.g., α � 4) that allowed by (3.13).

3.2. Fast solutions and heteroclinics

In this section we consider the simple model

u′′ + cu′ + g(u)= 0 (3.14)

with g of type A. Following [10] we say that a solution u(t) of (3.14) is a fast solution if it
is defined in some interval [t0,+∞] and satisfies the integrability condition

∫ +∞

t0

ectu′(t)2 dt <+∞.

In order to look for this kind of solutions we introduce the Hilbert space

Hc =
{
u ∈H 1

loc(0,+∞)

∣∣∣
∫ +∞

0
ectu′(t)2 dt <+∞ and u(+∞)= 0

}

with the norm

‖u‖ =
(∫ +∞

0
ectu′(t)2 dt

)1/2

.

Note that u(+∞) exists whenever the above integral is finite, since by Schwarz’s inequality

∣∣u(T )− u(S)
∣∣ �

( |e−cS − e−cT |
c

∫ T

S

ectu′(t)2 dt

)1/2

.

On the other hand, taking limits in the above inequality as T →+∞ it turns out that for
all u ∈Hc

‖u‖L∞(S,+∞) � e−cS/2

√
c
‖u‖. (3.15)

PROPOSITION 3.4. For all u ∈Hc , we have

c2

4

∫ +∞

0
ectu(t)2 dt �

∫ +∞

0
ectu′(t)2 dt. (3.16)
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PROOF. In Hardy’s inequality (see [40])

∫ +∞

0

v(s)2

s2
ds � 4

∫ +∞

0
v′(s)2 ds,

where v is absolutely continuous in [0,+∞[ and v(0)= 0, make the change of variables
v(s)= u(t), s = e−ct to obtain

c

∫ +∞

−∞
ectu(t)2 dt � 4

c

∫ +∞

−∞
ectu′(t)2 dt.

Then choose u(t) to be constant for t � 0 and ignore, in the left-hand side of the estimate,
the integral over ]−∞,0] which is positive. �

Assume that g satisfies
(B5) sup0<u<1

g(u)
u

<+∞
and extend g(u) to ]−∞,∞[ with the value 0 outside [0,1]. Solutions of (3.14) defined
in [0,+∞[ and taking values in [0,1] can thus be identified with critical points of the
functional F :Hc→R defined by

F(u)=
∫ +∞

0
ect

(
u′2

2
−G(u)

)
dt,

where G(s) = ∫ s

0 g(τ)dτ . In fact, one can check that under the assumption (B5), F is
a functional of class C1 in Hc and (3.14) (with the extended g) is the Euler–Lagrange
equation for F .

Let us introduce one more assumption:
(B6) there exists a constant k such that k ∈ ]0, c2/4[ and

G(u) � ku2

2
, for 0 � u � 1.

PROPOSITION 3.5. Assume (B3), (B5) and (B6) hold. Then F attains a minimum in the
set

M = {
u ∈Hc | u(0)= 1

}
.

The minimizer u is a solution of (3.14) in [0,+∞[ such that for all t � 0, u′(t) � 0 and
0 � u(t) � 1.

PROOF. We write F in the form

F(u)=
∫ +∞

0
ect

(
u′2

2
− k

u2

2

)
dt +

∫ +∞

0
ectH(u)dt, (3.17)
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where by (B6),

H(u)= k
u2

2
−G(u) � 0.

Let (un)n ⊂M be a minimizing sequence for F . Since G(u) =G(max(0,min(1, u))), it
is clear that arguing as in the proof of Theorem 2.1, we may assume 0 � un � 1. Because
of (3.16), the first integral in (3.17) is the square of an equivalent norm in Hc. Hence (un)n
is bounded and, passing to a subsequence we may assume that there exists u ∈Hc so that
un ⇀ u in Hc and un→ u uniformly in compact intervals. In particular u ∈M and, by the
lower semicontinuity of the norm and Fatou’s lemma, we infer from (3.17) that

F(u) � lim inf
n→∞ F(un).

Hence u is a minimizer of F in M . Since 0 � u � 1, u(t) is a solution of (3.14) with
u(0)= 1. Writing (3.14) as

(
ectu′

)′ + ect g(u)= 0 (3.18)

we see that ectu′ is decreasing, hence for all t � 0 we have u′(t) � 0. �

THEOREM 3.6. Assume (B3), (B5) and (B6) hold. Then (3.14) has a heteroclinic con-
necting 1 and 0.

PROOF. Let U be the solution found in the preceding proposition. If U ′(0)= 0, then ex-
tending U with value 1 on ]−∞,0] we obtain a heteroclinic solution. Otherwise, we have
U ′(t) < 0, 0 < U(t) � 1 for all t � 0 and we may define ϕ(u) = U ′(t (u)) for 0 � u � 1
as in (3.6). We thus obtain a solution ψ(u)= ϕ(u)2 of (3.7) (with p ≡ 1, h≡ c), such that
ψ(0)= 0 and ψ(u) > 0 if 0 < u � 1. It now follows from Proposition 3.2 that (3.7) has a
solution of type A and Proposition 3.1 allows to conclude. �

We then have the straightforward corollary:

COROLLARY 3.7. For a given function g of type A satisfying (B5), the threshold speed of
Eq. (3.14) satisfies

c∗ � 2 sup
0<u<1

√
2G(u)

u2
.

To end this section we illustrate the use of variational and comparison arguments to
obtain a heteroclinic for a nonautonomous equation (see also [50] for further results relative
to the non-autonomous case). We consider

u′′ + p(t)u′ + g(u)= 0, (3.19)

where p is a continuous function in R such that
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(B7) there exist 0 < c < d <+∞ such that for any t ∈R, c � p(t) � d .
As above, we make use of a weighted space of functions:

Xτ =
{
u ∈H 1

loc(τ,+∞)

∣∣∣
∫ +∞

τ

eP(t)u′(t)2 dt <+∞ and u(+∞)= 0

}
,

where τ is taken negative and P(t) = ∫ t

0 p(s)ds. Arguing as in the proof of Proposition
3.4 and assuming p satisfy (B7), we derive the inequality

c2

4

∫ +∞

τ

eP(t)u(t)2 dt �
∫ +∞

τ

eP(t)u′(t)2 dt, (3.20)

which is valid for any u ∈Xτ . On the other hand, it is easily seen that for any u ∈Xτ we
have the estimate

‖u‖L∞(0,+∞) � C

(∫ +∞

0
eP(t)u′(t)2 dt

)1/2

(3.21)

for some positive constant C.

THEOREM 3.8. Assume (B3) holds, p ∈ C(R) satisfies (B7), g is Lipschitz in [0,1] and
there exists k < c2/4 such that

g(u) � ku, for u ∈ [0,1]. (3.22)

Then, given a ∈ ]0,1[, (3.19) has a strictly decreasing heteroclinic connecting 1 and 0 and
satisfying u(0)= a.

PROOF. We outline the proof in four steps.
Step 1. We claim that the linear equation

ϕ′′ + p(t)ϕ′ + kϕ = 0 (3.23)

has a solution ϕτ such that ϕτ (τ )= 1, 0 < ϕτ < 1 in ]τ,+∞[ and ϕτ ∈Xτ .
Indeed, it suffices to take ϕτ as the minimizer of the quadratic functional

Fτ (u)=
∫ +∞

τ

eP(t)

(
u′2

2
− k

u2

2

)
dt

in the convex set {u ∈Xτ : u(τ)= 1}. It is easy to see, on the basis of (3.20) which remains
valid with τ substituted by any ξ � τ , that in fact ϕτ > 0. Observe also that, multiplying
the self-adjoint form of (3.23) by ϕτ and integrating by parts, we infer that eP(t)ϕ′(t)ϕ(t)
has limit as t →+∞. It then follows from (3.20) and the fact that ϕτ > 0 that this limit
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is negative. This in turn implies that ϕ′τ (τ ) < 0 and ϕτ < 1 in ]τ,+∞[. Hence this step is
completed.

Step 2. We claim limτ→−∞ ϕτ (0)= 0.
Given β > 0, we first evaluate Fτ on the test function u(t)= e−(β/2)P (t−τ) and obtain

Fτ (ϕτ )= inf
Xτ

Fτ � β2d2

8

∫ +∞

0
eP(τ+t)−βP (t) dt. (3.24)

From the inequality (3.20), we come out with the estimate

Fτ (ϕτ ) � 1

2

(
1− 4k

c2

)∫ +∞

τ

eP(t)ϕ′τ (t)2 dt. (3.25)

It then follows from the inequalities (3.24), (3.25) and k < c2/4 that

∫ +∞

0
eP(t)ϕ′τ (t)2 dt � C

∫ +∞

0
eP(τ+t)−βP (t) dt

for some C � 0 and consequently we deduce from Step 1 and (3.21) that there exists a
number L � 0 such that for all τ < 0,

0 < ϕτ (0) � L

(∫ +∞

0
eP(τ+t)−βP (t) dt

)1/2

.

If we take β > d/c, we may apply the dominated convergence theorem to the integral in
the right-hand side and conclude that

lim
τ→−∞ϕτ (0)= 0.

Step 3. Let τ < 0 be such that ϕτ (0) < a. From (3.22) it follows that ϕτ is an upper
solution of (3.19) with respect to the two-point boundary conditions u(τ) = 1, u(0) = 0.
Since 0 is a lower solution, we obtain a solution v of (3.19) in [τ,0] such that v(τ) = 1,
v(0)= 0, 0 � v � ϕτ . This in turn is a lower solution in [τ,0] with respect to the boundary
conditions u(τ)= 1, u(0)= a. Since 1 is an upper solution, there is a solution uτ of (3.19)
such that

uτ (τ )= 1, uτ (0)= a, v � uτ � 1 in [τ,0].

We claim that the solution uτ satisfies for all t � 0,

uτ (t) � ϕτ (t) > 0.

Otherwise, since uτ (τ ) = ϕ(τ) and uτ (0) > ϕτ (0), there exist t0, t1 such that τ � t0 <

0, t0 < t1 � +∞, uτ (ti) = ϕτ (ti) for i = 0,1, uτ > ϕτ in ]t0, t1[. Multiplying the self-
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adjoint forms of (3.19) and (3.23) respectively by ϕτ and uτ , and integrating by parts, we
obtain

[
eP(t)

(
u′τ (t)ϕτ (t)− uτ (t)ϕ

′
τ (t)

)]t1
t0
+

∫ t1

t0

eP(t)
(
g(uτ )ϕτ − kuτϕτ

)
dt = 0.

(3.26)

On the other hand, since g satisfies a Lipschitz condition in [0,1], we must have
u′τ (t0) > ϕ′τ (t0) and u′τ (t1) � ϕ′τ (t1). But then using (3.22), we conclude that the left-hand
side of (3.26) is strictly negative, yielding a contradiction.

Step 4. From the last two steps it follows that we may define a sequence τn→−∞ and
a corresponding sequence un = uτn of solutions of (3.19) such that

un(τn)= 1, un(0)= a and 0 < un < 1 in ]τn,+∞[.
A diagonal argument, based on simple estimates on the sequence (un)n, shows that some
subsequence converges to a solution u of (3.19) in ]−∞,+∞[ such that u(0) = a and
0 < u < 1. It is easy to see that u′ < 0, u(−∞) = 1, u(+∞) = 0 and indeed u is the
desired heteroclinic solution. �

3.3. Heteroclinics in a combustion model

In this section we consider the differential equation

u′′ + cu′ + f (u)= 0, (3.27)

where f ∈ C([0,1],R) has the following behaviour:
(B8) f (0)= f (1)= 0;
(B9) there exists a ∈ ]0,1[ such that f (u) < 0 if u ∈ ]0, a[;

(B10)
∫ 1

0 f (t)dt > 0.
Equation (3.27) with this type of nonlinearity arises as the front wave equation for some

combustion models. We refer the reader to [12,33,52] for a study in depth of related prob-
lems. Here we confine ourselves to look for solutions of (3.27) which are monotone hete-
roclinics connecting the equilibria 1 and 0.

Note that by virtue of assumptions (B9) and (B10), Eq. (3.27) has at least one more
equilibrium between 0 and 1. The behavior of solutions of (3.27) is quite different from
those of (3.14). The main result describing the existence of heteroclinics in terms of the
parameter c is the following.

THEOREM 3.9. Assume (B8)–(B10) hold and suppose in addition that f (u) > 0 for ξ <

u < 1, where ξ is the smallest number in ]0,1[ with the property that
∫ ξ

0 f (t)dt = 0. Then
there exists a unique c∗ > 0 such that (3.27) has a heteroclinic solution u(t), connecting 1
and 0, with the property that u′(t) < 0 for all t ∈ R. Moreover, this heteroclinic is unique
up to translation.
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PROOF. In order to prove this theorem we proceed as in Section 3.1, obtaining the desired
heteroclinic by means of a solution to the first-order problem (3.9) where ψ(u) is a positive
solution of

ψ ′(u)= 2c
√
ψ(u)− 2f (u) (3.28)

in [0,1], ψ(0)= 0=ψ(1) and p ≡ 1. Let us therefore study the Cauchy problem

ψ ′ = 2c
√
ψ+ − 2f (u),

ψ(0)= 0,
(3.29)

where ψ+(u)=max(ψ(u),0).
Step 1. Given c � 0, (3.29) has a unique solution in [0,1].
If c= 0 the solution is ψ0(u)=−2F(u) := −2

∫ u

0 f (t)dt . Now assume c > 0. It is clear
that any solution ψ of (3.29) satisfies ψ(u) > ψ0(u) if 0 < u � 1. In particular we have
ψ(u) > 0 in ]0, a[. Write ψ = θ − 2F(u), so that in a right neighborhood of zero θ is a
solution of

θ ′ = 2c
√
θ − 2F(u),

θ(0)= 0.
(3.30)

If ψ1,ψ2 are distinct positive solutions of (3.29), then they are ordered in a neighborhood
of 0 that is ψ1(u) < ψ2(u) and so are the corresponding solutions of (3.30): θ1(u) < θ2(u).
Since these are strictly increasing near zero we obtain, for their inverse functions ui(θ)

(i = 1,2) in some interval 0 < θ � b,

dui
dθ
= 1

2c
√
θ − 2F(ui)

and ui(0) = 0. However, since −2F is strictly increasing in a neighborhood of zero, we
may assume that −2F(u2) <−2F(u1) and therefore u2 − u1 is increasing in [0, b]. This
contradicts u1(0)= 0= u2(0). Hence the solution ψ of (3.29) is unique at least as long as
it is strictly positive. Assume that ψ(τ) = 0 for some 0 < τ < 1. We clearly have τ > ξ

and, in view of our assumptions, ψ ′(τ ) < 0. But then (3.29) implies ψ(u)=−2
∫ u

τ
f (t)dt

for τ � u � 1.
Step 2. There exists c > 0 such that the solution ψc(u) of (3.29) satisfies ψc(1) > 0.
It suffices to note that, if we set

M = sup
0<u<1

f (u)

u

and choose c > 1+M , then u2 is a lower solution of (3.29).
Step 3. Uniqueness and the fact that solutions of (3.29) are uniformly bounded when

c runs over bounded sets, imply that the solution ψc(u) of (3.29) depends continuously
on c. By assumption (B10), we infer that ψ0(1) < 0. By Step 2 we conclude that there
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exists c∗ > 0 such that ψc∗(1) = 0. Moreover, by uniqueness and a standard comparison
theorem, ψc(1) is strictly increasing as a function of c, so that c∗ is unique.

To complete the proof, if suffices to observe that a solution of (3.29) with ψ(1)= 0 satis-
fies ψ(u) > 0 if 0 < u< 1 and is therefore a solution of (3.28). But this is a straightforward
consequence of the argument used at the end of Step 1. �

3.4. Notes and further comments

1. Elementary approaches to the existence of the travelling front solutions, for an equa-
tion or a system with two equilibria, can be found in [2,77,78] (in [78] a class of non-
autonomous systems is considered). Front waves and their minimal speed are studied in
[32] for two-dimensional systems with four equilibria.

2. Comparison techniques are used in [44] to give analytic approximation of the front
solutions.

3. We might have enlarged the scope of the results described here by considering the
presence of singularities, namely p(0) = 0 in (3.1). Such singularities are important in
applications. In [51] Malaguti and Marcelli study the problem

(
p(u)u′

)′ + cu′ + g(u)= 0, (3.31)

where g is of type A and p is a C1 function with p(0) = 0 and p′(0) > 0. In addition to
decreasing heteroclinics between 1 and 0 there appear sharp type solutions, by which one
understands decreasing solutions u(t) of (3.31) in ]−∞,0] such that u(−∞)= 1, u(0)= 0
and u′(0) = −c/p′(0). It turns out that a threshold speed c∗ exists such that (3.31) has a
decreasing heteroclinic from 1 to 0 if c > c∗, a sharp type solution if c= c∗ and no solution
of either type if c < c∗.

4. Hamel and Nadirashvili [39] use front wave solutions of

∂u

∂t
= ∂2u

∂x2
+ g(u),

with g concave of type A, to construct an infinite dimensional manifold of entire solutions.

5. A wealth of results concerning wavefronts and their admissible speeds can be found in
the recent monograph by Gilding and Kersner [35].
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Part 2. Fourth Order Equations

4. The Extended Fisher–Kolmogorov equation: An overview

The class of fourth order differential equations considered in this survey is related to semi-
linear evolution equations of the form

∂u

∂t
+ ∂4u

∂x4
− β

∂2u

∂x2
+ u3 − u= 0, (4.1)

where β is a real parameter. This equation serves as a model in studies of pattern forma-
tion in many physical, chemical or biological systems. It also arises in the study of phase
transitions.

When β > 0, it is related to the so-called Extended Fisher–Kolmogorov equation which
was proposed in 1988 by Dee and van Saarloos [30] as a higher-order model equation
for bistable systems. The term bistable indicates that the states u = ±1 are stable for the
homogenized equation −u′ = u3 − u. When suitably scaled, solutions of (4.1) solve the
equation

∂v

∂t
+ γ

∂4v

∂x4
− ∂2v

∂x2
+ v3 − v = 0, (4.2)

where the positive parameter γ is related to β by the formula β = 1/
√
γ and v(x, t) =

u(
√
βx, t). When γ = 0 in (4.2), the equation is a second order evolution equation (of

Fisher type) which enters into the framework of Section 3. It is often referred to as the
Fisher–Kolmogorov equation.

In this section, we summarize recent results concerning the existence of heteroclinic
solutions for the stationary Extended Fisher–Kolmogorov equation

u′′′′ − βu′′ + u3 − u= 0. (4.3)

Heteroclinic solutions of (4.3) connecting −1 to +1 in the phase-space satisfy the follow-
ing conditions

lim
x→±∞

(
u,u′, u′′, u′′′

)
(x)= (±1,0,0,0). (4.4)

Of course, we can also consider connections from +1 to −1 by reversing the role of ±∞
in the above condition.

The parameter β plays a central role in the analysis of the behaviour of solutions of
(4.3). Indeed, the nature of the equilibria ±1 changes at two critical values β =±√8. The
linearization of (4.3) at u=±1 reads

v′′′′ − βv′′ + 2v = 0, (4.5)
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where v stands respectively for u− 1 and u+ 1. The eigenvalues of the associated charac-
teristic equation

λ4 − βλ2 + 2= 0

are

λ=±
√

β ±√
β2 − 8

2
. (4.6)

When β �
√

8, the four eigenvalues are real so that u = ±1 are saddle-nodes. For β ∈
(−√8,

√
8), they are all complex with non vanishing real part. The equilibria are then

called saddle-foci. When β passes below −√8, the eigenvalues become purely imaginary
and therefore u=±1 are centers.

The behaviour of the solutions of the linearization of (4.3) around the equilibria pro-
vides important informations for the solutions of the nonlinear equation. Indeed, when
no eigenvalue has a vanishing real part, it is well known that under some smoothness as-
sumptions, the nonlinear flow and the flow defined by the linearization are conjugate in a
neighborhood of the equilibria, see [41]. Consequently, when β � −√8, the solutions of
(4.3) inherit some properties of the small solutions of (4.5) when they are close to u=±1
(with small derivatives up to third order). For example, we easily obtain a qualitative de-
scription of the shape of any heteroclinic at ±∞. Indeed, when ±1 are saddle-nodes, the
solutions of (4.5) that have limit 0 at +∞ or −∞ are monotone while in the saddle-foci
case, they oscillate around zero.

We focus on the model equation (4.3) to present different approaches which have been
considered in the literature. We assume throughout this section that β is positive. We first
look at the shooting method developed by Peletier and Troy. Their results are given without
proof as the arguments are not used further in this monograph. We just mention some
central ideas showing again the important role of the parameter β .

As previously mentioned, Eq. (4.3) can be written

1

β2
u′′′′ − u′′ + u3 − u= 0 (4.7)

after a suitable rescaling of u. For large β , Eq. (4.7) is a fourth-order perturbation of the
Fisher–Kolmogorov equation

−u′′ + u3 − u= 0

which can be analyzed using elementary methods. It is easily seen that u±(x) =
± tanh( x+a√

2
), a ∈ R, are the only heteroclinics of the Fisher–Kolmogorov equation and

these are monotone. We therefore expect that for large β the heteroclinic solutions of (4.3)
are monotone. It turns out that a topological shooting method adapted to track monotone
heteroclinics works fine for instance for β �

√
8. For this range of β , it is also remark-

able that the uniqueness (up to translations and symmetry) of the heteroclinic solution of
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the Fisher–Kolmogorov equation extends to the fourth-order equation, see Note 1 below
and [89].

For |β| <√8, the oscillatory behaviour of the solutions of (4.3) close to the equilibria
makes the shooting method much more tricky. However, two families of heteroclinics can
be singled out thanks to a careful analysis.

The remaining of the section is concerned with variational methods and more partic-
ularly with minimization. We expose in Section 4.2 a global minimization process. Here
we develop the arguments in detail as they will be confronted with a more general frame-
work in Section 5. We conclude our overview of the model equation (4.3) with the nice
local minimization method developed by Kalies, Kwapisz and VanderVorst. Their method
handles perfectly oscillatory graphs and is therefore efficient when 0 < β <

√
8. In Sec-

tion 4.3, we define an homotopy type which allows to consider convenient subsets for local
minimization and describe the multi-transition profiles of the local minimizers. We do not
present the results in detail but we emphasize that parts of the arguments are developed and
used later on in Sections 6 and 7.

4.1. A shooting method

One of the basic tools that can be used to analyze the solutions of (4.3) is a topological
shooting method developed by Peletier and Troy in [59–62], see also [63]. The main idea
of a classical shooting method is to look the way solutions change with respect to initial
conditions (taken as parameters) at some fixed initial point. The success of the method
for second order ordinary differential equation comes from the number of parameters that
is usually reduced to one. Here we reduce the number of parameters by restricting our
attention to odd solutions. The reversibility of (4.3) and the oddness of the nonlinear term
u3 − u allows indeed to look at the problem

⎧⎪⎪⎨
⎪⎪⎩
u′′′′(x)− βu′′(x)+ u3(x)− u(x)= 0, x � 0,

u(0)= u′′(0)= 0,

lim
x→+∞

(
u,u′, u′′, u′′′

)
(x)= (+1,0,0,0).

(4.8)

If u solves (4.8), then the odd extension of u,

u∗(x)=
{
u(x) for x � 0,
−u(−x) for x < 0,

is an odd heteroclinic solution of (4.3) connecting −1 to +1. To find a solution of (4.8),
we consider the Cauchy problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′′′′(x)− βu′′(x)+ u3(x)− u(x)= 0, x � 0,

u(0)= u′′(0)= 0,

u′(0)= μ,

u′′′(0)= ν,

(S)
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where μ ∈R
+ and ν ∈R. According to classical theory of ordinary differential equations,

this Cauchy problem defines a unique local solution u(μ, ν, · ) for every μ, ν ∈ R. The
shooting method then consists in finding the right initial conditions μ, ν ∈ R such that
u(μ, ν, · ) is globally defined and solves (4.8). A priori, we thus have to handle a two
dimensional topological shooting. However, we can take benefit of a first integral to link
the parameters μ and ν. In fact it is easily checked that the Hamiltonian

H
(
u, u′, u′′, u′′′

)= u′′′u′ − 1

2
u′′2 − β

2
u′2 + (u2 − 1)2

4
(4.9)

is constant along solutions, i.e. for every solution u of (4.3), there exists a constant E such
that for all x ∈ R, H(u(x), u′(x), u′′(x), u′′′(x)) = E. This first integral is referred to as
the energy of the solution (by analogy with second order equations). Observe that any
solution of (4.8) belongs to the level of energy E = 0. Indeed, this follows from the limit
value

lim
x→+∞H

(
u(x), u′(x), u′′(x), u′′′(x)

)= 0.

We then infer that any solution of (4.8) satisfies

u′′′(0)= β

2
u′(0)− 1

4u′(0)

taking also into account that u′(0) �= 0 for such a solution. We therefore impose the condi-
tions μ> 0 and

ν = ν(μ) := β

2
μ− 1

4μ

in the Cauchy problem (S). Summing up, the shooting method amounts to finding μ ∈R
+

such that u(x) := u(μ,ν(μ), x) satisfies

lim
x→+∞

(
u(x),u′(x), u′′(x), u′′′(x)

)= (+1,0,0,0).

For β �
√

8, the method is efficient to obtain a monotone heteroclinic.

THEOREM 4.1. Let β ∈ [√8,+∞[. Then there exists a monotone solution of (4.8). More-
over, its odd extension is a heteroclinic solution of (4.3) connecting −1 to +1.

The proof goes as follows. For μ> 0, we define

ξ(μ) := sup
{
x > 0

∣∣ u′(μ,ν(μ), · )> 0 on (0, x)
}

and

μ∗ := sup
{
μ̂ | u(μ,ν(μ), ξ(μ))< 1 for μ ∈ ]0, μ̂[}.
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It turns out that ξ(μ∗)=+∞ and the orbit of u(μ∗, ν(μ∗), · ) tends to (+1,0,0,0) in the
phase-space. We refer to [59,63] for a complete proof.

We think it is worth pointing the role of the assumption β �
√

8 in the preceding the-
orem. As we already mentioned, the roots of the characteristic equation associated to the
linearization of (4.3) around the equilibria are real if β �

√
8. The squares of these roots

are

τ± = β ±√
β2 − 8

2
.

Now observe that the linear operator D4−βD2+2I can be factorized as (D2−τ+I )(D2−
τ−I ). Letting v = 1− u, Eq. (4.3) written in terms of v yields

v′′′′ − βv′′ + 2v = v2(3− v). (4.10)

Therefore, as long as β �
√

8, the solutions (v,w) of the second order system

{
v′′ − τ+v =w,

w′′ − τ−w = v2(3− v),
(4.11)

lead to solutions v of (4.10). This formulation of (4.3) as a system turns out to be very
powerful to obtain estimates on v (and therefore on u) that allow to conclude that ξ(μ∗)=
+∞. These estimates rely on a repeated application of the Strong Maximum Principle (see
[65]) which can be used once we know the sign of the right hand sides in each equation of
the system. The Strong Maximum Principle is also the main tool to prove the uniqueness
of the heteroclinic of Theorem 4.1, see Note 1.

When 0 < β <
√

8, the preceding argument involving the Maximum Principle is no
more at hand. Anyway, Theorem 4.1 cannot hold in this parameter range. Indeed, as
stressed in the introduction of this section, the linearization around the equilibria display
oscillatory solutions so that any solution of (4.8) oscillates around +1 in its tail, i.e. when
x →+∞. Therefore, the shooting method must now analyze carefully the location and
value of the successive local extrema of u(μ, ν(μ), · ). One of the greatest difficulties when
dealing with oscillatory solution graphs is to prove the convergence at infinity. The follow-
ing result is the key to overcome this problem.

PROPOSITION 4.2. Let β � 0 and assume u is a solution of (4.3) such that H(u,u′, u′′,
u′′′)= 0. Suppose that for some a ∈R and M > 1,

1√
3

� u(x) � M for x > a.

Then

lim
x→+∞

(
u,u′, u′′, u′′′

)
(x)= (1,0,0,0).
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Basically, the proposition states that the equilibrium attracts all the solutions that stay in a
strip around it. The lower bound of the strip has the particularity that the nonlinear term
u3 − u is monotone increasing for all u � 1√

3
. This makes the functional

G(u) := 1

2
u′′2 + 1

4

(
u2 − 1

)2

convex in the strip. This property is extensively used to prove Proposition 4.2, see [60,63].
Using sharp estimates on the critical points of u(μ, ν(μ), · ) for which we refer to [60,

63], the following can be proved. We denote respectively by ξk and ηk the local maxima
and the local minima of the solutions of (4.8).

THEOREM 4.3. Let β satisfy 0 < β <
√

8. There exist two solutions u1, u2 of (4.8) that
have the following properties:

1√
3
< u1(ηk) < 1 < u1(ξk) <

√
2 for k = 1,2, . . . ,

−1 < u2(η1) < 0, 1 < u2(ξ1) <
√

2 and

1√
3
< u2(ηk) < 1 < u2(ξk) <

√
2 for k = 2,3, . . . .

The odd extensions of u1, u2 are heteroclinic solutions of (4.3).

The solution u1 is usually called the principal heteroclinic as it is monotone increas-
ing in some interval [−T ,T ] and it oscillates around −1 in (−∞,−T ) and around +1 in
(T ,+∞). Also this heteroclinic is the first of two families of odd heteroclinic solutions
which have 2n + 1 zeros on R. The two families differ by the amplitude of the oscilla-
tions. The first family consists of so-called multi-transition solutions as all the successive
local extrema between the zeros are outside the region [−1,1]. Thus the profiles of these
solutions display 2n + 1 jumps from −1 to +1 and two oscillatory tails around −1 and
+1. In the second family, the amplitude of the oscillations is smaller than 1 so that the
corresponding solutions are single-transition heteroclinics.

THEOREM 4.4. Let β satisfy 0 < β <
√

8. For each n ∈ N0, there exist two solutions
u1, u2 of (4.8) that have the following properties:

if n is even,

{ for k � n/2, u1(ηk) <−1, u1(ξk) > 1,
−1 < u2(ηk) < 0 < u2(ξk) < 1,

for k > n/2, 1/
√

3 < ui(ηk), 1 < ui(ξk), i = 1,2,

if n is odd,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

for k � (n− 1)/2, u1(ηk) <−1, u1(ξk) > 1,
−1 < u2(ηk) < 0 < u2(ξk) < 1,

for k = (n+ 1)/2, u1(ηk) <−1, u1(ξk) > 1,
−1 < u2(ηk) < 0, u2(ξk) > 1,

for k > (n+ 1)/2 1/
√

3 < ui(ηk), ui(ξk) > 1, i = 1,2.
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Moreover, for all n � 1, ‖ui‖∞ <
√

2 and u′i (0) �= 0 for i = 1,2.

We refer to [60,63] for the proof.

4.2. Minimization

Heteroclinic solutions of (4.3) are critical points of the action functional

Fβ(u)=
∫

R

(
1

2

(
u′′2 + βu′2

)+ 1

4

(
u2 − 1

)2
)

dx. (4.12)

This functional is well defined for functions u having first and second square integrable
derivatives and being such that the potential is integrable. Taking into account conditions
(4.4) which are satisfied by heteroclinics connecting −1 to +1, we can define Fβ in the
space

{
u : R→R | u+ 1 ∈H 2(

R
−), u− 1 ∈H 2(

R
+)}.

Indeed, if u + 1 ∈ H 1(R−), then limx→−∞ u(x) = −1 see for example [22] and u is
bounded in every compact interval [−T ,0]. A similar observation can be made on R

+
so that we infer

∫
R

1

4

(
u2 − 1

)2 dx =
∫

R−
1

4

(
u2 − 1

)2 dx +
∫

R+
1

4

(
u2 − 1

)2 dx

� C

4

(‖u+ 1‖2
L2(R−) + ‖u− 1‖2

L2(R+)
)

for some positive constant C = C(‖u‖L∞(R)) and therefore Fβ(u) is finite.
For β � 0, Fβ is positive and hence bounded from below. The a priori simplest way

to find critical points of Fβ is therefore to search for minimizers. The next theorem con-
firms the efficiency of a minimization approach. To avoid a loss of compactness due to the
invariance under translations, we look for a minimizer in the space

E := {
u : R→R | u(0)= 0, u+ 1 ∈H 2(

R
−), u− 1 ∈H 2(

R
+)}. (4.13)

Of course, this is not restrictive.

THEOREM 4.5. For all β � 0, the functional Fβ has a global minimizer ϕβ ∈ E which is a
heteroclinic solution of (4.3). Furthermore, any minimizer is odd and positive in ]0,+∞[.

This theorem is the analogous of Theorem 2.1. Remember that for the functional J of
Theorem 2.1, minimizing sequences (un)n can be taken in such a way that −1 � un � 1.
Indeed, vn = sup(−1, inf(un,1)) is still a minimizing sequence. Using similar modification
arguments it is easily seen that the minimizers of J are monotone.
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One of the first differences that we encounter when considering the functional Fβ in
E , comes from the fact that these modifications which keep functions in H 1

loc(R) do not
necessarily produce functions of class C1 and therefore, in general, the modified functions
do not belong to H 2

loc(R). By the way, as already mentioned, it is not true in general that
minimizers of Fβ in E are monotone. When dealing with J , modification arguments are
also used to ensure that quasi-minimizers stay close to ±1 outside a fixed compact interval
which can always be centered around zero by translation invariance.

To substitute these rather simple arguments, we take benefit of the symmetry of the
functional Fβ . The original proof of Theorem 4.5 is due to Peletier, Troy and VanderVorst
[58]. We give here a proof which is closer to Kalies and VanderVorst [43].

PROOF OF THEOREM 4.5. We introduce the spaces

E+ := {
u : R+ →R | u(0)= 0, u− 1 ∈H 2(

R
+)},

E− := {
u : R− →R | u(0)= 0, u+ 1 ∈H 2(

R
−)}

and define the restricted functional F±β :E± →R by

F±β (u) :=
∫

R±
L
(
u,u′, u′′

)
dx,

where L(u,u′, u′′) is the Lagrangian defined by

L
(
u,u′, u′′

) := 1

2

(
u′′2 + βu′2

)+ 1

4

(
u2 − 1

)2
. (4.14)

Let us consider the values

c := inf
E
Fβ and c± := inf

E±
F±β .

Since Fβ is symmetric, it is easily seen that for all u+ ∈ E+, F+β (u+) = F−β (u−) where
u− ∈ E− is defined by u−(x)=−u+(−x). Therefore, c+ = c− = c/2.

Step 1. The variational problem

inf
{
F+β (u)

∣∣ u ∈ E+
}

has a positive solution.
Let (vn)n ⊂ E+ be a minimizing sequence, i.e. F+β (vn)→ c+. For each n � 0, we define

xn := sup
{
x � 0

∣∣ vn(x)= 0
}
.

Since limx→+∞ vn(x)= 1, xn <+∞ for all n � 0. We now consider the positive sequence
(v+n )n ∈ E+ where

v+n (x) := vn(x + xn)
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for x � 0. We observe that
∫ xn

0
L
(
vn, v

′
n, v

′′
n

)
dx � 0

so that F+β (v+n ) � F+β (vn) which implies that (v+n )n is also a minimizing sequence for

F+β .

As the sequence F+β (v+n ) is uniformly bounded, we deduce a uniform estimate for

‖v+n − 1‖H 2(R+). Indeed, the L2-bounds for (v+n )′ and (v+n )′′ follow easily from the bound
on F+β (v+n ) while we infer from the positivity of v+n that

∫ +∞

0

(v+n − 1)2

4
dx �

∫ +∞

0

(v+n 2 − 1)2

4
dx �F+β

(
v+n

)
.

We now deduce that going to a subsequence if necessary, there exists v+ ∈ H 2(R+)+ 1
such that

v+n − 1
H 2(R+)
⇀ v+ − 1

and

v+n
C1

loc(R
+)−→ v+.

As the two first terms in F+β are the square of seminorms and Fatou’s Lemma is applicable
to the last one, it follows that

F+β
(
v+

)
� lim inf

n→+∞F+β
(
v+n

)= c+.

As the convergence is uniform on compact intervals, we conclude that v+(0) = 0 so that
v+ ∈ E+ and F+β (v+)= c+. Observe that v+ is positive on ]0,+∞[ otherwise we could
proceed as above to construct a positive function having smaller action.

Step 2. If v ∈ E+ is such that (F+β )′(v)= 0, then v′′(0)= 0, v∗ ∈ E defined by

v∗(x) :=
{
v(x) if x � 0,
−v(−x) if x < 0,

is a minimizer of Fβ in E and v∗ is a heteroclinic solution of (4.3).
We first compute

(
F+β

)′
(v)(h)=

∫ +∞

0

(
v′′h′′ + βv′h′ + (

v3 − v
)
h
)

dx (4.15)

for all h ∈ H 2(R+) ∩ H 1
0 (R

+). Starting with h ∈ C2
c (R

+) and using Du Bois–Reymond
Lemma, we easily find that in fact v ∈ C4(R+) and v solves (4.3) for x � 0. As Eq. (4.3)
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expresses v′′′′ in terms of v′′ and v−1, we deduce that v′′′′ ∈ L2(R+). Indeed, v′′ ∈ L2(R+)
and

∫ +∞

0

(
v3(x)− v(x)

)2 dx �
(‖v‖2∞ + ‖v‖∞

)‖v− 1‖2
L2 <∞.

It now follows by interpolation that

∥∥v′′′∥∥2
L2 � C

(∥∥v′′∥∥
L2 +

∥∥v′′′′∥∥
L2

)
<∞.

Hence v − 1 ∈ H 4(R+). Observe also that the L2-integrability of the derivatives implies
that

lim
x→+∞v(x)=+1 and lim

x→+∞v(n)(x)= 0 for n= 1,2,3. (4.16)

Integrating (4.15) by parts, we obtain for all h ∈H 2(R+)∩H 1
0 (R

+),

[
v′′h′

]+∞
0 − [

v′′′h
]+∞

0 − β
[
v′h

]+∞
0 = 0

as

∫ +∞

0

(
v′′′′ − βv′′ + v3 − v

)
(x)h(x)dx = 0.

Taking (4.16) into account, we now deduce that

v′′(0)h′(0)= 0

for all h ∈ H 2(R+) ∩ H 1
0 (R

+) which of course implies that v′′(0) = 0. The function
v∗ : R→R defined by

v∗(x)=
{
v(x) if x � 0,
−v(−x) if x < 0,

is therefore of class C4 and straightforward arguments allow to conclude that v∗ is a critical
point of Fβ which is a heteroclinic solution of (4.3), actually of class C∞. Also, Fβ(v

∗)=
2F+β (v)= 2c+ = c so that v∗ is a minimizer of Fβ in E .

Step 3. If u ∈ E minimizes Fβ , then u is odd.
Let us write u± = u|R± . As Fβ(u) = c, we have F+β (u+) = F−β (u−) = c/2 other-

wise the odd extension of u+ or u− would have a lower action than c. From Step 2,
we know that u(0) = u′′(0) = 0. Hence v+(x) := −u−(−x) satisfies F+β (v+) = c+

and v+(0) = (v+)′′(0) = 0. Thus both u+ and v+ are minimizers of F+β in E+. As
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(v+)′(0)= (u−)′(0)= (u+)′(0) and (v+)′′′(0)= (u−)′′′(0)= (u+)′′′(0), the functions v+
and u+ solve the same Cauchy problem

u′′′′(x)− βu′′(x)+ u3(x)− u(x)= 0, x � 0,

u(0)= 0, u′(0)= (
u+

)′
(0),

u′′(0)= 0, u′′′(0)= (
u+

)′′′
(0).

By uniqueness, this implies u+(x)= v+(x) for all x ∈R
+, i.e. u+(x)=−u−(−x) for all

x ∈R
+. �

4.3. Homotopy classes of multi-transition solutions

When β <
√

8, the equilibrium solution±1 of (4.3) are saddle-foci. It is known that hetero-
clinic connections between such kind of equilibria can exhibit a complex structure, see [23,
31,60]. In [43], Kalies and VanderVorst construct for (4.3) so-called multi-bump solutions
i.e solutions with multiple oscillations separated by large distances. The usual methods
used to obtain such solutions are rather tricky and require a careful study of the stable
and unstable manifolds or a certain kind of nondegeneracy condition on a primary connec-
tion whose well separated copies are then glued together, see [23,28,79]. In [42], Kalies,
Kwapisz and VanderVorst introduce a direct method to find multi-transition solutions. As
we already mentioned, the term multi-transition refers to the fact that the graph of such
solutions consists of multiple jumps from one equilibrium to the other. One jump is then
called a transition. Also such solutions are qualitatively different from multi-bump solu-
tions as the distance between two successive transition is not necessarily large. The method
of Kalies et al. consists in minimizing the action functional (4.12) in specific subspaces of
functions having the desired number of transitions.

When projected in the configuration plane (u,u′), a heteroclinic orbit yields a curve
connecting the points (±1,0). Choosing two oriented loops e1 and e2 around respectively
(−1,0) and (+1,0) (see Fig. 2), an homotopy type can be associated to any curve connect-
ing (±1,0) (see the precise definition below). This homotopy type records the number of
transitions between these points and the oscillations around them between the transitions.
Hence, every orbit connecting (−1,0) to (+1,0) can be represented by a word of the form

e
θ2m
1 · eθ2m−1

2 · · · · · eθ2
1 · eθ1

2 ,

Fig. 2. An orbit with homotopy type e1e2e
2
1e2.
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where θ(u)= (θ1, . . . , θ2m) ∈N
2m. The vector θ(u) is called the winding vector associated

to u. Observe that the word starts with the first visit at (+1,0) and stops recording after
the last visit around (−1,0). Also the vector g(u) = 2θ(u) contains exactly the number
of crossings that u makes with ±1 between the transitions. The vector g = 0 is therefore
associated to functions with a single transition. For each vector g ∈ 2N

2m ∪ {0}, the homo-
topy class M(g) consisting of functions of E having winding vector g/2. The following
more precise definition is introduced in [42].

DEFINITION 4.6. A function u ∈ E is in M(g) if there are nonempty sets {Ai}2m+1
i=0 such

that
(i) u−1(±1)=⋃2m+1

i=0 Ai ,
(ii) #Ai = gi for i = 1, . . . ,2m,
(iii) maxAi < minAi+1 for i = 0, . . . ,2m,
(iv) u(Ai)= (−1)i+1,
(v) {maxA0} ∪ (

⋃2m
i=1 Ai)∪ {minA2m+1} consists of transverse crossings of ±1.

Under these conditions M(g) is an open subset of E . As the functional Fβ is positive,
we can define

inf
u∈M(g)

Fβ(u). (4.17)

If the infimum is achieved by a function in the interior of M(g), then a local minimizer of
Fβ with the corresponding properties solves the Euler–Lagrange equation (4.3). The next
theorem is a particular case of Theorem 1.3 in [42].

THEOREM 4.7. Let 0 < β <
√

8. Then for all g ∈ 2N
2m ∪ {0}, the functional Fβ defined

by (4.12) has a local minimizer ug in the homotopy class M(g). Moreover, the function ug
is a heteroclinic solution of (4.3) displaying 2m+ 1 transitions between ±1.

The proof of Theorem 4.7 is carried out in [42]. The main difficulty is to show that min-
imizing sequences in M(g) have weak limits in the interior of M(g). Indeed, minimizing
sequences can approach the boundary of M(g) so that the limit function could gain or lose
complexity. For example, tangential crossings of ±1 could appear due to a coalescence
of two or more crossings or to a new spurious oscillation around one equilibrium. The
oscillatory behaviour of solutions in a neighborhood of a saddle-focus equilibrium plays
then a crucial role to control the minimizing sequences. Efficient tools were developed by
Kalies et al. to adjust functions of the boundary of M(g). Basically these tools rely on a
cut and paste technique which allows to delete spurious oscillations or replace pieces of
functions tangent to ±1 with pieces of small oscillating orbits around (±1,0,0,0) in the
phase-space.

Another source of troubles in the minimization process comes from a possible lack of
compactness when passing to a weak limit. Indeed the distance between two transitions
or two crossings of either −1 or +1 could grow to infinity. Here again the oscillatory
properties of the orbits close to a saddle-focus prevent from these losses of complexity in
the limit.
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4.4. Notes and further comments

1. As already mentioned, in case β ∈ [√8,+∞[, the heteroclinic solution obtained in
Theorem 4.1 is unique (up to translation and symmetry). The first result in this direction
is due to Peletier and Troy [59]. They prove that the heteroclinic obtained via the shooting
method is unique in the class of monotone antisymmetric functions and they conjecture
that it is actually unique in the class of all functions. Kwapisz [47] and van den Berg [89]
have then confirmed the conjecture. The proof of Kwapisz relies on the use of a twist-map
while the arguments of van den Berg are based on the analysis of the phase-space and more
precisely of its projection into the configuration plane (u,u′). The analysis of van den Berg
applies to the model equation

u′′′′ − βu′′ + f ′(u)= 0, (4.18)

where f is a double-well potential of class C2. Considering the set of bounded functions

B(a, b) := {
u ∈ C4(R)

∣∣ u(x) ∈ [a, b] for all x ∈R
}
,

and the value

ω(a, b)=max
{

0, max
u∈[a,b]−f ′′(u)

}
,

his key result states that when β � 2
√
ω(a, b), bounded solutions of (4.18) in B(a, b) do

not cross in the configuration plane (u,u′). Observing then that for β �
√

8, any bounded
solution u of (4.3) satisfies ‖u‖∞ � 1, he deduces that the uniqueness property in the
configuration plane holds for the parameter range β �

√
8. The a priori bound is obtained

by applying the maximum principle twice to the factorization (4.11). The uniqueness of
the heteroclinic solution then follows from the energy ordering of the bounded solutions in
the configuration plane (u,u′). As stressed in Section 4.1, the Hamiltonian

H
(
u,u′, u′′, u′′′

)= u′′′u′ − 1

2
u′′2 − β

2
u′2 + f (u)

is constant along solutions. It turns out that for β � 2
√
ω(a, b) and solutions of (4.18) in

B(a, b), the energy E = H(u, u′, u′′, u′′′) is a parameter that orders the solutions in the
configuration plane.

It is worth mentioning that the results of [89] also imply that the unique heteroclinic
of Theorem 4.1 is asymptotically stable in the space of bounded uniformly continuous
functions.

2. The global minimization approach of Section 4.2 can be extended to the functional

J (u) :=
∫ ∞

−∞

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx,
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where g : R → R is a positive function and f : R → R is a double well potential with
nondegenerate minima at the same level of energy, see Section 5. If f and g are even then
the equivalent of Theorem 4.5 holds. When this is not the case, the conclusion that any
minimizer is odd is false and we cannot ensure that minimizers are still single-transition
solutions.

3. The results of Section 4.3 hold in a more general framework. The potential (u2−1)2

4 may
be replaced by a function f ∈ C2(R) that has exactly two nondegenerate global minima at
u=±1 and grows superquadratically at ±∞. If the parameter β satisfies β2 < 4f ′′(±1)
then u=±1 are saddle-focus equilibria for the equation

u′′′′ − βu′′ + f ′(u)= 0.

If f is even then the equivalent of Theorem 4.7 holds, while without this symmetry as-
sumption it is not clear that the infima are attained in the interior of each homotopy class.
However, when gi = 2 for all i or if the gi ’s are large enough (i.e. the profile is then similar
to multi-bump solutions) then local minimizers exist in the corresponding class M(g), see
[42].

4. Not much is known about the role of the heteroclinic solutions for the evolution problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
+ ∂4u

∂x4
− β

∂2u

∂x2
+ u3 − u= 0, 0 < x <L, t > 0,

u(t,0)= u(t,L)= 0, t > 0,
∂2u

∂x2
(t,0)= ∂2u

∂x2
(t,L)= 0, t > 0,

u(0, x)= u0(x), 0 < x <L.

When β �
√

8, the stability of the heteroclinic has been proved by van den Berg [89].
Another class of solutions, namely travelling wave solutions, is important for the dy-

namics of the evolution equation. These solutions are waves that evolve at constant speed.
Thus they can be written u(t, x)=U(x − ct) for some constant c and solve the equation

U ′′′′ − βU ′′ − cU ′ + f ′(U)= 0.

For this last equation, the heteroclinic solutions connecting −1 to +1 or 0 to −1 or +1
are of particular interest. The problem of existence of such solutions is not completely
solved. Partial results exist for similar models with an asymmetric nonlinear term like
f ′a(u) = (u + a)(u2 − 1), a �= 0. The case a = 0 can also be treated when dealing with
heteroclinics connecting 0 to −1 or +1. For further details, we refer to [75,88,90].

5. It was observed in [58] that the arguments used in the proof of Theorem 4.5 can be
carried over to treat sixth order bistable equations of the form

u(6) +Au(4) +Bu(2) + u− u3 = 0



Heteroclinic orbits for 2nd and 4th order differential equations 159

provided that A2 < 4B . The associated functional is then coercive and weakly lower-
semicontinuous.

5. Sign changing Lagrangians

The success of the arguments of Section 4.2 depends on the positivity and the symmetry
of the Lagrangian

L
(
u,u′, u′′

)= 1

2

(
u′′2 + βu′2

)+ 1

4

(
u2 − 1

)2
.

The symmetry of the potential allows to consider a restricted functional on R
+ which

makes the minimization process very simple. However it is easily seen that a more tedious
proof works fine without exploiting the symmetry of the functional. On the other hand,
the positivity of the Lagrangian seems much more crucial. Indeed, it gives a simple lower
bound on the functional. Another great advantage of the Lagrangian L is that the potential
f (u)= 1

4 (u
2− 1)2 is superquadratic at ±∞ and has nondegenerate minima i.e. f ′′(±1) �=

0. This last property implies that for u close to +1 (respectively −1), f (u) behaves like
the square of the L2-norm of u− 1 (respectively u+ 1).

In this section, we consider a larger class of Lagrangians

Lg

(
u,u′, u′′

) := 1

2

(
u′′2 + g(u)u′2

)+ f (u). (5.1)

Here the function g is not assumed to be positive and f is a positive two-well potential
with bottoms at ±1. We consider in a convenient space (which is made precise below) the
functional

F(u) :=
∫ +∞

−∞

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx (5.2)

whose Euler–Lagrange equation is given by

u′′′′ − g(u)u′′ − 1

2
g′(u)u′2 + f ′(u)= 0. (5.3)

The main idea is then to impose a condition on g to ensure a lower bound on the action
F(u).

The results of Section 5.1 are based on [20,37]. The main assumption is as follows:
(C1) there exist a function g̃ ∈ C(R) and some k < 1 such that for all u ∈R,

g(u) � g̃(u) and
∣∣G̃(u)

∣∣ � k
√

8f (u),

where

G̃(u) :=
∫ u

0
g̃(s)ds.



160 D. Bonheure and L. Sanchez

This condition can be seen as a good balance between the possible negativity of g and
the positivity of the potential. Though assumption (C1) allows g to take negative values, it
rules out a negative constant. Indeed, g̃ must satisfy

∫ 0

−1
g̃(s)ds =

∫ +1

0
g̃(s)ds = 0.

Some regularity assumptions have to be made on f and g but it should be stressed that the
approach does not require the nondegeneracy of the equilibria ±1 as implicitly assumed
when considering the model potential in Fβ . This rather weak assumption on the potential
does not allow to define the functional F in an affine translate of H 2(R) so that a slight
modification of the functional settings has to be performed.

Section 5.2 reviews the results of [19]. Here more assumptions are in order but on the
other hand g can be negative everywhere. Mainly, we only deal with symmetric functionals
with an even potential having nondegenerate minima. Also, we do assume that the func-
tional is bounded from below. We prove that this is the case when g− is small.

5.1. Functionals with sign changing acceleration coefficient

We consider a two-well potential f ∈ C1(R) such that
(C2) for some 0 < a < 1 and α > 0,

f (u)

(u− 1)2
� α, for |u− 1|< a,

f (u)

(u+ 1)2
� α, for |u+ 1|< a;

(C3) f (u)= 0 if and only if u=±1;
(C4) f (u) � 0 for all u ∈R and

lim inf|u|→∞ f (u) > 0.

We also assume that g ∈ C1(R) satisfies (C1).
Notice that the assumption (C2) is automatically satisfied when ±1 are nondegenerate

minima. In this case, if f is of class C2 in a neighborhood of ±1, g(±1) < 0 or (C1) holds
with g = g̃ then ±1 are saddle-foci. Indeed, by l’Hospital’s rule, we obtain

g̃2(±1)

4f ′′(±1)
= lim

u→±1

G̃2(u)

8f (u)
< 1,

so that

g(±1)2 � g̃(±1)2 < 4f ′′(±1).
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In order to find a solution u of (5.3) that satisfies

lim
x→±∞u(x)=±1,

we minimize the functional F in a convenient functional space. As the assumptions on f

are quite weak and g can vanish close to ±1, a function u that satisfies F(u) <∞ does
not necessarily belong to an affine translate of H 2(R) as it was the case for heteroclinic
solutions of (4.3). In fact it is sufficient to search a minimizer of F in the set

H :=
{
u ∈ C1(R), u′′ ∈ L2(R), u′ ∈ L∞(R) and lim

x→±∞u(x)=±1
}
. (5.4)

We first observe that under assumption (C1), the functional F is bounded from below in
H. This justifies our minimization procedure.

LEMMA 5.1. If f , g ∈ C(R) satisfy (C1), then there exists a constant s > 0 such that for
all u ∈H

F(u) � s

∫ +∞

−∞

(
u′′2

2
+ f (u)

)
dx.

PROOF. Let k be given by the assumption (C1). For c ∈ ]k,1[, we compute

F(u) �
∫ +∞

−∞

(
1

2

(
u′′2 + g̃(u)u′2

)+ f (u)

)
dx

�
∫ +∞

−∞

(
1

2

(
1− c2)u′′2 + 1

2

(
cu′′ − G̃(u)

2c

)2

+
(
f (u)− G̃(u)2

8c2

))
dx,

where we have performed an integration by parts and used the fact that u′ is bounded and
G̃(u(±∞))= G̃(±1)= 0 to obtain

−
∫ +∞

−∞
G̃(u)u′′ dx =

∫ +∞

−∞
g̃(u)u′2 dx.

Hence by our assumption, we obtain the inequality

F(u) �
∫ +∞

−∞

(
1

2

(
1− c2)u′′2 +

(
1− k2

c2

)
f (u)

)
dx

so that the conclusion follows. �

We now state the main theorem of the section.

THEOREM 5.2. Suppose that f,g ∈ C1(R) satisfy (C1)–(C4). Then, there exists a mini-
mizer u of F in H which is a solution of (5.3).
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To prove this theorem, we need sharp estimates on minimizing sequences. The key ar-
guments are summarized in the next proposition.

PROPOSITION 5.3. Suppose that f,g ∈ C1(R) satisfy (C1)–(C4). Then there exist L >

0, T > 0 and a sequence (un)n∈N ⊂H such that F(un)→ infHF and for all n ∈N,
(i) ‖un‖C1 � L,

(ii) |un(x)+ 1|� a for all x �−T and |un(x)− 1|� a for all x � T .

Observe that the first property of the minimizing sequence (un)n allows to choose a con-
verging subsequence in C1

loc. The second property then prevents from the lack of compact-
ness of the functional space H due to the invariance of F under translations. The proof of
Theorem 5.2 easily follows from Proposition 5.3.

PROOF OF THEOREM 5.2. Let (un)n ⊂H be a minimizing sequence satisfying the con-
clusions of Proposition 5.3.

Step 1. Convergence. According to Lemma 5.1, the sequence u′′n is uniformly bounded
in L2. Together with the uniform bound on un in C1 (property (i) of the minimizing se-
quence), this implies that (un)n has a subsequence (still written (un)n for simplicity) such
that for some function u

un
C1

loc(R)−→ u, u′′n
L2(R)
⇀ u′′.

We now infer from Lemma 5.1 and Fatou’s Lemma that

∫ +∞

0
f
(
u(x)

)
dx <+∞. (5.5)

Step 2. u ∈H. Observe first that u′ ∈ L∞(R). Indeed, as u′n converges uniformly to u′
on every compact subset of R, it follows from the uniform bound on ‖u′n‖∞ that u′ is
bounded.

We next prove that

lim
x→+∞u(x)= 1.

From the uniform convergence on compact sets, it is clear that |u(x)− 1|� a for x � T .
We therefore deduce that

1− a � lim inf
x→+∞u(x) � lim sup

x→+∞
u(x) � 1+ a.

Assume by contradiction that lim supx→+∞ u(x) > 1. This means that for some 0 < ε < a,
there exist infinitely many disjoint intervals [ai, bi] ⊂R

+, i ∈N such that

1+ ε

2
� u(x) � 1+ ε for all x ∈ [ai, bi].
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We can suppose without loss of generality that u(bi)− u(ai)=±ε/2. As ‖u′‖∞ � L, we
infer that

ε

2
= ∣∣u(bi)− u(ai)

∣∣=
∣∣∣∣
∫ bi

ai

u′(s)ds

∣∣∣∣ � L(bi − ai)

which implies that

(bi − ai) � ε

2L
.

Now, let mε > 0 be such that f (u) � mε for all u ∈ [1+ ε
2 ,1+ ε]. We then compute

∫ +∞

0
f
(
u(x)

)
dx �

∞∑
i=0

∫ bi

ai

f
(
u(x)

)
dx �

∞∑
i=0

εmε

2L
=+∞

which contradicts (5.5). If lim infx→+∞ u(x) < 1, we derive the same contradiction so that

lim inf
x→+∞u(x)= lim sup

x→+∞
u(x)= 1.

As we can argue similarly if lim supx→−∞ u(x) > −1 or lim infx→−∞ u(x) < −1, we
also infer that

lim
x→−∞u(x)=−1.

Summing-up, we come to the conclusion that u ∈H.
Conclusion. To see that u is a minimizer of F , arguing as in Lemma 5.1 we compute

F(un) =
∫ ∞

−∞

(
1

2

(
u′′2n + g̃(un)u

′2
n

)+ f (un)

)
dx

+
∫ ∞

−∞
1

2

(
g(un)− g̃(un)

)
u′2n dx

=
∫ ∞

−∞
1

2

(
u′′n −

G̃(un)

2

)2

dx +
∫ ∞

−∞

(
f (un)− G̃(un)

2

8

)
dx

+
∫ ∞

−∞
1

2

(
g(un)− g̃(un)

)
u′2n dx. (5.6)

As all the terms of the right-hand side are positive, we deduce that

sup
n∈N

∥∥∥∥u′′n − G̃(un)

2

∥∥∥∥
L2

<+∞.
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Going to a subsequence if necessary, we may assume that u′′n− G̃(un)
2 converges weakly in

L2 and therefore

∫ ∞

−∞
1

2

(
u′′ − G̃(u)

2

)2

dx � lim inf
n→∞

∫ ∞

−∞
1

2

(
u′′n −

G̃(un)

2

)2

dx.

Now observe that the integrands of the two last terms of (5.6) converge for each x ∈R and
are positive. Fatou’s lemma is then applicable and we obtain

∫ +∞

−∞

(
f (u)− G̃(u)2

8

)
dx � lim inf

n→∞

∫ +∞

−∞

(
f (un)− G̃(un)

2

8

)
dx

and
∫ +∞

−∞
1

2

(
g(u)− g̃(u)

)
u′2 dx � lim inf

n→∞

∫ +∞

−∞
1

2

(
g(un)− g̃(un)

)
u′2n dx.

From Step 2, we know that u ∈H. The equality (5.6) thus also holds with un replaced by
u and we finally deduce that

F(u) � lim inf
n→∞ F(un)= inf

H
F

which by Step 2 implies

F(u)= inf
H

F .

This completes the proof. �

We devote the remaining of the section to the proof of Proposition 5.3. We first need
some preliminary results. Our next purpose is to complete the functional settings by prov-
ing that the first derivative of any function u ∈H that satisfies F(u) <∞, vanishes at±∞.
To this aim, we next state the following useful estimate.

LEMMA 5.4. Given an interval [a, b] ⊂ R and a function u ∈H 2(a, b) such that u(a)=
A, u(b)= B, u′(a)=A1, u

′(b)= B1, the following inequality holds:

∫ b

a

u′′2 dx � 4

b− a

(
(B1 −A1)

2 + 3

(
B −A

b− a
−A1

)(
B −A

b− a
−B1

))
,

and equality holds if and only if u is a third degree polynomial.

PROOF. Denote by P the third degree polynomial that coincides in H 2 with u at points a

and b. Writing u= P +w, we compute

∫ b

a

u′′2 dx =
∫ b

a

P ′′2 dx +
∫ b

a

w′′2 dx + 2
∫ b

a

P ′′w′′ dx. (5.7)
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Integrating P ′′w′′ by parts and using the fact that w(a)= w(b)= w′(a)= w′(b)= 0, we
see that the last integral in (5.7) is actually zero. We thus obtain the inequality

∫ b

a

u′′2 dx �
∫ b

a

P ′′2 dx

and the conclusion now follows by computing the integral of P ′′2. �

LEMMA 5.5. Let u ∈H be such that F(u) <∞. Then

lim|x|→∞u′(x)= 0.

PROOF. Let ε > 0 and u ∈H be given. Suppose by contradiction that our conclusion is
false. Assume for example that u′(xn) � ε for some sequence xn→+∞, n ∈N. Let δ > 0
be such that

δ <
sε3

16F(u)
,

where s is given by Lemma 5.1. Then, as limx→+∞ u(x)= 1, there exists R > 0 such that
for all x � R, |u(x)− 1|� δ/2. Let x0 >R be such that u′(x0)= ε.

We claim that we can find x1 > x0 such that u′(x1)= ε/2, u(x1) � u(x0)+ δ and x1 −
x0 � 2δ/ε. Indeed, if x > x0, we have |u(x)− u(x0)|� δ and as limx→+∞ u(x)= 1, there
exists x > x0 such that u′(x) � ε/2. We can therefore choose x1 such that u′(x) � ε/2 for
all x ∈ [x0, x1]. We then have

ε

2
(x1 − x0) �

∫ x1

x0

u′(s)ds = u(x1)− u(x0) � δ.

Now, letting m= u(x1)−u(x0)
x1−x0

, we infer from Lemma 5.4 that

∫ x1

x0

u′′2 dx � 2ε

δ

((
ε

2

)2

+ 3(m− ε)

(
m− ε

2

))
� ε3

8δ
.

Hence, we obtain a contradiction with the choice of δ since Lemma 5.1 implies that

2F(u) � s

∫ x1

x0

u′′2 dx � sε3

8δ
.

Similar arguments hold in the other cases, in particular if limx→−∞ u′(x) �= 0. �

We now turn to the proof of Proposition 5.3.
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PROOF. Proof of Proposition 5.3 We divide the proof in two parts. In the first part we
prove the a priori bound (property (i)) and in the second one we prove the localization of
at least one minimizing sequence (property (ii)).

Let (un)n ⊂ H be a minimizing sequence of F . As F(un) is a converging sequence,
F(un) is uniformly bounded. Notice that we can assume without loss of generality that
F(un) � C � infHF + 1.

Part 1. There exists L> 0 such that for all n ∈N, ‖un‖C1 � L.
Let s be given by Lemma 5.1. According to the assumptions on f there exist K > 0 and

b > 0 such that

3K2s

8b3
>C and s f (u) >

C

b
for all |u|� K

2
.

We claim that ‖un‖∞ � K . Otherwise, either the set {x: |un(x)| � K/2} has measure
greater than b and

F(un) � s

∫ +∞

−∞
f (un)dx > s b

C

b s
= C,

a contradiction, or we can pick up an interval (c, d) such that d − c < b, |un(c)| = |un|∞,
|un(d)| = K

2 , |un(x)|� K
2 , for all x ∈ (c, d). It then follows using Lemma 5.4 that

F(un) � s

∫ d

c

u′′2n

2
dx

� 2s

d − c

(
u′n(d)2 + 3

un(d)− un(c)

d − c

(
un(d)− un(c)

d − c
− u′n(d)

))

� 3s

2(d − c)

(
un(d)− un(c)

d − c

)2

� 3K2s

8b3
>C,

leading again to a contradiction. Hence the bound on ‖un‖∞ is established.
Next, choosing M such that

M > 4K and M2 >
8C

s
,

we show that u′n cannot attain the value M . Assume by contradiction that u′n(x0) =M .
Then there exists x1 ∈ (x0, x0 + 1) such that u′n(x1) = M

2 . Hence, denoting again m =
un(x1)−un(x0)

x1−x0
, it turns out that

F(un) � s

∫ x1

x0

u′′2n

2
dx
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� 2s

x1 − x0

((
M

2

)2

+ 3(m−M)

(
m− M

2

))

� M2s

8
>C,

which is impossible. We show in a similar way that u′n cannot attain the value −M . We
thus deduce that the conclusion of Part 1 holds with L=max(K,M).

Part 2. There exist T > 0 and a minimizing sequence (vn)n ⊂H such that for all n ∈N,

∣∣vn(x)+ 1
∣∣ � a for all x �−T

and

∣∣vn(x)− 1
∣∣ � a for all x � T .

Let ε > 0 be given. For each n ∈N, we define

x1 := sup
{
x ∈R such that

∣∣un(x)+ 1
∣∣ � ε and

∣∣u′n(x)∣∣ � ε
}
,

and

x2 := inf
{
x ∈R such that

∣∣un(x)− 1
∣∣ � ε and

∣∣u′n(x)∣∣ � ε
}
.

Observe that as un ∈H and F(un) <∞, x1 and x2 are real numbers. Basically, this part
of the proof consists in showing that the length x2 − x1 can be controlled uniformly in
n ∈ N. Then choosing ε > 0 sufficiently small, pieces of orbits close to ±1 on ]−∞, x1[
and ]x2,+∞[ can be glued to un|[x1,x2] without increasing the action above F(un). This
rather simple argument all the same requires some technical adjustments. We first focus on
the estimate of the length x2 − x1.

Step 1. For each 0 < ε < 1, there exists Tε > 0 such that for all n ∈N, x2 − x1 � 2Tε .
Let us define N±ε := ]±1− ε,±1+ ε[, Nε :=N−ε ∪N+ε and consider the set

Z := {
x ∈ [x1, x2]

∣∣ un(x) ∈ Nε

}
.

Observe that Z is a union of intervals Ii on which |u′n|� ε. In the sequel, we assume that
these intervals Ii are of maximal length. As |u′n(x)|� ε on any interval Ii , we infer that

|Ii |ε �
∣∣∣∣
∫
Ii

u′n(x)dx

∣∣∣∣ � 2ε
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so that |Ii | � 2. Further except maybe for the last one, each interval Ii is followed by an
interval Ji = [ci, di] that we also suppose to be of maximal length and which is so that one
of the following conditions holds for all x ∈ [ci, di] :

(a) un(x) � 1+ ε, u′n(ci) � ε, u′n(di) �−ε,

(b) −1+ ε � un(x) � 1− ε,
∣∣u′n(ci)∣∣ � ε,

∣∣u′n(di)∣∣ � ε,

(c) un(x) �−1− ε, u′n(ci) �−ε, u′n(di) � ε.

Consider an interval Ji = [ci, di] such that (a) or (c) hold. We then obtain the estimate

2ε �
∣∣u′n(di)− u′n(ci)

∣∣=
∣∣∣∣
∫ di

ci

u′′n(x)dx

∣∣∣∣ �
∥∥u′′n∥∥L2(ci ,di )

(di − ci)
1/2

and we thus infer that

∫ di

ci

(
1

2

(
u′′n

)2 + f (un)

)
dx � 2ε2

di − ci
+ rε(di − ci) � 2ε

√
2rε, (5.8)

where rε := inf{f (u) | u �∈Nε}. Notice that for an interval Ji of type (b) with u′n(ci)u′n(di)
< 0, the same inequality holds. At last, assume that Ji is of type (b) and such that
u′n(ci)u′n(di) > 0. Then we obtain

2− 2ε =
∣∣∣∣
∫ di

ci

u′n(x)dx

∣∣∣∣ � L(di − ci)

and

∫ di

ci

(
1

2

(
u′′n

)2 + f (un)

)
dx � rε(di − ci) � rε(2− 2ε)

L
, (5.9)

where L is the uniform bound on ‖u′n‖∞ obtained in Part 1. Let us denote by k the number
of intervals Ji . Taking the estimates (5.8) and (5.9) into account, we infer from Lemma 5.1
that

C �F(un) � s

k∑
i=1

∫ di

ci

(
1

2

(
u′′n

)2 + f (un)

)
dx

� sk min

(
2ε

√
2rε,

rε(2− 2ε)

L

)
(5.10)

so that k is uniformly bounded with respect to n ∈N.
We are now able to conclude our first step. Indeed, setting Z̃ = [x1, x2] \Z, we have

C �F(un) � s

∫
Z̃

f
(
un(x)

)
dx � srε

∣∣Z̃∣∣
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and since Z is the union of at most k + 1 intervals of length smaller than 2, we finally
deduce that

x2 − x1 = |Z| +
∣∣Z̃∣∣ � 2(k + 1)+ C

s rε
=: 2Tε.

Step 2. Modification of un in ]−∞, x1] and [x2,+∞[.
We consider the modification in ]−∞, x1]. Define

F]−∞,x1](u) :=
∫ x1

−∞

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx

having as domain

Hn]−∞,x1] :=
{
u ∈H | u= un on [x1,+∞[

}
.

Using integration by parts and arguing as in Lemma 5.1, we see that for any function
u ∈Hn]−∞,x1]

F]−∞,x1](u) � s

∫ x1

−∞

(
u′′2

2
+ f (u)

)
dx + 1

2
G̃
(
u(x1)

)
u′(x1). (5.11)

We also consider the set

Dn]−∞,x1] :=
{
u ∈Hn]−∞,x1]

∣∣ for all x � x1, u(x) ∈ [−1− a,−1+ a]}.
Let us fix again the notation N−a := ]−1− a,−1+ a[. We then define

γ := sup
{
g(u) | u ∈N−a

}
,

η := inf
{
f (u) | u ∈N−a \N−a/2

}
> 0,

δ := sup
{∣∣G̃(u)

∣∣ | u ∈N−a
}

� 0.

We first derive a lower estimate on the action of any function u ∈Hn]−∞,x1] whose graph
does not stay in the strip ]−∞, x1] ×N−a .

CLAIM 1. If u ∈Hn]−∞,x1] \Dn]−∞,x1] and ‖u′‖∞ � L then

F]−∞,x1](u) � sηa

2L
− δε. (5.12)

If there exists x � x1 such that u(x) �∈N−a , either there exist s1 � s2 � x1 so that

u(s1)=−1+ a

2
, u(s2)=−1+ a
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and for all x ∈ [s1, s2],

u(x) ∈
[
−1+ a

2
,−1+ a

]

or there exist s3 � s4 � x1 so that

u(s3)=−1− a, u(s4)=−1− a

2

and for all x ∈ [s3, s4],

u(x) ∈
[
−1− a,−1− a

2

]
.

Let us for instance consider the first possibility, the second being similar. We then have

L(s2 − s1) �
∫ s2

s1

u′(x)dx = u(s2)− u(s1)= a

2

and

∫ x1

−∞

(
u′′2

2
+ f (u)

)
dx �

∫ s2

s1

f (u)dx � ηa

2L
.

On the other hand, we have

∣∣G̃(
u(x1)

)
u′(x1)

∣∣ � δε,

so that Claim 1 now follows from (5.11).

CLAIM 2. There exists R > 0 so that for all ε > 0,

inf
Dn]−∞,x1]

F]−∞,x1] � Rε2.

For a function u ∈Dn]−∞,x1], we have by virtue of (C2)

F]−∞,x1](u) �
∫ x1

−∞

(
1

2

(
u′′2 + γ u′2

)+ α(u+ 1)2
)

dx.

Let us define the functional

J]−∞,x1](u) :=
∫ x1

−∞

(
1

2

(
u′′2 + γ u′2

)+ α(u+ 1)2
)

dx
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on Hn]−∞,x1]. Let P be the third degree polynomial satisfying P(x1 − 1) = −1, P ′(x1 −
1)= 0, P(x1)= un(x1) and P ′(x1)= u′n(x1). The function v : ]−∞, x1]→R defined by

v(x) :=
{

0 if x < x1 − 1
P(x) if x1 − 1 � x � x1.

belongs to Hn]−∞,x1] and in fact to Dn]−∞,x1] if ε is taken sufficiently small. A straightfor-
ward computation then shows that there is a constant C(γ,α) such that

J]−∞,x1](v) � C(γ,α)
((
un(x1)+ 1

)2 + u′n(x1)
2) � 2C(γ,α)ε2

so that we obtain the estimate

inf
Dn]−∞,x1]

F]−∞,x1] � inf
Dn]−∞,x1]

J]−∞,x1] � 2C(γ,α)ε2.

Conclusion of Step 2. Let us choose ε > 0 sufficiently small in order to have

F]−∞,x1](u) � sηa

4L

for u ∈Hn]−∞,x1] \Dn]−∞,x1] satisfying ‖u′‖∞ � L and

inf
Dn]−∞,x1]

F]−∞,x1] <
sηa

4L
.

If un �∈ Dn]−∞,x1], we infer from the above estimates that we can replace un by vn ∈
Dn]−∞,x1] such that F(vn) �F(un).

If |un(x)− 1| �� a for x � x2 we proceed in the same way to modify un for x � x2.
We are now in position to complete the proof of Part 2. Indeed, we deduce from Step 1

and Step 2 that there exist T > 0 and a minimizing sequence (vn)n such that for all n ∈N,
there exist x1 < x2 satisfying x2 − x1 � 2T and

∣∣vn(x)+ 1
∣∣ � a for all x � x1,

∣∣vn(x)− 1
∣∣ � a for all x � x2.

Translating vn if necessary, we can assume [x1, x2] ⊂ [−T ,T ] so that the conclusion of
the second part follows. Observe that since F(vn) � F(un), the sequence (vn)n satisfies
the a priori bound derived in the first part. This ends the proof. �

5.2. Functionals of Swift–Hohenberg type

When β is negative, the model equation

u′′′′ − βu′′ + u3 − u= 0
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is related to the Swift–Hohenberg equation

∂u

∂t
− κu+

(
1+ ∂2

∂x2

)2

u+ u3 = 0, (5.13)

where κ ∈ R. This equation was proposed by Swift and Hohenberg [84] as a model for
studies of Rayleigh–Bénard convection. When κ > 1, after rescaling, (5.13) can be written
as

∂u

∂t
+ (κ − 1)3/2

(
∂4u

∂x4
− β

∂2u

∂x2
+ u3 − u

)
= 0

with β = −2/
√
κ − 1. The compatibility condition (C1) between f and g allows g to

take negative values but it then implies that g takes positive values as well. Therefore, the
stationary Swift–Hohenberg equation is not covered by the result of the preceding section.

When stronger assumptions are imposed on the potential, we can deal with negative
functions g. Namely we assume that f , g ∈ C1(R) are even functions such that f (1)= 0
and

(C5) for some k > 0, β <
√

8k and all u � 0,

f (u) � k(u− 1)2 and g(u) �−β.

We look then at the minimizers of the functional F defined by (5.2) in the space

E = {
u
∣∣ u(0)= 0, u+ 1 ∈H 2(

R
−), u− 1 ∈H 2(

R
+)}.

Our first observation is that under the assumption (C5), for small β > 0,

inf
u∈E

F(u) >−∞.

LEMMA 5.6. Let f and g ∈ C(R) be even functions such that (C5) holds. Then there exists
β1 > 0 such that for β � β1, we have

inf
u∈E

F(u) � 0.

PROOF. Let us first recall the following interpolation inequality, see for example [1]. For
all  > 0, there exists C > 0 such that for any interval I with |I |�  and all u ∈H 2(I ),

∥∥u′∥∥2
L2(I )

� C
(∥∥u∥∥2

L2(I )
+ ∥∥u′′∥∥2

L2(I )

)
. (5.14)

Let u be any function in E and consider an interval [a, b] where u is nonnegative and
u(a)= u(b)= 0. Suppose that b−a � 1. Then using the inequality (5.14) applied to u−1,
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we obtain

∫ b

a

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx �

∫ b

a

(
1

2

(
u′′2 − βu′2

)+ k(u− 1)2
)

dx

� 1− βC

2

∥∥u′′∥∥2
L2(a,b)

+
(
k − βC

2

)
‖u− 1‖2

L2(a,b)
. (5.15)

If b− a < 1, we compute

∥∥u′∥∥
L2(a,b)

� b− a√
2

∥∥u′′∥∥
L2(a,b)

and

∫ b

a

(
1

2

(
u′′2 − g(u)u′2

)+ f (u)

)
dx �

∫ b

a

(
1

2

(
u′′2 − βu′2

)+ f (u)

)
dx

� 1

2

(
1− β

2

)∥∥u′′∥∥2
L2(a,b)

.

In both cases, we obtain

∫ b

a

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx � 0

if β � min(2,1/C,2k/C). A similar argument holds on intervals [a, b] where u is non
positive. At last, if u is nonnegative on the interval [T ,+∞[, we deduce as in (5.15) that

∫ +∞

a

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx � 0.

The conclusion follows. �

Next, assuming that the functional F is bounded from below, we prove the existence of a
minimizer. We deduce from the previous lemma that the result holds at least when g �−β

with β > 0 small.

THEOREM 5.7. Let f ∈ C1(R) and g ∈ C1(R) be even functions such that f (1)= 0 and
(C5) holds. Assume further that

inf
E
F >−∞.

Then F has a minimizer which is a heteroclinic solution of Eq. (5.3) having exactly one
zero. Moreover, any minimizer is odd.



174 D. Bonheure and L. Sanchez

PROOF. Step 1. We first prove the existence of an odd minimizing sequence (un)n such
that un(x) > 0 for all x > 0. Let (vn)n ⊂ E be a minimizing sequence. Observe that if vn is
not odd, the appropriate symmetrization of vn restricted to R

+ or R
− decreases the action.

Assume now that vn has a positive zero and define

xn := sup
{
x > 0

∣∣ vn(x)= 0
}
.

We claim that

F[−xn,xn](vn) :=
∫ xn

−xn

(
1

2

(
v′′n

2 + g(vn)v
′
n

2)+ f (vn)

)
dx � 0.

Indeed, suppose that F[−xn,xn](vn) = −C < 0 and take j ∈ N so that F(vn) − 2jC <

infE F . Then defining the odd function u∗n ∈ E by

u∗n(x) :=

⎧⎪⎨
⎪⎩
vn(x − 2ixn) if x ∈ [

2ixn, (2i + 1)xn
[
, i = 0, . . . , j ,

−vn(2ixn − x) if x ∈ [
(2i − 1)xn,2ixn

[
, i = 1, . . . , j ,

vn
(
x − 2(j + 1)xn

)
if x ∈ [

(2j + 1)xn,+∞
[
,

we obtain a contradiction because

F
(
u∗n

)=F(vn)+ 2jF[−xn,xn](vn)=F(vn)− 2jC < inf
E
F .

Now, let un ∈ E be the odd function defined by un(x)= vn(x+xn) for x � 0. This function
un vanishes only at 0 and since F[−xn,xn](vn) � 0, the sequence (un)n is also a minimizing
sequence.

Step 2. As there exists an odd minimizing sequence, it is sufficient to minimize the
restricted functional

F+(u) :=
∫ +∞

0

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx

in the space of functions

E+ = {
u :R+ →R

∣∣ u(0)= 0, u− 1 ∈H 2(
R
+)}.

We first claim that un − 1 is uniformly bounded in H 2(R+). To prove this, we compute
for u ∈ E+,

∫ +∞

0

(
1

2

(
u′′2 − βu′2

)+ k(u− 1)2
)

dx

= ε‖u− 1‖2
H 2 + 1− 2ε

2

∫ +∞

0

(
u′′2 − βεu

′2 + 1

4
β2
ε (u− 1)2

)
dx

+
(
k − ε− (β + 2ε)2

8(1− 2ε)

)∫ +∞

0
(u− 1)2 dx,
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where βε := β+2ε
1−2ε . Notice that we may choose ε small enough in order to have k − ε −

(β+2ε)2

8(1−2ε) � 0. For the second term of the right-hand side, we have

∫ +∞

0

(
u′′2 − βεu

′2 + β2
ε

4
(u− 1)2

)
dx

=
∫ +∞

0

(
u′′ + βε

2
(u− 1)

)2

dx − βεu
′(0) �−βεu

′(0).

As un is positive, we infer that

F+(un) �
∫ +∞

0

(
1

2

(
u′′n

2 − βu′2n
)+ k(un − 1)2

)
dx

� ε‖un − 1‖2
H 2 − βεu

′
n(0).

We now deduce from the continuous injection of H 2(0,∞) into C1([0,∞[) that for some
C > 0

F+(un) � ε‖un − 1‖2
H 2(0,∞)

−C‖un − 1‖H 2(0,∞).

Hence, the claim follows from the uniform bound on F(un).
We now infer that at least for a subsequence (that we still denote by un)

un − 1
H 2(R+)
⇀ u− 1 and un

C1
loc(R

+)−→ u

for some function u ∈ E+. In order to see that u is a minimizer, we write

F+(un) = 1

2

∫ +∞

0

(
u′′2n − βu′2n +

β2

4
(un − 1)2

)
dx

+ 1

2

∫ +∞

0

((
g(un)+ β

)
u′2n

)
dx +

∫ +∞

0

(
f (un)− β2

8
(un − 1)2

)
dx

= 1

2

∫ +∞

0

(
u′′n +

β

2
(un − 1)

)2

dx − β

2
u′n(0)

+ 1

2

∫ +∞

0

((
g(un)+ β

)
u′2n

)
dx +

∫ +∞

0

(
f (un)− β2

8
(un − 1)2

)
dx.

Observe then that in the last equality, the first integral is convex and that Fatou’s Lemma is
applicable to the last two so that

F+(u) � lim
n→+∞F+(un)= inf

E+
F+.
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Now, as u ∈ E+, we conclude that F+(u) = infE+ F+ and still denoting by u its odd
extension on R, we have F(u)= infE F .

The proof that any minimizer is odd follows the lines of the third step of the proof of
Theorem 4.5. �

In the following theorem, we observe that when ±1 are saddle-foci, the minimum of F
is non-negative.

THEOREM 5.8. Let f and g ∈ C2(R) be even functions such that f (1) = 0, g(1)2 <

4f ′′(1) and assume that (C5) holds. Then if u is a minimizer in E of F , F(u) � 0.

In order to prove Theorem 5.8, we first consider the following lemma which states that
if +1 is a saddle-focus stationary point, then the solutions of (5.3) that converge to +1 in
the phase-space, do oscillate around the equilibrium in their tails. To simplify the notation,
we assume the equilibria has been translated to 0.

LEMMA 5.9. Let f and g ∈ C2(R) and f (0)= 0. Let 0 be a saddle-focus equilibria for
the linearization of Eq. (5.3), i.e. g(0)2 < 4f ′′(0). Then, there exists �> 0 such that if û
is a nontrivial solution of (5.3) that satisfies

lim
x→+∞

(
û(x), û′(x), û′′(x), û′′′(x)

)= (0,0,0,0), (5.16)

û changes sign in any interval [x0, x0 +�] for sufficiently large x0.

PROOF. Let û be a solution of (5.3) that satisfies (5.16). Consider the linearization of (5.3)

z′′′′ − g(0)z′′ + f ′′(0)z= 0. (5.17)

Notice that the characteristic values of this linear equation read ±ρ ± iω. We then choose
�= 2π/ω. Let x0 ∈R and z0 ∈R

4. By the choice of �, the solution z of (5.17) with initial
condition

(
z(x0), z

′(x0), z
′′(x0), z

′′′(x0)
)= z0

satisfies

max[x0,x0+�]
z, max[x0,x0+�]

(−z) � c|z0|

and

‖z‖C2([x0,x0+�]) � M|z0|
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for some c > 0 and M > 0 depending only on �, g(0) and f ′′(0). On the other hand, we
can also find N > 0 so that the solutions of

w′′′′ − g(0)w′′ + f ′′(0)w = h(x),(
w(x0),w

′(x0),w
′′(x0),w

′′′(x0)
)= 0,

satisfy

‖w‖C2([x0,x0+�]) � N‖h‖L∞(x0,x0+�).

Next, we take δ > 0 so that c− MNδ
1−Nδ

> 0.
To fix the ideas we denote by u(x;x0, u0) the solution of (5.3) with initial condi-

tions x0 ∈ R, u0 := (u(x0), u
′(x0), u

′′(x0), u
′′′(x0)). Let ũ(x;λ) = u(x;x0, λû0), with

û0 = (û(x0), û
′(x0), û

′′(x0), û
′′′(x0)) and define

p(x)=−g
(
ũ(x;λ)),

q(x)=−g′
(
ũ(x;λ))ũ′(x;λ),

and

r(x)=−g′
(
ũ(x;λ))ũ′′(x;λ)− 1

2
g′′

(
ũ(x;λ))ũ′2(x;λ)+ f ′′

(
ũ(x;λ)).

Let us fix now x0 large enough so that |û0| is small enough to have, for 0 � λ � 1,

sup
x0�x�x0+�

∣∣p(x)+ g(0)
∣∣, sup

x0�x�x0+�

∣∣q(x)∣∣, sup
x0�x�x0+�

∣∣r(x)− f ′′(0)
∣∣ � δ.

Observe also that |û0| �= 0 as a nonzero solution cannot reach 0 in the phase-space in a
finite time. We then write

û(x)=
∫ 1

0

d

dλ
u(x;x0, λû0)dλ.

The function

ϕ(x;x0, û0, λ)= d

dλ
u(x;x0, λû0)

satisfies the Cauchy problem

ϕ′′′′ + p(x)ϕ′′ + q(x)ϕ′ + r(x)ϕ = 0,(
ϕ(x0), ϕ

′(x0), ϕ
′′(x0), ϕ

′′′(x0)
)= û0,

and we can write

ϕ =w+ z.
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Here w solves the equation

w′′′′ − g(0)w′′ + f ′′(0)w

=−(
g(0)+ p(x)

)
ϕ′′(x)− q(x)ϕ′(x)+ (

f ′′(0)− r(x)
)
ϕ(x),

together with the initial values

(
w(x0),w

′(x0),w
′′(x0),w

′′′(x0)
)= 0

and z is a solution of

z′′′′ − g(0)z′′ + f ′′(0)z= 0,(
z(x0), z

′(x0), z
′′(x0), z

′′′(x0)
)= û0.

We next choose x ∈ [x0, x0 +�] so that

z(x) � c|û0|

and compute

û= z+
∫ 1

0
w dλ.

Notice that

‖w‖C2([x0,x0+�]) � Nδ‖ϕ‖C2([x0,x0+�]).

We then obtain the estimates,

‖w‖C2([x0,x0+�]) � Nδ

1−Nδ
‖z‖C2([x0,x0+�]) � MNδ

1−Nδ
|û0|.

At last, we have

û(x) � c|û0| − ‖w‖∞ �
(
c− MNδ

1−Nδ

)
|û0|> 0.

Arguing in a similar way, we find x ∈ [x0, x0 +�] so that û(x) < 0. �

We now come back to the proof of Theorem 5.8.

PROOF OF THEOREM 5.8. Let u ∈ E be such that F(u)= infE F =−C for some C > 0.
As u is a minimizer, it satisfies Eq. (5.3) and we also have

lim
x→+∞

(
u(x),u′(x), u′′(x), u′′′(x)

)= (1,0,0,0).



Heteroclinic orbits for 2nd and 4th order differential equations 179

Observe that Theorem 5.7 implies that u is odd so that

F(u)= 2
∫ +∞

0

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx =−C.

As a consequence of Lemma 5.9, u oscillates around+1 at+∞. Hence, we can find T > 0
large enough so that

∫ T

0

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx �−C/4,

and u′(T )= 0. Defining the odd function v∗ ∈ E as follows:

v∗(x)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(x) if x ∈ [0, T ),

u(2T − x) if x ∈ [T ,2T ),

−u(x − 2T ) if x ∈ [2T ,3T ],
−u(4T − x) if x ∈ [3T ,4T ],
u(x − 4T ) if x � 4T ,

we have

F(v∗) = 8
∫ T

0

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx

+ 2
∫ +∞

0

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx <−2C.

This contradicts the definition of u. Hence, we have infE F � 0. �

We next state an obvious corollary of Theorem 5.8.

COROLLARY 5.10. Let f and g ∈ C2(R) be even functions such that f (1)= 0 and (C5)
holds. Assume, moreover, that g(1)2 < 4f ′′(1). If there exists u ∈ E such that F(u) < 0,
then infE F =−∞.

PROOF. Suppose by contradiction that the conclusion of the corollary is false. Then Theo-
rem 5.7 implies the existence of a minimizer which has a negative action. This contradicts
Theorem 5.8. �

Let us consider the stationary Swift–Hohenberg equation

u′′′′ + βu′′ + u3 − u= 0. (5.18)

We know from Theorem 5.7 and Lemma 5.6 that the corresponding functional

Fβ(u)=
∫ +∞

−∞

(
1

2

(
u′′2 − βu′2

)+ 1

4

(
u2 − 1

)2
)

dx
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has a minimum in E for β lower than some small positive constant. If β becomes too
large, the minimum no longer exists. Indeed, it is shown in [55] that taking the function

u(x)=A(β) sin(ω(β)x) where A(β)=
√

β2+4
3 and ω(β)=

√
β
2 , we have

∫ 2π/ω(β)

0

(
1

2

(
u′′2 − βu′2

)+ 1

4

(
u2 − 1

)2
)

dx < 0 (5.19)

if β > β∗ =
√

2
√

6− 4 = 0.9481 . . . . It follows that the functional is unbounded from
below whenever β > β∗. Therefore, there exists 0 < β0 � β∗ such that for β > β0, the
functional is unbounded from below. We give in the next theorem a characterization of β0,
which shows also that the minimum of Fβ exists whenever β ∈ (−∞, β0].

THEOREM 5.11. Let β0 be defined by

β0 = sup
{
β > 0

∣∣ inf
E
Fβ � 0

}
.

Then β0 ∈ ]0, β∗ ] and for all β � β0, Fβ has a minimum which is an odd heteroclinic
solution of (5.18) with exactly one zero. Moreover, for all β > β0, Fβ is unbounded from
below.

PROOF. For u � 0, we have (u2 − 1)2/4 � (u − 1)2/4 so that Theorem 5.7 is valid for
β <

√
2. It follows from Lemma 5.6 and Theorem 5.7 that for small β > 0, there exists

u ∈ E such that Fβ(u)= infE Fβ . Also we deduce from (5.19) that β0 � β∗.
Notice now that infE Jβ0 � 0. If it were not the case, the same would hold true for β

near enough β0, which contradicts the definition of β0. Next, as β0 � β∗ <
√

2, we infer
from Theorem 5.7 that for any β � β0, Fβ has an odd minimizer having exactly one zero.

It follows also from Corollary 5.10 that if β0 < β <
√

2, Fβ is unbounded from below.
In case

√
2 � β the conclusion follows from (5.19). �

Numerical computations [87] seems to indicate that heteroclinic solutions of (5.18) exist
at least until β ≈ 2.32. Theorem 5.11 shows that for β > β0, these critical points are not
global minima.

5.3. Notes and further comments

1. The solution u obtained in Theorem 5.2 can be seen as a heteroclinic solution in a weak
sense as it does not satisfy in general the usual conditions at ±∞, namely

lim
x→±∞

(
u,u′, u′′, u′′′

)
(x)= (±1,0,0,0).
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However the limits for u and u′ hold and it is easily seen that u is in the manifold of
zero energy which is the case for classical heteroclinics. Indeed, the conservation of the
Hamiltonian

H
(
u, u′, u′′, u′′′

)= u′′′u′ − 1

2
u′′2 − 1

2
g(u)u′2 + f (u),

implies H(u(x)u′(x), u′′(x), u′′′(x))=E for any x ∈R and some E ∈R. Assume E �= 0
and let (xn)n ⊂ R

+ be such that xn →+∞ and (u′′(xn))n ⊂ R is a bounded sequence.
Then we have

∫ xn

0

(
u′′′u′ − 1

2
u′′2 − 1

2
g(u)u′2 + f (u)

)
dx =Exn.

Integrating by parts the first term of the left hand side, we notice that the integral is bounded
contradicting the equality.

If in addition to the hypotheses of Theorem 5.2 we suppose that f satisfies for some
0 < b < 1/2 and β > 0,

f (u)

(u− 1)2
� β, for all u ∈ (1− b,1+ b),

f (u)

(u+ 1)2
� β, for all u ∈ (−1− b,−1+ b),

then it is easily seen that a minimizer u of F in H satisfies u+ 1 ∈ L2(R−) and u− 1 ∈
L2(R+). Now, as we also have u′′ ∈ L2(R), we infer by interpolation that u′ ∈ L2(R)

and thus the minimizer u actually satisfies u+ 1 ∈H 2(R−) and u− 1 ∈H 2(R+). Using
Eq. (5.3), we conclude that u′′′′ ∈ L2(R) which in turn by interpolation implies u − 1 ∈
H 4(R+) and u+ 1 ∈H 4(R−). The limits at ±∞ for u′′ and u′′′ follow now easily.

Notice that the above additional assumptions hold if −1 and +1 are nondegenerate min-
ima of f .

2. Theorem 5.7 can be extended to a nonsymmetric functional, assuming for instance that
for some k1, k2 > 0, β1, β2 ∈R,

f (u) � k1(u− 1)2, g(u) �−β1 for u � 0,

f (u) � k2(u+ 1)2, g(u) �−β2 for u < 0

and βi <
√

8ki for i = 1,2. However, the proof is much more involved and requires the
cutting method we introduce in the following section.

3. A sharp estimate of the critical parameter β0 introduced in Theorem 5.11 is still miss-
ing. A very rough estimate can be obtained via Lemma 5.6 and an estimate of the best
constant for the interpolation inequality used therein. However, this estimate is far from
the numerical observation of van den Berg who claims β0 ≈ 0.92, see Conjecture 7 in [87].
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4. Let us define E+0 as the cone of positive functions in E+, i.e.

E+0 :=
{
u ∈ E+

∣∣ u(x) > 0 for x > 0
}

and F+β :E+ →R the restricted functional

F+β (u)=
∫ +∞

0

(
1

2

(
u′′2 − βu′2

)+ 1

4

(
u2 − 1

)2
)

dx.

It follows from Theorem 5.11 that F+β has a minimizer in E+ for every β � β0. Moreover

this minimizer belongs to the interior of E+0 . Indeed, as mentioned in Section 4.1, the
Hamiltonian

H
(
u,u′, u′′, u′′′

)= u′′′u′ − 1

2
u′′2 − β

2
u′2 + (u2 − 1)2

4

is constant along solutions. As for any minimizer ϕ, H(ϕ, ϕ′, ϕ′′, ϕ′′′)= 0 and ϕ′′(0)= 0,
we deduce from the conservation of the Hamiltonian that ϕ′(0) > 0. On the other hand, we
deduce from Step 2 of the proof of Theorem 5.7 that

inf
E+0

F+β >−∞

for every β <
√

2. Hence it is natural to ask if F+β has a local minimizer in the interior

of E+0 for β0 � β <
√

2. To our knowledge, this question remains open. However, we
can observe that an argument of continuity implies that the answer is positive at least for β
close to β0. Indeed, it is easily seen that F+β has a local minimizer in E+0 for every β <

√
2.

For β � β0, we can prove that the minimizers cannot be on the boundary of E+0 so that

F+β0
(ϕβ0) < inf

∂E+0
F+β0

, (5.20)

where ϕβ0 is a minimizer of F+β0
. On the other hand, we have for β1 <

√
2 and β ∈ [β0, β1],

F+β (u)=F+β1
(u)+ β1 − β

2

∫ +∞

0
u′2 dx �−C + β1 − β

2

∫ +∞

0
u′2 dx.

We now infer from this last estimate that any function u ∈ E+0 satisfying

F+β (u)= inf
∂E+0

F+β

is a priori bounded in E+ for β in any compact subinterval of [β0, β1[. It follows that the
inequality (5.20) holds true for β in a right neighborhood of β0, i.e.

F+β (ϕβ0) < inf
∂E+0

F+β .
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Since ϕβ0 is in the interior of E+0 , this means that the infimum of F+β in E+0 cannot be
achieved on the boundary.

6. A Ginzburg–Landau model for ternary mixtures: Connections between
nonconsecutive equilibria

A good example of phase transition phenomena is provided by the mixing–demixing tran-
sitions of a fluid. It is well known that oil and water do not mix so that a binary fluid
composed of oil and water has two separated homogeneous phases usually called oil-rich
and water-rich phases. Assuming that the essence of the transitions can be described in
terms of the concentration difference between oil and water, we introduce a scalar order
parameter φ which locally measures this difference. A Ginzburg–Landau model [36] then
yields for the free energy a functional of the form

F(φ)=
∫
R3

(
g0(∇φ)2 + f (φ)−μφ

)
dr. (6.1)

The function f is the free-energy density and μ is the chemical potential difference be-
tween oil and water. The free-energy density f is usually approximated by an even (due to
the symmetry under the interchange of the two components) fourth order polynomial

f (φ)= a2φ
2 + a4φ

4.

Thermodynamic stability of homogeneous phases requires that a4 > 0. When a2 < 0, there
is coexistence of water-rich and oil-rich phases at μ= 0, i.e. the two phases are at the same
level of energy.

The addition of an amphiphile into the fluid can provoke the formation of wealth of com-
plex self-assembled structures. An amphiphilic molecule consists of a polarizable head
which prefers the highly polarizable water environment and a hydrocarbon tail which
prefers the oil. The energy of the amphiphile is lowest when it can find or create sur-
faces between oil and water at which it can adsorb the other two components into various
structures. Adding a small amount of amphiphile to the fluid will not in general modify the
two-phase coexistence. The added amphiphile will partition itself between the two phases.
On the other hand, if for example the amphiphile is more present in the water phase, a third
phase can be made to appear by changing an external field such as the temperature or the
chemical potential of a fourth component. This new phase contains more of the amphiphile
and less of water and oil than the other two. Its density will be intermediate between that
of the water-rich and the oil-rich phases and will be therefore physically located between
them. Hence it is called the middle-phase.

Let us come back for a while to the free energy functional (6.1) of the binary fluid
oil-water. Thermodynamic quantities and correlation functions can be obtained by approx-
imation methods in which the functional F is minimized in the space of functions which
spatially connect the two phases. The minimizer φ is then the interfacial profile between
the oil-rich and the water-rich phase at coexistence.
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Fig. 3. The 3-stable system phase plane.

If we want to adapt the Ginzburg–Landau model (6.1) to describe the oil-water-
amphiphile mixtures and keep a single order parameter which still measures the density
difference between oil and water, we need to consider three-phase coexistence at μ = 0
so that f must have three minima at φ1 < φ2 < φ3 corresponding respectively to the bulk
phases oil-rich, middle and water-rich. Choosing their common value to be zero and assum-
ing only one spatial dependence, the interfacial profile, φ(x), between the oil-rich phase
which extends to x →−∞ and the water-rich phase which extends to x →+∞, then
solves the equation

2g0φ
′′ − f ′(φ)= 0 (6.2)

and the first integral

g0φ
′(x)2 − f

(
φ(x)

)= 0. (6.3)

From a simple phase-plane analysis, see Fig. 3, it is easily seen that the only trajectory
starting form φ1 at x→−∞ and going to φ3 at x→+∞ spends an infinite amount of
time in φ2, hence Eq. (6.2) has no solution φ satisfying φ(−∞)= φ1 and φ(+∞)= φ3. In
the ternary mixture problem, this corresponds to an infinite thickness of middle phase, φ2,
between the oil-rich and water-rich phases. In other words, the model predicts the middle
phase will always wet the interface between the oil- and water-rich phases, a prediction
contrary to the results of experiment.

A simple way proposed by Gompper and Schick [36] to overcome this consequence of
the model and yet consider a scalar order-parameter theory is to add a second order term
in the Lagrangian, considering therefore the functional

F(φ)=
∫
R3

(
c
(∇2φ

)2 + g(φ)(∇φ)2 + f (φ)−μφ
)

dr.

The function g, which quantifies the properties of the amphiphile, is negative close to the
middle-phase as it tends to create interfaces and positive in the oil and water phases. The
parameter c is positive and stabilizes the system.
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The aim of this section is to prove that this last functional does not suffer the defect of
the classical Ginzburg–Landau model (6.1) at least under some hypotheses on the nature
of the middle-phase equilibrium. In the sequel, we only consider a scalar order-parameter
φ with one spatial direction.

We consider a potential f ∈ C2(R) and a function g ∈ C2(R) satisfying (C1), (C4) and
(C2′) for some 0 < a < 1/2 and α > 0,

f (u)

(u− 1)2
� α, for |u− 1|< a,

f (u)

(u+ 1)2
� α, for |u+ 1|< a;

(C3′) f (u)= 0 if and only if u= 0 or u=±1.
We also introduce the additional condition

g(0)2 < 4f ′′(0).

This last condition implies that the trivial solution is a saddle-focus equilibrium for the
linear equation

u′′′′ − g(0)u′′ + f ′′(0)u= 0.

As observed in Section 5.1, if g(0) < 0 or (C1) holds with g = g̃, we just need f to be C2

in a neighborhood of 0 and f ′′(0) �= 0 as the inequality g(0)2 < 4f ′′(0) then holds.
Under the previous assumptions, it makes sense to consider the functional

F(u)=
∫ +∞

−∞

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx (6.4)

in the space

H :=
{
u ∈ C1(R), u′′ ∈ L2(R), u′ ∈ L∞(R) and lim

x→±∞u(x)=±1
}

and the associated Euler–Lagrange equation is given by

u′′′′ − g(u)u′′ − 1

2
g′(u)u′2 + f ′(u)= 0. (6.5)

Arguing as in Section 5, we observe that the functional (6.4) is bounded from below in H.

LEMMA 6.1. If f , g ∈ C(R) satisfy (C1), then there exists a constant s > 0 such that for
all u ∈H

F(u) � s

∫ +∞

−∞

(
u′′2

2
+ f (u)

)
dx.
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The main theorem of the section goes as follows.

THEOREM 6.2. Suppose that f , g ∈ C2(R) satisfy (C1), (C2′), (C3′) and (C4). If g(0)2 <

4f ′′(0), there exists a minimizer u of F in H which is a solution of (6.5).

In comparison with Theorem 5.2, the additional condition g(0)2 < 4f ′′(0) allows to
consider a potential f with a third bottom at 0. We do not know if Theorem 6.2 holds
without this assumption.

The idea of the proof of Theorem 6.2 is identical to that of Theorem 5.2. We thus search
for a control on the time it takes for a quasi-minimizer to travel from a neighborhood of
(−1,0) to a neighborhood of (+1,0) in the uu′-plane. Observe that the presence of the
third zero of the potential rules out some of the arguments used in the proof of Theo-
rem 5.2. On the other hand, we easily obtain a control on time intervals from (−1,0) to
(0,0) and (0,0) to (+1,0). To complete the arguments, we just need a control on the time
quasi-minimizers spend close to 0. This control is obtained thanks to the additional con-
dition that 0 is a saddle-focus. Basically, we show in Section 6.1 that due to the nature of
the equilibrium, the local minimizers of (6.4) close to 0 (in the phase space) change sign in
every interval of length larger than a fixed constant. We then introduce in Section 6.2 a clip-
ping procedure which roughly speaking ensures that the quasi-minimizers are monotonic
close to 0. This technique was first used by Kalies et al. [42]. The local analysis close to 0
then implies that quasi-minimizers do not spend much time close to 0. We give the proof
of Theorem 6.2 in Section 6.3.

6.1. Local analysis of a saddle-focus equilibrium

We now focus on the local minimizers close to a saddle-focus equilibrium. To fix the ideas
and to simplify the notation, we assume that f is a potential for which 0 is a nondegenerate
global minimum and g is such that 0 is a saddle focus equilibrium of the linear equation

u′′′′ − g(0)u′′ + f ′′(0)u= 0, (6.6)

i.e. g(0)2 < 4f ′′(0). Basically, the following lemma shows that the minimizers of the func-
tional

F[a,b](u) :=
∫ b

a

(
1

2

((
u′′2

)+ g(u)u′2
)+ f (u)

)
dx (6.7)

on the set

Ha,b :=
{
v ∈H 2(a, b)

∣∣ (u(a),u′(a))= y0 and
(
u(b),u′(b)

)= y1
}

are small (for the C3-norm) whenever y0 and y1 are small. It then follows that the oscil-
latory behaviour of the solutions of the linearization (6.6) around the equilibrium extends
to these minimizers. The following lemma is adapted from Theorem 4.1 [42] where it is
assumed that g is positive.
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LEMMA 6.3. Let f and g ∈ C2(R) be such that f (u) � 0 for all u ∈R, f (0)= f ′(0)= 0
and assume (C1) holds. Assume moreover that f ′′(0) �= 0. Then, there exist δ0 > 0 and
S > 1 such that if b − a � 1, ‖y0‖ � δ0, ‖y1‖ � δ0 and u minimizes F[a,b] on Ha,b , we
have

‖u‖C3([a,b]) � S max
(‖y0‖,‖y1‖

)
. (6.8)

PROOF. As 0 is a nondegenerate minimum of f , there exist δ0 > 0, η > 0 and ζ > 0 such
that |f ′(u)|� 2η|u| and ζu2 � f (u) � ηu2 for |u|� δ0. Notice also that using integration
by parts and arguing as in Lemma 5.1, we see that there exists s > 0 such that for any
function u ∈H 2(a, b),

F[a,b](u) � s

∫ b

a

(
u′′2

2
+ f (u)

)
dx + 1

2

(
G̃
(
u(b)

)
u′(b)− G̃

(
u(a)

)
u′(a)

)
,

(6.9)

so that F[a,b] is bounded from below on Ha,b . The existence of a minimizer follows by
standard arguments. Moreover, if u is a minimizer, u solves (6.5) on [a, b] and satisfies the
boundary conditions (u(a),u′(a))= y0 and (u(b),u′(b))= y1.

CLAIM 1. There exists C1 > 0 and δ1 > 0 such that if ‖y0‖� δ � δ1 and ‖y1‖� δ � δ1,
then infHa,b

F[a,b] � C1δ
2.

Define P(x) as follows:

P(x)=

⎧⎪⎨
⎪⎩
P0(x) if a � x � a + 1

2 ,

0 if a + 1
2 < x � b− 1

2 ,

P1(x) if b− 1
2 < x � b,

where Pi , i = 0,1, are the third degree polynomials satisfying (P0(a),P
′
0(a)) = y0,

(P1(b),P
′
1(b))= y1 and (P0(a + 1

2 ),P
′
0(a + 1

2 ))= (P1(b − 1
2 ),P

′
1(b − 1

2 ))= (0,0). Ob-
serve that there exists 0 < δ1 � δ0 such that if ‖y0‖ � δ � δ1 and ‖y1‖ � δ � δ1, then
‖P ‖L∞ � δ0. It then follows from an easy computation that

inf
Ha,b

F[a,b] � F[a,b](P ) � C1δ
2,

where C1 > 0 essentially depends on η and ‖g‖L∞(−δ0,δ0).

CLAIM 2. There exists δ2 > 0 such that if u is a minimizer in Ha,b with ‖y0‖ � δ2 and
‖y1‖� δ2, then ‖u‖∞ � δ0.

The ideas we use to prove the claim are already included in the proof of Proposition 5.3.
Observe that the minimizers of F[a,b] in Ha,b are a priori bounded in C1([a, b]). Indeed,
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this follows easily arguing as in the first part of the proof of Proposition 5.3. We denote by
L the C1-bound. Consider next the set

Da,b :=
{
u ∈Ha,b

∣∣ for all x ∈ [a, b], ∣∣u(x)∣∣ � δ0
}
.

Let us fix the notation Nδ0 := [−δ0, δ0]. We then define

μ :=min
{
f (u) | u ∈Nδ0 \Nδ0/2

}
> 0,

ν :=max
{∣∣G̃(u)

∣∣ ∣∣ u ∈Nδ0

}
� 0.

As in Part 2—Step 2 of the proof of Proposition 5.3, we can derive a lower estimate on
the action of functions u ∈Ha,b whose graphs do not stay in the strip [a, b]×Nδ0 . Indeed,
suppose u ∈Ha,b \Da,b minimizes F[a,b] in Ha,b with ‖y0‖� δ � δ1 and ‖y1‖� δ � δ1.
Then

F[a,b](u) � sμδ0

2L
− νδ. (6.10)

On the other hand, we infer from Claim 1 that

F[a,b](u) � C1δ
2.

Choosing δ2 > 0 small enough and 0 < δ � δ2, the estimate (6.10) yields a contradiction
so that u ∈Da,b and the claim follows.

CLAIM 3. There exists C2 > 0 such that if u is a minimizer in Ha,b with ‖y0‖ � δ � δ2
and ‖y1‖� δ � δ2, then ‖u‖C3 � C2δ.

Assuming that ‖y0‖� δ � δ2 and ‖y1‖� δ � δ2, we deduce from the estimate (6.9) that

‖u‖L2 � Cδ and
∥∥u′′∥∥

L2 � Cδ.

Indeed, the L2-bound for u′′ follows easily while for the bound on u, it is sufficient to
observe that f is bounded from below by the parabola ζu2 for |u| � δ0. We now deduce
by interpolation that

∥∥u′∥∥
L2 � C

(‖u‖L2 + ∥∥u′′∥∥
L2

)
� Cδ.

The constant C can be chosen independent of the length b− a as far as b− a � 1, see [1].
Using the continuous injection of H 2(a, b) into C1([a, b]), we deduce that

‖u‖C1 � Cδ.

Observe that we can still choose a constant C that does not depend on the length of [a, b]
as b− a � 1. The differential equation (6.5) then yields the estimate

∥∥u′′′′∥∥
L2 � Cδ
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so that by interpolation we also have

∥∥u′′′∥∥
L2 � Cδ.

Now, the bound in C3 follows from the bound in H 4 and the continuous injection in C3. �

LEMMA 6.4. Suppose that the assumptions of Lemma 6.3 hold and assume furthermore
that g(0)2 < 4f ′′(0). Then there exist δ0 > 0 and τ0 > 0 such that if b− a � 1, ‖y0‖� δ0,
‖y1‖� δ0, max(‖y0‖,‖y1‖) > 0 and u minimizes F[a,b] on Ha,b , u changes sign on every
subinterval of [a, b] having length larger than τ0.

The proof is included in Theorem 4.2 in [42]. A slight modification of Lemma 5.9 also
leads to the conclusion. It is easily seen that the assumption on the convergence of the
solution to the equilibrium in Lemma 5.9 can be replaced by a condition ensuring that the
solution remains close (for the C3-norm) to 0. Here, thanks to Lemma 6.3, the smallness
of the boundary conditions on u and u′ suffices to obtain such a control.

6.2. Clipping

Next, we recall the clipping procedure as introduced in [42]. When minimizing a functional
in a certain space, we often want to be able to modify locally any function by another one
being in the same space, having better properties and lower action. When dealing with a
second order equation and its associated functional, we usually only have to worry about
keeping functions continuous so that pieces of graph can be easily discarded. As our func-
tional F requires square integrable second order derivative, things are more complicated.
For example, any modification has to keep the functions at least C1. Let us describe ad-
missible cutoffs.

DEFINITION 6.5. Let u ∈ C1[a, b]. If u(α)= u(β) and u′(α)= u′(β) for some α < β in
[a, b], we say that the interval [α,β] can be clipped out meaning that we can define a C1

function û on the interval [a, b− (β − α)] which coincides with u and the β − α translate
of u|[β,b] respectively on the intervals [a,α] and [α,b− (β−α)]. The function û is defined
by

û(x) :=
{
u(x) if x ∈ [a,α],
u(x + β − α) if x ∈ [

α,b− (β − α)
]
.

We say that û is a clip of u.

Observe that in case the Lagrangian

Lg

(
u,u′, u′′

)= 1

2

(
u′′2 + g(u)u′2

)+ f (u)
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is positive, the clipping process has the nice property that if u ∈H and û is a clip of u, then

F(û) � F(u).

When Lg(u,u
′, u′′) changes sign, this is no more true. However, we show below in Lemma

6.7 that under the assumption (C1), the clipping process decreases the action.
The following lemma gives the basic tool for clipping functions. It generalizes Lemma

3.1 in [42].

LEMMA 6.6. Let s1 < s2 < s3 < s4 and let u ∈ C1(s1, s4) be such that

u(s1)= u(s3), u(s2)= u(s4),
(
u′(s1)− u′(s3)

)(
u′(s2)− u′(s4)

)
� 0.

Assume, moreover, that

u(s1) < u(s) < u(s2) for all s ∈ ]s1, s2[,
and

u(s3) < u(s) < u(s4) for all s ∈ ]s3, s4[.
Then there exist α ∈ [s1, s2], β ∈ [s3, s4] such that the interval [α,β] can be clipped out.

PROOF. Consider the set

E := {
(x, y) ∈ [s1, s2] × [s3, s4]

∣∣ u(x)= u(y)
}
.

It follows from degree arguments that there exists a connected set H ⊂ E that contains
(s1, s3) and (s2, s4). Next we define the function ϕ :H →R by

ϕ(x, y)= u′(x)− u′(y).

Since

ϕ(s1, s3)ϕ(s2, s4) � 0,

the continuity of ϕ leads to the conclusion. �

A typical example where Lemma 6.6 applies is displayed in Fig. 4.
As we already mentioned, the clipping procedure plays a key role to control and modify

minimizing sequences. We therefore need to check that any clip has a lower action than the
original function. This is the case when (C1) holds.

LEMMA 6.7. Suppose that f ∈ C(R) is a nonnegative function and g ∈ C(R) satisfies
(C1). If u ∈H 2(a, b) and û ∈H 2(a, b− (β − α)) is a clip of u, then

F[a,b−(β−α)](û) � F[a,b](u),
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Fig. 4. The clipping process. Lemma 6.6 applies with s1 < s2 < s3 < s4 so that a subinterval [α,β] can be clipped
out.

where F[a,b] is defined by (6.7).

PROOF. We compute

F[a,b−(β−α)](û)=F[a,α](u)+F[β,b](u)=F[a,b](u)−F[α,β](u)

and arguing as in Lemma 5.1, we infer that

F[α,β](u) � s

∫ β

α

(
u′′2

2
+ f (u)

)
dx + 1

2

(
G̃
(
u(β)

)
u′(β)− G̃

(
u(α)

)
u′(α)

)
.

Since u(α)= u(β), u′(α)= u′(β), we obtain the inequality

F[α,β](u) � 0

so that the result follows. �

6.3. Existence of a minimizer

As for Theorem 5.2, the proof of Theorem 6.2 relies on the control and the localization of
a minimizing sequence.

PROPOSITION 6.8. Suppose that f , g ∈ C2(R) satisfy (C1), (C2′), (C3′) and (C4). Then
there exists L> 0, T > 0 and a sequence (un)n∈N ⊂H such that F(un)→ infHF and for
all n ∈N,

(i) ‖un‖C1 � L,
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(ii) |un(x)+ 1|� a for all x �−T and |un(x)− 1|� a for all x � T .

The proof of property (i) follows exactly the lines of the proof of Proposition 5.3, Part 1.
We divide the proof of the second statement in three main steps. In Step 1, we approximate
the minimum of F with functions that stay close to ±1 at ±∞. Step 2 estimates the time
for a function u ∈ H to travel in the (u,u′)-plane from neighborhoods of (±1,0) to a
neighborhood of (0,0). Finally, in Step 3, we show that functions in H that stay close to 0
with small velocity can be replaced, using the clipping procedure, by functions that spend
in such a neighborhood a time which is a priori bounded.

PROOF. The proof of the first statement has been worked out in the proof of Proposi-
tion 5.3. We therefore restrict our attention to the proof of the conclusion (ii).

Let (un)n ⊂H be a minimizing sequence for F . We can assume without loss of gener-
ality that F(un) � C � infHF +1. Let ε > 0 be fixed and such that Sε � δ0, where δ0 > 0
and S > 1 are given by Lemma 6.3 and Lemma 6.4. For each n ∈N, we define

x1 := sup
{
x
∣∣ ∣∣un(x)+ 1

∣∣ � ε and
∣∣u′n(x)∣∣ � ε

}
,

and

x4 := inf
{
x
∣∣ ∣∣un(x)− 1

∣∣ � ε and
∣∣u′n(x)∣∣ � ε

}
.

Step 1. Modification of un in ]−∞, x1] and [x4,∞[. For all n ∈N, there exists a function
vn ∈ H such that for all x � x1, |vn(x) + 1| � a, for all x � x4, |vn(x) − 1| � a and
F(vn) � F(un).

This step is similar to Part 2—Step 2 of the proof of Proposition 5.3 so that we skip it.
Step 2. Estimates on time intervals. Define for all n ∈N,

x2 := inf
{
x � x1

∣∣ ∣∣vn(x)∣∣ � ε and
∣∣v′n(x)∣∣ � ε

}

and

x3 := sup
{
x � x4

∣∣ ∣∣vn(x)∣∣ � ε and
∣∣v′n(x)∣∣ � ε

}
.

Notice that x2 and x3 need not exist. Arguing as in Part 2—Step 1 of the proof of Proposi-
tion 5.3, we obtain a bound T1 on x2 − x1 and x4 − x3, or on x4 − x1 if x2 and x3 do not
exist.

Step 3. Modification in [x2, x3]. If x2 and x3 do not exist, this step can of course be
skipped.

CLAIM 1. For all n ∈N, there exists a function wn which minimizes F in

H2,3 :=
{
w ∈H |w = vn on R \ [x2, x3]

}
.
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Indeed, we can replace vnby a minimizer of F in H2,3. Such a function wn exists and
satisfies F(wn) � F(vn). Further, it solves the differential equation (6.5) on [x2, x3] to-
gether with the boundary conditions

wn(x2)= vn(x2), w′n(x2)= v′n(x2), wn(x3)= vn(x3), w′n(x3)= v′n(x3).

CLAIM 2. For each n ∈ N, if x3 − x2 � max(1,8τ0), where τ0 is given from Lemma 6.4,
the function wn can be replaced by a clip ŵn ∈H so that after clipping the interval [x1, x4]
is transformed into an interval of length smaller than (x2− x1)+max(1,8τ0)+ (x4− x3).
Further, we have F(ŵn) � F(wn).

Define

x′2 :=max
{
x � x2

∣∣ ∣∣wn(x)
∣∣= δ0

}
and x′3 :=min

{
x � x3

∣∣ ∣∣wn(x)
∣∣= δ0

}
.

It follows from Claim 1 and Lemma 6.3 that |wn(x)| � Sε � δ0 for all x ∈ [x2, x3] and
therefore also for all x ∈ [x′2, x′3].

Suppose first that wn(x
′
2)=−δ0 and wn(x

′
3)= δ0. Define

s2 :=min
{
x ∈ [

x′2, x′3
] ∣∣w′n(x)= 0 and wn(x) � 0

}
,

s4 :=max
{
x ∈ [

x′2, x′3
] ∣∣wn(x)=wn(s2)

}
,

s3 :=max
{
x ∈ [

s2, s4
] ∣∣w′n(x)= 0

}

and take

s1 :=max
{
x ∈ [

x′2, s2
] ∣∣wn(x)=wn(s3)

}
.

Observe that Lemma 6.4 ensures the existence of s2 and moreover s2 ∈ [x′2, x2 + 2τ0].
Also, s3 ∈ [x3 − 2τ0, x

′
3]. Further, we can apply Lemma 6.6 to the function wn on [s1, s4]

and discard the restriction of wn to some interval [α,β] containing [s2, s3]. We denote by
ŵn the clip of wn. Namely, we define

ŵn(x) :=
{
wn(x) if x ∈ [a,α],
wn(x + β − α) if x ∈ (

α,b− (β − α)
)
.

Letting x∗4 := x4 − (β − α), we have

x∗4 − x1 � (x4 − x3)+ 4τ0 + (x2 − x1).

If wn(x
′
2)= δ0 and wn(x

′
3)=−δ0, we use the same argument.

Assume now that wn(x
′
2) = −δ0 and wn(x

′
3) = −δ0. Let q ∈ [x′2, x′3] be such that

maxx∈[x′2,x′3]wn(x) = wn(q). Notice that Lemma 6.4 implies wn(q) > 0 and hence we
can apply the preceding argument to each of the intervals [x′2, q] and [q, x′3]. Here, de-
noting by x∗∗4 the point into which x4 is transformed, we have after clipping, x∗∗4 − x1 �
(x4 − x3)+ 8τ0 + (x2 − x1).
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The case wn(x
′
2)= δ0 and wn(x

′
3)= δ0 is handled similarly.

Conclusion of Step 3. For each n ∈N, there exists a function ŵn ∈H (ŵn =wn if x3−x2 �
max(1,8τ0)) which satisfies F(ŵn) � F(wn) and

∣∣ŵn(x)+ 1
∣∣ � a for all x � x1,∣∣ŵn(x)− 1
∣∣ � a for all x � x′4,

for some x′4 ∈R such that

x′4 − x1 � 2T1 +max(1,8τ0),

where T1 is defined in Step 2.

Conclusion. Taking

T = T1 + 1

2
max(1,8τ0)

and using a time-translation if necessary, we finally construct a minimizing sequence
(zn)n ⊂ H that satisfies the second statement of Proposition 6.8. Notice that in case x2
and x3 are not defined, we can choose

T = T1

2
� 1

2
(x4 − x1). �

Now that we have at hand a minimizing sequence satisfying Proposition 6.8, the proof
of Theorem 6.2 follows the lines of the proof of Theorem 5.2.

6.4. Notes and further comments

1. As discussed in the first note of Section 5, the minimizer obtained in Theorem 6.2 is a
heteroclinic solution in a weak sense.

2. Other Ginzburg–Landau models for ternary mixtures have been proposed in the litera-
ture, including two-order-parameter and three-order-parameter models, see [36]. In these
models, a second scalar parameter ψ which describes the local concentration of amphiphile
is introduced. Simple cases have been studied numerically by physicists but up to our
knowledge the corresponding type of functional has not been treated mathematically.

7. Multi-transition connections

We consider again the case of a bi-stable equation. We already mentioned in Section 4.3
that when ±1 are saddle-focus equilibria, the extended Fisher–Kolmogorov equation (4.3)
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has infinitely many solutions that can be classified according to their homotopy type. In
this section, we focus on multi-transition solutions which correspond to solutions of type
g = (g1, . . . , gn), n ∈N0, with gi = 2 for all i = 1, . . . , n.

Considering again the functional

F(u)=
∫ +∞

−∞

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx (7.1)

whose Euler–Lagrange equation is given by

u′′′′ − g(u)u′′ − 1

2
g′(u)u′2 + f ′(u)= 0, (7.2)

we assume that the function f is a positive symmetric double-well potential with bottoms
at ±1 and g is an even function which is not necessarily constant. Since f and g are even,
arguing as in Section 4.2, we can restrict our attention to odd solutions. We thus look at the
critical points of the functional

F+(u)=
∫ +∞

0

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx (7.3)

in the space

E+ = {
u | u− 1 ∈H 2(

R
+), u(0)= 0

}
. (7.4)

If F+ has a minimizer u then u′′(0)= 0 and extending u on R by

u∗(x)=
{−u(−x) if x < 0,
u(x) if x � 0

(7.5)

we obtain an odd solution of (7.2).
We expect multi-transition solutions when the equilibria ±1 are saddle-foci, i.e. when

g(1)2 < 4f ′′(1). We obtain these solutions by odd extension of local minima of the func-
tional F+ in appropriate subsets of E+. Basically, these subsets correspond to classes
of functions having the desired number of transitions. We define for each n � 0, the
subset E+n ⊂ E+ consisting of functions whose odd extensions on R make 2n + 1 tran-
sitions. More precisely, a function u ∈ E+ belongs to the subclass E+n if there exist
0= x0 < x1 < · · ·< xn < xn+1 =∞ such that

u(x)(−1)i+n > 0 for x ∈ (xi, xi+1),

max
(xi ,xi+1)

u(x)(−1)i+n > 1.

We prove that F+ has a local minimum in each of these subspaces in the following
situation.
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THEOREM 7.1. Let f and g ∈ C2(R) satisfy (C1), (C3) and (C4). Assume moreover that
g(1)2 < 4f ′′(1). Then, for every n ∈N, F+ has in each subspace E+n , a local minimizer un
whose odd extension on R is a heteroclinic solution of (1.8) having exactly 2n+ 1 zeros.

For a function u ∈ E+n , we denote by Ii the intervals (xi, xi+1) for i = 0, . . . , n where by
convention x0 = 0 and xn+1 =∞. The main idea in the proof of Theorem 7.1 is to show
the existence of a minimizing sequence (up)p ⊂ E+n that has the following properties:

(a) there exists I > 0 such that for all up , |Ii |� I for all i = 0, . . . , n− 1;
(b) for all ε > 0, there exists T > 0 such that for all up , |up(x)− 1|� ε for x � T .

These two properties are closely related as they prevent from a loss of compactness when
extracting a weakly converging subsequence. We do not enter into the details of the proof
of the existence of a minimizing sequence having properties (a) and (b). Indeed, the details
are rather technical and do not bring new arguments with respect to the previous sections.
The control on the length of the intervals Ii is obtained thanks to the clipping procedure
discussed in Section 6.2 and the oscillatory behaviour of minimizers close to the equilibria
±1 described in Section 6.1. The scheme of the arguments is as follows. Let us suppose to
fix the ideas that up is positive on the interval Ii . As the assumptions of Lemma 5.1 hold,
the second derivative and the potential are the significant terms in F+. An analysis similar
to that of Section 5.1 then shows that the only way for the Ii ’s to grow to infinity is that the
up’s stay on growing intervals in a neighborhood of+1. But in this case, arguing as in Step
3 of the proof of Proposition 6.8, we can locally replace up by a minimizer close to +1
and clip this minimizer to obtain a function which stays close to +1 in an a priori bounded
interval. Once the minimizing sequence satisfies (a), the property (b) follows from the
arguments of Section 5.1.

We now turn to the proof of Theorem 7.1. The main difficulty is to ensure that the
minimizing sequence does not loose or gain complexity in the limit.

PROOF OF THEOREM 7.1.
Step 1. Convergence. Let (up)p ⊂ E+n be a minimizing sequence for F+ that satisfies

the properties (a) and (b). Arguing as in the previous sections, we infer that up converges
in C1

loc to some function u ∈ E+ which is such that

F+(u) � inf
E+n

F+.

We denote the extremities of the intervals I
up
i by x

p
i , i = 0, . . . , n. It is clear by uniform

convergence that up to a subsequence, for all i = 1, . . . , n, xpi converges to some xi < T .
Remember that by convention, we set xp0 = x0 = 0 and x

p

n+1 = xn+1 =∞. We call Ii the
intervals (xi, xi+1), i = 0, . . . , n. We also deduce from the convergence in C1([0, T ]) and
the convergence in C1

loc([T ,+∞[) that

u(x)(−1)i+n � 0 for x ∈ (xi, xi+1),

max
(xi ,xi+1)

u(x)(−1)i+n � 1.
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Step 2. Elimination of the zeros of u after xn. If u has zeros after xn, we first modify it
to keep only one of those zeros. So, suppose that u vanishes at least two times after xn. We
then define

a1 :=min
{
x > xn | u(x)= 0

}
and a2 :=max

{
x > xn | u(x)= 0

}
.

Since u(a1) = u(a2) = u′(a1) = u′(a2) = 0 by convergence in C1
loc, the interval [a1, a2]

can be clipped out and the clip has only one zero after xn. Of course this modification
decreases the action.

Assume now that u vanishes at some point ξ > xn. We then have u′(ξ) = 0. Now as
u(xn)= u(ξ), there exists at least one critical point y between xn and ξ such that u(y) > 0.
Here, we have two possibilities, either y can be taken in such a way that u(y) � 1 or [0,1]
does not contain any critical value of u|[xn,ξ ] .

Suppose first that we can find y ∈ (xn, ξ) such that 0 < u(y) � 1 and u′(y) = 0. As
u ∈ E+,

lim
x→∞

(
u(x),u′(x)

)= (1,0).

Hence, by an argument similar to that of the proof of Lemma 6.4, we see that u(x) oscillates
around 1 for x large enough. Therefore, we can clip out an interval containing [y, ξ ] in such
a way that the clip of u does not vanish after xn.

In the second case, we can find y ∈ (xn, ξ) such that u(y) > 1 and if x ∈ (xn, ξ) satisfies
u′(x)= 0, then u(x) > 1. We now define v ∈ E+ by

v(x) :=
{−u(x + x1) if 0 � x � ξ − x1,
u(x + x1) if x > ξ − x1.

Observe that since min[xn−x1,ξ−x1] v(x) <−1 and v is negative in (xn − x1, ξ − x1), v has
the right number of transitions. Also, v does not vanish after ξ − x1. On the other hand, we
deduce from Lemma 5.1 that

∫ x1

x0

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx � 0

so that F+(v) �F+(u).
Step 3. Elimination of the zeros of v in the bumps. We still denote by 0= x0 < x1 < · · ·<

xn, the extremities of the intervals Ii associated to v (actually, these are the intervals Ii
which have possibly been translated in Step 2). Suppose that there exists ξ ∈ v−1(0) so that
ξ �= xi for any i = 0, . . . , n. Hence, ξ lies in the interior of an interval Ii . To fix the ideas,
we assume that v is nonnegative therein and denoting by v(x̄i) the maximum of v over this
interval we assume that ξ is at the left of x̄i . Next, define ξ1 =min{x > xi | v(x)= 0} and
ξ2 = max{x ∈ [ξ1, x̄i] | v(x) = 0}. It is easily seen that an interval containing [ξ1, ξ2] can
be clipped out so that the zeros can be deleted.
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Step 4. Elimination of the tangencies with ±1. The last condition that we have to check
to be sure that v ∈ E+n is that

max
x∈Ii

∣∣v(x)∣∣> 1

for all i = 0, . . . , n. Assume that this condition fails to be true in one of the intervals
Ii . In this interval, we thus have maxx∈Ii |v(x)| = 1. Let τ ∈ Ii be such that |v(τ)| = 1
and v′(τ ) = 0. To fix the ideas, assume that v(τ) = 1, the second case being treated in
the same way. Let τ0 and δ0 be given by Lemma 6.4. As the action of the function 1
is zero, we can modify v without increasing its action by stretching the point τ to an
interval of arbitrary length and gluing the function 1 to both extremities, see [42]. Now,
we take a1, (respectively a2) at the left (respectively at the right) of τ in such a way that
0 < maxi=1,2 ‖(v(ai)− 1, v′(ai))‖ � δ0 and stretch τ to an interval of length τ0. We still
call v the function obtained after gluing 1 at τ and τ + τ0. It follows from Lemma 6.4 that
the minimizers of

∫ a2+τ0

a1

(
1

2

(
u′′2 + g(u)u′2

)+ f (u)

)
dx

on the set of functions u ∈ H 2(a1, τ0 + a2) that satisfy u(a1) = v(a1), u′(a1) = v′(a1),
u(a2 + τ0)= v(a2) and u′(a2 + τ0)= v′(a2) oscillate around 1. If we replace v locally by
a minimizer, we obtain a new function w such that

max
x∈Ii

∣∣w(x)
∣∣> 1

and F+(w) �F+(v).
Conclusion. It follows from the previous steps that we can construct w ∈ E+n such that
F+(w) � F+(u). Consequently, we have F+(w) = infEn F+. Now observe that for all
h ∈ H 2(R+) such that h(0) = 0, F+(w) � F+(w + th) for t sufficiently small. Indeed,
assume that there exists a sequence (tn)n tending to 0 such that F+(w) >F+(w+ tnh). If
w is in the interior of the class E+n , this is obviously a contradiction. In the case where w is
on the boundary of E+n i.e. if for some points xi , w(xi)=w′(xi)= 0, then even for t small,
w+ th can have more than one zero close to the xi ’s so that it does not belong necessarily
to E+n . However for t small enough, w + th has the right number of transitions and the
oscillations close to the points xi can be erased using the clipping procedure. Therefore,
for n large enough, modifying w+ tnh close to the xi ’s if necessary, we obtain a function
in E+n whose action is strictly smaller than F+(w). This contradicts the definition of w and
therefore w is a critical point of F+ in E+n . Finally, we infer from the conservation of the
Hamiltonian

H
(
u,u′, u′′, u′′′

)= u′′′u′ − 1

2
u′′2 − 1

2
g(u)u′2 + f (u)

that each minimizer is actually in the interior of E+n , i.e. each crossing with zero is trans-
verse. �
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7.1. Notes and further comments

1. Theorem 7.1 can be seen as a partial extension of the results of [42] to Lagrangians
that can take either signs. To deal with such Lagrangians, we only require an a priori
lower bound on the action along admissible functions. In Theorem 7.1, this lower bound
follows from assumption (C1). The conclusion of Theorem 7.1 holds also with the settings
of Theorem 5.7, see [18]. In this case we explicitly assume that the functional is bounded
from below.

2. Multi-transition solutions can also be obtained in the case of multi-well potentials. We
can for example consider the framework of Section 6 assuming then that each equilibrium
is of saddle-focus type.

3. The abundance of local minima suggests the existence of infinitely many other critical
points of minimax type. However the lack of a compactness property of the Palais–Smale
sequences makes the investigation of such solution very complicate. It would seem rather
natural that a solution obtained from a minimax principle based on deformations from one
local minimum to another one, behaves like the single-transition solutions obtained in The-
orem 4.4 for β � 0. Even for this range of β , the variational nature of the single-transition
solutions is unknown. D. Smets and J.B. van den Berg have used in [83] a modified func-
tional and mountain-pass arguments to catch a homoclinic solution of the Swift–Hohenberg
equation for almost every β ∈ ]−√8,0[.
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Preface

The method of lower and upper solutions is an elementary but powerful tool in the existence
theory of initial and periodic problems for semilinear differential equations for which a
maximum principle holds, even in cases where no special structure is assumed on the
nonlinearity (see, e.g., [150,118,112,39,41,117,98]). The aim of this work is to show that
this method is also quite effective for investigating the qualitative properties of solutions,
at the same extent of generality for which the existence theory is developed. Indeed, our
main purpose is to work out, under a minimal set of basic assumptions, a qualitative theory
for two sample classes of scalar periodic differential equations: the first order ordinary
differential equation

u′ = f (t, u) (1)

and the second order parabolic problem

∂tu+A(x, t, ∂x)u= f (x, t, u,∇xu) in �× I,

u= 0 on ∂�× I.
(2)

Here I ⊆ R is an interval, � ⊂ R
N is a bounded smooth domain, ∂tu+ A(x, t, ∂x)u is a

uniformly parabolic differential operator, with time-periodic coefficients, and the functions
f are time-periodic and satisfy suitable Carathéodory conditions. We must stress that un-
der these assumptions neither uniqueness for the initial value problem associated with (1)
and (2), nor validity of comparison principles are guaranteed. Accordingly, the qualitative
analysis of these equations cannot be performed applying the theory of order preserving
dynamical systems as given, for instance, in [60]. In this general setting we will actually
ascertain, already for the easy-looking equation (1) and unlike the regular case, the occur-
rence of very complicated dynamics, so that even the explicit knowledge of a distinguished
class of solutions (such as equilibria, or periodic solutions) is generally not sufficient to get
a global qualitative portrait.

We are especially interested here in studying, with the aid of lower and upper solutions,
the following three basic questions about (1) and (2):

(i) existence of periodic solutions of (1), or (2), and their localization;
(ii) qualitative properties of periodic solutions of (1), or (2), with special reference to

their stability or instability;
(iii) asymptotic behaviour of solutions of the initial value problem associated with (1),

or (2).
This program is pursued in the first part of this work for (1) and in the second part for (2);

however, as it is quite predictable, exhaustive results can be obtained only for (1). Prob-
lems (1) and (2) share relevant similarities from the qualitative point of view. In fact Eq. (2)
looks like a natural extension of (1), which in turn represents a simple, but nontrivial, par-
adigm of the patterns that can be possibly displayed by the dynamics of (2). Nevertheless,
they exhibit several differences, which appear already evident developing the existence the-
ory for the initial and the periodic problems in the presence of lower and upper solutions.
Hence the two equations require separate treatments. We chose to describe here just basic
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results and to select a small number of examples or applications; further material can be
found in [112] for (1) and in [42] for (2).

Although the method of lower and upper solutions applies to a larger class of boundary
value problems, we decided to restrict our attention to the above two ones only. In particu-
lar, a remarkable topic which is completely left out here concerns the second order periodic
ordinary differential equation

u′′ = f
(
t, u,u′

)
on I. (3)

In this context a theory of the stability of periodic solutions, exploiting lower and upper
solutions, started in [72] and has been recently developed in [116,36,111,109]. This omis-
sion is however not only dictated by the necessity of keeping our work within a reasonable
length, but it is also motivated by the fact that the study of (3) relies on somewhat different
techniques from the ones we use here; further, more regularity is required on f and at the
moment the results are less complete.

1. First Order Periodic ODEs

1.1. Introduction

In this part we consider the first order scalar ordinary differential equation

x′ = f (t, x). (1.1)

We assume that f : R × R → R is periodic in t with period T > 0 and satisfies the
L1-Carathéodory conditions. Associated with (1.1), we consider the Cauchy problem

x′ = f (t, x), x(t0)= x0, (1.2)

where t0, x0 ∈R are given, and the periodic problem on [0, T ]

x′ = f (t, x), x(0)= x(T ). (1.3)

Solutions of (1.1), (1.2), (1.3) are intended in the Carathéodory, i.e. W 1,1
loc -, sense. Since any

solution of (1.3) on [0, T ] extends to a T -periodic solution of (1.1), it will also be referred
to as T -periodic.

Existence, multiplicity, localization and qualitative properties of solutions of (1.3) have
been investigated using various approaches (see, e.g., [91,122,147,99,95,148,94,108,28,
142,113] and the included references). In particular, when f is a polynomial in x with
coefficients T -periodic in t , the interest of the results that have been obtained stems from
their connections with Hilbert Sixteenth Problem about the number of limit cycles of au-
tonomous plane polynomial systems (see, e.g., [87,88,85,135,4,62,63,24]), or from their
applications to the study of single species population models in a periodically fluctuating
environment (see, e.g., [74,131,31,30,43,129,132,14,96,146,19,97]).



Qualitative analysis of first order periodic evolutionary equations 207

The knowledge of the T -periodic solutions of (1.1) is also the basic step in the realization
of the Poincaré program, that is the determination of the qualitative portrait of all solutions
of (1.1). If the property of uniqueness of solutions holds for the Cauchy problem (1.2), the
behaviour of the solutions of scalar T -periodic differential equations such as (1.1) is, at
least conceptually, nearly as simple as the behaviour of autonomous equations. Indeed, in
this case the dynamics can be reduced to that of the Poincaré map, which assigns to every
initial datum the value of the solution after one period, and, since this is strictly monotone,
the orbit structure can be classified in an elementary way (cf. [57, Chapter 4]). In the
Carathéodory setting, although generic (cf. [121, Chapter 3]), uniqueness in the future, or
in the past, for the solutions of (1.2) is of course not anymore guaranteed. This fact yields
evident technical complications also due to the possible failure of comparison principles
for the solutions of (1.1). On the other hand, the lack of uniqueness entails, as we shall see,
a rich variety of dynamics, such as the possible occurrence of homoclinic, subharmonic
and almost periodic solutions. In addition to these theoretical features, that may justify
by themselves a close analysis, further motivations for studying (1.1) in the absence of
uniqueness come from some models in population dynamics related to those proposed by
G.F. Gause in [53, Chapter VI].

The main purpose in this part of our work is to show that a quite satisfactory description
of the dynamics of (1.1) can be performed in the Carathéodory setting by a systematic use
of lower and upper solutions, i.e. functions satisfying suitable differential inequalities. The
lower and upper solutions method is a classical tool for the study of (1.2) and (1.3) and
it has already been employed by several authors since the pioneering work of G. Peano
[119] (see [120,102,143,101,150,79,2,94,110,38,52,89,28] and the included references).
Yet, while this approach has been largely used in the discussion of existence, multiplicity
and approximation by monotone iteration, the stability properties of the solutions of (1.3)
have been generally detected by other techniques, often based on linearization (see the
recent papers [10,11,20,21] and the references therein). Partial exceptions are [95,96,133],
where a global qualitative portrait of (1.1) was obtained, but only for a restricted class of
functions f satisfying some convexity assumptions with respect to the x-variable, which
in turn imply uniqueness of the solutions of (1.2). Of course, these methods do not apply to
the general context we wish to discuss here, where Lipschitz or differentiability conditions
on f are not required. Our work is therefore in the spirit of [147] and [112], whose declared
aim was to pave the way towards a theory of periodic solutions of Eq. (1.1) when no special
structure is considered.

This part is organized as follows. In Section 1.2 we formalize some definitions con-
cerning the first order scalar ordinary differential equation (1.1) as well as we settle some
notations.

In Section 1.3 we collect some basic facts concerning the solvability in the Carathéodory
setting of the Cauchy problem (1.2), when a pair of possibly discontinuous lower and
upper solutions is given and no special ordering between them is assumed. Existence and
localization of solutions, as well as the structure of the solution set, are discussed in this
frame.

In Section 1.4 we initiate the qualitative study of solutions of (1.1). We first discuss a
form of monotonicity over periods, named T -monotonicity, which, unlike the case where
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uniqueness holds for the Cauchy problem (1.2), is not shared by all solutions of (1.1). We
prove, however, that T -monotonicity is enjoyed by every solution of (1.1) that is compa-
rable with any possible solution of (1.3). This property represents an essential tool for the
description of the asymptotic behaviour of solutions of (1.1). In particular, it allows to ob-
tain an extension of the existence part of the classical Massera Convergence Theorem [91]
to the case where uniqueness for (1.2) fails; that is, the existence of a bounded solution x

of (1.1) defined on an unbounded interval implies the existence of a T -periodic solution u

of (1.1). A different proof of this fact is given in [147], while a discussion of various ex-
tensions of the Massera Theorem can be found in [104]. Yet, in the absence of uniqueness
for (1.2), x does not generally converge to u: an example where the convergence does not
take place is explicitly produced. Afterwards, we prove a technical result which describes
the dynamics of solutions stemming from a lower or an upper solution of (1.3). This re-
sult plays a central role in the subsequent study of the stability of T -periodic solutions; it
resembles the Monotone Convergence Criterion in the theory of monotone maps and may
have an independent interest, since it guarantees the convergence to a T -periodic solution
of a bounded solution emanating from and lying above a lower solution or emanating from
and lying below an upper solution of (1.3). Founded on these results, we prove the main
existence and localization theorem for (1.2), under the assumption of the existence of a pair
of possibly discontinuous and unordered lower and upper solutions. We also point out by
an example how the type of discontinuous lower and upper solutions of (1.3) here consid-
ered can be successfully used, in some cases, to get precise information on the localization
of branches of T -periodic solutions.

Section 1.5 deals with the description of the dynamics of solutions of (1.1), which lie
between two strictly ordered T -periodic solutions, or above the maximum T -periodic so-
lution, or below the minimum one, if they exist. In particular, we show the existence of het-
eroclinic solutions connecting pairs of ordered T -periodic solutions of (1.1), when there is
no further T -periodic solution in between. These results are based on the T -monotonicity
of solutions of (1.1), which are comparable with any possible solution of (1.3), and they
yield information about the stability and instability of solutions of (1.3), also with reference
to the existence of repulsivity and attractivity basins.

Section 1.6, which represents the core of this part, is devoted to the study of the stabil-
ity properties of the T -periodic solutions of (1.1) by means of lower and upper solutions.
We begin with a discussion of the mutual relations of three notions of one-sided stabil-
ity of a T -periodic solution we believe appropriate to be considered when uniqueness for
(1.2) may fail: Lyapunov stability, order stability and weak stability. The second one is
standard in the frame of order preserving discrete-time semidynamical systems (cf. [58,
60]). The third one has been used in the context of multivalued semiflows (cf. [130,50])
and is related to the notion of weak invariance (cf. [105,152,140]). If uniqueness in the
future, or in the past, holds for (1.2), then Lyapunov stability and order stability are equiv-
alent concepts. Whereas, we show here that order stability and weak stability are always
equivalent: thus weak stability yields an alternative and more direct interpretation of order
stability, in terms of the dynamics of solutions of (1.1). Using these three notions we can
describe in a precise way the stability properties of a T -periodic solution, relating them
to the existence of a lower or an upper solution close to it. Hence, when a pair of lower
and upper solutions is given, we can discuss the stability or instability of the minimum and
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the maximum T -periodic solutions v and w wedged between them. Afterwards, we turn
to investigate the behaviour of the solutions lying between v and w. If the lower and the
upper solutions satisfy the standard ordering condition, i.e. the lower solution is below the
upper solution, we find between v and w a weakly stable T -periodic solution; whereas, in
the complementary case, Lyapunov unstable T -periodic solutions always exist. We further
study the existence and the properties of nondegenerate continua of T -periodic solutions
in C0([0, T ]). In particular, we see that if two T -periodic solutions are not strictly ordered,
they give rise to a nondegenerate continuum of unstable T -periodic solutions. This fact
may occur in the presence of a pair of unordered lower and upper solutions of (1.3). On
the contrary, the existence of a pair of lower and upper solutions of (1.3) satisfying the
standard ordering condition always guarantees the existence of a totally ordered contin-
uum of weakly stable solutions. More generally, we investigate the topological structure
of the set of all solutions of (1.3). This set is the union of a family of mutually ordered
connected components. In the absence of uniqueness for (1.2) we show that such com-
ponents may have arbitrarily large (Čech–Lebesgue) dimension. Moreover, when a con-
tinuum K is generated by two T -periodic solutions which are not strictly ordered, the
dynamics of the solutions of (1.1), which lie between the minimum and the maximum ele-
ments in K, is fairly complicated. Loosely speaking, any discrete, even chaotic, dynamics
can be realized (see [114]). In particular, we can find homoclinics, subharmonic solutions
of any order and almost periodic solutions which are not periodic of any period. As it
is well known [91], this phenomenon cannot take place if the uniqueness property holds
for (1.2).

In Section 1.7 we revisit the Massera Convergence Theorem. We have already noticed
in Section 1.4 that, even when uniqueness for (1.2) fails, the existence of a solution u

of (1.3) is always guaranteed in the presence of a bounded solution x of (1.1) defined
on an unbounded interval, in spite of the fact that x does not generally converge to u. In
this section we make this statement more precise, providing a complete extension of the
Massera Convergence Theorem to the case where the uniqueness assumption for solutions
of (1.2) is dropped. Namely, we see that either x converges to u, or the set of all solutions u
of (1.3), whose range contains ω-limit points of x, forms a nondegenerate closed connected
set in C0([0, T ]).

1.2. Preliminaries

In this section we formalize some basic definitions concerning the first order scalar ordi-
nary differential equation (1.1). Let T > 0 be a fixed number. The following condition is
assumed:

(C) f : ]0, T [×R→ R satisfies the L1-Carathéodory conditions, i.e. for every x ∈ R,
f (·, x) is measurable on ]0, T [; for a.e. t ∈ ]0, T [, f (t, ·) is continuous on R; for
each ρ > 0, there exists γ ∈ L1(0, T ) such that |f (t, x)|� γ (t), for a.e. t ∈ ]0, T [
and every x ∈ [−ρ,ρ].

REMARK 1.1. The function f is identified with its T -periodic extension onto R×R.
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Solutions and lower and upper solutions

DEFINITION 1.1.
• A solution of (1.1) on [t1, t2], with t1, t2 ∈R and t1 < t2, is a function x ∈W 1,1(t1, t2)

such that

x′(t)= f
(
t, x(t)

)
a.e. on ]t1, t2[.

• A solution of (1.1) on J , where J is a noncompact interval having endpoints t1,
t2, with −∞ � t1 < t2 � +∞, is a function x such that, for every compact interval
K ⊂ J , u|K is a solution of (1.1) on K .

DEFINITION 1.2. Let I ⊆ R be an interval having endpoints ω−, ω+, with −∞� ω− <

ω+ �+∞. A solution x : I → R of (1.1) is said right-nonextendible if either ω+ = +∞,
or ω+ <+∞ and there is no solution x̂ of (1.1) on I ∪ {ω+} such that x̂|I = x. Similarly,
a solution x : I → R of (1.1) is said left-nonextendible if either ω− = −∞, or ω− >−∞
and there is no solution x̂ of (1.1) on I ∪{ω−} such that x̂|I = x. A solution x : ]ω−,ω+[→
R of (1.1) is said nonextendible if it is both right-nonextendible and left-nonextendible.

We now introduce a notion of possibly discontinuous lower and upper solutions of (1.1),
which have been extensively used in [38,52,86,28,112].

NOTATION 1.3. For a function x : [t1, t2] → R, we write x|]t1,t2[ ∈ W 1,1(t1, t2) if there
exists x̃ ∈W 1,1(t1, t2)∩C0([t1, t2]) such that x̃ = x on ]t1, t2[.
DEFINITION 1.4.
• A regular lower solution of (1.1) on [t1, t2], with t1, t2 ∈ R and t1 < t2, is a function

α : [t1, t2]→R, such that α|]t1,t2[ ∈W 1,1(t1, t2),

α′(t) � f
(
t, α(t)

)
a.e. on [t1, t2],

lim
t→t+1

α(t) � α(t1), α(t2) � lim
t→t−2

α(t).

• A lower solution of (1.1) on [t1, t2] is a function α : [t1, t2] → R for which there are
points t1 = τ0 < τ1 < · · · < τN = t2 such that, for i = 0, . . . ,N − 1, α|[τi ,τi+1] is a
regular lower solution on [τi, τi+1].

• A lower solution (respectively a regular lower solution) of (1.1) on J , where J is a
noncompact interval having endpoints t1, t2 with −∞� t1 < t2 �+∞, is a function
α such that, for any compact interval K ⊂ J , α|K is a lower solution (respectively a
regular lower solution) of (1.1) on K .

• A regular upper solution of (1.1) on [t1, t2], is a function β : [t1, t2] → R, such that
β|]t1,t2[ ∈W 1,1(t1, t2),

β ′(t) � f
(
t, β(t)

)
a.e. on [t1, t2],

lim
t→t+1

β(t) � β(t1), β(t2) � lim
t→t−2

β(t).
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• An upper solution of (1.1) on [t1, t2] is a function β : [t1, t2]→R for which there are
points t1 = σ0 < σ1 < · · · < σN = t2 such that, for i = 0, . . . ,N − 1, β|[σi ,σi+1] is a
regular upper solution on [σi, σi+1].

• An upper solution (respectively a regular upper solution) of (1.1) on J , where J is a
noncompact interval having endpoints t1, t2 with −∞� t1 < t2 �+∞, is a function
β such that, for any compact interval K ⊂ J , β|K is an upper solution (respectively a
regular upper solution) of (1.1) on K .

REMARK 1.2. Notice that a regular lower solution α is (absolutely) continuous on ]t1, t2[,
but it may be discontinuous at the endpoints of the interval [t1, t2]. A similar observation
holds for a regular upper solution.

Orderings

DEFINITION 1.5. Given functions x, y : I →R, with I ⊆R an interval, we write
• x � y if x(t) � y(t) on I ;
• x < y if x � y and x �= y;
• x% y if inf(y − x)|K > 0 for any compact interval K ⊆ I .

DEFINITION 1.6. Given functions x, y : I → R, with I ⊆ R an interval and x < y, we
define the order intervals

[x, y] = {z : I →R | x � z � y},
[x,+∞[= {z : I →R | x � z},
]−∞, y] = {z : I →R | z � y}.

DEFINITION 1.7. Let S be a given set of solutions of (1.1).
• We say that a solution z of (1.1), with z ∈ S , is a maximal solution of (1.1) in S

(respectively a minimal solution of (1.1) in S) if there is no solution x of (1.1), with
x ∈ S , such that x > z (respectively x < z).

• We say that a solution z of (1.1), with z ∈ S , is the maximum solution of (1.1) in S
(respectively the minimum solution of (1.1) in S) if every solution x of (1.1), with
x ∈ S , is such that x � z (respectively x � z).

1.3. The initial value problem

In this section we collect some basic facts concerning the solvability of the Cauchy problem
(1.2), when a pair of possibly discontinuous lower and upper solutions is given and no
special ordering between them is assumed. Existence and localization of solutions, as well
as the structure of the solution set, are discussed in this setting.

REMARK 1.3. Since the study of a terminal value problem may be reduced to the study
of an initial value problem by reversing time, we shall mainly concentrate on the latter
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problem. Occasionally we shall need to refer to a terminal value problem; in that case we
shall freely use definitions, notations and results about it without explicit references.

Solutions and lower and upper solutions

DEFINITION 1.8. A solution of the initial value problem (1.2) on I , with I ⊆R an interval
containing a right neighbourhood of t0, is a solution x of (1.1) on I such that x(t0)= x0.

DEFINITION 1.9.
• A lower solution (respectively a regular lower solution) of (1.2) on I , with I ⊆ R

an interval containing a right neighbourhood of t0, is a function α : I → R, which
is a lower solution (respectively a regular lower solution) of (1.1) on I and satisfies
α(t0) � x0.

• An upper solution (respectively a regular upper solution) of (1.2) on I , with I ⊆ R

an interval containing a right neighbourhood of t0, is a function β : I → R, which is
an upper solution (respectively a regular upper solution) of (1.1) on I and satisfies
β(t0) � x0.

The following simple observation concerning pairs of unordered lower and upper solu-
tions will be used in the sequel.

PROPOSITION 1.1. Let α be a lower solution and β be an upper solution of (1.2) on
[t0, t1] with α �� β . Then there exists t̂ ∈ [t0, t1] such that α(t̂ )= β(t̂ ).

PROOF. Let us set γ = β − α. According to Definition 1.9, γ satisfies the following con-
dition: there are points t0 = ρ0 < ρ1 < · · ·< ρK = t1 such that
• for i = 0, . . . ,K − 1, γ |]ρi ,ρi+1[ ∈W 1,1(ρi, ρi+1),
• for i = 1, . . . ,K − 1, limt→ρ−i

γ (t) � γ (ρi) � limt→ρ+i
γ (t),

• limt→t+0
γ (t) � γ (t0) � 0 and γ (t1) � limt→t−1

γ (t).
We may assume γ (t0) > 0. Since α �� β , there is a point ξ ∈ ]t0, t1] such that γ (ξ) < 0.
Setting t̂ = sup{t ∈ ]t0, ξ [ | γ (s) > 0 on [t0, t]}, the properties of γ imply that γ (t̂ )= 0. �

Existence of solutions and the Hukuhara–Kneser property
We start with a basic existence and localization result for solutions of (1.1).

LEMMA 1.2. Assume (C). Let α,β ∈W 1,1(t0, t1) satisfy

α′(t) � f
(
t, α(t)

)
and β ′(t) � f

(
t, β(t)

)
a.e. on [t0, t1]. (1.4)

• If α(t0) � β(t0), then for every x1 ∈ [α(t0), β(t0)] there exists a solution x : [t0, t1]→
R of the initial value problem

x′ = f (t, x), x(t0)= x1, (1.5)
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satisfying

min{α,β}� x � max{α,β} on [t0, t1]. (1.6)

• If α(t1) � β(t1), then for every x2 ∈ [β(t1), α(t1)] there exists a solution x : [t0, t1]→
R of the terminal value problem

x′ = f (t, x), x(t1)= x2, (1.7)

satisfying (1.6).
• If α(t0) � β(t0) and α(t1) � β(t1), then for every x1 ∈ [α(t0), β(t0)] and x2 ∈
[β(t1), α(t1)] there exists a solution x : [t0, t1] → R of both (1.5) and (1.7) satisfy-
ing (1.6).

PROOF. We first consider the case where α and β are ordered.

CLAIM 1. Let α,β ∈W 1,1(t0, t1) satisfy (1.4). Assume that α � β on [t0, t1]. Then for each
x1 ∈ [α(t0), β(t0)] there exists a solution x : [t0, t1]→R of (1.5) with α � x � β on [t0, t1].

Set γ (t, x) = max{α(t),min{x,β(t)}}, f̄ (t, x) = f (t, γ (t, x)), and consider the prob-
lem

x′ = f̄ (t, x), x(t0)= x1. (1.8)

Let S :C0([t0, t1]) → C0([t0, t1]) be the Volterra operator defined by S(x)(t) = x1 +∫ t

t0
f̄ (s, x(s))ds. The operator S is continuous and has a relatively compact range. Hence,

the existence of a solution x of (1.8) defined on [t0, t1] follows from Schauder Theo-
rem. We claim that α � x � β on [t0, t1]. Indeed, assuming that there are points s1,
s2, with t0 � s1 < s2 � t1, such that x(s1) = α(s1) and x(s) < α(s) on ]s1, s2], yields
x′(s)−α′(s) � 0 a.e. on ]s1, s2], which leads to a contradiction. Therefore we have α � x.
Similarly we obtain x � β . Consequently x is a solution of (1.5) as well and the claim is
proved.

CLAIM 2. Let α,β ∈W 1,1(t0, t1) satisfy (1.4). Assume that α � β on [t0, t1]. Then for each
x2 ∈ [β(t1), α(t1)] there exists a solution x : [t0, t1] → R of (1.7) satisfying α � x � β on
[t0, t1].

Let us consider the problem obtained from (1.7) by reversing time; namely, set f̂ (t, x)=
−f (t0 + t1 − t, x), α̂(t)= β(t0 + t1 − t), β̂(t)= α(t0 + t1 − t) and observe that α̂′(t) �
f̂ (t, α̂(t)), β̂ ′(t) � f̂ (t, β̂(t)), a.e. on [t0, t1], and that α̂(t0) � β̂(t0). By Claim 1 there
exists a solution x̂ : [t0, t1]→R of

x′ = f̂ (t, x), x(t0)= x2,

satisfying α̂ � x̂ � β̂ on [t0, t1]. The function x(t)= x̂(t0+ t1− t) is then a solution of (1.7)
satisfying α � x � β on [t0, t1].

We now prove the three statements of this lemma.
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Case 1: α(t0) � β(t0). Pick any x1 ∈ [α(t0), β(t0)]. Set A = {t ∈ [t0, t1] | α(t) � β(t)}
and B = [t0, t1] \A. We can write A as union of countably many disjoint closed intervals
(possibly reduced to points) [ai, bi], with ai � bi and a0 = t0, and B as union of countably
many disjoint open intervals ]cj , dj [, with cj < dj . If a0 < b0, by Claim 1 we can find a
solution x0 of

x′ = f (t, x), x(t0)= x1,

satisfying α(t) � x0(t) � β(t) on [t0, b0] and, for every i � 1 such that ai < bi , a solution
xi : [ai, bi]→R of

x′ = f (t, x), x(ai)= α(ai),

satisfying α(t) � xi(t) � β(t) on [ai, bi]. Notice that xi(bi) = α(bi) = β(bi) whenever
bi �= t1. For every j , by Claim 2 we can find a solution yj : [cj , dj ]→R of

x′ = f (t, x), x(dj )= β(dj ),

satisfying β(t) � yj (t) � α(t) on [cj , dj ]. Let us define x : [t0, t1] → R by x(t) = xi(t)

on [ai, bi] and x(t) = yj (t) on ]cj , dj [. Notice that x(t0) = x1, x′(t) = f (t, x) a.e. on
[t0, t1] and (1.6) is satisfied. We only need to verify that x is absolutely continuous. Since
x is bounded, by the L1-Carathéodory conditions, there exists γ ∈ L1(t0, t1) such that
|f (t, x(t))| � γ (t) for all t ∈ [t0, t1]. Fix ε > 0 and pick points rk < sk in [t0, t1] with
k = 1, . . . , n. Then

∑n
k=1 |x(sk) − x(rk)| may be written as a series with terms of the

form |xi(pki )− xi(qki )|�
∫ pki
qki

γ (s)ds or |yj (pkj )− yj (qkj )|�
∫ pkj
qkj

γ (s)ds, whose sum

is smaller than ε whenever
∑n

k=1 |sk − rk| is sufficiently small.
Case 2: α(t1) � β(t1). We can argue as in Claim 2 applying our previous conclusion to

a reversed time problem.
Case 3: α(t0) � β(t0) and α(t1) � β(t1). If either α(t0) = β(t0) or α(t1) = β(t1) the

claim immediately follows from the previous cases. Otherwise, by Proposition 1.1 there
exists a point s0 ∈ ]t0, t1[ such that α(s0)= β(s0). The assertion then follows by applying
our preceding conclusions to problem (1.5) on [t0, s0] and to problem (1.7) on [s0, t1]. �

We use Lemma 1.2 to recover an existence and localization result established in [28]
under a slightly more restrictive notion of lower and upper solutions. We add here some in-
formation on the topological structure of the solution set, namely we prove the Hukuhara–
Kneser property. In order to show that it is (arcwise) connected, we exploit the following
property of compact subsets of C0([t0, t1]) which are dense-in-itself with respect to the
order.

DEFINITION 1.10. A subset S of C0([t0, t1]) is said dense-in-itself with respect to the
order if for any u1, u2 ∈ S , with u1 < u2, there exists u3 ∈ S with u1 < u3 < u2.

LEMMA 1.3. Let S ⊆ C0([t0, t1]) be a compact set which is dense-in-itself with respect to
the order. Let T ⊆ S be a maximal nondegenerate totally ordered subset of S . Then T is
homeomorphic to a nondegenerate compact interval of R.
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PROOF. We start by verifying that T is closed in S . Let (zn)n be a sequence in T con-
verging to some function z ∈ S . Let us show that z ∈ T , that is, for each u ∈ T , either
u � z or u � z. Assume by contradiction that there exists u ∈ T such that u �� z and
u �� z, i.e. min{‖(u− z)+‖∞,‖(u− z)−‖∞}> 0. Take n such that ‖zn− z‖∞ < min{‖(u−
z)+‖∞,‖(u−z)−‖∞} and suppose, for instance, that zn � u. We have (zn−z)+ � (u−z)+
and hence ‖(u− z)+‖∞ � ‖(zn− z)+‖∞ � ‖zn− z‖∞ < ‖(u− z)+‖∞, which is a contra-
diction. Therefore, we conclude that z ∈ T .

Moreover, as T is a maximal totally ordered subset of S , T is dense-in-itself with respect
to the order. Let ϕ :C0([t0, t1])→ R be a continuous linear functional such that ϕ(u) > 0
for every u > 0 (e.g., ϕ(u)= ∫ t1

t0
u). Since T is compact and ϕ|T is one-to-one, ϕ|T is a

homeomorphism between T and ϕ(T )⊆ R. Notice that ϕ(T ) is also dense-in-itself with
respect to the ordering of R and hence it is a nondegenerate compact interval. �

THEOREM 1.4. Assume (C). Let α be a lower solution and β be an upper solution of
(1.2) on [t0, t1]. Then there exist the minimum solution v and the maximum solution w in
[min{α,β},max{α,β}] of (1.2) on [t0, t1]. Further, the set

K= {
x : [t0, t1]→R | x is a solution of (1.2) with min{α,β}� x � max{α,β}}

is a continuum, i.e. a compact and connected set, in C0([t0, t1]).

PROOF. In this proof we use the following notations: if I is an interval, with endpoints
a and b, and u : I → R, then we set u(a+) = limt→a+ u(t) and u(b−) = limt→b− u(t),
whenever the limits exist. The proof is divided into three steps.

Step 1. Existence of a solution. Let τ0, τ1, . . . , τN and σ0, σ1, . . . , σM be the points of
[t0, t1] defining α and β as in Definition 1.9 and relabel them as ρ0 < ρ1 < · · ·< ρP . For
each n= 1, . . . ,P denote by αn, βn the continuous extensions on [ρn−1, ρn] of α|]ρn−1,ρn[
and β|]ρn−1,ρn[, respectively. We will prove the thesis by recursion on P .
• There exists a solution y1 of (1.2) such that min{α,β} � y1 � max{α,β} on
[t0, ρ1]. Further, if α(ρ−1 ) � β(ρ−1 ), then for any x1 between min{α(ρ−1 ), β(ρ1)} and
max{α(ρ1), β(ρ

−
1 )}, the solution y1 can be chosen so that y1(ρ1)= x1.

As α1(t0) = α(t+0 ) � α(t0) � x0 � β(t0) � β(t+0 ) = β1(t0), the claim follows by
Lemma 1.2.
• Let n � P − 1. Assume there exists a solution yn of (1.2) such that min{α,β} �

yn � max{α,β} on [t0, ρn] and, in case α(ρ−n ) � β(ρ−n ), for all xn between
min{α(ρ−n ),β(ρn)} and max{α(ρn),β(ρ−n )} the solution yn can be chosen so that
yn(ρn)= xn. Then there exists a solution yn+1 of (1.2) such that min{α,β}� yn+1 �
max{α,β} on [t0, ρn+1] and, in case α(ρ−n+1) � β(ρ−n+1), for all xn+1 between
min{α(ρ−n+1), β(ρn+1)} and max{α(ρn+1), β(ρ

−
n+1)} the solution yn+1 can be cho-

sen so that yn+1(ρn+1)= xn+1.
To prove this we need to distinguish several cases.
(i) Assume α(ρ−n ) � β(ρ−n ). Hence α(ρn) � β(ρn). Let yn be a solution as in the as-

sumption. As αn+1(ρn) � yn(ρn) � βn+1(ρn), by Lemma 1.2 there exists a solution z

of (1.1) such that z(ρn)= yn(ρn), min{αn+1, βn+1}� z � max{αn+1, βn+1} on [ρn,ρn+1]
and, in case αn+1(ρn+1) � βn+1(ρn+1), for all xn+1 ∈ [βn+1(ρn+1), αn+1(ρn+1)] such
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a solution can be chosen so that z(ρn+1) = xn+1. Since in this case the interval
[βn+1(ρn+1), αn+1(ρn+1)] is contained in the interval with endpoints min{α(ρ−n+1),

β(ρn+1)} and max{α(ρn+1), β(ρ
−
n+1)}, the function yn+1 defined by yn+1(t) = yn(t) on

[t0, ρn] and yn+1(t)= z(t) on [ρn,ρn+1] is as required.
(ii) Assume α(ρ−n ) > β(ρ−n ) and α(ρn) � β(ρn). Then max{α(ρn),β(ρ−n )} �

min{α(ρ−n ),β(ρn)}. Let xn ∈ [max{α(ρn),β(ρ−n )},min{α(ρ−n ),β(ρn)}]. By assumption
there exists a solution yn of (1.2) such that min{α,β} � yn � max{α,β} on [t0, ρn] and
yn(ρn)= xn. As αn+1(ρn) � yn(ρn) � βn+1(ρn), arguing as in (i) we get the existence of
the solution yn+1 with all the required properties.

(iii) Assume α(ρn) > β(ρn) (hence α(ρ−n ) > β(ρ−n )) and α(ρ+n ) � β(ρ+n ). Let xn ∈
[α(ρ+n ),β(ρ+n )] ∩ [β(ρn),α(ρn)] and argue as in (ii).

(iv) Assume α(ρ+n ) > β(ρ+n ) (hence α(ρn) > β(ρn) and α(ρ−n ) > β(ρ−n )) and α(ρ−n+1) >

β(ρ−n+1). For any xn+1 between min{α(ρ−n+1), β(ρn+1)} and max{α(ρn+1), β(ρ
−
n+1)} we

have αn+1(ρn+1) � xn+1 � βn+1(ρn+1) and hence, by Lemma 1.2, there exists a solu-
tion z of (1.1) such that z(ρn+1)= xn+1 and min{αn+1, βn+1}� z � max{αn+1, βn+1} on
[ρn,ρn+1]. As β(ρn) � β(ρ+n ) � z(ρn) � α(ρ+n ) � α(ρn), by assumption there exists a
solution yn of (1.2) such that min{α,β}� yn � max{α,β} on [t0, ρn] and yn(ρn)= z(ρn).
The function yn+1 defined by yn+1(t)= yn(t) on [t0, ρn] and yn+1(t)= z(t) on [ρn,ρn+1]
is as required.

(v) Assume α(ρ+n ) > β(ρ+n ) (hence α(ρn) > β(ρn) and α(ρ−n ) > β(ρ−n )) and α(ρ−n+1) �
β(ρ−n+1). By continuity there is a point t̂ ∈ ]ρn,ρn+1[ such that α(t̂ ) = β(t̂ ). Ar-
guing as in (iv), by Lemma 1.2 for any xn+1 between min{α(ρ−n+1), β(ρn+1)} and
max{α(ρn+1), β(ρ

−
n+1)} there exists a solution z2 of (1.1) such that z2(t̂ ) = α(t̂ ),

z2(ρn+1) = xn+1 and min{αn+1, βn+1} � z2 � max{αn+1, βn+1} on [t̂ , ρn+1]. Further
there exists a solution z1 of (1.1) such that z1(t̂ ) = α(t̂ ) and min{αn+1, βn+1} � z1 �
max{αn+1, βn+1} on [ρn, t̂]. As β(ρn) � β(ρ+n ) � z1(ρn) � α(ρ+n ) � α(ρn), by as-
sumption there exists a solution yn of (1.2) such that min{α,β} � yn � max{α,β} on
[t0, ρn] and yn(ρn) = z1(ρn). The function yn+1 defined by yn+1(t) = yn(t) on [t0, ρn],
yn+1(t)= z1(t) on [ρn, t̂], yn+1(t)= z2(t) on [t̂ , ρn+1] is as required.

Step 2. Existence of extremal solutions. We have just seen that K is nonempty. Let us
show that K has a minimum and a maximum. Since the Volterra operator S :C0([t0, t1])→
C0([t0, t1]) associated with (1.2) is completely continuous and the set of its fixed points
lying between min{α,β} and max{α,β} is precisely K, we have that K is a nonempty
compact set. For each x ∈ K define the closed set Cx = {z ∈ K | z � x}. The family {Cx |
x ∈ K} has the finite intersection property since, if x1, x2 ∈ K, then min{x1, x2} ∈ K. By
the compactness of K there exists v ∈⋂

x∈K Cx ; clearly, v is the minimum solution we are
looking for. The maximum solution w can be found in a similar way.

Step 3. K is a continuum. We have only to show that K is connected. Let us prove that
K is dense-in-itself with respect to the order. Take x1, x2 ∈K with x1 < x2. Let s0 ∈ ]t0, t1[
be such that x1(s0) < x2(s0) and pick a real number x̂0 with x1(s0) < x̂0 < x2(s0). By
Lemma 1.2 there exists a solution x3 : [t0, t1] → R of (1.1), satisfying x3(t0) = x0 and
x3(s0)= x̂0, such that x1 � x3 � x2; hence x3 ∈K and x1 < x3 < x2. Let us show that K is
arcwise connected. For any x1, x2 ∈ K, with x1 �= x2, let T1 be a maximal totally ordered
subset of K containing x1 and min{x1, x2} and let T2 be a maximal totally ordered subset of
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K containing x2 and min{x1, x2}. By Lemma 1.3, T1 and T2 are homeomorphic to compact
real intervals. Since min{x1, x2} ∈ T1 ∩ T2, we find an arc connecting x1 to x2. �

In the sequel we shall also use the following partial extension of Theorem 1.4 to non-
compact intervals. Related results can be found in [90].

COROLLARY 1.5. Assume (C). Let α be a lower solution and β be an upper solution of
(1.2) on [t0, τ [, with t0 < τ �+∞, and assume that α � β . Then there exists the minimum
solution v and the maximum solution w in [α,β] of (1.2) on [t0, τ [. Further, the set

K= {
x : [t0, τ [→R | x is a solution of (1.2) with α � x � β

}

is a continuum in C0([t0, τ [), endowed with the topology of uniform convergence on com-
pact intervals.

PROOF. Let (τn)n, with τ0 = t0, be a strictly increasing sequence converging to τ .
Step 1. Existence of extremal solutions. In order to prove the existence of the minimum

solution v in [α,β] of (1.2) on [t0, τ [, we apply recursively Theorem 1.4 on each interval
[t0, τn], with n � 1 Let us denote by vn the minimum solution v in [α,β] of (1.2) on [t0, τn].
By the minimality of vn, we have vn+1|[t0,τn] � vn. On the other hand, as α|[τn,τn+1] and
vn+1|[τn,τn+1] are, respectively, a lower and an upper solution of the initial value problem
x′ = f (t, x), x(τn)= vn(τn), we can continue vn to a solution v̂n+1 of (1.2) on [t0, τn+1]
satisfying α � v̂n+1 � vn+1. By the minimality of vn+1, we conclude that v̂n+1 = vn+1 and
hence vn+1|[t0,τn] = vn. Then we define v : [t0, τ [ → R by setting v(t)= vn(t) on [t0, τn].
We have that v is the minimum solution in [α,β] of (1.2) on [t0, τ [, because, if x were a
solution of (1.2) on [t0, τ [ with x � α and x �� v, then it should follow x|[t0,τn] �� vn for
some n, thus contradicting the minimality of vn. Similarly, we prove the existence of the
maximum solution w in [α,β] of (1.2) on [t0, τ [.

Step 2. K is a continuum. For each x ∈ K and n � 1, set xn = x|[t0,τn]. We denote by
Kn the set of all solutions x : [t0, τn] → R of (1.2) such that α � x � β on [t0, τn]. By
Theorem 1.4, Kn is a continuum in C0([t0, τn]). For every m< n, let also πn

m :Kn→Km

be the restriction map on [t0, τm], i.e. πn
m(x)= x|[t0,τm] for all x ∈Kn. Let us define now a

function χ :K→∏+∞
n=1 Kn, by setting χ(x)= (xn)n. Observe that χ is a homeomorphism

of K into
∏+∞

n=1 Kn, when
∏+∞

n=1 Kn is endowed with the Tychonoff product topology,
and its range χ(K) is the set of all sequences (xn)n ∈∏+∞

n=1 Kn such that, for all m < n,
πn
m(xn) = xm, i.e. χ(K) is the inverse limit of the sequence (Kn)n with bonding maps

πn
m (cf. [47]). As the inverse limit of a sequence of continua is a continuum [47, Theo-

rem 6.1.20] we deduce that χ(K) is a continuum as well. Since K is homeomorphic to
χ(K), the conclusion is achieved. �

1.4. The periodic problem

In this section we discuss existence and localization of solutions of the periodic prob-
lem (1.3), in the presence of a pair of possibly discontinuous and unordered lower and up-
per solutions. With the aim of obtaining a global portrait of solutions of Eq. (1.1), we also
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introduce the notion of T -monotonicity. This concept plays a central role in the qualitative
study of solutions of (1.1), as it helps to get a thorough classification of their asymptotic
behaviour. Therefore we develop some criteria for detecting T -monotonicity. However, it
should be stressed that also the study of solutions that are not T -monotone has an interest,
since their existence gives rise to T -periodic solutions. All these facts are then used to get
an extension of the existence part of the classical Massera Convergence Theorem to the
Carathéodory setting.

Solutions and lower and upper solutions

DEFINITION 1.11. A solution of (1.3) is a solution u of (1.1) on R which is T -periodic,
i.e. u(t + T )= u(t) on R.

We introduce some notions of possibly discontinuous lower and upper solutions for the
periodic problem (1.3).

DEFINITION 1.12.
• A lower solution of (1.3) is a T -periodic function α : R→R which is a lower solution

of (1.1) on R.
• A regular lower solution of (1.3) is a lower solution α of (1.3) such that α|[0,T ] is a

regular lower solution of (1.1) on [0, T ].
• An upper solution of (1.3) is a T -periodic function β : R → R which is an upper

solution of (1.1) on R.
• A regular upper solution of (1.3) is an upper solution β of (1.3) such that β|[0,T ] is a

regular upper solution of (1.1) on [0, T ].
• A lower solution of (1.3) (respectively an upper solution of (1.3)) is proper if it is not

a solution of (1.3).
• A proper lower solution α of (1.3) is strict if every solution x of (1.3), with x > α, is

such that x& α. Similarly, a proper upper solution of (1.3) is strict if every solution
x of (1.3), with x < β , is such that x% β .

REMARK 1.4. We notice that even regular lower and upper solutions of (1.3) may be
discontinuous at the endpoints of the interval [0, T ].

REMARK 1.5. Sometimes we speak of solutions of (1.3) with reference to functions de-
fined on [t0, t0 + T ] for some t0 ∈ R. We also speak of lower and upper solutions of (1.3)
with reference to functions defined on [t0, t0 + T [ for some t0 ∈ R. In these cases it is
understood that their T -periodic extensions to R have to be considered.

In the sequel we shall need the following observation, whose proof is a slight modifica-
tion of that of Proposition 1.1.

PROPOSITION 1.6. Let α be a lower solution and β be an upper solution of (1.3), with
α �� β and α �� β . Then there exists t̂ ∈ [0, T ] such that α(t̂ )= β(t̂ ).
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T -monotonicity
The notion of T -monotonicity plays an important role in the qualitative study of solutions
of (1.1). When uniqueness of solutions of (1.2) holds, then any solution is T -monotone
and this, in turn, corresponds to the monotonicity of the Poincaré operator. Of course, in
the Carathéodory setting this is not anymore true.

DEFINITION 1.13.
• A function x : I → R, where I ⊆ R is an interval, is said T -increasing (respec-

tively, T -decreasing) if x(t) � x(t + T ) (respectively x(t) � x(t + T )) for each t ∈ I

such that t + T ∈ I . A function is said T -monotone if it is either T -increasing or
T -decreasing.

• A function x : I → R, where I ⊆ R is an interval unbounded from above, is said
eventually T -increasing (respectively, eventually T -decreasing) if there exists t0 ∈ I

such that x|]t0,+∞[ is T -increasing (respectively, T -decreasing).

REMARK 1.6. Let x be a solution of (1.1) on [t0,+∞[. If x is T -increasing then the se-
quence (αn)n, defined by setting, for each n � t0/T , αn(t)= x(t+nT ) on [0, T [ gives rise
to an increasing sequence of regular lower solutions of (1.3). Similarly, any T -decreasing
solution of (1.1) on [t0,+∞[, gives rise to a decreasing sequence (βn)n of regular upper
solutions of (1.3).

The Massera Convergence Theorem for T -monotone solutions
The following simple result may be considered as a first step towards an extension of the
classical Massera Convergence Theorem for scalar ordinary differential equations [91] to
the case where the right-hand side f of (1.1) is a Carathéodory function.

PROPOSITION 1.7. Assume (C). Let x : ]t0,+∞[ → R be a bounded, T -increasing (re-
spectively T -decreasing) solution of (1.1). Then there exists a solution u of (1.3) such that
u � x (respectively u � x) on ]t0,+∞[ and

lim
t→+∞

(
x(t)− u(t)

)= 0. (1.9)

REMARK 1.7. Symmetrically, we have that, if x : ]−∞, t0[ → R is a bounded, T -increa-
sing (respectively T -decreasing) solution of (1.1), then there exists a solution u of (1.3)
such that u � x (respectively u � x) on ]−∞, t0[ and

lim
t→−∞

(
x(t)− u(t)

)= 0.

PROOF. Assume, without loss of generality, that t0 = n0T , for some n0 ∈N, and suppose
that x is T -increasing. Define a sequence (xn)n of functions by setting, for every n � n0
and every t ∈ [0, T ], xn(t) = x(t + nT ). Then xn is a regular lower solution of (1.3),
satisfying

xn+1(0)= xn(T ) (1.10)
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and xn � xn+1, on [0, T ]. By assumption, the sequence (xn)n is bounded in C0([0, T ])
and hence, by monotonicity, it converges pointwise on [0, T ] to a function u, which by
(1.10) satisfies u(0)= u(T ). Moreover, the L1-Carathéodory conditions imply that (xn)n
is equicontinuous. Therefore, by Arzelà–Ascoli theorem and monotonicity, (xn)n con-
verges uniformly to u. Finally, using the integral representation of solutions of (1.1) and
the L1-Carathéodory conditions again, we conclude that u is a solution and that the con-
vergence takes place in W 1,1(0, T ).

Let us show now that limt→+∞(x(t) − u(t)) = 0. Indeed, since (xn)n converges uni-
formly to u, given ε > 0 there is n̄ such that, for any n � n̄, |xn(t) − u(t)| < ε for all
t ∈ [0, T ]. Hence, if we take t � n̄T , with t ∈ [nT , (n+ 1)T [ for some n � n̄, we obtain,
by the T -periodicity of u, |x(t)− u(t)| = |xn(t − nT )− u(t − nT )|< ε. �

A Monotone Convergence Criterion

We now prove a technical result, which will often be used in the sequel. It describes the
qualitative behaviour of solutions of (1.1), emanating from and lying above a lower solution
of (1.3). Among these we single out a special solution α̃ which is T -increasing and hence,
if bounded, does converge to a T -periodic solution. This statement is reminiscent of the
Monotone Convergence Criterion in the theory of monotone maps (cf. [60, Section 5]) and
essentially reduces to it when uniqueness of solutions of (1.2) holds.

PROPOSITION 1.8. Assume (C).
(i) Let α be a lower solution of (1.3) and let t0 ∈R. Then there exist ω ∈ ]t0,+∞] and

a T -increasing solution α̃ : [t0,ω[→ R of (1.2), with x0 = α(t0), satisfying α̃ � α

on [t0,ω[. Further, every solution x : [t0, τ [→ R of (1.1), with x � α, is such that
τ � ω and x � α̃ on [t0, τ [. Finally, we have that either every right-nonextendible
solution x : [t0, τ [→R of (1.1), with x � α, is such that

lim sup
t→τ

x(t)=+∞

and (1.3) has no solution in [α,+∞[, or there exists the minimum solution v in
[α,+∞[ of (1.3); in the latter case ω=+∞, v � α̃ and

lim
t→+∞

(̃
α(t)− v(t)

)= 0.

(ii) Let β be an upper solution of (1.3) and let t0 ∈R. Then there exist ω ∈ ]t0,+∞] and
a T -decreasing solution β̃ : [t0,ω[→ R of (1.2), with x0 = β(t0), satisfying β̃ � β

on [t0,ω[. Further, every solution x : [t0, τ [ → R of (1.1), with x � β , is such that
τ � ω and x � β̃ on [t0, τ [. Finally, we have that either every right-nonextendible
solution x : [t0, τ [→R of (1.1), with x � β , is such that

lim inf
t→τ

x(t)=−∞
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and (1.3) has no solution in ]−∞, β], or there exists the maximum solution w in
]−∞, β] of (1.3); in the latter case ω=+∞, w � β̃ and

lim
t→+∞

(
β̃(t)−w(t)

)= 0.

REMARK 1.8. If ω < +∞, then limt→ω α̃(t) = +∞. Whereas, it may happen that, if
ω=+∞, lim supt→ω α̃(t)=+∞ and lim inft→ω α̃(t) <+∞. A simple example is found
by taking, in (1.1), f (t, x) = x2 sin t if |t | � π , f (t, x) = −x sin t if π < t < 2π , and
extending f by 3π -periodicity with respect to the t-variable. A similar remark holds for β̃ .

PROOF. We only prove statement (i), as the proof of (ii) is similar.
Let ω ∈ ]t0,+∞] be the supremum of all τ > t0 such that there exists a solution

x : [t0, τ ]→R of (1.2), with x0 = α(t0), satisfying x � α on [t0, τ ]. The existence of such
solutions x follows applying Theorem 1.4 to a modified problem. Take a strictly increasing
sequence (τn)n such that τn→ ω and let (xn)n be a corresponding sequence of solutions.
Since x1 is an upper solution and α|[t0,τ1] is a lower solution of (1.2), with x0 = α(t0),
Theorem 1.4 yields the existence of the minimum solution v1 in [α,x1] of (1.2) on [t0, τ1].
Actually, v1 is the minimum solution in [α,+∞[ of (1.2), with x0 = α(t0), on [t0, τ1].
Since x2|[τ1,τ2] is an upper solution and α|[τ1,τ2] is a lower solution of

x′ = f (t, x), x(τ1)= v1(τ1), (1.11)

on [τ1, τ2], there is the minimum solution v2 in [α,x2] of (1.11) on [τ1, τ2]. Actually,
v2 is the minimum solution in [α,+∞[ of (1.11) on [τ1, τ2]. Proceeding in this way, we
construct a sequence (vn)n such that, for each n, vn is the minimum solution in [α,+∞[
of

x′ = f (t, x), x(τn−1)= vn−1(τn−1),

on [τn−1, τn]. Now, we define a function α̃ : [t0,ω[→R by setting

α̃(t)= vn(t) if t ∈ [τn−1, τn[.
It is clear that α̃ is a right-nonextendible solution of (1.2), with x0 = α(t0), satisfying
α̃ � α on [t0,ω[. Moreover, from the minimality of each vn we deduce that every solution
x : [t0, τ [→R of (1.2), with x0 = α(t0), satisfying x � α, is such that τ � ω and x � α̃ on
[t0, τ [. The same holds if x0 > α(t0), as min{x, α̃} is a solution of (1.2) with x0 = α(t0).

If ω � t0+ T the lemma is proved. Suppose next that t0+mT < ω � t0+ (m+ 1)T for
some integer m � 1. In this case we may assume that τk = t0 + kT for k = 1, . . . ,m, and
the T -monotonicity of α̃ follows from the minimality of the solutions vn on [τn−1, τn].
Finally suppose that ω = +∞. In this case we may assume that τn = t0 + nT for all
n and the T -monotonicity of α̃ follows as in the previous case. Suppose further that
lim supt→+∞ α̃(t) <+∞. Since α̃ is T -increasing, Proposition 1.7 implies that there exists
a solution v of (1.3) such that α̃ � v on [t0,+∞[ and

lim
t→+∞

(̃
α(t)− v(t)

)= 0.
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Note that v is the minimum solution in [α,+∞[ of (1.3), because the existence of a solution
u of (1.3), such that α � u < v, would contradict the minimality properties of α̃. �

REMARK 1.9. The following version of Proposition 1.8 for a terminal value problem
holds.

(j) Let β be an upper solution of (1.3) and let t0 ∈ R. Then there exist ω ∈ [−∞, t0[
and a T -decreasing solution β̃ : ]ω, t0] → R of the terminal value problem (1.2),
with x0 = β(t0), satisfying β̃ � β on ]ω, t0]. Further, every solution x : ]τ, t0] → R

of (1.1), with x � β , is such that τ � ω and x � β̃ on ]τ, t0]. Finally, we have that
either every left-nonextendible solution x : ]τ, t0]→R of (1.1), with x � β , is such
that

lim sup
t→τ

x(t)=+∞

and (1.3) has no solution in [β,+∞[, or there exists the minimum solution v in
[β,+∞[ of (1.3); in the latter case ω=−∞, v � β̃ and

lim
t→−∞

(
β̃(t)− v(t)

)= 0.

(jj) Let α be a lower solution of (1.3) and let t0 ∈R. Then there exist ω ∈ [−∞, t0[ and
a T -increasing solution α̃ : ]ω, t0] → R of the terminal value problem (1.2), with
x0 = α(t0), satisfying α̃ � α on ]ω, t0]. Further, every solution x : ]τ, t0] → R of
(1.1), with x � α, is such that τ � ω and x � α̃ on ]τ, t0]. Finally, we have that
either every left-nonextendible solution x : ]τ, t0]→R of (1.1), with x � α, is such
that

lim inf
t→τ

x(t)=−∞,

and (1.3) has no solution in ]−∞, α], or there exists the maximum solution w in
]−∞, α] of (1.3); in the latter case ω=−∞, w � α̃ and

lim
t→−∞

(̃
α(t)−w(t)

)= 0.

Existence of solutions
The counterpart of Theorem 1.4 for the periodic problem (1.3) is the following theorem.

THEOREM 1.9. Assume (C). Let α be a lower solution and β be an upper solution
of (1.3). Then there exist the minimum solution v and the maximum solution w in
[min{α,β},max{α,β}] of (1.3).

PROOF. We distinguish three cases.
Case 1: α � β . Let α̃ be the T -increasing solution of (1.2), with x0 = α(t0), whose exis-

tence is guaranteed by Proposition 1.8. Corollary 1.5, together with the minimality property
of α̃, imply that α̃ is defined on [t0,+∞[ and α̃ � β . Since α̃ is bounded, there exists the
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minimum solution v in [α,β] of (1.3). A symmetric argument proves the existence of the
maximum solution w in [α,β] of (1.3).

Case 2: α > β . We can reduce this case to the previous one by reversing time, as we did
in Claim 2 of Lemma 1.2.

Case 3: α �� β and β �� α. By Proposition 1.6 there exists t0 ∈ [0, T ] such that α(t0)=
β(t0). The result follows then immediately by Theorem 1.4 applied to problem (1.2), with
x0 = α(t0)= β(t0)= α(t0 + T )= β(t0 + T ), on the interval [t0, t0 + T ]. �

We produce a simple example showing how Theorem 1.9 can be effectively applied to
detect the existence of branches of T -periodic solutions by an appropriate choice of lower
and upper solutions.

EXAMPLE 1.1. Let us consider the equation

x′ =√|x| + h(t), (1.12)

with h : R→ R the 1-periodic function defined by h(t)=− 1
8 |t | on [− 1

2 ,
1
2 [. For any p ∈

]−2−10,2−10[, define αp : [− 1
2 ,

1
2 [→R, by setting αp(− 1

2 )= p and αp(t)= 2−4 sgn(t)t2

on ]− 1
2 ,

1
2 [, and βp : [− 1

2 ,
1
2 [ → R, by setting βp(− 1

2 ) = p and βp(t) = −2−8 sgn(t)t2

on ]− 1
2 ,

1
2 [. Then αp and βp are respectively a lower and an upper solution of the

1-periodic problem associated with (1.12). By Theorem 1.9, Eq. (1.12) has, for each
p ∈ ]−2−10,2−10[, a 1-periodic solution up such that up(− 1

2 )= p.

A criterion of T -monotonicity
In the next theorem we show that T -monotonicity is a property shared by any solution
of (1.1) which is comparable with all T -periodic solutions of (1.1).

THEOREM 1.10. Assume (C). Let x : ]ω−,ω+[→ R be a nonextendible solution of (1.1)
such that, if u is a solution of (1.3), then either x > u or x < u. Then x is T -monotone.

PROOF. We assume that ω+−ω− > T , because otherwise there is nothing to prove. Let us
suppose by contradiction that x is not T -monotone, i.e. there are points t1, t2 ∈ ]ω−,ω+[
such that

x(t1) < x(t1 + T ) and x(t2) > x(t2 + T ).

We can assume that t1 < t2, otherwise we set y(t)=−x(t) and replace equation (1.1) with
y′ = −f (t,−y).

Step 1. Assume ω+ =+∞. We distinguish two cases.
• Suppose that there exists n ∈N

+ such that t2 = t1+ nT and x(t1+ kT ) � x(t1+ (k+
1)T ) for each 0 � k � n− 1. Let m ∈ N be such that x(t1 +mT ) < x(t1 + (m+ 1)T )=
x(t1 + nT ). Since max{x(t1 + mT ), x(t1 + (n + 1)T )} < x(t1 + nT ), we can pick p ∈
]max{x(t1 +mT ), x(t1 + (n+ 1)T )}, x(t1 + nT )[. We define a function α : [t1 +mT, t1 +
(m+ 1)T [ → R by α(t)= x(t) on ]t1 +mT, t1 + (m+ 1)T [ and α(t1 +mT )= p, and a



224 C. De Coster et al.

function β : [t1 + nT , t1 + (n+ 1)T [→R by β(t)= x(t) on ]t1 + nT , t1 + (n+ 1)T [ and
β(t1+nT )= p. The T -periodic extensions to R of α and β are respectively a lower and an
upper solution of (1.3). Hence Theorem 1.9 yields, for any p ∈ ]max{x(t1 +mT ), x(t1 +
(n+ 1)T )}, x(t1 + nT )[, the existence of a solution u of (1.3) such that min{α,β}� u �
max{α,β}. Since u(t1 +mT ) = p and x(t1 +mT ) < p < x(t1 + nT ), we conclude that
u �� x and u �� x, which is a contradiction.
• Suppose that there exists n ∈ N such that t1 + nT < t2 < t1 + (n + 1)T and x(t1 +

kT ) � x(t1 + (k + 1)T ) for each k ∈ N. Set ϕ(t) = x(t + T ) − x(t) on ]ω−,+∞[. As
ϕ(t2) < 0 and ϕ(t1+(n+1)T ) � 0, there exists s1 ∈ ]t2, t1+(n+1)T ] such that ϕ(s1)= 0,
i.e. x(s1 + T ) = x(s1). Let v : R → R be the T -periodic extension to R of x|[s1,s1+T ];
v is a solution of (1.3). Since v(t2) = v(t2 + T ) = x(t2 + T ) < x(t2) and v(t1 + nT ) =
v(t1+ (n+ 1)T )= x(t1+ (n+ 1)T ) � x(t1+nT ), there exists s2 ∈ [t1+nT , t2[ such that
v(s2)= x(s2). Note that x(s2)= x(s2 + T ). Let w : R→R be the T -periodic extension to
R of x|[s2,s2+T ]; w is a solution of (1.3). Since v(t2)= x(t2 + T ) < x(t2)=w(t2), we can
pick p ∈ ]v(t2),w(t2)[. Then we define a function α : [s2, s2 + T [ → R, by α(t) = w(t)

on ]s2, t2[, α(t2)= p and α(t)= v(t) on ]t2, s2 + T [, and a function β : [s2, s2 + T [ →R,
by β(t) = v(t) on ]s2, t2[, β(t2) = p and β(t) = w(t) on ]t2, s2 + T [. The T -periodic
extensions to R of α and β are respectively a lower and an upper solution of (1.3). Hence
Theorem 1.9 yields, for any p ∈ ]v(t2),w(t2)[, the existence of a solution u of (1.3) such
that min{α,β}� u � max{α,β}. Since u(t2)= p and x(t2+ T ) < p < x(t2), we conclude
that u �� x and u �� x, which is a contradiction.

Step 2. Assume ω− = −∞. We set y(t)=−x(−t) and we replace Eq. (1.1) with y′ =
f (−t,−y). Thus we are reduced to the situation discussed in Step 1.

Step 3. Assume ω−,ω+ ∈R. Set ϕ(t)= x(t+T )−x(t) on ]ω−,ω+−T [. We essentially
distinguish two cases.
• Suppose that

lim
t→ω−

x(t)=−∞ and lim
t→ω+

x(t)=+∞; (1.13)

the case where limt→ω− x(t) = +∞ and limt→ω+ x(t) = −∞ being treated similarly.
Since ϕ(t1) > 0 > ϕ(t2), there exists t0 ∈ ]t1, t2[ such that ϕ(t0)= 0, i.e. x(t0+T )= x(t0).
Let u : R→R be the T -periodic extension to R of x|[t0,t0+T ]; u is a solution of (1.3). Since
(1.13) implies that u �� x and u �� x, a contradiction follows.
• Suppose that

lim
t→ω−

x(t)= lim
t→ω+

x(t)=+∞; (1.14)

the case where limt→ω− x(t) = limt→ω+ x(t) = −∞ being treated similarly. Since
limt→ω− ϕ(t) = −∞ and limt→ω+−T ϕ(t) = +∞, there exists s1 ∈ ]ω−,ω+ − T [ such
that ϕ(s1)= 0, i.e. x(s1 + T )= x(s1). Let w : R→R be the T -periodic extension to R of
x|[s1,s1+T ]. Since w is a solution of (1.3) and (1.14) holds, we conclude that x > w and
w is the maximum solution of (1.3). Define a function x1 : ]ω−,ω+ − T [ → R by setting
x1(t) = x(t) on ]ω−, s1] and x1(t) = x(t + T ) on ]s1,ω+ − T [. The function x1 is a so-
lution of (1.1) satisfying x1 > w on ]ω−,ω+ − T [, x1(s1) = w(s1) and limt→ω− x1(t) =
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limt→ω+−T x1(t)=+∞. Proceeding recursively we can find sn ∈ ]ω−,ω+−nT [ and con-
struct a solution xn : ]ω−,ω+−nT [→R of (1.1) such that ω+−nT −ω− � T , xn > w on
]ω−,ω+ − nT [, xn(sn) = w(sn) and limt→ω− xn(t) = limt→ω+−nT xn(t) = +∞. A con-
tradiction will then be achieved from the following result.

CLAIM. Assume that there exists the maximum solution w of (1.3). Let x : ]ω−,ω+[→ R

be a solution of (1.1) such that ω+ − ω− � T , x > w on ]ω−,ω+[ and limt→ω− x(t) =
limt→ω+ x(t)=+∞. Then x&w on ]ω−,ω+[.

Suppose by contradiction that there is t0 ∈ ]ω−,ω+[ such that x(t0)=w(t0) and x(t) >

w(t) on ]t0,ω+[. Denote by Y the set of all solutions y : [t0, λ+(y)[ → R of (1.1), which
are nonextendible to the right of λ+(y) and satisfy y(t0)=w(t0), y � w on [t0, λ+(y)[ and
y > w on [t0,ω− + T [ ∩ [t0, λ+(y)[. Note that Y �= ∅, as x ∈ Y . Set λ+ = supy∈Y λ+(y).
Let us show that λ+ >ω−+T . Otherwise, if λ+ � ω−+T , we can pick a solution z : [λ+−
δ,λ+ + δ] → R of (1.1) such that z(λ+) > w(λ+). Let y ∈ Y be such that λ+(y) > λ+ −
δ. As limt→λ+(y) y(t) = +∞, we can suppose, possibly for a smaller δ > 0, that y(t) >
z(t) on [λ+ − δ,λ+(y)[. Hence z can be continued to a right-nonextendible solution v

of (1.1) defined on [t0, λ+(v)[, with λ+(v) > λ+ + δ, and satisfying v(t0)=w(t0), v � w

on [t0, λ+(v)[ and v > w on [t0,ω−+T [∩ [t0, λ+(v)[. Since v ∈ Y we get a contradiction.
Therefore λ+ > ω− + T . Pick y ∈ Y such that λ+(y) > ω− + T . As limt→(ω−+T )+ x(t −
T ) = +∞, there is δ > 0 such that w(t) � y(t) < x(t − T ) on ]ω− + T ,ω− + T + δ].
Hence y can be continued to a solution u of (1.1) defined on [t0, t0 + T ] and satisfying
w(t) � u(t) � x(t − T ) on ]ω− + T , t0 + T ]. Since u is a solution of (1.3) and u > w on
[t0,ω− + T ], the maximality of w yields a contradiction. Therefore the claim is proved. �

REMARK 1.10. The following more general conclusion can be achieved. Let x : ]ω−,ω+[
→ R be a nonextendible solution of (1.1) such that ω−,ω+ ∈ R, ω+ − ω− � T and, for
any solution u of (1.3), either x < u or x > u. Then two possibilities may occur:
• for all solutions u of (1.3), either x% u or x& u;
• there exist a solution u of (1.3) and t0 ∈ ]ω−,ω+[ such that u(t0) = x(t0) and, e.g.,

u < x. In this case there exists t̄ ∈ ]t0, t0 + T [ such that, for every x̄ > u(t̄ ), there is a
solution v of (1.3) with u < v < x on ]ω−,ω+[ and v(t̄ )= x̄.

A simple example where the latter possibility occurs follows.

EXAMPLE 1.2. Let us consider Eq. (1.1) taking f : [− 3
2 ,

3
2 [×R→R defined by f (t, x)=

2x2 sgn(t), if |x| > 1, and f (t, x) = 2
√|x| sgn(t), if |x| � 1, and extending f by

3-periodicity with respect to the t-variable. Let x : ]− 3
2 ,

3
2 [→R be defined by x(t)= 1

3+2t

on ]− 3
2 ,−1], x(t) = t2 on ]−1,1], x(t)= 1

3−2t on ]1, 3
2 [. Note that x is a nonextendible

solution of (1.1) such that x > u for any solution u of (1.3), 0 is a solution of (1.3), x(0)= 0
and, for every x̄ > 0, there is a solution v of (1.3) with 0 < v < x on ] − 3

2 ,
3
2 [ and v( 3

2 )= x̄.

The Massera Existence Theorem
When uniqueness of solutions of (1.2) fails, there may exist solutions which are not T -
monotone (see Example 1.3). It is useful to notice that existence of a solution that is not
T -monotone yields existence of T -periodic solutions. Proposition 1.38 will actually show
that infinitely many T -periodic solutions do exist in this case.
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COROLLARY 1.11. Assume (C). Let x : ]t0,+∞[→ R be a solution of (1.1). If x is not
T -monotone, then there exists a solution u of (1.3) such that u �� x and u �� x.

PROOF. Since x is not T -monotone, there are points t1, t2 ∈ ]t0,+∞[ such that x(t1) <
x(t1 + T ) and x(t2) > x(t2 + T ). Hence we can proceed as in the first step of the proof of
Theorem 1.10 to get the conclusion. �

We finally observe that combining Corollary 1.11 and Proposition 1.7 immediately
yields the following statement.

PROPOSITION 1.12. Assume (C). Suppose that Eq. (1.1) has a bounded solution defined
on an unbounded interval. Then problem (1.3) has at least one solution.

Proposition 1.12 provides an extension to the Carathéodory setting of the existence part
of the Massera Theorem. Yet, it must be observed that, when uniqueness for (1.1) fails,
convergence of a bounded solution x to a T -periodic solution u is not generally guaran-
teed, as the following example will show. A possible extension of the convergence part
of the Massera Theorem to the case where the uniqueness assumption is dropped will be
discussed in Section 1.7.

EXAMPLE 1.3. We consider Eq. (1.12) again. As described in Example 1.1, for each p ∈
]−2−10,2−10[, there exists a 1-periodic solution up of (1.12) such that up(− 1

2 ) = p and
up(0)= 0. Let p1 �= p2 and set x(t)= up1(t) on [0,1[ and x(t)= up2(t) on [1,2[. Since
x( 1

2 )= p1 �= p2 = x( 3
2 ), the extension to R of x by 2-periodicity is a 2-periodic solution

of (1.12) which is not 1-periodic; hence it is a bounded solution which does not converge
to any 1-periodic solution of (1.12). As we shall see in Example 1.4, x is a subharmonic
solution of order 2 of (1.12), i.e. its minimal period is 2.

1.5. Structure and dynamics near one-sided isolated periodic solutions

We investigate in this section the dynamics of all solutions of (1.1) in the vicinity of one-
sided isolated T -periodic solutions; namely, solutions of (1.1) which lie between a pair of
strictly ordered T -periodic solutions, or above the maximum T -periodic solution, or below
the minimum T -periodic solution, provided they exist. T -monotonicity plays an important
role in this study. Incidentally we notice that the maximum solution of (1.3) always exists,
provided the solution set of (1.3) is bounded from above. Similarly the minimum solution
of (1.3) always exists, provided the solution set of (1.3) is bounded from below.

Between two ordered T -periodic solutions
We start by observing that, given a pair of T -periodic solutions, either they are strictly
ordered, or there exist infinitely many T -periodic solutions hitting them.

PROPOSITION 1.13. Assume (C). Let v,w be solutions of (1.3), with v �= w. Then either
v% w, or v& w, or for every t0 ∈ [0, T [ and every x0 ∈ [min{v(t0),w(t0)},max{v(t0),
w(t0)}] there exists a solution u of (1.3) with u(t0)= x0 and min{v,w}� u � max{v,w}.
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PROOF. Assume that there exists t̄ ∈ [0, T [ such that v(t̄ ) = w(t̄ ). Let t0 ∈ [0, T ] and
x0 ∈ [min{v(t0),w(t0)},max{v(t0),w(t0)}]. We may assume that t0 � t̄ , otherwise we re-
place t̄ with t̄+T . Let us consider the T -periodic functions α and β defined by α(t0)= x0,
α(t) = min{v(t),w(t)} on ]t0, t̄], α(t) = max{v(t),w(t)} on ]t̄ , t0 + T [, β(t0) = x0,
β(t) = max{v(t),w(t)} on ]t0, t̄], β(t) = min{v(t),w(t)} on ]t̄ , t0 + T [. Then α and β

are respectively a lower solution and an upper solution of (1.3), hence, by Theorem 1.9,
there exists a solution u of (1.3) with min{α,β}� u � max{α,β}. In particular u(t0)= x0
and min{v,w}� u � max{v,w}. �

We consider here the case where a pair of strictly ordered T -periodic solutions is given,
the complementary situation will be discussed in Section 1.6. We prove the existence of
heteroclinic solutions connecting a pair of strictly ordered T -periodic solutions, when there
is no further T -periodic solution in between.

THEOREM 1.14. Assume (C). Let v, w be solutions of (1.3) such that v%w and there is
no solution u of (1.3) satisfying v < u < w. Then either any nonextendible solution x of
(1.1), with v < x <w, exists on R, is T -increasing and satisfies

lim
t→−∞

(
x(t)− v(t)

)= lim
t→+∞

(
x(t)−w(t)

)= 0,

or any nonextendible solution x of (1.1), with v < x <w, exists on R, is T -decreasing and
satisfies

lim
t→−∞

(
x(t)−w(t)

)= lim
t→+∞

(
x(t)− v(t)

)= 0.

PROOF. Pick any nonextendible solution x of (1.1), with v < x < w. Clearly, there is
a t0 such that v(t0) < x(t0) < w(t0). Since x exists on R and satisfies the assumptions
of Theorem 1.10, we have that either x is T -increasing, or x is T -decreasing. Assume
the former case occurs, the latter one being treated similarly. Then Proposition 1.7 and
Remark 1.7 imply that there exist solutions u1, u2 of (1.3) satisfying u1 < x < u2, as x is
not a solution of (1.3), and limt→−∞(x(t)− u1(t))= limt→+∞(x(t)− u2(t))= 0. Since
v � u1 < u2 � w and there is no solution u of (1.3) satisfying v < u < w, we conclude
that u1 = v and u2 =w.

Finally, let us suppose by contradiction that there exist two solutions x1, x2 of
(1.1), with v < x1 < w and v < x2 < w on R, such that limt→−∞(x1(t) − v(t)) =
limt→+∞(x1(t)−w(t))= 0 and limt→−∞(x2(t)−w(t))= limt→+∞(x2(t)− v(t))= 0.
Set x∗ =min{x1, x2} and x∗ =max{x1, x2}. Since either v < x∗ < w, or v < x∗ < w, we
find a solution x of (1.1), with v < x < w in R, such that either limt→−∞(x(t)− v(t))=
limt→+∞(x(t)− v(t))= 0, or limt→−∞(x(t)−w(t))= limt→+∞(x(t)−w(t))= 0, thus
contradicting the conclusion previously achieved. �

Maximal and minimal T -periodic solutions
We show now that any bounded set of solutions of (1.3) has a maximal and a minimal
element.
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LEMMA 1.15. Assume (C). Let S ⊆W 1,1(0, T ) be a nonempty set of solutions of (1.3).
Assume that S is uniformly bounded from above, i.e. there exists a constant M such that
max[0,T ] u(t) � M for all u ∈ S . Then there exists a maximal solution w of (1.3) in the
C0-closure S̄ of S . Similarly, if S is uniformly bounded from below, then there exists a
minimal solution v of (1.3) in S̄ .

PROOF. We only prove the former case. We show that (S̄,�) is inductively ordered. Let
T = {ui | i ∈ I } be a totally ordered subset of S̄ . We prove that T has an upper bound
in S̄ . Let us set u(t)= supi∈I ui(t) on [0, T ]. Let D = {tm |m ∈ N} be a countable dense
subset of [0, T ] and define a sequence in T as follows: for n = 1, take u1 ∈ T such that
u1(t1) � u(t1) − 1, for n = 2, take u2 ∈ T , with u2 � u1, such that u2(t2) � u(t2) − 1

2 ,
u2(t1) � u(t1) − 1

2 , and so on. In this way, we construct a sequence (un)n in T , with
u1 � u2 � · · · � un � un+1 � · · ·, such that un(tk) � u(tk)− 1

n
, for 1 � k � n. It is clear

that (un)n converges to u pointwise on D. On the other hand, as (un)n is relatively compact
in C0([0, T ]), there is a subsequence of (un)n which converges uniformly to some function
û ∈ C0([0, T ]). Actually, by monotonicity, the whole sequence (un)n converges uniformly
to û. Using the L1-Carathéodory conditions, we conclude that the convergence takes place
in W 1,1(0, T ), the limit û ∈W 1,1(0, T ) and û is a solution of (1.3). Moreover, û = u on
D and û � u on [0, T ]. Let us show that û= u on [0, T ]. Indeed, otherwise, one can find
a point t0 ∈ [0, T ] and a function u0 ∈ T such that û(t0) < u0(t0) � u(t0). The continuity
of û and u0 and the density of D yield a contradiction. This proves that u ∈ S̄ is an upper
bound of T . Since (S̄,�) is inductively ordered, Zorn Lemma guarantees the existence of
a maximal element w ∈ S̄ . �

By the lattice structure of the solution set of (1.3), we get the following conclusion.

COROLLARY 1.16. Suppose (C). Assume that the set of all solutions of (1.3) is uniformly
bounded from above. Then there exists the maximum solution of (1.3). Assume that the set
of all solutions of (1.3) is uniformly bounded from below. Then there exists the minimum
solution of (1.3).

Above the maximum, or below the minimum T -periodic solution
We now assume that there exists the maximum solution of (1.3) and describe the quali-
tative behaviour of all solutions of (1.1) that lie above it. Symmetric conclusions can be
established for solutions lying below the minimum T -periodic solution, whenever it exists.

THEOREM 1.17. Assume (C). Suppose that there exists the maximum solution w of (1.3).
Then either any nonextendible solution x of (1.1), with x > w, is T -increasing or any
nonextendible solution x of (1.1), with x > w, is T -decreasing. Furthermore, for any such
x : ]ω−,ω+[→R, either

ω−,ω+ ∈R, ω+ −ω− � T , x&w on ]ω−,ω+[ and

lim
t→ω−

x(t)= lim
t→ω+

x(t)=+∞,
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or

ω− =−∞, lim
t→−∞

(
x(t)−w(t)

)= 0 and lim sup
t→ω+

x(t)=+∞,

or

ω+ =+∞, lim sup
t→ω−

x(t)=+∞ and lim
t→+∞

(
x(t)−w(t)

)= 0.

PROOF. Let x : ]ω−,ω+[→R be a nonextendible solution of (1.1) with x > w.
Assume first that ω−,ω+ ∈ R and that ω+ − ω− � T . The Claim stated in the proof of

Theorem 1.10 implies that x&w on ]ω−,ω+[. Then the conclusion follows.
Suppose next that ω+ − ω− > T . By Theorem 1.10 either x is T -increasing, or x

is T -decreasing. Assume that the former situation occurs, the latter case being treated
similarly. Since x is bounded from below, we have ω− = −∞. Let us verify that
limt→−∞(x(t) − w(t)) = 0. Remark 1.7 implies that there exists a solution u of (1.3),
with u � x, such that limt→−∞(x(t) − u(t)) = 0. Since u � w, the maximality of w

yields u = w. Of course, if ω+ < +∞, then limt→ω+ x(t) = +∞. Let us show that, if
ω+ = +∞, then lim supt→ω+ x(t) = +∞. Indeed, otherwise, x would be bounded and
Proposition 1.7 would imply the existence of a solution u of (1.3), with u � x, such that
limt→+∞(x(t)−u(t))= 0. Since u >w, the maximality of w would yield a contradiction.

Finally, let us suppose, by contradiction, that there exist x1 : ]−∞,ω+[ → R, x2 : ]ω−,
+∞[→ R both solutions of (1.1), with x1 > w and x2 >w, such that x1 is T -increasing
and x2 is T -decreasing. Then limt→−∞(x1(t) − w(t)) = 0 and limt→+∞(x2(t) − w(t))

= 0. Possibly replacing x1(t) with x1(t − kT ) for some k ∈N, we may assume ω+ >ω−.
Set x∗ =min{x1, x2} and x∗ =max{x1, x2}. Then either w < x∗ or w �% x∗; in both cases
we contradict the conclusions previously achieved. �

1.6. Stability and detours

In this section we study the stability properties of T -periodic solutions of (1.1) with the
aid of lower and upper solutions. We start by recalling the classical notion of one-sided
Lyapunov stability. Yet, in the present context, where uniqueness of the solutions of (1.2)
is not guaranteed, such a definition does not generally seem the most appropriate to be
considered; indeed, some weaker concept might fit better in order to detect certain residual
forms of stability. As an alternative notion to Lyapunov stability we use order stability; this
is common in the frame of monotone dynamical systems [93,58,60] and appears suited to
our approach based on lower and upper solutions. Lyapunov stability implies order sta-
bility, but not vice versa; however, these concepts are equivalent if uniqueness, either in
the past or in the future, holds for solutions of (1.2). We further give a characterization of
order stability in terms of the asymptotic behaviour of solutions of (1.1) by introducing a
third kind of stability, which is named weak stability. This notion was first defined in [130]
in the context of multivalued dynamical systems (see also [50]) and is related to that of
weak positive invariance considered in [105,152]. We show that weak stability and order
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stability are always equivalent. Using these concepts, we give a precise description of the
stability properties of a T -periodic solution in terms of the existence of a lower or an up-
per solution close to it. Hence, when a pair of lower and upper solutions is given, we can
discuss the stability or instability of the minimum and the maximum T -periodic solutions
v and w wedged between them, thus getting a completion of Theorem 1.9. Afterwards,
we turn to investigate the behaviour of the solutions lying between v and w. If the lower
and the upper solutions are ordered in the standard way, i.e. the lower solution is below
the upper solution, we find between v and w a totally ordered continuum of weakly stable
T -periodic solutions. Whereas, in the complementary case we see that Lyapunov instabil-
ity always occurs and, in the absence of uniqueness for (1.2), solutions of (1.1) having very
complicated, even chaotic-like, dynamics may exist. In particular, we can find homoclin-
ics, subharmonics of any order and almost periodic solutions, which are not periodic of
any fixed period.

One-sided Lyapunov stability

DEFINITION 1.14.
• A solution u of (1.3) is said Lyapunov stable (briefly, L-stable) from below if, for

every ε > 0, there is δ > 0 such that, for every t0 ∈ [0, T [ and every x0 with u(t0)−
δ < x0 < u(t0), every right-nonextendible solution x of (1.2), with x � u, exists on
[t0,+∞[ and satisfies

u(t)− ε < x(t) � u(t) on [t0,+∞[. (1.15)

• If, further,

lim
t→+∞

(
x(t)− u(t)

)= 0, (1.16)

u is said L-asymptotically stable from below.
• L-stability and L-asymptotic stability from above are defined similarly.
• A solution u of (1.3) is said L-stable if, for every ε > 0, there is δ > 0 such that,

for every t0 ∈ [0, T [ and every x0 with |x0 − u(t0)| < δ, every right-nonextendible
solution x of (1.2) exists on [t0,+∞[ and satisfies

∣∣x(t)− u(t)
∣∣< ε on [t0,+∞[. (1.17)

If, further, (1.16) holds, u is said L-asymptotically stable.
• A solution u of (1.3) is said L-unstable from below if it is not L-stable from below.
L-instability from above and L-instability are defined similarly.

REMARK 1.11. The notion of L-stability from below given in Definition 1.14 does not
require any condition on solutions x : [t0,ω+[ → R of (1.2), satisfying u(t0) − δ < x0 <

u(t0), but not x � u. A similar remark holds for the L-stability from above.
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DEFINITION 1.15. A solution u of (1.3) is said isolated from below in C0([0, T ]) if there
exists ε > 0 such that no solution z of (1.3) exists satisfying u− ε < z < u. Similarly, a
solution u of (1.3) is said isolated from above in C0([0, T ]) if there exists ε > 0 such that
no solution z of (1.3) exists satisfying u < z < u+ ε.

PROPOSITION 1.18. Assume (C). A solution u of (1.3) is L-asymptotically stable from
below (respectively L-asymptotically stable from above) if and only if it is L-stable from
below and isolated from below (respectively L-stable from above and isolated from above)
in C0([0, T ]).

PROOF. Assume u is L-asymptotically stable from below, then u is clearly L-stable and
isolated from below in C0([0, T ]) as a solution of (1.3). Suppose now that u is L-stable
from below and isolated from below. Let ε > 0 be such that no solution z of (1.3) exists
satisfying u− ε < z < u. By the L-stability from below of u, there is δ > 0 such that every
right-nonextendible solution x of (1.2), with u(t0)− δ < x0 < u(t0) and x � u, exists on
[t0,+∞[ and satisfies u− ε/2 < x < u on [t0,+∞[. We claim that any such solution x

satisfies x(t0) < x(t0+T ). Indeed, otherwise x|[t0,t0+T [ is a proper upper solution of (1.3).
Hence, by Proposition 1.8 there exists a solution v of (1.3) such that limt→+∞(x(t) −
v(t)) = 0 and u − ε < v < x < u on [t0, t0 + T ], thus contradicting the assumption that
u is isolated from below. Hence x|[t0,t0+T [ is a proper lower solution of (1.3) and, by
Proposition 1.8, limt→+∞(u(t)−x(t))= 0. A similar argument proves the statement about
L-stability from above. �

One-sided order stability

DEFINITION 1.16.
• A solution u of (1.3) is said order stable (briefly, O-stable) (respectively properly O-

stable, respectively strictly O-stable) from below if there exists a sequence (αn)n of
regular lower solutions (respectively proper regular lower solutions, respectively strict
regular lower solutions) of (1.3) such that αn < u for every n and αn→ u uniformly
on [0, T ].

• A solution u of (1.3) is said O-stable (respectively properly O-stable, respectively
strictly O-stable) from above if there exists a sequence (βn)n of regular upper so-
lutions (respectively proper regular upper solutions, respectively strict regular upper
solutions) of (1.3) such that βn > u for every n and βn→ u uniformly on [0, T ].

• A solution u of (1.3) is said O-stable (respectively properly O-stable, respectively
strictly O-stable) if it is O-stable (respectively properly O-stable, respectively strict-
ly O-stable) from above and from below.

REMARK 1.12. The requirement for the lower and upper solutions to be regular in Defini-
tion 1.16 is not essential. Indeed, we see, for instance, that between a proper lower solution
α and a solution u of (1.3), with α < u, it is always possible to fit in a proper regular lower
solution ᾱ. This follows from Proposition 1.20. A similar observation holds for a proper
upper solution β .
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In order to prove Proposition 1.20 we first need the following result concerning a prop-
erty of Carathéodory functions. A more general version of it will be proved in Proposi-
tion 2.3.

PROPOSITION 1.19. Assume (C). Then, for each ρ > 0, there exists a L1-Carathéodory
function h : [0, T ] × [−ρ,ρ] × [−ρ,ρ]→R such that

(i) for a.e. t ∈ [0, T ] and every x ∈ [−ρ,ρ], h(t, ·, x) : [−ρ,ρ]→R is strictly increas-
ing;

(ii) for a.e. t ∈ [0, T ] and every y ∈ [−ρ,ρ], h(t, y, ·) : [−ρ,ρ] → R is strictly de-
creasing;

(iii) for a.e. t ∈ [0, T ] and every (x, y) ∈ [−ρ,ρ] × [−ρ,ρ], h(t, x, y)=−h(t, y, x);
(iv) for a.e. t ∈ [0, T ] and every (x, y) ∈ [−ρ,ρ] × [−ρ,ρ], with x < y,

∣∣f (t, y)− f (t, x)
∣∣< h(t, y, x).

PROPOSITION 1.20. Assume (C). Suppose that u is a solution of (1.3). If α is a proper
lower solution of (1.3), with α < u, then there exists a proper regular lower solution ᾱ

of (1.3), satisfying limt→0+ ᾱ(t) = ᾱ(0) = limt→T − ᾱ(t) and α < ᾱ < u. Similarly, if β
is a proper upper solution of (1.3), with β > u, then there exists a proper regular upper
solution β̄ of (1.3), satisfying limt→0+ β̄(t)= β̄(0)= limt→T − β̄(t) and u < β̄ < β .

PROOF. Let h be the function associated with f by Proposition 1.19 and corresponding to
ρ =max{‖α‖∞,‖u‖∞}. Consider the periodic problem

x′ = f (t, α)− h(t, x,α), x(0)= x(T ).

Since α is a proper lower solution and u is a proper upper solution, this problem has
a solution ᾱ, satisfying α < ᾱ < u. The properties of h imply that ᾱ is a proper lower
solution of (1.3). �

Lyapunov stability and order stability
We prove now that L-stability implies O-stability. We start with a result, which estab-
lishes the O-stability of an isolated solution of (1.3) in the presence of a lower or an upper
solution.

PROPOSITION 1.21. Assume (C). Suppose that z is a solution of (1.3).
• If α is a proper lower solution of (1.3) such that α < z and there is no solution u of

(1.3) satisfying α < u < z, then there exists a sequence (αn)n of proper regular lower
solutions of (1.3), with α < αn < αn+1 < z for each n, which converges in W 1,1(0, T )

to z.
• If β is a proper upper solution of (1.3) such that β > z and there is no solution u of

(1.3) satisfying z < u < β , then there exists a sequence (βn)n of proper regular upper
solutions of (1.3), with z < βn+1 < βn < β for each n, which converges in W 1,1(0, T )

to z.
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PROOF. We only prove the statement concerning the lower solution. Repeating recursively
the argument in the proof of Proposition 1.20, we get a sequence (αn)n of proper regular
lower solutions of (1.3) such that, for each n, α < αn < αn+1 < z and αn+1 is a solution of

x′ = f (t, αn)− h(t, x,αn), x(0)= x(T ).

Since (αn)n is a bounded sequence, we see, arguing as in the proof of Proposition 1.7, that
(αn)n converges in W 1,1(0, T ) to a function α̂ such that α̂ � z and α̂(0)= α̂(T ). Moreover,
as limn→+∞ h(t, αn+1(t), αn(t))= 0 a.e. on [0, T ], we see that α̂ is a solution of (1.3) and,
hence, α̂ = z. �

PROPOSITION 1.22. Assume (C). If a solution u of (1.3) is L-stable from below (respec-
tively L-stable from above, respectively L-stable), then it is O-stable from below (respec-
tively O-stable from above, respectively O-stable).

PROOF. Let u be a solution of (1.3) which is L-stable from below. If u is not isolated from
below in C0([0, T ]) as a solution of (1.3), there is a sequence (αn)n of (regular lower)
solutions of (1.3) such that αn < u for every n and αn→ u uniformly on [0, T ], that is, u
is O-stable from below. Let us suppose that u is isolated from below in C0([0, T ]). Then,
arguing as in the proof of Proposition 1.18, we can construct a proper lower solution α

of (1.3) such that α < u and there is no solution w of (1.3) with α < w < u. By Proposi-
tion 1.21, we conclude that u is O-stable from below. �

REMARK 1.13. The converse of Proposition 1.22 does not generally hold. Indeed, there
may exist solutions of (1.3) which are O-stable, but L-unstable. A simple example is given

by (1.3), with f (x) = sgn(x)
√
|x sin( 1

x
)| if x �= 0 and f (x) = 0 if x = 0. Here, the equi-

librium 0 is obviously O-stable, but it is L-unstable both from below and from above.

Lyapunov stability and order stability in case of uniqueness
We show that L-stability and O-stability are equivalent concepts if we assume uniqueness
in the future or in the past for solutions of (1.2). We need two preliminary results: the
former concerns the validity of a comparison principle, the latter establishes a form of
continuous dependence.

LEMMA 1.23. Suppose (C). Assume that uniqueness in the past holds for solutions
of (1.2). Let α be a lower solution and β be an upper solution of (1.1) on [a, b] and
suppose that α(a) < β(a). Then α% β on [a, b].

PROOF. We first show that α � β . Notice that α and β are a lower solution and an upper
solution for any initial value problem x′ = f (t, x), x(a) = x0 with α(a) � x0 � β(a).
Hence, if we assume, by contradiction, that α �� β , then Proposition 1.1 yields the existence
of t0 ∈ ]a, b] such that α(t0)= β(t0). Theorem 1.4 implies then that Eq. (1.1) has solutions
x1, x2, with x1(a) = α(a) and x2(a) = β(a), satisfying α � x1 < x2 � β on [a, t0] and
hence x1(t0)= x2(t0); thus contradicting uniqueness in the past for solutions of (1.2). We
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just proved that α < β . Finally, by arguing as above, uniqueness in the past for solutions
of (1.2) implies that α% β on [a, b]. �

REMARK 1.14. Assume that uniqueness in the past holds for solutions of (1.2). If α is a
lower solution and u is a solution of (1.3), with α < u, then α% u. This implies that, if u is
O-stable from below, i.e. if there exists a sequence (αn)n of regular lower solutions of (1.3)
such that αn < u for every n and αn→ u uniformly on [0, T ], then there is a subsequence
(αnk )k of (αn)n such that αnk % αnk+1 % u for every k. Further we can see that proper
O-stability from below is equivalent to strict O-stability from below.

LEMMA 1.24. Suppose (C). Assume that uniqueness in the future holds for solutions
of (1.2). Let z be a solution of (1.1) on [a, b]. Then for every ε > 0 there is δ > 0 such
that, for every t0 ∈ [a, b[ and every x0, with z(t0)−δ < x0 < z(t0), any right-nonextendible
solution x of (1.2) exists (at least) on [t0, b] and satisfies z− ε < x < z on [t0, b].

PROOF. We start with the following basically known statement (cf. [121]), which we prove
for the sake of completeness.

CLAIM. For every ε > 0 there is δ > 0 such that every right-nonextendible solution x

of (1.1), with z(a)− δ < x(a) < z(a), exists and satisfies z(t)− ε < x(t) � z(t) on [a, b].
Assume by contradiction that there exists ε > 0 and a sequence (xn)n of solutions

of (1.1) on [a, bn], with bn < b, such that xn(a)→ z(a), z(t) − ε < xn(t) < z(t) on
[a, bn[ and xn(bn) = z(bn) − ε. We can assume that (xn(a))n is strictly increasing and
hence, by uniqueness in the future, xn < xn+1 on [a, bn]. Therefore, (bn)n is increas-
ing, so that bn → b̄ ∈ ]a, b]. Let x be a solution of (1.1), with x(b̄) = z(b̄) − 2ε, de-
fined on [b̄ − η, b̄], for some η > 0. By uniqueness in the future, we have x � xn � z on
[b̄− η, b̄] ∩ [a, bn], for all large n. Hence any such a solution xn can be continued to b̄ and
satisfies z− ε � xn � z on [a, bn[ and x � xn � z on [bn, b̄]. Further, since the sequence
(xn)n is bounded, by the L1-Carathéodory conditions, it is also equicontinuous on [a, b̄]
and therefore, by monotonicity, it converges to some function y uniformly on [a, b̄]. Since
the convergence takes place in W 1,1(0, T ) as well, y is a solution of (1.1), which satisfies
y(a)= z(a), as xn(a)→ z(a). Accordingly, by uniqueness in the future, we conclude that
y = z on [a, b̄]. On the other hand, as xn(bn)= z(bn)− ε→ z(b̄)− ε, and, by equiconti-
nuity, xn(bn)→ y(b̄), we get y(b̄)= z(b̄)− ε, which is a contradiction. Thus, the proof of
the claim is finished.

Conclusion. Fix ε > 0 and, according to the Claim, for every t0 ∈ [a, b[ let δ(t0) be the
supremum of all δ > 0 such that every right-nonextendible solution x of (1.1), with z(t0)−
δ < x(t0) < z(t0), exists and satisfies z(t)− ε < x(t) � z(t) on [t0, b]. This lemma will be
proved if we show that inft0∈[a,b[ δ(t0) > 0. Assume by contradiction that inft0∈[a,b[ δ(t0)=
0 and let (tn)n be a sequence such that δ(tn)→ 0. We can assume that (tn)n is increasing
and converges to some t̄ ∈ ]a, b]. If (tn)n is decreasing, the proof is similar. Let δ̄ > 0 be the
constant associated with t̄ by the Claim. We can find a solution x̄ of (1.1), with z(t̄ )− δ̄ <

x̄(t̄ ) < z(t̄ ), which exists on [t̄ − η,b], for some η > 0, and satisfies z − ε < x̄ < z on
[t̄ − η,b] and x̄% z on [t̄ − η, t̄]. Then every right-nonextendible solution x of (1.1), with
x̄(t̄ − η) < x(t̄ − η) < z(t̄ − η), exists and satisfies x̄ < x < z and, hence, z− ε < x < z
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on [t̄ − η,b]. This yields a contradiction as we have δ(t) � min[t̄−η,t̄](z(t)− x̄(t)) > 0, for
every t ∈ [t̄ − η, t̄]. �

PROPOSITION 1.25. Assume (C). Suppose that uniqueness in the past, or in the future,
holds for solutions of (1.2). Then a solution u of (1.3) is L-stable from below (respec-
tively L-stable from above, respectively L-stable) if and only if it is O-stable from below
(respectively O-stable from above, respectively O-stable).

PROOF. Let u be a solution of (1.3), which is O-stable from below, and let (αn)n be a
sequence of regular lower solutions of (1.3) such that αn < u for every n and αn → u

uniformly on [0, T ].
Case 1: uniqueness in the past holds for (1.2). By Lemma 1.23 and Remark 1.14, we

can suppose that αn % u for each n. Fix ε > 0 and pick n such that ‖αn − u‖∞ < ε. Set
δ = inf[0,T ](u− αn) > 0. Then for every t0 ∈ [0, T [ and x0 such that αn(t0) � u(t0)− δ <

x0 < u(t0), any right-nonextendible solution x of (1.2) satisfies, according to Lemma 1.23,
αn% x% u on [t0, b] for any given b > t0. Hence x exists and satisfies u− ε < x < u on
[t0,+∞[. This means that u is L-stable from below.

Case 2: uniqueness in the future holds for (1.2). The conclusion is an immediate conse-
quence of the following statement.

CLAIM. Let α be a regular lower solution of (1.3), with α < u, and set η = ‖α − u‖∞.
Then there exists δ > 0 such that for every t0 ∈ [0, T [ every right-nonextendible solution x

of (1.2), with u(t0)− δ < x0 < u(t0), exists and satisfies u− η < x < u on [t0,+∞[.
If α% u, then the result follows setting δ = inf[0,T ](u−α) > 0 and using Corollary 1.5.

Therefore, suppose inf[0,T ](u − α) = 0. Hence there exist points t1 ∈ [0, T ] and t2 ∈
]t1, t1 + T [ such that α(t1)= u(t1)− η, limt→t−2

α(t)= u(t2) and u(t)− η � α(t) < u(t)

on [t1, t2[. By Lemma 1.24, there is δ ∈ ]0, η[ such that, for every t0 ∈ [0, T [, any right-
nonextendible solution x of (1.2), with u(t0)− δ < x0 < u(t0), exists and satisfies u(t)−
η < x(t) � u(t) on [t0, t1+ T ]. Since α(t1+ T )= u(t1+ T )− η � x(t1+ T ) � u(t1+ T )

and α is a lower solution, x exists and satisfies α(t) � x(t) � u(t) on [t1 + T , t2 + T [ and
x(t)= u(t) on [t2 + T ,+∞[. �

One-sided weak stability
The following definition of stability is a possible weakening of L-stability suited to deal
with cases where uniqueness of the solutions of (1.2) is not guaranteed (see [50]).

DEFINITION 1.17.
• We say that a solution u of (1.3) is weakly stable (briefly, W-stable) from below if, for

every ε > 0, there is a uniformly continuous function δ : [0, T [→R, with δ > 0, such
that, for every t0 ∈ [0, T [ and every x0, with u(t0)− δ(t0) � x0 � u(t0), there exists a
solution x : [t0,+∞[→R of (1.2) which satisfies (1.15).

• If, further, (1.16) holds, we say that u is W-asymptotically stable from below.
• W-stability and W-asymptotic stability from above are defined in a similar way.
• We say that a solution u of (1.3) is W-stable if, for every ε > 0, there is a uniformly

continuous function δ : [0, T [ → R, with δ > 0, such that, for every t0 ∈ [0, T [ and
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every x0, with |x0 − u(t0)|� δ(t0), there exists a solution x : [t0,+∞[→ R of (1.2)
which satisfies (1.17). If, further, (1.16) holds, we say that u is W-asymptotically
stable.

Order stability and weak stability
The notion of W-stability is in any case equivalent to that of O-stability.

PROPOSITION 1.26. Assume (C). Let u be a solution of (1.3). Then u is W-stable from be-
low (respectively W-stable from above, respectively W-stable) if and only if it is O-stable
from below (respectively O-stable from above, respectively O-stable).

PROOF. We only discuss stability from below. The proof is divided into two steps.
Step 1. Let u be a solution of (1.3), which is O-stable from below, and let (αn)n be

a sequence of regular lower solutions of (1.3) such that αn < u for every n and αn → u

uniformly on [0, T ]. Fix ε > 0 and take n such that ‖αn−u‖∞ < ε. Then set δ = u−αn on
[0, T [. Corollary 1.5 implies that, for every t0 ∈ [0, T ] and every x0, with u(t0)− δ(t0) �
x0 � u(t0), there is a solution x which exists and satisfies u− ε < x � u on [t0,+∞[.

Step 2. Let u be a solution of (1.3), which is W-stable from below. If u is not isolated
from below as a solution of (1.3), then it is obviously O-stable. Accordingly, suppose that
u is isolated from below. Let ε > 0 be such that there is no solution z of (1.3), satisfying
z < u and ‖z−u‖∞ � ε, and let δ be the function associated with ε. Since δ > 0, there ex-
ists t0 ∈ [0, T [ such that δ(t0) > 0. Fix a strictly increasing sequence (x

(n)
0 )n such that, for

every n, u(t0)− δ(t0) < x
(n)
0 < u(t0) and x

(n)
0 → u(t0). Denote by (xn)n the corresponding

sequence of solutions of (1.2), satisfying, for every n, xn(t0) = x
(n)
0 , u− ε < xn � u and

xn < xn+1 on [t0,+∞[. Fix n and observe that xn(t0 + T ) > xn(t0). Indeed, otherwise
xn|[t0,t0+T [ is a proper upper solution of (1.3) and hence, by Proposition 1.8, there exists
a solution z of (1.3) such that z < xn on [t0,+∞[, xn(t) − z(t)→ 0, as t →+∞, and
hence ‖z− u‖∞ � ε, which is a contradiction. Therefore, denoting by αn the T -periodic
extension of xn|[t0,t0+T [ to R, we conclude that (αn)n is a sequence of proper lower so-
lutions of (1.3), satisfying, for every n, αn < αn+1 < u and αn → u uniformly on [0, T ].
According to Proposition 1.20, we can construct a further sequence (ᾱn)n of proper regular
lower solutions of (1.3) such that, for every n, ᾱn < u and ᾱn → u uniformly on [0, T ].
This implies that u is O-stable from below. �

Stability via lower and upper solutions
We now come to the core of this section. In the following results we use lower and upper
solutions to give a precise description of the stability properties of the T -periodic solutions
of (1.1). In the next theorem we prove the stability of a one-sided isolated solution z of
(1.3) in the presence of a lower solution below z, or of an upper solution above z.

THEOREM 1.27. Assume (C). Let z be a solution of (1.3).
(i) If α is a proper lower solution of (1.3) such that α < z and there is no solution u of

(1.3) satisfying α < u < z, then z is W-asymptotically stable from below.
(ii) If β is a proper upper solution of (1.3) such that β > z and there is no solution u of

(1.3) satisfying z < u < β , then z is W-asymptotically stable from above.
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PROOF. We prove only the former statement. Since α is a proper lower solution, we know,
by Proposition 1.21, that z is (properly) O-stable from below, hence, by Proposition 1.26,
z is W-stable from below. The asymptotic W-stability is then a consequence of Corol-
lary 1.5 and Proposition 1.8. �

Conversely, Theorem 1.30 will show that instability occurs in all the other cases; it is
based on the following two propositions.

PROPOSITION 1.28. Assume (C). Let z be a solution of (1.3).
(i) If α is a proper lower solution of (1.3) such that α > z and there is no solution u

of (1.3) satisfying α > u > z, then z is L-unstable from above.
(ii) If β is a proper upper solution of (1.3) such that β < z and there is no solution u

of (1.3) satisfying z > u > β , then z is L-unstable from below.

PROOF. We prove only the former statement. Let t0 ∈ [0, T ] be such that α(t0) > z(t0). By
Remark 1.9 there exists a solution α̃ : ]−∞, t0] → R of (1.2), with x0 = α(t0), satisfying
z � α̃ � α on ]−∞, t0] and such that

lim
t→−∞

(̃
α(t)− z(t)

)= 0. (1.18)

Set ε = α(t0)− z(t0) > 0 and take any δ > 0. By (1.18), there exists a positive integer n
such that z(t0 − nT ) � α̃(t0 − nT ) < z(t0 − nT )+ δ. Define, on ]−∞, t0 + nT ], x(t) =
α̃(t − nT ). Then x is a solution of (1.1) with z(t0) � x(t0) < z(t0)+ δ but x(t0 + nT )−
z(t0 + nT )= ε. Hence we easily conclude that z is L-unstable from above. �

PROPOSITION 1.29. Assume (C). Let z be a solution of (1.3).
(i) If there exist a lower solution α of (1.3) and points t1, t2 such that z(t1)= α(t1) and

z(t2) < α(t2), then z is L-unstable from above.
(ii) If there exist an upper solution β of (1.3) and points t1, t2 such that z(t1) = β(t1)

and z(t2) > β(t2), then z is L-unstable from below.

PROOF. We prove only the former statement. Assume without loss of generality that
t1 < t2. By Proposition 1.8, we know that either every right-nonextendible solution
x : [t1,ω+[→R of (1.2), with t0 = t1, x0 = α(t1)= z(t1) and x � α, is such that

lim sup
t→ω+

x(t)=+∞,

or there exist the minimum solution α̃ : [t1,+∞[→ R in [α,+∞[ of (1.2), with t0 = t1,
x0 = α(t1)= z(t1), and the minimum solution v in [α,+∞[ of (1.3), satisfying v � α̃ and

lim
t→+∞

(̃
α(t)− v(t)

)= 0.
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Since there exists t2 such that α(t2) > z(t2), we have v �= z and hence

lim sup
t→+∞

(̃
α(t)− z(t)

)
> 0.

In both cases we easily conclude that z is L-unstable from above. �

THEOREM 1.30. Assume (C). Let z be a solution of (1.3).
(i) If there exists a lower solution α of (1.3) such that z �� α and, in case z < α, there

is no solution u of (1.3) satisfying z < u < α, then z is L-unstable from above.
(ii) If there exists an upper solution β of (1.3) such that z �� β and, in case z > β , there

is no solution u of (1.3) satisfying β < u< z, then z is L-unstable from below.

PROOF. We prove only the former statement. Two cases may occur: either α > z or, by
Proposition 1.6, there exist points t1, t2 such that z(t1) = α(t1) and z(t2) < α(t2). In the
former case, the conclusion follows from Proposition 1.28, whereas in the latter it follows
from Proposition 1.29. �

A direct consequence of the previous results is the following completion of Theorem 1.9,
for what concerns the stability properties of solutions of (1.3) in the presence of a pair of
lower and upper solutions.

THEOREM 1.31. Assume (C). Suppose that α is a lower solution and β is an up-
per solution of (1.3). Denote by v and w the minimum and the maximum solutions in
[min{α,β},max{α,β}] of (1.3).

(i) If α < β , then v is W-asymptotically stable from below, provided α is a proper
lower solution, and w is W-asymptotically stable from above, provided β is a
proper upper solution.

(ii) If α > β , then v is L-unstable from below, provided β is a proper upper solution,
and w is L-unstable from above, provided α is a proper lower solution.

(iii) If α �� β and β �� α, then every solution u of (1.3) satisfying v � u � w is
L-unstable from below and from above.

PROOF. In case (i) the conclusion follows from Theorem 1.27. In case (ii) the conclusion
follows from Proposition 1.28. In case (iii), if u is a solution of (1.3) satisfying min{α,β}�
v � u � w � max{α,β}, then according to Proposition 1.6, there exist points t1 and t2 such
that α(t1) = β(t1) = u(t1) and either β(t2) < u(t2), or u(t2) < α(t2). The instability of u

then follows from Proposition 1.29. �

REMARK 1.15. In case (i), from Proposition 1.8 we further deduce the following in-
variance and attractivity result. For every t0, every solution x : [t0,+∞[→ R of (1.1) is
such that: if α � x � β then α̃ � x � β̃ , if α � x � v then limt→+∞(v(t)− x(t))= 0, if
w � x � β then limt→+∞(x(t)−w(t))= 0.

From Propositions 1.18, 1.25, 1.26 and Remark 1.14 we immediately get the following
result.
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COROLLARY 1.32. Assume (C). Suppose that α is a proper lower solution, β is a proper
upper solution of (1.3) and α < β . Denote by v and w the minimum and the maximum
solutions in [α,β] of (1.3). Suppose further that either uniqueness in the past for solutions
of (1.2) holds, or uniqueness in the future for solutions of (1.2) holds and α and β are
strict. Then v is L-asymptotically stable from below and w is L-asymptotically stable from
above.

Continua of stable or unstable T -periodic solutions

Theorem 1.31 describes the stability properties of the minimum and the maximum solu-
tions v and w of (1.3) wedged between a given pair of lower and upper solutions. Now, we
turn to investigate the behaviour of the solutions between v and w. We start by specifying
statement (i) in Theorem 1.31. Namely, we prove the existence of a totally ordered contin-
uum of (two-sided) W-stable T -periodic solutions lying between a pair of lower and upper
solutions ordered in the standard way, i.e. the lower solution is below the upper solution.

THEOREM 1.33. Assume (C). Suppose that α is a proper lower solution and β is a proper
upper solution of (1.3), satisfying α < β , and denote by v and w respectively the minimum
and the maximum solution of (1.3) in [α,β]. Then there exists a totally ordered continuum
K in C0([0, T ]), such that every u ∈ K is an O-stable solution of (1.3) satisfying v �
u � w; further, u1 = minK is properly O-stable from below and u2 = maxK is properly
O-stable from above.

PROOF. Let us denote by S1 the set of all solutions u of (1.3), with α < u < β , which
are properly O-stable from below. Since, by Proposition 1.21, the minimum solution v is
properly O-stable from below, S1 is non-empty. Notice also that, since S1 is bounded in
C0([0, T ]), the L1-Carathéodory conditions imply that it is also equicontinuous and hence
relatively compact in C0([0, T ]).

Let us show that the set (S1,�) is inductively ordered. Let T be a totally ordered subset
of S1. Since T is uniformly bounded from above, by Lemma 1.15 there exists a maximal
solution ŵ of (1.3) in the C0-closure T̄ of T . Actually ŵ ∈ T . Indeed, let (wn)n be an in-
creasing sequence in T converging to ŵ in C0([0, T ]); since each wn is properly O-stable
from below, by a diagonal argument we conclude that ŵ as well is properly O-stable from
below. Hence any totally ordered subset of S1 has an upper bound in S1. By Zorn Lemma,
there exists a maximal element u1 ∈ S1.

Let us denote by S2 the set of all solutions u of (1.3), with u1 � u < β , which are
properly O-stable from above. Since the maximum solution w is properly O-stable from
above, S2 is non-empty. Arguing as above, we see that there exists a minimal solution
u2 ∈ S2.

If u1 = u2, the conclusion is achieved. Therefore, let us suppose that u1 < u2 and let us
denote by S3 the set of all solutions u of (1.3), with u1 � u � u2. Notice that S3 is compact
in C0([0, T ]).

Let us observe that there is no proper lower solution and no proper upper solution of (1.3)
between u1 and u2. Indeed, if we assume that there exists, for instance, a proper lower so-
lution α∗, with u1 < α∗ < u2, and we denote by z the minimum solution of (1.3), with
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α∗ < z � u2, Proposition 1.21 implies that z is properly O-stable from below, thus contra-
dicting the maximality of u1.

Next, we prove that if z1, z2 ∈ S3, with z1 < z2, then there exists a solution z3 of (1.3)
such that z1 < z3 < z2. Indeed, if we assume that there is no solution z of (1.3), with
z1 < z < z2, then any nonextendible solution x of (1.1), with z1 < x < z2, is either a proper
lower solution or a proper upper solution, thus contradicting our preceding conclusion.
Hence S3 is dense-in-itself with respect to the order.

Now, let us fix a solution u0 ∈ S3 and denote by S(u0) a maximal totally ordered sub-
set of S3 with u0 ∈ S(u0). As u1, u2 ∈ S(u0), this set is nondegenerate. By Lemma 1.3,
S(u0) is homeomorphic to a compact interval of R, so it is connected.

Finally, it is clear that every u ∈ S(u0) is O-stable and u1 = minS(u0) and u2 =
maxS(u0) are properly O-stable from below and above, respectively. Therefore, we can
set K= S(u0). �

REMARK 1.16. The set S3, defined in the proof of Theorem 1.33, is obviously connected
too. Indeed, for each u0 ∈ S3, the set S(u0) is connected. Since u1, u2 ∈⋂

u0∈S3
S(u0),

the set S3 =⋃
u0∈S3

S(u0) is connected.

REMARK 1.17. We notice that if α is a lower solution and β is an upper solution of (1.3),
with α > β , then one cannot generally guarantee the existence in between of a solution
of (1.3) which is L-unstable both from below and from above. A simple example is given
by (1.3), with f (x) = x| sin(1/x)| for x �= 0 and f (x) = 0 for x = 0. Here, β = −1 is a
strict upper solution and α = 1 is a strict lower solution; in between there is a countable set
of equilibria, none of which is simultaneously L-unstable from below and from above. Of
course, according to Theorem 1.31, there are equilibria which are L-unstable either from
below or from above.

Finally, we consider the case where α and β are not comparable. A counterpart of The-
orem 1.33, which specifies statement (iii) in Theorem 1.31, is based on the following pre-
liminary result.

LEMMA 1.34. Assume (C). Let v, w be solutions of (1.3), such that v �= w and v(t0) =
w(t0) for some t0. Then the set

K= {
u : [t0, t0 + T ]→R | u is a solution of (1.1) with

min{v,w}� u � max{v,w}}

is a nondegenerate continuum in C0([t0, t0 + T ]) and every u ∈K, extended by T -period-
icity onto R, is a L-unstable solution of (1.3).

PROOF. Every solution u of (1.1), with min{v,w} � u � max{v,w} on [t0, t0 + T ], ex-
tended by T -periodicity onto R, is a solution of (1.3). Since min{v,w} and max{v,w} are
solutions of (1.2), with x0 = v(t0) = w(t0), Theorem 1.4 guarantees that the set K is a
continuum in C0([t0, t0 + T ]). The instability finally follows from Proposition 1.29. �
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THEOREM 1.35. Assume (C). Suppose that α is a lower solution and β is an upper solu-
tion of (1.3), with α �� β and α �� β . Then the set

K= {
u | u is a solution of (1.3) with min{α,β}� u � max{α,β}}

is a continuum in C0([0, T ]) and every u ∈K is L-unstable.

Complicated dynamics
In the frame of Lemma 1.34, the existence of a nondegenerate continuum entails fairly
complicated dynamics for the solutions of (1.1) between min{v,w} and max{v,w}. In par-
ticular, there exist homoclinics, subharmonics of any order and almost periodic solutions,
which are not periodic of any fixed period; this last assertion will now be proved.

THEOREM 1.36. Assume (C). Let v,w be solutions of (1.3) such that v �= w and
v(t0) = w(t0) for some t0. Then there exists a (Čech–Lebesgue) infinite dimensional set
X ⊆ L∞(R) such that every x ∈ X is a (Bohr) almost periodic solution of (1.1), with
min{v,w}< x < max{v,w}, which is not periodic of any fixed period.

PROOF. Possibly replacing v with min{v,w} and w with max{v,w}, we can assume v <

w and v(t0) = w(t0) for some t0. It is not even restrictive to suppose t0 = 0. Let K ⊆
C0([0, T ]) be the set of all solutions x of (1.3) with v � x � w. By Lemma 1.34, K is
a nondegenerate continuum and it is dense-in-itself with respect to the order (see also
Proposition 1.13).

Step 1. Existence of almost periodic solutions. Without loss of generality we may assume
T = 1. Fix a sequence (un)n of solutions of (1.3) such that v � un � w and

0 < ‖un+ν − un‖∞ < 2−n (1.19)

for every n ∈ N and ν ∈ N
+. Hence (un)n uniformly converges to a solution u∞ of (1.3),

with v � u∞ � w. Let us define a function x : R→ R by setting x(t) = u∞(t) on [0,1[
and, for each n ∈N and k ∈ Z, x(t)= un(t) on [(2k+ 1)2n, (2k+ 1)2n+ 1[. The function
x is well-defined, since every m ∈ Z \ {0} can be represented in a unique way as m =
(2k + 1)2n for some k ∈ Z and n ∈ N. Moreover, since un(0)= u∞(0) for each n, x is a
solution of (1.1).

We want to prove that x is almost periodic and it is not periodic of any fixed period. Let
us recall that a continuous function x : R→ R is almost periodic if, for every ε > 0, there
exists l > 0 such that, for every t0, there is τ ∈ [t0, t0 + l] with |x(t + τ)− x(t)|< ε on R.

Fix ε > 0 and pick n ∈N
+ such that

2−n < ε (1.20)

and

‖uj − u∞‖∞ < ε (1.21)
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for all j � n. Set l = 2n+2 and take t0 ∈ R. Let k ∈ Z be such that (2k − 1)2n < t0 �
(2k+ 1)2n. Accordingly, set τ = (2k+ 1)2n and note that τ ∈ [t0, t0+ 2n+1[ ⊆ [t0, t0+ l].
We want to prove that, for every t , |x(t + τ)− x(t)|< ε.

Let t ∈ [0,1[ and hence t + τ ∈ [(2k + 1)2n, (2k + 1)2n + 1[. We have, by (1.21),

∣∣x(t + τ)− x(t)
∣∣= ∣∣un(t)− u∞(t)

∣∣< ε.

Let t ∈ [(2j + 1)2p, (2j + 1)2p + 1[, for some j ∈ Z and p ∈ N, and hence t + τ ∈
[(2j+1)2p+(2k+1)2n, (2j+1)2p+(2k+1)2n+1[. In order to estimate x(t+τ)−x(t),
we distinguish three cases.
• Let p < n. Then there exists r ∈ N such that p + 1+ r = n and (2j + 1)2p + (2k +

1)2n = (2j + 1)2p + (2k+ 1)2p+1+r = (2(j + (2k+ 1)2r )+ 1)2p . Hence we have x(t +
τ)= up(t)= x(t).
• Let p > n. Then there exists r ∈ N such that n + 1 + r = p and (2j + 1)2p +

(2k+ 1)2n = (2j + 1)2n+r+1+ (2k+ 1)2n = (2(k+ (2j + 1)2r )+ 1)2n. Hence, by (1.19)
and (1.20), we have x(t + τ)= un(t) and

∣∣x(t + τ)− x(t)
∣∣= ∣∣un(t)− up(t)

∣∣< 2−n < ε.

• Let p = n. Then we have (2j +1)2p+ (2k+1)2n = (j +k+1)2p+1. If j +k+1= 0,
then t + τ ∈ [0,1[ and, by (1.20) and (1.21),

∣∣x(t + τ)− x(t)
∣∣= ∣∣u∞(t)− up(t)

∣∣= ∣∣u∞(t)− un(t)
∣∣< ε.

If j + k+ 1 �= 0, then there exist r ∈N and h ∈ Z such that j + k+ 1= (2h+ 1)2r ; hence
(j + k+ 1)2p+1 = (2h+ 1)2p+r+1. Accordingly, by (1.19) and (1.20), we get

∣∣x(t + τ)− x(t)
∣∣= ∣∣up+r+1(t)− up(t)

∣∣= ∣∣un+r+1(t)− un(t)
∣∣< 2−n < ε.

Finally, we prove that x is not T -periodic for any T > 0. We first recall that, for each
n ∈ N, x = un on [2n,2n + 1] and x = un+1 on [2n+1,2n+1 + 1]. Since un �= un+1, x is
not T -periodic for any T ∈ Q

+. Assume by contradiction that x is T -periodic for some
T ∈R

+ \Q. For each n ∈ Z, we have x(n)= x(0), by construction, and x(n+mT )= x(0)
for every m ∈ Z, by T -periodicity. Using the density in R of the set {n+mT | n,m ∈ Z}
and the continuity of x, we conclude that x is constant, which is a contradiction.

Step 2. Existence of an infinite dimensional set of almost periodic solutions. Fix a se-
quence (zn)n of solutions of (1.3) satisfying v < zn+1 < zn < w and ‖zn − zn+ν‖∞ < 2−n
for every n, ν ∈ N. For each n, let Sn be the set of all solutions u of (1.3) such that
z2n+1 � u � z2n. By Lemma 1.34, Sn ⊆ C0([0, T ]) is compact and dense-in-itself with re-
spect to the order. Hence Lemma 1.3 implies that there exists a continuum Tn ⊆ Sn which is
homeomorphic to [0,1]. For any sequence (un)n ∈∏+∞

n=0 Tn denote by �((un)n) the almost
periodic solution x of (1.1) constructed in Step 1 and set X =�

(∏+∞
n=0 Tn

)
. Fix a sequence

(ûn)n ∈∏+∞
n=0 Tn and let N be any positive integer. The map �N :

∏N−1
n=0 Tn → L∞(R)

defined by setting �N(u0, u1, . . . , uN−1)=�(u0, u1, . . . , uN−1, ûN , ûN+1, . . .) is one-to-
one and continuous, once

∏N−1
n=0 Tn is endowed with the product topology. Actually, since
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∏N−1
n=0 Tn is compact, �N is a homeomorphism between

∏N−1
n=0 Tn and �N

(∏N−1
n=0 Tn

)=
XN . Since XN ⊆ X and dimXN = N , we conclude that dimX = +∞ (see [47, Chap-
ter 7]). �

EXAMPLE 1.4. We consider once more equation (1.12). Let α : [− 1
2 ,

1
2 [ → R be defined

by α(t)= (
√

2−1
4 t)2 on [− 1

2 ,0], and α(t)= ( 1
4 t)

2 on ]0, 1
2 [. Then α is a solution of (1.12)

and a proper lower solution of the associated 1-periodic problem. Note that β = 0 is a
proper upper solution of the 1-periodic problem. By Theorem 1.9, there exists a 1-periodic
solution w of (1.12) such that 0 < w < α and w(0)= 0. Observe that, by symmetry, if x
is a solution of (1.12), then y(t) = −x(−t) is also a solution of (1.12). Hence the func-
tion v(t) = −w(−t) is a 1-periodic solution of (1.12) such that v < 0 and v(0) = 0. Ap-
plying Lemma 1.34 we see that the set K of all solutions u : [0,1] → R of (1.12), with
v � u � w, is a nondegenerate continuum in C0([0,1]) and every u ∈ K is a L-unstable
1-periodic solution of (1.12). In addition, we can see that v(t) < 0 < w(t) on ]0,1[ and
the continuum K is totally ordered. Indeed, by a result in [29, Corollary 3.5], unique-
ness for the Cauchy problem associated with Eq. (1.12) is guaranteed for any t0, x0 with
(t0, x0) �= (0,0). Hence, if u1, u2 ∈ K, we have u1(t) = u2(t) if and only if t ∈ Z; the
1-periodicity of u1 and u2 yields either u1 < u2 or u2 < u1. By Theorem 1.36 there exists
an infinite dimensional set X ⊆ L∞(R) such that every x ∈ X is an almost periodic solu-
tion of (1.12), with v < x <w, and x is not periodic of any fixed period. Furthermore, there
exist periodic solutions x of (1.12), with v < x <w, that are subharmonics of any order. To
verify this let p1,p2, . . . , pn be two by two distinct numbers such that v( 1

2 ) � pi � w( 1
2 )

for i = 1, . . . , n. Let ui ∈K be such that ui( 1
2 )= pi . Define x(t)= ui(t) on [i − 1, i[, for

i = 1, . . . , n, and extend x by n-periodicity to R. Then x is an n-periodic solution of (1.12).
Clearly, x is not k-periodic for any positive integer k < n. Suppose by contradiction that x
is T -periodic, for some non-integer T < n. Then x(T )= x(0)= 0 and x′(T )= x′(0)= 0,
while x′(T )=√|x(T )| +h(T )= h(T ) < 0. Finally, we observe that homoclinic solutions
of (1.12) can be trivially constructed as well.

REMARK 1.18. The solution set of (1.3) is the union of a family of mutually ordered con-
nected components in C0([0, T ]). Yet, unlike the case where the property of uniqueness
holds for (1.2) and hence nondegenerate continua are necessarily one-dimensional, such
components may have arbitrarily large dimension (see [114]). We have seen that the dy-
namics of the trajectories of (1.1), which lie in the plane region filled by the graphs of the
T -periodic solutions in a given connected component, may be quite complicated. There-
fore any attempt to get a global qualitative portrait of solutions of (1.1) appears at least
awkward, if solutions having graph in such regions are included in the analysis. Instead,
it seems more meaningful to study only the dynamics of the solutions whose graph lies
outside. In the light of Theorem 1.10, the qualitative behaviour of these solutions closely
resembles the case where uniqueness holds. Then one could be naturally lead to look at
the connected components of the set of solutions of (1.3) as single objects and to discuss
the stability of each of them, by checking the stability from below of its minimum element
and the stability from above of its maximum element, whenever they exist. Of course the
consideration of a multivalued Poincaré operator would play a role here.
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1.7. Asymptotic behaviour of bounded solutions

We already noticed in Section 1.4 that the existence of a solution u of (1.3) is always guar-
anteed in the presence of a bounded solution x of (1.1) defined on an unbounded interval.
In this section we make this statement more precise, providing a complete extension of the
Massera Convergence Theorem to the case where the uniqueness assumption for solutions
of (1.2) is dropped. Namely, we see that either x converges to u, or the set of all solutions u
of (1.3), whose range contains ω-limit points of x, forms a nondegenerate closed connected
set in C0([0, T ]).

Lack of T -monotonicity and continua of T -periodic solutions
We start with a technical lemma saying that if a solution x of (1.1) and a solution v of (1.3)
attain the same values at two points a < b, then there is a nondegenerate closed connected
set of solutions u of (1.3) whose graphs completely fill the graph of x on [a, b].

LEMMA 1.37. Assume (C). Let v be a solution of (1.3) and x : [a, b] → R a solution
of (1.1). Suppose that x(a) = v(a), x(b) = v(b) and x(t) > v(t) on ]a, b[. Then the set
C of all solutions u � v of (1.3) such that there exists t0 ∈ [a, b] with u(t0) = x(t0) is a
nondegenerate closed connected subset of C0([0, T ]). Furthermore, for each t0 ∈ [a, b]
there exists u ∈ C with u(t0)= x(t0).

PROOF. The set C is clearly closed and non-empty.
Step 1. Let us prove that C is dense-in-itself with respect to the order. Indeed, let

u1, u2 ∈ C be such that u1 < u2. If u1(t0) = u2(t0) for some t0, then Lemma 1.34 yields
the existence of a solution u of (1.3) with u1 < u < u2. Clearly, u ∈ C. If u1 % u2 and no
solution u of (1.3) exists with u1 < u< u2, we set x̂ = x on [a, b] and x̂ = v on R \ [a, b],
y =min{max{x̂, u1}, u2}. Then y is a nonextendible solution of (1.1) such that u1 < y < u2
and limt→−∞(y(t)− u1(t))= limt→+∞(y(t)− u1(t))= 0, contradicting the conclusions
of Theorem 1.14. Hence there is a solution u of (1.3) such that u1 < u< u2. Clearly, u ∈ C.

Step 2. Let us prove that C is not a singleton. We distinguish two cases.
• Let b − a � T . Consider the function w : [a, a + T ] → R defined by w(t)= x(t) on

[a, b] and w(t)= v(t) on [b, a + T ], and extend w by T -periodicity onto R. Then both v

and w belong to C.
• Let b − a > T . We show that v is not isolated from above in the set of all solutions

of (1.3). Indeed, if v were the maximum solution of (1.3), then the function x̂ : R→ R

defined by x̂(t)= x(t) on [a, b] and x̂(t)= v(t) on R \ [a, b] would be a solution of (1.1)
contradicting the conclusions of Theorem 1.17. Whereas, if w were a solution of (1.3)
with v%w and such that there is no solution u of (1.3) with v < u <w, then the function
x̂ : R→R defined by x̂(t)=min{x(t),w(t)} on [a, b] and x̂(t)= v(t) on R \ [a, b] would
be a solution of (1.1) contradicting the conclusions of Lemma 1.14. Hence there exists a
sequence (un)n of solutions of (1.3), with un > v for every n, which converges uniformly
to v. Then un ∈ C for all large n.

Step 3. Let us prove that C is connected. Pick w ∈ C, with w > v. Set K = {u | u is a
solution of (1.3) with v � u � w}. Notice that K⊆ C, K is compact and, by Step 1, dense-
in-itself with respect to the order. Let T ⊆K be a maximal totally ordered subset of K and
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notice that both v and w belong to T . By Lemma 1.3, T is homeomorphic to a compact
interval of R. This shows that any pair w1,w2 ∈ C can be connected by a continuum (in
fact an arc) containing v and contained in C.

Step 4. Let us prove that for each t0 ∈ [a, b] there exists u ∈ C with u(t0) = x(t0). We
distinguish two cases again.
• If b− a � T , the conclusion follows arguing as in Step 2.
• If b− a > T , we prove that for each t0 ∈ [a, b] there exists u ∈ C with u(t0) � x(t0).

As C is connected the conclusion will follow. Accordingly, let us suppose by contradiction
there is a point t0 ∈ [a, b] such that u(t0) < x(t0) for all u ∈ C. Assume first that C is
bounded. Then C is a continuum. Let T be a nondegenerate maximal totally ordered subset
of C. Since C is dense-in-itself, by Lemma 1.3, T is homeomorphic to a compact interval.
Set w = maxT . There are points a1, b1 such that a � a1 < t0 < b1 � b, x(a1) = w(a1),
x(b1)=w(b1) and x(t) > w(t) on ]a1, b1[. By Step 2 there exist a solution u of (1.3), with
u >w, and a point t1 ∈ [a1, b1] such that u(t1)= x(t1). Hence we conclude that u ∈ C and
u > w, thus contradicting the maximality of w. Assume now that C is unbounded from
above and let u ∈ C be such that maxu > maxx. Since u(t0) < x(t0), there are points a1,
b1, with a1 < t0 < b1 < a1 + T , such that x(a1) = u(a1), x(b1) = u(b1) and x(t) > u(t)

on ]a1, b1[. Since b1 − a1 < T , a contradiction is obtained, arguing as in Step 2. �

Next, we specify Corollary 1.11 by showing that existence of solutions of (1.1) which
are not T -monotone yields existence of nondegenerate continua of solutions of (1.3).

PROPOSITION 1.38. Assume (C). Let x : ]ω−,ω+[ → R be a nonextendible solution of
(1.1) and suppose that x is not T -monotone. Then there exists a nondegenerate continuum
K of solutions of (1.3) such that, for every u ∈K, there is t0 ∈ ]ω−,ω+[ with u(t0)= x(t0).

PROOF. We proceed in two steps.
Step 1. Assume either ω− = −∞, or ω+ = +∞. We know from the first two steps in

the proof of Theorem 1.10 that there are points t1, t2, p1, p2, with p1 < p2, such that, for
every p ∈ ]p1,p2[, there are a lower solution α and an upper solution β of (1.3) such that
α(t1) = β(t1) = x(t1) and α(t2) = β(t2) = p. Then Theorem 1.9 and Lemma 1.34 yield
the existence of a nondegenerate continuum K satisfying the required conditions.

Step 2. Assume ω+,ω− ∈R, with ω+ −ω− > T . We distinguish two cases.
• Suppose that

lim
t→ω−

x(t)= lim
t→ω+

x(t)=−∞;

the case where limt→ω− x(t) = limt→ω+ x(t) = +∞ being treated similarly. Since x is
not T -monotone, Theorem 1.10 implies the existence of a solution v of (1.3) such that
x(t0) > v(t0) for some t0 ∈ ]ω−,ω+[. Hence we can find a, b ∈ ]ω−,ω+[, with a < b, such
that x(a)= v(a), x(b)= v(b) and x(t) > v(t) on ]a, b[. Lemma 1.37 yields the existence
of a nondegenerate continuum K having the desired properties.
• Suppose that

lim
t→ω−

x(t)=−∞ and lim
t→ω+

x(t)=+∞;
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the case where limt→ω− x(t)=+∞ and limt→ω+ x(t)=−∞ being treated similarly. Set
ϕ(t)= x(t+T )−x(t) on ]ω−,ω+−T [. We have limt→ω− ϕ(t)= limt→ω+−T ϕ(t)=+∞
and, as x is not T -monotone, ϕ(t0)= x(t0 + T )− x(t0) < 0 for some t0 ∈ ]ω−,ω+ − T [.
Define

t1 =min
{
t ∈ ]ω−,ω+ − T [ | ϕ(t)= 0

}
,

t2 =max
{
t ∈ ]ω−,ω+ − T [ | ϕ(t)= 0

}

and set

u1 = x|[t1,t1+T ], u2 = x|[t2,t2+T ].

The T -periodic extensions to R of u1, u2 are solutions of (1.3).
If u1 = u2, we set v = u1 = u2. Observe that either x(t0) > v(t0), or x(t0 + T ) <

v(t0 + T ). Suppose that x(t0) > v(t0); the other case being treated similarly. Since
t0 ∈ ]t1, t2[, we have that x̂ = max{v, x|[t1,t2]} is a solution of (1.1) satisfying x̂ > v on
[t1, t2], x̂(t1)= v(t1) and x̂(t2)= v(t2). Lemma 1.37 yields the existence of a nondegener-
ate continuum K satisfying the required conditions.

If u1 �= u2 and u1(t̄ ) = u2(t̄ ) for some t̄ , then Lemma 1.34 implies the existence of a
nondegenerate continuum K having the desired properties.

If u1 % u2, then t2 − t1 > T . The function x̂ : R → R defined by x̂(t) = u1(t) on
]−∞, t1[, x̂(t)= x(t) on [t1, t2] and x̂(t)= u2(t) on ]t2,+∞[ is a solution of (1.1) satisfy-
ing x̂(t1 + nT )= u2(t1 + nT )= u2(t1) > u1(t1)= x̂(t1), for all large n ∈N. Accordingly,
x̂ is not T -decreasing. On the other hand, x̂ is not T -increasing. Otherwise ϕ(t) � 0 on
]ω−,ω+ − T [ and hence x should be T -increasing as well, a contradiction. Therefore, x̂ is
not T -monotone and, by Step 1, we can find a nondegenerate continuum K satisfying the
required conditions.

If u1 & u2, then there exist a, b ∈ ]ω−,ω+[ such that x(a)= u2(a), x(b)= u2(b) and
x(t) > u2(t) on ]a, b[. Lemma 1.37 implies the existence of a nondegenerate continuum K
having the desired properties. �

The Massera Convergence Theorem revisited

We are now in position of proving the announced extension of the Massera Convergence
Theorem.

THEOREM 1.39. Assume (C). Suppose that x : ]t0,+∞[ → R is a bounded solution of
(1.1). Then either
• there exists a solution u of (1.3) such that

lim
t→+∞

∣∣x(t)− u(t)
∣∣= 0, (1.22)

or
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• the set C of all solutions u of (1.3) such that

lim inf
t→+∞

∣∣x(t)− u(t)
∣∣= 0 (1.23)

is a nondegenerate closed connected subset of C0([0, T ]).

REMARK 1.19. It may happen that there exists a solution u of (1.3) such that x converges
to u, nevertheless the set C is nondegenerate and even unbounded (see Example 1.2).

PROOF. Let us suppose that there is no solution u of (1.3) such that (1.22) holds. Then,
by Proposition 1.7, x is not eventually T -monotone. We start by showing that C is not
empty. Next we prove that C has at least two elements. Finally we show that C is closed
and connected.

Step 1. C is nonempty. Let us denote by Sx the set of all solutions u of (1.3) for which
there are unbounded sequences of real numbers (an)n and (bn)n such that u(an) < x(an)

and u(bn) > x(bn) for all n. Notice that Sx ⊆ C.
We claim that Sx is not empty. Assume by contradiction that Sx = ∅. Since x is not even-

tually T -monotone, by Corollary 1.11 we can construct an increasing unbounded sequence
(an)n of real numbers and a sequence (un)n of solutions of (1.3) such that either

un(an) < x(an) and un � x on [an+1,+∞[,
or

un(an) > x(an) and un � x on [an+1,+∞[,
for all n. We shall suppose that the former eventuality occurs. A similar argument can
be used in the latter case. For each n, we set ũn =min{u1, u2, . . . , un}. Notice that ũn is a
solution of (1.3), ũn(an) < x(an) and ũn � x on [an+1,+∞[. Since ũn � ũn+1 � inf{x(t) |
t ∈ [t0,+∞[} on [0, T ], the sequence (ũn)n converges uniformly to a solution u of (1.3),
which satisfies u(an) � ũn(an) < x(an) for all n.

Now, either u � x on some interval [b,+∞[ and hence u � x � ũn on [an+1,+∞[
for all large n, or there is an increasing unbounded sequence of real numbers (bn)n such
that u(bn) > x(bn). In the former case we conclude that (1.22) holds. In the latter case we
conclude that u ∈ Sx . In both cases we get a contradiction.

Step 2. C is not a singleton. Pick u0 ∈ C. Since

0= lim inf
t→+∞

∣∣x(t)− u0(t)
∣∣< lim sup

t→+∞
∣∣x(t)− u0(t)

∣∣,
we can find a positive number ε and an increasing unbounded sequence of real numbers
(an)n such that either x(an) − u0(an) > ε for all n or u0(an) − x(an) > ε for all n. We
shall suppose that the former eventuality occurs. A similar argument can be used in the
latter case.

Let us show that u0 cannot be isolated from above in the set of all solutions u of (1.3).
We proceed by contradiction. First assume that u0 is the maximum solution of (1.3).
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Let y = max{u0, x}. By Theorem 1.17 we should have either limt→+∞ y(t) = +∞ or
limt→+∞(y(t) − u0(t)) = 0; in both cases we get a contradiction. Next notice that, if
there are a solution w of (1.3) and a point t̂ such that u0 <w and u0(t̂ )= w(t̂ ), then, by
Lemma 1.34, u0 is not isolated from above. Finally suppose that there exists a solution
w of (1.3) such that u0 % w and no solution u of (1.3) exists with u0 < u < w. Set y =
min{max{x,u0},w}. By Lemma 1.14 we should have either limt→+∞(y(t)− u0(t)) = 0
or limt→+∞(y(t)−w(t))= 0; in both cases we get again a contradiction.

Since u0 is not isolated from above, we can pick a solution u of (1.3) with u >

u0 and ‖u − u0‖∞ < ε. Then we have u(an) < u0(an) + ε < x(an) for all n. Since
lim inft→+∞ |x(t)− u0(t)| = 0, we conclude that u ∈ C and therefore C has at least two
elements.

Step 3. C is closed and connected. Since C is obviously closed, we only need to prove that
it is connected. We start showing that C is dense-in-itself with respect to the order. Notice
that if u is a solution of (1.3) and u1 < u< u2, then u ∈ C. Assume first that u1(t̂ )= u2(t̂ )

for some t̂ . Then, by Lemma 1.34, there exists a nondegenerate continuum of solutions u

of (1.3) with u1 � u � u2. Assume next that u1 % u2 and that no solution u of (1.3) exists
with u1 < u< u2. Set y =min{max{x,u1}, u2}. Then y is a nonextendible solution of (1.1)
such that u1 < y < u2. By Lemma 1.14 we should have either limt→+∞(u2(t)− y(t))= 0
or limt→+∞(y(t)− u1(t))= 0, contradicting the fact that both u1 and u2 belong to C.

Now, let u1, u2 ∈ C and assume u1 < u2. Let T be a nondegenerate maximal totally
ordered subset of C ∩ [u1, u2]. By Lemma 1.3, T is an arc connecting u1 and u2. Ac-
cordingly, in order to prove that C is (arcwise) connected, it is enough to show that for
every u1, u2 ∈ C there exists u ∈ C which is order-comparable with both u1 and u2. To
achieve this aim, we set v =min{u1, u2} and w =max{u1, u2}. We claim that either v ∈ C
or w ∈ C. Suppose v /∈ C. Then there exists ε > 0 and t̂ ∈ R such that x(t) − v(t) > ε

for all t > t̂ . Let us verify that w ∈ C. Since u1 ∈ C, there exists an increasing unbounded
sequence of real numbers (an)n with |x(an) − u1(an)| < ε for every n. If n̂ is such that
an̂ > t̂ , then x(an) − v(an) > ε > |x(an) − u1(an)| for all n > n̂. Hence we deduce that
v(an) �= u1(an); therefore u1(an)=w(an) and |x(an)−w(an)|< ε for all n > n̂. �

The following statement conversely shows that each ω-limit point of a bounded solution
defined on an unbounded interval must be in the range of a T -periodic solution.

PROPOSITION 1.40. Assume (C). Suppose that x : [t0,+∞[→ R is a bounded solution
of (1.1). Then, for each x̂, with lim inft→+∞ x(t) � x̂ � lim supt→+∞ x(t), and for each
sequence (tn)n, with limn→+∞ tn = +∞ and limn→+∞ x(tn) = x̂, there exists a solution
u of (1.3) such that lim infn→+∞ |x(tn)− u(tn)| = 0.

PROOF. If there exists a solution u of (1.3) such that (1.22) holds, the conclusion trivially
follows. Hence we may assume that this is not the case. Let C be the set of all solutions u

of (1.3) such that (1.23) holds. By Theorem 1.39, C is a nondegenerate closed connected
set.

Step 1. Suppose that, for each n, tn = t̂ + knT with t̂ ∈ [t0, t0 + T ] and kn ∈ N
+. Let

us show that there exists a function u ∈ C such that u(t̂ ) = x̂. We start by assuming, by
contradiction, that u(t̂ ) < x̂ for all u ∈ C.
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Assume that C is bounded from above. Then, by Lemma 1.15, there exists a maximal
element w of C. We first observe that there is no t̄ > t0 such that x > w on [t̄ ,+∞[.
Suppose not. Since 0= lim inft→+∞ |x(t)−w(t)|< lim supt→+∞ |x(t)−w(t)|, by The-
orem 1.17 there exists a solution u of (1.3) such that w < u, and, by Lemma 1.14, w is
not isolated from above in the set of all solutions u of (1.3). Hence there exists a sequence
(wk)k of solutions of (1.3), converging uniformly to w and such that wk > w for all k.
Since lim supt→+∞ |x(t)−w(t)|> 0, there exists k such that wk ∈ C, thus yielding a con-
tradiction to the maximality of w. Nevertheless, since w(t̂ ) < x̂ = limn→+∞ x(tn), there
are ε > 0 and n̄ such that w(t̂ ) = w(tn) < x̂ − ε < x(tn) for all n � n̄. Hence there exist
a sequence of positive integers (nj )j , with n0 � n̄, and sequences of real numbers (aj )j
and (bj )j , with aj < tnj < bj such that w(aj ) = x(aj ), w(bj ) = x(bj ) and x(t) > w(t)

on ]aj , bj [ for all j . By Lemma 1.37, there exists a solution u0 of (1.3) such that u0 � w

and u0(tn0) = x̂ − ε. Notice that, for all j , we both have u0(tnj ) = x̂ − ε < x(tnj ) and
x(aj )=w(aj ) � u0(aj ). Hence u0 ∈ C, a contradiction with the maximality of w.

Assume now that C is unbounded from above. Then there exists w ∈ C such that
maxw > supx. Let a ∈ ]t̂ − T , t̂[ be such that w(a) = maxw. Since w(t̂ ) < x̂ =
limn→+∞ x(tn), there are an integer n̄ and an increasing sequence (pn)n of real num-
bers such that limn→+∞ pn = x̂ and, for all n � n̄, w(t̂ ) = w(tn) < pn < min{x(tn), x̂}.
For each n � n̄, let wn : [a + knT , a + (kn + 1)T ] → R be the function defined by
wn(t) = max{w(t), x(t)}. Notice that wn(a + knT ) = w(a + knT ) = w(a), wn(a +
(kn + 1)T ) = w(a + (kn + 1)T ) = w(a) and wn > w on [a + knT , a + (kn + 1)T ].
Since w(tn) < pn < wn(tn), by Lemma 1.37, there exists a solution vn of (1.3) such that
vn � w and vn(tn) = pn. Let un = min{vn,wn}. Then, for each n � n̄, un(a) = w(a)

and un(t̂ ) = pn. Hence, for all n � n̄, both un̄(a + knT ) = maxw > x(a + knT ) and
un̄(tn) = pn̄ � pn < x(tn), and therefore un̄ ∈ C. Furthermore, the sequence (un)n is
bounded and hence there is a subsequence (unj )j converging uniformly to a function u ∈ C.
Since unj (t̂ )= pnj , we get u(t̂ )= x̂, a contradiction.

In a similar way we can show that the assumption that u(t̂ ) > x̂ for all u ∈ C leads to
a contradiction. Hence either there exists u ∈ C such that u(t̂ )= x̂, or there exist u1, u2 ∈
C with u1(t̂ ) � x̂ � u2(t̂ ). In the latter case the connectedness of C yields anyhow the
existence of a function u ∈ C such that u(t̂ )= x̂.

Step 2. Let us show that we can always reduce ourselves to the situation consid-
ered in Step 1. Namely, for each n let kn be the integer such that tn ∈ [t0 + knT , t0 +
(kn + 1)T [ and set t̂n = tn − knT . Let t̂ ∈ [t0, t0 + T ] be a cluster point of the sequence
(t̂n)n and pick a subsequence (t̂nj )j converging to t̂ . Set sj = t̂ + knj T . Notice that
limj→+∞ |tnj − sj | = limj→+∞ |t̂nj − t̂ | = 0. Since the function x is uniformly continuous
on [t0,+∞[, we have limj→+∞ |x(tnj ) − x(sj )| = 0 and therefore limj→+∞ x(sj ) = x̂.
By Step 1 there exists a solution u of (1.3) such that lim infj→+∞ |x(sj )−u(sj )| = 0. Since
|x(tnj )−u(tnj )|� |x(tnj )−x(sj )|+|x(sj )−u(sj )|+|u(sj )−u(tnj )|, limj→+∞ |x(tnj )−
x(sj )| = 0 and limj→+∞ |u(sj ) − u(tnj )| = limj→+∞ |u(t̂ ) − u(t̂nj )| = 0, we conclude
that lim infn→+∞ |x(tn)− u(tn)| = 0. �

REMARK 1.20. In the light of Proposition 1.38, Proposition 1.7 and Theorem 1.39, one
might guess that, if x : ]t0,+∞[→R is a bounded solution of (1.1), which is not eventually
T -monotone, then the set C of all solutions u of (1.3), such that lim inft→+∞ |u(t)−x(t)| =
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0, is always a nondegenerate connected set. Yet, as the next example shows, this is not
actually true.

EXAMPLE 1.5. We construct a function f , which is 1-periodic with respect to the
t-variable, such that equation (1.1) has a bounded solution x that is not eventually
1-monotone, but the set C of all solutions u of (1.3), such that lim inft→+∞ |u(t)− x(t)|
= 0, is a singleton C = {u} and actually limt→+∞(u(t) − x(t)) = 0. Our construction is
based on a modification of Example 1.4. Let h : R→R be the 1-periodic function defined
by h(t)=− 1

8 |t | on [− 1
2 ,

1
2 [. Let us define f by setting, for every t , f (t, x)=√|x|+h(t),

if x � − 1
8 , f (t, x) =

√
|x − 2+ 1

2n−1 | + 1
2n h(t), if n � 0 and x ∈ [2 − 17

23+n ,2 − 15
23+n ],

f (t, x)= 0, if x � 2. Then we extend f onto R
2 by linear interpolation with respect to x.

We can see that Eq. (1.1) has a sequence (Kn)n of continua of 1-periodic solutions, which
approximate the equilibrium w ≡ 2. Each continuum Kn is a “squeezing” of the contin-
uum K produced in Example 1.4. Denote by vn and wn respectively the minimum and the
maximum of Kn. One can verify that for each n, between wn and vn+1, all solutions are
heteroclinics that leave wn and reach vn+1 in a finite time. Indeed, for any mn ∈ Z we can
find a solution yn of (1.1) which pulls ahead of wn at mn and reaches the value 2− 15

23+n in
a finite time. Since f is positive there, yn enters a region where f is defined linearly. There
yn is still increasing until it reaches the value 2− 17

24+n , where f is still positive. Then yn
enters a region where all solutions reach vn+1 in a finite time.

Let us now outline a possible construction of the solution x of (1.1) having the required
properties. Start taking x on [0,1] to be any x1 ∈K1. Then there is a solution y1 of (1.1),
which pulls ahead of w1 at m1 = 1 and reaches v2 in a finite time. On this interval x is y1.
Afterwards, we take x to be for a while an almost periodic solution lying between v2 and
w2, careful enough to destroy 1-monotonicity. Then we pull ahead of w2 at some m2 and
we define x to be a function of the form of y2. Proceeding in this way we get our desired
solution x.

A careful reading of our construction actually shows that x can be defined so that it is
not T -monotone for any fixed T > 0.

2. Second Order Periodic Parabolic PDEs

2.1. Introduction

In this part we consider the parabolic boundary value problem

{
∂tu+A(x, t, ∂x)u= f (x, t, u,∇xu) in �× I ,
u= 0 on ∂�× I .

(2.1)

Here � is a bounded smooth domain in R
N , with N � 1, I is a real interval, ∂t+A(x, t, ∂x)

is a linear second order uniformly parabolic operator. The coefficients of A are T -periodic
in t , T > 0 being a given period. The function f :�×R×R×R

N →R is T -periodic in
t and satisfies the Lp-Carathéodory conditions, for some p >N + 2, as well as a Nagumo
condition, that is, f (x, t, s, ξ) grows at most quadratically with respect to ξ . According
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to these assumptions, it is natural to consider solutions of (2.1) intended in the strong, i.e.
W

2,1
p -, sense. In this work for simplicity we only deal with homogeneous Dirichlet data

in (2.1), however more general boundary conditions, such as Robin and mixed ones, could
be considered as well (see [42]).

Nonlinear diffusion equations such as (2.1) typically occur in the mathematical descrip-
tion of various biological, chemical, physical and economical phenomena and they have
particular interest in population ecology models where the data periodically depend on
time due to seasonal fluctuations (see, e.g., [49,58,155,25,115,103]).

We are mainly interested here in studying existence, localization and qualitative prop-
erties of the T -periodic solutions of (2.1), assuming that a lower solution α and an upper
solution β of the T -periodic problem associated with (2.1) are given.

If we suppose that the Lp-Carathéodory function f satisfies further regularity assump-
tions, e.g., f is locally Lipschitz continuous with respect to s and ξ , then the initial value
problem associated with (2.1) is well-posed, i.e. it has a unique solution which depends
continuously on the given data; moreover, the regularity of f , in conjunction with the
parabolic maximum principle, yields the validity of comparison principles of Nagumo-
Westphal type (see [151,106]). In this frame the Poincaré operator associated with (2.1),
which assigns to every initial datum the value of the solution after one period, is well-
defined and strictly order preserving; so that the above mentioned questions can be tackled
by the theory of order preserving discrete-time semidynamical systems as in [58,60]. Our
perspective in this work is different. Here we assume that f satisfies only the Lp-Carathéo-
dory conditions: in this case evidently such theory does not apply, due to the failure both
of uniqueness for the initial value problem and of comparison principles. Nevertheless, we
shall see that a careful direct analysis of the partial differential equation (2.1) allows to
reinterpret, or to adapt to a more general setting, or to extend the validity of several results
which are known within the frame of order preserving dynamical systems, always keeping
minimal regularity assumptions.

The study of the existence of periodic solutions of certain special forms of (2.1) seems
to have been initiated in the late thirties and continued in the forties by D.H. Karimov
[64–67]. In the early fifties, G. Prodi [125–127] introduced lower and upper solutions and
a Nagumo-type condition for studying the solvability of the periodic problem associated
with (2.1). The stability of periodic solutions was also discussed by G. Prodi in [124], us-
ing the concept of Lyapunov stability as extended to parabolic equations by R. Bellmann
[17]. In the fifties and the sixties, further progress was obtained, concerning both existence
and stability (see, e.g., [107,137,75,23,69,48,12,138,70,78]). These authors approached the
problem by various methods and techniques, but still only special cases of (2.1) were con-
sidered. A general answer to the question of the existence of a T -periodic solution, when
the lower and the upper solutions satisfy

α(x, t) � β(x, t) in �× ]0, T [, (2.2)

was eventually given by Ju.S. Kolesov [72,73] in the late sixties. Namely, under additional
regularity assumptions on the coefficients and the nonlinearity, he proved the existence of
a classical T -periodic solution u of (2.1) such that

α(x, t) � u(x, t) � β(x, t) in �× ]0, T [. (2.3)
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This result was improved by H. Amann [6,8] in the seventies. In particular, he proved some
basic estimates in connection with the above mentioned Nagumo condition, established the
existence of a minimum and of a maximum T -periodic solution between α and β and also
allowed Robin boundary conditions in (2.1).

The method of Ju.S. Kolesov and H. Amann consists in finding periodic solutions
of (2.1) as fixed points of the Poincaré operator associated with (2.1), whose existence
is guaranteed by the smoothness assumptions on f . Further, it was observed apparently for
the first time in [8] that the Poincaré operator has the important property of being strongly
order preserving with respect to the order induced by the positive cone of C1

0(�). In [8]
and other related works, this property follows from the validity of a strong comparison
principle of the Nagumo–Westphal type for (2.1), which is in turn a consequence of the
linear parabolic maximum principle and, again, of the smoothness of f .

These ideas are useful for solving both theoretically and numerically the periodic prob-
lem associated with (2.1), but they also revealed to be quite fruitful for investigating the
stability properties of the periodic solutions of (2.1). Indeed, strongly influenced by some
works of H. Matano [92,93] who successfully integrated monotonicity methods with dy-
namical systems techniques for the study of autonomous parabolic initial value problems
(see also M.W. Hirsch [59] and H.L. Smith [136]), E.N. Dancer and P. Hess [33] were
able to provide, remaining in the same frame of [8], an answer to the question of the sta-
bility of periodic solutions of (2.1). Namely, they proved that, if α and β are strict lower
and upper solutions, for which (2.2) holds, then there exists at least one T -periodic solu-
tion u satisfying (2.3) which is stable. Although preliminary results in this direction can
be found, e.g., in [71,72,134,92], the novelty of the approach of E.N. Dancer and P. Hess
lies in the introduction of a strongly order preserving discrete-time semidynamical system,
which allows to detect many qualitative properties of the initial value problems associated
with (2.1). In [33] this discrete-time semidynamical system is determined by the solution
operator corresponding to the T -periodic problem related to (2.1), although the smoothness
assumptions imposed on (2.1) would allow to consider as well the discrete-time semidy-
namical system induced by the Poincaré operator. In their successive paper [34], as well
as in the monograph by P. Hess [58], the approach based on the Poincaré operator was
developed in an abstract setting and systematically employed to describe the dynamics
of (2.1). Thus, several stability, instability and stabilization results for the T -periodic so-
lutions of (2.1) were obtained. In particular, the existence of heteroclinic orbits, connect-
ing periodic solutions, was established, extending previous results, such as those in [93].
In [32] E.N. Dancer carried on these studies further, investigating the relations between
fixed point index, one-sided stability and existence of lower and upper solutions close to a
periodic solution, as well as the possibility of weakening the order preserving requirements
on the semiflow. Further progress in the theory of discrete-time order preserving semidy-
namical systems has been obtained in the last ten years; we refer to the very recent works
[60,123,61] for updated surveys on this theory, as well as on its applications to parabolic
boundary value problems of the form of (2.1).

We notice that all the above cited papers deal with classical solutions of (2.1); whereas,
the existence and localization of weak T -periodic solutions in the presence of lower and
upper solutions were discussed in [44], even for more general quasilinear equations. In this
frame, the existence of a minimum and a maximum solution was established in [26] and
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their one-sided stability in [46]. To the best of our knowledge, strong solutions have not
been explicitly considered in the literature in connection with lower and upper solutions,
although they naturally occur in the Carathéodory frame.

So far we have considered situations dealing with pairs of lower and upper solutions
satisfying (2.2). Now, we turn to discuss the complementary case where there exist a lower
solution α and an upper solution β for which condition (2.2) fails, that is,

α(x0, t0) > β(x0, t0) for some (x0, t0) ∈�× ]0, T [. (2.4)

There are concrete motivations to consider this situation. Indeed, condition (2.2) turns out
to be restrictive in some situations. This was remarked by J. Kazdan and F. Warner [68] for
elliptic equations, but their observation immediately extends to periodic parabolic prob-
lems. Let us denote by λ1 the principal eigenvalue of the linear T -periodic problem asso-
ciated with (2.1). Assume for example that the function f in (2.1) is independent of ∇xu.
If f satisfies

ess sup
�×]0,T [×R

∂sf (x, t, s) < λ1, (2.5)

then one can construct lower and upper solutions α, β satisfying (2.2). On the other hand,
if f satisfies

ess inf
�×]0,T [×R

∂sf (x, t, s) > λ1 (2.6)

then, for any pair of lower and upper solutions α, β satisfying (2.2), one easily verifies
that α = β and they must already be solutions. Hence any result involving such lower and
upper solutions is of no use here. Yet, in this situation lower and upper solutions satisfying
(2.4) occur quite naturally. Indeed, one can show that condition (2.6) implies the existence
of pairs of lower and upper solutions α, β such that

α(x, t) > β(x, t) in �× ]0, T [. (2.7)

Moreover, the principle of linearized instability suggests that, if a T -periodic solution
of (2.1) existed in the presence of lower and upper solutions satisfying (2.4), it should
be presumably unstable, unlike what has been established when (2.2) holds. This was con-
jectured in the frame of elliptic boundary value problems by D.H. Sattinger [134], who was
the first to pose these questions in the early seventies. Afterwards, it was pointed out in [7]
that the mere existence of a lower solution and an upper solution for which (2.4) holds is
generally not sufficient to guarantee the solvability. Adapted to our setting, the example in
[7] is of the following type:

{
∂tu−�u= λmu+ ϕm in �× ]0, T [,
u= 0 on ∂�× [0, T ],
u(·,0)= u(·, T ) in �,

(2.8)
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where λm is an eigenvalue of −� on H 1
0 (�) greater than λ1 and ϕm is a corresponding

nonzero eigenfunction. Of course, problem (2.8) has no solution, although one can con-
struct a lower solution α and an upper solution β satisfying (2.4). Accordingly, one is led
to conclude that, to achieve solvability, some further conditions must be assumed, in order
to prevent the interference of f with the higher part of the spectrum. This can be expressed
in various ways. In [9], where the first important contribution was given in the frame of
elliptic equations, H. Amann, A. Ambrosetti and G. Mancini proved that the existence of
a lower solution α and of an upper solution β , not necessarily satisfying any ordering con-
dition, implies solvability, provided f is a bounded perturbation of λ1s. Further results,
mainly in the direction of weakening this last condition, as well as of obtaining informa-
tion on the localization of the solution, were later proved, always for elliptic equations, in
[54,55,40]. In [41] the existence result of [40] was extended to the periodic problem for
(2.1) and, apparently for the first time, the study of the stability properties was faced in
this context. Indeed, assuming the existence of strict lower and upper solutions satisfying
(2.4) and some growth restrictions on f , it was proved in [41] the existence of a solution u

of (2.1), which is unstable and satisfies, for some (x1, t1), (x2, t2) ∈�× ]0, T [,

u(x1, t1) < α(x1, t1) and u(x2, t2) > β(x2, t2). (2.9)

We stress that this result is the direct counterpart of the one in [33] when condition (2.2) is
replaced by (2.4), because it yields the existence of a solution, information about its local-
ization in terms of α and β and its instability. We further notice that in [41] the analysis was
entirely performed in the frame of strong solutions of (2.1) without requiring, unlike [33]
and the other quoted results, any further regularity on f in addition to the Carathéodory
conditions.

It should be observed that in several cases the principles of linearized stability, or the
construction of Lyapunov functionals, can be successfully used to detect the stability of
periodic solutions (see, e.g., [37,154,123]). On the other hand, the use of lower and upper
solutions for discussing the stability properties of a periodic solution appears appropriate in
some critical cases where such methods fail, in particular when the periodic solution under
consideration is degenerate, or the nonlinearity f does not satisfy the necessary differen-
tiability requirements, and obviously in all situations where the existence of a Lyapunov
functional is not known. This remark also provides a strong motivation for studying the
applicability of the lower and upper solution method to detect stability, or instability, and
to investigate other qualitative properties, assuming the least of regularity on f . In this
work we pursue this program.

The remainder of this introduction is devoted to describe with some detail the plan of
this part of our work.

In Section 2.2 we collect some definitions and preliminary statements, having a basic or
technical nature, which will be extensively used in the sequel. Most of these are variations
or extensions of known ones. Nevertheless, we state them in a precise form, providing even
proofs, whenever we are not able to supply adequate references. We introduce in particu-
lar a rather general notion of lower and upper solutions for problem (2.1), which appear
appropriate in the frame of strong solutions. Namely, a lower solution is defined, locally
in time, as the pointwise maximum of a finite number of W 2,1

p -lower solutions. Similarly
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an upper solution is defined, locally in time, as the pointwise minimum of a finite number
of W 2,1

p -upper solutions. In this way we allow “angles” in the space variables and “jumps”
in the time variable. This level of generality is motivated by the fact that “angles” and
“jumps” naturally occur in practical and theoretical situations even in the frame of smooth
solutions: typically when considering minima or maxima of solutions, which are not solu-
tions due to the lack of lattice structure, or studying solutions of the initial value problem
lying between lower and upper solutions of the periodic problem. After reviewing a par-
abolic maximum principle for strong solutions, some notions of orderings, order norms
and other topics, we further prove in Proposition 2.3 an elementary fact, which, roughly
speaking, says that any Carathéodory function satisfies a local regularity condition, which
is the natural generalization of the Lipschitz or Hölder continuity and will allow us to
compare problem (2.1) with other ones possessing a certain extent of monotonicity. This
simple observation has also some interesting connections with the use of a monotone iter-
ative scheme, namely the Chaplyghin method (see [100,13,8]), for the construction of the
minimum and the maximum solution of (2.1), lying between a lower and an upper solution
satisfying (2.2). However, for brevity, we do not discuss this topic here and we refer to [42].

In Section 2.3 we describe some basic facts concerning the initial value problem associ-
ated with (2.1). Namely, we discuss existence, localization and structure of the set of strong
solutions of (2.1) in the presence of a pair of possibly discontinuous lower and upper so-
lutions satisfying (2.2). A crucial step of this section is the Nagumo-type result stated in
Proposition 2.5 (a different version suited for the periodic problem will be proved later in
Proposition 2.10): these statements basically show that suitable W

2−2/p
p -, or L∞-, bounds

on the initial values force W
2,1
p -bounds on the solutions of (2.1), provided f satisfies a

Nagumo condition. We reproduce in both cases their rather delicate proofs in detail, even
if these follow the argument in [6], because some specifications are needed in order to
extend their validity to our setting. Then we prove the main results of this section: The-
orem 2.6, dealing with compact cylinders, and Corollary 2.7, dealing with noncompact
cylinders. They extend to strong solutions and possibly discontinuous lower and upper
solutions some existence and localization results for the initial value problem associated
with (2.1) which are well known in the frame of classical solutions. We also describe the
topological structure of the solution set, proving the Hukuhara–Kneser property. Since our
analysis is performed just assuming that f satisfies the Carathéodory conditions, we get an
improvement of previous statements obtained in [76], for f Hölder continuous, and in [81],
for f continuous. Our proof uses an abstract theorem in [77,153], but differs from the
standard ones in the approximation method, as we adapt here an idea introduced in [139]
dealing with ordinary differential equations. As a byproduct we get, by a simple proof, a
basically known result concerning local existence, continuation and ultimate behaviour of
solutions of (2.1).

Section 2.4 is devoted to some existence and localization statements for the periodic
problem associated with (2.1), when a pair α, β of possibly discontinuous lower and upper
solutions is given. After some preliminaries, mainly devoted to state the above mentioned
Nagumo-type result for the periodic problem, we introduce in the frame of (2.1) the notion
of T -monotonicity. This property is a simple tool to prove convergence of a bounded so-
lution defined in �× [t0,+∞[ to a T -periodic solution. We use it to get an extension to
the present context of the Monotone Convergence Criterion known in the frame of order
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preserving discrete-time semidynamical systems (see, e.g., [60, Section 5]). The version of
this criterion we give in Proposition 2.13 says that any bounded solution of (2.1) emanating
from and lying above a lower solution of the T -periodic problem associated with (2.1), or
respectively emanating from and lying below an upper solution, is T -monotone and hence
converges to a T -periodic solution. We point out that, in space dimension N � 2, con-
vergence to a T -periodic solution is not the behaviour of all bounded solutions of (2.1),
due to the possible occurrence of subharmonic solutions (see, e.g., [141,35] and [123, Sec-
tion 3]). In our frame additional difficulties come from the lack of regularity of f , so that
even generic convergence results fail (see [123, Section 3]). We then give an application
of this result to the existence of strong periodic solutions of the linear problem associated
with (2.1). Although this topic was recently considered in [84], we show here that a sim-
ple approach, based on a monotone iterative scheme, yields a constructive existence proof.
This technique is very much in the spirit of this work, since the iteration here introduced is
used several times elsewhere in the paper. Additional statements concerning the principal
eigenvalue λ1 of the linear problem associated with (2.1), as well as some Fredholm-type
results, are produced in Appendix.

After these premises, which however have an independent interest, we prove the main
theorems of this section: the existence and localization of solutions of the periodic problem
associated with (2.1) when α � β , or when α �� β . Theorem 2.15 yields the existence of a
minimum and a maximum T -periodic solution of (2.1) between two possibly discontinuous
lower and upper solutions α, β satisfying the condition α � β . This extends to strong
solutions previous results obtained, e.g., in [73,8,6,33,58] for classical solutions. The proof
of Theorem 2.15 makes use of a quite standard argument, substantially similar to that used
for proving Theorem 2.6. Nevertheless, as its counterpart for the initial value problem,
the modification and truncation method we use are new in this frame, since some specific
devices are required in order to deal with nonregular lower and upper solutions, as well
as with Carathéodory gradient dependent nonlinearities, for handling which some care is
required. We also show the existence of a minimum and of a maximum solution using a
neat argument based on compactness. For later use, relations with the topological degree
are also established, when the lower and upper solutions are strict.

Afterwards we discuss the existence of T -periodic solutions of (2.1) in the presence of
generalized lower and upper solutions α, β such that α �� β . As we already pointed out, in
this frame the sole existence of a pair of lower and upper solutions, even satisfying α > β ,
does not generally guarantee the existence of a solution. Here we prove in Theorem 2.17
a result which is related to the classical Amann–Kolesov Three Solutions Theorem [73,5,
7] and requires the existence of a further pair of lower and upper solutions α1, β1, with
α1 � β1, bracketing α, β . Theorem 2.17 then yields the existence of maximal and minimal
T -periodic solutions of (2.1) lying between α1, β1 and belonging to the C1,0-closure of the
set of functions satisfying (2.9). The solvability is established evaluating, by means of the
additivity and excision properties, the topological degree of a solution operator associated
with (2.1), whose fixed points are precisely the periodic solutions of (2.1). The existence of
minimal and maximal solutions is proved using some a-priori bounds in connection with
Zorn Lemma. For related results we refer to [41,42], where alternative conditions are used
and several applications are indicated.
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The aim of Section 2.5 is to extend to our general context the Order Interval Trichotomy,
first proved in [34] for order preserving discrete-time semidynamical systems. We stress
once more that our results are obtained without requiring any regularity on the function f

besides the Carathéodory conditions. Nevertheless with the aid of Proposition 2.3, which
plays a crucial role in this context, we can make deformations of our original problem to
other problems displaying a certain amount of monotonicity, from which we eventually
infer the information needed to prove the existence of some type of connections. Namely,
if we fix an ordered pair of T -periodic solutions, say u1, u2, then we prove the existence
either of a further T -periodic solution between u1 and u2, or of a double sequence of lower,
or upper, solutions connecting u1 and u2. The last assertion expresses a form of stability,
or instability, of u1 and u2, which is referred to as order stability. Once this version of
the Order Interval Trichotomy is established, we apply it to the study of the dynamics
near one-sided isolated T -periodic solutions of (2.1). Namely we prove the existence of
T -monotone heteroclinic solutions connecting a pair of comparable T -periodic solutions
and we study the qualitative behaviour of certain solutions of (2.1) lying above a maximal,
or below a minimal, T -periodic solution. Our statements extend previous results in [34,58,
32] (see also [60,123]).

In Section 2.6 we study the stability properties of the T -periodic solutions of (2.1) with
the aid of lower and upper solutions. We start by recalling the definition of one-sided
Lyapunov–Bellmann stability. Instead of using the more usual C1-, or L∞-, norm for mea-
suring the distance between solutions, we use the order norm induced by a fixed function
belonging to the interior of the positive cone in C1

0(�). This seems natural in order to
fit better with the features of (2.1) and with our approach. Since we have to take care of
the fact that uniqueness for the initial value problem and validity of comparison princi-
ples are not assumed, the notion of Lyapunov stability may be not the most appropriate to
be considered here; indeed, some weaker concept might be more suited to detect certain
residual forms of stability. As an alternative definition to Lyapunov stability we consider
that of order stability; this is commonly used in the frame of order preserving semidynam-
ical systems [93,33,58,60] and appears suited to our approach based on lower and upper
solutions. We perform a rather detailed examination of the relationship occurring between
the notions of Lyapunov and order stability. In particular we discuss the meaning of these
notions of stability, when some versions of the comparison principle hold for solutions
of (2.1), implying or not uniqueness for the initial value problem. Explicit conditions on
the nonlinearity f , entailing their validity, are also exhibited. We show in particular that
Lyapunov stability implies order stability, whereas the converse implication is not gener-
ally true; however, these concepts are equivalent if a comparison principle holds. Using
these notions, we give a precise description of the stability properties of a T -periodic so-
lution in terms of the existence of a lower or an upper solution close to it. Hence, when a
pair of lower and upper solutions α, β , with α � β , is given, we discuss the stability of the
minimum and the maximum T -periodic solutions v and w lying in between, thus getting a
completion of Theorem 2.15. Namely, as a consequence of Proposition 2.13 we prove, in
Theorem 2.33, an invariance property of the set of T -periodic solutions which lie between
a lower and an upper solution satisfying (2.2) and, in particular, a form of relative attrac-
tivity of the minimum and the maximum solutions. Afterwards, we discuss the structure of
the set of T -periodic solutions lying between v and w, as well as the dynamics occurring
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between them. In particular, we prove the existence of a totally ordered continuum of order
stable solutions. Assuming the validity of some comparison principle, we obtain refine-
ments and strengthenings of the results we have established in a more general context. In
particular we can recover several known results, about stability, asymptotic stability, insta-
bility of periodic solutions, using an approach which singles out the essential hypotheses.
Finally, we describe with some detail the instability properties of maximal T -periodic so-
lutions which are not above a strict lower solution, or not below a strict upper solution.
As a consequence, in the case where α �� β , we get an instability result which completes
the conclusions of Theorem 2.17. The last subsection is devoted to a discussion of some
relations between stability properties and multiplicity of T -periodic solutions.

2.2. Preliminaries

In this section we state some basic facts concerning the parabolic problem

{
∂tu+A(x, t, ∂x)u= f (x, t, u,∇xu) in �× I ,
u= 0 on ∂�× I ,

(2.10)

where I ⊆R is an interval.

Basic assumptions
We suppose that

(D) �⊂ R
N is a bounded domain, having a boundary ∂� of class C2, and T > 0 is a

fixed number.
Hereafter, we set QT = �× ]0, T [ and �T = ∂�× [0, T ]. The differential operator has
the form

A(x, t, ∂x)u=−
N∑

i,j=1

∂xi
(
aij (x, t)∂xj u

)+
N∑
i=1

ai(x, t)∂xi u+ a0(x, t)u.

We assume that
(A) aij ∈ C1,0(QT ), aij (x, t) = aji(x, t) in QT , aij (x,0) = aij (x, T ) in �, for i, j =

1, . . . ,N , and there exists η > 0 such that, for all (x, t) ∈QT and ξ ∈R
N ,

N∑
i,j=1

aij (x, t)ξiξj � η|ξ |2;

ai ∈ L∞(QT ) for i = 0, . . . ,N ; ess infQT
a0 > 0.

We further suppose that
(C) f :QT × R × R

N → R satisfies the Lp-Carathéodory conditions for some p >

N + 2, i.e. for every (s, ξ) ∈ R × R
N , f (·, ·, s, ξ) is measurable on QT ; for a.e.

(x, t) ∈QT , f (x, t, ·, ·) is continuous on R×R
N ; for each ρ > 0, there exists γ ∈

Lp(QT ) such that |f (x, t, s, ξ)| � γ (x, t), for a.e. (x, t) ∈QT and every (s, ξ) ∈
[−ρ,ρ] × [−ρ,ρ]N ;
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and
(N) for every M > 0, there exist h ∈ Lp(QT ), with p >N + 2, and K > 0 such that for

a.e. (x, t) ∈QT , every s ∈ [−M,M] and every ξ ∈R
N ,

∣∣f (x, t, s, ξ)
∣∣ � h(x, t)+K|ξ |2. (2.11)

REMARK 2.1. All functions considered in (A) and (C) are identified with their T -periodic
extensions onto �×R and �×R×R×R

N , respectively.

Solutions and lower and upper solutions
We notice that, assuming (D) and p > N + 2, the Sobolev space W

2,1
p (�× ]t1, t2[), with

t1, t2 ∈R and t1 < t2, is (compactly) embedded into C1,0(�×[t1, t2]) (see [80, Chapter II,
Section 3]). Accordingly, the following definitions make sense.

DEFINITION 2.1.
• A solution of (2.10) in � × [t1, t2], with t1, t2 ∈ R and t1 < t2, is a function u ∈

W
2,1
p (�× ]t1, t2[) such that

∂tu+A(x, t, ∂x)u= f (x, t, u,∇xu) a.e. in �× ]t1, t2[,
u(x, t)= 0 on ∂�× [t1, t2].

• A solution of (2.10) in � × J , where J is a noncompact interval having endpoints
t1, t2 with −∞� t1 < t2 �+∞, is a function u such that, for every compact interval
K ⊂ J , u|�×K is a solution of (2.10) in �×K .

REMARK 2.2. In the literature this kind of solutions of (2.10) are usually referred to as
strong solutions.

DEFINITION 2.2. A solution u :� × [t0,ω[ → R of (2.10) is said nonextendible (to the
right of ω), if either ω=+∞, or ω <+∞ and there is no solution û of (2.10) in �×[t0,ω]
such that û|�×[t0,ω[ = u.

We now introduce two notions of lower and upper solutions for (2.10) of increasing
generality, allowing to the utmost “angles” in the space variables and “jumps” in the time
variable.

NOTATION 2.3. For a function u :� × [t1, t2] → R, we write u|�×]t1,t2[ ∈ W
2,1
p (� ×

]t1, t2[) if there exists ũ ∈ W
2,1
p (� × ]t1, t2[) ∩ C1,0(� × [t1, t2]) such that ũ = u on

�× ]t1, t2[.
DEFINITION 2.4.
• A regular lower solution of (2.10) in � × [t1, t2], with t1, t2 ∈ R and t1 < t2, is a

function α : �̄× [t1, t2]→R, such that α|�×]t1,t2[ ∈W
2,1
p (�× ]t1, t2[),

∂tα+A(x, t, ∂x)α � f (x, t, α,∇xα) a.e. in �× ]t1, t2[,
α(x, t) � 0 on ∂�× [t1, t2],
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and, for every x ∈�,

α(x, t1) � lim
t→t+1

α(x, t), α(x, t2) � lim
t→t−2

α(x, t).

• A lower solution of (2.10) in �× [t1, t2] is a function α :�× [t1, t2]→R for which
there are points t1 = σ0 < σ1 < · · ·< σh < σh+1 < · · ·< σk = t2, such that, for each
h ∈ {0, . . . , k − 1}, α|�̄×[σh,σh+1] =max1�i�m αi(x, t) in �× [σh,σh+1], where, for

each i = 1, . . . ,m, αi is a regular lower solution of (2.10) in �× [σh,σh+1].
• A lower solution (respectively a regular lower solution) of (2.10) in � × J , where

J is a noncompact interval having endpoints t1, t2 with −∞ � t1 < t2 � +∞, is a
function α such that, for every compact interval K ⊂ J , α|�×K is a lower solution
(respectively a regular lower solution) of (2.10) in �×K .

• A regular upper solution of (2.10) in � × [t1, t2], with t1, t2 ∈ R and t1 < t2, is a
function β :�× [t1, t2]→R such that β|�×]t1,t2[ ∈W

2,1
p (�× ]t1, t2[),

∂tβ +A(x, t, ∂x)β � f (x, t, β,∇xβ) a.e. in �× ]t1, t2[,
β(x, t) � 0 on ∂�× [t1, t2],

and, for every x ∈ �̄,

β(x, t1) � lim
t→t+1

β(x, t), β(x, t2) � lim
t→t−2

β(x, t).

• An upper solution of (2.10) in �×[t1, t2] is a function β :�×[t1, t2]→R for which
there are points t1 = ρ0 < ρ1 < · · ·< ρh < ρh+1 < · · ·< ρl = t2, such that, for each
h ∈ {0, . . . , l − 1}, β|�×[ρh,ρh+1] = min1�j�n βj (x, t) in �× [ρh,ρh+1], where, for

each j = 1, . . . , n, βj is a regular upper solution of (2.10) in �̄× [ρh,ρh+1].
• An upper solution (respectively a regular upper solution) of (2.10) in �× J , where

J is a noncompact interval having endpoints t1, t2 such that −∞� t1 < t2 �+∞, is
a function β such that, for every compact interval K ⊂ J , β|�×K is an upper solution
(respectively a regular upper solution) of (2.10) in �×K .

REMARK 2.3. We notice that a regular lower solution α is continuous in �̄× ]t1, t2[, but
it may be discontinuous with respect to t at the endpoints of the interval [t1, t2]. A similar
observation holds for a regular upper solution β .

REMARK 2.4. Whenever a lower solution and an upper solution are simultaneously con-
sidered, we can assume, without loss of generality, that the sequences (σh)h and (ρh)h
coincide.

Orderings

DEFINITION 2.5. Assume (D). Given functions u,v : �̄× I →R, with I ⊆R an interval,
we write
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• u � v if u(x, t) � v(x, t) in �̄× I ;
• u < v if u � v and u �= v;
• u% v if there exists a function w ∈ C1,0(�× I ), with w(x, t) > 0 for every (x, t) ∈

�× I , w(x, t)= 0 on ∂�× I and ∂w
∂ν

(x, t) < 0 on ∂�× I , where ν = ν(x) ∈R
N is

the unit outer normal to � at x ∈ ∂�, such that u+w � v.

DEFINITION 2.6. Given functions v,w :�× I → R, with I ⊆ R an interval and v < w,
we define the order intervals

[v,w] = {
u :�× I →R | v � u � w

}
,

[v,+∞[= {
u :�× I →R | v � u

}
,

]−∞,w] = {
u :�× I →R | u � w

}
.

All these notations, with the same meaning, will be also used for functions defined on
∂�× I , or �, or ∂�.

DEFINITION 2.7. Let S be a given set of solutions of (2.10).
• We say that a solution z of (2.10), with z ∈ S , is a maximal solution of (2.10) in S

(respectively a minimal solution of (2.10) in S) if there is no solution u of (2.10), with
u ∈ S , such that u > z (respectively u < z).

• We say that a solution z of (2.10), with z ∈ S , is the maximum solution of (2.10) in S
(respectively the minimum solution of (2.10) in S) if every solution u of (2.10), with
u ∈ S , is such that u � z (respectively u � z).

The following elementary statement is related to the properties of the positive cone
in C1,0(�̄ × [t1, t2]) and can be proved repeating almost verbatim the argument of [55,
Lemma 3.1].

PROPOSITION 2.1. Assume (D) and let t1, t2 ∈R, with t1 � t2, be given. Let u ∈ C1,0(�̄×
[t1, t2]) be such that u= 0 on ∂�×[t1, t2] and u& 0. Then the following conclusions hold:

(i) for every c ∈ ]0,1[, there exists δ > 0 such that, for any v ∈ C1,0(�̄× [t1, t2]) with
v � 0 on ∂�× [t1, t2], if ‖u− v‖C1,0(�̄×[t1,t2]) < δ then v � cu in �̄× [t1, t2];

(ii) there exists δ > 0 such that, for any v ∈ C1,0(�̄×[t1, t2]) with v � 0 on ∂�×[t1, t2],
if ‖v‖C1,0(�̄×[t1,t2]) < δ then v � u in �̄× [t1, t2].

REMARK 2.5. Conclusion (ii) of Proposition 2.1 is still valid if u � 0 on ∂�× [t1, t2].

Order norm

Following [7] we introduce the notion of order norm.

DEFINITION 2.8. Assume (D) and let t1, t2 ∈ R, with t1 � t2, be given. Fix a function
e ∈ C1(�̄) such that e(x) > 0 in �, e(x)= 0 and ∂νe(x) < 0 on ∂�, where ν = ν(x) is the
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unit outer normal to � at x ∈ ∂�. For any function u :�× [t1, t2] → R, satisfying u= 0
on ∂�× [t1, t2], we set

‖u‖e = inf
{
λ > 0 | |u|� λe in �× [t1, t2]

}
(∈ [0,+∞]).

REMARK 2.6. There are constants c1, c2 > 0 such that, for every u ∈ C1,0(� × [t1, t2])
satisfying u= 0 on ∂�× [t1, t2], c1‖u‖L∞(�×]t1,t2[) � ‖u‖e � c2‖u‖C1,0(�×[t1,t2]).

In the remainder of this section we collect some basic results that will be systematically
used in the sequel.

Parabolic maximum principle
The following is a version of the parabolic strong maximum principle, expressed both in
the interior and in the boundary forms (see [37] and also [45,83,128,145]).

PROPOSITION 2.2. Assume (D) and (A). Let t1, t2 ∈ R, with t1 < t2, be fixed and let q ∈
L∞(�× ]t1, t2[) be such that

a0(x, t)+ q(x, t) � 0 a.e. in �× ]t1, t2[.

Assume that u ∈W
2,1
p (�× ]t1, t2[), with p >N + 2, satisfy

∂tu+A(x, t, ∂x)u+ q(x, t)u � 0 a.e. in �× ]t1, t2[.

Moreover, set m=min�×[t1,t2] u and suppose that m � 0. Then the following conclusions
hold:

(i) if m is attained at (x0, t0) ∈�× ]t1, t2], then u=m in �̄× [t1, t0];
(ii) if m is attained at (x0, t0) ∈ ∂�× ]t1, t2] and u is not constant in �× ]t1, t0], then

∂μu(x0, t0) < 0, where μ ∈R
N is such that μ · ν > 0, ν = ν(x0) being the unit outer

normal to � at x0 ∈ ∂�.

REMARK 2.7. In the special case where m= 0, Proposition 2.2 remains valid without the
assumption a0(x, t) + q(x, t) � 0 a.e. in � × ]t1, t2[. Indeed, in that case, as u � 0, we
have a.e. in �× ]t1, t2[

∂tu+A(x, t, ∂x)u− a0(x, t)u+ (a0 + q)+(x, t)u � (a0 + q)−(x, t)u � 0

and we can apply the previous result.

A generalized Hölder-type continuity
The following result points out a property, shared by all Carathéodory functions, which can
be seen as a generalization of the usual Hölder continuity. In spite of its quite elementary
character, it will turn out crucial in the sequel.
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PROPOSITION 2.3. Assume that, for some p � 1, f :�× ]t1, t2[ ×R×R
N →R satisfies

the Lp-Carathéodory conditions. Then for each ρ > 0, there exists a Lp-Carathéodory
function h :�× ]t1, t2[ × [−ρ,ρ] × [−ρ,ρ] ×R

N →R such that
(i) for a.e. (x, t) ∈�×]t1, t2[ and every (r, ξ) ∈ [−ρ,ρ]×R

N , h(x, t, ·, r, ξ) : [−ρ,ρ]
→R is strictly increasing;

(ii) for a.e. (x, t) ∈�×]t1, t2[ and every (s, ξ) ∈ [−ρ,ρ]×R
N , h(x, t, s, ·, ξ) : [−ρ,ρ]

→R is strictly decreasing;
(iii) for a.e. (x, t) ∈ � × ]t1, t2[ and every (r, s, ξ) ∈ [−ρ,ρ] × [−ρ,ρ] × R

N ,
h(x, t, s, r, ξ)=−h(x, t, r, s, ξ);

(iv) for a.e. (x, t) ∈ � × ]t1, t2[ and every (r, s, ξ) ∈ [−ρ,ρ] × [−ρ,ρ] × R
N , with

r < s,

∣∣f (x, t, s, ξ)− f (x, t, r, ξ)
∣∣< h(x, t, s, r, ξ);

(v) if, moreover, there exist K > 0 and k ∈ Lp(�× ]t1, t2[) such that for a.e. (x, t) ∈
�× ]t1, t2[, every s ∈ [−ρ,ρ] and every ξ ∈R

N ,

∣∣f (x, t, s, ξ)
∣∣ � k(x, t)+K|ξ |2,

then, for a.e. (x, t) ∈ �× ]t1, t2[, every (r, s) ∈ [−ρ,ρ] × [−ρ,ρ] and every ξ ∈
R

N ,

∣∣h(x, t, s, r, ξ)∣∣ � 2
(
k(x, t)+ ρ +K|ξ |2).

PROOF. The function h will be constructed by using the modulus of continuity ω of f .
We start by showing that ω is a continuous function.

Step 1. Let g : [a, b] → R be a continuous function and let ω : [0,+∞[→ [0,+∞[ be
the modulus of continuity of g, defined by setting, for every δ � 0,

ω(δ)= max
|x−y|�δ

∣∣g(x)− g(y)
∣∣.

Then ω is a continuous function on [0,+∞[. Clearly, ω is increasing on [0,+∞[ and is
continuous at 0 with ω(0) = 0. Let us prove that ω is continuous at any point δ0 > 0.
Fix such a δ0 > 0. By monotonicity, we have limδ→δ−0

ω(δ) � ω(δ0) � limδ→δ+0
ω(δ). To

show that limδ→δ+0
ω(δ) � ω(δ0), pick a decreasing sequence (δn)n such that δn→ δ0. For

each n, let xn, yn ∈ [a, b] be such that |xn−yn|� δn and |g(xn)−g(yn)| = ω(δn). Possibly
passing to subsequences, we may assume xn→ x̄ and yn→ ȳ, so that

ω(δn)=
∣∣g(xn)− g(yn)

∣∣→ ∣∣g(x̄)− g(ȳ)
∣∣ � ω(δ0)

and therefore limδ→δ+0
ω(δ) = limn→+∞ω(δn) � ω(δ0). To show that limδ→δ−0

ω(δ) �
ω(δ0), let x0, y0 ∈ [a, b] be such that |x0 − y0| � δ0 and |g(x0) − g(y0)| = ω(δ0). Pick
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an increasing sequence (δn)n such that δn→ δ0. By convexity, there exist sequences (xn)n
and (yn)n such that xn→ x0, yn→ y0 and |xn−yn|� δn, for each n. Hence it follows that

ω(δ0)=
∣∣g(x0)− g(y0)

∣∣= lim
n→+∞

∣∣g(xn)− g(yn)
∣∣ � lim

n→+∞ω(δn)= lim
δ→δ−0

ω(δ).

Step 2. Let g : [a, b] ×R
N → R be a continuous function and let ω : [0,+∞[×R

N →
[0,+∞[ be the modulus of continuity of g with respect to the first variable, defined by
setting, for each δ � 0 and ξ ∈R

N ,

ω(δ, ξ)= max
|x−y|�δ

∣∣g(x, ξ)− g(y, ξ)
∣∣.

Then ω is a continuous function in [0,+∞[×R
N . Assume, by contradiction, that ω is not

continuous at (δ0, ξ0) ∈ [0,+∞[×R
N . Then there exist ε > 0 and, for each η > 0, a point

(δη, ξη) ∈ [0,+∞[×R
N such that |δ0−δη|+|ξ0−ξη|< η and |ω(δ0, ξ0)−ω(δη, ξη)|> ε.

By Step 1, there is η1 > 0 such that, if |δ0 − δ|< η1, then

∣∣ω(δ0, ξ0)−ω(δ, ξ0)
∣∣< ε/2. (2.12)

By the continuity of g, there is η2 > 0 such that, if |ξ0 − ξ |< η2, then

∣∣g(x, ξ)− g(x, ξ0)
∣∣< ε/6

for all x ∈ [a, b]. Pick η=min{η1, η2} and the corresponding point (δη, ξη) such that |δ0−
δη| + |ξ0 − ξη|< η, |ω(δ0, ξ0)−ω(δη, ξη)|> ε and, using (2.12),

∣∣ω(δη, ξ0)−ω(δη, ξη)
∣∣> ε/2.

Assume that ω(δη, ξ0) > ω(δη, ξη)+ ε/2, the other case being similar. Take x0, y0 ∈ [a, b]
such that |x0 − y0|� δη and

ω(δη, ξ0)=
∣∣g(x0, ξ0)− g(y0, ξ0)

∣∣.
Take further xη, yη ∈ [a, b] such that |xη − yη|� δη and

ω(δη, ξη)=
∣∣g(xη, ξη)− g(yη, ξη)

∣∣.
Then we get the contradiction

ω(δη, ξη) �
∣∣g(x0, ξη)− g(y0, ξη)

∣∣
�

∣∣g(x0, ξ0)− g(y0, ξ0)
∣∣− ∣∣g(x0, ξ0)− g(x0, ξη)

∣∣
− ∣∣g(y0, ξ0)− g(y0, ξη)

∣∣
> ω(δη, ξ0)− ε/3 >ω(δη, ξη)+ ε/6.
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Step 3. Definition of h. Fix ρ > 0 and set, for a.e. (x, t) ∈�× ]t1, t2[, every δ � 0 and
every ξ ∈R

N ,

ω(x, t, δ, ξ)=max
{∣∣f (x, t, r, ξ)− f (x, t, s, ξ)

∣∣ | |r|� ρ, |s|� ρ, |r − s|� δ
}
.

We have, for a.e. (x, t) ∈�× ]t1, t2[, every r, s ∈ [−ρ,ρ] with r � s and ξ ∈R
N ,

∣∣f (x, t, r, ξ)− f (x, t, s, ξ)
∣∣ � ω(x, t, s − r, ξ).

Let us define for a.e. (x, t) ∈�× ]t1, t2[ and every r, s ∈ [−ρ,ρ], ξ ∈R
N ,

h(x, t, s, r, ξ)= sgn(s − r)
(
ω
(
x, t, |s − r|, ξ)+ |s − r|).

Then the following conclusions hold:
• for a.e. (x, t) ∈�× ]t1, t2[, h(x, t, ·, ·, ·) is continuous;
• for every (r, s, ξ) ∈ [−ρ,ρ] × [−ρ,ρ] ×R

N , h(·, ·, s, r, ξ) is measurable (this is due
to the fact that ω(x, t, δ, ξ)= sup{|f (x, t, r, ξ)−f (x, t, s, ξ)| | |r−s|� δ, with r, s ∈
Q});

• for each σ > 0, there exists γ ∈ Lp(�×]t1, t2[) such that, for a.e. (x, t) ∈�×]t1, t2[
and every (r, s, ξ) ∈ [−ρ,ρ] × [−ρ,ρ] × [−σ,σ ]N , |h(x, t, s, r, ξ)|� γ (x, t);

• for a.e. (x, t) ∈�×]t1, t2[ and every (r, ξ) ∈ [−ρ,ρ]×R
N , h(x, t, ·, r, ξ) : [−ρ,ρ]→

R is strictly increasing;
• for a.e. (x, t) ∈�×]t1, t2[ and every (s, ξ) ∈ [−ρ,ρ]×R

N , h(x, t, s, ·, ξ) : [−ρ,ρ]→
R is strictly decreasing;

• for a.e. (x, t) ∈�×]t1, t2[ and every (r, s, ξ) ∈ [−ρ,ρ]×[−ρ,ρ]×R
N , h(x, t, s, r, ξ)

=−h(x, t, r, s, ξ);
• for a.e. (x, t) ∈�× ]t1, t2[ and every (r, s, ξ) ∈ [−ρ,ρ] × [−ρ,ρ] ×R

N , with r < s,
∣∣f (x, t, s, ξ)− f (x, t, r, ξ)

∣∣< h(x, t, s, r, ξ);
• if, moreover, there exist K > 0 and k ∈ Lp(� × ]t1, t2[) such that for a.e. (x, t) ∈

�× ]t1, t2[, every s ∈ [−ρ,ρ] and every ξ ∈R
N ,

∣∣f (x, t, s, ξ)
∣∣ � k(x, t)+K|ξ |2,

then, for a.e. (x, t) ∈�× ]t1, t2[, every (r, s) ∈ [−ρ,ρ] × [−ρ,ρ] and every ξ ∈R
N ,

∣∣h(x, t, s, r, ξ)∣∣ � 2
(
k(x, t)+ ρ +K|ξ |2). �

2.3. The initial boundary value problem

Let us consider the parabolic initial value problem

∂tu+A(x, t, ∂x)u= f (x, t, u,∇xu) in �× I,

u= 0 on ∂�× I,

u(·, t0)= u0 in �,

(2.13)
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where I ⊆R is an interval containing a right neighbourhood of t0 and u0 ∈W
2−2/p
p (�) is

such that u0 = 0 on ∂�.
In this section we collect some basic facts concerning problem (2.13). Namely, we dis-

cuss existence, localization and structure of the set of strong solutions of (2.13) in the
presence of a pair of possibly nonregular lower and upper solutions.

Solutions and lower and upper solutions
We notice that, assuming (D) and p > N + 2, W 2−2/p

p (�) is (compactly) embedded in
C1(�) (see [1, Chapter VII]). Therefore the following definitions make sense.

DEFINITION 2.9. A solution of (2.13) in �× I , with I ⊆R an interval containing a right
neighbourhood of t0, is a solution u of (2.10) in �× I such that

u(x, t0)= u0(x) in �.

The following notion of lower and upper solutions for the initial value problem (2.13) is
used.

DEFINITION 2.10.
• A lower solution (respectively a regular lower solution) of (2.13) in �×I , with I ⊆R

an interval containing a right neighbourhood of t0, is a function α which is a lower
solution (respectively a regular lower solution) of (2.10) in �× I and satisfies

α(x, t0) � u0(x) in �.

• An upper solution (respectively a regular upper solution) of (2.13) in � × I , with
I ⊆ R an interval containing a right neighbourhood of t0, is a function β which is an
upper solution (respectively a regular upper solution) of (2.10) in �× I and satisfies

β(x, t0) � u0(x) in �.

The linear initial value problem
The next statement, which follows from [80, Chapter IV, Section 9 and Chapter VII, Sec-
tion 10], regards existence, uniqueness and regularity of solutions of the linear initial value
problem

∂tu+A(x, t, ∂x)u= h(x, t) in �× ]t0, τ [,
u= 0 on ∂�× [t0, τ ],
u(·, t0)= u0 in �.

(2.14)

PROPOSITION 2.4. Assume (D) and (A). Fix p >N + 2 and let t0 ∈R and τ ∈ ]t0,+∞[
be given. Then for every h ∈ Lp(�× ]t0, τ [) and every u0 ∈W

2−2/p
p (�) with u0 = 0 on

∂�, problem (2.14) has a unique solution u ∈W
2,1
p (�× ]t0, τ [). Moreover, there exists an

increasing function C(τ), which is independent of h and u0, such that

‖u‖
W

2,1
p (�×]t0,τ [) � C(τ)

(‖h‖Lp(�×]t0,τ [) + ‖u0‖W 2−2/p
p (�)

)
.
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A Nagumo-type result
The following result will be systematically used in the sequel.

PROPOSITION 2.5. Assume (D) and (A). Let p > N + 2, t0 ∈ R, ω ∈ ]t0,+∞[, h ∈
Lp(� × ]t0,ω[), K > 0 and R > 0 be given. Then there exists a constant C > 0 such
that for each u : �̄× [t0,ω[→R, with u ∈W

2,1
p (�× ]t0, τ [) for every τ < ω, satisfying

∣∣∂tu+A(x, t, ∂x)u
∣∣ � h(x, t)+K|∇xu|2 a.e. in �× ]t0,ω[,

u= 0 on ∂�× [t0,ω[

and

∥∥u(·, t0)∥∥W 2−2/p
p (�)

� R,

we have u ∈W
2,1
p (�× ]t0,ω[) and

‖u‖
W

2,1
p (�×]t0,ω[) � C.

PROOF. We start with a preliminary result, whose proof closely follows an argument in [6,
Lemma 2.1] (see also [149]). We present here a detailed proof in order to verify that the
constant γ0, appearing below, is independent of τ ∈ ]δ,ω[, whenever δ ∈ ]t0,ω[ is fixed.
Hereafter, for any σ ∈ ]t0,ω], we set Qσ =�× ]t0, σ [ and �σ = ∂�× [t0, σ [.
CLAIM. Fix any constant δ ∈ ]t0,ω[. Let a function g ∈ L∞(Qω) and u0 ∈ W

2−2/p
p (�)

with u0 = 0 on ∂� be given. Then, for every τ ∈ ]δ,ω[, the initial value problem

∂tu+A(x, t, ∂x)u= g(x, t)
(
1+ |∇xu|2

)
in Qτ ,

u= 0 on �τ ,

u(·, t0)= u0 in �

(2.15)

has a unique solution u, which satisfies

‖u‖
W

2,1
p (Qτ )

� γ0
(‖g‖L∞(Qω),‖u0‖W 2−2/p

p (�)

)
,

where γ0 depends in an increasing way on the indicated quantities, but is independent of
τ ∈ ]δ,ω[.

Let us consider, for τ ∈ ]t0,ω[ and λ ∈ [0,1], the initial value problem

∂tu+A(x, t, ∂x)u= g(x, t)
(
λ+ |∇xu|2

)
in Qτ ,

u= 0 on �τ ,

u(·, t0)= λu0 in �.

(2.16)

Step 1. For every τ ∈ ]t0,ω[ and λ ∈ [0,1], (2.16) has at most one solution. Indeed, if u,
v are solutions of (2.16), then w = u− v satisfies
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∂tw+A(x, t, ∂x)w− g∇x(u+ v) · ∇xw = 0 in Qτ ,

w = 0 on �τ ,

w(·, t0)= 0 in �

and hence w = 0, as it easily follows from Proposition 2.2.
For each τ ∈ ]t0,ω[, let us denote by �τ the set of all λ ∈ [0,1] such that (2.16) has a

solution.
Step 2. There exists a constant ε = ε(‖g‖L∞(Qω),‖u0‖W 2−2/p

p (�)
) > 0 such that, for every

τ ∈ ]t0,ω[ and λ1, λ2 ∈ �τ , with |λ1 − λ2| � ε, the corresponding solutions u1, u2 of
(2.16) satisfy

‖u1 − u2‖W 2,1
p (Qτ )

� γ1
(‖g‖L∞(Qω),‖u0‖W 2−2/p

p (�)
,‖u1‖C1,0(Qτ )

)
, (2.17)

where γ1 depends in an increasing way on the indicated quantities. Set w = u1 − u2 and
observe that w satisfies

∂tw+A(x, t, ∂x)w = g∇x(u1 + u2) · ∇xw+ (λ1 − λ2)g in Qτ ,

w = 0 on �τ ,

w(·, t0)= (λ1 − λ2)u0 in �.

(2.18)

Let η=min{1, ess inf�×R a0}> 0 and define

M = η−1|λ1 − λ2|max
{‖g‖L∞(Qτ ),‖u0‖L∞(�)

}
.

The function M −w satisfies

∂t (M −w)+A(x, t, ∂x)(M −w)− g∇x(u1 + u2) · ∇x(M −w)

= a0M − (λ1 − λ2)g � 0 in Qτ ,

M −w � 0 on �τ ,

M −w(·, t0)=M − (λ1 − λ2)u0 � 0 in �.

Proposition 2.2 then implies that M −w � 0 in Qτ . Similarly, one proves that M +w � 0
in Qτ and hence

‖w‖L∞(Qτ ) � η−1|λ1 − λ2|max
{‖g‖L∞(Qτ ),‖u0‖L∞(�)

}
. (2.19)

Next, using the inequality

∣∣∇x(u1 + u2) · ∇xw
∣∣ � |∇xu1|2 + 2|∇xw|2,

we get from (2.18)

∥∥∂tw+A(x, t, ∂x)w
∥∥
Lp(Qτ )
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� 2‖g‖L∞(Qτ )

∥∥|∇xw|2
∥∥
Lp(Qτ )

+ (
meas(Qτ )

)1/p‖g‖L∞(Qτ )

[‖u1‖2
C1,0(Qτ )

+ 1
]
. (2.20)

Now, by Hölder inequality and Fubini theorem, we have

∥∥|∇xw|2
∥∥
Lp(Qτ )

�
N∑
i=1

∥∥|∂xiw|2∥∥Lp(Qτ )

=
N∑
i=1

(∫ τ

0

(∫
�

∣∣∂xiw(x, t)
∣∣2p dx

)
dt

)1/p

=
N∑
i=1

(∫ τ

0

(∥∥∂xiw(·, t)∥∥2
L2p(�)

)p dt

)1/p

and hence, by an interpolation inequality [51, Theorem 1.10.1],

∥∥|∇xw|2
∥∥
Lp(Qτ )

�
N∑
i=1

(∫ τ

0

(∥∥∂xiw(·, t)∥∥2
L2p(�)

)p dt

)1/p

�
N∑
i=1

(∫ τ

0
C

p

1

∥∥w(·, t)∥∥p
W 2

p(�)

∥∥w(·, t)∥∥p
L∞(�)

dt

)1/p

� NC1‖w‖L∞(Qτ )

(∫ τ

0
‖w(·, t)‖p

W 2
p(�)

dt

)1/p

� NC1‖w‖L∞(Qτ )‖w‖W 2,1
p (Qτ )

, (2.21)

where C1 is a constant depending only on � and p. Combining (2.21) with (2.19) yields

∥∥|∇xw|2
∥∥
Lp(Qτ )

� NC1

η
|λ1 − λ2|max

{‖g‖L∞(Qτ ),‖u0‖L∞(�)

}‖w‖
W

2,1
p (Qτ )

(2.22)

and hence, inserting (2.22) into (2.20),

∥∥∂tw+A(x, t, ∂x)w
∥∥
Lp(Qτ )

� 2NC1

η
‖g‖L∞(Qτ )|λ1 − λ2|max

{‖g‖L∞(Qτ ),‖u0‖L∞(�)

}‖w‖
W

2,1
p (Qτ )

+ (
meas(Qτ )

)1/p‖g‖L∞(Qτ )

(‖u1‖2
C1,0(Qτ )

+ 1
)
. (2.23)
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On the other hand, Proposition 2.4 implies that

‖w‖
W

2,1
p (Qτ )

� C2(τ )
(∥∥∂tw+A(x, t, ∂x)w

∥∥
Lp(Qτ )

+ |λ1 − λ2|‖u0‖W 2−2/p
p (�)

)
,

(2.24)

where, for every τ ∈ ]t0,ω[, C2(τ ) � C2(ω) <+∞ as ω <+∞. Therefore, if we set

C3
(‖g‖L∞(Qω),‖u0‖L∞(�)

)
= C2(ω)2η

−1NC1‖g‖L∞(Qω) max
{‖g‖L∞(Qω),‖u0‖L∞(�)

}
(2.25)

and

C4
(‖g‖L∞(Qω),‖u0‖W 2−2/p

p (�)
,‖u1‖C1,0(Qτ )

)
= C2(ω)‖u0‖W 2−2/p

p (�)

+C2(ω)
(
meas(Qω)

)1/p‖g‖L∞(Qω)

(‖u1‖2
C1,0(Qτ )

+ 1
)
, (2.26)

we get

‖w‖
W

2,1
p (Qτ )

� C3
(‖g‖L∞(Qω),‖u0‖L∞(�)

)|λ1 − λ2|‖w‖W 2,1
p (Qτ )

+C4
(‖g‖L∞(Qω),‖u0‖W 2−2/p

p (�)
,‖u1‖C1,0(Qτ )

)
.

Accordingly, letting

ε = ε
(‖g‖L∞(Qω),‖u0‖L∞(�)

)= [
2C3

(‖g‖L∞(Qω),‖u0‖L∞(�)

)]−1
,

we conclude that

‖w‖
W

2,1
p (Qτ )

� 2C4
(‖g‖L∞(Qω),‖u0‖W 2−2/p

p (�)
,‖u1‖C1,0(Qτ )

)
,

provided |λ1 − λ2|� ε. Hence (2.17) follows setting

γ1
(‖g‖L∞(Qω),‖u0‖W 2−2/p

p (�)
,‖u1‖C1,0(Qτ )

)

= 2C4
(‖g‖L∞(Qω),‖u0‖W 2−2/p

p (�)
,‖u1‖C1,0(Qτ )

)
,

where γ1 depends in an increasing way on the indicated quantities.
Step 3. For every τ ∈ ]t0,ω[ and λ ∈ [0, ε], the initial value problem (2.16) has a solution

uλ, which is unique by Step 1 and satisfies

‖uλ‖W 2,1
p (Qτ )

� γ1
(‖g‖L∞(Qω),‖u0‖W 2−2/p

p (�)
,0

)
.
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For each τ ∈ ]t0,ω[, 0 ∈ �τ and for every λ ∈ [0, ε], any possible solution uλ of (2.16)
satisfies, by letting u1 = 0 and u2 = uλ in (2.17),

‖uλ‖C1,0(Qτ )
< R(τ)= C5(τ )γ1

(‖g‖L∞(Qω),‖u0‖W 2−2/p
p (�)

,0
)+ 1,

where C5(τ ) is the embedding constant of W 2,1
p (Qτ ) into C1,0(Qτ ). Therefore, the homo-

topy invariance of the degree implies that

deg
(
I − Sτ,λ,B

(
0,R(τ)

))= deg
(
I − Sτ,0,B

(
0,R(τ)

))
,

where Sτ,λ :C1,0(Qτ )→ C1,0(Qτ ) is the solution operator associated with (2.16) and
B(0,R(τ)) is the open ball in C1,0(Qτ ) of center 0 and radius R(τ). As for μ ∈ [0,1],
u= μSτ,0u has only the trivial solution, we have also

deg
(
I − Sτ,0,B

(
0,R(τ)

)) = deg
(
I −μSτ,0,B

(
0,R(τ)

))
= deg

(
I,B

(
0,R(τ)

))= 1,

and hence

deg
(
I − Sτ,λ,B

(
0,R(τ)

))= 1.

The existence property of the degree yields the conclusion.

Conclusion. Now, arguing as in Step 3, letting in (2.17) u1 = uε and u2 = uλ with λ ∈
[ε,min{2ε,1}], we get [0,min{2ε,1}] ⊆�τ and

‖u2ε‖W 2,1
p (Qτ )

� 2γ1
(‖g‖L∞(Qω),‖u0‖W 2−2/p

p (�)
,‖uε‖C1,0(Qτ )

)
,

where

‖uε‖C1,0(Qτ )
� C5(δ,ω)γ1

(‖g‖L∞(Qω),‖u0‖W 2−2/p
p (�)

,0
)
,

C5(δ,ω) denoting a constant such that C5(δ,ω) > C5(τ ) for every τ ∈ [δ,ω] (cf. [80,
Lemma II.3.3]). Finally, iterating this process a finite number of times, the assertion of the
claim follows.

We are now in position to conclude the proof of this proposition. Let u :�×[t0,ω[→R

be a function such that u ∈W
2,1
p (Qτ ) for every τ ∈ ]t0,ω[, and

∣∣∂tu+A(x, t, ∂x)u
∣∣ � h(x, t)+K|∇xu|2 a.e. in Qω,

u= 0 on �ω,

u(·, t0)= u0 in �,

where u0 ∈W
2−2/p
p (�) is such that u0 = 0 on ∂� and

‖u0‖W 2−2/p
p (�)

� R.
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Define k = ∂t u+A(x,t,∂x)u

1+h+K|∇xu|2 ∈ L∞(Qω). Let v ∈W
2,1
p (Qω) be the solution of

∂tv +A(x, t, ∂x)v = k(x, t)h(x, t) in Qω,

v = 0 on �ω,

v(·, t0)= 0 in �,

which satisfies, by Proposition 2.4,

‖v‖
W

2,1
p (Qω)

� C2(ω)‖h‖Lp(Qω) (2.27)

and hence, by the embedding of W 2,1
p (Qω) into C1,0(Qω),

‖v‖C1,0(Qω)
� C6‖h‖Lp(Qω). (2.28)

Set w = u− v and g = k
1+K|∇xu|2
1+|∇xw|2 . The function w satisfies

∂tw+A(x, t, ∂x)w = k(x, t)
(
1+K|∇xu|2

)= g(x, t)
(
1+ |∇xw|2

)

a.e. in Qω and therefore, for every τ ∈ ]0,ω[, it is a solution of

∂tw+A(x, t, ∂x)w = g(x, t)
(
1+ |∇xw|2

)
in Qτ ,

w = 0 on �τ ,

w(·, t0)= u0 in �.

Since, by (2.28),

‖∇xu‖2
L∞(Qω)

� 2‖∇xw‖2
L∞(Qω)

+ 2
(
C6‖h‖Lp(Qω)

)2
,

it follows that g ∈ L∞(Qω) and

‖g‖L∞(Qω) � max{1,2K} + 2K
(
C6‖h‖Lp(Qω)

)2
.

Therefore, if we fix δ ∈ ]t0,ω[, the above claim implies that, for every τ ∈ ]δ,ω[,

‖w‖
W

2,1
p (Qτ )

� γ0
(
max{1,2K} + 2K

(
C6‖h‖Lp(Qω)

)2
,R

)
,

which, in turn, yields

‖w‖C1,0(Qτ )
� C5(δ,ω)γ0

(
max{1,2K} + 2K

(
C6‖h‖Lp(Qω)

)2
,R

)

and, in particular,

‖∇xw‖L∞(Qω) � C5(δ,ω)γ0
(
max{1,2K} + 2K

(
C6‖h‖Lp(Qω)

)2
,R

)
.
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Accordingly, denoting by z ∈W
2,1
p (Qω) the unique solution of

∂t z+A(x, t, ∂x)z= g(x, t)
(
1+ |∇xw|2

)
in Qω,

z= 0 on �ω,

z(·, t0)= u0 in �,

we have w = z in �×[t0,ω[ and hence w ∈W
2,1
p (Qω). Finally, using (2.27), we conclude

that u ∈W
2,1
p (Qω) and

‖u‖
W

2,1
p (Qω)

� γ0
(
max{1,2K} + 2K

(
C6‖h‖Lp(Qω)

)2
,R

)
+C2(ω)‖h‖Lp(Qω). �

Existence of solutions and the Hukuhara–Kneser property
In this section we extend to strong solutions and nonregular lower and upper solutions
some existence and localization results for the initial value problem (2.13) which are well
known in the frame of classical solutions. We also describe the topological structure of the
solution set, proving the Hukuhara–Kneser property. Since our analysis is performed just
assuming that f satisfies the Carathéodory conditions, we get an improvement of results
obtained in [76], for f Hölder continuous, and in [81], for f continuous. Our proof, which
differs from the standard ones in the approximation method, adapts an idea introduced in
[139] dealing with ordinary differential equations.

We first deal with the initial value problem on a compact interval.

THEOREM 2.6. Assume (D), (A), (C), (N) and let u0 ∈W
2−2/p
p (�) be such that u0 = 0

on ∂�. Let t0, t1 ∈ R be such that t0 < t1 and suppose that α is a lower solution and β is
an upper solution of (2.13) in �× [t0, t1], satisfying α � β . Then there exist the minimum
solution v and the maximum solution w in [α,β] of problem (2.13) in �×[t0, t1]. Further,
the set

K= {
u :�× [t0, t1]→R | u is a solution of (2.13) with α � u � β

in �× [t0, t1]
}

is a continuum, i.e. a compact and connected set, in C1,0(�× [t0, t1]).

PROOF. The proof is divided into three parts.

Part 1. Existence of a solution u of (2.13) in �× [t0, t1], with α � u � β . We can assume
that the sequences (σh)0�h�k and (ρh)0�h�l coincide. We also notice that, by our defini-
tion of lower and upper solutions and the condition α � β , there exists a constant M > 0
such that−M � α(x, t) � β(x, t) � M in �×[t0, t1]. Hence, by condition (N) and Propo-
sition 2.5, there exists R > 0 such that, for every function f satisfying (2.11) and every
solution u of (2.13) in �× [t0, t1] with α � u � β , we have

‖u‖C1,0(�×[t0,t1]) < R. (2.29)
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For h ∈ {0, . . . , k−1}, let α =max1�i�mh
α
(h)
i and β =min1�j�nh β

(h)
j in �×]σh,σh+1[,

with α
(h)
i , β

(h)
j ∈W

2,1
p (�× ]σh,σh+1[)∩C1,0(�× [σh,σh+1]). Take R such that

R >R+ max
0�h�k−1

{
max

1�i�mh

∥∥α(h)
i

∥∥
C1,0(�×[σh,σh+1]),

max
1�j�nh

∥∥β(h)
j

∥∥
C1,0(�×[σh,σh+1])

}

and set

f̄ (x, t, s, ξ)=
{
f (x, t, s, ξ) if |ξ |� R,
f
(
x, t, s,R

ξ
|ξ |

)
if |ξ |>R,

for a.e. (x, t) ∈ �× R and every (s, ξ) ∈ R× R
N . For any given h ∈ {0, . . . , k − 1}, we

define the functions

g
(h)
i (x, t, s, ξ)=

⎧⎪⎨
⎪⎩
f̄
(
x, t, α

(h)
i (x, t), ξ

)+ω
(h)
1i

(
x, t, α

(h)
i (x, t)− s

)
if s < α

(h)
i (x, t),

f̄ (x, t, s, ξ) if s � α
(h)
i (x, t),

h
(h)
j (x, t, s, ξ)=

⎧⎪⎪⎨
⎪⎪⎩
f̄
(
x, t, β

(h)
j (x, t), ξ

)−ω
(h)
2j

(
x, t, s − β

(h)
j (x, t)

)
if s > β

(h)
j (x, t),

f̄ (x, t, s, ξ) if s � β
(h)
j (x, t),

where

ω
(h)
1i (x, t, δ) = max

|ξ |�δ

∣∣f̄ (
x, t, α

(h)
i (x, t),∇xα

(h)
i (x, t)+ ξ

)
− f̄

(
x, t, α

(h)
i (x, t),∇xα

(h)
i (x, t)

)∣∣,
ω
(h)
2j (x, t, δ) = max

|ξ |�δ

∣∣f̄ (
x, t, β

(h)
j (x, t),∇xβ

(h)
j (x, t)+ ξ

)
− f̄

(
x, t, β

(h)
j (x, t),∇xβ

(h)
j (x, t)

)∣∣,
for i ∈ {1, . . . ,mh} and j ∈ {1, . . . , nh}, and

F (h)(x, t, s, ξ)=

⎧⎪⎪⎨
⎪⎪⎩

max
1�i�mh

g
(h)
i (x, t, s, ξ) if s � α(x, t),

f̄ (x, t, s, ξ) if α(x, t) < s < β(x, t),
min

1�j�nh
h
(h)
j (x, t, s, ξ) if s � β(x, t),

(2.30)
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for a.e. (x, t) ∈�× ]σh,σh+1[ and every (s, ξ) ∈R×R
N . Then we consider the modified

problem

∂tu+A(x, t, ∂x)u= F(x, t, u,∇xu) in �× ]t0, t1[,
u= 0 on ∂�× [t0, t1],
u(·, t0)= u0 in �,

(2.31)

where F :� × ]t0, t1[ × R × R
N is a Lp-Carathéodory function such that, for each h ∈

{0, . . . , k − 1},
F(x, t, s, ξ)= F (h)(x, t, s, ξ),

for a.e. (x, t) ∈ � × ]σh,σh+1[ and every (s, ξ) ∈ R × R
N . Notice that there exists γ ∈

Lp(�× ]t0, t1[) such that

∣∣F(x, t, s, ξ)
∣∣ � γ (x, t) (2.32)

for a.e. (x, t) ∈�× ]t0, t1[ and every (s, ξ) ∈R×R
N .

Step 1. Every solution u of (2.31) satisfies α � u � β . Assume there is a solution
u of (2.31) such that inf�×]t0,t1[(u − α) < 0. By our definition of a lower solution of
(2.31), we can find h ∈ {0, . . . , k − 1} such that inf�×]σh,σh+1[(u− α) < 0 and u(x,σh) �
limt→σ+h

α(x, t) in �. Since α = max1�i�mh
α
(h)
i , there is i ∈ {1, . . . ,mh} such that, set-

ting v = u − α
(h)
i ∈ W

2,1
p (� × ]σh,σh+1[), we have min�×[σh,σh+1] v < 0, v(x,σh) � 0

in � and v(x, t) � 0 on ∂� × [σh,σh+1]. Hence there exists (x̄, t̄ ) ∈ � × ]σh,σh+1]
such that min�×[σh,σh+1] v = v(x̄, t̄ ). As x̄ ∈ �, we have ∇xv(x̄, t̄ ) = 0 and there is
an open ball B ⊆ �, with x̄ ∈ B , and a point t1 ∈ ]σh, t̄[ such that, a.e. in B × ]t1, t̄],
|∇xv(x, t)|� |v(x, t)|, v(x, t) < 0 and

∂tv+A(x, t, ∂x)v

� F (h)
(
x, t, u(x, t),∇xu(x, t)

)− f
(
x, t, α

(h)
i (x, t),∇xα

(h)
i (x, t)

)
� f̄

(
x, t, α

(h)
i (x, t),∇xu(x, t)

)+ω
(h)
1i

(
x, t, α

(h)
i (x, t)− u(x, t)

)
− f̄

(
x, t, α

(h)
i (x, t),∇xα

(h)
i (x, t)

)
�−ω

(h)
1i

(
x, t,

∣∣∇xv(x, t)
∣∣)+ω

(h)
1i

(
x, t,

∣∣v(x, t)∣∣)
� 0,

because ω
(h)
1i (x, t, ·) is increasing. Hence Proposition 2.2 implies that v(x, t)= v(x̄, t̄ )=

min�×[σh,σh+1] v in B × ]t1, t̄] and, as ess infa0 > 0,

∂tv+A(x, t, ∂x)v = a0v < 0,

a.e. in B × ]t1, t̄], thus contradicting the previous inequality. Therefore, we conclude that
u � α. Similarly, one proves that u � β .



276 C. De Coster et al.

Step 2. Every solution u of (2.31) is a solution of (2.13). In Step 1, we proved that every
solution u of (2.31) satisfies α � u � β and hence it is a solution of

∂tu+A(x, t, ∂x)u= f̄ (x, t, u,∇xu) in �× ]t0, t1[,
u= 0 on ∂�× [t0, t1],
u(·, t0)= u0 in �.

As f̄ satisfies (2.11), we have ‖u‖C1,0(�×[t0,t1]) < R and hence u is a solution of (2.13).
Step 3. Problem (2.31) has at least one solution. Let us consider the solution operator

S :C1,0(�×[t0, t1])→ C1,0(�×[t0, t1]) associated with (2.31), which sends any function
u ∈ C1,0(�× [t0, t1]) onto the unique solution v ∈W

2,1
p (�× [t0, t1]) of

∂tv +A(x, t, ∂x)v = F(x, t, u,∇xu) in �× ]t0, t1[,
v = 0 on ∂�× [t0, t1],
v(·, t0)= u0 in �.

The operator S is continuous, has a relatively compact range and its fixed points are the
solutions of (2.31). In particular, there exists a constant R̃ > 0 such that

‖Su‖C1,0(�×[t0,t1]) < R̃

for every u ∈ C1,0(�× [t0, t1]). Then standard results of degree theory imply that

deg
(
I − S,B

(
0, R̃

))= 1,

where I is the identity operator in C1,0(�× [t0, t1]) and B(0, R̃) is the open ball of center
0 and radius R̃ in C1,0(� × [t0, t1]). Therefore S has a fixed point. By the conclusions
of Steps 1 and 2, we get the existence of a solution u of (2.13) in �× [t0, t1] satisfying
α � u � β .

Part 2. Existence of extremal solutions. We know, from Part 1, that the solutions u of (2.13)
in � × [t0, t1], with α � u � β , are precisely the fixed points of the solution operator S

associated with (2.31), i.e.

K= {
u ∈ C1,0(�× [t0, t1]) | u= Su

}
,

and K is a nonempty compact subset of C1,0(�×[t0, t1]). Next, for each u ∈K, define the
closed set Cu = {z ∈K | z � u}. The family {Cu | u ∈K} has the finite intersection property,
as it follows from Part 1 observing that if u1, u2 ∈K, then min{u1, u2} is an upper solution
of (2.31) with α � min{u1, u2}. By the compactness of K there exists v ∈⋂

u∈K Cu; clearly,
v is the minimum solution in [α,β] of (2.13) in �× [t0, t1]. The maximum solution w can
be found in a similar way.
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Part 3. K is a continuum. We know from Part 2 that K is compact in C1,0(�̄× [t0, t1]);
we apply [77, Theorem 48.2] or [153, Theorem 13.E] to show that K is connected too. We
already proved in Part 1 that there is R > 0 such that

deg
(
I − S,B(0,R)

)= 1,

where S :C1,0(�× [t0, t1])→ C1,0(�× [t0, t1]) is the solution operator associated with
(2.31). Next, for each n � 1, set τn = t1−t0

n
and denote by Sn :C1,0(� × [t0, t1]) →

C1,0(� × [t0, t1]) the operator which sends any function v ∈ C1,0(� × [t0, t1]) onto the
function w ∈ C1,0(�× [t0, t1]) defined by

w(x, t)=
{
u∗0(x, t) in �× [t0, t0 + τn],
u(x, t) in �× ]t0 + τn, t1],

where u∗0 is the solution of

∂tu+A(x, t, ∂x)u= 0 in �× ]t0, t1[,
u= 0 on ∂�× [t0, t1],
u(·, t0)= u0 in �

and u is the solution of

∂tu+A(x, t, ∂x)u

= F
(
x, t − τn, v(x, t − τn),∇xv(x, t − τn)

)
in �× ]t0 + τn, t1[,

u= 0 on ∂�× [t0 + τn, t1],
u(·, t0 + τn)= u∗0(·, t0 + τn) in �.

(2.33)

Each operator Sn is continuous and has a relatively compact range. Further, I − Sn is
one-to-one. Indeed, let v1, v2 ∈ C1,0(�× [t0, t1]) be such that (I − Sn)v1 = (I − Sn)v2.
This means that v1(x, t)= v2(x, t) in �×[t0, t0+ τn] and v1(x, t)−u1(x, t)= v2(x, t)−
u2(x, t) in �̄× [t0 + τn, t1], where, for i = 1,2, ui is the solution of (2.33) corresponding
to v = vi . Hence we get by recursion that u1(x, t) = u2(x, t) and v1(x, t) = v2(x, t) in
�̄×[t0+ (k−1)τn, t0+ kτn], for k = 2, . . . , n, and then u1(x, t)= u2(x, t) and v1(x, t)=
v2(x, t) in �× [t0 + τn, t1]. This yields v1 = v2.

At last we prove that the sequence (Sn)n converges to S uniformly in C1,0(�× [t0, t1]).
Assume by contradiction this is false, i.e. there exist a constant ε > 0 and a sequence (vk)k
in C1,0(�× [t0, t1]) such that

‖Snkvk − Svk‖C1,0(�×[t0,t1]) � ε. (2.34)

For each k, define

gk(x, t)= F
(
x, t, vk(x, t),∇xvk(x, t)

)
a.e. in �× ]t0, t1[,
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and

 k(x, t)=
⎧⎨
⎩

0 a.e. in �× ]t0, t0 + τnk [,
F
(
x, t − τnk , vk(x, t − τnk ),∇xvk(x, t − τnk )

)
a.e. in �× ]t0 + τnk , t1[.

Then Svk =wk is the solution of

∂tu+A(x, t, ∂x)u= gk(x, t) in �× ]t0, t1[,
u= 0 on ∂�× [t0, t1],
u(·, t0)= u0 in �

and Snkvk = zk is the solution of

∂tu+A(x, t, ∂x)u=  k(x, t) in �× ]t0, t1[,
u= 0 on ∂�× [t0, t1],
u(·, t0)= u0 in �.

By condition (2.32), we can suppose, possibly passing to subsequences, that (gk)k con-
verges weakly in Lp(�× ]t0, t1[) to g and (wk)k converges weakly in W

2,1
p (�× ]t0, t1[)

to the solution w of

∂tu+A(x, t, ∂x)u= g(x, t) in �× ]t0, t1[,
u= 0 on ∂�× [t0, t1],
u(·, t0)= u0 in �.

Similarly, we can suppose that ( k)k converges weakly in Lp(�× ]t0, t1[) to  and (zk)k

converges weakly in W
2,1
p (�× ]t0, t1[) to the solution z of

∂tu+A(x, t, ∂x)u=  (x, t) in �× ]t0, t1[,
u= 0 on ∂�× [t0, t1],
u(·, t0)= u0 in �.

We shall prove that g =  . Hence the sequences (wk)k and (zk)k will have the same limit

in C1,0(�× [t0, t1]), thus contradicting (2.34). For any k � 1 and ψ ∈ L
p

p−1 (�× ]t0, t1[),
let us compute

∫
�×]t0,t1[

 kψ

=
∫
�

(∫ t1

t0+τnk
F
(
x, t − τnk , vk(x, t − τnk ),∇xvk(x, t − τnk )

)
ψ(x, t)dt

)
dx

=
∫
�

(∫ t1−τnk
t0

F
(
x, s, vk(x, s),∇xvk(x, s)

)
ψ(x, s + τnk )ds

)
dx

=
∫
�×]t0,t1[

gkψk,
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where we set

ψk(x, t)=
{
ψ(x, t + τnk ) a.e. in �× ]t0, t1 − τnk [,
0 a.e. in �× [t1 − τnk , t1[.

Since (gk)k is bounded in Lp(�× ]t0, t1[) and

∫
�×]t0,t1[

 kψ =
∫
�×]t0,t1[

gkψ +
∫
�×]t0,t1[

gk(ψk −ψ),

for proving that g =  it is enough to show that ‖ψk−ψ‖
L

p
p−1 (�×]t0,t1[)

→ 0, as k→+∞.

Let us denote by ψ̃ the zero extension of ψ outside �× ]t0, t1[ and define

ψ̃k(x, t)= ψ̃(x, t + τnk ) a.e. in R
N+1.

By [22, Lemma IV.4] (ψ̃k)k converges to ψ̃ in L
p

p−1 (RN+1). Hence we obtain

‖ψk −ψ‖
p

p−1

L
p

p−1 (�×]t0,t1[)

=
∫
�

(∫ t1−τnk
t0

∣∣ψk(x, t)−ψ(x, t)
∣∣ p
p−1 dt

)
dx

+
∫
�

(∫ t1

t1−τnk

∣∣ψ(x, t)
∣∣ p
p−1 dt

)
dx

=
∫
�

(∫
R

∣∣ψ̃k(x, t)− ψ̃(x, t)
∣∣ p
p−1 dt

)
dx

−
∫
�

(∫ t0

t0−τnk

∣∣ψ̃k(x, t)
∣∣ p
p−1 dt

)
dx

= ∥∥ψ̃k − ψ̃
∥∥ p

p−1

L
p

p−1 (RN+1)

−
∫
�

(∫ τnk+t0

t0

∣∣ψ̃(x, t)
∣∣ p
p−1 dt

)
dx→ 0,

as k→+∞. This concludes the proof. �

REMARK 2.8. Condition (N) can be obviously replaced in Theorem 2.6 by
(N′) there exist h ∈ Lp(� × ]t0, t1[), with p > N + 2, and K > 0 such that, for a.e.

(x, t) ∈�× ]t0, t1[, every s ∈ [α(x, t), β(x, t)] and every ξ ∈R
N ,

∣∣f (x, t, s, ξ)
∣∣ � h(x, t)+K|ξ |2.

According to Proposition 2.5, these Nagumo-type conditions prevent the formation of sin-
gularities of the space gradient of locally bounded solutions of (2.13).

Now we extend Theorem 2.6 to noncompact intervals.
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COROLLARY 2.7. Assume (D), (A), (C), (N) and let u0 ∈W
2−2/p
p (�) be such that u0 = 0

on ∂�. Let t0 ∈R and τ ∈ ]t0,+∞]. Suppose that α is a lower solution and β is an upper
solution of (2.13) in �× [t0, τ [ satisfying α � β . Then there exist the minimum solution v

and the maximum solution w in [α,β] of (2.13) in �× [t0, τ [. Further, the set

K= {
u :�× [t0, τ [→R | u is a solution of (2.13) with α � u � β

}

is a continuum in C1,0(� × [t0, τ [), endowed with the topology of C1,0-convergence on
compact subsets of �× [t0, τ [.

PROOF. Let (τn)n, with τ0 = t0, be a strictly increasing sequence converging to τ .
Step 1. Existence of extremal solutions. In order to prove the existence of the minimum

solution v in [α,β] of (2.13) in �× [t0, τ [, we apply recursively Theorem 2.6 to (2.13)
in � × [t0, τn] for each n � 1. Let us denote by vn the minimum solution v in [α,β]
of (2.13) in �̄ × [t0, τn]. By the minimality of vn, we have vn+1|�×[t0,τn] � vn. On the

other hand, vn(·, τn) ∈ W
2−2/p
p (�), vn(·, τn) = 0 on ∂� and the functions α|�×[τn,τn+1]

and vn+1|�̄×[τn,τn+1] are, respectively, a lower and an upper solution of the initial value
problem

∂tu+A(x, t, ∂x)u= f (x, t, u,∇xu) in �× ]τn, τn+1[,
u= 0 on ∂�× [τn, τn+1],
u(·, τn)= vn(·, τn) in �.

Hence this problem has a solution v∗n satisfying α|�̄×[τn,τn+1] � v∗n � vn+1|�̄×[τn,τn+1].
Then we define v̂n+1 : �̄× [t0, τn+1]→R by setting

v̂n+1(x, t)=
{
vn(x, t) in �× [t0, τn[,
v∗n(x, t) in �× [τn, τn+1].

Let us prove that v̂n+1 ∈W
2,1
p (�×]t0, τn+1[). Let w ∈W

2,1
p (�×]t0, τn+1[) be the unique

solution of the linear initial value problem

∂tu+A(x, t, ∂x)u= f (x, t, v̂n+1,∇x v̂n+1) in �× ]t0, τn+1[,
u= 0 on ∂�× [t0, τn+1],
u(·, t0)= u0 in �.

Since both vn and w|�×[t0,τn] are solutions of the linear initial value problem

∂tu+A(x, t, ∂x)u= f (x, t, vn,∇xvn) in �× ]t0, τn[,
u= 0 on ∂�× [t0, τn],
u(·, t0)= u0 in �,
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by uniqueness, we get vn =w in �× [t0, τn]. Further, as w(·, τn)= vn(·, τn) in �, v∗n and
w|�×[τn,τn+1] are both solutions of the linear initial value problem

∂tu+A(x, t, ∂x)u= f (x, t, v∗n,∇xv
∗
n) in �× ]τn, τn+1[,

u= 0 on ∂�× [τn, τn+1],
u(·, τn)= vn(·, τn) in �.

Hence, by uniqueness, we have v∗n = w in � × [τn, τn+1] and we conclude that v̂n+1 =
w in � × [t0, τn+1]. Therefore v̂n+1 is a solution of (2.13) in � × [t0, τn+1] satisfying
α � v̂n+1 � vn+1. By the minimality of vn+1, we conclude that v̂n+1 = vn+1 and hence
vn+1|�×[t0,τn] = vn. Then we define v :� × [t0, τ [ → R by setting v(x, t) = vn(x, t) in

� × [t0, τn]. We have that v is the minimum solution in [α,β] of (2.13) in � × [t0, τ [,
because, if u were a solution of (2.13) in �× [t0, τ [ with u � α and u �� v, then it should
follow u|�×[t0,τn] �� vn for some n, thus contradicting the minimality of vn. Similarly, we

prove the existence of the maximum solution w in [α,β] of (2.13) in �× [t0, τ [.
Step 2. K is a continuum. We denote by Kn the set of all solutions u :�× [t0, τn] → R

of (2.13) such that α � u � β on � × [t0, τn]. By Theorem 2.6, Kn is a continuum in
C1,0(� × [t0, τn]). For every m < n, let also πn

m :Kn → Km be the restriction map on
�× [t0, τm], i.e. πn

m(u)= u|�×[t0,τm] for all u ∈Kn. For each u ∈K, let us set now un =
u|�×[t0,τn] and define a function χ :K→∏+∞

n=1 Kn, by χ(u) = (un)n. Observe that χ is

a homeomorphism of K into
∏+∞

n=1 Kn, when
∏+∞

n=1 Kn is endowed with the Tychonoff
product topology, and its range χ(K) is the set of all sequences (un)n ∈∏+∞

n=1 Kn such
that, for all m < n, πn

m(un) = um, i.e. χ(K) is the inverse limit of the sequence (Kn)n
with bonding maps πn

m (see [47]). As the inverse limit of a sequence of continua is a
continuum [47, Theorem 6.1.20] we deduce that χ(K) is a continuum as well. Since K is
homeomorphic to χ(K), the conclusion is achieved. �

Continuation and ultimate behaviour of local solutions

The following two results concern existence, continuation and ultimate behaviour of local
solutions of problem (2.13); although they are basically known, we provide here simple
proofs based on Proposition 2.5 and Theorem 2.6.

LEMMA 2.8. Assume (D), (A), (C), (N) and let u0 ∈W
2−2/p
p (�) be such that u0 = 0 on

∂�. Fix t0 ∈ R and t1 ∈ ]t0,+∞]. If α is a lower solution of (2.13) in �× ]t0, t1[, then
there exist ω ∈ ]t0, t1] and a solution v of (2.13) in � × [t0,ω[, with v � α, such that
every upper solution β of (2.13) in �× [t0, σ ], with β � α, satisfies σ � ω and β � v in
�× [t0, σ ]. Similarly, if β is an upper solution of (2.13) in �× ]t0, t1[, then there exist
ω ∈ ]t0, t1] and a solution w of (2.13) in �× [t0,ω[, with w � β , such that every lower
solution α of (2.13) in �× [t0, σ ], with α � β , satisfies σ � ω and α � w in �× [t0, σ ].

PROOF. The proof is carried out through two steps.
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Step 1. Existence of a local solution u � α. Let α =max1�i�m αi in �×[t0, σ1], where
σ1 > t0 comes from the definition of a lower solution. Define, for each i ∈ {1, . . . ,m},

gi(x, t, s, ξ)=
{
f
(
x, t, αi(x, t), ξ

)+ωi

(
x, t, αi(x, t)− s

)
if s < αi(x, t),

f (x, t, s, ξ) if s � αi(x, t),

where

ωi(x, t, δ)

= max
|ξ |�δ

∣∣f (
x, t, αi(x, t),∇xαi(x, t)+ ξ

)− f
(
x, t, αi(x, t),∇xαi(x, t)

)∣∣

for a.e. (x, t) ∈�× ]t0, σ1[ and every (s, ξ) ∈R×R
N . Fix a constant

R > max
{‖α‖L∞(�×]t0,σ1[),‖u0‖L∞(�)

}

and consider the modified problem

∂tu+A(x, t, ∂x)u= F(x, t, u,∇xu) in �× ]t0, σ1[,
u= 0 on ∂�× [t0, σ1],
u(·, t0)= u0 in �,

(2.35)

where

F(x, t, s, ξ)=

⎧⎪⎪⎨
⎪⎪⎩

max
1�i�m

gi(x, t, s, ξ) if s � α(x, t),

f (x, t, s, ξ) if α(x, t) < s < R,(
R + 1− |s|)f (x, t, s, ξ) if R � s � R + 1,

0 if s > R + 1,

for a.e. (x, t) ∈�× ]t0, σ1[ and every (s, ξ) ∈ R× R
N . Problem (2.35) admits any large

positive constant as an upper solution. Therefore, by Theorem 2.6, it has at least one solu-
tion, which gives rise to a local solution of (2.13) defined in �× [t0, τ ], for some τ > t0.

Step 2. Existence of ω and v. Let ω be the supremum of all σ ∈ ]t0, t1[ such that problem
(2.13) has a solution u in �×[t0, σ ]with u � α. Let (σn)n be a strictly increasing sequence
converging to ω and (un)n be the corresponding sequence of solutions of (2.13) defined in
�× [t0, σn] with un � α. By Theorem 2.6, for each n, there exists the minimum solution
vn in [α,un] of (2.13) in � × [t0, σn]. As in the proof of Corollary 2.7, we see that the
function v :� × [t0,ω[ → R, defined by setting v(x, t) = vn(x, t) in � × [t0, σn], is the
minimum solution in [α,+∞[ of (2.13) in �× [t0,ω[. Finally, we notice that every upper
solution β of (2.13) in �×[t0, σ ], with β � α, is such that σ � ω and β � v in �×[t0, σ ].
Indeed, there is a solution z of (2.13) in �× [t0, σ ], satisfying α � z � β and hence, by
construction of v, z � v in �× [t0, σ ]. �

PROPOSITION 2.9. Assume (D), (A), (C), (N) and let u0 ∈W
2−2/p
p (�) be such that u0 = 0

on ∂�. Then problem (2.13) has at least one solution u :�× [t0, τ ]→R, for some τ > t0,
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and every such a solution can be continued to a nonextendible solution. Further every
nonextendible solution u :�× [t0,ω[→R, with ω <+∞, satisfies

lim sup
t→ω

∥∥u(·, t)∥∥
L∞(�)

=+∞.

PROOF. We proceed through three steps.
Step 1. Existence of local solutions. We fix a constant R > ‖u0‖L∞(�) and we set, for

a.e. (x, t) ∈�×R and every (s, ξ) ∈R×R
N ,

F(x, t, s, ξ)=
{
f (x, t, s, ξ) if |s|<R,
(R + 1− |s|)f (x, t, s, ξ) if R � |s|� R+ 1,
0 if |s|>R+ 1.

The corresponding initial value problem

∂tu+A(x, t, ∂x)u= F(x, t, u,∇xu) in �× ]t0, t0 + 1[,
u= 0 on ∂�× [t0, t0 + 1],
u(·, t0)= u0 in �,

admits any large negative constant as a lower solution and any large positive constant as
an upper solution. Therefore, by Theorem 2.6, it has a solution, which gives rise to a local
solution of (2.13) defined on �× [t0, τ ], for some τ > 0.

Step 2. Existence of nonextendible solutions. Let u be a solution of (2.13) in �× [t0, τ ],
with τ ∈ ]t0,+∞[. Consider the set V of all functions v :�×[t0, ρ[→R, for some ρ > τ ,
such that v is a solution of (2.13) in �× [t0, σ ], for every σ < ρ, and v|�×[t0,τ ] = u. This

set V is non-empty, since u(·, τ ) ∈ W
2−2/p
p (�) and u(·, τ ) = 0 on ∂� and therefore u

can be locally continued to the right of τ . If v1, v2 ∈ V , we set v1 ≺ v2 whenever ρ1 � ρ2
and v2|�×[t0,ρ1] = v1. It is easily verified that V is inductively ordered. Hence Zorn Lemma
yields the existence of maximal elements in V , i.e. the existence of nonextendible solutions
of (2.13).

Step 3. Behaviour of nonextendible solutions. Let u :�× [t0,ω[ → R, with ω < +∞,
be a nonextendible solution of (2.13) and assume that

lim sup
t→ω

∥∥u(·, t)∥∥
L∞(�)

<+∞,

i.e. there is a constant M > 0 such that |u(x, t)| � M in � × [t0,ω[. By the Nagumo
condition (N), there exist h ∈ Lp(�× ]t0,ω[) and K > 0 such that

∣∣f (x, t, u,∇xu)
∣∣ � h(x, t)+K|∇xu|2

for a.e. (x, t) ∈�× ]t0,ω[. Proposition 2.5 implies that u ∈W
2,1
p (�× ]t0,ω[). Hence, in

particular, u(·,ω) ∈W
2−2/p
p (�) and u(·,ω)= 0 on ∂�. Accordingly, u can be continued

to the right of ω, thus contradicting the nonextendibility of u. This allows to conclude that

lim sup
t→ω

∥∥u(·, t)∥∥
L∞(�)

=+∞. �
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REMARK 2.9. Without the Nagumo condition (N), the conclusions of Proposition 2.9
remain true, but now

lim sup
t→ω

∥∥u(·, t)∥∥
C1(�)

=+∞.

To prove the first step in that case, we define F as in the above proof and

F(x, t, s, ξ)=max
{−m(x, t),min

{
F(x, t, s, ξ),m(x, t)

}}

where m ∈ Lp(�× ]t0, t0 + 1[) satisfies m(x, t) � |f (x, t, u, ξ)| + 1, for a.e. (x, t) ∈�×
]t0, t0 + 1[ and every (u, ξ) ∈ R× R

N with |u0(x)− u| � 1 and |∇xu0(x)− ξ | � 1. We
then consider the modified problem

∂tu+A(x, t, ∂x)u= F(x, t, u,∇xu) in �× ]t0, t0 + 1[,
u= 0 on ∂�× [t0, t0 + 1],
u(·, t0)= u0 in �

and obtain the existence of a local solution as above. The remainder of the proof is similar.

2.4. The periodic boundary value problem

Let us consider the periodic problem

∂tu+A(x, t, ∂x)u= f (x, t, u,∇xu) in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �,

(2.36)

where, we recall, QT and �T stand for � × ]0, T [ and ∂� × [0, T ] respectively. When
dealing with problem (2.36) it is convenient to introduce the following space of functions,
satisfying the Dirichlet-periodic boundary conditions,

C
1,0
B

(
QT

)= {
u ∈ C1,0(QT

) | u= 0 on �T and u(·,0)= u(·, T ) in �
}
,

endowed with the C1,0-norm. We notice that, for u ∈ C
1,0
B (QT ), we have u& 0 if and only

if u(x, t) > 0 in �× [0, T ] and ∂νu(x, t) < 0 on ∂�× [0, T ], where ν = ν(x) is the unit
outer normal to � at x ∈ ∂�.

In this section we discuss existence and localization of solutions of the periodic prob-
lem (2.36) in the presence of a pair α, β of possibly discontinuous lower and upper so-
lutions. We further introduce the notion of T -monotonicity and we use it to extend to the
present context the Monotone Convergence Criterion known in the frame of order preserv-
ing discrete-time semidynamical systems (see, e.g., [60, Section 5]). We then give a simple
application of this result to the study of a linear periodic parabolic problem. After these
preliminaries we prove the main theorems of this section: existence and localization of so-
lutions of (2.36) when α � β , or when α �� β . It is worthy to notice again that for problem
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(2.36) the mere existence of a pair of lower and upper solutions, even satisfying α > β ,
does not generally guarantee the existence of a solution.

Solutions and lower and upper solutions

DEFINITION 2.11. A solution of (2.36) is a solution u of (2.10) in � × R which is
T -periodic with respect to the second variable, i.e. u(x, t + T )= u(x, t) in �×R.

DEFINITION 2.12.
• A lower solution of (2.36) is a function α :�× R→ R, T -periodic with respect to

the second variable, which is a lower solution of (2.10) in �×R.
• A regular lower solution of (2.36) is a lower solution α of (2.36) such that α|�×[0,T ]

is a regular lower solution of (2.10) in �× [0, T ].
• An upper solution of (2.36) is a function β :�×R→ R, T -periodic with respect to

the second variable, which is an upper solution of (2.10) in �×R.
• A regular upper solution of (2.36) is an upper solution β of (2.36) such that β|�×[0,T ]

is a regular upper solution of (2.10) in �× [0, T ].
• A lower solution of (2.36) (respectively an upper solution of (2.36)) is proper if it is

not a solution of (2.36).
• A proper lower solution α of (2.36) is strict if every solution u of (2.36), with u > α,

is such that u& α. Similarly, a proper upper solution β of (2.36) is strict if every
solution u of (2.36), with u < β , is such u% β .

REMARK 2.10. We notice that even regular lower and upper solutions of (2.36) may be
discontinuous with respect to t at the endpoints of the interval [0, T ].

REMARK 2.11. Sometimes we speak of solutions of (2.36) with reference to functions
defined on �× [t0, t0 + T ], and of lower and upper solutions of (2.36) with reference to
functions defined on �× [t0, t0 + T [ for some t0 ∈ R. In these cases it is understood that
their T -periodic extensions to �×R have to be considered.

REMARK 2.12. If α is a lower solution of (2.36) and u ∈ C
1,0
B (QT ) is such that u >

α, then there exist an open ball B ⊆ � and points t1, t2 ∈ [0, T ], with t1 < t2, such that
u(x, t) > α(x, t) in B×]t1, t2[. If α is a lower solution of (2.36) and u ∈ C

1,0
B (QT ) is such

that u �� α, then there exist an open ball B ⊆� and points t1, t2 ∈ [0, T ], with t1 < t2, such
that u(x, t) < α(x, t) in B × ]t1, t2[. Similar conclusions hold for an upper solution β and
a function u ∈ C

1,0
B (QT ), such that u < β , or u �� β .

A further Nagumo-type result

In the frame of problem (2.36) we need a Nagumo-type result that is a variant of Proposi-
tion 2.5, where the W

2−2/p
p -bound on the initial condition is replaced by a L∞-bound on

the solution itself.
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PROPOSITION 2.10. Assume (D) and (A). Let p >N + 2, h ∈ Lp(�× ]−T ,T [), K > 0
and R > 0 be given. Then there exists a constant C > 0 such that, for each u ∈W

2,1
p (�×

]−T ,T [) satisfying

∣∣∂tu+A(x, t, ∂x)u
∣∣ � h(x, t)+K|∇xu|2 a.e. in �× ]−T ,T [,

u= 0 on ∂�× [−T ,T ],
and

‖u‖L∞(�×]−T ,T [) � R,

we have

‖u‖
W

2,1
p (�×]0,T [) � C.

PROOF. As in the proof of Proposition 2.5, it is enough to prove the following result.

CLAIM. Let g ∈ L∞(�× ]−T ,T [) and R > 0 be given. Then there is a constant C > 0
such that every u ∈W

2,1
p (�× ]−T ,T [), for which

∂tu+A(x, t, ∂x)u= g(x, t)
(
1+ |∇xu|2

)
in �× ]−T ,T [,

u= 0 on ∂�× [−T ,T ], (2.37)

and

‖u‖L∞(�×]−T ,T [) � R (2.38)

hold, satisfies

‖u‖
W

2,1
p (�×]−T ,T [) � C.

Fix a function u satisfying (2.37) and (2.38), and consider, for each λ ∈ [0,1], the initial
value problem

∂tuλ +A(x, t, ∂x)uλ = g(x, t)
(
λ+ |∇xuλ|2

)
in �× ]−T ,T [,

uλ = 0 on ∂�× [−T ,T ],
uλ(·,−T )= λu(·,−T ) in �.

(2.39)

As in the proof of Proposition 2.5, we see that (2.39) has at most one solution. Let η =
ess inf�×]−T ,T [ a0 > 0 and M =max{η−1‖g‖L∞(�×]−T ,T [),R}. Since −M is a lower so-
lution and M is an upper solution of (2.39), Theorem 2.6 implies that, for every λ ∈ [0,1],
(2.39) has a unique solution uλ.

Moreover, as in Proposition 2.5, we can prove that, for every λ1, λ2 ∈ [0,1], the corre-
sponding solutions uλ1 , uλ2 of (2.39) satisfy

‖uλ1 − uλ2‖L∞(�×]−T ,T [) � C2|λ1 − λ2|. (2.40)
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Next, we set in �× [−T ,T ],

vλ(x, t)= χ(t)uλ(x, t),

where χ ∈ C∞(R, [0,1]) is such that

χ(t)=
{

0 if t �−T/2,
1 if t � 0.

Each vλ satisfies

∂tvλ +A(x, t, ∂x)vλ = χ(t)g(x, t)
(
λ+ |∇xuλ|2

)+ χ ′(t)uλ in �× ]−T ,T [,
vλ = 0 on ∂�× [−T ,T ],
vλ(·,−T )= 0 in �.

(2.41)

For each λ1, λ2 ∈ [0,1], set w = vλ1 − vλ2 = χ(uλ1 − uλ2), which satisfies

∂tw+A(x, t, ∂x)w = χg(λ1 − λ2)+ g∇x(uλ1 + uλ2) · ∇xw+ χ ′(uλ1 − uλ2)

in �× ]−T ,T [,
(2.42)

w = 0 on ∂�× [−T ,T ],
w(·,−T )= 0 in �.

and, by (2.40),

‖w‖L∞(�×]−T ,T [) � C2|λ1 − λ2|.

Since

∣∣∇x(uλ1 + uλ2) · ∇xw
∣∣ = χ

∣∣∇x(uλ1 + uλ2) · ∇x(uλ1 − uλ2)
∣∣

� χ |∇xuλ1 |2 + 2χ
∣∣∇x(uλ1 − uλ2)

∣∣2,
we get

∥∥∂tw+A(x, t, ∂x)w
∥∥
Lp(�×]−T ,T [)

� C4
(∥∥χ |∇xuλ1 |2

∥∥
Lp(�×]−T ,T [) +

∥∥χ |∇x(uλ1 − uλ2)|2
∥∥
Lp(�×]−T ,T [)

)+C3.

(2.43)

As in the proof of Proposition 2.5, we also have, by (2.40),



288 C. De Coster et al.

∥∥χ ∣∣∇x(uλ1 − uλ2)
∣∣2∥∥

Lp(�×]−T ,T [)
� C5‖uλ1 − uλ2‖L∞(�×]−T ,T [)

∥∥χ(uλ1 − uλ2)
∥∥
W

2,1
p (�×]−T ,T [)

� C2C5|λ1 − λ2|‖w‖W 2,1
p (�×]−T ,T [), (2.44)

and in particular,

∥∥χ |∇xuλ1 |2
∥∥
Lp(�×]−T ,T [) � C2C5λ1‖vλ1‖W 2,1

p (�×]−T ,T [). (2.45)

Using (2.43), (2.44), (2.45) and Proposition 2.4, we get

‖w‖
W

2,1
p (�×]−T ,T [)

� C6 +C7‖vλ1‖W 2,1
p (�×]−T ,T [) +C8|λ1 − λ2|‖w‖W 2,1

p (�×]−T ,T [).

This also yields

‖w‖
W

2,1
p (�×]−T ,T [) � 2C6 + 2C7‖vλ1‖W 2,1

p (�×]−T ,T [)

provided that |λ1 − λ2|� ε = (2C8)
−1. Hence, in particular, we have, for each λ ∈ [0, ε],

‖vλ‖W 2,1
p (�×]−T ,T [) � 2C6.

Finally, iterating this process a finite number of times, we conclude that there is a constant
C9 such that

‖v1‖W 2,1
p (�×]−T ,T [) � C9

and hence

‖u‖
W

2,1
p (�×]0,T [) � C9. �

T -monotonicity and asymptotic behaviour of bounded solutions

DEFINITION 2.13. A function u :� × I → R, where I ⊆ R is an interval, is said T -
increasing (respectively T -decreasing) if u(x, t) � u(x, t+T ) (respectively u(x, t+T ) �
u(x, t)) for every x ∈� and each t ∈ I such that t +T ∈ I . A function is said T -monotone
if it is either T -increasing or T -decreasing.

REMARK 2.13. Let u be a solution of (2.10) on �× [t0,+∞[. If u is T -increasing then
the sequence (αn)n, defined by setting, for each n � t0/T , αn(x, t)= u(x, t + nT ) in �×
[0, T [, gives rise to an increasing sequence of regular lower solutions of (2.36). Similarly,
any T -decreasing solution of (2.10) in �× [t0,+∞[, gives rise to a decreasing sequence
(βn)n of regular upper solutions of (2.36).
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The T -monotonicity property is a basic tool to prove convergence of a bounded solution
u defined on �× [t0,+∞[ to a T -periodic solution v. We start with a simple preliminary
result where the T -monotonicity of u is replaced by a weaker request: the monotonicity
of the sequence (u(·, nT ))n, with n � t0/T . However, in this case only the existence of a
T -periodic solution v lying in the ω-limit set of u is guaranteed, not the convergence of u
to v.

LEMMA 2.11. Assume (D), (A), (C) and (N). Let u be a solution of (2.10) in � ×
[t0,+∞[, which is bounded in �×[t0,+∞[ and such that either u(·, nT ) � u(·, (n+1)T )

in � for every n � t0/T , or u(·, nT ) � u(·, (n+ 1)T ) in � for every n � t0/T . Then prob-
lem (2.36) has at least one solution.

PROOF. Assume that u(·, nT ) � u(·, (n + 1)T ) in � for every n � t0/T . Define a se-
quence (un)n by setting un(x, t)= u(x, t +nT ) in QT . By Proposition 2.10, we know that
the sequence (un)n is bounded in W

2,1
p (QT ). Hence there exists a subsequence (unk )k

which converges to a solution v of (2.10) in QT weakly in W
2,1
p (QT ) and strongly

in C1,0(QT ). Moreover, as the sequences (un(·,0))n and (un(·, T ))n satisfy un(·,0) �
un(·, T )= un+1(·,0), we have unk (·,0) � unk (·, T ) � unk+1(·,0) and, passing to the limit,
v(·,0) � v(·, T ) � v(·,0). Therefore v is a solution of (2.36). �

PROPOSITION 2.12. Assume (D), (A), (C) and (N). Let u be a solution of (2.10) in �×
[t0,+∞[, which is bounded in �̄×[t0,+∞[ and T -monotone. Then there exists a solution
v of (2.36) such that

lim
t→+∞

∥∥u(·, t)− v(·, t)∥∥
C1(�)

= 0.

PROOF. Assume that u is T -increasing. Define a sequence (un)n by setting, for every
n � t0/T , un(x, t)= u(x, t + nT ) in QT . From the proof of Lemma 2.11, we know that a
subsequence of (un)n converges to a solution v of (2.36) weakly in W

2,1
p (QT ) and strongly

in C1,0(QT ). The monotonicity of (un)n then implies that the whole sequence (un)n con-
verges to v. It remains to prove that

lim
t→+∞

∥∥u(·, t)− v(·, t)∥∥
C1(�)

= 0.

Indeed, since (un)n converges in C1,0(QT ) to v, given ε > 0 there is n̄ such that, for any
n � n̄,

∥∥un(·, t)− v(·, t)∥∥
C1(�̄)

< ε, for all t ∈ [0, T ].

Hence, if we take t � n̄T , with t ∈ [nT , (n+ 1)T [ for some n � n̄, we obtain

∥∥u(·, t)− v(·, t)∥∥
C1(�)

= ∥∥un(·, t − nT )− v(·, t − nT )
∥∥
C1(�)

< ε,

by the periodicity of v. �
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A Monotone Convergence Criterion
We now prove that any bounded solution of (2.10) emanating from and lying above a
lower solution of (2.36), or respectively emanating from and lying below an upper solution
of (2.36), is T -monotone and hence converges to a T -periodic solution. We point out that,
in space dimension N � 2, convergence to a T -periodic solution is not the behaviour of all
bounded solutions of (2.10), due to the possible occurrence of (linearly stable) subharmonic
solutions (see, e.g., [141,35] and [123, Section 3]). In our frame additional difficulties
come from the lack of regularity of f , so that even generic convergence results, possibly to
subharmonic solutions of (2.10), are not available (see [123, Section 3]). For a discussion
of the regular case in space dimension N = 1 we refer to [56].

PROPOSITION 2.13. Assume (D), (A), (C) and (N).
(i) Let α be a lower solution of (2.36) such that, for some t0, α(·, t0) ∈ W

2−2/p
p (�)

and α(·, t0)= 0 on ∂�. Then there exist ω ∈ ]t0,+∞] and a T -increasing solution
α̃ :� × [t0,ω[ → R of (2.13), with u0 = α(·, t0), satisfying α̃ � α in � × [t0,ω[.
Further, every solution u :�×[t0, σ [→R of (2.10), with u � α, is such that σ � ω

and u � α̃ in �× [t0, σ [. Finally, we have that either every nonextendible solution
u :�× [t0, σ [→R of (2.10), with u � α, is such that

lim sup
t→σ

(
max
�

u(·, t)
)
=+∞

and (2.36) has no solution in [α,+∞[, or there exists the minimum solution v in
[α,+∞[ of (2.36); in the latter case ω=+∞, v � α̃ and

lim
t→+∞

∥∥α̃(·, t)− v(·, t)∥∥
C1(�)

= 0.

(ii) Let β be an upper solution of (2.36) such that, for some t0, β(·, t0) ∈W
2−2/p
p (�)

and β(·, t0)= 0 on ∂�. Then there exist ω ∈ ]t0,+∞] and a T -decreasing solution
β̃ :�× [t0,ω[ → R of (2.13), with u0 = β(·, t0), satisfying β̃ � β in �× [t0,ω[.
Further, every solution u :�×[t0, σ [→R of (2.10), with u � β , is such that σ � ω

and u � β̃ in �× [t0, σ [. Finally, we have that either every nonextendible solution
u :�× [t0, σ [→R of (2.10), with u � β , is such that

lim inf
t→σ

(
min
�

u(·, t)
)
=−∞

and (2.36) has no solution in ]−∞, β], or there exists the maximum solution w in
]−∞, β] of (2.36); in the latter case ω=+∞, w � β̃ and

lim
t→+∞

∥∥β̃(·, t)−w(·, t)∥∥
C1(�)

= 0.

PROOF. We only prove statement (i), as the proof of (ii) is similar.
The existence of α̃ follows from Lemma 2.8. Namely, there exist ω ∈ ]t0,+∞] and a

solution α̃ :�× [t0,ω[ →R of (2.13), with u0 = α(·, t0), satisfying α̃ � α in �× [t0,ω[;
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further, every solution u :�× [t0, σ ] → R of (2.10), with u � α, is such that σ � ω and
u � α̃ in �× [t0, σ ].

Let us prove that α̃ is T -increasing. We can assume that ω > t0 + T as otherwise there
is nothing to prove. Notice first that α̃(·, t0 + T ) � α(·, t0 + T )= α(·, t0)= α̃(·, t0) in �.
Assume, by contradiction, there exist x1 ∈� and t1 � t0 such that

α̃(x1, t1 + T ) < α̃(x1, t1).

If ω <+∞, we set β(x, t)= min{̃α(x, t + T ), α̃(x, t)} in �× [t0,ω − T [. Then β is an
upper solution of (2.13), with u0 = α(·, t0), in �× [t0,ω − T [, satisfying β � α. Hence,
by Theorem 2.6, there exists a solution w of (2.13), with u0 = α(·, t0), in �× [t0,ω− T [,
satisfying α � w � β . If ω = +∞, we set β(x, t) = min{̃α(x, t + T ), α̃(x, t)} in � ×
[t0,+∞[. Then β is an upper solution of (2.13), with u0 = α(·, t0), in � × [t0,+∞[,
satisfying β � α. Hence, by Corollary 2.7, there exists a solution w of (2.13), with u0 =
α(·, t0), in �×[t0,+∞[, satisfying α � w � β . In both cases, since β < α̃, we get w < α̃,
thus contradicting the definition of α̃.

By Proposition 2.9, either every nonextendible solution u :� × [0, σ [ → R of (2.10),
with u � α, is such that

lim sup
t→σ

(
max
�

u(·, t)
)
=+∞

and in particular (2.36) has no solution in [α,+∞[, or ω = +∞ and α̃ is bounded in
�× [t0,+∞[. In the latter case, as α̃ is T -increasing, by Proposition 2.12, there exists a
solution v � α̃ of (2.36) such that

lim
t→+∞

∥∥α̃(·, t)− v(·, t)∥∥
C1(�)

= 0.

Let us prove that v is the minimum solution of (2.36) in [α,+∞[. Otherwise, if v̄ were
a solution of (2.36) with v̄ � α and v̄ �� v, then min{v, v̄} should be an upper solution of
(2.13), with u0 = α(·, t0), in �×[t0,+∞[, such that min{v, v̄}� α and min{v, v̄} �� α̃. By
Corollary 2.7, there should exist a solution z of (2.13), with u0 = α(·, t0), in �×[t0,+∞[,
such that α � z � min{v, v̄}, thus contradicting the definition of α̃. �

A linear periodic problem
As a simple application of Proposition 2.13, we get a result that concerns existence, unique-
ness and regularity of the solution of the linear periodic problem

∂tu+A(x, t, ∂x)u+ σu= h(x, t) in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �,

(2.46)

where σ � 0 is fixed and h ∈ Lp(QT ) for some p >N + 2. Although proofs can be found
in [84, Lemma 4.1 and Corollary 5.6], we use here an alternative approach which is more
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in the spirit of this work and will yield, as a byproduct, the global asymptotic stability of
the solution (see Proposition 2.35). We associate with problem (2.46) the linear operator

L :W 2,1
p,B(QT )→ Lp(QT ), (2.47)

defined by

Lu= ∂tu−
N∑

i,j=1

∂xi
(
aij (x, t)∂xj u

)+
N∑
i=1

ai(x, t)∂xi u+ a0(x, t)u, (2.48)

where

W
2,1
p,B(QT ) =W 2,1

p (QT )∩C
1,0
B

(
QT

)
= {

u ∈W 2,1
p (QT ) | u= 0 on �T and u(·,0)= u(·, T ) in �

}
.

Notice that W 2,1
p,B(QT ) is a Banach subspace of W 2,1

p (QT ) and L is a bounded operator.

PROPOSITION 2.14. Assume (D) and (A). Let p > N + 2 be fixed. Then, for every σ �
0 and for any given h ∈ Lp(QT ), problem (2.46) has a unique solution u ∈W

2,1
p (QT ).

Moreover, there exists a constant C, independent of h, such that

‖u‖
W

2,1
p (QT )

� C‖h‖Lp(QT ).

PROOF. The proof consists of four steps.
Step 1. Problem (2.46) has at most one solution. The conclusion immediately follows

showing that any function u ∈W
2,1
p (QT ), satisfying

∂tu+A(x, t, ∂x)u+ σu � 0 in QT ,

u � 0 on �T ,

u(·,0)= u(·, T ) in �,

is such that u � 0. Indeed, assume by contradiction that minQT
u < 0. Since u(·,0) =

u(·, T ) in � and u � 0 on �T , there exists (x0, t0) ∈ � × ]0, T ] such that u(x0, t0) =
minQT

u. Then Proposition 2.2 implies that u is constant in �̄× [0, t0]. This yields a con-
tradiction, as then

∂tu+A(x, t, ∂x)u+ σu= (a0 + σ)u < 0, a.e. in �× [0, t0].
Step 2. Problem (2.46) has a solution for any given h � 0. The function α = 0 is obvi-

ously a lower solution of (2.46) with α(·,0) ∈W
2−2/p
p (�) and α(·,0)= 0 on ∂�. Let us

build an upper solution of (2.46). Let z be the unique solution of

∂tu+A(x, t, ∂x)u+ σu= h(x, t) in QT ,

u= 0 on �T ,

u(·,0)= 0 in �.
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Define a function β ∈W
2,1
p (QT ), by setting

β(x, t)= z(x, t)+ at + b in �× [0, T [,

where a � 0 and b � 0 are constants chosen in such a way that

aT + ∥∥z(·, T )
∥∥
L∞(�)

� 0 and a +
(
σ + ess inf

QT

a0

)
(aT + b) � 0.

Accordingly, β satisfies

∂tβ +A(x, t, ∂x)β + σβ � h(x, t) in QT ,

β � 0 on �T ,

β(·,0) � lim
t→T −

β(·, t) in �

and hence β is an upper solution of (2.46). We apply Corollary 2.7 and Proposition 2.13 to
deduce the existence of a T -increasing solution α̃ :�× [0,+∞[→R of

∂tu+A(x, t, ∂x)u+ σu= h(x, t) in �× ]0,+∞[,
u= 0 on ∂�× [0,+∞[,
u(·,0)= 0 in �

and of a solution v of (2.46) in [0, β], which by Step 1 is the unique solution of (2.46).
Further, we have

lim
t→+∞

∥∥α̃(·, t)− v(·, t)∥∥
C1(�̄)

= 0.

Step 3. Problem (2.46) has a solution for any given h. Let us define the functions h+ =
max{h,0}, h− = h+ − h and consider the periodic problems

∂tu+A(x, t, ∂x)u+ σu= h+(x, t) in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �

and

∂tu+A(x, t, ∂x)u+ σu= h−(x, t) in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �.

Denote by u+ and u− the corresponding solutions, constructed in Step 2. By linearity, we
conclude that u= u+ − u− is the solution of (2.46).
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Step 4. Continuous dependence. Since the linear operator L + σI :W 2,1
p,B(QT ) →

Lp(QT ) is continuous, one-to-one and onto and its domain W
2,1
p,B(QT ) is a Banach space,

the Open Mapping Theorem yields the estimate

‖u‖
W

2,1
p (QT )

� C‖h‖Lp(QT ). �

Existence in case α � β

The following result yields the existence of extremal solutions of (2.36) in the pres-
ence of lower and upper solutions α, β satisfying the condition α � β . This extends
to strong solutions previous results obtained, e.g., in [73,8,6,33,58] for classical solu-
tions. For later use we also evaluate the degree of the fixed point operator associated
with (2.36), when the lower and the upper solutions are strict. To this end we denote by
S :C1,0

B (QT )→ C
1,0
B (QT ) the operator, which according to Proposition 2.14 sends any

function u ∈ C
1,0
B (QT ) onto the unique solution v ∈W

2,1
p (QT ) of

∂tv+A(x, t, ∂x)v = f (x, t, u,∇xu) in QT ,

v = 0 on �T ,

v(·,0)= v(·, T ) in �.

(2.49)

THEOREM 2.15. Assume (D), (A), (C) and (N). Suppose that α is a lower solution and β

is an upper solution of (2.36) satisfying

α � β.

Then there exist the minimum solution v and the maximum solution w of (2.36) in [α,β].
Further, if α and β are strict, then the operator S defined by (2.49) has no fixed point on
the boundary of

U = {
u ∈ C

1,0
B

(
QT

) | α% u% β
}
,

the set of fixed points of S in U is bounded in C
1,0
B (QT ) and

deg
(
I − S,U ∩B(0,R)

)= 1,

where I is the identity operator in C
1,0
B (QT ) and B(0,R) is the open ball of center 0 and

radius R in C
1,0
B (QT ), with R so large that all fixed points of S in U belong to B(0,R).

PROOF. The proof is divided into three parts.

Part 1. Existence of a solution u of (2.36) with α � u � β . According to Remark 2.4, we
can assume that the sequences (σh)0�h�k and (ρh)0�h�l coincide. We also notice that,
by our definition of lower and upper solutions of (2.36) and the condition α � β , there
exists M > 0 such that −M � α(x, t) � β(x, t) � M in QT . Hence, by condition (N) and
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Proposition 2.10, there exists R > 0 such that, for every function f satisfying (2.11) and
every solution u of (2.36) with α � u � β , we have

‖u‖C1,0(QT )
< R. (2.50)

Exactly as in the first part of the proof of Theorem 2.6, we define a function F :QT ×R×
R

N →R with �×]t0, t1[ replaced by �×]0, T [. Then we consider the modified problem

∂tu+A(x, t, ∂x)u= F(x, t, u,∇xu) in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �.

(2.51)

Step 1. Every solution u of (2.51) satisfies α � u � β . This can be proved as in the
corresponding step of the proof of Theorem 2.6. We just observe that, if u is a solu-
tion of (2.51) such that infQT

(u − α) < 0, then by our definition of a lower solution
of (2.51) either there exists h ∈ {0, . . . , k − 1} such that inf�×]σh,σh+1[(u − α) < 0 and,
for all x ∈ �, limt→σ+h

(u − α)(x, t) > inf�×]σh,σh+1[(u − α), or inf�×]σh,σh+1[(u − α) =
inf�×]σh−1,σh[(u−α) for every h ∈ {1, . . . , k−1}. In any case we can find h ∈ {0, . . . , k−1}
and i ∈ {1, . . . ,mh} such that, setting v = u − α

(h)
i ∈ W

2,1
p (� × ]σh,σh+1[), we have

v(x, t) � 0 on ∂� × [σh,σh+1] and there exists (x̄, t̄ ) ∈ � × ]σh,σh+1] such that
min�×[σh,σh+1] v = v(x̄, t̄ ) < 0.

Step 2. Every solution u of (2.51) is a solution of (2.36). Again this can be proved as in
the corresponding step of the proof of Theorem 2.6.

Step 3. Problem (2.51) has at least one solution. Let us consider the solution operator
S :C1,0

B (QT )→ C
1,0
B (QT ) associated with (2.51), which sends any function u ∈ C

1,0
B (QT )

onto the unique solution v ∈W
2,1
p (QT ) of

∂tv+A(x, t, ∂x)v = F(x, t, u,∇xu) in QT ,

v = 0 on �T ,

v(·,0)= v(·, T ) in �.

The operator S is continuous, has a relatively compact range and its fixed points are the
solutions of (2.51). Hence there exists a constant R > 0, that we can suppose larger than
R, such that

∥∥Su∥∥
C1,0(QT )

< R,

for every u ∈ C
1,0
B (QT ), and

deg
(
I − S,B

(
0,R

))= 1, (2.52)

where I is the identity operator in C
1,0
B (QT ) and B(0,R) is the open ball of center 0 and

radius R in C
1,0
B (QT ). Therefore S has a fixed point. By the conclusions of Steps 1 and 2,

we get the existence of a solution u of (2.13) satisfying α � u � β .
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Part 2. Extremal solutions. Again this can be proved as in the corresponding part of the
proof of Theorem 2.6.

Part 3. Degree computation. Now, let us assume that α and β are strict lower and upper
solutions respectively. Since there exists a solution u of (2.36), which satisfies α � u � β ,
and every such a solution satisfies α% u% β , it follows that α% β . Hence U is a non-
empty open set in C

1,0
B (QT ) and there is no fixed point either of S or of S on its boundary

∂U . Moreover, by (2.50), the sets of fixed points of S and S coincide on U ∩ B(0,R) and
we have

deg
(
I − S,U ∩B(0,R)

)= deg
(
I − S,U ∩B(0,R)

)
.

Furthermore, by the excision property of the degree, we get from (2.50) and (2.52)

deg
(
I − S,B(0,R)

)= 1.

Finally, since all fixed points of S are in U ∩B(0,R), we conclude

deg
(
I − S,U ∩B(0,R)

) = deg
(
I − S,U ∩B(0,R)

)
= deg

(
I − S,B(0,R)

)= 1. �

REMARK 2.14. We assumed condition (N) in Theorem 2.15 in order to unify the presen-
tation with the rest of this work. However, here it would be enough to assume the exis-
tence of K > 0 and h ∈ Lp(QT ), with p > N + 2, such that, for a.e. (x, t) ∈QT , every
s ∈ [α(x, t), β(x, t)] and every ξ ∈R

N ,

∣∣f (x, t, s, ξ)
∣∣ � h(x, t)+K|ξ |2.

Existence in case α �� β

We now discuss the existence of solutions of (2.36) in the presence of lower and upper
solutions α, β such that α �� β . As we already pointed out, in the frame of problem (2.36)
the sole existence of a pair of lower and upper solutions, even satisfying α > β , does
not generally guarantee the existence of a solution. At the light of the example presented
in the introduction of this part (cf. (2.8)), we prove a result which is related to the clas-
sical Amann–Kolesov Three Solutions Theorem [73,5,7] and requires the existence of a
further pair of lower and upper solutions α1, β1 such that α1 � β1 and α,β ∈ [α1, β1].
Theorem 2.17 yields the existence of maximal and minimal solutions of (2.36) in [α1, β1]
belonging to the C1,0-closure of the set

V = {
u ∈ C

1,0
B

(
QT

) | u �� α and u �� β
}
. (2.53)

The proof of Theorem 2.17 makes use of the following statement concerning the existence
of extremal solutions of (2.36).
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LEMMA 2.16. Assume (D), (A), (C) and (N). Let S be a nonempty set of solutions of
(2.36). Suppose that S is uniformly bounded from above, i.e. there is a constant M such
that maxQT

u � M for all u ∈ S . Then there exists a maximal solution w of (2.36) in the
C1,0-closure S̄ of S . Similarly, if S is uniformly bounded from below, then there exists a
minimal solution v of (2.36) in the C1,0-closure S̄ of S .

PROOF. We can repeat step by step the proof of Lemma 1.15, with just the following spec-
ifications. The set D = {(xm, tm) |m ∈N} is a countable dense subset of QT . The sequence
(un)n, constructed as in Lemma 1.15, is bounded in L∞(QT ) and, by Proposition 2.10, it
is bounded in W

2,1
p (QT ). Hence there is a subsequence converging weakly in W

2,1
p (QT )

to some function û ∈W
2,1
p (QT ), which is a solution of (2.36). The conclusion then follows

as in Lemma 1.15. �

THEOREM 2.17. Assume (D), (A), (C) and (N). Suppose that α is a lower solution and β

is an upper solution of (2.36) satisfying

α �� β.

Moreover, assume that there exist a lower solution α1 and an upper solution β1 of (2.36)
such that α1 � β1 and α,β ∈ [α1, β1]. Then problem (2.36) has at least one minimal so-
lution v and at least one maximal solution w in V ∩ [α1, β1] with V defined by (2.53).
Further, if α, β and α1, β1 are strict, then the solution operator S corresponding to (2.49)
has no fixed point on the boundary of V∩[α1, β1], the set of fixed points of S in V∩[α1, β1]
is bounded in C

1,0
B (QT ) and

deg
(
I − S,V ∩ U ∩B(0,R)

)=−1,

where I is the identity operator in C
1,0
B (QT ), U = {u ∈ C

1,0
B (QT ) | α1 % u% β1} and

B(0,R) is the open ball of center 0 and radius R in C
1,0
B (QT ), with R so large that all

fixed points of S in V ∩ U belongs to B(0,R).

PROOF. In the course of this proof we denote the given lower and upper solutions α, β
by α0, β0, respectively. Let us consider problem (2.51), where the function F is defined
as in the first part of the proof of Theorem 2.15, with α and β replaced by α1 and β1
respectively. In case α1 or β1 are not strict for (2.36), and hence for (2.51), we further
replace α1 with α1− 1 and β1 with β1+ 1. Hence we can suppose that α1 and β1 are strict
lower and upper solutions of (2.51) such that α1 % α0 % β1 and α1 % β0 % β1. Let us set,
for (i, j) ∈ {0,1}2 \ {(0,0)},

U(i,j) =
{
u ∈ C

1,0
B

(
QT

) | αi % u% βj

}
.

In particular, we have U(1,1) = U . Notice that U(i,j) are nonempty open sets in C
1,0
B (QT ),

since αi % βj for (i, j) ∈ {0,1}2 \ {(0,0)}. Moreover, we have that

V ∩ U(1,1) = U(1,1) \ (U(0,1) ∪ U(1,0)).
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Let S be the solution operator corresponding to (2.49) and observe that, by Theorem 2.15,
all fixed points u ∈ V ∩ U(1,1) of S satisfy

‖u‖C1,0(QT )
< R,

for some constant R > 0. Then, either there is a solution u ∈ ∂V of (2.36) and the existence
part of the theorem is proved, or there is no solution u ∈ ∂V of (2.36), which means that
α0 and β0 are strict. In that case, by the additivity-excision property of the degree and
Theorem 2.15, we get

1 = deg
(
I − S,U(1,1) ∩B(0,R)

)
= deg

(
I − S,U(0,1) ∩B(0,R)

)+ deg
(
I − S,U(1,0) ∩B(0,R)

)
+ deg

(
I − S,V ∩ U(1,1) ∩B(0,R)

)
= 2+ deg

(
I − S,V ∩ U(1,1) ∩B(0,R)

)

and hence

deg
(
I − S,V ∩ U(1,1) ∩B(0,R)

)=−1,

where B(0,R) is the open ball of center 0 and radius R in C
1,0
B (QT ). This argument yields,

in any case, the existence of a solution u ∈ V ∩ [α1, β1] of (2.36).
Finally, the existence of minimal and maximal solutions follows from Lemma 2.16 with

S = V ∩ [α1, β1]. �

2.5. The Order Interval Trichotomy and applications

The aim of this section is to extend to our general context the Order Interval Trichotomy,
first proved in [34] for order preserving discrete-time semidynamical systems. We stress
once more that our results are obtained without requiring any regularity on the function
f besides the Carathéodory conditions. Therefore no continuous or discrete semiflow can
be naturally associated with (2.10). Moreover, even if a semiflow were defined by (2.13),
there is no apparent reason for which it should be order preserving. Nevertheless with the
aid of Proposition 2.3, which plays a crucial role in this context, we can deform our original
problem to other problems possessing a certain amount of monotonicity, from which we
infer the information needed to prove the existence of some kind of connections.

Once a version of the Order Interval Trichotomy is established, we apply it to the study
of the dynamics near one-sided isolated solutions of (2.36), namely we prove the existence
of heteroclinic solutions connecting a pair of comparable solutions of (2.36) and we study
the qualitative behaviour of solutions of (2.10) lying above a maximal, or below a minimal,
solution of (2.36).

Connecting T -periodic solutions by lower or upper solutions
The basic result in this context is the following statement.
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PROPOSITION 2.18. Assume (D), (A), (C) and (N). Suppose that u1, u2 are solutions of
(2.36) such that u1 < u2 and there is no solution u of (2.36) with u1 < u< u2. Then either
• there exists a sequence (αn)n of proper regular lower solutions of (2.36) such that, for

each n, αn|QT
∈W

2,1
p,B(QT ) and u1 < αn < u2, which converges weakly in W

2,1
p (QT )

and strongly in C1,0(QT ) to u1 as n→+∞, or
• there exists a sequence (βn)n of proper regular upper solutions of (2.36) such that, for

each n, βn|QT
∈W

2,1
p,B(QT ) and u1 < βn < u2, which converges weakly in W

2,1
p (QT )

and strongly in C1,0(QT ) to u2 as n→+∞.

PROOF. Let us set, for every (x, t) ∈QT and s ∈R,

γ (x, t, s)=max
{
u1(x, t),min

{
s, u2(x, t)

}}
.

Clearly, γ :QT × R→ R is continuous and, for each (x, t) ∈ QT , γ (x, t, ·) : R→ R is
increasing. Moreover, for i = 1, 2, let us set, for a.e. (x, t) ∈QT and every ε > 0,

ωi(x, t, ε)

= max
|ξ |�ε

∣∣f (
x, t, ui(x, t),∇xui(x, t)+ ξ

)− f
(
x, t, ui(x, t),∇xui(x, t)

)∣∣.

Then define, for a.e. (x, t) ∈QT , every s ∈R and ξ ∈R
N ,

ω(x, t, s)=
⎧⎨
⎩
ω1

(
x, t, u1(x, t)− s

)
if s < u1(x, t),

0 if u1(x, t) � s � u2(x, t),
−ω2

(
x, t, s − u2(x, t)

)
if s > u2(x, t)

and

f̄ (x, t, s, ξ)= f
(
x, t, γ (x, t, s), ξ

)+ω(x, t, s).

Clearly, f̄ :QT ×R×R
N →R satisfies the Carathéodory condition (C) and the Nagumo

condition (N). Let us consider the modified problem

∂tu+A(x, t, ∂x)u= f̄ (x, t, u,∇xu) in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �.

(2.54)

Further, take ρ =max{‖u1‖L∞(QT ),‖u2‖L∞(QT )} and let h be the function associated with
f and ρ whose existence is guaranteed by Proposition 2.3. Consider, for each μ ∈ [0,1],
the following problems

∂tu+A(x, t, ∂x)u= μf̄ (x, t, u,∇xu)+ (1−μ)
[
f̄ (x, t, u1,∇xu)

+ h(x, t, u1, γ (x, t, u),∇xu)+ω(x, t, u)
]

in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �

(2.55)
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and

∂tu+A(x, t, ∂x)u= μf̄ (x, t, u,∇xu)+ (1−μ)
[
f̄ (x, t, u2,∇xu)

+h(x, t, u2, γ (x, t, u),∇xu)+ω(x, t, u)
]

in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �.

(2.56)

It is clear that, if μ= 1, (2.55) and (2.56) reduce to (2.54). Note that the right hand side of
the equations in (2.55) and (2.56) satisfy the Carathéodory condition (C) and the Nagumo
condition (N), uniformly with respect to μ ∈ [0,1]. Proposition 2.10 implies that there is a
constant C > 0 such that, if u is a solution of (2.55), or (2.56), for any μ ∈ [0,1], satisfying
u1 � u � u2, then

‖u‖
W

2,1
p (QT )

� C. (2.57)

CLAIM 1. For any μ ∈ [0,1], every solution u of (2.55), or (2.56), satisfies u1 � u � u2
and, hence, (2.57). In particular, u1 and u2 are the only solutions of (2.54).

Let u be a solution of (2.55) and prove that u � u1. The argument is similar to the proof
of Theorem 2.6 observing that, if v = u − u1 is such that v(x, t) < 0 and |∇xv(x, t)| �
|v(x, t)| on B × ]t1, t0], for some ball B ⊆�, then on this set

∂tv +A(x, t, ∂x)v = μ
[
f̄ (x, t, u,∇xu)− f (x, t, u1,∇xu1)

]
+ (1−μ)

[
f̄ (x, t, u1,∇xu)− f (x, t, u1,∇xu1)

+ω(x, t, u)+ h(x, t, u1, γ (x, t, u),∇xu)
]

= f (x, t, u1,∇xu)+ω1
(
x, t,

∣∣v(x, t)∣∣)− f (x, t, u1,∇xu1)

� f (x, t, u1,∇xu)− f (x, t, u1,∇xu1 +∇xv)

+ f (x, t, u1,∇xu1)− f (x, t, u1,∇xu1)

= 0.

Now, let us prove that u � u2. Again, we argue as in the proof of Theorem 2.6 observing
that, if v = u2 − u is such that v(x, t) < 0 and |∇xv(x, t)| � |v(x, t)| in B × ]t1, t0], for
some ball B ⊆�, then on this set

∂tv +A(x, t, ∂x)v

= μ
[
f (x, t, u2,∇xu2)− f̄ (x, t, u,∇xu)

]+ (1−μ)
[
f (x, t, u2,∇xu2)

− f̄ (x, t, u1,∇xu)−ω(x, t, u)− h(x, t, u1, γ (x, t, u),∇xu)
]

= μ
[
f (x, t, u2,∇xu2)− f (x, t, u2,∇xu)+ω2

(
x, t,

∣∣v(x, t)∣∣)]
+ (1−μ)

[
f (x, t, u2,∇xu2)− f (x, t, u1,∇xu)+ω2

(
x, t,

∣∣v(x, t)∣∣)
− h(x, t, u1, u2,∇xu)

]
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� μ
[
f (x, t, u2,∇xu2)− f (x, t, u2,∇xu)− f (x, t, u2,∇xu2)

+ f (x, t, u2,∇xu2 −∇xv)
]

+ (1−μ)
[
f (x, t, u2,∇xu2)− f (x, t, u1,∇xu)

− f (x, t, u2,∇xu2)+ f (x, t, u2,∇xu2 −∇xv)+ h(x, t, u2, u1,∇xu)
]

� (1−μ)
[−f (x, t, u1,∇xu)+ f (x, t, u2,∇xu)+ h(x, t, u2, u1,∇xu)

]
� 0.

In a completely similar way, it can be seen that the same conclusion holds for (2.56). Hence
Claim 1 is proved.

CLAIM 2. For any μ ∈ [0,1], every solution of (2.55) is a lower solution of (2.36) and
every solution of (2.56) is an upper solution of (2.36).

We verify only the former statement, since the latter can be proved similarly. Indeed, if
u is a solution of (2.55), we have, as u1 � u � u2,

∂tu+A(x, t, ∂x)u

= μf̄ (x, t, u,∇xu)

+ (1−μ)
[
f̄ (x, t, u1,∇xu)+ h(x, t, u1, γ (x, t, u),∇xu)+ω(x, t, u)

]
= μf (x, t, u,∇xu)+ (1−μ)

[
f (x, t, u1,∇xu)+ h(x, t, u1, u,∇xu)

]
� μf (x, t, u,∇xu)+ (1−μ)f (x, t, u,∇xu)= f (x, t, u,∇xu).

Thus, Claim 2 is proved.
Now, let us associate with problems (2.55) and (2.56) the corresponding solution oper-

ators S1,μ, S2,μ :C1,0
B (QT )→ C

1,0
B (QT ), with μ ∈ [0,1], whose fixed points are precisely

the solutions of (2.55) and (2.56), respectively. Note that S1,1 = S2,1 is the solution opera-
tor corresponding to (2.54).

CLAIM 3. For every δ > 0, u1 − δ and u1 + δ are, respectively, a lower solution and an
upper solution of (2.55), with μ= 0.

As ess infQT
a0 > 0, this can be deduced from the fact that

f̄
(
x, t, u1,∇x(u1 − δ)

)+ h
(
x, t, u1, γ

(
x, t, (u1 − δ)

)
,∇x(u1 − δ)

)
= f (x, t, u1,∇xu1),

f̄
(
x, t, u1,∇x(u1 + δ)

)+ h
(
x, t, u1, γ

(
x, t, (u1 + δ)

)
,∇x(u1 + δ)

)
= f (x, t, u1,∇xu1)+ h

(
x, t, u1, γ

(
x, t, (u1 + δ)

)
,∇xu1

)
� f (x, t, u1,∇xu1)

and

ω(x, t, u1 − δ) � 0 � ω(x, t, u1 + δ).

Thus, Claim 3 is proved.
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Moreover, u1 − δ is a strict lower solution. Indeed, if u is a solution of (2.55) with
μ = 0, satisfying u � u1 − δ, then u � u1 and hence u& u1 − δ. On the other hand, for
what concerns u1 + δ, either there is δ0 > 0 such that, for every δ ∈ ]0, δ0[, u1 + δ is a
strict upper solution, or for every δ0 > 0 there are δ ∈ ]0, δ0[ and a solution uδ of (2.55)
with μ= 0, such that u1 � uδ � min{u2, u1 + δ} and uδ(x0, t0)= u1(x0, t0)+ δ for some
(x0, t0) ∈QT . Hence, in the latter case, we have ‖u1−uδ‖L∞(QT ) = δ and therefore uδ →
u1 in L∞(QT ), as δ→ 0. By (2.57) there is a constant C > 0 such that ‖uδ‖W 2,1

p (QT )
� C,

for every δ ∈ ]0, δ0[, and therefore uδ → u1 in C1,0(QT ), as δ→ 0. Recalling that each uδ
is a lower solution of (2.36), the conclusion of this Proposition is achieved.

Therefore, let us suppose that there is δ0 > 0 such that, for every δ ∈ ]0, δ0[, u1 + δ is a
strict upper solution of (2.55). Accordingly Theorem 2.15 guarantees that, for some R > 0
and every δ ∈ ]0, δ0[,

deg
(
I − S1,0,U δ

1 ∩B(0,R)
)= 1, (2.58)

where U δ
1 = {u ∈ C

1,0
B (QT ) | u1 − δ% u% u1 + δ}.

In a similar way one proves the following result.

CLAIM 4. For every δ > 0, u2 − δ and u2 + δ are, respectively, a lower solution and an
upper solution of (2.56), with μ= 0.

Moreover, u2+ δ is a strict upper solution. On the other hand, for what concerns u2− δ,
as in Claim 3, we can suppose that there is δ0 > 0 such that, for every δ ∈ ]0, δ0[, u2 − δ

is a strict lower solution of (2.56) as otherwise the conclusion is achieved. Accordingly
Theorem 2.15 guarantees that, for some R > 0 and for every δ ∈ ]0, δ0[,

deg
(
I − S2,0,U δ

2 ∩B(0,R)
)= 1, (2.59)

where U δ
2 = {u ∈ C

1,0
B (QT ) | u2 − δ% u% u2 + δ}.

CLAIM 5. The functions u1 − 1 and u2 + 1 are, respectively, a strict lower and a strict
upper solution of (2.54), i.e. of (2.55) and (2.56) with μ= 1.

We have

∂t (u1 − 1)+A(x, t, ∂x)(u1 − 1)= ∂tu1 +A(x, t, ∂x)u1 − a0

= f (x, t, u1,∇xu1)− a0

� f
(
x, t, γ

(
x, t, (u1 − 1)

)
,∇x(u1 − 1)

)+ω1(x, t,1)− a0

� f̄
(
x, t, u1 − 1,∇x(u1 − 1)

)

and

∂t (u2 + 1)+A(x, t, ∂x)(u2 + 1)= ∂tu2 +A(x, t, ∂x)u2 + a0

= f (x, t, u2,∇xu2)+ a0

� f
(
x, t, γ

(
x, t, (u2 + 1)

)
,∇x(u2 + 1)

)−ω2(x, t,1)+ a0

� f̄
(
x, t, u2 + 1,∇x(u2 + 1)

)
.



Qualitative analysis of first order periodic evolutionary equations 303

Moreover, u1 − 1 and u2 + 1 are strict, since u1 and u2 are the only solutions of (2.54).
Thus, Claim 5 is proved.

Accordingly Theorem 2.15 guarantees that, for some R > 0,

deg
(
I − S1,1,U ∩B(0,R)

)= deg
(
I − S2,1,U ∩B(0,R)

)= 1, (2.60)

where U = {u ∈ C
1,0
B (QT ) | u1 − 1% u% u2 + 1}. Using again the fact that u1 and u2

are the only solutions of (2.55) with μ = 1, we conclude, by the excision and additivity
properties of the degree, that

deg
(
I − S1,1,U ∩B(0,R)

) = deg
(
I − S1,1,

(
U δ

1 ∪ U δ
2

)∩B(0,R)
)

= deg
(
I − S1,1,U δ

1 ∩B(0,R)
)

+ deg
(
I − S1,1,U δ

2 ∩B(0,R)
)

(2.61)

for every δ ∈ ]0,min{1, δ0,‖u1 − u2‖∞}[.
Now, let us assume that for every δ0 > 0 there exists δ ∈ ]0, δ0[ such that, for every

μ ∈ [0,1], (2.55) has no solution on ∂U δ
1 and (2.56) has no solution on ∂U δ

2 . The homotopy
property of the degree then implies, by (2.58) and (2.59),

deg
(
I − S1,1,U δ

1 ∩B(0,R)
)= deg

(
I − S1,0,U δ

1 ∩B(0,R)
)= 1

and

deg
(
I − S2,1,U δ

2 ∩B(0,R)
)= deg

(
I − S2,0,U δ

2 ∩B(0,R)
)= 1. (2.62)

Finally, combining relations (2.60)–(2.62) and using the fact that S1,1 = S2,1, we obtain,

2 = deg
(
I − S1,0,U δ

1 ∩B(0,R)
)+ deg

(
I − S2,0,U δ

2 ∩B(0,R)
)

= deg
(
I − S1,1,U δ

1 ∩B(0,R)
)+ deg

(
I − S2,1,U δ

2 ∩B(0,R)
)

= deg
(
I − S1,1,U δ

1 ∩B(0,R)
)+ deg

(
I − S1,1,U δ

2 ∩B(0,R)
)

= deg
(
I − S1,1,U ∩B(0,R)

)= 1,

which is a contradiction. Hence we can conclude that there is δ0 > 0 such that for every
δ ∈ ]0, δ0[ either there is a solution uδ of (2.55), for some μ ∈ [0,1], with uδ ∈ ∂U δ

1 , and
hence u1 � uδ � min{u2, u1 + δ} and ‖u1 − uδ‖L∞(QT ) = δ, or there is a solution uδ of
(2.56), for some μ ∈ [0,1], with uδ ∈ ∂U δ

2 , and hence max{u1, u2 − δ} � uδ � u2 and
‖u2 − uδ‖L∞(QT ) = δ. Condition (2.57) and recalling that solutions u of (2.55), with u �=
u1, are proper lower solutions of (2.36) and solutions u of (2.56), with u �= u2, are proper
upper solutions of (2.36) yield the conclusion. �
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REMARK 2.15. Condition (N) can be obviously replaced in Proposition 2.18 by as-
suming that there exist h ∈ Lp(QT ) and K > 0 such that for a.e. (x, t) ∈ QT , every
s ∈ [u1(x, t), u2(x, t)] and every ξ ∈R

N ,

∣∣f (x, t, s, ξ)
∣∣ � h(x, t)+K|ξ |2.

REMARK 2.16. From the proof of Proposition 2.18 it follows that, if u1 is isolated in
C1,0(QT ) as a fixed point of I−S1,1 and ind(I−S1,1, u1) �= 1, then there exists a sequence
(αn)n of proper lower solutions of (2.36) such that, for each n, αn|QT

∈W
2,1
p,B(QT ) and

u1 < αn < u2, which converges weakly in W
2,1
p (QT ) and strongly in C1,0(QT ) to u1 as

n→+∞. A similar result holds for u2.

In order to prove the existence of connecting sequences of lower and upper solutions,
the following two results are needed.

LEMMA 2.19. Assume (D), (A), (C) and (N) and let z be a solution of (2.36).
(i) If α is a proper lower solution of (2.36) such that α < z, then there exists a proper

regular lower solution ᾱ of (2.36), satisfying ᾱ|QT
∈W

2,1
p,B(QT ) and α < ᾱ < z.

(ii) If β is a proper upper solution of (2.36) such that β > z, then there exists a proper
regular upper solution β̄ of (2.36), satisfying β̄|QT

∈W
2,1
p,B(QT ) and z < β̄ < β .

PROOF. We only prove the former statement. Let h be the function associated with f

by Proposition 2.3 and corresponding to ρ = max{‖α‖L∞(QT ),‖z‖L∞(QT )}. Consider the
periodic problem

∂tu+A(x, t, ∂x)u= f (x, t, α,∇xu)− h(x, t, u,α,∇xu) in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �.

(2.63)

The right-hand side of the equation satisfies the Carathéodory condition (C) and the
Nagumo condition (N). Since α is a proper lower solution and z is a proper upper so-
lution of (2.63), with α < z, by Theorem 2.15, this problem has a solution ᾱ, satisfying
α < ᾱ < z. The properties of h imply that ᾱ is a proper lower solution of (2.36). �

PROPOSITION 2.20. Assume (D), (A), (C) and (N) and let z be a solution of (2.36).
(i) Let α be a proper lower solution of (2.36) such that α < z and there is no solution

u of (2.36) with α < u < z. Then there exists a sequence (αn)n of proper regular
lower solutions of (2.36), such that, for each n � 1, αn|QT

∈W
2,1
p,B(QT ) and α <

αn < αn+1 < z, which converges weakly in W
2,1
p (QT ) and strongly in C1,0(QT )

to z.
(ii) Let β be a proper upper solution of (2.36) such that z < β and there is no solution

u of (2.36) with z < u < β . Then there exists a sequence (βn)n of proper regular
upper solutions of (2.36), such that, for each n � 1, βn|QT

∈W
2,1
p,B(QT ) and z <

βn+1 < βn < β , which converges weakly in W
2,1
p (QT ) and strongly in C1,0(QT )

to z.
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PROOF. We only prove the former statement. Repeating recursively the argument of the
proof of Lemma 2.19, we get a sequence of proper regular lower solutions (αn)n such that
α0 = α and, for each n � 1, αn|QT

∈W
2,1
p,B(QT ), α < αn−1 < αn < z and αn is a solution

of

∂tu+A(x, t, ∂x)u= f (x, t, αn−1,∇xu)− h(x, t, u,αn−1,∇xu) in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �.

(2.64)

Since the right-hand side of the equation in (2.64) satisfies conditions (C) and (N), as in the
proof of Proposition 2.12, we see that the sequence (αn)n converges weakly in W

2,1
p (QT )

and strongly in C1,0(QT ) to a solution of (2.36), which must be z. �

As a direct consequence of Proposition 2.18 and Proposition 2.20 we are finally able to
state our general version of the Order Interval Trichotomy, which extends a result in [34]
(see also [58,60]).

THEOREM 2.21. Assume (D), (A), (C) and (N). Suppose that u1, u2 are solutions of (2.36)
such that u1 < u2. Then either
• there is a solution u of (2.36) with u1 < u< u2,

or
• there exists a double sequence (αm)m∈Z of proper regular lower solutions of (2.36),

such that, for each m, αm|QT
∈ W

2,1
p,B(QT ) and u1 < αm < u2, which converges

weakly in W
2,1
p (QT ) and strongly in C1,0(QT ) to u2 as m→ −∞ and to u1 as

m→+∞,
or
• there exists a double sequence (βm)m∈Z of proper regular upper solutions of (2.36),

such that, for each m, βm|QT
∈ W

2,1
p,B(QT ) and u1 < βm < u2, which converges

weakly in W
2,1
p (QT ) and strongly in C1,0(QT ) to u1 as m→ −∞ and to u2 as

m→+∞.

REMARK 2.17. In the frame of Theorem 2.21, if u1 % u2 and there is no solution u of
(2.36) with u1 < u< u2, then the remaining two alternatives are mutually exclusive.

Heteroclinic solutions

We now interpret Theorem 2.21 in terms of the dynamics of solutions of (2.10) by show-
ing that T -monotone solutions connecting two ordered T -periodic solutions do exist. Our
statement extends previous results in [34,58,60]. We point out that the proof of the exis-
tence of heteroclinic solutions is more involved here than in the case where uniqueness for
the initial value problem and validity of comparison principles are assumed.
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THEOREM 2.22. Assume (D), (A), (C) and (N). Suppose that u1, u2 are solutions of (2.36)
such that there is no solution u of (2.36) with u1 < u< u2. Then there exists a T -monotone
solution z :�×R→R of (2.10) such that either

lim
t→−∞

∥∥z(·, t)− u1(·, t)
∥∥
C1(�)

= 0 and lim
t→+∞

∥∥z(·, t)− u2(·, t)
∥∥
C1(�)

= 0,

(2.65)

or

lim
t→−∞

∥∥z(·, t)− u2(·, t)
∥∥
C1(�)

= 0 and lim
t→+∞

∥∥z(·, t)− u1(·, t)
∥∥
C1(�̄)

= 0.

(2.66)

PROOF. According to Proposition 2.18, we assume, for example, the existence of a se-
quence (αn)n of proper regular lower solutions of (2.36) such that, for each n, αn|QT

∈
W

2,1
p,B(QT ) and u1 < αn < u2, which converges weakly in W

2,1
p (QT ) and strongly in

C1,0(QT ) to u1 as n→+∞.
For each n, we also consider the solution α̃n :� × [0,+∞[ → R of (2.10), with

α̃n(·,0) = αn(·,0), u1 < α̃n < u2 in � × [0,+∞[ and ‖α̃n(·, t) − u2(·, t)‖C1(�) → 0 as
t→+∞, whose existence is guaranteed by Proposition 2.13.

We are going to select a subsequence of (̃αn)n, we shall still denote for simplicity by
(̃αn)n, as follows. Let us define δ = 1

2‖u1 − u2‖L∞(QT ). We first choose α̃1 such that
there is m1 � 1 for which ‖α̃1(·, kT ) − u1(·,0)‖L∞(�) < δ, if k ∈ {0, . . . ,m1 − 1}, and
‖α̃1(·,m1T ) − u1(·,0)‖L∞(�) � δ. Next, we pick α̃2 such that there is m2 � m1 + 1
for which ‖α̃2(·, kT ) − u1(·,0)‖L∞(�) < δ, if k ∈ {0, . . . ,m2 − 1}, and ‖α̃2(·,m2T ) −
u1(·,0)‖L∞(�) � δ. If we cannot find such a function α̃2, then there exist  ∈ {1, . . . ,m1}
and a subsequence (̃αnk )k such that ‖α̃nk (·,  T ) − u1(·,0)‖L∞(�) � δ. Since (̃αnk )k is

bounded in L∞(� × ]0,  T [), (̃αnk (·,0))k is bounded in W
2−2/p
p (�) and ‖α̃nk (·,0) −

u1(·,0)‖L∞(�)→ 0, by Proposition 2.5 there is a subsequence of (̃αnk )k converging weakly
in W

2,1
p (�× ]0,  T [) to a solution v of

∂tu+A(x, t, ∂x)u= f (x, t, u,∇xu) in �× ]0,  T [,
u= 0 on ∂�× [0,  T ],

satisfying v(·,0)= u1(·,0) and ‖v(·,  T )− u1(·,0)‖L∞(�) � δ. Let i ∈ {0, . . . ,  − 1} be
such that v(·, (i + 1)T ) > v(·, iT )= u1(·,0). Then the function

α(x, t)= v(x, t + iT ) in �× [0, T [,
is a proper lower solution of (2.36), with u1 < α < u2 and α(·,0) = u1(·,0). Proposi-
tion 2.13 yields the existence of a T -increasing solution α̃ of (2.13), with t0 = 0 and
u0 = u1(·,0), such that

lim
t→+∞

∥∥α̃(·, t)− u2(·, t)
∥∥
C1(�̄)

→ 0.
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Accordingly there exists a T -increasing solution z :� × R → R of (2.10) satisfying
(2.65). Then, proceeding by induction, once α̃n−1 has been defined, either we construct
just as above, a T -increasing solution z :� × R→ R of (2.10) satisfying (2.65), or we
find α̃n for which there is mn � mn−1 + 1 such that ‖α̃n(·, kT ) − u1(·,0)‖L∞(�) < δ, if
k ∈ {0, . . . ,mn − 1}, and ‖α̃n(·,mnT )− u1(·,0)‖L∞(�) � δ. Suppose that the latter even-
tuality always occurs and set, for each n,

vn(x, t)= α̃n(x, t +mnT ) in �× [−mnT ,0]

and, for k ∈ {1, . . . ,mn},

v(k)n (x, t)= vn(x, t) in �× [−kT ,−(k− 1)T
]
.

Fix k � 1 and observe that the sequence (v
(k)
n )n, with n such that mn � k + 1, is bounded

in L∞(�× ]−(k+ 1)T ,−(k− 1)T [). Hence, by Proposition 2.10, there is a subsequence
(v

(k)

n
(k)
j

)j converging weakly in W
2,1
p (�× ]−kT ,−(k− 1)T [) to a solution wk of

∂tu+A(x, t, ∂x)u= f (x, t, u,∇xu) in �× ]−kT ,−(k − 1)T
[
,

u= 0 on ∂�× [−kT ,−(k− 1)T
]
.

Since we can choose the sequence (n
(k+1)
j )j to be a subsequence of (n

(k)
j )j , the se-

quence (wk)k is such that, for each k � 1, wk+1(·,−kT ) = wk(·,−kT ) and ‖w1(·,0) −
u1(·,0)‖L∞(�) � δ. Moreover, as each α̃n is T -increasing, we have wk(·,−kT ) �
wk(·,−(k − 1)T ). Setting for each k � 1

z(x, t)=wk(x, t) in �× [−kT ,−(k− 1)T
]
,

we get a solution of

∂tu+A(x, t, ∂x)u= f (x, t, u,∇xu) in �× ]−∞,0[,
u= 0 on ∂�× ]−∞,0],

which satisfies

z(·,−kT ) � z
(·,−(k − 1)T

)
, (2.67)

‖z(·,−kT )− u1(·,0)‖L∞(�) � δ, for any k � 1, and ‖z(·,0)− u1(·,0)‖L∞(�) � δ.
Let us define, for each k � 1,

zk(x, t)= z
(
x, t − (k − 1)T

)
in �× [−T ,0].
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As z is bounded in �×]−∞,0] and satisfies (2.67), arguing as in the proof of Lemma 2.11,
we prove that the sequence (zk)k has a subsequence (zkj )j converging weakly in W

2,1
p (�×

]−T ,0[) and strongly in C1,0(�× [−T ,0]) to a solution ζ of

∂tu+A(x, t, ∂x)u= f (x, t, u,∇xu) in �× ]−T ,0[,
u= 0 on ∂�× [−T ,0],
u(·,0)= u(·,−T ) in �,

that is a solution of (2.36). As ‖ζ(·,0)−u1(·,0)‖L∞(�) � δ and u1 � ζ � u2, we have ζ =
u1. Since this argument applies to show that any subsequence of (zk)k has a subsequence
which converges weakly in W

2,1
p (�× ]−T ,0[) to u1, we can conclude that

lim
t→−∞

∥∥z(·, t)− u1(·, t)
∥∥
C1(�)

= 0.

At last, as z(·,−T ) � z(·,0), z(·,0) > u1(·,0) and ‖z(·,−T )− u1(·,−T )‖L∞(�) � δ, we
see that z|�×[−T ,0[ gives rise to a proper lower solution of (2.36) and, by Proposition 2.13,

it can be extended to a T -increasing solution of (2.10) defined in � × R and satisfying
(2.65). �

REMARK 2.18. In the frame of Theorem 2.22, if u1 % u2, then the two alternatives
are mutually exclusive. Further, if (2.65) holds, then for every t0 ∈ R and every u0 ∈
W

2−2/p
p (�), with u0 = 0 on ∂� and u1(·, t0)% u0 � u2(·, t0) in �, there is a solution

u :�× [t0,+∞[→R of (2.13) such that

lim
t→+∞

∥∥u(·, t)− u2(·, t)
∥∥
e
= 0.

Similar conclusions are valid if (2.66) holds.

Above a maximal, or below a minimal, T -periodic solution

We now apply Theorem 2.22 to discuss the behaviour of solutions of (2.10) lying above
a maximal solution of (2.36). Of course, symmetric conclusions can be established for
solutions lying below a minimal solution of (2.36).

THEOREM 2.23. Assume (D), (A), (C) and (N). Suppose that u2 is a maximal solution
of (2.36). Then either there exist ω+ ∈ ]−∞,+∞] and a T -increasing solution z :� ×
]−∞,ω+[→R of (2.10) such that z > u2 and

lim
t→−∞

∥∥z(·, t)− u2(·, t)
∥∥
C1(�)

= 0 and lim sup
t→ω+

(
max
�

z(·, t)
)
=+∞,

(2.68)
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or, for any given t0 ∈ R, there exists a T -decreasing solution z :� × [t0,+∞[ → R of
(2.10) such that z > u2 and

lim
t→+∞

∥∥z(·, t)− u2(·, t)
∥∥
C1(�)

= 0. (2.69)

PROOF. Take R > 1+maxQT
u2 and define a function fR :QT ×R×R

N →R by setting,

for a.e. (x, t) ∈QT and every (s, ξ) ∈R×R
N ,

fR(x, t, s, ξ)=

⎧⎪⎨
⎪⎩
f
(
x, t, u2(x, t), ξ

)+ω
(
x, t, u2(x, t)− s

)
if s < u2(x, t),

f (x, t, s, ξ) if u2(x, t) � s � R,
(R + 1− s)f (x, t, s, ξ) if R < s � R+ 1,
0 if s > R + 1,

where

ω(x, t, δ)= max
|ξ |�δ

∣∣f (
x, t, u2(x, t),∇xu2(x, t)+ ξ

)

− f
(
x, t, u2(x, t),∇xu2(x, t)

)∣∣.
Of course, fR satisfies the conditions (C) and (N). Consider the modified problem

∂tu+A(x, t, ∂x)u= fR(x, t, u,∇xu) in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �.

(2.70)

Arguing as in the proof of Theorem 2.15, we see that every solution u of (2.70) is such that
u � u2. Notice that β =R+2 is a proper regular upper solution of (2.70). Let us show that
it is strict. Otherwise, there exists a solution u of (2.70) satisfying u < β but not u% β .
Let v = β − u. Since v(x, t) > 0 on ∂�× [0, T ] and v(x,0)= v(x,T ) in �, there exists
(x0, t0) ∈ �× ]0, T ] such that v(x0, t0) = minQT

v = 0. Hence we can find an open ball
B ⊆ �, with x0 ∈ B , and a point t1 ∈ ]0, t0[ such that 0 � v(x, t) � 1 in B × ]t1, t0] and
v(x̄, t̄ ) > 0 for some (x̄, t̄ ) ∈ B̄ × [t1, t0]. Using the definition of fR and β , we get

∂tv+A(x, t, ∂x)v = a0(R + 2) � 0,

a.e. in B × ]t1, t0[. Then Proposition 2.2 implies that v is constant in B̄ × [t1, t0], which
is a contradiction. Assume now that there is no solution u of (2.70) with u2 < u � β . By
Lemma 2.19, there exists a proper regular upper solution β̄ of (2.70) such that β̄|QT

∈
W

2,1
p,B(QT ) and u2 < β̄ < β . Hence, Proposition 2.13 implies that, for any given t0 ∈ R,

there exists a T -decreasing solution z :�×[t0,+∞[→R of (2.10), with z > u2, satisfying
(2.69).

Next, assume that there exists a solution u of (2.70) with u > u2. Then, as (2.36) has no
solution u with u > u2, any possible solution u of (2.70), but u2, must satisfy

max
QT

(u− u2) � 1. (2.71)
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Denote by S the set of all solutions of (2.70) satisfying (2.71). By Lemma 2.16, there is a
minimal solution v ∈ S of (2.70). By Theorem 2.22, there exists a T -monotone solution ζ

of

∂tu+A(x, t, ∂x)u= fR(x, t, u,∇xu) in �×R,

u= 0 on ∂�×R,

such that either

lim
t→−∞

∥∥ζ(·, t)− u2(·, t)
∥∥
C1(�̄)

= 0 and lim
t→+∞

∥∥ζ(·, t)− v(·, t)∥∥
C1(�)

= 0,

or

lim
t→−∞

∥∥ζ(·, t)− v(·, t)∥∥
C1(�)

= 0 and lim
t→+∞

∥∥ζ(·, t)− u2(·, t)
∥∥
C1(�̄)

= 0.

In the former case, there exists t0 ∈R such that ζ is a solution of

∂tu+A(x, t, ∂x)u= f (x, t, u,∇xu) in �× ]−∞, t0],
u= 0 on ∂�× ]−∞, t0].

Proposition 2.13 implies that ζ can be continued to a T -increasing solution z of (2.10),
which is defined in �× ]−∞,ω+[ for some ω+ ∈ ]−∞,+∞] and satisfies (2.68). In the
latter case, there exists ω− ∈R such that ζ is a solution of

∂tu+A(x, t, ∂x)u= f (x, t, u,∇xu) in �× ]ω−,+∞[,
u= 0 on ∂�× ]ω−,+∞[.

Then, for any given t0 ∈ R, we take k0 ∈ N such that ω− − k0T < t0 and we set z(x, t)=
ζ(x, t + k0T ) in �× [t0,+∞[. Clearly, z is a T -decreasing solution of (2.10) satisfying
(2.69). �

2.6. Stability matters

In this section we study the stability properties of the T -periodic solutions of (2.10) with
the aid of lower and upper solutions. It seems natural to use in this context the order norm
‖ · ‖e introduced in Definition 2.8. We start by recalling the notion of one-sided Lyapunov–
Bellmann stability. Since we have to take care of the fact that uniqueness for the initial
value problem and validity of comparison principles are not assumed, such a definition
does not generally seem the most appropriate to be considered here; indeed, some weaker
concept might fit better in order to detect certain residual forms of stability. As an alterna-
tive notion to Lyapunov stability we use here order stability; this is common in the frame of
order preserving semidynamical systems [93,33,58,60] and appears suited to our approach
based on lower and upper solutions. We remark that Lyapunov stability implies order sta-
bility, whereas the converse implication is not generally true; however, these concepts are
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equivalent if a comparison principle holds for solutions of (2.10). Using these notions, we
give a precise description of the stability properties of a T -periodic solution in terms of
the existence of a lower or an upper solution close to it. Hence, when a pair of lower and
upper solutions α, β , with α � β , is given, we discuss the stability of the minimum and
the maximum T -periodic solutions v and w lying in between, thus getting a completion of
Theorem 2.15. Afterwards, we turn to investigate the behaviour of the solutions between
v and w, finding in some cases a totally ordered continuum of order stable T -periodic so-
lutions. Finally, in the complementary case where α �� β , we see that Lyapunov instability
occurs, thus completing Theorem 2.17.

One-sided Lyapunov stability
The following definitions are in the spirit of [17].

DEFINITION 2.14.
• A solution z of (2.36) is said Lyapunov stable (briefly, L-stable) from below if,

for every ε > 0, there is δ > 0 such that, for every t0 ∈ [0, T [ and for every u0 ∈
W

2−2/p
p (�), with u0 = 0 on ∂�, u0 < z(·, t0) and ‖u0 − z(·, t0)‖e < δ, every nonex-

tendible solution u of (2.13), with u � z, exists in �× [t0,+∞[ and satisfies

∥∥u(·, t)− z(·, t)∥∥
e
< ε in [t0,+∞[. (2.72)

• If, further,

lim
t→+∞

∥∥u(·, t)− z(·, t)∥∥
e
= 0, (2.73)

z is said L-asymptotically stable from below.
• L-stability from above and L-asymptotic stability from above are defined similarly.
• A solution z of (2.36) is said L-stable if, for every ε > 0, there is δ > 0 such that,

for every t0 ∈ [0, T [ and for every u0 ∈W
2−2/p
p (�) with ‖u0 − z(·, t0)‖e < δ, every

nonextendible solution u of (2.13) exists in �× [t0,+∞[ and satisfies (2.72).
If, further, (2.73) holds, z is said L-asymptotically stable.

• A solution z of (2.36) is said L-unstable from below if it is not L-stable from below.
L-instability from above and L-instability are defined similarly.

REMARK 2.19. The notion of L-stability from below given in Definition 2.14 does not
require any condition on solutions u :�× [t0,ω[ → R of (2.13), satisfying u0 < z(·, t0),
‖u(·, t0) − z(·, t0)‖e < δ, but not u � z. A similar remark holds for the L-stability from
above.

One-sided order stability
The following definitions are in the spirit of [93,33].

DEFINITION 2.15.
• A solution z of (2.36) is said order stable (briefly, O-stable) (respectively properly

O-stable, respectively strictly O-stable) from below if there exists a sequence (αn)n
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of regular lower solutions (respectively proper regular lower solutions, respectively
strict regular lower solutions) of (2.36) such that, for every n, αn < z and αn = 0
on �T , and ‖αn − z‖e→ 0 as n→+∞.

• A solution z of (2.36) is said O-stable (respectively properly O-stable, respectively
strictly O-stable) from above if there exists a sequence (βn)n of regular upper solu-
tions (respectively proper regular upper solutions, respectively strict regular upper so-
lutions) of (2.36) such that, for every n, βn > z and βn = 0 on �T , and ‖βn−z‖e→ 0
as n→+∞.

• A solution z of (2.36) is said O-stable (respectively properly O-stable, respectively
strictly O-stable) if it is O-stable (respectively properly O-stable, respectively strictly
O-stable) from below and from above.

• A solution z of (2.36) is said O-unstable from below (respectively properly O-un-
stable from below, respectively strictly O-unstable from below) if there exists a se-
quence (βn)n of regular upper solutions (respectively proper regular upper solutions,
respectively strict regular upper solutions) of (2.36) such that, for every n, βn < z and
βn = 0 on �T , and ‖βn − z‖e→ 0 as n→+∞.

• A solution z of (2.36) is said O-unstable from above (respectively properly O-un-
stable from above, respectively strictly O-unstable from above) if there exists a se-
quence (αn)n of regular lower solutions (respectively proper regular lower solutions,
respectively strict regular lower solutions) of (2.36) such that, for every n, αn > z and
αn = 0 on �T , and ‖αn − z‖e→ 0 as n→+∞.

REMARK 2.20. The notion of strict O-stability corresponds to the strong stability intro-
duced by H. Matano in [93] and, as pointed out there, it represents a form of structural
stability.

REMARK 2.21. In the frame of Theorem 2.15, if α is a proper lower solution, then the
minimum solution v of (2.36) is, by virtue of Proposition 2.20, properly O-stable from
below and, if β is a proper upper solution, the maximum solution w of (2.36) is properly
O-stable from above. If α is a strict lower solution, v is also not O-unstable from below
and, if β is a strict upper solution, w is also not O-unstable from above.

REMARK 2.22. In the definition of O-stability the request that the lower and the upper
solutions are regular is not essential at the light of Lemma 2.19.

Lyapunov stability and order stability
We show here that L-stability implies O-stability.

DEFINITION 2.16. A solution u of (2.36) is said isolated from above (respectively isolated
from below) in C1,0(QT ) if there is no sequence (un)n of solutions of (2.36) such that
un > u (respectively un < u) for every n and un→ u in C1,0(QT ).

REMARK 2.23. We point out that, under conditions (D), (A), (C) and (N), it is equivalent
to say that a solution z of (2.36) is isolated (from above or from below) in C1,0(QT ), or in
L∞(QT ), or in W

2,1
p (QT ). This is a direct consequence of Proposition 2.10.
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PROPOSITION 2.24. Assume (D), (A), (C) and (N). If a solution z of (2.36) is L-stable
from above (respectively L-stable from below, respectively L-stable), then it is O-stable
from above (respectively O-stable from below, respectively O-stable). Moreover, if z is
isolated from above (respectively from below) in C1,0(QT ), then it is properly O-stable
from above (respectively from below).

PROOF. Let z be a solution of (2.36) which is L-stable from above and suppose that z
is isolated from above in C1,0(QT ), because otherwise there is a sequence of solutions
(un)n, with un > z, converging to z in C1,0(QT ) and hence z is O-stable from above. Let
ρ > 0 be such that every solution u of (2.36), with u > z, satisfies ‖u− z‖C1,0(QT )

� ρ.
We then argue as in the proof of Theorem 2.23. We take R > ρ +max�̄ z and we define
a function fR :QT × R× R

N → R as there, replacing u2 with z. Consider the modified
problem (2.70) and notice that β =R + 2 is a strict regular upper solution of (2.70).

Assume there is no solution u of (2.70) with z < u � β . Then Proposition 2.20 implies
that z is properly O-stable from above.

Next, assume that there exists a solution u of (2.70) with u > z. Since every solution u

of (2.70) is such that u � z and (2.36) has no solution u, with ‖u− z‖C1,0(QT )
< ρ, any

possible solution u of (2.70), but z, must satisfy

‖u− z‖C1,0(QT )
� ρ. (2.74)

Denote by S the set of all solutions of (2.70) satisfying (2.74). By Lemma 2.16, there
is a minimal solution v ∈ S of (2.70), with v > z. By Proposition 2.18, z is either prop-
erly O-stable from above, or properly O-unstable from above. In the latter case, as by
Proposition 2.18 αn|QT

∈W
2,1
p,B(QT ) for each n, Proposition 2.13 imply the existence of

a sequence (̃αn)n of solutions of (2.10) such that ‖α̃n(·,0)− z(·,0)‖e → 0 as n→+∞,
but lim supt→+∞ ‖α̃n(·, t)− z(·, t)‖e � 1

2‖v− z‖e , thus contradicting the L-stability from
above of z. �

Comparison principles
In order to discuss further relations between O-stability and L-stability, we introduce the
following versions of the comparison principle for parabolic equations.

DEFINITION 2.17.
• We say that the first comparison principle holds for the equation

∂tu+A(x, t, ∂x)u= f (x, t, u,∇xu) (2.75)

if for every t1, t2 ∈ R, with t1 < t2, and for every u1, u2 ∈ W
2,1
p (� × ]t1, t2[), with

p >N + 2, satisfying

∂tu1 +A(x, t, ∂x)u1 − f (x, t, u1,∇xu1)

� ∂tu2 +A(x, t, ∂x)u2 − f (x, t, u2,∇xu2) in �× ]t1, t2[,
u1 � u2 on ∂�× [t1, t2],
u1(·, t1) � u2(·, t1), in �,

(2.76)
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we have

u1 � u2 in �× [t1, t2].

• We say that the second comparison principle holds for (2.75) if for every t1, t2 ∈ R,
with t1 < t2, and for every u1, u2 ∈W

2,1
p (�× ]t1, t2[), with p >N + 2, satisfying

∂tu1 +A(x, t, ∂x)u1 − f (x, t, u1,∇xu1)

� ∂tu2 +A(x, t, ∂x)u2 − f (x, t, u2,∇xu2) in �× ]t1, t2[,
u1 � u2 in �× [t1, t2],
u1(·, t1) < u2(·, t1), in �,

(2.77)

we have

u1 % u2 in �× ]t1, t2].

The first or the second comparison principle holds provided that f satisfies certain local
one-sided Lipschitz conditions.

PROPOSITION 2.25. Assume (D) and (A). Moreover, suppose that
(L+) for every ρ > 0 there is a constant L � 0 such that, for a.e. (x, t) ∈QT , every r ,

s ∈ [−ρ,ρ], with r < s, and every ξ , η ∈ [−ρ,ρ]N ,

f (x, t, s, ξ)− f (x, t, r, η) � L
(
s − r + |ξ − η|).

Then the first comparison principle holds.

PROOF. Let t1, t2, with t1 < t2, be given and let u1, u2 ∈W
2,1
p (�× ]t1, t2[) satisfy (2.76).

Let L be the constant associated with ρ = max{‖u1‖C1,0(�×[t1,t2]),‖u2‖C1,0(�×[t1,t2])} by

condition (L+). Set v(x, t) = e−Lt (u2(x, t) − u1(x, t)) in � × [t1, t2] and suppose that
min�×[t1,t2] v < 0. Since v(x, t) � 0 on ∂� × [t1, t2] and v(·, t1) � 0 in �, there ex-
ists (x0, t0) ∈ � × ]t1, t2] such that v(x0, t0) = min�×[t1,t2] v. Hence there exist an open
ball B ⊆ �, with x0 ∈ B , and a point t∗ ∈ ]t1, t0] such that, for a.e. (x, t) ∈ B × ]t∗, t0],
v(x, t) < 0 and

∂tv +A(x, t, ∂x)v

=−Le−Lt (u2 − u1)+ e−Lt∂t (u2 − u1)+ e−LtA(x, t, ∂x)(u2 − u1)

�−Le−Lt (u2 − u1)+ e−Lt
(
f (x, t, u2,∇xu2)− f (x, t, u1,∇xu1)

)
�−Le−Lt (u2 − u1)+ e−LtL(u2 − u1)− e−LtL|∇xu2 −∇xu1|

= −
N∑

n=1

ãi (x, t)∂xi v,
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where, for each i = 1, . . . ,N , ãi ∈ L∞(�× ]t1, t2[) is defined by

ãi (x, t)=
⎧⎨
⎩
L

∂xi v(x, t)

|∇xv(x, t)| if ∇xv(x, t) �= 0,

0 if ∇xv(x, t)= 0.

Proposition 2.2 then implies that v(x, t) = v(x0, t0) < 0 in B × ]t∗, t0] and therefore, as
ess infQT

a0 > 0,

∂tv+A(x, t, ∂x)v+
N∑

n=1

ãi (x, t)∂xi v = a0v < 0

a.e. in B × ]t1, t0], thus contradicting the previous inequality. Accordingly, we conclude
that min�×[t1,t2] v � 0 and hence u1 � u2 in �× [t1, t2]. �

PROPOSITION 2.26. Assume (D) and (A). Moreover, suppose that
(L−) for every ρ > 0 there is a constant L � 0 such that, for a.e. (x, t) ∈QT , every r ,

s ∈ [−ρ,ρ], with r < s, and every ξ , η ∈ [−ρ,ρ]N ,

f (x, t, s, ξ)− f (x, t, r, η) �−L
(
s − r + |ξ − η|).

Then the second comparison principle holds.

PROOF. Let t1, t2, with t1 < t2, be given and let u1, u2 ∈W
2,1
p (�× ]t1, t2[) satisfy (2.77).

Let L be the constant associated with ρ = max{‖u1‖C1,0(�×[t1,t2]),‖u2‖C1,0(�×[t1,t2])} by

condition (L−). Set v(x, t) = u2(x, t) − u1(x, t) in � × [t1, t2] and suppose that either
there is (x0, t0) ∈ � × ]t1, t2] such that v(x0, t0) = 0, or there is (x0, t0) ∈ ∂� × ]t1, t2]
such that v(x0, t0)= 0 and ∂νv(x0, t0)= 0, where ν is the outer normal to � at x0. Since
v � 0 in � × [t1, t2], this implies v(x0, t0) = min�×[t1,t2] v. Moreover we have, for a.e.
(x, t) ∈�× ]t1, t0],

∂tv+A(x, t, ∂x)v � f (x, t, u2,∇xu2)− f (x, t, u1,∇xu1)

� −Lv−L|∇xv| = −Lv−
N∑

n=1

ãi (x, t)∂xi v,

where, for each i = 1, . . . ,N , ãi ∈ L∞(�× ]t1, t2[) is defined by

ãi (x, t)=
{
L

∂xi v(x, t)

|∇xv(x, t)| if ∇xv(x, t) �= 0,

0 if ∇xv(x, t)= 0.

If x0 ∈�, Proposition 2.2 implies that v(x, t)= v(x0, t0)= 0 in �̄× [t1, t0], thus contra-
dicting the assumption v(·, t1) > 0 in �. If x0 ∈ ∂� and v(x, t) > 0 in �× ]t1, t0], Propo-
sition 2.2 implies that ∂νv(x0, t0) < 0, which is again a contradiction. Hence we conclude
that u1 % u2 in �× ]t1, t2]. �
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PROPOSITION 2.27. Assume (D) and (A). If the second comparison principle holds, then
for every t1, t2 ∈R, with t1 < t2, and for every u1, u2 ∈W

2,1
p (�×]t1, t2[), with p >N +2,

satisfying

∂tu1 +A(x, t, ∂x)u1 − f (x, t, u1,∇xu1)

� ∂tu2 +A(x, t, ∂x)u2 − f (x, t, u2,∇xu2) in �× ]t1, t2[,
u1 � u2 on ∂�× [t1, t2],
u1(·, t1)% u2(·, t1) in �,

(2.78)

we have

u1 % u2 in �× [t1, t2].

PROOF. Let t1, t2 be such that t1 < t2 and let u1, u2 ∈W
2,1
p (� × ]t1, t2[) satisfy (2.78).

By continuity, we have t∗ = sup{t ∈ ]t1, t2] | u1(·, t)% u2(·, t) in �} > t1. Suppose that
t∗ < t2. As u1(·, t) � u2(·, t) in �× ]t1, t∗] and u1(·, t1) < u2(·, t1) in �, the second com-
parison principle implies, in particular, that u1(·, t∗)% u2(·, t∗) in �, which is a contra-
diction. Hence we conclude that u1 % u2 in �× [t1, t2]. �

REMARK 2.24. The first comparison principle implies uniqueness in the future for the
initial value problem (2.13). On the contrary, this is not true for the second comparison
principle: examples in this direction can be found, for instance, in [16].

Lyapunov and order stability in case of validity of comparison principles
In this section we discuss some relations between the notion of O-stability and that of
L-stability when the first or the second comparison principle holds. We start with the fol-
lowing observation.

PROPOSITION 2.28. Assume (D), (A), (C) and (N). Further, suppose that the first or
the second comparison principle holds. If a solution z of (2.36) is L-stable (respec-
tively L-asymptotically stable) from above and from below, then it is L-stable (respectively
L-asymptotically stable).

PROOF. Let z be a solution of (2.36) which is L-stable from above and from below.
Then, for every ε > 0, there is δ > 0 such that, for every t0 ∈ [0, T [ and for every
v0,w0 ∈W

2−2/p
p (�), with v0 = w0 = 0 on ∂� and z(·, t0) − δe < v0 < z(·, t0) < w0 <

z(·, t0) + δe, there exist, by Lemma 2.8 and the L-stability from above and from be-
low, solutions v,w :� × [t0,+∞[ → R of (2.13), with u0 = v0 and u0 = w0 respec-
tively, such that z(·, t) − εe < v(·, t) < z(·, t) < w(·, t) < z(·, t) + εe in [t0,+∞[. Pick
now u0 ∈W

2−2/p
p (�), with u0 = 0 on ∂� and z(·, t0)− δe% u0 % z(·, t0)+ δe, and let

u :�× [t0,ω[→R be a nonextendible solution of (2.13) which exists by Proposition 2.9.
Take v0,w0 ∈W

2−2/p
p (�) such that v0 = w0 = 0 on ∂� and z(·, t0) − δe < v0 % u0 %

w0 < z(·, t0) + δe and let v and w be the corresponding solutions as in the first part of
the proof. If the first comparison principle holds, then, by Corollary 2.7 and Remark 2.24,
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ω=+∞, v < u <w and u satisfies (2.72). If the second comparison principle holds, then,
by Proposition 2.27, v% u%w, u exists in �× [t0,+∞[ and satisfies (2.72). �

PROPOSITION 2.29. Assume (D), (A), (C) and (N). Further, suppose that the first compar-
ison principle holds. If a solution z of (2.36) is strictly O-stable from below (respectively
strictly O-stable from above, respectively strictly O-stable), then it is L-stable from below
(respectively L-stable from above, respectively L-stable).

PROOF. Since z is strictly O-stable from below, there exists a sequence (αn)n of strict
regular lower solutions of (2.36) such that, for each n, αn% z, αn = 0 on �T and ‖αn −
z‖e → 0 as n→+∞. Fix ε > 0 and take n such that ‖αn − z‖e < ε. Since αn % z, by
Proposition 2.1, there exists a constant δ > 0 such that δe � z(·, t0) − αn(·, t0) for every
t0 ∈ [0, T ]. Let u0 ∈W

2−2/p
p (�), with u0 = 0 on ∂�, be such that z(·, t0) − δe < u0 �

z(·, t0). Since αn(·, t0) � z(·, t0)− δe � u0 � z(·, t0), αn|�̄×[t0,+∞[ is a lower solution and
z|�×[t0,+∞[ is an upper solution of (2.13), Corollary 2.7 implies that there exists a solution

u :�× [t0,+∞[→ R of (2.13), which is unique by Remark 2.24, satisfying αn � u � z

in �× [t0,+∞[ and hence ‖u(·, t)− z(·, t)‖e < ε in [t0,+∞[. �

LEMMA 2.30. Assume (D), (A), (C) and (N). Further, suppose that the second comparison
principle holds. If α is a lower solution of (2.36) and z is a solution of (2.36), with α < z,
then α% z.

PROOF. According to the definition of lower solution, let 0 = σ0 < σ1 < · · · < σk = T

and for each h ∈ {0, . . . , k − 1}, α = max1�i�mh
α
(h)
i in � × ]σh,σh+1[, with α

(h)
i ∈

W
2,1
p (� × ]σh,σh+1[) for every i ∈ {1, . . . ,mh}. Since α < z, our definition of a lower

solution implies that there is a point t1 ∈ ]σh,σh+1[, for some h ∈ {0, . . . , k− 1}, such that
α(·, t1) < z(·, t1) and hence α

(h)
i (·, t1) < z(·, t1) for each i ∈ {1, . . . ,mh}. The second com-

parison principle implies that α(h)
i % z in �×]t1, σh+1] for each i ∈ {1, . . . ,mh} and there-

fore α(·, σh+1) � limt→σ−h+1
α(·, t) = limt→σ−h+1

max1�i�mh
α
(h)
i (·, t)% z(·, σh+1) in �.

Applying recursively the second comparison principle and using the T -periodicity we con-
clude that α% z in �× [0, T ]. �

REMARK 2.25. Suppose that the second comparison principle holds. Lemma 2.30 implies
that a lower solution of (2.36) is strict if and only if it is proper and hence, in particular,
that proper O-stability from below is equivalent to strict O-stability from below. Similar
conclusions obviously hold for upper solutions, for proper O-stability from above and for
proper O-stability.

PROPOSITION 2.31. Assume (D), (A), (C) and (N). Further, suppose that the second
comparison principle holds. A solution z of (2.36) is O-stable from below (respectively
O-stable from above, respectively O-stable) if and only if it is L-stable from below (re-
spectively L-stable from above, respectively L-stable).
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PROOF. Let z be a solution of (2.36), which is O-stable from below, and let (αn)n be a
sequence of regular lower solutions of (2.36) such that, for each n, αn < z, αn = 0 on
�T and ‖αn − z‖e → 0 as n→ +∞. Fix ε > 0 and take n such that ‖αn − z‖e < ε.
Since, by Lemma 2.30, αn% z, Proposition 2.1 implies the existence of a constant δ > 0
such that δe � z(·, t0) − αn(·, t0) for every t0 ∈ [0, T ]. Let u0 ∈ W

2−2/p
p (�), with u0 =

0 on ∂�, be such that u0 � z(·, t0) and ‖u0 − z(·, t0)‖e < δ. Since αn(·, t0) � z(·, t0) −
δe% u0 � z(·, t0), αn|�̄×[t0,+∞[ is a lower solution and z|�×[t0,+∞[ is an upper solution

of (2.13), Corollary 2.7 implies that there exists a solution u :�×[t0,+∞[→R of (2.13),
satisfying αn � u � z in �̄ × [t0,+∞[ and hence ‖u(·, t) − z(·, t)‖e < ε in [t0,+∞[.
Moreover, Proposition 2.27 implies that any nonextendible solution u :� × [t0,ω[ → R

of (2.13), with αn(·, t0)% u0 � z(·, t0) and u � z, satisfies αn(·, t)% u(·, t) and hence
‖u(·, t) − z(·, t)‖e < ε in � × [t0,ω[. Proposition 2.9 finally implies that ω = +∞. To
conclude we use Proposition 2.24 and Proposition 2.28. �

Stability via lower and upper solutions
In this section we use lower and upper solutions α, β , with α � β , to describe the sta-
bility properties of the T -periodic solutions of (2.36) lying in between. We start with an
immediate consequence of Proposition 2.13, which shows a certain form of stability of a
one-sided isolated solution z of (2.36) in the presence of a lower solution α < z, or of an
upper solution β > z.

PROPOSITION 2.32. Assume (D), (A), (C) and (N). Moreover, let z be a solution of (2.36).
(i) Let α be a proper lower solution of (2.36) such that, for some t0, α(·, t0) ∈

W
2−2/p
p (�) and α(·, t0) = 0 on ∂�. Assume α < z and there is no solution u of

(2.36) with α < u < z. Then there exists the minimum solution α̃ :�× [t0,+∞[→
R in [α, z] of (2.13), with u0 = α(·, t0). Further, α̃ is T -increasing and satisfies

lim
t→+∞

∥∥α̃(·, t)− z(·, t)∥∥
C1(�)

= 0.

(ii) Let β be a proper upper solution of (2.36) such that, for some t0, β(·, t0) ∈
W

2−2/p
p (�) and β(·, t0) = 0 on ∂�. Assume z < β and there is no solution u of

(2.36) with z < u < β . Then there exists the maximum solution β̃ :�× [t0,+∞[→
R in [z,β] of (2.13), with u0 = β(·, t0). Further, β̃ is T -decreasing and satisfies

lim
t→+∞

∥∥β̃(·, t)− z(·, t)∥∥
C1(�)

= 0.

From this proposition we get an attractivity and invariance result, which completes The-
orem 2.15. It regards the set of solutions of problem (2.36) lying between α and β . This is
a classical topic which has been extensively investigated in the last fifty years (see [124,71,
72,33,34,58,37,60]). Unlike all these works, here we require no regularity on the function
f besides the Carathéodory conditions. So that our assumptions do not guarantee either
uniqueness for the initial value problem or validity of comparison principles, which are
the basic tools for applying the theory of order preserving discrete-time semidynamical
systems.
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THEOREM 2.33. Assume (D), (A), (C) and (N). Suppose that α is a proper lower solu-
tion and β is a proper upper solution of (2.36), such that, for some t0, α(·, t0), β(·, t0) ∈
W

2−2/p
p (�) and α(·, t0)= 0, β(·, t0)= 0 on ∂�. Finally, assume

α < β

and denote by v the minimum solution and by w the maximum solution of (2.36) in [α,β].
Then the following conclusions hold:

(i) there exist a T -increasing solution α̃ :� × [t0,+∞[ → R of (2.13), with u0 =
α(·, t0), and a T -decreasing solution β̃ :�× [t0,+∞[→ R of (2.13), with u0 =
β(·, t0), such that

α < α̃ � v � w � β̃ < β

and

lim
t→+∞

∥∥α̃(·, t)− v(·, t)∥∥
C1(�̄)

= 0= lim
t→+∞

∥∥β̃(·, t)−w(·, t)∥∥
C1(�̄)

;

(ii) if u0 ∈ W
2−2/p
p (�) is such that u0 = 0 on ∂� and α(·, t0) � u0 � v(·, t0), then

there exists a solution u :�× [t0,+∞[→ R of (2.13), satisfying α̃ � u � v and
hence

lim
t→+∞

∥∥u(·, t)− v(·, t)∥∥
e
= 0;

similarly, if u0 ∈ W
2−2/p
p (�) is such that u0 = 0 on ∂� and w(·, t0) � u0 �

β(·, t0), then there exists a solution u :� × [t0,+∞[ → R of (2.13), satisfying
w � u � β̃ and hence

lim
t→+∞

∥∥u(·, t)−w(·, t)∥∥
e
= 0;

(iii) any solution u of (2.10), such that α � u � β in �× [t0,+∞[ satisfies α̃ � u � β̃

in �× [t0,+∞[.

PROOF. We first notice that conclusion (i) directly follows from Proposition 2.32. Next,
we take u0 ∈W

2−2/p
p (�) such that u0 = 0 on ∂� and α(·, t0) � u0 � v(·, t0). Since α̃ and

v are, respectively, a lower and an upper solution in �× [t0,+∞[ of (2.13), Corollary 2.7
implies the existence of a solution u :�× [t0,+∞[→ R of (2.13), satisfying α̃ � u � v

and hence

lim
t→+∞

∥∥u(·, t)− v(·, t)∥∥
e
= 0.
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Similarly, if u0 ∈W
2−2/p
p (�) is such that u0 = 0 on ∂� and w(·, t0) � u0 � β(·, t0), then

there is a solution u :�× [t0,+∞[→R of (2.13), satisfying w � u � β̃ and hence

lim
t→+∞

∥∥u(·, t)−w(·, t)∥∥
e
= 0.

This proves conclusion (ii). Finally, if u :�× [t0,+∞[→R is any solution of (2.10), sat-
isfying α � u � β , then by the minimality properties of α̃ described in Proposition 2.13 we
conclude that u � α̃. In a similar way we prove that u � β̃ . This yields conclusion (iii). �

REMARK 2.26. We assumed in Theorem 2.33 the existence of a common value t0 such
that α(·, t0), β(·, t0) ∈ W

2−2/p
p (�) and α(·, t0) = 0, β(·, t0) = 0 on ∂�. Of course, this

request is not essential: the above conditions could be satisfied at different values t ′0, t ′′0 ,
respectively.

The property expressed in Theorem 2.33 is a form of relative attractivity, which is some-
how related to the notion of relative stability introduced in [17] and to that of weak positive
invariance defined in [15].

Assuming the validity of the second comparison principle, the following stronger stabil-
ity result holds.

COROLLARY 2.34. Assume (D), (A), (C), (N) and suppose that the second comparison
principle holds. Assume that α is a proper lower solution and β is a proper upper so-
lution of (2.36), such that, for some t0, α(·, t0), β(·, t0) ∈ W

2−2/p
p (�) and α(·, t0) = 0,

β(·, t0)= 0 on ∂�. Further, suppose that α < β and denote by v and w the minimum and
the maximum solutions of (2.36) in [α,β]. Then v is L-asymptotically stable from below
and w is L-asymptotically stable from above.

PROOF. By Remark 2.21, we know that v is properly O-stable from below and hence, by
Proposition 2.31, it is L-stable from below. Notice that, by Lemma 2.30, α% v. Let α̃ be
the solution of (2.13), with u0 = α(·, t0), whose existence is guaranteed by Theorem 2.33,
satisfying, by Proposition 2.27, α < α̃% v in �× [t0,+∞[ and

lim
t→+∞

∥∥α̃(·, t)− v(·, t)∥∥
C1(�)

= 0.

Then, for every u0 ∈W
2−2/p
p (�) such that u0 = 0 on ∂� and α̃(·, t0)% u0 < v(·, t0), any

nonextendible solution u of (2.13) with u � v satisfies, by Proposition 2.27, α̃% u � v in
�× [t0,+∞[ and hence

lim
t→+∞

∥∥u(·, t)− v(·, t)∥∥
e
= 0.

This implies that v is L-asymptotically stable from below. By a similar argument we get
the corresponding conclusion for w. �
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REMARK 2.27. Under the assumptions of Corollary 2.34, we have that, for every u0 ∈
W

2−2/p
p (�) such that u0 = 0 on ∂� and α̃(·, t0)% u0 % β̃(·, t0), any nonextendible so-

lution u :� × [t0,ω[ → R of (2.13) satisfies, by Proposition 2.27 and Proposition 2.9,
α̃% u% β̃ in �× [t0,ω[ with ω=+∞.

We conclude this section stating some illustrative results where the existence of the pair
of lower and upper solutions α, β is replaced by assumptions relating the behaviour of
the function f to the principal eigenvalue λ1 (see Appendix 2.7). Alternative conditions
are discussed in [41,42]. We first apply Corollary 2.34 to show the global L-asymptotic
stability of the T -periodic solution of a linear problem.

PROPOSITION 2.35. Assume (D) and (A). Let q ∈ L∞(QT ) satisfy q(x, t) � λ1 a.e. in
QT and q(x, t) < λ1 on a set of positive measure. Let h ∈ Lp(QT ), with p >N + 2. Then
the unique solution z of

∂tu+A(x, t, ∂x)u= q(x, t)u+ h(x, t) in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �,

(2.79)

is globally L-asymptotically stable.

PROOF. Let ϕ1 & 0 be the principal eigenfunction (see Proposition 2.49). For any σ > 0
the functions α = z−σϕ1 and β = z+σϕ1 are respectively a strict lower and a strict upper
solution of problem (2.79), with α% z% β . Hence, by Corollary 2.34, z is L-asymptoti-
cally stable from below and from above. Now, take t0 ∈ [0, T [ and u0 ∈W

2−2/p
p (�) such

that u0 = 0 on ∂�. Let σ > 0 be so large that α(·, t0) � u0 � β(·, t0) in �. By Remark 2.27
the solution u of

∂tu+A(x, t, ∂x)u= q(x, t)u+ h(x, t) in �× [t0,+∞[,
u= 0 on ∂�× [t0,+∞[,
u(·, t0)= u0 in �,

satisfies α̃ % u% β̃ in � × [t0,+∞[, where α̃, β̃ are the functions whose existence is
guaranteed by Theorem 2.33, and hence limt→+∞ ‖u(·, t)− z(·, t)‖e = 0. �

For the nonlinear problem (2.36) we state the following stabilization result (see [41,42]).
Related, less general, statements can be found in [3,34].

PROPOSITION 2.36. Assume (D), (A), (C) and (N). Suppose that there exist functions
a, b ∈ Lp(QT ), with p >N + 2, and γ , 
 ∈ L∞(QT ), such that, for a.e. (x, t) ∈QT and
all (s, ξ) ∈R×R

N with s �= 0,

γ (x, t)|s| + a(x, t) � f (x, t, s, ξ) sgn(s) � 
(x, t)|s| + b(x, t),
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with 
(x, t) � λ1 a.e. in QT and 
(x, t) < λ1 on a subset of positive measure. Then there
exist the minimum solution v and the maximum solution w of (2.36). Moreover, for each
t0 ∈ [0, T [ and every u0 ∈W

2−2/p
p (�), with u0 = 0 on ∂�, the following conclusions hold:

• if u0 � v(·, t0), then there exists a solution u : �̄× [t0,+∞[→R of (2.13) such that
u � v and

lim
t→+∞

∥∥u(·, t)− v(·, t)∥∥
e
= 0;

• if u0 � w(·, t0), then there exists a solution u : �̄× [t0,+∞[→R of (2.13) such that
u � w and

lim
t→+∞

∥∥u(·, t)−w(·, t)∥∥
e
= 0.

PROOF. The proof is carried out through some steps.

CLAIM 1. There exists R > 0 such that all solutions u of (2.36) satisfy ‖u‖C1,0(QT )
< R.

Without loss of generality, we can suppose a(x, t) � 0 � b(x, t) and γ (x, t) � 
(x, t)

a.e. in QT . Let q :QT ×R×R
N → R be a Lp-Carathéodory function, with p > N + 2,

such that, for a.e. (x, t) ∈QT and every (s, ξ) ∈R×R
N ,

γ (x, t) � q(x, t, s, ξ) � 
(x, t)

and

q(x, t, s, ξ)=max
{
γ (x, t),min

{
s−1f (x, t, s, ξ),
(x, t)

}}
, if |s|� 1.

Define

h(x, t, s, ξ)= f (x, t, s, ξ)− q(x, t, s, ξ)s

and observe that there exists a function c ∈ Lp(QT ), with p > N + 2, such that, for a.e.
(x, t) ∈QT and every (s, ξ) ∈R×R

N ,

∣∣h(x, t, s, ξ)∣∣ � c(x, t).

Assume by contradiction that there exists a sequence (un)n of solutions of (2.36) such that
‖un‖C1,0(QT )

→+∞. For each n, set vn = un/‖un‖C1,0(QT )
. Clearly, vn satisfies

∂tvn +A(x, t, ∂x)vn = q(x, t, un,∇un)vn + h(x, t, un,∇un)
‖un‖C1,0(QT )

in QT ,

vn = 0 on �T ,

vn(·,0)= vn(·, T ) in �.

We have that q(·, ·, un,∇un) → q weakly in Lp(QT ), where q ∈ L∞(QT ) satisfies
γ (x, t) � q(x, t) � 
(x, t) a.e. in QT , and hn(·, ·, un,∇un)/‖un‖C1,0(QT )

→ 0 strongly
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in Lp(QT ). Moreover, (vn)n is bounded in W
2,1
p (QT ) and therefore, possibly passing to a

subsequence, it converges weakly in W
2,1
p (QT ) and strongly in C1,0(QT ) to some function

v with ‖v‖C1,0(QT )
= 1. Hence v is a nontrivial solution of

∂tv+A(x, t, ∂x)v = q(x, t)v in QT ,

v = 0 on �T ,

v(·,0)= v(·, T ) in �,

thus contradicting Proposition 2.51. This proves the claim.

CLAIM 2. There exist a strict regular lower solution α and a strict regular upper solution
β of (2.36) such that every solution u of (2.36) satisfies α% u% β .

Denote by w± the solutions of

∂tu+A(x, t, ∂x)u= 
(x, t)u± b(x, t) in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �,

which exist by Proposition 2.51. Proposition 2.49 and Proposition 2.1 then imply the ex-
istence of a constant k > 0 such that w− − kϕ1 % u% w+ + kϕ1, for all u ∈ C1,0(QT )

with ‖u‖C1,0(QT )
< R. It is now easy to verify that α =w− − kϕ1 and β =w+ + kϕ1 are,

respectively, strict regular lower and upper solutions of (2.36). The conclusion then follows
using Claim 1.

From the above claims, we deduce by Theorem 2.15 the existence of the minimum
solution v and the maximum solution w in [α,β]; as every solution u of (2.36) satisfies
α � u � β , v and w are the minimum and the maximum solution. Possibly modifying
the choice of k in the definition of α and β , we can assume that, if u0 is such that u0 �
v(·, t0) (respectively w(·, t0) � u0), then α(·, t0) � u0 � v(·, t0) (respectively w(·, t0) �
u0 � β(·, t0)). The result then follows from Theorem 2.33. �

Continua of stable T -periodic solutions

We now prove a result which generalizes [33, Theorem 1] (see also [34,58]) and provides
the existence of O-stable solutions of (2.36) in the presence of lower and upper solutions
α, β , with α � β . It also provides information about the topological structure of the set of
O-stable solutions lying between α and β .

In the proof we shall use a property of compact subsets of C1,0(QT ), which are dense-
in-itself with respect to the order, analogous to that one we have described in Lemma 1.3
for compact subsets of C0([t0, t1]).

DEFINITION 2.18. A subset S of C1,0(QT ) is said dense-in-itself with respect to the order
if for any u1, u2 ∈ S , with u1 < u2, there exists u3 ∈ S with u1 < u3 < u2.

The next result can be proved exactly in the same way as Lemma 1.3.



324 C. De Coster et al.

LEMMA 2.37. Let S ⊂ C1,0(QT ) be a compact set which is dense-in-itself with respect to
the order. Let T ⊆ S be a maximal nondegenerate totally ordered subset of S . Then T is
homeomorphic to a nondegenerate compact interval of R.

THEOREM 2.38. Assume (D), (A), (C) and (N). Suppose that α is a proper lower solution
and β is a proper upper solution of (2.36) satisfying α < β . Denote, respectively, by v

and w the minimum and the maximum solution of (2.36) in [α,β]. Then there exists a
totally ordered continuum K in C1,0(QT ) such that every u ∈ K is an O-stable solution
of (2.36) satisfying v � u � w; moreover, u1 =minK is properly O-stable from below and
u2 =maxK is properly O-stable from above.

PROOF. The proof closely follows up the proof of Theorem 1.33. We denote by S1 the set
of all solutions u of (2.36), with α � u � β , which are properly O-stable from below. Since,
by Remark 2.21, the minimum solution v is properly O-stable from below, S1 is not empty.
Notice also that, since S1 is bounded in L∞(QT ), the Nagumo condition (N) implies, by
Proposition 2.10, that this set is bounded in W

2,1
p (QT ) and therefore it is relatively compact

in C1,0(QT ). Arguing as in the proof of Theorem 1.33, with the aid here of Lemma 2.16
instead of Lemma 1.15, we prove the existence of a maximal solution u1 of (2.36) in S1.
Proceeding further as in that proof, we denote by S2 the set of all solutions u of (2.36), with
u1 � u � β , which are properly O-stable from above. By Remark 2.21, w ∈ S2. Arguing
as above, we get a minimal solution u2 of (2.36) in S2.

If u1 = u2, the conclusion is achieved. Otherwise we denote by S3 the set of all solu-
tions u of (2.36), with u1 � u � u2. Notice that S3 is compact in C1,0(QT ). To show that
S3 is dense-in-itself with respect to the order we argue as in Theorem 1.33, with the aid
here of Remark 2.21, to show that no proper lower or upper solution of (2.36) may exist
between u1 and u2, and of Proposition 2.18. Finally, we fix a solution u0 ∈ S3 and we
denote by S(u0) a maximal totally ordered subset of S3, with u0 ∈ S(u0). Then we apply
Lemma 2.37 to prove that S(u0) is compact and connected. Clearly, every u ∈ S(u0) is
O-stable and u1 =minS(u0) and u2 =maxS(u0) are properly O-stable from below and
above, respectively. �

Assuming the validity of the second comparison principle stronger conclusions can be
achieved.

COROLLARY 2.39. Assume (D), (A), (C), (N) and suppose that the second comparison
principle holds. Let α be a proper lower solution and β be a proper upper solution of (2.36)
satisfying α < β . Denote, respectively, by v and w the minimum and the maximum solution
of (2.36) in [α,β]. Then there exists a totally ordered continuum K in C1,0(QT ) such that
every u ∈K is a L-stable solution of (2.36) satisfying v � u � w. Moreover, if u1 =minK
is isolated from below in C1,0(QT ), then u1 is L-asymptotically stable from below and if
u2 = maxK is isolated from above in C1,0(QT ), then u2 is L-asymptotically stable from
above. In particular, if u1 = u2 = u∗ is isolated in C1,0(QT ), then u∗ is L-asymptotically
stable.
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PROOF. The former conclusion follows from Theorem 2.38 and Proposition 2.31. The lat-
ter conclusion, concerning the L-asymptotic stability from below of u1, is a consequence
of Corollary 2.34. Indeed, since u1 is isolated from below in C1,0(QT ) and, by Theo-
rem 2.38, is properly O-stable from below, there exists a proper lower solution α∗, with
α∗ < u1, such that there is no solution u of (2.36) with α∗ < u < u1, i.e. u1 is the mini-
mum solution of (2.36) in [α∗, β]. Hence u1 is L-asymptotically stable from below. The
conclusion about u2 follows from a similar argument. The L-asymptotic stability of u∗ is
a consequence of Proposition 2.28. �

Instability via lower and upper solutions
We now show that the presence of lower and upper solutions α, β , with α �� β , yields the
existence of unstable T -periodic solutions of (2.10). We stress that all the results in this
section are obtained without requiring the validity of any comparison principle.

PROPOSITION 2.40. Assume (D), (A), (C) and (N). Let z be a solution of (2.36). If z is
O-unstable from above and isolated from above in C1,0(QT ), then it is L-unstable from
above. If z is O-unstable from below and isolated from below in C1,0(QT ), then it is
L-unstable from below.

PROOF. According to Remark 2.23, we pick ε > 0 such that any solution v of (2.36), with
v > z, satisfies ‖z− v‖L∞(QT ) � ε. Further, let (αn)n be a sequence of regular lower so-
lutions of (2.36) such that αn > z, αn = 0 on �T and ‖αn − z‖e → 0, as n→+∞. Fix
t0 ∈ [0, T [. Then, for every δ > 0, there exists n such that, setting u0 = αn(·, t0), we have
u0 ∈W

2−2/p
p (�), u0 = 0 on ∂�, u0 � z(·, t0) and ‖u0 − z(·, t0)‖e < δ. Moreover, prob-

lem (2.13) has, by Proposition 2.13, a nonextendible solution u :�× [t0,ω[→R, satisfy-
ing u > z in �× [t0,ω[ and either limt→ω ‖u(·, t)‖L∞(�) =+∞, or limt→+∞ ‖u(·, t)−
v(·, t)‖L∞(�) = 0, for some solution v of (2.36), with v > z and ‖z− v‖L∞(QT ) � ε. Any-
how we conclude that z is L-unstable from above. �

The following result is a counterpart, for what concerns instability, of Proposition 2.32.

PROPOSITION 2.41. Assume (D), (A), (C) and (N). Moreover, let z be a solution of (2.36).
(i) If α is a strict lower solution of (2.36) and β is an upper solution of (2.36) such

that α � β , α �� z, z < β and there is no solution u of (2.36) satisfying z < u � β

and u �� α, then z is L-unstable from above.
(ii) If β is a strict upper solution of (2.36) and α is a lower solution of (2.36) such that

α � β , β �� z, α < z and there is no solution u of (2.36) satisfying α � u < z and
u �� β , then z is L-unstable from below.

PROOF. We prove only the former statement; the proof of the latter being similar. Let v
be the minimum solution of (2.36) in [max{α, z}, β] given by Theorem 2.15. Since α is a
strict lower solution, we have v& α and hence v > max{α, z}. Let us observe that there
is no solution u of (2.36) such that z < u < v. Indeed, if u were such a solution, by the
minimality of v, it should satisfy u �� max{α, z} and hence u �� α. This contradicts the
assumptions on z. Then Proposition 2.18 implies that either there exists a sequence (αn)n



326 C. De Coster et al.

of proper regular lower solutions of (2.36) such that, for each n, αn|QT
∈W

2,1
p,B(QT ) and

z < αn < v, which converges in C1,0(QT ) to z as n→+∞, or there exists a sequence
(βn)n of proper regular upper solutions of (2.36) such that, for each n, βn|QT

∈W
2,1
p,B(QT )

and z < βn < v, which converges in C1,0(QT ) to v as n→+∞. Let us show that the latter
alternative cannot occur. Indeed, otherwise, as v& α, we could find an upper solution β̂

of (2.36), with max{α, z} � β̂ < v. Hence there should exist a solution u of (2.36), with
max{α, z} � u � β̂ and therefore z < u < v, as z �� α. This yields a contradiction with a
preceding conclusion. Therefore, the former alternative necessarily occurs, i.e. z is properly
O-unstable from above. Arguing as in Proposition 2.40, we get the conclusion. �

An immediate consequence of these statements is the following instability result, in the
presence of a lower solution α and an upper solution β satisfying the condition α �� β . It
yields a completion of Theorem 2.17; as there, we write

V = {
u ∈ C

1,0
B

(
QT

) | u �� α and u �� β
}
.

THEOREM 2.42. Assume (D), (A), (C) and (N). Suppose that α is a strict lower solution
and β is a strict upper solution of (2.36) satisfying

α �� β.

Further, assume that there exist a lower solution α1 and an upper solution β1 of (2.36) such
that α1 � β1 and α,β ∈ [α1, β1]. Then any minimal solution v and any maximal solution
w of (2.36) in V ∩ [α1, β1] is, respectively, L-unstable from below and L-unstable from
above.

PROOF. We first notice that, as α is a strict lower solution and β is a strict upper solution,
v,w ∈ V . We then apply the former statement of Proposition 2.41, with β and z replaced
respectively by β1 and w, to show that w is L-unstable from above. Whereas, we apply
the latter statement of Proposition 2.41, with α and z replaced respectively by α1 and v, to
show that v is L-unstable from below. �

We conclude this section stating some illustrative results where the existence of the lower
and upper solutions α, α1, β , β1 is replaced by assumptions relating the behaviour of the
function f to the principal eigenvalue λ1. Alternative conditions can be found in [41,42].
We first discuss the L-instability of the T -periodic solution of a linear problem.

PROPOSITION 2.43. Assume (D) and (A). Let q ∈ L∞(QT ) satisfy λ1 � q(x, t) � μ a.e.
in QT , with μ > λ1 defined in Proposition 2.52, and λ1 < q(x, t) on a subset of positive
measure. Let h ∈ Lp(QT ), with p > N + 2. Then the unique solution z of problem (2.79)
is L-unstable from below and from above.

PROOF. Let ϕ1 & 0 be the principal eigenfunction. For any σ > 0 the functions α =
z + σϕ1 and β = z − σϕ1 are respectively a strict lower and a strict upper solution of
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problem (2.79), with α & z& β . Hence z is O-unstable from above and from below.
Proposition 2.40 yields the conclusion. �

A nonlinear counterpart of Proposition 2.43 for problem (2.36) is the following instabil-
ity result (see [41,42]).

PROPOSITION 2.44. Assume (D), (A), (C) and (N). Suppose that there exist functions
a, b ∈ Lp(QT ), with p >N + 2, and γ ∈ L∞(QT ) such that, for a.e. (x, t) ∈QT and all
(s, ξ) ∈R×R

N with s �= 0,

γ (x, t)|s| + a(x, t) � f (x, t, s, ξ) sgn(s) � μ|s| + b(x, t),

where γ (x, t) � λ1 a.e. in QT , γ (x, t) > λ1 on a subset of positive measure and μ is
defined in Proposition 2.52. Then there exist a minimal solution v and a maximal solution
w of (2.36) which are, respectively, L-unstable from below and L-unstable from above.

PROOF. The proof is carried out through several steps.

CLAIM 1. There exists a minimal solution v and a maximal solution w of (2.36).
Arguing as in Claim 1 of Proposition 2.36 and using Proposition 2.52 instead of Propo-

sition 2.51, we prove the existence of a constant M > 0 such that all solutions u of (2.36)
satisfy ‖u‖C1,0(QT )

<M . Hence we conclude by Lemma 2.16.

CLAIM 2. There exist a strict regular lower solution α and a strict regular upper solution
β of (2.36) such that every solution u of (2.36) satisfies β% u% α.

Using Proposition 2.52, Proposition 2.49 and Proposition 2.1, we define, as in Claim 2
in the proof of Proposition 2.36, α = w+ + kϕ1 and β = w− − kϕ1, where w± are the
solutions of

∂tu+A(x, t, ∂x)u= γ (x, t)u± a(x, t) in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �,

and k > 0 is so large that β % u% α, for all u ∈ C1,0(QT ) with ‖u‖C1,0(QT )
< M . It is

now easy to verify that α and β are, respectively, strict regular lower and upper solutions
of (2.36).

For each r > 1, consider the modified problem

∂tu+A(x, t, ∂x)u= fr(x, t, u,∇xu) in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �,

(2.80)
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where fr :QT ×R×R
N →R is defined, for a.e. (x, t) ∈QT and every (s, ξ) ∈R×R

N ,
by

fr(x, t, s, ξ)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (x, t, s, ξ) if |s|< r ,(|s| − r
)(
λ1 − 1

r

)
s

+ (
r + 1− |s|)f (x, t, s, ξ) if r � |s|� r + 1,(

λ1 − 1
r

)
s if |s|> r + 1.

Of course, fr satisfies condition (C). Let us set

V = {
u ∈ C

1,0
B

(
QT

) | u �� α and u �� β
}
.

CLAIM 3. There exists K > 0 such that every solution u ∈ V of (2.80) with r > K satisfies
‖u‖C1,0(QT )

< K .

Assume by contradiction that, for every n, there exist rn > n and un ∈ V , solution
of (2.80) for r = rn, such that ‖un‖C1,0(QT )

� n. As in Claim 1 of Proposition 2.36, we
can write, for each r > 1,

fr(x, t, s, ξ)= qr(x, t, s, ξ)s + hr(x, t, s, ξ)

for a.e. (x, t) ∈ QT and every (s, ξ) ∈ R × R
N , where qr and hr are Lp-Carathéodory

functions satisfying

λ1 − 1

r
� qr(x, t, s, ξ) � μ and

∣∣hr(x, t, s, ξ)∣∣ � c(x, t),

for some c ∈ Lp(QT ) independent of r . Setting vn = un/‖un‖C1,0(QT )
, we have that, pos-

sibly passing to a subsequence, (vn)n converges weakly in W
2,1
p (QT ) and strongly in

C1,0(QT ) to a solution v of

∂tv +A(x, t, ∂x)v = q(x, t)v in QT ,

v = 0 on �T ,

v(·,0)= v(·, T ) in �,

where ‖v‖C1,0(QT )
= 1 and q ∈ L∞(QT ) satisfies λ1 � q(x, t) � μ a.e. in QT . Proposi-

tion 2.52 implies that q = λ1 a.e. in QT and v = aϕ1 for some a �= 0. Hence, by Proposi-
tion 2.1, we conclude that, if a > 0, there exists d > 0 such that, for all n large enough,

un � d‖un‖C1,0(QT )
aϕ1 & α

and, if a < 0, there exists d > 0 such that, for all n large enough,

un � d‖un‖C1,0(QT )
aϕ1 % β,

thus contradicting anyhow the assumption un ∈ V . This proves the claim.
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Let us set R = 1 + max{K,M,‖α‖L∞(QT ),‖β‖L∞(QT )}. We first notice that α and β

are strict lower and upper solutions of (2.80), with r = R. Indeed, otherwise there exists a
solution u ∈ V of (2.80), with r =R, which, by Claim 3, satisfies ‖u‖C1,0(QT )

< K . Hence
u is a solution of (2.36) too, contradicting the fact that α and β are strict lower and upper
solutions of (2.36).

CLAIM 4. Problem (2.80), with r = R, admits a lower solution α1 and an upper solution
β1 such that α1 � β1 and α, β ∈ [α1, β1].

We show how to build the upper solution, as the lower solution can be constructed sim-
ilarly. Let z be the solution of

∂tu+A(x, t, ∂x)u=
(
λ1 − 1

R

)
u+ (a0 − λ1)(R + 2) in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �.

Choose, by Proposition 2.1, a constant a > 0 so large that aϕ1 − z � 0. We then easily
verify that

β1 = aϕ1 − z+R + 2

is an upper solution of (2.80), with r =R. This proves the claim.
We finally notice that the minimal and the maximal solution v and w of (2.36), we ob-

tained in Claim 1, are minimal and maximal solutions in V ∩[α1, β1] of (2.80), with r =R.
Theorem 2.42 implies that they are, respectively, L-unstable from below and L-unstable
from above as solutions of (2.80), with r =R, and hence, by our choice of R, of (2.36). �

Stability and multiplicity of periodic solutions
We discuss in this section some relations between the stability properties and the multi-
plicity of solutions of (2.36). Propositions 2.45 and 2.47, which are direct consequences of
Theorem 2.21 and Theorem 2.38, yield some results expressed in terms of O-stability. Af-
terwards Propositions 2.46 and 2.48 provide an interpretation of these statements in terms
of L-stability.

PROPOSITION 2.45. Assume (D), (A), (C) and (N). Let u1, u2 be solutions of (2.36) such
that u1 < u2, u1 is not properly O-stable from above and u2 is not properly O-stable from
below. Then there exists a solution u3 of (2.36) with u1 < u3 < u2.

If moreover u1 is not O-stable from above, then it is properly O-unstable from above and
there exists a solution u3 of (2.36), with u1 < u3 < u2, which is properly O-stable from
below. Similarly, if moreover u2 is not O-stable from below then it is properly O-unstable
from below and there exists a solution u3 of (2.36) with u1 < u3 < u2 which is properly
O-stable from above.

Finally, if moreover both u1 is not O-stable from above and u2 is not O-stable from
below, then there exists a solution u3 of (2.36), with u1 < u3 < u2, which is O-stable.

PROOF. If u1 is not properly O-stable from above and u2 is not properly O-stable from
below, then Theorem 2.21 implies that there exists a solution u3 of (2.36), with u1 < u3 <

u2.
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If u1 is not O-stable from above, then there exists ε > 0 such that every solution u

of (2.36), with u1 < u < u2, satisfies ‖u − u1‖C1,0(QT )
� ε. By Lemma 2.16, there is a

solution v of (2.36) such that u1 < v < u2, ‖v− u1‖C1,0(QT )
� ε and there is no solution u

of (2.36) with u1 < u< v. Theorem 2.21 then implies that u1 is properly O-unstable from
above and v is properly O-stable from below.

Similarly, if u2 is not O-stable from below, then there exists a solution w of (2.36), with
u1 < w < u2, such that there is no solution u of (2.36) with w < u < u2. Theorem 2.21
implies that u2 is properly O-unstable from below and w is properly O-stable from above.

Finally, if u1 is not O-stable from above and u2 is not O-stable from below, then there
exist solutions v and w of (2.36), with u1 < v � w < u2, such that there is no solution
u of (2.36) with either u1 < u < v or w < u < u2. Further, v is properly O-stable from
below and w is properly O-stable from above. Theorem 2.38 then implies that there exists
a solution u3 of (2.36), with v � u3 � w, which is O-stable. �

PROPOSITION 2.46. Assume (D), (A), (C) and (N). Further, suppose that the second
comparison principle holds. Let u1, u2 be solutions of (2.36) such that u1 < u2, u1 is
L-unstable from above and u2 is L-unstable from below. Then there exists a solution u3

of (2.36) with u1 % u3 % u2 which is L-stable.

PROOF. Proposition 2.31 implies that u1 is not O-stable from above and u2 is not O-stable
from below. Hence Proposition 2.45 yields the existence of a solution u3 of (2.36) with
u1 < u3 < u2 which is O-stable and therefore, by Proposition 2.31 again, it is L-stable. �

REMARK 2.28. With reference to Proposition 2.46, we have that u1 % u2, u1 is iso-
lated from above in C1,0(QT ) and u2 is isolated from below in C1,0(QT ), by Proposi-
tion 2.31. Hence, by Lemma 2.16, there exist solutions v and w of (2.36), with u1 % v �
w% u2, such that there is no solution u satisfying either u1 < u < v or w < u < u2. By
Proposition 2.45 and Corollary 2.34, v is L-asymptotically stable from below and w is
L-asymptotically stable from above.

The following results are dual versions of Proposition 2.45 and Proposition 2.46.

PROPOSITION 2.47. Assume (D), (A), (C) and (N). Let u1, u2 be solutions of (2.36) such
that u1 < u2, u1 is not properly O-unstable from above and u2 is not properly O-unstable
from below. Then there exists a solution u3 of (2.36) with u1 < u3 < u2.

If moreover u1 is not O-unstable from above, then it is properly O-stable from above and
there exists a solution u3 of (2.36), with u1 < u3 < u2, which is properly O-unstable from
below. Similarly, if moreover u2 is not O-unstable from below, then it is properly O-stable
from below and there exists a solution u3 of (2.36), with u1 < u3 < u2, which is properly
O-unstable from above.

PROOF. If u1 is not properly O-unstable from above and u2 is not properly O-unstable
from below, then Theorem 2.21 implies that there exists a solution u3 of (2.36) with u1 <

u3 < u2.
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If u1 is not O-unstable from above, then there exists ε > 0 such that every solution u

of (2.36) with u1 < u < u2 satisfies ‖u− u1‖C1,0(QT )
� ε. By Lemma 2.16, there exists a

solution v of (2.36) such that u1 < v < u2, ‖v − u1‖C1,0(QT )
� ε and there is no solution

u of (2.36) with u1 < u< v. Moreover, Theorem 2.21 implies that u1 is properly O-stable
from above and v is properly O-unstable from below.

Similarly, if u2 is not O-unstable from below, then there exists a solution w of (2.36)
with u1 <w < u2 and there is no solution u of (2.36) such that w < u< u2. Theorem 2.21
implies then that u2 is properly O-stable from below and w is properly O-unstable from
above. �

PROPOSITION 2.48. Assume (D), (A), (C) and (N). Let u1, u2 be solutions of (2.36) such
that u1 < u2, u1 is L-stable from above and u2 is L-stable from below. Then there exists a
solution u3 of (2.36) with u1 < u3 < u2.

If moreover u1 is isolated from above in C1,0(QT ), then there exists a solution u3 of
(2.36), with u1 < u3 < u2, which is L-unstable from below. Similarly, if moreover u2 is
isolated from below in C1,0(QT ), then there exists a solution u3 of (2.36), with u1 < u3 <

u2, which is L-unstable from above.

PROOF. If we assume that there is no solution u3 of (2.36), with u1 < u3 < u2, then by
Theorem 2.21 either u1 is properly O-unstable from above or u2 is properly O-unstable
from below. In the former case there is a sequence (αn)n of proper regular lower solutions
of (2.36) such that, for every n, u1 < αn < u2, αn = 0 on �T and ‖αn−u1‖e→ 0, as n→
+∞. Fix t0 ∈ ]0, T [. Then, for every δ > 0, there exists n such that, setting u0 = αn(·, t0),
we have u0 ∈ W

2−2/p
p (�), u0 = 0 on ∂�, u0 � u1(·, t0) and ‖u0 − u1(·, t0)‖e < δ. By

Proposition 2.13, problem (2.13) has a nonextendible solution u, satisfying u > u1 in �×
[t0,+∞[ and limt→+∞ ‖u(·, t)−u2(·, t)‖e = 0. Therefore, we get lim supt→+∞ ‖u(·, t)−
u1(·, t)‖e � 1

2‖u1 − u2‖e, thus contradicting the L-stability from above of u1. Similarly,
we verify that u2 cannot be properly O-unstable from below. Accordingly, there exists a
solution u3 of (2.36), with u1 < u3 < u2.

Suppose further that u1 is isolated from above in C1,0(QT ), i.e. there is δ > 0 such
that every solution u of (2.36), with u > u1, satisfies ‖u − u1‖C1,0(QT )

� δ, then by
Lemma 2.16, there exists a solution u3 of (2.36), satisfying u3 ∈ [u1, u2] and ‖u3 −
u1‖C1,0(QT )

� δ, such that there is no solution u, with u1 < u < u3. Arguing as in the
previous step, we see that u3 is properly O-unstable from below. Hence, arguing as in
Proposition 2.40, we conclude that u3 is L-unstable from below. Similarly, if we suppose
further that u2 is isolated from below, we derive the existence of a solution u3 of (2.36)
which is L-unstable from above. �

REMARK 2.29. We stress again that the conclusions of Proposition 2.48 are obtained
without requiring the validity of any comparison principle. On the other hand, if we assume
in Proposition 2.48 that the second comparison principle holds, then u1 is L-asymptotically
stable from above, provided it is isolated from above, and u2 is L-asymptotically stable
from below, provided it is isolated from below. The L-asymptotic stability from above
of u1 easily follows from Corollary 2.34. Indeed, any solution u3 of (2.36), satisfying
u1 % u3 � u2 and such that there is no solution u with u1 < u< u3, is properly O-unstable
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from below and hence there exist proper regular upper solutions β with u1 % β% u3. The
analogous conclusion about u2 is obtained in a similar way.

2.7. Appendix: The principal eigenvalue

This appendix is devoted to the definition and the discussion of some properties of the
principal eigenvalue of the periodic problem

∂tu+A(x, t, ∂x)u= λu in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �.

(2.81)

Our first result is an extension of a similar statement proved in [82] (see also [27,18])
under stronger regularity conditions.

PROPOSITION 2.49. Assume (D) and (A). Let p > N + 2 be fixed. Then there exist a
number λ1 > 0 and a function ϕ1 ∈W

2,1
p,B(QT ) such that

Lϕ1 = λ1ϕ1,

where L is defined by (2.47) and (2.48). Moreover, the following conclusions hold:
(i) ϕ1 & 0;

(ii) if Lψ = λ1ψ for some ψ ∈W
2,1
p,B(QT ), then ψ = kϕ1 for some k ∈R;

(iii) if Lψ = λψ for some ψ ∈W
2,1
p,B(QT ), with ψ > 0, then λ= λ1;

(iv) for every λ < λ1 and h ∈ Lp(QT ), the problem Lu−λu= h has a unique solution.

PROOF. Let us introduce the operator S :C1,0
B (QT )→ C

1,0
B (QT ) which sends any h ∈

C
1,0
B (QT ) onto the unique solution u ∈ C

1,0
B (QT ) of (2.46), with σ = 0. S is com-

pact and strongly positive with respect to the order induced in C
1,0
B (QT ) by the cone

K = {u ∈ C
1,0
B (QT ) | u � 0}. Observe that

◦
K= {u ∈ C

1,0
B (QT ) | u & 0}. The strong

form of Krein–Rutman Theorem (see, e.g., [153, Theorem 7C]) yields the existence of
ϕ1 ∈W

2,1
p,B(QT ) satisfying Lϕ1 = λ1ϕ1, with λ1 the reciprocal of the spectral radius r(S)

of S, as well as conditions (i)–(iii). Finally, condition (iv) is a consequence of Proposi-
tion 2.14, if λ � 0. For λ ∈ ]0, λ1[, let us consider the extension S̃ of S to Lp(QT ), i.e.
the operator S̃ :Lp(QT )→ Lp(QT ) which sends any h ∈ Lp(QT ) onto the unique so-
lution u ∈ Lp(QT ) of (2.46), with σ = 0. S̃ is compact and positive with respect to the
order induced in Lp(QT ) by the cone K̃ = {u ∈ Lp(QT ) | u � 0}. By the weak form of
Krein–Rutman Theorem (see, e.g., [153, Proposition 7.26]), the spectral radius r(S̃) of S̃
is an eigenvalue of S̃, with eigenfunction ϕ̃1 ∈ Lp(QT ) satisfying ϕ̃1(x, t) > 0 a.e. in QT .
Since, by condition (iii), r(S̃) = r(S), the result follows from the Fredholm Alternative
(see, e.g., [144, Theorem 1.L]) applied to the operator S̃. �



Qualitative analysis of first order periodic evolutionary equations 333

PROPOSITION 2.50. Assume (D) and (A). Let q1, q2 ∈ L∞(QT ) be such that q1(x, t) �
q2(x, t) a.e. in QT and let u1, u2 be nontrivial solutions of Lu1 = q1u1 and Lu2 = q2u2,
respectively. If u2 � 0, then q1 = q2 and u1 = cu2, for some c ∈R.

PROOF. Since Lu2 − q2u2 � 0 and u2 > 0, we deduce from Remark 2.7 that u2 & 0. If
we set c =min{d ∈ R | du2 � u1} and v = cu2 − u1, as v � 0, we get Lv − q1v � 0 and
hence either v& 0 or v = 0. The minimality of c actually yields v = cu2 − u1 = 0. This
finally implies 0= Lv− q1v = (q2 − q1)cu2 and therefore q1 = q2. �

PROPOSITION 2.51. Assume (D) and (A). Let q ∈ L∞(QT ) satisfy q(x, t) � λ1 a.e. in
QT and q(x, t) < λ1 on a subset of positive measure. Then the problem (2.79) has a unique
solution, for any given h ∈ Lp(QT ) with p >N + 2.

PROOF. Setting q1 = q and q2 = λ1, Proposition 2.50 implies that the homogeneous equa-
tion Lu= qu has only the trivial solution. The Fredholm Alternative applied to the operator
T = qS̃ :Lp(QT )→ Lp(QT ), where S̃ has been defined in the proof of Proposition 2.49,
yields the conclusion. �

PROPOSITION 2.52. Assume (D) and (A). Then there exists μ > λ1 such that, if q ∈
L∞(QT ) satisfies λ1 � q(x, t) � μ a.e. in QT and λ1 < q(x, t) on a subset of positive
measure, problem (2.79) has a unique solution, for any given h ∈ Lp(QT ) with p >N+2.

PROOF. Let us show that there exists μ > λ1 such that, if q ∈ L∞(QT ) satisfies λ1 �
q(x, t) � μ a.e. in QT and λ1 < q(x, t) on a set of positive measure, the problem

∂tu+A(x, t, ∂x)u= q(x, t)u in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �,

has only the trivial solution. Indeed, assume by contradiction that, for every n, there exist
qn ∈ L∞(QT ), satisfying λ1 � qn(x, t) � λ1 + 1/n a.e. in QT and λ1 < qn(x, t) on a set
of positive measure, and a solution un of

∂tun +A(x, t, ∂x)un = qn(x, t)un in QT ,

un = 0 on �T ,

un(·,0)= un(·, T ) in �,

with ‖un‖C1,0(QT )
= 1. Proposition 2.50 implies that each un changes sign in QT . Possibly

passing to a subsequence, (un)n converges weakly in W
2,1
p (QT ) and strongly in C1,0(QT )

to a nontrivial solution u of

∂tu+A(x, t, ∂x)u= λ1u in QT ,

u= 0 on �T ,

u(·,0)= u(·, T ) in �,
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which, therefore, satisfies either u& 0, or u% 0. Hence Proposition 2.1 yields, for n large
enough, either un & 0, or un % 0, which is a contradiction. The Fredholm Alternative
applied to the operator T = qS̃ :Lp(QT )→ Lp(QT ), where S̃ has been defined in the
proof of Proposition 2.49, yields the conclusion. �
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In this chapter we present the bifurcation theory of limit cycles of planar systems with rel-
atively simple dynamics. The theory studies the changes of orbital behavior in the phase
space, especially the number of limit cycles as we vary the parameters of the system. This
theory has been considered by many mathematicians starting with Poincaré who first intro-
duced the notion of limit cycles. A fundamental step towards modern bifurcation theory in
differential equations occurred with the definition of structural stability and the classifica-
tion of structurally stable systems in the plane in 1937 developed by Andronov, Leontovich
and Pontryagin. More precisely, Andronov and Pontryagin introduced the notion of a rough
system and presented the necessary and sufficient conditions of roughness for systems on
the plane. Almost at the same time, Andronov and Leontovich carried out a systematic clas-
sification of all principal bifurcations of limit cycles on the plane for the simplest nonrough
systems. A further development of the theory had taken yet another direction, namely by
selecting bifurcation sets of codimension one for primary bifurcations, and of arbitrary
codimension in the general case for degenerate bifurcations. In the two-dimensional case,
as was proved in Andronov et al. [2], rough systems compose an open and dense set in the
space of all systems on a plane. The nonrough systems fill the boundaries between different
regions of structural stability in this space.

In the following sections we concentrate on an in-depth study of limit cycles with general
methods of both local and global bifurcations in high codimensional case. Many results
are closely related to the second part of Hilbert’s 16th problem which concerns with the
number and location of limit cycles of a planar polynomial vector field of degree n posed
in 1901 by Hilbert [73].

1. Limit cycle and its perturbations

1.1. Basic notations

Consider a planar system defined on a region G⊂R
2 of the form

ẋ = f (x), (1.1)

where f :G→ R
2 is a Cr function, r � 1. Then for any point x0 ∈G (1.1) has a unique

solution ϕ(t, x0) satisfying ϕ(0, x0) = x0. Let ϕt (x0) = ϕ(t, x0). The family of the trans-
formations ϕt :G→R

2 satisfy the following properties:
(i) ϕ0 = Id;

(ii) ϕt+s = ϕt ◦ ϕs .
The function ϕ is called the flow generated by (1.1) or by the vector field f . Let I (x0)

denote the maximal interval of definition of ϕ(t, x0) in t . If x0 ∈G is such that ϕ(t, x0) is
constant for all t ∈ I (x0), then f (x0)= 0. In this case, x0 is called a singular point of (1.1).
A point that is not singular is called a regular point.

For any regular point x0 ∈G, the solution ϕ(t, x0) defines two planar curves as follows:

γ+(x0)=
{
ϕ(t, x0): t ∈ I (x0), t � 0

}
, γ−(x0)=

{
ϕ(t, x0): t ∈ I (x0), t � 0

}
,
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which are called respectively the positive and the negative orbit of (1.1) through x0. The
union γ (x0)= γ+(x0)∪ γ−(x0) is called the orbit of (1.1) through x0. The theorem about
the existence and uniqueness of solutions ensures that there is one and only one orbit
through any point in G. A periodic orbit of (1.1) is an orbit which is a closed curve. The
minimal positive number satisfying ϕ(T , x0)= x0 is said to be the period of the periodic
orbit γ (x0). Obviously, γ (x0) is a periodic orbit of period T if and only if the correspond-
ing representation ϕ(t, x0) is a periodic solution of the same period.

DEFINITION 1.1. A periodic orbit of (1.1) is called a limit cycle if it is the only periodic
orbit in a neighborhood of it. In other words, a limit cycle is an isolated periodic orbit in
the set of all periodic orbits.

Now let (1.1) have a limit cycle L: x = u(t),0 � t � T . Since (1.1) is autonomous, for
any given point p ∈ L we may suppose p = u(0), and hence, u(t)= ϕ(t,p). Further, for
definiteness, let L be oriented clockwise. Introduce a unit vector

Z0 = 1

|f (p)|
(−f2(p), f1(p)

)T
.

Then there exists a cross section l of (1.1) which passes through p and is parallel to Z0.
Clearly, a point x0 ∈ l near p can be written as x0 = p+ aZ0, a = (x0 − p)TZ0 ∈R.

LEMMA 1.1. There exist a constant ε > 0 and Cr functions P and τ : (−ε, ε)→ R with
P(0)= 0 and τ(0)= T such that

ϕ
(
τ(a),p+ aZ0

)= p+ P(a)Z0 ∈ l, |a|< ε. (1.2)

PROOF. Define Q(t, a)= [f (p)]T(ϕ(t,p+ aZ0)− p). We have

Q(T,0)= 0, Qt (T ,0)= ∣∣f (p)
∣∣2 > 0.

Note that Q is Cr for (t, a) near (T ,0). The implicit function theorem implies that a Cr

function τ(a)= T +O(a) exists satisfying

Q
(
τ(a), a

)= 0 or
[
f (p)

]T(
ϕ
(
τ(a),p+ aZ0

)− p
)= 0.

It follows that the vector ϕ(τ(a),p + aZ0)− p is parallel to Z0. Hence, it can be rewrit-
ten as ϕ(τ(a),p + aZ0)− p = P(a)Z0, where P(a) = ZT

0 (ϕ(τ(a),p + aZ0)− p). It is
obvious that P ∈ Cr for |a| small with P(0)= 0. This ends the proof. �

The above proof tells us that the function τ is the time of the first return to l. By Defini-
tion 1.1, the periodic orbit L is a limit cycle if and only if P(a) �= a for |a|> 0 sufficiently
small.

DEFINITION 1.2. The function P : (−ε, ε)→R defined by (1.2) is called a Poincaré map
or return map of (1.1) at p ∈ l.

For convenience, we sometimes use the notation P : l→ l.
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Fig. 1. Behavior of a stable limit cycle.

DEFINITION 1.3. The limit cycle L is said to be outer stable (outer unstable) if for a > 0
sufficiently small,

a
(
P(a)− a

)
< 0 (> 0).

The limit cycle L is said to be inner stable (inner unstable) if the inequality above holds
for −a > 0 sufficiently small. A limit cycle is called stable if it is both inner and outer
stable. A limit cycle is called unstable if it is not stable.

For example, if L is stable, then the orbits near it behave like the phase portrait as shown
in Fig. 1.

Let P k(a) denote the kth iterate of a under P . It is evident that {P k(a)} is monotonic in
k and P k(a) > 0 (< 0) for a > 0 (< 0). Thus, it is easy to see that L is outer stable if and
only if P k(a)→ 0 as k→∞ for all a > 0 sufficiently small. Similar conclusions hold for
outer unstable, inner stable and inner unstable cases.

REMARK 1.1. If the limit cycle L is oriented anti-clockwise we can define its stability in
a similar manner by using the Poincaré map P defined by (1.2). For instance, it is said to
be inner stable (inner unstable) if a(P (a)− a) < 0 (> 0) for a > 0 sufficiently small.

DEFINITION 1.4. The limit cycle L is said to be hyperbolic or of multiplicity one if
P ′(0) �= 1. It is said to have multiplicity k, 2 � k � r , if P ′(0) = 1,P (j)(0) = 0, j =
2, . . . , k− 1, P (k)(0) �= 0.

By Definition 1.3, one can see that L is stable (unstable) if |P ′(0)|< 1 (> 1).

1.2. Multiplicity, stability and their property

Next, we give formulas for P ′(0) and P ′′(0). For the purpose, let

v(θ)= u′(θ)
|u′(θ)| =

(
v1(θ), v2(θ)

)T
, Z(θ)= (−v2(θ), v1(θ)

)T
,
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and introduce a transformation of coordinates of the form

x = u(θ)+Z(θ)b, 0 � θ � T , |b|< ε. (1.3)

LEMMA 1.2. The transformation (1.3) carries (1.1) into the system

dθ

dt
= 1+ g1(θ, b),

db

dt
=A(θ)b+ g2(θ, b), (1.4)

where

A(θ)= ZT(θ)fx
(
u(θ)

)
Z(θ)= trfx

(
u(θ)

)− d

dθ
ln
∣∣f (

u(θ)
)∣∣,

g1(θ, b)= h(θ, b)
[
f
(
u(θ)+Z(θ)b

)− f
(
u(θ)

)]− h(θ, b)Z′(θ)b,

g2(θ, b)= ZT(θ)
[
f
(
u(θ)+Z(θ)b

)− f
(
u(θ)

)− fx
(
u(θ)

)
Z(θ)b

]
,

h(θ, b)= (∣∣f (
u(θ)

)∣∣+ vT(θ)Z′(θ)b
)−1

vT(θ),

and trfx(u(θ)) denotes the trace of the matrix fx(u(θ)), which is called the divergence of
the vector field f evaluated at u(θ).

PROOF. By (1.3) and (1.1) we have

(
u′ +Z′b

)dθ

dt
+Z

db

dt
= f (u+Zb). (1.5)

In order to obtain (1.4) we need to solve dθ
dt and db

dt from (1.5). First, multiplying (1.5) by
vT from the left-hand side and using

vTZ = 0, vTf (u)= vTu′ = ∣∣u′∣∣= ∣∣f (u)
∣∣,

we can obtain

dθ

dt
= [∣∣f (u)

∣∣+ vTZ′b
]−1

vTf (u+Zb)= h(θ, b)f (u+Zb).

Note that

h(θ, b)f (u)= h(θ, b)
[
f (u)+Z′b

]− h(θ, b)Z′b= 1− h(θ, b)Z′b.

It follows that

h(θ, b)f (u+Zb)= h(θ, b)
[
f (u+Zb)− f (u)

]− h(θ, b)Z′b+ 1.

Then the first equation in (1.4) follows.
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Now multiplying (1.5) by ZT from the left and using

ZTZ = 1, ZTf (u)= 0, ZTZ′ = 1

2

(|v|2)′ = 0,

we obtain

db

dt
= ZT[f (u+Zb)− f (u)− fx(u)Zb

]+ZTfx(u)Zb.

It is direct to prove that

ZTfx(u)Z = trfx(u)− d

dθ
ln
∣∣f (u)

∣∣.
Then the second equation of (1.4) follows. This finishes the proof. �

Set

B(θ)= [
fx(u+Zb)

]′
b

∣∣
b=0, C(θ)= vT[fx(u)Z −Z′(θ)

]
, (1.6)

and

R(θ, b)= A(θ)b+ g2(θ, b)

1+ g1(θ, b)
.

Then by Lemma 1.2, we can write

R(θ, b) = A(θ)b+ 1

2

[
ZTBZ − 2AC

|f (u)|
]
b2 +O

(
b3)

= A(θ)b+ 1

2
A1(θ)b

2 +O
(
b3). (1.7)

For |b| small we have from (1.4)

db

dθ
=R(θ, b) (1.8)

which is a T -periodic equation. From Lemma 1.2 we know that the function R is Cr−1 in
(θ, b) and Cr in b. Let b(θ, a) denote the solution of (1.8) with b(0, a)= a. We have:

LEMMA 1.3. P(a)= b(T , a).

PROOF. Consider the equation

dθ

dt
= 1+ g1

(
θ, b(θ, a)

)
.
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It has a unique solution θ = θ(t, a) satisfying θ(0, a)= 0. From (1.7) it implies b(θ,0)= 0.
This yields θ(T ,0) = T , ∂θ

∂t
(T ,0) = 1. Hence, by the implicit function theorem a unique

function τ̃ (a)= T +O(a) exists such that θ(τ̃ , a)= T .
For x0 = u(0)+Z(0)a, we have by (1.3)

ϕ(t, x0)= u
(
θ(t, a)

)+Z
(
θ(t, a)

)
b
(
θ(t, a), a

)
.

In particular,

ϕ(τ̃ , x0)= u(T )+Z(T )b(T , a)= u(0)+Z(0)b(T , a).

Thus, it follows from Lemma 1.1 that τ = τ̃ and P(a)= b(T , a).
The proof is completed. �

For |a| small we can write

b(θ, a)= b1(θ)a + b2(θ)a
2 +O

(
a3),

where b1(0) = 1, b2(0) = 0. By (1.7) and (1.8) one can obtain b′1 = Ab1, b
′
2 = Ab2 +

1
2A1b

2
1, which give

b1(θ)= exp
∫ θ

0
A(s)ds, b2(θ)= b1(θ)

∫ θ

0

1

2
A1(s)b1(s)ds.

Then by Lemma 1.3 we have

P ′(0)= b1(T )= exp
∫ T

0
A(s)ds = exp

∫ T

0
trfx

(
u(t)

)
dt,

P ′′(0)= 2b2(T )= b1(T )

∫ T

0
A1(s)b1(s)ds.

Thus, noting (1.7) we obtain the following theorem.

THEOREM 1.1. Suppose P is a Poincaré map of (1.1) at p ∈ L. Then

(i) P ′(0)= exp
∮
L

divf dt, divf = trfx,

(ii) P
′′
(0)= P ′(0)

∫ T

0
e
∫ t

0 A(s)ds
[
ZT (t)B(t)Z(t)− 2A(t)C(t)

|f (u(t))|
]

dt.

Hence, L is stable (unstable) if I (L)= ∮
L

divf dt < 0 (> 0).

We remark that Theorem 1.1 remains true in the case of counter clockwise orientation
of L.
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EXAMPLE 1.1. Consider the quadratic system

ẋ =−y(1+ cx)− (
x2 + y2 − 1

)
,

ẏ = x(1+ cx), 0 < c < 1.

This system has the circle L: x2 + y2 = 1 as its limit cycle. We claim that the cycle is
unstable.

In fact, we have

I (L) =
∮
L

(−2x − cy)dt =
∮
L

(
c dx

1+ cx
− 2 dy

1+ cx

)

=
∫∫

x2+y2�1

dx dy

(1+ cx)2
> 0.

EXAMPLE 1.2. The system

ẋ =−y − x
(
x2 + y2 − 1

)2
,

ẏ = x − y
(
x2 + y2 − 1

)2

has a unique limit cycle given by L: (x, y)= (cos t, sin t),0 � t � 2π . For the system, it
is easy to see that v(θ)= (− sin θ, cos θ)T,Z(θ)= (− cos θ,− sin θ)T. By Lemma 1.2 and
(1.6) we then have

A(θ)= 0, B(θ)=
(

8 cos2 θ 8 sin θ cos θ
8 sin θ cos θ 8 sin2 θ

)
.

Thus from Theorem 1.1 it follows P ′(0)= 1,P ′′(0)= 16π . This shows that L is a limit
cycle of multiplicity 2.

From (1.6) and formulas for P ′(0) and P ′′(0) in Theorem 1.1 the derivatives P ′(0) and
P ′′(0) are independent of the choice of the cross section l. This fact suggests that the
stability and the multiplicity of a limit cycle should have the same property. Below we will
prove this in detail even if the cross section l is taken as a Cr smooth curve.

To do this, let L be a limit cycle of (1.1) as before and let l1 be a Cr curve which has an
intersection point p1 ∈ L with L and is not tangent to L at p1. Then it can be represented
as

l1: x = p1 + q(a), q(0)= 0, det
(
f (p1), q

′(0)
)
> 0,

where q : (−ε, ε)→ R is Cr for a constant ε > 0. The condition det(f (p1), q
′(0)) > 0

means that the point p1 + q(a) is outside L if and only if a > 0.
In the same way as Lemma 1.1 we can prove that there exist two Cr functions

P1, τ1 : (−ε, ε)→R, P1(0)= 0, τ1(0)= T
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Fig. 2. Two Poincaré maps.

such that

ϕ
(
τ1(a),p1 + q(a)

)= p1 + q
(
P1(a)

) ∈ l1. (1.9)

This yields another Poincaré map P1 : (−ε, ε)→R.

LEMMA 1.4. Let P and P1 be two Poincaré maps defined by (1.2) and (1.9), respectively.
Then there exists a Cr function h1 : (−ε, ε)→R with h1(0)= 0, h′1(0) > 0 such that h1 ◦
P = P1 ◦ h1.

PROOF. Since p = u(0) we can suppose p1 = u(t1) for some t1 ∈ [0, T ). Similar to
Lemma 1.1 again, there exist two Cr functions h1 and τ ∗, both from (−ε, ε) to R, with
h1(0)= 0 and τ ∗(0)= t1 such that

ϕ
(
τ ∗(a),p+ aZ0

)= p1 + q
(
h1(a)

) ∈ l1. (1.10)

See Fig. 2. Let x0 = p+ aZ0, x1 = ϕ(τ ∗(a), x0), x2 = ϕ(τ(a), x0). By (1.10) and (1.2) we
have x1 = p1 + q(a1), a1 = h1(a) and x2 = p + P(a)Z0. Hence, by (1.9) and (1.10) we
have

ϕ
(
τ1(a1), x1

)= p1 + q
(
P1(a1)

)
,

ϕ
(
τ ∗

(
P(a)

)
, x2

)= p1 + q(a2), a2 = h1
(
P(a)

)
.

On the other hand, by the flow property of ϕ we have

x3 = ϕ
(
τ1(a1), x1

)= ϕ
(
τ1(a1)+ τ ∗(a), x0

)= ϕ
(
τ ∗

(
P(a)

)+ τ(a), x0
)

= ϕ
(
τ ∗

(
P(a)

)
, x2

)
,

which, together with the above, follows that q(P1(a1)) = q(a2) or a2 = P1(a1). Hence
h1 ◦ P = P1 ◦ h1.
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It needs only to prove h′1(0) > 0. Let a � 0. Introduce one more cross section below

l′: x = u(t1)+Z(t1)a, 0 � a � ε.

Let τ̃1(a)= t1 +O(a) be such that θ(τ̃1, a)= t1. By (1.3) we have

x1 = ϕ(τ̃1, x0)= u(t1)+Z(t1)b(t1, a) ∈ l′.

Then b(t1, a)= |p1x1|. By the proof of Lemma 1.3,

∂b

∂a
(t1,0)= exp

∫ t1

0
A(s)ds > 0.

Consider the triangle formed by points p1, x1 and x1. There exists a point x∗ on the
orbital arc x̂1x1 such that f (x∗) is parallel to the side x1x1. Since the arc x̂1x1 approaches
p1 as a→ 0 we have x∗ → p1, f (x∗)→ f (p1) as a→ 0. Hence, if we let α1 denote the
angle between sides p1x1 and x1x1, and α2 the angle between sides p1x1 and x1x1, then
we have α1 → π

2 , α2 → α0 as a→ 0, where α0 ∈ (0, π
2 ] is the angle between the vectors

f (p1) and q ′(0). That is, α0 is the angle between L and l1 at p1. By the Sine theorem, it
follows

|p1x1|
sinα2

= |p1x1|
sinα1

, or

∣∣q(h1(a)
)∣∣= sinα1

sinα2
b(t1, a)= a

sinα0
exp

∫ t1

0
A(s)ds

(
1+O(a)

)
.

On the other hand, q(h1(a))= q ′(0)h′1(0)a +O(a2) which gives

∣∣q(h1(a)
)∣∣= ∣∣q ′(0)∣∣ · ∣∣h′1(0)∣∣a +O

(
a2), a > 0.

Hence, we obtain

∣∣h′1(0)∣∣= 1

|q ′(0)| sinα0
exp

∫ t1

0
A(s)ds �= 0.

Noting that h1(a) > 0 for a > 0 we have h′1(0) > 0. The proof is completed. �

COROLLARY 1.1. The stability and the multiplicity of the limit cycle L are independent
of the choice of cross sections.

PROOF. By Lemma 1.4 we have

h′1(a)
[
P(a)− a

]= P1
(
h1(a)

)− h1(a), (1.11)
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where a lies between a and P(a). By (1.11) and Definition 1.3, the stability of L under P
is the same as that of it under P1. Also, if the limit cycle L has multiplicity k under P , then
P(a)− a = cka

k +O(ak+1) for some ck �= 0. It follows from (1.11) that

P1(a)− a = cka
k +O

(
ak+1), ck = ck

[h′1(0)]k−1
.

Therefore, L has the same multiplicity under P1. This ends the proof. �

In the following we discuss the relation of equivalence between two planar systems.
Consider (1.1) and another system of the form

ẏ = g(y), (1.12)

where g :D→R
2 is Cr (r � 1) on a region D ⊂R

2.

DEFINITION 1.5. Let U ⊂G,V ⊂D be two regions. Two planar systems defined by vec-
tor fields f |U and g|V are said to be Ck (1 � k � r) equivalent if there exists a Ck diffeo-
morphism h :U → V which takes orbits of (1.1) on U to orbits of (1.12) on V preserving
their orientation.

Let ψ(t, y) denote the flow generated by (1.12). Then under the condition of Defini-
tion 1.5 a Ck function s(t, x) exists with s(0, x)= 0, ∂s

∂t
> 0 such that

h
(
ϕ(t, x)

)=ψ
(
s(t, x), h(x)

)
, (1.13)

as long as ϕ(t, x) ∈U .
If the functions f and g have the following relationship:

g
(
h(x)

)=Dh(x)f (x),

then the system (1.12) is obtained from (1.1) by making the coordinate transformation
y = h(x). In this case, (1.13) becomes h◦ϕt =ψt ◦h. If f and g satisfy g(x)=K(x)f (x)

where K : R2 → R is a Cr positive function, then orbits of (1.1) and (1.12) are identical,
and the flows ϕ and ψ satisfy

K
(
ϕ(t, x)

)dϕ

dt
= g

(
ϕ(t, x)

)
,

dψ

ds
= g

(
ψ(s, x)

)
.

Hence, we are to sink a function s(t, x) with s(0, x)= 0 and satisfying

ϕ(t, x)=ψ
(
s(t, x), x

)
.

Differentiating the equality in t gives

dϕ

dt
= dψ

ds

ds

dt
.
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Substituting the equality above into the previous equations yields

dψ

ds
=K

(
ϕ(t, x)

)dϕ

dt
=K

(
ϕ(t, x)

)dψ

ds

ds

dt
.

Thus, the function s should satisfy ds
dt = 1

K(ϕ(t,x))
, which has the solution

s(t, x)=
∫ t

0

dt

K(ϕ(t, x))
.

With this choice of s(t, x) above one can prove ϕ(t, x)= ψ(s(t, x), x) by the uniqueness
of initial solutions.

For Ck equivalent systems we have the following lemma.

LEMMA 1.5. Suppose (1.1) and (1.12) are Ck equivalent under a Ck diffeomorphism
h :U → V,1 � k � r . Let L⊂ U and L1 = h(L)⊂ V be limit cycles of (1.1) and (1.12)
respectively. Then:

(i) The cycles L and L1 have the same multiplicity.
(ii) The inner (outer) stability of L is the same as the inner (outer) stability of L1 if

h((Int.L) ∩ U) ⊂ Int.L1, and the inner (outer) stability of L is the same as the
outer (inner) stability of L1 if h((Int.L)∩U)⊂ Ext.L1.

PROOF. For the limit cycle L, take a cross section l at p ∈ L as before. Then the curve
l1 = h(l) is a cross section of L1 at p1 = h(p). Let

Z1 = 1

|g(p1)|
(−g2(p1), g1(p1)

)T
, Z′1 = hx(p)Z0.

Note that h(p + aZ0)= p1 + Z′1a +O(a2). It is easy to see that the vector Z′1 is tangent
to l1 at p1. According to the orientation of L1 and the direction of Z′1 there are four cases
to consider as follows:
• Case 1. Z1 ·Z′1 > 0 with L1 clockwise oriented;
• Case 2. Z1 ·Z′1 < 0 with L1 clockwise oriented;
• Case 3. Z1 ·Z′1 > 0 with L1 counter clockwise oriented;
• Case 4. Z1 ·Z′1 < 0 with L1 counter clockwise oriented.

See Fig. 3.
By (1.13) the periods T of L and T1 of L1 have the relation T1 = s(T ,p). Let P be the

Poincaré map near L defined by (1.2). The cross section l1 has a representation

y = h(p+ aZ0)= p1 + q(a),

where q(a)= h(p+ aZ0)− h(p)= Z′1a +O(a2). Introduce a function q1 as follows:

q1(a)=
{
q(a) for case 1 or 3,
q(−a) for case 2 or 4.
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Fig. 3. Four possible cases for L1 and Z′1.

Then l1 can be rewritten as l1: y = p1 + q1(a), |a| % 1 with q1 satisfying Z′1 · q ′1(0) > 0.
On l1 we can define a Poincaré map P1 near L1 by

ψ
(
τ1(a),p1 + q1(a)

)= p1 + q1
(
P1(a)

) ∈ l1, (1.14)

where τ1(a)= T1 +O(a) is the time of the first return to l1.
Since h(p+ aZ0)= p1 + q(a)= p1 + q1((−1)i−1a) for case i, we have

h
(
p+ P(a)Z0

)= p1 + q
(
P(a)

)= p1 + q1
(
(−1)i−1P(a)

) ∈ l1

and hence by (1.2)

h
(
ϕ
(
τ(a),p+ aZ0

))= p1 + q1
(
(−1)i−1P(a)

) ∈ l1. (1.15)

On the other hand, by (1.13) we have

h
(
ϕ
(
τ(a),p+ aZ0

)) = ψ
(
s
(
τ(a),p+ aZ0

)
, h(p+ aZ0)

)
= ψ

(
τ ∗(a),p1 + q1

(
(−1)i−1a

)) ∈ l1, (1.16)

for case i, where τ ∗(a)= s(τ (a),p+ aZ0)= T1 +O(a).
Hence, comparing (1.14) with (1.16) we obtain

τ ∗(a)= τ1
(
(−1)i−1a

)
, h

(
ϕ
(
τ(a),p+ aZ0

))= p1 + q1
(
P1

(
(−1)i−1a

))
.

Therefore, it follows from (1.15) that (−1)i−1P(a) = P1((−1)i−1a) for case i. Thus for
case i we have

a
(
P(a)− a

)= (−1)i−1a
[
P1

(
(−1)i−1a

)− (−1)i−1a
]
.

Hence, similar to Corollary 1.1, one can prove easily that L and L1 have the same multi-
plicity. Furthermore, they have the same stability for cases 1 and 4. However, for cases 2
and 3, the inner (outer) stability of L is the same as the outer (inner) stability of L1.

Then noting that h((Int.L)∩U)⊂ Int.L1 for cases 1 and 4, and h((Int.L)∩U)⊂ Ext.L1
for cases 2 and 3, the proof follows from Corollary 1.1. �
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EXAMPLE 1.3. Consider the system

ẋ = y, ẏ =−x + y
(
x2 + y2 − 1

)
.

By Theorem 1.1, the system has a unique limit cycle L: x2 + y2 = 1, and it is hyperbolic
and unstable.

Define four functions

h1(x, y)= (x, y)T, h2(x, y)=
(

x

x2 + y2
,

y

x2 + y2

)T

,

h3(x, y)=
(

y

x2 + y2
,

x

x2 + y2

)T

, h4(x, y)= (y, x)T,

and a region U = {(x, y): x2 + y2 > 1
2 }.

Let

u̇= gi1(u, v), v̇ = gi2(u, v)

denote the system obtained from the previous cubic system by making the coordinate trans-
formation (u, v)T = hi(x, y), (x, y) ∈ U . Note that the unit circle is invariant under each
hi . It is evident that the case i in Fig. 3 occurs with L1 = L for each i ∈ {1,2,3,4}.

This example shows that each case in Fig. 3 can happen. In particular, the orientation of
a limit cycle may be changed under a coordinate transformation.

1.3. Perturbations of a limit cycle

In the rest, we return to the perturbations of a limit cycle.
Consider the following system

ẋ = f (x)+ F(x,μ) (1.17)

where μ ∈ R
m is a vector parameter with m � 1, and F :G×R

m→ R
2 is a Cr function

with F(x,0) = 0. Thus, system (1.1) is the unperturbed system of (1.17). As before, let
(1.1) have a limit cycle L: x = u(t),0 � t � T . Then completely similar to Lemma 1.2 we
have the following lemma.

LEMMA 1.6. The transformation (1.3) carries (1.17) into the system

θ̇ = 1+ g1(θ, b)+ h(θ, b)F
(
u(θ)+Z(θ)b,μ

)
,

ḃ=A(θ)b+ g2(θ, b)+ZT(θ)F
(
u(θ)+Z(θ)b,μ

)
,

(1.18)

where the functions A, g1, g2 and h are the same as those given in Lemma 1.2.
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By (1.18) we have

db

dθ
=R(θ, b,μ), (1.19)

where R(θ, b,μ)=A(θ)b+ZT(θ)Fμ(u(θ),0)μ+O(|b,μ|2).
Let b(0, a,μ) denote the solution of (1.19) with b(0, a,μ)= a. We can write

b(θ, a,μ)= b1(θ)a + b0(θ)μ+O
(|a,μ|2),

where b1(0)= 1, b0(0)= 0. Inserting the above into (1.19) yields

b′1 =Ab1, b′0 =Ab0 +ZTFμ

(
u(s),0

)
.

It follows that b1(θ)= exp
∫ θ

0 A(s)ds as before, and

b0(θ)= b1(θ)

∫ T

0
b−1

1 (s)ZT(s)Fμ

(
u(s),0

)
ds.

Therefore,

b(T , a,μ) = exp
∫ T

0
A(s)ds

[
a +

∫ T

0
b−1

1 (s)ZT(s)Fμ

(
u(s),0

)
dsμ

]

+O
(|a,μ|2). (1.20)

On the other hand, using (1.2) we can define a Poincaré map P(a,μ) similarly. By
Lemma 1.3 it follows

P(a,μ)= b(T , a,μ). (1.21)

Obviously, for |μ| small (1.17) has a limit cycle near L1 if and only if P has a fixed point
in a near a = 0.

The simplest case is that L is hyperbolic. In this case, L will persist under perturbations.
In other words, we have:

THEOREM 1.2. Let L be hyperbolic. Then there exist ε > 0 and a neighborhood U of L
such that (1.17) has a unique limit cycle in U for |μ|< ε. Moreover, the limit cycle is also
hyperbolic and has the same stability as L.

PROOF. Since L is hyperbolic we have P ′a(0,0) �= 1, or equivalently I (L) = ∮
L

divf
dt �= 0. By (1.20) and (1.21),

P(a,μ)− a = (
eI (L) − a

)
a +N0μ+O

(|a,μ|2), (1.22)

where N0 = eI (L)
∫ T

0 exp(− ∫ t

0 A(s)ds)ZT(s)Fμ(u(s),0)ds.
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For (a,μ) near zero applying the implicit function theorem to the equation P(a,μ)−
a = 0 we find a unique fixed point a = a∗(μ)=O(μ) of P . This means that for |μ| small
(1.17) has a unique limit cycle, denoted by Lμ, near L. The cycle has a representation
ϕ(t,p + a∗(μ)Z0,μ) where ϕ(t, x,μ) denotes the flow of (1.17) with ϕ(0, x,μ) = x.
Moreover, by (1.22) we have P ′a(a∗(μ),μ)= eI (L) +O(|a∗(μ),μ|), which gives

(
eI (L) − 1

)[
P ′a

(
a∗(μ),μ

)− 1
]
> 0

for all |μ| small. Then the conclusion follows from Theorem 1.1. This ends the proof. �

Further, for the nonhyperbolic case we have

THEOREM 1.3. Let L be a nonhyperbolic limit cycle of the Cr system (1.1) with r � 2.
(i) If L has multiplicity 2, then there exist ε > 0, a neighborhood U of L and a Cr

function �(μ) = O(μ) such that (1.17) has no limit cycles (respectively a limit cycle of
multiplicity 2, two hyperbolic limit cycles) in U as �(μ) < 0 (respectively = 0, > 0) for
|μ|< ε.

(ii) If L has multiplicity k with 3 � k � r , then there exist ε > 0 and a neighborhood U

of L such that (1.17) has at most k limit cycles in U for |μ|< ε. Moreover, (1.17) has at
least a limit cycle in U for |μ|< ε if k is odd.

PROOF. Since r � 2, I (L)= 0 and L has multiplicity 2 we can rewrite (1.22) as

P(a,μ)− a =Q0(μ)+Q1(μ)a +Q2(μ)a
2(1+ o(1)

)
,

where Q0(0)=Q1(0)= 0, Q2(0) �= 0.
Let G(a,μ)= P(a,μ)− a, which is called a bifurcation function of (1.17). By the im-

plicit function theorem a unique Cr function q(μ)=O(μ) exists such that Ga(q(μ),μ)=
0 for |μ| small. Then Taylor’s formula yields

G(a,μ)=G
(
q(μ),μ

)+ 1

2
Gaa

(
q(μ),μ

)(
a − q(μ)

)2(1+ o(1)
)
.

Now it is clear that the conclusion (i) follows by taking �(μ)=−G(q(μ),μ)Q2(0).
To prove the second conclusion let us assume (1.17) has k+1 limit cycles in an arbitrary

neighborhood of L for some sufficiently small μ �= 0. Then the function G has k + 1 zero
in a for this small μ. From Rolle’s theorem, ∂G

∂a
has k zeros in a. Using the same theorem

repeatedly we see that ∂kG
∂ak

has a zero a0(μ) which can be arbitrarily small as μ goes to
zero.

On the other hand, we have

∂kG

∂ak
= ∂kP

∂ak
, P (a,0)− a = qka

k + o
(
ak

)
, qk �= 0,

which implies ∂kG
∂ak

= k!qk + o(1) �= 0 for (a,μ) near zero. This is a contradiction. Hence,
(1.17) has at most k limit cycles near L for |μ| small.
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Finally, if k is odd, we have then qka[P(a,0) − a] > 0 for |a| = ε, where ε > 0 is a
small constant. Thus, there exists a constant δ > 0 such that qka[P(a,μ)−a]> 0 for |a| =
ε, |μ| � δ. Therefore, a function a∗(μ) exists with |a∗(μ)| < ε such that P(a∗(μ),μ)−
a∗(μ)= 0, |μ|< δ. The proof is completed. �

EXAMPLE 1.4. Consider

ẋ =−y + x
(
x2 + y2 − 1

)2 − x
[
μ1

(
x2 + y2

)+μ2
]
,

ẏ = x + y
(
x2 + y2 − 1

)2 − y
[
μ1

(
x2 + y2

)+μ2
]
.

(1.23)

For μ1 = μ2 = 0, (1.23) has a unique limit cycle

L: x = cos t, y = sin t, 0 � t � 2π.

Similar to Example 1.2, the limit cycle L has multiplicity 2 with P ′′a (0,0) = −16π . We
make a transformation of the form (x, y)= (1−b)(cos θ, sin θ),0 � θ � 2π , so that (1.23)
becomes

θ̇ = 1, ḃ=−(1− b)
[
h2 −μ1h− (μ1 +μ2)

]
,

where h= (1− b)2 − 1. Hence we have

db

dθ
=−(1− b)

[
h2 −μ1h− (μ1 +μ2)

]
.

Obviously, the solution b(θ, a,μ1,μ2) of the above equation with b(0, a,μ1,μ2) = a is
2π -periodic near b= 0 if and only if the initial data a satisfies

G∗(a,μ1,μ2)≡ a2 −μ1a − (μ1 +μ2)= 0.

Let �(μ1,μ2)= μ2
1+4(μ1+μ2). Then for (μ1,μ2) near (0,0), (1.23) has no limit cycles

(respectively a unique multiple 2 limit cycle, two hyperbolic limit cycles) if �(μ1,μ2) < 0
(respectively = 0, > 0). The equation �(μ1,μ2)= 0 defines a curve μ2 =−μ1 − 1

4μ
2
1 on

the (μ1,μ2)-plane, which is called a bifurcation curve of saddle-node type. See Fig. 4.
Turn back to system (1.17). Note that

A(θ)= trfx(u)− d

dθ
ln
∣∣f (u)

∣∣, Z(θ)= 1

|f (u)|
(−f2(u), f1(u)

)
.

The constant N0 in (1.22) can be written as N0 = 1
|f (u(0))|e

I (L)M , where

M =
∫ T

0
e−

∫ t
0 trfx(u(s))dsf

(
u(t)

)∧ Fμ

(
u(t),0

)
dt, (1.24)

with (a1, a2)∧ (b1, b2)= a1b2 − a2b1, μ ∈R.
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Fig. 4. Bifurcation diagram (saddle-node type) for (1.23).

Thus, if P(a,0)− a = qka
k + o(ak), we can rewrite (1.22) as

G(a,μ)= P(a,μ)− a = qka
k + eI (L)

|f (u(0))|Mμ+ o
(∣∣μ,ak∣∣). (1.25)

Using (1.25) we can prove

THEOREM 1.4. Let (1.17) be analytic with μ ∈R. If M �= 0, then exist ε > 0 and a neigh-
borhood U of L such that for |μ|< ε and in the region U , (1.17) has

(i) a unique limit cycle with multiplicity one if L is of odd multiplicity;
(ii) two limit cycles with each having multiplicity one for μ lying one side of μ= 0 and

no limit cycles for μ lying the opposite side if L is of even multiplicity;
(iii) no limit cycles if L is nonisolated.

PROOF. By Theorem 1.2 we may suppose I (L) = 0. By (1.25), a unique function of the
form

μ=−qk

M

∣∣f (
u(0)

)∣∣ak +O
(
ak+1)= μ∗(a) (1.26)

exists such that G(a,μ∗(a)) = 0. If k is odd with qk �= 0 the function μ∗ has a unique
inverse

a =
( −Mμ

qk|f (u(0))|
)1/k(

1+ o
(
μ1/k))= a∗(μ),

which satisfies ∂G
∂a

(a∗(μ),μ) �= 0.
Then the conclusion (i) follows. The conclusion (ii) follows just similarly.
In the case that L is a nonisolated periodic orbit, we have G(a,0)≡ 0 for |a| small. This

implies that μ∗(a)≡ 0 since G(a,μ)= 0 if and only if μ= μ∗(a). Hence, for all |μ|> 0
we have G(a,μ) �= 0. This means that (1.17) has no limit cycles near L for |μ|> 0 small.
This ends the proof. �
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EXAMPLE 1.5. Consider (1.23) again with (μ1,μ2) varying on a straight line. That is, let
μ1 = μ,μ2 = cμ, where c is a constant. Then (1.23) becomes

ẋ =−y + x
(
x2 + y2 − 1

)2 −μx
(
x2 + y2 + c

)
,

ẏ = x + y
(
x2 + y2 − 1

)2 −μy
(
x2 + y2 + c

)
.

(1.27)

By (1.24) we have M = (1+ c)2π . Note that q2 = 1
2P

′′
a (0,0)=−8π . The formula (1.26)

becomes μ∗(a)= 4
1+c a

2 +O(a3), which has inverse functions

a = aj (μ)=
[

1+ c

4
μ

]1/2[
(−1)j +O

(|μ|1/2)], j = 1,2.

Thus, when 1+ c �= 0, (1.27) has no limit cycles (2 limit cycles) for (1+ c)μ < 0 (> 0).
When (1 + c) = 0, then (1.27) has always two limit cycles given by x2 + y2 = 1 and
x2+y2 = 1−μ for all |μ|> 0 small. This shows that the condition M �= 0 in Theorem 1.4
is somehow necessary.

One can give the bifurcation diagram of (1.27) and compare it with Fig. 4.

REMARK 1.2. A typical result on qualitative theory of differential equations is the so-
called Poincaré–Bendixson theorem which says that the positive limit set of a bounded
positive semi-orbit is a connected curve consisting of singular points and orbits connecting
them. One can find a proof of the theorem in Hale [35], Chicone [14] and Zhang et al.
[127]. An important corollary of the theorem is that for an analytic system a positively
invariant set with no singular points contains at least one limit cycle. This corollary has
many applications to various planar systems to study the existence of a limit cycle. On the
other hand, there are also many results on the nonexistence of a limit cycle or the existence
of two or more limit cycles. The reader can consult Zhang et al. [127], Ye [116], Ye et al.
[117] and Luo et al. [101] for a general theory of limit cycles. For a given planar system
with or without parameters it is usually very significant and also difficult to find the number
of limit cycles of it. Thousands of papers have been published on this aspect. For recent
works, one can see [1,6,8,11,15,18,19,22–26,28–34,97–99].

Results in Theorems 1.1–1.4 are fundamental which can be found in Andronov [2],
Chow and Hale [16] and Han [51]. The conclusions in Lemma 1.5 seem very natural, but
not obvious. The proof presented here is new.

2. Focus values and Hopf bifurcation

2.1. Poincaré map and focus value

In this section we consider local behavior of a planar C∞ systems near an elementary
focus.
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After removing the focus to the origin, the system can be written as

ẋ = ax + by + F(x, y)= f (x, y),

ẏ = cx + dy +G(x,y)= g(x, y),
(2.1)

where c �= 0,F and G : R2 →R are C∞ functions with

F(0,0)=G(0,0)= 0,
∂(F,G)

∂(x, y)
(0,0)= 0,

and the eigenpolynomial h(λ)= λ2− (a+ d)λ+ ad − bc has a pair of conjugate complex
zero α ± iβ �= 0.

Let

C =
⎛
⎝1

α − a

β

0 − c

β

⎞
⎠ , C−1 =

⎛
⎝1

α − a

c

0 −β

c

⎞
⎠ .

By using h(α ± iβ)= 0, or

α2 − β2 − (a + d)α+ ad − bc= 0,
(
2α − (a + d)

)
β = 0,

it is easy to see that

C−1
(
a b

c d

)
C =

(
α β

−β α

)
,

(2.2)

α = 1

2
(a + d), |β| = 1

2

√
−4bc− (a − d)2.

Then the linear transformation (x, y)T = C(u, v)T carries (2.1) into the form

u̇= αu+ βv+ F̃ (u, v), v̇ =−βu+ αv + G̃(u, v),

where F̃ , G̃=O(|u,v|2). We call the above system a first order normal form of (2.1).
Let us define a Poincaré map of (2.1) near the origin. For any given θ0 ∈ [0,2π), let

Z0 = (cos θ0, sin θ0)
T, Z⊥0 = (sin θ0,− cos θ0)

T.

The unit vector Z0 determines a cross section l below

l: (x, y)T = rZ0, 0 < r < r0
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for r0 > 0 small. For (x0, y0)
T = rZ0 ∈ l, let (x(t, x0, y0), y(t, x0, y0)) be the solution

of (2.1) with x(0, x0, y0) = x0, y(0, x0, y0) = y0. Then the formula of constant variation
follows:

(
x(t, x0, y0)

y(t, x0, y0)

)
=

[
exp

(
at bt

ct dt

)](
x0
y0

)
+O

(|x0, y0|2
)
. (2.3)

Thus,

(
x(t, x0, y0)

y(t, x0, y0)

)
−

(
x0
y0

)
=

[
exp

(
at bt

ct dt

)
− I

]
Z0r +O

(
r2)≡ rV (t, r).

By (2.2) we have

V (t, r)= C

[
exp

(
αt βt

−βt αt

)
− I

]
C−1Z0 +O(r).

Let H(t, r)= [V (t, r)]TZ⊥0 . Define

V (t,0)= lim
r→0

V (t, r)= C

[
exp

(
αt βt

−βt αt

)
− I

]
C−1Z0.

Also, if we allow the variable r to be negative in the definition of l then H is well defined
for |r|< r0. It is easy to see that

H(T ,0)= (
eαT − 1

)
Z0Z

⊥
0 = 0, Ht (T ,0)= eαT β �= 0,

where T = 2π
|β| . Hence, the implicit function theorem yields that a unique C∞ function

τ(r)= T +O(r) exists such that H(τ(r), r)= 0 for |r|< r0. That is to say, for 0 < r < r0,
τ(r) is the time of the first return to l by a circle. Therefore, we can write

(
x(τ, x0, y0)

y(τ, x0, y0)

)
= P(r)Z0 ∈ l, 0 < r < r0, (2.4)

where P ∈ C∞ for |r|< r0 with rP (r) > 0 for r �= 0.

DEFINITION 2.1. Let (2.1) satisfy (2.2). The function P defined by (2.4) is called a
Poincaré map of (2.1) near the origin. The map is often written as P : l→ l.

DEFINITION 2.2. If there exists r ′0 > 0 such that P(r)− r < 0(> 0) for 0 < r < r ′0, we
say the origin is a stable (unstable) focus. If P(r)− r = 0 for 0 < r < r ′0, we say the origin
is a center.

REMARK 2.1. Similar to Corollary 1.1 we can prove that the stability of the origin is
independent of the choice of θ0 which is the angle defining the section l.
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In fact, for any given θ0, θ1 ∈ [0,2π) with θ0 �= θ1, let the corresponding cross sections
and Poincaré maps be l0, l1 and P0 : l0 → l0 and P1 : l1 → l1, respectively. Similarly, there
exist unique C∞ functions τ ∗(r)= t1 +O(r) and h1(r)=O(r) such that

(
x(τ ∗, rZ0)

y(τ ∗, rZ0)

)
= h1(r)Z1, t1 ∈ (0, T ).

Differentiating the equation above in r and using formula of constant variation (2.3) we
obtain

[
exp

(
at1 bt1
ct1 dt1

)]
Z0 = h′1(0)Z1,

which yields h′1(0) �= 0. It is clear that h1(r) > 0 for r > 0. Thus, h′1(0) > 0. Then in the
same way as in Lemma 1.4 we have

h1 ◦ P0 = P1 ◦ h1,

which gives the conclusion in Remark 2.1 easily.

LEMMA 2.1. For any given θ0 ∈ [0,2π) the origin is a stable (unstable) focus of (2.1) if
and only if

r
[
P(r)− r

]
< 0 (> 0) for 0 < |r|< r0.

Hence, if for some k � 1 it holds that

P(r)− r = 2πvkr
k +O

(
rk+1), vk �= 0, (2.5)

then k is odd, and the origin is stable (unstable) if vk < 0 (> 0).

PROOF. Let P0 denote the function P defined by (2.4). For any θ ∈ [0,2π) there exists a
unique θ1 ∈ [0,2π) such that

θ1 = θ0 + π if 0 � θ0 < π; θ0 = θ1 + π if π � θ0 < 2π.

Let P1 denote the Poincaré map associated to θ1. We claim that

P0(r)=−P1(−r), |r|< r0. (2.6)

For definiteness, assume 0 � θ0 < π and 0 < r < r0. Let Z1 = (cos θ1, sin θ1). Then Z1 =
−Z0 and (x0, y0)

T = rZ0 = (−r)Z1. Hence, by (2.4) we have

(
x(τ, x0, y0)

y(τ, x0, y0)

)
= P0(r)Z0 = P1(−r)Z1,
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Fig. 5. The Poincaré maps P0 and P1(b > 0).

which gives (2.6). See Fig. 5.
By Definition 2.2, the origin is stable if and only if

P0(r)− r < 0 for 0 < r < r0. (2.7)

By Remark 2.1, the above inequality is equivalent to

P1(r)− r < 0 for 0 < r < r0.

Note that by (2.6)

P1(r)− r =−[
P0(−r)− (−r)

]
.

Hence, (2.7) is equivalent to

P0(r)− r > 0 for 0 <−r < r0.

Then combining (2.7) and the above together we see that (2.7) holds if and only if

r
[
P0(r)− r

]
< 0 for 0 < |r|< r0.

Thus, if (2.5) holds, the number k must be odd and the sign of vk determines the stability
of the origin. This ends the proof. �

DEFINITION 2.3. Let (2.5) hold with k = 2m+ 1,m � 0. We call the origin to be a focus
of order m, and vk the mth Lyapunov constant or focus value. The focus at the origin is
called rough or hyperbolic (weak or fine) as m= 0 (m � 1).

REMARK 2.2. Similar to Remark 2.1 and Corollary 1.1, one can prove that the order and
the first nonzero Lyapunov constant of the origin are independent of the choice of θ0 and l.
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For the sake of convenience, we will take θ0 = 0 below. In this case we have (x0, y0)=
(r,0), and hence from (2.4) and (2.2)–(2.3) we obtain

P(r) = (
x(τ, x0, y0), y(τ, x0, y0)

)
Z0

=
[
Ceατ

(
cosβτ sinβτ
− sinβτ cosβτ

)
C−1

(
r

0

)
+O

(
r2)]T

Z0,

which yields P(r)= reαT +O(r2) since τ(0)= T . Comparing with (2.5) gives that

v1 = 1

2π

[
eαT − 1

]= 1

2π

[
e

a+d
2 T − 1

]
.

Thus, the origin is stable (unstable) if

div(f, g)|0 = fx(0,0)+ gy(0,0) < 0 (> 0).

Next, we suppose α = 0 and give a computation formula for v3. For the purpose it is
convenient to use the first order normal form of (2.1). Without loss of generality we may
suppose (2.1) has been of the form. In other words, we may assume (2.2) holds with C

being the identity. Introducing the polar coordinate to (2.1) we obtain

ṙ = cos θF + sin θG, θ̇ =−b+ (cos θG− sin θF )/r (2.8)

and

dr

dθ
= cos θF + sin θF

−b+ (cos θG− sin θF )/r
≡R(θ, r). (2.9)

Let r(θ, r0) be the solution of (2.9) with r(0, r0)= r0. We have

LEMMA 2.2. Let a = d = 0, b=−c �= 0. Then
(i) P(r0)= r(2π, r0) if b < 0, and P(r(2π, r0))= r0 if b > 0,

(ii) v3 = 1
2π sgn(−b)

∫ 2π
0 R3(θ)dθ , where R3(θ)= 1

3!
∂3R

∂r3 (θ,0).

PROOF. The conclusion (i) can be proved in a similar manner to Lemma 1.3. Let

R(θ, r)=R2(θ)r
2 +R3(θ)r

3 + · · · (2.10)

and

r(θ, r0)= r1(θ)r0 + r2(θ)r
2
0 + r3(θ)r

3
0 + · · · ,

where r1(0)= 1, r2(0)= r3(0)= 0. Inserting the above solution and (2.10) into (2.9), and
then comparing the like powers of r0 we obtain

r ′1(θ)= 0, r ′2(θ)=R2r
2
1 , r ′3(θ)=R3r

2
1 + 2R2r1r2,
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or

r1(θ)= 1, r2(θ)=
∫ θ

0
R2(θ)dθ,

r3(θ)=
∫ θ

0

[
R3(θ)+ 2R2(θ)r2(θ)

]
dθ.

Hence, if we let

P̃ (r0)= r(2π, r0)= r0 + 2πṽ2r
2
0 + 2πṽ3r

3
0 +O

(
r4

0

)
,

then

ṽ2 = 1

2π

∫ 2π

0
R2(θ)dθ,

ṽ3 = 1

2π

∫ 2π

0

[
R3(θ)+ 2R2(θ)r2(θ)

]
dθ

= 1

2π

[∫ 2π

0
R3(θ)dθ +

∫ 2π

0
2r2(θ)r

′
2(θ)dθ

]

= 1

2π

∫ 2π

0
R3(θ)dθ + 2π(ṽ2)

2.

If b < 0, we have P(r0)= P̃ (r0), and by Lemma 2.1, ṽ2 = 0. Thus

v3 = ṽ3 = 1

2π

∫ 2π

0
R3(θ)dθ.

If b > 0, we have P(r0)= P̃−1(r0). Note that if P̃ (r0)= r0 + 2πṽkrk0 +O(rk+1
0 ) then

P̃−1(r0)= r0 − 2πṽkr
k
0 +O

(
rk+1

0

)
.

Hence, using Lemma 2.1 we have ṽ2 = 0 and

v3 =−ṽ3 =− 1

2π

∫ 2π

0
R3(θ)dθ.

This ends the proof. �

Based on the above lemma we can prove:
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THEOREM 2.1. Let a = d = 0, b=−c �= 0, and

F(x, y)=
3∑

i+j=2

aij x
iyj + o

(|x, y|3),

G(x, y)=
3∑

i+j=2

bij x
iyj + o

(|x, y|3).

Then

v3 = 1

8|b|
{

3(a30 + b03)+ a12 + b21 − 1

b

[
a11(a20 + a02)− b11(b20 + b02)

+ 2(a02b02 − a20b20)
]}

= 1

16|b|
{
Fxxx + Fxyy +Gyyy − 1

b

[
Fxy(Fxx + Fyy)−Gxy(Gxx +Gyy)

− FxxGxx + FyyGyy

]}∣∣∣∣
(0,0)

.

PROOF. By (2.9) and (2.10),

R2(θ)=−b−1P2(θ), R3(θ)=−b−1[P3(θ)+ b−1P2(θ)S2(θ)
]
,

where

Pk(θ)= cos θFk(cos θ, sin θ)+ sin θGk(cos θ, sin θ),

Sk(θ)= cos θGk(cos θ, sin θ)− sin θFk(cos θ, sin θ),

Fk(x, y)=
∑

i+j=k
aij x

iyj , Gk(x, y)=
∑

i+j=k
bij x

iyj .

It follows directly that

P3(θ)= (a12 + b21) sin2 θ cos2 θ + a30 cos4 θ + b03 sin4 θ +K0(θ),

P2(θ)S2(θ)=−a02b02 sin6 θ + a20b20 cos6 θ −N1 sin4 θ cos2 θ

−N2 sin2 θ cos4 θ +K1(θ),

where K0 and K1 are 2π -periodic functions with zero mean value over the interval [0,2π],
and

N1 = 2a02a11 − 2b02b11 + a02b20 + a11b11 + a20b02 − a02b02,

N2 = 2a20a11 − 2b20b11 − a02b20 − a11b11 + a20b20 − a20b02.
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Then we have

1

2π

∫ 2π

0
R3(θ)dθ =− π

2πb

[
(a30 + b03)

3

4
+ (a12 + b21)

1

4

−1

b

[
(a02b02 − a20b20)

5

8
+ (N1 +N2)

1

8

]]
.

Thus, the conclusion follows from Lemma 2.2(ii). �

Along the above line one can find formulas for computing v5, v7, etc. See [31] for more
detail.

2.2. Normal form and Lyapunov technique

Next, we introduce another method (called normal form method) to find focus values.

LEMMA 2.3. Let a = d = 0, b =−c �= 0. Then for any integer m � 1 there exists a poly-
nomial change of variables of the form

(x, y)T = (u, v)T +O
(|u,v|2)=Q(u,v)

which transforms the system (2.1) into

u̇= bv+
m∑

j=1

(aju+ bjv)
(
u2 + v2)j +O

(|u,v|2m+2),

v̇ =−bu+
m∑

j=1

(−bju+ ajv)
(
u2 + v2)j +O

(|u,v|2m+2).
(2.11)

PROOF. For convenience we introduce complex variables z= x + iy, z̄= x − iy, or

(
z

z̄

)
=

(
1 i
1 −i

)(
x

y

)
(2.12)

so that (2.1) becomes

ż= f

(
z+ z̄

2
,
z− z̄

2i

)
+ ig

(
z+ z̄

2
,
z− z̄

2i

)
≡ h(z, z̄),

˙̄z= f

(
z+ z̄

2
,
z− z̄

2i

)
− ig

(
z+ z̄

2
,
z− z̄

2i

)
≡ h̄(z, z̄).

(2.13)

It is easy to verify that h̄ is the conjugate of h. Hence, we may neglect the second equation
in (2.13), since it can be obtained from the first one by taking complex conjugation.
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By (2.3) we can write

h(z, z̄)=−ibz+
∑

2�j+k�2m+1

Ajkz
j z̄k +O

(|z|2m+2). (2.14)

We would like to make a change of variables of the form

z= ω+
∑

2�j+k�2m+1

Cjkω
jωk = ω+ p(ω,ω), (2.15)

and expect that the resulting equation which has the form in general

ω̇=−ibω+
∑

2�j+k�2m+1

Bjkω
jωk +O

(|ω|2m+2) (2.16)

is as simple as possible.
For the purpose, differentiating both sides of (2.15) in t and using (2.13), (2.14) and

(2.16) we obtain

[
1+

2m+1∑
j+k=2

Cjkjω
j−1ωk

][
−ibω+

2m+1∑
j+k=2

Bjkω
jωk

]

+
2m+1∑
j+k=2

Cjkkω
jωk−1

[
ibω+

2m+1∑
j+k=2

Bjkω
kωj

]

=−ib

[
ω+

∑
2�j+k�2m+1

Cjkω
jωk

]

+
2m+1∑
j+k=2

Ajk

(
ω+ p(ω,ω)

)j (
ω+ p̄(ω,ω)

)k +O
(|ω|2m+1).

By considering terms of ωjωk for j + k = 2 we obtain

−ibCjkjω
jωk +Bjkω

jωk + ibCjkkω
jωk =−ibCjkω

jωk +Ajkω
jωk,

which yields

Bjk =Ajk + ibCjk(j − k − 1). (2.17)

Hence, to nullify the coefficients Bjk we can choose

Cjk = Ajk

ib(1+ k− j)
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if

j �= k + 1, (2.18)

which always holds for j + k = 2. Thus it appears that Bjk = 0 for the chosen Cjk for
j + k = 2. In other words, all quadratic terms will be nullified in the new equation (2.16)
so far if we choose the coefficient of quadratic terms in (2.15) proper.

By equating the coefficients of ωjωk for j + k = 3, we obtain

Bjk =Ajk + ibCjk(j − k− 1)+Zjk, (2.19)

where Zjk depends on Cj ′k′ with j ′ + k′ = 2. Thus, in this case, for j and k satisfying
(2.18) we can also choose Cjk by

Cjk = 1

ib(1+ k− j)
[Ajk +Zjk]

so that Bjk = 0 for the new equation. The only monomial left up to now is B21ω
2ω which is

called a resonant term, and by (2.19) the coefficient C21 can be chosen freely, say C21 = 0.
For higher values of j + k, the expression (2.19) remains valid, where Zjk depends only

on Cj ′k′ with 2 � j ′ + k′ < j + k. Hence, by continuing the way above, an appropriate
change of variables can be found that eliminates all those monomials Bjkω

jωk for which
(2.18) are satisfied. The only monomials which survive, called resonant terms, have the
form Bk+1,kω

k+1ωk . Therefore, eventually, Eq. (2.16) takes the form

ω̇=−ibω+
m∑

k=1

Bk+1,kω
k+1ωk +O

(|ω|2m+2)=R(ω,ω).

More precisely, there exists a change of variables

z= ω+ p(ω,ω), z= ω+ p̄(ω,ω)

which carries (2.13) into the form of

ω̇=R(ω,ω), ω̇=R(ω,ω).

Substituting ω= u+ iv, ω= u− iv into the above gives the desired system (2.11) with

aj = ReBj+1,j , bj =− ImBj+1,j .

The coordinate change from (2.1) to (2.11) is given by

(
x

y

)
=

(
1 i
1 −i

)−1 (
ω+ p(ω,ω)

ω+ p̄(ω,ω)

)
,

(
ω

ω

)
=

(
1 i
1 −i

)(
u

v

)
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where (x, y) and (u, v) are both real variables, and

(
1 i
1 −i

)−1

=
( 1

2
1
2

− i
2

i
2

)
.

The proof is completed. �

We call the system (2.11) the normal form of (2.1) of order 2m+ 1. It is easy to see that
in polar coordinates the normal form equation takes the form

ṙ = a1r
3 + · · · + amr

2m+1 +O
(
r2m+2

)
,

θ̇ =−(
b+ b1r

2 + · · · + bmr
2m

)+O
(
r2m+2

)
.

(2.20)

For a relationship between focus values appeared in (2.5) and the constants aj in (2.20) we
have

LEMMA 2.4. Let a = d = 0, b = −c �= 0. Then (2.5) holds with k = 2m + 1 � 3 if
and only if aj = 0, j = 1, . . . ,m − 1, am �= 0. Moreover, v2m+1 = am/|b| as aj = 0,
j = 1, . . . ,m− 1.

PROOF. Let P and P ∗ denote respectively the Poincaré maps of (2.1) and (2.11) both
associated to θ0 = 0. For r0 > 0 small, let

l: (x, y)= (r,0), 0 < r < r0,

l1 =Q−1(l)= {(
q1(r), q2(r)

)
,0 < r < r0

}
,

where Q−1 is the inverse of the transformation Q appeared in Lemma 2.3, and q1(r) =
r +O(r2), q2(r)=O(r2). Let P1 : l1 → l1 denote the Poincaré map of (2.11) defined by a
similar way to (1.14). Then by the proof of Lemma 1.5 with the case 1 we have

P1 = P. (2.21)

Let l′ = {(u, v): u = r, v = 0,0 < r < r0} which is tangent to l1 at the origin. Denote
by (u(t, r), v(t, r)) the solution of (2.11) with (u(0, r), v(0, r))= (r,0). It is easy to see
from (2.11) that

u(t, r)= r cosbt +O
(
r2), v(t, r)=−r sinbt +O

(
r2).

Note that l1 can be represented as

l1 =
{(
r ′, c

(
r ′
))
, 0 < r ′ < q1(r0)

}

where c is a C∞ function satisfying c(0)= c′(0)= 0. Consider the function

K(t, r)= c
(
u(t, r)

)− v(t, r)= rK1(t, r),
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where K1(t, r)= sinbt +O(r). By the implicit function theorem, there exists a C∞ func-
tion τ ∗(r)=O(r) such that K1(τ

∗(r), r)≡ 0. Then similar to (1.10), there exists a unique
function h1(r) such that

(
u
(
τ ∗(r), r

)
, v

(
τ ∗(r), r

))= (
q1

(
h1(r)

)
, q2

(
h1(r)

)) ∈ l1. (2.22)

Moreover, the function satisfies

h1 ◦ P ∗ = P1 ◦ h1. (2.23)

By (2.22) it follows that

q1(h1)= u(τ ∗, r)= r cosbτ ∗ +O
(
r2)= r +O

(
r2),

which gives that

h1 = q−1
1

(
r +O

(
r2))= r +O

(
r2).

Therefore, by (2.21) and (2.23) we obtain

h1 ◦ P ∗ = P ◦ h1, h1(r)= r +O
(
r2). (2.24)

Then, it is easy to verify that (2.5) holds if and only if

P ∗ − r = 2πvkr
k +O

(
rk+1), vk �= 0. (2.25)

On the other hand, let aj = 0, j = 1, . . . , n− 1, an �= 0. We then have from (2.20)

dr

dθ
=−an

b
r2n+1 +O

(
r2n+2)

which has the solution

r(θ, r0)= r0 − an

b
θr2n+1

0 +O
(
r2n+2

0

)
.

Thus,

r(2π, r0)= r0 − 2πan
b

r2n+1
0 +O

(
r2n+2

0

)
.

Hence, by Lemma 2.2 we have

P ∗(r)= r + 2πan
|b| r2n+1 +O

(
r2n+2).

Obviously, for n � 1 the above holds if and only if (2.25) holds with k = 2m+ 1= 2n+ 1.
This ends the proof. �
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We remark that some algorithms have been established for calculating the coefficients
a1, . . . , am in (2.20). An efficient one can be found in Yu [119].

We finally give a third method to determine the stability and the order of a focus origi-
nated by Lyapunov.

LEMMA 2.5. For any given integer N > 1 and expansions of f and g of the form

f = by + f1 +O
(|x, y|2N+2), g =−bx + g1 +O

(|x, y|2N+2),
where

f1(x, y)=
∑

2�i+j�2N+1

aij x
iyj , g1(x, y)=

∑
2�i+j�2N+1

bij x
iyj ,

there exist constants L2, . . . ,LN+1 and a polynomial

V (x, y)=
2N+2∑
k=2

Vk(x, y),

where

V2(x, y)= x2 + y2, Vk(x, y)=
∑

i+j=k
cij x

iyj , 3 � k � 2N + 2

such that

Vxf + Vyg =
N+1∑
k=2

Lk

(
x2 + y2)k +O

(|x, y|2N+3). (2.26)

Moreover, for 2 � k � N + 1, Lk+1 depends only on aij and bij with i + j � 2k + 1.

PROOF. We want to find a polynomial V with the supposed form and constants
L2, . . . ,LN+1 satisfying (2.26). Note that for the given form of f,g and V we have

Vxf + Vyg = b(yVx − xVy)+ (Vxf1 + Vyg1)+O
(|x, y|2N+3)

= b

2N+2∑
k=3

(yVkx − xVky)−
2N+2∑
k=3

Gk +O
(|x, y|2N+3),

where

2N+2∑
k=3

Gk =−(Vxf1 + Vyg1)+O
(|x, y|2N+3) (2.27)
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with Gk being a homogeneous polynomial of degree k depending only on the coefficients
aij , bij and cij with 2 � i + j < k.

Then neglecting terms of degree more than 2N + 2 Eq. (2.26) is equivalent to

b

2N+2∑
k=3

(yVkx − xVky)=
2N+2∑
k=3

Gk +
N+1∑
k=2

Lk

(
x2 + y2)k.

In order to find Vk and Lk satisfying this equation it suffices to solve the following equation
for 3 � k � 2N + 2:

b(yVkx − xVky)=Gk for k odd, (2.28)

b(yVkx − xVky)=Gk +Lk/2
(
x2 + y2)k/2 for k even. (2.29)

The above equations can be rewritten as

b
d

dθ
Vk(cos θ, sin θ)=Gk(cos θ, sin θ) for k odd, (2.30)

b
d

dθ
Vk(cos θ, sin θ)= Lk/2 +Gk(cos θ, sin θ) for k even (2.31)

since

b(yVkx − xVky)(r cos θ, r sin θ)= b rk
d

dθ
Vk(cos θ, sin θ).

Let us solve (2.30) and (2.31) by induction in k. First, for k = 3, we have

∫ 2π

0
G3(cos θ, sin θ)dθ = 0.

Hence there is a function G̃3 of the form

G̃3(θ)=
∑

i+j=3

g̃ij cosi θ sinj θ

such that G̃′3(θ)=G3(cos θ, sin θ). Denote G̃3 by

G̃3(θ)=
∫

G3(cos θ, sin θ)dθ.

We can write
∫

G3(cos θ, sin θ)dθ =
∑

i+j=3

g̃ij cosi θ sinj θ.
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Then by (2.30) we have a solution for V3 below

V3(x, y)= 1

b

∑
i+j=3

g̃ij x
iyj .

That is, we have cij = 1
b
g̃ij for i + j = 3.

For k = 4, G4 will be known when V3 is definite. Thus, we can choose L2 to be such
that

L2 + 1

2π

∫ 2π

0
G4(cos θ, sin θ)dθ = 0.

It then follows that
∫ [

L2 +G4(cos θ, sin θ)
]

dθ =
∑

i+j=4

g̃ij cosi θ sinj θ

as before. By (2.31), V4 will be determined by taking cij = 1
b
g̃ij for i + j = 4.

For higher values of k, Vk can be determined in the same procedure. This ends the
proof. �

The following lemma says that the first nonzero constants of L2, . . . ,LN+1 will deter-
mine the stability and the order of the focus of (2.11) at the origin if a = 0.

LEMMA 2.6. Let a = d = 0, b = −c �= 0. Then (2.5) holds with k = 2m+ 1 � 3 if and
only if

Lj = 0, j = 2, . . . ,m, Lm+1 �= 0.

Moreover, v2m+1 = Lm+1
2|b| as Lj = 0, j = 2, . . . ,m.

PROOF. Let r > 0 be small and L denote the orbit arc of (2.1) from (r,0) to (P (r),0).
Note that for any μ ∈ (0,1),

r +μ
[
P(r)− r

]= r +O
(
r3).

The mean value theorem implies that

V
(
P(r),0

)− V (r,0) = Vx

(
r +μ

[
P(r)− r

]
,0

)(
P(r)− r

)
= 2r

[
P(r)− r

](
1+O

(
r2)),

where V is the function in Lemma 2.5.
On the other hand, by the formula of constant variation we have x2+ y2 = r2(1+O(r))

along L. Thus, by (2.26)
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V
(
P(r),0

)− V (r,0) =
∫
L

dV =
∫
L

(Vxf + Vyg)dt

=
∫ τ(r)

0

[
N+1∑
k=2

Lkr
2k(1+O(r)

)+O
(
r2N+3)

]
dt

= 2π

|b|
N+1∑
k=2

Lkr
2k(1+O(r)

)+O
(
r2N+3),

where τ(r)= 2π
|b| +O(r) is the time along L. It follows that

P(r)− r = π

|b|
N+1∑
k=2

Lkr
2k−1(1+O(r)

)+O
(
r2N+2).

Then the conclusion follows easily and the proof is completed. �

The proof of Lemma 2.6 presents an algorithm to compute constants L2,L3, . . . . It
includes the following three steps in a loop:

(i) Find G2m+1 by (2.27),
(ii) Find V2m+1 by (2.30),

(iii) Find G2m+2, Lm+1 and V2m+2 by (2.31).
To begin with m= 1 we can get L2 by executing the 3 steps. We can get L3 further by

doing the same procedure for m= 2. See Chicone [14] for more detail.
By (2.3) and (2.5) we can prove the following corollary in a similar way to Lemma 2.6.

COROLLARY 2.1. Let a = d = 0, b =−c �= 0. Suppose there exists a function Ṽ (x, y)=
x2 + y2 +O(|x, y|3) such that

˙̃V = Ṽxf + Ṽyg =H2k(x, y)+O
(|x, y|2k+1), k � 2,

where H2k is a homogeneous polynomial of order 2k satisfying

L̃k = |b|
2π

∫ 2π/|b|

0
H2k(cosbt,− sinbt)dt < 0 (> 0).

Then the origin is a stable (unstable) focus of order k − 1 of Eq. (2.1).

Now let us recall some facts obtained so far in this section. We will outline them for
analytic systems. Suppose f and g in (2.1) are analytic functions near the origin and (2.3)
holds with a + d = 0. Then by Lemma 2.1, the proof of Lemma 2.6 and the definition of
the Poincaré map in (2.4) we have

P(r)− r = π

|b|
N+1∑
k=2

Lkr
2k−1(1+O(r)

)+O
(
r2N+2)= 2π

∞∑
k=3

vkr
k, (2.32)
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where

v2m =O
(|v3, v5, . . . , v2m−1|

)
, m � 2.

The implicit function theorem ensures the convergence of the series in the right-hand side
of (2.32).

If a = d = 0, b = −c �= 0, by Lemma 2.3, there exists a formal change of variables
given by the formal series

(x, y)T = (u, v)T +
∑

i+j�2

qiju
ivj =Q(u,v)

which carries (2.1) formally into

u̇= bv +
∑
j�1

(aju+ bjv)
(
u2 + v2)j ,

v̇ =−bu+
∑
j�1

(−bju+ ajv)
(
u2 + v2)j . (2.33)

By Lemma 2.5, there exist a formal series

V (x, y)= x2 + y2 +
∑

i+j�3

cij x
iyj

and constants L2,L3, . . . , such that

Vxf + Vyg =
∑
k�2

Lk

(
x2 + y2)k. (2.34)

Lemmas 2.4 and 2.6 show that the following three statements are equivalent to each other:
(i) v2j+1 = 0, j = 1, . . . ,m− 1, v2m+1 �= 0;

(ii) aj = 0, j = 1, . . . ,m− 1, am �= 0;
(iii) Lj = 0, j = 1, . . . ,m, Lm+1 �= 0.
Moreover, when one of the conditions (i)–(iii) holds, we have

v2m+1 = am

|b| =
Lm+1

2|b| .

Based on this relationship, we call either v2m+1, am or Lm+1 the mth Lyapunov quantity
or focus value.

Note that the series in (2.32) is always convergent for |r| small if (2.1) is analytic. We
therefore obtain

THEOREM 2.2. Suppose (2.1) is an analytic system satisfying a = d = 0, b = −c �= 0.
Then (2.1) has a center at the origin if and only if one of the following holds:
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(a) v2k+1 = 0 for all k � 1;
(b) ak = 0 for all k � 1;
(c) Lk = 0 for all k � 2.

Lyapunov proved that the formal series for V (x, y) is convergent near the origin if Lk =
0 for all k � 2. Hence, by (2.34) in this case the function V represents a first integral whose
level sets are orbits of the system (2.1).

Bryuno [9] proved that the formal series for Q(u,v) is convergent near the origin if and
only if ak = 0 for all k � 1. In this case, system (2.33) becomes

u̇= v

[
b+

∑
j�1

bj
(
u2 + v2)j],

v̇ =−u

[
b+

∑
j�1

bj
(
u2 + v2)j]

which has a first integral of the form u2+v2. This implies that the original system (2.1) has
a first integral of the form W 2

1 (x, y)+W 2
2 (x, y), where W(x,y) = (W1(x, y),W2(x, y))

is the inverse of the coordinate change (x, y)T =Q(u,v).
Thus, by Theorem 2.2 and the next theorem we know that under the condition of Theo-

rem 2.2 system (2.1) has a center at the origin if and only if it has an analytic first integral
of the form x2 + y2 +O(|x, y|3).

The following theorem gives a sufficient condition for (2.1) to have a center at the origin.

THEOREM 2.3. Consider the C∞ system (2.1). Let (2.2) hold. If one of the conditions
below is satisfied:

(i) f (−x, y)= f (x, y), g(−x, y)=−g(x, y);
(ii) there exists a C∞ function H(x,y) for (x, y) near the origin satisfying H(0,0)=

0,H(x, y) �= 0 for 0 < x2 + y2 % 1 such that Hxf +Hyg = 0,
then (2.1) has a center at the origin.

PROOF. Let (i) hold first. Without loss of generality we assume that the orbits of (2.1) near
the origin are oriented clockwise. For y0 > 0 small let (x(t), y(t)) be the solution of (2.1)
with (x(0), y(0))= (0, y0). Set

L1 =
{(
x(t), y(t)

) | 0 � t � t1
}
, L2 =

{(
x(t), y(t)

) | t1 � t � t2
}
,

L′1 =
{(−x(−t), y(−t)

) | −t1 � t � 0
}
,

where

t1 =min
{
t > 0 | x(t)= 0, y(t) < 0

}
, t2 =min

{
t > 0 | x(t)= 0, y(t) > 0

}
.

By our assumption, L′1 is an orbit arc of (2.1) starting at (0, y(t1)). This implies that L2 =
L′1 and hence y(t2)= y0. In other words, (x(t), y(t)) is a periodic solution.
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Now let (ii) hold. For definiteness, we suppose H(x,y) > 0 for 0 < x2 + y2 % 1. Then
the function z = H(x,y) takes a minimal value at (x, y) = (0,0). This implies that for
sufficiently small h > 0, the equation H(x,y)= h defines a closed curve near the origin.
Our assumption ensures that the curve is a periodic orbit which approaches the origin as
h→ 0. The proof is completed. �

EXAMPLE 2.1. Consider a C∞ system of the form

ẋ = y − xh(x, y), ẏ =−x − yh(x, y),

where

h(x, y)=
{

0, for (x, y)= (0,0),

e
− 1

x2+y2 , otherwise.

Let V (x, y)= x2 + y2. Then for the system, (2.34) becomes

Vxf + Vyg =−2
(
x2 + y2)h(x, y) < 0

for x2 + y2 > 0. By the proof of Lemma 2.6, the origin is a stable focus. However, in this
case we have Lk = 0 for all k � 2.

This example shows that Theorem 2.2 is no longer true for C∞ systems.

EXAMPLE 2.2. Consider the following cubic Liénard system:

ẋ = y − (
a3x

3 + a2x
2 + a1x

)
,

ẏ =−x,
(2.35)

where a1, a2 and a3 are real constants. The divergence of (2.35) takes value −a1 at the ori-
gin. Hence, the origin is a stable (unstable) focus if a1 > 0 (< 0). Further, by Theorem 2.1
we have V3 =− 3

8a3 as a1 = 0. Thus, in this case, the origin is stable (unstable) if a3 > 0
(< 0).

Let a1 = a3 = 0. Theorem 2.3(i) implies that (2.35) has a center at the origin now.

EXAMPLE 2.3. For a given C∞ function H : R2 → R, it induces a planar system of the
form

ẋ =Hy, ẏ =−Hx

which is called a Hamiltonian system with the Hamiltonian function H . The level sets of
the function give orbits of the system. By Theorem 2.3(ii), if there is a point (x0, y0) ∈R

2
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Fig. 6. The phase portrait of (2.36) with g(x)= x2 − x.

satisfying

Hx(x0, y0)=Hy(x0, y0)= 0,

−[
Hxy(x0, y0)

]2 +Hxx(x0, y0)Hyy(x0, y0) > 0

then the above Hamiltonian system has a center at the point.
For example, let

H(x,y)= 1

2
y2 +G(x).

Then the induced system is

ẋ = y, ẏ =−g(x), (2.36)

where g(x)=G′(x). In mechanics, the function H is called the total energy of the system
(2.36), while the term 1

2y
2 is called the kinetic energy and the function G is the potential

energy. It is evident that (2.36) has a center at point (x0,0) if g(x0) = 0, g′(x0) > 0.
A singular point (x0,0) satisfying g′(x0) < 0 is a saddle point. Taking g(x) = x2 − x,
(2.34) becomes

ẋ = y, ẏ = x − x2

which has two singular points: center (1,0) and saddle (0,0). Note that H(0,0)= 0. There
is a nontrivial orbit γ defined by the equation H(x,y)= 0. The orbit approaches the saddle
point both positively and negatively. An orbit with this property is called a homoclinic orbit.
The phase portrait of the above quadratic Hamiltonian system has been drawn in Fig. 6.
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2.3. Hopf bifurcation

In the next part, we consider a planar C∞ system with a vector parameter of the form

ẋ = f (x, y,μ), ẏ = g(x, y,μ), (2.37)

where μ ∈R
m, m � 1. Suppose (2.37) has an elementary focus for μ= 0. Without loss of

generality we can assume that for all small |μ| (2.37) has a focus at the origin. Then we
can write near the origin

f (x, y,μ)= a(μ)x + b(μ)y +O
(|x, y|2),

g(x, y,μ)= c(μ)x + d(μ)y +O
(|x, y|2), (2.38)

where a(0)= d(0), b(0)=−c(0) �= 0.
Let P(r,μ) denote the Poincaré map of (2.37) near the origin. By Lemma 2.1, similar

to (2.32) for any integer N > 0, P has the following expansion:

P(r,μ)= r + 2π
N∑
k=1

vk(μ)r
k +O

(
rN+1), (2.39)

where

v2m =O
(|v1, v3, . . . , v2m−1|

)
, 1 � m � N

2
. (2.40)

Sometimes, for convenience, we call v2m+1(μ) in (2.39) the mth Lyapunov constant of
(2.37) at the origin, m � 1. Introduce

d(r,μ)= P(r,μ)− r,

which is called a succession function or bifurcation function of (2.37). This function is also
called the displacement function.

By using an analogous formula to (2.6) it is easy to obtain

LEMMA 2.7. For |μ| small, Eq. (2.37) has a limit cycle near the origin if and only if there
exist r1(μ) > 0, r2(μ) < 0 near r = 0 such that

d
(
rj (μ),μ

)= 0, j = 1,2.

By (2.38) and the discussion after Remark 2.2 we know that v1(μ) has the same
sign as a(μ) + d(μ). In fact, v1(μ) = 1

2π [e2πα/|β| − 1] with α = 1
2 (a + d), |β| =

1
2

√−4bc− (a − d)2. Hence, if a(0) + d(0) �= 0 then v1(0) �= 0 and d(r,μ) has no pos-
itive zero near r = 0 for all |μ| small. Thus, if a(0)+ d(0) �= 0, there is no limit cycle near
the origin for all |μ| small.
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Let a(0)+ d(0)= 0, and let v30 denote the first order focus value of (2.37) for μ= 0 at
the origin. Then by (2.39) and (2.40) we have

d(r,μ)= 2πr
[
v1(μ)+ v2(μ)r + v3(μ)r

2 +O
(
r3)],

where v1(0) = v2(0) = 0, v3(0) = v30. Similar to Theorem 1.3(i) we can prove that if
v30 �= 0, d(r,μ) has two zeros in r with one positive and the other negative for v1(μ)v30 <

0 and has no nontrivial zero for v1(μ)v30 > 0. Thus, by Lemma 2.7 and noting

v1 = a(μ)+ d(μ)

2|b(0)|
(
1+O(μ)

)
,

we have proved the following

THEOREM 2.4. If for μ= 0 (2.37) has a first order focus at the origin, then it has at most
one limit cycle near the origin for all |μ| small. Moreover, the limit cycle exists if and only
if (a(μ)+ d(μ))v30 < 0.

In general, similar to Theorem 1.3(ii), we have:

THEOREM 2.5. If for μ= 0 (2.37) has a kth order focus at the origin (k � 2), then it has
at most k limit cycles near the origin for |μ| small. Moreover, k limit cycles can appear by
suitable perturbations.

EXAMPLE 2.4. Consider a cubic Liénard system

ẋ = y − (
x5 +μ1x

3 +μ2x
)
,

ẏ =−x,
(2.41)

where μ1 and μ2 are small parameters.

First, by (2.39) and (2.40), we have

v1 =−1

2
μ2 +O

(
μ2

2

)
, v2 =O(μ2),

v3 =−3

8
μ1 +O(μ2), v4 =O

(|v1, v3|
)
.

It is easy to check that for

V (x, y)= x2 + y2 − 5

8
xy5 − 5

3
x3y3 − 11

8
x5y

it holds along the orbits of (2.41)

dV

dt

∣∣∣∣
μ1=μ2=0

=−5

8

(
x2 + y2)3 +O

(|x, y|10).
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Hence, by Lemma 2.6, it follows that

v5 =− 5

16
+O

(|μ1,μ2|
)
.

This shows that for μ1 = μ2 = 0 the origin is a stable focus of order 2 for (2.41).
We claim that there is a function

δ(μ1)= 9

40
μ2

1 +O
(|μ1|5/2)

such that for |μ1| + |μ2| small Eq. (2.41) has
(i) no limit cycle if either μ1 � 0 and μ2 � 0 or μ1 < 0 and μ2 > δ(μ1);

(ii) a unique simple limit cycle if either μ1 � 0 and μ2 < 0 or μ1 < 0 and μ2 � 0;
(iii) a unique double limit cycle if μ1 < 0 and μ2 = δ(μ1);
(iv) two simple limit cycles if μ1 < 0 and μ2 < δ(μ1).
In fact, by v2 =O(v1), v3 =− 3

8μ1 +O(v1) and v4 =O(|v1| + |μ1|) we can write

d(r,μ) = 2πrP1(r, u)

[
v1 − 3

8
μ1r

2P2(r,μ)+ v∗5r4P3(r,μ)

]

= 2πrP1(r, u)d1(r,μ),

where Pi = 1 + O(r) ∈ C∞, i = 1,2,3, v∗5 = − 5
16 + O(|μ1|). The function d1 can be

written further as

d1(r,μ)= v1 − 3

8
μ1ρ

2 + v∗5ρ4P ∗3 (ρ,μ)≡ d2(ρ,μ),

where ρ = r
√
P2(r,μ)= r +O(r2) ∈ Cω, P ∗3 = 1+O(ρ) ∈ Cω.

Clearly, for μ1 � 0 we have ∂d2
∂ρ

< 0 for 0 < ρ % 1. This implies that for μ1 � 0, d1

has a unique zero if and only if v1 > 0. Note that Eq. (2.41) has a double limit cycle near
the origin if and only if the function d2(ρ,μ) has a double zero in ρ near ρ = 0. Let us
consider the equations below

d2(ρ,μ)= 0,
∂d2

∂ρ
(ρ,μ)= 0.

We can solve form the above equations

ρ =
√
−3

5
μ1

(
1+ δ1

(√−μ1
))
,

v1 = 9

256v∗5
μ2

1

(
1+ δ2

(√−μ1
))
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Fig. 7. Curves determined by d2(ρ,μ).

Fig. 8. The bifurcation diagram of (2.41).

for μ1 < 0, where δi(u)= O(u) ∈ Cω, i = 1,2. The second equation above determines a
unique function

μ2 = δ(μ1)= 9

40
μ2

1 +O
(
μ

5/2
1

)
.
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Now it is easy to draw curves determined by the function d = d2(ρ,μ) on (d,ρ) plane,
see Fig. 7.

Then the claim follows easily. For the bifurcation diagram of (2.41) see Fig. 8.
On the (μ1,μ2) plane in Fig. 8, the line μ2 = 0 (near the origin) is Hopf bifurcation

curve, and the curve μ2 = δ(μ1) is the double limit cycle bifurcation curve, or in other
words, the saddle-node bifurcation curve for limit cycles.

If (2.37) has a center at the origin for μ= 0, we can also study the bifurcation of limit
cycles for |μ| small. We give an example to illustrate this phenomenon.

EXAMPLE 2.5. Consider the cubic system

ẋ = y + x2 + ε
(
x3 − εx

)
,

ẏ =−(
x − x3

)
.

We prove that the system has a unique limit cycle near the origin for 0 < ε% 1.
For the purpose, let us consider

ẋ = y + x2 + ε
(
x3 − δx

)
,

ẏ =−(
x − x3

)
,

(2.42)

and prove that the system has a unique limit cycle near the origin for 0 < |ε|< ε0, 0 < δ <

ε0 for a small constant ε0 > 0.
First, by Theorem 2.3(i), (2.42) has a center at the origin for ε = 0. Hence, the succession

function d(r, ε, δ) of (2.42) can be written as

d(r, ε, δ) = 2πεr
[
v∗1(ε, δ)+ v∗2(ε, δ)r + v∗3(ε, δ)r2 +O

(
r3)]

= 2πεrd∗(r, ε, δ),

where

εv∗1 = v1 = 1

2π

[
e−εδπ − 1

]=−εδ

2

(
1+O(εδ)

)
,

v∗2 =O
(
v∗1

)
, εv∗3 = v3 = 3

8
ε+O(v1).

Therefore,

d∗ = − δ

2

(
1+O(εδ)

)+O(δ)r +
(

3

8
+O(δ)

)
r2 +O

(
r3)

which has a positive zero r = 2√
3

√
δ(1+O(εδ)) near r = 0 if 0 < δ% 1. Then the conclu-

sion for (2.42) follows directly.
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2.4. Degenerate Hopf bifurcation

We now turn to the degenerate Hopf bifurcation near a center and establish a general theory
by using the first order Melnikov function.

Consider a C∞ planar system of the form

ẋ = f (x, y)+ εp(x, y, ε, δ),

ẏ = g(x, y)+ εq(x, y, ε, δ),
(2.43)

where ε ∈R, δ ∈D ⊂R
m (m � 1) with D compact, and

(
f (x, y), g(x, y)

)= μ(Hy,−Hx), μ=±1,

H(x, y)=K
(
x2 + y2

)+O
(|x, y|3), K > 0,

p(0,0, ε, δ)= q(0,0, ε, δ)= 0.

⎫⎪⎬
⎪⎭ (2.44)

Then for 0 < h% 1, the equation H(x,y)= h defines a periodic orbit Lh of (2.43) (ε = 0)
which intersects the positive x-axis at A(h) = (a(h),0). Let B(h, ε, δ) denote the first
intersection point of the positive orbit of (2.43) starting at A(h) with the positive x-axis.
Then by (2.44) we have

H(B)−H(A)=
∫
AB

dH = ε
[
M(h, δ)+O(ε)

]
, (2.45)

where

M(h, δ) = 1

μ

∮
Lh

(f q − gp)|ε=0 dt = 1

μ

∮
Lh

(q dx − p dy)|ε=0

= 1

|μ|
∫∫

H�h

(px + qy)|ε=0 dx dy. (2.46)

We call M the first order Melnikov function. We will see that the function plays an impor-
tant role in the study of the number of limit cycles.

Let u(t, c) be the solution of (2.43) (ε = 0) with initial value (c,0). Then we have by
(2.44)

H
(
u(t, c)

)=H(c,0)= r2(c), t ∈R,

r(c)= c
√
K + S(c), S(c)=O(c) ∈ C∞.

Denote by c= c(r)= r√
K
+O(r2) the inverse of r = r(c). Then

H
(
v(t, r)

)= r2, v
(
T (r), r

)= (
c(r),0

)
,
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where v(t, r)= u(t, c(r)), and T (r) is the period of the function v in t . Clearly, the func-
tions v(t, r) and T (r) are both C∞ with T (0) = π

K|μ| > 0. Introduce a C∞ function as
follows:

G(θ, r)= v

(
T (r)

2π
θ, r

)
.

Obviously, G=O(r) is 2π -periodic in θ , and

H
(
G(θ, r)

)= r2, θ ∈R. (2.47)

LEMMA 2.8. The change of variables

(x, y)T =G(θ, r) (2.48)

transforms the system (2.43) into the C∞ system

θ̇ = 2π

T (r)

[
1− ε

2μr
Gr ∧

(
p(G,ε, δ), q(G, ε, δ)

)]
,

ṙ = ε

2r
DH(G) · (p(G,ε, δ), q(G, ε, δ)

)T
.

(2.49)

PROOF. Differentiating (2.48) in t yields

Gθ θ̇ +Grṙ =
(
f (G)+ εp(G,ε, δ), g(G)+ εq(G, ε, δ)

)T
. (2.50)

By (2.47) and the definition of G, we have

DH(G)Gθ = 0, DH(G)Gr = 2r, Gθ = T (r)

2π

(
f (G),g(G)

)
.

Multiplying (2.50) by DH(G) from the left-hand side gives

2rṙ = εDH(G) · (p(G,ε, δ), q(G, ε, δ)
)
,

which gives the second equation in (2.49).
Further, noting that

Gr ∧Gθ = T (r)

2π
Gr ∧

(
f (G),g(G)

)=−μT (r)

2π
DH(G)Gr =−μT (r)

π
r,

it follows from (2.50) that

(Gr ∧Gθ)θ̇ =Gr ∧
(
f (G),g(G)

)+ εGr ∧ (p, q),

or

−μT (r)

π
rθ̇ =−2μr + εGr ∧ (p, q)
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which gives the first equation in (2.49). The proof is completed. �

By (2.49) we obtain

dr

dθ
= εR(θ, r, ε, δ), (2.51)

where R is C∞ and 2π -periodic in θ with R =O(r) and

R(θ, r, θ, δ)= T (r)

4πr
DH(G) · (p(G,0, δ), q(G,0, δ)

)T
. (2.52)

Let r(θ, ρ, ε, δ) denote the solution of (2.51) with r(0, ρ, ε, δ) = ρ, and (x(t, c, ε, δ),
y(t, c, ε, δ)) the solution of (2.43) with (x(0, c, ε, δ), y(0, c, ε, δ)) = (c,0). Then the
Poincaré map P(c, ε, δ) of (2.43) is given by

P(c, ε, δ)= x(τ, c, ε, δ)= P(c)

where

τ =min
{
t > 0 | cx(t, c, ε, δ) > 0, y(t, c, ε, δ)= 0

}
.

By the definition of G we have G(0, r)= (c(r),0) which yields

G
(
0,P1(ρ)

)= (
c
(
P1(ρ)

)
,0

)
,

where

P1(ρ)= r(2π,ρ, ε, δ)= P1(ρ, ε, δ)

which is called the Poincaré map of (2.51).
On the other hand, by (2.48) for c= c(ρ) we have

(
P(c, ε, δ),0

)=G
(
2π, r(2π,ρ, ε, δ)

)=G
(
0,P1(ρ)

)
.

Hence

(
P
(
c(ρ), ε, δ

)
,0

)= (
c
(
P1(ρ)

)
,0

)
,

or

P ◦ c= c ◦ P1. (2.53)

THEOREM 2.6. Let (2.43) satisfy (2.44). Then:
(i) The function M is C∞ at h= 0. It is analytic at h= 0 if (2.43) is analytic.
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(ii) If there exist a compact subset D0 of D and an integer k � 0 such that for 0 < h% 1

M(h, δ)= Bk(δ)h
k+1 +O

(
hk+2), Bk(δ) �= 0, δ ∈D0, (2.54)

then there exist ε0 > 0, an open set U(D0) ⊃ D0 and a neighborhood V of the
origin such that (2.43) has at most k limit cycles in V for 0 < |ε|< ε0, δ ∈U(D0).

PROOF. It is easy to see that the Poincaré map P1 of (2.51) can be written as

P1(r, ε, δ)= r + εrF (r, ε, δ), (2.55)

where

rF (r,0, δ)=
∫ 2π

0
R(θ, r,0, δ)dθ ≡R0(r, δ).

By (2.44) and (2.52) we have

R0(r, δ) = 1

2rμ

∮
H=r2

(f, g)∧ (p, q)|ε=0 dt

= 1

2rμ

∮
H=r2

(q dx − p dy)|ε=0 (2.56)

which immediately follows R0(−r, δ)=−R0(r, δ). Hence, the function M∗(r) defined by

M∗(r)= 2rR0(r, δ)

is even. Since M∗ ∈ C∞, for any integer j > 1, we have

M∗(r)=
j∑

i=1

Air
2i +N(r),

where N ∈ C∞ is even and N(i)(0)= 0, i = 0,1, . . . ,2j .
Let N(h)=N(

√
h). We claim that

N
(i)
(0)= 0, i = 0,1, . . . , j.

In fact, we can prove

N
(i)
(h)= hj−i Ñi

(√
h
)
, i = 0,1, . . . , j, (2.57)

by induction in i, where Ñi(r) is C∞ in r and Ñi(0)= 0.
First, it is not hard to see that

N(i)(r)= r2j−iNi(r), Ni ∈ C∞, Ni(0)= 0, i = 0,1, . . . ,2j.
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Hence, (2.57) holds for i = 0. That is,

N(h)= hjN0
(√

h
)= hj Ñ0

(√
h
)
.

It then follows that

(
N(h)

)′ = hj−1
[
jN0

(√
h
)+ 1

2

√
hN ′0

(√
h
)]

.

Let

Ñ1(r)= jN0(r)+ 1

2
rN ′0(r).

Then Ñ1 ∈ C∞ and Ñ1(0) = 0. Thus, (2.57) holds for i = 1 . Let (2.57) hold for i = k.
Then we have

N
(k+1)

(h)= [
hj−kÑk

(√
h
)]′ = hj−k−1

[
(j − k)Ñk

(√
h
)+ 1

2

√
hÑ ′k

(√
h
)]

.

Set

Ñk+1(r)= (j − k)Ñk(r)+ 1

2
rÑ ′k(r).

It follows that (2.57) holds for i = k + 1. Hence, (2.57) has been proved.
By (2.57) it is immediate that N ∈ Cj for 0 � h% 1. Let

M(h)=
j∑

i=1

Aih
i +N(h).

Then M ∈ Cj . Therefore M ∈ C∞ since j is arbitrarily large.
Note that by (2.46) and (2.56) we have

M(h)=M∗(√h
)= 2

√
hR0

(√
h, δ

)=M(h, δ).

Thus, M ∈ C∞ in h at h= 0, and if (2.54) holds, then

R0(r, δ)= 1

2
Bk(δ)r

2k+1 +O
(
r2k+3).

By (2.53) and (2.55) and Lemma 2.7, Eq. (2.43) has a limit cycle near the origin if and
only if F has two zeros correspondingly with one positive and the other negative. Hence,
by Rolle theorem, (2.54) ensures that at most k limit cycles can appear near the origin for
|ε| small and δ in a neighborhood of D0.
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Finally, if (2.43) is analytic, then (2.51) is analytic. Hence the functions R0 and M∗ are
also analytic. This implies that the series

M∗(r)=
∑
i�1

Air
2j

is convergent for |r| small. Therefore M is analytic since M(h, δ)=M∗(
√
h). The proof

is completed. �

By Theorem 2.6, for any k � 1 we have the following expansion for M :

M(h, δ)= h
[
b0(δ)+ b1(δ)h+ · · · + bk(δ)h

k +O
(
hk+1)], 0 < h% 1.

(2.58)

We can use the coefficients b0, b1, . . . , bk to study the Hopf bifurcation of limit cycles.

COROLLARY 2.2. Suppose that there exist k � 1, δ0 ∈D such that bk(δ0) �= 0 and

bj (δ0)= 0, j = 0,1, . . . , k − 1, det
∂(b0, . . . , bk−1)

∂(δ1, . . . , δk)
(δ0) �= 0, (2.59)

where δ = (δ1, . . . , δm), m � k. Then for any ε0 > 0 and any neighborhood V of the origin
there exist 0 < ε < ε0 and |δ − δ0|< ε0 such that (2.43) has precisely k limit cycles in V .

PROOF. Fix δj = δj0 for j = k + 1, . . . ,m. By (2.59) the change of parameters

bj = bj (δ), j = 0, . . . , k− 1

has the inverse δj = δj (b0, . . . , bk−1), j = 1, . . . , k. Then (2.58) becomes

M(h, δ)= h
[
b0 + b1h+ · · · + bk−1h

k−1 + bkh
k +O

(
hk+1)]

where bk = bk(δ0) �= 0 as b0 = · · · = bk−1 = 0. By changing the sign of bk−1, bk−2, . . . , b0
in turn such that

bj−1bj < 0, j = k, k − 1, . . . ,1, 0 < |b0| % |b1| % · · · % |bk−1| % 1,

we can find k simple positive zeros h1, h2, . . . , hk with 0 < hk < hk−1 < · · ·< h1 % 1. Let
rj =

√
hj , j = 1, . . . , k. Then r1, . . . , rk are simple positive zeros of R0(r, δ). By (2.55)

and the implicit function theorem, the function F has k zeros rj +O(ε), j = 1, . . . , k. This
ends the proof. �

The following is evident from Theorem 2.6(ii).
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COROLLARY 2.3. If for any ε0 > 0 and any neighborhood V of the origin (2.43) has k

limit cycles in V for some (ε, δ) satisfying 0 < |ε| < ε0, |δ − δ0| < ε0, then M(h, δ0) =
O(hk+1).

In the multiple parameter case it often occurs that M(h, δ0)≡ 0, M(h, δ) �≡ 0 for δ �= δ0.
In this case (2.54) fails to hold, and we have further the following result.

THEOREM 2.7. Let (2.44) hold. Suppose
(i) the coefficients b0, . . . , bk−1 in (2.58) satisfy (2.59);

(ii) there exists a k-dimensional vector function ϕ(ε, δk+1, . . . , δm) such that (2.43) has
a center at the origin when (δ1, . . . , δk)= ϕ(ε, δk+1, . . . , δm) for |ε|+|δ−δ0| small.

Then there exist ε0 > 0 and a neighborhood V of the origin such that (2.43) has at most
k − 1 limit cycles in V for 0 < |ε| < ε0, |δ − δ0| < ε0. Moreover, k − 1 limit cycles can
appear in an arbitrary neighborhood of the origin for some (ε, δ) sufficiently near (0, δ0).

PROOF. By (2.58) and noting that M(h, δ)= 2rR0(r, δ), r =√h , we have

R0(r, δ)= r

[
k∑

j=0

bj (δ)r
2j +O

(
r2k+2)

]
.

Then the function F in (2.55) has the following expansion:

F(r, ε, δ)=
2k−1∑
j=0

cj (ε, δ)r
j + r2kQ(r, ε, δ), (2.60)

where Q ∈ C∞, and

c2j (0, δ)= bj (δ), c2j+1(0, δ)= 0, j = 0, . . . , k − 1.

By (2.59), the equations

bj = c2j (ε, δ), j = 0, . . . , k− 1

have the solution

(δ1, . . . , δk)= ϕ̄(ε, b0, . . . , bk−1, δk+1, . . . , δm). (2.61)

By condition (ii) we have F(r, ε, δ)= 0 and hence c2j (ε, δ)= 0, j = 0, . . . , k − 1 as long
as (δ1, . . . , δk)= ϕ(ε, δk+1, . . . , δm). The uniqueness of the solution ϕ̄ implies that

ϕ̄ = ϕ if and only if b0 = · · · = bk−1 = 0. (2.62)
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Inserting (2.61) into (2.60) we obtain

F =
k−1∑
j=0

[
bj r

2j + c2j+1(ε, ϕ̄, δk+1, . . . , δm)r
2j+1]+ r2kQ(r, ε, ϕ̄, δk+1, . . . , δm)

≡ F̃
(
r, ε, δ̃

)
, δ̃ = (b0, . . . , bk−1, δk+1, . . . , δm). (2.63)

It follows from (2.61) and (2.62) that F̃ = 0 as bj = 0, j = 0, . . . , k − 1. Hence, by the
mean value theorem we can write

c2j+1(ε, ϕ̄, δk+1, . . . , δm)= ε

k−1∑
i=0

biAij

(
ε, δ̃

)
,

Q(r, ε, ϕ̄, δk+1, . . . , δm)=
k−1∑
i=0

biQi

(
r, ε, δ̃

)
,

where Qi ∈ C∞, i = 0, . . . , k − 1. Note that εr2F = r(P1 − r) keeps sign for 0 < |r| % 1
by Lemma 2.1 and (2.53). By (2.63), it follows that

c2j+1(ε, ϕ̄, δk+1, . . . , δm)= 0, if b0 = · · · = bj = 0, j = 0, . . . , k − 1.

This yields that

Aij = 0, j + 1 � i � k − 1, j = 0, . . . , k− 2.

Therefore, the function F̃ in (2.63) can be written as

F̃
(
r, ε, δ̃

)=
k−1∑
j=0

bj r
2jPj

(
r, ε, δ̃

)
, (2.64)

where

Pj = 1+ ε

k−1∑
i=j

Aji

(
ε, δ̃

)
r2(i−j)+1 + r2(k−j)Qj , 0 � j � k− 1.

We particularly have

F̃
(
r, ε, δ̃

)=
k−1∑
j=0

bj r
2j +O

(|r|2k + |ε|).

By using this form we can prove, in a similar manner to Corollary 2.2, that k − 1 limit
cycles can appear in an arbitrary neighborhood of the origin for some (ε, δ) sufficiently
close to (0, δ0).
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It needs only to prove that F̃ has at most k − 1 positive zeros near r = 0 for |b0| +
· · · + |bk−1|> 0 small. We do this by induction in k. For convenience, denote by Fk−1 the
right-hand side function of (2.64).

First, for k = 1, we have

F0 = b0P0 = b0
(
1+O

(|ε| + |r|)) �= 0 for |b0|> 0.

Suppose for k = n the function

Fn−1 =
n−1∑
j=0

bj r
2jPj

has at most n− 1 positive zeros in r near r = 0 for |ε| and |b0| + · · · + |bn−1|> 0 small,
where Pj = 1+O(|ε| + |r|) ∈ C∞, j = 0, . . . , n− 1. Consider the function

Fn =
n∑

j=0

bj r
2jPj ,

where Pj = 1+O(|ε| + |r|) ∈ C∞. We have

Fn = P0F̃n, F̃n =
n∑

j=0

bj r
2j P̃j ,

where P̃0 = 1, P̃j = Pj/P0 = 1+O(|ε| + |r|) ∈ C∞, j = 1, . . . , n. Then

dF̃n

dr
=

n∑
j=1

2jbj r
2j−1

(
P̃j + r

2

dP̃j

dr

)
= r

n−1∑
j=0

b̄j r
2jP j = rF n−1,

where

b̄j = 2(j + 1)bj+1, P j = P̃j+1 + r

2

dP̃j+1

dr
= 1+O

(|ε| + |r|) ∈ C∞.

By the induction assumption, the function Fn−1 has at most n− 1 positive zeros in r near
r = 0 for |ε| and |b̄0| + · · · + |b̄n−1|> 0 small. Hence, by Rolle’s theorem it follows that
F̃n has at most n positive zeros near r = 0 in r for |ε| and |b0| + · · · + |bn|> 0 small. This
finishes the proof. �

Observe that in both Theorems 2.6 and 2.7 the parameter δ is required to vary near δ0.
The results are local in this sense. In many cases the functions p and q in (2.43) depend
on δ linearly. This enables us to obtain a global result based on Theorems 2.6 and 2.7 as
follows.
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THEOREM 2.8. Let (2.44) hold, and let the functions p and q in (2.43) be linear in δ.
Suppose further that for an integer k � 1

(i) rank
∂(b0, . . . , bk−1)

∂(δ1, . . . , δm)
= k, m � k;

(ii) Eq. (2.43) has a center at the origin as bj (δ)= 0, j = 0,1, . . . , k − 1.
Then for any given N > 0, there exist ε0 > 0 and a neighborhood V of the origin such that
Eq. (2.43) has at most k − 1 limit cycles in V for 0 < |ε|< ε0, |δ|� N . Moreover, k − 1
limit cycles can appear in an arbitrary neighborhood of the origin for some (ε, δ).

PROOF. Since p and q are linear in δ, each coefficient bj in (2.58) is also linear in δ.
Hence, by condition (i) we can suppose

det
∂(b0, . . . , bk−1)

∂(δ1, . . . , δk)
�= 0.

It follows that the equations bj (δ) = 0, j = 0, . . . , k − 1 have a solution (δ1, . . . , δk) =
ϕ(δk+1, . . . , δm).

For δ∗0 = (ϕ(0),0) ∈ R
m, by Theorem 2.7, Eq. (2.43) can have k − 1 limit cycles near

the origin for some (ε, δ) near (0, δ∗0). Then we need to prove that k − 1 is the maximal
number of limit cycles. If it is not the case, then there exist N > 0 and sequences εn→ 0,
δ(n) ∈ R

m with |δ(n)| � N such that for (ε, δ) = (εn, δ
(n)) Eq. (2.43) has k limit cycles

which approach the origin as n→∞. We may suppose δ(n) → δ0 for some δ0 ∈ R
m as

n→∞. First, by Theorem 2.6 we must have bj (δ0)= 0, j = 0, . . . , k−1. By our assump-
tion (ii), Eq. (2.43) has a center at the origin for (δ1, . . . , δk)= ϕ(δk+1, . . . , δm). Hence, it
follows from Theorem 2.7 that (2.43) has at most k − 1 limit cycles near the origin for all
(ε, δ) sufficiently close to (0, δ0). This is a contradiction since Eq. (2.43) has k limit cycles
approaching the origin as (ε, δ)= (εn, δ

(n))→ (0, δ0). This ends the proof. �

Theorems 2.5 and 2.6 tell us that the coefficients in the expansion of M act like focus
values. The following lemma gives a relation between the two groups of the values.

LEMMA 2.9. Let (2.44) and (2.58) hold. Then

b0 = 4πv∗1 , bj = 4π

Kj

[
v∗2j+1 +O

(∣∣v∗1 , v∗3 , . . . , v∗2j−1

∣∣)], j = 1, . . . , k− 1,

where

v∗2j+1 =
∂v2j+1

∂ε

∣∣∣∣
ε=0

, j = 0, . . . , k − 1,

and v2j+1 is the j th Lyapunov constant of (2.43) at the origin.

PROOF. Let P(r, ε, δ) denote the Poincaré map of (2.43). Then the point B in (2.45) is

given by (P (a, ε, δ),0), where a =
√

h
K
(1+O(

√
h)). Note that P − a = O(|εa|). By the
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mean value theorem we have

H(B)−H(A) = Hx

(
a
(
1+O(ε)

)
,0

)
(P − a)

= 2Ka
[
1+O

(|ε| + |a|)](P − a).

By (2.39) and (2.40) we can write formally

P(a, ε, δ)− a = 2π
∑
i�0

v2i+1a
2i+1Pi,

where Pi = 1+O(a), i � 0. Hence

H(B)−H(A)= 4πh
∑
i�0

v2i+1

Ki
hiP i,

where P i = 1 + O(|ε| + √h), i � 0. Inserting the above into (2.45) and noting v2i+1 =
εv∗2i+1 +O(ε2) we obtain

4πh
∑
i�0

v∗2i+1

Ki
hi
(
1+O

(√
h
))=M(h, δ).

Since M is C∞ at h= 0 it follows from the above that

M(h, δ)= 4πh

[
v∗1 +

1

K

(
v∗3 +O

(
v∗1

))
h+ 1

K2

(
v∗5 +O

(
v∗1 , v∗3

))
h2 + · · ·

]
.

Thus the conclusion follows by comparing with (2.58). This completes the proof. �

EXAMPLE 2.6. Consider

ẋ = y − (
μ0x

5 +μ1x
3 +μ2x

)
,

ẏ =−x.
(2.65)

We claim that there exist ε0 > 0 and a neighborhood V of the origin such that (2.65) has at
most 2 limit cycles in V for |μ0| + |μ1| + |μ2|< ε0, and 2 limit cycles can appear.

In fact, by the discussion to (2.41) we know that

v1 =−1

2
μ2 +O

(
μ2

2

)
, v3 =−3

8
μ1 +O(μ2),

v5 =− 5

16
μ0 +O

(|μ1| + |μ2|
)
.

Let μi = εδi , ε =
√
μ2

0 +μ2
1 +μ2

2, δ2
0 + δ2

1 + δ2
2 = 1. Then by Lemma 2.9 (taking μ= 1

and K = 1/2 ) we have

b0 =−2πδ2, b1 =−3πδ1 +O(δ2), b2 =−5πδ0 +O
(|δ1| + |δ2|

)
.
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For the sake of convenience, we take δ0, δ1, δ2 as free parameters with |δi |� 1. Then the
conditions of Theorem 2.8 are satisfied with m= k = 3. Therefore, the claim follows.

Note that for ε = 0 the origin is a linear center of (2.65). Hence, in this case the function
M can be obtained directly by using (2.46).

DEFINITION 2.4. We say that Eq. (2.43) has Hopf cyclicity k − 1 at the origin if the
conclusion of Theorem 2.8 holds.

Thus, both systems (2.41) and (2.65) have Hopf cyclicity 2 at the origin.

EXAMPLE 2.7. Consider a Liénard system of the form

ẋ = y − ε

2n+1∑
i=1

aix
i, ẏ =−x (2.66)

where n � 1, |ai |� 1, and ε > 0 is small. We claim that the system has Hopf cyclicity n at
the origin.

In fact, we have H(x,y) = 1
2 (x

2 + y2) with μ = 1, K = 1
2 . The curve Lh given by

H(x,y)= h has the representation (x, y)=√2h(cos t,− sin t). Hence, by (2.46) we have

M(h)=−
n∑

j=0

2j+1Nja2j+1h
j+1,

where

Nj =
∫ 2π

0
cos2(j+1) t dt > 0.

Set δ = (a1, a2, . . . , a2n+1), bj =−2j+1Nja2j+1, j = 0, . . . , n and k = n+ 1. Note that
by Theorem 2.3(i) Eq. (2.66) has a center at the origin as bj = 0, j = 0, . . . , n. Thus, the
claim follows from Theorem 2.8.

In the proof of Corollary 2.2 we have given a way to find limit cycles near the ori-
gin. In the case of (2.66), M(h) can have n zeros h1 > h2 > · · · > hn > 0 for some
(a1, a3, . . . , a2n+1). Then the corresponding function F in (2.55) has n zeros

√
hj +O(ε),

j = 1, . . . , n. It follows that the n limit cycles of (2.66) approach the curves 1
2 (x

2 + y2)=
hj , j = 1, . . . , n, respectively, as ε→ 0.

In the following we give another way to obtain limit cycles near the origin. For conve-
nience, take a2j = 0, j = 1, . . . , n.

First, from Lemma 2.9, we have

v2j+1 = εv∗2j+1 +O
(
ε2), j = 0, . . . , n,
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where

v∗1 =
1

4π
b0 =−N0

2π
a1,

v∗2j+1 =
1

2j+2π
bj +O

(|b0, . . . , bj−1|
)=−Nj

2π
a2j+1 +O

(|a1, a3, . . . , a2j−1|
)
.

On the other hand, for Ṽ = x2 + y2 we have along the orbit of (2.66)

˙̃V =−2ε
n∑

j=0

a2j+1x
2j+2.

By Corollary 2.1, it holds that

L̃k+1 =− ε

π
a2k+1Nk

if a2j+1 = 0 for j = 0, . . . , k − 1. It then follows that

v2j+1 =−ε

[
Nj

2π
a2j+1 +O

(|a1, a3, . . . , a2j−1|
)](

1+O(ε)
)
, j = 0, . . . , n.

For ε > 0, let us vary a1, a3, . . . , a2n+1 such that

a2j−1a2j+1 < 0, 0 < |a2j−1| % |a2j+1| % ε, j = 1, . . . , n

which yields

v2j−1v2j+1 < 0, 0 < |v2j−1| % |v2j+1| % ε2, j = 1, . . . , n.

Thus, by (2.32), the corresponding function P(r)− r will have n zeros which give n limit
cycles of (2.66). Geometrically, the n limit cycles are obtained by changing the stability of
the origin n times. Moreover, unlike above they approach the origin as ε→ 0.

REMARK 2.3. There are different ways to prove Lemma 2.3 for the normal form sys-
tem (2.11). Here the proof is given by following [111]. The conclusions in Lemmas 2.4
and 2.6 are well known. However, the definite relationship between constants am,v2m+1

and Lm given in the lemmas appears for the first time here. For more discussions on the
level set of a Hamiltonian system, the reader can consult [36]. On the bifurcation of limit
cycles, Theorems 2.4 and 2.5 are basic tools, while Theorems 2.6–2.8 were recently ob-
tained by [47]. More discussions similar to Lemma 2.9 can be found in [80]. Under condi-
tion (2.44), it was proved in [64] that the right-hand side function in (2.45) is C∞ in

√
h at

h= 0, but not C2 in h at h= 0 generally.
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As we know, in 1901, Hilbert [73] posed 23 mathematical problems of which the second
part of the 16th one is to find the maximal number and relative position of limit cycles of
planar polynomial systems. Many works have been done on the study of the problem, es-
pecially for quadratic and cubic systems, see [3,4,8,10–13,15,18–34,38–51,54–72,74–110,
113–126,128,129]. A detailed introduction and related literatures can be found in Li [85],
Schlomiuk [109] and Ilyashenko [78]. As was showed in Examples 2.4 and 2.7, a typical
way to find limit cycles in Hopf bifurcation is to compute focal values and change the sta-
bility of the focus by using the values. Certain nice results have been obtained for quadratic
and cubic systems. Bautin [5] proved that a focus of a quadratic system has order at most
three and that for this system a focus or center can generate at most three limit cycles under
perturbations of its coefficients. Then Chen and Wang [12] (by bifurcation method) and Shi
[110] (by using Poincaré–Bendixson theorem) separately found a quadratic system having
four limit cycles. More and more mathematicians believe that quadratic system have at
most four limit cycles. However, up to now the problem is still open. Li and Li [89], Li
and Huang [88], Li and Liu [91–93], and Liu, Yang and Jiang [96] found different cubic
systems having eleven limit cycles by using Melnikov function method. James and Lloyd
[79] gave a cubic system having eight limit cycles in a neighborhood of a focus. Recently,
Han, Lin and Yu [60] and Yu and Han [120,121] obtained sufficient conditions for a cubic
system to have 10 or 12 limit cycles, respectively (all limit cycles having small amplitude).
It seems that the maximal number of limit cycle for cubic system is 12.

For Hopf bifurcation in higher dimension, the reader can see Hale [35], Chow and Hale
[16], Chow, Li and Wang [17] and Han [51] etc. For bifurcation of periodic solutions of
delay-differential equations, see [7,37,52,53] et al.

3. Perturbations of Hamiltonian systems

3.1. General theory

In this section we will study a C∞ system of the form

ẋ =Hy + εp(x, y, ε, δ), ẏ =−Hx + εq(x, y, ε, δ), (3.1)

where H(x,y),p(x, y, ε, δ), q(x, y, ε, δ) are C∞ functions, ε � 0 is small and δ ∈ D ⊂
R

m is a vector parameter with D compact. For ε = 0 (3.1) becomes

ẋ =Hy, ẏ =−Hx (3.2)

which is Hamiltonian. Hence, Eq. (3.1) is called a near-Hamiltonian system.
For Eq. (3.2) we suppose there exist a family of periodic orbits given by

Lh: H(x,y)= h, h ∈ (α,β)

such that Lh approaches an elementary center point, denoted by Lα , as h→ α, and an
invariant curve, denoted by Lβ , as h→ β . Without loss of generality, we can assume that
each Lh is oriented clockwise.
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Fig. 9. The phase portrait of (3.2) with a Lβ homoclinic loop.

If Lβ is bounded, it usually is a homoclinic loop consisting of a saddle and a connection
or a heteroclinic loop consisting of at least two saddles and connections between them. In
the homoclinic case, the phase portrait of the family {Lh: α � h � β} is given in Fig. 9.

Introduce an open set G as follows:

G=
⋃

α<h<β

Lh.

Our main purpose is to study the number of limit cycles of Eq. (3.1) in a neighborhood of
the closure G of G for ε > 0 small and δ ∈D.

Note that if Eq. (3.1) has a limit cycle L(ε, δ) for ε > 0 small and δ ∈D0 ⊂D, then the
limit of the cycle as ε→ 0 is either the center Lα , a periodic orbit Lh with h ∈ (α,β) or
the boundary Lβ . That is,

lim
ε→0

L(ε, δ)= Lh, h ∈ [α,β].

In this case, we say that the limit cycle L(ε, δ) is generated from Lh. Thus, in order to study
the number of limit cycles, we first need to study the number of limit cycles generated from
each Lh.

For the purpose, similar to Definition 2.4 we first introduce a notation below.

DEFINITION 3.1. We say that Eq. (3.1) has cyclicity k at a given Lh, h ∈ [α,β], if there
exist ε0 > 0 and a neighborhood V of Lh such that Eq. (3.1) has at most k limit cycles
in V for 0 < ε < ε0, δ ∈D and if k limit cycles can appear in an arbitrary neighborhood
of Lh for some (ε, δ) with ε > 0 sufficiently small. More specifically, k is said to be Hopf
(Poincaré or homoclinic) cyclicity when h = α (h ∈ (α,β) or h = β with Lβ being a
homoclinic loop).

In the last section we gave some method to find Hopf cyclicity. This section concerns
with global bifurcations of limit cycles and presents further methods to find Hopf, Poincaré
and homoclinic cyclicity.

Take h = h0 ∈ (α,β) and A(h0) ∈ Lh0 . Let l be a cross section of Eq. (3.2) passing
through A(h0). Then for h near h0 the periodic orbit Lh has a unique intersection point
with l, denoted by A(h). That is, A(h) = Lh ∩ l. Consider the positive orbit γ (h, ε, δ)
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of Eq. (3.1) starting at A(h). Let B(h, ε, δ) denote the first intersection point of the orbit
with l. Then similar to (2.45) we have

H(B)−H(A)= ε
[
M(h, δ)+O(ε)

]= εF (h, ε, δ), (3.3)

where

M(h, δ) =
∮
Lh

(Hyq +Hxp)|ε=0 dt

=
∮
Lh

(q dx − p dy)|ε=0 =
∫∫

H�h

(px + qy)|ε=0 dx dy. (3.4)

The function F(h, ε, δ) in (3.3) is called a bifurcation function of Eq. (3.1). It has the
following property.

LEMMA 3.1. For ε > 0 small and δ ∈D, Eq. (3.1) has a limit cycle near Lh0, h0 ∈ (α,β),
if and only if the equation F(h, ε, δ)= 0 has a zero in h near h0.

PROOF. Since the orbit γ (h, ε, δ) starting at A(h) is closed if and only if A= B , we need
only to prove that A = B if and only if H(A) = H(B) by (3.3). It is easy to see that
B =A+O(ε). Hence, by Taylor formula for ε > 0 small we have

H(B)−H(A)= (
Hx(A),Hy(A)

) · (B −A)+O
(|B −A|2).

Note that the cross section l can be taken to be parallel to the gradient (Hx(A),Hy(A)).
It follows that

H(B)−H(A)=
[
±
√
H 2

x (A)+H 2
y (A)+O

(|B −A|)] · |B −A|,

which gives the desired conclusion. The proof is completed. �

As in the situation of Hopf bifurcation, the Melnikov function M(h, δ) can also be used
to determine the cyclicity at a periodic orbit. First, by (3.3) we have

THEOREM 3.1. Let h0 ∈ (α,β), δ0 ∈D.
(i) There is no limit cycle near Lh0 for ε+ |δ − δ0| small if M(h0, δ0) �= 0.

(ii) There is exactly one (at least one, respectively) limit cycle L(ε, δ) for ε + |δ − δ0|
small which approaches Lh0 as (ε, δ)→ (0, δ0) if M(h0, δ0)= 0, Mh(h0, δ0) �= 0
(h0 is a zero of M(h, δ0) with odd multiplicity, respectively).

(iii) The cyclicity of Eq. (3.1) at Lh0 is at most k if for any δ ∈D there exists 0 � j � k

such that

M
(j)
h (h0, δ) �= 0.
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PROOF. By (3.3) and Lemma 3.1, the first conclusion is clear. For the second one, the
conclusion follows from the implicit function theorem if h0 is a simple zero of M(h, δ0).
Let h0 be a multiple zero of M(h, δ0) with odd multiplicity. Then for ε0 > 0 small we have

M(h0 − ε0, δ0) ·M(h0 + ε0, δ0) < 0.

Hence, by (3.3) we have

F(h0 − ε0, ε, δ) · F(h0 + ε0, ε, δ) < 0

for 0 < ε < ε0, |δ− δ0|< ε0 as long as ε0 is sufficiently small. Thus the function F(h, ε, δ)

has a zero h∗ ∈ (h0 − ε0, h0 + ε0).
For the third conclusion, if Eq. (3.1) has cyclicity at least k + 1 at Lh0 , then there exist

some εn → 0, δ(n) ∈ D such that for (ε, δ) = (εn, δ
(n)) Eq. (3.1) has at least k + 1 limit

cycles which approach Lh0 as n→∞. We can suppose δ(n)→ δ0 as n→∞. On the other
hand, by our assumption M(h, δ0) has h0 as a zero of multiplicity at most k. By (3.3) and
Rolle’s theorem for ε+ |δ− δ0| small the function F(h, ε, δ) has at most k zeros in h near
h0, which follows that at most k limit cycles exist near Lh0 for ε + |δ − δ0| small. Thus a
contradiction appears if (ε, δ)= (εn, δ

(n)) with n sufficiently large.
The proof is completed. �

By the above proof we have immediately

COROLLARY 3.1. Suppose for some δ0 ∈D, M(h, δ0) has k zeros in h ∈ (α,β) with each
having odd multiplicity. Then for ε+|δ−δ0| small Eq. (3.1) has k limit cycles in a compact
subset of the open set G.

COROLLARY 3.2. If there exist h0 ∈ (α,β), δ0 ∈ D such that for an arbitrary neigh-
borhood of Lh0 , Eq. (3.1) has k limit cycles in the neighborhood for some (ε, δ) with
ε+ |δ − δ0| sufficiently small, then M(h, δ0)=O(|h− h0|k).

Let L(ε, δ) be the limit cycle appeared in Theorem 3.1. To determine its stability we
need to consider the sigh of the integral

ε

∮
L(ε,δ)

(px + qy)dt = ε

[∮
Lh0

(px + qy)|ε=0 dt +O(ε)

]
.

Obviously, if

σ(h0, δ0)=
∮
Lh0

(px + qy)|ε=0,δ=δ0 dt �= 0

then the stability will be determined easily. The following lemma gives a relation between
σ(h, δ) and Mh(h, δ).
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LEMMA 3.2. Suppose Lh is oriented clockwise. Then

Mh(h, δ)=±
∮
Lh

(px + qy)|ε=0 dt =±σ(h, δ),

where “+” (respectively “−”) is taken when Lh expands (respectively shrinks) with h

increasing.

PROOF. Fix h0 ∈ (α,β). For definiteness, suppose that Lh expands with h increasing.
Then for h > h0, applying Green’s formula we have

M(h, δ)−M(h0, δ)=
∫∫

�(h)

(px + qy)|ε=0 dx dy, (3.5)

where �(h) denotes the annulus bounded by Lh and Lh0 . Let u(t, h) denote a representa-
tion of Lh satisfying

H
(
u(t, h)

)= h, 0 � t � T (h), h ∈ (α,β).

Here T (h) denotes the period of Lh. Consider the integral transformation of variables given
by

(x, y)= u(t, r), 0 � t � T (r), h0 < r < h.

Note that

DH(u) ·Dru= det
∂u(t, r)

∂(t, r)
= 1.

We obtain from (3.5)

M(h, δ)−M(h0, δ)=
∫ h

h0

dr
∫ T (r)

0
(px + qy)

(
u(t, r),0, δ

)
dt.

Then differentiating the above in h yields

Mh(h, δ)=
∫ T (h)

0
(px + qy)

(
u(t, h),0, δ

)
dt.

This ends the proof. �

EXAMPLE 3.1. Consider van der Pol equation

ẍ + ε
(
x2 − 1

)
ẋ + x = 0.
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The equation is equivalent to

ẋ = y, ẏ =−x − ε
(
x2 − 1

)
y. (3.6)

For ε = 0, Eq. (3.6) has periodic orbits Lh: 1
2 (x

2 + y2)= h, h > 0. By (3.4) we have

M(h)=
∫∫

x2+y2�2h

(
1− x2)dx dy = πh(2− h).

The function M has a unique positive zero h= 2. By Lemma 3.2 we have

σ0 =
∮
L2

(
1− x2)dt =M ′(2)=−2π.

Hence, by Theorem 3.1, Eq. (3.6) has a unique limit cycle L(ε) for ε > 0 which is stable,
simple and approaches the circle x2 + y2 = 4 as ε→ 0.

In many cases (polynomial systems for example), the first order Melnikov function has
the form

M(h, δ)=
k∑

i=1

bi(δ) Ii(h), k � 2.

Let

I ′1(α) �= 0, I1(h) �= 0, α < h < β. (3.7)

Then we can write

M(h, δ)= I1(h)

k∑
i=1

bi Ji(h)= I1(h)N(h, b), (3.8)

where b= (b1, . . . , bn), bi = bi(δ), Ji(h)= Ii(h)/I1(h), i = 1,2, . . . , k.
Introduce the Wronskian of the functions J1, J2, . . . , Jk

W(h)=

∣∣∣∣∣∣∣∣

J1(h) J2(h) . . . Jk(h)

J ′1(h) J ′2(h) . . . J ′k(h)· · · · · · · · · · · ·
J
(k−1)
1 (h) J

(k−1)
2 (h) . . . J

(k−1)
k (h)

∣∣∣∣∣∣∣∣
. (3.9)
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Clearly, by a property of determinant we have

W ′(h)=

∣∣∣∣∣∣∣∣∣∣

J1(h) J2(h) . . . Jk(h)

J ′1(h) J ′2(h) . . . J ′k(h)· · · · · · · · · · · ·
J
(k−2)
1 (h) J

(k−2)
2 (h) . . . J

(k−2)
k (h)

J
(k)
1 (h) J

(k)
2 (h) . . . J

(k)
k (h)

∣∣∣∣∣∣∣∣∣∣
. (3.10)

We have

THEOREM 3.2. Suppose that (3.7) and (3.8) hold. Let |b| > 0 for all δ ∈ D and h0 ∈
[α,β).

(i) If W(h0) �= 0, then Eq. (3.1) has cyclicity at most k − 1 at Lh0 .
(ii) If W(h0)= 0, W ′(h0) �= 0, then Eq. (3.1) has cyclicity at most k at Lh0 .

PROOF. For the first conclusion, let us suppose Eq. (3.1) has cyclicity at least k at Lh0 .
Then there exist εn →∞, δn ∈ D such that for (ε, δ) = (εn, δn) Eq. (3.1) has k limit
cycles L

(n)
j with L

(n)
j → Lh0 as n→∞, j = 1,2, . . . , k. Without loss of generality, we

can suppose

δn→ δ0, b(δn)→ b0 = (b10, . . . , bk0) as n→∞.

Near h0 we have the following expansion for N(h,b):

N(h,b)= b̄1 + b̄2(h− h0)+ · · · + b̄k(h− h0)
k−1 + b̄k+1(h− h0)

k + · · · ,
(3.11)

where, by (3.8),

b̄j+1 =
[
M(h, δ)

I1(h)

](j)
h=h0

= 1

j !
[
b1J

(j)

1 (h0)+ · · · + bkJ
(j)
k (h0)

]
,

j = 0,1, . . . , k− 1, k. (3.12)

It follows that

det
∂(b̄1, . . . , b̄k)

∂(b1, . . . , bk)
= W(h0)

1!2! · · · (k − 1)! �= 0. (3.13)

Note that |b0|> 0 by our assumption. By (3.12) and (3.13) we obtain

(
b̄1, . . . , b̄k

)∣∣
δ=δ0

= (
b̄10, . . . , b̄k0

) �= 0.

Thus, an integer l satisfying 1 � l � k exists such that

b̄j0 = 0, j = 1, . . . , l − 1, b̄l0 �= 0.
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Hence, we have by (3.11)

N(h,b0)= b̄l0(h− h0)
l−1 +O

(|h− h0|l
)
, b̄l0 �= 0. (3.14)

Therefore, by (3.7) and Corollary 2.3 (if h0 = α) or Corollary 3.2 (if h0 > α), there exist
ε0 > 0 and a neighborhood U of Lh0 such that for 0 < ε < ε0, |δ− δ0|< ε0 Eq. (3.1) has at
most l − 1 limit cycles in U . This contradicts that Eq. (3.1) has k limit cycles approaching
Lh0 for (ε, δ)= (εn, δn) and n→∞. This finishes the proof of conclusion (i).

Let W(h0)= 0, W ′(h0) �= 0. If the conclusion (ii) is not true, then, as before, there exists
a sequence (εn, δn) approaching (0, δ0) such that for (ε, δ)= (εn, δn), Eq. (3.1) has k + 1
limit cycles approaching Lh0 as n→∞. In this case, formulas (3.11) and (3.12) remain
true with

det
∂(b̄1, . . . , b̄k−1, b̄k+1)

∂(b1, . . . , bk)
= W ′(h0)

1!2! · · · (k − 2)!k! �= 0, (3.15)

and hence

(
b̄1, . . . , b̄k−1, b̄k+1

)∣∣
δ=δ0

= (
b̄10, . . . , b̄k−1,0, b̄k+1,0

) �= 0.

It follows that there exists 1 � l � k + 1 and l �= k such that (3.14) holds. Thus, a contra-
diction appears in the same way as above. This ends the proof. �

It often happens that b = 0 for some δ ∈D. In this case, the condition of Theorem 3.2
fails and the following one can apply further.

THEOREM 3.3. Suppose the following conditions are satisfied.
(a) The vector b is linear in δ with rank ∂b

∂δ
= k and b(δ0)= 0 for some δ0 ∈D.

(b) Eq. (3.1) is analytic on the closure G and has a center near Lα when b= 0.
(c) There exists h0 ∈ [α,β) such that |W(h0)| + |W ′(h0)| �= 0.

Then
(i) When W(h0) �= 0, Eq. (3.1) has cyclicity k− 1 at Lh0 .

(ii) When W(h0)= 0, W ′(h0) �= 0, Eq. (3.1) has cyclicity k (respectively k− 1 or k) at
Lh0 if h0 > α (respectively h0 = α).

(iii) For each h ∈ [α,β), Eq. (3.1) has cyclicity at least k − 1 at Lh.

PROOF. Let W(h0) �= 0 first. By Definition 3.1, it suffices to prove the following two
points:

(1) There are at most k − 1 limit cycles near Lh0 for ε > 0 small and δ ∈D.
(2) There can appear k− 1 limit cycles in any neighborhood of Lh0 for some arbitrarily

small ε+ |δ − δ0|.
We proceed the proof by contradiction. If the conclusion (1) is not true, then there exists

a sequence (εn, δn)→ (0, δ∗) with δ∗ ∈ D such that for (ε, δ) = (εn, δn) Eq. (3.1) has k
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limit cycles which approach Lh0 as n→∞. The proof of Theorem 3.2 implies b(δ∗)= 0.
By condition (a) we may assume

det
∂(b1, . . . , bk)

∂(δ1, . . . , δk)
�= 0.

Then for δ near δ∗ the linear equation b = b(δ) has a unique set of solutions δj =
δ̃j (b, δk+1, . . . , δm), j = 1, . . . , k. By (3.12) we have

det
∂(b̄1, . . . , b̄k)

∂(δ1, . . . , δk)
= det

∂(b̄1, . . . , b̄k)

∂(b1, . . . , bk)
det

∂(b1, . . . , bk)

∂(δ1, . . . , δk)
�= 0.

Further, by condition (b) Eq. (3.1) has a center near Lα when (b̄1, . . . , b̄k) = 0. Thus,
in the case of h0 = α, by (3.7), (3.8), (3.11) and Theorem 2.7 we know that Eq. (3.1) has
Hopf cyclicity k−1 at Lα for ε+|δ− δ∗| small. This contradicts to the existence of k limit
cycles near Lα for (ε, δ)= (εn, δn). The conclusion (1) above is proved for h0 = α. Since
b(δ0)= 0, using δ0 instead of δ∗, the above discussion implies that k − 1 limit cycles can
appear in any neighborhood of Lα for arbitrarily small ε + |δ − δ0|. Then the conclusion
(2) follows for h0 = α.

For the case of h0 > α, by (3.3), (3.7), (3.8) and (3.11) we have

F(h, ε, δ) = I1(h)

[
k∑

j=1

bjJj (h)+O(ε)

]

= I1(h)

[
k∑

j=1

b̃j (h− h0)
j−1 +O

(|h− h0|k
)]

, (3.16)

where b̃j = b̄j +O(ε), j = 1, . . . , k.
Also, by (3.13) and condition (b) Eq. (3.1) has a center near Lα for (b̄1, . . . , b̄k)= 0 and

hence for h near h0,

F(h, ε, δ)= 0 if
(
b̄1, . . . , b̄k

)= 0.

Thus (3.16) can be rewritten as

F(h, ε, δ)= I1(h)

k∑
j=1

b̃j (h− h0)
j−1[1+ Pj (h, ε, δ)

]
, (3.17)

where b̃j = b̄j + O(ε|b̄1, . . . , b̄k|), Pj (h, ε, δ) = O(|h − h0|k−j+1), j = 1, . . . , k. Then
using the form of (3.17) and similar to the proof of Theorem 2.7 we can prove that F has at
most k − 1 zeros near h= h0 for ε+ |δ − δ∗| small. A contradiction occurs too as before.
Also, as before, by using (3.17) F must have k− 1 zeros in h near h= h0 for (b̃1, . . . , b̃k)
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satisfying 0 < |b̃j | % |b̃j+1| % |b̃k|, b̃j b̃j+1 < 0, j = 1, . . . , k− 1. Hence, the proof of the
first conclusion of the theorem is completed.

To prove the second one, suppose W(h0)= 0, W ′(h0) �= 0 with h0 > α. Then by (3.9)
and (3.10) there exist constants α0, . . . , αk−2 such that

(
J
(k−1)
1 (h0), . . . , J

(k−1)
k (h0)

)=
k−2∑
j=0

αj

(
J
(j)

1 (h0), . . . , J
(j)
k (h0)

)
.

Hence, by (3.12) we have

b̄k =
k−1∑
j=1

ᾱj b̄j , (3.18)

for some constants ᾱ1, . . . , ᾱk−1. Therefore, by (3.15), (3.18), similar to (3.17) we obtain

F(h, ε, δ) = I1(h)

[
k+1∑

j=1,j �=k
b̃j (h− h0)

j−1(1+O
(|h− h0|k−j+2))

+
(

k−1∑
j=1

ᾱj b̄j +O
(
ε
∣∣b̄1, . . . , b̄k−1, b̄k+1

∣∣)
)
· (h− h0)

k−1

]
,

where

b̃j = b̄j +O
(
ε
∣∣b̄1, . . . , b̄k−1, b̄k+1

∣∣), j = 1, . . . , k− 1, k+ 1.

Note that

b̄j = b̃j +O
(
ε
∣∣b̃1, . . . , b̃k−1, b̃k+1

∣∣), j = 1, . . . , k− 1, k+ 1.

We have further

F = I1(h)

k+1∑
j=1

b̃j (h− h0)
j−1(1+ P̃j

)
, (3.19)

where

P̃j =
(
ᾱj +O(ε)

)
(h− h0)

k−j , j = 1, . . . , k − 1,

P̃k = 0, P̃k+1 =O
(|h− h0|

)
, b̃k =O

(
εb̃k+1

)
.

Using (3.19), similar to Theorem 2.7, one can prove that Eq. (3.1) has at most k limit cycles
near Lh0 for ε small and δ ∈D.
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Furthermore, we can prove that k limit cycles can appear in any neighborhood of Lh0 .
In fact, let us take

h− h0 = λε, b̃j = Bj , ε
k+1−j , j = 1, . . . , k − 1, k+ 1,

where Bj are such constants that the polynomial in λ

g(λ)= B1 +B2λ+ · · · +Bk−1λ
k−2 +Bk+1λ

k

has k simple zeros λj �= 0, j = 1, . . . , k. Then (3.19) becomes

F = εkI1(h)
[
g(λ)+O(ε)

]
,

which has k simple zeros λ̃j = λj + O(ε) in λ, j = 1, . . . , k. Thus F has k simple zeros
hj = h0 + λ̃j ε in h, j = 1, . . . , k.

For h0 = α, we may assume α = 0. Then noting (3.18), similar to (2.64) we have

F = b̄1
(
1+O

(|ε, r|))+ b̄2r
2(1+O

(|ε, r|))+ · · · + b̄k−1r
2(k−2)

× (
1+O

(|ε, r|))+ b̄k+1r
2(k−1)O(ε)+ b̄k+1r

2k(1+O
(|ε, r|)).

It is easy to see that F has at most k zeros in r > 0 and k− 1 zeros can appear.
For conclusion (iii), let h ∈ [α,β) and U be any neighborhood of Lh. Since W is ana-

lytic on [α,β) there exists h̄ > h such that W(h̄) �= 0 and Lh̄ ⊂ U . By the conclusion (i)
Eq. (3.1) has k− 1 limit cycles in U for some (ε, δ). Since U is arbitrary it follows that Lh

has cyclicity at least k − 1. The proof is completed. �

By (3.17) and (3.19) one can prove easily

COROLLARY 3.3. Suppose the conditions (a)–(c) hold with h0 > α. If
(i) W(h0) �= 0, 1 � l � k − 1, or

(ii) W(h0)= 0, W ′(h0) �= 0, 1 � l � k, l �= k− 1,
then there exists a function δ = δ(ε) with δ(0) ∈D such that for δ = δ(ε) and ε > 0 small
Eq. (3.1) has a limit cycle of multiplicity l which approaches Lh0 as ε→ 0.

REMARK 3.1. Under conditions of Theorem 3.3, the function W is analytic and has only
isolated zeros on [α,β). Thus for any h̄ ∈ (α,β), there exist α � h1 < h2 < · · ·< hl < h̄,
l � 0 such that Eq. (3.1) has cyclicity k− 1 at Lh for h ∈ [α, h̄)− {h1, . . . , hl}.
EXAMPLE 3.2. Consider the Liénard system (2.66) discussed in Example 2.7

ẋ = y − ε

2n+1∑
i=1

aix
i, ẏ =−x.

As before, suppose that ε > 0 is small and |ai |� 1 for i = 1, . . . ,2n+ 1 with n � 1.
We claim that for each h � 0 the above system has cyclicity n at the circle x2+y2 = 2h.
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In fact, by the discussion in Example 2.7 we have

M(h)=
n∑

j=0

bj+1h
j+1, bj+1 =−2j+1Nja2j+1, Nj > 0, j = 0, . . . , n.

Comparing with (3.8) we may take

I1(h)= h, Jj (h)= hj−1, j = 1, . . . , n+ 1.

Hence, by (3.9) we have W(h)= 1 for all h � 0. Thus the claim follows from Theorem 3.3
and Theorem 2.3(i).

EXAMPLE 3.3. For the system

ẋ = y − ε

n∑
i=0

a2i+1x
2i+1, ẏ =−x(1− x),

we have

M(h)=
n∑

j=0

bj+1h
j+1(1+O(h)

)

for 0 < h% 1. It follows W(0) = 1. Thus, by Remark 3.1 there may exist finitely many
values 0 < h1 < · · · < hl in the interval (0, 1

6 ) such that for any h ∈ [0, 1
6 )− {h1, . . . , hl}

(respectively h ∈ {h1, . . . , hl}) the above system has cyclicity n (respectively at least n)
at Lh.

DEFINITION 3.2. Let U ∈ R
2 be a bounded set and N0 a positive integer. We call N0 the

cyclicity of U for Eq. (3.1) with δ ∈D and ε > 0 small if the following are satisfied:
(i) For any given compact set V ∈ U Eq. (3.1) has at most N0 limit cycles in V for all

δ ∈D and 0 < ε < ε0, where ε0 = ε0(V ) > 0.
(ii) Eq. (3.1) has N0 limit cycles for some (ε, δ) with δ ∈D whose limits as ε→ 0 are

in U .
The cyclicity of the set G=⋃

h∈(α,β) Lh for Eq. (3.1) is also called the cyclicity of the
period annulus {Lh: α < h< β}.

The following theorem gives a sufficient condition for finding the cyclicity of the open
sets G and G∪Lα .

THEOREM 3.4. Suppose (3.7) and (3.8) hold. Let the conditions (a) and (b) of Theorem 3.3
are satisfied. Let further, for each b �= 0 the function N(h,b) has at most N0 zeros (taking
multiplicity into account) in h ∈ [α,β) (respectively h ∈ (α,β)) and for some b �= 0 it has
N0 simple zeros in h ∈ (α,β). Then the cyclicity of the set G ∪ Lα (respectively G) for
Eq. (3.1) is N0 as G is bounded.
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PROOF. For the sake of simplicity, we suppose that the singular point of Eq. (3.1) near
Lα is at the origin with α = 0. Then we can take a cross section l which is on the positive
x-axis with an endpoint at the origin. In this case we have

A(h)= Lh ∩ l = (
a(h),0

)
, B(h, ε, δ)= (

b∗(h, ε, δ),0
)

for h > 0 small. By (2.4), the function b∗ is analytic in a. Thus, b∗ = O(a) and
H(B) − H(A) = O(a2) = O(h). Then it follows from (3.3) that F(h, ε, δ) = O(h). As
before, suppose

det
∂(b1, . . . , bk)

∂(δ1, . . . , δk)
�= 0.

Then we can solve δi = δ̃i (b, δk+1, . . . , δm), i = 1, . . . , k from b = b(δ). Hence, for
h ∈ [0, β) we have

F(h, ε, δ)= I1(h)
[
N(h,b)+O(ε)

]≡ F ∗(h, ε, b, δk+1, . . . , δm). (3.20)

By our assumption and Corollary 3.1 Eq. (3.1) can have N0 limit cycles for some (ε, δ).
What we need to do is to prove that for any given constants 0 < λ < β (respectively 0 <

μ < λ < β) there exists ε0 > 0 such that for 0 < ε < ε0, δ ∈ D the function F has at
most N0 zeros in h ∈ (0, λ] (respectively [μ,λ]). If the conclusion is not true, then there
exists a sequence {(εj , δj )} with εj → 0, δj → δ0 ∈ D as j →∞ such that F(h, εj , δj )

has N0+ 1 zeros hij , i = 1, . . . ,N0+ 1 in h ∈ (0, λ] (respectively [μ,λ]). We can suppose
hij → hi0 ∈ [0, λ] (respectively [μ,λ]) as j →∞. Then by (3.20)

N(hi0, b0)= 0, i = 1, . . . ,N0 + 1,

where b0 = b(δ0). Hence, by Corollaries 2.3 and 3.2 the function N(h,b0) has at least
N0 + 1 zeros (multiplicity taken into account) in [0, λ] (respectively [μ,λ]). This implies
b0 = 0.

On the other hand, we have F ∗|b=0 = 0 on [0, λ]. This yields

F ∗ =
k∑

i=1

biFi(h, ε, b, δk+1, . . . , δm)

= I1(h)
[
N(h,b)+O

(
ε|b|)]

(3.21)= |b|I1(h)
[
N(h, c)+O(ε)

]
≡ |b|I1(h)G(h, ε, c, δk+1, . . . , δm),

where c= b
|b| = (c1, . . . , ck). Let

c(j) = b(δj )

|b(δj )| , j � 1.
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Then b(δj )→ b(δ0)= 0, j →∞. We can assume c(j)→ c0 with |c0| = 1. Note that

F(hij , εj , δj )= 0, j � 1, i = 1, . . . ,N0 + 1.

It follows from (3.20) and (3.21) that N(hi0, c0)= 0, i = 1, . . . ,N0+ 1, which contradicts
to our assumption. The proof is completed. �

REMARK 3.2. Let the conditions of Theorem 3.4 be satisfied. If G is unbounded, then
there exists a compact set V0 ⊂G∪Lα (respectively⊂G) such that for any compact set V
satisfying V0 ⊂ V ⊂G∪Lα (respectively V0 ⊂ V ⊂G) Eq. (3.1) has cyclicity N0 on V .

EXAMPLE 3.4. Consider Eq. (2.66) again. Since

N(h,b)=
n∑

j=0

bj+1h
j ,

in this case, by the discussion in Example 3.2 for any compact set V containing the origin
its cyclicity is n.

An open problem for Eq. (3.1) is: What is the maximal number of limit cycles on the
plane? The above example suggests that the answer be n. The most difficult part is to study
the number of limit cycles which disappear into infinity as ε→ 0.

3.2. Existence of 2 and 3 limit cycles

By (3.8), the function N can be written in the form

N(h,b)= b1 − P(h,b2, . . . , bk). (3.22)

The function P here is called a detection function and its graph on the (h, b1) plane a detec-
tion curve. For a given system, an interesting problem is to find a point (b10, b20, . . . , bk0)

such that the line b1 = b10 and the curve b1 = P(h,b20, . . . , bk0) have as many intersection
points as possible.

The simplest case is that P is monotonic in h ∈ (α,β). Some sufficient conditions for
some special systems on the monotonicity of P were obtained by Li and Zhang [84], and
Han [49]. Obviously, if P(α,b2, . . . , bk) �= P(β,b2, . . . , bk) for some (b2, . . . , bk) then
Eq. (3.1) can have a limit cycle.

Next, we give some conditions for Eq. (3.1) to have 2 or 3 limit cycles. We will suppose
β <∞ and Lβ is a homoclinic loop with a hyperbolic saddle S on it. First, we prove

LEMMA 3.3. Let φ(x, y) be a C∞ function with φ(S) = 0. Then along the orbit Lh of
Eq. (3.2) the limit limh→β

∮
Lh

φ(x, y)dt = ∮
Lβ

φ(x, y)dt exists finitely.
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Fig. 10.

PROOF. Without loss of generality, we may suppose the saddle S is at the origin and the
Eq. (3.2) has the form

ẋ = λx + f (x, y), ẏ =−λy + g(x, y) (3.23)

where f , g = O(|x, y|2), which implies that H(x,y) = λxy + O(|x, y|3), λ �= 0 with
β = 0. For definiteness, assume λ < 0 and Lh locates in the first quadrant. See Fig. 10.

For ε0 > 0 small take points A1 ∈ Lh∩{x = ε0}, A2 ∈ Lh∩{x = y}, A3 ∈ Lh∩{y = ε0}.
Then the coordinate (a, a) of A2 satisfies a = a(h)=

√
h
λ
+O(h). Let y = xu. Then

H(x,y)= x2[λu+ xφ0(x,u)
]
,

where, by the integral mean value theorem, φ0 ∈ C∞. The orbit arc Â1A2 satisfies the
equation

H(x,y)= h, a(h) � x � ε0,

which is equivalent to

V (x,u, v)= 0, a(h) � x � ε0, (3.24)

where V (x,u, v)= λu+ xφ0(x,u)− v, v = h

x2 ∈ [ hε2
0
, h

a2 ]. Note that

V

(
0,

v

λ
, v

)
= 0, Vu

(
0,

v

λ
, v

)
= λ.

Taking v as a parameter we can solve uniquely from (3.24)

u= u(x, v)= v

λ
+O(x) with uv = 1

λ
+O(x).
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It is clear that along Â1A2

φ(x, y)

λx + f (x, y)
= φ(x, xu(x, v))

λx + f (x, xu(x, v))
= φ(S)

λx
+R0(x)+R1(x, v)v, (3.25)

where R0,R1 ∈ C∞. Hence, by (3.23) and φ(S)= 0

∫
Â1A2

φ(x, y)dt =
∫ a

ε0

(R0 +R1v)dx =
∫ a

ε0

R0 dx +
∫ a

ε0

R1v dx.

Since

∣∣∣∣
∫ a

ε0

v dx

∣∣∣∣=
∣∣∣∣h

∫ a

ε0

dx

x2

∣∣∣∣=
∣∣∣∣ha −

h

ε0

∣∣∣∣=O
(|h|1/2),

it follows that

lim
h→0

∫
Â1A2

φ(x, y)dt =
∫ 0

ε0

R0 dx =
∫
Â10A20

φ(x, y)dt ∈R,

where Ai0 = limh→0 Ai , i = 1,2,3.
Similarly,

lim
h→0

∫
Â2A3

φ(x, y)dt =
∫
Â20A30

φ(x, y)dt ∈R.

Also, it is obvious that

lim
h→0

∫
Â3A1

φ(x, y)dt =
∫
Â30A10

φ(x, y)dt ∈R.

Thus

lim
h→0

∮
Lh

φ(x, y)dt = lim
h→0

∫
Â1A2∪Â2A3∪Â3A1

φ(x, y)dt

=
∫
Â10A20

φ dt +
∫
Â20A30

φ dt +
∫
Â30A10

φ dt

=
∮
Lβ

φ(x, y)dt ∈R.

This finishes the proof. �

By Lemmas 3.2 and 3.3 we have immediately
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COROLLARY 3.4. Let Lh be oriented clockwise and expand with h increasing. Then for
any C∞ functions p̄(x, y) and q̄(x, y) the Abelian

I (h)=
∮
Lh

q̄ dx − p̄ dy

has the derivative

I ′(h)=
∮
Lh

(p̄x + q̄y)dt,

and

I ′(α)= (p̄x + q̄y)(Lα)Tα, I ′(h)= c0Th + c1 + c2(h),

where Th denotes the period of Lh,Tα = limh→α Th, c0 = (p̄x + q̄y)(S), c1 =
∮
Lβ
[p̄x +

q̄y − c0]dt , limh→β c2(h)= 0. Further, by (3.25) it is easy to see that

lim
h→β

Th

ln |h− β| = p0 < 0. (3.26)

The following lemma gives formulas for computing the value of the function P and its
derivative at h= α.

LEMMA 3.4. Let (3.7), (3.8) and (3.22) hold. Suppose

(px + qy)(Lα,0, δ)=
k∑

j=1

dj0bj , d10 �= 0, (3.27)

and

v∗3 =
k∑

j=2

v3j bj as b1 =− 1

d10

k∑
j=2

dj0bj , (3.28)

where v∗3 = ∂v3
∂ε
|ε=0 and v3 is the first focus value of Eq. (3.1) at the focus near Lα obtained

by using Theorem 2.1, and dj0 (1 � j � k) and v3j (2 � j � k) are constants. Then

P(α,b2, . . . , bk)=− 1

d10

k∑
j=2

dj0bj ,

P ′h(α, b2, . . . , bk)=− 4π

Kb10

k∑
j=2

v3j bj ,

where K > 0, and b10 = I ′1(α) which can be obtained by Corollary 3.4.
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PROOF. Let

Ij (h)= bj0(h− α)+ bj1(h− α)2 +O
(|h− α|3), j = 1, . . . , k.

Then

M(h, δ)= b∗0(h− α)+ b∗1(h− α)2 +O
(|h− α|3),

where b∗i =
∑k

j=1 bjibj , i = 0,1. By Lemma 2.9 and Corollary 3.4 we have

b∗0 = 0 if and only if (px + qy)(Lα,0, δ)= 0,

and

v∗3 =
K

4π
b∗1 when b∗0 = 0.

Therefore, by (3.27) b∗0 = 0 implies

b1 =− 1

b10

k∑
j=2

bj0bj =− 1

d10

k∑
j=2

dj0bj ,

and hence

v∗3 =
K

4π

[
b11b1 +

k∑
j=2

bj1bj

]
= K

4πb10

k∑
j=2

(b10bj1 − b11bj0)bj ,

when b∗0 = 0. Hence, by (3.22) and (3.8)

P(h,b2, . . . , bk) = −
k∑

j=2

bj Ij (h)

I1(h)

= −
k∑

j=2

bj [bj0 + bj1(h− α)+O(|h− α|2)]
b10 + b11(h− α)+O(|h− α|2)

= − 1

b2
10

k∑
j=2

bj
[
b10bj0 + (b10bj1 − b11bj0)(h− α)

+O
(|h− α|2)]

= − 1

b10

k∑
j=2

bj0bj − 4π

Kb10
v∗3(h− α)+O

(|h− α|2)
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= − 1

d10

k∑
j=2

dj0bj − 4π

Kb10

k∑
j=2

v3j bj (h− α)+O
(|h− α|2).

Then the conclusion follows from (3.28) and the above easily. The proof is ended. �

Now we can give a condition for the existence of 2 limit cycles.

THEOREM 3.5. Let Lh be oriented clockwise and expand with h increasing. Suppose
(3.7), (3.8), (3.22), (3,27) and (3.28) are satisfied. If there exists δ0 ∈D such that

(i) (px + qy)(S,0, δ0)=
k∑

j=1

djbj (δ0),

σ (δ0)=
k∑

j=2

(
dj − d1Ij (β)

I1(β)

)
bj (δ0) �= 0;

(ii) σ(δ0)

k∑
j=2

v3j bj (δ0) < 0;

(iii) b′1(δ0) �= 0 and

b1(δ0)=

⎧⎪⎨
⎪⎩

min
{
P
(
α,b2(δ0), . . . , bk(δ0)

)
,P

(
β,b2(δ0), . . . , bk(δ0)

)}
as σ(δ0)I1(β) < 0,

max
{
P
(
α,b2(δ0), . . . , bk(δ0)

)
,P

(
β,b2(δ0), . . . , bk(δ0)

)}
as σ(δ0)I1(β) > 0

then Eq. (3.1) has at least two limit cycles for some (ε, δ) near (0, δ0).

PROOF. By (3.8) and (3.22) we have M = I1(b1 − P). Hence M ′ = I ′1(b1 − P) − I1P
′

and

P ′

Th
= I ′1

Th
· b1 − P

I1
− M ′

Th
· 1

I1
.

Take b1 = P(β,b2, . . . , bk) and apply Corollary 3.4 to function I1 and M so that

lim
h→β

P ′

Th
= − 1

I1(β)
lim
h→β

M ′

Th

∣∣∣∣
b1=P(β,b2,...,bk)

= − 1

I1(β)
(px + qy)(S,0, δ)|b1=P(β,b2,...,bk)

= − 1

I1(β)
σ (δ). (3.29)
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Then noting I ′1(α)I1(β) > 0, by Lemma 3.4 we know that for h near β the product

P ′h(α, b2, . . . , bk)P
′
h(h, b2, . . . , bk) has the same sign as σ(δ)

k∑
j=2

v3j bj . Then it follows

from (ii) that for δ = δ0 the function P(h,b2, . . . , bk) has a minimum or maximum
in the interval (α,β). Therefore, by (3.29) and (iii) for some δ near δ0 the function
b1 − P(h,b2, . . . , bk) has two zeros with odd multiplicity in the interval (α,β). Then the
conclusion follows from Theorem 3.1. This ends the proof. �

EXAMPLE 3.5. Consider the system

ẋ = y(1− y)− ε
(
x3 − δx

)
, ẏ =−x, (3.30)

where ε > 0 is small and δ ∈ R is bounded. For ε = 0, Eq. (3.30) has a family of periodic
orbits giving by

Lh:
1

2

(
x2 + y2)− 1

3
y3 = h, 0 < h<

1

6
, y < 1.

By (3.4) we have

M(h, δ)= δI1(h)− 3I2(h)= I1(h)
(
δ − P(h)

)

where

P(h)= 3I2(h)

I1(h)
,

Ij (h)=− 1

2j − 1

∮
Lh

x2j−1 dy =
∫∫

Int.Lh

x2j−2 dx dy, j = 1,2.

By Corollary 3.4, I1(h) = 2πh+ O(h2), I2(h) = O(h2). By Theorem 2.1, we have v∗3 =
− 3

8 as δ = 0. Let

σ = 3I2(
1
6 )

I1(
1
6 )
= δ0.

Since L1/6 can be represented as x2 = 2
3 (y− 1)2(y+ 1

2 ),− 1
2 � y � 1, it is easy to see that

I1

(
1

6

)
= 2

∫ 1

−1/2
(1− y)

√
1− 2

3
(1− y)dy = 6

5
,

I2

(
1

6

)
= 2

3

∫ 1

−1/2
(1− y)3

(
1− 2

3
(1− y)

)3/2

dy = 108

385
.
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Fig. 11. The graph of P(h) for Eq. (3.27).

Thus, δ0 = 54
77 . By Theorem 3.5 for Eq. (3.30) the system has two limit cycles for (ε, δ)

near (0, 54
77 ) with δ > 54

77 . The graph of the function δ = P(h) on the (h, δ) plan is as shown
in Fig. 11.

For the existence of three limit cycles, we have:

THEOREM 3.6. Let Lh be oriented clockwise and expand with h increasing. Suppose
(3.7), (3.8), (3.22), (3.27) and (3.28) are satisfied. Assume further

(i) there exists δ0 ∈D such that

(px + qy)(S,0, δ0)

k∑
j=2

v3j bj (δ0) > 0, b′1(δ0) �= 0,

b1(δ0)= P
(
α,b2(δ0), . . . , bk(δ0)

)= P
(
β,b2(δ0), . . . , bk(δ0)

);
(ii) there exists δ∗ near δ0 such that

I1(β)(px + qy)(S,0, δ0)

×[
P
(
α,b1

(
δ∗

)
, . . . , bk

(
δ∗

))− P
(
β,b1

(
δ∗

)
, . . . , bk

(
δ∗

))]
> 0.

Then for ε > 0 small and δ = δ∗ Eq. (3.1) has 3 limits cycles.

We will give an example to show the way to prove the above theorem.
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EXAMPLE 3.6. Consider a system of the form

{
ẋ = y(1− y)− ε

(
x3 − δ1x + δ2xy

)
,

ẏ =−x.
(3.31)

We claim that for ε > 0, δ1 < 0, δ2 <−54/11 and ε+|δ1|+|δ2+54/11| small Eq. (3.31)
has 3 limit cycles.

For this system we have

M(h)= b1I1(h)+ b2I2(h)+ b3I3(h),

where b1 = δ1, b2 = −3, b3 = δ2 and I1(h), I2(h) are the same as in Example 3.5, and
I3(h)=

∮
Lh

xy dy with I3(
1
6 )=− 6

35 . Let

P(h,b2, b3)=− 1

I1(h)

[
b2I2(h)+ b3I3(h)

]
.

Also, let b10 = δ10 = 0, b20 =−3, b30 = δ20 = 3I2(
1
6 )/I3(

1
6 )=− 54

11 . Then

b10 = P(0, b20, b30)= P

(
1

6
, b20, b30

)
= 0.

Further, by Lemma 3.4 and (3.29) we have

P ′h(0, b20, b30)= 1

2
(3+ δ20) < 0,

lim
h→ 1

6

P ′h(h, b20, b30)

Th
= δ20

I1(
1
6 )

< 0,

P

(
1

6
, b2, b3

)
=−I3(

1
6 )

I1(
1
6 )

(δ2 − δ20).

Denote by 
0 and 
∗ respectively the graph of the function P(h,b2, b3) on the (b1, h)

plane for δ2 = δ20 and δ2 = δ∗2 , where δ∗2 < δ20 with |δ∗2 − δ20| small. See Fig. 12.
It is clear that for δ∗1 < 0 and |δ∗1 | sufficiently small, the line b1 = δ∗1 and 
∗: b1 =

P(h,−3, δ∗2) have at least 3 intersection points. Then the conclusion follows easily.

3.3. Near-Hamiltonian polynomial systems

We now give an important application of Theorem 3.3 to polynomial systems.
Consider a near-Hamiltonian polynomial system of the form

ẋ =Hy(x, y,μ)+ εp(x, y, a),

ẏ =−Hx(x, y,μ)+ εq(x, y, a),
(3.32)
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Fig. 12. Curves 
0 and 
∗.

where

H(x,y,μ)= 1

2

(
x2 + y2)+

m∑
i+j=3

hij x
iyj , m � 3,

p(x, y, a)=
n∑

i+j=1

aij x
iyj , q(x, y, a)=

n∑
i+j=1

bij x
iyj ,

and μ= {hij } ∈R
r , r = 1

2 (m+ 1)(m+ 2)− 6, a = {aij , bij } ∈R
n2+3n, n � 2. For each μ,

there exists β = β(μ) ∈ (0,+∞] such that for h ∈ (0, β) the equation H(x,y,μ) = h

defines a smooth closed curve Lh which surrounds a unique singular point (the origin) of
the system (3.32) (ε = 0). By (3.4) we can write

M(h,a)=
n−1∑

i+j=0

cij Iij (h)=
k∑

j=1

bj Ij (h),

where

Iij =
∫∫

H�h

xiyj dx dy,

{I1, . . . , Ik} = {Iij , 0 � i + j � n− 1}, I1 = I00,

{b1, . . . , bk} = {cij , 0 � i + j � n− 1}, k = 1

2
n(n+ 1).

Denote by W(h,μ) the Wronskian defined by (3.9). Then the equation W(0,μ)= 0 de-
fines an (r−1)-dimensional surface �

(1)
r−1 in R

r and the equations W(h,μ)=W ′
h(h,μ)=

0 with 0 � h < β(μ) define another (r − 1)-dimensional surface �
(2)
r−1. Let

Br =R
r −�

(1)
r−1 −�

(2)
r−1.
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Then Br is an open set in R
r with boundary �

(1)
r−1 ∪�

(2)
r−1. For each μ ∈ Br , we have

W(0,μ) �= 0,
∣∣W(h,μ)

∣∣+ ∣∣W ′
h(h,μ)

∣∣ �= 0, h ∈ [0, β).

Note that for each μ ∈ Br and h̄ ∈ (0, β), the analytic function W(h,μ) has only finitely
many zeros h1, . . . , hl on (0, h̄]. Then by Theorem 3.3 we have immediately:

THEOREM 3.7. There exists an open set Br in R
r whose boundary consists of r − 1 di-

mensional surfaces such that for each μ ∈ Br , and h̄ ∈ (0, β) there may exist constants
0 < h1 < · · ·< hl with l � 0 such that

(i) for h ∈ [0, h̄] − {h1, . . . , hl}, Eq. (3.32) has cyclicity 1
2n(n+ 1)− 1 at Lh;

(ii) for h ∈ {h1, . . . , hl}, Eq. (3.32) has cyclicity 1
2n(n+ 1) at Lh.

In particular, for each μ ∈ Br , Eq. (3.32) has Hopf cyclicity 1
2n(n+ 1)− 1 at the origin.

Roughly speaking, for almost all μ ∈ R
r , Eq. (3.32) has cyclicity 1

2n(n + 1) − 1 or
1
2n(n+ 1) at each Lh with h ∈ [0, β).
REMARK 3.3. It is easy to see that in some cases, Theorem 3.7 is still valid if μ is a vector
parameter of dimension r with r < 1

2 (m+ 1)(m+ 2)− 6.
As an application, let us consider quadratic systems. By Ye et al. [117], a quadratic

system having a focus or center can be changed into the form

ẋ =−y + δx + lx2 +mxy + ny2,

ẏ = x(1+ ax + by).

The system is Hamiltonian if and only if δ =m= b + 2l = 0. Then taking δ = εδ1, m =
εm1, b=−2l0 + εb1, l = l0 + εl1, a = a0 + εa1, it becomes

ẋ =Hy + ε
(
δ1x + l1x

2 +m1xy + n1y
2
)
,

ẏ =−Hx + ε
(
a1x

2 + b1xy
)
,

(3.33)

where

H(x,y)=−1

2

(
x2 + y2)+ l0x

2y + 1

3
n0y

3 − 1

3
a0x

3.

For (3.33), we have

M(h)= δ1I1(h)+ b̄1I2(h)+m1I3(h), b̄1 = b1 + 2l1,

where

I1(h)=
∫∫
−H�h

dx dy, I2(h)=
∫∫
−H�h

x dx dy,

I3(h)=
∫∫
−H�h

y dx dy, h ∈ [0, β).



Bifurcation theory of limit cycles of planar systems 423

By [117], up to a positive constant, the first four focus values of the origin can be taken as

W0 = εV0, Wi = εVi +O
(
ε2), i = 1,2,3,

where

V0 = δ1, V1 =m1(n0 + l0)− a0b̄1,

V2 = 5m1a
2
0

[
(l0 + n0)

2(n0 − 2l0)− a2
0n0

]
.

Thus,

det
∂(V0,V1,V2)

∂(δ1, b̄1,m1)
=−5a3

0

[
(l0 + n0)

2(n0 − 2l0)− a2
0n0

]
.

Hence, by Lemma 2.9 and (3.12), it is easy to see that

W(0, a0, l0, n0)=N0a
3
0

[
(l0 + n0)

2(n0 − 2l0)− a2
0n0

]
, N0 �= 0.

Then from the discussion before Theorem 3.7 it follows that for any (a0, l0, n0) ∈ R
3 sat-

isfying

a0
[
(l0 + n0)

2(n0 − 2l0)− a2
0n0

] �= 0,

the Hopf cyclicity of (3.33) at the origin is 2.

3.4. Homoclinic bifurcation

In the rest of the chapter, we introduce a way to find limit cycles in a neighborhood of the
homoclinic loop Lβ .

As a preliminary, we first discuss the stability of an isolated homoclinic loop. Consider
a C∞ planar system of the form

ẋ = f (x, y), ẏ = g(x, y). (3.34)

Suppose that (3.34) has a homoclinic loop L with a hyperbolic saddle. Assume that the
saddle is at the origin. Then on the stability of L we have

LEMMA 3.5. Let

c1 = (fx + gy)(0), c2 =
∮
L

(fx + gy − c1)dt. (3.35)

Then L is stable (unstable) if c1 < 0, or c1 = 0, c2 < 0 (c1 > 0, or c1 = 0, c2 > 0).
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For a proof of the lemma, see Han [47,51], Han and Chen [57], and Feng and Qian [27].
Further, let c1 = c2 = 0. We can assume the functions f and g have the following form:

f (x, y)= λx +O
(|x, y|2), g(x, y)=−λy +O

(|x, y|2), λ > 0.

In this case, let

c3 = 1

2λ

[
fxxy + gxyy − 1

λ
(fxxfxy − gxygyy)

]∣∣∣∣
x=y=0

, (3.36)

which is called the first saddle value of (3.34) at the origin.
If f and g satisfy

f (x, y)= λy +O
(|x, y|2), g(x, y)= λx +O

(|x, y|2),
then, instead of (3.36), let

c3 = − 1

2λ

[
fxxx − fxyy + gxxy − gyyy + 1

λ

(
fxy(fyy − fxx)

+ gxy(gyy − gxx)− fxxgxx + fyygyy
)]∣∣∣∣

x=y=0
. (3.37)

Then we have the following lemma obtained by Han, Hu and Liu [58].

LEMMA 3.6. Let c1 = c2 = 0, and c3 �= 0. Then L is stable if and only if one of the
following occurs:

(i) c3 < 0, a Poincaré map is well-defined near inside L and L is oriented anti-
clockwise;

(ii) c3 < 0, a Poincaré map is well-defined near outside L and L is oriented clockwise;
(iii) c3 > 0, a Poincaré map is well-defined near outside L and L is oriented anti-

clockwise;
(iv) c3 > 0, a Poincaré map is well-defined near inside L and L is oriented clockwise.

We remark that the formula (3.37) can be obtained from (3.36) by introducing a liner
transformation x = 1√

2
(u− v) and y = 1√

2
(u+ v) where u and v are new variables.

Going back to (3.1) we introduce the following four functions:

d0(δ)=
∮
Lβ

(q dx − p dy)

∣∣∣∣
ε=0
=M(β, δ),

d1(δ)= (px + qy)(S,0, δ),

d2(δ)=
∮
Lβ

[
px + qy − d1(δ)

]
dt,

d3(δ)= ∂c3

∂ε
(ε, δ)

∣∣∣∣
ε=0

,

(3.38)
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where c3 is obtained by (3.36) or (3.37).
The following theorem was obtained by Han [43].

THEOREM 3.8. (i) Let there exist δ0 = (δ10, . . . , δm0) ∈D, m � 2 such that

d0(δ0)= d1(δ0)= 0, d2(δ0) �= 0, det
∂(d0, d1)

∂(δ1, δ2)
(δ0) �= 0.

Then for any ε0 > 0 and neighborhood U of δ0 there exists an open subset Vε ⊂ U for
0 < ε < ε0 such that Eq. (3.1) has 2 limit cycles near Lβ for a ∈ Vε .

(ii) Let there exist δ0 = (δ10, . . . , δm0) ∈D, m � 3, such that

di(δ0)= 0, i = 0,1,2, d3(δ0) �= 0, det
∂(d0, d1, d2)

∂(δ1, δ2, δ3)
(δ0) �= 0.

Then for any ε0 > 0 and neighborhood U of δ0 there exists an open subset Vε ⊂ U for
0 < ε < ε0 such that Eq. (3.1) has 3 limit cycles near Lβ for a ∈ Vε .

We briefly outline the proof of the first conclusion. For definiteness, suppose Lβ is ori-
ented clockwise and the Poincaré map is well defined inside it as before. For ε > 0 small
a unique saddle Sε near S and two separatrices Lu

ε and Ls
ε near Lβ exist. The directed

distance between Ls
ε and Lu

ε on a cross section is given by (see [14,51,112])

d(ε, δ)= εN
[
d0(δ)+O(ε)

]
, N > 0.

By the assumption, we can suppose d ′00 = ∂d0
∂δ1

(δ0) �= 0. The implicit function theorem
implies that a unique function δ1 = ϕ1(ε, δ2, . . . , δm)= ϕ10(δ2, . . . , δm)+O(ε) exists such
that for ε > 0 and |δ − δ0| small d(ε, δ) � 0 if and only if d

′
00[δ1 − ϕ1] � 0. Hence, a

homoclinic loop L∗ε appears near Lβ if δ1 = ϕ1.
Let δ1 = ϕ1 and define

c1(ε, δ2, . . . , δm)= ε(px + qy)(Sε,0, δ)= ε
[
c10(δ2, . . . , δm)+O(ε)

]
,

where

c10 = (px + qy)(S,0, δ)|δ1=ϕ10 .

Then our assumption implies that

c10(δ20, . . . , δm0)= 0, d
′
10 =

∂c10

∂δ2
(δ20, . . . , δm0) �= 0.

Thus a unique function δ2 = ϕ2(ε, δ3, . . . , δm)= ϕ20(δ3, . . . , δm)+O(ε) exists such that

c1(ε, δ2, . . . , δm) � 0 if and only if d
′
10[δ2 − ϕ2]� 0.
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Let δ1 = ϕ1, δ2 = ϕ2 and define

c2(ε, δ3, . . . , δm)= ε

∮
L∗ε
(px + qy)dt = ε

[
c20(δ3, . . . , δm)+O(ε)

]
,

where

c20(δ3, . . . , δm)=
∮
Lβ

(px + qy)|δ1=ϕ10, δ2=ϕ20 dt.

It is easy to see that

c20(δ30, . . . , δm0)= d2(δ0) �= 0.

Without loss of generality, suppose d2(δ0) > 0. Then for ε > 0, δ1 = ϕ1, δ2 = ϕ2 and ε +
|δ − δ0| small L∗ε is unstable by Lemma 3.6. Fix ε > 0 and δj near δj0 for j = 3, . . . ,m,
and vary δ1 and δ2 such that

δ1 = ϕ1, 0 < |δ2 − ϕ2| % 1, c1(ε, δ2, . . . , δm) < 0.

Then, L∗ε has changed its stability from unstable into stable and therefore an unstable limit
cycle has appeared near it at the same time. Next, noting that we have assumed that Lβ is
oriented clockwise and the Poincaré map is well-defined inside it, we then change δ1 such
that 0 < |δ1 − ϕ1| % |δ2 − ϕ2|, d(ε, δ) < 0. Clearly, L∗ε has broken and a stable limit cycle
has appeared. Therefore, 2 limit cycles can appear near Lβ .

We can summarize the method used above into 3 steps:
1. For ε > 0 fixed, a homoclinic loop L∗ε appears for δ on a codimension 1 surface in

R
m when d(ε, δ)= 0.

2. Keep L∗ε to appear and study its stability and then change the stability of L∗ε in turn
to produce limit cycles.

3. Find a final limit cycle by making the homoclinic loop broken.
This method was first used by Han [43] and then developed by Han and Chen [57] and

Han, Hu and Liu [58] to study the number of limit cycles near a double homoclinic loop.
General theorems like Theorem 3.8 on double homoclinic bifurcations can be found in

Han and Zhang [71]. Interesting applications of the method to quadratic and cubic systems
et al. for the existence limit cycles are given in [65–68,70,72,122–126].

EXAMPLE 3.7. Consider

ẋ = y − ε
(
a1x + a2x

2 + x4
)
,

ẏ = x − x2.
(3.39)

For ε = 0, (3.39) has a first integral of the form

H(x,y)= 1

2

(
y2 − x2)+ 1

3
x3,



Bifurcation theory of limit cycles of planar systems 427

which gives a family of periodic orbits

Lh: H(x,y)= h, −1

6
< h< 0.

The limit of Lh as h→ 0 is a homoclinic loop L0. We can prove that (3.39) has 2 limit
cycles near L0 for some (a1, a2).

In fact, for (3.39) we have

d0(a1, a2)=−a1I00 − 2a2I01 − 4I03,

where

I0j =
∮
L0

xjy dx = 2
∫ 3/2

0
xj+1

√
1− 2

3
x dx, j = 0,1,3.

It easy to get that

I00 = 6

5
, I01 = 36

35
, I03 = 72

77
I00.

Thus,

d0(a1, a2)=−I00

[
a1 + 12

7
a2 + 288

77

]
.

By (3.38), we have further

d1(a1, a2) = −a1,

d2(a1, a2) = −
∮
L0

(
2a2x + 4x3)dt

= −2
∫ 3/2

0

2a2x + 4x3√
1− 2

3x

dx =−6

[
2a2 + 24

5

]
.

Hence, if a1 = 0, a2 =− 24
11 , then

d0 = d1 = 0, d2 �= 0.

It follows from Theorem 2.8 that Eq. (3.39) has 2 limit cycles for ε > 0 small and some
(a1, a2) near (0,− 24

11 ).

From Han [51] we know Eq. (3.39) has at most 2 limit cycles on the plane for all ε > 0
small and (a1, a2) bounded.
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REMARK 3.4. Study of the number of limit cycles for near-Hamiltonian systems has been
a significant and important part of bifurcation theory for decades. Most results can be di-
vided into two aspects. One is to give a lower bound of the number for a given system
with parameters. In other words, this aspect mainly concentrates on finding limit cycles
as many as possible by choosing suitable parameters. The other is to study the maximal
number of limit cycles and give an upper bound of it. In this section we mainly concern
with the theory and methods in the first aspect. Theorem 3.1 is well known as Poincaré–
Pontryagin–Andronov theorem. The formula in Lemma 3.2 was first obtained by Han [39].
Theorems 3.2, 3.3 and 3.7 are just recently obtained by Han, Chen and Sun [56]. Theo-
rem 3.4 is from Han [51]. Results in Lemma 3.3 were given by Luo, Han and Zhu [100].
Here we present a new and simple proof. Conclusions of Lemma 3.4 were first established
in Han and Ye [69]. The homoclinic bifurcation under the condition of Lemma 3.6 was
studied in Zhu [130] in detail. Theorems 3.5 and 3.6 are new and obtained by the author.
There have been many interesting results in the second aspect on the estimate of an upper
bound for the number of limit cycles planar systems. For the theory and methods on this
aspect, the reader can consult [13,15–18,23–26,42–44,49,74,76,83,107,109,115–118,127,
128]. For the bifurcation of periodic solutions of higher dimensional systems, see [14,16,
35,37,39,41,51–53,111,112,131].
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1. Introduction

Studies of single differential equations with state-dependent delayed or advanced argu-
ments go back at least to Poisson [181], but as an object of a broader mathematical activity
the area is rather young.

Most work during the past 50 years is devoted to equations with state-dependent delays,
which arise as models in applications. A prominent example is the two-body problem of
electrodynamics, which remained a mathematical terra incognita until R.D. Driver’s work
began to appear in the sixties of the last century.

The present survey reports about the more recent work on equations with state-
dependent delays, with emphasis on particular models and on the emerging theory from
the dynamical systems point of view. Several new results are presented. It will also be-
come obvious that challenging problems remain to be solved.

State-dependent delays were addressed earlier in survey papers on the larger area of
functional differential equations, notably by Halanay and Yorke [94] and Myshkis [165].
It is tempting to borrow as a motto from Halanay and Yorke [94] their nice statement

This . . . proved once more, if necessary, that the delay existing at the present time between the
moment results are obtained and the moment of publication (as well as the great number of pub-
lications which are very difficult to follow) makes it necessary to present from time to time such
reports on yet unpublished results and unsolved problems.

The simplest example of a differential equation with constant delay is the linear equation

y′(t)= ay(t − h)

with the fixed delay h > 0 and a parameter a ∈ R. Analogues with state-dependent delay
like

x′(t)= ax
(
t − r

(
x(t)

))
,

with a bounded delay map r : R→[0, h], are already nonlinear in general. Both equations
can be written in the same general form

x′(t)= f (xt ) (1.0.1)

of a delay differential equation. Here f :U → R
n is defined on a subset U of the set

(Rn)[−h,0] of all functions φ : [−h,0] → R
n. The solution segment xt : [−h,0] → R

n is
given by

xt (s)= x(t + s), −h � s � 0.

In case of the examples above, we have

n= 1, U =R
[−h,0], f (φ)= aφ(−h) and f (φ)= aφ

(−r
(
φ(0)

))
,

respectively.
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The maps f :U → R
n describing equations with state-dependent delay have in general

less smoothness properties than those representing equations with constant delay, and the
theory of Retarded Functional Differential Equations (RFDEs) which has been developed
since the fifties of the last century (see, e.g., [54,98]) is not applicable to equations with
state-dependent delay. This concerns already basic questions of existence, uniqueness and
smooth dependence on initial data for the initial value problem (IVP)

x′(t)= f (xt ), xt0 = φ (1.0.2)

which for data φ ∈ U and for t0 ∈ R is associated with Eq. (1.0.1). When in the sequel
we speak of a solution x : [t0 − h,T )→ R

n, t0 < T �∞, to the IVP (1.0.2) it is always
understood that x at least satisfies

xt ∈U for all t ∈ [0, T ), xt0 = φ,

and that x is differentiable on (t0, T ) with

x′(t)= f (xt ) for all t ∈ (0, T ).

In Section 3 solutions of well-posed IVPs will even be continuously differentiable.
The following Section 2 describes examples of differential equations with state-

dependent delays which arise in physics, automatic control, neural networks, infectious
diseases, population growth, and cell production. Some of these models differ consider-
ably from others, and most of them do not look simple. Typically the delay is not given
explicitly as a function of what seems to be the natural state variable; the delay may be
defined implicitly by a functional, integral or differential equation and should often be
considered as part of the state variables.

Modelling systems with state-dependent delays seems to require extra care, perhaps
because there is not much experience with this phenomenon. We tried to avoid models for
which as yet no consistent motivation can be given.

The models in Section 2 indicate the types of equations to which the subsequent sections
are confined. Not covered are, for example, nonautonomous systems, delays of the form
r = r(t)= a t+b x(t) or r(t)= at+bx′′(t) like in [186–188], and constructions of explicit
solutions as in [104]. Also we do not say much about state-dependent delays in control
theory. Early work in this area is found in [80–82,160].

Section 3 presents a framework for the study of the IVP (1.0.2). We analyze how state-
dependent delays prevent the IVP (1.0.2) from being well-posed on open subsets U of
familiar Banach spaces, and see that under mild smoothness hypotheses the IVP (1.0.2) is
well-posed for data only in a submanifold of finite codimension. This solution manifold is
given by the equation considered and generalizes the familiar domain of the generator of
the semigroup given by a linear autonomous RFDE (as in [54,98]). On the solution mani-
fold the IVP (1.0.2) with t0 = 0 defines a semiflow of continuously differentiable solution
operators. This resolves the problem of linearization for equations with state-dependent
delay, which had been pointed out earlier by Cooke and Huang [48]. The widely known
heuristic technique of freezing the delay at equilibrium and then linearizing the resulting
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RFDE, often skilfully applied, can now be understood in terms of the true linearization. It
is clarified why familiar characteristic equations for linear autonomous RFDEs can be used
to analyze local dynamics generated by differential equations with state-dependent delay.

At stationary points the continuously differentiable solution operators have local center,
stable, and unstable manifolds. It is shown that these stable and unstable manifolds of
maps yield local stable and unstable manifolds also for the semiflow. In particular there is
a convenient Principle of Linearized Stability. Center manifolds for the semiflow can not
be immediately obtained as just described; they are constructed in Section 4.

Examples to which the results of Section 3 apply are given in [206,208]; for the proof
in [208] that hyperbolic stable periodic orbits exist the smoothness results of Section 3
are indispensable. Most other work about which we report was accomplished before the
basic theory of Section 3 was developed; some further work was done in parallel. We do
not attempt to present these other results in the framework of Section 3. In fact, for many
models it remains to be studied whether they fit into this framework or not.

In Section 4 a new result is proved, namely existence of Lipschitz continuous local cen-
ter manifolds for the semiflow found in Section 3, at stationary points. The more technical
proof that these center manifolds actually are continuously differentiable will appear else-
where. An important open problem is to obtain more smoothness, as it was established for
local unstable manifolds [129].

Section 5 is about local Hopf bifurcation, i.e., about the appearance of small periodic
orbits close to a stationary point when a parameter in the underlying differential equation
is varied and passes a critical value. We state a Hopf bifurcation theorem recently obtained
by M. Eichmann [65], which seems to be the first such result for differential equations with
state-dependent delays.

Section 6 presents results about differentiability of solutions with respect to parameters
and initial data, for a certain class of nonautonomous differential equations with state-
dependent delay. The framework is different from the one developed in Section 3. The
IVP is considered for Lipschitz continuous initial data, and a quasi-normed space derived
from Sobolev spaces turns out to be useful for studying differentiability under relaxed
smoothness assumptions, which may be convenient for applications.

Section 7 deals with periodic orbits. The search for periodic solutions has been an im-
portant topic in the study of nonlinear autonomous delay differential equations since the
sixties of the last century. By now, several methods have been developed in this area. The
most general results on existence and global bifurcation employ fixed point theorems and
the fixed point index. Others are based on the study of 2-dimensional invariant sets, or on
Poincaré–Bendixson type analysis of plane curves which are obtained from evaluations like
xt )→ (x(t), x(t − 1)) along certain solutions. There are local and global Hopf bifurcation
theorems for RFDEs, the Fuller index counting periodic orbits is used, and certain sym-
metric periodic solutions can be obtained from associated ordinary differential systems.
Not all approaches mentioned here have been tried for equations with state-dependent de-
lays, which cause complications. We describe results which use the topological concept of
ejectivity, and an approach which yields stable periodic orbits. Let us add here that topo-
logical tools (fixed point theorems, degree, coincidence degree) have also been employed
to prove existence of periodic solutions to nonautonomous, periodic differential equations
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with state-dependent delay [43,138,139,221,225]; related work on nonautonomous equa-
tions is found in [50,55].

The topic of Section 8 is limiting behaviour with respect to the independent variable
and with respect to parameters. Section 8.1 presents a study of a two-dimensional attractor
with periodic orbits, which extends a part of a result for equations with constant delay.
Section 8.2 reports about results of Mallet-Paret and Nussbaum on the precise asymptotic
shape of periodic solutions in a singular perturbation problem. These results are genuine for
equations with state-dependent delay, and involve work on unusual eigenvalue problems
for so-called max-plus operators. Section 8.3 describes an approach to periodic solutions
in case of small delay. Section 8.4 contains an application of the monotone dynamical
systems theory which yields a generic convergence result, and Section 8.5 comments on
further results about stability and oscillation properties.

Section 9 deals with numerical methods. The study of numerical approximation of so-
lutions to differential equations with state-dependent delay goes back at least to the mid-
sixties of the last century, and since then it has been an intensively investigated area. The
section begins with a brief summary of continuous Runge–Kutta methods for ordinary dif-
ferential equations and reports about modifications and extensions which are necessary in
case of state-dependent delays.

Let us mention here a few out of many open questions, in addition to those addressed in
the subsequent sections. Do equations with state-dependent delay generate semiflows with
better smoothness properties than obtained in Section 3, on suitable invariant sets? The
results from [129] on unstable manifolds point in this direction. A suspicion is that periodic
solutions of equations with state-dependent delay may have stronger stability properties
than their counterparts in related equations with constant delay. Can this be made precise
and established, for suitable classes of equations? Complicated motion, like chaos, has not
yet been rigorously shown to exist for equations with state-dependent delay. Very little is
known about the general two-body problem of electrodynamics with two charged particles
in a 3-dimension configuration space. Vanishing state-dependent delays, like in a collision
in the two-body problem, are also limiting cases of advanced arguments; this indicates
that a better understanding of more general differential equations with both delayed and
advanced state-dependent arguments may be needed.

It is convenient to end this introduction with notation, for function spaces which oc-
cur frequently in the sequel. The Banach spaces of continuous, Lipschitz continuous, and
continuously differentiable maps φ : [−h,0]→R

n are denoted by

C = C
([−h,0];Rn

)
, C0,1 = C0,1([−h,0];Rn

)
, and

C1 = C1([−h,0];Rn
)
,

respectively. The norms on these spaces are given by

‖φ‖C = max
−h�t�0

∣∣φ(t)∣∣, ‖φ‖C0,1 = ‖φ‖C + sup
t �=s

|φ(t)− φ(s)|
|t − s| ,

‖φ‖C1 = ‖φ‖C +
∥∥φ′∥∥

C
,

respectively.
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If X and Y are real or complex Banach spaces then L(X,Y ) denotes the Banach space
of continuous linear mappings T :X→ Y , with the norm given by ‖T ‖ = sup‖x‖�1 ‖T x‖.

2. Models and applications

A remark in [206] says that state-dependent delays arise in various circumstances, but it
seems not obvious how to single out a tractable class of equations which contains a large
set of examples which are well motivated. The difficulty of singling out a tractable class of
equations to include many interesting models may prove to be an extremely valuable source
to stimulate new mathematical techniques and theories. In this section we describe differ-
ential equations with state-dependent delay that arise from electrodynamics, automatic and
remote control, machine cutting, neural networks, population biology, mathematical epi-
demiology and economics.

2.1. A two-body problem of classical electrodynamics

In Driver [58] (see also [57,59]), a mathematical model for a two-body problem of classical
electrodynamics incorporating retarded interaction is proposed and analyzed. He considers
the motion for two charged particles moving along the x-axis and substituted the expres-
sions for the field of a moving charge, calculated from the Liénard–Wiechert potential,
into the Lorentz–Abraham force law. Radiation reaction is omitted, but time delays are
incorporated due to the finite speed of propagation, c, of electrical effects. As a result, the
model is a system of delay differential equations involving time delays, which depend on
the unknown trajectories. From this model and after some analysis, he obtains a system of
six delay-differential equations for the evolution of the states, the velocities and the time
delays.

To describe his model, we denote by xi(t) (i = 1,2) the positions of the two point
charges on the axis in a given inertial system at time t , the time of an observer in that
system. Let vi(t)= x′i (t) (i = 1,2) be the velocities of the charges. As mentioned above,
we omit radiation reaction but allow an external electric field, Eext(t, x), in the x-direction,
that is assumed to be continuous over some open set D in the (t, x)-plane. Then the equa-
tion of motion of charge i is

miv
′
i (t)

[1− v2
i (t)/c

2]3/2
= qiEj

(
t, xi(t)

)+ qiEext
(
t, xi(t)

)
, i, j ∈ {1,2}, j �= i,

(2.1.1)

where mi is the rest mass and qi is the magnitude of charge i, c is the speed of light, and
Ej(t, x) is the electric field at (t, x) due to other charge j �= i. The magnetic field of charge
j is not involved in this one-dimensional case.

The field at time t and at the point xi(t) produced by charge j is assumed to be that
computed from the Liénard–Wiechert potentials. The expression for this field involves a
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time lag, t − τji , representing the instant at which a light signal would have to leave charge
j in order to arrive at xi(t) at the instant t . Therefore, the delay τji(t) must be a solution
of the functional equation

τji(t)=
∣∣xi(t)− xj

(
t − τji(t)

)∣∣/c. (2.1.2)

Clearly, τji(t) cannot be written explicitly.
Because of the occurrence of time delays in the model equation (2.1.1), one needs to

specify initial trajectories of the two charges over some appropriate interval [α, t0]. Con-
sider now those initial trajectories and their extensions (x1(t), x2(t)) defined on some in-
terval [α,β), where β > t0, such that

(a) each x′i (t) is continuous and |x′i (t)|< c for all t ∈ [α,β);
(b) x2(t) > x1(t) and (t, xi(t)) ∈D for all t ∈ [t0, β);
(c) the two functional equations τ 0

ji = |xi(t0)−xj (t0−τ 0
ji)|/c have solutions τ 0

ji , i �= j ,
i, j ∈ {1,2}.

Then Driver proves that (x1(t), x2(t)) is a solution of (2.1.1)–(2.1.2) if and only if it satis-
fies the following system of six delay differential equations for t ∈ (t0, β):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′i (t)= vi(t),

τ ′ji(t)=
(−1)ivi(t)− (−1)ivj (t − τji(t))

c− (−1)ivj (t − τji(t))
,

v′i (t)
[1− v2

i (t)/c
2]3/2

= (−1)iaic

τ 2
ji(t)

· c+ (−1)ivj (t − τji(t))

c− (−1)ivj (t − τji(t))
+ qiEext

(
t, xi(t)

)
/mi,

(2.1.3)

where τji(t0)= τ 0
ji , ai = q1q2/(4πε0mic

3) (a constant, and in particular, ε0 is the dielec-
tric constant of free space), and (i, j)= (1,2) or (2,1).

It is shown in Driver [58] that if given initial trajectories satisfy condition (a) for α �
t � t0, condition (b) at t0, and condition (c), and if Eext(t, x) is Lipschitz continuous with
respect to x in each compact subset of D and if the initial velocity of each particle is
Lipschitz continuous, then a unique solution does exist. This solution can be continued as
long as the charges do not collide (limx1(t)= limx2(t) as t approaches the right endpoint
of the maximal interval for existence) and neither (t, x1(t)) nor (t, x2(t)) approaches the
boundary D.

We remark here that in Driver and Norris [64], the above Lipschitz continuity for the
initial velocities is relaxed to the integrability of the initial velocity on [α, t0]. In Driver
[61], one special case was given where the positions and velocities of the particles at some
instant will determine the state of the system. More precisely, in this example of electrody-
namic equations of motion, instantaneous values of positions and velocities of the particles
will determine their trajectories, if the solutions are defined for all future time. This prop-
erty was frequently conjectured, asserted, or implicitly assumed, as in Newtonian mechan-
ics and as indicated by the long list of related references in Driver [61], but this property
should not be expected for general electrodynamic equations.
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In the case where Eext(t, x) = 0 for all (t, x) ∈ R
2 and if q1q2 > 0 (two point charges

of like sign), then limt→∞[x2(t)− x1(t)] =∞ and |vi(t)|� c̄ < c for all t � α. This is a
quite interesting result as it indicates that the delay τji(t) may become unbounded, as such,
one obtains a system of functional differential equation with unbounded state-dependent
delays.

It is noted that if three-dimensional motions are considered, then one obtains a functional
differential system of neutral type where the delays are dependent on the states, and the
change rate of vi at the current time also depends on its historical value v′j (t − τji). More
precisely, if we introduce a unit vector

ui = xi − xj (t − τji)

cτji

and a scalar quantity

γij = 1− 1

c
vj (t − τji) · ui

as Driver [62] does, where · indicates the dot or scalar product in R
3 (note, of course, x1,

x2 are now vectors in R
3), then the Lorentz force law yields

v′i (t)=
qi(1− |vi |2/c2)1/2

mi

[
Ej + (vi/c ·Ej)(ui − vi/c)− (vi/c · ui)Ej

]
,

(2.1.4)

where Ej is the retarded (vector-valued) electric field arriving at xi at the instant t from
particle j . This field, in R

3, can be found from the Liénard–Weichert potentials as

Ej = kcqj

τ 2
jiγ

3
ij

[
ui − vi(t − τji)/c

][
1− |vj |2(t − τji)

]

+ kqj

τjiγ
3
ij

ui ×
([
ui − vj (t − τji)/c

]× v′j (t − τji)
)
, (2.1.5)

where k > 0 is a constant depending on the units, and × indicates the vector cross product
in R

3. The dynamical adaptation for τji is given by

τ ′ji(t)=
ui · [vi − vj (t − τji)]

cγij
. (2.1.6)

In the above discussions, the motion of each particle is influenced by the electromagnetic
fields of the others, and due to the finite speed of the propagation of these fields, the model
equations describing the motion of charged particles via action at a distance will involve
time delays which depends on the state of the whole system. In Driver [63] and in Hoag and
Driver [111], it is noted that if one considers that the basic laws of physics are symmetric
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with respect to time reversal, then the existence of these delays implies that there should
also be advanced terms in the equations, and thus one is led to a system of functional
differential equations with mixed arguments (Hoag and Driver [111]), and of neutral type
(Driver [63]).

In summary and in conclusion, despite the fact that much of the work by Driver and
his collaborators on electrodynamics was published nearly 40 years ago, many interesting
questions related to the fundamental issues of electrodynamics remain unsolved mathemat-
ically and Driver’s models remain as a source of inspiration for the theoretical development
and a testing tool for new results.

2.2. Position control

State-dependent delays arise naturally in automatic position control if in the feedback loop
running times of signals between the object of study and a reference point are taken into
account.

In [205], the following simple and idealized situation is considered: An object moves
along a line and regulates its position relative to an obstacle by means of signals which are
reflected by the obstacle. Let x(t) denote the position of the object at time t ∈R. The aim
of control is that the object should not collide with the obstacle located at−w < 0, and that
the object should be close to a preferred position at distance w from the obstacle, i.e., at
0 ∈R. The difficulty for the control is that measurement of the position via signal running
times takes time during which the object is moving. More precisely, assume that signals
travel from the object to the obstacle at a speed c > 0 and are reflected. The object senses
the reflected signals and measures the signal running time s(t) between the emission and
detection at time t :

cs = ∣∣x(t − s(t)
)+w

∣∣+ ∣∣x(t)+w
∣∣.

Then it uses s to compute a distance d from the obstacle according to

d = c

2
s.

This seems to be reasonable since it gives the true distance at time t at least if at times
t − s(t) and t the object is in the same position. We must however emphasize that in
general d is only a computed length and not the true distance, and that we consider a
situation where there is no direct, immediate access to the true position.

Depending on the computed distance d − w from the preferred the object adjusts its
speed in size and direction, with a reaction time lag r > 0 which is assumed to be constant.
This negative feedback mechanism is then described by the differential equation

x′(t)= v
(
d(t − r)−w

)



Functional differential equations with state-dependent delays 445

where v : R→R represents negative feedback with respect to the preferred position 0 ∈R

in the sense that

δv(δ) < 0 for all δ �= 0

holds. Therefore, we are led to the system

x′(t) = v

(
c

2
s(t − r)−w

)
, (2.2.1)

cs(t) = ∣∣x(t − s(t)
)+w

∣∣+ ∣∣x(t)+w
∣∣ (2.2.2)

for positive parameters c, w, r and a negative feedback nonlinearity v. Notice that for
motion x : R→ R with speed |x′| bounded by a constant b < c, that is, slower than the
signal speed, the equation

s = 1

c

(∣∣x(t − s)+w
∣∣+ ∣∣x(t)+w

∣∣)

equivalent to (2.2.2) has a unique solution s = σ(x|(−∞,t]) because for given x and t the
right-hand side of the equation defines a contraction [0,∞)→ [0,∞). Then one can take
the right-hand side of Eq. (2.2.2) with t − r − σ(x|(−∞,t−r]) and t − r instead of t − s

and t , respectively, and replace cs(t − r) in Eq. (2.2.1), which yields a single delay dif-
ferential equation with state-dependent delay. Essentially the same reasoning shows that
for Lipschitz continuous solutions x : [−h, te)→ R, h > 0 and te > 0, which have Lip-
schitz constants strictly less than c and satisfy suitable boundedness conditions, the system
(2.2.1)–(2.2.2) can be rewritten as a single delay differential equation of the form (1.0.1).

A closely related model, with an explicit expression for a fraction of the signal running
time instead of Eq. (2.2.2) for the total signal running time, was mentioned earlier by
Nussbaum [177]. A similar model was also proposed by Messer [161].

It is perhaps more realistic to replace the first order differential equation (2.2.1) with the
constant reaction lag r > 0 by Newton’s law

x′′ =A

with an instantaneous restoring force A which depends on the computed distance d . Also
friction might be taken into account. Such a model was studied in [208], by means of the
fundamental theory presented in the next section.

We describe the main results from [205,208], namely existence of stable periodic orbits,
in Section 7.3.

In [32,33] Büger and Martin study a case of velocity control which involves signal run-
ning times. They consider an object travelling along a line which, ideally, should have a
certain prescribed constant velocity v0 throughout its whole journey. The object regulates
its velocity v = x′ by adjusting its acceleration a = v′ according to a negative feedback
relation

a · (v − v0) < 0 for all v ∈R \ {v0},
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that is, the object speeds up if v < v0 and slows down when v > v0. This strategy is re-
motely controlled by a base located at x = 0 to which the object transfers its current veloc-
ity v with a certain transmission velocity c1 > 0, and the negative feedback information is
then transmitted back from the base to the object with a transmission velocity c > 0. The
total signal running time of the signals emitted from the object in the past and transmitted
back from the base to the object as to arrive at time t is given by

s = s1 + s2

where

s1 = 1

c1

∣∣x(t − s)
∣∣ and s2 = 1

c

∣∣x(t)∣∣.

If an additional constant reaction time r > 0 of the base is taken into account then the total
transmission delay is

r + s(t)

where now

s(t)= 1

c1

∣∣x(t − r − s(t)
)∣∣+ 1

c

∣∣x(t)∣∣.

The preceding equation and the second order differential equation

x′′(t)=A
(
x′
(
t − r − s(t)

)− v0
)

with a negative feedback nonlinearity A : R→ R constitute the model. Büger and Martin
investigated a simplification which neglects the running time of the signal from the object
to the base, in which case the model is reduced to the single equation

x′′(t)=A

(
x′
(
t − r − 1

c

∣∣x(t)∣∣
)
− v0

)
(2.2.3)

with an explicitly given state-dependent delay. It is shown in [32,33] that close to segments
of constant velocity solutions t )→ v0t + c there exist segments of solutions of Eq. (2.2.3)
for which t − r − 1

c
|x(t)| remains bounded from above by some T . In this case the ob-

ject reacts only to velocities achieved before t = T , which may not be adequate for larger
velocities reached later. The phenomenon occurs for solutions whose speed |v| = |x′| ap-
proaches the signal speed c or grows beyond. Büger and Martin call it the escaping disas-
ter. In [33] they design another control mechanism which overcomes this kind of instability
of the constant velocity solutions.
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Fig. 1. A cutting process.

2.3. Mechanical models

State-dependent models have been proposed and investigated in mechanics, as well. John-
son [123] studied a steel rolling mill control system in 1972 where state-dependent delays
have already been encountered. Nevertheless, state-dependent delay models have not fre-
quently used in mechanics, since the required mathematical methods, like linearization
techniques, were only recently developed (see Sections 3.4 and 3.6).

Insperger, Stépán and Turi [117] proposed a two degree of freedom model for turning
process. This models a machine tool where a workpiece is rotating, the tool cuts the surface
that was formed in the previous cut, see Fig. 1. The chip thickness is determined by the
current and a previous position of the tool and the workpiece. In standard models the time
delay between two succeeding cuts is considered to be equal to the period of the workpiece
rotation. More realistic models given in the machine tool literature include the feed motion
and the consequent trochoidal path of the cutter tooth. In this case the time delay between
the succeeding cuts is not constant, it changes periodically in time. Time periodic delays
also arise in the model of varying spindle speed machining. If the regeneration process
is modeled more accurately, then the vibration of the tool is also included in the model,
and this results a model with state-dependent delay. The system can be modeled as a two
degree of freedom oscillator that is excited by the cutting force, so the governing equations
are

mẍ(t)+ cxẋ(t)+ kxx(t) = Fx, (2.3.1)

mÿ(t)+ cyẏ(t)+ kyy(t) = −Fy, (2.3.2)
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Fig. 2. A milling process.

where the associated model parameters are mass m, damping cx , cy and stiffness kx , ky .
The x and y components of the cutting force are, respectively,

Fx =Kxwhq, Fy =Kywhq,

where Kx and Ky are the cutting coefficients in the x and y components, w is the depth
of cut, h is the chip thickness, and the exponent 0 < q < 1 is constant. The time delay
between the present and the previous cuts is determined by the equation

R�τ(xt )= 2Rπ + x(t)− x
(
t − τ(xt )

)
, (2.3.3)

where � is the spindle speed given in [rad/s] and R is the radius of the workpiece. This is
an implicit equation for the time delay, and τ depends on the solution, as well. The chip
thickness satisfies

h= vτ(xt )+ y(t)− y
(
t − τ(xt )

)
,

where v is the feed speed. Therefore the model equations are

mẍ(t)+ cxẋ(t)+ kxx(t)=Kxw
(
vτ(xt )+ y(t)− y

(
t − τ(xt )

))q
,

mÿ(t)+ cyẏ(t)+ kyy(t)=−Kyw
(
vτ(xt )+ y(t)− y

(
t − τ(xt )

))q
,

where the delay function is defined by (2.3.3). In [117] the linearized stability of an equilib-
rium solution was also studied using the method of [101] and [108]. It was shown that the
linearized equation is almost equal to the standard constant delay machine tool vibration
equation, the difference is a term with a small coefficient.

A related problem was studied in [116], where a two degree freedom model of milling
process is considered. In this machine a tool with equally spaced teeth rotating with con-
stant spindle speed, and cuts the surface that was formed in the previous cut, see Fig. 2. In
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this case the system again can be described by (2.3.1)–(2.3.2), but now the damping and
stiffness parameters are equal in both x and y directions: cx = cy = c, kx = ky = k, and it
was shown that the model equations have the form

mẍ(t)+ cẋ(t)+ kx(t)=
N∑

j=1

αx,j (t)
(
R
(
1− cos(�τj − ϑ)

)

+ (
vτj + x(t − τj )− x(t)

)
sinϕj (t)+

(
y(t − τj )− y(t)

)
cosϕj (t)

)q
,

(2.3.4)

mÿ(t)+ cẏ(t)+ ky(t)=
N∑

j=1

αy,j (t)
(
R
(
1− cos(�τj − ϑ)

)

+ (
vτj + x(t − τj )− x(t)

)
sinϕj (t)+

(
y(t − τj )− y(t)

)
cosϕj (t)

)q
.

(2.3.5)

Here N is the number of teeth,

αx,j (t)=wg
(
ϕj (t)

)(
Kt cos

(
ϕj (t)

)+Kn sin
(
ϕj (t)

))
,

αy,j (t)=wg
(
ϕj (t)

)(
Kn cos

(
ϕj (t)

)−Kt sin
(
ϕj (t)

))
,

Kt and Kn are tangential and normal cutting coefficients, g is a screen function, it is equal
to 1 if the j th tooth is active, and it is 0 if not, φj (t)=−�t + (j − 1)ϑ , � is the spindle
speed, ϑ = 2π/N is the pitch angle, and the time delays τj = τj (t, xt , yt ) are defined by
the implicit relations

(
vτj + x(t − τj )− x(t)

)
cosφj (t)−

(
y(t − τj )− y(t)

)
sinφj (t)

=R sin(�τj − ϑ) (2.3.6)

for j = 1, . . . ,N . It is easy to check that the functions on the right-hand sides of (2.3.4)
and (2.3.5) are periodic in time with period τ̄ = 2π/(N�), and the time delay functions
τj are periodic in time with period T = Nτ̄ . Moreover, τj (t + τ̄ , xt , yt ) = τj−1(t, xt , yt )

gives the connection between time delays associated to two succeeding cuts. Note that if
the vibration of the tool is not included in the delay model, i.e., x(t)= 0 and y(t)= 0, then
Eq. (2.3.6) is simplified to

vτj cosφj (t)=R sin(�τj − ϑ),

which yields that the delay depends only on time. This case of time periodic delay was
investigated earlier in the literature. If the feed is negligible relatively to the diameter, i.e.,
vτj %R, then if we substitute vτj = 0 into the previous equation we get sin(�τj −ϑ)= 0.
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This gives the constant delays τj = τ̄ = ϑ/� that was usually used in standard milling
models. Linearized stability of model (2.3.4)–(2.3.5) was also studied in [116] using the
results of [101] and was compared to the stability of the standard time-periodic time delay
models.

2.4. Delay adaptation in neural networks and distributed systems

A synaptic connection between two neurons is referred as to a delay line if the signal trans-
mission is delayed. In neural circuits, time delays arise because interneural distances and
axonal conduction times are finite [5,141–143,147,163,219]. In several sensory systems,
delay lines are essential for coordinating activities. Examples include the auditory system
of barn owls, echo location in bats, and the lateral line system of weakly electric fish. See
[41] and the survey article [40]. Delay lines are also important for managing distributed
systems, for such systems a fundamental problem concerns how the flow of information
from distinct, independent components can be best regulated to optimize a prescribed per-
formance of the network. For example, in parallel computing machines the asynchronous
output of independent processors must be integrated to yield well-defined results.

Several possible biophysical mechanisms can be envisioned by which adjustable delays
could be achieved, and recent development in the physiology of synapses and dendrites
suggests that not only synaptic weights, but also synaptic delays vary [1,215] and changing
synaptic delays have significant impact on the neural signal processing.

Time delays have important influence on learning algorithms. As noted in [19], not only
delays affect the learning of other parameters such as gains, time constants or synaptic
weights but also delays themselves may be part of the adjustable parameters of a neural
system so as to increase the range of its dynamics. There exist numerous examples of
finely tuned delays and delay lines, and certainly many delays are subject to variations, for
instance during the growth of an organism.

Much of the existing work related to delay adaptation in neural networks have been
concentrating on the fine tuning of a selected set of parameters in architectures already
endowed of a certain degree of structure. In these applications, the delays are arranged in
orderly arrays of delay lines, these delay lines are essentially part of a feedforward network
for which the learning task is much more simple and the delays adjust on a slow time scale.
In [199], the successive parts of a spoken word are delayed differentially in order to arrive
simultaneously onto a unit assigned to the recognition of that particular word. Baldi and
Atiya [19] viewed this as a “time warping” technique for optimal matching in the sense
that for a given input I (t), the output of the ith delay line is given by the convolution

Oi(t)=
∫ ∞

0
K(i, s)I (t − s)ds,

where K(i, s) is a Gaussian delay kernel

K(i, s)= 1√
2πσ

e−(s−iT )2/(2σ 2)
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and T is a parameter used to discretize the possible delays. In this application, the ad-
justment of delays on a slow time scale may take place across several speakers during the
basic development of a speech recognizer and thus the adjustment is independent of the
dynamics of the network. However, it is also desirable that delays adjust on a fast scale to
adapt in real time to one particular speaker during normal functioning. The above work of
Baldi and Atiya, as well as those in [51,166], develops models for delay adaptation with
the help of a global teacher signal. It is shown in [51] that a network with adaptable delays
can achieve smaller errors than a network with fixed delays, if they both have the same
number of neurons and connections. Other rules and algorithms have been developed by
which excitatory postsynaptic potentials from different synapses can be gradually pulled
into coincidence, see, for example, [113].

Examples of self-organized delay adaptation can be found in [73]. For example, time
delays in the optic nerve are equalized [192], signals in visual callosal axons arrive simul-
taneously at all axonal endings [115], and neurons in vitro can inhibit the formation of a
myelin sheet by firing at a low frequency [193].

Two different mechanisms, delay shift and delay selection, are investigated in [73,74]
for the self-organized adaptation of transmission delays in the nervous system.

To formulate the model for a network consisting of a large number of presynaptic neu-
rons and one postsynaptic neuron which receives its input lines, we consider the idealized
situation where there is a continuous set of input connections described by two functions,
ρ(τ, t) and ω(τ, t), for the delays and weights, respectively: ρ(τ, t)dτ gives the fraction
of connections with delays in [τ, τ + dτ ], and ω(τ, t) is the average weight of connections
with delay τ . We assume that delays in the system adapt on a developmental time scale,
and thus the model formulated below does not involve the internal dynamics of the net-
work. In the continuous description, the input density J (τ, t) provided by the synapses at
delay τ after presentation of a pattern has the simple form

J (τ, t)= ρ(τ, t)ω(τ, t).

The dynamics of the input are governed by two simultaneous equations: a balance equation
for the input density

∂

∂t
J (τ, t)=− ∂

∂τ

[
J (τ, t)v(τ, t)

]+Q(τ, t), (2.4.1)

and a continuity equation for ρ(τ, t), indicating the conservation of the number of neural
connections

∂

∂
ρ(τ, t)=− ∂

∂τ

[
ρ(τ, t)v(τ, t)

]
. (2.4.2)

The drift velocity, v(τ, t), and the source term, Q(τ, t), are defined according to the Heb-
bian principles. In particular, in the case of delay shifts, the weights are not modified and
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the source term vanishes. Therefore, the dynamics is completely governed by (2.4.2) where
the velocity, v = dτ/dt , of the delays realizes the Hebbian adaptation

v(τ, t)= γτ

∫ +∞

−∞
Wτ(τ − s)P (s, t)ds, (2.4.3)

and γτ denotes the learning rate, Wτ(x) denotes a learning window for delay adaptation.
Wτ(x) should be positive when the presynaptic contribution precedes the postsynaptic
spike, and negative in the other case, and this rule will adjust the delays such that their
effects will align in time at the soma [72]. The distribution of spike times, P(s, t), of
a neuron depends on the input and its statistics, and this is assumed to be of the form
P(s, t)= βJ (s, t) in the work of [73,74] and it is justified if the input is sufficiently high
and if there is some random background activity. Note that delay shift mechanism assumes
that the transmission delays themselves are altered. This mechanism is possible because
transmission velocities in the nervous system can be altered, for example, by changing the
length and thickness of dendrites and axons, the extent of myelination of axons, or the
density and type of ion channels. See [74,75].

In the case of delay selection, the drift velocity of the delays vanishes and the total input
of the postsynaptic neuron is not conserved. Equations (2.4.1) and (2.4.2) result in

ρ(τ, t)
∂

∂t
ω(τ, t)=Q(τ, t). (2.4.4)

Again, the source term is derived from the Hebbian rule by

Q(τ, t)= γωω(τ, t)ρ(τ, t)

∫ +∞

−∞
Wω(τ − s)P (s, t)ds,

with γω denoting the corresponding learning rate, and Wω representing a learning window
that is maximal just before the time of spiking—leading to a selection of delay lines for
which the effects align at soma.

In the aforementioned delay-adaptation models, it is assumed that delays in the system
adapt on a developmental time scale, and thus the temporal development of ρ and ω is de-
termined by an average over an ensemble of presynaptic input patterns. In the recent work
[114], the self-organized adaptation of transmission delays is incorporated into the projec-
tive adaptive resonance theory developed in [38,39], and this self-organized adaptation of
delay is driven by the dissimilarity between input patterns and stored patterns in a neural
network designed for pattern recognition from data sets in high dimensional spaces. This
adaptation can be regarded as a consequence of the Hebbian learning law, and the dynamic
adaptation can be modeled by a nonlinear differential equation and hence a system of delay
differential equations with adaptive delay is used.

We now describe the model for such a network that consists of two layers of neu-
rons. Denote the nodes in F1 layer (Comparison/Input Processing layer) by Pi , i ∈�p :=
{1, . . . ,m}; nodes in F2 layer (Clustering layer) by Cj , j ∈�c := {m+ 1, . . . ,m+ n}; the
activation of F1 node Pi by xi , the activation of F2 node Cj by yj ; the bottom-up weight
from Pi to Cj by zij , the top-down weight from Cj to Pi by wji .
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The STM (short-term memory) equations for neurons in F1 layer are given by

εp
dxi(t)

dt
=−xi(t)+ Ii, t �−1, i ∈�p, (2.4.5)

where 0 < εp% 1, Ii is the constant input imposed on Pi .
The change of the STM for a F2 neuron depends on the internal decay, the excitation

from self-feedback, the inhibition from other F2 neurons and the excitation by the bottom-
up filter inputs from F1 neurons. Namely, we have the STM equations for the committed
neurons in F2 layer:

εc
dyj (t)

dt
= −yj (t)+

[
1−Ayj (t)

][
fc

(
yj (t)

)+ Tj (t)
]

− [
B +Cyj (t)

] ∑
k∈�c\{j}

fc
(
yk(t)

)
, t � 0, j ∈�c, (2.4.6)

where 0 < εc% 1, fc : R→R is a signal function, A, B , and C are non-negative constants,
and the bottom-up filter input Tj is given by

Tj (t)=D
∑
i∈�p

zij (t)fp
(
xi
(
t − τij (t)

))
e−ατij (t), t � 0, (2.4.7)

where D is a scaling constant, fp : R → R is the signal function of the input layer. It
is assumed here that the signal transmissions between two layers are not instantaneous
and the signal decays exponentially at a rate α > 0. This assumption that signal strength
decays if the transmission is delayed can be replaced by the mechanism of delay selection
by replacing (2.4.7) by

Tj (t) =Df

∑
i∈�p,τij (t)=0

zij (t)fp
(
xi(t)

)

+Dd

∑
i∈�p,τij (t)>0

zij (t)fp
(
xi
(
t − τij (t)

))

with two different weight factors 0 <Dd %Df .
The term τij is the signal transmission delay between the cluster neuron Cj and the

input neuron Pi . It is assumed that this delay is driven by the dissimilarity in the sense
that the signal processing from the input neuron Pi to the cluster neuron Cj is faster when
the output from Pi is similar to the corresponding component of wji of the feature vector
wj = (wji)i∈�p of the cluster neuron Cj . Therefore, we have

β
dτij (t)

dt
=−τij (t)+E

[
1− hij (t)

]
, t � 0, i ∈�p, j ∈�c, (2.4.8)

where β > 0, E ∈ (0,1) are constants and

hij (t)= S
(
d
(
fp

(
xi(t),wji(t)

))
, zij (t)

)
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is the similarity measure between the output signal fp(xi(t)) and the corresponding com-
ponent wji(t) of the feature vector of the cluster neuron Cj , with respect to the significance
factor of the bottom-up synaptic weight zij (t), here d is the usual absolute value function
and S : R+ × [0,1]→ [0,1] is a given function, non-increasing with respect to the first ar-
gument and nondecreasing with respect to the second argument. Moreover, S(0,1)= 1 (the
similarity measure is 1 with complete similarity and maximal synaptic bottom-up weight)
and S(+∞, z)= S(x,0)= 0 for all z ∈ [0,1] and x ∈R

+ (the similarity measure is 0 with
complete dissimilarity or minimal bottom-up synaptic weight). Therefore, if τij (0) = 0
then from (2.4.8) it follows that 0 � τij (t) � E for all t ∈R

+, and moreover, if hij (t)= 1
on an interval [0, b) for a given b > 0 then τij (t)= 0 for all t ∈ [0, b).

The equation governing the change of the weights follows from the usual synaptic
conservation rule and only connections to activated neurons are modified. The top-down
weights are modified so that the template will point to the direction of the delayed and
exponentially decayed outputs from F1 layer. Therefore, we have

γ
dwji(t)

dt
= fc

(
yj (t)

)[−wji(t)+ fp
(
xi
(
t − τij (t)

)
e−ατij (t)

)]
(2.4.9)

for t � 0, i ∈�p , j ∈�c, where γ > 0 is a given constant.
The bottom-up weights are changed according to the competitive learning law and We-

ber law that says that LTM size should vary inversely with input pattern scale. Thus the
LTM equations for committed neurons Cj in F2 layer are

δ
dzij (t)

dt
= fc

(
yj (t)

)[(
1− zij (t)

)
hij (t)L− zij (t)

(
1− hij (t)

)

− zij (t)
∑

k∈�p\{i}
hkj (t)

]
, t � 0, i ∈�p, j ∈�c, (2.4.10)

where 0 < δ% γ =O(1) and L> 0 is a given constant.
Equations (2.4.5)–(2.4.10) give a system of functional differential equations where the

dynamics of the delay τij (t) is adaptive and is described by the nonlinear equation (2.4.8).
The dynamics is investigated in [114] in the case where the signal functions fp and fc are
step functions, though much remains to be done in the general case.

2.5. Disease transmission and threshold phenomena

Delay differential equations with state-dependent delay arise naturally from the model-
ing of infection disease transmission, the modeling of immune response systems and the
modeling of respiration, where the delay is due to the time required to accumulate an ap-
propriate dosage of infection or antigen concentration.

Following [201], we consider a particular infectious disease in an isolated population
that is divided into several disjoint classes (compartments) of individuals: the susceptible
class (those individuals who are not infective but are capable of contracting the disease and
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become infective), the exposed class (those who are exposed but not yet infective), and the
infective class (those individuals who are capable of transmitting the disease to others), and
the removed class (those who have had the disease and are dead, or have recovered and are
permanently immune, or are isolated until recovery and permanent immunity occur). Let
S(t), E(t), I (t) and R(t) be the size of each class at time t , and assume the following:

(i) the rate of exposure of susceptibles to infectives at time t is given by −rS(t)I (t);
(ii) an individual who becomes infective at time t recovers from the infection (is thus

removed from the population) at time t + σ , where σ is a positive constant;
(iii) an individual who is first exposed at time τ becomes infective at time t if

∫ t

τ

[
ρ1(x)+ ρ2(x)I (x)

]
dx =m,

where ρ1, ρ2 are nonnegative functions and m is a given positive constant;
(iv) the population size remains to be a constant N .
The motivation for assumption (iii), the basis for a threshold model, is that human body

can often control a small exposure to an infection, that is, there is a tolerance level below
which the body’s immune system can combat exposure to infection. When too large an
exposure results, the individual contracts the disease. The amount of exposure received de-
pends on the duration of the exposure and the amount of infectivity around the individual,
that is assumed to be proportional to the number of infective individuals in the population.
Thus, during the time interval [t, t + h] an exposure of

∫ t+h
t

ρ2(x)I (x)dx is accumulated
where ρ2 is a proportionality function which is a measure of the amount of infection com-
municated per infective (virulence). When the total exposure reaches the threshold m, the
individual moves from class (E) to class (I). The term ρ1 is the rate of accumulation of
exposure independent of the number of infectives (such as constant input of virus from the
external environment). In what follows, we consider the simple case where ρ1 = 0, ρ2 = ρ.

We assume the initial distribution of the infectives is given by a monotone function
I0 : [−σ,0] → [0,∞) such that I0(−σ) = 0, and I0(0) > 0 infective individuals are in-
serted in the population at t = 0. It is convenient to extend I0 to the whole real line

I e
0 (t)=

{0, |t |> σ ;
I0(t), −σ < t � 0;
I0(0)− I0(t − σ), 0 � t � σ ,

so that the extension I e
0 (t) describes the number of initial infectives who are still present

as infectives at time t ∈ [−σ,∞).
From (i) and (ii), it follows that the number of new infectives introduced into the popula-

tion at time t is given by− ∫ t

t−σ
d

dx S(τ (x))H(x)dx, where H(x)= 0, x < 0 and H(x)= 1,
x > 0. Therefore,

I (t)= I e
0 (t)−

∫ t

t−σ
d

dx
S
(
τ(x)

)
H(x)dx, t � 0.
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For the infection to spread, some of the initial susceptible population must become in-
fective before time σ . Thus, we assume there is t0 < σ so that the following “admissibility”
condition,

∫ t0

0
ρ(x)I e

0 (x)ds =m,

must be met.
Then the model equations become

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
S(t)=−rS(t)I (t),

I (t)= I e
0 (t)−

∫ t

t−σ
d

dx
S
(
τ(x)

)
H(x)dx,

E(t)= S
(
τ(t)

)− S(t),

R(t)=N − S(t)− I (t)−E(t),∫ t

τ (t)

ρ(x)I (x)dx =m.

If we further adopt the convention that τ(t)= 0 for t � t0, then we obtain a state-dependent
delay differential equation for S(t):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

dt
S(t)=−rS(t)I (t),

I (t)= I0(t)+ S
(
τ(t − σ)

)− S
(
τ(t)

)
,∫ t

τ (t)

ρ(x)I (x)dx =m, t > t0,

τ (t)= 0, t � t0.

Other related models involving threshold conditions that determine the state-dependence
of delay can be found in Gatica and Waltman [87–89], Hoppensteadt and Waltman [112],
Smith [189], and Waltman [201]. Relatively complete references can be found in the work
of Kuang and Smith [136,137], where the prototype equation takes the form

⎧⎪⎨
⎪⎩

d

dt
x(t)=−νx(t)− e−ητ f

(
x(t − τ)

)
,∫ t

t−τ
k
(
x(t), x(s)

)
ds =m,

(2.5.1)

with nonnegative constants ν, η and m, and a positive function k, as well as a nonlinearity
f : R→ R. Again, in the contents of epidemiological modeling, x(t) may represent the
proportion of a population which is infective at time t and the second equation in system
(2.5.1) may reflect that an individual who is first exposed to the disease at time t − τ

becomes infectious at time t if, during the interval from t − τ to t , a threshold level of
exposure is accumulated where per unit time exposure depends on the infective fraction
x(s) via k(x(t), x(s)).
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2.6. Population models and size-dependent interaction

Recent efforts in modeling state-dependent phenomena in population dynamics involve
structured models, and state-dependent delay normally arises from a certain threshold con-
dition. For example, in the work [170], Nisbet and Gurney considered insect populations
which have several life stages (instars). After constructing a mathematical model consisting
of an equation for the mass density function of the population, and under the homogeneity
assumption for the population at each life stage, they reduced the model to a system of
delay differential equations for the size of the population in each life stage. The threshold
delays then appear due to the assumption that the insect must spend an amount of time in
the larval stage sufficient to accumulate a threshold amount of food. See also [3].

This idea was adopted in the work of Arino, Hbid and Bravo de la Parra [8] for the
growth of a population of fish where they introduce an additional stage between the eggs
and the mobile larvae, the so-called (S1) larval stage. The state variable for this stage
is n1(a, t), and the passage through (S1) is described with the help of another variable
q1(a, t), the amount of food eaten up to time t by an individual entered in (S1) a units of
time earlier. The introduction of this variable makes it possible to formulate the condition
for any individual to have eaten a certain amount of food Q1 (threshold) during the whole
duration (bounded above by T1) an individual can spend in (S1). The variation of ingested
food is governed by the standard structured model (see [162]) subject to zero boundary and
initial conditions that can be solved by integration along the characteristics to give

q1(a, t)=
∫ t

t−a
K1

N1(σ )+C1
dσ, t > a,

where K1 is the quantity of food flowing into the species habitat per unit of volume, per unit
of time, C1 is the food(converted into a number of individuals) taken per unit of volume
by consumers other than (S1) stage, and N1(t)=

∫ T1
0 n1(a, t)da is the population in stage

(S1) which is susceptible to enter the next stage at time t per unit of volume. Hence an
individual moves out of the (S1) stage exactly at time t if it entered in the (S1) stage a1(t)

units of time earlier, where a1(t) is given by the threshold condition

∫ t

t−a1(t)

K1

N1(σ )+C1
dσ =Q1,

from which it follows that

d

dt
a1(t)=−N1(t − a1(t))−N1(t)

N1(t)+C1
. (2.6.1)

The introduction of a1(t) through the above threshold condition ties the change of indi-
vidual states to the dynamics of the population at the population level. From the definition
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of a1(t), one naturally has n1(a, t) = 0 for all a > a1(t). The dynamics for n1(a, t) with
0 < a < a1(t) is given by

⎧⎨
⎩

∂

∂a
n1(a, t)+ ∂

∂t
n1(a, t)=−f (a)n1(a, t), 0 < a < a1(t), t > 0,

n1(a,0)= 0, n1(0, t)= B(t),

where the function f is related to the individual resistance to fluctuation of food capacities,
and B(t) is the density of eggs laid per unit of volume at time t . In the special case where
the eggs of a given year are determined directly in terms of passive larvae that survived
some years earlier, we have

B(t)= kN1(t − r)

for some positive constants r and k. This yields

⎧⎪⎪⎨
⎪⎪⎩
N1(t)= k

∫ t

t−a1(t)

exp

(
−

∫ t−a

0
f (σ )dσ

)
N1(a − r)da,

∫ t

t−a1(t)

K1

N1(σ )+C1
dσ =Q1,

(2.6.2)

or, equivalently,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
N1(t)= kN1(t − r)− (

1− a′1(t)
)

exp

(
−

∫ a1(t)

0
f (σ )dσ

)
kN1(t − r)

− k

∫ t

t−a1(t)

f (t − a) exp

(
−

∫ t−a

0
f (σ )dσ

)
N1(t − a)da,

∫ t

t−a1(t)

K1

N1(σ )+C1
dσ =Q1.

(2.6.3)

Note that in the above system of FDEs, there are two components of the delay: a constant
delay r and a state-dependent delay.

As the second equation can be written as (2.6.1) by differentiation, it is natural that
Arino, Hadeler and Hbid [7] and Magal and Arino [148] considered the system with adap-
tive delays

⎧⎪⎪⎨
⎪⎪⎩

d

dt
x(t)=−f

(
x
(
t − τ(t)

))
,

d

dt
τ (t)= h

(
x(t), τ (t)

)
.

The existence of periodic solutions for the above system with adaptive delays is considered,
and their results will be described in Section 7.2.
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In the context of population dynamics, the delay arises frequently as the maturation
time from birth to adulthood and this time is in some cases a function of the total popula-
tion [11]. In [52], the consequence of size-dependent competition among the individuals is
investigated by using a system of delay differential equations with state-dependent delays
for a population consisting of only two distinct size classes, juveniles and adults, under
the assumption that individuals are born at a size s = sb and remain juvenile as long as
s < sm, and individuals mature on reaching the maturation size threshold s = sm. There-
fore, if the density of juvenile and adult individuals at time t are denoted by J (t) and A(t),
respectively, and if juveniles and adults feed on a shared resource, denoted by F(t), then

sm − sb =
∫ t

t−τ(t)
εgaF (x)dx, (2.6.4)

where it is assumed that juvenile individuals feed at a rate aF and use all ingested food
for growth in size with conversion efficiency εg , and τ(t) is the juvenile delay at time t .
Assuming further that adult individuals feed at a rate qaF and use all ingested food for re-
production with conversion efficiency εb (here q is the ratio between the adult and juvenile
feeding rate), and that the (instantaneous) mortality is inversely proportional to food intake
with proportionality constant μ, de Roos and Persson obtain the following set of equations
for the dynamics of (J (t),A(t),F (t)):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dF(t)

dt
=D − aFA− qaFA,

dJ (t)

dt
=R(t)−R

(
t − τ(t)

)
P(t)

F (t)

F (t − τ(t)))
− μ

aF(t)
J (t),

dA(t)

dt
=R

(
t − τ(t)

)
P(t)

F (t)

F (t − τ(t))
− μ

qaF(t)
A(t),

(2.6.5)

where

R(t)= εbqaF (t)A(t)

is the total population birth rate at time t and

P(t)= exp

(
−

∫ t

t−τ(t)
μ

aF(x)
dx

)

denotes the probability that an individual which should mature at time t has survived its
juvenile period. The ratio F(t)/F (t − τ(t)) counts for the change in maturation rate due
to a change in the juvenile delay τ(t), and this can be derived by considering the model
formulation in terms of a hyperbolic partial differential equation for the size distribution
of the consumer population n(t, s). The corresponding boundary conditions reflect the fact
that the flow rate at time t across the boundary of the size domain s = sb into the juvenile
class equals to total population birth rate R(t) at that time, and that the flow rate at time t

across the boundary s = sm into the adult class equals εgaF (t)n(t, sm).
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Note that differentiation of (2.6.4) then yields an equation to govern the evolution of the
delay

dτ

dt
= 1− F(t)

F (t − τ)
.

Similarly, in [23], it is showed that size dependent birth processes where the lifespan of
individuals is a function of the current population size lead to a certain integral equation,

x(t)=
∫ t

t−L(x(t))
b
(
x(s)

)
ds, (2.6.6)

differentiation then leads to the delay differential equation

d

dt
x(t)= b(x(t))− b(x(t −L(x(t))))

1−L′(x(t))b(x(t −L(x(t))))
. (2.6.7)

One should emphasize that, despite a close correspondence between solutions of (2.6.6)
and (2.6.7), caution must be employed in using one equation to investigate the other. For
example, any constant is a solution of (2.6.7), whereas equation (2.6.6) only admits con-
stant solutions whose values satisfy x = b(x)L(x).

We note that early development of state-dependent delay models in economics and pop-
ulation biology was motivated by phenomenological considerations. For example, in [25,
146] the dynamics of price adjustment in a single commodity market that involves time
delays due to production lags and storage policies is considered. The importance of the
incorporation of a variable production delay is pointed out as certain commodities, once
produced, may be stored for a variable period of time until market prices are deemed advan-
tageous by the producer. In the field of population dynamics, motivated by the observation
in Gambell [85] that for antarctic whale and seal populations, the length of time to ma-
turity is a function of the amount of food (mostly krill) available, Aiello, Freedman and
Wu [2] propose a stage-structured model of population growth, where the time to maturity
is itself state dependent and the special form is suggested by the work [6] that describes
how the duration of larval development of flies is a nonlinear increasing function of larval
density. This model is further analyzed in [224]. An alternative version, which is designed
to address the drawback in the Aiello–Freedman–Wu model that the maturation time for
any newborn depends on the existing population size at the same time, is proposed in [76]
based on the assumption that the maturation time depends on the size of the population
which existed at the time of birth. In particular, if r(t) is the date of birth of individuals
who become mature at time t � 0, then the age length up to maturity at time t will be given
by the function τ(z(r(t))). Consequently, r(t) can be solved implicitly by

r(t)= t − τ
(
z
(
r(t)

))
, t � 0.



Functional differential equations with state-dependent delays 461

This modification in defining the density-delay dependent term results in the following sys-
tem for the population with two stages: immature and mature, whose densities are denoted
by z(t)− xm(t) and xm(t):

⎧⎪⎪⎨
⎪⎪⎩

d

dt
z(t)=−γ z(t)+ (α + γ )xm(t)− f

(
xm(t)

)
xm(t),

d

dt
xm(t)= αxm

(
r(t)

)
r ′(t) exp

[−γ τ
(
z
(
r(t)

))]− f
(
xm(t)

)
xm(t),

where γ > 0 and f (xm) are the mortality rates during the immature and mature stages.
A detailed derivation of the above model and a careful analysis of conditions which assure
existence, uniqueness, positiveness and boundedness of solutions can be found in [76], and
the additional analysis such as the existence of steady-state solutions and how the delay
affects stability can be found in [9,11].

Not much progress has been made for population dynamics involving both spatial dis-
persal and state-dependent delay, which would naturally involve certain types of partial
functional differential equations. In [184], a new class of non-local partial functional dif-
ferential equations is proposed for the evolution of a single species population that involves
delayed feedback, where the delay such as the time length for reproduction, is selective and
the selection depends on the status of the system. The abstract model in the work [184] is
the following non-local partial differential equation with state-dependent selective delay:

∂

∂t
u(t, x)+Au(t, x)+ du(t, x)= (

F(ut )
)
(x), x ∈�, (2.6.8)

where

(
F(ut )

)
(x) :=

∫ 0

−r

{∫
�

b
(
u(t + θ, y)

)
f (x − y)dy

}
ξ
(
θ,

∥∥u(t)∥∥)dθ,

A is a densely-defined self-adjoint positive linear operator with domain D(A)⊂ L2(�) and
with compact resolvent, � is a smooth bounded domain in R

n, f : (�−�)→R is a certain
bounded function, b : R→R is a locally Lipschitz map and satisfies |b(w)|� C1|w| +C2

with C1 � 0 and C2 � 0, d is a positive constant. The function u(·, ·) : [−r,+∞)×�→R

is given such that for any t the function u(t) ≡ u(t, ·) ∈ L2(�), ‖ · ‖ is the L2(�)-norm.
The function ξ : [−r,0] ×R→R represents the state-selective delay, for example, if

ξ(θ, s)= e−β(g(s)−θ)2
, θ ∈ [−r,0], s ∈R,

then the function g gives the coordinate of the maximum of ξ . Thus the system selects
the maximal historical impact on the current change rate according to the system’s current
state.
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2.7. Cell biology and hematological disorders

The monograph [162] contains a brief discussion of a modified structured model for the
control of the bone marrow stem cell population which supplies the circulating red blood
cell population. For this case, the maturing stem cell population is structured by a matura-
tion variable and the rate of maturation is assumed to depend only on the total mature red
blood cell population. Since a threshold level of maturation is required in order for an im-
mature cell to enter the population, a threshold delay differential equation arises naturally.

Age-structured models have also been used in the study of hematological disorders, and
these models can be reduced via the method of characteristics to systems of threshold type
differential delay equations, see [24,26,149,185]. Here we describe the work [149].

We first note that the precursor cells begin from a pool of burst-forming units of the ery-
throid line (BFU) that have differentiated into a self-sustaining population which eventually
leads to the production of mature erythrocytes. At some point, the BFUs further differen-
tiate and start down a proliferative path that can ultimately produce erythrocytes. Early in
this proliferative phase of development the hormone Epo, alone with other hormones, af-
fects the number of BFU that become erythrocytes. Increase in the concentration of Epo
may increase the number of BFU recruited to mature into erythrocytes. Alternatively, there
may be a relatively constant supply of committed BFU, but only the cells tagged with suf-
ficient Epo survive the rapidly proliferating colony forming units (CFU) phase to complete
maturation.

Let p(t,μ) denote the population of precursor cells at time t with age μ, and let V (E)

be the velocity of maturation, which may depend on the hormone concentration, E. The
maturity level μ for erythropoiesis can represent the accumulation of hemoglobin in the
precursor cells. If S0(E) is the number of cells recruited into the proliferating precursor
population, then the entry of new precursor cells into the age-structured model satisfies the
boundary condition

V (E)p(t,0)= S0(E). (2.7.1)

Let μF be the maximum age for a cell reaching maturity, then the dynamics of the
precursor cells is governed by the age-structured model

(
∂

∂t
+ V (E)

∂

∂μ

)
p(t,μ)= [

β(μ,E)−H(μ)
]
p(t,μ), t > 0, 0 <μ<μF ,

(2.7.2)

where β(μ,E) is the net birth rate for proliferating precursor cells, and H(μ) is the disap-
pearance rate given by

H(μ)= h(μ− μ̄)∫ μF

μ
h(s − μ̄)ds
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and h(μ− μ̄) is the distribution of maturity levels of the cells when released into the cir-
culating blood, with μ̄ being the mean age of mature precursor cells and the normalization∫ μF

0 h(μ− μ̄)dμ= 1.
Let m(t, ν) be the population of mature non-proliferating cells at time t and age ν, and

assume the mature cells age at a constant rate W . The boundary condition for cells entering
the maturation population is given by

Wm(t,0)= V (E)

∫ μF

0
h(μ− μ̄)p(t,μ)dμ. (2.7.3)

The complete feedback involves the Epo level E, its growth is regulated by the total
population of mature cells. Therefore, we need to determine the maximum age νF (t) of
erythrocytes, which varies in t as the destruction of erythrocytes occurs by active removal
of the oldest cells. We assume a constant erythrocyte removal rate Q, which can be justified
by either assuming a constant supply of markers or a constant number of phagocytes that
become satiated in their destruction of the oldest erythrocytes, then consideration of the
moving boundary condition at ν = νF (t) yields

(
W − ν′F (t)

)
m
(
t, νF (t)

)=Q, (2.7.4)

or equivalently,

d

dt
νF (t)=W − Q

m(t, νF (t))
. (2.7.5)

To obtain this unusual moving boundary condition, we notice that when erythrocytes age,
their cell membrane breaks down and marcophages destroy the least pliable cells. On the
other hand, since we assume the macrophages are in constant supply and are saturated in
their consumption of erythrocytes, the age of destruction of erythrocytes then varies. In
particular, during the time interval [t, t + �t], one can use the Mean Value Theorem to
find χ,η ∈ [t, t +�t] so that

Q�t + [
νF (t +�t)− νF (t)

]
m
(
η, νF (η)

)=W�tm
(
χ,νF (χ)

)

from which (2.7.4) follows.
The dynamics of matured cells before its maximum age is governed by the age-

structured model
(

∂

∂t
+W

∂

∂ν

)
m(t, ν)=−Wγ (ν)m(t, ν), t > 0, 0 < ν < νF (t), (2.7.6)

where γ (ν) is the age-dependent death rate of mature cells.
To complete the feedback cycle, we note that the Epo level E is governed by a negative

feedback of the total population of mature cells

M(t)=
∫ νF (t)

0
m(t, ν)dν, (2.7.7)
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via

d

dt
E(t)= F

(
M(t)

)− kE(t), (2.7.8)

where k is the decay constant for the hormone and F(M) is a monotonically decreasing
function of M .

In the simple case, that we consider in the remaining part of this subsection, where
V (E)=W = 1 and β(μ,E)= β(μ) is independent of E, if the initial condition

p(0,μ)= φ(μ), m(0, ν)=ψ(ν)

is given, then the method of characteristics yields that

p(t,μ)=

⎧⎪⎪⎨
⎪⎪⎩
φ(μ− t) exp

[∫ t

0
F(μ− t +w)dw

]
, t < μ;

S0
(
E(t −μ)

)
exp

[∫ t

t−μ
F(w− t +μ)dw

]
, t > μ,

(2.7.9)

with F(μ)= β(μ)−H(μ), and

m(t, ν)=

⎧⎪⎪⎨
⎪⎪⎩
ψ(ν − t) exp

[
−

∫ t

0
(ν + σ − t)dσ

]
, t < ν;∫ μF

0
h(μ− μ̄)p(t − ν,μ)dμ exp

[
−

∫ ν

0
γ (σ )dσ

]
, t > ν.

(2.7.10)

If t is sufficiently large, then we get

M(t)=
∫ νF (t)

0

∫ μF

0
h(μ− μ̄)p(t − ν,μ)dμ exp

[
−

∫ ν

0
γ (σ )dσ

]
dν.

(2.7.11)

Thus, (2.7.5), (2.7.8) and (2.7.11), with p given in (2.7.9) form a complete system of
integro-differential equations with the delay νF being adaptive.

3. A framework for the initial value problem

3.1. Preliminaries

For differential delay equations with state-dependent delays it is less obvious than in case
of time-invariant delays on which state space IVPs are well-posed. For initial data in the
familiar space C = C([−h,0];Rn) solutions to equations with state-dependent delay are
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in general not unique in cases where for similar equations with constant delay the IVP is
well-posed. Winston [216] gave the following example: The functions defined by

x(t)= t + 1 and x(t)= t + 1− t3/2

for small t > 0 both are solutions of the equation

x′(t)=−x
(
t − ∣∣x(t)∣∣)

with initial values

x(t)=

⎧⎪⎨
⎪⎩
−1, if t �−1;
3
2 (t + 1)1/3 − 1, if −1 < t �− 7

8 ;
10
7 t + 1, if − 7

8 < t � 0.

Early results on existence, uniqueness, and continuous dependence for solutions of IVPs
with state-dependent delays are due to Driver [57–62], who studied cases of the two-body
problem of electrodynamics; see also work by Driver and Norris [64], Travis [198], and
Hoag and Driver [111]. The latter investigated equations with both delayed and advanced
state-dependent shifted arguments. Winston [216,218] studied uniqueness for special scalar
equations, among others. Well-posed initial value problems are the basis for work on pe-
riodic solutions, notably by Nussbaum [174], Alt [4], Mallet-Paret and Nussbaum [151,
152,155], Kuang and Smith [136,137,190], Mallet-Paret, Nussbaum and Paraskevopoulos
[156], Arino, Hadeler and Hbid [7], Krisztin and Arino [132], Magal and Arino [148], and
in [205]. Further existence and uniqueness results are due to Gatica and Waltman [88,89]
and Jackiewicz [119,121], and to Ito and Kappel [118] in an approach to more general
IVPs. The delay differential and integral equations addressed in these results belong to
special classes where the state-dependent delay appears explicitly or is defined implicitly
by an additional equation. Typically, the IVP is uniquely solved for initial and other data
which satisfy suitable Lipschitz conditions. Manitius [160] and Brokate and Colonius [29]
deal with differentiability of operators given by the right-hand side of differential equa-
tions with state-dependent delay, in the context of control theory. Section 6 below reports
about work of Hartung and Turi [106] who proved differentiability of solutions with re-
spect to parameters—including Lipschitz continuous initial data—in Sobolev spaces and
related quasi-normed spaces. Louihi, Hbid, and Arino [144] consider a class of equations
with state-dependent delay in the framework of nonlinear semigroup theory. Their results
are used in an approach of Ouifki and Hbid [178] to periodic solutions which is described
in Section 8.3 below.

Let us now see where the difficulty with uniqueness arises if a given differential equa-
tion with state-dependent delay is written in the general form (1.0.1). Our discussion of
the uniqueness problem will naturally lead us to a manifold on which Eq. (1.0.1) defines
a continuous semiflow with continuously differentiable solution operators. We shall obtain
continuously differentiable local stable and unstable manifolds of the semiflow at station-
ary points, also center manifolds for the solution operators, and a convenient Principle of
Linearized Stability, among others.
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We begin with an equation

x′(t)= g
(
x
(
t − r(xt )

))
, (3.1.1)

with a given map g : Rn → R
n and a given delay functional r :U → [0, h], for h > 0,

n ∈N, and U ⊂ (Rn)[−h,0]. Equation (3.1.1) has the form (1.0.1) for

f = g ◦ ev ◦ (id× (−r)
)

where

ev :
(
R

n
)[−h,0] × [−h,0]→R

n

is the evaluation map defined by

ev(φ, s)= φ(s).

Notice that the restriction of ev to C×[−h,0] is not locally Lipschitz continuous: Lipschitz
continuity would imply Lipschitz continuity of elements φ ∈ C. Therefore in general f is
not locally Lipschitz continuous on open subsets of C, and the familiar results on existence,
uniqueness, and dependence of solutions on initial data and parameters for RFDEs from,
say, [54,98] fail.

The difficulty just mentioned disappears if C is replaced by the smaller Banach space
C1 = C1([−h,0];Rn) since the restricted evaluation map

Ev :C1 × [−h,0] � (φ, s) )→ φ(s) ∈R
n

is continuously differentiable, with

D1Ev(φ, s)χ = Ev(χ, s) and D2Ev(φ, s)1= φ′(s).

So, for g : Rn → R
n and r :U → [0, h], U ⊂ C1 open, both continuously differentiable,

the resulting functional

f = g ◦ Ev ◦ (id× (−r)
)

is continuously differentiable from U to R
n, with

Df (φ)χ = Dg
(
φ
(−r(φ)

))[
D1Ev

(
φ,−r(φ)

)
χ −D2Ev

(
φ,−r(φ)

)
Dr(φ)χ

]
= Dg

(
φ
(−r(φ)

))[
χ
(−r(φ)

)−Dr(φ)χφ′
(−r(φ)

)]

for φ ∈U and χ ∈ C1.
However, yet another obstacle is in the way. Suppose U ⊂ C1 is open, f :U → R

n is
continuously differentiable, and the IVP

x′(t)= f (xt ) for t > 0, x0 = φ, (3.1.2)
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is well-posed for φ ∈U . A solution x : [−h, te)→R
n, 0 < te �∞, has segments xt ∈U ⊂

C1, 0 � t < te. Therefore x is continuously differentiable, and the curve [0, te) � t )→ xt ∈
C1 is continuous. Continuity at t = 0 yields

φ′(0)= x′(0)= f (x0)= f (φ),

a necessary condition on initial data which may or may not be satisfied.
In any case, the last equation suggests to consider the IVP (3.1.2) for initial data only in

the closed subset

Xf =
{
φ ∈U : φ′(0)= f (φ)

}

of U ⊂ C1.
From now on, a solution is understood to be a continuously differentiable function

x : [−h, t∗) → R
n, 0 < t∗ � ∞, which satisfies xt ∈ U for 0 � t < t∗, x0 = φ, and

x′(t)= f (xt ) for 0 < t < t∗.
Incidentally, notice that Xf is a nonlinear analogue of the domain

{
φ ∈ C1: φ′(0)= Lφ

}

of the generator of the semigroup given by the solutions to the linear IVP

y′(t)= Lyt , y0 = φ ∈ C,

for L :C→R
n linear continuous [54,98].

3.2. The semiflow on the solution manifold

There is a mild smoothness condition (S) on the functional f :U → R
n, U ⊂ C1 open,

which is often satisfied if f represents an equation with state-dependent delay, and which
implies all the desired results, namely

(S1) f is continuously differentiable,
(S2) each derivative Df (φ),φ ∈U , extends to a linear map Def (φ) :C→R

n, and
(S3) the map

U ×C � (φ,χ) )→Def (φ)χ ∈R
n

is continuous.
Let us see what condition (S) means for the example

f = g ◦ Ev ◦ (id× (−r)
)

above, with r :U → [0, h], U ⊂ C1 open, and g : Rn → R
n continuously differentiable.

Suppose the delay functional r satisfies condition (S) (with n= 1). If then Def is defined
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by the formula above for Df , with Dr replaced by Der , one sees that condition (S) holds
for f . Notice that r satisfies (S) provided it is the restriction of a continuously differentiable
map V →[0, h], V ⊂ C open, to U = V ∩C1.

THEOREM 3.2.1. Suppose U ⊂ C1 is open, f :U → R
n has property (S), and Xf �=

∅. Then Xf is a continuously differentiable submanifold of U with codimension n, and
each φ ∈ Xf uniquely defines a noncontinuable solution xφ : [−h, t+(φ))→ R

n of the

IVP (3.1.2). All segments xφt , 0 � t < t+(φ) and φ ∈Xf , belong to Xf , and the relations

F(t,φ)= x
φ
t , φ ∈Xf , 0 � t < t+(φ)

define a domain �⊂R×Xf and a continuous semiflow F :�→Xf . Each map

F(t, ·) :
{
φ ∈Xf : (t, φ) ∈�

}→Xf

is continuously differentiable, and for all (t, φ) ∈� and χ ∈ TφXf we have

D2F(t,φ)χ = v
φ,χ
t

with the solution vφ,χ : [−h, t+(φ))→R
n of the linear IVP

v′(t)=Df
(
F(t,φ)

)
vt , v0 = χ. (3.2.1)

At each (t, φ) with φ ∈Xf and h < t < t+(φ), the partial derivative D1F(t,φ) exists, and

D1F(t,φ)1= (
x
φ
t

)′
.

The restriction of F to the submanifold {(t, φ) ∈ �: h < t} of R × Xf is continuously
differentiable.

Notice that the tangent spaces of the manifold Xf are given by

TφXf =
{
χ ∈ C1: χ ′(0)=Df (φ)χ

}
.

Theorem 3.2.1 is proved in [206,207]. The construction of the semiflow is also sketched
in [209].

The first part (S1) of the hypothesis and continuity of each extension Def (φ) suffice for
Xf to be a continuously differentiable submanifold. The proof of this is simple: For

p :C1 � φ )→ φ′(0) ∈R
n,

Xf = (p− f )−1(0),

and the Implicit Function Theorem yields local representations of Xf as graphs over the
kernels of the linear maps D(p−f )(φ)= p−Df (φ)), φ ∈Xf , provided these linear maps
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are surjective. In case n = 1 surjectivity follows since using the continuity of Def (φ) at
0 ∈ C one finds χ ∈ C1 ⊂ C with χ ′(0) = 1 and Df (φ)χ = Def (φ)χ < 1 = pχ , which
gives (p − Df (φ))C1 = R. In case n > 1 similar arguments yield a basis of R

n in (p −
Df (φ))C1.

Condition (S3) implies that the map Def is locally bounded. From this one derives
easily the following local Lipschitz property:

(L) For every φ ∈ U there are a neighbourhood V and L � 0 with |f (ψ) − f (χ)| �
L‖ψ − χ‖C for all ψ ∈ V,χ ∈ V ,

see Corollary 1 in [207]. Notice that the last norm is the norm on C and not the larger norm
on the smaller space C1. So (L) is not a consequence of (S1). Property (L) (together with
(S1), (S2) and continuity of each Def (φ)) yields existence and continuity of the semiflow
as well as the properties of the maps F(t, ·) stated in Theorem 3.2.1. Only for the two last
statements of Theorem 3.2.1, on smoothness, the full hypothesis (S) is needed.

It is worth noting that continuity of the map

U � φ )→Def (φ) ∈ L
(
C,Rn

)
,

which seems only slightly stronger than property (S3) above, does in general not hold for
functionals f which represent differential equations with state-dependent delay.

A key issue in the proof of Theorem 3.2.1 is how the local Lipschitz property (L) is used
for the construction of local solutions to the IVP. Let us briefly explain this.

In order to solve the integrated version

x(t)= φ(0)+
∫ t

0
f (xs)ds, x0 = φ ∈Xf ,

of the IVP for 0 � t � T by a continuously differentiable map

x : [−h,T ]→R
n,

which is continuously differentiable with respect to φ, the desired solution is first written
as the sum of a linear, continuously differentiable continuation φ̂ of φ and of a function u

which is zero on [−h,0]. The fixed point problem for u is

u(t)=
∫ t

0

(
f
(
us + φ̂s

)− f (φ)
)

ds, 0 � t � T .

The advantage of this formulation is that for the operator u )→ A(φ,u) given by the
right hand side dependence on φ is more explicit than in the equation for x. For
A(φ, ·) to become a contraction with respect to the norm ‖u‖T ,1 = max0�s�T |u(s)| +
max0�s�T |u′(s)| we use the following estimate for v = A(φ,u), v = A(φ,u), and
0 � t � T :

∣∣v′(t)− v′(t)
∣∣= ∣∣f (

ut + φ̂t

)− f
(
ut + φ̂t

)∣∣ � L‖ut − ut‖C
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(due to the local Lipschitz property, for T and u and u small)

� L max
0�s�T

∣∣u(s)− u(s)
∣∣= L max

0�s�T

∣∣∣∣
∫ s

0

(
u′(r)− u′(r)

)
dr

∣∣∣∣ � LT ‖u− u‖T ,1.

The proof that the semiflow F is continuously differentiable on the manifold given by
t > h is based on growth estimates and smoothness properties of solutions to the IVP

v′(t)=Def
(
F(t,φ)

)
vt , v0 = χ (3.2.2)

for initial data χ ∈ C.
The previous result is optimal in the sense that typically the semiflow F has no partial

derivatives with respect to the first variable for 0 � t < h.
The framework presented up to here is instrumental in the proof in [208] that for a

certain differential system with state-dependent delay, which models position control by
echo, hyperbolic stable periodic orbits exist.

With regard to results for solutions x : [−h, t+)→ R
n to equations of the form (3.1.1)

and generalizations thereof in the sense that x is continuous but differentiable only for
0 < t < t+, notice that for h � t < t+ we have

xt ∈Xf

(with f = g ◦ ev ◦ (id × (−r)) in case of Eq. (3.1.1)), so all dynamical properties like
structure and stability of invariant sets (stationary points, periodic orbits, unstable mani-
folds, global attractors, . . . ) are determined by the semiflow F on Xf —provided the mild
smoothness condition (S) holds.

Some notions of the approach to well-posedness and smoothness which we described
here are related to ideas from earlier work. The Lipschitz property (L) from the proof
of Theorem 3.2.1 was used before in [205] and is analogous to the notion of being lo-
cally almost Lipschitzian from [156]. The condition that (S1) holds and each Def (φ) is
continuous was introduced in [156] as almost Fréchet differentiability. It also is a special
case of a smoothness condition used in [129]. Sets analogous to Xf were considered in
[134] as state space for neutral functional differential equations, and by Louihi, Hbid and
Arino [144]. In [144] the IVP for a certain class of equations of the form (3.1.1) defines a
semigroup of locally Lipschitz continuous solution operators on the space C0,1. The pos-
itively invariant subset E ⊂ C0,1 of data φ ∈ C1 with φ′(0) = g(φ(−r(φ))) is identified
as the domain of strong continuity of the semigroup. In the present notation, E = Xf for
f = g ◦ Ev ◦ (id× (−r)). It is stated in [144] that E is a Lipschitz manifold.

3.3. Compactness

Recall that a map from a subset of a Banach space into a Banach space is called compact if
images of bounded sets have compact closure. A simple compactness result for the semi-
flow of Theorem 3.2.1 is the following. Notice in which way the hypotheses strengthen
property (S).
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PROPOSITION 3.3.1. Suppose f :U → R
n, U ⊂ C1 open, is bounded, satisfies condi-

tion (S), and
(Lb) for every bounded set B ⊂ U there exists LB � 0 with |f (φ)− f (ψ)|� LB‖φ −

ψ‖C for all φ, ψ in B.
Then all maps F(t, ·), t � h, are compact.

PROOF. Let t � h and let a bounded set B ⊂ {φ ∈ Xf : (t, φ) ∈ �} be given. In order
that F(t,B) ⊂ C1 be compact it is enough to show that every sequence in F(t,B) has a
convergent subsequence, which follows by means of the Ascoli–Arzelà Theorem provided
both sets M = {xφt ∈ C1: φ ∈ B} and M ′ = {(xφt )′ ∈ C: φ ∈ B} are bounded with respect
to the norm ‖ · ‖C and equicontinuous. The boundedness of B and f in combination with
Eq. (1.0.1) shows that

b= sup
φ∈B,−h�s�t

∣∣(xφ)′(s)∣∣<∞.

Then the boundedness of B and integration yield

sup
φ∈B,−h�s�t

∣∣xφ(s)∣∣<∞.

In particular, M ′ and M are bounded with respect to ‖ · ‖C . The boundedness of M ′ yields
the equicontinuity of M . We also have that the set

Y = {
F(s,φ): φ ∈ B,0 � s � t

}⊂Xf ⊂U

is bounded with respect to ‖ · ‖C1 . Now equicontinuity of M ′ follows from the estimate

∣∣(xφt )′(s)− (
x
φ
t

)′
(u)

∣∣ = ∣∣(xφ)′(t + s)− (
xφ

)′
(t + u)

∣∣
= ∣∣f (

F(t + s,φ)
)− f

(
F(t + u,φ)

)∣∣
� LY

∥∥F(t + s,φ)− F(t + u,φ)
∥∥
C

= LY max
−h�v�0

∣∣xφ(t + s + v)− xφ(t + u+ v)
∣∣

= LY max
−h�v�0

∣∣∣∣
∫ t+s+v

t+u+v
(xφ)′(w)dw

∣∣∣∣ � LYb|s − u|

for all φ ∈ B and all s, u in [−h,0]. �

In case of the example f = g ◦ Ev ◦ (id× (−r)) with r :U →[0, h], U ⊂ C1 open, and
g : Rn → R

n continuously differentiable the hypotheses of Proposition 3.3.1 are satisfied
if in addition U is convex, r has property (S), g is bounded, and Der and Dg map bounded
sets onto bounded sets: The boundedness of f is obvious. The formula which computes
Def from Dg and Der shows that Def maps bounded sets onto bounded subsets. For a
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given bounded set B ⊂ U there is a larger convex bounded subset B∗ ⊂ U , and for φ, ψ
in B∗ we have

∣∣f (φ)− f (ψ)
∣∣ =

∣∣∣∣
∫ 1

0
Df

(
ψ + t (φ −ψ)

)
(φ −ψ)dt

∣∣∣∣
=

∣∣∣∣
∫ 1

0
Def

(
ψ + t (φ −ψ)

)
(φ −ψ)dt

∣∣∣∣
�

∫ 1

0

∣∣Def
(
ψ + t (φ −ψ)

)
(φ −ψ)

∣∣dt

� sup
χ∈B∗

∥∥Def (χ)
∥∥‖φ −ψ‖C,

which yields property (Lb).
For another result on compactness, for solution operators on the space C0,1, see [144].

3.4. Linearization at equilibria

Theorem 3.2.1 reveals in particular how to linearize semiflows defined by differential equa-
tions with state-dependent delay, an issue which had been mysterious before. Consider
f :U →R

n, U ⊂ C1 open, with property (S). Let a stationary point φ0 ∈Xf of the semi-
flow F from Theorem 3.2.1 be given. The linearization of F at φ0 is the semigroup T of
the linear continuous operators T (t)=D2F(t,φ0), t � 0, on the Banach space Tφ0Xf with
the norm ‖ · ‖C1 . T is strongly continuous since the solutions vφ0,χ : [−h,∞)→R

n of the
IVP (3.2.1) with χ ∈ Tφ0Xf are continuously differentiable.

Before the present approach was available a heuristic technique had been developed in
order to circumvent the linearization problem in studies of local stability and instability
properties of equilibria. This technique associates to the given nonlinear equation an auxil-
iary linear equation in the following way: First the delay is frozen at equilibrium, then the
resulting nonlinear equation with constant delay is linearized. Of course, this makes sense
only for equations where the delay appears explicitly, like, e.g., in Eq. (3.1.1). Let us use
Eq. (3.1.1) to show that the auxiliary equation found by the heuristic technique is

v′(t)=Def (φ0)vt

in our framework. Suppose for simplicity that n= 1, that g : R→R satisfies g(0)= 0 and
that g and the delay functional r :U → [0, h], U ⊂ C1 open, are continuously differen-
tiable. Freezing the delay in Eq. (3.1.1) at φ0 = 0 and linearizing the resulting RFDE

x′(t)= g
(
x
(
t − r(0)

))

at the zero solution yields

v′(t)= g′(0)v
(
t − r(0)

)
.
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On the other hand, for the functional fg,r = g ◦Ev ◦ (id× (−r)) and χ ∈ C1 the computa-
tion of derivatives above yields

Dfg,r (0)χ =Dg(0)χ
(−r(0)

)= g′(0)χ
(−r(0)

)
.

Obviously the right-hand side of this equation defines a continuous linear extension
Defg,r (0) :C→R of Dfg,r (0), which verifies our previous statement. In other words, the
auxiliary equation found by the heuristic method yields the true linear variational equation
by restriction to the tangent space T0Xf .

In the sequel we clarify the relation between the spectral properties of the linearization
T of the semiflow F of Theorem 3.2.1 at a stationary point φ0 ∈ Xf and the strongly
continuous semigroup Te on the space C which is defined by the solutions of the IVP
(3.2.2). Recall that the generator Ge : dom→ C of Te is given by dom= {φ ∈ C1: φ′(0)=
Def (φ0)φ} and Geφ = φ′.

We have Tφ0Xf = dom, T (t)φ = Te(t)φ for t � 0 and φ ∈ dom, and the norm ‖ · ‖C1

coincides with the graph norm ‖ · ‖e = ‖ · ‖C + ‖Ge · ‖C of the operator Ge .
It is a simple general fact that for a strongly continuous semigroup S of linear continuous

operators on a Banach space B , with generator A :DA→ B , the induced linear operators

DA � x )→ S(t)x ∈DA

are continuous with respect to the graph norm ‖ · ‖A = ‖ · ‖ + ‖A · ‖ and form a strongly
continuous semigroup on the Banach space (DA,‖ · ‖A), with the generator Ad defined on
the domain

Dd = {x ∈DA: Ax ∈DA}

of A2 and given by Adx =Ax. Proofs are immediate from S(t)DA ⊂DA and

S(t)Ax =AS(t)x on DA

for all t � 0.
Our semigroups and their generators are precisely in the relation just described, so we

have

D = (Dd =)
{
χ ∈ C1: χ ′(0)=Df (φ0)χ,χ

′ ∈ C1, χ ′′(0)=Df (φ0)χ
′}

= {
χ ∈ C2: χ ′(0)=Df (φ0)χ,χ

′′(0)=Df (φ0)χ
′}

and Gχ = χ ′ on D.
We return to the general case. Below, ρ and σ denote resolvent sets and spectra, respec-

tively.

PROPOSITION 3.4.1. Suppose B is a Banach space over C, S is a strongly continuous
semigroup on B with generator A :DA → B , and Ad is the generator of the semigroup
induced on the Banach space (DA,‖ · ‖A). Then the following holds.
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(i) ρ(A) ⊂ ρ(Ad) ⊂ ρ(A) ∪ {λ ∈ C: A − λI injective and (A − λI)DA �= B}, and
σ(Ad)⊂ σ(A). For all λ ∈ ρ(A), (Ad − λI)−1x = (A− λI)−1x on DA.

(ii) Let γ be a simple closed curve in ρ(A) and let σγ,d = int(γ ) ∩ σ(Ad), σγ =
int(γ ) ∩ σ(A). Then the spectral projections Pd , P and generalized eigenspaces
Gd = PdDA, G = PB associated with the sets σγ,d ⊂ σ(Ad) and σγ ⊂ σ(A), re-
spectively, satisfy

Pdx = Px on DA, Gd ⊂ G, and Gd
B = G.

PROOF. 1. Proof of (i).
1.1. Let λ ∈ ρ(A) be given. The continuity of the inverse with respect to the norm on B

and the definition of the graph norm combined show that for all y ∈DA we have

∥∥(A− λI)−1y
∥∥
A
= ∥∥(A− λI)−1y

∥∥+ ∥∥A(A− λI)−1y
∥∥

�
∥∥(A− λI)−1y

∥∥+ ∥∥(A− λI)(A− λI)−1y
∥∥

+ ∥∥λ(A− λI)−1y
∥∥

�
((

1+ |λ|)∥∥(A− λI)−1
∥∥+ 1

)‖y‖.
It follows that (A− λI)−1 defines a linear continuous map R from (DA,‖ · ‖A) into itself.
The range of R contains the domain Dd of the generator Ad since for any x ∈ DA with
Ax ∈ DA we have that y = (Ad − λI)x = (A − λI)x ∈ DA, hence x = (A − λI)−1y ∈
(A− λI)−1DA =RDA.

Conversely, for x =Ry = (A− λI)−1y with y ∈DA we have x ∈DA and (A− λI)x =
y ∈DA, hence Ax = λx + y ∈DA, or x ∈Dd .

So R maps DA injectively onto the domain Dd of Ad . We have R(Ad − λI)y =R(A−
λI)y = y on Dd , (Ad − λI)Rx = (A− λI)Rx = x on DA, and it follows that λ ∈ ρ(Ad)

and (Ad − λI)−1y = (A− λI)−1y on DA.
The shown inclusion of resolvent sets yields the asserted result for spectra.
1.2. Proof of the remaining inclusion. Let λ ∈ ρ(Ad) be given. A− λI is injective since

(A− λI)x = 0 implies Ax ∈DA, or x ∈Dd , and therefore (Ad − λI)x = (A− λI)x = 0,
which in turn gives x = 0, by λ ∈ ρ(Ad).

Consider the injective continuous map

Ac :
(
DA,‖ · ‖A

) � x )→ (A− λI)x ∈ B.

In case (A− λI)DA = B the open mapping theorem shows that the inverse of Ac is con-
tinuous, which implies that

B � y )→ (A− λI)−1y ∈ B

is continuous. So in this case, λ ∈ ρ(A), and the assertion becomes obvious.
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2. Proof of (ii). The representation of Pdx and Px, x ∈ DA, as contour integrals in
(DA,‖ · ‖A) and B , respectively, along the curve γ with integrands given by

(Ad − λI)−1x = (A− λI)−1x, λ ∈ |γ |,

shows that Pdx = Px on DA. Consequently,

Gd = PdDA ⊂ PDA ⊂ PB = G,

and finally

Gd
B = PdDA

B = PDA
B = PB

(since DA = B and since P has closed range)

= G. �

It is easy to see that for a given semiflow S on a Banach space B over R and its gener-
ator A :DA→ B , the complexification AC of A coincides with the generator of the com-
plexified semigroup SC : t )→ S(t)C, and that the semigroup induced by SC on (DA)C is
generated by the complexification of the generator Ad :Dd → (DA,‖ · ‖A).

Returning to our case of semigroups Te on C, T on Tφ0Xf and their generators Ge, G,
respectively, we recall that the embedding (dom,‖ · ‖e)→ C is compact, by the Ascoli–
Arzelà theorem. This yields that all resolvents of (Ge)C, which define continuous maps
from CC onto the complexification of the Banach space (dom,‖ · ‖e), are compact. There-
fore σ(Ge) := σ((Ge)C) is discrete and consists of eigenvalues with finite-dimensional
generalized eigenspaces. Using Proposition 3.4.1 and the remarks following it we infer

ρ(G)= ρ(Ge), σ (G)= σ(Ge),

and for the spectral projections and generalized eigenspaces of GC and (Ge)C which are
associated with λ ∈ σ(G)= σ(Ge),

P(λ)χ = Pe(λ)χ on Tφ0Xf = dom,

G(λ)= Ge(λ).

Recall that to the right of any line parallel to the imaginary axis there are at most a finite
number of eigenvalues of Ge. Let Cu and Cc denote the unstable and center spaces of Ge ,
i.e., the finite-dimensional realified generalized eigenspaces given by the eigenvalues with
positive real part and on the imaginary axis, respectively. The stable space Cs of Ge is
the realified generalized eigenspace given by the spectrum with negative real part. More
precisely, Cs is the realification of the space (id−P�0)CC where P�0 :CC →CC denotes
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the spectral projection associated with the finite spectral set of all λ ∈ σ(Ge) with Reλ � 0.
We have

Cu ⊕Cc ⊂D ⊂ dom= Tφ0Xf

while the infinite-dimensional, complementary space Cs is not contained in dom. Using the
previous relations between spectral projections and generalized eigenspaces of the genera-
tors G and Ge it follows easily that the unstable and center spaces of G coincide with Cu

and Cc , respectively, and that the stable space of G is

Cs ∩ dom.

For each map F(t, ·), t > 0, we have

σ
(
DF(t, ·)(φ0)

)= σ
(
T (t)

)⊂ {0} ∪ {
ezt : z ∈ σ(G)

}
, (3.4.1)

and the linear unstable, center, and stable spaces for the derivative DF(t, ·)(φ0) =
D2F(t,φ0) = T (t), which are defined by the eigenvalues outside, on, and inside the unit
circle, are

Cu,Cc, and Cs ∩ Tφ0Xf , respectively.

3.5. Local invariant manifolds at stationary points

Consider f :U → R
n, U ⊂ C1 open, with property (S) and the associated semiflow

F :�→Xf of Theorem 3.2.1. It is convenient to set

�t =
{
φ ∈Xf : (t, φ) ∈�

}
and Ft = F(t, ·),

for each t � 0. A stationary point φ0 ∈ Xf of the semiflow F is a fixed point for each
map Ft :�t → Xf , t > 0. Results about local invariant manifolds for continuously dif-
ferentiable maps on open subsets of Banach spaces [97,44,171,133] yield continuously
differentiable local stable, center, and unstable manifolds

Ws ⊂Xf , Wc ⊂Xf , Wu ⊂Xf

of Ft t > 0, at the fixed point φ0, with tangent spaces at φ0 given by

Tφ0Ws = Cs ∩ Tφ0Xf , Tφ0Wc = Cc, Tφ0Wu = Cu.

In the sequel we recall details of this and use them to show that local stable manifolds
Ws of any map Fa , a > 0, provide local stable manifolds of the semiflow F at the given
stationary point. The last fact is familiar for flows of continuously differentiable vector
fields in finite dimensions, but here we are concerned with semiflows on a Banach manifold
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of infinite dimension, and some care should be taken which properties of the underlying
delay differential equation (1.0.1) ensure the result.

For local unstable manifolds an analogous result holds, and the proof is similar. Exis-
tence of smooth local center manifolds for the semiflow is more difficult, and the relation-
ship between center manifolds of its time-t-maps and center manifolds for the semiflow is
more subtle. This will be discussed in the next section.

So let a stationary point φ0 ∈Xf of the semiflow F be given. Recall from the preceding
subsection the linear stable, center, and unstable spaces

Cs ∩ Tφ0Xf ,Cc,Cu

of the generator G of the semigroup T on Tφ0Xf . Choose β > 0 so that

−β > max
{
Re z: z ∈ σ(G),Re z < 0

}
.

Let a > 0. In order to introduce the local stable manifold of the map Fa :�a → Xf at
the fixed point φ0 we use a manifold chart of Xf at φ0. Let Y = Tφ0Xf . There is a subspace
E ⊂ C1 of dimension n which is a complement of Y in C1. Let P :C1 → C1 denote the
projection along E onto Y . Then the equation K(φ)= P(φ−φ0) defines a manifold chart
on an open neighbourhood V of φ0 in �a ⊂Xf , with Y0 =K(V ) an open neighbourhood
of 0 = K(φ0) in the Banach space Y (with the norm given by ‖ · ‖C1 ). The inverse of K
is given by a continuously differentiable map R :Y0 → C1. Both derivatives DK(φ0) and
DR(0) are given by the identity on Y . We may assume that there is a Lipschitz constant
LR � 0 so that

∥∥R(χ)−R(ψ)
∥∥
C1 � LR‖χ −ψ‖C1 for all χ ∈ Y0,ψ ∈ Y0.

Choose an open neighbourhood Y1 ⊂ Y0 of 0 in Y with Fa(R(Y1)) ⊂ V . In local coordi-
nates the map Fa is represented by the continuously differentiable map

H :Y1 � χ )→K
(
Fa

(
R(χ)

)) ∈ Y.

Obviously, H(0) = 0, DH(0) = DFa(φ0) = T (a), and H(Y1) ⊂ Y0. Using the last state-
ment of the preceding subsection we infer that the linear stable, center, and unstable spaces
of H at its fixed point 0 ∈ Y1 are Cs ∩ Y , Cc, and Cu, respectively. Set λ = e−a β . Then
(3.4.1) gives

max
{|ζ |: ζ ∈ σ

(
DH(0)

)
, |ζ |< 1

}
< λ< 1.

The Stable Manifold Theorem (see Theorem I.2 in [133]) yields the following result.

PROPOSITION 3.5.1. There exist α ∈ (0, λ), convex open neighbourhoods Cs,2 of 0 in
Cs ∩Y and Ccu,2 of 0 in Cc⊕Cu with N = Cs,2+Ccu,2 ⊂ Y2, a continuously differentiable
map w :Cs,2 → Ccu,2 with w(0)= 0 and Dw(0)= 0, and an equivalent norm ‖ · ‖H on Y

such that the following holds.
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(i) The graph W = {χ+w(χ): χ ∈ Cs,2} is equal to the set of all initial points ψ =ψ0

of trajectories (ψj )
∞
0 of H which satisfy λ−jψj ∈N for all j ∈N0 and λ−jψj → 0

as j →∞.
(ii) H(W)⊂W .

(iii) ‖H(φ)−H(ψ)‖H � α‖φ −ψ‖H for all ψ ∈W , φ ∈W .
(iv) For every trajectory (ψj )

∞
0 of H with λ−jψj ∈N for all j ∈N0,

ψ0 ∈W.

Here, trajectories are defined by the equations ψj+1 =H(ψj ) for all integers j � 0.
The local stable manifold of Fa at φ0 is the continuously differentiable submanifold

Ws =R(W)

of Xf . Obviously, Ws ⊂ V , φ0 ∈Ws , and Tφ0Ws = Cs ∩ Y = Cs ∩ Tφ0Xf .

COROLLARY 3.5.2.
(i) Fa(Ws)⊂Ws , and each neighbourhood of φ0 in Ws contains a neighbourhood Ws,1

of φ0 in Ws with Fa(Ws,1)⊂Ws,1.
(ii) There exists cs � 0 so that for every trajectory (ψj )

∞
0 of Fa in Ws and for all

integers j � 0,

‖ψj − φ0‖C1 � csα
j‖ψ0 − φ0‖C1 .

PROOF. 1. The first inclusion in assertion (i) follows from

K
(
Fa(Ws)

)=K
(
Fa

(
R(W)

))=H(W)⊂W =K
(
R(W)

)

by application of R. Proof of the second part of (i): For ε > 0, set

YH,ε =
{
ψ ∈ Y : ‖ψ‖H < ε

}
.

Any given neighbourhood of φ0 in V ⊂ Xf contains Vε = R(YH,ε) for some ε > 0, and
R(W ∩YH,ε)=R(W)∩R(YH,ε)=Ws ∩Vε . Part (iii) of Proposition 3.5.1 yields Fa(Ws ∩
Vε)=R(K(Fa(R(W ∩ YH,ε))))=R(H(W ∩ YH,ε))⊂R(W ∩ YH,ε)=Ws ∩ Vε .

2. Proof of assertion (ii). There are positive constants c1 � c2 with

c1‖χ‖C1 � ‖χ‖H � c2‖χ‖C1 for all χ ∈ Y.

Let a trajectory (ψj )
∞
0 of Fa in Ws be given. The points χj =K(ψj ) ∈W form a trajectory

of H since

χj+1 =K(ψj+1)=K
(
Fa(ψj )

)=K
(
Fa

(
R(χj )

))=H(χj )
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for each integer j � 0. Hence

‖ψj − φ0‖C1 = ∥∥R(χj )−R(0)
∥∥
C1

� LR‖χj‖C1

� LRc
−1
1 ‖χj‖H

� LRc
−1
1 αj‖χ0‖H

� LR

c2

c1
αj‖χ0‖C1

= LR

c2

c1
αj‖P ‖C1‖ψ0 − φ0‖C1 . �

We want to show that the semiflow F maps a piece Ws of Ws close to φ0 into Ws , in the
sense that F([0,∞)×Ws)⊂Ws . The proof requires a quantitative version of continuous
dependence on initial conditions. Notice that the proof of the latter employs the Lipschitz
property (L) of the functional f .

PROPOSITION 3.5.3. There exist an open neighbourhood Xf,a of φ0 in Xf and a constant
ca � 0 so that [0, a] ×Xf,a ⊂� and

∥∥F(t,φ)− φ0
∥∥
C1 � ca‖φ − φ0‖C1 for all (t, φ) ∈ [0, a] ×Xf,a.

PROOF. 1. Using continuity of the semiflow and compactness of the interval [0, a] we find
an open neighbourhood Xf,a of the stationary point φ0 in Xf so that [0, a]×Xf,a ⊂� and
F([0, a] ×Xf,a) is contained in a neighbourhood of φ0 in the domain U of f on which
the Lipschitz estimate (L) holds.

2. Let ξ = φ0(0), and let φ ∈Xf,a be given. Set x = xφ . For 0 � t � a, we have

∣∣x(t)− ξ
∣∣ =

∣∣∣∣x(0)− ξ +
∫ t

0
x′(s)ds

∣∣∣∣=
∣∣∣∣x(0)− ξ +

∫ t

0
f (xs)ds

∣∣∣∣
� ‖x0 − φ0‖C +L

∫ t

0
‖xs − φ0‖C ds,

as f (φ0)= 0. For any t ∈ [0, a] there exists t0 ∈ [t − h, t] with ‖xt − φ0‖C = |x(t0)− ξ |.
In case t0 < 0 we obtain

‖xt − φ0‖C � ‖x0 − φ0‖C
while in case t0 � 0,

‖xt − φ0‖C � ‖x0 − φ0‖C +L

∫ t0

0
‖xs − φ0‖C ds

� ‖x0 − φ0‖C +L

∫ t

0
‖xs − φ0‖C ds.
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In both cases,

‖xt − φ0‖C � ‖x0 − φ0‖C +L

∫ t

0
‖xs − φ0‖C ds.

Gronwall’s lemma yields

∥∥F(t,φ)− φ0
∥∥
C

� ‖φ − φ0‖C eLt on [0, a] ×Xf,a.

Consequently, for all (t, φ) ∈ [0, a] ×Xf,a ,

∣∣(xφ)′(t)∣∣= ∣∣f (
x
φ
t

)− f (φ0)
∣∣ � L

∥∥xφt − φ0
∥∥
C

� L eLt‖φ − φ0‖C.
It follows that

∥∥(xφt )′ − (φ0)
′∥∥

C
� L eLt‖φ − φ0‖C1,

and finally

∥∥F(t,φ)− φ0
∥∥
C1 � (L+ 1)eLa‖φ − φ0‖C1

on [0, a] ×Xf,a . �

Now we can prove the desired invariance property of Ws with respect to the semiflow
F , and an exponential estimate. Set

γ =− logα

a
;

then 0 < β < γ .

PROPOSITION 3.5.4. There exists an open neighbourhood Ws of φ0 in Ws so that
[0,∞)×Ws ⊂�, F([0,∞)×Ws)⊂Ws , and there is a constant cw � 0 so that

∥∥F(t,ψ)− φ0
∥∥
C1 � cw e−γ t‖ψ − φ0‖C1 for all ψ ∈Ws, t � 0. (3.5.1)

PROOF. 1. Set VN = R(N). Choose cs according to Corollary 3.5.2(ii) and Xf,a and ca
according to Proposition 3.5.3. It follows that there is an open neighbourhood Ws of φ0 in
Ws ∩Xf,a ⊂ VN ∩Xf,a so that

Fa

(
Ws

)⊂Ws, (3.5.2)

F
([0, a] ×Ws

)⊂ VN, (3.5.3)

and {
χ ∈ Y : ‖χ‖C1 � ‖P ‖C1 ca cs sup

η∈Ws

‖η− φ0‖C1

}
⊂N. (3.5.4)
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Using (3.5.2) and (3.5.3) and properties of the semiflow we get [0,∞) ×Ws ⊂ � and
F([0,∞)×Ws)⊂ VN .

2. Proof of F([0,∞)×Ws)⊂Ws . Let t � 0 and ψ ∈Ws be given. The assertion ρ =
F(t,ψ) ∈Ws is equivalent to

K(ρ) ∈K(Ws)=W. (3.5.5)

By the remarks in part 1 the point ρ defines a trajectory (ρj )
∞
0 of Fa in VN , with ρ0 = ρ,

and the point ψ ∈Ws defines a trajectory (ψj )
∞
0 of Fa in Ws ⊂ VN , with ψ0 = ψ . The

points χj =K(ρj ) form a trajectory of H in N since

χj+1 =K(ρj+1)=K
(
Fa(ρj )

)=K
(
Fa

(
R(χj )

))=H(χj )

for all integers j � 0. Proposition 3.5.1(iv) shows that (3.5.5) follows from

λ−jχj ∈N for all integers j � 0. (3.5.6)

Proof of (3.5.6). Let j ∈N0, k ∈N0, ka � t < (k + 1)a. Then

‖χj‖C1 = ∥∥K(ρj )
∥∥
C1

= ∥∥P(ρj − φ0)
∥∥
C1

� ‖P ‖C1‖ρj − φ0‖C1

= ‖P ‖C1

∥∥F(ja,ρ)− φ0
∥∥
C1

= ‖P ‖C1

∥∥F (
t − ka,F

(
(j + k)a,ψ

))− φ0
∥∥
C1

� ‖P ‖C1ca‖ψj+k − φ0‖C1

� ‖P ‖C1cacsα
j+k‖ψ − φ0‖C1 ,

hence

∥∥λ−jχj

∥∥
C1 � ‖P ‖C1cacs · 1 · sup

η∈Ws

‖η− φ0‖C1,

which yields

λ−jχj ∈N,

according to (3.5.4).
3. Proof of (3.5.1). Let ψ ∈Ws , t � 0, j ∈N0, ja � t < (j + 1)a. Then

∥∥F(t,ψ)− φ0
∥∥
C1 =

∥∥F (
t − ja,F (ja,ψ)

)− φ0
∥∥
C1

� ca
∥∥F(ja,ψ)− φ0

∥∥
C1
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� cacsα
j‖ψ − φ0‖C1

= cacse
j logα‖ψ − φ0‖C1

= cacse
(t logα)/ae(j−t/a) logα‖ψ − φ0‖C1

� cacse
(t logα)/aα−1‖ψ − φ0‖C1 . �

The C1-submanifold Ws of Xf is the local stable manifold of F at φ0. It is locally
positively invariant under F , with tangent space

Tφ0W
s = Cs ∩ Tφ0Xf ,

and it has the following uniqueness property: There exists a constant c > 0 so that all initial
data ψ ∈Xf with [0,∞)× {ψ} ⊂� and

eβt
∥∥F(t,ψ)− φ0

∥∥
C1 < c for all t � 0

belong to Ws . This property is easily established by means of estimates as in the preceding
proofs.

We said already that analogously to the approach to local stable manifolds just presented
one obtains continuously differentiable local unstable manifolds for the semiflow from
local unstable manifolds of the maps Fa , a > 0.

Local unstable manifolds for certain classes of differential equations with state-
dependent delay were also obtained in earlier work, by Krishnan [126,127] and more
generally in [129]. The proofs in [126,127] and [129] proceed without knowledge of a
semiflow and use the heuristic approach with the auxiliary linear equation mentioned in
Section 3.4. It is remarkable that in [129] higher order differentiability of local unstable
manifolds is achieved.

Related to work on local invariant manifolds is a result of Arino and Sanchez [10] about
saddle point behaviour of solutions close to a stationary point which is hyperbolic, i.e.,
there is no spectrum of the generator Ge on the imaginary axis. Also in [10] no semiflow
is available, and the auxiliary linear equation is used.

3.6. The principle of linearized stability

For f :U →R
n, U ⊂ C1 open, with property (S) and the associated semiflow F of Theo-

rem 3.2.1 the results of Section 3.4 and Proposition 3.5.4 yield the following Principle of
Linearized Stability.

THEOREM 3.6.1. If all eigenvalues of Ge have negative real part then φ0 is exponentially
asymptotically stable for the semiflow F .
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For applications, recall that the eigenvalues of Ge and their multiplicities are given by the
familiar transcendental characteristic equation which is obtained from the Ansatz v(t) =
eλt c for a solution to the equation

v′(t)=Def (φ0)vt .

Earlier Principles of Linearized Stability, for certain classes of differential equations
with state-dependent delay, are due to Cooke and Huang [48] and to Hartung and Turi [105,
108]. The proofs employ the heuristic approach described in Section 3.4. Related is work
by Hartung [101] on exponential stability of periodic solutions to nonautonomous, periodic
differential equations with state-dependent delay, and a result by Győri and Hartung [92]
who derive exponential stability of the zero solution of the nonautonomous equation

x′(t)= a(t)x
(
t − r

(
t, x(t)

))

from exponential stability of the zero solution to the linear nonautonomous RFDE

y′(t)= a(t)y
(
t − r(t,0)

)
.

4. Center manifolds

4.1. Preliminaries

Assume f :U → R
n, U ⊂ C1 open, with property (S) of Section 3, and define Xf as in

Section 3. By Theorem 3.2.1, in case Xf �= ∅ the solutions of the equation

x′(t)= f (xt ) (1.0.1)

with initial function x0 = φ ∈Xf define a semiflow F :�→Xf . Assume that 0 ∈ U and
0 is a stationary point of F . Define L=Df (0), Le =Def (0) and

r :U � φ )→ f (φ)−Lφ ∈R
n.

Clearly, r also satisfies (S), and r(0)= 0, Dr(0)= 0. Then (1.0.1) is equivalent to

x′(t)= Lxt + r(xt ). (4.1.1)

The solutions of the IVP

y′(t)= Leyt , y0 = φ ∈ C

define the strongly continuous semigroup (Te(t))t�0 on C with generator Ge : dom(Ge)→
C, dom(Ge)= {φ ∈ C1: φ′(0)= Le(φ)}, Geφ = φ′. The realified generalized eigenspaces
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of Ge given by the eigenvalues with negative, zero and positive real part are the stable Cs ,
center Cc and unstable Cu spaces, respectively. We have the decomposition

C = Cs ⊕Cc ⊕Cu,

Cs is infinite dimensional, Cc and Cu are finite dimensional, Cc ⊂ dom(Ge), Cu ⊂
dom(Ge). The set C1

s = Cs ∩ C1 is a closed subset of C1. Hence we get the decompo-
sition

C1 = C1
s ⊕Cc ⊕Cu (4.1.2)

of C1.
The derivatives D2F(t,0), t � 0, form the strongly continuous semigroup T (t), t � 0,

on T0Xf = dom(Ge) with generator G. The stable, center and unstable subspaces of G are
Cs ∩ dom(Ge)= C1

s ∩ dom(Ge), Cc and Cu, respectively, and

T0Xf = dom(Ge)=
(
C1
s ∩ dom(Ge)

)⊕Cc ⊕Cu.

In the sequel we assume

dimCc � 1.

The main result of this section guarantees the existence of a Lipschitz smooth (local) center
manifold of F at the stationary point 0.

THEOREM 4.1.1. There exist open neighbourhoods Cc,0 of 0 in Cc and C1
su,0 in C1

s ⊕
Cu with N = Cc,0 + C1

su,0 ⊂ U , a Lipschitz continuous map wc :Cc,0 → C1
su,0 such that

wc(0)= 0 and for the graph

Wc =
{
φ +wc(φ): φ ∈ Cc,0

}

of wc the following holds.
(i) Wc ⊂Xf , and Wc is a dimCc-dimensional Lipschitz smooth submanifold of Xf .

(ii) If x : R→R
n is a continuously differentiable solution of (1.0.1) on R with xt ∈N

for all t ∈R, then xt ∈Wc for all t ∈R.
(iii) Wc is locally positively invariant with respect to the semiflow F , i.e., if φ ∈ Wc

and α > 0 such that F(t,φ) is defined for all t ∈ [0, α), and F(t,φ) ∈ N for all
t ∈ [0, α), then F(t,φ) ∈Wc for all t ∈ [0, α).

The proof will be given in Section 4.3. We follow the approach of [54] by applying the
Lyapunov–Perron method. The variation-of-constants formula is from [54] which requires
dual spaces and adjoint operators. Other forms of the variation-of-constants formula, ob-
tained, e.g., via integrated semigroups or extrapolation theory, could also be used. The
existence of a global center manifold for a modified version of Eq. (4.1.1) is formulated
as a fixed point problem with a parameter. However, as the right-hand side of (4.1.1) has
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smoothness properties only in the space C1, the space, where we look for fixed points,
should contain smoother functions than the corresponding space in [54]. This is why the
proof is not a straightforward application of the technique of [54]. The C1-smoothness of
Wc also holds under the hypotheses of Theorem 4.1.1. A proof can be found in [131].

4.2. The linear inhomogeneous equation

Let | · | be a norm in R
n. The spaces C, C1 and their norms are defined as in Section 1. Let

L∞(−h,0;Rn) denote the Banach space of measurable and essentially bounded functions
from (−h,0) into R

n equipped with the essential least upper bound norm ‖ · ‖∞.
We denote dual spaces and adjoint operators by an asterisk ∗ in the sequel. The elements

φ, of C∗ for which the curve

[0,∞) � t )→ T ∗e (t)φ, ∈ C∗

is continuous form a closed subspace C, (of C∗) which is positively invariant under T ∗e (t),
t � 0. The operators

T ,e (t) :C, � φ, )→ T ∗e (t)φ, ∈ C,, t � 0,

constitute a strongly continuous semigroup on C,. Similarly, we can introduce the dual
space C,∗ and the semigroup of adjoint operators T ,∗e (t), t � 0, which is strongly
continuous on C,,. There is an isometric isomorphism between R

n × L∞(−h,0;Rn)

equipped with the norm ‖(α,φ)‖ =max{|α|,‖φ‖∞} and C,∗. We will identify C,∗ with
R

n×L∞(−h,0;Rn) and omit the isomorphism. The original state space is sun-reflexive in
the sense that, for the norm-preserving linear map j :C→ C,∗ given by j (φ)= (φ(0),φ),
we have j (C)= C,,. We also omit the embedding operator j and identify C and C,,.
All of these results as well as the decomposition of C,∗ and the variation-of-constants
formula can be found in [54].

Let Y,∗ denote the subspace R
n×{0} of C,∗. For the kth unit vector ek in R

n set r,∗k =
(ek,0) ∈ Y,∗. Let l : Rn→ Y,∗ be the linear map given by l(ek)= r,∗k , k ∈ {1,2, . . . , n}.
Then l has an inverse l−1, and ‖l‖ = ‖l−1‖ = 1.

Let G,∗e denote the generator of T ,∗e . For the spectra σ(Ge) and σ(G,∗e ) we have
σ(Ge)= σ(G,∗e ). Recall that we assumed

σ(Ge)∩ iR �= ∅.

Then C,∗ can be decomposed as

C,∗ = C,∗s ⊕Cc ⊕Cu, (4.2.1)

where C,∗s , Cc, Cu are closed subspaces of C,∗, Cc and Cu are contained in C1, 1 �
dimCc <∞, dimCu <∞. The subspaces C,∗s , Cc and Cu are invariant under T ,∗e (t),
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t � 0, and Te(t) can be extended to a one-parameter group on both Cc and Cu. There exist
real numbers K � 1, a < 0, b > 0 and ε > 0 with ε < min{−a, b} such that

∥∥Te(t)φ∥∥ � Kebt‖φ‖, t � 0, φ ∈ Cu,∥∥Te(t)φ∥∥ � Keε|t |‖φ‖, t ∈R, φ ∈ Cc,∥∥T ,∗e (t)φ
∥∥ � Keat‖φ‖, t � 0, φ ∈ C,∗s .

(4.2.2)

Using the identification of C and C,,, we obtain C1
s = C1 ∩ C,∗s . The decompositions

(4.1.2) and (4.2.1) define the projection operators Ps , Pc , Pu and P,∗s ,P,∗c ,P,∗u with
ranges C1

s ,Cc,Cu and C,∗s ,Cc,Cu, respectively.
We need a variation-of-constants formula for solutions of

x′(t)= Lext + q(t) (4.2.3)

with a continuous function q : R→R
n.

If c, d are reals with c � d , and w : [c, d] → C,∗ is continuous, then the weak-star
integral

∫ d

c

T ,∗e (d − τ)w(τ)dτ ∈ C,∗

is defined by

(∫ d

c

T ,∗e (d − τ)w(τ)dτ

)(
φ,

)=
∫ d

c

T ,∗e (d − τ)w(τ)
(
φ,

)
dτ

for all φ, ∈ C,.
If I ⊂ R is an interval, q : I →R

n is continuous and x : I + [−h,0] →R
n is a solution

of (4.2.3) on I , then the curve u : I � t )→ xt ∈ C satisfies the integral equation

u(t)= Te(t − s)u(s)+
∫ t

s

T ,∗e (t − τ)Q(τ)dτ, t, s ∈ I, s � t, (4.2.4)

with Q(t)= l(q(t)), t ∈ I . Moreover, if Q : I → Y,∗ is continuous, and u : I → C satisfies
(4.2.4), then there is a continuous function x : I + [−h,0] → R

n such that xt = u(t) for
all t ∈ I , and x satisfies (4.2.3) with q(t) = l−1(Q(t)), t ∈ I . So, there is a one-to-one
correspondence between the solutions of (4.2.3) and (4.2.4).

For a Banach space B with norm ‖ · ‖ and a real η � 0, we define the Banach space

Cη(R,B)=
{
b ∈ C(R,B): sup

t∈R

e−η|t |
∥∥b(t)∥∥<∞

}

with norm

‖b‖C0
η(R,B) = sup

t∈R

e−η|t |
∥∥b(t)∥∥.
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For η � 0, we introduce the notation

Yη = Cη

(
R, Y,∗

)
, C0

η = Cη(R,C), C1
η = Cη

(
R,C1).

We need the following smoothing property of Eq. (4.2.4).

PROPOSITION 4.2.1. Let η � 0, Q ∈ Yη , u ∈ C0
η , and assume that u satisfies

u(t)= Te(t − s)u(s)+
∫ t

s

T ,∗e (t − τ)Q(τ)dτ, −∞< s � t <∞.

Then u ∈ C1
η and

‖u‖C1
η
�

(
1+ eηh‖Le‖

)‖u‖C0
η
+ eηh‖Q‖Yη .

PROOF. Define q : R→R
n by q(t)= l−1(Q(t)), t ∈R. Then q ∈ Cη(R,Rn), and

‖q‖Cη(R,Rn) = ‖Q‖Yη .

The function x : R → R
n, given by x(t) = u(t)(0), satisfies xt = u(t), t ∈ R, and

Eq. (4.2.3) holds for all t ∈R. Then x is C1-smooth, xt ∈ C1 for all t ∈R, and the mapping
R � t )→ xt ∈ C1 is continuous. Moreover, for all t ∈R,

∣∣x′(t)∣∣ � ‖Le‖‖xt‖C +
∣∣q(t)∣∣

= ‖Le‖
∥∥u(t)∥∥

C
+ ∥∥Q(t)

∥∥
Y,∗

� eη|t |
(‖Le‖‖u‖C0

η
+ ‖Q‖Yη

)
.

Hence

sup
t∈R

e−η|t |
∥∥x′t∥∥C = sup

t∈R

e−η|t | sup
−h�s�0

∣∣x′(t + s)
∣∣

�
(‖Le‖‖u‖C0

η
+ ‖Q‖Yη

)
sup
t∈R

e−η|t | sup
−h�s�0

eη|t+s|

� eηh
(‖Le‖‖u‖C0

η
+ ‖Q‖Yη

)
.

Therefore, u ∈ C1
η , and

‖u‖C1
η
= sup

t∈R

e−η|t |‖xt‖C1 = sup
t∈R

e−η|t |
(‖xt‖C + ∥∥x′t∥∥C)

� ‖u‖C0
η
+ eηh‖Le‖‖u‖C0

η
+ eηh‖Q‖Yη . �
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For a given Q : R→ Y,∗ we (formally) define

(KQ)(t) =
∫ t

0
T ,∗e (t − τ)P,∗c Q(τ)dτ +

∫ t

∞
T ,∗e (t − τ)P,∗u Q(τ)dτ

+
∫ t

−∞
T ,∗e (t − τ)P,∗s Q(τ)dτ.

PROPOSITION 4.2.2. Assume η ∈ (ε,min{−a, b}). Then the mapping

Kη :Yη �Q )→KQ ∈ C1
η

is linear bounded with norm

‖Kη‖� K
(
1+ eηh‖Le‖

)( 1

η− ε
+ 1

−a − η
+ 1

b− η

)
+ eηh.

If Q ∈ Yη then u=KQ is the unique solution of

u(t)= Te(t − s)u(s)+
∫ t

s

T ,∗e (t − τ)Q(τ)dτ, −∞< s � t <∞, (4.2.5)

in C1
η with P,∗c u(0)= 0.

PROOF. Lemma IX.3.2 of [54] shows that K as a mapping from Yη into C0
η is linear

bounded such that its norm is bounded by

K

(
1

η− ε
+ 1

−a − η
+ 1

b− η

)
,

moreover u=KQ with Q ∈ Yη is the unique solution of (4.2.5) with P,∗c u(0)= 0. Hence
Proposition 4.2.1 yields the boundedness of Kη with the stated bound for the norm. �

4.3. Construction of a center manifold

Now we prove Theorem 4.1.1.
As dimCc <∞, there is a norm | · |c on Cc which is C∞-smooth on Cc \ {0}. Then

|φ|1 =max
{|Pcφ|c,

∥∥(idC1 −Pc)φ
∥∥
C1

}
, φ ∈ C1,

defines the new norm | · |1 on C1 which is equivalent to ‖ · ‖C1 .
Let ρ : R→ R be a C∞-smooth function so that ρ(t)= 1 for t � 1, ρ(t)= 0 for t � 2,

and ρ(t) ∈ (0,1) for t ∈ (1,2).
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Define

r̂(φ)=
{
r(φ), if φ ∈U ;
0, if φ /∈U .

For any δ > 0, let

rδ(φ)= r̂(φ)ρ

( |Pcφ|c
δ

)
ρ

( |(idC1 −Pc)φ|1
δ

)
, φ ∈ C1.

For γ > 0 set Bγ (C
1)= {φ ∈ C1: |φ|1 < γ }.

Choose δ0 > 0 so that

B2δ0

(
C1)⊂U,

and r|B2δ0 (C
1), Dr|B2δ0 (C

1) are bounded. Then, for any δ ∈ (0, δ0)

rδ|{φ∈C1: |(id
C1 −Pc)φ|1<δ}(φ)= r̂(φ)ρ

( |Pcφ|c
δ

)
, φ ∈ C1,

and rδ|{φ∈C1: |(id
C1 −Pc)φ|1<δ} is a bounded and C1-smooth function with bounded deriva-

tive.
There exist δ1 ∈ (0, δ0) and a nondecreasing function μ : [0, δ1] → [0,1] such that μ is

continuous at 0, μ(0)= 0, and for all δ ∈ (0, δ1] and for all φ,ψ ∈ C1

∣∣rδ(φ)∣∣ � δμ(δ),∣∣rδ(φ)− rδ(ψ)
∣∣ � μ(δ)‖φ −ψ‖C1 .

(4.3.1)

For a proof of completely analogous estimates see, e.g., Proposition II.2 in [133].
For δ ∈ (0, δ1] we consider the modified equations

x′(t)= Lxt + rδ(xt ), t ∈R, (4.3.2)

and

u(t)= Te(t − s)+
∫ t

s

T ,∗e (t − τ)l
(
rδ
(
u(τ)

))
dτ, −∞< s � t <∞.

(4.3.3)

These equations are equivalent in the following sense: If x : R→ R
n is C1-smooth and is

a solution of Eq. (4.3.2), then u : R � t )→ xt ∈ C1 is a solution of Eq. (4.3.3), and con-
versely, a continuous u : R→ C1 satisfying (4.3.3) defines a C1-smooth solution of (4.3.2)
by x(t)= u(t)(0), t ∈R.
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Now we fix the reals η ∈ (ε,min{−a, b}) and δ ∈ (0, δ1) such that

‖Kη‖μ(δ) < 1

2
. (4.3.4)

Let the substitution operator

R :
(
C1)R → (

Y,∗
)R

of the map C1 � φ )→ l(rδ(φ)) ∈ Y,∗ be given by

R(u)(t)= l
(
rδ
(
u(t)

))
.

Inequalities (4.3.1) and ‖l‖ = 1 yield that

R
(
C1
η

)⊂ Yη,

and for the induced map

Rδη :C1
η → Yη,

the inequalities

∥∥Rδη(u)
∥∥
Yη

� δμ(δ), u ∈ C1
η,

and

∥∥Rδη(u)−Rδη(v)
∥∥
Yη

� μ(δ)‖u− v‖C1
η
, u, v ∈ C1

η, (4.3.5)

hold.
Let the mapping S :Cc → C1

η be given by (Sφ)(t) = Te(t)φ, φ ∈ Cc, t ∈ R. For all

φ ∈ Cc we have ‖Te(t)φ‖C1 = ‖Te(t)φ‖C +‖ d
dt (Te(t)φ)‖C and d

dt (Te(t)φ)= Te(t)Geφ =
Te(t)φ

′. Therefore, by applying the second inequality in (4.2.2) and η > ε, we find

‖Sφ‖C1
η
= sup

t∈R

e−η|t |
(∥∥Te(t)φ∥∥C +

∥∥Te(t)φ′∥∥C)

� K
(‖φ‖C + ∥∥φ′∥∥

C

)
� K‖φ‖C1 . (4.3.6)

Define the mapping

G :C1
η ×Cc→ C1

η

by

G(u,φ)= Sφ +Kη ◦Rδη(u), u ∈ C1
η, φ ∈ Cc.
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For all u,v ∈ C1
η and φ ∈ Cc , (4.3.4) and (4.3.5) yield

∥∥G(u,φ)− G(v,φ)
∥∥
C1
η

� ‖Kη‖
∥∥Rδη(u)−Rδη(v)

∥∥
Yη

� ‖Kη‖μ(δ)‖u− v‖C1
η

� 1

2
‖u− v‖C1

η
.

If γ > 0 and φ ∈ Cc with ‖φ‖C1 � γ /(2K), and u ∈ Bγ (C1
η), then, by using (4.3.4),

(4.3.5) and (4.3.6),

∥∥G(u,φ)∥∥
C1
η

� K‖φ‖C1 + ‖Kη‖μ(δ)‖u‖C1
η

� γ

2
+ γ

2
= γ.

Therefore, G(·, φ) maps Bγ (C1
η) into itself provided γ � 2K‖φ‖C1 . In addition, G(·, φ) is

Lipschitz continuous with Lipschitz constant 1/2.
Consequently, there is a map

u∗ :Cc→ C1
η

such that, for each φ ∈ Cc, u= u∗(φ) is the unique solution in C1
η of the equation

u= G(u,φ).

The mapping u∗ is globally Lipschitz continuous since

∥∥u∗(φ)− u∗(ψ)
∥∥
C1
η
� K‖φ −ψ‖C1 + 1

2

∥∥u∗(φ)− u∗(ψ)
∥∥
C1
η
,

yielding

∥∥u∗(φ)− u∗(ψ)
∥∥
C1
η
� 2K‖φ −ψ‖C1

for all φ,ψ ∈ Cc.
The set

W = {
u∗(φ)(0): φ ∈ Cc

}

is called the global center manifold of Eq. (4.3.2) at the stationary point 0.
Setting

w :Cc � φ )→ (idC1 −Pc)u
∗(φ)(0) ∈ C1

s ⊕Cu,
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we get the graph representation

W = {
φ +w(φ): φ ∈ Cc

}

for W .
For all φ ∈ Cc we have

∣∣w(φ)
∣∣
1 =

∥∥w(φ)
∥∥
C1 =

∥∥(idC1 −Pc)u
∗(φ)(0)

∥∥
C1

= ∥∥Kη

(
Rδη

(
u∗(φ)

))
(0)

∥∥
C1 �

∥∥Kη

(
Rδη

(
u∗(φ)

))∥∥
C1
η

� ‖Kη‖
∥∥Rδη

(
u∗(φ)

)∥∥
Yη

� ‖Kη‖δμ(δ) < δ.

An important consequence is that

W ⊂ {
φ ∈ C1:

∣∣(idC1 −Pc)φ
∣∣
1 < δ

}
,

that is, W is contained in the δ-neighbourhood of Cc, where rδ is C1-smooth with bounded
derivative. This fact is essential in the proof of the C1-smoothness of the center manifold.

Setting

Cc,0 =
{
φ ∈ Cc: |φ|1 < δ

}
,

C1
su,0 =

{
φ ∈ C1

s ⊕Cu: |φ|1 < δ
}
,

N = Cc,0 +C1
su,0 =

{
φ ∈ C1: |φ|1 < δ

}
,

wc =w|Cc,0 ,

Wc =
{
φ +wc(φ): φ ∈ Cc,0

}
,

we obtain that wc(Cc,0)⊂ C1
su,0 and wc is Lipschitz continuous. As G(0,0)= 0, it follows

that u∗(0)= 0, and consequently wc(0)= 0.
Let v ∈ C1

η be a solution of Eq. (4.3.3). Define z : R→ C1 by

z(t)= v(t)− Te(t)Pcv(0), t ∈R.

Obviously, v ∈ C1
η implies z ∈ C1

η . Moreover,

z(t)= Te(t − s)z(s)+
∫ t

s

T ,∗e (t − τ)l
(
rδ
(
v(τ)

))
dτ, −∞< s � t <∞.

As Pcz(0)= 0 and v ∈ C1
η , Proposition 4.2.2 yields

z=Kη

(
Rδη(v)

)
.
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Therefore

v = S
(
Pcv(0)

)+Kη

(
Rδη(v)

)
,

and

v(0)= u∗
(
Pcv(0)

) ∈Wc.

For any t ∈R and v̂ : R � s )→ v(t + s) ∈ C1, it is clear that v̂ ∈ C1
η , and v̂ is also a solution

of Eq. (4.3.3). Therefore, v(t) = v̂(0) ∈W follows for all t ∈ R. Consequently, for each
v ∈ C1

η satisfying Eq. (4.3.3), v(t) ∈W holds for all t ∈R.
If x : R→R

n is a solution of Eq. (1.0.1) with xt ∈N for all t ∈R, then (4.3.2) also holds,
and u(t) = xt , t ∈ R, satisfies Eq. (4.3.3) since r|N = rδ|N , and u ∈ C1

η . Thus, xt ∈ W ,
t ∈R. This proves (ii) of Theorem 4.1.1.

In order to show (iii) in Theorem 4.1.1, let φ ∈ Wc. Then u∗(Pcφ) ∈ C1
η , and

u∗(Pcφ)(t) ∈W for all t ∈R. Let β ∈ (0,∞] be maximal so that

u∗(Pcφ)(t) ∈N for all t ∈ [0, β),

that is,

u∗(Pcφ)(t) ∈Wc for all t ∈ [0, β).

Then there exists a C1-smooth function y : [−h,β)→ R
n so that yt = u∗(Pcφ)(t), t ∈

[0, β), and

{
y′(t)= Lyt + r(yt ), 0 < t < β,
y0 = φ.

If xφ : [−h,α) is also a solution of the above IVP with x
φ
t ∈N , t ∈ [0, α), then the result on

unique continuation of solutions in Section 3 yields α � β and xφ(t)= y(t), t ∈ [−h,α).
For any φ ∈Wc, the function x :R→R

n defined by xt = u∗(Pcφ)(t), t ∈R, is continu-
ously differentiable and satisfies Eq. (4.3.2). Consequently, x′(t)= Lxt + rδ(xt ), t ∈R. In
particular, φ′(0)= Lφ+ rδ(φ). Using φ ∈Wc ⊂N and rδ|N = r|N , φ ∈Xf follows. Thus,
Wc ⊂Xf .

Recall from Section 3.5 that there is an n-dimensional subspace E ⊂ C1 which is a com-
plement of Y = T0Xf in C1. If e1, . . . , en is a basis for E, then using the decomposition
C1 = C1

s ⊕Cc ⊕Cu of C1, for each i ∈ {1, . . . , n} we have

ei = si + ci + ui

for some si ∈ C1
s , ci ∈ Cc, ui ∈ Cu. As Cc ⊕ Cu ⊂ Y , we have si /∈ Y . Then the subspace

Ê spanned by the vectors

êi = ei − ci − ui, i ∈ {1, . . . , n},
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is also an n-dimensional complementary subspace of Y in C1, and in addition Ê ⊂ C1
s .

Therefore, without loss of generality, we may assume E ⊂ C1
s . Then

C1
s =E ⊕ (

C1
s ∩ Y

)
,

Y = (
C1
s ∩ Y

)⊕Cc ⊕Cu,

and

C1 =E ⊕ (
C1
s ∩ Y

)⊕Cc ⊕Cu =E ⊕ Y.

Let P :C1 → C1 denote the projection along E onto Y . There is an open neighbourhood
V of 0 in Xf so that P :V → Y is a manifold chart of Xf . Set Y0 = P(V ). The inverse
of P :V → Y0 is C1-smooth. If δ > 0 is sufficiently small, then Wc ⊂ V and PWc ⊂ Y0.
In order to complete the proof of (i) in Theorem 4.1.1, it is enough to show that PWc is a
dimCc-dimensional Lipschitz submanifold of Y . Indeed,

PWc =
{
P
(
φ +wc(φ)

)
: φ ∈ Cc,0

}= {
φ + Pwc(φ): φ ∈ Cc,0

}
.

As wc(φ) ∈ C1
s ⊕Cu, we have

Pwc(φ) ∈
(
C1
s ∩ Y

)⊕Cu.

Thus, PWc is the graph of the Lipschitz continuous map

{
φ ∈ Cc: |φ|1 < δ

} � χ )→ Pwc(χ) ∈
(
C1
s ∩ Y

)⊕Cu.

This completes the proof of Theorem 4.1.1.

4.4. Discussion

It is also true that the local center manifold Wc given in Theorem 4.1.1 is a C1-submanifold
of Xf . The proof will appear in [131]. It is based on the fact that for the global center
manifold W of the modified Eq. (4.3.1)

W ⊂ {
φ ∈ C1:

∣∣(idC1 −Pc)φ
∣∣
1 < δ

}
,

and rδ is C1-smooth on the subset {φ ∈ C1: |(idC1 −Pc)φ|1 < δ} of C1 with bounded
derivative. The techniques of [54] or [133] can be modified to our situation in order to
show that the map w :Cc→ C1

s ⊕Cu is C1-smooth.
Another way to obtain C1-smooth center manifolds is to consider, for some a > 0, the

time-a map

Fa :�a →Xf ,
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and construct a local center manifold of Fa at its fixed point 0. However, as a 2-dimensional
ordinary differential equation example shows in [130], the obtained center manifold of Fa

is not necessarily a locally invariant center manifold of the semiflow F . There is a standard
technique to overcome this difficulty (see, e.g., [130]). The idea is that the modification
of the map Fa should be done through the modification of the semiflow F . This requires
a modification and extension of F from a small neighbourhood of [0, a] × {0} in � to a
certain global semiflow. This is a nontrivial task. It is an open problem to work out the
complete proof by using this approach.

Local bifurcation results for functional differential equations with state-dependent delay
through the center manifold reduction would require Ck-smooth local center manifolds
also with k > 1. As far as we know such results are not available at the moment.

A first step towards the proof of a Ck-smooth center manifold could be a Ck-smooth
version of the results of Section 3. Then a Ck-smooth time-a map could be the basis to
construct a Ck-smooth center manifold as suggested above for k = 1.

Another possible way is the extension of the approach explained in this section. Notice
that it does not require the existence of a smooth semiflow. We remark that this idea worked
for a construction of Ck-smooth unstable manifolds under natural conditions on f which
are satisfied by equations with state-dependent delay [129].

5. Hopf bifurcation

Hopf bifurcation is the phenomenon that under certain conditions small periodic orbits
appear close to a stationary point when in the underlying differential equation a parameter
is varied and passes a critical value. In this section we state a Hopf bifurcation theorem for
differential equations with state-dependent delay which has recently been proved by M.
Eichmann [65]. The equation considered is a parametrized version of Eq. (1.0.1), namely

x′(t)= g(α, xt ). (5.0.1)

The map g :J × U → R
n in Eq. (5.0.1) is defined on the product of an open interval

J ⊂ R and an open subset U ⊂ C1 = C1([−h,0],Rn), with h > 0 and n ∈ N. Let C =
C([−h,0],Rn) and let C2 denote the Banach space of twice continuously differentiable
functions φ : [−h,0] → R

n, with the norm given by ‖φ‖C2 = ‖φ‖C + ‖φ′‖C + ‖φ′′‖C .
The set

U∗ =U ∩C2

is an open subset of C2. The following hypotheses on smoothness are assumed.
(H1) The mapping g :J ×U →R

n is continuously differentiable.
(H2) For each (α,φ) ∈ J × U the partial derivative D2g(α,φ) of g with respect to φ

extends to a continuous linear map

D2,eg(α,φ) :C→R
n.
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(H3) The mapping

J ×U ×C � (α,φ,χ) )→D2,eg(α,φ)χ ∈R
n

is continuous.
(H4) The restriction g∗ = g|J ×U∗ is twice continuously differentiable.
(H5) For each (α,φ) ∈ J × U∗ the second order partial derivative D2

2g
∗(α,φ) :C2 ×

C2 →R
n of g∗ with respect to φ has a continuous bilinear extension

D2
2,eg

∗(α,φ) :C1 ×C1 →R
n.

(H6) The mappings

J ×U∗ ×C1 ×C1 � (α,φ,χ1, χ2) )→D2
2,eg

∗(α,φ)(χ1, χ2) ∈R
n

and

J ×U∗ ×C1 � (α,φ,χ) )→D2
2,eg

∗(α,φ)(χ, ·) ∈ L
(
C2,Rn

)

are continuous.
The hypotheses (H1)–(H3) imply that each map g(α, ·) :U → R

n, α ∈ J , satisfies the
hypotheses (S1)–(S3) of Theorem 3.2.1. Notice that condition (H3) is weaker than conti-
nuity of the map

J ×U � (α,φ) )→D2,eg(α,φ) ∈ L
(
C,Rn

)
.

In (H4), differentiability refers to the norm given by ‖(α,φ)‖ = |α| + ‖φ|C2 on R× C2.
Notice that condition (H6) is weaker than continuity of the map

J ×U∗ � (α,φ) )→D2
2,eg

∗(α,φ) ∈ L2(C1,Rn
)
,

where L2(C1,Rn) denotes the Banach space of continuous bilinear maps C1 ×C1 →R
n,

with the appropriate norm.
Suppose φ∗ ∈U∗ ⊂ C2 satisfies

g∗
(
α,φ∗

)= 0 for all α ∈ J,

so that φ∗ is a stationary point for all α ∈ J .
For α ∈ J , set L(α) = D2g(α,φ

∗), and let A(α) denote the generator of the strongly
continuous semigroup on C given by the IVP

y′(t)=D2,eg(α,φ
∗)yt , y0 = χ ∈ C.

The spectral assumptions for the Hopf bifurcation theorem from [65] are the following.
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(L1) There is a continuously differentiable map λ : I →C, I ⊂ J an open interval, such
that each λ(α), α ∈ I , is a simple eigenvalue of A(α).

(L2) For some α0 ∈ I , Reλ(α0)= 0 and ω0 = Imλ(α0) > 0 and

d

dα
(Reλ)(α0) �= 0.

(L3) For every integer k ∈ Z \ {−1,1}, ikω0 is not an eigenvalue of A(α0).
The following local Hopf bifurcation theorem is obtained in [65]:

THEOREM 5.0.1. Suppose (H1)–(H6) and (L1)–(L3) hold. Then there are an interval
M ⊂ R with 0 ∈M and continuously differentiable mappings u∗ :M → C1, ω∗ :M → R

and α∗ :M→ I with

u∗(0)= φ∗, α∗(0)= α0, ω∗(0)= ω0

such that for each a ∈M there is a periodic solution x : R→R
n of the equation

x′(t)= g
(
α∗(a), xt

)

with x0 = u∗(a) and with period ω∗(a)
2π .

To our knowledge, Theorem 5.0.1 is the first Hopf bifurcation result for differential
equations with state-dependent delay. A related earlier result is due to H.L. Smith [189]
who proved bifurcation of periodic solutions from a stationary point for a system of integral
equations with state-dependent delay, by reduction to a Hopf bifurcation theorem of Hale
and de Oliveira [95] for equations with time-invariant but parameter-dependent delay.

6. Differentiability of solutions with respect to parameters

6.1. Preliminaries

This section deals with nonautonomous parametrized state-dependent delay systems of the
form

x′(t)= g
(
t, x(t), x

(
t − τ(t, xt , σ )

)
, θ

)
, t ∈ [0, T ], (6.1.1)

with initial condition

x(t)= φ(t), t ∈ [−h,0]. (6.1.2)

Here σ and θ are parameters in the delay function τ and in g belonging to normed linear
spaces � and �, respectively. In the sequel we consider also the initial function φ in the
IVP (6.1.1)–(6.1.2) as parameters, and denote the corresponding solution by x(·;φ,σ, θ),
and its segment function at t by x(·;φ,σ, θ)t .
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Suppose, e.g., a system of the form

y′(s)= g̃
(
s, y(s), y

(
s − τ̃ (s, yt )

))
, s ∈ [t0, t0 + T ]

is given. Then introducing t = s − t0 and x(t)= y(t + t0) we can transform the equation
into the form (6.1.1) with g(t,ψ,u, θ) = g̃(t + θ,ψ,u) with θ = t0, and τ(s,ψ,σ ) =
τ̃ (s+ σ,ψ) with σ = t0. In this case � =�=R. Of course, (6.1.1) contains more general
cases as well, e.g., σ and θ can be coefficient functions in the delay function τ and g,
respectively. In this case � and � will be infinite dimensional function spaces.

As we have seen in Section 3, in general the IVP (6.1.1)–(6.1.2) has a unique solution
only if the initial function φ is Lipschitz continuous, or equivalently, if φ belongs to the
Banach space W 1,∞ of absolutely continuous functions φ : [−h,0] →R

n with essentially
bounded derivatives, with the norm defined by

|φ|W 1,∞ =max
{|φ|C, ess sup

{∣∣φ′(s)∣∣: s ∈ [−h,0]}}.
We define the parameter space for the IVP (6.1.1)–(6.1.2) as


 =W 1,∞ ×� ×�,

and the norm on 
 by

|γ |
 =
∣∣(φ,σ, θ)∣∣



= |φ|W 1,∞ + |σ |� + |θ |�.

We assume throughout this section that �1 ⊂R
n, �2 ⊂R

n, �3 ⊂�, �4 ⊂ C and �5 ⊂
� are open subsets of the respective spaces, T > 0 is finite or T =∞ (in the latter case
[0, T ] means [0,∞)), and

(D1) (i) g : R×R
n ×R

n ×�⊃ [0, T ] ×�1 ×�2 ×�3 →R
n is continuous; and

(ii) g is locally Lipschitz continuous with respect to its second, third and fourth
variables in the following sense: For every α ∈ (0, T ], for every compact sub-
sets Mi ⊂�i (i = 1,2) of R

n, and for every closed and bounded subset M3 ⊂
�3 of � there exists L1 = L1(α,M1,M2,M3) such that |f (t, v,w, θ) −
f (t, v̄, w̄, θ̄ )|� L1(|v − v̄| + |w − w̄| + |θ − θ̄ |�), for t ∈ [0, α], v, v̄ ∈M1,
w, w̄ ∈M2, and θ, θ̄ ∈M3;

(D2) (i) τ : R×C×� ⊃ [0, T ]×�4×�5 →R is continuous, 0 � τ(t,ψ,σ ) � h for
t ∈ [0, T ], ψ ∈�4, and σ ∈�5; and

(ii) τ(t,ψ,σ ) is locally Lipschitz-continuous in ψ and σ in the following sense:
For every α ∈ (0, T ], for every compact subset M4 ⊂ �4 of C and for
every closed, bounded subset M5 ⊂ �5 of � there exists a constant L2 =
L2(α,M4,M5) such that |τ(t,ψ,σ )−τ(t, ψ̄, σ̄ )|� L2(|ψ−ψ̄ |C+|σ− σ̄ |�)
for t ∈ [0, α], ψ, ψ̄ ∈M4, and σ, σ̄ ∈M5.

We, of course, assume that a parameter γ̄ = (φ̄, σ̄ , θ̄ ) ∈ 
 satisfies the compatibility con-
dition
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φ̄(0) ∈�1, φ̄
(−τ

(
0, φ̄, σ̄

)) ∈�2, θ̄ ∈�3, φ̄ ∈�4, and σ̄ ∈�5.

(6.1.3)

It is known [57] that the IVP (6.1.1)–(6.1.2) has a unique solution for each parameter
(φ̄, σ̄ , θ̄ ) ∈ 
, moreover, the solution is Lipschitz continuous with respect to the parame-
ters [99]. We denote the open ball with radius δ centered at γ̄ in 
 by G
(γ̄ , δ), i.e.,
G
(γ̄ , δ)= {γ ∈ 
: |γ − γ̄ |
 < δ}. The next result is proved, e.g., in [99].

THEOREM 6.1.1. Suppose (D1)(i)–(ii) and (D2)(i)–(ii). For any γ̄ = (φ̄, σ̄ , θ̄ ) ∈ 
 satis-
fying (6.1.3) there exist α > 0, δ > 0 and L= L(α, γ̄ , δ) such that the IVP (6.1.1)–(6.1.2)
has a unique solution on [−h,α] for any γ ∈G
(γ̄ , δ), and

∣∣x(·;γ )t − x(·; γ̄ )t
∣∣
W 1,∞ � L|γ − γ̄ |
 for t ∈ [0, α], γ ∈G
(γ̄ , δ).

6.2. Pointwise differentiability with respect to parameters

In this subsection we study differentiability of the function γ )→ x(t;γ ) where t is fixed.
In addition to (D1)(i)–(ii) and (D2)(i)–(ii) we need

(D1) (iii) g : R×R
n×R

n×�⊃ [0, T ] ×�1×�2×�3 →R
n is continuously differ-

entiable with respect to its second, third and fourth variables;
(D2) (iii) τ : R× C × � ⊃ [0, T ] ×�4 ×�5 → [0,∞) is continuously differentiable

with respect to its second and third variables.
As it was shown in Section 3.2, solutions corresponding to a parameter value from the

parameter set

$= {
(φ,σ, θ) ∈ 
: φ′(0)= g

(
0, φ(0),φ

(−τ(0, φ,σ )
)
, θ

)
, φ ∈ C1}

are continuously differentiable on [−h,α]. The key point of the proof of the following
result is the same as that of Theorem 3.2.1, namely, the differentiability of the evaluation
map Ev :C1 × [−h,0]→R

n.

THEOREM 6.2.1. Suppose (D1)(i)–(iii) and (D2)(i)–(iii), (φ̄, σ̄ , θ̄ ) ∈ $, and let δ > 0
and α > 0 be such that the IVP (6.1.1)–(6.1.2) has a unique solution on [−h,α] for any
γ ∈G
(γ̄ , δ). Then for any t ∈ [0, α] the function

x(t; ·) :
 ⊃G
(γ̄ , δ)→R
n

is differentiable at γ̄ , and its derivative is given by

D2x(t; γ̄ )u= z(t; γ̄ , u), u ∈ 
,

where z(·; γ̄ , u) is the solution of the time-dependent delay system

z′(t; γ̄ , u) = D2g
(
t, x̄(t), x̄

(
t − r̄(t)

)
, θ̄

)
z(t; γ̄ , u)
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+D3g
(
t, x̄(t), x̄

(
t − r̄(t)

)
, θ̄

)(−x̄′
(
t − r̄(t)

)
D2τ(t, x̄t , σ̄ )

× z(·; γ̄ , u)t + z
(
t − r̄(t); γ̄ , u)− x̄′

(
t − r̄(t)

)
D3τ

(
t, x̄t , σ̄

)
uσ

)

+D4g
(
t, x̄(t), x̄

(
t − r̄(t)

)
, θ̄

)
uθ , t ∈ [0, α],

z(t; γ̄ , u) = uφ(t), t ∈ [−r,0],

and where x̄(t)= x(t; γ̄ ), r̄(t)= τ(t, x̄t , σ̄ ), and u= (uφ,uσ ,uθ ) ∈ 
.

We refer to [99] for the proof of Theorem 6.2.1. Here we just make some remarks on
the choice of the norm on 
. It is clear that at some point in the proof of Theorem 6.2.1
it is necessary to be able to differentiate the composite function F(t,ψ) = ψ(−τ(t,ψ)).
Suppose ψ ∈ C1 is fixed, and consider

F(t,ψ + u)− F(t,ψ) = ψ
(−τ

(
t,ψ + u

))+ u
(−τ(t,ψ + u)

)−ψ
(−τ(t,ψ)

)
= ψ ′

(−τ(t,ψ)
)(−τ(t,ψ + u)+ τ(t,ψ)

)
+ u

(−τ(t,ψ)
)+ω(t,ψ,u)+ u

(−τ(t,ψ + u)
)

− u
(−τ(t,ψ)

)
,

where

ω(t,ψ,u) = ψ
(−τ(t,ψ + u)

)−ψ
(−τ(t,ψ)

)
−ψ ′

(−τ(t,ψ)
)(−τ(t,ψ + u)+ τ(t,ψ)

)
.

Therefore we expect that

D2F(t,ψ)u=−ψ ′
(−τ(t,ψ)

)
D2τ(t,ψ)u+ u

(−τ(t,ψ)
)

using an appropriate norm on the domain. The assumptions ψ ∈ C1, (D2)(iii) and the chain
rule combined imply immediately that |ω(t,ψ,u)|/|u|C → 0 as |u|C → 0. But to control
the term u(−τ(t,ψ + u))− u(−τ(t,ψ)) the C-norm is not suitable, we need the stronger
W 1,∞-norm: The Mean Value Theorem yields

|u(−τ(t,ψ + u))− u(−τ(t,ψ))|
|u|W 1,∞

�
∣∣τ(t,ψ + u)− τ(t,ψ)

∣∣,

and the right-hand side of the preceding inequality tends to 0 as |u|W 1,∞ → 0, due to the
continuity of τ . Therefore D2F defined above is, in fact, the derivative of the function
F(t, ·) :W 1,∞→R

n at ψ ∈ C1 for any t .
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6.3. Differentiability with respect to parameters in norm

Since the condition γ̄ ∈ $ in the previous subsection may be inconvenient for certain
applications, we explore different spaces to study differentiability in it for the case when
the initial function and the solution segments are only W 1,∞ functions.

First we introduce some notation and definitions. W 1,p
α (1 � p <∞) denotes the Banach

space of absolutely continuous functions ψ : [−h,α]→R
n of finite norm

|ψ |
W

1,p
α
=

(∫ α

−h
∣∣ψ(s)

∣∣p + ∣∣ψ ′(s)∣∣p ds

)1/p

.

Similarly, W 1,∞
α denotes the Banach space W 1,∞

α ([−h,α],Rn).
Consider a linear space Y and let | · | and ‖ · ‖ be two norms defined on Y . We say that

(Y, | · |) is a quasi-Banach space with respect to the norm ‖ · ‖ if for any r > 0 the set
{y ∈ Y : ‖y‖� r} is complete in the norm | · |. See [96].

In addition to (D1)(i)–(iii) and (D2)(i)–(iii) we use in this subsection the following con-
dition

(D2) (iv) τ : R× C ×� ⊃ [0, T ] ×�4 ×�5 → [0,∞) is continuously differentiable
with respect to its first variable; and

(v) D1τ , D2τ and D3τ are locally Lipschitz continuous in the following sense:
For every α ∈ (0, T ], for every compact subset M4 ⊂ �4 of C and for
every closed, bounded subset M5 ⊂ �5 of � there exists a constant L3 =
L3(α,M4,M5) such that

∣∣D1τ(t,ψ,σ )−D1τ
(
t, ψ̄, σ̄

)∣∣ � L3
(∣∣ψ − ψ̄

∣∣
C
+ |σ − σ̄ |�

)
,

∥∥D2τ(t,ψ,σ )−D2τ
(
t, ψ̄, σ̄

)∥∥
L(C,R)

� L3
(∣∣ψ − ψ̄

∣∣
C
+ |σ − σ̄ |�

)
,

∥∥D3τ(t,ψ,σ )−D3τ
(
t, ψ̄, σ̄

)∥∥
L(�,R)

� L3
(∣∣ψ − ψ̄

∣∣
C
+ |σ − σ̄ |�

)

for t ∈ [0, α], ψ, ψ̄ ∈M4, and σ, σ̄ ∈M5.
Hale and Ladeira [96] investigated differentiability of solutions to the constant delay

equation

x′(t)= f
(
x(t), x(t − τ)

)

with respect to the delay, τ . They showed by means of an extension of the Uniform Con-
traction Principle to quasi-Banach spaces that the map

[0, h]→W 1,1
α , τ )→ x(·; τ)

is differentiable. Note that in their proof the integral norm of W 1,1
α played a crucial role; it

can be replaced by a more general W 1,p
α -norm, but not by the stronger W 1,∞

α -norm. This
result suggests that the set W 1,∞

α equipped with the norm | · |
W

1,p
α

could possibly be used
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as the state space for solutions. It might be a reasonable choice since (see, e.g., [99]) the
parameter map (φ, θ, σ ) )→ x(·;φ, θ, σ )t is Lipschitz continuous in both the | · |W 1,∞ and
| · |W 1,p -norms while the time map t )→ x(·;φ, θ, σ )t is continuous only in the | · |W 1,p ,
but not in the | · |W 1,∞ -norm. This indicates that the set W 1,∞ equipped with the | · |W 1,p -
norm (which is not a Banach space, it is only a quasi-Banach space with respect to the
| · |W 1,∞ -norm) could be considered as a “natural” state space for state-dependent delay
equations.

We follow the usual procedure to study differentiability with respect to parameters: In-
troducing y(t)= x(t)− φ̃(t) where φ̃ is the extension of φ to [−h,α] by φ̃(t)= φ(0) for
0 < t � α, we rewrite the IVP (6.1.1)–(6.1.2) as a fixed point equation S(y,φ, θ, σ )= y,
with the operator S given by

S(y,φ, θ, σ )(t)=
⎧⎨
⎩

0, t ∈ [−h,0],∫ t

0
g
(
u,y(u)+ φ̃(u),�

(
u,yu + φ̃u, σ

)
, θ

)
du, t ∈ [0, α],

and with �(t,ψ,σ )= ψ(−τ(t,ψ,σ )). In order to apply the Uniform Contraction Princi-
ple in this setting we need continuous differentiability of S with respect to y, φ, θ and σ in
the W

1,p
α norm. It turns out that instead of the pointwise differentiability of � with respect

to ψ and σ studied in the previous subsection it is enough to have the differentiability of
the composite function t )→ �(t, xt , σ ) with respect to x and σ in a norm of “Lp-type”,
for x ∈W 1,∞

α .
Brokate and Colonius [29] studied equations of the form

x′(t)= f
(
t, x

(
r
(
t, x(t)

)))
, t ∈ [a, b]

and investigated differentiability of the composition operator

A :W 1,∞([a, b];R)⊃ X̄→ Lp
([a, b];R)

, A(x)(t)= x
(
r
(
t, x(t)

))
.

They assumed that r is twice continuously differentiable satisfying a � r(t, v) � b for all
t ∈ [a, b] and v ∈R, and considered as domain of A the set

X̄ =
{
x ∈W 1,∞([a, b];R)

: there exists ε > 0 s.t.
d

dt

(
r
(
t, x(t)

))
� ε

for a.e. t ∈ [a, b]
}
.

It was shown in [29] that under these assumptions A is continuously differentiable with the
derivative given by

(
DA(x)u

)
(t)= x′

(
r
(
t, x(t)

))
D2r

(
t, x(t)

)
u(t)+ u

(
r
(
t, x(t)

))

for u ∈W 1,∞([a, b],R).
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Both the strong W 1,∞ norm on the domain and the weak Lp norm on the range, together
with the choice of the domain seemed to be necessary to obtain the results in [29]. Note
that Manitius in [160] used a similar domain and norm when he studied linearization for a
class of state-dependent delay systems.

Clearly, to apply the Uniform Contraction Principle to the operator S we have to use
the same norm on the domain and range of S. It turns out that the following “product
norm” preserves the essential properties of the different norms used in [96] and [29]: Let
x ∈W 1,∞

α , and decompose x as x = y+ φ̃, (where φ(t)= x(t) for t ∈ [−r,0], and φ̃ is the
extension of φ to [−r,α] by φ̃(t)= φ(0)), and define the norm of x by

|x|
X

1,p
α
=

(∫ α

0

∣∣y′(u)∣∣p du

)1/p

+ |φ|W 1,∞,

and consider the normed linear space X
1,p
α ≡ (W 1,∞

α , | · |
X

1,p
α

). The norm | · |
X

1,p
α

is weaker
than the | · |

W
1,∞
α

norm, but stronger than the | · |
W

1,p
α

norm (see [106]).
This norm is “strong enough” that the methods of [29], with minor modifications, pro-

vide differentiability of the composition map

B :X1,p
α ×� ⊃U1 ×U2 → Lp

([0, α];Rn
)
, B(x,σ )(t)=�(t, xt , σ ),

on a suitable domain U1 × U2. On the other hand, | · |
X

1,p
α

is “weak enough” that using
the differentiability of the operator B above we can obtain differentiability of the operator
S :X1,p

α ×W 1,∞ ×�×� ⊃ V1 × V2 × V3 × V4 → X
1,p
α with respect to y, φ, θ and σ .

Moreover it is possible to use a modification of the Uniform Contraction Principle to get
differentiability of the fixed point (the solution of the IVP) with respect to the parameters
φ, θ and σ in the | · |

X
1,p
α

norm. Since this product norm is stronger than the | · |
W

1,p
α

norm,
the result implies the differentiability of solutions in the latter norm as well. For more
details and the proof of the next result we refer to [106].

THEOREM 6.3.1. Suppose (D1)(i)–(iii) and (D2)(i)–(v), and let δ̄ > 0 and α > 0 be such
that the IVP (6.1.1)–(6.1.2) has a unique solution on [−h,α] for any γ ∈ G
(γ̄ , δ̄), and
suppose there exists ε > 0 such that the solution x̄ = x(·; γ̄ ) satisfies

d

dt

(
t − τ(t, x̄t , σ̄ )

)
� ε a.e. t ∈ [0, α].

Then there exists δ > 0 such that the functions


 ⊃G
(γ̄ , δ)→X1,p
α , γ )→ x(·;γ )

and


 ⊃G
(γ̄ , δ)→W 1,p
α , γ )→ x(·;γ )

are continuously differentiable.
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An application of differentiability of solutions with respect to parameters was given in
[100], where estimation of unknown parameters in state-dependent delay equations was
studied. The goal of the work was to find a parameter value which minimizes a least square
cost function P(γ ) =∑N

k=1(x(ti;γ ) − yi)
2, where yi (i = 1, . . . ,N ) are measurements

of the solution at time points ti (i = 1, . . . ,N ). The so-called method of quasilinearization
was adopted and numerically tested for state-dependent delay equations for cases where
the parameters were infinite dimensional, e.g., the initial function. This algorithm is based
on Newton’s method and uses the derivative of P , hence also D2x(t;γ ). The convergence
of the estimation method was observed also for those cases where D2x(t;γ ) did not exist
in the pointwise sense of Theorem 6.2.1 but only in a norm, as stated in Theorem 6.3.1.
For example, when the initial function is approximated by piecewise linear splines, then
Theorem 6.2.1 is not applicable to solutions corresponding to such parameters since they
belong to W 1,∞ but not to C1.

7. Periodic solutions via fixed point theory

Over the last 40 years the most general results on existence of periodic solutions to au-
tonomous delay differential equations, with constant and also with state-dependent delay,
have been obtained using topological fixed point theorems and the fixed point index. The
first step in applying these tools is the construction of a return map: For initial data in
a suitably chosen set K one follows the solution segments until they return to K . Fixed
points of the return map define periodic solutions. The search for a suitable set K requires
a priori knowledge about the desired periodic solutions and about their role in the global
dynamics generated by the delay equation. Hypotheses of fixed point theorems must also
be satisfied. This indicates that in general the search for K may be a nontrivial task. The
finer (more restrictive) a structure a domain K of a return map has, the more qualitative
information about the periodic solution is provided.

It is not uncommon that domains of return maps or their closures contain a known fixed
point which also is a stationary point of the semiflow. Therefore, to obtain a nonconstant
periodic solution, one needs to find another fixed point. While impossible in case the trivial
fixed point is globally attracting, there is hope in case the trivial fixed point is unstable.
A weak topological notion of instability, which proved very useful, is Browder’s concept
of ejectivity [30]. A fixed point x of a map f :M→N , N a topological space and M ⊂N ,
is called ejective if there exists a neighbourhood V of x in M so that for each y ∈ V \x there
is j ∈ N with f j (y) /∈ V . Ejectivity was deeply explored and first applied by Nussbaum
(see, e.g., [174,175]), who also proved the first result on existence of periodic solutions for
differential equations with state-dependent delay [174]. In the next subsection, Section 7.1,
we describe a very general result of Mallet-Paret, Nussbaum, and Paraskevopoulos [156]
on existence of periodic solutions and its proof, which is based on ejectivity.

The Section 7.2 deals with a model from Section 2.6 where the delay is governed by a
differential equation which involves the state. This example was studied by Arino, Hadeler
and Hbid [7] and Magal and Arino [148] and shows some of the specific difficulties caused
by state-dependent delays in the search for periodic solutions.

Ejectivity is used also in the existence proofs in [4,136,137,151].
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Of course, ejectivity does not adequately reflect the unstable behaviour of solutions to
decent differential equations. Close to unstable manifolds of equilibria, or in cones around
such unstable manifolds, solutions to delay and other differential equations behave much
more regular than expressed by ejectivity. Accordingly one can prove existence of periodic
solutions and global bifurcation from stationary points also without recourse to ejectivity.
Schauder’s fixed point theorem and simple calculations of the fixed point index suffice if
only unstable solution behaviour close to equilibria is exploited to a larger extent. This was
done in [202,203] and in Chapter XV of [54] for a class of RFDEs with constant delay.
For equations with state-dependent delay, a proof of existence of periodic solutions along
these lines has not yet been carried out.

Beyond existence and outside the scope of purely topological tools, uniqueness and
stability of periodic orbits are of interest. In Section 7.3 we present results from [205,
208] where return maps are contractions or have a locally attracting fixed point, with the
associated periodic orbit nontrivial, stable and hyperbolic. The approach applies to single
equations and systems with state-dependent delay where the nonlinearities are given by
functions which do not vary much on long intervals.

7.1. A general result by continuation

In [156] Mallet-Paret, Nussbaum and Paraskevopoulos prove existence of periodic
solutions for a rather general class of scalar RFDEs which include equations with
state-dependent delay. They consider Eq. (1.0.1) with f :C → R continuous, C =
C([−h,0],R), and assume that there are τ0 ∈ (0, h] and a locally Lipschitz continuous
function g : R→R satisfying the negative feedback condition

ξg(ξ) < 0 for all ξ �= 0

so that

f (φ)= g
(
φ(−τ0)

)

for φ in the closed hyperplane H given by φ(0)= 0. In particular, f (0)= 0, τ0 is the delay
on H , and the constant function zero is a solution to Eq. (1.0.1). In Section 3 we mentioned
the property (alL) from [156] of being almost locally Lipschitzian, to which condition
(L) in Section 3 is closely related. Property (alL) requires local Lipschitz estimates for f
which involve the norm on C but only arguments of f which are Lipschitz continuous. For
f with property (alL) and at most linear growth Lipschitz continuous initial data φ ∈ C

uniquely determine solutions x : [−h,∞)→ R of Eq. (1.0.1) with x0 = φ. Also bounds
for solutions and continuous dependence on initial data are established. Under a more
restrictive negative feedback condition, now for the functional f and involving also data
φ ∈ C \H , it is shown that segments xt , t � 0, of solutions which start from x0 = φ in a
closed bounded convex set

G+ ⊂ {
φ ∈H : φ(t) � 0 for all t ∈ [−h,0]}
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return to G+ at a certain well-defined zero z2 = z2(x0) > 0 provided the solution has at
least one sign change on (0,∞) and a zero thereafter. On a subset U+ ⊂G+ which is open
with respect to the topology on G+ induced by C the previous result yields a continuous
return map 
0 :U+ →G+. Actually, more is achieved here for later use: 
0 = 
(·,0), for
a homotopy 
 :U+ × [0,1] → G+ of modified return maps 
(·, α) associated with the
members of a one-parameter family of RFDEs; the equation at α = 1 has the property that
the values of initial data on [−h,−τ0) have no influence on the solution.

The extremal point 0 ∈G+ of G+ does not belong to U+, and each fixed point of the
return map 
0 defines a non-constant periodic solution of Eq. (1.0.1). A fixed point exists
if the fixed point index iG+(
0,U

+) of 
0 is defined and non-zero.
The remaining steps towards

iG+
(

0,U

+) �= 0 (7.1.1)

require some sort of linearization of the RFDE at the zero solution, in order to describe
and exploit conditions for instability of the zero solution. Here the hypothesis (aFd) that
f is almost Fréchet differentiable at 0 comes into play. It requires that the restriction
of f to the space C0,1 = C0,1([−h,0],R) of Lipschitz continuous data has a derivative
at 0 ∈ C1 ⊂ C0,1. The properties (alL) and (aFd) combined imply that this derivative
D(f |C0,1)(0) extends to a continuous linear map De(f |C0,1)(0) :C→R, like in conditions
(S2) and (S3) from Section 3. A look back at the hypotheses on f shows that the recipe
freeze the delay at equilibrium, then linearize mentioned in Section 3 is not sufficient to
compute this extended derivative. The desired linear equation has the form

v′(t) = De(f |C0,1)(0)vt

= −β v(t)− γ v(t − τ0) (7.1.2)

with constants β � 0, γ � 0, and is considered for initial data in the Banach space Cτ0 =
C([−τ0,0],R). On the cone

K = {
φ ∈ Cτ0 : φ(t) � 0 for all t ∈ [−τ0,0], φ(0)= 0

}

there is a return map Sβ,γ :K → K similar to 
0, given by the solutions to Eq. (7.2.2),
with Sβ,γ (0)= 0. In case the zero solution of Eq. (7.2.2) is unstable the trivial fixed point
0 ∈K has index zero;

iK(Sβ,γ ,0)= 0. (7.1.3)

To see this one can use ejectivity as in [174,175], or follow [176], or proceed as in [203,54].
The major steps in the proof of (7.2.1) are a reduction to

iG+
(

1,U

+) �= 0

by homotopy invariance, and the deduction of the preceding inequality from (7.2.3). In this
last step all basic properties normalization, additivity, homotopy invariance, and commu-
tativity of the fixed point index are instrumental.
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The skillful proof in [156] overcomes more obstacles than this brief outline indicates.
The main theorem of [156] yields a wide variety of results on existence of periodic so-
lutions for explicitly given RFDEs, in particular also for equations with multiple state-
dependent delays of the form

x′(t)=G
(
x(t), x

(
t − r1

(
x(t)

))
, . . . , x

(
t − rm

(
x(t)

)))
.

7.2. Periodic solutions when delay is described by a differential equation

As mentioned above, Nussbaum [174] used the ejective fixed point theorem to prove the
existence of periodic solutions to the equation

x′(t)=−αx
(
t − 1− ∣∣x(t)∣∣)(1− x2(t)

)
.

Alt [4] and Kuang and Smith [136,137] obtained periodic solutions for equations where
the delay is given by a threshold condition.

While the major steps towards existence of so-called slowly oscillating periodic solu-
tions remain essentially the same as for delay differential equations with constant delays,
the technical details become more involved when delays are state-dependent. This refers
both to the construction of the domain of a return map and to the verification that a trivial
fixed point is ejective. To illustrate this we describe in the sequel work of Arino, Hadeler
and Hbid [7] and of Magal and Arino [148] for the system

{
x′(t)=−f

(
x
(
t − r(t)

))
,

r ′(t)= q
(
x(t), r(t)

)
.

(7.2.1)

Here the variation of the delay is determined by an ordinary differential equation. Standing
assumptions are that the functions f : R → [−M,M], M > 0, and q : R × R → R are
continuously differentiable, with

xf (x) > 0 for all x �= 0 and f nondecreasing,

and that for some fixed reals r2 > r1 > 0 and for all x ∈R,

q(x, r2) < 0 < q(x, r1).

Let C = C([−r2,0],R). The hypotheses ensure that the IVP given by the system (7.2.1)
and initial data (φ, r0) ∈ C × [r1, r2] with φ Lipschitz continuous has a unique solution
(x, r)= (xφ,r0 , rφ,r0), with x defined on [−r2,∞) and r defined on [0,∞). The solution
component x is Lipschitz continuous with |x′(t)|� M for all t > 0, and the hypothesis on
q yields r1 < r(t) < r2 for all t > 0.

Incidentally, note that the system (7.2.1) can be reformulated as a special case of (1.0.1)
with n = 2, h = r2,U = (R× [0, h])[−h,0], and the corresponding functional being given
by (−f (φ(−r0)), q(φ(0), r0)) for (φ, r0) ∈U .
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It also follows that the function q(0, ·) has zeros in [r1, r2]. The additional hypothesis

∂q

∂r
(0, r) < 0 on [r1, r2]

implies that there is exactly one zero r∗0 of q(0, ·) in [r1, r2], and that the constant solution
r∗ : t )→ r∗0 of the autonomous equation

r ′ = q(0, r)

is asymptotically stable. Below we shall see that this fact causes complications in view of
ejectivity of a fixed point corresponding to the constant solution of system (7.2.1) given by
x(t)= 0 and r∗.

In order to obtain that t )→ t − r(t) is strictly increasing it is furthermore assumed that

q(x, r) < 1 on R× [r1, r2].

The notion of a slowly oscillating solution, which is familiar from work on equations
with constant delay h > 0 like, e.g.,

x′(t)=−f
(
x(t − h)

)

and means that zeros are isolated and spaced at distances larger than the delay h, is mod-
ified for the x-components of solutions to the system (7.2.1) according to the following
definition: A function x : [t0,∞)→R, t0 ∈R, is called slowly oscillating if its zeros form
a disjoint union of closed intervals Z whose left endpoints have no accumulation point and
are spaced at distances not less than r2, with

lim
t↗a

sign
(
x(t)

)=− lim
s↘b

sign
(
x(s)

)

at each compact interval Z = [a, b] with t0 < a. Notice that the definition allows noncon-
stant functions which are zero on some unbounded interval [t1,∞), t1 > t0, a phenomenon
which occurs among the first components of solutions to the system (7.2.1).

The first step towards a return map is to show that certain initial data define solutions
with slowly oscillating first component. In [7] it is shown that the first components of
solutions with initial value component φ in the cone


 = {
φ ∈ C([−r2,0];R): there exists θ ∈ [−r2,−r1] so that φ(θ)= 0

and φ(s) < 0 for s < θ;0 � φ(θ) � φ(0) for θ � s � 0
}

return to 
 at a sequence of times whose distances are not less than r2. More precisely,
if (x, r) is a solution with initial value (φ, r0) and ±φ ∈ 
 then there are two sequences,
possibly finite, of points t∗i and zeros ti of x in [0,∞) such that

t∗0 � 0, t∗i + (r2 − r1) � ti+1 � t∗i+1 − r1
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and ±(−1)i+1x is nondecreasing on the interval [t∗i , t∗i+1]. In particular, ±(−1)ixt∗i ∈ 


for each index i > 0. To reach the conclusion, it is required that the delay variation satisfies
the smallness condition (r2 − r1)|f (x)|< |x| for x �= 0.

Uniqueness with respect to initial data is needed, and the domain for a return map should
be convex. Therefore 
 must be modified. The smaller set


1 = {φ ∈ 
: φ is Lipschitzian and nondecreasing}

is convex, and closed in C0,1([−r2,0],R). Let E = 
1 × [r1, r2]. For each integer j � 1,
it is now natural to introduce operators Pj and P+j on the space E by

Pj (φ, r0)=
(
xt∗j , r

(
t∗j
))
,

P+j (φ, r0)=
(
(−1)j xt∗j , r

(
t∗j
))
.

Obviously, the existence of Pj (φ, r0) is subject to the condition that t∗1 , t∗2 , . . . , t∗j−1 exist.
If this condition is satisfied but the solution starting from (xt∗j−1

, r(t∗j−1)) does not cross

zero, then it is proved in [7] that x(t)→ 0 and r(t)→ r∗ as t →∞. In this case, one
defines Pj (φ, r0)= (0, r∗).

P1 sends bounded sets of E into bounded sets of the product space C([−r2,0],R) ×
[r1, r2], and P+1 is a compact and continuous operator from E into itself.

It is important to know when a first positive zero t1 = t1(φ,r0) exists: This property is
ensured for every (φ, r0) ∈ (
1 ∪ (−
1))× [r1, r2] if there exist M > 0 and R0 > 0 with
M(r2 − r1) � R0, |f (x)|� M for x ∈R and (2r1 − r2)|f (x) � |x| for |x|� R0.

Unfortunately, the fixed point (0, r∗) of any return map defined in a set containing {0}×
[r1, r2] is not ejective. This follows immediately from positive invariance of the set {0} ×
[r1, r2] and asymptotic stability of the solution r∗ to the equation r ′ = q(0, r).

In order to obtain ejectivity smaller convex subsets

EK =
{
(φ, r0) ∈E:

∣∣r0 − r∗0
∣∣ � K‖φ‖C,‖φ‖C =

∣∣φ(0)∣∣}

for K > 0 are introduced which contain from the obstacle for ejectivity {0} × [r1, r2] only
the point (0, r∗0 ). For R > 0 and K > 0 let

ER,K =
{
(φ, r0) ∈E: ‖φ‖C � R,

∣∣r0 − r∗0
∣∣ � K‖φ‖C

}
,

and define


2 =
{
φ ∈ 
1: φ(0)= sup

−r2�s�0

∣∣φ(s)∣∣}.

In order for P+1 to map (
2 × [r1, r2]) ∩ ER,K into EK , a restriction on r1 is needed. In
[7] it is shown that for each R > 0 there exist r̃1 > 0 and K > 0 such that for each r1 > r̃1
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the operator P+1 maps (
2 × [r1, r2]) ∩ER,K into EK . The key to the proof of the above
statement is that for each R > 0 there exists C(r1) ∈ (0,1) such that

∥∥xφ,r0
t∗1

∥∥
C

� C(r1)‖φ‖C (7.2.2)

for each (φ, r0) ∈ 
2 × [r1, r2] with 0 < ‖φ‖C � R. Estimates of this type exclude super-
exponential decay of slowly oscillating solutions and play an important role in work on the
global dynamics of equations with constant delay.

The map (φ, r0) )→ −x
φ,r0
t∗1

sends E = 
1 × [r1, r2] into 
2. The fact that t1 = t1(φ, r0)

is a zero of x = xφ,r0 and integration of the first equation in (7.2.1) yield the estimate

∥∥xφ,r0
t∗1

∥∥
C

� Mr2,

for each (φ, r0) ∈E. With this preparation, we can define R =Mr2 and introduce the set

X =
{
φ ∈ 
2: ‖φ‖C � R, ess sup

−r2�s�0

∣∣φ′(s)∣∣ � M
}
.

Choose K > 0 and r̃1 > 0 as above, assume r1 > r̃1, and set

Y = (
X× [r1, r2]

)∩ER,K.

Y is closed and convex, and the iterate P 2
1 defines a map P :Y → Y .

It remains to show that (0, r∗0 ) is an ejective fixed point of P . Ejectivity of (0, r∗0 ) is a
consequence of instability of the constant solution t )→ (0, r∗0 ) to the system (7.2.1), which
in turn follows from instability for the linearized system. In [7] the technique freeze the
delay at equilibrium, then linearize mentioned in Section 3.4 is applied to the first equation
in (7.2.1) and yields

y′(t)=−y
(
t − r∗0

)
, (7.2.3)

which is unstable for r∗0 > π
2 when f normalized so that f ′(0) = 1. More precisely, the

eigenvalues of the generator of the semigroup generated by Eq. (7.2.2) on the space

C
([−r∗0 ,0

]
,R

)

with largest real part are a complex conjugate pair u±iv in the open right halfplane, and the
associated realified generalized eigenspace U is 2-dimensional and consists of segments
of solutions

R � t )→ eut
(
a cos(vt)+ b sin(vt)

)

to Eq. (7.2.3). For (a, b) �= (0,0) these solutions are slowly oscillating, due to |v| < π
r∗0

.

The problem is now to transfer such unstable solution behaviour to the slowly oscillating
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solution components x of solutions (x, r) to the nonlinear system (7.2.1) which start from
small initial data (φ,ρ) ∈ Y in the other state space C([−r2,0],R)× [r1, r2]. The proof
in [7] proceeds by contradiction. Ejectivity means that there exists ε > 0 so that for each
(φ, r0) ∈ Y with 0 < ‖φ‖C � ε there is an integer j > 0 such that (x, r) = (xφ,r0, rφ,r0)

and t∗j = t∗j (φ, r0) satisfy ‖xt∗j ‖C � ε or |r(t∗j )− r∗0 |� ε. It can be shown that in case the
previous statement on ejectivity is not true, then there exists a constant d > 0 so that for all
(φ, r0) ∈ Y with ‖φ‖C � ε and for all t � 0 we have ‖xφ,r0

t ‖C � dε and |r(t)− r∗0 |� dε.
The next step is to show that the spectral projection $U onto the realified generalized

eigenspace U associated with u± v in C([−r∗0 ,0],R) satisfies

γ := inf
‖φ‖=1,φ∈
̃2

‖$Uφ‖> 0, (7.2.4)

under a further restriction about the variation of the delay

r2 − r1 < δ (7.2.5)

for some constant δ > 0 (explicitly given in [7]) that depends on r∗0 only. Here and in what
follows, 
̃2 is defined in a similar fashion as 
2, except we replace 
1 and 
 by 
̃1 and 
̃

respectively, where the domain of φ is [−r∗0 ,0] rather than [−r2,0].
Let supj∈N ‖xt∗j φ, r0‖C = ε̃ � ε. We can choose an integer j0 > 0 so that ‖xt∗j0

φ, r0‖C �
Cε̃ and thus, |y(t∗j0

)|� Cε̃γ , where y(t)=$Uxt , C and γ are given in (7.2.2) and (7.2.4).
Note that the first equation of the system (7.2.1) can be written as x′(t)=−x(t−r∗)+o(ε̃)

for large t , by using the linearization and the fact that |x′(t)|� M and |r(t)− r∗0 |� dε̃ for
all t � 0.

Therefore,

y′(t)=AUy(t)+ o(ε̃)

with AU =
( α −β
β α

)
. It then follows that

d

dt

∣∣y(t)∣∣= α
∣∣y(t)∣∣+ o(ε̃).

Therefore,

∣∣y(t)∣∣= eα(t−σ)
[∣∣y(σ )∣∣+

∫ t

σ

eα(σ−s)o(ε̃)ds

]
,

which implies

∣∣y(t)∣∣ � e
α(t−t∗j0

)
[
Cε̃γ − o(ε̃)

α

]
� e

α(t−t∗j0
) Cγ

2
ε̃

if ε̃ is small. This leads to a contradiction since y(t) = $Uxt should be bounded by a
constant multiple of ε̃ for all t � 0.
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In summary, under a few technical conditions including the negative feedback condition
on the state variable x and the delay r , the smallness of the delay variation and an instability
condition for an associated linear equation, Arino, Hadeler and Hbid obtain in [7] the
existence of periodic solution with slowly oscillating first component.

In [148] Magal and Arino obtain such periodic solutions under weaker conditions on
the delay variation—(7.2.5) is no longer needed—by means of a different argument which
uses a modification of ejectivity and employs other cones of initial data. Magal and Arino
consider a cone that was already used by Kuang and Smith in [136,137], namely,

EKS =
{
(φ, r0) ∈ C0,1([−r2,0],R)× [r1, r2]: φ(−r0)= 0

and φ nonincreasing on [−r0,0]}.
Using arguments similar to those in [7] one can show that for ε =±1 and (εφ, r0) ∈ EKS

there are reals t∗i = t∗i (φ, r0) and zeros ti = ti (φ, r0) of x = xφ,r0 such that t0 = −r0,
t∗0 = 0, t∗i � ti+1, ti = t∗i − r(t∗i ) for integers i � 0, and ε(−1)i+1x(t) is nonincreasing
on [t∗i , t∗i+1], x(ti) = 0, and x(t∗i ) �= 0 if φ(0) �= 0. So, (ε(−1)i+1xt∗i , r(t

∗
i )) ∈ EKS. Let

X0 = C1([−r2,0],R)× [r1, r2], introduce

E0 =
{
(φ, r0) ∈X0: φ′(s) � 0 for s ∈ [−r0,0], φ(−r0)= 0, φ′(0)= 0

}
,

and define the return maps Pj and P+j on E0 exactly as in [7]. For each integer j > 0 one
finds P2j (E0)⊂E0.

The fact that for initial data (φ, r0) ∈ C1([−r2,0],R)×[r1, r2] the map t )→ t − rφ,r0(t)

is increasing implies that on [0,∞) the solution (xφ,r0 , rφ,r0) does not depend on the re-
striction of φ to [−r2,−r0). The preceding observation suggests to consider initial data
(φ̃, r0) with φ̃ defined only on [−r0,0], and secondly, to modify the fixed point problem
by transforming the initial delay r0 to 1. Let

X1 = C1([−1,0],R)× [r1, r2].

Magal and Arino introduce maps

L :X0 →X1 and Q :X1 →X0

by

L(φ, r0)= (ψ, r0), ψ(s)= φ(s r0)

and

Q(ψ, r0)= (φ, r0), φ(s)=ψ(s/r0) on [−r0,0],

φ(s)= ψ ′(−1)

r0
(s − r0) on [−r2,−r0).
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Let E1 denote the analogue of E0 where X0 and r0 are replaced by X1 and 1, respectively.
E1 is closed and convex, and Q(E1)⊂E0, L(E0)⊂E1. The maps F2j = L◦P2j ◦ (Q|E1)

send E1 into E1. We have F2(0, r∗0 ) = (0, r∗0 ), and fixed points (φ, r0) of F2 with φ �= 0
yield periodic solutions of the system (7.2.1) with slowly oscillating first component.
However, the second component of F2 :E1 → C1([−1,0],R) × [r1, r2] is not contin-
uous at points (0, r0) with r0 �= r∗0 , which requires a further modification. The map
F̃2 :E1 → E1 resulting from this is continuous and compact (with respect to the topol-
ogy on C1([−1,0],R)) and retains the property that nontrivial fixed points define periodic
solutions to (7.2.1) with slowly oscillating first component. It is shown in [148] that

(i) F̃2(0, r∗0 )= (0, r∗0 ),
(ii) F̃2({0} × [r1, r2])⊂ {0} × [r1, r2], and

(iii) for every ε > 0 there exist c > 0 and γ ∈ [0,1) with

∣∣(F̃ 2j
1

)
2(φ, r0)− r∗0

∣∣ � γ
∣∣r0 − r∗0

∣∣
for all (φ, r0) ∈E1 with

‖φ‖C1([−1,0],R) +
∣∣r0 − r∗0

∣∣ � ε

and

‖φ‖C1([−1,0],R) � c
∣∣r0 − r∗0

∣∣,
and for all integers j � 1.

Here the index 2 denotes the second component of the map F̃
2j
2 . Properties (ii) and (iii)

combined exclude that the fixed point (0, r∗) of F̃2 is ejective. Now the modification
of ejectivity comes into play. Let X be a Banach space, A ⊂ Y ⊂ X, and assume that
g :Y → Y has a fixed point x0 ∈ ∂YA. Then x0 is called semi-ejective on Y \A if there is
a neighbourhood V of x0 in Y so that for each y ∈ V \A there is an integer m � 1 with

gm(y) ∈ Y \ V.

Arguments similar to those in [7] which exploit the instability of Eq. (7.2.3) yield in [148]
that the fixed point (0, r∗0 ) is semi-ejective on E1 \ ({0} × [r1, r2]). Finally, an extension of
the ejective fixed point theorem in [148] to the case of semi-ejective fixed points guarantees
that F̃2 has a fixed point (φ, r0) with φ �= 0, which defines the desired periodic solution.

7.3. Attracting periodic orbits

In [205] the system (2.2.1)–(2.2.2)

x′(t)= v

(
c

2
s(t − r)−w

)
,
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cs = ∣∣x(t − s)+w
∣∣+ ∣∣x(t)+w

∣∣,
with positive parameters c, r,w, is studied. The function v :R→R is assumed to satisfy a
negative feedback condition

δv(δ) < 0 for all δ �= 0.

For continuous and bounded v the system defines a continuous semiflow on a set O which
is open in a compact set M ⊂ C = C([−h,0],R), with h = 4w

c
+ r . The set M consists

of Lipschitz continuous functions. The set O contains a closed subset K of initial data
which define solutions whose segments xt return to K , after an excursion into the ambient
space O . This yields a continuous return map, on a domain without stationary points. If
v is Lipschitz continuous and close to constants in (−∞,−β] and [β,∞), respectively,
with β > 0 sufficiently small, then one can estimate the Lipschitz constant of the return
map in terms of Lipschitz constants for v and for its restrictions v|(−∞,−β] and v|[β,∞);
under suitable further assumptions the return map becomes a contraction. The unique fixed
point of the contracting return map belongs to a periodic orbit of the system (2.2.1)–(2.2.2)
which is stable and exponentially attracting with asymptotic phase.

The observation which led to the method used in [205] and in earlier work on equations
with constant delays is the following: If the function g : R→R in the equation

y′(t)= g
(
y(t − 1)

)
(7.3.1)

is constant on some interval I and if y remains long enough in I , say, for t0 − 1 � t � t0,
then for t � t0 the solution y depends only on y(t0) and g(I). This can be used to design
simple-looking nonlinearities g, representing negative feedback, for which periodic solu-
tions of Eq. (7.3.1) can be computed explicitly, see, e.g., Chapter XV in [54]. Moreover,
solutions which start from initial data close to the periodic orbit eventually merge into it.
This is an extremely strong kind of orbital stability, giving hope that also for nonlinearities
which are only close to constants on some intervals attracting periodic orbits may exist. If
instead of the scalar equation (7.3.1) more generally systems are considered then suitable
nonlinearities which are constant on nontrivial intervals yield low-dimensional subsets of
the state space which are positively invariant under the semiflow and absorb flowlines from
a neighbourhood.

In [208] the system

u′ = v, (7.3.2)

v′ = −r v+A(p), (7.3.3)

p = c

2
s −w, (7.3.4)

cs = u(t − s)+ u(t)+ 2w (7.3.5)

is studied. In contrast to the system (2.2.1)–(2.2.2) the model (7.3.2)–(7.3.5) for position
control by echo is now based on Newton’s law. Instead of the constant time lag r > 0 in
Eq. (2.2.1) there is now a friction term −rv in Eq. (7.3.3).
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For suitable positive values of the parameters w,c, r and for certain functions A : R→R

which represent negative feedback and are constant on (−∞,−β] and on [β,∞), with
β > 0 small, the existence of a hyperbolic stable periodic orbit is established. The proof
begins with a reformulation of the system as an equation of the form (1.0.1), with
a continuously differentiable functional f defined on an open subset U of the space
C1 = C1([−h,0],R2), for suitable h > 0. Several steps of the proof rely on the smooth-
ness properties of the semiflow F on the solution manifold Xf ⊂U which are provided by
Theorem 3.2.1. In Xf a thin, infinite-dimensional set I of initial data φ is found to which
the flowlines F(·, φ) return, after a journey through the ambient part of the manifold. The
associated return map is not necessarily compact, which precludes an immediate applica-
tion of Schauder’s theorem in order to find a fixed point—not to speak of an attracting
fixed point. But the return map is semiconjugate to an interval map which is differentiable.
Estimates of derivatives of the interval map yield a unique, attracting fixed point of the
latter, which can be lifted to the return map. The proof that the resulting periodic orbit of
the system (7.3.2)–(7.3.5) is hyperbolic and stable involves a continuously differentiable
Poincaré return map, on a hyperplane transversal to the periodic orbit, in addition to the
previous return map on the thin set I ⊂Xf , and a discussion of derivatives of iterates.

8. Attractors, singular perturbation, small delay, generic convergence, stability and
oscillation

This section deals with limiting behaviour. Section 8.1 is concerned with long term dynam-
ics and reports about the structure of a global attractor [132]. Section 8.2 describes work
of Mallet-Paret and Nussbaum [151–155] about the asymptotic shape of periodic solutions
when a parameter becomes large, Section 8.3 sketches an approach of Ouifki and Hbid
[178] to existence of periodic solutions when delays are small, Section 8.4 reports about
work of Bartha [21] on generic convergence of solutions, and Section 8.5 comments on
further results about stability and oscillatory solution behaviour.

8.1. An attracting disk

The paper [132] studies the equation

x′(t)=−μx(t)+ f
(
x
(
t − r

(
x(t)

)))
(8.1.1)

with μ> 0, f ∈ C2(R,R), f (0)= 0, f ′(u) < 0 for all u ∈R, r ∈ C1(R,R), r(0)= 1, and
supu∈R f (u) <∞ provided r(u) � 0 for all u ∈ R. The case μ = 0 can also be handled
with a slight modification. Then the delayed logistic equation (or Wright’s equation)

y′(t)=−αy
(
t − r

(
y(t)

))[
1+ y(t)

]
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with state-dependent delay and solutions satisfying y(t) >−1 is a particular case. Indeed,
after the transformation x = log(1+ y) we obtain

x′(t)=−α
[
ex(t−r(ex(t)−1)) − 1

]
.

The aim is to describe the asymptotic behaviour of the slowly oscillatory solutions of
Eq. (8.1.1). Here a solution x of (8.1.1) is called slowly oscillatory if |z′ − z| > r(0) = 1
for every pair of zeros z′, z of x. The results are in part analogous to those of Walther [204]
for the constant delay case r ≡ 1.

Let Ir denote the largest subinterval of R with 0 ∈ Ir and r(u) � 0 for all u ∈ Ir . First
it is shown that for every element φ of the space BC((−∞,0], Ir ) of bounded continuous
functions from (−∞,0] into Ir , there is a solution x : R→R of Eq. (8.1.1) through φ, i.e.,
x is continuous on R, continuously differentiable on (0,∞), (8.1.1) holds for all t > 0, and
x|(−∞,0] = φ. If φ is Lipschitz continuous then x is unique.

In the next step four positive constants A,B,R,K are constructed such that

r
([−B,A])⊂ (0,R],

max
(u,v)∈[−B,A]×[−B,A]

∣∣−μu+ f (v)
∣∣ � K,

moreover, for any solution x : R→ R of (8.1.1) with x|(−∞,0] ∈ BC((−∞,0], Ir ) there
exists T � 0 such that

x(t) ∈ [−B,A] for all t � T .

Therefore, from the point of view of the asymptotic (t →∞) behaviour, only those solu-
tions are interesting which have values in [−B,A].

Let CR denote the space C([−R,0],R) equipped with the supremum norm. The set

LK =
{
φ ∈ CR: φ

([−R,0])⊂ [−B,A], sup
−R�s<t�0

|φ(t)− φ(s)|
t − s

� K

}

is a compact convex subset of CR . For every φ ∈ LK , Eq. (8.1.1) has a unique solution
xφ : [−R,∞)→R with x|[−R,0] = φ and x(t) ∈ [−B,A] for all t � 0. Then the relations

F(t,φ)= x
φ
t , t � 0, x

φ
t (s)= xφ(t + s), −R � s � 0,

define a continuous semiflow F on LK . In the sequel, only those solutions of (8.1.1) are
considered whose segments are in LK .

Define the compact subset

S = {
φ ∈ LK : sch

(
φ, [t − 1, t]) � 1 for all t ∈ [−R + 1,0]}

of LK , where sch(φ, [t − 1, t]) denotes the number of sign changes of φ on the interval
[t − 1, t]. If x is a slowly oscillatory solution of (8.1.1), then all segments xt belong to S.
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The set S is positively invariant under the semiflow F . The restriction of F to [0,∞)×S

defines the continuous semiflow FS on the compact metric space S. The global attractor A
of FS has the following properties:

(i) A is a compact connected subset of S ⊂ LK .
(ii) For each φ ∈A there is a unique solution of (8.1.1) through φ on R, which is also

denoted by xφ . The map FA : R×A � (t, φ) )→ x
φ
t ∈A is a continuous flow.

(iii) A is the union of 0 ∈ CR and the segments xt of the globally defined slowly oscil-
lating solutions x : R→[−B,A] of Eq. (8.1.1).

The first main result is that a Poincaré–Bendixson type theorem holds on A: The α-
and ω-limit sets of phase curves in A are either {0} or periodic orbits given by slowly
oscillating periodic solutions. The second main result is that in case A �= {0}, the set A is
homeomorphic to the 2-dimensional closed unit disk so that the unit circle corresponds to
a periodic orbit given by a slowly oscillating periodic solution.

Below we list some of the technical tools used in the proofs.
There is an additional assumption on the delay function r : either

∣∣r ′(u)∣∣< 1

K
, u ∈ [−B,A],

or

r ∈ C2([−B,A],R)
, and there is a ∈ (0,1) with r ′′(u) � aμ

[
r ′(u)

]2
,

u ∈ [−B,A].

This assumption and the fact that the dependence of the delay on the state is of the simple
form r(x(t)) seem to be crucial in several parts of the proof.

An important consequence of the above hypothesis on r is that the function

t )→ t − r
(
x(t)

)

is strictly increasing for solutions of (8.1.1). Another important fact is that for a suitable
weighted difference v : R→R of two solutions x and y on R, an equation of the form

v′(t)= α(t)v
(
t − r

(
x(t)

))
(8.1.2)

holds on R with a negative, bounded and continuous α. The backward uniqueness of solu-
tions is a corollary.

A modified version of the well-known discrete Lyapunov functional of Mallet-Paret and
Sell [150,157,158] is also introduced. Instead of on intervals with fixed length, the sign
changes are counted for a solution x on intervals of the form [t− r(x(t)), t]. The properties
are completely analogous to those of the constant delay case. In particular, this functional
can be used to exclude the existence of solutions decaying to zero at∞ or −∞ faster than
any exponential. By applying the discrete Lyapunov functional to a weighted difference of
two solutions satisfying Eq. (8.1.2), the number of sign changes of the difference can be
controlled.
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A return map P on the compact convex set

U = {
φ ∈ LK : φ(0)= 0, φ(s) � 0 for all s ∈ [−1,0]}

is defined by P(φ)= x
φ
z2 , where at z2 the second sign change of xφ in (0,∞) occurs, and

P(φ) = 0 if there is at most one sign change in (0,∞). P is not necessarily continuous
on U . However, P |A∩U is continuous. In addition, P restricted to {φ ∈A∩U : P(φ) �= 0}
is a homeomorphism onto A∩U \ {0}. It is also an essential step that A∩U is connected.
The elements of A ∩ U \ {0} are exactly those segments xs of globally defined slowly
oscillating solutions x : R→[−B,A] for which x(s)= 0 and x′(s) < 0.

An asymptotic expansion for slowly oscillating solutions converging to zero as t →
−∞ is also proved. It relates solutions of Eq. (8.1.1) to solutions of the associated linear
equation

y′(t)=−μy(t)+ f ′(0)y(t − 1).

This result is used to verify that for any two elements φ,ψ of A, the difference of the
solutions xφ − xψ has at most one sign change in all intervals [t − r(xφ(t)), t] and [t −
r(xψ(t)), t], t ∈R. This fact is important in the proof of the injectivity of the map

$ :A � φ )→
(

φ(0)
φ(−r(φ(0)))

)
∈R

2.

The paper [22] considers Eq. (8.1.1) in the positive feedback case, i.e., f ′ > 0, and
proves certain results which are analogous to the constant delay case in [133].

We remark that in the constant delay case, it is also known that the attractor of the
slowly oscillating solutions is a C1-smooth submanifold of the phase space [210]. Another
remarkable result is that the domain of attraction is an open dense subset of the phase space
[159]. Whether these remain true for the state-dependent delay case are open problems.

8.2. Limiting profiles for a singular perturbation problem

In their series of papers [151,152,155] Mallet-Paret and Nussbaum determine the asymp-
totic shape, or limiting profile, of periodic solutions to equations of the form

εx′(t)= f
(
x(t), x

(
t − r

(
x(t)

)))
, (8.2.1)

for ε → 0. A limiting profile is a subset � of the plane R
2 which arises as limit of a

sequence of solutions

xk = {(
t, xk(t)

) ∈R
2: t ∈R

}
, k ∈N,

to Eq. (8.2.1) with ε = εk , in case limk→∞ εk = 0. Convergence of a sequence of closed
subsets of the plane means that intersections with given compact subsets converge in the
Hausdorff metric.
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The standing hypotheses in [155] are the following. f is a Lipschitz continuous real-
valued map defined on a square I × I , I = [−D,C] with C > 0 and D > 0, and r : I →
[0,∞) is Lipschitz continuous with

r(0)= 1 and r(ξ) > 0 for −D < ξ < C.

The zero set f−1(0) ⊂ I × I is a strictly decreasing continuous function g : I → I with
g(0)= 0, and f is positive below its zero set and negative above it. Moreover,

∣∣g2(ξ)
∣∣< |ξ | on (−D,C) \ {0}.

In case r(C) > 0 it is assumed that g(C) = −D while in case r(−D) > 0, g(−D) = C.
Finally, f is differentiable at (0,0) with D2f (0,0)1 <D1f (0,0)1.

Notice that the distribution of the signs of f in I × I generalizes the negative feedback
inequality for functions of a single variable.

The periodic solutions considered are slowly oscillating in the sense that their zeros are
spaced at distances larger than r(0)= 1, which is the delay at equilibrium. Their minimal
periods are given by 3 consecutive zeros, and they are sine-like in the sense that the period
interval between 3 successive zeros consists of 3 adjacent subintervals on each of which the
periodic solution is monotone. Existence of sine-like slowly oscillating periodic solutions
for sufficiently small ε > 0 is proved in [152].

Limiting profiles exist, due to a result from [152] that for every sequence of parameters
εk > 0 with limk→∞ εk = 0 and for every sequence of sine-like slowly oscillating periodic
solutions xk : R→ I of Eq. (8.2.1) with ε = εk there is a subsequence (kj ) for which the
graphs xkj converge.

It may happen that the limiting profile is simply the abscissa R× {0}. Theorem 5.1 in
[152] provides sufficient conditions on r which exclude this case, like for example r ′(0) �=
0.

The first step towards the description of nontrivial limiting profiles is an appropriate
interpretation of the formal limit of Eq. (8.2.1) for ε→ 0, which reads

0= f
(
x(t), x

(
t − r

(
x(t)

)))
(8.2.2)

and can be considered as a difference equation in implicit form for functions on the real
line. But this is too narrow, as limiting profiles may contain vertical line segments. Notice
that for any point (t, x(t)) on a solution x : R→ I of Eq. (8.2.2) there is another point
(s, x(s)) on x with

s = t − r
(
x(t)

)
� t and x(s)= g

(
x(t)

)

since Eq. (8.2.2) is solved for the second argument by g. This suggests to consider the
backdating map � : R× I →R× I given by

�(τ, ξ)= (
τ − r(ξ), g(ξ)

)
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and its trajectories (τn, ξn), which satisfy the system

0= f (ξn, ξn−1),

τn−1 = τn − r(ξn).

Properties of the backdating map are the key to the description of limiting profiles.
Theorem 1.3 in [155] establishes that the minimal periods pk > 2 of sine-like slowly

oscillating periodic solutions xk : R→ I , k ∈N, of Eq. (8.2.1) with ε = εk , limk→∞ εk = 0,
are bounded.

Each nontrivial limiting profile �⊂R× I is periodic, i.e.,

�=�+ (p,0)

with the (existing) limit p � 2 of the minimal periods of the approximating sequence of
periodic solutions, and the intersection of � with a suitable vertical strip of width p can
be written as the union of a horizontal line segment below the abscissa, an ascending part,
a horizontal line segment above the abscissa, and a descending part. The horizontal parts
may be singletons, and the ascending and descending parts may contain both horizontal
and vertical line segments.

The first main result, Theorem A in [155], describes a nontrivial limiting profile � in
the following way, using the (existing) limits μ> 0 of the maxima and −ν < 0 of the min-
ima of the approximating periodic solutions: There is a sequence of continuous functions
ψn : [−ν,μ] \ {0}→R, n ∈ Z, with right and left limits at 0, so that for each integer n the
function (−1)nψn is increasing, ψn � ψn+1, ψn+2 =ψn + p, and

�=
(⋃

n

ψ∗n ∪
(
An × {0}

))∪
(⋃

n

Bn × {λn}
)

where

ψ∗n =
{(
ψn(ξ), ξ

)
: 0 �= ξ ∈ [−ν,μ]},

An =
{[

ψn(0−),ψn(0+)
]

if n is even,[
ψn(0+),ψn(0−)

]
if n is odd,

and

Bn =
[
ψn(λn),ψn+1(λn)

]

with

λn =
{
μ if n is even,

−ν if n is odd.
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Moreover, there exist δ0 > 0 and δ1 > 0 so that for 0 �= ξ ∈ [−ν, δ0],

ψ2m(ξ)= max
−ν�s�ξ

(
r(s)+ψ2m−1

(
g(s)

))
(8.2.3)

while for 0 �= ξ ∈ [−δ1,μ],

ψ2m+1(ξ)= max
ξ�s�μ

(
r(s)+ψ2m

(
g(s)

))
. (8.2.4)

The nonlocal max-plus operators given by the right-hand sides of Eqs. (8.2.3)–(8.2.4)
bear analogies with linear Fredholm integral operators. To see this, replace addition in
(8.2.3)–(8.2.4) by multiplication and maximization by integration. In [153,154] Mallet-
Paret and Nussbaum study max-plus operators and associated eigenvalue problems; the
theory is applied in [155].

Theorem B in [155] deals with monotone delay functions r and provides more detailed
information about limiting profiles, in terms of f , g, r and h= r+ r ◦g. Here the functions
ψn for n odd are solutions to an eigenvalue problem

p+ψn(ξ)= max
ξ�s�μ

(
h(s)+ψn

(
g2(s)

))

for a max-plus operator, with the period p as an additive eigenvalue. The functions ψn for
n even are computed from ψn for n odd.

Theorem C in [155] establishes uniqueness of limiting profiles, under further conditions
on the data f and r .

A simple-looking example for which there is a unique limiting profile is the equation

εx′(t)=−x(t)− kx
(
t − 1− cx(t)

)

with k > 1 and c > 0. In this case, p = 1+ k and

�∩ (
(−1, k)×R

)=
{(

τ,
1

c
τ

)
: −1 < τ < k

}
,

�∩ ({k} ×R
)=

{
(k, ξ): −1

c
� ξ � k

c

}
.

So � is uniquely determined and looks like sawteeth.

8.3. Small delay

In [178] Ouifki and Hbid obtain existence of periodic solutions for a system of the form

x′(t)= g
(
x
(
t − r(xt )

))
(8.3.1)
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with a map g : R2 →R
2 which satisfies g(0)= 0, is smooth of class C4, and has Jacobian( 0 1

−1 0

)
at 0 ∈ R

2. Also the delay functional r :C → [0, h] ⊂ R, C = C([−h,0];R2), is

assumed to be smooth of class C4, and several smallness conditions are imposed. The
approach in [178] is based on a decomposition of the functional f :C→R

2 corresponding
to the right hand side of Eq. (8.3.1) into a smooth map fr :C→R

2 and a remainder term,
both depending on r . The decomposition holds for arguments in a closed subset E1 of
the space C0,1 = C0,1([−h,0];R2). The set E1 is contained in the analogue E ⊂ C1 =
C1([−h,0];R2)⊂ C0,1 of the solution manifold Xf from Section 3; in [144] it was shown
that a nonlinear semigroup on C0,1 generated by equations like (8.3.1) becomes strongly
continuous if restricted to E. Smallness assumptions on r yield that the set E1 is positively
invariant. Each truncated equation

y′(t)= fr(yt ) (8.3.2)

defines a semiflow on the space C, as fr is sufficiently smooth. The delay μ = r(0) at
equilibrium is then considered as a parameter; Eq. (8.3.2) is rewritten as

y′(t)= fr̃ (μ, zt ), (8.3.3)

with r̃(φ) = r(φ)− r(0). Under assumptions which guarantee certain stability properties
of the stationary point 0 of Eq. (8.3.3) with μ = 0 and r̃ small, a combination of center
manifold theory with a Hopf bifurcation theorem yields attracting periodic orbits o(μ, r̃)

of the truncated equation (8.3.2) for small μ > 0 and small r̃ . Upon that a return map is
constructed following solutions of the original equation (8.3.1) which start from initial data
in E1 close to a chosen point on o(μ, r̃). This requires further smallness properties of r̃ ;
closeness refers to the topology of C0,1. With respect to this topology the return map is
continuous and compact, Schauder’s theorem is applied, and resulting fixed points define
periodic solutions of Eq. (8.3.1).

8.4. Generic convergence

In [21] Bartha considers the scalar equation

x′(t)=−μx(t)+ f
(
x
(
t − r

(
x(t)

)))
(8.4.1)

assuming that μ> 0, f ∈ C1(R,R), f (0)= 0, f ′(u) > 0 for all u ∈R, r ∈ C1(R,R), and
there is A> 0 with

∣∣f (u)
∣∣<μ|u| for all u ∈R \ (−A,A).

In addition, it is also required that

r(u) > 0 for all u ∈ [−A,A].
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Setting R =maxu∈[−A,A] |r(u)|, the metric space X is defined as the space of Lipschitz
continuous functions φ : [−R,0]→ [−A,A] equipped with the metric

d(φ,ψ)= max
s∈[−R,0]

∣∣φ(s)−ψ(s)
∣∣.

Then, for every φ ∈ X, Eq. (8.4.1) has a unique solution xφ : [−R,∞)→ [−A,A] with
xφ |[−R,0] = φ, and the relations

F(t,φ)= x
φ
t , t � 0, x

φ
t (s)= xφ(t + s), −R � s � 0,

define a continuous semiflow on X.
Using the standard ordering

φ � ψ iff φ(s) � ψ(s), −R � s � 0,

it is relatively straightforward to show that the semiflow F is monotone, i.e., F(t,φ) �
F(t,ψ) whenever φ ∈X, ψ ∈X, φ � ψ and t � 0. However, the strongly order preserving
property (SOP), which is a crucial hypothesis in the generic convergence theorem of Smith
and Thieme in [191], does not hold in general for F . Recall that SOP of F means the
monotonicity of F , and that in case φ ∈ X, ψ ∈ X, φ � ψ , φ �= ψ there exist t0 > 0 and
open subsets U,V of X with φ ∈ U and ψ ∈ V such that F(t0,U) � F(t0,V ). Here, for
subsets S,T of X we write S � T if φ � ψ holds for all φ ∈ S and ψ ∈ T . The main
reason of the failure of the SOP property for F is that for different elements φ, ψ of X

with φ � ψ , xφ(t)= xψ(t) may happen for all t � 0.
In [21] the SOP property is replaced by the weaker mildly order preserving property

(MOP). Introduce

φ <F ψ

for elements φ,ψ of X if φ � ψ , φ �= ψ , and F(t,φ) �= F(t,ψ) for all t � 0. Then F is
said to be MOP if it is monotone, and for every φ, ψ in X with φ <F ψ , there exist t0 > 0
and open subsets U , V of X with φ ∈U and ψ ∈ V such that F(t0,U) � F(t0,V ).

[21] proves that F has the MOP property. An important step toward this result is that
for two globally defined solutions x : R→ [−A,A] and y : R→ [−A,A] with x0 = y0, it
is true that

x(t)= y(t) for all t ∈R.

The abstract generic convergence result of Smith and Thieme from [191] is modified in
[21] so that SOP is replaced by MOP. Then the main result of [21] is that there is an open
dense subset Y of X such that

lim
t→∞xφ(t) exists

for all φ ∈ Y .



524 F. Hartung et al.

8.5. Stability and oscillation

Several results in the literature which deal with limiting behaviour of solutions to nonau-
tonomous differential equations with non-constant delay are also valid for equations with
state-dependent delays, see, e.g., [128,222]. Most of these papers concentrate on the be-
haviour of given solutions, not on questions of existence, uniqueness, and continuous de-
pendence.

Here we list a few papers where the presence of the state-dependent delay is emphasized
since it causes new technical difficulties.

Kuang [135] considers the scalar nonautonomous state-dependent delay differential
equation

x′(t)=−g
(
t, x(t)

)− e−ητ(xt )f
(
t, x

(
t − τ(xt )

))
.

Sharp conditions for the boundedness of solutions, global and uniform stability of the triv-
ial solution are presented.

Cooke and Huang [47] study the scalar equation

x′(t)= x(t)

(
a − bx(t)−

L∑
i=1

bix(t − ri)− cx
(
t − τ(xt )

))
,

where a, bi , c are positive constants, τ is a functional of the history of x(·) over all times
before t . They obtain results on convergence of positive solutions, periodic and oscillatory
behaviour which extend work of G. Seifert for the constant delay case.

Győri and Hartung [93] consider the linear delay differential systems

x′(t)=Ai(t)x
(
t − σi(t)

)
(8.5.1)

with continuous coefficient functions Ai : [0,∞)→R
n×n and continuous delay functions

σi : [0,∞)→ R, i ∈ {1,2}, such that, for some r > 0, 0 � σi(t) � t + r , t � 0, and
lim inft→∞[t − σi(t)] > 0. Assuming that the zero solution of Eq. (8.5.1) with i = 1 is
exponentially stable, explicit neighbourhoods of A1 and σ1 are constructed so that if A2

and σ2 belong to the corresponding neighbourhoods of A1 and σ1, then the zero solution
of Eq. (8.5.1) with i = 2 is also exponentially stable. As an application, among others,
sufficient conditions are given to guarantee the exponential stability of the zero solution of
the scalar equation

x′(t)= a(t)x
(
t − τ(t, xt )

)

with delay functional τ defined by the threshold relation

∫ t

t−τ(t,xt )
f (t, s, xt )ds =m
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provided that the zero solution of

x′(t)= a(t)x
(
t − τ(t,0)

)

is exponentially stable.
Cao, Fan and Gard [37] study the two-stage population model of Aiello, Freedman and

Wu [2] with density-dependent delay. They show that no Hopf bifurcation can occur in the
sense that the characteristic equation, associated with linearization at any strictly positive
equilibrium, never has imaginary roots. Instability can arise together with the creation of
multiple equilibria. The attractivity regions of the equilibrium points are also estimated.

Bélair [24] considers an age-structured model, and reduces it to a system of delay dif-
ferential equations with state-dependent delay. Assuming that a center manifold reduction
is valid, a supercritical Hopf bifurcation is established.

Rai and Robertson [182,183] study stage-structured population models with delay where
the delay is a function of the total population density, and they prove positivity, bounded-
ness and stability of the solutions.

Bartha [20] addresses the stability and convergence of solutions for a class of neutral
functional differential equations with state-dependent delay. The equation is transformed
into a retarded differential equation with infinite delay. The state-dependent delay causes
that the transformation depends on each particular solution. For the retarded equation with
infinite delay a result of Krisztin [128] can be applied to get sharp sufficient conditions for
the stability of the zero solution. The second part of [20] contains attractivity results.

Pinto [180] gives conditions assuring asymptotic expansions of the form

y(t)= exp

(∫ t

t0

a(s)ds

)[
ξ +O

(∫ ∞

t

λ(s)ds

)]
as t→∞

for the solutions of the scalar state-dependent differential equation

y′(t)= a(t)y
(
t − r

(
t, y(t)

))

with certain ξ ∈ R, λ ∈ L1[0,∞) constructed by means of the coefficient function a and
the delay function r . These results are extended to systems in [83].

Asymptotic solution behaviour for various classes of autonomous equations with state-
dependent delays is investigated also in [45,46,53,104].

Gatica and Rivero [86] obtain sufficient conditions for the oscillation of all nontrivial
solutions of a scalar equation with a state-dependent delay given by a threshold condition.

Domoshnitsky, Drakhlin and Litsyn [56] study the equation

x′(t)+
m∑
i=1

Ai(t)x
(
t − (Hix)(t)

)= f (t)

in R
n with measurable and essentially bounded functions Ai and f , and measurable de-

lay functional Hi . Sufficient conditions are obtained for the boundedness, oscillation and
nonoscillation of the solutions by using an associated linear equation.
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Additional stability and oscillation results can be found in [36,46,84,92,172,173,194,
195,200,217,220,223].

9. Numerical methods

9.1. Preliminaries

The study of numerical approximation for state-dependent delay equations goes back at
least to the mid sixties of the last century [28,77], and since then it is an intensively inves-
tigated research area [12–14,17,18,27,31,35,49,68–70,78,79,90,125,140,145,168,169,196,
197,211].

In this section we concentrate on numerical methods for state-dependent delay equations
(SD-DDEs) of the form

x′(t)= f
(
t, x(t), x

(
t − τ

(
t, x(t)

)))
, t ∈ [t0, tN ] (9.1.1)

with an associated initial condition

x(t)= φ(t), t ∈ [t0 − h, t0]. (9.1.2)

For simplicity we assume that f : [t0, tN ] × R × R → R is continuous and Lipschitz
continuous in its second and third variables, τ : [t0, tN ] × R→ [0, h] is continuous, and
φ ∈ C0,1([t0, tN ];R), therefore the IVP (9.1.1)–(9.1.2) has a unique solution. The results
we present can usually be easily extended to the system or multiple delays case.

We mention that there are a large number of publications dealing with other types of
state-dependent differential equations including neutral SD-DDEs of the form

x′(t)= f
(
t, x(t), x

(
t − τ

(
t, x(t)

))
, x′

(
t − σ

(
t, x(t)

)))

(see, e.g., [16,27,34,42,69,119,122,169,179]), the so-called “implicit” neutral SD-DDEs of
the form

d

dt

(
x(t)− g

(
t, x

(
t − σ

(
t, x(t)

))))= f
(
t, x(t), x

(
t − τ

(
t, x(t)

)))

[102,140], Volterra differential equations with state-dependent delays [13,17,31,35,120,
196], and differential-algebraic equations with state-dependent delays [109].

9.2. Continuous Runge–Kutta methods for ODEs

Before we discuss approximation of state-dependent equations, first we recall some basic
notations and definitions for numerical approximation of ODEs. Consider the IVP

x′(t) = g
(
t, x(t)

)
, t ∈ [t0, tN ], (9.2.1)

x(t0) = x0, (9.2.2)
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and suppose mesh points � = {t0 < t1 < · · · < tN } are given. Discrete one- or multistep
methods associated to the IVP (9.2.1)–(9.2.2) produce a sequence y0, . . . , yN to approxi-
mate the solution x at the mesh points �. In this paper for simplicity we restrict our dis-
cussion to a popular class of one-step methods, the Runge–Kutta (RK) methods. A discrete
RK method is defined by y0 = x0, and

yn+1 = yn + hn

s∑
i=1

bikn,i , n= 0,1, . . . ,N − 1, (9.2.3)

where the stage values kn,1, . . . , kn,s are determined by the system of algebraic equations

kn,i = g

(
tn + hnci, yn + hn

s∑
j=1

aij kn,j

)
, i = 1,2, . . . , s, (9.2.4)

and hn = tn+1 − tn. s is called the number of stages, the bi ’s are the weights, the ci ’s are
the abscissae of the method satisfying ci ∈ [0,1]. The coefficients aij are collected in a
matrix A, the weights and abscissae in the vectors b and c, and the parameters are usually

listed in the Butcher tableau
c A

bT . If the matrix A is lower triangular with zero diagonal

entries then the RK method is explicit, otherwise (9.2.3) and (9.2.4) implicitly define the
sequence y0, . . . , yN .

In the mid eighties of the last century and at the beginning of the nineties the interest
in the study and application of continuous extensions of numerical methods has been in-
creased, since if a dense output is required by an ODE solver, e.g., when plotting the graph
of the numerical solution, then a discrete solver is not efficient enough. Continuous meth-
ods are especially important for the approximation of delay equations where the evaluation
of the approximate solution is needed in between mesh points.

One possible way to derive a continuous extension of the RK method (called CRK
method) (9.2.3)–(9.2.4) is the following: Define

u(tn + θhn)= yn + hn

s∑
i=1

wi(θ)kn,i , θ ∈ [0,1], n= 0,1, . . . ,N − 1,

(9.2.5)

where wi are polynomials of degree less than or equal to δ satisfying

wi(0)= 0, wi(1)= bi, i = 1, . . . , s.

This formula is called interpolant of the first class of the discrete RK method, δ is the

degree of interpolant. The Butcher tableau of a CRK method has the form
c A

wT(θ)
.

There are several methods to define the polynomial interpolation wi in (9.2.5). A typical
way is to use a cubic Hermite interpolation, or when a higher order interpolant is required,
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a so-called fully Hermite interpolation [71,110]. Another approach is to consider (9.2.4)–
(9.2.5) as a discrete RK method with coefficients aij /θ , weights wi(θ)/θ and step size θhn,
and apply order conditions known for the discrete RK method, see, e.g., [27]. We mention
that there are more general extensions of discrete RK methods than that of the form (9.2.5)
(see, e.g., [27,110]), but we do not go into details here.

Let z be the solution of the local problem

z′(t) = g
(
t, z(t)

)
, t ∈ [tn, tn+1], (9.2.6)

z(tn) = z∗. (9.2.7)

We say that the discrete RK method (9.2.3)–(9.2.4) has order p if p � 1 is the largest
integer such that for all Cp-functions g in (9.2.1) and for all meshes � we have

∣∣z(tn)− yn
∣∣=O

(
h
p+1
n

)

uniformly with respect to z∗ in any bounded subset of R and n = 0, . . . ,N − 1, where z

is the solution of (9.2.6)–(9.2.7). Similarly, the CRK method (9.2.4)–(9.2.5) has uniform
order q if q � 1 is the largest integer such that for all Cq -functions g in (9.2.1) and for all
meshes � we have

max
{∣∣z(t)− u(t)

∣∣: tn � t � tn+1
}=O

(
h
q+1
n

)

uniformly with respect to z∗ in any bounded subset of R and n= 0, . . . ,N − 1, where z is
the solution of (9.2.6)–(9.2.7).

We recall the following result from [27]:

THEOREM 9.2.1. If the discrete RK method (9.2.3)–(9.2.4) has order p and if g is a Cp-
function, then the method is convergent of global order p on any bounded interval [t0, tN ],
i.e.,

max
{∣∣x(tn)− yn

∣∣: n= 1, . . . ,N
}=O

(
hp

)
,

where h=max{h0, . . . , hN−1}.
Moreover, if the CRK method (9.2.4)–(9.2.5) has uniform order q , then it has uniform

global order q ′ =min{p,q + 1}, i.e.,

max
{∣∣x(t)− u(t)

∣∣: t0 � t � tN
}=O

(
hq

′)
.

It can be checked (see [27]) that, in order to get the uniform order q , the interpolant must
be of degree δ � q , and if a discrete RK method has a continuous extension u(t) of uniform
order q with degree δ > q , then it has a continuous extension ũ(t) of uniform order q with
degree δ = q , as well.
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As an example we present the Butcher tableau of a continuous extension of the classical
four-stage discrete RK method which has uniform order 3:

0 0
1
2

1
2 0

1
2 0 1

2 0

1 0 0 1 0

w1(θ) w2(θ) w3(θ) w4(θ)

where

w1(θ) = 2
3θ

3 − 3
2θ

2 + θ,

w2(θ) = − 2
3θ

3 + θ2,

w3(θ) = − 2
3θ

3 + θ2,

w4(θ) = 2
3θ

3 − 1
2θ

2.

One-step collocation methods can be considered as CRK methods: Pick distinct abscis-
sae c1, . . . , cs ∈ [0,1], and define

 i(v)=
s∏

k=1, k �=i

v− ck

ci − ck
, i = 1, . . . , s,

aij =
∫ ci

0
 j (v)dv, i, j = 1, . . . , s,

wi(θ)=
∫ θ

0
 i(v)dv, i = 1, . . . , s.

Then the corresponding CRK method (9.2.4)–(9.2.5) defines a polynomial u of degree � s

satisfying the collocation equations

u′(tn + hnci)= g
(
tn + hnci, u(tn + hnci)

)
, i = 1, . . . , s, u(tn)= yn.

It is known (see, e.g., [27]) that the uniform global order of this CRK method is q ′ = s or
s + 1.

Nowadays an efficient differential equation solver uses a higher order continuous
method, or usually a pair of higher order methods (to estimate local errors in the step
size selection). For other examples of CRK methods we refer to [27,49,70,71].

9.3. The standard approach to approximation of SD-DDEs

A typical approach (called “the standard approach” in [27]) to obtain a numerical approx-
imation to the solution x of the state-dependent IVP (9.1.1)–(9.1.2) is the numerical ana-
logue of the method of steps well-known for computing exact solutions of constant delay
equations. In this subsection we describe this approach, but for simplicity, we formulate
it using the class of one-step CRK methods. Clearly, it can be adopted using many other
types of ODE discretization techniques.

Pick mesh points �= {t0 < t1 < · · ·< tN }, let y0 = φ(t0), and consider the sequence of
local IVPs for n= 0,1, . . . ,N − 1:

z′n(t) = f
(
t, zn(t), y

(
t − τ

(
t, zn(t)

)))
, t ∈ [tn, tn+1], (9.3.1)
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zn(tn) = yn, (9.3.2)

where

y(s)=
⎧⎨
⎩
φ(s), s ∈ [t0 − h, t0],
u(s), s ∈ [t0, tn],
zn(s), s ∈ [tn, tn+1].

Here u denotes the function u : [t0, tn]→R whose restriction to [ti , ti+1] (i = 0, . . . , n−1)
is the numerical solution, i.e., a CRK interpolant of the solution of the ith IVP. Then u is
already defined in the previous steps. Now we solve this IVP on [tn, tn+1] using the CRK
method of the form (9.2.5) corresponding to g(t, x) = f (t, x,u(t − τ(t, x))), i.e., where
kn,i ’s are defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tn,i = tn + hnci,

yn,i = yn + hn

s∑
j=1

aij kn,j ,

kn,i = f
(
tn,i , yn,i , y

(
tn,i − τ(tn,i , yn,i)

))
.

(9.3.3)

Then we extend u from [t0, tn] to [t0, tn+1] by this CRK interpolant, define yn+1 = u(tn+1),
and continue with the next local IVP in the same manner.

If τ is bounded below by a positive constant τ̄ , and the step size is chosen so that hn � τ̄ ,
then (9.3.1) is an ODE, since y in (9.3.1) never takes an argument from [tn, tn+1], so it is
explicitly defined. Therefore if the discrete RK method is explicit, i.e., A is lower triangular
with zeros in the diagonal, then its continuous extension (9.2.5)–(9.3.3) is also explicit.

The numerical difficulty arises in the vanishing delay case, i.e., when τ can be arbitrary
small. Then hn can be such that t − τ(t, z(t)) > tn for some t ∈ [tn, tn+1], so the evaluation
of y in (9.3.3) depends also on the unknown interpolant u on [tn, tn+1]. (This is called over-
lapping.) In this case the method is implicit, even if the original discrete RK method was
explicit. Therefore the existence of the numerical approximation, i.e., the solvability of the
algebraic equations (9.2.4)–(9.3.3) for the stage values kn,1, . . . , kn,s is not trivial. It can be
shown [27] that the above problem has a positive answer: Suppose the functions f , τ and
φ are Lipschitz continuous, then in the overlapping case there always exist a sufficiently
small hn and a suitable degree of interpolants so that the implicit relations (9.2.4)–(9.3.3)
have a unique solution for the stage values kn,1, . . . , kn,s ; therefore u has a unique exten-
sion from [t0, tn] to [tn, tn+1]. The proof of this result shows that this extension can be
determined as a limit of a fixed point iteration, and therefore, it is common to estimate it by
iteration using a predictor–corrector method. Next we show a possible algorithm to com-
pute the nth step of the approximation in the case when the original discrete RK method
is explicit, i.e., aij = 0 for i � j and c1 = 0. In this algorithm we first (Step 1) predict a
starting value of the stage values using the last computed approximate solution value in the
overlapping case instead of interpolating values. If overlapping occurs, then in an iteration
(Step 2) we correct the stage values. It can be done using a fixed number of steps (m in the
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algorithm), or by testing the numerical convergence in a loop. Finally (Step 3) we update
the interpolant.

Step 1: Prediction—computation of initial stage values

tn,1 = tn

z
(0)
n,1 = yn

k
(0)
n,1 = f

(
tn, z

(0)
n,1, u

(
tn − τ

(
tn, z

(0)
n,1

)))
for i = 2, . . . , s do

tn,i = tn + hnci

z
(0)
n,i = yn + hn

i−1∑
j=1

aij k
(0)
n,j

d
(0)
n,i = tn,i − τ

(
tn,i , z

(0)
n,i

)
if d(0)

n,i � tn then

k
(0)
n,i = f

(
tn,i , z

(0)
n,i , u

(
d
(0)
n,i

))
else

k
(0)
n,i = f

(
tn,i , z

(0)
n,i , z

(0)
n,i

)
end if

end for

Step 2: Correction by iteration is needed if d(0)
n,i > tn was for any i � 2 in Step 1

for r = 1, . . . ,m do

for i = 1, . . . , s do

z
(r)
n,i = yn + hn

i−1∑
j=1

aij k
(r−1)
n,j

d
(r)
n,i = tn,i − τ

(
tn,i , z

(r−1)
n,i

)
if d(r)

n,i � tn then

k
(r)
n,i = f

(
tn,i , z

(r)
n,i , u

(
d
(r)
n,i

))
else

θi =
d
(r)
n,i − tn

hn
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ûi = yn + hn

i−1∑
j=1

wj(θi)k
(r)
n,j + hn

s∑
j=i

wj (θi)k
(r−1)
n,j

k
(r)
n,i = f

(
tn,i , z

(r)
n,i , ûi

)
end if

end for

end for

Step 3: Computation of the extension of u to [tn, tn+1]

u(tn + θhn)= yn + hn

s∑
i=1

wi(θ)k
(m)
n,i , θ ∈ [0,1].

Most modern differential equation solvers use non-uniform mesh size, therefore the se-
lection of the step size in each integration step (the so-called primary step size selection) is
an important practical issue in such softwares. Concerning this topic we refer to [27,110,
125] for more details.

The next result says that in order a method be of order p it is necessary that the solution
be at least Cp on each interval [tn, tn+1]. We say that the function x has discontinuity of
order p at ξ if x(p−1) exists and is continuous at ξ , and x(p) has jump discontinuity at ξ ,
i.e., x(p)(ξ+) �= x(p)(ξ−).

For the proof of the next result see [27]:

THEOREM 9.3.1. Suppose f , τ and φ are Cp functions. Moreover,
(1) the mesh �= {t0 < t1 < · · ·< tN } includes all discontinuity points ξ1 < ξ2 < · · ·<

ξm of the solution of order � p;
(2) the discrete RK method (9.2.1)–(9.2.3) is consistent of order p and the CRK method

(9.2.4)–(9.2.5) is consistent of uniform order q .
Then the method (9.2.4)–(9.3.3) for solving the IVP (9.1.1)–(9.1.2) is convergent of uniform
global order q ′ =min{p,q + 1}, i.e.

max
{∣∣x(t)− u(t)

∣∣: t0 � t � tN
}=O

(
hq

′)
,

where h=max{h0, . . . , hN−1}.

We note that there are many papers which follow the basic method of steps described
in this subsection, i.e., approximate the solution of an SD-DDE by that of an ODE, but
defined by different discrete or continuous one- or multistep ODE solvers or with different
definitions of the associated ODE [15,49,68,70,77,91,124,125,169,179].

Rewriting a constant delay equation as an equivalent abstract Cauchy problem and us-
ing Trotter–Kato-type approximations is another popular approach especially in control
applications. This technique was extended to SD-DDEs in [118].
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9.4. Tracking of derivative discontinuities

Theorem 9.3.1 indicates that a high order method must locate all the discontinuity points
of the solutions up to order p, and add them to the mesh. For constant or time-dependent
delay equations this is a relatively simple task, but in the state-dependent delay case it
leads to significant difficulties. Indeed, the location of the discontinuity points can not
be computed a priori because they depend on the solution, and, on the other hand, only
approximate locations can be computed.

We assume throughout this subsection that f, τ and φ are all Cp-functions. One can
show that in case φ′(t0−) �= f (t0, φ(t0),φ(−τ(t0))) the corresponding solution x of the
IVP (9.1.1)–(9.1.2) has discontinuity of order 1 at t = t0, but for t > t0 the solution is C1-
smooth. If ξ > t0 is such that ξ−τ(ξ, x(ξ))= t0, it is easy to check that x′′(ξ−) �= x′′(ξ+),
so x has a discontinuity of order 2 at t = ξ . Similarly, if we set ξ0 = t0 and define a
(finite or infinite) sequence by the relation ξi+1−τ(ξi+1, x(ξi+1))= ξi for i = 0,1, . . . , the
sequence ξ0, ξ1, . . . consists of discontinuity points of increasing order: ξi has order i + 1.
If a solution x is such that the time lag function t )→ t − τ(t, x(t)) is strictly monotone
increasing (which is satisfied in many applications), the above sequence will contain all
discontinuity points of the solution.

On the other hand, if the above time lag function is not strictly monotone increasing,
then the equation ξ − τ(ξ, x(ξ))= ξi may have many solutions ξ . It can be checked (see
[27,78,79,168]) that at a solution ξ of the above equation the function x has a discontinuity
of order � 1, if and only if the graph of t )→ t − τ(t, x(t)) crosses the level ξi , i.e., the
root ξ has odd multiplicity. Therefore in this case the discontinuity points can be naturally
stored in a tree: ξ0,1 = t0 is the root of the tree, level 1 of the tree contains the solutions
ξ1,1, . . . , ξ1, 1 of

ξ − τ
(
ξ, x(ξ)

)= ξi,j (9.4.1)

with odd multiplicity for i = 0 and j = 1. Then for i = 1 and any j = 1, . . . ,  1 the so-
lutions ξ2,1, . . . , ξ2, 2 of (9.4.1), if exist, are placed in the second level of the tree, as the
descendents of the respective ξ1,j , etc.

It was shown in [168] that there are only finitely many computationally important points
(i.e., of order less or equal to p) in the discontinuity propagation tree, so they can be
ordered and relabeled as an increasing sequence t0 = ξ0 < ξ1 < ξ2 < · · ·< ξ � tN . In the
sequel we use this notation.

Let ξj be a descendent of ξi in the discontinuity tree, i.e.,

ξj − τ
(
ξj , x(ξj )

)= ξi . (9.4.2)

It is easy to see that as discontinuity propagates from ξi to ξj , smoothing occurs. More
precisely, we recall the next result from [168].

THEOREM 9.4.1. Suppose ξi and ξj satisfying (9.4.2) are discontinuity points of order ki
and kj , respectively, and ξj has odd multiplicity mj . Then mjki + 1 � kj .
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Since the exact discontinuity points ξ1, . . . , ξ depend on the solution, suitable approx-
imations are required. Let u denote the continuous interpolant (in the previous subsection
it was a CRK interpolant) of the numerical approximation of x using certain mesh and
approximate values y0 = φ(t0), y1, . . . , yN . Let ξ̃0 = t0, and define the approximate dis-
continuity points as solutions of

ξ − τ
(
ξ,u(ξ)

)= ξ̃i (9.4.3)

where u is the approximate solution of the IVP satisfying |x(ξ̃j ) − u(ξ̃j )| = O(hp), and
h=max{h0, . . . , hN−1}. The following result is cited from [78]:

THEOREM 9.4.2. Let u be a pth order approximation of x at ξ̃j , i.e., |x(ξ̃j )− u(ξ̃j )| =
O(hp), h = max{h0, . . . , hN−1}, mj be the multiplicity of ξj in (9.4.2), and |ξi − ξ̃i | =
O(hri ). Then |ξj − ξ̃j | =O(hrj ) where rj =min{p, ri}/mj .

Feldstein and Neves [78] suggested the following secondary step size control to select
the step size of the numerical integration method so that the approximate discontinuity
points are collected to the mesh to keep the global order of the method high: Suppose at
the nth step y0, . . . , yn are defined, and the approximate discontinuity points found so far
are t0 = ξ̃0 < ξ̃1 < ξ̃2 < · · ·< ξ̃ n � tN .

Step 1: Predict the next approximate value of the integration method by yn+1 = u(tn +
hn) using the continuous method u of order p and the step size hn selected by the primary
step size control method of u.

Step 2: For i = 1, . . . ,  n find the first i such that

(
tn − τ(tn, yn)− ξ̃i

)(
tn+1 − τ(tn+1, yn+1)− ξ̃i

)
< 0,

i.e., (9.4.3) corresponding to the right-hand side ξ̃i has a solution ξ̃ . If such i exists then
proceed with Step 3, otherwise we accept hn and yn+1 and finish this algorithm, i.e, go to
the next iterate of computing yn+2.

Step 3: Using a root-finding method (e.g., bisection) combined with the definition of u
find an approximate solution ξ̃ with the above property (if more solutions are found, the
least one is used).

Step 4: Include ξ̃ to the new mesh t̂0 = t0, . . . , t̂n = tn, t̂n+1 = ξ̃ , t̂n+2 = tn+1, redefine
the approximate solution values ŷ0 = y0, . . . , ŷn = yn, ŷn+1 = u(ξ̃ ). Restart the numerical
integration from t̂n+1 = ξ̃ to t̂n+2. Let û be the new interpolant on [t̂n+1, tn+2], and define
ŷn+2 = û(tn+2).

Step 5: Continue with the next iterate.
See [78,79] for more details. Concerning the global order of the above method combined

with a pth order continuous numerical approximation method u Feldstein and Neves [78]
showed:

THEOREM 9.4.3. Suppose the order of discontinuity of ξj is kj (j = 1, . . . ,  ), ξ̃j is the
corresponding approximate discontinuity point, i.e., the solution of (9.4.3), |ξj − ξ̃j | =
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O(hrj ), ξ̂j is a numerical approximation of ξ̃j with order |ξ̂j − ξ̃j | = O(hsj ), and the
uniform order of u is p. Then

max
{∣∣x(t)− u(t)

∣∣: t ∈ [t0, tN ]
}=O

(
hs

)
where s = min

j=1,..., 
{p,kj rj , kj sj }.

Moreover, if sj � p/kj for j = 1, . . . ,  , then

max
{∣∣x(t)− u(t)

∣∣: t ∈ [t0, tN ]
}=O

(
hp

)
.

In this subsection we assumed that the parameters of the IVP, f , τ and φ are all
Cp-functions. If they are only piecewise Cp-functions, i.e., there are points where any of
the tree parameters has smaller smoothness, then starting from such a point we can build a
discontinuity propagation tree similar to what we described in this subsection. Such points
are called secondary discontinuity points. Similarly, multiple delays can also be handled
(see, e.g., [27]).

We note that the extension of the notion of the discontinuity tree from the scalar case to
the system case is far from being obvious, and was investigated by Willé and Baker [212,
213]. They associated a so called dependency network of oriented graphs to the disconti-
nuity points, see also [27]. For more discussions on numerical problems related to tracking
discontinuity points we refer to [211,214].

Tracking discontinuities can be computationally expensive, especially when the number
of discontinuity points is large. Another typical approach to handle the loss of numerical
accuracy due to the presence of derivative discontinuities is the method of defect control
developed by Enright and Hayashi [67,69] (see also [16,79]). In this method the size of the
defect, i.e., max{|u′(t)− f (t, u(t), u(t − τ(t, u(t))))|: t ∈ [tn, tn+1]} is monitored and its
size is controlled at each step of the integration.

9.5. Concluding remarks

There are several software packages available for solving SD-DDEs. Without completeness
we list some of them: ARCHI (Paul [179]), DDE-STRIDEL (Butcher [34]), DDVERK
(Enright and Hayashi [68]), DMRODE (Neves [167]), DKLAG6 (Corwin, Sarafyan and
Thompson [49]), RADAR5 (Guglielmi and Hairer [90]), SNDDELM (Jackiewicz and Lo
[122]), SYSDEL (Karouri and Vaillancourt [125]). We refer to [27,79,197] for further dis-
cussion and comparison of available solvers for state-dependent delay equations.

In this section we discussed some problems related to the design and analysis of numer-
ical approximation schemes for state-dependent delay equations. Other important qualita-
tive issues, like stability of numerical methods are not discussed here, we mention [12,
27,140] for studies in this directions. We also mention that there are many topics be-
yond the scope of this survey, e.g., numerical bifurcation analysis (see [66,145]), boundary
value problems (see [18]) or parameter estimation (see [14,100,103,107,164]) for state-
dependent delay equations.
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[92] I. Győri and F. Hartung, On the exponential stability of a state-dependent delay equation, Acta Sci. Math.
(Szeged) 66 (2000), 71–84.
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1. Introduction

We consider solutions of the two point boundary value problems

u′′(x)+ λf
(
x,u(x)

)= 0 for a < x < b, u(a)= u(b)= 0, (1.1)

depending on a parameter λ. We wish to know how many exactly solutions does problem
(1.1) have, and how these solutions change with λ. What is the role of the parameter λ?
Of course, it could be absorbed into the nonlinearity f . However, as is often the case, it is
helpful to have something “extra” in the statement of the problem. Consider for example
the problem

u′′(x)+ 4e
5u(x)

5+u(x) = 0 for 0 < x < 1, u(0)= u(1)= 0. (1.2)

Problems of this type come up in combustion theory, referred to as “perturbed Gelfand
problem”, see, e.g., J. Bebernes and D. Eberly [7]. It will follow from a result we present
below that this problem has exactly three positive solutions. It appears next to impossible
to establish this result directly. We introduce a parameter λ, and consider

u′′(x)+ λe
5u(x)

5+u(x) = 0 for 0 < x < 1, u(0)= u(1)= 0. (1.3)

We now study curves of solutions, u = u(x,λ). The advantage of this approach is that
some parts of the solution curve are easy to understand, and it also becomes clear what
are the tougher parts of the solution curve that we need to study—the turning points. For
example, it is easy to understand the “small” solutions of (1.3), by applying the implicit
function theorem (in Banach spaces) in the neighborhood of the trivial solution λ = 0,
u= 0. We then continue this curve of solutions for increasing λ > 0 until a critical solution
is reached, i.e. the implicit function theorem is no longer applicable. We show that at the
critical solution the Crandall–Rabinowitz Theorem 1.2 (see below) applies. It implies that
either the solution curve continues forward in λ through the critical solution, or it just bends
back (no secondary bifurcations or other eccentric behaviour is possible). We then show
that the global solution curve makes exactly two turns, and the value of λ= 4 from (1.2)
lies between the turns, thus establishing the existence of three solutions. The bifurcation
approach, just described, has been developed in the recent years by Y. Li, T. Ouyang, J. Shi
and the present author. It applies also to the semilinear elliptic problems for balls in R

n,
however in the present paper we restrict to the ODE case (1.1).

The most detailed results are obtained when one considers positive solutions of au-
tonomous problems, i.e. when f = f (u). Since in that case both the length and the position
of the interval (a, b) are irrelevant, and since positive solutions are symmetric with respect
to the midpoint of the interval, it is convenient to pose the problem on the interval (−1,1),
i.e. we consider

u′′(x)+ λf
(
u(x)

)= 0 for −1 < x < 1, u(−1)= u(1)= 0. (1.4)
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It turns out that convexity properties of f (u) are important for determining the direction
of the turn for solution curves. Accordingly, in the simplest case f ′′(u) > 0 and f (u) > 0,
for u > 0, we can give an exhaustive analysis of the problem. (In case f ′′(u) < 0 and
f (u) > 0, for u > 0, it is easy to prove uniqueness of solutions.) The next case in order
of complexity is when f (u) changes concavity exactly once. The prominent case is when
f (u) is modelled on a cubic with simple roots:

u′′ + λ(u− a)(u− b)(c− u)= 0 for −1 < x < 1, u(−1)= u(1)= 0.
(1.5)

We assume that 0 � a < b < c, since the analysis is easier if some root(s) is negative. We
wish to describe how many exactly positive solutions does problem (1.5) have for various λ.

This problem was studied in a 1981 paper by J. Smoller and A. Wasserman [57]. They
succeeded in solving the problem for a = 0, while their proof for a > 0 case contained an
error. This error was discovered by S.-H. Wang [59], who was able to solve the problem un-
der some restriction on a > 0. Both papers used the phase-plane analysis. Then P. Korman,
Y. Li and T. Ouyang [30] used bifurcation theory to attack the problem, but again some
restrictions were necessary (all of the above mentioned papers covered more general f (u),
behaving like cubic). Very recently, P. Korman, Y. Li and T. Ouyang [33], building on their
previous work, have given a computer assisted proof for general cubic. It turns out that
the set of all positive solutions consists of two curves, with the lower curve monotone in
λ, and the upper curve having exactly one turn. The computations in P. Korman, Y. Li
and T. Ouyang [30] also showed that the approach in J. Smoller and A. Wasserman [57]
could not possibly cover the general cubic. (That approach required a certain integral to be
positive, in order to derive a differential inequality for a time map. However, that integral
changes sign for some cubics.) In the next section we state the optimal result, and describe
the approach taken in [30] and [33].

Another prominent class of problems where f (u) changes concavity exactly once is

u′′ + λe
au
u+a = 0 for −1 < x < 1, u(−1)= u(1)= 0, (1.6)

from combustion theory. Here a is a second parameter. In case a = 5, we have the problem
(1.3), discussed above. If a � 4, the problem is easy. In that case the solution curve is
monotone, and it continues for all λ > 0 without any turns. Following some earlier results
of K.J. Brown, M.M.A. Ibrahim and R. Shivaji [9] and others (see [60] and [29] for the
earlier references), S.-H. Wang [60] has proved existence of a constant a0, so that for
a > a0 the solution curve of (2.21) is exactly S-shaped, i.e. it starts at λ= 0, u= 0, it makes
exactly two turns, and then it continues for all λ > 0 without any more turns. S.-H. Wang
[60] gave an approximation of the constant a0 / 4.4967. That paper, as well as all previous
ones, used a time map approach. P. Korman and Y. Li [29] have applied the bifurcation
approach to the problem. Since bifurcation approach is more general, this opened a way
to do other problems. In fact, Y. Du and Y. Lou [14] have used a similar approach, with
several additional tricks of their own, to prove that for a ball in two dimensions a similar
result holds for sufficiently large a.
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P. Korman and Y. Li [29] had also improved the value of the constant to a0 / 4.35, i.e.
for a > a0 the solution sets are S-shaped curves. But what about 4 < a < a0? S.-H. Wang
[60] has conjectured existence of a critical number ā, so that for a � ā the solution curve
is monotone, while for a > ā the solution curve is exactly S-shaped (the number a0, men-
tioned above, is just an upper bound for ā). Recently, P. Korman, Y. Li and T. Ouyang [33]
has given a computer assisted proof of the S.-H. Wang’s conjecture. Numerical calculations
show that ā / 4.07.

Other topics we discuss using the bifurcation approach involve pitchfork bifurcation and
symmetry breaking, sign changing solutions, and the Neumann problem. We also present
a recent formula from P. Korman, Y. Li and T. Ouyang [33], which allows one to compute
all possible values of α = u(0), at which solution of (1.4), with the maximal value equal to
α, is singular.

The case when f = f (x,u) is much harder than the autonomous case. In particular, the
time map method does not apply. Bifurcation approach works, but it becomes much more
complicated. For example, solutions of the corresponding linearized problem need not be
of one sign (an implicit example of that is provided by the Theorem 1.10 in W.-M. Ni
and R.D. Nussbaum [46]). In the papers P. Korman and T. Ouyang a class of f (x,u) has
been identified, for which the theory of positive solutions is very similar to that for the
autonomous case, see, e.g., [34–36]. Further results in this direction have been given in
P. Korman, Y. Li and T. Ouyang [30], and P. Korman and J. Shi [40]. Namely, assume that
f ∈ C2 satisfies

f (−x,u)= f (x,u) for all −1 < x < 1 and u > 0,

fx(x,u) � 0 for all 0 < x < 1 and u > 0.

Under the above conditions any positive solution of (1.1) is an even function, with
u′(x) < 0 for all x ∈ (0,1], see B. Gidas, W.-M. Ni and L. Nirenberg [15]. We show that
any solution of the corresponding linearized problem is of one sign, and then outline a
number of exact multiplicity results.

Without symmetry assumption on f (x,u) things are even more hard. In Section 4 we
present extensions of the previous results in P. Korman and T. Ouyang [38]. The notion of
Schwarzian derivative from Complex Analysis turns out to play a role here.

The bifurcation approach is effective for other problems, in addition to the two point
problems that we discuss in the present paper. Most notably, similar results were developed
for PDE’s on a ball or annulus in R

n, see, e.g., P. Korman, Y. Li and T. Ouyang [31] or
T. Ouyang and J. Shi [50]. It was also used for systems of equations in P. Korman [22],
for fourth order equations in P. Korman [26], and for periodic problems in P. Korman and
T. Ouyang [37].

In Section 5 we give a brief review of time map method. Let u= u(t) be solution of the
initial value problem,

u′′ + f (u)= 0, u(0)= 0, u′(0)= p.

Using ballistic analogy, we can interpret this as “shooting” from the ground level, at an
angle p > 0. Let T/2 denote the time it takes for the projectile to reach its maximum
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amplitude. By symmetry of positive solutions, T = T (p) is then the time when the projec-
tile falls back to the ground, the time map. The function u(t) then satisfies the two point
Dirichlet problem

u′′ + f (u)= 0 for 0 < t < T, u(0)= u(T )= 0,

which by rescaling is equivalent to (1.4). There are two completely different formulas for
the same time map T = T (p). The first one is obtained by direct integration, see, e.g.,
W.S. Loud [43] for an early reference, while the second one was derived by R. Schaaf [53]
through a change of variables, which converts the problem into a harmonic oscillator. Both
formulas for the time map are nontrivial to use. The first one involves improper integrals,
while the second one is highly implicit. (“Name your poison”, so to say.) However, both
approaches are well developed by now, see the book by R. Schaaf [53], and the papers of
S.-H. Wang and his coworkers, of I. Addou, and many other papers, including J. Cheng
[10,11], and K.J. Brown et al. [9]. We give an exposition of the second approach, and
connect it to the notion of generalized averages from P. Korman and Y. Li [28].

In the final Section 6 we discuss numerical computation of solutions of (1.4). Again, the
autonomous case is much easier. We describe two efficient ways to compute the solutions,
and explain why finite differences (or finite elements) are not appropriate for autonomous
problems.

The basic tool for continuation of solutions is the implicit function theorem in Banach
spaces. We present it here in the formulation of M.G. Crandall and P.H. Rabinowitz [12],
see also L. Nirenberg [45], and A. Ambrosetti and G. Prodi [5].

THEOREM 1.1. Let X, � and Z be Banach spaces, and f (x,λ) a continuous mapping of
an open set U ⊂ X ×�→ Z. Assume that f has a Frechet derivative with respect to x,
fx(x,λ) which is continuous on U . Assume that

f (x0, λ0)= 0 for some (x0, λ0) ∈U.

If fx(x0, λ0) is an isomorphism (i.e. 1 : 1 and onto) of X onto Z, then there is a ball
Br(λ0)= {λ: ||λ− λ0||< r} and a unique continuous map x(λ) :Br(λ0)→X, such that

f
(
x(λ),λ

)≡ 0, x(λ0)= x0.

If f is of class Cp , so is x(λ), p � 1.

In the conditions of the above theorem, we refer to (x0, λ0) as a regular solution, other-
wise we call a solution singular. What happens at a singular solution? (I.e. when fx(x0, λ0)

is not an isomorphism.) In general, practically anything imaginable may happen, as one can
see even for functions of two variables. However, in a lucky case solution will continue
through a critical point, either by making a simple turn there, or maybe it even contin-
ues forward in λ (the critical point is then like a point of inflection). M.G. Crandall and
P.H. Rabinowitz [13] have given conditions for that to occur. The following result is one of
our principal tools.
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THEOREM 1.2. [13] Let X and Y be Banach spaces. Let (λ, x) ∈ R × X and let F

be a continuously differentiable mapping of an open neighborhood of (λ, x) into Y . Let
the null-space N(Fx(λ, x)) = spanx0 be one-dimensional and codimR(Fx(λ, x)) = 1.
Let Fλ(λ, x) �∈ R(Fx(λ, x)). If Z is a complement of spanx0 in X, then the solutions of
F(λ,x) = F(λ,x) near (λ, x) form a curve (λ(s), x(s)) = (λ + τ(s), x + sx0 + z(s)),
where s→ (τ (s), z(s)) ∈ R× Z is a continuously differentiable function near s = 0 and
τ(0)= τ ′(0)= 0, z(0)= z′(0)= 0.

Except for a brief discussion on p-Laplace equations, we consider only the classical
solutions throughout this paper. We shall denote the derivatives of u(x) by either u′(x) or
ux , and mix both notations sometimes to make our discussion more transparent.

Most of the results in the present paper are based on our joint papers with Y. Li,
T. Ouyang and J. Shi. Working with these talented colleagues has been a wonderful expe-
rience for me, and I wish to thank them for this opportunity. I also wish to thank Professors
A. Canada, P. Drabek and A. Fonda for inviting me to write this review paper.

2. Bifurcation theory approach

2.1. Some general properties of solutions of autonomous problems

We will consider positive, negative and sign-changing solutions of the Dirichlet problem
(for u= u(x))

u′′ + λf (u)= 0 for −1 < x < 1, u(−1)= u(1)= 0, (2.1)

depending on a parameter λ. We assume throughout this section that f (u) ∈ C2(R+). We
choose to consider the problem on the interval (−1,1) for convenience (which is related
to the symmetry of solutions). By shifting and scaling, we can replace the interval (−1,1)
by any other interval (a, b).

LEMMA 2.1. Let ξ ∈ (−1,1) be any critical point of u(x), i.e. u′(ξ) = 0. Then u(x) is
symmetric with respect to ξ .

PROOF. Let v(x)≡ u(2ξ −x). Then v(x) satisfies the same equation (2.1), and, moreover,
v(ξ)= u(ξ) and v′(ξ)= u′(ξ)= 0. By uniqueness of initial value problems, u(x)≡ v(x),
and the proof follows. �

LEMMA 2.2. Solution of (2.1) cannot have points of positive minimum, and of negative
maximum.

PROOF. Let us rule out the case of positive minimums, with the other case being similar.
Assume on the contrary that there are points of positive minimums, and let ξ be the largest
such point. Since u(ξ) > 0 and u(1) = 0, we can find a point η ∈ (ξ,1), so that u(ξ) =
u(η). Observe that u′(η) < 0. Indeed, if we had u′(η) = 0, then by the preceding lemma,
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η would have to be a point of minimum, contradicting the maximality of ξ . We know
that the energy E(x) = 1

2u
′(x)2 + λF(u(x)) is constant, but by above, E(η) > E(ξ), a

contradiction. �

We now consider positive solutions of (2.1). It follows from the lemmas above, that any
positive solution is an even function, with u′(x) > 0 on (−1,0), and u′(x) < 0 on (0,1).
(Of course, by the classical theorem of B. Gidas, W.-M. Ni and L. Nirenberg [15] this result
holds for balls in R

n for any n � 1.) Hence α ≡ u(0) is the maximal value of solution. We
show next that it is impossible for two solutions of (2.1) to share the same α.

LEMMA 2.3. The value of u(0) = α uniquely identifies the solution pair (λ,u(x)) (i.e.
there is at most one λ, with at most one solution u(x), so that u(0)= α).

PROOF. Assume on the contrary that we have two solution pairs (λ,u(x)) and (μ, v(x)),
with u(0) = v(0) = α. Clearly, λ �= μ, since otherwise we have a contradiction with
uniqueness of initial value problems. (Recall that u′(0) = v′(0) = 0.) Then u( 1√

λ
x) and

v( 1√
μ
x) are both solutions of the same initial value problem

u′′ + f (u)= 0, u(0)= α, u′(0)= 0,

and hence u( 1√
λ
x) ≡ v( 1√

μ
x), but that is impossible, since the first function vanishes at

x =√λ, while the second one at x =√μ. �

Bifurcation theory approach revolves around the study of the linearized equation for
(2.1)

w′′ + λf ′
(
u(x)

)
w = 0 for −1 < x < 1, w(−1)=w(1)= 0, (2.2)

where u(x) is a solution of (2.1). If this problem has a nontrivial solution, we call u(x) a
singular solution of (2.1). We say that the solution u(x) is nonsingular, if w(x)≡ 0 is the
only solution of (2.2). The following lemma is easy to prove in the autonomous case.

LEMMA 2.4. Let u(x) be a positive solution of (2.1), with

u′(1) < 0. (2.3)

If the problem (2.2) admits a nontrivial solution, then it does not change sign, i.e. we may
assume that w(x) > 0 on (−1,1).

PROOF. The function u′(x) also satisfies the linear equation (2.2). By the condition (2.3),
u′(x) is not a multiple of w(x). Hence its roots are interlaced with those of w(x). If w(x)

had a root ξ inside say (−1,0), then u′(x) would have to vanish on (−1, ξ), which is
impossible by the remarks following Lemma 2.2. �
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Condition (2.3) will hold for any positive solution, provided that

f (0) � 0, (2.4)

see, e.g., p. 107 in M. Renardi and R.C. Rogers [52]. If f (0) < 0 it is possible to have
u′(1)= 0. We shall encounter such a situation later, in connection with symmetry-breaking
bifurcation. What we see here is a manifestation of the “divide” between the problems
when (2.4) holds, and the case of f (0) < 0.

LEMMA 2.5. If problem (2.2) admits nontrivial solutions, then the solution set is one
dimensional. If moreover u(x) is a positive solution, satisfying (2.3), then w(x) is an even
function.

PROOF. By uniqueness of initial value problem the value of w′(1) uniquely determines
w(x), and hence the null space is one dimensional. Turning to the second claim, if u(x) is
positive, then it is even. Hence w(−x) also solves (2.2). Since the null space is one dimen-
sional, w(−x)= cw(x) for some constant c. Evaluating this relation at x = 0, we conclude
that c= 1 (since w(0) > 0 by the previous lemma), which is the desired symmetry. �

The following lemma gives a simple condition for positive solutions of (2.1) to be non-
singular.

LEMMA 2.6. Assume that either

f ′(u) > f (u)

u
for all u > 0,

or the opposite inequality holds. Then the linearized problem (2.2) has only the trivial
solution.

PROOF. If we rewrite Eq. (2.1) in the form

u′′ + λ
f (u)

u
u= 0,

and use the Sturm comparison theorem, we conclude that the positive solution u(x) oscil-
lates faster than w(x), and hence it must vanish on (−1,1), which is impossible. �

Another very simple condition is the following.

LEMMA 2.7. Assume that

f ′(u) < 0 for all u > 0.

Then the linearized problem (2.2) has only the trivial solution.
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PROOF. Multiplying Eq. (2.2) by w, and integrating, we conclude that problem (2.2) can
have only the trivial solution. �

We shall need the following lemma, which “connects” the solutions of (2.1) and (2.2).
It will allow us to verify the crucial condition of the Crandall–Rabinowitz Theorem 1.1 for
both positive and sign changing solutions.

LEMMA 2.8. If problem (2.2) admits a nontrivial solution, then

∫ 1

−1
f (u)w dx = 1

λ
u′(1)w′(1). (2.5)

PROOF. The quantity u′′(x)w(x)− u′(x)w′(x) is a constant, and hence

u′′(x)w(x)− u′(x)w′(x)=−u′(1)w′(1).

Integrating over (−1,1) (by parts), we conclude the lemma. �

Very often one is looking for positive solutions of (2.1). A possible reason for this
emphasis, is that only positive solutions have a chance to be stable, a property signifi-
cant for applications. Let us recall the notion of stability. For any solution u(x) of (2.1)
let (μ,w(x)) denote the principal eigenpair of the corresponding linearized equation, i.e.
w(x) > 0 satisfies

w′′ + λf ′(u)w+μw = 0 for −1 < x < 1, w(−1)=w(1)= 0. (2.6)

The solution u(x) of (2.1) is called unstable if μ < 0, it is called stable if μ > 0, and
neutrally stable in case M = 0. (This is so-called linear stability. It means, roughly, that
solutions of the corresponding heat equation, with the initial data near u(x) will tend to
u(x), as t→∞, see the book by D. Henry [16].)

PROPOSITION 1. Let u(x) be a solution of (2.1) that changes sign on (−1,1). Then u(x)

is unstable.

PROOF. Let (μ,w(x)) denote the principal eigenpair of (2.6). Assume that on the con-
trary μ � 0. Since u(x) changes sign, we can find −1 < x1 < x2 < 1, such that u′(x1) =
u′(x2)= 0 and say u′(x) < 0 on (x1, x2) (the other case is similar). Observe that u′′(x1) < 0
and u′′(x2) > 0 (u′(x) satisfies a linear equation, it cannot vanish together with its deriva-
tive). Denoting p(x)= u′′(x)w(x)− u′(x)w′(x), we have

p′(x)= μu′(x)w(x) � 0 for x ∈ (x1, x2).

We see that p(x) is nonincreasing on (x1, x2). But, p(x1)= u′′(x1)w(x1) < 0 and p(x2)=
u′′(x2)w(x2) > 0, a contradiction. �
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This result was also proved by R. Schaaf [53]. A similar result for balls in R
n can be

found in C.S. Lin and W.-M. Ni [42].

LEMMA 2.9. Any two positive solutions of (2.1) do not intersect inside (−1,1) (i.e. they
are strictly ordered on (−1,1)).

PROOF. Let u(x) and v(x) be two intersecting solutions. Since both of them are even
functions, they intersect on the half-interval (0,1) as well. Let 0 < ξ < η < 1 be two
consecutive intersection points. If v(x) > u(x) on (ξ, η), then |u′(ξ)| > |v′(ξ)|, while
|u′(η)| < |v′(η)|. The energy E(x) = 1

2u
′(x)2 + λF(u(x)) is constant for any solution

u(x). But at ξ , u(x) has higher energy than v(x), and at η the order is reversed, a contra-
diction. �

The following result from P. Korman [21] gives a detailed description of the solution
shape for large λ. (In [21] we proved this result for balls in R

n.) If for some reason solutions
cannot be of that shape, it follows that there are no positive solutions of (2.1) for large λ.
Recall that root α of f (u) is called stable if f (α)= 0 and f ′(α) < 0.

THEOREM 2.1. Let u(x,λ) be a positive solution of (2.1), that exists for all λ > λ̄, for
some λ̄ > 0. Assume that either limu→∞ f (u)

u
=∞, or there is u0 > 0, so that f (u) � 0

for u � u0. Then the interval (−1,1) can be decomposed into a union of open intervals,
whose total length = 2, so that on each such subinterval u(x,λ) tends to a stable root of
f (u), as λ→∞.

EXAMPLE. Assume that f (u) < 0 for 0 < u < ū, with some ū > 0, f (u) > 0 for u > ū,
and limu→∞ f (u)

u
=∞, e.g., f (u)= up − 1, with p > 1. Then the problem

u′′ + λ
(
up − 1

)= 0, −1 < x < 1, u(−1)= u(1)= 0

has no positive solution for λ large enough. Indeed, since f (u) has no stable roots, solution
cannot exhibit the behaviour described in the above theorem, and hence the solution cannot
exist for all large λ.

The bifurcation approach applies also to the quasilinear problems of the type

(
ϕ(u′)

)′ + λf (u)= 0 for −1 < x < 1, u(−1)= u(1)= 0. (2.7)

The prominent example is that of p-Laplacian ϕ(t) = t |t |p−2, with p � 2. Motivated by
this example, we assume that ϕ(t) ∈ C2(R \ {0}) satisfies

ϕ′(t) > 0 for all t �= 0. (2.8)

We consider weak solutions of (2.7), which are of class C[−1,1] ∩ C1(−1,1) ∩
C2((−1,1) \ {0}). (Since the problem is degenerate elliptic, the value of u′′(0) might
be infinite.)
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Assuming condition (2.8), we will show that the conclusions of Lemmas 2.1, 2.2, 2.4
and 2.5 hold verbatim for problem (2.7). In case ϕ(t)= t |t |p−2, Lemmas 2.3 and 2.8 hold
too. The proofs are basically the same, but there are some difficulties due to degeneracy.
For example, in the proof of Lemma 2.1 it is not apparent that u(x) is symmetric with
respect to ξ in case ξ = 0. (If ξ �= 0, the proof is as before.) We therefore combine the first
two lemmas to assert that the solution has the same shape as before.

LEMMA 2.10. Assuming condition (2.8), any positive solution of (2.7) is an even function,
with u′(x) > 0 on (−1,0), and u′(x) < 0 on (0,1).

PROOF. We need to adjust the definition of energy. Define �(z) = ∫ z

0 tϕ′(t)dt . Then
the energy �(u′(x)) + λF(u(x)) is constant (in case of p-Laplacian, p

p−1 |u′(x)|p +
λF(u(x)) = constant). Using the energy, we conclude as before that u(x) cannot have
any points of minimum inside the interval (−1,1). Also, since the energy is constant, it
follows that

u′(−1)=−u′(1). (2.9)

To prove the symmetry, we consider v(x) ≡ u(−x). The function v(x) satisfies the same
problem (2.7). By (2.9) it has the same initial conditions at x = 1 as u(x). Hence u(x)≡
v(x). And finally, observe that an even function with no interior minimums has the desired
shape. �

It is easy to see that Lemma 2.3 holds in case of p-Laplacian. Since we need homogene-
ity for rescaling, we cannot assert it for the general problem (2.7). Next we consider the
linearized problem for (2.7)

(
ϕ′(u′)w′

)′ + λf ′(u)w = 0 for −1 < x < 1,
(2.10)

w(−1)=w(1)= 0.

LEMMA 2.11. Assume that condition (2.3) holds. If problem (2.10) admits a nontrivial
solution, then it does not change sign, i.e. we may assume that w(x) > 0 on (−1,1). More-
over, in the case of p-Laplacian, the following generalization of the formula (2.5) holds:

∫ 1

−1
f (u)w dx = 2

pλ
ϕ′
(
u′(1)

)
u′(1)w′(1). (2.11)

PROOF. The proof of the first statement is exactly the same as before. Turning to the other
one, we differentiate Eq. (2.10)

(
ϕ′(u′)u′x

)′ + λf ′(u)ux = 0. (2.12)

Combining problems (2.10) and (2.12), we have

ϕ′
(
u′(x)

)(
u′′(x)w(x)− u′(x)w′(x)

)=−ϕ′
(
u′(1)

)
u′(1)w′(1). (2.13)
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We now integrate over (−1,1). In the case of p-Laplacian, ϕ(t) = t |t |p−2, ϕ′(t) =
(p − 1)|t |p−2, and tϕ′(t) = (p − 1)ϕ(t). Hence the second term on the left is equal to
−(p − 1)

∫ 1
−1 ϕ(u

′(x))w′(x)dx. Integrating this term by parts, we can combine it with
the first term of the resulting equation. Finally, we observe that ϕ′(u′(x))u′′(x) =
−λf (u(x)). �

2.2. Convex nonlinearities

For convex nonlinearities one can give an exhaustive description of the bifurcation dia-
grams for problem (2.1), since we are able to show that the solution curve cannot turn
more than once. Namely, we assume that f (u) ∈ C2(R+) satisfies

f (0) > 0, and f (u) > 0 for u > 0, (2.14)

f ′′(u) > 0 for u > 0, (2.15)

f (u) � au− b for u > 0 and some constants a > 0 and b � 0. (2.16)

THEOREM 2.2. Problem (2.1), under the above conditions, has at most two positive so-
lutions for any λ. Moreover, all positive solutions lie on a unique curve in the (λ,u(0))
plane. This curve begins at the point (λ = 0, u(0) = 0), and either it tends to infinity at
some λ0 > 0, or else it bends back at some λ0 > 0, and then continues without any more
turns, and tends to infinity at some λ̄, 0 � λ̄ < λ0.

PROOF. When λ= 0 we have a trivial solution u= 0. It follows by the implicit function
theorem that for small λ > 0 there is a continuous in λ curve of solutions, passing through
(0,0). We claim that this solution curve cannot be continued indefinitely for all λ > 0.
Assume on the contrary that solutions can be continued as λ→∞. Write problem (2.1) in
the corresponding integral form,

u(x)= λ

∫ 1

−1
G(x, ξ)f

(
u(ξ)

)
dξ, (2.17)

where G(x, ξ) is the corresponding Green’s function. It is well known that G(x, ξ) > 0
for all 0 < x, ξ < 1. Since by our assumptions f (u) is bounded from below by a posi-
tive constant, it follows that u(x) will become uniformly large, as λ→∞. Let φ1(x) be
the principal eigenvalue of −u′′ on the interval (−1,1) subject to zero boundary condi-

tions, and λ1 the corresponding principal eigenvalue (here φ1(x)= cos π
2 x, and λ1 = π2

4 ).
Multiplying Eq. (2.1) by φ1(x) and integrating, we have

λ1

∫ 1

−1
uφ1 dx = −

∫ 1

−1
u′′φ1 dx = λ

∫ 1

−1
f (u)φ1 dx

� λa

∫ 1

−1
uφ1 dx − λb

∫ 1

−1
φ1 dx.
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But this leads to a contradiction, as λ→∞, since
∫ 1
−1 uφ1 dx →∞. (u(x) is a convex

function, tending to infinity.)
Let λ0 denote the supremum of λ, for which the solution curve continues to the right.

It is possible that solutions become unbounded as λ→ λ0 (this is one of the possibilities
discussed in the statement of the theorem). So assume that the solutions stay bounded, as
λ→ λ0. Passing to the limit in the integral form of the equation, see (2.17), we conclude the
existence of a bounded solution u0(x), which our solution curve enters at λ= λ0. Clearly
the pair (λ0, u0(x)) is a singular solution of (2.1) (since it cannot be continued to the right
in λ). We show next that the Crandall–Rabinowitz Theorem 1.2 applies at (λ0, u0(x)).

We begin by recasting the equation in operator form F(λ,u) = 0, where the map
F(λ,u) : R+ × C2(−1,1)→ C(−1,1) is defined by F(λ,u) = u′′(x) + λf (u(x)). Ob-
serve that Fu(λ,u)w is given by the left-hand side of the linearized equation (2.2). Since
the point (λ0, u0) is singular, it follows that the linearized equation (2.2) has a nontrivial so-
lution w(x), which is positive by Lemma 2.4. By Lemma 2.5 it follows that the null-space
N(Fu(λ0, u0))= span{w(x)} is one-dimensional, and then codimR(Fu(λ0, u0))= 1, since
Fu(λ0, u0) is a Fredholm operator of index zero. To apply the Crandall–Rabinowitz Theo-
rem 1.2, it remains to show that Fλ(λ0, u0) /∈R(Fu(λ0, u0)). Assuming the contrary would
imply existence of a nontrivial v(x), a solution of

v′′ + λ0fu(λ0, u0)v = f (λ0, u0) for x ∈ (−1,1), v(−1)= v(1)= 0.

By the Fredholm alternative (or just multiplying this equation by w, Eq. (2.2) by v, sub-
tracting and integrating)

∫ 1

−1
f (λ0, u0)w(x)dx = 0,

which contradicts Lemma 2.8. (Since f (0) > 0, we have u′(1) < 0, and also w′(1) < 0 by
uniqueness of initial value problems. Hence by Lemma 2.8, the above integral is positive.)
Hence the Crandall–Rabinowitz Theorem 1.2 applies at (λ0, u0(x)).

Next we compute the direction of bifurcation at the point (λ0, u0(x)). According to the
Crandall–Rabinowitz Theorem 1.2, the solution set near the point (λ0, u0(x)) is a curve
λ= λ(s), u= u(s), with λ(0)= λ0 and u(0)= u0(x). Observe that λ′(0)= 0, and us(0)=
w(x), according to the Crandall–Rabinowitz theorem. If we can show that λ′′(0) < 0, it
would follow that the solution curve turns to the left at (λ0, u0(x)), since the function λ(s)

has a maximum at s = 0. To express λ′′(s), we differentiate Eq. (2.1) twice in s, obtaining

u′′ss + λfuuss + λfuuu
2
s + 2λ′fuus + λ′′f = 0, uss(−1)= uss(1)= 0.

Letting s = 0, we have by the above remarks

u′′ss + λ0fuuss + λ0fuuw
2 + λ′′(0)f = 0, uss(−1)= uss(1)= 0. (2.18)
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Multiplying this equation by w, Eq. (2.2) by uss , subtracting and integrating

λ′′(0)=−λ0

∫ 1
−1 fuu(λ0, u0(x))w

3(x)dx∫ 1
−1 f (λ0, u0)w(x)dx

< 0, (2.19)

with the last inequality due to convexity of f (u) and Lemma 2.8.
The above analysis is valid not only at the point (λ0, u0(x)), but also at any other critical

point. Hence, locally near any critical point, the solution set consists of a parabola-like
curve, facing to the left in the (λ,u(0)) plane. Hence, after bending back at the point
(λ0, u0(x)), our solution curve continues for decreasing λ, without ever encountering crit-
ical points. (At any critical point, we could not possibly have a parabola-like curve, de-
scribed above, since our curve has arrived from the right.) Hence, the solution curve con-
tinues globally, without any turns, and it has to go to infinity at some λ̄ � 0. We then have
one of the solution curves, described in the theorem, and the maximum value of solutions
on this curve, u(0) varies from zero to infinity. Hence all possible maximum values are
“taken”, and so by Lemma 2.3 this curve exhausts the solution set. �

REMARKS.
1. If, moreover, we have

lim
u→∞

f (u)

u
=∞, (2.20)

then the curve cannot go to infinity at a finite λ. Hence, it will bend back at some
λ0, and go to infinity at λ = 0. Indeed, since f (u) > 0, the solutions u(x,λ) are
concave in x. So that if u(x,λ) gets large near some λ = λ1, it would have to get
uniformly large on some interval, say on (−1/2,1/2). Writing our equation in the
form u′′ + λ

f (u)
u

u= 0, and using the Sturm comparison theorem, we conclude that
the positive solution u(x) has to vanish on (−1/2,1/2), which is impossible.

2. One can show that the solutions on the lower branch are increasing in λ, for all
x ∈ (−1,1), see P. Korman and T. Ouyang, [34,35]. (On the upper branch this is no
longer true, but the maximal value u(0) is increasing as we trace the branch, i.e. it is
decreasing in λ.)

3. Our assumptions did not require for f (u) to be increasing.
4. All three possibilities, mentioned in the theorem, can actually occur, see Fig. 1 for the

results of numerical computations. Observe that in the second and third cases f (u)

is asymptotically linear, and bifurcation from infinity happens.

2.3. S-shaped solution curves

We saw in the previous section that solution curves are relatively simple for convex f (u).
If f (u) changes concavity, then the solution curve may admit more than one turn. One
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Fig. 1. Three types of solution curves for convex f (u).

prominent nonlinearity, with change in concavity, is connected to combustion theory, see
the nice book of J. Bebernes and D. Eberly [7]. Namely, we consider the problem

u′′ + λe
au
u+a = 0 for −1 < x < 1, u(−1)= u(1)= 0, (2.21)

where a is a constant (this problem is referred to as “the perturbed Gelfand problem”
in [7]). In case a � 4, the problem is easy. In that case uf ′(u)− f (u) < 0 for all u > 0,
and hence all positive solutions are nonsingular. This means that the solution curve is
monotone, i.e. it continues for all λ > 0 without any turns. S.-H. Wang [59] has proved ex-
istence of a constant a0, so that for a > a0 the solution curve of (2.21) is exactly S-shaped,
i.e. it starts at λ = 0, u = 0, it makes exactly two turns, and then it continues for all
λ > 0 without any more turns. S.-H. Wang [59] gave an approximation of the constant
a0 / 4.4967. That paper, as well as all previous ones, used a time map approach. P. Korman
and Y. Li [28] have applied the bifurcation approach to the problem to show the exactness
of the S-shaped curves, and they also improved the value of the constant to a0 / 4.35, i.e.
for a > a0 the solution sets are S-shaped curves. S.-H. Wang [59] has conjectured existence
of critical number ā, so that for a � ā the solution curve is monotone, while for a > ā the
solution curve is exactly S-shaped. Recently, P. Korman, Y. Li and T. Ouyang [33] has
given a computer assisted proof of the S.-H. Wang’s conjecture. Numerical calculations
show that ā / 4.07.

We are going to discuss the S-shaped curves, mostly following P. Korman and Y. Li [29].
However, in that paper time maps were still used at one point. Subsequently, in P. Korman
and J. Shi [40] an argument not using time maps was given. Next we present this result,
dealing with instability of solutions (it also turned out to be of independent interest), after



Solution branches and exact multiplicity of solutions for two point boundary value problems 563

we recall the notion of stability. For any solution u(x) of (2.1) let (μ,w(x)) denote the
principal eigenpair of the corresponding linearized equation, i.e. w(x) > 0 satisfies

w′′ + λf ′(u)w+μw = 0 for −1 < x < 1, w(−1)=w(1)= 0. (2.22)

The solution u(x) of (2.1) is called unstable if μ< 0, otherwise it is stable.
Let F(u) = ∫ u

0 f (t)dt , h(u) = 2F(u) − uf (u). The instability result from P. Korman
and J. Shi [40] is

THEOREM 2.3. Assume that f ∈ C1[0,∞), f (0) > 0, and for some α > β > 0 we have:

h′(u) � 0 for 0 < u< β, h′(u) � 0 for β < u< α, (2.23)

h(α) � 0. (2.24)

Then the solution of (2.1) with u(0)= α is unstable, if it exists.

PROOF. We have h(0)= 0, h′(u)= f (u)− uf ′(u), h′(0)= f (0) > 0. It follows from our
conditions that h(u) is unimodular on [0, α], and it takes its positive maximum at u= β .
Define x0 ∈ (0,1) by u(x0)= β . We then conclude

f
(
u(x)

)− u(x)f ′
(
u(x)

)
� 0 on (0, x0),

(2.25)
f
(
u(x)

)− u(x)f ′
(
u(x)

)
� 0 on (x0,1).

We also remark that by the condition (2.24),

∫ 1

0

[
f (u)− uf ′(u)

]
u′(x)dx =

∫ 1

0

d

dx
h
(
u(x)

)
dx =−h(α) � 0. (2.26)

Assume now that u(x) is stable, i.e. μ � 0 in (2.22). Without loss of generality, we
assume that w > 0 in (−1,1). By the maximum principle, u′(1) < 0, so near x = 1 we
have −u′(x) > w(x). Since −u′(0) = 0, while w(0) > 0, the functions w(x) and −u′(x)
change their order at least once on (0,1). We claim that the functions w(x) and −u′(x)
change their order exactly once on (0,1). (We ignore the points where these functions
merely “touch”.) Observe that −u′(x) satisfies

(−u′)′′ + λf ′(u)(−u′)= 0 on (0,1), (2.27)

while w(x) (and any of its positive multiples) is a supersolution of the same equation. Let
x3 ∈ (0,1) be the largest point where w(x) and −u′(x) change the order. Assuming the
claim to be false, let x2, with 0 < x2 < x3, be the next point where the order changes.
We have w >−u′ on (x2, x3), and the opposite inequality to the left of x2. Since w(0) >
−u′(0), there is another point x1 < x2, where the order is changed. We can now find a
constant γ > 1, and a point x0 ∈ (x1, x2) so that a γw(x), a supersolution of (2.27), touches
at x0 from above a solution −u′(x) of the same equation, a contradiction.
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Since the point of changing of order is unique, by scaling of w(x) we can achieve

−u′(x) � w(x) on (0, x0),
(2.28)

−u′(x) � w(x) on (x0,1).

Using (2.25), (2.28), and also (2.26), we have

∫ 1

0

[
f (u)− uf ′(u)

]
w(x)dx <

∫ 1

0

[
f (u)− uf ′(u)

](−u′(x)
)

dx � 0, (2.29)

since the integrand on the left is pointwise smaller than the one on the right. On the other
hand, multiplying Eq. (2.22) by u, Eq. (2.1) by w, subtracting and integrating over (0,1),
we have

∫ 1

0

[
f (u)− uf ′(u)

]
w(x)dx = μ

λ

∫ 1

0
uw dx � 0,

which contradicts (2.29). So μ< 0. �

We will consider a class of nonlinearities, including f (u) = e
au
u+a , so let us list our as-

sumptions. We assume that f (u) ∈ C2[0, ū] for some 0 < ū �∞, and that it satisfies

f (u) > 0 for all 0 � u < ū. (2.30)

We assume f (u) to be convex-concave, i.e. there an α ∈ (0, ū), such that

f ′′(u) > 0 for u ∈ (0, α), f ′′(u) < 0 for u ∈ (α, ū). (2.31)

We define a function I (u) = f 2(u) − 2F(u)f ′(u), where as before F(u) = ∫ u

0 f (t)dt .
Assume there is a β > α, such that

I (β)= f 2(β)− 2F(β)f ′(β) � 0. (2.32)

The following lemma has originated from P. Korman, Y. Li and T. Ouyang [30].

LEMMA 2.12. Assume that f (u) satisfies conditions (2.30)–(2.32). Let (λ,u) be any crit-
ical point of (2.1), such that u(0) � β , and let w(x) be the corresponding solution of the
linearized problem (2.2). Then

∫ 1

0
f ′′

(
u(x)

)
ux(x)w

2(x)dx > 0. (2.33)

PROOF. We shall derive a convenient expression for the integral in (2.33). Differentiate
(2.2)

w′′x + λf ′(u)wx + λf ′′(u)uxw = 0. (2.34)
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Multiplying Eq. (2.34) by w, Eq. (2.2) by wx , integrating and subtracting, we express

λ

∫ 1

0
f ′′(u)uxw2 dx =w′2(1)− λw2(0)f ′

(
u(0)

)
. (2.35)

By differentiation, we verify that u′′(x)w(x)− u′(x)w′(x) is constant for all x, and hence

u′′(x)w(x)− u′(x)w′(x)=−λw(0)f
(
u(0)

)
for all x ∈ [−1,1]. (2.36)

Evaluating this expression at x = 1, we obtain

w′(1)= λw(0)f (u(0))

u′(1)
. (2.37)

Multiplying (2.1) by u′, and integrating over (0,1), we have

u′2(1)= 2λF
(
u(0)

)
. (2.38)

Using (2.38) and (2.37) in (2.35), we finally express

λ

∫ 1

0
f ′′(u)uxw2 dx = w2(0)

2F(ρ)
I (ρ), (2.39)

where we denote ρ = u(0). By our assumption, I (β) � 0. Since

I ′(ρ)=−2F(ρ)f ′′(ρ) > 0 for ρ � β,

we conclude that I (ρ) > I (β) � 0, and the lemma follows. �

The following lemma contains the crucial trick, which has originated from P. Korman,
Y. Li and T. Ouyang [30]. It says that for convex-concave problems only turns to the right
are possible in the (λ,α) plane, once the maximum value of the solution, u(0), has reached
a certain level.

LEMMA 2.13. In the conditions of the preceding Lemma 2.12, assume again that u(0) �
β , and w(x) the corresponding solution of the linearized problem (2.2). Then

∫ 1

0
f ′′

(
u(x)

)
w3(x)dx < 0. (2.40)

PROOF. Let (λ,u(x)) be a critical point of (2.1). Since u(0) � β > α, it follows that the
function f ′′(u(x)) changes sign exactly once on (0,1), say at x0. Then we have

f ′′
(
u(x)

)
< 0 for x ∈ (0, x0), f ′′

(
u(x)

)
> 0 for x ∈ (x0,1). (2.41)
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We have proved in Theorem 2.3 that the functions w(x) and −u′(x) intersect exactly once
on (0,1). By scaling w(x) we may assume that they intersect at x0. (w(x) is a solution of a
linear problem, and hence it is defined up to a constant multiple.) In view of Lemma 2.12,
we then have

∫ 1

0
f ′′

(
u(x)

)
w3(x)dx <

∫ 1

0
f ′′

(
u(x)

)
w2(−ux)dx < 0,

since by (2.41) the integrand on the right is pointwise greater than the one the left. �

The same approach can be used to prove the following more general theorem, which
was implicit in P. Korman, Y. Li and T. Ouyang [30], see also T. Ouyang and J. Shi [50].

THEOREM 2.4 [30].
(i) Assume that f (0) � 0, f ′′(u) < 0 for 0 < u< u0, f ′′(u) > 0 for u > u0. Then only

turns to the left are possible on the solution curve.

(ii) Assume that f (0) � 0, f ′′(u) > 0 for 0 < u< u0, f ′′(u) < 0 for u > u0. Then only
turns to the right are possible on the solution curve.

(Of course, in both cases we conclude existence of at most two positive solutions, with the
maximum values lying in the first positive hump of f (u).)

We are now ready for the main result of this section, see P. Korman and Y. Li [29].

THEOREM 2.5. Assume that f (u) satisfies conditions (2.30) and (2.31), and moreover,

lim
u→∞

f (u)

u
= 0. (2.42)

With h(u)≡ 2F(u)− uf (u), assume that

h(α) < 0. (2.43)

Then the solution set of (2.1) consists of one curve, which is exactly S-shaped, i.e. it starts
at λ = 0, u = 0, it makes exactly two turns, and then it continues for all λ <∞, without
any more turns.

PROOF. By the implicit function theorem there is a curve of positive solutions of (2.1),
starting at λ = 0, u = 0. As in Theorem 2.2, this curve continues for increasing λ, until
a possible singular solution (λ0, u0) is reached, at which point the Crandall–Rabinowitz
Theorem 1.2 applies. By (2.19) it follows that only turns to the left are possible if u(0) < α,
since f (u) is convex for u ∈ (0, α). Until the first critical point (λ0, u0) is reached, the
solutions are stable. Indeed, the solution curve starts at (λ = 0, u = 0), which is a stable
solution (the principal eigenvalue of the corresponding linearized problem = π2

2 ), while
any change of stability requires a passage through a singular point. By Theorem 2.3 when
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Fig. 2. The function h(u).

u(0)= α the solution is unstable. Hence a singular solution was reached before that, and
since only turns to the left are possible when u(x) < α, it follows that exactly one turn has
occurred, and at u(0)= α the solution curve travels to the left.

We now show that the solution curve keeps traveling to the left, until u(0) increases to
the level when only turns to the right are possible. For that we take a close look at the
function h(u)= 2F(u)− uf (u). Since

h′(u)= f (u)− uf ′(u), h′′(u)=−uf ′′(u),

it follows that the function h′(u) is decreasing on (0, α) and increasing on (α,∞). We have
h′(0)= f (0) > 0, and so h′(u) can have at most two roots. We claim that it has exactly two
roots, u1 and u2 with h′(u) being positive on (0, u1) ∪ (u2,∞), and negative on (u1, u2).
Indeed, existence of the first root is clear, since h(0)= 0 and h(α) < 0. As for the second
root u2, if it did not exist, we would have

uf ′(u) > f (u) for all u > α. (2.44)

Integrating (2.44),

f (u) >
f (α)

α
u for all u > α,

contradicting the assumption (2.42). So that the function h(u) starts with h(0) = 0, it is
increasing on (0, u1), decreasing on (u1, u2), with absolute minimum at u2, and then it
increases on the interval (u2,∞) (see Fig. 2). By Theorem 2.3 the solution curve keeps
traveling to the left, while u(0) ∈ (α,u2).

We claim that for u(0) > u2 Lemma 2.13 applies. For that we need to check that for
β = u2 the condition (2.32) holds. Indeed, since h(u2) < 0, we have f (u2)u2 > 2F(u2).
Hence

I (u2)= f 2(u2)− 2F(u2)f
′(u2) > f 2(u2)− u2f (u2)f

′(u2)= 0,

and the claim follows (observe that f ′(u2)= f (u2)
u2

> 0). By Lemma 2.13, only turns to the
right are possible when u(0) > u2.
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Fig. 3. An S-shaped solution curve.

Let us now put it all together. We have a curve of solutions, which starts at (λ= 0, u=
0). As we travel on this curve, u(0) is always increasing. By the time we reach u(0)= α

level, the solution curve has made exactly one turn to the left. When α < u(0) < u2 the
solution curve travels to the left. When u(0) > u2, the solution curve cannot travel to the
left indefinitely, since it is easy to see that solutions are bounded for bounded λ. Hence,
the curve must turn to the right. Since for u(0) > u2 only turns to the right are possible,
exactly one such turn occurs. It follows that the solution curve is exactly S-shaped. �

In Fig. 3 we give an example of an S-shaped solution curve. Notice that Mathematica
has drawn the vertical axis around λ = 3. Also observe that an actual S-shaped solution
curve is way different from what most people would draw by hand.

2.4. Cubic-like nonlinearities

We again consider the problem

u′′ + λf (u)= 0, x ∈ (−1,1), u(−1)= u(1)= 0, (2.45)

where f (u) behaves like a cubic with three distinct roots, with a model example f (u) =
(u − a)(u − b)(c − u). Namely, we assume that the function f (u) ∈ C2(R+) has three
nonnegative roots at 0 � a < b < c, and

f (u) > 0 on [0, a)∪ (b, c), f (u) < 0 on (a, b)∪ (c,∞),
(2.46)∫ c

a

f (u)du > 0.

Moreover, we assume there is an α > b, so that

f ′′(u) > 0 for 0 � u < α, f ′′(u) < 0 for u > α. (2.47)
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This problem was originally studied using time-maps, see J. Smoller and A. Wasserman
[57] and S.-H. Wang [59,60]. In P. Korman, Y. Li and T. Ouyang [30] the bifurcation
approach was applied. The case of a = 0 turned out to be easier for both time-maps and
bifurcation approaches, while in case a > 0 some restriction on a (a bound from above)
was necessary for both approaches.

We shall do the case a = 0 first, after two simple lemmas. (I.e. f (u) is modeled on
f (u)= u(u− b)(c− u).) Let β ∈ (b, c) be the unique point satisfying

f ′(β)= f (β)

β
. (2.48)

(I.e. the point where the straight line through the origin is tangent to the graph of y = f (u).)
Clearly, β > α. The following lemma shows that no turns of the solution curve are possible
until the maximum value of the solution reaches a certain level.

LEMMA 2.14. Assume that f (u) ∈ C2 satisfies conditions (2.46) and (2.47). If u(x) is a
critical solution of (2.45) then

u(0) > β. (2.49)

PROOF. We claim that

f ′(u) > f (u)

u
for 0 < u< β. (2.50)

Indeed, denote p(u)= uf ′(u)−f (u). Then p(0)= p(β)= 0, and p′(u)= uf ′′(u), which
implies that p(u) is increasing on (0, α) and decreasing on (α,β). Then (2.50) follows,
and hence by Lemma 2.6 the linearized equation has only the trivial solution, in case
u(0) � β . �

LEMMA 2.15. Assume that f (u) ∈ C2 satisfies conditions (2.46) and (2.47), with a = 0.
Assume u(x) is a critical solution of (2.45), and let w(x) be solution of the corresponding
linearized problem (2.2). Then

∫ 1

0
f ′′(u)w3 dx < 0. (2.51)

PROOF. We begin by showing that

∫ 1

0
f ′′(u)u2

xw dx = 0. (2.52)

We have (using Eqs. (2.45) and (2.2))

(u′′w′ − u′w′′)′ = λf ′′(u)u2
xw.
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Integrating over (0,1), and using that w′′(1) = −λf ′(u(1))w(1) = 0 and u′′(1) =
−λf (u(1)) = −λf (0) = 0, we conclude (2.52) (it is here that we use that f (0) = 0, i.e.
a = 0).

We now proceed similarly to Lemma 2.13. Similarly to that lemma, we show that the
functions w(x) and −u′(x) intersect exactly once on (0,1). Observe that by Lemma 2.14,
we have u(0) > β > α at any critical solution u(x). Let ξ ∈ (0,1) be the point where
u(ξ)= α. By scaling w(x) we may assume that w(x) and −u′(x) intersect at ξ . Then on
the interval (0, ξ), where f ′′(u(x)) is negative, we have u2

x < w2, while on the interval
(ξ,1), where f ′′(u(x)) is positive, we have u2

x > w2. We then have, in view of (2.52),

∫ 1

0
f ′′(u)w3 dx <

∫ 1

0
f ′′(u)u2

xw dx = 0,

since the integral on the left is pointwise smaller than the one on the right. �

The following theorem is from P. Korman, Y. Li and T. Ouyang [30].

THEOREM 2.6. Assume that f (u) ∈ C2 satisfies conditions (2.46) and (2.47), with a = 0.
Then there is a critical λ0 such that for λ < λ0 problem (2.45) has no positive solu-
tions, it has exactly one positive solution at λ = λ0, and exactly two positive solutions
for λ > λ0. Moreover, all solutions lie on a single solution curve, which for λ > λ0
has two branches 0 < u−(x,λ) < u+(x,λ), with u+(x,λ) strictly monotone increasing
in λ, and limλ→∞ u+(x,λ) = c. On the lower branch, u−(0, λ) is monotone decreas-
ing, limλ→∞ u−(x,λ) = 0 for all x �= 0, while u−(0, λ) > b for all λ. We also have
limλ→∞ u−(0, λ)= θ , where θ is defined by the relation

∫ θ

0 f (u)du= 0.

PROOF. If λc > π2

4 , then existence of positive solutions follows by monotone iterations.
Indeed, φ = c is a supersolution of (2.45), while ψ = ε cos π

2 x is a subsolution of the

same problem, if ε is chosen sufficiently small (λ= π2

4 and φ1 = cos π
2 x give, of course,

the principal eigenpair of the Laplacian on (−1,1)). We now continue the positive solu-
tion (any one) for decreasing λ. At regular points we use the implicit function theorem
for continuation, while the singular point(s) will be discussed below. We cannot continue
this curve indefinitely for decreasing λ, since it has no place to go. Indeed, solutions are
bounded by c, and so the right hand side of Eq. (2.45) goes to zero, and hence u(x)→ 0
as λ→ 0. But that is impossible, since f (u) is negative near u= 0, while at the point of
maximum u′′(0) � 0. Hence at some critical λ= λ0 and u= u0 the solution curve cannot
be continued further for decreasing λ.

As before, we show that the Crandall–Rabinowitz Theorem 1.2 applies at (λ0, u0). Ac-
cording to Lemma 2.15 a turn to the right must occur at this, and any other critical point.
Hence, exactly one turn happens, and the solution curve has exactly two branches.

The properties of the solution branches are easy to prove, see [30]. �

In Fig. 4 we give an example for the above theorem. Notice that Mathematica has chosen
the point (6,2) as the point where the axes intersect.
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Fig. 4. A parabola-like solution curve, when a = 0.

Next we turn to the case when a > 0. I.e. we assume that f (u) satisfies conditions
(2.46) and (2.47), with the cubic f (u)= (u− a)(u− b)(c− u) being our model example.
Similarly to the above, we denote by β ∈ (b, c) the unique point satisfying

f ′(β)= f (β)

β − a
. (2.53)

(I.e. the point where the straight line through the point (a,0) is tangent to the graph of y =
f (u).) Clearly, β > α. The proof of the following lemma is similar to that of Lemma 2.14,
and so we omit it (see [33]).

LEMMA 2.16. Assume that f (u) ∈ C2 satisfies conditions (2.46) and (2.47). If u(x) is a
critical solution of (2.45) then

u(0) > β. (2.54)

We define a constant τ ∈ (b, c) by f ′(τ )= 0, i.e. τ is the second root of f ′(u). We also
recall the function I (u)= f 2(u)− 2F(u)f ′(u), defined previously.

LEMMA 2.17. Assume that f (u) ∈ C2 satisfies conditions (2.46) and (2.47). Assume that
either ∫ τ

a

f (u)du � 0, (2.55)

or

I (β) � 0. (2.56)

If u(x)) is a critical solution of (2.45), and w(x) is a solution of the corresponding lin-
earized problem, then

∫ 1

0
f ′′

(
u(x)

)
u′(x)w2(x)dx > 0. (2.57)



572 P. Korman

PROOF. For any solution of (2.45) we have
∫ u(0)
a

f (u)du > 0 (just multiply the equation
by u′ and integrate between x = 0 and the point x = ξ , such that u(ξ) = a). So that if
(2.55) holds, then u(0) > τ , i.e. f ′(u(0)) < 0. Then (2.57) follows from formula (2.35) for
the integral (2.57). In case condition (2.56) holds, the proof proceeds the same way as in
Lemma 2.12. �

REMARK. We can replace condition (2.55) by requiring that u(0) > τ .

The following result was essentially proved in P. Korman, Y. Li and T. Ouyang [33].

THEOREM 2.7. Assume that f (u) ∈ C2 satisfies conditions (2.46) and (2.47). Assume
either the condition (2.56) is satisfied, or else assume that any solution of problem (2.45),
with u(0) ∈ (β, τ ) is noncritical. Then there exists a critical λ0, such that problem (2.45)
has exactly one positive solution for 0 < λ < λ0, exactly two positive solutions at λ= λ0,
and exactly three positive solutions for λ0 < λ <∞. Moreover, all solutions lie on two
smooth solution curves. One of the curves, referred to as the lower curve, starts at (λ =
0, u= 0), it is increasing in λ, and limλ→∞ u(x,λ)= a for x ∈ (−1,1). The upper curve
is a parabola-like curve with exactly one turn to the right.

PROOF. The properties of the lower curve are easy to prove. According to the implicit
function theorem there is a curve of positive solutions, starting at λ= 0 and u= 0. Since
f ′(u) < 0 when u < a, it follows by Lemma 2.7 that solutions are nondegenerate, and
hence they can be continued for all λ > 0. It is easy to see that the solutions on this curve
are increasing in λ, and limλ→∞ u(x,λ)= a for all x ∈ (−1,1), see [30].

Turning to the upper curve, recall that critical solutions are possible only if u(0) > β . If
condition (2.56) holds then we have (2.57). The same way as in Lemma 2.12 we show that
at any critical point

∫ 1

0
f ′′

(
u(x)

)
w3(x)dx < 0, (2.58)

which means that only turns to the right are possible on the upper curve. Similarly to
Theorem 2.6 for the a = 0 case, we show existence of solutions on the upper curve, and
that the upper curve has to turn. Hence, exactly one turn occurs on the upper curve, and
its other properties are proved similarly to the a = 0 case. In the other case, when (2.55)
holds, we know that no critical points are possible, until u(0) > τ . But then again (2.57)
holds, which implies (2.58), and we proceed the same way as in the first case. �

The above result shows that either one gets “lucky” at the level u(0)= β , i.e. condition
(2.56) holds, and the above Theorem 2.7 applies, or else the interval (β, τ ) is “dangerous”,
i.e. we need to rule out the possibility of any turns when β < u(0) < τ (since we cannot
tell their direction). For that computer assisted proofs are feasible. In fact, in a recent pa-
per P. Korman, Y. Li and T. Ouyang [33] have given three independent computer assisted
proofs in case of a cubic. We describe their result next. Let f (u)= (u− a)(u− b)(c− u),
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Fig. 5. A two-piece solution curve for a cubic, with a > 0.

with 0 < a < b < c. For problem (2.45) to have a positive solution it is necessary that∫ c

a
f (u)du > 0, i.e.

b <
a + c

2
. (2.59)

It was shown in [33] that under the necessary condition (2.59) the above Theorem 2.7
applies, providing an exact multiplicity result for the general cubic. In the next section we
present a new tool, used in [33] to give one of the computer assisted proofs.

2.5. Computing the location of bifurcation

Assume that for the problem

u′′(x)+ f
(
u(x)

)= 0, x ∈ (−1,1), u(−1)= u(1)= 0 (2.60)

bifurcation occurs at u(0)= α, i.e. the corresponding linearized problem

w′′(x)+ f ′
(
u(x)

)
w(x)= 0, x ∈ (−1,1), w(−1)=w(1)= 0 (2.61)

admits a nontrivial solution. The following result of P. Korman, Y. Li and T. Ouyang [33]
provides a way to determine all possible α’s at which bifurcation may occur, i.e. the corre-
sponding solution of (2.60) is singular.

THEOREM 2.8. A positive solution of problem (2.60) with the maximal value α = u(0) is
singular if and only if

G(α)≡ F(α)1/2
∫ α

0

f (α)− f (τ)

[F(α)− F(τ)]3/2
dτ − 2= 0. (2.62)
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PROOF. We need to show that the problem (2.61) has a nontrivial solution. By direct ver-
ification the function w(x)=−u′(x)

∫ 1
x

1
u′2(t) dt satisfies Eq. (2.61). Also w(1)= 0. If we

also have

w′(0)= 0, (2.63)

then since u(x) is an even function, the function w(x) is also even (by uniqueness for
initial value problems), and hence w(−1) = 0, which gives us a nontrivial solution of
(2.61). Conversely, every nontrivial solution of (2.61) is an even function, and hence (2.63)
is satisfied.

Using Eq. (2.60), we compute

w′(x)= f
(
u(x)

) ∫ 1

x

1

u′2(t)
dt + 1

u′(x)
.

Since the energy u′2
2 (x)+ F(u(x)) is constant,

u′2

2
(x)+ F

(
u(x)

)= F
(
u(0)

)= F(α).

On the interval (0,1) we express

u′(x)=−√2
√
F(α)− F(u(x)). (2.64)

We use this formula in the integral
∫ 1
x

1
u′(t)2 dt , and then we make a change of variables

t→ s, by letting s = u(t). We have

23/2
∫ 1

x

1

u′2(t)
dt = −

∫ 1

x

u′(t)dt

[F(α)− F(u(t))]3/2

= −
∫ 0

u(x)

1

[F(α)− F(s)]3/2
ds. (2.65)

Using formulas (2.64) and (2.65), we express

23/2w′(x)=
∫ u(x)

0

f (u(x))

[F(α)− F(τ)]3/2
dτ − 2

[F(α)− F(u(x))]1/2
. (2.66)

If we try to set here x = 0, then both terms on the right are infinite. Instead, we observe
that

− 2

[F(α)− F(u)]1/2
= −

∫ u

0

d

dτ

2

[F(α)− F(τ)]1/2
dτ − 2

F(α)1/2

= −
∫ u

0

f (τ)

[F(α)− F(τ)]3/2
dτ − 2

F(α)1/2
. (2.67)
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Using (2.67) in (2.66), we obtain

23/2w′(x)=
∫ u(x)

0

f (u(x))− f (τ)

[F(α)− F(τ)]3/2
dτ − 2

F(α)1/2
. (2.68)

The integral on the right is now nonsingular, as we let x→ 0. At x = 0 we see that (2.63)
is equivalent to (2.62). �

In case of a cubic f (u) = (u − a)(u − b)(c − u), P. Korman, Y. Li and T. Ouyang
[33] have used formula (2.62) to give a computer assisted proof that there are no turning
points in the dangerous region, u(0) ∈ (β, τ ), thus establishing the exact multiplicity result
(Theorem 2.7) from the previous section.

2.6. Computing the direction of bifurcation

We have seen that at a critical solution u(x) of (2.60) the integral I = ∫ 1
0 f ′′(u)w3 dx gov-

erns the direction of bifurcation. Also, it is known that in case I �= 0 a critical solution
u(x) is nondegenerate, i.e. it persists when the equation is perturbed slightly (i.e. the turn-
ing points persist under perturbations), see, e.g., [32]. The following result from P. Korman,
Y. Li and T. Ouyang [33] allows one to compute the integral I as a function of α = u(0).

THEOREM 2.9. At any critical solution u(x) of (2.60), with u(0)= α,

I = c

∫ α

0
f ′′(u)

(∫ α

u

f (s)ds

)(∫ u

0

ds

(
∫ α

s
f (t)dt)3/2

)3

du, (2.69)

where c= 1
4
√

2
u′3(1)w′3(1) > 0.

This formula is rather involved, but using Mathematica it can be evaluated numerically.
In a future paper, with Y. Li and T. Ouyang, we use this result to handle equations modeled
on polynomials of arbitrary power.

2.7. Pitchfork bifurcation and symmetry breaking

So far for the problem

u′′ + λf (u)= 0 for −1 < x < 1, u(−1)= u(1)= 0 (2.70)

we have considered the cases when f (0) � 0. As we have observed earlier, this condition
implies that |ux(±1, λ)| �= 0 for any positive solution u(x,λ). Since we also know that
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ux(x,λ) < 0 for all x ∈ (0,1), there is no way for a positive solution to become sign-
changing, as we vary λ (no interior roots, or zero slope at the boundary are possible). The
situation changes drastically in case

f (0) < 0. (2.71)

A solution may develop a zero slope at the boundary, and become sign-changing. In fact, a
pitchfork bifurcation usually happens. In addition to the sign-changing symmetric solution,
two symmetry-breaking solution emerge, see P. Korman [20].

Let us consider the problem

u′′(x)+ u2k(x)− λ= 0 for −1 < x < 1, u(−1)= u(1)= 0, (2.72)

which we will relate to the problems of type (2.70) shortly. Here k � 1 is an integer. For
k = 1 this problem was exhaustively analyzed in J.C. Scovel’s Ph.D. thesis [54], and in
H.P. McKean and J.C. Scovel [44]. They used explicit integration via elliptic functions,
which means that their method does not work for k > 1. It turned out that the solution set
of (2.72) for k = 1 consists of infinitely many identically looking curves. Each curve is a
parabola like curve, with pitchfork bifurcation on one of the branches. (I.e. there is exactly
one turn, and exactly one point of pitchfork bifurcation on each curve, see Fig. 6.) V. Anu-
radha and R. Shivaji [6] have studied a related problem. Using the quadrature technique,
they showed existence of infinitely many points of bifurcation. In [20] P. Korman had used
bifurcation theory to approach problem (2.72), and in particular the case of f (u) = u2k ,
with k > 1. We were able to generalize some, but not all, of the results of H.P. McKean and
J.C. Scovel [44].

It is well known that at λ = 0 there exists a unique positive solution of (2.72). This
solution is known to be nondegenerate, so that we can continue it for small λ > 0. Setting
u(x)= μv(x), with μ determined by the relation μ2k = λ, we convert problem (2.72) into
(a particular case of the problem (2.70))

v′′(x)+ λ
(
v2k(x)− 1

)= 0, for −1 < x < 1,

v(−1)= v(1)= 0,
(2.73)

where λ is a new parameter (equal to μ2k−1). With the parameter now in front of the
nonlinearity, Lemma 2.8 applies, and hence we can always continue both positive and
sign-changing solutions of (2.73) (and also of (2.72). Observe that the curve of positive
solutions does not turn for λ > 0 (for g(v)≡ v2k−1, we have vg′(v) > g(v) for all v > 0).
By Theorem 2.1 this curve of positive solutions cannot be continued for all λ > 0 (the
function g(v)= v2k − 1 has no “stable” roots, i.e. roots where derivative is negative). By
the Sturm’s comparison theorem, it is easy to see that positive solutions cannot become
unbounded at a finite λ. Hence, solutions on this curve must eventually stop being positive,
and the only way this can happen is that u′(±1)= 0 at some λ0 (in view of the symmetry
of positive solutions).

We now outline the pitchfork bifurcation analysis for the general problem (2.70), and
more details can be found in P. Korman [20]. So suppose problem (2.70) has a curve of
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positive solutions u(x,λ), so that for λ < λ0 we have ux(1, λ) < 0, while at λ= λ0 we have
ux(1, λ0) = 0. The function ux(x,λ0) is then a solution of the corresponding linearized
problem (u0 = u(x,λ0))

w′′ + λ0f
′(u0)w = 0 for −1 < x < 1, w(−1)=w(1)= 0. (2.74)

The null-space of the linearized problem is one-dimensional (by Lemma 2.5), and it is
spanned by the odd function ux(x,λ0). If we now restrict to the space of even functions,
the null-space will be empty, and hence by the implicit function theorem the solution curve
u(x,λ) continues for λ > λ0, as sign-changing symmetric (even) solutions. We can com-
pute the tangential direction for this curve at λ= λ0:

uλ(x,λ0)= xux(x,λ0). (2.75)

Indeed, the function uλ(x,λ0) − xux(x,λ0) is an even function, solving the linearized
problem (2.74). Hence it must be zero, justifying (2.75). If we let v = u− u(x,λ), where
u(x,λ) is the curve of sign-changing symmetric solutions, then for λ > λ0 we have a trivial
solution v = 0. We showed in [20] that the conditions of the Crandall–Rabinowitz theorem
on bifurcation from the trivial solutions are satisfied at λ = λ0, giving rise to a parabola-
like curve of symmetry breaking solutions (see also M. Ramaswamy [51], which we used
in [20]). Their tangential direction is given by ux(x,λ0).

One of the reasons we were not able to fully recover the beautiful results of McKean and
Scovel [44], is that we could not tell the direction of the pitchfork bifurcation: which way
the symmetry breaking solutions bifurcate, toward λ > λ0 or λ < λ0? Recently X. Hou,
P. Korman and Y. Li [17] has given a computer assisted way (again computer assisted!) to
settle this question. Here is their result, which says that the pitchfork opens forward.

THEOREM 2.10. Consider problem (2.72), with 1 � k � 720. Let λ0 be the point of pitch-
fork bifurcation. (The value of λ0 was explicitly computed in [17].) Then there is a negative
λ̄= λ̄(k) < 0, so that problem (2.72) has exactly two positive solutions for λ̄ < λ < 0, it has
exactly one positive and one negative solution on (0, λ0). Moreover, there is a λ1(k) > λ0,
so that problem (2.72) has four solutions on (λ0, λ1), one negative (and symmetric), one
sign-changing and symmetric (with u(0) > 0), and two asymmetric solutions.

In Fig. 6 we present a picture of pitchfork bifurcation from [17] (produced by X. Hou).
We draw u′(−1) as a function of λ. In that figure solid lines denote positive and negative
solutions, the dashed line denotes sign-changing symmetric solutions, and the doted lines
stand for the symmetry breaking solutions.

2.8. Sign-changing solutions

We consider sign-changing solutions of the two point problem

u′′ + f (u)= 0 for x ∈ (0,1), u(0)= u(1)= 0. (2.76)
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Fig. 6. Pitchfork bifurcation.

Notice that we pose the problem over the interval (0,1), since sign-changing solutions
need not be symmetric. Also we do not have λ in front of f (u) (one can think that λ is
absorbed into f (u)). Corresponding linearized problem is

w′′ + f ′(u)w = 0 for x ∈ (0,1), w(0)=w(1)= 0. (2.77)

The following result is from P. Korman and T. Ouyang [39].

THEOREM 2.11. Let f ∈ C2(R), and assume that either one of the following two inequal-
ities holds:

f (u)

u
− f ′(u) > 0 (< 0) for almost every u ∈R. (2.78)

Then any solution of problem (2.76), satisfying u′(0) �= 0, is nonsingular (i.e. (2.77) admits
only the trivial solution).

PROOF. Assume on the contrary that problem (2.77) admits a nontrivial solution w(x).

Step 1. We show that the number of roots of u and w inside (0,1) differs by one. Assume
for definiteness that f ′(u) > f (u)

u
for almost every u ∈ R. If we regard (2.76) as a linear

equation u′′ + f (u)
u

u= 0, then by the Sturm comparison theorem the function w(x) has a
root between any two roots of u(x). Since both functions vanish at the endpoints, x = 0
and x = 1, it follows that w has one more interior root than u.

Step 2. We will show that u and w have the same number of interior roots. This will result
in a contradiction, proving the theorem. We denote by nu the number of interior roots of
u, and use the same notation for other functions. The functions w and u′ satisfy the same
linear equation, and hence their roots are interlaced. Since w vanishes at the endpoints and
u′ does not, it follows that nu′ = nw + 1. Since nu′ = nu + 1, it follows that nu = nw . �
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Corresponding to the solution u(x) of (2.76) we may consider an eigenvalue problem

ϕ′′ + f ′(u)ϕ +μϕ = 0 for x ∈ (0,1), ϕ(0)= ϕ(1)= 0. (2.79)

The eigenvalues of (2.79) form a sequence μ1 < μ2 < · · · < μn < · · · , tending to infin-
ity. The number of negative eigenvalues is called the Morse index of u(x). The following
theorem is from P. Korman and T. Ouyang [39].

THEOREM 2.12. Let u(x) any solution of problem (2.76), with k interior roots and satisfy-
ing u′(0) �= 0. Then the Morse index of u(x) is either k or k+1. Moreover, the Morse index
equals k if the first inequality in (2.78) holds, and it equals k + 1 if the second inequality
in (2.78) holds.

Similar results for balls in R
n have been given in J. Shi and J. Wang [56].

2.9. The Neumann problem

Consider the Neumann problem

u′′ + λf (u)= 0 for 0 < x < 1, u′(0)= u′(1)= 0. (2.80)

We are interested in the solution branches bifurcating off constant solutions. By translation
we may assume the constant solution to be zero, i.e. we assume that

f (0)= 0, (2.81)

and that f (u) ∈ C2(a−, a+) for some −∞� a− < 0 < a+ �∞. We assume that

uf (u) > 0 on
(
a−, a+

)
. (2.82)

We consider solutions of (2.80) such that u(x) ∈ (a−, a+). It suffices to consider only
the increasing solutions of (2.80), i.e. u′(x) > 0 on (0,1), since other solutions can be
produced from them by reflection, pasting and scaling. Clearly we have u(0) < 0 < u(1),
since x = 0 and x = 1 are points of minimum and maximum, respectively.

The corresponding linearized problem is

w′′ + λf ′(u)w = 0 for 0 < x < 1, w′(0)=w′(1)= 0. (2.83)

If this problem has only the trivial solution, then the solution branches bifurcating from
zero do not turn. A simple condition for this to happen goes back to Z. Opial [47], see also
R. Schaaf [53]. Namely, we assume that either one of the following two inequalities holds:

f (u)

u
− f ′(u) > 0 (< 0) for every u ∈ (

a−, a+
) \ {0}. (2.84)
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It is an elementary exercise to show that (2.84) will follow if either one of the following
two inequalities holds:

uf ′′(u) > 0 (< 0) for every u ∈ (
a−, a+

) \ {0}. (2.85)

The following result is of course known, see [47] and [53], although previously it was
stated in different terms (involving monotonicity of time maps), and proved by different
methods.

THEOREM 2.13. Assume that conditions (2.81), (2.82) and (2.84) (or (2.85)) hold, and
u(x) ∈ (a−, a+) for all x ∈ (0,1). Then the linearized problem (2.83) admits only the
trivial solution.

PROOF. Assume on the contrary that w(x) is a nontrivial solution of (2.83). Observe that
u′(x) satisfies the same equation (2.83), u′(x) > 0 for x ∈ (0,1) and u′(0)= u′(1)= 0. It
follows by the Sturm comparison theorem that w(x) has exactly one root on (0,1); we call
it η, i.e. w(η) = 0. We may assume (by scaling) that w(0) < 0 and w(1) > 0, and hence
w′(η) > 0. Let ξ denote the unique root of the increasing solution u(x), i.e. u(ξ)= 0 and
u′(ξ) > 0. Writing Eq. (2.80) in the form u′′ + λ

f (u)
u

u= 0, and combining it with (2.83),
we have

(u′w− uw′)′ + λ

[
f (u)

u
− f ′(u)

]
uw = 0. (2.86)

We now consider two cases.

Case 1. ξ � η. Assume that the first inequality holds in (2.84), i.e. the quantity in the
square bracket in (2.86) is positive. We integrate (2.86) over the interval (η,1), where both
u(x) and w(x) are positive

u(η)w′(η)+ λ

∫ 1

η

[
f (u)

u
− f ′(u)

]
uw dx = 0.

We have a contradiction, since both terms on the left are positive.

If the second inequality holds in (2.84), i.e. the quantity in the square bracket in (2.86)
is negative, we integrate (2.86) over the interval (0, ξ), where both u(x) and w(x) are
negative

u(ξ)w′(ξ)+ λ

∫ ξ

0

[
f (u)

u
− f ′(u)

]
uw dx = 0.

Again, we have a contradiction, since both terms on the left are negative.
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Case 2. ξ � η. If the first inequality holds in (2.84), we integrate over (0, η), where both
u(x) and w(x) are negative

−u(η)w′(η)+ λ

∫ η

0

[
f (u)

u
− f ′(u)

]
uw dx = 0.

Both terms on the left are positive, a contradiction. If the second inequality holds in (2.84),
we integrate over (ξ,1), where both u(x) and w(x) are positive

−u′(ξ)w(ξ)+ λ

∫ 1

ξ

[
f (u)

u
− f ′(u)

]
uw dx = 0.

Both terms on the left are negative, again we have a contradiction. �

Beyond this simple theorem, we know of only two results on the Neumann problem.
The first one is due to R. Schaaf [53]. It dealt with monotonicity of time maps, here we
rephrase it in terms of nondegeneracy of solutions.

THEOREM 2.14 [53]. Assume that the function f (u) is either an A−B or C function on
the interval (a−, a+). Then the linearized problem (2.83) admits only the trivial solution.

The other one is from P. Korman [23].

THEOREM 2.15. Assume that f (u) satisfies f ′(u) > 0 and f ′′′(u) < 0 on the interval
(0, a+), and f ′′(u) > 0 on (a−, a+). Then the linearized problem (2.83) admits only the
trivial solution.

The last result is not very satisfactory. Its only advantage is that no third order assump-
tions on f (u) are made on (a−,0), while on (0, a+) such functions are of class A− B .
R. Schaaf’s result is better.

According to the condition (2.85), we can handle the cases when f (u) changes concavity
at its root u= 0. But what if it keeps the same concavity? We wish to pose the following
problem.

PROBLEM. Assume that f (0)= 0, and

f ′′(u) > 0 for u ∈ (
a−, a+

)
.

Is it true that any increasing solution of the Neumann problem (2.80), with values in
(a−, a+), is nondegenerate (i.e. (2.83) has only the trivial solution)?

Using bifurcation approach, we can also treat some nonautonomous problems. For ex-
ample,

u′′ + λb(x)f (u)= 0 for 0 < x < 1, u′(0)= u′(1)= 0, (2.87)
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with the given function b(x) being positive and continuous. The corresponding linearized
problem is now

w′′ + λb(x)f ′(u)w = 0 for 0 < x < 1, w′(0)=w′(1)= 0. (2.88)

Formula (2.86) still holds here (with an extra factor of b(x) in front of the square bracket),
and hence the arguments of the above theorem can be used unchanged. In particular, we
conclude as above that any nontrivial solution of (2.88) cannot vanish exactly once. Unlike
the autonomous problem, we cannot yet conclude that w(x) is zero, since we cannot auto-
matically exclude the possibilities that w(x) has no roots, or at least two roots. We need to
introduce another condition:

f ′(u) � 0 for every u ∈ (
a−, a+

)
. (2.89)

THEOREM 2.16. Assume that b(x) is positive and continuous on [0,1], and f (u) ∈
C1[a−, a+] satisfies conditions (2.81), (2.82), (2.89), and the first inequality holds in
(2.84). Let u(x) be an increasing solution of the Neumann problem (2.80), satisfying
u(x) ∈ (a−, a+) for all x ∈ (0,1). Then the linearized problem (2.88) admits only the
trivial solution.

PROOF. As we mentioned above, the arguments used in proof of Theorem 2.13 apply here
as well. In case the first inequality holds in (2.84), we have proved in Theorem 2.13 that
w(x) cannot vanish on either side of ξ , the root of u(x). Hence w(x) keeps the same sign
over (0,1). But then integrating the linearized equation (2.88),

∫ 1

0
b(x)f ′(u)w dx = 0,

which is a contradiction, since the integrand is of one sign. �

As an example, the function f (u) = u− u3 satisfies the conditions of this theorem on
the interval (− 1√

3
, 1√

3
).

2.10. Similarity of the solution branches

We saw in the previous two sections that under the same condition (2.84) we could prove
nondegeneracy for both sign-changing solutions, and for the Neumann problem. It turns out
that a curve of solutions with an odd number of sign changes is always similar to curves of
solutions of Neumann problems. (I.e. both curves have the same number of critical points,
with the same direction of turns.) Let us fix the notation, before we state the result. We
consider the problem

u′′ + λf (u)= 0 on (0,1), (2.90)
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subject to either Dirichlet

u(0)= u(1)= 0, (2.91)

or Neumann

u′(0)= u′(1)= 0 (2.92)

boundary conditions. We shall consider the solutions as the positive parameter λ varies,
and refer to the solution curves as either Dirichlet or Neumann branches, depending on
the boundary conditions used. Recall that by Lemma 2.1 any solution of Eq. (2.90) is
symmetric with respect to any of its critical points. This implies, in particular, that either
minimum or maximum occurs at any critical point. It follows that any solution of Neumann
problem is determined by its values on any subinterval I ⊂ (0,1), whose end-points are two
consecutive critical points of u(x). We can then obtain the solution on the entire interval
(0,1) through reflections and translations. We refer to I , and any other interval uniquely
determining the solution through reflections and translations, as a determining interval. The
interval I , joining two consecutive critical points of u(x), is also a determining interval for
the Dirichlet problem. Another determining interval for Dirichlet problem is (ξ, η), where
0 � ξ < θ < η � 1 are three consecutive roots of u(x). This interval contains both positive
and negative humps (and all positive (negative) humps are translations of one another).

As we vary λ the number of roots on Dirichlet branches, as well as the number of
monotonicity changes on Neumann branches, remain constant. Indeed, by Lemma 2.2 so-
lutions of (2.90) cannot have points of positive maximum and negative minimum, and there
is no other mechanism by which extra roots (or monotonicity changes) may be created.

The natural way to distinguish the Dirichlet branches is by the number of interior roots,
and the Neumann branches can be identified by the number of changes of monotonicity
(both properties remain constant on the solution curves). Any solution of the Dirichlet
problem with at least one interior root contains a solution of the Neumann problem on a
subinterval of (0,1). Indeed, just consider the solution between two consecutive critical
points. In order for solutions of the Neumann problem to contain in turn a solution of the
Dirichlet problem, we need to impose some conditions on f (u). Namely, we assume that

f (0)= 0, (2.93)

and there exist two constants −∞� m< 0 <M �∞ so that
(f1) f (u) > 0 for u ∈ (0,M),
(f2) f (u) < 0 for u ∈ (m,0).

LEMMA 2.18. Under conditions (2.93), (f1) and (f2) any solution of the Neumann prob-
lem for (2.90), satisfying

m< u(x) <M for all x (2.94)

has a root between any two critical points.
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PROOF. Follows immediately, by multiplying the equation (2.90) by u′, and integrating
between any two consecutive critical points. �

DEFINITION. We call two solution branches of (2.90) to be similar if for any solution on
the either branch there is a determining interval so that by stretching of x, or by reflection
x→ 2a − x, for some a ∈ (0,1), we obtain a solution from the other branch on a (differ-
ent) determining interval. Clearly, if solution branches are similar then the corresponding
solution curves in (λ,u) “plane” have the same shape.

The following result was proved in this form by P. Korman [24], although it can also be
found in R. Schaaf [51].

THEOREM 2.17. All Neumann branches of (2.90) are similar, and if f (u) satisfies con-
ditions (2.93), (f1) and (f2), while all solutions satisfy (2.94), then the Neumann branches
are similar to the Dirichlet ones with an odd number of interior roots (and these Dirichlet
branches are also all similar).

PROOF. We begin with Neumann branches. If a Neumann solution changes monotonicity
twice, then its increasing part is a reflection of its decreasing part with respect to x = 1

2 . If a
Neumann solution changes monotonicity n times, then all critical points occur at i/n, i =
1, . . . , n− 1, and the graphs of solution on all intervals where it is increasing (decreasing)
are translations of one another. Since an interval connecting any two critical points is a
determining interval, the equivalence of the Neumann branches follows (via rescaling). �

If a Dirichlet solution has 2k − 1 interior roots, it has k identical positive humps and
k identical negative humps. Assume for definiteness that solution starts with a negative
hump, followed by a positive one, and so on. If ξ is the first point of (negative) minimum
of u(x), then the first interior root occurs at 2ξ . If 2ξ + η is the point of the first (positive)
maximum, then the second interior root occurs at 2ξ +2η. The last critical point, a positive
maximum, occurs at 1− η. Observe that k(2ξ + 2η)= 1, i.e. ξ + η= 1

2k . So while both ξ

and η vary with λ, u(x) solves the Neumann problem on the interval (ξ,1− η), and this
interval has a fixed length of

1− η− ξ = 2k− 1

2k
.

So that any Dirichlet solution curve “carries” inside it a solution of a Neumann problem
on a fixed interval (which can be made to be (0,1) by rescaling), and hence the Dirichlet
branch cannot have any more complexity (like extra turns) than any Neumann branch.

Conversely, consider the Neumann problem with 2k + 1 changes of monotonicity. As-
sume for definiteness that u(0) < 0. Then u(1) > 0. Assume that ξ = ξ(λ) is the smallest
interior root, and 1− η is the largest one, η = η(λ). On the interval (0,1) we then have
2k+ 1 negative half-humps, each of width ξ , and 2k+ 1 positive ones, each of width η. So
that ξ + η = 1

2k+1 . On the interval (ξ,1− η) we have a solution of the Dirichlet problem
with 2k − 1 interior roots, and the length of this interval is

1− η− ξ = 2k

2k+ 1
,
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which does not vary with λ. So that any Neumann branch “carries” inside it a solution of
a Dirichlet problem on a fixed interval, and hence the Neumann branch cannot have any
more complexity than the corresponding Dirichlet branch with an odd number of interior
zeroes.

Finally, the Dirichlet branches with odd number of interior zeroes are all similar, since
any two such branches are similar to a pair of Neumann branches, but Neumann branches
are all similar.

The Dirichlet branches with even number of interior zeroes may behave differently, as
the following example due to R. Schaaf [53] shows.

EXAMPLE [53]. For the problem

u′′ + λ
(
eu − 1

)= 0 on (0,1), u(0)= u(1)= 0

the branch bifurcating from the principal eigenvalue does not turn, while all other branches
have exactly one turn.

3. A class of symmetric nonlinearities

For the autonomous equation (2.1) both phase-plane analysis and bifurcation theory apply.
If we allow explicit dependence of the nonlinearity on x, i.e. consider

u′′ + λf (x,u)= 0 for −1 < x < 1, u(−1)= u(1)= 0, (3.1)

then the problem becomes much more complicated. For example, solutions of the cor-
responding linearized problem need not be of one sign. In the papers P. Korman and
T. Ouyang a class of f (x,u) has been identified, for which the theory of positive solu-
tions is very similar to that for the autonomous case, see, e.g., [34–36]. Further results in
this direction have been given in P. Korman, Y. Li and T. Ouyang [30], and P. Korman and
J. Shi [40]. Namely, we assume that f ∈ C2 satisfies

f (−x,u)= f (x,u) for all −1 < x < 1 and u > 0, (3.2)

fx(x,u) � 0 for all 0 < x < 1 and u > 0. (3.3)

Under the above conditions any positive solution of (3.1) is an even function, with u′(x) <
0 for all x ∈ (0,1], see B. Gidas, W.-M. Ni and L. Nirenberg [15]. (For the one-dimensional
problem (3.1) a different proof of the symmetry of solutions is given in P. Korman [18]. It
is a little simpler than the moving plane method of [15], and it allows to relax somewhat
the condition (3.3).) As before the linearized problem

w′′ + λfu(x,u)w = 0 for −1 < x < 1, w(−1)=w(1)= 0 (3.4)

will be important for the multiplicity results.
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LEMMA 3.1 [34]. Under conditions (3.2) and (3.3) any nontrivial solution of (3.4) is of
one sign. Moreover, w(x) is an even function, and it spans the null set of (3.4).

PROOF. Assume that w(x) has a root on [0,1) (the case when w(x) vanishes on (−1,0]
is similar). We may assume (taking −w if necessary) that there is a subinterval (x1, x2),
0 � x1 < x2 � 1, so that w(x) > 0 on (x1, x2), and w(x1) = w(x2) = 0. Integrating the
relation [u′w′ − u′′w]′ = λfxw over (x1, x2),

u′(x2)w
′(x2)− u′(x1)w

′(x1)= λ

∫ x2

x1

fxw dx.

We have a contradiction, since the quantity on the left is positive, while the one on the right
is nonpositive.

The null set of (3.4) is one dimensional, since it can be parameterized by w′(1). To prove
that w(x) is even, observe that w(−x) is also a solution of (3.1), and hence w(−x)= cw(x)

for some constant c (since the null set of (3.4) is one dimensional). Evaluating this at x = 0,
we conclude that c= 1 (since w(0) > 0), and the claim follows. �

The next lemma shows that the Crandall–Rabinowitz Theorem 1.2 applies at any critical
solution.

LEMMA 3.2. Under conditions (3.2) and (3.3) let u(x) be a critical solution of (3.1), and
w(x) a solution of the corresponding linearized problem. Then we have

∫ 1

0
f (x,u)w dx >

1

2λ
u′(1)w′(1) > 0. (3.5)

PROOF. By the preceding lemma we may assume that w(x) > 0. We then have

(u′′w− u′w′)′ = −λfxw > 0 for x > 0.

So that the function u′′w− u′w′ is increasing on (0,1), and then

u′′w− u′w′ <−u′(1)w′(1) for x > 0.

Integrating this over (0,1), and expressing u′′ from Eq. (3.1), we conclude (3.5). �

The following result from P. Korman and J. Shi [40] is an extension of Lemma 2.3.
Unlike the autonomous case, several conditions are now needed.

THEOREM 3.1 See [40]. In addition to (3.2) and (3.3) assume that

f (x,u) > 0 for all −1 < x < 1 and u > 0. (3.6)

Then the set of positive solutions of (3.1) can be parameterized by their maximum values
u(0). (I.e. u(0) uniquely determines the pair (λ,u(x)).)
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PROOF. Assume on the contrary v(x) is another solution of (3.1), corresponding to some
parameter μ � λ, but u(0)= v(0). The case of μ= λ is not possible in view of uniqueness
of initial value problems, so assume that μ> λ. Then v(x) is a supersolution of (3.1), i.e.

v′′ + λf (x, v) < 0 for −1 < x < 1, v(−1)= v(1)= 0. (3.7)

Since v′′(0) < u′′(0), it follows that v(x) < u(x) for x > 0 small. Let 0 < ξ � 1 be the first
point where the graphs of u(x) and v(x) intersect (i.e. v(x) < u(x) on (0, ξ)). We now
multiply Eq. (3.1) by u′, and integrate over (0, ξ). Denoting by x2(u) the inverse function
of u(x) on (0, ξ), we have

1

2
u′2(ξ)+

∫ u(ξ)

u(0)
f
(
x2(u),u

)
du= 0. (3.8)

Similarly denoting by x1(u) the inverse function of v(x) on (0, ξ), we have from (3.7)

1

2
v′2(ξ)+

∫ u(ξ)

u(0)
f
(
x1(u),u

)
du > 0. (3.9)

Subtracting (3.9) from (3.8), noticing that x2(u) > x1(u) for all u ∈ (u(ξ), u(0)), and using
condition (3.3), we have

1

2

[
u′2(ξ)− v′2(ξ)

]+
∫ u(0)

u(ξ)

[
f
(
x1(u),u

)− f
(
x2(u),u

)]
du < 0. (3.10)

Since both terms on the left are positive, we obtain a contradiction. �

Next we consider positive solutions of the boundary value problem

u′′ + λb(x)f (u)= 0 for −1 < x < 1, u(−1)= u(1)= 0. (3.11)

We assume that b(x) ∈ C1[−1,1] satisfies b(x) > 0 for x ∈ [−1,1], and b(x) = b(−x),
b′(x) < 0 for x ∈ (0,1). We also assume that f (u) > 0, so that this problem belongs to the
class discussed above. For any solutions u(x) let (μ,w(x)) denote the principal eigenpair
of the corresponding linearized equation, i.e. we assume that w(x) > 0 satisfies

w′′ + λb(x)f ′(u)w+μw = 0 for −1 < x < 1,
(3.12)

w(−1)=w(1)= 0.

The following theorem is taken from P. Korman and J. Shi [40].

THEOREM 3.2. Assume f ∈ C2[0,∞), f (u) > 0, f ′(u) > 0 and f ′′(u) > 0 for all u > 0,
and for some α > 0 condition (2.43) is satisfied. Then the solution of (3.11) with u(0)= α

is unstable if it exists.
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PROOF. In the proof of Theorem 2.3, (2.25) and (2.26) are still true. Assume now that u(x)
is stable, i.e. μ � 0 in (3.12). Then w(x) is a positive solution of the problem

w′′ + g(x,w)= 0 for −1 < x < 1, w(−1)=w(1)= 0, (3.13)

with g(x,w)= λb(x)f ′(u(x))w+μw. Since g(x,w) is even in x, and

gx = λb′(x)f ′(u)w+ λb(x)f ′′(u)u′w < 0 on (0,1),

the theorem of B. Gidas, W.-M. Ni and L. Nirenberg [15] applies to (3.13). It follows that
w(x) is an even function with w′(x) < 0 on (0,1). Recall that w(x) is determined up to
a constant multiple. Since w(x) is decreasing, while −u′(x) is increasing on (0,1), by
scaling w(x) we can achieve (2.28). Using (2.25), (2.28), and also (2.26), we have (2.29).

Since b(x) > 0, b′(x) < 0 in (0,1) using (2.25) and (2.29), we have

∫ 1

0
b(x)

[
f (u)− uf ′(u)

]
w(x)dx

=
∫ x0

0
b(x)

[
f (u)− uf ′(u)

]
w(x)dx

+
∫ 1

x0

b(x)
[
f (u)− uf ′(u)

]
w(x)dx

<

∫ x0

0
b(x0)

[
f (u)− uf ′(u)

]
w(x)dx

+
∫ 1

x0

b(x0)
[
f (u)− uf ′(u)

]
w(x)dx

= b(x0)

∫ 1

0

[
f (u)− uf ′(u)

]
w(x)dx � 0. (3.14)

On the other hand, multiplying Eq. (3.12) by u, Eq. (3.1) by w, subtracting and integrating
over (0,1), we have

∫ 1

0
b(x)

[
f (u)− uf ′(u)

]
w(x)dx = μ

λ

∫ 1

0
uw dx � 0. (3.15)

We reach a contradiction by combining (3.14) and (3.15). �

As an application we have the following exact multiplicity result from P. Korman and
J. Shi [40]. It extends the corresponding result in [34] by not restricting the behavior
of f (u) at infinity. Theorem 3.1 above allows us to conclude the uniqueness of the so-
lution curve.

THEOREM 3.3. We assume that b(x) ∈ C1[−1,1] satisfies b(x) > 0 for x ∈ [−1,1], and
b(x)= b(−x), b′(x) < 0 for x ∈ (0,1). Assume f ∈ C2[0,∞), f (u) > 0, f ′(u) > 0 and
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f ′′(u) > 0 for all u > 0, while h(α) � 0 for some α > 0. Then there exist two constants
0 � λ̄ < λ0, so that problem (3.11) has no solution for λ > λ0, exactly two solutions for λ̄ <

λ < λ0, and in case λ̄ > 0 it has exactly one solution for 0 < λ< λ̄. Moreover, all solutions
lie on a unique smooth solution curve. If we moreover assume that limu→∞ f (u)

u
=∞, then

λ̄= 0.

EXAMPLE. Theorem 3.3 applies (with λ̄= 0) to an example from combustion theory

u′′ + λb(x)eu = 0 for −1 < x < 1, u(−1)= u(1)= 0,

where b(x) satisfies the above conditions.
P. Korman and T. Ouyang [34] have considered a class of indefinite problems

u′′(x)+ λu(x)+ h(x)up(x)= 0, −1 < x < 1,

u(−1)= u(1)= 0.
(3.16)

Here p > 1, and λ a real parameter. The given function h(x) is assumed to be even, and
it is allowed to change sign on (−1,1). By using bifurcation analysis, as above, as well as
earlier work of T. Ouyang [48,49], it was possible to give an exhaustive description of the
set of positive solutions of (3.16).

We denote by φ1 = cos π
2 x, the principal eigenfunction of −u′′ on (−1,1), correspond-

ing to the principal eigenvalue λ1 = π2

4 . We assume that h(x) ∈ C1(−1,1)∩C0[−1,1] is
an even function, and moreover,

h(0) > 0, and h′(x) < 0 for x ∈ (0,1), (3.17)

∫ 1

−1
h(x)φ

p+1
1 (x)dx < 0. (3.18)

(Notice that the last assumption implies that h(x) changes sign.)

THEOREM 3.4 [34]. Assume that conditions (3.17) and (3.18) hold for problem (3.16).
Then there is a critical λ0, λ0 > λ1, so that for −∞< λ � λ1 problem (3.16) has exactly
one positive solution, it has exactly two positive solutions for λ1 < λ < λ0, exactly one
at λ = λ0, and no positive solutions for λ > λ0. Moreover, all positive solutions lie on
a unique continuous in λ curve, which bifurcates from zero at λ = λ1 (to the right), it
continues without any turns to λ = λ0, at which it turns to the left, and then continues
without any more turns for all −∞< λ � λ0. We also have maxx u(x)→∞ as λ→−∞.

As far as we know, this is still the only known exact multiplicity result for indefinite
problems.

Let us mention next the cubic problems

u′′ + λ
(
u− a(x)

)(
u− b(x)

)(
c(x)− u

)= 0 for −1 < x < 1,

u(−1)= u(1)= 0,
(3.19)
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with given even functions 0 � a(x) � b(x) � c(x). As we discussed above, for constant
a, b and c, the exact multiplicity question has been settled only recently by P. Korman,
Y. Li and T. Ouyang [33], via a computer assisted proof. One can expect that under some
conditions the same global picture holds for variable coefficients. This was established for
several special cases. P. Korman, Y. Li and T. Ouyang [30] have given an exact multiplicity
result in case a = b = 0. P. Korman and T. Ouyang [36] had done the same in case a = 0,
and P. Korman and T. Ouyang [38] had given an exact multiplicity result in case when
a > 0 is a constant.

Next we indicate an extension. Consider a problem with a variable diffusion coefficient

(
a(x)u′

)′ + λf (u)= 0 for −1 < x < 1, u(−1)= u(1)= 0. (3.20)

We assume that a given function a(x) ∈ C1[−1,1] is even, and it satisfies

a(x) > 0 and xa′(x) � 0, for x ∈ [−1,1]. (3.21)

We perform a change of variables x→ s, given by

s =
∫ x

0

dt

a(t)
.

If we denote by s0 =
∫ 1

0
dt
a(t)

, then this transformation gives a one-to-one map of the inter-
val (−1,1) onto (−s0, s0). Moreover, s > 0 (< 0) iff x > 0 (< 0). The problems (3.20)
transforms into

uss + λa
(
x(s)

)
f (u)= 0 for − s0 < x < s0,

u(−s0)= u(s0)= 0.
(3.22)

Observe that the function s = s(x) is odd, and hence its inverse x = x(s) is also odd, and
then a(x(s)) is even. In view of (3.21)

d

ds
a
(
x(s)

)= a′
(
x(s)

)
a
(
x(s)

)
� 0 (� 0) if s > 0 (< 0).

If we now assume that f (u) > 0 for u > 0, then the problem (3.22) satisfies conditions
(3.2) and (3.3). Hence, we can translate our results, in particular Theorem 3.3, to problem
(3.20).

4. General nonlinearities

Without the symmetry assumptions on f (x,u) the problem is much harder. We restrict to
a subclass of such problems, i.e. we now consider positive solutions of the boundary value
problem

u′′ + λα(x)f (u)= 0 for a < x < b, u(a)= u(b)= 0, (4.1)
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on an arbitrary interval (a, b). We assume that f (u) and α(x) are positive functions of
class C2, i.e.

f (u) > 0 for u > 0, α(x) > 0 for x ∈ [a, b]. (4.2)

As before, it will be crucial for bifurcation analysis to prove positivity for the correspond-
ing linearized problem

w′′ + λα(x)f ′(u)w = 0 for a < x < b, w(a)=w(b)= 0. (4.3)

The following result was proved in P. Korman and T. Ouyang [38], although our exposition
here is a little different.

LEMMA 4.1. In addition to conditions (4.2), assume that

3

2

α′2

α
− α′′ < 0 for all x ∈ (a, b). (4.4)

If the linearized problem (4.3) admits a nontrivial solution, then we may assume that
w(x) > 0 on (a, b).

PROOF. Let z(x) = g(x)u′(x), with g(x) to be chosen shortly. Then z(x) satisfies the
equation

z′′ + λα(x)f ′(u)z= g′′(x)u′(x)− λ
(
2g′(x)α(x)+ α′(x)g(x)

)
f.

We now chose g(x)= α(x)−1/2. Then 2g′(x)α(x)+ α′(x)g(x)= 0, while

g′′(x) < 0 for a < x < b, (4.5)

in view of the condition (4.4).
Notice that any positive solution of (4.1) is a concave function, and hence it has only

one critical point, the point of global maximum. Let x0 be the point of maximum of u(x).
We have

z′′ + λα(x)f ′(u)z= g′′(x)u′(x), (4.6)

with the right-hand side negative on (a, x0) and positive on (x0, b). This will make it
impossible for w(x) to vanish inside (a, b). Indeed, if we assume that w(x) vanishes
on say (x0, b), we could find two consecutive roots of w(x), x0 � x1 < x2 � b so that
w(x1) = w(x2) = 0, while w(x) > 0 on (x1, x2). We now multiply the equation (4.6) by
w(x), Eq. (4.3) by z(x), subtract and integrate over (x1, x2), obtaining

−g(x2)u
′(x2)w

′(x2)+ g(x1)u
′(x1)w

′(x1)=
∫ x2

x1

g′′(x)u′(x)w(x)dx.
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We have a contradiction, since the quantity on the left is negative, and the integral on the
right is positive. �

REMARKS.
1. Recall the Schwarzian derivative from Complex Analysis and Dynamical Systems

(Sf )(x)= f ′′′(x)
f ′(x)

− 3

2

(
f ′′(x)
f ′(x)

)2

.

If one denotes A(x) = ∫
α(x)dx, then our condition (4.4) says that the Schwarzian

derivative of A(x) is positive.
2. Semilinear equations on an annulus in R

n, n > 2, can be reduced by a standard
change of variables to the problem (4.1), with α(x) = x−2k and k = 1 + 1

n−2 , see,
e.g., [19]. One sees that our condition (4.4) just misses this kind of functions. In [19]
positivity of w(x) was proved under an extra assumption that the annulus is “thin”.

We shall present a new result on positivity of w(x), after we prove a simple lemma.

LEMMA 4.2. Assuming conditions (4.2), let x0 be the unique point of maximum of the
positive solution of (4.1). Assume that

α′(x) < 0 on (x0, b). (4.7)

If the corresponding linearized problem (4.3) admits a nontrivial solution w(x), then this
solution cannot vanish inside (x0, b).

PROOF. Assuming the contrary, let γ be the largest root of w(x) on (x0, b), and assume
that w(x) > 0 on (γ, b). (The number of roots of w(x) inside (a, b) is at most finite, as
follows by the Sturm’s comparison theorem, since both functions f ′(u(x)) and α(x) are
bounded on [a, b], and λ is fixed. Hence, there is a largest root γ .) Differentiate Eq. (4.1)

u′′x + λα(x)f ′(u)uu + λα′(x)f (u)= 0. (4.8)

Multiplying Eq. (4.8) by w(x), Eq. (4.3) by u′(x), subtracting and integrating, we have

−u′(b)w′(b)+ u′(γ )w′(γ )+ λ

∫ b

γ

α′(x)f
(
u(x)

)
w(x)dx = 0.

This results in a contradiction, since all terms on the left are negative. �

REMARK. If α′(x) > 0 on (a, x0), then a similar proof shows that w(x) cannot vanish
inside (a, x0).

LEMMA 4.3. Assume conditions (4.2) hold, and in addition assume that

α′(x) < 0 on (a, b), (4.9)
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and

2α(x)+ xα′(x) > 0 on (a, b). (4.10)

If the linearized problem (4.3) admits a nontrivial solution, then we may assume that
w(x) > 0 on (a, b).

PROOF. Let x0 be the unique point of maximum of the solution u(x). By the previous
Lemma 4.2 it follows that w(x) cannot vanish on (x0, b). Assuming that w(x) vanishes
on (a, x0], let γ ∈ (a, x0] be the first root of w(x), and we may assume that w(x) > 0 on
(a, γ ). We consider the function ζ(x)= x[u′(x)w′(x)+λα(x)f (u(x))w(x)]−u′(x)w(x),
introduced by M. Tang [58]. One computes

ζ ′(x)= λ
[
2α(x)+ xα′(x)

]
f (u)w. (4.11)

Integrating over (a, γ ),

γ u′(γ )w′(γ )− au′(a)w′(a)= λ

∫ γ

a

[
2α(x)+ xα′(x)

]
f (u)w dx.

We have a contradiction, since the quantity on the left is negative, while the integral on the
right is positive. �

REMARK. Our condition (4.10) again just misses the case of an annulus.

Positivity of w(x) can be used to prove uniqueness and exact multiplicity results. For
example, we can prove the following theorem.

THEOREM 4.1. For problem (4.1) assume that conditions (4.2) hold, and that either con-
dition (4.4) holds, or conditions (4.9) and (4.10) hold. In addition assume that f ′′(u) > 0
for all u > 0, and limu→∞ f (u)

u
=∞. Then there is a critical λ0 > 0, so that problem (4.1)

has exactly two positive solutions for 0 < λ < λ0, exactly one positive solution at λ= λ0,
and no positive solutions for λ > λ0. Moreover, all solutions lie on a unique smooth solu-
tion curve, which starts at (λ = 0, u = 0), bends back at λ = λ0, and tends to infinity as
λ→ 0.

PROOF. The proof is similar to that of Theorem 2.2, except for proving the uniqueness of
the solution curve (since the maximum value of the solution no longer identifies that solu-
tion). However, if another solution curve existed, one of its ends would have to go through
the point (λ = 0, u = 0), contradicting the uniqueness of solutions near regular points,
which follows by the implicit function theorem. (Since w > 0 at the turning point, one of
the branches is increasing in λ, i.e. it is decreasing for decreasing λ. By the arguments of
[34], or [35], the monotonicity is preserved along the branch, and hence this branch must
go into the origin, as λ→ 0.) �
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EXAMPLE. The theorem applies to the problem

u′′ + λα(x)eu = 0, a < x < b, u(a)= u(b)= 0,

if α(x) > 0 satisfies either condition (4.4), or conditions (4.9) and (4.10).

5. Time maps

5.1. There are several different formulas for the time map

Let u= u(t) be solution of the initial value problem,

u′′ + f (u)= 0, u(0)= 0, u′(0)= p.

Using ballistic analogy, we can interpret this as “shooting” from the ground level, at an
angle p > 0. Let T/2 denote the time it takes for the projectile to reach its maximum
amplitude α, α = α(p). By symmetry of positive solutions, T = T (p) is then the time
when the projectile falls back to the ground, the time map. Since the energy is constant (as
before, F(u)= ∫ u

0 f (t)dt)

1

2

(
du

dt

)2

+ F
(
u(t)

)= F(α)= 1

2
p2.

Solving this for dt
du , and integrating

T/2= 1√
2

∫ α

0

du√
F(α)− F(u)

, (5.1)

which lets us compute T = T (α) (or T = T (p), since α = α(p)). This formula has been
used extensively for a long time, see, e.g., W.S. Loud [43], T. Laetsch [41], K.J. Brown et
al. [9], J. Smoller and A. Wasserman [57], S.-H. Wang [59–61], I. Addou [1,2], I. Addou
and S.-H. Wang [3], S.-H. Wang and T.S. Yeh [63], and J. Cheng [10,11]. It is not easy
to use this formula. The integral is improper at u = α, so that one needs a regularizing
substitution before differentiating in α. One regularizing substitution is u= α sin θ , which
gives

T/2= α√
2

∫ π/2

0

cos θ dθ√
F(α)− F(α sin θ)

. (5.2)

The integrand is now bounded. Formula (5.2) can be used for numerical computations,
as well as for proving theorems. For more information we refer the reader to the above
mentioned papers, particularly to the recent papers of S.-H. Wang and his coworkers.
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5.2. Time map formula through global linearization

We are interested in positive solutions of the two point problem for u= u(t)

u′′ + f (u)= 0, 0 < t < T, u(0)= u(T )= 0. (5.3)

We do not consider the end point T to be fixed, but rather depending on p = u′(0) (or on
the maximum value of the solution α, α = u(T /2)). To obtain the formula for T = T (p),
we begin by transforming (5.3) into the system form

u′ = y,

y′ = −f (u),
(5.4)

together with the initial conditions

u(0)= 0, y(0)= p. (5.5)

Let F(u)= ∫ u

0 f (t)dt . In the linear case when f (u)= u, we have F(u)= 1
2u

2. We now
define the function g(x), for x � 0, by

F
(
g(x)

)= 1

2
x2. (5.6)

In other words, g(x) = F−1( 1
2x

2), and the inverse function F−1 is defined, provided we
assume throughout this section that f (u) ∈ C2(0, a)∩C[0, a] for some 0 < a �∞, and

f (u) > 0 for u ∈ (0, a). (5.7)

We assume also that

either f (0) > 0, or f (0)= 0 and f ′(0) > 0. (5.8)

Differentiate (5.6)

f
(
g(x)

)
g′(x)= x. (5.9)

In (5.4) we let u= g(x), then multiply the second equation by g′(x), and use (5.9)

g′(x)x′ = y,
(5.10)

g′(x)y′ = −f
(
g(x)

)
g′(x)=−x.

We now change the independent variable in (5.10), t→ θ , by solving

dt

dθ
= g′

(
x(t)

)
, t (0)= 0. (5.11)
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Then the system (5.4) is linearized, and problem (5.4), (5.5) transforms into

dx

dθ
= y,

dy

dθ
=−x, (5.12)

x(0)= 0, y(0)= p.

Solution of (5.12) is

x = p sin θ, y = p cos θ.

Using this in (5.11) and integrating, we have the formula for the time map

T =
∫ π

0
g′(p sin θ)dθ. (5.13)

This formula was derived by R. Schaaf [53], and was used by her to obtain a number of
uniqueness and multiplicity results.

Separating variables in (5.11) and integrating

∫ T

0

f (g(x(t)))

x(t)
dt = π, (5.14)

where we have used (5.9) to express g′. From the definition of g(x) we have

x =√
2F(g(x))=√

2F(u),

and hence we can rewrite (5.14) as

∫ T

0

f (u(t))√
F(u(t))

dt =√2π. (5.15)

This formula was derived in a different way by P. Korman and Y. Li [28], where the quantity
on the left was referred to as “generalized average” of the solution of (5.3). The reason why
this term was chosen is that in case f (u)= u3, this formula gives the average value of the
solution:

∫ T

0 u(t)dt = π√
2

.

REMARKS.
1. We needed the positivity of f (u) so that the inverse function F−1 is defined, how-

ever there is no need to distinguish between f (0) = 0 and f (0) > 0 cases for both
formulas (5.13) and (5.15). In case f (0) > 0 the integral in (5.15) (and in (5.14))
is improper at both end points, however since u′(0) �= 0 and u′(T ) �= 0, the integral
converges. (For small t , u(t)∼ u′(0)t , F(u(t))∼ f (0)u(t)∼ f (0)u′(0)t .)
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2. Similarly, in the derivation of the time map formula (5.13), we run into an improper
integral in case f (0) > 0. Indeed, when solving for θ = θ(t) in (5.11), we have θ =∫ t

0
ds

g′(x(s)) , which is an improper integral at s = 0. However, as we have just seen, it
is a convergent integral. Hence the time map formula in (5.13) is valid in both cases
f (0)= 0, and f (0) > 0.

3. Let us collect the properties of the function g(x). We have g(0) = 0, g′(x) =√
2F(g(x))
f (g(x))

> 0 for x > 0. We also have g′(0)= 0 in case f (0) > 0, and, by L’Hopital’s

rule as was observed in R. Schaaf [53], g′(0)= 1√
f ′(0)

in case f (0)= 0. Observe that

g′(0) is defined, thanks to condition (5.8).

It is sometimes more convenient to express T = T (α), where α is the maximum value
of the solution, α = u(T /2). Since the energy 1

2u
′2(x) + F(u(x)) is constant, it follows

that p =√2F(α), and hence

T/2=
∫ π

π/2
g′(p sin θ)dθ =

∫ π/2

0
g′
(√

2F(α) cos θ
)

dθ. (5.16)

T/2 is, of course, the time it takes the solution to travel from its maximum to zero.

EXAMPLE. Consider the problem (u= u(x))

u′′ + λeu = 0, x ∈ (0,1), u(0)= u(1)= 0. (5.17)

By a change of independent variable we convert it to

u′′ + eu = 0, x ∈ (0,1), u(0)= u(T )= 0, (5.18)

where T =√λ. Here f (u)= eu, F(u)= eu − 1, and g(x)= ln( 1
2x

2 + 1). The integral in
(5.16) is then relatively simple, and in fact Mathematica gives

√
λ/2=

√
2

eα
ArcTanh

[√
eα − 1

eα

]
. (5.19)

Plotting this formula (with λ along the horizontal axis and α along the vertical one), we
obtain the same bifurcation diagram as obtained by standard integration. Computation this
way is considerably faster than by integration, and we also observe that here f (0) > 0.
Formula (5.19) can also be obtained by explicit integration of problem (5.17).

We can proceed similarly for the general case

u′′ + λf (u)= 0, x ∈ (0,1), u(0)= u(1)= 0. (5.20)
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We do not have a simple formula for g(x) anymore, however from (5.16) (see also (5.9))
we obtain (as before, T =√λ)

√
λ/2=

∫ π/2

0

√
2F(α) cos θ

f (F−1(F (α) cos2 θ))
dθ. (5.21)

This formula will provide probably one of the most efficient ways to compute the bifurca-
tion diagrams, once the evaluation of the inverse function F−1 is numerically implemented.

Assume now there is an a > 0, so that f (a) = 0, and f (u) > 0 for u > a, while no
assumptions on the sign of f (u) are made when u ∈ (0, a). If we denote by T1/2 the time
it takes the solution to travel from its maximum to u(x)= a, then

T1/2=
∫ π/2

θ0

g′
(√

2F(α) cos θ
)

dθ, where θ0 = sin−1

√
F(a)

F (α)
. (5.22)

The following theorem we proved in [27].

THEOREM 5.1. Assume that for some 0 < a < b �∞ we have

f (u) > 0 for a < u < b, (5.23)

f ′(u)
∫ u

a

f (t)dt − 1

2
f 2(u) > 0 for a < u < b. (5.24)

(Observe that we implicitly assume that f (a)= 0.) Then the problem

u′′ + f (u)= 0, x ∈ (0,1), u(0)= u(1)= 0

has at most one positive solution, with a < α = u(1/2) < b.

What is remarkable here is than no assumptions whatsoever are made on f (u) when
u ∈ (0, a). We used generalized averages to prove this result, but it should be possible to
obtain it from formula (5.22) too. In fact, there is a similar result in R. Schaaf’s book [53]
(a little less general than the above theorem). Observe that (5.24) will follow if f (a)= 0
and f ′′(u) > 0 for a < u < b. A more general result for p-Laplacian case has been given
recently by J. Cheng [10].

We now show how the time map formula gives rise to uniqueness and multiplicity results
for the Dirichlet problem. Compute

dT

dp
=

∫ π

0
g′′(p sin θ) sin θ dθ, (5.25)

where g′′(x) is computed from (5.9) (written in the form g′(x)=
√

2F(u)
f (u)

, u= g(x))

g′′(x)= f 2 − 2Ff ′

f 3
(u), with u= g(x). (5.26)



Solution branches and exact multiplicity of solutions for two point boundary value problems 599

If the time map T (p) is monotone, then clearly the positive solution of the Dirichlet prob-
lem (5.3) for any fixed T is unique. Hence, we have uniqueness of solutions if either

I (u)≡ f ′(u)F (u)− 1

2
f 2(u) > 0 for almost all u > 0, (5.27)

or the opposite inequality holds. This condition was derived by R. Schaaf [53], and it also
follows from the generalized averages in [28].

We observe next that this condition does not add anything to the standard uniqueness
condition

uf ′(u)− f (u) does not change sign for u > 0. (5.28)

I.e. (5.28) holds whenever (5.27) does, and so condition (5.28) is both simpler and more
general.

Indeed, we begin by observing

d2

du2

(√
F(u)

)
= I (u)

2F 3/2(u)
≡ J (u),

where J (u) has the same sign as I (u). Integrating between some a > 0 and u > 0,

d

du

(√
F(u)

)
=

∫ u

a

J (ξ)dξ + c > 0, (5.29)

where c= f (a)

2
√
F(a)

> 0. Integrating (5.29),

√
F(u)= cu+ c1 +

∫ u

a

(u− ξ)J (ξ)dξ, (5.30)

where c1 =−
∫ a

0 ξJ (ξ)dξ . From (5.30) we find F(u), and then f (u) and f ′(u) by differ-
entiation. We then have

uf ′(u)− f (u)= 2
√
F(u)J (u)u+ 2

∫ u

0
ξJ (ξ)dξ

(∫ u

a

J (ξ)dξ + c

)
.

In view of (5.29), the quantity in the bracket is positive, and it follows that if J (u) is
positive (negative), so is uf ′(u)− f (u).

We now consider the problem

u′′ + λf (u)= 0, x ∈ (0,1), u(0)= u(1)= 0, (5.31)

depending on a positive parameter λ. As before, we can convert it to problem (5.3), with
T =√λ. If we can show that T ′′(p) > 0 (or T ′′(p) < 0) for all p > 0, it will follow that for
any λ there is at most two p’s with T (p)=√λ, i.e. at most two solutions of (5.31). Since

T ′′(p)=
∫ π

0
g′′′(p sin θ) sin2 θ dθ,
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it suffices to show that the function g′′′(u) keeps the same sign. By formula (1-1-15) in R.
Schaaf [53]

g′′′(u)=−g′(x)3f ′(u)(f 2(u)− 2F(u)f ′(u))+ 2F(u)f (u)f ′′(u)
f 4(u)

,

with u= g(x),

which led her to the following condition: if

3f ′(u)
(
f 2(u)− 2F(u)f ′(u)

)+ 2F(u)f (u)f ′′(u) > 0 (or < 0),

for all u > 0 (5.32)

then problem (5.31) has at most two positive solutions. Since condition (5.32) is not easy to
verify, R. Schaaf [53] went on to develop her A−B and C conditions, which are sufficient
for (5.32) to hold.

Condition (5.32) says that g′(u) is either convex or concave. Working with the gener-
alized averages, P. Korman and Y. Li [28] have shown that the same result is true if 1

g′(u)
is convex (also in the case 1

g′(u) concave, but this possibility is included in the case when
g′(u) is concave). This led them to the following condition: if

1

2
f ′′(u)F 2(u)+ 3

8
f 3(u)− 3

4
f (u)f ′(u)F (u) > 0 for all u > 0, (5.33)

then problem (5.31) has at most two positive solutions. Observe that this condition is dif-
ferent from (5.32). Conditions (5.32) and (5.33) work in both cases f (0)= 0 and f (0) > 0.
Also, computer algebra can help in verifying these conditions.

EXAMPLE. The function f (u)= 2+ e−u sinu satisfies (5.33). This function changes con-
cavity infinitely many times. A straightforward computation, using Mathematica, shows
that for this function the left-hand side of (5.33) is positive, tending to 10.125 as u→∞.
Hence, problem (5.31) with this f (u) has at most two positive solutions for any λ > 0.

REMARKS.
1. The time map formula can be also developed for the p-Laplacian case. Actually, even

more general case is developed in Section 2.5 of R. Schaaf’s book [53].
2. Finally, we mention why we constantly stress that all results about the time map hold

in both cases f (0) = 0 and f (0) > 0. The important book by R. Schaaf [53] treats
the f (0)= 0 case in Chapter 1, while the case f (0) > 0 (and also the case f (0) < 0)
is postponed to Chapter 3. Some readers might form an incorrect impression that the
book covers only the f (0)= 0 case (as in the MathSciences Review of that book).
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5.3. Variational formula for the time map

In addition to the two formulas for the time map, discussed above, a curious variational
formula has been discovered by R. Benguria and M.C. Depassier, see [8], which has also
references to their earlier papers. If u(t) is a solution of

u′′ + λf (u)= 0, 0 < t < 1, u(0)= α, u′(0)= u(1)= 0, (5.34)

it is shown by R. Benguria and M.C. Depassier that

λ=max
g∈D

1

2

(
∫ α

0 g′(y)1/3 dy)3∫ α

0 f (y)g(y)dy
,

where D = {g|g ∈ C1(0, α), g′ > 0, g(0) = 0}. By rescaling, this formula is of course
equivalent to a time map formula. It was used in [8] to obtain lower and upper bounds for
time maps.

5.4. A nonlocal problem

Using the generalized inverses, we now give a complete description of the solution set of a
nonlocal problem. We begin with a simple observation. It is well known that for any L> 0
the problem (here u= u(x))

u′′ + u3 = 0, 0 < x <L, u(0)= u(L)= 0

has a unique positive solution, and a unique negative solution. If we now take a positive
solution on the interval (0,L/k), followed by the negative solution on (L/k,2L/k), and
so on, then we obtain a solution with k− 1 sign changes, for any positive integer k.

We now consider a nonlocal problem, where instead of a second boundary condition we
prescribe the average value of the solution on some fixed interval (0,L)

u′′ + u3 = 0, 0 < x <L,

u(0)= 0, (5.35)∫ L

0
u(s)ds = α,

where α is a prescribed constant. We are interested in both positive, negative and sign-
changing solutions, i.e. we shall talk of solutions with k sign changes, where k � 0. Without
loss of generality we may assume α � 0 (otherwise, consider v =−u). If α = 0, it is clear
that there exists exactly two solution of (5.35) with k sign changes, for any odd k � 1.
Indeed, a solution of Eq. (5.35) with u(0) = u(L) = 0 having an odd number of roots
inside (0,L), and its negative, provide the desired solutions of (5.35). So that we may
assume α > 0.
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THEOREM 5.2 [27]. For any 0 < α < π√
2

there exists exactly one solution of (5.35) with

k sign changes, for any k � 0. For α = π√
2

there exists exactly one solution with k sign

changes, for any even k � 0, and no solutions if k is odd. For any α > π√
2

problem (5.35)
has no solutions.

PROOF. The problem “scales right”. Setting x = bt , and u = 1
b
v, we see that v = v(t)

satisfies

v′′ + v3 = 0, 0 < t <
L

b
,

v(0)= 0, (5.36)∫ L/b

0
v(s)ds = α.

Comparing with (5.35), we see that only the length of the interval has changed. Hence
we have a one-to-one map between the solution sets on any two intervals. So consider a
solution U(x) of the equation u′′ +u3 = 0, with u(0)= 0, which has k sign changes, whose
roots are x = 1,2, . . ., and such that U(x) > 0 on (0,1), U(x) < 0 on (1,2), and so on.
According to formula (5.15), the integral of U(x) over any of its positive humps is equal to
π√

2
, while the integral of U(x) over any of its negative humps is − π√

2
. Imagine cutting this

solution with a sliding vertical line x = ξ . By continuity, for any α ∈ (0, π√
2
] we can find a

unique ξ ∈ (0,1] so that U(x) is positive solution of (5.35) on the interval (0, ξ). We then
map this solution to the original interval (0,L) by the above transformation. Similarly, for
any α ∈ (0, π√

2
) we can find a unique ξ ∈ (1,2) so that we have a solution of (5.35) on the

interval (0, ξ), with exactly one sign change. We then map U(x) to the original interval, as
before. Similarly we construct solutions with arbitrarily many sign changes.

By (5.15), no solution is possible in case α > π√
2

. �

6. Numerical computation of solutions

Good analytical understanding of a problem goes hand in hand with efficient numerical
calculation of its solution. We know that for positive solutions the maximum value u(0)=
α uniquely determines the solution pair (λ,u(x)) of the problem

u′′ + λf (u)= 0 for −1 < x < 1, u(−1)= u(1)= 0, (6.1)

see Lemma 2.3 above. We also know that the parameter λ in (6.1) can be “scaled out”, i.e.
v(x) ≡ u( 1√

λ
x) solves the equation v′′ + f (v) = 0, while v(0) = u(0) = α, and v′(0) =

u′(0)= 0. The root of v(x) is r =√λ. We therefore solve the initial value problem

v′′ + f (v)= 0, v(0)= α, v′(0)= 0, (6.2)
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Clear ["Global‘*"]
f[u_] = Exp [ 5u

5+u];
t = {};
�α = 0.2; α0 = 0; nsteps = 150;
Do

[
up = α0 + j * �α;
If

[
(NIntegrate[f[t], {t, 0, up}] > 0 && f[up] > 0),

α[j] = α0 + j * �α;
Int[θ_] := NIntegrate[f[u], {u, α[j] Sin[θ], α[j]}];

λ[j] = 2 α[j]ˆ2
(
NIntegrate

[ Cos[θ ]√
Int[θ ], {θ, 0, Pi/2}

])
ˆ2;

t = Append[t, {λ[j], α[j]}]]
, {j, 1, nsteps}]

ListPlot[t , PlotJoined → True,
AxesLabel → {"Lambda", "u(0)"}, PlotLabel → "f(u)=Exp(5u/(5+u))"]

and find its first positive root r . Then λ = r2 by the above remarks. This way for each
α we can find the corresponding λ. After we choose sufficiently many αn and compute
the corresponding λn, we can plot the pairs (λn,αn), obtaining a bifurcation diagram in
(λ,α) plane. We stress that the resulting two-dimensional bifurcation curve gives a faithful
representation of the solution set of (6.1), since the value u(0) = α uniquely determines
the solution pair (λ,u(x)). The program for solving (6.1) is essentially one short loop,
involving the NDSolve command in Mathematica. It can be found at the author’s web-
page: http://math.uc.edu/~kormanp/.

An equally good way to do numerical computations is by direct integration. For problem
(6.2) we have r = T/2, where as before r is the first positive root, and T is the time map.
I.e. λ= T 2/4. Using formula (5.2) for the time map, we have

λ= 1

2
α2

(∫ π/2

0

cos θ√∫ α

α sin θ f (u)du
dθ

)2

. (6.3)

The Mathematica program based on (6.3) is so short and simple, that we include its listing
here. It solves problem (6.1) for f (u) = e5u/(5+u), and produces an S-shaped bifurcation
curve, in agreement with our results. (Our program is solving the Dirichlet problem on the
interval (0,1), rather than (−1,1), which accounts for the extra factor of 4.)

We see absolutely no need to ever use finite differences (or finite elements) for problem
(6.1). If we divide the interval (0,1) into n pieces, with step h = 1/n and subdivision
points xi = ih, and denote by ui the numerical approximation of u(xi), the finite difference
approximation of (6.1) is

ui+1 − 2ui + ui−1

h2
+ λf (ui)= 0, 1 � i � n− 1, u0 = un = 0. (6.4)

This is a system of nonlinear algebraic equations, more complicated in every way than
the original problem (6.1). In particular, this system often has more solutions than the
corresponding differential equation (6.1). The existence of the extra solutions (not corre-
sponding to the solutions of (6.1)) has been recognized for a while, and a term spurious

http://math.uc.edu/~kormanp/
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solutions has been used. For example in case f (u) = eu the solution curve of (6.1) has
exactly one turn (as we proved before), while the solution curve of (6.4) has three turns,
see P. Korman [25]. Increasing the number of subdivision points n does not remove the two
spurious turns, it just moves them closer to λ= 0. Actually the spurious turns are avoided
in the opposite direction, when n � 6. We found this hard to prove, even when n = 2.
When studying problem (6.4), we can no longer rely on the familiar tools from differential
equations. Even in the case f (u)= uk the analysis of problem (6.4) is very involved, see
E.L. Allgower [4].

For the general problem (1.1) (with f = f (x,u)) we suggest using the predictor-
corrector method. If solution u(x,λ) is known, one approximates

u(x,λ+�λ)/ u(x,λ)+ uλ(x,λ)�λ, (6.5)

and then a very accurate approximation of u(x,λ+�λ) can be usually obtained in around 4
steps of Newton’s iteration, with the initial guess given by (6.5). This way we can continue
the solution in λ. To find uλ(x,λ) one solves a linear problem

u′′λ + fu(x,u)uλ + f (x,u)= 0 for −1 < x < 1,

uλ(−1)= uλ(1)= 0.
(6.6)

To solve (6.6) one uses finite differences. (There are no spurious solutions for linear prob-
lems!) The resulting tri-diagonal system is easily solved by Gaussian elimination.
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Abstract
In this text we investigate solvability of various nonlinear singular boundary value prob-

lems for ordinary differential equations on the compact interval [0, T ]. The nonlinearities in
differential equations may be singular both in the time and space variables. Location of all
singular points in [0, T ] need not be known.

The work is divided into 6 sections. Sections 1 and 2 are devoted to singular higher order
boundary value problems. The remaining ones deal with the second order case. Motivated
by various applications in physics we admit here the left-hand sides of the equations under
consideration containing the φ-Laplacian or p-Laplacian operator. The special attention is
paid to Dirichlet and periodic problems.

Usually, the main ideas of the proofs of the results mentioned are described. More detailed
proofs are included in the cases where no proofs are available in literature or where the details
are needed later.
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0. Notation

Let J ⊂R, k ∈N, p ∈ (1,∞). Then we will write:
• L∞(J ) for the set of functions essentially bounded and (Lebesgue) measurable on J ;

the corresponding norm is ‖u‖∞ = sup ess{|u(t)|: t ∈ J }.
• L1(J ) for the set of functions (Lebesgue) integrable on J ; the corresponding norm is
‖u‖1 =

∫
J
|u(t)|dt .

• Lp(J ) for the set of functions whose pth powers of modulus are integrable on J ; the
corresponding norm is ‖u‖p = (

∫
J
|u(t)|p dt)1/p .

• C(J ) and Ck(J ) for the sets of functions continuous on J and having continuous kth
derivatives on J , respectively.

• AC(J ) and ACk(J ) for the sets of functions absolutely continuous on J and having
absolutely continuous kth derivatives on J , respectively.

• ACloc(J ) and ACk
loc(J ) for the sets of functions absolutely continuous on each com-

pact interval I ⊂ J and having absolutely continuous kth derivatives on each compact
interval I ⊂ J , respectively.

• If J = [a, b], we will simply write C[a, b] instead of C([a, b]) and similarly for other
types of intervals and other functional sets defined above.

Further, we use the following notation:
• If u ∈ L∞[a, b] is continuous on [a, b], then max{|u(t)|: t ∈ [a, b]} = sup ess{|u(t)|:

t ∈ [a, b]}. Therefore the norm in C[a, b] will be denoted by ‖u‖∞ =max{|u(t)|: t ∈
[a, b]} and the norm in Ck[a, b] by ‖u‖Ck =∑k

i=0 ‖u(i)‖∞.
• Let n ∈N and M⊂R

n. Then M will denote the closure of M, ∂M the boundary of
M and meas (M) the Lebesgue measure of M.

• deg(I − F ,�) stands for the Leray–Schauder degree of I − F with respect to �,
where I denotes the identity operator.

We say that a function f satisfies the Carathéodory conditions on the set [a, b] ×M if:

f (·, x0, . . . , xn−1) : [a, b]→R is measurable

for all (x0, x1, . . . , xn−1) ∈M; (0.1)

f (t, ·, . . . , ·) :M→R is continuous for a.e. t ∈ [a, b]; (0.2)

⎧⎨
⎩

for each compact set K⊂M there is a function mK ∈ L1[a, b] such that∣∣f (t, x0, . . . , xn−1)
∣∣ � mK(t) for a.e. t ∈ [a, b]

and all (x0, x1, . . . , xn−1) ∈K.

(0.3)

In this case we will write f ∈ Car([a, b]×M). If J ⊂ [a, b] and J �= J , then f ∈ Car(J ×
M) will mean that f ∈ Car(I ×M) for each compact interval I ⊂ J .
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1. Principles of solvability of singular higher order BVPs

1.1. Regular and singular BVPs

For n ∈ N, [0, T ] ⊂ R, i ∈ {0,1, . . . , n − 1} and a closed set B ⊂ Ci[0, T ] consider the
boundary value problem

u(n) = f
(
t, u, . . . , u(n−1)), (1.1)

u ∈ B. (1.2)

In what follows, we will investigate the solvability of problem (1.1), (1.2) on the set
[0, T ] ×A, where A is a closed subset of R

n or A = R
n. The classical existence results

are based on the assumption f ∈ Car([0, T ] ×A). In this case we will say that problem
(1.1), (1.2) is regular on [0, T ]×A. If f /∈ Car([0, T ]×A) we will say that problem (1.1),
(1.2) is singular on [0, T ] ×A.

Motivated by the following applications we will mainly address singular problems.

EXAMPLE 1. In certain problems in fluid dynamics and boundary layer theory (see, e.g.,
Callegari, Friedman and Nachman [43–45]) the second order differential equation

u′′ + ψ(t)

uλ
= 0 (1.3)

arose. Here λ ∈ (0,∞) and ψ ∈ C(0,1), ψ /∈ L1[0,1]. Equation (1.3) is known as the
generalized Emden–Fowler equation. Its solvability with the Dirichlet boundary conditions

u(0)= u(1)= 0 (1.4)

was investigated by Taliaferro [141] in 1979 and then by many other authors. Problem
(1.3), (1.4) has been studied on the set [0,1]× [0,∞) because positive solutions have been
sought. We can see that f (t, x)= ψ(t)x−λ does not fulfill conditions (0.2) and (0.3) with
[a, b] = [0,1] and M= [0,∞). Hence problem (1.3), (1.4) is singular on [0,1] × [0,∞).

EXAMPLE 2. Consider the fourth order degenerate parabolic equation

Ut +
(|U |μUyyy

)
y
= 0,

which arises in droplets and thin viscous flows models (see, e.g., [32,33]). The source-type
solutions of this equation have the form

U(y, t)= t−bu
(
yt−b

)
, b= 1

μ+ 4
,

which leads to the study of the third order ordinary differential equation on [−1,1],
u′′′ = btu1−μ.
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We see that f (t, x)= btx1−μ is singular on [−1,1] × [0,∞) if μ> 1.

EXAMPLE 3. Similarly to Example 2, the sixth order degenerate equation

Ut −
(|U |μUyyyyy

)
y
= 0

which arises in semiconductor models (Bernis [30,31]) leads to the fifth order ordinary
differential equation

−u(5) = t

uλ

which is singular for λ > 0.

A solvability decision for singular boundary value problems requires an exact definition
of a solution to such problems. Here, we will work with the same definition of a solution
both for regular problems and for singular ones.

DEFINITION 1.1. A function u ∈ACn−1[0, T ]∩B is said to be a solution of problem (1.1),
(1.2), if it satisfies the equality u(n)(t) = f (t, u(t), . . . , u(n−1)(t)) a.e. on [0, T ]. If we
investigate problem (1.1), (1.2) on A �=R

n, we moreover require (u(t), . . . , u(n−1)(t)) ∈A
for t ∈ [0, T ].

In literature, an alternative approach to solvability of singular problems can be found.
In this approach, solutions are defined as functions whose (n− 1)st derivatives can have
discontinuities at some points in [0, T ]. Here we will call them the w-solutions. According
to Kiguradze [92] or Agarwal and O’Regan [3] we define them as follows. In contrast to
our starting setting, to define w-solutions we assume that i ∈ {0,1, . . . , n− 2} and B is a
closed subset in Ci[0, T ].

DEFINITION 1.2. We say that u is a w-solution of problem (1.1), (1.2) if there exists a finite
number of points tν ∈ [0, T ], ν = 1,2, . . . , r , such that if we denote J = [0, T ] \ {tν}rν=1,
then u ∈ Cn−2[0, T ] ∩ ACn−1

loc (J ) ∩ B satisfies u(n)(t) = f (t, u(t), . . . , u(n−1)(t)) a.e. on
[0, T ]. If A �=R

n we require (u(t), . . . , u(n−1)(t)) ∈A for t ∈ J .

Clearly each solution is a w-solution and each w-solution which belongs to ACn−1[0, T ]
is a solution.

In the study of singular problem (1.1), (1.2) we will focus our attention on two types of
singularities of the function f :

Let J ⊂ [0, T ]. We say that f :J × A→ R has singularities in its time variable t , if
J �= J = [0, T ] and

f ∈ Car(J ×A) and f /∈ Car
([0, T ] ×A

)
. (1.5)
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Let D ⊂ A. We say that f : [0, T ] × D→ R has singularities in its space variables
x0, x1, . . . , xn−1, if D �=D =A and

f ∈ Car
([0, T ] ×D

)
and f /∈ Car

([0, T ] ×A
)
. (1.6)

We will study particular cases of (1.5) and (1.6) which will be described in Section 1.2 and
Section 1.3, respectively.

1.2. Singularities in time variable

According to (0.3) and (1.5) a function f has a singularity in its time variable t , if f is not
integrable on [0, T ]. Let us define it more precisely. Let k ∈ N, ti ∈ [0, T ], i = 1, . . . , k,
J = [0, T ] \ {t1, t2, . . . , tk} and let f ∈ Car(J ×A). Assume that for each i ∈ {1, . . . , k}
there exists (x0, . . . , xn−1) ∈A such that

∫ ti+ε

ti

∣∣f (t, x0, . . . , xn−1)
∣∣dt =∞ or

∫ ti

ti−ε
∣∣f (t, x0, . . . , xn−1)

∣∣dt =∞
(1.7)

for any sufficiently small ε > 0. Then f does not fulfill (0.3) with M=A and, according
to (1.5), function f has singularities in its time variable t , namely at the values t1, . . . , tk .
We will call these values the singular points of f .

EXAMPLE. Let fi : Rn→R, i = 1,2, . . . , k, be continuous. Then the function

f (t, x0, . . . , xn−1)=
k∑

i=1

1

t − ti
fi(x0, . . . , xn−1),

has singular points t1, t2, . . . , tk .

1.3. Singularities in space variables

By virtue of (0.2) and (1.6) we see that if f has a singularity in some of its space variables
then f is not continuous in this variable on a region where f is studied. Motivated by
Eq. (1.3) we will consider the following case. Let Ai ⊂ R be a closed interval and let
ci ∈Ai , Di =Ai \ {ci}, i = 0,1, . . . , n− 1. Assume that there exists j ∈ {0,1, . . . , n− 1}
such that

⎧⎨
⎩

lim sup
xj→cj ,xj∈Dj

∣∣f (t, x0, . . . , xj , . . . , xn−1)
∣∣=∞

for a.e. t ∈ [0, T ] and for some xi ∈Di , i = 0,1, . . . , n− 1, i �= j.

(1.8)
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If we put A=A0 × · · · ×An−1, we see that f does not fulfill (0.2) with M=A and,
according to (1.6), the function f has a singularity in its space variable xj , namely at the
value cj .

Let u be a solution of (1.1), (1.2) and let a point tu ∈ [0, T ] be such that u(j)(tu)= cj for
some j ∈ {0, . . . , n−1}. Then tu is called a singular point corresponding to the solution u.

Now, let u be a w-solution of (1.1), (1.2). Assume that a point tu ∈ [0, T ] is such that
u(n−1)(tu) does not exist or there is a j ∈ {0, . . . , n− 1} such that u(j)(tu)= cj . Then tu is
called a singular point corresponding to the w-solution u.

EXAMPLE. Let h1, h2, h3 ∈ L1[0, T ], h2 �= 0, h3 �= 0 a.e. on [0, T ]. Consider the Dirichlet
problem

u′′ + h1(t)+ h2(t)

u
+ h3(t)

u′
= 0, u(0)= u(T )= 0. (1.9)

Let u be a solution of (1.9). Then 0 and T are singular points corresponding to u. Moreover,
there exists at least one point tu ∈ (0, T ) satisfying u′(tu)= 0, which means that tu is also
a singular point corresponding to u. Note that (in contrast to the points 0 and T ) we do not
know the location of tu in (0, T ).

In accordance with this example, we will distinguish two types of singular points cor-
responding to solutions or to w-solutions: singular points of type I, where we know their
location in [0, T ] and singular points of type II whose location is not known.

1.4. Existence principles for BVPs with time singularities

Singular problems are usually investigated by means of auxiliary regular problems. To es-
tablish the existence of a solution of a singular problem we introduce a sequence of approx-
imating regular problems which are solvable. Then we pass to the limit for the sequence
of approximate solutions to get a solution of the original singular problem. Here we pro-
vide existence principles which contain the main rules for a construction of such sequences
to get either w-solutions or solutions.

Consider problem (1.1), (1.2) on [0, T ] ×A. For the sake of simplicity assume that f
has only one time singularity at t = t0, t0 ∈ [0, T ]. It means that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

J = [0, T ] \ {t0}, f ∈ Car(J ×A) satisfies at least one of the conditions

(i)
∫ t0

t0−ε
∣∣f (t, x0, . . . , xn−1)

∣∣dt =∞, t0 ∈ (0, T ],

(ii)
∫ t0+ε

t0

∣∣f (t, x0, . . . , xn−1)
∣∣dt =∞, t0 ∈ [0, T ),

for some (x0, x1, . . . , xn−1) ∈A and each sufficiently small ε > 0.
(1.10)
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Let us have a sequence of regular problems

u(n) = fk
(
t, u, . . . , u(n−1)), u ∈ B, (1.11)

where fk ∈ Car([0, T ] ×R
n), k ∈N.

THEOREM 1.3 (First existence principle for w-solutions of (1.1), (1.2)). Let (1.10) hold
and let B be a closed subset in Cn−2[0, T ]. Assume that the conditions

⎧⎪⎪⎨
⎪⎪⎩

for each k ∈N and each (x0, . . . , xn−1) ∈A,

fk(t, x0, . . . , xn−1)= f (t, x0, . . . , xn−1) a.e. on [0, T ] \�k,

where �k =
(
t0 − 1

k
, t0 + 1

k

)∩ [0, T ],
(1.12)

and
⎧⎪⎪⎨
⎪⎪⎩

there exists a bounded set �⊂ Cn−1[0, T ] such that

for each k ∈N the regular problem (1.11) has a solution uk ∈�

and
(
uk(t), . . . , u

(n−1)
k (t)

) ∈A for t ∈ [0, T ]
(1.13)

are fulfilled. Then

⎧⎨
⎩

there exist a function u ∈ Cn−2[0, T ] and a subsequence

{uk } ⊂ {uk} such that lim
 →∞‖uk − u‖Cn−2 = 0; (1.14)

{
lim
 →∞u

(n−1)
k 

(t)= u(n−1)(t) locally uniformly on J

and
(
u(t), . . . , u(n−1)(t)

) ∈A for t ∈ J ;
(1.15)

the function u ∈ACn−1
loc (J ) is a w-solution of problem (1.1), (1.2). (1.16)

SKETCH OF THE PROOF. Step 1. Convergence of the sequence of approximate solutions.
Condition (1.13) implies that the sequences {u(i)k }, 0 � i � n − 2, are bounded and

equicontinuous on [0, T ]. By the Arzelà–Ascoli theorem the assertion (1.14) is true and
u ∈ B ⊂ Cn−2[0, T ]. Since {u(n−1)

k } is bounded on [0, T ], we get, due to (1.11) and (1.12),

that for each t ∈ [0, t0) the sequence {u(n−1)
k } is equicontinuous on [0, t] and so the same

holds on [t, T ] if t ∈ (t0, T ]. The Arzelà–Ascoli theorem and the diagonalization principle
yield (1.15).

Step 2. Properties of the limit u.
By virtue of (1.12), (1.14) and (1.15) we have

lim
k →∞

fk 
(
t, uk (t), . . . , u

(n−1)
k 

(t)
)= f

(
t, u(t), . . . , u(n−1)(t)

)

a.e. on [0, T ]. (1.17)



Singularities and Laplacians in nonlinear BVPs 615

Hence, using the Lebesgue convergence theorem, we can deduce that if t0 �= 0 the limit u
solves the equation

u(n−1)(t)= u(n−1)(0)+
∫ t

0
f
(
s, u(s), . . . , u(n−1)(s)

)
ds

for t ∈ [0, t0) (1.18)

and if t0 �= T the limit u solves the equation

u(n−1)(t)= u(n−1)(T )−
∫ T

t

f
(
s, u(s), . . . , u(n−1)(s)

)
ds

for t ∈ (t0, T ], (1.19)

which immediately yields (1.16). �

For the existence of a solution u ∈ACn−1[0, T ] of problem (1.1), (1.2) we will impose
additional conditions on f on some neighbourhood of t0.

THEOREM 1.4 (First existence principle for solutions of (1.1), (1.2)). Let all assumptions
of Theorem 1.3 be fulfilled. Further, assume that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

there exist ψ ∈ L1[0, T ], η > 0 and λ1, λ2 ∈ {−1,1} such that

λ1fk 
(
t, uk (t), . . . , u

(n−1)
k 

(t)
)
� ψ(t)

for all  ∈N and for a.e. t ∈ [t0 − η, t0)∩ [0, T ] provided (1.10)(i) holds,

λ2fk 
(
t, uk (t), . . . , u

(n−1)
k 

(t)
)
� ψ(t)

for all  ∈N and for a.e. t ∈ (t0, t0 + η] ∩ [0, T ] provided (1.10)(ii) is true.
(1.20)

Then the assertions (1.14) and (1.15) are valid and u ∈ACn−1[0, T ] is a solution of prob-
lem (1.1), (1.2).

SKETCH OF THE PROOF. Step 1. As in the proof of Theorem 1.3 we get that (1.14)–(1.16)
hold.

Step 2. Since u is a w-solution of problem (1.1), (1.2), it remains to prove that
u ∈ACn−1[0, T ]. Assume that condition (1.10)(i) holds. Since

u
(n−1)
k 

(t)− u
(n−1)
k 

(t0 − η)=
∫ t

t0−η
fk 

(
s, uk (s), . . . , u

(n−1)
k 

(s)
)

ds (1.21)
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for t ∈ (0, t0), we get due to (1.13) that there is a c ∈ (0,∞) such that

λ1

∫ t0

t0−η
fk 

(
s, uk (s), . . . , u

(n−1)
k 

(s)
)

ds � c (1.22)

for each  ∈ N. By the Fatou lemma, having in mind conditions (1.17), (1.20) and (1.22),
we deduce that f (t, u(t), . . . , u(n−1)(t)) ∈ L1[0, t0]. Similarly, if condition (1.10)(ii) holds,
we deduce that f (t, u(t), . . . , u(n−1)(t)) ∈ L1[t0, T ]. Therefore f (t, u(t), . . . , u(n−1)(t)) ∈
L1[0, T ] and due to (1.18) and (1.19) we have that u ∈ACn−1[0, T ] is a solution of prob-
lem (1.1), (1.2). �

In the sequel we will need the following definition:

DEFINITION 1.5. Let [a, b] ⊂ R and {gk} ⊂ L1[a, b]. We say that the sequence {gk} is
uniformly integrable on [a, b] if

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

for each ε > 0 there exists δ > 0 such that

∞∑
j=1

(bj − aj ) < δ �⇒
∞∑
j=1

∫ bj

aj

∣∣gk(t)∣∣dt < ε

for each k ∈N and each sequence of intervals {(aj , bj )} in [a, b].

(1.23)

Note that condition (1.23) is satisfied for example if there exists ψ ∈ L1[a, b] such that
|gk(t)|� ψ(t) for a.e. t ∈ [a, b] and all k ∈N.

THEOREM 1.6 (Second existence principle for solutions of (1.1), (1.2)). Let all assump-
tions of Theorem 1.3 be fulfilled and assume in addition that B is a closed subset in
Cn−1[0, T ] and that

{
there exists η > 0 such that the sequence

{
fk

(
t, uk(t), . . . , u

(n−1)
k (t)

)}
is uniformly integrable on [t0 − η, t0 + η] ∩ [0, T ].

(1.24)

Then

⎧⎨
⎩

there exist a function u ∈� and a subsequence {uk } ⊂ {uk} such that

lim
 →∞‖uk − u‖Cn−1 = 0 and

(
u(t), . . . , u(n−1)(t)

) ∈A for t ∈ [0, T ]
(1.25)

and u ∈ACn−1[0, T ] is a solution of problem (1.1), (1.2).
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SKETCH OF THE PROOF. Step 1. By (1.13) we get that the sequences {u(i)k }, 0 � i � n−2,

are bounded in C[0, T ] and equicontinuous on [0, T ] and {u(n−1)
k } is bounded in C[0, T ].

Using (1.24) one can show that {u(n−1)
k } is also equicontinuous on [0, T ]. The Arzelà–

Ascoli theorem yields (1.25) and u ∈ B ⊂ Cn−1[0, T ].
Step 2. As in Step 2 of the proof of Theorem 1.3 we get that u is a w-solution of problem

(1.1), (1.2).
Step 3. It remains to prove that u ∈ ACn−1[0, T ]. Since u ∈ ACn−1

loc (J ), it is sufficient
to prove

u(n−1) ∈AC
([t0 − η, t0 + η] ∩ [0, T ]). (1.26)

Assume that (1.10)(i) holds and [t0 − η, t0] ⊂ [0, T ]. By virtue of (1.17) and (1.24), ap-
plying Vitali’s convergence theorem we obtain f (t, u(t), . . . , u(n−1)(t)) ∈ L1[t0−η, t0]. If
(1.10)(ii) holds, we can assume [t0, t0 + η] ⊂ [0, T ] and deduce similarly that

f
(
t, u(t), . . . , u(n−1)(t)

) ∈ L1[t0, t0 + η].
Hence, we get (1.26). �

1.5. Existence principles for BVPs with space singularities

Similarly to Section 1.4 we will establish sufficient properties for an approximate sequence
of regular problems and of their solutions to pass to a limit and yield a solution of the
original singular problem (1.1), (1.2). Let Ai ⊂ R, i = 0, . . . , n − 1, be closed intervals
and let A = A0 × · · · ×An−1. Consider problem (1.1), (1.2) on [0, T ] ×A and assume
that f has only one singularity at each xi , namely at the values ci ∈Ai , i = 0, . . . , n− 1.
Denoting D =D0 × · · · ×Dn−1, Di =Ai \ {ci}, i = 0, . . . , n− 1, we will assume that

f ∈ Car
([0, T ] ×D

)
satisfies (1.8) for j = 0, . . . , n− 1. (1.27)

Consider a sequence of regular problems (1.11) where fk ∈ Car([0, T ] × R
n), k ∈ N.

We will use the approach used by Rachůnková and Staněk in [121] and [122].

THEOREM 1.7 (Second existence principle for w-solutions of (1.1), (1.2)). Let (1.13),
(1.27) hold and let B be a closed subset in Cn−2[0, T ]. Assume that

⎧⎪⎪⎨
⎪⎪⎩

for each k ∈N, for a.e. t ∈ [0, T ] and each (x0, . . . , xn−1) ∈D
we have

fk(t, x0, . . . , xn−1)= f (t, x0, . . . , xn−1)

if |xi − ci |� 1
k
, 0 � i � n− 1.

(1.28)

Then the assertion (1.14) is valid.
If, moreover, the set

� = {
s ∈ [0, T ]: u(i)(s)= ci for some i ∈ {0, . . . , n− 1}

or u(n−1)(s) does not exist
}
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is finite, then the assertion (1.15) is valid for J = [0, T ] \�. If, in addition,

{
the sequence

{
fk 

(
t, uk (t), . . . , u

(n−1)
k 

(t)
)}

is uniformly integrable on each interval [a, b] ⊂ J
(1.29)

then u ∈ACn−1
loc (J ) is a w-solution of problem (1.1), (1.2).

SKETCH OF THE PROOF. Step 1. Convergence of the sequence of approximate solutions.
As in Step 1 of the proof of Theorem 1.3 we get (1.14) and u ∈ B ⊂ Cn−2[0, T ]. Assume

that � is finite and choose an arbitrary [a, b] ⊂ J . According to (1.27) and (1.28) we
can prove that the sequence {u(n−1)

k 
} is equicontinuous on [a, b]. Using the Arzelà–Ascoli

theorem and the diagonalization principle we deduce that the subsequence {uk } can be
chosen so that it fulfills (1.15).

Step 2. Convergence of the sequence of regular right-hand sides.
Consider sets

V1 =
{
t ∈ [0, T ]: f (t, ·, . . . , ·) :D→R is not continuous

}
,

V2 =
{
t ∈ [0, T ]: the equality in (1.28) is not valid

}
.

We can see that meas (V1) = meas (V2) = 0. Denote U = � ∪ V1 ∪ V2 and choose an
arbitrary t ∈ [0, T ] \ U . By (1.14) and (1.15) there exists  0 ∈ N such that for each  ∈ N,
 �  0,

∣∣u(i)(t)− ci
∣∣> 1

k 
,

∣∣u(i)k 
(t)− ci

∣∣ � 1

k 
for i ∈ {0, . . . , n− 1}.

According to (1.28) we have

fk 
(
t, uk (t), . . . , u

(n−1)
k 

(t)
)= f

(
t, uk (t), . . . , u

(n−1)
k 

(t)
)

and, by (1.14), (1.15),

lim
 →∞fk 

(
t, uk (t), . . . , u

(n−1)
k 

(t)
)= f

(
t, u(t), . . . , u(n−1)(t)

)
. (1.30)

Since meas (U)= 0, (1.30) holds for a.e. t ∈ [0, T ].
Step 3. Existence of a w-solution.
Choose an arbitrary interval [a, b] ⊂ J . By (1.29) and (1.30) we can use Vitali’s conver-

gence theorem [23] to show that f (t, u(t), . . . , u(n−1)(t)) ∈ L1[a, b] and if we pass to the
limit in the sequence

u
(n−1)
k 

(t)= u
(n−1)
k 

(a)+
∫ t

a

fk 
(
s, uk (s), . . . , u

(n−1)
k 

(s)
)

ds, t ∈ [a, b],
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we get

u(n−1)(t)= u(n−1)(a)+
∫ t

a

f
(
s, u(s), . . . , u(n−1)(s)

)
ds, t ∈ [a, b].

Since [a, b] ⊂ J is an arbitrary interval, we conclude that u ∈ACn−1
loc (J ) satisfies Eq. (1.1)

for a.e. t ∈ [0, T ]. �

THEOREM 1.8 (Third existence principle for solutions of (1.1), (1.2)). Let (1.13), (1.27),
(1.28) hold and let B be a closed subset of Cn−1[0, T ]. Further, assume that the sequence

{
fk

(
t, uk(t), . . . , u

(n−1)
k (t)

)}
is uniformly integrable on [0, T ]. (1.31)

Then the assertion (1.25) is valid. If, moreover, the functions u(i) − ci , 0 � i � n− 1, have
at most a finite number of zeros in [0, T ], then u ∈ACn−1[0, T ] is a solution of (1.1), (1.2).

SKETCH OF THE PROOF. Step 1. As in Step 1 in the proof of Theorem 1.6 we get that
(1.25) is valid and u ∈ B ⊂ Cn−1[0, T ].

Step 2. As in Step 2 in the proof of Theorem 1.7 we get that (1.30) is valid.
Step 3. We can argue as in Step 3 in the proof of Theorem 1.7 if we take [0, T ] instead

of [a, b] and (1.31) instead of (1.29). �

2. Existence results for singular two-point higher order BVPs

In this section we are interested in problems for higher order differential equations hav-
ing singularities in their space variables only (see Section 1.3). We consider the focal,
conjugate, (n,p), Sturm–Liouville and Lidstone boundary conditions which appear most
frequently in literature. Boundary conditions considered are two-point, linear and homo-
geneous.

Existence results for the above singular problems are proved by regularization and se-
quential techniques which consist in the construction of a proper sequence of auxiliary reg-
ular problems and in limit processes (see Section 1.5). To prove solvability of the auxiliary
regular problems we use the Nonlinear Fredholm Alternative (see, e.g., [95, Theorem 4]
or [146, p. 25]) which we formulate in the form convenient for our problems. In particular,
we consider the differential equation

u(n) +
n−1∑
i=0

ai(t)u
(i) = g

(
t, u, . . . , u(n−1)) (2.1)

and the corresponding linear homogeneous differential equation

u(n) +
n−1∑
i=0

ai(t)u
(i) = 0 (2.2)
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where ai ∈ L1[0, T ], 0 � i � n−1, g ∈ Car([0, T ]×R
n). Further, we introduce boundary

conditions

Lj (u)= rj , 1 � j � n, (2.3)

and the corresponding homogeneous boundary conditions

Lj (u)= 0, 1 � j � n, (2.4)

where Lj :Cn−1[0, T ]→R are linear and continuous functionals and rj ∈R, 1 � j � n.

THEOREM 2.1 (Nonlinear Fredholm Alternative). Let the linear homogeneous problem
(2.2), (2.4) have only the trivial solution and let there exist a function ψ ∈ L1[0, T ] such
that

∣∣g(t, x0, . . . , xn−1)
∣∣ � ψ(t) for a.e. t ∈ [0, T ] and all x0, . . . , xn−1 ∈R.

Then the nonlinear problem (2.1), (2.3) has a solution u ∈ACn−1[0, T ].

2.1. Focal conditions

We discuss the singular (p,n− p) right focal problem

(−1)n−pu(n) = f
(
t, u, . . . , u(n−1)), (2.5)

u(i)(0)= 0, 0 � i � p− 1, u(j)(T )= 0, p � j � n− 1, (2.6)

where n � 2, p ∈N is fixed, 1 � p � n− 1, f ∈ Car([0, T ] ×D) with

D =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R
p+1
+ ×R− ×R+ ×R− × · · · ×R+︸ ︷︷ ︸

n

if n− p is odd,

R
p+1
+ ×R− ×R+ ×R− × · · · ×R−︸ ︷︷ ︸

n

if n− p is even

and f may be singular at the value 0 of all its space variables. Here R− = (−∞,0) and
R+ = (0,∞). Notice that if f > 0 then the singular points corresponding to the solutions
of problem (2.5), (2.6) are only of type I. The Green function of problem u(n) = 0, (2.6) is
presented in [18] and [19].

The existence result for the singular problem (2.5), (2.6) is given in the following theo-
rem.

THEOREM 2.2 [120, Theorem 4.3]. Let f ∈ Car([0, T ] ×D) and let there exist positive
constants ε and r such that

ε(T − t)r � f (t, x0, . . . , xn−1)
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for a.e. t ∈ [0, T ] and each (x0, . . . , xn−1) ∈D.

Also assume that for a.e. t ∈ [0, T ] and each (x0, . . . , xn−1) ∈D we have

f (t, x0, . . . , xn−1) � ϕ(t)+
n−1∑
i=0

ωi

(|xi |)+
n−1∑
i=0

hi(t)|xi |αi ,

where αi ∈ (0,1), ϕ,hi ∈ L1[0, T ] are nonnegative, ωi : R+ → R+ are nonincreasing,
0 � i � n− 1, and

∫ T

0
ωi

(
t r+n−i

)
dt <∞ for 0 � i � n− 1.

Then there exists a solution u ∈ACn−1[0, T ] of problem (2.5), (2.6) with

{
u(i) > 0 on (0, T ] for 0 � i � p− 1,

(−1)j−pu(j) > 0 on [0, T ) for p � j � n− 1.
(2.7)

SKETCH OF PROOF. Step 1. Construction of a sequence of regular differential equations
related to Eq. (2.5).

Put

ϕ∗(t)= ϕ(t)+
n−1∑
i=0

ωi(1)+
n−1∑
i=0

hi(t) for a.e. t ∈ [0, T ].

Then ϕ∗ ∈ L1[0, T ] and there exists r∗ > 0 such that the estimate ‖u(n−1)‖∞ < r∗ is valid
for any function u ∈ACn−1[0, T ] satisfying (2.6), (−1)n−pu(n)(t) � ε(T − t)r and

(−1)n−pu(n)(t) � ϕ∗(t)+
n−1∑
i=0

ωi

(∣∣u(i)(t)∣∣)+
n−1∑
i=0

hi(t)
∣∣u(i)(t)∣∣αi

for a.e. t ∈ [0, T ]. Now for m ∈N, 0 � i � n− 1 and x ∈R, put %i = 1+ r∗T n−i−1 and

σi
( 1
m
,x

)=
⎧⎨
⎩

1
m

signx for |x|< 1
m

,
x for 1

m
� |x|� %i ,

%i signx for %i < |x|.
Extend f onto [0, T ]× (R \ {0})n as an even function in each of its space variables xi , 0 �
i � n− 1, and for a.e. t ∈ [0, T ] and each (x0, . . . , xn−1) ∈R

n, define auxiliary functions

fm(t, x0, . . . , xn−1)= f

(
t, σ0

(
1

m
,x0

)
, . . . , σn−1

(
1

m
,xn−1

))
, m ∈N.
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In this way we get the family of regular differential equations

(−1)n−pu(n) = fm
(
t, u, . . . , u(n−1)) (2.8)

depending on m ∈N.
Step 2. Properties of solutions to problems (2.8), (2.6).
By Theorem 2.1 we show that for any m ∈ N, problem (2.8), (2.6) has a solution um ∈

ACn−1[0, T ] satisfying (for t ∈ [0, T ])
{
u
(i)
m (t) � ctr+n−i if 0 � i � p− 1,

(−1)i−pu(i)m (t) � c(T − t)r+n−i if p � i � n− 1,
(2.9)

where c is a positive constant and ‖u(n−1)
m ‖∞ < r∗. Moreover, the sequence {u(n−1)

m } is
equicontinuous on [0, T ]. By virtue of the Arzelà–Ascoli theorem, a convergent subse-
quence {ukm} exists and let limm→∞ ukm = u. Then u ∈ Cn−1[0, T ], u satisfies (2.6) and,
because of (2.9),

u(i)(t) � ctr+n−i for t ∈ [0, T ] and 1 � i � p− 1,

(−1)i−pu(i)(t) � c(T − t)r+n−i for t ∈ [0, T ] and p � i � n− 1.

Also,

∣∣fkm(t, ukm(t), . . . , u(n−1)
km

(t)
)∣∣ � %(t) for a.e. t ∈ [0, T ] and all m ∈N,

where % ∈ L1[0, T ] and

lim
m→∞fkm

(
t, ukm(t), . . . , u

(n−1)
km

(t)
)= f

(
t, u(t), . . . , u(n−1)(t)

)
for a.e. t ∈ [0, T ].

Now, letting m→∞ in

u
(n−1)
km

(t)= u
(n−1)
km

(0)+ (−1)n−p
∫ t

0
fkm

(
s, ukm(s), . . . , u

(n−1)
km

(s)
)

ds

we conclude

u(n−1)(t)= u(n−1)(0)+ (−1)n−p
∫ t

0
f
(
s, u(s), . . . , u(n−1)(s)

)
ds, t ∈ [0, T ].

Hence u ∈ACn−1[0, T ] and u is a solution of problem (2.5), (2.6). �
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EXAMPLE. Let γ ∈ (0,1), αi ∈ [0,1), ci ∈ (0,∞), βi ∈ (0, 1
n+γ−i ) and let hi ∈ L1[0, T ]

be nonnegative for 0 � i � n − 1. Then, by Theorem 2.2, there exists a solution u ∈
ACn−1[0, T ] of the differential equation

(−1)n−pu(n) =
(
T − t

t

)γ

+
n−1∑
i=0

ci

|u(i)|βi +
n−1∑
i=0

hi(t)
∣∣u(i)∣∣αi

satisfying the (p,n− p) right focal boundary conditions (2.6) and (2.7).

REMARK 2.3. Substituting t = T − s in (2.5), (2.6) and using Theorem 2.2 we can also
give results for the existence of solutions to singular differential equations satisfying (n−
p,p) left focal boundary conditions

u(i)(0)= 0, p � i � n− 1, u(j)(T )= 0, 0 � j � p− 1

(see [120, Theorem 4.4]).

The singular problem (2.5), (2.6) was also considered on the interval [0,1] by Agarwal,
O’Regan and Lakshmikantham in [12] where f is assumed to be continuous and indepen-
dent of space variables xp, . . . , xn−1 and may be singular at xi = 0, 0 � i � p − 1. They
examined the problem

{
(−1)n−pu(n) = ϕ(t)h

(
t, u, . . . , u(p−1)

)
,

u(i)(0)= 0, 0 � i � p− 1, u(j)(1)= 0, p � j � n− 1,
(2.10)

under the assumptions

ϕ ∈ C0(0,1) with ϕ > 0 on (0,1) and ϕ ∈ L1[0,1], (2.11)

h : [0,1] ×R
p
+ →R+ is continuous, (2.12)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h(t, x0, . . . , xp−1) �
p−1∑
i=0

gi(xi)+ r
(
max{x0, . . . , xp−1}

)
on [0,1] ×R

p
+

with gi > 0 continuous and nonincreasing on R+ for each i = 0, . . . , p− 1

and r � 0 continuous and nondecreasing on [0,∞),

(2.13)

⎧⎪⎨
⎪⎩
h(t, x0, . . . , xp−1) �

p−1∑
i=0

hi(xi) on [0,1] ×R
p
+

with hi > 0 continuous and nonincreasing on R+ for each i = 0, . . . , p− 1,

(2.14)
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⎧⎨
⎩
∫ 1

0
ϕ(t)gi

(
ki t

p−i)dt <∞ for each i = 0, . . . , p− 1,

where ki > 0 (i = 0, . . . , p− 1) are constants
(2.15)

and

⎧⎪⎪⎨
⎪⎪⎩

if z > 0 satisfies z � a0 + b0r(z) for constants a0 � 0 and b0 � 0,

then there exists a constant K (which may depend only on a0 and b0)

such that z � K.

(2.16)

The next result was proved by sequential technique and a nonlinear alternative of Leray–
Schauder type [77, Theorem 2.3].

THEOREM 2.4 [12, Theorem 2.1]. Suppose (2.11)–(2.16) hold. Then problem (2.10) has
a solution u ∈ Cn−1[0,1] ∩Cn(0,1) with u(i) > 0 on (0,1] for 0 � i � p− 1.

EXAMPLE. Consider the problem

⎧⎪⎨
⎪⎩
(−1)n−pu(n) =

p−1∑
i=0

(
1

(u(i))βi
+μi

(
u(i)

)αi + τi

)
,

u(i)(0)= 0, 0 � i � p− 1, u(j)(1)= 0, p � j � n− 1

(2.17)

with βi ∈ (0,∞), μi, τi ∈ [0,∞), αi ∈ [0,1) for 0 � i � p−1. In addition, assume βi(p−
i) < 1 for i = 0, . . . , p − 1. Theorem 2.4 guarantees that problem (2.17) has a solution
u ∈ Cn−1[0,1] ∩Cn(0,1) with u(i) > 0 on (0,1] for 0 � i � p− 1.

2.2. Conjugate conditions

Let 1 � p � n− 1 be a fixed natural number. Consider the (p,n− p) conjugate problem

(−1)pu(n) = f
(
t, u, . . . , u(n−1)), (2.18)

u(i)(0)= 0, 0 � i � n− p− 1, u(j)(T )= 0, 0 � j � p− 1 (2.19)

where n � 2, f ∈ Car([0, T ] ×D), D = (0,∞)× (R \ {0})n−1 and f may be singular at
the value 0 of all its space variables.

Replacing t by T − t , if necessary, we may assume that p ∈ {1, . . . , n
2 } for n even and

p ∈ {1, . . . , n+1
2 } for n odd. We observe that the larger p is chosen, the more complicated

structure of the set of all singular points of a solution to (2.18), (2.19) and its derivatives is
obtained. We note that solutions of problem (2.18), (2.19) have singular points of type I at
t = 0 and/or t = T and also singular points of type II. Since the singular problem (2.18),
(2.19) for n= 2 is the Dirichlet problem discussed in Section 4, we assume that n > 2.
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THEOREM 2.5 ([121, Theorems 2.1 and 2.7] and [123]). Let n > 2 and 1 � p � n− 1 be
fixed natural numbers. Suppose that the following conditions are satisfied:

⎧⎪⎨
⎪⎩
f ∈ Car

([0, T ] ×D
)

and there exists c > 0 such that

c � f (t, x0, . . . , xn−1)

for a.e. t ∈ [0, T ] and all (x0, . . . , xn−1) ∈D,

(2.20)

⎧⎪⎪⎨
⎪⎪⎩

h ∈ Car
([0, T ] × [0,∞)

)
is nondecreasing in its second variable and

lim sup
z→∞

1

z

∫ T

0
h(t, z)dt <

(
1+

n−2∑
i=0

T n−i−1

(n− i − 2)!

)−1

,
(2.21)

⎧⎨
⎩
ωi : (0,∞)→ (0,∞) are nonincreasing and∫ T

0
ωi

(
tn−i

)
dt <∞ for 0 � i � n− 1,

(2.22)

⎧⎪⎨
⎪⎩
f (t, x0, . . . , xn−1) � h

(
t,

n−1∑
i=0

|xi |
)
+

n−1∑
i=0

ωi

(|xi |)

for a.e. t ∈ [0, T ] and all (x0, . . . , xn−1) ∈D.

(2.23)

Then the (p,n− p) conjugate problem (2.18), (2.19) has a solution u ∈ACn−1[0, T ] and
u > 0 on (0, T ).

SKETCH OF PROOF. Step 1. Uniform integrability.
Put

B = {
u ∈ACn−1[0, T ]: u satisfies (2.19) and (−1)pu(n)(t) � c

for a.e. t ∈ [0, T ]},
where c > 0 is taken from (2.20). Conditions (2.20) and (2.22) guarantee that there exists
a positive constant A such that

∫ T

0
ωi

(∣∣u(i)(t)∣∣)dt � A for each u ∈ B and 0 � i � n− 1

and that the set of functions {ωi(|u(i)(t)|): u ∈ B, 0 � i � n− 1} is uniformly integrable
on [0, T ]. Also, u > 0 on (0, T ) for each u ∈ B.

Step 2. Estimates of functions belonging to B.
By virtue of (2.21), there exists r∗ > 1 such that the estimate ‖u‖Cn−1 < r∗ holds for

each function u ∈ B satisfying

u(n)(t) � h

(
t, n+

n−1∑
i=0

∣∣u(i)(t)∣∣
)
+

n−1∑
i=0

[
ωi

(∣∣u(i)(t)∣∣)+ωi(1)
]

for a.e. t ∈ [0, T ].
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Step 3. Construction of regular problems to (2.18), (2.19) and properties of their solu-
tions.

For m ∈N, let hm ∈ Car([0, T ] × ([0,∞)×R
n−1)) be such that hm(t, x0, . . . , xn−1)=

f (t, x0, . . . , xn−1) for a.e. t ∈ [0, T ] and any x0 � 1
m

, |xj |� 1
m

, 1 � j � n− 1. Put

fm(t, x0, x1, . . . , xn−1)= hm
(
t, σ0(x0), σ (x1), . . . , σ (xn−1)

)

for a.e. t ∈ [0, T ] and each (x0, x1, . . . , xn−1) ∈R
n, where

σ0(x)=
{ |x| if |x|� r∗,
r∗ if |x|> r∗, σ(x)=

{
x if |x|� r∗,
r∗ signx if |x|> r∗.

Now, the sequence of regular differential equations

(−1)pu(n) = fm
(
t, u, . . . , u(n−1)) (2.24)

is considered. It follows from Theorem 2.1 that for each m ∈ N there exists a solution
um of problem (2.24), (2.19) and ‖um‖Cn−1 < r∗. Moreover, the sequence of functions
{fm(t, um(t), . . . , u(n−1)

m (t))} is uniformly integrable on [0, T ]. By the Arzelà–Ascoli the-
orem there exists a subsequence {ukm} converging in Cn−1[0, T ], limm→∞ ukm = u. Then
u ∈ Cn−1[0, T ] satisfies (2.19) and for each i ∈ {1, . . . , n− 1}, the function u(n−i) has a
finite number of zeros 0 � ai1 < · · ·< ai,pi

� T and satisfies

∣∣u(n−i)(t)∣∣ � c

i! (t − aik)
i for t ∈ [aik, ai,k+1]

or

∣∣u(n−i)(t)∣∣ � c

i! (ai,k+1 − t)i for t ∈ [aik, ai,k+1]

(see [123]). Therefore u ∈ ACn−1[0, T ] and u is a solution of problem (2.18), (2.19) due
to Theorem 1.8. From Step 1 and (2.20) it follows that u > 0 on (0, T ). �

EXAMPLE. Let p ∈ {1, . . . , n− 1}. Let αi ∈ (0,1), βi ∈ (0, 1
n−i ) and bi ∈ L1[0, T ], ci ∈

L∞[0, T ] be nonnegative for 0 � i � n− 1. Also, let ϕ ∈ L1[0, T ] and ϕ(t) � c for a.e.
t ∈ [0, T ] with c > 0. Then the differential equation

(−1)pu(n) = ϕ(t)+
n−1∑
i=0

(
bi(t)

∣∣u(i)∣∣αi + ci(t)

|u(i)|βi
)

has a solution u ∈ACn−1[0, T ] satisfying (2.19) and u > 0 on (0, T ).



Singularities and Laplacians in nonlinear BVPs 627

2.3. (n,p) boundary conditions

Here we are concerned with the singular (n,p) problem

−u(n) = f
(
t, u, . . . , u(n−1)), (2.25){

u(i)(0)= 0, 0 � i � n− 2,

u(p)(T )= 0, p fixed, 0 � p � n− 1,
(2.26)

where n � 2, f ∈ Car([0, T ]×D), D = (0,∞)× (R \ {0})n−2×R and f may be singular
at the value 0 of its space variables x0, . . . , xn−2. Notice that the (n,0) problem is simul-
taneously also the (1, n− 1) conjugate problem. For f > 0, solutions of problem (2.25),
(2.26) have singular points of type I at t = 0, t = T and also singular points of type II.

THEOREM 2.6 [14, Theorem 4.2]. Suppose
⎧⎪⎪⎨
⎪⎪⎩

f ∈ Car([0, T ] ×D) and there exist positive ψ ∈ L1[0, T ] and

K ∈ (0,∞) such that ψ(t) � f (t, x0, . . . , xn−1) for a.e. t ∈ [0, T ]
and each (x0, . . . , xn−1) ∈ (0,K] × (R \ {0})n−2 ×R,

(2.27)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

hj ∈ L1[0, T ] is nonnegative, ωi : (0,∞)→ (0,∞) is nonincreasing,

n−1∑
k=0

1

(n− k− 1)!
∫ T

0
hk(t)t

n−k−1 dt < 1,
∫ T

0
ωi

(
tn−i−1)dt <∞

for 0 � j � n− 1 and 0 � i � n− 2,
(2.28)⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

for a.e. t ∈ [0, T ] and each (x0, . . . , xn−1) ∈D we have

f (t, x0, . . . , xn−1) � ϕ(t)+
n−2∑
i=0

ωi

(|xi |)+
n−1∑
j=0

hj (t)|xj |

where ϕ ∈ L1[0, T ] is nonnegative.

(2.29)

Then there exists a solution u ∈ ACn−1[0, T ] of problem (2.25), (2.26) with u(i) > 0 on
(0, T ] for 0 � i � p− 1 (if p � 1) and u(p) > 0 on (0, T ).

SKETCH OF PROOF. Step 1. A priori bounds for solutions of problem (2.25), (2.26).
Upper and lower bounds for solutions of problem (2.25), (2.26) and their derivatives are

given by means of the Green function of the problem −u(n) = 0, (2.26) (see, e.g., [1]).
Step 2. Construction of auxiliary regular problems and properties of their solutions.
Using Step 1, a sequence of regular differential equations

−u(n) = fm
(
t, u, . . . , u(n−1)), m ∈N, m � m0 � 1

K
, (2.30)

with fm ∈ Car([0, T ] × R
n) is constructed. By the Leray–Schauder degree theory, we

prove that for any m � m0 problem (2.30), (2.26) has a solution um. The sequence
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{um}∞m=m0
is bounded in Cn−1[0, T ] and {u(n−1)

m }∞m=m0
is equicontinuous on [0, T ]. The

Arzelà–Ascoli theorem guarantees the existence of a subsequence {uk}∞k=1 of {um}∞m=m0

converging in Cn−1[0, T ] to a function u. Then u ∈ Cn−1[0, T ] satisfies (2.26) and u(i) > 0
on (0, T ] for 0 � i � p − 1 (if p � 1) and u(p) > 0 on (0, T ). Moreover, for each
i ∈ {p+ 1, . . . , n− 2}, the function u(i) has a unique zero ξi in (0, T ) (0 < ξn−2 < ξn−1 <

· · ·< ξp+1 < T ) and satisfies

u(i)(t) �
{
ctn−i−1 for t ∈ [0, ξi+1],
c(ξi − t) for t ∈ [ξi+1, ξi],

u(i)(t) � c(ξi − t) for t ∈ [ξi, T ]

where c is a positive constant. Since {fk(t, uk(t), . . . , u(n−1)
k (t))} is uniformly integrable

on [0, T ], we can use Theorem 1.8 concluding that u ∈ACn−1[0, T ] and u is a solution of
problem (2.25), (2.26). �

A related existence result for the singular (n,p) problem

⎧⎪⎨
⎪⎩
−u(n) = ϕ(t)h

(
t, u, . . . , u(p−1)

)
,

u(i)(0)= 0, 0 � i � n− 2,

u(p)(1)= 0, p fixed, 1 � p � n− 1

(2.31)

was presented in [12] with h continuous and positive on [0,1] × (0,∞)p and ϕ ∈
C0(0,1) ∩ L1[0,1] positive on (0,1). In this setting solutions of problem (2.31) cannot
have singular points of type II. The result is the following.

THEOREM 2.7 [12, Theorem 3.1]. Suppose that (2.11)–(2.14) and (2.16) hold and

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0
ϕ(t)gi

(
ki t

n−1−i)dt <∞ for each i = 0, . . . , p− 1,

where ki > 0, i = 0, . . . , p− 1, are constants.

Then problem (2.31) has a solution u ∈ Cn−1[0,1] ∩ Cn(0,1) with u(j) > 0 on (0,1] for
0 � j � p− 1.

2.4. Sturm–Liouville conditions

We are now concerned with the Sturm–Liouville problem for the nth-order differential
equation (2.25), n � 3, and the boundary conditions

⎧⎪⎪⎨
⎪⎪⎩

u(i)(0)= 0, 0 � i � n− 3,

αu(n−2)(0)− βu(n−1)(0)= 0,

γ u(n−2)(T )+ δu(n−1)(T )= 0,

(2.32)
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where α, γ > 0 and β , δ � 0. Notice that the function f in Eq. (2.25) may be singular at
the value 0 of its space variables x0, . . . , xn−1. If f > 0, solutions of problem (2.25), (2.32)
have singular points of type I at the end points of the interval [0, T ] and also singular points
of type II.

We will impose the following conditions on the function f in (2.25):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f ∈ Car
([0, T ] ×D

)
where D = (0,∞)n−1 × (

R \ {0})
and there exist positive constants ε and r such that

εtr � f (t, x0, . . . , xn−1)

for a.e. t ∈ [0, T ] and each (x0, . . . , xn−1) ∈D;

(2.33)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for a.e. t ∈ [0, T ] and each (x0, . . . , xn−1) ∈D,

f (t, x0, . . . , xn−1) � ϕ(t)+
n−1∑
i=0

ωi

(|xi |)+
n−1∑
i=0

hi(t)|xi |αi

with αi ∈ (0,1), ϕ,hi ∈ L1[0, T ] nonnegative,

ωi : (0,∞)→ (0,∞) nonincreasing, 0 � i � n− 1, and

∫ T

0
ωn−1

(
t r+1)dt <∞,

∫ T

0
ωi

(
tn−i−1)dt <∞ for 0 � i � n− 2;

(2.34)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for a.e. t ∈ [0, T ] and each (x0, . . . , xn−1) ∈D,

f (t, x0, . . . , xn−1) � ϕ(t)+
n−1∑

i=0,i �=n−2

ωi

(|xi |)+ q(t)ωn−2
(|xn−2|

)

+
n−1∑
i=0

hi(t)|xi |αi

with αi ∈ (0,1), ϕ, q,hi ∈ L1[0, T ] nonnegative,

ωi : (0,∞)→ (0,∞) nonincreasing, 0 � i � n− 1, and∫ T

0
ωn−1

(
t r+1)dt <∞,

∫ T

0
ωj

(
tn−j−2)dt <∞ for 0 � j � n− 3.

(2.35)

The next two theorems show that our sufficient conditions for the solvability of problem
(2.25), (2.32) with min{β, δ}> 0 are weaker then those for this problem with min{β, δ} =
0.

THEOREM 2.8 [120, Theorem 4.1]. Let conditions (2.33) and (2.34) be satisfied and let
min{β, δ} = 0. Then problem (2.25), (2.32) has a solution u ∈ACn−1[0, T ], u(n−2) > 0 on
(0, T ) and u(j) > 0 on (0, T ] for 0 � j � n− 3.

SKETCH OF PROOF. Step 1. A priori bounds for the solution of (2.25), (2.32).
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By (2.33) and by the properties of the Green function to problem

−u′′ = 0, αu(0)− βu′(0)= 0, γ u(T )+ δu′(T )= 0,

the existence of a positive constant A is proved such that for any function u ∈ACn−1[0, T ]
satisfying (2.32) and −u(n)(t) � εtr for a.e. t ∈ [0, T ] we have

u(n−2)(t) �
{
At for t ∈ [0, T

2 ],
A(T − t) for t ∈ ( T2 , T ],

(2.36)

u(j)(t) � A

4(n− j − 1)! t
n−j−1 for t ∈ [0, T ] and 0 � j � n− 3 (2.37)

and

u(n−1)(t)

⎧⎪⎨
⎪⎩

� ε

r + 1
(ξ − t)r+1 for t ∈ [0, ξ ],

<− ε

r + 1
(t − ξ)r+1 for t ∈ (ξ, T ],

(2.38)

where ξ ∈ (0, T ) (depending on the solution u) is the unique zero of u(n−1). Condition
(2.34) guarantees the existence of a positive constant S such that ‖u‖Cn−1 � S for any
solution u to (2.25), (2.32).

Step 2. Construction of regular differential equations.
Using Step 1, a sequence of regular differential equations (2.30) is constructed where

fm ∈ Car([0, T ] ×R
n),

fm(t, x0, . . . , xn−1)= f (t, x0, . . . , xn−1)

for a.e. t ∈ [0, T ] and all (x0, . . . , xn−1) ∈R
n such that

1

m
� xj � S + 1 if 0 � j � n− 2,

1

m
� |xn−1|� S + 1

and

sup
{
fm(t, x0, . . . , xn−1): (x0, . . . , xn−1) ∈R

n
} ∈ L1[0, T ] for all m ∈N.

Then Theorem 2.1 guarantees that the regular problem (2.30), (2.32) has a solution um
which satisfies (2.36)–(2.38) (with um instead of u).

Step 3. Properties of solutions to regular problems (2.30), (2.32).
The sequence {um} is considered. It is proved that {um} is bounded in Cn−1[0, T ] and,

by (2.34), the sequence of functions {fm(t, um(t), . . . , u(n−1)
m (t))} is uniformly integrable

on [0, T ], which implies that {u(n−1)
m } is equicontinuous on [0, T ]. Hence a subsequence
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{ukm} converging in Cn−1[0, T ] exists and let limm→∞ ukm = u. Since u satisfies (2.36)–
(2.38), the functions u(i), 0 � i � n− 1, have a finite number of zeros in [0, T ]. Therefore,
by Theorem 1.8, u ∈ ACn−1[0, T ] and u is a solution of problem (2.25), (2.32) such that
u(j) > 0 on (0, T ] for 0 � j � n− 3 and u(n−2) > 0 on (0, T ). �

THEOREM 2.9 [120, Theorem 4.2]. Let conditions (2.33) and (2.35) be satisfied and let
min{β, δ}> 0. Then there exists a solution u ∈ACn−1[0, T ] of problem (2.25), (2.32) such
that u(n−2) > 0 on [0, T ] and u(j) > 0 on (0, T ] for 0 � j � n− 3.

SKETCH OF PROOF. Since min{β, δ}> 0, there is a positive constant B such that u(n−2) �
B on [0, T ] for any solution u of problem (2.25), (2.32). Further, the inequalities (2.37)
with B instead of A and (2.38) hold. Next we argue as in the sketch of proof to Theo-
rem 2.8. �

2.5. Lidstone conditions

Let R− = (−∞,0), R+ = (0,∞) and R0 = R \ {0}. Here we will consider the singular
problem

(−1)nu(2n) = f
(
t, u, . . . , u(2n−2)), (2.39)

u(2j)(0)= u(2j)(T )= 0, 0 � j � n− 1, (2.40)

where n � 1 and f ∈ Car([0, T ] ×D) with

D =

⎧⎪⎪⎨
⎪⎪⎩

R+ ×R0 ×R− ×R0 × · · · ×R+︸ ︷︷ ︸
4k−3

if n= 2k− 1,

R+ ×R0 ×R− ×R0 × · · · ×R−︸ ︷︷ ︸
4k−1

if n= 2k

(for n= 1,2 and 3 we have D =R+, D =R+×R0×R− and D =R+×R0×R−×R0×
R+, respectively). The function f may be singular at the value 0 of its space variables
x0, . . . , x2n−2. If f is positive on [0, T ] × D, solutions of problem (2.39), (2.40) have
singular points of type I at t = 0 and t = T as well as singular points of type II.

THEOREM 2.10 [14, Theorem 4.1]. Let the following conditions be satisfied:

⎧⎪⎪⎨
⎪⎪⎩

f ∈ Car([0, T ] ×D) and there exists ϕ ∈ L1[0, T ] such that

0 < ϕ(t) � f (t, x0, . . . , x2n−2)

for a.e. t ∈ [0, T ] and each (x0, . . . , x2n−2) ∈D;
(2.41)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for 0 � j � 2n− 2, hj ∈ L1[0, T ] are nonnegative and

n−1∑
j=0

T 2(n−j)−3

6n−j−1

∫ T

0
t (T − t)h2j (t)dt

+
n−2∑
j=0

T 2(n−j−2)

6n−j−2

∫ T

0
t (T − t)h2j+1(t)dt < 1

(here
∑n−2

j=0 = 0 if n= 1);

(2.42)

⎧⎪⎪⎨
⎪⎪⎩

ωj : R+ →R+ are nonincreasing, �> 0 and∫ T

0
ωj (s)ds <∞, ωj (uv) � �ωj(u)ωj (v)

for 0 � j � 2n− 2 and u,v ∈R+;
(2.43)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (t, x0, . . . , x2n−2) � ψ(t)+
2n−2∑
j=0

ωj

(|xj |)+
2n−2∑
j=0

hj (t)|xj |

for a.e. t ∈ [0, T ] and each (x0, . . . , x2n−2) ∈D,

where ψ ∈ L1[0, T ] is nonnegative.

(2.44)

Then problem (2.39), (2.40) has a solution u ∈AC2n−1[0, T ] and

(−1)ju(2j) > 0 on (0, T ) for 0 � j � n− 1.

SKETCH OF PROOF. Step 1. A priori bounds for solutions of problem (2.39), (2.40).
Using (2.41) and the properties of the Green functions to problems u(2j) = 0, u(2i)(0)=

u(2i)(T )= 0, 0 � i � j − 1, it is proved that for any solution u of problem (2.39), (2.40)
and for each j , 0 � j � n− 1, the inequality (−1)ju(2j) > 0 holds on (0, T ) and the func-
tion (−1)ju(2j+1) is decreasing on [0, T ] and vanishes at a unique ξj ∈ (0, T ) (depending
on u). Moreover,

∣∣u(2j)(t)∣∣ � A
T 2(n−j)−5

30n−j−1
t (T − t), t ∈ [0, T ], 0 � j � n− 1,

and (if n > 1)

∣∣u(2j+1)(t)
∣∣ � A

T 2(n−j)−7

30n−j−2

∣∣∣∣
∫ t

ξj

s(T − s)ds

∣∣∣∣, t ∈ [0, T ], 0 � j � n− 2,

where A= ∫ T

0 t (T − t)ϕ(t)dt .
Step 2. Construction of a sequence of regular problems.
For each m ∈N, define fm ∈ Car([0, T ] ×R

2n−1) satisfying

fm(t, x0, . . . , x2n−2)= f (t, x0, . . . , x2n−2)
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for a.e. t ∈ [0, T ] and each (x0, . . . , x2n−2) ∈ D, |xj | � 1
m

, 0 � j � 2n− 2. By virtue of
(2.44) and a fixed point theorem of Leray–Schauder type (see, e.g., [50, Corollary 8.1]),
for each m ∈N there exists a solution um of the regular differential equation (−1)nu(2n) =
fm(t, u, . . . , u

(2n−2)) satisfying (2.40). Further, ‖um‖C2n−1 � B for each m ∈N where B is
a positive constant and the sequence {fm(t, um(t), . . . , u(2n−2)

m (t))} is uniformly integrable
on [0, T ] due to (2.43) and (2.44).

Step 3. Limit processes.
From Step 2 it follows that {um} is bounded in C2n−1[0, T ]. Hence, by the Arzelà–

Ascoli theorem and a compactness principle, there exists its subsequence {ukm} which
converges in C2n−2[0, T ] and {u(2n−1)

km
(0)} converges in R. Let limm→∞ ukm = u,

limm→∞ u
(2n−1)
km

(0) = C. Then u ∈ C2n−2[0, T ] satisfies (2.40) and, by Step 1, the func-

tions u(i), 0 � i � 2n− 1, have a finite number of zeros on [0, T ]. Therefore, by The-
orem 1.8, u ∈ AC2n−1[0, T ] and u is a solution of (2.39). Moreover, (−1)ju(2j) > 0 on
(0, T ) for 0 � j � n− 1. �

2.6. Historical and bibliographical notes

Higher order boundary value problems with space singularities have been mostly studied
by Agarwal, Eloe, Henderson, Lakshmikantham, O’Regan, Rachůnková and Staněk.

Positive solutions in the set Cn−1[0,1] ∩ Cn(0,1) were obtained in [7] for the singu-
lar (p,n− p) right focal problem (−1)n−pu(n) = ϕ(t)f (t, u), (2.6) on the interval [0,1]
where f ∈ C0([0,1] × (0,∞)) is positive and may be singular at u= 0. In [7] the authors
also discussed applications in fluid theory and boundary layer theory.

Singular (p,n − p) conjugate problems were studied in [5], [58] (with p = 1) and
[59] for the differential equation (−1)n−pu(n) = f (t, u) where f ∈ C0((0,1) × (0,∞))

and may be singular at u = 0. Here positive solutions on (0,1) belong to the class
Cn−1[0,1] ∩Cn(0,1). Existence results in [58] and [59] are proved by a fixed point theo-
rem for operators that are decreasing with respect to a cone and those in [5] by a nonlinear
alternative of Leray–Schauder.

The existence of positive solutions on (0,1) to singular Sturm–Liouville problems
for the differential equation −u(n) = f (t, u, . . . , u(n−2)) can be found in [20]. There
f ∈ C((0,1)× (0,∞)n−1) is positive and may be singular at the value 0 of all its space
variables. The results are proved by a fixed point theorem for mappings that are decreasing
with respect to a cone in a Banach space.

Existence results for positive solutions to singular (p,n−p) focal, conjugate and (n,p)

problems are given in [8,9] for differential equations with the right-hand side ϕ(t)f (t, u)

where f ∈ C([0,1] × (0,∞)) and may be singular at u = 0. The paper [8] is the first to
establish conditions for the existence of two solutions to singular (p,n − p) focal and
(n,p) problems. Further multiple solutions for singular (p,n − p) focal, conjugate and
(n,p) problems are established in [9]. The technique presented in [8,9] to guarantee the
existence of twin solutions to the singular problems combines (i) a nonlinear alternative of
Leray–Schauder, (ii) the Krasnoselskii fixed point theorem in a cone, and (iii) lower type
inequalities.
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Notice that in all cited papers singular points corresponding to solutions of the singular
problems under discussion are only of type I.

3. Principles of solvability of singular second order BVPs with φ-Laplacian

In the theory of partial differential equations, the p-Laplace equation

div
(|∇v|p−2∇v)= h

(|x|, v) (3.1)

is considered. Here ∇ is the gradient, p > 1 and |x| is the Euclidean norm in R
n of x =

(x1, . . . , xn), n > 1. Radially symmetric solutions of (3.1) (i.e., solutions that depend only
on the variable r = |x|) satisfy the ordinary differential equation

r1−n(rn−1|v′|p−2v′
)′ = h(r, v), ′ = d

dr
. (3.2)

If p = n, the change of variables t = ln r transforms (3.2) into the equation

(|u′|p−2u′
)′ = enth(et , u), ′ = d

dt

and for p �= n, the change of variables t = r(p−n)/(p−1) transforms (3.2) into the equation

(|u′|p−2u′
)′ =

∣∣∣∣p− 1

p− n

∣∣∣∣
p

t
p−n

p(1−n) h
(
t
p−1
p−n , u

)
, ′ = d

dt
.

The operator u→ (|u′|p−2u′)′ is called the (one-dimensional) p-Laplacian. Its natural
generalization is the φ-Laplacian

u→ (
φ(u′)

)′
,

where φ : R→R is an increasing homeomorphism and φ(R)=R. (3.3)

Therefore Eq. (3.1) was a motivation for discussing the solutions to the differential equa-
tions

(|u′|p−2u′
)′ = f (t, u,u′)

and

(
φ(u′)

)′ = f (t, u,u′)

with the p-Laplacian and the φ-Laplacian, respectively.
In the next part of this section, we treat problems for second order differential equations

with the φ-Laplacian on the left-hand side and with nonlinearities on the right-hand sides
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which can have singularities in their space variables. Boundary conditions under discussion
are generally nonlinear and nonlocal. Using regularization and sequential techniques we
present general existence principles for solvability of regular and singular problems.

3.1. Regularization of singular problems with φ-Laplacian

We discuss singular differential equations of the form

(
φ(u′)

)′ = f (t, u,u′) (3.4)

with the φ-Laplacian. Here f ∈ Car([0, T ] ×D), the set D =D1 ×D2 ⊂R
2 is not neces-

sarily closed, D1, D2 are intervals and f may have singularities in its space variables on
the boundary ∂Dj of Dj (j = 1,2). We note that f has a singularity on ∂Dj in its space
variable xj if there is an aj ∈ ∂Dj such that for a.e. t ∈ [0, T ] and some x3−j ∈D3−j ,

lim sup
xj→aj , xj∈Dj

∣∣f (t, x1, x2)
∣∣=∞.

Let A denote the set of functionals α :C1[0, T ]→R which are
(a) continuous and
(b) bounded, that is, α(�) is bounded (in R) for any bounded �⊂ C1[0, T ].
For α, β ∈A, consider the (generally nonlinear and nonlocal) boundary conditions

α(u)= 0, β(u)= 0. (3.5)

DEFINITION 3.1. A function u : [0, T ] → R is said to be a solution of problem (3.4),
(3.5) if φ(u′) ∈ AC[0, T ], u satisfies the boundary conditions (3.5) and (φ(u′(t)))′ =
f (t, u(t), u′(t)) holds for a.e. t ∈ [0, T ].

Special cases of the boundary conditions (3.5) are the Dirichlet (Neumann; mixed; pe-
riodic and Sturm–Liouville type) boundary conditions which we get setting α(x)= x(0),
β(x) = x(T ) (α(x) = x′(0), β(x) = x′(T ); α(x) = x(0), β(x) = x′(T ); α(x) = x(0) −
x(T ), β(x)= x′(0)− x′(T ) and α(x)= a0x(0)+ a1x

′(0), β(x)= b0x(T )+ b1x
′(T )).

In order to obtain an existence result for problem (3.4), (3.5), we use regularization and
sequential techniques. For this purpose consider a sequence of regular differential equa-
tions

(
φ(u′)

)′ = fn(t, u,u
′) (3.6)

where fn ∈ Car([0, T ] ×R
2). The function fn is constructed in such a way that

fn(t, x, y)= f (t, x, y) for a.e. t ∈ [0, T ] and all (x, y) ∈Qn

where Qn ⊂D and roughly speaking Qn converges to D as n→∞.
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Let h ∈ Car([0, T ] ×R
2) and consider the regular differential equation

(
φ(u′)

)′ = h(t, u,u′). (3.7)

A function u : [0, T ]→R is called a solution of the regular problem (3.7), (3.5) if φ(u′) ∈
AC[0, T ], u satisfies (3.5) and (φ(u′(t)))′ = h(t, u(t), u′(t)) for a.e. t ∈ [0, T ].

The next general existence principle can be used for solving the regular problem (3.7),
(3.5).

THEOREM 3.2 (General existence principle for regular problems). Assume (3.3), h ∈
Car([0, T ] × R

2) and α,β ∈ A. Suppose there exist positive constants S0 and S1 such
that

‖u‖∞ < S0, ‖u′‖∞ < S1

for all solutions u to the problem

(
φ(u′)

)′ = λh(t, u,u′), α(u)= 0, β(u)= 0 (3.8)

and each λ ∈ [0,1]. Also assume there exist positive constants �0 and �1 such that

|A|<�0, |B|<�1 (3.9)

for all solutions (A,B) ∈R
2 of the system

{
α(A+Bt)−μα(−A−Bt)= 0,

β(A+Bt)−μβ(−A−Bt)= 0
(3.10)

and each μ ∈ [0,1]. Then problem (3.7), (3.5) has a solution.

PROOF. Set

�= {
x ∈ C1[0, T ]: ‖x‖∞ < max{S0,�0 +�1T }, ‖x′‖∞ < max{S1,�1}

}
.

Then � is an open, bounded and symmetric with respect to 0 ∈ C1[0, T ] subset of the
Banach space C1[0, T ]. Define an operator P : [0,1] ×�→ C1[0, T ] by the formula

P(λ, x)(t) = x(0)+ α(x)

+
∫ t

0
φ−1

(
φ
(
x′(0)+ β(x)

)+ λ

∫ s

0
h
(
v, x(v), x′(v)

)
dv

)
ds.

(3.11)

A standard argument shows that P is a continuous operator. We claim that P([0,1] ×�)

is compact in C1[0, T ]. Indeed, since � is bounded in C1[0, T ], we have

∣∣α(x)∣∣ � r, |β(x)|� r,
∣∣h(t, x(t), x′(t))∣∣ � %(t)
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for a.e. t ∈ [0, T ] and x ∈ �, where r is a positive constant and % ∈ L1[0, T ]. Set K =
max{S1,�1} + r and V =max{|φ(−K)|, |φ(K)|}. Then

∣∣P(λ, x)(t)
∣∣ � max{S0,�0 +�1T } + r

+ T max
{∣∣φ−1(−V − ‖%‖1

)∣∣, ∣∣φ−1(V + ‖%‖1
)∣∣},∣∣P(λ, x)′(t)

∣∣ � max
{∣∣φ−1(−V − ‖%‖1

)∣∣, ∣∣φ−1(V+∥∥%‖1)
∣∣}

and

∣∣φ(P(λ, x)′(t2)
)− φ

(
P(λ, x)′(t1)

)∣∣ �
∣∣∣∣
∫ t2

t1

%(t)dt

∣∣∣∣
for t , t1, t2 ∈ [0, T ] and (λ, x) ∈ [0,1] ×�. Hence P([0,1] ×�) is bounded in C1[0, T ]
and {φ[P(λ, x)′]} is equicontinuous on [0, T ]. The mapping φ−1 being an increasing
homeomorphism from R onto R, we deduce from

∣∣P(λ, x)′(t2)−P(λ, x)′(t1)
∣∣= ∣∣φ−1(φ(P(λ, x)′(t2)

))− φ−1(φ(P(λ, x)′(t1)
))∣∣

that {P(λ, x)′} is also equicontinuous on [0, T ]. Now the Arzelà–Ascoli theorem shows
that P([0,1] ×�) is compact in C1[0, T ]. Thus P is a compact operator.

Suppose that x0 is a fixed point of the operator P(1, ·). Then

x0(t) = x0(0)+ α(x0)

+
∫ t

0
φ−1

(
φ
(
x′0(0)+ β(x0)

)+
∫ s

0
h
(
v, x0(v), x

′
0(v)

)
dv

)
ds.

Hence α(x0)= 0, β(x0)= 0 and x0 is a solution of the differential equation (3.7). There-
fore x0 is a solution of problem (3.7), (3.5) and to prove our theorem, it suffices to show
that

deg
(
I −P(1, ·),�) �= 0 (3.12)

where “deg” stands for the Leray–Schauder degree and I is the identity operator on
C1[0, T ]. To see this let a compact operator K : [0,1] ×�→ C1[0, T ] be given by

K(μ,x)(t)= x(0)+ α(x)−μα(−x)+ [
x′(0)+ β(x)−μβ(−x)

]
t.

Then K(1, ·) is odd (i.e. K(1,−x)=−K(1, x) for x ∈�) and

K(0, ·)=P(0, ·). (3.13)

If K(μ0, x0)= x0 for some μ0 ∈ [0,1] and x0 ∈�, then

x0(t)= x0(0)+ α(x0)−μ0α(−x0)+
[
x′0(0)+ β(x0)−μ0β(−x0)

]
t,

t ∈ [0, T ].
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Thus x0(t)=A0+B0t where A0 = x0(0)+α(x0)−μ0α(−x0) and B0 = x′0(0)+β(x0)−
μ0β(−x0), so α(x0)−μ0α(−x0)= 0, β(x0)−μ0β(−x0)= 0. Hence

α(A0 +B0t)−μ0α(−A0 −B0t)= 0,

β(A0 +B0t)−μ0β(−A0 −B0t)= 0.

Therefore |A0| < �0, |B0| < �1 and ‖x0‖∞ < �0 + �1T , ‖x′0‖∞ < �1, which gives
x0 /∈ ∂�. Now, by the Borsuk antipodal theorem and a homotopy property,

deg
(
I −K(0, ·),�)= deg

(
I −K(1, ·),�) �= 0. (3.14)

Finally, assume that P(λ∗, x∗)= x∗ for some λ∗ ∈ [0,1] and x∗ ∈�. Then x∗ is a solution
of problem (3.8) with λ = λ∗ and, by our assumptions, ‖x∗‖∞ < S0 and ‖x′∗‖∞ < S1.
Hence x∗ /∈ ∂� and the homotopy property yields

deg
(
I −P(0, ·),�)= deg

(
I −P(1, ·),�)

.

This, with (3.13) and (3.14), implies (3.12). Therefore, problem (3.7), (3.5) has a solu-
tion. �

REMARK 3.3. If functionals α,β ∈A are linear, then system (3.10) has the form

Aα(1)+Bα(t)= 0,

Aβ(1)+Bβ(t)= 0.

All of its solutions (A,B) are bounded if and only if α(1)β(t)− α(t)β(1) �= 0 (and then
(A,B) = (0,0)). This is satisfied for example for the Dirichlet conditions but not for the
periodic ones.

3.2. General existence principle for singular BVPs with φ-Laplacian

Let us consider the singular problem (3.4), (3.5). By regularization and sequential tech-
niques, we construct an approximating sequence of regular problems (3.6), (3.5) for whose
solvability Theorem 3.2 can be used. Existence results for the singular problem (3.4), (3.5)
can be proved by the following two general existence principles. The first principle uses
the Vitali convergence theorem, the other is based on a combination of the Lebesgue dom-
inated convergence theorem and the Fatou theorem.

THEOREM 3.4 (General existence principle for singular problems I). Assume (3.3). Let
there exist a bounded set �⊂ C1[0, T ] such that

(i) for each n ∈N, the regular problem (3.6), (3.5) has a solution un ∈�,
(ii) the sequence {fn(t, un(t), u′n(t))} is uniformly integrable on [0, T ].

Then
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(a) there exist u ∈ � and a subsequence {ukn} of {un} such that limn→∞ ukn = u in
C1[0, T ],

(b) u is a solution of problem (3.4), (3.5) if

lim
n→∞fkn

(
t, ukn(t), u

′
kn
(t)

)= f
(
t, u(t), u′(t)

)

for a.e. t ∈ [0, T ].

PROOF. Since � is bounded in C1[0, T ] and {un} ⊂�, we have

‖un‖∞ � r, ‖u′n‖∞ � r, n ∈N, (3.15)

where r is a positive constant. Now (ii) guarantees that for each ε > 0 there exists δ > 0
such that

∣∣φ(u′n(t2))− φ
(
u′n(t1)

)∣∣ �
∣∣∣∣
∫ t2

t1

∣∣fn(t, un(t), u′n(t))∣∣dt

∣∣∣∣< ε

for each t1, t2 ∈ [0, T ], |t1 − t2| < δ and n ∈ N. Therefore {φ(u′n)} is equicontinuous on
[0, T ], and by virtue of (3.15) and the fact that φ is continuous and increasing on R, {u′n}
is equicontinuous on [0, T ] as well. The Arzelà–Ascoli theorem guarantees the existence
of a subsequence {ukn} of {un} converging in C1[0, T ] to some u ∈�.

Suppose that limn→∞ fkn(t, ukn(t), u
′
kn
(t))= f (t, u(t), u′(t)) for a.e. t ∈ [0, T ]. By (ii),

{fkn(t, ukn(t), u′kn(t))} is uniformly integrable on [0, T ]. Therefore, by Vitali’s conver-
gence theorem, f (t, u(t), u′(t)) ∈ L1[0, T ] and letting n→∞ in

φ
(
u′kn(t)

)= φ
(
u′kn(0)

)+
∫ t

0
fkn

(
s, ukn(s), u

′
kn
(s)

)
ds, t ∈ [0, T ], n ∈N,

we arrive at

φ
(
u′(t)

)= φ
(
u′(0)

)+
∫ t

0
f
(
s, u(s), u′(s)

)
ds, t ∈ [0, T ].

Consequently, φ(u′) ∈AC[0, T ] and u is a solution of (3.4). In addition, since

lim
n→∞ukn = u in C1[0, T ]

and α and β are continuous in C1[0, T ], it follows that α(u)= 0, β(u)= 0. Hence u is a
solution of problem (3.4), (3.5). �

REMARK 3.5. Let f in (3.4) have singularities only at the value 0 of its space variables
and let fn in (3.6) satisfy fn(t, x, y) = f (t, x, y) for a.e. t ∈ [0, T ] and all (x, y) ∈ D,
n ∈N, |x|� 1

n
and |y|� 1

n
. Then the condition

lim
n→∞fkn

(
t, ukn(t), u

′
kn
(t)

)= f
(
t, u(t), u′(t)

)



640 I. Rachůnková et al.

for a.e. t ∈ [0, T ] is satisfied if u and u′ have a finite number of zeros.

THEOREM 3.6 (General existence principle for singular problems II). Assume (3.3). Let f
have singularities only at the value 0 of its space variables. Let fn in equation (3.6) satisfy

{
for a.e. t ∈ [0, T ] and each x, y ∈R \ {0},
0 � fn(t, x, y) � p

(|x|, |y|) where p ∈ C((0,∞)× (0,∞)).
(3.16)

Suppose that for each n ∈ N, the regular problem (3.6), (3.5) has a solution un and there
exists a subsequence {ukn} of {un} converging in C1[0, T ] to some u. Then u is a solution
of the singular problem (3.4), (3.5) if u and u′ have a finite number of zeros and

lim
n→∞fkn

(
t, ukn(t), u

′
kn
(t)

)= f
(
t, u(t), u′(t)

)
for a.e. t ∈ [0, T ]. (3.17)

PROOF. Assume that (3.17) is true and 0 � ξ1 < ξ2 < · · ·< ξm � T are all the zeros of u
and u′. Since ‖ukn‖∞ � L and ‖u′kn‖∞ � L for each n ∈N where L is a positive constant,
it follows from (3.16), (3.17),

φ
(
u′kn(T )

)− φ
(
u′kn(0)

)=
∫ T

0
fkn

(
t, ukn(t), u

′
kn
(t)

)
dt, n ∈N,

and the Fatou theorem that

∫ T

0
f
(
t, u(t), u′(t)

)
dt � φ(L)− φ(−L).

Hence f (t, u(t), u′(t)) ∈ L1[0, T ]. Set ξ0 = 0 and ξm+1 = T . We claim that for all j ∈
{0,1, . . . ,m}, ξj < ξj+1, the equality

φ
(
u′(t)

)= φ

(
u′
(
ξj + ξj+1

2

))
+

∫ t

ξj+ξj+1
2

f
(
s, u(s), u′(s)

)
ds (3.18)

is satisfied for t ∈ [ξj , ξj+1]. Indeed, let j ∈ {0,1, . . . ,m} and ξj < ξj+1. Let us look at

the interval [ξj + δ, ξj+1 − δ] where δ ∈ (0,
ξj+ξj+1

2 ). We know that |u| > 0 and |u′| > 0
on (ξj , ξj+1) and therefore |u(t)|� ε, |u′(t)|� ε for t ∈ [ξj + δ, ξj+1 − δ] with a positive
constant ε. Hence there exists n0 ∈ N such that |ukn(t)| � ε

2 , |u′kn(t)| � ε
2 for t ∈ [ξj +

δ, ξj+1 − δ] and n � n0. This yields (see (3.16))

0 � fkn
(
t, ukn(t), u

′
kn
(t)

)
� max

{
p(u, v): u,v ∈

[
ε

2
,L

]}

for a.e. t ∈ [ξj + δ, ξj+1 − δ] and all n � n0. Letting n→∞ in

φ
(
u′kn(t)

)= φ

(
u′kn

(
ξj + ξj+1

2

))
+

∫ t

ξj+ξj+1
2

fkn
(
s, ukn(s), u

′
kn
(s)

)
ds
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gives (3.18) for t ∈ [ξj + δ, ξj+1 − δ] by the Lebesgue dominated convergence theorem.

Since δ ∈ (0,
ξj+ξj+1

2 ) is arbitrary, (3.18) is true on the interval (ξj , ξj+1) and using the
fact that f (t, u(t), u′(t)) ∈ L1[0, T ], we conclude that (3.18) holds also at t = ξj and ξj+1.
From (3.18) it follows that φ(u′) ∈ AC[0, T ] and Eq. (3.4) is satisfied for a.e. t ∈ [0, T ].
Finally, α(ukn) = 0 and β(ukn) = 0 and the continuity of α and β yields α(u) = 0 and
β(u)= 0. Hence u is a solution of problem (3.4), (3.5). �

3.3. Nonlocal singular BVPs

We consider differential equations of the type

(
φ(u′)

)′ = f (t, u,u′) (3.19)

where φ is an increasing and odd homeomorphism, φ(R)=R, f satisfies the Carathéodory
conditions on a subset of [0, T ] ×R

2 and f may be singular in its space variables.
We also discuss nonlinear nonlocal boundary conditions

u(0)= u(T ), max
{
u(t): 0 � t � T

}= c, c ∈R, (3.20)

u(0)= u(T )=−γ min
{
u(t): 0 � t � T

}
, γ ∈ (0,∞), (3.21)

min
{
u(t): 0 � t � T

}= 0, δ(u′)= 0, δ ∈ B, (3.22)

where B denotes the set of functionals δ :C[0, T ]→R which are
(a) continuous, δ(0)= 0, and
(b) increasing, that is x, y ∈ C[0, T ], x < y on (0, T )⇒ δ(x) < δ(y).

EXAMPLE. Let n ∈ N and 0 � a < b � T . Then the functionals δ1(x) = x(T2 ) +
max{x(t): 0 � t � T }, δ2(x)=

∫ b

a
x2n+1(t)dt , δ3(x)=

∫ T

0 ex(t) dt−T belong to the set B.
The functionals δ4(x)= x(0) and δ5(x)= x(T ) satisfy condition (a) of B but do not satisfy
condition (b). Hence δ4, δ5 /∈ B.

The boundary conditions (3.20)–(3.22) are special cases of (3.5) where

α(x)= x(0)− x(T ), β(x)=max
{
x(t): 0 � t � T

}− c for (3.20),

α(x)= x(0)− x(T ), β(x)= x(0)+ γ min
{
x(t): 0 � t � T

}
for (3.21),

and

α(x)=min
{
x(t): 0 � t � T

}
, β(x)= δ(x′) for (3.22).

The next theorems give sufficient conditions for solvability of the three nonlocal singular
problems given above. Their proofs are based on applying general existence principles
presented in Theorems 3.2, 3.4 and 3.6. Notice that if f < 0 in Eq. (3.19) then the singular
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points corresponding to the solutions of problem (3.19), (3.20) are of type II and, if f > 0,
the solutions of problems (3.19), (3.21) and (3.19), (3.22) have singular points of type II.

THEOREM 3.7 [137, Theorem 2.1]. Suppose f ∈ Car([0, T ] ×R× (R \ {0}),
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−q(x)
(
ω1

(|y|)+ω2
(|y|)) � f (t, x, y) �−a

for a.e. t ∈ [0, T ] and each (x, y) ∈R× (R \ {0}),
where a > 0, q ∈ C(R) is positive, ω1 ∈ C[0,∞) is nonnegative,

ω2 ∈ C(0,∞) is positive and nonincreasing and∫ 1

0
ω2

(
φ−1(s)

)
ds <∞

(3.23)

and

∫ d

d−1

ds

H−1(
∫ d

s
q(v)dv)

<∞ for any d ∈R,

where

H(x)=
∫ φ(x)

0

φ−1(s)ds

ω1(1+ φ−1(s))+ω2(φ−1(s))
for x ∈ [0,∞).

Let

S =
{
c ∈R: lim

x→−∞

∫ c

x

ds

H−1(
∫ c

s
q(v)dv)

>
T

2

}
.

Then problem (3.19), (3.20) has a solution for each c ∈ S .

SKETCH OF PROOF. Step 1. Regularization.
A sequence of auxiliary regular differential equations (φ(u′))′ = fn(t, u,u

′) is con-
structed where fn ∈ Car([0, T ] ×R

2) and

fn(t, x, y)= f (t, x, y) for a.e. t ∈ [0, T ] and each x ∈R, |y|� 1

n
, n ∈N.

Step 2. Existence of solutions of regular problems (3.6), (3.20).
Let c ∈ S . By (3.23), the existence of positive constants S0 and S1 (independent of n

and λ) is proved such that ‖u‖∞ < S0 and ‖u′‖∞ < S1 for any λ ∈ [0,1], n ∈ N and each
solution u of the differential equation

(
φ(u′)

)′ = λfn(t, u,u
′) (3.24)

satisfying the conditions (3.20). Put α(x) = x(0)− x(T ) and β(x) = max{x(t): 0 � t �
T } − c for x ∈ C1[0, T ]. Then system (3.10) has a unique solution (A,B) = (c

1−μ
1+μ,0)
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for each μ ∈ [0,1] and therefore all solutions of this system are bounded in R
2. Hence

Theorem 3.2 guarantees that for each n ∈ N, problem (3.6), (3.20) has a solution un and
‖un‖∞ < S0, ‖u′n‖∞ < S1.

Step 3. Properties of solutions of regular problems (3.6), (3.20).
The sequence {un} is considered. It is proved that

u′n(t) � φ−1
(
a(ξn − t)

)
for t ∈ [0, ξn],∣∣u′n(t)∣∣ � φ−1

(
a(t − ξn)

)
for t ∈ [ξn, T ],

where ξn is the unique zero of u′n and a > 0 appears in (3.23). Next, it is shown that the
sequence {fn(t, un(t), u′n(t))} is uniformly integrable on [0, T ]. Hence {un} is bounded in
C1[0, T ] and {u′n} is equicontinuous on [0, T ] and, by the Arzelà–Ascoli theorem and the
compactness principle, we can assume without loss of generality that {un} converges in
C1[0, T ] and {ξn} converges in R. Let

lim
n→∞un = u and lim

n→∞ ξn = ξ.

Then u ∈ C1[0, T ] satisfies (3.20),

u′(t) � φ−1
(
a(ξ − t)

)
for t ∈ [0, ξ ],∣∣u′(t)∣∣ � φ−1

(
a(t − ξ)

)
for t ∈ [ξ, T ]

and

lim
n→∞fn

(
t, un(t), u

′
n(t)

)= f
(
t, u(t), u′(t)

)
for a.e. t ∈ [0, T ].

Theorem 3.4 now guarantees that u is a solution of problem (3.19), (3.20). �

EXAMPLE. Let p > 2, α ∈ [0,p− 2) and β ∈ (0,p− 1). Then for any c ∈R there exists
a solution of the differential equation

(|u′|p−2u′
)′ + (

2+ sin(tu)+ |u|)
(
|u′|α + 1

|u′|β
)
= 0

satisfying boundary conditions (3.20).
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THEOREM 3.8 [138, Theorem 4.1]. Let f ∈ Car([0, T ] × (R \ {0})2). Let

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a � f (t, x, y) �
(
h1

(|x|)+ h2
(|x|))(ω1

(
φ
(|y|))+ω2

(
φ
(|y|)))

for a.e. t ∈ [0, T ] and all (x, y) ∈ (R \ {0})2,

where a > 0, h1,ω1 ∈ C[0,∞) are nonnegative and nondecreasing,

h2,ω2 ∈ C(0,∞) are positive and nonincreasing,

∫ 1

0
h2(s)ds <∞,

∫ 1

0
ω2(s)ds <∞,

∫ ∞

0

ds

ω2(s)
=∞,

(3.25)

and let

lim inf
x→∞

∫ x

0

ds

K−1( T2 (h1(x)+ h2(s)))
>

T

2
, (3.26)

where

K(x)=
∫ φ(x)

0

ds

ω1(φ(1)+ s)+ω2(s)
, x ∈ [0,∞). (3.27)

Then there exists a solution of problem (3.19), (3.21) for each γ > 0.

SKETCH OF PROOF. Step 1. Regularization.
A sequence of approximating differential equations

(
φ(u′)

)′ = fn(t, u,u
′)

is introduced where fn ∈ Car([0, T ] ×R
2) and

fn(t, x, y)= f (t, x, y) for a.e. t ∈ [0, T ] and each |x|� 1

n
, |y|� 1

n
, n ∈N.

Step 2. Existence of solutions of regular problems (3.6), (3.21).
Let γ > 0 in (3.21). Using (3.25) and (3.26), the existence of a positive constant P

(depending on γ ) is proved such that ‖u‖∞ < PT and ‖u′‖∞ < P for each solution u of
problem (3.24), (3.21) with λ ∈ [0,1] and n ∈N. Put α(x)= x(0)− x(T ) and

β(x)= x(0)+ γ min
{
x(t): 0 � t � T

}
for x ∈ C1[0, T ].

The system (3.10) has a unique solution (A,B) = (0,0) for each μ ∈ [0,1]. Hence, by
Theorem 3.2 for each n ∈ N, there exists a solution un of problem (3.6), (3.21) and
‖un‖∞ <PT , ‖u′n‖∞ <P .
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Step 3. Properties of solutions of regular problems (3.6), (3.21).
The sequence {un} is considered. From (3.25) it follows that u′n is increasing on [0, T ]

and has a unique zero ξn ∈ (0, T ) and un vanishes exactly at two points t1n, t2n, 0 < t1n <

ξn < t2n < T , un > 0 on [0, t1n)∪ (t2n, T ] and un < 0 on (t1n, t2n). Further, un satisfies the
inequality

∣∣un(t)∣∣ �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S|t − t1n|
ξn − t1n

for t ∈ [0, ξn],

S|t − t2n|
t2n − ξn

for t ∈ [ξn, T ],

where S is a positive constant and the sequence {fn(t, un(t), u′n(t))} is uniformly inte-
grable on [0, T ], which implies that {u′n} is equicontinuous on [0, T ]. Moreover, there
exists a positive constant � such that

t1n � γ�, ξn − t1n >�, t2n − ξn >�, T − t2n > γ� for n ∈N.

Hence, by the Arzelà–Ascoli theorem, there exists a subsequence {ukn} which converges
in C1[0, T ] and let u = limn→∞ ukn . Then u vanishes exactly at two points in [0, T ], u′
has a unique zero and limn→∞ fkn(t, ukn(t), u

′
kn
(t))= f (t, u(t), u′(t)) for a.e. t ∈ [0, T ].

Now Theorem 3.4 guarantees that u is a solution of problem (3.19), (3.21). �

REMARK 3.9. If limx→∞ h2(x) < A for some A> 0 and

lim inf
x→∞

x

K−1( T2 (h1(x)+A))
>

T

2
,

then condition (3.26) is satisfied.

EXAMPLE. Let qj ∈ L∞[0, T ] be nonnegative (1 � j � 6), q1(t) � a > 0 for a.e. t ∈
[0, T ], p > 1, β1, β2, β3 ∈ (0,p− 1), α1 ∈ (0,p− 1+ β2), α2, α3 ∈ (0,1). Then for each
γ > 0, there exists a solution of the differential equation

(|u′|p−2u′
)′ = q1(t)+ q2(t)|u|α1 + q3(t)

|u|α2
+ q4(t)

|u|α3 |u′|β1
+ q5(t)|u′|β2 + q6(t)

|u′|β3

satisfying boundary conditions (3.21).
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THEOREM 3.10. Suppose f ∈ Car([0, T ] × (0,∞)× (R \ {0})) and the following condi-
tions are satisfied:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(t) � f (t, x, y) �
(
h1(x)+ h2(x)

)[
ω1

(
φ
(|y|))+ω2

(
φ
(|y|))]

for a.e. t ∈ [0, T ] and each (x, y) ∈ (0,∞)× (R \ {0}),
where ϕ ∈ L∞[0, T ] is positive,

h1,ω1 ∈ C[0,∞) are positive and nondecreasing,

h2,ω2 ∈ C(0,∞) are positive and nonincreasing,∫ 1

0
h2(s)ds <∞

(3.28)

and

lim inf
x→∞

V (x)

H(T x)
> 1 (3.29)

where

V (x)=
∫ φ(x)

0

φ−1(s)ds

ω1(s + 1)+ω2(s)
,

H(x)=
∫ x

0

(
h1(s + 1)+ h2(s)

)
ds for x ∈ [0,∞).

Then for each δ ∈ B, problem (3.19), (3.22) has a solution.

SKETCH OF PROOF. Step 1. Regularization.
A sequence of auxiliary regular differential equations (φ(u′))′ = fn(t, u,u

′) is con-
structed with fn ∈ Car([0, T ] ×R

2) satisfying

fn(t, x, y)= f (t, x, y) for a.e. t ∈ [0, T ] and each x � 1

n
, |y|� 1

n
, n ∈N.

Step 2. Existence of solutions of regular problems (3.6), (3.22).
Fix δ ∈ B. From (3.28), (3.29) and from the properties of δ we obtain the existence of

positive constants M0 and M1 such that ‖u‖∞ <M0, ‖u′‖∞ <M1 for each solution u of
problem (3.24), (3.22) with λ ∈ [0,1] and n ∈ N. Set α(x) = min{x(t): 0 � t � T } and
β(x) = δ(x′) for x ∈ C1[0, T ]. Then system (3.10) has a unique solution (A,B) = (0,0)
for each μ ∈ [0,1]. Therefore, by Theorem 3.2, for each n ∈ N there exists a solution un
of problem (3.6), (3.22) and ‖un‖∞ <M0, ‖u′‖∞ <M1.

Step 3. Properties of solutions of regular problems (3.6), (3.22).
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By Step 2, {un} is bounded in C1[0, T ] and from (3.28) it follows that {u′n} is equicon-
tinuous on [0, T ]. The assumption (3.28) and the properties of δ show that un has a unique
zero ξn, ξn ∈ (0, T ), u′n is increasing on [0, T ], u′n(ξn)= 0 and

∣∣u′n(t)∣∣ �
∣∣∣∣
∫ t

ξn

ϕ(s)ds

∣∣∣∣, un(t) �
∫ t

ξn

(t − s)ϕ(s)ds (3.30)

for t ∈ [0, T ]. According to the Arzelà–Ascoli theorem, there exists a subsequence {ukn}
converging in C1[0, T ] to some u and from (3.30) we see that u and u′ vanish at a unique
point. Since

lim
n→∞fkn

(
t, ukn(t), u

′
kn
(t)

)= f
(
t, u(t), u′(t)

)
for a.e. t ∈ [0, T ],

Theorem 3.6 gives that u is a solution of problem (3.19), (3.22). �

REMARK 3.11. Problem (3.19), (3.22) was investigated in [140]. The conditions for the
solvability of this problem are stronger there than those in Theorem 3.10. This is due to
the fact that [140] uses the Vitali convergence theorem in limit processes whereas Theo-
rem 3.10 is proved by Theorem 3.6.

EXAMPLE. Let ϕ ∈ L∞[0, T ] be positive, p > 1, cj > 0 (1 � j � 4), β ∈ (0,1), α, γ , δ,
λ ∈ (0,∞) and α + γ < p− 1. Then for each δ ∈ B, the differential equation

(|u′|p−2u′
)′ = ϕ(t)

(
1+ c1u

α + c2

uβ

)(
1+ c3|u′|γ + c4

|u′|λ
)

has a solution u satisfying boundary conditions (3.22).

3.4. Historical and bibliographical notes

The general existence principles presented in Theorems 3.2 and 3.4 are special cases of
the principles stated by Agarwal, O’Regan and Staněk in [16] for a class of second-order
functional differential equations. Some general existence principles for second-order regu-
lar differential equations with the φ-Laplacian and Dirichlet or mixed boundary data have
been established using the nonlinear alternative of Leray–Schauder type by O’Regan [109].

Second-order differential equations with the p-Laplacian and the φ-Laplacian occur in
the study of the p-Laplace equations [91], general diffusion theory [22,40], non-Newtonian
fluid theory [81] and the turbulent flow of a polytropic gas in a porous medium [60,36].

In recent years problems for p(t)-Laplacian equations have been studied (e.g., [63,64]).
The p(t)-Laplacian is defined by u→ (|u′|p(t)−2u′)′ where p ∈ C[0, T ] and p > 1 on
[0, T ]. The p(t)-Laplacian is a generalization of the p-Laplacian.
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4. Singular Dirichlet BVPs with φ-Laplacian

Motivated by various significant applications to non-Newtonian fluid theory, diffusion of
flows in porous media, nonlinear elasticity and theory of capillary surfaces (see [22,60,
112], and Section 3.4), several authors have proposed the study of equations (φp(u

′))′ +
f (t, u,u′)= 0 with the p-Laplacian (φp(u

′))′, where p ∈ (1,∞) and φp(y)= |y|p−2y for
y ∈R. Usually the p-Laplacian is replaced by its abstract and more general version, which
leads to clearer exposition and better understanding of the methods that are employed to
derive existence results. Therefore, similarly to Section 3, we will work with a φ-Laplacian
which satisfies (3.3), i.e. φ is an increasing homeomorphism with φ(R)=R.

We will consider a singular Dirichlet problem of the form

(
φ(u′)

)′ + f (t, u,u′)= 0, u(0)= u(T )= 0 (4.1)

and its special cases, in particular, a problem of the form

u′′ + f (t, u,u′)= 0, u(0)= u(T )= 0, (4.2)

where φ(y)= y on R.
We will investigate problems (4.1) and (4.2) on the set [0, T ] ×A. In general, the func-

tion f depends on a time variable t ∈ [0, T ] and on two space variables x and y, where
(x, y) ∈A and A is a closed subset of R

2 or A=R
2.

We assume that problems (4.1) and (4.2) are singular, which means, by Section 1, that
f does not satisfy the Carathéodory conditions on [0, T ] ×A. In what follows, the types
of singularities of f will be exactly specified for each problem under consideration.

In accordance with Section 1 we define:

DEFINITION 4.1. A function u : [0, T ] → R with φ(u′) ∈ AC[0, T ] is a solution of
problem (4.1) if u satisfies (φ(u′(t)))′ + f (t, u(t), u′(t)) = 0 a.e. on [0, T ] and fulfills
the boundary conditions u(0)= u(T )= 0.

A function u ∈ C[0, T ] is a w-solution of problem (4.1) if there exists a finite number of
singular points tν ∈ [0, T ], ν = 1, . . . , r , such that if we denote J = [0, T ] \ {tν}rν=1, then
φ(u′) ∈ ACloc(J ), u satisfies (φ(u′(t)))′ + f (t, u(t), u′(t)) = 0 a.e. on [0, T ] and fulfills
the boundary conditions u(0)= u(T )= 0.

Note that the condition φ(u′) ∈ AC[0, T ] implies u ∈ C1[0, T ] and the condition
φ(u′) ∈ ACloc(J ) implies u ∈ C1(J ). We will mention some papers where f is supposed
to be continuous on (0, T )× R

2 and can have only time singularities at t = 0 and t = T .
Then any solution (any w-solution) u of (4.1) moreover satisfies φ(u′) ∈ C1(0, T ). If we
investigate the solvability of problem (4.1) or (4.2) on the set [0, T ] ×A and A �= R

2, we
impose on its solution u in addition the condition

(
u(t), u′(t)

) ∈A for t ∈ [0, T ]. (4.3)

If u is a w-solution, then one requires it to satisfy (4.3) for t ∈ J only.
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In some cases (see, e.g., (4.9)) f does not depend on y. Then we work with a set A
which is a closed subset of R or A = R and condition (4.3) has the form u(t) ∈ A for
t ∈ [0, T ].

REMARK 4.2. We will carry out the investigation of the singular problem (4.1) in the spirit
of the existence principles presented in Sections 1 and 3:
• the singular problem is approximated by a sequence of solvable regular problems;
• a sequence {un} of approximate solutions is generated;
• a convergence of a suitable subsequence {ukn} is investigated;
• the type of this convergence determines the properties of its limit u and, among others,

determines whether u is a w-solution or a solution of the original singular problem.

There are more possibilities how to construct an approximating sequence of regular
problems. Their choice depends on the type of singularities of the nonlinearity f in (4.1)
(time, space), on the type of singular points corresponding to a solution (w-solution)
of (4.1) (type I, type II), on the type of results desired (existence of a solution, a posi-
tive solution, a w-solution, uniqueness), and so on. A common idea is that approximate
functions fn have no singularities, fn �= f on neighbourhoods Un of singular points of f ,
fn = f elsewhere, and limn→∞meas (Un)= 0.

Having such a sequence of {fn} we study problems

(
φ(u′)

)′ + fn(t, u,u
′)= 0, u(0)= u(T )= εn, n ∈N, (4.4)

where εn ∈R, limn→∞ εn = 0. In some proofs, one simply puts εn = 0 for n ∈N.
Solvability of (4.4) can be investigated by means of various methods which have been

developed for regular Dirichlet problems (fixed point theorems, topological degree argu-
ments, the topological transversality method, variational methods, lower and upper func-
tions, the Fredholm nonlinear alternative, etc.). See also Section 3. Using one of the above
methods we generate a sequence of approximate solutions {un} of (4.4). The crucial in-
formation which enables us to realize the limit process concerns a priori estimates of the
approximate solutions un.

4.1. Method of lower and upper functions

It is well known that for regular second order boundary value problems the lower and
upper functions method is a profitable instrument for proofs of their solvability and for
a priori estimates of their solutions. See, e.g., [47–49,93,94,114,124,146]. Hence, it seems
to be a good idea to extend this method to the singular problem (4.1). In literature there
are several definitions of lower and upper functions for regular boundary value problems.
(Note that in some papers they are called lower and upper solutions.) Here we will use
the following definition which is the same both for regular problems with f ∈ Car([0, T ]×
R

2) and for singular ones with f ∈ Car((0, T )×R
2) having time singularities at t = 0 and

t = T .
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DEFINITION 4.3. A function σ : [0, T ]→R with φ(σ ′) ∈AC[0, T ] is called a lower fun-
ction of (4.1) if σ satisfies

(
φ
(
σ ′(t)

))′ + f
(
t, σ (t), σ ′(t)

)
� 0 for a.e. t ∈ [0, T ] (4.5)

and

σ(0) � 0, σ (T ) � 0. (4.6)

If the inequalities in (4.5) and (4.6) are reversed, then σ is called an upper function of (4.1).

For the special case (4.2) we admit a more general definition.

DEFINITION 4.4. A function σ ∈ C[0, T ] is called a lower function of (4.2) if there exists
a finite set � ⊂ (0, T ) such that σ ∈ AC1

loc([0, T ] \ �), σ ′(τ+), σ ′(τ−) ∈ R for each
τ ∈�,

σ ′′(t)+ f
(
t, σ (t), σ ′(t)

)
� 0 for a.e. t ∈ [0, T ], (4.7)

σ(0) � 0, σ (T ) � 0, σ ′(τ−) < σ ′(τ+) for each τ ∈�. (4.8)

If the inequalities in (4.7) and (4.8) are reversed, then σ is called an upper function of (4.2).

REMARK 4.5. (i) If, moreover, f is continuous on (0, T ) × R
2, then a lower (upper)

function σ of (4.1) is supposed to satisfy φ(σ ′) ∈ C1(0, T ) and a lower (upper) function of
(4.2) belongs also to C2(0, T ).

(ii) If the boundary conditions in (4.1) or in (4.2) are replaced by inhomogeneous ones,
i.e. they have the form

u(0)= a, u(T )= b

for some a, b ∈ R, then the corresponding boundary inequalities in (4.6) or in (4.8) are
modified to

σ(0) � a, σ (T ) � b.

We present straightforward extensions of the classical lower and upper functions method
to a singular problem with the p-Laplacian

(
φp(u

′)
)′ + f (t, u)= 0, u(0)= a, u(T )= b, (4.9)

where
{
φp(y)= |y|p−2y, p > 1, a, b ∈R, f ∈ Car

(
(0, T )×R

)
,

f can have time singularities at t = 0 and t = T .
(4.10)
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Recall that f has time singularities at t = 0 and t = T if there exist x, y ∈R such that

∫ ε

0

∣∣f (t, x, y)
∣∣dt =∞,

∫ T

T−ε
∣∣f (t, x, y)

∣∣dt =∞

for each sufficiently small ε > 0.
Making use of ideas of the papers [100] by Lomtatidze and Torres and [80] by Habets

and Zanolin, one can prove the following result for the special case of (4.9) with p = 2.

THEOREM 4.6. Let p = 2 and (4.10) hold. Let σ1 and σ2 be a lower and an upper function
for problem (4.9) and σ1 � σ2 on [0, T ]. Assume also that there is a function h ∈ L1(I ) on
each compact interval I ⊂ (0, T ) such that

∣∣f (t, x)
∣∣ � h(t) for a.e. t ∈ (0, T ) and each x ∈ [

σ1(t), σ2(t)
]
,

and

∫ T

0
t (T − t)h(t)dt <∞.

Then problem (4.9) has a w-solution u ∈ C[0, T ] ∩AC1
loc(0, T ) such that

σ1(t) � u(t) � σ2(t) for t ∈ [0, T ]. (4.11)

If for a.e. t ∈ (0, T ) the function f (t, x) is nonincreasing in x, then the w-solution is
unique. If h ∈ L1[0, T ], then u belongs to AC1[0, T ], i.e. u is a solution of (4.9).

Theorem 4.6 can be proved by means of the Schauder fixed point theorem which is
applied to the operator T :C[0, T ]→ C[0, T ], where

(T u)(t)= a + t

T
(b− a)+

∫ T

0
G(t, s)f ∗

(
s, u(s)

)
ds.

Here G is the Green function of the problem −u′′ = 0, u(0)= u(T )= 0 and f ∗ is given
by

f ∗(t, x)=

⎧⎪⎪⎨
⎪⎪⎩

f
(
t, σ1(t)

)
if x < σ1(t),

f (t, x) if σ1(t) � x � σ2(t),

f
(
t, σ2(t)

)
if x > σ2(t)

for a.e. t ∈ [0, T ] and each x ∈R.

REMARK 4.7. By virtue of (4.11) we can investigate problem (4.9) on [0, T ]×At , where
At = [σ1(t), σ2(t)] for t ∈ [0, T ]. Therefore, in Theorem 4.6, instead of f ∈ Car((0, T )×
R) it is sufficient to assume f ∈ Car((0, T )×At).
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Jiang in [86] dealt with problem (4.9) under the assumption (4.10) and, in addition,

f ∈ C
(
(0, T )×R

)
. (4.12)

He modified Theorem 4.6 for p �= 2.

THEOREM 4.8. Let (4.10) and (4.12) hold. Let σ1 and σ2 be a lower and an upper function
for problem (4.9) and σ1 � σ2 on [0, T ]. Assume also that there is a function h ∈ C(0, T )

such that

∣∣f (t, x)
∣∣ � h(t) for t ∈ (0, T ), x ∈ [

σ1(t), σ2(t)
]
,

and that there exist μ, ν ∈ [0,p− 1) such that

∫ T

0
tμ(T − t)νh(t)dt <∞. (4.13)

Then problem (4.9) has a w-solution u ∈ C[0, T ] satisfying φp(u
′) ∈ C1(0, T ) and (4.11).

In contrast to p = 2, there is no Green function for p �= 2, which makes the proof of
Theorem 4.8 more difficult and complicated than that for p = 2.

REMARK 4.9. Motivated by physical and technical problems, there is a lot of papers
studying problems with both time and space singularities. If such a problem has a sin-
gularity at x = 0, one often searches for solutions (w-solutions) which are positive on
(0, T ). Although they vanish at 0 and T , they are still called positive solutions (posi-
tive w-solutions) in literature. In this case, problems (4.1) and (4.2) are investigated on
the set [0, T ] ×A, where A = [0,∞)× R, and f in (4.1) or (4.2) is supposed to satisfy
f ∈ Car((0, T )× D), where D = (0,∞)× R (or more specifically f is supposed to be
continuous on (0, T )×D). In this case lower and upper functions have to be positive on
(0, T ) and consequently a lower function σ1 has to satisfy σ1(0)= σ1(T )= 0.

Having in mind Remarks 4.7 and 4.9 we will search for positive w-solutions of a singular
problem

u′′ + f (t, u)= 0, u(0)= u(T )= 0, (4.14)

where
{
f ∈ Car

(
(0, T )× (0,∞)

)
can have

time singularities at t = 0, t = T and a space singularity at x = 0.
(4.15)

Recall that f has a space singularity at x = 0 if

lim sup
x→0+

∣∣f (t, x)
∣∣=∞ for a.e. t ∈ [0, T ].
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Let us present a simple application of Theorem 4.6 in the spirit of Habets and Zanolin [80].

THEOREM 4.10. Let a function f be positive and satisfy (4.15). Assume that for a.e. t ∈
(0, T ) the function f (t, x) is nonincreasing in x. Suppose that there exists a lower function
σ1 of problem (4.14) such that σ1 > 0 on (0, T ) and

∫ T

0
f
(
s, σ1(s)

)
ds <∞.

Then problem (4.14) has a unique positive solution u ∈ AC1[0, T ] such that σ1 � u on
[0, T ].

Theorem 4.10 follows from Theorem 4.6 and Remark 4.7 if we put h(t) = f (t, σ1(t))

and

σ2(t)=
∫ T

0
G(t, s)f (s, k)ds + k,

where k =max{σ1(t): t ∈ [0, T ]} and G is the Green function of the problem

−u′′ = 0, u(0)= u(T )= 0.

The next result can be viewed as a corollary of [100, Theorem 1.1], where Lomtatidze
and Torres studied an equation including an additional term g(t, u)u′.

THEOREM 4.11. Let (4.15) hold. Let σ1 and σ2 be a lower and an upper function of
problem (4.14) and

σ2(0) > 0, σ2(T ) > 0, 0 < σ1 � σ2 on (0, T ).

Let, moreover, for every 0 < η < min{σ2(t): t ∈ [0, T ]} there exist hη ∈ C(0, T ) such that

∣∣f (t, x)
∣∣ � hη(t) for t ∈ (0, T ) and all x ∈ [

σ1η(t), σ2(t)
]
,

where σ1η(t)=max{η,σ1(t)} and

∫ T

0
t (T − t)hη(t)dt <∞.

Then problem (4.14) has a positive w-solution u ∈ C[0, T ] ∩AC1
loc(0, T ) such that

σ1(t) � u(t) � σ2(t) for t ∈ [0, T ].

SKETCH OF THE PROOF. Step 1. Construction of auxiliary intervals.
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A decreasing sequence {an} ⊂ (0, T ) and an increasing sequence {bn} ⊂ (0, T ) are con-
structed such that, among other, limn→∞ an = 0, limn→∞ bn = T .

Step 2. Construction of auxiliary regular problems.
For t ∈ [0, T ], x ∈R, n ∈N, functions χn, αn, β , fn are given by

χn(x)=
{
σ1(an) if x < σ1(an),
x if x � σ1(an),

αn(t)=
{
σ1(an) if 0 � t � an,
σ1(t) if an � t � bn,
σ1(bn) if bn � t � T ,

β(t)=
{
v1(t) if 0 � t � a1,
σ2(t) if a1 � t � b1,
v2(t) if b1 � t � T ,

fn(t, x)=
{

1
2

[
f
(
t, χn(x)

)+ ∣∣f (
t, χn(x)

)∣∣] if t ∈ (0, an] ∪ [bn,T ),

f
(
t, χn(x)

)
if t ∈ (an, bn),

where v1 and v2 are solutions of some auxiliary linear Dirichlet problems.
Step 3. Convergence of the sequence of approximating solutions.
Solvability of a sequence of regular problems

u′′ + fn(t, u)= 0, u(0)= σ1(an), u(T )= σ1(bn), n ∈N, (4.16)

is investigated. The functions α1 and β are a lower and an upper function of (4.16) with
n= 1, and hence, by Theorem 4.6, there is a w-solution u1 of (4.16) with n= 1 such that
α1 � u1 � β on [0, T ]. Further, α2 and u1 are a lower and an upper function of (4.16) with
n= 2, and so Theorem 4.6 guarantees the existence of a w-solution u2 of (4.16) with n= 2
such that α2 � u2 � u1 on [0, T ]. In this way a sequence of w-solutions is obtained and
then a limit process is applied. �

At the end of this subsection we will show another existence assertion in terms of
the lower and upper functions for a problem with the p-Laplacian of the form

(
φp(u

′)
)′ +ψ(t)g(t, u)= 0, u(0)= u(1)= 0, (4.17)

where φp(y)= |y|p−2y, p > 1. Here we assume that

{
ψ : (0,1)→ (0,∞) is continuous

and can have time singularities at t = 0 and t = 1,
(4.18)

{
g : [0,1] × (0,∞)→R is continuous

and can have a space singularity at x = 0.
(4.19)

In this setting, using the paper by Agarwal, Lü and O’Regan [2], we offer the following
result about the existence of positive w-solutions of (4.17).
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THEOREM 4.12. Let (4.18) and (4.19) hold. Assume that the following conditions are
satisfied:

⎧⎨
⎩
{ρn} is a nonincreasing sequence of real numbers,

lim
n→∞ρn = 0 and n0 ∈N, n0 � 3 being fixed,

(4.20)

max

{∫ 1/2

0
φ−1
p

(∫ 1/2

s

ψ(t)dt

)
ds,

∫ 1

1/2
φ−1
p

(∫ s

1/2
ψ(t)dt

)
ds

}

= b0 <∞ (4.21)

and

ψ(t)g(t, ρn) � 0 for t ∈
[

1

2n+1
,1

)
, n � n0.

Further assume that σ1 and σ2 are a lower and an upper function of problem (4.17) with
σ1 > 0 on (0,1), max{ρn0, σ1(t)}� σ2(t) for t ∈ [0,1] and

(
φp

(
σ ′2(t)

))′ +ψ(t)g

(
1

2n0+1
, σ2(t)

)
� 0 for t ∈

(
0,

1

2n0+1

)
.

Then problem (4.17) has a positive w-solution u ∈ C[0,1] with φp(u
′) ∈ C1(0,1) and

σ1(t) � u(t) � σ2(t) for t ∈ [0,1].

In Section 4.3 we will show how lower and upper functions for regular problems can be
applied to get not only a w-solution but also a solution of a given singular problem (see
Theorem 4.18).

4.2. Positive nonlinearities

Many papers studying problem (4.1) or (4.2) with a space singularity at x = 0 concern
the case that the nonlinearity f is positive. Such problems are referred to as positone ones
in literature, see [10,11,135]. The positivity of f implies that each solution is concave and
hence positive on (0, T ), and if, moreover, f has a space singularity at x = 0 but not at
y, then each solution has only two corresponding singular points 0, T which are of type I.
This makes the study of such problems easier than of those having sign-changing f or
space singularities at y.

First we will discuss mixed singularities at t and x. In Section 1.1 we have presented
problem (1.3), (1.4) the solvability of which was investigated by Taliaferro [141]. This
problem has mixed singularities: the time ones at t = 0 and t = 1 as well as the space
one at x = 0. Among many papers generalizing Taliaferro’s existence results we choose
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the paper by Tineo [142] devoted to the existence of positive solutions or w-solutions to
a singular problem

u′′ + f (t, u,u′)= 0, u(0)= u(1)= 0, (4.22)

where

{
f : (0,1)× (0,∞)×R→ (0,∞) is continuous and can have

time singularities at t = 0, t = 1 and a space singularity at x = 0.
(4.23)

THEOREM 4.13 [142, Theorem 0.1]. Let (4.23) hold. Suppose that there are continuous
functions ϕ : (0,1)→ (0,∞), ψ : (0,1)→ [0,∞) and g : (0,∞)→ (0,∞) such that g is
decreasing and

f (t, x, y) � ϕ(t)g(x)+ψ(t)|y| for t ∈ (0,1), x ∈ (0,∞), y ∈R,

∫ 1

0
t (1− t)ϕ(t)dt <∞,

∫ 1

0
ψ(t)dt <∞.

Assume further that for each constant M > 0 there exists a continuous function εM : (0,1)
→ (0,∞) such that

εM(t) � f (t, x, y) for t ∈ (0,1), x ∈ (0,M], y ∈R.

Then problem (4.22) has a positive w-solution u ∈ C[0,1] ∩C2(0,1). If, moreover,

∫ 1

0
g
(
kt (1− t)

)
ϕ(t)dt <∞ for all k > 0,

then u belongs to AC1[0,1], which means that u is a solution of (4.22).

The proof of Theorem 4.13 proceeds according to Remark 4.2. Solvability of auxiliary
regular problems is obtained by the Leray–Schauder degree argument and the limit process
is guaranteed by means of a priori estimates of the approximate solutions.

EXAMPLE. Let α, β ∈ (0,2), k, λ ∈ (0,∞), ε ∈ C(0,1), ε > 0 on (0,1). By Theorem
4.13 the problem

u′′ + 1

tα(1− t)βuλ
+ tk|u′| + ε(t)= 0, u(0)= u(1)= 0

has a positive w-solution u ∈ C[0,1] ∩ C2(0,1). If α + λ, β + λ ∈ (0,1) then, moreover,
u ∈ C1[0,1]. Hence u is a solution.
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Let us turn back to problem (4.14) with f satisfying (4.15). Wang in [148] considered
f which can have at most linear growth in x. He illustrated his result by functions

f (t, x)= 1

tαxβ
with α ∈ (1,2), β > 0

or

f (t, x)= δx exp

(
1

x

)
with a sufficiently small δ > 0.

For f which is moreover continuous on (0, T )× (0,∞), Agarwal and O’Regan [3,4,11]
proved the existence of a positive w-solution of (4.14) with f increasing in x for large x.
An example of such f is

f (t, x)= δ

(
1

xα
+ xβ + 1

)
, α,β, δ ∈ (0,∞).

If f has sublinear growth in x (i.e. β ∈ (0,1)), then (4.14) has a positive w-solution for
each δ > 0. If f has linear or superlinear growth in x (i.e. β = 1 or β ∈ (1,∞)), then (4.14)
has a positive w-solution for any sufficiently small δ > 0. A formula for an upper bound of
δ is also given.

Now let us consider space singularities at x and y. We will present conditions ensuring
solvability of problems with singularities in space variables x and y and with singular
points both of type I and of type II. The main difficulty in the study of singular points
of type II is the fact that their location in [0, T ] is not known. This is the reason why in
mathematical literature there are only few papers concerning solvability of such problems
and no results about w-solutions are known.

The first existence result in this direction was reached by Staněk [135] in 2001. The fol-
lowing theorem can be viewed as a corollary of [135, Theorem 1].

For a fixed A> 0 we consider a singular problem

u′′ +μf (t, u,u′)= 0, u(0)= u(T )= 0, (4.24)

with a positive real parameter μ, where

{
f is continuous on DA = [0, T ] × (0,A)× [− 2A

T
,0

)∪ (
0, 2A

T

]
and can have space singularities at x = 0, x =A,y = 0.

(4.25)

Sufficient conditions on μ and f for the solvability of (4.24) in the set [0, T ]×A, where
A= [0,A] × [− 2A

T
, 2A

T
], are given in the next theorem.

THEOREM 4.14. Let (4.25) hold. Suppose that there exists δ > 0 such that f satisfies

δ � f (t, x, y) � g(x)ω
(|y|) on DA,
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where ω � δ is continuous on (0, 2A
T
] and g ∈ C(0,A)∩L1[0,A]. Let

μT =
(∫ 2A/T

0

y

ω(y)
dy

)(∫ A

0
g(x)dx

)−1

.

Then for any μ ∈ (0,μT ] problem (4.24) has a solution uμ ∈AC1[0, T ] satisfying

0 < uμ(t) < A for t ∈ (0, T ). (4.26)

Take notice of the fact that for any solution u of problem (4.24) there is a point tu ∈
(0, T ) with u′(tu)= 0. Since f has a singularity at y = 0 and we do not know the position
of tu ∈ (0, T ), tu is a singular point of type II.

To prove Theorem 4.14 a two-parameter family of regular problems is constructed and
their solvability is established by the topological transversality method. Then, a priori
bounds for approximate solutions of regular problems are derived. Using these bounds
and the Arzelà–Ascoli theorem, a solution of (4.24) is obtained by a limiting process.

EXAMPLE. Let A> 0, a, b, c, d, γ ∈ [0,∞), a+ b+ d > 0, α,β ∈ (0,1). Then for a suf-
ficiently small μ> 0 the problem

u′′ +μ

(
1+ a

uα(A− u)β
+ buγ

)(
1+ cu′2

)(
1+ d

u′2

)
= 0,

u(0)= u(T )= 0

has a solution uμ satisfying (4.26). The upper bound μT is explicitly expressed in [135].

The next existence result is in the spirit of Staněk [139], where a more general state-
dependent functional differential equation was studied. Here we consider problem (4.1)
with the φ-Laplacian and a function f satisfying

{
f ∈ Car

([0, T ] ×D
)
, D = (0,∞)× (

R \ {0}),
and f can have space singularities at x = 0, y = 0.

(4.27)

THEOREM 4.15. Let (4.27) hold and let φ be odd. Suppose that there exists δ ∈ (0,∞)

such that f satisfies

δ � f (t, x, y) �
(
h1(x)+ h2(x)

)(
ω1

(
φ
(|y|))+ω2

(
φ
(|y|)))

for a.e. t ∈ [0, T ] and all (x, y) ∈D, where h1, ω1 ∈ C[0,∞) are positive and nondecreas-
ing, h2, ω2 ∈ C(0,∞)∩L1[0,1] are positive and nonincreasing and

∫ ∞

0

ds

ω1(s)
=∞.
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Let

T

2
< lim inf

u→∞
u

K−1(T (h1(u)+ h2(u)))
,

where K−1 denotes the inverse function to K : [0,∞)→[0,∞),

K(u)=
∫ φ(u)

0

ds

ω1(s)+ω2(s)
.

Then problem (4.1) has a positive solution u ∈AC1[0, T ].

In the proof of this result the solvability of a sequence of regular problems is obtained by
the Leray–Schauder degree theory. Limit processes are guaranteed by Vitali’s convergence
theorem.

EXAMPLE. Let c ∈ L∞[0, T ], p ∈ (1,∞), β ∈ (0,1), γ,η ∈ (0,p), δ ∈ (0,∞) and α ∈
(0,p− γ ). Further, let c(t) � δ a.e. on [0, T ]. Then the problem

(|u′|p−2u′
)′ + c(t)

(
1+ uα + 1

uβ

)(
1+ |u′|γ + 1

|u′|η
)
= 0,

u(0)= u(T )= 0

has a positive solution.

4.3. Sign-changing nonlinearities

Results about the solvability of singular Dirichlet problems with sign-changing nonlinear-
ities mostly concern w-solutions. Making use of the arguments of Section 1 we can show a
new existence principle giving positive solutions to singular Dirichlet problems of the form

u′′ + f (t, u,u′)= 0, u(0)= u(T )= 0, (4.28)

where
{
f ∈ Car

(
(0, T )×D

)
can change its sign, D = (0,∞)×R,

and f can have mixed singularities at t = 0, t = T , x = 0.
(4.29)

For k ∈N, k � 3
T

, t ∈ [0, T ], x ∈R, put �k = [0, 1
k
)∪ (T − 1

k
, T ],

γk(t)=

⎧⎪⎨
⎪⎩

1
k

if t < 1
k

,

t if t ∈ [0, T ] \�k ,

T − 1
k

if t > T − 1
k

,

δk(x)=
{ |x| if |x|� 1

k
,

1
k

if |x|< 1
k

.
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Then we construct the sequence of regular functions

fk(t, x, y)= f
(
γk(t), δk(x), y

)
for a.e. t ∈ [0, T ], each x, y ∈R (4.30)

and the sequence of regular problems

u′′ + fk(t, u,u
′)= 0, u(0)= u(T )= 1

k
, (4.31)

where fk ∈ Car([0, T ] ×R
2), k ∈N, k � 3

T
.

THEOREM 4.16 (Existence principle for solutions of (4.28)). Let (4.29) hold. Assume that

{
there exists a bounded set �⊂ C1[0, T ] such that

problem (4.31) has a solution uk ∈� for each k ∈N, k � 3
T
,

(4.32)

{
there exists a function ε ∈ C[0, T ], ε(0)= ε(T )= 0,

such that uk(t) � ε(t) > 0 for t ∈ (0, T ) and each k ∈N, k � 3
T

(4.33)

and

the sequence
{
fk

(
t, uk(t), u

′
k(t)

)}
is uniformly integrable on [0, T ]. (4.34)

Then

⎧⎨
⎩

there exist a function u ∈� and a subsequence {ukn} ⊂ {uk}
such that lim

n→∞‖ukn − u‖C1 = 0,
(4.35)

and

u ∈AC1[0, T ] is a positive solution of problem (4.28). (4.36)

PROOF. Since f can have singularities both at t and at x, we cannot obtain Theorem 4.16
as a direct consequence of some of the theorems in Section 1. Nevertheless, we can use
the ideas of their proofs and argue as follows.

Step 1. Convergence of the sequence of approximating solutions.
By (4.32) we get that {uk} and {u′k} are bounded in C[0, T ]. The boundedness of {u′k}

implies the equicontinuity of {uk} on [0, T ]. Condition (4.34) yields the equicontinuity of
{u′k} on [0, T ] and hence the Arzelà–Ascoli theorem gives the assertion (4.35).

Step 2. Convergence of the sequence of regular right-hand sides.
The conditions ukn(0)= ukn(T )= 1

kn
imply u(0)= u(T )= 0. By (4.33) we get u(t) > 0

on (0, T ). Choose ξ ∈ (0, T ) such that f (ξ, ·, ·) :D→R is continuous. Then, by virtue of
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(4.30) and (4.33), we have

ukn(ξ) � ε(ξ) >
1

kn
, ξ ∈ [0, T ] \�kn,

fkn
(
ξ,ukn(ξ), u

′
kn
(ξ)

)= f
(
ξ,ukn(ξ), u

′
kn
(ξ)

)

for a sufficiently large kn. Therefore

lim
n→∞fkn

(
t, ukn(t), u

′
kn
(t)

)= f
(
t, u(t), u′(t)

)
for a.e. t ∈ [0, T ]. (4.37)

Step 3. Properties of the limit u.
By (4.34), (4.37) and Vitali’s convergence theorem, we get that f (t, u(t), u′(t)) belongs

to L1[0, T ] and we can pass to the limit in the sequence

u′kn(t)= u′kn(0)−
∫ t

0
fkn

(
s, ukn(s), u

′
kn
(s)

)
ds, t ∈ [0, T ],

thus obtaining

u′(t)= u′(0)−
∫ t

0
f
(
s, u(s), u′(s)

)
ds, t ∈ [0, T ].

Hence (4.36) is true. �

REMARK 4.17. Having in mind the absolute continuity of the Lebesgue integral we see
that if there exists ϕ ∈ L1[0, T ] such that

∣∣fk(t, uk(t), u′k(t))∣∣ � ϕ(t) for a.e. t ∈ [0, T ] and each k ∈N, k � 3
T
, (4.38)

then condition (4.34) is valid.

In Section 4.1, the classical lower and upper functions method has been extended to sin-
gular problems (see Theorems 4.6, 4.8, 4.11 and 4.12). Motivated by Agarwal, O’Regan,
Lakshmikantham and Leela [13], we will show another approach which consists in the em-
ployment of a sequence of lower and upper functions of approximating regular problems.

THEOREM 4.18. Let (4.29) and (4.30) hold. Assume that there exists k0 ∈N such that for
each k ∈N, k � k0, the following conditions are satisfied:

{
αk and β are a lower and an upper function of (4.31) and

α′k, β ′ ∈ L∞[0, T ], 1
k

� αk(t) � β(t) for t ∈ [0, T ], (4.39)

{∣∣fk(t, x, y)∣∣ � ψ(t)g(x)ω(|y|) for a.e. t ∈ [0, T ]
and for all x ∈ (

0,‖β‖∞
)
, y ∈R,

(4.40)
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with

{
positive functions ψ ∈ L1[ 1

k
, T − 1

k
], ω ∈ C[0,∞) and

a positive nonincreasing function g ∈ C(0,∞).
(4.41)

Further, assume that there is a function α ∈ C[0, T ] with α(0) = α(T ) = 0, α > 0
on (0, T ), αk � α on [0, T ], such that

∫ T

0
ψ(t)g

(
α(t)

)
dt <

∫ ∞

0

ds

ω(s)
. (4.42)

Then problem (4.28) has a positive solution u ∈AC1[0, T ] satisfying

α(t) � u(t) � β(t) for t ∈ [0, T ].

SKETCH OF THE PROOF. Theorem 4.18 can be proved by means of Theorem 4.16 in
the following way.

Step 1. Construction of the sequence of regular problems.
Condition (4.42) implies that there exists ρ > 0 such that

∫ T

0
ψ(t)g

(
α(t)

)
dt <

∫ ρ

0

ds

ω(s)
. (4.43)

For k ∈ N, k � k0, put ρk = max{ρ,‖α′k‖∞,‖β ′‖∞} and consider a sequence of regular
problems

u′′ + f̃k(t, u,u
′)= 0, u(0)= u(T )= 1

k
, (4.44)

where for a.e. t ∈ [0, T ] and all (x, y) ∈R
2 we set

f̃k(t, x, y)= χk(y)fk(t, x, y)

and

χk(y)=
⎧⎨
⎩

1 if |y|� ρk ,

2− |y|
ρk

if ρk < |y|< 2ρk ,

0 if |y|� 2ρk .

Then αk and β are respectively a lower and an upper function of (4.44), f̃k satisfies (4.40)
and, moreover, there exists h̃k ∈ L1[0, T ] such that

∣∣f̃k(t, x, y)∣∣ � h̃k(t) for a.e. t ∈ [0, T ], all x ∈ [
αk(t), β(t)

]
, y ∈R.
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The classical existence result based on the lower and upper functions method for regular
problems (see, e.g., [146]) guarantees that for each k � k0 problem (4.44) has a solution
uk with

α � αk � uk � β on [0, T ]. (4.45)

Step 2. A priori estimates of approximate solutions.
Using (4.40), (4.41) and (4.43) we deduce that ‖u′k‖∞ � ρ, which implies that uk is also

a solution of (4.31) for k � k0. Hence, if we put ε(t)= α(t) for t ∈ [0, T ] and

�= {
x ∈ C1[0, T ]: α � x � β on [0, T ], ‖x′‖∞ � ρ

}
,

we get that (4.32), (4.33) are fulfilled.
Step 3. Uniform integrability of regular right-hand sides.
By (4.40), (4.41) and (4.45) we get

∣∣fk(t, uk(t), u′k(t))∣∣ � ψ(t)g
(
uk(t)

)
ω
(∣∣u′k(t)∣∣) � Mψ(t)g

(
α(t)

)= ϕ(t)

for a.e. t ∈ [0, T ], where M =max{ω(|s|): s ∈ [−ρ,ρ]}. By virtue of (4.43), ϕ ∈ L1[0, T ]
and we conclude by Remark 4.17 that condition (4.34) is valid. Therefore the assertion
follows from Theorem 4.16 and condition (4.45). �

REMARK 4.19. If f does not depend on y, then (4.42) takes the form

∫ T

0
ψ(t)g

(
α(t)

)
dt <∞.

In the rest of this section we present a selection of existence results about w-solutions
which can be obtained by theorems from Section 4.1. Consider a singular Dirichlet problem

u′′ + f (t, u)= 0, u(0)= u(T )= 0, (4.46)

where

{
f ∈ Car

(
(0, T )× (0,∞)

)
can change its sign and

can have singularities at t = 0, t = T and at x = 0.
(4.47)

The first result is due to Lomtatidze [99].

THEOREM 4.20. Let (4.47) hold. Assume that f is nonincreasing as a function of its
second argument and that there is ε > 0 for which

f (t, ε) � 0 for a.e. t ∈ [0, T ],meas
{
t ∈ (0, T ): f (t, ε) > 0

}
> 0.
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Then the condition

∫ T

0
t (T − t)

∣∣f (t, δ)
∣∣dt <∞ for any δ ∈ (0, ε]

is necessary and sufficient for problem (4.46) to have a unique positive w-solution u ∈
C[0, T ] ∩AC1

loc(0, T ).

The proof of Theorem 4.20 is based on the lower and upper functions method via Theo-
rem 4.11. More general results were obtained by Lomtatidze and Torres in [100], where a
differential equation having moreover the term g(t, u)u′ was investigated.

A very similar result for a simpler case of problem (4.46) with f satisfying (4.49) was
proved by Habets and Zanolin in [80]. The analogue of their results was proved by Jiang
[86] for a singular Dirichlet problem with the p-Laplacian

(
φp(u

′)
)′ + f (t, u)= 0, u(0)= u(T )= 0, (4.48)

where φ(y)= |y|p−2y, p > 1 and

{
f ∈ C

(
(0, T )× (0,∞)

)
can change its sign and

can have singularities at t = 0, t = T and at x = 0.
(4.49)

THEOREM 4.21 [86, Theorem 3]. Let (4.49) hold. Assume that
(i) there exists a constant L > 0 such that for any compact set K ⊂ (0, T ) there is

ε = εK > 0 such that

f (t, x) > L for all t ∈K, x ∈ (0, ε],

(ii) for any δ > 0 there are hδ ∈ C(0, T ) and μ, ν ∈ [0,p− 1) such that

∣∣f (t, x)
∣∣ � hδ(t) for all t ∈ (0, T ), x � δ

and

∫ T

0
tμ(T − t)νhδ(t)dt <∞.

Then problem (4.48) has a positive w-solution u ∈ C[0, T ] with φp(u
′) ∈ C1(0, T ). If,

moreover, for each t ∈ (0, T ) the function f (t, x) is nonincreasing in x, then u is a unique
w-solution.

Another existence result for differential equation where the nonlinearity f can depend
on u′ is due to Jiang in [87]. He studied the singular Dirichlet problem of the form

u′′ + f (t, u,u′)= 0, u(0)= u(1)= 0, (4.50)
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where

{
f ∈ C((0,1)× (0,∞)×R) can change its sign

and can have singularities at t = 0, t = 1 and x = 0.
(4.51)

Motivated by the example

f (t, x, y)= δ

tm(1− t)n

(
1

xα
+ xβ + sin(8πt)

)(
1+ t (1− t)|y|1/γ ) (4.52)

with real numbers α > 0, β � 0, γ > 1, δ > 0, 0 � m, n < 2, he proved existence of a posi-
tive w-solution of (4.50) for f satisfying (4.51) and having superlinear growth in x for large
x and sublinear growth in y for large |y|. Particularly, if f in (4.50) has the form (4.52),
then an upper bound for δ is found guaranteeing that (4.50) has a positive w-solution.
The proof is based on the papers [80] and [4].

Let us turn back to problem (4.17). Using the lower and upper functions method es-
tablished in Theorem 4.12 we can get sufficient conditions for the existence of positive
w-solutions. Specifically, we report the result motivated by Agarwal, Lü and O’Regan [2].

THEOREM 4.22. Let (4.18)–(4.21) hold. Assume that there exist n0 ∈N, n0 � 3 and c0 ∈
(0,∞) such that

ψ(t)g(t, x) � c0 for t ∈
[

1

2n+1
,1− 1

2n+1

]
, x ∈ (0, ρn], n � n0

and

∣∣g(t, x)∣∣ � η(x)+ h(x) for (t, x) ∈ [0,1] × (0,∞),

where η ∈ACloc(0,∞) is positive, h ∈ C[0,∞) is nonnegative and h
η

is nondecreasing on
(0,∞). Further assume that

η′ < 0 a.e. on (0,R) and
η′

η2
∈ L1[0,R] for any R > 0

and that there exists r ∈ (0,∞) such that

b0 <

(
φ−1
p

(
1+ h(r)

η(r)

))−1 ∫ r

0

du

φ−1
p (η(u))

.

Then problem (4.17) has a positive w-solution u ∈ C[0,1] with φp(u
′) ∈ C1(0,1).
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4.4. Sign-changing solutions and w-solutions

If we consider a singular differential equation with a space singularity at x = 0, a question
about the existence of sign-changing solutions of such an equation can arise. A single
result in this direction was proved by Rachůnková and Staněk in [118], where an equation
of the form (r(u)u′)′ = μq(t)f (t, u) has been studied.

Here we will present this result for a simplified equation

u′′ +μf (t, u)= 0 (4.53)

with a positive real parameter μ and with boundary conditions

u(0)= u(T )= 0, max
{
u(t): t ∈ [0, T ]}min

{
u(t): t ∈ [0, T ]}< 0. (4.54)

We assume that
{
f : [0, T ] × (R \ {0})→R is continuous

and can have a space singularity at x = 0.
(4.55)

By a solution of problem (4.53), (4.54) we mean a function u ∈ C1[0, T ] having pre-
cisely one zero tu ∈ (0, T ). Moreover, u ∈ C2((0, T ) \ {tu}) fulfills (4.54) and there exists
μu > 0 such that u satisfies (4.53) for μ= μu and t ∈ (0, T ) \ {tu}.

THEOREM 4.23. Let (4.55) hold. Assume that for each t ∈ [0, T ] the function f (t, x) is
nondecreasing with respect to x on (−∞,0) and nonincreasing on (0,∞) and

ε � f (t, x) signx � g(x) for (t, x) ∈ [0, T ] × (
R \ {0}),

where ε ∈ (0,∞) and g ∈ C(R \ {0}) ∩ L1[−1,1]. Then for each A ∈ (0,∞) and B ∈
(−∞,0) there exist solutions u and v of problem (4.53), (4.54) satisfying

max
{
u(t): t ∈ [0, T ]}=A and min

{
v(t): t ∈ [0, T ]}= B. (4.56)

By virtue of Theorem 4.23, any solution u of problem (4.53), (4.54) vanishes at some
point tu ∈ (0, T ). Since f has a singularity at x = 0 and we do not know the position of tu,
we see that tu is a singular point of type II.

The proof of Theorem 4.23 is based on a combination of four main theorems in [118],
where a new method of proofs was developed. It is based on “gluing” the positive and
negative parts of solutions and smoothing them.

In accordance with the paper [119] by Rachůnková and Staněk we define a w-solution
of problem (4.53), (4.54) as a function u ∈ C[0, T ] having precisely one zero tu ∈ (0, T ).
Further, u ∈ C2((0, T ) \ {tu}) fulfills (4.54), there exist finite limits

lim
t→tu−

u′(t), lim
t→tu+

u′(t)
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and there exists μu > 0 such that u satisfies (4.53) for μ= μu and t ∈ (0, T ) \ {tu}.
In [119], the following existence result for w-solutions is proved.

THEOREM 4.24. Let all assumptions of Theorem 4.23 be satisfied. Then for each t0 ∈
(0, T ) and each A ∈ (0,∞), B ∈ (−∞,0) problem (4.53), (4.54) has just two different
w-solutions vanishing at t0 and having their maximum value on [0, T ] equal to A, and just
two different w-solutions vanishing at t0 and having their minimum value on [0, T ] equal
to B .

In the proof of Theorem 4.24, w-solutions are constructed by means of solutions of
auxiliary Dirichlet problems on [0, t0] and [t0, T ].

EXAMPLE. Let α, β ∈ (0,1), a ∈ (0,∞), b ∈ (−∞,0) and

f (x)=
{ a

xα
for x > 0,

b
(−x)β for x < 0.

Consider the differential equation

u′′ +μf (u)= 0. (4.57)

By Theorem 4.23, for each A > 0 and B < 0 there exist solutions u and v of problem
(4.57), (4.54) satisfying (4.56). Moreover, by Theorem 4.24, for each t0 ∈ (0, T ) and for
each A > 0 there exist just two different w-solutions u1 and u2 of problem (4.57), (4.54)
satisfying

max
{
u1(t): t ∈ [0, T ]}=max

{
u2(t): t ∈ [0, T ]}=A.

Further, for each t0 ∈ (0, T ) and for each B < 0 there exist just two different w-solutions
v1 and v2 of problem (4.57), (4.54) satisfying

min
{
v1(t): t ∈ [0, T ]}=min

{
v2(t): t ∈ [0, T ]}= B.

4.5. Historical and bibliographical notes

A systematic study of solvability of Dirichlet problems having both time and space sin-
gularities was initiated in 1979 by Taliaferro [141], who found necessary and sufficient
conditions for the existence of solutions (w-solutions) of problem (1.3), (1.4). A contribu-
tion to the more general problem (4.22) was published by Bobisud, O’Regan and Royalty
[37] in 1988. In 1989, in contrast to the shooting method used in [141] and the topological
transversality method applied in [37], Gatica, Oliker and Waltman [72] proved a fixed point
theorem for decreasing maps on cones and applying it they obtained solvability of (4.14).
However, in these works the nonlinearity f had to be bounded in its space variables x and
y for large x and large |y|.
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An extension of the above results permitting linear growth of f in its third variable y

for large |y| was treated by Baxley [24] in 1991 and by Tineo [142] in 1992. The con-
dition of boundedness of f in its second variable x for large x was overcome by Agar-
wal and O’Regan in [3] (1996), where the existence of a positive w-solution was proved
even for f having superlinear growth for large x. In 1999, the first multiplicity result for
Dirichlet problems with time and space singularities was reached. Particularly, Agarwal
and O’Regan [6] proved the existence of two different positive w-solutions. All these re-
sults rely on the fact that nonlinearities in the equations considered are positive.

In 1987, this assumption was removed by Lomtatidze [99] for problem (4.14). We can
also refer to papers by Janus and Myjak [83] for a nonhomogeneous equation (1.3) and
by Habets and Zanolin [80] for the continuous case of (4.14) which appeared in 1994.
From papers providing more general existence results for problems with sign-changing
nonlinearities we mention the recent papers by Jiang [87] (2002), by Agarwal, Staněk
[17] (2003) or by Lomtatidze, Torres [100] (2003). These papers deal with problems of
the type (4.2).

Existence results for problems of the type (4.1) with the φ-Laplacian and sign-changing
nonlinearities were presented by Wang and Gao in [149] (1996), where Taliaferro’s results
were extended. Existence results in the spirit of Habets and Zanolin which are applicable
to problems with the p-Laplacian of the form (4.48) were given by Jiang in [86] (2001).
In 2003, Agarwal, Lü and O’Regan [2] published the existence result for the problem with
the p-Laplacian of the form (4.17).

Further results and references for positive and for sign-changing nonlinearities can
be found in the monographs by Kiguradze [92] (1975), by Kiguradze and Shekhter
[93] (1987), by O’Regan [110] (1994), by Agarwal and O’Regan [10] (2003) and in
[11] (2004). Note that there exists a large group of papers investigating Dirichlet bound-
ary value problems having only time singularities. These results are not discussed here but
some of them can be found in the above cited monographs.

In the study of Dirichlet problems with space singularities and singular points both of
type I and of type II the first existence result was reached by Staněk [135] in 2001, and
the existence of sign-changing solutions was proved by Rachůnková and Staněk [118]
in 2003. Numerical algorithms and computation of solutions and w-solutions of singu-
lar Dirichlet problems were given by Baxley [25] (1995) and by Baxley and Thompson
[28] (2000).

5. Singular periodic BVPs with φ-Laplacian

The aim of this section is to present existence results for singular periodic problems of the
form

(
φ(u′)

)′ = f (t, u,u′), (5.1)

u(0)= u(T ), u′(0)= u′(T ), (5.2)
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where 0 < T <∞, φ : R→R is an increasing and odd homeomorphism such that φ(R)=
R and

{
f ∈ Car

([0, T ] × (
(0,∞)×R

))
and

f can have a space singularity at x = 0.
(5.3)

In accordance with Section 1.3, this means that

lim sup
x→0+

∣∣f (t, x, y)
∣∣=∞ for a.e. t ∈ [0, T ] and some y ∈R

may happen.

REMARK 5.1. Physicists say that f has an attractive singularity at x = 0 if

lim inf
x→0+ f (t, x, y)=−∞ for a.e. t ∈ [0, T ] and some y ∈R

since near the origin the force is directed inward. Alternatively, f is said to have a repulsive
singularity at x = 0 if

lim sup
x→0+

f (t, x, y)=∞ for a.e. t ∈ [0, T ] and some y ∈R

holds.

In the setting of Section 1.3, problem (5.1), (5.2) is investigated on the set [0, T ] ×A,
where A = [0,∞) × R. In contrast to the Dirichlet problem (4.1), where each solution
vanishes at t = 0 and t = T and hence enters the space singularity x = 0 of f , all known
existence results for the periodic problem (5.1), (5.2) under the assumption (5.3) concern
positive solutions which do not touch the space singularity x = 0 of the function f .

DEFINITION 5.2. A function u : [0, T ] → R is a positive solution to problem (5.1), (5.2)
if φ(u′) ∈AC[0, T ], u > 0 on [0, T ], (φ(u′(t)))′ = f (t, u(t), u′(t)) for a.e. t ∈ [0, T ] and
(5.2) is satisfied.

The restriction to positive solutions causes that the general existence principle in Theo-
rem 1.8 about a limit of a sequence of approximate solutions need not be employed here.
On the other hand, the singular problem (5.1), (5.2) will be also investigated through regu-
lar approximating periodic problems having differential equations of the form

(
φ(u′)

)′ = h(t, u,u′), (5.4)

where h ∈ Car([0, T ] × R
2). As usual, by a solution of the regular problem (5.4), (5.2)

we understand a function u such that φ(u′) ∈ AC[0, T ], (5.2) is true and (φ(u′(t)))′ =
h(t, u(t), u′(t)) for a.e. t ∈ [0, T ].
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Notice that the requirement φ(u′) ∈AC[0, T ] implies that u ∈ C1[0, T ].
We will also discuss various special cases of (5.1) including the classical one with

φ(y)≡ y or those with f not depending on u′ or with f depending on u′ linearly.
Let us notice that the assumption that φ is an odd function is only technical and it is

sufficient to assume (3.3) as in Section 3 in most cases. We employ it just to simplify some
formulas occurring in this section.

5.1. Method of lower and upper functions for regular problems

First, we will consider problem (5.4), (5.2), where h ∈ Car([0, T ] × R
2). We bring some

results which will be exploited in the investigation of the singular problem (5.1), (5.2).
The lower and upper functions method combined with the topological degree argument
is an important tool for proofs of solvability of regular periodic problems. Several rather
general definitions of lower and upper functions are available (see, e.g., [47,48,62,93,124,
147]). However, for our purposes the following one seems to be optimal.

DEFINITION 5.3. We say that a function σ ∈ C[0, T ] is a lower function of problem
(5.4), (5.2) if there is a finite set � ⊂ (0, T ) such that φ(σ ′) ∈ACloc([0, T ] \�), σ ′(τ+),
σ ′(τ−) ∈R for each τ ∈� and

(
φ
(
σ ′(t)

))′ � h
(
t, σ (t), σ ′(t)

)
for a.e. t ∈ [0, T ], (5.5)

σ(0)= σ(T ), σ ′(0) � σ ′(T ), (5.6)

σ ′(τ+) > σ ′(τ−) for all τ ∈�. (5.7)

If the inequalities in (5.5)–(5.7) are reversed, σ is called an upper function of problem
(5.4), (5.2).

The role of lower and upper functions is demonstrated by the following “maximum
principle”:

LEMMA 5.4. Let σ1 and σ2 be a lower and an upper function of (5.4), (5.2) and σ1 � σ2
on [0, T ]. Then for each d ∈ [σ1(0), σ2(0)] and each f̃ ∈ Car([0, T ] ×R

2) such that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̃ (t, x, y) < h
(
t, σ1(t), σ

′
1(t)

)
for a.e. t ∈ [0, T ], all x ∈ (−∞, σ1(t)

)

and all y ∈R such that
∣∣y − σ ′1(t)

∣∣ � σ1(t)− x

σ1(t)− x + 1
,

f̃ (t, x, y) > h
(
t, σ2(t), σ

′
2(t)

)
for a.e. t ∈ [0, T ], all x ∈ (

σ2(t),∞
)

and all y ∈R such that
∣∣y − σ ′2(t

)|� x − σ2(t)

x − σ2(t)+ 1
,

(5.8)

any solution u of the problem

(
φ(u′)

)′ = f̃ (t, u,u′), u(0)= u(T )= d
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satisfies σ1 � u � σ2 on [0, T ].

PROOF. Denote v = u− σ1 and assume that v(α)=min{v(t): t ∈ [0, T ]}< 0. Since d ∈
[σ1(0), σ2(0)] and thanks to (5.6) and (5.7), we may assume that α ∈ (0, T )\�, v′(α)= 0,
and there is β ∈ (α,T ] such that (α,β] ∩� = ∅ and

v(t) < 0 and
∣∣v′(t)∣∣< −v(t)

1− v(t)
for all t ∈ [α,β].

Using (5.5) (where σ = σ1) and (5.8), we obtain

(
φ
(
u′(t)

)− φ
(
σ ′1(t)

))′
< h

(
t, σ1(t), σ

′
1(t)

)− (
φ
(
σ ′1(t)

))′ � 0

for a.e. t ∈ [α,β].

Hence

0 >

∫ t

α

(
φ
(
u′(s)

)− φ
(
σ ′1(s)

))′ ds = φ
(
u′(t)

)− φ
(
σ ′1(t)

)
for all t ∈ (α,β],

which leads to a contradiction with the definition of α, i.e. u � σ1 on [0, T ]. Similarly we
can show that u � σ2 on [0, T ]. �

Problem (5.4), (5.2) is often transformed to a fixed point problem (see, e.g., [41,101,104,
150]). Here we present one possibility how to find an operator representation of (5.4), (5.2)
in the space C1[0, T ]. Having in mind that the periodic conditions (5.2) can be equivalently
rewritten as

u(0)= u(T )= u(0)+ u′(0)− u′(T ),

let us consider the quasilinear Dirichlet problem

(
φ(x′)

)′ = b(t) a.e. on [0, T ], x(0)= x(T )= d (5.9)

with b ∈ L1[0, T ] and d ∈ R. A function x ∈ C1[0, T ] is a solution of (5.9) if and only if
there is a ∈R such that

x(t)= d +
∫ t

0
φ−1

(
a +

∫ s

0
b(τ)dτ

)
ds for t ∈ [0, T ]

and

∫ T

0
φ−1

(
a +

∫ s

0
b(τ)dτ

)
ds = 0. (5.10)
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Since φ is increasing on R and φ(R)=R, Eq. (5.10) has exactly one solution a = a(b) ∈R

for each b ∈ L1[0, T ]. So, we can define an operator K :L1[0, T ]→ C1[0, T ] by

(
K(b)

)
(t)=

∫ t

0
φ−1

(
a(b)+

∫ s

0
b(τ)dτ

)
ds for t ∈ [0, T ]. (5.11)

Let N :C1[0, T ] → L1[0, T ] and F :C1[0, T ] → C1[0, T ] have the form (N (u))(t) =
h(t, u(t), u′(t)) for a.e. t ∈ [0, T ] and

(
F(u)

)
(t)= u(0)+ u′(0)− u′(T )+ (

K
(
N (u)

))
(t) for t ∈ [0, T ]. (5.12)

In view of the definition of K, a function x ∈ C1[0, T ] is a solution to (5.9) if and only if
x = d+K(b). Therefore, u ∈ C1[0, T ] is a solution to (5.4), (5.2) if and only if it is a fixed
point of F .

An alternative representation of the operator F can be obtained by inserting α(u) =
u(0)− d , β(u)= d−u(T ) and d = u(0)+u′(0)−u′(T ) into the operator P(1, u) defined
in the proof of Theorem 3.2. In this way we get

(
F(u)

)
(t) = u(0)+ u′(0)− u′(T )

+
∫ t

0
φ−1

(
φ
(
u′(T )+ u(T )− u(0)

)+
∫ s

0

(
N (u)

)
(τ )dτ

)
ds

for t ∈ [0, T ] and u ∈ C1[0, T ].
Taking into account [101, Proposition 2.2] or the proof of Theorem 3.2, we can summa-

rize:

LEMMA 5.5. Let F :C1[0, T ] → C1[0, T ] be defined by (5.12). Then F is completely
continuous and u ∈ C1[0, T ] is a solution to (5.4), (5.2) if and only if F(u)= u.

The next lemma describes the relationship between lower and upper functions and the
Leray–Schauder topological degree. We will consider the class of auxiliary problems

(
φ(v′)

)′ = η(v′)h(t, v, v′), v(0)= v(T ), v′(0)= v′(T ), (5.13)

where η : R→[0,1] may be an arbitrary continuous function.

LEMMA 5.6. Let σ1 and σ2 be a lower and an upper function of (5.4), (5.2) and σ1 < σ2
on [0, T ]. Furthermore, let there exist r∗ > 0 such that

{‖v′‖∞ < r∗ for each continuous η : R→[0,1] and for

each solution v of (5.13) such that σ1 � v � σ2 on [0, T ]. (5.14)

Finally, assume that F :C1[0, T ]→ C1[0, T ] is defined by (5.12) and, for ρ > 0, denote

�ρ =
{
u ∈ C1[0, T ]: σ1 < u< σ2 on [0, T ] and ‖u′‖∞ < ρ

}
. (5.15)
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Then

deg(I −F ,�ρ)= 1 for each ρ � r∗ such that F(u) �= u on ∂�ρ.

PROOF. Put �=�r∗ , R∗ = r∗ + ‖σ ′1‖∞ + ‖σ ′2‖∞,

η(y)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if |y|� R∗,

2− |y|
R∗ if R∗ < |y|� 2R∗,

0 if |y|> 2R∗

and assume that F(x) �= x for all x ∈ ∂�. Then σ1 and σ2 are a lower and an upper function
for the modified problem (5.13) and there is a ψ ∈ L1[0, T ] satisfying

∣∣η(y)h(t, x, y)∣∣ � ψ(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ [σ1(t), σ2(t)] ×R.

We can construct (see the proof of Theorem 2.1 in [127]) the function f̃ ∈ Car([0, T ]×R
2)

so that

f̃ (t, x, y)= η(y)h(t, x, y)

for a.e. t ∈ [0, T ] and all (x, y) ∈ [σ1(t), σ2(t)] ×R,∣∣f̃ (t, x, y)
∣∣ � ψ̃(t)

for a.e. t ∈ [0, T ], all (x, y) ∈R
2 and some ψ̃ ∈ L1[0, T ]

and f̃ satisfies the assumptions of Lemma 5.4 with η(y)h(t, x, y) in place of h(t, x, y).
Define F̃ :C1[0, T ]→ C1[0, T ] by

F̃(u)= α
(
u(0)+ u′(0)− u′(T )

)+K
(
Ñ (u)

)
,

where

(
Ñ (u)

)
(t)= f̃

(
t, u(t), u′(t)

)
for u ∈ C1[0, T ] and a.e. t ∈ [0, T ],

α(x)=

⎧⎪⎪⎨
⎪⎪⎩

σ1(0) if x < σ1(0),

x if σ1(0) � x � σ2(0),

σ2(0) if x > σ2(0)

and let K :L1[0, T ] → C1[0, T ] be given in (5.11). By Lemma 5.5, the operator F̃ is
completely continuous. Moreover, it follows from the definition of the operator K that the
problem

(
φ(u′)

)′ = f̃ (t, u,u′), u(0)= u(T )= α
(
u(0)+ u′(0)− u′(T )

)
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is equivalent to the operator equation F̃(u) = u. We can find r0 ∈ (0,∞) such that
for any λ ∈ [0,1], each fixed point u of the operator λF̃ belongs to B(r0) = {x ∈
C1[0, T ]: ‖x‖∞ + ‖x′‖∞ < r0}. So, I − λF̃ is a homotopy on B(r0)× [0,1] and

deg
(
I − F̃ ,B(r0)

)= deg
(
I,B(r0)

)= 1.

Put �1 = {u ∈ �: σ1(0) < u(0) + u′(0) − u′(T ) < σ2(0)}. Clearly, F̃ = F on �1 and
u ∈�1 whenever F(u)= u and u ∈�. Using Lemma 5.4, we can prove that

(
F̃(u)= u

) �⇒ u ∈�1

which, by the excision property of the degree, yields

deg(I −F ,�)= deg(I −F ,�1)= deg(I − F̃ ,�1)= deg
(
I − F̃ ,B(r0)

)= 1.

Finally, according to (5.14) all fixed points u of F such that σ1 < u< σ2 on [0, T ] belong
to �. Thus

deg(I −F ,�ρ)= deg(I −F ,�)= 1

for each ρ � r∗ such that F(x) �= x on ∂�ρ . �

Lemma 5.6 offers a possibility to get existence results for problems having a pair of
lower and upper functions σ1 and σ2 satisfying

σ1 � σ2 on [0, T ]. (5.16)

In such a case we say that σ1 and σ2 are well-ordered and the existence of an a priori
estimate r∗ with the property (5.14) is usually ensured by conditions of Nagumo type. The
most general known version of such conditions is provided by the next lemma which is
a modified version of the result by Staněk [133, Lemma 1].

LEMMA 5.7. Let σ1, σ2 ∈ C[0, T ] satisfy (5.16) and assume that

⎧⎪⎨
⎪⎩
ψ ∈ L1[0, T ] is nonnegative, ε1, ε2 ∈ {−1,1},

ω ∈ C(R) is positive and
∫ 0

−∞
ds

ω(s)
=

∫ ∞

0

ds

ω(s)
=∞.

(5.17)

Then there is an r∗ > 0 such that

‖v′‖∞ < r∗ (5.18)
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holds for each v ∈ C1[0, T ] such that φ(v′) ∈ AC[0, T ], v(0)= v(T ), v′(0)= v′(T ), σ1 �
v � σ2 on [0, T ] and, for a.e. t ∈ [0, T ],

⎧⎨
⎩
ε1
(
φ
(
v′(t)

))′ � (
ψ(t)+ v′(t)

)
ω
(
φ
(
v′(t)

))
if v′(t) > 0,

ε2
(
φ
(
v′(t)

))′ � (
ψ(t)− v′(t)

)
ω
(
φ
(
v′(t)

))
if v′(t) < 0.

�

Lemma 5.6 provides also a crucial argument for the proof of existence of a solution even
in the case that the given problem possesses lower and upper functions σ1 and σ2 which do
not satisfy (5.16), i.e. if

σ1(τ ) > σ2(τ ) for some τ ∈ [0, T ]. (5.19)

In such a case, the following a priori estimate is available.

LEMMA 5.8. Let ψ ∈ L1[0, T ]. Then there is r∗ > 0 such that (5.18) holds for each v ∈
C1[0, T ] fulfilling φ(v′) ∈ AC[0, T ], v(0) = v(T ), v′(0) = v′(T ) and (φ(v′(t)))′ > ψ(t)

(or (φ(v′(t)))′ <ψ(t)) for a.e. t ∈ [0, T ].

PROOF. We will restrict ourselves to the case that (φ(v′(t)))′ > ψ(t) for a.e. t ∈ [0, T ].
(The other case can be proved by a similar argument.) By the proof of [129, Lemma 1.1],
we can see that ‖w‖∞ < ‖ψ‖1 holds for each w ∈ AC[0, T ] such that w(0) = w(T ),
w(tw)= 0 for some tw ∈ (0, T ) and w′(t) > ψ(t) for a.e. t ∈ [0, T ]. The assertion of the
lemma follows by setting w = φ(v′) and

r∗ = φ−1(‖ψ‖1
)
. (5.20)

�

The next lemma provides an existence principle which will be helpful later:

LEMMA 5.9. Let σ1 and σ2 be a lower and an upper function of (5.4), (5.2) and let (5.19)
be true. Furthermore, let there be m ∈ L1[0, T ] such that

h(t, x, y) > m(t) (or h(t, x, y) < m(t)) for a.e. t ∈ [0, T ] and all x, y ∈R

and let r∗ > 0 be given by (5.20), where ψ = |m| + 2. Then problem (5.4), (5.2) has a so-
lution u satisfying

‖u′‖∞ < r∗ (5.21)

and

min
{
σ1(τu), σ2(τu)

}
� u(τu) � max

{
σ1(τu), σ2(τu)

}
for some τu ∈ [0, T ]. (5.22)
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SKETCH OF THE PROOF. We follow the ideas of the proof of Theorem 3.2 in [127]. As-
sume, e.g., that h(t, x, y) > m(t) for a.e. t ∈ [0, T ] and all x, y ∈R.

Step 1. Construction of an auxiliary problem and the operator representation.
Define ψ(t): = −(|m(t)| + 2) for a.e. t ∈ [0, T ], find r∗ > 0 as in Lemma 5.8 and set

c∗ = ‖σ1‖∞ + ‖σ2‖∞ + T r∗. Consider the auxiliary problem

(
φ(u′)

)′ = f̃ (t, u,u′), u(0)= u(T ), u′(0)= u′(T ), (5.23)

where

f̃ (t, x, y)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−(∣∣m(t)
∣∣+ 1

)
if x �−(c∗ + 1),

h(t, x, y)+ (x + c∗)
(∣∣m(t)

∣∣+ 1+ h(t, x, y)
)

if −(c∗ + 1) < x <−c∗,
h(t, x, y) if − c∗ � x � c∗,
h(t, x, y)+ (x − c∗)

∣∣m(t)
∣∣ if c∗ < x < c∗ + 1,

h(t, x, y)+ ∣∣m(t)
∣∣ if x � c∗ + 1.

We have
⎧⎪⎨
⎪⎩
f̃ (t, x, y) < 0 if x �−(c∗ + 1),

f̃ (t, x, y) > 0 if x � c∗ + 1,

f̃ (t, x, y)= h(t, x, y) if x ∈ [−c∗, c∗],
(5.24)

f̃ (t, x, y) > ψ(t) for a.e. t ∈ [0, T ] and all x, y ∈R (5.25)

and σ1 and σ2 are a lower and an upper function of (5.23). Moreover, σ3(t)≡−c∗ − 2 and
σ4(t)≡ c∗ + 2 form another pair of a lower and an upper function for (5.23) and

σ3 < min{σ1, σ2}� max{σ1, σ2}< σ4 on [0, T ].

Denote �0 = {u ∈ C1[0, T ]: σ3 < u< σ4 on [0, T ], ‖u′‖∞ < r∗},

�1 =
{
u ∈�0: σ3 < u< σ2 on [0, T ]},

�2 =
{
u ∈�0: σ1 < u< σ4 on [0, T ]}

and � = �0 \ �1 ∪�2. By Lemma 5.5, problem (5.23) is equivalent to the opera-
tor equation F̃(u) = u in C1[0, T ], where F̃(u) = u(0) + u′(0) − u′(T ) + K(Ñ (u)),
(Ñ (u))(t) = f̃ (t, u(t), u′(t)) and K: L1[0, T ] → C1[0, T ] is given by (5.11). Clearly,
F̃(u)=F(u) for u ∈ C1[0, T ] such that ‖u‖∞ � c∗.

Step 2. A priori estimates. We show that

‖u′‖∞ < r∗ and ‖u‖∞ < c∗

is true for all u ∈� such that F̃(u)= u.
Step 3. Existence of a solution to (5.4), (5.2).
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Let F̃(u) = u and u ∈ ∂�. By Step 3, we have F(u) = F̃(u) = u and u solves (5.4),
(5.2). Let F̃(u) �= u on ∂�. Then using Lemma 5.6 we get

deg
(
I − F̃ ,�0

)= deg
(
I − F̃ ,�1

)= deg
(
I − F̃,�2

)= 1.

Furthermore, by (5.19), we have �1 ∩�2 = ∅. Therefore, due to the additive property of
the degree,

deg
(
I − F̃ ,�

)= deg
(
I − F̃ ,�0

)− deg
(
I − F̃ ,�1

)− deg
(
I − F̃ ,�2

)=−1

which implies that F̃ has a fixed point u ∈�. It follows by Step 3 that ‖u‖∞ < c∗ which,
by virtue of (5.24), means that u solves (5.4), (5.2).

We can proceed analogously when h(t, x, y) < m(t) for a.e. t ∈ [0, T ] and all
x, y ∈R. �

5.2. Method of lower and upper functions for singular problems

Now, we consider problem (5.1), (5.2) where f satisfies (5.3). We present sufficient condi-
tions in terms of lower and upper functions for the existence of positive solutions to (5.1),
(5.2). Lower and upper functions σ1 and σ2 are defined in the same way as for the regular
problem (5.4), (5.2) (see Definition 5.3). However, since problem (5.1), (5.2) is investi-
gated on [0, T ]×A where A= [0,∞)×R, only such σ1 and σ2 which are positive a.e. on
[0, T ] make sense.

The first existence result concerns problem (5.1), (5.2) having well-ordered lower and
upper functions.

THEOREM 5.10. Let there exist lower and upper functions σ1 and σ2 of problem (5.1),
(5.2) such that (5.16) is true and σ1 > 0 on [0, T ]. Furthermore, let for a.e. t ∈ [0, T ] and
each (x, y) ∈ [σ1(t), σ2(t)] ×R the inequalities

{
ε1f (t, x, y) �

(
ψ(t)+ y

)
ω
(
φ(y)

)
if y > 0,

ε2f (t, x, y) �
(
ψ(t)− y

)
ω
(
φ(y)

)
if y < 0

(5.26)

hold with ε1, ε2, ω and ψ satisfying (5.17). Then problem (5.1), (5.2) has a positive solution
u such that

σ1 � u � σ2 on [0, T ]. (5.27)

PROOF. Step 1. The case σ1 < σ2.
Assume that σ1 < σ2 on [0, T ]. Consider the auxiliary problem (5.4), (5.2) with

h(t, x, y)= f (t,max
{
σ1(t),min{x,σ2(t)}, y) for a.e. t ∈ [0, T ] and (x, y) ∈ R

2. Clearly,
h ∈ Car([0, T ]×R

2) and h(t, x, y)= f (t, x, y) if x ∈ [σ1(t), σ2(t)]. Further, σ1 and σ2 are
a lower and an upper function of (5.4), (5.2). Choose an arbitrary continuous η : R→[0,1]



678 I. Rachůnková et al.

and let v be an arbitrary solution of (5.13) fulfilling σ1 � v � σ2 on [0, T ]. Since (5.26) is
satisfied with h in place of f , we have for a.e. t ∈ [0, T ]

ε1
(
φ
(
v′(t)

))′ = ε1η
(
v′(t)

)
h
(
t, v(t), v′(t)

)
� η

(
v′(t)

)(
ψ(t)+ v′(t)

)
ω
(
φ
(
v′(t)

))
�

(
ψ(t)+ v′(t)

)
ω
(
φ
(
v′(t)

))
if v′(t) > 0

and

ε2
(
φ
(
v′(t)

))′ � (
ψ(t)− v′(t)

)
ω
(
φ
(
v′(t)

))
if v′(t) < 0.

Hence we can apply Lemma 5.7 to deduce that (5.14) is satisfied. Let F :C1[0, T ] →
C1[0, T ] and � = �r∗ be defined by (5.12) and (5.15), respectively. Then there are two
possibilities: either F has a fixed point u ∈ ∂� or F(u) �= u on ∂�.

(a) Let F(u)= u for some u ∈ ∂�. In view of Lemma 5.5 and of the definition of h, it
follows that u is a solution to (5.1), (5.2) fulfilling (5.27).

(b) If F(u) �= u on ∂�, then by Lemma 5.6 we have deg(I −F ,�)= 1, which implies
that F has a fixed point u ∈�. As in (a), this fixed point is a solution to (5.1), (5.2) fulfilling
(5.27).

Step 2. The case σ1 � σ2.
For each k ∈ N, the function σ̃k = σ2 + 1

k
is also an upper function of (5.4), (5.2) and

σ1 < σ̃k on [0, T ]. Hence, in the general case, when the strict inequality between σ1 and
σ2 need not hold, we can use Step 1 to show that for each k ∈N there exists a solution uk
to (5.4), (5.2) such that

uk(t) ∈
[
σ1(t), σ2(t)+ 1

k

]
for t ∈ [0, T ] and ‖u′k‖∞ < ρ∗,

where ρ∗ > 0 is the a priori estimate given by Lemma 5.7 with σ2 + 1 in place of σ2.
Using the Arzelà–Ascoli theorem and the Lebesgue dominated convergence theorem for
the sequence {uk} we get a solution u of (5.1), (5.2) as the C1-limit of a subsequence
of {uk}. �

REMARK 5.11. Theorem 5.10 provides the existence of a positive solution to problem
(5.1), (5.2) with f (t, x, y)=−h(x)y + g(t, x), if h ∈ C[0,∞), g ∈ Car([0, T ] × (0,∞))

and if the existence of well-ordered and positive lower and upper functions is ensured.
Indeed, for a.e. t ∈ [0, T ] and each (x, y) ∈ [σ1(t), σ2(t)] ×R, we have

∣∣f (t, x, y)
∣∣ �

∣∣h(x)∣∣|y| + ∣∣g(t, x)∣∣ � K
(
ψ(t)+ |y|)

where K = 1+max{|h(x)|: x ∈ [δ,‖σ2‖∞]}, ψ(t) = sup{|g(t, x)|: x ∈ [δ,‖σ2‖∞]} and
δ =min{σ1(t): t ∈ [0, T ]}. (By assumption, we have δ > 0.)

Now, we will consider problem (5.1), (5.2) which has lower and upper functions, but no
pair of them is well-ordered. We will deal with the periodic problem for the equation

(
φ(u′)

)′ = g(u)+ p(t, u,u′). (5.28)
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THEOREM 5.12. Assume g ∈ C(0,∞), p ∈ Car([0, T ] ×R
2) and

lim
x→0+

∫ 1

x

g(ξ)dξ =+∞. (5.29)

Let there exist lower and upper functions σ1 and σ2 of problem (5.28), (5.2) such that (5.19)
is true and σ2 > 0 on [0, T ]. Furthermore, let there exist an m ∈ L1[0, T ] such that

g(x)+ p(t, x, y) > m(t) for a.e. t ∈ [0, T ] and all x > 0, y ∈R (5.30)

holds and let r∗ be given by (5.20) with ψ = |m| + 2. Then problem (5.28), (5.2) has
a positive solution u satisfying (5.21) and (5.22).

PROOF. We will use the ideas of [130]. Similarly to [130, Lemma 2.5] we can deduce from
(5.29) and (5.30) that σ1 is positive on [0, T ]. Thus, δ :=min{{σ1(t), σ2(t)}: t ∈ [0, T ]}>
0. Put R = ‖σ1‖∞+‖σ2‖∞ and B =R+r∗T . Furthermore, as p ∈ Car([0, T ]×R

2), there
is p̃ ∈ L1[0, T ] such that |p(t, x, y)| � p̃(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ [0,B] ×
[−r∗, r∗]. Put

K = ∥∥p̃∥∥1r
∗ +

∫ B

δ

∣∣g(ξ)∣∣dξ.

By (5.29) there exists ε ∈ (0, δ) such that g(ε) > 0 and

∫ δ

ε

g(ξ)dξ > K. (5.31)

For a.e. t ∈ [0, T ] and (x, y) ∈R
2, define

h(t, x, y)= g̃(x)+ p(t, x, y), where g̃(x)=
{
g(ε) if x < ε,
g(x) if x � ε.

Then h ∈ Car([0, T ]×R
2), σ1 and σ2 are lower and upper functions of (5.4), (5.2) and, by

(5.30), h(t, x, y) > m(t) for a.e. t ∈ [0, T ] and all x > 0, y ∈R. By Lemma 5.9, problem
(5.4), (5.2) has a solution u satisfying (5.21) and δ � u(tu) � R for some tu ∈ [0, T ]. In
particular, u � B for all t ∈ [0, T ]. It remains to show that u � ε on [0, T ].

Let t0, t1 ∈ [0, T ] be such that u(t0)=min{u(t): t ∈ [0, T ]} and u(t1)=max{u(t): t ∈
[0, T ]}. We have u′(t0)= u′(t1)= 0 and u(t1) ∈ [δ,B]. Put v(t)= φ(u′(t)) for t ∈ [0, T ].
Then u′(t)= φ−1(v(t)) on [0, T ], v(t0)= v(t1)= φ(0) and

∫ t1

t0

(
φ
(
u′(s)

))′
u′(s)ds =

∫ t1

t0

v′(s)φ−1(v(s))ds =
∫ v(t1)

v(t0)

φ−1(ξ)dξ = 0.
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Thus, multiplying both sides of the equality (φ(u′(t)))′ = h(t, u(t), u′(t)) by u′(t) and
integrating from t0 to t1, we get

∫ u(t1)

u(t0)

g̃(ξ)dξ �
∫ t1

t0

∣∣p(t, u(t), u′(t))∣∣∣∣u′(t)∣∣dt �
∥∥p̃∥∥1r

∗.

Therefore

g(ε)
(
ε− u(t0)

)+
∫ δ

ε

g(ξ)dξ =
∫ δ

u(t0)

g̃(ξ)dξ

�
∫ u(t1)

u(t0)

g̃(ξ)dξ +
∫ B

δ

∣∣g(ξ)∣∣dξ �
∥∥p̃∥∥1r

∗ +
∫ B

δ

∣∣g(ξ)∣∣dξ =K.

Since g(ε) > 0, this contradicts (5.31) whenever u(t0)=min{u(t): t ∈ [0, T ]}< ε. Hence,
u(t) � ε on [0, T ] which means that u is a solution to (5.28), (5.2). �

REMARK 5.13. Let g and p fulfill the assumptions of Theorem 5.12 and f (t, x, y) =
g(x)+ p(t, x, y). Then the condition (5.29) implies that

lim sup
x→0+

g(x)=+∞, (5.32)

which means by Remark 5.1 that f and g have a space repulsive singularity at x = 0.
Each repulsive singularity having the property (5.29) is called a strong singularity of f

and the corresponding function g is usually called a strong repulsive singular force. On the
contrary, if (5.32) holds together with

lim
x→0+

∫ 1

x

g(ξ)dξ ∈R, (5.33)

then the singularity of f at x = 0 is called a weak singularity and g is called a weak
repulsive singular force.

5.3. Attractive singular forces

This section is devoted to singular problem (5.1), (5.2) where f can have an attractive
singularity at x = 0. (See Remark 5.1.)

In what follows we use the standard notation for mean values of integrable functions:
for y ∈ L1[0, T ], the symbol y stands for

y: = 1

T

∫ T

0
y(t)dt.
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THEOREM 5.14. Let there exist r > 0, A> r and b ∈ L1[0, T ] such that b � 0,

f (t, r,0) � 0 for a.e. t ∈ [0, T ], (5.34)

f (t, x, y) � b(t)

for a.e. t ∈ [0, T ] and all x ∈ [A,B] and |y|� φ−1(‖b‖1
)
, (5.35)

where

B −A � 2T φ−1(‖b‖1
)
. (5.36)

Furthermore, let for a.e. t ∈ [0, T ] and each (x, y) ∈ [r,B]×R the inequalities (5.26) hold
with ε1, ε2, ω and ψ satisfying (5.17).

Then problem (5.1), (5.2) has a positive solution u such that

r � u � B on [0, T ]. (5.37)

PROOF. For a given d ∈R, let xd be a solution of (5.9). Then

φ
(
x′d(t)

)= φ
(
x′d(t0)

)+
∫ t

t0

b(s)ds for all t, t0 ∈ [0, T ].

Since b � 0, it follows that x′d(T ) � x′d(0). Since xd(0) = xd(T ), there is a td ∈ (0, T )

such that x′d(td)= 0. Thus

φ
(
x′d(t)

)=
∫ t

td

b(s)ds for t ∈ [0, T ]

and so ‖x′d‖∞ � φ−1(‖b‖1) for each d ∈ R and ‖x0‖∞ � T φ−1(‖b‖1). Put σ2 = A +
T φ−1(‖b‖1)+ x0. Then

A � σ2 � A+ 2T φ−1(‖b‖1
)
� B on [0, T ]. (5.38)

Having in mind (5.35) and (5.9), we can see that σ2 is an upper function of (5.1), (5.2).
Furthermore, σ1 = r is a lower function of problem (5.1), (5.2) and 0 < σ1 < σ2 on [0, T ].
By Theorem 5.10, problem (5.1), (5.2) has a positive solution u satisfying (5.37). �

Now, let us consider the Liénard periodic problem

(
φ(u′)

)′ + h(u)u′ = g(t, u)+ e(t), u(0)= u(T ), u′(0)= u′(T ), (5.39)

where g can have an attractive space singularity at x = 0.
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THEOREM 5.15. Assume

h ∈ C[0,∞), e ∈ L1[0, T ], g ∈ Car
([0, T ] × (0,∞)

)
, (5.40)

there exists α > 0 such that lim inf|y|→∞
|φ(y)|
|y|α > 0, (5.41)

{
there exists r > 0 such that

g(t, r)+ e(t) � 0 for a.e. t ∈ [0, T ], (5.42)

{
there exist A> r and g0 ∈ L1[0, T ] such that

g(t, x) � g0(t) for a.e. t ∈ [0, T ] and all x � A
(5.43)

and

g0 + e � 0. (5.44)

Then problem (5.39) has a positive solution u such that u � r on [0, T ].

SKETCH OF THE PROOF. We follow the ideas of the paper [128]. Define

f (t, x, y)=−h(x)y + g(t, x)+ e(t)

for a.e. t ∈ [0, T ] and all x ∈ (0,∞), y ∈R.

Step 1. First, notice that, due to (5.42), σ1(t)≡ r is a lower function of (5.39).
Step 2. Thanks to (5.41), (5.43) and (5.44), we can construct an upper function σ2 of

(5.39). To this aim, take an arbitrary C ∈R and consider a parameter auxiliary problem

(
φ(v′)

)′ + λh(v +C)v′ = λb(t), v(0)= v(T )= 0, λ ∈ [0,1], (5.45)

where b(t) = g0(t)+ e(t) for a.e. t ∈ [0, T ]. By (5.41), there are k > 0 and y0 > 0 such
that

∣∣φ(y)∣∣> k

2
|y|α for |y|� y0. (5.46)

Multiplying (5.45) by v(t) and integrating over [0, T ], we obtain

−
∫ T

0
φ
(
v′(t)

)
v′(t)dt = λ

∫ T

0
b(t)v(t)dt. (5.47)

Using (5.46), (5.47) and the Hölder inequality, we can find ρ ∈ (0,∞), independent of
C ∈R, such that v ∈ B(ρ)= {x ∈ C1[0, T ]: ‖x‖∞ +‖x′‖∞ < ρ} holds for each λ ∈ [0,1]
and each solution v of (5.45). Thus, choosing a proper operator representation of prob-
lem (5.45) and using a standard homotopy and topological degree argument we can show
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that, for each C ∈ R, problem (5.45) with λ = 1 has a solution vC ∈ B(ρ). Now, it is al-
ready easy to see that if C > A + ρ, then σ2 = vC + C is an upper function of (5.39).
Indeed, we have σ2(0)= σ2(T )= C and, due to (5.44),

φ
(
σ ′2(T )

)− φ
(
σ ′2(0)

)= T b= T [g0 + e]� 0.

Moreover, σ2(t) � C − ρ >A> r on [0, T ]. Hence, by (5.43), we have

(
φ
(
σ ′2(t)

))′ = −h
(
σ2(t)

)
σ ′2(t)+ g0(t)+ e(t)

� −h
(
σ2(t)

)
σ ′2(t)+ g

(
t, σ2(t)

)+ e(t)= f
(
t, σ2(t), σ

′
2(t)

)
for a.e. t ∈ [0, T ].

Step 3. Finally, similarly as in Remark 5.11, we show that f satisfies (5.26) with ω(s)≡
1+max{|h(x)|: x ∈ [r,‖σ2‖∞]}, ψ(t)= |e(t)| + sup{|g(t, x)|: x ∈ [r,‖σ2‖∞]} and ε1 =
ε2 = 1. Therefore, by Theorem 5.10, problem (5.39) has a positive solution u such that
u � r on [0, T ]. �

REMARK 5.16. If g does not depend on t , i.e. g(t, x) ≡ g(x) for a.e. t ∈ [0, T ] and all
x ∈ (0,∞), then the condition (5.42) is satisfied if lim infx→0+(g(x)+ ‖e‖∞) < 0 which
is true, e.g., if lim infx→0+ g(x) = −∞ and sup ess{e(t): t ∈ [0, T ]} <∞. Similarly, the
conditions (5.43) and (5.44) are in such a case satisfied if lim infx→∞(g(x) + e) > 0. In
particular, Theorem 5.15 applies to problem (5.39) if φ = φp , p > 1, sup ess{e(t): t ∈
[0, T ]}<∞, e > 0, g(t, x)=−β(t)x−λ, where β ∈ L1[0, T ], β � ε > 0 a.e. on [0, T ] and
λ � 1. Notice that the condition (5.41) is satisfied, e.g., by φ(y)= (|y|y+ y) ln(1+ 1

|y| ) or

φ(y)= y(exp(y2)− 1).

5.4. Repulsive singular forces

In this section we study the singular problem (5.1), (5.2) with f having a repulsive singu-
larity at x = 0. Recall (see Remark 5.1) that this means that the relation

lim sup
x→0+

f (t, x, y)=∞ for a.e. t ∈ [0, T ] and some y ∈R

is true. In general, for the case of a repulsive singularity, the existence of a pair of associated
lower and upper functions having opposite order is typical. This causes that such a case is
more difficult and more interesting than that of an attractive singularity. The next assertion
deals with equation (5.28) and is a direct corollary of Theorem 5.12.

THEOREM 5.17. Assume g ∈ C(0,∞), p ∈ Car([0, T ]×R
2), (5.29) and (5.30) with some

m ∈ L1[0, T ]. Furthermore, let there be r > 0, A > r , B � A and b ∈ L1[0, T ] such that
b � 0, (5.36),

g(r)+ p(t, r,0) � 0 for a.e. t ∈ [0, T ], (5.48)
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and

g(x)+ p(t, x, y) � b(t)

for a.e. t ∈ [0, T ] and all x ∈ [A,B] and |y|� φ−1(‖b‖1
)

(5.49)

hold. Then problem (5.28), (5.2) has a positive solution u such that u(tu) ∈ [r,B] for some
tu ∈ [0, T ].

PROOF. By (5.48), σ2(t)≡ r is an upper function of (5.28), (5.2). Furthermore, let x0 be
a solution of

(
φ(x′)

)′ = b(t), u(0)= u(T )= 0.

Using (5.49) and having in mind that b � 0, we can show by a reasoning analogous to
that applied in the proof of Theorem 5.14 to construct an upper function that the function
σ1 = A+ T φ−1(‖b‖1)+ x0 is a lower function of (5.28), (5.2). Using Theorem 5.12 we
complete the proof. �

In particular, when restricted to the Duffing equation with the φ-Laplacian

(
φ(u′)

)′ = g(u)+ e(t), (5.50)

Theorem 5.17 has the following corollary.

COROLLARY 5.18. Let e ∈ L1[0, T ] with inf ess{e(t): t ∈ [0, T ]} > −∞ and let g ∈
C(0,∞) have a strong repulsive singularity (5.29). Further, let

g∗ := inf
{
g(x): x ∈ (0,∞)

}
>−∞ (5.51)

and let there be A> 0 such that

g(x)+ e � 0 for x ∈ [A,B], where B −A � 2T φ−1(‖e− e‖1
)
.

Then problem (5.50), (5.2) has a positive solution u such that u(tu) � B for some tu ∈
[0, T ].

PROOF. By (5.29) we have (5.32) and consequently there is an r ∈ (0,A) such that g(r)+
e(t) � 0 for a.e. t ∈ [0, T ]. The assertion follows from Theorem 5.17 if we put b(t) =
e(t)− e and m(t)= g∗ + e(t) a.e. on [0, T ]. �

Consider the periodic problem for the Liénard equation

(
φp(u

′)
)′ + h(u)u′ = g(u)+ e(t) (5.52)
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with the p-Laplacian φp(y) = |y|p−2y. To this end, the following easy corollary of the
continuation type principle due to Manásevich and Mawhin turned out to be essential.

LEMMA 5.19 [101, Theorem 3.1] and [84, Lemma 3]. Let p > 1, h ∈ C[0,∞), g ∈
C(0,∞) and e ∈ L1[0, T ]. Furthermore, assume there exist r > 0, R > r and R′ > 0
such that

(i) the inequalities r < v < R on [0, T ] and ‖v′‖∞ < R′ hold for each λ ∈ (0,1] and
for each positive solution v of the problem

{(
φp(v

′)
)′ = λ

(−h(v)v′ + g(v)+ e(t)
)
,

v(0)= v(T ), v′(0)= v′(T ),
(5.53)

(ii) (g(x)+ e= 0)�⇒ r < x < R,
(iii) (g(r)+ e)(g(R)+ e) < 0.

Then problem (5.52), (5.2) has at least one solution u such that r < u < R on [0, T ].

Under the assumptions ensuring that g is bounded below on (0,∞), the following result
was delivered by Jebelean and Mawhin.

THEOREM 5.20 [84, Theorem 2]. Let p > 1, h ∈ C[0,∞), e ∈ L1[0, T ] and let g ∈
C(0,∞) have a strong repulsive singularity (5.29). Furthermore, assume

lim inf
x→∞ g(x) >−∞ (5.54)

and

lim inf
x→0+

[
g(x)+ e

]
> 0 > lim sup

x→∞
[
g(x)+ e

]
. (5.55)

Then problem (5.52), (5.2) has a positive solution.

PROOF. We will verify that the assumptions of Lemma 5.19 are satisfied.
Step 1. First, we will show that

⎧⎪⎪⎨
⎪⎪⎩

there are R0 > 0 and R1 >R0 such that

v(tv) ∈ (R0,R1) for some tv ∈ [0, T ]
holds for each λ ∈ (0,1] and each positive solution v of (5.53).

(5.56)

To this aim, assume that λ ∈ (0,1] and that v is a positive solution to (5.53). Integrating the
differential equation in (5.53) over [0, T ] and having in mind the periodicity of v, we get:

∫ T

0

(
g
(
v(t)

)+ e(t)
)

dt = 0. (5.57)
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By the first inequality in (5.55), there is an R0 > 0 such that

g(x)+ e > 0 whenever x ∈ (0,R0). (5.58)

If g(v(t))+ e > 0 were valid on [0, T ], we would have

∫ T

0

(
g
(
v(t)

)+ e(t)
)

dt =
∫ T

0

(
g
(
v(t)

)+ e
)

dt > 0.

Since this contradicts (5.57), we see that max{v(t): t ∈ [0, T ]} > R0. Similarly, by the
second inequality in (5.55), there is an R1 > R0 such that g(x) + e < 0 for x � R1 and
v(t1) < R1 for some t1 ∈ [0, T ]. Therefore (5.56) is true.

Step 2. Now we show that

{
there is R > 0 such that v < R on [0, T ]
for each λ ∈ (0,1] and each positive solution v of (5.53).

(5.59)

Notice that, due to (5.54) and (5.58), we have g∗ = inf{g(x): x ∈ (0,∞)} > −∞. Thus,
multiplying (5.53) by v and integrating over [0, T ], we get

‖v′‖pp �
∫ T

0

(|g∗| + |e(t)|)v(t)dt.

Furthermore, for R1 given as in Step 1 and 1
p
+ 1

q
= 1, we deduce that

‖v′‖pp �
(∫ T

0

(|g∗| + |e(t)|)dt

)(
R1 + T 1/q‖v′‖p

)
.

The right-hand side being a linear function of ‖v′‖p , this is possible only if there is C1 > 0,
independent of v and λ and such that ‖v′‖p < C1. Therefore

v(t)= v(t1)+
∫ t

t1

v′(s)ds < R1 + T 1/qC1

for all λ ∈ (0,1] and all positive solutions v of (5.53), i.e. the assertion (5.59) is true with
R :=R1 + T 1/qC1.

Step 3. Next we show that

⎧⎨
⎩

there is R2 > 0 such that |v′|< λ
1

p−1 R2 on [0, T ]
for each λ ∈ (0,1] and each positive solution v of (5.53).

(5.60)

Having in mind that v satisfies the periodic conditions, we can see that there is t ′ ∈ [0, T ]
such that v′(t ′) = 0. Integrating the differential equation in (5.53) over [t ′, t] and taking
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into account (5.59), we get

∣∣v′(t)∣∣p−1 � λ

(∫ R

0

∣∣h(x)∣∣dx + ‖e‖1 +
∣∣∣∣
∫ t

t ′

∣∣g(v(s))∣∣ds

∣∣∣∣
)

for t ∈ [0, T ]. (5.61)

By (5.58), there is b > 0 such that g(x) �−b for all x ∈ (0,R]. So, by (5.59), g(v(t)) �
−b on [0, T ] holds for each possible positive solution v of (5.53). Therefore, |g(v(t))|�
g(v(t))+ 2b for all t ∈ [0, T ] wherefrom, using (5.57), we deduce

∣∣∣∣
∫ t

t ′

∣∣g(v(s))∣∣ds

∣∣∣∣ � 2bT + ‖e‖1,

which inserted into (5.61) yields (5.60) with

R
p−1
2 =

∫ R

0

∣∣h(x)∣∣dx + 2
(
b+ ‖e‖1

)
> 0.

Step 4. We show that

{
there is r ∈ (0,R0) such that v > r on [0, T ]
for each λ ∈ (0,1] and each positive solution v of (5.53).

(5.62)

Put hR :=max{|h(x)|: x ∈ [0,R]}, R∗ = R
p
2
q
+R2(hRR2T + ‖e‖1) and

K∗ =R∗ +
∫ R

R0

∣∣g(x)∣∣dx. (5.63)

By (5.29), there is r > 0 such that

∫ R0

r

g(x)dx >K∗. (5.64)

Put w(t)= φp(v
′(t)) for t ∈ [0, T ]. Then |w(t)|q = |v′(t)|p for t ∈ [0, T ],

v′(t)= ∣∣w(t)
∣∣q−2

w(t) for t ∈ [0, T ] (5.65)

and

w′(t)= λ
(−h

(
v(t)

)
v′(t)+ g

(
v(t)

)+ e(t)
)

for a.e. t ∈ [0, T ]. (5.66)

Multiplying (5.65) by w′(t) and (5.66) by v′(t) and subtracting we get
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1

q

(∣∣v′(t)∣∣p)′ = λ
(−h

(
v(t)

)(
v′(t)

)2 + g
(
v(t)

)
v′(t)+ e(t)v′(t)

)

for a.e. t ∈ [0, T ]. (5.67)

Now, suppose that min{v(t): t ∈ [0, T ]}< r . Let us extend v to a T -periodic function on R

and choose t ′ ∈ [0, T ] and t∗ ∈ (t ′, t ′ + T ] so that v(t ′)= r , v(t∗)=max{v(t): t ∈ [0, T ]}
and v(t) � r on [t ′, t∗]. Integrating (5.67) from t ′ to t∗, we get

λ

∫ v(t∗)

r

g(x)dx

=− 1

q

∣∣v′(t ′)∣∣p − λ

(∫ t∗

t ′
h
(
v(t)

)(
v′(t)

)2 dt +
∫ t∗

t ′
e(t)v′(t)dt

)
.

Consequently, by (5.59) and (5.60),

∫ v(t∗)

r

g(x)dx � λ
p

p−1

q
R

p

2 + hRλ
2

p−1 R2
2T + ‖e‖1λ

1
p−1 R2

�
R

p

2

q
+R2

(
hRR2T + ‖e‖1

)=R∗,

which, by virtue of (5.63), finally gives

∫ R0

r

g(x)dx =
∫ v(t∗)

r

g(x)dx −
∫ v(t∗)

R0

g(x)dx � R∗ +
∫ R

R0

∣∣g(x)∣∣dx =K∗.

This being contradictory to (5.64) implies that v > r holds on [0, T ], i.e. (5.62) is true.
Step 5. To summarize, there are r , R and R′ such that the assumption (i) from

Lemma 5.19 is satisfied. Furthermore, since by Step 1 we have

g(x)+ e > 0 if 0 < x <R0 and g(x)+ e < 0 if x > R1

and 0 < r < R0 < R1 < R, it is easy to see that also the assumptions (ii) and (iii) of
Lemma 5.19 are satisfied. �

Assume that the dissipativity condition

h(x) � h∗ > 0 or h(x) �−h∗ < 0 for all x ∈ [0,∞) (5.68)

is fulfilled instead of (5.54) and e ∈ L2[0, T ]. Then the existence of a positive solution to
problem (5.52) is ensured by Jebelean and Mawhin.

THEOREM 5.21 [85, Theorem 3]. Let p > 1, h ∈ C[0,∞), e ∈ L2[0, T ] and let g ∈
C(0,∞) have a strong repulsive singularity (5.29). Furthermore, assume (5.55) and (5.68).
Then problem (5.52), (5.2) has a positive solution.
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PROOF. The proof is analogous to that of Theorem 5.20, just the estimate (5.59) is, thanks
to (5.68), obtained more easily. Indeed: let λ ∈ (0,1] and let v be a positive solution of
(5.53). Let R0, R1 and t1 be found as in Step 1 of the proof of Theorem 5.20, i.e. R0 is
such that (5.58) is true, R1 > R0, g(x) + e < 0 for x � R1 and v(t1) < R1. Integrating
equality (5.67) over [0, T ], we get h∗‖v′‖2 � ‖e‖2 and, consequently,

v(t)= v(t1)+
∫ t

t1

v′(s)ds < R1 +
√
T
‖e‖2

h∗
+ 1 for all t ∈ [0, T ].

Thus, (5.59) is true with R =R1+
√
T
‖e‖2
h∗ +1. Now, we can repeat Steps 3–5 of the proof

of Theorem 5.20. �

Lemma 5.19 enables us to prove also the following result concerning both the non-
dissipative case and the case where g need not be bounded below on (0,∞). Recall that
the symbol πp is defined for p > 1 by

πp = 2π(p− 1)1/p

p sin(π
p
)

and (
πp

T
)p is the first eigenvalue of the Dirichlet problem

(
φp(u

′)
)′ + λφp(u)= 0, u(0)= u(T )= 0

(see [57]).

THEOREM 5.22. Let p > 1, h ∈ C[0,∞), e ∈ L1[0, T ] and let g ∈ C(0,∞) have a strong
repulsive singularity (5.29). Furthermore, assume (5.55) and

{
there exist a, 0 � a <

(πp

T

)p
, and γ � 0 such that

g(x)x �−(
axp + γ

)
for all x > 0.

(5.69)

Then problem (5.52), (5.2) has a positive solution.

PROOF. Similarly to the proof of Theorem 5.21, it suffices to verify (5.59). Assume that
λ ∈ (0,1], v is a positive solution to (5.53) and let R1 and t1 have the same meaning as
in Step 1 of the proof of Theorem 5.20. Multiplying (5.53) by v(t) and integrating over
[0, T ], we get

‖v′‖pp � a‖v‖pp + ‖e‖1‖v‖∞ + γ T . (5.70)

Since v(t1) � R1, we have

0 < v(t) < R1 + T 1/q‖v′‖p for t ∈ [0, T ], (5.71)



690 I. Rachůnková et al.

where 1
p
+ 1

q
= 1. Now put

y(t)=
{
v(t + t1)− v(t1) if 0 � t � T − t1,

v(t + t1 − T )− v(t1) if T − t1 � t � T .

We have y ∈ C1[0, T ], y(0) = y(T ) = 0 and ‖y + v(t1)‖pp = ‖v‖pp . Therefore, by the
generalized Poincaré-Wirtinger inequality (see, e.g., [153, Lemma 3]),

‖y‖p � T

πp

‖y′‖p = T

πp

‖v′‖p.

Hence, for an arbitrary ε > 0, there is a C1 > 0 such that

‖v‖pp �
(‖y‖p + v(t1)T

1/p)p � (1+ ε)

(
T

πp

)p

‖v′‖pp +C1.

Inserting this into (5.70), choosing ε ∈ (0, 1
a
(
πp

T
)p − 1) and having in mind (5.71), we

deduce that

α‖v′‖pp � T 1/q‖e‖1‖v′‖p +C2

for some C2 > 0, where α = (1− a(1+ ε)( T
πp

)p) > 0. However, this is possible only if

there is Rp ∈ (0,∞), independent of λ and v, such that ‖v′‖p < Rp . Therefore 0 < v(t) <

R1 + T 1/qRp + 1 on [0, T ] for all λ ∈ (0,1] and all positive solutions v of (5.53), i.e. the
assertion (5.59) is true with R =R1 + T 1/qRp + 1.

By virtue of (5.55), we can choose b > 0 so that inf{g(x): x ∈ (0,R]}�−b. Thus, we
can continue by Steps 3–5 of the proof of Theorem 5.20 to verify that the assumptions of
Lemma 5.19 are satisfied. �

REMARK 5.23. Theorem 5.22 is a slightly modified scalar version of the result by Liu
[98, Theorem 1].

In the undamped case of the Duffing type equation

(
φp(u

′)
)′ = g(u)+ e(t), (5.72)

condition (5.69) can be replaced by a related asymptotic condition. It is shown in the
next theorem which has been proved for p = 2 by Rachůnková and Tvrdý in [125, Theo-
rem 3.1].

THEOREM 5.24. Let p > 1, 1
p
+ 1

q
= 1, g ∈ C(0,∞) and e ∈ Lq [0, T ]. Furthermore,

assume (5.29),

lim inf
x→0+ g(x) >−∞, (5.73)
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lim inf
x→∞

g(x)

xp−1
>−

(
πp

T

)p

. (5.74)

Further, assume that there exist r > 0 and A> r such that the conditions

g(r)+ e(t) � 0 for a.e. t ∈ [0, T ] (5.75)

and

g(x)+ e � 0 for x ∈ [A,B], (5.76)

where

B −A � 2T ‖e− e‖q−1
1 , (5.77)

are satisfied. Then problem (5.72), (5.2) has a positive solution u such that u(tu) ∈ [r,B]
for some tu ∈ [0, T ].

PROOF. Step 1. Lower and upper functions.
By (5.75), σ2 ≡ r is an upper function of (5.72), (5.2). Let v be a solution of the

quasilinear Dirichlet problem (5.9) with b(t) = e(t) − e a.e. on [0, T ] and d = 0 and
let σ1 = A + T φ−1

p (‖e − e‖1) + v on [0, T ]. Let us recall that φ−1
p = φq . Hence

φ−1
p (‖e − e‖1) = ‖e − e‖q−1

1 . Having in mind assumption (5.76), we can see, similarly
to the proof of Theorem 5.17 (see also the proof of Theorem 5.14), that σ1 is a lower
function of (5.72), (5.2) and σ1(t) ∈ [A,B] for t ∈ [0, T ].

Step 2. Construction of an auxiliary problem having a right-hand side bounded below.
By (5.29) we have (5.32) and hence there is a sequence {εn} ⊂ (0, r) such that

g(εn) > 0 for n ∈N, lim
n→∞ εn = 0 and lim

n→∞g(εn)=∞. (5.78)

For n ∈N and M ∈R, M > r , define

gn,M(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x < 0,
g(εn)

ε
p−1
n

xp−1 if x ∈ [0, εn],
g(x) if x ∈ [εn,M],
g(M) if x >M .

(5.79)

By (5.74), there are η ∈ (0, (πp

T
)p) and x0 > 1 such that

g(x)

xp−1
�−

((
πp

T

)p

− η

)
for all x � x0.
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Put

p(x)=

⎧⎪⎨
⎪⎩

0 if x � 0,
g(x0)

x
p−1
0

xp−1 if x ∈ (0, x0),

g(x) if x � x0

and qn,M(x) = gn,M(x) − p(x) for x ∈ R. By virtue of (5.73), there is γ � 0 such that
qn,M(x) � −γ for all x ∈ R, n ∈ N and M > r . Consequently, each function g̃(x) =
gn,M(x), n ∈N, M > r , satisfies the estimate

g̃(x)x �−
((

πp

T

)p

− η

)
|x|p − γ |x| for all x ∈R. (5.80)

Step 3. A priori estimates.
Now, we will give uniform a priori estimates for solutions of periodic problems associ-

ated to the equations

(
φp(u

′)
)′ = g̃(u)+ e(t), (5.81)

where g̃ may be an arbitrary function satisfying the estimate (5.80). To this aim, we will
prove the following assertion.

CLAIM. Let γ � 0 and η ∈ (0, (πp

T
)p). Then for any δ > 0, there are R � δ and R′ > 0

such that the estimates

u � R on [0, T ] and ‖u′‖p � R′ (5.82)

hold whenever
{
g̃ ∈ C(0,∞) fulfills (5.80) and u is a solution of (5.81), (5.2)

such that min
{
u(t): t ∈ [0, T ]} � δ.

(5.83)

PROOF OF CLAIM. We will follow ideas from the proof of [130, Lemma 2.4]. Suppose
that for each k ∈N there are gk ∈ C(0,∞) and a solution uk of

(
φp(u

′)
)′ = gk(u)+ e(t), u(0)= u(T ), u′(0)= u′(T ) (5.84)

such that

gk(x)x �−
((

πp

T

)p

− η

)
|x|p − γ |x| (5.85)

and

uk(tk)= δ for some tk ∈ [0, T ] and max
{
uk(t): t ∈ [0, T ]}> k. (5.86)
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In particular, we have

lim
k→∞max

{
uk(t): t ∈ [0, T ]}=∞. (5.87)

Let us extend uk and e to functions T -periodic on R. We have

(
φp

(
u′k(t)

))′ = gk
(
uk(t)

)+ e(t) for a.e. t ∈R.

Multiplying this equality by uk , integrating from tk to tk + T and making use of (5.85), we
obtain

∥∥u′k∥∥pp = −
∫ tk+T

tk

gk
(
uk(s)

)
uk(s)ds −

∫ tk+T

tk

e(s)uk(s)ds

�
((

πp

T

)p

− η

)
‖uk‖pp + γ T 1/q‖uk‖p + ‖e‖q‖uk‖p.

Let us set vk = uk − δ. By (5.87) we have limk→∞‖vk‖∞ =∞. Therefore, applying the
Hölder inequality we can conclude that

lim
k→∞

∥∥v′k∥∥p =∞. (5.88)

Furthermore, it is easy to verify that

∥∥v′k∥∥pp �
((

πp

T

)p

− ε

)
‖vk‖pp + a‖vk‖p + b (5.89)

holds with some ε ∈ (0, (πp

T
)p) and a, b � 0 not depending on vk . This, together with

(5.88), gives

lim
k→∞‖vk‖p =∞. (5.90)

Moreover, as vk(tk) = vk(tk + T ) = 0, we can apply the generalized Poincaré–Wirtinger
inequality (see, e.g., [153, Lemma 3]) to get

‖vk‖pp �
(

T

πp

)p∥∥v′k∥∥pp for each k ∈N.

Hence the inequality (5.89) can be rewritten as

(
πp

T

)p

�
‖v′k‖pp
‖vk‖pp

�
(
πp

T

)p

− ε + a

‖vk‖p−1
p

+ b

‖vk‖pp
, (5.91)
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which, in view of (5.90), leads to a contradiction

(
πp

T

)p

�
(
πp

T

)p

− ε.

As a consequence, we can conclude that the sequences {‖vk‖∞} and {‖vk‖p} are bounded.
By (5.89), this implies that also the sequence {‖v′k‖p} is bounded. In particular, there are
R ∈ [δ,∞) and R′ ∈ (0,∞) such that u � R and ‖u′‖p � R′ hold whenever (5.83) is true.
This completes the proof of Claim.

Now, let R >B and R′ > 0 be constants given by Claim for δ = B . Put

K =
∫ R

A

∣∣g(x)∣∣dx + ‖e‖qR′.

It follows from (5.29) and (5.78) that we can choose ε = εn∗ ∈ {εn} such that

∫ A

ε

g(x)dx >K and g(ε) > 0. (5.92)

By (5.73), there is gR ∈R such that

g(x) � gR for x ∈ (0,R]. (5.93)

Define

g̃(x)= gn∗,R(x) for x ∈R (5.94)

and consider the regular periodic problem for the auxiliary equation

(
φp(u

′)
)′ = g̃(u)+ e(t). (5.95)

Clearly, σ1 and σ2 are lower and upper functions of (5.95), (5.2) and g̃(x) + e(t) �
gR + e(t) for a.e. t ∈ [0, T ] and all x ∈ R. Thus, by Lemma 5.9, problem (5.95),
(5.2) possesses a solution u such that u(tu) ∈ [r,B] for some tu ∈ [0, T ]. In particular,
min{u(t): t ∈ [0, T ]}� B . Furthermore, by Step 2 it is easy to see that g̃ satisfies the es-
timate (5.80). Thus, by Claim and by the definitions of R and R′, the estimates (5.82) are
true.

Step 4. Existence of a solution to (5.72), (5.2).
It remains to show that u � ε on [0, T ]. Let t0, t1 ∈ [0, T ] be such that

u(t0)=min
{
u(t): t ∈ [0, T ]} and u(t1)=max

{
u(t): t ∈ [0, T ]}.

Due to the periodicity of u, we have u′(t0) = u′(t1) = 0. Multiplying the equality
(φp(u

′(t)))′ = g̃(u(t))+ e(t) by u′(t) and integrating, we get

∫ u(t1)

u(t0)

g̃(x)dx � ‖e‖qR′.
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Therefore,

∫ A

u(t0)

g̃(x)dx �
∫ R

A

∣∣g(x)∣∣dx + ‖e‖qR′ =K.

Let u(t0) < ε. Then, by (5.92),

∫ A

u(t0)

g̃(x)dx =
∫ ε

u(t0)

g̃(x)dx +
∫ A

ε

g(x)dx

= g(ε)
(
ε− u(t0)

)+
∫ A

ε

g(x)dx

>

∫ A

ε

g(x)dx >K,

a contradiction. So u(t) � ε on [0, T ], which together with (5.79), (5.82) and (5.94) yields
that u is a solution of (5.72), (5.2). �

EXAMPLES. (i) Let p > 1, h ∈ C[0,∞), β > 0, α � 1, e ∈ L1[0, T ]. Then, by Theo-
rem 5.20, the problem

(|u′|p−2u′
)′ + h(u)u′ = β

uα
+ e(t), u(0)= u(T ), u′(0)= u′(T ) (5.96)

has a positive solution if e < 0. Integrating both sides of the differential equation in (5.96)
over [0, T ] and taking into account the positivity of g(x) = βx−α on (0,∞), we can see
that the condition e < 0 is also necessary for the existence of a positive solution to (5.96).

(ii) Let p > 1, c �= 0, a > 1, β > 0, α � 1. Then, by Theorem 5.21, the problem

(|u′|p−2u′
)′ + cu′ = β

uα
− a exp(u)+ e(t), u(0)= u(T ), u′(0)= u′(T )

has a solution for each e ∈ L2[0, T ].
(iii) Let p > 1, h ∈ C[0,∞), 0 < a < (

πp

T
)p , β > 0 and α � 1. Then, by Theorem 5.22,

the problem

(|u′|p−2u′
)′ + h(u)u′ = −aup−1 + β

uα
+ e(t), u(0)= u(T ), u′(0)= u′(T )

has a positive solution for each e ∈ L1[0, T ].
For the classical case p = 2, the following result due to Omari and Ye is known. Its proof

combines the lower and upper functions method, the degree theory and connectedness
arguments for some properly chosen truncated equations and a posteriori estimates.
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THEOREM 5.25 [108, Theorem 1.2]. Assume e ∈ L∞[0, T ], (5.29), limx→0+ g(x) =∞
and

lim inf
x→∞

g(x)

x
�−

(
π

T

)2

and lim inf
x→∞

2G(x)

x2
>−

(
π

T

)2

,

where

G(x)=
∫ 1

x

g(ξ)dξ for x ∈ (0,∞).

Then the problem u′′ +h(u)u′ = g(u)+ e(t), (5.2) has a solution if and only if it possesses
a lower function σ1 ∈AC1[0, T ].

Hitherto we have assumed the strong singularity condition (5.29). The next existence
principle enables us to treat also problems with weak repulsive singularities. We shall re-
strict ourselves to the case that φ(y)≡ y and f does not depend on u′, i.e. we consider the
equation

u′′ = f (t, u), (5.97)

where f : [0, T ] × (0,∞)→R.

THEOREM 5.26. Let f ∈ Car([0, T ] × (0,∞)), r > 0, A � r and let μ ∈ L1[0, T ] and
β ∈ L1[0, T ] be such that μ(t) � 0 a.e. on [0, T ], μ> 0,

β � 0 and f (t, x) � β(t) for a.e. t ∈ [0, T ] and all x ∈ [A,B] (5.98)

and

f (t, x) �−μ(t)(x − r) for a.e. t ∈ [0, T ] and all x ∈ [r,B], (5.99)

where

B −A � T 2

2
m,

m(t)=max
{
sup

{
f (t, x): x ∈ [r,A]}, β(t),0

}
for a.e. t ∈ [0, T ]

and
⎧⎪⎨
⎪⎩
v � 0 on [0, T ] holds for each v ∈AC1[0, T ] such that

v′′(t)+μ(t)v(t) � 0 for a.e. t ∈ [0, T ],
v(0)= v(T ), v′(0)= v′(T ).

(5.100)

Then problem (5.97), (5.2) has a positive solution u such that r � u � B on [0, T ].
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PROOF. The proof follows the ideas of the proof of [129, Theorem 2.5]. First, assume that
β < 0.

Step 1. Existence of a solution u to a certain auxiliary problem.
Put

f̃ (t, x)=

⎧⎪⎪⎨
⎪⎪⎩

f (t, r)−μ(t)(x − r) if x � r,

f (t, x) if x ∈ [r,B],
f (t,B) if x � B

(5.101)

and consider the problem

u′′ = f̃ (t, u), u(0)= u(T ), u′(0)= u′(T ). (5.102)

We have f̃ ∈ Car([0, T ] ×R). By (5.98), (5.99) and (5.101), the inequalities

f̃ (t, x) � β(t) if x � A (5.103)

and

f̃ (t, x) �−μ(t)min{x − r,B − r} (5.104)

are valid for a.e. t ∈ [0, T ] and all x ∈R. In particular, f̃ (t, x) �−μ(t)(B−r). By (5.104),
σ2 ≡ r is an upper function of (5.102). Further, let σ0 be the solution of the Dirichlet
problem v′′ = b, v(0)= v(T )= 0, where b(t)= β(t)−β for a.e. t ∈ [0, T ], and let σc(t)=
c+ σ0(t) for t ∈ [0, T ] and c ∈ R. Then σ ′′c = b a.e. on t ∈ [0, T ] and σc(0)= σc(T )= c.
Moreover, σ ′c(T )− σ ′c(0)= T b= 0. Let us choose c∗ > 0 so that σ1 := σc∗ � A on [0, T ].
Due to (5.103), where β < b a.e. on [0, T ], we can see that σ1 is a lower function of
(5.102). Therefore, by Lemma 5.9, the regular problem (5.102) has a solution u such that
u(tu) � r for some tu ∈ [0, T ].

Step 2. Lower estimate for u.
We shall show that

u � r on [0, T ]. (5.105)

Set z= u− r . By virtue of (5.99) and (5.101), we have

z′′(t)+μ(t)z(t)= u′′(t)+μ(t)z(t)= f̃
(
t, u(t)

)+μ(t)
(
u(t)− r

)
� 0

for a.e. t ∈ [0, T ]. By (5.100), it follows that z(t) � 0 on [0, T ], i.e. (5.105) is true.
Step 3. Upper estimate for u.
We shall show that

u � B on [0, T ]. (5.106)
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By the definition of m and by (5.101) and (5.103) we have

f̃ (t, x) � m(t) for a.e. t ∈ [0, T ] and all x � r.

Hence, we can use Lemma 5.8 (see (5.20)) to get

‖u′‖∞ � ‖m‖1 = T m. (5.107)

If u � A were valid on [0, T ], then taking into account the periodicity of u′ and (5.103),
we would get

0=
∫ T

0
f̃
(
t, u(t)

)
dt �

∫ T

0
β(t)dt = T β < 0,

a contradiction. Thus, there is τ ∈ [0, T ] such that u(τ) < A. Now, assume that u(s) > A

for some s ∈ [0, T ] and extend u to the function T -periodic on R. There are s1, s2 and
s∗ ∈R such that s1 < s∗ < s2, s2 − s1 < T , u(s1)= u(s2)=A and u(s∗)=max{u(s): s ∈
[0, T ]}>A. In particular, due to (5.107),

2
(
u(s∗)−A

)=
∫ s∗

s1

u′(s)ds +
∫ s∗

s2

u′(s)ds � T 2m,

wherefrom the estimate

u(t)−A � T 2

2
m � B −A on [0, T ]

follows. Consequently, (5.106) is true.
Step 4. Conclusion: u is a solution to (5.97), (5.2).
The estimates (5.105) and (5.106) mean that r � u � B holds on [0, T ]. By (5.101), we

conclude that u is a solution to (5.97), (5.2).
If β = 0, we can approximate the solution to (5.1), (5.2) by solutions of the problems

u′′ = f̃n(t, u), u(0)= u(T ), u′(0)= u′(T ),

where

f̃n(t, x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (t, r) if x � r,

f (t, x) if x ∈ [r,A],

f (t, x)−μ(t) 1
n

x−A
x−A+1 if x ∈ [A,B],

f (t,B)−μ(t) 1
n

B−A
B−A+1 if x � B. �
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Recently, using the Krasnoselskii fixed point theorem, Torres proved for the Hill equa-
tion

u′′ +μ(t)u= g(t, u) (5.108)

the existence result which is related to Theorem 5.26.

THEOREM 5.27 [144, Theorem 4.5]. Let μ ∈ L1[0, T ] be such that the problem

v′′ +μ(t)v = 0, v(0)= v(T ), v′(0)= v′(T ) (5.109)

possesses the Green function G(t, s) which is positive on [0, T ]×[0, T ]. Moreover, assume
that there is an R > 0 such that

g(t, x) � 0 for all x ∈
(

0,
M

m
R

]
and

g(t, x) � 1

TM
x for all x ∈

[
R,

M

m
R

]

for a.e. t ∈ [0, T ], where

m=min
{
G(t, s): t, s ∈ [0, T ]} and M =max

{
G(t, s): t, s ∈ [0, T ]}.

Then problem (5.108), (5.2) has a positive solution.

It is easy to check that the function G(t, s) = sin( π
T
|t − s|), t, s ∈ [0, T ], is the Green

function for v′′ + ( π
T
)2v = 0, v(0) = v(T ), v′(0) = v′(T ) and G(t, s) � 0 on [0, T ] ×

[0, T ]. Hence, the statement (5.100) holds if μ(t)≡ μ1 = ( π
T
)2. Notice that μ1 = ( π

T
)2 is

the first eigenvalue of the related Dirichlet problem and it is optimal in the sense that for
μ(t)= μ a.e. on [0, T ] and μ ∈ (μ1,4μ1) the corresponding Green function of v′′ +μv =
0, v(0)= v(T ), v′(0)= v′(T ) is not nonnegative on [0, T ] × [0, T ].

In particular, when restricted to the Duffing equation

u′′ = g(u)+ e(t), (5.110)

Theorem 5.26 has the following corollary.

COROLLARY 5.28 [129, Corollary 3.7]. Suppose that g ∈ C(0,∞), e ∈ L1[0, T ],

e+ lim sup
x→∞

g(x) < 0

and there is r > 0 such that

e(t)+ g(x)+
(
π

T

)2

x �
(
π

T

)2

r for a.e. t ∈ [0, T ] and all x > r.
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Then problem (5.110), (5.2) has a positive solution u such that u � r on [0, T ].

More detailed information on the sign properties of the associated Green functions is
provided by the next proposition which is due to Torres [144] (see also [154, Lemma 2.5]).
Before formulating it, let us define the function K : [0,∞]→ (0,∞) by

K(z)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2π

zT 1+2/z

(
2

2+ z

)1−2/z( 
( 1
z
)


( 1
2 + 1

z
)

)2

if 1 � z <∞,

4

T
if z=∞.

(5.111)

Let us recall that for a given z, 1 � z � ∞, K(z) is the best Sobolev constant for the
inequality C‖u‖2

z � ‖u′‖2
2, i.e.

K(z)= inf

{‖u′‖2
2

‖u‖2
z

: u ∈H 1
0 [0, T ] \ {0}

}
,

where H 1
0 [0, T ] = {u ∈AC[0, T ]: u′ ∈ L2[0, T ], u(0)= u(T )= 0}.

PROPOSITION 5.29 [144, Corollary 2.3]. Let 1 � q � ∞ and let μ ∈ Lq [0, T ]. Then
(5.100) is true provided

μ(t) � 0 a.e. on [0, T ], μ > 0 and ‖μ‖q � K(2q∗), (5.112)

where

⎧⎨
⎩

1
q
+ 1

q∗ = 1 if 1 < q <∞,

q∗ =∞ if q = 1,
q∗ = 1 if q =∞

(5.113)

and the function K is defined by (5.111).
Moreover, if ‖μ‖q < K(2q∗), then problem (5.109) has the Green function which is

positive on [0, T ] × [0, T ].

Notice that if μ(t)≡ μ ∈ (0,∞) on [0, T ], then we can take q =∞, q∗ = 1 and so we
get K(2q∗)=K(2)= ( π

T
)2, which confirms the above mentioned fact that in such a case

(5.100) is satisfied if μ ∈ (0, ( π
T
)2].

EXAMPLE. Consider the Brillouin beam focusing equation

u′′ + a(1+ cos t)u= 1

u
(5.114)

on the interval [0,2π], where a > 0 is a parameter. (See [34] for a description of the
model.) The problem of existence of a positive 2π -periodic solution to (5.114) has been
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considered by several authors (see, e.g., [55,144,145,152,154]). Put A= 1√
a

. Then for all
x � A and t ∈ [0,2π] we have

f (t, x) := 1

x
− a(1+ cos t)x � β(t) := 1

A
− a(1+ cos t)A

and β = 1
A
− aA = 0. So, the assumption (5.98) is satisfied with B =∞ and T = 2π .

Furthermore, for r ∈ (0, r0] and a.e. t ∈ [0, T ] define

mr(t) :=max
{
sup

{
f (t, x): x ∈ [r,A]}, β(t),0

}
.

Let r0 = 1√
2a

. Then 1
r
− a(1+ cos t)r � 1

r0
− 2ar0 = 0 holds for r ∈ (0, r0] and t ∈ [0, T ].

Consequently,

mr(t)= 1

r
− a(1+ cos t)r for a.e. t ∈ [0, T ] and all r ∈ (0, r0].

For a given r ∈ (0, r0], put Br = A + πmr . Now, it is easy to check that it is possible
to find r ∈ (0, r0] such that the assumption (5.99) is satisfied with B = Br and μ(t) =
a(1 + cos t) whenever a < 1

2π ≈ 0.15915. Finally, notice that by virtue of Proposition
5.29, the assumption (5.100) is satisfied if

a � Kmax :=max

{
K(2q∗)

‖1+ cos t‖q : 1 � q �∞
}
≈ 0.16488.

(The maximum is attained at q ≈ 2.1941, see [145, Corollary 4.8].) By Theorem 5.26, we
can conclude that the equation (5.114) has a positive 2π -periodic solution for a < 1

2π . To
compare, notice that for q =∞ and T = 2π , we get q∗ = 1 and

K(2q∗)
‖1+ cos t‖∞ = 1

8
= 0.125.

Finally, let us note that using more sophisticated and involved techniques, Zhang proved
(see [154, Theorem 4.5]) that for a < Kmax, b > 0, λ � 1, e ∈ C[0, T ] and h ∈ C[0,∞)

the problem

u′′ + h(u)u′ + a(1+ cos t)u= b

uλ
+ e(t), u(0)= u(2π), u′(0)= u′(2π)

has a positive solution.
The hitherto mentioned conditions for the existence of a positive solution of problem

(5.97), (5.2) concern the case when f (t, x) asymptotically behaves like −kx with k � μ1,
μ1 = ( π

T
)2 being the first eigenvalue of the related Dirichlet problem. The next theorem

deals with the case corresponding to k lying between two adjacent higher eigenvalues.
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Let us denote by {μk}∞k=1 the sequence of eigenvalues of the related linear Dirichlet
problem u′′ +μx = 0, u(0)= u(T )= 0, that is,

μk =
(
πk

T

)2

, k ∈N. (5.115)

Furthermore, we set μ0 = 0.

THEOREM 5.30 [52, Theorem 1.1]. Assume that f : [0, T ] × (0,∞)→ R is continuous
and there are positive constants c, c′, δ and ν � 1 such that

c′

xν
� f (t, x) � c

xν
for all x ∈ (0, δ). (5.116)

Moreover, let there exist a nonnegative integer k such that

−μk+1 < lim inf
x→∞

f (t, x)

x
� lim sup

x→∞
f (t, x)

x
<−μk

uniformly in t ∈ [0, T ]. (5.117)

Then problem (5.97), (5.2) has a positive solution.

SKETCH OF THE PROOF. For a given e ∈ C[0, T ] denote by R(e) the unique solution of
the problem

u′′ + u= e(t), u(0)= u(T ), u′(0)= u′(T ).

It is known that R defines a compact linear operator on the space CT [0, T ] of continuous
T -periodic functions endowed with the sup norm ‖ · ‖∞. Problem (5.97), (5.2) is thus
equivalent to finding a positive solution u ∈ CT [0, T ] of the fixed point problem u= T (u),
where

T (u)=R
(
u+ f (·, u)) for u ∈ CT [0, T ].

For 0 < ε < M define �ε,M = {u ∈ CT [0, T ]: ε < u < M on [0, T ]}. Then T :�ε,M →
CT [0, T ] is a completely continuous operator.

The proof of the theorem consists in showing that there are ε, M such that deg(I −
T ,�ε,M) �= 0:

Let k be from (5.117) and choose an arbitrary γ ∈ (μk,μk+1). Further, for λ ∈ [0,1] and
u ∈ CT [0, T ], define

T̃ (u)=R
(
γ u− 1

uν
+ u

)
and Tλ(u)= λT̃ (u)+ (1− λ)T (u).
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Notice that

Tλ(u)=R
(
λ

(
γ u− 1

uν

)
+ (1− λ)f (·, u)+ u

)
.

Furthermore, T0 = T and T1 = T̃ . It can be shown that there are ε, M such that 0 < ε <M

and u �= Tλ(u) for all u ∈ ∂�ε,M . By the homotopy property of the degree, it follows that
deg(I − T ,�ε,M)= deg(I − T̃ ,�ε,M).

Define

S̃(u)=R
(
γ u− λ

u3
+ u

)
and Sλ(u)= λT̃ (u)+ (1− λ)S̃(u)

for u ∈ CT [0, T ] and λ ∈ [0,1]. We have

Sλ(u)=R
(
γ u+ u− (1− λ)

1

uν
− λ

1

u3

)
,

S0 = S̃ and S1 = T̃ . Now, we prove that u �= Sλ(u) on ∂�ε,M for each λ ∈ [0,1] and for
some suitable ε and M . Similarly to Step 1, this yields that deg(I − T̃ ,�ε,M)= deg(I −
S̃,�ε,M).

The proof is completed by proving that deg(I − S̃,�ε,M) �= 0. �

REMARK 5.31. Consider the problem

u′′ + ku= β

uλ
+ e(t), u(0)= u(T ), u′(0)= u′(T ) (5.118)

with λ > 0, β > 0 and k � 0. Denote

g(x)= β

xλ
− kx for x > 0.

If e ∈ L1[0, T ], k = 0 and λ � 1, i.e. the function g has a strong singularity at x = 0, then
by [96, Theorem 3.12] problem (5.118) has a positive solution if and only if e < 0 and, in
the case λ ∈ (0,1), this condition need not ensure the existence of a positive solution to
(5.118) (cf. [96, Theorem 4.1]). Further, if e ∈ C[0, T ] and λ � 1, then by Theorem 5.30,
problem (5.118) has a positive solution whenever the condition

k �=
(
n
π

T

)2

for all n ∈N

is satisfied. It is worth mentioning that the resonance case of k = ( π
T
)2 is covered neither

by Theorem 5.30 nor by Theorem 5.25 even for the strong singularity λ � 1.
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In comparison to these results, it should be pointed out that using Corollary 5.28, we can
obtain existence results also for the cases λ ∈ (0,1) and k = ( π

T
)2. In particular, for problem

(5.118), with e ∈ L1[0, T ]we get the existence of a positive solution in the following cases:

k = 0, e < 0 and inf ess
{
e(t): t ∈ [0, T ]}>−

(
π2

T 2λβ

) λ
λ+1

(λ+ 1)β

or

0 < k <

(
π

T

)2

and inf ess
{
e(t): t ∈ [0, T ]}>−

(
π2 − T 2k

T 2λβ

) λ
λ+1

(λ+ 1)β

or

k =
(
π

T

)2

and inf ess
{
e(t): t ∈ [0, T ]}> 0.

Notice that for the case 0 < k < (π
T
)2, Theorem 5.27 provides a complementary existence

condition. For details, see [144, Corollary 4.6].

We close this section by mentioning some results concerning the case when the non-
linearity can have both a space singularity at x = 0 and superlinear descent for large x.
The first is due to del Pino and Manásevich. It was motivated by [156], where an equation
governing the nonlinear vibrations of a radially forced thick-walled and incompressible
material was derived. The proof makes use of a version of the Poincaré–Birkhoff theorem
due to Ding [56] together with an analysis of some oscillatory properties of solutions to
the related initial value problems.

THEOREM 5.32 [51, Theorem 2.1]. Let f : R× (0,∞)→ R be continuous, locally Lip-
schitz in x, T -periodic in t and such that for s, β ∈ R and α > 0, the solution u(t) of the
local initial value problem

u′′ = f (t, u), u(s)= α, u′(s)= β

is continuable to the whole real line R and u > 0 on R. Furthermore, assume that

0 < lim inf
x→0+ xf (t, x) �∞ and lim

x→∞
f (t, x)

x
=−∞

uniformly in t . Then there is n0 ∈ N such that for every n � n0 there exist two distinct
T -periodic positive solutions un1, un2 of (5.97), (5.2) such that both un1 − 1 and un2 − 1
have exactly 2n zeros in [0, T ). In particular, problem (5.97), (5.2) possesses infinitely
many T -periodic positive solutions.
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The other result is due to Ge and Mawhin. It deals with the equation

u′′ = g(u)+ p(t, u,u′). (5.119)

Its proof was obtained by use of some continuation theorems valid in absence of a priori
bounds and given by Capietto, Mawhin and Zanolin, e.g., in [46] and [103].

THEOREM 5.33 [73, Theorem 1]. Let g ∈ C(0,∞) and p ∈ Car([0, T ] × R
2). Further-

more, assume that there are constants α, β � 1, M � 0, L � 0 such that

lim
x→0+g(x)xα =∞, lim

x→∞
g(x)

xβ
=−∞, (5.120)

∣∣p(t, x, y)∣∣ �
{
M

(|x| 1−α
2 + |y|)+L if 0 < x < 1,

M
(|x| 1+β

2 + |y|)+L if x � 1.
(5.121)

Then problem (5.119), (5.2) has a positive solution.

5.5. Historical and bibliographical notes

In 1958 Bevc, Palmer and Süsskind [34] searched for positive 2π -periodic solutions of
the Brillouin electron beam focusing system (5.114) which is a singular perturbation of the
Mathieu equation. Before, in 1950, Pinney [113] considered the so-called Ermakov–Pinney
equation r ′′ + a(t)r = K

r3 , where a(t) is T -periodic and K > 0. Another example of the
singular problem mentioned in literature are the parametric resonances of certain nonlinear
Schrödinger systems (see [71]). As mentioned by Mawhin and Jebelean in their exhaus-
tive historical introduction to the paper [84], second order nonlinear differential equations
or systems with singularities appear naturally in the description of particles submitted to
Newtonian type forces or to forces caused by compressed gases. Their mathematical study
started in the sixties by Forbat and Huaux [69], Huaux [82], Derwidué [54] and Faure [65],
who considered positive solutions of equations describing, e.g., the motion of a piston in
a cylinder closed at one extremity and submitted to a T -periodic exterior force, to the
restoring force of a perfect gas and to a viscosity friction. The equations under their study
may be after suitable substitutions transformed to

u′′ + cu′ = β

u
+ e(t),

where c �= 0 and β ∈R can be either positive or negative. Equations of this form are usually
called Forbat’s equations and their Liénard type generalizations like

u′′ + h(u)u′ = g(t, u)+ e(t) (5.122)

are sometimes also referred to as the generalized Forbat’s equations. It is worth mentioning
that, while Forbat and others relied on the dissipativeness properties, Faure made use of the
Leray–Schauder topological method.
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Later, in the seventies, techniques of critical point theory were applied for the first time
by Gordon [76], who also introduced the strong force condition of the type (5.29).

In 1988, Gaete and Manásevich [70], using variational methods, proved the existence
of at least two different positive T -periodic solutions of the equation u′′ = p(t)u2 − u+
u−5 which governs the radial oscillations of an elastic spherical membrane made up of
a neo-Hookean material, and subjected to an internal pressure p : R→ (0,∞) continuous,
T -periodic and non-constant.

In 1987, keeping in mind the model equation u′′ = βu−λ + e(t) with λ > 0, β �= 0 and
e ∈ L1[0, T ], Lazer and Solimini [96] employed topological arguments and the lower and
upper functions method to investigate the existence of positive solutions to the Duffing
equation u′′ = g(u) + e(t). The restoring force g was allowed to have an attractive sin-
gularity or a strong repulsive singularity at origin. Starting with this paper, the interest
in periodic singular problems considerably increased. The results by Lazer and Solim-
ini have been generalized or extended, e.g., by Habets and Sanchez [78] (1990), Mawhin
[102] (1991), del Pino, Manásevich and Montero [52] (1992), del Pino and Manásevich
[51] (1993), Fonda [66] (1993), Omari and Ye [108] (1995), Zhang [152] (1996) and
[154] (1998) and Ge and Mawhin [73] (1998). Some of these papers (e.g., [78,108,152] or
[154]) cover also the Liénard equation (5.122) with g(t, x) having at x = 0 an essentially
autonomous singularity. However, all of them, when dealing with the repulsive singular-
ity, supposed that the strong force condition of the type (5.29) is satisfied. Furthermore,
except for [51,52] and [73], they dealt with restoring forces g(t, x) behaving at ∞ like
−kx with 0 < k < μ1, μ1 = ( π

T
)2 being the first Dirichlet eigenvalue of x′′ + μx = 0.

The paper [52] was concerned with the cases corresponding to k lying between two ad-
jacent higher eigenvalues, while the papers [51] and [73] dealt with the superlinear case.
Recently, Yan and Zhang [151] (2003) proved an existence result assuming that the non-
linearity grows semilinearly as x →∞ and fulfill a certain higher-order non-resonance
condition in terms of the periodic and antiperiodic eigenvalues. Let us mention also that
Martinez-Amores and Torres [105] considered in 1996 stability of periodic solutions of
problems with singularities of attractive type. Furthermore, in 1998, Torres [143] de-
livered results on the existence of bounded solutions to singular equations of repulsive
type.

In 2001, Rachůnková, Tvrdý and Vrkoč [129], motivated by results on the existence of
positive solutions to regular periodic problems by Nkashama and Santanilla [107] (1990)
and Sanchez [131] (1992), made use of the lower and upper functions method to deliver re-
lated results in the form applicable also to singular problems. Unlike the above mentioned
papers, their results concern also the resonance case k = μ1 and do not need any strong
force condition. Later, in 2002, further step was done by Bonheure, Fonda and Smets [39]
who made use of the properties of forced isochronous oscillators. Their results are also
valid in the resonance case k = μ1 with a weak singularity. It turned out that in the reso-
nance case k = μ1 problem (5.118) with λ � 0 has a solution whenever there is a δ > 0
such that

min
t∈[0,T ]

∫ t+T

t

e(t) sin

(
π
s − t

T

)
ds � δ.
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Analogous results were derived also by Bonheure and De Coster [38] in 2003 by means of
the lower and upper functions method. Simultaneously, Torres [144] noticed that having a
thorough analysis of the sign properties of the related Green’s functions, solvability of the
periodic problem with a weak singularity can be ensured also by the Krasnoselskii fixed
point theorem. His results turned out to be complementary to those already known when
0 < k < μ1.

For related multiplicity results we refer to the papers by Fonda, Manásevich and Zano-
lin [68] (1993), Rachůnková [115] and [116] (2000) and Rachůnková, Tvrdý and Vrkoč
[130] (2003). In particular, in [115] an extension of the results of Gaete and Manásevich
from [70] applicable to the equation modelling radial oscillations of an elastic spherical
membrane can be found.

The regular periodic problem with φ- or p-Laplacian on the left-hand side was consid-
ered by several authors. For example, del Pino, Manásevich and Murúa [53] (1992) and
Yan [150] (2003) proved the existence or multiplicity of periodic solutions of the equation
(φp(u

′))′ = f (t, u) under non resonance conditions imposed on f . In 1998, general ex-
istence principles for the regular vector problem, based on the homotopy to the averaged
nonlinearity, were presented by Manásevich and Mawhin [101] (1998) (see also Mawhin
[104]). Multiplicity results were given by Liu in [97] (1998) and by Jiang, Chu and Zhang
in [88] (2005). The resonance case was considered by Fabry and Fayyad in [61] (1992).

The first steps to establish the lower/upper functions method for problems with a
φ-Laplacian operator on the left-hand side were done by Cabada and Pouso in [41] (1997)
and by Jiang and Wang in [89] (1997), the latter paper dealing with the p-Laplacian. They
assumed the existence of a pair of well-ordered lower and upper functions and both-sided
Nagumo conditions. These results were extended by Staněk [133] (2001) to the case when
a functional right-hand side fulfills one-sided growth conditions of Nagumo type. The pa-
per by Cabada, Habets and Pouso [42] (1999) was the first to present the lower/upper
functions method for periodic problems with a φ-Laplacian operator under the assumption
that lower/upper functions are in the reverse order, see also [42] (2000). If φ = φp the
authors got the solvability for 1 < p � 2 only. The general existence principle valid also
when lower/upper functions are non-ordered was presented by Rachůnková and Tvrdý in
[127] (2005) and for the case when impulses are admitted also in [126] (2005).

The singular periodic problem for the Liénard equation (φp(u
′))′ +h(u)u′ = g(u)+e(t)

with p-Laplacian on the left-hand side was treated by Liu [98] (2002) and Jebelean and
Mawhin [84] (2002) and [85] (2004). Their main tool was the existence principle due to
Manásevich and Mawhin from [101] (1998). Furthermore, in [84], the significance of the
lower/upper functions method was shown.

The only existence results for problem (5.1), (5.2) with f having a singularity for u′ = 0
were delivered by Staněk in [134] (2001) and [136] (2002).

Extensions to vector systems of the second order were not the subject of this text. We can
only refer, e.g., to the papers by Habets and Sanchez [79] (1990), Solimini [132] (1990),
Fonda [67] (1995) and Zhang [155] (1999) for the classical case and by Manásevich and
Mawhin [101] (1998) and Liu [98] (2002) for systems with p-Laplacian operators on their
left-hand sides.
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6. Other types of two-point second order BVPs

In Sections 4 and 5, under the assumption that φ satisfies (3.3), we have investigated the
nonlinear second order differential equation of the form

(
φ(u′)

)′ + f (t, u,u′)= 0, (6.1)

subjected to Dirichlet and periodic boundary conditions, respectively. In this section we
will study solvability of Eq. (6.1) with some other types of two-point boundary conditions
on the interval [0, T ] ⊂R.

We will focus our attention on problems with space or with mixed (time and space)
singularities. According to Section 1, solutions and w-solutions of the problems are defined
in the same way as for the Dirichlet problem (see Section 4.1) just replacing the Dirichlet
conditions by the boundary conditions under consideration. We can define lower and upper
functions of the second order boundary value problem in the same way as in Definition 4.3
replacing inequalities (4.6) with inequalities corresponding to the boundary conditions in
question.

In the sequel we consider two-point linear boundary conditions arising in the study of
physical, chemical or engineering problems and having the form

{
a0u(0)− b0u

′(0)= 0, a1u(T )+ b1u
′(T )= 0,

ai, bi ∈R, a2
i + b2

i > 0, i = 0,1.
(6.2)

Conditions (6.2) include conditions of the Dirichlet type (with b0 = b1 = 0), of the Neu-
mann type (with a0 = a1 = 0), of the mixed type (with a0 = b1 = 0 or b0 = a1 = 0), of the
Robin type (with ai > 0, bi > 0, i = 0,1) and of the standard Sturm–Liouville type (with
ai , bi ∈ [0,∞), i = 0,1). We will also mention problems involving inhomogeneous form
of the above boundary conditions, i.e.

{
a0u(0)− b0u

′(0)=A, a1u(T )+ b1u
′(T )= B,

ai, bi ∈R, a2
i + b2

i > 0, i = 0,1, A,B ∈R.
(6.3)

However, there is no restriction in assuming just the homogeneous conditions since a
change from u(t) to y(t) = u(t) − q(t), where q is a polynomial satisfying (6.3), will
reduce (6.3) to (6.2).

Consider a class of nonlinear singular boundary value problems whose importance is
derived, in part, from the fact that they arise when searching for positive, radially symmetric
solutions to the nonlinear elliptic partial differential equation

�u+ g(r,u)= 0 on �, u |
= 0,

where � is the Laplace operator, � is the open unit disk in R
n (centered at the origin), 
 is

its boundary, and r is the radial distance from the origin. Radially symmetric solutions to
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this problem are solutions of the ordinary differential equation with the mixed boundary
conditions

u′′ + n− 1

t
u′ + g(t, u)= 0, u′(0)= 0, u(1)= 0.

See, e.g., [29] or [74]. Particularly, Gatica, Oliker and Waltman [72] investigated the sin-
gular problem

u′′ + n− 1

t
u′ +ψ(t)

1

uα
= 0, u′(0)= 0, u(1)= 0, (6.4)

where
{
n � 2, α ∈ (0,1), ψ ∈ C[0,1) is non-negative,

ψ can have a time singularity at t = 1.
(6.5)

THEOREM 6.1 [72, Theorem 4.1]. Let (6.5) hold. Assume that

0 <

∫ 1

0
(1− t)−αψ(t)dt <∞.

Then problem (6.4) has a solution that is positive on [0,1).

The technical arguments in the proof involve concavity of solutions and the use of itera-
tive techniques. The main tool is a fixed point theorem for decreasing mappings on cones.

In the theory of diffusion and reaction a class of differential equations

u′′ − η2gκ(u)= 0 (6.6)

appears. Here η2 is the (positive) Thiele modulus, u � 0 is the concentration of one of the
reactants and κ is a positive parameter. The functions gκ are continuous on [0,∞),

lim
κ→0+gκ(x)= g(x) for x ∈ (0,∞)

and g can have a space singularity at x = 0. The model functions are

gκ(x)= x

κ + x1+γ , (6.7)

where γ is a positive parameter. Aris [21] proposed such equations as descriptions of the
steady state for chemicals reacting and diffusing according to the Langmuir–Hinshelwood
kinetics. Bobisud [35] studied a class of equations (6.6) on [−1,1] subjected to the inho-
mogeneous Robin boundary conditions

αu(−1)− u′(−1)=A, αu(1)+ u′(1)=A, α,A > 0, (6.8)
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and with functions gκ behaving qualitatively very much like the model functions in (6.7).
He proved that for η2 in (6.6) sufficiently small the limit problem with κ = 0 has a positive
solution which can be approximated uniformly on [−1,1] by solutions of (6.6), (6.8) with
small κ .

Motivated by problem (6.6), (6.8) as well as by problem (6.4), Baxley and Gersdorff
[27] studied a singular equation in which u′ can appear nonlinearly,

u′′ + h(t, u′)− η2g(t, u)= 0, η2 > 0, (6.9)

with inhomogeneous Sturm–Liouville boundary conditions

u′(0)= 0, αu(T )+ βu′(T )=A, α,A > 0, β � 0, (6.10)

where

{
h ∈ C

(
(0, T ] × [0,∞)

)
is non-negative

and can have a time singularity at t = 0,
(6.11)

{
g ∈ C

([0, T ] × (
0, A

α

])
is positive

and can have a space singularity at x = 0.
(6.12)

In contrast to Theorem 6.1 where positive singular nonlinearity ψ(t)x−α appears, the next
theorem applies to equations involving a negative singular term −η2g(t, x).

THEOREM 6.2 [27, Theorem 17]. Let (6.11) and (6.12) hold. Assume that

h(t,0)= 0 for t ∈ (0, T ]

and that there exists G ∈ L[0, A
α
] satisfying

g(t, x) � G(x) on [0, T ] × (
0, A

α

]
. (6.13)

Then for η2 sufficiently small problem (6.9), (6.10) has a solution that is positive on [0, T ].

Moreover, if η2 is sufficiently large, Baxley and Gersdorff guarantee the existence of
the so called dead core solutions which are defined as functions belonging for some t0 ∈
(0, T ) to C1[0, T ] ∩ C2(t0, T ], satisfying equation (6.9) on (t0, T ], vanishing on [0, t0]
and fulfilling (6.10). The proof is based on a priori estimates of approximate solutions of
auxiliary regular problems and on the Arzelà–Ascoli theorem.

Agarwal, O’Regan and Staněk [15] considered a singular equation with a φ-Laplacian
generalizing (6.9) and subjected to inhomogeneous mixed conditions

(
φ(u′)

)′ −μf (t, u,u′)= 0, u′(0)= 0, u(T )= b, b > 0, (6.14)
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where μ is a real positive parameter and

{
φ(0)= 0, f ∈ Car

([0, T ] × (
R \ {b})× (

R \ {0})),
f can have space singularities at x = b and y = 0.

(6.15)

THEOREM 6.3 [15, Theorem 3.1]. Let (6.15) hold. Assume that there exist ε > 0, ν ∈
(0, T ] and a positive non-decreasing function ρ ∈ C[0, T ] such that

f
(
t, x, ρ(t)

)= 0 for a.e. t ∈ [0, T ] and all x ∈ [0, b),

ε � f (t, x, y) for a.e. t ∈ [0, ν] and all x ∈ [0, b), y ∈ [0, ν].

Further, let for a.e. t ∈ [0, T ] and for all x ∈ [0, b), y ∈ (0, ρ(t)]

0 � f (t, x, y) �
(
h1(x)+ h2(x)

)(
ω1(y)+ω2(y)

)
,

where h1 ∈ C[0, b], ω1 ∈ C[0,∞) are non-negative, h2 ∈ C[0, b), ω2 ∈ C(0,∞) are pos-
itive, h1 and ω2 are non-increasing, h2 and ω1 are non-decreasing and ω1 + ω2 is non-
increasing on a right neighbourhood of 0. Moreover, let

∫ b

0
h2(s)ds <∞,

∫ 1

0
ω2

(
φ−1(s)

)
ds <∞.

Finally, let there exist μ∗ > 0 such that

∫ b

0

ds

�−1(μ∗H(s))
= T , (6.16)

where

H(u)=
∫ u

0

(
h1(s)+ h2(s)

)
ds, �(u)=

∫ φ(u)

0

φ−1(s)ds

ω1(φ−1(s))+ω2(φ−1(s))
.

Then for each μ ∈ (0,μ∗) problem (6.14) has a solution u satisfying

0 < u(t) � b, 0 � u′(t) � ρ(t) for t ∈ [0, T ].

To prove this existence result the authors used regularization and sequential techniques.
First, they defined a family of auxiliary regular differential equations depending on n ∈ N

and then, using the topological transversality theorem, they obtained a sequence of pos-
itive approximate solutions. Applying the Arzelà–Ascoli theorem and the Lebesgue con-
vergence theorem they showed that its limit is a solution of problem (6.14).
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REMARK 6.4. Note that if there exists μ0 ∈ (0,∞) such that

∫ b

0

ds

�−1(μ0H(s))
∈ (T ,∞),

then μ∗ ∈ (0,μ0) satisfying (6.16) can be always found.

Comparing problem (6.9), (6.10) and problem (6.14), they seem to be in some sense
close, because both of them have negative singular nonlinearities in differential equations
and the boundary conditions of (6.14) are contained in (6.10). However, there is a large
difference between them. For example, positive solutions of (6.9), (6.10) do not touch the
space singularity of f at x = 0. On the other hand, each solution u of (6.14) satisfies
u(T )= b and hence enters the space singularity of f at x = b. Another difference between
them consists in the fact that f in (6.14) can have also a space singularity at y = 0 and
hence Theorem 6.3 can be used in the following example whereas Theorem 6.2 cannot.

EXAMPLE. Let α ∈ (0,∞) and β ∈ (0,1). By Theorem 6.3 there exists a positive number
μ∗ depending on β only such that for any μ ∈ (0,μ∗) the problem

u′′ −μ
(
1− |u|α)

(
1

|u′|β − 1

)
= 0, u′(0)= 0, u(1)= 1

2
,

has a solution u such that 0 < u(t) � 1
2 , 0 � u′(t) � 1 for t ∈ [0,1]. An explicit formula

for μ∗ can be found in [15].
Assumption (6.13) in Theorem 6.2 means that the space singularity of g at x = 0 is a

weak singularity. See Remark 5.1 for more detail. Note that the assumption (6.13) is not
satisfied for the problem

u′′ + t2

32u2
− λ2

8
= 0, u(0)= 0, 2u′(1)− (1− ν)u(1)= 0, (6.17)

where λ ∈ (0,∞), ν ∈ (0,1), which models the large deflection membrane response of a
spherical cap. This problem has been solved numerically by various techniques in engineer-
ing literature [75,106,111]. Baxley in [26] proved existence and uniqueness of a solution of
this problem, gave qualitative information about the solution, and used this information to
suggest an approach to numerical computation. In the proof the maximum principle plays
a fundamental role. In contrast to (6.8), (6.11) and (6.14), problem (6.17) has boundary
conditions which are not included in the Sturm–Liouville ones, because ν < 1 and so the
coefficient −(1− ν) at u(1) is negative.

Existence results for equations whose nonlinearities have a singularity at x = 0 and can
be increasing for x→∞ are proved in [4], where Agarwal and O’Regan obtained the ex-
istence of a w-solution u > 0 on (0,1] of such equations with mixed boundary conditions.
Their theorem can be applied for example to the problem

u′′ +
(

1

uα
+ uβ + 1

)(
1+ (u′)3)= 0, u′(0)= 0, u(1)= 0, (6.18)
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with α ∈ (0,1), β � 0. We see that the nonlinearity

f (t, x, y)=
(

1

xα
+ xβ + 1

)(
1+ y3) (6.19)

has a weak space singularity at x = 0 and can be increasing for large x. If β ∈ (0,1) the
growth of f is sublinear. For β = 1 or β > 1 the growth of f is linear or superlinear,
respectively.

In the investigation of singular problems (6.1), (6.2) or (6.1), (6.3), lower and upper
functions of the corresponding regular problems can be a fruitful tool. See for example
papers by Kannan and O’Regan in [90] or by Agarwal and Staněk in [17]. We will demon-
strate the role of lower and upper functions on the following singular problem with mixed
boundary conditions

u′′ + f (t, u,u′)= 0, u′(0)= 0, u(T )= 0, (6.20)

where

⎧⎪⎪⎨
⎪⎪⎩

D = (0,∞)× (−∞,0), f ∈ Car
(
(0, T )×D

)
,

f can have time singularities at t = 0, t = T

and space singularities at x = 0, y = 0.

(6.21)

First, consider an auxiliary regular problem

u′′ + h(t, u,u′)= 0, u′(0)= 0, u(T )= 0, (6.22)

where h ∈ Car([0, T ] ×R
2).

DEFINITION 6.5. A function σ ∈ C[0, T ] is called a lower function of (6.22) if there
exists a finite set � ⊂ (0, T ) such that σ ∈ AC1

loc([0, T ] \ �), σ ′(τ+), σ ′(τ−) ∈ R for
each τ ∈�,

σ ′′(t)+ f
(
t, σ (t), σ ′(t)

)
� 0 for a.e. t ∈ [0, T ], (6.23)

σ ′(0) � 0, σ (T ) � 0, σ ′(τ−) < σ ′(τ+) for each τ ∈�. (6.24)

If the inequalities in (6.23) and (6.24) are reversed, then σ is called an upper function of
(6.22).

In what follows we will need the classical lower and upper functions result for the mixed
problem (6.22).
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LEMMA 6.6 [93, Lemma 3.7]. Let σ1 and σ2 be a lower and an upper function for problem
(6.22) such that σ1 � σ2 on [0, T ]. Assume also that there is a function ψ ∈ L1[0, T ] such
that

∣∣h(t, x, y∣∣ � ψ(t) for a.e. t ∈ [0, T ], all x ∈ [
σ1(t), σ2(t)

]
, y ∈R. (6.25)

Then problem (6.22) has a solution u ∈AC1[0, T ] satisfying

σ1(t) � u(t) � σ2(t) for t ∈ [0, T ]. (6.26)

We will apply Lemma 6.6 to the singular mixed problem (6.20).

THEOREM 6.7 [117, Theorem 3.1]. Let (6.21) hold. Assume that there exist ε ∈ (0,1),
ν ∈ (0, T ), c ∈ (ν,∞) such that

f
(
t, c(T − t),−c

)= 0 for a.e. t ∈ [0, T ], (6.27)

0 � f (t, x, y)

for a.e. t ∈ [0, T ], and all x ∈ (
0, c(T − t)

]
, y ∈ [−c,0), (6.28)

ε � f (t, x, y)

for a.e. t ∈ [0, ν], and all x ∈ (
0, c(T − t)

]
, y ∈ [−ν,0). (6.29)

Then problem (6.20) has a solution u ∈AC1[0, T ] satisfying

0 < u(t) � c(T − t), −c � u′(t) < 0 for t ∈ (0, T ). (6.30)

PROOF. Let k ∈N, k � 3
T

.
Step 1. Approximate solutions.
For t ∈ [ 1

k
, T − 1

k
], x ∈R and y ∈R put

αk(t, x)=
⎧⎨
⎩
c(T − t) if x > c(T − t),
x if c

k
� x � c(T − t),

c
k

if x < c
k

,

βk(y)=
⎧⎨
⎩
− ε

k
if y >− ε

k
,

y if −c � y �− ε
k

,
−c if y <−c,

γ (y)=
{
ε if y �−ν,
ε
c+y
c−ν if −c < y <−ν,

0 if y �−c.

For a.e. t ∈ [0, T ] and x, y ∈R define

fk(t, x, y)=

⎧⎪⎨
⎪⎩
γ (y) if t ∈ [0, 1

k
),

f
(
t, αk(t, x),βk(y)

)
if t ∈ [ 1

k
, T − 1

k
],

0 if t ∈ (T − 1
k
, T ].
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Then fk ∈ Car([0, T ] ×R
2) and there is ψk ∈ L1[0, T ] such that

∣∣fk(t, x, y)∣∣ � ψk(t) for a.e. t ∈ [0, T ], all x, y ∈R. (6.31)

We have got an auxiliary regular problem

u′′ + fk(t, u,u
′)= 0, u′(0)= 0, u(T )= 0. (6.32)

Conditions (6.27) and (6.28) yield

fk
(
t, c(T − t),−c

)= 0 and fk(t,0,0) � 0 for a.e. t ∈ [0, T ].

Put σ1(t) = 0, σ2(t) = c(T − t) for t ∈ [0, T ]. Then σ1 and σ2 are a lower and an upper
function of (6.32). Hence, by Lemma 6.6, problem (6.32) has a solution uk and

0 � uk(t) � c(T − t) on [0, T ]. (6.33)

Step 2. A priori estimates of approximate solutions.
Since u′k(0)= 0 and fk(t, x, y) � 0 for a.e. t ∈ [0, T ] and all x, y ∈R, we get u′k(t) � 0

on [0, T ]. Condition (6.33) and uk(T )= 0 give uk(T )− uk(t) �−c(T − t), which yields
u′k(T ) �−c. Since u′k is nonincreasing on [0, T ], we have proved

−c � u′k(t) � 0 on [0, T ]. (6.34)

Due to u′k(0)= 0, there is tk ∈ (0, T ] such that

−ν � u′k(t) � 0 for t ∈ [0, tk].

If tk � ν, we get by (6.29)

u′k(t) �−εt for t ∈ [0, ν]. (6.35)

Assume that tk < ν and u′k(t) <−ν for t ∈ (tk, ν]. Then

u′k(t) �−εt for t ∈ [0, tk].

Since−ν <−εt for t ∈ (tk, ν], we get (6.35) again. Integrating (6.35) over [0, ν] and using
the concavity of uk on [0, T ] we deduce that

εν2

2T
(T − t) � uk(t) on [0, T ]. (6.36)

Step 3. Convergence of a sequence of approximate solutions.
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Consider the sequence {uk}. Choose an arbitrary compact interval J ⊂ (0, T ). By virtue
of (6.33)–(6.36) there is k0 ∈N such that for each k ∈N, k � k0,

c

k0
� uk(t) � c(T − t), −c � u′k(t) �− ε

k0
on J, (6.37)

and hence there is ψ ∈ L1(J ) such that

∣∣fk(t, uk(t), u′k(t))∣∣ � ψ(t) for a.e. t ∈ J. (6.38)

Using conditions (6.33), (6.34), (6.38), the Arzelà–Ascoli theorem and the diagonalization
principle, we can choose u ∈ C[0, T ] ∩ C1(0, T ) and a subsequence of {uk} which we
denote for the sake of simplicity in the same way such that

⎧⎨
⎩

lim
k→∞uk = u uniformly on [0, T ],
lim
k→∞u′k = u′ locally uniformly on (0, T ).

(6.39)

Therefore we have u(T )= 0.
Step 4. Convergence of the sequence of approximate problems.
Choose an arbitrary ξ ∈ (0, T ) such that

f (ξ, ·, ·) is continuous on (0,∞)× (−∞,0).

By (6.37) there exist a compact interval J ∗ ⊂ (0, T ) and k∗ ∈ N such that ξ ∈ J ∗ and for
each k � k∗

uk(ξ) >
c

k∗
, u′k(ξ) <−

ε

k∗
, J ∗ ⊂

[
1

k
,T − 1

k

]
.

Therefore

fk
(
ξ,uk(ξ), u

′
k(ξ)

)= f
(
ξ,uk(ξ), u

′
k(ξ)

)

and, due to (6.39),

lim
k→∞fk

(
t, uk(t), u

′
k(t)

)= f
(
t, u(t), u′(t)

)
for a.e. t ∈ (0, T ). (6.40)

Choose an arbitrary t ∈ (0, T ). Then there exists a compact interval J ⊂ (0, T ) such that
(6.38) holds for all sufficiently large k. By virtue of (6.32) we get

u′k
(
T

2

)
− u′k(t)=

∫ t

T /2
fk

(
s, uk(s), u

′
k(s)

)
ds.
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Letting k→∞ and using (6.38), (6.39), (6.40) and the Lebesgue convergence theorem on
J , we get

u′
(
T

2

)
− u′(t)=

∫ t

T /2
f
(
s, u(s), u′(s)

)
ds for each t ∈ (0, T ). (6.41)

Therefore u ∈AC1
loc(0, T ) satisfies

u′′(t)+ f
(
t, u(t), u′(t)

)= 0 for a.e. t ∈ (0, T ). (6.42)

Further, according to (6.32) and (6.34) we have for each k � 3
T

∫ T

0
fk

(
s, uk(s), u

′
k(s)

)
ds =−u′k(T ) � c,

which together with (6.28), (6.33), (6.34) and (6.40) yields, by the Fatou lemma, that
f (t, u(t), u′(t)) ∈ L1[0, T ]. Therefore, by (6.42), u ∈ AC1[0, T ]. Moreover, for each
k � 3

T
and t ∈ (0, T )

∣∣u′k(t)∣∣ �
∫ t

0

∣∣fk(s, uk(s), u′k(s))− f
(
s, u(s), u′(s)

)∣∣ds

+
∫ t

0

∣∣f (
s, u(s), u′(s)

)∣∣ds.

Hence by (6.39) and (6.40) for each ε > 0 there exists δ > 0 and for each t ∈ (0, δ) there
exists k0 = k0(ε, t) ∈N such that

∣∣u′(t)∣∣ �
∣∣u′(t)− u′k0

(t)
∣∣+ ∣∣u′k0

(t)
∣∣< ε.

It means that u′(0) = limt→0+ u′(t) = 0. We have proved that u is a solution of problem
(6.20). �

EXAMPLE. Let α > 0, β � 0 be arbitrary numbers. By Theorem 6.7 problem (6.18) has a
solution u ∈AC1[0,1] satisfying

0 < u(t) � 1− t, −1 � u′(t) < 0 for t ∈ (0,1).

Note that Theorem 6.7 guarantees solvability of problem (6.18) even for the nonlinearity
(6.19) having a strong space singularity (α � 1) at x = 0.
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[115] I. Rachůnková, Existence of two positive solutions of a singular nonlinear periodic boundary value prob-

lems, J. Comput. Appl. Math. 113 (2000), 27–34.
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[119] I. Rachůnková and S. Staněk, Connections between types of singularities in differential equations and

smoothness of solutions of Dirichlet BVPs, Dynamics Continous Discrete Impulsive Systems 10 (2003),
209–222.
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