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Preface

Ordinary differential equations is a wide mathematical discipline which is closely related to
both pure mathematical research and real world applications. Most mathematical formula-
tions of physical laws are described in terms of ordinary and partial differential equations,
and this has been a great motivation for their study in the past. In the 20th century the
extremely fast development of Science led to applications in the fields of chemistry, bi-
ology, medicine, population dynamics, genetic engineering, economy, social sciences and
others, as well. All these disciplines promoted to higher level and new discoveries were
made with the help of this kind of mathematical modeling. At the same time, real world
problems have been and continue to be a great inspiration for pure mathematics, particu-
larly concerning ordinary differential equations: they led to new mathematical models and
challenged mathematicians to look for new methods to solve them.

It should also be mentioned that an extremely fast development of computer sciences
took place in the last three decades: mathematicians have been provided with a tool which
had not been available before. This fact encouraged scientists to formulate more complex
mathematical models which, in the past, could hardly be resolved or even understood. Even
if computers rarely permit a rigorous treatment of a problem, they are a very useful tool
to get concrete numerical results or to make interesting numerical experiments. In the field
of ordinary differential equations this phenomenon led more and more mathematicians
to the study of nonlinear differential equations. This fact is reflected pretty well by the
contributions to this volume.

The aim of the editors was to collect survey papers in the theory of ordinary differential
equations showing the “state of the art”, presenting some of the main results and methods
to solve various types of problems. The contributors, besides being widely acknowledged
experts in the subject, are known for their ability of clearly divulging their subject. We are
convinced that papers like the ones in this volume are very useful, both for the experts and
particularly for younger research fellows or beginners in the subject. The editors would
like to express their deepest gratitude to all contributors to this volume for the effort made
in this direction.

The contributions to this volume are presented in alphabetical order according to the
name of the first author. The paper by Agarwal and O’Regan deals with singular initial and
boundary value problems (the nonlinear term may be singular in its dependent variable
and is allowed to change sign). Some old and new existence results are established and
the proofs are based on fixed point theorems, in particular, Schauder’s fixed point theo-
rem and a Leray–Schauder alternative. The paper by De Coster and Habets is dedicated to
the method of upper and lower solutions for boundary value problems. The second order
equations with various kinds of boundary conditions are considered. The emphasis is put

v



vi Preface

on well ordered and non-well ordered pairs of upper and lower solutions, connection to
the topological degree and multiplicity of the solutions. The contribution of Došlý deals
with half-linear equations of the second order. The principal part of these equations is rep-
resented by the one-dimensional p-Laplacian and the author concentrates mainly on the
oscillatory theory. The paper by Jacobsen and Schmitt is devoted to the study of radial
solutions for quasilinear elliptic differential equations. The p-Laplacian serves again as a
prototype of the main part in the equation and the domains as a ball, an annual region,
the exterior of a ball, or the entire space are under investigation. The paper by Llibre is
dedicated to differential systems or vector fields defined on the real or complex plane. The
author presents a deep and complete study of the existence of first integrals for planar poly-
nomial vector fields through the Darbouxian theory of integrability. The paper by Mawhin
takes the simple forced pendulum equation as a model for describing a variety of nonlinear
phenomena: multiplicity of periodic solutions, subharmonics, almost periodic solutions,
stability, boundedness, Mather sets, KAM theory and chaotic dynamics. It is a review pa-
per taking into account more than a hundred research articles appeared on this subject. The
paper by Srzednicki is a review of the main results obtained by the Ważewski method in
the theory of ordinary differential equations and inclusions, and retarded functional dif-
ferential equations, with some applications to boundary value problems and detection of
chaotic dynamics. It is concluded by an introduction of the Conley index with examples of
possible applications.

Last, but not least, we thank the Editors at Elsevier, who gave us the opportunity of
making available a collection of articles that we hope will be useful to mathematicians
and scientists interested in the recent results and methods in the theory and applications of
ordinary differential equations.
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Abstract
In this survey paper we present old and new existence results for singular initial and bound-

ary value problems. Our nonlinearity may be singular in its dependent variable and is allowed
to change sign.
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1. Introduction

The study of singular boundary value problems (singular in the dependent variable) is
relatively new. Indeed it was only in the middle 1970s that researchers realized that large
numbers of applications [7,11,12] in the study of nonlinear phenomena gave rise to singular
boundary value problems (singular in the dependent variable). However, in our opinion, it
was the 1979 paper of Taliaferro [20] that generated the interest of many researchers in
singular problems in the 1980s and 1990s. In [20] Taliaferro showed that the singular
boundary value problem{

y ′′ + q(t)y−α = 0, 0< t < 1,

y(0)= 0 = y(1),
(1.1)

has a C[0,1] ∩ C1(0,1) solution; here α > 0, q ∈ C(0,1) with q > 0 on (0,1) and∫ 1
0 t (1 − t)q(t)dt <∞. Problems of the form (1.1) arise frequently in the study of nonlin-

ear phenomena, for example in non-Newtonian fluid theory, such as the transport of coal
slurries down conveyor belts [12], and boundary layer theory [11]. It is worth remarking
here that we could consider Sturm–Liouville boundary data in (1.1); however since the ar-
guments are essentially the same (in fact easier) we will restrict our discussion to Dirichlet
boundary data.

In the 1980s and 1990s many papers were devoted to singular boundary value problems
of the form{

y ′′ + q(t)f (t, y)= 0, 0< t < 1,

y(0)= 0 = y(1),
(1.2)

and singular initial value problems of the form{
y ′ = q(t)f (t, y), 0< t < T (<∞),

y(0)= 0.
(1.3)

Almost all singular problems in the literature [8–10,14–18,21] up to 1994 discussed posi-
tone problems, i.e., problems where f : [0,1]×(0,∞)→ (0,∞). In Section 2.1 we present
the most general results available in the literature for the positone singular problem (1.2).
In 1999 the question of multiplicity for positone singular problems was discussed for the
first time by Agarwal and O’Regan [2]. The second half of Section 2.1 discusses multi-
plicity. In 1994 [16] the singular boundary value problem (1.2) was discussed when the
nonlinearity f could change sign. Model examples are

f (t, y)= t−1e
1
y − (1 − t)−1 and f (t, y)= g(t)

yσ
− h(t), σ > 0

which correspond to Emden–Fowler equations; here g(t) > 0 for t ∈ (0,1) and h(t) may
change sign. Section 2.2 is devoted to (1.2) when the nonlinearity f may change sign. The
results here are based on arguments and ideas of Agarwal, O’Regan et al. [1–6], and Habets
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and Zanolin [16]. Section 3 presents existence results for the singular initial value problem
(1.3) where the nonlinearity f may change sign.

The existence results in this paper are based on fixed point theorems. In particular we
use frequently Schauder’s fixed point theorem and a Leray–Schauder alternative. We begin
of course with the Schauder theorem.

THEOREM 1.1. Let C be a convex subset of a Banach space and F :C → C a compact,
continuous map. Then F has a fixed point in C.

In applications to construct a set C so that F takes C back into C is very difficult and
sometimes impossible. As a result it makes sense to discuss maps F that map a subset of C
into C. One result in this direction is the so-called nonlinear alternative of Leray–Schauder.

THEOREM 1.2. Let E be a Banach space, C a convex subset of E, U an open subset of
C and 0 ∈U . Suppose F :U →C (here U denotes the closure of U in C) is a continuous,
compact map. Then either

(A1) F has a fixed point in U ; or
(A2) there exists u ∈ ∂U (the boundary of U in C) and λ ∈ (0,1) with u= λF(u).

PROOF. Suppose (A2) does not occur and F has no fixed points in ∂U (otherwise we are
finished). Let

A= {
x ∈U : x = tF (x) for some t ∈ [0,1]}.

Now A �= ∅ since 0 ∈ A and A is closed since F is continuous. Also notice A ∩ ∂U = ∅.
Thus there exists a continuous function μ :U → [0,1] with μ(A)= 1 and μ(∂U)= 0. Let

N(x)=
{
μ(x)F (x), x ∈U ,

0, x ∈C\U .

Clearly N :C → C is a continuous, compact map. Theorem 1.1 guarantees the existence
of an x ∈C with x =Nx . Notice x ∈ U since 0 ∈U . As a result x = μ(x)F (x), so x ∈A.
Thus μ(x)= 1 and so x = F(x). �

To conclude the introduction we present existence principles for nonsingular initial and
boundary value problems which will be needed in Sections 2 and 3. First we use Schauder’s
fixed point theorem and a nonlinear alternative of Leray–Schauder type to obtain a general
existence principle for the Dirichlet boundary value problem{

y ′′ + f (t, y)= 0, 0< t < 1,

y(0)= a, y(1)= b.
(1.4)

Throughout this paper AC[0,1] denotes the space of absolutely continuous functions on
[0,1], ACloc(0,1) the space of functions absolutely continuous on each compact subinter-
val of (0,1) and L1

loc(0,1) the space of functions which are L1 integrable on each compact
subinterval of (0,1).
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THEOREM 1.3. Suppose the following two conditions are satisfied:

the map y 
→ f (t, y) is continuous for a.e. t ∈ [0,1] (1.5)

and

the map t 
→ f (t, y) is measurable for all y ∈ R. (1.6)

(I) Assume⎧⎪⎨⎪⎩
for each r > 0 there exists hr ∈ L1

loc(0,1) with∫ 1
0 t (1 − t)hr (t)dt <∞ such that |y| � r implies∣∣f (t, y)∣∣ � hr(t) for a.e. t ∈ (0,1)

(1.7)

holds. In addition suppose there is a constant M > |a|+ |b|, independent of λ, with |y|0 =
supt∈[0,1] |y(t)| �=M for any solution y ∈AC[0,1] (with y ′ ∈ACloc(0,1)) to{

y ′′ + λf (t, y)= 0, 0< t < 1,

y(0)= a, y(1)= b,
(1.8)λ

for each λ ∈ (0,1). Then (1.4) has a solution y with |y|0 �M .
(II) Assume{

there exists h ∈ L1
loc(0,1) with

∫ 1
0 t (1 − t)hr (t)dt <∞

such that
∣∣f (t, y)∣∣ � h(t) for a.e. t ∈ (0,1) and y ∈ R

(1.9)

holds. Then (1.4) has a solution.

PROOF. (I) We begin by showing that solving (1.8)λ is equivalent to finding a solution
y ∈ C[0,1] to

y(t) = a(1 − t)+ bt + λ(1 − t)

∫ t

0
sf

(
s, y(s)

)
ds

+ λt

∫ 1

t

(1 − s)f
(
s, y(s)

)
ds. (1.10)λ

To see this notice if y ∈ C[0,1] satisfies (1.10)λ then it is easy to see (since (1.7) holds)
that y ′ ∈ L1[0,1]. Thus y ∈AC[0,1], y ′ ∈ACloc(0,1) and note

y ′(t)= −a + b− λ

∫ t

0
sf

(
s, y(s)

)
ds + λ

∫ 1

t

(1 − s)f
(
s, y(s)

)
ds.

Next integrate y ′(t) from 0 to x (x ∈ (0,1)) and interchange the order of integration to get

y(x)− y(0)=
∫ x

0
y ′(t)dt
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= −ax + bx − λ

∫ x

0

∫ t

0
sf

(
s, y(s)

)
ds dt

+ λ

∫ x

0

∫ 1

t

(1 − s)f
(
s, y(s)

)
ds dt

= −ax + bx + λ(1 − x)

∫ x

0
sf

(
s, y(s)

)
ds

+ λx

∫ 1

x

(1 − s)f
(
s, y(s)

)
ds

= −a + y(x),

so y(0) = a. Similarly integrate y ′(t) from x (x ∈ (0,1)) to 1 and interchange the order
of integration to get y(1)= b. Thus if y ∈ C[0,1] satisfies (1.10)λ then y is a solution of
(1.8)λ.

Define the operator N :C[0,1] →C[0,1] by

Ny(t) = a(1 − t)+ bt + (1 − t)

∫ t

0
sf

(
s, y(s)

)
ds

+ t

∫ 1

t

(1 − s)f
(
s, y(s)

)
ds. (1.11)

Then (1.10)λ is equivalent to the fixed point problem

y = (1 − λ)p+ λNy, where p = a(1 − t)+ b. (1.12)λ

It is easy to see that N :C[0,1] → C[0,1] is continuous and completely continuous. Set

U = {
u ∈C[0,1]: |u|0 <M

}
, K =E = C[0,1].

Now the nonlinear alternative of Leray–Schauder type guarantees that N has a fixed point,
i.e., (1.10)1 has a solution.

(II) Solving (1.4) is equivalent to the fixed point problem y = Ny where N is as in
(1.11). It is easy to see that N :C[0,1] → C[0,1] is continuous and compact (since (1.9)
holds). The result follows from Schauder’s fixed point theorem. �

Finally we obtain a general existence principle for the initial value problem{
y ′ = f (t, y), 0< t < T (<∞),
y(0)= a.

(1.13)

THEOREM 1.4. Suppose the following two conditions are satisfied:

the map y 
→ f (t, y) is continuous for a.e. t ∈ [0, T ] (1.14)



A survey of recent results for initial and boundary value problems 7

and

the map t 
→ f (t, y) is measurable for all y ∈ R. (1.15)

(I) Assume{
for each r > 0 there exists hr ∈L1[0, T ] such that

|y| � r implies
∣∣f (t, y)∣∣ � hr(t) for a.e. t ∈ (0, T ) (1.16)

holds. In addition suppose there is a constant M > |a|, independent of λ, with |y|0 =
supt∈[0,T ] |y(t)| �=M for any solution y ∈AC[0, T ] to{

y ′ = λf (t, y), 0< t < T (<∞),
y(0)= a,

(1.17)λ

for each λ ∈ (0,1). Then (1.13) has a solution y with |y|0 �M .
(II) Assume{

there exists h ∈ L1[0, T ] such that
∣∣f (t, y)∣∣ � h(t)

for a.e. t ∈ (0, T ) and y ∈ R
(1.18)

holds. Then (1.13) has a solution.

PROOF. (I) Solving (1.17)λ is equivalent to finding a solution y ∈C[0, T ] to

y(t)= a + λ

∫ t

0
f

(
s, y(s)

)
ds. (1.19)λ

Define an operator N :C[0, T ] → C[0, T ] by

Ny(t)= a +
∫ t

0
f

(
s, y(s)

)
ds. (1.20)

Then (1.19)λ is equivalent to the fixed point problem

y = (1 − λ)a + λNy. (1.21)λ

It is easy to see that N :C[0, T ] → C[0, T ] is continuous and completely continuous. Set

U = {
u ∈ C[0, T ]: |u|0 <M

}
, K =E = C[0, T ].

Now the nonlinear alternative of Leray–Schauder type guarantees that N has a fixed point,
i.e., (1.19)1 has a solution.

(II) Solving (1.13) is equivalent to the fixed point problem y = Ny where N is as in
(1.20). It is easy to see thatN :C[0, T ] → C[0, T ] is continuous and compact (since (1.18)
holds). The result follows from Schauder’s fixed point theorem. �
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2. Singular boundary value problems

In Section 2.1 we discuss positone boundary value problems. Almost all singular papers in
the 1980s and 1990s were devoted to such problems. In Theorem 2.1 we present probably
the most general existence result available in the literature for positone problems. In the
late 1990s the question of multiplicity for singular positone problems was raised, and we
discuss this question in the second half of Section 2.1. Section 2.2 is devoted to singular
problems where the nonlinearity may change sign.

2.1. Positone problems

In this section we discuss the Dirichlet boundary value problem{
y ′′ + q(t)f (t, y)= 0, 0< t < 1,
y(0)= 0 = y(1).

(2.1)

Here the nonlinearity f may be singular at y = 0 and q may be singular at t = 0 and/or
t = 1. We begin by showing that (2.1) has a C[0,1] ∩ C2(0,1) solution. To do so we
first establish, via Theorem 1.3, the existence of a C[0,1] ∩ C2(0,1) solution, for each
m= 1,2, . . . , to the “modified” problem{

y ′′ + q(t)f (t, y)= 0, 0< t < 1,

y(0)= 1
m

= y(1).
(2.2)m

To show that (2.1) has a solution we let m→ ∞; the key idea in this step is the Arzela–
Ascoli theorem.

THEOREM 2.1. Suppose the following conditions are satisfied:

q ∈ C(0,1), q > 0 on (0,1) and
∫ 1

0
t (1 − t)q(t)dt <∞, (2.3)

f : [0,1] × (0,∞)→ (0,∞) is continuous. (2.4)⎧⎪⎪⎨⎪⎪⎩
0 � f (t, y)� g(y)+ h(y) on [0,1] × (0,∞) with
g > 0 continuous and nonincreasing on (0,∞),

h� 0 continuous on [0,∞), and h
g

nondecreasing on (0,∞),

(2.5)

{ for each constant H > 0 there exists a function ψH
continuous on [0,1] and positive on (0,1) such that
f (t, u)�ψH (t) on (0,1)× (0,H ]

(2.6)

and

∃r > 0 with
1

{1 + h(r)
g(r)

}
∫ r

0

du

g(u)
> b0 (2.7)



A survey of recent results for initial and boundary value problems 9

hold; here

b0 = max

{
2

∫ 1
2

0
t (1 − t)q(t)dt,2

∫ 1

1
2

t (1 − t)q(t)dt

}
. (2.8)

Then (2.1) has a solution y ∈ C[0,1] ∩C2(0,1) with y > 0 on (0,1) and |y|0 < r .

PROOF. Choose ε > 0, ε < r , with

1

{1 + h(r)
g(r)

}
∫ r

ε

du

g(u)
> b0. (2.9)

Let n0 ∈ {1,2, . . .} be chosen so that 1
n0
< ε and let N0 = {n0, n0 +1, . . .}. To show (2.2)m,

m ∈N0, has a solution we examine{
y ′′ + q(t)F (t, y)= 0, 0< t < 1,

y(0)= y(1)= 1
m
, m ∈N0,

(2.10)m

where

F(t, u)=
{
f (t, u), u� 1

m
,

f
(
t, 1
m

)
, u� 1

m
.

To show (2.10)m has a solution for each m ∈N0 we will apply Theorem 1.3. Consider the
family of problems{

y ′′ + λq(t)F (t, y)= 0, 0< t < 1,

y(0)= y(1)= 1
m
, m ∈N0,

(2.11)mλ

where 0< λ< 1. Let y be a solution of (2.11)mλ . Then y ′′ � 0 on (0,1) and y � 1
m

on [0,1].
Also there exists tm ∈ (0,1) with y ′ � 0 on (0, tm) and y ′ � 0 on (tm,1). For x ∈ (0,1) we
have

−y ′′(x)� g
(
y(x)

){
1 + h(y(x))

g(y(x))

}
q(x). (2.12)

Integrate from t (t � tm) to tm to obtain

y ′(t)� g
(
y(t)

){
1 + h(y(tm))

g(y(tm))

} ∫ tm

t

q(x)dx

and then integrate from 0 to tm to obtain∫ y(tm)

1
m

du

g(u)
�

{
1 + h(y(tm))

g(y(tm))

} ∫ tm

0
xq(x)dx.
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Consequently∫ y(tm)

ε

du

g(u)
�

{
1 + h(y(tm))

g(y(tm))

} ∫ tm

0
xq(x)dx

and so ∫ y(tm)

ε

du

g(u)
�

{
1 + h(y(tm))

g(y(tm))

}
1

1 − tm

∫ tm

0
x(1 − x)q(x)dx. (2.13)

Similarly if we integrate (2.12) from tm to t (t � tm) and then from tm to 1 we obtain∫ y(tm)

ε

du

g(u)
�

{
1 + h(y(tm))

g(y(tm))

}
1

tm

∫ 1

tm

x(1 − x)q(x)dx. (2.14)

Now (2.13) and (2.14) imply∫ y(tm)

ε

du

g(u)
� b0

{
1 + h(y(tm))

g(y(tm))

}
.

This together with (2.9) implies |y|0 �= r . Then Theorem 1.3 implies that (2.10)m has a
solution ym with |ym|0 � r . In fact (as above),

1

m
� ym(t) < r for t ∈ [0,1].

Next we obtain a sharper lower bound on ym, namely we will show that there exists a
constant k > 0, independent of m, with

ym(t)� kt (1 − t) for t ∈ [0,1]. (2.15)

To see this notice (2.6) guarantees the existence of a function ψr(t) continuous on [0,1]
and positive on (0,1) with f (t, u) � ψr(t) for (t, u) ∈ (0,1) × (0, r]. Now, using the
Green’s function representation for the solution of (2.10)m, we have

ym(t) = 1

m
+ t

∫ 1

t

(1 − x)q(x)f
(
x, ym(x)

)
dx

+ (1 − t)

∫ t

0
xq(x)f

(
x, ym(x)

)
dx

and so

ym(t) � t

∫ 1

t

(1 − x)q(x)ψr(x)dx + (1 − t)

∫ t

0
xq(x)ψr(x)dx

≡ Φr(t). (2.16)
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Now it is easy to check (as in Theorem 1.3) that

Φ ′
r (t)=

∫ 1

t

(1 − x)q(x)ψr(x)dx −
∫ t

0
xq(x)ψr(x)dx for t ∈ (0,1)

withΦr(0)=Φr(1)= 0. If k0 ≡ ∫ 1
0 (1−x)q(x)ψr(x)dx exists thenΦ ′

r (0)= k0; otherwise
Φ ′
r (0)= ∞. In either case there exists a constant k1, independent of m, with Φ ′

r (0)� k1.
Thus there is an ε > 0 with Φr(t) � 1

2k1t � 1
2k1t (1 − t) for t ∈ [0, ε]. Similarly there is

a constant k2, independent of m, with −Φ ′
r (1) � k2. Thus there is a δ > 0 with Φr(t) �

1
2k2(1 − t) � 1

2k2t (1 − t) for t ∈ [1 − δ,1]. Finally since Φr (t)
t (1−t ) is bounded on [ε,1 − δ]

there is a constant k, independent of m, with Φr(t)� kt (1− t) on [0,1], i.e., (2.15) is true.
Next we will show

{ym}m∈N0 is a bounded, equicontinuous family on [0,1]. (2.17)

Returning to (2.12) (with y replaced by ym) we have

−y ′′
m(x)� g

(
ym(x)

){
1 + h(r)

g(r)

}
q(x) for x ∈ (0,1). (2.18)

Now since y ′′
m � 0 on (0,1) and ym � 1

m
on [0,1] there exists tm ∈ (0,1) with y ′

m � 0 on
(0, tm) and y ′

m � 0 on (tm,1). Integrate (2.18) from t (t < tm) to tm to obtain

y ′
m(t)

g(ym(t))
�

{
1 + h(r)

g(r)

} ∫ tm

t

q(x)dx. (2.19)

On the other hand integrate (2.18) from tm to t (t > tm) to obtain

−y ′
m(t)

g(ym(t))
�

{
1 + h(r)

g(r)

} ∫ t

tm

q(x)dx. (2.20)

We now claim that there exists a0 and a1 with a0 > 0, a1 < 1, a0 < a1 with

a0 < inf{tm: m ∈N0} � sup{tm: m ∈N0}< a1. (2.21)

REMARK 2.1. Here tm (as before) is the unique point in (0,1) with y ′
m(tm)= 0.

We now show inf{tm: m ∈ N0}> 0. If this is not true then there is a subsequence S of
N0 with tm → 0 as m→ ∞ in S. Now integrate (2.19) from 0 to tm to obtain

∫ ym(tm)

0

du

g(u)
�

{
1 + h(r)

g(r)

}∫ tm

0
xq(x)dx+

∫ 1
m

0

du

g(u)
(2.22)

form ∈ S. Since tm → 0 asm→ ∞ in S, we have from (2.22) that ym(tm)→ 0 as m→ ∞
in S. However since the maximum of ym on [0,1] occurs at tm we have ym → 0 in C[0,1]
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as m → ∞ in S. This contradicts (2.15). Consequently inf{tm: m ∈ N0} > 0. A similar
argument shows sup{tm: m ∈ N0}< 1. Let a0 and a1 be chosen as in (2.21). Now (2.19),
(2.20) and (2.21) imply

|y ′
m(t)|

g(ym(t))
�

{
1 + h(r)

g(r)

}
v(t) for t ∈ (0,1), (2.23)

where

v(t)=
∫ max{t,a1}

min{t,a0}
q(x)dx.

It is easy to see that v ∈L1[0,1]. Let I : [0,∞)→ [0,∞) be defined by

I (z)=
∫ z

0

du

g(u)
.

Note I is an increasing map from [0,∞) onto [0,∞) (notice I (∞) = ∞ since g > 0 is
nonincreasing on (0,∞)) with I continuous on [0,A] for any A> 0. Notice{

I (ym)
}
m∈N0

is a bounded, equicontinuous family on [0,1]. (2.24)

The equicontinuity follows from (here t, s ∈ [0,1])
∣∣I(
ym(t)

) − I
(
ym(s)

)∣∣ =
∣∣∣∣ ∫ t

s

y ′
m(x)

g(ym(x))
dx

∣∣∣∣ �
{

1 + h(r)

g(r)

}∣∣∣∣ ∫ t

s

v(x)dx

∣∣∣∣.
This inequality, the uniform continuity of I−1 on [0, I (r)], and∣∣ym(t)− ym(s)

∣∣ = ∣∣I−1(
I

(
ym(t)

)) − I−1(
I

(
ym(s)

))∣∣
now establishes (2.17).

The Arzela–Ascoli theorem guarantees the existence of a subsequence N of N0 and a
function y ∈ C[0,1] with ym converging uniformly on [0,1] to y as m→ ∞ through N .
Also y(0)= y(1)= 0, |y|0 � r and y(t)� kt (1 − t) for t ∈ [0,1]. In particular y > 0 on
(0,1). Fix t ∈ (0,1) (without loss of generality assume t �= 1

2 ). Now ym, m ∈ N , satisfies
the integral equation

ym(x)= ym

(
1

2

)
+ y ′

m

(
1

2

)(
x − 1

2

)
+

∫ x

1
2

(s − x)q(s)f
(
s, ym(s)

)
ds

for x ∈ (0,1). Notice (take x = 2
3 ) that {y ′

m(
1
2 )}, m ∈ N , is a bounded sequence since

ks(1 − s)� ym(s)� r for s ∈ [0,1]. Thus {y ′
m(

1
2 )}m∈N has a convergent subsequence; for
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convenience let {y ′
m(

1
2 )}m∈N denote this subsequence also and let r0 ∈ R be its limit. Now

for the above fixed t ,

ym(t)= ym

(
1

2

)
+ y ′

m

(
1

2

)(
t − 1

2

)
+

∫ t

1
2

(s − t)q(s)f
(
s, ym(s)

)
ds,

and let m → ∞ through N (we note here that f is uniformly continuous on compact
subsets of [min( 1

2 , t),max( 1
2 , t)] × (0, r]) to obtain

y(t)= y

(
1

2

)
+ r0

(
t − 1

2

)
+

∫ t

1
2

(s − t)q(s)f
(
s, y(s)

)
ds.

We can do this argument for each t ∈ (0,1) and so y ′′(t)+q(t)f (t, y(t))= 0 for 0< t < 1.
Finally it is easy to see that |y|0 < r (note if |y|0 = r then following essentially the argu-
ment from (2.12)–(2.14)will yield a contradiction). �

Next we establish the existence of two nonnegative solutions to the singular second order
Dirichlet problem{

y ′′(t)+ q(t)
[
g

(
y(t)

) + h
(
y(t)

)] = 0, 0< t < 1,

y(0)= y(1)= 0; (2.25)

here our nonlinear term g+h may be singular at y = 0. Next we state the fixed point result
we will use to establish multiplicity (see [13] for a proof).

THEOREM 2.2. Let E = (E,‖ · ‖) be a Banach space and let K ⊂E be a cone in E. Also
r,R are constants with 0< r < R. Suppose A :ΩR ∩K →K (here ΩR = {x ∈E: ‖x‖<
R}) is a continuous, compact map and assume the following conditions hold:

x �= λA(x) for λ ∈ [0,1) and x ∈ ∂EΩr ∩K (2.26)

and {
there exists a v ∈K\{0} with x �=A(x)+ δv

for any δ > 0 and x ∈ ∂EΩR ∩K. (2.27)

Then A has a fixed point in K ∩ {x ∈E: r � ‖x‖ �R}.
REMARK 2.2. In Theorem 2.2 if (2.26) and (2.27) are replaced by

x �= λA(x) for λ ∈ [0,1) and x ∈ ∂EΩR ∩K (2.26)�

and {
there exists a v ∈K\{0} with x �=A(x)+ δv

for any δ > 0 and x ∈ ∂EΩr ∩K (2.27)�

then A has also a fixed point in K ∩ {x ∈E: r � ‖x‖ �R}.
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THEOREM 2.3. Let E = (E,‖ · ‖) be a Banach space, K ⊂ E a cone and let ‖ · ‖ be
increasing with respect to K . Also r,R are constants with 0 < r < R. Suppose A :ΩR ∩
K → K (here ΩR = {x ∈ E: ‖x‖ < R}) is a continuous, compact map and assume the
following conditions hold:

x �= λA(x) for λ ∈ [0,1) and x ∈ ∂EΩr ∩K (2.28)

and

‖Ax‖> ‖x‖ for x ∈ ∂EΩR ∩K. (2.29)

Then A has a fixed point in K ∩ {x ∈E: r � ‖x‖ �R}.

PROOF. Notice (2.29) guarantees that (2.27) is true. This is a standard argument and for
completeness we supply it here. Suppose there exists v ∈ K\{0} with x = A(x)+ δv for
some δ > 0 and x ∈ ∂EΩR ∩K . Then since ‖ · ‖ is increasing with respect to K we have
since δv ∈K ,

‖x‖ = ‖Ax + δv‖ � ‖Ax‖> ‖x‖,

a contradiction. The result now follows from Theorem 2.2. �

REMARK 2.3. In Theorem 2.3 if (2.28) and (2.29) are replaced by

x �= λA(x) for λ ∈ [0,1) and x ∈ ∂EΩR ∩K (2.28)�

and

‖Ax‖> ‖x‖ for x ∈ ∂EΩr ∩K. (2.29)�

then A has a fixed point in K ∩ {x ∈E: r � ‖x‖ �R}.

Now E = (C[0,1], | · |0) (here |u|0 = supt∈[0,1] |u(t)|, u ∈ C[0,1]) will be our Banach
space and

K = {
y ∈C[0,1]: y(t)� 0, t ∈ [0,1] and y(t) concave on [0,1]}. (2.30)

Let θ : [0,1] × [0,1] → [0,∞) be defined by

θ(t, s)=
{
t
s

if 0 � t � s,
1−t
1−s if s � t � 1.

The following result is easy to prove and is well known.
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THEOREM 2.4. Let y ∈K (as in (2.30)). Then there exists t0 ∈ [0,1] with y(t0)= |y|0 and

y(t)� θ(t, t0)|y|0 � t (1 − t)|y|0 for t ∈ [0,1].
PROOF. The existence of t0 is immediate. Now if 0 � t � t0 then since y(t) is concave on
[0,1] we have

y(t)= y

((
1 − t

t0

)
0 + t

t0
t0

)
�

(
1 − t

t0

)
y(0)+ t

t0
y(t0).

That is

y(t)� t

t0
y(t0)= θ(t, t0)|y|0 � t (1 − t)|y|0.

A similar argument establishes the result if t0 � t � 1. �

From Theorem 2.1 we have immediately the following existence result for (2.25).

THEOREM 2.5. Suppose the following conditions are satisfied:

q ∈C(0,1), q > 0 on (0,1) and
∫ 1

0
t (1 − t)q(t)dt <∞ (2.31)

g > 0 is continuous and nonincreasing on (0,∞) (2.32)

h� 0 continuous on [0,∞) with
h

g
nondecreasing on (0,∞) (2.33)

and

∃r > 0 with
1

{1 + h(r)
g(r)

}
∫ r

0

du

g(u)
> b0; (2.34)

here

b0 = max

{
2

∫ 1
2

0
t (1 − t)q(t)dt,2

∫ 1

1
2

t (1 − t)q(t)dt

}
. (2.35)

Then (2.25) has a solution y ∈C[0,1] ∩C2(0,1) with y > 0 on (0,1) and |y|0 < r .

PROOF. The result follows from Theorem 2.1 with f (t, u)= g(u)+ h(u). Notice (2.6) is
clearly satisfied with ψH (t)= g(H). �

THEOREM 2.6. Assume (2.31)–(2.34) hold. Choose a ∈ (0, 1
2 ) and fix it and suppose there

exists R > r with

Rg(a(1 − a)R)

g(R)g(a(1 − a)R)+ g(R)h(a(1 − a)R)
�

∫ 1−a

a

G(σ, s)q(s)ds; (2.36)
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here 0 � σ � 1 is such that∫ 1−a

a

G(σ, s)q(s)ds = sup
t∈[0,1]

∫ 1−a

a

G(t, s)q(s)ds (2.37)

and

G(t, s)=
{
(1 − t)s, 0 � s � t ,

(1 − s)t, t � s � 1.

Then (2.25) has a solution y ∈ C[0,1] ∩C2(0,1) with y > 0 on (0,1) and r < |y|0 �R.

PROOF. To show the existence of the solution described in the statement of Theorem 2.6
we will apply Theorem 2.3. First however choose ε > 0 and ε < r with

1

{1 + h(r)
g(r)

}
∫ r

ε

du

g(u)
> b0. (2.38)

Let m0 ∈ {1,2, . . .} be chosen so that 1
m0
< ε and 1

m0
< a(1 − a)R and let N0 = {m0,m0 +

1, . . .}. We first show that{
y ′′(t)+ q(t)

[
g

(
y(t)

) + h
(
y(t)

)] = 0, 0< t < 1,

y(0)= y(1)= 1
m

(2.39)m

has a solution ym for each m ∈ N0 with ym > 1
m

on (0,1) and r � |ym|0 � R. To show
(2.39)m has such a solution for each m ∈N0, we will look at{

y ′′(t)+ q(t)
[
g�

(
y(t)

) + h
(
y(t)

)] = 0, 0< t < 1,

y(0)= y(1)= 1
m

(2.40)m

with

g�(u)=
{
g(u), u� 1

m
,

g
( 1
m

)
, 0 � u� 1

m
.

REMARK 2.4. Notice g�(u)� g(u) for u > 0.

Fix m ∈N0. Let E = (C[0,1], | · |0) and

K = {
u ∈ C[0,1]: u(t)� 0, t ∈ [0,1] and u(t) concave on [0,1]}. (2.41)

Clearly K is a cone of E. Let A :K → C[0,1] be defined by

Ay(t)= 1

m
+

∫ 1

0
G(t, s)q(s)

[
g�

(
y(s)

) + h
(
y(s)

)]
ds. (2.42)
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A standard argument implies A :K → C[0,1] is continuous and completely continuous.
Next we show A :K →K . If u ∈K then clearly Au(t)� 0 for t ∈ [0,1]. Also notice that{

(Au)′′(t)� 0 on (0,1),

Au(0)=Au(1)= 1
m

so Au(t) is concave on [0,1]. Consequently Au ∈K so A :K →K . Let

Ω1 = {
u ∈C[0,1]: |u|0 < r

}
and Ω2 = {

u ∈C[0,1]: |u|0 <R
}
.

We first show

y �= λAy for λ ∈ [0,1] and y ∈K ∩ ∂Ω1. (2.43)

Suppose this is false, i.e., suppose there exists y ∈K ∩ ∂Ω1 and λ ∈ [0,1) with y = λAy .
We can assume λ �= 0. Now since y = λAy we have{

y ′′(t)+ λq(t)
[
g�

(
y(t)

) + h
(
y(t)

)] = 0, 0< t < 1,

y(0)= y(1)= 1
m
.

(2.44)

Since y ′′ � 0 on (0,1) and y � 1
m

on [0,1] there exists t0 ∈ (0,1) with y ′ � 0 on (0, t0),
y ′ � 0 on (t0,1) and y(t0)= |y|0 = r (note y ∈K ∩ ∂Ω1). Also notice

g�
(
y(t)

) + h
(
y(t)

)
� g

(
y(t)

) + h
(
y(t)

)
for t ∈ (0,1)

since g is nonincreasing on (0,∞). For x ∈ (0,1) we have

−y ′′(x)� g
(
y(x)

){
1 + h(y(x))

g(y(x))

}
q(x). (2.45)

Integrate from t (t � t0) to t0 to obtain

y ′(t)� g
(
y(t)

){
1 + h(r)

g(r)

} ∫ t0

t

q(x)dx

and then integrate from 0 to t0 to obtain∫ r

1
m

du

g(u)
�

{
1 + h(r)

g(r)

} ∫ t0

0
xq(x)dx.

Consequently∫ r

ε

du

g(u)
�

{
1 + h(r)

g(r)

} ∫ t0

0
xq(x)dx
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and so ∫ r

ε

du

g(u)
�

{
1 + h(r)

g(r)

}
1

1 − t0

∫ t0

0
x(1 − x)q(x)dx. (2.46)

Similarly if we integrate (2.45) from t0 to t (t � t0) and then from t0 to 1 we obtain∫ r

ε

du

g(u)
�

{
1 + h(r)

g(r)

}
1

t0

∫ 1

t0

x(1 − x)q(x)dx. (2.47)

Now (2.46) and (2.47) imply∫ r

ε

du

g(u)
� b0

{
1 + h(r)

g(r)

}
, (2.48)

where b0 is as defined in (2.35). This contradicts (2.38) and consequently (2.43) is true.
Next we show

|Ay|0 > |y|0 for y ∈K ∩ ∂Ω2. (2.49)

To see this let y ∈K ∩ ∂Ω2 so |y|0 =R. Also since y(t) is concave on [0,1] (since y ∈K)
we have from Theorem 2.4 that y(t) � t (1 − t)|y|0 � t (1 − t)R for t ∈ [0,1]. Also for
s ∈ [a,1 − a] we have

g�
(
y(s)

) + h
(
y(s)

) = g
(
y(s)

) + h
(
y(s)

)
since y(s)� a(1 − a)R > 1

m0
for s ∈ [a,1 − a]. Note in particular that

y(s) ∈ [
a(1 − a)R,R

]
for s ∈ [a,1 − a]. (2.50)

With σ as defined in (2.37) we have using (2.50) and (2.36),

Ay(σ)= 1

m
+

∫ 1

0
G(σ, s)q(s)

[
g�

(
y(s)

) + h
(
y(s)

)]
ds

>

∫ 1−a

a

G(σ, s)q(s)
[
g�

(
y(s)

) + h
(
y(s)

)]
ds

=
∫ 1−a

a

G(σ, s)q(s)g
(
y(s)

){
1 + h(y(s))

g(y(s))

}
ds

� g(R)

{
1 + h(a(1 − a)R)

g(a(1 − a)R)

} ∫ 1−a

a

G(σ, s)q(s)ds

� R = |y|0,

and so |Ay|0 > |y|0. Hence (2.49) is true.
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Now Theorem 2.3 implies A has a fixed point ym ∈K ∩ (Ω2\Ω1), i.e., r � |ym|0 � R.
In fact |ym|0 > r (note if |ym|0 = r then following essentially the same argument from
(2.45)–(2.48) will yield a contradiction). Consequently (2.40)m (and also (2.39)m) has a
solution ym ∈C[0,1] ∩C2(0,1), ym ∈K , with

1

m
� ym(t) for t ∈ [0,1], r < |ym|0 �R (2.51)

and (from Theorem 2.4, note ym ∈K)

ym(t)� t (1 − t)r for t ∈ [0,1]. (2.52)

Next we will show

{ym}m∈N0 is a bounded, equicontinuous family on [0,1]. (2.53)

Returning to (2.45) (with y replaced by ym) we have

−y ′′
m(x)� g

(
ym(x)

){
1 + h(R)

g(R)

}
q(x) for x ∈ (0,1). (2.54)

Now since y ′′
m � 0 on (0,1) and ym � 1

m
on [0,1] there exists tm ∈ (0,1) with y ′

m � 0 on
(0, tm) and y ′

m � 0 on (tm,1). Integrate (2.54) from t (t < tm) to tm to obtain

y ′
m(t)

g(ym(t))
�

{
1 + h(R)

g(R)

} ∫ tm

t

q(x)dx. (2.55)

On the other hand integrate (2.54) from tm to t (t > tm) to obtain

−y ′
m(t)

g(ym(t))
�

{
1 + h(R)

g(R)

} ∫ t

tm

q(x)dx. (2.56)

We now claim that there exists a0 and a1 with a0 > 0, a1 < 1, a0 < a1 with

a0 < inf{tm: m ∈N0} � sup{tm: m ∈N0}< a1. (2.57)

REMARK 2.5. Here tm (as before) is the unique point in (0,1) with y ′
m(tm)= 0.

We now show inf{tm: m ∈ N0}> 0. If this is not true then there is a subsequence S of
N0 with tm → 0 as m→ ∞ in S. Now integrate (2.55) from 0 to tm to obtain

∫ ym(tm)

0

du

g(u)
�

{
1 + h(R)

g(R)

} ∫ tm

0
xq(x)dx+

∫ 1
m

0

du

g(u)
(2.58)

form ∈ S. Since tm → 0 asm→ ∞ in S, we have from (2.58) that ym(tm)→ 0 as m→ ∞
in S. However since the maximum of ym on [0,1] occurs at tm we have ym → 0 in C[0,1]
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as m → ∞ in S. This contradicts (2.52). Consequently inf{tm: m ∈ N0} > 0. A similar
argument shows sup{tm: m ∈ N0}< 1. Let a0 and a1 be chosen as in (2.57). Now (2.55),
(2.56) and (2.57) imply

|y ′
m(t)|

g(ym(t))
�

{
1 + h(R)

g(R)

}
v(t) for t ∈ (0,1), (2.59)

where

v(t)=
∫ max{t,a1}

min{t,a0}
q(x)dx.

It is easy to see that v ∈L1[0,1]. Let I : [0,∞)→ [0,∞) be defined by

I (z)=
∫ z

0

du

g(u)
.

Note I is an increasing map from [0,∞) onto [0,∞) (notice I (∞) = ∞ since g > 0 is
nonincreasing on (0,∞)) with I continuous on [0,A] for any A> 0. Notice{

I (ym)
}
m∈N0

is a bounded, equicontinuous family on [0,1]. (2.60)

The equicontinuity follows from (here t, s ∈ [0,1])
∣∣I(
ym(t)

) − I
(
ym(s)

)∣∣ =
∣∣∣∣ ∫ t

s

y ′
m(x)

g(ym(x))
dx

∣∣∣∣ �
{

1 + h(R)

g(R)

}∣∣∣∣ ∫ t

s

v(x)dx

∣∣∣∣.
This inequality, the uniform continuity of I−1 on [0, I (R)], and∣∣ym(t)− ym(s)

∣∣ = ∣∣I−1(
I

(
ym(t)

)) − I−1(
I

(
ym(s)

))∣∣
now establishes (2.53).

The Arzela–Ascoli theorem guarantees the existence of a subsequence N of N0 and
a function y ∈ C[0,1] with ym converging uniformly on [0,1] to y as m → ∞ through
N . Also y(0)= y(1) = 0, r � |y|0 � R and y(t) � t (1 − t)r for t ∈ [0,1]. In particular
y > 0 on (0,1). Fix t ∈ (0,1) (without loss of generality assume t �= 1

2 ). Now ym, m ∈N ,
satisfies the integral equation

ym(x)= ym

(
1

2

)
+ y ′

m

(
1

2

)(
x − 1

2

)
+

∫ x

1
2

(s − x)q(s)
[
g

(
ym(s)

) + h
(
ym(s)

)]
ds

for x ∈ (0,1). Notice (take x = 2
3 ) that {y ′

m(
1
2 )}, m ∈ N , is a bounded sequence since

rs(1 − s)� ym(s)�R for s ∈ [0,1]. Thus {y ′
m(

1
2 )}m∈N has a convergent subsequence; for
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convenience let {y ′
m(

1
2 )}m∈N denote this subsequence also and let r0 ∈ R be its limit. Now

for the above fixed t ,

ym(t) = ym

(
1

2

)
+ y ′

m

(
1

2

)(
t − 1

2

)
+

∫ t

1
2

(s − t)q(s)
[
g

(
ym(s)

) + h
(
ym(s)

)]
ds,

and let m→ ∞ through N (we note here that g + h is uniformly continuous on compact
subsets of [min( 1

2 , t),max( 1
2 , t)] × (0,R]) to obtain

y(t)= y

(
1

2

)
+ r0

(
t − 1

2

)
+

∫ t

1
2

(s − t)q(s)
[
g

(
y(s)

) + h
(
y(s)

)]
ds.

We can do this argument for each t ∈ (0,1) and so y ′′(t)+ q(t)[g(y(t))+ h(y(t))] = 0 for
0< t < 1. Finally it is easy to see that |y|0 > r (note if |y|0 = r then following essentially
the argument from (2.45)–(2.48) will yield a contradiction). �

REMARK 2.6. If in (2.36)we haveR < r then (2.25) has a solution y ∈C[0,1]∩C2(0,1)
with y > 0 on (0,1) and R � |y|0 < r . The argument is similar to that in Theorem 2.6
except here we use Remark 2.3.

REMARK 2.7. It is also possible to use the ideas in Theorem 2.6 to discuss other boundary
conditions; for example y ′(0)= y(1)= 0.

REMARK 2.8. If we use Krasnoselski’s fixed point theorem in a cone we need more that
(2.31)–(2.34), (2.36) to establish the existence of a solution y ∈ C[0,1] ∩ C2(0,1) with
y > 0 on (0,1) and r < |y|0 �R. This is because (2.43) is less restrictive than |Ay|0 � |y|0
for y ∈K ∩ ∂Ω1.

THEOREM 2.7. Assume (2.31)–(2.34) and (2.36) hold. Then (2.25) has two solutions
y1, y2 ∈C[0,1] ∩C2(0,1) with y1 > 0, y2 > 0 on (0,1) and |y1|0 < r < |y2|0 �R.

PROOF. The existence of y1 follows from Theorem 2.5 and the existence of y2 follows
from Theorem 2.6. �

EXAMPLE 2.1. The singular boundary value problem{
y ′′ + 1

α+1

(
y−α + yβ + 1

) = 0 on (0,1),

y(0)= y(1)= 0, α > 0, β > 1
(2.61)

has two solutions y1, y2 ∈C[0,1] ∩C2(0,1) with y1 > 0, y2 > 0 on (0,1) and |y1|0 < 1<
|y2|0.
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To see this we will apply Theorem 2.7 with q = 1
α+1 , g(u)= u−α and h(u)= uβ + 1.

Clearly (2.31)–(2.33) hold. Also note

b0 = max

{
2

α+ 1

∫ 1
2

0
t (1 − t)dt,

2

α + 1

∫ 1

1
2

t (1 − t)dt

}
= 1

6(α + 1)
.

Consequently (2.34) holds (with r = 1) since

1

{1 + h(r)
g(r)

}
∫ r

0

du

g(u)
= 1

(1 + rα+β + rα)

(
rα+1

α + 1

)

= 1

3(α+ 1)
> b0 = 1

6(α+ 1)
.

Finally note (since β > 1), take a = 1
4 , that

lim
R→∞

Rg( 3R
16 )

g(R)g( 3R
16 )+ g(R)h( 3R

16 )
= lim

R→∞
Rα+1( 3

16 )
−α

( 3
16 )

−α + ( 3
16 )

βRα+β +Rα
= 0

so there exists R > 1 with (2.36) holding. The result now follows from Theorem 2.7.

2.2. Singular problems with sign changing nonlinearities

In this section we discuss the Dirichlet singular boundary value problem{
y ′′ + q(t)f (t, y)= 0, 0< t < 1,
y(0)= y(1)= 0,

(2.62)

where our nonlinearity f may change sign. We first present a variation of the classical
theory of upper and lower solutions in this section so that (2.62) can be discussed in its
natural setting. We assume the following conditions hold:⎧⎨⎩

there exists β ∈ C[0,1] ∩C2(0,1),

β(0)� 0, q(t)f
(
t, β(t)

) + β ′′(t)� 0

for t ∈ (0,1), and β(1)� 0,

(2.63)

⎧⎨⎩ there exists α ∈ C[0,1] ∩C2(0,1), α(t)� β(t)

on [0,1], α(0)� 0, q(t)f
(
t, α(t)

) + α′′(t)� 0

for t ∈ (0,1), and α(1)� 0

(2.64)

and {
q ∈ C(0,1) with q > 0 on (0,1) and∫ 1

0 t (1 − t)q(t)dt <∞.
(2.65)
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Let

f �(t, y)=

⎧⎪⎨⎪⎩
f

(
t, β(t)

) + r
(
β(t)− y

)
, y � β(t),

f (t, y), α(t) < y < β(t),

f
(
t, α(t)

) + r
(
α(t)− y

)
, y � α(t)

and r : R → [−1,1] is the radial retraction defined by

r(x)=
{
x, |x| � 1 ,
x
|x| , |x|> 1.

Finally we assume

f � : [0,1] × R → R is continuous. (2.66)

THEOREM 2.8. Suppose (2.63)–(2.66) hold. Then (2.62) has a solution y (here y ∈
C[0,1] ∩C2(0,1)) with α(t)� y(t)� β(t) for t ∈ [0,1].

PROOF. To show (2.62) has a solution we consider the problem{
y ′′ + q(t)f �(t, y)= 0, 0< t < 1,
y(0)= y(1)= 0.

(2.67)

Theorem 1.4 guarantees that (2.67) has a solution y ∈C[0,1] ∩C2(0,1). The result of our
theorem will follow once we show

α(t)� y(t)� β(t) for t ∈ [0,1]. (2.68)

We now show

y(t)� β(t) for t ∈ [0,1]. (2.69)

Suppose (2.69) is not true. Then y − β has a positive absolute maximum at t1 ∈ (0,1). As
a result (y − β)′(t1)= 0 and (y − β)′′(t1)� 0. However since y(t1) > β(t1) we have

(y − β)′′(t1) = −q(t1)
[
f

(
t1, β(t1)

) + r
(
β(t1)− y(t1)

)] − β ′′(t1)

� −q(t1)r
(
β(t1)− y(t1)

)
> 0,

a contradiction. Thus (2.69) is true. Similarly we can show

α(t)� y(t) for t ∈ [0,1]. (2.70)

Our result follows. �
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In general if we construct an upper solution β and a lower solution α to (2.62), usually
it is difficult to check (2.66). As a result it is of interest to provide an alternative approach
and to provide conditions that are easy to verify in applications.

THEOREM 2.9. Let n0 ∈ {1,2, . . .} be fixed and suppose the following conditions are sat-
isfied:

f : [0,1] × (0,∞)→ R is continuous (2.71)⎧⎪⎪⎨⎪⎪⎩
let n ∈ {n0, n0 + 1, . . .} and associated with each n we
have a constant ρn such that {ρn} is a nonincreasing
sequence with limn→∞ ρn = 0 and such that for

1
2n+1 � t � 1 we have q(t)f (t, ρn)� 0,

(2.72)

q ∈ C(0,1), q > 0 on (0,1) and
∫ 1

0
x(1 − x)q(x)dx <∞, (2.73)⎧⎨⎩

there exists a function α ∈ C[0,1] ∩C2(0,1)
with α(0)= α(1)= 0, α > 0 on (0,1) such

that q(t)f
(
t, α(t)

) + α′′(t)� 0 for t ∈ (0,1)
(2.74)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
there exists a function β ∈C[0,1] ∩C2(0,1)
with β(t)� α(t) and β(t)� ρn0 for t ∈ [0,1]
with q(t)f

(
t, β(t)

) + β ′′(t)� 0 for t ∈ (0,1) and

q(t)f
( 1

2n0+1 , β(t)
) + β ′′(t)� 0 for t ∈ (

0, 1
2n0+1

)
.

(2.75)

Then (2.62) has a solution y ∈ C[0,1] ∩C2(0,1) with y(t)� α(t) for t ∈ [0,1].

PROOF. For n= n0, n0 + 1, . . . let

en =
[

1

2n+1 ,1

]
and θn(t)= max

{
1

2n+1 , t

}
, 0 � t � 1,

and

fn(t, x)= max
{
f

(
θn(t), x

)
, f (t, x)

}
.

Next we define inductively

gn0(t, x)= fn0(t, x)

and

gn(t, x)= min
{
fn0 (t, x), . . . , fn(t, x)

}
, n= n0 + 1, n0 + 2, . . . .
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Notice

f (t, x)� · · · � gn+1(t, x)� gn(t, x)� · · · � gn0(t, x)

for (t, x) ∈ (0,1)× (0,∞) and

gn(t, x)= f (t, x) for (t, x) ∈ en × (0,∞).

Without loss of generality assume ρn0 � min
t∈[ 1

3 ,
2
3 ] α(t). Fix n ∈ {n0, n0 + 1, . . .}. Let

tn ∈ [0, 1
3 ] and sn ∈ [ 2

3 ,1] be such that

α(tn)= α(sn)= ρn and α(t)� ρn for t ∈ [0, tn] ∪ [sn,1].

Define

αn(t)=
{
ρn if t ∈ [0, tn] ∪ [sn,1],
α(t) if t ∈ (tn, sn).

We begin with the boundary value problem{
y ′′ + q(t)g�n0

(t, y)= 0, 0< t < 1,

y(0)= y(1)= ρn0;
(2.76)

here

g�n0
(t, y)=

⎧⎪⎨⎪⎩
gn0

(
t, αn0(t)

) + r
(
αn0(t)− y

)
, y � αn0(t),

gn0(t, y), αn0(t)� y � β(t),

gn0

(
t, β(t)

) + r
(
β(t)− y

)
, y � β(t),

with r : R → [−1,1] the radial retraction defined by

r(u)=
{
u, |u| � 1,
u
|u| , |u|> 1.

From Schauder’s fixed point theorem we know that (2.76) has a solution yn0 ∈ C[0,1] ∩
C2(0,1). We first show

yn0(t)� αn0(t), t ∈ [0,1]. (2.77)

Suppose (2.77) is not true. Then yn0 − αn0 has a negative absolute minimum at τ ∈ (0,1).
Now since yn0(0) − αn0(0) = 0 = yn0(1) − αn0(1) there exists τ0, τ1 ∈ [0,1] with τ ∈
(τ1, τ2) and

yn0(τ0)− αn0(τ0)= yn0(τ1)− αn0(τ1)= 0
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and

yn0(t)− αn0(t) < 0, t ∈ (τ0, τ1).

We now claim

(yn0 − αn0)
′′(t) < 0 for a.e. t ∈ (τ0, τ1). (2.78)

If (2.78) is true then

yn0(t)− αn0(t)= −
∫ τ1

τ0

G(t, s)
[
y ′′
n0
(s)− α′′

n0
(s)

]
ds for t ∈ (τ0, τ1)

with

G(t, s)=
{
(s−τ0)(τ1−t )

τ1−τ0
, τ0 � s � t ,

(t−τ0)(τ1−s)
τ1−τ0

, t � s � τ1

so we have

yn0(t)− αn0(t) > 0 for t ∈ (τ0, τ1),

a contradiction. As a result if we show that (2.78) is true then (2.77) will follow. To see
(2.78) we will show

(yn0 − αn0)
′′(t) < 0 for t ∈ (τ0, τ1) provided t �= tn0 or t �= sn0 .

Fix t ∈ (τ0, τ1) and assume t �= tn0 or t �= sn0 . Then

(yn0 − αn0)
′′(t) = −[

q(t)
{
gn0

(
t, αn0(t)

) + r
(
αn0(t)− yn0(t)

)} + α′′
n0
(t)

]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−[
q(t)

{
gn0

(
t, α(t)

) + r
(
α(t)− yn0(t)

)} + α′′(t)
]

if t ∈ (tn0 , sn0),

−[
q(t)

{
gn0

(
t, ρn0

) + r
(
ρn0 − yn0(t)

)}]
if t ∈ (0, tn0) ∪ (sn0 ,1).

Case (i). t � 1
2n0+1 .

Then since gn0(t, x)= f (t, x) for x ∈ (0,∞) we have

(yn0 − αn0)
′′(t) =

⎧⎪⎪⎨⎪⎪⎩
−[
q(t)

{
f

(
t, α(t)

) + r
(
α(t)− yn0(t)

)} + α′′(t)
]

if t ∈ (tn0 , sn0),

−[
q(t)

{
f (t, ρn0)+ r

(
ρn0 − yn0(t)

)}]
if t ∈ (0, tn0) ∪ (sn0 ,1)

< 0,

from (2.72) and (2.74).
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Case (ii). t ∈ (0, 1
2n0+1 ).

Then since

gn0(t, x)= max

{
f

(
1

2n0+1 , x

)
, f (t, x)

}
we have

gn0(t, x)� f (t, x) and gn0(t, x)� f

(
1

2n0+1
, x

)
for x ∈ (0,∞). Thus we have

(yn0 − αn0)
′′(t) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−[
q(t)

{
f

(
t, α(t)

) + r
(
α(t)− yn0(t)

)} + α′′(t)
]

if t ∈ (tn0, sn0),

−[
q(t)

{
f

( 1
2n0+1 , ρn0

) + r
(
ρn0 − yn0(t)

)}]
if t ∈ (0, tn0)∪ (sn0 ,1)

< 0

from (2.72) and (2.74).
Consequently (2.78) (and so (2.77)) holds and now since α(t)� αn0(t) for t ∈ [0,1] we

have

α(t)� αn0(t)� yn0(t) for t ∈ [0,1]. (2.79)

Next we show

yn0(t)� β(t) for t ∈ [0,1]. (2.80)

If (2.80) is not true then yn0 −β would have a positive absolute maximum at say τ0 ∈ (0,1),
in which case (yn0 − β)′(τ0)= 0 and (yn0 − β)′′(τ0)� 0. There are two cases to consider,
namely τ0 ∈ [ 1

2n0+1 ,1) and τ0 ∈ (0, 1
2n0+1 ).

Case (i). τ0 ∈ [ 1
2n0+1 ,1).

Then yn0(τ0) > β(τ0) together with gn0(τ0, x)= f (τ0, x) for x ∈ (0,∞) gives

(yn0 − β)′′(τ0) = −q(τ0)
[
gn0

(
τ0, β(τ0)

) + r
(
β(τ0)− yn0(τ0)

)] − β ′′(τ0)

= −q(τ0)
[
f

(
τ0, β(τ0)

) + r
(
β(τ0)− yn0(τ0)

)] − β ′′(τ0)

> 0

from (2.75), a contradiction.
Case (ii). τ0 ∈ (0, 1

2n0+1 ).

Then yn0(τ0) > β(τ0) together with

gn0(τ0, x)= max

{
f

(
1

2n0+1
, x

)
, f (τ0, x)

}
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for x ∈ (0,∞) gives

(yn0 − β)′′(τ0) = −q(τ0)

[
max

{
f

(
1

2n0+1 , β(τ0)

)
, f

(
τ0, β(τ0)

)}
+ r

(
β(τ0)− yn0(τ0)

)]
− β ′′(τ0)

> 0

from (2.75), a contradiction.
Thus (2.80) holds, so we have

α(t)� αn0(t)� yn0(t)� β(t) for t ∈ [0,1].
Next we consider the boundary value problem{

y ′′ + q(t)g�n0+1(t, y)= 0, 0< t < 1,

y(0)= y(1)= ρn0+1; (2.81)

here

g�n0+1(t, y)=

⎧⎪⎨⎪⎩
gn0+1

(
t, αn0+1(t)

) + r
(
αn0+1(t)− y

)
, y � αn0+1(t) ,

gn0+1(t, y), αn0+1(t)� y � yn0(t),

gn0+1
(
t, yn0(t)

) + r
(
yn0(t)− y

)
, y � yn0(t).

Now Schauder’s fixed point theorem guarantees that (2.81) has a solution yn0+1 ∈
C[0,1] ∩C2(0,1). We first show

yn0+1(t)� αn0+1(t), t ∈ [0,1]. (2.82)

Suppose (2.82) is not true. Then there exists τ0, τ1 ∈ [0,1] with

yn0+1(τ0)− αn0+1(τ0)= yn0+1(τ1)− αn0+1(τ1)= 0

and

yn0+1(t)− αn0+1(t) < 0, t ∈ (τ0, τ1).

If we show

(yn0+1 − αn0+1)
′′(t) < 0 for a.e. t ∈ (τ0, τ1), (2.83)

then as before (2.82) is true. Fix t ∈ (τ0, τ1) and assume t �= tn0+1 or t �= sn0+1. Then

(yn0+1 − αn0+1)
′′(t)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−[
q(t)

{
gn0+1

(
t, α(t)

) + r
(
α(t)− yn0+1(t)

)} + α′′(t)
]

if t ∈ (tn0+1, sn0+1),

−[
q(t)

{
gn0+1(t, ρn0+1)+ r

(
ρn0+1 − yn0+1(t)

)}]
if t ∈ (0, tn0+1) ∪ (sn0+1,1).
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Case (i). t � 1
2n0+2 .

Then since gn0+1(t, x)= f (t, x) for x ∈ (0,∞) we have

(yn0+1 − αn0+1)
′′(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−[
q(t)

{
f

(
t, α(t)

) + r
(
α(t)− yn0+1(t)

)} + α′′(t)
]

if t ∈ (tn0+1, sn0+1),

−[
q(t)

{
f (t, ρn0+1)+ r

(
ρn0+1 − yn0+1(t)

)}]
if t ∈ (0, tn0+1)∪ (sn0+1,1)

< 0,

from (2.72) and (2.74).
Case (ii). t ∈ (0, 1

2n0+2 ).

Then since gn0+1(t, x) equals

min

{
max

{
f

(
1

2n0+1
, x

)
, f (t, x)

}
,max

{
f

(
1

2n0+2
, x

)
, f (t, x)

}}
we have

gn0+1(t, x)� f (t, x)

and

gn0+1(t, x)� min

{
f

(
1

2n0+1
, x

)
, f

(
1

2n0+2
, x

)}
for x ∈ (0,∞). Thus we have

(yn0+1 − αn0+1)
′′(t)

�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−[
q(t)

{
f

(
t, α(t)

) + r
(
α(t)− yn0+1(t)

)} + α′′(t)
]

if t ∈ (tn0+1, sn0+1),

−[
q(t)

{
min

{
f

( 1
2n0+1 , ρn0+1

)
, f

( 1
2n0+2 , ρn0+1

)}
+ r

(
ρn0+1 − yn0+1(t)

)}]
,

if t ∈ (0, tn0+1)∪ (sn0+1,1)

< 0,

from (2.72) and (2.74) (note f ( 1
2n0+1 , ρn0+1)� 0 since f (t, ρn0+1)� 0 for t ∈ [ 1

2n0+2 ,1]
and 1

2n0+1 ∈ ( 1
2n0+2 ,1)).

Consequently (2.82) is true so

α(t)� αn0+1(t)� yn0+1(t) for t ∈ [0,1]. (2.84)

Next we show

yn0+1(t)� yn0(t) for t ∈ [0,1]. (2.85)
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If (2.85) is not true then yn0+1 − yn0 would have a positive absolute maximum at say
τ0 ∈ (0,1), in which case

(yn0+1 − yn0)
′(τ0)= 0 and (yn0+1 − yn0)

′′(τ0)� 0.

Then yn0+1(τ0) > yn0(τ0) together with gn0(τ0, x)� gn0+1(τ0, x) for x ∈ (0,∞) gives

(yn0+1 − yn0)
′′(τ0)

= −q(τ0)
[
gn0+1

(
τ0, yn0(τ0)

) + r
(
yn0(τ0)− yn0+1(τ0)

)] − y ′′
n0
(τ0)

� −q(τ0)
[
gn0

(
τ0, yn0(τ0)

) + r
(
yn0(τ0)− yn0+1(τ0)

)] − y ′′
n0
(τ0)

= −q(τ0)
[
r
(
yn0(τ0)− yn0+1(τ0)

)]
> 0,

a contradiction.
Now proceed inductively to construct yn0+2, yn0+3, . . . as follows. Suppose we have yk

for some k ∈ {n0 +1, n0 +2, . . .} with αk(t)� yk(t)� yk−1(t) for t ∈ [0,1]. Then consider
the boundary value problem{

y ′′ + q(t)g�k+1(t, y)= 0, 0< t < 1,

y(0)= y(1)= ρk+1; (2.86)

here

g�k+1(t, y)=

⎧⎪⎨⎪⎩
gk+1

(
t, αk+1(t)

) + r
(
αk+1(t)− y

)
, y � αk+1(t),

gk+1(t, y), αk+1(t)� y � yk(t),

gk+1
(
t, yk(t)

) + r
(
yk(t)− y

)
, y � yk(t).

Now Schauder’s fixed point theorem guarantees that (2.86) has a solution yk+1 ∈C[0,1]∩
C2(0,1), and essentially the same reasoning as above yields

α(t)� αk+1(t)� yk+1(t)� yk(t) for t ∈ [0,1]. (2.87)

Thus for each n ∈ {n0 + 1, . . .} we have

α(t)� yn(t)� yn−1(t)� · · · � yn0(t)� β(t) for t ∈ [0,1]. (2.88)

Lets look at the interval [ 1
2n0+1 ,1 − 1

2n0+1 ]. Let

Rn0 = sup

{∣∣q(x)f (x, y)∣∣: x ∈
[

1

2n0+1
,1 − 1

2n0+1

]
and α(x)� y � yn0(x)

}
.
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The mean value theorem implies that there exists τ ∈ ( 1
2n0+1 ,1 − 1

2n0+1 ) with |y ′
n(τ )| �

2 sup[0,1] yn0(t). As a result{ {yn}∞n=n0+1 is a bounded, equicontinuous

family on
[ 1

2n0+1 ,1 − 1
2n0+1

]
.

(2.89)

The Arzela–Ascoli theorem guarantees the existence of a subsequence Nn0 of integers and
a function zn0 ∈ C[ 1

2n0+1 ,1 − 1
2n0+1 ] with yn converging uniformly to zn0 on [ 1

2n0+1 ,1 −
1

2n0+1 ] as n→ ∞ through Nn0 . Similarly

{ {yn}∞n=n0+1 is a bounded, equicontinuous

family on
[ 1

2n0+2 ,1 − 1
2n0+2

]
,

so there is a subsequence Nn0+1 of Nn0 and a function

zn0+1 ∈ C
[

1

2n0+2
,1 − 1

2n0+2

]

with yn converging uniformly to zn0+1 on [ 1
2n0+2 ,1 − 1

2n0+2 ] as n → ∞ through Nn0+1.

Note zn0+1 = zn0 on [ 1
2n0+1 ,1 − 1

2n0+1 ] since Nn0+1 ⊆Nn0 . Proceed inductively to obtain
subsequences of integers

Nn0 ⊇Nn0+1 ⊇ · · · ⊇Nk ⊇ · · ·

and functions

zk ∈C
[

1

2k+1 ,1 − 1

2k+1

]
with

yn converging uniformly to zk on

[
1

2k+1 ,1 − 1

2k+1

]
as n→ ∞ through Nk , and

zk = zk−1 on

[
1

2k
,1 − 1

2k

]
.

Define a function y : [0,1] → [0,∞) by y(x) = zk(x) on [ 1
2k+1 ,1 − 1

2k+1 ] and y(0) =
y(1) = 0. Notice y is well defined and α(t) � y(t) � yn0(t)(� β(t)) for t ∈ (0,1). Next
fix t ∈ (0,1) (without loss of generality assume t �= 1

2 ) and let m ∈ {n0, n0 + 1, . . .} be
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such that 1
2m+1 < t < 1 − 1

2m+1 . Let N�
m = {n ∈Nm: n�m}. Now yn,n ∈N�

m, satisfies the
integral equation

yn(x)= yn

(
1

2

)
+ y ′

n

(
1

2

)(
x − 1

2

)
+

∫ x

1
2

(s − x)q(s)g�n
(
s, yn(s)

)
ds

= yn

(
1

2

)
+ y ′

n

(
1

2

)(
x − 1

2

)
+

∫ x

1
2

(s − x)q(s)f
(
s, yn(s)

)
ds

for x ∈ [ 1
2m+1 ,1 − 1

2m+1 ]. Notice (take x = 2
3 say) that {y ′

n(
1
2 )}, n ∈ N�

m, is a bounded

sequence since α(s)� yn(s)� yn0(s)(� β(s)) for s ∈ [0,1]. Thus {y ′
n(

1
2 )}n∈N�

m
has a con-

vergent subsequence; for convenience we will let {y ′
n(

1
2 )}n∈N�

m
denote this subsequence

also and let r ∈ R be its limit. Now for the above fixed t ,

yn(t)= yn

(
1

2

)
+ y ′

n

(
1

2

)(
t − 1

2

)
+

∫ t

1
2

(s − t)q(s)f
(
s, yn(s)

)
ds

and let n→ ∞ through N�
m to obtain

zm(t)= zm

(
1

2

)
+ r

(
t − 1

2

)
+

∫ t

1
2

(s − t)q(s)f
(
s, zm(s)

)
ds,

i.e.,

y(t)= y

(
1

2

)
+ r

(
t − 1

2

)
+

∫ t

1
2

(s − t)q(s)f
(
s, y(s)

)
ds.

We can do this argument for each t ∈ (0,1) and so y ′′(t)+q(t)f (t, y(t))= 0 for t ∈ (0,1).
It remains to show y is continuous at 0 and 1.

Let ε > 0 be given. Now since limn→∞ yn(0)= 0 there exists n1 ∈ {n0, n0 +1, . . .} with
yn1(0) <

ε
2 . Since yn1 ∈C[0,1] there exists δn1 > 0 with

yn1(t) <
ε

2
for t ∈ [0, δn1].

Now for n� n1 we have, since {yn(t)} is nonincreasing for each t ∈ [0,1],

α(t)� yn(t)� yn1(t) <
ε

2
for t ∈ [0, δn1].

Consequently

α(t)� y(t)� ε

2
< ε for t ∈ (0, δn1]

and so y is continuous at 0. Similarly y is continuous at 1. As a result y ∈ C[0,1]. �
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Suppose (2.71)–(2.74) hold and in addition assume the following conditions are satis-
fied:

q(t)f (t, y)+ α′′(t) > 0 for (t, y) ∈ (0,1)× {
y ∈ (0,∞): y < α(t)

}
(2.90)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
there exists a function β ∈C[0,1] ∩C2(0,1)
with β(t)� ρn0 for t ∈ [0,1] and with

q(t)f
(
t, β(t)

) + β ′′(t)� 0 for t ∈ (0,1) and

q(t)f
( 1

2n0+1 , β(t)
) + β ′′(t)� 0 for t ∈ (

0, 1
2n0+1

)
.

(2.91)

Then the result in Theorem 2.9 is again true. This follows immediately from Theorem
2.9 once we show (2.75) holds, i.e., once we show β(t) � α(t) for t ∈ [0,1]. Suppose
it is false. Then α − β would have a positive absolute maximum at say τ0 ∈ (0,1), so
(α − β)′(τ0)= 0 and (α − β)′′(τ0)� 0. Now α(τ0) > β(τ0) and (2.90) implies

q(τ0)f
(
τ0, β(τ0)

) + α′′(τ0) > 0.

This together with (2.91) yields

(α − β)′′(τ0)= α′′(τ0)− β ′′(τ0)� α′′(τ0)+ q(τ0)f
(
τ0, β(τ0)

)
> 0,

a contradiction. Thus we have

COROLLARY 2.10. Let n0 ∈ {1,2, . . .} be fixed and suppose (2.71)–(2.74), (2.90) and
(2.91) hold. Then (2.62) has a solution y ∈ C[0,1] ∩ C2(0,1) with y(t) � α(t) for t ∈
[0,1].

REMARK 2.9. If in (2.72) we replace 1
2n+1 � t � 1 with 0 � t � 1 − 1

2n+1 then one would
replace (2.75) with⎧⎪⎪⎪⎨⎪⎪⎪⎩

there exists a function β ∈C[0,1] ∩C2(0,1)
with β(t)� α(t) and β(t)� ρn0 for t ∈ [0,1]
with q(t)f

(
t, β(t)

) + β ′′(t)� 0 for t ∈ (0,1) and

q(t)f
(
1 − 1

2n0+1 , β(t)
) + β ′′(t)� 0 for t ∈ (

1 − 1
2n0+1 ,1

)
.

(2.92)

If in (2.72) we replace 1
2n+1 � t � 1 with 1

2n+1 � t � 1 − 1
2n+1 then essentially the same

reasoning as in Theorem 2.9 establishes the following results.

THEOREM 2.11. Let n0 ∈ {1,2, . . .} be fixed and suppose (2.71), (2.73), (2.74) and the
following hold:
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let n ∈ {n0, n0 + 1, . . .} and associated with each n we
have a constant ρn such that {ρn} is a nonincreasing
sequence with limn→∞ ρn = 0 and such that for

1
2n+1 � t � 1 − 1

2n+1 we have q(t)f (t, ρn)� 0

(2.93)

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

there exists a function β ∈C[0,1] ∩C2(0,1)

with β(t)� α(t) and β(t)� ρn0 for t ∈ [0,1]
with q(t)f

(
t, β(t)

) + β ′′(t)� 0 for t ∈ (0,1) and

q(t)f
( 1

2n0+1 , β(t)
) + β ′′(t)� 0 for t ∈ (

0, 1
2n0+1

)
and

q(t)f
(
1 − 1

2n0+1 , β(t)
) + β ′′(t)� 0 for t ∈ (

1 − 1
2n0+1 ,1

)
.

(2.94)

Then (2.62) has a solution y ∈ C[0,1] ∩C2(0,1) with y(t)� α(t) for t ∈ [0,1].

PROOF. In this case let

en =
[

1

2n+1
,1 − 1

2n+1

]
and θn(t)= max

{
1

2n+1
,min

{
t,1 − 1

2n+1

}}
.

�

COROLLARY 2.12. Let n0 ∈ {1,2, . . .} be fixed and suppose (2.71), (2.73), (2.74), (2.90),
(2.93) and the following hold:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

there exists a function β ∈C[0,1] ∩C2(0,1)
with β(t)� ρn0 for t ∈ [0,1] and with

q(t)f
(
t, β(t)

) + β ′′(t)� 0 for t ∈ (0,1) and

q(t)f
( 1

2n0+1 , β(t)
) + β ′′(t)� 0 for t ∈ (

0, 1
2n0+1

)
and

q(t)f
(
1 − 1

2n0+1 , β(t)
) + β ′′(t)� 0 for t ∈ (

1 − 1
2n0+1 ,1

)
.

(2.95)

Then (2.62) has a solution y ∈ C[0,1] ∩C2(0,1) with y(t)� α(t) for t ∈ [0,1].

Next we discuss how to construct the lower solution α in (2.74) and (2.90). Suppose the
following condition is satisfied:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

let n ∈ {n0, n0 + 1, . . .} and associated with each n we
have a constant ρn such that {ρn} is a decreasing
sequence with limn→∞ ρn = 0 and there exists a
constant k0 > 0 such that for 1

2n+1 � t � 1
and 0< y � ρn we have q(t)f (t, y)� k0.

(2.96)

We will show if (2.96) holds then (2.74) (and of course (2.72)) and (2.90) are sat-
isfied (we also note that 1

2n+1 � t � 1 in (2.96) could be replaced by 0 � t � 1 − 1
2n+1
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(respectively 1
2n+1 � t � 1 − 1

2n+1 ) and (2.74), (2.90) hold with 1
2n+1 � t � 1 replaced by

0 � t � 1 − 1
2n+1 (respectively 1

2n+1 � t � 1 − 1
2n+1 )).

To show (2.74) and (2.90) recall the following well-known lemma.

LEMMA 2.13. Let en be as described in Theorem 2.11 (or Theorem 2.9) and let 0< εn < 1
with εn ↓ 0. Then there exists λ ∈ C2[0,1] with sup[0,1] |λ′′(t)| > 0 and λ(0) = λ(1) = 0
with

0< λ(t)� εn for t ∈ en\en−1, n� 1.

PROOF. Let r : [0,1] → [0,∞) be such that r(0) = r(1) = 0 and r(t) = εn for all t ∈
en\en−1, n� 1. Moreover, let

u(t)=
∫ t

0
r(s)ds, v(t)=

∫ t

0
u(s)ds and w(t)=

∫ t

0
v(s)ds.

It is obvious that u, v, and w : [0, 1
2 ] → [0,∞) are continuous and strictly increasing, with

w( 1
4 ) < ε1.

Choose a natural number k � 2 with

(4k + 1)v( 1
4 )+ 4v′( 1

4 )

16k(k+ 1)
� ε1 −w

(
1

4

)
.

Let

c0 = 42k[(2k− 1)v( 1
4 )+ 4v′( 1

4 )]
k + 1

,

c1 = −42(k−1)[(2k− 1)v( 1
4 )+ 4v′( 1

4 )]
k

,

c2 =w

(
1

4

)
+ (4k + 1)v( 1

4 )+ 4v′( 1
4 )

16k(k+ 1)
,

and

p(t)= c0

(
t − 1

2

)2(k+1)

+ c1

(
t − 1

2

)2k

+ c2.

Define λ : [0,1] → [0,∞) as follows:

λ(t)=

⎧⎪⎨⎪⎩
w(t), 0 � t � 1

4 ,

p(t), 1
4 � t � 3

4 ,

w(1 − t), 3
4 � t � 1.

Then λ satisfies the conditions of the lemma. �
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Let εn = ρn (and n� n0) and let λ be as in Lemma 2.13. From (2.96) there exists k0 > 0
with

q(t)f (t, y)� k0 for (t, y) ∈ (0,1)× {
y ∈ (0,∞): y � λ(t)

}
(2.97)

since if t ∈ en\en−1 (n� n0) then y � λ(t) implies y � ρn. Let

M = sup
[0,1]

∣∣λ′′(t)
∣∣, m= min

{
1,

k0

M + 1

}
and α(t)=mλ(t), t ∈ [0,1].

In particular since α(t)� λ(t) we have from (2.97) that

q(t)f
(
t, α(t)

) + α′′(t)� k0 + α′′(t)� k0 − k0|λ′′(t)|
M + 1

> 0

for t ∈ (0,1), and also

q(t)f (t, y)+ α′′(t)� k0 + α′′(t) > 0

for (t, y) ∈ (0,1)× {y ∈ (0,∞): y � α(t)}. Thus (2.74) and (2.90) hold.

THEOREM 2.14. Let n0 ∈ {1,2, . . .} be fixed and suppose (2.71), (2.73), (2.91) and (2.96)
hold. Then (2.62) has a solution y ∈C[0,1] ∩C2(0,1) with y(t) > 0 for t ∈ (0,1).

If in (2.96) we replace 1
2n+1 � t � 1 with 1

2n+1 � t � 1 − 1
2n+1 then (2.74) and (2.90)

also hold. We combine this with Corollary 2.12 to obtain our next result.

THEOREM 2.15. Let n0 ∈ {1,2, . . .} be fixed and suppose (2.71), (2.73), (2.95) and (2.96)
(with 1

2n+1 � t � 1 replaced by 1
2n+1 � t � 1 − 1

2n+1 ) hold. Then (2.62) has a solution

y ∈ C[0,1] ∩C2(0,1) with y(t) > 0 for t ∈ (0,1).

Looking at Theorem 2.14 we see that the main difficulty when discussing examples is
the construction of the β in (2.91). Our next result replaces (2.91) with a superlinear type
condition. We first prove the result in its full generality.

THEOREM 2.16. Let n0 ∈ {1,2, . . .} be fixed and suppose (2.71)–(2.74) hold. Also assume
the following two conditions are satisfied:

⎧⎪⎪⎨⎪⎪⎩
∣∣f (t, y)∣∣ � g(y)+ h(y) on [0,1] × (0,∞) with
g > 0 continuous and nonincreasing on (0,∞),

h� 0 continuous on [0,∞), and h
g

nondecreasing on (0,∞)

(2.98)
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and {
for any R > 0, 1

g
is differentiable on (0,R] with

g′ < 0 a.e. on (0,R] and g′
g2 ∈L1[0,R]. (2.99)

In addition suppose there exists M > supt∈[0,1]α(t) with

1

{1 + h(M)
g(M)

}
∫ M

0

du

g(u)
> b0 (2.100)

holding; here

b0 = max

{
2

∫ 1
2

0
t (1 − t)q(t)dt,2

∫ 1

1
2

t (1 − t)q(t)dt

}
.

Then (2.62) has a solution y ∈ C[0,1] ∩C2(0,1) with y(t)� α(t) for t ∈ [0,1].

PROOF. Fix n ∈ {n0, n0 + 1, . . .}. Choose ε, 0< ε <M with

1

{1 + h(M)
g(M)

}
∫ M

ε

du

g(u)
> b0. (2.101)

Let m0 ∈ {1,2, . . .} be chosen so that ρm0 < ε and without loss of generality assume m0 �
n0. Let en, θn, fn, gn and αn be as in Theorem 2.9. We consider the boundary value problem
(2.76) with in this case g�n0

given by

g�n0
(t, y)=

⎧⎨⎩
gn0

(
t, αn0(t)

) + r
(
αn0(t)− y

)
, y � αn0(t) ,

gn0(t, y), αn0(t)� y �M ,

gn0(t,M)+ r(M − y), y �M .

Essentially the same reasoning as in Theorem 2.9 implies that (2.76) has a solution yn0 ∈
C[0,1] ∩C2(0,1) with yn0(t)� αn0(t)� α(t) for t ∈ [0,1]. Next we show

yn0(t)�M for t ∈ [0,1]. (2.102)

Suppose (2.102) is false. Now since yn0(0)= yn0(1)= ρn0 there exists either
(i) t1, t2 ∈ (0,1), t2 < t1 with αn0(t) � yn0(t) � M for t ∈ [0, t2), yn0(t2) = M and

yn0(t) >M on (t2, t1) with y ′
n0
(t1)= 0; or

(ii) t3, t4 ∈ (0,1), t4 < t3 with αn0(t) � yn0(t) � M for t ∈ (t3,1], yn0(t3) = M and
yn0(t) >M on (t4, t3) with y ′

n0
(t4)= 0.

We can assume without loss of generality that either t1 � 1
2 or t4 � 1

2 . Suppose t1 � 1
2 .

Notice for t ∈ (t2, t1) that we have

−y ′′
n0
(t)= q(t)g�n0

(
t, yn0(t)

)
� q(t)

[
g(M)+ h(M)

]; (2.103)
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note for t ∈ (t2, t1) that we have from (2.98),

g�n0

(
t, yn0(t)

) = gn0(t,M)+ r
(
M − yn0(t)

)
� max

{
f

(
1

2n0+1
,M

)
, f (t,M)

}
.

Integrate (2.103) from t2 to t1 to obtain

y ′
n0
(t2)�

[
g(M)+ h(M)

] ∫ t1

t2

q(s)ds

and this together with yn0(t2)=M yields

y ′
n0
(t2)

g(yn0(t2))
�

{
1 + h(M)

g(M)

} ∫ t1

t2

q(s)ds. (2.104)

Also for t ∈ (0, t2) we have

−y ′′
n0
(t) = q(t)max

{
f

(
1

2n0+1 , yn0(t)

)
, f

(
t, yn0(t)

)}
� q(t)

[
g

(
yn0(t)

) + h
(
yn0(t)

)]
,

and so

−y ′′
n0
(t)

g(yn0(t))
� q(t)

{
1 + h(yn0(t))

g(yn0(t))

}
� q(t)

{
1 + h(M)

g(M)

}
for t ∈ (0, t2). Integrate from t (t ∈ (0, t2)) to t2 to obtain

−y ′
n0
(t2)

g(yn0(t2))
+ y ′

n0
(t)

g(yn0(t))
+

∫ t2

t

{−g′(yn0(x))

g2(yn0(x))

}[
y ′
n0
(x)

]2 dx

�
{

1 + h(M)

g(M)

} ∫ t2

t

q(x)dx,

and this together with (2.104) (and (2.99)) yields

y ′
n0
(t)

g(yn0(t))
�

{
1 + h(M)

g(M)

} ∫ t1

t

q(x)dx for t ∈ (0, t2).

Integrate from 0 to t2 to obtain

∫ M

ε

du

g(u)
�

∫ M

ρn0

du

g(u)
�

{
1 + h(M)

g(M)

}
1

1 − t1

∫ t1

0
x(1 − x)q(x)dx.
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That is ∫ M

ε

du

g(u)
�

{
1 + h(M)

g(M)

}
2

∫ 1
2

0
x(1 − x)q(x)dx � b0

{
1 + h(M)

g(M)

}
.

This contradicts (2.101) so (2.102) holds (a similar argument yields a contradiction if
t4 � 1

2 ). Thus we have

α(t)� αn0(t)� yn0(t)�M for t ∈ [0,1].

Essentially the same reasoning as in Theorem 2.9 (from (2.82) onwards) completes the
proof. �

Similarly we have the following result.

THEOREM 2.17. Let n0 ∈ {1,2, . . .} be fixed and suppose (2.71), (2.73), (2.74), (2.93),
(2.98) and (2.99) hold. In addition assume there exists

M > sup
t∈[0,1]

α(t)

with (2.100) holding. Then (2.62) has a solution y ∈ C[0,1] ∩ C2(0,1) with y(t)� α(t)

for t ∈ [0,1].

COROLLARY 2.18. Let n0 ∈ {1,2, . . .} be fixed and suppose (2.71)–(2.74), (2.90), (2.98)
and (2.99) hold. In addition assume there is a constant M > 0 with

1

{1 + h(M)
g(M)

}
∫ M

0

du

g(u)
> b0 (2.105)

holding; here

b0 = max

{
2

∫ 1
2

0
t (1 − t)q(t)dt,2

∫ 1

1
2

t (1 − t)q(t)dt

}
.

Then (2.62) has a solution y ∈ C[0,1] ∩C2(0,1) with y(t)� α(t) for t ∈ [0,1].

PROOF. The result follows immediately from Theorem 2.16 once we show α(t)�M for
t ∈ [0,1]. Suppose this is false. Now since α(0)= α(1)= 0 there exists either

(i) t1, t2 ∈ (0,1), t2 < t1 with 0 � α(t) �M for t ∈ [0, t2), α(t2) =M and α(t) > M

on (t2, t1) with α′(t1)= 0; or
(ii) t3, t4 ∈ (0,1), t4 < t3 with 0 � α(t) �M for t ∈ (t3,1], α(t3) =M and α(t) > M

on (t4, t3) with α′(t4)= 0.
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We can assume without loss of generality that either t1 � 1
2 or t4 � 1

2 . Suppose t1 � 1
2 .

Notice for t ∈ (t2, t1) that we have from (2.90) and (2.98) that

−α′′(t)� q(t)
[
g(M)+ h(M)

]
so integration from t2 to t1 yields

α′(t2)
g(α(t2))

�
{

1 + h(M)

g(M)

}∫ t1

t2

q(s)ds. (2.106)

Also for t ∈ (0, t2) we have from (2.90) and (2.98) that

−α′′(t)� q(t)g
(
α(t)

){
1 + h(α(t))

g(α(t))

}
� q(t)g

(
α(t)

){
1 + h(M)

g(M)

}
.

Integrate from t (t ∈ (0, t2)) to t2 and use (2.106) to obtain

α′(t)
g(α(t))

�
{

1 + h(M)

g(M)

} ∫ t1

t

q(s)ds for t ∈ (0, t2).

Finally integrate from 0 to t2 to obtain∫ M

0

du

g(u)
� b0

{
1 + h(M)

g(M)

}
,

a contradiction. �

COROLLARY 2.19. Let n0 ∈ {1,2, . . .} be fixed and suppose (2.71), (2.73), (2.74), (2.90),
(2.93), (2.98) and (2.99) hold. In addition assume there is a constant M > 0 with (2.105)
holding. Then (2.62) has a solution y ∈ C[0,1] ∩C2(0,1) with y(t)� α(t) for t ∈ [0,1].

Combining Corollary 2.18 with the comments before Theorem 2.14 yields the following
theorem.

THEOREM 2.20. Let n0 ∈ {1,2, . . .} be fixed and suppose (2.71), (2.73), (2.96), (2.98)
and (2.99) hold. In addition assume there exists M > 0 with (2.105) holding. Then (2.62)
has a solution y ∈C[0,1] ∩C2(0,1) with y(t) > 0 for t ∈ (0,1).

Similarly combining Corollary 2.19 with the comments before Theorem 2.14 yields the
following theorem.

THEOREM 2.21. Let n0 ∈ {1,2, . . .} be fixed and suppose (2.71), (2.73), (2.96) (with
1

2n+1 � t � 1 replaced by 1
2n+1 � t � 1 − 1

2n+1 ), (2.98) and (2.99) hold. In addition assume

there exists M > 0 with (2.105) holding. Then (2.62) has a solution y ∈C[0,1] ∩C2(0,1)
with y(t) > 0 for t ∈ (0,1).
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Next we present some examples which illustrate how easily the theory is applied in
practice.

EXAMPLE 2.2. Consider the boundary value problem{
y ′′ + (

Atγ y−θ −μ2
) = 0, 0< t < 1,

y(0)= y(1)= 0
(2.107)

with A> 0, θ > 0, γ >−2 and μ ∈ R. Then (2.107) has a solution y ∈ C[0,1] ∩C2(0,1)
with y(t) > 0 for t ∈ (0,1).

To see this we will apply Theorem 2.20. We will consider two cases, namely γ � 0 and
−2< γ < 0.

Case (i). γ � 0.
We will apply Theorem 2.20 with

q(t)= 1, g(y)=Ay−θ and h(y)= μ2.

Clearly (2.71), (2.73), (2.98) and (2.99) hold. Let

n0 = 1, ρn =
(

A

2(n+1)γ (μ2 + 1)

)1/θ

and k0 = 1.

Notice for n ∈ {1,2, . . .}, 1
2n+1 � t � 1 and 0< y � ρn that we have

q(t)f (t, y)� A

2(n+1)γ ρθn
−μ2 = (

μ2 + 1
) −μ2 = 1,

so (2.96) is satisfied. Finally notice for c > 0 that

1

{1 + h(c)
g(c)

}
∫ c

0

du

g(u)
= 1

θ + 1

cθ+1

A+μ2cθ
,

so

lim
c→∞

1

{1 + h(c)
g(c)

}
∫ c

0

du

g(u)
= ∞.

Thus there exists M > 0 with (2.105) holding. Existence of a solution is now guaranteed
from Theorem 2.20.

Case (ii). −2< γ < 0.
We will apply Theorem 2.20 with

q(t)= tγ , g(y)=Ay−θ and h(y)= μ2.
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Clearly (2.71), (2.73), (2.98) and (2.99) hold. Also as in Case (i) there exists M > 0 with
(2.105) holding. Let

n0 = 1, ρn =
(

A

n(μ2 + 1)

)1/θ

and k0 = 1.

Notice for n ∈ {1,2, . . .}, 1
2n+1 � t � 1 and 0< y � ρn that we have since γ < 0,

q(t)f (t, y)� Atγ

ρθn
−μ2 � A

ρθn
−μ2 = n

(
μ2 + 1

) −μ2 �
(
μ2 + 1

) −μ2 = 1.

Thus (2.96) is satisfied. Existence of a solution is now guaranteed from Theorem 2.20.

EXAMPLE 2.3. Consider the boundary value problem{
y ′′ + (

t

y2 + 1
32y

2 −μ2
) = 0, 0< t < 1,

y(0)= y(1)= 0,
(2.108)

where μ2 � 1. Then (2.108) has a solution y ∈ C[0,1] ∩ C2(0,1) with y(t) > 0 for t ∈
(0,1).

To see that (2.108) has the desired solution we will apply Theorem 2.14 with

q ≡ 1, ρn =
(

1

2n+1(μ2 + a)

) 1
2

and k0 = a;

here a > 0 is chosen so that a � 1
8 . Also we choose n0 ∈ {1,2, . . .} with ρn0 � 1. Clearly

(2.71) and (2.73) hold. Notice for n ∈ {1,2, . . .}, 1
2n+1 � t � 1 and 0 < y � ρn that we

have

q(t)f (t, y)� t

y2
−μ2 � 1

2n+1ρ2
n

−μ2 = (
μ2 + a

) −μ2 = a,

so (2.96) is satisfied. It remains to check (2.91) with

β(t)= √
t + ρn0 .

Now β ′′(t)= − 1
4 t

− 3
2 and so for t ∈ (0,1) we have

β ′′(t)+ q(t)f
(
t, β(t)

)
� −1

4

1

t
3
2

+
(
t

t
+ (

√
t + ρn0)

2

32
−μ2

)
� −1

4
+

(
1 + 1

8
−μ2

)
� 0.
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Also for t ∈ (0, 1
2n0+1 ) we have

β ′′(t)+ q(t)f
(
t, β(t)

)
� −1

4

1

t
3
2

+
(

1

2n0+1ρ2
n0

+ (
√
t + ρn0)

2

32
−μ2

)

� −1

4
+

((
μ2 + a

) + 1

8
−μ2

)
= a − 1

8
� 0.

As a result (2.91) holds so existence is now guaranteed from Theorem 2.14.

In the literature nonresonant results [19] have been presented for nonsingular Dirichlet
problems, i.e., for (1.2) when qf is a Carathéodory function. Next, by combining some of
the ideas in [19] with those above, we present a nonresonant theory for the singular problem
(2.62). It is worth remarking here that we could consider Sturm Liouville boundary data
in (2.62); however since the arguments are essentially the same (in fact easier) we will
restrict our discussion to Dirichlet boundary data.

The results here rely on the following well-known Rayleigh–Ritz inequality.

THEOREM 2.22. Suppose q ∈ C(0,1) ∩ L1[0,1] with q > 0 on (0,1). Let λ1 be the first
eigenvalue of{

y ′′ + λqy = 0, 0< t < 1,

y(0)= 0 = y(1).
(2.109)

Then

λ1

∫ 1

0
q(t)

∣∣v(t)∣∣2 dt �
∫ 1

0

∣∣v′(t)
∣∣2 dt

for all functions v ∈AC[0,1] with v′ ∈ L2[0,1] and v(0)= v(1)= 0.

For notational purposes in our next theorem, for appropriate functions u we let

‖u‖2 =
( ∫ 1

0

∣∣u(t)∣∣2
dt

) 1
2

, |u|∞ = sup
[0,1]

∣∣u(t)∣∣ and ‖u‖1 =
∫ 1

0

∣∣u(t)∣∣ dt .

We begin with our main result (in fact a more general result will be presented at the end of
this section; see Theorem 2.26)).

THEOREM 2.23. Let n0 ∈ {1,2, . . .} be fixed and suppose (2.72) and (2.74) hold. In ad-
dition assume the following conditions are satisfied:
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f : (0,1)× (0,∞)→ R is continuous (2.110)

q ∈ C(0,1)∩L1[0,1] with q > 0 on (0,1) (2.111)

and ⎧⎪⎨⎪⎩
for any ε > 0,∃a0 � 0 with a0 < λ1, b0 � 0,0 � γ < 1,

hε ∈L1
q [0,1] with hε � 0 a.e. on (0,1) with∣∣f (t, u)∣∣ � a0u+ b0u

γ + hε(t) for t ∈ (0,1) and u� ε;
(2.112)

here λ1 is the first eigenvalue of (2.109). Then (2.62) has a solution y ∈C[0,1] ∩C2(0,1)
with y(t)� α(t) for t ∈ [0,1].
PROOF. For n = n0, n0 + 1, . . . let en, θn, fn and gn be as in Theorem 2.9. Without loss
of generality assume ρn0 � min

t∈[ 1
3 ,

2
3 ] α(t). Fix n ∈ {n0, n0 + 1, . . .}. Let tn ∈ [0, 1

3 ] and

sn ∈ [ 2
3 ,1] be such that

α(tn)= α(sn)= ρn and α(t)� ρn for t ∈ [0, tn] ∪ [sn,1].
Define

αn(t)=
{
ρn if t ∈ [0, tn] ∪ [sn,1],
α(t) if t ∈ (tn, sn).

We begin with the boundary value problem{
y ′′ + q(t)g�n0

(t, y)= 0, 0< t < 1,

y(0)= y(1)= ρn0 ;
(2.113)

here

g�n0
(t, y)=

⎧⎨⎩
gn0

(
t, αn0(t)

) + r
(
αn0(t)− y

)
, y � αn0(t),

gn0(t, y), αn0(t)� y �M ,
gn0(t,M)+ r(M − y), y �M ,

with r : R → [−1,1] the radial retraction defined by

r(u)=
{
u, |u| � 1,
u
|u| , |u|> 1,

andM(� sup[0,1]αn0(t)) is a predetermined constant (see (2.117)). From Schauder’s fixed
point theorem we know that (2.113) has a solution yn0 ∈ C1[0,1] ∩C2(0,1) (notice from
(2.112) that for any constants r1 > 0, r2 > r1, ∃hr1,r2 ∈ L1

q [0,1] with |f (t, u)| � hr1,r2(t)

for t ∈ (0,1) and r1 � u � r2). Exactly the same analysis as in Theorem 2.9 guarantees
that

yn0(t)� αn0(t), t ∈ [0,1], (2.114)
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and so

α(t)� αn0(t)� yn0(t) for t ∈ [0,1]. (2.115)

Next we show

yn0(t)�M for t ∈ [0,1]. (2.116)

Now (2.112) (with ε = min[0,1] αn0(t)) and the definition of g�n0
(of course with (2.114))

implies that there exists hε ∈ L1
q [0,1] (with hε � 0 a.e. on (0,1)) with (note r : R →

[−1,1]) ∣∣g�n0

(
t, yn0(t)

)∣∣ � a0yn0(t)+ b0
[
yn0(t)

]γ + h(t)+ 1 for t ∈ (0,1);
here h(t) = max{hε(t), hε(θn0(t))} (to see this fix t ∈ (0,1) and check the cases yn0(t)�
M and αn0(t)� yn0(t)�M separately).

Now let v = yn0 − ρn0 . Then v satisfies{
v′′ + q(t)g�n0

(t, v+ ρn0)= 0, 0< t < 1,

v(0)= v(1)= 0.

In addition since −vv′′ = qvg�n0
(t, v + ρn0) we have

(‖v′‖2
)2 =

∫ 1

0
q(t)v(t)g�n0

(
t, v(t)+ ρn0

)
dt

�
∫ 1

0
q(t)

∣∣v(t)∣∣∣∣g�n0

(
t, v(t)+ ρn0

)∣∣ dt

�
∫ 1

0
q(t)

∣∣v(t)∣∣[a0
(
v(t)+ ρn0

) + b0
(
v(t)+ ρn0

)γ + h(t)+ 1
]

dt

� a0

∫ 1

0
q|v|2 dt + a0ρn0

∫ 1

0
q|v|dt + 2γ−1b0

∫ 1

0
q|v|γ+1 dt

+ 2γ−1b0ρ
γ
n0

∫ 1

0
q|v|dt +

∫ 1

0
qh|v|dt +

∫ 1

0
q|v|dt .

This together with Theorem 2.22 (and Hölder’s inequality) yields(‖v′‖2
)2 � a0

λ1

(‖v′‖2
)2 + a0ρn0√

λ1

(‖q‖1
) 1

2 ‖v′‖2

+ 2γ−1b0

λ
γ+1

2
1

(‖q‖1
) 1−γ

2
(‖v′‖2

)γ+1 + 2γ−1b0ρ
γ
n0√

λ1

(‖q‖1
) 1

2 ‖v′‖2

+ ‖qh‖1|v|∞ + 1√
λ1

(‖q‖1
) 1

2 ‖v′‖2.
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Now since v(0)= v(1)= 0 it is easy to check that |v|∞ � 1√
2
‖v′‖2 and so

(
1 − a0

λ1

)(‖v′‖2
)2 � a0ρn0√

λ1

(‖q‖1
) 1

2 ‖v′‖2 + 2γ−1b0

λ
γ+1

2
1

(‖q‖1
) 1−γ

2
(‖v′‖2

)γ+1

+ 2γ−1b0ρ
γ
n0√

λ1

(‖q‖1
) 1

2 ‖v′‖2 + ‖qh‖1√
2

‖v′‖2

+ 1√
λ1

(‖q‖1
) 1

2 ‖v′‖2.

As a result, since 0 � γ < 1, there exists a constant K0 (chosen greater than or equal to√
2 sup[0,1] αn0(t)) with ‖v′‖2 � K0. This together with |v|∞ � 1√

2
‖v′‖2 yields |v|∞ �

1√
2
K0, and as a result

|yn0|∞ � 1√
2
K0 + ρn0 ≡M. (2.117)

Consequently (2.116) holds and so we have

α(t)� αn0(t)� yn0(t)�M for t ∈ [0,1].

Next we consider the boundary value problem{
y ′′ + q(t)g�n0+1(t, y)= 0, 0< t < 1,

y(0)= y(1)= ρn0+1; (2.118)

here

g�n0+1(t, y)=

⎧⎪⎨⎪⎩
gn0+1

(
t, αn0+1(t)

) + r
(
αn0+1(t)− y

)
, y � αn0+1(t),

gn0+1(t, y), αn0+1(t)� y � yn0(t),

gn0+1
(
t, yn0(t)

) + r
(
yn0(t)− y

)
, y � yn0(t).

Schauder’s fixed point theorem guarantees that (2.118) has a solution yn0+1 ∈ C1[0,1] ∩
C2(0,1). Exactly the same analysis as in Theorem 2.9 guarantees

α(t)� αn0+1(t)� yn0+1(t)� yn0(t) for t ∈ [0,1]. (2.119)

Now proceed inductively to construct yn0+2, yn0+3, . . . as follows. Suppose we have yk for
some k ∈ {n0 + 1, n0 + 2, . . .} with αk(t) � yk(t) � yk−1(t) for t ∈ [0,1]. Then consider
the boundary value problem{

y ′′ + q(t)g�k+1(t, y)= 0, 0< t < 1,

y(0)= y(1)= ρk+1; (2.120)
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here

g�k+1(t, y)=

⎧⎪⎨⎪⎩
gk+1

(
t, αk+1(t)

) + r
(
αk+1(t)− y

)
, y � αk+1(t),

gk+1(t, y), αk+1(t)� y � yk(t),

gk+1
(
t, yk(t)

) + r
(
yk(t)− y

)
, y � yk(t).

Now Schauder’s fixed point theorem guarantees that (2.120) has a solution yk+1 ∈
C1[0,1] ∩C2(0,1), and essentially the same reasoning as in Theorem 2.9 yields

α(t)� αk+1(t)� yk+1(t)� yk(t) for t ∈ [0,1].

Thus for each n ∈ {n0 + 1, . . .} we have

α(t)� yn(t)� yn−1(t)� · · · � yn0(t)�M for t ∈ [0,1].

Essentially the same reasoning as in Theorem 2.9 (from (2.89) onwards) completes the
proof. �

REMARK 2.10. In (2.72) it is possible to replace 1
2n+1 � t � 1 with 0 � t � 1 − 1

2n+1 or
1

2n+1 � t � 1 − 1
2n+1 and the result in Theorem 2.23 is again true; the minor adjustments

are left to the reader.

Next we discuss the lower solution α in (2.74). Suppose (2.96) holds. Then the argu-
ment before Theorem 2.14 guarantees that there exists a α ∈ C[0,1] ∩ C2(0,1), α(0) =
α(1) = 0, α(t) � ρn0 for t ∈ [0,1] with (2.74) holding. Combine with Theorem 2.23 to
obtain our next result.

THEOREM 2.24. Let n0 ∈ {1,2, . . .} be fixed and suppose (2.96), (2.110), (2.111) and
(2.112) hold. Then (2.62) has a solution y ∈C[0,1]∩C2(0,1) with y(t) > 0 for t ∈ (0,1).

If in (2.96) we replace 1
2n+1 � t � 1 with 1

2n+1 � t � 1 − 1
2n+1 then once again (2.74)

holds.

THEOREM 2.25. Let n0 ∈ {1,2, . . .} be fixed and suppose (2.110), (2.111), (2.112) and
(2.96) (with 1

2n+1 � t � 1 replaced by 1
2n+1 � t � 1− 1

2n+1 ) hold. Then (2.62) has a solution

y ∈ C[0,1] ∩C2(0,1) with y(t) > 0 for t ∈ (0,1).

EXAMPLE 2.4. Consider the boundary value problem{
y ′′ + (

Atκy−θ + a0y + b0y
γ −μ2

) = 0, 0< t < 1,

y(0)= y(1)= 0
(2.121)

with A> 0, κ >−1, θ > 0, 0 � γ < 1, 0 � a0 < π2, b0 � 0 and μ ∈ R. Then (2.121) has
a solution y ∈C[0,1] ∩C2(0,1) with y(t) > 0 for t ∈ (0,1).
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To see this we will apply Theorem 2.24 with

q = 1 and f (t, y)=Atκy−θ + a0y + b0y
γ −μ2.

Clearly (2.110) and (2.111) hold. In addition (2.112) is immediate with hε(t)=Atκε−θ +
μ2; note λ1 = π2. We will consider two cases, namely κ � 0 and −1< κ < 0.

Case (i). κ � 0.
Let

n0 = 1, ρn =
(

A

2(n+1)κ(μ2 + 1)

)1/θ

and k0 = 1.

Notice for n ∈ {1,2, . . .}, 1
2n+1 � t � 1 and 0< y � ρn that we have

q(t)f (t, y)� A

2(n+1)κρθn
−μ2 = (

μ2 + 1
) −μ2 = 1,

so (2.96) holds.
Case (ii). −1< κ < 0.
Let

n0 = 1, ρn =
(

A

n(μ2 + 1)

)1/θ

and k0 = 1.

Notice for n ∈ {1,2, . . .}, 1
2n+1 � t � 1 and 0< y � ρn that we have since κ < 0,

q(t)f (t, y)� Atκ

ρθn
−μ2 � A

ρθn
−μ2 = n

(
μ2 + 1

) −μ2 �
(
μ2 + 1

) −μ2 = 1,

so (2.96) holds.
Existence of a solution is now guaranteed from Theorem 2.24.

If one uses the ideas in [19, Chapter 11] it is possible to improve the result in Theorem
2.23.

THEOREM 2.26. Let n0 ∈ {1,2, . . .} be fixed and suppose (2.72), (2.74), (2.110) and
(2.111) hold. In addition assume the following conditions are satisfied:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

for any ε > 0,∃a0 ∈C[0,1] with 0 � a0(t)� λ1
on [0,1] and a0(t) < λ1 on a subset of [0,1]
of positive measure with a0

( 1
2n0+1

)
< λ1, b0 � 0,

1 � γ < 2, hε ∈ L1
q [0,1] with hε � 0 a.e. on (0,1)

with uf (t, u)� a0(t)u
2 + b0u

γ + uhε(t)

for t ∈ (0,1) and u� ε

(2.122)
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and ⎧⎪⎨⎪⎩
for any ε > 0,∃c0 � 0,0 � τ < 2, ηε ∈ L1

q [0,1] with

ηε � 0 a.e. on (0,1) with
∣∣f (t, u)∣∣ � c0u

τ + ηε(t)

for t ∈ (0,1) and u� ε;
(2.123)

here λ1 is the first eigenvalue of (2.109). Then (2.62) has a solution y ∈ C[0,1] ∩C2(0,1)
with y(t)� α(t) for t ∈ [0,1].

PROOF. Proceed as in Theorem 2.23 and obtain a solution yn0 of (2.113) with

α(t)� αn0(t)� yn0(t) for t ∈ [0,1].

Next we show

yn0(t)�M for t ∈ [0,1], (2.124)

where M (� sup[0,1] αn0(t)) is a predetermined constant (see below). Notice (2.123) (with
ε = sup[0,1] αn0(t)) implies that there exists ηε ∈ L1

q [0,1] (with ηε � 0 a.e. on [0,1]) with

∣∣g�n0

(
t, yn0(t)

)∣∣ � c0
[
yn0(t)

]τ + η(t)+ 1 for t ∈ (0,1);

here η(t) = max{ηε(t), ηε(θn0(t))}. Also notice (2.123) implies that there exists hε ∈
L1
q [0,1] (with hε � 0 a.e. on [0,1]) with

yn0(t)g
�
n0

(
t, yn0(t)

)
� d0(t)

[
yn0(t)

]2 + b0
[
yn0(t)

]γ + [
h(t)+ 1

]
yn0(t)

for t ∈ (0,1) where

d0(t)= max
{
a0(t), a0

(
θn0(t)

)}
and h(t)= max

{
hε(t), hε

(
θn0(t)

)};
note for fixed t ∈ ( 1

2n0+1 ,1) with yn0(t)�M that

yn0(t)g
�
n0

(
t, yn0(t)

) = yn0(t)
[
f (t,M)+ r

(
M − yn0(t)

)]
= yn0(t)

M

[
Mf(t,M)+Mr

(
M − yn0(t)

)]
� yn0(t)

M

[
a0(t)M

2 + b0M
γ + hε(t)M +M

]
= yn0(t)

[
a0(t)M + b0M

γ−1 + hε(t)+ 1
]

� a0(t)
[
yn0(t)

]2 + b0
[
yn0(t)

]γ + [
hε(t)+ 1

]
yn0(t)
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(the other cases are treated similarly). Let v = yn0 − ρn0 so

−vv′′ = q(v+ ρn0)g
�
n0
(t, v + ρn0)− ρn0qg

�
n0
(t, v + ρn0).

As a result we have∫ 1

0

[
v′(t)

]2 dt �
∫ 1

0
q(t)d0(t)

[
v(t)+ ρn0

]2 dt + b0

∫ 1

0
q(t)

[
v(t)+ ρn0

]γ dt

+
∫ 1

0
q(t)

[
h(t)+ 1

][
v(t)+ ρn0

]
dt

+ c0ρn0

∫ 1

0
q(t)

[
v(t)+ ρn0

]τ dt + ρn0

∫ 1

0
q(t)

[
η(t)+ 1

]
dt,

so ∫ 1

0

[(
v′(t)

)2 − q(t)d0(t)v
2(t)

]
dt

�
∫ 1

0
q(t)d0(t)

[
2v(t)ρn0 + ρ2

n0

]
dt + b0

∫ 1

0
q(t)

[
v(t)+ ρn0

]γ dt

+
∫ 1

0
q(t)

[
h(t)+ 1

][
v(t)+ ρn0

]
dt + c0ρn0

∫ 1

0
q(t)

[
v(t)+ ρn0

]τ dt

+ ρn0

∫ 1

0
q(t)

[
η(t)+ 1

]
dt .

Notice d0(t) < λ1 on a subset of [0,1] of positive measure. The argument in [19, Chap-
ter 11] guarantees that there exists a δ > 0 with∫ 1

0

[(
v′(t)

)2 − q(t)d0(t)v
2(t)

]
dt � δ

( ∫ 1

0
q(t)v2(t)dt +

∫ 1

0

[
v′(t)

]2 dt

)
.

Consequently

δ

( ∫ 1

0
q(t)v2(t)dt +

∫ 1

0

[
v′(t)

]2 dt

)

�
∫ 1

0
q(t)d0(t)

[
2v(t)ρn0 + ρ2

n0

]
dt + b0

∫ 1

0
q(t)

[
v(t)+ ρn0

]γ dt

+
∫ 1

0
q(t)

[
h(t)+ 1

][
v(t)+ ρn0

]
dt + c0ρn0

∫ 1

0
q(t)

[
v(t)+ ρn0

]τ dt

+ ρn0

∫ 1

0
q(t)

[
η(t)+ 1

]
dt,
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and this together with Hölder’s inequality and Theorem 2.22 (note 1 � γ < 2 and 0 �
τ < 2) guarantees that there exists a constant K0 �

√
2 sup[0,1]αn0(t) with ‖v′‖2 � K0.

Now ifM = 1√
2
K0 +ρn0 then (2.124) holds. Essentially the same reasoning as in Theorem

2.23 (from (2.118) onwards) completes the proof. �

REMARK 2.11. We can replace (2.72) and (2.74) in Theorem 2.26 with (2.96).

3. Singular initial value problems

In this section we discuss the singular initial value problem{
y ′ = q(t)f (t, y), 0< t < T (<∞),

y(0)= 0,
(3.1)

where our nonlinearity f may change sign. We first present a variation of the classical
theory of upper and lower solutions. We will assume the following conditions hold:⎧⎨⎩

there exists β ∈C[0, T ] ∩C1(0, T ] with
β ∈AC[0, T ], β(0)� 0, and

q(t)f
(
t, β(t)

)
� β ′(t) for t ∈ (0, T ),

(3.2)

⎧⎨⎩
there exists α ∈C[0, T ] ∩C1(0, T ] with
α ∈AC[0, T ], α(t)� β(t) on [0, T ], α(0)� 0

and q(t)f
(
t, α(t)

)
� α′(t) for t ∈ (0, T )

(3.3)

and

q ∈C(0, T ] ∩L1[0, T ] with q > 0 on (0, T ]. (3.4)

Let

f �(t, y)=

⎧⎪⎨⎪⎩
f

(
t, β(t)

) + r
(
β(t)− y), y � β(t),

f (t, y), α(t) < y < β(t),

f
(
t, α(t)

) + r
(
α(t)− y

)
, y � α(t),

where r : R → [−1,1] is the radial retraction. Finally we assume

f � : [0, T ] × R → R is continuous. (3.5)

THEOREM 3.1. Suppose (3.2)–(3.5) hold. Then (3.1) has a solution y (here y ∈ C[0, T ] ∩
C1(0, T ] with y ∈AC[0, T ]) with α(t)� y(t)� β(t) for t ∈ [0, T ].
PROOF. To show (3.1) has a solution we consider the problem{

y ′ = q(t)f �(t, y), 0< t < T,

y(0)= 0.
(3.6)
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Now Theorem 1.4 guarantees that (3.6) has a solution y ∈ C[0, T ] ∩ C1(0, T ] with y ∈
AC[0, T ]. The result of our theorem will follow once we show

α(t)� y(t)� β(t) for t ∈ [0, T ]. (3.7)

We now show

y(t)� β(t) for t ∈ [0, T ]. (3.8)

Suppose (3.8) is not true. Then since y(0)� β(0) there exists t1 < t2 ∈ [0, T ] with

y(t1)= β(t1), y(t2) > β(t2) and y(t) > β(t) on (t1, t2).

Thus

y(t2)− y(t1) =
∫ t2

t1

q(s)
[
f

(
s,β(s)

) + r
(
β(s)− y(s)

)]
ds

�
∫ t2

t1

β ′(s)ds +
∫ t2

t1

q(s)r
(
β(s)− y(s)

)
ds

< β(t2)− β(t1),

i.e., y(t2) < β(t2), a contradiction. Thus (3.8) is true. A similar argument shows

α(t)� y(t) for t ∈ [0, T ]. (3.9)

Our result follows. �

Again because of the difficulties encountered with checking (3.5) it is of interest to
provide an alternative approach and to present conditions that are easy to verify in applica-
tions.

Our main result can be stated immediately.

THEOREM 3.2. Let n0 ∈ {1,2, . . .} be fixed and suppose the following conditions are sat-
isfied:

f : [0, T ] × (0,∞)→ R is continuous (3.10)

q ∈ C(0, T ], q > 0 on (0, T ] and
∫ T

0
q(x)dx <∞ (3.11)⎧⎪⎪⎨⎪⎪⎩

let n ∈ {n0, n0 + 1, . . .} and associated with each n we
have a constant ρn such that {ρn} is a nonincreasing
sequence with limn→∞ ρn = 0 and such that for
T

2n+1 � t � T we have q(t)f (t, ρn)� 0,

(3.12)
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with α(0)= 0, α > 0 on (0, T ] such
that q(t)f

(
t, α(t)

)
� α′(t) for t ∈ (0, T )

(3.13)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
there exists a function β ∈ C[0, T ] ∩C1(0, T ] with
β(t)� α(t) and β(t)� ρn0 for t ∈ [0, T ] with

q(t)f
(
t, β(t)

)
� β ′(t) for t ∈ (0, T ) and

q(t)f
(

T

2n0+1 , β(t)
)
� β ′(t) for t ∈ (

0, T

2n0+1

)
.

(3.14)

Then (3.1) has a solution y ∈ C[0, T ] ∩C1(0, T ] with y(t)� α(t) for t ∈ [0, T ].
PROOF. For n= n0, n0 + 1, . . . let

en =
[
T

2n+1
, T

]
and θn(t)= max

{
T

2n+1
, t

}
, 0 � t � T ,

and

fn(t, x)= max
{
f

(
θn(t), x

)
, f (t, x)

}
.

Next we define inductively

gn0(t, x)= fn0(t, x)

and

gn(t, x)= min
{
fn0(t, x), . . . , fn(t, x)

}
, n= n0 + 1, n0 + 2, . . . .

Notice

f (t, x)� · · · � gn+1(t, x)� gn(t, x)� · · · � gn0(t, x)

for (t, x) ∈ (0, T )× (0,∞) and

gn(t, x)= f (t, x) for (t, x) ∈ en × (0,∞).

Without loss of generality assume ρn0 � mint∈[ T2 ,T ] α(t). Fix n ∈ {n0, n0 + 1, . . .}. Let

tn ∈ [0, T2 ] be such that

α(tn)= ρn and α(t)� ρn for t ∈ [0, tn].
Define

αn(t)=
{
ρn if t ∈ [0, tn],
α(t) if t ∈ (tn, T ].
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Notice αn+1(t)� αn(t), t ∈ [0, T ], for each n ∈ {n0, n0 +1, . . .} since {ρn} is a nonincreas-
ing sequence. We begin with the initial value problem{

y ′ = q(t)g�n0
(t, y), 0< t < T ,

y(0)= ρn0 ; (3.15)

here

g�n0
(t, y)=

⎧⎪⎨⎪⎩
gn0

(
t, αn0(t)

)
, y � αn0(t),

gn0(t, y), αn0(t)� y � β(t),

gn0

(
t, β(t)

)
, y � β(t).

From Schauder’s fixed point theorem we know that (3.15) has a solution yn0 ∈ C[0, T ] ∩
C1(0, T ]. We first show

yn0(t)� αn0(t), t ∈ [0, T ]. (3.16)

Suppose (3.16) is not true. Then there exists τ1 < τ2 ∈ [0, T ] with

yn0(τ1)= αn0(τ1), yn0(τ2) < αn0(τ2)

and

yn0(t) < αn0(t) for t ∈ (τ1, τ2).

Of course

yn0(τ2)− αn0(τ2)=
∫ τ2

τ1

(yn0 − αn0)
′(t)dt . (3.17)

We now claim

(yn0 − αn0)
′(t)� 0 for a.e. t ∈ (τ1, τ2). (3.18)

If (3.18) is true then (3.17) implies

yn0(τ2)− αn0(τ2)� 0,

a contradiction. As a result if we show (3.18) is true then (3.16) will follow. To see (3.18)
we will show

(yn0 − αn0)
′(t)� 0 for t ∈ (τ1, τ2) provided t �= tn0 .
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Fix t ∈ (τ1, τ2) and assume t �= tn0 . Then

(yn0 − αn0)
′(t) = [

q(t)gn0

(
t, αn0(t)

) − α′
n0
(t)

]
=

{
q(t)gn0

(
t, α(t)

) − α′(t) if t ∈ (tn0 , T ),

q(t)gn0(t, ρn0) if t ∈ (0, tn0).

Case (i). t � T

2n0+1 .

Then since gn0(t, x)= f (t, x) for x ∈ (0,∞) we have

(yn0 − αn0)
′(t) =

{
q(t)f

(
t, α(t)

) − α′(t) if t ∈ (tn0 , T ),

q(t)f (t, ρn0) if t ∈ (0, tn0)

� 0,

from (3.12) and (3.13).
Case (ii). t ∈ (0, T

2n0+1 ).
Then since

gn0(t, x)= max

{
f

(
T

2n0+1 , x

)
, f (t, x)

}
we have gn0(t, x)� f (t, x) and gn0(t, x)� f ( T

2n0+1 , x) for x ∈ (0,∞). Thus we have

(yn0 − αn0)
′(t) �

{
q(t)f

(
t, α(t)

) − α′(t) if t ∈ (tn0 , T ),

q(t)f
(

T

2n0+1 , ρn0

)
if t ∈ (0, tn0)

� 0,

from (3.12) and (3.13).
Consequently (3.18) (and so (3.16)) holds and now since α(t) � αn0(t) for t ∈ [0, T ]

we have

α(t)� αn0(t)� yn0(t) for t ∈ [0, T ]. (3.19)

Next we show

yn0(t)� β(t) for t ∈ [0, T ]. (3.20)

If (3.20) is not true then there exists τ1 < τ2 ∈ [0, T ] with

yn0(τ1)= β(τ1), yn0(τ2) > β(τ2) and yn0(t) > β(t) for t ∈ (τ1, τ2).

Notice also that

yn0(τ2)− yn0(τ1)=
∫ τ2

τ1

q(s)gn0

(
s,β(s)

)
ds.
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There are three cases to consider, namely (i) T

2n0+1 � τ1; (ii) τ1 < τ2 � T

2n0+1 ; and (iii)

τ1 <
T

2n0+1 < τ2.

Case (i). T

2n0+1 � τ1.

Since gn0(t, x)= f (t, x) for (t, x) ∈ (τ1, τ2)× (0,∞) we have

yn0(τ2)− yn0(τ1)=
∫ τ2

τ1

q(s)f
(
s,β(s)

)
ds �

∫ τ2

τ1

β ′(s)ds = β(τ2)− β(τ1),

a contradiction.
Case (ii). τ1 < τ2 � T

2n0+1 .
Since

gn0(t, x)= max

{
f

(
T

2n0+1 , x

)
, f (t, x)

}
for (t, x) ∈ (τ1, τ2)× (0,∞) we have

yn0(τ2)− yn0(τ1) =
∫ τ2

τ1

q(s)max

{
f

(
T

2n0+1
, β(s)

)
, f

(
s,β(s)

)}
�

∫ τ2

τ1

β ′(s)ds = β(τ2)− β(τ1),

a contradiction.
Case (iii). τ1 <

T

2n0+1 < τ2.
Now

yn0

(
T

2n0+1

)
− yn0(τ1) =

∫ T

2n0+1

τ1

q(s)max

{
f

(
T

2n0+1 , β(s)

)
, f

(
s,β(s)

)}

�
∫ T

2n0+1

τ1

β ′(s)ds = β

(
T

2n0+1

)
− β(τ1)

and

yn0(τ2)− yn0

(
T

2n0+1

)
=

∫ τ2

T

2n0+1

q(s)f
(
s,β(s)

)
ds � β(τ2)− β

(
T

2n0+1

)
.

Combine to obtain

yn0(τ2)− yn0(τ1)� β(τ2)− β(τ1),

a contradiction.
Thus (3.20) holds, so we have

α(t)� αn0(t)� yn0(t)� β(t) for t ∈ [0, T ].
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Next we consider{
y ′ = q(t)g�n0+1(t, y), 0< t < T,

y(0)= ρn0+1; (3.21)

here

g�n0+1(t, y)=

⎧⎪⎨⎪⎩
gn0+1

(
t, αn0+1(t)

)
, y � αn0+1(t),

gn0+1(t, y), αn0+1(t)� y � yn0(t),

gn0+1
(
t, yn0(t)

)
, y � yn0(t).

Now Schauder’s fixed point theorem guarantees that (3.21) has a solution yn0+1 ∈
C[0, T ] ∩C1(0, T ]. We first show

yn0+1(t)� αn0+1(t), t ∈ [0, T ]. (3.22)

Suppose (3.22) is not true. Then there exists τ1 < τ2 ∈ [0, T ] with

yn0+1(τ1)= αn0+1(τ1), yn0+1(τ2) < αn0+1(τ2)

and

yn0+1(t) < αn0+1(t) for t ∈ (τ1, τ2).

If we show

(yn0+1 − αn0+1)
′(t)� 0 for a.e. t ∈ (τ1, τ2), (3.23)

then as before (3.22) is true. Fix t ∈ (τ1, τ2) and assume t �= tn0+1. Then

(yn0+1 − αn0+1)
′(t) = [

q(t)gn0+1
(
t, αn0+1(t)

) − α′
n0+1(t)

]
=

{
q(t)gn0+1

(
t, α(t)

) − α′(t) if t ∈ (tn0+1, T ),

q(t)gn0+1(t, ρn0+1) if t ∈ (0, tn0+1).

Case (i). t � T

2n0+2 .
Then since gn0+1(t, x)= f (t, x) for x ∈ (0,∞) we have

(yn0+1 − αn0+1)
′(t) =

{
q(t)f

(
t, α(t)

) − α′(t) if t ∈ (tn0+1, T ),

q(t)f (t, ρn0+1) if t ∈ (0, tn0+1)

� 0,

from (3.12) and (3.13).
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Case (ii). t ∈ (0, T

2n0+2 ).

Then since gn0+1(t, x) equals

min

{
max

{
f

(
T

2n0+1
, x

)
, f (t, x)

}
,max

{
f

(
T

2n0+2
, x

)
, f (t, x)

}}
we have

gn0+1(t, x)� f (t, x)

and

gn0+1(t, x)� min

{
f

(
T

2n0+1
, x

)
, f

(
T

2n0+2
, x

)}
for x ∈ (0,∞). Thus we have

(yn0+1 − αn0+1)
′(t) �

⎧⎪⎨⎪⎩
q(t)f

(
t, α(t)

) − α′(t) if t ∈ (tn0+1, T ),

q(t)min
{
f

(
T

2n0+1 , ρn0+1
)
, f

(
T

2n0+2 , ρn0+1
)}

if t ∈ (0, tn0+1)

� 0,

from (3.12) and (3.13) (note f ( T

2n0+1 , ρn0+1)� 0 since f (t, ρn0+1)� 0 for t ∈ [ T

2n0+2 , T ]
and T

2n0+1 ∈ ( T

2n0+2 , T )).

Consequently (3.23) is true so

α(t)� αn0+1(t)� yn0+1(t) for t ∈ [0, T ]. (3.24)

Next we show

yn0+1(t)� yn0(t) for t ∈ [0, T ]. (3.25)

If (3.25) is not true then there exists τ1 < τ2 ∈ [0, T ] with

yn0+1(τ1)= yn0(τ1), yn0+1(τ2) > yn0(τ2)

and

yn0+1(t) > yn0(t) for t ∈ (τ1, τ2).

Notice also since gn0(t, x)� gn0+1(t, x) for (t, x) ∈ (0, T )× (0,∞) that

yn0+1(τ2)− yn0+1(τ1) =
∫ τ2

τ1

q(s)gn0+1
(
s, yn0(s)

)
ds
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�
∫ τ2

τ1

q(s)gn0

(
s, yn0(s)

)
ds

=
∫ τ2

τ1

y ′
n0
(s)ds = yn0(τ2)− yn0(τ1),

a contradiction.
Now proceed inductively to construct yn0+2, yn0+3, . . . as follows. Suppose we have

yk for some k ∈ {n0 + 1, n0 + 2, . . .} with αk(t) � yk(t) � yk−1(t) for t ∈ [0, T ]. Then
consider the boundary value problem{

y ′ = q(t)g�k+1(t, y), 0< t < T,

y(0)= ρk+1; (3.26)

here

g�k+1(t, y)=

⎧⎪⎨⎪⎩
gk+1

(
t, αk+1(t)

)
, y � αk+1(t),

gk+1(t, y), αk+1(t)� y � yk(t),

gk+1
(
t, yk(t)

)
, y � yk(t).

Now Schauder’s fixed point theorem guarantees that (3.26) has a solution yk+1 ∈C[0, T ]∩
C1(0, T ], and essentially the same reasoning as above yields

α(t)� αk+1(t)� yk+1(t)� yk(t) for t ∈ [0, T ]. (3.27)

Thus for each n ∈ {n0, n0 + 1, . . .} we have

α(t)� yn(t)� yn−1(t)� · · · � yn0(t)� β(t) for t ∈ [0, T ]. (3.28)

Lets look at the interval [ T

2n0+1 , T ]. Let

Rn0 = sup

{∣∣q(x)f (x, y)∣∣: x ∈
[

T

2n0+1
, T

]
and α(x)� y � yn0(x)

}
.

We have immediately that{ {yn}∞n=n0+1 is a bounded, equicontinuous

family on
[

T

2n0+1 , T
]
.

(3.29)

The Arzela–Ascoli theorem guarantees the existence of a subsequence Nn0 of integers and
a function zn0 ∈ C[ T

2n0+1 , T ] with yn converging uniformly to zn0 on [ T

2n0+1 , T ] as n→ ∞
through Nn0 . Proceed inductively to obtain subsequences of integers

Nn0 ⊇Nn0+1 ⊇ · · · ⊇Nk ⊇ · · ·
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and functions

zk ∈ C
[
T

2k+1
, T

]
with

yn converging uniformly to zk on

[
T

2k+1 , T

]
as n→ ∞ through Nk , and

zk = zk−1 on

[
T

2k
, T

]
.

Define a function y : [0, T ] → [0,∞) by y(x)= zk(x) on [ T

2k+1 , T ] and y(0)= 0. Notice
y is well defined and α(t) � y(t) � yn0(t)(� β(t)) for t ∈ (0, T ). Fix t ∈ (0, T ) and let
m ∈ {n0, n0 + 1, . . .} be such that T

2m+1 < t < T . Let N�
m = {n ∈ Nm: n � m}. Now yn,

n ∈N�
m, satisfies

yn(t) = yn(T )−
∫ T

t

q(s)g�n
(
s, yn(s)

)
ds

= yn(T )−
∫ T

t

q(s)f
(
s, yn(s)

)
ds.

Let n→ ∞ through N�
m to obtain

y(t)= y(T )−
∫ T

t

q(s)f
(
s, y(s)

)
ds.

We can do this argument for each t ∈ (0, T ). It remains to show y is continuous at 0.
Let ε > 0 be given. Now since limn→∞ yn(0)= 0 there exists n1 ∈ {n0, n0 +1, . . .} with

yn1(0) <
ε
2 . Since yn1 ∈C[0, T ] there exists δn1 > 0 with

yn1(t) <
ε

2
for t ∈ [0, δn1].

Now for n� n1 we have, since {yn(t)} is nonincreasing for each t ∈ [0, T ],

α(t)� yn(t)� yn1(t) <
ε

2
for t ∈ [0, δn1].

Consequently

α(t)� y(t)� ε

2
< ε for t ∈ (0, δn1],

and so y is continuous at 0. Thus y ∈C[0, T ]. �
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Suppose (3.10)–(3.13) hold, and in addition assume the following conditions are satis-
fied:

q(t)f (t, y)� α′(t) for (t, y) ∈ (0, T )× {
y ∈ (0,∞): y < α(t)

}
(3.30)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
there exists a function β ∈C[0, T ] ∩C1(0, T ] with
β(t)� ρn0 for t ∈ [0, T ] with q(t)f

(
t, β(t)

)
� β ′(t)

for t ∈ (0, T ) and q(t)f
(

T

2n0+1 , β(t)
)
� β ′(t)

for t ∈ (
0, T

2n0+1

)
.

(3.31)

Then the result in Theorem 3.2 is again true. This follows immediately from Theorem 3.2
once we show (3.14) holds, i.e., once we show β(t) � α(t) for t ∈ [0, T ]. Suppose it is
false. Then there exists τ1 < τ2 ∈ [0, T ] with

β(τ1)= α(τ1), β(τ2) < α(τ2) and β(t) < α(t) for t ∈ (τ1, τ2).

Now for t ∈ (τ1, τ2), we have from (3.30) that

q(t)f
(
t, β(t)

)
� α′(t),

and as a result

β(τ2)− β(τ1) =
∫ τ2

τ1

β ′(s)ds �
∫ τ2

τ1

q(s)f
(
s,β(s)

)
ds

�
∫ τ2

τ1

α′(s)ds = α(τ2)− α(τ1),

a contradiction. Thus we have

COROLLARY 3.3. Let n0 ∈ {1,2, . . .} be fixed and suppose (3.10)–(3.13), (3.30) and
(3.31) hold. Then (3.1) has a solution y ∈ C[0, T ] ∩ C1(0, T ] with y(t) � α(t) for
t ∈ [0, T ].

Next we discuss how to construct the lower solution α in (3.13) and in (3.30). Suppose
the following condition is satisfied:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

let n ∈ {n0, n0 + 1, . . .} and associated with each n we
have a constant ρn such that {ρn} is a decreasing
sequence with limn→∞ ρn = 0 and there exists a

constant k0 > 0 such that for T

2n+1 � t � T

and 0< y � ρn we have q(t)f (t, y)� k0.

(3.32)
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Then an argument similar to the one before Theorem 2.14 guarantees that there exists a
α ∈ C[0, T ] ∩ C1(0, T ], α(0) = 0, α > 0 for t ∈ (0, T ], α(t) � ρn0 for t ∈ [0, T ] with
(3.13) and (3.30) holding. We combine this with Corollary 3.3 to obtain our next result.

THEOREM 3.4. Let n0 ∈ {1,2, . . .} be fixed and suppose (3.10), (3.11), (3.31), and (3.32)
hold. Then (3.1) has a solution y ∈ C[0, T ] ∩C1(0, T ] with y(t) > 0 for t ∈ (0, T ].

Looking at Theorem 3.4 we see that the main difficulty when discussing examples is the
construction of the β in (3.31). Our next result replaces (3.31) with a growth condition.
We first present the result in its full generality.

THEOREM 3.5. Let n0 ∈ {1,2, . . .} be fixed and suppose (3.10)–(3.13) hold. Also assume
the following condition is satisfied:⎧⎨⎩

∣∣f (t, y)∣∣ � g(y)+ h(y) on [0, T ] × (0,∞) with
g > 0 continuous and nonincreasing on (0,∞)

and h� 0 continuous on [0,∞).

(3.33)

Also suppose there exists a constant M > 0 with G−1(M) > supt∈[0,T ] α(t) and with

∫ T

0
q(x)dx <

∫ M

0

ds[
1 + h(G−1(s))

g(G−1(s))

] (3.34)

holding; here G(z)= ∫ z
0

du
g(u)

(note G is an increasing map from [0,∞) onto [0,∞) with

G(0) = 0). Then (3.1) has a solution y ∈ C[0, T ] ∩ C1(0, T ] with y(t) � α(t) for t ∈
[0, T ].

PROOF. Choose ε > 0, ε <M with∫ T

0
q(x)dx <

∫ M

ε

ds[
1 + h(G−1(s))

g(G−1(s))

] . (3.35)

Without loss of generality assume G(ρn0) < ε. Let en, θn, fn, gn and αn be as in Theo-
rem 3.2. We consider the boundary value problem (3.15) with in this case g�n0

given by

g�n0
(t, y)=

⎧⎨⎩
gn0

(
t, αn0(t)

)
, y � αn0(t),

gn0(t, y), αn0(t)� y �G−1(M),

gn0

(
t,G−1(M)

)
, y �G−1(M).

Essentially the same reasoning as in Theorem 3.2 implies that (3.15) has a solution yn0

with yn0(t)� αn0(t)� α(t) for t ∈ [0, T ]. Next we show

yn0(t) < G−1(M) for t ∈ [0, T ]. (3.36)
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Suppose (3.36) is false. Then since yn0(0)= ρn0 there exists τ1 < τ2 ∈ [0, T ] with

ρn0 � yn0(t)�G−1(M) for t ∈ (τ1, τ2),

with

yn0(τ1)= ρn0 and yn0(τ2)=G−1(M).

Now for t ∈ (τ1, τ2) we have from (3.33) that

g�n0

(
t, yn0(t)

)
� g

(
yn0(t)

) + h
(
yn0(t)

) = g
(
yn0(t)

){
1 + h(yn0(t))

g(yn0(t))

}
.

Thus

y ′
n0
(t)

g(yn0(t))
� q(t)

{
1 + h(yn0(t))

g(yn0(t))

}
for t ∈ (τ1, τ2).

Let

vn0(t)=
∫ yn0 (t)

0

du

g(u)
=G

(
yn0(t)

)
and so

v′
n0
(t)� q(t)

{
1 + h(G−1(vn0(t)))

g(G−1(vn0(t)))

}
for t ∈ (τ1, τ2).

Integrate from τ1 to τ2 to obtain∫ vn0 (τ2)

ε

ds[
1 + h(G−1(s))

g(G−1(s))

] �
∫ vn0 (τ2)

G(ρn0 )

ds[
1 + h(G−1(s))

g(G−1(s))

] �
∫ T

0
q(s)ds

<

∫ M

ε

ds[
1 + h(G−1(s))

g(G−1(s))

] .
Consequently vn0(τ2) < M so yn0(τ2) < G−1(M). This is a contradiction. Thus (3.36)
holds and so

α(t)� αn0(t)� yn0(t) < G−1(M) for t ∈ [0, T ]. (3.37)

Essentially the same reasoning as in Theorem 3.2 (from (3.21) onwards) completes the
proof. �
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COROLLARY 3.6. Let n0 ∈ {1,2, . . .} be fixed and suppose (3.10)–(3.13), (3.30) and
(3.33) hold. In addition assume there is a constant M > 0 with∫ T

0
q(x)dx <

∫ M

0

ds[
1 + h(G−1(s))

g(G−1(s))

] (3.38)

holding; hereG(z)= ∫ z
0

du
g(u)

. Then (3.1) has a solution y ∈C[0, T ]∩C1(0, T ] with y(t)�
α(t) for t ∈ [0, T ].

PROOF. This follows immediately from Theorem 3.5 once we show

G−1(M) > α(t) for each t ∈ [0, T ].

Suppose this is false. Then since α(0)= 0 there exists τ1 < τ2 ∈ [0, T ] with

0 � α(t)�G−1(M) for t ∈ (τ1, τ2),α(τ1)= 0 and α(τ2)=G−1(M).

Notice (3.30) implies

α′(t)� q(t)f
(
t, α(t)

)
for t ∈ (τ1, τ2),

so we have

α′(t)
g(α(t))

� q(t)

{
1 + h(α(t))

g(α(t))

}
for t ∈ (τ1, τ2).

Let

v(t)=
∫ α(t)

0

du

g(u)
=G

(
α(t)

)
,

so

v′(t)� q(t)

{
1 + h(G−1(v(t)))

g(G−1(v(t)))

}
for t ∈ (τ1, τ2).

Integrate from τ1 to τ2 to obtain∫ v(τ2)

0

ds[
1 + h(G−1(s))

g(G−1(s))

] �
∫ T

0
q(s)ds <

∫ M

0

ds[
1 + h(G−1(s))

g(G−1(s))

] .
Thus v(τ2) <M , so α(τ2) <G−1(M), a contradiction. �

Combining Corollary 3.6 with the comments before Theorem 3.4 yields the following
theorem.
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THEOREM 3.7. Let n0 ∈ {1,2, . . .} be fixed and suppose (3.10), (3.11), (3.32) and (3.33)
hold. In addition assume there is a constant M > 0 with (3.38) holding. Then (3.1) has a
solution y ∈ C[0, T ] ∩C1(0, T ] with y(t) > 0 for t ∈ (0, T ].

Next we present some examples which illustrate how easily the theory is applied in
practice.

EXAMPLE 3.1. The initial value problem{
y ′ = tθ y−α + yβ +A, 0< t < T (<∞),

y(0)= 0
(3.39)

with θ >−1, α > 0, β > 0 and A> 0 has a solution y ∈ C[0, T ] ∩C1(0, T ] with y(t) > 0
for t ∈ (0, T ] if∫ T

0
q(s)ds <

∫ ∞

0

ds

1 +B[(α + 1)s] β+α
α+1 +AC[(α + 1)s] α

α+1

; (3.40)

here

q(t)=
{

1 if θ � 0,
tθ if − 1< θ < 0,

with

B =
{
T

θ(β−1)
α+1 if θ � 0,

T −θ if − 1< θ < 0,

and

C =
{
T − θ

α+1 if θ � 0,
T −θ if − 1< θ < 0.

To see this we will apply Theorem 3.7. We will consider two cases, namely θ � 0 and
−1< θ < 0.

Case (i). θ � 0.
We will apply Theorem 3.7 with

n0 = 1, q = 1, g(y)= T θy−α, h(y)= yβ +A,

together with

ρn =
(

T θ

2(n+1)θ

)1/α

and k0 = 1.
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Clearly (3.10) and (3.11) hold. Also for n ∈ {1,2, . . .}, T

2n+1 � t � T and 0< y � ρn we
have

q(t)f (t, y)� tθ y−α �
(

T

2n+1

)θ 1

ραn
= 1,

so (3.32) is satisfied. From (3.40) there exists M > 0 with

T <

∫ M

0

ds

1 +B[(α + 1)s] β+α
α+1 +AC[(α+ 1)s] α

α+1

,

so now (3.38) holds with this M since

G(z)= 1

T θ

zα+1

α + 1
, so G−1(z)= [

(α + 1)z
] 1
α+1 T

θ
α+1 .

Existence of a solution to (3.39) is now guaranteed from Theorem 3.7.
Case (ii). −1< θ < 0.
We will apply Theorem 3.7 with

n0 = 1, q = tθ , g(y)= y−α, h(y)= T −θ [
yβ +A

]
,

together with

ρn =
(
T θ

n

)1/α

and k0 = 1.

Clearly (3.10), (3.11) and (3.38) (as in Case (i)) hold. Also for n ∈ {1,2, . . .}, T

2n+1 � t � T

and 0< y � ρn we have

q(t)f (t, y)� tθ y−α � T θ

ραn
= n� 1,

so (3.32) is satisfied. Existence of a solution to (3.39) is now guaranteed from Theorem 3.7.

EXAMPLE 3.2. The initial value problem{
y ′ = tθ y−α + yβ −A, 0< t < T (<∞),

y(0)= 0

with θ >−1, α > 0, β > 0 and A> 0 has a solution y ∈C[0, T ] ∩C1(0, T ] with y(t) > 0
for t ∈ (0, T ] if (3.40) holds.

The proof is essentially the same as in Example 3.1 with

ρn =
(

T θ

2(n+1)θ (A+ 1)

)1/α

if θ � 0
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and

ρn =
(

T θ

n(A+ 1)

)1/α

if − 1< θ < 0.

EXAMPLE 3.3. The initial value problem{
y ′ = tθ

(
y−α + yβ +A

)
, 0< t < T (<∞),

y(0)= 0

with θ >−1, α > 0, β > 0 and A> 0 has a solution y ∈ C[0, T ] ∩C1(0, T ] with y(t) > 0
for t ∈ (0, T ] if

T θ+1

θ + 1
<

∫ ∞

0

ds

1 + [(α + 1)s] β+α
α+1 +A[(α+ 1)s] α

α+1

.

Apply Theorem 3.7 with

q = tθ , g(y)= y−α and h(y)= yβ +A.
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Introduction

The premises of the lower and upper solutions method can be traced back to Picard. In
1890 for partial differential equations [79] and in 1893 for ordinary differential equations
[80], he introduced monotone iterations from a lower solution. This is the starting point of
the use of lower and upper solutions in connection with monotone methods.

Independently, some of the basic ideas of the method appeared in the study of first order
Cauchy problems made in 1915 by Perron [78] and in its extension to systems worked by
Müller [72] in 1926. These authors deduced existence of solutions together with their local-
ization between lower and upper solutions, i.e., ordered functions that satisfy differential
inequalities. A good account of this theory can be found in Szarski [100] or Walter [101].
This approach is however limited to the Cauchy problem.

The major breakthrough was due to Scorza Dragoni in 1931. In two successive pa-
pers [94] and [95], this author introduced lower and upper solutions for the boundary value
problem

u′′ = f (t, u,u′), u(a)= A, u(b)= B,

i.e., he considered functions α, β ∈ C2([a, b]) such that α � β and

α′′ � f (t, α,α′), α(a)�A, α(b)� B,

β ′′ � f (t, β,β ′), β(a)�A, β(b)� B.

As for the Cauchy problem, he proved existence of a solution u and its localization between
the lower and the upper solutions

α � u� β.

Section 1 describes the present evolution of these basic ideas.
In 1972, Amann [5] associated a degree to a pair of strict lower and upper solutions. The

introduction of degree theory was essential to deal with a larger class of problems such as
multiplicity results. An outline of this approach is given in Section 2.

Another important step was due independently to Chang [17,18] and de Figueiredo and
Solimini [38]. In 1983 and 1984 respectively, they pointed out that between lower and
upper solutions the related functional has a critical point which is a minimum. This was
the starting point of results relating lower and upper solutions with the variational method.
Section 3 presents basic results in this direction.

Recent results that extend the old idea of Picard to use lower and upper solutions with
monotone methods are discussed in Section 4.

Throughout the paper we consider two basic problems, the periodic problem

u′′ = f (t, u,u′), u(a)= u(b), u′(a)= u′(b), (0.1)

and the Dirichlet problem

u′′ = f (t, u,u′), u(a)= 0, u(b)= 0. (0.2)
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Although the method applies to a larger class of boundary value problems, we restrict
attention to these two, in order to keep our work within a reasonable length. We also choose
to describe only basic results and to select a small number of applications. A more thorough
description of the method will appear in [33].

The type of nonlinearities f :D ⊂ [a, b] × Rn → R (n = 1 or 2) we consider are
Carathéodory functions, which means they satisfy the Carathéodory conditions:

(a) for a.e. t ∈ [a, b], the function f (t, ·) with domain {z ∈ Rn | (t, z) ∈D} is continu-
ous;

(b) for all z ∈ Rn, the function f (· , z) with domain {t ∈ [a, b] | (t, z) ∈D} is measur-
able.

If further, for some p ∈ [1,∞], the Carathéodory function f satisfies
(c) for all r > 0, there exists h ∈ Lp(a, b) such that for all (t, z) ∈ D with |z| � r ,

|f (t, z)| � h(t),
we say that f is an Lp-Carathéodory function or that it satisfies an Lp-Carathéodory con-
dition. The lower and upper solution method was first developed for continuous nonlin-
earities. The generalization to Lp-Carathéodory function is by no means trivial and brings
a better understanding of the fundamentals of the method. This is why we adopted this
framework as long as it does not imply an overwhelming technicality.

In this paper, we use the following notations:
C([a, b]) is the set of continuous functions u : [a, b]→ R;
C0([a, b]) is the set of functions u ∈ C([a, b]), so that u(a)= 0, u(b)= 0;
C1([a, b]) is the set of differentiable functions u : [a, b]→ R so that u′ ∈ C([a, b]);
C1

0 ([a, b]) is the set of functions u ∈ C1([a, b]), so that u(a)= 0, u(b)= 0;
L2(a, b) is the set of measurable functions u : [a, b]→ R such that

‖u‖L2 =
[∫ b

a

∣∣u(t)∣∣2 dt

]1/2

∈ R;

H 1
0 (a, b) is the set of functions u ∈ C0([a, b]), with a weak derivative u′ ∈L2(a, b);

W 2,1(a, b) is the set of functions u ∈ C1([a, b]), with a weak second derivative u′′ ∈
L1(a, b);
given α and β ∈ C([a, b]), we write α � β if α(t)� β(t) for all t ∈ [a, b];
given α and β ∈ C([a, b]), we define [α,β] = {u ∈ C([a, b]) | α � u� β};
N0 = N \ {0}, R0 = R \ {0}.
Given u ∈ C([a, b]), we define the Dini derivatives

D+u(t)= lim inf
h→0+

u(t + h)− u(t)

h
, D+u(t)= lim sup

h→0+

u(t + h)− u(t)

h
,

D−u(t)= lim inf
h→0−

u(t + h)− u(t)

h
, D−u(t)= lim sup

h→0−

u(t + h)− u(t)

h
.

Considering a function u : [a, b]→ R, its periodic extension on R is the function u : R → R
defined from u(t)≡ u(t + b− a).
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1. Well ordered lower and upper solutions

1.1. A derivative independent periodic problem

Consider the derivative independent periodic problem

u′′ = f (t, u), u(a)= u(b), u′(a)= u′(b), (1.1)

where f is an L1-Carathéodory function. Solutions of (1.1) are in W 2,1(a, b) so that it is
natural to look for lower and upper solutions which are in this space or at least which are
piecewise W 2,1. This motivates the definitions we present here. To simplify the notations,
we extend f (t, u) by periodicity, i.e., f (t, u)= f (t + b− a,u) for all (t, u) ∈ R2.

DEFINITIONS 1.1. A function α ∈ C([a, b]) such that α(a) = α(b) is a lower solution
of (1.1) if its periodic extension on R is such that for any t0 ∈ R eitherD−α(t0) < D+α(t0),
or there exists an open interval I0 such that t0 ∈ I0, α ∈W 2,1(I0) and, for a.e. t ∈ I0,

α′′(t)� f
(
t, α(t)

)
.

A function β ∈ C([a, b]) such that β(a)= β(b) is an upper solution of (1.1) if its peri-
odic extension on R is such that for any t0 ∈ R either D−β(t0) > D+β(t0), or there exists
an open interval I0 such that t0 ∈ I0, β ∈W 2,1(I0) and, for a.e. t ∈ I0,

β ′′(t)� f
(
t, β(t)

)
.

Notice that the conditionD−α(t0) < D+α(t0) cannot hold for all t0 ∈ [a, b]. In practical
problems it only holds at a finite number of points. Further the “natural” lower and upper
solutions are often more regular than needed in Definitions 1.1. For example, a lower so-
lution α will often be produced as the solution of some auxiliary problem so that it will be
in W 2,1(a, b) and satisfy for a.e. t ∈ [a, b]

α′′(t)� f
(
t, α(t)

)
, α(a)= α(b), α′(a)� α′(b).

The following theorem is the basic existence result of the lower and upper solutions
method for solutions of the periodic problem (1.1).

THEOREM 1.1. Let α and β be lower and upper solutions of (1.1) such that α � β ,

E = {
(t, u) ∈ [a, b] × R | α(t)� u� β(t)

}
(1.2)

and f :E → R be an L1-Carathéodory function. Then the problem (1.1) has at least one
solution u ∈W 2,1(a, b) such that for all t ∈ [a, b]

α(t)� u(t)� β(t).
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PROOF. We consider the modified problem

u′′ − u= f
(
t, γ (t, u)

) − γ (t, u), u(a)= u(b), u′(a)= u′(b), (1.3)

where

γ (t, u)= max
{
α(t),min

{
u,β(t)

}}
. (1.4)

Claim 1. The problem (1.3) has at least one solution. Let us write (1.3) as an integral
equation

u(t)=
∫ b

a

G(t, s)
[
f

(
s, γ

(
s, u(s)

)) − γ
(
s, u(s)

)]
ds,

where G(t, s) is the Green’s function corresponding to the problem

u′′ − u= f (t), u(a)= u(b), u′(a)= u′(b). (1.5)

The operator

T :C
([a, b]) → C

([a, b]),
defined by

(T u)(t)=
∫ b

a

G(t, s)
[
f

(
s, γ

(
s, u(s)

)) − γ
(
s, u(s)

)]
ds,

is completely continuous and bounded. By Schauder’s theorem, T has a fixed point which
is a solution of (1.3).

Claim 2. All solutions u of (1.3) satisfy on [a, b]

α(t)� u(t)� β(t).

Let us assume on the contrary that, for some t0 ∈ [a, b]

min
t

(
u(t)− α(t)

) = u(t0)− α(t0) < 0.

Extending the functions by periodicity, we have then

u′(t0)−D−α(t0)� 0 � u′(t0)−D+α(t0)

and by definition of a lower solution u′(t0) − α′(t0) = 0. Further, there exists an open
interval I0, with t0 ∈ I0, α ∈W 2,1(I0) and for almost every t ∈ I0

α′′(t)� f
(
t, α(t)

)
.
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Hence, for t � t0, near enough t0,

u′(t)− α′(t) =
∫ t

t0

(
u′′(s)− α′′(s)

)
ds

�
∫ t

t0

[
f

(
s,α(s)

) + u(s)− α(s)− f
(
s,α(s)

)]
ds < 0.

This proves u(t0)− α(t0) is not a minimum of u− α which is a contradiction. A similar
argument holds to prove u� β . �

Theorem 1.1 furnishes two kinds of information. It is an existence result but it gives also
a localization of the solution. In the following example, such a localization provides an
asymptotic estimate on the solution.

EXAMPLE 1.1. Consider the problem

εu′′ = (
u− |t|)3

, u(−1)= u(1), u′(−1)= u′(1),

where ε > 0 is a parameter. Let k = εp with p ∈ ]0,1/4[,

α(t)= 1 −
√
(|t| − 1)2 + k2 and β(t)=

√
t2 + k2.

If ε is small enough, these functions are lower and upper solutions and we deduce from
Theorem 1.1 the existence of a solution u such that α(t) � u(t) � β(t) on [−1,1]. This
implies an asymptotic estimate

u(t)= |t| + O
(
εp

)
.

Notice also that in this example β ′(−1) �= β ′(1) and α is not differentiable at t = 0.

Another illustration of Theorem 1.1 is the following.

EXAMPLE 1.2. Consider the problem

u′′ = 1√
t
u2 + q(t), u(0)= u(2π), u′(0)= u′(2π),

where q ∈ L1(0,2π) is such that

q̄ + (2π)3/2‖q̃‖2
L1 � 0,

with q̄ = 1
2π

∫ 2π
0 q(t)dt and q̃(t)= q(t)− q̄ .
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Let us prove this problem has a solution u. We define w to be a solution of

w′′ = q̃(t), w(0)=w(2π), w′(0)=w′(2π),

and α(t)=w(t)−w(0). Hence, we have ‖α′‖∞ � ‖q̃‖L1 and for all t ∈ [0,2π], |α(t)| �
‖q̃‖L1 t . We compute then

α′′ − 1√
t
α2 − q(t)� − 1√

t
‖q̃‖2

L1 t
2 − q̄ � −‖q̃‖2

L1(2π)
3/2 − q̄ � 0,

which proves α(t) is a lower solution. If c is a large enough positive constant then β(t)=
α(t)+ c � α(t) is an upper solution and existence of a solution follows from Theorem 1.1.

REMARK. Theorem 1.1 depends strongly on the ordering α � β . In case this ordering is
not satisfied, the result does not hold as such. Consider for example the following problem.

EXAMPLE 1.3. From Fredholm alternative, it is clear that the problem

u′′ + u= sin t, u(0)= u(2π), u′(0)= u′(2π)

has no solution. However

α(t)= 1 and β(t)= −1

are lower and upper solutions.

REMARK. Another remark of the same type is that the result is no longer true if we allow
for α angles with opening from below. This is the case in the following example.

EXAMPLE 1.4. Consider the problem

u′′ = 1, u(−1)= u(1), u′(−1)= u′(1).

It has no solution although α(t) = t2 − 1 is almost a lower solution (i.e., α′′(t) = 2 > 1,
α(−1)= α(1)), β(t)= 1 is an upper solution (β ′′(t)� 1, β(−1)= β(1), β ′(−1)= β ′(1))
and α(t) < β(t). Clearly, Theorem 1.1 does not apply here since D−α(1) > D+α(1) =
D+α(−1) which means that α is not a lower solution.

In applications it is often useful to use the maximum of lower solutions and the minimum
of upper solutions. Although it is probably true, it is not obvious with our definition that
such functions are lower and upper solutions. However, we can prove the existence of
solutions between such maximum and minimum.

THEOREM 1.2. Let αi (i = 1, . . . , n) be lower solutions and βj (j = 1, . . . ,m) be upper
solutions of (1.1), α := max1�i�n αi and β := min1�j�m βj be such that α � β . Define E
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from (1.2) and let f :E → R be an L1-Carathéodory function. Then the problem (1.1) has
at least one solution u ∈W 2,1(a, b) such that for all t ∈ [a, b]

α(t)� u(t)� β(t).

PROOF. Consider the modified problem

u′′ − u= f̄ (t, u)− γ (t, u), u(a)= u(b), u′(a)= u′(b), (1.6)

where γ (t, u) is defined in (1.4) and

f̄ (t, u)=

⎧⎪⎨⎪⎩
min1�i�n f

(
t,max

{
αi(t), u

})
, if u� α(t),

f (t, u), if α(t) < u < β(t),

max1�j�m f
(
t,min

{
βj (t), u

})
, if β(t)� u.

First, we prove as in Theorem 1.1 that problem (1.6) has a solution. Let us show next that

α(t)� u(t)� β(t)

on [a, b]. Extend α and u by periodicity and assume by contradiction that mint (u(t) −
α(t)) < 0. It follows that, for some t0 and i ∈ {1, . . . , n}, we have mint (u(t) − α(t)) =
u(t0) − αi(t0) = mint (u(t) − αi(t)) < 0. A contradiction follows now as in the proof of
Theorem 1.1. Finally, u� β follows from the same argument. �

The next result concerns existence of minimal and maximal solutions between lower and
upper solutions.

THEOREM 1.3. Let α and β be lower and upper solutions of (1.1) such that α � β . De-
fine E from (1.2) and let f :E→ R satisfy an L1-Carathéodory condition. Then the prob-
lem (1.1) has a minimal and a maximal solution in [α,β], i.e., solutions umin and umax
such that

α � umin � umax � β

and any other solution u of (1.1) with α � u� β satisfies

umin � u� umax.

PROOF. Notice first that solutions of (1.1) are fixed points of the operator

T :C
([a, b]) → C

([a, b])
defined by

(T u)(t)=
∫ b

a

G(t, s)
[
f

(
s, u(s)

) − u(s)
]

ds,
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where G(t, s) is the Green’s function of (1.5). Define then the set

S = {u | u= T u, α � u� β}.

From Theorem 1.1, S �= ∅. Further S is compact as T is completely continuous. Consider
next the family of sets

Fx = {u ∈ S | u� x},

where x ∈ S. This family has the finite intersection property as follows from Theorem 1.2.
Hence, it is known (see [60, Theorem 5.1]) that there exists

umin ∈
⋂
x∈S

Fx,

which is a minimal solution.
Similarly, we prove existence of a maximal solution. �

The structure of the set of solutions is richer if f is nondecreasing with respect to u. In
such a case, we have a continuum of solutions as follows from the following theorem.

THEOREM 1.4. Assume the hypotheses of Theorem 1.3 hold and f is nondecreasing with
respect to u. Then the set of solutions u of (1.1) with umin � u� umax is such that for any
t0 ∈ [a, b] and u∗ ∈ [umin(t0), umax(t0)] there exists one of them with u(t0)= u∗.

PROOF. Let t0 ∈ [a, b] and u∗ be such that umin(t0)� u∗ � umax(t0). Choose ε > 0 large
enough so that umax − ε � umin + ε and define

α1(t)= max
{
umin(t), umax(t)− ε

}
, β1(t)= min

{
umax(t), umin(t)+ ε

}
.

Observe that umax − ε and umin + ε are respectively lower and upper solutions of (1.1). By
Theorem 1.2, the problem (1.1) has a solution u1 such that, for all t ∈ [a, b],

umin(t)� u1(t)� umin(t)+ ε, umax(t)− ε � u1(t)� umax(t).

In case u∗ ∈ [umin(t0), u1(t0)] we define

α2(t)= max
{
umin(t), u1(t)− ε/2

}
, β2(t)= min

{
u1(t), umin(t)+ ε/2

}
and obtain from Theorem 1.2 a solution u2 such that on [a, b]

umin(t)� u2(t)� umin(t)+ ε/2, u1(t)− ε/2 � u2(t)� u1(t).

If u∗ ∈ ]u1(t0), umax(t0)], we proceed in a similar way. This defines a sequence of solutions
(uk)k that satisfies |uk(t0)− u∗| � ε/2k−1. Next, from Arzelà–Ascoli theorem, there is a
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subsequence (ukn)n such that, for some u ∈ C([a, b]), ukn converges to u in C([a, b]). It
follows then that u is a solution of (1.1). Further, we have u(t0)= limn→∞ ukn(t0)= u∗. �

Existence of a continuum of solutions depends strongly on the nondecreasingness of f .
Such a continuum does not exist in the following example.

EXAMPLE 1.5. Consider the problem

u′′ = u3 − u2,

u(0)= u(T ), u′(0)= u′(T ).

Notice first that α(t)= −2 and β(t)= 2 are lower and upper solutions. Also, it is straight-
forward from a phase plane analysis that this problem has only two solutions, u1 = 0 and
u2 = 1, which are between α and β .

Notice also that solutions between lower and upper solutions are not necessarily ordered
as shown in the example that follows.

EXAMPLE 1.6. The piecewise linear problem

u′′ = min
{
u+ 2,max

{−u,u− 2
}}
,

u(0)= u(2π), u′(0)= u′(2π),

is such that u1(t) = sin t and u2(t) = − sin t are nonordered solutions which lie between
the lower solution α(t)= −3 and the upper one β(t)= 3. In this problem, it follows from
the phase plane analysis that the minimal and maximal solutions are respectively umin(t)=
−2 and umax(t)= 2.

1.2. A priori bounds on the derivatives

Consider the problem

u′′ = f (t, u,u′), u(a)= u(b), u′(a)= u′(b). (1.7)

Here the Nemitskii operator reads N(u) := f ( · , u,u′) and therefore the fixed point prob-
lem associated to (1.7) is defined now on C1([a, b]). Lower and upper solutions will give
a priori bounds on u. In order to apply the Schauder Fixed Point theorem or degree theory
we shall also need a priori bounds on the derivative u′. In some cases, the special structure
of the nonlinearity f gives this information. In others, this follows from a Nagumo con-
dition. The following example shows that in any case some condition is necessary since
the existence of solutions does not follow from the existence of ordered lower and upper
solutions.
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EXAMPLE 1.7. Consider the problem

u′′ = (
1 + u′2)2(

u− p(t)
)
, u(0)= u(T ), u′(0)= u′(T ), (1.8)

where p is a continuous function such that p(t) = 2 on [0, T /3[, p(t) ∈ [−2,2] on
[T/3,2T/3[ and p(t) = −2 on [2T/3, T ]. For such a problem we define lower and up-
per solutions from Definitions 1.2 below. It follows that α = −3 is a lower solution and
β = 3 an upper one. However, it can be proved using elementary methods that if T > 0 is
large enough, (1.8) has no solution (see [33,50]).

To illustrate how a priori bounds on the derivative can follow from the structure of the
equation, consider the periodic problem for a Rayleigh equation

u′′ + g(u′)+ h(t, u)= 0, u(a)= u(b), u′(a)= u′(b). (1.9)

PROPOSITION 1.5. Let h : [a, b]× [−r, r] → R be a Carathéodory function such that for
some h0 ∈ L2(a, b), for a.e. t ∈ [a, b] and all u ∈ [−r, r], we have |h(t, u)| � h0(t). Then
there exists R > 0 such that for every function g ∈ C(R), any solution u of (1.9) with
‖u‖∞ � r satisfies ‖u′‖∞ <R.

PROOF. Define R := √
b− a ‖h0‖L2 + 1 > 0. Let then g ∈ C(R) be given and u be a

solution of (1.9) with ‖u‖∞ � r . Multiplying (1.9) by u′′ and integrating we obtain

‖u′′‖2
L2 = −

∫ b

a

g
(
u′(t)

)
u′′(t)dt −

∫ b

a

h
(
t, u(t)

)
u′′(t)dt � ‖h0‖L2‖u′′‖L2 .

Now it is easy to see that for some t0 ∈ [a, b], u′(t0)= 0 so that for all t ∈ [a, b]
∣∣u′(t)

∣∣= ∣∣∣∣∫ t

t0

u′′(s)ds

∣∣∣∣ �
√
b− a ‖h0‖L2 <R.

�

In case the equation does not have any special structure, a priori bounds on the derivative
can still be obtained for nonlinearities which do not grow too quickly with respect to the
derivative. For continuous functions, Nagumo conditions describe such a control. A typical
result is the following.

PROPOSITION 1.6. Let E ⊂ [a, b] × [−r, r] × R and let ϕ̄ : R+ → R+
0 be a continuous

function that satisfies∫ ∞

0

s ds

ϕ̄(s)
= +∞. (1.10)

Then there exists R > 0 such that for every continuous function f :E→ R that satisfies

∀(t, u, v) ∈E, ∣∣f (t, u, v)∣∣ � ϕ̄
(|v|) (1.11)
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and every solution u of

u′′ = f (t, u,u′) (1.12)

such that ‖u‖∞ � r , we have ‖u′‖∞ <R.

REMARK. A function f :E→ R is said to satisfy a Nagumo condition if (1.11) holds.

PROOF. Define R > 0 to be such that∫ R

2r/(b−a)
s ds

ϕ̄(s)
> 2r (1.13)

and let u be a solution of (1.12) such that (t, u(t), u′(t)) ∈E on [a, b]. Observe that there
exists τ ∈ [a, b] with |u′(τ )| � 2r/(b−a). Assume now there exists an interval I = [t0, t1]
(or [t1, t0]) such that u′(t0)= 2r/(b− a), u′(t1)=R and u′(t) ∈ [2r/(b− a),R] on I . We
have then ∫ u′(t1)

u′(t0)

s ds

ϕ̄(s)
=

∫ t1

t0

u′(t)u′′(t)
ϕ̄(u′(t))

dt =
∫ t1

t0

u′(t)f (t, u(t), u′(t))
ϕ̄(u′(t))

dt

�
∣∣u(t1)− u(t0)

∣∣ � 2r,

which contradicts (1.13).
In the same way, we prove that, for any t ∈ [a, b], u′(t) >−R and the result follows. �

REMARKS. In the above proof we do not use the divergence of the integral in (1.10) but
rather the fact that for some R > 0,∫ R

2r
b−a

s ds

ϕ̄(s)
> 2r.

In case ϕ(s)= 1 + sp , condition (1.10) implies that p � 2. However this condition still
holds if ϕ(s)= s2 ln(s2 + 1)+ 1.

A fundamental generalization of this result concerns one-sided Nagumo conditions. This
applies to problems where some a priori bound on the derivative of solutions is known at
the points a and b. For the periodic problem we can extend the solution by periodicity and
consider an interval [ā, ā + b− a] so that u′(ā)= u′(ā + b− a)= 0.

PROPOSITION 1.7. Let E ⊂ [ā, b̄]× [−r, r]× R, k � 0 and let ϕ̄ : R+ → R+
0 be a contin-

uous function that satisfies (1.10). Then there exists R > 0 such that for every continuous
function f :E → R that satisfies

∀(t, u, v) ∈E, f (t, u, v)� ϕ̄
(|v|) (1.14)
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and for every solution u of (1.12) on [ā, b̄] such that ‖u‖∞ � r , u′(ā)� k and u′(b̄)� −k,
we have ‖u′‖∞ <R.

PROOF. The proof follows the argument of the proof of Proposition 1.6. �

REMARK. Condition (1.14) is called a one-sided Nagumo condition.

The above result still holds for other such conditions. We can consider any of the fol-
lowing:

(a) f (t, u, v)� −ϕ̄(|v|) for all (t, u, v) ∈E, u′(ā)� −k and u′(b̄)� k;
(b) sgn(v)f (t, u, v)� ϕ̄(|v|) for all (t, u, v) ∈E and |u′(ā)| � k;
(c) sgn(v)f (t, u, v)� −ϕ̄(|v|) for all (t, u, v) ∈E and |u′(b̄)| � k.

Such assumptions apply for problems of the type

u′′ ± (2 + sin t)(u′)m + h(t, u)= 0, u(a)= u(b), u′(a)= u′(b),

with m� 0.
The Nagumo condition implies the function f at hand is L∞-Carathéodory. Hence this

condition has to be extended so as to deal with Lp-Carathéodory functions which are not
L∞-Carathéodory.

PROPOSITION 1.8. Let E ⊂ [a, b] × [−r, r] × R, p, q ∈ [1,∞] with 1
p

+ 1
q

= 1 and

ψ̄ ∈Lp(a, b). Let also ϕ̄ : R+ → R+
0 be a continuous function that satisfies

∫ +∞

0

s1/q

ϕ̄(s)
ds = +∞. (1.15)

Then, there exists R > 0 so that for every Carathéodory function f :E → R such that

for a.e. t ∈ [a, b] and all (u, v) ∈ R2, with (t, u, v) ∈E,∣∣f (t, u, v)∣∣ � ψ̄(t)ϕ̄
(|v|), (1.16)

and for every solution u of (1.12) such that ‖u‖∞ � r , we have

‖u′‖∞ <R.

PROOF. Define R > 0 to be such that∫ R

2r/(b−a)
s1/q

ϕ̄(s)
ds > ‖ψ̄‖Lp(2r)1/q.

Let u be a solution of (1.12) and t ∈ [a, b] be such that u′(t)�R. We can choose, as in the
proof of Proposition 1.6, t0 < t1 (or t0 > t1) such that u′(t0)= 2r/(b− a), u′(t1)= R and
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u′(t) ∈ [2r/(b− a),R] on [t0, t1] (or [t1, t0]). Next, we write∫ u′(t1)

u′(t0)

s1/q

ϕ̄(s)
ds =

∫ t1

t0

(u′)1/q(t)u′′(t)
ϕ̄(u′(t))

dt

=
∫ t1

t0

(u′)1/q(t)f (t, u(t), u′(t))
ϕ̄(u′(t))

dt

�
∣∣∣∣∫ t1

t0

ψ̄(t)(u′)1/q(t)dt

∣∣∣∣ � ‖ψ̄‖Lp
∣∣∣∣∫ t1

t0

u′(t)dt

∣∣∣∣1/q

� ‖ψ̄‖Lp(2r)1/q.
We obtain a contradiction and deduce that u′(t) < R on [a, b]. In the same way we prove
that u′(t) >−R on [a, b]. �

Assumption (1.16) is a Nagumo condition. Similar one-sided conditions can also be
worked out for the Carathéodory case.

PROPOSITION 1.9. LetE ⊂ [ā, b̄]×[−r, r]×R, k � 0, p, q ∈ [1,∞] with 1
p

+ 1
q

= 1 and

ψ̄ ∈ Lp(a, b). Let also ϕ̄ : R+ → R+
0 be a continuous function that satisfies (1.15). Then,

there exists R > 0 so that for every Lp-Carathéodory function f :E → R such that

for a.e. t ∈ [a, b] and all (u, v) ∈ R2, with (t, u, v) ∈E,
f (t, u, v)� ψ̄(t)ϕ̄

(|v|), (1.17)

and for every solution u of (1.12) such that ‖u‖∞ � r , u′(ā)� k and u′(b̄)� −k, we have

‖u′‖∞ <R.

PROOF. The proof follows the line of the proof of Proposition 1.8. �

REMARK. Similar results hold for the other one-sided Nagumo conditions as in the remark
following Proposition 1.7.

1.3. Derivative dependent periodic problems

Definitions of lower and upper solutions for the periodic problem (1.7) are straightforward
extensions of Definitions 1.1.

DEFINITIONS 1.2. A function α ∈ C([a, b]) such that α(a) = α(b) is a lower solution
of (1.7) if its periodic extension on R is such that for any t0 ∈ R eitherD−α(t0) < D+α(t0),
or there exists an open interval I0 such that t0 ∈ I0, α ∈W 2,1(I0) and, for a.e. t ∈ I0,

α′′(t)� f
(
t, α(t), α′(t)

)
.
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A function β ∈ C([a, b]) such that β(a)= β(b) is an upper solution of (1.7) if its peri-
odic extension on R is such that for any t0 ∈ R either D−β(t0) > D+β(t0), or there exists
an open interval I0 such that t0 ∈ I0, β ∈W 2,1(I0) and, for a.e. t ∈ I0,

β ′′(t)� f
(
t, β(t), β ′(t)

)
.

As a first result we consider periodic solutions of the Rayleigh equation.

THEOREM 1.10. Let α, β ∈ C([a, b]) be lower and upper solutions of the problem (1.9)
such that α � β . Let E be defined by (1.2), g ∈ C(R) and let h :E → R be an L2-
Carathéodory function. Then problem (1.9) has at least one solution u ∈W 2,2(a, b) such
that for all t ∈ [a, b]

α(t)� u(t)� β(t).

PROOF. Consider the family of modified problems

u′′ −C(t)u= −[
λg(u′)+ h

(
t, γ (t, u)

) +C(t)γ (t, u)
]
,

u(a)= u(b), u′(a)= u′(b),
(1.18)

where γ (t, u) is defined from (1.4), C ∈ L1(a, b) is chosen such that C(t) > |g(0)| + 1 +
|h(t, u)| for (t, u) ∈E and λ ∈ [0,1].

Claim 1. Define ρ = max{‖α‖∞,‖β‖∞} + 1. Then every solution u of (1.18) satisfies
‖u‖∞ < ρ. Let us assume on the contrary that for some t0 ∈ R

min
t
u(t)= u(t0)� −ρ.

Hence u′(t0)= 0 and we compute for t � t0 close enough to t0

u′(t) =
∫ t

t0

u′′(s)ds

�
∫ t

t0

[
C(s)

(
u(s)− α(s)

) − λg
(
u′(s)

) − h
(
s,α(s)

)]
ds

� −
∫ t

t0

[
C(s)− ∣∣g(

u′(s)
)∣∣ − h

(
s,α(s)

)]
ds < 0.

This proves that u(t0) is not a minimum of u which is a contradiction. A similar argument
holds to prove that u� ρ.

Claim 2. There exists R > 0 such that every solution u of (1.18) with ‖u‖∞ < ρ satisfies
‖u′‖∞ <R. The proof follows the argument in Proposition 1.5.

Claim 3. There exists a solution u of (1.18) with λ = 1. Define the operator
Tλ :C1([a, b])→ C1([a, b]) by

Tλ(u)= −
∫ b

a

G(t, s)
[
λg

(
u′(s)

) + h
(
s, γ

(
s, u(s)

)) +C(s)γ
(
s, u(s)

)]
ds,
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where G(t, s) is the Green’s function of

u′′ −C(t)u= f (t),

u(a)= u(b), u′(a)= u′(b).

Observe that there exists R0 > 0 such that T0(C1([a, b]))⊂ B(0,R0). Hence,

deg
(
I − T0,B(0,R0)

) = 1

and by the properties of the degree, we prove easily that (1.18) with λ= 1 has a solution.
Claim 4. The solution u of (1.18) with λ = 1 is such that α(t) � u(t)� β(t) on [a, b].

Extend α and u by periodicity. Let t0 ∈ [a, b[ be such that

u(t0)− α(t0)= min
t

(
u(t)− α(t)

)
< 0.

From the definition of lower solution there exists an open interval I0 such that t0 ∈ I0,
α ∈W 2,1(I0) and, for a.e. t ∈ I0,

α′′(t)+ g
(
α′(t)

) + h
(
t, α(t)

)
� 0.

Further, for t � t0 near enough t0, we compute

u′(t)− α′(t) =
∫ t

t0

(
u′′(s)− α′′(s)

)
ds

�
∫ t

t0

[
g

(
α′(s)

) − g
(
u′(s)

) +C(s)
(
u(s)− α(s)

)]
ds < 0,

which follows as g(α′(s))− g(u′(s)) is small and C(s)(α(s) − u(s)) > α(s) − u(s) � k

for some k > 0. This contradicts the minimality of u− α at t0.
In a similar way we prove that u� β . Hence u is also a solution of (1.18). �

A similar result is easy to work out for the general problem (1.7) in case a one-sided
Nagumo condition is satisfied. Here we work the case of a continuous function f . The key
of the proof of this generalization is to use an appropriate modified problem.

THEOREM 1.11. Let α, β ∈ C([a, b]) be lower and upper solutions of the problem (1.7)
such that α � β . Let

E = {
(t, u, v) ∈ [a, b] × R2 | α(t)� u� β(t)

}
, (1.19)

ϕ : R+ → R be a positive continuous function satisfying (1.10) and f :E → R a continu-
ous function which satisfies the one-sided Nagumo condition (1.14) (with ϕ̄ = ϕ). Then the
problem (1.7) has at least one solution u ∈ C2([a, b]) such that for all t ∈ [a, b]

α(t)� u(t)� β(t).
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PROOF. Consider the modified problem

u′′ = λf
(
t, γ (t, u), u′) + ϕ

(|u′|)(
u− λγ (t, u)

)
,

u(a)= u(b), u′(a)= u′(b),
(1.20)

where γ (t, u) is defined by (1.4). Choose r > 0 such that

−r < α(t)� β(t) < r,

f
(
t, α(t),0

) + ϕ(0)
(−r − α(t)

)
< 0,

f
(
t, β(t),0

) + ϕ(0)
(
r − β(t)

)
> 0.

Claim 1. Every solution u of (1.20) with λ ∈ [0,1] is such that −r < u(t) < r . Assume
there exists t0 such that u(t0)= mint u(t)� −r . This leads to a contradiction since then

0 � u′′(t0)= λ
[
f

(
t0, α(t0),0

) + ϕ(0)
(
u(t0)− α(t0)

)] + (1 − λ)ϕ(0)u(t0) < 0.

Similarly, we prove that u(t) < r .
Claim 2. There exists R > 0 such that every solution u of (1.20) with λ ∈ [0,1] satisfies

‖u′‖∞ <R. The claim follows choosing R > 0 from Proposition 1.7, where ϕ̄(v)= (1 +
2r)ϕ(v), k = 0 and ā is such that u′(ā)= u′(ā + b− a)= 0.

Claim 3. Existence of solutions of (1.20) for λ= 1. Let us define the operators

L : DomL⊂ C1([a, b]) → C
([a, b]) :u→ u′′ − u,

Nλ :C1([a, b]) → C
([a, b]) :u→ λf

(
t, γ (t, u), u′) + ϕ

(|u′|)(
u− λγ (t, u)

) − u,

where DomL= {u ∈ C2([a, b]) | u(a)= u(b), u′(a)= u′(b)}. Observe that L has a com-
pact inverse. Hence, we can define the completely continuous operator

Tλ(u)= L−1Nλ(u).

From degree theory, we have that

deg(T0,Ω)= deg(T1,Ω),

where

Ω = {
u ∈ C1([a, b]) | ‖u‖∞ < r, ‖u′‖∞ <R

}
.

Using the Odd Mapping theorem (see [69]), we compute that

deg(T0,Ω) �= 0

and the problem (1.20) with λ= 1 has a solution u.
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Claim 4. The solution u of (1.20) with λ = 1 is such that α � u � β . This claim fol-
lows as the corresponding argument in the proof of Theorem 1.10. As a consequence, u
satisfies (1.7). �

The following theorem considers the case of Lp-Carathéodory nonlinearities.

THEOREM 1.12. Let α and β ∈ C([a, b]) be lower and upper solutions of (1.7) such
that α � β . Define A ⊂ [a, b] (respectively B ⊂ [a, b]) to be the set of points where α
(respectively β) is differentiable. Let p, q ∈ [1,∞] with 1

p
+ 1

q
= 1, ψ ∈ Lp(a, b) and

ϕ ∈ C(R+,R+
0 ) be such that (1.15) holds (with ϕ̄ = ϕ). Let E be defined from (1.19) and

suppose f :E → R is an Lp-Carathéodory function that satisfies the one-sided Nagumo
condition (1.17) (with ϕ̄ = ϕ and ψ̄ = ψ). Assume there exists N ∈ L1(a, b), N > 0, such
that for a.e. t ∈A (respectively for a.e. t ∈ B)

f
(
t, α(t), α′(t)

)
� −N(t) (

respectively f
(
t, β(t), β ′(t)

)
�N(t)

)
. (1.21)

Then the problem (1.7) has at least one solution u ∈W 2,p(a, b) such that for all t ∈ [a, b]
α(t)� u(t)� β(t).

PROOF. The proof proceeds in several steps.
Step 1. The modified problem. Let R > 0 be large enough so that∫ R

0

s1/q

ϕ(s)
ds > ‖ψ‖Lp

(
max
t
β(t)− min

t
α(t)

)1/q
.

Increasing N if necessary, we can assume N(t)� |f (t, u, v)| if t ∈ [a, b], α(t)� u� β(t)

and |v| �R. Define then

f̄ (t, u, v)= max
{
min

{
f

(
t, γ (t, u), v

)
,N(t)

}
,−N(t)},

ω1(t, δ)= χA(t) max
|v|�δ

∣∣f̄ (
t, α(t), α′(t)+ v

) − f̄
(
t, α(t), α′(t)

)∣∣,
ω2(t, δ)= χB(t)max

|v|�δ

∣∣f̄ (
t, β(t), β ′(t)+ v

) − f̄
(
t, β(t), β ′(t)

)∣∣,
where γ is defined from (1.4), χA and χB are the characteristic functions of the sets A
and B . It is clear that ωi are L1-Carathéodory functions, nondecreasing in δ, such that
ωi(t,0)= 0 and |ωi(t, δ)| � 2N(t).

We consider now the modified problem

u′′ − u= f̄ (t, u,u′)−ω(t, u), u(a)= u(b), u′(a)= u′(b), (1.22)

where

ω(t, u)=
⎧⎨⎩β(t)−ω2

(
t, u− β(t)

)
, if u > β(t),

u, if α(t)� u� β(t),
α(t)+ω1

(
t, α(t)− u

)
, if u < α(t).
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Step 2. Existence of a solution of (1.22). This claim follows from Schauder’s theorem.
Step 3. The solution u of (1.22) is such that α � u� β . Let us assume on the contrary

that for some t0 ∈ R

min
t

(
u(t)− α(t)

) = u(t0)− α(t0) < 0.

Then, as in Theorem 1.1, there exists an open interval I0 with t0 ∈ I0, α ∈W 2,1(I0) and,
for a.e. t ∈ I0

α′′(t)� f
(
t, α(t), α′(t)

)
.

Further u′(t0)− α′(t0)= 0 and for t � t0 near enough t0∣∣u′(t)− α′(t)
∣∣ � α(t)− u(t).

As ω1 is nondecreasing and f̄ (t, α(t), α′(t))� f (t, α(t), α′(t)),

u′(t)− α′(t) =
∫ t

t0

(
u′′(s)− α′′(s)

)
ds

�
∫ t

t0

[
f̄

(
s,α(s), u′(s)

) − f̄
(
s,α(s),α′(s)

)
+ u(s)− α(s)−ω1

(
s,α(s)− u(s)

)]
ds < 0.

This proves u(t0)− α(t0) is not a minimum of u− α which is a contradiction.
A similar argument holds to prove u� β .
Step 4. The solution u of (1.22) is such that ‖u′‖∞ < R. Observe that, for all

(t, u, v) ∈E,

max
{
min

{
f (t, u, v),N(t)

}
,−N(t)} �ψ(t)ϕ

(|v|).
From Proposition 1.9, every solution u ∈ [α,β] of (1.22) satisfies

‖u′‖∞ <R.

Hence |f (t, u(t), u′(t))| �N(t) and the function u is a solution of (1.7). �

REMARK. Notice that the condition (1.21) is satisfied in case f does not depend on u′ or
if α, β ∈W 1,∞(a, b).

EXAMPLE 1.8. Existence of a solution to problem

u′′ = 1√
t
|u′|a + u+ t, u(0)= u(1), u′(0)= u′(1),
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where 1 � a < 3/2, follows from Theorem 1.12. Notice that here Theorem 1.11 does not
apply.

1.4. Derivative dependent Dirichlet problem

Dirichlet boundary value problems

u′′ = f (t, u,u′), u(a)= 0, u(b)= 0, (1.23)

can be studied in a similar way. To this end, we adapt accordingly the definitions of lower
and upper solutions.

DEFINITIONS 1.3. A function α ∈ C([a, b]) is a lower solution of (1.23) if
(a) for any t0 ∈ ]a, b[, either D−α(t0) < D+α(t0), or there exists an open interval I0 ⊂

]a, b[ such that t0 ∈ I0, α ∈W 2,1(I0) and, for a.e. t ∈ I0,

α′′(t)� f
(
t, α(t), α′(t)

);
(b) α(a)� 0, α(b)� 0.
A function β ∈ C([a, b]) is an upper solution of (1.23) if
(a) for any t0 ∈ ]a, b[, either D−β(t0) > D+β(t0), or there exists an open interval I0 ⊂

]a, b[ such that t0 ∈ I0, β ∈W 2,1(I0) and, for a.e. t ∈ I0,

β ′′(t)� f
(
t, β(t), β ′(t)

);
(b) β(a)� 0, β(b)� 0.

A typical result is then the following.

THEOREM 1.13. Assume α and β ∈ C([a, b]) are lower and upper solutions of prob-
lem (1.23) such that α � β . Define A ⊂ [a, b] (respectively B ⊂ [a, b]) to be the set
of points where α (respectively β) is derivable. Let p, q ∈ [1,∞] with 1

p
+ 1

q
= 1,

ϕ ∈ C(R+,R+
0 ) and ψ ∈ Lp(a, b) be such that (1.15) holds (with ϕ̄ = ϕ). Let E be de-

fined in (1.19) and suppose f :E → R is an Lp-Carathéodory function that satisfies the
Nagumo condition (1.16) (with ϕ̄ = ϕ and ψ̄ = ψ). Assume there exists N ∈ L1(a, b),
N > 0 such that, for a.e. t ∈A (respectively for a.e. t ∈B),

f
(
t, α(t), α′(t)

)
� −N(t) (

respectively f
(
t, β(t), β ′(t)

)
�N(t)

)
.

Then the problem (1.23) has at least one solution u ∈W 2,p(a, b) such that for all t ∈ [a, b]

α(t)� u(t)� β(t).
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PROOF. The proof of this result follows the lines of the proof of Theorem 1.12 and is left
to the reader as an exercise. �

Notice that a similar result using one-sided Nagumo conditions can be worked out pro-
vided some a priori bound on the derivative of solutions is known at the points a and b
(see Proposition 1.7). These a priori bounds are valid, for example, in case the lower or the
upper solution satisfies the boundary conditions.

1.5. A derivative independent Dirichlet problem

Dirichlet boundary value problems

u′′ = f (t, u), u(a)= 0, u(b)= 0, (1.24)

can be studied for more general nonlinearities than L1-Carathéodory functions. For exam-
ple, the problem

t (1 − t)u′′ = 1, u(0)= 0, u(1)= 0,

has the solution u(t)= t ln t + (1− t) ln(1− t) which is in C0([0,1])∩W 2,1
loc (]0,1[) but not

even in C1([0,1]). This generalizes to the linear problem

u′′ = h(t), u(a)= 0, u(b)= 0. (1.25)

In case

h ∈A := {
h | (s − a)(b− s)h(s) ∈L1(a, b)

}
,

problem (1.25) has one and only one solution in

W 2,A(a, b) := {
u ∈W 1,1(a, b) | u′′ ∈A

} ⊂ C
([a, b]) ∩ C1(]a, b[),

which reads

u(t)=
∫ b

a

G(t, s)h(s)ds,

where G(t, s) is the corresponding Green’s function. Further, we have

‖u‖∞ � 1

b− a
‖h‖A,

where ‖h‖A = ∫ b
a
(s − a)(b− s)

∣∣h(s)∣∣ ds (see [53,33]).
In order to deal with nonlinear problems, we consider A-Carathéodory functions

f :E ⊂ [a, b] × R → R. These are Carathéodory functions such that for any r > 0
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there exists h ∈ A so that for a.e. t ∈ [a, b] and all u ∈ R with (t, u) ∈ E and |u| � r ,
|f (t, u)| � h(t).

Notice that if g : R → R is continuous, the function

f (t, u)= g(u)

t (1 − t)

is an A-Carathéodory function. Observe also that L1(a, b) ⊂ A, so that this definition
generalizes the classical L1-Carathéodory conditions on f .

We can now state the main result for (1.24).

THEOREM 1.14. Assume that α and β are lower and upper solutions of (1.24) such that
α � β . Let E be defined from (1.2) and f :E → R be an A-Carathéodory function. Then
the problem (1.24) has at least one solution u ∈W 2,A(a, b) such that for all t ∈ [a, b]

α(t)� u(t)� β(t).

PROOF. We consider the modified problem

u′′ − u= f
(
t, γ (t, u)

) − γ (t, u), u(a)= 0, u(b)= 0, (1.26)

where γ is defined by (1.4).
Claim 1. The problem (1.26) has at least one solution u ∈W 2,A(a, b). Define the oper-

ator T :C([a, b])→ C([a, b]) given by

(T u)(t)=
∫ b

a

G(t, s)
[
f

(
s, γ

(
s, u(s)

)) − γ
(
s, u(s)

)]
ds,

where G(t, s) is the Green’s function associated with

u′′ − u= f (t), u(a)= 0, u(b)= 0.

We can prove that T is completely continuous and bounded (see [53,33]). Hence by
Schauder Fixed Point theorem, T has a fixed point u which is a solution of (1.26)
in W 2,A(a, b).

Claim 2. Any solution u of (1.26) satisfies α � u� β . Observe first that α(a)� u(a)�
β(a) and α(b)� u(b)� β(b). Next, we argue as in Theorem 1.1 to obtain the result.

Conclusion. From Claim 2, the function u, solution of (1.26), solves (1.24). �

In the definition of A-Carathéodory functions, the condition h ∈A is used to insure∥∥∥∥∫ b

a

G( · , s)h(s)ds

∥∥∥∥∞
<+∞ and

∫ b

a

∣∣∣∣∂G∂t ( · , s)
∣∣∣∣h(s)ds ∈L1(a, b).
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EXAMPLE 1.9. Consider the boundary value problem

u′′ + |u|1/2 − 1

t
= 0, u(0)= 0, u(π)= 0.

It is easy to see that β(t)= 0 is an upper solution and α(t)= t ln t
π

− t is a lower solution.
Hence we have a solution u such that for all t ∈ [0,π]

t ln
t

π
− t � u(t)� 0.

Notice that, in this example, the function f (t, u) is not L1-Carathéodory.

If we want more regularity, we need more restrictive conditions on f . For example, we
have the following theorem.

THEOREM 1.15. Assume that α and β are lower and upper solutions of (1.24) such that
α � β . Let E be defined from (1.2) and let f :E → R satisfy a Carathéodory condition.
Assume that there exists a measurable function h such that

∫ b
a
(s − a)h(s)ds <∞ and for

a.e. t ∈ [a, b] and all u ∈ R with (t, u) ∈E,∣∣f (t, u)∣∣ � h(t).

Then the problem (1.24) has at least one solution u ∈W 2,A(a, b)∩C1(]a, b]) such that for
all t ∈ [a, b]

α(t)� u(t)� β(t).

PROOF. Existence of a solution u ∈W 2,A(a, b) follows from Theorem 1.14. Further

u(t)=
∫ b

a

G(t, s)f
(
s, u(s)

)
ds,

whereG(t, s) is the Green’s function corresponding to (1.25). It is now standard to see that
u ∈ C1(]a, b]). �

1.6. Historical and bibliographical notes

The method of lower and upper solutions applied to boundary value problems is due to
Scorza Dragoni in 1931. In a first paper [94], this author considers the boundary value
problem

u′′ = f (t, u,u′), u(a)=A, u(b)= B,



The lower and upper solutions method for boundary value problems 93

where f is bounded for u in bounded sets. The basic assumption is the existence of func-
tions α, β ∈ C2([a, b]) such that

α′′ = f (t, α,α′), α(a)�A, α(b)� B,

β ′′ = f (t, β,β ′), β(a)�A, β(b)� B.

The same year [95], he improves his result assuming that the functions α and β satisfy
differential inequalities. In these papers, the method of proof already uses an auxiliary
problem, modified for u /∈ [α(t), β(t)], whose solution is proved, from a maximum princi-
ple type argument, to be such that α � u� β . The basic ideas are already set.

The introduction of angles in lower and upper solutions has been used by Picard [80]
in 1893. This idea was rediscovered by Nagumo [74] in 1954 who worked with maximum
of lower solutions. A first order condition, similar to D−α(t0) < D+α(t0), was used by
Knobloch [64] in 1963.

In 1938, Scorza Dragoni [96,97] already considers L1-Carathéodory functions f . Such
an assumption is also made by Epheser [40] in 1955. More recently, we can quote Jack-
son [58], Kiguradze [62] (see also [63]), Gudkov and Lepin [46], Habets and Laloy [47],
Hess [55] (see also Stampacchia [99]), Fabry and Habets [41], Adje [1], Habets and
Sanchez [51], De Coster and Habets [31,32]. These papers present a variety of definitions
of lower and upper solutions which are strongly related and there is no obvious reason to
choose one rather than the other. Our choice, Definitions 1.1 and 1.2 (see [29,31,32]), tends
to be general enough for applications and simple enough to model the geometric intuition
built into the concept.

Theorems 1.1 and 1.2 are variants of the basic results of the theory. This last result can
be found in [35] for the parabolic problem.

Theorem 1.3 deals with extremal solutions. Existence of extremal solutions for the
Cauchy problem associated with first order ODEs were already studied by Peano [77]
in 1885 and Perron [78] in 1915. Using a monotonicity assumption, Satō [89] worked
in 1954 elliptic PDEs in relation with lower and upper solutions. The monotonicity as-
sumption was deleted in 1960 for parabolic problems by Mlak [71] and in 1961 for elliptic
PDEs by Akô [2]. The proof used here is inspired by the recent paper of Angel Cid [22].
For a classical proof, we refer to Akô [2] or Schmitt [92] in case of C2-solutions. Such
proofs use maxima of lower solutions and minima of upper ones as in Theorem 1.2.

As far as the structure of the solution set is concerned, i.e., Theorem 1.4, we refer to [90]
and [2].

A priori bounds on the derivative of solutions were already worked out by Bernstein [11]
in 1904. Nagumo [73], in 1937, generalized these ideas introducing the so-called Nagumo
condition which is both simple and very general. This is why it has been widely used since
then. Basically, it is our Proposition 1.6. In 1967, Kiguradze [61] (see also Epheser [40]
in 1955) observed that, for some boundary value problems, the Nagumo condition can be
restricted to be one-sided conditions. Proposition 1.7 introduced such a condition. In the
same paper, Kiguradze extended the Nagumo condition so as to deal withW 2,1-solutions as
we did in Propositions 1.8 and 1.9. It seems that we have to wait for Knobloch [64] in 1963
to consider the periodic problem. In 1954, Nagumo [74] pointed out that the existence of
well ordered lower and upper solutions is not sufficient to ensure existence of solutions of
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a Dirichlet problem. Example 1.5 presented here for the periodic problem is adapted from
Habets and Pouso [50].

Theorem 1.10 extends a result of Habets and Torres [52] avoiding the assumption α,
β ∈W 1,∞(a, b). Theorem 1.11 is due to Mawhin [70] and Theorem 1.12 is the counterpart
for the periodic problem of a result of De Coster [28].

Rosenblatt [88] already noticed in 1933 that Dirichlet problems can be studied for more
singular nonlinearities than Lp-Carathéodory functions. In 1953, Prodi [86] used lower
and upper solutions for such singular problems. Theorems 1.14 and 1.15 follow Habets
and Zanolin [53] and [54], where the Dirichlet boundary value problem is investigated
with another definition of lower and upper solutions.

2. Relation with degree theory

2.1. The periodic problem

In order to use degree theory, we need to reinforce the notion of lower and upper solution.

DEFINITIONS 2.1. A lower solution α of

u′′ = f (t, u,u′), u(a)= u(b), u′(a)= u′(b), (2.1)

is said to be a strict lower solution if every solution u of (2.1) with u � α is such that
u(t) > α(t) on [a, b].

Similarly, an upper solution β of (2.1) is said to be a strict upper solution if every
solution u of (2.1) with u� β is such that u(t) < β(t) on [a, b].

The classical way to obtain lower and upper solutions in the case of a continuous func-
tion f is described in the following propositions.

PROPOSITION 2.1. Let f : [a, b]×R2 → R be continuous and α ∈ C2([a, b]) be such that
(a) for all t ∈ [a, b], α′′(t) > f (t, α(t), α′(t));
(b) α(a)= α(b), α′(a)� α′(b).

Then α is a strict lower solution of (2.1).

PROOF. Let u be a solution of (2.1) such that u� α and assume, by contradiction, that

min
t

(
u(t)− α(t)

) = u(t0)− α(t0)= 0.

We have u′(t0)− α′(t0)= 0; in case t0 = a or b, this follows from assumption (b). Hence,
we obtain the contradiction

0 � u′′(t0)− α′′(t0)= f
(
t0, α(t0),α

′(t0)
) − α′′(t0) < 0.

�

Using the same argument we obtain the corresponding result for upper solutions.
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PROPOSITION 2.2. Let f : [a, b]×R2 → R be continuous and β ∈ C2([a, b]) be such that
(a) for all t ∈ [a, b], β ′′(t) < f (t, β(t), β ′(t));
(b) β(a)= β(b), β ′(a)� β ′(b).

Then β is a strict upper solution of (2.1).

If f is not continuous but L1-Carathéodory, these last results do not hold anymore. Even
the stronger condition

for a.e. t ∈ [a, b], α′′(t)� f
(
t, α(t), α′(t)

) + 1

does not prevent solutions u of (2.1) to be tangent to the curve u= α(t) from above. This
is, for example, the case for the bounded function

f (t, u) :=
⎧⎨⎩

−1, u� −1,

−u2+sin t
1+sin t , −1< u� sin t ,

− sin t, sin t < u,

if we consider α(t) ≡ −1, u(t) ≡ sin t , a = 0 and b = 2π . This remark motivates the
following proposition.

PROPOSITION 2.3. Let f : [a, b] × R2 → R be an L1-Carathéodory function. Let α ∈
C([a, b]) be such that α(a)= α(b) and consider its periodic extension on R. Assume that
α is not a solution of (2.1) and for any t0 ∈ R, either

(a) D−α(t0) < D+α(t0) or
(b) there exist an open interval I0 and an ε0 > 0 such that t0 ∈ I0, α ∈W 2,1(I0) and for

a.e. t ∈ I0, all u ∈ [α(t),α(t)+ ε0] and all v ∈ [α′(t)− ε0, α
′(t)+ ε0],

α′′(t)� f (t, u, v).

Then α is a strict lower solution of (2.1).

PROOF. The function α is a lower solution since clearly it satisfies Definition 1.2. Let u
be a solution of (2.1) such that u � α. As α is not a solution, there exists t∗ such that
u(t∗) > α(t∗). Extend u and α by periodicity and assume, by contradiction, that

t0 = inf
{
t > t∗ | u(t)= α(t)

}
exists. As α− u is maximum at t0, we have D−α(t0)− u′(t0)�D+α(t0)− u′(t0). Hence,
assumption (b) applies. This implies that α′(t0)− u′(t0)= 0 and there exist I0 and ε0 > 0
according to (b). It follows we can choose t1 ∈ I0 with t1 < t0 such that α′(t1)− u′(t1) > 0
and for every t ∈ ]t1, t0[

u(t)� α(t)+ ε0,
∣∣α′(t)− u′(t)

∣∣< ε0.
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Hence, for almost every t ∈ ]t1, t0[, we can write

α′′(t)� f
(
t, u(t), u′(t)

)
,

which leads to the contradiction

0> (α′ − u′)(t0)− (α′ − u′)(t1)=
∫ t0

t1

[
α′′(t)− f

(
t, u(t), u′(t)

)]
dt � 0.

�

In the same way we can prove the following result on strict upper solutions.

PROPOSITION 2.4. Let f : [a, b] × R2 → R be an L1-Carathéodory function. Let β ∈
C([a, b]) be such that β(a)= β(b) and consider its periodic extension on R. Assume that
β is not a solution of (2.1) and for any t0 ∈ R, either

(a) D−β(t0) > D+β(t0) or
(b) there exist an open interval I0 and an ε0 > 0 such that t0 ∈ I0, β ∈W 2,1(I0) and for

a.e. t ∈ I0, all u ∈ [β(t)− ε0, β(t)] and all v ∈ [β ′(t)− ε0, β
′(t)+ ε0],

β ′′(t)� f (t, u, v).

Then β is a strict upper solution of (2.1).

REMARK. Notice that Propositions 2.3 and 2.4 apply with nonstrict inequalities α′′(t) �
f (t, α(t), α′(t)) and β ′′(t)� f (t, β(t), β ′(t)). Hence, even if f is continuous, these propo-
sitions generalize Propositions 2.1 and 2.2.

The relation between degree theory and lower and upper solutions is described in the
following result which completes Theorem 1.12.

THEOREM 2.5. Let α and β ∈ C([a, b]) be strict lower and upper solutions of (2.1) such
that α � β . Define A ⊂ [a, b] (respectively B ⊂ [a, b]) to be the set of points where α
(respectively β) is differentiable. Let p, q ∈ [1,∞] with 1

p
+ 1

q
= 1, ψ ∈ Lp(a, b) and

ϕ ∈ C(R+,R+
0 ) be such that (1.15) holds (with ϕ̄ = ϕ). Let E be defined from (1.19) and

suppose f :E → R is an Lp-Carathéodory function that satisfies the one-sided Nagumo
condition (1.17) (with ϕ̄ = ϕ and ψ̄ = ψ). Assume there exists N ∈ L1(a, b), N > 0, such
that for a.e. t ∈A (respectively for a.e. t ∈B) (1.21) is satisfied. Then

deg(I − T ,Ω)= 1, (2.2)

where T :C1([a, b])→ C1([a, b]) is defined by

(T u)(t) :=
∫ b

a

G(t, s)
[
f

(
s, u(s), u′(s)

) − u(s)
]

ds, (2.3)
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G(t, s) is the Green’s function corresponding to (1.5) and Ω is given by

Ω = {
u ∈ C1([a, b]) | ∀t ∈ [a, b], α(t) < u(t) < β(t),

∣∣u′(t)
∣∣<R

}
, (2.4)

with R > 0 large enough. In particular, the problem (2.1) has at least one solution u ∈
W 2,p(a, b) such that for all t ∈ [a, b]

α(t) < u(t) < β(t).

PROOF. Define R > 0 as in the proof of Theorem 1.12 and consider the modified prob-
lem (1.22). This problem is equivalent to the fixed point problem

u= �T u,
where �T :C1([a, b])→ C1([a, b]) is defined by

(�T u)(t)=
∫ b

a

G(t, s)
[
f̄

(
s, γ

(
s, u(s)

)
, u′(s)

) −ω
(
s, u(s)

)]
ds.

Observe that �T is completely continuous. Further there exists �R large enough so that Ω ⊂
B(0, �R ) and �T (C1([a, b]))⊂ B(0, �R ). Hence we have, by the properties of the degree,

deg
(
I − �T ,B(0, �R )) = 1.

We know that every fixed point of �T is a solution of (1.22). Arguing as in the proof of
Theorem 1.12, we see that α � u� β and ‖u′‖∞ <R. As α and β are strict, α < u < β .
Hence, every fixed point of �T is in Ω and by the excision property we obtain

deg(I − T ,Ω)= deg(I − �T ,Ω)= deg
(
I − �T ,B(0, �R )) = 1.

Existence of a solution u such that for all t ∈ [a, b],
α(t) < u(t) < β(t)

follows now from the properties of the degree. �

In case we consider a derivative independent problem

u′′ = f (t, u), u(a)= u(b), u′(a)= u′(b), (2.5)

we can simplify this theorem defining T on C([a, b]) rather than on C1([a, b]).
THEOREM 2.6. Let α and β ∈ C([a, b]) be strict lower and upper solutions of (2.5) such
that α � β . Let E be defined from (1.2) and suppose f :E → R is an L1-Carathéodory
function. Then

deg(I − T ,Ω)= 1,
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where T :C([a, b])→ C([a, b]) is defined by

(T u)(t) :=
∫ b

a

G(t, s)
[
f

(
s, u(s)

) − u(s)
]

ds,

G(t, s) is the Green’s function corresponding to (1.5) and Ω is given by

Ω = {
u ∈ C

([a, b]) | ∀t ∈ [a, b], α(t) < u(t) < β(t)
}
.

In particular, the problem (2.5) has at least one solution u ∈W 2,1(a, b) such that for all
t ∈ [a, b]

α(t) < u(t) < β(t).

The proof of this theorem repeats the argument used in the proof of Theorem 2.5.
These theorems can be used to obtain multiplicity results. We present here such a the-

orem where, for simplicity, we assume the nonlinearity not to depend on the derivative.
Such a restriction is by no means essential.

THEOREM 2.7 (The Three Solutions theorem). Let α1, β1 and α2, β2 ∈ C([a, b]) be two
pairs of lower and upper solutions of (2.5) such that for all t ∈ [a, b],

α1(t)� β1(t), α2(t)� β2(t), α1(t)� β2(t)

and for some t0 ∈ [a, b],
α2(t0) > β1(t0).

Assume further β1 and α2 are strict upper and lower solutions. Let E be defined
from (1.2) (with α = min{α1, α2} and β = max{β1, β2}) and suppose f :E → R is an L1-
Carathéodory function. Then, the problem (2.5) has at least three solutions u1, u2, u3 ∈
W 2,1(a, b) such that for all t ∈ [a, b],

α1(t)� u1(t) < β1(t), α2(t) < u2(t)� β2(t), u1(t)� u3(t)� u2(t)

and for some t1, t2 ∈ [a, b],
u3(t1) > β1(t1), u3(t2) < α2(t2).

PROOF. Consider the modified problem

u′′ − u= f
(
t, γ (t, u)

) − γ (t, u), u(a)= u(b), u′(a)= u′(b), (2.6)

where γ (t, u)= max{min{β2(t), u}, α1(t)}. Let us choose k so that β1 � β2 + k and α1 −
k � α2, and define T :C([a, b])→ C([a, b]) by

(T u)(t)=
∫ b

a

G(t, s)
[
f

(
s, γ

(
s, u(s)

)) − γ
(
s, u(s)

)]
ds,
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where G(t, s) is the Green’s function corresponding to (1.5).
Step 1. Computation of d(I − T ,Ω1,1), where

Ω1,1 = {
u ∈ C

([a, b]) | ∀t ∈ [a, b], α1(t)− k < u(t) < β1(t)
}
.

Define the alternative modified problem

u′′ − u= f̄ (t, u)− γ̄ (t, u), u(a)= u(b), u′(a)= u′(b),

where γ̄ (t, u)= max{min{β1(t), β2(t), u}, α1(t)} and

f̄ (t, u)=

⎧⎪⎨⎪⎩
f

(
t, α1(t)

)
, if u� α1(t),

f (t, u), if α1(t) < u <min
{
β1(t), β2(t)

}
,

maxi=1,2
{
f

(
t,min

{
βi(t), u

})}
, if min

{
β1(t), β2(t)

}
� u.

Define next �T :C([a, b])→ C([a, b]) by

(�T u)(t)=
∫ b

a

G(t, s)
[
f

(
s, γ̄

(
s, u(s)

)) − γ̄
(
s, u(s)

)]
ds.

For any λ ∈ [0,1], we consider then the homotopy Tλ = λ�T + (1 − λ)T .
Claim 1. If λ ∈ [0,1] and u is a fixed point of Tλ, we have u� α1. This follows from the

usual maximum principle argument as in Claim 2 of the proof of Theorem 1.1.
Claim 2. If λ ∈ [0,1] and u is a fixed point of Tλ, we have u� β2. Notice that u solves

u′′ − u= λ
[
f̄ (t, u)− γ̄ (t, u)

] + (1 − λ)
[
f

(
t, γ (t, u)

) − γ (t, u)
]
,

u(a)= u(b), u′(a)= u′(b).

Assume now that for some t0 ∈ [a, b], u(t0)− β2(t0) > 0. Hence for t near enough t0, we
can write

u′′(t)− u(t)� f
(
t, β2(t)

) − β2(t)� β ′′
2 (t)− β2(t),

i.e.,

u′′(t)− β ′′
2 (t)� u(t)− β2(t) > 0,

which contradicts the fact that t0 maximizes u− β2.
Claim 3. If λ ∈ [0,1] and u ∈ �Ω1,1 is a fixed point of Tλ, we have u < β1. Assume there

exists t0 ∈ [a, b] such that u(t0) = β1(t0). We deduce from Claims 1 and 2 that α1(t) �
u(t)� β2(t) for all t ∈ [a, b] so that u solves (2.5). As further β1 is a strict upper solution,
the claim follows.

Claim 4. deg(I − T ,Ω1,1)= 1. Observe that �T is completely continuous. Further there
exists R large enough so that Ω1,1 ⊂ B(0,R) and �T (C1([a, b]))⊂ B(0,R). On the other
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hand, we know from the usual maximum principle argument (see the proof of Theorem 1.2)
that fixed points u of �T are such that α1 � u� min{β1(t), β2(t)}. Hence we deduce from
Claim 3 that u < β1. Now we can deduce from the properties of the degree,

deg(I − �T ,Ω1,1)= deg
(
I − �T ,B(0,R)) = 1

and using the above claims

deg(I − T ,Ω1,1)= deg(I − Tλ,Ω1,1)= deg(I − �T ,Ω1,1)= 1.

Step 2. deg(I − T ,Ω2,2)= 1, where

Ω2,2 = {
u ∈ C

([a, b]) | ∀t ∈ [a, b], α2(t) < u(t) < β2(t)+ k
}
.

The proof of this result parallels the proof of Step 1.
Step 3. There exist three solutions ūi (i = 1,2,3) of (2.6) such that

α1 − k < ū1 < β1, α2 < ū2 < β2 + k, α1 − k < ū3 < β2 + k

and there exist t1, t2 ∈ [a, b] with

ū3(t1) > β1(t1), ū3(t2) < α2(t2).

The two first solutions are obtained from the fact that

deg(I − T ,Ω1,1)= 1 and deg(I − T ,Ω2,2)= 1.

Define

Ω1,2 = {
u ∈ C

([a, b]) | ∀t ∈ [a, b], α1(t)− k < u(t) < β2(t)+ k
}
.

We have

1 = deg(I − T ,Ω1,2)

= deg(I − T ,Ω1,1)+ deg(I − T ,Ω2,2)+ deg
(
I − T ,Ω1,2\(�Ω1,1 ∪ �Ω2,2)

)
which implies

deg
(
I − T ,Ω1,2 \ (�Ω1,1 ∪ �Ω2,2)

) = −1

and the existence of ū3 ∈Ω1,2 \ (�Ω1,1 ∪ �Ω2,2) follows.
Step 4. There exist solutions ui (i = 1,2,3), of (2.5) such that

α1 � u1 < β1, α2 < u2 � β2, u1 � u3 � u2
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and there exist t1, t2 ∈ [a, b], with

u3(t1) > β1(t1), u3(t2) < α2(t2).

We know that solutions u of (2.6) are such that

α1 � u� β2,

i.e., they are solutions of (2.5). Next, from Theorem 1.3, we know there exist extremal
solutions umin and umax of (2.5) in [α1, β2]. The claim follows then with u1 = umin, u2 =
umax and u3 = ū3. �

Observe that in this theorem u1 � min{β1, β2} and u2 � max{α1, α2}.

EXAMPLE 2.1. Consider the problem

u′′ + sinu= h(t), u(0)= u(2π), u′(0)= u′(2π). (2.7)

Let h ∈ C([0,2π]) and write h̄ = 1
2π

∫ 2π
0 h(s)ds and h̃ = h− h̄. Assume ‖h̃‖L1 � 3 and

|h̄|< cos(π6 ‖h̃‖L1). Let w be the solution of

w′′ = h̃(t), w(0)=w(2π), w′(0)=w′(2π),
∫ 2π

0
w(s)ds = 0,

and

α1 = −3π

2
+w, β1 = −π

2
+w, α2 = π

2
+w, β2 = 3π

2
+w.

Using Theorem 2.7 and the estimate ‖w‖∞ � π
6 ‖h̃‖L1 (see [44] or [33]) we find three

solutions of (2.7)

u1 ∈ ]α1, β1[, u2 ∈ ]α2, β2[ and u3 ∈ ]α1, β2[,

with u3(t1)� β1(t1) and u3(t2)� α2(t2) for some t1 and t2 ∈ [0,2π]. Notice then that u1

might be u2 − 2π but u3 �= u1 mod 2π . Hence, this problem has at least two geometrically
different solutions.

2.2. The Dirichlet problem

In this section, we consider the Dirichlet problem

u′′ = f (t, u), u(a)= 0, u(b)= 0, (2.8)
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where f is an Lp-Carathéodory function. To focus on the main ideas and avoid technical
difficulties we restrict our analysis to derivative independent nonlinearities. Problem (2.8)
is equivalent to the fixed point problem

u(t)= (T u)(t) :=
∫ b

a

G(t, s)f
(
s, u(s)

)
ds, (2.9)

where G(t, s) is the Green’s function corresponding to (1.25).
In this section, we consider the degree of I − T for an open set Ω of functions u that lie

between the lower and upper solutions α and β . If we allow α and β to satisfy the boundary
conditions, the set

Ω = {
u ∈ C0

([a, b]) | ∀t ∈ ]a, b[, α(t) < u(t) < β(t)
}
,

might not be open in C0([a, b]). A way out is to impose some additional conditions on the
functions u at these boundary points. To this end, for u, v ∈ C([a, b]), we write u � v or
v ≺ u if there exists ε > 0 such that for any t ∈ [a, b]

u(t)− v(t)� εe(t),

where e(t) := sin(π t−a
b−a ). We can then work with the space C1

0([a, b]) and use the set

Ω = {
u ∈ C1

0

([a, b]) | α ≺ u≺ β
}
. (2.10)

This set is open in C1
0 ([a, b]).

A possible alternative used by Amann (see [6]) is to work with the space

Ce = {
u ∈ C

([a, b]) | ∃λ > 0, ∀t ∈ [a, b], ∣∣u(t)∣∣ � λe(t)
}
.

In our case, this approach does not seem to be simpler and as the solutions are anyhow
in C1

0([a, b]), we choose to work in the more usual space C1
0([a, b]).

DEFINITIONS 2.2. A lower solution α of (2.8) is said to be a strict lower solution if every
solution u of (2.8) with α � u is such that α ≺ u.

An upper solution β of (2.8) is said to be a strict upper solution if every solution u

of (2.8) with u� β is such that u≺ β .

A first result concerns lower and upper solutions which are C2.

PROPOSITION 2.8. Let f : [a, b] × R → R be continuous and α ∈ C([a, b])∩ C2(]a, b[)
be such that

(a) for all t ∈ ]a, b[, α′′(t) > f (t, α(t));
(b) for t0 ∈ {a, b}, either α(t0) < 0

or α(t0)= 0, α ∈ C2(]a, b[ ∪ {t0}) and α′′(t0) > f (t0, α(t0)).
Then α is a strict lower solution of (2.8).
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PROOF. From the assumptions, α is a lower solution of (2.8). Let then u be a solution
of (2.8) such that α � u and assume, by contradiction, that for any n ∈ N0, there exists
tn ∈ [a, b] such that

u(tn)− α(tn) <
1

n
sin

(
π
tn − a

b− a

)
. (2.11)

It follows there exists a subsequence of (tn)n that converges to a point t0 such that u(t0)=
α(t0). If t0 ∈ ]a, b[, we have u′(t0) = α′(t0). On the other hand, if t0 = a, we know that
α ∈ C2([a, b[) and we deduce from (2.11) that

u(tn)− u(a)

tn − a
�
α(tn)+ 1

n
sin(π tn−a

b−a )− α(a)

tn − a
.

This implies u′(a) � α′(a). As further u − α is minimum at t = a, we also have
u′(a) � α′(a). Hence, u′(a) = α′(a). A similar reasoning applies if t0 = b so that in
all cases u′(t0) − α′(t0) = 0. Finally, we obtain the contradiction 0 � u′′(t0) − α′′(t0) =
f (t0, α(t0))− α′′(t0) < 0. �

In a similar way, we can write

PROPOSITION 2.9. Let f : [a, b] × R → R be continuous and β ∈ C([a, b])∩ C2(]a, b[)
be such that

(a) for all t ∈ ]a, b[, β ′′(t) < f (t, β(t));
(b) for t0 ∈ {a, b}, either β(t0) > 0

or β(t0)= 0, β ∈ C2(]a, b[∪ {t0}) and β ′′(t0) < f (t0, β(t0)).
Then β is a strict upper solution of (2.8).

Notice that an upper solution β such that

β ′′(t) < f (t, β(t)) on ]a, b[, β(a)� 0, β(b)� 0

is not necessarily strict. Consider for example the problem (2.8) defined on [a, b] = [0,2π]
with

f (t, u)=
{ 0, if u� 0,

7u/t2, if 0< u� t3,
7t, if u > t3.

The function u(t)= 0 is a solution and β(t)= t3 is an upper solution that satisfies β ′′(t) <
f (t, β(t)) on ]0,2π], β(0)= u(0) and β ′(0)= u′(0).

In the Carathéodory case, we can use the following propositions.

PROPOSITION 2.10. Let f : [a, b] × R → R be an L1-Carathéodory function. Assume
that α ∈ C([a, b]) is not a solution of (2.8) and that
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(a) for any t0 ∈ ]a, b[, either D−α(t0) < D+α(t0)
or there exist an open interval I0 ⊂ [a, b] and ε0 > 0 such that t0 ∈ I0, α ∈W 2,1(I0)

and for a.e. t ∈ I0 and all u ∈ [α(t),α(t)+ ε0 sin(π t−a
b−a )],

α′′(t)� f (t, u);

(b) either α(a) < 0
or α(a) = 0 and there exists ε0 > 0 such that α ∈ W 2,1(a, a + ε0) and for a.e.
t ∈ [a, a+ ε0] and all u ∈ [α(t),α(t)+ ε0 sin(π t−a

b−a )],

α′′(t)� f (t, u);

(c) either α(b) < 0
or α(b) = 0 and there exists ε0 > 0 such that α ∈W 2,1(b − ε0, b) and for a.e. t ∈
[b− ε0, b] and all u ∈ [α(t),α(t)+ ε0 sin(π t−a

b−a )],

α′′(t)� f (t, u).

Then α is a strict lower solution of (2.8).

PROOF. Notice first that α satisfies Definition 1.3 and therefore is a lower solution.
Let u be a solution of (2.8) such that u � α. Arguing by contradiction as in Proposi-

tion 2.8 there exists a sequence (tn)n that satisfies (2.11) and converges to a point t0 such
that u(t0)= α(t0) and u′(t0)= α′(t0).

As α is not a solution, we can find t∗ such that u(t∗) > α(t∗). Assume t0 < t∗ and define
t1 = max{t < t∗ | u(t) = α(t)}. Notice then that u(t1) = α(t1) and u′(t1) = α′(t1) and fix
ε0 > 0 according to the assumptions. Next, for t � t1 near enough t1

u(t) ∈
[
α(t),α(t)+ ε0 sin

(
π
t − a

b− a

)]
and we compute

u′(t)− α′(t)=
∫ t

t1

[
f

(
s, u(s)

) − α′′(s)
]

ds � 0,

which contradicts the definition of t1. A similar argument holds if t0 > t∗. �

Strict upper solutions can be obtained from a similar proposition.

PROPOSITION 2.11. Let f : [a, b] × R → R be an L1-Carathéodory function. Assume
that β ∈ C([a, b]) is not a solution of (2.8) and that
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(a) for any t0 ∈ ]a, b[, either D−β(t0) > D+β(t0)
or there exist an open interval I0 ⊂ [a, b] and ε0 > 0 such that t0 ∈ I0, β ∈W 2,1(I0)

and for a.e. t ∈ I0 and all u ∈ [β(t)− ε0 sin(π t−a
b−a ), β(t)],

β ′′(t)� f (t, u);

(b) either β(a) > 0
or β(a) = 0 and there exists ε0 > 0 such that β ∈ W 2,1(a, a + ε0) and for a.e.
t ∈ [a, a + ε0] and all u ∈ [β(t)− ε0 sin(π t−a

b−a ), β(t)],

β ′′(t)� f (t, u);

(c) either β(b) > 0
or β(b) = 0 and there exists ε0 > 0 such that β ∈ W 2,1(b − ε0, b) and for a.e.
t ∈ [b− ε0, b] and all u ∈ [β(t)− ε0 sin(π t−a

b−a ), β(t)],

β ′′(t)� f (t, u).

Then β is a strict upper solution of (2.8).

We can study cases where f satisfies a one-sided Lipschitz condition in u.

PROPOSITION 2.12. Let f : [a, b] × R → R be an L1-Carathéodory function such that,
for some k ∈ L1(a, b;R+), for a.e. t ∈ [a, b], all u1, u2 ∈ R,

u1 � u2 ⇒ f (t, u2)− f (t, u1)� k(t)(u2 − u1);

Let α (respectively β) be a lower (respectively upper) solution of (2.8) which is not a
solution and assume

(a) either α(a) < 0 (respectively β(a) > 0)
or α(a)= 0 (respectively β(a)= 0) and there exists an interval I0 = [a, c[ ⊂ [a, b]
such that α ∈W 2,1(I0) (respectively β ∈W 2,1(I0)) and, for a.e. t ∈ I0,

α′′(t)� f
(
t, α(t)

) (
respectively β ′′(t)� f

(
t, β(t)

));
(b) either α(b) < 0 (respectively β(b) > 0)

or α(b)= 0 (respectively β(b)= 0) and there exists an interval I0 = ]c, b] ⊂ [a, b]
such that α ∈W 2,1(I0) (respectively β ∈W 2,1(I0)) and, for a.e. t ∈ I0,

α′′(t)� f
(
t, α(t)

) (
respectively β ′′(t)� f

(
t, β(t)

))
.

Then α (respectively β) is a strict lower solution (respectively a strict upper solution)
of (2.8).



106 C. De Coster and P. Habets

PROOF. We prove the proposition for a lower solution α.
Let u be a solution of (2.8) such that u � α and assume by contradiction, as in

Proposition 2.8, that for all n ∈ N0 there exists tn ∈ [a, b] such that (2.11) holds and
that the sequence (tn)n converges to some t∗ ∈ [a, b] which satisfies u(t∗) = α(t∗) and
u′(t∗) = α′(t∗). Define t0 = min{t ∈ [a, b] | u(t) = α(t) and u′(t) = α′(t)}. If t0 �= a, we
can find an interval I0 such that for a.e. t ∈ I0

α′′(t)� f
(
t, α(t)

)
and t1 ∈ I0 with t1 < t0. Notice that u(t1) > α(t1). On [t1, t0[ the function w = u − α

verifies

−w′′ + k(t)w � −f (
t, u(t)

) + f
(
t, α(t)

) + k(t)
(
u(t)− α(t)

)
� 0,

w(t1) > 0, w(t0)= 0, w′(t0)= 0.

Define then v to be the solution of

v′′ = k(t)v, v(t1)= 0, v′(t1)= 1.

As v is positive on ]t1, t0[, we have the contradiction

0<w(t1)=
(
w′(t)v(t)−w(t)v′(t)

)∣∣t0
t1

=
∫ t0

t1

(
w′′(s)− k(s)w(s)

)
v(s)ds � 0.

If t0 = a we define t0 to be the maximum of the points t ∈ [a, b] such that for all s ∈
[a, t], u(s)= α(s) and u′(s)= α′(s). As α is not a solution, t0 < b and a similar argument
applies to the right of t0. �

As in the periodic case, we associate with lower and upper solutions some sets Ω which
are such that if T is defined from (2.9), the degree of I − T on such a set is 1.

THEOREM 2.13. Let α and β ∈ C([a, b]) be strict lower and upper solutions of the
problem (2.8) such that α ≺ β . Define E from (1.2) and assume f :E → R is an L1-
Carathéodory function. Then, for R > 0 large enough,

deg(I − T ,Ω)= 1,

where Ω = {u ∈ C1
0 ([a, b]) | α ≺ u ≺ β, ‖u‖C1 < R} and T :C1

0([a, b])→ C1
0([a, b]) is

defined by (2.9). In particular, the problem (2.8) has at least one solution u ∈W 2,1(a, b)

such that

α ≺ u≺ β.
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PROOF. We consider the modified problem

u′′ = f
(
t, γ (t, u)

)
, u(a)= 0, u(b)= 0, (2.12)

with γ (t, u) defined from (1.4). This problem is equivalent to the fixed point problem

u= �T u,

where �T :C1
0([a, b])→ C1

0([a, b]) is defined by

(�T u)(t) :=
∫ b

a

G(t, s)f
(
s, γ

(
s, u(s)

))
ds

and G(t, s) is the Green’s function corresponding to (1.25). Notice that �T is completely
continuous and for R large enough, �T (C1

0([a, b]))⊂ B(0,R). Hence by the properties of
the degree

deg
(
I − �T ,B(0,R)) = 1.

We know that any fixed point u of �T is a solution of (2.12). Arguing as in the proof of
Theorem 1.1 we prove that α � u� β and as α and β are strict α ≺ u≺ β . Hence, every
fixed point of �T is in Ω ⊂ B(0,R) and using the excision property we obtain

deg(I − T ,Ω)= deg(I − �T ,Ω)= 1.

Existence of the solution u follows now from the properties of the degree. �

It is easy to deal with A-Carathéodory functions if we reinforce the notion of strict lower
and upper solutions imposing that these functions do not satisfy the boundary conditions.

THEOREM 2.14. Let α and β ∈ C([a, b]) be strict lower and upper solutions of the prob-
lem (2.8) such that

α(a) < 0< β(a), α(b) < 0< β(b) and ∀t ∈ ]a, b[, α(t) < β(t).

Define E from (1.2) and assume f :E → R is an A-Carathéodory function. Then,

deg(I − T ,Ω)= 1,

where

Ω = {
u ∈ C0

([a, b]) | ∀t ∈ [a, b], α(t) < u(t) < β(t)
}

and T :C0([a, b])→ C0([a, b]) is defined by (2.9). In particular, the problem (2.8) has at
least one solution u ∈W 2,A(a, b) such that, for all t ∈ [a, b],
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α(t) < u(t) < β(t).

The proof of this result is similar to the proof of Theorem 2.13.

2.3. Non well-ordered lower and upper solutions

We already noticed in Example 1.3 that the method of lower and upper solutions depends
strongly on the ordering α � β . On the other hand, lower and upper solutions α, β satis-
fying the reversed ordering condition β � α arise naturally in situations where the corre-
sponding problem has a solution. As a very simple example, we can consider the linear
problem

u′′ + 2

3
u= sin t, u(0)= u(2π), u′(0)= u′(2π).

The functions α = 3
2 and β = − 3

2 are lower and upper solutions such that α � β . Notice,
however, that the unique solution u(t) = −3 sin t does not lie between the lower and the
upper solution. As we shall see, the reason for this example to work is that the “nonlin-
earity” f (t, u)= sin t − 2

3u “lies” between the two first eigenvalues of the problem. As a
first approach we consider the following result which concerns a nonresonance problem
using a bounded perturbation of the linear problem at the first eigenvalue. To simplify, we
consider a derivative independent problem.

THEOREM 2.15. Let α and β ∈ C([a, b]) be lower and upper solutions of (2.5) such
that α � β . Assume f : [a, b] × R → R is an L1-Carathéodory function and for some
h ∈ L1(a, b) either

f (t, u)� h(t) on [a, b]× R

or

f (t, u)� h(t) on [a, b]× R.

Then, there exists a solution u of (2.5) in

S := {
u ∈ C

([a, b]) | ∃t1, t2 ∈ [a, b], u(t1)� β(t1), u(t2)� α(t2)
}
. (2.13)

PROOF. For each r > 0, we define

fr(t, u)=

⎧⎪⎨⎪⎩
f (t, u), if |u|< r ,(
1 + r − |u|)f (t, u)+ (|u| − r

)
u
r
, if r � |u|< r + 1,

u
r
, if r + 1 � |u|,

and consider the problem

u′′ = fr(t, u), u(a)= u(b), u′(a)= u′(b). (2.14)
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Claim. There exists k > 0 such that for any r � 2(b− a)2, solutions u of (2.14), which
are in S , are such that ‖u‖∞ � k. Consider the case f (t, u) � h(t) on [a, b] × R. Let
u ∈ S be a solution of (2.14) and let t0, t1 and t2 ∈ [a, b] be such that

u′(t0)= 0, u(t1)� β(t1)� −‖β‖∞ and u(t2)� α(t2)� ‖α‖∞.

Extending u by periodicity, we can write for t ∈ [t0, t0 +b−a], and therefore for all t ∈ R,

u′(t)= −
∫ t0+b−a

t

fr
(
s, u(s)

)
ds � −‖h‖L1 − ‖u‖∞

2(b− a)
.

It follows that for t ∈ [t1, t1 + b− a]

u(t)= u(t1)+
∫ t

t1

u′(s)ds � −‖β‖∞ − ‖h‖L1(b− a)− ‖u‖∞
2

and for t ∈ [t2 − b+ a, t2]

u(t)= u(t2)−
∫ t2

t

u′(s)ds � ‖α‖∞ + ‖h‖L1(b− a)+ ‖u‖∞
2

.

Hence, we have

‖u‖∞ � 2
(‖α‖∞ + ‖β‖∞ + ‖h‖L1(b− a)

) =: k.

A similar argument holds if f (t, u)� h(t).
Conclusion. Consider the problem (2.14), with r > max{k,2(b− a)2}. It is easy to see

that α1 = −r − 2 and β2 = r + 2 are lower and upper solutions. Recall that r � ‖α‖∞ +
‖β‖∞ so that α1 < α < β2 and α1 < β < β2.

Assume β is not a strict upper solution. There exists then a solution u of (2.14) such
that u� β and for some t1 ∈ [a, b], u(t1)= β(t1). As further α � β , there exists t2 ∈ [a, b]
such that α(t2) > β(t2). It follows that α(t2) > u(t2), u ∈ S , and we deduce from the claim
that ‖u‖∞ � k. Hence, u is a solution of (2.5) in S .

We come to the same conclusion if α is not a strict lower solution.
Suppose now that β1 = β and α2 = α are strict upper and lower solutions. We deduce

then from Theorem 2.7 the existence of three solutions of (2.14) one of them, u, being such
that for some t1, t2 ∈ [a, b], u(t1) > β(t1) and u(t2) < α(t2). Hence, u ∈ S and from the
claim ‖u‖∞ < k. This implies that u solves (2.5) and proves the theorem. �

Such a result can be used if we assume some asymptotic control on the quotient
f (t, u)/u as |u| goes to infinity. We can generalize further assuming different behaviours
as u goes to plus or minus infinity. This is worked out in the following theorem.
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THEOREM 2.16. Let α and β ∈ C([a, b]) be lower and upper solutions of (2.5) such
that α � β . Let f : [a, b] × R → R be an L1-Carathéodory function such that for some
functions a± � 0, b± � 0 in L1(a, b),

a±(t)� lim inf
u→±∞

f (t, u)

u
� lim sup

u→±∞
f (t, u)

u
� b±(t),

uniformly in t ∈ [a, b]. Assume further that for any p, q ∈ L1(a, b), with a+ � p � b+ and
a− � q � b−, the nontrivial solutions of

u′′ = p(t)u+ − q(t)u−, u(a)= u(b), u′(a)= u′(b), (2.15)

where u+(t)= max{u(t),0} and u−(t)= max{−u(t),0}, do not have zeros. Then the prob-
lem (2.5) has at least one solution u ∈ S , where S is defined from (2.13).

PROOF. Step 1. Claim. There exists ε > 0 so that for any p, q ∈ L1(a, b), with a+ − ε �
p � b++ε and a−−ε � q � b−+ε, the nontrivial solutions of (2.15) do not have zeros. If
the claim were wrong, there would exist sequences (pn)n, (qn)n ⊂ L1(a, b), (tn)n ⊂ [a, b]
and (un)n ⊂W 2,1(a, b) so that a+−1/n� pn � b++1/n, a−−1/n� qn � b−+1/n and
un is a solution of (2.15) (with p = pn and q = qn) such that ‖un‖C1 = 1 and un(tn)= 0.
Going to subsequences we can assume, using the Dunford–Pettis theorem (see [12]),

pn ⇀ p, qn ⇀ q in L1(a, b), un → u in C1([a, b]), tn → t0.

It follows that a+ � p � b+, a− � q � b−, u is a solution of (2.15) and u(t0)= 0, which
contradicts the assumptions.

Step 2. The modified problem. Let us choose R > 0 large enough so that

a+ − ε � g+(t, u)= f (t, u)

u
� b+ + ε, for u�R,

a− − ε � g−(t, u)= f (t, u)

u
� b− + ε, for u� −R

and extend these functions on [a, b] × R so that these inequalities remain valid. As f is
L1-Carathéodory, there exists � ∈ L1(a, b) such that

f (t, u)= g+(t, u)u+ − g−(t, u)u− + h(t, u)

and ∣∣h(t, u)∣∣ � �(t).

Next, for each r � 1, we define

g±
r (t, u)=

⎧⎨⎩
g±(t, u), if |u|< r ,(
1 + r − |u|)g±(t, u), if r � |u|< r + 1,

0, if r + 1 � |u|,
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hr(t, u)=
⎧⎨⎩
h(t, u), if |u|< r ,(
1 + r − |u|)h(t, u), if r � |u|< r + 1,

0, if r + 1 � |u|,
and consider the modified problem

u′′ + g+
r (t, u)u

+ − g−
r (t, u)u

− + hr(t, u)= 0,

u(a)= u(b), u′(a)= u′(b).
(2.16)

Step 3. Claim. There exists k > 0 such that, for any r > k, solutions u of (2.16), which
are in S , are such that ‖u‖∞ < k. Assume by contradiction, there exist sequences (rn)n and
(un)n ⊂ S , where rn � n and un is a solution of (2.16) (with r = rn) such that ‖un‖∞ � n.

As un ∈ S , there exist sequences (t1n)n and (t2n)n ⊂ [a, b] such that un(t1n) � β(t1n)

and un(t2n)� α(t2n).
Consider now the functions vn = un/‖un‖∞ which solve the problems

v′′
n = g+

rn
(t, un)v

+
n − g−

rn
(t, un)v

−
n + hrn(t, un)

‖un‖∞
,

vn(a)= vn(b), v
′
n(a)= v′

n(b).

Going to subsequence, we can assume as above

g+
n ( · , un)⇀ p, g−

n ( · , un)⇀ q in L1(a, b),

hrn(t, un)

‖un‖∞
→ 0 in L1(a, b),

vn → v in C1([a, b]), t1n → t1, t2n → t2.

It follows that v satisfies (2.15) and by assumption has no zeros. Hence, we come to a
contradiction since v(t1)� 0 and v(t2)� 0 which implies v has a zero.

Conclusion, We deduce from Theorem 2.15 that (2.16) with r >max{k, ‖α‖∞,‖β‖∞}
has a solution u ∈ S and conclude from Step 3 that u solves (2.5). �

In the previous theorem we control asymptotically the nonlinearity using the func-
tions a±, b±. Next we impose some admissibility condition on the box [a+, b+]×[a−, b−]
which is to assume that for any functions (p, q) ∈ [a+, b+] × [a−, b−], the nontrivial so-
lutions of problem (2.15) do not have zeros. Such a condition implies the nonlinearity
does not interfere with the second eigenvalue λ2 = 4( π

b−a )
2 of the periodic problem, i.e.,

(−λ2,−λ2) /∈ [a+, b+] × [a−, b−]. This remark can be made up considering the second
curve of the Fučík spectrum. The Fučík spectrum is the set F of points (μ, ν) ∈ R2 such
that the problem

u′′ +μu+ − νu− = 0,

u(a)= u(b), u′(a)= u′(b),
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has nontrivial solutions. From explicit computations of the solution it is easy to see that

F =
∞⋃
n=1

Fn,

where

F1 = {
(μ,0) | μ ∈ R

} ∪ {
(0, ν) | ν ∈ R

}
and

Fn =
{
(μ, ν)

∣∣∣∣ 1√
μ

+ 1√
ν

= b− a

π(n− 1)

}
, n= 2,3, . . . .

The following proposition relates the admissibility of the box [a+, b+]× [a−, b−] with the
Fučík spectrum.

PROPOSITION 2.17. Let (μ, ν) ∈ F2 and p, q ∈ L1(a, b). Assume that for some set I ⊂
[a, b] of positive measure

p(t)� −μ, q(t)� −ν, for a.e. t ∈ [a, b],
p(t) >−μ, q(t) >−ν, for a.e. t ∈ I.

Then, the nontrivial solutions of problem (2.15) have no zeros.

PROOF. Assume there exists a nontrivial solution u which has a zero. Extend u by pe-
riodicity and let t0 and t1 be consecutive zeros such that u is positive on ]t0, t1[. Define
v(t)= sin(

√
μ(t − t0)) and compute

(uv′ − vu′)
∣∣t1
t0

= −
∫ t1

t0

(
p(t)+μ

)
u(t)v(t)dt .

If t1 − t0 <
π√
μ

, we come to a contradiction

0<−v(t1)u′(t1)� 0.

Hence t1 − t0 � π√
μ

and we only have equality in case p(t) = −μ on [t0, t1]. Similarly,
we prove the distance between two consecutive zeros t1 and t2 with u negative on ]t1, t2[
is such that t2 − t1 � π√

ν
with equality if and only if q(t)= −ν on [t1, t2]. It follows that

b− a � t2 − t0 � π√
μ

+ π√
ν

= b− a.

This implies t2 − t0 = b− a, p(t)= −μ on [t0, t1] and q(t)= −ν on [t1, t2] which contra-
dicts the assumptions. �
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Existence of several solutions can be obtained using non-well-ordered lower and upper
solutions. The following result complements Theorem 2.16.

THEOREM 2.18. Let α1 and α2 ∈ C([a, b]) be lower solutions of (2.5) and β ∈ C([a, b])
be a strict upper solution such that α2 � β , α1 � α2 and α1 � β . Assume f : [a, b]× R →
R is an L1-Carathéodory function such that for some function b+ ∈L1(a, b),

lim sup
u→+∞

f (t, u)

u
� b+(t),

uniformly in t ∈ [a, b]. Then the problem (2.5) has at least two solutions u1 and u2 such
that

α1 � u1 < β, u2 ∈ S and u1 � u2,

where S is defined in (2.13) with α = α2.

PROOF. For any r >max{‖α1‖∞,‖α2‖∞,‖β‖∞}, we consider the modified problem

u′′ = fr(t, u), u(a)= u(b), u′(a)= u′(b), (2.17)

where

fr (t, u)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f

(
t, α1(t)

) + u− α1(t), if u� α1(t),

f (t, u), if α1(t) < u� r ,

(1 + r − u)f (t, u), if r < u� r + 1,

0, if r + 1< u.

Claim 1. Every solution of (2.17) is such that u � α1. This follows from the usual
maximum principle argument as it is used, for example, in the proof of Theorem 1.1.

Claim 2. There exists k > 0 so that for any r > max{‖α1‖∞,‖α2‖∞,‖β‖∞} and any
solution u ∈ S of (2.17), we have ‖u‖∞ < k. As u ∈ S , there exist t0 and t1 such that

u(t0)= min
t∈[a,b]u(t)� u(t1)� α2(t1)� ‖α2‖∞.

Further, we deduce from the asymptotic character of f that there exists b̂+ and h ∈ L1(a, b)

such that, for a.e. t ∈ [a, b] and all u� α1(t),

fr (t, u)� b̂+(t)u+ h(t).

Hence, we have for t ∈ [t0, t0 + b− a]

u(t) = u(t0)+
∫ t

t0

fr
(
s, u(s)

)
(t − s)ds

� ‖α2‖∞ + ‖h‖L1(b− a)+ (b− a)

∫ t

t0

b̂+(s)u(s)ds
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and the claim follows from Gronwall’s lemma.
Conclusion. Consider the problem (2.17) for

r >max
{‖α1‖∞,‖α2‖∞,‖β‖∞, k

}
,

where k is given in Claim 2.
It follows from Theorem 1.3 that there exists a solution u1 of (2.17) which is minimal in

[α1, β]. Hence, α1(t)� u1(t)� r which implies this solution solves also (2.5).
Next, we can apply Theorem 2.15 to obtain a solution u2 ∈ S of (2.17). From Claim 1,

u2 � α1, and from Claim 2, u2 � k < r . Therefore u2 is a solution of (2.5).
Finally, notice that if u2 � u1, u1 and u2 are upper solutions of (2.17) and we deduce

from Theorem 1.2 the existence of a solution u3 with α1 � u3 � min{u1, u2} which con-
tradicts u1 to be minimal. �

REMARK. We can drop the assumption α1 � α2, but this needs additional work as in the
proof of Theorem 1.2.

Dirichlet problem (1.24) can be investigated along the same lines. For example, we
can consider the problem of interaction with Fučík spectrum and write a result similar to
Theorem 2.16.

THEOREM 2.19. Assume α and β ∈ C1([a, b]) are lower and upper solutions of (1.24)
such that α � β . Let f : [a, b] × R → R be an L1-Carathéodory function such that for
some functions a± � −λ1, b± � −λ1 in L1(a, b), where λ1 = ( π

b−a )
2

a±(t)� lim inf
u→±∞

f (t, u)

u
� lim sup

u→±∞
f (t, u)

u
� b±(t),

uniformly in t ∈ [a, b]. Assume further that for any p, q ∈ L1(a, b), with a+ � p � b+ and
a− � q � b−, the nontrivial solutions of

u′′ = p(t)u+ − q(t)u−, u(a)= 0, u(b)= 0,

where u+(t)= max{u(t),0} and u−(t)= max{−u(t),0}, do not have interior zeros. Then
the problem (1.24) has at least one solution u ∈ S , where S ⊂ C1

0 ([a, b]) is the closure in
the C1-topology of the set{

u ∈ C1
0

([a, b]) | ∃t1, t2 ∈ [a, b], u(t1) > β(t1), u(t2) < α(t2)
}
.

2.4. Historical and bibliographical notes

In 1972, Amann [5] proved a degree result for boundary value problems with strict lower
and upper solutions. He considered the associated fixed point problem u = T u together
with the set Ω of functions u that lie between strict lower and upper solutions and proved
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deg(I − T ,Ω)= 1. Until recently, such results were only obtained for continuous nonlin-
earities.

A study of the Carathéodory case for a Dirichlet problem with f independent of u′ can
be found in De Coster [27], De Coster, Grossinho and Habets [29], Habets and Omari [48]
and De Coster and Habets [30]. The derivative dependent case for a Rayleigh equation
is worked out in [52]. Our approach follows these papers. Theorem 2.14 which considers
A-Carathéodory functions can be found in [42].

For the periodic problem we present here the counterpart of similar results for the Dirich-
let problem. Theorem 2.5 extends [87], avoiding the assumption α, β ∈W 1,∞(a, b).

The abstract idea used in the Three Solutions theorem (Theorem 2.7), goes back to
Kolesov [66] in 1970 and Amann [4] in 1971. The first one who proved such a result with
degree theory seems to be Amann [5] in 1972 (see also [6]). Extensions were also given
by Shivaji [98] and Bongsoo Ko [65]. Our result, Theorem 2.7, improves all these in the
special case of ODE and extends them to the Carathéodory case. It extends [32] by relaxing
the order relations between αi and βi .

In 1972, Sattinger [91] presented as an open problem the question of existence of a
solution for the problem

−�u= f (x,u), in Ω, u= 0, on ∂Ω, (2.18)

in presence of lower and upper solutions which does not satisfy the ordering relation
α � β . A first important contribution to this question was given by Amann, Ambrosetti and
Mancini [8] in 1978. They consider (2.18) assuming the nonlinearity f (x,u) is a bounded
pertubation of λ1u, where λ1 is the first eigenvalue of the Laplacian. In 1994, Gossez and
Omari [45] assumed some asymptotic control on the nonlinearity so that f (t,u)

u
remains,

within small perturbations, between the two first eigenvalues of the linearized problem.
They prove then existence of a solution in presence of a lower and an upper solution with-
out any order relation. More recently, Habets and Omari [48] extended this work providing
a general nonresonance condition with respect to the second curve of the Fučík spectrum
as in Theorems 2.16 and 2.19. They obtain an existence and localization result in presence
of a lower and an upper solution satisfying the reversed order α > β . Such a condition
did not appear in previous works. In [34], this last result was extended by cancelling the
reversed order condition as in Theorem 2.19. In [34] the results were obtained for a general
elliptic problem. The parabolic case can be found in [35] and the results for the periodic
ODE in [36].

3. Variational methods

3.1. The minimization method

Another approach in working with lower and upper solutions is to relate them with varia-
tional methods. Consider for example the problem

u′′ = f (t, u), u(a)= 0, u(b)= 0, (3.1)
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where f is an L1-Carathéodory function. It is well known that the related functional

φ :H 1
0 (a, b)→ R, u 
→

∫ b

a

[
u′2(t)

2
+ F

(
t, u(t)

)]
dt,

with F(t, u)= ∫ u
0 f (t, s)ds, is of class C1 and its critical points are the solutions of (3.1).

A first link between the two methods is that existence of a well ordered pair of lower
and upper solutions α and β , implies the functional φ has a minimum on the convex but
noncompact set [α,β]. This minimum solves (3.1).

THEOREM 3.1. Let α and β be lower and upper solutions of (3.1) with α � β on [a, b]
and E be defined from (1.2). Assume f :E → R is an L1-Carathéodory function. Then the
functional φ is minimum on [α,β], i.e., there exists u with α � u� β so that

φ(u)= min
v∈H 1

0 (a,b)

α�v�β

φ(v).

Further, u is a solution of (3.1).

PROOF. Consider the modified problem

u′′ = f
(
t, γ (t, u)

)
, u(a)= 0, u(b)= 0, (3.2)

where γ (t, u) is defined from (1.4), and define the functional

φ̄ :H 1
0 (a, b)→ R, u 
→

∫ b

a

[
u′2(t)

2
+ �F (

t, u(t)
)]

dt,

where �F(t, u)= ∫ u
0 f

(
t, γ (t, s)

)
ds.

Claim 1. φ̄ has a global minimum u which is a solution of (3.2). It is easy to verify that
φ̄ is of class C1 and its critical points are precisely the solutions of (3.2). Moreover φ̄ is
weakly lower semicontinuous and coercive. Hence the claim follows.

Claim 2. α � u � β . Assume mint (u(t) − α(t)) < 0 and define t0 = max{t ∈ [a, b] |
u(t) − α(t) = mins(u(s) − α(s))}. We proceed now as in the proof of Theorem 1.1 and
obtain that for any t � t0, near enough t0,

u′(t)− α′(t)=
∫ t

t0

(
u′′(s)− α′′(s)

)
ds =

∫ t

t0

(
f

(
s,α(s)

) − α′′(s)
)

ds � 0.

This contradicts the definition of t0.
Conclusion. Notice that if u is such that α � u � β , the difference φ̄(u) − φ(u) is a

constant independent of u. Hence, both functionals are minimized together between α

and β so that the theorem follows from the previous claims. �
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EXAMPLE 3.1. Consider the problem

u′′ = λf (t, u), u(a)= 0, u(b)= 0, (3.3)

where f : [a, b] × R → R is an L1-Carathéodory function such that f (t,0) = 0,
f (t,R) � 0 for some R > 0 and there exists μ ∈ H 1

0 (a, b), 0 � μ � R that satisfies∫ b
a F (t,μ(t))dt < 0 with F(t, u) = ∫ u

0 f (t, s)ds. Then, we can prove the existence of
Λ� 0 such that for all λ�Λ, (3.3) has, beside the trivial solution, at least one nontrivial
nonnegative solution.

We just have to observe that α = 0 is a lower solution, β = R is an upper solution and
φ(μ) < 0 for λ large enough. Hence, for such values of λ, there exists u ∈ [0,R] which
solves (3.3) and minimizes φ on [0,R], i.e.,

φ(u)= min
v∈H 1

0 (a,b)

0�v�R

φ(v)� φ(μ) < 0 = φ(0).

This last inequality implies u �≡ 0.

The method applies to other boundary value problems such as the periodic problem

u′′ = f (t, u), u(a)= u(b), u′(a)= u′(b). (3.4)

Here, the associated functional reads

φ :H 1
per(a, b)→ R, u 
→

∫ b

a

[
u′2(t)

2
+F

(
t, u(t)

)]
dt, (3.5)

with F(t, u)= ∫ u
0 f (t, s)ds and H 1

per(a, b)= {u ∈H 1(a, b) | u(a)= u(b)}. For this prob-
lem, we can write an equivalent of Theorem 3.1.

THEOREM 3.2. Let α and β be lower and upper solutions of (3.4) with α � β on [a, b]
and E be defined from (1.2). Assume f :E → R is an L1-Carathéodory function. Then the
functional φ defined by (3.5) is minimum on [α,β], i.e., there exists u with α � u � β so
that

φ(u)= min
v∈H 1

per(a,b)

α�v�β

φ(v).

Further, u is a solution of (3.4).

PROOF. The proof of this result follows the argument of the proof of Theorem 3.1. �

As an application of Theorem 3.1, consider the problem

u′′ +μ(t)g(u)+ h(t)= 0, u(0)= 0, u(π)= 0. (3.6)
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THEOREM 3.3. Let μ, h ∈ L∞(0,π) and suppose μ0 = essinfμ(t) > 0. Assume g : R →
R is a continuous function, G(u)= ∫ u

0 g(s)ds,

−∞< lim inf
u→±∞

G(u)

u2 � 0 and lim sup
u→±∞

G(u)

u2 = +∞.

Then the problem (3.6) has two infinite sequences of solutions (un)n and (vn)n satisfying

· · · � vn+1 � vn � · · · � v1 � u1 � · · · � un � un+1 � · · ·
and

lim
n→∞

(
max
t
un(t)

) = +∞, lim
n→∞

(
min
t
vn(t)

) = −∞.

PROOF. Step 1. Claim. For every M � 0 there exists β , an upper solution of (3.6), with
β(t)�M on [0,π]. First observe that, if g is unbounded from below on [0,+∞[, we have
a sequence of constant upper solutions βn → +∞. In the opposite case, we can assume
there exists K � 0 such that g(u)� −K for u� 0.

Given M > 0, we can choose d so that

‖μ‖∞
(
G(d)

d2 + K

d

)
+ ‖h‖∞

d
� 1

8π2 and d > 2M.

We define then β to be the solution of the Cauchy problem

u′′ + ‖μ‖∞
(
g(u)+K

) + ‖h‖∞ = 0, u(0)= d, u′(0)= 0. (3.7)

Assume there exists t0 ∈ ]0,π] such that β(t) > M on [0, t0[ and β(t0)=M . Notice that
on [0, t0], β ′(t)� 0 and ‖μ‖∞(G(β(t))+Kβ(t))+‖h‖∞β(t)� 0. From the conservation
of energy for (3.7), we have

β ′2(t)

2
� β ′2(t)

2
+ ‖μ‖∞

(
G

(
β(t)

) +Kβ(t)
) + ‖h‖∞β(t)

= ‖μ‖∞
(
G(d)+Kd

) + ‖h‖∞d � d2

8π2 ,

i.e.,

0 � −β ′(t)� d

2π
.

It follows that for any t ∈ [0, t0],

d − β(t)� d

2π
t0 � d

2
,

which leads to the contradiction β(t0)� d
2 >M . Hence, the claim follows.
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In a similar way, we prove the following.
Claim. For every M � 0 there exists a lower solution α of (3.6) such that α(t) � −M

on [0,π].
Step 2. Claim. There exist a sequence of positive real numbers (sn)n with sn → +∞

and z � 0 such that φ(snz)→ −∞. Define z to be a C1-function such that 0 < z(t) � 1
on [0,π], z(0) = 0, z(π) = 0, z′(0) > 0, z′(π) < 0 and z(t) = 1 on [ε,π − ε] for some
ε > 0. Choose (sn)n a sequence of positive real numbers with sn → +∞ and G(sn)

s2
n

→ +∞.

Recall that the assumptions implyG(u)� −K(u2 +1), for someK > 0. We compute then

φ(snz) =
∫ π

0

[
s2
nz

′2(t)

2
−μ(t)G

(
snz(t)

) − h(t)snz(t)

]
dt

=
∫
[0,π]\[ε,π−ε]

s2
nz

′2(t)

2
dt −G(sn)

∫ π−ε

ε

μ(t)dt

−
∫
[0,π]\[ε,π−ε]

μ(t)G
(
snz(t)

)
dt − sn

∫ π

0
h(t)z(t)dt

� s2
n‖z′‖2∞ε −G(sn)μ0(π − 2ε)+K

(
s2
n + 1

)‖μ‖L1 + sn‖h‖L1‖z‖∞.

It follows that φ(snz)→ −∞.
Step 3. Claim. There exist a sequence of negative real numbers (tn)n with tn → −∞ and

z� 0 such that φ(tnz)→ −∞. The argument is similar to Step 2.
Step 4. Conclusion. By Step 1, we have α1, β1 lower and upper solutions of (3.6) with

α1 � β1. Hence, we obtain from Theorem 3.1 a solution u1 of (3.6) such that α1 � u1 � β1.
From Step 2, we have z and s1 such that s1z� u1 and φ(s1z) < φ(u1). Moreover, Step 1

provides the existence of an upper solution β2 with u1 � s1z� β2. Now, by Theorem 3.1,
we have a solution u2 of (3.6) satisfying

u1 � u2 � β2

and

φ(u2)= min
v∈H 1

0 (a,b)

u1�v�β2

φ(v)� φ(s1z) < φ(u1).

It follows that u2 �= u1.
Iterating this argument and reproducing it in the negative part, we prove the result. �

REMARK 3.1. The condition on G(u)/u2 cannot be replaced by analogous conditions
on g(u)/u (see [39]).

As a next problem consider the following prescribed mean curvature problem(
u′

√
1 + u′2

)′
= λf (t, u), u(0)= 0, u(1)= 0. (3.8)
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This equation is equivalent to

u′′ = λ
(
1 + u′2)3/2

f (t, u), u(0)= 0, u(1)= 0.

As in Example 3.1, the following result provides a nontrivial nonnegative solution. No-
tice however that the equation does not satisfy a Nagumo condition which will force us to
modify not only the dependence in u but also in the derivative u′.

PROPOSITION 3.4. Let f : [0,1] × R → R be a continuous function such that f (t,0)� 0
and define F(t, u)= ∫ u

0 f (t, s)ds. Assume that for some [a, b] ⊂ ]0,1[, a �= b,

lim
u→0+

[
max
t∈[a,b]

F(t, u)

u2

]
= −∞. (3.9)

Then there exists λ∗ > 0 such that, for each λ ∈ ]0, λ∗[, problem (3.8) has a nontrivial,
nonnegative solution.

PROOF. The modified problem. Define

p(s)=

⎧⎪⎪⎨⎪⎪⎩
(1 + s)−1/2, if 0 � s < 1,

1
8
√

2

[
(s − 2)2 + 7

]
, if 1 � s < 2,

7
8
√

2
, if 2 � s,

α(t)= 0 and β(t)= t (1 − t). Consider then the functional φ :H 1
0 (0,1)→ R, defined by

φ(u)=
∫ 1

0

[
1

2
P

(
u′2) + λ�F (

t, u(t)
)]

dt,

where P(v) = ∫ v
0 p(s)ds, �F(t, u)= ∫ u

0 f (t, γ (t, s))ds and γ is defined from (1.4). Criti-
cal points of φ solve(

p
(
u′2)

u′)′ = λf
(
t, γ (t, u)

)
, u(0)= 0, u(1)= 0,

which can also be written

u′′ = λ
(
p

(
u′2) + 2p′(u′2)

u′2)−1
f

(
t, γ (t, u)

)
, u(0)= 0, u(1)= 0. (3.10)

Notice at last that p(s)+ 2p′(s)s � 19
40

√
2

.

Claim 1. Existence for small values of λ of a solution umin ∈ [0, β] of (3.10) such that

φ(umin)= min
v∈H 1

0 (0,1)
0�v�β

φ(v).
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Notice that α = 0 is a lower solution. Further, for λ > 0 small enough, β is an upper
solution of (3.10). The claim follows now from an argument similar to the proof of Theo-
rem 3.1.

Claim 2. φ(umin) < φ(0). Let ζ ∈ C1
0([0,1]) be such that ζ(t)= 0 on [0, a] ∪ [b,1] and

ζ(t) ∈ ]0,1] on ]a, b[. From (3.9), we deduce the existence of a sequence (cn)n ⊂ R+ such
that

lim
n→∞ cn = 0 and for all x ∈ ]0, cn], max

t∈[a,b]
F(t, x)

x2
� max

t∈[a,b]
F(t, cn)

c2
n

.

Hence, for n large enough

φ(cnζ )=
∫ 1

0

√
1 + c2

n|ζ ′|2 dt +
∫ b

a

λF ( · , cnζ )dt − 1

� c2
n

(∫ 1

0

1

c2
n

(√
1 + c2

n|ζ ′|2 − 1
)

dt + λ max
t∈[a,b]

F(t, cn)

c2
n

∫ b

a

ζ 2 dt

)
< 0 = φ(0).

The claim follows.
Claim 3. For λ > 0 small enough, umin is a solution of (3.8). There exists K > 0

so that solutions of (3.10) are such that ‖u′′‖∞ � Kλ. Hence for λ > 0 small enough,
‖u′

min‖∞ � 1 and the claim follows. �

3.2. The minimax method

The minus gradient flow
One of the main techniques in variational methods uses the deformation of paths or surfaces
along the minus gradient (or pseudo-gradient) flow. In this section, we study the dynamical
system associated with such a flow.

We shall define the minus gradient flow using the following assumptions:
(H) Let f : [a, b] × R → R, (t, u) 
→ f (t, u) be an L1-Carathéodory function, locally

Lipschitz in u. Let also m ∈L1(a, b) be such that m> 0 a.e. in [a, b] and f (t, u)−
m(t) u is decreasing in u.

Now, let us define on H 1
0 (a, b) the scalar product

(u, v)H 1
0
=

∫ b

a

[
u′(t)v′(t)+m(t)u(t)v(t)

]
dt

and let

F(t, u)=
∫ u

0
f (t, s)ds.
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It is then easy to see that the functional

φ :H 1
0 (a, b)→ R, u 
→

∫ b

a

[
u′2(t)

2
+ F

(
t, u(t)

)]
dt

is of class C1 and

∇φ(u)= u−KN(u), (3.11)

where

N :H 1
0 (a, b)→ L1(a, b), u 
→ f ( · , u)−m( · )u,

K :L1(a, b)→H 1
0 (a, b), h 
→Kh

(3.12)

and Kh is defined to be the unique solution of

u′′ −m(t)u= h(t), u(a)= 0, u(b)= 0.

Let us notice at last that if assumptions (H) are satisfied, the function

∇φ :C1
0

([a, b]) → C1
0

([a, b]),
defined from (3.11), is a locally Lipschitzian function. Next, we define for any r ∈ R a
C1-function ψr : R → [0,1] such that ψr(s)= 1 if s � r and ψr(s)= 0 if s � r − 1.

We consider then the Cauchy problem

d

dt
u= −ψr

(
φ(u)

)∇φ(u)= −ψr
(
φ(u)

)(
u−KN(u)

)
, u(0)= u0, (3.13)

where u0 ∈ C1
0 ([a, b]). From the theory of ordinary differential equations, we know that the

solution u( · ;u0) of (3.13) exists, is unique and is defined in the future on a maximal inter-
val [0,ω(u0)[. We also know that for any t ∈ [0,ω(u0)[, the function u(t; · ) :C1

0([a, b])→
C1

0([a, b]) is continuous. We call the minus gradient flow the local semi-dynamical system
defined on C1

0 ([a, b]) by u(t;u0).
We could have defined the minus gradient flow in X = C0([a, b]) or H 1

0 (a, b). However,
such choices are not suitable in our context. We have to work with sets such as {u ∈ X |
u≺ β} and {u ∈X | u � α}, where α and β are lower and upper solutions that satisfy the
boundary conditions. With the C0([a, b]) or the H 1

0 (a, b)-topology, these sets have empty
interior which creates major difficulties.

A first result shows that the solutions of (3.13) are defined for all t � 0.

PROPOSITION 3.5. Let assumptions (H) be satisfied and u(t;u0) be the minus gradient
flow defined for some r ∈ R. Then for any u0 ∈ C1

0([a, b]), we have ω(u0)= +∞.
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PROOF. Notice that

d

dt
φ

(
u(t;u0)

) =
(
∇φ(

u(t;u0)
)
,

d

dt
u(t;u0)

)
H 1

0

= −ψr
(
φ

(
u(t;u0)

))∥∥∇φ(
u(t;u0)

)∥∥2
H 1

0
,

which implies that for all t ∈ [0,ω(u0)[

φ
(
u(t;u0)

)
� φ(u0). (3.14)

Observe also that φ(u(t;u0))� min{r − 1, φ(u0)} =:C. Finally we have for any 0 � t1 <

t2 <ω(u0)∥∥u(t2;u0)− u(t1;u0)
∥∥
H 1

0

�
∫ t2

t1

ψr
(
φ

(
u(s;u0)

))∥∥∇φ(
u(s;u0)

)∥∥
H 1

0
ds

�
[∫ t2

t1

ψr
(
φ

(
u(s;u0)

))∥∥∇φ(
u(s;u0)

)∥∥2
H 1

0
ds

] 1
2
[∫ t2

t1

ψr
(
φ

(
u(s;u0)

))
ds

] 1
2

�
[
−

∫ t2

t1

d

ds
φ

(
u(s;u0)

)
ds

] 1
2 √

t2 − t1 �
[
φ(u0)−C

] 1
2
√
t2 − t1.

Hence, if ω(u0) <+∞, there exists u∗ ∈H 1
0 (a, b) such that u(t;u0)

H 1
0→ u∗ as t → ω(u0).

It follows that the function u( · ;u0) : [0,ω(u0)] → C([a, b]), where u(ω(u0);u0)= u∗, is
continuous and KNu( · ;u0) ∈ C([0,ω(u0)],C1

0([a, b])). Let a(t) = ψr(φ(u(t;u0))). For
all t ∈ [0,ω(u0)], we can write

u(t;u0)= u0e− ∫ t
0 a(r)dr +

∫ t

0
e− ∫ t

s a(r)dra(s)KNu(s;u0)ds ∈ C1
0

([a, b]).
Hence, u( · ;u0) : [0,ω(u0)] → C1

0 ([a, b]) is continuous, which implies

u(t;u0)
C1

0→ u∗ as t → ω(u0).

This contradicts the maximality of ω(u0). �

Invariant sets
An important property of the cones

Cα = {
u ∈ C1

0

([a, b]) | u� α
}

(3.15)
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and

Cβ = {
u ∈ C1

0

([a, b]) | u≺ β
}
, (3.16)

which are associated to lower and upper solutions α and β for (3.1), is that they are posi-
tively invariant. To make this precise, let us introduce the following definitions.

DEFINITION 3.1. Let u(t;u0) be the minus gradient flow defined for some r ∈ R. A non-
empty set M ⊂ C1

0([a, b]) is called a positively invariant set if

∀u0 ∈M, ∀t � 0, u(t;u0) ∈M.

As a first example, notice that (3.14) implies that the set

φc = {
u ∈ C1

0

([a, b]) | φ(u) < c
}

is positively invariant. Also, unions and intersections of positively invariant sets are posi-
tively invariant.

To investigate the positive invariance of the cones Cα and Cβ defined by (3.15)
and (3.16), we need the following lemma.

LEMMA 3.6. Let assumptions (H) be satisfied. Assume α ∈W 2,1(a, b) is a lower solution
of (3.1). Then for all u� α, we have KNu� α, where K and N are defined by (3.12).

PROOF. Let u� α, set w =KNu− α and observe that w satisfies

w′′ −m(t)w = (KNu)′′(t)−m(t)(KNu)(t)− (
α′′(t)−m(t)α(t)

)
� f

(
t, u(t)

) −m(t)u(t)− (
f

(
t, α(t)

) −m(t)α(t)
)
� 0,

w(a)� 0, w(b)� 0.

It follows that w � 0. �

PROPOSITION 3.7. Let assumptions (H) be satisfied and u(t;u0) be the minus gradient
flow defined for some r ∈ R. If α ∈ W 2,1(a, b) is a lower solution of (3.1), the set Cα
defined by (3.15) is positively invariant. Similarly, if β ∈W 2,1(a, b) is an upper solution
of (3.1), the set Cβ defined by (3.16) is positively invariant.

PROOF. If the claim is wrong, we can find u0 ∈ Cα and t1 > 0 so that for all t ∈ [0, t1[,
u(t;u0) ∈ Cα and u(t1;u0) ∈ ∂Cα .

Letw(t)= u(t;u0)−α, define a(t)=ψr(φ(u(t;u0))) and observe that for all t ∈ [0, t1[
d

dt
w(t)= d

dt
u(t;u0)= −a(t)(u(t, u0)−KN

(
u(t;u0)

)) = −a(t)w(t)+ h(t),
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where from Lemma 3.6 and for t ∈ [0, t1[, h(t)= a(t)(KN(u(t;u0))−α)� 0. As w(0)=
u0 − α � 0 we have

w(t1)=w(0)e− ∫ t1
0 a(r)dr +

∫ t1

0
e− ∫ t1

s a(r)drh(s)ds � 0,

which contradicts u(t1;u0) ∈ ∂Cα . �

Non-well-ordered lower and upper solutions
The first result of this section provides Palais–Smale type sequences from non-well-ordered
lower and upper solutions. As usual, this gives a solution of (3.1) with the help of a Palais–
Smale type condition.

PROPOSITION 3.8. Let assumptions (H) be satisfied. Suppose α and β ∈W 2,1(a, b) are
lower and upper solutions of (3.1) and α � β . Define Cα and Cβ from (3.15) and (3.16),

Γ = {
γ ∈ C

([0,1],C1
0

([a, b])) | γ (0) ∈Cβ, γ (1) ∈Cα
}
,

Tγ = {
s ∈ [0,1] | γ (s) ∈ C1

0

([a, b]) \ (
Cβ ∪Cα

)}
,

(3.17)

and assume

c := inf
γ∈Γ max

s∈Tγ
φ

(
γ (s)

) ∈ R.

Finally, let u(t;u0) be the minus gradient flow defined with r = c − 1. Then, for any δ ∈
]0,1[ there exists u0 ∈ C1

0([a, b]) such that

∀t > 0, u(t;u0) ∈ φ−1([c− δ, c+ δ]) \ (
Cβ ∪Cα

)
and there exists an increasing unbounded sequence (tn)n ⊂ R+ such that

∇φ(
u(tn;u0)

) H 1
0→ 0 as n→ ∞.

PROOF. Let us fix δ ∈ ]0,1[ and define E = φc−δ ∪Cα ∪Cβ . Observe that E is positively
invariant. Define A(E) = {u0 ∈ C1

0([a, b]) | ∃t � 0, u(t;u0) ∈ E}. Obviously, this set is
open and positively invariant.

Consider a path γ ∈ Γ so that c� maxs∈Tγ φ(γ (s))� c+ δ.
Claim. There exists u0 ∈ γ (Tγ ) \A(E). Assume by contradiction that for every s ∈ Tγ ,

γ (s) ∈A(E), i.e., that for every s ∈ [0,1], γ (s) ∈A(E).
Let us prove first that in such a case there exists T � 0 such that for all s ∈ [0,1],

u(T ;γ (s)) ∈ E. For any s ∈ [0,1], we can find ts � 0 such that u(ts;γ (s)) ∈ E. As-
sume next that for every n ∈ N, there exists sn ∈ [0,1] such that u(n, γ (sn)) /∈ E. Go-
ing to a subsequence, we can assume sn → s∗ ∈ [0,1] and, using the contradiction as-
sumption, there exists ts∗ � 0 such that u(ts∗;γ (s∗)) ∈ E. As E is open, for all n large



126 C. De Coster and P. Habets

enough u(ts∗;γ (sn)) ∈ E which leads to a contradiction as E is positively invariant and
u(n;γ (sn)) /∈E.

Notice now that u(T ;γ ( · )) is in Γ and such that φ(u(T ;γ ( · )))� c − δ on Tγ which
contradicts the definition of c.

Conclusion. By construction of A(E) and as φ(u( · ;u0)) is decreasing, we have for all
t > 0, u(t;u0) ∈ φ−1([c− δ, c+ δ]) \ (Cβ ∪Cα). Hence, u satisfies

d

dt
u= −∇φ(u)

and there exists an increasing unbounded sequence (tn)n which verifies

d

dt
φ

(
u(tn;u0)

) = −∥∥∇φ(
u(tn;u0)

)∥∥2
H 1

0
→ 0.

�

In order to obtain existence of solutions of (3.1), we need to prove that the sequence
(u(tn;u0))n converges towards such a solution. This holds true in case we assume a Palais–
Smale condition.

THE PALAIS–SMALE CONDITION. For every (un)n ⊂H 1
0 (a, b) such that

φ(un) is bounded and ∇φ(un)
H 1

0→ 0,

there exists a subsequence that converges in H 1
0 (a, b) to some function u such that

∇φ(u)= 0.

It is known that, under our assumptions, the Palais–Smale condition is easy to verify
if φ(u) is coercive or more generally if the Palais–Smale sequences (un)n are bounded
in H 1

0 (a, b).
Our next result is an existence result that uses the Palais–Smale condition.

THEOREM 3.9. Let assumptions (H) be satisfied. Suppose α and β ∈W 2,1(a, b) are lower
and upper solutions of (3.1) and α � β . Define Γ and Tγ as in (3.17) and assume

c := inf
γ∈Γ max

s∈Tγ
φ

(
γ (s)

) ∈ R.

Finally, assume that the Palais–Smale condition is satisfied. Then there exists v ∈
C1

0([a, b]) \ (Cβ ∪Cα) a solution of (3.1) such that φ(v)= c.

PROOF. Let u(t;u0) be the minus gradient flow defined with r = c− 1.
Part 1. For any k ∈ N, there exists vk ∈H 1

0 (a, b) such that

c− 1

k
� φ(vk)� c+ 1

k
and ∇φ(vk)= 0.
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Let us fix k ∈ N. From Proposition 3.8, there exists uk ∈ C1
0([a, b]) such that

∀t > 0, u(t;uk) ∈ φ−1
([
c− 1

k
, c+ 1

k

])
\ (
Cβ ∪Cα

)
,

and there exists an increasing unbounded sequence (tn)n ⊂ R+ such that

∇φ(
u(tn;uk)

) H 1
0→ 0 as n→ ∞.

Notice that φ(u(t;uk)) > c− 1 so that u(t;uk) solves

d

dt
u= −∇φ(u), u(0)= uk.

Using the Palais–Smale condition, we can find a subsequence that we still write
(u(tn;uk))n and vk ∈H 1

0 (a, b) such that

u(tn;uk)
H 1

0→ vk as n→ ∞,

c− 1

k
� φ(vk)� c+ 1

k
and ∇φ(vk)= 0.

Part 2. vk ∈ C1
0([a, b]) \ (Cβ ∪Cα).

Claim 1. There exists R > 0 such that for all s ∈ [0,+∞[,
∥∥u(s;uk)∥∥H 1

0
�R implies

∥∥∇φ(
u(s;uk)

)∥∥
H 1

0
� 1

R
.

If not, there exists a sequence (sm)m ⊂ [0,+∞[ such that∥∥u(sm;uk)
∥∥
H 1

0
�m (3.18)

and ‖∇φ(u(sm;uk))‖H 1
0

� 1
m

. As φ(u(t;uk)) is bounded, by the Palais–Smale condition,

there exists a subsequence (smj )j so that u(smj ;uk) converges in H 1
0 (a, b) which contra-

dicts (3.18).
Claim 2. ‖u(t;uk)‖H 1

0
is bounded on R+. Assume that for some t > 0, ‖u(t;uk)‖H 1

0
>

R0 = max{‖uk‖H 1
0
,R}. Then there exists t1 ∈ [0, t] so that ‖u(t1;uk)‖H 1

0
= R0 and for any

s ∈ [t1, t], ‖u(s;uk)‖H 1
0

�R0 �R. It follows that

∣∣φ(
u(t;uk)

) − φ
(
u(t1;uk)

)∣∣ =
∫ t

t1

∥∥∇φ(
u(s;uk)

)∥∥2
H 1

0
ds � 1

R2
(t − t1).

On the other hand, we have∥∥u(t;uk)− u(t1;uk)
∥∥
H 1

0
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=
∥∥∥∥∫ t

t1

∇φ(
u(s;uk)

)
ds

∥∥∥∥
H 1

0

�
[∫ t

t1

∥∥∇φ(
u(s;uk)

)∥∥2
H 1

0
ds

] 1
2

(t − t1)
1
2

= ∣∣φ(
u(t;uk)

) − φ
(
u(t1;uk)

)∣∣ 1
2 (t − t1)

1
2

�
∣∣φ(

u(t;uk)
) − φ

(
u(t1;uk)

)∣∣R.
As φ(u(t;uk)) is bounded, the claim follows.

Claim 3. vk ∈ C1
0([a, b]) \ (Cβ ∪ Cα). To prove this claim let us show that for some

subsequence u(tn;uk)
C1

0→ vk . Consider the sequence (wn)n ⊂ C1
0([a, b]), defined by

wn(r)=
∫ tn

0
e−(tn−s)(KNu(s;uk))(r)ds,

with K and N defined from (3.12). As ‖u(t;uk)‖H 1
0

is bounded, there exists h ∈ L1(a, b)

so that

∣∣w′′
n(r)

∣∣ =
∣∣∣∣∫ tn

0
e−(tn−s)[f ( · , u(s;uk)

) −m( · )(u(s;uk)−KNu(s;uk)
)]
(r)ds

∣∣∣∣
�

∫ tn

0
e−(tn−s)h(r)ds � h(r).

Using the Arzelà–Ascoli theorem, we can find a subsequence (wni )i converging in
C1

0([a, b]). The same holds true for

u(tn;uk)= uke−tn +
∫ tn

0
e−(tn−s)KNu(s;uk)ds,

i.e.,

u(tni ;uk)
C1

0→ vk

and the claim follows.
Conclusion. From the Palais–Smale condition, a subsequence of (vk)k converges in

H 1
0 (a, b) to some function v. As vk = KNvk , the convergence also holds in C1

0([a, b]),
i.e.,

v ∈ C1
0

([a, b]) \ (
Cβ ∪Cα

)
, φ(v)= c and ∇φ(v)= 0.

�
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A four solutions theorem
This section deals with a problem (3.1) which has the trivial solution u= 0. We consider
assumptions which imply existence of lower and upper solutions αi , βi so that

α1 � β1 � 0 � α2 � β2.

The Three Solution theorem (see Theorem 2.7 for the periodic case) will provide three
solutions, two one-sign ones u1 ∈ [α1, β1] and u2 ∈ [α2, β2] and a third one that can be the
zero solution. The difficulty is to obtain a third nontrivial solution. Here such a result is
obtained assuming the slope f (t,u)

u
crosses the two first eigenvalues.

THEOREM 3.10. Let assumptions (H) be satisfied and assume:

(i) there exist λ > λ2 = 4π2

(b−a)2 and δ > 0 such that for a.e. t ∈ [a, b] and all u ∈ [−δ, δ],

f (t, u)

u
� −λ;

(ii) there exist μ < λ1 = π2

(b−a)2 and R > 0 such that for a.e. t ∈ [a, b] and all u ∈ R
with |u| �R,

f (t, u)

u
� −μ.

Then the problem (3.1) has at least three nontrivial solutions ui such that u1 ≺ 0, u2 � 0
and u3 changes sign.

PROOF. Claim. There exists α1 ≺ 0 which is a lower solution of (3.1). Let h ∈ L1(a, b) be
such that h� 0 and for a.e. t ∈ [a, b] and all u� 0,

f (t, u) <−μu+ h(t).

Define then α1 to be the solution of

u′′ = −μu+ h(t), u(a)= 0, u(b)= 0.

As μ< λ1 and h� 0 we have α1 ≺ 0 and

α′′
1 (t)= −μα1(t)+ h(t) > f

(
t, α1(t)

)
, α1(a)= 0, α1(b)= 0,

i.e., α1 is a lower solution.
Claim. There exists β2 � 0 which is an upper solution of (3.1). We construct β2 as we

did for α1.
The modified problem. Consider the modified problem

u′′ = f̄ (t, u), u(a)= 0, u(b)= 0, (3.19)
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where

f̄ (t, u)=

⎧⎪⎨⎪⎩
f

(
t, α1(t)

)
, if u < α1(t),

f (t, u), if α1(t)� u� β2(t),

f
(
t, β2(t)

)
, if u > β2(t),

and the corresponding functional

φ̄(u)=
∫ b

a

[
u′2(t)

2
+ �F (

t, u(t)
)]

dt,

with �F (t, u)= ∫ u
0 f̄ (t, s)ds. As usual, it is easy to see that every solution of (3.19) satisfies

α1 � u� β2 and is a solution of (3.1).
Existence of the solutions u1 and u2. Define ϕ1(t) = sin(π t−a

b−a ) and let us fix ε > 0
small enough so that ε < min{δ/4, λ− λ2}, −4εϕ1 � α1 and 4εϕ1 ≺ β2. It is easy to see
that β1 = −εϕ1 and α2 = εϕ1 are respectively upper and lower solutions of (3.1) but are
not solutions. This follows from

β ′′
1 (t)= ελ1ϕ1(t) < f

(
t,−εϕ1(t)

) = f
(
t, β1(t)

)
,

α′′
2 (t)= −ελ1ϕ1(t) > f

(
t, εϕ1(t)

) = f
(
t, α2(t)

)
.

Using Assumption (H) and Proposition 2.12, they are strict upper and lower solutions.
Theorem 3.1 applies then with α = αi and β = βi , which implies the existence of solutions
u1 ∈Cβ1 and u2 ∈ Cα2 .

Existence of a third nontrivial solution. Observe that as φ̄ is coercive, it satisfies the
Palais–Smale condition. Hence we can apply Theorem 3.9 with α = α2 and β = β1. This
proves the existence of a solution u3 ∈ C1

0 ([a, b]) \ (Cβ1 ∪Cα2), i.e. u3 �= u1 and u3 �= u2.
The main problem is to prove that u3 is not the trivial solution. To this aim, we prove that
c= φ̄(u3) < 0 = φ̄(0).

Define γ ∈ Γ (with α = α2, β = β1) in the following way

γ (s)=
{

2ε
(
(2s − 1)ϕ1 + 2sϕ2

)
, if s ∈ [

0, 1
2

]
,

2ε
(
(2s − 1)ϕ1 + 2(1 − s)ϕ2

)
, if s ∈ [1

2 ,1
]
,

where ϕ2(t)= sin(2π t−a
b−a ). Observe that

γ (0)= −2εϕ1 ≺ β1, γ (1)= 2εϕ1 � α2,

α1 ≺ −4εϕ1 � γ (s)� 4εϕ1 ≺ β2 for all s ∈ [0,1].

Moreover, for s ∈ [0, 1
2 ],

φ̄
(
γ (s)

) =
∫ b

a

[
2ε2(

(2s − 1)2(ϕ′
1)

2(t)+ 4s2(ϕ′
2)

2(t)
)
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+ �F (
t,2ε

(
(2s − 1)ϕ1(t)+ 2sϕ2(t)

))]
dt

�
∫ b

a

[
2ε2(

(2s − 1)2λ1ϕ
2
1(t)+ 4s2λ2ϕ

2
2(t)

)
− λ2ε2(

(2s − 1)ϕ1(t)+ 2sϕ2(t)
)2]

dt

� ε2(b− a)
[
(2s − 1)2(λ1 − λ)+ 4s2(λ2 − λ)

]
� ε2(b− a)

[
(2s − 1)2 + 4s2]

(λ2 − λ)

� −ε3

2
(b− a).

In the same way, we compute for s ∈ [ 1
2 ,1],

φ̄
(
γ (s)

)
� −ε3

2
(b− a).

Hence c� − ε3

2 (b− a) < 0. This implies the third solution u3 is nontrivial.
Claim. The function u3 changes sign. Assume u3 � 0 and define η = max{τ � 0 | u3 −

τϕ1 � 0}. Observe first that

u′′
3 −m(t)u3 = f (tu3)−m(t)u3 � f (t,0)= 0,

u3(a)= 0, u3(b)= 0.

As u3 �= 0, we deduce from the maximum principle that u3 � 0 which implies that η > 0.
Let us assume now that η < δ. We can find then t0 ∈ [a, b] such that u3(t0)− ηϕ1(t0)= 0,
u′

3(t0)− ηϕ′
1(t0)= 0 and for t close enough to t0

(t − t0)(u3 − ηϕ1)
′(t) = (t − t0)

∫ t

t0

(
f

(
s, u3(s)

) + λ1ηϕ1(s)
)

ds

� −(λ− λ1)(t − t0)η

∫ t

t0

ϕ1(s)ds < 0.

This contradicts the minimality of u3 −ηϕ1 for t = t0. It follows that u3 � δϕ1 � α2 which
contradicts the localization of u3.

We prove in a similar way that u3 cannot be negative. Therefore u3 changes sign. �

A five solutions theorem
An additional solution can be obtained by combining variational methods and degree the-
ory. Here we impose that the slope − f (t,u)

u
lies between two consecutive eigenvalues for

small values of u.

THEOREM 3.11. Assume that f ∈ C1([a, b] × R) satisfies assumption (H) together with
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(i) there exist p, q , k � 2 (k ∈ N) and δ > 0 such that for a.e. t ∈ [a, b] and all u ∈
[−δ, δ],

λk := k2π2

(b− a)2
<p � −f (t, u)

u
� q <

(k + 1)2π2

(b− a)2
=: λk+1;

(ii) there exist μ < λ1 = π2

(b−a)2 and R > 0 such that for a.e. t ∈ [a, b] and all u ∈ R
with |u| �R,

f (t, u)

u
� −μ.

Then the problem (3.1) has at least four nontrivial solutions ui such that u1 ≺ 0, u2 � 0
and u3, u4 change sign.

PROOF. As in the proof of Theorem 3.10, we choose strict lower solutions αi and strict
upper solutions βi such that

α1 ≺ −δϕ1 ≺ β1 = −εϕ1 and α2 = εϕ1 ≺ δϕ1 ≺ β2,

where ε ∈ ]0, δ[. As in Theorem 1.3, we can prove the problem (3.1) has two solutions u1 ≺
β1 and u2 � α2 such that u1 is the maximum solution in [α1, β1] and u2 is the minimum
solution in [α2, β2]. Moreover we can prove as in the proof of Theorem 3.10 that

u1 ≺ −δϕ1 and u2 � δϕ1.

Consider now the modified problem

u′′ = f̄ (t, u), u(a)= 0, u(b)= 0, (3.20)

where

f̄ (t, u)=

⎧⎪⎨⎪⎩
f

(
t, u1(t)

)
, if u < u1(t),

f (t, u), if u1(t)� u < u2(t),

f
(
t, u2(t)

)
, if u2(t)� u,

and the corresponding functional

φ̄(u)=
∫ b

a

[
u′2

2
+ �F (

t, u(t)
)]

dt,

with �F(t, u(t)) = ∫ u
0 f̄ (t, s)ds. As usual, it is easy to see that every solution of (3.20)

satisfies u1 � u � u2 and is a solution of (3.1). As in the proof of Theorem 3.10, we see
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that the problem (3.20) and hence (3.1) has a third solution u3 �= 0, which changes sign
and is such that

φ̄(u3)= inf
γ∈Γ max

s∈Tγ
φ̄

(
γ (s)

)
< 0,

where Γ and Tγ are defined in (3.17) with φ replaced by φ̄. Assume by contradiction
that the only solutions of (3.20) are u1, u2, u3 and 0. As u1 − 1 is a strict lower solution
of (3.20) and u1 is the only solution in Cu1−1 ∩ Cβ1 , by Theorem 3.1, u1 minimizes φ̄
on a C1

0([a, b])-neighbourhood of this point. It is also a minimizer on some H 1
0 (a, b)-

neighbourhood as follows from Theorem 8 in [38]. Similarly, u2 is a local minimizer of φ̄
in H 1

0 (a, b). By [7], there exists r > 0 such that

deg
(
I −KN,B(u1, r)

) = 1 and deg
(
I −KN,B(u2, r)

) = 1,

where K , N are defined from (3.12) with f replaced by f̄ and m= 0.
Suppose φ̄(u1) � φ̄(u2); a similar argument holds if φ̄(u2) > φ̄(u1). We can prove

(see [37]) that there exists γ > 0 such that

inf
{
φ̄(u) | ‖u− u1‖H 1

0
= γ

}
> φ̄(u1).

Hence, by the Mountain Pass theorem [57], u3 is of mountain pass type and there exists
r > 0 such that

deg
(
I −KN,B(u3, r)

) = −1.

Moreover, as KN(H 1
0 (a, b))⊂ B(0,R) for some R > 0,

deg
(
I −KN,B(0,R)

) = 1.

Let us prove next that for r > 0 small enough∣∣deg
(
I −KN,B(0, r)

)∣∣ = 1.

Consider the homotopy

u′′ = sf̄ (t, u)− (1 − s)
p+ q

2
u, u(a)= 0, u(b)= 0. (3.21)

Notice that for a.e. t ∈ [a, b] and all u ∈ [max(−δ,u1(t)),min(u2(t), δ)]

λk < p � −s f̄ (t, u)
u

+ (1 − s)
p+ q

2
� q < λk+1.

Hence, for every ε > 0, we can find r > 0 small enough such that if u ∈ ∂B(0, r) is a
solution of (3.21), we have

−u′′ = A(t)u, u(a)= 0, u(b)= 0,
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with

A(t) := −s f̄ (t, u)
u

+ (1 − s)
p+ q

2
∈ [p,q] ⊂ ]λk,λk+1[ for t ∈ [a + ε, b− ε]

and A(t) ∈ [0, q] for t ∈ [a, b]. By eigenvalue comparison, we conclude that u≡ 0. Hence,
using properties of the degree, we can write

∣∣deg
(
I −KN,B(0, r)

)∣∣ =
∣∣∣∣deg

(
I −K

(
p+ q

2
I

)
,B(0, r)

)∣∣∣∣ = 1.

We come to the contradiction

deg
(
I −KN,B(0,R)

)
= deg

(
I −KN,B(u1, r)

) + deg
(
I −KN,B(u2, r)

)
+ deg

(
I −KN,B(u3, r)

) + deg
(
I −KN,B(0, r)

)
= 2 − 1 ± 1 �= 1.

This proves existence of an additional nontrivial solution u4 of (3.20). Recall that such a
solution lies in [u1, u2] and from the definition of u1 and u2, u4 /∈ Cβ1 ∪Cα2 . Arguing as
in Theorem 3.10, we prove then that this solution changes sign. �

3.3. Historical and bibliographical notes

As we mentioned in the introduction, existence of a minimum of the related functional
between a lower and an upper solution was noticed independently by Chang [17,18] and
de Figueiredo and Solimini [38]. Theorems 3.1 and 3.2 provide such a result respectively
for the Dirichlet and the periodic problem.

De Figueiredo and Solimini [38] noticed that under certain conditions, the minimum
obtained between the lower and the upper solution is valid in the H 1

0 -topology. More re-
cently Brezis and Nirenberg [13] pointed out the interest of this result and extended it to
nonlinearities with critical growth.

Application to the existence of sequences of solutions as in Theorem 3.3 is due to Omari
and Zanolin [76]. Proposition 3.4, which considers a prescribed mean curvature problem,
is adapted from Habets and Omari [49].

The idea to combine invariant sets in C1 with variational methods is worked out in Sec-
tion 3.2. This gives a new point of view on the relation with variational methods. This
goes back to Chang [17,18]. Developments of this idea can be found in [10,19,26,56,67,
68]. The study of the Dirichlet problem with nonordered lower and upper solutions as in
Theorem 3.9 presents an alternative to the result of [24]. The Four Solutions theorem and
the Five Solutions theorem (Theorems 3.10 and 3.11) are known results and can be found,
with another proof, in [56].
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4. Monotone methods

4.1. Abstract results

Let Z be a Banach space. An order cone K ⊂Z is a closed set such that

for all u and v ∈K, u+ v ∈K,
for all t ∈ R+ and u ∈K, tu ∈K,
if u ∈K and −u ∈K then u= 0.

Such a cone K induces an order on Z:

u� v if and only if v − u ∈K.

We write equivalently u� v or v � u. The cone is said to be normal if there exists c > 0
such that 0 � u� v implies ‖u‖ � c‖v‖.

The following theorem gives conditions for an increasing sequence (αn)n to converge to
a fixed point of an operator T .

THEOREM 4.1. Let X ⊂ Z be continuously included Banach spaces so that Z has a nor-
mal order cone. Let α and β ∈X, α � β ,

E = {u ∈X | α � u� β} (4.1)

and let T :E →X be completely continuous in X. Assume the sequence (αn)n defined by

α0 = α, αn = T αn−1, (4.2)

is bounded in X and for all n ∈ N

αn � αn+1 � β.

Then the sequence (αn)n converges monotonically in X to a fixed point u of T such that

α � u� β.

PROOF. Claim. The sequence (αn)n converges in X. The sequence (αn)n is increasing and
included in E . As the set A = {αn | n ∈ N} is bounded in X, T (A) is relatively compact
in X. Hence, any sequence (αnk )k ⊂ (αn)n has a converging subsequence in X and there-
fore in Z. As the order cone is normal and the sequence is monotone, the sequence itself
converges in Z, i.e., there exists u ∈ Z so that

α � u� β and αn
Z→ u.
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It follows that all such subsequences converging in X have the same limit u, which implies

αn
X→ u.

Next, we deduce from the continuity of T that u is a fixed point of T . �

A similar result holds to prove the convergence of decreasing sequences (βn)n.

THEOREM 4.2. Let X ⊂Z be continuously included Banach spaces so that Z has a nor-
mal order cone. Let α and β ∈ X, α � β , E be defined by (4.1) and T :E → X be com-
pletely continuous in X. Assume the sequence (βn)n defined by

β0 = β, βn = Tβn−1, (4.3)

is bounded in X and for all n ∈ N

βn � βn+1 � α.

Then the sequence (βn)n converges monotonically in X to a fixed point v of T such that

α � v � β.

As a corollary we can write the following result which deals with maps T that are
monotone increasing, i.e., u� v implies T u� T v.

THEOREM 4.3. Let X ⊂Z be continuously included Banach spaces so that Z has a nor-
mal order cone. Let α and β ∈ X, α � β , E be defined by (4.1) and let T :E → X be
continuous and monotone increasing. Assume T (E) is relatively compact in X and

α � T α and Tβ � β.

Then, the sequence (αn)n and (βn)n defined by (4.2) and (4.3) converge monotonically
in X to fixed points umin and umax of T such that

α � umin � umax � β.

Further, any fixed point u ∈ E of T verifies

umin � u� umax.

PROOF. Claim 1. The sequence (αn)n converges in X to a fixed point umin of T such that
α � umin � β . As T is monotone increasing, we prove by induction that for any n ∈ N,
αn � αn+1 � β . Hence, (αn)n ⊂ E and since T (E) is relatively compact in X the sequence
(αn)n is bounded in X. The claim follows now from Theorem 4.1. Recall that T is com-
pletely continuous as T (E) is relatively compact.
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Claim 2. The sequence (βn)n converges in X to a fixed point umax of T such that umin �
umax � β . Using Theorem 4.2 with α = umin, we prove, as for Claim 1, existence of a fixed
point umax such that umin � umax � β .

Claim 3. Any fixed point u ∈ E of T verifies umin � u � umax. Since α � u � β , we
deduce by induction αn = T αn−1 � T u = u � Tβn−1 = βn. The claim follows now by
going to the limit. �

4.2. Well-ordered lower and upper solutions

The periodic problem
Consider the periodic boundary value problem

u′′ = f (t, u), u(a)= u(b), u′(a)= u′(b), (4.4)

where f is a continuous function.
Our aim is to build an approximation scheme, easy to compute, that converges to solu-

tions of (4.4). To this end, given continuous functions α and β , and M > 0, we consider
the sequences (αn)n and (βn)n defined by

α0 = α,

α′′
n −Mαn = f (t, αn−1)−Mαn−1,

αn(a)= αn(b), α
′
n(a)= α′

n(b)

(4.5)

and

β0 = β,

β ′′
n −Mβn = f (t, βn−1)−Mβn−1, (4.6)

βn(a)= βn(b), β
′
n(a)= β ′

n(b).

The approximations αn and βn are “easy to compute”, in the sense that for every n, the
problems (4.5) and (4.6) are linear and have unique solutions which read explicitly

αn(t)=
∫ b

a

G(t, s)
(
f

(
s,αn−1(s)

) −Mαn−1(s)
)

ds,

βn(t)=
∫ b

a

G(t, s)
(
f

(
s,βn−1(s)

) −Mβn−1(s)
)

ds,

where G(t, s) is the Green’s function of the problem

u′′ −Mu= f (t),

u(a)= u(b), u′(a)= u′(b).
(4.7)
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Clearly this does not avoid numerical difficulties such as those related to stiff systems. This
will be the case if we have to pick M very large.

The following theorem proves the convergence of the αn and βn.

THEOREM 4.4. Let α and β ∈ C2([a, b]), α � β and E be defined from (1.2). Assume
f :E → R is a continuous function, there exists M > 0 such that for all (t, u1), (t, u2) ∈E,

u1 � u2 implies f (t, u2)− f (t, u1)�M(u2 − u1)

and for all t ∈ [a, b]
α′′(t)� f

(
t, α(t)

)
, α(a)= α(b), α′(a)� α′(b),

β ′′(t)� f
(
t, β(t)

)
, β(a)= β(b), β ′(a)� β ′(b).

Then the sequences (αn)n and (βn)n defined by (4.5) and (4.6) converge monotonically in
C1([a, b]) to solutions umin and umax of (4.4) such that

α � umin � umax � β.

Further, any solution u of (4.4) with graph in E verifies

umin � u� umax.

PROOF. Let X = C1([a, b]), Z = C([a, b]), K = {u ∈ Z | u(t)� 0 on [a, b]} be the order
cone in Z and E be defined from (4.1). Define the operator T :E →X by

T u(t)=
∫ b

a

G(t, s)
(
f

(
s, u(s)

) −Mu(s)
)

ds,

where G(t, s) is the Green’s function of (4.7). This operator is continuous in X and
monotone increasing. Further, T (E) is relatively compact in X, α � T α and β � Tβ . The
proof follows now from Theorem 4.3. �

REMARK. Notice that the assumption α and β ∈ C2([a, b]) is not restrictive. If these func-
tions are lower and upper solutions with angles, the first iterates α1 and β1 satisfy the
assumptions of the theorem and are such that α � α1 � β1 � β .

Next, we consider a derivative dependent problem

u′′ = f (t, u,u′), u(a)= u(b), u′(a)= u′(b). (4.8)

As above, given α, β ∈ C1([a, b]) and L> 0, we consider the approximation schemes

α0 = α,

α′′
n −Lαn = f (t, αn−1, α

′
n−1)−Lαn−1, (4.9)

αn(a)= αn(b), α
′
n(a)= α′

n(b)
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and

β0 = β,

β ′′
n −Lβn = f (t, βn−1, β

′
n−1)−Lβn−1, (4.10)

βn(a)= βn(b), β
′
n(a)= β ′

n(b).

Such problems lead to a major difficulty. A straightforward application of the previous
ideas would be to assume that for any u1, u2, v1 and v2,

u1 � u2 implies f (t, u2, v2)− f (t, u1, v1)�L(u2 − u1).

This would mean that f does not depend on derivatives.
The next theorem works out the difficulty. It is however weaker than Theorem 4.4 since

it does not give maximal and minimal solutions. Its proof relies on the following maximum
principle (see [6] or [85]).

PROPOSITION 4.5 (Maximum Principle). Let p, q ∈L1(a, b) be such that the first eigen-
value λ1 of

−u′′ + pu′ + qu+ λu= 0, u(a)= u(b), u′(a)= u′(b),

satisfies λ1 < 0. Assume u ∈W 2,1(a, b) is a nontrivial function such that

−u′′ + pu′ + qu� 0, u(a)= u(b), u′(a)� u′(b).

Then u > 0 on [a, b].

In general, we shall use the case where p = 0 and q > 0 are constants.

THEOREM 4.6. Let α and β ∈ C2([a, b]) andE be defined from (1.19). Assume f :E→ R
is a continuous function, there exists M � 0 such that for all (t, u1, v), (t, u2, v) ∈E,

u1 � u2 implies f (t, u2, v)− f (t, u1, v)�M(u2 − u1), (4.11)

there exists N � 0 such that for all (t, u, v1), (t, u, v2) ∈E,∣∣f (t, u, v2)− f (t, u, v1)
∣∣ �N |v2 − v1| (4.12)

and for all t ∈ [a, b]

α′′(t)� f
(
t, α(t), α′(t)

)
, α(a)= α(b), α′(a)� α′(b),

β ′′(t)� f
(
t, β(t), β ′(t)

)
, β(a)= β(b), β ′(a)� β ′(b).
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Finally, let L> 0 be such that

L�M + N2

2
+ N

2

√
N2 + 4M (4.13)

and for all t ∈ [a, b]

f
(
t, α(t), α′(t)

) − f
(
t, β(t), β ′(t)

) +L
(
β(t)− α(t)

)
� 0.

Then, the sequences (αn)n and (βn)n defined by (4.9) and (4.10) converge monotonically
in C1([a, b]) to solutions u and v of (4.8) such that

α � u� v � β.

REMARKS. (a) The function w = β − α � 0 satisfies

−w′′ +N |w′| + (M + 1)w= h(t)� 0, w(a)=w(b), w′(b)�w′(a).

Hence, using the maximum principle we can prove that, if α �= β , our assumptions imply
α < β on [a, b]. Also if u is a solution of (4.8) such that α � u� β , we have α < u< β .

(b) It is clear from Remark (a) that the assumptions on L are satisfied if L is large enough
so that the theorem applies for any values ofM andN which satisfy the assumptions (4.11)
and (4.12).

(c) The conditions on L are immediately satisfied with L =M if the function f does
not depend on the derivative u′ (i.e., N = 0).

(d) If α or β is a solution of (4.8), we have αn = α for all n ∈ N or βn = β for all n ∈ N.

PROOF OF THEOREM 4.6. The proof uses Theorems 4.1 and 4.2 with X = C1([a, b]),
Z = C([a, b]) andK = {u ∈Z | u(t)� 0 on [a, b]} as the order cone in Z. Let E be defined
from (4.1). The operator T :E →X, defined by

T u(t)=
∫ b

a

G(t, s)
(
f

(
s, u(s), u′(s)

) −Lu(s)
)

ds,

where G(t, s) is the Green’s function of (4.7) with M = L, is completely continuous in X.
With these notations, the approximation schemes (4.9) and (4.10) are equivalent to (4.2)
and (4.3).

A: Claim. Let L > 0 satisfy (4.13). Then the functions αn defined recursively by (4.9)
are such that for all n ∈ N,

(a) αn is a lower solution, i.e.,

α′′
n(t)� f

(
t, αn(t), α

′
n(t)

)
,

αn(a)= αn(b), α
′
n(a)� α′

n(b),
(4.14)

(b) αn+1 � αn.



The lower and upper solutions method for boundary value problems 141

The proof is by induction.
Initial step: n= 0. The condition (4.14) for n= 0 is an assumption. Next, w = α1 − α0

is a solution of

−w′′ +Lw = α′′
0 (t)− f

(
t, α0(t), α

′
0(t)

)
� 0,

w(a)=w(b), w′(a)�w′(b).

Hence, we deduce (b) from the maximum principle.
Inductive step – 1st part: assume (a) and (b) hold for some n and let us prove that

α′′
n+1(t)� f

(
t, αn+1(t), α

′
n+1(t)

)
,

αn+1(a)= αn+1(b), α
′
n+1(a)� α′

n+1(b).

Let w = αn+1 − αn. We have

−α′′
n+1 + f (t, αn+1, α

′
n+1)

= f (t, αn+1, α
′
n+1)− f (t, αn,α

′
n)−L(αn+1 − αn)

�M(αn+1 − αn)+N |α′
n+1 − α′

n| −L(αn+1 − αn)

= (M −L)w+N |w′|.

On the other hand, w satisfies

−w′′ +Lw = h(t), w(a)=w(b), w′(b)−w′(a)=A, (4.15)

with h(t) := α′′
n(t)− f (t, αn(t), α

′
n(t))� 0 and A� 0. Its solution w reads

w(t) = k

[∫ t

a

h(s) cosh
√
L

(
b− a

2
+ s − t

)
ds

+
∫ b

t

h(s) cosh
√
L

(
b− a

2
+ t − s

)
ds +A cosh

√
L

(
t − a + b

2

)]
where

k =
(

2
√
L sinh

√
L
b− a

2

)−1

.

Hence, to prove αn+1 is a lower solution, we only have to verify∫ t

a

[
(M −L) cosh

√
L

(
b− a

2
+ s − t

)
+N

√
L

∣∣∣∣sinh
√
L

(
b− a

2
+ s − t

)∣∣∣∣]h(s)ds � 0,
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t

[
(M −L) cosh

√
L

(
b− a

2
+ t − s

)
+N

√
L

∣∣∣∣sinh
√
L

(
b− a

2
+ t − s

)∣∣∣∣]h(s)ds � 0,

and

(M −L) cosh
√
L

(
t − a + b

2

)
+N

√
L

∣∣∣∣sinh
√
L

(
t − a + b

2

)∣∣∣∣ � 0.

Since h is non-positive and

(M −L) coshx +N
√
L | sinhx| � (M −L+N

√
L)| sinhx|

for all x ∈ R, we obtain (M − L)w + N |w′| � 0 if M − L + N
√
L � 0, which follows

from (4.13).
Inductive step – 2nd part: assume (a) and (b) hold for some n and let us prove that

αn+2 � αn+1. The function w = αn+2 − αn+1 satisfies (4.15), where

h(t) := α′′
n+1(t)− f

(
t, αn+1(t), α

′
n+1(t)

)
and A= 0.

From the previous step h(t)� 0 and the claim follows from the maximum principle.
B: Claim. Let L > 0 satisfy (4.13). Then the functions βn defined recursively by (4.10)

are such that for all n ∈ N,
(a) βn is an upper solution, i.e.,

β ′′
n(t)� f

(
t, βn(t), β

′
n(t)

)
,

βn(a)= βn(b), β
′
n(a)� β ′

n(b),

(b) βn+1 � βn.
The proof of this claim parallels the proof of Claim A.

C: Claim. αn � βn. Define, for all i ∈ N, wi = βi − αi and

hi(t) := f
(
t, αi(t), α

′
i (t)

) − f
(
t, βi(t), β

′
i (t)

) +L
(
βi(t)− αi(t)

)
.

The proof of the claim is by induction.
Initial step: α1 � β1. The function w1 is a solution of (4.15) with h= h0 � 0 and A= 0.

Using the maximum principle, we deduce that w1 � 0, i.e., α1 � β1.
Inductive step: Let n � 2. If hn−2 � 0 and αn−1 � βn−1, then hn−1 � 0 and αn � βn.

First, let us prove that, for all t ∈ [a, b], the function hn−1 is nonnegative. Indeed, we have

hn−1 = f ( · , αn−1, α
′
n−1)− f ( · , βn−1, β

′
n−1)+L(βn−1 − αn−1)

� −M(βn−1 − αn−1)−N |β ′
n−1 − α′

n−1| +L(βn−1 − αn−1)

= (L−M)wn−1 −N |w′
n−1|.



The lower and upper solutions method for boundary value problems 143

Recall that wn−1 is a solution of (4.15) with h(t) = hn−2(t) � 0 and A = 0. Hence, we
can proceed as in the proof of Claim A to show that hn−1 � 0. It follows then from the
maximum principle that wn is nonnegative, i.e., αn � βn.

D: Claim. There exists R > 0 such that any solution u of

u′′ � f (t, u,u′), u(a)= u(b), u′(a)= u′(b),

with α � u� β satisfies ‖u′‖∞ <R. We deduce from the assumptions that

u′′ = f (t, u,u′)+ h(t)

where h(t)� 0 and f (t, u,u′)+ h(t)� maxE |f (t, u,0)| +N |u′|. The proof follows now
using Proposition 1.7.

E: Claim. There exists R > 0 such that any solution u of

u′′ � f (t, u,u′), u(a)= u(b), u′(a)= u′(b),

with α � u� β satisfies ‖u′‖∞ <R. The proof repeats the argument of Claim D (See the
remark that follows Proposition 1.7).

F: Conclusion. We deduce from Theorems 4.1 and 4.2 that the sequences (αn)n and
(βn)n converge monotonically in C1([a, b]) to functions u and v which are solutions
of (4.8) such that α � u � β and α � v � β . Further, as αn � βn for any n, we have
u� v. �

REMARK. Notice that with a little additional work we can reduce problems to cases where
Theorem 4.6 applies. For example, it does not apply to problem

u′′ − u+ (u′)2 = sin t,

u(0)= u(2π), u′(0)= u′(2π),

as (4.12) is not satisfied. However, we can work it out as follows. Notice first that this
problem satisfies a Nagumo condition. Next, we know that lower and upper solutions,
α and β ∈ [−1,1], of problems that satisfy such a Nagumo condition have a priori bounded
derivatives: ‖α′‖∞ and ‖β ′‖∞ � R. We can modify then the equation for |u′| �R so that
the same Nagumo condition is satisfied for the modified problem together with (4.12). It
follows then that the approximations defined from (4.9) and (4.10) satisfy the same bounds
and that convergence of the approximations holds.

The Dirichlet problem
As in the periodic case, we can work with the Dirichlet problem

u′′ = f (t, u), u(a)= 0, u(b)= 0, (4.16)

where f is a continuous function.
The following result paraphrases Theorem 4.4.
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THEOREM 4.7. Let α and β ∈ C2([a, b]), α � β and let E be defined from (1.2). Assume
f :E → R is a continuous function, there exists M � 0 such that for all (t, u1), (t, u2) ∈E,

u1 � u2 implies f (t, u2)− f (t, u1)�M(u2 − u1)

and for all t ∈ [a, b]
α′′(t)� f

(
t, α(t)

)
, α(a)� 0, α(b)� 0,

β ′′(t)� f
(
t, β(t)

)
, β(a)� 0, β(b)� 0.

Then the sequences (αn)n and (βn)n defined by

α0 = α,

α′′
n −Mαn = f (t, αn−1)−Mαn−1,

αn(a)= 0, αn(b)= 0,

and

β0 = β,

β ′′
n −Mβn = f (t, βn−1)−Mβn−1,

βn(a)= 0, βn(b)= 0,

converge uniformly and monotonically to solutions umin and umax of (4.16) such that

α � umin � umax � β.

Further, any solution u of (4.16) with graph in E verifies

umin � u� umax.

PROOF. The proof of this theorem repeats the argument of Theorem 4.4. �

In case of derivative dependent equations

u′′ = f (t, u,u′),

u(a)= 0, u(b)= 0,
(4.17)

approximation schemes similar to (4.9), (4.10) do not work. Here we have to work out a
generalization as in the following theorem. Notice that we use lower and upper solutions
that verify the boundary conditions.

THEOREM 4.8. Let α and β ∈ C2([a, b]), α � β and let E be defined from (1.19). As-
sume f :E → R is a continuous function, there exists M � 0 such that for all (t, u1, v),
(t, u2, v) ∈E,
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u1 � u2 implies f (t, u2, v)− f (t, u1, v)�M(u2 − u1),

there exists N � 0 such that for all (t, u, v1), (t, u, v2) ∈E,∣∣f (t, u, v2)− f (t, u, v1)
∣∣ �N |v2 − v1|

and for all t ∈ [a, b]
α′′(t)� f

(
t, α(t), α′(t)

)
, α(a)= 0, α(b)= 0,

β ′′(t)� f
(
t, β(t), β ′(t)

)
, β(a)= 0, β(b)= 0.

Finally, let K0 ∈ C([a, b]) be such that K0(a) > 0 and for all t ∈ [a, b],K0(t)= −K0(b+
a − t). Then, for L large enough, the sequences (αn)n and (βn)n defined by

α′′
n+1 − 3

√
LK0(t)α

′
n+1 −Lαn+1 = f (t, αn,α

′
n)− 3

√
LK0(t)α

′
n −Lαn,

αn+1(a)= 0, αn+1(b)= 0,

β ′′
n+1 − 3

√
LK0(t)β

′
n+1 −Lβn+1 = f (t, βn,β

′
n)− 3

√
LK0(t)β

′
n −Lβn,

βn+1(a)= 0, βn+1(b)= 0,

converge monotonically in C1([a, b]) to solutions u and v of (4.17) such that, for all t ∈
[a, b], we have

α(t)� u(t)� v(t)� β(t).

PROOF. The above result can be proved adapting the proof of Theorem 4.6. �

4.3. Lower and upper solutions in reversed order

Consider the periodic boundary value problem

u′′ = f (t, u),

u(a)= u(b), u′(a)= u′(b),
(4.18)

where f is a continuous function.
In Section 4.2, we have built an approximation scheme for solutions of (4.18) based on

the maximum principle. Here, we consider a similar approach based on the antimaximum
principle. Given continuous functions α and β , and M > 0, we consider the sequences
(αn)n and (βn)n defined by

α0 = α,

α′′
n +Mαn = f (t, αn−1)+Mαn−1, (4.19)

αn(a)= αn(b), α
′
n(a)= α′

n(b)
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and

β0 = β,

β ′′
n +Mβn = f (t, βn−1)+Mβn−1, (4.20)

βn(a)= βn(b), β
′
n(a)= β ′

n(b).

If M is not an eigenvalue of the periodic problem, i.e., M �= ( 2nπ
b−a )

2 with n ∈ N, the func-
tions αn and βn, solutions of (4.19) and (4.20), can be written explicitly

αn(t)=
∫ b

a

G(t, s)
(
f

(
s,αn−1(s)

) +Mαn−1(s)
)

ds,

βn(t)=
∫ b

a

G(t, s)
(
f

(
s,βn−1(s)

) +Mβn−1(s)
)

ds,

where G(t, s) is the Green’s function of the problem

u′′ +Mu= f (t),

u(a)= u(b), u′(a)= u′(b).
(4.21)

The next theorem indicates a framework to obtain convergence of the αn and βn to
extremal solutions of (4.18). To prove this result we need the following antimaximum
principle.

PROPOSITION 4.9 (Antimaximum Principle). Let q ∈ ]0, π2

(b−a)2 ]. Suppose u ∈ C2([a, b])
is a solution of

u′′ + qu= f (t), u(a)− u(b)= 0, u′(a)− u′(b)=A, (4.22)

where A� 0 and f ∈ C([a, b]), f (t)� 0. Then u� 0 on [a, b].

PROOF. Claim 1. If f �≡ 0, solutions u of (4.22) are one-signed. Let t0 be a zero of u.
Extend u by periodicity, define v(t)= sin

√
q(t − t0) and compute

u′(t0) sin
√
q(b− a)� (u′v − v′u)|bt0 + (u′v − v′u)|t0+b−ab

=
∫ t0+b−a

t0

f (s) sin
√
q(s − t0)ds > 0.

If q = π2

(b−a)2 , this is contradictory. If q �= π2

(b−a)2 , this implies u′(t0) > 0 and u cannot be a
periodic function.
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Claim 2. If f �≡ 0, any one-signed solution of (4.22) is positive. Direct integration of
(4.22) gives

q

∫ b

a

u(s)ds =
∫ b

a

f (s)ds +A> 0.

Hence, we have u(t) > 0.
Claim 3. If f (t)≡ 0, u(t)� 0. We deduce from a direct integration that

u(t)=A
cos

√
q(a+b2 − t)

2
√
q sin

√
q(b−a2 )

� 0.

�

THEOREM 4.10. Let α and β ∈ C2([a, b]), β � α and

E := {
(t, u) ∈ [a, b] × R | β(t)� u� α(t)

}
.

Assume f :E → R is a continuous function, there exists M ∈ ]0, π2

(b−a)2 ] such that for all
(t, u1), (t, u2) ∈E,

u1 � u2 implies f (t, u2)− f (t, u1)� −M(u2 − u1)

and for all t ∈ [a, b]
α′′(t)� f

(
t, α(t)

)
, α(a)= α(b), α′(a)� α′(b),

β ′′(t)� f
(
t, β(t)

)
, β(a)= β(b), β ′(a)� β ′(b).

Then the sequences (αn)n and (βn)n defined by (4.19) and (4.20) converge monotonically
in C1([a, b]) to solutions umax and umin of (4.18) such that

β � umin � umax � α.

Further, any solution u of (4.18) with graph in E verifies

umin � u� umax.

PROOF. Let X = C1([a, b]), Z = C([a, b]), K = {u ∈ Z | u(t)� 0 on [a, b]} be the order
cone in Z and

E = {u ∈X | β � u� α}. (4.23)

The operator T :E →X, defined by

T u(t)=
∫ b

a

G(t, s)
(
f

(
s, u(s)

) +Mu(s)
)

ds,
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whereG(t, s) is the Green’s function of (4.21), is continuous inX and monotone increasing
(see Proposition 4.9). Further, T (E) is relatively compact in X, β � Tβ and α � T α. The
proof follows now from Theorem 4.3, where α and β have to be interchanged. �

Next, we consider the derivative dependent problem

u′′ = f (t, u,u′),

u(a)= u(b), u′(a)= u′(b).
(4.24)

As above, given α, β ∈ C1([a, b]) and L> 0, we consider the approximation schemes

α0 = α,

α′′
n +Lαn = f (t, αn−1, α

′
n−1)+Lαn−1, (4.25)

αn(a)= αn(b), α
′
n(a)= α′

n(b)

and

β0 = β,

β ′′
n +Lβn = f (t, βn−1, β

′
n−1)+Lβn−1, (4.26)

βn(a)= βn(b), β
′
n(a)= β ′

n(b).

The following result is a counterpart of Theorem 4.6.

THEOREM 4.11. Let α and β ∈ C2([a, b]), β � α and

E := {
(t, u, v) ∈ [a, b] × R2 | β(t)� u� α(t)

}
.

Assume f :E → R is a continuous function, there exists M ∈ ]0, π2

(b−a)2 [ such that for all
(t, u1, v), (t, u2, v) ∈E,

u1 � u2 implies f (t, u2, v)− f (t, u1, v)� −M(u2 − u1),

there exists N � 0 such that for all (t, u, v1), (t, u, v2) ∈E,∣∣f (t, u, v2)− f (t, u, v1)
∣∣ �N |v2 − v1|

and for all t ∈ [a, b]

α′′(t)� f
(
t, α(t), α′(t)

)
, α(a)= α(b), α′(a)� α′(b),

β ′′(t)� f
(
t, β(t), β ′(t)

)
, β(a)= β(b), β ′(a)� β ′(b).
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Finally, let L ∈ ]M, π2

(b−a)2 [ be such that

(L−M) cos
√
L

(
b− a

2

)
−N

√
L sin

√
L

(
b− a

2

)
� 0 (4.27)

and

f
(
t, α(t), α′(t)

) − f
(
t, β(t), β ′(t)

) +L
(
α(t)− β(t)

)
� 0.

Then, the sequences (αn)n and (βn)n defined by (4.25) and (4.26) converge monotonically
in C1([a, b]) to solutions u and v of (4.24) such that

β � v � u� α.

PROOF. The proof uses Theorems 4.1 and 4.2 with X = C1([a, b]), Z = C([a, b]) and
K = {u ∈ Z | u(t)� 0 on [a, b]} as the order cone in Z. Let E be defined from (4.23). The
operator T :E →X, defined by

T u(t)=
∫ b

a

G(t, s)
(
f

(
s, u(s), u′(s)

) +Lu(s)
)

ds,

where G(t, s) is the Green’s function of (4.21) with M replaced by L, is completely con-
tinuous in X. With these notations, the approximation schemes (4.25) and (4.26) are equiv-
alent to (4.3) and (4.2).

A: Claim. Let L > 0 satisfy (4.27). Then the functions αn defined recursively by (4.25)
are such that for all n ∈ N,

(a) αn is a lower solution, i.e.,

α′′
n(t)� f

(
t, αn(t), α

′
n(t)

)
,

αn(a)= αn(b), α
′
n(a)� α′

n(b),
(4.28)

(b) αn+1 � αn.
The proof is by induction.

Initial step: n= 0. The condition (4.28) for n= 0 is an assumption. Next, w = α0 − α1
is a solution of

w′′ +Lw = α′′
0 (t)− f

(
t, α0(t), α

′
0(t)

)
� 0,

w(a)=w(b), w′(a)�w′(b).

Hence, we deduce (b) from the antimaximum principle (Proposition 4.9).
Inductive step – 1st part: assume (a) and (b) hold for some n and let us prove that

α′′
n+1(t)� f

(
t, αn+1(t), α

′
n+1(t)

)
,

αn+1(a)= αn+1(b), α
′
n+1(a)� α′

n+1(b).
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Let w = αn − αn+1 � 0. We have

−α′′
n+1 + f (t, αn+1, α

′
n+1)

= −f (t, αn,α′
n)+ f (t, αn+1, α

′
n+1)−L(αn − αn+1)

�M(αn − αn+1)+N |α′
n+1 − α′

n| −L(αn − αn+1)

= (M −L)w+N |w′|.

On the other hand, w satisfies

w′′ +Lw = h(t), w(a)=w(b), w′(a)−w′(b)= C, (4.29)

with h(t) := α′′
n(t)− f (t, αn(t), α

′
n(t))� 0 and C � 0. Observe that

w(t) = 1

2
√
L sin

√
L(b−a2 )

[
C cos

√
L

(
a + b

2
− t

)

+
∫ t

a

h(s) cos
√
L

(
b− a

2
+ s − t

)
ds

+
∫ b

t

h(s) cos
√
L

(
b− a

2
+ t − s

)
ds

]
.

Hence, using (4.27) and denoting D = 2
√
L sin

√
L(b−a2 ), we compute

(M −L)w(t)+N
∣∣w′(t)

∣∣
� 1

D

[
C

[
(M −L) cos

√
L

(
a + b

2
− t

)
+N

√
L

∣∣∣∣sin
√
L

(
a + b

2
− t

)∣∣∣∣]
+

∫ t

a

h(s)

[
(M −L) cos

√
L

(
b− a

2
+ s − t

)
+N

√
L

∣∣∣∣sin
√
L

(
b− a

2
+ s − t

)∣∣∣∣] ds

+
∫ b

t

h(s)

[
(M −L) cos

√
L

(
b− a

2
+ t − s

)
+N

√
L

∣∣∣∣sin
√
L

(
b− a

2
+ t − s

)∣∣∣∣] ds

]
� 0.

Hence αn+1 is a lower solution.
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Inductive step – 2nd part: assume (a) and (b) hold for some n and let us prove that
αn+2 � αn+1 . The function w = αn+1 − αn+2 satisfies (4.29), where

h(t) := α′′
n+1(t)− f

(
t, αn+1(t), α

′
n+1(t)

)
and C = 0.

From the previous step h(t) � 0 and the claim follows from the antimaximum principle
(Proposition 4.9).

B: Claim. Let L > 0 satisfy (4.27). Then the functions βn defined recursively by (4.26)
are such that for all n ∈ N,

(a) βn is an upper solution, i.e.,

β ′′
n(t)� f

(
t, βn(t), β

′
n(t)

)
,

βn(a)= βn(b), β
′
n(a)� β ′

n(b),

(b) βn+1 � βn.
The proof of this claim parallels the proof of Claim A.

C: Claim. αn � βn. Define, for all i ∈ N, wi = αi − βi and

hi(t) := f
(
t, αi(t), α

′
i (t)

) − f
(
t, βi(t), β

′
i (t)

) +L
(
αi(t)− βi(t)

)
.

The proof of the claim is by induction.
Initial step: α1 � β1. The functionw1 is a solution of (4.29) with h= h0 � 0 and C = 0.

Using the antimaximum principle (Proposition 4.9), we deduce that w1 � 0, i.e., α1 � β1.
Inductive step: Let n � 2. If hn−2 � 0 and αn−1 � βn−1, then hn−1 � 0 and αn � βn.

First, let us prove that, for all t ∈ [a, b], the function hn−1 is nonnegative. Indeed, we have

hn−1 = f ( · , αn−1, α
′
n−1)− f ( · , βn−1, β

′
n−1)+L(αn−1 − βn−1)

� −M(αn−1 − βn−1)−N |α′
n−1 − β ′

n−1| +L(αn−1 − βn−1)

= (L−M)wn−1 −N |w′
n−1|.

Recall that wn−1 is a solution of (4.29) with h(t) = hn−2(t) � 0 and C = 0. Hence, we
can proceed as in the proof of Claim A to show that hn−1 � 0. It follows then from the
antimaximum principle (Proposition 4.9) that wn is nonnegative, i.e., αn � βn.

D: Claim. There exists R > 0 such that any solution u of

u′′ � f (t, u,u′), u(a)= u(b), u′(a)= u′(b),

with β � u� α satisfies ‖u′‖∞ <R. We deduce from the assumptions that

u′′ = f (t, u,u′)+ h(t),

where h(t)� 0 and f (t, u,u′)+ h(t)� maxE |f (t, u,0)| +N |u′|. The proof follows now
using Proposition 1.7.



152 C. De Coster and P. Habets

E: Claim. There exists R > 0 such that any solution u of

u′′ � f (t, u,u′), u(a)= u(b), u′(a)= u′(b),

with β � u� α satisfies ‖u′‖∞ <R. The proof repeats the argument of Claim D but uses
the remark following Proposition 1.7.

F: Conclusion. We deduce from Theorems 4.2 and 4.1, where α and β have to be in-
terchanged, that the sequences (αn)n and (βn)n converge monotonically in C1([a, b]) to
functions u and v such that β � v � α and β � u� α. Further Claim C implies v � u. �

4.4. A mixed approximation scheme

In this section, we consider a derivative independent Dirichlet problem

u′′ = f (t, u,u), u(a)= 0, u(b)= 0. (4.30)

Here we write the nonlinearity so that f (t, u, v) is nonincreasing in u and nondecreasing
in v. We work out an approximation scheme which provides only bounds on the solutions.
However, we shall give assumptions which imply these bounds to be equal, so that they are
solutions.

Let us introduce the following definition.

DEFINITION 4.1. Functions α and β ∈ C([a, b]) are coupled lower and upper quasi-
solutions of (4.30) if

(a) for any t ∈ [a, b], α(t)� β(t);
(b) for any t0 ∈ ]a, b[, either D−α(t0) < D+α(t0) or there exists an open interval I0 ⊂

]a, b[ such that t0 ∈ I0, α ∈W 2,1(I0), and for a.e. t ∈ I0

α′′(t)� f
(
t, α(t), β(t)

);
(c) for any t0 ∈ ]a, b[, either D−β(t0) > D+β(t0) or there exists an open interval I0 ⊂

]a, b[ such that t0 ∈ I0, β ∈W 2,1(I0), and for a.e. t ∈ I0

β ′′(t)� f
(
t, β(t), α(t)

);
(d) α(a)� 0 � β(a), α(b)� 0 � β(b).

Consider the following auxiliary problem

u′′ = f (t, u, v), u(a)= 0, u(b)= 0,

v′′ = f (t, v,u), v(a)= 0, v(b)= 0.
(4.31)
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PROPOSITION 4.12. Let α0, β0 ∈ C([a, b]),
E := {

(t, u, v) | t ∈ [a, b], u, v ∈ [
α0(t), β0(t)

]}
and f :E → R be an L1-Carathéodory function such that f (t, u, v) is nonincreasing in u
and nondecreasing in v. Assume α0 and β0 are coupled lower and upper quasi-solutions
of (4.30). Then, the sequences (αn)n and (βn)n, defined for n� 1 by

α′′
n = f (t, αn−1, βn−1), αn(a)= 0, αn(b)= 0,

β ′′
n = f (t, βn−1, αn−1), βn(a)= 0, βn(b)= 0,

converge in C1([a, b]) to functions umin and umax. The pair (umin, umax) is a solution
of (4.31) such that

α0 � umin � umax � β0.

Moreover, any solution (u, v) of (4.31) with α0 � u� β0, α0 � v � β0 is such that

umin � u� umax, umin � v � umax.

PROOF. Let X = C1([a, b]) × C1([a, b]), Z = C([a, b]) × C([a, b]), K = {(u, v) ∈ Z |
u � 0, v � 0} and E = {(u, v) ∈ X | α0 � u � β0, α0 � v � β0}. We define T :E →X,
(u, v) 
→ T (u, v), where T (u, v) is the solution (x, y) of

x ′′ = f (t, u, v), x(a)= 0, x(b)= 0,

y ′′ = f (t, v,u), y(a)= 0, y(b)= 0.

Next, we verify that T is continuous, monotone increasing, T (E) is relatively compact inX
and

(α,β)� T (α,β), (β,α)� T (β,α).

Now, Theorem 4.3 applies with α = (α0, β0) and β = (β0, α0), and the claims follow. �

Notice that if u is a solution of the given problem (4.30), then (u,u) is a solution of the
auxiliary problem (4.31), whence umin and umax are bounds on solutions of (4.30). The fol-
lowing proposition proves, under appropriate assumptions, convergence of the sequences
defined in Proposition 4.12 to the unique solution of the given problem (4.30).

THEOREM 4.13. Suppose the assumptions of Proposition 4.12 hold. Assume moreover
(i) there exists ε > 0 such that α0 � εβ0;

(ii) for every s ∈ [ε,1[, almost every t ∈ [a, b] and every u, v ∈ [α0, β0] with sv �
u� v,

sf

(
t,
u

s
, sv

)
> f (t, u, v).
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Then, the functions umin and umax defined in Proposition 4.12 are equal, i.e., are solutions
of (4.30).

PROOF. From assumption (i), we deduce

εumax � umin � umax.

Let s0 = sup{s | sumax � umin}. It is obvious that s0 ∈ [ε,1] and that s0umax � umin. From
the definition of s0, we deduce the existence of t0 ∈ [a, b] such that

umin(t0)− s0umax(t0)= 0, u′
min(t0)− s0u

′
max(t0)= 0.

If t0 �= b, we also have t1 > t0 such that u′
min(t1)− s0u

′
max(t1)= 0.

Assume now that s0 < 1. Hence, we can write

s0u
′′
max = s0f ( · , umax, umin)� s0f

(
· , 1

s0
umin, s0umax

)
> f ( · , umin, umax)= u′′

min,

which leads to the contradiction

0 = (u′
min − s0u

′
max)|t1t0 =

∫ t1

t0

(
u′′

min(t)− s0u
′′
max(t)

)
dt < 0.

A similar argument holds if t0 = b. Hence s0 = 1 and umax = umin. �

4.5. Historical and bibliographical notes

The idea of associating to a pair of well-ordered lower and upper solutions, monotone
sequences of lower and upper solutions converging to solutions is far older than the theory
presented here. It goes back at least to Picard whose contribution can be found in two
“mémoires”, the first one [79] in 1890 and the second one [80] in 1893. In [80], the author
considers the problem

u′′ + f (t, u)= 0, u(a)= 0, u(b)= 0, (4.32)

in case f (t, · ) is increasing. He exhibits then a function α0 such that

α′′
0 + f (t, α0) > 0, on ]a, b[, α0(a)= 0, α0(b)= 0,

i.e., a lower solution, and considers the iterations

α′′
n + f (t, αn−1)= 0, αn(a)= 0, αn(b)= 0.
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At last he observes that the sequence (αn)n is increasing and converges to a solution u
of (4.32) greater than α0. This gives an approximation process to compute the solutions
of (4.32) that we will call the first monotone approximation scheme. Theorems 4.4 and 4.7
are very close to this approach.

In [79], Picard introduces a second monotone approximation scheme. He studies an el-
liptic Dirichlet problem in the opposite situation where f (t, · ) is decreasing. His main
result gives bounds on the solutions of (4.32). Under appropriate assumptions on f , he
defines α0 = 0 and considers, for n� 1, the solutions αn and βn of the following problems

β ′′
n + f (t, αn−1)= 0, βn(a)= 0, βn(b)= 0,

α′′
n + f (t, βn)= 0, αn(a)= 0, αn(b)= 0.

Here αn � βn, (αn)n is increasing and (βn)n is decreasing. Hence the sequences (αn)n and
(βn)n converge pointwise respectively to functions u and v with u� v. The author proves
in 1898 in case of ODE [83] and in 1900 for the PDE [84], that the convergence is uniform
and that the limit functions u and v satisfy

u′′ + f (t, v)= 0, u(a)= 0, u(b)= 0,

v′′ + f (t, u)= 0, v(a)= 0, v(b)= 0.

Moreover the solution z of (4.32), which is unique under the given assumptions, is such
that

u� z� v.

At last, Picard provides in 1894 [81] (see also [82]) an example of a problem (4.32)
such that u �= v which shows that this second approximation scheme does not necessar-
ily converge to a solution of (4.32). This method is described in Proposition 4.12 and
Theorem 4.13 which come from [20].

Following Chaplygin [16], the Russian school studies the monotone iterative methods
extensively. In 1954, Babkin [9] considers the problem (4.32) under assumptions on f (t, u)
which imply the uniqueness of the solutions of (4.32). In his approach, he considers two
approximation sequences. Starting from lower and upper solutions α0 and β0 � α0, these
approximations are obtained (for n� 1) as solutions of the linear problem

−α′′
n +Kαn = f (t, αn−1)+Kαn−1, αn(a)= 0, αn(b)= 0,

−β ′′
n +Kβn = f (t, βn−1)+Kβn−1, βn(a)= 0, βn(b)= 0.

The main assumption to prove that the sequences (αn)n and (βn)n are monotone and con-
vergent is to chooseK > 0 such that the function f (t, u)+Ku is increasing in u so that the
corresponding differential operator satisfies a maximum principle such as Proposition 4.5
(see [6] or [85]). The observation that the limits of the sequences (αn)n and (βn)n are
extremal solutions was noticed in 1962 by Courant and Hilbert [25].
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One important step is due to Kantorovich [59] in 1939. He observes that the first ap-
proximation scheme, used for the Cauchy problem associated with ODE as well as for
other boundary value problem, has a common structure related to positive operators. He
then develops an abstract formulation of the method. In 1959, Collatz and Schröder [23]
give an abstract formulation of the second monotone approximation scheme. These two
abstract formulations have been unified in 1960 by Schröder [93] who shows that the sec-
ond scheme can be reduced to the first one. Our first section takes into account such an
abstract formulation.

The study of the monotone iterative methods for nonlinearities depending on the deriv-
ative was initiated in 1964 by Gendzhoyan [43] who considers the problem

u′′ + f (t, u,u′)= 0, u(a)= 0, u(b)= 0.

Starting from lower and upper solutions α0 and β0 � α0, he defines sequences of approxi-
mations (αn)n, (βn)n as solutions of

−α′′
n + l(t)α′

n + k(t)αn = f (t, αn−1, α
′
n−1)+ l(t)α′

n−1 + k(t)αn−1,

αn(a)= 0, αn(b)= 0,

−β ′′
n + l(t)β ′

n + k(t)βn = f (t, βn−1, β
′
n−1)+ l(t)β ′

n−1 + k(t)βn−1,

βn(a)= 0, βn(b)= 0,

where k(t) and l(t) are functions related to the assumptions on f . Here also, the con-
vergence is monotone and gives approximations of the solution together with some error
bounds. Our Theorems 4.6 and 4.8 simplify considerably this approach. These can be found
in [21].

All the above-quoted papers consider the usual order α � β for the lower and upper
solutions. The monotone iterative method was also developed in case lower and upper
solutions appear in the reversed order, i.e., α � β . We can first quote the paper of Omari
and Trombetta [75] in 1992. They consider problems such as

−u′′ + cu′ + f (t, u)= 0, u(a)= u(b), u′(a)= u′(b).

The key assumptions are that the function f (t, u) − λu is nondecreasing in u for some
λ < 0 and that this λ is such that the operator −u′′ + cu′ + λu is inverse negative on the
space of periodic functions, i.e., that an antimaximum principle holds (see Proposition 4.9
[75]). Theorem 4.10 is a particular case of the results in [75]. The Neumann problem
was considered by Cabada and Sanchez [15]. We also refer to [14] for other results in
this direction. Recently Cherpion, De Coster and Habets [21] worked out an approach of
derivative dependent problems very much along the lines of Theorems 4.6 and 4.8. This
result is Theorem 4.11.
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Preface

In this part of the book we deal with the half-linear second order differential equation(
r(t)Φ(x ′)

)′ + c(t)Φ(x)= 0, Φ(x) := |x|p−1 sgnx, p > 1, (HL)

where r, c are continuous functions and r(t) > 0. The investigation of solutions of (HL)
has attracted considerable attention in the last two decades, and it was shown that solutions
of this equation behave in many aspects like those of the Sturm–Liouville equation(

r(t)x ′)′ + c(t)x = 0 (SL)

which is the special case of (HL) when p = 2. The aim of this part is to present the substan-
tial results of this investigation. We show similarities in qualitative behavior of solutions
of (HL) and (SL), we also point out phenomena where properties of solutions of (HL)
and (SL) (considerably) differ. Note that the term half-linear equations is motivated by the
fact that the solution space of (HL) has just one half of the properties which characterize
linearity, namely homogeneity (but not additivity).

The investigation of qualitative properties of nonlinear second order differential equa-
tions has a long history. Recall here only the papers of Emden [95], Fowler [102], Thomas
[211], and the book of Sansone [206] containing the survey of the results achieved in the
first half of the last century. In the fifties and the later decades the number of papers devoted
to nonlinear second order differential equations increased rapidly, so we mention here only
treatments directly associated with (HL). Even if some ideas concerning the properties of
solutions of (HL) can already be found in the papers of Bihari [20,21], Elbert and Mirzov
with their papers [85,176] are the ones usually regarded as pioneers of the qualitative theory
of (HL). In later years, in particular in the nineties, the striking similarity between oscil-
latory properties of (HL) and (SL) was revealed. On the other hand, in some aspects, e.g.,
the Fredholm-type alternative for solutions of boundary value problems associated with
(HL), it turned out that the situation is completely different in the linear and half-linear
case, and that the absence of additivity of the solution space of (HL) brings completely
new phenomena.

This part of the book is divided into four chapters. In the first one we present a brief
survey of the basic properties of solutions of (HL). A particular attention is devoted to
the existence, uniqueness, Sturmian theory and to some elementary half-linear differential
equations. Then we turn our attention to the oscillation theory of half-linear equations.
First we deal with nonoscillatory equations and nonoscillation criteria (Chapter 3B), and
in Chapter 3C we deal with their oscillation counterparts. We also present some related
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results concerning asymptotic behavior of nonoscillatory solutions and properties of some
distinguished solutions of (HL). In the last chapter we deal with boundary value prob-
lems associated with (HL) (in this part of the qualitative theory of (HL) we can see the
biggest difference between linear and half-linear second order differential equations), and
with equations related to (HL), in particular, with partial differential equations with p-
Laplacian, quasilinear equations and half-linear difference equations.

Comparing our treatment of half-linear differential equations with Chapter 3C of the
recent book [3] (this chapter is devoted to the oscillation theory of (HL), there are some
common points, but the most part of our presentation differ from that of [3]. More precisely,
the treatment analogous to Sections 1.3, 1.4, 2.2, 2.3, 3.3, 3.4 and the whole Chapter 3D
are missing in [3]. On the other hand, [3] devotes more space to particular (non)oscillation
criteria, to forced half-linear equations and to equations with deviated argument. Moreover,
the parts which overlap here and in [3] are presented from a different point of view.

I would like to thank Prof. Mariella Cecchi and Prof. Mauro Marini from the University
of Florence, who prepared the section devoted to the asymptotics of nonoscillatory solu-
tions of (HL) (Section 6), and to Assoc. Prof. Jaromír Kuben for his help with the LATEX
elaboration of the text. My special thanks belong to my colleague Dr. Pavel Řehák, who
read the whole text, for numerous helpful suggestions and comments to the final version of
this text.

The preparation of this part of the book was supported by the Grant 201/01/0079 of the
Grant Agency of the Czech Republic and by the Research Project J07/98/143100001 of
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CHAPTER 3A

Basic Theory

In this chapter we deal with the basic properties of solutions of the half-linear second order
differential equation(

r(t)Φ(x ′)
)′ + c(t)Φ(x)= 0, Φ(x) := |x|p−1 sgnx, p > 1. (0.1)

We suppose that the functions r, c are continuous and r(t) > 0 in the interval under consid-
eration. In the first section we deal with the existence and the unique solvability of (0.1).
Then we present the basic oscillatory properties of (0.1), in particular, we show that the
linear Sturmian oscillation theory extends almost verbatim to half-linear equations. In Sec-
tion 3 we show basic differences between second order linear and half-linear equations.
The last section of this chapter deals with some special half-linear equations.

1. Existence and uniqueness

1.1. First order half-linear system

Consider the Sturm–Liouville linear differential equation(
r(t)x ′)′ + c(t)x = 0 (1.1)

which is a special case p = 2 in (0.1). Then, given t0, x0, x1 ∈ R, there exists the unique
solution of (1.1) satisfying the initial conditions x(t0)= x0, x ′(t0)= x1, which is extensible
over the whole interval where the functions r, c are continuous and r(t) > 0. This follows,
e.g., from the fact that (1.1) can be written as the 2-dimensional first order linear system

x ′ = 1

r(t)
u, u′ = −c(t)x

and the linearity (hence Lipschitz property) of this system implies the above mentioned
statement concerning the existence and unique solvability of (1.1). On the other hand, if
we rewrite (0.1) into the first order system (substituting u= rΦ(x ′)), we get the system

x ′ = r1−q(t)Φ−1(u), u′ = −c(t)Φ(x), (1.2)

where q is the conjugate number of p, i.e., 1
p

+ 1
q

= 1, and Φ−1 is the inverse function
of Φ . The right hand-side of (1.2) is no longer Lipschitzian in x,u, hence the standard
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existence and uniqueness theorems do not apply directly to this system. Moreover, it is
known that the so-called Emden–Fowler differential equation

x ′′ + p(t)|x|α−2x = 0, α > 1, (1.3)

(which looks similarly to (0.1)) admits the so-called singular solutions (see Section 14.2
and, e.g., the books [127,178]), i.e., solutions which violate uniqueness and continuability
of solutions of (1.3).

1.2. Half-linear trigonometric functions

In proving the existence and uniqueness result for (0.1), the fundamental role is played
by the generalized Prüfer transformation introduced in [85]. Consider a special half-linear
equation of the form (0.1)(

Φ(x ′)
)′ + (p− 1)Φ(x)= 0 (1.4)

and denote by S = S(t) its solution given by the initial conditions S(0) = 0, S′(0) = 1.
We will show that the behavior of this solution is very similar to that of the classical sine
function. Multiplying (1.4) (with x replaced by S) by S′ and using the fact that (Φ(S′))′ =
(p−1)|S′|p−2S′′, we get the identity [|S′|p +|S|p]′ = 0. Substituting here t = 0 and using
the initial condition for S we have the generalized Pythagorian identity∣∣S(t)∣∣p + ∣∣S′(t)

∣∣p ≡ 1. (1.5)

The function S is positive in some right neighborhood of t = 0 and using (1.5) S′ =
p
√

1 − Sp , i.e., dS
p
√

1−Sp = dt in this neighborhood, hence

t =
∫ S(t)

0

(
1 − sp

)− 1
p ds. (1.6)

Following the analogy with the case p = 2, we denote

πp

2
=

∫ 1

0

(
1 − sp

)− 1
p ds = 1

p

∫ 1

0
(1 − u)

− 1
p u

− 1
q du= 1

p
B

(
1

p
,

1

q

)
,

where

B(x, y)=
∫ 1

0
tx−1(1 − t)y−1 dt

is the Euler beta function. Using the formulas

B(x, y)=  (x) (y)

 (x + y)
,  (x) (1 − x)= π

sinπx
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with the Euler gamma function  (x)= ∫ ∞
0 tx−1 e−t dt , we have

πp = 2π

p sin π
p

. (1.7)

The formula (1.6) defines uniquely the function S = S(t) on [0,πp/2] with S(πp/2)= 1
and hence by (1.5) S′(πp/2)= 0. Now we define the generalized sine function Sp on the
whole real line as the odd 2πp periodic continuation of the function

Sp(t)=
{
S(t), 0 � t � πp

2 ,

S(πp − t),
πp
2 � t � πp.

The function Sp reduces to the classical function sin in case p = 2 and in some literature
(e.g., [73]) this function is denoted by sinp t . We will skip the index p by Sp if no ambiguity
may occur.

In addition, we introduce the half-linear tangent and cotangent functions tanp and cotp
by

tanp t = Sp(t)

S′
p(t)

, cotp t =
S′
p(t)

Sp(t)
.

The function tanp is periodic with the period πp and has discontinuities at πp/2 + kπp,
k ∈ Z. The function cotp is also πp periodic, with discontinuities at t = kπp, k ∈ Z. By
(1.4) and (1.5) we have

(tanp t)′ = 1

|S′
p(t)|p

= 1 + | tanp t|p, (1.8)

(cotp t)
′ = −| cotp t|2−p

(
1 + | cotp t|p

)
.

Hence (tanp t)′ > 0, (cotp t)′ < 0 on their definition domains and there exists the inverse
functions arctanp, arccotp which are defined as inverse functions of tanp and cotp in the
domains (−πp/2,πp/2) and (0,πp), respectively. From (1.8) we have

(arctanp t)′ = 1

1 + |t|p ,

1.3. Half-linear Prüfer transformation

Using the above defined generalized trigonometric functions and their inverse functions,
we can introduce the generalized Prüfer transformation as follows. Let x be a nontrivial
solution of (0.1). Put

ρ(t)= p

√∣∣x(t)∣∣p + rq(t)
∣∣x ′(t)

∣∣p
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and let ϕ be a continuous function defined at all points where x(t) �= 0 by the formula

ϕ(t)= arccotp
rq−1(t)x ′(t)

x(t)
,

where q is the conjugate number of p, i.e., 1
p

+ 1
q

= 1. Hence

x(t)= ρ(t)S
(
ϕ(t)

)
, rq−1(t)x ′(t)= ρ(t)S′(ϕ(t)). (1.9)

Differentiating the first equality in (1.9) and comparing it with the second one we get

r1−q(t)ρ(t)S′(ϕ(t)) = ρ′(t)S
(
ϕ(t)

) + ρ(t)S′(ϕ(t))ϕ′(t). (1.10)

Similarly, applying the function Φ to both sides of the second equation in (1.9), differenti-
ating the obtained identity and substituting from (0.1) we get

−c(t)ρp−1(t)Φ
(
S

(
ϕ(t)

)) = (p− 1)
[
ρp−2(t)ρ′(t)Φ

(
S′(ϕ(t)))

− ρp−1(t)Φ
(
S

(
ϕ(t)

))
ϕ′(t)

]
. (1.11)

Now, multiplying (1.10) by Φ(S′)/ρ, (1.11) by S/ρp−1 and combining the obtained equa-
tions we get the first order system for ϕ and ρ

ϕ′ = c(t)

p− 1

∣∣S(ϕ)∣∣p + r1−q(t)
∣∣S′(ϕ)

∣∣p, (1.12)

ρ′ = Φ
(
S

(
ϕ(t)

))
S′(ϕ(t))[

r1−q(t)− c(t)

p− 1

]
ρ.

1.4. Existence and uniqueness

Since the right-hand side of the last system is Lipschitzian in ρ, ϕ, the initial value problem
for this system is uniquely solvable and its solution exists on the whole interval where r, c
are continuous and r(t) > 0. Hence, the same holds for (0.1). This statement is summarized
in the next theorem.

THEOREM 1.1. Suppose that the functions r, c are continuous in an interval I ⊆ R and
r(t) > 0 for t ∈ I . Given t0 ∈ I and A,B ∈ R, there exists a unique solution of (0.1)
satisfying x(t0)=A, x ′(t0)= B which is extensible over the whole interval I . This solution
depends continuously on the initial values A,B .

REMARK 1.1. The half-linear Prüfer transformation and the resulting existence and
uniqueness theorem are presented in [85]. Another pioneering work in the theory of half-
linear equations is the paper of Mirzov [176]. In that paper, the first order system

u′
1 = a1(t)|u2|λ1 sgnu2, u′

2 = a2(t)|u1|λ2 sgnu1 (1.13)
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is considered, where λ1, λ2 > 0 and λ1λ2 = 1. Comparing with (1.2), system (1.13) is
slightly more general since the function a1 (in contrast to the function r1−q in (1.2)) can
attain zero values. First, using Bellman’s lemma [17, p. 46], Mirzov proves that the trivial
solution (u1, u2)≡ (0,0) is the only solution satisfying the zero initial condition u1(t0)=
0 = u2(t0), and that under the assumption of local integrability of the functions a1, a2 every
solution of (1.13) is extensible over the whole interval where the integrability assumption
is satisfied. Then, under the assumption that the functions a1, a2 do not change their signs,
the Sturmian type theorem with respect to both components is proved using essentially the
same method as described in the next section.

2. Sturmian theory

In this section we establish the basic oscillatory properties of half-linear equation (0.1).
In particular, we show that the methods of the half-linear oscillation theory are similar
to those of the oscillation theory of Sturm–Liouville linear equations (1.1), and that the
Sturmian theory extends verbatim to (0.1).

2.1. Riccati equation

Let x be a solution of (0.1) such that x(t) �= 0 in an interval I . Then w(t)= r(t)Φ(x ′(t))
Φ(x(t))

is a
solution of the Riccati-type differential equation

w′ + c(t)+ (p− 1)r1−q(t)|w|q = 0, (2.1)

where q is the conjugate number of p, i.e., q = p
p−1 . Indeed, in view of (0.1) we have

w′ = (rΦ(x ′))′Φ(x)− (p− 1)rΦ(x ′)|x|p−2x ′

Φ2(x)
= −c− (p− 1)

r|x ′|p
|x|p

= −c− (p− 1)r1−q |w|q .
REMARK 2.1. (i) Using the above Riccati equation (2.1) one can derive the first equation
in (1.12) as follows. From (1.9) we have

w = r(t)Φ(x ′(t))
Φ(x(t))

= Φ(S′(ϕ(t))
Φ(S(ϕ(t))

=: v(
ϕ(t)

)
.

The function v = Φ(S′)/Φ(S) satisfies the Riccati equation corresponding to (1.4). This
implies

[
v
(
ϕ(t)

)]′ = v′(ϕ(t))ϕ′(t)=
[

− (p− 1)− (p− 1)

∣∣∣∣Φ(S′(ϕ(t)))
Φ(S(ϕ(t)))

∣∣∣∣q]
ϕ′(t)

= −(p− 1)

[
1 +

∣∣∣∣S′(ϕ(t))
S(ϕ(t))

∣∣∣∣p]
ϕ′(t),
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Substituting from (2.1)

w′(t)= −c(t)− (p− 1)r1−q(t)
∣∣w(t)∣∣q = −c(t)− (p− 1)r1−q(t)

∣∣∣∣S′(ϕ)
S(ϕ)

∣∣∣∣p
and hence

c(t)+ (p− 1)r1−q(t)
∣∣∣∣S′(ϕ(t))
S(ϕ(t))

∣∣∣∣p = (p− 1)

[
1 +

∣∣∣∣S′(ϕ(t))
S(ϕ(t))

∣∣∣∣p]
ϕ′(t).

Multiplying this equation by |S(ϕ(t))|p and using (1.5) we get really the first equation in
(1.12).

(ii) Sometimes it is convenient to use a more general Riccati substitution

v(t)= f (t)r(t)Φ(x ′(t))
Φ(x(t))

,

where f is a differentiable function. By a direct computation one can verify that v satisfies
the first order Riccati-type equation

v′ − f ′(t)
f (t)

v + f (t)c(t)+ (p− 1)r1−q(t)f 1−q(t)|v|q = 0. (2.2)

The application of this more general Riccati substitution in the oscillation theory of (0.1)
will be shown in Chapter 3C.

(iii) If we consider a slightly more general half-linear equation(
r(t)Φ(x ′)

)′ + b(t)Φ(x ′)+ c(t)Φ(x)= 0, (2.3)

the Riccati substitution w = rΦ(x ′)/Φ(x) leads to the equation

w′ + c(t)+ b(t)

r(t)
w+ (p− 1)r1−q(t)|w|q = 0. (2.4)

Multiplying this equation by exp{∫ t b(s)
r(s)

ds} =: g(t) and denoting v = gw, Equation (2.4)
can be written in the same form as (2.1)

v′ + c(t)g(t)+ (p− 1)r1−q(t)g1−q (t)|v|q = 0.

The same effect we achieve if we multiply the original equation (2.3) by g since then this
equation can be again written in the form (0.1).

2.2. Picone’s identity

The original Picone’s identity [190] for the linear second order equation (1.1) was estab-
lished in 1910. Since that time, this identity has been extended in various directions and
the half-linear version of this identity (proved in [115]) reads as follows.
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THEOREM 2.1. Consider a pair of half-linear differential operators

l(x)= (
r(t)Φ(x ′)

)′ + c(t)Φ(x), L(y)= (
R(t)Φ(y ′)

)′ +C(t)Φ(y)

and let x, y be continuously differentiable functions such that rΦ(x ′),RΦ(y ′) are also
continuously differentiable and y(t) �= 0 in an interval I ⊂ R. Then in this interval{

x

Φ(y)

[
Φ(y)rΦ(x ′)−Φ(x)RΦ(y ′)

]}′

= (r −R)|x ′| + (C − c)|x|p + pR1−qP
(
Rq−1x ′,RΦ(xy ′/y)

)
+ x

Φ(y)

[
Φ(y)l(x)−Φ(x)L(y)

]
, (2.5)

where

P(u, v) := |u|p
p

− uv + |v|q
q

� 0 (2.6)

with equality if and only if v =Φ(u).

PROOF. The identity (2.5) can be verified by a direct computation, inequality (2.6) is the
classical Young inequality, see, e.g., [105]. �

In the particular case when r = R, C = c, y is a nonzero solution of the equation
L(y)= 0 and w= RΦ(y ′)/Φ(y), then (2.5) reduces to the identity

r(t)|x ′|p − c(t)|x|p = (
w(t)|x|p)′ + pr1−q(t)P

(
rq−1(t)x ′,Φ(x)w(t)

)
. (2.7)

This reduced Picone’s identity will be used frequently in the sequel.
We will also need the following auxiliary statement which compares the function P with

a certain quadratic function.

LEMMA 2.1. The function P(u, v) defined in (2.6) satisfies the following inequalities

P(u, v)≷ 1

2
|u|2−p(

Φ(u)− v
)2
, p ≶ 2, Φ(u) �= v, u �= 0 (2.8)

and

P(u, v)≶ 1

2(p− 1)
|u|2−p(

Φ(u)− v
)2
, p ≶ 2,

∣∣Φ(u)∣∣> |v|, uv > 0.

(2.9)
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More generally, for every T > 0 there exists a constant K =K(T ) such that

P(u, v)≷K(T )|u|2−p(
Φ(u)− v

)2
, p ≷ 2, Φ(u) �= v,

∣∣∣∣ v

Φ(u)

∣∣∣∣< T. (2.10)

PROOF. We present an outline of the proof only, for details we refer to [66,72]. We have

P(u, v)= |u|p
{

1

q

∣∣∣∣ v

Φ(u)

∣∣∣∣q − v

Φ(u)
+ 1

p

}
and

|u|2−p(
v −Φ(u)

)2 = |u|p
(

v

Φ(u)
− 1

)2

.

Denote F(t) = 1
q
|t|q − t + 1

p
, G(t) = 1

2 (t − 1)2. The function H = F − G satisfies

H(−1)= 0 =H(1), H(0)= 1
p

− 1
2 ≷ 0 for p ≶ 2 and a closer investigation of the graph

of this function shows that (2.8) and (2.10) really hold. �

2.3. Energy functional

The p-degree functional

F(y;a, b)=
∫ b

a

[
r(t)|y ′|p − c(t)|y|p]

dt (2.11)

considered over the Sobolev space W 1,p
0 (a, b) is usually called the energy functional of

(0.1). Recall that the Sobolev space W 1,p
0 (a, b) consists of absolutely continuous functions

x whose derivative is in Lp(a, b) and x(a)= 0 = x(b), with the norm ‖x‖ = (
∫ b
a [|x ′|p +

|x|p]dt)1/p. Equation (0.1) is the Euler–Lagrange equation of the first variation of the
functional F . Moreover, if x is a solution of (0.1) satisfying x(a)= 0 = x(b), then using
integration by parts we have

F(x;a, b)= [
r(t)x(t)Φ

(
x ′(t)

)]b
a
−

∫ b

a

x(t)
[(
r(t)Φ(x ′)

)′ + c(t)Φ(x)
]

dt = 0.

(2.12)

2.4. Roundabout theorem

This theorem relates Riccati equation (2.1), the energy functional (2.11) and the basic oscil-
latory properties of solutions of (0.1). The terminology Roundabout theorem is motivated
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by the fact that the proof of this theorem consists of the “roundabout” proof of several
equivalent statements.

Equation (0.1) is said to be disconjugate on the closed interval [a, b] if the solution x
given by the initial condition x(a) = 0, r(a)Φ(x ′(a)) = 1 has no zero in (a, b], in the
opposite case (0.1) is said to be conjugate on [a, b].

THEOREM 2.2. The following statements are equivalent.
(i) Equation (0.1) is disconjugate on the interval I = [a, b]. (0.1) has at most one.

(ii) There exists a solution of (0.1) having no zero in [a, b].
(iii) There exists a solution w of the generalized Riccati equation (2.1) which is defined

on the whole interval [a, b].
(iv) The energy functional F(y;a, b) is positive for every 0 �≡ y ∈W1,p

0 (a, b).

PROOF. (i) ⇒ (ii): Consider the solution x̃ of (0.1) given by the initial condition x̃(a)= ε,
r(a)Φ(x̃ ′(a)) = 1, where ε > 0 is sufficiently small. Then, according to the continuous
dependence of solutions of (0.1) on the initial condition, disconjugacy of (0.1) on [a, b]
implies that this solution is positive on this interval.

(ii) ⇒ (iii): This implication is the immediate consequence of the Riccati substitution
from Section 2.1.

(iii) ⇒ (iv): If there exists a solution w of (2.1) defined in the whole interval [a, b], then
by integrating the reduced Picone identity (2.7) with x ∈W 1,p

0 (a, b) we get

F(x;a, b)= p

∫ b

a

r1−q(t)P
(
rq−1(t)x ′,Φ(x)w(t)

)
dt � 0

with equality only if and only if Φ(rq−1(t)x ′)=Φ(x)w(t), i.e., x ′ =Φ−1(w(t)/r(t))x in
[a, b], thus

x(t)= x(a) exp

{∫ t

a

Φ−1
(
w(s)

r(s)

)
ds

}
≡ 0

since x(a) = 0. This means that F(x;a, b) � 0 over W 1,p
0 (a, b) with equality only if

x(t)≡ 0.
(iv) ⇒ (i): Suppose that F > 0 over nontrivial y ∈ W

1,p
0 (a, b) and (0.1) is not dis-

conjugate in [a, b], i.e., the solution x of (0.1) given by the initial condition x(a) = 0,
r(a)Φ(x ′(a))= 1 has a zero c ∈ [a, b]. Define the function y ∈W 1,p

0 (a, b) as follows

y(t)=
{
x(t), t ∈ [a, c],
0, t ∈ [c, b].

Then by (2.12)

F(y;a, b)=F(y;a, c)=F(x;a, c)= 0

which contradicts the positivity of F . �
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REMARK 2.2. Similarly to the linear case, two points t1, t2 ∈ R are said to be conjugate
relative to (0.1) if there exists a nontrivial solution x of this equation such that x(t1) =
0 = x(t2). Due to Theorem 2.2, disconjugacy and conjugacy of (0.1) on a bounded interval
I ⊂ R can be equivalently defined as follows. Equation (0.1) is said to be disconjugate
on an interval I if this interval contains no pair of points conjugate relative to (0.1) (i.e.,
every nontrivial solution has at most one zero in I ), in the opposite case (0.1) is said to
be conjugate on I (i.e., there exists a nontrivial solution with at least two zeros in I ).
In Section 7 we will show that using the concept of the principal solution of (0.1), this
equivalent definition applies also to unbounded intervals.

2.5. Sturmian separation and comparison theorems

The Roundabout theorem shows that the linear Sturmian theorems extend verbatim to half-
linear equation (0.1). Indeed, the following theorem follows from the equivalence of (i) and
(ii) in Theorem 2.2. We will prove it by using an alternative method.

THEOREM 2.3. Let t1 < t2 be two consecutive zeros of a nontrivial solution x of (0.1).
Then any other solution of this equation which is not proportional to x has exactly one
zero on (t1, t2).

PROOF. Among several possible methods of the proof we choose that one based on the
Riccati substitution and the resulting equation (2.1). Let w = rΦ(x ′)/Φ(x), then w is a
solution of (2.1) which is defined on (t1, t2) and satisfies w(t1+) = ∞, w(t2−) = −∞.
Suppose that there exists a solution x̃ of (0.1), linearly independent of x , which has no
zero in (t1, t2) and let w̃ = rΦ(x̃ ′/x̃). Since x̃(t1) �= 0, x̃(t2) �= 0 (otherwise x̃ would be a
multiple of x), we have w̃(t1) <∞, w̃(t2) > −∞. Hence the graph of w̃ has to intersect
the graph of w at some point in (t1, t2), but this contradicts the unique solvability of (2.1)
(which follows from the fact that the function c + (p − 1)r1−q |w|q is Lipschitzian with
respect to w). �

The Sturmian separation theorem also justifies the following definition of oscillation
and nonoscillation of (0.1) which is the same as in the linear case. Equation (0.1) is said
to be nonoscillatory (more precisely, nonoscillatory at ∞), if there exists T0 ∈ R such that
(0.1) is disconjugate on [T0, T1] for every T1 > T0, in the opposite case (0.1) is said to be
oscillatory.

According to Theorem 2.3, the above definition is correct, in the sense that oscillation
of (0.1) means oscillation of its every nontrivial solution (i.e., the existence of a sequence
of zeros of this solution tending to ∞). Note also that similarly to the linear case, if the
functions r, c are continuous and r(t) > 0 in an interval [T ,∞), then according to the
unique solvability of the initial value problem associated with (0.1), the sequence of zeros
of any nontrivial solution of (0.1) cannot a have a finite cluster point.

Along with (0.1) consider another equation of the same form(
R(t)Φ(y ′)

)′ +C(t)Φ(y)= 0, (2.13)

where the functions R,C satisfy the same assumptions as r, c, respectively, in (0.1).
The next statement is an extension of well-known Sturm comparison theorem to (0.1).
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THEOREM 2.4. Let t1 < t2 be consecutive zeros of a nontrivial solution x of (0.1) and
suppose that

C(t)� c(t), r(t)�R(t) > 0 (2.14)

for t ∈ [t1, t2]. Then any solution of (2.13) has a zero in (t1, t2) or it is a multiple of the
solution x . The last possibility is excluded if one of the inequalities in (2.14) is strict on a
set of positive measure.

PROOF. Let x be a solution of (0.1) having zeros at t = t1 and t = t2. Then by (2.12) we
have F(x; t1, t2)= 0 and according to (2.14)

FRC(x; t1, t2) :=
∫ t2

t1

[
R(t)|x ′|p −C(t)|x|p]

dt � 0. (2.15)

This implies, by Theorem 2.2, that the solution y of (2.13) given by the initial condi-
tion y(t1) = 0, y ′(t1) > 0 has a zero in (t1, t2] and by Theorem 2.3 any linearly inde-
pendent solution of (2.13) has a zero in (t1, t2). Finally, suppose that the first zero of y
to the right of t1 is just at t2, i.e., y(t1) = 0 = y(t2). Let v = RΦ(y ′)/Φ(y) be the so-
lution of the Riccati equation associated with (2.13). Then, since limt→t1+[x(t)/y(t)] =
limt→t1+[x ′(t)/y ′(t)] = x ′(t1)/y ′(t1) exists finite, we have

lim
t→t1+

v(t)
∣∣x(t)∣∣p = lim

t→t1+
R(t)x(t)Φ

(
y ′(t)

)Φ(x(t))
Φ(y(t))

= 0.

Similarly limt→t2− v(t) |x(t)|p = 0. This implies FRC(x; t1, t2)� 0 (in view of (2.7) with
R,C,v instead of r, c,w respectively), but this contradicts to (2.15) since FRC(x; t1, t2) <
0 if one of inequalities in (2.14) is strict on an interval of positive length. �

We will employ the same terminology as in the linear case. If (2.14) are satisfied in a
given interval I , then (2.13) is said to be the majorant equation of (0.1) on I and (0.1) is
said to be the minorant equation of (2.13) on I .

2.6. Transformation of independent variable

Let us introduce the new independent variable s = ϕ(t) and the new function y(s)= x(t),
where ϕ is a differentiable function such that ϕ′(t) �= 0 in some interval I where we con-
sider Equation (0.1). Then d

dt = ϕ′(t) d
ds and hence this transformation transforms (0.1) into

the equation of the same form

d

ds

[
r(t)Φ

(
ϕ′(t)

)
Φ

(
d

ds
y

)]
+ c(t)

ϕ′(t)
Φ(y)= 0, t = ϕ−1(s), (2.16)
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where ϕ−1 is the inverse function of ϕ. In particular, if

ϕ(t)=
∫ t

T

r1−q(τ )dτ, T ∈ I, (2.17)

then the resulting equation (2.16) is the equation of the form (0.1) with r(t)≡ 1.
Observe that if

∫ ∞
r1−q(t)dt = ∞, then (2.17) transforms an unbounded interval

[T ,∞) into the interval [0,∞)which is of the same form as [T ,∞). If
∫ ∞

r1−q(t)dt <∞
then the interval [T ,∞) is transformed into the bounded interval [0, b), b = ∫ ∞

T r1−q(t)dt .
This fact, coupled with the remark about cluster points of an oscillatory solution of (0.1)
given below Theorem 2.3, shows why some (non)oscillation criteria and asymptotic for-
mulas for solutions of (0.1) substantially depend on the divergence (convergence) of∫ ∞

r1−q(t)dt .

2.7. Reciprocity principle

Suppose that the function c in (0.1) does not change its sign in an interval I and let u =
rΦ(x ′). Then by a simple computation one can verify that u is a solution of the so-called
reciprocal equation(

c1−q(t)Φ−1(u′)
)′ + r1−q(t)Φ−1(u)= 0, (2.18)

where Φ−1(s) = |s|q−1 sgn s, q = p
p−1 , is the inverse function of Φ . The terminology

reciprocal equation is motivated by the linear case p = 2. The reciprocal equation to (2.18)
is again the original equation (0.1)

If t1 < t2 are consecutive zeros of a solution x of (0.1), then by the Rolle mean value
theorem u has at least one zero in (t1, t2). Conversely, if t̃1 < t̃2 are consecutive zeros of u,
then u′ = −c(t)x and hence also x has a zero in (t1, t2). This means that (0.1) is oscillatory
if and only if the reciprocal equation (2.18) is oscillatory. This fact we will refer to as the
reciprocity principle.

2.8. Leighton–Wintner oscillation criterion

In this section we formulate a simple oscillation criterion for (0.1). Even if we will devote a
special chapter to oscillation criteria for (0.1), we prefer to formulate this criterion already
here. In the linear case p = 2, this criterion was proved first by Leighton [146] under the
addition assumption c(t) � 0. This restriction was later removed by Wintner, see, e.g.,
[208].

THEOREM 2.5. Equation (0.1) is oscillatory provided∫ ∞
r1−q(t)dt = ∞ and

∫ ∞
c(t)dt = lim

b→∞

∫ b

c(t)dt = ∞. (2.19)
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PROOF. According to the definition of oscillation of (0.1), we need to show that this equa-
tion is not disconjugate on any interval of the form [T ,∞). To illustrate typical methods
of the half-linear oscillation theory, we present here two different proofs.

(i) Variational proof. We will find, for every T ∈ R, a nontrivial function y ∈
W

1,p
0 (T ,∞) such that

F(y;T ,∞)=
∫ ∞

T

[
r(t)|y ′|p − c(t)|y|p]

dt � 0. (2.20)

The function which satisfies (2.20) can be constructed as follows

y(t)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, T � t � t0,∫ t
t0
r1−q(s)ds

( ∫ t1
t0
r1−q(s)ds

)−1
, t0 � t � t1,

1, t1 � t � t2,∫ t3
t
r1−q(s)ds

( ∫ t3
t2
r1−q(s)ds

)−1
, t2 � t � t3,

0, t3 � t <∞,

where T < t0 < t1 < t2 < t3 will be specified later. Denote

K :=F(y; t0, t1)=
∫ t1

t0

[
r(t)|y ′|p − c(t)|y|p]

dt .

Then by a direct computation we have

F(y;T ,∞)=K −
∫ t2

t1

c(t)dt +
( ∫ t3

t2

r1−q(t)dt

)−1

−
∫ t3

t2

c(t)|y|p dt .

Since the function g(t)= ∫ t3
t r1−q(s)ds(

∫ t3
t2
r1−q(s)ds)−1 is monotonically decreasing on

[t2, t3] with g(t2)= 1 and g(t3)= 0, by the second mean value theorem of integral calculus
there exists ξ ∈ (t2, t3) such that∫ t3

t2

c(t)gp(t)dt =
∫ ξ

t2

c(t)dt .

Using this equality, we have

F(y; t0, t3)=K −
∫ ξ

t1

c(t)dt +
( ∫ t3

t2

r1−q(t)dt

)−1

.

Let ε > 0 and t1 > t0 be arbitrary. The second condition in (2.19) implies that t2 can be cho-
sen in such a way that

∫ ξ
t1
c(t)dt > K+ε and the first condition in (2.19) implies that t3 > t2

can be taken such that (
∫ t3
t2
r1−q(t)dt)−1 < ε. Summarizing these estimates, we have

F(y; t0, t3)�K − (K + ε)+ ε � 0,

hence (0.1) is oscillatory by Theorem 2.2.
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(ii) Proof by the Riccati technique. Suppose, by contradiction, that (2.19) holds and (0.1)
is nonoscillatory. Then there exists T ∈ R and a solution w of Riccati equation (2.1) which
is defined in the whole interval [T ,∞). By integrating (2.1) from T to t we get

w(t)=w(T )−
∫ t

T

c(s)ds − (p− 1)
∫ t

T

r1−q(s)
∣∣w(s)∣∣q ds.

The second condition in (2.19) implies the existence of T1 > T such that we have w(T )−∫ t
T c(s)ds � 0 for t > T1 and hence

w(t)� −(p− 1)
∫ t

T

r1−q(s)
∣∣w(s)∣∣q ds for t > T1.

Denote G(t)= ∫ t
T r

1−q(s)|w(s)|q ds, then |w| = [G′rq−1]1/q and the last inequality reads

G′(t)
Gq(t)

� (p− 1)qr1−q(t).

By integrating this inequality from T1 to t we get

1

q − 1
G1−q(T1) >

1

q − 1

[
G1−q(T1)−G1−q(t)

]
� (p− 1)q

∫ t

T1

r1−q(s)ds.

Letting t → ∞ we have a contradiction with the first condition in (2.19). �

3. Differences between linear and half-linear equations

The basic difference between linear and half-linear equations has already been mentioned
at the beginning of this chapter, it the fact that the solution space of (0.1) is only homo-
geneous but not additive. In this subsection we point out some other differences (some of
them are more or less consequences of this lack of the additivity of the solution space).

3.1. Wronskian identity

If x1, x2 are two solutions of the linear Sturm–Liouville differential equation (1.1), then
by a direct differentiation one can verify the so-called Wronskian identity

r(t)
[
x1(t)x

′
2(t)− x ′

1(t)x2(t)
] ≡ ω, (3.1)

where ω is a real constant. We have no half-linear version of this identity. More pre-
cisely, the above identity (3.1) can be regarded as an identityW(x1, x

′
1, x2, x

′
2) := r(x ′

1x2 −
x1x

′
2)= ω along solutions x1, x2 of (1.1). Elbert [86] showed that for p �= 2 there exists no

function of 4 variables W(x1, x2, x3, x4) which is constant along solutions of (0.1), with
the properties:
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(i) W is continuously differentiable with respect to each variable.
(ii) W is not identically constant on R4.

(iii) W has antisymmetry property W(x3, x4, x1, x2)= −W(x1, x2, x3, x4).
This result was proved using the generalized Prüfer transformation, we refer to [86] for
details. The absence of a Wronskian-type identity implies that we have also no analogue
of the linear reduction of order formula: given a solution x̃ of (1.1) with x̃(t) �= 0 in an
interval I , then

x(t)= x̃(t)

∫ t ds

r(s)x̃2(s)

is another solution of (1.1)

3.2. Transformation formula

Let h(t) �= 0 be a differentiable function such that rh′ is also differentiable and let us
introduce a new dependent variable y which is related to the original variable x by the
formula x = h(t)y . Then we have the following (linear) identity which is the basis of the
linear transformation theory (see [5,32,183])

h(t)
[(
r(t)x ′)′ + c(t)x

] = (
r(t)h2(t)y ′)′ + h(t)

[(
r(t)h′(t)

)′ + c(t)h(t)
]
y.

(3.2)

In particular, if x a solution of (1.1) then y is a solution of(
R(t)y ′)′ +C(t)y = 0

with R = rh2 and C = h[(rh′)′ + ch]. Since the function Φ is not additive, we have
no half-linear analogue of this transformation identity. This has the following important
consequence. Many oscillation results for linear equation (1.1) are based on the so-called
trigonometric transformation which reads as follows. Let x1, x2 be two (linearly indepen-

dent) solutions of (1.1) such that r(x1x
′
2 − x ′

1x2)= 1 and let h=
√
x2

1 + x2
2 . Then we have

the identity (which can be verified by a direct computation)

h
[
(rh′)′ + ch

] = 1

rh2
.

This means that the transformation x = h(t)y transforms (1.1) into the equation

(
1

q(t)
y ′

)′
+ q(t)y = 0, q(t)= 1

r(t)h2(t)
. (3.3)
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Equation (3.3) can be solved explicitly and y1 = sin(
∫ t
q(s)ds), y2 = cos(

∫ t
q(s)ds) are

its linearly independent solutions, in particular, (3.3) and hence also (1.1) is oscillatory if
and only if∫ ∞ dt

r(t)[x2
1(t)+ x2

2 (t)]
= ∞

for any pair of linearly independent solutions x1, x2 of (1.1). This fact is used in proofs
of many oscillation results for (1.1), see [192,208] and references given therein. Since
half-linear version of the transformation formula (3.2) is missing, analogous results for
half-linear equation (0.1) are not known.

3.3. Fredholm alternative

Consider the linear Dirichlet boundary value problem associated with (1.1){(
r(t)x ′)′ + c(t)x = f (t), t ∈ [a, b]
x(a)= 0 = x(b).

(3.4)

It is well known that if the homogeneous problem with f (t)≡ 0 has only the trivial solu-
tion, then (3.4) has a solution for any (sufficiently regular) right-hand side f (the so-called
nonresonant case). If the homogeneous problem has a solution ϕ0, problem (3.4) has a
solution if and only if∫ b

a

f (t)ϕ0(t)dt = 0.

In particular, the problem

x ′′ + x = f (t), x(0)= 0 = x(π), (3.5)

has a solution if and only if
∫ π

0 f (t) sin t dt = 0.
Now consider the half-linear version of the boundary value problem (3.5){(

Φ(x ′)
)′ + (p− 1)Φ(x)= f (t), t ∈ [a, b],

x(0)= 0 = x(πp),
(3.6)

where the generalized πp is given by (1.7). A natural question is whether∫ πp

0
f (t) sinp t dt = 0 (3.7)

is a necessary and sufficient condition for solvability of (3.6). This problem attracted con-
siderable attention in last years, see [73] and the references given therein. It was shown
that (3.7) is sufficient but no longer necessary for solvability of (3.6). We will deal with
this problem in more details in the last chapter.
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4. Some elementary half-linear equations

In this section we focus our attention to half-linear equations with constant coefficients
and to Euler-type half-linear equation. The results presented here are essentially contained
in the paper of Elbert [88]. This Elbert’s paper deals with system (1.2) (with constant
coefficients or coefficients corresponding to the generalized Euler equation), but results
can be easily reformulated to equations of the form (0.1).

4.1. Equations with constant coefficients

Before passing to half-linear equations with constant coefficients, consider the equation(
r(t)Φ(x ′)

)′ = 0. (4.1)

The situation is here the same as in case of linear equations. The solution space of this
equation is a two-dimensional linear space and the basis of this space is formed by the
functions x1(t)≡ 1, x2(t)=

∫ t
r1−q(s)ds, where q = p

p−1 is the conjugate number of p.
Now, consider Equation (0.1) with r(t) ≡ r > 0 and c(t) ≡ c. This equation can be

written in the form(
Φ(x ′)

)′ + c

r
Φ(x)= 0 (4.2)

and the transformation of independent variable t 
→ λt with λ = (
|c|

r(p−1) )
1/p transforms

(4.2) into the equation(
Φ(x ′)

)′ + (p− 1) sgncΦ(x)= 0

If c > 0, this equation already appeared in Section 1.3 as Equation (1.4). Its solution given
(uniquely) by the initial condition x(0) = 0, x ′(0) = 1 was denoted by S = S(t) (or by
sinp t) and it is called the half-linear sine function. The function C(t) = S′(t) is called
the the half-linear cosine function. Consequently, taking into account homogeneity of the
solution space of (0.1), we have the following statement concerning solvability of (1.4).

THEOREM 4.1. For any t0 ∈ R, x0, x1 ∈ R, the unique solution of (1.4) satisfying x(t0)=
x0, x ′(t0)= x1 is of the form x(t)= αS(t − t1), where α, t1 are real constants depending
on t0, x0, x1.

Now let c < 0, i.e., we consider the equation(
Φ(x ′)

)′ − (p− 1)Φ(x)= 0. (4.3)

Multiplying this equation by x ′ and integrating the obtained equation over [0, t] we have
the identity∣∣x ′(t)

∣∣p − ∣∣x(t)∣∣p = ∣∣x ′(0)
∣∣p − ∣∣x(0)∣∣p = C, (4.4)
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where C is a real constant. If C = 0 then x ′ = ±x thus x1 = et and x2 = e−t are solutions
of (4.3).

In the remaining part of this subsection we focus our attention to the generalized half-
linear hyperbolic sine and cosine functions. In the linear case p = 2, these functions are
linear combinations of et and e−t . However, in the half-linear case the additivity of the
solution space of (0.1) is lost and one has to use a more complicated method. LetE =Ep(t)

be the solution of (4.3) with the initial conditions E(0) = 0,E′(0)= 1, and similarly let
F = Fp(t) be the solution given by the initial conditions F(0)= 1,F ′(0)= 0. Let us also
observe that the function E corresponds to C = 1 and F to C = −1 in (4.4), respectively.
Moreover, for p = 2, i.e., if differential equation (4.3) is linear, we have E2(t)= sinh t and
F2(t)= cosh t .

Due to (4.4), the function E satisfies also the relation

E′ = p
√

1 + |E|p,

hence E′ > 1 for t > 0. Consequently

t =
∫ t

0

E′(s)ds
p
√

1 +Ep(s)
=

∫ E(t)

0

ds
p
√

1 + sp
. (4.5)

In order to compare (asymptotically) the function E(t) with et , let the function f (s) be
defined by

f (s)=
{

1 for 0 � s � 1,
1
s

for s � 1.

Then by (4.5) we obtain

t − lgE(t)= 1 +
∫ E(t)

0

ds
p
√

1 + sp
−

∫ E(t)

0
f (s)ds for E(t) > 1.

Hence

lg δp := lim
t→∞

[
t − lgE(t)

] = 1 −
∫ ∞

0

[
f (s)− 1

p
√

1 + sp

]
ds. (4.6)

The integral in the right-hand side of (4.6) can be interpreted as the area of the domain on
the (s, y) plane given by the inequalities

1
p
√

1 + sp
� y � f (s) for 0 � s <∞.

Taking y as an independent variable, we find for the integral in (4.6)

lg δp = 1 −
∫ 1

0

1 − p
√

1 − yp

y
dy = 1 − 1

p

∫ 1

0

1 − u1/p

1 − u
du. (4.7)
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Since 0 < 1 − p
√

1 − yp < y for 0 < y < 1 we have 0 < lg δp < 1, i.e., 1 < δp < e. On
the other hand, the integral in (4.7) can be expressed by means of the function Ψ (z) =
d lg (z)/dz as

Ψ (z)= −C̃ +
∫ 1

0

1 − tz−1

1 − t
dt for Re z > 0,

where C̃ is the Euler constant and  (z) = ∫ ∞
0 tz−1e−t dt denotes the usual Euler gamma

function. Making use of this relation we obtain

lg δp = 1 − 1

p

[
C̃ +Ψ

(
p+ 1

p

)]
. (4.8)

Finally, the relation (4.6) can be rewritten as

lim
t→∞

et

Ep(t)
= δp where 1< δp < e. (4.9)

A similar relation is expected also for the function Fp(t). We will use the following
auxiliary statement which we present without the proof, this proof can be found in [85].

LEMMA 4.1. Let I1(R), I2(R) be integrals defined by

I1(R)=
∫ R

0

dξ
p
√

1 + ξp
, R > 0, I2(R)=

∫ R

1

dξ
p
√
ξp − 1

, R > 1.

Then

lim
R→∞

[
I1(R)− I2(R)

] = π

p
cot

π

p
.

Now we return to the asymptotic formula for Fp . We want to obtain a relation similar to
(4.9). Since F fulfills the differential equation

|F ′|p − |F |p = −1,

we have

F ′
p
√
Fp − 1

= 1 for t > 0.

Integrating the last equality yields∫ F(t)

1

dξ
p
√
ξp − 1

= t for t > 0.
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This relation implies that limt→∞F(t)= ∞. On the other hand

lim
t→∞

[
t − lgF(t)

] = lim
t→∞

∫ F(t)

1

[
1

p
√
ξp − 1

− f (ξ)

]
dξ

=
∫ ∞

1

[
1

p
√
ξp − 1

− 1

ξ

]
dξ (4.10)

because the integral on the right-hand side is convergent. Let Δp be introduced by

lgΔp :=
∫ ∞

1

[
1

p
√
ξp − 1

− 1

ξ

]
dξ. (4.11)

It is clear that Δp > 1. The relation (4.10) can be rewritten as

lim
t→∞

et

Fp(t)
=Δp with Δp > 1. (4.12)

Now we want to establish a connection between Δp and δp . By (4.6), (4.10), and taking
into account the definition of the function f (ξ), we have

lg
Δp

δp
= lim

R→∞

[ ∫ R

1

(
1

p
√
ξp − 1

− 1

ξ

)
dξ − 1 +

∫ R

0

(
f (ξ)− 1

p
√

1 + ξp

)
dξ

]
= lim

R→∞
[
I2(R)− I1(R)

]
,

where the functions I1(R), I2(R) were introduced in Lemma 4.1. Then by this lemma we
get the wanted relation as

lg
δp

Δp

= π

p
cot

π

p
. (4.13)

We may observe here that this relation implies that δ2 =Δ2 in the linear case (p = 2).
In fact, we have δ2 = 2 =Δ2.

By (4.8) the value of δp can be considered to be known, consequently by the relation
(4.13) the value of Δp is known as well.

Finally, there are interesting functional relations between the half-linear hyperbolic sine
and cosine functions Ep(t),Fp(t) as follows

E′
p(t)=

{
Fq

(
(p− 1)t

)}q−1 =Φ−1(
Fq

(
(p− 1)t

))
,

F ′
p(t)=Φ−1(

Eq
(
(p− 1)t

))
. (4.14)

To prove these relations it is sufficient to show that the functions on both sides of the
equalities satisfy the same differential equation and fulfill the same initial conditions, this
is a matter of a direct computation (use, e.g., the result of Section 2.7).
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The relations (4.14) provide another connections between the values of δp and Δp. In-
deed, by (4.4) and (4.9) we have

lim
t→∞

E′
p(t)

et
= lim

t→∞
Ep(t)

et
= 1

δp
. (4.15)

On the other hand, this, (4.12) and (4.14) imply (taking into account that (p−1)(q−1)= 1
for conjugate pair p,q)

1

δ
p−1
p

= lim
t→∞

(E′
p(t))

p−1

e(p−1)t
= lim

t→∞
Fq((p− 1)t)

e(p−1)t
= 1

Δq

hence

Δq = δ
p−1
p , (4.16)

and similarly

δq =Δ
p−1
p . (4.17)

We remark that the last two relations are equivalent since replacing p by q we get each
from the other. By relations (4.13), (4.16) (or (4.17)) it is sufficient to know one of the
values of Δp, δp,Δq, δq , and then all the other values can be obtained easily.

As in the linear case where the function sinh t is odd and the function cosh t is even, the
functions Ep(t),Fp(t) behave in a similar way:

Ep(−t)= −Ep(t), Fp(−t)= Fp(t). (4.18)

To prove this statement it is sufficient to show that the functions on the both side of the
equality are solutions of differential equation (4.3) and satisfy the same initial conditions
at t = 0. Then the uniqueness of the initial value problem (see Section 1.4) proves (4.18).

Now we know all the solutions of differential equations (4.3). We display them in the
next theorem.

THEOREM 4.2. The solutions of (4.3) are:

Ket , Ke−t , KEp(t + t0), KFp(t + t0), (4.19)

where K and t0 are real parameters. More precisely, there are two one-parameter fami-
lies of solutions x(t) = Ket , x(t) =Ke−t and two two-parameter families satisfying the
following asymptotic formula

lim
t→∞

x(t)

et
= L,

where L= Ket0
δp

or L= Ket0
Δp

with K from (4.19).
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PROOF. Since Equation (4.3) is autonomous, it is sufficient to consider solutions whose
initial values are prescribed at t = 0, i.e., x(0)= x0, x ′(0)= x1. If x0 = 0 = x1, then ac-
cording to the unique solvability x(t)≡ 0. If at least one of the constants x0, x1 is nonzero,
distinguish the cases according to the value of the constant C in (4.4). In case C = 0,
the only possibilities are x(t) = Ket or x(t) = Ke−t . More precisely, if x0x1 > 0, then
x(t) = x0et , if x0x1 < 0, then x(t) = x0e−t . Now, if C > 0, then by the definition of the
function Ep we have x(t) =KEp(t + t0). Let K = sgnx0

p
√
C. Since the function Ep is

strictly increasing (observe that E′(0)= 1, E′ is continuous and |E′|p = 1 + |E|p) there
exists t0 ∈ R such that CEp(t0)= x1. Concerning the initial condition for the derivative x ′,
we have

|x1|p = C + |x0|p = C +C|E|p = C
(
1 + |E|p) = C|E′|p,

hence x1 = ±KE′(t0). But E′(t0) > 0 and sgnK = sgnx1, the sign + is the correct one.
If C < 0, let K = sgnx0

p
√−C and t0 be the solution of CF ′(t0) = x1. Then the function

KFp(t + t0) is the solution we looked for.
Finally, concerning the asymptotic formula, any solution which is not proportional to et

or e−t satisfies by (4.9) or (4.12)

lim
t→∞

x(t)

et
= lim

t→∞
KE(t + t0)

et+t0
et0 = Ket0

δp
or lim

t→∞
x(t)

et
= Ket0

Δp

,

hence L= Ket0
δp

or L= Ket0
Δp

. �

4.2. Euler-type half-linear differential equation

In this subsection we deal with the Euler-type differential equation(
Φ(x ′)

)′ + γ

tp
Φ(x)= 0, (4.20)

where γ is a real constant. By the analogue with the linear Euler equation we look first for
solutions in the form x(t)= tλ. Substituting into (4.20) we get the algebraic equation for λ

G(λ) := (p− 1)|λ|p − (p− 1)Φ(λ)+ γ = 0.

The function G is convex, hence the equation G(λ)= 0 has two, one or no (real) root ac-
cording to the value of γ . However, even if the first possibility happens, since the additivity
of the solution space of is lost in the half-linear case, we are not able to compute other so-
lutions explicitly. To get a more detailed information about their asymptotic behavior, we
use the procedure which is also typical in the linear case, namely the transformation of
(4.20) into an equation with constant coefficients.

The change of independent variable s = lg t converts (4.20) into the equation (where the
dependent variable will be denoted again by x and ′ = d

ds )(
Φ(x ′)

)′ − (p− 1)Φ(x ′)+ γΦ(x)= 0. (4.21)
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The Riccati equation corresponding to (4.20) and (4.21) are

w′ = −γ t−p − (p− 1)|w|p (4.22)

and

v′ = −γ + (p− 1)v− (p− 1)|v|q =: F(v), (4.23)

respectively. The solutions w and v are related by the formula w(t) = t1−pv(lg t) and,
moreover, we have G(Φ−1(v))= −F(v).

The function F is concave on R with the global maximum at ṽ = (
p−1
p
)p−1 and the

value of this maximum is γ̃ = (
p−1
p
)p − γ . We distinguish the following 3 cases with

respect to the value of the constant γ .
(I) γ < γ̃ . Then the equation F(v)= 0 has two real roots v1 < ṽ < v2;

(II) γ = γ̃ . Then the equation F(v)= 0 has the double root v = ṽ;
(III) γ > γ̃ . Then F(v) < 0 for every v ∈ R.
Case (I). The constant functions v(s)≡ v1, v(s)≡ v2 are solutions of (4.23). Clearly, if v

is a solution of (4.23) such that v(s) < v1, for some s ∈ R, then v′(s) < 0, if v(s) ∈ (v1, v2),
then v′(s) > 0, and v′(s) < 0 for v(s) > v2, a picture of the direction field of (4.23) helps to
visualize the situation. Any solution of (4.23) different from v(s)= v1,2 can be expressed
(implicitly) in the form (S ∈ R being fixed)∫ v(s)

v(S)

dv

F(v)
= s − S. (4.24)

Observe that the integral
∫ s2
s1

ds
F (s)

is convergent whenever the integration interval does not
contain zeros v1,2 of F , in particular, for any ε > 0∫ v1−ε

−∞
dv

F(v)
>−∞,

∫ ∞

v2+ε
dv

F(v)
>−∞.

Case (Ia). v(S) < v1; then v(s) < v(S) for s > S and v is decreasing. If v were extensible
up to ∞, we would have a contradiction with (4.24) since the right-hand side tends to ∞
while the left one is bounded. Later we will show that v(s)= v1 is the so-called eventually
minimal solution of (4.23).

Case (Ib). v(S) ∈ (v1, v2); the solution v is increasing in this case, and as s → ∞, we
have v(s)→ v2, otherwise we have the same contradiction as in the previous case.

Next we compute the asymptotic formula for the difference v2 − v(s). We have

F(v)= F ′(v2)(v − v2)+ O
(
(v − v2)

2)
, as v→ v2,

hence

1

F(v)
= 1

F ′(v2)(v − v2)[1 + O(v − v2)] = 1

F ′(v2)(v − v2)

[
1 + O(v − v2)

]
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= 1

F ′(v2)(v − v2)
+ O(1)

and therefore (since |v(s)− v(S)|< v2 − v1 = O(1)), substituting into (4.24)∫ v(s)

v(S)

dv

F(v)
= 1

F ′(v2)
lg
v2 − v(s)

v2 − v(S)
+ O(1)= s − S,

i.e.,

v2 − v(s)=K exp
{
F ′(v2)s

}
,

where K is a positive constant (depending on v(S)), and substituting w(t) = t1−pv(lg t)
we have

v2 − tp−1w(t)=KtF
′(v2) → 0 as t → ∞ (4.25)

since F ′(v2) < 0. Substituting w = Φ(x ′)
Φ(x)

in (4.25) we have

Φ(x ′(t))
Φ(x(t))

= t1−p
(
v2 −KtF

′(v2)
)

and using the formula (1 + α)p−1 = 1 + (p − 1)α + o(α) as α → 0, we obtain (with
q = p

p−1 )

x ′(t)
x(t)

= Φ−1(v2)

t

(
1 − K̃tF

′(v2)
)q−1 ∼ Φ−1(v2)

t

(
1 − K̃tF

′(v2)
)
,

as t → ∞, here f ∼ g for a pair of functions f,g means limt→∞ f (t)
g(t)

= 1, and K̃ is a real
constant. Thus

x(t)= tλ2 exp
{�KtF ′(v2)

} ∼ tλ2 as t → ∞,

since F ′(v2) < 0, where �K is another real constant and λ2 =Φ−1(v2) is the larger of roots
of the equation G(λ)= 0.

Case (Ic). v(S) > v2; then v′(s) < 0 and v(s) ∈ (v2, v(S)) for s > S. Using the same
argument as in (Ib) we have

tp−1w(t)− v2 = K̃tF
′(v2) → 0 as t → ∞,

K̃ being a positive constant, and this implies the same asymptotic formula for the solution
x of (4.20) which determines the solution w of (4.22).

Case (II). γ = γ̃ = (
p−1
p
)p. Then the function F has the double root ṽ = (

p−1
p
)p−1.

Equation (4.20) has a solution x(t)= tΦ
−1(ṽ) = t

p−1
p . This means that (4.20) with γ = γ̃ is
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still nonoscillatory. In the linear case p = 2, γ̃ = 1
4 and we are able to compute a linearly

independent solution using the reduction of order formula. This solution is x̃(t)= √
t lg t .

The reduction of order formula is missing in the half-linear case, but using essentially the
same method as in Case (I) we are able to show that all solutions which are not proportional

to t
p−1
p behave asymptotically as t

p−1
p lg

2
p t .

To this end, we proceed as follows. Since F(ṽ)= 0 = F ′(ṽ),

F(v)= 1

2
F ′′(ṽ)(v − ṽ)2 + O

(
(v − ṽ)3

)
as v→ ṽ,

hence, taking into account that F ′′(ṽ)= − 1
ṽ

,

1

F(v)
= 1

1
2F

′′(ṽ)(v − ṽ)2[1 + O(v − ṽ)]

= − 2ṽ

(v− ṽ)2
+ O

(
(v − ṽ)−1)

as v→ ṽ.

On the other hand, using the same argument as in the previous part, we see from (4.24) that
any solution v which starts with the initial value v(S) < ṽ fails to be extensible up to ∞
and solutions with v(S) > ṽ tend to ṽ as t → ∞. Substituting for F(v) in (4.24) we have

2ṽ

v − ṽ
+ O

(
lg |v − ṽ|) = s − S,

hence

2ṽ + (v− ṽ)O
(
lg |v− ṽ|) = (v − ṽ)(s − S).

Since limv→ṽ(v − ṽ)O(lg |v− ṽ|)= 0, we have

lim
s→∞(s − S)

(
v(s)− ṽ

) = lim
s→∞ s

(
v(s)− ṽ

) = 2ṽ.

Consequently,

O
(
lg |v(s)− ṽ|) = O

(
lg s−1) = O(lg s) as s → ∞,

and thus (v(s)− ṽ)−1 = s
2ṽ + O(lg s), which means

v(s)− ṽ = 2ṽ

s

1

1 + O( lg s
s
)
= 2ṽ

s

(
1 + O

(
lg s

s

))
= 2ṽ

s
+ O

(
lg s

s2

)
.

Now, taking into account that solutions of (4.22) and (4.23) are related by w(t) =
t1−pv(lg t), we have

tp−1w(t)− ṽ = 2ṽ

lg t
+ O

(
lg(lg t)

lg2 t

)
,
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which means that the solution x of (4.20) which determines the solution w of (4.22) satis-
fies

x ′(t)
x(t)

∼ Φ−1(ṽ)

t

(
1 + 2

lg t

) 1
p−1 ∼ p− 1

pt
+ 2

pt lg t

and thus

x(t)∼ t
p−1
p lg

2
p t.

Case (III). The equation F(v)= 0 has no real root and F(v) < 0 for every v ∈ R. Again

∫ v(s)

v(S)

dv

F(v)
= s − S, and v(s) < v(S) for s > S.

Since the left-hand side of the last equality is bounded for any value v(s), while the right
one tends to ∞ as s → ∞, no solution of (4.23) and hence also of (4.22) is extensible up
to ∞, which means that (4.20) is oscillatory. We will show that oscillatory solutions of
(4.21) are periodic and we will determine the value of their period.

To this end, we use the Prüfer transformation mentioned in Section 1 (compare also
Remark 1.1 applied to (4.21)). Any nontrivial solution of this equation can be expressed in
the form

x(s)= ρ(s)S
(
ϕ(s)

)
, x ′(s)= ρ(s)S′(ϕ(s)),

where S is the generalized half-linear sine function. The angular and radial variables ϕ,ρ
satisfy the first order differential system

ϕ′ = ∣∣S′(ϕ)
∣∣p − S(ϕ)Φ

(
S′(ϕ)

) + γ

p− 1

∣∣S(ϕ)∣∣p, (4.26)

ρ′ = S′(ϕ)
[
Φ

(
S′(ϕ)

) +
(

1 − γ

p− 1

)
Φ

(
S(ϕ)

)]
ρ. (4.27)

Oscillation of (4.21) implies that lims→∞ ϕ(s)= ∞. Denote

Ψ (ϕ) := ∣∣S′(ϕ)
∣∣p − S(ϕ)Φ

(
S′(ϕ)

) + γ

p− 1

∣∣S(ϕ)∣∣p. (4.28)

Then ∫ ϕ(s)

ϕ(S)

dϕ

Ψ (ϕ)
= s − S. (4.29)
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Here we have used the fact that Ψ (ϕ) > 0 for ϕ ∈ R since if ϕ = 0 (modπp), then
Ψ (ϕ)= 1 (observe that |S(ϕ)|p + |S′(ϕ)|p = 1), and if S(ϕ) �= 0, then

Ψ (ϕ)= ∣∣S(ϕ)∣∣p[
|α|p −Φ(α)+ γ

p− 1

]
> 0, α := S′(ϕ)

S(ϕ)
.

Further, let

τ =
∫ 2πp

0

dϕ

Ψ (ϕ)
= 2

∫ πp

0

dϕ

Ψ (ϕ)
. (4.30)

By (4.28) we have Ψ (ϕ+ πp)= Ψ (ϕ), hence ϕ(s + τ )= ϕ(s)+ 2πp and the substitution
t := S(ϕ)

S ′(ϕ) gives

τ = 2
∫ ∞

−∞
dt

γ
p−1 |t|p − t + 1

, (4.31)

which is the quantity depending only on γ .
Finally, we will estimate the radial variable ρ. Denote

R(ϕ) := S′(ϕ)
[
Φ

(
S′(ϕ)

) +
(

1 − γ

p− 1

)
Φ

(
S(ϕ)

)]
.

By (4.27) and the identity ϕ(s + τ )= ϕ(s)+ 2πp we have

lg
ρ(s + τ )

ρ(s)
=

∫ s+τ

s

R
(
ϕ(s)

)
ds =

∫ ϕ(s+τ )

ϕ(s)

R(ϕ)

Ψ (ϕ)
dϕ =

∫ 2πp

0

R(ϕ)

Ψ (ϕ)
dϕ.

Now, using the identity Ψ ′ + pR = p− 1, we get

lg
ρ(s + τ )

ρ(s)
=

∫ 2πp

0

p
p−1 − 1

p
Ψ ′(ϕ)

Ψ (ϕ)
dϕ = p− 1

p
τ = τ

q
. (4.32)

A consequence of (4.32) is that the function ρ(s) exp{− s
q
} is periodic with the period τ

because of

ρ(s + τ ) exp{− s+τ
q

}
ρ(s) exp{− s

q
} = ρ(s + τ )

ρ(s)
exp

{
− τ

q

}
= 1.

The previous computations in Case (III) are summarized in the next theorem.
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THEOREM 4.3. If γ > γ̃ = (
p−1
p
)p then Equation (4.21) is oscillatory and x(s) =

ρ(s) exp{− s
q
} is a periodic solution of (4.21) with the period τ given by (4.31).

REMARK 4.1. Consider the half-linear differential equation(
tαΦ(x ′)

)′ + γ

tp−α Φ(x)= 0. (4.33)

If α �= p− 1 and we look for a solution of this equation in the form x(t)= tλ, then substi-
tuting into (4.33) we get the algebraic equation for the exponent λ

(p− 1)|λ|p − (p− 1 − α)Φ(λ)+ γ = 0. (4.34)

This equation has a real root if and only if γ � γ̃α := (
|p−1−α|

p
)p and hence (4.33) with

α �= p − 1 is nonoscillatory if γ � γ̃α . If γ > γ̃α , using the same ideas as in case α = 0
treated in main part of this section one can see that (4.33) is oscillatory.

If α = p − 1 and γ > 0, Equation (4.34) has no real root and in this case we consider
the modified Euler-type equation(

tp−1Φ(x ′)
)′ + γ

t lgp t
Φ(x)= 0. (4.35)

The change of independent variable t 
→ lg t transforms (4.35) into Equation (4.20) and
the interval [1,∞) is transformed into the interval [e,∞). The situation is summarized in
the next theorem.

THEOREM 4.4. If α �= p− 1, Equation (4.33) is nonoscillatory if and only if

γ �
( |p− 1 − α|

p

)p
.

Equation (4.35) is nonoscillatory if and only if

γ �
(
p− 1

p

)p
.

4.3. Kneser-type oscillation and nonoscillation criteria

As an immediate consequence of the Sturmian comparison theorem and the above result
concerning oscillation of Euler equation (4.20), we have the following half-linear version
of the classical Kneser oscillation and nonoscillation criterion.

THEOREM 4.5. Suppose that

lim inf
t→∞ tpc(t) > γ̃ =

(
p− 1

p

)p
. (4.36)
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Then the equation(
Φ(x ′)

)′ + c(t)Φ(x)= 0 (4.37)

is oscillatory. If

lim inf
t→∞ tpc(t) < γ̃ , (4.38)

then (4.37) is nonoscillatory.

PROOF. If (4.36) holds, then c(t) >
γ̃+ε
tp

for some ε > 0 and since the Euler equation
(4.20) with γ = γ̃ + ε is oscillatory, (4.37) is also oscillatory by the Sturm comparison
theorem (Theorem 2.4). The nonoscillatory part of theorem can be proved using the same
argument. �

REMARK 4.2. Using the results of Theorem 4.4 and the Sturm comparison theorem, one
can prove various extensions of the previous theorem. For example, if α �= p− 1,

lim inf
t→∞ t−αr(t) > 1, lim sup

t→∞
tα−pc(t) < γ̃α

then (0.1) is nonoscillatory. An oscillation counterpart of this result, as well as the criteria
in case α = p− 1 can be formulated in a similar way.
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CHAPTER 3B

Nonoscillatory Equations

In this chapter we concentrate our attention to nonoscillatory half-linear differential equa-
tions while oscillatory equations is the main concern of Chapter 3C. However, we for-
mulate some oscillation criteria already here, mainly in situations when they are natural
complements of their nonoscillation counterparts. First we present nonoscillation criteria
for (0.1) which are based on the Riccati technique and the variational principle. Section 6
is devoted to the investigation of asymptotic properties of nonoscillatory solutions of (0.1).
Then we deal with the important concept of the principal solution of nonoscillatory equa-
tion (0.1) and the last section of this chapter presents criteria for conjugacy and disconju-
gacy of (0.1) in a given interval.

Recall that (0.1) is said to be nonoscillatory if there exists T ∈ R such that (0.1) is
disconjugate on [T ,∞), i.e., every nontrivial solution of this equation has at most one
zero in this interval and this means that every nontrivial solution is eventually positive
or negative. Equation (0.1) is said to be oscillatory in the opposite case, i.e., when every
nontrivial solution has infinitely many zeros tending to ∞.

Note that from Theorem 2.2 or from Theorem 2.3 follows that this classification of half-
linear equations is correct; all solution of (0.1) are either oscillatory or nonoscillatory.

5. Nonoscillation criteria

From the Roundabout theorem (Theorem 2.2) and also from the Sturmian comparison
theorem (Theorem 2.4) it is easy to see that for nonoscillation of (0.1), the function c

cannot be “too positive”, comparing with the positivity of the function r . The criteria of
this section characterize in a quantitative way the vague expression “not too positive”.

The Roundabout theorem offers two basic methods of the investigation of oscillatory
properties of (0.1). The first one, usually referred to as the variational principle, is based
on the equivalence of disconjugacy of (0.1) and the positivity of the associated energy
functional F . The second main method—the Riccati technique—uses the equivalence of
disconjugacy (0.1) and solvability of the generalized Riccati equation (2.1).

5.1. Variational principle and Wirtinger’s inequality

As an immediate consequence of the equivalence of (i) and (iv) in Theorem 2.2 we have the
following statement which is used in the proofs of oscillation and nonoscillation criteria
based on the variational principle.

197
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THEOREM 5.1. Equation (0.1) is nonoscillatory if and only if there exists T ∈ R such that

F(y;T ,∞) :=
∫ ∞

T

[
r(t)|y ′|p − c(t)|y|p]

dt > 0

for every nontrivial y ∈W 1,p
0 (T ,∞).

A useful tool in the variational technique is the following half-linear version of the
Wirtinger inequality.

LEMMA 5.1. LetM be a positive continuously differentiable function for whichM ′(t) �= 0
in [a, b] and let y ∈W 1,p

0 (a, b). Then

∫ b

a

∣∣M ′(t)
∣∣|y|p dt � pp

∫ b

a

Mp(t)

|M ′(t)|p−1
|y ′|p dt . (5.1)

PROOF. Suppose that M ′(t) > 0 in [a, b], in the opposite case the proof is similar. Us-
ing integration by parts, the fact that y has a compact support in (a, b), and the Hölder
inequality, we have

∫ b

a

∣∣M ′(t)
∣∣|y|p dt � p

∫ b

a

M|y|p−1|y ′|dt

� p

( ∫ b

a

|M ′||y|(p−1)q dt

) 1
q
( ∫ b

a

Mp

|M ′|p−1 |y ′|p dt

) 1
p

= p

( ∫ b

a

|M ′||y|p dt

) 1
q
( ∫ b

a

Mp

|M ′|p−1 |y ′|p dt

) 1
p

,

hence (5.1) holds. �

5.2. Nonoscillation criteria via Wirtinger inequality

The Wirtinger inequality from the previous subsection is used in the next nonoscillation
criterion.

THEOREM 5.2. Denote c+(t) = max{0, c(t)}. If
∫ ∞

r1−q(t)dt = ∞,
∫ ∞

c+(t)dt <∞,
and

lim sup
t→∞

( ∫ t

r1−q(s)ds

)p−1( ∫ ∞

t

c+(s)ds

)
<

1

p

(
p− 1

p

)p−1

, (5.2)
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or
∫ ∞

r1−q(t)dt <∞ and

lim sup
t→∞

( ∫ ∞

t

r1−q(s)ds

)p−1( ∫ t

c+(s)ds

)
<

1

p

(
p− 1

p

)p−1

, (5.3)

then (0.1) is nonoscillatory.

PROOF. We will prove the statement in case
∫ ∞

r1−q(t)dt = ∞. If this integral converges,
the proof is analogous. Denote

ν := 1

p

(
p− 1

p

)p−1

, M(t) :=
( ∫ t

r1−q(s)ds

)1−p

and let T ∈ R be such that the expression in (5.2) is less than ν for t > T . Using (5.2), the
Hölder inequality and the Wirtinger inequality, we have for any nontrivial y ∈W 1,p

0 (T ,∞)∫ ∞

T

c(t)|y|p dt �
∫ ∞

T

c+(t)|y|p dt = p

∫ ∞

T

c+(t)
( ∫ t

T

y ′Φ(y)ds

)
dt

� p

∫ ∞

T

|y ′|Φ(y)M(t)

∫ ∞
t
c+(s)ds

M(t)
dt

< pν

∫ ∞

T

M(t)|y ′|∣∣Φ(y)∣∣ dt

� pν

( ∫ ∞

T

∣∣M ′(t)
∣∣|y|p dt

) 1
q
( ∫ ∞

T

|M(t)|p
|M ′(t)|p−1 |y ′|p dt

) 1
p

� ppν

∫ ∞

T

|M(t)|p
|M ′(t)|p−1 |y ′|p dt =

∫ ∞

T

r(t)|y ′|p dt

since one may directly verify that

|M(t)|p
|M ′(t)|p−1 = (p− 1)1−pr(t).

Hence we have

F(y;T ,∞)=
∫ ∞

T

[
r(t)|y ′|p − c(t)|y|p]

dt > 0

for any nontrivial y ∈W 1,p
0 (T ,∞). �

REMARK 5.1. (i) Later we will show that the constant 1
p
(
p−1
p
)p−1 in the previous

nonoscillation criterion is sharp in the sense that if the limit in (5.2) (or in (5.3)) is greater
than this constant, then (0.1) is oscillatory. Also, when the previous criterion is applied to
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Euler-type differential equation (4.20) in the previous chapter, we again reveal the critical
constant γ̃ = (

p−1
p
)p.

(ii) In (5.2) and (5.3), the nonnegative part of the function c appeared. In the next sub-
section we present an improvement of the previous nonoscillation criterion, where instead
of c+ the function c directly appears.

(iii) If, in addition to assumptions of the previous theorem, we suppose that c(t) > 0 for
large t then the second part of this theorem (the case when

∫ ∞
r1−q(t)dt < ∞) can be

deduced from the first one using the reciprocity principle from Section 2.7. Indeed, if (5.3)
holds, then

∫ ∞
c(t)dt = ∞ and consider the reciprocal equation to (0.1)

(
c1−q(t)Φq(u′)

)′ + r1−q(t)Φq(u)= 0, Φq(u)= |u|q−1 sgnu=Φ−1(u),

where q is again the conjugate number of p. This equation, with p replaced by q , r by
c1−q and c by r1−q satisfies assumptions of the first part of Theorem 5.2, since (using
(p− 1)(q − 1)= 1)

∫ ∞
(c1−q(t))1−p dt = ∫ ∞

c(t)dt = ∞ and

lim sup
t→∞

( ∫ t

c(s)ds

)q−1( ∫ ∞

t

r1−q(s)ds

)

= lim sup
t→∞

[( ∫ t

c(s)ds

)( ∫ ∞

t

r1−q(s)ds

)p−1]q−1

<

[
1

p

(
p− 1

p

)p−1]q−1

= 1

q

(
q − 1

q

)q−1

which is just the “reciprocal” counterpart of (5.2).
(iv) If b = ∞ and M(t)= t in Lemma 5.1, we get the inequality

∫ ∞

a

|y ′|p dt � γ̃

∫ ∞

a

|y|p
tp

dt, γ̃ =
(
p− 1

p

)p
,

which is a Hardy-type inequality, see, e.g., [131]. This inequality has been extended in
many directions and some of these extensions could be perhaps used to establish more
sophisticated nonoscillation criteria than that given in Theorem 5.2. This problem is a
subject of the present investigation.

5.3. Riccati inequality

From the Roundabout theorem (Theorem 2.2) it follows that nonoscillation of (0.1) is
equivalent to solvability of the associated Riccati equation (2.1). Due to the Sturm com-
parison theorem, nonoscillation of (0.1) is actually equivalent to solvability of the Riccati
inequality. This is formulated in the next statement.
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THEOREM 5.3. Equation (0.1) is nonoscillatory if and only if there exists a continuously
differentiable function v defined on an interval [T ,∞) and satisfying there the inequality

v′ + c(t)+ (p− 1)r1−q(t)|v|q � 0. (5.4)

PROOF. Let v be a solution of (5.4). Denote C(t) := −v′ − (p−1)r1−q(t)|v|q . Then v is a
solution of v′+C(t)+(p−1)r1−q(t)|v|q = 0 which is the Riccati equation associated with
a Sturmian majorant of (0.1) (since C(t)� c(t)). This majorant equation is nonoscillatory
and hence (0.1) is nonoscillatory as well. �

The previous statement is used in the half-linear version of the classical Wintner crite-
rion. This linear criterion claims that if

∫ ∞
r−1(t)dt = ∞ and

∫ ∞
c(t)dt converges, then

the linear Sturm–Liouville equation (1.1) is nonoscillatory provided

lim sup
t→∞

( ∫ t

r−1(s)ds

)( ∫ ∞

t

c(s)ds

)
<

1

4

and

lim inf
t→∞

( ∫ t

r−1(s)ds

)( ∫ ∞

t

c(s)ds

)
>−3

4
.

The next half-linear extension of this linear criterion is proved in [60].

THEOREM 5.4. Suppose that
∫ ∞

r1−q(t)dt = ∞ and
∫ ∞

c(t)dt = limb→∞
∫ b
c(t)dt

converges. If

lim sup
t→∞

( ∫ t

r1−q(s)ds

)p−1( ∫ ∞

t

c(s)ds

)
<

1

p

(
p− 1

p

)p−1

, (5.5)

lim inf
t→∞

( ∫ t

r1−q(s)ds

)p−1( ∫ ∞

t

c(s)ds

)
>−2p− 1

p

(
p− 1

p

)p−1

, (5.6)

then (0.1) is nonoscillatory.

PROOF. We will find a solution of the Riccati type inequality

v′ � −c(t)− (p− 1)r1−q(t)|v|q (5.7)

which is extensible up to ∞, i.e., it exists on some interval [T ,∞). To find this solution
v of (5.7), we show that there exists an extensible up to ∞ solution of the differential
inequality

ρ′ � (1 − p)r1−q (t)
∣∣ρ +C(t)

∣∣q, C(t) :=
∫ ∞

t

c(s)ds (5.8)
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related to (5.7) by the substitution ρ = v −C. This solution ρ is

ρ(t)= β

( ∫ t

r1−q(s)ds

)1−p
, β :=

(
p− 1

p

)p
.

Indeed, ρ′ = (1 −p)βr1−q(t)(
∫ t
r1−q(s)ds)−p and the right-hand side of inequality (5.8)

is

(1 − p)r1−q (t)
∣∣ρ +C(t)

∣∣q
= (1 − p)r1−q(t)

∣∣∣∣β( ∫ t

r1−q
)1−p

+C(t)

∣∣∣∣q
= (1 − p)r1−q(t)

∣∣∣∣β +
( ∫ t

r1−q
)p−1

C(t)

∣∣∣∣q( ∫ t

r1−q
)(1−p)q

= (1 − p)r1−q(t)
∣∣∣∣β +

( ∫ t

r1−q
)p−1

C(t)

∣∣∣∣q( ∫ t

r1−q
)−p

.

Consequently, (5.8) is equivalent to the inequality

β �
∣∣∣∣β +

( ∫ t

r1−q
)p−1

C(t)

∣∣∣∣q . (5.9)

However, since (5.5) and (5.6) hold, there exists ε > 0 such that

−2p− 1

p

(
p− 1

p

)p−1

+ ε <

( ∫ t

r1−q
)p−1

C(t) <
1

p

(
p− 1

p

)p−1

− ε

for large t and by a direct computation it is not difficult to verify that (5.9) really holds. �

If the integral
∫ ∞

r1−q(t)dt is convergent, the previous statement can be modified as
follows.

THEOREM 5.5. Suppose that
∫ ∞

r1−q(t)dt <∞. If

lim sup
t→∞

( ∫ ∞

t

r1−q(s)ds

)p−1( ∫ t

c(s)ds

)
<

1

p

(
p− 1

p

)p−1

and

lim inf
t→∞

( ∫ ∞

t

r1−q(s)ds

)p−1( ∫ t

c(s)ds

)
>−2p− 1

p

(
p− 1

p

)p−1

,

then (0.1) is nonoscillatory.
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PROOF. One can show in the same way as in the proof of Theorem 5.4 that the function

ρ(t)= −
(
p− 1

p

)p( ∫ ∞

t

r1−q(s)ds

)1−p
,

satisfies the inequality

ρ′ � (1 − p)r1−q (t)
∣∣ρ − C̃(t)

∣∣q, C̃(t)=
∫ t

c(s)ds,

which implies that v = ρ − C̃ satisfies the Riccati inequality (5.4). �

5.4. Half-linear Hartman–Wintner theorem

The next theorem is a half-linear extension of the classical Hartman–Wintner theorem
[106] which relates the square integrability of the solutions of the Riccati equation

w′ + c(t)+w2 = 0

corresponding to (1.1) with r(t)≡ 1 to the finiteness of a certain limit involving the func-
tion c. The half-linear extension of this theorem (also in case r(t)≡ 1) is proved in [153],
but the modification of this proof to (0.1) as presented here is straightforward.

THEOREM 5.6. Suppose that∫ ∞
r1−q(t)dt = ∞ (5.10)

and (0.1) is nonoscillatory. Then the following statements are equivalent.
(i) It holds∫ ∞

r1−q(t)
∣∣w(t)∣∣q dt <∞ (5.11)

for every solution w of (2.1).
(ii) There exists a finite limit

lim
t→∞

∫ t
r1−q(s)(

∫ s
c(τ )dτ )ds∫ t

r1−q(s)ds
. (5.12)

(iii) For the lower limit we have

lim inf
t→∞

∫ t
r1−q(s)(

∫ s
c(τ )dτ )ds∫ t

r1−q(s)ds
>−∞. (5.13)
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PROOF. (i) ⇒ (ii): Nonoscillation of (0.1) implies that the Riccati equation (2.1) has a
solution which is defined on an interval [T ,∞). Integrating this equation from T to t and
using (5.11) we have

w(t) = w(T )−
∫ t

T

c(τ )dτ − (p− 1)
∫ t

T

r1−q(τ )
∣∣w(τ)∣∣q dτ

= w(T )−
∫ t

T

c(τ )dτ − (p− 1)
∫ ∞

T

r1−q(τ )
∣∣w(τ)∣∣q dτ

+ (p− 1)
∫ ∞

t

r1−q(τ )
∣∣w(τ)∣∣q dτ

= C −
∫ t

T

c(τ )dτ + (p− 1)
∫ ∞

t

r1−q(τ )
∣∣w(τ)∣∣q dτ, (5.14)

where C = w(T )+ (p − 1)
∫ ∞
T r1−q(τ )|w(τ)|q dτ . Multiplying (5.14) by r1−q and inte-

grating the resulting equation from T to t , and then dividing by
∫ t
T
r1−q(s)ds, we get

∫ t
T r

1−q(s)w(s)ds∫ t
T r

1−q(s)ds
= C −

∫ t
T r

1−q(s)(
∫ s
T c(τ )dτ )ds∫ t

T r
1−q(τ )dτ

+
∫ t
T
r1−q(s)(

∫ ∞
s
r1−q(τ )|w(τ)|q dτ )ds∫ t

T r
1−q(s)ds

. (5.15)

By the Hölder inequality we have

∣∣∣∣ ∫ t

T

r1−q(s)w(s)ds

∣∣∣∣ =
∣∣∣∣ ∫ t

T

r
1−q
p (s)r

1−q
q (s)w(s)ds

∣∣∣∣
�

( ∫ t

T

r1−q(s)ds

) 1
p

( ∫ t

T

r1−q(s)
∣∣w(s)∣∣q ds

) 1
q

, (5.16)

and hence, taking into account (5.11)

∣∣∣∣
∫ t
T r

1−q(s)w(s)ds∫ t
T
r1−q(s)ds

∣∣∣∣ �
(
∫ t
T r

1−q(s)ds)
1
p (

∫ t
T r

1−q(s)|w(s)|q) 1
q∫ t

T
r1−q(s)ds

=
(∫ t

T r
1−q(s)|w(s)|q∫ t
T
r1−q(s)ds

) 1
q → 0, t → ∞.
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Since also the last term in (5.15) tends to zero as t → ∞ (again in view of (5.11)), we have
that

lim
t→∞

∫ t
T
r1−q(s)

∫ s
T
c(τ )dτ∫ t

T
r1−q(s)ds

= C exists finite.

(ii) ⇒ (iii): This implication is trivial.
(iii) ⇒ (i): Let w be any solution of (2.1) which exists on [T ,∞). Then by (5.14) and

using computation from the first part of this proof

∫ t
T r

1−q(s)w(s)ds∫ t
T r

1−q(s)ds
= w(T )−

∫ t
T r

1−q(s)
∫ s
T c(τ )dτ∫ t

T r
1−q(τ )dτ

− (p− 1)

∫ t
T r

1−q(s)(
∫ t
T r

1−q(τ )|w(τ)|q dτ )ds∫ t
T r

1−q(s)ds
.

Taking into account (5.13) and applying again the Hölder inequality, there exists a real
constant K such that

− (
∫ t
T r

1−q(s)|w(s)|q ds)
1
q

(
∫ t
T
r1−q(s)ds)

1
q

�K − (p− 1)

∫ t
T
r1−q(s)(

∫ s
T
r1−q(τ )|w(τ)|q dτ )ds∫ t

T
r1−q(s)ds

.

Suppose that (5.11) fails to holds. Then by L’Hospital’s rule the last term in the previous
inequality tends to ∞ and hence

(∫ t
T
r1−q(s)|w(s)|q ds∫ t
T
r1−q(s)ds

) 1
q

� p− 1

p

∫ t
T
r1−q(s)(

∫ s
T
r1−q(τ )|w(τ)|q dτ )ds∫ t

T
r1−q(s)ds

for large t . Denote S(t) = ∫ t
T r

1−q(s)(
∫ s
T r

1−q(τ )|w(τ)|q dτ )ds. Then the last inequality
reads

[
S′(t)rq−1(t)∫ t
r1−q(s)ds

] 1
q

� 1

q

S(t)∫ t
T r

1−q(s)ds
,

hence

S′(t)
Sq(t)

�
(

1

g

)q
r1−q(t)

(
∫ t
T
r1−q(s)ds)q−1

. (5.17)
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If q � 2, we integrate (5.17) from T1 to t , T1 > T , and we get

1

q − 1
S1−q(T1) >

1

q − 1

[
S1−q (T1)− S1−q (t)

]
�

(
1

q

)q {
lg

(∫ t
T
r1−q(s)ds

)
if q = 2,

1
2−q

(∫ t
T
r1−q(s)ds

)2−q if q < 2.

Letting t → ∞ we have a contradiction with the assumption that
∫ ∞

r1−q(t)dt = ∞. If
q > 2, we integrate (5.17) from t to ∞ and we obtain

1

(q − 1)Sq−1(t)
�

(
1

q

)q 1

(q − 2)(
∫ t
r1−q(s)ds)q−2

,

hence

qq(q − 2)

q − 1
�

(
S(t)∫ t

r1−q(s)ds

)q−1( ∫ t

r1−q(s)ds

)
,

which is again a contradiction since S(t)(
∫ t
r1−q(s)ds)−1 → ∞ as t → ∞. �

As a direct consequence of the previous theorem we have the following oscillation cri-
terion.

THEOREM 5.7. Suppose that
∫ ∞

r1−q(t)dt = ∞. Then each of the following two condi-
tions is sufficient for oscillation of (0.1):

lim
t→∞

∫ t
r1−q(s)(

∫ s
c(τ )dτ )ds∫ t

r1−q(s)ds
= ∞, (5.18)

−∞< lim inf
t→∞

∫ t
r1−q(s)(

∫ s
c(τ )dτ )ds∫ t

r1−q(s)ds

< lim sup
t→∞

∫ t
r1−q(s)(

∫ s
c(τ )dτ )ds∫ t

r1−q(s)ds
. (5.19)

PROOF. We will prove sufficiency of (5.18) only, the proof of sufficiency of (5.19) is sim-
ilar. Suppose that (0.1) is nonoscillatory and (5.18) holds. Then (5.13) holds and by the
previous theorem the integral (5.11) converges for every solution w of (2.1) and hence
limit (5.12) exists as a finite number which contradicts to (5.18). �

5.5. Riccati integral equation and Hille–Wintner comparison theorem

The results of this subsection are taken essentially from the paper [136]. In that paper, it is
supposed that r(t)≡ 1 and c(t)� 0 for large t . However, the results as presented here can
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be extended to (0.1) with r satisfying the below assumption (5.20), and without the sign
restriction on the function c.

LEMMA 5.2. Suppose that∫ ∞
r1−q(t)dt = ∞ (5.20)

and the integral
∫ ∞

c(t)dt is convergent. Then (0.1) is nonoscillatory if and only if there
exists a solution of the Riccati integral equation

w(t)=
∫ ∞

t

c(s)ds + (p− 1)
∫ ∞

t

r1−q(s)
∣∣w(s)∣∣q ds. (5.21)

PROOF. Suppose that (0.1) is nonoscillatory and let w be a solution of the associated
Riccati equation (2.1) which is defined on some interval [T0,∞). The convergence of the
integral

∫ ∞
c(t)dt and (5.20) imply that (5.11) holds by Theorem 5.6. Integrating (2.1)

from t to T , t � T0 and letting T → ∞ we see that limT→∞w(T ) exists and since (5.20)
holds, this limit equals zero, i.e., w satisfies also (5.21). Conversely, if w is a solution of
(5.21), than it is also a solution of (2.1) and hence (0.1) is nonoscillatory. �

The previous lemma is used in the proof of the following half-linear extension of the
Hille–Wintner comparison theorem. For its linear version see [208, Theorem 2.14].

THEOREM 5.8. Together with (0.1) consider the equation(
r(t)Φ(y ′)

)′ + c̃(t)Φ(y)= 0, (5.22)

where r satisfies (5.20), c̃ is continuous for large and
∫ ∞

c̃(t)dt converges. If

0 �
∫ ∞

t

c(s)ds �
∫ ∞

t

c̃(s)ds for large t (5.23)

and (5.22) is nonoscillatory, then (0.1) is also nonoscillatory.

PROOF. We construct a solutionw of (5.21). Nonoscillation of (5.22) implies the existence
of a solution v of the associated integral equation

v(t)=
∫ ∞

t

c̃(s)ds + (p− 1)
∫ ∞

t

r1−q(s)
∣∣v(s)∣∣q ds. (5.24)

Let T ∈ R be such that (5.23) holds for t � T and the solution v of (5.24) exists on [T ,∞).
Define the function set U and the mapping F by

U := {
u ∈ C[T ,∞): 0 � u(t)� v(t), t � T

}
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and

(Fw)(t)=
∫ ∞

t

c(s)ds + (p− 1)
∫ ∞

t

r1−q(s)
∣∣w(s)∣∣q ds, t � T .

The set U is the convex and closed subset of the Fréchet space C[T ,∞) with the topology
of the uniform convergence on compact subintervals of [T ,∞). It can be shown without
difficulty that F maps U into itself, that F is continuous and that F(U) is relatively com-
pact subset of C[T ,∞). Therefore, it follows from the Schauder–Tychonov fixed point
theorem that there exists w ∈ U such that w = Fw and this function is by definition of F
a solution of (5.21). �

5.6. Hille–Nehari criteria

In Section 4.2 we have shown that the Euler equation (4.20) is nonoscillatory if and only if
γ � γ̃ = (

p−1
p
)p . Consider now the equation

(
r(t)Φ(x ′)

)′ + γ r1−q(t)
(
∫ t
r1−q(s)ds)p

Φ(x)= 0 (5.25)

with r satisfying (5.20). The transformation of independent variable t 
→ ∫ t
r1−q(s)ds

transforms this equation into the Euler equation (4.20). Hence also (5.25) is nonoscilla-
tory if and only if γ � γ̃ . This fact, combined with Theorem 5.6, leads to the follow-
ing nonoscillation and oscillation criteria which are the half-linear extension of the Hille–
Nehari (non)oscillation criteria, see [208, Chapter II].

THEOREM 5.9. Suppose that
∫ ∞

r1−q(t)dt = ∞ and the integral
∫ ∞

c(t)dt is conver-
gent.

(i) If

0 �
( ∫ t

r1−q(s)ds

)p−1( ∫ ∞

t

c(s)ds

)
� 1

p

(
p− 1

p

)p−1

for large t , then (0.1) is nonoscillatory.
(ii) If

lim inf
t→∞

( ∫ t

r1−q(s)ds

)p−1( ∫ ∞

t

c(s)ds

)
>

1

p

(
p− 1

p

)p−1

, (5.26)

then (0.1) is oscillatory.

PROOF. First of all observe that (5.26) implies that
∫ ∞
t c(s)ds > 0 for large t . Now, since∫ ∞

t

γ̃ r1−q(s)
(
∫ s
r1−q(τ )dτ )p

= 1

p

(
p− 1

p

)p−1( ∫ t

r1−q(s)
)1−p

,
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the statement follows from Theorem 5.8 with c̃(t)= γ̃ r1−q(t)(
∫ t
r1−q(s)ds)−p. �

5.7. Modified Hille–Nehari’s criteria

The results of this subsection are taken from [135]. It is supposed that c(t)� 0 for large t
and that ∫ ∞

r1−q(t)dt <∞. (5.27)

We denote

$(t)=
∫ ∞

t

r1−q(s)ds.

The first auxiliary statement concerns boundedness of solutions of (0.1) and of the asso-
ciated Riccati equation.

LEMMA 5.3. Let x be a nonoscillatory solution of (0.1) and let w = rΦ(x ′)/Φ(x) be the
associated solution of (2.1). Then x and the function

z(t) := $p−1w(t) (5.28)

are bounded. Moreover,

$p−1(t)w(t)� −1 for large t (5.29)

and

lim sup
t→∞

$p−1(t)w(t)� 0. (5.30)

PROOF. Without loss of generality we can suppose that x(t) > 0 for t ∈ [t0,∞). The func-
tion r(t)Φ(x ′) is nonincreasing (since its derivative equals −c(t)Φ(x)� 0), the derivative
x ′ is eventually of constant sign. That is, x ′(t) > 0 for t � t0 or there is t1 > t0 such that
x ′(t) < 0 for t � t1, and that

rq−1(s)x ′(s)� rq−1(t)x ′(t) for s � t � t0.

Dividing this inequality by rq−1(s) and integrating it over [t, τ ] gives

x(τ)� x(t)+ rq−1(t)x ′(t)
∫ τ

t

r1−q(s)ds. (5.31)

If x ′(t) > 0 for t � t0, then we have from (5.31)

x(τ)� x(t)+ rq−1(t)x ′(t)$(t)
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which shows that x is bounded on [t0,∞). If x ′(t) < 0 for t � t1, then x is clearly bounded
and, letting τ → ∞ in (5.31) we have

0 � x(t)+ rq−1(t)x ′(t)$(t), t � t0.

In either case we obtain

$(t)rq−1(t)
x ′(t)
x(t)

� −1,

which immediately implies (5.29).
The limit inequality (5.30) trivially holds if x ′(t) < 0 for t � t1, since in this case the

function (5.28) itself is negative for t � t1. If x ′(t) > 0 for t � t0, then there exist positive
constants c1, c2 such that

x(t)� c1 and r(t)Φ(x ′(t))� c2 for t � t0,

which implies

w(t)� c2

c
p−1
1

, t � t0.

Since $(t)→ 0 as t → ∞, we then conclude that

lim
t→∞$p−1(t)w(t)= 0.

This completes the proof. �

Based on the previous lemma we show that nonoscillation of (0.1) is equivalent to solv-
ability of a certain modified Riccati integral inequality.

THEOREM 5.10. Equation (0.1) is nonoscillatory if and only if∫ ∞
$p(t)c(t)dt <∞ (5.32)

and there exists a continuous function v such that

$p−1v(t) is bounded, $p−1(t)v(t)� −1, (5.33)

and

$p(t)v(t) �
∫ ∞

t

$p(s)c(s)ds + p

∫ ∞

t

r1−q(s)$p−1(s)v(s)ds

+ (p− 1)
∫ ∞

t

r1−q(s)$p(s)
∣∣v(s)∣∣q ds (5.34)

for large t .
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PROOF. “⇒”: Let x be a solution of (0.1) such that x(t) �= 0 for t � t0 and let w =
rΦ(x ′)/Φ(x) be the corresponding solution of the Riccati equation (2.1). Multiplying this
equation by ρp(t) and integrating over [t, τ ], τ � t � t0, we get

ρp(τ)w(τ)− ρp(t)w(t) = −p
∫ τ

t

r1−q(s)ρp−1(s)w(s)ds −
∫ τ

t

ρp(s)c(s)ds

− (p− 1)
∫ τ

t

r1−q(s)ρp(s)
∣∣w(s)∣∣q ds. (5.35)

In view of boundedness of the function ρp−1w(t) (compare the previous lemma), we see
that ρp(τ)w(τ)= ρ(τ)ρp−1(τ )w(τ)→ 0 as τ → ∞, and∣∣∣∣ ∫ ∞

t

r1−q(s)ρp−1(s)w(s)ds

∣∣∣∣ �
∫ ∞

t

r1−q(s)
∣∣ρp−1(s)w(s)

∣∣ ds <∞,

∫ ∞

t

r1−q(s)ρp(s)
∣∣w(s)∣∣q ds <∞

for t � t0. Therefore, letting τ → ∞ in (5.35), we find that
∫ ∞
t ρp(s)c(s)ds is convergent,

i.e., (5.32) holds, and

ρp(t)w(t) =
∫ ∞

t

ρp(s)c(s)ds + p

∫ ∞

t

r1−q(s)ρp−1(s)w(s)ds

+ (p− 1)
∫ ∞

t

r1−q(s)ρp(s)
∣∣w(s)∣∣q ds

hence (5.34) holds as equality. The inequality ρp(t)w(t) � −1 follows from the previous
lemma.

“⇐”: Suppose that (5.32) holds and let w be a continuous function satisfying conditions
of theorem. Further, let us denote C[t0,∞) the Fréchet space of continuous functions with
the topology of uniform convergence on compact subintervals of [t0,∞). Consider the
space

V := {
v ∈ C[t0,∞): −1 � v(t)� ρp−1(t)w(t), t � t0

}
, (5.36)

which is a closed convex subset of C[t0,∞). Define the mapping F :V →C[t0,∞) by

ρ(t)(Fv)(t) =
∫ ∞

t

ρp(s)c(s)ds + p

∫ ∞

t

r1−q(s)v(s)ds

+ (p− 1)
∫ ∞

t

r1−q(s)
∣∣v(s)∣∣q ds. (5.37)



212 Half-linear differential equations

If v ∈ V , then from (5.36), (5.37) and the inequality stated in theorem

(Fv)(t)� F
(
ρp−1w

)
(t)� ρp−1(t)w(t), t � t0,

and

ρ(t)
[
(Fv)(t)+ 1

]
�

∫ ∞

t

r1−q(s)
[
(p− 1)|v(s)|q + pv(s)+ 1

]
ds � 0,

where we have used also the property that the function (p− 1)|ξ |q +pξ is strictly increas-
ing for ξ � −1, i.e.,

(p− 1)|ξ |q + pξ + 1 � 0, for ξ � −1.

This shows that F maps V into itself. It can be shown in a routine manner that F is
continuous and F(V) is relatively compact in the topology of C[t0,∞). Therefore, by
the Schauder–Tychonov fixed point theorem, there exists an element v ∈ V such that
v(t) = (Fv)(t). Define w by w(t) = v(t)

ρp−1(t)
. Then, in view of (5.37), w satisfies the in-

tegral equation

ρp(t)w(t) =
∫ ∞

t

ρp(t)c(s)ds + p

∫ ∞

t

r1−q(s)ρp−1w(s)ds

+ (p− 1)
∫ ∞

t

r1−q(s)ρp(s)
∣∣w(s)∣∣q ds.

Differentiating this equality and then dividing by ρp(t) shows that w solves Riccati equa-
tion (2.1) and hence (0.1) is nonoscillatory. �

As an immediate consequence of the previous theorem we have the following oscillation
criterion.

COROLLARY 5.1. Equation (0.1) is oscillatory if∫ ∞
c(s)ρp(t)dt = ∞. (5.38)

This oscillation criterion opens a natural question about oscillatory nature of (0.1) when
the integral in (5.38) is convergent. In answering this question a useful role is played by the
following modification of the Hille–Wintner comparison theorem. Recall that we assume
that c(t)� 0 for large t throughout this subsection.

THEOREM 5.11. Consider the pair of Equations (0.1) and(
r(t)Φ(y ′)

)′ + c̃(t)Φ(y)= 0, (5.39)
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where c̃(t)� 0, subject to the conditions∫ ∞
c(t)ρp(t)dt <∞,

∫ ∞
c̃(t)ρp(t)dt <∞. (5.40)

Suppose that∫ ∞

t

c(t)ρp(t)dt �
∫ ∞

t

c̃(t)ρp(t)dt . (5.41)

Then nonoscillation of (5.39) implies that of (0.1), or equivalently, oscillation of (0.1)
implies oscillation of (5.39).

PROOF. Assume that (5.39) is nonoscillatory. Then, by the part “only if” of Theorem 5.10
there exists a continuous function w satisfying (5.33) and

ρp(t)w(t) �
∫ ∞

t

ρp(s)c̃(s)ds + p

∫ ∞

t

r1−q(s)ρp(s)w(s)ds

+ (p− 1)
∫ ∞

t

r1−q(s)ρp(s)
∣∣w(s)∣∣q ds.

Using (5.40) and (5.41) we see that w satisfies the integral inequality (5.34) and hence
(0.1) is nonoscillatory by the part “if” of Theorem 5.10. �

In Remark 4.1 we have shown that the Euler-type half-linear differential equation (4.33)
is nonoscillatory if and only if γ < (

|p−1−α|
p

)p . The transformation of independent variable

u(s)= x(t), s = s(t)= (ρ(t))
p−1

p−1−α , transforms (0.1) into the equation(
sαΦ(u′)

)′ +Q(s)Φ(u)= 0, (5.42)

where

Q(s)=
( |α − p+ 1|

p

)p
r1−q(

t (s)
)[
ρ

(
t (s)

)] p−1
α−p+1 c

(
t (s)

)
,

t = t (s) being the inverse function of s = s(t). Now suppose that α > p − 1. Then we
have

∫ ∞
sα(1−q) ds <∞, so (5.42) satisfies assumption (5.27). Comparing (5.42) with the

Euler equation (4.33) (using Theorem 5.11) we have the following result which we present
without proof.

THEOREM 5.12. Suppose that (5.27) holds and the integral
∫ ∞

ρp(t)c(t)dt is conver-
gent.

(i) Equation (0.1) is oscillatory if

lim inf
t→∞ ρ−1(t)

∫ ∞

t

c(s)ρp(s)ds >

(
p− 1

p

)p
.
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(ii) Equation (0.1) is nonoscillatory if

ρ−1(t)

∫ ∞

t

c(s)ρp(s)ds �
(
p− 1

p

)p
for large t .

5.8. Comparison theorem with respect to p

Along with (0.1) we consider another half-linear equation with a different power function
Φα(x)= |x|α−1 sgnx , α > 1,(

r(t)Φα(x
′)

)′ + c(t)Φα(x)= 0, (5.43)

we denote by β the conjugate number of α, i.e., β = β
β−1 (recall also that q is the conjugate

number of p, i.e., q = p
p−1 ).

The main statement of this subsection gives a kind of comparison theorem with respect
to the power of Φ . This statement is proved in [201] in a more general setting than pre-
sented here (in the scope of the so-called half-linear dynamic equations on time scales,
compare Section 16.5 in the last chapter). However, we prefer here the formulation for
(0.1) and (5.43).

THEOREM 5.13. Let r1−β(t)dt = ∞,
∫ ∞

c(t)dt converges and lim inft→∞ r(t) > 0. If
α � p and Equation (5.43) is nonoscillatory, then (0.1) is also nonoscillatory.

PROOF. Denote S(w, r,p)= (p−1)r1−q |w|q (this is the third term in the Riccati equation
(2.1)). Then S can be rewritten as

S(w, r,p)= (p− 1)|w|
( |w|p

r

) 1
p−1

and it is easy to compute that

∂S

∂p
(w, r,p)= |w|

( |w|
r

) 1
p−1

[
1 − lg

( |w|
r

) 1
p−1

]
.

Hence, for |w|
r

� 1 the function S is nondecreasing with respect to p.
Since (5.43) is nonoscillatory, by Lemma 5.2 there exists a function v satisfying the

Riccati equation

v′ + c(t)+ S
(
v, r(t), α

) = 0,
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and such that v(t)→ 0 as t → ∞. Since lim inft→∞ r(t) > 0, we have |w(t)|
r(t)

� 1 for large
t , and thus

0 = v′ + c(t)+ S
(
v, r(t), α

)
� v′(t)+ c(t)+ S

(
v, r(t),p

)
.

Hence (0.1) is nonoscillatory by Theorem 5.3. �

6. Asymptotic of nonoscillatory solutions

This section is devoted to the asymptotic properties of nonoscillatory solutions of Equa-
tion (0.1) when the function c does not change its sign. In this case it is possible associate
with (0.1) its reciprocal equation(

c1−q(t)Φ−1(u′)
)′ + r1−q(t)Φ−1(u)= 0. (6.1)

Recall that the so-called reciprocity principle says that (6.1) is nonoscillatory if and only
if (0.1) is nonoscillatory, see Section 2.7. Note also that if c(t)� 0 for large t then (0.1) is
nonoscillatory since the equation (r(t)Φ(x ′))′ = 0 is its nonoscillatory majorant.

6.1. Integral conditions and classification of solutions

If c is different from zero for large t , then all solutions of nonoscillatory equation (0.1) are
eventually monotone, as the following result shows.

LEMMA 6.1. Let c(t) �= 0 for large t and x be a solution of nonoscillatory equation (0.1)
defined on some interval (αx,∞),αx � 0. Then either x(t)x ′(t) > 0 or x(t)x ′(t) < 0 for
large t .

PROOF. The monotonicity of x follows from the reciprocity principle which ensures that
the so-called quasiderivative x[1] := rΦ(x ′) does not change its sign for large t . �

Then it is possible, a priori, to divide the set of solutions of (0.1) into the following two
classes:

M+ = {
x solution of (0.1): ∃tx � 0: x(t)x ′(t) > 0 for t > tx

}
,

M− = {
x solution of (0.1): ∃tx � 0: x(t)x ′(t) < 0 for t > tx

}
.

Clearly, solutions in M+ are eventually either positive increasing or negative decreasing
and solutions in M− are either positive decreasing or negative increasing. The existence
of solutions in these classes depends on the sign of the function c, as the following results
show.

PROPOSITION 6.1. Assume c(t) < 0 for large t .
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(i) Equation (0.1) has solutions in the class M−. More precisely, for every pair (t0, a) ∈
[0,∞)× R\{0} there exists a solution x of (0.1) in the class M− such that x(t0)= a.

(ii) Equation (0.1) has solutions in the class M+. More precisely, for every pair (a0, a1) ∈
R2, a0 a1 > 0 and for any t0 sufficiently large, there exists a solution x of (0.1) in the
class M+ such that x(t0)= a0, x ′(t0)= a1.

PROOF. Claim (i) follows, for instance, from [44, Theorem 1] and [178, Theorems 9.1,
9.2]. Concerning the claim (ii), let x be a solution of (0.1) such that x(0)x ′(0) > 0. Since
the auxiliary function

Fx(t)= r(t)Φ
(
x ′(t)

)
x(t) (6.2)

is nondecreasing, we obtain x(t)x ′(t) > 0 for t > 0. The assertion follows taking into
account that every solution is continuable up to ∞, see Section 1. �

In the opposite case, i.e., when c(t) > 0 for large t, the existence in the classes M+,M−
may be characterized by means of the convergence or divergence of the following two
integrals

Jr =
∫ ∞

0
r1−q(t)dt, Jc =

∫ ∞

0

∣∣c(t)∣∣ dt,

as the following results show.

LEMMA 6.2. Assume c(t) > 0 for large t .
(i) If Jc = ∞, then M+ = ∅.

(ii) If Jr = ∞, then M− = ∅.

PROOF. (i) Let x be a solution of (0.1) in the class M+ and, without loss of generality,
suppose x(t) > 0, x ′(t) > 0 for t � T � 0. From (0.1) we obtain for t � T

r(t)Φ
(
x ′(t)

)
� r(T )Φ

(
x ′(T )

) −Φ
(
x(T )

) ∫ t

T

c(s)ds

that gives a contradiction as t → ∞. Claim (ii) follows by applying (i) to (6.1) and using
the reciprocity principle. �

PROPOSITION 6.2. Assume c(t) > 0 for large t .
(i) If (0.1) is nonoscillatory and Jr = ∞, Jc <∞, then M+ �= ∅.

(ii) If (0.1) is nonoscillatory and Jr <∞, Jc = ∞, then M− �= ∅.
(iii) If Jr <∞, Jc <∞, then M+ �= ∅,M− �= ∅.

PROOF. Claims (i), (ii) follows from Lemma 6.2. The assertion (iii) follows, for instance,
as a particular case from [218, Theorem 3.1, Theorem 3.3] and their proofs by choosing
R(t) = 1 and observing that assumptions (3.2), (3.11) in [218] are not necessary in the
half-linear case. �
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In view of Lemma 6.2, if (0.1) is nonoscillatory, c is eventually positive and Jr + Jc =
∞, then all the solutions of (0.1) belong to the same class (M+ or M−). In addition, from
the same Lemma 6.2, the well-known Leigthon-type oscillation result can be obtained: Let
c be eventually positive; if Jr = Jc = ∞, then (0.1) is oscillatory (compare Theorem 2.5).

As in the quoted papers [38–41,45,176,181], in both cases c > 0 and c < 0 eventually,
the classes M+,M− may be divided, a priori, into the following four subclasses, which are
mutually disjoint:

M−
B =

{
x ∈ M−: lim

t→∞x(t)= �x �= 0
}
,

M−
0 =

{
x ∈ M−: lim

t→∞x(t)= 0
}
,

M+
B =

{
x ∈ M+: lim

t→∞x(t)= �x, |�x |<∞
}
,

M+∞ =
{
x ∈ M+: lim

t→∞|x(t)| = ∞
}
.

In the following subsections we consider both cases c(t) > 0, c(t) < 0 and we describe the
above classes in terms of certain integral conditions. Similarly to the linear case, we are
going to show that the convergence or divergence of the two integrals

J1 = lim
T→∞

∫ T

0
r1−q(t)Φ−1

( ∫ t

0

∣∣c(s)∣∣ ds

)
dt,

J2 = lim
T→∞

∫ T

0
r1−q(t)Φ−1

( ∫ T

t

∣∣c(s)∣∣ ds

)
dt,

fully characterize the above four classes.
The following lemma describes relations between J1, J2, Jr , Jc.

LEMMA 6.3. The following statements hold.
(a) If J1 <∞, then Jr <∞.
(b) If J2 <∞, then Jc <∞.
(c) If J2 = ∞, then Jr = ∞ or Jc = ∞.
(d) If J1 = ∞, then Jr = ∞ or Jc = ∞.
(e) J1 <∞ and J2 <∞ if and only if Jr <∞ and Jc <∞.

PROOF. Claim (a). Let t1 ∈ (0, T ). Because

∫ T

0
r1−q(s)Φ−1

( ∫ s

0

∣∣c(t)∣∣ dt

)
ds

>

∫ t1

0
r1−q(s)Φ−1

( ∫ s

0

∣∣c(t)∣∣ dt

)
ds +Φ−1

( ∫ t1

0

∣∣c(s)∣∣ ds

) ∫ T

t1

r1−q(s)ds
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the assertion follows. Claim (b) follows in a similar way. Claims (c), (d) follow from the
inequalities∫ T

0
r1−q(t)Φ−1

( ∫ T

t

∣∣c(s)∣∣ ds

)
dt �

∫ T

0
r1−q(t)dt Φ−1

( ∫ T

0

∣∣c(s)∣∣ ds

)
,

∫ T

0
r1−q(t)Φ−1

( ∫ t

0

∣∣c(s)∣∣ ds

)
dt �

∫ T

0
r1−q(t)dt Φ−1

( ∫ T

0

∣∣c(s)∣∣ ds

)
.

Finally, the claim (e) immediately follows from (a)–(d). �

6.2. The case c negative

When the function c(t) is eventually negative, the asymptotic properties of nonoscillatory
solutions have been deeply studied and interesting contributions are due to the Georgian
and Russian mathematical school [43,44,125,126,128,127,143,176,193]. Other recent de-
velopments can be found in [45,141,156,181]. Here we deal with some results that can be
obtained, as a particular case, from recent criteria in [33,35] and, under the assumption that
Jr is convergent or divergent, can be found in [180,210].

We start by noting that if c(t) < 0 in the whole interval [0,∞), then for any solution
x ∈ M− we have x(t)x ′(t) < 0 on [0,∞). This property can be proved using the auxiliary
function Fx given in (6.2). Since, as claimed, F is a nondecreasing function and x is not
eventually constant, there are only two possibilities: (a) Fx does not have zeros; (b) there
exists tx � αx such that Fx(t) > 0 for all t > tx . Thus the assertion follows.

The following hold.

THEOREM 6.1. Let c(t) < 0 for large t .
(i) Equation (0.1) has solutions in the class M−

B if and only if J2 <∞.
(ii) Equation (0.1) has solutions in the class M+

B if and only if J1 <∞.

PROOF. Claim (i) “⇒”: Let x ∈ M−
B . Without loss of generality we can assume x(t) > 0,

x ′(t) < 0 for t � T � 0. Integrating (0.1) in (t,∞), t > T , we obtain

−λx − r(t)Φ
(
x ′(t)

) =
∫ ∞

t

∣∣c(τ )∣∣Φp(
x(τ)

)
dτ, (6.3)

where −λx = limt→∞[r(t)Φ(x ′(t))]. Since x(τ) > x(∞) > 0 and λx � 0, (6.3) implies

−r(t)Φ(
x ′(t)

)
�Φ

(
x(∞)

)∫ ∞

t

∣∣c(τ )∣∣ dτ.

Hence

x(t)� x(T )− x(∞)

∫ t

T

Φ−1
(

1

r(s)

∫ ∞

s

∣∣c(τ )∣∣ dτ

)
ds.
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As t → ∞ we obtain the assertion.
Claim (i) “⇐”: Choose t0 � 0 such that

∫ ∞

t0

Φ−1
(

1

r(t)

∫ ∞

t

∣∣c(τ )∣∣ dτ

)
dt � 1

2
. (6.4)

Denote by C[t0,∞) the Fréchet space of all continuous functions on [t0,∞) endowed with
the topology of the uniform convergence on compact subintervals of [t0,∞). Let Ω be the
nonempty subset of C[t0,∞) given by

Ω =
{
u ∈ C[t0,∞):

1

2
� u(t)� 1

}
. (6.5)

Clearly Ω is bounded, closed and convex. Now consider the operator T :Ω → C[t0,∞)

which assigns to any u ∈Ω the continuous function T (u)= yu given by

yu(t)= T (u)(t)= 1

2
+

∫ ∞

t

Φ−1
(

1

r(s)

( ∫ ∞

s

∣∣c(τ )∣∣Φ(
u(τ)

)
dτ

))
ds. (6.6)

We have

1

2
� T (u)(t)� 1

2
+

∫ ∞

t

Φ−1
(

1

r(s)

∫ ∞

s

∣∣c(τ )∣∣ dτ

)
ds

which implies, by virtue of (6.4), T (Ω)⊆Ω . In order to apply the Tychonov fixed point
theorem to operator T , it is sufficient to prove that T is continuous in Ω ⊆ C[t0,∞) and
that T (Ω) is relatively compact in C[t0,∞). Let {uj }, j ∈ N, be a sequence in Ω which is
convergent to ū in C[t0,∞), ū ∈Ω =Ω . Since for s � t0

Φ−1
(

1

r(s)

( ∫ ∞

s

∣∣c(τ )∣∣Φ(
uj (τ )

)
dτ

))
�Φ−1

(
1

r(s)

( ∫ ∞

s

∣∣c(τ )∣∣dτ

))
<∞,

the Lebesgue dominated convergence theorem gives the continuity of T in Ω. It remains
to prove that T (Ω) is relatively compact in C[t0,∞), i.e., that functions in T (Ω) are equi-
bounded and equicontinuous on every compact subinterval of [t0,∞). The equibounded-
ness easily follows taking into account that Ω is a bounded subset of C[t0,∞). In order to
prove the equicontinuity, for any u ∈Ω we have

0<−(
T (u)(t)

)′ = Φ−1
(

1

r(t)

( ∫ ∞

t

∣∣c(τ )∣∣Φ(
u(τ)

)
dτ

))
� Φ−1

(
1

r(t)

( ∫ ∞

t

∣∣c(τ )∣∣dτ

))
(6.7)



220 Half-linear differential equations

which implies that functions in T (Ω) are equicontinuous on every compact subinterval of
[t0,∞). From the Tychonov fixed point theorem there exists x ∈Ω such that x = T (x) or,
from (6.6),

x(t)= 1

2
+

∫ ∞

t

Φ−1
(

1

r(s)

( ∫ ∞

s

∣∣c(τ )∣∣Φ(
x(τ)

)
dτ

))
ds.

It is easy to show that x is a positive solution of (0.1) in [t0,∞) and, from (6.7), x ′(t) < 0.
Finally, clearly x satisfies the inequality x(t)x ′(t) < 0 in its maximal interval of existence
and the proof of claim (i) is complete.

Claim (ii) “⇒”: Assume, by contradiction, J1 = ∞. Without loss of generality let x be
a solution of (0.1) in the class M+

B such that x(t) > 0, x ′(t) > 0 for t � t0 � 0. Integrating
(0.1) on (t0, t) we obtain for t > t0

x[1](t)= x[1](t0)+
∫ t

t0

∣∣c(s)∣∣Φ(
x(s)

)
ds > Φp

(
x(t0)

) ∫ t

t0

∣∣c(s)∣∣ ds,

where x[1] = rΦ(x ′). Hence

x ′(t) > x(t0)Φ
−1

(
1

r(s)

∫ t

t0

∣∣c(s)∣∣ ds

)
.

Integrating again over (t0, t) we obtain a contradiction.
Claim (ii) “⇐”: The argument is similar to that given in Claim (i) “⇒”. It is sufficient

to consider in the same set Ω, defined in (6.5), the operator T :Ω → C[t0,∞) given by

yu(t)= T (u)(t)= 1

2
+

∫ t

t0

Φ−1
(

1

r(s)

( ∫ s

t0

∣∣c(τ )∣∣Φ(
u(τ)

)
dτ

))
ds

and to apply the Tychonov fixed point theorem. �

THEOREM 6.2. Let c(t) < 0 for large t .
(i) If J1 = ∞ and J2 <∞, then M−

0 = ∅.
(ii) If J1 <∞, then M+∞ = ∅.

PROOF. Claim (i). Let x be a solution of (0.1) in the class M− such that 0 < x(t) <

ε, x ′(t) < 0 for t � T and limt→∞ x(t) = 0. By Lemma 6.3, Jr = ∞ and thus, by [33,
Lemma 1], limt→∞ r(t)Φ(x ′(t)) = 0. Taking into account this fact and integrating (0.1)
over (t,∞), t > T , we obtain

x ′(t)
x(t)

>−Φ−1
(

1

r(t)

∫ ∞

t

∣∣c(τ )∣∣ dτ

)
.

Integrating over (T , t) we have

lg
x(t)

x(T )
>−

∫ t

T

Φ−1
(

1

r(s)

∫ ∞

s

∣∣c(τ )∣∣ dτ

)
ds,



Half-linear differential equations 221

from which, as t → ∞, we obtain a contradiction.
Claim (ii). Let x ∈ M+∞ and assume x(t) > 0, x ′(t) > 0 for t � T � 0. From (2.1) we

have (with w= rΦ(x ′)/Φ(x))

r(t)Φ(x ′(t))
Φ(x(t))

= −(p− 1)
∫ t

T

r1−q(s)
∣∣w(s)∣∣q ds + k +

∫ t

T

∣∣c(s)∣∣ ds

� k +
∫ t

T

∣∣c(s)∣∣ ds, (6.8)

where k = r(T )Φ(x ′(T ))/Φ(x(T )). If Jc < ∞, then there exists a positive constant k1
such that

r(t)Φ(x ′(t))
Φ(x(t))

� k1

or

x ′(t)
x(t)

�Φ−1(k1)Φ
−1

(
1

r(t)

)
.

Integrating again over (T , t) we obtain

lg
x(t)

x(T )
�Φ−1(k1)

∫ t

T

r1−q(s)ds

which implies x ∈ M+
B , i.e., a contradiction. If Jc = ∞, choose t1 > T such that k <∫ t1

T
c(s)ds. Then from (6.8) we obtain for t � t1

r(t)Φ(x ′(t))
Φ(x(t))

� 2
∫ t

T

∣∣c(s)∣∣ ds,

or

x ′(t)
x(t)

�Φ−1(2)Φ−1
(

1

r(t)

∫ t

T

∣∣c(s)∣∣ ds

)
.

Integrating over (t1, t) we have

lg
x(t)

x(t1)
�Φ−1(2)

∫ t

T

Φ−1
(

1

r(s)

∫ s

T

∣∣c(τ )∣∣ dτ

)
ds

which gives the assertion. �

THEOREM 6.3. Let c(t) < 0 for large t . If J1 <∞ and J2 <∞, then Equation (0.1) has
solutions in both classes M−

0 and M−
B .
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PROOF. The statement M−
B �= ∅ follows from Theorem 6.1. The existence in the class M−

0
can be proved by using a similar argument as that given in the proof of Theorem 6.1. It is
sufficient to consider the set

Ω =
{
u ∈C[t0,∞): 0 � u(t)�

∫ ∞

t

r1−q(s)ds

}
and the operator T :Ω → C[t0,∞) given by

yu(t)= T (u)(t)=
∫ ∞

t

r1−q(t)Φ−1
(

1 −
∫ s

t0

∣∣c(τ )∣∣Φ(
u(τ)

)
dτ

)
ds

and to apply the Tychonov fixed point theorem, details are omitted. �

REMARK 6.1. The behavior of quasiderivatives of solutions (i.e., of expressions x[1] =
rΦ(x ′)) plays an important role in the study of principal solutions, especially in their limit
characterization, see the next section. Concerning the solution x ∈ M−

B, defined as a fixed
point in the proof of Theorem 6.1, we have limt→∞ x[1](t) = 0. Concerning the solution
x ∈ M−

0 , defined in the proof of Theorem 6.3, it is easy to show that limt→∞ x[1](t) =
cx < 0. Indeed, the limit

lim
t→∞x ′(t)rq−1(t) (6.9)

exists finite and it is different from zero, because

−x ′(t) = r1−q(t)Φ−1
(

1 −
∫ t

t0

∣∣c(τ )∣∣Φ(
u(τ)

)
dτ

)
�Φ−1

(
1

2

)
Φ−1

(
1

r(t)

)
= 21−qr1−q(t).

and the function x ′rq−1is negative increasing.

From Theorems 6.1, 6.2, 6.3, we can summarize the situation in the following way.
Clearly, as regards the convergence or divergence of J1, J2, the possible cases are the
following:

(A1) : J1 = ∞, J2 = ∞,

(A2) : J1 = ∞, J2 <∞,

(A3) : J1 <∞, J2 = ∞,

(A4) : J1 <∞, J2 <∞.

Then the following result holds.

THEOREM 6.4. Let c(t) < 0 for large t .
(i) Assume case (A1). Then any solution of (0.1) in the class M− tends to zero as

t → ∞ and any solution of (0.1) in the class M+ is unbounded.
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(ii) Assume case (A2). Then any solution of (0.1) in the class M− tends to a nonzero
limit as t → ∞ and any solution of (0.1) in the class M+ is unbounded.

(iii) Assume case (A3). Then any solution of (0.1) in the class M− tends to zero as
t → ∞ and any solution of (0.1) in the class M+ is bounded.

(iv) Assume case (A4). Then both solutions of (0.1) converging to zero and solutions of
(0.1) tending to a nonzero limit (as t → ∞) exist in the class M−. Further solutions
of (0.1) in the class M+ are bounded.

From Theorem 6.4 we obtain immediately the following result which generalizes a well-
know one stated for the linear equation in [173, Theorems 3 and 4]; see also [106, Chap-
ters VI, XI]).

COROLLARY 6.1. Let c(t) < 0 for large t .
(a) Any solution x of (0.1) in the class M− tends to zero as t → ∞ if and only if

J2 = ∞.

(b) Any solution of (0.1) is bounded if and only if J1 <∞.

Following another classification used in [180,210], we distinguish these types of even-
tually positive solutions x of (0.1) (clearly a similar classification holds for eventually
negative solutions):

Type (1) lim
t→∞x(t)= 0, lim

t→∞x[1](t)= 0;
Type (2) lim

t→∞x(t)= 0, lim
t→∞x[1](t)= c1 < 0;

Type (3) lim
t→∞x(t)= c0 > 0, lim

t→∞x[1](t)= c1 � 0;
Type (4) lim

t→∞x(t)= c0 > 0, lim
t→∞x[1](t)= c1 > 0;

Type (5) lim
t→∞x(t)= c0 > 0, lim

t→∞x[1](t)= ∞;
Type (6) lim

t→∞x(t)= ∞, lim
t→∞x[1](t)= c1;

Type (7) lim
t→∞x(t)= ∞, lim

t→∞x[1](t)= ∞.

Eventually positive solutions in M− are of the Types (1)–(3), eventually positive solu-
tions in M+ are of the Types (4)–(7). From Theorem 6.4 and the reciprocity principle (see
Section 2.7), necessary and/or sufficient conditions for their existence can be obtained. To
this end observe that the integral Jr [Jc] for (0.1) plays the same role as Jc [Jr ] for the
reciprocal equation (6.1). Similarly, for the reciprocal equation (6.1) the integrals J1, J2
becomes

R1 = lim
T→∞

∫ T

0

∣∣c(t)∣∣Φ( ∫ t

0
r1−q(s)ds

)
dt

R2 = lim
T→∞

∫ T

0

∣∣c(t)∣∣Φ( ∫ T

t

r1−q(s)ds

)
dt,

respectively. Then the following holds.
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THEOREM 6.5. Let c(t) < 0 for large t . Then the following statements hold:
(a) Every eventually positive solution in M− is of Type (1) if and only if J2 = ∞ and

R2 = ∞.

(b) Equation (0.1) has solutions of Type (2) if and only if R2 <∞.
(c) Equation (0.1) has solutions of Type (3) if and only if J2 <∞.
(d) Equation (0.1) has solutions of Type (4) if and only if J1 <∞ and R1 <∞.
(e) Equation (0.1) has solutions of Type (5) if and only if J1 <∞ and R1 = ∞.
(f) Equation (0.1) has solutions of Type (6) if and only if J1 = ∞ and R1 <∞.
(g) Every eventually positive solution in M+ is of Type (7) if and only if J1 = ∞ and

R1 = ∞.

6.3. Uniqueness in M−.

The uniqueness in the class M− plays a crucial role in the study of the limit characterization
of principal solutions (see Theorem 7.6 in the next section).

Proposition 6.1 states that, when c is eventually negative, the class M− is nonempty. In
the linear case, the assumption∫ ∞

0

(
1

r(t)
+ ∣∣c(t)∣∣) dt = ∞ (6.10)

is necessary and sufficient for uniqueness in M− of such a solution, when the initial value
of the solution is given (see [173, Theorems 3,4]). We will show that also for (0.1) such a
property is assured by a natural extension of condition (6.10).

THEOREM 6.6. Let c(t) < 0 for large t . For any (t0, x0) ∈ [0,∞)× R\{0}, there exists a
unique solution x of (0.1) in the class M− such that x(t0)= x0 if and only if∫ ∞

0

(
r1−q(t)+ ∣∣c(t)∣∣) dt = ∞. (6.11)

The following result can be easily proved and will be useful in the proof of Theorem
6.6.

LEMMA 6.4. Let c(t) < 0 for large t . If Jr = ∞, then for every solution x of (0.1) in the
class M− we have limt→∞ x[1](t)= 0.

PROOF OF THEOREM 6.6. Necessity. Assume (6.11) does not hold, i.e.,∫ ∞

0

∣∣c(τ )∣∣ dτ <∞,

∫ ∞

0
r1−q(t)dt <∞,

and let t0 be large such that

Φ−1
( ∫ ∞

t0

∣∣c(τ )∣∣ dτ

) ∫ ∞

t0

Φ−1
(

1

r(t)

)
dt <

1

Φ−1(2)
. (6.12)
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Consider the solutions x1, x2 of (0.1) with the initial values x1(t0)= x2(t0)= 1 and

x ′
1(t0)= −Φ−1

(
c1

r(t0)

∫ ∞

t0

∣∣c(τ )∣∣dτ

)
,

x ′
2(t0)= −Φ−1

(
c2

r(t0)

∫ ∞

t0

∣∣c(τ )∣∣dτ

)
, (6.13)

where ci are positive constants such that c1 �= c2 and

1 � ci � 2. (6.14)

Let us show that xi ∈ M−, i = 1,2. It is easy to show that solutions xi are positive decreas-
ing on [0, t0]. In order to prove that xi ∈ M−, it will be sufficient to show that xi(t)x ′

i (t) < 0
for any t � t0. Clearly solutions xi are positive decreasing in a right neighborhood of t0.
Assume there exists ti > t0 such that xi(ti)x ′

i (ti) = 0, xi(t) > 0, x ′
i (t) < 0 for t0 � t < ti .

Integrating (0.1) on (t0, ti ) we have

r(ti)Φ
(
x ′
i (ti)

) − r(t0)Φ
(
x ′
i (t0)

) =
∫ ti

t0

∣∣c(τ )∣∣Φ(
xi(τ )

)
dτ. (6.15)

If x ′
i (ti)= 0, from (6.13) and (6.15) we obtain

ci

∫ ∞

t0

∣∣c(τ )∣∣ dτ =
∫ ti

t0

∣∣c(τ )∣∣Φ(
xi(τ )

)
dτ �Φ

(
xi(t0)

) ∫ ti

t0

∣∣c(τ )∣∣ dτ

=
∫ ti

t0

∣∣c(τ )∣∣ dτ

which implies∫ ∞

ti

∣∣c(τ )∣∣ dτ � 0,

that is a contradiction. Now suppose xi(ti)= 0. For t ∈ (t0, ti ) from

r(t)Φ
(
x ′
i (t)

)
� r(t0)Φ

(
x ′
i (t0)

) = −ci
∫ ∞

t0

∣∣c(τ )∣∣dt,

we obtain

x ′
i (t)� −Φ−1(ci)r

1−q(t)Φ−1
( ∫ ∞

t0

∣∣c(τ )∣∣ dτ

)
or

xi(ti )− x(t0)= −1 � −Φ−1(ci)Φ
−1

( ∫ ∞

t0

∣∣c(τ )∣∣ dτ

) ∫ ti

t0

r1−q(t)dt .
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Thus, by virtue of (6.14),

1 �Φ−1(2)Φ−1
( ∫ ∞

t0

∣∣c(τ )∣∣ dτ

) ∫ ∞

t0

r1−q(t)dt,

which contradicts (6.12) and the necessity of (6.11) is proved.
Sufficiency. Let us show that for any (t0, x0) ∈ [0,∞)× R\ {0} , there exists at most one

solution x of (0.1) in the class M− such that x(t0)= x0 when Jr = ∞ or Jc = ∞. Let x, y
be two solutions of (0.1) in the class M− such that x(t0)= y(t0), x

′(t0) > y ′(t0). Consider
the function d given by d(t) = x(t)− y(t). Then d(t0) = 0, d ′(t0) > 0. We claim that d
does not have positive points of maximum greater than t0, i.e.,

d(t) > 0, d ′(t) > 0 for t > t0.

Assume there exists t1 > t0 such that d(t1) > 0, d ′(t1)= 0 and d ′(t) > 0 in a suitable left
neighborhood I of t1. Without loss of generality suppose that d(t) > 0 for t ∈ I . Now
consider the function G given by

G(t)= r(t)
[
Φ

(
x ′(t)

) −Φ
(
y ′(t)

)]
.

Hence G(t1)= 0. Taking into account that Φ is increasing and d ′(t) > 0, we have G(t) >
0, t ∈ I . In addition, from

G′(t)= ∣∣c(t)∣∣[Φ(
x(t)

) −Φ
(
y(t)

)]
,

we obtain G′(t) > 0, t ∈ I , which gives a contradiction, because G(t1) = 0. Hence the
function d is increasing.

If Jc = ∞ then, by Lemma 6.3 we have J2 = ∞. Then, in view of Corollary 6.1(a), we
obtain d(∞)= 0, that is a contradiction. If Jr = ∞, then taking into account that d ′(t) > 0
for t > t0, the function G satisfies G(t) > 0, G′(t) > 0 for t > t0 and, by Lemma 6.4,
limt→∞G(t) = 0, that is a contradiction. Finally the existence of at least one solution
x ∈ M− such that x(t0)= x0 is assured by Proposition 6.1(i). �

6.4. The case c positive

As already stated before, when c is eventually positive, Equation (0.1) may be either os-
cillatory or nonoscillatory. In the nonoscillation case, the asymptotic behavior of solutions
has been considered by many authors. Here we refer in particular to [37,90,99,112,121,157,
179,218] and references therein. In these papers certain asymptotic properties of nonoscil-
latory solutions are examined, under various assumptions on functions r, c, for equation
(0.1) or, sometimes, for a more general equation (which includes (0.1)). In this section,
similarly to Section 6.2, we will show how it is possible to obtain from these results, with
a very simple argument, a complete description of the asymptotic behavior of solutions of
(0.1) also when c is positive.

The following holds.
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PROPOSITION 6.3. Let c(t) > 0 for large t and Jr = ∞.

(i) If J2 = ∞, then M+
B = ∅.

(ii) If J2 <∞, then Equation (0.1) is nonoscillatory and M+
B �= ∅.

PROOF. In view of Lemma 6.2(ii) any nonoscillatory solution of (0.1) is in the class M+.
Then claims (i) and (ii) follow from [112, Theorem 4.2]. �

The following “uniqueness” result will be useful in the proof of the existence of un-
bounded solutions. It is, in some sense, the analogous one to Theorem 6.6.

THEOREM 6.7 ([112, Theorem 4.3]). Let c(t) > 0 for large t . Let η �= 0 be a given con-
stant and assume Jr = ∞, J2 <∞. Then there exists a unique solution x of (0.1), x ∈ M+,
such that limt→∞ x(t)= η.

By using such a result we obtain the following.

PROPOSITION 6.4. Let c(t) > 0 for large t and assume Jr = ∞, J2 <∞. Then (0.1) has
unbounded solutions, i.e., M+∞ �= ∅.

PROOF. Assume, by contradiction, that M+∞ = ∅. In view of Proposition 6.3, let u be a
solution of (0.1) in the class M+

B and let x be another solution of (0.1) such that x(0)=
u(0), x ′(0) �= u′(0). Hence x �= u and from Lemma 6.2(ii) we have x ∈ M+

B . In view of
Theorem 6.7 we have u(∞) �= x(∞). Now consider the solution w of (0.1) given by

w(t)= u(∞)

x(∞)
x(t).

We have w ∈ M+
B . But w(∞)= u(∞), that gives a contradiction. �

PROPOSITION 6.5. Let c(t) > 0 for large t . If Jr < ∞, then (0.1) does not have un-
bounded nonoscillatory solutions, i.e., M+∞ = ∅.

PROOF. The assertion follows, with minor changes, from [99, Lemma 2]. �

Concerning the existence in the class M−, the following hold.

PROPOSITION 6.6. Let c(t) > 0 for large t .
(i) If Jr <∞, Jc = ∞, J1 <∞, then (0.1) is nonoscillatory and M−

B �= ∅.
(ii) If J1 = ∞, then M−

B = ∅.

PROOF. Claim (i) follows from [99, Theorem 4]. As for the claim (ii), let x ∈ M−
B and,

without loss of generality, assume x(t) > 0, x ′(t) < 0 for t � T and x(∞)= cx > 0. From
(0.1) we have

x[1](t)= x[1](T )−
∫ t

T

c(s)Φ
(
x(s)

)
ds <−Φ(cx)

∫ t

T

c(s)ds
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or

x ′(t) <−cxΦ−1
(

1

r(t)

∫ t

T

c(s)ds

)
.

Integrating over (T , t) we obtain

x(t)− x(T ) <−cx
∫ t

T

Φ−1
(

1

r(s)

∫ s

T

c(τ )dτ

)
ds

that gives a contradiction as t → ∞. �

PROPOSITION 6.7. Let c(t) > 0 for large t . If (0.1) is nonoscillatory and Jr <∞, then
M−

0 �= ∅.

PROOF. If Jc <∞, the assertion follows, as a particular case, from [179, Theorem 2.2].
When Jc = ∞ the assertion follows from [37, Lemma 2(ii)]. �

By considering the mutual behavior of integrals Jr , Jc, J1, J2 it is possible to summarize
the situation in a complete way. Indeed, as regards the convergence or divergence of the
above integrals, in view of Lemma 6.3, we have the following six possible cases:

(C1) Jr = Jc = J1 = J2 = ∞,

(C2) Jr = J1 = J2 = ∞, Jc <∞,

(C3) Jr = J1 = ∞, Jc <∞, J2 <∞,

(C4) Jc = J1 = J2 = ∞, Jr <∞,

(C5) Jc = J2 = ∞, Jr <∞, J1 <∞,

(C6) Jr <∞, Jc <∞, J1 <∞, J2 <∞.

If (C1) holds, then, as already claimed in Section 6.1, Equation (0.1) is oscillatory. In
the remaining cases, from the above results, we obtain the following theorem, which is a
natural extension of the previous one stated in the linear case [39, Theorem 1].

THEOREM 6.8. Let c(t) > 0 for large t .
If (C2) holds and (0.1) is nonoscillatory, then M+∞ �= ∅, M+

B = M−
B = M−

0 = ∅.
If (C3) holds, then (0.1) is nonoscillatory and M+∞ �= ∅, M+

B �= ∅, M−
B = M−

0 = ∅.
If (C4) holds and (0.1) is nonoscillatory, then M+∞ = M+

B = M−
B = ∅, M−

0 �= ∅.
If (C5) holds, then (0.1) is nonoscillatory and M+∞ = M+

B = ∅, M−
B �= ∅, M−

0 �= ∅.
If (C6) holds, then (0.1) is nonoscillatory and M+∞ = ∅, M+

B �= ∅, M−
B �= ∅, M−

0 �= ∅.

PROOF. The proof follows from the previous statements of this section.
(C2) From Lemma 6.2(ii) and Proposition 6.3(i) we have M+

B = M−
B = M−

0 = ∅. Since
(0.1) is nonoscillatory, we obtain M+ = M+∞ �= ∅.

(C3) The assertion follows from Lemma 6.2(ii), Proposition 6.3(ii), Proposition 6.4.
(C4) From Lemma 6.2(i) and Proposition 6.6(ii) we have M+∞ = M+

B = M−
B = ∅. Since

(0.1) is nonoscillatory, we obtain M− = M−
0 �= ∅.

(C5) The assertion follows from Lemma 6.2(i), Proposition 6.6(i), Proposition 6.7.
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(C6) From Proposition 6.2(iii), Proposition 6.5, Proposition 6.7, we obtain M+∞ = ∅,
M+
B �= ∅, M−

0 �= ∅. Finally the existence in M−
B can be proved using an argument

similar to that given in the proof of Theorem 6.1 (see also [218, Theorem 3.3] and
its proof). �

Taking into account that the possible cases concerning the convergence or divergence of
Jr , Jc, J1, J2 are the cases (C1)–(C6), from Theorem 6.8 we easily obtain the following
interesting result, which gives a necessary and sufficient condition for the existence of
nonoscillatory solutions of (0.1) in the classes M+∞,M+

B ,M
−
B ,M

−
0 .

THEOREM 6.9. Let c(t) > 0 for large t .
(i) Assume (0.1) nonoscillatory. The class M+∞ is nonempty if and only if Jr = ∞.

(ii) The class M+
B is nonempty if and only if J2 <∞.

(iii) Assume (0.1) nonoscillatory. The class M−
0 is nonempty if and only if Jr <∞.

(iv) The class M−
B is nonempty if and only if J1 <∞.

REMARK 6.2. Interesting results on asymptotic properties of nonoscillatory solutions of
the equation(

Φ(x ′)
)′ + c(t)Φ(x)= 0, (6.16)

based on the concepts of slowly and regularly varying functions, can be found in the recent
paper [117]. Since the presentation of these results of this paper requires the introduction
of several auxiliary statements, we will not formulate these results here and we refer to the
above mentioned paper [117].

7. Principal solution

The concept of the principal solution of the linear second order differential equation (1.1)
was introduced in 1936 by Leighton and Morse [148] and plays an important role in the
oscillation and asymptotic theory of (1.1). In this section we show that this concept can be
introduced also for (nonoscillatory) half-linear equation (0.1).

7.1. Principal solution of linear equations

First we recall basic properties of the principal solution of linear equation (1.1). Suppose
that this equation is nonoscillatory, i.e., any solution of this equation is eventually positive
or negative. Then, using the below described method, one can distinguish among all solu-
tions of this equation a solution x̃, called the principal solution, (determined uniquely up
to a multiplicative factor) which is near ∞ less than any other solution of this equation in
the sense that

lim
t→∞

x̃(t)

x(t)
= 0

for any solution x which is linearly independent of x̃.
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Let x, y be eventually positive linearly independent solution of (1.1), then

r(t)
[
x ′(t)y(t)− x(t)y ′(t)

] =: ω �= 0.

This means that the function x
y

is monotonic and hence there exists (finite or infinite) limit

limt→∞ x(t)
y(t)

= L. If L = 0, the solution x the principal solution of (1.1), if L = ∞, the

principal solution is y . If 0<L<∞, we set x̃ = x−Ly . Then obviously limt→∞ x̃(t )
y(t)

= 0
and x̃ is the principal solution. Observe that this construction of the principal solution is
based on the linearity of the solution space of (1.1).

Using the Wronskian identity, the principal solution x̃ of (1.1) is equivalently character-
ized as a solution satisfying∫ ∞ dt

r(t)x̃2(t)
= ∞. (7.1)

Indeed, let y be a solution linearly independent of x̃. Then by the previous argument y
x̃

tends monotonically to ∞ as t → ∞, hence

lim
t→∞

∫ t ds

r(s)x̃2(s)
= lim

t→∞
y(t)

x̃(t)
= ∞. (7.2)

Another characterization of the principal solution of (1.1) is via the eventually minimal
solution of the associated Riccati equation

w′ + c(t)+ w2

r(t)
= 0. (7.3)

Let x̃ , x be linearly independent solutions of (1.1), the solution x̃ being principal, and
let w̃ = rx̃ ′

x̃
, w = rx ′

x
be the solutions of the associated Riccati equation. Without loss of

generality we may suppose that x̃ and x are eventually positive. We have

w(t)− w̃(t)= r(t)y ′(t)
y(t)

− r(t)x̃ ′(t)
x̃(t)

= r(t)[x ′(t)x̃(t)− x̃ ′(t)x(t)]
x̃(t)x(t)

.

The numerator of the last fraction is a constant and this constant is positive since we have
( x
x̃
)′ = r[x ′x̃−x̃ ′x]

rx̃2 > 0 which follows from the fact that x̃ is the principal solution, i.e.,
x
x̃

tends monotonically to ∞. Hence, the solution w̃ of the Riccati equation (7.3) given
by the principal solution of (1.1) is less than any other solution of (7.3) near ∞. Con-
versely, let w̃ = rx̃ ′/x̃ be the minimal solution of (2.1) and suppose that the solution x̃
of (1.1) is not principal, i.e., the integral in (7.1) is convergent. Let T ∈ R be such that∫ ∞
T
r−1(t)x̃−2(t)dt < 1 and consider the solution w of (7.3) given by the initial condition

w(T )= w̃(T )− 1
2x̃2(T )

. Put v = x̃2(w̃ −w). Then v(T )= 1
2 and by a direct computation

we have

v′ = v2

r(t)x̃2(t)
.
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Hence

v(t)= 1

2 − ∫ t
T r

−1(s)x̃−2(s)ds
� 1

2 − ∫ ∞
T
r−1(s)x̃−2(s)ds

� 1.

This means that v is extensible up to ∞ and hencew has the same property and at the same
time w(t) < w̃(t). This contradiction shows that the eventual minimality of w̃ implies that
(7.1) holds, i.e., the associated solution x̃ of (0.1) is principal.

The last construction of the principal solution of (1.1) which we present here requires (in
addition to nonoscillation of (1.1)) the assumption that for any t0, the solution of (1.1) given
by the initial condition x(t0)= 0, x ′(t0) �= 0 has a zero point rights of t0 (later we will show
that this assumption can be eliminated), we denote this zero point by η(t0). The function
η is nondecreasing according to the Sturmian theory, hence there exists limt→∞ η(t)=: T
and T <∞ since we suppose that (1.1) is nonoscillatory. Now, the solution x̃ given by the
initial condition x̃(T )= 0, x̃ ′(T ) �= 0 is the principal solution of (1.1). This construction is
used in the original paper of Leighton and Morse [148]. Concerning other papers dealing
with the principal solution of (1.1) and its properties we refer to [106] and the references
given therein.

7.2. Mirzov’s construction of the principal solution

This construction defines the principal solution of half-linear equation (0.1) via the mini-
mal solution of the associated Riccati equation (2.1). Nonoscillation of (0.1) implies that
there exist T ∈ R and a solution ŵ of (2.1) which is defined in the whole interval [T ,∞),
i.e., such that (0.1) is disconjugate on [T ,∞). Let d ∈ (T ,∞) and let wd be the solution
of (2.1) determined by the solution xd of (0.1) satisfying the initial condition x(d) = 0,
r(d)Φ(y ′(d))= −1. Then wd(d−)= −∞ and wd(t) < ŵ(t) for t ∈ (T , d). Moreover, if
T < d1 < d2 then

wd1(t) < wd2(t) < ŵ(t) for t ∈ (T , d1).

This implies that for t ∈ (T ,∞) there exists the limit w∞(t) := limd→∞wd(t) and
monotonicity of this convergence (with respect to the “subscript” variable) implies that
this convergence is uniform on every compact subinterval of [T ,∞). Consequently, the
limit function w∞ solves (2.1) as well and any solution w of this equation which is ex-
tensible up to ∞ satisfies the inequality w(t) > w∞(t) near ∞. Indeed, if a solution w̄
would satisfy the inequality w̄(t) < w∞(t) on some interval (T1,∞), then for t̄ ∈ (T1,∞)

and d sufficiently large we have w̄(t̄) < wd(t̄) < w∞(t̄ ). But this contradicts the fact that
wd(d−)= −∞ and that graphs of solutions of (2.1) cannot intersect (because of unique
solvability of this equation).

Now, having defined the minimal solution w∞ of (2.1), we define the principal solution
of (0.1) at ∞ as the (nontrivial) solution of the first order equation

x ′ =Φ−1
(
w(t)

r(t)

)
x, (7.4)
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i.e., the principal solution of (0.1) at ∞ is determined uniquely up to a multiplicative factor
by the formula

x(t)= x(T ) exp

{∫ t

T

r1−q(s)Φ−1(w(s))ds

}
.

REMARK 7.1. (i) Mirzov actually used in his paper [177] a slightly different approach
which can be briefly explained as follows. Suppose that (0.1) is nonoscillatory and let ŵ
be a solution of the associated Riccati equation which exists on some interval [T ,∞) and
let W := ŵ(T ). Denote by

W = {
v ∈ (−∞,W): the solution w of (2.1) given by the initial condition

w(T )= v is not extensible up to ∞}
,

i.e., W are initial values of solutions of (2.1) at t = T which blow down to −∞ at some fi-
nite time t > T . Note that the set W is nonempty what can be seen as follows. Let T1 > T

be arbitrary and consider a solution x of (0.1) given by x(T1) = 0, x ′(T1) �= 0. Discon-
jugacy of (0.1) on [T ,∞) implies that x(t) �= 0 on [T ,T1) and the value of the associ-
ated solution of the Riccati equation w = rΦ(x ′)

Φ(x)
at t = T clearly belongs to W . Now, let

ṽ := supW and let w∞ be the solution of (2.1) given by the initial condition w(T ) = ṽ.
Then this solution is extensible up to ∞ (supposing that this is not the case, we would get
a contradiction with the definition of the number ṽ) and the principal solution of (0.1) is
defined again by (7.4) with w∞ substituted for w.

(ii) Let b be a regular point of Equation (0.1) in the sense that for any A,B ∈ R the
initial condition x(b)= A, r(b)Φ(x ′(b))= B determines uniquely a solution of (0.1). Let
xb be a solution given by xb(b)= 0, x ′

b(b) �= 0. Replacing in the above construction the

point t = ∞ by t = b, i.e., wb(t) := limd→b−wd(t), it not difficult to see that wb = rΦ(x ′
b)

Φ(xb)
.

Consequently, what we call the principal solution xb of (0.1) at a regular point b ∈ R is the
nontrivial solution satisfying the condition xb(b)= 0.

7.3. Construction of Elbert and Kusano

This construction was introduced (independently of Mirzov’s approach) in the paper [90]
and it is based on the half-linear Prüfer transformation.

Let (0.1) be nonoscillatory and let T be such that this equation is disconjugate on [T ,∞).
Take a solution x which is positive on [T ,∞). By the generalized Prüfer transformation
(see Section 1.3) this solution can be expressed in the form

x(t)= ρ(t) sinp ϕ(t), rq−1(t)x ′(t)= ρ(t) cosp ϕ(t), (7.5)

where ρ is a positive function, the half-linear sine and cosine functions sinp , cosp were
defined in Section 1.3 and the function ϕ is a solution of the first order equation

ϕ′ = r1−q(t)
∣∣cosp ϕ(t)

∣∣p + c(t)

p− 1

∣∣sinp ϕ(t)
∣∣p. (7.6)
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The fact that x(t) > 0 for t ∈ [T ,∞) implies that ϕ(t) ∈ (kπp, (k + 1)πp) for some even
k ∈ Z and without loss of generality we can suppose that k = −1. Now, let τ ∈ (T ,∞) and
let ϕτ be the solution of (7.6) given by the initial condition ϕτ (τ )= 0. Since any solution
of (7.6) satisfies ϕ′(t) > 0 whenever ϕ(t) = 0 (modπp), the unique solvability of (7.6)
(compare again Section 1.3) implies that

ϕ(t) < ϕτ2(t) < ϕτ1(t) for t � T , whenever T < τ1 < τ2

(drawing a picture helps to visualize the situation). Consequently, the monotonicity of ϕτ
with respect to τ implies that there exists a finite limit

lim
τ→∞ϕτ (T )= ϕ∗.

Now, the principal solution is the solution of (0.1) given by the initial condition

x̃(T )= sinϕ∗, x̃ ′(T )= r1−q(T ) cosp ϕ∗.

This means that we take ρ(T )= 1 in the definition of x̃, this can be done according to the
homogeneity of the solution space of (0.1).

THEOREM 7.1. A solution x̃ of a nonoscillatory equation (0.1) is principal in sense of
Mirzov’s construction if and only if it is principal in the sense of Elbert and Kusano.

PROOF. Let xτ be a nontrivial solution of (0.1) satisfying xτ (τ )= 0. This solution can be
expressed in the form

xτ (t)= ρ(t) sinp ϕτ (t), rq−1(t)x ′
τ (t)= ρ(t) cosp ϕτ (t),

where ϕτ is the solution of (7.6) satisfying ϕτ (τ )= 0. The corresponding solution of the
associated Riccati equation (2.1)

wτ (t)= r(t)Φ(x ′
τ (t))

Φ(xτ (t))
=Φ

(
cotp ϕτ (t)

)
satisfies wτ (τ−)= −∞. The minimal solution of (2.1) (which defines the principal solu-
tion of (0.1) in Mirzov’s definition) is given by w̃(t) = limτ→∞wτ (t), i.e., it is just the
solution satisfying w̃(T ) = Φ(cotp ϕ∗) and this is the solution of Riccati equation (2.1)
given by the principal solution obtained by Elbert–Kusano’s construction. �

We finish this subsection with some examples of equations whose principal solution can
be computed explicitly.

EXAMPLE 7.1. (i) Consider the one-term half-linear equation(
r(t)Φ(x ′)

)′ = 0. (7.7)
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As we have mentioned in Section 4, the solution space of this equation is a two-dimensional
linear space with the basis x1(t) ≡ 1, x2(t) =

∫ t
r1−q(s)ds. The Riccati equation associ-

ated with (7.7) is w′ + (p− 1)r1−q |w|q = 0 and the general solution of this equation is

w(t)= 1

Φ(C + ∫ t
T r

1−q(s)ds)
, w(t)≡ 0. (7.8)

If
∫ ∞

r1−q(t)dt = ∞, then by an easy computation one can verify that w̃(t) ≡ 0 is the
eventually minimal solution of this equation and hence x̃(t) = 1 is the principal solution
of (0.1). If

∫ ∞
r1−q(t)dt < ∞, the eventually minimal solution of the Riccati equation

is w(t) = − 1
Φ(

∫ ∞
t r1−q(s) ds)

(we take C = − ∫ ∞
T
r1−q(s)ds in formula (7.8)) and x̃(t) =∫ ∞

t r1−q(s)ds is the principal solution of (0.1).
(ii) The nonoscillatory equation (Φ(x ′))′ − (p − 1)Φ(x) = 0 investigated in Section

4.1 has solutions x(t) = e±t and all other solutions are asymptotically equivalent to et .
Consequently, the solution x̃(t)= e−t is the principal solution at ∞.

(iii) The Euler-type equation(
Φ(x ′)

)′ + γ

tp
Φ(x)= 0 (7.9)

is nonoscillatory if and only if γ � γ̃ = (
p−1
p
)p , see Section 4.2. If γ = γ̃ , then (7.9) has

a solution x(t)= t
p−1
p and all linearly independent solutions are asymptotically equivalent

to t
p−1
p lg

2
p t . Consequently, x̃(t) = t

p−1
p is the principal solution of (7.9). If γ < γ̃ , then

x1(t) = eλ1t , x2(t) = eλ2t , where λ1 < λ2 are the roots of the algebraic equation (p −
1)[|λ|p−Φ(λ)]+γ = 0, are solutions of (7.9), and all other linearly independent solutions
are asymptotically equivalent to x2(t). Consequently, x̃(t)= x1(t)= eλ1t .

7.4. Comparison theorem for eventually minimal solutions of Riccati equations

Similarly as in the linear case we have the following inequalities for solutions of a pair of
Riccati equations corresponding to nonoscillatory half-linear equations.

THEOREM 7.2. Consider a pair of half-linear equations (0.1), (2.13), and suppose that
(2.13) is a Sturmian majorant of (0.1) for large t , i.e., there exists T ∈ R such that 0 <
R(t) � r(t), c(t) � C(t) for t ∈ [T ,∞). Suppose that the majorant equation (2.13) is
nonoscillatory and denote by w̃, ṽ eventually minimal solutions of (2.1) and of

v′ +C(t)+ (p− 1)R1−q(t)|v|q = 0, (7.10)

respectively. Then w̃(t)� ṽ(t) for large t .

PROOF. Nonoscillation of (2.13) implies the existence of T ∈ R such that w̃ and ṽ exist
on [T ,∞). Suppose that there exists t1 ∈ [T ,∞) such that w̃(t1) > ṽ(t1). Let w be the so-
lution of (2.1) given by the initial condition w(t1)= ṽ(t1). Then according to the standard
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theorem on differential inequalities (see, e.g., [145]) we have w(t)� ṽ(t) for t � t1, i.e.,w
is extensible up to ∞. At the same time w(t) < w̃(t) for t � t1 since graphs of solutions of
(2.1) cannot intersect (because of the unique solvability). But this contradicts the eventual
minimality of w̃. �

In some oscillation criteria, we will need the following immediate consequence of the
previous theorem.

COROLLARY 7.1. Let
∫ ∞

r1−q(t)dt = ∞, c(t) � 0 for large t and suppose that (0.1)
is nonoscillatory. Then the eventually minimal solution of the associated Riccati equation
(2.1) satisfies w̃(t)� 0 for large t .

PROOF. Under the assumptions of corollary, (0.1) is the majorant of the one-term equa-
tion (r(t)Φ(y ′))′ = 0. Since

∫ ∞
r1−q(t)dt = ∞, ỹ ≡ 1 is the principal solution of this

equation (compare Example 7.1). Hence ṽ(t)= 0 is the eventually minimal solution of the
associated Riccati equation which implies the required statement. �

7.5. Sturmian property of the principal solution

In this short subsection we briefly show that the principal solution of (0.1) has a Sturmian-
type property and that the largest zero point of this solution (if any) behaves like the left
conjugate point of ∞, in a certain sense.

THEOREM 7.3. Suppose that Equation (0.1) is nonoscillatory and its principal solution
x̃ has a zero point and let T be the largest of them. Further suppose that Equation (2.13)
is a Sturmian majorant of (0.1) on [T ,∞), i.e., 0 < R(t) � r(t) and C(t) � c(t) for t ∈
[T ,∞). Then any solution y of (2.13) has a zero point in (T ,∞) or it is a constant multiple
of x̃. The latter possibility is excluded if one of the inequalities between r,R and c,C,
respectively, is strict on an interval of positive length.

PROOF. If (2.13) is oscillatory, the statement of theorem trivially holds, so suppose that
(2.13) is nonoscillatory and let ỹ be its principal solution. Denote by w̃ and ṽ the minimal
solutions of corresponding Riccati equations (2.1) and (7.10), respectively. According to
the comparison theorem for minimal solutions of Riccati equations presented in the previ-
ous subsection, we have w̃(t) � ṽ(t) on the interval of existence of w̃. Since we suppose
that x̃(T ) = 0, this implies that w̃(T+)= ∞, so the interval of existence of ṽ must be a
subinterval of [T ,∞), say [T1,∞), i.e., T1 is the largest zero of the principal solution ỹ of
(2.13). If one of the inequalities between r,R and c,C is strict it can be shown that the pos-
sibility T = T1 is excluded. Now let y be any nontrivial solution of (2.13). If y(t) �= 0 for
t ∈ [T1,∞), then the associated solution v =RΦ(y ′)/Φ(y) exists on [T1,∞) and satisfies
there the inequality v(t) < ṽ(t) on [T1,∞) (since ṽ(T1+)= ∞ and v(T−) <∞) and this
a contradiction with minimality of ṽ. �

REMARK 7.2. (i) If T is the largest zero of the principal solution x̃ of (0.1), i.e., the same
as in the previous theorem, and suppose that R(t) = r(t) and C(t) = c(t) for t ∈ [T ,∞).
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Then Theorem 7.3 shows that T plays the role of the left conjugate point of ∞ in the sense
that any nonprincipal solution of (0.1), i.e., a solution linearly independent of x̃ , has exactly
one zero in (T ,∞). Note that the fact that this zero is exactly one (and not more) follows
from the classical Sturm separation theorem (Theorem 2.3).

(ii) In Remark 2.2 we have pointed out that the disconjugacy of (0.1) on a bounded
interval I = [a, b] (which, by definition, means that the solution x given by x(a) = 0,
x ′(a) �= 0 has no zero in (a, b]) is actually equivalent to the existence of a solution without
any zero in [a, b]. Theorem 7.3 shows that we have the same situation with unbounded
intervals or an interval whose endpoints are singular points of (0.1). For example, if I =
R = (−∞,∞), then disconjugacy of (0.1) on this interval (defined as disconjugacy on
[−T ,T ] for every T > 0) is equivalent to the existence of a solution without any zero on
R, the solution having this property is, e.g., the principal solution (at ∞).

7.6. Integral characterization of the principal solution

Among all (equivalent) characterizations of the principal solution of linear equation (1.1),
the most suitable seems be the integral one (7.1), since it needs to know just only one
solution and according to the divergence/convergence of the characterizing integral it is
possible to decide whether or not it is the principal solution. The remaining characteriza-
tions require to know other solutions since they are of comparison type. In the linear case,
this is not serious disadvantage because of the reductions of order formula which enables
to compute all solutions (at least locally) of the linear second order equation when one
solution is already known. However, in the half-linear case we have no reduction of order
formula as pointed in Section 3, so some kind of the integral characterization would be
very useful. In the next theorem we present one candidate for the integral characterization
of the principal solution of (0.1). The parts (i), (ii) and (iii) are proved in [66] and the part
(iv) in [36].

THEOREM 7.4. Suppose that Equation (0.1) is nonoscillatory and x̃ is its solution such
that x̃ ′(t) �= 0 for large t .

(i) Let p ∈ (1,2). If

I (x̃) :=
∫ ∞ dt

r(t)x̃2(t)|x̃ ′(t)|p−2
= ∞, (7.11)

then x̃ is the principal solution.
(ii) Let p > 2. If x̃ is the principal solution then (7.11) holds.

(iii) Suppose that
∫ ∞

r1−q(t)dt = ∞, the function γ (t) := ∫ ∞
t c(s)ds exists and

γ (t)� 0, but γ (t) �≡ 0 eventually. Then x̃(t) is the principal solution if and only if
(7.11) holds.

(iv) Let c(t) > 0 for large t ,
∫ ∞

r1−q(t) dt < ∞,
∫ ∞

c(t)dt = ∞. Then x̃(t) is the
principal solution if and only if (7.11) holds.

PROOF. (i) Suppose, by contradiction, that a (positive) solution x of (0.1) satisfying (7.11)
is not principal. Then the corresponding solution wx = rΦ(x ′/x) of the associated Ric-
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cati equation (2.1) is not eventually minimal. Hence, there exists another nonoscillatory
solution y of (0.1) such that

wy = rΦ(y ′/y) < wx eventually. (7.12)

Due to the Picone identity given in Section 2.2 we have

r(t)|x ′|p − c(t)xp = [
xpwy

]′ + pr1−q (t)xpP
(
Φ−1(wx),wy

)
and at the same time

r(t)|x ′|p − c(t)xp = (
xpwx

)′ − x
[(
r(t)Φ(x ′)

)′ + c(t)Φ(x)
] = (

xpwx
)′
.

Subtracting the last two equalities, we get[
xp(wx −wy)

]′ = pr1−q(t)xpP
(
Φ−1(wx),wy

)
.

Let f (t)= xp(wx −wy). By (7.12) there exists T sufficiently large such that f (t) > 0 for
t � T . Then by Lemma 2.1 we have

f ′

f 2
= p

f 2
r1−q(t)xpP

(
Φq(wx),wy

)
>
p

2

xpr1−q

[xp(wx −wy)]2

∣∣rq−1(x ′/x)
∣∣2−p

(wx −wy)
2

= p

2r(t)x2|x ′|p−2 .

Integrating the last inequality from T to T1 (T1 > T ), we have

1

f (T )
>

1

f (T )
− 1

f (T1)
� p

2

∫ T1

T

dt

r(t)x2(t)|x ′(t)|p−2

and letting T1 → ∞ we are led to contradiction. Hence a solution satisfying (7.11) is
principal.

(ii) We proceed again by contradiction. Suppose that x̃ is the principal solution and
I (x̃) <∞. Let T be chosen so large that x̃(t) > 0 for t � T and∫ ∞

T

dt

r(t)x̃2(t)|x̃ ′(t)|p−2 <
1

p
.

Consider the solution w̄(t) of the Riccati equation (2.1) given by the initial condition

w̄(T )= w̃(T )− 1

2x̃p(T )
,
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where w̃ = rΦ(x̃ ′/x̃), i.e., w̄(T ) < w(T ). We want to show that w̄(t) is extensible up to
∞. To this end, denote f (t)= x̃p(t)(w̃(t)− w̄(t)). Then f (T )= 1

2 and using the Picone
identity, we have

f ′(t)
f 2(t)

= pr1−q(t)
f 2(t)

P
(
rq−1x̃ ′, w̄Φ(x̃)

)
,

hence, integrating this identity from T to t

1

f (T )
− 1

f (t)
= p

∫ t

T

r1−q(s)x̃p(s)
f 2(s)

P

(
rq−1 x̃

′

x̃
, w̄

)
ds. (7.13)

By (2.8) of Lemma 2.1 we have

P

(
rq−1x̃ ′

x̃
, w̄

)
� 1

2

∣∣∣∣ rq−1x̃ ′

x̃

∣∣∣∣2−p
(w− w̄)2,

which means, using (7.13) and taking into account that f (T )= 1
2 ,

f (t) �
(

2 − p

∫ t

T

r1−q(s)x̃p(s)
f 2(s)

P

(
rq−1 x̃

′

x̃
, w̄

)
ds

)−1

�
(

2 − p

∫ ∞

T

dt

2r(t)x̃2(t)|x̃ ′(t)|p−2

)−1

� 1.

Consequently, 1
2 � f (t)� 1 and f (t) can be continued to ∞, hence w̄(t) is a continuable

up to infinity solution of (2.1) and w̄(t) < w̃(t) for t � T , i.e., w̃(t) is not minimal. Thus,
the solution x̃(t) is not principal, which was to be proved.

(iii) The principal solution x̃(t) of (0.1) is associated with the minimal solution w̃(t)
of (2.1) and hence it is also the minimal solution of the Riccati integral equation (the
convergence of

∫ ∞
r1−q(t)|w(t)|q dt follows from Theorem 5.6)

w̃(t)= γ (t)+ (p− 1)
∫ ∞

t

r1−q(s)
∣∣w̃(s)∣∣q ds, t � T1,

and by the assumptions on γ (t), there exists T ∈ R such that w̃(t) > 0 for t � T . Since w̃
is the minimal solution, for any other proper solution w of (2.1) we have w(t) > w̃(t) > 0
for t � T1 � T , and hence the associated solutions x(t) and x̃(t) satisfy the inequalities
x ′(t) > 0, x̃ ′(t) > 0 for t � T1.

Now the proof goes in different way according to 1 <p < 2 or p� 2.
Case A: 1 < p < 2. By the part (i) it is sufficient to show that the integral in (7.11) is

really divergent. Suppose the contrary, i.e.,∫ ∞ dt

r(t)x̃2(t)|x̃ ′(t)|p−2 <∞.
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Let T2 � T1 be chosen so large that∫ ∞

T2

dt

r(t)x̃2(t)|x̃ ′(t)|p−2
� 2(p− 1)

p
.

Consider the solution w̄(t) of (2.1) with the initial condition

w̄(T2)= w̃(T2)− 1

2x̃2(T2)
,

and accordingly, the function f (t) be defined by

f (t)= x̃p(t)
[
w̃(t)− w̄(t)

]
.

Clearly, f (T2)= 1
2 . Following the computation in the proof of the claim (i), we find

f ′(t)
f 2(t)

= p
r1−q (t)x̃p(t)

f 2(t)
P

(
Φ−1(

w̃(t)
)
, w̄(t)

)
hence by (2.9)

f ′(t)
f 2(t)

<
p

2(p− 1)

1

r(t)x̃2(t)|x̃ ′(t)|p−2

and integrating this inequality over [T2, t] we find

1

f (T2)
− 1

f (t)
<

1

2

p

p− 1

∫ t

T2

ds

r(s)x̃2(s)|x̃ ′(s)|p−2

<
p

2(p− 1)

∫ ∞

T2

ds

r(s)x̃2(s)|x̃ ′(s)|p−2 � 1,

consequently, 1
2 � f (t) � 1 for t � T2. Thus, the function w̄(t) exists on [T2,∞) and

w̄(t) < w̃(t), i.e., w̃(t) is not minimal solution of (2.1), hence x̃(t) is not the principal
solution, and this contradiction proves the first case.

Case B: p � 2. By the claim (ii) it is sufficient to show that if the solution x is not prin-
cipal then the corresponding integral in (7.11) is convergent. Let w(t)= r(t)Φ(x ′(t)/x(t))
be the associated solution of (2.1). Then w(t) is not minimal solution of (2.1) and let w̃(t)
be the minimal solution of this equation. Then we have w(t) > w̃(t) for t � T2 with T2
sufficiently large. Consider the function f (t) given again by

f (t)= xp(t)
[
w(t)− w̃(t)

]
> 0 for t � T2.

By inequality (2.9) given in Lemma 2.1 we have again

f ′

f 2 = p

f 2 r
1−qxpP

(
Φ−1(w), w̃

)
>

p

2(p− 1)

1

rx2|x ′|p−2 , t � T2,
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hence

1

f (T2)
>

1

f (T2)
− 1

f (t)
� p

2(p− 1)

∫ t

T2

ds

rx2|x ′|p−2 ,

then letting t → ∞ we obtain the desired result∫ ∞ dt

r(t)x2(t)|x ′(t)|p−2
<∞.

(iv) Concerning the proof of the part (iv), this proof is based on the statement which re-
lates the principal solution of (0.1) to the principal solution of the reciprocal equation (6.1),
we refer to [36] for details. �

REMARK 7.3. The equivalent integral characterization of the principal solution of (0.1) is
stated in the parts (iii) and (iv) of the previous theorem is proved under some restriction
on the functions r, c in (0.1). In order to better understand these restrictions, the concept of
the regular half-linear equation has been introduced in [72] as follows. A nonoscillatory
equation (0.1) is said to be regular if there exists a constant K � 0 such that

lim sup
t→∞

∣∣∣∣w1(t)

w2(t)

∣∣∣∣ �K

for any pair of solutions w1,w2 of the associated Riccati equation (2.1) such that w2(t) >

w1(t) eventually. It was shown that for regular half-linear equation (7.11) holds if and only
if the solution x̃ is principal and that under assumptions of (iii) and (iv) of the previous
theorem equation (0.1) is regular.

7.7. Another integral characterization

The integral characterization (7.11) of the principal solution of (0.1) reduces to the usual
integral characterization of the principal solution of linear equation (7.1) if p = 2. How-
ever, this characterization applies in case p > 2 only to solutions x for which x ′(t) �= 0
eventually. Moreover, in [36,37] examples of half-linear equations are given which show
that if assumptions of the parts (iii) and (iv) of Theorem 7.4 are violated, (7.11) is no longer
equivalent characterization of the principal solution of (0.1). For this reason, another in-
tegral characterization was suggested and the following statement is proved. The proof of
this statement can be found in the above mentioned [36,37].

THEOREM 7.5. Suppose that either
(i) c(t) < 0 for large t , or

(ii) c(t) > 0 for large t and both integrals
∫ ∞

r1−q(t)dt ,
∫ ∞

c(t)dt are convergent.
Then a solution x̃ of (0.1) is principal if and only if∫ ∞ dt

rq−1(t)x̃2(t)
= ∞. (7.14)
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7.8. Limit characterization of the principal solution

The “most characteristic” property of the principal solution in the linear case is the limit
characterization (7.2). It was proved in the above mentioned papers [36,37] that this limit
characterization extends under the assumption that c(t) �= 0 eventually also to half-linear
equation (0.1). This statement has been proved in [36] in case c(t) < 0 and in [37] for
c(t) > 0.

THEOREM 7.6. Suppose that (0.1) is nonoscillatory and c(t) �= 0 for large t . Then a solu-
tion x̃ is principal if and only if the limit characterization (7.2) holds for every solution x
linearly independent of x̃.

PROOF. The proof is based on the detailed asymptotic analysis of solutions of (0.1) made
in the previous section. Since this analysis is rather complicated, we refer to the above
mentioned papers [36,37] for details. �

8. Conjugacy and disconjugacy of half-linear equations

Recall that similarly as in case of linear equations, Equation (0.1) is said to be disconjugate
in a given interval I if every nontrivial solution of this equation has at most one zero in I ,
in the opposite case, i.e., if there exists a nontrivial solution of (0.1) having at least two
zeros in I , Equation (0.1) is said to be conjugate in I .

In this section we will present criteria for conjugacy and disconjugacy of equation (0.1).
Some theoretical criteria of this kind have been already formulated in the previous sections
and are essentially involved in the Theorem 2.2. For example, the existence of a solution
w of Riccati equation (2.1) associated with (0.1) is a sufficient condition for disconjugacy
of this equation in the interval of the existence of this solution w. Another criteria can be
formulated as consequences of the Sturmian comparison theorem.

8.1. Leighton’s conjugacy criterion

Consider a pair of half-linear differential equations (0.1) and (2.13). If (2.13) is a Sturmian
minorant of (0.1) on I = [a, b] and (2.13) is conjugate on this interval, then majorant
equation (0.1) is conjugate on [a, b] as well. In the next theorem we replace the pointwise
comparison of coefficients by the integral one. In the linear case p = 2 this statement was
proved by Leighton [147], the half-linear version of this statement given here can be found
in [115].

THEOREM 8.1. Suppose that points a, b are conjugate relative to (2.13) and let y be a
nontrivial solution of this equation for which y(a)= 0 = y(b). If

J (y;a, b) :=
∫ b

a

[(
r(t)−R(t)

)|y ′|p − (
c(t)−C(t)

)|y|p]
dt � 0, (8.1)
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then (0.1) is also conjugate in [a, b].

PROOF. We have (with the notation introduced in Theorem 2.2)

F(y;a, b)=
∫ b

a

[
r(t)|y ′|p − c(t)|y|p]

dt

=
∫ b

a

[
R(t)|y ′|p −C(t)|y|p]

dt +J (y;a, b)

= [
R(t)yΦ(y ′)

]b
a
−

∫ b

a

y
[(
R(t)Φ(y ′)

)′ −C(t)Φ(y)
]

dt

+J (y;a, b)
= J (y;a, b)� 0,

hence (0.1) is conjugate on [a, b] by Theorem 2.2. �

8.2. Singular Leighton’s theorem

In this subsection we show that if the points a, b are singular points of considered equa-
tions, in particular, a = −∞, b = ∞ (or finite singularities, i.e., points where the unique
solvability is violated), Leighton-type comparison theorem still holds if we replace the
solution satisfying y(a) = 0 = y(b) by the principal solution at a and b. We formulate
the statement in a simplified form, as can be found in [59], a more general formulation is
presented in [67].

THEOREM 8.2. Suppose that c̃ is a continuous function such that the equation(
r(t)Φ(y ′)

)′ + c̃(t)Φ(y)= 0 (8.2)

has the property that the principal solutions at a and b coincide and denote by h this
simultaneous principal solution at these points. If

lim inf
s1↓a,s2↑b

∫ s2

s1

(
c(t)− c̃(t)

)∣∣h(t)∣∣p dt � 0, c(t) �≡ c̃(t) in (a, b), (8.3)

then (0.1) is conjugate in I = (a, b), i.e., there exists a nontrivial solution of this equation
having at least two zeros in I .

PROOF. Our proof is based on the relationship between nonpositivity of the energy func-
tional F and conjugacy of (0.1) given in Theorem 2.2. We construct a nontrivial function
piecewise of the class C1, with a compact support in I , such that F(y;a, b)< 0.

Continuity of the functions c, c̃ and (8.3) imply the existence of t̄ ∈ I and d,$ > 0 such
that (c(t)− c̃(t))|h(t)|p > d for (t̄−$, t̄+$). LetΔ be any positive differentiable function
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with the compact support in (t̄ − $, t̄ + $). Further, let a < t0 < t1 < t̄ − $ < t̄ + $ < t2 <

t3 < b and let f,g be the solutions of (8.2) satisfying the boundary conditions

f (t0)= 0, f (t1)= h(t1), g(t2)= h(t2), g(t3)= 0.

Note that such solutions exist if t0, t1 and t2, t3 are sufficiently close to a and b, respectively,
due to nonoscillation of (8.2) near a and b (this is implied by the existence of principal so-
lutions at these points) and the fact that the solution space of this equation is homogeneous.
Define the function y as follows

y(t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈ (a, t0],
f (t), t ∈ [t0, t1],
h(t), t ∈ [t1, t2]\[t̄ − $, t̄ + $],
h(t)

(
1 + δΔ(t)

)
, t ∈ [t̄ − $, t̄ + $],

g(t), t ∈ [t2, t3],
0, t ∈ [t3, b),

where δ is a real parameter. Then we have

F(y; t0, t3) =
∫ t3

t0

[
r(t)|y ′|p − c(t)|y|p]

dt

=
∫ t3

t0

[
r(t)|y ′|p − c̃(t)|y|p]

dt −
∫ t3

t0

[
c(t)− c̃(t)

]|y|p dt

=
∫ t1

t0

[
r(t)|f ′|p − c̃(t)|f |p]

dt −
∫ t1

t0

[
c(t)− c̃(t)

]|f |p dt

+
∫ t2

t1

[
r(t)|y ′|p − c̃(t)|y|p]

dt −
∫ t2

t1

[
c(t)− c̃(t)

]|y|p dt

+
∫ t3

t2

[
r(t)|g′|p − c̃(t)|g|p]

dt −
∫ t3

t2

[
c(t)− c̃(t)

]|g|p dt .

Denote by wf , wg , wh the solutions of the Riccati equation associated with (8.2)

w′ + c̃(t)+ (p− 1)r1−q(t)|w|q = 0 (8.4)

generated by f , g and h, respectively, i.e.,

wf = rΦ(f ′)
Φ(f )

, wg = rΦ(g′)
Φ(g)

, wh = rΦ(h′)
Φ(h)

.

Then using Picone’s identity (2.7)∫ t1

t0

[
r(t)|f ′|p − c̃(t)|f |p]

dt
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=wf |f |p|t1t0 + p

∫ t1

t0

r1−q(t)P
(
rq−1f ′,Φ(f )wf

)
dt

=wf |f |p|t1t0,

where P(u, v)= |u|p
p

− uv + |v|q
q

(see Section 2.2). Similarly,∫ t3

t2

[
r(t)|g′|p − c̃(t)|g|p]

dt =wg|g|p
∣∣t3
t2
.

Concerning the interval [t1, t2], we have (again by identity (2.7))

F̃(y; t1, t2) =
∫ t2

t1

[
r(t)|y ′|p − c̃(t)|y|p]

dt

= wh|h|p|t2t1 + p

∫ t2

t1

r1−q(t)P
(
rq−1y ′,Φ(y)wh

)
dt

= wh|h|p|t2t1 +
∫ t̄+$

t̄−$

{
r(t)

∣∣h′ + δ(Δh)′
∣∣p

−pr(t)
Φ(h′)
Φ(h)

y ′hp−1(1 + δΔ)p−1

+ (p− 1)r1−q(t)
∣∣∣∣ r(t)Φ(h′)

Φ(h)

∣∣∣∣qhp(1 + δΔ)p
}

dt

= wh|h|p|t2t1 +
∫ t̄+$

t̄−$
r(t)

{|h′|p + pδ(Δh)′Φ(h′)+ o(δ)

−p
(
h′ + δ(�h)′

)
Φ(h′)

(
1 + (p− 1)δΔ+ o(δ)

)
+ (p− 1)|h′|p(

1 +pδΔ+ o(δ)
)}

dt

= wh|h|p|t2t1 +
∫ t̄+$

t̄−$
r(t)

{|h′|p + pδ(Δh)′Φ(h′)+ p|h′|p

−pδΦ(h′)(Δh)′ − p(p− 1)δΔ|h′|p + (p− 1)|h′|p
+ (p− 1)pδΔ|h′|p + o(δ)

}
dt

= wh|h|p|t2t1 + o(δ).

Consequently,

F̃(y; t0, t3)=
∫ t3

t0

[
r(t)|y ′|p − c̃(t)|y|p]

dt

=wf |f |p∣∣t1
t0

+wh|h|p
∣∣t2
t1

+wg |g|p
∣∣t3
t2

+ o(δ)

= ∣∣h(t1)∣∣p(
wf (t1)−wh(t1)

) + ∣∣h(t2)∣∣p(
wh(t2)−wg(t2)

) + o(δ)

as δ → 0+.
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Further, observe that the function f
h

is monotonically increasing in (t0, t1) since f
h
(t0)=

0, f
h
(t1) = 1 and ( f

h
)′ = f ′h−f h′

h2 �= 0 in (t0, t1). Indeed, if f ′h − f h′ = 0 at some point

t̃ ∈ (t0, t1), i.e., f
′
f
(t̃)= h′

h
(t̃) then wf (t̃)=wh(t̃) which contradicts the unique solvability

of the generalized Riccati equation. By the second mean value theorem of integral calculus
there exists ξ1 ∈ (t0, t1) such that∫ t1

t0

(
c(t)− c̃(t)

)|f |p dt =
∫ t1

t0

(
c(t)− c̃(t)

)|h|p |f |p
|h|p dt

=
∫ t1

ξ1

(
c(t)− c̃(t)

)|h|p dt .

By the same argument the function g
h

is monotonically decreasing in (t2, t3) and∫ t3

t2

(
c(t)− c̃(t)

)|g|p dt =
∫ ξ2

t2

(
c(t)− c̃(t)

)|h|p dt

for some ξ2 ∈ (t2, t3).
Concerning the interval (t1, t2) we have∫ t2

t1

(
c(t)− c̃(t)

)|y|p dt

=
∫ t̄−$

t1

(
c(t)− c̃(t)

)|h|p
+

∫ t̄+$

t̄−$
(
c(t)− c̃(t)

)|h|p(1 + δΔ)p dt +
∫ t2

t̄+$
(
c(t)− c̃(t)

)|h|p dt

=
∫ t2

t1

(
c(t)− c̃(t)

)|h|p dt + δ

∫ t̄+$

t̄−$
(
c(t)− c̃(t)

)|h|pΔ(t)dt + o(δ)

�
∫ t2

t1

(
c(t)− c̃(t)

)|h|p dt + δK + o(δ),

where K = d
∫ t̄+$
t̄−$ Δ(t)dt > 0. Therefore

∫ t3

t0

(
c(t)− c̃(t)

)|y|p dt �
∫ ξ2

ξ1

(
c(t)− c̃(t)

)|h|p dt +Kδ+ o(δ).

Summarizing our computations, we have

F(y; t0, t3) �
∣∣h(t1)∣∣p(

wf (t1)−wh(t1)
) + ∣∣h(t2)∣∣p(

wh(t2)−wg(t2)
)

−
∫ ξ2

ξ1

(
c(t)− c̃(t)

)|h|p dt − (
Kδ+ o(δ)

)
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with a positive constant K .
Now, let δ > 0 (sufficiently small) be such that Kδ + o(δ)=: ε > 0. According to (8.3)

the points t1, t2 can be chosen in such a way that∫ s2

s1

(
c(t)− c̃(t)

)|h|p dt >−ε

4

whenever s1 ∈ (a, t1), s2 ∈ (t2, b). Further, since wh is generated by the solution h of (8.2)
which is principal both at t = a and t = b, according to the Mirzov construction of the
principal solution, we have (for t1, t2 fixed for a moment)

lim
t0→a+

[
wf (t1)−wh(t1)

] = 0, lim
t3→b−

[
wg(t2)−wh(t2)

] = 0.

Hence ∣∣h(t1)∣∣p[
wf (t1)−wh(t1)

]
<
ε

4
,

∣∣h(t2)∣∣p[
wh(t2)−wg(t2)

]
<
ε

4

if t0 < t1, t3 > t2 are sufficiently close to a and b, respectively.
Consequently, for the above specified choice of t0 < t1 < t2 < t3 we have

F(y; t0, t3) =
∫ t3

t0

[
r(t)|y ′|p − c̃(t)|y|p]

dt −
∫ t3

t0

(
c(t)− c̃(t)

)|y|p dt

�
∣∣h(t1)∣∣p[

wf (t1)−wh(t1)
] + ∣∣h(t2)∣∣p[

wh(t2)−wg(t2)
]

−
∫ ξ2

ξ1

(
c(t)− c̃(t)

)|h|p dt − (
Kδ+ o(δ)

)
<
ε

4
+ ε

4
+ ε

4
− ε < 0.

The proof is now complete. �

8.3. Lyapunov inequality

The classical Lyapunov inequality (see, e.g., [106, Chapter XI]) for the linear differential
equation (1.1) states that if a, b, a < b, are consecutive zeros of a nontrivial solution of this
equation, then∫ b

a

c+(t)dt >
4∫ b

a r
−1(t)dt

, c+(t)= max
{
0, c(t)

}
.

This inequality has been extended in many directions and its half-linear extension reads as
follows, see [85].
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THEOREM 8.3. Let a, b, a < b, be consecutive zeros of a nontrivial solution of (0.1). Then

∫ b

a

c+(t)dt >
2p

(
∫ b
a
r1−q(t)dt)p−1

. (8.5)

PROOF. According to homogeneity of the solution space of (0.1), we can suppose that
x(t) > 0 on (a, b). Let c ∈ (a, b) be the least point of the local maximum of x in (a, b),
i.e., x ′(c)= 0 and x ′(t) > 0 on [a, c). By the Hölder inequality we have

xp(c)=
( ∫ c

a

x ′(t)dt

)p
=

( ∫ c

a

r
− 1
p (t)r

1
p (t)x ′(t)dt

)p
�

( ∫ c

a

r
− q
p (t)dt

) p
q

( ∫ b

a

r(t)
(
x ′(t)

)p dt

)
.

Multiplying (0.1) by x(t) and integrating from a to c by parts we get∫ c

a

r(t)
(
x ′(t)

)p dt =
∫ c

a

c(t)xp(t)dt �
∫ c

a

c+(t)xp(t)dt

� xp(c)

∫ c

a

c+(t)dt,

hence

xp(c)�
( ∫ c

a

r1−q(t)dt

)p−1( ∫ c

a

c+(t)dt

)
xp(c),

which yields

( ∫ c

a

r1−q(t)dt

)1−p
�

∫ c

a

c+(t)dt .

Similarly, if d is the greatest point of local maximum of x in (a, b), i.e., x ′(d) = 0 and
x ′(t) < 0 on (d, b), we have

( ∫ b

d

r1−q(t)dt

)1−p
�

∫ b

d

c+(t)dt .

Consequently,

∫ b

a

c+(t)dt �
( ∫ c

a

r1−q(t)dt

)1−p
+

( ∫ b

d

r1−q(t)dt

)1−p
.
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Finally, since the function f (u) = u1−p is convex for u > 0, the Jensen inequality
f (u+v2 )� 1

2 [f (u)+ f (v)] with u= ∫ c
a
r1−q(t)dt , v = ∫ b

d
r1−q(t)dt implies( ∫ c

a

r1−q(t)dt

)1−p
+

( ∫ b

d

r1−q(t)dt

)1−p

� 2

[
1

2

( ∫ c

a

r1−q(t)dt +
∫ b

d

r1−q(t)dt

)]1−p

� 2p

(
∫ b
a
r1−q(t)dt)p−1

,

what completes the proof. �

REMARK 8.1. Note that the Lyapunov-type inequality was proved for the first time in [85]
for (0.1) with r(t) ≡ 1, but the extension to general (0.1) is straightforward. Half-linear
Lyapunov inequality has been rediscovered in several later papers, e.g., in [154,224].

8.4. Vallée Poussin-type inequality

Another important inequality concerning disconjugacy of the linear differential equation

x ′′ + a(t)x ′ + b(t)x = 0 (8.6)

was introduced by Valleé Poussin [214] in 1929 and reads as follows. Suppose that t1 < t2
are consecutive zeros of a nontrivial solution x of (8.6), then

2
∫ ∞

0

dt

t2 +At +B
� t2 − t1, A := max

t∈[t1,t2]
∣∣a(t)∣∣, B := max

t∈[a,b]
∣∣b(t)∣∣.

The half-linear version of this criterion can be found in [68]. Here we formulate this cri-
terion in a simplified form, to underline similarity with the original criterion of Vallée
Poussin. For the same reason we consider the equation(

Φ(x ′)
)′ + a(t)Φ(x ′)+ b(t)Φ(x)= 0 (8.7)

instead of (0.1) (if the function r in (0.1) is differentiable, then this equation can be easily
reduced to (8.7)).

THEOREM 8.4. Suppose that t1 < t2 are consecutive zeros of a nontrivial solution x of
(8.7). Then

2
∫ ∞

0

dt

(p− 1)tq +At +B
� t2 − t1, A= max

t∈[t1,t2]
∣∣a(t)∣∣, B = max

t∈[t1,t2]
∣∣b(t)∣∣.

(8.8)



Half-linear differential equations 249

PROOF. Suppose that x(t) > 0 in (t1, t2), in case x(t) < 0 in (t1, t2) the proof is analogical.
Let c, d ∈ (t1, t2), c� d , be the least and the greatest points of the local maximum of x in
(a, b), respectively, i.e., x ′(t) > 0 for t ∈ (t1, c), x ′(t) < 0 for t ∈ (d, t2) and x ′(c)= 0 =
x ′(d). The Riccati variable v = Φ(x ′)

Φ(x)
satisfies v(t1+)= ∞, v(c)= 0, v(t) > 0, t ∈ (t1, c)

and

v′ = −b(t)− a(t)v− (p− 1)vq � −B −Av− (p− 1)vq. (8.9)

Hence, ∫ ∞

0

dv

(p− 1)vq +Av +B
� c− t1. (8.10)

Concerning the interval (d, t2), we set v = −Φ(x ′)
Φ(x)

> 0 for t ∈ (d, t2) and similarly as for
t ∈ (t1, c) we have∫ ∞

0

dv

(p− 1)vq +Av +B
� t2 − d. (8.11)

The summation of (8.10) and (8.11) gives

2
∫ ∞

0

dv

(p− 1)vq +Av +B
� c− t1 + t2 − d � t2 − t1,

what we needed to prove. �

REMARK 8.2. (i) Since (8.8) is a necessary condition for conjugacy of (8.7) in [t1, t2], the
opposite inequality is a disconjugacy criterion: if

2
∫ ∞

0

dv

(p− 1)vq +Av +B
> t2 − t1,

then (8.7) is disconjugate in [t1, t2].
(ii) A more general Riccati substitution v = α(t)

Φ(x ′)
Φ(x)

, t ∈ (t1, c], v = −β(t)Φ(x ′)
Φ(x)

, t ∈
[d, t2), where α,β are suitable positive functions, enables to formulate the Vallée Poussin-
type criterion in a more general form than presented in Theorem 8.4, we refer to [68] for
details. Concerning the various extensions of the linear Vallée Poussin criterion we refer to
the survey paper [14] and the references given therein.

8.5. Focal point criteria

Recall that a point b is said to be the first right focal point of c < b with respect to (0.1) if
there exists a nontrivial solution x of this equation such that x ′(c)= 0 = x(b) and x(t) �= 0
for t ∈ [c, b). The first left focal point a of c is defined similarly by x(a) = 0 = x ′(c),
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x(t) �= 0 on (a, c]. Equation (0.1) is said to be right disfocal on [c, b) if there exists no
right focal point of c relative to (0.1) in (c, b), the left disfocality on (a, c] is defined in a
similar way. Consequently, (0.1) is conjugate on an interval (a, b) if there exists c ∈ (a, b)
such that this equation is neither right disfocal on [c, b) nor left disfocal on (a, c]. This
idea is illustrated in the next statement for (6.16) considered on (a, b)= (−∞,∞), see
[65]. The extension of this statement to general half-linear equation (0.1) is immediate.

THEOREM 8.5. Suppose that the function c(t) �≡ 0 for t ∈ (0,∞) and there exist constants
α ∈ (− 1

p
,p− 2] and T � 0 such that∫ t

0
sα

( ∫ s

0
c(τ )dτ

)
ds � 0 for t � T . (8.12)

Then the solution x of (6.16) satisfying the initial conditions x(0) = 1, x ′(0) � 0 has a
zero in (0,∞).

PROOF. Suppose, by contradiction, that the solution x has no zero on (0,∞), i.e., x(t) > 0.
Let w = −Φ(x ′)

Φ(x)
be the solution of the Riccati equation

w′ = c(t)+ (p− 1)r1−q(y)|w|q.
Since w(0)� 0, we have

w(t) = w(0)+
∫ t

0
c(s)ds + (p− 1)

∫ t

0

∣∣w(s)∣∣q ds

�
∫ t

0
c(s)ds + (p− 1)

∫ t

0

∣∣w(s)∣∣q ds (8.13)

and ∫ t

0
sαw(s)ds �

∫ t

0

(
sα

∫ s

0
c(τ )dτ

)
ds +G(t),

where

G(t)= (p− 1)
∫ t

0
sα

( ∫ s

0

∣∣w(τ)∣∣q dτ

)
ds.

Then

G′(t)= (p− 1)tα
∫ t

0

∣∣w(τ)∣∣q dτ � 0 for t � 0 (8.14)

and according to (8.12)

G(t)�
∫ t

0
sαw(s)ds for t � T . (8.15)
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By the Hölder inequality we have

∫ t

0
sαw(s)ds �

[∫ t

0
spα ds

] 1
p

[ ∫ t

0

∣∣w(s)∣∣q ds

] 1
q

=
[
t1+pα

1 +pα

] 1
p

[ ∫ t

0

∣∣w(s)∣∣q ds

] 1
q

,

hence by (8.15)

t
(1+pα) qp

(1 + pα)
q
p

∫ t

0

∣∣w(s)∣∣q ds �Gq(t).

Here we need the relationG(t) > 0 for sufficiently large t . By (8.14)G(t) is nondecreasing
function of t and G(0)= 0. The equality G(t)= 0 for all t � 0 would imply that w(t)≡ 0,
consequently by (8.14) x ′(t) ≡ 0 for t � 0. But this may happen only if c(t) ≡ 0, which
case has been excluded. Hence we may suppose that T is already chosen so large that the
inequality G(t) > 0 holds for t � T .

Denote β = α − (1 + pα)
q
p

and K = (p − 1)(1 + pα)
q
p > 0. Then by (8.14) the last

inequality yields G′G−q �Ktβ . Integrating this inequality from T to t , we get

1

q − 1
G1−q(T ) > 1

q − 1

[
G1−q(T )−G1−q(t)

]
�K

∫ t

T

sβ ds,

where the integral on the right-hand side tends to ∞ as t → ∞ because an easy computa-
tion shows that α � p − 2 implies β � −1. This contradiction proves that x must have a
positive zero. �

REMARK 8.3. (i) Clearly, in Theorem 8.5 the starting point t0 = 0 can be shifted to any
other value t0 ∈ R if the condition (2.4) is modified to∫ t

t0

(s − t0)
α

( ∫ s

t0

c(τ )dτ

)
ds � 0 for t � T � t0.

A similar statement can be formulated on the interval (−∞, t0), too.
(ii) In the previous theorem we have used the weight function sα , α ∈ (− 1

p
,p − 2].

The results of Section 9.2 of the next chapter suggest to use a more general weight func-
tions. This research is a subject of the present investigation. The same remark essentially
concerns also the results of Section 9.5.

Using the just established focal point criterion we can prove the following conjugacy
criterion for (6.16).
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THEOREM 8.6. Suppose that c(t) �≡ 0 both in (−∞,0) and (0,∞) and there exist con-
stants α1, α2 ∈ (− 1

p
,p− 2] and T1, T2 ∈ R, T1 < 0< T2, such that

∫ 0

t

|s|α1

( ∫ 0

s

c(τ )dτ

)
ds � 0, t � T1,∫ t

0
sα2

( ∫ s

0
c(τ )dτ

)
ds � 0, t � T2. (8.16)

Then Equation (6.16) is conjugate in R, more precisely, there exists a solution of (6.16)
having at least one positive and one negative zero.

PROOF. The statement follows immediately from Theorem 8.5 since by this theorem the
solution x given by x(0)= 1, x ′(0)= 0 has a positive zero. Using the same argument as in
Theorem 8.5 and the second condition in (8.16) we can show the existence of a negative
zero. �

REMARK 8.4. (i) Assumptions of the previous theorem are satisfied if

lim inf
s1↓−∞,s2↑∞

∫ s2

s1

c(t)dt > 0. (8.17)

This conjugacy criterion for the linear Sturm–Liouville equation (1.1) with r(t) ≡ 1 is
proved in [212] and the extension to (6.16) can be found in [188].

(ii) Several conjugacy criteria for linear equation (1.1) (in terms of its coefficients r, c)
are proved using the fact that this equation is conjugate on (a, b) if and only if∫ b

a

dt

r(t)[x2
1(t)+ x2

2(t)]
> π (8.18)

for any pair of solutions of (1.1) for which r(x ′
1x2 −x1x

′
2)≡ ±1. This statement is based on

the trigonometric transformation of (1.1), see [55,56] and also Section 3. However, since
we have in disposal no half-linear analogue of the trigonometric transformation, conjugacy
criteria of this kind for (0.1) are (till now) missing.

8.6. Lyapunov-type focal points and conjugacy criteria

The results of this section can be found in [111,188] and concern again equation (6.16).

THEOREM 8.7. Let x be a nontrivial solution of (6.16) satisfying x ′(d)= 0 = x(b) and
x(t) �= 0 for t ∈ [d, b). Then

(b− d)p−1 sup
d�t�b

∣∣∣∣ ∫ t

d

c(s)ds

∣∣∣∣> 1. (8.19)
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Moreover, if there is no extreme value of x in (d, b), then

(b− d)p−1 sup
d�t�b

∫ t

d

c(s)ds > 1. (8.20)

PROOF. Suppose that x(t) > 0 on [d, b), if x(t) < 0 we proceed in the same way. Let
v = −Φ(x ′)

Φ(x)
and V (t)= (p− 1)

∫ t
d |v(s)|q ds. Then we have

v(t)=
∫ t

d

c(s)ds + V (t). (8.21)

Thus, v(d)= 0 = V (d) and limt→b− v(t)= limt→b−V (t)= ∞. Set

C∗ := sup
d�t�b

∣∣∣∣ ∫ t

d

c(s)ds

∣∣∣∣
and observe that |v(t)| � C∗ + V (t), so that

V ′(t)= (p− 1)
∣∣v(t)∣∣q � (p− 1)

(
C∗ + V (t)

)q
,

and

V ′(t)
(p− 1)(C∗ + V (t))q

� 1.

Integrating this inequality from d to b and using limt→b−V (t)= ∞, we obtain

− 1

(C∗ + V (t))q−1

∣∣∣∣b
d

� b− d,

which implies that (b − d)p−1C∗ � 1. We remark that the equality cannot hold, for oth-
erwise |C(t)| = | ∫ t

d c(s)ds| = C∗ on [d, b) which implies that c(t) ≡ 0, a contradiction,
thus (8.19) holds.

If d is the largest extreme point of x in (a, b), then x ′(t) � 0 and hence v(t) � 0 on
[d, b). Set C∗ = supd�t�b

∫ t
d c(s)ds. Then we also have C∗ > 0 since the assumption

C∗ � 0 contradicts to V (d) = 0, limt→b−V (t) = ∞. Hence, by (8.21), 0 � v(t) � C∗ +
V (t). The remaining part of the proof is similar to the first one. �

REMARK 8.5. (i) Similarly as above, if a < c, x(a)= 0 = x ′(c) and x(t) �= 0 on (a, c],
we have

(c− a)p−1 sup
a�t�c

∣∣∣∣ ∫ c

t

c(s)ds

∣∣∣∣> 1.
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(ii) Combining Theorem 8.7 with the previous part of the remark one can prove that if
a < b are consecutive zeros of a nontrivial solution x of (6.16), then there exist two disjoint
subintervals I1, I2 ⊂ [a, b] such that

(b− a)p−1
∫
I1∪I2

c(s)ds � min
{
4,4p−1}

,

∫
[a,b]\(I1∪I2)

c(s)ds � 0.

For details and related (dis)conjugacy criteria we refer to [111].



CHAPTER 3C

Oscillatory Equations

In this chapter we start with oscillation criteria for half-linear equation (0.1). Some basic
oscillation criteria have already been formulated in previous chapters, here we focus our
attention to “more advanced criteria”. By this we mean half-linear extensions of linear
oscillation criteria which are not given in standard books on linear oscillation, e.g., in
[208]. Section 10 is devoted to results which are not exactly oscillation criteria, but are
closely related to oscillation theory. Section 11 deals with the half-linear Sturm–Liouville
problem and the last section of this chapter, entitled “Perturbation principle”, presents a
new method of the investigation of oscillatory properties of (0.1), where this equation is
viewed as a perturbation of another equation of the same form.

9. Oscillation criteria

Similarly to nonoscillation criteria, the basic tools in proofs of oscillation criteria are the
variational principle and the Riccati technique. However, as we will see in this and the next
section, the Riccati technique is used more frequently.

9.1. General observations

In this section we present criteria which complete nonoscillation criteria given in Section 5.
We start with some general observations.

(i) If
∫ ∞

r1−q(t)dt = ∞ in (0.1), then this equation can be transformed into the equation

(
Φ(x ′)

)′ + c(t)Φ(x)= 0 (9.1)

and this transformation transforms the interval [T ,∞) into an interval of the same form.
For this reason, we will formulate sometimes our results for (9.1) (mainly in situations
when these results were first established for (1.1) with r(t)≡ 1 in linear case), the extension
to (0.1) with

∫ ∞
r1−q(t)dt = ∞ is then straightforward.

(ii) If we suppose that c(t) > 0 for large t in (9.1), the situation is considerably simpler
than in the general case when c is allowed to change its sign. In case c(t) > 0, Equation
(9.1) is the Sturmian majorant of the equation (Φ(x ′))′ = 0 and the minimal solution of the
associated Riccati equation

v′ + (p− 1)|v|q = 0

255
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is v(t) ≡ 0. This means, in view of Theorem 7.2, that the minimal solution of the Riccati
equation

w′ + c(t)+ (p− 1)|w|q = 0 (9.2)

associated with (9.1) is positive and this implies that positive solutions of (9.1) are increas-
ing. Consequently, in oscillation criteria for (9.1) proved via the Riccati technique, it is
sufficient to impose such conditions on the function c that for any T ∈ R the solution given
by x(T )= 0, x ′(T ) > 0 has eventually negative derivative x ′(t). Indeed, this means that the
associated solution of (9.2) is eventually negative, hence less than minimal solution which
is nonnegative (compare Theorem 7.2 and Corollary 7.1) and hence cannot be extensible
up to ∞ which implies that x has a zero point in [T ,∞).

9.2. Coles-type criteria

The results of this subsection are taken from the paper [153] and concern the half-linear
extension of the averaging technique introduced in the linear case by Coles in [46]. The
results are formulated for (9.1).

Let J be the class of nonnegative locally integrable functions f defined on [0,∞) and
satisfying the condition

lim sup
t→∞

( ∫ t

0
f (s)ds

)q−1−μ[
Fμ(∞)− Fμ(t)

]
> 0 (9.3)

for some μ ∈ [0, q − 1), where

Fμ(t)=
∫ t

0
f (s)

(
∫ s

0 f (ξ)dξ)μ

(
∫ s

0 f
p(ξ)dξ)q−1

ds.

If Fμ(∞)= ∞, then f ∈J . Let J0 be the subclass of J consisting of nonnegative locally
integrable functions f satisfying

lim
t→∞

∫ t
0 f

p(s)ds

(
∫ t

0 f (s)ds)p
= 0. (9.4)

Observe that if (9.3) or (9.4) holds, then∫ ∞
f (t)dt = ∞. (9.5)

On the other hand, every bounded nonnegative locally integrable function satisfying (9.5)
belongs to J0 and J0 ⊂ J . Since all nonnegative polynomials are in J0, this class of
functions contains also unbounded functions. Elements of J and J0 will be called weight
functions.
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For f ∈J , we define

Af (s, t) :=
∫ t
s f (τ )

∫ τ
s c(μ)dμdτ∫ t

s f (τ )dτ
.

The following statement reduces to the Hartman–Wintner theorem (Theorem 5.6) when
the weight function f is f (t)≡ 1.

THEOREM 9.1. Suppose that (9.1) is nonoscillatory.
(i) If there exists f ∈ J such that for some T ∈ R

lim inf
t→∞ Af (T , t) >−∞ (9.6)

then∫ ∞ ∣∣w(t)∣∣q dt <∞ (9.7)

for every solution w of the associated Riccati equation (9.2).
(ii) Assume that (9.7) holds for some solution w of (9.2). Then for every f ∈ J0 and

T ∈ R sufficiently large limt→∞Af (T , t) exists finite.

PROOF. The proof of this statement copies essentially the proof of Theorem 5.6.
(i) Assume, by contradiction, that∫ ∞ ∣∣w(t)∣∣q dt = ∞ (9.8)

for some solution of (9.2). Integrating this equation from ξ to t , multiplying the obtained
integral equation by f (t) and then integrating again from ξ to t , we obtain∫ t

ξ

f (s)w(s)ds = w(ξ)

∫ t

ξ

f (s)ds −
∫ t

ξ

f (s)

∫ s

ξ

c(τ )dτ ds

− (p− 1)
∫ t

ξ

f (s)

∫ s

ξ

∣∣w(τ)∣∣q dτ ds

= w(ξ)

∫ t

ξ

f (s)ds −Af (ξ, t)

∫ t

ξ

f (s)ds

− (p− 1)
∫ t

ξ

f (s)

∫ s

ξ

∣∣w(τ)∣∣q dτ ds

= [
w(ξ)−Af (ξ, t)

] ∫ t

ξ

f (s)ds

− (p− 1)
∫ t

ξ

f (s)

∫ s

ξ

∣∣w(τ)∣∣q dτ ds,
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where t � ξ � T . From (9.2) we have

w(ξ)=w(T )−
∫ ξ

T

c(s)ds − (p− 1)
∫ ξ

T

∣∣w(s)∣∣q ds.

Since f ∈J , (9.5) holds. This implies

Af (ξ, t) =
∫ t
T
f (s)ds∫ t

ξ
f (s)ds

Af (T , t)−
∫ ξ

T

c(s)ds −
∫ ξ
T
f (s)

∫ s
T
c(τ )dτ ds∫ t

ξ
f (s)ds

=
∫ t
T
f (s)ds∫ t

ξ
f (s)ds

Af (T , t)−
∫ ξ

T

c(s)ds + o(1) as t → ∞.

Thus

w(ξ)−Af (ξ, t) = w(T )−
∫ t
T f (s)ds∫ t
ξ
f (s)ds

Af (T , t)

− (p− 1)
∫ t

T

∣∣w(s)∣∣q ds + o(1) (9.9)

as t → ∞. Since f ∈J , there exists a positive number λ > 0 such that

λ1−q

p− 1
< (q − 1 −μ) lim sup

t→∞

[ ∫ t

f (s)ds

]q−1−μ[
Fμ(∞)− Fμ(t)

]
, (9.10)

where μ is the same as in (9.3). It follows from (9.6), (9.8) and the previous computation
that there exist two numbers a and b, b� a � T , such that

w(a)−Af (a, t)� −λ (9.11)

for t � b. Let z(t) := ∫ t
a
f (s)w(s)ds. Then the Hölder inequality implies∫ t

a

∣∣w(τ)∣∣q dτ � |z(t)|q
(
∫ t
a f

p(τ )dτ )q−1
.

It follows from (9.9) and (9.11) that

z(t) � −λ
∫ t

a

f (s)ds − (p− 1)
∫ t

a

f (s)
∣∣z(s)∣∣q( ∫ s

a

f p(τ )dτ

)1−q
ds

=: −G(t). (9.12)

Thus

G′(t)= λf (t)+ (p− 1)f (t)
∣∣z(t)∣∣q( ∫ t

a

f p(s)ds

)1−q
(9.13)
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and

0 � λ

∫ t

a

f (s)ds �G(t)�
∣∣z(t)∣∣. (9.14)

It follows from (9.12), (9.13) and (9.14) that

G′(t)Gμ−q (t) �G′(t)Gμ(t)
∣∣z(t)∣∣−q

� (p− 1)λμf (t)

( ∫ t

a

f (s)ds

)μ( ∫ t

a

f p(s)ds

)1−q
.

Integrating this inequality from t (t � b) to ∞, we get

1

q − 1 −μ
Gμ−q−1(t)� (p− 1)λμ

[
Fμ(∞)− Fμ(t)

]
.

Inequality (9.14) then implies

λ1−q

p− 1
� (q − 1 −μ)

[ ∫ t

a

f (s)ds

]q−1−μ[
Fμ(∞)− Fμ(t)

]
which contradicts (9.10).

(ii) As in the previous part of the proof, (9.9) holds. This implies that

Af (ξ, t) = w(ξ)−
∫ t
ξ f (s)w(s)ds∫ t
ξ f (s)ds

− (p− 1)

∫ t
ξ f (s)

∫ s
ξ |w(τ)|q dτ ds∫ t
ξ f (s)ds

. (9.15)

Since f ∈ J0, (9.5) holds. Thus,

lim
t→∞

∫ t
ξ f (s)

∫ s
ξ |w(τ)|q dτ ds∫ t
ξ f (s)ds

=
∫ ∞

ξ

∣∣w(s)∣∣q ds <∞.

By Hölder’s inequality

0 � lim
t→∞

| ∫ t
ξ
f (s)w(s)ds|∫ t
ξ f (s)ds

� lim
t→∞

(
∫ t
ξ
f p(s)ds)1/p(

∫ t
ξ
|w(s)|q ds)1/q∫ t

ξ f (s)ds
= 0.

Hence, by (9.15), limt→∞Af (ξ, t) exists and

lim
t→∞Af (ξ, t)=w(ξ)− (p− 1)

∫ ∞

ξ

∣∣w(s)∣∣q ds.
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This completes the proof. �

As a consequence of the previous statement we have the following oscillation criterion
which is the half-linear extension of the criterion of Coles [46], this statement can be also
viewed as an extension of Theorem 5.7.

THEOREM 9.2. The following statements hold:
(i) If there exists f ∈ J such that (9.6) holds, then either (9.1) is oscillatory, or

limt→∞Ag(· , t) exists finite for every g ∈J0.
(ii) If there exist two nonnegative bounded functions f,g on an interval [T ,∞) satisfy-

ing
∫ ∞

f (t)dt = ∞ = ∫ ∞
g(t)dt such that

lim
t→∞Af (T , t) < lim

t→∞Ag(T , t),

then Equation (9.1) is oscillatory.

PROOF. (i) Suppose that (9.1) is nonoscillatory. Then by Theorem 9.1 every solution of the
associated Riccati equation (9.2) satisfies

∫ ∞ |w(t)|q dt <∞ and hence limt→∞Ag(· , t)
exists finite for every g ∈J0.

(ii) Let α,β ∈ R be such that

lim
t→∞Af (T , t) < α < β < lim

t→∞Ag(T , t).

Let h(t) = g(t) for T � t � t1, where t1 is determined such that Ag(T , t1) � β and∫ t1
T
g(s)ds � 1. Let h(t)= f (t) for t1 � t2 where t2 is determined such that Ah(T , t2)� α

and
∫ t1
T
h(s)ds � 2. This is possible because

Ah(T , t2) =
∫ t2
T h(s)

∫ s
T c(τ )dτ ds∫ t2

T h(s)ds

=
∫ t1
T

[g(s)− f (s)] ∫ s
T
c(τ )dτ ds∫ t1

T g(s)ds + ∫ t2
t1
f (s)ds

+
∫ t2
T f (s)

∫ s
T c(τ )dτ ds∫ t2

T f (s)ds

∫ t2
T f (s)ds∫ t1

T g(s)ds + ∫ t2
t1
f (s)ds

= Af (T , t2)
[
1 + o(1)

] + o(1),

as t2 → ∞. Continuing in this manner, we obtain a nonnegative and bounded function h
defined on [T ,∞) such that

lim sup
t→∞

Ah(T , t)� β > α � lim inf
t→∞ Ah(T , t).

Hence, by the part (i), Equation (9.1) is oscillatory. �
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9.3. Generalized Hartman–Wintner’s criterion

In Section 5 we have shown that (0.1) with
∫ ∞

r1−q(t)dt = ∞ is oscillatory provided

−∞< lim inf
t→∞

∫ t
T
r1−q(s)

∫ s
T
c(τ )dτ ds∫ t

T
r1−q(s)ds

< lim sup
t→∞

∫ t
T
r1−q(s)

∫ s
T
c(τ )dτ ds∫ t

T
r1−q(s)ds

or

lim
t→∞

∫ t
T r

1−q(s)
∫ s
T c(τ )dτ ds∫ t

T r
1−q(s)ds

= ∞.

In this subsection we present one extension of this criterion which was established in [51].
In agreement with the remark from the introduction of this section, we formulate this cri-
terion for (9.1). For the sake of convenience, similarly as in the original paper [51], we
introduce the linear operator A :C[0,∞)→ C[0,∞) defined by

(Af )(t) := 1

t

∫ t

0
f (s)ds, (Af )(0) := 0. (9.16)

By An we denote the nth iteration of A.

THEOREM 9.3. Let C(t) := ∫ t
0 c(s)ds. If there exists n ∈ N such that

−∞< lim inf
t→∞

(
AnC

)
(t) < lim sup

t→∞
(
AnC

)
(t), (9.17)

or

lim
t→∞

(
AnC

)
(t)= ∞ (9.18)

then (9.1) is oscillatory.

PROOF. The proof is similar to that of Theorem 5.6 and of Theorem 5.7. Suppose, by
contradiction, that (9.1) is nonoscillatory and let w be a solution of the associated Riccati
equation (9.2). For convenience, we suppose that this solution is defined on [0,∞), this
is no loss of generality since the lower integration limit 0 in the next computation can be
replaced by any T sufficiently large. Integrating Equation (9.2) from 0 to t we get

w(t)−w(0)+C(t)+ (p− 1)
∫ t

0

∣∣w(s)∣∣q ds = 0. (9.19)

The application of the operator An to the previous equation yields

(
Anw

)
(t)+ (

AnC
)
(t)+ (p− 1)An

( ∫ t

0

∣∣w(s)∣∣q ds

)
−w(0)= 0. (9.20)
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Each of the conditions (i), (ii) implies the existence of K � 0 such that (AnC)(t) � −K
for large t . This implies that

∫ ∞ |w(t)|q dt <∞. The proof of this claim goes by contra-
diction in the same way as in the proof of Theorem 5.6. Having proved the convergence
of

∫ ∞ |w(t)|q dt , again in the same way as in the proof of Theorem 5.6 we prove that
limt→∞(AnC)(t) exists finite, a contradiction with (i) or (ii). �

The following example, taken again from [51], presents a construction of the function
c for which the classical Hartman–Wintner criterion (i.e., the case n = 1 in the previous
theorem) does not apply, while the previous theorem with n= 2 does.

EXAMPLE 9.1. Let {an}∞n=1, {bn}∞n=1 be two sequences of real numbers defined by an =
n−2−n, bn = n+2−n, n ∈ N. Let {gn}∞n=1 denote a sequence of functions gn : [0,∞)→ R
of the class C2 such that gn(t) > 0 if t ∈ (an, bn) and gn(t)= 0 otherwise. We also ask that∫ ∞

0
gn(t)dt = n. (9.21)

Next define g : [0,∞)→ R by

g(t)=
∞∑
n=1

(−1)ngn(t). (9.22)

The function g is also of the class C2 and using this function we define

c(t)= (
tg(t)

)′′
, C(t) :=

∫ t

0
c(s)ds. (9.23)

The reason for defining c in this form is two-fold. On one hand, from (9.23) we find that

(AC)(t)= 1

t

∫ t

0

∫ s

0
c(τ )dτ = g(t), (9.24)

and from (9.21) and the mean value theorem

max
t∈[0,∞)

gn(t)� n2n−1. (9.25)

Thus, from (9.24) and (9.25) we obtain lim inft→∞(AC)(t) = −∞, so the Hartman–
Wintner theorem does not apply. Let us consider p = 2 for a moment (so we actually
consider the linear equation) in (9.1) and we note that the Lebesgue measure of the set
{t| ∫ t

0 c(s)ds �= 0} is finite. This implies that

lim
t→∞approx

∫ t

0
c(s)ds = 0,
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so the criterion of Olech, Opial and Wazewski [185] does not apply either. Recall that

lim
t→∞ approxf (t)= l

if and only if, by definition,

l = sup
{
�: m

{
t: f (t) > �

} = ∞} = inf
{
�: m

{
t : f (t) < �

} = ∞}
.

Here m{·} denoted the Lebesgue measure of the set indicated. Recall also that the oscilla-
tion criterion of [185] states that the equation x ′′ + c(t)x = 0 is oscillatory provided

lim
t→∞ approx

∫ t

0
c(s)ds = ∞.

Nevertheless, by Theorem 9.3, Equation (9.1) with any p > 1 is oscillatory. Indeed,
from (9.25) we have lim supt→∞(AC)(t) = ∞. Also, for t ∈ (bn, an+1) = (n+ 2−n, n+
1 − 2−(n+1)), we have

(
A2C

)
(t)=

{
n
2t , n even,
−(n+1)

2t , n odd.

From the last equality can be easily shown that (A2C)(t) is bounded for t ∈ (0,∞). Hence
from (9.17) Equation (9.1) is oscillatory.

9.4. Generalized Kamenev criterion

The classical Kamenev criterion concerns the linear equation x ′′ + c(t)x = 0 and claims
that this equation is oscillatory provided there exists λ > 1 such that

lim sup
t→∞

1

tλ

∫ t

0
(t − s)λc(s)ds = ∞. (9.26)

The following half-linear extension concerns general half-linear equation (0.1) and it is
taken from [150].

THEOREM 9.4. Suppose that there exists λ > p− 1 such that

lim sup
t→∞

1

tλ

∫ t

0
(t − s)λ−p

[
(t − s)pc(s)−

(
λ

p

)p
r(s)

]
ds = ∞. (9.27)

Then (0.1) is oscillatory.
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PROOF. Suppose that (0.1) is nonoscillatory, i.e., there exists a solution of the associated
Riccati equation (2.1). Multiplying this equation by (t − s)λ and integrating it from T to t ,
T sufficiently large, we get

−(t − T )λw(T )+ λ

∫ t

T

(t − s)λ−1w(s)ds

+ (p− 1)
∫ t

T

(t − s)λr1−q(s)
∣∣w(s)∣∣q ds +

∫ t

T

(t − s)λc(s)ds = 0. (9.28)

Using the Young inequality (2.6) with

u= λ

p
(t − s)

λ−p
p r

1
p , v = (t − s)

λ
q r

1−q
q

∣∣w(s)∣∣,
we obtain

(t − s)λr1−q(s)
∣∣w(s)∣∣q � (q − 1)λ(t − s)λ−1

∣∣w(s)∣∣
− (q − 1)

(
λ

p

)p
(t − s)λ−pr(s)

for T � s � t . This inequality and (9.28) imply∫ t

T

(t − s)λ−p
[
(t − s)pc(s)−

(
λ

p

)p
r(s)

]
ds � (t − T )λw(T ).

Thus

lim sup
t→∞

1

tλ

∫ t

T

(t − s)λ−p
[
(t − s)pc(s)−

(
λ

p

)p
r(s)

]
ds �w(T ).

which contradicts to (9.27). �

REMARK 9.1. Clearly, if r(t) ≡ 1, then limt→∞ 1
tλ

∫ t
T
(t − s)λ−p( λ

p
)pr(s)ds = 0 and

hence Equation (9.1) is oscillatory if

lim sup
t→∞

1

tλ

∫ t

0
(t − s)λ−pc(s)ds = ∞ for some λ > p− 1.

which is the half-linear extension of the classical Kamenev linear oscillation criterion.

9.5. Another refinement of the Hartman–Wintner theorem

The results formulated here are taken from [122], where the equation

x ′′ + c(t)|x|p−1|x ′|2−p sgnx = 0 (9.29)
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with p ∈ (1,2] is considered. Related results on Equation (9.29) can be found also in [42,
162]. Equation of the form (9.29) can be obtained from (9.1) using the identity(

Φ(x ′)
)′ = (p− 1)x ′′|x ′|p−2,

so the results of this subsection apply also to (9.1) as noted in [122, Sec. 2]. We prefer here
the original formulation to illustrate the variety of approaches to half-linear oscillation
theory.

Denote

cp(t)= (p− 1)2

tp−1

∫ t

1
sp−2

∫ s

1
c(τ )dτ ds.

Using essentially the same idea as in the proofs of Theorems 5.6 and 5.7 the following
statement is proved.

THEOREM 9.5. Let either limt→∞ cp(t)= ∞ or

−∞< lim inf
t→∞ cp(t) < lim sup

t→∞
cp(t).

Then Equation (9.29) is oscillatory.

Consequently, in the next investigation we suppose

lim
t→∞ cp(t)=: cp(∞) (9.30)

exists finite. The following theorem shows that (9.1) is oscillatory if cp(t) does not tend to
its limit too rapidly.

THEOREM 9.6. Suppose that (9.30) holds and

lim sup
t→∞

tp−1

lg t

(
cp(∞)− cp(t)

)
>

(
p− 1

p

)p
. (9.31)

Then Equation (9.29) is oscillatory.

PROOF. Suppose, by contradiction, that (9.29) is nonoscillatory and w = Φ(x ′/x) is a
solution of the associated Riccati equation

w′ + (p− 1)c(t)+ (p− 1)|w|q = 0.

Integrating this equation from t to ∞ we have a variant of the Riccati integral equation

w(t)= cp(∞)− (p− 1)
∫ t

1
c(s)ds + (p− 1)

∫ ∞

t

∣∣w(s)∣∣q ds.
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Multiplying both sides of this equation by tp−2 and integrating from T to t , T sufficiently
large, we obtain (integrating one of the terms by parts)∫ t

T

sp−2
[
cp(∞)− (p− 1)

∫ s

1
c(τ )dτ

]
ds

=
∫ t

T

sp−1w(s)− sp−1|w(s)|q
s

ds − tp−1
∫ ∞

t

∣∣w(s)∣∣q ds

+ T p−1
∫ ∞

T

∣∣w(s)∣∣q ds. (9.32)

Since we have the inequality |λ|q − λ+ 1
p
(
p−1
p
)p−1 � 0 for every λ ∈ R, (9.32) implies

tp−1(
cp(∞)− cp(t)

)
�

(
p− 1

p

)p
lg
t

T
+ T p−1cp(∞)

+ (p− 1)T p−1
∫ ∞

T

∣∣w(s)∣∣s ds − T p−1cp(T ).

Therefore

lim sup
t→∞

tp−1

lg t

(
cp(∞)− cp(t)

)
�

(
p− 1

p

)p
,

which contradicts (9.31). �

REMARK 9.2. Here we have presented only one of several (non)oscillation criteria proved
in [122]. These criteria are formulated in term of the limit behavior (as t → ∞) of the
functions

Qp(t) := tp−1
(
cp(∞)− (p− 1)

∫ t

1
c(s)ds

)
,

Hp(t) := p− 1

t

∫ t

1
spc(s)ds.

We refer to the above mentioned paper [122] for details.

9.6. Half-linear Willet’s criteria

Results of this subsection extend the linear oscillation and nonoscillation criteria of Willet
[217] and are presented in [153].

LEMMA 9.1. Suppose that B(s) and Q(t, s) are nonnegative continuous functions on
[T ,∞) and [T ,∞)× [T ,∞), respectively.
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(i) If ∫ ∞

t

Q(t, s)Bq(s)ds � p−qB(t), t � T , (9.33)

then the equation

v(t)= B(t)+ (p− 1)
∫ ∞

t

Q(t, s)
∣∣v(s)∣∣q ds, (9.34)

has a solution on [T ,∞).
(ii) If there exists ε > 0 such that∫ ∞

t

Q(s, t)Bq (s)ds � p−q (1 + ε)B(t) �≡ 0, t � T , (9.35)

then the inequality

v(t)� B(t)+ (p− 1)
∫ ∞

t

Q(t, s)
∣∣v(s)∣∣q ds, (9.36)

possesses no solution on [T ,∞).

PROOF. (i) Let v1(t)= B(t) and define

vk+1(t)= B(t)+ (p− 1)
∫ ∞

t

Q(t, s)
∣∣vk(s)∣∣q ds, k ∈ N.

Then by (9.33)

v2(t) = B(t)+ (p− 1)
∫ ∞

t

Q(t, s)Bq(s)ds

� B(t)+ (p− 1)p−qB(t)� pB(t),

and v1(t)� v2(t). Suppose, by induction, that v1(t)� v2(t)� · · · � vn(t)� pB(t). Then

vn+1(t) � B(t)+ (p− 1)
∫ ∞

t

Q(t, s)
∣∣vn(s)∣∣q

� B(t)+ (p− 1)pq
∫ ∞

t

Q(t, s)Bq(s)ds

� B(t)+ (p− 1)pq · p−qB(t)= pB(t).

Thus, the sequence {vn} is nondecreasing and bounded above. Hence, it converges uni-
formly to a continuous function v which is a solution of (9.34).
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(ii) Suppose, to the contrary, that v is a continuous function satisfying (9.36). Then
v(t)� B(t)� 0 which implies vq(t)� Bq(t)� 0. Thus

v(t)� B(t)+ (p− 1)
∫ ∞

t

Q(t, s)Bq(s)ds �
[
1 + (p− 1)(1 + ε)p−q]

B(t).

Continuing in this way, we obtain v(t)� anB(t), where a1 = 1, an < an+1 and

an+1 = 1 + (p− 1)aqnp
−q (1 + ε). (9.37)

We claim that limn→∞ an = ∞. Assume, to the contrary, that limn→∞ an = a <∞. Then
a � 1 and from (9.37)

a = 1 + (p− 1)(1 + ε)aqp−q ,

but this is the contradiction since the equation λ= 1+(p−1)(1+ε)λqp−q has no solution
for which λ� 0. This contradiction proves that limn→∞ an = ∞ and hence B(t)≡ 0. This
contradiction with (9.35) proves the lemma. �

As a direct consequence of the previous lemma we have the following oscillation and
nonoscillation criteria.

THEOREM 9.7. Suppose that
∫ ∞

c(t)dt is convergent and C(t) := ∫ ∞
t c(s)ds � 0 for

large t .
(i) If

∫ ∞
t Cq(s)ds � p−qC(t) for large t , then (9.1) is nonoscillatory.

(ii) If C(t) �≡ 0 for large t and there exists ε > 0 such that∫ ∞

t

Cq(s)ds � p−q (1 + ε)C(t)

for large t , then (9.1) is oscillatory.

PROOF. (i) By the part (i) of the previous lemma there exists a solution of the integral
equation (5.21), hence (9.1) is nonoscillatory by Theorem 5.8.

(ii) By contradiction, suppose that (9.1) is nonoscillatory. Then (5.21) has a solution for
large t , but it contradicts the part (ii) of the previous lemma. �

REMARK 9.3. The constant p−q in the previous statement is the best possible as shows
the Euler equation (4.20) with the critical constant γ = γ̃ = (

p−1
p
)p.

9.7. Equations with periodic coefficient

The oscillation criterion presented in this subsection can be found in the paper [65].
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THEOREM 9.8. Suppose that the function c(t) in (9.1) is a periodic function with the
period ω, c(t) �≡ 0, and∫ ω

0
c(t)dt � 0,

then (9.1) is oscillatory both at t = ∞ and at t = −∞.

PROOF. To prove oscillation of (9.1), it is sufficient to find a solution of this equation with
at least two zeros. Indeed, the periodicity of the function c implies that if x is a solution of
(9.1) then x(t ±ω) is a solution as well and hence any solution with two zeros has actually
infinitely many of them, tending both to ∞ and −∞.

The statement of theorem is clearly true if c is a positive constant function (since then
x(t)= sinp μt is a solution of this equation, whereμ is a constant depending on c and p. So
we need to consider the cases when c(t) is not a constant only. Also, it is sufficient to deal
with the case when

∫ ω
0 c(t)dt = 0 because otherwise we can define c0 = 1

ω

∫ ω
0 c(t)dt > 0

and c̃(t)= c(t)− c0. Clearly, we have c(t) > c̃(t). If we prove (9.1) with c̃ instead of c to
be oscillatory then by the Sturmian comparison theorem equation (9.1) is also oscillatory.

Now let

C(t)=
∫ t

0
c(s)ds.

This is a continuous periodic function with the period ω. Let γ and δ be defined by

C(δ)= max
0�t�ω

C(t), C(γ )= min
δ�t�δ+ωC(t).

Then 0 � δ < γ < δ+ω and∫ t

γ

c(s)ds � 0,
∫ δ

t

c(s)ds � 0 for t ∈ R.

Now, by Theorem 8.5 and the remark given below this theorem, the solution of (9.1) given
by the initial condition x(δ)= 1, x ′(δ)= 0 has a zero in (−∞, δ). Indeed, C(t) �≡ 0 and∫ δ

t

|s − δ|α
( ∫ δ

t

c(τ )dτ

)
ds � 0 for t � δ,

with any α ∈ (− 1
p
,p− 2]. Now we need to show that this solution has a zero on (δ,∞) as

well. We proceed by contradiction, suppose that x(t) > 0 for t � δ. Consider the function
w = −Φ(x ′)

Φ(x)
on [δ,∞). This function satisfies the Riccati differential equation

w′ = c(t)+ (p− 1)|w|q (9.38)
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and by integration we have

w(t +ω)−w(t)= (p− 1)
∫ t+ω

t

∣∣w(s)∣∣q ds, (9.39)

hence w(t +ω) > w(t). Consider now the sequencew(γ ), w(γ +ω), w(γ + 2ω), . . . . By
Theorem 8.5 and by our indirect assumption on the solution x(t), this sequence consists of
negative terms:

w(γ ) < w(γ +ω) < w(γ + 2ω) < · · ·< 0.

Indeed, if w(γ + kω) � 0 for some k ∈ N, then by Theorem 8.5 the solution x(t) would
have a zero in (γ + kω,∞). Hence limk→∞w(γ + kω)� 0, consequently by (9.39)

w(γ )+ (p− 1)
∫ ∞

γ

∣∣w(s)∣∣q ds � 0,

i.e., the integral
∫ ∞
γ

|w(s)|q ds is convergent. This implies by (9.38) that

w(t)=w(γ )+
∫ t

γ

c(s)ds + (p− 1)
∫ t

γ

∣∣w(s)∣∣q ds

and the function w(t) is bounded. Again by (9.38) we find that w′ is also bounded, say,
|w′(t)|<L. Then∣∣∣∣ |w(t2)|q+1 − |w(t1)|q+1

q + 1

∣∣∣∣ =
∣∣∣∣ ∫ t2

t1

w′(s)
∣∣w(s)∣∣q sgnw(s)ds

∣∣∣∣
� L

∫ t2

t1

∣∣w(s)∣∣q ds,

γ < t1 < t2, hence limt→∞ |w(t)|q+1 exists. Clearly, we have limt→∞w(t)= 0.
On the other hand, w(δ) = 0, and by (9.39) we have limk→∞w(δ + kω) > 0 and this

contradicts the fact that limt→∞w(t)= 0. �

9.8. Equations with almost periodic coefficient

Now suppose that c : R → R is a Besicovitch almost periodic function. Recall that this
class of functions is defined as the closure of the set of finite trigonometric polynomials
with the Besicovitch seminorm

‖c‖B = lim sup
t→∞

1

2t

∫ t

−t
∣∣c(s)∣∣ ds.
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The mean value M{c} of a function c is defined by

M{c} = lim
t→∞

1

t

∫ t

t0

c(s)ds,

for some t0 � 0, see, e.g., [19,31] for details.
The proof of the main result of this subsection is based on the following Hartman–

Wintner-type lemma. We present it without proof which is similar, in a certain sense, to the
proof of Theorem 5.6. For details we refer to [151].

LEMMA 9.2. Suppose that c : [t0,∞)→ R is a locally integrable function with M{c} = 0
and (9.1) is nonoscillatory. Then

lim
t→∞

1

t

∫ t

t0

∣∣w(s)∣∣q ds = 0

for every solution w of the associated Riccati equation (9.2).

THEOREM 9.9. Suppose that c is a Besicovitch almost periodic function with the mean
value M{c} = 0 and M{|c|}> 0. Then(

Φ(x ′)
)′ + λc(t)Φ(x)= 0 (9.40)

is oscillatory for every λ �= 0.

PROOF. Suppose that (9.40) is nonoscillatory for some λ and w = −Φ(x ′)
Φ(x)

be the corre-
sponding solution of the associated Riccati equation

w′ = λc(t)+ (p− 1)
∣∣w(t)∣∣q . (9.41)

We have used the Riccati substitution with the ‘−’ sign to keep consistency with the orig-
inal paper [151] and also to show that this minus sign in the Riccati substitution makes
sometimes computations slightly easier (compare also the previous subsection).

Integrating (9.41) (with δ > 0 and t sufficiently large) we get

λ

δ

∫ t+δ

t

c(s)ds = w(t + δ)

δ
− w(t)

δ
− p− 1

δ

∫ t+δ

t

∣∣w(s)∣∣q . (9.42)

Applying the Besicovitch seminorm ‖ · ‖B ′ defined by

‖f ‖B ′ = lim sup
t→∞

1

t

∫ t

t0

∣∣f (s)∣∣ ds
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to (9.42), we find

0 �
∥∥∥∥λδ

∫ t+δ

t

c(s)ds

∥∥∥∥
B ′

�
∥∥∥∥p− 1

δ

∫ t+δ

t

∣∣w(s)∣∣q ds

∥∥∥∥
B ′

+
∥∥∥∥w(t + δ)

δ

∥∥∥∥
B ′

+
∥∥∥∥w(t)δ

∥∥∥∥
B ′

for all δ > 0. From Lemma 9.2 follows that M{|w|q} = 0, thus ‖w‖B ′ = ‖w(t + δ)‖B ′ = 0
for all δ > 0. Using the Fubini theorem we have for some t0 > 0

1

δt

∫ t

t0

∫ s+δ

s

∣∣w(τ)∣∣q dτ ds = 1

δt

∫ t

t0

∫ δ

0

∣∣w(τ + s)
∣∣q dτ ds

= 1

δt

∫ δ

0

∫ t

t0

∣∣w(τ + s)
∣∣q ds dτ

� 1

δt

∫ δ

0

∫ t+δ

t0

∣∣w(s)∣∣q ds dτ

= 1

t

∫ t+δ

t0

∣∣w(s)∣∣q ds

for any fixed δ > 0. Using the last computation and Lemma 9.2 we have∥∥∥∥p− 1

δ

∫ t+δ

t

∣∣w(s)∣∣q ds

∥∥∥∥
B ′

= 0.

Applying the last equality, coupled with the fact that ‖w(t)‖B ′ = 0 to the previous compu-
tation, we see that∥∥∥∥λδ

∫ t+δ

t

c(s)ds

∥∥∥∥
B ′

= 0 (9.43)

(for every δ > 0). Since c is almost periodic, it follows from [19, p. 97]

lim
δ→0+

∥∥∥∥c(t)− 1

δ

∫ t+δ

t

c(s)ds

∥∥∥∥
B ′

= 0.

This and (9.43) imply M{|c|} = ‖c‖B ′ = 0 which is a contradiction. �

9.9. Generalized H -function averaging technique

Oscillation criteria of this subsection are established in [152]. Our presentation takes into
account the remark of Rogovchenko [204] which shows that one of the assumptions given
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in the original paper [152] is redundant. In the linear case, the method used in this subsec-
tion was introduced by Philos [189].

THEOREM 9.10. Let D0 = {(t, s): t > s � t0} and D = {(t, s): t � s � t0}. Assume that
the function H ∈C(D;R) satisfies the following conditions:

(i) H(t, t)= 0 for t � t0 and H(t, s) > 0 for t > s � t0;
(ii) H has a continuous nonpositive partial derivative on D0 with respect to the second

variable.
Suppose that h :D0 → R is a continuous function such that

−∂H

∂s
(t, s)= h(t, s)

[
H(t, s)

]1/q
for all (t, s) ∈D0, q = p

p− 1
.

If

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
H(t, s)c(s)−

(
1

p
h(t, s)

)p]
ds = ∞ (9.44)

then (9.1) is oscillatory.

PROOF. Suppose that (9.1) is nonoscillatory and v is a solution of the associated Riccati
equation (9.2) which exists on the interval [T0,∞), T0 � t0. We have for t � T � T0∫ t

T

H (t, s)c(s)ds

=H(t, T )v(T )−
∫ t

T

(
−∂H

∂s
(t, s)

)
v(s)ds − (p− 1)

∫ t

T

H (t, s)
∣∣v(s)∣∣q ds

=H(t, T )v(T )−
∫ t

T

{
h(t, s)

[
H(t, s)

]1/q
v(s)+ (p− 1)H(t, s)

∣∣v(s)∣∣q}
ds

=H(t, T )v(T )−
∫ t

T

{
h(t, s)

[
H(t, s)

]1/q
v(s)+ (p− 1)H(t, s)

∣∣v(s)∣∣q
+

(
1

p
h(t, s)

)p}
ds +

∫ t

T

(
1

p
h(t, s)

)p
ds.

Hence, for t � T � T0, we have∫ t

T

{
H(t, s)c(s)−

(
1

p
h(t, s)

)p}
ds

=H(t, T )v(T )−
∫ t

T

{
h(t, s)

[
H(t, s)

]1/q
v(s)+ (p− 1)H(t, s)

∣∣v(s)∣∣q
+

(
1

p
h(t, s)

)p}
ds.
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Since q > 1, by Young’s inequality (2.6)

h(t, s)
[
H(t, s)

]1/q
v(s)+ (p− 1)H(t, s)

∣∣v(s)∣∣q +
(

1

p
h(t, s)

)p
� 0

for t � s � T0. This implies that for every t � T0∫ t

T0

{
H(t, s)c(s)−

(
1

p
h(t, s)

)p}
ds

�H(t, T0)v(T0)�H(t, T0)
∣∣v(T0)

∣∣ �H(t, t0)
∣∣v(T0)

∣∣.
Therefore,

∫ t

t0

{
H(t, s)c(s)−

(
1

p
h(t, s)

)p}
ds

=
∫ T0

t0

{
H(t, s)c(s)−

(
1

p
h(t, s)

)p}
ds

+
∫ t

T0

{
H(t, s)c(s)−

(
1

p
h(t, s)

)p}
ds

�H(t, t0)

∫ T0

t0

∣∣c(s)∣∣ ds +H(t, t0)
∣∣v(T0)

∣∣
=H(t, t0)

{ ∫ T0

t0

∣∣c(s)∣∣ ds + ∣∣v(T0)
∣∣}.

This gives

lim sup
t→∞

1

H(t, t0)

∫ t

t0

{
H(t, s)c(s)−

(
1

p
h(t, s)

)p}
ds

�
∫ T0

t0

∣∣c(s)∣∣ ds + ∣∣v(T0)
∣∣.

This contradiction with (9.44) completes the proof. �

The next statement is also taken from [152]. We present it without proof. This proof,
similar to the proof of the previous theorem, follows more or less the original idea of
Philos [189]. For comparison with the linear case we also refer to the papers of Yan [220,
221]. Taking H(t, s) = (t − s)λ, λ > 0, the previous statement reduces to the half-linear
version of Kamenev’s oscillation criterion presented in Section 9.4.
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THEOREM 9.11. Let H and h be as in the previous theorem, and let

inf
s�t0

{
lim inf
t→∞

H(t, s)

H(t, t0)

}
> 0. (9.45)

Suppose that

lim sup
t→∞

1

H(t, t0)

∫ t

t0

h(t, s)ds <∞

and there exists a function A ∈ C[t0,∞) such that∫ ∞
A
q
+(s)ds = ∞, (9.46)

where A+(t)= max{A(t),0}. If

lim sup
t→∞

1

H(t, T )

∫ t

T

{
H(t, s)c(s)−

(
1

p
h(t, s)

)p}
ds �A(T )

for T � t0 then Equation (9.1) is oscillatory.

10. Various oscillation problems

In this section we collect various problems of half-linear oscillation theory. We start with
an asymptotic formula for the distance between consecutive zeros of oscillatory solutions
of half-linear equations. Then we turn our attention to various problems like oscillation of
forced and retarded equations and to similar problems.

10.1. Asymptotic formula for distance of zeros of oscillatory solutions

The results of this subsection are taken from [93] and present the asymptotic formula for
the distance of consecutive zeros of oscillatory solutions of the equation(

Φ(x ′)
)′ + (p− 1)c(t)Φ(x)= 0. (10.1)

It is supposed that c(t) > 0 for large t and the results are based on the generalized Prüfer
transformation from Section 2. In this transformation, a nontrivial solution and its deriva-
tive are expressed via the generalized half-linear sine and cosine functions. Recall that the
half-linear sine function, denoted by S = S(t) or sinp t , is the solution of the equation(

Φ(x ′)
)′ + (p− 1)Φ(x)= 0

satisfying the initial condition x(0) = 0, x ′(0) = 1 and the half-linear cosine function is
defined by cosp t = S′(t).
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THEOREM 10.1. Suppose that c is a differentiable function such that c(t) > 0 on an in-
terval [T ,∞), and

lim
t→∞c′(t)

[
c(t)

]− p+1
p = 0 (10.2)

holds. Then (10.1) is oscillatory. Moreover, if N[x;T ] denotes the number of zeros of a
solution x of (10.1) in the interval [a,T ], then

N[x;T ] = P [x;T ] +R[x;T ], (10.3)

where P [x;T ] is the principal term given by

P [x;T ] = 1

πp

∫ T

a

[
c(s)

] 1
p ds

and R[x;T ] is the remainder which is of smaller order than P [x;T ] as T → ∞ and
satisfies

∣∣R[x;T ]∣∣ � 1

pπp

∫ T

a

|c′(s)|
c(s)

ds +O(1).

PROOF. Set C(t) := c′(t)[c(t)]− p+1
p and define

C∗(t)= sup
{|C(s)|: s � t

}
, t � a. (10.4)

Then C∗(t) is nonincreasing and satisfies limt→∞C∗(t)= 0 by (10.2). We have

∣∣[c(t + h)
]− 1

p − [
c(t)

]− 1
p

∣∣ = 1

p

∣∣∣∣ ∫ t+h

t

C(s)ds

∣∣∣∣ � |h|
p
C∗(t),

which implies that

lim sup
h→∞

[c(t + h)]− 1
p

t + h
� C∗(t)

p
.

It follows that limt→∞ t−1[c(t)]− 1
p = 0, or equivalently, limt→∞ tpc(t) = ∞. This im-

plies, by Theorem 4.5, that (10.1) is oscillatory.
Now we turn our attention to the proof of the asymptotic formulas for numbers of zeros.

By the Sturmian comparison theorem (Theorem 2.4) we have that N[x1;T ] and N[x2;T ]
differ at most by one for any solutions x1 and x2 of (10.1), so we may restrict our attention
to the solution x0 of (10.1) determined by the initial conditions x0(a)= 0, x ′

0(a)= 1. This
solution is oscillatory by the first part of the our theorem.
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We introduce the polar coordinates ρ(t), ϕ(t) for x0(t) by setting

[
c(t)

] 1
p x0(t)= ρ(t)S

(
ϕ(t)

)
, x ′

0(t)= ρ(t)S′(ϕ(t)). (10.5)

It can be shown without difficulty that ρ(t) and ϕ(t) are continuously differentiable on
[a,∞) and satisfy the differential equations

ρ′

ρ
= 1

p

c′(t)
c(t)

∣∣S(ϕ)∣∣p,
ϕ′ = [

c(t)
] 1
p + 1

p

c′(t)
c(t)

S(ϕ)Φ
(
S′(ϕ)

)
. (10.6)

We use the notation

g(ϕ)= S(ϕ)Φ
(
S′(ϕ)

)
,

in terms of which (10.6) is written as

ϕ′ = [
c(t)

] 1
p + 1

p

c′(t)
c(t)

g(ϕ). (10.7)

From the first equation in (10.5) we see that x0(t)= 0 if and only if ϕ(t)= jπp, j ∈ Z.
We may suppose that ϕ(a)= 0. In view of (10.2) there is no loss of generality in assuming
that

C∗(t) < p for t � a,

where C∗(t) is defined by (10.4). Since∣∣g(ϕ)∣∣ � 1 for all ϕ, (10.8)

we have

[
c(t)

] 1
p + 1

p

c′(t)
c(t)

g
(
ϕ(t)

)
�

[
c(t)

] 1
p

(
1 − 1

p
C∗(t)

)
> 0,

which implies that ϕ′(t) > 0, so that ϕ(t) is increasing for t � a.
We now integrate (10.7) over [a,T ], obtaining

ϕ(T )=
∫ T

a

[
c(s)

] 1
p ds + 1

p

∫ T

a

c′(s)
c(s)

g
(
ϕ(s)

)
ds = F(T )+G(T ), (10.9)

where

F(T ) :=
∫ T

a

[
c(s)

] 1
p ds, G(T ) := 1

p

∫ T

a

c′(s)
c(s)

g
(
ϕ(s)

)
ds.
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From (10.8) it is clear that

∣∣G(T )∣∣ � 1

p

∫ T

a

|c′(s)|
c(s)

ds. (10.10)

Noting that the number of zeros of x0(t) in [a,T ] is given by

N[x0;T ] =
[
ϕ(T )

πp

]
+ 1,

where [u] denotes the greatest integer not exceeding u, we see from (10.9) and (10.10) that
the conclusion of the theorem holds with the choice

P [x0;T ] = 1

πp
F(T )= 1

πp

∫ T

a

[
c(s)

] 1
p ds.

That the term R[x0;T ] = N[x0;T ] − P [x0;T ] is of smaller order than P [x0;T ] follows
from the observation that∫ T

a

|c′(s)|
c(s)

ds =
∫ T

a

∣∣C(s)∣∣[c(s)] 1
p ds

�
∫ T

a

C∗(s)
[
c(s)

] 1
p ds = o

( ∫ T

a

[
c(s)

] 1
p ds

)
as T → ∞.

This completes the proof. �

EXAMPLE 10.1. Consider the equation(
Φ(x ′)

)′ + (p− 1)tβΦ(x)= 0, t � 1, (10.11)

where β is a constant with p+ β > 0. The function c(t)= tβ satisfies∫ T

1

[
c(s)

] 1
p ds = p

p+ β

(
T

p+β
p − 1

)
,∫ T

1

|c′(s)|
c(s)

ds = |β| logT ,

and so we conclude from Theorem 10.1 that the quantity P [x;T ] can be taken to be

P [x;T ] = p

(p+ β)πp
T

p+β
p

and (10.3) holds with this P [x;T ] and R[x;T ] satisfying

R[x;T ] = |β|
pπp

logT + O(1).
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REMARK 10.1. (i) The results of this subsection cannot be applied to the generalized
Euler equation (4.20), since the function c(t)= λ(p−1)t−p does not satisfy (10.2). A cal-
culation of P [x;T ] and R[x;T ] for the generalized Euler equation(

Φ(x ′)
)′ + λ(p− 1)t−pΦ(x)= 0

shows that both of them are of the same logarithmic order as T → ∞.
(ii) In [191], Piros has investigated a similar problem under a more stringent restriction

on c(t), namely he supposed that cν(t) is a concave function of t for some ν > 0. Then
he proved that the error term R[x;T ] in (10.3) is O(1). Exactly, the differential equation
(10.11) with β = 1

ν
plays the exceptional role in determining the precise value of R[x;T ].

10.2. Half-linear Milloux and Armellini–Tonelli–Sansone theorems

Results of this subsection are taken from [15] and [23]. Recall that the classical Armellini–
Tonelli–Sansone theorem concerns the convergence to zero of all solutions of the second
order linear differential equation

x ′′ + c(t)x = 0. (10.12)

In particular, by the theorem of Milloux [175], if the function c is continuously differen-
tiable, nondecreasing, and

lim
t→∞ c(t)= ∞ (10.13)

then (10.12) has at least one solution satisfying

lim
t→∞x(t)= 0. (10.14)

The theorem of Armellini–Tonelli–Sansone deals with the situation when all solutions
of (10.12) satisfy (10.14). This happens when c goes to infinity “regularly” (the exact
definition is given below). Regular growth means, roughly speaking, that a function does
not increase fast on intervals of short length.

Here we show that both theorems extend verbatim to (9.1). First we present some defin-
itions. Let S := {(αk,βk)} be a sequence of intervals such that

0 � α1 < β1 < α2 < β2 < · · ·< βk → ∞ as k → ∞. (10.15)

Then

lim sup
k→∞

∑k
i=1(βi − αi)

βk
=: δ(S)= δ (10.16)

is called the density of the sequence of intervals S. A nondecreasing positive function f
tends to infinity intermittently (an alternative terminology is quasi-jumping) as t → ∞,
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provided to every ε > 0 there exists a sequence of intervals S satisfying (10.15) such that
δ(S)� ε and the increase of f on R+ \ S is finite, i.e.,

S(f ;S) :=
∞∑
k=1

[
f (αk)− f (βk−1)

]
<∞. (10.17)

In the opposite case we say that f (t)→ ∞ regularly as t → ∞.

THEOREM 10.2. Suppose that c is a nondecreasing continuously differentiable function
satisfying (10.13). Then (10.1) possesses at least one nontrivial solution satisfying (10.14).

PROOF. From the variety of proofs we present that one based on the modified Prüfer trans-
formation (compare Section 1.3). An alternative approach to the problem is presented in
[107,108,123].

For any nontrivial solution x of (10.1) there exist a positive function $ given by the
formula

$=
[
|x|p + 1

c
|x ′|p

] 1
p

and a continuous function ϑ such that x can be expressed in the form

x(t)= $(t)S
(
ϑ(t)

)
, x ′(t)= c

1
p (t)$(t)S′(ϑ(t)),

where the generalized sine function S is the same as in Section 1.3. The functions ϑ and $
satisfy the differential system

ϑ ′ = c
1
p (t)+ c′(t)

c(t)
f

(
ϑ(t)

)
,

$′

$
= −c′(t)

c(t)
g

(
ϑ(t)

)
, (10.18)

where

f (ϑ)= 1

p
Φ

(
S′(ϑ)

)
S(ϑ), g(ϑ)= 1

p

∣∣S′(ϑ)
∣∣p.

The right-hand side of (10.18) is Lipschitzian in ϑ hence the solution of (10.18) is uniquely
determined by the initial condition. We denote by ϑ(t, ϕ), $(t, ϕ) the solution given by the
initial condition ϑ(0)= ϕ, $(0)= 1. Then

$(t, ϕ)= exp

{
−

∫ t

0

c′(s)
c(s)

g
(
ϑ(s,ϕ)

)
ds

}
,

and since g(ϑ)� 0, the function $(t,ϑ) is nonincreasing and tends to a nonnegative limit
$(∞, ϕ) as t → ∞. Obviously, $(∞, ϕ) = 0 implies that x(t)→ 0 as t → ∞. The con-
verse is also true because x is oscillatory.

We have the following two possibilities.
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(i) We have $(∞, ϕ) = 0, the corresponding solution x satisfies x(t)→ 0 as t → ∞,
and∫ ∞

0

c′(t)
c(t)

g
(
ϑ(t, ϕ)

)
dt = ∞,

(ii) $(∞, ϕ) > 0, the solution x oscillates, its amplitude tends to a positive limit, and∫ ∞

0

c′(t)
c(t)

g
(
ϑ(t, ϕ)

)
dt <∞. (10.19)

Now, the proof is based on the behavior as t → ∞ of the functionψ(t,ϕ1, ϕ2)= ϑ(t, ϕ2)−
ϑ(t, ϕ1) which is described in the next two auxiliary statements. Here X denotes the set
of ϕ’s such that (10.19) holds, this means that the corresponding solution does not tend to
zero as t → ∞. The proof can be found in [15].

LEMMA 10.1. Let ϕ1, ϕ2 ∈X and ϕ1 < ϕ2 < ϕ1 + πp . Then

ψ(∞, ϕ1, ϕ2) := lim
t→∞

[
ϑ(t, ϕ2)− ϑ(t, ϕ1)

]
exists and equals 0 or πp.

LEMMA 10.2. Let ϕ0 ∈ X . Then for any ε > 0 there exists η ∈ (0,πp) such that if |ϕ −
ϕ0|< η, then∣∣ϑ(t, ϕ)− ϑ(t, ϕ0)

∣∣< ε for t � 0. (10.20)

Now, returning to the proof of our theorem, suppose that X = R. Then the function
ϕ given by ψ(∞,0, ϕ) = 0 is nondecreasing as ϕ increases in [0,πp]. It must go from
0 to πp , taking on only these two values, by Lemma 10.1. But this is impossible since
by Lemma 10.2 this function is continuous, so the assumption X = R was false and the
theorem is proved. �

Now we turn our attention to the extension of the Armellini–Tonelli–Sansone theorem.

THEOREM 10.3. If the function lg c(t)→ ∞ regularly, then every solution of (10.1) sat-
isfies (10.14).

PROOF. For the sake of simplicity we suppose that c is continuously differentiable for
large t . Consider the function

A(t)= ∣∣x(t)∣∣p + |x ′(t)|p
c(t)

,
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where x is a nontrivial solution of (10.1). The function A is nondecreasing since

A′(t)= − c′(t)
c2(t)

∣∣x ′(t)
∣∣p � 0. (10.21)

Consequently, there exists a (finite or infinite) limit A= limt→∞A(t) and A� 0.
Suppose, by contradiction, that there exists a solution x of (10.1) which does not tend to

zero. For this solution obviously A> 0. By (10.21)

A(t) = A(0)−
∫ t

0

c′(t)
c2(s)

∣∣x ′(s)
∣∣p ds

= A(0)−
∫ t

0

c′(s)
c(s)

(
A(s)− ∣∣x(s)∣∣p)

ds

= A(0)−
∫ t

0

(
A(s)− ∣∣x(s)∣∣p)dc(s)

c(s)
.

Let ε > 0 be a number such that for every sequence Sε of intervals

S =
k∑
i=1

[
lg c(αi+1)− lg c(βi)

] =
k∑
i=1

lg
c(αi+1)

c(βi)
→ ∞ (10.22)

as k → ∞.
In the remaining part of the proof we suppose that the following statement holds.

LEMMA 10.3. For every ε0 > 0 there exists η > 0 such that the density of the sequence S
of all intervals where

A(t)− ∣∣x(t)∣∣p � η (10.23)

is less than ε0.

Since the proof of this lemma is rather technical and follows essentially the original
linear idea, we skip it and return to the proof of theorem.

Denote by (αi , βi) intervals, where (10.23) holds. On intervals (βi, αi+1) we have

A(t)− ∣∣x(t)∣∣p > η,

therefore

A(αk)�A(0)−
k−1∑
i=1

∫ αi+1

βi

(
A(t)− ∣∣x(t)∣∣p)dc(t)

c(t)
< A(0)− η

k∑
i=1

lg
c(αi+1)

c(βi)

which implies by (10.22) that A(αk) becomes negative for large k. This is a contradiction
with A= limt→∞A(t) > 0. �
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10.3. Strongly and conditionally oscillatory equation

Differential equation (0.1) with a positive function c is said to be conditionally oscillatory
if there exists a constant λ0 > 0 such that (0.1) with λc(t) instead of c(t) is oscillatory
for λ > λ0 and nonoscillatory if λ < λ0. The value λ0 is called the oscillation constant of
(0.1). If equation is oscillatory (nonoscillatory) for every λ > 0, then equation is said to be
strongly oscillatory (strongly nonoscillatory). The results of this subsection are presented
in [133].

The examples illustrating these concepts we have already seen in the previous sections.
For example, if

∫ ∞
r1−q(t)dt = ∞, the equation

(
r(t)Φ(x ′)

)′ + r1−q(t)
(
∫ t
r1−q(s)ds)μ

Φ(x)= 0 (10.24)

is conditionally oscillatory if μ= p, strongly oscillatory if μ < p and strongly nonoscil-
latory if μ> p. This follows from the fact that the transformation of independent variable
t 
−→ ∫ t

r1−q(s)ds transforms (10.24) into the equation

(
Φ(x ′)

)′ + 1

tμ
Φ(x)= 0 (10.25)

and (10.25) is compared with the Euler equation (4.20).

THEOREM 10.4. Suppose that
∫ ∞

c(t)dt <∞ and
∫ ∞

r1−q(t)dt = ∞. Equation (0.1)
is strongly oscillatory if and only if

lim sup
t→∞

( ∫ t

r1−q(s)ds

)p−1 ∫ ∞

t

c(s)ds = ∞ (10.26)

and it strongly nonoscillatory if and only if

lim
t→∞

( ∫ t

r1−q(s)ds

)p−1 ∫ ∞

t

c(s)ds = 0. (10.27)

PROOF. The proof is based on the statements which claim (upon a slight reformulation)
that under the assumptions of our theorem Equation (0.1) is oscillatory provided

lim inf
t→∞

( ∫ t

r1−q(s)ds

)p−1 ∫ ∞

t

c(s)ds >
1

p

(
p− 1

p

)p−1

(10.28)

or

lim sup
t→∞

( ∫ t

r1−q(s)ds

)p−1 ∫ ∞

t

c(s)ds > 1 (10.29)
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and it is nonoscillatory provided( ∫ t

r1−q(s)ds

)p−1 ∫ ∞

t

c(s)ds <
1

p

(
p− 1

p

)p−1

(10.30)

for large t . These statements follow essentially from comparing (0.1) with Euler-type dif-
ferential equation, see, e.g., [60].

Suppose that (10.26) holds and λ > 0 is arbitrary. Then clearly

lim sup
t→∞

( ∫ ∞
r1−q(s)ds

)p−1 ∫ ∞

t

λc(s)ds > 1

hence (0.1) is strongly oscillatory. Conversely, suppose that (0.1) is strongly oscillatory
and (10.26) fails to hold, i.e.,

lim sup
t→∞

( ∫ t

r1−q(s)ds

)p−1 ∫ ∞

t

c(s)ds = L<∞.

Then for λ < 1
pL
(
p−1
p
)p−1 we have

lim sup
t→∞

( ∫ t

r1−q(s)ds

)p−1 ∫ ∞

t

λc(s)ds <
1

p

(
p− 1

p

)p−1

which means that (0.1) with λc instead of c is nonoscillatory. This contradicts strong os-
cillation of (0.1). The proof of the part concerning necessary and sufficient condition for
strong nonoscillation of (0.1) is the same. �

10.4. Oscillation of forced half-linear differential equations

The result of this subsection is presented in [158] and concerns the forced half-linear dif-
ferential equation(

r(t)Φ(x ′)
)′ + c(t)Φ(x)= f (t), (10.31)

where f is a continuous function. It extends the oscillation criterion of Wong [215] (see
also references given therein) which concerns the linear forced equation. Oscillation of
a more general half-linear forced equation than (10.31) is investigated in [139], but for
simplicity we here the results of [158].

THEOREM 10.5. Suppose that for any T there exist T � s1 < t1 � s2 < t2 such that
f (t)� 0 for t ∈ [s1, t1] and f (t)� 0 t ∈ [s2, t2]. Denote

D(si, ti )=
{
u ∈ C1[si, ti ]: u(t) �≡ 0, u(si)= 0 = u(ti )

}
, i = 1,2.
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If there exists a function h ∈D(si , ti) and a positive nondecreasing function ϕ ∈ C1[T ,∞)

such that ∫ ti

si

h2(t)ϕ(t)c(t)dt >
1

pp

∫ ti

si

r(t)ϕ(t)

|h(t)|p−2

(
2
∣∣h′(t)

∣∣ + h(t)
ϕ′(t)
ϕ(t)

)p
dt,

for i = 1,2, then every solution of (10.31) is oscillatory.

PROOF. Suppose that x is a nonoscillatory solution which is eventually of one sign, say
x(t) > 0 for t � T0 and let the function w be defined by the modified Riccati substitution

w(t)= ϕ(t)
r(t)Φ(x ′(t))
Φ(x(t))

.

Then w solves the generalized Riccati equation

w′ = −ϕ(t)c(t)+ ϕ′(t)
ϕ(t)

w− (p− 1)
|w|q

(r(t)ϕ(t))q−1
+ ϕ(t)f (t)

Φ(x(t))
. (10.32)

By the assumptions of theorem, one can choose s1, t1 � T0 so that f (t)� 0 on I = [s1, t1]
with s1 < t1. From (10.32) we have for t ∈ I

ϕ(t)c(t)� −w′(t)+ ϕ′(t)
ϕ(t)

w(t)− (p− 1)
|w(t)|q

(r(t)ϕ(t))q−1 . (10.33)

Multiplying (10.33) by h2 and integrating over I we obtain∫ t1

s1

h2(t)ϕ(t)c(t)dt

� −
∫ t1

s1

h2(t)w′(t)dt +
∫ t1

s1

h2(t)
ϕ′(t)
ϕ(t)

w(t)dt

− (p− 1)
∫ t1

s1

|w(t)|q
(r(t)ϕ(t))q−1

dt .

Integrating the last inequality by parts and using the fact that h(s1)= 0 = h(t1), we get∫ t1

s1

h2(t)ϕ(t)c(t)dt

�
∫ t1

s1

2
∣∣h(t)∣∣∣∣h′(t)

∣∣∣∣w(t)∣∣ dt +
∫ t1

s1

h2(t)
ϕ′(t)
ϕ(t)

w(t)dt

− (p− 1)
∫ t1

s1

|w(t)|q
(r(t)ϕ(t))q−1 dt
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�
∫ t1

s1

(
2
∣∣h(t)∣∣∣∣h′(t)

∣∣ + ϕ′(t)
ϕ(t)

h2(t)

)∣∣w(t)∣∣ dt

− (p− 1)
∫ t1

s1

h2(t)
|w(t)|q

(r(t)ϕ(t))q−1 dt .

Now, the application of the Young inequality yields for t ∈ [s1, t1](
2
∣∣h(t)∣∣∣∣h′(t)

∣∣ + ϕ′(t)
ϕ(t)

h2(t)

)∣∣w(t)∣∣ − (p− 1)
|w(t)|q

(r(t)ϕ(t))q−1 h
2(t)

� 1

pp

r(t)ϕ(t)

|h(t)|p−2

(
2
∣∣h′(t)

∣∣ + ∣∣h(t)∣∣ϕ′(t)
ϕ(t)

)p
,

thus ∫ t1

s1

h2(t)ϕ(t)c(t)dt � 1

pp

∫ t1

s1

r(t)ϕ(t)

|h(t)|p−2

(
2
∣∣h′(t)

∣∣ + ∣∣h(t)∣∣ϕ′(t)
ϕ(t)

)p
dt,

which contradicts our assumption. When x is eventually negative, we may employ the fact
that f (t) � 0 on some interval in any neighborhood of ∞ to reach a similar contradic-
tion. �

10.5. Oscillation of retarded half-linear equations

The results of this subsection are given [4], for related results we refer also to [2,227] and
the references given therein. We consider the equation(

Φ(x ′)
)′ + c(t)Φ

(
x

(
τ (t)

)) = 0. (10.34)

We suppose that c(t)� 0 for large t , limt→∞ τ (t)= ∞ and τ (t) � t . Equation (10.34) is
said to be it oscillatory if all its solutions are oscillatory, i.e., have arbitrarily large zeros.
Since the Sturmian theory generally does not extend to (10.34), oscillatory and nonoscilla-
tory solutions (i.e., solutions which are eventually positive or negative) may coexist.

In the next theorem, Equation (10.34) is considered on the interval [t0,∞) and it is
shown that if the delay τ (t) is sufficiently close to t , in a certain sense, then some oscillation
criteria for (9.1) can be extended to (10.34). Oscillation criteria presented here are half-
linear extensions of some results for the linear second order retarded equations (the case
p = 2 in (10.34)) given in [96,184].

First we present without proof a technical auxiliary statement, the proof can be found in
[4].

LEMMA 10.4. Suppose that the following conditions hold:
(i) x(t) ∈C2[T ,∞) for some T > 0,

(ii) x(t) > 0, x ′(t) > 0, and x ′′(t)� 0 for t � T .
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Then for each k1 ∈ (0,1) there exists a constant Tk1 � T such that

x
(
τ (t)

)
� k1τ (t)

t
x(t), for t � Tk1,

and for every k2 ∈ (0,1) there exists a constant Tk2 � T such that

x(t)� k2tx
′(t), for t � Tk2 .

THEOREM 10.6. Denote for t � t0

γ (t) := sup
{
s � t0: τ (s)� t

}
.

Equation (10.34) is oscillatory if either of the following holds:

lim sup
t→∞

tp−1
∫ ∞

t

c(s)

(
τ (s)

s

)p−1

ds > 1, (10.35)

or

lim sup
t→∞

tp−1
∫ ∞

γ (t)

c(s)ds = ∞. (10.36)

PROOF. Suppose to the contrary that (10.34) has a nonoscillatory solution x(t). Without
loss of generality we may suppose that x(t) > 0 for large t , say t � t1. Then also x(τ(t)) >
0 on [t1,∞) for t1 large enough. Since c(t)� 0 on [t1,∞),(

Φ(x ′)
)′ = −c(t)(Φ(

x
(
τ (t)

)))
� 0. (10.37)

Hence, the functionΦ(x ′) is decreasing. Since sup{c(t): t � T }> 0 for any T � 0, we see
that either

(a) x ′(t) > 0 for all t � t1, or
(b) there exists t2 � t1 such that x ′(t) < 0 on [t2,∞).

If (b) holds, then it follows from (10.37) that

0 �
[∣∣x ′(t)

∣∣p−2
x ′(t)

]′ = (p− 1)
∣∣x ′(t)

∣∣p−2
x ′′(t), for t � t2.

Thus, x ′′(t)� 0 for t ∈ [t2,∞). This and x ′(t) < 0 on [t2,∞) imply that there exists t3 > t2
such that x(t)� 0 for t � t3. This contradicts x(t) > 0. Thus, (a) holds.

Integrating (10.37) from t � t1 to ∞, we obtain

−
∫ ∞

t

c(s)Φ
(
x

(
τ (s)

))
ds =

∫ ∞

t

(
Φ

(
x ′(s)

))′ ds =
∫ ∞

t

([
x ′(s)

]p−1)′ ds

= lim
s→∞

[
x ′(s)

]p−1 − [
x ′(t)

]p−1
.
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Since x ′(t) > 0 for t � t1, we find

[
x ′(t)

]p−1 = lim
s→∞

[
x ′(s)

]p−1 +
∫ ∞

t

c(s)Φ
(
x

(
τ (s)

))
ds

�
∫ ∞

t

c(s)
[
x

(
τ (s)

)]p−1 ds. (10.38)

It follows from (ii) of Lemma 10.4 that, for each k2 ∈ (0,1), there exists a Tk2 � t1 such
that

[
x(t)

]p−1 � k
p−1
2 tp−1[

x ′(t)
]p−1 � k

p−1
2 tp−1

∫ ∞

t

c(s)
[
x

(
τ (s)

)]p−1 ds,

(10.39)

for t � Tk2 . By (i) of Lemma 10.4, for each k1 ∈ (0,1), there exists a Tk1 , such that

[
x

(
τ (s)

)]p−1 � k
p−1
1

(
τ (t)

t

)p−1(
x(t)

)p−1
, (10.40)

for t � Tk1 . Then, by (10.39) and (10.40), for t � t4 := max{Tk1, Tk2},

[
x(t)

]p−1 � k
p−1
2 tp−1

∫ ∞

t

c(s)
[
x

(
τ (s)

)]p−1
ds

� k
p−1
1 k

p−1
2 tp−1

∫ ∞

t

c(s)

(
τ (s)

s

)p−1[
x(s)

]p−1 ds

� k2(p−1)tp−1
∫ ∞

t

c(s)

(
τ (s)

s

)p−1[
x(s)

]p−1 ds, (10.41)

where k := min{k1, k2}. Since x ′(t) > 0, it follows that

1 � k2p−2tp−1

[x(t)]p−1

∫ ∞

t

c(s)

(
τ (s)

s

)p−1[
x(s)

]p−1 ds

� k2p−2tp−1
∫ ∞

t

c(s)

(
τ (s)

s

)p−1

ds, for t � t4. (10.42)

Hence,

lim sup
t→∞

tp−1
∫ ∞

t

c(s)

(
τ (s)

s

)p−1

ds := a <∞.
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Suppose that (10.35) holds, then there exists a sequence {sn} such that limn→∞ sn = ∞
and

lim
n→∞ s

p−1
n

∫ ∞

sn

c(s)

(
τ (s)

s

)p−1

ds = a > 1.

For ε1 := (a − 1)/2> 0, there exists an integer N1 > 0 such that

a + 1

2
= a − ε1 < s

p−1
n

∫ ∞

sn

c(s)

(
τ (s)

s

)p−1

ds, (10.43)

for n >N1. Choose k such that(
2

a + 1

)1/2(p−1)

< k < 1.

By (10.42) and (10.43),

1 � k2(p−1)s
p−1
n

∫ ∞

sn

c(s)

(
τ (s)

s

)p−1

ds >

(
2

a + 1

)(
a + 1

2

)
= 1,

for sn large enough. This contradiction shows that (10.35) does not hold.
Now, by γ (t)� t and (10.39), we have

[
x(t)

]p−1 � k
p−1
2 tp−1

∫ ∞

γ (t)

c(s)
[
x

(
τ (s)

)]p−1 ds,

for t � Tk2 . Since x(t) is increasing and τ (s)� t for s � γ (t), it follows that

[
x(t)

]p−1 � k
p−1
2 tp−1

∫ ∞

γ (t)

c(s)
[
x

(
τ (s)

)]p−1 ds

� k
p−1
2 tp−1[

x(t)
]p−1

∫ ∞

γ (t)

c(s)ds.

Dividing [x(t)]p−1 in both sides of the above inequality, we get

k
p−1
2 tp−1

∫ ∞

γ (t)

c(s)ds � 1, (10.44)

for t � Tk2 . Thus,

lim sup
t→∞

tp−1
∫ ∞

γ (t)

c(s)ds := b <∞.
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Suppose that (10.36) holds. Then there exists a sequence {tn} with limn→∞ tn = ∞ such
that

lim
n→∞ t

p−1
n

∫ ∞

γ (tn)

c(s)ds = b > 1.

Thus, for ε2 := (b− 1)/2> 0, there exists an integer N2 > 0 such that

b+ 1

2
= b− ε2 < t

p−1
n

∫ ∞

γ (tn)

c(s)ds, (10.45)

for n >N2. Choose k2 ∈ ( 2
(b+1)q−1 ,1). By (10.44) and (10.45),

1 � k
p−1
2 t

p−1
q

∫ ∞

γ (tn)

c(s)ds >
2

b+ 1

b+ 1

2
= 1,

for tn large enough. This contradiction proves that (10.36) does not hold. �

EXAMPLE 10.2. Consider the functional differential equation

[
Φ(x ′)

]′ + 2p(p− 1)

tp
Φ

(
x(t/2)

) = 0. (10.46)

Since

lim sup
t→∞

tp−1
∫ ∞

t

2p(p− 1)

sp

(
(s/2)

s

)p−1

ds

= 2(p− 1) lim sup
t→∞

tp−1
∫ ∞

t

1

sp
ds

= 2(p− 1) lim sup
t→∞

tp−1
(

1

(p− 1)tp−1

)
= 2> 1,

it follows from (10.35) of Theorem 10.6 that (10.46) is oscillatory. In fact, if the coefficient
2p(p−1)

tp
of (10.46) is replaced by k

tp
with k > 2p−1(p−1), (10.46) will again be oscillatory.

In the next theorem we assume that τ (t) > 0 and we denote

μ(t)=
(
τ (t)

t

)p−1

.

THEOREM 10.7. Equation (10.34) is oscillatory if the differential equation(
Φ(x ′)

)′ + λμ(t)c(t)Φ(x)= 0 (10.47)

is oscillatory for some λ ∈ (0,1).
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PROOF. By contradiction, suppose that there exists eventually positive solution x of
(10.34) and we may also assume that x(τ(t)) > 0 on [t1,∞) for some t1 � t0. Then
x ′′(t) � 0, x ′(t) > 0 on [t2,∞) for some t2 � t1. Since λ ∈ (0,1), it follows from (a)
of Lemma 10.4 that

x
(
τ (t)

)
� λ1/(p−1)x(t)

τ (t)

t
,

for t large enough. Thus,

[
x

(
τ (t)

)]p−1 � λ
[
x(t)

]p−1
(
τ (t)

t

)p−1

, (10.48)

for t large enough. Let

w(t)= Φ(x ′(t))
Φ(x(t))

.

Then, by (10.48),

w′(t)+ λ[τ (t)]p−1

tp−1 c(t)+ (p− 1)
∣∣w(t)∣∣q

= [(x ′(t))p−1]′[x(t)]p−1 − [x ′(t)]p−1[(x(t))p−1]′
[(x(t))p−1]2

+ λ(τ(t))p−1

tp−1
c(t)+ (p− 1)

( [x ′(t)]p−1

[x(t)]p−1

)q
= [(x ′(t))p−1]′[x(t)]p−1 − (p− 1)[x ′(t)]p−1[x(t)]p−2x ′(t)

[(x(t))p−1]2

+ λ(τ(t))p−1

tp−1 c(t)+ (p− 1)[x ′(t)]p
[x(t)]p

= [(x ′(t))p−1]′
[x(t)]p−1

− (p− 1)[x ′(t)]p
[x(t)]p + λ(τ(t))p−1

tp−1
c(t)+ (p− 1)[x ′(t)]p

[x(t)]p

= −c(t)|x(τ(t))|p−2x(τ(t))

[x(t)]p−1
+ λ(τ(t))p−1c(t)

tp−1

= c(t)

[x(t)]p−1

(
λ[τ (t)]p−1

tp−1

[
x(t)

]p−1 − [
x

(
τ (t)

)]p−1
)

� 0.

This and Theorem 5.3 imply that (10.47) is nonoscillatory, but this is a contradiction.
Hence, (10.34) is oscillatory. �
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REMARK 10.2. Theorem 10.7 is an extension of Theorem 2.2 of [96].

THEOREM 10.8. If

lim sup
t→∞

∫ t

c(s)

(
τ (s)

s

)p−1

ds = ∞, (10.49)

then Equation (10.34) is oscillatory.

PROOF. Suppose to the contrary that (10.34) has a nonoscillatory solution x(t) which may
be assumed to be eventually positive. As in the proof of Theorem 10.6, there exists t1 > t0
such that x(τ(t)) > 0, x ′(t) > 0, and x ′′(t) < 0 for t > t1. By (i) of Lemma 10.4, there
exists t2 � t1 such that

x
(
τ (t)

)
�

(
1

2

)1/(p−1)
τ (t)

t
x(t),

or

(
x

(
τ (t)

))p−1 � 1

2

(
τ (t)

t

)p−1[
x(t)

]p−1

for t � t2. Since x ′(t) > 0 and x(τ(t)) > 0 for t � t1,

−((
x ′(t)

)p−1)′ = c(t)
[
x

(
τ (t)

)]p−1 � 1

2
c(t)

(
τ (t)

t

)p−1[
x(t)

]p−1

for t � t2. Integrating the above inequality from t2 to t and using the increasing property
of x(t), we get

[
x ′(t)

]p−1 − [
x ′(t2)

]p−1 � −1

2

∫ t

t2

c(s)

(
τ (s)

s

)p−1[
x(s)

]p−1 ds

� −1

2

[
x(t2)

]p−1
∫ t

t2

c(s)

(
τ (s)

s

)p−1

ds,

or

[
x ′(t)

]p−1 �
[
x ′(t2)

]p−1 − 1

2

[
x(t2)

]p−1
∫ t

t2

c(s)

(
τ (t)

t

)p−1

ds

for t � t2. This and (10.49) imply [x ′(t)]p−1 < 0 for t large enough. This is a contradiction.
Thus, (10.34) is oscillatory. �
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EXAMPLE 10.3. Consider the functional differential equation[
Φ

(
x ′(t)

)]′ +Φ
(
x(t/2)

) = 0 (10.50)

where p > 1. Clearly,

lim sup
t→∞

∫ t (
(s/2)

s

)p−1

ds = 1

2p−1 lim sup
t→∞

∫ t

ds = ∞.

Thus, it follows from Theorem 10.8 that (10.50) is oscillatory.

11. Half-linear Sturm–Liouville problem

In this section we show that the solutions of the Sturm–Liouville problem for half-linear
equation (0.1) have similar properties as in the linear case. Of course, we cannot consider
the problem of orthogonality of eigenfunctions since this concept has no meaning in Lp ,
p �= 2. As far as we know, an open problem is whether the system of eigenfunctions is
complete in Lp .

11.1. Basic Sturm–Liouville problem

We start with the problem(
Φ(x ′)

)′ + λc(t)Φ(x)= 0, x(a)= 0 = x(b), (11.1)

under the assumption that c(t) � 0 and c(t) �≡ 0. The value λ is called the eigenvalue if
there exists a nontrivial solution x of (11.1). The solution x is said to the eigenfunction
corresponding to the eigenvalue λ. Clearly, according to the assumption c(t)� 0 and the
Sturm comparison theorem, only values λ > 0 can be eigenvalues. The main statement of
this subsection is taken from the classical paper of Elbert [85].

THEOREM 11.1. The eigenvalue problem (11.1) has infinitely many eigenvalues 0< λ1 <

λ2 < · · ·< λn < · · ·, λn → ∞ as n→ ∞. The nth eigenfunction has exactly n− 1 zeros
in (a, b). Moreover, if the function c is supposed to be positive in the whole interval (a, b),
the eigenvalues satisfy the asymptotic relation

lim
n→∞

p
√
λn

n
= πp∫ b

a
p
√
c(t)dt

. (11.2)

PROOF. The proof of the first part of the theorem is a special case of the problem treated
in the next subsection, so we present only its main idea. Let x(t;λ) be a solution of (11.1)
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given by the initial condition x(a;λ)= 0, x ′(a;λ)= 1 and let ϕ(t;λ) be the continuous
function given in all points where x ′(t;λ) �= 0 by the formula

ϕ(t;λ)= arctanp
x(t;λ)
x ′(t;λ) ,

i.e., ϕ(t;λ) is the angular variable in the half-linear Prüfer transformation for x(t;λ). This
means that ϕ(t;λ) satisfy the differential equation

ϕ′ = ∣∣S′(ϕ)
∣∣p + λc(t)

p− 1

∣∣S(ϕ)∣∣p, ϕ(a;λ)= 0, (11.3)

where S is the half-linear sine function. The proof is based on the fact that ϕ(b;λ) is a
continuous function of λ and ϕ(b;λ)→ ∞ as λ → ∞. The continuity property follows
from the general theory of continuous dependence of solutions of first order differential
equations on the right-hand side. The limit property of ϕ(b;λ) is proved via the comparison
of (11.1) with the “minorant” problem with a constant coefficient(

Φ(y ′)
)′ + λc̄Φ(y)= 0, y(a′)= 0 = y(b′), (11.4)

where [a′, b′] ⊂ [a, b] is such that c(t) > 0 on [a′, b′] and c̄ = mint∈[a′,b′] c(t) > 0. The
eigenvalues and eigenfunctions of (11.4) can be computed explicitly and if θ(t;λ) is de-
fined for this problem in the same way as ϕ(t;λ) for (11.1), we have

ϕ(b;λ)� θ(b;λ)→ ∞, as λ→ ∞.

Now, the eigenvalues are those λ= λn for which ϕ(b;λn)= nπp and taking into account
that ϕ(t;λ) is increasing in t (this follows from (11.3)), zero points of the associated
eigenfunction xn(t) = x(t;λn) are those tk , k = 1, . . . , n− 1, for which ϕ(tk, λn)= kπp ,
k = 1, . . . , n− 1.

Concerning the proof of the asymptotic formula (11.2), first suppose that the function
c(t)≡ c1 > 0 is a constant function and consider the problem(

Φ(z′)
)′ + λc1Φ(z)= 0, z(a)= 0 = z(b). (11.5)

A nontrivial solution of the half-linear equation in this problem satisfying z(a) = 0 is
z= S( p

√
λc1(t − a)) and hence the k-th eigenvalue is given by p

√
λkc1(b− a)= kπp , thus

p
√
λk

k
= πp∫ b

a
p
√
c1 dt

,

i.e., the asymptotic formula (11.2) is automatically satisfied in this case.
Now let us consider the original Sturm–Liouville problem (11.1) and its k-th eigenfunc-

tion x(t;λk). This function has zeros at t0 = a < t1 < t2 < · · ·< tk−1 < tk = b. Put λ= λk
in (11.1) and in (11.5) and define

c1,i := min
ti−1�t�ti

c(t), c2,i := max
ti−1�t�ti

c(t), i = 1, . . . , k.
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Then the differential equation in (11.1) is a Sturmian majorant of the differential equation
in (11.5) wit c1 = c1,i on the interval [ti−1, ti ]. Hence the solution S( p

√
λkc1,i(t − ti−1) of

(11.5) has no zero on (ti−1, ti ) so that

p
√
λkc1,i(ti − ti−1)� πp. (11.6)

By a similar argument we have πp � p
√
λkc2,i(ti − ti−1). On the other hand,∫ ti

ti−1

p
√
λkc1,i dt �

∫ ti

ti−1

p
√
λkc(t)dt �

∫ ti

ti−1

p
√
λkc2,i dt,

and consequently∣∣∣∣πp −
∫ ti

ti−1

p
√
λkc(t)

∣∣∣∣ �
∫ ti

ti−1

p
√
λk( p

√
c2,i − p

√
c1,i )dt . (11.7)

Let ω(f, δ) be defined for any continuous function f on [a, b] by

ω(f, δ)= max
{∣∣f (τ1)− f (τ2)

∣∣: |τ1 − τ2| � δ, τ1, τ2 ∈ [a, b]}.
Making use of this definition we deduce from (11.7) that∣∣∣∣ πpp

√
λk

−
∫ ti

ti−1

p
√
c(t)dt

∣∣∣∣ � ω( p
√
c, ti − ti−1)|ti − ti−1|.

Let c1 = mini=1,...,k c1,i . Then by (11.6)∣∣∣∣ kπpp
√
λk

−
∫ b

a

p
√
c(t)dt

∣∣∣∣ � ω

(
p
√
c,

πp
p
√
λkc1

)
(b− a).

By the first part of the proof λk → ∞ as k → ∞. Therefore the continuity of the function
c yields the formula which has to be proved. �

11.2. Regular problem with indefinite weight

The results presented in this subsection can be found in [133]. We consider the Sturm-
Liouville problem{ (

r(t)Φ(x ′)
)′ + λc(t)Φ(x)= 0,

Ax(a)−A′x ′(a)= 0, Bx(b)+B ′x ′(b)= 0.
(11.8)

It is supposed that r, c are continuous in [a, b] and r(t) > 0 in this interval. No sign restric-
tion on the function c is supposed. A,A′,B,B ′ are real numbers such that A2 +A′2 > 0,
B2 +B ′2 > 0, λ is a real-valued eigenvalue parameter.
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THEOREM 11.2. Suppose that AA′ � 0, BB ′ � 0 and A2 + B2 > 0. Further suppose
that the function c takes both positive and negative values in [a, b]. Then the totality of
eigenvalues of (11.8) consists of two sequences {λ+

n }∞n=0 and {λ−
n }∞n=0 such that

· · ·< λ−
n < · · ·< λ−

1 < λ−
0 < 0< λ+

0 < λ+
1 < · · ·< λ+

n < · · ·

and

lim
n→∞λ+

n = ∞, lim
n→∞λ−

n = −∞.

The eigenfunctions x = x(t;λ+
n ) and x = x(t;λ−

n ) associated with λ = λ+
n and λ−

n have
exactly n zeros in (a, b).

PROOF. The proof is again based on the half-linear Prüfer transformation. Let λ ∈ R and
let x(t;λ) be the solution of(

r(t)Φ(x ′)
)′ + λc(t)Φ(x)= 0 (11.9)

satisfying the initial conditions x(a)= A′, x ′(a)= A. Note that this solution satisfies the
boundary condition Ax(a) − A′x ′(a) = 0. According to the continuous dependence of
solutions on a perturbation of the functions r, c, in (0.1), the function x(t;λ) depends
continuously on λ. In particular, if λi → λ as i → ∞, then x(t;λi)→ x(t;λ) uniformly
on [a, b] as i → ∞. If x(t;λ) satisfies the second part of the boundary conditions Bx(b)+
B ′x ′(b) = 0 for some λ ∈ R, then λ is an eigenvalue and x(t;λ) is the corresponding
eigenfunction.

For λ= 0 we can compute x(t;λ) explicitly,

x(t;0)=A′ + rq−1(a)A

∫ t

a

r1−q(s)ds

and it is easy to see that this solution does not satisfy the condition at t = b, so λ= 0 is not
an eigenvalue.

In what follows we suppose that λ > 0. For the solution x(t;λ) we perform slightly
modified Prüfer transformation, we express x(t;λ) and its quasiderivative in the form

x(t;λ)= ρ(t;λ)S(
ϕ(t;λ)),

rq−1(t)x ′(t;λ)= λq−1ρ(t;λ)C(
ϕ(t;λ)). (11.10)

Here S,C are the generalized half-linear sine and cosine functions introduced in Sec-
tion 1.1. The function ρ(t;λ) is given by

ρ(t;λ)=
[∣∣x(t;λ)∣∣p +

(
r(t)

λ

)q ∣∣x ′(t;λ)∣∣p] 1
p

.
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The functions ρ and ϕ satisfy the first order system

ϕ′ =
(

λ

r(t)

)q−1∣∣C(ϕ)∣∣p + c(t)

p− 1

∣∣S(ϕ)∣∣p,
ρ′ = ρ

[(
λ

r(t)

)q−1

− c(t)

p− 1

]
Φ

(
S(ϕ)

)
C(ϕ) (11.11)

with the initial conditions

ρ(a;λ)=
[
|A′|p +

(
r(a)

λ

)q
|A|p

] 1
p

,

ϕ(a;λ)= arctanp

((
λ

r(a)

) 1
p A′

A

)
, (11.12)

where tanp = S/C = sinp / cosp . Since AA′ � 0, we may assume without loss of general-
ity that

0 � ϕ(a;λ) < πp

2
, if A �= 0, (11.13)

ϕ(a,λ)= πp

2
, if A= 0. (11.14)

Observe that as soon as ϕ(t;λ) is known, ρ = ρ(t;λ) can be computed explicitly and

ρ(t;λ)= ρ(a,λ) exp

{∫ t

a

[(
λ

r(s)

)q−1

− c(s)

p− 1

]
Φ

(
S

(
ϕ(s;λ)))

C
(
ϕ(s;λ))ds

}
.

Thus, it is important to discuss the initial value problem (11.11), (11.12). We denote by
f (t, ϕ,λ) the right-hand side of (11.11). It is clear that, for each λ > 0, the function
f (t, ϕ,λ) is bounded for t ∈ [a, b] and ϕ ∈ R. In view of the Pythagorean identity (1.5)
the function f (t, ϕ,λ) can be written in the form

f (t, ϕ,λ)=
(

λ

r(t)

)q−1

+
{

−
(

λ

r(t)

)q−1

+ c(t)

p− 1

}∣∣S(ϕ)∣∣p.
Similarly as in the standard half-linear Prüfer transformation, the function f (t, ϕ,λ) is Lip-
schitzian in ϕ, hence unique solvability is guaranteed and the solution ϕ = ϕ(t;λ) depends
continuously on (t, λ) ∈ [a, b] × (0,∞).

It is easy to see that λ > 0 is an eigenvalue of (11.8) if and only if λ satisfies

ϕ(b;λ)= arctanp

(
−

(
λ

r(b)

)q−1
B ′

B

)
+ (n+ 1)πp (11.15)
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for some n ∈ Z. Here, by virtue of BB ′ � 0, we assume without loss of generality that the
value of the function arctanp in (11.15) is in (−(πp/2),0] if B �= 0 and equals −(πp/2) if
B = 0.

Observe that the function ϕ(b;λ) is strictly increasing for λ ∈ (0,∞). Indeed, denote
as before f (t, ϕ,λ) the right-hand side of (11.11). Clearly, f (t, ϕ,λ) is nondecreasing
function of λ ∈ (0,∞), and, since AA′ � 0, the initial value ϕ(a;λ) given by (11.12) is
also nondecreasing for λ ∈ (0,∞). Then a standard comparison theorem for the first order
scalar differential equations implies that ϕ(t;λ) is a nondecreasing function of λ ∈ (0,∞)

for each fixed t ∈ [a, b]. Now, let 0< λ <μ be fixed. Since the function ϕ(t;λ) is nonde-
creasing with respect to λ, we have ϕ(t;λ) � ϕ(t;μ). Assume that ϕ(t;λ) ≡ ϕ(t;μ) for
all t ∈ (a, b). Then ϕ′(t;λ)≡ ϕ′(t;μ), and so we have f (t, ϕ(t;λ),λ)≡ f (t, ϕ(t;μ),μ)
from which follows C(ϕ(t;λ))≡ C(ϕ(t;μ))≡ 0. This implies that ϕ(t;λ)≡ (m+ 1

2 )πp
for some integer m ∈ Z, and hence, by Equation (11.11), c(t) ≡ 0 for t ∈ (a, b). This is
a contradiction to the assumption that c(t) > 0 for some t ∈ [a, b]. Therefore we have
ϕ(t0;λ) < ϕ(t0;μ) for some t0 ∈ (a, b). Then applying a standard comparison theorem
again, we conclude that ϕ(b;λ)< ϕ(b;μ).

Now we claim that x(t;λ) has no zeros in the interval (a, b] for all sufficiently small
λ > 0. As stated before, x(t;λ) → x(t;0) as λ→ 0+ uniformly on [a, b]. We note that
x(t;λ) satisfies

x(t;λ)= A′ +
∫ t

a

∣∣∣∣r(a)r(s)
Φ(A)− λ

r(s)
I (s;λ)

∣∣∣∣q−2

×
{
r(a)

r(s)
Φ(A)− λ

r(s)
I (s;λ)

}
ds,

for all a � t � b, where

I (s;λ)=
∫ s

a

c(τ )Φ
(
x(τ ;λ))dτ, a � s � b.

Then it is easy to find that if A = 0 or AA′ > 0, then x(t;λ) has no zero in the closed
interval [a, b] for all sufficiently small λ > 0, and that if A �= 0 and A′ = 0, then x(t;λ)
has no zero in the interval (a, b] for all sufficiently small λ > 0. Further, since

r(t)Φ
(
x ′(t;λ)) = r(a)Φ(A)− λ

∫ t

a

c(s)Φ
(
x(s;λ)) ds

for a � t � b, we see that if A �= 0, then x ′(t;λ) has no zeros in [a, b] for all sufficiently
small λ > 0.

Next we claim that the number of zeros of x(t;λ) in [a, b] can be made as large as
possible if λ > 0 is chosen sufficiently large. To this end, we consider the equation(

Φ(x ′)
)′ + (p− 1)μpΦ(x)= 0,

where μ > 0 is a constant. Clearly, S(μt) is a solution of this equation, and has zeros
t = jπp/μ, j ∈ Z, S(·) is the generalized sine function. Since c is supposed to be positive
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at some t ∈ [a, b], there exists [a′, b′] ⊂ [a, b] such that c(t) > 0 on [a′, b′]. Let k ∈ N be
any given positive integer and take μ> 0 so that S(μt) has at least k + 1 zeros in [a′, b′].
Let r∗ > 0 and λ∗ > 0 be numbers such that

r∗ = max
t∈[a′,b′]

r(t), λ∗ min
t∈[a′,b′]

c(t)= (p− 1)r∗μp.

Then, comparing the half-linear equation in (11.8) with λ > λ∗ and the equation

(
r∗Φ(x ′)

)′ + (p− 1)r∗μpΦ(x)= 0, a′ � t � b′,

we conclude by the Sturm comparison theorem that all solution of the equation in (11.8)
with λ > λ∗ have at least k zeros in [a, b]. Since k was arbitrary, this shows that the number
of zeros of x(t;λ) in [a, b] can be made as large as possible if λ > 0 is chosen sufficiently
large.

Since the radial variable ρ(t;λ) > 0, it follows from (11.10) that x(t;λ) has a zero at
t = c if and only if there exists j ∈ Z such that ϕ(c;λ) = jπp. Moreover, if ϕ(c;λ) =
jπp , then by (11.11) we have ϕ′(c;λ)= (λ/r(c))q−1 > 0. Therefore we easily see that if
ϕ(c;λ)= jπp , then ϕ(t;λ) > jπp for c < t � b. Consequently, we have

(i) For all λ > 0 sufficiently small

0< ϕ(b;λ) < πp

2
, if A �= 0,

0< ϕ(b;λ) < πp, if A= 0.

(ii) limλ→∞ ϕ(b;λ)= ∞.
Now we seek λ > 0 satisfying (11.15) for some n ∈ Z. The left-hand side ϕ(b;λ) of

(11.15) is a continuous function of λ ∈ (0,∞), and it is strictly increasing for λ ∈ (0,∞),
moreover, it has the following properties

0 � lim
λ→0+ϕ(b;λ) <

πp

2
, if A �= 0,

0 � lim
λ→0+ϕ(b;λ) < πp, if A= 0,

and

lim
λ→∞ϕ(b;λ)= ∞.

On the other hand, by virtue of BB ′ � 0, the right-hand side of (11.15) is a nonincreas-
ing function of λ ∈ (0,∞) for each n ∈ Z. More precisely, in case BB ′ > 0, it is strictly
decreasing and varies from (n+ 1)πp to (n+ 1

2 )πp as λ varies from 0 to ∞. In the case
B ′ = 0, it is the constant function (n+ 1

2 )πp.
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From what was observed above we find that, for each n = 0,1,2, . . . , there exists a
unique λ+

n > 0 such that

ϕ
(
b;λ+

n

) = arctanp

(
−

(
λ+
n

r(b)

)q−1B ′

B

)
+ (n+ 1)πp.

Then, each λ+
n is an eigenvalue of (11.8), and the associated eigenfunction x(t;λ+

n ) has
exactly n zeros in the open interval (a, b), where n= 0,1,2, . . . . It is clear that

λ+
0 < λ+

1 < · · ·< λ+
n < · · · , lim

n→∞λ+
n = ∞.

The proof concerning the sequence of negative eigenvalues λ−
n and the number of zeros of

associated eigenfunctions can be proved in the same way. �

11.3. Singular Sturm–Liouville problem

The results of this subsection are taken from the paper [91], for related results we refer to
[133,134]. We consider the equation(

Φ(x ′)
)′ + λc(t)Φ(x)= 0, t ∈ [a,∞), (11.16)

where λ > 0 is a real-valued parameter and c is a nonnegative piecewise continuous even-
tually nonvanishing function. A solution x0 = x0(t;λ) of (11.16) is said to be subdominant
if

lim
t→∞x0(t;λ)= k0, (11.17)

for some constant k0 �= 0, and a solution x1 = x1(t;λ) is said to be dominant if

lim
t→∞

[
x1(t;λ)− k1(t − a)

] = 0 (11.18)

for some constant k1 �= 0. We will show that the subdominant and dominant solutions are
essentially unique in the sense that if x̃0(t;λ) and x̃1(t;λ) denote the solutions of (11.16)
satisfying

lim
t→∞ x̃0(t;λ)= 1 (11.19)

and

lim
t→∞

[
x̃1(t;λ)− (t − a)

] = 0 (11.20)

then x0(t;λ)= k0x̃0(t;λ) and x1(t;λ)= k1x̃1(t;λ). According to the results presented in
Section 6, any eventually positive solution (11.16) has one of the following asymptotic
behavior:
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(i) limt→∞Φ(x ′(t;λ))= const> 0;
(ii) limt→∞Φ(x ′(t;λ))= 0, limt→∞ x(t;λ)= 0;

(iii) limt→∞Φ(x ′(t;λ))= 0, limt→∞ x(t;λ)= const> 0.
In view of this result, the dominant and subdominant solutions investigated in this subsec-
tion correspond to cases (i) and (iii), respectively.

The proofs of three statements presented in this subsection are rather complex, so we
skip them and we refer to the above mentioned paper [91]. We note only that these proofs
are again based on the half-linear Prüfer transformation, this time combined with a detailed
asymptotic analysis of solutions of (11.16).

THEOREM 11.3. Suppose that

∫ ∞ ( ∫ ∞

t

c(s)ds

)q−1

dt <∞.

Then for every λ Equation (11.16) has a unique solution x̃0(t;λ) satisfying (11.19) and
there exists a sequence {λ(0)n }∞n=0 of positive parameters with the properties that

(i) 0 = λ
(0)
0 < λ

(0)
1 < · · ·< λ

(0)
n < · · ·, limn→∞ λ

(0)
n = ∞;

(ii) for λ ∈ (λ(0)n−1, λ
(0)
n ), n = 1,2, . . . , x̃0(t;λ) has exactly n− 1 zeros in (a,∞) and

x̃0(a;λ) �= 0;
(iii) for λ = λ

(0)
n , n = 1,2, . . . , x̃0(t;λ) has exactly n − 1 zeros in (a,∞) and

x̃0(a;λ)= 0.

THEOREM 11.4. Let the sequence {λ(0)n }∞n=0 be defined as in the previous theorem. Then
the number of zeros of any nontrivial solution x(t;λ) on [a,∞) can be

(i) exactly n if λ= λ
(0)
n , n= 1,2, . . . ;

(ii) either n− 1 or n if λ(0)n−1 < λ< λ
(0)
n , and both cases occur.

THEOREM 11.5. Suppose that∫ ∞
tpc(t)dt <∞.

Then for every λ > 0 Equation (11.16) has a unique solution x̃1(t;λ) satisfying (11.20)
and there exists a sequence {λ(1)n }∞n=0 of positive parameters with the properties that

(i) 0 = λ
(1)
0 < λ

(1)
1 < · · ·< λ

(1)
n < · · ·, limn→∞ λ

(1)
n = ∞;

(ii) for λ ∈ (λ
(1)
n−1, λ

(1)
n ), n = 1,2, . . . , the solution x̃1(t;λ) has exactly n zeros in

(a,∞) and x̃1(t;λ) �= 0;
(iii) for λ= λ

(1)
n , n= 1,2, . . . , the solution x̃1(t;λ) has exactly n zeros and x̃1(a;λ)=

0;
(iv) the parameters {λ(0)n } and {λ(1)n } have the interlacing property 0 = λ

(1)
0 = λ

(0)
0 <

λ
(1)
1 < λ

(0)
1 < · · ·< λ

(1)
n < λ

(0)
n < · · ·.
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12. Perturbation principle

12.1. General idea

In the previous sections devoted to oscillation and nonoscillation criteria for (0.1), this
equation was essentially viewed as a perturbation of the one-term equation(

r(t)Φ(x ′)
)′ = 0. (12.1)

As we have already mentioned, for oscillation (nonoscillation) of (0.1), the function c must
be “sufficiently positive” (“not too positive”) comparing with the function r . In this section
we use a more general approach, Equation (0.1) is investigated as a perturbation of another
(nonoscillatory) two-term half-linear equation(

r(t)Φ(x ′)
)′ + c̃(t)Φ(x)= 0 (12.2)

with a continuous function c̃, i.e., (0.1) is written in the form(
r(t)Φ(x ′)

)′ + c̃(t)Φ(x)+ (
c(t)− c̃(t)

)
Φ(x)= 0. (12.3)

The main idea is essentially the same as before. If the difference (c − c̃) is sufficiently
positive (not too positive), then (12.3) becomes oscillatory (remains nonoscillatory).

Note that in the linear case p = 2, the idea to investigate the linear Sturm–Liouville
equation (1.1) as a perturbation of the nonoscillatory two-term equation(

r(t)x ′)′ + c̃(t)x = 0 (12.4)

(and not only as a perturbation of the one-term equation (r(t)x ′)′ = 0) brings essentially
no new idea. Indeed, let us write (1.1) in the “perturbed” form(

r(t)x ′)′ + c̃(t)x + (
c(t)− c̃(t)

)
x = 0. (12.5)

Further, let h be a solution of (12.4) and consider the transformation x = h(t)u. This trans-
formation transforms (12.5) into the equation(

r(t)h2(t)u′)′ + [
c(t)− c̃(t)

]
h2(t)u= 0 (12.6)

(compare (3.2)) and this equation, whose oscillatory properties are the same as those of
(1.1), can be again investigated as a perturbation of the one-term equation (r(t)h2(t)u′)′ =
0. In the half-linear case we have in disposal no transformation which reduces nonoscilla-
tory two-terms equation into a one-term equation, so we have to use different methods and
this “perturbation principle” brings new phenomena. Note also that some ideas used in this
section have already been applied in Section 8.
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12.2. Leighton–Wintner type oscillation criterion

Recall that if
∫ ∞

r1−q(t)dt = ∞ and
∫ ∞

c(t)dt = ∞, then (0.1) is oscillatory. This direct
extension of the classical linear Leighton–Wintner criterion has been proved in Section 2.
This criterion characterizes exactly what means that for oscillation of (0.1) the function c
must be sufficiently positive comparing with the function r in one-term equation (12.1).
Here we extend this result to the situation when (0.1) is investigated as a perturbation of
(12.2). The results of this subsection are presented in [69].

THEOREM 12.1. Suppose that h is the principal solution of (nonoscillatory) equation
(12.2) and

∫ ∞ (
c(t)− c̃(t)

)
hp(t)dt := lim

b→∞

∫ b (
c(t)− c̃(t)

)
hp(t)dt = ∞. (12.7)

Then Equation (0.1) is oscillatory.

PROOF. According to the relationship between disconjugacy of (0.1) and positivity of the
functional F mentioned in Section 2, to prove that (0.1) is oscillatory, it suffices to find
(for any T ∈ R) a function y ∈W 1,p(T ,∞), with a compact support in (T ,∞), such that
F(y;T ,∞) < 0. Hence, let T ∈ R be arbitrary and T < t0 < t1 < t2 < t3 (these points will
be specified later). Define the test function y as follows.

y(t)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, T � t � t0,

f (t), t0 � t � t1,

h(t), t1 � t � t2,

g(t), t2 � t � t3,

0, t3 � t <∞,

where f,g are solutions of (12.2) given by the boundary conditions f (t0) = 0, f (t1) =
h(t1), g(t2)= h(t2), g(t3)= 0. Denote

wf := rΦp(f
′)

Φp(f )
, wh := rΦp(h

′)
Φp(h)

, wf := rΦp(g
′)

Φp(g)
,

i.e., wf ,wg,wh are solutions of the Riccati equation associated with (12.2) generated by
f,g,h respectively. Using exactly the same computations as in the proof of Theorem 1
from [58], one can show that

F(y;T ,∞)=K −
∫ ξ

t1

(
c(t)− c̃(t)

)
hp(t)dt + hp(t2)

[
wh(t2)−wg(t2)

]
,

(12.8)
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where

K :=F(f ; t0, t1)+ hp(t1)
[
wf (t1)−wh(t1)

]
and ξ ∈ (t2, t3). Now, if ε > 0 is arbitrary and T < t0 < t1 are fixed, then, according to
(12.7), t2 can be chosen in such a way that

∫ t
t1
(c(s) − c̃(s))hp(s)ds > K + ε whenever

t > t2. Finally, again using the same argument as in [58] we have (observe that wg actually
depends also on t3)

lim
t3→∞hp(t2)

[
wh(t2)−wg(t2)

] = 0,

hence the last summand in (12.8) is less than ε if t3 is sufficiently large. Consequently,
F(y; t0, t3) < 0 if t0, t1, t2, t3 are chosen in the above specified way. �

If r(t)≡ 1 in (0.1) and c̃(t)= γ̃
tp

, γ̃ = (
p−1
p
)p , i.e., (12.2) is the generalized Euler equa-

tion with the critical coefficient (4.20), then the previous theorem reduces to the oscillation
criterion given by Elbert [87].

12.3. Hille–Nehari-type oscillation criterion

The results of this subsection can be viewed as an extension of Theorems 5.4 and 5.9 to
the situation when (0.1) (or (6.16)) is viewed as a perturbation of a one-term equation.

THEOREM 12.2. Let
∫ ∞

r1−q(t)dt = ∞ and c(t) � 0 for large t . Further suppose that
equation (12.2) is nonoscillatory and possesses a positive solution h satisfying

(i) h′(t) > 0 for large t ;
(ii) it holds∫ ∞

r(t)
(
h′(t)

)p dt = ∞; (12.9)

(iii) there exists a finite limit

lim
t→∞ r(t)h(t)Φ

(
h′(t)

) =:L> 0. (12.10)

Denote by

G(t)=
∫ t ds

r(s)h2(s)(h′(s))p−2 (12.11)

and suppose that the integral∫ ∞ (
c(t)− c̃(t)

)
hp(t)dt = lim

b→∞

∫ b (
c(t)− c̃(t)

)
hp(t)dt (12.12)
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is convergent. If

lim inf
t→∞ G(t)

∫ ∞

t

(
c(s)− c̃(s)

)
hp(s)ds >

1

2q
(12.13)

then Equation (0.1) is oscillatory.

PROOF. Suppose, by contradiction, that (0.1) is nonoscillatory, i.e., there exists an even-
tually positive principal solution x of this equation. Denote by ρ := r(t)

Φ(x ′)
Φ(x)

. Then ρ

satisfies the Riccati equation (2.1) and using the Picone identity for half-linear equations
(2.5) we have∫ t

T

(
r(s)|y ′|p − c(s)|y|p)

ds

= ρ(s)|y|p∣∣t
T

+ p

∫ t

T

r1−q(s)P
(
rq−1y ′, ρΦ(y)

)
ds

for any differentiable function y , where P is given by (2.6), and integration by parts yields∫ t

T

[
r(s)|y ′|p − c(s)|y|p]

ds

=
∫ t

T

[
r(s)|y ′|p − c̃(s)|y|p]

ds −
∫ t

T

(
c(s)− c̃(s)

)|y|p ds

= r(s)yΦ(y ′)
∣∣t
T

−
∫ t

T

y
[(
r(s)Φ(y ′)

)′ − c̃(s)Φ(y)
]

ds

−
∫ t

T

(
c(s)− c̃(s)

)|y|p ds.

Substituting y = h into the last two equalities (h being a solution of (12.2) satisfying the
assumptions (i)–(iii) of theorem), we get

hp(ρ̃ − ρ)
∣∣t
T

=
∫ t

T

(
c(s)− c̃(s)

)
hp ds + p

∫ t

T

r1−q(s)P
(
rq−1h′, ρΦ(h)

)
ds,

(12.14)

where ρ̃ = rΦ(h′)
Φ(h)

. Since
∫ ∞

r1−q(t)dt = ∞, w ≡ 0 is the distinguished solution of the
Riccati equation corresponding to the equation (r(t)Φ(x ′))′ = 0 and since c(t) � 0, by
Theorem 7.2 ρ(t)� 0 eventually. Hence, with L given by (12.10), we have

L+ hp(T )
(
ρ(T )− ρ̃(T )

)
�

∫ t

T

(
c(s)− c̃(s)

)
hp ds + p

∫ t

T

r1−q(s)P
(
rq−1h′, ρΦ(h)

)
ds,
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and since P(u, v)� 0, this means that∫ ∞
r1−q(t)P

(
rq−1(t)h′(t), ρ(t)Φ

(
h(t)

))
dt <∞. (12.15)

Now, since (12.10), (12.12), (12.15) hold, from (12.14) it follows that there exists a finite
limit

lim
t→∞hp(t)

(
ρ(t)− ρ̃(t)

) =: β

and also the limit

lim
t→∞

ρ(t)

ρ̃(t)
= lim

t→∞
hp(t)ρ(t)

hp(t)ρ̃(t)
= L+ β

L
. (12.16)

Therefore,

hp(t)
(
ρ(t)− ρ̃(t)

) − β = C(t)+ p

∫ ∞

t

r1−q(s)P
(
rq−1h′, ρΦ(h)

)
ds,

where C(t)= ∫ ∞
t (c(s)− c̃(s))hp(s)ds.

Concerning the function P(u, v), we have for u,v > 0

P(u, v)= up

p
− uv + vq

q
= up

(
1

q

vq

up
− vu1−p + 1

p

)
= upQ

(
vu1−p)

,

(12.17)

where Q(λ)= 1
q
λq − λ+ 1

p
for λ� 0 with equality if and only if λ= 1 and

lim
λ→1

Q(λ)

(λ− 1)2
= q − 1

2
. (12.18)

Hence for every ε > 0 there exists δ > 0 such that

P(u, v)�
(
q − 1

2
− ε

)
up

(
v

up−1
− 1

)2

, (12.19)

whenever |vu1−p − 1|< δ. This implies that β = 0 in (12.16) since the case β �= 0 contra-
dicts the divergence of

∫ ∞
r(t)(h′(t))p−1 dt . If we denote

f (t) := hp(t)
(
ρ(t)− ρ̃(t)

)
, H(t) := 1

r(t)h2(t)(h′(t))p−2
,
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then using

f (t) � C(t)+
(
p(q − 1)

2
− ε̃

) ∫ ∞

t

r(s)
(
h′(s)

)p(
ρ(s)

ρ̃(s)
− 1

)2

ds

= C(t)+
(
q

2
− ε̃

) ∫ ∞

t

H (s)f 2(s)ds, (12.20)

where ε̃ = pε. Multiplying (12.20) by G(t) we get

G(t)f (t)�G(t)C(t)+
(
q

2
− ε̃

)
G(t)

∫ ∞

t

H (s)f 2(s)ds. (12.21)

Inequality (12.21) together with (12.13) imply that there exists a δ̃ > 0 such that

G(t)f (t)� 1

2q
+ δ̃+

(
q

2
− ε̃

)
G(t)

∫ ∞

t

H (s)

G2(s)

[
G(s)f (s)

]2 ds (12.22)

for large t .
Suppose first that lim inft→∞G(t)f (t) =: c < ∞. Then for every ε̄ > 0 we have

[G(t)f (t)]2 > (1 − ε̄)c2 for large t and (12.22) implies

c� 1

2q
+ δ̃+

(
q

2
− ε̃

)
(1 − ε̄)c2.

Now, letting ε̃, ε̄→ 0 we have

c� 1

2q
+ δ̃+ q

2
c2,

but this is impossible since 1 − 2q( 1
2q + δ̃) < 0.

Finally, if

lim inf
t→∞ G(t)f (t)= ∞, (12.23)

denote by m(t)= inft�s{G(s)f (s)}. Then m is nondecreasing and (12.22) implies that

G(t)f (t)�K +
(
q

2
− ε̃

)
m2(t),

where K = 1
2q + δ̃ Since m is nondecreasing, we have for s > t

G(s)f (s)�K +
(
q

2
− ε̃

)
m2(s)�K +

(
q

2
− ε̃

)
m2(t), t � s,
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and hence

m(t)�K +
(
q

2
− ε̃

)
m2(t)

which contradicts (12.23). The proof is complete. �

When (12.3) reduces to the below given Euler-type equation (12.24), some technical
assumptions on the function h in the previous theorem are satisfied and Theorem 12.2
simplifies as follows.

COROLLARY 12.1. Let r(t)≡ 1, c(t)� 0 and

c̃(t)= γ̃

tp
, γ̃ =

(
p− 1

p

)p
.

Then (12.3) is the generalized Euler equation with the critical coefficient

(
Φ(y ′)

)′ + γ̃

tp
Φ(y)= 0 (12.24)

and the solution h(t)= t
p−1
p of this equation satisfies all assumptions of Theorem 12.2 with

G(t)=
(

p

p− 1

)p−2

lg t .

Hence Equation (9.1) is oscillatory provided

lim inf
t→∞ lg t

∫ ∞

t

sp−1
[
c(s)− γ0

sp

]
ds >

1

2

(
p− 1

p

)p−1

.

12.4. Hille–Nehari-type nonoscillation criterion

Now we turn our attention to a nonoscillation criterion which is proved under no sign
restriction on the function c and also under no assumption concerning divergence of the
integral

∫ ∞
r1−q(t)dt (compare Theorem 12.2).

THEOREM 12.3. Suppose that Equation (12.2) is nonoscillatory and possesses a solution
h satisfying (i), (iii) of Theorem 12.2. Moreover, suppose that∫ ∞ dt

r(t)h2(t)(h′(t))p−2
= ∞. (12.25)
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If G(t) is the same as in Theorem 12.2 and

lim sup
t→∞

G(t)

∫ ∞

t

(
c(s)− c̃(s)

)
hp(s)ds <

1

2q
(12.26)

and

lim inf
t→∞ G(t)

∫ ∞

t

(
c(s)− c̃(s)

)
hp(s)ds >− 3

2q
, (12.27)

then (0.1) is nonoscillatory.

PROOF. Denote again

C(t)=
∫ ∞

t

(
c(s)− c̃(s)

)
hp(s)ds.

To prove that (0.1) is nonoscillatory, according to Section 5.3 it suffices to find a differen-
tiable function ρ which verifies the differential inequality (5.4) for large t . This inequality
can be written in the form (with w = h−p(ρ +C))

ρ′ � −p
[

1

q

∣∣∣∣ρ +C

h

∣∣∣∣qr1−q − h′
(
ρ +C

h

)
+ r(h′)p

p

]
+ r(h′)p − c̃(t)hp

= −pr1−q
[

1

q

∣∣∣∣ρ +C

h

∣∣∣∣q − rq−1h′
(
ρ +C

h

)
+ 1

p
rq(h′)p

]
+ r(h′)p − c̃hp

= −pr1−qP
(
rq−1h′, ρ +C

h

)
+ r(h′)p − c̃hp.

We will show that the function

ρ(t)= r(t)h(t)Φ
(
h′(t)

) + 1

2qG(t)
(12.28)

satisfies this inequality for large t . To this end, let v = ρ+C
h

, u= rq−1h′. The fact that the
solution h of (12.2) is increasing together with (12.25), (12.26), (12.27) and the assump-
tion (iii) of Theorem 12.2 imply that

v

Φ(u)
= ρ(t)+C(t)

h(t)r(t)Φ(h′(t))
= 1 + 1 + 2qC(t)G(t)

2qG(t)r(t)h(t)Φ(h′(t))
→ 1

as t → ∞. Hence, using (12.17) and the same argument as in the proof of Theorem 12.2,
for any ε > 0, we have (with Q satisfying (12.18))

pr1−q
[

1

q

∣∣∣∣ρ +C

h

∣∣∣∣q − h′rq−1
(
ρ +C

h

)
+ rq(h′)p

p

]
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= pr1−qrq(h′)pQ
(
ρ +C

hrΦ(h′)

)
� p

(
q − 1

2
+ ε

)
r(h′)p (1 + 2qGC)2

4q2r2h2(h′)2p−2G2

=
(
q

2
+pε

)
1

rh2(h′)p−2

(1 + 2qGC)2

4G2q2

as t → ∞.
Now, since (12.26), (12.27) hold, there exists δ > 0 such that

−3 + δ

2q
<G(t)C(t) <

1 − δ

2q
⇐⇒ ∣∣1 + 2qG(t)C(t)

∣∣< 2 − δ

for large t , hence ε > 0 can be chosen in such a way that(
q

2
+ ε

)
(1 + 2qG(t)C(t))2

4q2 <
1

2q

for large t . Consequently (using the fact that h solves (12.2)), we have

−pr1−q
[

1

q

∣∣∣∣ρ +C

h

∣∣∣∣q − rq−1h′
(
ρ +C

h

)
+ r(h′)p

p

]
+ r(h′)p − c̃(t)hp

� −
(
q

2
+ ε

)
1

G2rh2(h′)p−2

(1 + 2qGC)2

4q2 + r(h′)p − c̃(t)hp

>− 1

2qG2rh2(h′)p−2
+ [

rhΦ(h′)
]′ = [

rhΦ(h′)+ 1

2qG

]′
= ρ′.

The proof is complete. �

COROLLARY 12.2. If (12.2) is the generalized Euler equation (12.24) then by the previ-
ous theorem Equation (9.1) is nonoscillatory provided

lim sup
t→∞

lg t
∫ ∞

t

(
c(s)− γ

sp

)
sp−1 ds <

1

2

(
p− 1

p

)p−1

and

lim inf
t→∞ lg t

∫ ∞

t

(
c(s)− γ

sp

)
sp−1 ds >−3

2

(
p− 1

p

)p−1

.

12.5. Perturbed Euler equation

The results of this subsection can be found in the paper [94]. If we distinguish the cases p ∈
(1,2] and p � 2, the following refinement of oscillation and nonoscillation criteria from
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the previous subsection can be proved. We present the main results of [94] here without
proofs since these proofs need several technical lemmata.

THEOREM 12.4. Consider the half-linear equation

(
Φ(x ′)

)′ + γ̃

tp
Φ(x)+ 2

(
p− 1

p

)p−1
δ(t)

tp
Φ(x)= 0, γ̃ =

(
p− 1

p

)p
,

(12.29)

and the linear second order equation

(ty ′)′ + δ(t)

t
y = 0. (12.30)

Suppose that the integral

σ(t) :=
∫ ∞

t

δ(s)

s
ds

is convergent and σ(t)� 0 for large t .
(i) Let p � 2 and (12.30) is nonoscillatory. Then (12.29) is also nonoscillatory.

(ii) Let p ∈ (1,2] and half-linear equation (12.29) is nonoscillatory. Then linear equa-
tion (12.30) is also nonoscillatory.
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CHAPTER 3D

Related Equations and Problems

In this chapter we discuss various problems related to the oscillation theory of half-linear
differential equations. First we deal with boundary value problems associated with (0.1),
where a particular attention is focused to the half-linear Fredholm alternative. In Section
14 we briefly mention the so-called quasilinear equations, i.e., equations, where in addition
to additivity, also homogeneity of the solution space of equations is lost. Section 15 is de-
voted to partial differential equations with p-Laplacian and the last section of this chapter
presents basic facts of the oscillation theory of half-linear difference equations.

13. Half-linear boundary value problems

There is a voluminous literature dealing with boundary value problems of the form(
Φ(x ′)

)′ + g(t, x)= h(t), x(0)= 0 = x(πp), (13.1)

(or some other boundary conditions, e.g., periodic, Neuman, mixed, . . .) and even a brief
survey of these results exceeds the scope of this treatment. For this reason we focus our
attention only to some particular boundary value problems. We refer to [52,53,73,76,77,
80,82,164–168] as to a sample of papers dealing with half-linear boundary value problems.

13.1. Basic boundary value problem

Under the “basic” boundary value problem we understand the problem{ (
Φ(x ′)

)′ + λΦ(x)= 0,

x(0)= 0 = x(πp),
(13.2)

where λ is the eigenvalue parameter. Here πp is the same as in the Section 1 and its value
is defined by the formula

πp = 2
∫ 1

0

ds
p
√

1 − sp
. (13.3)

Eigenvalue problem (13.2) is a special case of the general Sturm–Liouville problem for
half-linear equations treated in Section 11, but its simple structure enables to determine
completely the eigenvalues and eigenfunctions. The situation is essentially the same as

313
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in the linear case where the eigenvalues are λn = n2 with the associated eigenfunctions
xn(t)= sinnt .

THEOREM 13.1. The eigenvalues of (13.2) are λn = (p − 1)np , n ∈ N, and the cor-
responding eigenfunctions are (up to a nonzero multiplicative factor) xn(t) = sinp(nt),
where the half-linear sine function sinp is defined in Section 1.

PROOF. The proof if this statement follows immediately from the homogeneity of the
solution space of half-linear equations and from the unique solvability the initial value
problem for these equations. The function x1(t) = sinp t is a solution of (13.2) with λ =
(p−1) and satisfies x(0)= 0 = x(πp) (by the definition of this function in Section 1), and
xn(t)= sinp(nt) is a solution of (13.2) with λn = (p− 1)np . �

13.2. Variational characterization of eigenvalues

In the linear case, the Courant–Fischer minimax principle provides a variational charac-
terization of eigenvalues of the classical Sturm–Liouville eigenvalue problem. This char-
acterization is based on the orthogonality of the eigenfunctions corresponding to different
eigenvalues. In the half-linear case the meaning of orthogonality is lost, but eigenvalues
can be described using the Lusternik–Schnirelman procedure, for general facts concerning
this approach we refer to [103]. The specification of this method to (13.2) presented here
can be found in [80].

Let us introduce the functionals over X :=W
1,p
0 (0,πp), endowed with the norm ‖x‖ =

(
∫ πp

0 |x ′|p dt)
1
p ,

A(x)= 1

p

∫ πp

0
|x ′|p dt, B(x)= 1

p

∫ πp

0
|x|p dt .

Eigenfunctions and eigenvalues of (13.2) are equivalent to critical points and critical values
of the functional

E(x)= A(x)

B(x)
.

We also introduce the notation

S = {
x ∈X : B(x)= 1

}
,

(hence E(x)= A(x), E′(x)= A′(x)−A(x)B ′(x) for x ∈ S , where A′,B ′,E′ are differ-
entials of the functionals A,B,E, respectively). After some computation one can verify
that E|S satisfies the so-called Palais–Smale condition: if {xk} ∈ S is a sequence such that
E(xk) is convergent and E′(xk) → 0 in X ∗ (the dual space of X ), then {xk} contains a
convergent subsequence (in the norm of X ).
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Let us recall also the definition of the Krasnoselskii genus of a symmetric set A ⊂ X .
Let

F := {A⊂X : A is closed and A= −A}

and let

M= {
m ∈ N: ∃h ∈ C(

A;Rm \ {0}) such that h(−x)= −h(x)}.
Then the Krasnoselskii genus of A is defined by

γ (A) :=
{

infM, if M �= ∅,
∞, if M= ∅.

Using the above given concepts we can now present the formulas for variational charac-
terization of all eigenvalues of (13.2).

THEOREM 13.2. Let

Fk := {
A ∈F : 0 /∈A, γ (A)� k

}
,

F̃k := {A ∈Fk: A⊂ S, A is compact}

and let

βk = min
A∈F̃k

max
x∈A

E(x). (13.4)

Then βn = λn = (p− 1)np for n ∈ N.

PROOF. We present only a brief outline of the proof of this statement. First it is proved
that the nth eigenvalue λn satisfies λn � βn. Then, via the construction of a suitable set
A ∈ F̃ , it is shown that λn � βn. We refer to [80] for details. �

13.3. Nonresonance problem

In this subsection we consider the nonhomogeneous problem{ (
Φ(x ′)

)′ + λΦ(x)= f (t),

x(0)= 0 = x(πp).
(13.5)

Let

J λ
f (x) :=

1

p

∫ πp

0

∣∣x ′(t)
∣∣p dt − λ

p

∫ πp

0

∣∣x(t)∣∣p dt −
∫ πp

0
f (t)x(t)dt
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and suppose that λ is not an eigenvalue, i.e., λ �= λk . For simplicity we deal with f ∈
C[0,πp] and solution of (13.5) is understood in the classical sense, i.e., it is a function
x such that Φ(x ′) ∈ C1[0,πp] and equation and boundary conditions in (13.5) are satis-
fied. Similarly as in the previous subsection, the critical points of J λ

f are in one to one
correspondence with solutions of (13.5).

Due to the variational characterization of the least eigenvalue

λ1 = min

∫ πp
0 |x ′(t)|p dt∫ πp
0 |x(t)|p dt

, (13.6)

where the minimum is taken over all nonzero elements of W 1,p
0 (0,πp) and due to the

monotonicity of the operators

A′,B ′ :W 1,p
0 (0,πp)→

(
W

1,p
0 (0,πp)

)∗
defined by (note that these operators are differentials of operators A,B defined in the
previous subsection)

〈A′u,v〉 =
∫ πp

0
Φ

(
u′(t)

)
v′(t)dt, 〈B ′u,v〉 =

∫ πp

0
Φ

(
u(t)

)
v(t)dt

(here 〈 · , · 〉 is the duality pairing between (W 1,p
0 (0,πp))∗ and W 1,p

0 (0,πp)) it is easy to

prove that for λ � 0 the energy functional J λ
f has a unique minimizer in W

1,p
0 (0,πp)

for arbitrary f ∈ (W 1,p
0 (0,πp))∗. In particular, it follows from here that given arbitrary

f ∈ C[0,πp], the problem (13.5) has a unique solution. So, from this point of view, the
situation is the same for p = 2 (linear case) and p �= 2.

The case λ > 0 is different. It is well known that for p = 2 and λ �= λk , k = 1,2, . . . ,
for any f ∈ C[0,πp] the problem (13.5) has a unique solution, which follows e.g. from
the Fredholm alternative. Let us consider now p �= 2 and 0 < λ < λ1. Due to the varia-
tional characterization of λ1 given by (13.6), the energy functional is still coercive but the
monotone operators A′, B ′ “compete” because of the positivity of λ. While in the linear
case p = 2 this fact does not affect the uniqueness, for p �= 2 the following interesting
phenomenon is observed.

THEOREM 13.3. There exists functions f ∈ C[0,πp] such that J λ
f has at least two critical

points. One of them corresponds to the global minimizer of J λ
f onW 1,p

0 (0,πp) (which does
exist due to λ < λ1) and the other is a critical point of saddle type.

Examples which illustrate these facts were given in [101] for 1< p < 2 and in [52] for
p > 2. The results were generalized for general λ > 0 in [82].
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13.4. Fredholm alternative for the scalar p-Laplacian

This is perhaps the most interesting part of the qualitative theory of half-linear differential
equations, since one meets there phenomena which are completely different comparing
with the classical Fredholm alternative for the linear boundary value problem

u′′ +m2u= h(t), u(0)= 0 = u(π),

which has a solution if and only if∫ π

0
h(t) sinmt dt = 0. (13.7)

In this subsection we discuss the extension of the Fredholm alternative to (13.5). We
suppose that λ= λk for some k ∈ N, so the problem (13.2) possesses a nontrivial solution
x(t)= sinp(kt). The half-linear version of (13.7) when λ= λ1 and m= 1 is∫ πp

0
f (t) sinp t dt = 0. (13.8)

The next theorem show that (13.8) is sufficient but generally not necessary for solvability
of (13.5) with λ= λ1. The statements of this section are taken from [49]. We present them
without proofs since these proofs are technically rather complicated.

THEOREM 13.4. Let us assume that f ∈ C1[0,πp], f �≡ 0 and (13.8) is satisfied. Then
(13.5) with λ = λ1 has at least one solution. Moreover, if p �= 2, then the set of possible
solutions is bounded in C1[0,πp].

Observe that this result really reveals a striking difference between the cases p �= 2 and
p = 2, since in the latter case the solution set is an unbounded continuum. It would be
natural to expect the number of solutions under (13.8) be generically finite if p �= 2.

Note also that in the proof of Theorem 13.4 it appears that the degree of the fixed point
of a certain associated operator in a large ball of C1[0,πp] becomes +1 if p > 2 while
equals −1 if p < 2.

The eigenvalue problem (13.5) with λ = λ1 and f ≡ 0 is closely related to the Lp-
Poincaré inequality∫ πp

0

∣∣x ′(t)
∣∣p dt � C

∫ πp

0

∣∣x(t)∣∣p dt, for all x ∈W 1,p
0 (0,πp). (13.9)

The constantC = λ1 is precisely the largestC > 0 for which (13.9) holds. Then
∫ πp

0 |x ′|p−
λ1

∫ πp
0 |x|p � 0 for all x ∈ W 1,p

0 (0,πp) while it minimizes and equals 0 exactly on the
ray generated by the first eigenfunction sinp t . Now we consider the following question:
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What is the sensitivity of this optimal Poincare’s inequality under a linear perturbation?
We consider then the functional

J λ1
f (x)= 1

p

∫ πp

0
|x ′|p dt − λ1

p

∫ πp

0
|x|p dt +

∫ πp

0
f x dt

and ask whether J λ1
f is bounded from below. It is easy to see that a necessary condition

for this is that f satisfies the orthogonality condition (13.8) for otherwise E1 is unbounded
below along the ray generated by the first eigenfunction. If p = 2, an L2-orthogonal expan-
sion into the Fourier series yields that this condition is also sufficient for the boundedness
from below. However, this approach seems to be of no use when p �= 2. Under the ad-
ditional assumption f ∈ C1[0,πp], the answer answering the sufficiency is provided by
the following result. Note that some of its conclusions are already implied by the previous
theorem.

THEOREM 13.5. Assume that f ∈C1[0,πp] , f �≡ 0, and (13.8) holds.

(i) For 1 < p < 2 the functional J λ1
f is bounded from below. The set of its critical

points is nonempty and bounded.
(ii) For p > 2 the functional J λ1

f is bounded from below and has a global minimizer.

The set of its critical points is bounded, however J λ1
f does not satisfy the Palais–

Smale condition at the level 0.

It is interesting to see that changing p from p > 2 to p < 2 shifts the structure of this
functional J λ1

f from global minima to a saddle point geometry for its level sets. If p = 2
the functional is convex with a whole ray of minimizers. This result seems to be open
and interesting issue concerning the geometry of Lp spaces where the absence of a good
orthogonality notion makes the structure of Poincaré-type inequality fairly subtle.

On the other hand, the statement (ii) in the last theorem sets a word of warning in the use
of min-max schemes based on the Palais–Smale condition in resonant problems involving
the p-Laplacian. Here a very natural example arises of an equation with a priori estimates
for the solutions for which the Palais–Smale condition in the associated functional fails to
hold. We refer to the paper [49] for details.

Our next result states in particular another interesting difference with the linear case
p = 2. If p �= 2, then the set of functions f for which (13.5) with λ = λ1 is solvable has
nonempty interior in L∞(0,πp).

THEOREM 13.6. Let p �= 2. Then there exists an open cone C ⊂ L∞(0,πp) such that for
all f ∈ C problem (13.5) with λ= λ1 has at least two solutions. Moreover∫ πp

0
f (t) sinp t dt �= 0 (13.10)

for all f ∈ C .



Half-linear differential equations 319

A by-product of the proof of this theorem is the following general fact. For any f ∈
L∞(0,πp) such that (13.10) holds, one has that the set of all possible solutions of (13.5)
is bounded and the degree of the associated fixed point operator equals 0. Combining this
and Theorem 13.4 yields in particular that for any f �≡ 0 of the class C1 and p �= 2, there
are a priori estimates for the solution set.

The proof of the results presented in this subsection are based on the analysis of the
initial value problem(

Φ(x ′)
)′ + (p− 1)Φ(x)= f (t), x(0)= 0, x ′(0)= α,

with f ∈ L∞
loc[0,∞). Here, x is a globally defined solution of this problem and for α

sufficiently large (positive or negative) a first zero tα1 > 0 exists. Moreover, tα1 → πp as
|α| → ∞. The key matter is a detailed analysis of the relative location of tα1 with respect
to πp for large |α|. Of course, one has a solution of (13.5) with λ = λ1 whenever tα1 hits
exactly πp . In particular, in the asymptotic expansion of the dependence of tα1 on α yields
that under assumptions of Theorem 13.4, one has

tαa < πp if p < 2 and tα1 > πp, if p > 2,

whenever |α| is sufficiently large.

13.5. Homotopic deformation along p and Leray–Schauder degree

The Leray–Schauder degree of a mapping associated with the investigated BVP is one of
the most frequently used methods when dealing with this problem. In this subsection we
briefly present the main ideas of [52] which deals with solvability of (13.1). First consider
the associated problem(

Φp(x
′)

)′ = f (t), x(0)= 0 = x(πp), (13.11)

(note that Φp =Φ) and the energy functional corresponding to this problem

Ψp(x)= 1

p

∫ πp

0

∣∣x ′(t)
∣∣p dt −

∫ πp

0
f (t)x(t)dt . (13.12)

Here we use the index p by Φ and Ψ to stress their dependence on the power p. The
functional Ψp is coercive, continuous and convex over W 1,p

0 (0,πp) and hence it possesses
the unique global minimum which is the critical point and hence a solution of (13.11).
This means that we have correctly defined mapping Gp :Lq(0,πp) → C1[0,πp] which
assigns to the right-hand side f of (13.11) the solution x of this problem. This map-
ping is completely continuous. Moreover, if pn is a real sequence such that pn → p and
fn ∈ Lq(0,πp) is such that fn ⇀ f ∈ Lq(0,πp) (⇀ denotes the weak convergence), then
limn→∞Gpn(fn)=Gp(f ) as it is shown in [52].
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Now, for fixed p > 1, we define Tp :C[0,πp] → C[0,πp] by Tp(x)= x−Gp(λΦp(x))

with λ ∈ R. Obviously, the equation Tp(x) = 0 has a nontrivial solution if and only if
λ= λn(p)= (p− 1)np and this solution is xn(t)= α sinp(nt), α ∈ R, α �= 0.

The following statement concerns a homotopic deformation along the power p of the
Leray–Schauder degree of the mapping Tp. Note that the classical result of the linear theory
is that the Leray–Schauder degree of T2 with respect to the ball

B(0, r) :=
{
u ∈C[0,πp]: ‖u‖C = max

t∈[0,πp]
∣∣u(t)∣∣ � r

}
is

d
(
T2,B(0, r),0

) = (−1)n, (13.13)

where n is the number of the eigenvalues of (13.2) with p = 2 which are less than λ.

THEOREM 13.7. Let p > 1 be arbitrary, λ �= λn(p)= (p − 1)np, n ∈ N. Then for every
r > 0, the Leray–Schauder degree d(Tp,B(r,0),0) is well defined and satisfies

d
(
Tp,B(r,0),0

) = (−1)n, (13.14)

where n is the number of eigenvalues of (13.2) which are less than λ.

PROOF. Suppose that p � 2 and λ > λ1 = (p − 1), i.e., λ = (p − 1)(n + s)p for some
s ∈ (0,1) and n ∈ N. In the remaining cases the idea of the proof is the same. We will show
that d(Tp,B(r,0),0)= (−1)n for every r > 0.

LetΛ : [p,∞)→ R be defined byΛ(α)= [(n+s)πα/πp]α , where πα is given by (13.3)
with α instead of p. Obviously, πα depends continuously on α and hence Λ is continuous.
Next, define the mapping

T (α, x)= x −Gα

(
Λ(α)Φα(x)

)
.

The mapping G̃(α, x) := Gα(Λ(α)Φα(x)) is completely continuous and T (α, x) �= 0 for
all α ∈ [p,∞) (for details see [52, Theorem 4.1]). Hence, from the invariance of the degree
under homotopies and from (13.13) we obtain the required statement. �

THEOREM 13.8. Suppose that there exists n ∈ N such that the nonlinearity g in (13.1)
satisfies

λn � a(t) := lim inf|s|→∞
g(t, s)

Φ(s)
� lim sup

|s|→∞
g(t, s)

Φ(s)
=: b(t)� λn+1

uniformly on [0,πp], the first and the last inequalities being strict on a subset of positive
measure in [0,πp]. Then the BVP (13.1) has a solution.
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PROOF. Let ν ∈ (λn,λn+1). According to the previous theorem, it suffices to construct a
homotopic bridge connecting (13.1) with the problem

(
Φ(x ′)

)′ + νΦ(x)= 0, x(0)= 0 = x(πp).

The degree of the mapping associated with this problem has been computed in the previous
theorem. This homotopy is defined as follows

H(τ, x)=Gp

(
τνΦ(x)+ (1 − τ )g

(
t, x(t)

))
.

Using the standard method it can be proved that there exists r > 0 such that x −H(τ, x) �= 0
for x ∈ ∂B(r,0) for every τ ∈ [0,1] if r > 0 is sufficiently large. This proof goes by con-
tradiction. Supposing that there exists xn ∈ C[0,πp] and with ‖xn‖C → ∞ and τn ∈ [0,1]
such that xn = H(τn, xn), functions v and c are constructed (using essentially the same
construction as in the linear case) in such a way that the half-linear equation

(
Φ(v′)

)′ + c(t)Φ(v)= 0, v(0)= 0 = v(πp)

with λn � c(t) � λn+1 has a nontrivial solution. Since each of the previous inequalities
is strict on the set of the positive measure, we have a contradiction with the Sturmian
comparison theorem. �

13.6. Resonance problem

In the previous subsection, the nonlinearity was “situated” between two consecutive eigen-
values, i.e., it did nor “interacted” with the spectrum of the half-linear part. This situation is
usually regarded as a nonuniform nonresonance. Now we deal with the situation when the
nonlinearity is of the form λnΦ(x)+ g(x) with a bounded function g, so the nonlinearity
(perhaps, a better terminology would be “nonhalf-linearity”) is “around” an eigenvalue of
the half-linear part. This situation is referred to as the resonant case. The paper of Lan-
desman and Lazer [145] published in 1970 is the pioneering work along this line in the
linear case. Since that time, the conditions ensuring solvability of BVPs in resonance (the
so-called Landesman–Lazer conditions) have been extended in many directions. The next
theorem, taken from [80], establishes the Landesman–Lazer solvability conditions for the
half-linear BVP

(
Φ(x ′)

)′ + λnΦ(x)+ g(x)= h(t), x(0)= 0 = x(πp). (13.15)

It is supposed that there exist finite limits limx→±∞ g(x) = g(±∞). By ϕn we denote
the eigenfunction corresponding to the nth eigenvalue, i.e., λn = (p − 1)np , ϕn(t) =
αn sinp(nt), where αn > 0 is such that ‖ϕn‖Lp = 1.
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THEOREM 13.9. The boundary value problem (13.15) has a solution provided one of the
following two conditions is satisfied

g(∞)

∫ πp

0
ϕ+
n (t)dt + g(−∞)

∫ πp

0
ϕ−
n (t)dt

>

∫ πp

0
ϕn(t)h(t)dt

> g(∞)

∫ πp

0
ϕ−
n (t)dt + g(−∞)

∫ πp

0
ϕ+
n (t)dt,

or

g(∞)

∫ πp

0
ϕ+
n (t)dt + g(−∞)

∫ πp

0
ϕ−
n (t)dt

<

∫ πp

0
ϕn(t)h(t)dt

< g(∞)

∫ πp

0
ϕ−
n (t)dt + g(−∞)

∫ πp

0
ϕ+
n (t)dt,

where ϕ+
n = max{0, ϕn}, ϕ−

n = min{0, ϕn}.
We skip the proof of this statement because of its technical complexity. This proof is

based on a variant of the saddle point theorem and relies on the variational characterization
of eigenvalues of (13.2).

14. Quasilinear and related differential equations

In this section we change the notation which we used throughout the whole treatment. Till
now, q was the conjugate number of p, i.e., q = p

p−1 . In this section q is any real number
satisfying q > 1 and the conjugate number of p will be denoted by p∗. The main part of
this section will be devoted to the equation(

r(t)Φp(x
′)

)′ + c(t)Φq(x)= 0, Φp(s)= |s|p−2s, Φq(s) := |s|q−2s, (14.1)

we will briefly treat also some more general equations. The functions r, c satisfy the same
assumptions as in (0.1). Note that using the substitution rΦp(x ′)=: u, Equation (14.1) can
be written as the first order system of the form

x ′ = a1(t)|u|λ1 sgnu, u′ = a2(t)|x|λ2 sgnx (14.2)

with suitable functions a1, a2 and real constants λ1, λ2. The last system has been investi-
gated in several papers of Mirzov and the results are summarized in his book [178]. As a
sample of papers dealing with (14.1) and related equations we refer to [16,34,132,144,205]
and the references given therein.
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14.1. Equation (14.1) with constant coefficients

The results of this subsection are taken from [78]. First we focus our attention to the initial
value problem(

Φp(x
′)

)′ + λΦq(x)= 0, x(0)= a, x ′(0)= b. (14.3)

We will modify the method used in the definition of the half-linear sine function sinp and
of other half-linear trigonometric functions.

THEOREM 14.1. For any λ � 0, the initial value problem (14.3) has a unique solution
defined on the whole real line R.

PROOF. The crucial fact used in the proof is that

|x ′(t)|p
p∗ + λ

|x(t)|q
q

= |b|p
p∗ + λ

|a|q
q

(14.4)

as can be verified by differentiation. Clearly, if a = 0 = b, the last identity implies that
the trivial solution is the unique solution. If a = 0 or b = 0, supposing that there are two
different solutions x1, x2 satisfying the same initial condition, we find that the absolute
value of their difference z= |x1 −x2| satisfies a Gronwall-type inequality and hence z≡ 0.
This idea, slightly modified, applies also to the case when both a �= 0 and b �= 0. �

The remaining part of this subsection will be devoted to the initial value problem(
Φp(x

′)
)′ + λΦq(x)= 0, x(0)= 0, x ′(0)= α > 0. (14.5)

Denote by tα the first positive zero of the derivative x ′, i.e., x(t) > 0, x ′(t) > 0 for t ∈
(0, tα). Further denote by R := x(tα). Then using the same idea as above we have the
identity

(x ′(t))p

p∗ + λ
xq(t)

q
= λ

Rq

q
. (14.6)

Solving this equality for x ′ and integrating, we find

(
q

λp∗

) 1
p

∫ t

0

x ′(s)ds

(Rq − xq(s))
1
p

= t, (14.7)

which after a change of variables can be written as

t =
(

q

λp∗

) 1
p 1

R
q−p
p

∫ x
R

0

ds

(1 − sq )
1
p

. (14.8)
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For t ∈ [0, q2 ], let us set

arcsinpq t := q

2

∫ 2t
q

0

ds

(1 − sq)
1
p

, (14.9)

and note that this integral converges for t ∈ [0, q2 ]. Substituting t = τ
1
q in (14.9), we obtain

arcsinpq t = 1

2
B̃

(
1

q
,

1

p∗ ,
(

2t

q

)q)
, (14.10)

where

B̃

(
1

q
,

1

p∗ , y
)

=
∫ y

0
τ

1
q−1

(1 − τ )
− 1
p dτ

denotes the incomplete beta function. Next, substituting t = q
2 in (14.10), we define

πpq := 2 arcsinpq

(
q

2

)
= B

(
1

q
,

1

p∗

)
,

where B denoted the classical Euler beta function. When p = q , the definition of arcsinpq
and of πpq coincides with the definition of arcsinp and πp in Section 1.1.

The function arcsinpq : [0, q2 ] → [0, πpq2 ], so we can define first sinpq : [0, πpq2 ] → [0, q2 ]
as the inverse function of arcsinpq and then to define this function for t ∈ R in the obvious
way: sinpq t = sinpq(πpq − t) for t ∈ [πpq2 ,πpq ] and then extend this function over R as
odd and 2πpq periodic function. It is a simple matter to verify that sinpq is the unique
(global) solution of the initial value problem

(
Φp(x

′)
)′ + 2q

p∗qq−1Φq(x)= 0, x(0)= 0, x ′(0)= 1. (14.11)

Similarly as in case p = q we denote cospq t = d
dt

sinpq t . Then from (14.4) and (14.11)
we have

| cospq t|p +
(

2

q

)q
| sinpq t|q ≡ 1. (14.12)

From (14.8) and (14.9) we find that

t = 2

(λp∗)
1
p q

1
p∗
R

p−q
p arcsinpq

(
qx

2R

)
, (14.13)

and hence

x(t)= 2R

q
sinpq

(
(λp∗)

1
p q

1
p∗

2
R

q−p
p t

)
, (14.14)
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for all t ∈ R.
From (14.6) we can express R in term of α to obtain

R
q−p
p =

(
q

λp∗

) q−p
pq

α
q−p
q .

Substituting this expression into (14.14), and setting

Apq(α,λ) := (λp∗)
1
q q

1
q∗

2
α
q−p
q , q∗ = q

q − 1
,

we find that the solution of (14.5) is

x(t)= α

Apq(|α|, λ) sinpq
(
Apq

(|α|, λ)
t
)
, (14.15)

and this solution is τ (α)-periodic function with

τ (α)= 2πpq
Apq(α,λ)

= 4tα.

THEOREM 14.2. For any given α �= 0, the set of eigenvalues of the problem(
Φp(x

′)
)′ + λΦq(x)= 0, x(0)= 0 = x(T ) (14.16)

is given by

λ(α)=
(

2nπpq
T

)q |α|p−q

p∗qq−1
, n ∈ N, (14.17)

with the corresponding eigenfunctions

xn,α(t)= αT

nπpq
sinpq

(
nπpq

T
t

)
. (14.18)

PROOF. For a given α ∈ R, by imposing that x in (14.15) satisfies the boundary conditions
in (14.16), we obtain that λ is an eigenvalue of this problem if and only if

1

2

(
p∗) 1

q q
1
q∗ λ

1
q |α| q−pq T = nπpq, n ∈ N, (14.19)

and hence (14.17) follows. The expression for eigenfunctions follows then directly from
(14.15). �
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14.2. Emden–Fowler type equation

In this subsection we recall very briefly some results concerning asymptotic behavior of
the quasilinear equation (14.1) and of the associated system (14.2). As we have mentioned
before, the solution space (14.1) and of (14.2) is no longer even homogeneous, hence the
investigation of these equations and systems is more complicated than in case of half-linear
equations (0.1). Equation (14.1) and system (14.2) are sometimes called Emden–Fowler
type equation (system) since if p = 2 in (14.1), this equation reduces to Emden–Fowler
equation (1.3) mentioned in Section 1.1.

Recall that a solution x of (14.1) is called the singular solution of the first kind if x
becomes eventually trivial, i.e., there exists T ∈ R such that x �≡ 0 for t < T and x(t)= 0
for t � T , and a solution x is singular solution of the second kind if there exists a finite time
T such limt→T− |x(t)| = ∞. The set of singular solution of the first and second kind we
will denote by S1 and S2, respectively. A solution which is not singular is called proper.
Recall also the classification of nonoscillatory solutions of (0.1) which can be extended
under the assumption that c(t) �= 0 for large t also to (14.1)

M+ = {
x solution of (14.1): ∃tx � 0: x(t)x ′(t) > 0 fort > tx

}
,

M− = {
x solution of (14.1): ∃tx � 0: x(t)x ′(t) < 0 for t > tx

}
.

Results of [43,44,178] imply the following statement.

THEOREM 14.3. Suppose that r(t) > 0, c(t) < 0 for large t .
(i) If p = q , i.e., (14.1) reduces to (0.1), then S1 = ∅, S2 = ∅, M− �= ∅ and M+ �= ∅.

(ii) If p < q , then S1 = ∅, S2 �= ∅, M− �= ∅.
(iii) If p > q , then S1 �= ∅, S2 = ∅ and M+ �= ∅.

In Section 6 we have seen that certain integrals of functions r, c play an important role in
the asymptotic classification of nonoscillatory solutions of (0.1). As an illustration of the
extension of these results to (14.1) we give two statements. The first one is proved in [33]
using the Schauder–Tychonov fixed point theorem, while the second one follows from the
results of Kvinikadze [143], see also [33].

THEOREM 14.4. Suppose that r(t) > 0, c(t) < 0 for large t ,
∫ ∞

r1−p∗
(t)dt <∞ and∫ ∞

Φq

( ∫ ∞

t

r1−p∗
(s)ds

)
dt <∞,

where Φq(s)= |s|q−1 sgn s. Then there exists at least one solution x of (14.1) in the class
M− such that limt→∞ x(t)= 0 and

lim
t→∞

x(t)∫ ∞
t
r1−p∗

(s)ds
= �x, 0< �x <∞.
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THEOREM 14.5. Suppose that r(t) > 0, c(t) < 0 for large t , p < q and∫ ∞
r1−p∗

(t)Φp∗
( ∫ t ∣∣c(s)∣∣ ds

)
dt <∞

or ∫ ∞ ∣∣c(t)∣∣Φq( ∫ t

r1−p∗
(s)ds

)
dt <∞.

Then M+ contains a one parametric family of the so-called strongly increasing solutions,
i.e., solutions satisfying

lim
t→∞x(t)= ∞, lim

t→∞ r(t)Φp
(
x ′(t)

) = ∞ (14.20)

and a one parametric family of the so-called positive weakly increasing solutions, i.e.,
positive solutions where both limits in (14.20) exists finitely.

Another results concerning asymptotic properties of nonoscillatory solutions of (14.1)
and of more general equations of this type can be found in [34,35,138,141,180,205,210,
218].

14.3. More about quasilinear equations

The results of this subsection can be found in [120] and concern the equation(
Φ(x ′)

)′ + f (t, x)= 0 (14.21)

under the assumptions that the function f satisfies sgnf (t, x)= sgnx for t ∈ [t0,∞).

THEOREM 14.6. All proper solutions of (14.21) are oscillatory if one of the following
three conditions is satisfied:

(i) for all δ > 0∫ ∞
inf
δ�|y|

∣∣f (t, y)∣∣dt = ∞,

(ii) for some 0< λ< p− 1 and all δ > 0∫ ∞
tλ inf
δ�|y|

f (t, y)

|y|p−1
dt = ∞,

(iii) for all δ, δ′ with δ′ > δ > 0∫ ∞
inf

δ�|y|�δ′
∣∣f (t, y)∣∣ dt = ∞,
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and there exists a positive continuous function ϕ satisfying
∫ ∞

ϕ(y)dy = ∞, such that
|f (t, y)| � ϕ(|y|) for large t and large |y|.

PROOF. To illustrate ideas used in the proof, we prove the part (ii), the proof of the re-
maining two statements is analogical. Suppose, by contradiction, that (14.21) has a proper
solution x which is positive for large t (if x is negative, we proceed analogically). Then
from (14.21) we have that also x ′(t) > 0 and we put w(t)= Φ(x ′)

Φ(x)
(compare the remark (ii)

in Section 9.1). Then w satisfies the Riccati-type equation

w′ + (p− 1)|w|p∗ + f (t, x(t))

xp−1(t)
= 0, (14.22)

recall that p∗ denotes the conjugate number of p. Multiplying (14.22) by tλ and integrating
over [t0, t], t0 sufficiently large, we have

tλw(t)− λ

∫ t

t0

sλ−1w(s)ds + (p− 1)
∫ t

t0

sλ
(
w(s)

)p∗
ds

+
∫ t

t0

sλ
f (s, x(s))

xp−1(s)
ds � c, (14.23)

where c > 0 is a real constant.
Suppose first that

∫ ∞
sλ−1w(s)ds <∞. Then it follows from (14.23) that∫ t

t0

sλ
f (s, x(s))

xp−1(s)
ds � c+ λ

∫ t

t0

sλ−1w(s)ds,

and taking the limit as t → ∞, we get∫ ∞

t0

sλ
f (s, x(s))

xp−1(s)
ds <∞.

However, this is impossible since assumptions of our theorem imply that for t0 sufficiently
large ∫ ∞

t0

sλ
f (s, x(s))

xp−1(s)
ds �

∫ ∞

t0

sλ inf
δ�x

f (s, x)

xp−1
ds = ∞, (14.24)

where δ = x(t0) > 0.
Suppose next that∫ ∞

sλ−1w(s)ds = ∞. (14.25)

Then, by (14.23),
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∫ t

t0

sλ
f (s, x(s))

xp−1(s)
ds � c+ λ

∫ t

t0

sλ−1w(s)ds − (p− 1)
∫ t

t0

sλ
∣∣w(s)∣∣p∗

ds.

(14.26)

Note that the second integral in Equation (14.26) is estimated by means of the Hölder
inequality as follows∫ t

t0

sλ−1w(s)ds =
∫ t

t0

s(λ−p)/psλ(p−1)/pw(s)ds

�
( ∫ t

t0

sλ−p ds

) 1
p

( ∫ t

t0

sλwp∗(s)ds

) 1
p∗

�
(

t
λ−p+1
0

p− 1 − λ

) 1
p

( ∫ t

t0

sλwp
∗
(s)ds

) 1
p∗

= (t
λ−p+1
0 /(p− 1 − λ))

1
p

(
∫ t
t0
sλwp

∗
(s)ds)

1
p

∫ t

t0

sλwp
∗
(s)ds. (14.27)

Since (14.25) implies that∫ t

t0

sλwp
∗
(s)ds→ ∞, as t → ∞,

we see from (14.27) that there exists t1 � t0 such that∫ t

t0

sλ−1w(s)ds � p− 1

λ

∫ t

t0

sλwp
∗
(s)ds, t � t1.

Using this inequality in (14.26) we conclude that∫ ∞

t0

sλ
f (s, x(s))

xp−1(s)
ds � c

in contradiction to (14.24) which holds also in this case. �

15. Partial differential equations with p-Laplacian

Similarly to the boundary value problems for half-linear ordinary differential equations,
also partial differential equations with p-Laplacian are treated in many papers. Recall that
the p-Laplacian is the partial differential operator

�pu(x) := div
(‖∇u(x)‖p−2∇u(x)), x = (x1, . . . , xN) ∈ RN, (15.1)
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where div := ∑N
k=1

∂
∂xk

is the usual divergence operator and ∇u(x) = ( ∂u
∂x1
, . . . , ∂u

∂xN
) is

the Hamilton nabla operator.

15.1. Dirichlet BVP with p-Laplacian

In this subsection we deal with the properties of the first eigenvalue and the associated
eigenfunction of the Dirichlet boundary value problem{

�pu+ λΦ(u)= 0, x ∈Ω ⊂ Rn,

u(x)= 0, x ∈ ∂Ω ,
(15.2)

where Ω is a bounded domain in Rn.
The solution of problem (15.2) is understood in the weak sense; we say that λ is an

eigenvalue if there exists a function u ∈W 1,p
0 (Ω), u �≡ 0, such that∫

Ω

‖∇u‖p−2〈∇u,∇η〉dx = λ

∫
Ω

Φ(u)η dx, (15.3)

for every η ∈W 1,p
0 (Ω), where 〈 · , · 〉 denotes the scalar product in RN . The function u is

called the eigenfunction.
The first eigenvalue λ1 = λ1(Ω) is obtained as the minimum of the Rayleigh quotient

λ1 = inf
v

∫
Ω ‖∇v‖p dx∫
Ω |v|p dx

, (15.4)

where the infimum is taken over all v ∈W 1,p
0 Ω , v �≡ 0. If u realizes the infimum in (15.4),

so does also |u|, this leads immediately to the following statement.

THEOREM 15.1. The eigenfunction u associated with the first eigenvalue λ1 does not
change its sign in Ω . Moreover, if u� 0 then actually u > 0 in the interior of Ω .

PROOF. The statement concerning the positivity of u follows from the Harnack inequality
[213, p. 724]. �

In the proof of the main result of this subsection we will need the following inequalities,
for the proof see [160].

LEMMA 15.1. Let w1,w2 ∈ RN .
(i) If p � 2, then

‖w2‖p � p‖w1‖p
〈
w1, (w2 −w1)

〉 + ‖w2 −w1‖p
2p−1 − 1

. (15.5)
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(ii) If 1<p < 2, then

‖w2‖p � p‖w1‖p
〈
w1, (w2 −w1)

〉 +C(p)
‖w2 −w1‖p

(‖w1‖ + ‖w2‖)2−p , (15.6)

where C(p) is a positive constant depending only on p.

The main statement of this subsection reads as follows.

THEOREM 15.2. The first eigenvalue of (15.2) is simple and isolated for any bounded
domain Ω ⊂ RN .

PROOF. Here we follow Lindqvist’s [160] modification of the original proof of Anane [11]
where it is supposed that the boundary ∂Ω is of the Hölder class C2,α . This assumption
on the boundary of Ω is removed in Lindqvist’s proof by introducing the functions u+ ε,
v + ε instead of u,v, respectively (used by Anane).

Suppose that u,v are eigenfunctions of (15.3) with λ = λ1. Let ε > 0 and denote vε =
v + ε, uε = u+ ε. Further, let η= uε − v

p
ε u

1−p
ε , η̃= vε − u

p
ε v

1−p
ε . Then η, η̃ ∈W 1,p

0 (Ω)

and

∇η=
{

1 + (p− 1)

(
vε

uε

)p}
∇u− p

(
vε

uε

)p−1

∇v.

A similar formula we have for ∇η̃. Inserting the test functions η and η̃ into (15.3) and
adding both equations, we get

λ1

∫
Ω

[
up−1

u
p−1
ε

− vp−1

v
p−1
ε

](
upε − vpε

)
dx

=
∫
Ω

[{
1 + (p− 1)

(
vε

uε

)p}
‖∇uε‖p +

{
1 + (p− 1)

(
uε

vε

)p}
‖∇vε‖p

]
dx

−
∫
Ω

[
p

(
vε

uε

)p−1

‖∇uε‖p−2〈∇uε,∇vε〉

+ p

(
uε

vε

)p−1

‖∇vε‖p−2〈∇vε,∇uε〉
]

dx

=
∫
Ω

(
upε − vpε

)(‖∇ lguε‖p − ‖∇ lgvε‖p
)

dx

−
∫
Ω

pvpε ‖∇ lguε‖p−2〈∇ lguε, (∇ lgvε − ∇ lguε)
〉
dx

−
∫
Ω

pupε ‖∇ lgvε‖p−2〈∇ lgvε, (∇ lguε − ∇ lg vε)
〉
dx (15.7)

and the last term is nonpositive by the inequality given in Lemma 15.1.
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It is obvious that

lim
ε→0+

∫
Ω

[
up−1

u
p−1
ε

− vp−1

v
p−1
ε

](
upε − vpε

)
dx = 0. (15.8)

Let us first consider the case p � 2. According to inequality (15.5) we have

0 � 1

2p−1 − 1

∫
Ω

(
1

v
p
ε

+ 1

u
p
ε

)
‖vε∇uε − uε∇vε‖p dx

� −λ1

∫
Ω

[(
u

uε

)p−1

−
(
v

vε

)p−1](
upε − vpε

)
dx

for every ε > 0 (here we have used inequality (15.5) with w1 = ∇ lguε , w2 = ∇ lgvε and
vice versa). In view of (15.8), taking a sequence εk → 0+ as k → ∞ and using Fatou’s
lemma in the previous computations we finally arrive to the conclusion that v∇u = u∇v
a.e. in Ω . Hence there is a constant κ such that u = κv a.e. in Ω and by continuity this
equality holds everywhere in Ω .

Now we turn the attention to the case 1< p < 2 where the situation is similar as in the
previous case. Applying the inequality (15.6) in (15.7) we obtain

0 � C(p)

∫
Ω

(uεvε)
p

(
upε + vpε

) ‖vε∇uε − uε∇vε‖2

(vε‖∇uε‖ + uε‖∇vε‖)2−p dx

� −λ1

∫
Ω

[(
u

uε

)p−1

−
(
v

vε

)p−1](
upε − vpε

)
dx

for every ε > 0. Using (15.8), we again arrive at the desired dependence u= κv for some
constant κ .

As for the isolation of the first eigenvalue λ1, we proceed as follows. Since λ1 is defined
as the minimum of the quotient (15.4), it is isolated from the left. If v is an eigenfunction
associated with an eigenvalue λ > λ1 then v changes its sign in Ω . In fact, suppose that v
does not change its sign in Ω . Then using the same method as in the previous part of the
proof we get (for details we refer to [11])

0 �
∫
Ω

(λ1 − λ)
(
up − vp

)
dx = (λ1 − λ)

(
1

λ1
− 1

λ

)
what is a contradiction.

Now, suppose, by contradiction, that there exists a sequence of eigenvalues λn → λ1+
and let un be the sequence of associated eigenfunctions such that ‖un‖ = 1. This se-
quence contains a weakly convergent subsequence in W

1,p
0 (Ω), denoted again un, and

hence strongly convergent in Lp(Ω). Since un = −�−1
p (Φ(un)) (this is a usual argument

in the theory of partial equations with p-Laplacian, we refer, e.g., to the monograph [103]),
the sequence un converges strongly in W 1,p

0 (Ω) to a function of the W 1,p
0 norm equal to
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1 associated with λ1. However, by the Jegorov theorem, the sequence un converges uni-
formly to a function u except for a set of arbitrarily small Lebesgue measure. However, this
is a contradiction with the fact that the eigenfunction associated with the first eigenvalue
does not change its sign in Ω . �

15.2. Picone’s identity for equations with p-Laplacian

Picone’s identity as presented in this subsection was proved in [118]. However, this identity
can be found in various modifications (sometimes implicitly) also in other papers, e.g. in
[9,10,83].

Consider a pair of partial differential operators with p-Laplacian

l[u] := div
(
r(x)‖∇u‖p−2∇u) + c(x)Φ(u)= 0

and

L[u] := div
(
R(x)‖∇u‖p−2∇u) +C(x)Φ(u)= 0.

It is assumed that r, c,R,C are defined in some bounded domain G⊂ RN with piecewise
smooth boundary ∂G and that r,R ∈C1(�G) are positive functions in �G, and c,C ∈C(�G).
The domain Dl (G) of l is defined to be the set of all functions of the class C1(�G) with
the property that r‖∇u‖p−2∇u ∈ C1(G) ∩ C(�G). The domain DL(G) of L is defined
similarly.

The proof of the below given N -dimensional extension of Picone’s identity is similar to
that given in Section 1.

THEOREM 15.3. Let u ∈Dl(G), v ∈DL(G) and v(x) �= 0 for x ∈G. Then

div

(
u

Φ(v)

[
Φ(v)r(x)‖∇u‖p−2∇u−Φ(u)R(x)‖∇v‖p−2v

])
= [

r(x)−R(x)
]‖∇u‖p + [

C(x)− c(x)
]|u|p

+R(x)

[
‖∇u‖p + (p− 1)

∥∥∥∥uv∇v
∥∥∥∥p − p

∥∥∥∥uv∇v
∥∥∥∥p−2

(∇u)
(
u

v
∇v

)]
+ u

Φ(v)

[
Φ(v)l[u] −Φ(u)L[v]].

Taking r =R, c= C in the previous theorem, and using the fact that if v is a solution of

l[v] = 0 for which v(x) �= 0 in G, then the function w = r(x)‖∇v‖p−2∇v
Φ(v)

is a solution of the
Riccati-type partial differential equation

divw+ c(x)+ (p− 1)r1−q(x)‖w‖q = 0, q = p

p− 1
,
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we have Picone’s identity in the special form

r(x)‖∇u‖p − c(x)|u|p
= div

(
w(x)|u|p) + pr1−q (x)P̃

(
rq−1(x)∇u,w(x)Φ(u)),

where

P̃ (x, y)= ‖x‖p
p

− 〈x, y〉 + ‖y‖q
q

.

As a consequence of Theorem 15.3 we have the following extension of the Leighton
comparison theorem. The proof of this statement is again similar to the “ordinary” case,
compare Section 8.1.

THEOREM 15.4. Suppose that the boundary ∂G is of the class C1. If there exists a non-
trivial solution u ∈Dl (G) of l[u] = 0 such that u= 0 on ∂G and∫

G

{[
R(x)− r(x)

]‖∇u‖p − [
C(x)− c(x)

]|u|p}
dx � 0,

then every solution v ∈ DL(G) of L[v] = 0 must vanish at some point of G, unless v is a
constant multiple of u.

Another consequence of Picone’s identity is the following Sturmian separation theorem.

THEOREM 15.5. Suppose that G is the same as in the previous theorem and there exists
a nontrivial solution u ∈ Dl(G) of l[u] = 0 with u = 0 on ∂G. Then every solution v of
l[u] = 0 must vanish at some point of G, unless v is a constant multiple of u.

REMARK 15.1. (i) There exist numerous papers dealing with various oscillation and spec-
tral properties of PDEs with p-Laplacian. We recall here at least the papers [12,18,47,48,
70,75,80], but this is only a very limited sample of papers where equations with the p-
Laplacian are treated.

(ii) If we study properties of solutions of PDEs with p-Laplacian

div
(‖∇u‖p−2∇u) + c(x)Φ(u)= 0 (15.9)

in a radially symmetric domain G= BR = {x ∈ RN : ‖x‖ �R} with a radially symmetric
potential c, i.e., c(x)= b(‖x‖) for some b : R+ → R, then one can look for solutions in the
radial form u(x)= v(r)= v(‖x‖) and then v solved the ODE of the form (0.1)

d

dr

[
rN−1Φ

(
d

dr
v

)]
+ rN−1b(r)= 0.

This method of the investigation of oscillatory properties of (15.9) has been used, e.g., in
[70,136], see also the references given therein.
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15.3. Second eigenvalue of p-Laplacian

In this subsection we briefly mention the results of the paper [13] which deals with the
variational description of the second eigenvalue of p-Laplacian and with a nodal domain
property of the associated eigenfunction. We again suppose that Ω is a bounded domain in
Rn.

We consider the eigenvalue problem (15.2) and we introduce the functionals

A(u)= 1

p

∫
Ω

‖∇u‖p dx, B(u)= 1

p

∫
Ω

|u|p dx,

F (u)=A2(u)−B(u).

It is clear that the critical point u of F associated to a critical value c (i.e., F(u) = c and
F ′(u)= 0) is an eigenfunction associated to the eigenvalue

λ= 1

2
√−c .

Conversely, if u �= 0 is an eigenfunction associated to a positive eigenvalue λ, v =
(2λA(u))−

1
p u will be also an eigenfunction associated to λ = 1

2A(v) and v is a critical

point of F associated to the critical value c= − 1
4λ2 .

Let us consider the sequence {cn}n∈N defined by

cn = inf
K∈An

sup
v∈K

F(v), (15.10)

where

An = {
K ∈W 1,p

0 (Ω): K symmetrical compact and γ (K)� n
}

and γ (K) denotes the Krasnoselskii genus of K , i.e., the minimal integer n such that there
exists a continuous odd mapping ofK → Rn\{0}. It can be proved (using the Palais–Smale
condition for F ) that the sequence cn consists of the critical values of F and cn → 0−. The
sequence of eigenvalues λn defined by

λn = 1

2
√−cn (15.11)

is positive, nondecreasing and tends to ∞. Note that it is an open problem whether (15.11)
describes all eigenvalues of (15.2) (in contrast to the scalar case N = 1, compare Sec-
tion 13.2).

We denote by Z(u)= {x ∈Ω : u(x)= 0} the so-called nodal contour of the function u
and let N(u) denote the number of components (the so-called nodal domains) ofΩ \Z(u).
For each eigenfunction u associated to λ we define

N(λ)= max
{
N(u): u is a solution of (15.2)

}
.
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Now, at the end of this subsection, we present without proof the main result of [13].
In contrast to the scalar case, it is not known whether (15.10) and (15.11) describe all
eigenvalues of (15.2). The next statement shows, among others, that the second eigenvalue
λ2 can be characterized by (15.11).

THEOREM 15.6. For each eigenvalue λ of (15.2) λN(λ) � λ. Moreover, the value λ2 given
by (15.11) satisfies

λ2 = inf
{
λ: λ positive eigenvalue of (15.2), λ > λ1

}
.

15.4. Equations involving pseudolaplacian

Another partial differential equation which reduces to half-linear equation (9.1) in the “or-
dinary” case is the partial differential equation with the so-called pseudolaplacian

�̃pu :=
N∑
i=1

∂

∂xi
Φ

(
∂u

∂xi

)
.

We consider the partial differential equation

�̃pu+ c(x)Φ(u)= 0 (15.12)

and the associated energy functional

Fp(u;Ω) : =
∫
Ω

{
N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣p − c(x)|u|p

}
dx

=
∫
Ω

{‖∇u‖pp − c(x)|u|p}
dx,

where ‖x‖p = (
∑N

i=1 |xi |p)1/p denotes the p-norm in RN . Another important object as-
sociated with (15.12) is a Riccati-type equation which we obtain as follows. Let u be a
solution of (15.12) which is nonzero in Ω and denote

v :=
(
Φ

(
∂u

∂x1

)
, . . . ,Φ

(
∂u

∂xn

))
, w := v

Φ(u)
.

Then, using the fact that (15.12) can be written in the form divv = −c(x)Φ(u), we have

divw = 1

Φ2(u)

{
Φ(u)divv −Φ ′(u)〈∇u,v〉}

= −c(x)− (p− 1)
|u|p−2

|u|2p−2

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣p
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= −c(x)− (p− 1)
N∑
i=1

∣∣∣∣Φ(
∂u/∂xi

u

)∣∣∣∣q
= −c(x)− (p− 1)‖w‖qq ,

where 〈·, ·〉 denotes the usual scalar product in RN , q := p
p−1 is the conjugate exponent

of p and ‖x‖q = (
∑N

i=1 |xi |q)1/q denotes the q-norm in RN . Consequently, the vector
variable w satisfies the Riccati-type equation

divw+ c(x)+ (p− 1)‖w‖qq = 0. (15.13)

For Equation (15.12) we can establish oscillation theory and theory for eigenvalue prob-
lems similar to that for classical p-Laplacian. An important role in this theory is played by
the following Picone-type identity. For its proof and other results concerning PDEs with
pseudolaplacian we refer to [25,26,28,62] and the reference given therein.

THEOREM 15.7. Let w be a solution of (15.13) which is defined in Ω̄ and u ∈W 1,p(Ω).
Then

Fp(u;Ω)=
∫
∂Ω

∣∣u(x)∣∣pw(x)dS

+ p

∫
Ω

{‖∇u(x)‖pp
p

− 〈∇u(x),Φ(
u(x)

)
w(x)

〉
+ ‖w(x)‖qq |Φ(u(x))|q

q

}
dx.

Moreover, the last integral in this formula is always nonnegative, it equals zero only if
u �= 0 in Ω̄ and

w = 1

Φ(u)

(
Φ

(
∂u

∂x1

)
, . . . ,Φ

(
∂u

∂xn

))
.

16. Half-linear difference equations

In the last two decades, a considerable attention has been devoted to the oscillation theory
of the Sturm–Liouville difference equation

�(rk�xk)+ ckxk+1 = 0, (16.1)

where �xk = xk+1 − xk is the usual forward difference, r, c are real-valued sequences and
rk �= 0. Oscillation theory parallel to that for the Sturm–Liouville differential equation (1.1)
has been established and almost all oscillation and nonoscillation criteria have now their
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discrete counterparts for (16.1). We refer to monographs [1,6,124] for general background.
Basic tools of the linear discrete oscillation theory are the discrete quadratic functional

Fd(x;0,N)=
N∑
k=0

[
rk(�xk)

2 − ckx
2
k+1

]
,

the Riccati difference equation (related to (16.1) by the substitution w = r�x
x

)

�wk + ck + w2
k

rk +wk
= 0 (16.2)

and the link between them, the (reduced) discrete Picone identity

Fd(x;0,N)=wky
2
k

∣∣N+1
k=0 +

N∑
k=0

1

rk +wk
(rk�xk −wkxk)

2,

w being a solution of the Riccati equation, which is defined for k = 0, . . . ,N + 1.
A natural idea, suggested by similarity of oscillation theories for linear equation (1.1)

and half-linear equation (0.1), is to look for half-linear extension of these results and to
establish a discrete half-linear oscillation theory parallel to that for (0.1). Therefore, the
subject of this section is the half-linear difference equation

�
(
rkΦ(�xk)

) + ckΦ(xk+1)= 0, (16.3)

where r, c are real-valued sequences and rk �= 0. We will see that the results for (16.3) are
similar to those for (0.1), but the proofs are sometimes more difficult. The reason is that the
calculus of finite differences and sums is sometimes more cumbersome than the differential
and integral calculus. For example, we have no discrete analogue of the chain rule for the
differentiation of the composite function. On the other hand, there are some points where
the discrete calculus is “easier”, for example, if an infinite series

∑∞
ak is convergent,

we have limn→∞ an = 0, while the convergence of the integral
∫ ∞

f (t)dt gives generally
no information about limt→∞ f (t). Most of the results of this section are taken from the
papers of Řehák [194–199].

16.1. Roundabout theorem for half-linear difference equations

The basic results of the discrete half-linear oscillation theory are established in the series
of papers [194–199]. Here we present principal results of this theory.

First of all, let us note that in contrast to the continuous case, there is no problem with
the existence and uniqueness for solutions of (16.3). Expanding the forward differences,
this equation can be written as

rk+1Φ(xk+2 − xk+1)− rkΦ(xk+1 − xk)+ ckΦ(xk+1)= 0
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and hence

xk+2 = xk+1 +Φ−1
(

1

rk+1

[
rkΦ(xk+1 − xk)− ckΦ(xk+1)

])
.

This means that given the initial conditions x0 = A,x1 = B , we can compute explicitly all
other xk . Moreover, given any N ∈ N, the values x2, . . . , xN depend continuously (in the
norm of RN−1) on x0, x1. Let us also emphasize that general discrete oscillation theory can
be established under the mere assumption rk �= 0, while we have to suppose that r(t) > 0
in the continuous case.

Oscillatory properties of (16.3) are defined using the concept of generalized zero points.
We say that an interval (m,m+ 1] contains a generalized zero of a solution x of (16.3) if
xm �= 0 and xmxm+1rm � 0. If rm > 0, a generalized zero of x is just the zero of x at m+ 1
or the sign change xmxm+1 < 0.

THEOREM 16.1. The following statements are equivalent:
(i) Equation (16.3) is disconjugate on [0,N], i.e., the solution x̃ given by the initial

conditions x̃0 = 0, r0Φ(x̃1)= 1 has no generalized zero in (0,N + 1].
(ii) There exists a solution of (16.3) having no generalized zero in [0,N + 1].

(iii) There exists a solution w of the Riccati-type difference equation (related to (16.3)
by the substitution wk = rkΦ(�xk/xk))

�wk + ck +wk

(
1 − rk

Φ(Φ−1(rk)+Φ−1(wk))

)
= 0 (16.4)

which is defined for every k ∈ [0,N + 1] and satisfies rk +wk > 0 for k ∈ [0,N].
(iv) The discrete p-degree functional

Fd(y;0,N)=
N∑
k=0

[
rk|�yk|p − ck|yk+1|2

]
is positive for every nontrivial y = {yk}N+1

k=0 satisfying y0 = 0 = yN+1.

PROOF. (i) ⇒ (ii): Consider the solution x of (16.3) given by the initial condition x0 = ε,
x1 = Φ−1(1/r0), where ε > 0 is sufficiently small. Then according to the above men-
tioned continuous dependence of x2, . . . , xN+1 on x0, x1 we still have rkxkxk+1 > 0,
k = 1, . . . ,N , when ε > 0 is sufficiently small, and r0x0x1 > 0 as well, i.e., the solution x
has no generalized zero in [0,N + 1].

(ii) ⇒ (iii): Let x be a solution of (16.3) having no generalized zeros in [0,N + 1], and
let wk = rkΦ(�xk)

Φ(xk)
. Then

�wk = �(rkΦ(�xk))Φ(xk)− rkΦ(�xk)(Φ(xk+1)−Φ(xk))

Φ(xk+1)Φ(xk)

= −ck −wk + rkΦ(�xk)

Φ(xk +�xk)
= −ck −wk + rkΦ(�xk)

Φ(xk)Φ(1 + �xk
xk
)
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= −ck −wk

(
1 − 1

Φ(1 +Φ−1(
wk
rk
))

)

= −ck −wk

(
1 − rk

Φ(Φ−1(rk)+Φ−1(wk))

)
.

Moreover, rkxkxk+1 > 0 ⇔ rkΦ(xk)Φ(xk+1) > 0 and

rkΦ(xk)Φ(xk+1) = rkΦ(xk)Φ(xk +�xk)

= Φ2(xk)Φ

(
Φ−1(rk)+Φ−1(rk)

�xk

xk

)
= Φ2(xk)Φ

(
Φ−1(rk)+Φ−1(wk)

)
,

hence rkxkxk+1 > 0 if and only if Φ−1(rk)+Φ−1(wk) > 0, i.e., if and only if rk +wk > 0.
(iii) ⇒ (iv): Let w be a solution of (16.4) such that rk +wk > 0, k = 0, . . . ,N . Then

wk+1 = −ck + rkwk

Φ(Φ−1(rk)+Φ−1(wk))

and for any sequence y = {yk}N+1
k=0 we have

�
(
wk|yk|p

) = wk+1|yk+1|p −wk|yk|p

= −ck|yk+1|p + rkwk|yk +�yk|p
Φ(Φ−1(wk)+Φ−1(rk))

−wk|yk|p + rk|�yk|p − rk |�yk|p.

Using the fact that y0 = 0 = yN+1, the summation of the last equality from k = 0 to k =N

gives

Fd(y;0,N)= rk|�yk|p − rkwk|yk +�yk|p
Φ(Φ−1(wk)+Φ−1(rk))

−wk|yk|p. (16.5)

The right-hand side of (16.5) is always nonnegative and it is zero if and only if wk =
rkΦ(�yk/yk) (see [195]), but this means that y ≡ 0 since y0 = 0. Hence Fd(y;0,N) > 0
for every nontrivial y with y0 = 0 − yN+1.

(iv) ⇒ (i): Suppose that Fd > 0 and (16.3) is not disconjugate in [0,N + 1], i.e., the
solution x given by the initial condition x0 = 0, x1 =Φ−1(1/r0) has a generalized zero in
the interval [0,N + 1], i.e., rmxmxm+1 < 0 or xm+1 = 0 for some m ∈ {1, . . . ,N}. Define
y = {yk}N+1

k=0 as follows

yk =
{
xk, k = 0, . . . ,m,

0, k =m+ 1, . . . ,N + 1.
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Then we have (using summation by parts applied to Fd(x;0,m− 1))

Fd(y;0,N)= Fd(x;0,m− 1)+ [
rm|�ym|p] = rkΦ(�xk)xk

∣∣m
0 + rm|xm|p

= |xm|p
[
rm
Φ(�xm)

Φ(xm)
+ rm

]
= |xm|p[wm + rm] � 0

since wm + rm � 0 if and only if rmxmxm+1 � 0 as we have shown in the previous part of
this proof. �

REMARK 16.1. (i) The previous theorem shows that (16.3) can be classified as oscillatory
or nonoscillatory in the same way as in the continuous case. Equation (16.3) is said to be
nonoscillatory if there exists N ∈ N such that (16.3) is disconjugate on [N,M] for every
M >N , in the opposite case (16.3) is said to be oscillatory.

(ii) Theorem 16.1 also shows that not only Sturmian separation, but also Sturmian com-
parison theorem extends verbatim to (16.3). In particular, if 0 �= Rk � rk and Ck � ck for
large k and the equations

�
(
RkΦ(�yk)

) +CkΦ(yk+1)= 0

is nonoscillatory, then (16.3) is also nonoscilatory. The argument in the proof of this state-
ment is the same as that for (0.1).

16.2. Discrete Leighton–Wintner criterion

In this criterion, similarly as in the continuous case, Equation (16.3) is viewed as a pertur-
bation of the one-term equation

�
(
rkΦ(�xk)

) = 0. (16.6)

In accordance with the continuous case, we need (16.6) to be nonoscillatory in this ap-
proach, so we suppose that rk > 0 for large k, otherwise this equation is oscillatory—each
sign change of rk is a generalized zero of the constant solution xk ≡ 1.

THEOREM 16.2. Suppose that rk > 0 for large k,

∞∑
r

1−q
k = ∞ and

∞∑
ck = ∞. (16.7)

Then (16.3) is oscillatory.

PROOF. We present here the complete proof in order to show that its idea is exactly the
same as in the continuous case. Let N ∈ N be arbitrary. Define the class of sequences

D(N) := {
y = {yk}∞k=N, yN = 0, ∃M >N : yk = 0 for k �M

}
(16.8)
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and for N < n<m<M (which will be determined later) define a sequence y ∈D(N) as
follows

yk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, k =N ,( ∑k−1
j=N r

1−q
j

)( ∑n−1
j=N r

1−q
j

)−1
, N + 1 � k � n,

1, n+ 1 � k �m− 1,( ∑M−1
j=k r

1−q
j

)( ∑M−1
j=m r

1−q
j

)−1
, m� k �M − 1,

0, k �M .

Then we have

Fd(y;N,∞)=
∞∑
k=N

[
rk |�yk|p − ck|yk+1|p

] =
M−1∑
k=N

[
rk|�yk|p − ck|yk+1|p

]

=
(
n−1∑
k=N

+
m−1∑
k=n

+
M−1∑
k=m

)[
rk|�yk|p − ck|yk+1|p

]

=
(
n−1∑
k=N

r
1−q
k

)−1

−
n−1∑
k=N

ck|yk+1|p −
m−1∑
k=n

ck −
M−1∑
k=m

ck|yk+1|p

+
(
M−1∑
k=m

r
1−q
k

)−1

.

Now, using the discrete version of the second mean value theorem of the summation cal-
culus (see, e.g., [57]), there exists m̃ ∈ [m− 1,M − 1] such that

M−1∑
k=m

ck|yk+1|p �
m̃∑
k=m

ck.

Let n >N be fixed. Since (16.7) holds, for every ε > 0 there exist M >m> n such that

m̃∑
k=n

ck >Fd(y;N,n− 1)+ ε whenever m̃ > m and

(
M−1∑
k=m

r
1−q
k

)−1

< ε.

Consequently, we have

Fd(y;N,∞)� Fd(y;N,n− 1)−
m̃∑
k=n

ck +
(
M−1∑
k=m

r
1−q
k

)−1

< 0

what we needed to prove. �
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In Section 9 we have presented an alternative proof of the continuous Leighton–Wintner
criterion—based on the Riccati technique. Next we show difficulties in the attempt to fol-
low this idea also in the discrete case. The “Riccati” proof goes by contradiction. Suppose
that (16.7) holds and (16.3) is nonoscillatory, i.e., there exists a solution of (16.4) satisfy-
ing rk + wk > 0 for large k. The summation of (16.4) from N to k − 1, where N,k are
sufficiently large, we have

wk = wN −
k−1∑
j=N

cj −
k−1∑
j=N

wj

(
1 − rj

Φ(Φ−1(rj )+Φ−1(wj ))

)

� −
k−1∑
j=N

wj

(
1 − rj

Φ(Φ−1(rj )+Φ−1(wj ))

)
=:Gk.

In the continuous case we obtained the analogous inequality

w(t)� −(p− 1)
∫ t

T

r1−q(s)
∣∣w(s)∣∣q ds =:G(t)

which leads to the inequality

G′(t)
Gq(t)

� r1−q∫ t
T
r1−q(s)ds

(16.9)

and integrating this inequality we got
∫ ∞

r1−q(t)dt <∞, a contradiction.
The discrete analogue of (16.9) is the inequality wk � Gk and to get a contradiction

from this inequality is a difficult problem even in the linear case p = 2.

16.3. Riccati inequality

The equivalence of disconjugacy of (16.3) and solvability of (16.4) (satisfying rk +wk >

0), coupled with the Sturmian comparison theorem for (16.3) mentioned in Remark 16.1,
lead to the following refinement of the Riccati equivalence.

THEOREM 16.3. Equation (16.3) is nonoscillatory if and only if there exists a sequence
wk , with rk +wk > 0 for large k, such that

R[wk] :=�wk + ck +wk

(
1 − rk

Φ(Φ−1(wk)+Φ−1(rk))

)
� 0. (16.10)

PROOF. The part “only if” follows immediately from Theorem 16.1. For the part “if”, let
us denote l[uk] :=�(rkΦ(�uk))+ ckΦ(uk+1). We will show that if there exists uk such
that

rkukuk+1 > 0 and uk+1l[uk] � 0 (16.11)
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for k ∈ [N,∞), N ∈ N, then (16.3) is disconjugate on [N,∞) and thus nonoscillatory.
Therefore, suppose that a sequence uk satisfying (16.11) on [N,∞) exists. Then Sk :=
−uk+1l[uk] is a nonnegative sequence on this discrete interval. Further, set r̃k = rk and
c̃k = ck − Sk/|uk+1|p. Hence c̃k � ck and

�
(
r̃kΦ(�uk)

) + c̃kΦ(uk+1)=�
(
rkΦ(�uk)

) +
(
ck − Sk

|uk+1|p
)
Φ(uk+1)= 0.

Thus equation �(r̃kΦ(�uk))+ c̃kΦ(uk+1) = 0 is disconjugate on [N,∞) and therefore
(16.3) is also disconjugate on [N,∞) by Sturm comparison theorem.

To finish the proof, it remains to find a sequence uk satisfying (16.11). Let wk satisfy
(16.10) with rk +wk > 0 on [N,∞) and let

uk =
k−1∏
j=N

(
1 +Φ−1(wj/rj )

)
, k > N,

be a solution of the first order difference equation

�uk =Φ−1(wk/rk)uk, uN = 1,

Then uk �= 0 since

1 +Φ−1(wk/rk)= 1

Φ−1(rk)

[
Φ−1(rk)+Φ−1(wk)

] �= 0,

recall that Φ−1(rk)+Φ−1(wk) > 0 if and only if wk + rk > 0. Further,

uk+1l[uk] = uk+1
[
�

(
rkΦ(�uk)

) + ckΦ(uk+1)
] − |uk+1|prkΦ(�uk)�Φ(uk)

Φ(uk)Φ(uk+1)

+ |uk+1|prkΦ(�uk)�Φ(uk)
Φ(uk)Φ(uk+1)

= uk+1Φ(uk+1)
�(rkΦ(�uk))Φ(uk)− rkΦ(�uk)�Φ(uk)

Φ(uk)Φ(uk+1)

+ |uk+1|pck + |uk+1|p rkΦ(�uk)
Φ(uk)

(
1 − Φ(uk)

Φ(uk+1)

)
= |uk+1|pR[wk] � 0,

for k ∈ [N,∞), since wk = rkΦ(�uk)
Φ(uk)

and

Φ(uk)

Φ(uk+1)
= 1

Φ(1 + �uk
uk
)
= rk

Φ(Φ−1(rk)+Φ−1(wk))
.

This completes the proof. �
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16.4. Hille–Nehari nonoscillation criterion

The following theorem is the discrete version of Theorem 5.4. This statement is one of the
main results of [71].

THEOREM 16.4. Suppose that rk > 0 for large k,
∑∞

ck = limk→∞
∑k

cj is convergent
and

lim
k→∞

r
1−q
k∑k−1
r

1−q
j

= 0. (16.12)

If

lim sup
k→∞

(
k−1∑

r
1−q
j

)p−1( ∞∑
j=k

cj

)
<

1

p

(
p− 1

p

)p−1

(16.13)

and

lim inf
k→∞

(
k−1∑

r
1−q
j

)p−1( ∞∑
j=k

cj

)
>−2p− 1

p

(
p− 1

p

)p−1

(16.14)

then (16.3) is nonoscillatory.

PROOF. It is sufficient to show that the generalized Riccati inequality (16.10) has a so-
lution w with rk + wk > 0 in a neighborhood of infinity. We recommend the reader to
compare this proof with the proof of Theorem 5.4 to see difference between discrete and
continuous case.

Set

wk = C

(
k−1∑

r
1−q
j

)1−p
+

∞∑
j=k

cj , (16.15)

where C is a suitable constant, which will be specified later. The following equalities hold
by the Lagrange mean value theorem

�

(
k−1∑

r
1−q
j

)1−p
= (1 − p)r

1−q
k η

−p
k ,

where
∑k−1

r
1−q
j � ηk �

∑k
r

1−q
j . Similarly

1 − rk

Φ(Φ−1(rk)+Φ−1(wk))
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= 1

Φ(Φ−1(rk)+Φ−1(wk))

{
Φ

(
Φ−1(rk)+Φ−1(wk)

) −Φ
(
Φ−1(rk)

)}
= p− 1

Φ(Φ−1(rk)+Φ−1(wk))
|ξ |p−2Φ−1(wk),

where ξk is between Φ−1(rk) and Φ−1(rk)+Φ−1(wk). Hence

Φ−1(rk)−
∣∣Φ−1(wk)

∣∣ � ξk �Φ−1(rk)+
∣∣Φ−1(wk)

∣∣
and

|wk|
rk

=
(

r
1−q
k∑k−1
r

1−q
j

)p−1
∣∣∣∣∣C +

(
k−1∑

r
1−q
j

)p−1( ∞∑
j=k

cj

)∣∣∣∣∣.
Hence wk/rk → 0 for k → ∞ according to (16.12), (16.13) and (16.14).

Further, we have

�wk + ck −wk

(
1 − rk

Φ(Φ−1(rk)+Φ−1(wk))

)

= (1 − p)Cr
1−q
k η

−p
k + (p− 1)|wk|qξp−2

k

Φ(Φ−1(rk)+Φ−1(wk))

= (p− 1)r1−q
k

{ |wk|q |ξk|p−2r
q−1
k

Φ(Φ−1(rk)+Φ−1(wk))
− C

η
p
k

}

= (p− 1)
r

1−q
k

(
∑k−1

r
1−q
j )p

{ |C + (
∑k−1

r
1−q
j )p−1 ∑∞

j=k cj |q |ξk|p−2r
q−1
k

Φ(Φ−1(rk)+Φ−1(wk))

− C(
∑k−1 r

1−q
j )p

η
p
k

}

�
(p− 1)r1−q

k

(
∑k−1 r

1−q
j )p

{∣∣∣∣∣C +
(
k−1∑

r
1−q
j

)p−1( ∞∑
j=k

cj

)∣∣∣∣∣
q

γk − C(
∑k−1

r
1−q
j )p

(
∑k r

1−q
k )p

}
,

where

γk = |ξk|p−2r
1−q
k

Φ(Φ−1(rk)+Φ−1(wk))
.
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Concerning the asymptotic behavior of this sequence and of (
∑k−1

r
1−q
j )(

∑k
r

1−q
k )−1,

we have

lim
k→∞

∑k
r

1−q
j∑k−1
r

1−q
j

= lim
k→∞

r
1−q
k + ∑k−1

r
1−q
j∑k−1

r
1−q
j

= 1

since (16.12) holds. Further,

|ξk|p−2r
1−q
k

Φ(Φ−1(rk)+Φ−1(wk))
�
r

1−q
k (Φ−1(rk)+Φ−1(|wk|))p−2

Φ(Φ−1(rk)−Φ−1(|wk|)) → 1

as k→ ∞ since |wk |
rk

→ 0 as k → ∞. Consequently,

lim sup
k→∞

γk � 1. (16.16)

Now, inequalities (16.13), (16.14) imply the existence of ε > 0 such that

−2p− 1

p

(
p− 1

p

)p−1

+ ε

<

(
k−1∑

r
1−q
j

)p−1( ∞∑
j=k

cj

)
<

1

p

(
p− 1

p

)p−1

− ε (16.17)

for k sufficiently large. Let γ̃k = γ
1
q

k , ε̃ = ε(
p
p−1 )

p−1 and let C = (
p−1
p
)p in (16.15). Ac-

cording to (16.16) γ̃k < 1
1−ε̃ for large k and

γ̃k <
1

1 − ε̃
⇐⇒ 1>

[
1 −

(
p

p− 1

)p−1

ε

]
γ̃k

⇐⇒
(
p− 1

p

)p−1

>

(
p− 1

p

)p−1[
p− 1

p
+ 1

p
−

(
p

p− 1

)p−1

ε

]
γ̃k

⇐⇒
(
p− 1

p

) p
q

>

[(
p− 1

p

)p
+ 1

p

(
p− 1

p

)p−1

− ε

]
γ̃k

⇐⇒ C
1
q −Cγ̃k

γ̃k
>

1

p

(
p− 1

p

)p−1

− ε.

Therefore, the second inequality in (16.17) implies

C
1
q >

[
C +

(
k−1∑

r
1−q
j

)p−1( ∞∑
j=k

cj

)]
γ̃k.
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By a similar computation (using the first inequality in (16.17)) we get

−C 1
q <

[
C +

(
k−1∑

r
1−q
j

)p−1( ∞∑
j=k

cj

)]
γ̃k.

Consequently,∣∣∣∣∣C +
(
k−1∑

r
1−q
j

)p−1( ∞∑
j=k

cj

)∣∣∣∣∣
q

< C

for large k and hence R[wk] � 0. Finally, since rk > 0 and wk/rk → 0 as k→ ∞, we have
rk +wk > 0 for large k and the proof is complete. �

REMARK 16.2. If we compare the previous statement with Theorem 5.4 (which is a con-
tinuous counterpart of this theorem), we see that assumption (16.12) has no continuous
analogue. This is a consequence of the fact that we have no equivalence of the differen-
tiation chain rule in the discrete case, and its partial discrete substitution—the Lagrange
mean value theorem—need additional assumptions.

16.5. Half-linear dynamic equations on time scales

By a time scale T (an alternative terminology is measure chain) we understand any closed
subset of the real numbers R with the usual topology inherited from R. Typical examples
of time scales are T = R and T = Z – the set of integers. The operators ρ,σ : T → T are
defined by

σ(t)= inf{s ∈ T: s > t}, ρ(t)= sup{s ∈ T: s < t}

and are called the right jump operator and left jump operator, respectively. The quantity
μ(t)= σ(t)− t is called the graininess of T. If f : T → R, the generalized �-derivative is
defined by

f�(t)= lim
s→t, σ (s) �=t

f (σ (s))− f (t)

σ (s)− t

and f �(t)= f ′(t) if T = R and f �(t)=�f (t)= f (t + 1)− f (t).
Now consider the linear dynamic equation on a time scale T(

r(t)x�
)� + c(t)xσ = 0, (16.18)

where xσ = x ◦ σ and r, c : T → R, and its half-linear extension(
r(t)Φ

(
x�

))� + c(t)Φ
(
xσ

) = 0. (16.19)
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Obviously, (16.19) reduces to (0.1) if T = R and to (16.3) if T = Z, respectively. The basic
facts of the time scale calculus can be found in [109] and the general theory of dynamic
equations on time scales is presented in [29,30].

Concerning (16.18), oscillation theory of this dynamic equation is established in [97].
The half-linear extension of this theory can be found in the recent paper [200], where it is
shown that under the assumption r(t) �= 0, the times scale Riccati equation

w� + c(t)+ S[w, r](t)= 0,

where

S[w, r](t)= lim
λ→μ(t)

w(t)

λ

(
1 − r(t)

Φ(Φ−1(r(t)))+ λΦ−1(w(t))

)
,

and the p-degree functional (involving the time scale integral)

F(y;a, b)=
∫ b

a

[
r(t)

∣∣y�∣∣p − c(t)
∣∣yσ ∣∣p]

�t

play the same role as their continuous and discrete counterparts. We refer to the above
mentioned paper [200] for details.
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[194] P. Řehák, Hartman–Wintner lemma, oscillation and conjugacy criteria for half-linear difference equations,

J. Math. Anal. Appl. 252 (2000), 813–827.
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[199] P. Řehák, Comparison theorems and strong oscillation in the half-linear discrete oscillation theory, Rocky

Mountain J. Math. 33 (2003), 333–352.
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Abstract
This paper constitutes a short survey of the subject of radial solutions for quasilinear elliptic

partial differential equations where the underlying domain is either a ball, an annular region,
the exterior of a ball, or the whole space. In case the dependence of the equation on the
independent variable is only in the radial direction, special solutions of such equations may be
sought which depend only on the radial variable and as such are solutions of a boundary value
problem for an associated nonlinear ordinary differential equation.
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1. Introduction

In this paper we provide a survey of several results concerning radial solutions of qua-
silinear partial differential equations where the independent variable is a spatial variable
varying over a domain with radial symmetry, such as a ball centered at the origin, an an-
nular domain determined by concentric spheres centered at the origin, an exterior domain
exterior to a ball, or the whole space. If the equation at hand also has the property that
the dependence upon the independent variable is radial, then special radial solutions of the
problem at hand may be sought and it is often the case that certain solutions having special
properties, in fact, must be radial solutions.

The situation is well illustrated by the very classical problem of finding the radial eigen-
values and eigenfunctions of the Laplace operator subject to zero Dirichlet boundary condi-
tions on the unit disk in the plane. Another illustration is the following classical Liouville–
Gelfand problem which is concerned with the existence of positive solutions of the equa-
tion {

�u+ λeu = 0, x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(1.1)

where λ > 0 and Ω is a bounded domain in RN . If it is the case that Ω = {x ∈ RN :
|x|< 1} := B1(0), then it is reasonable to ask whether Equation (1.1) has solutions which
only depend upon the radial variable. It follows from the maximum principle for elliptic
equations that solutions of (1.1) can only assume positive values in the interior of the
domain and then it follows by the classical result of Gidas, Ni, and Nirenberg [50] that all
solutions of (1.1) are radially symmetric and (1.1) is equivalent to the ordinary differential
equation’s boundary value problem{

u′′ + N−1
r
u′ + λeu = 0, r ∈ (0,1),

u′(0)= u(1)= 0,
(1.2)

for the profile u(r)= u(|x|). Note that the originally discrete parameter N is now allowed
to vary continuously. The results of [50] are valid for much more general situations and it
follows that if f : R → R is a suitably smooth function (e.g., Lipschitz continuous), then
any positive solution of{

�u+ f (u)= 0, x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(1.3)

with Ω a ball, must be radially symmetric about the center of the ball and similar results
hold for the case that Ω is the whole space or a suitable exterior domain. It, on the other
hand fails to hold for the case that Ω is an annular domain, in which case it often may
happen that radial solutions undergo symmetry breaking bifurcations (some such results
will be discussed in this paper).

If it is the case that

Ω = {
x ∈ RN : 0< a < |x|< b

}
,



362 J. Jacobsen and K. Schmitt

then radial solutions of (1.3) are solutions of the boundary value problem{
u′′ + N−1

r
u′ + f (u)= 0, r ∈ (a, b),

u(a)= u(b)= 0.
(1.4)

For N = 1 these problems are amenable to reduction of order methods, and hence may
be explicitly solved. For other values of N , this is, of course, no longer the case in gen-
eral and other methods must be employed to study the solution structure of a given equa-
tion. We shall give a detailed account of problems related to (1.1) and related equations,
a subject that dates back to Liouville in 1853 [71]. In 1914 Bratu [15] found an explicit
solution to (1.2) when N = 2. Numerical progress for (1.2) when N = 3 was made by
Frank-Kamenetskii (see [40]) in his study of thermal ignition problems. Further progress
for N = 3 was made by Chandrasekhar [20, IV: §22–27], where (1.2) appears as a model
for the temperature distribution of an isothermal gas sphere in gravitational equilibrium.
Gelfand [49] built upon Frank-Kamenetskii’s work when N = 3 and used Emden’s trans-
formation to prove the existence of a value of λ for which (1.2) has infinitely many non-
trivial solutions.

In 1973 Joseph and Lundgren [61] completely characterized the solution structure
of (1.2) for all N and hence, because of [50] also of the corresponding problem (1.1)
in the case the domain is a ball. Other related examples arise from a larger class of partial
differential operators, for example the work of Clément, de Figueiredo, and Mitidieri [22],
Azorero and Alonso [44], Jacobsen [57], and Jacobsen and Schmitt [59], who consider
existence and multiplicity results for the model equations{

�pu+ λeu = 0, x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(1.5)

where �p = div(|∇u|p−2∇u) is the p-Laplace operator [56,74] and{
Sk

(
D2u

) + λeu = 0, x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(1.6)

where Sk(D2u) is the k-Hessian operator [108], defined as the sum of all principal k × k

minors of the Hessian matrix D2u. For instance S1(D
2u)=�u and SN (D2u)= detD2u,

the Monge–Ampère operator.
Note that both equations are extensions of (1.1). In particular, the results of Joseph and

Lundgren explain the radial case of (1.5) for p = 2 and of (1.6) when k = 1. In [22], the
authors consider (among other topics) the radial case of both (1.5) for p =N and (1.6) for
N = 2k.

All of the above problems are simply special cases of the more general family of prob-
lems ⎧⎨⎩

r−γ
(
rα|u′|βu′)′ + f (λ,u)= 0, r ∈ (0,1),

u > 0, r ∈ (0,1),
u′(0)= u(1)= 0,

(1.7)
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or ⎧⎨⎩
r−γ

(
rα|u′|βu′)′ + f (λ,u)= 0, r ∈ (a, b),

u > 0, r ∈ (a, b),
u(a)= u(b)= 0,

(1.8)

where certain inequalities are to be imposed on the parameters involved in the equation.
Here ′ denotes differentiation with respect to r . For instance, if Ω = B1(0) is the unit ball,
then Equation (1.7) with f (λ,u) = λeu arises from (1.5) and (1.6) as a consequence of
a priori symmetry results (see [35] for (1.6) and [7] for (1.5)). Similar problems may be
posed also for exterior domain and whole space problems.

Much work has also been devoted to boundary value problems and other qualitative
studies for more general differential operators of the form

r−γ
(
rαφ(u′)

)′ + f (λ,u)= 0, (1.9)

where φ : R → R is an increasing homeomorphism of R, with φ(0) = 0. Such problems
arise in a very natural way in diffusion problems where diffusion is governed by rapidly
growing terms. We shall survey some such problems below.

In most of the discussion to follow the parameter α is taken to equal the parameter γ
and is denoted by N − 1, to indicate the partial differential equation origin of the problem,
where N denotes the dimension of the underlying domain. In the discussion, however,
N − 1 may simply denote a nonnegative parameter. The equations stated above also may
depend on other parameters, denoted by λ, which dependence may be in a linear or nonlin-
ear fashion, thus this parameter may occur as a multiplicative factor or simply as a variable
in the function evaluation. Should this parameter play no role in the result at hand, we
simply shall suppress the dependence.

The paper is organized as follows: We first discuss boundary value problems on a ball
related to the differential operator (1.9) and rely mainly on the recent work in [45–47,54,
53]. We then proceed to discuss problems on annular domains based on some work in [9,10,
25,30,29,74]. Next, we present a detailed discussion of Gelfand type problems. Following
the Gelfand case study we return to general theory and present a range of related topics
including some classical oscillation and nonoscillation theorems, problems for which radial
solutions can undergo symmetry breaking bifurcations (relying on work in [67,68,80–82]),
and problems concerning radial ground states of problems defined in all of space.

We shall denote by ‖ · ‖ the supremum norm in C[a, b] for any interval [a, b] ⊂ R.

2. Boundary value problems on a ball

2.1. Introduction

In this section, we consider the existence of positive solutions for the boundary value prob-
lems { (

rN−1φ(u′)
)′ + λrN−1f (u)= 0, 0< r < R,

u′(0)= u(R)= 0,
(2.1)
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where φ is an odd increasing homeomorphism on R and λ is a positive parameter (i.e., we
consider the case that α = γ =N − 1).

As pointed out before, Equation (2.1) arises in the study of radial solutions for quasilin-
ear elliptic boundary value problems of the form{

div
(
A(∇u)) + λf (u)= 0, x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(2.2)

where Ω is a ball of radius R in RN .
We first discuss existence results for (2.1) when f (0)= 0. These results are of bifurca-

tion type and are based on the work [45,46]. We then discuss the cases when f (0) < 0 or
f (0) > 0, and f is φ superlinear at ∞. In the former case there exists a positive, decreas-
ing solution to (2.1) for λ small. The asymptotic behavior of the solution (as λ→ 0) will
also discussed. This generalizes the results in [19,2] (see also [100]) in which φ(x) = x ,
and complements those in [31,74] where similar problems were considered on an annulus.
In the latter case, there exists a positive number λ∗ such that (2.1) has at least two positive
solutions for λ < λ∗, at least one for λ= λ∗, and none for λ > λ∗. This result complements
corresponding results in [3,29] on annular domains. We refer to [100] for the literature on
problem (2.2) with A(x) = x on bounded domains. The approach used here depends on
degree theory and also uses results about upper and lower solutions. Such results can be
found in, for example, Lloyd [72], Berger [13], Deimling [32], and Schmitt [99].

2.2. The case when f (0)= 0

The prototypical example in this case is the partial differential equation{
�u+ up = 0, x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(2.3)

where p > 1. Note that u = 0 is a solution to (2.3). One approach to finding nontrivial
solutions is to consider it as a perturbation of an eigenvalue equation

�u+ λu+ up = 0, (2.4)

and study solution continua, i.e., curves in the solution set

S = {
(λ,u): (λ,u) satisfies (2.4)

}
.

For instance, if S contains a point (0, u) with u �= 0, then we obtain a nontrivial solution
to (2.3). Viewing (2.1) with this motivation, we now consider the equation{−r1−N (

rN−1φ(u′)
)′ = λψ(u)+ g(λ,u), 0< r < R,

u′(0)= u(R)= 0,
(2.5)
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where φ : R → R and ψ : R → R are odd increasing homeomorphisms of R, which both
vanish at the origin. We further assume that g(λ,0)= 0 for all λ ∈ R. A solution to Equa-
tion (2.5) is a function u ∈ C1[0,R] with φ(u′) ∈C1[0,R] which satisfies (2.5).

Furthermore we will require that φ,ψ satisfy the asymptotic homogeneity conditions:

lim
s→0

φ(σs)

ψ(s)
= σp−1, for all σ ∈ R+, for some p > 1, (2.6)

and

lim
s→±∞

φ(σs)

ψ(s)
= σq−1, for all σ ∈ R+, for some q > 1. (2.7)

We note that if the pair φ,ψ satisfies the asymptotic homogeneity conditions (2.6)
and (2.7), then the function φ satisfies both of these conditions with ψ replaced by φ

and also ψ satisfies both of these conditions with φ replaced by ψ . Such conditions appear
in a variety of contexts (see, e.g., [95]).

Let u(r) be a solution of (2.5). By integrating the equation in (2.5) we see that u(r)
satisfies the integral equation

u(r)=
∫ R

r

φ−1
[

1

sN−1

∫ s

0
ξN−1(

λψ
(
u(ξ)

) + g
(
λ,u(ξ)

))
dξ

]
ds. (2.8)

This equation will be fundamental for much of the subsequent analysis.

2.2.1. Index calculations. Let us consider (2.5) with g = 0:{−r1−N(
rN−1φ(u′)

)′ = λψ(u), 0< r < R,

u′(0)= u(R)= 0.
(2.9)

A value λ such that (2.9) has a nontrivial solution is called an eigenvalue of (2.9).
From (2.8) it follows that u is a solution if and only if u is a fixed point of the completely
continuous operator T λ :C[0,R] →C[0,R] defined by

T λ(u)(r)=
∫ R

r

φ−1
[

1

sN−1

∫ s

0
ξN−1λψ

(
u(ξ)

)
dξ

]
ds. (2.10)

If φ(t) = ψ(t) = |t|p−2t , then it is known that the eigenvalue problem (2.9) has a se-
quence of eigenvalues {λm = λm(p), m = 1,2, . . .}, with λm(p) → ∞, as λ→ ∞, and
this set has been completely described (see, e.g., [34,36] and the earlier papers [4,69]). We
need the following lemma from [46]:

LEMMA 2.1. Consider the problem (2.9).
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• If (2.6) holds, then the Leray–Schauder degree of I − T λ is defined for B(0, ε), (the
open ball centered at zero with radius ε in C[0,R]), for all sufficiently small ε. Fur-
thermore we have

degLS
(
I − T λ,B(0, ε),0

) =
{

1, λ < λ1(p),

(−1)m, λ ∈ (
λm(p),λm+1(p)

)
.

(2.11)

• If (2.7) holds, then the Leray–Schauder degree for I − T λ is defined for B(0,M), for
all sufficiently large M , and a similar formula to (2.11) holds, namely

degLS
(
I − T λ,B(0,M),0

) =
{

1, λ < λ1(q),

(−1)l, λ ∈ (
λl(q), λl+1(q)

)
,

(2.12)

where {λl(q), l = 1,2, . . .} is the set of eigenvalues of (2.9) with φ(t) = ψ(t) =
|t|q−2t .

Lemma 2.1 may be applied to obtain an existence result for nontrivial solutions.

THEOREM 2.2. Consider problem (2.9) and suppose that φ,ψ are odd increasing home-
omorphisms of R with φ(0)= 0 =ψ(0), which satisfy (2.6) and (2.7) with p �= q . Assume
that for some j ∈ N, λj (p) �= λj (q) and that λ ∈ (A,B), where A = min{λj (p),λj (q)}
and B = max{λj (p),λj (q)}. Assume furthermore that (A,B) does not contain any other
eigenvalue from {λm(p)} or {λm(q)}. Then problem (2.9) has a nontrivial solution.

PROOF. Assuming for example that λj (q) > λj (p), it follows from Lemma 2.1 that

degLS
(
I − T λ,B(0, ε),0

) = (−1)j , (2.13)

for ε > 0 small, and that

degLS
(
I − T λ,B(0,M),0

) = (−1)j−1, (2.14)

for M large. Thus combining (2.13) and (2.14) with the excision property of the Leray–
Schauder degree, we obtain that

degLS
(
I − T λ,B(0,M) \B(0, ε),0) �= 0, (2.15)

yielding the existence of a nontrivial solution with ε < ‖u‖<M . �

This theorem suggests the existence of a branch of solutions to (2.5) connecting
(λj (p),0) with (λj (q),∞), for each j ∈ N, generalizing the well-known property for the
homogeneous case. We will return to the structure of the eigenvalue set in Section 2.2.4.
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Fig. 1. Possible continua of Theorem 2.2.

2.2.2. On initial value problems. In this section we discuss some results for the initial
value problem associated with (2.5), i.e.,⎧⎨⎩

−r1−N (
rN−1φ(u′)

)′ = λψ(u)+ g(λ,u), 0< r < R,

u(0)= d,

u′(0)= 0,

(2.16)

which will be needed in the next section. Throughout we shall assume that

ug(λ,u)� 0, for all λ,u ∈ R. (2.17)

The following proposition follows from an application of the contraction mapping principle
applied to (2.8):

PROPOSITION 2.3. Suppose that g(λ,u)= O(|ψ(u)|) near zero, uniformly for r and λ in
bounded intervals. Then the only solution to the problem⎧⎨⎩

−r1−N (
rN−1φ(u′)

)′ = λψ(u)+ g(λ,u), 0< r < R,

u(r0)= 0,

u′(r0)= 0,

(2.18)

with r0 ∈ [0,R] is the trivial solution u= 0.

The next result concerns the oscillation of nontrivial solutions.

PROPOSITION 2.4. Suppose that g(λ,u) = O(|ψ(u)|) near zero, uniformly for λ in
bounded intervals, then nontrivial solutions of the initial value problem (2.16) are oscilla-
tory, i.e., solutions are defined on all of [0,∞) and have infinitely many zeros.
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PROOF. Let u be a nontrivial solution of (2.16) and assume that d > 0. If u does not vanish
in (0,∞), then u is decreasing on (0,∞). Integrating the equation from 0 to s ∈ (0, r) we
find

−u′(s)= φ−1
(

1

sN−1

∫ s

0
ξN−1(

λψ
(
u(ξ)

) + g
(
λ,u(ξ)

))
dξ

)
. (2.19)

Integrating (2.19) from r/2 to r yields

u(r/2) �
∫ r

r/2
φ−1

(
λ

sN−1

∫ s

0
ξN−1ψ

(
u(ξ)

)
dξ

)
ds, (2.20)

�
∫ r

r/2
φ−1

(
λ

rN−1

∫ r/2

0
ξN−1ψ

(
u(r/2)

)
dξ

)
ds. (2.21)

Hence

φ( 2
r
u(r/2))

φ(u(r/2))
� λ

N

r

2N
ψ(u(r/2))

φ(u(r/2))
, (2.22)

for any r > 0. But for r > 2 the left-hand side of (2.22) is less than 1 while the right-
hand side can be arbitrarily large. Hence we conclude that u must have a zero which, by
Proposition 2.3, is simple. �

We remark here that by the same argument any nontrivial solution of the initial value
problem ⎧⎨⎩

−(
rN−1φ(v′)

)′ = rN−1λψ(v)+ rN−1g(λ, v), 0< r < R,

v(r0)= d,

v′(r0)= 0,

(2.23)

must have a first isolated zero to the right of r0 and such solutions may be continued to ∞
and are oscillatory on the whole real line.

For each d �= 0, let ρd denote the first zero of a solution u of (2.5) such that u(0)= d . The
next two propositions show that solutions to (2.5) have Sturm type separation properties as
one has for linear equations (see, e.g., [55]):

PROPOSITION 2.5. Suppose that g(λ,u) = O(|ψ(u)|) near zero, uniformly for λ in
bounded intervals. Then, for each R > 0 there exists Λ(R) such that for all λ > Λ(R)

and all d �= 0 we have that ρd �R.

PROPOSITION 2.6. Let ρdj denote the j th zero of a solution u of (2.5) such that u(0)= d

and suppose that g(λ,u) = O(|ψ(u)|) near zero, uniformly for λ in bounded intervals.
Then, for all L> 0 and j ∈ N there exists Λj(L) > 0 such that for all λ > Λj(L) and all
d �= 0 we have that ρdj � L.
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2.2.3. Bifurcation of solutions. In this section we consider bifurcation problems at zero
and at infinity. See [21,32,94,64] for definitions.

Let u be a solution of problem (2.5). Then u satisfies

u=F(λ,u) (2.24)

where

F(λ,u)(r)=
∫ R

r

φ−1
(

1

sN−1

∫ s

0
ξN−1(

λψ
(
u(ξ)

) + g
(
λ,u(ξ)

))
dξ

)
ds.

(2.25)

It is clear that F : R ×C[0,R] → C[0,R] and it is a completely continuous operator. Con-
cerning (2.24), the following theorem is proved by a standard argument which considers a
sequence of solutions approaching a bifurcation point, appropriately renormalized to take
advantage of the condition on g:

THEOREM 2.7. (i) Suppose that g : R × R → R is continuous and satisfies g(λ, s) =
o(|φ(s)|) near s = 0 uniformly for λ in bounded intervals, and that φ and ψ satisfy (2.6).
If (λ̄,0) is a bifurcation point for (2.24), then λ̄= λm(p), for some m ∈ N.

(ii) Suppose that g : R × R → R is continuous and satisfies g(λ, s) = o(|φ(s)|) near
infinity, uniformly for λ in bounded intervals, and that φ and ψ satisfy (2.7). If (λ̄,∞) is a
bifurcation point for (2.24), then λ̄= λm(q), for some m ∈ N.

The next theorem is the main result on bifurcation of solutions to (2.24):

THEOREM 2.8. Suppose that g : R × R → R is continuous and satisfies g(λ, s) =
o(|φ(s)|) near s = 0, uniformly for λ in bounded intervals.

(i) If φ and ψ satisfy (2.6), then for each k ∈ N there is a connected component Sk ⊂
R × C[0,1] of the set of nontrivial solutions of (2.5) whose closure Sk contains
(λk(p),0). Moreover, Sk is unbounded in R×C[0,1] and if (λ,u) ∈ Sk , then u has
exactly k − 1 simple zeros in (0,R).

(ii) If ug(λ,u)� 0, then there exists Mk ∈ (0,∞) such that if (λ,u) ∈ Sk , then λ�Mk .

PROOF. The proof of the existence of the connected component Sk such that (λk(p),0)
belongs to Sk and that Sk is unbounded or contains another bifurcation point (λj (p),0),
j �= k, is entirely similar to that of [94]. The fact that (λk(p),0) ∈ Sk and that (λ,u) ∈ Sk
implies u has exactly k − 1 simple zeros in (0,R) is in turn similar to that of Theorem 4.1
of [34] and uses the results of Section 2.2.2. The existence ofMk such that λ�Mk follows
directly from Proposition 2.6. �

The following will serve as examples to illustrate the above results.

THEOREM 2.9. Suppose that φ,ψ are odd increasing homeomorphisms of R with φ(0)=
ψ(0)= 0, which satisfy (2.6) and (2.7) with p �= q and ug(λ,u)� 0. Then for any j ∈ N,
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there exists a connected component Sj of the set on nontrivial solutions of (2.5) connecting
(λj (p),0) to (λj (q),∞) such that (λ,u) ∈ Sj implies u has exactly j − 1 simple zeros in
(0,R).

PROOF. It follows from Theorem 2.8 that for any j ∈ N, there exists an unbounded con-
nected component Sj of the set on nontrivial solutions emanating from (λj (p),0) such that
(λ,u) ∈ Sj implies u has exactly j − 1 simple zeros in (0,R). Since there is an Mj such
that (λ,u) ∈ Sk implies that λ�Mk and since there are no nontrivial solutions of (2.5) for
λ= 0, it follows that for any M > 0, there is (λ,u) ∈ Sk such that ‖u‖>M . Hence (ii) of
Theorem 2.7 implies that as ‖u‖ → ∞ with (λ,u) ∈ Sk , it must be that λ→ λj (q). �

The second application is motivated by a result of [34].

THEOREM 2.10. Consider the problem{−(
rN−1φ(u′)

)′ = rN−1g(u), 0< r < R,

u′(0)= u(R)= 0.
(2.26)

Assume φ is an increasing homeomorphisms of R with φ(0)= 0 and which satisfies (2.6)
and (2.7) with φ = ψ . Further suppose that g : R → R is continuous with ug(u)� 0 and
that there exist positive integers k and n, with k � n, such that

μ := lim|s|→0

g(s)

φ(s)
< λk(p)� λn(q) < ν := lim|s|→∞

g(s)

φ(s)
.

Then for each integer j ∈ (k, n) Equation (2.26) has a solution with exactly j − 1 simple
zeros in (0,R). Thus (2.26) possesses at least n− k + 1 nontrivial solutions.

2.2.4. On principal eigenvalues. We next present results concerning the existence of pos-
itive solutions to the problem{−r1−N (

rN−1φ(u′)
)′ = λψ(u), 0< r < R,

u′(0)= u(R)= 0,
(2.27)

where φ is an increasing homeomorphism of R and ψ is nondecreasing with φ(0) =
ψ(0) = 0. A constant λ such that (2.27) has a positive (or negative) solution is called a
principal eigenvalue. Note that Theorem 2.2 established the existence of solution branches
to (2.27) which may or may not correspond to positive solutions.

In the case that N is a positive integer and φ(u)= |u|p−2u= ψ(u) the above problem
is the problem of the existence of the principal eigenvalue of the p-Laplacian on a ball of
radius R in RN , subject to zero Dirichlet boundary data. As such it is well understood (see,
e.g., [4,14,41,43,103]).

The tools that have been used for establishing the existence of such (and higher) eigen-
values come from variational methods and are usually critical point theorems for smooth
functionals defined in an appropriate Sobolev space; these methods consequently also yield
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theorems for the case the underlying ball domain is replaced by an arbitrary bounded do-
main.

Here we discuss the general case (2.27) and rely on fixed point and continuation tech-
niques based on some work in [29,46]. For the special case N = 1, very detailed informa-
tion is available in [34,48].

We will assume further that N � 1 (not necessarily an integer) and φ and ψ satisfy for
all x �= 0 and σ > 0,

A(σ)� φ(σ |s|)
ψ(|s|) � B(σ), (2.28)

where A(σ) and B(σ) are positive constants depending on σ only.
We introduce some notation to discuss the structure of the eigenvalue set. First, let E

denote the set of all principal eigenvalues. Next, for each d > 0, let Γ (d,R) be defined by

Γ (d,R)= {
λ > 0 | (2.27) has a positive solution with u(0)= d

}
(2.29)

and set

Γ −(d,R)= infΓ (d,R). (2.30)

Further define

Γ −
1 (R) := lim inf

d→∞ Γ −(d,R), (2.31)

γ−
1 (R) := lim inf

d→0
Γ −(d,R), (2.32)

λ−
1 (R) := inf

d>0
Γ −(d,R). (2.33)

The main result in this section is as follows:

THEOREM 2.11. The set E �= ∅ and there exists a smallest λ0 > 0 such that for λ < λ0 the
eigenvalue problem (2.27) has no nontrivial solutions. For every d > 0, there exists λ ∈E
and a positive solution u of (2.27) such that u(0) = d . Furthermore, Γ −(d,R) > 0 and
Γ −

1 (R), γ
−
1 (R),λ

−
1 (R) are all nonincreasing functions of R, and

lim
R→0+Γ

−
1 (R)= lim

R→0+ γ
−
1 (R)= lim

R→0+ λ
−
1 (R)= ∞,

lim
R→∞Γ −

1 (R)= lim
R→∞γ−

1 (R)= lim
R→∞λ−

1 (R)= 0.

There is a result dual to Theorem 2.11 for principal eigenvalues with associated nega-
tive solutions, the set of such eigenvalues may, of course, be different from the set whose
existence is asserted in Theorem 2.11.
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Fig. 2. Possible continua of Theorem 2.11.

We break the proof of Theorem 2.11 into several steps. First, a quick calculation shows
that finding positive solutions to problem (2.27) is equivalent to finding nontrivial solutions
to the problem{(

rN−1φ(u′)
)′ + λrN−1ψ

(|u|) = 0, r ∈ (0,R),
u′(0)= u(R)= 0.

(2.34)

Let CR denote the closed subspace of C[0,R] defined by

CR = {
u ∈C[0,R] | u(R)= 0

}
. (2.35)

Then CR is a Banach space with the inherited norm ‖ · ‖ from C[0,R].
Similar to (2.8), we see that a solution u to (2.34) is equivalent to a fixed point of the

operator

F(λ,u)(r)=
∫ R

r

φ−1
[

1

sN−1

∫ s

0
ξN−1λψ

(∣∣u(ξ)∣∣) dξ

]
ds. (2.36)

Clearly F : [0,∞) × CR → CR is a well-defined operator. Define now the operator
Fε : [0,∞)×CR → CR , by

Fε(λ,u)(r)=
∫ R

r

φ−1
[

1

sN−1

∫ s

0
ξN−1λ

(
ψ

(∣∣u(ξ)∣∣) + ε
)

dξ

]
ds, (2.37)

where ε > 0 is a constant. We have that Fε sends bounded sets of [0,∞)×CR into bounded
sets of CR . Moreover, Fε is a completely continuous operator and Fε(0, ·)= 0.

Since

degLS
(
I −Fε(0, ·),B(0,R),0

) = 1,
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there exists a solution continuum C+
ε ⊂ [0,∞)×CR of solutions of

u=Fε(λ,u) (2.38)

with C+
ε unbounded in [0,∞)×CR . In fact, this solution continuum C+

ε is bounded in the
λ direction:

LEMMA 2.12. There exists λ̄ > 0 such that if (λ,u) solve (2.27), then λ� λ̄.

PROOF. Let (λ,u) be a solution pair to (2.27). Thus

rN−1φ
(
u′(r)

) = −λ
∫ r

0
ξN−1(

ψ
(∣∣u(ξ)∣∣) + ε

)
dξ � 0

and

u(r)=
∫ R

r

φ−1
[

1

sN−1

∫ s

0
ξN−1λ

(
ψ

(∣∣u(ξ)∣∣) + ε
)

dξ

]
ds � 0.

Hence, u′(r)� 0 and u(r)� 0 for all r ∈ [0,R]. Also

u(r)�
∫ R

r

φ−1
[

1

sN−1

∫ s

0
ξN−1λψ

(∣∣u(ξ)∣∣) dξ

]
ds.

Thus, for all r ∈ [R4 , 3R
4 ], we have that

u(r)� R

4
φ−1

[
λR

N4N
ψ

(
u(r)

)]
or equivalently,

φ( 4
R
u(r))

ψ(u(r))
� λ

R

N4N
. (2.39)

�

Note that it follows from (2.39) and (2.28) that for all ε > 0, sufficiently small, λ is
bounded independent of ε. Thus, there exists ε0 such that for each d > 0 and each 0< ε �
ε0 there exists (λε, uε) ∈ C+

ε , with ‖uε‖ = d > 0 and 0< λε � λ̄. We may now let ε → 0
and obtain a nontrivial solution of (2.27), with ‖u‖ = d , for some λ∗ ∈ (0, λ̄].

Similar to (2.30) define

Γ +(d,R)= supΓ (d,R).

It follows from the above calculations that Γ +(d,R) <∞. We now prove Γ −(d,R) > 0
from Theorem 2.11:
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PROPOSITION 2.13. For each d > 0, Γ −(d,R) > 0.

PROOF. If not, then there exist sequences {un}, {λn}, with ‖un‖ = d and λn → 0 such that
un =F(λn,un). The complete continuity of F implies {un} has a convergent subsequence,
with unj → u∗, and thus u∗ =F(0, u∗). But it follows from (2.36) that F(0, u)= 0 for all
u, a contradiction. �

Paralleling our notation above, let us set

Γ +
1 (R)= lim sup

d→∞
Γ +(d,R), (2.40)

γ+
1 (R)= lim sup

d→0
Γ +(d,R), (2.41)

λ+
1 (R)= sup

d>0
Γ +(d,R). (2.42)

Then, we have:

PROPOSITION 2.14. Under the above hypotheses on φ and ψ ,

Γ −
1 (R) > 0, Γ +

1 (R) <∞,

γ−
1 (R) > 0, γ+

1 (R) <∞,

λ−
1 (R) > 0, λ+

1 (R) <∞.

PROOF. That the numbers in the second column are finite has already been discussed. To
show that the numbers in the first column are positive we argue as follows. Assume (λ,u)
is a solution of (2.34) with u(0)= d . Then

‖u‖ = d,

and

u(r)=
∫ R

r

φ−1
[

1

sN−1

∫ s

0
ξN−1λψ

(∣∣u(ξ)∣∣) dξ

]
ds. (2.43)

Hence

d = u(0)�
∫ R

0
φ−1

[
λψ(d)

s

N

]
ds,

which implies

φ(d/R)

ψ(d)
� λ

R

N
. (2.44)

Using condition (2.28) we obtain a lower bound for λ. �



Radial solutions of quasilinear elliptic differential equations 375

The above proposition has the following corollary:

COROLLARY 2.15. Let (λ,u) be a solution of (2.34) with u(0)= d and let θ ∈ (0,1) be
fixed. Let r0 ∈ (0,R) be such that u(r0)= θd . Then

r0 � N

λ
A

(
1 − θ

R

)
. (2.45)

PROOF. Using Equation (2.43) we obtain the following

θd =
∫ R

r0

φ−1
[

1

sN−1

∫ s

0
ξN−1λψ

(∣∣u(ξ)∣∣) dξ

]
ds, (2.46)

and hence

(1 − θ)d =
∫ r0

0
φ−1

[
1

sN−1

∫ s

0
ξN−1λψ

(∣∣u(ξ)∣∣) dξ

]
ds,

from which follows

(1 − θ)d �
∫ r0

0
φ−1

[
1

sN−1

∫ s

0
ξN−1λψ(d)dξ

]
ds,

and

(1 − θ)d �Rφ−1
[
λψ(d)r0

N

]
.

The result now follows from (2.28). �

The result just proved has the following consequence concerning solutions of large
norm:

COROLLARY 2.16. Let {(λn,un)} be a sequence of solutions of (2.34) with un(0)= dn. If
dn → ∞ as n→ ∞, then un(r)→ ∞ uniformly with respect to r in compact subintervals
of [0,R).

PROOF. Since un is given by

un(r)=
∫ R

r

φ−1
[

1

sN−1

∫ s

0
ξN−1λnψ

(∣∣un(ξ)∣∣) dξ

]
ds,

for θ ∈ (0,1) we obtain for r � r0 (viz. Corollary 2.15) that

un(r)�
∫ R

r

φ−1
[

1

sN−1

∫ r0

0
ξN−1λnψ(θdn)dξ

]
ds.
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The conclusion follows from this inequality. �

Let us consider the initial value problem⎧⎨⎩
−(
rN−1φ(u′)

)′ = λrN−1ψ(u), r > 0,

u(0)= d > 0,

u′(0)= 0.

(2.47)

To obtain the (local) existence of solutions of (2.47) we obtain solutions of an equivalent
integral equation whose solutions are fixed points of the operator S defined by

S(u)(r)= d −
∫ r

0
φ−1

[
1

sN−1

∫ s

0
ξN−1λψ

(
u(ξ)

)
dξ

]
ds.

Since u is decreasing and φ and ψ are increasing we find that for given ε > 0, there exists
R0 such that

S :
{
u ∈C[0,R0]: ‖u− d‖ � ε

} → {
u ∈C[0,R0]: ‖u− d‖ � ε

}
and that S is completely continuous. The result thus follows from Schauder’s fixed point
theorem. We next show that solutions of the initial value problem (2.47) exist globally and
are oscillatory:

PROPOSITION 2.17. For each d > 0 and each λ > 0 solutions of (2.47) exist globally on
[0,∞), have only simple zeros and are oscillatory, i.e., the set of zeros is unbounded.

PROOF. It follows from the above existence argument that a solution u of (2.47), as long
as it is positive, is decreasing. If u(r)� 0 for r ∈ [0,∞), then using calculations as before,
we find that for each r > 0

u(r)� rφ−1
(
λrψ(u(r))

N2N−1

)
,

and hence (since we may assume r � 1)

φ(u(r))

ψ(u(r))
� λr

N2N−1 ,

which implies, using condition (2.28) that r cannot be unbounded. Therefore u must have
a first zero. Easy arguments show that the zeros of u must be simple and that u is oscilla-
tory. �

We next shall show that λ−
1 (R), γ

−
1 (R) and Γ −

1 (R) are nonincreasing functions of R.
To this end we shall need the following elementary properties of the operator F defined
by Equation (2.36). We note that the space CR is a partially ordered Banach space with
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respect to the partial order � defined by u � v whenever u(r) � v(r) for all r ∈ [0,R].
Further if [u,v] = {w ∈ CR : u � w � v} is an order interval in CR , then it is a bounded
closed set in CR .

PROPOSITION 2.18. The operator F defined by (2.36) is monotone with respect to the
above partial order in C[0,R] and hence in CR and also monotone with respect to λ.

From this proposition and the complete continuity of F immediately follows the follow-
ing fixed point result:

PROPOSITION 2.19. Assume there exists [α,β] ⊂ C[0,R] such that

F(λ, ·) : [α,β] → [α,β].

Then F(λ, ·) has a fixed point u ∈ CR ∩ [α,β].

We note that the hypotheses of Proposition 2.19 will hold, whenever we can find a pair
{α,β} ⊂ C[0,R] such that

α � β

and

α � F(λ,α),F(λ,β)� β.

Using these facts we can now establish the following result:

THEOREM 2.20. λ−
1 , γ−

1 , Γ −
1 are nonincreasing functions of R.

PROOF. Assume there exist constants R1 and R2, with R1 < R2, such that λ−
1 (R1) <

λ−
1 (R2). Then there exists μ ∈ (λ−

1 (R1), λ
−
1 (R2)), such that (2.27) has a nontrivial solution

α̃ for R = R1 and λ= μ. Furthermore, there exists ν � λ−
1 (R2) and a nontrivial solution

β of (2.27) for R = R2 and λ = ν, with β(0) = d as large as desired. It follows from
Corollary 2.16 that for d sufficiently large β(r) > α̃(r), for each r ∈ [0,R1]. Define

α =
{
α̃, 0 � r �R1,

0, R1 � r �R2.

Then the operator F(μ, ·) for R =R2 satisfies in the space C[0,R2]

α � F(μ,α),F(μ,β)� β,

as may easily be verified. Thus by Proposition 2.19 this operator will have a fixed point in
[α,β], contradicting that μ < λ−

1 (R2). The monotonicity of the other functions is proved
using virtually similar arguments. �
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REMARK 2.21.
1. Theorem 2.20 implies that problem (2.27) has no nontrivial solutions for λ < λ−

1 (R).
2. Solutions of (2.27) are a priori bounded for λ in compact subintervals of (−∞,

Γ −
1 (R)).

3. The calculations and results also imply that for δ > 0, sufficiently small, the degrees

degLS
(
I −F(a, ·),B(0, δ),0)

,

degLS
(
I −F(b, ·),B(0, δ),0)

are defined for a < γ−
1 (R) and b > γ+

1 (R) and equal 1 and 0, respectively. Hence
it follows from global bifurcation theory that an unbounded continuum of positive
solutions of (2.27) will bifurcate from [γ−

1 (R), γ
+
1 (R)].

We conclude this section with a few remarks concerning the nonhomogeneous equation{(
rN−1φ(u′)

)′ + λrN−1ψ(u)= rN−1h(r), r ∈ (0,R),
u′(0)= u(R)= 0,

(2.48)

where h ∈L∞(0,R) is a given function. In this case, one has the following theorem:

THEOREM 2.22. There exists λ0 > 0 such that for every λ < λ0 and every function h ∈
L∞(0,R) the nonhomogeneous problem (2.48) has a solution.

As is to be expected, λ0 in this theorem is to the left of the set of principal eigenvalues
associated with both positive and negative eigenfunctions.

PROOF. The existence of solutions to the nonhomogeneous problem is equivalent to the
existence of fixed points of the operator T (λ,u,h) defined by

T (λ,u,h)(r)=
∫ R

r

φ−1
[

1

sN−1

∫ s

0
ξN−1(

λψ
(
u(ξ)

) − h(r)
)

dξ

]
ds. (2.49)

One establishes the existence of a fixed point of T in the space CR using Proposition 2.19.
To this end, we define

λ0 = inf
{
λ: λ is a principal eigenvalue of (2.27)

}
and consider problem (2.48) for values of λ < λ0. Let λ be so chosen and choose μ such
that λ < μ< λ0 and consider the boundary value problem:

{(
rN−1φ(u′)

)′ +μrN−1ψ(u)= 0, 0< r < R,

u′(0)= u(R)= 0.
(2.50)
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It then follows from the results considered earlier that there exists a solution u with u(0)=
d as large as we like. Then u satisfies also

u(r)=
∫ R

r

φ−1
[

1

sN−1

∫ s

0
ξN−1μψ

(
u(ξ)

)
dξ

]
ds.

Further u(r) may be made arbitrarily large uniformly on compact subintervals of [0,R] by
choosing d sufficiently large. Hence

u(r) =
∫ R

r

φ−1
[

1

sN−1

∫ s

0
ξN−1μψ

(
u(ξ)

)
dξ

]
ds

=
∫ R

r

φ−1
[

1

sN−1

∫ s

0
ξN−1(

λψ
(
u(ξ)

) − h
)

dξ

+ 1

sN−1

∫ s

0
ξN−1(

(μ− λ)ψ
(
u(ξ)

) + h
)

dξ

]
ds

� T (λ,u,h)(r)

provided

1

sN−1

∫ s

0
ξN−1(

(μ− λ)ψ
(
u(ξ)

) + h
)

dξ � 0, for s ∈ [0,R],

which may be accomplished for a given h ∈L∞(0,R), by choosing d sufficiently large. In
a similar manner we may construct a negative α such that α � T (λ,α,h). We now apply
Proposition 2.19 to complete the proof. �

2.2.5. Existence and nonexistence. We next consider existence and nonexistence ques-
tions for the following class of problems:{ (

rN−1φ(u′)
)′ + rN−1g(u)= 0, r ∈ (0,R),

u′(0)= u(R)= 0,
(2.51)

where φ is an odd increasing homeomorphism of R and g : R → R is a nondecreasing
continuous function such that g(0)= 0.

Motivated by the case of the p-Laplace operator and related work (see, e.g., [29,48]),
we will assume that φ satisfies:

lim sup
s→∞

φ(σs)

φ(s)
<∞, for all σ > 1 (2.52)

and

lim sup
s→0

φ(σs)

φ(s)
<∞, for all σ > 1. (2.53)
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Let

Φ(s)=
∫ s

0
φ(t)dt, G(s)=

∫ s

0
g(t)dt,

and denote by

Γ := lim sup
s→∞

Φ(s)

sφ(s)
,

and for θ ∈ (0,1),

δθ := lim inf
s→∞

G(θs)

sg(s)
.

The main existence result is the following:

THEOREM 2.23. Suppose that Γ < 1 and

lim
s→0

φ(s)

g(s)
= ∞, lim

s→∞
g(s)

φ(s)
= ∞. (2.54)

Further let there exist θ ∈ (0,1) such that δθ > 0 and

Nδθ > NΓ − 1. (2.55)

Then (2.51) has at least one positive solution.

Condition (2.55) has been used in [48] to indicate subcritical growth of g with respect
to φ. In the case of powers, i.e., when φ(s)= |s|p−2s and g(s)= |s|δ−1s, with 1<p <N

and δ > 0, this condition reads

δ <
N(p− 1)+ p

N − p
, (2.56)

which is known to be optimal in the sense that there are no positive solutions to (2.51) if

δ � N(p− 1)+ p

N −p
. (2.57)

On the other hand, if we let φ(s)= ln(1 + |s|)|s|p−2s then one has a solution for p < δ �
N(p−1)+p

N−p . Thus if we allow slightly faster growth we can include equality in (2.56) [23].
In the case of general φ and g, the main nonexistence result is the following:

THEOREM 2.24. If

sup
s�0

NG(s)

sg(s)
� inf

s�0

NΦ(s)

sφ(s)
− 1, (2.58)

then (2.51) does not have a positive solution.
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Condition (2.55) is related to a condition that appears to have been first used by Cas-
tro and Kurepa in [18,17] for the linear operator, i.e., when φ(s) = s. De Thélin and
El Hachimi [37] extended the results in [17] to the p-Laplacian case by assuming that
NG(s)− N−p

p
sg(s) is bounded from below for all s ∈ R and for some θ ∈ (0,1),

NG(θd)− N − p

p
dg(d)� 0, for d large. (2.59)

We note here that although condition (2.59) seems to relax the conditions in [18], it can be
proved to be equivalent when p = 2 and g is increasing (see [47]).

PROOF OF THEOREM 2.23. By radial symmetry, finding positive solutions to prob-
lem (2.51) is equivalent to finding nontrivial solutions to the problem{ (

rN−1φ(u′)
)′ + rN−1g

(|u|) = 0, r ∈ (0,R),
u′(0)= u(R)= 0.

(2.60)

Recall from (2.35) that CR is the closed subspace of C[0,R] defined by those u that
vanish at R. Let u be a solution of (2.60). If T0 :CR →CR is defined by

T0(u)(r)=
∫ R

r

φ−1
[

1

sN−1

∫ s

0
ξN−1g

(∣∣u(ξ)∣∣) dξ

]
ds, (2.61)

then T0 is well defined and fixed points of T0 will provide solutions of (2.60). Define now
the operator G : [0,R] ×CR → CR , by

G(λ,u)(r)=
∫ R

r

φ−1
[

1

sN−1

∫ s

0
ξN−1(

g
(∣∣u(ξ)∣∣) + λh

)
dξ

]
ds, (2.62)

where h > 0 is a constant to be fixed later. We find that G sends bounded sets of [0,R]×CR
into bounded sets of CR and G(0, u) = T0(u). Moreover, G is a completely continuous
operator.

Also, let us define the operator S : [0,R] ×CR →CR ,

S(λ,u)=
∫ R

r

φ−1
[

λ

sN−1

∫ s

0
ξN−1g

(∣∣u(ξ)∣∣) dξ

]
ds. (2.63)

Again, we see that S is completely continuous and note that S(1, ·)= T0.
One proves the existence of a fixed point of T0, and hence of a positive solution to (2.51),

by using suitable a priori estimates and degree theory. Indeed, one may show that there
exist R1 > 0 and ε0 > 0 such that

degLS
(
I − T0,B(0,R1),0

) = 0
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and

degLS
(
I − T0,B(0, ε0),0

) = 1

and thus, using the excision property of the Leray–Schauder degree it will follow that there
must exist a solution of the equation

u= T0(u)

in B(0,R1) \B(0, ε0).
To establish these facts, we need to prove that solutions (λ,u) ∈ [0,R] × CR of the

equation

u= G(λ,u) (2.64)

are a priori bounded. To do this one considers the auxiliary problem{(
rN−1φ(u′)

)′ + rN−1
(
g

(|u|) + h
) = 0, r ∈ (0,R),

u′(0)= u(R)= 0.
(2.65)

and proves the following lemmas:

LEMMA 2.25. There exists h0 > 0 such that problem (2.65) has no solutions for h� h0.

PROOF. We argue by contradiction and thus assume that there exists a sequence {hn}n∈N,
with hn → ∞ as n→ ∞ such that (2.65) has a solution un. Then, un satisfies

φ
(
u′
n(r)

) = −rN−1
∫ r

0
ξN−1(

g
(∣∣un(ξ)∣∣) + hn

)
dξ � 0

and

un(r)=
∫ R

r

φ−1
[

1

sN−1

∫ s

0
ξN−1(

g
(∣∣un(ξ)∣∣) + hn

)
dξ

]
ds � 0.

Hence, u′
n(r)� 0 and un(r)� 0 for all r ∈ [0,R]. Also,

un(r)� (R − r)φ−1
(
rhn

N

)
, for all r ∈ [0,R]

and thus, if r ∈ [R4 , 3R
4 ],

un(r)� R

4
φ−1

(
Rhn

4N

)
. (2.66)
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Since we also have that for r ∈ [R4 , 3R
4 ]

un(r)�
∫ 3R

4

r

φ−1
[

1

sN−1

∫ s

0
ξN−1g

(∣∣un(ξ)∣∣) dξ

]
ds,

by (2.66), the fact that un is decreasing, and the second assumption in (2.54), we have, that
given arbitrary A> 0, there exists n1 ∈ N such that for n� n1

un(r) �
∫ 3R

4

r

φ−1
[

A

sN−1

∫ s

0
ξN−1φ

(
un(ξ)

)
dξ

]
ds

�
∫ 3R

4

r

φ−1
[

A

sN−1

∫ r

0
ξN−1φ

(
un(ξ)

)
dξ

]
ds,

and, since φ(un(·)) is decreasing,

un(r)�
∫ 3R

4

r

φ−1
[
ArN

NsN−1 φ
(
un(r)

)]
ds.

Using now that R4 � r � s � 3R
4 , we obtain

ArN

NsN−1
� dA,

where d is a constant. Thus, by the monotonicity of φ−1, for all r ∈ [R4 , R2 ], we have that

un(r)� R

4
φ−1(

dAφ
(
un(r)

))
, for all n� n1,

or equivalently,

φ( 4
R
un(r))

φ(un(r))
� dA, (2.67)

for all n� n1 and for all r ∈ [R4 , R2 ].
It is clear that (2.67) cannot hold for A large if R � 4. If R < 4, by (2.66), condi-

tion (2.52), and the fact that A is arbitrary, we obtain a contradiction for n� n0 for some
n0 � n1. �

Let us fix h� h0, for h0 given in Lemma 2.25, and consider the family of problems{ (
rN−1φ(u′)

)′ + rN−1
(
g

(|u|) + λh
) = 0, r ∈ (0,R),

u′(0)= u(R)= 0,
(2.68)

for λ ∈ [0,1].
The next lemma has a lengthy proof, see [47] for the details.
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LEMMA 2.26. Solutions to (2.68) are a priori bounded.

Let S be as defined by (2.63). In order to complete the proof of the main result of this
section we need one more lemma.

LEMMA 2.27. There exists an ε0 > 0 such that the equation

u= S(λ,u) (2.69)

has no solution (λ,u) with u ∈ ∂B(0, ε0) and λ ∈ [0,1].

PROOF. We argue by contradiction and thus we assume that there are sequences {un} and
{λn} with ‖un‖ = εn → 0 as n→ ∞ and λn ∈ [0,1] such that (λn,un) satisfies (2.69) for
each n ∈ N. We have that (λn,un) satisfies

un(r)=
∫ R

r

φ−1
[
λn

sN−1

∫ s

0
ξN−1g

(∣∣un(ξ)∣∣) dξ

]
ds

which implies, by the first assumption in (2.54), that for sufficiently large n

εn � φ−1
(
φ(εn)

μR

N

)
R,

where μ is a positive arbitrarily small number. Thus

φ

(
εn

R

)
� μR

N
φ(εn). (2.70)

If R � 1, we immediately reach a contradiction. If now R > 1, let us set ε̃n = εn/R. Then

φ(Rε̃n)

φ(ε̃n)
� N

μR
,

and we reach a contradiction by condition (2.53) and the fact that μ is arbitrary. �

It now follows from Lemmas 2.25 and 2.26, that if u is a solution to the equation

u= G(λ,u), λ ∈ [0,1],

then ‖u‖ � C, where C is a positive constant. Thus if B(0,R1) is the ball centered at 0 in
CR with radius R1 >C, then we have that the Leray–Schauder degree of the operator

I − G(λ, ·) :B(0,R1)→CR
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is well defined for every λ ∈ [0,1]. Then, by the properties of the Leray–Schauder degree,
we have that

degLS
(
I − T0,B(0,R1),0

) = degLS
(
I − G(1, ·),B(0,R1),0

) = 0, (2.71)

since (2.64) does not have solutions on {1} × B(0,R1). Also, by Lemma 2.27 and the
properties of the Leray–Schauder degree, it follows that for ε0 > 0 small enough,

degLS
(
I − S(λ, ·),B(0, ε0),0

)
is constant for all λ ∈ [0,1].

Hence

degLS
(
I − T0,B(0, ε0),0

) = degLS
(
I,B(0, ε0),0

) = 1. (2.72)

Thus, using the excision property of the Leray–Schauder degree we conclude from (2.71)
and (2.72) that there must be a solution of the equation

u= T0(u)

with u ∈ B(0,R1)\B(0, ε0). This fixed point corresponds to a nontrivial solution to (2.51),
thus completing the proof of Theorem 2.23. �

We conclude this section with a proof of the nonexistence result (Theorem 2.24) and
some applications:

PROOF OF THEOREM 2.24. Assume condition (2.58) and the existence of a positive so-
lution u of (2.51). Let

Φ−1∗ (t)=
∫ t

0

Φ−1(τ )

τ (N−1)/N
dτ

denote the Orlicz–Sobolev conjugate of Φ . Then, multiplying the equation by ru′(r) +
bu(r), where

b = sup
s�0

NG(s)

sg(s)
,

one obtains (see [47])

d

dr

[
rN

(
Φ∗

(
φ

(
u′(r)

)) +G
(
u(r)

)) + brN−1u(r)φ
(
u′(r)

)]
= rN−1[

(b+ 1)φ
(
u′(r)

)
u′(r)−NΦ

(
u′(r)

)]
+ rN−1[

NG
(
u(r)

) − bg
(
u(r)

)
u(r)

]
� 0,
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and thus, one concludes that

E(r) := rN
(
Φ∗

(
φ

(
u′(r)

)) +G
(
u(r)

)) + brN−1u(r)φ
(
u′(r)

)
is nonincreasing for r ∈ [0,R]. However, E(0)= 0 and E(R)=Φ∗(φ(u′(R)) > 0, which
is a contradiction. �

The following two examples will serve to illustrate the above existence and nonexistence
results. Consider the boundary value problem{

div
( |∇u|2p−2∇u√

1+|∇u|2p
) + uq = 0, x ∈ BR(0),

u= 0, x ∈ ∂BR(0),
(2.73)

for R > 0. In this case the function φ is given by

φ(s)= |s|2p−2s√
1 + |s|2p

and one obtains nonexistence (see (2.58)) whenever

q � N(2p− 1)+ 2p

N − 2p

and existence whenever

p− 1< q <
N(p− 1)+ p

N − p

(see Theorem 2.23).
For the boundary value problem{

div
((

1 + |∇u|2)m−1
2 ∇u) + uq = 0, x ∈BR(0),

u= 0, x ∈ ∂BR(0),
the above conditions imply the existence of positive solutions when

m< q <
Nm+m+ 1

N −m− 1

and nonexistence when

q �
{
Nm+m+1
N−m−1 , m > 1,
N+2
N−2 , m� 1.
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2.3. The case when f (0) < 0

We now consider (2.1), i.e.,{ (
rN−1φ(u′)

)′ + λrN−1f (u)= 0, 0< r < R,

u′(0)= u(R)= 0,
(2.74)

and allow for f (0) < 0. In this case the problem has no trivial solution, hence bifurcation
results (relative to a trivial branch of solutions) will not apply and other methods must be
used.

We make the following assumptions:
(A.1) φ is an odd, increasing homeomorphism on R, and for each σ > 0 there exists a

positive number Mσ > 0 such that

φ(σs)�Mσ φ(s) (2.75)

for every s ∈ R.
(A.2) f : R+ → R is continuous, nondecreasing on [B,∞) for some B > 0, and

lim
s→∞

f (s)

φ(s)
= ∞. (2.76)

(A.3) There exists θ ∈ (0,1) such that

N lim inf
s→∞

F(θs)

sf (s)
>max

{
N lim sup

s→∞
Φ(s)

sφ(s)
− 1,0

}
, (2.77)

where, as usual, F(s)= ∫ s
0 f (t)dt and Φ(s)= ∫ s

0 φ(t)dt .
The main result in this section is:

THEOREM 2.28. Let (A.1)–(A.3) hold and assume that φ−1 is concave on R+. Then there
exists a positive number λ̄ such that for 0< λ< λ̄, Equation (2.74) has a positive, decreas-
ing solution uλ with

lim
λ→0

uλ(r)= ∞ (2.78)

uniformly for r in compact subsets of (0,R).

REMARK 2.29.
1. Condition (A.3) was employed in [47] to establish the existence of positive solutions

to (2.74) when f (0)= 0.
2. In the case when φ(s)= |s|p−2s, (A.3) becomes

lim inf
s→∞

F(θs)

sf (s)
>max

(
N − p

Np
,0

)
. (2.79)
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In particular, if f (s)= sq , (2.76) and (2.77) require that

p− 1< q <
Np

max(N − p,0)
− 1.

3. In the case when φ(s)= s and N � 2, the existence part of Theorem 2.28 was estab-
lished in [19] under the assumptions that f is nondecreasing on R and

lim
s→∞

(
NF(θs)− N − 2

2
sf (s)

)(
s

f (s)

)N/2

= ∞, (2.80)

for some θ ∈ (0,1). Note that (2.80) can be derived from (2.79) with p = 2 when f
is nondecreasing.

After several technical computations one proceeds to establish properties for the associ-
ated operator equations which are defined as follows. For each v ∈C[0,R], and μ� 0, let
u=Aμv be the solution of{(

rN−1φ(u′)
)′ = −λrN−1

(
f (v)+μ

)
, 0< r < R,

u′(0)= u(R)= 0.
(2.81)

Then Aμ :C[0,R] → C[0,R] is a completely continuous operator and its fixed points u
such that u� w on [0,R] will yield solutions of (2.81) and hence of (2.74). To establish
the existence of such fixed points we shall list some auxiliary result, whose proofs may be
found in [53].

LEMMA 2.30. For each λ > 0, small enough, there exists a positive number Rλ with
limλ→0Rλ = ∞ such that all solutions of

u= θA0u, 0 � θ � 1, (2.82)

satisfy ‖u‖ �=Rλ.

LEMMA 2.31. There exists a positive number μ0 (depending on λ) such that: If Aμ has a
fixed point, then μ� μ0.

LEMMA 2.32. There exists a function H : R+ → R with limd→∞H(d)= ∞ such that all
solutions u of u=Aμ(u) satisfy

u(r)�H
(‖u‖)

(1 − r), r ∈ [0,1]. (2.83)

LEMMA 2.33. For each ν > 0, there exists a positive number Cν such that all solutions u
of

u=Aμ(u) (2.84)

with λ� ν satisfy ‖u‖<Cν .
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PROOF OF THEOREM 2.28. Using the above lemmas we obtain

degLS
(
I −A0,B(0,Cλ),0

) = degLS
(
I −Aμ,B(0,Cλ),0

) = 0, (2.85)

where Cλ is given by Lemma 2.33. On the other hand, Lemma 2.30 implies that

degLS
(
I −A0,B(0,Rλ),0

) = 1. (2.86)

Hence it follows from the excision property of the Leray–Schauder degree that there
exists a solution uλ such that

Rλ � ‖uλ‖ � Cλ.

Since Rλ → ∞, as λ → 0, it follows from Lemma 2.32 that uλ � 0, for λ small. The
remainder of the proof is straightforward. �

2.4. The case when f (0) > 0

In this section we again consider (2.74):{ (
rN−1φ(u′)

)′ + λrN−1f (u)= 0, 0< r < R,

u′(0)= u(R)= 0,
(2.87)

and allow for f (0) > 0. We continue to assume the conditions (A.1)–(A.3) imposed in the
previous section hold. The main theorem follows:

THEOREM 2.34. Let (A.1)–(A.3) hold and suppose that f (s) > 0 for s � 0. Then there
exists a positive number λ∗ such that (2.74) has at least two solutions for λ < λ∗, at least
one for λ= λ∗, and none for λ > λ∗.

Since we are interested in positive solutions, we define f (s) = f (0) if s � 0. Before
proving Theorem 2.34 we outline several lemmas:

LEMMA 2.35. There exists a positive number λ̃ such that (2.74) has no solution for λ > λ̃.

PROOF. Let u be a solution of (2.74) and r ∈ (0,R). We have

u(r) � φ−1
[
λ

∫ r

0
τN−1f (u)dτ

]
(R − r) (2.88)

� φ−1
[
λrN

N
f̄

(
u(r)

)]
(R − r), (2.89)

where f̄ (u)= infs�u f (s).
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Hence

φ( u(r)
R−r )

f̄ (u(r))
� λrN

N
. (2.90)

On the other hand, since there exists a positive number ε such that f̄ (x)� ε for every x , it
follows that

u(r)� φ−1
[
λrNε

N

]
(R − r). (2.91)

Combining the above, we reach a contradiction if λ is sufficiently large, since
lims→∞ φ(s)

f̄ (s)
= 0. �

LEMMA 2.36. For each μ> 0, there exists a positive constant Cμ such that all solutions
u of (2.74) with λ > μ satisfy ‖u‖<Cμ.

LEMMA 2.37. If Λ = {λ > 0: (2.74) has a solution} and λ∗ = supΛ, then 0 < λ∗ <∞
and λ∗ ∈Λ.

PROOF. Using the Leray–Schauder continuation theorem, it follows that there is a solution
for λ small, and so λ∗ > 0. Also, λ∗ <∞. We verify that λ∗ ∈Λ. Let {λn} ⊂ Λ be such
that λn → λ∗, and let {un} be the corresponding solutions of (2.74) with λ = λn. From
Lemma 2.36, we deduce that {un} is bounded in C1[0,R]. Hence {un} has a subsequence
which converges to u ∈ C[0,R]. By a standard limiting process, it follows that u is a
solution for (2.74) with λ= λ∗. �

LEMMA 2.38. Let 0 < λ < λ∗ and let uλ∗ be a solution of (2.74). Then there exists a
positive number ε such that uλ∗ + ε is an upper solution of (2.74).

For v ∈ C[0,R], let Aλv = u where u satisfies{(
rN−1φ(u′)

)′ = −λrN−1f (v), 0< r < R,

u′(0)= u(R)= 0.
(2.92)

Define

f̃ (v)=
⎧⎨⎩
f (uλ∗ + ε), v � uλ∗ + ε,

f (v), −ε � v � uλ∗ + ε,

f (0), v � 0,
(2.93)

and let Ãλ be the operator analogous to Aλ defined by f̃ .

LEMMA 2.39. Let u be a solution of u= Ãλu. Then 0 � u� uλ∗ + ε.
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PROOF. Let u satisfy u= Ãλu. Then{ (
rN−1φ(u′)

)′ = −λrN−1f (u), 0< r < R,

u′(0)= u(R)= 0.
(2.94)

By the maximum principle, u� 0. We claim that u� uλ∗ + ε. Suppose that there exists
r̄ ∈ (0,R) such that u(r̄) > uλ∗(r̄)+ ε. Then there exists numbers r0 and r1 with 0 � r0 <

r1 <R such that u′(r0)= u′
λ∗(r0), u(r1)= uλ∗(r1)+ ε, and u > uλ∗ + ε on (r0, r1).

Hence (
rN−1φ(u′)

)′ = −λrN−1f (uλ∗ + ε), for r ∈ (r0, r1]. (2.95)

Since (
rN−1φ(u′

λ∗)
)′ � −λrN−1f (uλ∗ + ε), (2.96)

we deduce that[
rN−1(

φ(u′)− φ(u′
λ∗)

)]′ � 0, for r ∈ (r0, r1], (2.97)

and so u− (uλ∗ + ε) is nondecreasing on (r0, r1].
Consequently,

u(r) < uλ∗(r)+ ε, r ∈ (r0, r1], (2.98)

a contradiction. �

We now summarize a proof of the main theorem:

PROOF OF THEOREM 2.34. Let 0 < λ < λ∗. Since 0 is a lower solution and uλ∗ is an
upper solution (see [31,66]), there exists a solution uλ with 0 � uλ � uλ∗ . We next establish
the existence of a second solution. Define

B = {
u ∈ C[0,R]: −ε � u� uλ∗ + ε

}
. (2.99)

Then B is open and uλ ∈B . Since Ãλ is bounded for λ in compact intervals,

degLS
(
I − Ãλ,B(uλ,M),0

) = 1 (2.100)

if M is sufficiently large. Here B(uλ,M) denotes the open ball center at uλwith radius M
in C[0,R].

If there exists u ∈ ∂B such that u = Ãλu then u is a second solution. Suppose that
u �= Ãλu for u ∈ ∂B . Then degLS(I − Ãλ,B,0) is well defined and since Ãλ has no fixed
point in B(uλ,M) \B , we have

degLS(I −Aλ,B,0)= deg(I − Ãλ,B,0)= 1. (2.101)
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On the other hand, it follows that

degLS
(
I −Aλ,B(0,M),0

) = 0 (2.102)

for some large number M . Hence

degLS
(
I −Aλ,B(0,M) \B,0) = −1, (2.103)

and the existence of a second solution follows. �

3. Problems on annular domains

We now consider boundary value problems for nonlinear ordinary differential equations of
the form {(

φ(u′)
)′ + N−1

r
φ(u′)+ f (u)= 0, R1 < r < R2,

u(R1)= u(R2)= 0,
(3.1)

where R1 > 0. The parameter λ plays no role in the considerations to follow, thus it is
suppressed in Equation (3.1). We again assume φ : R → R is an odd increasing homeo-
morphism such that for all c > 0, there exists Ac > 0, such that

Acφ(s)� φ(cs), for s ∈ R+, (3.2)

and

lim
c→∞Ac = ∞. (3.3)

This assumption implies that there exists Bc > 0 such that

φ(cs)� Bcφ(s), for s ∈ R+,

and

lim
c→0

Bc = 0.

Since the only property of the function N−1
r

we shall use here is its continuity, we will
consider the more general problem{(

φ(u′)
)′ + b(r)φ(u′)+ f (u)= 0, R1 < r < R2,

u(R1)= u(R2)= 0,
(3.4)
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where b : [R1,R2] → R is a continuous function. The nonlinear term f will be assumed to
be continuous and satisfy

lim sup
s→0

f (s)

φ(s)
� 0 (3.5)

and to grow superlinearly (with respect to φ) near infinity, i.e.,

lim
s→∞

f (s)

φ(s)
= ∞. (3.6)

For such problems we shall establish that (3.4) always has a positive solution defined for
any interval [R1,R2]. The results discussed are motivated by problems studied in [30,51,
62,73]. We remark that the results given are equally valid in case f depends upon r also,
provided the assumptions made are assumed uniform with respect to r .

3.1. Fixed point formulation

Using the integrating factor

p(r)= e
∫ r
R1
b(s)ds

,

we may rewrite problem (3.4) equivalently as{ (
pφ(u′)

)′ + pf (u)= 0, R1 < r < R2,

u(R1)= u(R2)= 0.
(3.7)

The existence of solutions of (3.7) (hence (3.4)) is established by proving the existence
of fixed points of a completely continuous operator F :E → E, where E = C[R1,R2],
endowed with the norm ‖u‖ = maxr∈[R1,R2] |u(r)|. The operator F is defined by the fol-
lowing lemma:

LEMMA 3.1. Let φ be as above and let c be a given nonnegative constant. Then for each
v ∈E the problem{ (

pφ(u′)
)′ − cpφ(u)= pv, R1 < r < R2,

u(R1)= u(R2)= 0,
(3.8)

has a unique solution u= T (v), and the operator T :E →E is completely continuous.

PROOF. For each w ∈E let u= B(w) be the unique solution of{ (
pφ(u′)

)′ − cpφ(w)= pv, R1 < r < R2,

u(R1)= u(R2)= 0,
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given by

u(r)=
∫ r

R1

φ−1
(

1

p

{
q −

∫ s

R1

p
(
cφ(w)+ v

)
dξ

})
ds,

where q is the unique number such that u(R2)= 0. The existence of a fixed point u of B ,
hence a solution u to Equation (3.8), follows from the continuation theorem of Leray–
Schauder. One may then define the operator T by

T (v)= u,

where u is the solution of (3.8).
To accomplish this, assume u ∈E and λ ∈ (0,1) such that

u= λB(u).

Then { (
pφ

(
u′
λ

))′ − cpφ(u)= pv, R1 < r < R2,

u(R1)= u(R2)= 0.

Multiplying the above by u and integrating we obtain∫ R2

R1

pφ

(
u′

λ

)
u′ dr +

∫ R2

R1

cpφ(u)udr = −
∫ R2

R1

pvudr.

On the other hand, since φ is an increasing homeomorphism, for each ε > 0, there exists a
constant cε such that

|s| � εφ(s)s + cε, for s ∈ R.

Thus we obtain∣∣∣∣∫ R2

R1

pvudr

∣∣∣∣ � ‖v‖
∫ R2

R1

p|u|dr � ‖v‖
{
ε

∫ R2

R1

pφ(u)udr + cε(R2 −R1)

}
,

and, by choosing ε appropriately,∣∣∣∣∫ R2

R1

pvudr

∣∣∣∣ � 1

2
c

∫ R2

R1

(
pφ(u)u+ c1

)
dr,

where c1 is a constant. Hence we obtain∫ R2

R1

pφ

(
u′

λ

)
u′ dr � c2,
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for a constant c2. Therefore∫ R2

R1

|u′|dr � c3,

and hence

‖u‖ � c4.

Further ∥∥∥∥(
pφ

(
u′

λ

))′∥∥∥∥
L1

� c5.

Since there exists r0 such that u′(r0)= 0, we obtain from the latter inequality that∣∣∣∣pφ(
u′

λ

)∣∣∣∣ � c6

and hence

‖u′‖ � c7,

where c1, . . . , c7 are constants independent of λ. The complete continuity of B is easily
established and we conclude from these a priori bounds that B has a fixed point u= T (v).
If u1 and u2 are fixed points, one immediately obtains that∫ R2

R1

p
(
φ(u′

1)− φ(u′
2)

)
(u′

1 − u′
2)dr

+
∫ R2

R1

cp
(
φ(u1)− φ(u2)

)
(u1 − u2)dr = 0,

and hence, since φ is increasing, that u1 = u2. Thus the operator T given in the statement
of the lemma is well defined. �

Using Lemma 3.1 we obtain a fixed point formulation of problem (3.7) as

u= F(u)= T
(−cφ(u)− f (u)

)
. (3.9)

The next lemma is crucial for establishing the existence of nonzero fixed points of (3.9),
its proof may be found in [74].

LEMMA 3.2. If u is the solution of (3.8) with v � 0, then

u(r)� c0‖u‖k(r), R1 � r �R2,
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where

k(r)= 1

R2 −R1
min{r −R1,R2 − r},

and c0 is a positive constant.

3.2. Existence results

We next establish the existence of a nontrivial solution of (3.7) by means of a fixed point
argument, similar to those used above, (see [65,51]). We need the following auxiliary re-
sults.

PROPOSITION 3.3. Assume that f : R → R is continuous and there exists a constant c > 0
such that

f (s)+ cφ(s)� 0, s � 0.

Further assume there exists a constant m> 0 such that

u= T
(
λ

(−cφ(|u|) − f
(|u|)))

, 0 � λ� 1, ⇒ ‖u‖ �=m,

and there exists a constant M >m and an element h ∈E, h� 0 such that

u= T
(−cφ(u)− f

(|u|) + λh
)
, 0 � λ� 1, ⇒ ‖u‖ �=M,

further any solution u of

u= T
(−cφ(u)− f

(|u|) + h
)
,

satisfies ‖u‖ > M . Then there exists a fixed point u ∈ E of the operator F , F(u) =
T (−cφ(|u|)− f (|u|)) such that

m< ‖u‖<M.

Applying this proposition to the boundary value problem (3.7), we have the following
corollary.

COROLLARY 3.4. Assume that f : R → R is continuous and there exists a constant c > 0
such that

f (u)+ cφ(u)� 0, u� 0.
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Further assume there exists a constant m> 0 such that for 0 � λ� 1 and any solution u
of { (

pφ(u′)
)′ − cpφ(u)+ λ

(
cpφ

(|u|) + pf
(|u|)) = 0, R1 < r < R2,

u(R1)= (R2)= 0,
(3.10)

satisfies

‖u‖ �=m,

and there exists a constant M >m and an element h ∈ E, h� 0 such that any solution u
of { (

pφ(u′)
)′ − pφ(u)+ pφ

(|u|) + pf
(|u|) � 0, R1 < r < R2,

u(R1)= u(R2)= 0,
(3.11)

satisfies ‖u‖ �=M , and solutions u of{ (
pφ(u′)

)′ − pφ(u)+ pφ
(|u|) + pf

(|u|) + ph= 0, R1 < r < R2,

u(R1)= u(R2)= 0,
(3.12)

satisfy ‖u‖>M . Then there exists a solution u, u� 0 of (3.9) (hence (3.7)) such that

m< ‖u‖<M.

We next impose conditions on f and further conditions on φ in order that the above
corollary may be applied. These are conditions about the behavior of the functions near
zero and near infinity. These conditions in turn will provide the validity of Corollary 3.4
and hence yield the existence of nontrivial solutions.

PROPOSITION 3.5. Assume that f : R → R is continuous and let there exist a constant
c� 0 such that

f (u)+ cφ(u)� 0, u� 0.

Further, let φ be an odd increasing homeomorphism of R which satisfies (3.2) and as-
sume (3.5) holds. Then there exists a positive number m such that for 0 � λ� 1 and any
solution u of{ (

pφ(u′)
)′ − cpφ(u)+ λ

(
pf

(|u|) + cpφ
(|u|)) = 0, R1 < r < R2,

u(R1)= u(R2)= 0,

satisfies ‖u‖ �=m.
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PROOF. First note that solutions are nonnegative. Following an indirect argument, assume
the existence of sequences {λn} ⊂ [0,1], {εn}, εn ↘ 0, {un}, ‖un‖ = εn, such that the triple
(εn, λn,un) is a solution. Since each un �= 0 has a maximum point, say un(r∗n)= ‖un‖, we
obtain by integration

u′
n(r)� φ−1

(
λn

p(r)

∫ r∗n

r

p(s)f
(
un(s)

)
ds

)
and hence, for given ε > 0 we have for large n

u′
n(r)� φ−1

(
λn

p(r)

∫ r∗n

r

εp(s)φ
(
un(s)

)
ds

)
, r � r∗n .

Integrating once more and using the fact that the integrand is positive and that φ−1 is
monotone, we obtain

‖un‖ �
∫ R2

R1

(
φ−1

(
1

p(r)

∫ R2

R1

εp(s)φ
(
un(s)

)
ds

))
dt,

hence for all large n

‖un‖ � (R2 −R1)φ
−1(

c1εφ(εn)
)
,

or

φ

(
εn

R2 −R1

)
� c1εφ(εn).

Therefore, if R2 − R1 � 1 we obtain a contradiction for ε small, on the other hand if
R2 −R1 > 1, then we obtain a contradiction via (3.3). �

The following proposition from [74] cites conditions that guarantee the validity of the
second part of Corollary 3.4:

PROPOSITION 3.6. Assume that f : R → R is continuous and let there exist a constant
c� 0 such that

f (u)+ cφ(u)� 0, u� 0.

Further, let φ be an odd increasing homeomorphism of R that satisfies (3.2) and (3.6).
Then there exists a positive number M such that any solution u of{ (

pφ(u′)
)′ − cpφ(u)+ cpφ

(|u|) + pf
(|u|) � 0, R1 < r < R2,

u(R1)= u(R2)= 0

satisfies ‖u‖ �=M .
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In order to apply Corollary 3.4 to Equation (3.4), we need one further result from [74]:

PROPOSITION 3.7. Assume the hypotheses of Proposition 3.6 and let M be a constant
whose existence is guaranteed there. Then there exists h ∈E,h� 0 such that ‖u‖>M for
any solution of{ (

pφ(u′)
)′ − cpφ(u)+ cpφ

(|u|) + pf
(|u|) + ph= 0, R1 < r < R2,

u(R1)= u(R2)= 0.

Combining the above propositions and using Corollary 3.4 we have the following theo-
rem.

THEOREM 3.8. Assume that f : R → R is continuous. Further, let φ be an odd increasing
homeomorphism of R which satisfies (3.2), and let the following conditions hold:

−∞< lim inf
u→0

f (u)

φ(u)
� lim sup

u→0

f (u)

φ(u)
� 0,

lim
u→∞

f (u)

φ(u)
= ∞.

Then the boundary value problem (3.4) has a positive solution.

Note that the existence of a constant c� 0 such that

f (u)+ cφ(u)� 0, u� 0

follows from the assumptions of the theorem.
If f : R → R is nonnegative, then the following theorem applies.

THEOREM 3.9. Assume that f : R → R is continuous and nonnegative. Further, let φ
be an odd increasing homeomorphism of R such that φ(u)

u
is nondecreasing on R+ and

satisfies (3.2); also let the following conditions hold:

lim inf
s→0

F(s)

Φ(s)
= 0,

lim
s→∞

f (s)

φ(s)
= ∞.

Then the boundary value problem (3.4) has a positive solution.

We note that in the case φ(s)= |s|p−2s the conditions above hold if and only if p � 2.
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3.3. Positone problems

In this section we are interested in the existence and multiplicities of positive solutions of
the boundary value problem{(

φ(u′)
)′ + λf (r,u)= 0, R1 < r < R2,

u(R1)= u(R2)= 0,
(3.13)

with f : [R1,R2]× [0,∞)→ (0,∞) continuous. As usual, we assume φ is an odd increas-
ing homeomorphism on R such that

lim sup
x→∞

φ(σx)

φ(x)
<∞, for all σ > 0. (3.14)

Concerning f we also assume there exists [c, d] ⊂ (R1,R2), c < d , such that

lim
s→∞

f (r, s)

φ(s)
= ∞, uniformly for r ∈ [c, d]. (3.15)

The main result in this section is:

THEOREM 3.10. Let (3.14) and (3.15) hold. Then there exists a positive number λ∗ such
that the problem (3.13) has at least two positive solutions for 0< λ< λ∗, at least one for
λ= λ∗ and none for λ > λ∗.

Note that in the special case where φ(u′) = u′, Theorem 3.10 is classical (see, e.g.,
[30,100]). Related results for the case φ(u′)= |u′|p−2u′ can be found in [33,62], and the
references in these papers.

Fig. 3. Continua suggested by Theorem 3.10.
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We remark here that the above formulation includes the study of positive radial solutions
of equations like

div
(|∇u|p−2∇u) + λg

(|x|, u) = 0, R1 < |x|<R2

on annular domains, via the change of variables

t =
( |N − p|
(p− 1)r

)N−p
p−1

, r = |x|,

and

f (t, u)=
(
(p− 1)r

|N − p|
) p(N−1)

p−1

g

( |N − p|
(p− 1)

t
− p−1
N−p , u

)
and thus, higher-dimensional problems, as well (see [31]).

To prove Theorem 3.10, one employs, in addition to continuation methods, also upper
and lower solution methods. These methods are, of course, standard for semilinear equa-
tions (see [99,39]) and we refer to [12,31,66], where similar types of theorems for the
nonlinear case are presented.

Since we are interested in nonnegative solutions we shall make the convention that
f (r,u)= f (r,0) if u < 0. To prove Theorem 3.10 we first need a lemma which is a special
case of Lemma 3.2:

LEMMA 3.11. Let v ∈C[R1,R2] with v � 0 and let u satisfy(
φ(u′)

)′ = v,

u(R1)= u(R2)= 0.

Then

u(t)� ‖u‖p(t), t ∈ [R1,R2],

where

p(t)= min(t −R1,R2 − t)

R2 −R1
.

The next sequence of lemmas allows the use of continuation methods:

LEMMA 3.12. Suppose that g : [R1,R2] × R+ → R+ is continuous and there exists a
positive number M and an interval [a1, b1] ⊂ (R1,R2) such that

g(r, s)�M(φ(s)+ 1), r ∈ [a1, a2], s � 0.
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Then there exists a positive number M0 =M0(φ, a1, b1) such that the problem(
φ(u′)

)′ = −g(r,u),
u(R1)= 0 = u(R2)

has no solution whenever M �M0.

PROOF. Let u be a solution. Then

u(t)=
∫ t

R1

φ−1
[
c−

∫ s

R1

g(τ,u)dτ

]
ds,

where c= φ(u′(R1)). Let ‖u‖ = u(t0), t0 ∈ [R1,R2]. Then u′(t0)= 0 and hence

u(t)=
∫ t

R1

φ−1
[∫ t0

s

g(τ, u)dτ

]
ds.

If t0 � a1+b1
2 , then

‖u‖ � u(a1) >

∫ a1

R1

φ−1
[
M

∫ a1+b1
2

a1

(
φ(u)+ 1

)]
> (a1 −R1)φ

−1
[
M
(b1 − a1)

2

[
φ

(‖u‖δ) + 1
]]

where

δ = min
a1�t�b1

p(t).

This implies

φ

( ‖u‖
a1 −R1

)
>M

(b1 − a1)

2

[
φ

(‖u‖δ) + 1
]
.

If t0 � a1+b1
2 , then since

u(t)=
∫ R2

t

φ−1
[∫ s

t0

g(τ,u)dτ

]
ds,

we deduce

φ

( ‖u‖
R2 − b1

)
>
M(b1 − a1)

2

[
φ

(‖u‖δ) + 1
]
.
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Combining the above, we obtain

φ
(
γ ‖u‖)

>
M(b1 − a1)

2

[
φ

(‖u‖δ) + 1
]
,

where γ = max( 1
R2−b1

, 1
a1−R1

). Consequently,

‖u‖> 1

γ
φ−1

[
M(b1 − a1)

2

]
and

φ(γ ‖u‖)
φ(δ‖u‖) >

M

2
(b1 − a1)

a contradiction, if M is sufficiently large. �

It follows from the above proof, that the problem in Lemma 3.12 has no solution u

satisfying

g
(
t, u(t)

)
�M

(
φ

(
u(t)

) + 1
)
, t ∈ [a1, a2],

if M �M0.
These considerations further imply the following result:

THEOREM 3.13. There exists a positive number λ̄ such that problem (3.13) has no solution
for λ > λ̄.

It follows immediately from (3.15) that there exists a constant μ> 0 such that

f (r, s)� μ(φ(s)+ 1), s ∈ R+, c� r � d.

Hence the result follows from the previous lemma. We also need the following lemma.

LEMMA 3.14. For each μ> 0, there exists a positive constant Cμ such that the problem{ (
φ(u′)

)′ = −λθf (r,u)− (1 − θ)M0
(∣∣φ(u)∣∣ + 1

)
,

u(R1)= u(R2)= 0

with λ� μ, θ ∈ [0,1] and M0 given by Lemma 3.12, has no solution satisfying ‖u‖>Cμ.

Now, let Λ be the set of all λ > 0 such that (3.13) has a solution and let λ∗ = supΛ.

LEMMA 3.15. 0< λ∗ <∞ and λ∗ ∈Λ.
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PROOF. A function u ∈ C[R1,R2] is a solution if and only if u= F(λ,u), where

F : [0,∞)×C[R1,R2] →C[R1,R2]

is the completely continuous mapping given by

u= F(λ, v),

with u the solution of{ (
φ(u′)

)′ = −λf (r, v),
u(R1)= u(R2)= 0.

We note that F(0, v)= 0, v ∈ C[R1,R2]. Hence it follows from the continuation theorem
of Leray–Schauder that there exists a solution continuum C ⊂ [0,∞)×C[R1,R2] of solu-
tions of (3.13) which is unbounded in [0,∞)×C[R1,R2], and thus, (3.13) has a solution
for λ > 0 sufficiently small, and hence λ∗ > 0. By Theorem 3.13, λ∗ <∞. We verify that
λ∗ ∈Λ. Let {λn} ⊂Λ be such that λn → λ∗ and let {un} be the corresponding solutions.
We easily see that {un} is bounded in C1[R1,R2] and hence {un} has a subsequence con-
verging to u ∈ C[R1,R2]. By standard limiting procedures, it follows that u is a solution
of (3.13). �

LEMMA 3.16. Let 0< λ< λ∗ and let uλ∗ be a solution of (3.13). Then there exists ε0 > 0
such that uλ∗ + ε, 0 � ε � ε0, is an upper solution of (3.13).

Theorem 3.10 now follows from these lemmas:

PROOF OF THEOREM 3.10. Let 0 < λ < λ∗. Since 0 is a lower solution and uλ∗ is an
upper solution, there exists a minimum solution uλ of (3.13) with 0 � uλ � uλ∗ . We next
establish the existence of a second solution.

The mapping

λ 
→ uλ, 0 � λ� λ∗,

where uλ is the minimal solution of (3.13), is a continuous mapping [0, λ∗] →C[R1,R2].
Hence {

(λ,uλ): 0 � λ� λ∗} ⊂ C,

where C is the continuum in the proof of Lemma 3.15. Using separation results on closed
sets in compact metric spaces (i.e., Whyburn’s lemma [1]), one may use the arguments
used in the above proof to verify that for each λ ∈ (0, λ∗) there are at least two solutions
on the continuum C . �

We will discuss consequences of these existence theorems for Gelfand type problems in
the next section.
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4. The Liouville–Gelfand equation — A case study

4.1. Introduction

The classical Liouville–Gelfand problem is concerned with positive solutions of the equa-
tion {

�u+ λeu = 0, x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(4.1)

for λ > 0. Equation (4.1) arises in many settings, including the study of combustible gas
dynamics [11,49,40], astrophysics [20,38], and prescribed curvature problems [8,63,5].

Let us briefly outline the connection with chemical kinetics. Systems such as{
(ci)t = ki�ci + fi(c1, . . . , cm,T ),

Tt = k�T + f (c1, . . . , cm,T ),
(4.2)

arise in the theory of chemical reaction kinetics, where the ci represent various chemi-
cal concentrations with diffusion coefficients ki , T is the temperature, and fi represent
various nonlinear reactions. This model does not include other important effects such as
convection. Assuming a constant concentration c0 over a short time interval and that the
temperature does not exceed a base temperature T0 the equation for T in (4.2) can be
reduced to (see, e.g., [52,11,40,96])

ut = k0�u+ λ̂eu/(1−εu), (4.3)

for an appropriately nondimensionalized temperature u. Here

λ̂= a0q0c0

T 2
0

e−a0/T0,

where a0 is the activation energy of the substance, q0 is the latent heat of the reaction, and
ε = T0/a0. Of particular interest is the existence of steady state solutions to (4.3):

�u+ λeu/(1−εu) = 0, (4.4)

where λ = λ̂/k0. Equation (4.4) is known as the Arrhenius equation. In the limit of
infinitely large activation energy (for a fixed temperature T0) one obtains the Frank-
Kamenetskii approximation

�u+ λeu = 0, (4.5)

which is also known as the Liouville–Gelfand equation. Of particular importance in this
setting is the existence of values of λ for which a solution to (4.5) or (4.4) will exist. It
is perhaps not surprising that for large λ (4.5) has no solution (corresponding to blow-up
in the parabolic problem). On the other hand, the structure of the solution set to (4.5) for
small λ is quite surprising. In the next two sections we discuss this structure as well as its
extension to the quasilinear case.
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4.2. Solution set for the semilinear case

In this section we consider the radial version of the Liouville–Gelfand equation (4.1) with
Dirichlet boundary conditions:{

u′′ + N−1
r
u′ + λeu = 0, r ∈ (0,1),

u′(0)= u(1)= 0.
(4.6)

To build intuition let us consider carefully the case N = 1:{
u′′ + λeu = 0, r ∈ (0,1),
u′(0)= u(1)= 0.

(4.7)

Multiplying by u′ and integrating one finds

u′(r)= −
√

2λ
(
eα − eu

)
,

where α = u(0) is a free parameter. A second integration yields the implicit solution

tanh−1(√
1 − eu/eα

) = r

2

√
2λeα +C. (4.8)

The condition at r = 0 implies C = tanh−1(0)= 0. Thus

u(r)= α − 2 ln cosh

(
r

2

√
2λeα

)
, 0 � r < 1. (4.9)

From this equation we can determine for each α if there exists a value of λ for which the
boundary condition u(1)= 0 holds. Indeed from (4.8) at r = 1 we conclude

λ= 1

2eα

[
ln

(
1 + √

1 − e−α

1 − √
1 − e−α

)]2

. (4.10)

For each α, Equation (4.10) clearly defines a value of λ for which (4.6) has a solution. It
is somewhat surprising though that the right-hand side of Equation (4.10) is nonmonotone.
Indeed, Figure 4 shows that there exists a unique λ for which (4.6) has exactly one solution
and for each smaller λ, Equation (4.6) has precisely two solutions. In terms of the physical
setting, it can be shown that for a given λ the solution with larger α value is unstable [11].

The case N = 2 can be solved by the change of variables r = e−t and v(t) = u(r)− 2t
to obtain v′′ + λev = 0, thus u(r)= α − 2 ln(1 + λ/8eαr2). In this case

λ= 8
(
eα/2 − e−2α)

.

A plot of this relation is qualitatively exactly like Figure 4, now with a maximum at λ= 2.
Thus for both N = 1 and N = 2 the solution set to Equation (4.6) has the same structure,
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Fig. 4. The dependence of λ on α for (4.10).

there exists a λ∗ such that (1.2) has a unique solution for λ= λ∗ and exactly two solutions
for each λ ∈ (0, λ∗).

Analytic solutions of (4.6) in the physically important case of N = 3 are unknown.
Based on the results for N = 1 and N = 2, one might expect a similar solution structure.
Historically, Emden [38], Frank-Kamenetskii [40], and Chandrasekhar [20] each numeri-
cally integrated (4.6), with Frank-Kamenetskii finding the maximal λ∗ ≈ 3.32. However,
in [49], Gelfand showed that the structure of the solution set for N = 3 is quite different.
The key difference is that for N = 3, the differential equation in (4.6) has a singular solu-
tion Φ(r) = −2 ln r , corresponding to λ = 2, which also satisfies the boundary condition
u(1) = 0. Further, as r ranges from 1 to 0, Φ(r) ranges from 0 to ∞. One can use this
structure to transform (4.6) to a state-space where time is represented by Φ(r). With this
motivation, consider the change of variables⎧⎨⎩

s = − ln r, 0< r � 1,

v = du
ds ,

w = λe−2seu.

(4.11)

Under this transformation, a solution pair (λ,uλ(r)) to (4.6) is equivalent to a trajectory
{(w(s), v(s))} in the phase plane of the system{

dw
ds =w(v − 2),
dv
ds = v −w,

(4.12)

with

w(0)= λ, (4.13)

v(0)= −u′
λ(1), (4.14)
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Fig. 5. Heteroclinic orbit for (4.12). The line corresponds to a value of λ for which (4.6) has three solutions.

w(∞)= 0, (4.15)

v(∞)= 0. (4.16)

An elementary analysis of the system (4.12) shows that there are two equilibrium points
(0,0) and (2,2), the latter corresponding to the singular solution Φ(r). Furthermore there
is a heteroclinic orbit connecting the spiral node (2,2) to the origin. Thus each intersection
of this orbit with a vertical line w = λ > 0 corresponds to a solution pair {(λ,uλ)} of (4.6)
(see Figure 5).

Thus, in contrast to the case N = 1,2, for N = 3, given any m ∈ N, there exists values
of λ such that (4.6) has exactly m solutions. Moreover, for λ = 2 it has infinitely many
solutions. In the context of Emden and Chandrasekhar’s isothermal gas stars, it implies the
existence of infinitely many equilibrium positions.

Joseph and Lundgren observed that the change of variables above determines the struc-
ture of the solution set to (4.6) for all N . In particular, for N > 2, the transformation (4.11)
produces the equivalent system{

dw
ds =w(v − 2),
dv
ds = (N − 2)v−w,

(4.17)

with conditions (4.13)–(4.16). For 2 < N < 10 the equilibrium point (2(N − 2),2) is a
spiral node, thus for this range of N Equation (4.6) has a solution set similar to that of
N = 3. For N � 10 the critical point becomes a repelling node, which implies that (4.6)
has a unique solution for each λ ∈ (0,2(N−2)). Thus we have demonstrated the following
theorem:
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THEOREM 4.1. Consider Equation (4.6). The following existence results hold:
• Case I: 1 � N � 2. There exists λ∗ > 0 such that (4.6) has exactly one solution for
λ= λ∗ and exactly two solutions for each λ ∈ (0, λ∗).

• Case II: 2<N < 10. Equation (4.6) has an unbounded continuum of solutions which
oscillates around the line λ= 2(N − 2), with the amplitude of oscillations tending to
zero, as u(0)= ‖u‖ → ∞.

• Case III: N � 10. Equation (4.6) has a unique solution for each λ ∈ (0,2(N − 2))
and no solutions for λ� 2(N − 2). Moreover, ‖u‖ → ∞ as λ→ 2(N − 2).

Finer analysis of the radial solutions to (1.2) may be found in [11,78,82,79]. For results
on the Liouville–Gelfand problem on annuli, star-shaped, and more general domains see
[11,80,81,107,26,42].

4.3. Solution set for the quasilinear case

In this section we discuss extensions of the Liouville–Gelfand problem. The first work in
this direction is due to García Azorero and Peral Alonso [44] for the nonlinear diffusive
extension:{

�pu+ λeu = 0, x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(4.18)

for a bounded domain Ω . Using variational methods they prove the following theorem
extending the case p = 2 (see, e.g., [26,42]):

THEOREM 4.2. For each p > 1 there exists a constant λp such that Equation (4.18) has,
for λ ∈ (0, λp), at least one solution for p <N and at least two solutions for p �N .

Additional progress for general domains can be found in [6,104].
Studies of (4.18) in the radial case for p �= 2 first appeared in [6] (1< p <N ) and [22]

(p = N ). In particular the paper [6] found a “transition” from infinitely many solutions
(p < N < p2 + 3p/(p − 1)) to unique solutions (N � p2 + 3p/(p − 1)) that extends the
Joseph–Lundgren theory. Moreover, in [22] for p =N they find the existence of a λ∗ > 0
such that the radial case of (4.18) has exactly one solution for λ = λ∗ and exactly two
solutions for λ ∈ (0, λ∗), again extending the Joseph–Lundgren theory.

In [57], the author considers a Monge–Ampère version of the Liouville–Gelfand equa-
tion defined by{

detD2u+ λeu = 0, x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(4.19)

on a strictly convex bounded domain Ω . Curiously, unlike the Joseph–Lundgren theory, in
the Monge–Ampère case it was shown that there exists a λ∗ such that (4.19) has at least
two solutions for each λ ∈ (0, λ∗), independent of the value of N .
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Equation (4.19) is one of a family of equations{
Sk

(
D2u

) + λeu = 0, x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(4.20)

where Sk(D2u) is the k-Hessian operator discussed in the introduction. The first result
for (4.20) (k > 1) in the radial case was due to Clément et al. [22] where they considered
the case k = n in R2n. They found that in this case (4.20) has the same twofold multiplicity
of solutions as in the case k = 1, N = 2. This motivated the work [58] which determined
the precise multiplicity of (4.20) in the radial case. Using the transformation (4.11) with
s = −k ln r one finds the equivalent system:{ dw

ds =w(v − 2),

dv
ds = [

N−2k
k2

]
v − 1

kk+2wv
1−k,

(4.21)

with the additional conditions

w(0)= λ, v(0)= −u′(1)/k, w(∞)= 0, v(∞)= 0.

An analysis of the system (4.21) determines the exact multiplicity of solutions to (4.20).
Note that we recover the system (4.12) when k = 1.

In [59] all of these multiplicity results were extended to the class of quasilinear equations
defined by⎧⎨⎩

r−γ
(
rα|u′|βu′)′ + λeu = 0, r ∈ (0,1),

u > 0, r ∈ (0,1),
u′(0)= u(1)= 0,

(4.22)

where the inequalities

α � 0, (4.23)

γ + 1> α, (4.24)

β + 1> 0, (4.25)

hold. For instance, the following operators are included in this class:

Operator α β γ

Laplacian N − 1 0 N − 1
p-Laplacian (p > 1) N − 1 p− 2 N − 1
k-Hessian N − k k − 1 N − 1
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In this setting the transformation⎧⎨⎩
s = ξ ln r,

v = − du
ds ,

w= λ0eδseu,

where ξ = γ + 1 − α and δ = γ+β−α+2
ξ

yield the system

{
ẇ =w(δ− v),

v̇ = (β+1−α
ξ(β+1)

)
v + ( 1

(β+1)ξβ+2

)
wv−β (4.26)

with the additional conditions

w(0)= λ0, v(0)= −u′(1)/ξ, w(−∞)= 0, v(−∞)= 0.

The analysis in [59] yields the following structure theorem for (4.22):

(a) (b)

(c)

Fig. 6. Illustration of Theorem 4.3. (a) α − β − 1 � 0, (b) 0< α− β − 1< 4δξ
β+1 , (c) 4δξ

β+1 � α− β − 1.
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THEOREM 4.3. Consider Equation (4.22) with the inequalities (4.23), (4.24), and (4.25)
satisfied. The solution structure to (4.22) is as follows (see Figure 6):

• Case I: α − β − 1 � 0. There exists a unique λ∗ > 0 such that (4.22) has exactly one
solution for λ= λ∗ and exactly two solutions for 0< λ< λ∗.

• Case II: 0 < α − β − 1 < 4δξ
β+1 . Equation (4.22) has a continuum of solutions which

oscillates around the line λ= (α − β − 1)(δξ)β+1, with the amplitude of oscillations
tending to zero as ‖u‖ → ∞.

• Case III: α−β−1 � 4δξ
β+1 . Equation (4.22) has a unique solution for each λ ∈ (0, (α−

β − 1)(δξ)β+1) and no solutions for λ � (α − β − 1)(δξ)β+1. Moreover, ‖u‖ → ∞
as λ→ (α − β − 1)(δξ)β+1.

5. Rellich–Pohozaev identities

In this section we discuss both a nonexistence and a uniqueness result for radial solutions
of semilinear elliptic equations defined on N -dimensional balls. These results are based on
a well-known theorem due to Pohozaev [89] (see also [77,100]).

The Rellich–Pohozaev identity (cf. [8]) is an important identity (which since has been
extended considerably) which has proved useful in establishing that certain nonlinear
boundary value problems on starlike domains1 do not have solutions. The identity is con-
cerned with smooth solutions of problems, like{

�u+ f (x,u)= 0, x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(5.1)

where Ω is a starlike domain, which in our case will be assumed to be a ball. Since most
of the results are easier to write for partial differential equations, we shall write our equa-
tions as partial differential equations, bearing in mind that in the cases of interest positive
solutions will be radial solutions and hence solutions of associated ordinary differential
equations.

We let

F(x,u)=
∫ u

0
f (x, s)ds

and obtain the following identity∫
∂Ω

x · |∇u|2ν dS = 2N
∫
Ω

F(x,u)dx + 2
∫
Ω

∇F(x,u) · x dx

− (N − 2)
∫
Ω

uf (x,u)dx. (5.2)

We have the following immediate consequence:

1Ω is star-shaped if there exists x0 ∈Ω such that (x − x0) · ν � 0 for all x ∈ ∂Ω .
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THEOREM 5.1. Assume that f is independent of x , and Ω is a starlike domain and

2NF(u)− (N − 2)uf (u)� 0, u� 0.

Then (5.1) has no positive solution.

A consequence of this theorem when f (u)= |u|p−1u, p � 1, is the following result:

COROLLARY 5.2. Assume that

N + 2

N − 2
� p,

then the problem{ (
rN−1u′)′ + rN−1f (u)= 0, 0< r < R,

u′(0)= u(R)= 0,
(5.3)

has no positive solutions.

Refinements of the original Pohozaev argument for proving the above identity (see [77,
100]) also give uniqueness results for positive solutions of problems like the above con-
taining a parameter. Namely we have the following:

THEOREM 5.3. Assume that N � 3, that

f (u) > 0, f ′(u) > 0, u� 0

and there exists α > 0, such that

sup
u�α

{
2N

N − 2

}{
F(u)

uf (u)

}
< 1. (5.4)

Then { (
rN−1u′)′ + λrN−1f (u)= 0, 0< r < R,

u′(0)= u(R)= 0,
(5.5)

has a unique positive solution for λ� 0 small.

In particular, we can apply the above result for the case that f (u)= eu and obtain that
for small values of λ the solution found earlier is the unique positive solution. Note that
the earlier results also tell us that the condition that N � 3 is needed.
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5.1. More general equations

Nonexistence results also exist for the class of equations defined in the introduction, i.e.,⎧⎨⎩
r−γ

(
rα|u′|βu′)′ = f (r,u), r ∈ (0,R),

u > 0, r ∈ (0,R),
u′(0)= u(R)= 0,

(5.6)

In 1985 Pucci and Serrin [91] extended Pohozaev’s identity (5.2) to a larger class of
variational equations. Let L= L(p, z, x) denote a Lagrangian which is C2 on the domain
RN×R×Ω . Smooth critical points of the associated “energy” functional satisfy the Euler–
Lagrange equation

−
N∑
i=1

(
Lpi (Du,u, x)

)
xi

+Lz(Du,u, x)= 0, in Ω. (5.7)

We assume without loss of generality that L(0,0, x)= 0 in Ω . The main identity of Pucci-
Serrin is due to the following proposition:

PROPOSITION 5.4. Let u ∈ C2(Ω) be a solution of the Euler–Lagrange equation (5.7),
and let a and 'h be, respectively, scalar and vector valued functions of class C1(Ω). Then
the following relation holds in Ω :

∂

∂xi

[
'hiL(Du,u, x)− 'hj ∂u

∂xj
Lpi (Du,u, x)− auLpi (Du,u, x)

]

= ∂ 'hi
∂xi

L(Du,u, x)+ 'hiLxi (Du,u, x)−
(
∂u

∂xj

∂ 'hj
∂xi

+ u
∂a

∂xi

)
Lpi (Du,u, x)

− a

(
∂u

∂xi
Lpi (Du,u, x)+ uLz(Du,u, x)

)
, (5.8)

where repeated indices i and j are to be summed from 1 to N .

The proof is obtained by direct computation, using (5.7).
If u ∈C2(Ω)∩C1(Ω) solves (5.7) with u= 0 on ∂Ω then uxi = (∂u/∂ν)νi on ∂Ω so

'hj ∂u
∂xj

Lpi (Du,u, x)νi =
∂u

∂xi
Lpi (Du,u, x)

'hj νj on ∂Ω. (5.9)

Integrating (5.8) over Ω , applying (5.9), u = 0 on ∂Ω , and the divergence theorem one
obtains the fundamental identity∫

∂Ω

[
L(Du,0, x)− ∂u

∂xi
Lpi (Du,0, x)

]
('h · ν)ds
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=
∫
Ω

L(Du,u, x)div 'h+ 'hiLxi (Du,u, x)

−
(
∂u

∂xj

∂ 'hj
∂xi

+ u
∂a

∂xi

)
Lpi (Du,u, x)

− a

(
∂u

∂xi
Lpi (Du,u, x)+ uLz(Du,u, x)

)
dx. (5.10)

For example, if L(p, z)= 1
2 |p|2 − F(z), 'h= x , and a is constant, then (5.10) reduces to

−
∫
∂Ω

1

2
|Du|2(x · ν)ds =

∫
Ω

[
N

2
− 1 − a

]
|Du|2 −NF(u)+ auf (u)dx.

(5.11)

The choice of a(x)= (N − 2)/2 makes the |Du|2 term vanish and reduces (5.11) to the
Pohozaev identity (5.2). However, identity (5.10) is applicable to a much larger class of
equations. For instance, for the quasilinear equation{

�pu+ f (u)= 0, x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(5.12)

with associated Lagrangian L(Du,u)= 1
p
|Du|p −F(u), the choice of 'h= x and constant

a yields

−
∫
∂Ω

1

p
|Du|p(x · ν)ds =

∫
Ω

[
N

p
− 1 − a

]
|Du|p −NF(u)+ auf (u)dx.

(5.13)

Now we see the choice of a = (N − p)/p implies

−
∫
∂Ω

1

p
|Du|p(x · ν)ds =

∫
Ω

[
N −p

p

]
uf (u)−NF(u)dx, (5.14)

from which an appropriate nonexistence result can be stated. To determine the critical
exponent we choose f (u)= |u|q−1u and find (5.12) has no nontrivial solutions when p <
n and

q >
Np

N − p
− 1 = (p− 1)N + p

N − p
.

Note that p∗ = Np/(N − p) is the Sobolev exponent, corresponding to the loss of com-
pactness for the continuous embedding W 1,p(Ω) ⊂ Lq(Ω). Many further applications
of (5.10) may be found in [91].
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Solutions to the k-Hessian equation{
Sk

(
D2u

) = f (x,u), x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(5.15)

correspond to critical points of the functional

Ik[u] = − 1

k+ 1

∫
Ω

uSk
(
D2u

)
dx +

∫
Ω

F(x,u)dx, (5.16)

where F(x,u)= ∫ u
0 f (x, s)ds. However, Proposition 5.8 does not directly apply to (5.16)

since the Lagrangian contains higher order terms, and one needs to derive an appropriate
higher order analog of (5.8).

The Euler–Lagrange equation associated with the Lagrangian L= L(D2u,Du,u, x)=
L(rij ,pi , z, x), where rij = rji is

N∑
i,j=1

∂2

∂xi∂xj
Lrij

(
D2u,Du,u, x

) −
N∑
i=1

(
Lpi

(
D2u,Du,u, x

))
xi

+Lz
(
D2u,Du,u, x

) = 0. (5.17)

In this case the fundamental identity (simplified for our purposes) takes the form (see
Equation (29) in [91])

PROPOSITION 5.5. Let u ∈ C4(Ω) be a solution to the Euler–Lagrange equation (5.17)
with Lpi = 0 and a ∈ C2(Ω) a scalar function. Then

∂

∂xi

[
xiL+

(
xl
∂u

∂xl
+ au

)
∂Lrij

∂xj
− ∂

∂xj

(
xl
∂u

∂xl
+ au

)
Lrij

]

=NL+ xiLxi − auLz − (a + 2)
∂2u

∂xi∂xj
Lrij . (5.18)

This identity can be used to determine the critical exponent associated to the operator Sk
[109]. For simplicity we assume F = F(z) (e.g., f (u)= |u|p).

THEOREM 5.6. Let Ω be a smooth domain which is star-shaped with respect to the origin.
Assume f : (−∞,0] → [0,∞) is smooth, with f (s) > 0 for s < 0 and f (0)= 0. Then{

Sk(D
2u)= f (u), x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(5.19)

has no nontrivial solutions in C4(Ω)∩C1(Ω) when

NF(u)− N − 2k

k + 1
uf (u) > 0, for u < 0. (5.20)



Radial solutions of quasilinear elliptic differential equations 417

PROOF. Applying Proposition 5.5 to the Lagrangian L= −zSk(rij )
k+1 + F(z) with a = (N −

2k)/(k+ 1) and integrating, one obtains

− 1

k + 1

∫
∂Ω

[
xluxluxj S

ij
(
D2u

)]
νi ds =

∫
Ω

(
NF(u)− N − 2k

k + 1
uf (u)

)
dx,

(5.21)

which simplifies to

− 1

k + 1

∫
∂Ω

(x · ν)|Du|2Sij (
D2u

)
νiνj ds =

∫
Ω

(
NF(u)− N − 2k

k + 1
uf (u)

)
dx.

(5.22)

For u < 0 the operator Sk is elliptic [109], thus Sij (D2u)νiνj > 0. Hence the left-hand side
of (5.22) is nonpositive and the result follows. �

Note that when k = 1, (5.20) is equivalent to the Pohozaev criterion (5.2). If f (u) =
(−u)p then (5.20) reduces to

N − 2k

k + 1
>

N

p+ 1
. (5.23)

If k �N/2, then (5.23) cannot hold and we obtain no a priori obstructions to solution from
this method. On the other hand, when k < N/2, then (5.23) is true when p � (N+2)k

N−2k . Thus
when k < N/2 the critical exponent γ (k) for Sk is defined by

γ (k)= (N + 2)k

N − 2k
. (5.24)

Complementary existence results for radially symmetric solutions for subcritical expo-
nents (and for all exponents when k �N/2) are proved in [109], thus one can extend γ (k)
to all k via

γ (k)=
{∞, k > N/2,
(N+2)k
N−2k , k < N/2.

(5.25)

In particular, there is no critical exponent for the Monge–Ampère operator. Heuristically,
operators “closer” to the Laplace operator have critical exponents, while operators “closer”
to Monge–Ampère do not. Note that when p = k one has an eigenvalue problem (see, e.g.,
[70,110,57]).
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5.2. Critical dimensions

In 1983 Brezis and Nirenberg [16] observed that lower order perturbations to elliptic
equations involving critical exponents recover the lost compactness. More precisely, they
proved the equation{

�u+ u
N+2
N−2 + λu= 0, x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(5.26)

has a positive solution if 0 < λ < λ1 and N � 4, where λ1 is the principal eigenvalue for
−� on H 1

0 (Ω). Surprisingly, for the case N = 3 they observed that there exists λ∗ > 0
such that (5.26) has a solution for λ ∈ (λ∗, λ1) and no solution for λ ∈ (0, λ∗). If Ω is a
ball, then λ∗ = λ1/4. In this context the dimension N = 3 is called a critical dimension.

Since both�p and Sk have critical exponents (when p <N and k < N/2, respectively),
it is natural to ask if results similar to the Brezis–Nirenberg result exist for these operators.
Several authors have answered this question affirmatively. Rather than treat �p and Sk
separately, Clément et al. [22] consider the equation⎧⎨⎩

(
rα|u′|βu′)′ = rγ |u|q−2u, r ∈ (0,R),
u > 0, r ∈ (0,R),
u′(0)= u(R)= 0,

(5.27)

and the perturbed form⎧⎨⎩
(
rα|u′|βu′)′ = rγ |u|q−2u+ λrδ|u|βu, r ∈ (0,R),
u > 0, r ∈ (0,R),
u′(0)= u(R)= 0,

(5.28)

for various values of exponents α,β, δ and γ . See the table in Section 4.1 for the relevant
values of constants for (5.15) or (5.12).

The critical exponent associated with (5.27) is

q∗ = (γ + 1)(β + 2)

α − β − 1
. (5.29)

For the p-Laplacian, q∗ = Np
N−p and for Sk , q∗ = N(k+1)

N−2k .
Concerning the parameters involved, we assume the following inequalities hold:

q − 1> β + 1> 0, γ + 1> α − β − 1, (5.30)

α − β − 1> 0, δ+ 1 � α − β − 1, (5.31)

γ, δ > α− 1, (5.32)

α − β − 2< δ. (5.33)
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When applied to Sk (respectively �p) these inequalities imply q > k + 1 (respectively
q > p) and k < N/2 (respectively N < p), i.e., one is in the realm of critical exponents.

The main theorems concerning (5.28) is as follows:

THEOREM 5.7. Assume (5.30), (5.31), (5.32), (5.33) hold. If λ� 0 and q = q∗, then (5.28)
has no solution.

THEOREM 5.8. Assume (5.30), (5.31), (5.32), (5.33), β � 0 and q = q∗. If

(β + 1)(δ+ 1)− (α − β − 1)(β + 2) > 0, (5.34)

then there exists λ∗ > 0 such that (5.28) has no solution for λ ∈ (0, λ∗).

In the case of the operators Sk and �p , their parameters satisfying (5.34) correspond to
certain values of the dimension N , called critical dimensions by Pucci and Serrin [92]. For
the p-Laplace operator, (5.34) corresponds to N < p2, thus the critical dimensions for �p

are those n with p <N < p2. Note that for the Laplacian p = 2 and we obtain 2<N < 4,
thus the only critical dimension is N = 3, as observed by Brezis and Nirenberg. For the
k-Hessian the critical dimensions are those N with 2k < N < 2k(k+ 1).

The proofs are based on the following identity of Pohozaev–Pucci–Serrin type [22]:

PROPOSITION 5.9. Let a, b ∈ C1[0,∞). If u ∈C2(0,∞)∩C1[0,∞) solves

−(
rα|u′|βu′)′ = f (r,u) in (0,∞), (5.35)

then for R > 0 we have[
−rαu′|u′|β

(
au+ β + 1

β + 2
bu′

)]
r=R

+
∫ R

0
rαa′uu′|u′|β dr

+
∫ R

0
rα

(
a + β + 1

β + 2
b′ − α

β + 2

b

r

)
|u′|β+2 dr (5.36)

= [
bF(r,u)

]
r=R +

∫ R

0
auf (r,u)− bFr(r, u)− b′F(r,u)dr. (5.37)

6. Problems linear at infinity

In Section 2 we discussed several bifurcation results for boundary value problems which
had a trivial solution. The bifurcation was detected by writing the problems as an equivalent
operator equation which was of the form

u− F(λ,u)= 0,
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where

F : R ×E →E

is a completely continuous operator and E is the Banach space of continuous functions on
[0,R]. For the problems to follow such an equivalence will also be the case, except that F
will satisfy the following conditions: There exist a < b such solutions of

u− F(a,u)= 0 = u− F(b,u)

are a priori bounded and

degLS
(
id −F(a, ·),B(0, r),0) �= degLS

(
id − F(b, ·),B(0, r),0)

,

where the latter condition is to hold for all r , sufficiently large. Under these assumptions
we obtain the following bifurcation from infinity result (see, e.g., [93,101]):

PROPOSITION 6.1. There exists a continuum C of solutions of u − F(λ,u) = 0 which
bifurcates from infinity in (a, b).

The above means that the continuum C has the property that there exists a sequence
{(λn,un)} ⊂ C , such that {λn} ⊂ (a, b) and ‖un‖ → ∞.

Here we rely mainly on the work [97,98,85–87]. Consider the boundary value problem⎧⎨⎩
�u+ λf (u)+ h(x)= 0, x ∈Ω ,

u= 0, x ∈ ∂Ω ,

u > 0, x ∈Ω ,

(6.1)

where f satisfies

f (s)= s + g(s), g(s)= o
(|s|), as |s| → ∞. (6.2)

Problem (6.1) is equivalent to an operator equation

u− λF(u)− T (h)= 0 (6.3)

in R ×E where E is the Banach space C[0,R] with the usual norm, and both F :E → E

and T :E →E are completely continuous.
Using the fact that λ1, the principal eigenvalue of −� on the Sobolev space H 1

0 (BR), is
simple and the above Proposition 6.1, we obtain the following corollary.

COROLLARY 6.2. There exist continua C± of solutions of (6.1) bifurcating from infinity
at λ1.

It is these continua which we shall next describe for several cases of bounded nonlinear
terms g.
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6.1. Landesman–Lazer results

Regarding the function g, we now introduce the following quantities:

γ1 = lim sup
t→∞

g(t),

γ2 = lim inf
t→−∞ g(t),

γ3 = lim sup
t→−∞

g(t),

γ4 = lim inf
t→∞ g(t),

and we have the following results.

THEOREM 6.3. Assume that

γ1 < 0< γ2.

Then there exists a neighborhood I of λ1, such that problem (6.1) has
• at least one solution for λ ∈ I , λ� λ1,
• at least three solutions for λ ∈ I , λ < λ1.

THEOREM 6.4. Assume that

γ3 < 0< γ4.

Then there exists a neighborhood I of λ1, such that problem (6.1) has

Fig. 7. Illustration of Theorem 6.3. A similar reflected picture holds for Theorem 6.4.
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• at least one solution for λ ∈ I , λ� λ1,
• at least three solutions for λ ∈ I , λ > λ1.

These results are proved using the existence of the continua above and analyzing their
location with respect to the hyperplane λ= λ1. This may be accomplished by considering
the asymptotic behavior of integrals of the form∫

BR

g(tφ +w)φ dx,

with φ a principal eigenfunction of −� and w suitably chosen in the orthogonal comple-
ment of φ. We refer to [75,76,100].

6.2. Nonlinear terms which oscillate

We next discuss some multiplicity results from [97,98] regarding the continua which bi-
furcate from infinity for nonlinear terms g which are bounded and oscillatory. Letting φ
denote a positive eigenfunction of −� corresponding to λ1, we assume that∫

Ω

hφ dx = 0.

Let (λ,u) ∈ C+ be a solution of (6.1), then we obtain

λ

∫
Ω

g(u)φ dx = ‖u‖(λ1 − λ)

∫
Ω

u

‖u‖φ dx.

Letting μ = ‖u‖(λ1 − λ), the following results on the asymptotics of the solution
branches hold:

PROPOSITION 6.5. Assume
∫ ∞

0 g(s)s ds exists, then

sgnμ= sgn
∫ ∞

0
g(s)s ds, for μ large

and

μ‖u‖2 → d(BR)∫
BR
φ2 dx

∫ ∞

0
g(s)s ds,

where

d(BR)=
∫
∂BR

1

|∇φ| dS.
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PROPOSITION 6.6. Assume that

G(β)=
∫ β

0
g(s)s ds

is bounded and

M = lim
β→∞

1

β

∫ β

0
G(s)ds

exists. Then
• If N = 2 then

μ‖u‖2 = (
G

(‖u‖) −M
)
c(BR)+Md(BR)+R

(‖u‖)
,

with

c(BR)= NωN

2
√

detA
, A= −1

2
D2φ(0).

• If N > 2, then

‖u‖2μ=Md(BR)+R
(‖u‖)

,

with R(α)→ 0 as α→ ∞.

Concerning the constants c(BR) and d(BR) one has the following relationship

d(BR)� c(BR)
2λ(N−1)/2

1

NN/2 . (6.4)

This relationship will be important in the result below, where interesting phenomena
arise which are different for different dimension. Concerning the nonlinear term g, we
shall assume that

g(t + T )= g(t),

∫ T

0
g dt = 0

and

g = g′
1 = g′′

2 = · · · ,
∫ T

0
gi dt = 0.

We have the following theorem:

THEOREM 6.7. Let {(u,λ)} be the solution continuum of (6.1) described above. The fol-
lowing hold:
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Fig. 8. Possible continua of Theorem 6.7. The the dashed line is possible when N > 4.

• For 1 �N � 3 there exist infinitely many solutions for λ= λ1.
• For N = 4

‖u‖2(λ− λ1)=
(
g2

(‖u‖)
c(BR)+ g2(0)d(BR)

) + o
(‖u‖−2)‖u‖2,

as ‖u‖ → ∞. Hence infinitely many positive solutions exist, whenever

min
s∈[0,T ]g2(s) <−d(BR)

c(BR)
g2(0) < max

s∈[0,T ]
g2(s).

• For N > 4

‖u‖2(λ− λ1)= g2(0)d(Ω)+ o
(‖u‖−2)‖u‖2

as ‖u‖ → ∞.

We thus conclude thatC+ may lie on one side of the hyperplaneλ= λ1, ifN > 4 and the
nonlinear term g satisfies appropriate conditions. The above results are all valid in case the
ball BR is replaced by a convex set Ω with smooth boundary having the property that the
eigenfunction φ (corresponding to λ1) has a single critical point (for details see [98,100]).

7. Symmetry breaking

Our motivation for discussing ordinary differential equations of the form considered earlier
has been that they may be considered as equations whose solutions are radial solutions of
certain problems for partial differential equations which admit radial solutions because of
certain intrinsic symmetries in the equation and the underlying domain. Now, it may be the
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case that all solutions of the problem at hand must be radial solutions (e.g., if the conditions
of the Gidas–Ni–Nirenberg results [50] hold), or it may be case that nonradial solutions
bifurcate from radial solutions as parameters are varied (see, e.g., [60,82,105]). It may
also happen that nonradial solutions exist because minima of certain energy functionals
over a function space of radial functions (which define radial solutions of equations at
hand) strictly exceed minima of the same functional considered over a larger space (of not
necessarily radial functions) and hence define other solutions of the problem at hand. It is
this situation which we shall briefly discuss here.

Variational methods, of course, play an important role in the study of problems of the
type that have been considered here and such methods have been used to prove the exis-
tence of nonradial solutions of Gelfand type problems on annular domains ([44]). Note that
by the results in [50] nonradial solutions cannot exist for such problems if the domain is a
ball, and hence the existence of nonradial solutions is due to the geometry of the domain.

Let us consider the boundary value problem

{
u′′ + N−1

r
u′ + λf (u)= 0, r ∈ (a, b),

u(a)= u(b)= 0
(7.1)

solutions of which are radial solutions of{
�u+ λf (u)= 0, x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(7.2)

where

Ω = {
x ∈ RN : 0< a < |x| = r < b

}
.

By changing scale, we may assume that b = 1, and changing scale further, we also may
assume that λ= 1 and a is a parameter and we consider{

�u+ f (u)= 0, x ∈Ω ,

u= 0, x ∈ ∂Ω .
(7.3)

For various classes of nonlinearities f , we established in Section 3 that these problems
have positive solutions.

In case f (u) = up, p < N+2
N−2 , N � 3, it was proved in [16] that (7.3) has nonradial

positive solutions for any a, and if f (u)= −u+ up, p > 1, N = 2, a similar result was
established in [24], where it was also shown that the number of positive nonradial solu-
tions increases without bound as a → 1. These results have been extended by Lin [67,68]
who established several bifurcation results (which will be summarized below) motivated
by the results cited above. There is also the seminal work of Nagasaki and Suzuki [80,82]
concerning nonradial solutions of the Gelfand equation on annuli in R2, and higher dimen-
sions, which we shall also summarize.
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Let us characterize the various nonlinear terms considered and then state the pertinent
results. It will always be assumed thatf is a smooth function and f (u) > 0 for u > 0.
Furthermore f may belong to one of the following classes of functions:

N

N − 2
f (u)� f ′(u)u� (1 + δ)f (u), u > 0, N � 3, (7.4)

where δ is a positive constant;

f (u)= up, 1<p <
N + 2

N − 2
, N � 2; (7.5)

f (u)�
{
cup, 1<p < N+2

N−2 , N � 2

eA(u), A(u)= o
(
u2

)
, u→ ∞, N = 2.

(7.6)

For such nonlinearities the following theorem holds:

THEOREM 7.1. If f (u)= o(u), u→ 0, then under any of the above conditions positive
nonradial solutions of (7.3) exist.

Consider the Gelfand problem{
�u+ λeu = 0, x ∈Ω ,

u= 0, x ∈ ∂Ω ,
(7.7)

with

Ω = {
x ∈ R2: 0< a < |x| = r < 1

}
.

Using polar coordinates x = (r cosθ, r sin θ) and the rotation

Tmx =
(
r cos

(
θ + π

m

)
, r sin

(
θ + π

m

))
,

we consider, besides the space V =H 1
0 (Ω), the spaces

Vm = {
v ∈ V : v(Tmx)= v(x)

}
and we call m the mode of a function v if m is the largest integer such that v ∈ Vm. For the
functional

M :V → R

defined by

M(v)=
∫
Ω

ev dx,



Radial solutions of quasilinear elliptic differential equations 427

Fig. 9. Possible solution continua for Equation (7.2). The dashed lines represent symmetry breaking bifurcation
branches.

the following result was established in [80]:

THEOREM 7.2. For any positive integerm, there exists a numberμm > 0 such that for any
μ>μm problem (7.7) has a nonradial solution (λ,u) with u of mode m and M(u)= μ.

This suggests that the solution continua of positive radial solutions of (7.7) whose exis-
tence was established in Section 3 undergo secondary bifurcations. However, the proof of
the above result uses variational methods and the continua were established using continu-
ation methods based on degree theory. Thus the above suggestion about secondary bifurca-
tions is a suggestion only. On the other hand, in their paper [82] Nagasaki and Suzuki have
used a somewhat different method, based on Morse theory and topological degree theory
to study symmetry breaking off radial solutions of (7.7) in case N � 2 and they conclude
that the solution continuum of radial solutions C of the Gelfand problem (7.7) undergoes
infinitely many symmetry breaking bifurcations (into nonradial solutions) as λ→ 0+ and
‖u‖ → ∞. A similar approach has been used in [106] for semilinear equations involving
power nonlinearities.

8. Whole space problems

In this final section we shall consider problems of the type

−�u+ u− |u|p−1u= 0, x ∈ RN, p > 1, (8.1)

and more general equations of the form

−�u+ V (x)u− (
�|u|2)

u= λ|u|p−1u, x ∈ RN, (8.2)
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where λ is a parameter. Again, we will be interested in radial solutions, i.e., solutions u
which only depend upon r = |x|. Such solutions, of course, will, as before be solutions of
corresponding ordinary differential equations. As in the case when the domain is a ball,
positive solutions of (8.1) may be radial solutions by results similar to the results in [50].
In fact very similar results have been obtained, see, e.g., [27,28,102].

We shall call positive solutions of either of the equations ground states and we shall
discuss results which guarantee the existence of ground states. The approach used in both
cases is variational and we shall rely on results in [83,111] for Equation (8.1) and recent
results from [90] for Equation (8.2). The latter equation is a fully nonlinear equation and
has many interesting applications in mathematical physics. Some references to such appli-
cations may be found in [90].

The important Sobolev space for both problems is the space W 1,2(RN) with the sub-
space

H 1
r

(
RN

) = {
u ∈W 1,2(

RN
)
: u is radial

}
.

A result of Strauss (see [111]) guarantees that the embedding

H 1
r

(
RN

)
↪→ Lq

(
RN

)
, 2< q <

2N

N − 2
, (8.3)

is a compact embedding; this fact plays an important role in studying the functionals

I (u)= 1

2

(∫
RN

|∇u|2 dx +
∫

RN

|u|2 dx

)
, (8.4)

J (u)= 1

2

(∫
RN

|∇u|2 dx +
∫

RN

V (x)|u|2 dx

)
+

∫
RN

|∇u|2u2 dx, (8.5)

and

K(u)= 1

p+ 1

∫
RN

|u|p+1 dx, (8.6)

on the space H 1
r (R

N).
The compact embedding result plays an important role in establishing the so-called

Palais–Smale condition, a condition which is used in verifying the mountain pass theo-
rem. An alternate approach to such problems is the use of Lagrange multiplier techniques
in which case the fact that the level sets{

u ∈H 1
r

(
RN

)
: K(u)= constant

}
are weakly closed (which follows from the compact embedding result) plays a role. These
approaches establish the existence of critical points of the defining functionals (or critical
points subject to a constraint) which provide weak solutions of the differential equation.
Some classical arguments then show that the weak solutions are actually smooth. Using
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the well-known mountain pass theorem of Ambrosetti and Rabinowitz the following result
has been established (see, e.g., [111]).

THEOREM 8.1. Assume 1< p < N+2
N−2 , then Equation (8.1) has a positive radial solution

u ∈ H 1
r (R

N). This solution belongs to class C2(RN) and is a solution of the boundary
value problem{

u′′ + N−1
r
u′ − u+ |u|p−1u= 0, r ∈ (0,∞),

u′(0)= u(∞)= 0.
(8.7)

As already mentioned, this problem (for the case N = 3) was already studied by Nehari
[83] using a variational approach. For Nehari’s case the problem becomes{

u′′ + 2
r
u′ − u+ |u|p−1u= 0, r ∈ (0,∞),

u′(0)= u(∞)= 0,
(8.8)

with 1<p < 5. Letting v = ru, one finds that v is a solution of the equation

v′′ − v + r1−pvp = 0. (8.9)

The following example of Nehari [83] shows that for p = 5 no such solutions can exist
(thus a result similar to the nonexistence result of Pohozaev [89] holds for problems defined
in all of space, as well). For, if one assumes that such a solution exists, then v solves

v′′ − v + r−4v5 = 0, (8.10)

and using the identity

d

dr

(
r(v′)2 − vv′ + v6

2r3

)
= (2rv′ − v)

(
v′′ + v5

r4

)
,

one obtains, for any 0< a < r < b,[
r(v′)2 − vv′ + v6

2r3

]b
a

=
∫ b

a

(
2rvv′ − v2)

dr = [
rv2]b

a
− 2

∫ b

a

v2 dr. (8.11)

One may show that

v(r)= O
(
e−r), r → ∞, v(r)= O(r), r → 0,

and hence conclude from (8.11) that∫ ∞

0
v2 dr = 0,

contradicting that u is a nontrivial solution of (8.8) for p = 5.
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The above example is but one of the many results available for the existence of positive
radial ground states for equations of the form

div
(
A

(|∇u|)∇u) + f (u)= 0, x ∈ RN .

For additional results we refer to the papers [84,88,102] and their references.
We now turn to the problem (8.2), then under various assumptions on the potential V

one may establish results similar to the above using a variational approach (critical point
theory). The assumptions imposed on V ∈ L1

loc(R
N) and the number p belong to the fol-

lowing class:
(A) There exists a constant δ > 0 such that

V (x)� δ, a.e.

(B) V ∈ L∞(RN), and V is periodic in each coordinate; p � 3.
(C) V ∈ L∞(RN), V (x)→ ‖V ‖L∞ , |x| → ∞; p � 3.
(D) V (x)→ ∞, |x| → ∞; p > 1.
The following results have been established (see [90]).

THEOREM 8.2. Assume that N = 1 and that condition (A) and condition (B), (C), or (D)
hold. Then for any α > 0 there exists λα > 0 such that

−u′′ + V (x)u− (
u2)′′

u= λα|u|p−1u,

has a positive solution u ∈W 1,2(R). The function α 
→ λα is unbounded and lower semi-
continuous. If it is the case that p � 3, then

lim
α→∞λα = 0, lim

α→0+ λα = ∞.

In this case, furthermore, for each λ > 0, there exists an infinite sequence of positive solu-
tions {un} ⊂W 1,2(R) of

−u′′ + V (x)u− (
u2)′′

u= λ|u|p−1u,

with

J (un)→ ∞,

where J is given by (8.5).

For higher dimensions the following existence results are valid.

THEOREM 8.3. LetN � 2 and 1<p < N+2
N−2 . Then there exists a sequence {λn}, λn → ∞,

such that (8.2) admits for any λ= λn a nontrivial nonnegative radial solution u ∈H 1
r (R

N).
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In case 3 � p < N+2
N−2 , i.e., N = 2 or N = 3, there exists a corresponding sequence {λn},

satisfying λn → 0, as well.
If N = 3 and 3 � p < 5 and λ > 0, then (8.2) has a nontrivial nonnegative solution

u ∈H 1
r (R

3).
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Nonlinear ordinary differential equations appear in many branches of applied mathematics,
physics and, in general, in applied sciences. For a differential system or a vector field
defined on the plane R2 or C2 the existence of a first integral determines completely its
phase portrait; of course, working with real or complex time, respectively. Since for such
vector fields the notion of integrability is based on the existence of a first integral the
following natural question arises:

Given a vector field on R2 or C2, how to recognize if this vector field has a first
integral?

The more easiest planar vector fields having a first integral are the Hamiltonian ones. The
integrable planar vector fields which are not-Hamiltonian are, in general, very difficult to
detect. Many different methods have been used for studying the existence of first integrals
for non-Hamiltonian vector fields based on: Noether symmetries [13], the Darbouxian the-
ory of integrability [38], the Lie symmetries [83], the Painlevé analysis [7], the use of Lax
pairs [62], the direct method [51] and [55], the linear compatibility analysis method [97],
the Carlemann embedding procedure [14] and [2], the quasimonomial formalism [7], etc.

In this chapter we study the existence of first integrals for planar polynomial vector
fields through the Darbouxian theory of integrability. The algebraic theory of integrability
is a classical one, which is related with the first part of the Hilbert’s 16th problem [56].
This kind of integrability is usually called Darbouxian integrability, and it provides a link
between the integrability of polynomial vector fields and the number of invariant algebraic
curves that they have (see [38,86]).

Darboux [38] showed how can be constructed the first integrals of planar polynomial
vector fields possessing sufficient invariant algebraic curves. In particular, he proved that if
a planar polynomial vector field of degree m has at least [m(m+ 1)/2] invariant algebraic
curves, then it has a first integral, which can be computed using these invariant algebraic
curves. Jouanolou [58] (see also [95] and [31] for an easy proof) shows that if the number
of invariant algebraic curves of a planar polynomial vector field of degree m is at least
[m(m+ 1)/2] + 2, then the vector field has a rational first integral, and consequently all its
solutions are invariant algebraic curves. For more details and results on Darbouxian theory
of integration for planar polynomial vector fields, see [9,26,28,30,85,87,91–93].

Prelle and Singer [87] using methods of differential algebra, showed that if a polynomial
vector field has an elementary first integral, then it can be computed using the Darbouxian
theory of integrability. Singer [95] proved that if a polynomial vector field has Liouvillian
first integrals, then it has integrating factors given by Darbouxian functions. Some related
results can be found in [20].

1. Basic notions

In this section first we present the planar polynomial differential systems that we shall
study. Secondly, we introduce the notion of first integral; and finally, we deal with the
definition of integrating factor.
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1.1. Polynomial systems

By definition a planar polynomial differential system or simply a polynomial system is a
differential system of the form

dx

dt
= ẋ = P(x, y),

dy

dt
= ẏ =Q(x,y), (1)

or equivalently

dy

dx
= Q(x,y)

P (x, y)
,

where P and Q are polynomials in the variables x and y . Moreover, the dependent vari-
ables x and y , the independent variable t , and the coefficients of the polynomials P and
Q are either all complex, or all real. In the former case the system is called a complex
polynomial system and in the later a real polynomial system.

The independent variable t will be called the time of system (1).
If we have a real polynomial system (1) we will work with it as a complex one, indepen-

dently if we want to study its real integrability, because as we will see later on, often the
real integrability of a real polynomial system is forced by its complex structure.

In this chapter the degree m of the polynomial system (1) will be the maximum of the
degrees of the polynomials P and Q.

Associated to polynomial system (1) there is either the polynomial vector field

X = P(x, y)
∂

∂x
+Q(x,y)

∂

∂y
, (2)

or the polynomial 1-form

ω= P(x, y)dy −Q(x,y)dx.

The existence of solutions for the polynomial system (1), or equivalently for the polyno-
mial vector field X or for the 1-form ω is given by the Existence and Uniqueness theorem
of solutions for an ordinary differential system.

If the polynomial system (1) is real, then a solution of it is an analytic function
ϕ :U → R2 (U is the maximal time open interval in which the solution is defined) such
that dϕ(t)/dt =X(ϕ(t)), for every t ∈U .

If the polynomial system (1) is complex, then a solution of it is an analytic or holomor-
phic function ϕ :U → C2 (U is the maximal time simple connected open subset of C in
which the solution is defined) such that dϕ(t)/dt =X(ϕ(t)), for every t ∈U .

In what follows we denote by F either R, or C, according with system (1) be real or
complex, respectively.

Let ϕ :U → F2 be a solution of system (1). Then, the set {ϕ(t) ∈ F2: t ∈ U} is called a
trajectory, an integral curve or an orbit of system (1) or of the vector field X .
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1.2. First integrals and invariants

The vector field X or equivalently the system (1) is integrable on an open subset U of F2

if there exists a nonconstant analytic function H :U → F, called a first integral of the
system onU , which is constant on all solution curves (x(t), y(t)) of X contained in U ; i.e.,
H(x(t), y(t))= constant for all values of t for which the solution (x(t), y(t)) is defined
and contained in U . Clearly H is a first integral of X on U if and only if

XH = 0, or ω ∧ dH = 0,

on U .
For system (1) defined on the plane R2 or C2 the existence of a first integral determines

completely its phase portrait; i.e., the decomposition of the plane as union of the orbits
of (1).

EXAMPLE 1.1. The polynomial system

ẋ = x(ax + c), ẏ = y(2ax + by + c), (3)

has the first integral

H = (ax + c)(ax + by)

x(ax + by + c)
.

And the system

ẋ = −y − b
(
x2 + y2)

, ẏ = x, (4)

has the first integral

H = exp(2by)
(
x2 + y2)

. (5)

Of course, once we have a first integral any analytic function of this first integral is
another first integral.

Let U ⊂ F2 be an open set. We say that an analytic function H(x,y, t) :U × F → F, is
an invariant of the polynomial vector field X on U , if H(x,y, t)= constant for all values
of t for which the solution (x(t), y(t)) is defined and contained in U . If an invariant H is
independent on t then, of course, it is a first integral.

The knowledge provided by an invariant is weaker than the one provide by a first inte-
gral. The invariant, in general, only gives information about either the α- or the ω-limit set
of the orbits of the system.

EXAMPLE 1.2. If aB − bA= 0 and bC −Bc �= 0, then the polynomial system

ẋ = x(ax + by + c), ẏ = y(Ax +By +C), (6)
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has the invariant

H = xB/(bC−Bc)y−b/(bC−Bc)et .

System (6) is the well-known Lotka–Volterra system, see [72,100].

1.3. Integrating factors

The simple fact of associating to system (1) the 1-form ω allows to obtain for the exact
systems a first integral. Indeed, system (1) is called exact if it satisfies

∂P

∂x
= −∂Q

∂y
.

For these systems the 1-form ω is closed; i.e., dω= 0. Therefore, the function

H(x,y)=
∫ (x,y)

(x0,y0)

ω,

obtained integratingω through any path starting at the point (x0, y0) and ending at the point
(x, y) is well defined, because ω is closed and F2 is simply connected. Then, ω = dH .
Hence, ω ∧ dH = 0, and consequently H is a first integral for system (1).

The exact systems provides us a way to obtain first integrals for a given system (1) which
initially is not exact, through the notion of integrating factor.

Let U be an open subset of F2, and R :U → F be an analytic function which is not
identically zero on U . The function R is an integrating factor of the vector field X , or of
the 1-form ω, or of the system (1) on U if one of the following four equivalent conditions
holds

∂(RP)

∂x
= −∂(RQ)

∂y
,

div(RP,RQ)= 0,

XR = −R div(X ),
d(Rω)= d(RP dy −RQdx)= 0, (7)

on U . As usual the divergence of the vector field X is defined by

div(X )= div(P,Q)= ∂P

∂x
+ ∂Q

∂y
.

The first integral H associated to the integrating factor R is given by

H(x,y)= −
∫
R(x, y)P (x, y)dy + h(x),
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satisfying ∂H/∂x = −RQ. Then

ẋ =RP = −∂H

∂y
, ẏ =RQ= ∂H

∂x
. (8)

In order that this functionH to be single-valued the open set U must be simply connected,
if not it can be multi-valued.

Conversely, given a first integral H of the vector field X we always can find an integrat-
ing factor R for which (8) holds.

EXAMPLE 1.3. It is easy to check that system (4) has the integrating factor R =
2 exp(2by), and that using it we get the first integral (5), and vice versa.

EXAMPLE 1.4. Linear differential equations. We consider the polynomial differential
equation

dy

dx
= a(x)y + b(x),

with a and b polynomials in x . Its associated 1-form is

ω = dy − (
a(x)y + b(x)

)
dx.

If R =R(x) is an integrating factor it must satisfy

d(Rω)=
(
∂R

∂x
+Ra(x)

)
dx ∧ dy = 0.

Therefore, we get the integrating factor

R(x)= exp

(
−

∫
a(x)dx

)
.

Later on we shall use the following result.

PROPOSITION 1.5. If a vector field X has two integrating factors R1 and R2 on the open
subset U of F2, then in the open set U \ {R2 = 0} the function R1/R2 is a first integral.

PROOF. Since Ri is an integrating factor, it satisfies that XRi = −Ri div(X ) for i = 1,2.
Therefore, the proposition follows immediately from the next computation:

X
(
R1

R2

)
= (XR1)R2 −R1(XR2)

R2
2

= 0.

�
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1.4. Invariant algebraic curves

Let f ∈ C[x, y]; i.e., f is a polynomial with complex coefficients in the variables x and y .
The complex algebraic curve f (x, y)= 0 is an invariant algebraic curve of the real vector
field X if for some polynomial K ∈ C[x, y] we have

Xf = P
∂f

∂x
+Q

∂f

∂y
=Kf. (9)

The polynomial K is called the cofactor of the invariant algebraic curve f = 0. We note
that since the polynomial system has degree m, then any cofactor has at most degreem−1.

We remark that in the definition of invariant algebraic curve f = 0 we always allow
this curve to be complex; that is f ∈ C[x, y]. As we will see this is due to the fact that
sometimes for real vector fields the existence of a real first integral can be forced by the
existence of complex invariant algebraic curves. Of course, when we look for a complex
invariant algebraic curve of a real vector field we are thinking in the real vector field as a
complex one.

Since on the points of the algebraic curve f = 0 the gradient (∂f/∂x , ∂f/∂y) of the
curve is orthogonal to the vector field X = (P,Q) (see (9)), the vector field X is tangent
to the curve f = 0. Hence, the curve f = 0 is formed by trajectories of the vector field X .
This justifies the name of invariant algebraic curve given to the algebraic curve f = 0
satisfying (9) for some polynomial K , because it is invariant under the flow defined by X .

EXAMPLE 1.6. It is easy to check that system (3) has the following five invariant algebraic
curves, in this case straight lines: f1 = x = 0, f2 = ax+c= 0, f3 = y = 0, f4 = ax+by =
0, and f5 = ax+by+ c= 0, having cofactorsK1 = ax+ c, K2 = ax , K3 = 2ax+by+ c,
K4 = ax+ by+ c and K5 = ax+ by , respectively. In fact, all integral curves of system (3)
are algebraic because, with the exception of f1 = 0 and f5 = 0, they can be written as
(ax + c)(ax + by)− hx(ax + by + c)= 0 being h a constant.

EXAMPLE 1.7. System (4) has only the two invariant algebraic curves x + yi = 0 and
x−yi = 0, or equivalently the invariant algebraic curve x2 +y2 = 0, see Proposition 1.10.
This is easy to proof using its first integral H = exp(2by)(x2 + y2).

PROPOSITION 1.8. For a real polynomial system (1), f = 0 is an invariant algebraic
curve with cofactorK if and only if f̄ = 0 is an invariant algebraic curve with cofactor �K .
Here conjugation denotes conjugation of the coefficients of the polynomials only.

PROOF. We assume that f = 0 is an invariant algebraic curve with cofactor K of the real
polynomial system (1.9). Then equality (9) holds. Since P and Q are real polynomials
conjugating equality (9) we obtain that

P
∂f̄

∂x
+Q

∂f̄

∂y
= �Kf̄ .
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Consequently, f̄ = 0 is an invariant algebraic curve with cofactor �K of system (1). The
proof in the converse direction is similar. �

LEMMA 1.9. Let f,g ∈ C[x, y]. We assume that f and g are relatively prime in the ring
C[x, y]. Then, for a polynomial system (1), fg = 0 is an invariant algebraic curve with co-
factorKfg if and only if f = 0 and g = 0 are invariant algebraic curves with cofactorsKf

and Kg respectively. Moreover, Kfg =Kf +Kg .

PROOF. It is clear that

X (fg)= (Xf )g + f (Xg). (10)

We assume that fg = 0 is an invariant algebraic curve with cofactor Kfg of system (1).
Then, X (fg) =Kfgfg and from equality (10) we get Kfgfg = (Xf )g + fXg. There-
fore, since f and g are relatively prime, we obtain that f divides Xf , and g divides Xg.
If we denote by Kf = Xf/f and by Kg = Xg/g, then f = 0 and g = 0 are invariant al-
gebraic curves of system (1) with cofactorsKf and Kg respectively, and Kfg =Kf +Kg .

The proof in the converse direction follows in a similar way using again (10). �

PROPOSITION 1.10. We suppose that f ∈ C[x, y] and let f = f
n1
1 · · ·f nrr be its factor-

ization in irreducible factors over C[x, y]. Then, for a polynomial system (1), f = 0 is an
invariant algebraic curve with cofactor Kf if and only if fi = 0 is an invariant algebraic
curve for each i = 1, . . . , r with cofactor Kfi . Moreover Kf = n1Kf1 + · · · + nrKfr .

PROOF. From Lemma 1.9, we have that f = 0 is an invariant algebraic curve with cofac-
tor Kf if and only if f nii = 0 is an invariant algebraic curve for each i = 1, . . . , r with
cofactor K

f
ni
i

, furthermoreKf =K
f
n1
1

+ · · · +Kf
nr
r

.

Now for proving the proposition it is sufficient to show, for each i = 1, . . . , r , that
f
ni
i = 0 is an invariant algebraic curve with cofactor K

f
ni
i

if and only if fi = 0 is an in-

variant algebraic curve with cofactor Kfi , and that K
f
ni
i

= niKfi . We assume that f nii = 0

is an invariant algebraic curve with cofactor K
f
ni
i

. Then

K
f
ni
i
f
ni
i =X

(
f
ni
i

) = nif
ni−1
i X (fi),

or equivalently

X (fi)= 1

ni
K
f
ni
i
fi .

So defining Kfi = K
f
ni
i
/ni . We obtain that fi = 0 is an invariant algebraic curve with

cofactor Kfi such that K
f
ni
i

= niKfi . The proof in the converse direction follows in a

similar way. �
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An irreducible invariant algebraic curve f = 0 will be an invariant algebraic curve such
that f is an irreducible polynomial in the ring C[x, y].

A natural question in this subject is whether a polynomial vector field has or not invariant
algebraic curves. The answer is not easy, see the large section in Jouanolou’s book [58], or
the long paper [79] devoted to show that one particular polynomial system has no invariant
algebraic solutions. Even one of the more studied limit cycles, the limit cycle of the van
der Pol system, until 1995 it was unknown that it is not algebraic [82]. Some results about
the algebraic limit cycles of quadratic polynomial vector fields can be found in [21].

1.5. Exponential factors

In this section we introduce the notion of an exponential factor due to Christopher [28].
We shall see that an exponential factor appears when an invariant algebraic curve has in
some sense multiplicity larger than 1. Therefore, as we shall show an exponential factor
will play the same role than an invariant algebraic curve in order to obtain a first integral
for the polynomial system (1).

We assume that we have two invariant algebraic curves h = 0 and h + εg = 0 with
cofactors Kh and Kh+εg and that ε is in a neighborhood of zero. Using that Xh = Khh

and that X (h+εg)=Kh+εg(h+εg), if we expand in power series of ε the cofactorKh+εg
we obtain that Kh+εg =Kh+ εK + O(ε2), where K is some polynomial of degree at most
m− 1.

Since

X
(
h+ εg

h

)
= X (h+ εg)h− (h+ εg)Xh

h2

= Kh+εg(h+ εg)h− (h+ εg)Khh

h2

= (Kh + εK + O(ε2))(h+ εg)h− (h+ εg)Khh

h2

= εK + O
(
ε2)

,

we have

X
((

h+ εg

h

)1/ε)
= 1

ε

(
h+ εg

h

)1/ε(
1 + ε

h

g

)−1

X
(
h+ εg

h

)

= 1

ε

(
h+ εg

h

)1/ε(
1 + O(ε)

)(
εK + O

(
ε2))

= (
K + O(ε)

)(
h+ εg

h

)1/ε

. (11)



Integrability of polynomial differential systems 447

Therefore the function(
h+ εg

h

)1/ε

has cofactor K + O(ε). As ε tends to zero, the above expression tends to

exp

(
g

h

)
, (12)

and from (11) we obtain that

X
(

exp

(
g

h

))
=K exp

(
g

h

)
. (13)

Therefore, function (12) satisfies the same Equation (9) that the invariant algebraic curves,
with a cofactor of degree at most m− 1.

Let h,g ∈ C[x, y] and assume that h and g are relatively prime in the ring C[x, y]. Then
the function exp(g/h) is called an exponential factor of the F-polynomial system (1) if for
some polynomialK ∈ C[x, y] of degree at most m− 1 it satisfies Equation (13). As before
we say that K is the cofactor of the exponential factor exp(g/h).

As we will see from the point of view of the integrability of polynomial systems (1) the
importance of the exponential factors is double. On one hand, they verify Equation (13),
and on the other hand, their cofactors are polynomials of degree at most m − 1. These
two facts will allow that they play the same role that the invariant algebraic curves in the
integrability of a polynomial system (1). We note that the exponential factors do not define
invariant curves for the flow of system (1).

We remark that in the definition of exponential factor exp(g/h)we always allow that this
function is complex; that is h,g ∈ C[x, y]. This is due to the same reason that in the case
of invariant algebraic curves. That is, sometimes for real polynomial systems the existence
of a real first integral can be forced by the existence of complex exponential factors. Again
when we look for a complex exponential factor of a real polynomial system we are thinking
in the real polynomial vector field as a complex one.

PROPOSITION 1.11. For a real polynomial system (1.9) the function exp(g/h) is an ex-
ponential factor with cofactor K if and only if the function exp(ḡ/h̄) is an exponential
factor with cofactor �K . Again conjugation denotes conjugation of the coefficients of the
polynomials only.

PROOF. We assume that exp(g/h) is an exponential factor with cofactor K of the real
polynomial system (1). Then equality (13) holds. Since P and Q are real polynomials
conjugating equality (13) we obtain that

P
∂ exp(ḡ/h̄)

∂x
+Q

∂ exp(ḡ/h̄)

∂y
= �K exp(ḡ/h̄).
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Consequently, exp(ḡ/h̄) is an exponential factor with cofactor �K of system (1). The proof
in the converse direction is similar. �

PROPOSITION 1.12. If F = exp(g/h) is an exponential factor for the polynomial sys-
tem (1), then h= 0 is an invariant algebraic curve, and g satisfies the equation

Xg = gKh + hKF ,

where Kh and KF are the cofactors of h and F respectively.

PROOF. Since F = exp(g/h) is an exponential factor with cofactor KF , we have

KF exp

(
g

h

)
=X exp

(
g

h

)
= exp

(
g

h

)
X

(
g

h

)
= exp

(
g

h

)
(Xg)h− g(Xh)

h2 ,

or equivalently

(Xg)h− g(Xh)= h2KF .

Hence, since h and g are relatively prime, we obtain that h divides Xh. So h = 0 is an
invariant algebraic curve with cofactor Kh = Xh/h. Now substituting Xh by Khh in the
last equality, we have that Xg = gKh + hKF . �

We remark that the exponential factors of the form exp(g/h) with h = constant ap-
pear when the straight line at infinity is a solution with multiplicity higher than 1 for the
projectivized version of the vector field, for additional details see [34].

2. Darbouxian theory of integrability

As far as we know, the problem of integrating a polynomial system by using its invariant
algebraic curves was started to be considered by Darboux in [38]. The version that we
present improves Darboux’s one essentially because here we also take into account the
exponential factors (see [28]), the independent singular points (see [26]), and the invariants
(see [9,11]).

Before stating the main results of the Darboux theory of integrability we need some de-
finitions. If S(x, y)= ∑m−1

i+j=0 aij x
iyj is a polynomial of degree m− 1 with m(m+ 1)/2

coefficients in C, then we write S ∈ Cm−1[x, y]. We identify the linear vector space
Cm−1[x, y] with Cm(m+1)/2 through the isomorphism S → (a00, a10, a01, . . . , am−1,0,

am−2,1, . . . , a0,m−1).
We say that r points (xk, yk) ∈ C2, k = 1, . . . , r , are independent with respect to

Cm−1[x, y] if the intersection of the r hyperplanes{
(aij ) ∈ Cm(m+1)/2:

m−1∑
i+j=0

xiky
j
k aij = 0, k = 1, . . . , r

}
,
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is a linear subspace of Cm(m+1)/2 of dimension m(m+ 1)/2 − r > 0.
We recall that (x0, y0) is a singular point of system (1) if P(x0, y0)=Q(x0, y0)= 0.
We remark that the maximum number of isolated singular points of the polynomial

system (1) is m2 (by Bezout theorem), that the maximum number of independent isolated
singular points of the system is m(m+ 1)/2 − 1, and that m(m+ 1)/2<m2 for m� 2.

A singular point (x0, y0) of system (1) is called weak if the divergence, div(P,Q), of
system (1) at (x0, y0) is zero.

THEOREM 2.1 (Darbouxian theory of integrability). Suppose that a F-polynomial sys-
tem (1) of degree m admits p irreducible invariant algebraic curves fi = 0 with co-
factors Ki for i = 1, . . . , p, q exponential factors exp(gj /hj ) with cofactors Lj for
j = 1, . . . , q , and r independent singular points (xk, yk) such that fi(xk, yk) �= 0 for
i = 1, . . . , p and for k = 1, . . . , r . Note that the irreducible factors of the polynomials hj
are some fi ’s.

(a) There exist λi,μj ∈ C not all zero such that
∑p

i=1 λiKi + ∑q
j=1μjLj = 0, if and

only if the (multi-valued) function

f
λ1
1 · · ·f λpp

(
exp

(
g1

h1

))μ1

· · ·
(

exp

(
gq

hq

))μq
(14)

is a first integral of system (1.9), real if F = R.
(b) If p+ q + r = [m(m+ 1)/2] + 1, then there exist λi,μj ∈ C not all zero such that∑p

i=1 λiKi + ∑q

j=1μjLj = 0.
(c) If p + q + r � [m(m + 1)/2] + 2, then system (1) has a rational first integral,

and consequently all trajectories of the system are contained in invariant algebraic
curves.

(d) There exist λi,μj ∈ C not all zero such that
∑p

i=1 λiKi + ∑q

j=1μjLj = −div(P,
Q), if and only if the function (14) is an integrating factor of system (1), real if
F = R.

(e) If p + q + r = m(m+ 1)/2 and the r independent singular points are weak, then
function (14) for convenient λi,μj ∈ C not all zero is a first integral if

∑p

i=1 λiKi +∑q

j=1μjLj = 0, or an integrating factor if
∑p

i=1 λiKi + ∑q

j=1μjLj =
−div(P,Q).

(f) There exist λi,μj ∈ C not all zero such that
∑p

i=1 λiKi + ∑q

j=1μjLj = −s for
some s ∈ F\{0}, if and only if the function

f
λ1
1 · · ·f λpp

(
exp

(
g1

h1

))μ1

· · ·
(

exp

(
gq

hq

))μq
exp(st) (15)

is an invariant of system (1), real if F = R.

PROOF. We prove the theorem when the polynomial system (1) is complex. For the real
case, we only do some minor comments.

We denote Fj = exp(gj /hj ). By hypothesis we have p invariant algebraic curves fi = 0
with cofactors Ki , and q exponential factors Fj with cofactors Lj . That is, the f ′

i s satisfy
Xfi =Kifi , and the F ′

j s satisfy XFj = LjFj .
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The first part of statement (a) follows easily from the next computations

X
(
f
λ1
1 · · ·f λpp F

μ1
1 · · ·Fμq

q

)
= (

f
λ1
1 · · ·f λpp F

μ1
1 · · ·Fμq

q

)(
p∑
i=1

λi
Xfi
fi

+
q∑
j=1

μj
XFj
Fj

)

= (
f
λ1
1 · · ·f λpp F

μ1
1 · · ·Fμq

q

)(
p∑
i=1

λiKi +
q∑
j=1

μjLj

)
.

In statement (a) we claim that the function (14) is real if X is real. This follows from the
following fact. Since X is real, it is well known that if a complex invariant algebraic curve
or exponential factor appears, then its conjugate must appear simultaneously (see Proposi-
tions 1.8 and 1.11). If among the invariant algebraic curves of X a complex conjugate pair
f = 0 and f̄ = 0 occurs, the function (14) has a real factor of the form f λf̄ λ̄, which is the
multi-valued real function[

(Ref )2 + (Imf )2
]Reλ exp

(−2 Imλ arg(Ref + i Imf )
)
,

if Imλ Imf �≡ 0. If among the exponential factors of X a complex conjugate pair F =
exp(h/g) and F = exp(h̄/ḡ) occurs, the first integral (14) has a real factor of the form(

exp

(
h

g

))μ(
exp

(
h̄

ḡ

))μ̄
= exp

(
2 Re

(
μ
h

g

))
.

(b) Since the cofactors Ki and Lj are polynomials of degree � m − 1, we have that
Ki,Lj ∈ Cm−1[x, y]. We note that the dimension of Cm−1[x, y] as a vector space over C
is m(m+ 1)/2.

Since (xk, yk) is a singular point of system (1), P(xk, yk) = Q(xk, yk) = 0. Then,
from Xfi = P(∂fi/∂x) + Q(∂fi/∂y) = Kifi , it follows that Ki(xk, yk)fi(xk, yk) = 0.
By assumption fi(xk, yk) �= 0, therefore Ki(xk, yk) = 0 for i = 1, . . . , p. Again, from
XFj = P(∂Fj /∂x)+Q(∂Fj/∂y)= LjFj , it follows thatLj (xk, yk)Fj (xk, yk)= 0. Since
Fj = exp(gj /hj ) does not vanish, Lj(xk, yk) = 0 for j = 1, . . . , q . Consequently, since
the r singular points are independent, all the polynomialKi and Lj belong to a linear sub-
space S of Cm−1[x, y] of dimension [m(m+1)/2]− r . We have p+q polynomialsKi and
Lj and since from the assumptions p + q > [m(m+ 1)/2] − r , we obtain that the p + q

polynomials must be linearly dependent on S. So, there are λi,μj ∈ C not all zero such
that

∑p

i=1 λiKi + ∑q

j=1μjLj = 0. Hence statement (b) is proved.
(c) Since the number of independent singular points r < m(m + 1)/2, it follows that

p + q > 2. Under the assumptions of statement (c) we apply statement (b) to two subsets
of p+q−1> 0 functions defining invariant algebraic curves or exponential factors. Thus,
we get two linear dependencies between the corresponding cofactors, which after some
linear algebra and relabeling, we can write into the following form

M1 + α3M3 + · · · + αp+q−1Mp+q = 0,
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M2 + β3M3 + · · · + βp+q−1Mp+q = 0,

where Ml are the cofactors Ki and Lj , and the αl and βl are complex numbers. Then, by
statement (a), it follows that the two functions

log
(
G1G

α3
3 · · ·Gαp+q

p+q
)
, log

(
G2G

β3
3 · · ·Gβp+q

p+q
)
,

are first integrals of system (1), where Gl is the polynomial defining an invariant alge-
braic curve or the exponential factor having cofactorMl for l = 1, . . . , p+ q . Then, taking
logarithms to the above two first integrals, we obtain that

H1 = log(G1)+ α3 log(G3)+ · · · + αp+q−1 log(Gp+q),

H2 = log(G2)+ β3 log(G3)+ · · · + βp+q−1 log(Gp+q),

are first integrals of system (1). Each provides an integrating factor Ri such that

RiP = ∂Hi

∂y
, RiQ= −∂Hi

∂x
.

Therefore, we obtain that

R1

R2
= ∂H1/∂x

∂H2/∂x
.

Since the functions Gl are polynomials or exponentials of a quotient of polynomials, it
follows that the functions ∂Hi/∂x are rational for i = 1,2. So, from the last equality, we
get that the quotient between the two integrating factors R1/R2 is a rational function. From
Proposition 1.5 it follows statement (c).

(d) We have λi,μj ∈ C not all zero such that
∑p

i=1 λiKi + ∑q

j=1μjLj = −div(P,Q).
Then, from the computations of the proof of statement (a), we obtain

X
(
f
λ1
1 · · ·f λpp F

μ1
1 · · ·Fμq

q

)
= (

f
λ1
1 · · ·f λpp F

μ1
1 · · ·Fμq

q

)(
p∑
i=1

λiKi +
q∑
j=1

μjLj

)

= −(
f
λ1
1 · · ·f λpp F

μ1
1 · · ·Fμq

q

)
div(P,Q).

So, from (7), statement (d) follows.
(e) Let K = div(P,Q), clearly K ∈ Cm−1[x, y]. By assumption the r singular points

(xk, yk) are weak, therefore K(xk, yk) = 0 for k = 1, . . . , r . So K belongs to the linear
subspace S of the proof of statement (b).

On the other hand, since dim S = p+ q = [m(m+ 1)/2]− r � 0 and we have p+ q+ 1
polynomials K1, . . . ,Kp , L1, . . . ,Lq , K in S (we are using the same arguments that in
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the proof of statement (b), it follows that these polynomials are linearly dependent on S.
Therefore, we obtain λi,μj ,α ∈ C not all zero such that(

p∑
i=1

λiKi

)
+

(
q∑
j=1

μjLj

)
+ αK = 0. (16)

If α = 0 then, as in the proof of statement (a), we obtain that function (14) is a first
integral of system (1).

We assume now that α �= 0. Dividing by α the equality (16) (if necessary), we can
assume without loss of generality that α = 1. So we have that

p∑
i=1

λiKi +
q∑
j=1

μjLj = −div(P,Q).

Then, by using statement (d) it follows (e).
(f) We have λi,μj ∈ C not all zero such that

∑p

i=1 λiKi + ∑q

j=1μjLj = −s. Then,
from

d

dt

(
f
λ1
1 · · ·f λpp F

μ1
1 · · ·Fμq

q est
)

=
(
X + ∂

∂t

)(
f
λ1
1 · · ·f λpp F

μ1
1 · · ·Fμq

q est
)

= (
f
λ1
1 · · ·f λpp F

μ1
1 · · ·Fμq

q est
)(

p∑
i=1

λiKi +
q∑
j=1

μjLj + s

)
= 0,

it follows statement (f). �

A (multi-valued) function of the form (14) is called a Darbouxian function. The associ-
ated first integral to a Darbouxian integrating factor is called a Liouvillian first integral.

3. Kapteyn–Bautin theorem

An interesting application of the Darbouxian theory of integrability allows us to present a
new and shorter proof of the sufficient conditions for the classification theorem of centers
of quadratic polynomial differential systems due to Kapteyn [59,60] and Bautin [6]. The
first proof of this fact was due to Kapteyn in the 1910s. The proof that we present here can
be found in [9].

KAPTEYN–BAUTIN THEOREM. Any quadratic system candidate to have a center can be
written in the form

ẋ = −y − bx2 −Cxy − dy2, ẏ = x + ax2 +Axy − ay2. (17)



Integrability of polynomial differential systems 453

This system has a center at the origin if and only if one of the following conditions holds
(I) A− 2b= C + 2a = 0,

(II) C = a = 0,
(III) b+ d = 0,
(IV) C + 2a =A+ 3b+ 5d = a2 + bd + 2d2 = 0.

The following result gives a short proof of the sufficient conditions of Kapteyn–Bautin
theorem.

THEOREM 4. If system (17) satisfies one of the four conditions of the Kapteyn–Bautin
theorem, then it has a center at the origin.

PROOF. Since system (17) has a linear center at the origin, this is a center or a focus. Con-
sequently, to prove that system (17) satisfying one of the four conditions of the Kapteyn–
Bautin theorem has a center at the origin, it is sufficient to show that it has a first integral
in a neighborhood of the origin.

Assume that system (17) satisfies condition (I). Then, it is easy to check that the system
is Hamiltonian, i.e., ẋ = −∂H/∂y , ẏ = ∂H/∂x with H = 1

2 (x
2 + y2) + a

3x
3 + bx2y −

axy2 + d
3y

3. Therefore H is a first integral defined in a neighborhood of the origin.
Suppose that system (17) satisfies condition (II). Then, the system can be written in the

form

ẋ = −y − bx2 − dy2, ẏ = x +Axy.

If A �= 0 this system has the invariant straight line f1 = 1 + Ay = 0 with cofactor K1 =
Ax . The divergence of the system is (A − 2b)x . Then, if A(A − 2b) �= 0 we have the
divergence of the system is equal to (1 − 2b

A
)K1. Hence, by Theorem 2.1(d) we obtain that

(1 +Ay)2b/A−1 is an integrating factor of system (17). Since this integrating factor is not
zero at the origin, the associated first integral is defined in a neighborhood of the origin,
and consequently the origin is a center.

We can assume that A − 2b �= 0, otherwise we would be under the assumptions of
condition (I). So, it remains only to study the case A = 0 and b �= 0. Then, the sys-
tem becomes ẋ = −y − bx2 − dy2, ẏ = x . This system has the algebraic solution f1 =
2b2(bx2 + dy2)+ (b− d)(2by − 1)= 0 with cofactor K1 = −2bx , which is equal to the
divergence of the system. Therefore, by Theorem 2.1(d) we obtain that f−1

1 is an inte-
grating factor. Hence the first integral associated to this integrating factor is defined at the
origin if b− d �= 0, and consequently the origin is a center.

Now we suppose that in addition b − d = 0. Then the system goes over to ẋ = −y −
b(x2 + y2), ẏ = x . From Examples 1.1 and 1.3 we know that H = exp(2by)(x2 + y2) is a
first integral, which is defined at the origin, and therefore the origin must be a center.

Assume that system (17) satisfies condition (III). As Frommer observed in [44] (see also
[92]) the form of system (17) with b+d = 0 is preserved under a rotation of axes. After per-
forming a rotation of axes of an angle θ , the new coefficient a′ of x2 in the second equation
of system (13) becomes of the form a′ = a cos3 θ+α cos2 θ sin θ+β cosθ sin2 θ+d sin3 θ .
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Therefore, if a �= 0 we can find θ such that a′ = 0. So we can assume that a = 0, and con-
sequently C �= 0; otherwise we would be under the assumptions of condition (II).

The system

ẋ = −y − bx2 −Cxy + by2, ẏ = x +Axy,

has the algebraic solutions f1 = 1 + Ay = 0 if A �= 0 with cofactor K1 = Ax , and f2 =
(1 − by)2 + C(1 − by)x − b(A + b)x2 = 0 with cofactor K2 = −2bx − Cy . Since the
divergence of the system is equal to K1 +K2, by Theorem 2.1 (d) we obtain that f−1

1 f−1
2

is an integrating factor. Hence, again the first integral associated to the integrating factor is
defined at the origin, and consequently the origin is a center.

We remark that if A= 0 then f1 is not an algebraic solution of the system, but then the
divergence of the system is equal to K2 and the integrating factor of the system is f−1

2 , and
using the same arguments we obtain that the origin is a center.

Suppose that system (17) satisfies condition (IV). Then, if d �= 0 the system becomes

ẋ = −y + a2 + 2d2

d
x2 + 2axy − dy2,

ẏ = x + ax2 + 3a2 + d2

d
xy − ay2.

We note that if d = 0 then we are under the assumptions of condition (II). This system
has the algebraic solution f1 = (a2 + d2)[(dy − ax)2 + 2dy] + d2 = 0 with cofactor
K1 = 2(a2 + d2)x/d . Therefore the divergence of the system is equal to 5

2K1. Hence,

by Theorem 2.1(d) the function f−5/2
1 is an integrating factor of the system. Since d �= 0,

its associated first integral is defined in a neighborhood of the origin, and consequently the
origin is a center. �

In order to see the explicit expression for the first integrals of system (17) satisfying
conditions (I)–(IV), see Schlomiuk [92].

4. On the degree of the invariant algebraic curves

From Jouanolou’s result (see Theorem 2.1(c))) it follows that for a given polynomial dif-
ferential system of degree m the maximum degree of its irreducible invariant algebraic
curves is bounded, since either it has a finite number p < [m(m+ 1)/2] + 2 of invariant
algebraic curves, or all its trajectories are contained in invariant algebraic curves and the
system admits a rational first integral. Thus for each polynomial system there is a natural
numberN which bounds the degree of all its irreducible invariant algebraic curves. A nat-
ural question, going back to Poincaré [86], is to give an effective procedure to find N .
Partial answers to this question were given by Cerveau and Lins Neto [16], Carnicer [15],
Campillo and Carnicer [12], and Walcher [101]. These results depend on either restricting
the nature of the polynomial differential system, or more specifically on the singularities
of its invariant algebraic curves.
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Of course, given such a bound, it is then easy to compute the algebraic curves of the sys-
tem and also describe its elementary or Liouvillian first integrals (modulo any exponential
factors) see for instance [73,28,84].

Unfortunately, for the class of polynomial systems with fixed degree m, there does not
exist a uniform upper bound N(m) for N as shown by the system:

ẋ = rx, ẏ = sy,

with r and s be positive integers. This system has a rational first integral

H = yr

xs

and hence invariant algebraic curves xs − hyr = 0 for all h ∈ C.
A common suggestion was that the following question would have a positive answer:

Given m� 2, is there a positive integer M(m) such that if a polynomial vec-
tor field of degree m has an irreducible invariant algebraic curve of degree
�M(m), then it has a rational first integral.

See for instance the open question 2 in [31], or the question at the end of the introduction
of [65].

The purpose of this section is to present two families of polynomial differential systems
of degree 2 without rational first integrals but with irreducible invariant algebraic curves of
arbitrarily high degree. Thus we show that no such function M(m) exists.

THEOREM 4.1. We consider the quadratic polynomial differential system

ẋ = x(1 − x),

ẏ = −λy +Ax2 +Bxy + y2, (18)

where

λ= c− 1, A= ab(c− a)(c− b)

c2
, B = a + b− 1 − 2ab

c
.

If, for any positive integer k, we choose a = 1 − k, b � a, and c irrational, then the poly-
nomial system (18) has:

(a) no rational first integrals;
(b) an irreducible invariant algebraic curve(

y − ab

c
x

)
F + x(1 − x)F ′ = 0,

of degree k, where F = F(a, b; c;x) is the hypergeometric function;
(c) a Darbouxian integrating factor.
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PROOF. We first prove statement (a). We shall use the following result known by
Poincaré [86]: If a polynomial system (1.9) has a rational first integral, then the eigen-
values λ1 and λ2 associated to any singular point of the system must be resonant in the
following sense: there exist nonnegative integers m1 and m2 with m1 +m2 � 1 such that
m1λ1 +m2λ2 = 0. For a proof see, for instance, [46] or [64]. Now it is easy to check that
the origin of system (18) is a singular point whose ratio of eigenvalues is 1 − c. Since c is
irrational, the system can have no rational first integral.

The system (18) has the invariant solutions x = 0 and x = 1 together with the following
two explicit solutions:

f1 =
(
y − ab

c
x

)
F1 + x(1 − x)F ′

1 = 0,

f2 =
(
c− 1 − y +

(
1 − c+ ab

c

)
x

)
F2 − x(1 − x)F ′

2 = 0,

where F1 = F(a, b; c;x), F2 = F(1 + a − c,1 + b− c;2 − c;x), and F(a, b; c;x) is the
hypergeometric function

F(a, b; c;x)=
∞∑
k=0

(a)k(b)k

(c)k

xk

k! .

Here we have used the notation

(a)k =
{

1, if k = 0,
a(a + 1)(a+ 2) · · · (a + k − 1), if k > 0.

The hypergeometric function F(a, b; c;x) is a solution of the hypergeometric differential
equation

x(1 − x)y ′′ + [
c− (a + b+ 1)x

]
y ′ − aby = 0,

and so F and F ′ can have a common zero only at x = 1.
If we take a = 1 − k, b � a and c > 0 irrational, with k a positive integer, then

F(a, b; c;x) is a polynomial of degree k − 1, with all coefficients positive. Hence
F(1) > 0, and so F and F ′ can have no common roots at all. Thus f1 = 0 defines an
irreducible algebraic curve of degree k, which proves statement (b).

Finally, after some calculation it can be shown that

H = xc−1f1

f2

is a first integral of the system, with (reciprocal) integrating factor

xcf 2
1 (1 − x)a+b+1−c

which proves statement (c). �
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Theorem 4.1 can be found in [32].
Moulin Ollagnier in [75] showed that the quadratic spatial homogeneous Lotka–Volterra

systems in C3:

ẋ = x(Cy + z),

ẏ = y(x +Az),

ż= z(Bx + y), (19)

with

(A,B,C)= (−(2r + 1)/(2r − 1),1/2,2
)

for r = 1,2, . . . has an invariant algebraic curve f (x, y, z) = 0 of degree 2r . So these
systems present invariant algebraic curves of unbounded degree. He added: It is not easy
to write f in “closed form”.

This previous example is interesting because it was used by Moulin Ollagnier in [78] to
provide another negative answer to the question about the existence of the number M(m).

Now we want to understand the algebraic structure of the invariant algebraic curves of
system (19), and at the same time we present a new proof of the existence of such invariant
algebraic curves. The proof of the existence presented here is essentially analytical, while
the proof of the existence given in [77,78] is algebraic.

The homogeneous Lotka–Volterra systems (19) in C3 can be thought as the planar pro-
jective model of the following planar Lotka–Volterra systems in C2:

ẋ = x

(
1 − x

2
+ y

)
,

ẏ = y

(
−2r + 1

2r − 1
+ x

2
− y

)
. (20)

For more details between the affine and the projective model of a planar polynomial vector
fields, see for instance [77].

Let f (x, y) ∈ C[x, y]. If f = 0 is an invariant algebraic curve of the polynomial differ-
ential system (20), then f satisfies the following linear partial differential equation

x

(
1 − x

2
+ y

)
∂f

∂x
+ y

(
−2r + 1

2r − 1
+ x

2
− y

)
∂f

∂y
=Kf, (21)

where the polynomial K of degree � 1 is the cofactor of f = 0.

THEOREM 4.2. For any positive integer r system (20) has an invariant algebraic curve
f (x, y)= 0 of degree 2r of the following form

f (x, y)= xryr + (
ar−1,r−1 + ar,r−1x + ar+1,r−1x

2)
xr−1yr−1

+ (
ar−2,r−2 + ar−1,r−2x + ar,r−2x

2)
xr−2yr−2

+ · · ·
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+ (
a1,1 + a2,1x + a3,1x

2)
xy

+ (
a0,0 + a1,0x + a2,0x

2)
, (22)

with cofactor −x . Moreover, an effective algorithm for the computation of f (x, y) is given
in the proof.

PROOF. For r = 1,2 the following two polynomials

f (x, y)= xy − 1

2

(
4 − 4x + x2)

,

f (x, y)= x2y2 + 1

6

(
4 − 8x + 3x2)

xy − 1

9

(
4 − 4x + x2)

,

provide, respectively, the invariant algebraic curves stated in the theorem. So, in the rest of
the proof we assume that r � 3.

We consider the polynomial f (x, y) written in the form f (x, y) = f0(x)+ f1(x)y +
· · · + fr(x)y

r . Since f = 0 must be an invariant algebraic curve it must satisfy[
x

(
1 − x

2

)
+ xy

](
f ′

0(x)+ f ′
1(x)y + · · · + f ′

r (x)y
r
)

+
[
y

(
−2r + 1

2r − 1
+ x

2

)
− y2

](
f1(x)+ 2f2(x)y + · · · + rfr (x)y

r−1)
= −x(

f0(x)+ f1(x)y + · · · + fr(x)y
r
)
, (23)

where we are forcing that the cofactor of f = 0 is −x .
Equaling to zero the coefficients of the different powers yk in the expression (23) for

k = r+1, r, . . . ,1,0, we obtain that the polynomials fj (x) for j = 0,1, . . . , r must satisfy
the following ordinary differential system

xf ′
r (x)− rfr (x)= 0,

xf ′
j (x)− jfj (x)= pj (x), for j = r − 1, r − 2, . . . ,1,0,(

1 − x

2

)
f ′

0(x)+ f0(x)= 0, (24)

where

pj (x)= −x
(

1 − x

2

)
f ′
j+1(x)−

[
(j + 1)

(
−2r + 1

2r − 1
+ x

2

)
+ x

]
fj+1(x).

Using the first r + 1 equations of system (24) we can determine recursively fj (x) starting
with fr(x) and ending with f0(x) as follows. After, we must verify that the function f0(x)

obtained in this way satisfies the last equation of (24). Now, we will do these computations
carefully.
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The general solution of the first equation of system (24) is fr(x) = crx
r , where cr is

the integration constant. Since we are looking for invariant algebraic curves f (x, y) of the
form (22), we take cr = 1. Then, it easy to see that the general solution of the differential
equation xf ′

j (x)− jfj (x)= pj (x) is

fj (x)= xj
∫
pj (x)

xj+1 dx. (25)

So, solving (25) for j = r − 1, we get

fr−1 =
[
cr−1 + 2r

2r − 1
x − 1

2
x2

]
xr−1,

where, in what follows, the integration constant which appears solving (25) is denoted
by cj . Solving again (25) but now for j = r − 2, we obtain

fr−2 =
[
cr−2 + 2(r − 1)

2r − 1
cr−1x −

[
r

(2r − 1)2
+ 1

2
cr−1

]
x2

]
xr−2.

Now, we solve (8) for j = r − 3 and we have that fr−3 is equal to

cr−3 + 2(r − 2)cr−2

2r − 1
x −

[
3(r − 1)cr−1

(2r − 1)2
+ cr−2

2

]
x2

+ 2

3

[
r(r + 1)

(2r − 1)3
+ cr−1

2r − 1

]
x3

times xr−3. In order to obtain for the polynomial f (x, y) the structure given in the state-
ment of the theorem, we choose the constant cr−1 = −r(r + 1)/(2r − 1)2. Therefore, we
get that

fr−3 =
[
cr−3 + 2(r − 2)cr−2

2r − 1
x +

[
3r(r2 − 1)

(2r − 1)4
− cr−2

2

]
x2

]
xr−3.

We shall see that this structure that we have found computing fr−3(x), repeats until
f0(x). More precisely, integrating Equation (25) for j � r − 3 and assuming that the ex-
pression of fj+1 is of the form

fj+1(x)=
[
cj+1 + αj+1cj+2x +

[
βj+1 − 1

2
cj+2

]
x2

]
xj+1,

where the constants α and β depend on r , we have that

fj (x)=
[
cj + 2(j + 1)cj+1

2r − 1
x +

[
(3 − 2(r − j))αj+1cj+2

2(2r − 1)
− cj+1

2

]
x2

+ 4βj+1(2(1 − r)+ j)+ (4(r − 1)− (2r − 1)αj+1 − 2j)cj+2

6(2r − 1)
x3

]
xj .
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For obtaining the structure of the polynomial given in the statement of the theorem, we
choose the value for the constant cj+2 in order that the coefficient of xj+3 in the last
equality becomes zero; i.e.,

cj+2 = − 4βj+1(2(1 − r)+ j)

4(r − 1)− (2r − 1)αj+1 − 2j
.

We remark that the denominator of this expression never vanishes, otherwise j would be
equal to 2r − 2. Hence, we can write fj (x) into the form

fj (x)=
[
cj + αjcj+1x +

[
βj − 1

2
cj+1

]
x2

]
xj

for j = r − 1, r − 2, . . . ,1,0. Notice that αj = 2(j + 1)/(2r − 1). Clearly, when we reach
f0(x) we have chosen values for the integrating constants cj for j = r − 1, r − 2, . . . ,2,
only the constants c0 and c1 remain arbitrary.

On the other hand, if we solve the last differential equation of system (24), we get that
f0(x)= c(x−2)2, where c is the integration constant. The polynomial f (x, y) that we are
determining solving the differential system (24) provides an invariant algebraic curve of
system (20), if the two expressions obtained by f0(x) coincide; i.e.,

c0 + α0c1x +
[
β0 − 1

2
c1

]
x2 = c(x − 2)2.

Taking

c= α0β0

α0 − 2
, c0 = 4α0β0

α0 − 2
, and c1 = 4β0

α0 − 2
,

both expressions are equal. Notice α0 − 2 = 4(1 − r)/(2r − 1) �= 0. Hence, the proof of
the theorem is completed. �

In the light of these two theorems, we have:

OPEN QUESTION 4.3. There is some numberD(m) for which any polynomial differential
system of degree m having some irreducible invariant algebraic curve of degree >D(m)

has a Darbouxian first integral or Darbouxian integrating factor.

5. Darboux lemma

Darboux was the first to give the following relation of enumerative geometry [38, pp. 83–
84]:

On peut rattacher cette recherche à un lemme relatif à six polynômes A, A′ , B, B ′, C , C′, de
degrés l, l′,m,m′, n,n′ satisfaisant à l’identité déjà considérée

(48) AA′ +BB ′ +CC′ = 0;
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il est évident que les degrés des produits AA′,BB ′,CC′ sont égaux.
On a donc déjà

l + l′ =m+m′ = n+ n′ = λ.

Cela posé, je dis que la somme du nombre des points communs aux trois courbes

A= 0, B = 0, C = 0,

et du nombre des points communs aux trois courbes

A′ = 0, B ′ = 0, C′ = 0,

est égale à

lmn+ l′m′n′
λ

.

We will refer to this result as the Darboux lemma; it can be stated more precisely as follows.

DARBOUX LEMMA. Let K be an algebraically closed field and let A,B,C,A′, B ′,C′ be
six homogeneous polynomials of degrees l, m, n, l′, m′, n′ in three variables with coeffi-
cients in K such that:

(i) A,B,C are relatively prime and so are A′,B ′,C′,
(ii) l + l′ =m+m′ = n+ n′ = r and the orthogonality relation holds:

AA′ +BB ′ +CC′ = 0, (26)

(iii) the homogeneous ideal (A,B,C,A′,B ′,C′) generated by all six polynomials has
no zero in the projective plane P2(K).

Then, the homogeneous ideals generated by the triples (A,B,C) and (A′,B ′, C′) have
only finitely many zeroes in the projective plane.

Denoting by h and h′ the total multiplicities I(A,B,C) and I(A′,B ′,C′) of these ho-
mogeneous ideals in the projective plane, there is a relation between h,h′ and the degrees:

h+ h′ = lmn+ l′m′n′

r
= r2 − r(l +m+ n)+ (lm+mn+ nl). (27)

Darboux started the proof of his result as follows

En effet, soient h le nombre des points communs aux trois courbes A,B,C; h′ celui des points
communs aux trois courbes A′,B ′,C′, . . .

This original proof is wrong; in particular, Darboux paid little attention to the last hy-
pothesis (no common zeroes) and a counterexample is easy to find. Jouanolou noticed
that Darboux’s result was wrong and established clearly the formula (27) in his book [58,
pp. 183–184], but his proof is far from being elementary. Jouanolou uses Chern’s classes.
Here, we present one of the two simple proofs given in [24]. Later on we shall apply Dar-
boux lemma to polynomial differential equations.

In the proof that we present here we use standard facts about the intersection index of
plane algebraic curves. This proof is divided into two steps. The first step deals with a
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special case of the statement under extra assumptions and it follows the ideas of Darboux.
The second step consists in reducing the general case to the special case in order to get the
complete result.

In this section K will denote an algebraically closed field. It will be convenient to denote
an ideal generated in some polynomial ring over K by the elements A1, . . . ,Ak simply by
(A1, . . . ,Ak). Other notations and definitions will be given when they become necessary.

We first recall some standard facts about homogeneous ideals of the polynomial ring
A = K[x0, . . . , xt ], that have only a finite number of zeroes in the projective space Pt (K).

Let P be a point in the projective space Pt (K). The local ring OP can be defined in two
ways. First, it is the subring of the field K(x0, . . . , xt)0 of homogeneous rational fractions
of degree 0 consisting of all those with a denominator that does not vanish at P . Second,
one of the projective coordinates of P does not vanish and there is no restriction in sup-
posing x0(P ) �= 0 to fix matters. Then the polynomial ring K[x1, . . . , xt ] is isomorphic to
the quotient ring of K[x0, . . . , xt ] by its ideal generated by x0 − 1, and OP is the local ring
S−1K[x1, . . . , xt ], where S is the multiplicative set of all t-variable polynomials that do
not vanish at P .

Let P be a point of Pt (K) and let I be a homogeneous ideal of A. The ideal IP is
the ideal of the local ring OP generated by I . If the quotient ring OP /IP is a finite-
dimensional vector space over K, its dimension is called the multiplicity or the intersection
index of I at P ; IP (I) is a convenient notation for this number. In particular IP (I) �= 0
means that P is a zero of I . Thus, if I is a homogeneous ideal with a finite number of
zeroes in Pt (K), the sum I(I)= ∑

P IP (I) over all zeroes of I is well defined. It is called
the total multiplicity, or the total intersection index or the degree of I .

In the case of two or more three-variable homogeneous polynomials over K,A1, . . . ,Ak

the intersection index IP (A1, . . . ,Ak) at some point P of P2(K) can be defined as
the corresponding index for the homogeneous ideal generated by A1, . . . ,Ak . We note
IP (A1, . . . ,Ak) = IP ((A1, . . . ,Ak)).

In particular, if A1, . . . ,Ak (with k � 2) are relatively prime, then IP (A1, . . . ,Ak) is
defined at every point P . On the other hand if they have a nontrivial greatest common
divisor D, IP (A1, . . . ,Ak) is defined at all points P of P2(K) where D(P) �= 0.

Here are some standard properties of the intersection index whose proof can be found in
the book of Fulton [45]. The first two are general:

(i) IP (A1, . . . ,Ak) only depends on the ideal (A1, . . . ,Ak) of A,
(ii) in fact, IP (A1, . . . ,Ak) only depends on the ideal generated byA1, . . . ,Ak in OP : if

B(P) �= 0, B is invertible in OP and IP (BA1,A2, . . . ,Ak) = IP (A1,A2, . . . ,Ak).
The next two ones are specific to the three-variable case:
(iii) If B has no nontrivial common factor with CC′, IP (B,CC′) = IP (B,C) +

IP (B,C
′) (Addition formula).

(iv) If F and G are two homogeneous polynomials without nontrivial common factor,
they have a finite number of common projective zeroes and I(F,G) = deg(F ) ·
deg(G) (Bézout’s theorem).

We will call a family [A,B,C,A′,B ′,C′] of homogeneous polynomials in K[x, y, z]
an orthogonal system of polynomials if
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(i) A,B,C are relatively prime, and so are A′,B ′,C′,
(ii) deg(A)+ deg(A′)= deg(B)+ deg(B ′)= deg(C)+ deg(C′)= ρ(A,B,C, A′,B ′,

C′), in which case ρ(A,B,C,A′,B ′,C′) is called the degree of the system,
(iii) the orthogonality condition (26) AA′ +BB ′ +CC′ = 0 holds.
We will say that an orthogonal system of polynomials [A,B,C,A′,B ′,C′] is without

projective zero if A,B,C,A′,B ′,C′ have no common zero in the projective plane.
If [A,B,C,A′,B ′,C′] is an orthogonal system of polynomials, A,B,C are relatively

prime and the total intersection index I(A,B,C) is well-defined and so is I(A′,B ′,C′).
Now denote the degrees of the polynomials A,B,C,A′,B ′,C′ by l,m,n, l′,m′, n′, re-

spectively, and the degree of the orthogonal system ρ(A,B,C, A′,B ′,C′) by r , to simplify
the discussion.

The ratio

lmn+ l′m′n′

r
= r2 − r(l +m+ n)+ (lm+mn+ nl)

is a well-defined positive integer, which is 0 when r = 0. We then denote

Δ(A,B,C,A′,B ′,C′) = I(A,B,C)+ I(A′,B ′,C′)− lmn+ l′m′n′

r

= h+ h′ − lmn+ l′m′n′

r
,

and call this difference the gap of the orthogonal system.
With these definitions, the Darboux lemma can be stated as
The gap is zero for an orthogonal system of polynomials without projective zero.
We first give the result under the additional assumption that all six polynomials are

pairwise relatively prime except maybe A and A′, B and B ′, C and C′; in other words,
we suppose that there is no nontrivial common factor to AA′,BB ′,CC′, and we then say
that the orthogonal system is irreducible. This proof follows the ideas of Darboux. We will
afterwards reduce the general case to this special case.

In our opinion, it is convenient and nonconfusing to identify a homogeneous nonzero
three-variable polynomial F with the projective planar curve F = 0 it defines. We thus
follow the free intuitive notations of Darboux.

For instance, the notation “P ∈ A ∩ B” means that the point P of P2(K) is a common
zero of the two homogeneous polynomials A and B and belongs to the intersection of the
two curvesA= 0 and B = 0, as well as the alternative notation “A(P)= 0 and B(P)= 0”.

PROPOSITION 5.1. Let [A,B,C,A′,B ′,C′] be an irreducible orthogonal system of poly-
nomials without projective zero. Then Δ(A,B,C,A′,B ′,C′)= 0.

PROOF. We first notice that IP (A,B,CC′) = IP (A,B,−AA′ −BB ′) = IP (A,B) at
every point P of P2(K). We want to prove the following equality at P ∈A∩B:

IP (A,B)= IP (A,B,CC
′)= IP (A,B,C)+ IP (A,B,C

′). (28)
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From the orthogonality relation (26), P ∈ CC′ and, by exchanging A,B,C by A′,B ′,C′,
there is no restriction in supposing C(P)= 0.

If C′(P ) �= 0, IP (A,B,C′) = 0. According to Section 2, IP (A,B,C) = IP (A,B,

CC′)= IP (A,B) and equality (28) holds in this case.
We now suppose that C′(P ) = 0. Since A ∩ A′ ∩ B ∩ B ′ ∩ C ∩ C′ = ∅, either

A′(P ) �= 0 or B ′(P ) �= 0 and there is no restriction in supposing A′(P ) �= 0. Then,
IP (A,B,C)= IP (A

′A,B,C)= IP (B,C), IP (A,B,C′)= IP (A
′A,B,C′)= IP (B,C

′),
IP (A,B,CC

′)= IP (A
′A,B,CC′)= IP (B,CC

′).
As B has no nontrivial common factor with C or C′, equality (28) follows from the

addition formula of the intersection index: IP (B,CC′)= IP (B,C)+ IP (B,C
′). The use

of the addition formula is the only place where the extra assumption that the orthogonal
system is irreducible plays a role.

Summing intersection indices at all points P ∈A∩B , relation (28) leads to

lm = I(A,B)=
∑

P∈A∩B
IP (A,B)=

∑
P∈A∩B

IP (A,B,CC
′)

=
∑

P∈A∩B
IP (A,B,C)+

∑
P∈A∩B

IP (A,B,C
′)= h+ (lm− h), (29)

which means that the total intersection index I(A,B,C′) is lm− h.
Similar considerations lead to the next two equalities.
The first one,

ln′ = I(A,C′)=
∑

P∈A∩C ′
IP (A,C

′)=
∑

P∈A∩C ′
IP (A,BB

′,C′)

=
∑

P∈A∩C ′
IP (A,B,C

′)+
∑

P∈A∩C ′
IP (A,B

′,C′)

= (lm− h)+ (
ln′ − (lm− h)

)
, (30)

means that the total intersection index I(A,B ′,C′) is ln′ − lm+ h.
The second one,

m′n′ = I(B ′,C′)=
∑

P∈B ′∩C ′
IP (B

′,C′)=
∑

P∈B ′∩C ′
IP (AA

′,B ′,C′)

=
∑

P∈B ′∩C ′
IP (A,B

′,C′)+
∑

P∈B ′∩C ′
IP (A

′,B ′,C′)

= ln′ − lm+ h+ h′, (31)

means that the total intersection index I(A′,B ′,C′) is m′n′ − ln′ + lm− h. From this last
result, we deduce Δ(A,B,C,A′,B ′,C′)= 0. �

In order to prove the Darboux lemma in the general case, we need a way to reduce
non-irreducible orthogonal systems to irreducible ones. Let [A,B,C,A′,B ′,C′] be a non-
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irreducible orthogonal system of polynomials. The orthogonality relation easily implies
that two polynomials of the same triple have a nontrivial great common divisor (gcd) and
there is no restriction in supposing that D = gcd(A,B) /∈ K to describe what a reduction
is.

According to the orthogonality relation,D also dividesC′ as it is coprime with C and we
haveA=DA1,B =DB1,C

′ =DC′
1, with gcd(A1,B1)= 1. Then [A1,B1,C,A

′,B ′,C′
1]

is another orthogonal system of polynomials. If [A,B,C,A′,B ′,C′] is without projective
zero, so is [A1,B1,C,A

′,B ′,C′
1]. We say that [A1,B1,C,A

′,B ′,C′
1] is a one-step reduc-

tion of [A,B,C,A′,B ′,C′].
There are as many possible one-step reductions of an orthogonal system of polynomials

as pairs of noncoprime polynomials of the same triple. Thus, after at most six successive
one-step reductions, we get an irreducible orthogonal system that can be called the com-
plete reduction of the original one.

The following lemma is then the key to deduce the general case of the Darboux lemma
from the special case of irreducible orthogonal systems.

LEMMA 5.2. Let [A,B,C,A′,B ′,C′] be a nonirreducible orthogonal system of polyno-
mials without projective zero and such that D = gcd(A,B) /∈ K. If [A1,B1,C,A

′,B ′,C′
1]

is the corresponding one-step reduction of [A,B,C, A′,B ′,C′] then Δ(A,B,C,A′,B ′,
C′)=Δ(A1,B1,C,A

′,B ′,C′
1).

PROOF. Let us denote by s the degree of D, so that deg(A1) = l1 = l − s, deg(B1) =
m1 =m− s, deg(C′

1)= n′
1 = n′ − s, ρ(A1,B1,C,A

′,B ′,C′
1)= r1 = r − s. h1 will stand

for I(A1,B1,C) and h′
1 for I(A1,B1,C).

With these notations, after straightforward cancellations, proving the announced result
amounts to proving

(h− h1)+ (h′ − h′
1)= ns. (32)

This relation (32) will come from h− h1 = ns and h′ − h′
1 = 0.

We first show h− h1 = ns by proving the following equality for all P ∈A∩B ∩C:

IP (A,B,C)= IP (A1,B1,C)+ IP (D,C). (33)

Let P belong to D ∩ C. Since A ∩ A′ ∩ B ∩ B ′ ∩ C ∩ C′ = ∅, either A′(P ) �= 0 or
B ′(P ) �= 0 and there is no restriction in supposing A′(P ) �= 0.

Let then D′ be the greatest common divisor of B and C: B = D′B2,C = D′C2. As
A,B,C are relatively prime, D′ is relatively prime with D and it divides B1: B1 =D′B3;
it also dividesA′, thus D′(P ) �= 0. Then, IP (B,C) and IP (B1,C) are well-defined and the
following equalities hold:

IP (A,B,C)= IP (AA
′,B,C)= IP (B,C),

IP (A1,B1,C)= IP (A1A
′,B1,C)= IP (B1,C).
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Now, the addition formula of the intersection index gives

IP (B,C)= IP (B2,C2)= IP (B3,C2)+ IP (D,C2)= IP (B1,C)+ IP (D,C).

Thus, for a P in D ∩C, equality (33) holds.
Consider now a point P in A ∩ B ∩ C that does not belong to D. Then IP (D,C)= 0

whereas IP (A,B,C)= IP (A1,B1,C) and equality (33) also holds.
Summing now equality (33) over all P ∈A∩B ∩C gives

h= I(A,B,C)= I(A1,B1,C)+ I(D,C)= h1 + sn, (34)

according to Bézout’s theorem.
Now we show that h′ − h′

1 = 0 by proving IP (A′,B ′,C′)= IP (A
′,B ′,C′

1) at all points
P of A′ ∩B ′ ∩C′.

If P belongs to A′ ∩ B ′ ∩ C′ without being in D, then, we have that IP (A′,B ′,C′) =
IP (A

′,B ′,DC′
1)= IP (A

′,B ′,C′
1).

If P belongs to A′ ∩B ′ ∩D, then P does not belong to C and

IP (A
′,B ′,C′) = IP (A

′,B ′,CC′)= IP (A
′,B ′)

= IP (A
′,B ′,CC1)= IP (A

′,B ′,C′
1).

�

We can now conclude.

COROLLARY 5.3 (Darboux lemma). Let [A,B,C,A′,B ′,C′] be an orthogonal system of
polynomials without projective zero. Then Δ(A,B,C,A′,B ′, C′)= 0.

PROOF. If [A1,B1,C1,A
′
1,B

′
1,C

′
1] is the complete reduction of [A,B,C,A′, B ′,C′],

then, according to Lemma 5.2, Δ(A,B,C,A′,B ′,C′) is the same as Δ(A1,B1,C1,A
′
1,

B ′
1,C

′
1) and, according to Proposition 5.1, Δ(A1,B1,C1, A′

1,B
′
1,C

′
1) = 0 for an irre-

ducible orthogonal system of polynomials. �

6. Applications of the Darboux lemma

Ideas in the remaining part of this section go back to Darboux’s work [38]. Let p(x, y) and
q(x, y) be polynomials with complex coefficients. For the vector field

p
∂

∂x
+ q

∂

∂y
, (35)

or equivalently for the differential system

ẋ = p(x, y), ẏ = q(x, y), (36)
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we consider the associated differential 1-form ω1 = q(x, y)dx − p(x, y)dy , and the dif-
ferential equation

ω1 = 0. (37)

Clearly, Equation (37) defines a foliation with singularities on C2. The affine plane C2 is
compactified on the complex projective space CP2 = (C3 \ {0})/ ∼, where (X,Y,Z) ∼
(X′, Y ′,Z′) if and only if (X,Y,Z)= λ(X′, Y ′,Z′) for some complex λ �= 0. The equiva-
lence class of (X,Y,Z) will be denoted by [X :Y :Z].

The foliation defined by equation (37) on C2 can be extended to a singular foliation
on CP2 and the 1-form ω1 can be extended to a meromorphic 1-form ω on CP2 which
yields an equation ω= 0, i.e.,

A(X,Y,Z)dX+B(X,Y,Z)dY +C(X,Y,Z)dZ = 0, (38)

whose coefficients A, B , C are homogeneous polynomials and satisfy the relation:

A(X,Y,Z)X+B(X,Y,Z)Y +C(X,Y,Z)Z = 0. (39)

Indeed, consider the map i : C3 \ {Z = 0} → C2, given by i(X,Y,Z) = (X/Z,Y/Z) =
(x, y) and suppose that max{deg(p),deg(q)} =m> 0. Since x = X/Z and y = Y/Z we
have:

dx = (Z dX−X dZ)/Z2, dy = (Z dY − Y dZ)/Z2,

the pull-back form i∗(ω1) has poles at Z = 0 and Equation (37) can be written as

i∗(ω1) = q(X/Z,Y/Z)(Z dX−X dZ)/Z2 − p(X/Z,Y/Z)(Z dY − Y dZ)/Z2

= 0.

Then the 1-form ω = Zm+2i∗(ω1) in C3 \ {Z �= 0} has homogeneous polynomial coeffi-
cients of degree m+ 1, and for Z = 0 the equations ω = 0 and i∗(ω1)= 0 have the same
solutions. Therefore the differential equation ω= 0 can be written as (38) where

A(X,Y,Z)= ZQ(X,Y,Z)= Zm+1q(X/Z,Y/Z),

B(X,Y,Z)= −ZP(X,Y,Z)= −Zm+1p(X/Z,Y/Z),

C(X,Y,Z)= YP(X,Y,Z)−XQ(X,Y,Z). (40)

Clearly A, B and C are homogeneous polynomials of degree m+ 1 satisfying (39).
Singular points in P2(C) are the points satisfying A= B = C = 0.
A homogeneous 1-form

ω =AdX+B dY +C dZ = 0,
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where A, B and C are homogeneous polynomials of degree m+ 1 is called projective if
XA+ YB + ZC = 0; that is, if there exist three homogeneous polynomials L, M and N
of degree m such that

A=ZM − YN, B =XN −ZL, C = YL−XM;
or equivalently

(A,B,C)= (P,Q,R) ∧ (X,Y,Z).
Then we can write

ω= P(Y dZ−Z dY )+Q(Z dX−X dZ)+R(X dY − Y dX). (41)

The vector field

X = P
∂

∂X
+Q

∂

∂Y
+R

∂

∂Z
, (42)

can be thought as a homogeneous polynomial vector field of C3 of degree m associated to
ω= 0.

In short, we have seen that the homogeneous vector field (42) of degree m in C3 with

P =Zmp(X/Z,Y/Z), Q=Zmq(X/Z,Y/Z), R = 0, (43)

is associated to the 1-form ω= 0, and consequently to the vector field (35).

PROPOSITION 6.1 (Darboux proposition). For any homogeneous polynomial vector
field (42) of degree m in C3 having finitely many singular points and satisfying (43), we
have that its number of singular points taking into account their multiplicities or numbers
of intersection satisfies∑

p

I (p,P ∩Q∩R)=m2 +m+ 1.

PROOF. Take A= P , B =Q, C = R, A′ = X, B ′ = Y and C′ = Z. Then AA′ + BB ′ +
CC′ ≡ 0. Since there are no common points to the curves A′ = 0, B ′ = 0 and C′ = 0 it
follows that

h′ =
∑
p

I (p,A′ ∩B ′ ∩C′)= 0.

Therefore, from the Darboux lemma we obtain

h=
∑
p

I (p,A ∩B ∩C)= (m+ 1)3 + 1

m+ 2
=m2 +m+ 1.

�
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Let f ∈ C[x, y]. The algebraic curve f (x, y)= 0 is an invariant algebraic curve of the
affine polynomial vector field X given by (35) if for some polynomial k ∈ C[x, y] (the
cofactor of f = 0), we have

Xf = ∂f

∂x
p+ ∂f

∂y
q = kf.

It is easy to verify that if f (x, y) = 0 is an invariant algebraic curve of degree r for the
polynomial vector field X with cofactor k(x, y), then F(X,Y,Z) = Zrf (X/Z,Y/Z) =
0 is an invariant algebraic curve of degree r for its projective vector field with cofactor
K(X,Y,Z)=Zm−1k(X/Z,Y/Z); i.e.,

XF = ∂F

∂X
P + ∂F

∂Y
Q+ ∂F

∂Z
R =KF, (44)

here R = 0.
If F(X,Y,Z)= 0 is an algebraic curve of P2(C) of degree n. Let p = (X0, Y0,Z0) be a

point of P2(C). Since the three coordinates of p cannot be zero, without loss of generality
we can assume that p = (0,0,1). Then suppose that the expression of F(X,Y,Z) restricted
to Z = 1 is

F(X,Y,1)= Fi(X,Y )+ Fi+1(X,Y )+ · · · +Fn(X,Y ),

where 0 � i � n and Fj (X,Y ) denotes a homogeneous polynomial of degree j in the
variables X and Y for j = i, . . . , n, with Fi different from the zero polynomial. We say
that i =mp(F) is the multiplicity of the curve F = 0 at the point p. If i = 0 then the point
p does not belong to the curve F = 0. If i = 1 we say that p is a simple point for the curve
F = 0. If i > 1 we say that p is a multiple point.

PROPOSITION 6.2. Let f (x, y)= 0 be an irreducible invariant algebraic curve of degree
n � 1 without multiple points for the affine polynomial vector field X of degree m. Then
n�m+ 1.

PROOF. Since F = 0 is an invariant algebraic curve of X with cofactor K we have that

∂F

∂X
P + ∂F

∂Y
Q=KF

in P2(C). By using Euler theorem for the homogeneous function F of degree n, this equa-
tion goes over to

∂F

∂X

(
P − 1

n
XK

)
+ ∂F

∂Y

(
Q− 1

n
YK

)
+ ∂F

∂Z

(
−1

n
ZK

)
= 0. (45)

Now we take in the Darboux lemma

A= ∂F

∂X
, B = ∂F

∂Y
, C = ∂F

∂Z
,
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A′ = P − 1

n
XK, B ′ =Q− 1

n
YK, C′ = −1

n
ZK,

and

h= I (A ∩B ∩C), h′ = I (A′ ∩B ′ ∩C′).

We note that by the assumptions h and h′ are finite. Moreover, as A∩B ∩C = ∅, h= 0.
Since A, A′, B , B ′, C and C′ satisfy equality (45), Darboux lemma can be used to get

h+ h′ = m3 + (n− 1)3

m+ n− 1
=m2 + (n− 1)(n−m+ 1). (46)

By the Bézout theorem, the number of intersection points of the curvesA′ = 0, B ′ = 0 and
C′ = 0 is at most m2 taking into account their multiplicities; i.e., h′ �m2. Whence a lower
bound for h: 0 = h� (n− 1)(n−m− 1), and 1 � n�m+ 1. �

In [23] it has been proved the following result that provides sufficient conditions for the
existence of a rational first integral.

THEOREM 6.3. Let f (x, y)= 0 be an irreducible algebraic curve of degree n > 1, which
is invariant with cofactor k �= 0, for the affine polynomial vector field X of degree m> 1.
If m2 is the total number of solutions of the system

nP −XK = 0, nQ− YK = 0, ZK = 0, (47)

in the projective plane, taken into account their multiplicities or numbers of intersection,
then X has a rational first integral.

PROOF. Since m2 is the number of solutions of system (47), by using Bezout theorem it
follows that the number of solutions of systems

nP −XK = 0, nQ− YK = 0, Z = 0; (48)

and

P = 0, Q= 0, K = 0; (49)

are m and m2 −m respectively. We note that always we take into account the number of
solutions with their multiplicities.

We write

P(X,Y,Z)= p0Z
m +p1(X,Y )Z

m−1 + · · · + pm(X,Y ),

Q(X,Y,Z)= q0Z
m + q1(X,Y )Z

m−1 + · · · + qm(X,Y ),

K(X,Y,Z)= k0Z
m−1 + k1(X,Y )Z

m−2 + · · · + km−1(X,Y ),
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where Ai(x, y) denotes a homogeneous polynomial of degree i and A ∈ {p,q, k}. Then,
for Z = 0 system (48) becomes

npm(X,Y )−Xkm−1(X,Y )= 0, nqm(X,Y )− Ykm−1(X,Y )= 0.

Since this system of homogeneous polynomials of degree m in the variables X and Y

intersect at m points taking into account their multiplicities, there exists a homogeneous
polynomial A(X,Y ) of degree m such that

pm(X,Y )= λ1A(X,Y )+ 1

n
Xkm−1(X,Y ),

qm(X,Y )= λ2A(X,Y )+ 1

n
Ykm−1(X,Y ),

where λ1, λ2 ∈ C are not zero.
The polynomial system associated to the vector field X can be written as

ẋ = p0 + p1(x, y)+ · · · +pm−1(x, y)+ λ1A(x,y)+ x

n
km−1(x, y)

= P(x, y,1),

ẏ = q0 + q1(x, y)+ · · · + qm−1(x, y)+ λ2A(x,y)+ 1y

n
km−1(x, y)

=Q(x,y,1),

or equivalently

ẋ = p0 + p1 + · · · + pm−1 − 1

n
x(k0 + k1 + · · · + km−2)+ λ1A+ 1

n
xk,

ẏ = q0 + q1 + · · · + qm−1 − 1

n
y(k0 + k1 + · · · + km−2)+ λ2A+ 1

n
yk.

Since λ2
1 + λ2

2 �= 0 (otherwise system (48) does not have m intersection points), without
loss of generality we can assume that λ1 �= 0. We change from the variables (x, y) to the
variables (x, z) where z = λ2x − λ1y . In the new variables the second equation of the
polynomial system goes over to

ż= λ2P(x, y,1)− λ1Q(x,y,1)= b(x, y)+ 1

n
zk(x, y),

with y = (λ2x − z)/λ1 and where

b(x, y)= λ2

(
p0 + p1 + · · · + pm−1 − 1

n
x(k0 + k1 + · · · + km−2)

)
− λ1

(
q0 + q1 + · · · + qm−1 − 1

n
y(k0 + k1 + · · · + km−2)

)
.
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Since, from (49), the curves ẋ = P(x, y,1) = 0, ẏ = Q(x,y,1) = 0 and K(x,y,1) =
k(x, y) = 0 have m2 − m intersection points taking into account their multiplicities, it
follows that the curves P(x, y,1) = 0, b(x, y) + k(x, y)z/n = 0 and k(x, y) = 0 have
the same number of intersection points, where y = (λ2x − z)/λ1. Hence, the number of
intersection points of the curves b(x, y) = 0 and k(x, y) = 0 is at least m2 − m points
taking into account their multiplicities. But, from Bézout theorem, if these last two curves
do not have a common component, then they have (m− 1)2 intersection points taking into
account their multiplicities. Since m2 −m> (m− 1)2 if m> 1, it follows that the curves
b = 0 and k = 0 have a maximal common component c = 0 of degree r � 1. Therefore,
b= b̄c and k = k̄c where b̄ and k̄ are polynomials of degree m− r − 1.

From (47) the number of intersection points of the curves P(x, y,1) = 0 and Q(x,

y,1)= 0 with k(x, y)= 0 is maximal, i.e., m2 −m, then the number of intersection points
of the curves P(x, y,1) = 0, Q(x,y,1) = 0 and k̄(x, y) = 0 is m(m − r − 1), and the
number of intersection points of the curves P(x, y,1)= 0, Q(x,y,1)= 0 and c(x, y)= 0
is mr . Of course, always we compute the number of intersection points taking into account
their multiplicities. Since the number of intersection points of the curves P(x, y,1)= 0,
b(x, y)+ k(x, y)z/n= 0 and k̄(x, y)= 0 is m(m− r − 1), it follows that the number of
intersection points of the curves b(x, y)= 0 and k̄(x, y)= 0 is at least m(m− r − 1). On
the other hand, since the curves b = 0 and k̄ = 0 has no common components, by Bézout
theorem they intersect at (m−1)(m− r−1) points taking into account their multiplicities.
Hence, since m > 1 and m(m − r − 1) > (m − 1)(m − r − 1) except if r = m − 1, we
have that r =m− 1. Therefore b = ak with a ∈ C. So, ż= k(a + z/n), and consequently
z + an = λ2x − λ1y + an = 0 is an invariant straight line with cofactor k/n. Then, by
statement (a) of Theorem 2.1, we obtain that H = f (x, y)(λ2x−λ1y+an)−n is a rational
first integral of X . We note that since f = 0 is different by a straight line, we have that
f �= (λ2x − λ1y + an)n, and consequently H is a first integral. �

From the proof of Theorem 6.3 it follows that any polynomial vector field X in the
assumptions of Theorem 6.3 has an invariant straight line ax + by + c = 0 such that a
rational first integral of X is of the form

f (x, y)

(ax + by + c)n
.

Now we go back to study the number of multiple points that an invariant algebraic curve
of degree n of a polynomial vector field of degree m can have in function of m and n.

PROPOSITION 6.4. Let f (x, y) = 0 be an invariant algebraic curve of degree n of the
polynomial vector field

X = p(x, y)
∂

∂x
+ q(x, y)

∂

∂y

of degree m with cofactor k. Assume that:
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If

P(X,Y,Z)=Zmp

(
X

Z
,
Y

Z

)
,

Q(X,Y,Z)=Zmq

(
X

Z
,
Y

Z

)
,

K(X,Y,Z)=Zm−1k

(
X

Z
,
Y

Z

)
,

then
(1) the curves nP −XK = 0, nQ− YK = 0, ZK = 0, do not have a common compo-

nent, and
(2) the curve F(X,Y,Z) = Znf (X/Z,Y/Z) = 0 has finitely many multiple points

in P2(C) taking into account their multiplicities, namely h.
Then

(n− 1)(n−m− 1)� h�m2 + (n− 1)(n−m− 1).

PROOF. Since F = 0 is an invariant algebraic curve of (44) with cofactor K we have that

∂F

∂X
P + ∂F

∂Y
Q=KF

in P2(C). By using Euler theorem for the homogeneous function F of degree n, this equa-
tion goes over to

∂F

∂X

(
P − 1

n
XK

)
+ ∂F

∂Y

(
Q− 1

n
YK

)
+ ∂F

∂Z

(
−1

n
ZK

)
= 0. (50)

Now we take

A= ∂F

∂X
, B = ∂F

∂Y
, C = ∂F

∂Z
,

A′ = P − 1

n
XK, B ′ =Q− 1

n
YK, C′ = −1

n
ZK,

and

h=
∑
p

I (p,A ∩B ∩C), h′ =
∑
p

I (p,A′ ∩B ′ ∩C′).

We note that by assumptions h and h′ are finite.
Since A, A′, B , B ′, C and C′ satisfy equality (50), by Darboux lemma we obtain that

h+ h′ = m3 + (n− 1)3

m+ n− 1
=m2 + (n− 1)(n−m+ 1).
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Therefore the upper bound for h given in the statement of the theorem is proved. By Bézout
theorem, the number of intersection points of the curves A′ = 0, B ′ = 0 and C′ = 0 is at
most m2 taking into account their multiplicities; i.e., h′ �m2. Therefore, h� (n− 1)(n−
m− 1), and the proposition is proved. �

From Proposition 6.4 it follows as a corollary Proposition 6.2.

COROLLARY 6.5. Under the assumptions of Proposition 6.4, if f (x, y)= 0 is an invariant
algebraic curve of degree n = m+ 1 for the polynomial vector field X of degree m > 1
such that its projectivization F(X,Y,Z) = Znf (X/Z,Y/Z) = 0 has no multiple points,
then X has a rational first integral.

PROOF. Using the same notation than in the proof of Proposition 6.4 we have that h′ =m2,
because from the assumptions we have that n=m+ 1 and h= 0. Now, since we are in the
hypotheses of Theorem 6.3 the statement of the corollary follows. �

The last result in this section about rational first integrals is the following one.

PROPOSITION 6.6. Under the assumptions of Proposition 6.4, if f (x, y) is irreducible
in C[x, y] and all the multiple points of F(X,Y,Z) = 0 are double and ordinary, then
n� 2m. Moreover, if n= 2m then X has a rational first integral.

PROOF. We use the notation and the results introduced in the proof of Proposition 6.4.
Since every multiple point p of F(X,Y,Z)= 0 is double and ordinary, it follows that

I

(
p,
∂F

∂X
∩ ∂F

∂Y
∩ ∂F

∂Z

)
= 1. (51)

If F = 0 is an irreducible algebraic curve of degree n, we know that

∑
p

1

2
mp(mp − 1)� 1

2
(n− 1)(n− 2), (52)

where p runs over the multiple points of F = 0 and mp denotes the multiplicity of p,
for a proof of this result see Section 4 of Chapter 5 of [46]. Since every multiple point p
of F = 0 is double, mp = 2. If h is the number of multiple points of F = 0 taking into
account their multiplicity, from (51) and (52), it follows that h � (n − 1)(n − 2)/2. By
Proposition 6.4, we have (n− 1)(n−m− 1)� h. Consequently

(n− 1)(n−m− 1)� 1

2
(n− 1)(n− 2).

Hence n� 2m, and the first part of the proposition is proved.
Now we assume that n= 2m. From the proof of Proposition 6.4 we have that h+ h′ =

m2 + (n− 1)(n−m− 1) =m2 + (2m− 1)(m− 1).Then since h � (n− 1)(n− 2)/2 =
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(2m− 1)(m− 1), we obtain that h′ � m2. But, by definition, h′ � m2. Hence, we are in
the assumptions of Theorem 6.3, and consequently X has a rational first integral. �

7. Algebraic limit cycles for quadratic systems

We recall that a limit cycle of a real affine polynomial vector fields is an isolated periodic
orbit in the set of all periodic orbits of the system. An algebraic limit cycle of degree r is
an oval of an irreducible invariant algebraic curve f (x, y)= 0 of degree r which is a limit
cycle of the system.

In 1958 Qin Yuan-Xun [88] (see also [104]) proved that quadratic systems can have
algebraic limit cycles of degree 2, moreover when such a limit cycle exists then it is the
unique limit cycle of the system. Evdokimenco in [40–42] proved that quadratic systems
do not have algebraic limit cycles of degree 3, for two different shorter proofs see [22,25].
We provide one of these proofs in what follows.

THEOREM 7.1. Quadratic systems have no algebraic limit cycles of degree 3.

PROOF. Let f = 0 be an invariant algebraic curve of degree 3 of a real affine polynomial
vector field of degree 2. If the cubic curve f = 0 has multiple points, then it is rational (its
genus is 0) and there is no oval in it. If f = 0 has no multiple points, Equation (46) in the
proof of Proposition 6.2 implies h′ = 22 = 4. According to Theorem 6.3, the system has a
rational first integral and thus no limit cycle. �

The first class of algebraic limit cycles of degree 4 was given in 1966 by Yablonskii
[103]. The second class was found in 1973 by Filiptsov [43]. Recently, two new classes
has been found and in [25] the authors proved that there are no other algebraic limit cycles
of degree 4 for quadratic systems. The uniqueness of these limit cycles has been proved
in [21]. We summarize all these results into the following theorem, for a proof see the
mentioned papers.

THEOREM 7.2. The following statements hold.
(a) After an affine change of variables and a rescaling of the time variable the only

quadratic systems having an algebraic limit cycle of degree 2 are

ẋ = −y(ax + by + c)− (
x2 + y2 − 1

)
,

ẏ = x(ax + by + c), (53)

with c2 + 4(b + 1) < 0 and a2 + b2 < c2. This system possesses the irreducible
invariant algebraic curve

x2 + y2 − 1 = 0,

of degree 2. This algebraic limit cycle is the unique limit cycle of system (18).
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Fig. 1. Algebraic limit cycles of degree 4.

(b) There are no quadratic systems having algebraic limit cycles of degree 3.
(c) After an affine change of variables the only quadratic systems having an algebraic

limit cycle of degree 4 are
(c.1) Yablonskii’s system

ẋ = −4abcx− (a + b)y + 3(a + b)cx2 + 4xy,

ẏ = (a + b)abx− 4abcy + (
4abc2 − 3(a + b)2/2 + 4ab

)
x2

+ 8(a + b)cxy+ 8y2, (54)

with abc �= 0, a �= b, ab > 0 and 4c2(a− b)2 + (3a− b)(a− 3b) < 0. This system
possesses the irreducible invariant algebraic curve(

y + cx2)2 + x2(x − a)(x − b)= 0, (55)

of degree 4 having two components, an oval (the algebraic limit cycle) and an
isolated point (a singular point), see Figure 1(a).

(c.2) Filiptsov’s system

ẋ = 6(1 + a)x + 2y − 6(2 + a)x2 + 12xy,

ẏ = 15(1 + a)y + 3a(1 + a)x2 − 2(9 + 5a)xy+ 16y2, (56)
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with 0< a < 3/13. This system possesses the irreducible invariant algebraic curve

3(1 + a)
(
ax2 + y

)2 + 2y2(
2y − 3(1 + a)x

) = 0,

of degree 4 having two components, one is an oval and the other is homeomorphic
to a straight line. This last component contains three singular points of the system,
see Figure 1(b).

(c.3) The system

ẋ = 5x + 6x2 + 4(1 + a)xy + ay2,

ẏ = x + 2y + 4xy + (2 + 3a)y2, (57)

with (−71 + 17
√

17 )/32 < a < 0 possesses the irreducible invariant algebraic
curve

x2 + x3 + x2y + 2axy2 + 2axy3 + a2y4 = 0,

of degree 4 having three components, one is an oval and each of the other two is
homeomorphic to a straight line. Each one of these last two components contains
one singular point of the system, see Figure 1(c).

(c.4) The system

ẋ = 2
(
1 + 2x − 2ax2 + 6xy

)
,

ẏ = 8 − 3a − 14ax − 2axy− 8y2, (58)

with 0< a < 1/4 possesses the irreducible invariant algebraic curve

1

4
+ x − x2 + ax3 + xy + x2y2 = 0, (59)

of degree 4 having three components, one is an oval and each of the other two is
homeomorphic to a straight line. Each one of these last two components contains
one singular point of the system, see Figure 1(d).

(d) Quadratic systems (53), (54), (56), (57) and (58) have a unique limit cycle, the
algebraic one.

We note that the algebraic limit cycle of Filiptsov’s system is born in a Hopf bifurcation
at the singular point (4,48/13)when a = 3/13. Then, when a decreases the algebraic limit
cycle increases its size and ends having infinite size at the curve y2(3−6x+4y)= 0 when
a = 0.

We note that the algebraic limit cycle of system (c.3) is born in a Hopf bifurcation at
the singular point ((9 − √

17 )/8,−(5 + 3
√

17 )/8) when a = (−71 + 17
√

17 )/32. Then,
when a increases the algebraic limit cycle increases its size and ends having infinite size at
the curve x2(1 + x + y)= 0 when a = 0.
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We note that the algebraic limit cycle of system (c.4) is born in a Hopf bifurcation at the
singular point (2,−1/4) when a = 1/4. Then, when a decreases the algebraic limit cycle
increases its size and ends having infinite size at the irreducible curve 1/4+x−x2 +xy+
x2y2 = 0 when a = 0.

The uniqueness of limit cycles for planar differential systems is a classical problem
which, in general, does not have an easy solution, for more details see the books of Ye
Yanqian [104] and Zhang Zhifen [105].

Now following the paper [35] we apply a change of variables to the known quadratic
systems having an algebraic limit cycle, which preserves the degree of the system, but
increases the degree of the algebraic curve. For this purpose we use the birational transfor-
mation

(x, y)→ (
x/y2,1/y

)
, (60)

after an appropriate translation. In fact, this transformation is an involution.
If the system is of the form

ẋ = αx + βy + 2ex2 + bxy + cy2,

ẏ = γ x + δy + exy + fy2, (61)

then it is easy to see that we can apply the transformation above and still remain in the
class of quadratic systems.

As a simple example, we show that the example of Yablonskii with an algebraic limit
cycle of degree 4 can be obtained from the well-known example of an algebraic limit cycle
of degree 2 due to Qin Yuan-Xun [88].

PROPOSITION 7.3. The system of Yablonskii (54) with its irreducible invariant algebraic
curve (55) can be transformed into the system

ẋ = −3(a+ b)cx + 4abcx2 − 4y + (a + b)xy,

ẏ = (
a

(
b+ 4bc2) − (

3a2 + 3b2)
/2

)
x + 2(a + b)cy + ab(a+ b)x2

+ 4abcxy+ 2(a + b)y2,

with the invariant algebraic curve

− (a − b)2

4ab
+ ab

(
x − a + b

2ab

)2

+ (y + c)2 = 0, (62)

by the transformation (x, y)→ (1/x, y/x2).
The algebraic curves (55) and (62) both give limit cycles when abc �= 0, a �= b, ab > 0,

and 4c2(a − b)2 + (3a − b)(a − 3b) < 0, and the transformation maps the one limit cycle
onto the other.
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We now apply the birational transformation to system (58) having the irreducible invari-
ant algebraic curve (59) which defines an algebraic limit cycle of degree 4 for 0< a < 1/4,
and we get a quadratic system having an algebraic limit cycle of degree 5.

THEOREM 7.4. System

ẋ = 28x − 12

α + 4
y2 − 2

(
α2 − 16

)
(12 + α)x2 + 6(3α− 4)xy,

ẏ = (
32 − 2α2)

x + 8y − (α+ 12)(α2 − 16)xy + (10α− 24)y2, (63)

has an irreducible algebraic invariant curve of degree 5 given by

x2 + (16 − α2)x3 + (α − 2)x2y + 1

(4 + α)2
y4 − 6

(4 + α)2
y5 − 2

4 + α
xy2

+ (α − 4)(12 + α)

4
x2y2 + (12 + α)

4 + α
xy4 + 8 − α

4 + α
xy3 = 0. (64)

For α ∈ (3√7/2,4) the curve (64) contains an algebraic limit cycle of degree 5.

PROOF. Let a = 16 − α2. When we make the change of coordinates

(x, y)=
(
u

v2 − 1

α + 4
,

1

v
+ α − 2

2

)
, (65)

multiply by v, and replace (u, v) again with (x, y), system (58) becomes (63). The curve
(64) is obtained from (59) by means of the same change of coordinates and multiplication
by v6. The irreducibility of (64) follows from the irreducibility of (59).

Since the curve (59) contains an algebraic limit cycle for a ∈ (0,1/4), one may easily
check, that the above oval does not intersect the singular line of the transformation (65), so
the theorem follows. �

In a similar way we have the following result.

THEOREM 7.5. System

ẋ = 28(β − 30)βx + y + 168β2x2 + 3xy,

ẏ = 16β(β − 30)
(
14(β − 30)βx + 5y + 84β2x2)

+ 24(17β − 6)βxy+ 6y2, (66)

has an irreducible algebraic invariant curve of degree 6 given by

−7y3 + 3(β − 30)2βy2 + 18(β − 30)(−2 + β)βxy2 + 27(β − 2)2βx2y2

+ 24(β − 30)3β2xy + 144(β − 30)(β − 2)2β2x3y + 48(β − 30)4β3x2
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+ 576(β − 30)2(−2 + β)2β3x4 − 432(β − 2)2β2(3 + 2β)x4y

− 3456(β − 30)(−2 + β)2β3(3 + 2β)x5

+ 3456(β − 2)2β3(12 + β)(3 + 2β)x6

+ 24(β − 30)2β2(9β − 4)x2y + 64(β − 30)3β3(9β − 4)x3 = 0. (67)

For β ∈ (3/2,2) the curve (67) contains an algebraic limit cycle of degree 6.

PROOF. Let a = (4 − β2)/7. When we make the change of coordinates

(x, y)=
(
v + 4uβ(−30 + 3u(−2 + β)+ β)

12u2β(β2 − 4)
,

30 − β − u(8 + 3β)

14u

)
, (68)

multiply by −21βu/2, and replace (u, v) again with (x, y), system (58) becomes (66).
The curve (67) is obtained from (59) by means of the same change of coordinates and
multiplication by 2016β2(β2 − 4)2u6. The irreducibility of (67) is now obvious.

Since the curve (59) contains an algebraic limit cycle for a ∈ (0,1/4), the theorem fol-
lows in a way similar to the last part of Theorem 7.4. �

After these results some natural questions are:

OPEN QUESTION 7.6. Does there exist a chain of rational transformations like the ones
above which give examples of quadratic polynomial systems with algebraic limits cycles of
arbitrary degree?

OPEN QUESTION 7.7. What is the maximum degree of all algebraic limit cycles for
quadratic systems?

8. Limit cycles and algebraic limit cycles

In this section we follow the paper [69]. In 1900 Hilbert [55] in the second part of its 16th
problem proposed to find an estimation of the uniform upper bound for the number of limit
cycles of all polynomial vector fields of a given degree, and also to study their distribution
or configuration in the plane. This has been one of the main problems in the qualitative
theory of planar differential equations in the XX century. The contributions of Bamon [5]
for the particular case of quadratic vector fields, and mainly of Écalle [39] and Ilyashenko
[57] proving that any polynomial vector field has finitely many limit cycles have been the
best results in this area. But until now it is not proved the existence of an uniform upper
bound. This problem remains open even for the quadratic polynomial vector fields.

A configuration of limit cycles is a finite set C = {C1, . . . ,Cn} of disjoint simple closed
curves of the plane such that Ci ∩Cj = ∅ for all i �= j .

Given a configuration of limit cycles C = {C1, . . . ,Cn} the curve Ci is primary if there
is no curve Cj of C contained into the bounded region limited by Ci .
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Two configurations of limit cycles C = {C1, . . . ,Cn} and C′ = {C′
1, . . . ,C

′
m} are (topo-

logically) equivalent if there is a homeomorphism h : R2 → R2 such that h(
⋃n
i=1Ci) =

(
⋃m
i=1C

′
i ). Of course, for equivalent configurations of limit cycles C and C′ we have that

n=m.
We say that the vector field X realizes the configuration of limit cycles C if the set of

all limit cycles of X is equivalent to C.

THEOREM 8.1. Let C = {C1, . . . ,Cn} be a configuration of limit cycles, and let r be its
number of primary curves. Then the following statements hold.

(a) The configuration C is realizable by a polynomial vector field.
(b) The configuration C is realizable as algebraic limit cycles by a polynomial vector

field of degree � 2(n+ r)− 1.

In the proof of Theorem 8.1 we shall provide an explicit expression for the polynomial
differential system of degree at most 2(n+ r)− 1 satisfying statement (b) of Theorem 8.1.
Of course, statement (a) of Theorem 8.1 follows immediately from statement (b).

The problem of given a configuration of limit cycles realize it by a polynomial differ-
ential system has been studied by several authors. Thus, for Cr vector fields the problem
has been solved by Al’mukhamedov [1], Balibrea and Jimenez [4] and Valeeva [99]. State-
ment (a) of Theorem 8.1 has been solved by Schecter and Singer [90] and Sverdlove [98],
but they do not provide an explicit polynomial vector field satisfying the given configura-
tion of limit cycles. The result presented in statement (b) of Theorem 8.1 appears in [69],
and its proof provides simultaneously the shortest and easiest proof of statement (a) of
Theorem 8.1.

We consider C1 the vector field

X = P
∂

∂x
+Q

∂

∂y

defined in the open subset U of R2. Then, X is exact in U if

∂P

∂x
= −∂Q

∂y
,

for all (x, y) ∈ U . Furthermore, if U is simply connected, then there exists a function
H :U → R satisfying

P = −∂H

∂y
, Q= ∂H

∂x
.

Therefore, the function H is the Hamiltonian of the Hamiltonian vector field X . Clearly,
the Hamiltonian function is a first integral of X .

A C1 function R :U → R such that

∂(RP)

∂x
= −∂(RQ)

∂y
(69)
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is an integrating factor of the vector field X . We know that R is an integrating factor of X
in U if and only if R is a solution of the partial differential equation

P
∂R

∂x
+Q

∂R

∂y
= −

(
∂P

∂x
+ ∂Q

∂y

)
R (70)

in U .
A function V :U → R is an inverse integrating factor of the vector field X if V verifies

the partial differential equation

P
∂V

∂x
+Q

∂V

∂y
=

(
∂P

∂x
+ ∂Q

∂y

)
V (71)

inU . We note that V satisfies (71) in U if and only ifR = 1/V satisfies (70) inU \{(x, y) ∈
U : V (x, y)= 0}.

The following result due to Giacomini, Llibre and Viano [47] will be essential in our
proof of statement (b) of Theorem 8.1. Here, we provide an easier and direct proof.

THEOREM 8.2. LetX be a C1 vector field defined in the open subsetU of R2. Let V :U →
R be an inverse integrating factor of X. If γ is a limit cycle of X, then γ is contained in
Σ = {(x, y) ∈ U : V (x, y)= 0}.

PROOF. Due to the existence of the inverse integrating factor V defined in U , we have that
the vector field X/V is Hamiltonian in U \Σ . Since the flow of a Hamiltonian vector field
preserves the area and in a neighborhood of a limit cycle a flow does not preserve the area,
the theorem follows. �

PROOF OF THEOREM 8.1. Let C = {C1, . . . ,Cn} be the configuration of limit cycles
given in the statement of Theorem 8.1. For every primary curve Cj we select a point pj in
the interior of the bounded component limited by Cj . Since we will work with an equiva-
lent configuration of limit cycles, without loss of generality we can assume that

(i) each curve Ci is a circle defined by

fi(x, y)= (x − xi)
2 + (y − yi)

2 − r2
i = 0,

for i = 1, . . . , n; and that
(ii) the primary curves of the configuration C are the curves Cj , and the selected

points pj have coordinates (xj , yj ), for j = 1, . . . , r .
For every selected point pj we define

fn+2j−1(x, y)= (x − xj )+ i(y − yj ),

fn+2j (x, y)= (x − xj )− i(y − yj ).
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Now, we consider the function

H̃ = f
λ1
1 · · ·f λnn f

λn+1
n+1 f

λn+2
n+2 · · ·f λn+2r−1

n+2r−1f
λn+2r
n+2r =

n+2r∏
k=1

fk,

with λ1 = · · · = λn = 1, and λn+2j−1 = 1 + i and λn+2j = 1 − i , for j = 1, . . . , r . After an
easy computation, we have that

H̃ (x, y)=A(x,y)B(x, y)C(x, y),

where

A(x,y)=
n∏
i=1

[
(x − xi)

2 + (y − yi)
2 − r2

i

]
,

B(x, y)=
r∏

j=1

[
(x − xj )

2 + (y − yj )
2]
,

C(x, y)= exp

(
−2

r∑
j=1

arg
[
(x − xj )+ i (y − yj )

])
.

Clearly H̃ (x, y) is a real function. Therefore, the function

H = log H̃ =
n+2r∑
k=1

λk logfk

is also real.
We claim that the vector field

X = P(x, y)
∂

∂x
+Q(x,y)

∂

∂y

= −
n+2r∑
k=1

λk

(
n+2r∏
l=1
l �=k

fl

)
∂fk

∂y

∂

∂x
+
n+2r∑
k=1

λk

(
n+2r∏
l=1
l �=k

fl

)
∂fk

∂x

∂

∂y
,

satisfies the conclusion of statement (b) of Theorem 8.1. Now we shall prove the claim.
First, we note that we have the equalities

∂H

∂x
= Q∏n+2r

k=1 fk
,

∂H

∂y
= − P∏n+2r

k=1 fk
. (72)

Therefore, since H and
∏n+2r
k=1 fk are real functions, we get that P , Q, and consequently

X are real.
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Clearly, from the definition of X it follows that P and Q are polynomials of degree at
most n+ 2r − 1. So, X is a real polynomial vector field of degree at most n+ 2r − 1.

From (72) it follows that V = ∏n+2r
k=1 fk is a polynomial inverse integrating factor of X ,

and that H is a Hamiltonian for the Hamiltonian vector field

1

V
X = P

V

∂

∂x
+ Q

V

∂

∂y
,

defined in R2 \ {V = 0}.
Since V is polynomial, V is defined in the whole R2. Therefore, by Theorem 8.2 and

since V (x, y)= 0 if and only if (x, y) ∈ (⋃n
i=1Ci)∪{p1, . . . , pr }, if the vector field X has

limit cycles, these must be the circles Ci for i = 1, . . . , n. Now, we shall prove that all these
circles are limit cycles. Hence, the polynomial vector field X will realize the configuration
of limit cycles {C1, . . . ,Cn} and the theorem will be proved.

We note that since H̃ = exp(H) is a first integral of the vector field X in R2 \ {V = 0},
the circles are formed by solutions because they are contained in the level curve Ṽ = 0, and
V = 0 is formed by solutions. Now we shall prove that on every circle Ci there is no singu-
lar points of X and, therefore,Ci will be a periodic orbit. Assume that (x0, y0) is a singular
point of X contained into the circle Ci ; i.e., P(x0, y0)=Q(x0, y0)= fi(x0, y0)= 0. From
the definition of P and Q we have that

P(x0, y0)= −λi
(
n+2r∏
l=1
l �=i

fl(x0, y0)

)
∂fi

∂y
(x0, y0)= 0,

Q(x0, y0)= λi

(
n+2r∏
l=1
l �=i

fl (x0, y0)

)
∂fi

∂x
(x0, y0)= 0.

Since fl(x0, y0) �= 0 for l �= i , we obtain that ∂fi
∂x
(x0, y0) = 0 and ∂fi

∂y
(x0, y0)= 0. There-

fore, the point (x0, y0) is the center of the circle Ci in contradiction that fi(x0, y0) = 0.
Hence, every circle Ci is a periodic orbit of the vector field X . Now, we shall prove that
Ci will be a limit cycle, and this will complete the proof of Theorem 8.1.

We note that all circlesCi and all points pj are in the level H̃ (x, y)= 0, and that they are
the unique orbits of X in this level. Now suppose that Ci is not a limit cycle. Then, there is
a periodic orbit γ = {(x(t), y(t)): t ∈ R} different from C1, . . . ,Cn and sufficiently close
to Ci such that in the bounded component B limited by γ there are the same points of
{p1, . . . , pr } than in the bounded component limited by Ci . Without loss of generality we
can assume that these points are p1, . . . , ps .

As γ is different from C1, . . . ,Cn, there exists h �= 0 such that

H̃
(
x(t), y(t)

) =A
(
x(t), y(t)

)
B

(
x(t), y(t)

)
exp

(
−2

r∑
j=1

θj (t)

)
= h, (73)
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where θj (t)= arg[(x(t)− xj )+ i(y(t)− yj )]. The function A(x(t), y(t)) B(x(t), y(t)) is
bounded on γ . Clearly, the angles θ1(t), . . . , θs(t) tend all simultaneously (due to its def-
inition) to either +∞ or −∞, when t → +∞, while the angles θs+1(t), . . . , θr(t) remain
bounded when t → +∞. These facts are in contradiction with equality (73). Consequently,
we have proved that Ci is a limit cycle. In short, Theorem 8.1 is proved. �

9. Darbouxian theory of integrability and centres

In this section we follow the paper [30]. One of the main applications of the Darbouxian
theory of integrability is proving the existence of a centre, see for instance Section 3.

In the elementary theory of qualitative differential equations we identify three main types
of behavior at a nondegenerate singular point: a node, a focus, or a saddle. All three are
stable, in that a small perturbation will not change the stability of the singular point. More-
over, topologically, we can read off their behavior from just their linear terms. However,
there is also the possibility that the singular point is a fine focus or a centre. That is, the
divergence vanishes at that point. In this case the linear terms give a centre: a neighborhood
of the origin which consists of closed trajectories. In this case, the nonlinear terms must
be examined in order to determine whether the point is stable or unstable. If it is neither
and the system is analytic, then the singular point is also a centre for the nonlinear system.
Without loss of generality, we can consider the singular point to be at the origin and to be
in the form

ẋ = λx − y +p(x, y), ẏ = x + λy + q(x, y), (74)

where p and q represent the nonlinear terms. The case of a fine focus or centre corresponds
to λ= 0.

We can distinguish between a centre and a (fine) focus in a number of ways; we follow
the most direct first. It can be shown that for any N there is a change of coordinates which
brings the origin of (74) to the polar form

ṙ = c3r
3 + c5r

5 + · · · + O
(
rN

)
,

θ̇ = 1 + d2r
2 + d4r

4 + · · · + O
(
rN

)
. (75)

If all the ci are zero up to c2k+1, then the system is said to have a fine focus of order k. The
stability is given by the sign of c2k+1.

It can also be shown that perturbations of the nonlinear terms of (74) can produce in
this case at most k limit cycles bifurcating from the origin. Furthermore, if the class of
systems (74) are sufficiently general, there are perturbations which produce this number of
limit cycles in a multiple Hopf bifurcation. We call c2k+1 the kth Liapunov quantity.

If all the ci are zero, then it can be shown that there is an analytic change of coordinates
which brings the system into the polar form

ṙ = 0, θ̇ = 1 + d2r
2 + d4r

4 + · · · .
The singular point is obviously a centre in this case.
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Given a class of polynomial equations in the form (74), we are often interested in the sub-
class with centres at the origin. The problem is that showing that we have a centre requires
an infinite number of conditions. However, if we could find an analytic first integral in a
neighborhood of the singular point, then the singular point must be a centre. In fact, the
linear terms of (74) implies that the first terms of such an integral are a+b(x2 +y2)s +· · ·,
and therefore trajectories close to the origin are closed.

Alternatively, we could find an integrating factor which is well-defined and nonzero in a
neighborhood of the singular point. In either case an obvious method for constructing such
functions is the Darbouxian theory of integrability. The surprising thing is that this method
is so successful.

THEOREM 9.1. All the nondegenerate centres of systems (74) with homogeneous quadratic
or cubic p and q are integrable with Darbouxian first integrals. The same is true if p and
q are of the form

p = p2 + xf, q = q2 + yf,

where p2, q2 and f are all homogeneous quadratics.

For a proof of this theorem see [92,89,9].
The last system is the projective version of the quadratic systems and in fact was the

system studied by Darboux.
As an example of this, consider the system

ẋ = y + a1x
2 + (a2 + 2b1)xy − a1y

2 + x2y,

ẏ = −x + b1x
2 + (b2 − 2a1)xy − b1y

2 + xy2,

generically this has 4 invariant lines, whose cofactors are all of the form

αx + βy + xy.

Hence we can conclude that the system has a centre at the origin.
Another method for distinguishing between a focus and a centre is to use a Liapunov

function. This is a function V = k + x2 + y2 + O((x2 + y2)3/2) which satisfies

dV

dt
= η4

(
x2 + y2)4 + η6

(
x2 + y2)6 + · · · + O

((
x2 + y2)N/2)

. (76)

Such a function can always be found in the neighborhood of a fine focus. The origin is a
centre if all the ηi vanish. If η2k+2 is the first nonzero term, then the origin is a fine focus
of order k. Computationally, this method is easier to handle than the normal form (75).
The coefficients η2i+2 are essentially positive multiples of the c2i+1 if we assume that the
previous η2j+1, j < i vanish.

There is also a third method, closely related to the second. Here we seek a function
which is almost an integrating factor. That is we look for a function R = 1 + O(x, y)
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which satisfies

∂

∂x

(
P

R

)
+ ∂

∂y

(
Q

R

)
= ζ2

(
x2 + y2) + ζ4

(
x2 + y2)4 + · · · + O

((
x2 + y2)N/2−1)

. (77)

Here the origin is a centre if all the ζi vanish, and a fine focus of order k if ζ2k is the
first nonzero term. The advantage here is that the degrees of the polynomials required here
is less than (76). Again the coefficients ζ2i are essentially positive multiples of the c2i+1
modulo the previous ζ2j ’s.

Now, suppose we are seeking conditions for a centre at the origin. Consider a Darboux-
ian function B which is composed of invariant algebraic curves which do not pass through
the origin and exponential factors. Such a B is well-defined at the origin and

d

dt
B = B

[∑
liLi

]
,

∂

∂x

(
P

B

)
+ ∂

∂y

(
Q

B

)
= 1

B

[
div(P,Q)−

∑
liLi

]
.

Since the invariant algebraic curves do not pass through the origin, then the definition of
invariant algebraic curve implies that the cofactors Li must vanish there. We also assume
that the divergence is zero at the origin, or there would be no centre. If we have at least
m(m+1)/2−1−q invariant algebraic curves and exponential factors, 0< q � (m−1)/2,
then we can choose the li nontrivially so that the square brackets of one of the expressions
above lies in the vector space generated by the polynomials (x2 + y2)j , j = 1, . . . , q .
Comparing these expressions with (76) and (77), we obtain the following result.

THEOREM 9.2. Suppose the origin is a fine focus, and that the first q Liapunov quantities
at the origin vanish, 0< q � (m− 1)/2. If there are at least m(m+ 1)/2 − 1 − q invariant
algebraic curves or exponential factors not passing through the origin, then there is a
local Darbouxian integrating factor. If there are at least m(m+ 1)/2 − q , then there is a
Darbouxian first integral. In either case the origin is a centre.

The result was first noticed by Cozma and Şubă [37,94] using different methods. Another
related result is Chavarriga, Giacomini and Giné [18].

10. Non-existence of limit cycles

This section follows the paper [30]. We rename a Liapunov function a function φ(x, y) for
which

Dφ > 0
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in the region of interest. Clearly the existence of such a function in a region precludes the
existence of periodic solutions and, in particular, limit cycles.

In the same way, we define a Dulac function to be a function R such that

∂

∂x

(
P

R

)
+ ∂

∂y

(
Q

R

)
> 0.

By applying the divergence criterion, we can see that such a function also precludes the
existence of periodic solutions or limit cycles in any simply connected region where R is
well-defined and nonzero.

The analogy between these functions and the first integrals and integrating factors ex-
amined up to now is obvious. In particular, given a collection of invariant algebraic curves
or exponential factors with cofactors Li , if we can find constants li such that∑

liLi > 0, or div(P,Q)−
∑

liLi > 0,

then there are no limit cycles in any simply connected region where the Darbouxian func-
tion is well defined.

For example, the Lokta–Volterra equations are quadratic with two invariant lines. There
is also a singular point which does not lie on either line around which any limit cycle must
lie. Thus the cofactors of the two lines must vanish at this point. If the divergence also
vanishes at the singular point, then we can find a linear dependency between the cofactors
and the divergence which means that the system must be integrable and we have a family
of closed orbits. If the divergence does not vanish then we can construct a Dulac function
of Liapunov function as above. Thus there are no limit cycles in either case.

The example above shows in a simple way how detailed calculations can be reduced to
simple geometric arguments instead. We could have replaced the lines above by invariant
hyperbolas or parabolas with no increase in difficulty.

If one of the curves was an ellipse, however, we might have problems. First, the ellipse
may be a limit cycle in its own right. Second, if the polynomial representing the ellipse
appeared to a negative power in the Dulac function, then we cannot apply Green’s theorem
since the region surrounding the ellipse is not simply connected. This can be overcome in
certain cases by considering line integrals around the loop itself.

In order to get some deeper results, we need to allow some curves which are almost in-
variant. Rather than abstract things more, we give an example which is very representative
of other results.

THEOREM 10.1. Suppose a quadratic system has an invariant algebraic curve and a sin-
gular point not on this curve where the divergence vanishes, then the system has no limit
cycles in any simply connected region of the complement of the curve.

PROOF. Any limit cycle in a quadratic system surrounds only one singular point which
must be a focus (see [104]). Suppose a limit cycle surrounds a singular point with nonzero
divergence. Let C = 0 be the invariant algebraic curve with cofactor L. Thus(

PCr
)
x
+ (

QCr
)
y
= Cr(rL+Δ).
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In this section we denote by Δ the divergence of the system, i.e., Δ = Px +Qy . Since
both L and Δ must pass through the other singular point, and limit cycles of quadratic
system must be convex, we can chose r so that rL +Δ does not pass through the limit
cycle. Hence we have a Dulac function in this case, which contradicts our assumption of a
limit cycle.

Suppose now that there is a limit cycle which surrounds the divergence free singular
point. Since this point must be a focus we transform the system to the form

P = −y + ax2 + bxy + cy2, Q= x + dx2 + exy + fy2.

A further rotation allows us to set c = 0 without loss of generality. Consider the function
G= x − 1/b for b �= 0 and G= ex if b= 0. We calculate

d

dt
G=

{
byG+ ax2, b �= 0,

−yG+ ax2G, b= 0.

Thus the line G= 0 is a transversal, and no limit cycle can cross it. Now, we calculate that

(
PCrGs

)
x
+ (

QCrGs
)
y
=

{
CrGs−1(G[rL+ sby +Δ] + sax2), b �= 0,

CrGs−1(G[rL− sy +Δ] + sGax2), b= 0.

In either case we can find values of r and s to eliminate the term in square brackets. Once
again we have a Dulac function. �

It seems that algebraic curve methods are the natural ones for proving nonexistence of
limit cycles. In Coppel’s survey paper [36], for example, all the nonexistence results are
obtained this way except one which uses a Liénard system argument. We reprove this here
using algebraic curves.

THEOREM 10.2. A quadratic system (2) with rP + sQ = ΔM for some polynomial M
and real numbers r and s can have no limit cycles. In particular, a quadratic system with
two singular points with zero divergence has no limit cycles.

PROOF. If Δ is a constant we have finished. If Δ = a(rx + sy + t) for some a and t ,
then Δ = 0 would be an invariant line. All limit cycles would have to lie in one of the
regionsΔ> 0 orΔ< 0 which is not possible. Hence the linear terms ofΔ must be linearly
independent from rx + sy for limit cycles to exist. We can therefore write M = aΔ +
b(rx + sy)+ c for some a, b and c.

If b = 0, then

d

dt
(rx + sy)= aΔ2 (c= 0),

or (
e−(rx+sy)/cP

)
x
+ (

e−(rx+sy)/cQ
)
y
= −a

c
Δ2e−(rx+sy)/c (c �= 0).



490 J. Llibre

Hence there are no limit cycles. When b �= 0 then

d

dt

(
rx + sy + c

b

)
= aΔ2 on rx + sy + c

b
= 0,

so rx + sy + c/b= 0 is a transversal. Furthermore

(BP)x + (BQ)y = − a

b(rx + sy + c/b)
BΔ2,

where

B =
(
rx + sy + c

b

)−1/b

,

and so we have a Dulac function in this case too. �

Is it possible to extend these methods to prove the uniqueness of limit cycles if we allow
the Dulac function to vanish at the singular point which the limit cycle surrounds? It would
be very nice if this was true as many of the uniqueness results for quadratic systems have a
nice algebraic content. For example a quadratic system with an invariant line or an invariant
parabola have at most one limit cycle. However, no such methods are known at the moment
and other less direct methods need to be used.

We finish with a simple example of such a proof. We show that the van der Pol oscillator
has a unique limit cycle for small values of the nonlinear terms.

THEOREM 10.3. The system

ẋ = y, ẏ = −x −μ
(
1 − x2)

y

has at most one limit cycle for |μ|<√
3.

PROOF. We first let Y = y +μ(x − x3/3) to transform the system to the Liénard plane:

ẋ = Y −μ
(
x − x3/3

)
, Ẏ = −x.

Now, taking B = (x2 −μxY + Y 2)−1, we have

(Bẋ)x + (Bẏ)y = μB2x2(
x2/3 − 2μxY/3 + Y 2)

.

For |μ| <√
3, B is positive definite and we have a Dulac function defined in the whole

of the plane except at the origin. Since each limit cycle must surround the origin, a simple
application of Green’s theorem shows that there can be at most one limit cycle. �
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11. The inverse problem

In this section we are mainly interested in the polynomial differential systems which have
a given set of invariant algebraic curves, independently if they are integrable or not. Thus,
first we study the normal forms of planar polynomial vector fields having a given set of
generic invariant algebraic curves. That is, in some sense we are interested in a kind of
inverse theory of the Darboux theory of integrability. We follow the paper [33]. The main
result of this section is the following one.

THEOREM 11.1. Let Ci = 0 for i = 1, . . . , p, be irreducible invariant algebraic curves
in C2, and set r = ∑p

i=1 degCi . We assume that all Ci satisfy the following generic condi-
tions:

(i) There are no points at which Ci and its first derivatives are all vanish.
(ii) The highest order terms of Ci have no repeated factors.

(iii) If two curves intersect at a point in the finite plane, they are transversal at this
point.

(iv) There are no more than two curves Ci = 0 meeting at any point in the finite plane.
(v) There are no two curves having a common factor in the highest order terms.

Then any polynomial vector field X of degree m tangent to all Ci = 0 satisfies one of the
following statements.

(a) If r < m+ 1 then

X =
(

p∏
i=1

Ci

)
Y +

p∑
i=1

hi

(
p∏
j=1
j �=i

Cj

)
XCi , (78)

where XCi = (−Ciy,Cix) is a Hamiltonian vector field, the hi are polynomials of
degree no more than m− r + 1, and the Y is a polynomial vector field of degree no
more than m− r .

(b) If r =m+ 1 then

X =
p∑
i=1

αi

(
p∏
j=1
j �=i

Cj

)
XCi , (79)

with αi ∈ C.
(c) If r > m+ 1 then X = 0.

This theorem due to Christopher [28] was stated in several papers without proof like
[28] and [61], and used in other papers as [9] and [66]. The proof that we present here of
Theorem 11.1 essentially circulated as the preprint [29] but was never published. Żoła̧dek
in [106] (see also Theorem 3 of [107]) stated a similar result to Theorem 11.1, but as far
as we know the paper [106] has not been published. In any case Żoła̧dek’s approach to
Theorem 11.1 is analytic, while our approach is completely algebraic.
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Statement (b) of this theorem has a corollary due to Christopher and Kooij [61] showing
that system (79) has the integrating factor R= (

∏p

i=1Ci)
−1, and consequently the system

is Darbouxian integrable.
The following result shows that the generic conditions of Theorem 11.1 are necessary.

THEOREM 11.2. If one of the conditions (i)–(v) of Theorem 11.1 is not satisfied, then the
statements of Theorem 11.1 do not hold.

We have mentioned that system (1) satisfying the five assumptions of Theorem 11.1 with
r =m+1 is Darbouxian integrable. Now we provide two examples of polynomial systems
satisfying all assumptions of Theorem 11.1 with r = m+ 1 except either (ii) or (iii) and
which are not Darbouxian integrable. Until now there are very few proofs of polynomial
systems which are not Darbouxian integrable, see for instance Jouanolou [58], Moulin
Ollagnier [75–77] and [10], see Section 13.

Consider the following quadratic systems:

ẋ = y(ax − by + b)+ x2 + y2 − 1,

ẏ = bx(y − 1)+ a
(
y2 − 1

)
, (80)

which has the invariant circle C1 = x2 + y2 − 1 = 0 with cofactor K1 = 2(x + ay) and the
invariant straight line C2 = y − 1 = 0 with cofactor K2 = bx + ay + a. We note that C1
and C2 are tangent at the point (0,1).

THEOREM 11.3. There are values of the parameters a and b for which system (80) is not
Darbouxian integrable.

As a corollary the following result shows that there are polynomial systems with an
invariant algebraic curve whose highest order term have repeated factors such that they are
not Darbouxian integrable. Consider the following quadratic system:

ẋ = (1 − b)
(
x2 + 2y − 1

) − (ax − b)(y − 1)= P(x, y),

ẏ = −(bx + 2ay − a)(y − 1)=Q(x,y), (81)

which has the invariant algebraic curves C1 = x2 + 2y − 1 = 0 with cofactor K1 = 2[(1 −
b)x− ay + a] and C2 = y − 1 = 0 with cofactor K2 = −(bx+ 2ay − a). We note that the
highest order term of C1 has a repeated factor x .

COROLLARY 11.4. There exist values of the parameters a and b for which system (81) is
not Darbouxian integrable.

In the rest of the section we shall prove the first of these stated four results, for the proof
of the others see [33].

PROOF OF THEOREM 11.1. In the proof of this theorem we will use intensively the
Hilbert’s Nullstellensatz (see for instance, [46]):
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Set A,Bi ∈ C[x, y] for i = 1, . . . , r . If A vanishes in C2 whenever the polynomials
Bi vanish simultaneously, then there exist polynomials Mi ∈ C[x, y] and a nonnegative
integer n such that An = ∑r

i=1MiBi . In particular, if all Bi have no common zero, then
there exist polynomial Mi such that

∑r
i=1MiBi = 1.

In what follows if we have a polynomialA we will denotes its degree by a. If we do not
say anything we denote by Cc the homogeneous part of degree c for the polynomialC. We
shall need the following result.

LEMMA 11.5. If Cc has no repeated factors, then (Cx,Cy)= 1.

PROOF. Suppose that (Cx,Cy) �= 1. Then there exists a polynomial A nonconstant such
that A|Cx and A|Cy . Here A|Cx means that the polynomial A divides the polynomial Cx .
Therefore, Aa|(Cc)x and Aa|(Cc)y . By the Euler theorem for homogeneous polynomials
we have that x(Cc)x + y(Cc)y = cCc. So Aa|Cc. Since Aa , (Cc)x , (Cc)y and Cc are ho-
mogeneous polynomials of C[x, y] and Aa divides (Cc)x , (Cc)y and Cc , the linear factors
of Aa having multiplicity m, must be linear factors of Cc having multiplicity m+ 1. This
last statement follows easily identifying the linear factors of the homogeneous polynomial
Cc(x, y) in two variables with the roots of the polynomialCc(1, z) in the variable z. Hence,
Aa is a repeated factor of Cc. It is in contradiction with the assumption. �

We first consider the case that system (1) has a given invariant algebraic curve.

LEMMA 11.6. Assume that polynomial system (1) of degree m has an invariant algebraic
curve C = 0 of degree c, and that C satisfies condition (i) of Theorem 11.1.

(a) If (Cx,Cy)= 1, then system (1) has the following normal form:

ẋ =AC −DCy, ẏ = BC +DCx, (82)

where A,B and D are suitable polynomials.
(b) IfC satisfies condition (ii) of Theorem 11.1, then system (1) has the normal form (82)

with a, b �m− c and d �m− c+ 1. Moreover, if the highest order term Cc of C
does not have the factors x and y , then a � p− c, b � q − c and d � min{p,q} −
c+ 1.

PROOF. (a) Since there are no points at which C, Cx and Cy vanish simultaneously, from
Hilbert’s Nullstellensatz we obtain that there exist polynomials E, F and G such that

ECx + FCy +GC = 1. (83)

As C satisfies the definition of invariant algebraic curve, we get from (83) that

K = (KE +GP)Cx + (KF +GQ)Cy.

Substituting K into the definition of invariant algebraic curve C = 0, we get[
P − (KE +GP)C

]
Cx = −[

Q− (KF +GQ)C
]
Cy.
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Since (Cx,Cy)= 1, there exists a polynomial D such that

P − (KE+GP)C = −DCy, Q− (KF +GQ)C =DCx.

This proves that system (1) has the form (82) with A=KE +GP and Q=KF +GQ.
(b) From (a) and Lemma 11.5 we get that system (1) has the normal form (82). Without

loss of generality we can assume that p � q .
We first consider the case that Cc has neither factor x nor y . So we have (Cc, (Cc)x)= 1

and (Cc, (Cc)y)= 1, where (Cc)x denotes the derivative of Cc with respect to x . In (82)
we assume that a > p − c, otherwise the statement follows. Then d = a + 1. Moreover,
from the highest order terms of (82) we get AaCc =Da+1Cc−1

y , where Cc−1
y denotes the

homogeneous part with degree c−1 ofCy . Since (Cc,Cc−1
y )= 1, there exists a polynomial

F such that Aa = FCc−1
y , Da+1 = FCc. In (82) we replace A by A − FCy and D by

D − FC, so the degrees of polynomials under consideration reduce by one. We continue
this process and do the same for ẏ until we reach a system of the form

ẋ =AC −DCy, ẏ = BC +ECx, (84)

with a � p − c, d � p − c+ 1, b � q − c and e � q − c+ 1. Since C = 0 is an invariant
algebraic curve of (84), from the definition of invariant algebraic curve we get

C(ACx +BCy)+CxCy(E −D)=KC.

This implies that there exists a polynomial R such that E −D = RC, because C with Cx
and Cy are coprime.

If e � d , then r = e − c. We write BC + ECx = (B + RCx)C + DCx and denote
B + RCx again by B , then system (84) has the form (82) where A,B and D have the
required degrees.

If e < d , then r = d − c. We write AC − DCy = (A + RCy)C − ECy and denote
A+RCy again by A, then system (84) has the form (82) where A,B and E instead of D
have the required degrees. This proves the second part of (b).

Now we prove the first part of (b). We note that even though Cc has no repeated factor,
Cc with Cc−1

x or Cc−1
y may have a common factor in x or y (for exampleC3 = x(x2 +y2),

C3 = y(x2+y2) or C4 = xy(x2+y2)). In order to avoid this difficulty we rotate system (1)
slightly such that Cc has no factors in x and y . Then, applying the above method to the
new system we get that the new system has a normal form (82) with the degrees of A,B
and D as those of the second part of (b).

We claim that under affine changes system (82) preserves its form and the upper bound
of the polynomials, i.e., a, b�m− c and d �m− c+ 1. Indeed, using the affine change
of variables u= a1x+b1y+ c1 and v = a2x+b2y+ c2 with a1b2 −a2b1 �= 0, system (82)
becomes

u̇= (a1A+ b1B)C − (a1b2 − a2b1)DCv,

v̇ = (a2A+ b2B)C + (a1b2 − a2b1)DCu.
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Hence, the claim follows. This completes the proof of (b), and consequently we have the
proof of the lemma. �

LEMMA 11.7. Assume that C = 0 and D = 0 are different irreducible invariant algebraic
curves of system (1) of degree m, and that they satisfy conditions (i) and (iii) of Theo-
rem 11.1.

(a) If (Cx,Cy)= 1 and (Dx,Dy)= 1, then system (1) has the normal form

ẋ =ACD −ECyD − FCDy, ẏ = BCD +ECxD + FCDx. (85)

(b) If C and D satisfy conditions (ii) and (v), then system (1) has the normal form (85)
with a, b�m− c− d and e, f �m− c− d + 1.

PROOF. Since (C,D)= 1, the curves C and D have finitely many intersection points. By
assumption (i) at each of such points there is at least one nonzero first derivative of both C
and D. In a similar way to the proof of the claim inside the proof of Lemma 11.6, we can
prove that under an affine change of the variables, system (85) preserves its form and the
bound for the degrees of A, B , E and F . So, we rotate system (1) slightly such that all first
derivatives of C and D are not equal to zero at the intersection points.

From the Hilbert’s Nullstellensatz, there exist polynomialsMi , Ni and Ri , i = 1,2, such
that

M1C +N1D +R1Dy = 1, M2C +N2D +R2Cy = 1. (86)

By Lemma 11.6 we get that

P =A1C −E1Cy =G1D − F1Dy, (87)

for some polynomials A1, E1, G1 and F1. Moreover, using the first equation of (86) we
have F1 = SC + TD +UCy for some polynomials S, T and U . Substituting F1 into (87)
we obtain that

(A1 + SDy)C + (−G1 + TDy)D + (−E1 +UDy)Cy = 0. (88)

Using the second equation of (86) and (88) to eliminate Cy we get

−E1 +UDy = VC +WD, (89)

for some polynomials V and W . Substituting (89) into (88), we have

(A1 + SDy + VCy)C = (G1 − TDy −WCy)D.

Since (C,D)= 1, there exists a polynomial K such that

A1 + SDy + VCy =KD, G1 − TDy −WCy =KC. (90)
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Substituting E1 of (89) and A1 of (90) into (87), then we have

P =KCD − SCDy +WCyD −UCyDy. (91)

Similarly, we can prove that there exist some polynomials K ′, S′, W ′ and U ′ such that

Q=K ′CD + S′CDx −W ′CxD +U ′CxDx. (92)

Since C is an invariant algebraic curve of (1), we have that PCx +QCy = KCC for
some polynomialKC . Using (91) and (92) we get

KCC = C
[
D(KCx +K ′Cy)− SCxDy + S′CyDx

]
+CxCy

[
D(W −W ′)−UDy +U ′Dx

]
.

As C, Cx and Cy are coprime, there exists a polynomial Z such that

D(W −W ′)−UDy +U ′Dx =ZC. (93)

Substituting the expression DW −UDy into (91), we get

P =KCD − SCDy +W ′CyD −U ′CyDx +ZCCy. (94)

SinceD = 0 is an invariant algebraic curve of system (1), we have PDx +QDy =KDD

for some polynomial KD . Using (92) and (94) we get

KDD =D
[
C(KDx +K ′Dy)+W ′(CyDx −CxDy)

]
+Dx

[
CDy(−S + S′)+U ′(CxDy −CyDx)+ZCCy

]
.

As D and Dx are coprime, there exists a polynomial M such that

CDy(−S + S′)+U ′(CxDy −CyDx)+ZCCy =MD. (95)

The curvesC andD are transversal implies that C,D and CxDy −CyDx have no common
zeros. From Hilbert’s Nullstellensatz, there exist some polynomials M3, N3 and R3 such
that

M3C +N3D +R3(CxDy −CyDx)= 1. (96)

Eliminating the term CxDy −CyDx from (95) and (96), we obtain that U ′ = IC+ JD for
some polynomials I and J . Hence, Equation (95) becomes

C
[
I (CxDy −CyDx)+Dy(−S + S′)+ZCy

]
+D

[
J (CxDy −CyDx)−M

] = 0.
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Since (C,D)= 1, there exists a polynomial G such that

M = J (CxDy −CyDx)+GC,

I (CxDy −CyDx)+Dy(−S + S′)+ZCy =GD.

Substituting ZCy − SDy and U ′ into (94) we obtain that

P = (K +G)CD − (ICx + S′)CDy + (W ′ − JDx)DCy.

This means that P can be expressed in the form (91) with U = 0.
Working in a similar way, we can express Q in the form (92) with U ′ = 0. Thus, (93) is

reduced to D(W −W ′)= ZC. Hence, we have W =W ′ +HC for some polynomial H .
Consequently, Z = HD. Therefore, from (95) we obtain that CDy(−S + S′) = D(M −
HCCy). Since (C,D)= 1 and (D,Dy)= 1, we have S = S′+LD for some polynomialL.
Substituting W and S into (91) we obtain that P and Q have the form (85). This proves
statement (a).

As in the proof of Lemma 11.6 we can prove that under suitable affine change of vari-
ables the form of system (85) and the bound of the degrees of the polynomialsA, B , E and
F are invariant. So, without loss of generality we can assume that the highest order terms
of C and D are neither divisible by x nor y .

By the assumptions, the conditions of statement (a) hold, so we get that system (1) has
the form (85). If the bounds of the degrees of A, B , E and F are not satisfied, we have
by (85) that

AaCcDd −EeCc−1
y Dd − Ff CcDd−1

y = 0,

BbCcDd +EeCc−1
x Dd +Ff CcDd−1

x = 0. (97)

We remark that if one of the numbers a+ c+d , e+ c−1+d and f + c+d−1 is less than
the other two, then its corresponding term in the first equation of (97) is equal to zero. The
same remark is applied to the second equation of (97). From the hypotheses it follows that
Cc and Cc−1

y are coprime, and also Dd and Dd−1
y , and Cc and Dd , respectively. Hence,

from these last two equations we obtain that there exist polynomials K and L such that
Ee =KCc, Ff = LDd , and

Aa =KCc−1
y +LDd−1

y , Bb = −KCc−1
x −LDd−1

x .

We rewrite Equation (85) as

ẋ = (A−KCy −LDy)CD − (E −KC)CyD − (F −LD)CDy,

ẏ = (B +KCx +LDx)CD + (E −KC)CxD + (F −LD)CDx.

Thus, we reduce the degrees ofA, B , E and F in (85) by one. We can continue this process
until the bounds are reached. This completes the proof of statement (b). �
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LEMMA 11.8. Let Ci = 0 for i = 1, . . . , p be different irreducible invariant algebraic
curves of system (1) with degCi = ci . Assume that Ci satisfy conditions (i), (iii) and (iv)
of Theorem 11.1. Then

(a) If (Cix,Ciy)= 1 for i = 1, . . . , p, then system (1) has the normal form

ẋ =
(
B −

p∑
i=1

AiCiy

Ci

)
p∏
i=1

Ci, ẏ =
(
D +

p∑
i=1

AiCix

Ci

)
p∏
i=1

Ci, (98)

where B,D and Ai are suitable polynomials.
(b) If Ci satisfy conditions (ii) and (v) of Theorem 11.1, then system (1) has the normal

form (98) with b, d �m− ∑p
i=1 ci and ai �m− ∑p

i=1 ci + 1.

PROOF. We use induction to prove this lemma. By Lemmas 11.6 and 11.7 we assume that
for any l with 2 � l < p we have

P =
l∑

i=1

(
Bi − AiCiy

Ci

) l∏
i=1

Ci, Q=
l∑

i=1

(
Di + AiCix

Ci

) l∏
i=1

Ci,

where
∑l

i=1Bi = B and
∑l

i=1Di = D. Since Cl+1 = 0 is an invariant algebraic curve,
from Lemma 11.6 we get that there exist some polynomials E, G and H such that

P =
l∑

i=1

(
Bi − AiCiy

Ci

) l∏
i=1

Ci =ECl+1 −GCl+1,y,

Q=
l∑

i=1

(
Di + AiCix

Ci

) l∏
i=1

Ci =HCl+1 +GCl+1,x . (99)

Now we consider the curves

Kj =
l∏

i=1
i �=j

Ci = 0, j = 1, . . . , l.

From the assumptions we obtain that there is no points at which all the curves Ki = 0
and Cl+1 = 0 intersect. Otherwise, at least three of the curves Ci = 0 for i = 1, . . . , l + 1
intersect at some point. Hence, there exist polynomials U and Vi for i = 1, . . . , l such that

UCl+1 +
l∑

i=1

ViKi = 1. (100)
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Using this equality, we can rearrange (99) as

(E −GUCl+1,y)Cl+1 =
l∑

i=1

(BiCi −AiCiy +GViCl+1,y)Ki,

(H +GUCl+1,x)Cl+1 =
l∑

i=1

(DiCi +AiCix −GViCl+1,x)Ki. (101)

Using (100) and (101) to eliminate Cl+1 we obtain that

E −GUCl+1,y =
l∑

i=1

IiKi, H +GUCl+1,x =
l∑

i=1

JiKi,

for some polynomials Ii and Ji . Substituting these last equalities into (101), we have

l∑
i=1

(BiCi −AiCiy +GViCl+1,y − IiCl+1)Ki = 0,

l∑
i=1

(DiCi +AiCix −GViCl+1,x − JiCl+1)Ki = 0. (102)

It is easy to check that the expression multiplying Ki in the two summations of (102) are
divisible by Ci . Hence, there exist polynomials Li and Fi for i = 1, . . . , l such that

BiCi −AiCiy +GViCl+1,y − IiCl+1 = LiCi,

DiCi +AiCix −GViCl+1,x − JiCl+1 = FiCi . (103)

So, from (102) we get that
∑l

i=1Li = 0 and
∑l

i=1 Fi = 0. This implies that (99) can be
rewritten as

P =
l∑

i=1

(
(Bi −Li)Ci −AiCiy

)
Ki,

Q=
l∑

i=1

(
(Ci − Fi)Ci +AiCix

)
Ki. (104)

Moreover, we write (103) in the form

(Bi −Li)Ci −AiCiy = IiCl+1 −GViCl+1,y = Pi,

(Di − Fi)Ci +AiCix = JiCl+1 +GViCl+1,x =Qi. (105)
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It is easy to see that Ci and Cl+1 are invariant algebraic curves of the system ẋ = Pi, ẏ =
Qi . So, from statement (a) of Lemma 11.7 we can obtain that

Pi = (Bi −Li)Ci −AiCiy =XiCiCl+1 − YiCiyCl+1 −NiCiCl+1,y,

Qi = (Di − Fi)Ci +AiCix =ZiCiCl+1 + YiCixCl+1 +NiCiCl+1,x .

Substituting these last two equations into (104), we obtain that system (1) has the form (98)
with the l + 1 invariant algebraic curves C1, . . . ,Cl+1. From induction we have finished
the proof of statement (a).

The proof of statement (b) is almost identical with those of Lemma 11.7(b), so we shall
omit it here. Hence, this ends the proof of the lemma. �

PROOF OF THEOREM 11.1. From Lemma 11.8 it follows statement (a) of Theorem 11.1.
By checking the degrees of polynomials Ai , B and D in statement (b) of Lemma 11.8 we
obtain statement (b) of Theorem 11.1.

From statement (a) of Lemma 11.8, we can rearrange system (1) such that it has the
form (98). But from statement (b) of Lemma 11.8 we must have B = 0, D = 0 and Ai = 0.
This proves statement (c) of Theorem 11.1. �

12. Elementary and Liouvillian first integrals

We now examine the effectiveness of the Darbouxian theory of integrability, i.e., what sort
of integrals does it capture. The surprising result is that in some sense it captures every
“closed form solution”. However, we clearly need to make this idea precise before we can
explain the known results. Here, we follow the paper [30].

The idea of calculating what sort of functions can arise as the result of evaluating an
indefinite integral or solving a differential equation goes back to Liouville. The modern
formulation of these ideas is usually done through differential algebra. The advantage over
an analytic approach is first that the messy details of branch points etc., is hidden com-
pletely, and second that the way is open to apply these methods to symbolic computation.

We assume that the set of functions we are interested in form a field together with a
number of derivations. We call such an object a differential field. The process of adding
more functions to a given set of functions is described by a tower of such fields:

F0 ⊂ F1 ⊂ · · · ⊂ Fn.

Of course, we must also specify how the derivations of F0 are extended to derivations on
each Fi .

The fields we are interested in arise by adding exponentials, logarithms or the solutions
of algebraic equations based on the previous set of functions. That is we take

Fi = F0(θ1, . . . , θi),

where one of the following holds:
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(i) δθi = θiδg, for some g ∈ Fi−1 and for each derivation δ.
(ii) δθi = g−1δg, for some g ∈ Fi−1 and for each derivation δ.

(iii) θi is algebraic over Fi−1. If we have such a tower of fields, Fn is called an elemen-
tary extension of F0.

This is essentially what we mean by a function being expressible in closed form. We
call the set of all elements of a differential field which are annihilated by all the derivations
of the field the field of constants. We shall always assume that the field of constants is
algebraically closed.

THEOREM 12.1 (Liouville theorem). If an element f in a differential field F is the deriv-
ative of an element g in an elementary extension field G with the same field of constants,
then we must have

f = h0 +
∑

ci ln(hi),

where ci are constants and all the hi lie in F .

We say that our system (1) has an elementary first integral if there is an element u in an
elementary extension field of the field of rational functions C(x, y) with the same field of
constants such that Du= 0. The derivations on C(x, y) are of course d/dx and d/dy .

THEOREM 12.2 (Prelle and Singer [87]). If the system (2) has an elementary first integral,
then there is also an elementary first integral of the form

v0 +
∑

ci ln(vi),

where the ci are constants and the vi are algebraic functions over C(x, y).

It is known that we cannot strengthen this theorem to make all the vi rational func-
tions in x and y . By manipulating this formula and taking traces we obtain the following
corollary.

COROLLARY 12.3. In the situation above there is always an integrating factor of the
form R1/N , with R ∈ C(x, y) and N an integer.

Thus the method of Darboux finds all elementary first integrals. For a direct proof of this
corollary, see [20].

Another class of integrals we are interested in are the Liouvillian ones. Here we say that
an extension Fn is a Liouvillian extension of F0 if there is a tower of differential fields as
above which satisfies conditions (i), (iii) or

(ii)′ δαθi = hα for some elements hα ∈ Fi−1 such that δαhβ = δβhα .
This last condition, mimics the introduction of line integrals into the class of functions.

Clearly (ii) is included in (ii)′.
This class of functions represents those functions which are obtainable “by quadratures”.

An element u of a Liouvillian extension field of C(x, y) with the same field of constants is
said to be a Liouvillian first integral.
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THEOREM 12.4 (Singer [95]). If the system (2) has a Liouvillian first integral, then it has
an integrating factor of the form

e
∫
U dx+V dy, Uy = Vx,

where U and V are rational functions.

It can be shown that this last expression can always be integrated to get a Darbouxian
function. More specifically,

THEOREM 12.5. Let U , V be two rational functions with

Uy = Vx,

then ∫
U dx + V dy =w0 +

∑
ci ln(wi),

for some constants ci and wi rational functions.

Hence we have

COROLLARY 12.6. If system (1) has a Liouvillian first integral, then there is a Darbouxian
integrating factor.

For a direct proof of this result see Pereira [85].
Thus the method of Darboux finds all Liouvillian solutions. However, there is another

surprising result.

THEOREM 12.7 (Singer [95]). Suppose that a trajectory of (1) can be described by a
function in a Liouvillian extension of C(x, y). Then either this function is a first integral of
the system, or the function is a polynomial.

Thus a system has a Darbouxian integrating factor, or the only trajectories that can be
described by closed form solutions or quadratures are the polynomial ones.

What does the general first integral of a system with a Darbouxian integrating factor look
like? Generically we can show that the first integral is also Darbouxian [27], but stranger
things can happen. A reasonable conjecture which embodies all the cases which we know
is that it is a sum of a Darbouxian function and terms of the form∫ R(x,y)

es(u)
∏

ki(u)
li du,

where R, s and the ki are rational functions. Several examples of these have been given by
Żoła̧dek [106].
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13. Liouvillian first integrals for the planar Lotka–Volterra system

The aim of this section is to present the complete classification of the Liouvillian first
integrals for the quadratic Lotka–Volterra systems in C2:

ẋ = x(ax + by + c),

ẏ = y(Ax +By +C). (106)

We say that system (106) has a Liouvillian first integral if it has a first integral or an
integrating factor given by a Darbouxian function, see for more details Section 12 or
Singer [95]. We note that our Darbouxian theory of integrability takes into account the
invariant algebraic curves and their multiplicity through the exponential factors, see Sec-
tion 1.5 or for more details [34]. We emphasize that a complete characterization of Liou-
villian integrable polynomial differential systems has been made for very few families of
differential systems. We follows the paper [10].

As we shall see, systems (106) can be formulated as the following quadratic homoge-
neous Lotka–Volterra systems in C3:

ẋ = x
(
(b−B)y + cz

)
,

ẏ = y
(
(A− a)x +Cz

)
,

ż= −z(ax +By). (107)

Several authors and mainly Moulin Ollagnier [77] have studied the Liouvillian first inte-
grals of the system

ẋ = x(ωCy + z)= xΦx,

ẏ = y(x +ωAz)= yΦy,

ż= z(ωBx + y)= zΦz. (108)

In fact, these homogeneous Lotka–Volterra systems in C3 can be thought as the planar
projective version of the following planar Lotka–Volterra systems in C2:

ẋ = x
(−ωBx + (ωC − 1)y + 1

)
,

ẏ = y
(
(1 −ωB)x − y +ωA

)
. (109)

For more details between the affine and the projective version of a planar polynomial vector
field, see Section 6, or for instance [77] or [70].

We note that if c(a − A)B �= 0, then system (106) becomes system (109) with the fol-
lowing rescaling of the variables:

(x, y, t)→
(

c

A− a
x,− c

B
y,

1

c
t

)
, (110)
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where

ωA= C

c
, ωB = a

a −A
, ωC = B − b

B
. (111)

The Darbouxian theory of integrability says that if a planar polynomial differential sys-
tem of degreem= 2 has at least m(m+ 1)/2 = 3 invariant algebraic curves or exponential
factors, then the system has a Liouvillian first integral (see again Section 12 or Singer [95]).
This result will play a main role in the classification of all Liouvillian first integrals of sys-
tems (106).

We want to show that the Darbouxian theory of integrability is one of the best meth-
ods for finding first integrals of polynomial ordinary differential equations. For showing
this we choose the 2-dimensional Lotka–Volterra systems (106) as paradigmatic systems
for the study of the integrability, and we complete the classification of their Liouvillian
first integrals. This model, introduced by Lotka [72] and Volterra [100], appears in ecol-
ogy where it models two species in competition, and it has been widely used in applied
mathematics, in chemistry and in a large variety of problems in physics.

Moulin Ollagnier in [77] classified the irreducible systems (108) (and his results pro-
vide almost the classification of the nonirreducible ones) having a Liouvillian first integral.
In the paper [10] the authors, first, provide a new tool for studying the existence of Li-
ouvillian first integrals, and second they use this tool for completing the classification of
systems (107).

System (107) is called irreducible if the 1-form

ω = (Φz −Φy)yzdx + (Φx −Φz)zx dy + (Φy −Φx)xy dz

= −(Ax +By +Cz)yzdx + (ax + by + cz)zx dy

+ (
(A− a)x + (B − b)y + (C − c)z

)
xy dz

has no nontrivial common factor in its three components, for more details see [77].
Systems (109) always have two invariant algebraic curves x = 0 and y = 0. From the

Darbouxian theory of integrability (see Theorem 2.1), it is known that if they have another
invariant algebraic curve or an exponential factor, then the system has a Liouvillian first in-
tegral. We remark that almost all the Liouvillian integrable systems (109) given by Moulin
Ollagnier in [77] have a third invariant algebraic curve. For system (107) it is shown in [10]
that in seven of the new Liouvillian integrable cases the integrability is due to the existence
of an exponential factor.

We associate to a given 3-dimensional Lotka–Volterra system (108) two if ωAωB ×
ωC = 0, or five if ωAωBωC �= 0, equivalent 3-dimensional Lotka–Volterra systems. The
first two are obtained doing circular permutation of the variables x, y, z and of the parame-
ters ωA,ωB,ωC; i.e.,

(x, y, z,ωA,ωB,ωC)→ (y, z, x,ωB,ωC,ωA);
and the remainder three systems are obtained doing the transformation

(x, y, z,ωA,ωB,ωC)→ (ωBx,ωAz,ωCy,1/ωC,1/ωB,1/ωA),
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and the two new transformations obtained from this one doing the above circular permuta-
tions. Sometimes the conjugated systems to these previous ones are different, obtaining in
all 12 related systems. We say that all these Lotka–Volterra systems are E equivalent. All
the results of this paper are stated modulo these E equivalences. Of course, the analogous
E equivalences exist for 2-dimensional Lotka–Voterra systems (109).

The main results of [77] and [10] are the following two theorems, respectively.

THEOREM 13.1. Consider an irreducible system (109). Then the following statements are
equivalent.

(a) System (109) has a Liouvillian first integral.
(b) System (109) has an invariant algebraic curve f = 0 different from x = 0 and y = 0.
(c) The triple [ωA,ωB,ωC] of parameters of system (109) falls, up to E equivalences,

in one of the cases of the following list.

We introduce the following parameters

p = −ωA− 1

ωB
, q = −ωB − 1

ωC
, r = −ωC − 1

ωA
.

The numbers p, q and r are related with the Kowalevskaya exponents of system (108), see
[52] for more details.

In the first two cases ωA, ωB and ωC are related by a unique condition and f has
degree 1.

1. ωAωBωC + 1 = 0, f = x −ωCy +ωAωC.
2. ωB = 1 where ωC = 0 is possible, f = y −ωA.
Case 2 is formed by three E equivalent systems. The other two are: ωC = 1 where

ωA= 0 is possible, f = 1 −ωBx; and ωA= 1 where ωB = 0 is possible, f = x −ωCy .
In the next two cases ωA, ωB and ωC are related by two conditions and f has de-

gree 2.
3. p = 1, q = 1, consequently ωAωBωC = 1 and r = 1; f = ωA2(ωBx − 1)2 −

2ωA(ωBx + 1)y + y2.
4. ωA= 2, q = 1; f = (x −ωCy)2 − 2ωC2y .
Case 4 is formed by five other E equivalent systems, namely:
ωB = 2, r = 1, f = (y −ωA)2 − 2ωA2x;
ωC = 2, p = 1, f = (1 −ωBx)2 − 2ωB2xy;
ωC = 1/2, p = 1, f = (Bx − 1)2 − 2yωC/ωA;
ωA= 1/2, q = 1, f = (ωCy − x)2 − 2xωA/ωB;
ωB = 1/2, r = 1, f = (ωA− y)2 − 2xyωB/ωC.

There is a finite number of isolated triples of complex numbers providing an invariant
algebraic curve of system (21) with degree 3, 4 or 6. Here i stands for the square root of −1
and j = (−1 + i

√
3 )/2 is a third root of 1. Firstly, these cases were found in [53] using

the so-called Painlevé analysis, see [52].
5. [ωA,ωB,ωC] = [(j − 1)/3, j − 1, j ] or equivalently [p,q, r] = [1,2,2], here
(ωAωBωC)3 = −1; f = 9x3 −27jx2y+9(2+j)x2 −27(1+j)xy2+9(2+j)xy+
9(1 + j)x − 9y3 − 9(1 − j)y2 + 9jy + 1 + 2j .
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6. [ωA,ωB,ωC] = [(i−2)/5, (i−3)/2, i−1]or equivalently [p,q, r] = [1,2,3], here
(ωAωBωC)2 = −1; f = 625x4 + 2500(1 − i)x3y + 500(3 + i)x3 − 7500ix2y2 +
5000x2y+ 300(4 + 3i)x2 − 5000(1 + i)xy3 + 1000(1 − 3i)xy2+ 200(9 + 13i)xy+
40(9 + 13i)x − 2500y4 + 2000(−2 + i)y3 + 600(−3 + 4i)y2 + 80(−2 + 11i)y +
4(7 + 24i).

7. [ωA,ωB,ωC] = [−1 + j, (−2 + j)/7, (−4 + j)/3] or equivalently [p,q, r] =
[4,1,2], here (ωAωBωC)3 = 1; f = 6(−397 − 683j)y5 + 405(8 + 5j)x4 +
540(19 + 18j)x3 + 135(−323 + 37j)y2 + 45(−360 − 323j)y4 + 162(3 + j)x5 +
6(25 − 211j)xy5 + 45(16 − 39j)x2y4 + 135(5 − 3j)x4y2 + 162(62 + 149j)x +
54(−286+397j)y+60(17−20j)x3y3 +54(4−j)x5y+27x6+ (−37−360j)y6+
27(37 + 360j)+ 324(−87+ 62j)xy+ 54(94+ 71j)x2y + 378(−149− 87j)xy2 +
54(179 − 29j)x3y + 27(−104 − 947j)x2y2 + 18(−1427 − 2074j)xy3 + 162(18 −
j)x4y + 108(52 − 41j)x3y2 + 36(73 − 328j)x2y3 + 126(−23 − 94j)xy4 +
60(−683 − 286j)y3 + 405(39 + 55j)x2.

Case 5 is formed by six E equivalent systems which can be obtained doing circular
permutations to [ωA,ωB,ωC] and to [1/ωC,1/ωB,1/ωA]. Cases 6 and 7 are formed by
twelve E equivalent systems which are obtained as in Case 5, and additionally conjugating
all the parameters.

There are some isolated triples of rational numbers providing an irreducible invariant
algebraic curve of degree 3, 4 or 6.

8. [ωA,ωB,ωC] = [−7/3,3,−4/7], f = −259308x3 − 185220x2y + 259308x2 +
567xy3−13230xy2−71001xy−86436x+324y4+3024y3+10584y2+16464y+
9604.

9. [ωA,ωB,ωC] = [−3/2,2,−4/3], f = 108x2 + 6xy2 + 180xy − 108x + 8y3 +
36y2 + 54y + 27.

10. [ωA,ωB,ωC] = [2,4,−1/6], f = 216x3+108x2y−54x2+18xy2−36xy+y3−
4y2 + 4y .

11. [ωA,ωB,ωC] = [2,−8/7,1/3], f = 216x3 + 189x2 + 882xy − 343y2 + 686y .
12. [ωA,ωB,ωC] = [6,1/2,−2/3], f = 9x2y + 12xy2 − 144xy + 432x + 4y3 −

72y2 + 432y − 864.
13. [ωA,ωB,ωC] = [−6,1/2,1/2], f = 3x2y + 24xy + 144x − 8y2 − 96y − 288.
14. [ωA,ωB,ωC] = [3,1/5,−5/6], f = 1296x4 + 4320x3y − 6480x3 + 5400x2y2 −

18900x2y + 3000xy3 − 18000xy2 + 27000xy + 625y4 − 5625y3 + 16875y2 −
16875y .

15. [ωA,ωB,ωC] = [2,−13/7,1/3], f = 648x4 − 216x3y − 252x2y + 1176xy2 −
343y3 + 686y2.

16. [ωA,ωB,ωC] = [2,2,2], f = x2 + xy2 − 3xy + y .
17. [ωA,ωB,ωC] = [2,3,−3/2], f = 8x2 + 16xy − y3 + 4y2 − 4y .
18. [ωA,ωB,ωC] = [2,2,−5/2], f = 8x2 − 4xy2 + 24xy + y4 − 6y3 + 12y2 − 8y .
19. [ωA,ωB,ωC] = [−4/3,3,−5/4], f = 576x2 + 864xy− 384x+ 27y3 + 108y2 +

144y + 64.
20. [ωA,ωB,ωC] = [−9/4,4,−5/9], f = 419904x3 + 279936x2y − 314928x2 +

15552xy2 + 69984xy+ 78732x− 256y4 − 2304y3 − 7776y2 − 11664y− 6561.
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21. [ωA,ωB,ωC] = [−3/2,2,−7/3], f = 324x2 + 72xy2 + 864xy− 324x+ 16y4 +
96y3 + 216y2 + 216y + 81.

22. [ωA,ωB,ωC] = [−5/2,2,−8/5], f = 125000x3 − 5000x2y2 + 225000x2y −
187500x2 − 1600xy4 − 6000xy3 + 15000xy2 + 87500xy + 93750x − 64y6 −
960y5 − 6000y4 − 20000y3 − 37500y2 − 37500y− 15625.

23. [ωA,ωB,ωC] = [−10/3,3,−7/10], f = 81000000x4 + 64800000x3y

− 108000000x3 − 243000x2y3 + 3240000x2y2 + 29700000x2y + 54000000x2 −
97200xy4 − 1296000xy3 − 6480000xy2 − 14400000xy− 12000000x+ 729y6 +
14580y5 + 121500y4 + 540000y3 + 1350000y2 + 1800000y+ 1000000.

There is a special family where the degree of f is unbounded, see Section 4.
24. [ωA,ωB,ωC] = [−(2l + 1)/(2l − 1),1/2,2], l = 1,2, . . . . In this case, it is not

easy to provide the explicit expression of f .
Cases 8 to 24 are formed by six E equivalent systems, with the exception of Case 16

which is formed by only two E equivalent systems.
From (110) and (111) it follows that systems (106) studied by Moulin Ollagnier are

those which satisfy a(B − b)C �= 0 and c(a − A)B �= 0. Therefore, it remains to deter-
mine:

(i) Which are the Liouvillian integrable systems (106) with a(B − b)C = 0 and c(a −
A)B �= 0?

(ii) Which are the Liouvillian integrable systems (106) that cannot be written into the
form (109)? Or equivalently, what are the Liouvillian integrable systems (106) hav-
ing c(a −A)B = 0?

Now we shall determine the normal forms of the Lotka–Volterra systems (106) which can
have a Liouvillian first integral and which have not been studied by Moulin Ollagnier.
According with the previous paragraph those systems must be systems (106) satisfy-
ing

(i) either a(B − b)C = 0 and c(a −A)B �= 0,
(ii) or c(a −A)B = 0.

In fact, case (ii) can be subdivided into the following two subcases:
(ii.1) a(B − b)C �= 0 and c(a −A)B = 0,
(ii.2) a(B − b)C = 0 and c(a −A)B = 0.
Doing the change of variables (x, y)→ (y, x) it is immediate to check that the expres-

sions a(B − b)C and c(a − A)B are interchanged. Therefore, this change of variables
interchanges cases (i) and (ii.1). In other words, case (i) is contained in case (ii). Finally,
again due to the change of variables (x, y)→ (y, x) to study case (ii) is equivalent to study
the case a(B − b)C = 0.

In the next proposition we reduce the study of systems (106) with a(B − b)C = 0 to
analyze the Liouvillian integrability of some subclasses of systems (106).

PROPOSITION 13.2. To complete the study of the Liouvillian integrable Lotka–Volterra
systems (106) it is sufficient to consider the Liouvillian integrability of the following sub-
classes of systems (106):
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(lv1) ẋ = cx, ẏ = y(Ax +By +C).

(lv2) ẋ = x(y + c), ẏ = y(By + 1).
(lv3) ẋ = xy, ẏ = y(x +By + 1).
(lv4) ẋ = xy, ẏ = y(Ax +By).

(lv5) ẋ = x(ax + by + c), ẏ = By2.

(lv6) ẋ = x(y + 1), ẏ = y(x +By).

(lv7) ẋ = x(ax + by + c), ẏ = xy.

(lv8) ẋ = x(ax + by), ẏ = y(x + y).

(lv9) ẋ = x(ax + by + 1), ẏ = y(x + y).

(lv10) ẋ = x(x + c), ẏ = y(Ax + 1) with cA= 0.
(lv11) ẋ = x(x + y + 1), ẏ = y(Ax + y + 1).

PROOF. We divide the class of systems (106) satisfying a(B− b)C = 0 into the following
four subclasses.

Case 1: a = 0, C �= 0, B − b arbitrary. Then, doing the rescaling (x, y, t) →
(αx,βy, t/C) in system (106) we obtain the system

ẋ = x

(
bβ

C
y + c

C

)
, ẏ = y

(
Aα

C
x + Bβ

C
y + 1

)
. (112)

Now we consider the following three subcases:
(1.1) b = 0. Then system (106) is contained into system (lv1) after a redefinition of the

parameters.
(1.2) b �= 0, A = 0. Taking β = C/b system (112) becomes ẋ = x(y + c/C), ẏ =

y(By/b+ 1); i.e., system (lv2) after a redefinition of the parameters.
(1.3) bA �= 0. Taking α = C/A and β = C/b system (112) becomes ẋ = x(y + c/C),

ẏ = y(x +By/b + 1); or equivalently ẋ = x(y + c), ẏ = y(x +By + 1). Now, if
c �= 0, then doing the changes of variables x = −c/Y , y = cX/Y and the rescaling
of the independent variable t → −Y t/c, we get system (lv9). If c = 0, then we
obtain system (lv3).

Case 2: a = 0,C = 0,B−b arbitrary. Then, doing the rescaling (x, y, t)→ (αx,βy, γ t)

in system (106) we obtain the system

ẋ = x(bβγy + cγ ), ẏ = y(Aαγ x +Bβγy). (113)

We deal with the following three subcases:
(2.1) b = 0. We obtain a particular case of system (lv1).
(2.2) b �= 0, c= 0. Taking β = 1/b and γ = 1 in (113) we get system (lv4).
(2.3) bc �= 0. Taking β = c/b and γ = 1/c in (113) we get a particular case of sys-

tem (lv5) if A= 0. Additionally, if A �= 0 taking α = c/A we obtain system (lv6).
Case 3: a �= 0,C = 0,B−b arbitrary. Then, doing the rescaling (x, y, t)→ (αx,βy, γ t)

in system (1) we obtain the system

ẋ = x(aαγ x + bβγy + cγ ), ẏ = y(Aαγ x +Bβγy).

We consider four subcases:
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(3.1) A= 0. Then we obtain system (lv5).
(3.2) A �= 0, B = 0. Taking αγ = 1/A, we get system (lv7).
(3.3) AB �= 0, c= 0. Taking αγ = 1/A and βγ = 1/B , we have system (lv8).
(3.4) ABc �= 0. Taking γ = 1/c, α = c/A and β = c/B , we obtain system (lv9).
Case 4: a �= 0, C �= 0, B−b= 0. Then, doing the rescaling (x, y, t)→ (Cx/a,βy, t/C)

in system (106) we obtain the system

ẋ = x

(
x + bβ

C
y + c

C

)
, ẏ = y

(
A

a
x + bβ

C
y + 1

)
. (114)

We distinguish the two subcases:
(4.1) b= 0. Then we obtain system ẋ = x(x+ c), ẏ = y(Ax+1). If cA �= 0, then doing

the change of variables x = Y , y =X, and a rescaling of the independent variable
this system becomes system (lv2). If cA= 0, then we get system (lv10).

(4.2) b �= 0. Taking β = C/b system (114) goes over to system ẋ = x(x + y + c),
ẏ = y(Ax + y + 1). If c �= 1 and A �= 1, then doing the change of variables x =
(1−c)Y/((A−1)X), y = (1−c)/X, and the rescaling of the independent variable
t →Xt/(c−1), we obtain system (lv9). If c �= 1 andA= 1, then doing the change
of variables x = 1/X, y = Y/X, and the rescaling of the independent variable
t →Xt/(1 − c), we obtain system (lv7). If c= 1, we get system (lv11).

�

In the next proposition we characterize which systems (lvi), for i = 1, . . . ,11, are irre-
ducible.

PROPOSITION 13.3. The following statements hold.
(a) The next systems are irreducible: (lv1) with c(A2 + B2)(B2 + C2) �= 0, (lv2) with

c(B − 1)(cB − 1) �= 0, (lv5) with (a2 + c2)(a2 + (B − b)2) �= 0, (lv6) with B �= 0,
(lv9) with a �= 1 or b �= 1, (lv10) with c2 + (A− 1)2 �= 0, and (lv11).

(b) Systems (lv1)–(lv11) which do not appear in (a) are reducible.

PROOF. The proposition follows easily from the definition of irreducible system. �

From Theorem 2.1 and Propositions 13.2 and 13.3 we obtain the following new Liouvil-
lian integrable Lotka–Volterra systems (106). These new cases are easy to obtain, many of
them come from [9]. The difficult problem will be to prove that the Lotka–Volterra systems
of Proposition 13.2 which not appear in the following list are not Liouvillian integrable.

25. System (lv1) has the exponential factor exp(x) if c �= 0; and it has the function x as
a first integral if c= 0.

26. System (lv2) has the invariant straight line By+1 = 0 if B �= 0, and the exponential
factor exp(y) if B = 0.

27. System (lv3) has the integrating factor 1/(xB+1y).
28. System (lv4) has the straight line y = 0 formed by singular points. So, in

R2 \ {y = 0} the system has the first integral of the linear system ẋ = x , ẏ =
Ax +By .
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29. System (lv5) has the exponential factor exp(1/y) if B �= 0, and the function y is a
first integral if B = 0.

30. System (lv6) has the integrating factor 1/(xy) if B = 0.
31. System (lv7) has the straight line x = 0 formed by singular points. So, in

R2 \ {x = 0} the system has the first integral of the linear system ẋ = ax + by + c,
ẏ = y .

32. System (lv8) is a quadratic homogeneous system and consequently it is integrable.
In fact, if a �= 1 or b �= 1, then the function 1/(xy((a − 1)x + (b − 1)y)) is an
integrating factor of the system. If a = b = 1 then the straight line x + y = 0 is
formed by singular points. So, in R2 \ {x + y = 0} the system has the first integral
of the linear system ẋ = x , ẏ = y .

33. System (lv9) for b = 0 has the invariant straight line ax + 1 = 0 if a �= 0, and the
exponential factor exp(x) if a = 0. If a = 1 it has the integrating factor 1/(xy2).
If (a, b) = (1/2,−1) then the system has the invariant algebraic curve xy + 1 +
x + x2/4 = 0. If (a, b) = (1/2,1/2) then the system has the exponential factor
exp((2 + x)2/y).

34. System (lv10) has the invariant straight line x + c= 0 if c �= 0, and the exponential
factor exp(1/x) if c= 0.

35. System (lv11) for A = 1 has the straight line x + y + 1 = 0 formed by singular
points. So, in R2 \ {x + y + 1 = 0} the system has the first integral of the linear
system ẋ = x , ẏ = y . If A �= 1 it has the exponential factor exp(y/x).

We note that the exponential factors which appear in cases 33, 34 and 35 (respectively
29) correspond to the fact that the geometric multiplicity of the invariant algebraic curve
x = 0 (respectively y = 0) is higher than 1. The exponential factors of the cases 25,
26 and 33 correspond to the fact that the infinite straight line has geometric multiplicity
higher than 1 as invariant algebraic curve of the projectivized vector field. For more details
see [34].

In order to show that there are no additional Lotka–Volterra systems to those described
in the list which are Liouvillian integrable (modulo the corresponding equivalencies or the
reductions to the normal forms of Proposition 13.2), we must prove that the following two
systems

(lv6) with B �= 0.

(lv9) with b �= 0, a �= 1 and (a, b) /∈ {
(1/2,−1), (1/2,1/2)

}
have no Liouvillian first integrals. We shall prove this for the system (lv6), similarly can
be made for the system (lv9), for more details see [10]. Then the classification of the
Liouvillian integrable Lotka–Volterra systems is completed by the following result.

THEOREM 13.4. The following statements hold.
(a) After Theorem 13.1 to complete the study of the Liouvillian integrable Lotka–

Volterra systems (106) it is sufficient to consider the Liouvillian integrability of the
eleven subclasses (lvi) of systems (106) for i = 1, . . . ,11.

(b) System (lvi) for i = 1, . . . ,11 has a Liouvillian first integral if and only if it is one of
the cases described from cases 25 to 35.
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Of course, statement (a) is equivalent to Proposition 13.2.
Now in order to show how to prove Theorem 13.4 we shall study system (lv6) with

B �= 0. Systems (lv9) with b �= 0, a �= 1 and (a, b) /∈ {(1/2,−1), (1/2,1/2)} can be proved
using similar arguments, for more details see [10].

PROPOSITION 13.5. System (lv6) with B �= 0 has no Liouvillian first integrals.

PROOF. From Singer results (see Section 12) we know that if system (lv6) with B �= 0
(simply (lv6) in what follows) has a Liouvillian first integral, then it has an integrating
factor of the form (14) where the fi = 0 are invariant algebraic curves and the Fj are
exponential factors. Now we shall prove that the unique irreducible invariant algebraic
curves of (lv6) are x = 0 and y = 0. So from Proposition 1.10, it follows that the unique
invariant algebraic curves of (lv6) are x = 0 and y = 0. Additionally, we shall also prove
that (lv6) has no exponential factors. Since B �= 0 a linear combination of the cofactors
of x = 0 and y = 0 cannot be equal to minus the divergence of system (lv6). Then, by
Theorem 2.1 it follows that system (lv6) has no integrating factors of the form (14) with
f1 = x and f2 = y .

We start by proving that system (lv6) has no irreducible invariant algebraic curves dif-
ferent from x = 0 and y = 0. Suppose that f = 0 is an irreducible invariant algebraic curve
of (lv6) different from x = 0 and y = 0. Then f satisfies (9), i.e.,

x(y + 1)
∂f

∂x
+ y(x +By)

∂f

∂y
= (k0 + k1x + k2y)f, (115)

where k0 + k1x + k2y is the cofactor of f = 0.
Since f is a polynomial we can write

f = f0(x)+ f1(x)y + · · · + fm(x)y
m

= ωf0(y)+ωf1(y)x + · · · +ωfn(y)x
n, (116)

with f0(x), fm(x), ωf0(y) and ωfn(y) nonzero. We note that f (x, y) cannot be indepen-
dent on x or y , otherwise it factorizes and its factors would correspond to invariant straight
lines (real or complex) which do not exist.

Taking y = 0 in (115) we get the following ordinary differential equation

xf ′
0(x)= (k0 + k1x)f0(x).

Its general solution is f0(x)=Dxk0 exp(k1x), whereD is a constant which cannot be zero,
otherwise y would be a factor of f in contradiction with the fact that f is irreducible and
different from y . Since f0(x) is a polynomial, we get that k1 = 0 and k0 ∈ Z+, where Z+
denotes the nonnegative integers.

Now, taking x = 0 in (115) and since B �= 0, we get the following ordinary differential
equation

By2ωf ′
0(y)= (k0 + k2y)ωf0(y).
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Its general solution is ωf0(y)=Eyk2/B exp(−k0/(By)), where E is a constant which can-
not be zero, otherwise x would be a factor of f in contradiction with the fact that f is
irreducible and different from x . Since ωf0(y) must be a polynomial, we get that k0 = 0,
and that k2/B ∈ Z+.

In short, we have f0(x) = D and ωf0(y) = Eyk2/B . Hence, if k2 �= 0 then f0(x) = 0,
because f (0,0)= 0. Therefore, y is a factor of f , a contradiction because f is irreducible
and different from y . Consequently, we must have that k2 = 0 and f0(x) = ωf0(y) =
D = E. Since the cofactor of f = 0 is zero, it follows that if there is another irreducible
algebraic invariant curve f = 0 different from x = 0 and y = 0, then the polynomial f is
a first integral of system (lv6).

Suppose that f is an irreducible polynomial first integral of system (lv6) of minimum
degree. Then H = f − f (0,0) is another polynomial first integral such that H(0,0)= 0
and consequently, H = xlykg with l and k positive integers, g coprime with x and y , and
the polynomial g cannot be constant because it is easy to check that system (lv6) has no first
integrals of the form xlyk . Since H = 0 is formed by invariant algebraic curves, it follows
that g = 0 is formed by invariant algebraic curves different from x = 0 and y = 0. Hence,
there exists an irreducible invariant algebraic curve h= 0 with h dividing to g (eventually
h can be equal to g) different from x = 0 and y = 0, and having degree smaller than the
degree of f . Since h also is an irreducible polynomial first integral (because its cofactor
is zero) and its degree is smaller than the degree of f , we have a contradiction with the
minimality of the degree of f as a polynomial first integral of system (lv6). In short, we
have proved that there are no irreducible invariant algebraic curves of system (lv6) different
from x = 0 and y = 0.

Now we shall prove that system (lv6) has no exponential factors. According to Proposi-
tion 1.12, if system (lv6) has exponential factors, then they must be of the form

exp(h), exp
(
h/xl

)
, exp

(
h/yk

)
, exp

(
h/

(
xlyk

))
, (117)

where h is a polynomial, and l and k are positive integers.
The singular points of system (lv6) are (0,0) and (B,−1). Let k0 + k1x + k2y be a

cofactor of an exponential factor of system (lv6). From the definition of exponential factor,
the left-hand side of equality (13) is zero on the singular point (B,−1), then from the
right-hand side we obtain that k2 = k0 + Bk1. So, a cofactor of any exponential factor of
system (lv6) can be written as k0 + k1x + (k0 +Bk1)y .

First we shall see that there are no exponential factors of the form exp(h/xl). Without
loss of generality we can assume that h and x are coprime, and l is positive.

Suppose that exp(h/xl) is an exponential factor of system (lv6). Then it satisfies (13),
i.e.,

x(y + 1)
x∂h/∂x − lh

xl+1
+ y(x +By)

∂h/∂y

xl
= k0 + k1x + (k0 +Bk1)y,
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where we have simplified the common factor exp(h/xl). This last equality can be written
as

(y + 1)

(
x
∂h

∂x
− lh

)
+ y(x +By)

∂h

∂y
= (

k0 + k1x + (k0 +Bk1)y
)
xl. (118)

Since h is a polynomial we can write

h= ωh0(y)+ωh1(y)x +ωh2(y)x
2 + · · · . (119)

Taking x = 0 in (118) and since B �= 0, we get the following ordinary differential equation

−(y + 1)lωh0(y)+By2ωh′
0(y)= 0.

Its general solution is ωh0(y)=Dyl/B exp(−l/(By)) where D is a nonzero constant, oth-
erwise x would be a factor of h. The fact that D �= 0 gives a contradiction, because ωh0(y)

must be a polynomial and l is a positive integer. Hence, there are no exponential factors of
the form exp(h/xl).

We shall prove that there are no exponential factors of the form exp(h). Suppose that
exp(h) is an exponential factor of system (lv6). Then it satisfies (13), i.e.,

x(y + 1)
∂h

∂x
+ y(x +By)

∂h

∂y
= k0 + k1x + (k0 +Bk1)y,

where we have simplified the common factor exp(h). Taking (x, y)= (0,0) in this equality,
it follows that k0 = 0. So, we can write it as follows

x(y + 1)
∂h

∂x
+ y(x +By)

∂h

∂y
= k1(x +By). (120)

Now, taking x = 0 in (120) we obtain the following ordinary differential equation

yωh′
0(y)= k1,

here we have used once more that B �= 0. Its general solution is ωh0(y) = E + k1 logy ,
where E is a nonzero constant. Since ωh0(y) is a polynomial, we get that k1 = 0. However
k1 cannot be zero, otherwise h will be a polynomial first integral, in contradiction with
the fact that the unique irreducible invariant algebraic curves are x = 0 and y = 0. Hence,
there are no exponential factors of the form exp(h).

Suppose that exp(h/yk) is an exponential factor of system (lv6). Without loss of gen-
erality we can assume that h and y are coprime, and k is positive. Then it satisfies (13),
i.e.,

x(y + 1)
∂h

∂x
+ (x +By)

(
y
∂h

∂y
− kh

)
= yk

(
k0 + k1x + (k0 +Bk1)y

)
, (121)
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where we have simplified the common factor exp(h/yk) and multiplied by yk . Since h is a
polynomial we can write

h= h0(x)+ h1(x)y + h2(x)y
2 + · · · . (122)

Taking y = 0 in Equation (121) we get the following ordinary differential equation

h′
0(x)− kh0(x)= 0.

Its general solution is h0(x) = D exp(kx) where D is a nonzero constant, otherwise y
would be a factor of h. The fact that D �= 0 gives a contradiction, because h0(x) must be a
polynomial and k is a positive integer. Hence, there are no exponential factors of the form
exp(h/yk).

We shall prove now that there are no exponential factors of the form exp(h/(xlyk)) with
l and k positive integers. Without loss of generality we can assume that h, x and y are
coprime. Then this exponential factor must satisfy (13), i.e.,

(y + 1)

(
x
∂h

∂x
− lh

)
+ (x +By)

(
y
∂h

∂y
− kh

)
= xlyk

(
k0 + k1x + (k0 +Bk1)y

)
,

where we have simplified the common factor exp(h/(xlyk)) and multiplied by xlyk . Tak-
ing y = 0 in this equation we get the following ordinary differential equation

xh′
0(x)− (l + kx)h0(x)= 0.

Its general solution is h0(x) = Dxl exp(kx) where D is a nonzero constant, otherwise y
would be a factor of h. The fact that D �= 0 gives a contradiction, because h0(x) must be a
polynomial and k is a positive integer. Hence, there are no exponential factors of the form
exp(h/(xlyk)). This completes the proof of the proposition. �

14. On the integrability of two-dimensional flows

By definition a planar differential system is

dx

dt
= x ′ = P(x, y),

dy

dt
= y ′ =Q(x,y), (123)

where P and Q are Cr maps with r � 1 from an open subset U of R2 to R. We say that U
is the domain of definition of the differential system (123), and that

X= P
∂

∂x
+Q

∂

∂y
(124)

is the Cr vector field defined on U associated to differential system (123).
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A Ck function H :U → R with k � 0 is a strong first integral of the differential sys-
tem (123) defined in U if H is constant on each solution of this system, and H is non-
constant on any open subset of U . Here k � 0 means that k = 0,1,2, . . . ,∞,ω. More
precisely, k = 0 means that H is continuous, k = 1,2, . . . ,∞ means that H is Ck , k = ω

means that H is analytic. If k � 1 then the previous definition of integrability implies that
the derivative of H following the direction of the vector field X is zero; i.e., if XH = 0
on U .

This definition of strong first integral is the usual definition of first integral which appears
in the major part of books on differential equations (see for instance [3] and [96]). With
this definition the linear differential system

x ′ = x, y ′ = y, (125)

defined on R2 has no strong first integrals. This is due to the fact that every strong first in-
tegral of system (125) must be a continuous function on R2 that must take a constant value
on each straight line through the origin, because these straight lines are formed by orbits of
the system. Hence it must be constant on the whole R2, consequently there are no strong
first integrals for system (125). By using this argument it follows that if system (123) has
a strong first integral, then it cannot have nodes, foci, center–foci, singular points having
some parabolic or elliptic sectors, limit cycles and separatrix cycles that be the α- or ω-
limit set of some orbit of the system (see [96] for definitions). Since we do not like that
differential systems so easy as system (125) have no first integrals, we will introduce the
notion of weak first integral.

Let Σ be a set of orbits of system (123) such that U \ Σ is open. We say that a Ck

function H :U \Σ → R with k � 0 is a weak first integral of the differential system (1.9)
defined in U if H is constant on each solution of system (123) contained in U \Σ , and
H is nonconstant on any open subset of U \ Σ . If k � 1 this definition implies that the
derivative of H following the direction of the vector field X is zero on U \Σ .

We remark that the unique difference between the notions of strong and weak first inte-
gral is that a weak first integral does not need to be defined in the whole domain of defin-
ition U of the differential system (123). This difference has been noted by many authors.
Thus, the first integrals computed by Darboux [38] in 1878 for polynomial differential
systems possessing sufficient algebraic solutions are in general weak first integrals. If we
study the integrability of the linear differential systems

dx

dt
= x ′ = ax + by,

dy

dt
= y ′ = cx + dy, (126)

with ad − bc �= 0 (nondegenerate), then with the notion of strong first integral only the
centers and the saddles are integrable, but with the notion of weak first integral all linear
systems (126) are integrable. In particular we show that system (125) has the weak first
integral H : R2 \ {0} → R where H(x,y)= xy/(x2 + y2).

We claim that the notion of weak first integral is the natural notion of integrability for
two-dimensional differential systems instead of the more usual notion of strong first inte-
gral. Theorem 14.1 will confirm this claim. In order to present it we need some preliminary
definitions and results. In this section we follow the papers [19,63].
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For differential system (123) the following three properties are well known, see for more
details [96].

(a) (Existence and uniqueness of maximal solutions for a differential system) For all
p ∈U there exists an open interval Ip of the real line where it is defined the unique
maximal solution ϕp : Ip → U of (123) such that ϕp(0)= p.

(b) (Group property) If q = ϕp(t) and t ∈ Ip , then Iq = Ip − t = {r − t : r ∈ Ip} and
ϕq(s)= ϕp(t + s) for all s ∈ Iq .

(c) (Differentiability with respect to initial conditions) The set D = {(t,p): p ∈ U, t ∈
Ip} is open in R3 and the map ϕ :D→ U defined by ϕ(t,p)= ϕp(t) is Cr .

The map ϕ :D → U is a local flow of class Cr with r � 1 on U associated to sys-
tem (123), which verifies

(i) ϕ(0,p)= p for all p ∈ U ;
(ii) ϕ(t, ϕ(s,p))= ϕ(t + s,p) for all p ∈U , and all s and t such that s, t + s ∈ Ip ;

(iii) ϕp(−t)= ϕ−1
p (t) for all p ∈U such that t,−t ∈ Ip .

Let ϕ be a local flow on the two-dimensional manifold M , and let Σ be a subset of M
formed by orbits of ϕ such that M \Σ is open. We say that a Ck function H :M \Σ → R
with k � 0 is a weak first integral of ϕ if H ◦ ϕp is constant for each p ∈M \Σ and H is
not constant on any open subset of M \Σ . Of course, when the local flow is the local flow
associated to a Cr differential system (123) with r � 1, the above definition of weak first
integral for system (123) and the definition of weak first integral for its associated local
flow coincide.

In this paper we consider Cr local flows with r � 0 on an arbitrary two-dimensional
manifold M (separable metric, but not necessarily compact nor orientable and possibly
with boundary). Of course, when r = 0 the flow is only continuous. Two such flows, (M,ϕ)

and (M ′, ϕ′), are Ck-equivalent with k � 0 if there is a Ck diffeomorphism of M onto M ′
which takes orbits of ϕ onto orbits of ϕ′ preserving sense (but not necessarily the parame-
trization). Of course, a C0 diffeomorphism is a homeomorphism.

Let ϕ be a Cr local flow with r � 0 on the two-dimensional manifoldM . We call (M,ϕ)

Ck-parallel if it is Ck-equivalent to one of the following flows:
(1) R2 with the flow defined by x ′ = 1, y ′ = 0;
(2) R2 \ {0} with the flow defined (in polar coordinates) by r ′ = 0, θ ′ = 1;
(3) R2 \ {0} with the flow defined by r ′ = r , θ ′ = 0;
(4) S1 × S1 with rational flow (e.g., the flow induced by (123) above under the usual

covering map; note in particular that all rational flows on the torus are equivalent).
We call these flows as strip, annular, spiral, and toral, respectively.

Let p ∈M . We denote by γ (p) the orbit of the flow ϕ on M through p, more precisely
γ (p) = {ϕp(t): t ∈ Ip}. The positive half-orbit of p ∈M is γ+(p) = {ϕp(t): t ∈ Ip, t �
0}. In a similar way it is defined the negative half-orbit γ−(p) of p ∈M .

We define the α-limit and the ω-limit of p as (γ±(p)) and let

α(p)= cl
(
γ−(p)

) − γ−(p), ω(p)= cl
(
γ+(p)

) − γ+(p),

respectively. Here, as usual, cl denotes the closure.
Let γ (p) be an orbit of the flow ϕ defined on M . A parallel neighborhood of the orbit

γ (p) is an open neighborhood N of γ (p) such that (N,ϕ) is Ck-equivalent to a parallel
flow for some k � 0.
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We say that γ (p) is a separatrix of ϕ if γ (p) is not contained in a parallel neighbor-
hood N satisfying the following two assumptions:

(1) for any q ∈N , α(q)= α(p) and ω(q)= ω(p), and
(2) cl(N) \ N consists of α(p), ω(p) and exactly two orbits γ (a), γ (b) of ϕ, with

α(a)= α(p)= α(b) and ω(a)= ω(p)= ω(b).
We denote by Σ the union of all separatrices of ϕ. Then Σ is a closed invariant subset

of M . A component of the complement of Σ in M , with the restricted flow, is called a
canonical region of ϕ.

The main result of this section is the following one.

THEOREM 14.1. Let ϕ be a Cr flow on a two-dimensional manifold M for some r ∈
{0,1, . . . ,∞,ω}, and let Σ be the union of all separatrices of φ. Then

(1) Every canonical region of (M,ϕ) is Cr parallel.
(2) The flow ϕ restricted to every canonical region has a Cr (respectively C∞, Cω) first

integral for r ∈ N (respectively r = ∞,ω).

Statement (1) in the case C0 parallel was proved by Markus [74] and Neumann [81], the
rest of the theorem is proved in [63]. See [19] for a version C0 of statement (2). Later on,
here we will provide a proof of Theorem 14.1 for the C0 version.

In the next two theorems we use the fact that any analytic vector field on S2 has finitely
many limit cycles as it was proved by Il’Yashenko [57] and Écalle [39]. The following two
results improve Theorem 14.1 for planar polynomial differential systems. For a proof of
them see [63].

THEOREM 14.2. For every planar polynomial system there exist finitely many invariant
curves in R2 and singular points γi, i = 1,2, . . . , l, such that R2\(⋃l

i=1 γi) has finitely
many connected open sets, and on each of these connected sets the system has an analytic
first integral.

COROLLARY 14.3. Let X = (P,Q) be a polynomial vector field in R2 such that P and Q
are coprime. Then, using the notations of Theorem 14.2, the set

⋃l
i=1 γi is formed by all

the separatrices of X in R2, and the open components of R2\(⋃l
i=1 γi) are the canonical

regions of X .

Statement (1) of Theorem 14.1 follows directly from the following result.

LEMMA 14.4 (Neumann lemma [81]). Let ϕ be a local flow on the two-dimensional man-
ifold M . Then every canonical region of (M,ϕ) is C0-parallel.

PROOF. Let (R,ϕ′ = ϕ|R) be a canonical region. There are no separatrices in R, so the
set consisting of orbits homeomorphic with S1 is open, and similarly the set consisting of
orbits homeomorphic with R is open. Hence,R consists entirely of closed orbits or entirely
of line orbits.
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Also, two orbits of ϕ′ can be separated with disjoint parallel neighborhoods. To prove
this we suppose γ (p) and γ (q) are distinct orbits (closed or not) which cannot be sepa-
rated. Then, for any parallel neighborhoodNp of p, we have q ∈ cl(Np); i.e.,

q ∈
⋂
Np

cl(Np)= α(p) ∪ γ (p)∪ ω(p).

But then q ∈ α(p) (or q ∈ ω(p)) and this is impossible because q ∈ Nq ⊂ R and α(p) ∪
ω(p)⊂ cl(Nq) \Nq .

It follows that the quotient space R/ϕ′, obtained by collapsing orbits of (R,ϕ′) to points,
is a (Hausdorff) one-dimensional manifold. Hence the natural projection π :R→ R/ϕ′ is
a locally trivial fibering of R over R or S1. Since the flow provides a natural orientation
on the fibers, there are only four possibilities, the four classes of parallel flows described
above. �

PROOF OF STATEMENT (2) OF THEOREM 14.1 FOR C0 FLOWS. From Lemma 14.4 it
follows that every canonical region R of (M,ϕ) is C0-parallel; i.e., there is a homeomor-
phism h of R onto M ′ which takes orbits of ϕ onto orbits of ϕ′ preserving the sense (but
not necessarily the parametrization), and (M ′, ϕ′) is one of the following flows:

(1) M ′ = R2 with the flow defined by x ′ = 1, y ′ = 0;
(2) M ′ = R2 \ {0} with the flow defined by r ′ = 0, θ ′ = 1;
(3) M ′ = R2 \ {0} with the flow defined by r ′ = r , θ ′ = 0;
(4) M ′ = S1 × S1 with the rational flow.

Clearly H(x,y)= y = C is a first integral for the flows (1) and (4), H(r, θ)= r = C a first
integral for the flow (2), and H(r, θ)= θ = C a first integral for the flow (3). Hence, H ◦h
is a continuous valued first integral for the flow ϕ on the canonical region R. �

15. Darbouxian theory of integrability for polynomial vector fields on surfaces

In this section we follow the paper [68]. A polynomial vector field X in R3 is a vector field
of the form

X = P(x, y, z)
∂

∂x
+Q(x,y, z)

∂

∂y
+R(x, y, z)

∂

∂z
,

where P , Q and R are polynomials in the variables x , y and z with real coefficients. In all
this section m= max{degP,degQ degR} will denote the degree of the polynomial vector
field X .

Let G : R3 → R be a Cr map with r � 1. The gradient of G is defined by

∇G(x,y, z)=
(
∂G

∂x
,
∂G

∂y
,
∂G

∂z

)
(x, y, z).

If ∇G(x,y, z) �= 0 for all points (x, y, z) ∈ R3, then

Σ = {
(x, y, z) ∈ R3: G(x,y, z)= 0

}
(127)
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is called a 2-dimensional regular surface. A polynomial vector field X in R3 defines a
polynomial vector field on Σ if

X (x, y, z) · ∇G(x,y, z)= 0, (128)

for all the points (x, y, z) of the surface Σ ; i.e., for all (x, y, z) ∈ Σ the vector X (x, y, z)
belongs to the tangent plane to Σ at the point (x, y, z).

In what follows sometimes we will consider real regular surfaces extended to complex
ones; that is, beingG a real map we consider its natural extension to C3. Thus, we continue
denoting by Σ = {(x, y, z) ∈ C3: G(x,y, z) = 0} the complexification of (127). Always
we will work with real regular surfaces (127) such that its complexification also satis-
fies (128).

Let U be an open subset of R3. A polynomial vector field X on the regular surface Σ

is integrable on the open subset U ∩ Σ if there exists a nonconstant analytic function
H :U → R, called a first integral of X on U ∩ Σ , which is constant on all solution curves
(x(t), y(t), z(t)) of the vector field X on U ∩Σ ; i.e., H(x(t), y(t), z(t))= constant for all
values of t for which the solution (x(t), y(t), z(t)) is defined on U ∩Σ . Clearly H is a first
integral of the polynomial vector field X on U ∩ Σ if and only if XH = 0 on all points
(x, y, z) of U ∩ Σ . We note that the curves {H(x,y, z)= constant} ∩ (U ∩ Σ) are formed
by trajectories of X .

15.1. Invariant algebraic curves and exponential factors

In a similar way as we did for studying the invariant algebraic curves of real planar poly-
nomial vector fields, also for the real polynomial vector fields on real surfaces we will look
for complex invariant algebraic curves and we will think both the real polynomial vector
field on a surface and the real surface as complex ones.

Let f ∈ C[x, y, z], where as it is usual C[x, y, z] denotes the ring of the polynomials
in the variables x , y and z with complex coefficients. The algebraic surface f = 0 defines
an invariant algebraic curve {f = 0} ∩ Σ of the polynomial vector field X on the regular
surface Σ = {(x, y, z) ∈ C3: G(x,y, z)= 0} if

(i) for some polynomial K ∈ C[x, y, z] of degree at most m− 1 we have

Xf = P
∂f

∂x
+Q

∂f

∂y
+R

∂f

∂z
=Kf, (129)

on all the points (x, y, z) of the surface Σ ;
(ii) the intersection of the two surfaces f = 0 and Σ is transversal; i.e., for all the points

(x, y, z) ∈ {f = 0} ∩ Σ we have that

∇G(x,y, z)∧ ∇f (x, y, z) �= 0,

where ∧ denotes the vectorial product of two vectors of C3.
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The polynomialK is called the cofactor of the invariant algebraic curve {f = 0} ∩ Σ .
Since on the points of the invariant algebraic curve {f = 0} ∩ Σ the gradient ∇f of the

surface f = 0 is orthogonal to the polynomial vector field X = (P,Q,R) (see (129)), and
the vector field X is tangent to the surface Σ , it follows that the vector field X is tangent to
the curve {f = 0}∩Σ . Hence, the curve {f = 0}∩Σ is formed by trajectories of the vector
field X . This justifies the name of invariant algebraic curve given to the curve {f = 0} ∩Σ

satisfying (129) for some polynomial K , because it is invariant under the flow defined
by X . We note that our definition of invariant algebraic curve {f = 0} ∩ Σ does not need
that the regular surface to be algebraic, only needs that the surface {f = 0} be algebraic.

Let h and g polynomials of C[x, y, z]. Then the function F = exp(g/h) is called an
exponential factor of the polynomial vector field X on Σ if for some polynomial K ∈
C[x, y, z] of degree at most m− 1 it satisfies the following equality

XF =KF, (130)

on all the points (x, y, z) of Σ . As before we say that K is the cofactor of the exponential
factor F .

As we will see from the point of view of the integrability of polynomial vector fields
on regular surfaces Σ the importance of the exponential factors is double. On one hand,
they verify equation (130), and on the other hand, their cofactors are polynomials of degree
at most m− 1. These two facts will allow that they play the same role that the invariant
algebraic curves in the integrability of a polynomial vector field X on Σ .

The following proposition has essentially the same proof as Proposition 1.12.

PROPOSITION 15.1. Let F = exp(g/h) be an exponential factor for the polynomial vector
field X on the regular surface Σ , satisfying that the polynomials g and h are relatively
prime, and that the intersection of the surfaces {h= 0} with Σ is transversal. If h is non-
constant, then {h= 0} ∩ Σ is an invariant algebraic curve of X on Σ , and g satisfies the
equation

Xg = gKh + hKF ,

on the points (x, y, z) of Σ , where Kh and KF are the cofactors of h and F respectively.

15.2. The surfaces

Now we describe the 2-dimensional regular surfaces on which we will study the Darboux-
ian theory of integrability for the polynomial vector fields defined on them. These surfaces
will be the quadrics and the 2-torus.

It is well known that the quadrics can be classified into seventeen types. There are five
types of imaginary quadrics (namely the imaginary ellipsoid, cone, cylinder, two planes
that intersect, and two parallel planes). Since in this section we only consider real polyno-
mial vector fields on real surfaces, we omit these previous five imaginary quadrics. From
the twelve real quadrics there are three which are formed by planes (namely two planes
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that intersect, two parallel planes, and a double plane). Since the study of the Darboux-
ian theory of integrability of the polynomial vector fields on these surfaces is reduced to
the classical study of the Darbouxian theory of integrability of planar polynomial vector
fields, we omit these three types of quadrics. In short we only deal with the remainder nine
quadrics.

We remark that the reduction of every quadric to each canonical form is made through
a linear isomorphism, and that a such isomorphism and its inverse are polynomial diffeo-
morphisms. Therefore, the study of the Darbouxian theory of integrability of polynomial
vector fields on these nine quadrics can be restricted to take for each of these quadrics its
canonical form. In what follows we describe the canonical forms for these nine quadrics
and their local charts, that we shall need later on. In fact we only present one local chart
for each surface, the full atlas would be described in a similar way, but it is not necessary
for studying the existence of first integrals.

Parabolic cylinder. Its canonical form is given by z2 − x = 0.
Elliptic or circular paraboloid. Its canonical form is given by y2 + z2 − x = 0.
Hyperbolic paraboloid. Its canonical form is given by y2 − z2 − x = 0.
Let h(x, y) be equal to x , x − y2 and y2 − x for the parabolic cylinder, the circular

paraboloid and the hyperbolic paraboloid, respectively. Then for each one of these cases
we have that there is an open subset Ω of R2 and a diffeomorphism λ :Ω → Σ defined by

λ(r, s)= (x, y, z)= (
r, s,

√
h(r, s)

)
,

whose inverse is λ−1(x, y, z)= (r, s)= (x, y). The entries of the Jacobian matrix Dλ(r, s)
are polynomial functions in the variables r , s and

√
h(r, s).

Ellipsoid or sphere. Its canonical form is given by

x2 + y2 + z2 − 1 = 0.

We identify R2 as the tangent plane to the 2-dimensional sphere Σ at the point (0,0,−1).
Then we have λ : R2 → Σ \ {(0,0,1)} the diffeomorphism given by

λ(r, s) = (x, y, z)

= 1

1 + r2 + s2 (2r,2s, r
2 + s2 − 1).

That is, λ is the inverse map of the stereographic projection λ−1 :Σ \ {(0,0,1)} → R2

defined by

λ−1(x, y, z)= (r, s)=
(

x

1 − z
,

y

1 − z

)
.

The entries of the Jacobian matrix Dλ(r, s) are rational functions in the variables r and s.
Hyperboloid of two sheets. Its canonical form is given by

x2 + y2 − z2 + 1 = 0.
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Without loss of generality we restrict our attention to the sheet Σ having z > 0. Then we
have the diffeomorphism λ : R2 → Σ defined by

λ(r, s)= (x, y, z)= (
r, s,

√
r2 + s2 + 1

)
,

whose inverse is λ−1(x, y, z)= (r, s)= (x, y). The entries of the Jacobian matrix Dλ(r, s)
are rational functions in the variables r , s and

√
r2 + s2 + 1.

Cone. Its canonical form is given by

x2 + y2 − z2 = 0.

Since the cone is not a regular surface at the origin, without loss of generality we restrict
our attention to the sheet Σ having z > 0. Then we have the diffeomorphism λ : R2 → Σ

defined by

λ(r, s)= (x, y, z)= (
r, s,

√
r2 + s2

)
,

whose inverse is λ−1(x, y, z)= (r, s)= (x, y). The entries of the Jacobian matrix Dλ(r, s)
are rational functions in the variables r , s and

√
r2 + s2.

Hyperbolic cylinder. Its canonical form is given by

x2 − z2 − 1 = 0.

Without loss of generality we restrict our attention to the sheet Σ having x > 0. Then we
have the diffeomorphism λ : R2 → Σ defined by

λ(r, s)= (x, y, z)= (√
s2 + 1, r, s

)
,

whose inverse is λ−1(x, y, z)= (r, s)= (y, z). The entries of the Jacobian matrix Dλ(r, s)
are rational functions in the variables r , s and

√
s2 + 1.

Hyperboloid of one sheet. Its canonical form is given by

x2 + y2 − z2 − 1 = 0.

Without loss of generality we restrict our attention to the surface Σ having z > 0. Then we
have the diffeomorphism λ : {(r, s) ∈ R2: r2 + s2 > 1} → Σ ∩ {z > 0} defined by

λ(r, s)= (x, y, z)= (
r, s,

√
r2 + s2 − 1

)
,

whose inverse is λ−1(x, y, z)= (r, s)= (x, y). The entries of the Jacobian matrix Dλ(r, s)
are rational functions in the variables r , s and

√
r2 + s2 − 1.

Elliptic or circular cylinder. Its canonical form is given by

x2 + z2 − 1 = 0.
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We identify R2 with the tangent plane to the cylinder Σ at the generatrix through the
point (0,0,−1). Let l be the generatrix to the cylinder through the point (0,0,1). Then we
consider the diffeomorphism π : R2 → Σ \ l defined by

π(r, s)= (x, y, z)=
(

4r

r2 + 4
, s,

r2 − 4

r2 + 4

)
,

with inverse

π−1(x, y, z)= (r, s)=
(

2x

1 − z
, y

)
.

The entries of the Jacobian matrix Dπ(r, s) are rational functions in the variables r and s.
After the presentation of the nine quadrics for which we shall study the Darbouxian

theory of integrability of their polynomial vector fields, we present the 2-torus.
The 2-torus. We choose for the 2-torus T2 = R2/Z2 the following canonical form. For

a > 1 let Σ ≈ T2 be the regular surface of R3 defined by

z2 + (√
x2 + y2 − a

)2 = 1.

The intersection of this torus with the (x, y)-plane is formed by the two circles γ1 and
γ2 with center at the origin and radius a − 1 and a + 1, respectively. Let C be the circular
cylinder parallel to the z-axis and tangent to the torus Σ at the circle γ2. Let μ :C → Σ \γ1
be the diffeomorphism

μ(u, v,w)= (x, y, z)=
(

uv

(a + 1)2

[
a − 1 + 8

w2 + 4

]2

,
4w

w2 + 4

)
.

On each plane P containing the z-axis, the diffeomorphism μ|C∩P is the inverse of the
stereographic projection at the two points P ∩ γ1 from (Σ \ γ1) ∩ P onto the two genera-
trices C ∩ P . Its inverse μ−1 is given by

μ−1(x, y, z)= (u, v,w)=
(
(a + 1)x√
x2 + y2

(a + 1)y√
x2 + y2

,
2z

1 − a + √
x2 + y2

)
.

Then we have the diffeomorphism λ= μ◦π : R2 → Σ \(γ1∪μ(l)). Here π corresponds to
the local chart of a circular cylinder parallel to the z-axis, while the π presented previously
corresponds to a cylinder parallel to the y-axis. Here, we have that

λ−1(x, y, z)= (r, s)=
(

2(a + 1)x√
x2 + y2 − (a + 1)y

,
2z

1 − a + √
x2 + y2

)
.

The entries of the Jacobian matrix Dλ(r, s) are rational functions in the variables r and s.
We remark that the nine quadrics that we consider have canonical form of the type

z2 = h(x, y) where h is a polynomial and its square root is not a polynomial. Similarly, the
2-torus that we consider has canonical form z2 = h(x, y)= 1 − (

√
x2 + y2 − a)2.
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15.3. Darbouxian theory

Now we will extend the results of the Darbouxian theory of integrability for planar poly-
nomial vector fields (see for instance Theorem 2.1) to polynomial vector fields on a regular
surface Σ . Here the regular surface will be one of the nine quadrics described in the pre-
vious subsection, or the 2-torus. In order to develop this theory we need some preliminary
algebraic results.

Let Rm[x, y, z] denote the real linear vector space of all polynomials of R[x, y, z]
having degree � m. Let Rm[x, y, z = α(x, y)] be the real linear vector space of all the
functions obtained from the polynomials of Rm[x, y, z] substituting z by the function
α(x, y). Here α(x, y) is equal to

√
h(x, y) for the quadrics and for the 2-torus, where

h(x, y) is a polynomial such that its square root is not a polynomial if Σ is a quadric, and
h(x, y)= 1 − (

√
x2 + y2 − a)2 if Σ is the 2-torus.

We define d(m) as (m+ 1)2 or 2(m2 + 1) for the quadrics or the 2-torus, respectively.

LEMMA 15.2. The dimension of the linear vector space Rm[x, y, z= α(x, y)] is d(m).

PROOF. We denote by Bk a basis of the real vector space formed by all polynomials in the
variables x and y having degree � k. It is well known that the cardinal of Bk is (k+1)(k+
2)/2.

Assume that the function α(x, y) is associated to one of our nine quadrics. Then it is
easy to check that Bm ∪ αBm−1 is a basis for the real vector field Rm[x, y, z = α(x, y)].
Since the cardinal of this basis is

(m+ 1)(m+ 2)

2
+ m(m+ 1)

2
= (m+ 1)2,

it follows the lemma when the surface is a quadric.
Assume that

α(x, y)=
√

1 − (√
x2 + y2 − a

)2 =
√

1 − (β − a)2,

is the function associated to the 2-torus. Then it is easy to verify that

Bm ∪ αBm−1 ∪ βBm−2 ∪ αβBm−3,

is a basis for the real vector field Rm[x, y, z= α(x, y)]. Since the cardinal of this basis is

(m+ 1)(m+ 2)

2
+ m(m+ 1)

2
+ (m− 1)m

2
+ (m− 2)(m− 1)

2
= 2(m2 + 1),

it follows the lemma when the surface is the 2-torus. �

The functions of the linear vector space Rm[x , y, z = α(x, y)] are polynomials in the
variables x , y and α when Σ is a quadric, and polynomials in the variables x , y , α, β and
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αβ when Σ is the 2-torus. We note that such polynomials always have degree one when
they are thought as polynomials in the variable either α, β or αβ .

Since the dimension of the linear vector space Rm[x, y, z= α(x, y)] is d(m), this space
is linearly isomorphic to Rd(m) by identifying each polynomial with the d(m)-tuple of its
coefficients.

Let Σ be a quadric. For k = 1, . . . , r we say that r points (xk, yk, zk) ∈ Σ are inde-
pendent with respect to the linear vector space Rm−1[x, y, z = α(x, y)] ≡ Rd(m) if the
intersection of the r hyperplanes

m(m+1)/2∑
i+j=0

xiky
j
k aij +

(m−1)m/2∑
i+j=0

xiky
j
k α(xk, yk)bij = 0

(in the variables aij and bij of Rd(m)), for l = 1, . . . , r , defines a linear subspace of dimen-
sion m2 − r .

Let Σ be the 2-torus. We say that r points (xk, yk, zk) ∈ Σ , for k = 1, . . . , r , are in-
dependent with respect to the linear vector space Rm−1[x, y, z = α(x, y)] ≡ Rd(m) if the
intersection of the r hyperplanes

m(m+1)/2∑
i+j=0

xiky
j
k aij +

(m−1)m/2∑
i+j=0

xiky
j
k α(xk, yk)bij +

(m−2)(m−1)/2∑
i+j=0

xiky
j
k β(xk, yk)cij

+
(m−3)(m−2)/2∑

i+j=0

xiky
j

k α(xk, yk)β(xk, yk)dij = 0,

for l = 1, . . . , r (in the variables aij , bij , cij and dij of Rd(m)) defines a linear subspace of
dimension 2m2 − r .

THEOREM 15.3. Let Σ be one of the nine quadrics of the previous subsection or the 2-
torus. Suppose that the real polynomial vector field X on the real regular surface Σ of
degree m admits p invariant algebraic curves {fi = 0} ∩ Σ with cofactors Ki for i =
1, . . . , p, q exponential factors Fj = exp(gj /hj ) with cofactors Lj for j = 1, . . . , q , and
r independent singular points (xk, yk, zk) of X in Σ such that fi(xk, yk, zk) �= 0 for i =
1, . . . , p and for k = 1, . . . , r . Of course, every hj is equal to some fi except if hj is
constant. The following statements hold.

(a) There exist λi,μj ∈ C not all zero such that
∑p

i=1 λiKi+∑q

j=1μjLj = 0 on all the

points (x, y, z) of Σ , if and only if the function f λ1
1 · · ·f λpp F

μ1
1 · · · Fμ1

q substituting

f
λi
i by |fi |λi if λi ∈ R, is a first integral of the vector field X on Σ .

(b) If p + q + r = d(m − 1) + 1, then there exist λi,μj ∈ C not all zero such that∑p

i=1 λiKi + ∑q

j=1μjLj = 0 on all the points (x, y, z) of Σ .
(c) The vector field X on Σ has a rational first integral if and only if p + q + r �

d(m− 1)+ 2 and p+ q � 3.
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PROOF. By hypothesis we have p invariant algebraic curves {fi = 0} ∩ Σ with cofac-
tors Ki , and q exponential factors Fj with cofactors Lj . That is, the polynomials f ′

i s
satisfy Xfi = Kifi , and the F ′

j s satisfy XFj = LjFj , on all the points (x, y, z) of the
regular surface Σ .

(a) We have λi,μj ∈ C not all zero such that
∑p

i=1 λiKi + ∑q

j=1μjLj = 0 on all the
points (x, y, z) of Σ . On the other hand, we have that

X
(
f
λ1
1 · · ·f λpp F

μ1
1 · · ·Fμq

q

)
= (

f
λ1
1 · · ·f λpp F

μ1
1 · · ·Fμq

q

)(
p∑
i=1

λi
Xfi

fi
+

q∑
j=1

μj
XFj

Fj

)

= (
f
λ1
1 · · ·f λpp F

μ1
1 · · ·Fμq

q

)(
p∑
i=1

λiKi +
q∑
j=1

μjLj

)
= 0,

on all the points (x, y, z) of Σ . Hence statement (a) follows.
(b) Since (xk, yk, zk) is a singular point of the vector field X = (P,Q,R) on Σ ,

we have that P(xk, yk, zk) = Q(xk, yk, zk) = R(xk, yk, zk) = 0. Then, since Xfi =
P(∂fi/∂x) + Q(∂fi/∂y) + R(∂fi/∂z) = Kifi on all the points (x, y, z) of Σ , it fol-
lows that Ki(xk, yk, zk) fi(xk, yk, zk) = 0. By assumption fi(xk, yk, zk) �= 0, therefore
Ki(xk, yk, zk) = 0 for i = 1, . . . , p. Again, since XFj = P(∂Fj /∂x) + Q(∂Fj /∂y) +
R(∂Fj/∂z)= LjFj on all the points (x, y, z) of Σ , it follows that Lj(xk, yk, zk)Fj (xk, yk,
zk)= 0. Since Fj = exp(gj /hj ) does not vanish,Lj (xk, yk, zk)= 0 for j = 1, . . . , q . Con-
sequently, since the r singular points are independent, all the vectors Ki(x, y, z= α(x, y))

and Lj (x, y, z= α(x, y)) belong to a linear vector subspace S of Cm−1[x, y, z= α(x, y)]
of dimension d(m− 1)− r . We have p+ q vectorsKi(x, y, z= α(x, y)) and Lj (x, y, z=
α(x, y)), and since from the assumptions p+q > d(m−1)− r , we obtain that these p+q

vectors must be linearly dependent on S. So, there are λi,μj ∈ C not all zero such that

p∑
i=1

λiKi

(
x, y, z= α(x, y)

) +
q∑
j=1

μjLj
(
x, y, z= α(x, y)

) = 0.

Hence statement (b) is proved.
(c) Under the assumptions of statement (c) we can apply statement (b) to two subsets of

p+ q − 1 � 2 functions defining invariant algebraic curves or exponential factors. There-
fore, we get two linear dependencies between the corresponding cofactors, which after
some linear algebra and relabeling, we can write into the following form

M1 + α3M3 + · · · + αp+qMp+q = 0,

M2 + β3M3 + · · · + βp+qMp+q = 0,

whereMl are the cofactorsKi and Lj , and the αl and βl are real numbers. Of course, these
two equalities must be satisfied only on all the points (x, y, z) of Σ . Then, by statement (a),
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it follows that the two functions

|G1||G3|α3 · · · |Gp+q |αp+q ,

|G2||G3|β3 · · · |Gp+q |βp+q ,

are first integrals of the vector field X on Σ , where for l = 1, . . . , p + q the function Gl

is the polynomial defining an invariant algebraic curve or the exponential factor having
cofactor Ml . Then, taking logarithms to the above two first integrals, we obtain that

H1 = log |G1| + α3 log |G3| + · · · + αp+q log |Gp+q |,
H2 = log |G2| + β3 log |G3| + · · · + βp+q log |Gp+q |,

are first integrals of the vector field X on Σ .
For each one of the regular surfaces Σ that we consider, we have defined in the previous

subsection a local chart λ : R2 → Σ given by λ(r, s) = (x, y, z). We continue denoting
by λ the natural extension of λ from C2 to the complexified Σ . We note that when Σ is the
circular cylinder the map here denoted by λ was denoted by φ in the previous subsection.
Now, the vector field X on Σ induces a vector field ωX on C2 through ωX T(r, s) =
Dλ−1(λ(r, s))XT associated to ωX is denoted by

ṙ = ωP(r, s), ṡ = ωQ(r, s). (131)

Since Hi(x, y, z) is a first integral of X on Σ , it follows that ωHi(r, s)=Hi(λ(r, s)) is a
first integral of ωX on C2 (or R2 when we restrict on the real domain), for i = 1,2.

Each first integral ωHi provides an integrating factor Ri(r, s) for system (131) such that

ωPRi = ∂ωHi

∂r
, ωQRi = −∂ωHi

∂s
,

for i = 1,2. Therefore, we obtain that

R1

R2
=

∂ωH2
∂r

∂ωH1
∂r

. (132)

Since the functions Gl are polynomials or exponentials of a quotient of polynomials,
from the expression of Hi it follows that the entries of the Jacobian matrix DHi(x, y, z)

are rational functions in the variables x , y and z. From the chain rule we have that

DωHi(r, s)=DHi(λ(r, s)) ◦Dλ(r, s).

In the previous subsection we have studied that the functions λ(r, s) andDλ(r, s) are ratio-
nal in the variables r , s and, sometimes δ(x, y), a convenient square root depending on r
and s, according with the type of the surface Σ . So the partial derivatives of (132) are
rational functions in the variables r , s and perhaps δ(r, s).
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Now using for each surface Σ the expression (r, s) = λ−1(x, y, z), we can write the
function R1/R2 of (132) in the variables (x, y, z). From Proposition 15.1 it follows that
the function (R1/R2)(r, s) is a first integral of system (131), and consequently that the
function (R1/R2)(x, y, z) is a first integral of the vector field X on Σ . This completes the
proof of statement (c). �

We note that in statement (b) of Theorem 15.3 the number d(m − 1) + 1 is equal to
m2 + 1 for the nine quadratics and 2m2 − 4m+ 5 for the torus.

We remark that in Theorem 15.3(c) once we know a rational first integral in the vari-
ables x , y , z and μ= √

x2 + y2, it is always possible to construct a rational first integral
in the variables x , y and z.

For an extension of the results of Theorem 15.3 to vector fields on a regular algebraic
hypersurface of Rn see [71].
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1. Introduction

The obtention of global (i.e., nonperturbational) results for the forced pendulum equation
started with the rigorous mathematical study of the periodic solutions of the periodically
forced pendulum equation

y ′′ + α2 siny = β sin t (1)

initiated in 1922 by Georg Hamel, in a paper of the special issue of the Mathematische
Annalen dedicated to Hilbert’s sixtieth birthday anniversary [55].

Hamel’s contribution starts by proving the existence of a 2π -periodic solution of Equa-
tion (1) through the direct method of the calculus of variations. He shows that the corre-
sponding action integral

A(y) :=
∫ 2π

0

(
y ′2(t)

2
+ α2 cosy(t)+ βy(t) sin t

)
dt

has a minimum over the space of 2π -periodic C1-functions, and his argument easily ex-
tends to the case where b sin t is replaced by a continuous 2π -periodic function h(t) with
mean value zero. The Ritz method is then used to find a first approximation of the amplitude
of the periodic solution.

Hamel then notices that the symmetries of the equation imply that any solution of Equa-
tion (1) satisfying the boundary conditions

y(0)= y(π)= 0 (2)

can be extended as an odd 2π -periodic solution. The problem (1)–(2) is reduced to the
nonlinear integral equation

y(t)= −α2
∫ 2π

0
K(t, τ ) siny(τ)dτ − β sin t := F(y)(t), (3)

where K(t, τ ) is the Green function of

y ′′ = h(t), y(0)= y(π)= 0.

The method of successive approximations

yn+1 = F(yn), y0(t)= −b sin t,

is shown to converge to a (unique) solution when α2 < 1. Hamel’s argument is equivalent
to proving the existence of a sufficiently large integer m, for which the mth iterate Fm of
F is a contraction in the space C([0,π]).

When α2 � 1, Hamel uses Lyapunov–Schmidt’s method to study the 2π -periodic solu-
tions of (1) when |b| is sufficiently small, and mentions the possibility of the existence of
more than one 2π -periodic solution.
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So, Hamel anticipates or uses several of the fundamental methods of nonlinear analysis,
in a work which will not be essentially superseded during some sixty years.

An important role in renewing the interest to the forced pendulum equation was played
by Fučik in the late nineteen seventies, when he wrote, in the Introduction of Chapter 26
of his monograph [49]:

Finally we shall present here one attempt to obtain the existence of a T -
periodic solution of the mathematical pendulum equation

−u′′(t)+ sinu(t)= f (t). (4)

The result is not final since the necessary and sufficient condition obtained for
T -periodic solvability of (4) is not useful.

After describing very partial results in this direction and mentioning extensions personally
communicated by Dancer, Fučik concluded that the

description of the set P of f for which the equation u′′ + sinu = f (t) has a
T -periodic solution seems to remain a terra incognita.

Motivated by Fučík’s remarks, but unaware of the existence of Hamel’s paper, Castro [32]
(for α � 1), Dancer [36] and Willem [129], independently (for arbitrary α), reintroduced
in the early eighties the use of the direct method of the calculus of variations, in the setting
of Sobolev spaces. The time was ripe for the obtention by Mawhin and Willem [85], some
sixty years after the first one, of a second periodic solution, using a refinement of the
mountain pass lemma.

At the same time, the forced pendulum equation also became a paradigm for the theory
of chaos, and appeared in the description of Josephson type junctions. We only describe
global results in this direction here, and refer to the bibliography of [82,117] for the nu-
merous perturbational and numerical aspects.

A fundamental role in the development of the qualitative theory of nonlinear differential
equations and its applications to engineering, was also played by the pendulum equation
with a constant torque or Tricomi’s equation

y ′′ + cy ′ + a sin y = b,

introduced by Tricomi [125,126] in his studies of synchronous electrical machines, and
widely developed since (see [83] for references).

To keep the size of the survey reasonable and facilitate the comparison between results
obtained through different methods, we only state the theorems for the standard (possibly
dissipative) forced pendulum equation

y ′′ + cy ′ + a sin y = h(t).

Most of the assertions remain valid if a sin y is replaced by an arbitrary continuous S-
periodic function g(y) with mean value zero. Recent results depend upon the fact that
a sin y is replaced by a S-periodic function whose Fourier series contains higher harmon-
ics [63]. Also, some conclusions survive when the friction term cy ′ is replaced by a more
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general one of Liénard type f (y)y ′ or of Rayleigh type f (y ′). See the references in [82]
and the recent papers [52,54].

For the same reason of brevity, we will not describe the possible generalizations to sys-
tems of pendulum-type, and in particular to the equations of the forced multiple pendulum,
and to higher order pendulum-type equations. The reader can consult the bibliography in
[82] and the recent paper [116]. We shall also leave aside the existence of forced oscilla-
tions of the spherical pendulum (which depends upon methods of a quite different nature),
considered by Furi, Pera and Spadini, and the pendulum-type equations describing the li-
bration of satellites. Again, references to the corresponding literature for those questions
can be found in [82].

Let us mention also that the corresponding problem for the case of Dirichlet boundary
conditions, namely

y ′′ + y + a sin y = h(t), y(0)= 0 = y(π),

and its analog for partial differential equations, has been the object, since the pioneering
papers of Ward [128] using critical point theory, and of Schaaf and Schmitt [118] using
global bifurcation, of a number of studies by Arcoya, Cañada, Lupo, Roca, Ruiz, Solimini,
Ureña and others. References can be found in [82] and in the more recent contributions
[28–31]. This problem, which has both deep analogies and strong differences with the
periodic boundary value problem for the forced pendulum, will not be considered here.

Finally, in order to keep the number of references at a reasonable level, we have only
quoted the papers whose results are directly mentioned in this survey. Further bibliograph-
ical information can be found in [82].

2. Autonomous pendulum equations

2.1. The free conservative pendulum

To allow the evaluation of the subsequent results, let us briefly recall the structure of the
solution set of the free conservative pendulum equation

y ′′ + a siny = 0, (5)

where a > 0. This information can easily be obtained from the energy integral

y ′2

2
− a cosy = C, (6)

by studying the orbits (y, y ′) in the phase-plane (or in the phase-cylinder S1 × R). Equa-
tion (5) admits two geometrically distinct equilibria, namely(

y(t), y ′(t)
) ≡ (0,0),

(
y(t), y ′(t)

) ≡ (π,0).



538 J. Mawhin

The orbits through (A,0), with 0 < y(0) = A < π are closed and surround the equilib-
rium (0,0), which is therefore a center. They correspond to periodic solutions of (5) with
maximum amplitude A and maximum velocity

√
2a(1 − cosA). Their period

T (A)= 2
√

2
∫ A

0

dy√
a(cosy − cosA)

is an increasing function such that

lim
A→0+T (A)=

2π√
a
, lim

A→π−T (A)= +∞. (7)

Physically, those periodic solutions correspond to oscillations of the pendulum around its
stable equilibrium position.

The orbits through (0,B) with B > 2
√
a (respectively B < −2

√
a) are the periodic

curves

y ′ = ±[
B2 − 2a(1 − cosy)

]1/2
(8)

in the upper (respectively lower) phase-plane (or closed curves surrounding the phase-
cylinder). So y(t) is strictly monotone and its inverse function t (y), given by

t (y)= ±
∫ y

0

ds

[B2 − 2a(1 − cosy)]1/2 ,

is the indefinite integral of a 2π -periodic function. Thus, if we define

τ (B) :=
∫ 2π

0

dy√
B2 − 2a(1 − cosy)

, (9)

t (y) has the form

t (y)= ±
(
τ (B)

2π
y + P(y)

)
,

with P a 2π -periodic function. Therefore,

τ (B)

2π
(y + 2π)+ P(y + 2π)= τ (B)+ τ (B)

2π
y + P(y)= τ (B)+ t,

which shows that

y
(
t + τ (B)

) = y(t)+ 2π (t ∈ R),

and hence, by (8),

y ′(t + τ (B)
) = y ′(t) (t ∈ R).
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Such a y is called a periodic solution of the second kind of Equation (5). The function τ (B)
is such that

lim
B→2

√
a+
τ (B)= +∞, lim

B→+∞ τ (B)= 0.

Physically, those solutions correspond to rotations of the pendulum.
Finally, the orbit through (0,2

√
a ) (respectively (0,−2

√
a ) connects in the upper (re-

spectively lower) half phase-space the equilibria (−π,0) and (π,0) (heteroclinic orbits)
(or homoclinic orbits connecting (π,0) to itself in the phase-cylinder). Thus (π,0) is a
saddle point. Those orbits correspond to positive (respectively negative) asymptotic solu-
tions y of (5) such that

lim
t→−∞y(t)= −π, lim

t→+∞y(t)= π

(respectively

lim
t→−∞y(t)= π, lim

t→+∞y(t)= −π),

and

lim
t→±∞y ′(t)= 0.

Physically, those solutions correspond to motions which are asymptotic (in the past or in
the future) to the unstable vertical equilibrium.

Notice that, if T � 2π√
a
, the only T -periodic solutions of Equation (5) are the equilibria

y ≡ 0 and y ≡ π. If T > 2π√
a
, and if m� 1 is the largest integer such that T

m
> 2π√

a
, in other

words if

m=
[
T
√
a

2π

]
,

where [s] denotes the integer part of s, then Equation (5) has, besides the two equilibria,
nontrivial T -periodic solutions corresponding to the closed orbits of amplitude Ak such
that

T (Ak)= T

k
(k = 1,2, . . . ,m).

2.2. The free damped pendulum

The study of the free damped pendulum

y ′′ + cy ′ + a siny = 0, (10)
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where, without loss of generality, we assume c > 0 and a > 0, is more delicate, as no
energy integral exists. Equation (10) still admits the constant solutions

y ≡ 0, y ≡ π,

but has no nonconstant T -periodic solution of any period T . Indeed, if y is a T -periodic
solution of (10), integrating the identity

y ′′y ′ + cy ′2 + (a sin y)y ′ = 0,

over [0, T ], and using the periodicity gives

c

∫ T

0

(
y ′(t)

)2 dt = 0.

Thus y ′ = 0, and y = 0 (mod π ).
Now, the variational equation around the zero equilibrium

z′′ + cz′ + az= 0

has characteristic roots which are both real and negative if c� 2
√
a and complex conjugate

with negative real part if c < 2
√
a. Thus the zero equilibrium is asymptotically stable. The

variational equation around the equilibrium y ≡ π

z′′ + cz′ − az= 0

has a positive and a negative characteristic root. It is unstable of saddle point type.
Using the Lyapunov function

V (y, z)= z2 + (cy + z)2 + 4a(1 − cosy),

for the associated first order system obtained in letting y ′ = z in (10), one can show that, in
the phase-cylinder, with the exception of the two orbits which constitute the stable manifold
of the saddle point (π,0), all other orbits correspond to solutions tending to (0,0) when
t → +∞. The stable equilibrium (0,0) is a focus or a node according to c < 2

√
a or

c� 2
√
a.

Thus Equation (10) has no nonconstant periodic solution, no periodic solution of the
second kind, no homoclinic orbit. It has two heteroclinic orbits connecting (π,0) to (0,0)
and corresponding to the unstable manifolds of the saddle point (π,0). We refer to [6] for
the corresponding phase plane or phase cylinder portraits.

2.3. The pendulum with constant torque

The differential equation of the conservative pendulum with constant torque is

y ′′(t)+ a siny(t)= b, (11)
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where a > 0, b > 0, and its energy integral

y ′2(t)

2
− a cosy(t)− by = C (C ∈ R), (12)

gives the equations of the family of the orbits of (11) in the phase space (y, y ′).
Equation (11) has zero, one unstable (y(t)≡ π/2), or one stable (y(t) ≡ arcsin(b/a))

and one unstable (y(t)≡ π − arcsin(b/a)) equilibria, according to b > a, b = a or b < a.

If b < a, Equation (11) has T -periodic solutions for each T ∈ ]2π/√a2 − b2,+∞[, and, if
b � a, Equation (11) has no (nonconstant) T -periodic solution. If b < a, Equation (11) has
one homoclinic orbit to the saddle point (π,0) and no homoclinic orbit if b � a. Finally,
Equation (11) has no heteroclinic orbit and no periodic solution of the second kind. See [6]
for more details and corresponding phase portraits.

The differential equation of the damped pendulum with constant torque

y ′′ + cy ′ + a siny = b, (13)

where a > 0, b > 0, c > 0, is also the equation of synchronous electrical motors considered
by Tricomi in [125,126]. Because of the absence of a first integral, the discussion of its
qualitative behavior in the phase space or phase cylinder is much more delicate, and, in
contrast to the undamped case, periodic solutions of the second kind may exist.

Equation (13) has no, one unstable or one stable and one unstable (saddle point) equi-
librium, according to b > a, b = a or b < a. It has no nonconstant T -periodic solution
and no homoclinic orbit. For b > a, it has no heteroclinic orbit, and one periodic solution
of the second kind, with y ′(t) > 0 for all t ∈ R. For b � a, there exists c0 > 0 such that
Equation (13) has no periodic solution of the second kind and two heteroclinic orbits if
c > c0, and one periodic solution of the second kind and one heteroclinic orbit if c � c0.

The effective determination of c0 is an important and delicate problem.

3. Periodic solutions of the forced pendulum

3.1. The problems

We now consider the (possibly dissipative) periodically forced pendulum equation

y ′′ + cy ′ + a siny = h(t)
( = h̄+ h̃(t)

)
, (14)

where we can assume, without loss of generality, that c � 0, a > 0, and where h = h̄+
h̃ is T -periodic, for some period T > 0, and corresponding frequency ω := 2π

T
. For the

simplicity of exposition, we assume that h is continuous. Most results hold under weaker
regularity conditions.

We use the following notations:

L
p

T = {
h ∈ Lploc(R): h(t + T )= h(t) for a.e. t ∈R}

,
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H 1([0, T ]) = {
h ∈AC([0, T ]): h′ ∈ L2([0, T ])}

,

CT = {
h ∈ C(R): h(t + T )= h(t) for all t ∈ R}

,

H 1
T = {

h ∈ACloc(R) ∩CT : h′ ∈ L2([0, T ])}
,

‖h‖p =
( ∫ T

0

∣∣h(t)∣∣p dt

)1/p

, ‖h‖∞ = max
t∈[0,T ]

∣∣h(t)∣∣,
‖h‖H 1([0,T ]) = ‖h‖H 1

T
= (‖h‖2

2 + ‖h′‖2
2

)1/2
,

h̄= 1

T

∫ T

0
h(t)dt, h̃(t)= h(t)− h̄,

L̃
p
T = {

h ∈ LpT : h̄= 0
}
, C̃T = {

h ∈ CT : h̄= 0
}
.

Consequently,

L
p
T =R⊕ L̃

p
T , CT =R⊕ C̃T ,

with the corresponding decomposition y = ȳ + ỹ.

DEFINITION 1. A T -periodic solution of Equation (14) is a solution y : R → R such that
y(t + T )= y(t) for all t ∈ R.

We will sometimes use an interesting equivalent formulation of the problem of T -
periodic solutions for Equation (14).

LEMMA 1. If H̃ (t) denotes the unique T -periodic solution in C̃T of equation

y ′′ + cy ′ = h̃, (15)

then y(t) is a T -periodic solution of Equation (14) if and only if x(t)= y(t)− H̃ (t) is a
T -periodic solution of equation

x ′′ + cx ′ + a sin
(
x + H̃ (t)

) = h̄. (16)

When h is not constant, Equation (14) has no constant solution, and one expects that
the equilibria will by replaced by T -periodic solutions. By integrating Equation (14) over
[0, T ], we immediately obtain a necessary condition for the existence of a T -periodic
solution to Equation (14).

PROPOSITION 1. If Equation (14) has a T -periodic solution, then

−a � h̄� a. (17)

The main questions one can raise about the T -periodic solutions of Equation (14) are
the following ones:
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1. Determine the nature and the properties of the set

R=R(c, a, T )⊂ [−a, a] ⊕ C̃T

of T -periodic forcings h such that Equation (14) has at least one T -periodic solution,
i.e., the range of the nonlinear operator

d2

dt2
+ c

d

dt
+ a sin(·)

over the space of C2 T -periodic functions.
2. For h ∈R, discuss the multiplicity of the T -periodic solutions.
3. For h ∈R, discuss the stability of the T -periodic solutions.
4. Discuss the existence of subharmonic solutions, i.e., solutions with minimum period
kT for some integer k � 2.

Concerning the multiplicity, it is clear that if y is a T -periodic solution of Equation (14),
the same is true for y+ 2kπ , k ∈ Z. Consequently, we say that y1 and y2 are geometrically
distinct T -periodic solutions of (14) if they do not differ by a multiple of 2π.

3.2. The possibly dissipative case c� 0

The Lyapunov–Schmidt’s decomposition (see, e.g., [50]) consists in the following elemen-
tary fact.

LEMMA 2. y = ȳ+ ỹ is a T -periodic solution of Equation (14) if and only if it is a solution
of the system

ỹ ′′ + cỹ ′ + a sin(ȳ + ỹ)− a sin(ȳ + ỹ)= h̃(t), (18)

a sin(ȳ + ỹ)= h̄. (19)

Of course, instead of y = ȳ + ỹ, one can also decompose y as y = y(τ)+ [y − y(τ)],
for some τ ∈ R.

In the classical Liapunov–Schmidt’s method, the first equation in (18) is solved with
respect to ỹ for fixed ȳ (using a fixed point or implicit function theorem, or critical point
theory) and this solution is introduced in the second equation, which then becomes the
(one-dimensional) bifurcation equation. One can also study directly the equivalent system
(18)–(19) by degree or critical point theory.

The method of upper and lower solutions for the periodic solutions of Equation (14)
(see, e.g., [76]) consists in the following statement.

LEMMA 3. If α and β are of class C2, T -periodic and such that, for all t ∈ R,
α(t)� β(t),

α′′(t)+ cα′(t)+ a sinα(t)� h(t)� β ′′(t)+ cβ ′(t)+ a sinβ(t), (20)

then (14) has at least one T -periodic solution y such that α(t)� y(t)� β(t).
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Furthermore, if the inequalities are strict in (20), the coincidence degree of the T -
periodic boundary value problem for (14) with respect to the open bounded set

Ω = {
y ∈CT : ∀t ∈ R, α(t) < y(t) < β(t)

}
is defined and equal to one.

The coincidence degree is the Leray–Schauder degree of a suitable associated nonlinear
operator in CT , whose fixed points give the T -periodic solutions of (14). See, e.g., [50,74].

The following results are now classical and can be found in [85,47,76]. Some of them
were first proved in [36] and some have been reobtained in [61]. We recall first the main
ideas and results of the used methods.

THEOREM 1. For each h̃ ∈ C̃T , there exists

mh̃ =mh̃(c, a,T )�Mh̃ =Mh̃(c, a,T )

such that the following hold.
1. Equation (14) has at least one T -periodic solution if and only if h̄ ∈ [mh̃,Mh̃].
2. −a �m

h̃
�M

h̃
� a, m0 = −a, M0 = a.

3. R(c, a, T )= ⋃
h̃∈C̃T [mh̃,Mh̃] × {h̃} ⊂ [−a, a]⊕ C̃T is closed.

4. Equation (14) has at least two distinct T -periodic solutions if h̄ ∈ ]mh̃,Mh̃[.

To prove this theorem, one first uses the Lyapunov–Schmidt decomposition. Leray–
Schauder’s fixed point theorem applied to an integral formulation of (18) in the space
C̃T with parameter ȳ ∈ S1 implies the existence of a connected closed set C(c, a,T , h̃)⊂
S1 × C̃T of solutions (ȳ, ỹ) of (18), whose projection on S1 is equal to S1. Hence, Equation
(14) has at least one T -periodic solution if h̄ belongs to the nonempty set

I(c, a,T , h̃)= {
a sin(ȳ + ỹ): (ȳ, ỹ) ∈ C(c, a,T , h̃)

}
.

The fact that I(c, a,T , h̃) is an interval follows from the fact that if h̄1 < h̄2 belong to
I(c, a,T , h̃), and if h̄ ∈ ]h̄1, h̄2[, then a corresponding solution yi = ȳi + ỹi of equation

y ′′ + cy ′ + a sin y = h̄i + h̃ (i = 1,2)

satisfies the equations

ỹ ′′
i + cỹ ′

i + a sin(ȳi + ỹi)− a sin(ȳi + ỹi)= h̃(t),

a sin(ȳi + ỹi)= h̄i (i = 1,2),

and hence (ȳi , ỹi) ∈ C(c, a,T , h̃) (i = 1,2) and are such that

a sin(ȳ1 + ỹ1) < h̄ < a sin(ȳ2 + ỹ2).
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As the real map

(ȳ, ỹ) 
→ a sin(ȳ + ỹ) (21)

is continuous, there exists, by connexity, some (ȳ, ỹ) ∈ C(c, a,T , h̃) such that

a sin(ȳ + ỹ)= h̄,

and y = ȳ + ỹ is a T -periodic solution of Equation (14). We set

mh̃ = infI(c, a,T , h̃), Mh̃ = supI(c, a,T , h̃).

It follows from (17) that −a �mh̃ �Mh̃ � a, and it is trivial that m0 = −a and M0 = a.

To prove that R(c, a, T ) is closed, one considers a sequence (hi) in R(c, a, T ) converg-
ing uniformly to h ∈ CT , and (ȳi, ỹi) a corresponding sequence in S1 × C̃T of T -periodic
solutions. It is easy to show from (18) that (ỹi) is bounded in C2

T , and Ascoli–Arzelá the-
orem implies that, up to a subsequence, (ȳi + ỹi) converges to some T -periodic solution y
of Equation (14). This implies that I(c, a,T , h̃) is closed.

To prove the multiplicity result when m
h̃
< h̄ <M

h̃
, we observe that in this case, if ym

(respectively yM ) is a T -periodic solution of Equation (14) with h=m
h̃
+ h̃ (respectively

h=Mh̃ + h̃), then ym (respectively yM ) is an strict upper (respectively lower) solution for
Equation (14) with periodic boundary conditions. As Equation (14) is invariant under the
substitution y → y + 2kπ (k ∈ Z), we can assume without loss of generality that yM(t)�
ym(t) for all t ∈ R and that ym(τ) − yM(τ) < 2π for some τ ∈ R. An easy maximum
principle type reasoning then shows that yM(t) < ym(t) for all t ∈ R. Hence Lemma 3
implies that (14) has at least one T -periodic solution ŷ1 such that

yM(t) < ŷ1(t) < ym(t) (22)

for all t ∈ R, and such that the associated coincidence degree with respect to the open set

Ω1 = {
y ∈ CT : ∀t ∈ R, yM(t) < y(t) < ym(t)

}
,

is equal to one. Now, (yM + 2π,ym + 2π) and (yM,ym + 2π) are also two strictly or-
dered couples of lower and upper solution for Equation (14) with T -periodic boundary
conditions. Consequently, the coincidence degree respectively associated to the T -periodic
boundary value problem for Equation (14) with respect to the open sets

Ω2 = {
y ∈ CT : ∀t ∈ R, yM(t)+ 2π < y(t) < ym(t)+ 2π

}
and

Ω3 = {
y ∈ CT : ∀t ∈ R, yM < y(t) < ym + 2π

}
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are equal to one. As

Ω1 ⊂Ω3, Ω2 ⊂Ω3, �Ω1 ∩ �Ω2 = ∅,

it follows from its additivity property that the coincidence degree associated to the T -
periodic boundary value problem for Equation (14) with respect to the open set Ω3 \ (�Ω1 ∪
�Ω2) is equal to −1, and Equation (14) has at least one T -periodic solution ŷ2 ∈Ω3 \ (�Ω1 ∪
�Ω2). By construction, ŷ1 and ŷ2 do not differ by a multiple of 2π.

3.3. The conservative case c= 0

In the conservative case

y ′′ + a sin y = h(t)
( = h̄+ h̃(t)

)
, (23)

the direct method of the calculus of variations allows to prove that 0 ∈ [mh̃,Mh̃]. The
starting point of this approach or of any application of critical point theory to the periodic
solutions of the forced pendulum equation without dissipation is the following classical
observation.

LEMMA 4. y is a T -periodic solution of Equation (23) if and only if y is a critical point
of the action functional

Ah :H 1
T →R, y 
→

∫ T

0

(
y ′2(t)

2
+ a cosy(t)+ h(t)y(t)

)
dt . (24)

If convenient, we also write Ah(ȳ, ỹ) instead of Ah(y). We recall a few definitions and
results. Let E be a Banach space and ϕ ∈C1(E,R). We denote its Fréchet differential at y
by ϕ′(y), and its value at v ∈E by 〈ϕ′(y), v〉.

DEFINITION 2. y ∈E is a critical point of ϕ if ϕ′(y)= 0. c ∈ R is a critical value of ϕ if
c= ϕ(y) for some critical point y of ϕ.

We recall a classical and easy to prove sufficient condition for the existence of a minimum
to ϕ.

PROPOSITION 2. Let E be a reflexive Banach space and ϕ ∈ C1(E,R) be bounded from
below and sequentially weakly lower semi-continuous. Then ϕ has a minimum on E.

A slight extension of Hamel’s result [55,129,36] follows from Proposition 2.

THEOREM 2. For each h̃ ∈ C̃T , Equation (23) has at least one T -periodic solution which
minimizes Ah over H 1

T . In other words, 0 ∈ [mh̃,Mh̃].
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First observe that if h̄ = 0, Ah is 2π -periodic and, using the Sobolev inequality for
y = ȳ + ỹ ∈H 1

T ,

max[0,T ] |ỹ| �
T 1/2

2
√

3
‖y ′‖L2, (25)

we get

ϕ(y)=
∫
I

[
y ′2(t)

2
+ a cosy(t)+ h̃(t)ỹ(t)

]
dt,

� 1

2

∫
I

∣∣y ′(t)
∣∣2 dt − aT −

( ∫
I

∣∣h̃(t)∣∣ dt

)
max
I

|ỹ|

� 1

2

∫
I

∣∣y ′(t)
∣∣2 dt − aT −

( ∫ T

0

∣∣h̃(t)∣∣ dt

)
T 1/2

2
√

3

( ∫
I

∣∣y ′(t)
∣∣2 dt

)1/2

. (26)

This shows thatAh is bounded from below. From the sequential weak lower semicontinuity
of the map y 
→ ∫ T

0 |y ′(t)|2 dt , and the compact embedding of H 1
T into CT , it is easy to

show that Ah is sequentially weakly lower semi-continuous.
The existence of a second solution for the conservative forced pendulum when h̄ = 0

can be proved by a generalized mountain pass lemma, which extends both the geometrical
and the compactness assumptions of the classical Ambrosetti–Rabinowitz mountain pass
lemma [4]. This abstract extension, due to Ghoussoub–Preiss [51] and Yihong Du [42],
was motivated by the first proof of a second T -periodic solution to Equation (23) given in
[85], as it was the case for the slightly less general version given earlier by Pucci–Serrin
[113]. We first introduce two definitions.

DEFINITION 3. A Palais–Smale sequence at level c ∈ R for ϕ ∈ C1(E,R) is a sequence
(yn) in E such that

ϕ(yn)→ c, ϕ′(yn)→ 0, if n→ ∞.

The function ϕ satisfies the (PS)c-condition if the existence of a Palais–Smale sequence at
level c for ϕ implies that c is a critical value for ϕ.

DEFINITION 4. The function ϕ ∈ C1(E,R) satisfies the Palais–Smale condition (PS) (re-
spectively the bounded Palais–Smale condition (BPS)) if any sequence (respectively boun-
ded sequence) (yn) such that (ϕ(yn)) is bounded and ϕ′(yn)→ 0 has a convergent subse-
quence.

We now state the generalized mountain pass lemma.

LEMMA 5. Let d, e ∈E, 0< r < ‖e− d‖, be such that

a := max
{
ϕ(d),ϕ(e)

}
� b := inf

r�‖y−d‖�R
ϕ(y). (27)
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Let

Γ = {
γ ∈C([0,1],E)

: γ (0)= d, γ (1)= e
}
,

c := inf
γ∈Γ sup

s∈[0,1]
ϕ

(
γ (s)

)
.

Then c � b, and if ϕ satisfies the (PS)c and (BPS) conditions, c is a critical value for ϕ.
Moreover, if c= a, there is a critical point z such that ϕ(z)= c and ‖z− d‖ = r.

The original mountain pass lemma requires that a < b and that the classical Palais–
Smale compactness condition holds.

To apply this Lemma 5 to Ah when h ∈ C̃T , the most technical part is to check that Ah
verifies the Palais–Smale-type conditions.

LEMMA 6. If h ∈ C̃T , Ah satisfies the (BPS)-condition and the (PS)c-condition for each
c ∈ R.

To show the (BPS)-condition, assume that (A′
h(yn)) converges to 0 and (yn) is bounded in

H 1
T . Then, up to a subsequence, (yn) converges weakly in H 1

T and uniformly on I to some
y ∈H 1

T . Consequently〈
A′
h(yn)−A′

h(y), y − yn
〉 → 0,

as n→ ∞. But〈
A′
h(yn)−A′

h(y), y − yn
〉

=
∫
I

∣∣y ′
n(t)− y ′(t)

∣∣2
dt − a

∫
I

[
sinyn(t)− siny(t)

][
yn(t)− y(t)

]
dt,

and ∫
I

[
sin yn(t)− sin y(t)

][
yn(t)− y(t)

]
dt → 0

as n→ ∞. Consequently,∫
I

∣∣y ′
n(t)− y ′(t)

∣∣2 dt → 0,

as n→ ∞, and hence yn → y in H 1
T . Thus Ah satisfies the (BPS)-condition. Finally, let

(yn) be such that Ah(yn) → c and A′
h(yn) → 0 as n → ∞. Thus (Ah(yn)) is bounded

and, using (26) we see that (‖y ′
n‖L2) is bounded. Now, by 2π -periodicity of Ah, there

exists zn ∈ [0,2π[ such that zn = ȳn (mod 2π ). Letting wn(t) = zn + ỹn(t), we have
Ah(yn) = Ah(wn), A

′
h(yn) = A′

h(wn) and (wn) is bounded in H 1
T . By the reasoning for
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(BPS) applied to this sequence, we see that, up to a subsequence, wn → w ∈H 1
T and this

easily implies that c is a critical value of Ah.
We can now prove the existence of a second T -periodic solution.

THEOREM 3. For each h ∈ C̃T , Equation (23) has at least two geometrically distinct T -
periodic solutions.

A first solution y∗ has been obtained which minimizes Ah over H 1
T . To obtain a second

one, it remains to check the geometry of the generalized mountain pass lemma. As

Ah
(
y∗) =Ah

(
y∗ + 2π

) = min
H 1
T

Ah,

let us take 0 < r < 2π, d = y∗, e = y∗ + 2π. Then, all conditions of Proposition 5 are
satisfied. If the critical value c > minH 1

T
Ah, then the corresponding critical point is geo-

metrically distinct from y∗. If c = minH 1
T
Ah, then Ah has a critical point z such that

0 < ‖z − y∗‖ = r < 2π, so that y∗ and z are two geometrically distinct T -periodic solu-
tions of Equation (23).

The periodicity property of Ah when h̄ = 0 allows also the use of a Lusternik–
Schnirelman type argument to prove directly that Ah has two distinct critical points (see
[78,34,114]). Let G be a discrete subgroup of a Banach space E and π :E →E/G be the
canonical surjection.

DEFINITION 5. A⊂ X is called G-invariant if π−1(π(A))= A. ϕ :E → R is called G-
invariant if ϕ(y + g)= ϕ(y) for every y ∈E and every g ∈G.

When ϕ is differentiable, the same G-invariance holds for ϕ′, so that if y is a critical
point of ϕ, then π−1(π(y)) is a set of critical point of ϕ, called a critical orbit of ϕ.
A suitable Palais–Smale condition for G-invariant functions is the following one.

DEFINITION 6. A G-invariant differentiable functional ϕ :E → R satisfies the (PS)G-
condition if, for every sequence (yk) in E such that (ϕ(yk)) is bounded and ϕ′(yk)→ 0,
the sequence (π(yk)) contains a convergent subsequence.

The following multiplicity theorem holds for G-invariant functionals [114]. Its proof is
based upon Lusternik–Schnirelman category [86].

PROPOSITION 3. Let ϕ ∈ C1(E,R) be a G-invariant functional satisfying the (PS)G-
condition. If ϕ is bounded from below and G generates a subspace of finite dimension
N, then ϕ has at least N + 1 critical orbits.

If we considerAh with h ∈ C̃T , so thatAh(y+2π)=Ah(y) for all y ∈H 1
T , we can take

the discrete subgroup G= {2kπ : k ∈ Z} of H 1
T . If y = ȳ + ỹ ∈H 1

T , there exists a unique
k ∈ Z such that ȳ0 := ȳ − 2kπ ∈ [0,2π[, and ȳ0 + ỹ is a representative of [y] ∈ H 1

T /G.
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So the (PS)G-condition for Ah essentially reduces to the (BPS)-condition checked above.
Proposition 3 gives another proof of Theorem 3.

In [119], Serra and Tarallo have introduced a new reduction method of Liapunov–
Schmidt’s type, which provides equivalent formulations for some of problems for the forced
conservative pendulum equation. One first observes that, for each ξ ∈ R, the functionalAh
is bounded below on the hyperplane H 1

T ,ξ = {y ∈H 1
T : ȳ = ξ}. Consequently, by the argu-

ment of Theorem 2, it reaches its minimum on H 1
T ,ξ and we let

ϕh(ξ) := min
ȳ=ξ Ah(y)= min

ỹ∈H̃ 1
T

Ah(ξ, ỹ), (28)

defining in this way the real function ϕh : R → R, ξ 
→ ϕh(ξ). Define also

Mh(ξ) = {
y ∈H 1

T : ȳ = ξ, Ah(y)= ϕh(ȳ)
}

=
{
y ∈H 1

T : ȳ = ξ, Ah(ξ, ỹ)= min
z̃∈H̃ 1

T

Ah(ξ, z̃)
}

(the set of y in the hyperplane ȳ = ξ where Ah reaches its minimum on this hyperplane),

Mh =
⋃
ξ∈R

Mh(ξ)=
{
y ∈H 1

T : Ah(y)= ϕh(ȳ)
}

=
{
y ∈H 1

T : Ah(ȳ, ỹ)= min
z̃∈H̃ 1

T

Ah(ȳ, z̃)
}
.

THEOREM 4. The following properties hold for ϕh.
1. ϕh is locally Lipschitz continuous on R.
2. Mh(ξ) �= ∅ and compact for each ξ ∈ R, Mh is weakly closed and Mh : R → 2H

1
T is

upper semi-continuous.
3. If y ∈Mh and ȳ gives a local minimum to ϕh, y gives a local minimum to Ah.
4. ϕh is differentiable at ξ if and only if y 
→ ∫ T

0 (a sin y(t) − h(t))dt is constant on
Mh(ξ).

5. If ϕh has a critical point, Ah has a critical point.
6. If ϕh is not strictly monotone, Ah has a critical point.

Properties 1, 2 and 3 are easy to prove, and Property 5 is a consequence of Property 4.
To prove this last one, define

λ(ξ, ỹ)= ∂

∂ξ
Ah(ξ, ỹ)=

∫ T

0

{
a cos

[
ξ + ỹ(s)

] + h(s)
}

ds,

and show, using the following inequalities, valid when Ah(ξ, ỹ)= ϕh(ξ),

ϕh(ξ + δ)− ϕh(ξ)�Ah(ξ + δ, ỹ)−Ah(ξ, ỹ)
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and the mean value theorem, that if ϕh is differentiable at ξ, then

ϕ′
h(ξ)� λ(ξ + ỹ)� ϕ′

h(ξ).

The proof of the converse is a little more elaborate and uses the compactness property in
Property 2 and the uniform coercivity of Ah(ξ, ·) on bounded sets. Finally, the proof of
Property 6 uses, at a local maximum of ϕh, an argument on upper and lower solutions
similar to the one used in Theorem 1.

It is interesting to compare this approach to the classical method of Lyapunov–Schmidt.
In this case, one proves that, for each ξ ∈ R, the set

Kh(ξ)=
{
y ∈CT : ȳ = ξ, ỹ solves Equation (18)

}
is not empty, and then the problem is reduced to find the elements of the set Kh =⋃
ξ∈R

Kh(ξ) such that

a sin(ȳ + ỹ)= h̄.

In the Serra–Tarallo’s approach, on each slice ξ + H̃ 1
T of H 1

T , one considers only the el-
ements of Kh(ξ) which minimize the restriction of Ah on this slice, which provides the
subset Mh(ξ)⊂Kh(ξ), and then, instead of trying to solve Equation (19) on this set, one
concentrates on the reduced functional ϕh and relates its critical points to those of Ah.
Hence the spirit is more variational than in earlier approaches combining a Lyapunov–
Schmidt argument with some variational method (like Castro–Lazer’s one used in [32]), in
that the emphasis, at each step, remains on the functional instead of on its gradient. One
of the main features of this approach is that, in contrast to most other ones, it still works
when a sin y is replaced by a more general almost periodic function.

3.4. The dissipative case c > 0

We just have shown that 0 ∈ [mh̃,Mh̃] when c = 0. A natural question is to find an ex-
plicit element in [mh̃,Mh̃] when c > 0. The following result, proved in [85] by topological
degree arguments, shows that mh̃ <Mh̃ and 0 ∈]mh̃,Mh̃[ when c is sufficiently large.

THEOREM 5. If c
T
> 1

π
√

3
‖h̃‖2, then mh̃ < 0<Mh̃.

The question was then raised to know if 0 ∈ [mh̃,Mh̃] for each c > 0. A negative answer
was first given by a counterexample of Ortega [99], and this result was improved by Alonso
[2] in the following form.

THEOREM 6. For each c > 0, there exists h̃ ∈ C̃T and T0 = T0(a, c) such that for each
T > T0, 0 /∈ [mh̃,Mh̃].
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The idea of Alonso’s result consists in constructing a forcing term close to a piecewise
constant function h(t) taking a large positive value p in the interval [0, τ ] and a small
negative value −q in the interval [τ, T ], where pτ − q(T − τ )= 0.

Further information has been given by Ortega, Serra and Tarallo [107] who have proved
the following interesting result. Let H̃ be defined in Lemma 1 and BT ∈ L2

T be the T -
periodic function defined by

BT (t)= 2π

(
t

T
−

[
t

T

])
− π. (29)

THEOREM 7. Given a > 0, c > 0 and T > 0, there exists ε > 0 such that Equation (14)
has no T -periodic solution if h ∈ L̃1

T and

‖H̃ −BT ‖2 < ε.

Moreover, ε can be explicitly computed in terms of a, c and T .

To prove this result, the authors first consider the equivalent formulation (16) of Equation
(14) which, for H̃ = BT is itself equivalent to equation

y ′′ + cy ′ − a sin(y +ωt)= 0. (30)

Multiplying both members of Equation (30) by y ′ + ω and integrating over [0, T ] shows
immediately that Equation (30) has no T -periodic solution. This is in contrast with the
case where c = 0, for which Bates [9] has shown the existence of a continuum of T -
periodic solutions (see also [86]). The following lemma provides estimates for the possible
T -periodic solutions of equation

y ′′ + cy ′ − a sin
(
y +ωt + P(t)

) = 0, (31)

where P ∈ L2
T .

LEMMA 7. Let y be a possible T -periodic solution of Equation (31). Then

‖y ′‖2
2 � ϕ

(
a

c
‖P‖2

)
,

where

ϕ(s)= 1

2

(
s2 +

√
s4 + 16π2

T
s2

)
,

and

‖y ′‖2
2 � T a2

2(ω2 + c2)
− 2

√
T a2

ω2 + c2

(
1

ω2 ϕ

(
a

c
‖P‖2

)
+ ‖P‖2

2

)1/2

.
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The first inequality is obtained by subtracting and adding a sin(y+ωt) to Equation (31),
multiplying both members by y ′ +ω, integrating over [0, T ] and using T -periodicity and
Cauchy–Schwarz inequality. For the second inequality, one first observes that the right-
hand side of the equivalent form of Equation (31)

y ′′ + cy ′ − a sin(ȳ +ωt)= −a sin(ȳ +ωt)+ a sin
(
y +ωt + P(t)

) := f (t)

has mean value zero if y solves (31) and we call F̃ the solution of Equation (15) with
right-hand side f (t). Setting z= y − F̃ , we obtain the equivalent equation

z′′ + cz′ − a sin(ȳ +ωt)= 0,

with solution

z(t)= − a

ω2 + c2 sin(ȳ +ωt)− ac

ω(ω2 + c2)
cos(ȳ +ωt)

such that

‖z′‖2
2 = T a2

2(ω2 + c2)
.

Then

‖y ′‖2
2 � T a2

2(ω2 + c2)
−

√
2T a2

ω2 + c2
‖F ′‖2 � T a2

2(ω2 + c2)
−

√
2T a2

ω2 + c2

‖f ‖2

ω2 + c2
.

The result then follows from∣∣f (t)∣∣ � a
(∣∣ỹ(t)∣∣ + ∣∣P(t)∣∣)

and the use of Wirtinger’s inequality.
To deduce Theorem 7 from Lemma 7, it suffices to observe that if

T a2

2(ω2 + c2)
ϕ

(
a

c
‖P‖2

)
+ 2

√
T a2

ω2 + c2

(
1

ω2 ϕ

(
a

c
‖P‖2

)
+ ‖P‖2

2

)1/2

<
T a2

2(ω2 + c2)
,

then Equation (31) has no T -periodic solution, and, since ϕ(s)→ 0 as s → 0, this happens
when ‖P‖2 is sufficiently small.

A consequence of Theorem 7 is that, under its conditions, every solution y of Equa-
tion (14) is such that limt→+∞ |y(t)| = ∞. This follows from the fact that the Poincaré
mapping

P :
(
y(0), y ′(0)

) → (
y(T ), y ′(T )

)
(32)
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associated to an arbitrary solution y of Equation (14) is an orientation preserving homeo-
morphism of the plane, whose fixed points are the T -periodic solutions of Equation (14).
As P has no fixed point under the conditions of Theorem 7, the theory of Brouwer for
fixed point free homeomorphisms [53] is applicable, and the orbits of P must go to infin-
ity. The result then follows from the easily verified fact that the derivatives of the solutions
of Equation (14) are bounded.

3.5. The degeneracy problem

The degeneracy problem for the T -periodic solutions of Equation (14), which is still open,
consists in proving or disproving the existence of some h such that mh̃ =Mh̃. Here is the
known partial information.

We start with some results valid for c� 0.

THEOREM 8. For the T -periodic problem for Equation (14), the set {h̃ ∈ C̃T : mh̃ <Mh̃}
is open and dense.

This has been proved using various arguments [85,76,68], and in particular a generalized
Sard–Smale’s theorem. Thus, generically, [mh̃,Mh̃] is a nondegenerate interval.

We now describe some contributions of Ortega and Tarallo [108], which generalize in
various directions earlier results of Donati [41] and of Serra, Tarallo and Terracini [121].

DEFINITION 7. Equation (14) is said to be degenerate if the set of h̄ such that Equation
(14) has a T -periodic solution is a singleton {h̄h̃}, i.e., if mh̃ =Mh̃.

In the (excluded) case where a = 0, Equation (14) is degenerate. It only admits T -
periodic solutions when h̄ = 0, in which case it has an unbounded path of T -periodic
solutions. This fact will be extended to the case where a > 0. Let T be the set of T -periodic
solutions of Equation (14). Using the Lyapunov–Schmidt decomposition and the Leray–
Schauder argument of the proof of Theorem 1, we obtain the existence of a connected
and closed subset C ⊂ T such that {y(0): y ∈ C} = R. By the same argument, one indeed
proves that given a closed interval I ⊂ R and τ ∈ R, a closed connected set Cτ,I ⊂ T exists
such that {y(τ): y ∈ Cτ,I } = I.

THEOREM 9. The following statements for Equation (14) are equivalent.
(i) The equation is degenerate.

(ii) For any ξ ∈ R, there exists a unique yξ ∈ T which satisfies yξ (0)= ξ.

(iii) There exists a continuous path ξ 
→ yξ in T which satisfies

lim
ξ→±∞yξ (t)= ±∞

uniformly in t ∈ R.
Moreover, if one of those conditions holds, the map ξ 
→ yξ is continuous, monotone
(yξ (t) < yη(t) for all t ∈ R when ξ < η), and such that yξ+2π = yξ + 2π.
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To show that condition (i) implies condition (ii), one first observes that if two elements
y, z ∈ T intersect at some t0 then they coincide or intersect transversally (y ′(t0) �= z′(t0)).
This implies the following useful intermediate proposition.

PROPOSITION 4. If A ⊂ T be connected and z ∈ T \A, and if, for some y∗ ∈ A, z and
y∗ do not intersect, then z does not intersect any y ∈A.

Indeed, {y ∈ A: y does not intersect v} is trivially open, and {y ∈ A: y intersects v} is
open by the transversality property.

Coming back to the proof of Theorem 9, one then shows that, for any ξ and τ, letting
Cτ,ξ = Cτ,]−∞,ξ ], one has Cτ,ξ = Tτ,ξ := {y ∈ T : y(τ)� ξ}. This depends in particular on
the property

‖y‖∞ �
∣∣y(τ)∣∣ +C, (33)

satisfied by any T -periodic solution of Equation (14). One next proves using again Propo-
sition 4 that given y, z ∈ T and τ ∈ R such that y(τ ) < z(τ), one has y(t) < z(t) for all
t ∈ R. This follows from the fact that, for ξ = y(τ), z �∈ Tτ,ξ and cannot intersect the very
large functions in Tτ,ξ . Then the existence of yξ follows from the existence of C and its
uniqueness from the above monotonicity property.

To show that condition (ii) implies condition (iii), one uses (33), the uniqueness property
and the local compactness of T . By uniqueness also yξ+2π = yξ + 2π and this implies the
limiting properties of yξ for ξ → ±∞. Finally, to prove that (iii) implies (i), assume that y
is a T -periodic solution of Equation (14) and define

A= {
ξ ∈ R: ∀t ∈ R, yξ (t)� y(t)

}
, B = {

ξ ∈ R: ∀t ∈ R, yξ � y(t)
}
,

and ξA = maxA, ξB = minB. One has yξA � y, yξB � y and they must touch somewhere,
namely at tA and tB , so that

y ′
ξA
(tA)= y ′(tA), y ′′

ξA
(tA)� y ′′(tA),

and the reverse inequality for yξB at tB. Then,

h̄h̃ = y ′′
ξA
(tA)+ cy ′

ξA
(tA)+ a sinyξA(tA)− h̃(tA)

� y ′′(tA)+ cy ′(tA)+ a sin y(tA)− h̃(tA)= h̄

= y ′′
ξB
(tB)+ cy ′

ξB
(tB)+ a sinyξB (tB)− h̃(tB)

� y ′′
ξB
(tB)+ cy ′

ξB
(tB)+ a sinyξB (tB)− h̃(tB)= h̄h̃,

so that h̄= h̄h̃.

Consequences of Theorem 9 are that the solutions bounded over R of a degenerate
equation are either T -periodic solutions, or heteroclinic connections between different T -
periodic solutions, and some information about the stability of the T -periodic solutions.



556 J. Mawhin

We now describe some results valid in the conservative case c = 0, with, first, an im-
provement of Theorem 8 proved in [68] using a generalized Sard–Smale lemma.

DEFINITION 8. A regular value for a mapping f of class C1 between two smooth Banach
manifolds is the image by f of a point c such that f ′

c is onto.

THEOREM 10. The set G of regular values for y → y ′′ + a siny on C2
T is open and dense

in C̃T , and, for every g ∈ G, there exists ε > 0 such that, if ‖h− g‖∞ � ε, Equation (23)
has a T -periodic solution.

Serra, Tarallo and Terracini [121] have found another characterization of degeneracy in
the conservative case. If h ∈ C̃T , let

c0 = min
H 1
T

Ah, (34)

and for ξ ∈ R, let

Kc0(ξ) :=
{
y ∈H 1

T : Ah(y)= c0, ȳ = ξ
}
.

PROPOSITION 5. If Kc0(ξ) �= ∅ for each ξ ∈ R, then
(i) For each ξ ∈ R, Kc0(ξ)= {yξ }.

(ii) The map ξ 
→ yξ is continuous and yξ (t) < yη(t) for all t if ξ < η.

(iii) There are no other periodic solutions (of any period) to (23).

To prove (i) one supposes that Kc0 contains two points v and w. As v −w = 0, one has
v(τ ) = w(τ) for some τ and we show that v′(τ ) = w′(τ ). Indeed, y = max(v,w) ∈ H 1

T

and it is easy to show that Ah(y)= c0, so that y solves Equation (23), thus is differentiable
at τ, and the result follows. The second part of (ii) is proved in an analogous way and the
first one easily follows from the fact that if ξn → ξ, then (yξn) is a bounded Palais–Smale
sequence, and hence is relatively compact. To show (iii) one first assume that u is a periodic
solution of Equation (23) with period rational with T , and one defines

B = {
ξ ∈ R: ∀t ∈ R, yξ (t)� u(t)

}
.

Like in Ortega–Tarallo reasoning above, B is nonempty, bounded below and closed, and
one shows that, if ξ0 = infB, then u= yξ0 . If yξ0(t) > u(t) for all t ∈ R, then the rational-
ity of the period of u with T implies that ε := inft∈R[yξ0(t) − u(t)] > 0. For δ > 0 such
that |ξ − ξ0| � δ implies ‖yξ − yξ0‖∞ � ε, we see that ξ0 − δ ∈ B, a contradiction with
the definition of ξ0. Thus yξ (t0)= u(t0) for some t0 and then also y ′

ξ (t0)= u′(t0), so that
yξ = u. If the period of u is irrational with T , then h≡ 0 is constant and the assumption is
not satisfied.

THEOREM 11. Let h ∈ CT and c0 = minH 1
T
Ah̃. Then mh̃ <Mh̃ if and only if

Kc0(ξ)= ∅ for some ξ ∈R. (35)

In this case, 0 is an interior point of [mh̃,Mh̃].
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If Kc0(ξ)= ∅, then one can find ρ > 0 and δ > 0 such that if ‖ȳ−ξ‖ � ρ, and |Ah̃(y)−
c0| � ρ, then ‖A′

h̃
(y)‖ � δ. If not, for each positive integer n, there exist yn such that

‖ȳn − ξ‖ � 1

n
,

∣∣Ah̃(yn)− c0
∣∣ � 1

n
,

∥∥A′
h̃
(yn)

∥∥ � 1

n
.

The (BPS)-condition leads to a contradiction. Now let z ∈H 1
T be such that Ah̃(z) < c0 + δ

and m,k be two integers such that ξ + 2kπ < z̄ < ξ + 2mπ. Let B = {y ∈H 1
T : ξ + 2kπ �

ȳ � ξ + 2mπ}. Since by construction and its 2π -periodicity Ah̃(z) < c0 + δ � min∂B Ah̃,
we have Ah(z) <min∂B Ah provided h̄ ∈ [−μ,μ], for some sufficiently small μ> 0. Tak-
ing a minimizing sequence (yn) forAh restricted to B, which, up to a subsequence, weakly
converges to y, we obtain Ah(y)= minB Ah, and, from Ah(y)�Ah(z) <min∂B Ah, y is
a local minimum forAh onH 1

T and hence a solution to Equation (23). The proof of the con-
verse result is essentially the same as the proof of the implication (iii) ⇒ (i) in Theorem 9.

Serra and Tarallo [119] have used their reduction method to obtain more precise infor-
mation.

THEOREM 12. Let h ∈CT .
1. If ϕh is constant, then Mh(ξ)= {yξ }, and if y is a periodic solution of Equation (23),

then h̄= 0 and y = yξ for some ξ ∈ R.
2. ϕh is not constant if and only if there exists ε0 > 0 such that Equation (23) has at

least one T -periodic solution for each |h̄|< ε0.

3. [mh̃,Mh̃] = {0} if and only if ϕh is constant.

4. {h̃ ∈ C̃T : ϕh̃ is not constant} is open and dense in C̃T .
5. If ϕh is constant and h̄ �= 0, then Equation (23) has no bounded solution.

From the study of some dynamical properties of diffeomorphisms of the plane having a
continuum of fixed points, Campos, Dancer and Ortega [27] have refined conclusion (iii)
of Proposition 5.

THEOREM 13. If (23) is degenerate, then every solution which is bounded in the future is
a T -periodic solution.

The corresponding diffeomorphism of the plane is of course Poincaré’s map.
Finally, Kannan and Ortega [61] have proved the following asymptotic result, showing

that M
h̃
−m

h̃
can be small, and have given an example showing that the involved set is not

open. The proof makes use of some Riemann–Lebesgue lemma and asymptotic analysis
techniques.

THEOREM 14. For c= 0,{
h̃ ∈ C̃T : lim|λ|→∞mλh̃ = lim|λ|→∞Mλh̃ = 0

}
contains an open and dense subset of C̃T .
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3.6. Multiplicity and stability results under restrictions of the coefficients

More precise results in the conservative case c = 0 can be obtained if one assumes that
condition

a < ω2 (36)

holds. Donati [41] has proved the following result about the structure of the solution set.

THEOREM 15. If condition (36) holds and h̄ ∈ [mh̃,Mh̃], then Equation (23) has at most
finitely many distinct T -periodic solutions when [mh̃,Mh̃] �= {0}.Otherwise, Equation (23)
has an analytic unbounded curve of solutions.

Starting from the Lyapunov–Schmidt’s reduction, one first proves that for each ȳ ∈ R
and h̃ ∈ C̃T , Equation (18) has a unique solution ỹ = ỹ(ȳ, h̃) ∈ C̃2

T , which depends analyt-
ically upon ȳ and h̃, and is such that

‖ỹ‖C2 � C
(|ȳ| + ‖h̃‖∞

)
for a suitable constant C > 0. The problem is reduced to the study of the real valued
function F defined over R × C̃T by

F(ȳ, h̃) := 1

T

∫ T

0
a sin

[
ȳ + ỹ(ȳ, h̃)

]
dt .

One shows that, for each fixed h̃ ∈ C̃T , F(·, h̃) is a real analytic 2π -periodic function and
that

mh̃ = min
ȳ∈[0,2π]F(ȳ, h̃)� 0 �Mh̃ = max

ȳ∈[0,2π]
F(ȳ, h̃).

The result follows from properties of analytical functions.
By imposing further restrictions upon c, a, and T , it is possible to obtain on one hand

exact multiplicity results for the T -periodic solutions, and, on the other hand, informations
upon their Lyapunov stability. The pioneering work in the first direction is due to Tarantello
[123] (using a Lyapunov–Schmidt approach) and, in the second direction, to Ortega [100–
102] (using relations between stability and the Brouwer degree of Poincaré’s operator).

If we first assume that c > 0, a recent paper of Čepička, Drábek and Jenšiková [33]
provides the sharpest known conditions.

THEOREM 16. If

c > 0, a <max

{
c2

4
+ω2,ω

√
c2 +ω2

}
,

then mh̃ <Mh̃ and Equation (14) has:
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(1) exactly one T -periodic solution if either h̄=mh̃ or h̄=Mh̃;
(2) exactly two T -periodic solutions if h̄ ∈ ]mh̃,Mh̃[.

If

c > 0, a <max

{
c2 +ω2

4
,
ω

2

√
c2 + ω2

4

}
,

then the conclusions 1 and 2 remain true and the periodic solution obtained in case 1 is
unstable while one solution obtained in case 2 is asymptotically stable and the other one
unstable.

The proof of the exact multiplicity results in Theorem 16 is based upon the Lyapunov–
Schmidt reduction method together with the real analytic version of the implicit function
theorem, to analyze the bifurcation equation. The uniqueness in the solution of Equa-
tion (18) is deduced from some preliminary study of the T -periodic solutions of linear
equations of the type

y ′′ + cy ′ + g(t)y = 0,

with g T -periodic. The stability conclusion is obtained in the same way as in Ortega’s
papers.

Assume now that c= 0. The difficulty in analyzing the stability in the conservative case
is that asymptotic stability can no more be expected. In a recent paper, Dancer and Ortega
[37] have proved the following proposition.

LEMMA 8. A stable isolated fixed point of an orientation preserving local homeomor-
phism on R2 has fixed point index equal to one.

The proof of this result depends upon a variant of Brouwer’s lemma on translation arcs.
One of the given applications is the following result. Let V : R2 → R, (t, y) 
→ V (t, y) be
continuous together with ∂V

∂y
, and T -periodic in t .

LEMMA 9. If y is an isolated T -periodic solution of equation

y ′′ = ∂V

∂y
(t, y), (37)

and y reaches a local minimum on H 1
T of the action functional

ϕ(y)=
∫ T

0

(
y ′2(t)

2
+ V

(
t, y(t)

))
dt,

then y is unstable.
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This result is proved by showing first, through a result of Amann on the computation of
degree of gradient mappings and a relatedness principle of Krasnosel’skii–Zabreiko, that
the index of y is equal to minus one. The result then follows from the previous one.

An immediate consequence for the pendulum equation is the following one.

THEOREM 17. If h ∈ C̃T , any isolated T -periodic solution of Equation (23) minimizing
Ah is unstable.

One can then ask if the above result still holds without the isolatedness assumption.
Ortega [105] has proved the following interesting property of fixed points in the plane.

LEMMA 10. If D ⊂ R is a domain and F :D ⊂ R2 → R2 is real analytical and not the
identity on D, its Jacobian is equal to 1 on D, and if p is a stable fixed point of F, then p
is isolated in the fixed points set of F.

The delicate proof of this result uses Brouwer’s plane translation theorem.
As an application, the following unstability result is proved in [105].

LEMMA 11. If V is real analytic, and y is a T -periodic solution of Equation (37) on which
ϕ has a local minimum on H 1

T , then y is unstable.

An immediate consequence for the forced pendulum equation is the following one.

THEOREM 18. If h ∈ C̃T is analytical, the number of T -periodic solutions of Equa-
tion (23) that are stable and geometrically distinct is finite.

Calanchi and Tarallo [26] have used the Serra–Tarallo reduction method to show the
following result.

THEOREM 19. Assume that a < ω2. Then there exists K = K(a,T ) > 0 such that if
‖h‖2 < K, there exists an increasing and continuous map η : R → R such that, for the
reduction function ϕh, one has

#ϕ−1
h (λ)= #

[
aT cos(·)]−1(

η(λ)
)
.

Furthermore, each critical point of Ah over H 1
T is a local minimum or a point of mountain

pass type.

3.7. Many T -periodic solutions for special forcings

We now raise the question of the possibility of having more than two geometrically distinct
T -periodic solutions for the forced pendulum. In [40], Donati proved the following result.
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THEOREM 20. Given a > 0 and T > 0, there exists h∗ ∈ C̃T and a neighborhood V of
h∗ in C̃T such that for each h ∈ V, Equation (23) has at least four geometrically distinct
T -periodic solutions.

The proof is based upon a classification of singularities of the nonlinear Fredholm operator
d2

dt2
+ a sin(·) over the space of C2 T -periodic functions.

Applying to Equation (16) a classical perturbation method as used for example by Loud
for Duffing’s equation, Ortega [104] has improved this result by replacing 4 by any even
number.

THEOREM 21. Given a > 0 and an integer N � 1, there exists h∗ ∈ C̃T and δ > 0 such
that if h ∈ C̃T is such that ‖h− h∗‖L1 < δ, then Equation (23) has at least 2N geometri-
cally distinct T -periodic solutions.

The idea of the proof consists in considering the equation

y ′′ + a sin
(
y +BT (t)

) = 0, (38)

where BT is defined in (29), which has a continuum (yc)c∈R of T -periodic solutions, and
in considering a perturbation of Equation (38)

y ′′ + a sin
(
y +BT (t)+Ψ (t, ε)

) = 0, (39)

with conditions upon Ψ insuring that BT (t)+ Ψ (t, ε) is smooth and that one has at least
2N periodic simultaneous bifurcations for ε = 0.

We finally describe some recent results obtained by Ureña [127], which cover the possi-
bly dissipative case.

THEOREM 22. For any N ∈ N, the set

SN := {
h ∈ L1

T : (14) has at least N geometrically distinct solutions
}

has nonempty interior in L1
T . More precisely,

(1) intSN ∩ L̃1
T �= ∅ if c= 0;

(2) intSN ∩ {h ∈L1
T : −ε < h̄ < 0} �= ∅ �= intSN ∩ {h ∈ L1

T : 0< h̄ < ε} if c �= 0.

The proof uses the equivalent formulation (16). One first observes that there exists a
necessarily constant h̄ such that the problem

y ′′ + cy ′ + a siny = h̄, y(0)= 0, y(t + T )= y(t)+ 2π

has a unique solution, denoted by yc,T . This is proved by considering the equivalent prob-
lem of finding w ∈ CT solution of equation

v′′ + cv′ + a sin(v +ωt)= h̄−ωc,
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and using Schauder’s fixed point theorem to obtain h̄= h̄c,T for which a solution vc,T ex-
ists. Notice that such a problem is degenerate, and hence has a nontrivial curve of solutions
γ : R → C1

T , a 
→ vc,T (· + a)+ ωa. Some bifurcation technique based upon Lyapunov–
Schmidt decomposition is then used to obtain many solutions bifurcating from such a
closed loop at a constant external force. See [127] for the quite involved details, as well as
for the proof of the following result, when c= 0.

THEOREM 23. Let N ∈ N be given. If c= 0 and

T � 12 log

(√
3 + 1√

2

)
N√
a
,

there exists an open set ON ⊂ L1
T with ON ∩ L̃1

T �= ∅, such that, for any h ∈ ON, Equa-
tion (23) has exactly 2N geometrically distinct T -periodic solutions.

3.8. Many T -periodic solutions for small length pendulum

To motivate a further multiplicity result of perturbation type proved by Fonda and Zanolin
[46] in the forced case, let us recall that for the conservative free pendulum equation (23),
relation (7) implies that, given any positive integer N, Equation (5) has a closed orbit

with least period T
k

for each k = 1,2, . . . ,N, if a > 4π2N2

T 2 . To deal with the forced case,
Fonda and Zanolin use Weiyue Ding’s generalization of the Poincaré–Birkhoff fixed point
theorem [39] for the area-preserving twist homeomorphism given by Poincaré’s operator
P, that we recall now.

Let A be the annulus S1 × [a, b] in R2. If φ :A→ R2 \ {0}, we denote by

F(θ, r) : R × [a, b] → R × [0,+∞[, (θ, r) 
→ (
θ + f (θ, r), g(θ, r)

)
(40)

its lift on the polar coordinates covering space, where f and g are 2π -periodic in θ.
The eldest fixed-point theorem for maps in an annulus is the Poincaré–Birkhoff’s theo-

rem [112,15].

LEMMA 12. Every area-preserving homeomorphism φ :A → A which rotates the two
boundaries in opposite directions, i.e., is such that f (θ, a)f (θ, b) < 0 for all θ ∈ R, has
at least two fixed points in the interior of A.

A more effective version for applications has been given by Weiyue Ding [39].

LEMMA 13. Let A ⊂ R2 \ {0} denote an annular region whose inner boundary Γ1 and
outer boundary Γ2 are closed simple curves around the origin 0 and denote by Di the
open region bounded by Γi, i = 1,2. Let ϕ :A→ R2 \ {0} be an area-preserving homeo-
morphism. Suppose that
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(i) the inner boundary curve Γ1 is star-shaped around the origin,
(ii) ϕ admits a lift F onto the polar coordinate covering space (40), such that f (θ, r) >

0 on the lift of Γ1 and f (θ, r) < 0 on the lift of Γ2,
(iii) there exists an area-preserving homeomorphism ϕ0 : �D2 → R2 which satisfies

ϕ0|A ≡ ϕ and 0 ∈ ϕ0(D1).

Then ϕ has at least two fixed points in the interior of A.

The result of Fonda and Zanolin can be stated as follows.

THEOREM 24. Given any positive integerN, there exists a0 > 0 such that, for any a � a0,
Equation (23) has at least N periodic solutions with minimal period T , which can be
chosen to have exactly 2j simple crossings with 0 in the interval [0, T [ (j = 1,2, . . . ,N).

To prove this result, the authors notice that a simple change of variable transforms Equa-
tion (23) into equation

y ′′ + siny = a−1h
(
a−1/2t

)
(41)

and the T -periodic solutions of Equation (23) correspond to the T
√
a-periodic solutions

of Equation (41). They combine then a perturbation argument together with Ding’s twist
theorem.

3.9. Subharmonic solutions when c= 0

Subharmonic solutions of a T -periodic equation are solutions whose minimal period is a
proper multiple of T .

DEFINITION 9. If k � 2 is an integer, a subharmonic solution of order k of Equation (14)
is a periodic solution of Equation (14) with minimal period kT .

The first existence theorem for the subharmonic solutions of Equation (23) with h ∈ C̃T
have been obtained by Fonda and Willem [45] using Morse theory (see, e.g., [86]). Offin
[96] has proved a close result using an index theory for periodic extremals and a variant of
the mountain pass lemma. The subharmonics of order k are associated to the critical points
of the functional Ah,k defined by

Ah,k(y)=
∫ kT

0

(
y ′2(t)

2
+ a cosy(t)+ h(t)y(t)

)
dt,

over the Sobolev space H 1
kT .
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DEFINITION 10. The Morse index of an isolated T -periodic solution y of Equation (23)
is the supremum of the dimensions of the subspaces of H 1

T on which the quadratic form

χy(v) :=
∫ T

0
(1/2)

{
v′2(t)− [

a cosy(t)
]
v2(t)

}
dt

is negative definite.

If, for λ ∈ R, we denote by σ ′
λ,T and σ ′′

λ,T the characteristic multipliers of the T -periodic
differential equation

v′′ + [
a cosy(t)

]
v + λv = 0,

then y is said to be nondegenerate if 1 /∈ {σ ′
λ,T , σ

′′
λ,T }.Given σ ∈ S1, one defines J (y,T ,σ )

to be the number of negative λ’s for which σ ∈ {σ ′
λ,T , σ

′′
λ,T }. Then J (y,T ,1) is equal to

the Morse index of the T -periodic solution y of (23). Bott’s iteration formula [24] ensures
that

J (y, kT ,1)=
∑
σk=1

J (y,T ,σ ).

THEOREM 25. Suppose that the T -periodic solutions of Equation (23) are isolated and
that every T -periodic solution of Equation (23) having Morse index equal to zero is non-
degenerate. Then there exists k0 � 2 such that, for every prime k � k0, there is a periodic
solution of Equation (23) with minimal period kT . If moreover the kT -periodic solutions
of Equation (23) are nondegenerate for k = 1 and every prime k, there exists k0 � 3 such
that, for every prime k � k0, Equation (23) has at least two periodic solutions with minimal
period kT .

By assumption and an easy reasoning, Ah,1 = Ah has a finite number of critical points
y0, y1, . . . , yn, which, of course, are also critical points of Ah,k for any k � 2. The first
ingredient of the proof consists in showing the existence of some integer k0 such that, for
k � k0 and 0 � i � n, either the Morse index J (yi, kT ,1) of yi is equal to 0 and yi is
nondegenerate, or J (yi, kT ,1)� 2. This is done using Bott’s iteration formula. Now, let
k � k0 be prime, so that the critical points of Ah,k have minimal period T or kT . Assume
now by contradiction that y0, . . . , yn are the only critical points of Ah,k. The Poincaré
polynomial of the space S1 × H̃ 1

T (whose coefficient of tn is the nth Betti number of S1 ×
H̃ 1
T ) is equal to 1 + t , and hence, by the Morse inequalities [86], one has

n∑
j=0

Mk(t, yj )= (1 + t)
(
1 +Q(t)

)
(42)

for some polynomial Q(t) with nonnegative integer coefficients. In this formula,

Mk(t, yj )=
∑
i

dimCi(Ah,k, yj ), Ci(Ah,k, yj )
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is the ith critical group of yj [86], so that dimCi(Ah,k, yj ) = δi,J (yj ,kT ,1) when yj is
nondegenerate. By the claim, if J (yj , kT ,1) = 0, then Mk(t, yj ) = 1, and otherwise, if
J (yj , kT ,1)� 0, then dimCi(Ah,k, yj )= 0 for i = 0,1, and Mk(t, yj ) starts with terms
in t2 at least. So, the left-hand member of (42) contains no term in t, a contradiction. The
proof of the second part of Theorem 25 is similar.

Combining the Fonda–Willem’s theorem with the results of [68], one obtains the generic
existence of subharmonic solutions.

THEOREM 26. There exists an open dense subset G of C̃T such that for every h ∈ G, there
exists k0 � 2 such that, for every prime k � k0, Equation (23) has a periodic solution with
minimal period kT .

As shown in [121], the modified Lyapunov–Schmidt reduction method also provides
some information about subharmonic solutions, by relating their existence to the properties
of ϕh.

THEOREM 27. Equation (23) with h ∈ C̃T has subharmonics of infinitely many distinct
levels if and only if ϕh is not constant. If minH 1

T
Ah is isolated in the set of critical levels

of Ah, then Equation (23) with h ∈ C̃T admits subharmonics of arbitrary large minimal
period if and only if ϕh is not constant. Finally, the isolatedness assumption in the previous
statement can be dropped if a < ω2.

Fonda–Zanolin’s multiplicity result [46] has a counterpart for subharmonic solutions,
proved using the same fixed point technique.

THEOREM 28. Given any two positive integers M,N, there exists a0 > 0 such that, for
any a � a0, Equation (23) has, for each k = 1,2, . . . ,M, at least N periodic solutions
with minimal period kT .

4. Rotating solutions and Mather sets

4.1. Periodic solutions of the second kind

Besides periodic solutions, we have seen the free pendulum has also periodic solutions of
the second kind, which are the sum of a linear function of t and of a periodic term. We
shall study the existence of such solutions for the forced conservative pendulum (23).

DEFINITION 11. y is a periodic solution of the second kind of (23) if there exists p ∈
Z \ {0} and q ∈ N \ {0} such that, for each t ∈ R, one has

y(t + qT )= y(t)+ 2pπ. (43)

Notice that such a solution is such that

y ′(t + qT )= y ′(t)
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for all t ∈ R, and hence, integrating and using (43), we find that

y(t)= p

q
ωt + v(t) (44)

with ω = 2π/T and v some qT -periodic function. Conversely, every solution of (23) of
the type (44) is a periodic solution of second kind. Such a solution has the rotation number

lim
t→±∞

y(t)

ωt
= p

q
. (45)

Under some conditions, the conservative forced pendulum (23) can also admit periodic
solutions of the second kind. First, the change of unknown y(t) 
→ v(t) defined by (44) and
the use of direct methods of the calculus of variations to the transformed equation allows a
very simple proof of the following result [79].

THEOREM 29. For each a > 0, T > 0, q ∈ N \ {0}, p ∈ Z \ {0}, and each h ∈ C̃T , Equa-
tion (23) has at least one solution y satisfying (43).

Such a solution, also called a rotating solution of Equation (23) with rotation number p
q

,
is entirely determined by its values on [0, qT ], and satisfies the boundary conditions

y(qT )= y(0)+ 2pπ, y ′(qT )= y ′(0). (46)

A second geometrically distinct solution also follows from the mountain pass argument.
In the case of an analytic h, Ortega’s approach described in Section 3.7 provides infor-

mation about the number and stability of those rotating solutions [105].

THEOREM 30. If h ∈ C̃T is analytic, given p ∈ Z \ {0} and q ∈ N \ {0}, the number of
stable and distinct rotating solutions with rotation number p

q
of Equation (23) is finite.

4.2. Solutions with an arbitrary rotation number

We shall now show that Equation (23) with h ∈ C̃T also admits solutions having an arbi-
trary rotation number. This follows from some results of Mather [69] and Moser [89,88],
that we sketch in the form given by Denzler [38], which is closer in spirit to the calculus
of variations (see also [95]). Let I = [t1, t2] be given and consider the action functionalAIh
defined on H 1(I ) by

AIh(y)=
∫
I

(
y ′2(t)

2
+ a cosy(t)+ h(t)y(t)

)
dt . (47)

DEFINITION 12. A function y ∈H 1(I ) is called minimal with respect to fixed boundary
conditions on I = [t1, t2], if AIh(z) � AIh(y) for all z ∈ H 1(I ) equal to y at t1 and t2.
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A function y ∈H 1
loc(R) is called a minimal if it is minimal with respect to fixed boundary

conditions on every interval. Finally, a function y ∈ H 1([0, qT ]) is minimal with respect
to condition (43) if, for I = [0, qT ], AIh(z) � AIh(y) for all z ∈ H 1([0, qT ]) satisfying
condition (46).

Notice that the direct method of the calculus of variations easily implies that, for h ∈ C̃T ,
minimal solutions with respect to fixed boundary conditions on a given interval I always
exist, are of class C2, and satisfy Equation (23). From Theorem 29, the same is true for the
functions which are minimal with respect to condition (43). In particular those minimals
have no corners, a fact which is useful in several proofs.

The existence of minimals is not clear from the direct methods of the calculus of varia-
tions, and will follow from a delicate sequence of arguments. We first give some properties
of the minimals [38]. The first one deals with the possible intersections of two different
minimals.

LEMMA 14. Two different minimals can intersect at most once, and are not tangent to
each other anywhere. Two different minimals which are C1 asymptotic as t → ∞ cannot
intersect at all.

The non-tangency is a consequence of the uniqueness of the Cauchy problem. The
first intersection property is proved by contradiction, assuming that two minimals y and
z intersect twice in the interior of some interval I, and noticing that if y∗ = min(y, z),
z∗ = max(y, z), then

AIh
(
y∗)

�AIh(y), AIh
(
z∗

)
�AIh(z),

AIh
(
y∗) +AIh

(
z∗

) =AIh(y)+AIh(z),

so that AIh(y
∗)= AIh(y), y

∗ is minimal and hence y and z must intersect tangentially and
be identical. The asymptotic property follows from the fact that up to an arbitrarily small
error, asymptoticity counts like an intersection.

LEMMA 15. The following statements are equivalent for y ∈H 1
loc(R).

(a) y is minimal and satisfies (43);
(b) y is minimal with respect to condition (43);
(c) y is minimal with respect to condition

y(t +NqT )= y(t)+ 2Npπ

for some positive integer N.

To prove that (b) ⇔ (c), let z be minimal in the sense of (c) and y minimal in the sense
of (b). The translate v(t)= z(t + qT )− 2πp must intersect z at least once because, if not,
one gets inductively a contradiction with the condition in (c). By the periodicity conditions
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v and z intersect infinitely many times and hence coincide. Thus z(t + qT )= z(t)+ 2πp,
and

NA
[0,qT ]
h (z)�NA

[0,qT ]
h (y)=A

[0,NqT ]
h (y)�A

[0,NqT ]
h (z)=NA

[0,qT ]
h (z),

implying (b) ⇔ (c). It is easy to show that (c) ⇔ (a). That (a) ⇔ (b) is equivalent to
showing that all minimals y with fixed boundary conditions verifying (43) yield the same
action over one period. If not the difference between the two actions increases indefinitely
with the number of periods but remains bounded by minimality on the corresponding large
interval.

If y is minimal, the same is true for any of its translates y(t − qT )+ 2pπ. They corre-
spond to the same orbit on the torus R/2πZ × TZ parametrized by the (y, t) coordinates.
The following lemma shows that there are no self-intersections on this torus.

LEMMA 16. A minimal y(t) does not intersect any of its translates y(t − qT )+ 2pπ.

There can be at most one intersetion, say at t0 and w.l.g. we can assume that y(t +
qT ) < y(t)+ 2pπ for t > t0 and y(t + qT ) > y(t)+ 2pπ for t < t0. Let ξ(t) = y(t)−
p
q
ωt and ξn(t) = ξ(t + qnT ). It is easy to show that for t > t0 (respectively t < t0) the

sequence (ξn(t)) (respectively (ξ−n(t))) is decreasing and that one of the two sequences
is bounded from below, say (ξn(t)). Its limit η(t) as n → ∞ satisfies, by construction,
η(t+qT )= η(t).Now, from the differential equation satisfied by ξ(t), one gets that |ξ ′′(t)|
is bounded on the real line and the boundedness of |ξ(t)| on [t0,+∞[ follows from the
above reasoning. Then the same is true for |ξ ′(t)| and Arzela–Ascoli theorem applied to
(ξn) implies its convergence in the C1-topology. As ξn and ξn−1 have the same limit η, y
and its translate are C1-asymptotic, a contradiction to the existence of the intersection t0.

THEOREM 31. Every minimal y has a rotation number

α = lim
t→±∞

y(t)

ωt
.

Moreover,∣∣y(t)− y(0)− αωt
∣∣ � c

(
1 + 2π |α|), (48)∣∣y ′(t)

∣∣ � c, (49)

where the constant c does not depend upon y.

Using Lemma 16 and Denjoy theory for mappings on the circle applied to the conjugate of
the Poincaré mapping over [0, T ] with respect to the projection on the first component of
the phase space, restricted to its translates, one obtains the existence of some α such that∣∣y(jT )− y(0)− 2παj

∣∣ � 1 (j ∈ Z). (50)
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To obtain the inequalities, notice that, as h ∈ C̃T , we can find, using Sobolev inequality,
δ > 0 independent upon y such that, for each z ∈H 1([0, T ]),

−aT + δ

4

∫ T

0

∣∣z′(t)∣∣2 dt �A
[0,T ]
h (z)� aT + δ−1

∫ T

0

∣∣z′(t)∣∣2 dt .

Now if x is the function interpolating linearly y with respect to its values at 0 and T , we
get

−aT + δ

4

∫ T

0

∣∣y ′(t)
∣∣2 dt � A

[0,T ]
h (y)�A

[0,T ]
h (x)

� aT + δ−1
∫ T

0

∣∣x ′(t)
∣∣2 dt

= aT + (T δ)−1
∣∣y(T )− y(0)

∣∣2
.

Consequently, using (50),∫ T

0

∣∣y ′(t)
∣∣2 dt � 8aT

δ
+ 4

T δ2

(
1 + |α|ω)2

,

which gives, for t ∈ [0, T ],

∣∣y(t)− y(0)
∣∣2 =

( ∫ t

0
y ′(s)ds

)2

� t

∫ t

0

∣∣y ′(s)
∣∣2 ds � 8a

δ
+ 4

δ2

(
1 + 2π |α|)2

.

Using inequality (50), inequalities (48) and (49) easily follow.
We can now prove the existence of minimals.

THEOREM 32. For every α ∈ R, there exists a minimal with rotation number α. Further-
more, C1-limits (in the sense of uniform convergence of the function and its derivative on
compact subsets of R) of minimals are minimals, and the rotation number is continuous
(i.e., if a sequence of minimals (yn) with corresponding rotation numbers (αn) converge to
a minimal y with rotation number α in the C1-topology, then α = limn→∞ αn).

The result follows from Theorem 29 and Lemma 15 when α is rational. If α =
limn→∞ pn

qn
is irrational, let yn be a minimal for the boundary conditions

yn(t + qnT )= yn(t)+ 2πpn

such that (translation invariance) |yn(0)| � 2π. For t ∈ [−R,R], Theorem 31 yields esti-
mates ∣∣yn(t)∣∣ �MR,

∣∣y ′
n(t)

∣∣ �M,
∣∣y ′′
n(t)

∣∣ �M
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withM independent of t and n,which gives, by Ascoli–Arzela theorem someC1([−R,R])-
converging subsequence and by a diagonal procedure a subsequence which converges C1

on every compact interval to some limit y. Such a y is minimal with rotation number α.

4.3. Mather set

We now restrict to the case where α is irrational.

THEOREM 33. The translates y(t + jT )− 2kπ of a minimal y are totally ordered. The
ordering is the same as the ordering of jα − k, and is independent of y.

The mapping (j, k) 
→ jα− k is one-to-one and we may write

y(t + jT )− 2kπ := u(t|β), β = jα− k,

with u(t|·) so defined for a dense set of reals β and strictly monotone in β. It can therefore
be easily extended to all real β by

u+(t|β) := lim
γ→β+u(t|γ ), u−(t|β) := lim

γ→β−u(t|γ ),

DEFINITION 13. The Mather sets Mα and Mα(t) of Equation (23) are defined by

M±
α = {

u±(·|β): β ∈ R
}
, M±

α (t)=
{
u±(t|β): β ∈ R

}
,

Mα =M+
α ∪M−

α , Mα(t)=M+
α (t)∪M−

α (t).

It can be shown that they do not depend upon the minimal y chosen for their construction
and that they have the following properties.

THEOREM 34. The Mather sets have the following properties.
(1) Mα(t) is invariant under the Poincaré map y(t) 
→ y(t + T ) and the translation

y 
→ y + 2π .
(2) Mα(t) is closed without isolated points.
(3) Mα(t) does not contain any nonempty closed strict subset invariant under Poincaré

map and translation.
(4) Mα(t) is either R or is nowhere dense.
(5) Mα consists of trajectories of some vector field y ′ = ψ(y, t) defined either on a

Cantor-like part or on the whole of the (y, t)-plane.

Hai Huang has proved in [57], for pendulum-type equations, the generic existence of
invariant cantori (minimal orbits defining a Cantor set on the torus).
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5. KAM theory and Lagrange stability

5.1. Twist mappings

The existence of quasi-periodic solutions to the forced pendulum can be obtained by ap-
plying to the Poincaré’s operator some theorem for twist mappings, that we recall now.

Let A = S1 × [a, b] be an annulus in R2, and φ :A → R2 a mapping with lift (40).
Moser’s twist theorem [87] can be stated as follows.

LEMMA 17. Let l � 5, β ∈ C5(R) be such that |β ′(r)| � ν > 0 for all r ∈ [a, b], let ε > 0,
and let α be an irrational number satisfying the Diophantine conditions∣∣∣∣α − m

n

∣∣∣∣ � γ n−τ ,

for some positive γ, τ, and all integers n > 0, m. Then there exists δ = δ(ε, l, α) > 0 such
that each area-preserving mapping φ :A→ R2 whose lift (40), with f,g ∈ Cl, is such that

|f − β|Cl + |g− r|Cl < νδ,

possesses an invariant curve of the form

θ = τ +w(τ), r = c+ z(τ ),

in A, where w,z are of class C1, 1-periodic, |w|C1 + |z|C1 < ε, c ∈]a, b[, on which φ
takes the form τ → τ + α.

The following result has been proved independently by Levi [66] and by Moser [89,94],
using Moser twist theorem.

THEOREM 35. Assume that h ∈ C̃T . For any α ∈]0,1[ satisfying the set of Diophantine
inequalities∣∣∣∣α − m

n

∣∣∣∣> γ

n2+μ ,

for some γ > 0 and μ > 0, and all integers m,n with n > 0, there exists an integer k0 =
k0(γ,μ) such that the Poincaré mapping associated to (23) possesses, for all integers k
with |k| � k0, a countable set of invariant curves r = fα+k(θ)≡ fα+k(θ + 2π).

Physically, the solutions correspond to quasiperiodic rotations with average angular ve-
locity ω+k. The basic idea of the proof is that, for large velocities y ′, the forced pendulum
equation has solutions which are close to those of the integrable system y ′′ = 0. One first
shows that, because of condition h̄= 0, the Poincaré map P is exact on the phase cylinder
{(y, z) ∈ S1 ×R} (i.e.,

∫
C0
zdy = ∫

C1
zdy if C0 is an arbitrary noncontractible circle going
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once around the cylinder and C1 its image under P). Then one shows that P is C4-close
to a twist mapping for large y ′, namely

P1(θ, r)= θ + r + �H + r1(θ, r), P2(θ, r)= r + r2(θ, r),

where �H = ∫ T
0

∫ t
0 h(τ)dτ dt and ‖r1‖C4 + ‖r2‖C4 <C|z|−1.

Independently, and by the same approach, Jiangong You [130] has proved a similar
result, and has completed it as follows.

Notice that an invariant curve with rotation number α of the Poincaré mapping of Equa-
tion (23) give rise to an invariant torus with rotation numbers (1, α) in the extended phase
space S1 × R × R of the corresponding (t, y, y ′).

THEOREM 36. Equation (23) has an invariant torus if and only if h ∈ C̃T . If it is the case,
there exists α∗ > 0 such that, for every irrational number α > α∗ satisfying the Diophan-
tine condition∣∣∣∣α − m

n

∣∣∣∣> γ

n5/2 ,

for all integers m and n with n > 0, and some γ > 0, Equation (23) has an invariant torus
with rotation number (1, α).

The necessity is proved by observing that the Calabi invariant of P, defined by C(P) =∫
P(γ ) r dθ − ∫

γ
r dθ, where γ is a circle in R × S1 homotopic to a circle {r}× S1, is equal

to h̄. Thus, if P possesses an invariant closed curve which is homotopic to {r} × S1, one
has C(P)= 0, and hence h̄= 0.

We now show that those results imply a property called Lagrange stability, answering a
question raised by Moser in the Introduction of [87].

DEFINITION 14. Equation (23) is called Lagrange stable if any solution of (14) is bounded
over R in the phase cylinder {(y mod 2π,y ′)}.

Physically, this means that any solution of (14) has angular velocity bounded over R.
The Lagrange stability is a consequence of the results of Levi and Moser described above.
See also [67].

THEOREM 37. If h ∈ C̃T , then for any sufficiently large N > 0, there exists M =M(N)

such that any solution y(t) of Equation (23) with |y ′(0)| �M satisfies |y ′(t)| �N for all
t ∈ R.

Independently, You [130] also proved the Lagrange stability of (23) and completed the
result as follows.

THEOREM 38. Equation (23) is Lagrange stable if and only if h ∈ C̃T .
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Indeed, if h̄ = 0, then, from Theorem 36, Equation (23) has an invariant torus with
rotation number (1, α) for infinitely many sufficiently large irrational numbers α. Letting
u= −y, v = −z, Equation (23) becomes

u′′ + a sinu= −h(t),

and has an invariant torus with rotation number (1, α) for infinitely many sufficiently large
irrational numbers α. Thus Equation (23) has an invariant torus with rotation number
(1,−α). One uses two such invariant tori to confine any solutions in their interior. To
prove the necessity, one shows, using the estimates on P, that Equation (23) has a solution
with y ′ unbounded if h̄ �= 0.

The destruction of invariant tori with rotation number (1,ω) and ω a Liouville irrational
in pendulum-type equations has been considered by Hai Huang [56].

Let us notice the Mather’s theory of previous section can also be expressed in the frame
of mappings on an annulus, which enlightens its relation with KAM theory. We keep the
notations of Section 3.8.

DEFINITION 15. φ :A→ A is a monotone twist homeomorphism if it preserves orienta-
tion, preserves boundary components of A and if its lift (40) is such that f (θ, ·) is strictly
monotone for each θ. For definiteness, we assume it to be increasing.

Let Fj (θ, r)= (θj , rj ), and

αr(φ)= lim
j→∞

θj

j

be its rotation number. The twist interval of φ, [αa(φ),αb(φ)], is defined up to an integral
translation.

If φq(z) = z, then Fq(θ, r) = (θ + 2pπ, r), for some integer p determined up to a
multiple of q.

p
q

is the rotation number of z. One calls a point z= (θ, r) a Birkhoff point of type (p, q)
if there exists a sequence (θn, rn)n∈Z such that (θ0, r0)= (θ, r), θn+1 > θn, (θn+q, rn+q )=
(θn + 2π, rn+q), (θn+q, rn+q )= F(θn, rn) (n ∈ N). One has Birkhoff’s twist theorem [16].

LEMMA 18. Let φ :A→A be an area-preserving monotone twist homeomorphism and

p

q
∈ [
αa(φ),αb(φ)

]
,

with p,q relatively prime. Then φ has at least two Birkhoff points of type (p, q).

The situation is different for α irrational.
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DEFINITION 16. A Mather set of rotation number α for F is a closed invariant set for F
with representation θ = u(τ), r = v(τ ), where u is monotone increasing, u− Id and v are
1-periodic (not necessarily continuous !), and

u(τ + α)= u(τ)+ f
(
u(τ), v(τ )

)
, v(τ + α)= g

(
u(τ), v(τ )

)
.

One has the Aubry–Mather’s twist theorem [7,69].

LEMMA 19. Let φ :A→ A be an area-preserving monotone twist homeomorphism and
let α ∈ [αa(φ),αb(φ)] be irrational. Then there exists an invariant Mather set Γα with
rotation number α. Furthermore, Γα is a subset of a closed curve r = γ (θ) where γ is
2π -periodic and Lipschitz continuous, i.e., v(τ )= γ (u(τ )).

When u and v are continuous, Γα defines a Lipschitz continuous invariant curve. When
u and v have countably many discontinuities, Γα can be seen as a Cantor set on the curve
r = γ (θ).

5.2. Chaotic dynamics

We first recall the definition of chaotic dynamics.

DEFINITION 17. Equation (23) displays chaotic dynamics if
(i) the solutions of Equation (23) depend sensitively on the initial conditions;

(ii) Equation (23) has infinitely many periodic solutions with diverging periods;
(iii) Equation (23) has an uncountable number of bounded, nonperiodic solutions;
(iv) the Poincaré map associated to Equation (23) has positive topological entropy.

The following definition is due to Serra, Tarallo and Terraccini [121]. Without loss of
generality we take T = 1. Let n� 1 be an integer, h ∈ C̃1, and

Ah,n :H 1
n → R, y 
→

∫ n

0

[
y ′2(t)

2
+ a cosy(t)+ h(t)y(t)

]
dt .

DEFINITION 18. y0 and y1 are consecutive minimizers of Ah on H 1
n if

(1) Ah,n(y0)=Ah,n(y1)= minH 1
n
Ah,n := ch,n.

(2) y0(t) < y1(t) for all t ∈ [0, n].
(3) y ∈H 1

n ∩ [y0, y1] and Ah,n(y)= ch,n imply y ∈ {y0, y1}.
This notion is weaker than the isolatedness or nondegeneracy of minimizers in the vari-

ational sense.
Write y(±∞)= u if limt→±∞(y(t)− u(t))= 0, and, following an idea of Rabinowitz

[115], define the functional J by

J (y)=
∑
j∈Z

( ∫ (j+1)n

jn

[
y ′2(t)

2
+ a cosy(t)+ h(t)y(t)

]
dt − ch,n

)
(51)
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over the classes of functions

Γ (y0, y1)=
{
y ∈H 1

loc: y(−∞)= y0, y(+∞)= y1
}
,

Γ (y1, y0)=
{
y ∈H 1

loc: y(−∞)= y1, y(+∞)= y0
}
. (52)

Define

I = ]y0(0), y1(0)[,
S(y0, y1)=

{
y(0) ∈ I: : y ∈ Γ (y0, y1), J (y)= min

Γ (y0,y1)
J

}
,

S(y1, y0)=
{
y(0) ∈ I: y ∈ Γ (y1, y0), J (y)= min

Γ (y1,y0)
J

}
.

The following result has been proved in [21].

THEOREM 39. Let h ∈ C̃1. If Ah,n has two consecutive minimizers y0 and y1 and if

S(y0, y1) �= I and S(y1, y0) �= I, (53)

then Equation (23) displays chaotic dynamics.

A first important step in proving the above theorem, which is interesting in itself, is the fol-
lowing existence result for heteroclinic (or one-bump) solutions between two consecutive
minimizers y0 and y1 on H 1

1 .

PROPOSITION 6. Let c0 = infΓ (y0,y1) J, c1 = infΓ (y1,y0) J. There exists q0 ∈ Γ (y0, y1)

and q1 ∈ Γ (y1, y0) such that J (q0)= c0, J (q1)= c1. The functions q0 and q1 solve Equa-
tion (23).

A second step is the existence of multi-bump solutions. One makes the convention that the
indices in y, c, q, . . . have to be taken mod 2.

PROPOSITION 7. Assume that y0 and y1 are two consecutive minimizers of Ah over H 1
1

and that condition (53) holds. Then, for every sufficiently small δ > 0, there exists m =
m(δ) ∈ N such that for every sequence (pi)i∈Z such that pi+1 − pi � 4m, and for every
j, k ∈ Z with j < k, there exists a classical solution q of Equation (23) satisfying

y0(t) < q(t) < y1(t) (t ∈ R),

q(−∞)= yj , q(+∞)= yk+1,

and, for all i = j, . . . , k,∣∣q(pi −m)− yi(pi −m)
∣∣ � δ,

∣∣q(pi +m)− yi+1(pi +m)
∣∣ � δ.
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From this result, one deduces the existence of solutions with infinitely many bumps.

PROPOSITION 8. Assume that y0 and y1 are two consecutive minimizers of Ah over H 1
1

and that condition (53) holds. Then, for every sufficiently small δ > 0, there exists m =
m(δ) ∈ N such that for every sequence (pi)i∈Z such that pi+1 − pi � 4m, there exists a
classical solution q of Equation (23) satisfying

y0(t) < q(t) < y1(t) (t ∈ R),

and ∣∣q(pi −m)− yi(pi −m)
∣∣ � δ,

∣∣q(pi +m)− yi+1(pi +m)
∣∣ � δ (i ∈ Z).

Notice that, by choosing the points pi in a periodic way, a slight modification of the
argument gives the existence of infinitely many periodic solutions of Equation (23) with
arbitrary large period. Notice also that is has been shown in [21] that condition (53) is
weaker than the standard transversality assumption.

A natural question is to see for which h is assumption (53) satisfied. A result in this
direction has been given in [22,23]. Let

C̃ :=
⋃
n∈N

C̃n,

endowed with the L∞-topology.

THEOREM 40. There exists a dense subset H of C̃ such that for every h ∈ H, Equa-
tion (23) displays chaotic dynamics. Moreover, for all n ∈ N, H ∩ H̃ 1

n is open in H̃ 1
n .

To prove this theorem, one first refers to Theorem 10 to prove the result in a simplified
setting. If h ∈ C̃n, y ∈ H 1

n is a true minimizer for Ah,n over H 1
n if Ah,n(y) = ch,n and

ȳ ∈ [0,2π[.

PROPOSITION 9. For each positive integer n, the set Hn of forcing terms h ∈ C̃n, such
that Ah,n has only one nondegenerate true minimizer over H 1

n is dense in H 1
n , and open in

H 1
kn for any fixed k ∈ N.

Taking then h ∈Hn, fixing k ∈ N and h1 ∈ H̃ 1
kn, one considers the perturbed equation

y ′′ + a sin y = h(t)+ εh1(t) (54)

for ε small, yε0 its true minimizer and yε1 = yε0 + 2π. Regularity estimates are obtained on
some associated heteroclinic orbits, using in particular a Lyapunov–Schmidt argument, and
this regularity is used to compute some analogue of a primitive of the Melnikov function,
in the line of [3].

Similar results have been obtained by Offin and Yu Hongfan [97].
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6. Bounded forcing

6.1. Bounded functions and their averages

T -periodic functions are special cases of bounded functions.

DEFINITION 19. The function p : R → R is called bounded if there exists M > 0 such
that, for all t ∈ R, |p(t)| �M.

The concept of mean value of a T -periodic function has been extended by Tineo [124]
to some classes of functions containing the bounded ones.

DEFINITION 20. Let p = p∗ + p∗∗ : R → R be continuous,with p∗∗ bounded and p∗
having a bounded primitive. The lower (respectively upper) average of p is defined by

p̄L = lim
r→+∞ inf

t−s�r

1

t − s

∫ t

s

p(u)du,

(respectively

p̄U = lim
r→+∞ sup

t−s�r

1

t − s

∫ t

s

p(u)du).

It is easy to verify that

−∞< p̄L � p̄U <+∞,

p̄L = p̄∗∗
L , p̄U = p̄∗∗

U ,

and that, if p is continuous and T -periodic,

p̄L = p̄U = p̄.

Notice also that if p is continuous and T -periodic, then p̄ = 0 if and only if p has a T -
periodic primitive.

6.2. A necessary condition for the existence of bounded solutions

Let g : R × R → R be bounded over R × [−r, r] for each r > 0 and continuous, and con-
sider the differential equation

y ′′ + cy ′ = g(t, y). (55)

DEFINITION 21. A solution y : R → R of Equation (55) is said to be bounded if y and y ′
are bounded.
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Consider the dissipative forced pendulum-type equation

y ′′ + cy ′ + a siny = h(t), (56)

where a > 0, c� 0, and h : R → R is continuous and bounded. It is easy to extend Propo-
sition 1 to bounded forcings and bounded solutions.

PROPOSITION 10. If Equation (56) has a bounded solution, then

−a � h̄L � h̄U � a. (57)

To show this result, one notices that, if y is a bounded solution of (56), one has, for each
t > s,

y ′(t)− y ′(s)
t − s

+ c
y(t)− y(s)

t − s
+ a

t − s

∫ t

s

sin y(τ)dτ = 1

t − s

∫ t

s

h(τ )dτ,

and, given ε > 0, one can find T0 such that, for all T � T0 and all t, s such that t − s � T ,

one has

−ε � y(t)− y(s)

t − s
� ε, −ε � y ′(t)− y ′(s)

t − s
� ε.

Consequently, for t − s � T , we get

−(1 + c)ε− a � 1

t − s

∫ t

s

h(τ )dτ � (1 + c)ε+ a,

and (57) follows easily.

6.3. Sufficient conditions for the existence of bounded solutions

The following existence result for bounded solutions of Equation (55) goes back Opial [98]
(see also [80]).

LEMMA 20. If there exists r− < r+ such that

g(t, r−)� 0 � g(t, r+)

for all t ∈ R, then Equation (55) has at least one bounded solution such that

r− � y(t)� r+

for all t ∈ R.
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The first easy consequence for Equation (56) is the one-dimensional case of a result for
elliptic partial differential equations due to Fournier, Szulkin and Willem [48].

THEOREM 41. If c� 0 and if

−a � h(t)� a, (58)

for all t ∈ R, Equation (56) has at least one bounded solution y such that

π

2
� y(t)� 3π

2

for all t ∈ R.

REMARK 1. It is clear that condition (58) implies condition (57).

Another existence result, first proved in [81], follows from applying Lemma 20 to an
equivalent formulation for the forced pendulum problem together with the following result
of Ortega on bounded solutions of second order linear equations [103] (see also [80]). We
define as usual the oscillation oscRz of the function z : R → R by

oscR z= sup
R

z− inf
R

z.

LEMMA 21. If c > 0 and h : R → R is continuous, then equation

y ′′ + cy ′ = h(t) (59)

has a bounded solution if and only if h has a bounded primitive. If it is the case, any
bounded solution y of Equation (59) verifies the inequality

oscR y � 1

c
oscRH, (60)

where

H(t)=
∫ t

0
h(s)ds.

Furthermore, for each h with bounded primitive, Equation (59) has a unique (symmetrized)
bounded solution Hc such that

sup
R

Hc = − inf
R

Hc = 1

2
oscRHc. (61)
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THEOREM 42. If c > 0, h= h∗ + h∗∗ where h∗∗ is bounded and h∗ has a bounded prim-
itive over R, and if inequalities

oscRH
∗
c � π, (62)

and

∥∥h∗∗∥∥∞ � a cos

(
oscRH

∗
c

2

)
(63)

hold, where H ∗
c is the symmetrized bounded solution of y ′′ + cy ′ = h∗(t), then Equa-

tion (56) has at least one solution y such that

π

2
+H ∗

c (t)� y(t)� 3π

2
+H ∗

c (t),

for all t ∈ R. When c= 0, the above result holds if h∗∗ = 0, h= h∗ has a second primitive
H 1 bounded over R and H ∗

c is replaced by H 1 in (67).

To prove this theorem, one sees that y is a bounded solution of Equation (56), if and
only if z defined by

y(t)= z(t)+H ∗
c (t),

is a bounded solution of equation

z′′ + cz′ + a sin
(
z+H ∗

c (t)
) = h∗∗(t). (64)

One checks easily that the conditions of Lemma 20 hold for r− = π/2 and r+ = 3π/2.

REMARK 2. If follows from inequality (60) that, given h= h∗ +h∗∗, condition (62) holds
as soon as

c� 1

π
oscRH

∗.

Consequently, when h has a bounded primitive, Equation (56) has a bounded solution for
all sufficiently large c. The question remains open for other values of c.

6.4. Local uniqueness of bounded solutions

By straightening the assumptions of Theorems 41 and 42, one obtains the local uniqueness
of the obtained bounded solutions by using a maximum principle proved in [19].
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LEMMA 22. Let α > 0, β ∈ R and γ : R → R bounded and continuous. If the function
r ∈ C2(R,R) is bounded together with its first two derivatives and satisfies the differential
inequality

r ′′(t)� γ (t)r ′(t)+ αr(t)− β,

then

sup
R

r � β

α
.

LEMMA 23. Let c ∈ R and f : R → R be bounded, continuous and such that

f (t)� −δ < 0

for all t ∈ R. Then the unique bounded solution of equation

y ′′ + cy ′ + f (t)y = 0

is the trivial one.

THEOREM 43. If c� 0 and if

‖h‖∞ < a, (65)

holds, there exists ε > 0 such that Equation (56) has a unique solution y such that

π

2
+ ε � y(t)� 3π

2
− ε (66)

for all t ∈ R.

This result follows from the fact that for some sufficiently small ε > 0, r− = π
2 + ε and

r+ = 3π
2 − ε satisfy the condition of Lemma 20 and that cosu� −δ for some δ > 0 when

u ∈ [r−, r+]. The uniqueness then follows from Lemma 23.

THEOREM 44. If c > 0, h= h∗ + h∗∗ where h∗∗ is bounded and h∗ has a bounded prim-
itive over R, and if inequalities

oscRH
∗
c <

π

2
, (67)

∥∥h∗∗∥∥∞ � a
√

2

2

[
sin

(
oscRH

∗
c

2

)
+ cos

(
oscRH

∗
c

2

)]
, (68)
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hold, then there exists ε > 0 such that Equation (56) has a unique solution y satisfying the
inequality

π

2
+ ε � y(t)� 3π

2
− ε, (69)

for all t ∈ R. When c= 0, the above result holds if h∗∗ = 0, h= h∗ has a second primitive
H 1 bounded over R and H ∗

c is replaced by H 1 in (67).

The proof follows lines similar to that of Theorem 43.

7. Almost periodic forcings

7.1. Almost periodic functions

An interesting intermediate class between the bounded and the periodic functions is the
class of almost periodic solutions in the sense of H. Bohr [44].

DEFINITION 22. f : R → R is (Bohr)-almost periodic if, for each ε > 0, there exists
L> 0 such that any interval of length L contains at least some τ such that ∀ t ∈ R,
|f (t + τ )− f (t)|< ε.

Such a function is necessarily bounded and uniformly continuous over R. The following
result gives an alternative definition of the space AP(R) of (Bohr)-almost periodic func-
tions. Let us denote by TP(R) the space of real trigonometric polynomials

pN(t)=
N∑

k=−N
pk exp(iλkt),

where pk = p̄−k and λk ∈ R (−N � k �N).

LEMMA 24. The space AP(R) is the closure of TP(R) for the uniform norm over R.

If f ∈ AP(R) and λ ∈ R, the limit

fλ := lim
T→∞

1

T

∫ T

0
f (t) exp(−iλt)dt

exists, f̄λ = f−λ, and the set Λ of λ ∈ R for which fλ �= 0 is at most countable. The series∑
λ:fλ �=0

fλ exp(iλt) (70)
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is called the Fourier series associated to f. The Fourier coefficient

f0 = lim
T→∞

1

T

∫ T

0
f (t)dt

is called the mean value of f. If f has an almost-periodic primitive, then f0 = 0, but, in
contrast to the periodic case, an almost periodic function with mean value zero needs not
to have an almost-periodic primitive. It is only the case if its primitive is itself bounded.

More general classes of almost periodic functions have been defined by Besicovitch
[14]. If p ∈ TP(R) define ‖p‖B2 by

‖p‖B2 =
[

lim sup
T→∞

{
1

T

∫ T

0

∣∣p(t)∣∣2 dt

}]1/2

,

and define B2(R) to be the space of equivalence classes of functions f : R → R such that
limn→∞ ‖f −pn‖B2 = 0 for some sequence (pn) in TP(R), under the equivalence relation

f ∼ g ⇔ ‖f − g‖B2 = 0. (71)

If f and g belong to B2(R), and λ ∈ R, one can show that the limits

lim
T→∞

1

T

∫ T

0

∣∣f (t)∣∣2 dt,

〈f,g〉B2 := lim
T→∞

1

T

∫ T

0
f (t)g(t)dt,

fλ := lim
T→∞

1

T

∫ T

0
f (t) exp(−iλt)dt

exist and that fλ �= 0 on an at most countable set, so that the Fourier series (70) of f is
well defined. Because of the fact that two functions in the same equivalence class for (71)
can differ on a set of positive and even of infinite measure, the use of B2(R) in the study
of differential equations gives rather weak existence assertions. Work in this direction for
Equation (56) has been done by Belley, Fournier and Saadi Drissi [11,12], who have also
considered some subspaces of B2(R) whose functions behave more like periodic ones.

7.2. Almost periodic solutions

Combining some results on the existence and uniqueness of bounded solutions over R with
Amerio’s criterion on the existence of almost periodic solutions (see, e.g., [44]), Fink [43]
has given in 1968 some partial extension of the method of upper and lower solutions to
almost periodic solutions. A special case of his results is the following proposition.
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LEMMA 25. Let c ∈ R, g ∈ C1(R,R) and h be continuous and almost periodic. Assume
that there exist r− < r+ such that g′(x) > 0 for all x ∈ [r−, r+], and

g(r−)+ h(t)� 0 � g(r+)+ h(t)

for all t ∈ R. Then equation

y ′′ + cy ′ = g(y)+ h(t)

has a unique almost periodic solution y such that a � y(t)� b for all t ∈ R.

Notice that, as shown by Ortega and Tarallo [109], the monotonicity condition on g cannot
be dropped in Lemma 25.

Lemma 25 implies the following existence theorem [81], also proved independently by
Fournier, Szulkin and Willem [48] as a special case of a more general result for elliptic
partial differential equations. When c= 0, Theorem 45 generalizes an earlier approximate
solvability result of Blot [17] for Equation (23), based upon variational techniques and con-
vex analysis, which only provides the existence for a dense subset of forcing functions h.

THEOREM 45. For each c � 0 and each h ∈ AP(R) such that ‖h‖∞ < a, Equation (56)
has a unique solution y ∈ AP(R) such that π/2< y(t) < 3π/2 for all t ∈ R.

Indeed, the condition upon ‖h‖∞ implies the existence of ε > 0 such that a = π
2 + ε and

b= 3π
2 − ε satisfy the conditions of Lemma 13.

Similar arguments applied to the equivalent formulation of the forced pendulum equa-
tion lead to the following existence theorem, first proved in [81]. When c= 0, Theorem 46
generalizes an earlier approximate solvability result of Blot [18] for Equation (23), based
upon variational techniques and convex analysis, which gives existence for a dense subset
of forcing functions h only. Subsequently, Blot and Pennequin [20] have extended Blot’s
result to the case of quasi-periodic forcing terms.

THEOREM 46. If c > 0, h= h∗ + h∗∗ where h∗∗ is almost periodic and h∗ has an almost
periodic primitive, and if conditions (67) and (68) are satisfied, then there exists ε > 0
such that Equation (56) has a unique almost periodic solution verifying inequality (69).
If c = 0, and h ∈ C has an almost periodic second primitive H 1 satisfying (67) with H ∗

c

replaced by H 1, then the same conclusion holds.

The following result of Lagrange unstability-type for almost periodic forcings has been
proved by Hai Huang [58].

THEOREM 47. Equation (23) possesses infinitely many unbounded solutions on a cylinder
S1 × R for any almost periodic h with nonvanishing mean value.
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[33] J. Čepička, P. Drábek and J. Jenšiková, On the stability of periodic solutions of the damped pendulum
equation, J. Math. Anal. Appl. 209 (1997), 712–723.

[34] K.C. Chang, On the periodic nonlinearity and the multiplicity of solutions, Nonlinear Anal. 13 (1989),
527–537.

[35] A. Chenciner, La dynamique au voisinage d’un point fixe elliptique conservatif : de Poincaré et Birkhoff à
Aubry et Mather, Séminaire Bourbaki No. 622, Astérisque, Vols. 121–122 (1985), 147–170.

[36] E.N. Dancer, On the use of asymptotics in nonlinear boundary value problems, Ann. Mat. Pura Appl. (4)
131 (1982), 167–185.

[37] E.N. Dancer and R. Ortega, The index of Lyapunov stable fixed points in two dimensions, J. Dynamics
Differential Equations 6 (1994), 631–637.

[38] J. Denzler, Mather sets for plane Hamiltonian systems, J. Appl. Math. Phys. (ZAMP) 38 (1987), 791–812.
[39] Weiyue Ding, A generalization of the Poincaré–Birkhoff theorem, Proc. Amer. Math. Soc. 88 (1983), 341–

346.
[40] F. Donati, Sur l’existence de quatre solutions périodiques pour l’équation du pendule forcé, C. R. Acad.

Sci. Paris I 317 (1993), 667–672.
[41] F. Donati, Some remarks about periodic solutions to the forced pendulum equation, Differential Integral

Equations 8 (1995), 141–149.
[42] Yihong Du, A deformation lemma and some critical point theorems, Bull. Austral. Math. Soc. 43 (1991),

161–168.
[43] A.M. Fink, Uniqueness theorems and almost periodic solutions to second order differential equations,

J. Differential Equations 4 (1968), 543–548.
[44] A.M. Fink, Almost Periodic Differential Equations, Lecture Notes in Math., Vol. 377, Springer, Berlin

(1974).
[45] A. Fonda and M. Willem, Subharmonic oscillations of forced pendulum-type equations, J. Differential

Equations 81 (1989), 215–220.
[46] A. Fonda and F. Zanolin, Periodic oscillations of forced pendulums with very small length, Proc. Roy. Soc.

Edinburgh A 127 (1997), 67–76.
[47] G. Fournier and J. Mawhin, On periodic solutions of forced pendulum-like equations, J. Differential Equa-

tions 60 (1985), 381–395.
[48] G. Fournier, A. Szulkin and M. Willem, Semilinear elliptic equations in RN with almost periodic or

unbounded forcing term, SIAM J. Math. Anal. 27 (1996), 1653–1660.
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2.3. Versions of the Ważewski theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
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1. Introduction

The main subject of this note is the retract method introduced by Tadeusz Ważewski. It
is a method of proving the existence of solutions which remain in a given set and refers
to differential equations describing some evolution in time. The sets under consideration
should satisfy the condition “all egress points are strict” or its less restrictive variant. Now
they are called Ważewski sets. The method is based on theorems which roughly assert that
there is a solution contained a Ważewski set for all positive values of time if the subset of
egress points is not a retract of the whole set (which explains the name of the method). If,
moreover, the set is compact then its invariant part (i.e., the set of full solutions contained
in it) is nonempty. For isolating blocks, i.e., compact Ważewski sets which do not contain
any full solutions intersecting their boundaries, Charles Conley discovered a homotopical
invariant which provides a quantitative information on their invariant parts. It is called
the Conley index. The Conley index theory, both from a point of view of continuous and
discrete-time dynamical systems, was presented by Mischaikow and Mrozek in Chapter 9
of Handbook of Dynamical Systems, vol. 2, within the current series of handbooks edited
by Elsevier Science B.V. (see [50]).

In this note we describe the Ważewski method in details and provide an information on
foundations of the Conley index theory which directly relates to the method and essentially
does not overlap with the exposition of Mischaikow and Mrozek. We begin with a short
introduction to the method and to the theory related to the index in a historical context.

1.1. Historical background of topological methods

The modern understanding of mechanics begins since the fundamental research of Newton
in the XVII century. In order to formulate the rules of motion, Newton introduced the con-
cept of differential equation. The equations which appear in mechanics belong mainly to
the class of ordinary differential equations. They are characterized by a distinguished para-
meter interpreted as time and, if some regularity conditions are imposed, the initial data de-
termine the whole solution. It was clear from the beginning that in general one cannot find
analytical formulas for such solutions. Instead of rigorous description, numerical meth-
ods usually provide satisfactory approximations of solutions in bounded time-intervals.
Possibility of calculation of such approximations contributed mainly to the successful de-
velopment of applied mechanics.

However, numerical methods fail in general if one is interested in the global behavior
of the solution, i.e., in the whole domain, up to the left and right range of time of its
existence. For a given initial data, usually it is impossible to determine whether the solution
represents a periodic motion and to predict the asymptotic behavior at the limits of its
existence. As it was observed by Henri Poincaré at the end of the XIX century, the behavior
of solutions can be very complicated and have a chaotic character, hence one cannot expect
to determine the full information on the dynamics generated by a given equation. Even a
proof of the existence of a solution with prescribed behavior (periodic, almost-periodic,
bounded, chaotic, satisfying some boundary conditions, etc.) is usually a difficult task.
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Poincaré initiated systematic studies on the global understanding of solutions and dy-
namics, which are known under the name of qualitative theory of differential equations, or,
in a more general context, theory of dynamical systems. Besides analytical arguments he
used methods of topology and algebra. Research on limit cycles and indexes of zeroes of
planar vector fields, periodic solutions of Hamiltonian systems (in particular, based on his
“twist theorem”), and stability of the Solar system belong to his most known results on that
field. He also contributed essentially in the development of variational methods applied to
boundary value problems.

One of the greatest achievements of Poincaré was the introduction of algebraic topology
(called by him “analysis situs”). Among the results which were proved by its applica-
tion, there were the fixed point theorems of L.E.J. Brouwer (1912) and Salomon Lefschetz
(1923) which found natural applications in the qualitative theory of differential equations.
Brouwer introduced also the concept of the degree of a vector-field. A related notion of the
fixed point index was invented later by Jean Leray. The Brouwer fixed point theorem and
the degree were generalized to the infinite-dimensional case by Juliusz Schauder in 1930
and, respectively, by Leray and Schauder in 1934. Together with variational methods, they
form the main tools in proofs of results on existence of solutions of initial and boundary
value problems in nonlinear differential equations. The idea of their application consists
in suitable choice of an operator acting on a function space in which the original problem
reduces to the existence of its fixed point or its zero. In variational methods, the existence
of a solution of the problem is equivalent to the existence of a critical point of a suitable
functional. An essential progress in development of these methods were done by Marston
Morse in 1925 who invented the theory of critical points which now bears his name and by
Lusternik and Schnirelmann by their research on the concept of category in 1930. It seems
that the next major achievement in topological approach to differential equations was done
by Tadeusz Ważewski (1896–1972) by introducing the retract method in the middle of the
twentieth century.

1.2. An outline of the Ważewski method in a historical context

The following definition provides the notion of a retract introduced by Karol Borsuk in the
paper [13] from 1931. Let X be a topological space and let A be its subset.

DEFINITION 1.1. A continuous map r :X → A such that r(a) = a for every a ∈ A is
called a retraction. A is called a retract of X if there exists a retraction X → A. A con-
tinuous map r :X → A is called a strong deformation retraction if it is equal to the map
x 
→ h(x,1), where h :X × [0,1] → X is a continuous map such that h(x,0) = x and
h(x,1) ∈ A for every x ∈ X, and h(a, t)= a for every a ∈ A and t ∈ [0,1]. A is called a
strong deformation retract of X if there exists a strong deformation retraction X→A.

Obviously, a strong deformation retract is also a retract and a retract of a connected
set is also connected. Moreover, it is well known that the Brouwer fixed point theorem is
equivalent to the fact that the unit sphere Sn−1 in Rn is not a retract of the closed unit
ball Bn.
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In 1947, Ważewski presented the paper [85] in which he proved a theorem on the exis-
tence of solutions which are contained in given set for all positive values of time. In the
contemporary used mathematical notation the theorem can be described as follows. As-
sume that v is a continuous vector-field on M , where M is an open subset of Rn (it can be
a smooth manifold without boundary as well). We refer to M as to the phase-space. It is
assumed that through each point x0 of M passes a unique saturated solution t 
→ φ(x0, t)

of the Cauchy problem

ẋ = v(x), (1.1)

x(0)= x0. (1.2)

The map φ : (x, t) 
→ φ(x, t) is a called local flow; its purely topological description is
provided in Definition 2.1. Let us mention here that usually φ(x, t) is not defined for all t
and by the trajectory (respectively, the positive semitrajectory, the negative semitrajectory)
of x we mean the set of all points φ(x, t) (respectively, the set of all points φ(x, t) with
t � 0, all points φ(x, t) with t � 0) whenever they are defined.

Let V be an open subset of the phase space. Let x ∈ ∂V . Some types of behavior of the
trajectory of x with respect to V are described in the following

DEFINITION 1.2. x is called an egress point of V if there exists an ε > 0 such that
φ(x, t) ∈ V for −ε < t < 0. If, moreover, φ(x, t) ∈ \V for 0 < t < ε then x is called a
strict egress point. Symmetrically, by reversing t to −t , one defines an ingress point and a
strict ingress point. Finally, x is called an outward tangency point of V if there exists an
ε > 0 such that φ(x, t) ∈ \V for t ∈ (−ε, ε) and t �= 0.

The points distinguished in the above definition can be visualized on Figure 1, where
there are shown fragments of trajectories of some planar equation near the boundary of a
square. The open vertical sides of the square consist of strict egress points, the open hori-
zontal sides consists of strict ingress points, and the four vertices form the set of outward
tangency points.

Fig. 1.
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Denote by E the set of egress points. There is a distinguished subset V ∗ of V consisting
of points which escape from V in a positive time, i.e., points x ∈ V for which there exists
a t > 0 such that φ(x, t) /∈ V . For every x ∈ V ∗ one can assign the first time in which it
gets the boundary of V . That time is called the escape-time of x and is denoted by σ(x);
by definition, it is a positive number such that φ(x, [0, σ (x)))⊂ V and φ(x,σ (x)) ∈ E.
The latter point is called the consequent of x . Both notions are extended to E: for x ∈ E
put σ(x)= 0 and define the consequent of x as x itself.

Let Y ⊂E and let Z ⊂ V ∪ Y . The main theorem [85, Theorem 1] is the following:

WAŻEWSKI THEOREM. If all egress points are strict egress points and
• Z ∩ Y is a retract of Y ,
• Z ∩ Y is not a retract of Z

then there exists an x0 ∈ Z such that
• either the positive semitrajectory of x0 is contained in V
• or x0 ∈ V ∗ and the consequent of x0 belongs to E \ Y .

In particular, the second possibility in the conclusion is trivially excluded if Y = E

(compare [85, Theorem 2]). If we exchange egress points by ingress points in the statement
of the theorem, we obtain a result on the existence of a negative semitrajectory.

Originally, the Ważewski method (or the retract method) consisted in applications of the
theorem in proofs of the existence of solutions representing some special properties, usu-
ally referred to its asymptotic behavior. As it was indicated in [85], a suitable choice of the
sets Z and Y leads also to proofs of the existence of solutions of some two-point boundary
value problems. In [85], Ważewski pointed out also how to drop the assumption on the
uniqueness of the Cauchy problem if the considered set Z is compact and V is a polyfa-
cial set, which roughly means that it is described by some strong inequalities (compare
Sections 3.1 and 3.2).

In the following examples we illustrate the usability of the Ważewski method.

EXAMPLE 1.1. Consider a planar equation given by

ẋ = f (t, x, y),

ẏ = g(t, x, y).
(1.3)

in the (x, y)-coordinates. Assume that

xf (t, x, y) > 0, if t is arbitrary, |x| = 1, |y| � 1, (1.4)

yg(t, x, y) < 0, if t is arbitrary, |x| � 1, |y| = 1. (1.5)

After extending the plane by the time variable, (1.3) provides an autonomous equation
represented by

ṫ = 1, ẋ = f (t, x, y), ẏ = g(t, x, y) (1.6)
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Fig. 2.

in the coordinates of R3. Assume that the uniqueness of the Cauchy problem is guaranteed.
Put

V =: {
(t, x, y) ∈ R3: |x|< 1, |y|< 1

}
. (1.7)

It is an infinite rectangular tube which part is shown on Figure 2. It follows by the inequal-
ities (1.4) and (1.5) that the set of egress points

E := {
(t, x, y) ∈ R3: |x| = 1, |y|< 1

}
(1.8)

consists of strict egress points. It forms two shaded sides of the tube on the figure. Let

Z := {
(0, x,0)∈ R3: |x| � 1

}
, (1.9)

i.e., the black bar inside the plane {t = 0}. It follows that Z ∩E consists of two ends of Z,
hence it is not a retract of Z. On the other hand, each end is a retract of the corresponding
side, hence there is a retraction E → Z∩E. It follows by the Ważewski theorem that there
exists an x0, |x0|< 1 such that the solution (φ,ψ) of (1.3) with φ(0)= x0 and ψ(0)= 0,
satisfies ∣∣φ(t)∣∣< 1,

∣∣ψ(t)∣∣ < 1

for each t � 0.

EXAMPLE 1.2. Consider the boundary-value problem

y(0)= x(1)= 0 (1.10)
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Fig. 3.

associated to (1.3). It means that we are looking for a solution of (1.3) such that its second
coordinate at time 0 and the first coordinate at time 1 are equal to zero. In order to solve
the problem we consider again the local flow in R3 generated by (1.6). Now we put

V := {
(t, x, y) ∈ R3: t < 1, |x|< 1, |y|< 1

}
. (1.11)

The set of egress points of V is equal to

E := {
(t, x, y): t � 1, |x| = 1, |y|< 1

} ∪ {
(1, x, y): |x| � 1, |y|< 1

}
.

(1.12)

A fragment of V over the interval [0,1] is shown on Figure 3. It is the rectangular prism
and the corresponding fragment of E consists of its three sides. Let Z be the same as in
Example 1.1, i.e., given by (1.9). Put

Y :=E \ {
(1,0, y): |y|<N

}
. (1.13)

On the figure, Z is shown as the black bar and Y is represented by the shaded surface. It is
easy to see that Z∩Y is not a retract of Z but it is a retract of Y . It follows by the Ważewski
theorem that there exists x0 ∈ (−1,1) such that the solution of (1.6) starting at (0, x0,0)
either remains in V or intersects E \ Y . Since ṫ = 1, the first possibility is ruled out and,
moreover, the time in which the solution gets E \ Y is equal to 1. Thus it determines the
required solution of the boundary value problem (1.3), (1.10).

In the above examples we assumed the uniqueness of solutions of the Cauchy problem
associated to (1.3). Actually, that assumption can be dropped and still we can get the exis-
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tence of solutions which remain in V in Example 1.3 and solve the boundary value problem
in Example 1.2. Indeed, if (1.3) does not satisfy the uniqueness property, one can find ap-
proximating sequences of smooth functions {fn} and {gn} for f and g, respectively, such
that they satisfy the inequalities (1.4) and (1.5). The corresponding solutions obtained for
them by the Ważewski theorem are determined by initial points zn ∈ Z. Their accumulation
point z0 is the initial point of a required solution.

The Ważewski theorem was announced also in [86,87], and later in the proceedings of
the Congress of Mathematicians in Amsterdam [89]. Its proof follows easily from a lemma
which asserts the continuity of the consequent map V ∗ ∪E →E provided the assumption
“all egress points are strict” is satisfied (compare [85, Lemma 3]). Actually, the lemma is
an immediate consequence of the following fact implicitly stated in the paper:

WAŻEWSKI LEMMA. If all egress points are strict then the escape-time function

V ∗ ∪E , x → σ(x) ∈ [0,∞)

is continuous.

The lemma has important consequences for the homotopy theory methods in differential
equations. At present, the name “Ważewski method” refers also to arguments applying
Ważewski lemma. Complete proofs of the Ważewski theorem and related results will be
presented in Section 2.3.

In the years after publication of [85], the Ważewski method was intensively developed
and applied by many authors. Both the assumptions on retraction and egress points in the
Ważewski theorem were modified. Improved versions of the theorem using variants of the
notion of strong deformation retract were given, among others, in the papers [1,58,62]; the
proofs of those versions were based on the Ważewski lemma. In Section 2.3, we provide
examples of such results. On the other hand, in [11] Bielecki observed that all results
concerning the Ważewski method which are based on the hypothesis “all egress points
are strict” can be directly strengthen if strict egress points are replaced by strong egress
points. (In the above notation, an egress point x ∈ E is called a strong egress point if for
every t > 0 there exists 0< s < t such that φ(x, s) /∈ V .) Later, in [20] (and also in [21])
Charles Conley (1933–1984) presented a version of the Ważewski theorem with a more
general and convenient form of that assumption. He introduced the notion of the exit set
W− of an arbitrary set W (in a similar way as we defined above the set of strong egress
points), and with its use, he defined the concept of Ważewski set. We provide its definition
later in Section 2.1. At this moment we mention that it is particularly easy to check in one
case: if W and W− are closed then W satisfies the definition of a Ważewski set. Moreover,
referring to our previous consideration, the set V ∪ E is a Ważewski set provided each
egress point is a strong egress point; in that case E is its exit set. The main feature of
[21] was the observation that the Ważewski lemma extends to Ważewski sets: the escape-
time function σ :x 
→ σ(x) defined for points of W such that their positive semitrajectory
leaves W , is continuous. (Here, similarly as before, σ(x) denotes the first time in which
the semitrajectory of x hits W−.) Our presentation of the results related to the Ważewski
theorem in Section 2.3 is inspired by the ideas of Conley.
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1.3. On the origin of the Conley index theory

The Ważewski theorem, like the Schauder fixed point theorem is an existence result. Com-
plementary to the Schauder theorem, the Leray–Schauder degree and the fixed point in-
dex provide a quantitative information on the number of solutions. In some sense, similar
complementary quantitative information on solutions given by the Ważewski method is
provided by the Conley index, a topological invariant related to Ważewski sets of a special
form, called isolating blocks. By an isolating block we mean a compact subset B of the
phase space of a local flow φ such that B = intB and every x ∈ ∂B is either a strict egress
point, or a strict ingress point, or a point of outward tangency of intB (its definition is
stated in Section 7.1 in a slightly more general form). An example of isolating block is
shown on Figure 1. For an isolating block B , its exit set B− consists of all strict egress and
outward tangency points. Because of the compactness of B , if some positive semitrajectory
is contained in B then its limit set is nonempty and also contained in B . Since the limit set
is invariant, it is contained in the invariant part of B

Inv(B) := {
x ∈B: φ(x, t) ∈ B ∀t}

which is nonempty in this case. The set Inv(B) is an example of an isolated invariant set,
i.e., a compact set which is maximal invariant in some of its neighborhood. (Obviously,
the block itself is such a neighborhood for Inv(B).) In the above sense, isolating blocks
have several other nice properties due to symmetry with respect to reversing the time-axis.
(Sometimes they are defined only as compact Ważewski sets which are simultaneously
isolating neighborhoods.)

The first extensive research on isolating blocks for smooth flows appeared in 1971 in the
paper [22] by Conley and Richard Easton. In that paper an important theorem was proved:

FIRST CONLEY THEOREM. Each isolated invariant set is an invariant part of some iso-
lating block.

Also in 1971, Conley announced another important theorem (compare [19]):

SECOND CONLEY THEOREM. If S is an isolated invariant set then the homotopy type
[B/B−,∗] of the pointed space obtained from B by collapsing B− to a point ∗, does not
depend on the choice of an isolating block B such that S = Inv(B).

(We refer to Section 5.2 for rigorous definitions of the notions involved in that state-
ment.) A proof of the second Conley theorem appeared later in [18] (on the Čech cohomol-
ogy level only) and in [21] in the full generality. Both the theorems ensure the correctness
of the following

DEFINITION 1.3. The Conley index of an isolated invariant set S, denoted by h(φ,S), is
defined as the homotopy type [B/B−,∗] for an arbitrary isolating block B having S as the
invariant part.
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In the Conley’s publications the index appeared under the names homotopy index and
generalized Morse index. The origin of the later name is the Morse theory. If f :M → R
is a Morse function and φ is the (local) flow generated by the gradient equation

ẋ = −∇f (x)

then each critical point x0 of f is also an isolated invariant set for φ and its Conley index
h(φ, {x0}) is equal to the homotopy type of the pointed k-dimensional sphere Sk , where k
is the Morse index of x0. (Recall that the Morse index is defined as the number of negative
eigenvalues of the Hessian of f at x0.) Thanks to the above relation between the indexes,
some results of the Morse theory were extended to the theory of isolated invariant sets.

A simple application of the Ważewski lemma leads to the conclusion that if h(φ,S)
is nontrivial (i.e., it is not the homotopy type of a one-point space) then S is nonempty.
The converse is not true in general (see Example 9.5) and in this respect the Conley index
is not a better tool then the Ważewski method. The Conley index has the additivity and
multiplicativity properties, which explain in which sense it “counts” solutions in S. The
main advantage of the index is its continuation property: two isolated invariant sets (with
respect to possibly different flows) which can be linked by a kind of homotopy, have the
same Conley indices. This property is in an analogy to the homotopy properties of the
Brouwer and Leray–Schauder degrees, and the fixed point index. It enables calculation of
the index in a complicated system by its continuation to a simpler one.

1.4. Review of the current exposition

Our exposition is rather self-contained; we present almost all necessary definitions and we
prove a majority of the stated results, although in a few cases we provide sketches of proofs
only.

In Section 2, we define the Ważewski set (Definition 2.4), state its main properties
(Lemma 2.1) and state strong versions of the Ważewski theorem: Theorem 2.1 valid for
local semiflows and Theorem 2.2, based on the notion of quasi-isotopic deformation re-
tract (Definition 2.7), valid for local flows. Section 3 presents methods of construction
of Ważewski sets for ordinary differential equations. In particular, so-called polyfacial sets
and generalized polyfacial sets are defined (Definitions 3.1 and 3.4). Moreover, a version of
the Ważewski theorem for equations without the uniqueness property and differential inclu-
sions is stated (Theorem 3.1). The Ważewski method for local semiflows generated by re-
tarded functional differential equations is described in Section 4, where the corresponding
main results are Theorems 4.1 and 4.2. Some topological concepts are recalled in Section 5.
They include the notions of the quotient space (Definition 5.1), the absolute and pointed
homotopy types (Definition 5.2), absolute neighborhood retract (Definition 5.3), relative
Lusternik–Schnirelmann category (Definition 5.6), and cup length (Definition 5.9). More-
over, we recall the Lefschetz fixed point theorem (Proposition 5.6) and properties of the
fixed point index (Proposition 5.7). In Section 6, we provide some general results on prop-
erties of the sets of solutions given by the Ważewski method. In particular, Theorem 6.1
estimates their category and Theorem 6.2 is a result on the existence of stationary points.
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Section 7 presents the notion of isolating block (Definition 7.1) and its topological prop-
erties. The related results on the category (Theorem 7.1), exact sequences (Theorem 7.3),
cup-length (Theorem 7.4), stationary points of gradient-like local flows (Theorem 7.5), and
fixed point index (Theorem 7.6) are given. Moreover, we define the notion of an isolating
segment (Definition 7.4) and we prove Theorem 7.7, a related to that notion result on the
fixed point index of the evolutionary map. In Section 8, we present three applications of
results stated in previous sections. The first of them, Theorem 8.1, generalizes a result
of Perron on linear equations, the second one is a result on the existence of solutions of
two-point boundary value problems under the classical Bernstein–Nagumo condition (The-
orem 8.2), and the last one is a result on the existence of chaotic dynamics (Theorem 8.3).
An introduction to the Conley index theory is contained in Section 9. Definition 9.1 pro-
vides the notion of an isolated invariant set, Theorems 9.1 and 9.2 of Conley lead to the
definition of the index, and properties of the index are stated in Theorems 9.3 and 9.4.
Some calculations of the index are given in Propositions 9.1 and 9.2, and an example of
its applications is given in the proof of Proposition 9.3. Finally, in Section 9.4 we indicate
extensions and improvements of the Conley index.

The bibliography contains positions which usually directly refer to topics presented in
this note and by far it does not pretend to be the complete list of books and articles on
the Ważewski method and the Conley index. We point out that biographical information
on Tadeusz Ważewski and Charles Conley can be found in the articles [54] and, respec-
tively, [47].

2. Ważewski method for local semiflows and flows

In this section we introduce the notion of a Ważewski set and we prove Ważewski type
theorems in an abstract topological setting. For this reason we begin with the definitions of
the basic concepts of the theory of continuous-time dynamical systems.

2.1. Local semiflows and Ważewski sets

Let X be a topological space.

DEFINITION 2.1. A local semiflow on X is a continuous map φ :D→X, where D is an
open subset of X × [0,∞) such that for every x ∈ X the set {t ∈ [0,∞): (x, t) ∈ D} is
equal to an interval [0,ωx) for some 0<ωx � ∞, if t ∈ [0,ωx) then ωφ(x,t) = ωx − t and
the following equations hold:

φ(x,0)= x, (2.1)

φ(x, s + t)= φ
(
φ(s, x), t

)
. (2.2)

If D =X× [0,∞) then φ is called a semiflow.
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A local flow is a again a continuous map φ :D → X, but now D is an open subset of
X× R, for every x ∈X the set {t: (x, t) ∈D} is equal to an open interval (αx,ωx), where

−∞ � αx < 0<ωx � ∞,

if t ∈ (αx,ωx) then αφ(x,t) = αx − t and ωφ(x,t) = ωx − t , and Equations (2.1) and (2.2)
hold. Finally, if D =X× R then a local flow is called a flow.

Obviously, a restriction of a local flow D→X to D ∩ (X× [0,∞)) is a local semiflow.
Ordinary differential equations generate local flows in a well-known way provided they are
autonomous and satisfy the uniqueness condition for solutions of the Cauchy problem. In a
similar way retarded functional differential equations (compare Section 4.1) and semilinear
parabolic equations generate local semiflows.

In the sequel we frequently use the following notation: we write φt(x) instead of φ(x, t)
and if A⊂X and J ⊂ R then we write φ(A,J ) instead of φ(A× J ).

In the following definitions we assume that φ is a local semiflow on X. Let x ∈X.

DEFINITION 2.2. The set

φ+(x) := φ
(
x, [0,ωx)

)
is called the positive semitrajectory of x . If, moreover, φ is a local flow then the sets

φ(x) := φ
(
x, (αx,ωx)

)
,

φ−(x) := φ
(
x, (αx,0]

)
are called, respectively, the trajectory and the negative semitrajectory of x .

A map σ : R →X such that

σ(0)= x, φt
(
σ(τ)

) = σ(t + τ ).

is called a full solution through x . A set A⊂X is called invariant if for each x ∈ A there
exists a full solution σ through x such that σ(R)⊂A. The ω-limit set of x is defined as

ω(x) :=
⋂

s∈[0,ωx)
φ

(
x, [s,ωx)

)
.

Obviously, if σ is a full solution through x then σ(τ)= φτ (x) for τ � 0 in the case of
a local semiflow and for τ ∈ R in the case of a local flow. If x is a stationary point (i.e.,
φ+(x)= {x}) then the constant map t 
→ x is a full solution through x . More general, if x is
a periodic point (i.e., φT (x)= x for some T > 0) then the periodic extension of t 
→ φt (x)

from [0, T ] to the whole R is also a full solution. It is easy to prove that if ω(x) �= ∅ then
necessarily ωx = ∞ and ω(x) is invariant.
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Let φ be a local semiflow on X and let W ⊂X. Two subsets of W are distinguished:

W− := {
x ∈W : φ(x, [0, t]) �⊂W ∀t > 0

}
,

W∗ := {
x ∈W : ∃t > 0: φt(x) /∈W

}
.

DEFINITION 2.3. W− is called the exit set of W . The complement of W∗ in W , i.e., the
set W \W∗ is called the asymptotic part of W .

Clearly,W− ⊂W∗ andW \W∗ consists of all points x ∈W such that the whole positive
semitrajectory φ(x, [0,ωx)) is contained in W , which justifies its name. Note that if W is
given, usually it is difficult to determine the set W∗ (hence also the asymptotic part), since
one should follow the whole positive semitrajectory of every point x ∈W unless it reaches
the complement of W . It is even difficult to check whether W \ W∗ is nonempty. The
Ważewski method provides answers to that question in some reasonable situations. On
the other hand, the set W− can be determined easier, because in order to verify whether
x ∈W− one needs to know the position of φt (x) for t ∈ (0, ε), where ε > 0 is arbitrarily
small.

DEFINITION 2.4. We call W a Ważewski set provided
(a) if x ∈W , t > 0, and φ(x, [0, t])⊂W then φ(x, [0, t])⊂W ,
(b) W− is closed relative to W∗.

That definition seems to be difficult to verify in practice, at least because it is difficult
to determine the set W∗. However, in the following result we indicate that in a reasonable
case we do not need any information on W∗:

PROPOSITION 2.1. If both W and W− are closed subsets of X then W is a Ważewski set.

In Section 1.2, we defined the notions of egress and strict egress points for an open set
in the phase-space (Definition 1.2) and with their help we stated the Ważewski theorem.
Using the notion of a Ważewski set we can formulate more general results. In fact, it is
easy to observe that if V is an open set and every egress point is a strict egress point then
W := V ∪E is a Ważewski set, W− =E, and W∗ = V ∗ ∪E. In the following example we
show that the above implication cannot be reversed.

EXAMPLE 2.1. Consider the flow generated by the equation ẋ = 1 on R. Put

V := (−∞,0)∪
∞⋃
n=1

(
1

2n − 2n+2
,

1

2n

)
.

Here the set E consists of 0 and the points 1/2n for n� 1. It follows that 0 is not a strict
egress point although E =W− and V ∪E is a Ważewski set.

In [11], there is an example illustrating a similar conclusion in which V is homeomor-
phic to a ball in R3.
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2.2. Properties of Ważewski sets

Let W be an arbitrary subset of X.

DEFINITION 2.5. The function σ :W∗ → [0,∞),

σ(x) := sup
{
t ∈ [0,∞): φ(x, [0, t])⊂W

}
is called the escape-time function of W .

It follows by (2.1) and (2.2) that

σ(φt (x))= σ(x)− t, if 0 � t � σ(x). (2.3)

The most important properties of Ważewski sets (including the Ważewski lemma from
Section 1.2) are summarized in the following

LEMMA 2.1. If W is a Ważewski set and σ is its escape-time function then
(i) if x ∈W∗ then φσ(x)(x) ∈W−,

(ii) x ∈W− if and only if x ∈W∗ and σ(x)= 0,
(iii) σ is continuous,
(iv) W∗ is open relative to W .

PROOF. Ad (i). It is clear that if x ∈W∗ then φ(x, [0, σ (x)])⊂W , hence φσ(x)(x) ∈W
by (a). Moreover φ(x, [0, σ (x)+ t]) �⊂W for every t > 0, hence, by (2.2), φσ(x)(x) ∈W−.
Thus (i) is proved.

Ad (ii). If x ∈W− then, clearly, σ(x)= 0. On the other hand, if σ(x)= 0, then x ∈W−
by (2.1) and (i), hence (ii) follows.

Ad (iii). For the proof of (iii) assume that x ∈W∗ and ε > 0. At first we prove that there
exists a neighborhood U of x such that σ(y) < σ(x)+ ε for every y ∈ U ∩W∗. Indeed,
φ(x, [0, σ (x)+ε]) �⊂W , hence, by (a), there exists a t ∈ [σ(x), σ (x)+ε] such that φt(x) /∈
W . By continuity of φ, there exists a neighborhood U of x such that φt(U) ∈X \W . It is
clear, that σ(y) < t for every y ∈U ∩W∗, hence the assertion follows.

Now we prove that there exists a neighborhood V of x such that σ(x)− ε < σ(y) if y ∈
V ∩W∗ . There is nothing to prove in the case σ(x)= 0, hence we can assume without loss
of generality that 0 < ε < σ(x). Let t ∈ [σ(x)− ε,σ (x)). Then φ(x, [0, t])⊂W∗ \W−.
By (b), there is an open set Z such that Z ∩W∗ =W∗ \W−. By a standard argument, the
continuity of φ and the compactness of [0, t] imply the existence of a neighborhoodV of x
such that φ(V, [0, t])⊂ Z. Let y ∈ V ∩W∗. By (i), φσ(y)(y) ∈W−. Since W− is disjoint
from Z, σ(y) > t and the proof of (iii) is finished.

Ad (iv). Finally, in order to prove (iv) assume that x ∈W∗. By (i) and (a) there exists a
t > σ(x) such that φt(x) /∈W . Thus, if y belongs to some neighborhood of x then φt(y) /∈
W and the proof of the lemma is finished. �
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We consider also the extended escape-time function given by

σ+ :W , x → sup
{
t � 0: φ

(
x, [0, t]) ⊂W

} ∈ [0,∞].

Actually, that function is not continuous even ifW is a compact Ważewski set as an obvious
example, in which a stationary point belongs to the closure of W− , shows. However, the
following statement can be easily proved:

LEMMA 2.2. If both W and W− are compact then σ+ is continuous.

PROOF. Since W is compact, σ+(x) = ∞ if and only if x ∈ W \ W∗, hence, by
Lemma 2.1(iii), it suffices to prove that σ+ is continuous at each x0 such that σ+(x0)= ∞.
The required continuity follows from the fact that Inv+(B) is compact (see Lemma 2.1(iv)
and disjoint from W−. Indeed, if r > 0 then there exists an open neighborhood U of x0 in
W such that φ(y, [0, r])∩W− = ∅, hence σ+(y)� r for every y ∈ U . �

2.3. Versions of the Ważewski theorem

The Ważewski theorem appears in the literature in various forms and each of them is a
direct application of Lemma 2.1 stated above, especially its part (iii) (i.e., the Ważewski
lemma). Our purpose is to formulate the theorem in a form convenient for applications. In
fact, we present two theorems. The first one is a direct generalization of the main theorems
of [85] and [20] obtained in a possibly most “economic” way. It is sufficient for a great
majority of applications existing in the literature. However, as we show in a relatively
simple example, it is sometimes convenient to have its stronger version and such a version
will be presented at the end of the current section. In any case we should extend the notion
of a strong deformation retract given in Definition 1.1. To this purpose we follow the ideas
from the papers [58,62].

Assume that X is a topological space and A and B are subsets of X such that A⊂ B .

DEFINITION 2.6. A is called a strong deformation retract of B in X if there exists a
continuous map h :B × [0,1] →X (for which we also write ht (x) instead of h(x, t)) such
that

(a) h(x,0)= x for every x ∈B ,
(b) h(x, t)= x for every x ∈A and t ∈ [0,1],
(c) h1(B)⊂A.

Obviously, in the case B =X, A is a strong deformation retract of B in the usual sense
(see Definition 1.1). Moreover, if A is a strong deformation retract of B in X then A is a
retract of B , if X′ ⊃ X then A is also a strong deformation retract of B in X′, and if A
is a strong deformation retract of X then A is also a strong deformation retract of B in X
for every B such that A⊂ B ⊂ X. A comparison among various types of retracts can be
visualized on Figure 4. Here X is the grey rectangle with a hole, A is its bottom edge, and
L and R are the circles—only R surrounds the hole. It is readily seen that A is a strong
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Fig. 4.

deformation retract ofA∪L inX, A is a retract ofA∪R, andA is not a strong deformation
retract of A∪R in X.

In the following sequence of results we assume that
• W is a Ważewski set,
• σ is the escape-time function of W ,
• Z is a subset of W ,
• Y is a subset of W− such that Z ∩W− ⊂ Y .

THEOREM 2.1 (Ważewski theorem—an improved statement). If Y is not a strong defor-
mation retract of Z ∪ Y in (W \W−)∪ Y then there exists an x0 ∈Z such that

• either φ+(x0)⊂W \W−,
• or else x0 ∈W∗ and φσ(x0)(x0) ∈W− \ Y .

PROOF. Assume that the conclusion is false. It follows that Z ⊂W∗ and for every x ∈ Z
its consequent φσ(x)(x) is contained in Y . For every x ∈ Z ∪ Y and every s ∈ [0, σ (x)] the
point φs(x) /∈W− \ Y , hence, by Lemma 2.1, the map

(Z ∪ Y )× [0,1] , (x, t)→ φtσ(x)(x) ∈ (W \W−)∪ Y

is continuous and satisfies (a)–(c) in Definition 2.6 contradictory to the assumption, hence
the result follows. �

As an immediate consequence we get

COROLLARY 2.1. If Y is not a retract of Z ∪Y then the conclusion of Theorem 2.1 holds.

Theorem 2.1 does not follow from Corollary 2.1 as an example based on Figure 4 shows.
The original Ważewski theorem stated in Section 1.2 is a corollary of the above one. We
repeat it below in a more general setting (as we already mentioned in Section 2.1, Ważewski
sets naturally generalize the sets considered in [85]).

COROLLARY 2.2. If Z ∩ Y is a retract of Y and Z ∩ Y is not a retract of Z then the
conclusion of Theorem 2.1 holds.
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PROOF. It suffices to prove that under the imposed hypotheses there is no retraction Z ∪
Y → Y . Indeed, if there exists a retraction ofZ∪Y onto Y , its composition with a retraction
Y →Z ∩ Y provides a retraction Z→ Z ∩ Y contrary to the assumption. �

In the case Y =W−, there is an essential simplification in the statement of Theorem 2.1:

COROLLARY 2.3. If W− is not a strong deformation retract of Z ∪W− in W then there
exists an x0 ∈ Z such that φ+(x0)⊂W .

In particular, the version of the Ważewski theorem given in [20] is the following

COROLLARY 2.4 (Ważewski theorem—the Conley’s version). If W− is not a strong de-
formation retract of W then there exists an x0 ∈W such that φ+(x0)⊂W .

In the case of compact W one can get the full solution contained in W .

COROLLARY 2.5. Let W be a compact set. If W− is not a strong deformation retract of
W then there exists an x0 ∈ W such that ∅ �= ω(x0) ⊂ W . In particular, W contains a
nonempty invariant set.

PROOF. By Corollary 2.4, there exists an x such that φ+(x)⊂ W . Since W is compact,
the ω-limit set of x is nonempty. Since the latter set is invariant, the result follows. �

Throughout reminder of this section we will consider local flows. The last version of the
Ważewski theorem presented in this section is due to Andrzej Pliś in [62]. In order to state
it, we again modify the notion of a strong deformation retract. Let X be a topological space
and let A be a subset of B ⊂X.

DEFINITION 2.7. A is called a quasi-isotopic deformation retract of B in X if there exists
a continuous map h :B × [0,1] → X such that the conditions (a), (b), and (c) in Defini-
tion 2.6 are satisfied, and

(d) B , x → ht (x) ∈ ht (B) is a homeomorphism if 0 � t < 1.

In the case B = X we simply call A a quasi-isotopic deformation retract of X. Obvi-
ously, a quasi-isotopic deformation retract of B in X is a strong deformation retract of B
in X. The following version of the Ważewski theorem essentially appeared in [62].

THEOREM 2.2 (Ważewski theorem—the version of Pliś). Let φ be a local flow. If Y is
not a quasi-isotopic deformation retract of Z ∪ Y in (W \W−)∪ Y then the conclusion of
Theorem 2.1 holds.

PROOF. We assume that the conclusion is false. It follows that Z ⊂W∗ and φσ(x)(x) ∈ Y
for x ∈Z. As in the proof of Theorem 2.1, for x ∈Z ∪ Y and t ∈ [0,1] we put

h(x, t) := φ
(
x, tσ (x)

)
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and using Lemma 2.1 we conclude that h(x, t) ∈ (W \W−) ∪ Y and h is continuous and
satisfies (a)–(c) in Definition 2.6. Thus, in order get a contradiction by proving that Y is
a quasi-isotopic deformation retract of Z ∪ Y in (W \W−) ∪ Y it remains to prove that
if t < 1 then ht is a homeomorphism as a map Z ∪ Y → ht (Z ∪ Y ). Fix t < 1 and for
y ∈ ht (Z ∪ Y ) put

g(y) := φ
(
y,−(1 − t)−1tσ (y)

)
.

Let y = ht (x) and x ∈ Z ∪ Y . Since σ(y)= (1 − t)σ (x) by (2.3) and y = φ(x, tσ (x)),

g(y)= φ
(
y,−tσ (x)) = x.

It follows that g :ht (Z∪Y )→ Z ∪Y and g ◦ ht is equal to the identity. On the other hand,

(ht ◦ g)
(
ht (x)

) = ht (x),

hence ht ◦ g is equal to the identity on ht (Z ∪ Y ). Thus ht is a homeomorphism (and g is
its inverse), which concludes the proof. �

Obviously, Theorem 2.2 implies Theorem 2.1 as a corollary in the case φ is a local flow.
Using an example based on Figure 5, below we indicate that it is a stronger result.

EXAMPLE 2.2. Let the phase-space of a local flow be equal to R3 and let W be equal
to a cube as shown on Figure 5. Assume that the shaded rear and front sides of the cube
form the exit set W−. Let the set Z consists of two linked disjoint arcs, each of them is
attached by its ends to one of the components of W−. We claim that there exists a positive
semitrajectory starting in Z and contained in W .

Fig. 5.
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Corollary 2.3 is useless in attempts to prove the claim because W− is a strong deforma-
tion retract of Z∪W− in W . Indeed, it suffices to push each of the components of Z to the
corresponding side of the cube. Nevertheless, we assert that W− it is not a quasi-isotopic
deformation retract of Z ∪W− in W , hence, by Theorem 2.2, there is a required positive
semitrajectory.

In order to verify the assertion, assume on the contrary that W− is a quasi-isotopic
deformation retract of Z ∪ W− in W and denote by h an associated homotopy which
satisfies the conditions (a)–(d). Let Γ1 and Γ2 be two sets homeomorphic to the circle
S1, each of them is contained in a different components of Z ∪W− and surrounds the
corresponding hole. Thus the linking number (compare [17, II.15] in the smooth case or
[28, VII.4.17] in the purely topological setting) of Γ1 and Γ2 is equal to ±1. On the other
hand, since both the sets are compact, h is continuous, and (c) is valid, there exists an ε > 0
such that if 1 − ε < t < 1 then each of the sets ht (Γi) is so close to the side to which it
is attached that there is no link between ht (Γ1) and ht (Γ2). Thus their linking number is
equal to 0. This is a contradiction, since hs(Γ1) ∩ hs(Γ2) = ∅ for every s ∈ [0, t] by (d),
which implies that the linking number is preserved under the continuation over the interval
[0, t].

REMARK 2.1. In Example 2.2, we concluded by Theorem 2.2 that for every local flow
there is a positive semitrajectory starting at Z and contained in W . Actually, in this ex-
ample the same conclusion holds for local semiflows. Indeed, this is a consequence of the
homotopy property of the linking number and the modified Theorem 2.2 valid for local
semiflows, for which the notion of quasi-isotopic deformation retract is changed by substi-
tuting the condition

(e) if x, y ∈B , t < 1, and ht (x)= ht (y) then hs(x)= hs(y) for every s ∈ (t,1],
instead of (d) in Definition 2.7.

3. Ważewski method in ordinary differential equations and inclusions

Abstract local flows and semiflows, for which we describe the Ważewski method in Sec-
tion 2, arise in the theory of differential equations. Here we present how to construct
Ważewski sets in ordinary differential equations and give some extensions of the method
to equations which do not generate local semiflows.

3.1. Polyfacial sets

A usual construction of Ważewski sets is based on existence of functions which behave
similarly to Liapunov functions on some parts of their zero-levels. In the sequel by M

we denote a smooth (i.e., of C∞ class) Riemannian manifold without boundary, by TM
its tangent bundle, by the dot · the induced scalar product in each tangent space TxM ,
and by ∇f (x) the corresponding gradient of a function f :M → R differentiable at x .
Let v be a vector-field on M , i.e., a continuous map v :M → TM such that v(x) ∈ TxM
for every x ∈M . Let p and q be nonnegative integers, p + q � 1, and for i = 1, . . . , p
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and j = 1, . . . , q let �i and mj be continuous functions M → R of C1-class in some
neighborhoods of their zero levels. Put

V := {
x ∈M: �i(x) < 0 ∀i = 1, . . . , p, mj (x) < 0 ∀j = 1, . . . , q

}
and for the above i and j define

Li := {
x ∈ ∂V : �i(x)= 0

}
, (3.1)

Mj := {
x ∈ ∂V : mj(x)= 0

}
. (3.2)

(We do not exclude the possibility p = 0 or q = 0; in such a case one of the corresponding
families of functions and sets is empty.)

DEFINITION 3.1. The set V is called a polyfacial set determined by the set of functions
{�i,mj }. If, moreover,

v(x) · ∇�i(x) > 0, if x ∈Li , (3.3)

v(x) · ∇mj(x) < 0, if x ∈Mj (3.4)

for every i = 1, . . . , p and every j = 1, . . . , q then it is called a polyfacial set for the
vector-field v (or, alternatively, for the differential equation (1.1)).

The concept of a polyfacial set comes from the original paper [85]. In that paper the sub-
sets Li were called its positive faces, while Mj were its negative faces, which terminology
is justified by (3.3) and (3.4). (Here we try to avoid that terminology because, as we will
see soon, Li is contained in the exit set V

−
.)

Throughout reminder of this section we assume that V is the polyfacial set for v deter-
mined by {�i,mj }. Assume that Equation (1.1) generates a local flow φ. It follows by (3.3)
that if x ∈Li then there exists an ε > 0 such that �i(φt (x)) > 0 (hence φt(x) /∈ V ) for each
t ∈ (0, ε) and �i(φt (x)) < 0 for each t ∈ (−ε,0). If x ∈Mj then (3.4) implies the reversed
inequalities for mj(φt (x)). Recall, that in Definition 1.2 we provided the notions of strict
egress, strict ingress, and outer tangency points on the boundary of a given open set.

PROPOSITION 3.1. If x ∈ ∂V then
(i) x is a strict egress point if and only if x ∈Li for some i = 1, . . . , p and x /∈Mj for

every j = 1, . . . , q ,
(ii) x is a strict ingress point if and only if x ∈Mj for some j = 1, . . . , q and x /∈ Li

for every i = 1, . . . , p,
(iii) x is an outward tangency point if and only if x ∈ Li ∩Mj for some i = 1, . . . , p

and j = 1, . . . , q ,
(iv) x is a strict egress or strict ingress, or outward tangency point (hence no other

possibility holds).
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PROOF. Let x ∈ ∂V .
Ad (i). Assume that x is a strict egress point. Then x /∈Mj for every j . Since

∂V ⊂
p⋃
i=1

Li ∪
q⋃
j=1

Mj, (3.5)

the implication from the left to the right follow. On the other hand, assume that x ∈ Li0
for some i0 and x /∈ Mj for every j . One has �i(x) � 0 for every i and mj(x) � 0 for
every j since x ∈ V . It follows by the assumption that mj(x) < 0 for every j , hence also
mj(φt (x)) < 0 for t < 0 such that |t| is small. If �i(x) < 0 then, as before, �i(φt (x)) < 0
for t < 0 with |t| small. The other possibility �i(x) = 0 implies that φ(x, (0, εi)) ⊂ \V
and �i(φt (x)) < 0 if −εi < t < 0 for some εi > 0. Thus, there exists an ε > 0 such that
φt(x) ∈ V if −ε < t < 0. Moreover, φ(x, (0, εi0))⊂ \V , hence the result follows.

Ad (ii). After reversing the time-direction it follows from (i).
Ad (iii). Assume that x is an outward tangency point. It follows by (3.5) and (i) and (ii)

that x ∈Li for some i and x ∈Mj for some j . The other implication is obvious.
Ad (iv). It follows by (3.5) and (i), (ii), and (iii). �

Denote by E the set of strict egress points and by T the set of outward tangency points.
As an immediate consequence of Proposition 3.1 we get the following equations

E =
p⋃
i=1

Li
∖ q⋃

j=1

Mj, (3.6)

E ∪ T =
p⋃
i=1

Li. (3.7)

Proposition 3.1 indicates also which subsets of V are Ważewski sets. Usually there are
infinitely many of them. In the following straightforward result two of them are distin-
guished:

PROPOSITION 3.2.
(i) The set V ∪E is a Ważewski set and its exit set is equal to E.

(ii) The set V is a Ważewski set and its exit set is equal to E ∪ T .

The sets considered in [85] assumed the form (i). Ważewski sets obtained from polyfa-
cial sets have an advantage in comparison to some other constructions: they are stable with
respect to small perturbations of the vector-field (since the inequalities (3.3) and (3.4) are
strict). In the following definition we distinguish a special class of polyfacial sets.

DEFINITION 3.2. Let V be a polyfacial set determined by {�i,mj }. It is called regular if
for every x ∈ ∂V the set {∇�i1(x), . . . ,∇�ir (x),∇mj1(x), . . . ,∇js (x)} is linearly indepen-
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dent provided 1 � i1 < · · ·< ir � p and 1 � j1 < · · ·< js � q , and

{i1, . . . , ir } = {
i = 1, . . . , p: �i(x)= 0

}
,

{j1, . . . , js} = {
j = 1, . . . , q: mj(x)= 0

}
.

REMARK 3.1. If V is a regular polyfacial set then V is a topological submanifold with
boundary in M and the exit set V

− =E ∪ T is a topological submanifold of ∂V . In partic-
ular, all homology and cohomology functors for the pair (V ,V

−
) coincide. One can prove

that for every such functor H ,

H(V ,V
−
)=H(V ∪E,E).

If, moreover,p = q = 1, i.e., V = {� < 0, m < 0} then the set V is a C1-class submanifold
with corners and the exit set is a C1-class submanifold with boundary.

In practice, the Ważewski method is most frequently applied to non-autonomous equa-
tions. Let U be an open subset of R ×M and let w :U → TM be time-dependent vector-
field, i.e., a continuous map such that w(t, x) ∈ TxM for every (t, x) ∈ U . Assume that it
generates the equation

ẋ =w(t, x) (3.8)

for which the Cauchy problem x(t0)= x0 has the unique solution. We consider the induced
system

ṫ = 1,

ẋ =w(t, x)
(3.9)

in the extended phase space U and the vector-field v := (1,w) on its right-hand side. All
the previous results can be applied to v since U is also a manifold without boundary. In the
case M = Rn the inequalities (3.3) and (3.4) assume the forms

∂�i

∂t
(t, x)+

n∑
k=1

∂�i

∂xk
(t, x)wk(t, x) > 0, if (t, x) ∈ Li , (3.10)

∂mj

∂t
(t, x)+

n∑
k=1

∂mj

∂xk
(t, x)wk(t, x) < 0, if (t, x) ∈Mj . (3.11)

In particular, the set {(t, x, y) ∈ R3: |x|< 1, |y|< 1} considered in Example 1.1 and
shown on Figure 2 is a polyfacial set determined by the functions

� : (t, x, y) 
→ x2 − 1, m : (t, x, y) 
→ y2 − 1
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and the set {(t, x, y) ∈ R3: t < 1, |x| < 1, |y| < 1} in Example 1.2 (see Figure 3) is a
polyfacial set determined by the functions

�1 : (t, x, y) 
→ x2 − 1, �2 : (t, x, y) 
→ t − 1, m : (t, x, y) 
→ y2 − 1.

3.2. Equations without the uniqueness property and differential inclusions

Using polyfacial sets, in this section we extend the Ważewski method to the case in which
the vector-field v :M → TM does not satisfy the uniqueness property of the initial value
problem (1.1), (1.2). Since it does not involve any essential difficulty, we will extend the
Ważewski method even further: we will consider differential inclusions. The idea of an ex-
tension to equations without uniqueness comes from the original paper [85] of Ważewski,
while the extension to differential inclusions was initiated by Bielecki in [12] (he used the
term paratingent equations). Our presentation is based on the Bielecki’s approach.

As in Section 3.1, we assume that M is Riemannian manifold with a given metric. Let F
be a multivalued vector-field on M , i.e., for every x ∈M we assign a nonempty compact
and convex set F(x)⊂ TxM . In what follows we assume that F is upper semi-continuous,
i.e., for every x ∈M and every ε there exists a neighborhood U of x such that if y ∈ U
then F(y) is contained in the ε-neighborhood N(F(x), ε) of F(x) in TM . (In particular,
every single-valued continuous vector-field has that property.) By a solution of a differen-
tial inclusion

ẋ ∈ F(x) (3.12)

we mean an absolutely continuous mapping t 
→ x(t) defined in some interval such that
ẋ(t) ∈ F(x(t)) for almost every t . We assume also that the domain of x is maximal, i.e.,
the solution is saturated.

Below we assume that V be a polyfacial set determined by {�i,mj }, i = 1, . . . , p, j =
1, . . . , q , p+ q � 1, and the sets Li , Mj , and let E are given by, respectively, (3.1), (3.2),
and (3.6).

DEFINITION 3.3. V is called a polyfacial set for (3.12) if for every i and j ,

y · ∇�i(x) > 0, for all y ∈ F(x) and x ∈ Li ,
y · ∇mj(x) < 0, for all y ∈ F(x) and x ∈Mj .

In the sequel we assume that V is a polyfacial set for (3.12). Our aim is to prove the
following extension of the Ważewski theorem, which essentially were given in [12]:

THEOREM 3.1. Let Y ⊂E and Z ⊂ V ∪ Y . Assume that Z and E \ Y are compact and Y
is not a quasi-isotopic deformation retract of Z ∪ Y in V ∪E. Then there exists a solution
x of (3.12) such that x(0) ∈ Z and
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• either x(t) ∈ V for all t � 0
• or there exists a t0 > 0 such that x(t) ∈ V if t ∈ [0, t0] and x(t0) ∈E \ Y .

PROOF. We will base on the results stated in [4], although they concern the case M = Rn

only. In the case of an arbitrary manifold M they can be stated in a similar way. Let vn be
a sequence of locally Lipschitzean vector-fields such that their graphs in TM approximate
the graph of F and preserve the strong inequalities (3.3) and (3.4) (compare [4, Theo-
rem 1.12.1]). By Theorem 2.2, for each n either there exists a point xn ∈ Z such that the
solution of the equation

ẋ = vn(x)

starting at xn remains in V or there exists an yn and tn > 0 such that the solution starting
at yn remains in V for t ∈ [0, tn) and yn(tn) ∈ E \ Y . At least one of the sequences {xn}
and {yn} must be infinite. An accumulation point of that infinite sequence has the required
properties (compare First Proof of Theorem 2.1.3 in [4]; observe moreover that the time t0
in the conclusion is positive since the distance between Z and E \ Y is nonzero). �

We get the following corollary as an immediate consequence of the theorem in the case
Y =E:

COROLLARY 3.1. If H(V ∪ E,E) �= 0, where H is the singular homology functor with
coefficients in a given ring, then there exists a solution x of (3.12) such that x(t) ∈ V for
all t � 0.

PROOF. Indeed, by the assumption there exists a singular chain c in V ∪ E which is a
homologically nontrivial cycle with respect to the pair (V ∪E,E), hence its support Z :=
|c| cannot be continuously deformed to E. Thus Z is compact and satisfies the assumption
of Theorem 3.1, hence the result follows. �

The questions concerning the existence of solutions contained in a given set are im-
portant in the theory of differential inclusions; the area of research related to them bears
the name viability theory (compare [3,4]). In that theory, a set W is called viable at x0 if
x0 ∈W and there exists a solution x with x(0)= x0 and x(t) ∈W for all t � 0.

Apart from the Bielecki’s paper, Ważewski-type theorems for equations without unique-
ness and differential inclusions appeared in several publications, compare for example [6–
9,40,43]. Opposite to the approximation argument in the above proof, a purely topological
approach based on set-valued retractions was frequently presented and the obtained re-
sults were limited in practice to questions of lack of connectedness. Recently, in the paper
[35], Gabor and Quincampoix applied homology theory methods for admissible multival-
ued mappings (see [33]) to obtain stronger results in that topological setting. In particular,
[35] contains a theorem similar to Corollary 3.1 valid for closed sets which resemble the
Ważewski ones. We state it below.

Assume that M = Rn. F is a called a Marchaud map if there exists a C > 0 such that

sup
{|y|: y ∈ F(y)} � C

(
1 + |x|)
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for every x ∈ Rn. For x0 ∈ Rn denote by SF (x0) the set of solutions of the initial value
problem (3.12), (1.2). We extend the notion of exit set and escape-time function to the case
of differential inclusions; for W ⊂ Rn put

W− := {
x0 ∈ ∂W : ∃x ∈ SF (x0) ∀t > 0: x

([0, t]) �⊂W
}

and for each solution x of (3.12) satisfying x(0) ∈W define

Σ(x) := sup
{
t � 0: x

([0, t]) ∈W}
.

THEOREM 3.2 (compare Theorem A and Remark 2.1 in [35]). Let F be a Marchaud map
and let W and W− be closed subsets of Rn. Assume that for every x0 ∈ W− and every
x ∈ SF (x0),

x
([

0,Σ(x)
]) ⊂W−

provided Σ(x) <∞. If Ȟ (W,W−) �= 0 then there exists a solution x of (3.12) such that
x(t) ∈W for all t � 0, where Ȟ denotes the Čech homology functor with compact supports
and coefficients in Q.

In the case of Marchaud maps, Theorem 3.2 generalizes Corollary 3.1 if the considered
polyfacial set V is regular (see Definition 3.2) and the ring of coefficients of H is equal
to Q. Indeed, in that case the Čech and singular homologies coincide by Remark 3.1, but
Theorem 3.2 allows empty interior of W and sliding along W−. In the next section we
indicate that for regular polyfacial sets there is a stronger version of Corollary 3.1 which
also allows sliding along the boundary.

3.3. Weak inequalities in polyfacial sets

The proof of Theorem 3.1 was essentially based on the strong inequalities (3.13) and (3.13).
One can ask whether the replacement of those strong inequalities by the weak ones still
provides results similar to that theorem. That question was considered in the paper [37];
in particular, for regular polyfacial sets. The following version of the Ważewski theorem is
based on [37, Theorem 3].

THEOREM 3.3. Let V be a regular polyfacial set determined by {�i,mj }, and let Lj , Mi ,
andE be given by, respectively, (3.1), (3.2), and (3.6). Let Y and Z satisfy the assumptions
of Theorem 3.1. Assume moreover that F is a multivalued vector-field such that the weak
inequalities

y · ∇�i(x)� 0, for all y ∈ F(x) and x ∈Li ,
y · ∇mj(x)� 0, for all y ∈ F(x) and x ∈Mj .

are satisfied for every i and j . Then the conclusion of Theorem 3.1 holds.
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PROOF. The idea of a proof is to add to the right-hand side of (3.12) a sequence of pertur-
bation terms of the form φnh, where h is a bounded vector-field satisfying

h(x) · ∇�i(x) > 0, if x ∈ Li ,
h(x) · ∇mj(x) < 0, if x ∈Mj ,

for every i and j , and φn is a sequence of continuous, positive-valued functions such that
φn tends to zero uniformly on compact sets. It follows that one can apply Theorem 3.1 to
the inclusions

ẋ ∈ F(x)+ φn(x)h(x).

As in the proof of Theorem 3.1, the required point x0 is obtained as an accumulation point
of the obtained sequence of points. The vector-field h can be constructed as follows: for
every x0 in the boundary of V find a vector w such that

w · ∇�i(x0) > 0, w · ∇mj(x0) < 0

if �i(x0) = 0 and mj(x0) = 0. Such a vector exists thanks to the linear independence of
the gradients (in order to verify that assertion one can adapt the argument in the proof of
Farkas Lemma in linear programming). The vector w can be extended to a vector-field
in a neighborhood of x0 such that the strong inequalities are preserved. Those vector-
fields defined locally can by glued using a partition of unity to the global vector-field
satisfying the required properties. Details of the construction in the case M = Rn can be
found in [37]. �

3.4. Generalized polyfacial sets

Let us return to the case in which v :M → TM is a vector-field on the Riemannian mani-
foldM . If v generates a local flow φ, one can still obtain a Ważewski set on the similar way
to the one described in Section 3.1 if a more general type of inequalities then (3.3) and (3.4)
occurs. Let n :M → R be a C1-function, let N be equal to the set {x ∈M: nk(x)� 0}, and
let x0 ∈N be such that

v(x0) · ∇n(x0)= 0. (3.13)

In order to get the outward tangency property of the trajectory of x0 with respect to N , the
value of the function t 
→ n(φt (x0)) should assume a sharp local minimum at t = 0. This
is guaranteed if its second derivative at t = 0 exists and is positive (or, more generally, the
lowest-order nonzero derivative is even and positive). By a simple calculation we conclude
that the second-order criterium is satisfied if the function

v · ∇n :M , x → ∇n(x) · v(x) ∈ R
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is differentiable at x0 and the condition

v(x0) · ∇(v · ∇n)(x0) > 0 (3.14)

holds. That observation leads to the following generalization of the notion of polyfacial set
(compare [24,25]). Let p+ q + r � 1 and let �i for i = 1, . . . , p, mj for j = 1, . . . , q , and
nk for k = 1, . . . , r be continuous functions M → R of C1-class in some neighborhoods
of their zero levels. Similarly as in Section 3.1, put

V := {
x ∈M: �i(x) < 0 ∀i, mj (x) < 0 ∀j, nk(x) < 0 ∀k}

,

Li := {
x ∈ ∂V : �i(x)= 0

}
,

Mj := {
x ∈ ∂V : mj(x)= 0

}
,

Nk := {
x ∈ ∂V : nk(x)= 0

}
.

DEFINITION 3.4. The set V is called a generalized polyfacial set determined by
{�i,mj ,nk}. It is called a generalized polyfacial set for v (or, alternatively, for (1.1)) pro-
vided the inequalities (3.3) and (3.4) hold for every i = 1, . . . , p and j = 1, . . . , q , and,
moreover, for every k = 1, . . . , r the function v · ∇nk is of C1-class in a neighborhood of
its zero level, and for every x ∈Nk one of the following conditions is satisfied:

v(x) · ∇nk(x) > 0, (3.15)

v(x) · ∇nk(x) < 0, (3.16)

v(x) · ∇nk(x)= 0, v(x) · ∇(
v · ∇nk)(x) > 0. (3.17)

In the case M = Rn, the expressions which appear on the left sides of the inequalities
assume the forms

v(x) · ∇nk(x)=
n∑
i=1

∂nk

∂xi
(x)vi(x), (3.18)

v(x) · ∇(∇nk · v)
(x)=

n∑
i,j=1

(
∂2nk

∂xi∂xj
(x)vi(x)vj (x)+ ∂nk

∂xi
(x)

∂vi

∂xj
(x)vj (x)

)
(3.19)

whenever their right-hand sides are defined. They can be directly translated to the case
of Equation (3.9) in Rn+1 in order to get analogous inequalities to (3.11) and (3.10). In
particular, for a scalar second order equation

x ′′ = g(t, x, x ′), (3.20)

where g : R3 → R is continuous, the corresponding equation of the form (3.9) is given by

ṫ = 1, ẋ = y, ẏ = g(t, x, x ′), (3.21)
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i.e., v(t, x, y)= (1, y, g(t, x, x ′)), and the counterparts of (3.18) and (3.19) are

v(t, x, y) · ∇nk(t, x, y)

= ∂nk

∂t
(t, x, y)+ ∂nk

∂x
(t, x, y)y + ∂nk

∂y
(t, x, y)g(t, x, y), (3.22)

v(t, x, y) · ∇(∇nk · v)
(t, x, y)

= [
1 y

] ⎡⎣ ∂2nk

∂t2
(t, x) ∂2nk

∂t∂x
(t, x)

∂2nk

∂x∂t
(t, x) ∂2nk

∂x2 (t, x)

⎤⎦ [
1
y

]
+ ∂nk

∂x
(t, x)g(t, x, y). (3.23)

Let us return to the general case and for k = 1, . . . , r define

Nk− := {
x ∈Nk: x satisfies (3.15)

}
,

Nk+ := {
x ∈Nk: x satisfies (3.16)

}
,

Nk
0 := {

x ∈Nk: x satisfies (3.17)
}
.

Assume again that v generates a local flow φ, i.e., (1.1) satisfies the uniqueness property of
the corresponding Cauchy problem. Taking into account remarks on the beginning of the
current section, by an argument similar to the one in the proof of Proposition 3.1 one can
observe that the sets of strict egress points E and the set of outward tangency points T of
V are determined by

E =
(

p⋃
i=1

Li ∪
r⋃

k=1

Nk−

) ∖ (
q⋃
j=1

Mj ∪
r⋃

k=1

(
Nk+ ∪Nk

0

))
, (3.24)

E ∪ T =
p⋃
i=1

Li ∪
r⋃

k=1

(
Nk− ∪Nk

0

)
(3.25)

and the same assertion as in Proposition 3.2 holds:

PROPOSITION 3.3. If V is a generalized polyfacial set for v then:
(i) the set V ∪E is a Ważewski set and its exit set is equal to E,

(ii) the set V is a Ważewski set and its exit set is equal to E ∪ T .

REMARK 3.2. If V is a generalized polyfacial set is determined by only one function n,
i.e., V = {n < 0}, and ∇n(x) �= 0 for every x such that n(x) = 0 then V is a C1-class
submanifold with boundary in the phase-spaceM and the set V

−
is a C1-class submanifold

with boundary in ∂V . Moreover, the same properties on homology or cohomology as stated
in Remark 3.1 hold.
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REMARK 3.3. Let V be a generalized polyfacial set for (1.1). If (1.1) satisfies the unique-
ness property then Theorem 2.2 holds for the sets described in Proposition 3.3. On the other
hand, if it does not satisfy the uniqueness property, a theorem similar to Theorem 3.1 can
be formulated for those sets provided there is a sequence of locally Lipschitzean vector-
fields vn approximating v such that (3.15), (3.16), and (3.17) with v replaced by vn hold
on, respectively, Nk−, Nk+, and Nk

0 . This can be justified by analyzing the argument in the
proof of Theorem 3.1.

4. Ważewski method for retarded functional differential equations

Now we consider local semiflows generated by retarded functional differential equations
(RFDEs). We provide results concerning the Ważewski method for those equations which
go beyond direct substitutions of the abstract Ważewski-type theorems from Section 2 to
those semiflows.

4.1. Local semiflows generated by RFDEs

Let M be a Riemannian manifold. For each continuous function x :J →M , where J ⊂
R, and for each t ∈ R put xt(τ ) := x(t + τ ) whenever it is defined. For some r > 0 let
C := C([−r,0],M) be the set of continuous mappings u : [−r,0] →M endowed with the
topology of uniform convergence. Let F : C → TM be a continuous map such that F(u) ∈
Tu(0)M for every u ∈ C. By a solution of the retarded functional differential equation

ẋ(t)= F(xt ) (4.1)

we mean a continuous function x : [−r,ω)→M such that (4.1) is satisfied for t ∈ [0,ω)
and ω > 0 is maximal. (Here and in the sequel ẋ(t) denotes the right-hand side derivative
in the case t is equal to the left end of the interval in which x is defined.) Moreover, if for
every u ∈ C there is the unique solution x of (4.1) satisfying the initial condition

x|[−r,0] = u (4.2)

then the right end of the domain interval of x is denoted by ωu (i.e., x : [−r,ωu) →M)
and for t ∈ [0,ωu) we define φ(u, t) := xt (hence, in particular, φ(u, t)(0) = x(t)). The
mapping φ defined in this way is a local semiflow on the space C.

Now let us consider a nonautonomous equation, i.e., an equation of the form

ẋ(t)=G(t, xt), (4.3)

whereG :U → TM is continuous on an open subset U of R×C and G(t,u) ∈ Tu(0)M for
every (t, u) ∈U . In this case the description of the corresponding local semiflow is slightly
more complicated. Let (σ,u) ∈ U and let x : [σ − r,ω)→M be a solution of (4.3) (i.e., x
satisfies the equation on [σ,ω) and ω > σ is maximal) which satisfies

xσ |[−r,0] = u. (4.4)
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In this case we call x a solution of (4.3) with the initial condition (σ,u). If for every (σ,u)
there exists the unique such solution x , we define ω(σ,u) in such a way that

σ +ω(σ,u) = ω

(recall that ω is the right end of the interval of the existence of x) and for t ∈ [0,ω(σ,u)) we
put

ψ
(
(σ,u), t

) := (σ + t, xσ+t ).

It is easy to check that ψ obtained in this way is a local semiflow on U .

4.2. Ważewski-type theorems for RFDEs

Our presentation of the basic results concerning the Ważewski method in Section 2.3 was
purely topological, hence it also directly applies to local semiflows described in the previ-
ous section. However, since their phase-spaces are infinite-dimensional, usually the theo-
rems given in Section 2.3 have limited applications, at least because the sphere in such a
space is a retract of the ball. Therefore one should provide separate Ważewski-type theo-
rems more suitable for retarded functional differential equations. To this aim we will follow
an idea in the paper [67] by Rybakowski. Actually, it was preceded by [57], in which con-
sidered conditions were too restrictive, and [49], where the idea later used in [67] appeared
in a special case. We will not provide Rybakowski’s approach in the full generality, be-
cause it would require the introduction of several new concepts, but we rather concentrate
on results which can be directly used in applications.

In the current section we assume the uniqueness of the Cauchy problem for the consid-
ered equations, hence they generated local semiflows as it was described above. At first we
will deal with the autonomous case, i.e., with the local flow φ generated by Equation (4.1)
on C. As in Section 3.1, let V be a polyfacial set determined by {�i,mj }, i.e.,

V := {
x ∈M: �i(x) < 0 ∀i, mj (x) < 0 ∀j}

.

Recall that Li and Mj denote the sets of zeros of �i and, respectively,mj on the boundary
of V (see (3.1) and (3.2)).

DEFINITION 4.1. The set V is called a polyfacial set for (4.1) if

F(u) · ∇�i(u(0))> 0, if u(0) ∈ Li and u
([−r,0)) ⊂ V, (4.5)

F(u) · ∇mj
(
u(0)

)
< 0, if u(0) ∈Mj and u

([−r,0)) ⊂ V (4.6)

for u ∈ C, i = 1, . . . , p, and j = 1, . . . , q .
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EXAMPLE 4.1 (compare Example 3.1 in [67]). Consider the scalar equation

ẋ = −ax(t)− bx(t − r), (4.7)

where a, b ∈ R. If |a| � |b| then for an arbitraryw > 0, the interval (−w,w) is a polyfacial
set for (4.7) determined by the functions t 
→ ±t −w.

In the sequel we assume that V is a polyfacial set for (4.1); in particular we assume that
(4.5) and (4.6) are satisfied. Let the set E be given by the formula (3.6). Put

Ṽ := {
v ∈ C: v(τ ) ∈ V ∀τ ∈ [−r,0]},

Ẽ := {
u ∈ C: u(0) ∈E, u(τ) ∈ V ∀τ ∈ [−r,0)}.

PROPOSITION 4.1. The set W := Ṽ ∪ Ẽ is a Ważewski set for the local semiflow φ gener-
ated by (4.1) on C and its exit set W− is equal to Ẽ.

PROOF. The set W consists of two parts. It is obvious that there are no elements of W−
contained in Ṽ . Moreover, by (4.5), each element of Ẽ is in W−, hence W− = Ẽ. The
latter set is equal to W ∩ ∂Ṽ , hence it is closed in W , so (b) in Definition 2.4 holds.
If the positive semitrajectory of a point in Ṽ reaches the boundary of Ṽ , the first point
of intersection belongs to Ẽ by (4.5) and (4.6), hence also (a) is satisfied and the result
follows. �

Thus all Ważewski-type theorems for semiflows stated in Section 2.3 can be applied W .
Here we do not repeat them, but instead we indicate other, more useful results. In the
following theorems we assume that

• Y ⊂E,
• Z ⊂ V ∪ Y ,
• π :Z ∩ (Z ∪ Y )→ C is a continuous map.

The first result is a counterpart of Theorem 2.1.

THEOREM 4.1. Assume that for every z ∈ Z ∩ (Z ∪ Y ),

π(z)(0)= z, π(z)
([−r,0)) ⊂ V.

If Y is not a strong deformation retract ofZ∪Y in V ∪Y then there exists a z0 ∈ Z such that
the solution x : [−r,ω)→M of Equation (4.1) with the initial condition x|[−r,0] = π(z0)

satisfies
• either x([0,ω))⊂ V

• or else there exists t0 ∈ (0,ω) such that

x
([0, t0)) ⊂ V, x(t0) ∈E \ Y.
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PROOF. Assume on the contrary that the conclusion does not hold. In our notation it means
that for every z ∈Z ∩ (Z ∪ Y ),

π(z) ∈W∗, σ
(
π(z)

) ∈ Y,

where σ :W∗ → [0,∞) is the escape-time function. By Lemma 2.1 and Proposition 4.1,
σ is continuous. For y ∈ Z ∪ Y and t ∈ [0,1] define

h(y, t) :=
{
φ

(
π(y), tσ

(
π(y)

))
(0), if y ∈Z,

y, if y ∈ Y .

It is easy to verify that h satisfies the conditions required in Definition 2.6. �

The presented below counterpart of Corollary 2.1 cannot by directly derived from The-
orem 4.1 because of a weaker hypothesis imposed on π . Nevertheless, its proof based on
already presented arguments is straightforward.

THEOREM 4.2. Assume that for every z ∈Z \ Y ,

π(z)
([−r,0]) ⊂ V

and for every y ∈ Z ∩ Y ,

π(y)(0)= y, π(y)
([−r,0)) ⊂ V.

If Y is not a retract of Z ∪ Y then the conclusion of Theorem 4.1 holds.

PROOF. If the conclusion is false then the map r :Z ∪ Y → Y given by the formula

r(y) :=
{
φ

(
π(y), σ

(
π(y)

))
(0), if y ∈ Z,

y, if y ∈ Y ,

is a retraction which contradicts to the assumption. �

Essentially, the above theorems were stated in [67, Section 3]. In order to match to our
presentation in Section 2.3, we strengthened them slightly (in particular, by considering
the set Y ). However, a direct strengthening of Theorem 4.1 in order to get a counterpart
of Theorem 2.2 is not possible. A counterexample with a suitable choice of V , Z, and the
maps F and π can be based on Figure 5. (Such a counterexample does not contradict to
Remark 2.1.) The theorems can be extended to equations without the uniqueness property
in a similar way as described in Section 3.2 (compare [67, Section 4]).

In the theorems we assumed the existence of a map π having some special properties.
One can ask whether such a mapping can be constructed for a given polyfacial set V and a
set Z. In practice this is always possible; if the polyfacial set is regular (see Definition 3.2)
then, by Remark 3.1, V is a topological manifold with boundary and thus it has a collar,
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i.e., there is an embedding of ∂V × [0,1] into V for which ∂V × {0} corresponds to ∂V
(compare [17, Section VI.9]). Now it is easy to construct π such that π(z) is equal to the
constant map τ 
→ z if z is outside of the image of the embedding.

One can formulate similar theorems for the nonautonomous equation (4.3). Formally,
contrary to the case of ordinary differential equations, they are not direct consequences
of the results stated for the autonomous ones by attaching the equation ṫ = 1, at least
because the phase-space of the local flow generated by (4.3) does not coincide with
C([−r,0],R ×M). However, in spite of slightly greater complexity, there are no essential
problems in their formulating and proving—that can be done in the same way as above for
the autonomous case.

We skip the statements of those general theorems and for simplicity concentrate on the
case M = Rn where we assume that the domain U of the function G on the right-hand
side of the equation (4.3) is equal to R × C and C = C([−r,0],Rn). (For a more general
situation the reader is referred to [67].) Let V be a polyfacial set in Rn+1 determined by
{�i,mj } and let E be given by (3.6). The counterparts of (4.5) and (4.6) are

∂�i

∂t

(
σ,x(σ )

) +
n∑
k=1

∂�i

∂xk

(
σ,x(σ )

)
Gk(σ, xσ ) > 0,

if xσ ∈ C,
(
σ,x(σ )

) ∈ Li, (
τ, x(τ )

) ⊂ V ∀τ ∈ [σ − r, σ ), (4.8)

∂mj

∂t

(
σ,x(σ )

) +
n∑
k=1

∂mj

∂xk

(
σ,x(σ )

)
Gk(σ, xσ ) < 0,

if xσ ∈ C,
(
σ,x(σ )

) ∈Mj,
(
τ, x(τ )

) ⊂ V ∀τ ∈ [σ − r, σ ), (4.9)

The following result resembles Theorems 4.1 and 4.2.

THEOREM 4.3. Assume that (4.8) and (4.9) are satisfied and one of the following condi-
tions hold:

(i) for every (σ, z) ∈ Z ∩ (Z ∪ Y ),

π
(
(σ, z)

)
(0)= z,

(
σ + τ,π(σ, z)(τ )

) ∈ V ∀τ ∈ [−r,0),

and Y is not a strong deformation retract of Z ∪ Y in V ∪ Y ,
(ii) for every (σ, z) ∈ Z \ Y ,

π(σ, z)
([−r,0]) ⊂ V

and for every (σ, y) ∈ Z ∩ Y ,

π
(
(σ, y)

)
(0)= z,

(
σ + τ,π(σ, y)(τ )

) ∈ V ∀τ ∈ [−r,0),

and, moreover, Y is not a retract of Z ∪ Y .
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Then there exists a (σ0, z0) ∈ Z such that the solution x : [−r + σ0,ω)→ Rn of the equa-
tion (4.1) with the initial condition xσ0 |[−r,0] = π(σ0, z0) satisfies

• either (t, x(t))⊂ V for every t ∈ [σ0,ω)

• or else there exists t0 ∈ (σ0,ω) such that(
t, x(t)

) ∈ V ∀t ∈ [σ0, t0),
(
t0, x(t0)

) ∈E \ Y.

PROOF. One can follow the ideas of the proofs of Theorems 4.1 and 4.2. Define

Ṽ := {
(σ,u) ∈ R × C:

(
σ + τ,u(τ )

) ∈ V ∀τ ∈ [−r,0]},
Ẽ := {

(σ,u) ∈ R × C:
(
σ,u(0)

) ∈E, (
σ + τ,u(τ )

) ∈ V ∀τ ∈ [−r,0)}.
Their union is a Ważewski set for the local semiflow ψ on R× C described in the previous
section and the continuity of its escape-time function is used in definitions of the suitable
mappings. Details are straightforward and are omitted here. �

The equation considered in the following two examples of application of Theorem 4.3 is
taken from [67, Example 3.2]. Similar applications for ordinary differential equation were
given in Examples 1.1 and 1.2.

EXAMPLE 4.2. In the planar equation

ẋ(t)= ax(t)+ bx(t − r)+ f (t, xt , yt),

ẏ(t)= −cy(t)+ dy(t − r)+ g(t, xt , yt ) (4.10)

let a, c > 0 and let

(f, g) : R × C × C → R2,

where C = C([−r,0],R), be a continuous map. Assume that (4.10) satisfies the uniqueness
of the Cauchy problem,∣∣f (t, u, v)∣∣< |a| − |b|

for all (t, u, v) ∈ R × C × C for which∣∣u(0)∣∣ = 1,
∣∣v(0)∣∣ � 1,∣∣u(τ)∣∣< 1,
∣∣v(τ )∣∣< 1 ∀τ ∈ [−r,0),

and ∣∣g(t, u, v)∣∣< |c| − |d|
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for all (t, u, v) ∈ R × C × C for which∣∣u(0)∣∣ � 1,
∣∣v(0)∣∣ = 1,∣∣u(τ)∣∣< 1,
∣∣v(τ )∣∣< 1 ∀τ ∈ [−r,0).

Let the sets V , E, and Z be the same as in Example 1.1, i.e., they are given by, respectively,
(1.7), (1.8), and (1.9) (see also Figure 2). V is a polyfacial set for (4.10). Define π :Z ∪
E → C × C by

π(t, x, y)(τ ) :=
(
r + τ

r
x, y

)
for (t, x, y) ∈ Z ∪ E and τ ∈ [−r,0]. By Theorem 4.3 we conclude that there is an x0 ∈
(−1,1) such that the graph of the solution of (4.10) starting at (0,π(0, x0,0)) is contained
in V .

EXAMPLE 4.3. We associate the boundary value problem (1.10) to Equation (4.10) in
Example 4.2. As in Example 1.2, we define V , E, Z, and Y by, respectively (1.11), (1.12),
(1.9), and (1.13). Recall, that those sets are shown on Figure 3. Let π be the mapping
defined in Example 4.2. By Theorem 4.3 we conclude the existence of a solution of the
problem (4.10), (1.10) which starts at (0,π(0, x0,0)) for some x0 ∈ (−1,1).

5. Some topological concepts

In order to state variants of the Ważewski theorem, we have already defined the notion of
retract and its modifications. In this section we recall several other topological notions and
results which will be used in description of properties of the sets of solutions obtained by
the Ważewski method.

5.1. Topological pairs, quotient spaces, and pointed spaces

By a topological pair we mean a pair (X,A) consisting of a topological space X and its
subset A. If A is closed in X then (X,A) is a called a closed pair. If x0 ∈X, we frequently
write (X,x0) for the topological pair (X, {x0}). Let (X,A) and (Y,B) be topological pairs.
We write f : (X,A)→ (Y,B) if f is continuous map X→ Y and f (A)⊂ B .

Now we recall the notion of quotient space. We impose a special attention to the case in
which the empty space is involved. Let (X,A) be a topological pair.

DEFINITION 5.1. The quotient spaceX/A is the set whose elements are all points ofX\A
and the set A (denoted by [A] in order to avoid confusions), i.e.,

X/A := (X \A)∪ {[A]},
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endowed with the topology for which U ⊂X/A is open if and only if the set {x ∈X: [x] ∈
U} is open in X, where

[x] :=
{
x, if x ∈X \A,

[A], if x ∈A.

It follows that the quotient map

q :X , x → [x] ∈X/A
is continuous. By definition, X/∅ is equal to X ∪ {[∅]} and its topology is equal to the
direct sum topology ofX and the one-point space {[∅]}. In particular, ∅/∅ is equal to {[∅]}.
Since [A] is distinguished in X/A in a canonical way, in order to simplify the notation, for
an arbitrary pair (X,A) we write shortly (X/A,∗) instead of (X/A, [A]).

For presentation of results involving quotient spaces we use the Čech cohomology func-
tor Ȟ ∗ = {Ȟ q}q∈Z having coefficients in a fixed commutative ring-with-unit R. We recall
that it is isomorphic to the Alexander–Spanier cohomology functor (compare [71]).

REMARK 5.1. By the strong excision of the Čech cohomology, if (X,A) is a closed pair
then the quotient map induces an isomorphism

Ȟ ∗(q) : Ȟ ∗(X/A,∗) ∼=−→ Ȟ ∗(X,A).

By a pointed space we mean a topological pair (X,x0), where x0 ∈X. In this case x0 is
called the base point. For example, (X/A,∗) is a pointed space with the base point ∗ equal
to [A]. Let (X,x0) and (Y, y0) be two pointed spaces. In this case f : (X,x0) → (Y, y0)

means f :X→ Y continuous such that f (x0)= y0. We put

X ∨ Y :=X× {y0} ∪ {x0} × Y

and define the wedge sum of (X,x0) and (Y, y0) by

(X,x0)∨ (Y, y0) :=
(
X ∨ Y, (x0, y0)

)
.

Similarly, we put

X ∧ Y :=X× Y/(X ∨ Y ),
(X,x0)∧ (Y, y0) := (X ∧ Y,∗)

and call (X,x0)∧ (Y, y0) the smash product of (X,x0) and (Y, y0).

5.2. Homotopy types

Recall that maps f,g :X→ Y are homotopic (denoted f 0 g) if for some continuous map
h :X× [0,1] → Y , f is equal to x 
→ h(x,0) and g is equal to x 
→ h(x,1). If, moreover,
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f,g : (X,x0) → (Y, y0) then they are called pointed-homotopic (denoted f 0∗ g) if the
map h additionally satisfies h(x0, t)= y0 for every t ∈ [0,1].

DEFINITION 5.2. We say that topological spaces X and Y have the same homotopy type
(and we write X 0 Y ) if for some maps f :X→ Y and g :Y →X (called homotopy equiv-
alences),

g ◦ f 0 idX, f ◦ g 0 idY .

We say that the pointed spaces (X,x0) and (Y, y0) have the same pointed homotopy type
(we write (X,x0)0∗ (Y, y0)) if there exist f : (X,x0)→ (Y, y0) and g : (Y, y0)→ (X,x0)

such that

g ◦ f 0∗ idX, f ◦ g 0∗ idY .

The absolute homotopy type (shortly: homotopy type) of X is the equivalence class of X in
the relation 0. It is denoted by [X]. Similarly, the pointed homotopy type of (X,x0) is the
equivalence class of (X,x0) in the relation 0∗ and is denoted by [X,x0].

Obviously, [X,x0] is a more restrictive class of spaces then [X]. Since a homology or
cohomology functor H is homotopy invariant, we define

H [X] :=H(X), H [X,x0] :=H(X,x0).

One can prove that the following definitions of the wedge sum and smash product of ho-
motopy types are correctly stated:

[X,x0] ∨ [Y,y0] :=
[
(X,x0)∨ (Y, y0)

]
,

[X,x0] ∧ [Y,y0] :=
[
(X,x0)∧ (Y, y0)

]
.

We distinguish the trivial pointed homotopy type:

0 := [{[∅]}, [∅]],
i.e., the homotopy type of a pointed one-point space, which is the neutral element with
respect to the wedge sum.

REMARK 5.2. There is no inverse to a nontrivial pointed homotopy type with respect to
the wedge sum, i.e.,

[X,x0] ∨ [Y,y0] = 0

implies

[X,x0] = 0, [Y,y0] = 0.
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Indeed, if there is a continuous map F :X ∨ Y × [0,1] →X ∨ Y such that

F
(
(x, y),0

) = (x, y), F
(
(x, y),1

) = F
(
(x0, x0), t

) = (x0, x0)

for every t, x, y then the map G :X× [0,1] →X defined by

G(x) :=
{
πF

(
(x, y0), t

)
, if F

(
(x, y0), t

) ∈X× {y0},
x0, otherwise,

where π :X× Y →X denotes the projection, provides

(X,x0)0∗
({x0}, x0

)
.

The following simple lemma is useful in the Ważewski method.

LEMMA 5.1. If A is a strong deformation retract of X then

[X/A,∗] = 0.

In the following example we illustrate the difference between the absolute and pointed
homotopy types.

EXAMPLE 5.1. The unit zero- and one-dimensional spheres S0 and S1 are, respectively,
the set {−1,1} and the circle {x: |x| = 1} in C. They naturally provide pointed spaces
(S0,1) and (S1,1). By definition, S0 ∨S1 is homeomorphic to the disjoint union of S1 and
a one-point space, hence it is homeomorphic to S1/∅ and[

S0 ∨ S1] = [
S1/∅]

.

On the other hand, each homotopy equivalence S0 ∨ S1 → S1/∅ transforms the base point
(1,1) of (S0,1)∨ (S1,1) to a point in the other component of S1/∅ then [∅], hence[

S0,1
] ∨ [

S1,1
] = [(

S0,1
) ∨ (

S1,1
)] �= [

S1/∅,∗]
.

5.3. Absolute neighborhood retracts

We recall the topological notions of absolute and Euclidean neighborhood retracts.

DEFINITION 5.3 (compare [14,33]). A metrizable space X is called an absolute neigh-
borhood retract (shortly: ANR) if there is an open set U in a normed space E and a map
h :X → E which is a homeomorphism onto its image h(X) such that h(X) is a retract
of U .
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REMARK 5.3. There is an equivalent definition: A metrizable space X is an ANR if and
only if for each closed subset A of a metrizable space W and every continuous map
f :A→ X there exists a neighborhood U of A in W and a continuous map F :U → X

such that F |A = f (compare [14, Theorem IV(4.2)(ii)]).

We refer to [14] for other properties of ANRs.

DEFINITION 5.4 (compare [28]). A metrizable space X is called an Euclidean neighbor-
hood retract (shortly: ENR) if there is an n ∈ N, an open setU in Rn, and a map h :X→ Rn

which is a homeomorphism onto its image h(X) such that h(X) is a retract of U .

The class of ENRs coincides with the class of locally compact, separable, and finite-
dimensional ANRs. Examples of ENRs include all compact polyhedra and manifolds with
boundary. The Hilbert cube is a compact ANR which is not an ENR.

5.4. Lusternik–Schnirelmann category

We provide the concept of the Lusternik–Schnirelmann category for topological pairs,
which appears to be very convenient in connection to the Ważewski method. At first we
recall the notion of contractibility.

DEFINITION 5.5. A set A⊂X is called contractible in X if there exists a continuous map
h :A× [0,1] → X such that h(x,0)= x for every x ∈ A and h(x,1)= h(y,1) for every
x, y ∈A.

Notice that the above definition is also valid also for A= ∅. Let (X,Y ) be a closed pair.
Motivated by the definition posed by Reeken, Fournier, and Willem (compare [31]) we put

DEFINITION 5.6. The relative category catX,Y (A) of a closed set A⊂X is an element of
N ∪ {∞} such that

catX,Y (A) := 0, if Y is a strong deformation retract of A∪ Y in X.

catX,Y (A)� n, if there exist closed sets Ai ⊂A, i = 0, . . . , n, such that

A=
n⋃
i=0

Ai,

Ai is contractible in X for i = 1, . . . , n, and

Y is a strong deformation retract of A0 ∪ Y in X.

(Compare Definition 2.6 for the notion of a strong deformation retract in a space.)

Formally, we did not exclude any possibility in which the empty set appears. In particu-
lar, for closed A⊂X we define

catX(A) := catX,∅(A).
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It follows that if X �= ∅ then catX(A) is the minimal number of closed contractible in X
subsets of A which cover A (since A0 = ∅) or, if such a number does not exist, it is equal
to ∞.

DEFINITION 5.7. Define

cat(X,Y ) := catX,Y (X),

cat(X) := catX(X)

and call them the category of (X,Y ) and, respectively the category of X.

It is easy to check that for a closed A⊂X,

catX(A)� cat(A), (5.1)

catX,Y (A)� catX(A)� catX,Y (A)+ catX(Y ). (5.2)

In particular,

cat(X,Y )� cat(X)− catX(Y )� cat(X)− cat(Y ) (5.3)

and if x0 is a point in X then

catX,x0(A)� catX(A)� catX,x0(A)+ 1. (5.4)

EXAMPLE 5.2. In the notation used in Example 5.1,

cat
(
S1) = cat

(
S1/∅,∗) = cat

((
S0,1

) ∨ (
S1,1

)) = 2, cat
(
S1/∅) = 3.

It follows immediately by definition that the category is an invariant of the absolute and
pointed homotopy types. Hence we can put the following definitions:

DEFINITION 5.8. The categories of the homotopy types are defined as

cat[X] := cat(X),

cat[X,x0] := cat(X,x0).

We list the basic properties of the category.

PROPOSITION 5.1 (compare [31]). Let A and B be closed subsets of X.
(i) If A⊂ B then catX,Y (A)� catX,Y (B).

(ii) catX,Y (A∪B)� catX,Y (A)+ catX(B).
(iii) If there exists a continuous map h :A×[0,1]→X such that h(x,0)= x for x ∈A,

h(x, t)= x for x ∈A∩ Y and t ∈ [0,1] then

catX,Y
(
h1(A)

)
� catX,Y (A).
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(iv) If both X and Y are ANRs then there exists a closed neighborhood U of A such
that

catX,Y (U)= catX,Y (A).

PROOF. Proofs of (i), (ii), and (iii) are immediate. As for (iv), we refer to [31, Proposi-
tion 2.9]. �

PROPOSITION 5.2. If (X,A) is a closed pair of ANRs then

cat(X,A)� cat(X/A,∗)� cat(X/A)− 1.

PROOF. We can assume that cat(X,A)= n <∞. Let Ai , i = 0, . . . , n, be a closed cover-
ing ofX such that A⊂A0, A is a strong deformation retract of A0, and Ai are contractible
in X for i � 1. Since X and A are ANRs, as in the proof of [31, Proposition 2.9] one
can find a closed neighborhood U0 of A0 for which A is a strong deformation retract.
For i = 1, . . . , n define A′

i as Ai \ intU0, hence A′
i ∩ A = ∅. Using the subsets U0/A,

A′
1, . . . ,A

′
n of X/A one gets

cat(X/A,∗)� n,

hence the left inequality follows. The right-hand inequality is given in (5.4). �

5.5. Cup-length

Here we use the cup-product (denoted by *) in the Čech cohomologies (compare [28] for
results which concern that notion and which we apply in the sequel). We provide the notion
of cup-length in the context of pair of spaces, compare [31, Definition 3.2]. Notice that in
our definition, the cup-length of a pair is shifted by one with respect to the cup-length
considered in that paper.

DEFINITION 5.9. The cup-length of a topological pair (X,Y ) is an element �(X,Y ) of
N ∪ {∞} which satisfies

�(X,Y )= 0, if Ȟ ∗(X,Y )= 0,

�(X,Y )= 1, if Ȟ 0(X,Y ) �= 0, Ȟ q(X)= 0 for q � 1,

�(X,Y )� n, if there exist q � 0, v ∈ Ȟ q(X,Y ), qi � 1, and ui ∈ Ȟ qi (X)

for i = 1, . . . , n− 1 such that v * u1 * · · ·*un−1 �= 0.

We write �(X) := �(X,∅). It follows �(∅)= 0, �(X)= 1 if X �= ∅ and Ȟ q(X)= 0 for
q � 1, and �(X) � n if there exists qi � 1 and ui ∈ Ȟ qi (X), i = 1, . . . , n− 1, such that
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u1 * · · ·* un−1 �= 0. Indeed, it suffices to put v = 1 ∈ Ȟ 0(X,∅). Moreover, if x0 ∈ X
then

�
(
X, {x0}

)
� �(X)� �

(
X, {x0}

) + 1, (5.5)

since Ȟ q(X, {x0}) = Ȟ q(X) for q � 1. Moreover, it follows that the cup-length is an in-
variant of the Čech cohomology ring of (X,x0), hence also of the pointed homotopy type
[X,x0]. Thus we can put

DEFINITION 5.10. The cup-lengths of the homotopy types are defined as

�[X] := �(X),

�[X,x0] := �(X,x0).

PROPOSITION 5.3. If (X,A) is a closed pair then

�(X,A)� �(X/A,∗)� �(X/A)− 1.

PROOF. Assume �(X/A,∗)� n. The diagram

Ȟ ∗(X/A,∗)⊗
∼=

Ȟ ∗(X/A)⊗ · · ·⊗ Ȟ ∗(X/A)
*

Ȟ ∗(X/A,∗)
∼=

Ȟ ∗(X,A) ⊗ Ȟ ∗(X) ⊗ · · ·⊗ Ȟ ∗(X)
*

Ȟ ∗(X,A)

with the vertical lines induced by the quotient map, is commutative. By Remark 5.1 and
the commutativity, if

v * u1 * · · ·*un−1 �= 0

in Ȟ ∗(X/A,∗), then the corresponding element in Ȟ ∗(X,A) is also nonzero, hence
�(X,A)� n and the left inequality follows. The right-hand inequality is given in (5.5). �

The most important result concerning the notion of cup-length relates it to the Lusternik–
Schnirelmann category.

PROPOSITION 5.4 (compare Theorem 3.6 in [31]). If (X,Y ) is a closed pair then

cat(X,Y )� �(X,Y ).
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5.6. Lefschetz theorem and the fixed point index

Recall that if f : (X,A)→ (X,A) is a continuous map, H is a homology or cohomology
functor over Q, and the vector-spaces Hq(X,A) are finitely dimensional and equal to zero
for almost all q then the Lefschetz number of f (with respect to H ) is defined as

Λ(f ) :=
∞∑
q=0

(−1)q trHq(f ),

where trHq(f ) denotes the trace of the endomorphism Hq(f ) of Hq(X,A). If f is equal
to the identity on (X,A) then its Lefschetz number is denoted by χ(X,A) and is called the
Euler characteristic of (X,A) (with respect to H ), i.e.,

χ(X,A)=
∞∑
q=0

(−1)q dimHq(X,A).

If (X,A) is a pair of compact ANRs then the Lefschetz number is always defined and
independent of the choice of H , and

Λ(f )=Λ(f |X)−Λ(f |A),

where f |X :X→X and f |A :A→A are the restrictions of f . In particular,

χ(X,A)= χ(X)− χ(A).

Since homologies and cohomologies are homotopy invariants, we define

χ[X] := χ(X),

χ[X,x0] := χ(X,x0)= χ[X] − 1.

PROPOSITION 5.5. If (X,A) is a closed pair and the Euler characteristic with respect to
the Čech cohomologies χ̌(X,A) is defined then

χ̌(X,A)= χ̌ (X/A,∗)= χ̌(X/A)− 1.

Moreover, if X and A are compact ENRs then X/A is also a compact ENR and

χ(X,A)= χ(X/A,∗)= χ(X/A)− 1

does not depend on the choice of homology or cohomology.

PROOF. This is a consequence of Remark 5.1 and [28, Chapter IV.8]. �

The Lefschetz number is used in formulation of the following well-known result:
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PROPOSITION 5.6 (Lefschetz Fixed Point Theorem). If X is a compact ANR, f :X→X

is a continuous map, and Λ(f ) �= 0 then f has a fixed point.

Assume that X is an ENR. For a continuous map f :D → X, where D ⊂ X, define its
set of fixed points as

Fix(f ) := {
x ∈D: f (x)= x

}
.

DEFINITION 5.11. A set P is called an isolated set of fixed points of f if it is compact
and there exists an open set U in X such that U ⊂D and

P =U ∩ Fix(f ).

If Q is an isolated set of fixed points of g :D → X, we write (f,P ) 0 (g,Q) (and call
(f,P ) homotopic to (g,Q)) if for every t ∈ [0,1] there exist a map ft :D→X such that

F :D× [0,1] , (x, t)→ (
ft (x), t

) ∈X× [0,1]
is continuous and there exists an isolated set P ∗ of fixed points of F such that f0 = f ,
f1 = g, P = {x: (x,0) ∈ P ∗}, and Q= {x: (x,1) ∈ P ∗}.

To such an isolated set P one can associate an integer number ind(f,P ), called the fixed
point index, see the book [28]. We use a slightly different notation with respect to that in
the book of Dold; our ind(f,P ) means the same as the index of f |U in [28]. Below we list
its properties:

PROPOSITION 5.7 (compare [28]).
(i) (Solvability) If ind(f,P ) �= 0 then P �= ∅.
(ii) (Additivity) If P and Q are isolated sets of fixed points of f and P ∩Q= ∅ then

ind(f,P ∪Q)= ind(f,P )+ ind(f,Q).

(iii) (Multiplicativity) If f :X→X and g :Y → Y , P and Q are isolated sets of fixed
points of f and g, respectively, then

ind(f × g,P ×Q)= ind(f,P ) ind(g,Q).

(iv) (Homotopy Invariance) If (f,P )0 (g,Q) then ind(f,P )= ind(g,Q).
(v) (Commutativity) If f :D →X′ and f ′ :D′ →X, where D ⊂ X and D′ ⊂ X′, and
P is an isolated set of fixed points of f ′ ◦ f then f (P ) is an isolated set of fixed
points of f ◦ f ′ and

ind(f ′ ◦ f,P )= ind
(
f ◦ f ′, f (P )

)
.

(vi) (Lefschetz Property) If X is compact and f :X→X then

ind(f,Fixf )=Λ(f ).
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6. Properties of the asymptotic parts of Ważewski sets

Roughly speaking, abstract Ważewski-type theorems provide sufficient conditions for

W \W∗ �= ∅

if W is a Ważewski set. Here we consider the question what additional information on that
asymptotic part can be obtained from the properties of W and W−; in particular whether it
contains stationary or periodic points and what is its topology. In this section we concen-
trate on qualitative results valid for local semiflows. For some more accurate results which
are easier to handle if local flows are considered we refer to the next section.

6.1. Estimates on the category of the asymptotic part

We assume that φ be a local semiflow onX. It seems that the paper [63] of Poźniak was the
first one in which the notion of category appeared in the context of the Ważewski method
and Conley index. We base on some ideas from that paper.

THEOREM 6.1. Let W ⊂ X be a Ważewski set, Assume that both W and W− are ANRs
closed in X and Z is a closed subset of W . Then

catW
(
Z \W∗)

� catW,W−(Z).

PROOF. Z \W∗ is closed by Lemma 2.1. By Proposition 5.1, there exists U , a closed
neighborhood of Z \W∗ in W such that catW(W \W∗) = catW(U). Put V := Z \ intU
(where int denotes the interior relative to W ). It follows by Proposition 5.1

catW
(
Z \W∗) = catW(U)= catW(U)+ catW,W−(V )� catW,W−(Z)

since Z = U ∪ V and V ⊂ W∗, hence W− is a strong deformation retract of V ∪ W−
in W . �

Under the imposed conditions on W and W−, the above theorem can be regarded as an
extension of Corollary 2.3, since ifW− is not a strong deformation retract of Z∪W− in W
then, by definition, catW,W−(Z)� 1, hence cat(Z \W∗)� 1, hence Z \W∗ is nonempty.

COROLLARY 6.1. If W is a Ważewski set and W and W− are closed ANRs then

catW
(
W \W∗)

� cat
(
W,W−)

.

Recall that cat(W,W−) can be estimated using (5.3) or Proposition 5.2. Another esti-
mate using the notion of cup-length is given by Proposition 5.4.
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6.2. Stationary points of gradient-like local semiflows

Let φ be a local semiflow on X.

DEFINITION 6.1. g :X→ R is called a Liapunov function for φ provided it is decreasing
along nonconstant trajectories, i.e.,

g
(
φs(x)

)
> g

(
φt(x)

)
if s < t whenever x is not a stationary point. φ is called a gradient-like local semiflow if
there exists a Liapunov function for φ.

An example which justifies the name is a gradient local flow on a Riemannian manifold,
i.e., the local flow generated by

ẋ = −∇g(x) (6.1)

for a C1-class function g. In this case stationary points are critical points of g.
It is not difficult to prove the following result:

PROPOSITION 6.1. If φ is gradient-like then each nonempty ω-limit set consists of sta-
tionary points.

By Corollary 2.5, it immediately follows:

COROLLARY 6.2. If a local semiflow φ on X is gradient-like, W ⊂ X is a compact
Ważewski set and W− is not a strong deformation retract of W then W contains a sta-
tionary point of φ.

6.3. Stationary points of local semiflows in the general case

Results on the existence of stationary points of semiflows without any gradient-like struc-
ture can be obtained using fixed points theorems. The most useful for our purposes is the
Lefschetz theorem. It is a applied in a proof of the following result:

THEOREM 6.2 (compare Corollary 1 in [73]). If φ is a local semiflow on X, W and W−
are compact ANRs in X, and

χ
(
W,W−) = χ(W)− χ

(
W−) �= 0

then W contains a stationary point of φ.

PROOF. Step 1. At first we prove that for every T > 0 there exists a point x ∈W such that
φT (x)= x . Let S1 be the unit circle in the complex plane C. In the topological direct sum

W 2 (
W− × S1)

,
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i.e., a disjoint union of W and W− × S1 endowed with the inductive topology, identify
each point of W− ⊂W with a point of W− ×S1 via the map j :w 
→ (w,1). The resulting
quotient space is the adjunction

W̃ :=W ∪j
(
W− × S1)

.

Define a semiflow ψ on W̃ by

ψ(z, t) :=

⎧⎪⎨⎪⎩
φ(z, t), if z ∈W and σ+(z)� t ,(
φ

(
z, σ+(z)

)
, exp

(
πi

(
t − σ+(z)

)
/T

))
, if z ∈W and σ+(z)� t ,(

x,α exp(πit/T )
)
, if z= (x,α) ∈W− × S1.

The set W̃ is a compact ANR since W , W−, and W− × S1 are ANRs, and

χ(W̃ )= χ(W)+ χ
(
W− × S1) − χ

(
W−) = χ(W)− χ

(
W−) �= 0.

Since φT 0 id, there exists z ∈ W̃ such thatψT (z)= z by the Lefschetz fixed point theorem
(Proposition 5.6). It follows by the definition of ψ that ψT (z)= z if and only if

z ∈W, φT (z)= z, φ+(z)= φ
(
z, [0, T ]) ⊂W,

hence the required conclusion follows.
Step 2. Now we can use a standard argument to prove that φ has a stationary point in W

(compare [32, Proposition 7(4.8)]). By Step 1, there exists xn ∈ W̃ such that φ(xn,2−n)=
xn. An accumulation point of the sequence {xn} is a stationary point of φ, hence the result
follows. �

7. Isolating blocks and segments

We continue the series of results on properties of the asymptotic part of a Ważewski set.
Here we additionally assume that the considered local semiflow is a local flow and the
Ważewski set is an isolating block. These assumptions enable us to provide various quan-
titative properties of the invariant part of the set in an easier way.

7.1. Isolating blocks and their structure

Let φ be a local flow on a metrizable space X. At first we should fix terminology concern-
ing behavior of φ with respect to a given subset of X. Recall, that we have already defined
the exit set and the asymptotic part in Section 2.1, the extended escape-time function in
Section 2.2, and we mentioned on an invariant part in Section 1.3. Let Z ⊂X. We provide
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a list of notions related to Z which will be of our interest (for the full account we repeat
the definitions of Z−, Inv(Z), and σ+). Define the sets

Z− := {
x ∈Z: φ

(
x, [0, t]) �⊂Z ∀t > 0

}
,

Z+ := {
x ∈Z: φ

(
x, [−t,0]) �⊂Z ∀t > 0

}
,

Inv±(Z) := {
x ∈ Z: φ±(x)⊂Z

}
,

Inv(Z) := Inv−(Z)∩ Inv+(Z),

and functions σ± :Z→ [0,∞] by

σ+(x) := sup
{
t � 0: φ

(
x, [0, t]) ⊂Z

}
,

σ−(x) := sup
{
t � 0: φ

(
x, [−t,0]) ⊂Z

}
.

Obviously, Inv+(Z) is the asymptotic part of Z; it is also called the positive invariant part,
and Inv(Z) is the invariant part of Z. Moreover, Inv−(Z) is called the negative invariant
part and Z+ is called the entrance set of Z. (It should be pointed out that all the above
notions are defined with respect to a fixed φ and Z. In fact, a more proper notation should
indicate on φ, for example Invφ(Z) instead of Inv(B), σ±

φ,Z instead of σ±, etc. Neverthe-
less, for simplicity we avoid that notation whenever it does not lead to confusions.)

In Section 1.3, it was given a rough definition of the concept of isolating block. Here we
state it in a slightly more general context.

DEFINITION 7.1. A set B ⊂X is called an isolating block if

B = intB,

B , B−, and B+ are compact, and for every x ∈ ∂B \ (B− ∪B+),

σ−(x) <∞, σ+(x) <∞,

φ
(
x,

[−σ−(x), σ+(x)
]) ⊂ ∂B.

(In practice, one usually considers isolating blocks without sliding on the boundary, i.e.,
∂B = B+ ∪ B−). By Proposition 2.1 and Lemma 2.2 we get immediately the following
properties of isolating blocks:

PROPOSITION 7.1. If B is an isolating block then
(i) B is a Ważewski set for both φ and its reverse obtained by the transformation t 
→

−t of time,
(ii) the functions σ± are continuous.

In the sequel we assume that B is an isolating block. In particular, it follows by Corol-
lary 2.5 that if B− or B+ is not a strong deformation retract of B then its invariant part
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Fig. 6.

Inv(B) is nonempty. Our aim is to provide a more accurate information on its properties
that it was given forW \W∗ in Section 6. For this reason we introduce some other concepts
related to B . Denote by A(B) (or shortly A, if it does not lead to confusions) the subset of
B given by

A :=A(B) := Inv−(B) ∪ Inv+(B).

It follows, in particular, that its exit and entrance sets are given as

A± =A∩B±.

Below we frequently use abbreviated notation for the invariant part of the isolating block B;
we put:

I := Inv(B).

The position of the mentioned sets in the block B can be seen on Figure 6.
Let B be an isolating block (with respect to the flow φ).

DEFINITION 7.2. A set Z ⊂ B is called B-invariant if for every x ∈ Z the connected
component of φ(x)∩B containing x is a subset of Z.

The connected component which appears in the above definition is equal to φ(x,Δ),
where Δ is the closed interval having σ−(x) and σ+(x) as the ends. In particular, it is
equal to φ(x) if x ∈ I . The sets A and Inv±(B) are examples of B-invariant sets.

For n ∈ N define

An := {
x ∈A: σ−(x)� n, σ+(x)� n

}
,

Bn := {
x ∈ B: σ−(x)+ σ+(x)� n

} ⊃A.

In particular, Bn is B-invariant, A0 = A, B0 = B , and B±
n = B± ∩Bn. We list some prop-

erties of those sets:
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LEMMA 7.1.
(i) Bn is a neighborhood of A in B and for every neighborhood U of A there exists n

such that Bn ⊂U .
(ii) For every n there exists a compact set Dn ⊂ B ,

Bn+1 ∪B− ⊂Dn ⊂ Bn ∪B−

such that Dn is a strong deformation retract of Z ∪B− for every B-invariant set Z
such that Bn ⊂Z. In particular, Dn is a strong deformation retract of B as well as
of Bn ∪B−.

(iii) For every neighborhood V of I there exists n such that An ⊂ V .
(iv) An+1 is a strong deformation retract of An for every n.
(v) Inv±(B)∩An+1 is a strong deformation retract of Inv±(B)∩An for every n.

PROOF. In the proof we frequently refer to the continuity of σ± (see Proposition 7.1).
Ad (i) and (iii). They immediately follow by that continuity.
Ad (ii). Let f :B− → [0,1] be a continuous function such that f (x)= 0 if σ−(x)� n

and f (x)= 1 if σ−(x)� n+ 1. Define g :B− → [0, n+ 1] by

g(x)=
{
f (x)σ−(x), if σ−(x)� n+ 1,

n+ 1, if σ−(x)� n+ 1.

In particular, g(x)� σ−(x) for x ∈ B−. The set

Dn :=Bn+1 ∪ {
φ(x,−t) ∈B: x ∈B−, t � g(x)

}
has the required properties. Indeed, the map r defined by

r(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ
(
x,σ+(x)

)
, if σ−(x)+ σ+(x)� n,

φ
(
x,σ+(x)− g

(
φ

(
x,σ+(x)

)))
, if n� σ−(x)+ σ+(x)� n+ 1

and g
(
φ

(
x,σ+(x)

))
� σ+(x),

x, if n� σ−(x)+ σ+(x)� n+ 1

and g
(
φ

(
x,σ+(x)

))
� σ+(x)

or if x ∈ Bn+1

is a strong deformation retraction B →Dn and each its restriction to Z ∪ B− →Dn is a
strong deformation retraction as well.

Ad (iv) and (v). The map s :An →An+1,

s(x) :=
⎧⎨⎩
φ

(
x,n+ 1 − σ−(x)

)
, if σ−(x)� n+ 1,

φ
(
x,σ+(x)− n− 1

)
, if σ+(x)� n+ 1,

x, otherwise

is a strong deformation retraction required in (iv); its restrictions apply to (v). �



642 R. Srzednicki

As a consequence we get the following estimate on the category of I :

THEOREM 7.1 (compare Theorem 3.1 in [63]). If B and B− are ANRs then

cat(I )� cat
(
B,B−)

.

PROOF. Lemma 7.1(iii) implies

I =
⋂
n∈N

An ∩ Inv+(B),

hence the result follows by Proposition 5.1(iv), Corollary 6.1, and Lemma 7.1(v). �

7.2. Estimates on the cohomology of the invariant part

We begin with the case B− or B+ empty. It follows I is an attractor (or, in other termi-
nology, an asymptotically stable set) for the flow φ or, respectively, its reverse. In that case
we have a satisfactory information on the topology of I given by the following result:

THEOREM 7.2. If B− = ∅ or B+ = ∅ then the inclusion I ↪→ B induces an isomorphism
Ȟ ∗(B)→ Ȟ ∗(I ).

PROOF. Assume that B− = ∅ (for a proof in the other case it suffices to reverse the di-
rection of time). For every t � 0 the inclusion φt(B) ↪→ B induces an isomorphism in the
cohomologies,⋂

t�0

φt (B)= I,

hence the result is an immediate consequence of the continuity property of the Čech coho-
mologies (compare [71]). �

REMARK 7.1. Actually, it is not difficult to prove a stronger result: I ↪→ B is a shape
equivalence (compare [38]; more information on the notion of shape can be found in [15]).
In [38], there is an example in which B is an annular region of the plane and I is the
Warsaw circle, hence, in general, the shape equivalence cannot be further improved to the
homotopy equivalence.

On the other hand, if neither B− nor B+ is empty, usually one cannot get enough infor-
mation from B to determine the topology of I , as it is indicated on the following example:

EXAMPLE 7.1. Let φ be a local flow generated by a vector-field v in Rn. Assume that
B is an isolating block for φ and there exists an x0 ∈ intB such that 0 < σ±(x0) < ∞.
In particular, x0 /∈ I , hence v(x0) �= 0. Let D be an (n− 1)-dimensional disc centered at
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x0 and contained in the affine hyperplane perpendicular to v(x0) such that v is transversal
to D. By the continuity of σ±, we can assume that

0< σ±(y) <∞, for every y ∈D. (7.1)

Let K be an arbitrary compact set contained in D and let g : Rn → [0,∞) be a continuous
function such that

K = {
x ∈ Rn: g(x)= 0

}
.

It follows by (7.1) that B is an isolating block for the local flow generated by

ẋ = g(x)v(x),

its invariant part is equal to I ∪K , and I ∩K = ∅. The latter implies that Ȟ ∗(K) is a direct
factor of Ȟ ∗(I ∪K). Except of some limitations which we do not precise here, Ȟ q(K)

is an arbitrary countably generated Abelian group if 0 � q � n− 2 and is equal to zero if
q � n− 1 since K is homeomorphic to a subset of Rn−1, hence Ȟ q(I ∪K) is at least as
complicated.

From the above example we conclude that the Čech cohomology of the invariant part of
B can be almost arbitrarily complex. Thus, in general one can at most expect to estimate
the “lower bound” of the cohomology of I . We provide several results in this direction.
A majority of them can be duplicated by substituting B+ instead of B−, etc.

Our first aim is to present an exact sequence which connects the cohomologies of I ,
(B,B−), and A− due to Churchill in [18].

PROPOSITION 7.2 (compare Lemma 4.3 in [18]). The inclusion (A,A−) ↪→ (B,B−) in-
duces an isomorphism Ȟ ∗(B,B−)→ Ȟ ∗(A,A−).

PROOF. By Lemma 7.1, the homotopy and excision properties of the cohomology imply
that the inclusions induce a sequence of isomorphisms

Ȟ ∗(
B,B−) ∼= Ȟ ∗(

Dn,B
−) ∼=H ∗(

Bn ∪B−,B−) ∼=H ∗(
Bn,B

−
n

)
for every n. It follows that the inclusion (Bn+1,B

−
n+1) ↪→ (Bn,B

−
n ) induces an isomor-

phism, hence there is also an isomorphism

Ȟ ∗(
B,B−) ∼= dir lim Ȟ ∗(

Bn,B
−
n

)
induced by the inclusions. Since⋂

n∈N

(
Bn,B

−
n

) = (
A,A−)

,

the result follows by the continuity of the Čech cohomology. �
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PROPOSITION 7.3 (compare Proposition 4.6 in [18]). The inclusion I ↪→ A induces an
isomorphism Ȟ ∗(A)→ Ȟ ∗(I ).

PROOF. It follows by Lemma 7.1 that the inclusion An+1 ↪→An induces an isomorphism
in cohomologies and⋂

n∈N

An = I,

hence the result follows by the properties of homotopy and continuity of the Čech coho-
mology. �

THEOREM 7.3 (compare Theorem 4.7 in [18]). There exists an exact sequence

· · · δq−1−−−→ Ȟ q(B,B−) βq−→ Ȟ q(I)
γ q−→ Ȟ q(A−) δq−→ Ȟ q+1(B,B−) βq+1

−−−→ · · ·

in which βq is induced by the inclusion for every q ∈ Z.

PROOF. By Propositions 7.2 and 7.3, it suffices to substitute Ȟ q(A,A−)→ Ȟ q(A) by βq

in the exact sequence of the pair (A,A−). �

The above result is not completely satisfactory since the term Ȟ ∗(A−) in the exact se-
quence cannot be determined from B and B− alone. Nevertheless, some estimates can be
obtained by its application. In the following corollary and example, χ and χ̌ denote the
Euler characteristic with respect to singular cohomologies and, respectively, Čech coho-
mologies. A standard fact from homological algebra on exact sequences and the corre-
sponding Euler characteristics leads to the following

COROLLARY 7.1. If two Euler characteristics among χ̌ (I ), χ̌(B,B−), and χ̌(A−) are
defined, then the third one is also defined and

χ̌(I )= χ̌
(
B,B−) + χ̌

(
A−)

.

EXAMPLE 7.2. Let a 2-dimensional manifold be the phase space of the considered local
flow. Assume that an isolating block B is a manifold with boundary and B− is a sub-
manifold with boundary of ∂B (for example, given as a generalized polyfacial set like
in Remark 3.2). In that case B and B− are compact ENRs, hence the Čech cohomolo-
gies of (B,B−) are isomorphic to the corresponding singular cohomologies. Moreover,
Ȟ q(B,B−) is finite-dimensional for every q and equal to zero if q � 3 and B− is the
union of components each of which is homeomorphic to the circle S1 or to the interval
[0,1]. Thus the set A− consists of the union of some number of the components of B−
homeomorphic to the circle and a set K homeomorphic to a compact subset of R. If K
has infinitely many components then from the exact sequence in Theorem 7.3 we con-
clude that Ȟ 0(I ) is infinitely generated (hence I has infinitely many components) because
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Imγ 0 = kerδ0 and kerδ0 is infinite-dimensional since dim Ȟ 1(B,B−) <∞. In the oppo-
site case, the subsetK consists of a finite number of isolated points and sets homeomorphic
to [0,1]. Since the Euler characteristic of the circle is equal to zero,

χ̌
(
A−) = dim Ȟ 0(K)� 0.

In particular, as a consequence of Corollary 7.1 we get

χ̌(I )� χ
(
B,B−)

. (7.2)

Denote by 1 the unit element in the ring of coefficients R of the Čech cohomol-
ogy. The following notation will also be used: if (Y,Y ′) ⊂ (X,X′) and u ∈ Ȟ ∗(X,X′)
then u|(Y,Y ′) denotes the image of u under the homomorphism induced by the inclusion
(Y,Y ′) ↪→ (X,X′). The next theorem is an equivalent version of a result of Floer (compare
[30, Proposition 2]—it is written there that another version of that result was stated by
Benci in an unpublished report). The proof given here is taken form [77].

THEOREM 7.4. If for u ∈ Ȟ ∗(B) there exists v ∈ Ȟ ∗(B,B−) such that u * v �= 0 then
u|I �= 0 in Ȟ ∗(I ).

PROOF. In the commutative diagram

Ȟ ∗(B)⊗ Ȟ ∗(B,B−) *−−−−→ Ȟ ∗(B,B−)⏐⏐4 ⏐⏐4∼=
⏐⏐4∼=

Ȟ ∗(A)⊗ Ȟ ∗(A,A−) *−−−−→ Ȟ ∗(A,A−)

the vertical arrows are generated by the inclusions and those induced by (A,A−) ↪→
(B,B−) is an isomorphism by Proposition 7.2, hence

u|A * v|(A,A−) = (u* v)|(A,A−) �= 0.

Thus u|A �= 0. Since I ↪→A induces an isomorphism by Proposition 7.3,

u|I = (u|A)|I �= 0,

hence the result follows. �

By Theorem 7.4, if v ∈ Ȟ ∗(B,B−) is nonzero then 1*v = v �= 0 (where 1 is treated as
the element of Ȟ 0(B)), hence 1|I �= 0, which means I �= ∅. Thus, in the case of isolating
block, Theorem 7.4 is a generalization of a weaker variant of Corollary 2.5, in which the
condition Ȟ ∗(B,B−) �= 0 replaces the condition B− is not a strong deformation retract
of B .

In the following simple example we explain the meaning of Theorem 7.4.
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Fig. 7.

EXAMPLE 7.3. Consider the flow on the punctured plane Rn \ 0 such the annulus

B = {
(r, θ): 1 � r � 2

}
(written in the polar coordinates) is an isolating block for the flow and its exit set B− is
equal the boundary of B , see Figure 7. Assume for simplicity that R = Z2, hence there
is one generator u of Ȟ 1(B) and one generator v of Ȟ 1(B,B−). On the figure, they are
represented by their supports: u as the vertical segment and v as the circle inside B . Their
cup-product u* v, represented as the intersection of the supports of u and v, is the gener-
ator of Ȟ 2(B,B−). It follows, by Theorem 7.4 that u|Inv(B) �= 0.

Actually, in that particular example (which was chosen because of its visualization on
the plane) the same conclusion is given by Theorem 7.2. This is not the case in the next
example which is a direct generalization of the above one.

EXAMPLE 7.4. Now we use different letters to denote the sets considered in the previous
example: put

G := {
(r, θ) ∈ R2: 1 � r � 2

}
,

H := {
(r, θ) ∈ R2: r ∈ {1,2}}.

As usual, Dq and Sq−1 denote the unit ball and, respectively, the unit sphere centered at
zero in Rq . Consider a local flow in the phase space

X = (
R2 \ 0

) × Rm+n
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and assume that the isolating block and its exit set are given by

B :=G×Dm ×Dn,

B− :=H ×Dm ×Dn ∪G× Sm−1 ×Dn.

We assume again that R = Z2 and let u ∈ Ȟ 1(G), v ∈ Ȟ 1(G,H), and z ∈ Ȟm(Dm ×
Dn,Sm−1 ×Dn) be the generators. It follows that

(u× 1)* (v × z)= (u * v)× z �= 0,

where × denotes the cohomological cross-product (compare [28]) and 1 ∈ Ȟ 0(Dm ×Dn)

is the unit element, hence Theorem 7.4 implies

(u× 1)|I �= 0.

From that conclusion we can get slightly more information than just Ȟ 1(I ) �= 0. Let

π :G×Dm ×Dn →G

be the projection. For an arbitrarily chosen θ0 ∈ [0,2π) put

R := {
(r, θ) ∈G: θ = θ0

}
.

We assert that

π(I) ∩R �= ∅.
Indeed, since Ȟ 1(π)(u)= u× 1,

u|π(I) �= 0.

Since the inclusion G ↪→ (G,G \ R) induces an isomorphism in Ȟ 1, there exists w ∈
Ȟ 1(G,G \R) such that u=w|G. It follows that

w|(π(I ),π(I )\R) �= 0,

hence π(I) \R � π(I) which verifies the assertion.

The conclusions in the above example do not follow from Theorem 7.2 if n � 1. It
should also be noted that the usage of the Čech cohomologies is essential; in general the
above results are non valid for the singular cohomologies by the example mentioned in
Remark 7.1. In the paper [30], the version of Theorem 7.4 was formulated using the notion
of cup-length. The following immediate consequence of Theorem 7.4 estimates the cup-
length of the invariant part of an isolating block.

COROLLARY 7.2. �(I)� �(B,B−).
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7.3. On the number of stationary points of gradient-like flows

Let g :X→ R be a Liapunov function for a local flow φ on X. For a ∈ R we write

ga := g−1(a).

DEFINITION 7.3. The set ga is called a level of g. It is called a critical level if it contains
a stationary point; in this case a is called a critical value. In the other case it is called
noncritical.

For a < b put

gba := g−1([a, b]).
Now we recall the most fundamental result concerning the notion of category. Usually, it
is stated for gradient flows. Here we provide its topological version.

PROPOSITION 7.4. Let g be a Liapunov function on X. If gba is a compact ANR, ga and
gb are noncritical levels then

#
{
x ∈X: x stationary, a < g(x) < b

}
� cat

(
gba , ga

)
.

PROOF. Put k =: cat(gba, ga). First of all observe that k � ∞ since the category of a com-
pact ANR is finite (which is easy to prove; see [16]) and (5.2) holds. We can assume that
the number of stationary points is finite and k � 1; otherwise there is nothing to prove.
Thus there is a finite number of critical levels between a and b. We adapt the standard
mini-max argument. For i = 1, . . . , k define

Ci :=
{
C ⊂ gba : C compact, catgba,ga (C)� i

}
,

ci := inf
C∈Ci

max
x∈C g(x).

We claim that ci is a critical value. Indeed, in the other case there exists an ε > 0 such that
a < ci − ε < ci + ε < b and there are no critical values in the interval [ci − ε, ci + ε] since
the set of critical values is finite. It follows that gci+εci−ε is an isolating block and gci−ε is
its exit set. Since that set has the invariant part empty by Remark 6.1, there is a strong
deformation retraction r :gci+εci−ε → gci−ε . It follows that if C ∈ Ci and maxx∈C g(x) <
ci + ε then r(C) ∈ Ci and

max
x∈r(C)

g(x)= ci − ε

which is a contradiction. The critical values ci are ordered

a < c1 � · · · � ck < b
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since Cj ⊂ Ci if i < j . Denote byKci the set of stationary points contained in gci . It suffices
to prove that if ci = ci+q then

catgba (Kci )= q + 1,

since in that case Kci contain at least q + 1 different points.
Let ε > 0 be such that a < ci − ε < ci + ε < b and ci = ci+q is the only critical value in

[ci − ε, ci + ε]. Since there exists C ∈ Ci+q such that C ⊂ g
ci+ε
a , by Proposition 5.1(i),

catgba,ga
(
gci+εa

)
� i + q. (7.3)

It follows also by the choice of ci that

catgba,ga
(
gci−εa

)
� i − 1. (7.4)

Denote B := g
ci+ε
ci−ε . It is an isolating block, B− = gci−ε and Inv(B)=Kci by Remark 6.1.

We can apply Proposition 5.1(iv) since ga is an ANR. Indeed, let δ > 0 be such that there
are no critical points in [a, a + δ]. It follows that ga is a strong deformation retract of
{x: a � g(x) < a + δ}. The latter set is open in gba , hence it is an ANR by Theorem of
Hanner (compare [13]) and ga is an ANR as well. Thus, by Lemma 7.1 and by Propo-
sition 5.1(iii) and (iv), for n and m sufficiently large we have the following sequence of
equations:

catgba (Kci )= catgba (Am)= catgba (A)= catgba (Bn).

Thus, again by Lemma 7.1 and Proposition 5.1,

i + q � catgba ,ga
(
gci+εa

) = catgba,ga
(
gci−εa ∪Dn

)
� catgba,ga

(
gci−εa

) + catgba (Bn)

� i − 1 + catgba (Kci ),

which finishes the proof. �

THEOREM 7.5. If φ is gradient-like and B and B− are ANR-s then

#{x ∈ I : x stationary} � cat
(
B,B−)

.

PROOF. Let g :X→ R be a Liapunov function. In the topological direct sum

B 2 (
B− × (−∞,0]) 2 (

B+ × [0,∞)
)

identify each element of B− ⊂ B with an element of B− × (−∞,0] via the map j− : z→
(z,0) and, similarly, each element of B+ ⊂ B with an element of B+ ×[0,∞) via the map
j+ : z 
→ (z,0). Denote the obtained adjunction by B̃ , i.e.,

B̃ := B ∪j−
(
B− × (−∞,0]) ∪j+

(
B+ × [0,∞)

)
.
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In a natural way we define a flow ψ : B̃ × R → B̃ as an extension of φ restricted to B . If
z ∈B put

ψ(z, t) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ(z, t) ∈ B, if −σ−(x)� t � σ+(x),(
φ

(
x,σ+(x)

)
, σ+(x)− t

) ∈B− × (−∞,0],
if t � σ+(x),(
φ

(
x,−σ−(x)

)
, σ−(x)− t

) ∈ B+ × [0,∞),

if t � −σ−(x),

if (x, τ ) ∈B− × (−∞,0] put

ψ
(
(x, τ ), t

) :=
{
(x, τ − t), if t � τ ,

ψ(x, t − τ ), if t � τ ,

and similarly, if (x, τ ) ∈B+ × [0,∞) put

ψ
(
(x, τ ), t

) :=
{
ψ(x, t − τ ), if t � τ ,

(x, τ − t), if t � τ .

Define also a function G : B̃ → R,

G(z, t) :=
{
g(z), if z ∈ B,

g(x)+ τ, if z= (x, τ ) ∈ B− × (−∞,0] or B+ × [0,∞).

G is a Liapunov function for ψ and the stationary points of φ restricted to B and ψ coin-
cide. Let a < b be such that

a <ming(B)� maxg(B) < b

It follows that a and b are noncritical values of G. Put

M := {
(x, τ ) ∈B− × (−∞,0], τ � b− g(x)

}
,

N := {
(x, τ ) ∈B+ × [0,∞), τ � a − g(x)

}
,

hence

Gb
a = B ∪M ∪N

and Gb
a is a compact ANR since M and N are compact ANRs as retracts of ANRs B− ×

(∞,0] and B+ × [0,∞) and the intersections of B with M and N coincide with B− and
B+, respectively. Using the definition of the relative category it is easy to prove that

cat
(
Gb
a,Ga

) = cat
(
B,B−)

.

The result is a consequence of Proposition 7.4. �
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EXAMPLE 7.5. The following fact was essential in the proof of an Arnold’s conjecture by
Conley and Zehnder (compare [23]): if

B = T q ×Dm ×Dn,

is an isolating block for a gradient-like flow, where T q is the q-dimensional torus, and

B− = T q × Sm−1 ×Dn

then there are at least q + 1 stationary points contained in B . Indeed, in this case

�
(
B,B−) = q + 1

hence the result follows by Proposition 5.4 and Theorem 7.5.

REMARK 7.2. Results on the existence and the number of critical points of functionals are
essential in variational methods. Since the spaces considered in those methods are infinite-
dimensional, usually direct applications of results based on algebraic topology fail there.
For some functionals it is possible, however, to pass to a finite dimension by the saddle-
point reduction due to Amann and Zehnder (compare [2]). In particular, it was applied in
the paper [23] to reduce the initial problem to calculation of the number of critical points
inside the isolating block mentioned in Example 7.5.

7.4. Fixed point index and the index of stationary points

Using Theorem 6.2 one can check whether the set of stationary points inside of an isolating
block is nonempty. Below we provide quantitative information on properties of that set
using the notion of fixed point index.

Assume that X is a ENR, φ is a local flow on X, and B is an isolating block.

LEMMA 7.2. For every T > 0,

IT := {
x ∈ I : φT (x)= x

}
is an isolated set of fixed points of φT .

Let U be an open subset of X such that U is compact and there are no stationary points
of φ in ∂U . It follows that there is an ε > 0 such that the set

Kt(U) :=
{
x ∈ U : φt(x)= x

}
is an isolated set of fixed points of φt for every t such that 0< t < ε. By Proposition 5.7(iv),
the indexes of Ks(U) and Kt(U) coincide if s and t are nonzero and small, hence we can
define an integer number

i(φ,U) := lim
0<t→0

ind
(
φt ,Kt(U)

)
.
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We call the number i(φ,U) the index of stationary points of φ in U (compare [72, Sec-
tion 4]). It inherits properties of the fixed point index. It can be proved that if X = Rn and
φ is generated by a C1-class vector-field v then

i(φ,U)= (−1)n deg(0, v,U),

where deg denotes the Brouwer degree.

THEOREM 7.6 (compare Theorem 4.4 in [72]). If B is an isolating block on X and B and
B− are ENRs, and T > 0 then

ind(φT , IT )= χ
(
B,B−)

,

i(φ, intB)= χ
(
B,B−)

.

PROOF. The second equation is a consequence of the first one and the definition of the
index. Since the first equation is a particular case of the more general equation in The-
orem 7.7 below, we do not provide its rigorous proof here. We mention only that it can
be proved by a careful examination of Step 1 in the proof of Theorem 6.2. Indeed, the
corresponding indexes of φT in B and ψT at IT coincide by Proposition 5.7(v) and the
index of fixed points of ψT is equal to χ(B̃) by (vi) in that proposition. By those facts it
is easy to conclude the required property; for a detailed argument we refer to the proof of
Theorem 7.7 (or to [72]). �

It should be pointed out that all proper T -periodic points do not contribute to ind(φT , IT )
since both indexes are equal to the same number χ(B,B−). In the case of a local flow
generated by a smooth vector-field on a Riemannian manifold, B being a manifold with
boundary and B− its submanifold (like in Remark 3.2) the above result is a particular case
of the formula of Pugh generalizing the Poincaré index formula (compare [34,64]).

EXAMPLE 7.6. The index of stationary points contained in the isolating block in Figure 1
or Figure 6 is equal to −1, while in the isolating block in Figure 7 it is equal to 0.

EXAMPLE 7.7. As in Example 7.2, we assume that X is a 2-dimensional manifold, the
isolating block B is a manifold with boundary, and B− is a submanifold with boundary
of ∂B . Assume that the invariant part I of B consists only of a single stationary point. It
follows by (7.2) and Theorem 7.6 that

i(φ, intB)� 1.

7.5. Isolating segments

It is convenient to use special kinds of isolating blocks if the considered local semiflow is
generated by a nonautonomous equation in its extended phase space. As in Section 3.1, let
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M be a smooth Riemannian manifold, U open subset of R ×M , and let w :U → TM be
a continuous mapping such that w(t, x) ∈ TxM . We assume that the system (3.9) satisfies
the uniqueness property of the Cauchy problem and let φ be the induced local flow on U .
It follows that φ is of a special form: there is a map Φ : (σ, τ, x) 
→ Φσ,τ (x), called the
evolutionary operator for (3.8), such that

φt (σ, x)=
(
σ + t,Φσ,σ+t (x)

)
for (σ, x) ∈ U . In particular,

Φs,s = id, Φs,u =Φt,u ◦Φs,t .

Actually, basing on that properties, the evolutionary operator can be defined in a purely
topological way and the results presented below are valid in that more general setting; here
we do not develop that approach.

At first we fix the notation concerning the extended phase space. For a subset Z of R×M
we put

Zt :=
{
x ∈M: (t, x) ∈Z}

and by π1 and π2 we denote the projections R ×M → R and, respectively, R ×M →M .
Let a and b be real numbers, a < b.

DEFINITION 7.4. A compact set W ⊂ U is called an isolating segment over [a, b] for
(3.8) if the exit and entrance sets W± with respect to the local flow φ are also compact and

∂W =W+ ∪W−

(hence W is an isolating block for φ), there exist compact subsets W−− and W++ of ∂W
(called, respectively, the proper exit set and the proper entrance set) such that

W− = ({b} ×Wb

) ∪W−−, W+ = ({a} ×Wa

) ∪W++,

and there exists a homeomorphism

h : [a, b] ×Wa →W

satisfying π1 ◦ h= π1 such that

h
([a, b] ×W−−

a

) =W−−, h
([a, b]×W++

a

) =W++.

It follows, in particular, that if B is an isolating block for an autonomous equation (1.1)
satisfying ∂B = B+ ∪ B− then for every a and b the set W = [a, b] × B is an isolating
segment and

W−− = [a, b] ×B−, W++ = [a, b] ×B+.
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Fig. 8.

A more complicated example of an isolating segment is drawn in Figure 8. Here W is equal
to the twisted prism with hexagonal base and each of the sets W−− and W++ consists of
three disjoint ribbons winding around the prism.

Isolating segments are useful in proofs of results concerning the existence of solutions of
two-point boundary value problems, as we show below in the case of the periodic problem.
In [78], a more general notion of isolating chain was considered. (By definition, it is an
isolating block being the union of contiguous isolating segments in the extended phase
space of a nonautonomous equation.)

Let W be an isolating segment over [a, b]. A homeomorphism h in Definition 7.4 in-
duces a homeomorphism

m :
(
Wa,W

−−
a

) → (
Wb,W

−−
b

)
, m(x) := π2h

(
b,π2h

−1(a, x)
)
.

We call m a monodromy homeomorphism of the isolating segment W . It depends on h,
however one can prove the monodromy homeomorphisms determined by different choices
of h are homotopic each to the other. It follows that the isomorphism in homologies

μW :=H(m) :H
(
Wa,W

−−
a

) →H
(
Wb,W

−−
b

)
is an invariant of W .

DEFINITION 7.5. An isolating segment W over [a, b] is called periodic if Wa = Wb ,
W−−
a =W−−

b , and W++
a =W++

b .

The segment shown in Figure 8 is periodic. If W is periodic then μW is an automor-
phism of H(Wa,W

−−
a ). Let H has coefficients in Q. If, moreover, both Wa and W−−

a are
ANRs then the Lefschetz number Λ(m) is defined and independent of the choice of the
monodromy homeomorphism. Thus we can define

ΛW :=Λ(m).



Ważewski method and Conley index 655

THEOREM 7.7 (compare Theorem 7.1 in [74]). Let W be a periodic isolating segment
over [a, b]. Then the set

KW := {
x ∈Wa : Φa,b(x)= x, Φa,t (x) ∈Wt ∀t ∈ [a, b]}

is an isolated set of fixed points of Φa,b and if W , W−−, and W++ are ENRs then

ind(Φa,b,KW )=ΛW.

PROOF. Observe first that ∂Wa =W−−
a ∪W++

a . Indeed, by the open mapping theorem,
h−1(intW) is open in R ×M . Since ∂W =W− ∪W+,

h−1(intW)= (a, b)× (
Wa \ (

W−−
a ∪W++

a

))
.

Thus the image of h−1(intW) under the projection π2 onto M is equal to Wa \ (W−−
a ∪

W++
a ) and is also open, hence it is equal to the interior of Wa and the assertion follows.

Since KW does not intersect ∂Wa , it is open and compact in the set of fixed points of Φa,b,
hence it is isolated.

For a proof of the rest of the conclusion we define a mapmt :Wt →Wa , where a � t � b,
by

mt(x) := π2h
(
b,π2h

−1(t, x)
)

(recall that we assume Wa =Wb). In particular, ma =m and mb = id. Moreover, for x ∈
Wa put

τ (z) := a + σ+(a, z)� b,

where σ+ is the escape-time function for W (with respect to φ). We use a similar adjunc-
tion as in the proof of Theorem 6.2:

Z :=Wa ∪j
(
W−−
a × S1)

,

where j :x 
→ (x,1) for x ∈W−−
a (i.e., in the disjoint union of Wa and W−−

a × S1 we
identify W−−

a with W−−
a × {1}). By assumptions, Z is an ENR. Define a map Ψ :Z ×

[a, b] → Z by

Ψ (z, t) :=

⎧⎪⎨⎪⎩
mt

(
Φa,t (z)

)
, if z ∈Wa , τ (z)� t ,(

mτ(z)

(
Φa,τ(z)(z)

)
, exp

{
πi

t−τ (z)
b−a

})
, if z ∈Wa , τ (z) < t ,(

m(x),α exp
{
πi t−a

b−a
})
, if z= (x,α) ∈W−−

a × S1.

It is easy to check that Ψ is continuous. Put Ψt(z) := Ψ (z, t). In particular,

Ψa |W−−
a ×S1 =m|W−−

a
× idS1,
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hence Λ(Ψa |W−−
a ×S1) = 0. Since Ψa 0 Ψb, it follows by the Mayer–Vietoris exact se-

quence

Λ(Ψb) =Λ(Ψa)=Λ(Ψa |Wa)+Λ(Ψa |W−−
a ×S1)−Λ(Ψa|W−−

a
)

=Λ(m|Wa )−Λ(m|W−−
a
)=ΛW.

It follows by the construction of Ψ that

Fix(Ψb)=KW.

By the commutativity property of the fixed point index and the Lefschetz theorem (see
Proposition 5.7(v) and (vi)),

ind(Φa,b,KW )= ind(Ψb,KW )=ΛW,

which terminates the proof of the theorem. �

As an immediate consequence of Proposition 5.7(i) and Theorem 7.7 we get

COROLLARY 7.3. If W is a periodic isolating segment over [a, b] and ΛW �= 0 then the
periodic problem

x(a)= x(b)

associated to Equation (3.8) has a solution.

Let T > 0 and U = R ×M . An important special case of the theorem arises if w is
T -periodic in t , i.e., if

w(t, x)=w(t + T ,x)

for every t ∈ R and x ∈M . In this case

Φs,t =Φs+T ,t+T . (7.5)

The mapΦ0,T is called the Poincaré map and its fixed points are initial points of T -periodic
solutions of (3.8). In particular, if ΛW �= 0 then at least one T -periodic solution exists. If
w does not depend on t , B is an isolating block for w and W = [0, T ] × B then the first
equation in Theorem 7.6 is a corollary of Theorem 7.7 as we have pointed out already. The
following three examples illustrating the above results are taken from [74].

EXAMPLE 7.8. Consider a planar differential equation

ż= e2π it z̄2 + f (t, z), (7.6)
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where z ∈ C and f : R × C → C is continuous, f (t + 1, z)= f (t, z) for all t and z, and

lim|z|→∞
f (t, z)

|z|2 = 0 uniformly in t ∈ R.

One can find an isolating segment W over [0,1] for (7.6) which is the twisted prism over
a hexagonal base like on the Figure 8 (see [74]; actually it is a regular polyfacial set—
compare Definition 3.2). Its monodromy homeomorphismm is equal to the rotation by the
angle 2π

3 . Thus m is homotopic to the identity on the hexagon W0 and alternates the three
disjoint segments forming W−−

0 , hence

ΛW =Λ(m|W0)−Λ(m|W−−
0
)= 1 − 0 = 1.

By Corollary 7.3 we conclude that (7.6) has a 1-periodic point.

EXAMPLE 7.9. We consider a particular case of (7.6),

ż= e2π it z̄2 + z̄. (7.7)

Here 0 is a 1-periodic solution, hence we are looking for another one. There is another
isolating segment Z ⊂W over [0,1] for (7.7)

Z := [0,1] × {
z ∈ C: |3z| � δ, |4z| � δ

}
for 0< δ sufficiently small. Here Z is a prism with rectangular base and Z−− consists of
its top and bottom sides. It is easy to observe that

ΛZ = χ(Z0)− χ
(
Z−−

0

) = 1 − 2 = −1.

If KW =KZ = {0} then

1 =ΛW =ΛZ = −1,

which is a contradiction, hence (7.7) has a nonzero 1-periodic solution.

EXAMPLE 7.10. We consider another equation

ż= e2π it z̄2 + z. (7.8)

Here we try again to get a nonzero periodic solution. Now there is an isolating segment
U ⊂W ,

U := [0,1] × {
z ∈ C: |z|< ε

}
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for 0< ε small. However, it is easy to observe that

ΛU = χ
(
D2) − χ

(
S1) = 1 − 0 = 1,

hence we cannot predict the existence of nonzero 1-periodic solution as it was done in the
previous example. In fact, we are able to prove the existence of a 3-periodic solution. Let

W̃ :=W ∪ τ1(W) ∪ τ2(W),

where τT for a real number T is the translation of R × C given by

τT (x, z) := (x + T , z).

W̃ is an isolating segment over [0,3] which consists of glued three copies of W . Its mon-
odromy homeomorphism can be obtained as the composition of three rotations by the angle
2π
3 , hence it is equal the identity and thus

ΛW̃ = 1 − 3 = −2.

Put also

Ũ := [0,3] × {
z ∈ C: |z|< ε

}
,

hence

ΛW̃ = −2 �= 1 =ΛŨ

and the conclusion follows.

Actually, the results given in the above examples extend to equations with Fourier–
Taylor polynomials on the right-hand side, see, for example, [74]. Moreover, Theorem 7.7
can be generalized to the case of two point boundary value problems of the form

x(a)= g
(
x(b)

)
for some function g :M →M (see [76]) and to periodic isolating chains (see [78]).

8. Selected applications of the Ważewski method

We provide some applications of the results stated above. We begin with an application
to problems concerning asymptotic properties of solutions, then we present a proof of a
classical result on the existence of solutions of two-point boundary value problems for a
second-order equation, and finally we state a result on the existence of a kind of chaotic
dynamics.
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8.1. Asymptotic solutions

The most natural applications of the Ważewski method refer to the existence of solutions
remaining in a given set; for instance, theorems on bounded solutions can be provided in
this way. If the considered sets in the extended phase space contract as time tends to in-
finity, the obtained solutions represent the corresponding asymptotic properties. There are
many results of this type in the literature. In particular, theorems on solutions which tend to
constant mappings are contained, for example, in [48,66,84,88] (the result in [48] is repro-
duced also in [65]) and results on asymptotic coincidence of solutions of two systems are,
among others, in [45,53,55,56,82]. Some other asymptotic results for ordinary equations
are given in [10,25,39,41,46,69,83], for retarded differential equations in [27,80], for par-
tial differential equations of the first order in [59,60], and for the second order in [61]. For
an illustration of this kind of applications of the Ważewski method, here we provide a proof
of an asymptotic result for a linear equation. Let A = (aij ) and B = (bij ) be continuous
real (n× n)-matrix-valued functions and we consider an equation

ẋ =A(t)x +B(t)x (8.1)

in Rn. We assume that A(t) is diagonal for every t , i.e.,

aij = 0 if i �= j (8.2)

and consider the question of estimating the size ofB in order to get the existence of linearly
independent solutions x1, . . . , xn of (8.1), where xk = (x1

k , . . . , x
n
k ) for k = 1, . . . , n, such

that xik(t)/x
k
k (t)→ 0 if t → ∞ and i �= k. In particular, if B(t) = 0 for every t and xk(t0)

is equal to the kth vector of the canonical basis of Rn for some t0 ∈ R then clearly xk
are linearly independent and xik = 0 for i �= k. If B is nonzero then such estimates were
obtained by Perron and later they were improved by Szmydtówna in [81] and Onuchic in
[55] using the method of Ważewski. Here we follow [55].

THEOREM 8.1 (compare Theorem II-1 in [55]). Assume (8.2). Let R > 0 and let
h : [R,∞)→ (0,∞) be a continuous function such that for all i �= j ,∣∣aii(t)− ajj (t)

∣∣< h(t) for every t �R, (8.3)∫ ∞

R

∣∣bij (t)∣∣eH(t) dt <∞, (8.4)∫ ∞

R

∣∣bii(t)− bjj (t)
∣∣eH(t) dt <∞, (8.5)

where H(t) := ∫ t
R h(s)ds. Then there exist linearly independent solutions x1, . . . , xn of

(8.1) such that for every i, k = 1, . . . , n and i �= k,

lim
t→∞

xik(t)

xkk (t)
= 0.
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PROOF. Let g and φ be functions R → R given by

g(t) :=
∑
i �=j

(∣∣bii(t)− bjj (t)
∣∣ + ∣∣bij (t)∣∣) + e−H(t)−t ,

φ(t) := e−H(t)
∫ ∞

t

g(s)eH(s) ds.

It follows that φ is a C1-class function satisfying the differential equation

φ′(t)+ h(t)φ(t)+ g(t)= 0. (8.6)

Moreover,

φ(t) > 0 for every t ∈ R (8.7)

since the last term in g(t) is greater then 0 and

lim
t→∞φ(t)= 0 (8.8)

since (8.4) and (8.5) hold. In particular, there exists T > R such that

φ(t) < 1 if t > T . (8.9)

For every k = 1, . . . , n put

Vk := {
(t, v) ∈ R × Rn: t > T , vk �= 0,

∣∣vi ∣∣< φ(t)
∣∣vk∣∣ ∀i �= k

}
.

For i �= k define

Li := {
(t, v) ∈ R × Rn: t > T , vk �= 0,∣∣vi ∣∣ = φ(t)

∣∣vk∣∣, ∣∣vj ∣∣ � φ(t)
∣∣vk∣∣ ∀j �= k

}
.

Equation (8.1) generates a flow in the extended phase space R × Rn. We show that

Ek :=
⋃
i �=k

Li

is the set of egress points of Vk with respect to that flow and each egress point is a strict
egress point. To this aim it suffices to prove that(

1,A(t)v +B(t)v
) · ∇�i(t, v) > 0 for (t, x) ∈ Li, (8.10)

where

�i : R × Rn , (t, v)→ 1

2

((
vi

)2 − φ2(t)
(
vk

)2) ∈ R.
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Indeed, the only solutions passing through ∂Vk \ Ek are the zero solution and solutions
through t = T , hence no one of them initiates at Vk . For a proof of (8.10), let (t, v) ∈ Li .
We have (

1,A(t)v+B(t)v
) · ∇�i(t, v)

= φ2(t)
(
vk

)2(
aii(t)− akk(t)+ bii(t)− bkk(t)

) − φ′(t)φ(t)
(
vk

)2

− φ2(t)vk
∑
j �=k

bkj (t)v
j + vi

∑
j �=i

bij (t)v
j

because (vi)2 = φ2(t)(vk)2. Since (8.6), (8.7), and (8.9) hold, and |vj | � φ(t)|vk | for
every j , we get the following estimates(

1,A(t)v+B(t)v
) · ∇�i(t, v)

� φ2(t)
(
vk

)2(
aii (t)− akk(t)+ bii(t)− bkk(t)

) − φ′(t)φ(t)
(
vk

)2

− φ3(t)
(
vk

)2 ∑
j �=k

∣∣bkj (t)∣∣ − φ2(t)
(
vk

)2 ∑
j �=i

∣∣bij (t)∣∣
� φ(t)

(
vk

)2

(
−φ′(t)− ∣∣akk(t)− aii (t)

∣∣φ(t)− ∣∣bkk(t)− bii(t)
∣∣

−
∑
j �=k

∣∣bkj (t)∣∣ −
∑
j �=i

∣∣bij (t)∣∣
)

> φ2(t)
(
vk

)2(−φ′(t)− h(t)φ(t)− g(t)
) = 0,

hence (8.10) is proved. Thus

Wk := Vk ∪Ek
is a Ważewski set and Ek is its exit set. Choose an ε > 0 such that if M = (mij ) is an
(n× n)-matrix satisfying mii = 1 and |mij |< ε for i �= j then M is nondegenerate. Let t0
be such that φ(t0) < ε. Define

Zk := {
(t, v) ∈ R × Rn: t = t0, v

k = 1,
∣∣vi ∣∣ � φ(t0) ∀i �= k

}
.

Thus Zk ⊂Wk , Zk is homeomorphic to the disk Dn−1, and Zk ∩Ek is homeomorphic to
the sphere Sn−2, hence it is not a retract of Zk . Moreover, there is a retraction

r = (r0, r1, . . . , rn) :Ek →Zk ∩Ek
given by

r0(t, v)= t0, rk(t, v)= 1,
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ri(t, v)= φ(t0)

φ(t)

vi

|vk | for 1 � i �= k

since (8.7) holds. It follows by the original Ważewski theorem (see Corollary 2.2) that there
exists a solution xk of (8.1) such that(

t0, xk(t0)
) ∈Zk \Ek,(

t, xk(t)
) ∈ Vk for t � t0.

It follows by the choice of t0 and ε that the matrix having the vectors xk(t0) as the columns
for k = 1, . . . , n, is nondegenerate, hence the solutions x1, . . . , xn are linearly independent.
Moreover, if i �= k,∣∣xik(t)∣∣< φ(t)

∣∣xkk (t)∣∣
for every t � t0, hence the theorem follows by (8.8). �

8.2. Two-point boundary value problems

It was already indicated in [85] how to apply the Ważewski theorem in proofs of the ex-
istence of solutions of two-point boundary value problems characterized by separate con-
ditions at the initial and final values of time (like (1.10); compare Example 1.2). Later,
there appeared several papers on those applications, for example [5,7,26,40,42]. Another
approach, based on the Lefschetz fixed point theorem, was applied in [74,76] to the peri-
odic problem and its generalizations (see Section 7.5). We illustrate those applications of
the Ważewski method by providing a proof of a classical result on the existence of solu-
tions of several boundary value problems associated to the second order scalar differential
equation (3.20), i.e.,

x ′′ = g(t, x, x ′)

with continuous g : R3 → R, satisfying the Bernstein–Nagumo growth conditions. For a <
b we consider the boundary-value conditions

x(a)= x(b)= 0 (Dirichlet), (8.11)

x ′(a)= x ′(b)= 0 (Neumann), (8.12){−αx(a)+ βx ′(a)= 0,

γ x(b)+ δx ′(b)= 0
(Sturm–Liouville; α,β, γ, δ > 0), (8.13){

x(a)= x(b),

x ′(a)= x ′(b)
(periodic). (8.14)
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THEOREM 8.2 (Bernstein–Nagumo). If there exists an R > 0 and a function

ψ : [0,∞)→ (0,∞)

such that the following conditions are satisfied:
(a) g(t,R,0) > 0 and g(t,−R,0) < 0 for every t ∈ R,
(b)

∫ ∞
0 σ dσ/ψ(σ) > R,

(c) for every t ∈ R, |x| �R and v ∈ R,∣∣g(t, x, v)∣∣<ψ
(|v|),

then the boundary value problems (8.11)–(8.14) associated to (3.20) have solutions whose
images are contained in the interval [−R,R].

PROOF. Assume that (3.20) satisfies the uniqueness property. Let Ψ : [0,∞)→ [0,∞) be
defined as

Ψ (u) :=
∫ u

0

σ dσ

ψ(σ)
.

Put

W := [a, b] × {
(x, y) ∈ R2: |x| �R−Ψ

(|y|)} ⊂ R3.

We prove that W is an isolating segment for (3.21). Observe first that W is compact by (b).
Define functions �, m, n+, and n− by

�(t, x, y) := t − b, m(t, x, y) := a − t,

n±(t, x, y)= ±x −R +Ψ
(|y|),

where (t, x, y) ∈ R3. W is therefore a generalized polyfacial set determined by {�,m,n+,
n−}. Since

(
1, y, g(t, x, y)

) · ∇n±(t, x, y)= |y|
ψ(|y|)

(±(sgny)ψ
(|y|) − g(t, x, y)

)
,

it follows by (a), (c), (3.22), and (3.23) that intW is a generalized polyfacial set for (3.21),
and moreover, W is an isolating segment such that the proper exit and entrance sets are
equal to, respectively,

W−− = {
(t, x, y) ∈W : xy � 0, |x| =R−Ψ

(|y|)},
W++ = {

(t, x, y) ∈W : xy � 0, |x| =R−Ψ
(|y|)}.
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Both W±± consist of two disjoint strips, each of which is equal to an arc in R2 multiplied
by [a, b]. It follows that

ΛW = χ(Wa)− χ
(
W−−
a

) = 1 − 2 = −1,

hence Corollary 7.3 implies that the periodic problem (8.14) has a solution. For the other
problems let us consider the sets Z ⊂W and Y ⊂W− such that

Z := {
(a, x, y) ∈W : −αx + βy = 0

}
,

W− \ Y = {
(b, x, y)∈W : γ x + δy = 0

}
,

where α,β, γ, δ � 0, α+β > 0, and γ +δ > 0. It follows thatZ is connected,Z∩W− ⊂ Y

consists of two points, and W− \ Y separates W− into two disjoint parts each of which
contains a point of Z ∩ Y . Thus Z ∩ Y is a retract of Y and it is not a retract of Z. Since
there are no saturated solutions contained in W , Corollary 2.2 implies that the problem

−αx(a)+ βy(a)= 0, γ x(b)+ δy(b)= 0

has a solution. Thus all the problems (8.11), (8.12), and (8.13) have solutions. In the case
(3.20) does not satisfy the uniqueness property, an approximating approach similar to the
one described in the proof of Theorem 3.1 leads to the conclusion. �

8.3. Detection of chaotic dynamics

Isolating segments were applied in proofs of results concerning the existence of chaotic
dynamics generated by a time-periodic nonautonomous equation. Like in Section 7.5, we
assume w : R×M → TM is a time-dependent vector-field on the right-hand side of Equa-
tion (3.8) satisfying the uniqueness property. We assume, moreover, that t → w(t, x) is
T -periodic for all x ∈M . Recall that in this case fixed points of the Poincaré map Φ0,T are
the initial points of T -periodic solutions and

Φ0,nT =Φn
0,T

by (7.5). The concept of chaotic dynamics of (3.8) refers to a chaotic behavior of the
Poincaré map in the following sense. For a positive integer r put

Σr := {1, . . . , r}Z,

i.e., the set of bi-infinite sequences of r symbols, and let the shift map be given by

σ :Σr , (. . . , s−1.s0, s1, . . .)→ (. . . , s0.s1, s2, . . .) ∈Σr.

DEFINITION 8.1. Equation (3.8) is called Σr -chaotic provided there is a compact set
I ⊂M , invariant with respect to Φ0,T , and a map g : I →Σr such that:
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(a) g is continuous and surjective,
(b) σ ◦ g = g ◦Φ0,T ,
(c) for every n-periodic sequence s ∈Σr its inverse image g−1(s) contains at least one

n-periodic point of Φ0,T .

It follows by (c) that a Σr -chaotic equation has periodic solutions with minimal periods
nT for every n ∈ N.

THEOREM 8.3 (compare Theorem 2 in [79]). Assume that compact ENRs W and Z are
periodic isolating segments over [0, T ] for Equation (3.8), and

(a) (W0,W
−−
0 )= (Z0,Z

−−
0 ),

(b) Z ⊂W ,
(c) μZ = μW ◦μW = idH(W0,W

−−
0 ),

(d) ΛW �= χ(Z0)− χ(Z−−
0 ) �= 0.

Then (3.8) is Σ2-chaotic.

PROOF. We present a sketch of the proof in [79]. Let

σ := σ+
Z

be the escape-time function for Z. Define the set I as

I :=
∞⋂

n=−∞

{
x ∈W0: Φ0,nT+t (x) ∈Wt ∀t ∈ [0, T ]}.

It follows by (a) that σ(0, x) is defined for every x ∈W0. If x ∈ I then either σ(0, x) < T

or σ(0, x)= T and Φ0,T ∈W0 \W−−
0 . Indeed, assume on the contrary that σ(0, x)= T

and Φ0,T ∈W−−
0 . Thus Φ0,T+ε /∈Wε for a small ε > 0 by (7.5), which contradicts to the

definition of I . Define

JZ := {
x ∈ I : σ(0, x)= T , Φ0,T ∈W0 \W−−

0

}
,

JW := {
x ∈ I : σ(0, x) < T

}
.

It follows by the continuity of σ that JZ and JW are compact disjoint sets and

I = JZ ∪ JW .
We use the letters Z and W also as the two symbols in the definition of Σ2, i.e., we put

Σ2 := {Z,W }Z.
To a point x ∈ I we attach a symbol p(x) ∈ {Z,W } by the rule p(x) = Z if x ∈ JZ and
p(x)=W if x ∈ JW . Define

g : I , x → {
p

(
Φ0,nT (x)

)}∞
n=−∞ ∈Σ2.
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Since JZ and JW are disjoint, g is continuous. Since periodic sequences are dense in Σ2,
in order to prove the theorem it suffices to show that the inverse image of each n-periodic
sequence in Σ2 contains an n-periodic point of Φ0,T . To a sequence

(V0, . . . , Vn−1) ∈ {Z,W }{0,...,n−1}

we attach a periodic isolating segment V0 · · ·Vn−1 over [0, nT ] and a set JV0···Vn−1 (extend-
ing the notation JZ and JW ) defined by

V0 · · ·Vn−1 := {
(kT + t, x): k ∈ {0, . . . , n− 1}, t ∈ [0, T ], x ∈ Vk

}
,

JV0···Vn−1 := {
x ∈ I : Φk

0,T (x) ∈ JVk ∀k ∈ {0, . . . , n− 1}}.
The sets JV0···Vn−1 over all n-element sequences from {Z,W }{0,...,n−1} form a compact and
disjoint covering of I . In order to prove the theorem it suffices to prove that for every n
each set JV0···Vn−1 contains a fixed point of Φ0,nT . Indeed, the image of that point under
the map g is the n-periodic sequence

(. . . , Vn−1.V0, . . . , Vn−1,V0, . . .) ∈Σ2.

Recall, that the set KWn , where Wn :=W · · ·W (n times), consists of all fixed points of
Φ0,nT contained in I (see Theorem 7.7). Since KWn ∩ JV0···Vn−1 is compact and open in
the set of all fixed points of Φ0,nT , its fixed point index is defined, and, by (d), in order to
prove the theorem it suffices to show that if W appears in the sequence (V0, . . . , Vn−1) ∈
{Z,W }{0,...,n−1} exactly k times then

ind(Φ0,nT ,KWn ∩ JV0···Vn−1)=
{
χ

(
Z0,Z

−−
0

)
, if k = 0,

(−2)k−1
(
ΛW − χ

(
Z0,Z

−−
0

))
, if k � 1.

That equation is a consequence of Theorem 7.7 and some combinatorial calculations; we
skip its proof here referring to the proof of Lemma 1 in [79]. �

EXAMPLE 8.1 (compare [79]). The planar equation

ż= (
1 + eiφt |z|2)

z̄ (8.15)

is Σ2-chaotic if 0 < φ � 0.495. The proof in [79] is based on the existence of two isolat-
ing segments W and Z over [0,2π/φ] for (8.15) which are similar to the ones shown in
Figure 9 (with W at the top and Z at the bottom). It follows by the figure that ΛW = 1,
χ(W0)= 1, χ(W−−

0 )= 2, hence Theorem 8.3 implies the result.

In [79], the parameter values 0< φ � 1/288 were considered only. The extension to the
other values was given in [95]. Actually, in [95] it was proved that (8.15) is Σ3-chaotic
in the considered range of φ. The equation was further investigated in [94,96], where the
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Fig. 9.

existence of infinitely many distinct homoclinic solutions to the zero one was proved. Gen-
eralizations of Theorem 8.3 and extensions of results on (8.15) to more general classes of
equations were given, among others, in [91–93,97]. Another approach to chaotic dynam-
ics based on the existence of suitably located isolating blocks or segments is presented in
[29,75].

9. Conley index

Using the notion of isolating block we present the definition of the Conley index and pro-
vide its basic properties. In particular, we indicate its relation to the Ważewski method. We
do not present more advanced topics of the theory of the index; for them we refer to [50].

9.1. Isolated invariant sets and the Conley index

Let X be a metrizable locally compact space and let φ be a local flow on X.

DEFINITION 9.1. A compact set S ⊂X is called an isolated invariant set provided there
exists U , a neighborhood of S, such that S = Inv(U). Such an U is called an isolating
neighborhood for S.

EXAMPLE 9.1. Let A be a real n× n-matrix, let U be an open neighborhood of 0 in Rn,
and let f :U → Rn be a C1-class function. Denote by φ the local flow on U generated by
the equation

ẋ =Ax + f (x).

Assume that

f (x)= o
(|x|) as x → 0
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and there are no purely imaginary eigenvalues of A. Then the one-point set {0} is an iso-
lated invariant set for φ. Indeed, by the Grobman–Hartman theorem φ is conjugated in a
neighborhood of 0 to the flow generated by the linear vector-field x 
→Ax which does not
have any bounded solutions except of the trivial one.

In an obvious way Example 9.1 generalizes to a stationary point of the local flow gener-
ated by a C1-class vector-field v :M → TM on a Riemannian manifold M .

DEFINITION 9.2. A stationary point x0 ∈ M is called hyperbolic of index k if the dif-
ferential dx0v does not have eigenvalues on the imaginary axis and there are exactly k

eigenvalues (counted with multiplicities) with the positive real part.

It follows that if x0 is a hyperbolic point then {x0} is an isolated invariant set.

EXAMPLE 9.2. Assume that φ is a gradient-like local flow (see Section 6.2). It is not
difficult to observe that if x0 is a stationary point and there is a compact neighborhood
U of x0 such that there are no other stationary points in U then the one-point set {x0}
is an isolated invariant set and U is its isolating neighborhood. It follows that isolated
critical points of a smooth functional g :M → R are isolated invariant sets of the local
flow generated by (6.1).

If B is an isolating block then it is an isolating neighborhood for S = Inv(B). In this
case we say that B is an isolating block for S. We recall in a more comprehensive version
the first one of the two main theorems stated in Section 1.3:

THEOREM 9.1 (First Conley Theorem). IfU is a neighborhood of an isolated invariant set
S then there exists an isolating block B for S such that B ⊂ U . Moreover, if φ is smooth
(i.e., of C∞-class) local flow on a smooth manifold then B can be chosen as a smooth
submanifold with corners such that B− and B+ are smooth submanifolds with boundary.

PROOF. We provide the idea of the proof given in the paper [90] in the smooth case. Let
U be an open isolating neighborhood of S. It is proved in [90] that there exist continuous
functions �,m :U → [0,∞) such that

Inv−(U)= �−1(0), Inv+(U)=m−1(0),

� is of C∞-class outside of Inv−(U) and m is of C∞-class outside of Inv+(U), and

d

dt

(
�
(
φt (x)

))
< 0, if x /∈ Inv−(U),

d

dt

(
m

(
φt (x)

))
> 0, if x /∈ Inv+(U).

Let V be a compact neighborhood of S contained inU . It follows by the compactness of V ,

S = V ∩
⋂
ε>0

�−1([0, ε]) ∩
⋂
δ>0

m−1([0, δ])
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and, moreover, there exist an ε0 > 0 such that if 0< ε � ε0 and 0< δ � ε0 then

V(ε,δ) := V ∩ �−1([0, ε]) ∩m−1([0, δ])
is a compact neighborhood of S. By the Sard theorem, choose (ε, δ) ∈ (0, ε0)

2 which is a
regular value of the map (�,m) :V → R2. For that value, intV(ε,δ) is a regular polyfacial
set determined by {�− ε,m− δ}, hence, by Remark 3.1, the set V(ε,δ) is an isolating block
satisfying the required properties. For a proof in the purely topological case we refer to
[18] or [70, Chapter 22]. �

REMARK 9.1. In the smooth case it was additionally proved that intB is a regular polyfa-
cial set, hence if v is the vector field generating φ and w is a vector field sufficiently close
to v on B then B is also an isolating block for the local flow generated by w.

REMARK 9.2. If the phase space of φ is a 2-dimensional manifold then it follows by the
construction provided in the proof of [72, Theorem 3.3] that there exists an isolating block
B for S such that B is a topological manifold with boundary and B− is its submanifold
with boundary.

Now our aim is to prove the Second Conley Theorem which we recall below. It is pre-
ceded by a lemma which will be used in the proof. (Recall that the concept of B-invariant
subset of B is given in Definition 7.2).

LEMMA 9.1. If B is an isolating block and Z is a B-invariant compact neighborhood of
Inv(B) then[

Z/Z−,∗] = [
B/B−,∗]

.

PROOF. By the continuity of φ, it is easy to prove that Z is a neighborhood of A, hence
Lemma 7.1(i) implies that Bn ⊂ Z for some n ∈ N. Since the inclusion induces a homeo-
morphism of the compact spaces Z/Z− and Z ∪B−/B−, it follows by (ii) in that lemma,[

Z/Z−,∗] = [
Z ∪B−/B−,∗] = [

Dn/B
−,∗] = [

B/B−,∗]
,

which finishes the proof. �

THEOREM 9.2 (Second Conley Theorem). Let S be an isolated invariant set and let B
and B̃ be isolating blocks for S. Then[

B/B−,∗] = [
B̃/B̃−,∗]

.

PROOF. As in Section 7, we denote by A, σ±, etc. the sets and functions corresponding
to the block B . The analogous sets and functions for B̃ we denote by Ã, σ̃±, etc. Without
loss of generality we assume

B ⊂ B̃.
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(In the other case one can find an isolating block for S contained in the intersection of
the blocks B and B̃ by Theorem 9.1, and then compare [B/B−,∗] and [B̃/B̃−,∗] to the
homotopy type corresponding to that block.) The proof will be performed in a few steps.
Below we use the following notation for intervals: if a ∈ R then [a, a] is the one point set
{a} and (a, a) is equal to ∅.

Step 1. For every n ∈ N,[
B/B−,∗] = [

Bn/B
−
n ,∗

]
.

(Recall that Bn is defined in Section 7.2.) It immediately follows by Lemmas 7.1(i) and 9.1.
Step 2. There exists n ∈ N, n� 1, such that

φ
(
x,

(
0, σ̃+(x)

)) ∩Bn = ∅, if x ∈ B−
n ,

φ
(
x,

(−σ̃−(x),0
)) ∩Bn = ∅, if x ∈B+

n .

By the symmetry of notation, we need to justify the first condition only. Assume on the
contrary that for every n there exists xn ∈ B−

n and 0 < tn < σ̃+(xn) such that φ(xn, tn) ∈
B+
n . We can assume that xn → x0 and tn → t0 as n→ ∞. A± = ⋂

n B
±
n by Lemma 7.1,

hence we have

x0 ∈A− ⊂ Inv−(B)⊂ Inv−(B̃).

If t0 = ∞ then x0 ∈ Inv+(B̃) and thus x ∈ S which is impossible. If t0 <∞ then φ(x0, t0) ∈
A+, hence again x ∈ S and the assertion is proved.

Step 3. Since now we assume that n satisfies the conclusion of Step 2. Then σ̃±(x) <∞
for every x ∈ B±

n . Indeed, in the other case the positive or negative limit set of x is con-
tained in B̃ and contains points outside of the interior of B , which is impossible.

Step 4. By Step 3, we can define compact sets

M :=
⋃
x∈B+

n

φ
(
x,

[−σ̃−(x),0
])
, N :=

⋃
x∈B−

n

φ
(
x,

[
0, σ̃+(x)

])
.

It follows by Step 2 that M ∩Bn = B+
n and N ∩Bn = B−

n . Moreover, by Lemma 9.1,[
B̃/B̃−,∗] = [

Bn ∪M ∪N/N−,∗]
.

Step 5. [
Bn ∪M ∪N/N−,∗] = [

Bn ∪N/N−,∗]
.

This is obvious since B+
n is a strong deformation retract of M .

Step 6. Finally,[
Bn ∪N/N−,∗] = [

Bn/B
−
n ,∗

]
.
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In order to prove that assertion recall that n� 1 and observe that

Bn = {
x ∈Bn: σ+(x)� 1

} ∪ φ(
B−
n × [−1,0]),

Bn ∪N = {
x ∈ Bn: σ+(x)� 1

} ∪
⋃
x∈B−

n

φ
(
x,

[−1, σ̃+(x)
])
.

Since the second compounds are homeomorphic each to the other such that the set
φ−1(B

−
n ) remains intact and B−

n is transformed to N−, there exists a homeomorphism(
Bn,B

−
n

) → (
Bn ∪N,N−)

and the assertion follows. We get the conclusion of the theorem by combining the equations
in Steps 1, 4, 5, and 6. �

As it was pointed out in Section 1.3, Theorems 9.1 and 9.2 lead to Definition 1.3 of the
Conley index:

h(φ,S) := [
B/B−,∗]

for an arbitrary isolating block B for S. Actually, in order to define the Conley index, a
more general notion of index pair (see [50, Definition 3.4]) can be used.

9.2. Properties of the Conley index

At first we provide the definition of the continuation (i.e., homotopy) relation between
isolated invariant sets. Assume that φ andψ are local flows on a metrizable locally compact
space X and let S and T be isolated invariant sets for φ and, respectively, ψ .

DEFINITION 9.3. We say that pairs (φ,S) and (ψ,T ) are related by continuation (denoted
(φ,S) 0 (ψ,T )) if there exists a local flow Φ on X × [0,1], an isolated invariant set S∗
for Φ , and local flows φσ on X, σ ∈ [0,1], such that Φt(x,σ ) = (φσt (x), σ ), φ0 = φ,
φ1 =ψ , S = {x: (x,0) ∈ S∗}, and T = {x: (x,1) ∈ S∗}.

The relation of continuity between isolated invariant sets provides no information on
their topology. In particular, a nonempty set can be continued to the empty one, and a
connected set can split by continuation into a nonconnected one as we see in the following
examples.

EXAMPLE 9.3. Take a family of local flows φλ generated by

ẋ = x2 + λ

on the real line. It follows that(
φ0, {0}) 0 (

φ1,∅)
.
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Fig. 10.

EXAMPLE 9.4. Let p and q be two stationary hyperbolic points of local flows φ and ψ
in the plane as shown on Figure 10, where the left and right drawing represent the phase
portrait of φ and, respectively, of ψ . Let the isolated invariant set for φ is equal to the
set consisting of p, q , and the whole trajectory J connecting p and q (i.e., J = φ(y),
α(y)= q , and ω(y)= p). The flow ψ is obtained from φ by a perturbation which splits J
into two disjoint unbounded trajectories. Since that perturbation can by arbitrarily small,(

φ, {p,q} ∪ J ) 0 (
ψ, {p,q}).

In the sequel we need also the notion of the product φ × ψ , where ψ is a local flow on
X and ψ is a local flow on Y . It is given by

(φ ×ψ)t (x, y) :=
(
φt(x),ψt (y)

)
.

In the smooth case it corresponds to the Cartesian product of the generating vector-fields.
The following theorem provides the main properties of the Conley index. They are coun-

terparts of the properties (i)–(iv) of the fixed point index given in Proposition 5.7.

THEOREM 9.3.
(i) (Ważewski Property) If h(φ,S) �= 0 then S �= ∅.

(ii) (Additivity) If S and T are isolated invariant sets of φ and S ∩ T = ∅ then

h(φ,S ∪ T )= h(φ,S) ∨ h(φ,T ).

(iii) (Multiplicativity) If φ is a local flow on X and ψ is a local flow on Y , S and T are
isolated invariant sets of φ and ψ , respectively, then

h(φ ×ψ,S × T )= h(φ,S)∧ (ψ,T ).

(iv) (Continuation Property) If (φ,S)0 (ψ,T ) then h(φ,S)= h(ψ,T ).
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Fig. 11.

PROOF. Ad (i). This is an immediate consequence of Corollary 2.5 and Lemma 5.1.
Ad (ii). If B and B̃ are isolating blocks for S and T , respectively, and B ∩ B̃ = ∅ then

B ∪ B̃ is also an isolating block for φ and the result follows by the definition of the index.
Ad (iii). For B and B̃ as above the set B × B̃ is an isolating block for S × T , hence the

result follows.
Ad (iv). If the local flow φ is smooth, the result is a consequence of Remark 9.1, since in

this case h(φ,S) is locally constant with respect to the change of the vector-field generating
φ. For a proof in the general case we refer to [70, Chapter 23]. �

Theorem 9.3(i) is a version of the Ważewski theorem. It is weaker then Corollary 2.5 as
it can be shown in the following example:

EXAMPLE 9.5 (compare II.2 in [21]). Let B ⊂ R3 be given by

B :=D2 × [0,1] \ P,

whereD2 denotes the disk {x ∈ R2: |x| � 1} and P is a knotted thin open pipe P as shown
in Figure 11, i.e., P ⊂D2 × [0,1] and there exists a homeomorphism

h :U × [0,1] → P,

where U is equal to {x ∈ R2: |x|< r} for some 0< r < 1, such that

h
(
U × {0}) =U × {0}, h

(
U × {1}) =U × {1}.

Assume that B is an isolating block for a local flow φ in R3 such that the bottom of B
is equal to B−. The exit set B− is not a strong deformation retract of B since they have
different fundamental groups, hence Corollary 2.5 implies that

S := Inv(B) �= ∅.
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On the other hand, h(φ,S)= [B/B−,∗] is the trivial pointed homotopy type and therefore
it does not provide any information on S. Indeed, since B is compact, the inclusion B ↪→
B ∪ (D2 × {0}) induces a homeomorphism

B/B− → B ∪ (
D2 × {0})/(D2 × {0}).

The set ∂U × [0,1] ∪ U × {0} is a strong deformation retract of U × [0,1], hence B ∪
(D2 × {0}) is a strong deformation retract of D2 × [0,1]. Lemma 5.1 implies[

B/B−,∗] = [
B ∪ (

D2 × {0})/(D2 × {0}),∗]
= [

D2 × [0,1]/(D2 × {0}),∗] = 0.

In applications of the Conley index it is convenient to consider its various reductions, for
example H(h(φ,S)) and χ(h(φ,S)) for an arbitrary homology or cohomology functor H
and the corresponding Euler characteristic, the category cat(h(φ,S)), and the cup-length
�(h(φ,S)). In particular, by Remark 5.1,

Ȟ ∗(
h(φ,S)

) = Ȟ ∗(
B,B−)

for arbitrary isolating block B for S. (In fact, that equation holds for every homology or
cohomology functorH , compare [68, Section 1.10];H(h(φ,S)) is called the homological
or, respectively, the cohomological Conley index and usually is denoted by CH(φ,S).) In
the following result we gather information on the isolated invariant set provided by the
above mentioned reductions of the Conley index.

THEOREM 9.4. Let S be an isolated invariant set for a local flow φ. Then
(i) �(S)� �(h(φ,S)).

(ii) If φ is smooth then cat(S)� cat(h(φ,S)).
(iii) If the phase space of φ is a 2-dimensional manifold then either S has infinitely

many components or χ̌(S)� χ(h(φ,S)).
(iv) If φ is smooth and gradient-like then #S0 � cat(h(φ,S)), where S0 denotes the set

of stationary points contained in S.
(v) If φ is smooth and T > 0 then ind(φT , ST )= χ(h(φ,S)), where ST denotes the set

of T -periodic points contained in S.
(vi) If φ is smooth then i(φ,U)= χ(h(φ,S)) for every open isolating neighborhoodU

of S.

PROOF. At first note that the smoothness of φ implies the existence of an isolating block
B for S such that B and B− are ENRs by Theorem 9.1.

Ad (i). It follows by Proposition 5.3 and Corollary 7.2.
Ad (ii). It follows by Proposition 5.2 and Theorem 7.1.
Ad (iii). The result is a consequence of Proposition 5.5, (7.2) in Example 7.2, and Re-

mark 9.2.
Ad (iv). It follows by Theorem 7.5.
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Ad (v) and (vi). These are consequences of Proposition 5.5 and Theorem 7.6. �

Obviously, the absolute homotopy type of B/B− also does not depend on isolating block
B for S, hence we can define a less accurate invariant then the Conley index h by

h′(φ,S) := [
B/B−]

It has similar properties as h. Moreover, by Propositions 5.2, 5.3, and 5.5 we get

�
(
h(φ,S)

)
� �

(
h′(φ,S)

) − 1

and, in the case of smooth φ,

cat
(
h(φ,S)

)
� cat

(
h′(φ,S)

) − 1,

χ
(
h(φ,S)

) = χ
(
h′(φ,S)

) − 1,

hence the corresponding results to those in Theorem 9.4 hold for h′.

9.3. Examples of Conley indices and an application

In the following results we use the homotopy types

Σk := [
Sk, s0

]
,

Πk := [
RPk,p0

]
,

where Sk and RPk denote the k-dimensional sphere and real projective space, respectively,
and s0 and p0 are their arbitrary points.Σ0 is sometimes denoted by 1 since it is the neutral
element for the smash product.

Assume that φ is a smooth flow on a Riemannian manifold. At first we calculate the
index of a hyperbolic point (see Definition 9.2).

PROPOSITION 9.1. Assume that x0 is hyperbolic of index k. Then

h
(
φ, {x0}

) =Σk. (9.1)

PROOF. By the Grobman–Hartman theorem, φ is conjugated in a neighborhood of x0 to
the linear flow ψ of the equation

ẋ =Ax

in Rn, where A = (aij ) is diagonal, aii = 1 for i = 1, . . . , k and aii = −1 for i = k +
1, . . . , n. Thus isolating blocks for φ in a neighborhood of x0 and for ψ in a neighborhood
of 0 are homeomorphic, hence it suffices to calculate h(ψ, {0}).

B =Dk ×Dn−k
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is an isolating block for {0} with respect to ψ and

B− = Sk−1 ×Dn−k ,

hence B/B− has the same homotopy type as Sk and the result follows. �

EXAMPLE 9.6. Let g :M → R be a Morse function on an n-dimensional Riemannian
manifoldM . By definition, it means that each its critical point x0 is nondegenerate, hence,
by the Morse lemma, there exists a chart f :U → Rn in a neighborhood of x0 such that
f (x0)= 0 and

g
(
f−1(v)

) = g(x0)−
k∑
i=1

v2
i +

n∑
i=k+1

v2
i (9.2)

for v = (v1, . . . , vn) ∈ f (U). The number k is independent of the choice of the chart and
is called the Morse index of x0. It follows by (9.2) that x0 is a hyperbolic point of index k
of the local flow φ generated by (6.1), hence (9.1) holds.

By the example, the Conley index is a direct generalization of the Morse index (up to
the correspondence k vs. Σk): it also applies to degenerate isolated critical points of a
functional, since they are isolated invariant sets as we have mentioned in Example 9.2. In
spite of the fact that functionals used in variational methods operate in infinite-dimensional
spaces, hence not locally compact ones, the Conley index finds its application there thanks
to the saddle-point reduction method from [2] (compare also Remark 7.2).

Let Γ be a nontrivial periodic orbit of φ, i.e., the trajectory φ(x) of a periodic, non-
stationary point x . It is called hyperbolic of index k if dxP , the differential at x of the
Poincaré map P associated to a section of Γ in a neighborhood of x does not have eigen-
values on the unit circle and there are exactly k eigenvalues (counted with multiplicities)
outside of the unit disc. Then the unstable manifold Wu(Γ ) of Γ is of dimension k + 1
and we call Γ untwisted (respectively, twisted) providedWu(Γ ) is orientable (respectively,
nonorientable).

PROPOSITION 9.2. Assume that Γ is hyperbolic of index k. Then Γ is an isolated invari-
ant set and

(i) if k = 0 then h(φ,Γ )= [S1/∅,∗],
(ii) if k � 1 and Γ is untwisted then h(φ,Γ )=Σk ∨Σk+1 ,

(iii) if k � 1 and Γ is twisted then h(φ,Γ )=Π2 ∧Σk−1.

PROOF. We present a sketch of a proof. In the untwisted case one can find an isolating
block B for Γ which is homeomorphic to S1 ×Dk ×Dn−k−1 such that its exit set B−
corresponds to S1 × Sk−1 ×Dn−k−1. In the case k = 0 the result follows directly. Assume
that k � 1. It follows that (B/B−,∗) has the homotopy type of (S1 × Sk/(S1 × {s0},∗),
i.e., [S1/∅,∗] ∧ Σk . By the geometric considerations which are shown on Figure 12 in
the case k = 1, that homotopy type appears to be equal to Σk ∨Σk+1. In drawing 1 on



Ważewski method and Conley index 677

Fig. 12.

the figure, there is the Cartesian product S1 × S1 having marked the circle S1 × {s0}. By
collapsing the circle to a point one gets what is seen in drawing 2. The resulting quotient
space is homeomorphic to the union of the two-dimensional sphere S2 with the bar joining
its poles divided by the bar. This is marked in drawing 3. In drawing 4, there is a pointed
space with the same homotopy type, but here the bar is not collapsed and the south pole
is the base point. Without changing the pointed homotopy type, the bar is deformed to the
circle inside the sphere in drawing 5. In order to better see that this is in fact the pointed
wedge sum S1 ∨S2, the homeomorphic space with the circle attached outside of the sphere
is shown in drawing 6. That argument generalizes to the higher values of k.

If Γ is twisted then B is homeomorphic to M ×Dk−1 ×Dn−k−1 such that B− corre-
sponds to ∂M × Sk−2 ×Dn−k−1, where M is the compact Möbius band and ∂M denotes
its geometric boundary. Thus [B/B−,∗] is equal to Π2 ∧Σk−1. �

Recall that in Example 5.1 we have shown that Σ0 ∨Σ1 is not the same as [S1/∅,∗],
hence (i) in Proposition 9.2 is not of the form (ii) for k = 0. Since the Conley index of
an attracting hyperbolic orbit Γ is equal to [S1/∅,∗] by (i), and the Conley index of an
isolated invariant set S consisting of two hyperbolic points of index 0 and index 1 is equal to
Σ0 ∨Σ1 by Theorem 9.3(ii)), it follows by (iv) of that theorem that there is no continuation
between (φ,Γ ) and (ψ,S) for any two local flows φ andψ . Notice that we essentially used
the Conley index h in order to prove that assertion. Its reduction to h′ is useless since both
the absolute homotopy types h′(φ,Γ ) and h′(ψ,S) are equal to [S1/∅]. Moreover, for
every homology or cohomology functor H with coefficients in R,

Hq

(
h(φ,Γ )

) ∼=Hq

(
h(ψ,S)

) ∼=
{
R, if q = 0 or q = 1,

0, if q �= 0,1.

Surprisingly, the corresponding result in the case of nonattracting hyperbolic periodic or-
bits is not true. We provide an example of a hyperbolic periodic orbit of index 1 which
continues to the set consisting of two hyperbolic stationary points of index 1 and 2.
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Fig. 13.

EXAMPLE 9.7. We consider a family of local flows φλ in R3, where λ ∈ [0,1]. For λ ∈
[0,2/3] let φλ be generated by the equation

θ̇ = 1, ṙ = f (r, z, λ), ż= g(r, z, λ)

in the cylindrical coordinates θ, r, z, where θ ∈ [0,2π), r � 0, and z ∈ R. Assume that
the vector-field (f, g) in [0,∞)× R has the phase portrait given in Figure 13 (where r is
the horizontal coordinate and z is the vertical one) for the parameter values λ = 0 (left),
λ = 1/3 (middle), and λ = 2/3 (right). Assume that 1/3 is the only parameter value of
λ ∈ [0,2/3] in which the phase portrait changes, which implies that the right drawing
represents also phase portraits at λ ∈ [0,1/3) and the right one at λ ∈ (1/3,2/3]. It follows
that for λ ∈ [0,1/3) there is a periodic hyperbolic orbit Sλ of index 1 represented by the
dot in the left drawing. It collapses at λ = 1/3 to the one-point set S1/3 consisting of the
stationary point on the line r = 0 which is seen in the middle drawing. For λ ∈ (1/3,2/3],
that point bifurcates into the isolated invariant set Sλ consisting of two hyperbolic points
of index 1 (the lower point) and of index 2 (the upper point) and the trajectory connecting
them. For the parameter values λ ∈ (2/3,1] we no longer assume any rotating and we split
the connecting trajectory into two unbounded ones in a similar way as it was done for the
planar system in Example 9.4 and shown on Figure 10. Thus Sλ for λ ∈ (2/3,1] consists
of two hyperbolic points of index 1 and 2 and(

φ0, S0
) 0 (

φ1, S1
)
.

As an example of application of various properties of the Conley index we present a
proof of a result on existence of a bounded solution.

PROPOSITION 9.3 (see I.5 in [21]). The scalar equation

x(n) = x2 − 1 (9.3)

has a nonconstant solution x such that x, x ′, . . . , x(n−1) are bounded.
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PROOF. We rewrite the proof in [21]—it is also reproduced in [70], where we refer for
more detailed calculations. By the change of variables τ = t/ε and z= εnx Equation (9.3)
is equivalent to

dnz

dτn
= z2 − ε2n,

hence to the system

z′i = zi+1, if i = 1, . . . , n− 1, z′n = z2
1 − ε2n. (9.4)

In particular, for ε = 0, (9.4) becomes

z′i = zi+1, if i = 1, . . . , n− 1, z′n = z2
1 (9.5)

and we assert that the constant solution 0 is the only bounded solution of (9.5). In order
to prove that assertion assume that z= (z1, . . . , zn) is a bounded solution. Since z′n(t)� 0,
the map zn is constant or increasing. In both cases there exist α−, α+ ∈ R such that

lim
t→±∞ zn(t)= α±.

Let α+ �= 0. Then z′n−1(t) is close to α+ for t near ∞, hence zn−1 is unbounded which
contradicts to the assumption. The same holds if α− �= 0, hence α− = α+ = 0 and zn is
the constant zero function. It follows that zn−1 is a constant function and by a similar
argument one concludes that the constant is equal to 0. By repeating that argument we
conclude zn(t)= · · · = z1(t)= 0 for every t . Let φε be the local flow generated by (9.4) if
ε � 0 and by

z′i = zi+1, if i = 1, . . . , n− 1, z′n = z2
1 + ε2n

if ε � 0. We have just proved that {0} is an isolated invariant set of φ0. Take an arbitrary
isolating block B for {0} such that conclusion of Remark 9.1 is satisfied, hence B is also
an isolating block for local flows φε , where |ε| � ε0 for some ε0 > 0. For such an ε define
the isolated invariant set Sε as the invariant part of B with respect to the local flow φε . It
is easy to see that if ε < 0 then there are no bounded trajectories for φε , hence Sε = ∅. By
Theorem 9.3(i) and (iv),

h
(
φε,Sε

) = 0 (9.6)

if |ε|< ε0. Assume now that ε > 0. There are two stationary points p+ and p−,

p± = (±εn,0, . . . ,0)
,

and the eigenvalues of the derivative of the vector-field generating φε at p± satisfy the
characteristic equation

λn = ±2ε.
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Assume on the contrary that p± are the only bounded trajectories, hence Sε is equal to the
union {p−,p+} and Theorem 9.3(ii) implies

h
(
φε,Sε

) = h
(
φε,

{
p−}) ∨ h

(
φε,

{
p+})

. (9.7)

If n is odd then there are no eigenvalues on imaginary axis for both p+ and p−, and if n is
even then the same holds for one of p±. Thus, by Proposition 9.1, at least one summand on
the right-hand side of (9.7) is not equal to 0 which contradicts to (9.6) by Remark 5.2. �

9.4. Concluding remarks

We provided only basic facts concerning the Conley index; a more comprehensive intro-
ductions to that notion are given in [21] and [70, Chapters 22 and 23]. For some more
advanced topics we refer to [50], where the index or its generalizations are defined both for
continuous and discrete-time flows, and results related to attractor–repealer pairs, Morse
decompositions, connection and transition matrices, singular isolating neighborhoods, and
computer assisted proofs are considered. Finally, we would like to mention some exten-
sions and modifications of the Conley index for the continuous-time local flows:

• An improvement due to Conley in which the index is a connected simple system gen-
erated by all blocks (and more generally, by all index pairs) for an isolated invariant
set S and connecting maps are naturally given by pushing along trajectories (compare
[21]).

• A structure of the module over Ȟ ∗(X) for the cohomological Conley index, where X
is the phase space, and its generalization to the equivariant case due to Floer in [30].

• An infinite-dimensional version given in [68], which applies to semilinear partial dif-
ferential equations with the linear parts generated by sectorial operators having com-
pact resolvents.

• Another infinite-dimensional version defined in [36] for flows generated by vector-
fields of the form L+K in a Hilbert space, where L is a bounded linear Fredholm
operator and K is a completely continuous nonlinear operator. It particularly well fits
to results on the existence of critical points in variational problems.

• Multivalued versions given in [51] and, in a simpler case of equations without unique-
ness, in [44].

• The index over a base space defined in [52] which provides a better recognition of
isolated invariant sets then the index h in the case of noncontractible phase space. In
particular, it is nontrivial for the invariant part of the block considered in Example 9.5
if the knotted orbit is removed from the phase space.
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Ważewski method and Conley index 683

[58] A. Pelczar, On some extensions of the retract theorem of T. Ważewski, Bull. Acad. Polon. Sci. Ser. Sci. Math.
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[89] T. Ważewski, Sur une méthode topologique de l’examen de l’allure asymptotique des intégrales des
équations différentielles, Proceedings of the International Congress of Mathematicians 1954, Amsterdam,
Vol. III, North-Holland, Amsterdam (1956), 132–139.

[90] F.W. Wilson, J.A. Yorke, Lyapunov functions and isolating blocks, J. Differential Equations 13 (1973),
106–123.

[91] K. Wójcik, Isolating segments and symbolic dynamics, Nonlinear Anal. 33 (6) (1998), 575–591.
[92] K. Wójcik, On some nonautonomous chaotic system on the plane, Internat. J. Bifur. Chaos Appl. Sci. Engrg.

9 (9) (1999), 1853–1858.
[93] K. Wójcik, On detecting periodic solutions and chaos in the time-periodically forced ODEs, Nonlinear

Anal. 45 (1) (2001), 19–27.
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