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Preface

This book comprises 50 class-tested lectures which both the authors
have given to engineering and mathematics major students under the titles
Boundary Value Problems and Methods of Mathematical Physics at various
institutions all over the globe over a period of almost 35 years. The main
topics covered in these lectures are power series solutions, special func-
tions, boundary value problems for ordinary differential equations, Sturm–
Liouville problems, regular and singular perturbation techniques, Fourier
series expansion, partial differential equations, Fourier series solutions to
initial-boundary value problems, and Fourier and Laplace transform tech-
niques. The prerequisite for this book is calculus, so it can be used for
a senior undergraduate course. It should also be suitable for a beginning
graduate course because, in undergraduate courses, students do not have
any exposure to various intricate concepts, perhaps due to an inadequate
level of mathematical sophistication. The content in a particular lecture,
together with the problems therein, provides fairly adequate coverage of the
topic under study. These lectures have been delivered in one year courses
and provide flexibility in the choice of material for a particular one-semester
course. Throughout this book, the mathematical concepts have been ex-
plained very carefully in the simplest possible terms, and illustrated by a
number of complete workout examples. Like any other mathematical book,
it does contain some theorems and their proofs.

A detailed description of the topics covered in this book is as follows:
In Lecture 1 we find explicit solutions of the first-order linear differential
equations with variable coefficients, second-order homogeneous differential
equations with constant coefficients, and second-order Cauchy–Euler differ-
ential equations. In Lecture 2 we show that if one solution of the homoge-
neous second-order differential equation with variable coefficients is known,
then its second solution can be obtained rather easily. Here we also demon-
strate the method of variation of parameters to construct the solutions of
nonhomogeneous second-order differential equations.

In Lecture 3 we provide some basic concepts which are required to con-
struct power series solutions to differential equations with variable coeffi-
cients. Here through various examples we also explain ordinary, regular
singular, and irregular singular points of a given differential equation. In
Lecture 4 first we prove a theorem which provides sufficient conditions so
that the solutions of second-order linear differential equations can be ex-
pressed as power series at an ordinary point, and then construct power se-
ries solutions of Airy, Hermite, and Chebyshev differential equations. These
equations occupy a central position in mathematical physics, engineering,
and approximation theory. In Lectures 5 and 6 we demonstrate the method
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of Frobenius to construct the power series solutions of second-order linear
differential equations at a regular singular point. Here we prove a gen-
eral result which provides three possible different forms of the power series
solution. We illustrate this result through several examples, including La-
guerre’s equation, which arises in quantum mechanics. In Lecture 7 we
study Legendre’s differential equation, which arises in problems such as the
flow of an ideal fluid past a sphere, the determination of the electric field due
to a charged sphere, and the determination of the temperature distribution
in a sphere given its surface temperature. Here we also develop the polyno-
mial solution of the Legendre differential equation. In Lecture 8 we study
polynomial solutions of the Chebyshev, Hermite, and Laguerre differential
equations. In Lecture 9 we construct series solutions of Bessel’s differential
equation, which first appeared in the works of Euler and Bernoulli. Since
many problems of mathematical physics reduce to the Bessel equation, we
investigate it in somewhat more detail. In Lecture 10 we develop series so-
lutions of the hypergeometric differential equation, which finds applications
in several problems of mathematical physics, quantum mechanics, and fluid
dynamics.

Mathematical problems describing real world situations often have so-
lutions which are not even continuous. Thus, to analyze such problems
we need to work in a set which is bigger than the set of continuous func-
tions. In Lecture 11 we introduce the sets of piecewise continuous and
piecewise smooth functions, which are quite adequate to deal with a wide
variety of applied problems. Here we also define periodic functions, and
introduce even and odd extensions. In Lectures 12 and 13 we introduce
orthogonality of functions and show that the Legendre, Chebyshev, Her-
mite, and Laguerre polynomials and Bessel functions are orthogonal. Here
we also prove some fundamental properties about the zeros of orthogonal
polynomials.

In Lecture 14 we introduce boundary value problems for second-order
ordinary differential equations and provide a necessary and sufficient con-
dition for the existence and uniqueness of their solutions. In Lecture 15
we formulate some boundary value problems with engineering applications,
and show that often solutions of these problems can be written in terms
of Bessel functions. In Lecture 16 we introduce Green’s functions of ho-
mogeneous boundary value problems and show that the solution of a given
nonhomogeneous boundary value problem can be explicitly expressed in
terms of Green’s function of the corresponding homogeneous equation.

In Lecture 17 we discuss the regular perturbation technique which re-
lates the unknown solution of a given initial value problem to the known
solutions of the infinite initial value problems. In many practical problems
one often meets cases where the methods of regular perturbations cannot
be applied. In the literature such problems are known as singular pertur-
bation problems. In Lecture 18 we explain the methodology of singular
perturbation technique with the help of some examples.
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If the coefficients of the homogeneous differential equation and/or of
the boundary conditions depend on a parameter, then one of the pioneer
problems of mathematical physics is to determine the values of the param-
eter (eigenvalues) for which nontrivial solutions (eigenfunctions) exist. In
Lecture 19 we explain some of the essential ideas involved in this vast field,
which is continuously growing.

In Lectures 20 and 21 we show that the sets of orthogonal polynomials
and functions we have provided in earlier lectures can be used effectively
as the basis in the expansions of general functions. This in particular leads
to Fourier’s cosine, sine, trigonometric, Legendre, Chebyshev, Hermite and
Bessel series. In Lectures 22 and 23 we examine pointwise convergence,
uniform convergence, and the convergence in the mean of the Fourier se-
ries of a given function. Here the importance of Bessel’s inequality and
Parseval’s equality are also discussed. In Lecture 24 we use Fourier series
expansions to find periodic particular solutions of nonhomogeneous differ-
ential equations, and solutions of nonhomogeneous self-adjoint differential
equations satisfying homogeneous boundary conditions, which leads to the
well-known Fredholm’s alternative.

In Lecture 25 we introduce partial differential equations and explain sev-
eral concepts through elementary examples. Here we also provide the most
fundamental classification of second-order linear equations in two indepen-
dent variables. In Lecture 26 we study simultaneous differential equations,
which play an important role in the theory of partial differential equations.
Then we consider quasilinear partial differential equations of the Lagrange
type and show that such equations can be solved rather easily, provided we
can find solutions of related simultaneous differential equations. Finally,
we explain a general method to find solutions of nonlinear first-order par-
tial differential equations which is due to Charpit. In Lecture 27 we show
that like ordinary differential equations, partial differential equations with
constant coefficients can be solved explicitly. We begin with homogeneous
second-order differential equations involving only second-order terms, and
then show how the operator method can be used to solve some particular
nonhomogeneous differential equations. Then, we extend the method to
general second and higher order partial differential equations. In Lecture
28 we show that coordinate transformations can be employed successfully
to reduce second-order linear partial differential equations to some standard
forms, which are known as canonical forms. These transformed equations
sometimes can be solved rather easily. Here the concept of characteristic
of second-order partial differential equations plays an important role.

The method of separation of variables involves a solution which breaks
up into a product of functions each of which contains only one of the vari-
ables. This widely used method for finding solutions of linear homoge-
neous partial differential equations we explain through several simple ex-
amples in Lecture 29. In Lecture 30 we derive the one-dimensional heat
equation and formulate initial-boundary value problems, which involve the
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heat equation, the initial condition, and homogeneous and nonhomogeneous
boundary conditions. Then we use the method of separation of variables
to find the Fourier series solutions to these problems. In Lecture 31 we
construct the Fourier series solution of the heat equation with Robin’s
boundary conditions. In Lecture 32 we provide two different derivations
of the one-dimensional wave equation, formulate an initial-boundary value
problem, and find its Fourier series solution. In Lecture 33 we continue
using the method of separation of variables to find Fourier series solutions
to some other initial-boundary value problems related to one-dimensional
wave equation. In Lecture 34 we give a derivation of the two-dimensional
Laplace equation, formulate the Dirichlet problem on a rectangle, and find
its Fourier series solution. In Lecture 35 we discuss the steady-state heat
flow problem in a disk. For this, we consider the Laplace equation in po-
lar coordinates and find its Fourier series solution. In Lecture 36 we use
the method of separation of variables to find the temperature distribution
of rectangular and circular plates in the transient state. Again using the
method of separation of variables, in Lecture 37 we find vertical displace-
ments of thin membranes occupying rectangular and circular regions. The
three-dimensional Laplace equation occurs in problems such as gravitation,
steady-state temperature, electrostatic potential, magnetostatics, fluid flow,
and so on. In Lecture 38 we find the Fourier series solution of the Laplace
equation in a three-dimensional box and in a circular cylinder. In Lecture
39 we use the method of separation of variables to find the Fourier series
solutions of the Laplace equation in and outside a given sphere. Here, we
also discuss briefly Poisson’s integral formulas. In Lecture 40 we demon-
strate how the method of separation of variables can be employed to solve
nonhomogeneous problems.

The Fourier integral is a natural extension of Fourier trigonometric series
in the sense that it represents a piecewise smooth function whose domain
is semi-infinite or infinite. In Lecture 41 we develop the Fourier integral
with an intuitive approach and then discuss Fourier cosine and sine inte-
grals which are extensions of Fourier cosine and sine series, respectively.
This leads to Fourier cosine and sine transform pairs. In Lecture 42 we
introduce the complex Fourier integral and the Fourier transform pair and
find the Fourier transform of the derivative of a function. Then, we state
and prove the Fourier convolution theorem, which is an important result.
In Lectures 43 and 44 we consider problems in infinite domains which can
be effectively solved by finding the Fourier transform, or the Fourier sine or
cosine transform of the unknown function. For such problems usually the
method of separation of variables does not work because the Fourier series
are not adequate to yield complete solutions. We illustrate the method by
considering several examples, and obtain the famous Gauss–Weierstrass,
d’Alembert’s, and Poisson’s integral formulas.

In Lecture 45 we introduce some basic concepts of Laplace transform
theory, whereas in Lecture 46 we prove several theorems which facilitate the
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computation of Laplace transforms. The method of Laplace transforms has
the advantage of directly giving the solutions of differential equations with
given initial and boundary conditions without the necessity of first finding
the general solution and then evaluating from it the arbitrary constants.
Moreover, the ready table of Laplace transforms reduces the problem of
solving differential equations to mere algebraic manipulations. In Lectures
47 and 48 we employ the Laplace transform technique to find solutions
of ordinary and partial differential equations, respectively. Here we also
develop the famous Duhamel’s formula.

A given problem consisting of a partial differential equation in a domain
with a set of initial and/or boundary conditions is said to be well-posed if
it has a unique solution which is stable. In Lecture 49 we demonstrate that
problems considered in earlier lectures are well-posed. Finally, in Lecture
50 we prove a few theorems which verify that the series or integral form of
the solutions we have obtained in earlier lectures are actually the solutions
of the problems considered.

Two types of exercises are included in the book, those which illustrate
the general theory, and others designed to fill out text material. These
exercises form an integral part of the book, and every reader is urged to
attempt most, if not all of them. For the convenience of the reader we have
provided answers or hints to almost all the exercises.

In writing a book of this nature no originality can be claimed, only a
humble attempt has been made to present the subject as simply, clearly,
and accurately as possible. It is earnestly hoped that Ordinary and Partial
Differential Equations will serve an inquisitive reader as a starting point in
this rich, vast, and ever-expanding field of knowledge.

We would like to express our appreciation to Professors M. Bohner, S.K.
Sen, and P.J.Y. Wong for their suggestions and criticisms. We also want
to thank Ms. Vaishali Damle at Springer New York for her support and
cooperation.

Ravi P. Agarwal
Donal O’Regan
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Lecture 1
Solvable Differential Equations

In this lecture we shall show that first-order linear differential equations
with variable coefficients, second-order homogeneous differential equations
with constant coefficients, and second-order Cauchy–Euler differential equa-
tions can be solved in terms of the known quantities.

First-order equations. Consider the differential equation (DE)

y′ + p(x)y = q(x), ′ =
d

dx
(1.1)

where the functions p(x) and q(x) are continuous in some interval J. The
corresponding homogeneous equation

y′ + p(x)y = 0 (1.2)

obtained by taking q(x) ≡ 0 in (1.1) can be solved by separating the vari-
ables, i.e.,

1
y
y′ + p(x) = 0

and now integrating it, to obtain

ln y(x) +
∫ x

p(t)dt = ln c,

or

y(x) = c exp
(
−
∫ x

p(t)dt

)
. (1.3)

In dividing (1.2) by y we have lost the solution y(x) ≡ 0, which is called the
trivial solution (for a linear homogeneous DE y(x) ≡ 0 is always a solution).
However, it is included in (1.3) with c = 0.

If x0 ∈ J, then the function

y(x) = y0 exp
(
−
∫ x

x0

p(t)dt

)
(1.4)

clearly satisfies the DE (1.2) and passes through the point (x0, y0). Thus,
this is the solution of the initial value problem: DE (1.2) together with the
initial condition

y(x0) = y0. (1.5)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 1,
c© Springer Science+Business Media, LLC 2009



2 Lecture 1

To find the solution of the DE (1.1) we shall use the method of variation
of parameters due to Lagrange. In (1.3) we assume that c is a function of
x, i.e.,

y(x) = c(x) exp
(
−
∫ x

p(t)dt

)
(1.6)

and search for c(x) so that (1.6) becomes a solution of the DE (1.1). For
this, setting (1.6) into (1.1), we find

c′(x) exp
(
−
∫ x

p(t)dt

)
−c(x)p(x) exp

(
−
∫ x

p(t)dt

)

+c(x)p(x) exp
(
−
∫ x

p(t)dt

)
= q(x),

which is the same as

c′(x) = q(x) exp
(∫ x

p(t)dt

)
. (1.7)

Integrating (1.7), we obtain the required function

c(x) = c1 +
∫ x

q(t) exp
(∫ t

p(s)ds

)
dt.

Now, substituting this c(x) in (1.6), we find the solution of (1.1) as

y(x) = c1 exp
(
−
∫ x

p(t)dt

)
+
∫ x

q(t) exp
(
−
∫ x

t

p(s)ds

)
dt. (1.8)

This solution y(x) is of the form c1u(x)+v(x). It is to be noted that c1u(x) is
the general solution of (1.2). Hence, the general solution of (1.1) is obtained
by adding any particular solution of (1.1) to the general solution of (1.2).

From (1.8) the solution of the initial value problem (1.1), (1.5), where
x0 ∈ J , is easily obtained as

y(x) = y0 exp
(
−
∫ x

x0

p(t)dt

)
+
∫ x

x0

q(t) exp
(
−
∫ x

t

p(s)ds

)
dt. (1.9)

Example 1.1. Consider the initial value problem

xy′ − 4y + 2x2 + 4 = 0, x �= 0, y(1) = 1. (1.10)

Since x0 = 1, y0 = 1, p(x) = −4/x and q(x) = −2x − 4/x from (1.9) the
solution of (1.10) can be written as

y(x) = exp
(∫ x

1

4
t
dt

)
+
∫ x

1

(
−2t − 4

t

)
exp
(∫ x

t

4
s
ds

)
dt

= x4 +
∫ x

1

(
−2t− 4

t

)
x4

t4
dt

= x4 + x4

(
1
x2

+
1
x4

− 2
)

= −x4 + x2 + 1.
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Alternatively, instead of using (1.9) we can find the solution of (1.10) as
follows: For the corresponding homogeneous DE y′−(4/x)y = 0 the general
solution is cx4, and a particular solution of the DE (1.10) is

∫ x (
−2t − 4

t

)
exp
(∫ x

t

4
s
ds

)
dt = x2 + 1

and hence the general solution of the DE (1.10) is y(x) = cx4 +x2 +1. Now,
in order to satisfy the initial condition y(1) = 1, it is necessary that 1 =
c+1+1, or c = −1. The solution of (1.10) is, therefore, y(x) = −x4+x2+1.

Second-order equations with constant coefficients. We
shall find solutions of the second-order DE

y′′ + ay′ + by = 0, (1.11)

where a and b are constants.

As a first step toward finding a solution to this DE we look back at the
equation y′ + ay = 0 (a is a constant) for which all solutions are constant
multiples of e−ax. Thus, for (1.11) also some form of exponential function
would be a reasonable choice and would utilize the property that the differ-
entiation of an exponential function erx always yields a constant multiplied
by erx.

Thus, we try y = erx and find the value(s) of r. We have

r2erx + arerx + berx = 0,

or
(r2 + ar + b)erx = 0,

or
r2 + ar + b = 0. (1.12)

Hence, erx is a solution of (1.11) if r is a solution of (1.12). Equation (1.12)
is called the characteristic polynomial of (1.11). For the roots of (1.12) we
have the following three cases:

1. Distinct real roots. If r1 and r2 are real and distinct roots
of (1.12), then er1x and er2x are two solutions of (1.11), and its general
solution can be written as

y(x) = c1e
r1x + c2e

r2x.

In the particular case when r1 = r, r2 = −r (then the DE (1.11) is y′′ −
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r2y = 0), we have

y(x) = c1e
rx + c2e

−rx =
(

A + B

2

)
erx +

(
A − B

2

)
e−rx

= A

(
erx + e−rx

2

)
+ B

(
erx − e−rx

2

)

= A cosh rx + B sinh rx.

2. Repeated real roots. If r1 = r2 = r is a repeated root of (1.12),
then erx is a solution. To find the second solution, we let y(x) = u(x)erx

and substitute it in (1.11), to get

erx(u′′ + 2ru′ + r2u) + aerx(u′ + ru) + buerx = 0,

or
u′′ + (2r + a)u′ + (r2 + ar + b)u = u′′ + (2r + a)u′ = 0.

Now since r is a repeated root of (1.12), it follows that 2r + a = 0 and
hence u′′ = 0, i.e., u(x) = c1 + c2x. Thus,

y(x) = (c1 + c2x)erx = c1e
rx + c2xerx.

Hence, the second solution of (1.11) is xerx.

3. Complex conjugate roots. Let r1 = μ + iν and r2 = μ − iν,
where i =

√
−1, so that

e(μ±iν)x = eμx(cos νx ± i sin νx).

Since for the DE (1.11) the real part (i.e., eμx cos νx) and the imaginary
part (i.e., eμx sin νx) both are solutions, the general solution of (1.11) can
be written as

y(x) = c1e
μx cos νx + c2e

μx sin νx.

In the particular case when r1 = iν and r2 = −iν (then the DE (1.11) is
y′′ + ν2y = 0) we have y(x) = c1 cos νx + c2 sin νx.

Cauchy–Euler equations. For the Cauchy–Euler equation

t2y′′+aty′+by = 0, t > 0 (t is the independent variable), ′ =
d

dt
(1.13)

which occurs in studying the temperature distribution generated by a heat
source such as the sun or a nuclear reactor, we assume y(t) = tm to obtain

t2m(m − 1)tm−2 + atmtm−1 + btm = 0,

or
m(m − 1) + am + b = 0. (1.14)
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This is the characteristic equation for (1.13), and as earlier for (1.12) the
nature of its roots determines the general solution:

Real, distinct roots m1 �= m2: y(t) = c1t
m1 + c2t

m2 ,

Real, repeated roots m = m1 = m2: y(t) = c1t
m + c2(ln t)tm,

Complex conjugate roots m1 = μ+iν, m2 = μ−iν: y(t) = c1t
μ cos(ν ln t)

+ c2t
μ sin(ν ln t).

In the particular case

t2y′′ + ty′ − λ2y = 0, t > 0, λ > 0 (1.15)

the characteristic equation is m(m−1)+m−λ2 = 0, or m2−λ2 = 0. Thus,
the roots are m = ±λ, and hence the general solution of (1.15) appears as

y(t) = c1t
λ + c2t

−λ. (1.16)

Problems

1.1. (Principle of Superposition). If y1(x) and y2(x) are solutions of
y′ + p(x)y = qi(x), i = 1, 2 respectively, then show that c1y1(x) + c2y2(x)
is a solution of the DE y′ + p(x)y = c1q1(x) + c2q2(x), where c1 and c2 are
constants.

1.2. Find general solutions of the following DEs:

(i) y′ − (cotx)y = 2x sin x

(ii) y′ + y + x + x2 + x3 = 0
(iii) (y2 − 1) + 2(x − y(1 + y)2)y′ = 0
(iv) (1 + y2) = (tan−1 y − x)y′.

1.3. Solve the following initial value problems:

(i) y′ + 2y =
{

1, 0 ≤ x ≤ 1
0, x > 1 , y(0) = 0

(ii) y′ + p(x)y = 0, y(0) = 1 where p(x) =
{

2, 0 ≤ x ≤ 1
1, x > 1.

1.4. Let q(x) be continuous in [0,∞) and limx→∞ q(x) = L. For the
DE y′ + ay = q(x) show that

(i) if a > 0, every solution approaches L/a as x → ∞
(ii) if a < 0, there is one and only one solution which approaches L/a as
x → ∞.
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1.5. Let y(x) be the solution of the initial value problem (1.1), (1.5)
in [x0,∞), and let z(x) be a continuously differentiable function in [x0,∞)
such that z′ + p(x)z ≤ q(x), z(x0) ≤ y0. Show that z(x) ≤ y(x) for all x in
[x0,∞). In particular, for the problem y′ + y = cosx, y(0) = 1 verify that
2e−x − 1 ≤ y(x) ≤ 1, x ∈ [0,∞).

1.6. Certain nonlinear first-order DEs can be reduced to linear equa-
tions by an appropriate change of variables. For example, this is always
possible for the Bernoulli equation:

y′ + p(x)y = q(x)yn, n �= 0, 1.

Indeed this equation is equivalent to the DE

y−ny′ + p(x)y1−n = q(x)

and now the substitution v = y1−n (used by Leibniz in 1696) leads to the
first-order linear DE

1
1 − n

v′ + p(x)v = q(x).

In particular, show that the general solution of the DE xy′+y = x2y2, x �= 0
is y(x) = (cx − x2)−1, x �= 0, c.

1.7. Find general solutions of the following homogeneous DEs:

(i) y′′ + 7y′ + 10y = 0
(ii) y′′ − 8y′ + 16y = 0
(iii) y′′ + 2y′ + 3y = 0.

1.8. Show that if the real parts of the roots of (1.12) are negative,
then limx→∞ y(x) = 0 for every solution y(x) of (1.11).

1.9. Show that the solution of the initial value problem

y′′ − 2(r + β)y′ + r2y = 0, y(0) = 0, y′(0) = 1

can be written as

yβ(x) =
1

2
√

β(2r + β)

[
e[r+β+

√
β(2r+β)]x − e[r+β−

√
β(2r+β)]x

]
.

Further, show that limβ→0 yβ(x) = xerx.

1.10. The following fourth order DEs occur in applications as indi-
cated:

(i) y′′′′ − k4y = 0 (vibration of a beam)
(ii) y′′′′ + 4k4y = 0 (beam on an elastic foundation)
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(iii) y′′′′ − 2k2y′′ + k4y = 0 (bending of an elastic plate),

where k �= 0 is a constant. Find their general solutions.

Answers or Hints

1.1. Use the definition of a solution.

1.2. (i) c sin x+x2 sin x (ii) ce−x−x3+2x2−5x+5 (iii) x(y−1)/(y+1) =
y2 + c (iv) x = tan−1 y − 1 + ce− tan−1 y.

1.3. (i) y(x) =
{

1
2 (1 − e−2x), 0 ≤ x ≤ 1
1
2 (e2 − 1)e−2x, x > 1

(ii) y(x) =
{

e−2x, 0 ≤ x ≤ 1
e−(x+1), x > 1.

1.4. (i) In y(x) = y(x0)e−a(x−x0) +[
∫ x

x0
eatq(t)dt]/eax take the limit x →

∞ (ii) In y(x) = e−ax
[
y(x0)eax0 +

∫∞
x0

eatq(t)dt −
∫∞

x eatq(t)dt
]

choose

y(x0) so that y(x0)eax0 +
∫∞

x0
eatq(t)dt = 0 (limx→∞ q(x) = L). Now in

y(x) = −[
∫∞

x eatq(t)dt]/eax take the limit x → ∞.

1.5. There exists a continuous function r(x) ≥ 0 such that z′ + p(x)z =
q(x) − r(x), z(x0) ≤ y0. Thus, for the function φ(x) = y(x) − z(x), φ′ +
p(x)φ = r(x) ≥ 0, φ(x0) = y0 − z(x0) ≥ 0.

1.6. Using the substitution v = y−1 the given equation reduces to −xv′+
v = x2.

1.7. (i) c1e
−2x + c2e

−5x (ii) (c1 + c2x)e4x (iii) c1e
−x cos

√
2x+ c2e

−x ×
sin

√
2x.

1.8. Use explicit forms of the solution.

1.9. Note that
√

β(β + 2r) → 0 as β → 0.

1.10. (i) c1e
kx+c2e

−kx+c3 cos kx+c4 sin kx (ii) ekx(c1 cos kx+c2 sinkx)+
e−kx(c3 cos kx + c4 sin kx) (iii) ekx(c1 + c2x) + e−kx(c3 + c4x).



Lecture 2
Second-Order Differential

Equations

Generally, second-order differential equations with variable coefficients
cannot be solved in terms of the known functions. In this lecture we shall
show that if one solution of the homogeneous equation is known, then its
second solution can be obtained rather easily. Further, by employing the
method of variation of parameters, the general solution of the nonhomo-
geneous equation can be constructed provided two solutions of the corre-
sponding homogeneous equation are known.

Homogeneous equations. For the homogeneous linear DE of
second-order with variable coefficients

y′′ + p1(x)y′ + p2(x)y = 0, (2.1)

where p1(x) and p2(x) are continuous in J, there does not exist any method
to solve it. However, the following results are well-known.

Theorem 2.1. There exist exactly two solutions y1(x) and y2(x) of
(2.1) which are linearly independent (essentially different) in J, i.e., there
does not exist a constant c such that y1(x) = cy2(x) for all x ∈ J.

Theorem 2.2. Two solutions y1(x) and y2(x) of (2.1) are linearly
independent in J if and only if their Wronskian defined by

W (x) = W (y1, y2)(x) =
∣∣∣∣ y1(x) y2(x)

y′
1(x) y′

2(x)

∣∣∣∣ (2.2)

is different from zero for some x = x0 in J.

Theorem 2.3. For the Wronskian defined in (2.2) the following Abel’s
identity holds:

W (x) = W (x0) exp
(
−
∫ x

x0

p1(t)dt

)
, x0 ∈ J. (2.3)

Thus, if Wronskian is zero at some x0 ∈ J, then it is zero for all x ∈ J.

Theorem 2.4. If y1(x) and y2(x) are solutions of (2.1) and c1 and c2

are arbitrary constants, then c1y1(x) + c2y2(x) is also a solution of (2.1).

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 2,
c© Springer Science+Business Media, LLC 2009
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Further, if y1(x) and y2(x) are linearly independent, then any solution y(x)
of (2.1) can be written as y(x) = c1y1(x) + c2y2(x), where c1 and c2 are
suitable constants.

Now we shall show that, if one solution y1(x) of (2.1) is known (by
some clever method) then we can employ variation of parameters to find
the second solution of (2.1). For this, we let y(x) = u(x)y1(x) and substitute
this in (2.1), to get

(uy1)′′ + p1(uy1)′ + p2(uy1) = 0,

or
u′′y1 + 2u′y′

1 + uy′′
1 + p1u

′y1 + p1uy′
1 + p2uy1 = 0,

or
u′′y1 + (2y′

1 + p1y1)u′ + (y′′
1 + p1y

′
1 + p2y1)u = 0.

However, since y1 is a solution of (2.1), the above equation with v = u′ is
the same as

y1v
′ + (2y′

1 + p1y1)v = 0, (2.4)

which is a first-order equation, and it can be solved easily provided y1 �= 0
in J. Indeed, multiplying (2.4) by y1, we find

(y2
1v′ + 2y′

1y1v) + p1y
2
1v = 0,

which is the same as
(y2

1v)′ + p1(y2
1v) = 0;

and hence

y2
1v = c exp

(
−
∫ x

p1(t)dt

)
,

or, on taking c = 1,

v(x) =
1

y2
1(x)

exp
(
−
∫ x

p1(t)dt

)
.

Hence, the second solution of (2.1) is

y2(x) = y1(x)
∫ x 1

y2
1(t)

exp
(
−
∫ t

p1(s)ds

)
dt. (2.5)

Example 2.1. It is easy to verify that y1(x) = x2 is a solution of the
DE

x2y′′ − 2xy′ + 2y = 0, x �= 0.

For the second solution we use (2.5), to obtain

y2(x) = x2

∫ x 1
t4

exp
(
−
∫ t(

−2s

s2

)
ds

)
dt = x2

∫ x 1
t4

t2dt = −x.
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We note that the substitution w = y′/y converts (2.1) into a first-order
nonlinear DE

w′ + p1(x)w + p2(x) + w2 = 0. (2.6)

This DE is called Riccati’s equation. In general it is not integrable, but
if a particular solution, say, w1(x) is known, then by the substitution z =
w − w1(x) it can be reduced to Bernoulli’s equation (see Problem 1.6). In
fact, we have

z′ + w′
1(x) + p1(x)(z + w1(x)) + p2(x) + (z + w1(x))2 = 0,

which is the same as

z′ + (p1(x) + 2w1(x))z + z2 = 0. (2.7)

Since this equation can be solved easily to obtain z(x), the solution of (2.6)
takes the form w(x) = w1(x) + z(x).

Example 2.2. It is easy to verify that w1(x) = x is a particular solution
of the Riccati equation

w′ = 1 + x2 − 2xw + w2.

The substitution z = w − x in this equation gives the Bernoulli equation

z′ = z2,

whose general solution is z(x) = 1/(c−x), x �= c. Thus, the general solution
of the given Riccati’s equation is w(x) = x + 1/(c− x), x �= c.

Nonhomogeneous equations. Now we shall find a particular
solution of the nonhomogeneous equation

y′′ + p1(x)y′ + p2(x)y = r(x). (2.8)

For this also we shall apply the method of variation of parameters. Let
y1(x) and y2(x) be two solutions of (2.1). We assume y(x) = c1(x)y1(x) +
c2(x)y2(x) is a solution of (2.8). Note that c1(x) and c2(x) are two unknown
functions, so we can have two sets of conditions which determine c1(x) and
c2(x). Since

y′ = c1y
′
1 + c2y

′
2 + c′1y1 + c′2y2

as a first condition we assume that

c′1y1 + c′2y2 = 0. (2.9)

Thus, we have
y′ = c1y

′
1 + c2y

′
2
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and on differentiation

y′′ = c1y
′′
1 + c2y

′′
2 + c′1y

′
1 + c′2y

′
2.

Substituting these in (2.8), we get

c1(y′′
1 + p1y

′
1 + p2y1) + c2(y′′

2 + p1y
′
2 + p2y2) + (c′1y

′
1 + c′2y

′
2) = r(x).

Clearly, this equation, in view of y1(x) and y2(x) being solutions of (2.1),
is the same as

c′1y
′
1 + c′2y

′
2 = r(x). (2.10)

Solving (2.9), (2.10), we find

c′1 = − r(x)y2(x)∣∣∣∣ y1(x) y2(x)
y′
1(x) y′

2(x)

∣∣∣∣
, c′2 =

r(x)y1(x)∣∣∣∣ y1(x) y2(x)
y′
1(x) y′

2(x)

∣∣∣∣
;

and hence a particular solution of (2.8) is

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= −y1(x)
∫ x r(t)y2(t)∣∣∣∣ y1(t) y2(t)

y′
1(t) y′

2(t)

∣∣∣∣
dt + y2(x)

∫ x r(t)y1(t)∣∣∣∣ y1(t) y2(t)
y′
1(t) y′

2(t)

∣∣∣∣
dt

=
∫ x

H(x, t)r(t)dt,

(2.11)
where

H(x, t) =
∣∣∣∣ y1(t) y2(t)

y1(x) y2(x)

∣∣∣∣
/ ∣∣∣∣ y1(t) y2(t)

y′
1(t) y′

2(t)

∣∣∣∣ . (2.12)

Thus, the general solution of (2.8) is

y(x) = c1y1(x) + c2y2(x) + yp(x). (2.13)

The following properties of the function H(x, t) are immediate:

(i). H(x, t) is defined for all (x, t) ∈ J × J ;

(ii). ∂jH(x, t)/∂xj , j = 0, 1, 2 are continuous for all (x, t) ∈ J × J ;

(iii). for each fixed t ∈ J the function z(x) = H(x, t) is a solution of the
homogeneous DE (2.1) satisfying z(t) = 0, z′(t) = 1; and

(iv). the function

v(x) =
∫ x

x0

H(x, t)r(t)dt
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is a particular solution of the nonhomogeneous DE (2.8) satisfying y(x0) =
y′(x0) = 0.

Example 2.3. Consider the DE

y′′ + y = cotx.

For the corresponding homogeneous DE y′′ + y = 0, sin x and cosx are
solutions. Thus, its general solution can be written as

y(x) = c1 sinx + c2 cosx +
∫ x

∣∣∣∣ sin t cos t
sinx cosx

∣∣∣∣∣∣∣∣ sin t cos t
cos t − sin t

∣∣∣∣
cos t

sin t
dt

= c1 sinx + c2 cosx −
∫ x

(sin t cosx − sin x cos t)
cos t

sin t
dt

= c1 sinx + c2 cosx − cosx sin x + sin x

∫ x 1 − sin2 t

sin t
dt

= c1 sinx + c2 cosx − cosx sin x − sin x

∫ x

sin tdt + sin x

∫ x 1
sin t

dt

= c1 sinx + c2 cosx + sin x

∫ x cosec t(cosec t − cot t)
(cosec t − cot t)

dt

= c1 sinx + c2 cosx + sin x ln[cosecx − cotx].

Finally, we remark that if the functions p1(x), p2(x) and r(x) are contin-
uous on J and x0 ∈ J, then the DE (2.8) together with the initial conditions

y(x0) = y0, y′(x0) = y1 (2.14)

has a unique solution. The problem (2.8), (2.14) is called an initial value
problem. Note that in (2.14) conditions are prescribed at the same point,
namely, x0.

Problems

2.1. Given the solution y1(x), find the second solution of the following
DEs:

(i) (x2 − x)y′′ + (3x − 1)y′ + y = 0 (x �= 0, 1), y1(x) = (x − 1)−1

(ii) x(x − 2)y′′ + 2(x − 1)y′ − 2y = 0 (x �= 0, 2), y1(x) = (1 − x)
(iii) xy′′ − y′ − 4x3y = 0 (x �= 0), y1(x) = exp(x2)
(iv) (1 − x2)y′′ − 2xy′ + 2y = 0 (|x| < 1), y1(x) = x.
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2.2. The differential equation

xy′′ − (x + n)y′ + ny = 0

is interesting because it has an exponential solution and a polynomial so-
lution.

(i) Verify that one solution is y1(x) = ex.

(ii) Show that the second solution has the form y2(x) = cex
∫ x

tne−tdt.
Further, show that with c = −1/n!,

y2(x) = 1 +
x

1!
+

x2

2!
+ · · · + xn

n!
.

Note that y2(x) is the first n + 1 terms of the Taylor series about x = 0 for
ex, that is, for y1(x).

2.3. The differential equation

y′′ + δ(xy′ + y) = 0

occurs in the study of the turbulent flow of a uniform stream past a circular
cylinder. Verify that y1(x) = exp(−δx2/2) is one solution. Find its second
solution.

2.4. Let y1(x) �= 0 and y2(x) be two linearly independent solutions of
the DE (2.1). Show that y(x) = y2(x)/y1(x) is a nonconstant solution of
the DE

y1(x)y′′ + (2y′
1(x) + p1(x)y1(x))y′ = 0.

2.5. Let the function p1(x) be differentiable in J. Show that the substi-
tution y(x) = z(x) exp

(
− 1

2

∫ x
p1(t)dt

)
transforms (2.1) to the differential

equation

z′′ +
(

p2(x) − 1
2
p′1(x) − 1

4
p2
1(x)
)

z = 0.

In particular show that the substitution y(x) = z(x)/
√

x transforms
Bessel’s DE

x2y′′ + xy′ + (x2 − a2)y = 0, (2.15)

where a is a constant (parameter), into a simple DE

z′′ +
(

1 +
1 − 4a2

4x2

)
z = 0. (2.16)

2.6. Let v(x) be the solution of the initial value problem

y′′ + p1y
′ + p2y = 0, y(0) = 0, y′(0) = 1
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where p1 and p2 are constants. Show that the function

y(x) =
∫ x

x0

v(x − t)r(t)dt

is the solution of the nonhomogeneous DE

y′′ + p1y
′ + p2y = r(x)

satisfying y(x0) = y′(x0) = 0.

2.7. Find general solutions of the following nonhomogeneous DEs:

(i) y′′ + 4y = sin 2x

(ii) y′′ + 4y′ + 3y = e−3x

(iii) y′′ + 5y′ + 4y = e−4x.

2.8. Verify that y1(x) = x and y2(x) = 1/x are solutions of

x3y′′ + x2y′ − xy = 0.

Use this information and the variation of parameters method to find the
general solution of

x3y′′ + x2y′ − xy = x/(1 + x).

Answers or Hints

2.1. (i) lnx/(x−1) (ii) (1/2)(1−x) ln[(x−2)/x]−1 (iii) e−x2
(iv)(x/2)×

ln[(1 + x)/(1 − x)] − 1.

2.2. (i) Verify directly (ii) Use (2.5).

2.3. e−δx2/2
∫ x

eδt2/2dt.

2.4. Use y2(x) = y1(x)y(x) and the fact that y1(x) and y2(x) are solu-
tions.

2.5. Verify directly.

2.6. Use Leibniz’s formula:
d
dx

∫ β(x)

α(x) f(x, t)dt = f(x, β(x))dβ
dx − f(x, α(x))dα

dx +
∫ β(x)

α(x)
∂f
∂x (x, t)dt.

2.7. (i) c1 cos 2x + c2 sin 2x − 1
4x cos 2x (ii) c1e

−x + c2e
−3x − 1

2xe−3x

(iii) c1e
−x + c2e

−4x − 1
3xe−4x.

2.8. c1x + (c2/x) + (1/2)[(x − (1/x)) ln(1 + x) − x ln x − 1].



Lecture 3
Preliminaries to Series

Solutions

In our previous lecture we have remarked that second-order differential
equations with variable coefficients cannot be solved in terms of the known
functions. In fact, the simple DE y′′+xy = 0 defies all our efforts. However,
there is a fairly large class of DEs whose solutions can be expressed either
in terms of power series, or as simple combination of power series and
elementary functions. It is this class of DEs that we shall study in the
next several lectures. Here we introduce some basic concepts which will be
needed in our later discussion.

Power series. A power series is a series of functions of the form
∞∑

m=0

cm(x− x0)m = c0 + c1(x− x0) + c2(x− x0)2 + · · ·+ cm(x− x0)m + · · ·

in which the coefficients cm, m = 0, 1, · · · and the point x0 are independent
of x. The point x0 is called the point of expansion of the series.

A function f(x) is said to be analytic at x = x0 if it can be expanded in
a power series in powers of (x−x0) in some interval of the form |x−x0| < μ,
where μ > 0. If f(x) is analytic at x = x0, then

f(x) =
∞∑

m=0

cm(x − x0)m, |x − x0| < μ,

where cm = f (m)(x0)/m!, m = 0, 1, · · · which is the same as Taylor’s ex-
pansion of f(x) at x = x0.

The following properties of power series will be needed later:

1. A power series
∑∞

m=0 cm(x−x0)m is said to converge at a point x if
limn→∞

∑n
m=0 cm(x − x0)m exists. It is clear that the series converges at

x = x0; it may converge for all x, or it may converge for some values of x
and not for others.

2. A power series
∑∞

m=0 cm(x − x0)m is said to converge absolutely
at a point x if the series

∑∞
m=0 |cm(x − x0)m| converges. If the series

converges absolutely, then the series also converges; however, the converse
is not necessarily true.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 3,
c© Springer Science+Business Media, LLC 2009



16 Lecture 3

3. If the series
∑∞

m=0 cm(x−x0)m converges absolutely for |x−x0| < μ
and diverges for |x − x0| > μ, then μ is called the radius of convergence.
For a series that converges nowhere except at x0, we define μ to be zero;
for a series that converges for all x, we say μ is infinite.

4. Ratio Test. If for a fixed value of x,

lim
m→∞

∣∣∣∣cm+1(x − x0)m+1

cm(x − x0)m

∣∣∣∣ = L,

then the power series
∑∞

m=0 cm(x − x0)m converges absolutely at values
of x for which L < 1, and diverges where L > 1. If L = 1, the test is
inconclusive.

5. Comparison Test. If we have two power series
∑∞

m=0 cm(x−x0)m

and
∑∞

m=0 Cm(x − x0)m where |cm| ≤ Cm, m = 0, 1, · · · , and if the series∑∞
m=0 Cm(x−x0)m converges for |x−x0| < μ, then the series

∑∞
m=0 cm(x−

x0)m also converges for |x − x0| < μ.

6. If a series
∑∞

m=0 cm(x − x0)m is convergent for |x − x0| < μ, then
for any x, |x−x0| = μ0 < μ there exists a constant M such that |cm|μm

0 ≤
M, m = 0, 1, · · · .

7. The derivative of a power series is obtained by term by term differ-
entiation; i.e., if f(x) =

∑∞
m=0 cm(x − x0)m, then

f ′(x) = c1 + 2c2(x − x0) + 3c3(x − x0)2 + · · ·

=
∞∑

m=1

mcm(x − x0)m−1 =
∞∑

m=0

(m + 1)cm+1(x − x0)m.

Further, the radii of convergence of these two series are the same. Similarly,
the second derivative of f(x) can be written as

f ′′(x) = 2c2 + 3.2c3(x − x0) + · · · =
∞∑

m=0

(m + 1)(m + 2)cm+2(x − x0)m.

8. Consider two power series f(x) =
∑∞

m=0 cm(x − x0)m and g(x) =∑∞
m=0 dm(x − x0)m, which converge for |x − x0| < μ1 and |x − x0| < μ2

respectively. If μ = min{μ1, μ2}, then

f(x) ± g(x) =
∞∑

m=0

(cm ± dm)(x − x0)m,

and

f(x)g(x) =
∞∑

m=0

am(x − x0)m,
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where

am =
m∑

k=0

ckdm−k =
m∑

k=0

cm−kdk

converge for |x − x0| < μ.

9. Gauss Test. If at the end points of the interval |x − x0| < μ, the
successive terms of the series

∑∞
m=0 cm(x − x0)m are of fixed sign, and if

the ratio of the (m+1)th term to the mth term can be written in the form
1−(c/m)+O(1/m2), where c is independent of m, then the series converges
if c > 1 and diverges if c ≤ 1.

Gamma and Beta functions. It is possible to write long
expressions in very compact form using Gamma and Beta functions which
we shall define now. The Gamma function, denoted by Γ(x), is defined by

Γ(x) =
∫ ∞

0

tx−1e−tdt, x > 0. (3.1)

This improper integral can be shown to converge only for x > 0; thus the
Gamma function is defined by this formula only for the positive values of
its arguments. However, later we shall define it for the negative values of
its arguments as well.

From the definition (3.1), we find

Γ(1) =
∫ ∞

0

e−tdt = 1. (3.2)

Also, we have

Γ(x + 1) =
∫ ∞

0

txe−tdt =
[
− txe−t

]∣∣∣∞
0

+ x

∫ ∞

0

tx−1e−tdt = xΓ(x),

which is the recurrence formula

Γ(x + 1) = xΓ(x). (3.3)

From (3.3) and (3.2) it is immediate that for any nonnegative integer n the
function Γ(n + 1) = n!, and hence the Gamma function, can be considered
as a generalization of the factorial function.

Now we rewrite (3.3) in the form

Γ(x) =
Γ(x + 1)

x
, (3.4)

which holds only for x > 0. However, we can use (3.4) to define Γ(x) in the
range −1 < x < 0 since the right-hand side of (3.4) is well defined for x in
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this range. Also since

Γ(x + 1) =
Γ(x + 2)
(x + 1)

when x > −1, we may write

Γ(x) =
Γ(x + 2)
x(x + 1)

(3.5)

for x > 0. But since Γ(x + 2) is defined for x > −2, we can use (3.5) to
define Γ(x) for −2 < x < 0, x �= −1. Continuing this process, we have

Γ(x) =
Γ(x + k)

x(x + 1) · · · (x + k − 1)

for any positive integer k and for x > 0. By this formula the function Γ(x)
is defined for −k < x < 0, x �= −1,−2, · · · ,−k + 1. Hence, Γ(x) is defined
for all values of x other than 0,−1,−2, · · · , and at these points it becomes
infinite.

The Beta function B(x, y) is defined as

B(x, y) =
∫ 1

0

tx−1(1 − t)y−1dt, (3.6)

which converges for x > 0, y > 0.

Gamma and Beta functions are related as follows:

B(x, y) =
Γ(x) Γ(y)
Γ(x + y)

. (3.7)

Oscillatory equations. A nontrivial solution of the DE

y′′ + q(x)y = 0 (3.8)

is said to be oscillatory if it has no last zero, i.e., if y(x1) = 0, then there
exists a x2 > x1 such that y(x2) = 0. Equation (3.8) itself is said to
be oscillatory if every solution of (3.8) is oscillatory. A solution which is
not oscillatory is called nonoscillatory. For example, the DE y′′ + y = 0 is
oscillatory, whereas y′′−y = 0 is nonoscillatory in J = [0,∞). The following
easily verifiable oscillation criterion for the equation (3.8) is well known.

Theorem 3.1. If the function q(x) is continuous in J = (0,∞), and
∫ ∞

q(x)dx = ∞, (3.9)

then the DE (3.8) is oscillatory in J.
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This result can be used easily to show that solutions of Bessel’s DE
(2.15) for all a, are oscillatory. For this, in Problem 2.5 we have noted that
the substitution y(x) = z(x)/

√
x transforms this equation into a simple DE

(2.16). Clearly, this transformation does not alter the oscillatory behavior
of two equations; moreover, for all a, there exists a sufficiently large x0 such
that for all x ≥ x0,

1 +
1 − 4a2

4x2
>

1
2

and hence ∫ ∞(
1 +

1 − 4a2

4x2

)
dx = ∞.

Thus, Theorem 3.1 implies that the equation (2.16) is oscillatory.

Ordinary and singular points. If at a point x = x0 the
functions p1(x) and p2(x) are analytic, then the point x0 is said to be an
ordinary point of the DE (2.1). Further, if at x = x0 the functions p1(x)
and/or p2(x) are not analytic, then x0 is said to be a singular point of (2.1).

Example 3.1. If in the DE (2.1), p1(x) and p2(x) are constants, then
every point is an ordinary point.

Example 3.2. Since the function p2(x) = x is analytic at every point,
for the DE y′′ + xy = 0 every point is an ordinary point.

Example 3.3. In Euler’s equation

x2y′′ + a1xy′ + a2y = 0

x = 0 is a singular point, but every other point is an ordinary point.

A singular point x0 at which the functions p(x) = (x − x0)p1(x) and
q(x) = (x − x0)2p2(x) are analytic is called a regular singular point of the
DE (2.1). Thus, a second-order DE with a regular singular point x0 has
the form

y′′ +
p(x)

(x − x0)
y′ +

q(x)
(x − x0)2

y = 0, (3.10)

where the functions p(x) and q(x) are analytic at x = x0. Hence, in Example
3.3 the point x0 = 0 is a regular singular point.

If a singular point x0 is not a regular singular point, then it is called an
irregular singular point.

Example 3.4. Consider the DE

y′′ +
1

(x − 1)2
y′ +

8
x(x − 1)

y = 0. (3.11)
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For the equation (3.11) the singular points are 0 and 1. At the point 0, we
have

xp1(x) =
x

(x − 1)2
= x(1 − x)−2

and

x2p2(x) =
8x2

x(x − 1)
= −8x(1 − x)−1,

which are analytic at x = 0, and hence the point 0 is a regular singular
point. At the point 1, we have

(x − 1)p1(x) =
(x − 1)
(x − 1)2

=
1

(x − 1)
,

which is not analytic at x = 1, and hence the point 1 is an irregular singular
point.

Problems

3.1. Show that

(i) Γ
(

1
2

)
=

√
π

(ii) for all p > −1 and q > −1 the following holds:

∫ π/2

0

sinp x cosq xdx =
1
2
B

(
p + 1

2
,
q + 1

2

)
=

Γ
(

p+1
2

)
Γ
(

q+1
2

)
2 Γ
(

p+q+2
2

) .

3.2. Locate and classify the singular points of the following DEs:

(i) x2(x + 2)y′′ + xy′ − (2x − 1)y = 0
(ii) (x − 1)2(x + 3)y′′ + (2x + 1)y′ − y = 0
(iii) (1 − x2)2y′′ + x(1 − x)y′ + (1 + x)y = 0
(iv) (x2 − x − 2)y′′ + (x − 2)y′ + xy = 0.

3.3. Show that x0 = 0 is a regular singular point of the Riccati–Bessel
equation

x2y′′ − (x2 − k)y = 0, −∞ < k < ∞.

3.4. Show that x0 = 0 is a regular singular point of the Coulomb wave
equation

x2y′′ + [x2 − 2
x − k]y = 0, 
 fixed, −∞ < k < ∞.



Preliminaries to Series Solutions 21

3.5. Let the point x = x0, where x0 �= 0 be an ordinary point of the
DE (2.1). Show that the change of the independent variable t = x − x0

leads to the DE
d2y

dt2
+ p1(t)

dy

dt
+ p2(t)y = 0 (3.12)

for which the point t = 0 is an ordinary point. Further, show that the
function y(t) =

∑∞
m=0 cmtm, |t| < μ is a solution of the DE (3.12) if and

only if the corresponding function y(x) =
∑∞

m=0 cm(x−x0)m, |x−x0| < μ
is a solution of the DE (2.1).

3.6. Let the DE (2.1) have a regular singular point at x = x0, where
x0 �= 0. Verify that the change of the independent variable t = x− x0 leads
to the DE (3.12) which has a regular singular point at t = 0.

3.7. Show that the substitution x = 1/t transforms the DE (2.1) into
the form

d2y

dt2
+
(

2
t
− 1

t2
p1

(
1
t

))
dy

dt
+

1
t4

p2

(
1
t

)
y = 0. (3.13)

Thus, the nature of the point x = ∞ of (2.1) is the same as the nature of
the point t = 0 of (3.13). Use this substitution to show that for the DE.

y′′ +
1
2

(
1
x2

+
1
x

)
y′ +

1
2x3

y = 0

the point x = ∞ is a regular singular point.

3.8. Show that for Bessel’s DE (2.15) the point x = ∞ is an irregular
singular point.

3.9. Examine the nature of the point at infinity for the following DEs:

Airy’s DE: y′′ − xy = 0 (3.14)
Chebyshev’s DE: (1 − x2)y′′ − xy′ + a2y = 0 (3.15)
Hermite’s DE: y′′ − 2xy′ + 2ay = 0 (3.16)
Hypergeometric DE: x(1 − x)y′′ + [c − (a + b + 1)x]y′ − aby = 0 (3.17)
Laguerre’s DE: xy′′ + (a + 1 − x)y′ + by = 0 (3.18)
Legendre’s DE: (1 − x2)y′′ − 2xy′ + a(a + 1)y = 0. (3.19)

3.10. The Schrödinger wave equation for a simple harmonic oscillator
is

− h2

8π2m

d2ψ

dz2
+

K

2
z2ψ = Eψ, (3.20)

where h is Planck’s constant; E, K, and m are positive real numbers, and
ψ(x) is the Schrödinger wave function. Show that the change to dimension-
less coordinate x = αz reduces (3.20) to

d2ψ

dx2
+ (2a + 1 − x2)ψ = 0, (3.21)
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where α4 = 4π2mK/h2 and 2a + 1 = (4πE/h)
√

m/K. Further, show that
the second change of variables ψ = ye−x2/2 reduces (3.21) to the Hermite
equation (3.16).

Answers or Hints

3.1. (i) Γ
(

1
2

)
=
∫∞
0 t−1/2e−tdt = 2

∫∞
0 e−u2

du, t = u2 (ii) Use the
substitution t = sin2 x.

3.2. (i) 0, − 2 regular singular points (ii) 1 irregular singular point, −3
regular singular point (iii) 1 regular singular point, −1 irregular singular
point (iv) 2,−1 regular singular points.

3.3. Use definition.

3.4. Use definition.

3.5. The change of the independent variable x = t + x0 gives dy
dx =

dy
dt , d2y

dx2 = d2y
dt2 , p1(x) = p1(t + x0) = p1(t), and p2(x) = p2(t + x0) = p2(t),

thus, it reduces (2.1) to (3.12). Further, since this transformation shifts
every point by −x0, if x0 is an ordinary point of (2.1), then t = 0 is an
ordinary point of (3.12).

3.6. The proof is similar to that of Problem 3.5.

3.7. The transformed equation is d2y
dt2 +
(

3−t
2t

)
dy
dt + 1

2ty = 0.

3.8. Since 1
t p
(

1
t

)
= 1, and 1

t2 q
(

1
t

)
= 1−t2a2

t2 is not analytic at t = 0, the
point x = ∞ is an irregular singular point.

3.9. Irregular singular, regular singular, irregular singular, regular singu-
lar, irregular singular, regular singular.

3.10. Verify directly.



Lecture 4
Solution at an Ordinary Point

In this lecture we shall construct power series solutions of Airy, Her-
mite and Chebyshev DEs. These equations occupy a central position in
mathematical physics, engineering, and approximation theory.

We begin by proving the following theorem, which provides sufficient
conditions so that the solutions of (2.1) can be expressed as power series at
an ordinary point.

Theorem 4.1. Let the functions p1(x) and p2(x) be analytic at x = x0;
hence these can be expressed as power series in (x − x0) in some interval
|x − x0| < μ. Then, the DE (2.1) together with the initial conditions

y(x0) = c0, y′(x0) = c1 (4.1)

possesses a unique solution y(x) that is analytic at x0, and hence can be
expressed as

y(x) =
∞∑

m=0

cm(x − x0)m (4.2)

in some interval |x − x0| < μ. The coefficients cm, m ≥ 2 in (4.2) can be
obtained by substituting it in the DE (2.1) directly.

Proof. In view of Problem 3.5 we can assume that x0 = 0. Let

p1(x) =
∞∑

m=0

pmxm, p2(x) =
∞∑

m=0

p̃mxm, |x| < μ (4.3)

and

y(x) =
∞∑

m=0

cmxm, (4.4)

where c0 and c1 are the same constants as in (4.1). Then,

y′(x) =
∞∑

m=0

(m + 1)cm+1x
m, y′′(x) =

∞∑
m=0

(m + 1)(m + 2)cm+2x
m

and

p1(x)y′(x) =
∞∑

m=0

(
m∑

k=0

(k + 1)ck+1pm−k

)
xm,

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 4,
c© Springer Science+Business Media, LLC 2009
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p2(x)y(x) =
∞∑

m=0

(
m∑

k=0

ckp̃m−k

)
xm.

Substituting these expressions in the DE (2.1), we obtain

∞∑
m=0

[
(m + 1)(m + 2)cm+2 +

m∑
k=0

(k + 1)ck+1pm−k +
m∑

k=0

ckp̃m−k

]
xm = 0.

Hence, y(x) is a solution of the DE (2.1) if and only if the constants cm

satisfy the recurrence relation

cm+2 = − 1
(m + 1)(m + 2)

[
m∑

k=0

{
(k + 1)ck+1pm−k + ckp̃m−k

}]
, m ≥ 0

which is the same as

cm = − 1
m(m − 1)

[
m−2∑
k=0

{
(k + 1)ck+1pm−k−2 + ckp̃m−k−2

}]
, m ≥ 2.

(4.5)
By this relation c2, c3, · · · can be determined successively as linear combi-
nations of c0 and c1.

Now we shall show that the series with these coefficients converges for
|x| < μ. Since the series for p1(x) and p2(x) converge for |x| < μ, for any
|x| = μ0 < μ there exists a constant M > 0 such that

|pj |μ
j
0 ≤ M and |p̃j |μj

0 ≤ M, j = 0, 1, · · · . (4.6)

Using (4.6) in (4.5), we find

|cm| ≤ M

m(m − 1)

[
m−2∑
k=0

{
(k + 1)|ck+1|

μm−k−2
0

+
|ck|

μm−k−2
0

}]
+

M |cm−1|μ0

m(m − 1)
, m ≥ 2

(4.7)
where the term M |cm−1|μ0/m(m − 1) has been included, the purpose of
which will be clear later.

Now we define positive constants Cm by the equations C0 = |c0|, C1 =
|c1|,

Cm =
M

m(m − 1)

[
m−2∑
k=0

{
(k + 1)Ck+1

μm−k−2
0

+
Ck

μm−k−2
0

}]
+

MCm−1μ0

m(m − 1)
, m ≥ 2.

(4.8)
From (4.7) and (4.8) it is clear that |cm| ≤ Cm, m = 0, 1, · · · .
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Next we replace m by m + 1 in (4.8), to obtain

Cm+1 =
M

m(m + 1)

[
m−1∑
k=0

{
(k + 1)Ck+1

μm−k−1
0

+
Ck

μm−k−1
0

}]
+

MCmμ0

m(m + 1)

and hence

μ0Cm+1 =
Mμ0

m(m + 1)

[
m−2∑
k=0

{
(k + 1)Ck+1

μm−k−1
0

+
Ck

μm−k−1
0

}]

+
Mμ0

m(m + 1)
[mCm + Cm−1] +

MCmμ2
0

m(m + 1)
.

(4.9)

Combining (4.8) and (4.9), we get

μ0Cm+1 =
M

m(m + 1)

[
m(m − 1)

M
Cm − μ0Cm−1

]

+
Mμ0

m(m + 1)
[mCm + Cm−1] +

MCmμ2
0

m(m + 1)
,

which is the same as

μ0Cm+1 =
(m − 1)
(m + 1)

Cm +
mMμ0Cm

m(m + 1)
+

MCmμ2
0

m(m + 1)
. (4.10)

Thus, the addition of M |cm−1|μ0/m(m − 1) in (4.7) has led to a two-term
recurrence relation (4.10) from which we have

∣∣∣∣Cm+1x
m+1

Cmxm

∣∣∣∣ = m(m − 1) + mMμ0 + Mμ2
0

μ0m(m + 1)
|x|

and hence

lim
m→∞

∣∣∣∣Cm+1x
m+1

Cmxm

∣∣∣∣ = |x|
μ0

.

Thus, the ratio test establishes that the series
∑∞

m=0 Cmxm converges for
|x| < μ0, and by the comparison test it follows that the series

∑∞
m=0 cmxm

converges absolutely in |x| < μ0. Since μ0 ∈ (0, μ) is arbitrary, the series
converges absolutely in the interval |x| < μ.

Hence, we have shown that a function which is analytic at x = x0

is a solution of the initial value problem (2.1), (4.1) if and only if the
coefficients in its power series expansion satisfy the relation (4.5). Also,
from the uniqueness of the solutions of (2.1), (4.1) it follows that this will
be the only solution.

Airy’s equation. Solutions of Airy’s DE (3.14) are called Airy
functions, which have applications in the theory of diffraction. Clearly,
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for (3.14) hypotheses of Theorem 4.1 are satisfied for all x, and hence its
solutions have power series expansion about any point x = x0. In the case
x0 = 0, we assume that y(x) =

∑∞
m=0 cmxm is a solution of (3.14). A direct

substitution of this in (3.14) gives

∞∑
m=0

(m + 1)(m + 2)cm+2x
m − x

∞∑
m=0

cmxm = 0,

which is the same as

2c2 +
∞∑

m=1

[(m + 1)(m + 2)cm+2 − cm−1]xm = 0.

Hence, it follows that

c2 = 0, cm =
1

m(m − 1)
cm−3, m ≥ 3. (4.11)

If m = 3k + 2, then (4.11) becomes

c3k+2 =
1

(3k + 2)(3k + 1)
c3k−1 =

1.2.3.6.9 · · · (3k)
(3k + 2)!

c2 = 0, k = 1, 2, · · · .

If m = 3k + 1, then (4.11) is the same as

c3k+1 =
1

(3k + 1)(3k)
c3k−2 =

2.5 · · · (3k − 1)
(3k + 1)!

c1, k = 1, 2, · · · .

If m = 3k, then (4.11) reduces to

c3k =
1

(3k)(3k − 1)
c3k−3 =

1.4.7 · · · (3k − 2)
(3k)!

c0, k = 1, 2, · · · .

Since

y(x) = c0 + c1x +
∞∑

k=1

c3kx3k +
∞∑

k=1

c3k+1x
3k+1 +

∞∑
k=1

c3k+2x
3k+2,

Airy functions are given by

y(x) = c0

[
1 +

∞∑
k=1

1.4 · · · (3k −2)
(3k)!

x3k

]
+ c1

[
x +

∞∑
k=1

2.5 · · · (3k −1)
(3k + 1)!

x3k+1

]

= c0y1(x) + c1y2(x).
(4.12)
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Finally, since y1(0) = 1, y′
1(0) = 0 and y2(0) = 0, y′

2(0) = 1 functions
y1(x) and y2(x) are linearly independent solutions of Airy’s equation (cf.
Theorem 2.2).

Hermite’s equation. Solutions of Hermite’s DE (3.16) are called
Hermite functions. This equation is used in quantum mechanics to study
the spatial position of a moving particle that undergoes simple harmonic
motion in time. In quantum mechanics the exact position of a particle at
a given time cannot be predicted, as in classical mechanics. It is possible
to determine only the probability of the particle’s being at a given location
at a given time. The unknown function y(x) in (3.16) is then related to
the probability of finding the particle at the position x. The constant a is
related to the energy of the particle. Clearly, for (3.16) also hypotheses of
Theorem 4.1 are satisfied for all x, and hence its solutions have power series
expansion about any point x = x0. In the case x0 = 0, we again assume
that y(x) =

∑∞
m=0 cmxm is a solution of (3.16), and obtain the recurrence

relation

cm =
2(m − 2 − a)

m(m − 1)
cm−2, m = 2, 3, · · · . (4.13)

From (4.13) it is easy to find

c2m =
(−1)m22mΓ

(
1
2a + 1

)
(2m)! Γ

(
1
2a − m + 1

)c0, m = 0, 1, · · ·

and

c2m+1 =
(−1)m22m+1Γ

(
1
2a + 1

2

)
2 (2m + 1)! Γ

(
1
2a − m + 1

2

)c1, m = 0, 1, · · · .

Hence, Hermite functions can be written as

y(x) = c0 Γ
(

1
2
a + 1
) ∞∑

m=0

(−1)m(2x)2m

(2m)! Γ
(

1
2a − m + 1

)

+c1
1
2

Γ
(

1
2
a +

1
2

) ∞∑
m=0

(−1)m(2x)2m+1

(2m + 1)! Γ
(

1
2a − m + 1

2

)
= c0y1(x) + c1y2(x).

(4.14)

Obviously, y1(x) and y2(x) are linearly independent solutions of Hermite’s
equation.

Chebyshev’s equation. The Chebyshev DE (3.15), where a
is a real constant (parameter), arises in approximation theory. Since the
functions

p1(x) = − x

1 − x2
and p2(x) =

a2

1 − x2
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are analytic for |x| < 1, x = x0 = 0 is an ordinary point. Thus, Theorem 4.1
ensures that its series solution y(x) =

∑∞
m=0 cmxm converges for |x| < 1. To

find this solution, we substitute it directly in (3.15), to find the recurrence
relation

cm+2 =
(m2 − a2)

(m + 2)(m + 1)
cm, m ≥ 0 (4.15)

which can be solved to obtain

c2m =
(−a2)(22 − a2) · · · ((2m − 2)2 − a2)

(2m)!
c0, m ≥ 1

c2m+1 =
(12 − a2)(32 − a2) · · · ((2m − 1)2 − a2)

(2m + 1)!
c1, m ≥ 1.

Hence, the solution of (3.15) can be written as

y(x) = c0

[
1 +

∞∑
m=1

(−a2)(22 − a2) · · · ((2m − 2)2 − a2)
(2m)!

x2m

]

+c1

[
x +

∞∑
m=1

(12 − a2)(32 − a2) · · · ((2m − 1)2 − a2)
(2m + 1)!

x2m+1

]

= c0y1(x) + c1y2(x).
(4.16)

It is easy to verify that y1(x) and y2(x) are linearly independent solutions
of Chebyshev’s equation.

Problems

4.1. Verify that for each of the following DEs the given point is an
ordinary point and express the general solution of each equation in terms
of power series about this point:

(i) y′′ + xy′ + y = 0, x = 0
(ii) y′′ + x2y′ + xy = 0, x = 0
(iii) y′′ + x2y = 0, x = 0
(iv) (x2 − 1)y′′ − 6xy′ + 12y = 0, x = 0
(v) (x2 − 1)y′′ + 8xy′ + 12y = 0, x = 0
(vi) y′′ − 2(x + 3)y′ − 3y = 0, x = −3
(vii) y′′ + (x − 2)2y′ − 7(x − 2)y = 0, x = 2
(viii) (x2 − 2x)y′′ + 5(x − 1)y′ + 3y = 0, x = 1.

4.2. For each of the power series obtained in Problem 4.1 find the
radius of convergence and the interval of convergence (the interval centered
at x0 in which the power series converges).
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4.3. Find series solutions of the following initial value problems:

(i) y′′ + xy′ − 2y = 0, y(0) = 1, y′(0) = 0
(ii) x(2 − x)y′′ − 6(x − 1)y′ − 4y = 0, y(1) = 1, y′(1) = 0
(iii) y′′ + exy′ + (1 + x2)y = 0, y(0) = 1, y′(0) = 0
(iv) y′′ − (sin x)y = 0, y(π) = 1, y′(π) = 0.

4.4. If the hypotheses of Theorem 4.1 are satisfied, then the solution
y(x) of (2.1), (4.1) possesses a unique Taylor’s series expansion at x0, i.e.,

y(x) =
∞∑

m=0

y(m)(x0)
m!

(x − x0)m. (4.17)

For many problems it is easy to find y(m)(x0) for all m, and hence we can
start directly with (4.17). We call this procedure Taylor’s series method.
Use this method to solve the following problems:

(i) y′′ + y = 2x − 1, y(1) = 1, y′(1) = 3
(ii) y′′ + 4y′ + 3y = 0, y(0) = 1, y′(0) = −1.

4.5. Van der Pol’s equation,

y′′ + μ(y2 − 1)y′ + y = 0, (4.18)

finds applications in physics and electrical engineering. It first arose as an
idealized description of a spontaneously oscillating circuit. Find first three
nonzero terms of the power series solution about x = 0 of (4.18) with μ = 1
subject to the conditions y(0) = 0, y′(0) = 1.

4.6. Rayleigh’s equation,

my′′ + ky = ay′ − b(y′)3, (4.19)

models the oscillation of a clarinet reed. Find first three nonzero terms of
the power series solution about x = 0 of (4.19) with m = k = a = 1, b = 1/3
subject to the conditions y(0) = 1, y′(0) = 0.

Answers or Hints

4.1. (i) c0

∑∞
m=0

(−1)m

2m m!x
2m + c1

∑∞
m=0

(−1)m 2m m!
(2m+1)! x2m+1

(ii) c0

[
1 +
∑∞

m=1(−1)m 12·42·72···(3m−2)2

(3m)! x3m
]

+ c1

[
x +
∑∞

m=1(−1)m 22·52·82···(3m−1)2

(3m+1)! x3m+1
]

(iii) c0

[
1 +
∑∞

m=1
(−1)mx4m

3·7···(4m−1) 4m m!

]
+ c1

∑∞
m=0

(−1)mx4m+1

1·5·9···(4m+1) 4m m!
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(iv) c0(1 + 6x2 + x4) + c1(x + x3)
(v) c0

∑∞
m=0(m + 1)(2m + 1)x2m + c1

∑∞
m=0

(m+1)(2m+3)
3 x2m+1

(vi) c0

[
1 +
∑∞

m=1
3·7·11···(4m−1)

(2m)! (x + 3)2m
]

+ c1

∑∞
m=0

1·5·9···(4m+1)
(2m+1)! (x + 3)2m+1

(vii) c0

[
1 +
∑∞

m=1
(−1)m+128(x−2)3m

3m m!(3m−1)(3m−4)(3m−7)

]
+ c1

[
(x − 2) + 1

2 (x − 2)4 + 1
28 (x − 2)7

]
(viii) c0

∑∞
m=0

1·3·5···(2m+1)
2m m! (x − 1)2m + c1

∑∞
m=0

2m (m+1)!
1·3·5···(2m+1) (x − 1)2m+1.

4.2. (i) For
∑∞

m=0
(−1)m

2m m!x
2m,
∣∣∣Cm+1

Cm

∣∣∣ = 2m m!
2m+1 (m+1)! |x|2 = |x|2

2(m+1) →
0, and hence the interval of convergence is the whole real line IR. For∑∞

m=0
(−1)m 2m m!

(2m+1)! x2m+1,
∣∣∣Cm+1

Cm

∣∣∣ = |x|2
2m+3 → 0, and hence again the in-

terval of convergence is IR (ii) IR (iii) IR (iv) IR (v) 1, (−1, 1) (vi) IR
(vii) IR (viii) 1, (0, 2).

4.3. (i) 1+x2 (ii)
∑∞

m=0(m+1)(x−1)2m (iii) 1− 1
2x2 + 1

6x3 − 1
120x5 +

11
720x6 · · · (iv) 1 − 1

6 (x − π)3 + 1
120 (x − π)5 + 1

180 (x − π)6 + · · · .

4.4. (i) y(2m)(1) = 0, m = 1, 2, · · · ; y(2m+1)(1) = 1, m = 2, 4, · · · ;
y(2m+1)(1) = −1, m = 1, 3, · · · ; (2x − 1) + sin(x − 1) (ii) e−x.

4.5. x + 1
2x2 − 1

8x4 − 1
8x5.

4.6. 1 − 1
2x2 − 1

6x3 + 1
40x5.



Lecture 5
Solution at a Singular Point

In this lecture, through a simple example, first we shall show that at a
regular singular point the power series used earlier at an ordinary point does
not provide a solution, and hence we need to modify it. This modification is
called the method of Frobenius after George Frobenius (1849–1917). Then
we shall state and prove a general result which provides three possible
different forms of the power series solution. Once the particular form of the
solution is known its construction is almost routine. In fact, in the next
lecture we shall illustrate this result through several examples; this includes
a discussion of Laguerre’s equation (3.18).

We recall that a second-order DE with a regular singular point x0 is of
the form (3.10), where the functions p(x) and q(x) are analytic at x = x0.
Further, in view of Problem 3.6, we can assume that x0 = 0, so that
equation (3.10) reduces to

y′′ +
p(x)
x

y′ +
q(x)
x2

y = 0. (5.1)

In comparison with at an ordinary point, the construction of a series
solution at a singular point is difficult. To understand the problem we
consider Euler’s equation

2x2y′′ + xy′ − y = 0; (5.2)

which has a regular singular point at x = 0; and its general solution

y(x) = c1x
−1/2 + c2x (5.3)

exists in the interval J = (0,∞). Obviously, no solution of (5.2) can be
represented by a power series with x = 0 as its point of expansion in any
interval of the form (0, a), a > 0. For if y(x) =

∑∞
m=0 cmxm, 0 < x < a

is a solution of (5.2), then y(x) and all its derivatives possess finite right
limits at x = 0, whereas no function of the form (5.3) has this property.
Hence, at a regular singular point, solutions of (5.1) need not be analytic
(in some instances solutions may be analytic, e.g., y(x) = c1x + c2x

2 is the
general solution of x2y′′ − 2xy′ + 2y = 0). However, we shall see that every
such DE does possess at least one solution of the form

y(x) = xr
∞∑

m=0

cmxm, c0 �= 0. (5.4)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 5,
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Since p(x) and q(x) are analytic at x = 0, these functions can be ex-
pressed as power series in x; i.e.,

p(x) =
∞∑

m=0

pmxm and q(x) =
∞∑

m=0

qmxm. (5.5)

Substituting (5.4) and (5.5) in (5.1), we obtain

xr−2
∞∑

m=0

(m+r)(m+r−1)cmxm +
1
x

( ∞∑
m=0

pmxm

)(
xr−1

∞∑
m=0

(m+r)cmxm

)

+
1
x2

( ∞∑
m=0

qmxm

)(
xr

∞∑
m=0

cmxm

)
= 0,

which is the same as

∞∑
m=0

{
(m + r)(m + r − 1)cm +

m∑
k=0

[(k + r)pm−k + qm−k]ck

}
xm+r−2 = 0.

(5.6)
In (5.6) the coefficient of xr−2 does not lead to a recurrence relation, but
gives

c0F (r) = c0[r(r − 1) + p0r + q0] = 0. (5.7)

The other terms lead to the recurrence relation

(m + r)(m + r − 1)cm +
m∑

k=0

[(k + r)pm−k + qm−k]ck = 0, m = 1, 2, · · ·

which can be written as

F (r + m)cm = [(m + r)(m + r − 1) + (m + r)p0 + q0]cm

= −
m−1∑
k=0

[(k + r)pm−k + qm−k]ck, m = 1, 2, · · · .
(5.8)

Since c0 �= 0, the possible values of r are those which are the roots of the
indicial equation F (r) = 0. The roots r1 and r2 are called the exponents of
the regular singular point x = 0. Once r is fixed the relation (5.8) determines
cm as successive multiples of c0. Thus, for two exponents r1 and r2 we can
construct two solutions of the DE (5.1). However, if r1 = r2, then this
method gives only one formal solution. Further, if at any stage F (r + m)
vanishes then this method obviously breaks down. A simple calculation
shows that

F (r + m) = F (r) + m(2r + p0 + m − 1) = 0. (5.9)
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But from (5.7), we have r1 + r2 = 1 − p0 and hence if r = r1 or r2, then
(5.9) implies that m = ±(r2 − r1). Therefore, F (r + m) vanishes if and
only if the exponents differ by an integer, and r is chosen to be the smaller
exponent. Thus, if r is taken to be the larger exponent, we can construct
one formal solution.

In conclusion, the DE (5.1) always has at least one solution of the form
(5.4), and the coefficients cm, m ≥ 1 can be obtained by substituting it in
the equation directly. Further, to find the second solution either the method
provided in Lecture 2, or the method of Frobenius, can be employed. In the
following result we summarize the conclusions of Frobenius method.

Theorem 5.1. Let the functions p(x) and q(x) be analytic at x = 0,
and hence these can be expressed as power series given in (5.5) for |x| < μ.
Further, let r1 and r2 be the roots of the indicial equation F (r) = r(r −
1) + p0r + q0 = 0. Then,

(i). if Re(r1) ≥ Re(r2) and r1 − r2 is not a nonnegative integer, then the
two linearly independent solutions of the DE (5.1) are

y1(x) = |x|r1

∞∑
m=0

cmxm, (5.10)

and

y2(x) = |x|r2

∞∑
m=0

cmxm; (5.11)

(ii). if the roots of the indicial equation are equal, i.e., r2 = r1 then the
two linearly independent solutions of the DE (5.1) are (5.10) and

y2(x) = y1(x) ln |x| + |x|r1

∞∑
m=1

dmxm; (5.12)

(iii). if the roots of the indicial equation are such that r1 − r2 = n (a
positive integer) then the two linearly independent solutions of the DE
(5.1) are (5.10) and

y2(x) = cy1(x) ln |x| + |x|r2

∞∑
m=0

emxm, (5.13)

where the coefficients cm, cm, dm, em and the constant c can be determined
by substituting the form of the series for y(x) in the equation (5.1). The
constant c may turn out to be zero, in which case there is no logarithmic
term in the solution (5.13). Each of the solutions given in (5.10) – (5.13)
converges at least for 0 < |x| < μ.
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Proof. (i) Since r1 and r2 are the roots of the indicial equation F (r) = 0,
we have from (5.7) that

F (r) = r(r − 1) + p0r + q0 = (r − r1)(r − r2)

and from (5.9) that F (r1 + m) = m(m + r1 − r2), and hence

|F (r1 + m)| ≥ m(m − |r1 − r2|). (5.14)

Also, as in the proof of Theorem 4.1, for any |x| = μ0 < μ there exists a
constant M > 0 such that |pj |μj

0 ≤ M, and |qj |μj
0 ≤ M, j = 0, 1, · · · . Thus,

on using these inequalities, from (5.14) and (5.8) it follows that

m(m − |r1 − r2|)|cm| ≤ M
m−1∑
k=0

(k + |r1| + 1)μ−m+k
0 |ck|, m = 1, 2, · · · .

Now we choose an integer n such that n− 1 ≤ |r1 − r2| < n, and define
the positive constants Cj as follows:

Cj = |cj |, j = 0, 1, · · · , n − 1

j(j − |r1 − r2|)Cj = M

j−1∑
k=0

(k + |r1| + 1)μ−j+k
0 Ck, j = n, n + 1, · · · .

(5.15)
By an easy induction argument it is clear that |cm| ≤ Cm, m = 0, 1, · · · .

Now the result of combining (5.15) with the equations obtained by re-
placing j by m and m − 1 leads to

Cm

Cm−1
=

(m − 1)(m − 1 − |r1 − r2|) + M(m + |r1|)
μ0m(m − |r1 − r2|)

and hence

lim
m→∞

∣∣∣∣ Cmxm

Cm−1xm−1

∣∣∣∣ = |x|
μ0

.

Thus, the ratio test shows that the series
∑∞

m=0 Cmxm converges for |x| <
μ0, and now by the comparison test

∑∞
m=0 cmxm converges absolutely in

the interval |x| < μ0. However, since μ0 is arbitrary, the series
∑∞

m=0 cmxm

converges absolutely for |x| < μ. Finally, the presence of the factor |x|r1

may introduce a singular point at the origin. Thus, we can at least say
that |x|r1

∑∞
m=0 cmxm is a solution of the DE (5.1) and it is analytic for

0 < |x| < μ.

If we replace r1 by r2 in the above considerations, then it follows that
|x|r2
∑∞

m=0 cmxm is the second solution of (5.1) which is also analytic for
0 < |x| < μ.

(ii) Since the roots of the indicial equation F (r) = 0 are repeated, i.e.,
r1 = r2, we have F (r1) = (∂F/∂r)r=r1 = 0, and there exists a solution
y1(x) = xr1

∑∞
m=0 cmxm in the interval 0 < x < μ.
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Now in (5.6) we assume that r is not a solution of the indicial equation,
but the coefficients cm satisfy the recurrence relation (5.8). Thus, if L2[y]
represents the left side of (5.1), then

L2[y(x)] = c0x
r−2F (r), (5.16)

where y(x) = xr
∑∞

m=0 cmxm.

From (5.16), it follows that

∂

∂r
L2[y(x)] = L2

[
∂y(x)

∂r

]
= c0x

r−2

[
∂F (r)

∂r
+ F (r) ln x

]

and hence L2 [(∂y(x)/∂r)r=r1 ] = 0, i.e., (∂y(x)/∂r)r=r1 is the second formal
solution. Since

∂y(x)
∂r

= xr ln x

∞∑
m=0

cmxm + xr
∞∑

m=0

∂cm

∂r
xm,

we find

y2(x) =
(

∂y(x)
∂r

)
r=r1

= y1(x) ln x + xr1

∞∑
m=0

dmxm,

where

dm =
(

∂cm

∂r

)
r=r1

, m = 0, 1, · · · . (5.17)

Clearly, c0 does not depend on r, and hence d0 is zero.

Finally, we note that the case −μ < x < 0 can be considered similarly.
Further, since

∑∞
m=0 cmxm is uniformly and absolutely convergent for |x| ≤

μ1 < μ, it follows that
∑∞

m=1 dmxm is uniformly and absolutely convergent
for |x| ≤ μ1 ≤ μ; this also justifies our assumption that differentiation with
respect to r can be performed term by term. Consequently, the solution
y2(x) is analytic for 0 < |x| < μ.

(iii). Since the roots r1 and r2 of the indicial equation F (r) = 0 are such
that r1− r2 = n (a positive integer), it is immediate that the solution y1(x)
corresponding to the exponent r1 can be given by (5.10). Further, y1(x) is
indeed analytic for 0 < |x| < μ.

Corresponding to r2 we can obtain cm(r2) for m = 1, 2, · · · , n − 1 as a
linear multiple of c0 from the recurrence relation (5.8). However, since in
(5.8) the coefficient of cn(r2) is F (r2 + n) = F (r1) = 0 we cannot obtain
a finite value of cn(r2). To obviate this difficulty we choose c0(r) = r − r2,
so that cm(r2) = 0 for m = 0, 1, · · · , n− 1 and cn(r2) is indeterminate. Let
us choose an arbitrary value of cn(r2). Repeated application of (5.8) now
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yields cn+m(r2) as linear multiples of cn(r2) for positive integers m. This
process produces the solution

xr2

∞∑
m=n

cm(r2)xm = xr1−n
∞∑

m=n

cm(r2)xm = xr1

∞∑
m=n

cm(r2)xm−n

= xr1

∞∑
τ=0

c∗τ (r2)xτ ,

(5.18)
where c∗τ (r2) = cn+τ (r2), τ = 0, 1, · · · . However, since the successive coef-
ficients are calculated from (5.8), this solution is a constant multiple of the
solution y1(x).

Once again, as in Part (ii), we take r not to be the solution of the indicial
equation but the coefficients cm satisfy the recurrence relation (5.8), so that

L2[y(x)] = c0x
r−2F (r) = c0x

r−2(r − r1)(r − r2) = xr−2(r − r1)(r − r2)2.

Now on account of the repeated factor, we have L2

[
(∂y(x)/∂r)r=r2

]
=

0, and hence (∂y(x)/∂r)r=r2
is the second formal solution, i.e.,

y2(x) = xr2 ln |x|
∞∑

m=0

cm(r2)xm + xr2

∞∑
m=0

(
∂cm

∂r

)
r=r2

xm,

which from (5.18) is the same as (5.13), where

c = lim
r→r2

(r − r2)cn(r) and em =
(

∂cm

∂r

)
r=r2

, m = 0, 1, · · · . (5.19)

Clearly, this solution y2(x) is also analytic for 0 < |x| < μ.



Lecture 6
Solution at a Singular Point

(Cont’d.)

In this lecture, we shall illustrate Theorem 5.1 through several examples.
We begin with Laguerre’s equation (3.18) which shows how easily Theorem
5.1(i) is applied in practice.

Laguerre’s equation. In the DE (3.18), a and b are real constants
(parameters). It arises in quantum mechanics. Clearly, in this equation
p(x) = (a + 1 − x) and q(x) = bx are analytic for all x, and hence the
point x = 0 is a regular singular point. Since p0 = a + 1, q0 = 0 the
indicial equation is F (r) = r(r − 1) + (a + 1)r = 0, and therefore the
exponents are r1 = 0 and r2 = −a. Further, since p1 = −1, q1 = b and
pm = qm = 0, m ≥ 2 the recurrence relation (5.8) for r1 = 0 and r2 = −a,
respectively, reduces to

m(m + a)cm = (m − 1 − b)cm−1

and
m(m − a)cm = (m − 1 − a − b)cm−1.

Thus, if a is not zero or an integer we easily obtain the solutions

y1(x) = 1 − b

a + 1
x +

b(b − 1)
2! (a + 1)(a + 2)

x2 − · · ·

=
∞∑

m=0

(−1)m Γ(a + 1) Γ(b + 1)
m! Γ(m + a + 1) Γ(b + 1 − m)

xm

(6.1)

and

y2(x) = |x|−a

(
1 − a + b

1 − a
x +

1
2!

(a + b)(a + b − 1)
(1 − a)(2 − a)

x2 − · · ·
)

= |x|−a
∞∑

m=0

(−1)m Γ(a + b + 1) Γ(1 − a)
m! Γ(a + b + 1 − m) Γ(m + 1 − a)

xm.

(6.2)

Clearly, in view of Theorem 5.1(i) both of these solutions converge at least
for 0 < |x| < ∞. Further, the general solution of (3.18) appears as y(x) =
Ay1(x) + By2(x), where A and B are arbitrary constants.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
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The following example also dwells upon the importance of Theorem
5.1(i).

Example 6.1. In the DE

x2y′′ + x

(
x − 1

2

)
y′ +

1
2
y = 0 (6.3)

p(x) = x− (1/2) and q(x) = 1/2 are analytic for all x, and hence the point
x = 0 is a regular singular point. Since p0 = −1/2 and q0 = 1/2 the indicial
equation is

F (r) = r(r − 1) − 1
2
r +

1
2

= (r − 1)
(

r − 1
2

)
= 0

and therefore the exponents are r1 = 1 and r2 = 1/2. Thus, Theorem 5.1(i)
is applicable and we can construct two linearly independent solutions in
any interval not containing the origin.

The recurrence relation (5.8) for r1 = 1 reduces to

m

(
m +

1
2

)
cm = −mcm−1,

which is the same as
cm = − 2

2m + 1
cm−1

and gives

cm = (−1)m 2m

(2m + 1)(2m− 1) · · · 3c0, m = 1, 2, · · · .

Similarly, the recurrence relation (5.8) for r2 = 1/2 is simplified to
cm = −cm−1/m, which gives

cm = (−1)m 1
m!

c0, m = 1, 2, · · · .

Thus, the linearly independent solutions of the DE (6.3) are

y1(x) = |x|
∞∑

m=0

(−1)m (2x)m

(2m + 1)(2m − 1) · · · 3

and

y2(x) = |x|1/2
∞∑

m=0

(−1)m xm

m!
.
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Further, the general solution of (6.3) in any interval not containing the
origin is y(x) = Ay1(x) + By2(x), where A and B are arbitrary constants.

Our next example uses Theorem 5.1(ii).

Example 6.2. In the DE

x(1 − x)y′′ + (1 − x)y′ − y = 0 (6.4)

p(x) = 1 and q(x) = −x/(1 − x) are analytic for all |x| < 1, and hence
the point x = 0 is a regular singular point. Since p0 = 1 and q0 = 0, the
indicial equation is F (r) = r(r − 1) + r = 0, and therefore the exponents
are r1 = r2 = 0. Substituting directly y(x) = xr

∑∞
m=0 cmxm in the DE

(6.4), we obtain

r2c0x
r−1 +

∞∑
m=1

[
(m + r)2cm − (m + r − 1)2cm−1 − cm−1

]
xm+r−1 = 0.

Thus, the recurrence relation is

cm =
(m + r − 1)2 + 1

(m + r)2
cm−1, m = 1, 2, · · · .

Now a simple calculation gives

cm =
(r2 + 1)((r + 1)2 + 1) · · · ((r + m − 1)2 + 1)

(r + 1)2(r + 2)2 · · · (r + m)2
c0, m = 1, 2, · · · (6.5)

and hence the first solution corresponding to r = 0 is

y1(x) = 1 +
∞∑

m=1

1.2.5 · · · ((m − 1)2 + 1)
(m!)2

xm.

To find the second solution we logarithmically differentiate (6.5) with
respect to r, to find

c′m
cm

=
m∑

k=1

2(r + k − 1)
(r + k − 1)2 + 1

−
m∑

k=1

2
(r + k)

;

and hence taking r = 0, we obtain

dm = c′m

∣∣∣
r=0

= 2cm

∣∣∣
r=0

m∑
k=1

k − 2
k((k − 1)2 + 1)

.

Thus, the second solution can be written as

y2(x) = y1(x) ln |x|+2
∞∑

m=1

1.2.5 · · · ((m − 1)2 + 1)
(m!)2

(
m∑

k=1

k − 2
k((k−1)2 + 1)

)
xm.
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Clearly, in view of Theorem 5.1(ii) both of these solutions converge at
least for 0 < |x| < 1. Further, the general solution of (6.4) appears as
y(x) = Ay1(x) + By2(x), where A and B are arbitrary constants.

Our next two examples explain the importance of Theorem 5.1(iii).

Example 6.3. In the DE

xy′′ + 2y′ − y = 0 (6.6)

both the functions p(x) = 2, q(x) = −x are analytic for |x| < ∞, and hence
the origin is a regular singular point. Since p0 = 2 and q0 = 0, the indicial
equation is F (r) = r(r − 1) + 2r = r2 + r = 0, and therefore the exponents
are r1 = 0, r2 = −1. Further, we note that the recurrence relation (5.8) for
the equation (6.6) reduces to

(m + r)(m + r + 1)cm = cm−1, m = 1, 2, · · ·

which easily gives

cm =
1

(r + 1)(r + 2)2(r + 3)2 · · · (r + m)2(r + m + 1)
c0, m = 1, 2, · · · .

(6.7)
For the exponent r1 = 0, (6.7) reduces to

cm =
1

m! (m + 1)!
c0, m = 1, 2, · · · ;

therefore, the first solution y1(x) is given by

y1(x) =
∞∑

m=0

1
m! (m + 1)!

xm.

Now to find the second solution we let c0 = r − r2 = (r + 1), so that

c = lim
r→−1

(r + 1)c1(r) = lim
r→−1

(r + 1)
(r + 1)(r + 2)

= 1,

and (6.7) is the same as

cm =
1

(r + 2)2 · · · (r + m)2(r + m + 1)
, m = 1, 2, · · · . (6.8)

Now a logarithmic differentiation of (6.8) with respect to r gives

c′m
cm

= −2
m∑

k=2

1
(r + k)

− 1
(r + m + 1)

, m = 1, 2, · · ·
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and hence
e0 = c′0(−1) = 1

em = c′m(−1) =
1

12 · 22 · · · (m − 1)2m

[
−2

m−1∑
k=1

1
k
− 1

m

]

= − 1
m! (m − 1)!

[
2

m−1∑
k=1

1
k

+
1
m

]
, m = 1, 2, · · · .

Thus, the second solution y2(x) appears as

y2(x) = y1(x) ln |x| + |x|−1

[
1 −

∞∑
m=1

1
m! (m − 1)!

(
2

m−1∑
k=1

1
k

+
1
m

)
xm

]
.

Clearly, in view of Theorem 5.1(iii) both of these solutions converge at least
for 0 < |x| < ∞. Moreover, the general solution of (6.6) can be written as
y(x) = Ay1(x) + By2(x), where A and B are arbitrary constants.

Example 6.4. In the DE

xy′′ − y′ + 4x3y = 0 (6.9)

both the functions p(x) = −1, q(x) = 4x4 are analytic for |x| < ∞, and
hence the origin is a regular singular point. Since p0 = −1 and q0 = 0, the
indicial equation is F (r) = r(r − 1) − r = r2 − 2r = 0, and therefore the
exponents are r1 = 2, r2 = 0. Thus, two linearly independent solutions of
(6.9) are of the form (5.10) and (5.13). A direct substitution of these in the
equation (6.9) computes the solutions explicitly as

y1(x) = x2
∞∑

m=0

(−1)m

(2m + 1)!
x4m

and

y2(x) =
∞∑

m=0

(−1)m

(2m)!
x4m.

Note that for the equation (6.9) in (5.13) the constant c = 0. Further, in
view of Theorem 5.1(iii) both of these solutions converge at least for 0 <
|x| < ∞. Again, the general solution of (6.9) appears as y(x) = Ay1(x) +
By2(x), where A and B are arbitrary constants.

Problems

6.1. Compute the indicial equation and their roots for the following
DEs:

(i) 2xy′′ + y′ + xy = 0
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(ii) x2y′′ + xy′ + (x2 − 1/9)y = 0
(iii) x2y′′ + (x + x2)y′ − y = 0
(iv) x2y′′ + xy′ + (x2 − 1/4)y = 0
(v) x(x − 1)y′′ + (2x − 1)y′ − 2y = 0
(vi) x2y′′ + 3 sinxy′ − 2y = 0
(vii) x2y′′ + (1/2)(x + sin x)y′ + y = 0
(viii) x2y′′ + xy′ + (1 − x)y = 0.

6.2. Verify that each of the given DEs has a regular singular point at
the indicated point x = x0, and express their solutions in terms of power
series valid for x > x0:

(i) 4xy′′ + 2y′ + y = 0, x = 0
(ii) 9x2y′′ + 9xy′ + (9x2 − 1)y = 0, x = 0
(iii) 2x2y′′ + xy′ − (x + 1)y = 0, x = 0
(iv) (1 − x2)y′′ + y′ + 2y = 0, x = −1
(v) x2y′′ + (x2 − 7/36)y = 0, x = 0
(vi) x2y′′ + (x2 − x)y′ + 2y = 0, x = 0
(vii) x2y′′ + (x2 − x)y′ + y = 0, x = 0
(viii) x(1 − x)y′′ + (1 − 5x)y′ − 4y = 0, x = 0
(ix) (x2 + x3)y′′ − (x + x2)y′ + y = 0, x = 0
(x) x2y′′ + 2xy′ + xy = 0, x = 0
(xi) x2y′′ + 4xy′ + (2 + x)y = 0, x = 0
(xii) x(1 − x)y′′ − 3xy′ − y = 0, x = 0
(xiii) x2y′′ − (x + 2)y = 0, x = 0
(xiv) x(1 + x)y′′ + (x + 5)y′ − 4y = 0, x = 0
(xv) (x − x2)y′′ − 3y′ + 2y = 0, x = 0.

6.3 A supply of hot air can be obtained by passing the air through a
heated cylindrical tube. It can be shown that the temperature T of the air
in the tube satisfies the differential equation

d2T

dx2
− upC

kA

dT

dx
+

2πrh

kA
(Tw − T ) = 0, (6.10)

where x = distance from intake end of the tube, u = flow rate of air, p =
density of air, C = heat capacity of air, k = thermal conductivity, A =
cross–sectional area of the tube, r = radius of the tube, h = heat transfer
coefficient of air (nonconstant), Tw = temperature of the tube (see Jenson
and Jefferys, 1977). For the parameters they have taken, the differential
equation (6.10) becomes

d2T

dx2
− 26200

dT

dx
− 11430x−1/2(Tw − T ) = 0. (6.11)
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(i) Show that the substitution y = Tw −T, x = z2 transforms (6.11) into

z
d2y

dz2
− (1 + 52400z2)

dy

dz
− 45720z2y = 0, (6.12)

for which z = 0 is a regular singular point with exponents 0 and 2.

(ii) Find first few terms of the series solution of (6.12) at z = 0 for the
exponent 2.

6.4 In building design it is sometimes useful to use supporting columns
that are special geometrical designs. In studying the buckling of columns
of varying cross sections, we obtain the following differential equation:

xn d2y

dx2
+ k2y = 0,

where k > 0 and n is a positive integer. In particular, if n = 1, the column
is rectangular with one dimension constant, whereas if n = 4, the column is
a truncated pyramid or cone. Show that for the case n = 1, the point x = 0
is regular singular with exponents 0 and 1. Also, find the series solution at
x = 0 for the exponent 1.

6.3 A large-diameter pipe such as the 30-ft-diameter pipe used in the
construction of Hoover Dam is strengthened by a device called a stiffener
ring. To cut down the stress on the stiffener ring, a fillet insert device
is used. In determining the radial displacement of the fillet insert due to
internal water pressure, one encounters the fourth order equation

x2yiv + 6xy′′′ + 6y′′ + y = 0, x > 0. (6.13)

Here y is proportional to the radial displacement and x is proportional to
the distance measured along an inside element of the pipe shell from some
fixed point. Find series solution of (6.13) at x = 0 for which the limit as
x → 0 exists.

6.6 Consider the Lane–Emden equation

xy′′ + 2y′ + xyn = 0 (6.14)

with the initial conditions

y(0) = 1, y′(0) = 0. (6.15)

Astrophysicists and astronomers use equation (6.14) to approximate the
density and internal temperatures of certain stars and nebula. Show that
the series solution of (6.14), (6.15) can be written as

y(x) = 1 − x2

3!
+ n

x4

5!
+ (5n − 8n2)

x6

3 · 7!
+ (70n −183n2 + 122n3)

x8

9 · 9!

+(3150n− 1080n2 + 12642n3 − 5032n4)
x10

45 · 11!
+ · · · .
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Thus, in particular deduce that

for n = 0, y(x) = 1 − x2

6

for n = 1, y(x) =
sin x

x

for n = 5, y(x) =
(

1 +
x2

3

)−1/2

.

6.7 The Lane–Emden equation

xy′′ + 2y′ + xey = 0 (6.16)

appears in a study of isothermal gas spheres. Show that the series solution
of (6.16) with the initial conditions y(0) = y′(0) = 0 can be written as

y(x) = −1
6
x2 +

1
5 · 4!

x4 − 8
21 · 6!

x6 +
122

81 · 8!
x8 − 61 · 67

495 · 10!
x10 + · · · .

6.8 The Lane–Emden equation

xy′′ + 2y′ + xe−y = 0 (6.17)

appears in the theory of thermionic currents when one seeks to determine
the density and electric force of an electron gas in the neighborhood of a hot
body in thermal equilibrium. Find first few terms of the series expansion
of the solution of (6.17) satisfying the initial conditions y(0) = y′(0) = 0.

6.9 The White-Dwarf equation,

xy′′ + 2y′ + x(y2 − C)3/2 = 0, (6.18)

was introduced by S. Chandrasekhar in his study of gravitational potential
of the degenerate (white-dwarf) stars. This equation for C = 0 is the same
as (6.14) with n = 3. Show that the series solution of (6.18) with the initial
conditions (6.15) in terms of q2 = 1 − C can be written as

y(x) = 1 − q3

6
x2 +

q4

40
x4 − q5

7!
(5q2 + 14)x6 +

q6

3 · 9!
(339q2 + 280)x8

+
q7

5 · 11!
(1425q4 + 11436q2 + 4256)x10 + · · · .

6.10 Show that for the DE

x3y′′ + x(x + 1)y′ − y = 0

x0 = 0 is an irregular singular point. Find its solution in the form y =∑∞
m=0 cmx−m.
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Answers or Hints

6.1. (i) r(r − 1) + 1
2r = 0, r1 = 0, r2 = 1

2 (ii) r(r − 1)+ r − 1
9 = 0, r1 =

1
3 , r2 = − 1

3 (iii) r(r−1)+r−1 = 0, r1 = 1, r2 = −1 (iv) r(r−1)+r− 1
4 =

0, r1 = 1
2 , r2 = − 1

2 (v) r(r−1)+r = 0, r1 = r2 = 0 (vi) r(r−1)+3r−2 =
0, r1 = −1 +

√
3, r2 = −1 −

√
3 (vii) r(r − 1) + r + 1 = 0, r1 = i, r2 = −i

(viii) r(r − 1) + r + 1 = 0, r1 = i, r2 = −i.

6.2. (i) y1(x) =
∑∞

m=0
(−1)m(

√
x)2m

(2m)! , y2(x) = x1/2
∑∞

m=0
(−1)m(

√
x)2m

(2m+1)!

(ii) y1(x) = x1/3
[
1 +
∑∞

m=1
(−1)m3mx2m

2·4·6···(2m) 8·14·20···(6m+2)

]
,

y2(x) = x−1/3
[
1 +
∑∞

m=1
(−1)m3mx2m

2·4·6···(2m) 4·10·16···(6m−2)

]
(iii) y1(x) = x

[
1 + 1

5x + 1
70x2 + · · ·

]
,

y2(x) = x−1/2
[
1 − x − 1

2x2 − 1
18x3 − · · ·

]
(iv) y1(x) = 1 − 2(x + 1) + 2

3 (x + 1)2,

y2(x) = (x + 1)1/2
[
1 − 3

4 (x + 1) +
∑∞

m=2
3(2m−4)!

23m−2m! (m−2)!(x + 1)m
]

(v) y1(x) = x7/6
[
1 +
∑∞

m=1
(−1)m3mx2m

22mm! 5·8···(3m+2)

]
,

y2(x) = x−1/6
[
1 +
∑∞

m=1
(−1)m3m

22mm! 1·4···(3m−2)x
2m
]

(vi) y1(x) = x[φ(x) cos(ln x) − ψ(x) sin(ln x)],
y2(x) = x[ψ(x) cos(ln x) + φ(x) sin(lnx)], where

φ(x) = 1 − 3
5x + 1

5x2 · · · , ψ(x) = 1
5x − 3

20x2 · · ·
(vii) y1(x) = x

∑∞
m=0

(−1)m

m! xm,

y2(x) = y1(x) ln x + x
[
x − 1

2!

(
1 + 1

2

)
x2 + 1

3!

(
1 + 1

2 + 1
3

)
x3 − · · ·

]
(viii) y1(x) =

∑∞
m=0(1+m)2xm, y2(x) = y1(x) ln x−2

∑∞
m=1 m(m+1)xm

(ix) y1(x) = x(1 + x), y2(x) = y1(x) ln x + x
[
−2x −

∑∞
m=2

(−1)m

m(m−1)x
m
]

(x) y1(x) =
∑∞

m=0
(−1)m

m! (m+1)!x
m,

y2(x) = −y1(x) ln x + x−1
[
1 −
∑∞

m=1
(−1)m

m! (m−1)!

(
2
∑m−1

k=1
1
k + 1

m

)
xm
]

(xi) y1(x) = x−1
∑∞

m=0
(−1)m

m! (m+1)!x
m, y2(x) = −y1(x) ln x

+x−2
[
1 −
∑∞

m=1
(−1)m

m! (m−1)!

(
2
∑m−1

k=1
1
k + 1

m

)
xm
]

(xii) y1(x) = x(1 − x)−2, y2(x) = y1(x) ln x + (1 − x)−1

(xiii) y1(x) = x2
∑∞

m=0
3!

m! (m+3)!x
m,

y2(x) = 1
12y1(x) ln x + x−1

(
1 − 1

2x + 1
4x2 − 1

36x3 + · · ·
)

(xiv) y1(x) = 1 + 4
5x + 1

5x2, y2(x) = x−4(1 + 4x + 5x2)
(xv) y1(x) =

∑∞
m=4(m − 3)xm, y2(x) = 1 + 2

3x + 1
3x2.

6.3. c0

[
z2 + 13100z4 + 3048z5 + 343220000

3 z6 + · · ·
]
(although coefficients

cn are large, the series converges).
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6.4. c0

(
x − k2

2! x
2 + k4

2!3!x
3 − k6

3!4!x
4 + k8

4!5!x
5 − · · ·

)
.

6.5. c0

∑∞
m=0(−1)m x2m

((2m!))2(2m+1) + c1

∑∞
m=0(−1)m x2m+1

((2m+1)!)2(m+1) .

6.8. If y(x) is a solution of (6.16), then −y(ix) a solution of (6.17), y(x) =
− 1

6x2 − 1
5·4!x

4 − 8
21·6!x

6 − 122
81·8!x

8 − 61·67
495·10!x

10 − · · · .

6.10. y = c0

∑∞
m=0

x−m

m! = c0e
1/x.



Lecture 7
Legendre Polynomials

and Functions

The Legendre DE (3.19), where a is a real constant (parameter), arises in
problems such as the flow of an ideal fluid past a sphere, the determination
of the electric field due to a charged sphere, and the determination of the
temperature distribution in a sphere given its surface temperature. In this
lecture we shall show that if the parameter a is a nonnegative integer n,
then one of the solutions of (3.19) reduces to a polynomial of degree exactly
n. These polynomial solutions are known as Legendre polynomials. We
shall obtain explicit representations of these polynomials and discuss their
various properties.

Since the functions

p1(x) = − 2x

1 − x2
and p2(x) =

a(a + 1)
1 − x2

are analytic for |x| < 1, x = x0 = 0 is an ordinary point for (3.19). Thus,
Theorem 4.1 ensures that its series solution y(x) =

∑∞
m=0 cmxm converges

for |x| < 1. To find this solution, we substitute it directly in (3.19), to
obtain

(1 − x2)
∞∑

m=0

(m + 1)(m + 2)cm+2x
m −2x

∞∑
m=0

(m + 1)cm+1x
m

+a(a + 1)
∞∑

m=0

cmxm = 0,

which is the same as
∞∑

m=0

[(m + 1)(m + 2)cm+2 − {(m − 1)m + 2m − a(a + 1)} cm] xm = 0,

or
∞∑

m=0

[(m + 1)(m + 2)cm+2 + (a + m + 1)(a − m)cm] xm = 0.

But this is possible if and only if

(m + 1)(m + 2)cm+2 + (a + m + 1)(a − m)cm = 0, m = 0, 1, · · ·

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 7,
c© Springer Science+Business Media, LLC 2009
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or

cm+2 = − (a + m + 1)(a − m)
(m + 1)(m + 2)

cm, m = 0, 1, · · · (7.1)

which is the required recurrence relation.

Now a little computation gives

c2m =
(−1)m(a + 2m − 1)(a + 2m − 3) · · · (a + 1)a(a − 2) · · · (a − 2m + 2)

(2m)!
c0

= (−1)m
Γ
(

1
2
a + 1
)
Γ
(

1
2
a + m + 1

2

)
22m

Γ
(

1
2
a + 1

2

)
Γ
(

1
2
a − m + 1

)
(2m)!

c0, m = 1, 2, · · ·

(7.2)
and

c2m+1 =
(−1)m(a + 2m)(a + 2m−1) · · · (a + 2)(a−1)(a−3) · · · (a−2m+1)

(2m+1)!
c1

= (−1)m
Γ
(

1
2
a + 1

2

)
Γ
(

1
2
a + m + 1

)
22m+1

2 Γ
(

1
2
a + 1
)
Γ
(

1
2
a − m + 1

2

)
(2m + 1)!

c1, m = 1, 2, · · · .

(7.3)
Thus, the series solution of (3.19) can be written as

y(x) = c0

[
1 − (a + 1)a

2!
x2 +

(a + 3)(a + 1)a(a − 2)
4!

x4 − · · ·
]

+c1

[
x − (a + 2)(a − 1)

3!
x3 +

(a+4)(a+2)(a−1)(a−3)
5!

x5 − · · ·
]

= c0y1(x) + c1y2(x).
(7.4)

It is clear that y1(x) and y2(x) are linearly independent solutions of Leg-
endre’s equation.

If in the DE (3.19), a is an even integer 2n, then from (7.2) it is clear
that c2n+2 = c2n+4 = · · · = 0; i.e., y1(x) reduces to a polynomial of degree
2n involving only even powers of x. Similarly, if a = 2n + 1, then y2(x)
reduces to a polynomial of degree 2n + 1, involving only odd powers of
x. Since y1(x) and y2(x) are themselves solutions of (3.19) we conclude
that Legendre’s DE has a polynomial solution for each nonnegative integer
value of the parameter a. The interest is now to obtain these polynomials
in descending powers of x. For this we note that the recurrence relation
(7.1) can be written as

cs = − (s + 1)(s + 2)
(n − s)(n + s + 1)

cs+2, s ≤ n − 2, (7.5)

where we have taken s as the index, and a as an integer n. With the help of
(7.5) we can express all nonvanishing coefficients in terms of the coefficient
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cn of the highest power of x. It is customary to choose

cn =
(2n)!

2n(n!)2
=

1.3.5. · · · (2n − 1)
n!

(7.6)

so that the polynomial solution of (3.19) will have the value 1 at x = 1.

From (7.5) and (7.6) it is easy to obtain

cn−2m = (−1)m (2n − 2m)!
2n m! (n − m)! (n − 2m)!

(7.7)

as long as n − 2m ≥ 0.

The resulting solution of (3.19) is called the Legendre polynomial of
degree n and is denoted as Pn(x). From (7.7) this solution can be written
as

Pn(x) =
[n
2 ]∑

m=0

(−1)m (2n − 2m)!
2n m! (n − m)! (n − 2m)!

xn−2m. (7.8)

From (7.8), we easily obtain

P0(x) = 1, P1(x) = x, P2(x) =
1
2
(3x2 − 1), P3(x) =

1
2
(5x3 − 3x),

P4(x) =
1
8
(35x4 − 30x2 + 3), P5(x) =

1
8
(63x5 − 70x3 + 15x).

The other nonpolynomial solution of (3.19) is usually denoted as Qn(x)
(see Problem 7.1). Note that for each n, Qn(x) is unbounded at x = ±1.

Legendre polynomials Pn(x) can be represented in a very compact form.
This we shall show in the following theorem.

Theorem 7.1 (Rodrigues’ Formula).

Pn(x) =
1

2n n!
dn

dxn
(x2 − 1)n. (7.9)

Proof. Let v = (x2 − 1)n, then

(x2 − 1)
dv

dx
= 2nxv. (7.10)

Differentiating (7.10), (n + 1) times by Leibniz’s rule, we obtain

(x2−1)
dn+2v

dxn+2
+2(n+1)x

dn+1v

dxn+1
+n(n+1)

dnv

dxn
= 2n

{
x

dn+1v

dxn+1
+ (n+1)

dnv

dxn

}
,
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which is the same as

(1 − x2)
dn+2v

dxn+2
− 2x

dn+1v

dxn+1
+ n(n + 1)

dnv

dxn
= 0. (7.11)

If we substitute z = dnv/dxn, then (7.11) becomes

(1 − x2)
d2z

dx2
− 2x

dz

dx
+ n(n + 1)z = 0,

which is the same as (3.19) with a = n. Thus, it is necessary that

z =
dnv

dxn
= cPn(x),

where c is a constant. Since Pn(1) = 1, we have

c =
(

dnv

dxn

)
x=1

=
dn

dxn
(x2 − 1)n

∣∣∣∣
x=1

=
dn

dxn
(x − 1)n(x + 1)n

∣∣∣∣
x=1

=
n∑

k=0

(
n

k

)
n!

(n − k)!
(x − 1)n−k n!

k!
(x + 1)k

∣∣∣∣∣
x=1

= 2n n!.

Thus, it follows that

Pn(x) =
1
c

dnv

dxn
=

1
2n n!

dn

dxn
(x2 − 1)n.

Let {fn(x)} be a sequence of functions in some interval J. A function
F (x, t) is said to be a generating function of {fn(x)} if

F (x, t) =
∞∑

n=0

fn(x)tn.

The following result provides the generating function for the sequence
of Legendre polynomials {Pn(x)}.

Theorem 7.2 (Generating Function).

(1 − 2xt + t2)−1/2 =
∞∑

n=0

Pn(x)tn. (7.12)

Proof. If |x| ≤ r where r is arbitrary, and |t| < (1 + r2)1/2 − r, then it
follows that

|2xt − t2| ≤ 2|x||t| + |t2|
< 2r(1 + r2)1/2 − 2r2 + 1 + r2 + r2 − 2r(1 + r2)1/2 = 1
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and hence we can expand (1 − 2xt + t2)−1/2 binomially, to obtain

[1 − t(2x − t)]−1/2 = 1 +
1
2
t(2x − t) +

1
2

3
4
t2(2x − t)2 + · · ·

+
1.3 · · · (2n − 1)

2.4 · · · (2n)
tn(2x − t)n + · · · .

The coefficient of tn in this expansion is

1.3. · · · (2n − 1)
2.4. · · · (2n)

(2x)n − 1.3. · · · (2n − 3)
2.4 · · · (2n − 2)

(n − 1)
1!

(2x)n−2

+
1.3 · · · (2n − 5)
2.4 · · · (2n − 4)

(n − 2)(n − 3)
2!

(2x)n−4 − · · ·

=
1.3 · · · (2n−1)

n!

[
xn− n(n−1)

(2n−1)!1.2
xn−2+

n(n−1)(n−2)(n−3)
(2n−1)(2n−3) 2.4

xn−4−· · ·
]

= Pn(x).

Now as an application of (7.12) we shall prove the following recurrence
relation.

Theorem 7.3 (Recurrence Relation).

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x), n = 1, 2, · · · . (7.13)

Proof. Differentiating (7.12) with respect to t, we get

(x − t)(1 − 2xt + t2)−3/2 =
∞∑

n=1

nPn(x)tn−1

and hence

(x − t)(1 − 2xt + t2)−1/2 = (1 − 2xt + t2)
∞∑

n=1

nPn(x)tn−1,

which is the same as

(x − t)
∞∑

n=0

Pn(x)tn = (1 − 2xt + t2)
∞∑

n=1

nPn(x)tn−1.

Equating the coefficients of tn, we get the relation (7.13).

Since P0(x) = 1 and P1(x) = x the relation (7.13) can be used to
compute Legendre polynomials of higher degrees. Several other recurrence
relations are given in Problem 7.8.
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Next we shall consider (3.19) in the neighborhood of the regular singu-
larity at x = 1. The transformation x = 1 − 2t replaces this singularity to
the origin, and then the DE (3.19) becomes

t(1 − t)
d2y

dt2
+ (1 − 2t)

dy

dt
+ a(a + 1)y = 0. (7.14)

Considering the solution of (7.14) in the form y(t) = tr
∑∞

m=0 cmtm,
we obtain the indicial equation r2 = 0, i.e., both the exponents are zero.
Further, it is easy to find the recurrence relation

(m + r)2cm = (m + r + a)(m + r − a − 1)cm−1, m = 1, 2, · · · . (7.15)

For r = 0, (7.15) when a not an integer and c0 = 1, gives

cm =
Γ(m + a + 1) Γ(m − a)
(m!)2 Γ(a + 1) Γ(−a)

, m = 0, 1, · · · .

Thus, in the neighborhood of x = 1 the first solution of (3.19) can be
written as

y1(x) =
1

Γ(a + 1) Γ(−a)

∞∑
m=0

Γ(a + m + 1) Γ(m − a)
(m!)2

(
1 − x

2

)m

. (7.16)

Since a is not an integer, and

lim
m→∞

∣∣∣∣ cm

cm−1

∣∣∣∣ = lim
m→∞

∣∣∣∣
(

1 − a + 1
m

)(
1 +

a

m

)∣∣∣∣ = 1,

it follows that the series solution (7.16) converges for |x−1| < 2 and diverges
for |x − 1| > 2.

When a is a positive integer n, then cm = 0 for all m ≥ n + 1, and

cm = (−1)m (n + m)!
(n − m)! (m!)2

c0, 0 ≤ m ≤ n

and hence (7.16) reduces to a polynomial solution of degree n,

n∑
m=0

(−1)m(n + m)!
(n − m)! (m!)2

(
1 − x

2

)m

. (7.17)

To obtain the second solution of (7.14), we return to the recurrence
relation (7.15), whose solution with c0 = 1 is

cm =
m∏

k=1

(k + r + a)
m∏

k=1

(k + r − a − 1)

/
m∏

k=1

(k + r)2.
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Now a logarithmic differentiation with respect to r yields

c′m
cm

=
m∑

k=1

(
1

k + r + a
+

1
k + r − a − 1

− 2
k + r

)
;

and hence for r = 0, we get

dm = c′m(0) = cm(0)
m∑

k=1

(
1

k + a
+

1
k − a − 1

− 2
k

)
, m = 1, 2, · · · .

Thus, from Theorem 5.1(ii) the second solution is given by

y2(x) = y1(x) ln
∣∣∣∣1 − x

2

∣∣∣∣+ 1
Γ(a + 1)Γ(−a)

∞∑
m=1

Γ(a + m + 1)Γ(m − a)
(m!)2

×
{

m∑
k=1

(
1

k + a
+

1
k − a − 1

− 2
k

)}(
1 − x

2

)m

.

(7.18)
The general solution of (3.19) in the neighborhood of x = 1 can be easily

obtained from (7.16) and (7.18).

Problems

7.1. For a = n, one solution of the DE (3.19) is Pn(x) given in (7.8).
Show that the second solution is

Qn(x) = Pn(x)
∫ x dt

(1 − t2)[Pn(t)]2

and hence deduce that

Q0(x) =
1
2

ln
1 + x

1 − x
, Q1(x) =

x

2
ln

1 + x

1 − x
− 1

and
Q2(x) =

1
4
(3x2 − 1) ln

1 + x

1 − x
− 3

2
x.

7.2. Use Rodrigues’ formula (7.9) to show that

Pn(0) =

⎧⎨
⎩

0, if n is odd

(−1)n/2 1.3. · · · (n − 1)
2.4 · · ·n , if n is even.

7.3. Use Rodrigues’ formula (7.9) to show that all the roots of Pn(x)
lie in the interval (−1, 1) and are distinct.
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7.4. Prove the following relations:

(i)
1 − t2

(1 − 2xt + t2)3/2
=

∞∑
n=0

(2n + 1)Pn(x)tn

(ii)
1 + t

t(1 − 2xt + t2)1/2
− 1

t
=

∞∑
n=0

{Pn(x) + Pn+1(x)} tn.

7.5. Show that if x = cos θ = (eiθ + e−iθ)/2, then the Legendre DE
(3.19) can be written as

d

dθ

(
sin θ

dy

dθ

)
+ n(n + 1) sin θy = 0. (7.19)

Further, with this substitution, the relation (7.12) is the same as

(1 − teiθ)−1/2(1 − te−iθ)−1/2 =
∞∑

n=0

Pn(cos θ)tn;

and hence

y = Pn(cos θ) =
1.3 · · · (2n − 1)

2.4 · · · 2n

[
2 cosnθ +

1.n

1.(2n− 1)
2 cos(n − 2)θ

+
n(n − 1)

(2n−1)(2n−3)
1.3
1.2

2 cos(n − 4)θ + · · · + Tn

]

is a solution of (7.19), where the final term Tn is cos θ if n is odd, and half
the constant term indicated if n is even. These functions are called the
Legendre coefficients. Deduce that the Legendre coefficients are uniformly
bounded, in fact |Pn(cos θ)| ≤ 1, n = 0, 1, 2, · · · for all real values of θ.

7.6. Prove Laplace’s first integral representation

Pn(x) =
1
π

∫ π

0

[x ±
√

x2 − 1 cosφ]ndφ.

7.7. Prove Laplace’s second integral representation

Pn(x) =
1
π

∫ π

0

dφ

[x ±
√

x2 − 1 cosφ]n+1
.

7.8. Prove the following recurrence relations:

(i) nPn(x) = xP ′
n(x) − P ′

n−1(x)
(ii) (2n + 1)Pn(x) = P ′

n+1(x) − P ′
n−1(x)

(iii) (n + 1)Pn(x) = P ′
n+1(x) − xP ′

n(x)



Legendre Polynomials and Functions 55

(iv) (1 − x2)P ′
n(x) = n(Pn−1(x) − xPn(x))

(v) (1 − x2)P ′
n(x) = (n + 1)(xPn(x) − Pn+1(x))

(vi) (2n + 1)(1 − x2)P ′
n(x) = n(n + 1)(Pn−1(x) − Pn+1(x)).

7.9. Show that

(i) Pn(1) = 1
(ii) Pn(−x) = (−1)nPn(x), and hence Pn(−1) = (−1)n.

7.10. Show that in the neighborhood of the point x = 1 the DE (3.19)
for a = −n has a polynomial solution of degree n − 1. Find this solution.

7.11. Show that

(i) Christoffel’s expansion

P ′
n(x) = (2n − 1)Pn−1(x) + (2n − 5)Pn−3(x) + (2n − 9)Pn−5(x) + · · · ,

where the last term is 3P1(x) or P0(x) according to whether n is even or
odd.
(ii) Christoffel’s summation formula

n∑
r=0

(2r + 1)Pr(x)Pr(y) = (n + 1)
Pn+1(x)Pn(y) − Pn+1(y)Pn(x)

x − y
.

7.12. The DE

(1 − x2)y′′ − 2xy′ +
[
n(n + 1) − m2

1 − x2

]
y = 0 (7.20)

is called Legendre’s associated DE. If m = 0, it reduces to (3.19). Show
that when m and n are nonnegative integers, the general solution of (7.20)
can be written as

y(x) = APm
n (x) + BQm

n (x),

where Pm
n (x) and Qm

n (x) are called associated Legendre’s functions of the
first and second kinds, respectively, and in terms of Pn(x) and Qn(x) are
given by

Pm
n (x) = (1 − x2)m/2 dm

dxm
Pn(x) (7.21)

Qm
n (x) = (1 − x2)m/2 dm

dxm
Qn(x). (7.22)

Note that if m > n, Pm
n (x) = 0. The functions Qm

n (x) are unbounded for
x = ±1.

Further, show that∫ π

0

[Pm
n (cos φ)]2 sinφdφ =

2
2n + 1

(n + m)!
(n − m)!

.
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Answers or Hints

7.1. Use (2.5) and compute necessary partial fractions.

7.2. First use Leibniz’s rule to obtain Pn(0) = 1
2n

∑n
k=0(−1)k

[(
n
k

)]2 and
then equate the coefficients of xn in the relation (1+x)n(1−x)n = (1−x2)n.

7.3. Use Rolle’s theorem repeatedly.

7.4. (i) Differentiate (7.12) with respect to t (ii) Begin with the right-
hand side.

7.5. Equate the coefficients of tn.

7.6. Use
∫ π

0
dφ

a±b cos φ = π√
a2−b2

(a2 > b2) with a = 1− tx, b = t
√

(x2 − 1)
and equate the coefficients of tn.

7.7. Use the same formula as in Problem 7.6 with a = xt − 1, b =
t
√

(x2 − 1) and equate the coefficients of t−n−1.

7.8. (i) Differentiate (7.12) with respect to x and t and equate, to obtain
the relation t

∑∞
n=0 ntn−1Pn(x) = (x− t)

∑∞
n=0 tnP ′

n(x). Finally equate the
coefficients of tn (ii) Differentiate (7.13) and use (i) (iii) Use (i) and (ii)
(iv) Use (iii) and (i) (v) Use (7.13) and (iv) (vi) Use (v) in (iv).

7.9. (i) Use (7.12) (ii) In (7.12) first replace x by −x and then t by −t
and then equate.

7.10. When a = −n, the recurrence relation (7.15) reduces to m2cm =
(m − n)(m + n − 1)cm−1, m ≥ 1, which can be solved to obtain

cm =

{
(−1)m (n+m−1)!

(n−m−1)! (m!)2 c0, 1 ≤ m ≤ n − 1
0, m ≥ n.

Therefore, the polynomial solution of (3.19) is
∑n−1

m=0
(−1)m(n+m−1)!
(n−m−1)! (m!)2

(
1−x

2

)2
.

7.11. (i) Use Problem 7.8(ii) (ii) Use (7.13).

7.12. Verify directly.



Lecture 8
Chebyshev, Hermite, and

Laguerre Polynomials

In this lecture we shall show that if the parameter a in (3.15) and
(3.16), whereas b in (3.18) is a nonnegative integer n, then one of the solu-
tions of each of these equations reduces to a polynomial of degree n. These
polynomial solutions are, respectively, known as Chebyshev, Hermite, and
Laguerre polynomials. We shall obtain explicit representations of these
polynomials and discuss their various properties.

Chebyshev polynomials. From the recurrence relation (4.15)
it is clear that in the case a = n one of the solutions of the Chebyshev DE
(3.15) reduces to a polynomial of degree n. Here we shall provide an easier
method to construct these polynomials. For this, in the Chebyshev DE of
order n,

(1 − x2)y′′ − xy′ + n2y = 0 (8.1)

we use the substitution x = cos θ, to obtain

(1 − cos2 θ)
1

sin θ

(
1

sin θ

d2y

dθ2
− cos θ

sin2 θ

dy

dθ

)
+ cos θ

1
sin θ

dy

dθ
+ n2y = 0,

which is the same as
d2y

dθ2
+ n2y = 0.

Since for this DE sin nθ and cosnθ are the solutions, the solutions of (8.1)
are sin(n cos−1 x) and cos(n cos−1 x). The solution Tn(x) = cos(n cos−1 x)
is a polynomial in x of degree n, and is called the Chebyshev polynomial
of the first kind. To find its explicit representation, we need the following
recurrence relation.

Theorem 8.1 (Recurrence Relation).

Tn+1(x) = 2xTn(x) − Tn−1(x), n ≥ 1. (8.2)

Proof. The proof is immediate from the identity

cos((n+1) cos−1 x)+cos((n−1) cos−1 x) = 2 cos(n cos−1 x) cos(cos−1 x).

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 8,
c© Springer Science+Business Media, LLC 2009
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Since T0(x) = cos(0) = 1, T1(x) = cos(cos−1 x) = x from the relation
(8.2), it immediately follows that

T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1.

Now we shall show that

Tn(x) = cos(n cos−1 x) =
n

2

[n
2 ]∑

m=0

(−1)m (n − m − 1)!
m! (n − 2m)!

(2x)n−2m, n ≥ 1.

(8.3)
For this, in view of (8.2), we have

Tn+1(x) =
n

2

[n
2 ]∑

m=0

(−1)m (n − m − 1)!
m! (n − 2m)!

(2x)n+1−2m

− (n − 1)
2

[n−1
2 ]∑

m=0

(−1)m(n − 1 − m − 1)!
m! (n − 1 − 2m)!

(2x)n−1−2m

=
n

2

⎡
⎢⎣ 1

n
(2x)n+1 +

[ n
2 ]∑

m=1

(−1)m(n − m − 1)!
m! (n − 2m)!

(2x)n+1−2m

⎤
⎥⎦

+
(n − 1)

2

[n−1
2 ]+1∑
m=1

(−1)m(n − m − 1)!
(m − 1)! (n − 2m + 1)!

(2x)n+1−2m.

Thus, if n = 2k, then
[

n
2

]
=
[

n−1
2

]
+ 1 = k =

[
n+1

2

]
, and we get

Tn+1(x)

=
1
2
(2x)n+1 +

[n+1
2 ]∑

m=1

1
2
(−1)m (n − m − 1)!(n − m)(n + 1)

m! (n − 2m + 1)!
(2x)n+1−2m

=
(n + 1)

2

[n+1
2 ]∑

m=0

(−1)m (n − m)!
m! (n + 1 − 2m)!

(2x)n+1−2m.

Similarly, if n = 2k + 1, then
[

n
2

]
= k,
[

n−1
2

]
+ 1 = k + 1, and we find

Tn+1(x)

=
1
2
(2x)n+1 +

[n
2 ]∑

m=1

1
2
(−1)m (n − m − 1)!(n − m)(n + 1)

m! (n − 2m + 1)!
(2x)n+1−2m

+(−1)[
n+1

2 ]

=
(n + 1)

2

[n+1
2 ]∑

m=0

(−1)m (n − m)!
m! (n + 1 − 2m)!

(2x)n+1−2m.
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Next for Chebyshev polynomials of the first kind we shall prove the
following results.

Theorem 8.2 (Rodrigues’ Formula).

Tn(x) =
(−2)n n!

(2n)!
(1 − x2)1/2 dn

dxn
(1 − x2)n−1/2. (8.4)

Proof. Set v = (1 − x2)n−1/2, to obtain (1 − x2)v′ + (2n − 1)vx = 0.
Differentiating this relation (n + 1) times, we obtain

(1 − x2)Dn+2v − 3xDn+1v + (n2 − 1)Dnv = 0, D =
d

dx
.

Let w = (1 − x2)1/2Dnv, to get

(1 − x2)w′′ − xw′ + n2w

= (1 − x2)1/2
[
(1 − x2)Dn+2v − 3xDn+1v + (n2 − 1)Dnv

]
= 0.

Thus, both w(x) and Tn(x) are the polynomial solutions of the Chebyshev
DE (8.1), and hence Tn(x) = cw(x), where the constant c is yet to be
determined.

Since in view of Leibniz’s rule

(1 − x2)1/2Dn(1 − x2)n−1/2

= (1 − x2)1/2
n∑

j=0

(
n

j

)
Dn−j(1 + x)n−1/2Dj(1 − x)n−1/2

= n! (−1)n
n∑

j=0

(
n − 1/2

j

)(
n − 1/2
n − j

)
(x − 1)n−j(x + 1)j ,

the coefficient of xn in the right side of the above relation is

n! (−1)n
n∑

j=0

(
n − 1/2

j

)(
n − 1/2
n − j

)
= (−1)nn!

(
2n − 1

n

)
,

where the last identity follows from Vandermonde’s equality. Thus, on
comparing the coefficients of xn in both sides of Tn(x) = cw(x) we find
c = (−1)n2nn!/(2n)!.

Theorem 8.3 (Generating Function).

1 − t2

1 − 2tx + t2
= T0(x) + 2

∞∑
n=1

Tn(x)tn. (8.5)
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Proof. In the expansion

(1 − t2)(1 − t(2x − t))−1 = (1 − t2)
∞∑

n=0

tn(2x − t)n

clearly the constant term is 1, and the coefficient of tn is

(2x)n +
[n
2 ]∑

m=1

(−1)m

{(
n − m

m

)
+
(

n − m − 1
m − 1

)}
(2x)n−2m

=
[n
2 ]∑

m=0

n(−1)m(n − m − 1)!
m! (n − 2m)!

(2x)n−2m = 2Tn(x).

Hermite polynomials. For the Hermite DE of order n, i.e.,

y′′ − 2xy′ + 2ny = 0 (8.6)

we follow exactly as for Legendre polynomials. Indeed, in the case a = n
the recurrence relation (4.13) can be written as

cs =
(s + 2)(s + 1)

2(s − n)
cs+2, s ≤ n − 2.

This relation with cn = 2n gives

cn−2m =
(−1)m n! 2n−2m

(n − 2m)! m!
.

Thus, Hermite polynomials of degree n represented as Hn(x) appear as

Hn(x) =
[n
2 ]∑

m=0

(−1)m n!
m! (n − 2m)!

(2x)n−2m. (8.7)

From (8.7), we find

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x.

Now for Hermite polynomials we shall prove the following result.

Theorem 8.4 (Rodrigues’ Formula).

Hn(x) = (−1)nex2 dn

dxn
e−x2

. (8.8)
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Proof. We note that the DE (8.6) can be written as
(
e−x2

y′
)′

+ 2ne−x2
y = 0. (8.9)

Let y = (−1)nex2
Dne−x2

, (D = d/dx) so that

y′ = (−1)nex2
(
2xDne−x2

+ Dn
(
De−x2

))
,

and hence
(
e−x2

y′
)′

= (−1)n
[
2Dne−x2

+ 2xDn(De−x2
) + Dn+1(−2xe−x2

)
]

= 2n(−1)n+1Dne−x2
= −2ne−x2

y.

Thus, (−1)nex2
Dne−x2

and Hn(x) both are solutions of the DE (8.9). But
this is possible only if Hn(x) = c(−1)nex2

Dne−x2
, where c is a constant.

Finally, a comparison of the coefficients of xn on both sides gives c = 1.

Laguerre polynomials. For Laguerre’s DE of order n, i.e.,

xy′′ + (a + 1 − x)y′ + ny = 0 (8.10)

the solution y1(x) obtained in (6.1) reduces to a polynomial of degree n.
This solution multiplied by the constant Γ(n+ a+1)/[n! Γ(a+1)] is called
the Laguerre polynomial L

(a)
n (x) and can be written as

L(a)
n (x) = Γ(n + a + 1)

n∑
m=0

(−1)mxm

m! (n − m)! Γ(m + a + 1)
. (8.11)

In the particular case a = 0, Laguerre polynomial of degree n is simply
represented as Ln(x) and reduces to

Ln(x) =
n∑

m=0

1
m!

(
n

m

)
(−x)m. (8.12)

Problems

8.1. Verify that the nth degree Chebyshev polynomial of the second
kind defined by the relation

Un(x) =
sin((n + 1) cos−1 x)

sin(cos−1 x)



62 Lecture 8

satisfies the DE

(1 − x2)y′′ − 3xy′ + n(n + 2)y = 0.

Show that

(i) Un(x) =
1

n + 1
T ′

n+1(x)

(ii) Un(x) =
[n
2 ]∑

m=0

(−1)m (n − m)!
m! (n − 2m)!

(2x)n−2m

(iii) Un(x) =
(−2)n (n + 1)!

(2n + 1)!
(1 − x2)−1/2 dn

dxn
(1 − x2)n+1/2

(Rodrigues’ Formula)

(iv)
1

1 − 2tx + t2
=

∞∑
n=0

Un(x)tn (Generating Function)

(v) Un+1(x) = 2xUn(x) − Un−1(x), U0(x) = 1, U1(x) = 2x
(Recurrence Relation).

8.2. For Hermite polynomials show that

(i) e2xt−t2 =
∞∑

n=0

Hn(x)
tn

n!
(Generating Function)

(ii) Hn+1(x) = 2xHn(x) − 2nHn−1(x), H0(x) = 1, H1(x) = 2x
(Recurrence Relation)

(iii) H ′
n(x) = 2nHn−1(x).

8.3. For Laguerre polynomials show that

(i) L(a)
n (x) =

exx−a

n!
dn

dxn

(
e−xxn+a

)
(Rodrigues’ Formula)

(ii) (1 − t)−1−a exp
(
− xt

(1 − t)

)
=

∞∑
n=0

L(a)
n (x)tn (Generating Function)

(iii) L
(a)
n+1(x) =

2n + a + 1 − x

n + 1
L(a)

n (x) − n + a

n + 1
L

(a)
n−1(x),

L
(a)
0 (x) = 1, L

(a)
1 (x) = 1 + a − x (Recurrence Relation).

Answers or Hints

8.1. (i) Differentiate Tn+1(x) = cos((n + 1) cos−1 x) (ii) Use (8.3) and
(i) (iii) Use (8.4) and (i) (iv) Expand (1− [2tx−t2])−1 (v) Set θ = cos−1 x
in the relation sin(n + 2)θ + sin nθ = 2 sin(n + 1)θ cos θ.
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8.2. (i) Expand e−t2e2xt (ii) Differentiate both sides of (i) with respect
to t and equate the coefficients of tn (ii) Differentiate (8.8).

8.3. (i) Use Leibniz’s rule (ii) Expand (1− t)−1−a exp
(
− xt

1−t

)
(iii) Dif-

ferentiate both sides of (ii) with respect to t and equate the coefficients of
tn.



Lecture 9
Bessel Functions

Bessel’s differential equation (2.15) with a = n first appeared in the
works of Euler and Bernoulli whereas Bessel functions, also sometimes
termed cylindrical functions, were introduced by Bessel, in 1824, in the
discussion of a problem in dynamical astronomy. Since many problems of
mathematical physics reduce to the Bessel equation, in this lecture we shall
investigate it in somewhat more detail.

In the Bessel DE (2.15) the functions

xp1(x) = x
( x

x2

)
= 1 and x2p2(x) = x2

(
x2 − a2

x2

)
= x2 − a2

are analytic for all x, and hence the origin is a regular singular point.

Thus, in view of Theorem 5.1, we can assume that a solution of (2.15)
can be written as y(x) = xr

∑∞
m=0 cmxm. Now a direct substitution of this

in (2.15) leads to the equations

c0(r + a)(r − a) = 0

c1(1 + r + a)(1 + r − a) = 0

cm(m + r + a)(m + r − a) = −cm−2, m = 2, 3, · · · . (9.1)

We assume that c0 �= 0, so that from the first equation r1 = a and r2 = −a.

First, we shall consider the case when r1 − r2 = 2a is not an integer.
For this, we see that c1 = 0 (2a �= ±1), and for r = a and r = −a, (9.1)
reduces to

m(m + 2a)cm = −cm−2, m = 2, 3, · · · (9.2)

and
m(m − 2a)cm = −cm−2, m = 2, 3, · · · (9.3)

respectively. From these relations we easily obtain two linearly independent
solutions y1(x) and y2(x) which appear as

y1(x) =
[
1 − 1

22(1 + a)1!
x2 +

1
24(1 + a)(2 + a)2!

x4 − · · ·
]

xac0

and

y2(x) =
[
1 − 1

22(1 − a)1!
x2 +

1
24(1 − a)(2 − a)2!

x4 − · · ·
]

x−ac∗0.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 9,
c© Springer Science+Business Media, LLC 2009
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In the above solutions we take the constants

c0 =
1

2aΓ(1 + a)
and c∗0 =

1
2−aΓ(1 − a)

,

to obtain

y1(x) =
∞∑

m=0

(−1)m

m! Γ(m + 1 + a)

(x
2

)2m+a

(9.4)

and

y2(x) =
∞∑

m=0

(−1)m

m! Γ(m + 1 − a)

(x
2

)2m−a

. (9.5)

These solutions are analytic for |x| > 0. The function y1(x) is called the
Bessel function of order a of the first kind and is denoted by Ja(x); y2(x)
is the Bessel function of order −a and is denoted by J−a(x). The general
solution of the DE (2.15) is given by y(x) = AJa(x) + BJ−a(x), where A
and B are arbitrary constants.

Now we shall consider the case when r1 − r2 = 2a is a positive odd
integer, i.e., 2a = 2n + 1. Then, for r = a, c1 = 0 and as before from (9.1)
we get

Jn+1/2(x) =
∞∑

m=0

(−1)m

m! Γ
(
m + n + 3

2

) (x
2

)2m+n+1/2

. (9.6)

For r = −a we have −a = −n− 1/2; then c0 and c2n+1 are both arbitrary.
Finding the coefficients c2m, m = 1, 2, · · · and c2n+2m+1, m = 1, 2, · · · from
(9.1) in terms of c0 and c2n+1 leads to the solution

y(x) = c0x
−n−1/2

∞∑
m=0

(−1)mΓ
(

1
2 − n
)

m! 22m Γ
(

1
2 − n + m

)x2m

+c2n+1x
−n−1/2

∞∑
m=0

(−1)mΓ
(
n + 3

2

)
m! 22m Γ

(
n + m + 3

2

)x2n+1+2m

= AJ−n−1/2(x) + BJn+1/2(x), (9.7)

where A = c02−n−1/2Γ
(

1
2 − n
)

and B = 2n+1/2Γ
(

3
2 + n
)
c2n+1. Since c0

and c2n+1 are both arbitrary, A and B are arbitrary constants, and hence
(9.7) represents the general solution of (2.15).

If we take 2a as a negative odd integer, i.e., 2a = −2n− 1, then we get
r1 = −n − 1/2 and r2 = n + 1/2, and hence for r2 = n + 1/2 we have the
same solution as (9.6), and for r1 = −n − 1/2 the solution is the same as
(9.7).

Next we consider the case when a = 0. Then the exponents are r1 =
r2 = 0. The first solution y1(x) in this case is easily obtained and appears
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as

y1(x) = J0(x) =
∞∑

m=0

(−1)m

(m!)2
(x

2

)2m

. (9.8)

To obtain the second solution we return to the recurrence relation (9.1),
which with c0 = 1 gives

c2m =
(−1)m

(r + 2)2(r + 4)2 · · · (r + 2m)2

and hence
c′2m

c2m
= −2

m∑
k=1

1
r + 2k

.

Thus, we find

d2m = c′2m(0) = −c2m(0)
m∑

k=1

1
k

and now Theorem 5.1(ii) gives the second solution y2(x), which is denoted
as J0(x),

y2(x) = J0(x) = J0(x) ln |x| −
∞∑

m=1

(−1)m

(m!)2

(
m∑

k=1

1
k

)(x
2

)2m

. (9.9)

Finally, the general solution in this case can be written as y(x) = AJ0(x)+
BJ0(x).

The remaining case, namely, when r1 − r2 is an even integer, i.e., when
2a = 2n is very important, which we shall consider now. For r1 = n, there
is no difficulty and the first solution y1(x) can be written as y1(x) = Jn(x).
However, for the second solution y2(x) corresponding to the exponent r2 =
−n we need some extra manipulation to obtain

y2(x) =
2
π

[(
γ + ln

∣∣∣x
2

∣∣∣
)

Jn(x) − 1
2

n−1∑
k=0

(n − k − 1)!
k!

(x
2

)2k−n

+
1
2

∞∑
m=0

(−1)m+1 φ(m) + φ(n + m)
m! (n + m)!

(x
2

)2m+n
]

,

(9.10)

where φ(0) = 0, φ(m) =
∑m

k=1(1/k) and γ is the Euler constant defined by

γ = lim
m→∞

(φ(m) − ln m) = 0.5772157 · · · .

This solution y2(x) is known as Weber’s Bessel function of the second
kind and is denoted by Yn(x). In the literature some authors also call Yn(x)
the Neumann function.
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Thus, the general solution in this case can be written as y(x) = AJn(x)+
BYn(x).

The Bessel functions of the third kind also known as Hankel functions
are the complex solutions of the DE (2.15) for a = n and are defined by
the relations

H(1)
n (x) = Jn(x) + iYn(x) (9.11)

and
H(2)

n (x) = Jn(x) − iYn(x). (9.12)

The modified Bessel function of the first kind of order n is defined as

In(x) = i−nJn(ix) = e−nπi/2Jn(ix). (9.13)

If n is an integer, I−n(x) = In(x); but if n is not an integer, In(x) and
I−n(x) are linearly independent.

The modified Bessel function of the second kind of order n is defined as

Kn(x) =

⎧⎪⎪⎨
⎪⎪⎩

π

2

[
I−n(x) − In(x)

sin nπ

]
, n �= 0, 1, 2, · · ·

lim
p→n

π

2

[
I−p(x) − Ip(x)

sin pπ

]
, n = 0, 1, 2, · · · .

(9.14)

These functions are the solutions of the modified Bessel DE

x2y′′ + xy′ − (x2 + n2)y = 0. (9.15)

The generating function for the sequence {Jn(x)}∞n=−∞ is given in the
following theorem.

Theorem 9.1 (Generating Function).

exp
(

1
2
x

(
t − 1

t

))
=

∞∑
n=−∞

Jn(x)tn. (9.16)

Proof. We shall expand the left-hand side of (9.16) in powers of t and
show that the coefficient of tn is Jn(x). In fact, we have

exp
(

1
2
x

(
t − 1

t

))
= exp

(
1
2
xt

)
exp
(
− x

2t

)

=
∞∑

s=0

(xt)s

2s s!

∞∑
r=0

(−x)r

2rtrr!

=
∞∑

s=0

∞∑
r=0

(−1)r
(x

2

)s+r ts−r

s! r!
.
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The coefficient of tn in the above expression is

∞∑
m=0

(−1)m

m! (n + m)!

(x
2

)2m+n

,

which, by definition, is the same as Jn(x).

If in (9.16) we replace t by −1/τ, then it is the same as

exp
(

1
2
x

(
τ − 1

τ

))
=

∞∑
n=−∞

Jn(x)(−1)nτ−n =
∞∑

n=−∞
Jn(x)τn

and hence it is necessary that

Jn(x) = (−1)nJ−n(x). (9.17)

As in the case of Legendre polynomials, for Bessel functions Jn(x) also
several recurrence relations are known. In the following theorem we shall
prove one and give a few others as problems.

Theorem 9.2 (Recurrence Relation).

xJ ′
n(x) = nJn(x) − xJn+1(x). (9.18)

Proof. From the definition of Jn(x) in (9.4), we have

Jn(x) =
∞∑

m=0

(−1)m

m! (m + n)!

(x
2

)2m+n

and hence

J ′
n(x) =

∞∑
m=0

(−1)m(2m + n)
m! (m + n)!

1
2

(x
2

)2m+n−1

,

so

xJ ′
n(x) = n

∞∑
m=0

(−1)m

m!(m + n)!

(x
2

)2m+n

+x

∞∑
m=1

(−1)m

(m − 1)!(m + n)!

(x
2

)2m+n−1

= nJn(x) + x

∞∑
m=0

(−1)m+1

m! (m + n + 1)!

(x
2

)2m+n+1

= nJn(x) − xJn+1(x).

Finally, we note that when x is very small then from (9.5) with a =
n, y2(x) 
 constant × x−n; from (9.8) J0(x) 
 constant; and from (9.9)
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J0(x) 
 ln |x|. Thus, when a = n (≥ 0) the second solution of (2.15) for
very small x can be approximated by

constant ×
{

ln |x| if n = 0

x−n if n > 1.

Hence, the second solution tends to ∞ as x → 0. Similarly, the functions
Yn(x) and Kn(x) are unbounded at x = 0.

We also note from the definition of Ja(x) in (9.4) and the derivation of
(9.18) that the recurrence relation (9.18) in fact holds for all real numbers
n, i.e., n need not be an integer.

Problems

9.1. Prove the following relations:

(i) xJ ′
n(x) = −nJn(x) + xJn−1(x)

(ii) 2J ′
n(x) = Jn−1(x) − Jn+1(x)

(iii) 2nJn(x) = x(Jn−1(x) + Jn+1(x))

(iv)
d

dx
(x−nJn(x)) = −x−nJn+1(x)

(v)
d

dx
(xnJn(x)) = xnJn−1(x)

(vi)
d

dx
(xJn(x)Jn+1(x)) = x(J2

n(x) − J2
n+1(x))

(vii)
d

dx
(J2

n(x) + J2
n+1(x)) = 2

(
n

x
J2

n(x) − n + 1
x

J2
n+1(x)

)

(viii) J2
0 (x) + 2J2

1 (x) + 2J2
n(x) + · · · = 1, and hence |J0(x)| ≤ 1, |Jn(x)| ≤

1/
√

2.

9.2. From the definition of Ja(x) show that

(i) J1/2(x) =

√
2

πx
sin x

(ii) J−1/2(x) =

√
2

πx
cosx

(iii) J3/2(x) =

√
2

πx

(
sin x

x
− cosx

)

(iv) J−3/2(x) =

√
2

πx

(
−cosx

x
− sinx

)
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(v)
∫ x

0

tn+1Jn(t)dt = xn+1Jn+1(x), n > −1.

9.3. In a study of planetary motion Bessel encountered the integral

y(x) =
1
π

∫ π

0

cos(nθ − x sin θ)dθ.

Show that y(x) = Jn(x).

9.4. Show that for any a ≥ 0, the function

y(x) = xa

∫ π

0

cos(x cos θ) sin2a θdθ

is a solution to the Bessel DE (2.15).

9.5. Show that the transformation x = αtβ , y = tγw, where α, β and
γ are constants, converts Bessel’s DE (2.15) to

t2
d2w

dt2
+ (2γ + 1)t

dw

dt
+ (α2β2t2β + γ2 − a2β2)w = 0. (9.19)

For β = 1, γ = 0, a = n (nonnegative integer) (9.19) reduces to

t2
d2w

dt2
+ t

dw

dt
+ (α2t2 − n2)w = 0. (9.20)

(i) Show that the solution of the DE

d2w

dt2
+ tmw = 0, m > 0

can be expressed as

w(t) = t1/2

(
AJ1/(m+2)

(
2

m+2
t(m+2)/2

)
+ BJ−1/(m+2)

(
2

m+2
t(m+2)/2

))
.

(ii) Express the solution of DE

d2w

dt2
+ w = 0

in terms of Bessel functions and deduce the relations given in Problem 9.2
Parts (i) and (ii)

9.6. Show that the general solution of the DE

y′ = x2 + y2
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is given by

y(x) = x
J−3/4

(
1
2x2
)

+ cJ3/4

(
1
2x2
)

cJ−1/4

(
1
2x2
)
− J1/4

(
1
2x2
) ,

where c is an arbitrary constant.

9.7. Consider a long, flat triangular piece of metal whose ends are
joined by an inextensible piece of string of length slightly less than that of
the piece of metal (see Figure 9.1). The line of the string is taken as the
x-axis, with the left end as the origin. The deflection y(x) of the piece of
metal from horizontal at x satisfies the DE

EIy′′ + Ty = 0,

Figure 9.1

string

where T is the tension in the string, E is Young’s modulus, and I is the
moment of inertia of a cross section of the piece of metal. Since the metal
is triangular, I = αx for some constant α > 0. The above equation thus
can be written as

xy′′ + k2y = 0,

where k2 = T/Eα. Find the general solution of the above equation.

9.8. Consider a vertical column of length 
, such as a telephone pole
(see Figure 9.2). In certain cases it leads to the DE

d2y

dx2
+

P

EI
ekx/(y − a) = 0,

where E is the modulus of elasticity, I the moment of inertia at the base
of the column about an axis perpendicular to the plane of bending, and P
and k are constants.
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·

·

y

x

Vertical Column

Figure 9.2

Find the general solutions of the above equation.

9.9. A simple pendulum initially has the length 
0 and makes an angle
θ0 with the vertical line. It is then released from this position. If the length
of the pendulum increases with time t according to 
 = 
0 + εt, where ε is a
small constant, then the angle θ that the pendulum makes with the vertical
line, assuming that the oscillations are small, is the solution of the initial
value problem

(
0 + εt)
d2θ

dt2
+ 2ε

dθ

dt
+ gθ = 0, θ(0) = θ0,

dθ

dt
(0) = 0,

where g is the acceleration due to gravity. Find the solution of the above
initial value problem.

9.10. The DE

x2 d2E

dx2
− μx

dE

dx
− k2xνE = 0

occurs in the study of the flow of current through electrical transmission
lines; here μ, ν are positive constants and E represents the potential dif-
ference (with respect to one end of the line) at a point a distance x from
that end of the line. Find its general solution.

9.11. Consider the wedge-shaped cooling fin as shown in Figure 9.3.
The DE which describes the heat flow through and from this wedge is

x2 d2y

dx2
+ x

dy

dx
− μxy = 0,

where x is distance from tip to fin; T, temperature of fin at x; T0, constant
temperature of surrounding air; y = T − T0; h, heat-transfer coefficient
from outside surface of fin to the surrounding air; k, thermal conductivity
of fin material; 
, length of fin; w, thickness of fin at its base; θ, one-half
the wedge angle; and μ = 2h sec(
θ)/kw.
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Figure 9.3

θ

�

w

x

Find the general solutions of the above equation.

9.12. Consider a horizontal beam of length 2
 supported at both
ends, and laterally fixed at its left end. The beam carries a uniform load
w per unit length and is subjected to a constant end-pull P from the right
(see Figure 9.4). Suppose that the moment of inertia of a cross section of
the beam at a distance s from its left end is I = 2(s + 1). If origin is the
middle of the bar, then the vertical deflection y(x) at x is governed by the
nonhomogeneous DE

2E(x + 1 + 
)
d2y

dx2
− Py =

1
2
w(x + 
)2 − w(x + 
),

where E is Young’s modulus.

Figure 9.4

P

w

Find the general solutions of the above equation.

Answers or Hints

9.1. (i) See the proof of Theorem 9.2 (ii) Use (9.18) and (i) (iii) Use
(9.18) and (i) (iv) Multiply the relation (9.18) by x−n−1 (v) Multiply the
relation in (i) by xn−1 (vi) Use (9.18) and (i) (vii) Proceed as in (vi)
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(viii) Use (vii) to obtain d
dx(J2

0 (x) + J2
1 (x)) + d

dx(J2
1 (x) + J2

2 (x)) + · · · = 0.
Finally use J0(0) = 1, Jk(0) = 0, k ≥ 1.

9.2. For (i) and (ii) use 22m+1m!Γ(m + 3/2) = (2m + 1)!
√

π (iii) Verify
directly, or use Problem 9.1(iii) for n = 1/2 and then use (i) and (ii)
(iv) Similar to that of (iii) (v) Use Problem 9.1(v).

9.3. Set t = eiθ in (9.16) and then use (9.17).

9.4. Verify directly.

9.5. x = αtβ , y = tγw imply that x dy
dx = 1

β tγ
(
tdw

dt + γw
)
, x2 d2y

dx2 =
1

β2 tβ+1
(
(γ − β + 1)tγ−β dw

dt + tγ−β+1 d2w
dt2 + γ dw

dt tγ−β + γ(γ − β)wtγ−β−1
)

(i) Compare t2 d2w
dt2 + tm+2w = 0 with (9.19) (ii) Compare t2 d2w

dt2 + t2w = 0
with (9.19).

9.6. The transformation y = −u′/u converts the DE y′ = x2 + y2 to
u′′ + x2u = 0. Now use Problem 9.5(i), Problem 9.1(i) and (9.18).

9.7. x1/2
(
AJ1

(
2kx1/2

)
+ BJ−1

(
2kx1/2

))
.

9.8. Use z = y − a, 2μ = k/
, ν =
√

P/EI to convert the DE as
d2z
dx2 + ν2e2μxz = 0. Now use t = νeμx to obtain t2 d2z

dt2 + tdz
dt + t2

μ2 z = 0.

Finally, compare this with (9.19).

9.9. θ(t) = 1√
0+εt

[
AJ1

(
2
√

g

ε

√

0 + εt

)
+ BJ−1

(
2
√

g

ε

√

0 + εt

)]
where

A =
√

0J′
−1(c)−(ε/2

√
g)J−1(c)

J1(c)J′
−1(c)−J−1(c)J′

1(c)
θ0, B = (ε/2

√
g)J1(c)−

√
0J′

1(c)

J1(c)J′
−1(c)−J−1(c)J′

1(c)
θ0 and c = 2

√
g0
ε .

9.10. The transformation x = αtβ , y = tγw, where α, β and γ are con-
stants, converts (9.15) to

t2 d2w
dt2 + (2γ + 1)tdw

dt + (−α2β2t2β + γ2 − n2β2)w = 0. (9.21)
E(x) = x(1+μ)/2

[
AI(1+μ)/ν

(
2k
ν xν/2

)
+ BK(1+μ)/ν

(
2k
ν xν/2

)]
.

9.11. Compare with (9.21) to get y(x) = AI0

(
2
√

μx1/2
)
+BK0

(
2
√

μx1/2
)
.

9.12. y(x) = x1/2
[
AI1

(√
2P
E x1/2

)
+ BK1

(√
2P
E x1/2

)]
− w

2P (x + 
)2 +
w
P 2 (P − 2E)(x + 
) − 2E

P 2 w.



Lecture 10
Hypergeometric Functions

In this lecture we shall study the hypergeometric DE (3.17) and its
solutions, known as hypergeometric functions. This DE finds applications
in several problems of mathematical physics, quantum mechanics, and fluid
dynamics.

A series of the form

1 +
ab

c 1!
x +

a(a + 1)b(b + 1)
c(c + 1) 2!

x2 +
a(a + 1)(a + 2)b(b + 1)(b + 2)

c(c + 1)(c + 2) 3!
x3 + · · ·

=

( ∞∑
m=0

Γ(a + m) Γ(b + m)
Γ(c + m) m!

xm

)
Γ(c)

Γ(a) Γ(b)
(10.1)

is called a hypergeometric series.

The ratio of the coefficients of xm+1 and xm in the series (10.1) is

(a + m)(b + m)
(c + m)(m + 1)

, (10.2)

which tends to 1 uniformly as m → ∞, regardless of the values of a, b and
c. Hence, by the ratio test, the series (10.1) has unit radius of convergence
in every case. Also, since (10.2) can be written as

1 − 1 + c − a − b

m
+ O

(
1

m2

)
,

the series (10.1) converges absolutely at x = ±1 by the Gauss test if c >
a + b.

The hypergeometric series is commonly designated by F (a, b, c, x) and
in this form it is called a hypergeometric function.

In the hypergeometric DE (3.17), a, b, and c are parameters. It is
clear that x = 0 and 1 are regular singular points of (3.17), whereas all
other points are ordinary points. Also, in the neighborhood of zero we have
p0 = c, q0 = 0 and the indicial equation r(r − 1) + cr = 0 has the roots
r1 = 0 and r2 = 1 − c.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 10,
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On substituting directly y(x) = xr
∑∞

m=0 cmxm in the equation (3.17),
we obtain the recurrence relation

(r+1+m)(r+c+m)cm+1 = (r+a+m)(r+b+m)cm, m = 0, 1, · · · . (10.3)

For the exponent r1 = 0, the recurrence relation (10.3) leads to the
solution c0F (a, b, c, x). Taking c0 = 1, we find the first solution of the DE
(3.17) as

y(x) = F (a, b, c, x). (10.4)

The second solution with the exponent r2 = 1− c when c is neither zero
nor a negative integer can be obtained as follows: In the DE (3.17) using
the substitution y = x1−cw, we obtain

x(1 − x)w′′ + [c1 − (a1 + b1 + 1)x]w′ − a1b1w = 0, (10.5)

where c1 = 2 − c, a1 = a − c + 1, b1 = b − c + 1. This DE has a series
solution w(x) = F (a1, b1, c1, x), and hence the second solution of the DE
(3.17) is

y(x) = x1−cF (a − c + 1, b − c + 1, 2 − c, x). (10.6)

The general solution of the DE (3.17) in the neighborhood of x = 0 is a
linear combination of the two solutions (10.4) and (10.6).

Solutions of the DE (3.17) at the singular point x = 1 can be obtained
directly or may be deduced from the preceding solutions by a change of
independent variable t = 1 − x. Indeed, with this substitution DE (3.17)
reduces to

t(1 − t)
d2y

dt2
+ [c1 − (a + b + 1)t]

dt

dt
− aby = 0, (10.7)

where c1 = a + b − c + 1.

Thus, we have the solutions

y(x) = F (a, b, a + b − c + 1, 1 − x) (10.8)

and

y(x) = (1 − x)c−a−bF (c − b, c − a, c − a − b + 1, 1 − x) (10.9)

provided c − a − b is not a positive integer.

The hypergeometric equation (3.17) has an interesting property that the
derivative of a solution satisfies an associated hypergeometric DE. Indeed,
differentiating (3.17), we obtain

x(1 − x)y′′′ + [c + 1 − (a + 1 + b + 1 + 1)x]y′′ − (a + 1)(b + 1)y′ = 0,
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which is a hypergeometric DE in y′ in which a, b, c have been replaced by
a + 1, b + 1, c + 1, respectively. Thus, it follows that

d

dx
F (a, b, c, x) = AF (a + 1, b + 1, c + 1, x), (10.10)

where A is a constant.

Comparing the constant terms on both sides of (10.10), it follows that
A = ab/c. Hence, the following relation holds

d

dx
F (a, b, c, x) =

1
c
ab F (a + 1, b + 1, c + 1, x). (10.11)

In general for the mth derivative it is easy to find

dm

dxm
F (a, b, c, x) =

Γ(a + m) Γ(b + m)
Γ(c + m)

Γ(c)
Γ(a) Γ(b)

F (a + m, b + m, c + m, x).

(10.12)
Like Bessel functions (cf. Problem 9.3), hypergeometric functions can

also be represented in terms of suitable integrals. For this, we shall prove
the following theorem.

Theorem 10.1 (Integral Representation).

F (a, b, c, x) =
1

B(b, c − b)

∫ 1

0

(1 − t)c−b−1tb−1(1 − xt)−adt, c > b > 0.

(10.13)
Proof. From the relation (3.7) and the definition of Beta function (3.6),
we have

F (a, b, c, x) =
∞∑

m=0

Γ(a + m)
Γ(a) m!

(
Γ(b + m) Γ(c − b)

Γ(c + m)

/
Γ(b) Γ(c − b)

Γ(c)

)
xm

=
∞∑

m=0

Γ(a + m)
Γ(a) m!

B(b + m, c − b)
B(b, c − b)

xm

=
1

B(b, c − b)

∞∑
m=0

Γ(a + m)
Γ(a) m!

xm

∫ 1

0

(1 − t)c−b−1tb+m−1dt.

Thus, on interchanging the order in which the operations of summation and
integration are performed, we obtain

F (a, b, c, x) =
1

B(b, c − b)

∫ 1

0

(1 − t)c−b−1tb−1

{ ∞∑
m=0

Γ(a + m)
Γ(a) m!

(xt)m

}
dt.

(10.14)
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However, since
∞∑

m=0

Γ(a + m)
Γ(a) m!

(xt)m = (1 − xt)−a

the relation (10.14) immediately leads to (10.13).

As a consequence of (10.13), we find

F (a, b, c, 1) =
1

B(b, c − b)

∫ 1

0

(1 − t)c−a−b−1tb−1dt

=
B(c − a − b, b)

B(b, c − b)
=

Γ(c − a − b) Γ(c)
Γ(c − a) Γ(c − b)

provided c − a > b > 0.

Next we shall prove the following relation.

Theorem 10.2 (Recurrence Relation).

F (a + 1, b, c, x) − F (a, b, c, x) =
1
c
bx F (a + 1, b + 1, c + 1, x). (10.15)

Proof. From (10.1), we have

F (a+1, b, c, x)−F (a, b, c, x)

=
∞∑

m=0

Γ(b + m) Γ(c)
Γ(c + m) m! Γ(b)

{
Γ(a + m + 1)

Γ(a + 1)
− Γ(a + m)

Γ(a)

}
xm

=
∞∑

m=0

Γ(a + m) Γ(b + m) Γ(c)
Γ(c + m) m! Γ(b) Γ(a)

m

a
xm

= x

∞∑
m=1

Γ(a + m) Γ(b + m) Γ(c)
Γ(c + m) (m − 1)! Γ(b) Γ(a + 1)

xm−1

=
1
c
bx

∞∑
m=0

Γ(a + m + 1)Γ(b + m + 1)Γ(c + 1)
Γ(c + m + 1) m! Γ(b + 1)Γ(a + 1)

xm

=
1
c
bx F (a + 1, b + 1, c + 1, x),

which is the right side of (10.15).

Legendre polynomials can be expressed in terms of hypergeometric func-
tions. We provide this relation in the following result.

Theorem 10.3. The following relation holds:

Pn(x) = F (−n, n + 1, 1, (1 − x)/2). (10.16)
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Proof. From the Rodrigues formula for Legendre polynomials (7.9), we
have

Pn(x) =
1

2n n!
dn

dxn
(x2 − 1)n =

1
n!

dn

dxn

[
(x − 1)n

{
1
2
(x + 1)

}n]

=
1
n!

dn

dxn

[
(x − 1)n

{
1 − 1

2
(1 − x)

}n]

=
(−1)n

n!
dn

dxn

[
(1 − x)n

{
1 − n

2
(1 − x) +

n(n − 1)
22 2!

(1 − x)2 − · · ·
}]

=
(−1)n

n!
dn

dxn

[
(1 − x)n − n

2
(1 − x)n+1 +

n(n − 1)
22 2!

(1 − x)n+2 − · · ·
]

=
(−1)n

n!

[
(−1)nn! − n

2
(−1)n (n + 1)!

1!
(1 − x)

+
n(n − 1)

22 2!
(−1)n (n + 2)!

2!
(1 − x)2 − · · ·

]

= 1 +
(−n)(n + 1)

1 · 1

(
1− x

2

)
+

(−n)(−n + 1)(n + 1)(n + 2)
1 · 2 · 1 · 2

(
1− x

2

)2

+ · · ·

= F (−n, n + 1, 1, (1 − x)/2).

In the DE (3.17) if we use the substitution x = t/b, then the hypergeo-
metric function F (a, b, c, t/b) is a solution of the DE

t

(
1 − t

b

)
d2y

dt2
+
[
c −
(

1 +
a + 1

b

)
t

]
dy

dt
− ay = 0.

Thus, letting b → ∞, we see that the function limb→∞ F (a, b, c, t/b) is a
solution of the DE

t
d2y

dt2
+ (c − t)

dy

dt
− ay = 0. (10.17)

Next from (10.1), we have

F

(
a, b, c,

t

b

)
=

( ∞∑
m=0

Γ(a + m)
Γ(c + m) m!

{
Γ(b + m)
bm Γ(b)

}
tm

)
Γ(c)
Γ(a)

and since

lim
b→∞

Γ(b + m)
bm Γ(b)

= 1,

it follows that

lim
b→∞

F

(
a, b, c,

t

b

)
=

( ∞∑
m=0

Γ(a + m)
Γ(c + m) m!

tm

)
Γ(c)
Γ(a)

= F (a, c, t), say.

(10.18)
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The function F (a, c, t) defined in (10.18) is called a confluent hypergeo-
metric function, and the DE (10.17) is known as confluent hypergeometric
equation.

Finally, we note that the second solution of the DE (10.17) is t1−cF (a−
c + 1, 2 − c, t).

Problems

10.1. Express the solutions of the following DEs in terms of F (a, b, c, x)

(i) x(1 − x)y′′ − 3y′ + 2y = 0
(ii) 2x(1 − x)y′′ + (1 − x)y′ + 3y = 0
(iii) x(1 − x)y′′ + (2 − 3x)y′ − y = 0
(iv) (2x + 2x2)y′′ + (1 + 5x)y′ + y = 0.

10.2. Show that in the DE (3.17) the change of the dependent variable
y = (1− x)c−a−bu leads to a hypergeometric equation having the solutions

y(x) = (1 − x)c−a−bF (c − a, c − b, c, x)

and
y(x) = x1−c(1 − x)c−a−bF (1 − a, 1 − b, 2 − c, x).

Further, show that these are identical with (10.4) and (10.6), respectively.

10.3. Setting x = 1/t in the DE (3.17), find the exponents at infinity,
and derive the solutions

y(x) = x−aF (a, a − c + 1, a− b + 1, 1/x)

and
y(x) = x−bF (b, b − c + 1, b − a + 1, 1/x).

10.4. Show that the DE

(x2 + a1x + a2)y′′ + (a3x + a4)y′ + a5y = 0

can be reduced to the hypergeometric form by a suitable change of variable
provided the roots of x2 + a1x + a2 = 0 are distinct.

10.5. Use the result of Problem 10.4 to show that the Legendre
equation (3.19) with a = n can be reduced to the hypergeometric form

t(1 − t)y′′ + (1 − 2t)y′ + n(n + 1)y = 0

by the substitution x − 1 = −2t. Hence, establish the relation (10.16).
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10.6. Use the transformation t = (1− x)/2 to convert the Chebyshev
equation (3.15) into a hypergeometric equation and show that its general
solution near x = 1 is given by

y(x) = c0F

(
a,−a,

1
2
,
1−x

2

)
+ c1

(
1−x

2

)1/2

F

(
a +

1
2
,−a +

1
2
,
3
2
,
1−x

2

)
.

10.7. Show that Jacobi’s DE

x(1 − x)y′′ + [a − (1 + b)x]y′ + n(b + n)y = 0

is a hypergeometric equation, and hence its general solution near x = 0 can
be written as

y(x) = c1F (n + b,−n, a, x) + c2x
1−aF (n + b − a + 1, 1 − n − a, 2 − a, x).

10.8. Prove the following recurrence relations

(i) F (a, b, c, x) − F (a, b, c − 1, x) = − abx

c(c − 1)
F (a + 1, b + 1, c + 1, x)

(ii) F (a, b + 1, c + 1, x) − F (a, b, c, x) =
a(c − b)x
c(c + 1)

F (a + 1, b + 1, c + 2, x)

(iii) F (a − 1, b + 1, c, x) − F (a, b, c, x) =
(a − b − 1)x

c
F (a, b + 1, c + 1, x).

10.9. In the analysis of a deformation due to a uniform load on a
certain circular plate, the following equation occurs:

x2(1 − (εx)k)φ′′ + x(1 − (εx)k − 3k(εx)k)φ′ − (1 − (εx)k + 3kv(εx)k)φ = 0,
(10.19)

where ε, k, and v are constants; x is proportional to the distance from the
center of the plate, and φ is the angle between the normal to the deformed
surface of the plate and the normal to that surface at the center of the
plate. Show that the successive substitutions z = εx, φ = zψ, zk = σ
transform (10.19) to the hypergeometric equation

σ(1 − σ)
d2ψ

dσ2
+
[
k + 2

k
−
(

1 +
2 + 3k

k

)
σ

]
dψ

dσ
− 3(v + 1)

k
ψ = 0

with c = (k + 2)/k, a + b = (2 + 3k)/k, ab = 3(v + 1)/k. Hence, if α and β
are the roots of kλ2 − (2 + 3k)λ + 3(v + 1) = 0, the solution of (10.19) can
be written as φ(x) = εxF (α, β, (k + 2)/k, εkxk).

Answers or Hints

10.1. (i) F (−2, 1,−3, x) (ii) F (1,−3/2, 1/2, x) (iii) F (1, 1, 2, x)
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(iv) F (1/2, 1, 1/2,−x).

10.2. Substitute y = (1 − x)c−a−bu in the DE (3.17) to get

x(1 − x)u′′ + [c − (c − a + c − b + 1)x]u′ − (c − a)(c − b)u = 0.

The identities follow from the uniqueness of the initial value problems for
(3.17).

10.3. Substitute x = 1/t in the DE (3.17) to get

d2y
dt2 + [(a + b − 1) − (c − 2)t] 1

t(t−1)
dy
dt − ab

t2(t−1)y = 0.

For this DE t = 0 is a regular singular point and the exponents are a and
b.

10.4. If x2 + a1x + a2 = (x − a)(x − b), then use the substitution t =
(x − a)/(b − a).

10.5. Problem 10.4 suggests the substitution t = x−1
−2 .

10.6. For this also Problem 10.4 suggests the substitution t = x−1
−2 .

10.7. Compare the coefficients to get a = n + b, b = −n, c = a.

10.8. Use (10.1) directly.

10.9. Verify directly.



Lecture 11
Piecewise Continuous
and Periodic Functions

Mathematical problems describing real world situations often have so-
lutions which are not even continuous. Thus, to analyze such problems
we need to work in a set which is bigger than the set of continuous func-
tions. In this lecture we shall introduce the sets of piecewise continuous and
piecewise smooth functions, which are quite adequate to deal with a wide
variety of applied problems. Here we shall also define periodic functions,
and introduce even and odd extensions. These terms will be used in later
lectures repeatedly.

Recall that for a given function f(x) the right-hand and the left-hand
limits at the point x0 are defined as follows:

f(x0+) = lim
x → x0x > x0

f(x) = lim
x→x0+

f(x),

and
f(x0−) = lim

x → x0x < x0

f(x) = lim
x→x0−

f(x).

We say f(x) has the limit at x = x0 provided f(x0+) = f(x0−). The
function f(x) is said to be continuous at a point x0 provided limx→x0 f(x) =
f(x0), and it is continuous in an interval α < x < β if it is continuous at
each point x for α < x < β (see Figure 11.1).

x
x0

continuous at x0

x
x0

discontinuous at x0

x
x0

discontinuous at x0

1

4 f(x0+) = 0

f(x0−) = 4

f(x0) = 1

Figure 11.1

As an illustration, consider the function f(x) = cos 1/x, 0 < x < 1.
For this function f(0+) does not exist. In fact, as x → 0+, f(x) oscillates
between −1 and 1. To see this let xn = 1/(2nπ), n = 1, 2, · · · . Then,

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 11,
c© Springer Science+Business Media, LLC 2009
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xn → 0 as n → ∞, but f(xn) = cos 1/xn = cos(2nπ) = 1. Also, let
yn = 1/[(2n + 1)π], n = 1, 2, · · · . Then, yn → 0 as n → ∞ but f(yn) =
cos 1/yn = cos(2n+1)π = −1. As another example, for the function f(x) =
1/x, 0 < x < 1, f(0+) = limx→0+ 1/x = +∞.

Definition 11.1. A function f(x) is called piecewise continuous (sec-
tionally continuous) on an interval α < x < β if there are finitely many
points α = x0 < x1 < · · · < xn = β such that
(i). f(x) is continuous on each subinterval x0 < x < x1, x1 < x <
x2, · · · , xn−1 < x < xn, and
(ii). on each subinterval (xk−1, xk) both f(xk−1+) and f(xk−) exist, i.e.,
are finite.

Note that the function f(x) need not be defined at the points xk.

We shall denote the class of piecewise continuous functions on α < x < β
by Cp(α, β).

Example 11.1. Consider the function

f(x) =

⎧⎨
⎩

x2, 0 < x ≤ 1
−1, 1 < x < 2
x − 1, 2 < x ≤ 3.

We shall show that f(x) is piecewise continuous on 0 < x < 3. Note that
for this function x0 = 0, x1 = 1, x2 = 2, x3 = 3 (see Figure 11.2).

On 0 < x < 1: f(x) = x2 is con-

x

y

1 2 3

1

0 × × ×

×

×

×

1

2

−1

Figure 11.2

tinuous on 0 < x < 1, and f(0+) =
limx→0+ x2 = 0, f(1−) = limx→1− x2

= 1.

On 1 < x < 2: f(x) = −1 is con-
tinuous on 1 < x < 2, and f(1+) =
limx→1+ f(x) = limx→1+(−1) = −1,
f(2−) = limx→2− f(x) = −1.

On 2 < x < 3: f(x) = x − 1 is
continuous on 2 < x < 3, and f(2+) =
1, f(3−) = 2.

Hence, f(x) ∈ Cp(0, 3).

Remark 11.1. (i). f(x) is not defined at x = 0 and 2.

(ii). One can integrate a piecewise continuous function interval-wise, e.g.,
for the above function:

∫ 3

0

f(x)dx =
∫ 1

0

x2dx +
∫ 2

1

−1dx +
∫ 3

2

(x − 1)dx =
5
6
.
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Example 11.2. The function f(x) = cos 1/x, 0 < x < 1 is continuous
on 0 < x < 1. However, since limx→0+ f(x) does not exist, f(x) �∈ Cp(0, 1).
Similarly, f(x) = 1/x �∈ Cp(0, 1).

Example 11.3. For the function f(x) = x2 sin 1/x, 0 < x < 1 we
have x0 = 0, x1 = 1. Clearly, on 0 < x < 1 this function is continuous,
and f(1−) = limx→1− x2 sin 1/x = 12 sin 1/1 = sin 1. We shall show that
f(0+) = limx→0+ x2 sin 1/x = 0. For this note that for x > 0, − 1 ≤
sin 1/x ≤ 1, and hence

−x2 ≤ x2 sin
1
x

≤ x2,

so by the sandwich theorem limx→0+ x2 sin 1/x = 0. Thus, f(x) ∈ Cp(0, 1).

Definition 11.2. A function f(x), α < x < β is said to be piecewise
smooth (sectionally smooth) if both f(x) and f ′(x) are piecewise continuous
on α < x < β. The class of piecewise smooth functions on α < x < β is
denoted by C1

p (α, β).

Note that f ′(x) is piecewise continuous means that f ′(x) is continuous
except at s0, · · · , sm (these points include x0, · · · , xn where f(x) is not con-
tinuous) and on each subinterval (sk−1, sk) both f ′(sk−1+) and f ′(sk−)
exist. Here f ′(sj+) = limx→sj+ f ′(x) and f ′(sj−) = limx→sj− f ′(x).

Example 11.4. Consider the function

f(x) =
{

x + 1, − 1 < x < 0
sin x, 0 < x < π/2.

Clearly, f(x) ∈ Cp(−1, π/2), x0 = −1, x1 = 0, x2 = π/2 (see Figure
11.3(a)). Since

f ′(x) =
{

1, − 1 < x < 0
cosx, 0 < x < π/2

we have s0 = −1, s1 = 0, s2 = π/2 (see Figure 11.3(b)).

x
0-1 π/2

×

Figure 11.3 (a)

x×
0-1 π/2

Figure 11.3 (b)

On −1 < x < 0: f ′(x) = 1 is continuous, and f ′(−1+) = 1, f ′(0−) = 1.

On 0 < x < π/2: f ′(x) = cosx is continuous, and f ′(0+) = 1, f ′(π/2−) =
0.
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Thus, f ′(x) ∈ Cp(−1, π/2). In conclusion, f(x) ∈ C1
p(−1,−π/2).

Example 11.5. Consider the function

x

y

0
×

−0.1
×

0.1

0.01

Figure 11.4

f(x) =

{
0.01, − 0.1 < x < 0

x2 cos 1/x, 0 < x < 0.1

(see Figure 11.4).

Clearly, f(x) ∈ Cp(−0.1, 0.1), and

f ′(x) =

{
0, − 0.1 < x < 0

2x cos 1/x + sin 1/x, 0 < x < 0.1.

If f ′(x) ∈ Cp(−0.1, 0.1), f ′(0+) must exist. But, f ′(0+) does not exist. In
fact, limx→0+ 2x cos 1/x = 0 by the sandwich theorem, but limx→0+ sin 1/x
does not exist, because sin 1/x oscillates between −1 and 1 as x → 0.
For this, let xn = 1/[(2n + 1

2 )π], yn = 1/[(2n + 3
2 )π] so that xn →

0+, yn → 0+ as n → ∞. Clearly, sin 1/xn = 1, sin 1/yn = −1. Thus,
f ′(x) �∈ Cp(−0.1, 0.1), and hence f(x) �∈ C1

p (−0.1, 0.1).

Rule of Thumb. If f(x) is defined in pieces, where each piece is
differentiable twice in a slightly larger interval, (e.g., (−∞,∞)), such as
polynomials in x, ex, sinx, etc., then f(x) is piecewise smooth. For exam-
ple, the function

f(x) =
{

4x + 2, 0 < x < 1
ex, 1 < x < 2

is piecewise smooth.

Definition 11.3. A function f(x) is said to be periodic with period
ω if f(x + ω) = f(x) for all x. For example, f(x) = cosx is periodic with
period 2π. In fact, f(x + 2π) = cos(x + 2π) = cosx = f(x) for all x. For
n ≥ 1 the function f(x) = sin nx is periodic with period 2π, f(x + 2π) =
sin n(x + 2π) = sin(nx + 2nπ) = sin nx = f(x).

Clearly, the expression

a0

2
+

∞∑
n=1

(an cosnx + bn sin nx)

is periodic with period 2π.

Any function f(x) defined on −π < x < π can be extended to a periodic
function F (x) with period 2π. The function F (x) is called the periodic
extension of f(x).
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Example 11.6. For the function

f(x) =
{

0, − π < x < 0
x, 0 ≤ x < π

the extension F (x) is given in Figure 11.5.

x

y

−3π −2π −π 0

×π

π 2π 3π
× ×

F (x)

Figure 11.5

Remark 11.2. If a function f(x), − π ≤ x ≤ π can be extended to a
periodic function with period 2π, we must have f(−π) = f(π)

Example 11.7. For the function f(x) = x2, −π ≤ x ≤ π the extension
F (x) is given in Figure 11.6.

x

y

−3π −2π −π 0

×π2

×π

× ××
π 2π 3π

×× × ×× ×
4π−4π

F (x)

Figure 11.6

Finally, we recall that if a function g(x) is odd, i.e., g(−x) = −g(x) then∫ α

−α
g(x)dx = 0, and if g(x) is even, i.e., g(−x) = g(x) then

∫ α

−α
g(x)dx =

2
∫ α

0
g(x)dx. Further, if g(x) is defined only on (0, α) we can extend it as

follows:

go(x) =

{
g(x), 0 < x < α

−g(−x), − α < x < 0.

Clearly, go(x) is an odd function, and hence it is called an odd extension of
g(x). We can also extend g(x) as

ge(x) =

{
g(x), 0 < x < α

g(−x), − α < x < 0.

Since, ge(x) is even it is called an even extension of g(x).
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Graphically, the even extension is made by reflecting the graph in the
vertical axis. The odd extension is made by reflecting first in the vertical
axis and then in the horizontal axis (see Figure 11.7 for the function x, 0 <
x < 1).

x

y

××

×

1−1

1

even extension

x

y

××

×

1−1

1

×−1
odd extension

Figure 11.7

Problems

11.1. (i) Show that the function f(x) =
√

x cos(1/x2) is piecewise
continuous on the interval (0, 1).
(ii) Is the function f(x) = sin(1/x2) piecewise continuous on the interval
(0, 1)? Justify your answer.

11.2. Consider the function f(x) = x2 sin2(1/x) on the interval (0, 1).

(i) Show that f(x) is piecewise continuous on the interval (0, 1).
(ii) Is f(x) piecewise smooth on the interval (0, 1)? Justify your answer.

11.3. Show that the function

f(x) =
{ √

1 − x2 for 0 < x < 1
x for 1 < x < 2

is piecewise continuous but not piecewise smooth on (0, 2).

11.4. Using l’Hospital’s rule find f(0+) and f ′(0+) for the function

f(x) =

{
(1 − ex)/x, x �= 0

0, x = 0.

Deduce that f(x) is piecewise smooth on the interval (0, 1).

11.5. Consider the function

f(x) =

{
x(cos(ln x) + sin(lnx)), 0 < x < 1

0, x = 0.
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Compute f ′(x) for 0 < x < 1 and deduce that f(x) is not piecewise smooth
on the interval (0, 1).

11.6. Prove that if f(x) and f ′(x) are both even functions, then f(x)
is a constant.

Answers or Hints

11.1. (i) See Example 11.3 (ii) Take xn = [(2n + 1
2 )π]−1/2, yn = [(2n −

1
2 )π]−1/2.

11.2. (i) f(0+) = 0 (ii) No. For f ′(x) = 2x sin2(1/x) − sin(2/x) take
xn = 2[(2n + 1

2 )π]−1, yn = 2[(2n − 1
2 )π]−1.

11.3. f ′(1) is undefined.

11.4. f(0+) = −1, f ′(0+) = −1/2, f(x) ∈ C1
p (0, 1).

11.5. f ′(x) = 2 cos(ln x) oscillates between −2 and 2 as x → 0 + . Take
xn = e−2nπ, yn = e−(2n+1)π.

11.6. Differentiate f(x) = f(−x) and use f ′(x) = f ′(−x).



Lecture 12
Orthogonal Functions

and Polynomials

In this lecture first we shall introduce orthogonality of functions, which
is a generalization of orthogonality of vectors in the sense that the sum
of products in the scalar multiplication (dot product) of vectors will be
replaced by the integral of products, and then show that the Legendre,
Chebyshev, and Hermite polynomials are orthogonal. The orthogonality of
Laguerre polynomials and Bessel functions will be shown in the next lecture.
Orthogonality of functions plays a fundamental role in constructing Fourier
series, which we shall discuss in detail later.

We begin with the following definition.

Definition 12.1. The set of functions {φn(x) : n = 0, 1, · · ·} each of
which is piecewise continuous in an infinite or a finite interval [α, β], is said
to be orthogonal in [α, β] with respect to the nonnegative function r(x) if

≺ φm, φn �=
∫ β

α

r(x)φm(x)φn(x)dx = 0 for all m �= n

and ∫ β

α

r(x)φ2
n(x)dx �= 0 for all n.

The function r(x) is called the weight function.

We shall always assume that r(x) has only a finite number of zeros in
[α, β] and the integrals

∫ β

α r(x)φn(x)dx, n = 0, 1, · · · exist.

The orthogonal set {φn(x) : n = 0, 1, · · ·} in [α, β] with respect to the
weight function r(x) is said to be orthonormal if

∫ β

α

r(x)φ2
n(x)dx = 1 for all n.

Thus, orthonormal functions have the same properties as orthogonal func-
tions, but, in addition, they have been normalized, i.e., each function φn(x)
of the orthogonal set has been divided by the norm of that function, which
is defined as

‖φn‖ =

(∫ β

α

r(x)φ2
n(x)dx

)1/2

.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 12,
c© Springer Science+Business Media, LLC 2009
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Example 12.1. The set

{1, cosnx, n = 1, 2, · · ·}

is orthogonal on 0 < x < π with r(x) = 1. Indeed, for m �= n, we have
∫ π

0

cosmx cosnxdx =
1
2

∫ π

0

[cos(m − n)x + cos(m + n)x]dx

=
1
2

[
sin(m − n)x

m − n
+

sin(m + n)x
m + n

]∣∣∣∣
π

0

=
1
2

[
sin(m − n)π

m − n
− 0 +

sin(m + n)π
m + n

− 0
]

= 0.

Now since

‖φ0‖ =
(∫ π

0

12dx

)1/2

=
√

π

‖φn‖ =
(∫ π

0

cos2 nxdx

)1/2

=
(∫ π

0

1 + cos 2nx

2
dx

)1/2

=
√

π

2
,

it follows that the set{
1√
π

,

√
2
π

cosnx, n = 1, 2, · · ·
}

is orthonormal on 0 < x < π with r(x) = 1.

Example 12.2. The set
{√

2
π

sin nx, n = 1, 2, · · ·
}

is orthonormal on 0 < x < π with r(x) = 1.

Example 12.3. The set
{

1√
2π

,
1√
π

cosnx,
1√
π

sin nx, n = 1, 2, · · ·
}

is orthonormal on −π < x < π with r(x) = 1. For this we need to check

∫ π

−π

(
1√
2π

)2

dx = 1,

∫ π

−π

(
1√
π

cosnx

)2

dx = 1,

∫ π

−π

(
1√
π

sin nx

)2

dx = 1,

∫ π

−π

1√
2π

× 1√
π

cosnxdx = 0,

∫ π

−π

1√
2π

× 1√
π

sin nxdx = 0,
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∫ π

−π

1√
π

cosnx
1√
π

cosmxdx = 0,

∫ π

−π

1√
π

sin nx
1√
π

sin mxdx = 0, m �= n

and ∫ π

−π

1√
π

cosnx
1√
π

sin mxdx = 0, m �= n.

Orthogonality of Legendre polynomials. We shall use
Rodrigues’ formula (7.9) to show the orthogonality of Legendre polynomials
in [−1, 1] with r(x) = 1. Indeed, from (7.9), we have

2nn!
∫ 1

−1

Pm(x)Pn(x)dx =
∫ 1

−1

Pm(x)
dn

dxn
(x2 − 1)ndx.

Now an integration by parts gives
∫ 1

−1

Pm(x)
dn

dxn
(x2 − 1)ndx

= Pm(x)
dn−1

dxn−1
(x2 − 1)n

∣∣∣∣
1

−1

−
∫ 1

−1

d

dx
Pm(x)

dn−1

dxn−1
(x2 − 1)ndx.

However, since dn−1(x2 − 1)n/dxn−1 contains a factor (x2 − 1), it follows
that

2nn!
∫ 1

−1

Pm(x)Pn(x)dx = −
∫ 1

−1

d

dx
Pm(x)

dn−1

dxn−1
(x2 − 1)ndx.

We can integrate the right side once again, and continue until we have
performed n such integrations. At this stage, we find

2nn!
∫ 1

−1

Pm(x)Pn(x)dx = (−1)n

∫ 1

−1

(
dn

dxn
Pm(x)

)
(x2 − 1)ndx. (12.1)

There is no loss of generality if we assume that m ≤ n. If m < n, then
dnPm(x)/dxn = 0 and it follows that

∫ 1

−1

Pm(x)Pn(x)dx = 0.

Further, if m = n, then once again from (7.9), we have

dn

dxn
Pn(x) =

1
2n n!

d2n

dx2n
(x2 − 1)n =

(2n)!
2n n!

and (12.1) gives
∫ 1

−1

P 2
n(x)dx =

(−1)n

22n

(2n)!
(n!)2

∫ 1

−1

(x2 − 1)ndx. (12.2)
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Let y = x2 in the integral
∫ 1

−1
(x2 − 1)ndx, to obtain

∫ 1

−1

(x2 − 1)ndx = 2
∫ 1

0

(x2 − 1)ndx = (−1)n

∫ 1

0

(1 − y)ny−1/2dy

= (−1)nB

(
n + 1,

1
2

)
= (−1)n n! Γ

(
1
2

)
Γ
(
n + 3

2

) .
Thus, (12.2) is the same as

∫ 1

−1

P 2
n(x)dx =

(2n)!
22n (n!)2

n! Γ
(

1
2

)
(
n + 1

2

) (
n − 1

2

)
· · · 1

2Γ
(

1
2

) =
2

2n + 1
.

Orthogonality of Chebyshev polynomials. We shall show
that Chebyshev polynomials of the first kind Tn(x) = cos(n cos−1 x), n =
0, 1, · · · are orthogonal in [−1, 1] with r(x) = (1 − x2)−1/2. For this, it
suffices to note that

I =
∫ 1

−1

(1 − x2)−1/2Tm(x)Tn(x)dx

=
∫ 1

−1

(1 − x2)−1/2 cos(m cos−1 x) cos(n cos−1 x)dx

=
∫ π

0

cosmθ cosnθdθ (x = cos θ)

=

⎧⎨
⎩

0, m �= n
π/2, m = n �= 0
π, m = n = 0.

Similarly, it follows that Chebyshev polynomials of the second kind
Un(x), n = 0, 1, · · · are orthogonal in [−1, 1] with r(x) = (1 − x2)1/2. In
fact, we have

∫ 1

−1

(1 − x2)1/2Um(x)Un(x)dx =
{

0, m �= n
π/2, m = n.

Orthogonality of Hermite polynomials. We shall show
that the set of Hermite polynomials {Hn(x), n = 0, 1, · · ·} is orthogonal in
(−∞,∞) with r(x) = e−x2

. Since Hn(x) is a solution of the DE (8.9), we
have (

e−x2
H ′

n(x)
)′

+ 2ne−x2
Hn(x) = 0. (12.3)

Multiplying (12.3) by Hm(x) and integrating from −∞ to ∞, we find
∫ ∞

−∞

(
e−x2

H ′
n(x)
)′

Hm(x)dx = −2n

∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx,
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which is the same as

e−x2
H ′

n(x)Hm(x)
∣∣∣∣
∞

−∞
−
∫ ∞

−∞
e−x2

H ′
n(x)H ′

m(x)dx

= −2n

∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx

and hence
∫ ∞

−∞
e−x2

H ′
n(x)H ′

m(x)dx = 2n

∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx. (12.4)

Interchanging m and n in (12.4) and subtracting the resulting equation
from (12.4), we obtain

(2n − 2m)
∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx = 0.

Thus, if m �= n, we get
∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx = 0.

Next we shall show that

In =
∫ ∞

−∞
e−x2

H2
n(x)dx = 2n n!

√
π. (12.5)

In view of Problem 8.2(iii), we have

In =
∫ ∞

−∞
e−x2

Hn(x)Hn(x)dx =
∫ ∞

−∞
e−x2

Hn(x)(−1)nex2 dn

dxn
e−x2

dx

= (−1)n

∫ ∞

−∞
Hn(x)

dn

dxn
e−x2

dx

= (−1)n

[
Hn(x)

dn−1

dxn−1
e−x2
∣∣∣∣
∞

−∞
−
∫ ∞

−∞
H ′

n(x)
dn−1

dxn−1
e−x2

dx

]

= (−1)n+1

∫ ∞

−∞
2nHn−1(x)

dn−1

dxn−1
e−x2

dx

= 2nIn−1 = 2n(2n− 2)In−2 = · · · = 2n(2n − 2) · · · 2 I0

= 2n n! I0.
(12.6)

Now since I0 =
∫∞
−∞ e−x2

dx =
√

π, (12.5) follows immediately from (12.6).
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Orthogonal Functions

and Polynomials (Cont’d.)

As mentioned in the previous lecture here first we shall establish the
orthogonality of Laguerre polynomials and Bessel functions and then prove
a fundamental property about the zeros of orthogonal polynomials.

Orthogonality of Laguerre polynomials. The Laguerre
DE (8.10) can be written as

(
xa+1e−xy′)′ + nxae−xy = 0. (13.1)

Since L
(a)
n (x) is a solution of (13.1), it follows that

(
xa+1e−xL(a)

n

′
(x)
)′

+ nxae−xL(a)
n (x) = 0.

The rest of the proof of
∫ ∞

0

e−xxaL(a)
m (x)L(a)

n (x)dx = 0 for m �= n

is similar to that for Hermite polynomials.

Next, from Problem 8.3(i), we have
∫ ∞

0

e−xxaL(a)
n (x)L(a)

n (x)dx =
1
n!

∫ ∞

0

L(a)
n (x)

dn

dxn

(
e−xxn+a

)
dx

= − 1
n!

∫ ∞

0

L(a)
n

′
(x)

dn−1

dxn−1

(
e−xxn+a

)
dx

· · ·

=
(−1)n

n!

∫ ∞

0

(
L(a)

n (x)
)(n)

e−xxn+adx.

However, since in view of (8.11),
(
L

(a)
n (x)
)(n)

= (−1)n, we find

∫ ∞

0

e−xxa
(
L(a)

n (x)
)2

dx =
1
n!

∫ ∞

0

e−xxn+adx =
Γ(n + a + 1)

n!
.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 13,
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Orthogonality of Bessel functions. In Lecture 3, as an
application of Theorem 3.1, we have seen that for all a every solution of
Bessel’s DE (2.15) has an infinite number of zeros in J = (0,∞). This in
turn implies that for every fixed a the solution Ja(x) of the Bessel equation
has an infinite number of zeros in J = (0,∞). Let these zeros be {bn, n =
0, 1, · · ·}, where b0 < b1 < · · · . We shall show that {Ja(bnx), n = 0, 1, · · ·}
is an orthogonal set in [0, 1] with respect to the weight function r(x) = x.
In fact, we shall prove that

∫ 1

0

xJa(bpx)Ja(bqx)dx =

⎧⎨
⎩

0 if bp �= bq

1
2
J2

a+1(bp) if bp = bq.
(13.2)

For this, first we use the substitution x = pt (p > 0 is a constant) in the
Bessel DE (2.15). Since

dy

dx
=

dy

dt

dt

dx
=

1
p

dy

dt
and

d2y

dx2
=

1
p2

d2y

dt2
,

we have

p2t2
1
p2

d2y

dt2
+ pt

1
p

dy

dt
+ (p2t2 − a2)y = 0,

or

t2
d2y

dt2
+ t

dy

dt
+ (p2t2 − a2)y = 0.

Hence, if y = Ja(x) is a solution of

y′′ +
1
x

y′ +
(

1 − a2

x2

)
y = 0

then it follows that the functions u = Ja(μx) and v = Ja(νx) (μ and ν are
distinct positive constants) satisfy the equations

u′′ +
1
x

u′ +
(

μ2 − a2

x2

)
u = 0 (13.3)

and

v′′ +
1
x

v′ +
(

ν2 − a2

x2

)
v = 0. (13.4)

Multiplying (13.3) by v and (13.4) by u and subtracting, we obtain

d

dx
(u′v − v′u) +

1
x

(u′v − v′u) = (ν2 − μ2)uv,

which is the same as

d

dx
(x(u′v − v′u)) = x(ν2 − μ2)uv
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and hence

(ν2 − μ2)
∫ 1

0

xuvdx = (x(u′v − v′u))
∣∣∣∣
1

0

= u′(1)Ja(ν) − v′(1)Ja(μ). (13.5)

It follows that the integral on the left side is zero if μ and ν are distinct
positive zeros bp and bq of Ja(x); i.e., then we have

∫ 1

0

xJa(bpx)Ja(bqx)dx = 0. (13.6)

Now we multiply (13.3) by 2x2u′, to obtain

d

dx
(x2u′2 + μ2x2u2 − a2u2) = 2μ2xu2

and hence

2μ2

∫ 1

0

xu2dx = (x2u′2 + μ2x2u2 − a2u2)
∣∣∣∣
1

0

.

When x = 0 the expression in the bracket vanishes (a2u2 = 0, since u =
Ja(μx) and Ja(0) = 0 if a > 0), and since u′(1) = μJ ′

a(μ), we have
∫ 1

0

xu2dx =
1
2
(J ′

a(μ))2 +
1
2

(
1 − a2

μ2

)
(Ja(μ))2,

which from the recurrence relation (9.18) is the same as
∫ 1

0

xJ2
a(bpx)dx =

1
2
J2

a+1(bp). (13.7)

The following table contains the values of the p–th positive zero bn,p of
the Bessel function Jn(x):

p 1 2 3 4 5
b0,p 2.4048 5.5201 8.6537 11.7915 14.9309
b1,p 3.8317 7.0156 10.1735 13.3237 16.4706
b2,p 5.1356 8.4172 11.6198 14.7960 17.9598
b3,p 6.3802 9.7610 13.0152 16.2235 19.4094
b4,p 7.5883 11.0647 14.3725 17.6160 20.8269
b5,p 8.7714 12.3386 15.7002 18.9801 22.2178

Zeros of orthogonal polynomials. Now we shall consider
a fixed set of orthogonal polynomials {pn(x), n = 0, 1, · · ·} in the inter-
val [α, β] with respect to the weight function r(x). We shall represent the
polynomial pn(x) as

pn(x) =
n∑

i=0

bnix
i, n = 0, 1, · · · (13.8)
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where bnn �= 0. Although there are numerous properties of orthogonal poly-
nomials, we shall prove only that the zeros of each polynomial pn(x), n ≥ 1
are real, simple, and lie in the open interval (α, β). For this, we need the
following theorem.

Theorem 13.1. Any polynomial

Qn(x) =
n∑

i=0

a0
i x

i

has a unique representation of the form

Qn(x) =
n∑

i=0

cipi(x). (13.9)

Proof. We define the following sequence of polynomials

Qn−1(x) = Qn(x) − a0
n

bnn
pn(x) =

n−1∑
i=0

a1
i x

i

Qn−2(x) = Qn−1(x) −
a1

n−1

bn−1,n−1
pn−1(x) =

n−2∑
i=0

a2
i x

i

· · ·

Q0(x) = Q1(x) − an−1
1

b11
p1(x) = an

0 =
an
0

b00
p0(x).

Now summing these relations, we obtain

n−1∑
i=0

Qi(x) =
n∑

i=1

Qi(x) −
n∑

i=1

an−i
i

bii
pi(x),

which is the same as

Qn(x) =
n∑

i=1

an−i
i

bii
pi(x) + Q0(x) =

n∑
i=0

an−i
i

bii
pi(x).

Thus, in (13.9) the constants ci, 0 ≤ i ≤ n are determined successively by
the relations

cn−i =
ai

n−i

bn−i,n−i
, i = 0, 1, · · · , n.

To show the uniqueness, let us assume that

Qn(x) =
n∑

i=0

cipi(x) =
n∑

i=0

dipi(x)
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and hence
n∑

i=0

(ci − di)pi(x) = 0.

However, from the orthogonality of the polynomials pn(x), we find

0 =
∫ β

α

r(x)

(
n∑

i=0

(ci − di)pi(x)

)
pj(x)dx = (cj − dj)

∫ β

α

r(x)p2
j (x)dx,

which implies that cj = dj , 0 ≤ j ≤ n.

Corollary 13.2. Let Qk(x) be any polynomial of degree k < n. Then,

∫ β

α

r(x)pn(x)Qk(x)dx = 0.

Proof. From Theorem 13.1 there exist constants ci, i = 0, 1, · · · , k such
that Qk(x) =

∑k
i=0 cipi(x). Now the result immediately follows from the

orthogonality of the polynomials pn(x).

Theorem 13.3. The zeros of each orthogonal polynomial pn(x), n ≥ 1
are real, simple, and lie in the open interval (α, β).

Proof. Let pn(x) be of fixed sign in (α, β), then

0 �=
∫ β

α

r(x)pn(x)dx =
1

p0(x)

∫ β

α

r(x)pn(x)p0(x)dx.

However, this contradicts the definition of the orthogonality. Thus, pn(x1)
= 0 for some x1 ∈ (α, β). Next let x1 ∈ (α, β) be such that p

(i)
n (x1) =

0, 0 ≤ i ≤ k − 1 (2 ≤ k ≤ n), then Qn−k(x) = pn(x)/(x − x1)k will
be a polynomial of degree n − k. Hence, from Corollary 13.2, we have∫ β

α r(x)pn(x)Qn−k(x)dx = 0. But, for k even

∫ β

α

r(x)pn(x)Qn−k(x)dx =
∫ β

α

r(x)
p2

n(x)
(x − x1)k

dx �= 0.

This contradiction shows that the roots of pn(x) in (α, β) cannot have even
multiplicity. Finally, let x1, x2, · · · , xr ∈ (α, β), 1 ≤ r < n be the only zeros
of pn(x); then

pn(x) = (x − x1)(x − x2) · · · (x − xr)Qn−r(x),

where Qn−r(x) is a polynomial of degree n − r having fixed sign in (α, β).
Thus,

(x − x1)2(x − x2)2 · · · (x − xr)2Qn−r(x)
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is of fixed sign in (α, β), and hence
∫ β

α

r(x)(x − x1)2(x − x2)2 · · · (x − xr)2Qn−r(x)dx

=
∫ β

α

r(x)pn(x)(x − x1)(x − x2) · · · (x − xr)dx �= 0,

which contradicts Corollary 13.2 and so r = n.

As a consequence of Theorem 13.3, we have

(i) The Legendre polynomial Pn(x), n ≥ 1 has n real simple zeros in
(−1, 1).
(ii) The Chebyshev polynomial of the first kind Tn(x), n ≥ 1 has n real
simple zeros in (−1, 1).
(iii) The Chebyshev polynomial of the second kind Un(x), n ≥ 1 has n
real simple zeros in (−1, 1).

(iv) The Laguerre polynomial L
(a)
n (x), n ≥ 1 has n real simple zeros in

(0,∞).
(v) The Hermite polynomial Hn(x), n ≥ 1 has n real simple zeros in
(−∞,∞).

We conclude this lecture by stating the following theorem.

Theorem 13.4. If x1 < x2 < · · · < xn are the zeros of pn(x), and
y1 < y2 < · · · < yn+1 are those of pn+1(x), then

α < y1 < x1 < y2 < x2 < · · · < yn < xn < yn+1 < β.

Problems

13.1. (i) Show that the functions φ1(x) = 1 and φ2(x) = 2x − 1 are
orthogonal on the interval 0 < x < 1 with r(x) = 1. Further, determine
constants A and B so that the function φ3(x) = 1+Ax+Bx2 is orthogonal
to both φ1(x) and φ2(x).
(ii) From the orthogonal functions in part (i) find three orthonormal func-
tions on the interval 0 < x < 1 with r(x) = 1.

13.2. Consider the functions φ1(x) =
√

2, φ2(x) = x and φ3(x) =
x2 + Ax + B. It is given that φ3(x) is orthogonal to both φ1(x) and φ2(x)
on the interval 0 < x < 1 with r(x) = 1. Find A and B.

13.3. Find constants ai, i = 1, 2, 3, 4, 5 so that the set of three
functions {a1, a2x, a3x

2 + a4x + a5} forms an orthogonal set on [−1, 1]
with weight function w(x) = 1.
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13.4. Verify that the set of functions given in Example 12.2 is or-
thonormal on the interval 0 < x < π with r(x) = 1.

13.5. Show that the relation (13.6) holds if μ and ν are one of the
following:

(i) zeros of J ′
n(x)

(ii) zeros of xJ ′
n(x) + hJn(x), where h is any constant

(iii) zeros of Jn+1(x)
(iv) zeros of Jn−1(x).

13.6. For the Legendre polynomials show that

(i)
∫ 1

−1

xnPn(x)dx =
2n+1(n!)2

(2n + 1)!

(ii)
∫ 1

−1

x2Pn+1(x)Pn−1(x)dx =
2n(n + 1)

(2n − 1)(2n + 1)(2n + 3)

(iii)
∫ 1

−1

x2P 2
n(x)dx =

1
8(2n − 1)

+
3

4(2n + 1)
+

1
8(2n + 3)

(iv) (m + n + 1)
∫ 1

0

xmPn(x)dx = m

∫ 1

0

xm−1Pn−1(x)dx

= (m − n + 2)
∫ 1

0

xmPn−2(x)dx

(v)
∫ 1

−1

xmPn(x)dx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if m < n

m! Γ
(

1
2m − 1

2n + 1
2

)
2n (m − n)! Γ

(
1
2m + 1

2n + 3
2

)
if m − n (≥ 0) is even

0 if m − n (> 0) is odd

(vi)
∫ 1

−1

(1 − x2)P ′
m(x)P ′

n(x)dx = 0, m �= n

(vii)
∫ 1

−1

(x2 − 1)Pn+1(x)P ′
n(x)dx =

2n(n + 1)
(2n + 1)(2n + 3)

.

13.7. Let x1, · · · , xn be the zeros of the Legendre polynomial Pn(x),
n ≥ 1. Show that

(i) Π(x) = (x − x1) · · · (x − xn) =
2n(n!)2

(2n)!
Pn(x)

(ii)
∫ 1

−1

Π2(x)dx =
22n+1(n!)4

(2n + 1)((2n)!)2
.

13.8. Find results similar to those in Problem 13.7 for the polynomials
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Tn(x), Un(x), L
(a)
n (x) and Hn(x), n ≥ 1.

13.9. For the associated Legendre functions Pm
n (x) of the first kind

defined in Problem 7.12 show that

∫ 1

−1

Pm
n (x)Pm

k (x)dx =

⎧⎨
⎩

0, k �= n

2
2n + 1

(n + m)!
(n − m)!

, k = n.

13.10. A set {wn(x)} of complex-valued functions of a real variable
x is orthogonal in the Hermitian sense in an interval (α, β) if

∫ β

α

wm(x)wn(x)dx = 0, m �= n.

Show that the set
{

1√
β − α

exp
(

i
2πnx

β − α

)
, n = 0,±1,±2, · · ·

}

is orthogonal in the Hermitian sense in (α, β).

Answers or Hints

13.1. (i) A = −6, B = 6 (ii) 1,
√

3(2x − 1),
√

5(6x2 − 6x + 1).

13.2. A = −1, B = 1/6.

13.3. a1 �= 0, a2 �= 0 but arbitrary, a3 = −3a5, a4 = 0.

13.4. Use cos(m − n)x − cos(m + n)x = 2 sinmx sin nx.

13.5. Relation (13.5) is the same as

(ν2 − μ2)
∫ 1

0 xJn(μx)Jn(νx)dx = μJ ′
n(μ)Jn(ν) − νJ ′

n(ν)Jn(μ). (13.10)
(i) Use (13.10) (ii) Use (13.10) (iii) Use (13.10) and (9.18) (iv) Use
(13.10) and Problem 9.1(i)

13.6. (i) From (7.8), Pn(x) = (2n)!
2n (n!)2 xn + Qn−1(x), where Qn−1(x) is a

polynomial of degree at most n−1 (ii) Use x2Pn−1(x) = (2n−2)!
2n−1 ((n−1)!)2 xn+1

+Qn(x) and (i) (iii) Use (7.13) (iv) Use Problem 7.8(i) and then Problem
7.8(iii) (v) Use Corollary 13.2 and (7.9) (vi) Integrate by parts and use
(3.19) with a = n (vii) Use Problem 7.8(iv) and (7.13).

13.7. From (7.8), Pn(x) = (2n)!
2n (n!)2 (x − x1) · · · (x − xn).
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13.8. Π(x) = 1
2n−1 Tn(x),

∫ 1

−1
(1 − x2)−1/2Π2(x)dx = π

22n−1

Π(x) = 1
2n Un(x),

∫ 1

−1(1 − x2)1/2Π2(x)dx = π
22n+1

Π(x) = (−1)n n!L(a)
n (x),

∫∞
0

e−xxaΠ2(x)dx = n! Γ(n + a + 1)
Π(x) = 1

2n Hn(x),
∫∞
−∞ e−x2

Π2(x)dx = n!
√

π
2n .

13.9. See the orthogonality of Legendre polynomials.

13.10.Verify directly.



Lecture 14
Boundary Value Problems

So far, we have concentrated only on initial value problems, in which
for a given DE the supplementary conditions on the unknown function
and its derivatives are prescribed at a fixed value x0 of the independent
variable x. However, there are a variety of other possible conditions that
are important in applications. In many practical problems the additional
requirements are given in the form of boundary conditions: the unknown
function and some of its derivatives are fixed at more than one value of the
independent variable x. The DE together with the boundary conditions is
referred to as a boundary value problem. In this lecture we shall provide a
necessary and sufficient condition so that a given boundary value problem
has a unique solution.

We shall consider the second-order linear DE

p0(x)y′′ + p1(x)y′ + p2(x)y = r(x), x ∈ J = [α, β] (14.1)

where the functions p0(x), p1(x), p2(x) and r(x) are continuous in J. To-
gether with the DE (14.1) we shall consider the boundary conditions of the
form


1[y] = a0y(α) + a1y
′(α) + b0y(β) + b1y

′(β) = A


2[y] = c0y(α) + c1y
′(α) + d0y(β) + d1y

′(β) = B,
(14.2)

where ai, bi, ci, di, i = 0, 1 and A, B are given constants. Throughout, we
shall assume that these are essentially two conditions, i.e., there does not
exist a constant c such that (a0 a1 b0 b1) = c(c0 c1 d0 d1). The boundary
value problem (14.1), (14.2) is called a nonhomogeneous two-point linear
boundary value problem, whereas the homogeneous DE

p0(x)y′′ + p1(x)y′ + p2(x)y = 0, x ∈ J (14.3)

together with the homogeneous boundary conditions


1[y] = 0, 
2[y] = 0 (14.4)

will be called a homogeneous two–point linear boundary value problem.

Boundary conditions (14.2) are quite general and in particular include
the

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
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(i) first boundary conditions,

y(α) = A, y(β) = B; (14.5)

(ii) second boundary conditions,

y(α) = A, y′(β) = B, (14.6)

or
y′(α) = A, y(β) = B; (14.7)

(iii) separated boundary conditions (third boundary conditions), also known
as Sturm-Liouville conditions,

a0y(α) + a1y
′(α) = A

d0y(β) + d1y
′(β) = B,

(14.8)

where a2
0 + a2

1 �= 0 and d2
0 + d2

1 �= 0; and

(iv) periodic boundary conditions,

y(α) = y(β), y′(α) = y′(β). (14.9)

The boundary value problem (14.1), (14.2) is called regular if both α
and β are finite, and the function p0(x) �= 0 for all x ∈ J. If α = −∞
and/or β = ∞ and/or p0(x) = 0 for at least one point x in J, then the
problem (14.1), (14.2) is said to be singular. We shall consider only regular
boundary value problems.

By a solution of the boundary value problem (14.1), (14.2) we mean a
solution of the DE (14.1) satisfying the boundary conditions (14.2).

The existence and uniqueness theory for the boundary value problems
is more difficult than that of initial value problems. In fact, in the case of
boundary value problems a slight change in the boundary conditions can
lead to significant changes in the behavior of the solutions. For example, the
initial value problem y′′+y = 0, y(0) = c1, y′(0) = c2 has a unique solution
y(x) = c1 cosx+c2 sinx for any set of values c1, c2. However, the boundary
value problem y′′ + y = 0, y(0) = 0, y(π) = ε(�= 0) has no solution; the
problem y′′ + y = 0, y(0) = 0, y(β) = ε, 0 < β < π has a unique solution
y(x) = ε sinx/ sinβ; while the problem y′′ + y = 0, y(0) = 0, y(π) = 0
has an infinite number of solutions y(x) = c sinx, where c is an arbitrary
constant.

Obviously, for the homogeneous problem (14.3), (14.4) the trivial solu-
tion always exists. However, from the above example it follows that besides
the trivial solution homogeneous boundary value problems may have non-
trivial solutions also. Out first result provides a necessary and sufficient
condition so that the problem (14.3), (14.4) has only the trivial solution.
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Theorem 14.1. Let y1(x) and y2(x) be any two linearly independent
solutions of the DE (14.3). Then, the homogeneous boundary value problem
(14.3), (14.4) has only the trivial solution if and only if

Δ =

∣∣∣∣∣

1[y1] 
1[y2]


2[y1] 
2[y2]

∣∣∣∣∣ �= 0. (14.10)

Proof. Any solution of the DE (14.3) can be written as

y(x) = c1y1(x) + c2y2(x).

This is a solution of the problem (14.3), (14.4) if and only if


1[c1y1 + c2y2] = c1
1[y1] + c2
1[y2] = 0


2[c1y1 + c2y2] = c1
2[y1] + c2
2[y2] = 0.
(14.11)

However, the system (14.11) has only the trivial solution if and only if
Δ �= 0.

Clearly, Theorem 14.1 is independent of the choice of the solutions y1(x)
and y2(x). Thus, for convenience we can always take y1(x) and y2(x) to be
the solutions of (14.3) satisfying the initial conditions

y1(α) = 1, y′
1(α) = 0 (14.12)

and
y2(α) = 0, y′

2(α) = 1. (14.13)

Corollary 14.2. The homogeneous boundary value problem (14.3),
(14.4) has an infinite number of nontrivial solutions if and only if Δ = 0.

The following examples illustrate how easily Theorem 14.1 and Corol-
lary 14.2 are applicable in practice.

Example 14.1. Consider the boundary value problem

xy′′ − y′ − 4x3y = 0 (14.14)


1[y] = y(1) = 0


2[y] = y(2) = 0.
(14.15)

For the DE (14.14), y1(x) = cosh(x2−1) and y2(x) = (1/2) sinh(x2−1) are
two linearly independent solutions. Further, for the boundary conditions
(14.15), we have

Δ =

∣∣∣∣∣
1 0

cosh 3 (1/2) sinh3

∣∣∣∣∣ �= 0.
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Thus, in view of Theorem 14.1, the problem (14.14), (14.15) has only the
trivial solution.

Example 14.2. Consider once again the DE (14.14) together with the
boundary conditions


1[y] = y′(1) = 0


2[y] = y′(2) = 0.
(14.16)

Since y′
1(x) = 2x sinh(x2 − 1) and y′

2(x) = x cosh(x2 − 1), for the boundary
conditions (14.16), we find

Δ =

∣∣∣∣∣
0 1

4 sinh 3 2 cosh3

∣∣∣∣∣ �= 0.

Thus, again in view of Theorem 14.1, the problem (14.14), (14.16) has only
the trivial solution.

Example 14.3. Consider the boundary value problem

y′′ + 2y′ + 5y = 0 (14.17)


1[y] = y(0) = 0


2[y] = y(π/2) = 0.
(14.18)

For the DE (14.17), y1(x) = e−x cos 2x and y2(x) = e−x sin 2x are two
linearly independent solutions. Further, since for the boundary conditions
(14.18),

Δ =

∣∣∣∣∣
1 0

−e−π/2 0

∣∣∣∣∣ = 0

the problem (14.17), (14.18) besides the trivial solution also has nontrivial
solutions. Indeed, from Corollary 14.2 if follows that it has an infinite
number of solutions y(x) = ce−x sin 2x, where c is an arbitrary constant.

The following result provides a necessary and sufficient condition for the
existence of a unique solution of the boundary value problem (14.1), (14.2).

Theorem 14.3. The nonhomogeneous boundary value problem (14.1),
(14.2) has a unique solution if and only if the homogeneous boundary value
problem (14.3), (14.4) has only the trivial solution.

Proof. Let y1(x) and y2(x) be any two linearly independent solutions of
the DE (14.3) and z(x) be a particular solution of (14.1). Then, the general
solution of (14.1) can be written as

y(x) = c1y1(x) + c2y2(x) + z(x). (14.19)
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This is a solution of the problem (14.1), (14.2) if and only if


1[c1y1 + c2y2 + z] = c1
1[y1] + c2
1[y2] + 
1[z] = A


2[c1y1 + c2y2 + z] = c1
2[y1] + c2
2[y2] + 
2[z] = B.
(14.20)

The nonhomogeneous system (14.20) has a unique solution if and only if
Δ �= 0, i.e., if and only if the homogeneous system (14.11) has only the triv-
ial solution. From Theorem 14.1, Δ �= 0 is equivalent to the homogeneous
boundary value problem (14.3), (14.4) having only the trivial solution.

Example 14.4. Consider the boundary value problem

xy′′ − y′ − 4x3y = 1 + 4x4 (14.21)


1[y] = y(1) = 0


2[y] = y(2) = 1.
(14.22)

Since the corresponding homogeneous problem (14.14), (14.15) has only the
trivial solution, Theorem 14.3 implies that the problem (14.21), (14.22) has
a unique solution. Further, to find this solution once again we choose the
linearly independent solutions of (14.14) to be y1(x) = cosh(x2 − 1) and
y2(x) = (1/2) sinh(x2−1), and note that z(x) = −x is a particular solution
of (14.21). Thus, the system (14.20) for the boundary conditions (14.22)
reduces to

c1 − 1 = 0

cosh 3 c1 + (1/2) sinh 3 c2 − 2 = 1.

This system can be easily solved to obtain c1 = 1 and c2 = 2(3 − cosh 3)/
sinh 3. Now substituting these quantities in (14.19), we find the solution of
(14.21), (14.22) as

y(x) = cosh(x2 − 1) +
(3 − cosh 3)

sinh 3
sinh(x2 − 1) − x.



Lecture 15
Boundary Value Problems

(Cont’d.)

In this lecture we shall formulate some boundary value problems with
engineering applications, and show that often solutions of these problems
can be written in terms of Bessel functions.

Example 15.1. Consider a string of length a with constant linear
density ρ which is stretched along the x-axis and fixed at x = 0 and x = a.
Suppose the string is then rotated about that axis at a constant speed ω.
This is similar to two persons holding a jump rope and then twirling it in a
synchronous manner. We shall find the differential equation which defines
the shape (deflection from the initial position) y(x) of the string. For this,
we consider the portion of the string on the interval [x, x + Δx], where Δx
is small. In what follows, for simplicity, we assume that the magnitude T
of the tension T acting tangential to the string is constant along the string.
Now from Figure 15.1 it is clear that the net vertical force F acting on the
string on the interval [x, x + Δx] is

x = 0 x = a

y(x)
ωω

T1

θ1

x + Δxx

θ2

T2

Figure 15.1

F = T sin θ2 − T sin θ1.

If the angles θ1 and θ2 (measured in radians) are small, then we have

sin θ2 
 tan θ2 
 y′(x + Δx) and sin θ1 
 tan θ1 
 y′(x)

and hence
F 
 T [y′(x + Δx) − y′(x)]. (15.1)

The net force F can also be given by Newton’s second law as F = ma.
Clearly, the mass of the string on the interval [x, x + Δx] is m = ρ Δx, and
the centripetal acceleration of a point rotating with angular speed ω in a
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circle of radius r is a = rω2. Since Δx is small, we can assume that r = y.
Thus, another formulation of the net force is

F 
 − (ρ Δx)yω2, (15.2)

where the minus sign indicates the fact that the acceleration points in the
direction opposite to the positive y direction. From (15.1) and (15.2), we
get

T [y′(x + Δx) − y′(x)] 
 − (ρ Δx)yω2,

or

T
y′(x + Δx) − y′(x)

Δx

 − ρω2y,

which as Δx → 0 leads to the differential equation

T
d2y

dt2
= −ρω2y. (15.3)

Since the string is fixed at the ends, the solution y(x) of (15.3) must also
satisfy the boundary conditions y(0) = 0, y(a) = 0. Thus, the shape of the
string y(x) can be determined by solving the boundary value problem

d2y

dx2
+

ρω2

T
y = 0, y(0) = y(a) = 0. (15.4)

Clearly, y(x) ≡ 0 is a solution of (15.4). However, in Lecture 19 we shall see
that for some special values of ω the problem (15.4) has nontrivial solutions
also.

Finally, we note that if the magnitude T of the tension is not constant
throughout the interval [0, a], then the boundary value problem which gives
the deflection curve of the string is

d

dx

(
T (x)

dy

dx

)
+ ρω2y = 0, y(0) = y(a) = 0. (15.5)

Example 15.2. Consider the problem of a vertical column of uniform
material and cross section, bent by its own weight. Let a long thin rod be
set up in a vertical plane so that the lower end is constrained to remain
vertical (Figure 15.2). Suppose the rod is of length a and weight W, and
has the coefficient of flexural rigidity B (> 0). Then, if p = dy/dx, the
equation describing this system can be written as

d2p

dx2
+

W

B

(a − x)
a

p = 0 (15.6)

p(0) = 0 = p′(a). (15.7)
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y

x

·

·

Rod

Figure 15.2

One possibility that is always present is that the rod does not bend at
all, which is just another way of saying that the problem has only the trivial
solution; i.e., p(x) ≡ 0. One would expect that if the rod is short enough
(just how short it would need to be depends on the constants W, and B, of
course) the rod cannot bend at all, which is to say that the trivial solution
is the only solution of the problem, and the problem is accordingly said to
be stable. However, for all sufficiently large a, the rod can bend and the
problem has a nontrivial solution. Clearly, then uniqueness no longer holds
for the boundary value problem.

Equation (15.6) can be transformed into Bessel’s equation by the sub-
stitution

ξ =
2
3

(
W

aB

)1/2

(a − x)3/2, p = η(a − x)1/2. (15.8)

In fact, it leads to the equation

d2η

dξ2
+

1
ξ

dη

dξ
+
(

1 − 1
9ξ2

)
η = 0, (15.9)

whose solution can be written as

η(ξ) = AJ1/3(ξ) + BJ−1/3(ξ),

and hence the solution of (15.6) is

p(ξ) = (a − x)1/2[AJ1/3(ξ) + BJ−1/3(ξ)]. (15.10)

Now it a simple matter to see that p′(a) = 0 only if A = 0, and p(0) = 0
provided J−1/3(ξ) = 0 at ξ = (2a/3)(W/B)1/2. Since

J−1/3(ξ) = 1 − 1
3.2

a2W

B
+

1
3 · 6 · 2 · 5

(
a2W

B

)2

+ · · · + (−1)n 1
3 · 6 · · · (3n) · 2 · 5 · · · (3n − 1)

(
a2W

B

)n

+ · · ·

(15.11)
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the rod remains stable provided a2/B is less than the first zero, say, ξ1 of
(15.11). An easy computation shows that ξ1 = 7.84 · · · , and hence the rod
will not bend by its own weight—i.e., it will remain stable—provided

a < (2.80 · · ·)
(

B

W

)1/2

. (15.12)

In a similar situation the following problem occurs:

d2φ

ds2
+

R2

AC
(a − s)2φ = 0 (15.13)

φ(0) = 0 = φ′(a). (15.14)

For this problem equations (15.8)–(15.12) take the following form:

ξ =
1
2

R√
AC

(a − x)2, φ = η(a − s)1/2, (15.15)

d2η

dξ2
+

1
ξ

dη

dξ
+
(

1 − 1
16ξ2

)
η = 0, (15.16)

φ(ξ) = (a − s)1/2[AJ1/4(ξ) + BJ−1/4(ξ)], (15.17)

J−1/4(ξ) = 1 − 1
2.6

R2a4

AC
+

1
2 · 4 · 6 · 14

(
R2a4

AC

)2

+ · · · + (−1)n 1
2 · 4 · · · (2n) · 6 · 14 · · · (8n − 2)

(
R2a4

AC

)n

+ · · ·

(15.18)

a < γ
(AC)1/4

√
R

, (15.19)

where γ is a number very close to 2.

Example 15.3. Consider a wedge-shaped canal of uniform depth 
 that
empties into the open sea (see Figure 15.3). Assume that the water level at
the mouth of the canal varies harmonically, i.e., the depth at the mouth of
the canal is given by H cosωt, where H and ω are positive constants. This
assumption simulates the motion of the tides. Now the function h(x, t),
which gives the depth at a distance x from the inland end of the canal at
time t, has the form h(x, t) = y(x) cosωt, where y(x) satisfies the DE

x2y′′ + xy′ + k2x2y = 0, (15.20)

where k > 0 is a constant.
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Figure 15.3

h(a, t) = H cos ωt

a

x

b = αx

Comparing (15.20) with (9.20), we find that its solution can be written
as

y(x) = AJ0(kx) + BJ0(kx). (15.21)

Since at x = 0 the depth of the water must be finite at all times, limx→0 y(x)
has to be finite. However, since limx→0 |J0(kx)| = ∞, we need to assume
that B = 0. Hence, the depth h(x, t) can be written as

h(x, t) = AJ0(kx) cosωt. (15.22)

Next using the condition that the depth at the mouth of the canal is
H cosωt, we have

H cosωt = h(a, t) = AJ0(ka) cosωt

and hence A = H/J0(ka) provided J0(ka) �= 0. Thus, the depth h appears
as

h(x, t) = H
J0(kx)
J0(ka)

cosωt. (15.23)

Clearly, from (9.8) we have J0(0) = 1 and hence J0(x) �= 0 at least for
sufficiently small x > 0. Thus, the solution (15.23) is meaningful as long as
ka is sufficiently small.

Example 15.4. Now in Example 15.3 we assume that the depth of the
canal is not uniform, but varies according as 
(x) = βx. Figure 15.4 shows
the lengthwise cross section of the canal.

Figure 15.4

βa
�=βx

x

a

Sea
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Again we assume that the water level at the mouth of the canal varies
harmonically. Then the depth has the form h(x, t) = y(x) cos ωt, where y
satisfies the DE

x2y′′ + 2xy′ + k2xy = 0; (15.24)

here k > 0 is a constant.

Comparing (15.24) with (9.19), we find that its solution can be written
as

y(x) = Ax−1/2J1

(
2kx1/2

)
+ Bx−1/2J−1

(
2kx1/2

)
. (15.25)

Since at x = 0 the depth of the water must be finite at all times, we need
to assume that B = 0. At t = 0 we have h(x, 0) = βx. In particular,
βa = h(a, 0) = y(a) = a−1/2AJ1(2ka1/2) and hence A = βa3/2/J1(2ka1/2).
Thus, the solution appears as

h(x, t) = βa3/2x−1/2 J1

(
2kx1/2

)
J1

(
2ka1/2

) cosωt,

which is meaningful as long as 2ka1/2 is small.

Problems

15.1. Solve the following boundary value problems:

(i) y′′ − y = 0
y(0) = 0, y(1) = 1 (ii) y′′ + 4y′ + 7y = 0

y(0) = 0, y′(1) = 1

(iii)
y′′ − 6y′ + 25y = 0
y′(0) = 1, y(π/4) = 0 (iv)

x2y′′ + 7xy′ + 3y = 0
y(1) = 1, y(2) = 2

(v)
y′′ + y = 0
y(0) + y′(0) = 10
y(1) + 3y′(1) = 4

(vi)
y′′ + y = x2

y(0) = 0, y(π/2) = 1

(vii) y′′ + 2y′ + y = x
y(0) = 0, y(2) = 3 (viii)

y′′ + y′ + y = x
y(0) + 2y′(0) = 1
y(1) − y′(1) = 8.

15.2. Solve the following periodic boundary value problems:

(i)
y′′ + 2y′ + 10y = 0
y(0) = y(π/6)
y′(0) = y′(π/6)

(ii)
y′′ + π2y = 0
y(−1) = y(1)
y′(−1) = y′(1).

15.3. Show that the boundary value problem y′′ = r(x), (14.8) has a
unique solution if and only if

Δ = a0d0(β − α) + a0d1 − a1d0 �= 0.
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15.4. Determine the values of the constants β, A, and B so that the
boundary value problem y′′ + 2py′ + qy = 0, y(0) = A, y(β) = B with
p2 − q < 0 has only one solution.

15.5. Show that the boundary value problem y′′+p(x)y = q(x), (14.5)
where p(x) ≤ 0 in [α, β], has a unique solution.

15.6. Let z(x) be the solution of the initial value problem (14.1),
z(α) = A, z′(α) = 0, and y2(x) be the solution of the initial value problem
(14.3), (14.13). Show that the boundary value problem (14.1), (14.5) has a
unique solution y(x) if and only if y2(β) �= 0 and it can be written as

y(x) = z(x) +
(B − z(β))

y2(β)
y2(x).

15.7. Let y1(x) and y2(x) be the solutions of the initial value problems
(14.3), y1(α) = a1, y′

1(α) = −a0 and (14.3), y2(β) = −d1, y′
2(β) = d0,

respectively. Show that the boundary value problem (14.3), (14.8) has a
unique solution if and only if W (y1, y2)(α) �= 0.

15.8. Let y1(x) and y2(x) be the solutions of the boundary value
problems (14.3), (14.2) and (14.1), (14.4), respectively. Show that y(x) =
y1(x) + y2(x) is a solution of the problem (14.1), (14.2).

15.9. For the homogeneous DE

L2[y] = (x2 + 1)y′′ − 2xy′ + 2y = 0 (15.26)

x and (x2 −1) are two linearly independent solutions. Use this information
to show that the boundary value problem

L2[y] = 6(x2 + 1)2, y(0) = 1, y(1) = 2 (15.27)

has a unique solution, and find it.

15.10. A telephone cable stretched tightly with constant tension T
between supports at x = 0 and x = 1 hangs at rest under its own weight.
For small displacements y the equation of equilibrium and the boundary
conditions are

y′′ = −mg/T, 0 < x < 1, y(0) = 0 = y(1), (15.28)

where m is the mass per unit length of the cable, and g is the gravitational
constant. Show that the solution of (15.28) can be written as y(x) =
mgx(1 − x)/(2T ), i.e., the telephone cable hangs in a parabolic arc.

15.11. In the construction of large buildings a long beam is often
needed to span a given distance. To decide the size of the beam, the



116 Lecture 15

architect needs to calculate the amount of bending the beam will undergo
due to its own weight. If E represents the modulus of elasticity of the beam
material, I is the moment of inertia of a cross section about its center axis,
2a is the length of the beam, and W is the weight per unit length, then
the differential equation used to find the sag curve for a beam supported
at both ends is

EIy′′ = aWx − Wx2

2
,

where y denotes the vertical sag distance per horizontal x unit. If the
beam is resting on two supports at its ends (simple beam), then the natural
boundary conditions are y(0) = 0, y(2a) = 0. Show that the solution of
this boundary value problem is

y(x) =
W

EI

[
a

6
x3 − 1

24
x4 − a3

3
x

]
.

Verify that y′(a) = 0 and give its interpretation.

15.12. The equation of equilibrium of a tightly stretched and initially
straight elastic string embedded in an elastic foundation of modulus k > 0
is given by

y′′ − (k/T )y = 0,

where y is the deflection of the string. Here the weight of the string is
neglected, the deflections are assumed to be small, and the tension T is
considered as a constant. The end x = 0 of the string is fixed, i.e., y(0) = 0,
and at the end x = a there is a displacement given by y(a) = β > 0. Show
that y(x) = β sinh(

√
k/T )x/ sinh(

√
k/T )a is the solution of this boundary

value problem, and max0≤x≤a y(x) = y(a) = β.

15.13. A gas diffuses into a liquid in a narrow pipe. Let y(x) denote
the concentration of the gas at the distance x in the pipe. The gas is
absorbed by the liquid at a rate proportional to y′(x), and the gas reacts
chemically with the liquid and as a result disappears at a rate proportional
to y(x). This leads to the balance equation

y′′ − (k/D)y = 0,

where k is the reaction rate and D is the diffusion coefficient. If the initial
concentration is α, i.e., y(0) = α and at x = a the gas is completely
absorbed by the liquid, i.e., y(a) = 0, show that y(x) = α sinh[

√
k/D(a −

x)]/ sinh[
√

k/Da].

15.14. A long river flows through a populated region with uniform
velocity u. Sewage continuously enters at a constant rate at the beginning
of the river x = 0. The sewage is convected down the river by the flow and
it is simultaneously decomposed by bacteria and other biological activities.
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Assume that the river is sufficiently narrow so that the concentration y of
sewage is uniform over the cross section and that the polluting has been
going on for a long time, so that y is a function only of the distance x
downstream from the sewage plant. If the rate of decomposition at x is
proportional to the concentration y(x) and k is the proportionality constant,
then y satisfies the DE

y′′ − βy′ − α2y = 0,

where β = u/D and α2 = k/(AD), A is the cross-sectional area of the river,
and D > 0 is a constant. If the concentrations at x = 0 and x = a are
known to be y(0) = y0, y(a) = y1 (< y0), then show that the concentration
in the stream for 0 ≤ x ≤ a is

y(x) = eβx/2

[
y0 cosh θx +

y1e
−βa/2 − y0 cosh θa

sinh θa
sinh θx

]
,

where θ =
√

β2 + 4α2/2.

15.15. Suppose a hollow spherical shell has an inner radius r = α and
outer radius r = β, and the temperature at the inner and outer surfaces
are uα and uβ, respectively. The temperature u at a distance r from the
center (α ≤ r ≤ β) is determined by the boundary value problem

r
d2u

dr2
+ 2

du

dr
= 0, u(α) = uα, u(β) = uβ.

Show that

u(r) =
uβα−1 − uαβ−1

α−1 − β−1
+
(

uα − uβ

α−1 − β−1

)
r−1.

15.16. A steam pipe has temperature uα at its inner surface r = α
and temperature uβ at its outer surface r = β. The temperature u at a
distance r from the center (α ≤ r ≤ β) is determined by the boundary
value problem

r
d2u

dr2
+

du

dr
= 0, u(α) = uα, u(β) = uβ .

Show that

u(r) =
uα ln(r/β) − uβ ln(r/α)

ln(α/β)
.

15.17. For the telephone cable considered in Problem 15.10, the large
displacements y are governed by the equation and boundary conditions

y′′ = −mg

T

√
1 + (y′)2, 0 < x < 1, y(0) = 0 = y(1). (15.29)
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Show that the solution of (15.29) can be written as

y(x) =
T

mg

{
cosh

mg

2T
− cosh

[
mg

T

(
x − 1

2

)]}
;

i.e., the telephone cable hangs in a catenary.

Answers or Hints

15.1. (i) sinh x
sinh 1 (ii) e2(1−x) sin

√
3x

(
√

3 cos
√

3−2 sin
√

3)
(iii) 1

4e3x sin 4x (iv) 1

(2
√

6−2−
√

6)
×

[(16−2−
√

6)x−3+
√

6+(2
√

6−16)x−3−
√

6] (v) 1
2 sin 1+cos 1 [{5(sin 1+3 cos 1)−

2} cosx+ {5(3 sin 1− cos 1)+2} sinx] (vi) 2 cosx+
(
3 − π2

4

)
sin x+x2 − 2

(vii) e−x
[
2 +
(

3
2e2 − 1

)
x
]
+ x − 2 (viii) 18

3 cos
√

3
2 +

√
3 sin

√
3

2

e(1−x)/2 cos
√

3
2 x

+x − 1.

15.2. (i) Trivial solution (ii) c1 cosπx + c2 sin πx, where c1 and c2 are
arbitrary constants.

15.3. For the DE y′′ = 0 two linearly independent solutions are 1, x. Now
apply Theorem 14.3.

15.4. β �= nπ√
q−p2

, e−px

[
A cos
√

q−p2x + Bepβ−A cos
√

q−p2β

sin
√

q−p2β
sin
√

q − p2x

]
.

15.5. Let y(x) be a nonnegative solution of y′′ + p(x)y = 0, y(α) = 0 =
y(β). Then, at the point x1 ∈ (α, β) where y(x) attains its maximum
y′′(x1) + p(x1)y(x1) < 0.

15.6. The function y(x) = z1(x) + cy1(x) is a solution of the DE (14.1).

15.7. Use Theorem 14.3.

15.8. Verify directly.

15.9. Use variation of parameters to find the particular solution z(x) =
x4 + 3x2. The solution of (15.27) is x4 + 2x2 − 2x + 1.

15.11.|y|max = |y(a)| = 5
24a4.



Lecture 16
Green’s Functions

The function H(x, t) defined in (2.12) is a solution of the homogeneous
DE (2.1) and it helps in finding an explicit representation of a particular
solution of the nonhomogeneous DE (2.8). In this lecture, we shall find an
analog of this function called a Green’s function G(x, t) for the homogeneous
boundary value problem (14.3), (14.4) and show that the solution of the
nonhomogeneous boundary value problem (14.1), (14.4) can be explicitly
expressed in terms of G(x, t). The solution of the problem (14.1), (14.2)
then can be obtained easily as an application of Problem 15.8.

In what follows throughout we shall assume that the problem (14.3),
(14.4) has only the trivial solution. Green’s function G(x, t) for the bound-
ary value problem (14.3), (14.4) is defined in the square [α, β] × [α, β] and
possesses the following fundamental properties:

(i) G(x, t) is continuous in [α, β] × [α, β],

(ii) ∂G(x, t)/∂x is continuous in each of the triangles α ≤ x ≤ t ≤ β and
α ≤ t ≤ x ≤ β; moreover,

∂G

∂x
(t+, t) − ∂G

∂x
(t−, t) =

1
p0(t)

,

where

∂G

∂x
(t+, t) = lim

x → t
x > t

∂G(x, t)
∂x

and
∂G

∂x
(t−, t) = lim

x → t
x < t

∂G(x, t)
∂x

,

(iii) for every t ∈ [α, β], z(x) = G(x, t) is a solution of the DE (14.3) in
each of the intervals [α, t) and (t, β],

(iv) for every t ∈ [α, β], z(x) = G(x, t) satisfies the boundary conditions
(14.4).

These properties completely characterize Green’s function G(x, t). To
show this, let y1(x) and y2(x) be two linearly independent solutions of
the DE (14.3). From the property (iii) there exist four functions, say,
λ1(t), λ2(t), μ1(t), and μ2(t) such that

G(x, t) =

{
y1(x)λ1(t) + y2(x)λ2(t), α ≤ x ≤ t

y1(x)μ1(t) + y2(x)μ2(t), t ≤ x ≤ β.
(16.1)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 16,
c© Springer Science+Business Media, LLC 2009
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Now using properties (i) and (ii), we obtain the following two equations:

y1(t)λ1(t) + y2(t)λ2(t) = y1(t)μ1(t) + y2(t)μ2(t) (16.2)

y′
1(t)μ1(t) + y′

2(t)μ2(t) − y′
1(t)λ1(t) − y′

2(t)λ2(t) =
1

p0(t)
. (16.3)

Let ν1(t) = μ1(t)−λ1(t) and ν2(t) = μ2(t)−λ2(t), so that (16.2) and (16.3)
can be written as

y1(t)ν1(t) + y2(t)ν2(t) = 0 (16.4)

y′
1(t)ν1(t) + y′

2(t)ν2(t) =
1

p0(t)
. (16.5)

Since y1(x) and y2(x) are linearly independent the Wronskian W (y1, y2)(t)
�= 0 for all t ∈ [α, β]. Thus, the relations (16.4), (16.5) uniquely determine
ν1(t) and ν2(t).

Now using the relations μ1(t) = λ1(t) + ν1(t) and μ2(t) = λ2(t) + ν2(t),
Green’s function can be written as

G(x, t) =

{
y1(x)λ1(t) + y2(x)λ2(t), α ≤ x ≤ t

y1(x)λ1(t) + y2(x)λ2(t) + y1(x)ν1(t) + y2(x)ν2(t), t ≤ x ≤ β.

(16.6)
Finally, using the property (iv), we find


1[y1]λ1(t) + 
1[y2]λ2(t) = −b0(y1(β)ν1(t) + y2(β)ν2(t))
−b1(y′

1(β)ν1(t) + y′
2(β)ν2(t))


2[y1]λ1(t) + 
2[y2]λ2(t) = −d0(y1(β)ν1(t) + y2(β)ν2(t))
−d1(y′

1(β)ν1(t) + y′
2(β)ν2(t)).

(16.7)

Since the problem (14.3), (14.4) has only the trivial solution, from Theorem
14.1 it follows that the system (16.7) uniquely determines λ1(t) and λ2(t).

From the above construction it is clear that no other function exists
which has properties (i)–(iv); i.e., Green’s function G(x, t) of the boundary
value problem (14.3), (14.4) is unique.

As mentioned earlier, we shall now show that the unique solution y(x) of
the problem (14.1), (14.4) can be represented in terms of G(x, t) as follows:

y(x) =
∫ β

α

G(x, t)r(t)dt =
∫ x

α

G(x, t)r(t)dt +
∫ β

x

G(x, t)r(t)dt. (16.8)

Since G(x, t) is differentiable with respect to x in each of the intervals, we
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find

y′(x) = G(x, x)r(x) +
∫ x

α

∂G(x, t)
∂x

r(t)dt − G(x, x)r(x) +
∫ β

x

∂G(x, t)
∂x

r(t)dt

=
∫ x

α

∂G(x, t)
∂x

r(t)dt +
∫ β

x

∂G(x, t)
∂x

r(t)dt

=
∫ β

α

∂G(x, t)
∂x

r(t)dt.

(16.9)
Next since ∂G(x, t)/∂x is a continuous function of (x, t) in the triangles

α ≤ t ≤ x ≤ β and α ≤ x ≤ t ≤ β, for any point (s, s) on the diagonal of
the square, i.e., t = x it is necessary that

∂G

∂x
(s, s−) =

∂G

∂x
(s+, s) and

∂G

∂x
(s, s+) =

∂G

∂x
(s−, s). (16.10)

Now differentiating the relation (16.9), we obtain

y′′(x) =
∂G(x, x−)

∂x
r(x) +

∫ x

α

∂2G(x, t)
∂x2

r(t)dt

−∂G(x, x+)
∂x

r(x) +
∫ β

x

∂2G(x, t)
∂x2

r(t)dt,

which in view of (16.10) is the same as

y′′(x) =
[
∂G(x+, x)

∂x
− ∂G(x−, x)

∂x

]
r(x) +

∫ β

α

∂2G(x, t)
∂x2

r(t)dt.

Using property (ii) this relation gives

y′′(x) =
r(x)
p0(x)

+
∫ β

α

∂2G(x, t)
∂x2

r(t)dt. (16.11)

Thus, from (16.8), (16.9), and (16.11), and the property (iii), we get

p0(x)y′′(x) + p1(x)y′(x) + p2(x)y(x)

= r(x) +
∫ β

α

[
p0(x)

∂2G(x, t)
∂x2

+ p1(x)
∂G(x, t)

∂x
+ p2(x)G(x, t)

]
r(t)dt

= r(x),

i.e., y(x) as given in (16.8) is a solution of the DE (14.1).

Finally, since

y(α) =
∫ β

α

G(α, t)r(t)dt, y(β) =
∫ β

α

G(β, t)r(t)dt

y′(α) =
∫ β

α

∂G(α, t)
∂x

r(t)dt, y′(β) =
∫ β

α

∂G(β, t)
∂x

r(t)dt,
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it is easy to see that


1[y] =
∫ β

α


1[G(x, t)]r(t)dt = 0 and 
2[y] =
∫ β

α


2[G(x, t)]r(t)dt = 0

and hence y(x) as given in (16.8) satisfies the boundary conditions (14.4)
as well.

We summarize these results in the following theorem.

Theorem 16.1. Let the homogeneous problem (14.3), (14.4) have only
the trivial solution. Then, the following hold:

(i) there exists a unique Green’s function G(x, t) for the problem (14.3),
(14.4),

(ii) the unique solution y(x) of the nonhomogeneous problem (14.1), (14.4)
can be represented by (16.8).

Example 16.1. We shall construct Green’s function of the problem

y′′ = 0 (16.12)

a0y(α) + a1y
′(α) = 0

d0y(β) + d1y
′(β) = 0.

(16.13)

For the DE (16.12) two linearly independent solutions are y1(x) = 1 and
y2(x) = x. Hence, in view of Theorem 14.1 the problem (16.12), (16.13) has
only the trivial solution if and only if

Δ =
∣∣∣∣ a0 a0α + a1

d0 d0β + d1

∣∣∣∣ = a0d0(β − α) + a0d1 − a1d0 �= 0

(see Problem 15.3). Further, equalities (16.4) and (16.5) reduce to

ν1(t) + tν2(t) = 0 and ν2(t) = 1.

Thus, ν1(t) = −t and ν2(t) = 1.

Next for (16.12), (16.13) the system (16.7) reduces to

a0λ1(t) + (a0α + a1)λ2(t) = 0

d0λ1(t) + (d0β + d1)λ2(t) = −d0(−t + β) − d1,

which easily determines λ1(t) and λ2(t) as

λ1(t) =
1
Δ

(a0α + a1)(d0β − d0t + d1) and λ2(t) =
1
Δ

a0(d0t− d0β − d1).
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Substituting these functions in (16.6), we get the required Green’s func-
tion

G(x, t) =
1
Δ

{
(d0β − d0t + d1)(a0α − a0x + a1), α ≤ x ≤ t

(d0β − d0x + d1)(a0α − a0t + a1), t ≤ x ≤ β,
(16.14)

which is symmetric, i.e., G(x, t) = G(t, x).

Example 16.2. Consider the periodic boundary value problem

y′′ + k2y = 0, k > 0 (16.15)

y(0) = y(ω)
y′(0) = y′(ω), ω > 0.

(16.16)

For the DE (16.15) two linearly independent solutions are y1(x) = cos kx
and y2(x) = sinkx. Hence, in view of Theorem 14.1 the problem (16.15),
(16.16) has only the trivial solution if and only if

Δ = 4k sin2 kω

2
�= 0, i.e., ω ∈ (0, 2π/k).

Further, equalities (16.4) and (16.5) reduce to

cos kt ν1(t) + sin kt ν2(t) = 0

−k sinkt ν1(t) + k cos kt ν2(t) = 1.

These relations easily give

ν1(t) = −1
k

sin kt and ν2(t) =
1
k

cos kt.

Next for (16.15), (16.16) the system (16.7) reduces to

(1 − cos kω)λ1(t) − sin kω λ2(t) =
1
k

sink(ω − t)

sinkω λ1(t) + (1 − cos kω)λ2(t) =
1
k

cos k(ω − t),

which determines λ1(t) and λ2(t) as

λ1(t) =
1

2k sin k
2ω

cos k
(
t − ω

2

)
and λ2(t) =

1
2k sin k

2ω
sin k
(
t − ω

2

)
.

Substituting these functions in (16.6), we get Green’s function of the
boundary value problem (16.15), (16.16) as

G(x, t) =
1

2k sin k
2ω

⎧⎪⎨
⎪⎩

cos k
(
x − t +

ω

2

)
, 0 ≤ x ≤ t

cos k
(
t − x +

ω

2

)
, t ≤ x ≤ ω

(16.17)
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which as expected is symmetric.

Problems

16.1. Show that

G(x, t) =
{

− cos t sin x, 0 ≤ x ≤ t
− sin t cosx, t ≤ x ≤ π/2

is Green’s function of the problem y′′ + y = 0, y(0) = y(π/2) = 0. Hence,
solve the boundary value problem

y′′ + y = 1 + x, y(0) = y(π/2) = 1.

16.2. Show that

G(x, t) =
1

sinh 1

{
sinh(t − 1) sinhx, 0 ≤ x ≤ t
sinh t sinh(x − 1), t ≤ x ≤ 1

is Green’s function of the problem y′′ − y = 0, y(0) = y(1) = 0. Hence,
solve the boundary value problem

y′′ − y = 2 sinx, y(0) = 0, y(1) = 2.

16.3. Construct Green’s function for each of the boundary value
problems given in Problem 15.1, parts (vi) and (vii), and then find their
solutions.

16.4. Verify that Green’s function of the problem (15.26), y(0) =
0, y(1) = 0 is

G(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

t(x2 − 1)
(t2 + 1)2

, 0 ≤ t ≤ x

x(t2 − 1)
(t2 + 1)2

, x ≤ t ≤ 1.

Hence, solve the boundary value problem (15.27).

16.5. Show that the solution of the boundary value problem

y′′ − 1
x

y′ = r(x), y(0) = 0, y(1) = 0

can be written as

y(x) =
∫ 1

0

G(x, t)r(t)dt,
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where

G(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

− (1 − t2)x2

2t
, x ≤ t

− t(1 − x2)
2

, x ≥ t.

16.6. Show that the solution of the boundary value problem

y′′ − y = r(x), y(−∞) = 0, y(∞) = 0

can be written as
y(x) =

1
2

∫ ∞

−∞
e−|x−t|r(t)dt.

16.7. Consider the nonlinear DE

y′′ = f(x, y, y′) (16.18)

together with the boundary conditions (14.5). Show that y(x) is a solution
of this problem if and only if

y(x) =
(β − x)
(β − α)

A +
(x − α)
(β − α)

B +
∫ β

α

G(x, t)f(t, y(t), y′(t))dt,

where G(x, t) is Green’s function of the problem y′′ = 0, y(α) = y(β) = 0
and is given by

G(x, t) =
1

(β − α)

{
(β − t)(α − x), α ≤ x ≤ t
(β − x)(α − t), t ≤ x ≤ β.

Also establish that

(i) G(x, t) ≤ 0 in [α, β] × [α, β]

(ii) |G(x, t)| ≤ 1
4
(β − α)

(iii)
∫ β

α

|G(x, t)|dt =
1
2
(β − x)(x − α) ≤ 1

8
(β − α)2

(iv)
∫ β

α

|G(x, t)| sin π(t − α)
(β − α)

dt =
(β − α)2

π2
sin

π(x − α)
(β − α)

(v)
∫ β

α

∣∣∣∣∂G(x, t)
∂x

∣∣∣∣ dt =
(x − α)2 + (β − x)2

2(β − α)
≤ 1

2
(β − α).

16.8. Consider the boundary value problem (16.18), (14.6). Show
that y(x) is a solution of this problem if and only if

y(x) = A + (x − α)B +
∫ β

α

G(x, t)f(t, y(t), y′(t))dt,



126 Lecture 16

where G(x, t) is Green’s function of the problem y′′ = 0, y(α) = y′(β) = 0
and is given by

G(x, t) =
{

(α − x), α ≤ x ≤ t
(α − t), t ≤ x ≤ β.

Also establish that

(i) G(x, t) ≤ 0 in [α, β] × [α, β]
(ii) |G(x, t)| ≤ (β − α)

(iii)
∫ β

α

|G(x, t)|dt =
1
2
(x − α)(2β − α − x) ≤ 1

2
(β − α)2

(iv)
∫ β

α

∣∣∣∣∂G(x, t)
∂x

∣∣∣∣ dt = (β − x) ≤ (β − α).

16.9. Consider the nonlinear DE

y′′ − ky = f(x, y, y′), k > 0

together with the boundary conditions (14.5). Show that y(x) is a solution
of this problem if and only if

y(x) =
sinh

√
k(β − x)

sinh
√

k(β − α)
A+

sinh
√

k(x − α)
sinh

√
k(β − α)

B +
∫ β

α

G(x, t)f(t, y(t), y′(t))dt,

where G(x, t) is Green’s function of the problem y′′−ky = 0, y(α) = y(β) =
0 and is given by

G(x, t) =
−1√

k sinh
√

k(β−α)

{
sinh

√
k(x − α) sinh

√
k(β − t), α ≤ x ≤ t

sinh
√

k(t − α) sinh
√

k(β − x), t ≤ x ≤ β.

Also establish that

(i) G(x, t) ≤ 0 in [α, β] × [α, β]

(ii)
∫ β

α

|G(x, t)|dt =
1
k

⎛
⎝1− cosh

√
k
(

β+α
2 −x
)

cosh
√

k
(

β−α
2

)
⎞
⎠ ≤ 1

k

⎛
⎝1− 1

cosh
√

k
(

β−α
2

)
⎞
⎠ .

16.10. Show that

(i) if we multiply the DE (14.3) by the integrating factor

μ(x) =
1

p0(x)
exp
(∫ x p1(t)

p0(t)
dt

)

then it can be written in the self-adjoint form

L[y] = (p(x)y′)′ + q(x)y = 0, (16.19)



Green’s Functions 127

(ii) if y1(x) and y2(x) are two linearly independent solutions of (16.19) in
[α, β], then p(x)W (y1, y2)(x) = C, where C �= 0 is a constant,
(iii) if y1(x) and y2(x) are solutions of (16.19) satisfying the same initial
conditions as in Problem 15.7, then Green’s function of the problem (16.19),
(16.13) can be written as

G(x, t) =
1
C

{
y2(t)y1(x), α ≤ x ≤ t
y1(t)y2(x), t ≤ x ≤ β

(16.20)

which is also symmetric.

Answers or Hints

16.1. 1 + x − π
2 sin x.

16.2. (2+sin 1)
sinh 1 sinh x − sin x.

16.3. The associated Green’s functions are—

for Problem 15.1(vi) G(x, t) =
{

− cos t sinx, 0 ≤ x ≤ t
− sin t cosx, t ≤ x ≤ π/2

for Problem 15.1(vii) G(x, t) =
{

−x
2 (2 − t)e−(x−t), 0 ≤ x ≤ t

− t
2 (2 − x)e−(x−t), t ≤ x ≤ 2.

16.4. Verify directly. x4 + 2x2 − 2x + 1.

16.5. Verify directly.

16.6. Verify directly.

16.7. Verify directly. For Part (ii) note that |G(x, t)| ≤ (β−x)(x−α)/(β−
α).

16.8. Verify directly.

16.9. Verify directly.

16.10.(i) Verify directly (ii) y2(py′
1)

′ − y1(py′
2)

′ = (y2py′
1 − y1py′

2)
′ = 0

(iii) From Problem 15.7 the homogeneous problem (16.19), (16.13) has only
the trivial solution; from the same problem it also follows that y1(x) and
y2(x) are linearly independent solutions of (16.19). Thus, in view of (2.13)
and (ii) the general solution of nonhomogeneous self-adjoint equation

L[y] = (p(x)y′)′ + q(x)y = r(x), (16.21)

can be written as
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y(x) = c1y1(x) + c2y2(x) + 1
C

∫ x

α
[y1(t)y2(x) − y2(t)y1(x)]r(t)dt.

This solution also satisfies the boundary conditions (16.13) if and only if
c1 = 1

C

∫ β

α
y2(t)r(t)dt and c2 = 0.



Lecture 17
Regular Perturbations

In Theorem 4.1 we have obtained series solution of the second-order
initial value problem (2.1), (4.1) whose radius of convergence is at least as
large as that for both the functions p1(x) and p2(x). However, in many prob-
lems the functions p1(x) and p2(x) are not necessarily analytic; moreover,
we often need to find at least an approximate solution which is meaningful
for all x in a given interval. In this lecture we shall discuss the regular
perturbation technique which relates the unknown solution of (2.1), (4.1)
with the known solutions of infinite related initial value problems.

The essential ideas of regular perturbation technique can be exhibited
as follows: Suppose that the auxiliary DE

y′′ + p1(x)y′ + p2(x)y = 0 (17.1)

together with the initial conditions (4.1) can be solved explicitly to obtain
its solution y0(x). We write the DE (2.1) in the form

y′′ + (p1(x) + p1(x) − p1(x))y′ + (p2(x) + p2(x) − p2(x))y = 0,

which is the same as

y′′ + p1(x)y′ + p2(x)y = q1(x)y′ + q2(x)y, (17.2)

where q1(x) = p1(x) − p1(x) and q2(x) = p2(x) − p2(x). We introduce a
parameter ε and consider the new DE

y′′ + p1(x)y′ + p2(x)y = ε(q1(x)y′ + q2(x)y). (17.3)

Obviously, if ε = 1, then this new DE (17.3) is the same as (17.2). We look
for the solution of (17.3), (4.1) having the form

y(x) =
∞∑

n=0

εnyn(x) = y0(x) + εy1(x) + ε2y2(x) + · · · . (17.4)

For this, it is necessary to have

∞∑
n=0

εn(y′′
n(x)+p1(x)y′

n(x)+p2(x)yn(x)) = ε

∞∑
n=0

εn(q1(x)y′
n(x)+q2(x)yn(x))

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 17,
c© Springer Science+Business Media, LLC 2009
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and
∞∑

n=0

εnyn(x0) = c0,

∞∑
n=0

εny′
n(x0) = c1.

Thus, on equating the coefficients of εn, n = 0, 1, · · · we find the infinite
system of initial value problems

y′′
0 (x) + p1(x)y′

0(x) + p2(x)y0(x) = 0, y0(x0) = c0, y′
0(x0) = c1 (17.5)

y′′
n(x) + p1(x)y′

n(x) + p2(x)yn(x) = q1(x)y′
n−1(x) + q2(x)yn−1(x)

yn(x0) = y′
n(x0) = 0, n = 1, 2, · · · .

(17.6)n

This infinite system can be solved recursively. Indeed, from our initial
assumption the solution y0(x) of the initial value problem (17.5) can be
obtained explicitly, and thus the term q1(x)y′

0(x) + q2(x)y0(x) in (17.6)1 is
known; consequently the solution y1(x) of the nonhomogeneous initial value
problem (17.6)1 can be obtained by the method of variation of parameters.
Continuing in this way the functions y2(x), y3(x), · · · can similarly be ob-
tained. Finally, the solution of the original problem is obtained by summing
the series (17.4) for ε = 1.

The above formal perturbative procedure is not only applicable for the
initial value problem (2.1), (4.1) but can also be applied to a variety of
linear as well as nonlinear problems. The implementation of this powerful
technique consists the following three basic steps:

(i) Conversion of the given problem into a perturbation problem by intro-
ducing the small parameter ε.

(ii) Assumption of the solution in the form of a perturbation series and
computation of the coefficients of that series.
(iii) Finally, obtaining the solution of the original problem by summing
the perturbation series for the appropriate value of ε.

It is clear that the parameter ε in the original problem can be intro-
duced in an infinite number of ways; however, the perturbed problem is
meaningful only if the zero-th order solution, i.e., y0(x) is obtainable ex-
plicitly. Further, in a large number of applied problems this parameter
occurs naturally, representing such diverse physical quantities as Planck’s
constant, a coupling coefficient, the intensity of a shock, the reciprocal of
the speed of light, or the amplitude of a forcing term.

The perturbation method naturally leads to the question, under what
conditions does the perturbation series converge and actually represent a
solution of the original problem? Unfortunately, often perturbation series
are divergent; however, this is not necessarily bad because a good approx-
imation to the solution when ε is very small can be obtained by summing
only the first few terms of the series.
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We shall illustrate this fruitful technique in the following examples.

Example 17.1. The initial value problem

y′′ − |x|y = 0, y(0) = 1, y′(0) = 0 (17.7)

has a unique solution in IR. However, in any interval containing zero the
series solution method cannot be employed because the function |x| is not
analytic. We convert (17.7) into a perturbation problem

y′′ = ε|x|y, y(0) = 1, y′(0) = 0 (17.8)

and assume that the solution of (17.8) can be written as perturbation series
(17.4). This leads to an infinite system of initial value problems

y′′
0 (x) = 0, y0(0) = 1, y′

0(0) = 0 (17.9)
y′′

n(x) = |x|yn−1(x), yn(0) = y′
n(0) = 0, n = 1, 2, · · · (17.10)

which can be solved recursively, to obtain

y0(x) = 1, yn(x) =
1.4.7. · · · (3n − 2)

(3n)!

{
x3n−1|x|, if n odd
x3n, if n even.

Thus, the solution y(x, ε) of the perturbation problem (17.8) appears as

y(x, ε) = 1 +
∞∑

n=1

εn 1.4.7. · · · (3n − 2)
(3n)!

{
x3n−1|x|, if n odd
x3n, if n even.

(17.11)

Hence, the solution y(x) = y(x, 1) of the initial value problem (17.7) can
be written as

y(x) = 1 +
∞∑

n=1

1.4.7 · · · (3n − 2)
(3n)!

{
x3n−1|x|, if n odd
x3n, if n even.

(17.12)

From (17.12) it is clear that for the problem y′′ − xy = 0, y(0) =
1, y′(0) = 0 the perturbation method as well as its series solution leads to
the same Airy function.

Example 17.2. Consider the initial value problem

y′′ + y = 2x − 1, y(1) = 1, y′(1) = 3. (17.13)

We convert (17.13) into a perturbation problem

y′′ = ε(−y + 2x − 1), y(1) = 1, y′(1) = 3 (17.14)

and assume that the solution of (17.14) can be written as perturbation
series (17.4). This leads to the system

y′′
0 (x) = 0, y0(1) = 1, y′

0(1) = 3

y′′
1 (x) = −y0(x) + 2x − 1, y1(1) = y′

1(1) = 0

y′′
n(x) = −yn−1(x), yn(1) = y′

n(1) = 0, n = 2, 3, · · · .
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Thus, the solution y(x) of the problem (17.13) appears as

y(x) = 3x − 2 +
∞∑

n=1

(−1)n (x − 1)2n+1

(2n + 1)!
= 2x − 1 + sin(x − 1).

Example 17.3. In the van der Pol’s equation (4.18) we consider μ
as the perturbing parameter, and seek its solution in the form y(x) =∑∞

n=0 μnyn(x). For this, we must have

∞∑
n=0

μn(y′′
n(x) + yn(x)) = μ

⎛
⎝1 −

( ∞∑
n=0

μnyn(x)

)2
⎞
⎠ ∞∑

n=0

μny′
n(x),

which leads to the system

y′′
0 (x) + y0(x) = 0 (17.15)

y′′
1 (x) + y1(x) = (1 − y2

0(x))y′
0(x) (17.16)

y′′
2 (x) + y2(x) = (1 − y2

0(x))y′
1(x) − 2y0(x)y1(x)y′

0(x) (17.17)
· · · .
The general solution of (17.15) is readily available, and we prefer to

write it as y0(x) = a cos(x + b), where a and b are arbitrary constants.
Substituting y0(x) in (17.16), one obtains

y′′
1 (x) + y1(x) = −(1 − a2 cos2(x + b))a sin(x + b)

=
a3 − 4a

4
sin(x + b) +

1
4
a3 sin 3(x + b),

which easily determines y1(x) as

y1(x) = −a3 − 4a

8
x cos(x + b) − 1

32
a3 sin 3(x + b).

With y0(x) and y1(x) known, the right side of (17.17) is known. Thus,
y2(x) can be determined from (17.17) in a similar fashion. Certainly, for a
small μ the solution y(x) of (4.18) is better approximated by the function

a cos(x + b) − μ

(
a3 − 4a

8
x cos(x + b) +

1
32

a3 sin 3(x + b)
)

compared to just a cos(x + b).

Example 17.4. Duffing’s equation

my′′ + ay + by3 = 0 (17.18)

models the free velocity vibrations of a mass m on a nonlinear spring,
where the term ay represents the force exerted by a linear spring, whereas
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the term by3 represents the nonlinearity of an actual spring. For simplicity,
in (17.18) let m = a = 1 so that (17.18) reduces to

y′′ + y + by3 = 0. (17.19)

We shall consider (17.19) together with the initial conditions

y(0) = y0, y′(0) = 0. (17.20)

In (17.19) let b be the perturbing parameter. We seek the solution of
(17.19), (17.20) in the form y(x) =

∑∞
n=0 bnyn(x). This leads to the system

y′′
0 (x) + y0(x) = 0, y0(0) = y0, y′

0(0) = 0 (17.21)
y′′
1 (x) + y1(x) = −y3

0(x), y1(0) = y′
1(0) = 0 (17.22)

· · · .
From (17.21) and (17.22), it is easy to obtain the functions

y0(x) = y0 cosx

y1(x) = −3
8
y3
0x sin x +

1
32

y3
0(cos 3x − cosx).

Thus, the solution y(x) of the problem (17.19), (17.20) can be written as

y(x) = y0 cosx + by3
0

(
−3

8
x sin x +

1
32

(cos 3x − cosx)
)

+ O(b2).

Example 17.5. The boundary value problem

y′′ = −2yy′, y(0) = 1, y(1) = 1/2 (17.23)

has a unique solution y(x) = 1/(1 + x). We convert (17.23) into a pertur-
bation problem

y′′ = ε(−2yy′), y(0) = 1, y(1) = 1/2 (17.24)

and assume that the solution of (17.24) can be written as perturbation
series (17.4). This leads to the system

y′′
0 = 0, y0(0) = 1, y0(1) = 1/2 (17.25)

y′′
1 = −2y0y

′
0, y1(0) = y1(1) = 0 (17.26)

y′′
2 = −2(y0y

′
1 + y1y

′
0), y2(0) = y2(1) = 0 (17.27)

· · · .
From (17.25)–(17.27), we find the functions

y0(x) =
1
2
(2 − x), y1(x) =

1
12

(−5x + 6x2 − x3)

y2(x) =
1

180
(−17x + 75x2 − 85x3 + 30x4 − 3x5).
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Thus, an approximation to the solution of the boundary value problem
(17.23) can be taken as

y(x) = y0(x) + y1(x) + y2(x)

=
1

180
(180 − 182x + 165x2 − 100x3 + 30x4 − 3x5).

In Table 17.1 we compare this approximate solution y(x) with the exact
solution y(x).

Table 17.1

x Exact solution Approximate solution Difference

0.0 1.000000 1.000000 0.000000
0.1 0.909091 0.907517 0.001574
0.2 0.833333 0.830261 0.003072
0.3 0.769231 0.765476 0.003755
0.4 0.714286 0.710763 0.003523
0.5 0.666667 0.664062 0.002605
0.6 0.625000 0.623637 0.001363
0.7 0.588235 0.588049 0.000186
0.8 0.555556 0.556139 −0.000583
0.9 0.526316 0.527008 −0.000692
1.0 0.500000 0.500000 0.000000

Problems

17.1. The initial value problem

(1 + εθ)
dθ

dτ
+ θ = 0, θ(0) = 1

occurs in cooling of a lumped system. Show that

θ(τ) = e−τ + ε
(
e−τ − e−2τ

)
+ ε2
(

e−τ − 2e−2τ +
3
2
e−3τ

)
+ O(ε3).

Compare this approximation with the exact solution ln θ + ε(θ − 1) = −τ.

17.2. The initial value problem

dθ

dτ
+ θ + εθ4 = 0, θ(0) = 1
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occurs in cooling of a lumped system. Show that

θ(τ) = e−τ + ε
1
3
(
e−4τ − e−τ

)
+ ε2

2
9
(
e−τ − 2e−4τ + e−7τ

)
+ O(ε3).

Compare this approximation with the exact solution

1
3

ln
1 + εθ3

(1 + ε)θ3
= τ.

17.3. For the initial value problem

y′′ + (1 − εx)y = 0, y(0) = 1, y′(0) = 0

show that

y(x) = cosx + ε

(
1
4
x2 sin x +

1
4
x cos x − 1

4
sinx

)

+ε2
(
− 1

32
x4 cosx +

5
48

x3 sin x +
7
16

x2 cosx − 7
16

x sin x

)
+ O(ε3).

17.4. Consider the case of dropping a stone from the height h. Let
r = r(t) denote the distance of the stone from the surface at time t. Then,
the equation of motion is

d2r

dt2
= − γM

(R + r)2
, r(0) = h, r′(0) = 0, (17.28)

where R and M are the radius and the mass of the earth. Let ε = 1/R in
(17.28), to obtain

d2r

dt2
= − γMε2

(1 + εr)2
, r(0) = h, r′(0) = 0. (17.29)

In (17.29) use the expansion r(t) =
∑4

i=0 εiri(t) to show that

r(t) = h − γM

R2

(
1 − 2h

R

)
t2

2
+ O

(
1

R4

)
.

17.5. Consider the satellite equation

d2y

dt2
+ y = ky2

together with the initial conditions y(0) = A, y′(0) = 0. Show that

y(t) = A cos t + kA2

(
1
2
− 1

3
cos t − 1

6
cos 2t

)
+ k2A3

(
−1

3
+

29
144

cos t

+
5
12

t sin t +
1
9

cos 2t +
1
48

cos 3t

)
+ O(k3).
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17.6. For the harmonically forced Duffing’s equation

my′′ + ay + by3 = A cos Ωx

show that the periodic solution y(x) of period T = 2π/Ω can be written as

y(x) =
F

ω2 − Ω2
cosΩx + ε

{
3F 3

4(ω2 − Ω2)4
cosΩx

+
F 3

4(ω2 − Ω2)3(ω2 − 3Ω2)
cos 3Ωx

}
+ O(ε2),

where ω2 = a/m �= n2Ω2, ε = b/m and F = A/m.

17.7. The boundary value problem

d2θ

dX2
− εθ4 = 0, θ′(0) = 0, θ(1) = 1

occurs in heat transfer. Show that

θ(X) = 1 + ε
1
2
(X2 − 1) + ε2

1
6
(X4 − 6X2 + 5) + O(ε3).

17.8. The boundary value problem

(1 + εθ)
d2θ

dX2
+ ε

(
dθ

dX

)2

− N2θ = 0, θ′(0) = 0, θ(1) = 1

occurs in heat transfer. Show that

θ(X) = sechN coshNX + ε
1
3
sech2N(cosh 2NsechN coshNX

− cosh 2NX) + ε2
1
6
sech3N

[(
4
3
sech2N cosh2 2N − 1

2
NtanhN

−9
8
sechN cosh 3N

)
coshNX − 4

3
sech N cosh 2N cosh 2NX

+
9
8

cosh 3NX +
1
2
NX sinh NX

]
+ O(ε3).

17.9. The boundary value problem

d2U

dR2
+

1
R

dU

dR
= −P + εθ

d2θ

dR2
+

1
R

dθ

dR
= −U

U ′(0) = θ′(0) = 0, U(1) = θ(1) = 0
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occurs in a flow of a fluid. Show that

U(R) =
P

4
(1 − R2) + ε

P

2304
(R6 − 9R4 + 27R2 − 19)

−ε2
P

14745600
(R10 − 25R8 + 300R6 − 1900R4 + 5275R2 − 3651) + O(ε3)

θ(R) =
P

64
(R4−4R2 + 3) + ε

P

147456
(R8 + 16R6−108R4 + 304R2−211)

+ε2
P

2123366400
(R12 − 36R10 + 675R8 − 7600R6 + 47475R4 − 131436R2

+ 90921) + O(ε3).



Lecture 18
Singular Perturbations

In many practical problems one often meets cases where the parameter
ε is involved in the DE in such a way that the methods of regular per-
turbations cannot be applied. In the literature such problems are known
as singular perturbation problems. In this lecture we shall explain the
methodology of singular perturbation technique with the help of the follow-
ing examples.

Example 18.1. For the initial value problem

εy′′ + (1 + ε)y′ + y = 0 (18.1)

y(0) = c1, y′(0) = c2 (18.2)

the explicit solution can be written as

y(x) =
1

(ε − 1)

[
ε(c1 + c2)e−x/ε − (c2ε + c1)e−x

]
.

Thus, it follows that

y′(x) =
1

(ε − 1)

[
−(c1 + c2)e−x/ε + (c2ε + c1)e−x

]
.

Hence, as ε → 0+, y(x) → c1e
−x, but y′(x) has the following discontinuous

behavior:

lim
ε→0+

y′(x) =

{
−c1e

−x, x > 0

c2, x = 0.

As a consequence, we find

lim
x→0

(
lim

ε→0+
y′(x)
)

�= lim
ε→0+

(
lim
x→0

y′(x)
)

.

Further, if we set ε = 0 in (18.1) then we are left with the first-order DE

y′ + y = 0. (18.3)

Obviously, for the problem (18.3), (18.2) initial conditions are inconsistent
unless c1 = −c2.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 18,
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If we seek the solution of (18.1), (18.2) in the regular perturbation series
form (17.4), then it leads to the system of first-order DEs

y′
0(x) + y0(x) = 0, y0(0) = c1, y′

0(0) = c2

y′
n(x) + yn(x) = −(y′′

n−1(x) + y′
n−1(x)), yn(0) = y′

n(0) = 0, n ≥ 1,

which can be solved only if the initial conditions are consistent, i.e., c1 =
−c2. Further, in such a case it is easy to obtain y0(x) = c1e

−x, yn(x) =
0, n ≥ 1; and hence (17.4) reduces to just y(x) = c1e

−x, which is indeed a
solution of (18.1), (18.2).

Example 18.2. For the DE (18.1) together with the boundary condi-
tions

y(0) = 0, y(1) = 1 (18.4)

an explicit solution can be written as

y(x) =
e−x − e−x/ε

e−1 − e−1/ε
, (18.5)

which has the following discontinuous behavior

lim
ε→0+

y(x) =

{
e1−x, x > 0

0, x = 0.

Thus, it follows that

lim
x→0

(
lim

ε→0+
y(x)
)

�= lim
ε→0+

(
lim
x→0

y(x)
)

.

This is due to the fact that the first-order DE (18.3) obtained by substi-
tuting ε = 0 in (18.1), together with the boundary conditions (18.4) cannot
be solved. Hence, we cannot expect the solution of (18.1), (18.4) to have
the regular perturbation series form (17.4).

In Figure 18.1 we graph the solution (18.5) for ε = 0.1, 0.01 and 0.001,
and note that y(x) is slowly varying in the region ε � x ≤ 1. However, in
the small interval 0 ≤ x ≤ O(ε) it undergoes an abrupt and rapid change.
This small interval is called a boundary layer. The boundary layer region
is called the inner region and the region of slow variation of y(x) is called
the outer region.

Thus, as illustrated, singular perturbation problems are in general char-
acterized by the nonanalytic dependence of the solution on ε. One of the
ways of constructing a uniformly valid perturbation solution of such prob-
lems is to obtain straight forward solution (called an outer expansion) using
the original variables, and to obtain a solution (called an inner expansion)
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describing sharp variations using magnifying scales. The outer expansion
breaks down in the boundary layer region, whereas the inner expansion
breaks down in the outer region. Finally, these two solutions are matched
by a procedure known as the method of inner and outer expansions, or the
method of matched asymptotic expansions. This technique leads to global
approximations to the solutions of singular perturbation problems.

x

y

Figure 18.1

ε = 0.1

ε = 0.01

ε = 0.001

0 0.167 0.333 0.5 0.667 0.833 1

0.538

1.076

1.615

2.153

2.691

To appreciate this method, we reconsider the boundary value problem
(18.1), (18.4). Its exact solution (18.5) consists of two parts: e−x, a slowly
varying function in [0, 1], and e−x/ε, a function of rapid variations in the
boundary layer region 0 ≤ x ≤ O(ε). We need to introduce the notion of
an inner and outer limits of the solution. The outer limit of the solution
y(x) denoted as yout(x) is obtained by prescribing a fixed x outside the
boundary layer, i.e., O(ε) � x ≤ 1 and letting ε → 0+. We therefore have

yout(x) = lim
ε→0+

y(x) = e1−x. (18.6)

This yout(x) satisfies the first-order DE

y′
out(x) + yout(x) = 0, (18.7)

which is the formal outer limit of the DE (18.1). Since yout(x) satisfies the
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boundary condition y(1) = 1 but not y(0) = 0, it is not close to y(x) near
x = 0.

Next we consider the inner limit of the solution denoted by yin(x) in
which ε → 0+ in the boundary layer region 0 ≤ x ≤ O(ε). To achieve
this we magnify this layer using the stretching transformation x = εt. The
variable t is called an inner variable, its introduction is advantageous in the
sense that in the boundary layer region the solution given by (18.5) varies
rapidly as a function of x but slowly as a function of t. From (18.5) it is
clear that

yin(x) = zin(t) = lim
ε→0+

y(εt) = e − e1−t. (18.8)

Further, defining y(x) ≡ z(t), under the transformation x = εt, (18.1) leads
to the DE

1
ε

d2z

dt2
+
(

1
ε

+ 1
)

dz

dt
+ z = 0. (18.9)

Now for a given t, we let ε → 0+ to obtain

d2

dt2
zin(t) +

d

dt
zin(t) = 0. (18.10)

The function zin(t) given in (18.8) not only satisfies the DE (18.10), but
also zin(0) = 0.

The next step is to match zin(t) and yout(x) asymptotically. This match-
ing will take place on an overlapping region described by the intermediate
limit x → 0, t = x/ε → ∞, ε → 0+. From (18.6) and (18.8), we have

lim
x→0

yout(x) = e = lim
t→∞

zin(t). (18.11)

Satisfaction of (18.11) will ensure asymptotic matching. It also provides the
second boundary condition zin(∞) = e for the solution of (18.10) to satisfy.
Observe here that although x ∈ [0, 1], the matching region is unbounded.

We now seek a perturbation expansion of the outer solution of (18.1) in
the form

yout(x) =
∞∑

n=0

εnyn(x) (18.12)

satisfying the relevant boundary condition y(1) = 1. This leads to the
infinite system of initial value problems

y′
0(x) + y0(x) = 0, y0(1) = 1

y′
n(x) + yn(x) = −(y′′

n−1(x) + y′
n−1(x)), yn(1) = 0, n ≥ 1,

(18.13)

which can be solved to obtain y0(x) = e1−x, yn(x) = 0, n ≥ 1. Thus,
yout(x) = e1−x. (Note that yout(x) in (18.6) is not the same as in (18.12),
rather it is y0(x) in (18.12)).
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In order to obtain zin(t), we assume that the DE (18.9) has the expan-
sion

zin(t) =
∞∑

n=0

εnzn(t) (18.14)

satisfying the other boundary condition z(0) = 0. This gives the infinite
system of initial value problems

z′′0 (t) + z′0(t) = 0, z0(0) = 0

z′′n(t) + z′n(t) = −(z′n−1(t) + zn−1(t)), zn(0) = 0, n ≥ 1.
(18.15)

The system (18.15) can be solved to find

z0(t) = A0(1 − e−t)

zn(t) =
∫ t

0

(Ane−s − zn−1(s))ds, n ≥ 1,
(18.16)n

where An, n ≥ 0 are constants of integration. To find these constants, we
shall match yout(x) with zin(t). For this, we have

yout(x) = e1−x = e

(
1 − εt +

ε2t2

2!
− ε3t3

3!
+ · · ·
)

. (18.17)

Thus, on comparing z0(t) obtained in (18.16)0 for large t (→ ∞) with
the constant term on the right of (18.17), we have z0(t) ∼ A0 = e. Once
z0(t) is known, we easily obtain z1(t) = (A1 + A0)(1 − e−t) − et. Hence,
on comparing z1(t) for large t (→ ∞) with the second term on the right
of (18.17), we find z1(t) ∼ (A1 + A0) − et = −et, i.e., A1 + A0 = 0, or
A1 = −A0 = −e, so that z1(t) = −et. Proceeding in a similar fashion we
arrive at zn(t) = (−1)n(etn/n!), and finally the inner expansion is

zin(t) = e

∞∑
n=0

εn (−1)ntn

n!
− e1−t = e1−εt − e1−t. (18.18)

Clearly, zin(t) is a valid asymptotic expansion not only for t in the
boundary layer region 0 ≤ t ≤ O(1), but also for large t (t = O(ε−α), 0 <
α < 1), while yout(x) is valid for ε � x ≤ 1, and not for x = O(ε) since it
does not satisfy the boundary condition y(0) = 0. Further, from the above
construction we are able to match inner and outer expansions asymptoti-
cally in the region ε � x ≤ 1 to all orders in powers of ε.

Finally, to construct a uniform approximation yunif (x) of y(x) we may
take

yunif (x) = yin(x) + yout(x) − ymatch(x), (18.19)

where ymatch(x) approximates y(x) in the matching region. If we compute
yin(x), yout(x) and ymatch(x) up to nth-order, then |y(x) − yunif (x)| =
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O(εn+1) (ε → 0+, 0 ≤ x ≤ 1). Since for the boundary value problem
(18.1), (18.4) we can compute yout(x) = e1−x, yin(x) = e1−x − e1−t and
ymatch(x) = e1−x it follows that

yunif (x) = e1−x − e1−x/ε (18.20)

is an infinite order approximation to y(x).

It is to be noted that yunif (x) �= y(x), i.e. yunif (x) is only asymptotic
to y(x) and one should not expect yunif (x) → y(x) as n → ∞.

We remark that the DE (18.1) is sufficiently simple so that we could per-
form the preceding perturbation analysis and could obtain uniformly valid
approximations to the solution of the problem (18.1), (18.4). However, in
general, straightforward computations of yin(x) and yout(x) are practically
impossible. Matching criteria are in general very complicated and there is
no a priori reason to believe the existence of an overlapping region where
both outer and inner expansions remain valid. Finally, to obtain yunif (x)
one needs to make necessary modifications, at times one may have to have
composite, (e.g., multiplicative) expansions.

A careful analysis of the method of matched asymptotic expansions is
too complicated to be included in this elementary discussion on singular
perturbations.

Problems

18.1. For the initial value problem

(x + εy)y′ + y = 0, y(1) = 1

show that

(i) y(x) =
1
x

+ ε
x2 − 1
2x3

− ε2
x2 − 1
2x5

+ O(ε3)

(ii) the exact solution is

y(x) = −x

ε
+
(

x2

ε2
+

2
ε

+ 1
)1/2

(iii) y(x) = 1 +
1
ε
(1 − x) +

1
ε2

1
2
(x2 − 1) + O

(
1
ε3

)
, which is the same as

the expanded version of the exact solution.

18.2. For the initial value problem

(x + εy)y′ − 1
2
y = 1 + x2, y(1) = 1
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show that

y(x) =
1
3
(2x2 + 7x1/2 − 6) − ε

1
45

(
16x3 − 175x3/2 − 240x + 539x1/2

+105x−1/2 − 245
)

+ O(ε2).

18.3. For the initial value problem

dθ

dτ
+ θ1+ε = 0, θ(0) = 1

which occurs in cooling of a lumped system, show that

(i) the exact solution is θ(τ) = (1 + ετ)−1/ε, ε �= 0

(ii) θ(τ) = e−τ + ε
1
2
τ2e−τ + ε2

1
3

(
3
8
τ4 − τ3

)
e−τ + O(ε3).

18.4. For the boundary value problem

εy′′ + y′ + y = 0, y(0) = 0, y(1) = 1

show that

y(x) = e(1−x)/2ε ex
√

1−4ε/2ε − e−x
√

1−4ε/2ε

e
√

1−4ε/2ε − e−
√

1−4ε/2ε

−→ e1−x − e1+x−x/ε as ε → 0.

18.5. For the boundary value problem

y′′ − 2
x2

y +
2
x2

= 0

y(ε) = 0, y(1) = 1

show that

(i) the exact solution is

y(x) =
ε

1 − ε3
(x2 − x−1) + 1

(ii) the constant function z(x) = 1 satisfies both the DE and the right
boundary condition
(iii) limε→0 y(x) = z(x), 0 < x ≤ 1 and hence the solution has a boundary
layer near x = 0.



Lecture 19
Sturm–Liouville Problems

In Lecture 14 we have seen that homogeneous boundary value problem
(14.3), (14.4) may have nontrivial solutions. If the coefficients of the DE
and/or of the boundary conditions depend on a parameter, then one of the
pioneer problems of mathematical physics is to determine the value(s) of
the parameter for which such nontrivial solutions exist. In this lecture we
shall explain some of the essential ideas involved in this vast field, which is
continuously growing.

A boundary value problem which consists of the DE

(p(x)y′)′ + q(x)y + λr(x)y = P [y] + λr(x)y = 0, x ∈ J = [α, β] (19.1)

and the boundary conditions

a0y(α) + a1y
′(α) = 0, a2

0 + a2
1 > 0

d0y(β) + d1y
′(β) = 0, d2

0 + d2
1 > 0 (19.2)

is called a Sturm–Liouville problem. In the DE (19.1), λ is a parameter,
and the functions q, r ∈ C(J), p ∈ C1(J) and p(x) > 0, r(x) > 0 in J.

The problem (19.1), (19.2) satisfying the above conditions is said to
be a regular Sturm–Liouville problem. Clearly, y(x) ≡ 0 is always a solu-
tion of (19.1), (19.2). Solving such a problem means finding values of λ
called eigenvalues and the corresponding nontrivial solutions φλ(x) known
as eigenfunctions. The set of all eigenvalues of a regular problem is called
its spectrum.

The computation of eigenvalues and eigenfunctions is illustrated in the
following examples.

Example 19.1. Consider the boundary value problem

y′′ + λy = 0 (19.3)

y(0) = y(π) = 0. (19.4)

If λ = 0, then the general solution of (19.3) (reduced to y′′ = 0) is y(x) =
c1 + c2x and this solution satisfies the boundary conditions (19.4) if and
only if c1 = c2 = 0, i.e., y(x) ≡ 0 is the only solution of (19.3), (19.4).
Hence, λ = 0 is not an eigenvalue of the problem (19.3), (19.4).

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 19,
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If λ �= 0, it is convenient to replace λ by μ2, where μ is a new parameter
and not necessarily real. In this case the general solution of (19.3) is y(x) =
c1e

iμx + c2e
−iμx, and this solution satisfies the boundary conditions (19.4)

if and only if
c1 + c2 = 0

c1e
iμπ + c2e

−iμπ = 0.
(19.5)

The system (19.5) has a nontrivial solution if and only if

e−iμπ − eiμπ = 0. (19.6)

If μ = a + ib, where a and b are real, condition (19.6) reduces to

ebπ(cos aπ − i sinaπ) − e−bπ(cos aπ + i sinaπ) = 0

or
(ebπ − e−bπ) cos aπ − i(ebπ + e−bπ) sin aπ = 0

or
2 sinh bπ cos aπ − 2i cosh bπ sin aπ = 0

or
sinh bπ cos aπ = 0 (19.7)

and
cosh bπ sin aπ = 0. (19.8)

Since cosh bπ > 0 for all values of b, equation (19.8) requires that a = n,
where n is an integer. Further, for this choice of a, cos aπ �= 0 and equation
(19.7) reduces to sinh bπ = 0, i.e., b = 0. However, if b = 0, then we cannot
have a = 0, because then μ = 0, and we have seen it is not an eigenvalue.
Hence, μ = n, where n is a nonzero integer. Thus, the eigenvalues of (19.3),
(19.4) are λn = μ2 = n2, n = 1, 2, · · · . Further, from (19.5) since c2 = −c1

for λn = n2 the corresponding nontrivial solutions of the problem (19.3),
(19.4) are

φn(x) = c1(einx − e−inx) = 2ic1 sin nx,

or simply φn(x) = sin nx.

Example 19.2. Consider again the DE (19.3) but with the boundary
conditions

y(0) + y′(0) = 0, y(1) = 0. (19.9)

If λ = 0, then the general solution y(x) = c1+c2x of (19.3) also satisfies the
boundary conditions (19.9) if and only if c1 + c2 = 0, i.e., c2 = −c1. Hence,
λ = 0 is an eigenvalue of (19.3), (19.9) and the corresponding eigenfunction
is φ0(x) = 1 − x.
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If λ �= 0, then once again we replace λ by μ2 and note that the general
solution y(x) = c1e

iμx + c2e
−iμx of (19.3) satisfies the boundary conditions

(19.9) if and only if

(c1 + c2) + iμ(c1 − c2) = 0

c1e
iμ + c2e

−iμ = 0.
(19.10)

The system (19.10) has a nontrivial solution if and only if

(1 + iμ)e−iμ − (1 − iμ)eiμ = 0,

which is equivalent to
tanμ = μ. (19.11)

To find the real roots of (19.11) we graph the curves y = μ and y = tanμ
and observe the values of μ where these curves intersect.

μ

y

1 2 3 4 5 6 7 8

2

4

6

8

10

12

14

π
2

3π
2

5π
2

Figure 19.1

From Figure 19.1 it is clear that the equation (19.11) has an infinite
number of positive roots μn, n = 1, 2, · · · which are approaching the odd
multiples of π/2, i.e., μn 
 (2n+1)π/2. Further, since the equation (19.11)
remains unchanged if μ is replaced by −μ, we find that the only nonzero
real roots of (19.11) are μn 
 ±(2n + 1)π/2, n = 1, 2, · · · .
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Thus, the problem (19.3), (19.9) also has an infinite number of eigenval-
ues, λ0 = 0, λn 
 (2n + 1)2π2/4, n = 1, 2, · · · . Further, from (19.10), since
c2 = −c1e

2iμ for these λn, n ≥ 1 the corresponding nontrivial solutions of
the problem (19.3), (19.9) are

y(x) = c1e
i
√

λnx − c1e
−i

√
λnxe2i

√
λn = −2c1e

i
√

λn sin
√

λn(1 − x).

Hence, the eigenfunctions of (19.3), (19.9) are

φ0(x) = 1 − x
φn(x) = sin

√
λn(1 − x), n = 1, 2, · · · .

From Example 19.1 it is clear that the problem (19.3), (19.4) has an in-
finite number of real eigenvalues λn, which can be arranged as a monotonic
increasing sequence λ1 < λ2 < · · · such that λn → ∞ as n → ∞. Also,
corresponding to each eigenvalue λn of (19.3), (19.4) there exists a one-
parameter family of eigenfunctions φn(x), which has exactly (n − 1) zeros
in the open interval (0, π). Further, the eigenfunctions φn(x) = sin nx, n =
1, 2, · · · of (19.3), (19.4) are orthogonal in (0, π) with the weight function
r(x) = 1. Clearly, these properties are also valid for the problem (19.3),
(19.9). In fact, these properties hold for the general regular Sturm–Liouville
problem (19.1), (19.2). We shall state these properties as theorems and
prove the results.

Theorem 19.1. The eigenvalues of the regular Sturm–Liouville prob-
lem (19.1), (19.2) are simple; i.e., if λ is an eigenvalue of (19.1), (19.2)
and φ1(x) and φ2(x) are the corresponding eigenfunctions, then φ1(x) and
φ2(x) are linearly dependent.

Proof. Since φ1(x) and φ2(x) both are solutions of (19.1), we have

(p(x)φ′
1)

′ + q(x)φ1 + λr(x)φ1 = 0 (19.12)

and
(p(x)φ′

2)
′ + q(x)φ2 + λr(x)φ2 = 0. (19.13)

Multiplying (19.12) by φ2, and (19.13) by φ1 and subtracting, we get

φ2(p(x)φ′
1)

′ − (p(x)φ′
2)

′φ1 = 0. (19.14)

However, since

[φ2(p(x)φ′
1) − (p(x)φ′

2)φ1]′

= φ2(p(x)φ′
1)′ + φ′

2(p(x)φ′
1) − (p(x)φ′

2)′φ1 − (p(x)φ′
2)φ′

1

= φ2(p(x)φ′
1)

′ − (p(x)φ′
2)

′φ1

from (19.14) it follows that

[φ2(p(x)φ′
1) − (p(x)φ′

2)φ1]′ = 0
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and hence
p(x)[φ2φ

′
1 − φ′

2φ1] = constant = C. (19.15)

To find the value of C, we note that φ1 and φ2 satisfy the boundary condi-
tions, and hence

a0φ1(α) + a1φ
′
1(α) = 0

a0φ2(α) + a2φ
′
2(α) = 0,

which implies φ1(α)φ′
2(α) − φ2(α)φ′

1(α) = 0. Thus, from (19.15) it follows
that

p(x)[φ2φ
′
1 − φ′

2φ1] = 0 for all x ∈ [α, β].

Since p(x) > 0, we must have φ2φ
′
1 − φ′

2φ1 = 0 for all x ∈ [α, β]. But, this
means that φ1 and φ2 are linearly dependent.

Theorem 19.2. Let λn, n = 1, 2, · · · be the eigenvalues of the reg-
ular Sturm–Liouville problem (19.1), (19.2) and φn(x), n = 1, 2, · · · be
the corresponding eigenfunctions. Then, the set {φn(x) : n = 1, 2, · · ·} is
orthogonal in [α, β] with respect to the weight function r(x).

Proof. Let λk and λ, (k �= 
) be eigenvalues, and φk(x) and φ(x) be
the corresponding eigenfunctions of (19.1), (19.2). Since φk(x) and φ(x)
are solutions of (19.1), we have

(p(x)φ′
k)′ + q(x)φk + λkr(x)φk = 0 (19.16)

and
(p(x)φ′

)
′ + q(x)φ + λr(x)φ = 0. (19.17)

Now following the argument in Theorem 19.1, we get

[φ(p(x)φ′
k) − (p(x)φ′

)φk]′ + (λk − λ)r(x)φkφ = 0,

which on integration gives

(λ − λk)
∫ β

α

r(x)φk(x)φ(x)dx = p(x)[φ(x)φ′
k(x) − φ′

(x)φk(x)]
∣∣∣β
α

.

(19.18)
Next since φk(x) and φ(x) satisfy the boundary conditions (19.2), i.e.,

a0φk(α) + a1φ
′
k(α) = 0, d0φk(β) + d1φ

′
k(β) = 0

a0φ(α) + a1φ
′
(α) = 0, d0φ(β) + d1φ

′
(β) = 0

it is necessary that

φk(α)φ′
(α) − φ′

k(α)φ(α) = φk(β)φ′
(β) − φ′

k(β)φ(β) = 0.

Hence, the identity (19.18) reduces to

(λ − λk)
∫ β

α

r(x)φk(x)φ(x)dx = 0. (19.19)
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However, since λ �= λk, it follows that
∫ β

α
r(x)φk(x)φ(x)dx = 0.

Corollary 19.3. Let λ1 and λ2 be two eigenvalues of the regular
Sturm–Liouville problem (19.1), (19.2) and φ1(x) and φ2(x) be the corre-
sponding eigenfunctions. Then, φ1(x) and φ2(x) are linearly dependent if
and only if λ1 = λ2.

Proof. The proof is a direct consequence of equality (19.19).

Theorem 19.4. For the regular Sturm–Liouville problem (19.1), (19.2)
the eigenvalues are real.

Proof. Let λ = a + ib be a complex eigenvalue and φ(x) = μ(x) + iν(x)
be the corresponding eigenfunction. Then, we have

(p(x)(μ + iν)′)′ + q(x)(μ + iν) + (a + ib)r(x)(μ + iν) = 0

and hence
(p(x)μ′)′ + q(x)μ + (aμ − bν)r(x) = 0

and
(p(x)ν′)′ + q(x)ν + (bμ + aν)r(x) = 0.

Now following exactly the same argument as in Theorem 19.1, we get

0 = p(x)(νμ′ − ν′μ)
∣∣∣β
α

=
∫ β

α

[−(aμ − bν)νr(x) + (bμ + aν)μr(x)]dx

= b

∫ β

α

r(x)(ν2(x) + μ2(x))dx.

Hence, it is necessary that b = 0, i.e., λ is real.

Since (19.3), (19.9) is a regular Sturm–Liouville problem, from Theorem
19.4 it is immediate that the equation (19.11) has only real roots.

In the above results we have established several properties of the eigen-
values and eigenfunctions of the regular Sturm–Liouville problem (19.1),
(19.2). In all these results the existence of eigenvalues is tacitly assumed.
We now state the following very important result whose proof involves some
advanced arguments.

Theorem 19.5. For the regular Sturm–Liouville problem (19.1),
(19.2) there exists an infinite number of eigenvalues λn, n = 1, 2, · · · .
These eigenvalues can be arranged as a monotonically increasing sequence
λ1 < λ2 < · · · such that λn → ∞ as n → ∞. Further, eigenfunction φn(x)
corresponding to the eigenvalue λn has exactly (n − 1) zeros in the open
interval (α, β).

The following examples show that the above properties for singular
Sturm–Liouville problems do not always hold.
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Example 19.3. For the singular Sturm–Liouville problem (19.3),

y(0) = 0, |y(x)| ≤ M < ∞ for all x ∈ (0,∞)

each λ ∈ (0,∞) is an eigenvalue and sin
√

λx is the corresponding eigenfunc-
tion. Thus, in comparison with the regular problems where the spectrum
is always discrete, the singular problems may have a continuous spectrum.

Example 19.4. Consider the singular Sturm–Liouville problem (19.3),

y(−π) = y(π), y′(−π) = y′(π). (19.20)

This problem has eigenvalues λ0 = 0, λn = n2, n = 1, 2, · · · . The eigenvalue
λ0 = 0 is simple and 1 is the corresponding eigenfunction. The eigenvalue
λn = n2, n ≥ 1 is not simple and two independent eigenfunctions are sinnx
and cosnx. Thus, in contrast with regular problems where the eigenvalues
are simple, there may be multiple eigenvalues for singular problems.

Finally, we remark that the properties of the eigenvalues and eigenfunc-
tions of regular Sturm–Liouville problems can be extended under appro-
priate assumptions to singular problems also in which the function p(x) is
zero at α or β, or both, but remains positive in (α, β). Some examples of
this type are given in Problems 19.13 – 19.18.

Problems

19.1. The deflection y of a uniform column of length a under a
constant axial load p is governed by the boundary value problem

EI
d2y

dx2
+ py = 0, y(0) = y(a) = 0

here E is Young’s modulus, and I is the moment of inertia of the column.
Find the values of p for which this problem has nontrivial solutions. The
smallest such value of p is the upper limit for the stability of the unde-
flected equilibrium position of the column. (This problem with different
terminology is the same as (15.4)).

19.2. Find the eigenvalues and eigenfunctions of the problem (19.3)
with the boundary conditions

(i) y(0) = 0, y′(β) = 0
(ii) y′(0) = 0, y(β) = 0
(iii) y′(0) = 0, y′(β) = 0
(iv) y(0) = 0, y(β) + y′(β) = 0
(v) y(0) − y′(0) = 0, y′(β) = 0
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(vi) y(0) − y′(0) = 0, y(β) + y′(β) = 0.

19.3. Find the eigenvalues and eigenfunctions of each of the following
Sturm–Liouville problems:

(i) y′′ + λy = 0, y(0) = y(π/2) = 0
(ii) y′′ + (1 + λ)y = 0, y(0) = y(π) = 0
(iii) y′′ + 2y′ + (1 − λ)y = 0, y(0) = y(1) = 0
(iv) (x2y′)′ + λx−2y = 0, y(1) = y(2) = 0
(v) x2y′′ + xy′ + (λx2 − (1/4))y = 0, y(π/2) = y(3π/2) = 0
(vi) ((x2 + 1)y′)′ + λ(x2 + 1)−1y = 0, y(0) = y(1) = 0.

19.4. Find the eigenvalues and eigenfunctions of the boundary value
problem

y′′ + λy = 0, y′(0) = 0, hy(β) + kβy′(β) = 0.

Further, show that the set of all its eigenfunctions is orthogonal on [0, β].

19.5. Consider the boundary value problem

x2y′′ + xy′ + λy = 0, 1 < x < e
y(1) = 0, y(e) = 0.

(19.21)

(i) Show that (19.21) is equivalent to the Sturm–Liouville problem

(xy′)′ +
λ

x
y = 0, 1 < x < e

y(1) = 0, y(e) = 0.
(19.22)

(ii) Verify that for (19.22) the eigenvalues are λn = n2π2, n = 1, 2, · · ·
and the corresponding eigenfunctions are φn(x) = sin(nπ ln x).
(iii) Show that

∫ e

1

1
x

φm(x)φn(x)dx =
{

0, m �= n
1/2, m = n.

19.6. Verify that for the Sturm–Liouville problem

(xy′)′ +
λ

x
y = 0, 1 < x < e2π

y′(1) = 0, y′(e2π) = 0

the eigenvalues are λn = n2/4, n = 0, 1, · · · and the corresponding eigen-
functions are φn(x) = cos

(
n lnx

2

)
. Show that

∫ e2π

1

1
x

φm(x)φn(x)dx = 0, m �= n.
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19.7. Consider the DE in Problem 6.4 with n = 4, i.e.,

x4y′′ + k2y = 0. (19.23)

(i) Verify that the general solution of (19.23) is

y(x) = x

(
A cos

k

x
+ B sin

k

x

)
.

(ii) Find the eigenvalues and eigenfunctions of the Sturm–Liouville prob-
lem (19.23), y(α) = y(β) = 0, 0 < α < β.

19.8. Show that the problem

y′′ − 4λy′ + 4λ2y = 0, y(0) = 0, y(1) + y′(1) = 0

has only one eigenvalue, and find the corresponding eigenfunction.

19.9. Show that for the singular Sturm–Liouville problem (19.1),
(14.9) with p(α) = p(β) eigenfunctions corresponding to different eigenval-
ues are orthogonal in [α, β] with respect to the weight function r(x).

19.10. Solve the following singular Sturm–Liouville problems:

(i) y′′ + λy = 0, y′(0) = 0, |y(x)| < ∞ for all x ∈ (0,∞)
(ii) y′′ + λy = 0, |y(x)| < ∞ for all x ∈ (−∞,∞).

19.11. Find the eigenvalues and eigenfunctions of the problem

y(4) − λy = 0 (19.24)

with the boundary conditions

(i) y(0) = y′′(0) = y(β) = y′′(β) = 0 (19.25)
(ii) y(0) = y′(0) = y′′(β) = y′′′(β) = 0 (19.26)
(iii) y(0) = y′(0) = y(β) = y′(β) = 0. (19.27)

19.12. Find the eigenvalues and eigenfunctions of problem

y(4) + λy′′ = 0 (19.28)

with the boundary conditions (19.25). Further, show that (19.28), (19.26)
is not an eigenvalue problem.

19.13. Consider the singular Sturm–Liouville problem

(1 − x2)y′′ − 2xy′ + λy = ((1 − x2)y′)′ + λy = 0 (19.29)

lim
x→−1

y(x) < ∞, lim
x→1

y(x) < ∞. (19.30)



154 Lecture 19

Show that the eigenvalues of this problem are λn = n(n+1), n = 0, 1, 2, · · ·
and the corresponding eigenfunctions are the Legendre polynomials Pn(x).

19.14. Consider the singular Sturm–Liouville problem (19.29),

y′(0) = 0, lim
x→1

y(x) < ∞. (19.31)

Show that the eigenvalues of this problem are λn = 2n(2n + 1), n =
0, 1, 2, · · · and the corresponding eigenfunctions are the even Legendre poly-
nomials P2n(x).

19.15. Consider the singular Sturm–Liouville problem (19.29),

y(0) = 0, lim
x→1

y(x) < ∞. (19.32)

Show that the eigenvalues of this problem are λn = (2n + 1)(2n + 2), n =
0, 1, 2, · · · and the corresponding eigenfunctions are the odd Legendre poly-
nomials P2n+1(x).

19.16. Consider the singular Sturm–Liouville problem

y′′ − 2xy′ + λy = 0 =
(
e−x2

y′
)′

+ λe−x2
y (19.33)

lim
x→−∞

y(x)
|x|k < ∞, lim

x→∞

y(x)
xk

< ∞ for some positive integer k.

(19.34)
Show that the eigenvalues of this problem are λn = 2n, n = 0, 1, 2, · · · and
the corresponding eigenfunctions are the Hermite polynomials Hn(x).

19.17. Consider the singular Sturm–Liouville problem

xy′′ + (1 − x)y′ + λy = 0 =
(
xe−xy′)′ + λe−xy (19.35)

lim
x→0

|y(x)| < ∞, lim
x→∞

y(x)
xk

< ∞ for some positive integer k.

(19.36)
Show that the eigenvalues of this problem are λn = n, n = 0, 1, 2, · · · and
the corresponding eigenfunctions are the Laguerre polynomials Ln(x).

19.18. Let a ≥ 0 be fixed, and bn, n = 0, 1, 2, · · · be the zeros of the
Bessel function Ja(x). Show that the singular Sturm–Liouville problem

x2y′′ + xy′ + (λx2 − a2)y = 0 = (xy′)′ +
(

λx − a2

x

)
y (19.37)

lim
x→0

y(x) < ∞, y(1) = 0 (19.38)
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has the eigenvalues λn = b2
n, n = 0, 1, 2, · · · and the corresponding eigen-

functions are Ja(bnx).

19.19. Let λk be an eigenvalue of the regular Sturm–Liouville problem
(19.1), (19.2) and φk(x) be the corresponding eigenfunction. Show that

λk =
−p(x)φk(x)φ′

k(x)|βα +
∫ β

α

[
p(x)(φ′

k(x))2 − q(x)φ2
k(x)
]
dx∫ β

α r(x)φ2
k(x)dx

.

This expression is called Rayleigh quotient. From this quotient it follows
that

(i) λk ≥ 0 if −p(x)φk(x)φ′
k(x)|βα ≥ 0 and q(x) ≤ 0, x ∈ [α, β]

(ii) the minimum value of the Rayleigh quotient over all continuous func-
tions satisfying the conditions (19.2) is the smallest eigenvalue λ1.

Answers or Hints

19.1. n2π2EI/a2, n = 1, 2, · · · .

19.2. (i)
(

2n−1
2β

)2
π2, sin

(
2n−1
2β

)
πx (ii)

(
2n−1
2β

)2
π2, cos

(
2n−1
2β

)
πx

(iii)
(

n−1
β

)2
π2, cos

(
n−1

β

)
πx (iv) λ2

n, where λ = λn is a solution of

tan λβ + λ = 0, sin λnx (v) λ2
n, where λ = λn is a solution of cotλβ =

λ, sin λnx + λn cosλnx (vi) λ2
n, where λ = λn is a solution of tanλβ =

2λ/(λ2 − 1), sin λnx + λn cosλnx.

19.3. (i) 4n2, sin 2nx (ii) n2−1, sin nx (iii) −n2π2, e−x sin nπx (iv) 4n2×
π2, sin 2nπ

(
1 − 1

x

)
(v) n2, 1√

x
sin n
(
x − π

2

)
(vi) 16n2, sin(4n tan−1 x).

19.4. λn = α2
n/β2 where αn is a root of α tan α = h/k, cos αnx

β .

19.5. Verify directly.

19.6. Verify directly.

19.7. (i) Verify directly (ii) kn = nπαβ
β−α , x sin

[
nπβ(x−α)

x(β−α)

]
.

19.8. −1, xe−2x.

19.9. Use (19.18).

19.10.(i) λ ≥ 0, φ(x) = cos
√

λx (ii) λ ≥ 0, φ(x) = c1 cos
√

λx +
c2 sin

√
λx.
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19.11.(i) λn = n4π4

β4 , φn(x) = sin nπx
β

(ii) λn = (μn/β)4 where μn is the n–th root of the equation coshμ cosμ +
1 = 0,

[
cosh(μnx/β)−cos(μnx/β)

cosh μn+cos μn
− sinh(μnx/β)−sin(μnx/β)

sinhμn+sin μn

]
(iii) λn = (μn/β)4 where μn is the n–th root of the equation coshμ cosμ−
1 = 0,

[
cos(μnx/β)−cosh(μnx/β)

cos μn−cosh μn
− sin(μnx/β)−sinh(μnx/β)

sin μn−sinh μn

]
.

19.12.λn = n2π2

β2 , φn(x) = sin nπx
β .

19.13.See Lecture 7.

19.14.See Lecture 7.

19.15.See Lecture 7.

19.16.See Lecture 8.

19.17.See Lecture 8.

19.18.See Lectures 9 and 13.

19.19.Multiply (19.16) by φk(x) and integrate over [α, β].



Lecture 20
Eigenfunction Expansions

Often we need to expand a given function in terms of other functions
with specified exactness so as to be able to compute it in practice. In this
and the next lecture we shall show that the sets of orthogonal polynomials
and functions we have provided in earlier lectures can be used effectively
as the basis in the expansions of general functions.

The basis {e1, · · · , en} (ek is the unit vector) of IRn has an important
characteristic—namely, for every u ∈ IRn there is a unique choice of con-
stants α1, · · · , αn for which u =

∑n
i=1 αie

i. Further, from the orthonor-
mality of the vectors ei, 1 ≤ i ≤ n we can determine αi, 1 ≤ i ≤ n as
follows:

< u, ej >=

〈
n∑

i=1

αie
i, ej

〉
=

n∑
i=1

αi < ei, ej >= αj , 1 ≤ j ≤ n.

Thus, the vector u has a unique representation u =
∑n

i=1 < u, ei > ei.

A natural generalization of this result which is widely applicable and
has led to a vast amount of advanced mathematics can be stated as follows:
Let {φn(x), n = 0, 1, 2, · · ·} be an orthogonal set of functions in the interval
[α, β] with respect to the weight function r(x). Then, an arbitrary function
f(x) can be expressed as an infinite series involving orthogonal functions
φn(x), n = 0, 1, 2, · · · as

f(x) =
∞∑

n=0

cnφn(x). (20.1)

It is natural to ask the meaning of equality in (20.1), i.e., the type of
convergence, if any, of the infinite series on the right so that we will have
some idea as to how well this represents f(x). We shall also determine the
constant coefficients cn, n = 0, 1, 2, · · · in (20.1).

Let us first proceed formally without considering the question of con-
vergence. We multiply (20.1) by r(x)φm(x) and integrate from α to β, to
obtain ∫ β

α

r(x)φm(x)f(x)dx =
∫ β

α

∞∑
n=0

cnr(x)φn(x)φm(x)dx

= cm

∫ β

α

r(x)φ2
m(x)dx = cm‖φm‖2.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 20,
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158 Lecture 20

Thus, under suitable convergence conditions the constant coefficients cn,
n = 0, 1, 2, · · · are given by the formula

cn =
∫ β

α

r(x)φn(x)f(x)dx

/
‖φn‖2. (20.2)

However, if the set {φn(x)} is orthonormal, so that ‖φn‖ = 1, then we have

cn =
∫ β

α

r(x)φn(x)f(x)dx. (20.3)

If the series
∑∞

n=0 cnφn(x) converges uniformly to f(x) in [α, β], then
the above formal procedure is justified, and then the coefficients cn are
given by (20.2).

The coefficients cn obtained in (20.2) are called the Fourier coefficients
of the function f(x) with respect to the orthogonal set {φn(x)} and the
series

∑∞
n=0 cnφn(x) with coefficients (20.2) is called the Fourier series of

f(x).

We shall write

f(x) ∼
∞∑

n=0

cnφn(x)

which, in general, is just a correspondence, i.e., often f(x) �=
∑∞

n=0 cnφn(x),
unless otherwise is proved.

Fourier cosine series. In Lecture 12, we have seen that the set
{

φ0(x) =
1√
π

, φn(x) =

√
2
π

cosnx, n = 1, 2, · · ·
}

is orthonormal on 0 < x < π. Thus, for any piecewise continuous function
f(x) on 0 < x < π,

f(x) ∼ c0φ0(x) +
∞∑

n=1

cnφn(x) =
c0√
π

+
∞∑

n=1

cn

√
2
π

cosnx,

where

c0 =
∫ π

0

f(t)
1√
π

dt, cn =
∫ π

0

f(t)

√
2
π

cosntdt, n ≥ 1.

Hence,

f(x) ∼ 1
2
× 2

π

∫ π

0

f(t)dt +
∞∑

n=1

(
2
π

∫ π

0

f(t) cosntdt

)
cosnx,
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which can be written as

f(x) ∼ a0

2
+

∞∑
n=1

an cosnx, (20.4)

where
an =

2
π

∫ π

0

f(t) cosntdt, n ≥ 0. (20.5)

The series (20.4) is known as the Fourier cosine series.

Example 20.1. We shall find the Fourier cosine series of the function
f(x) = x, 0 < x < π. Clearly,

a0 =
2
π

∫ π

0

t cos 0tdt =
2
π

∫ π

0

tdt = π,

an =
2
π

∫ π

0

t cosntdt =
2
π

[
t
sin nt

n

∣∣∣∣
π

0

−
∫ π

0

sin nt

n
dt

]

=
2
π

[
0 − 0

n
+

cosnπ − 1
n2

]
=

2
π

(−1)n − 1
n2

, n ≥ 1.

Thus, from (20.4), we have

x ∼ π

2
+

∞∑
n=1

2
π

(−1)n − 1
n2

cosnx, 0 < x < π.

Fourier sine series. Recall that the set
{

φn(x) =

√
2
π

sin nx, n = 1, 2, · · ·
}

is orthonormal on 0 < x < π. Thus, for any piecewise continuous function
f(x) on 0 < x < π,

f(x) ∼
n∑

i=1

cn

√
2
π

sin nx,

where

cn =
∫ π

0

f(t)

√
2
π

sin ntdt, n ≥ 1.

Again we can rewrite it as

f(x) ∼
∞∑

n=1

bn sin nx, (20.6)
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where

bn =
2
π

∫ π

0

f(t) sin ntdt, n ≥ 1. (20.7)

This representation of f(x) is called the Fourier sine series.

Example 20.2. We shall find the Fourier sine series of the function

f(x) =
{

2, 0 < x < π/2
0, π/2 < x < π.

Clearly, for n ≥ 1

bn =
2
π

∫ π

0

f(t) sin ntdt =
2
π

∫ π/2

0

2 sin ntdt =
4
π

[
− cos(nπ/2) + 1

n

]
.

Thus,

f(x) ∼
∞∑

n=1

4
π

[
1 − cos(nπ/2)

n

]
sin nx, 0 < x < π.

Fourier trigonometric series. In Lecture 12, we have verified
that the set
{
φ0(x) =

1√
2π

, φ2n−1(x) =
1√
π

cosnx, φ2n(x) =
1√
π

sin nx, n = 1, 2, · · ·
}

is orthonormal on −π < x < π. Thus, for any piecewise continuous function
f(x) on −π < x < π,

f(x) ∼ c0√
2π

+
∞∑

n=1

[
c2n−1

cosnx√
π

+ c2n
sin nx√

π

]
,

where

c0 =
∫ π

−π

f(t)
1√
2π

dt

c2n−1 =
∫ π

−π

f(t)
1√
π

cosntdt, n ≥ 1

c2n =
∫ π

−π

f(t)
1√
π

sin ntdt, n ≥ 1.

On rewriting the above relation, we have the Fourier trigonometric series

f(x) ∼ a0

2
+

∞∑
n=1

(an cosnx + bn sinnx), (20.8)
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where
an =

1
π

∫ π

−π

f(t) cosntdt, n ≥ 0

bn =
1
π

∫ π

−π

f(t) sin ntdt, n ≥ 1.

(20.9)

For our later use we note the following relations:

c0 =
√

π

2
a0, c2n−1 =

√
πan, c2n =

√
πbn. (20.10)

Example 20.3. We shall find the Fourier trigonometric series of the
function

f(x) =
{

1, − π < x < 0
x, 0 < x < π.

From (20.9), we have

an =
1
π

∫ π

−π

f(t) cosntdt =
1
π

∫ 0

−π

1 · cosntdt +
1
π

∫ π

0

t cosntdt

= 0 +
1
π

[
t sin nt

n
+

cosnt

n2

]∣∣∣∣
π

0

=
1
π

(
(−1)n − 1

n2

)
, n ≥ 1

a0 =
1
π

∫ 0

−π

1 · 1dt +
1
π

∫ t

0

t · 1dt = 1 +
π

2
,

bn =
1
π

∫ 0

−π

1 · sinntdt +
1
π

∫ π

0

t sinntdt =
−1 + (1 − π)(−1)n

nπ
, n ≥ 1.

Hence, we have

f(x) ∼
1 + π

2

2
+

∞∑
n=1

[
(−1)n − 1

πn2
cosnx +

−1 + (1 − π)(−1)n

nπ
sin nx

]
,

− π < x < π.

It is clear that the constants an, bn for the Fourier trigonometric se-
ries are different from those for the Fourier cosine and Fourier sine series.
However, if the function f(x) is odd, then since

an =
1
π

∫ π

−π

f(t) cosntdt = 0, n ≥ 0

bn =
1
π

∫ π

−π

f(t) sinntdt =
2
π

∫ π

0

f(t) sin ntdt, n ≥ 1
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the Fourier trigonometric series reduces to the Fourier sine series. Thus,
we conclude that if f(x) is odd, or defined only on (0, π) and we make its
odd extension then the Fourier sine series (20.6) holds on (−π, π). Exactly,
in the same way if f(x) is even, or defined only on (0, π) and we make its
even extension then since

an =
1
π

∫ π

−π

f(t) cosntdt =
2
π

∫ π

0

f(t) cosntdt, n ≥ 0

bn =
1
π

∫ π

−π

f(t) sin ntdt = 0, n ≥ 1

the Fourier trigonometric series reduces to the Fourier cosine series.

Finally, we remark that if the piecewise continuous function f(x) is
defined on −a < x < a, then its Fourier trigonometric series (20.8) takes
the form

f(x) ∼ a0

2
+

∞∑
n=1

(
an cos

nπx

a
+ bn sin

nπx

a

)
, (20.11)

where
an =

1
a

∫ a

−a

f(t) cos
nπt

a
dt, n ≥ 0

bn =
1
a

∫ a

−a

f(t) sin
nπt

a
dt, n ≥ 1.

(20.12)



Lecture 21
Eigenfunction Expansions

(Cont’d.)

In this lecture also, we shall expand a given function in terms of or-
thogonal polynomials and functions we have provided in Lectures 12 and
13.

Fourier–Legendre series. We have proved that the set of Leg-
endre polynomials {φn(x) = Pn(x), n = 0, 1, · · ·} is orthogonal on [−1, 1]
with r(x) = 1. Also,

‖Pn‖2 =
∫ 1

−1

P 2
n(x)dx =

2
2n + 1

.

Thus, for any piecewise continuous function f(x) on −1 < x < 1 the
Fourier–Legendre series appears as

f(x) ∼
∞∑

n=0

cnPn(x), (21.1)

where

cn =
2n + 1

2

∫ 1

−1

Pn(x)f(x)dx, n ≥ 0. (21.2)

Example 21.1. For the function f(x) = cos(πx/2) (recall explicit form
of P0(x), P1(x), P2(x), P3(x) and P4(x)) it is easy to find from (21.2) that

c0 =
2
π

, c1 = 0, c2 = −10
π3

(12 − π2)

c3 = 0, c4 =
18
π5

(π4 − 180π2 + 1680), c5 = 0.

Hence, the Fourier–Legendre series of the function f(x) = cos(πx/2) up to
P4(x) in the interval [−1, 1] is

2
π

P0(x) − 10
π3

(12 − π2)P2(x) +
18
π5

(π4 − 180π2 + 1680)P4(x).

Note that P2m(x) is an even function, whereas P2m+1(x) is odd. So, if
f(x) is even or defined on (0, 1) and we make its even extension, then the

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 21,
c© Springer Science+Business Media, LLC 2009
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Fourier–Legendre series (21.1) reduces to

f(x) ∼
∞∑

m=0

c2mP2m(x), (21.3)

where

c2m = (4m + 1)
∫ 1

0

P2m(x)f(x)dx, m ≥ 0. (21.4)

In our previous example the function f(x) = cos(πx/2) is even, and hence
all odd cn’s are zero.

Similarly, if f(x) is odd or defined on (0, 1) and we make its odd exten-
sion, then the Fourier–Legendre series (21.1) reduces to

f(x) ∼
∞∑

m=0

c2m+1P2m+1(x), (21.5)

where

c2m+1 = (4m + 3)
∫ 1

0

P2m+1(x)f(x)dx, m ≥ 0. (21.6)

Example 21.2. For the function

g(x) =
{

0, − 1 < x < 0
x, 0 ≤ x < 1

denote the Fourier–Legendre series by
∑∞

n=0 cnPn(x). Then, since the func-
tion

f(x) = g(x) − P1(x)
2

= g(x) − x

2
=
{

−x/2, −1 < x < 0
x/2, 0 ≤ x < 1

}
=

|x|
2

is even, in the expansion

f(x) ∼
∞∑

n=0

cnPn(x) − P1(x)
2

the odd Fourier coefficients are zero, i.e.,

c1 −
1
2

= 0, c3 = 0, c5 = 0, · · · .

Hence, the expansion of the function g(x) reduces to

c0P0(x) +
1
2
P1(x) +

∞∑
m=1

c2mP2m(x). (21.7)
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Fourier–Chebyshev series. We have shown that the set of
Chebyshev polynomials {φn(x) = Tn(x), n = 0, 1, · · ·} is orthogonal in
[−1, 1] with r(x) = (1 − x2)−1/2. Also,

‖Tn‖2 =
∫ 1

−1

(1 − x2)−1/2T 2
n(x)dx =

{
π/2, n �= 0
π, n = 0.

Thus, for any piecewise continuous function f(x) on −1 < x < 1 the
Fourier–Chebyshev series appears as

f(x) ∼
∞∑

n=0

cnTn(x), (21.8)

where

cn =
2dn

π

∫ 1

−1

f(x)Tn(x)√
1 − x2

dx, d0 =
1
2
, dn = 1, n ≥ 1. (21.9)

Fourier–Hermite series. Following the argument in the earlier
cases this series over the interval (−∞,∞) appears as

f(x) ∼
∞∑

n=0

cnHn(x), (21.10)

where

cn =
1

2n n!
√

π

∫ ∞

−∞
e−x2

f(x)Hn(x)dx, n ≥ 0. (21.11)

Fourier–Bessel series. Let m ≥ 0 be a fixed integer and let
{bn, n = 0, 1, · · ·} be the zeros of the Bessel function Jm(x). In Lecture 13
we have seen that the set {Jm(bnx), n = 0, 1, · · ·} is orthogonal on [0, 1]
with respect to the weight function x, i.e.,

∫ 1

0

xJm(bpx)Jm(bqx)dx =

⎧⎨
⎩

0, p �= q

1
2
J2

m+1(bp), q = p.

Now following the argument in the earlier cases the Fourier–Bessel series
can be written as

f(x) ∼
∞∑

n=0

cnJm(bnx), x ∈ [0, 1] (21.12)

where

cn =
2

J2
m+1(bn)

∫ 1

0

xJm(bnx)f(x)dx, n ≥ 0. (21.13)
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We also remark that with little adjustment the above series can be
written over the interval [0, c] instead of [0, 1]. Indeed, if {an, n = 0, 1, · · ·}
are the positive roots of the equation Jm(ac) = 0, then (21.12) can be
written as

f(x) ∼
∞∑

n=0

cnJm(anx), x ∈ [0, c] (21.14)

where

cn =
2

c2J2
m+1(anc)

∫ c

0

xJm(anx)f(x)dx, n ≥ 0. (21.15)

Our last two examples illustrate how the eigenfunctions of a regular
Sturm–Liouville problem can be used to expand a given function.

Example 21.3. To obtain the Fourier series of the function f(x) = 1 in
the interval [0, π] in terms of the eigenfunctions φn(x) = sin nx, n = 1, 2, · · ·
of the eigenvalue problem y′′ +λy = 0, y(0) = y(π) = 0 (see Example 19.1)
we recall that

‖φn‖2 =
∫ π

0

sin2 nxdx =
π

2
.

Thus, it follows that

cn =
1

‖φn‖2

∫ π

0

f(x) sinnxdx =
2
π

∫ π

0

sin nxdx =
2

nπ
(1 − (−1)n) .

Hence, we have

1 ∼ 4
π

∞∑
n=1

1
(2n − 1)

sin(2n − 1)x = F1(x), say. (21.16)

Example 21.4. We shall obtain the Fourier series of the function
f(x) = x − x2, x ∈ [0, 1] in terms of the eigenfunctions φ0(x) = 1 − x,
φn(x) = sin

√
λn(1 − x), n = 1, 2, · · · of the eigenvalue problem y′′ + λy =

0, y(0) + y′(0) = 0, y(1) = 0 (see Example 19.2). For this, we note that

‖φ0‖2 =
∫ 1

0

(1 − x)2dx =
1
3

‖φn‖2 =
∫ 1

0

sin2
√

λn(1 − x)dx =
1
2

∫ 1

0

(1 − cos 2
√

λn(1 − x))dx

=
1
2

[
x +

1
2
√

λn

sin 2
√

λn(1 − x)
]∣∣∣∣

1

0

=
1
2

[
1 − 1

2
√

λn

sin 2
√

λn

]

=
1
2

[
1 − 1

2
√

λn

2 sin
√

λn cos
√

λn

]
=

1
2
[1 − cos2

√
λn]

=
1
2

sin2
√

λn,
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where we have used the fact that tan
√

λn =
√

λn.

Thus, it follows that

c0 = 3
∫ 1

0

(1 − x)(x − x2)dx =
1
4

and for n ≥ 1,

cn =
2

sin2
√

λn

∫ 1

0

(x − x2) sin
√

λn(1 − x)dx

=
2

sin2
√

λn

[
(x−x2)

cos
√

λn(1−x)√
λn

∣∣∣∣
1

0

−
∫ 1

0

(1−2x)
cos

√
λn(1−x)√
λn

dx

]

=
−2√

λn sin2
√

λn

[
(1−2x)

sin
√

λn(1−x)
−
√

λn

∣∣∣∣
1

0

−
∫ 1

0

−2
sin

√
λn(1−x)

−
√

λn

dx

]

=
−2√

λn sin2 √λn

[
sin

√
λn√

λn

− 2√
λn

cos
√

λn(1 − x)√
λn

∣∣∣∣
1

0

]

=
−2

λ
3/2
n sin2 √λn

[√
λn sin

√
λn − 2 + 2 cos

√
λn

]

=
−2

λ
3/2
n sin2

√
λn

[
λn cos

√
λn − 2 + 2 cos

√
λn

]

=
2

λ
3/2
n sin2 √λn

[
2 − (2 + λn) cos

√
λn

]
.

Hence, we have

x−x2 ∼ 1
4
(1−x)+

∞∑
n=1

2

λ
3/2
n sin2

√
λn

(2−(2+λn) cos
√

λn) sin
√

λn(1−x)

= F2(x), say. (21.17)

Problems

21.1. Find the Fourier cosine series on the interval 0 < x < π of each
of the following functions:

(i) f(x) = x2 (ii) f(x) =
{

0, 0 < x ≤ π/2
1, π/2 < x < π

(iii) f(x) = cosx.

21.2. Find the Fourier sine series on the interval 0 < x < π of each of
the following functions:

(i) f(x) = 1 (ii) f(x) = π − x.
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21.3. Find the Fourier sine series on the interval 0 < x < π of each of
the functions (i)–(iii) given in Problem 21.1.

21.4. Find the Fourier trigonometric series of each of the following
functions:

(i) f(x) =
{

0, − π < x < 0
1, 0 < x < π

(ii) f(x) =
{

1, − π < x < 0
2, 0 < x < π

(iii) f(x) = x − π, − π < x < π (iv) f(x) = |x|, − π < x < π

(v) f(x) = x2, − π < x < π (vi) f(x) =

⎧⎨
⎩

x, − π < x < 0
2, x = 0
e−x, 0 < x < π

(vii) f(x) = x4, − π < x < π.

Further, for each series sum a few terms graphically, and compare with
the function expanded.

21.5. Find the Fourier trigonometric series of each of the following
functions:

(i) f(x) = x2, 0 < x < 2π (ii) f(x) =

⎧⎨
⎩

0, − 2 < x < −1
1, − 1 < x < 1
0, 1 < x < 2.

21.6. Establish the identities sin3 x = (3/4) sinx − (1/4) sin 3x and
cos3 x = (3/4) cosx + (1/4) cos 3x. Prove that in each case expression on
the right-hand side is the Fourier series for the function on the left-hand
side.

21.7. Let f(x) be a periodic function with period 2π such that its
Fourier coefficients exist. Suppose further that f(π − x) = f(x) for all x.
Show that an = 0 when n is odd and bn = 0 when n is even.

21.8. In the expansion (21.7) find c0, c2 and c4.

21.9. Find the Fourier–Legendre series of the function

f(x) =
{

0, − 1 < x < 0
1, 0 < x < 1.

21.10. Show that the Fourier series expansion of the function f(x) =
πx − x2, 0 ≤ x ≤ π in terms of the orthonormal functions φn(x) =√

2
π sin nx, 0 ≤ x ≤ π, n = 1, 2, · · · can be written as

∞∑
n=1

8
π(2n − 1)3

sin(2n − 1)x.
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21.11. Expand the function f(x) = 1 when 0 < x < c in series of
functions J0(λjx), where λj are the positive roots of the equation J0(λc) =
0.

21.12. Expand the function

f(x) =

⎧⎨
⎩

1, 0 < x < 1
1/2, x = 1
0, 1 < x < 2

in series of J0(λjx) where λj are the roots of J0(2λ) = 0.

21.13. Expand the function f(x) = x, 0 < x < 1 in series of J1(λjx)
where λj are the positive roots of J1(λ) = 0. Also find the function repre-
sented by the series in the interval −1 < x ≤ 0.

21.14. Show that

x2 =
∞∑

j=1

2(λ2
j − 4)J0(λjx)
λ3

jJ1(λj)
, − 1 < x < 1

where λj are the positive roots of J0(λ) = 0.

Answers or Hints

21.1. (i) π2

3 +
∑∞

n=1
4(−1)n

n2 cosnx (ii) 1
2 +
∑∞

n=1
−2 sin(nπ/2)

nπ cosnx
(iii) cosx.

21.2. (i) 4
π

∑∞
n=1

sin(2n−1)x
2n−1 (ii) 2

∑∞
n=1

sin nx
n .

21.3. (i)
∑∞

n=1

(
2π(−1)n+1

n + 4−1+(−1)n

π n3

)
sin nx

(ii)
∑∞

n=1
2

nπ

(
(−1)n+1 + cos nπ

2

)
sin nx (iii)

∑∞
n=2

2n
π

1+(−1)n

n2−1 sin nx.

21.4. (i) 1
2 + 2

π

(
sinx + 1

3 sin 3x + 1
5 sin 5x + · · ·

)
(ii) 3

2 + 2
π

(
sin x + 1

3 sin 3x + 1
5 sin 5x + · · ·

)
(iii) −π+

∑∞
n=1

2(−1)n+1

n sin nx

(iv) π
2 +
∑∞

n=1
2

πn2 ((−1)n − 1) cosnx (v) π2

3 + 4
∑∞

n=1
(−1)n

n2 cosnx

(vi) −
(

e−π−1
2π + π

4

)
+ 1

π

∑∞
n=1

[(
1+(−1)n+1

n2 + 1+(−1)n+1e−π

1+n2

)
cosnx

+
(

n
1+n2

(
1 + (−1)n+1e−π

)
+ π(−1)n+1

n

)
sinnx
]

(vii) π4

5 + 8
∑∞

n=1

(
π2

n2 − 6
n4

)
(−1)n cosnx.

21.5. (i) 4π2

3 +
∑∞

n=1

(
4

n2 cosnx − 4π
n sinnx

)
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(ii) 1
2 + 2

π

∑∞
n=1

1
n sin nπ

2 cos nπ
2 x.

21.6. Note that

an = 1
π

3
4

∫ π

−π sin x cosnxdx − 1
π

1
4

∫ π

−π sin 3x cosnxdx,

bn = 1
π

3
4

∫ π

−π
sin x sin nxdx − 1

π
1
4

∫ π

−π
sin 3x sinnxdx

and hence an = 0, n ≥ 0, b1 = 3
4π π, b2 = 0, b3 = − 1

4π π, bn = 0, n ≥ 4.

21.7. For n odd, successively, we have

an = 1
π

∫ π

−π f(x) cosnxdx = 1
π

∫ 0

2π f(π − y) cosn(π − y)(−1)dy

= 1
π

∫ 2π

0 f(y)(−1)n cosnydy = − 1
π

∫ 2π

0 f(y) cosnydy

= − 1
π

∫ π

−π f(y) cosnydy = −an,

where we have used the fact that f(y) cosny is periodic. Hence, an = 0.

21.8. c0 = 1/4, c2 = 5/16, c4 = −3/32.

21.9. From (21.2), c0 = 1/2, c1 = 3/4, use Problems 7.8(ii) and 7.9(i)
to get cn = 1

2 (Pn−1(0) − Pn+1(0)) which in view of Problem 7.2 gives
c2n = 0, c2n+1 = 1

2 (−1)n 1·3···(2n−1)
2·4···2n

4n+3
2n+2 .

21.10.See Example 21.3.

21.11.1 = 2
c

∑∞
j=1

J0(λjx)
λjJ1(λjc) , 0 < x < c.

21.12.f(x) = 1
2

∑∞
j=1

J1(λj)
λj [J1(2λj)]2 J0(λjx), 0 < x < 2.

21.13.x = 2
∑∞

j=1
J1(λjx)
λjJ2(λj)

, − 1 < x < 1.



Lecture 22
Convergence of the

Fourier Series

In this and the next lectures we shall examine the convergence of the
Fourier series of the function f(x) to f(x). For this, to make the analysis
widely applicable, we assume that the functions φn(x), n = 0, 1, · · · and
f(x) are only piecewise continuous on [α, β]. Let the sum of first N +
1 terms

∑N
n=0 cnφn(x) be denoted by SN (x). We consider the difference

|SN (x) − f(x)| for various values of N and x. If for an arbitrary ε > 0
there is an integer N(ε) > 0 such that |SN (x)− f(x)| < ε, then the Fourier
series converges uniformly to f(x) for all x in [α, β]. On the other hand, if
N depends on x and ε both, then the Fourier series converges pointwise to
f(x). However, for the moment both of these types of convergence are too
demanding, and we will settle for something less. To this end, we need the
following definition.

Definition 22.1. Let each of the functions ψn(x), n ≥ 0 and ψ(x) be
piecewise continuous in [α, β]. We say that the sequence {ψn(x)} converges
in the mean to ψ(x) (with respect to the weight function r(x)) in the interval
[α, β] if

lim
n→∞

‖ψn − ψ‖2 = lim
n→∞

∫ β

α

r(x)(ψn(x) − ψ(x))2dx = 0. (22.1)

Thus, the Fourier series converges in the mean to f(x) provided

lim
N→∞

∫ β

α

r(x)(SN (x) − f(x))2dx = 0. (22.2)

Before we prove the convergence of the Fourier series, let us consider
the possibility of representing f(x) by a series of the form

∑∞
n=0 dnφn(x),

where the coefficients dn are not necessarily the Fourier coefficients. Let

TN(x; d0, d1, · · · , dN ) =
N∑

n=0

dnφn(x)

and let eN be the quantity ‖TN − f‖. Then, from the orthogonality of the
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functions φn(x) it is clear that

e2
N = ‖TN − f‖2 =

∫ β

α

r(x)

(
N∑

n=0

dnφn(x) − f(x)

)2

dx

=
N∑

n=0

d2
n

∫ β

α

r(x)φ2
n(x)dx − 2

N∑
n=0

dn

∫ β

α

r(x)φn(x)f(x)dx

+
∫ β

α

r(x)f2(x)dx

=
N∑

n=0

d2
n‖φn‖2 − 2

N∑
n=0

dncn‖φn‖2 + ‖f‖2

=
N∑

n=0

‖φn‖2(dn − cn)2 −
N∑

n=0

‖φn‖2c2
n + ‖f‖2.

(22.3)
Thus, the quantity eN is least when dn = cn for n = 0, 1, · · · , N. Therefore,
we have established the following theorem.

Theorem 22.1. For any nonnegative integer N, the best approximation
in the mean to a function f(x) by an expression of the form

∑N
n=0 dnφn(x)

is obtained when the coefficients dn are the Fourier coefficients of f(x).

Now in (22.3) let dn = cn, n = 0, 1, · · · , N to obtain

‖SN − f‖2 = ‖f‖2 −
N∑

n=0

‖φn‖2c2
n. (22.4)

Thus, it follows that

‖Tn − f‖2 =
N∑

n=0

‖φn‖2(dn − cn)2 + ‖SN − f‖2. (22.5)

Hence, we find
0 ≤ ‖SN − f‖ ≤ ‖TN − f‖. (22.6)

If the series
∑∞

n=0 dnφn(x) converges in the mean to f(x), i.e., if
limN→∞ ‖TN − f‖ = 0, then from (22.6) it is clear that the Fourier series
converges in the mean to f(x), i.e., limN→∞ ‖SN − f‖ = 0. However,
then (22.5) implies that

lim
N→∞

N∑
n=0

‖φn‖2(dn − cn)2 = 0.

But this is possible only if dn = cn, n = 0, 1, · · · . Thus, we have proved the
following result.
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Theorem 22.2. If a series of the form
∑∞

n=0 dnφn(x) converges in the
mean to f(x), then the coefficients dn must be the Fourier coefficients of
f(x).

Now from the equality (22.4) we note that

0 ≤ ‖SN+1 − f‖ ≤ ‖SN − f‖.

Thus, the sequence {‖SN −f‖, N = 0, 1, · · ·} is nonincreasing and bounded
below by zero, and therefore it must converge. If it converges to zero, then
the Fourier series of f(x) converges in the mean to f(x). Further, from
(22.4) we have the inequality

N∑
n=0

‖φn‖2c2
n ≤ ‖f‖2.

Since the sequence {CN , N = 0, 1, · · ·} where CN =
∑N

n=0 ‖φn‖2c2
n is

nondecreasing and bounded above by ‖f‖2, it must converge. Therefore,
we have

∞∑
n=0

‖φn‖2c2
n ≤ ‖f‖2. (22.7)

Hence, from (22.4) we see that the Fourier series of f(x) converges in the
mean to f(x) if and only if

‖f‖2 =
∞∑

n=0

‖φn‖2c2
n. (22.8)

For the case when φn(x), n = 0, 1, 2, · · · are orthonormal, (22.7) reduces
to Bessel’s inequality

∞∑
n=0

c2
n ≤ ‖f‖2 (22.9)

and (22.8) becomes the well–known Parseval’s equality

‖f‖2 =
∞∑

n=0

c2
n. (22.10)

We summarize the above considerations in the following theorem.

Theorem 22.3. Let {φn(x), n = 0, 1, 2, · · ·} be an orthonormal set,
and let cn be the Fourier coefficients of f(x) given in (20.3). Then, the
following hold:
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(i) the series
∑∞

n=0 c2
n converges, and therefore

lim
n→∞

cn = lim
n→∞

∫ β

α

r(x)φn(x)f(x)dx = 0,

(ii) the Bessel inequality (22.9) holds,
(iii) the Fourier series of f(x) converges in the mean to f(x) if and only if
Parseval’s equality (22.10) holds.

Now let Cp[α, β] be the space of all piecewise continuous functions in
[α, β]. The orthogonal set {φn(x), n = 0, 1, · · ·} is said to be complete in
Cp[α, β] if for every function f(x) of Cp[α, β] its Fourier series converges
in the mean to f(x). Clearly, if {φn(x), n = 0, 1, · · ·} is orthonormal then
it is complete if and only if Parseval’s equality holds for every function in
Cp[α, β]. The following property of an orthogonal set is fundamental.

Theorem 22.4. If an orthogonal set {φn(x), n = 0, 1, · · ·} is complete
in Cp[α, β], then any function of Cp[α, β] that is orthogonal to every φn(x)
must be zero except possibly at a finite number of points in [α, β].

Proof. Without loss of generality, let the set {φn(x), n = 0, 1, · · ·}
be orthonormal. If f(x) is orthogonal to every φn(x), then from (20.3) all
Fourier coefficients cn of f(x) are zero. But, then from the Parseval equality
(22.10) the function f(x) must be zero except possibly at a finite number
of points in [α, β].

The importance of this result lies in the fact that if we delete even
one member from an orthogonal set, then the remaining functions can-
not be a complete set. For example, the sets {cosnx, n = 1, 2, · · ·} and
{sin nπx, n = 1, 2, · · ·} are orthogonal in [0, π] and [−1, 1], respectively,
with respect to the weight function r(x) = 1, but not complete.

Unfortunately, there is no single procedure for establishing the com-
pleteness of a given orthogonal set. However, the following results are
known.

Theorem 22.5. The orthogonal set {φn(x), n = 0, 1, · · ·} in the inter-
val [α, β] with respect to the weight function r(x) is complete in Cp[α, β] if
φn(x) is a polynomial of degree n.

As a consequence of this result, it is clear that the Fourier–Legendre
series of a piecewise continuous function f(x) in [−1, 1] converges in the
mean to f(x). The same conclusion holds for other series also.

Theorem 22.6. The set of all eigenfunctions {φn(x), n = 1, 2, · · ·} of
a regular Sturm–Liouville problem is complete in the space Cp[α, β].

Example 22.1. In view of Theorem 22.6 the expansion F1(x) of the
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function 1 obtained in (21.16) converges in the mean to 1 on the interval
[0, π]. Similarly, the expansion F2(x) of x − x2 given in (21.17) converges
in the mean to the function x − x2 on the interval [0, 1].

Theorem 22.6 can be extended to encompass the periodic eigenvalue
problem (19.1), (19.20). Thus, in particular, the set {1, cosnx, sin nx, n
≥ 1} is complete in Cp[−π, π], and therefore, the Fourier trigonometric
series of any function f(x) in Cp[−π, π] converges in the mean to f(x).
Similarly, Fourier sine and cosine series of any function f(x) in Cp[0, π]
converge in the mean to f(x).

In view of the above remark and the relations (20.10), for the Fourier
trigonometric series Parseval’s equality can be written as

(√
π

2
a0

)2

+
∞∑

n=1

((
√

πan)2 + (
√

πbn)2) =
∫ π

−π

f2(x)dx,

or
a2
0

2
+

∞∑
n=1

(a2
n + b2

n) =
1
π

∫ π

−π

f2(x)dx. (22.11)

Example 22.2. The Fourier trigonometric expansion of the function
|x|, − π < x < π is

|x| ∼ π

2
+

∞∑
n=1

−4
π(2n − 1)2

cos(2n − 1)x, − π < x < π. (22.12)

Clearly, |x| ∈ Cp(−π, π). Further, comparing (22.12) with the Fourier
trigonometric series, we have

a0

2
=

π

2
, a2n = 0, a2n−1 = − 4

π(2n − 1)2
, bn = 0.

Thus, equality (22.11) gives

π2

2
+

∞∑
n=1

[
− 4

π(2n − 1)2

]2
=

1
π

∫ π

−π

|x|2dx,

which is the same as

π2

2
+

16
π2

∞∑
n=1

1
(2n − 1)4

=
2π2

3

and hence
∞∑

n=1

1
(2n − 1)4

=
π4

96
.



Lecture 23
Convergence of the

Fourier Series (Cont’d.)

The analytic discussion of uniform and pointwise convergence of the
Fourier series of the function f(x) to f(x) is difficult. Therefore, in this
lecture we shall state several results without proofs. These results are easily
applicable to concrete problems.

Theorem 23.1. Let {φn(x), n = 1, 2, · · ·} be the set of all eigenfunc-
tions of a regular Sturm–Liouville problem. Then, the following hold:

(i) the Fourier series of f(x) converges to [f(x+)+f(x−)]/2 at each point
in the open interval (α, β) provided f(x) and f ′(x) are piecewise continuous
in [α, β],

(ii) the Fourier series of f(x) converges uniformly and absolutely to f(x) in
[α, β] provided f(x) is continuous having a piecewise continuous derivative
f ′(x) in [α, β], and is such that f(α) = 0 if φn(α) = 0 and f(β) = 0 if
φn(β) = 0.

Example 23.1. For the expansion F1(x) of the function f(x) = 1
obtained in (21.16), Theorem 23.1(i) ensures that F1(x) = 1 at each point
of the open interval (0, π). However, F1(x) �= 1 at x = 0 and π, i.e., at the
end points of the interval. We also note that since φn(0) = φn(π) = 0, but
f(0) = f(π) = 1, Theorem 23.1(ii) cannot be applied.

Example 23.2. For the expansion F2(x) of the function f(x) = x−x2

given in (21.17), Theorem 23.1(ii) ensures that F2(x) = x − x2 uniformly
in [0, 1]. In fact, here φn(1) = 0 so does f(1) = 0, however, φn(0) �= 0, but
f(0) = 0 (see if in Theorem 23.1(ii)).

Theorem 23.2. Let f(x) and f ′(x) be piecewise continuous in the
interval [−1, 1]. Then, the Fourier–Legendre series of f(x) converges to
[f(x+)+f(x−)]/2 at each point in the open interval (−1, 1), and at x = −1
the series converges to f(−1+) and at x = 1 it converges to f(1−).

Theorem 23.3. Let f(x) and f ′(x) be piecewise continuous in the
interval [0, c]. Then, the Fourier–Bessel series of f(x) converges to [f(x+)+
f(x−)]/2 at each point in the open interval (0, c).

Theorem 23.4. Let f(x) and f ′(x) be piecewise continuous in the
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interval [−π, π]. Then, the Fourier trigonometric series of f(x) converges to
[f(x+)+f(x−)]/2 at each point in the open interval (−π, π) and at x = ±π
the series converges to [f(−π+) + f(π−)]/2.

Example 23.3. Consider the function f(x) =
{

0, x ∈ [−π, 0)
1, x ∈ [0, π].

Clearly, f(x) ∈ C1
p(−π, π) and has a single jump discontinuity at 0. For

this function (see Problem 21.4(i)), the Fourier trigonometric coefficients
are a0 = 1, an = 0, bn = (1 − (−1)n) /nπ. Thus, we have

f(x) ∼ 1
2

+
2
π

∞∑
n=1

1
(2n − 1)

sin(2n − 1)x = F (x), say. (23.1)

From Theorem 23.4 in (23.1) the equality F (x) = f(x) holds at each point
in the open intervals (−π, 0) and (0, π), whereas at x = 0 the right–hand
side is 1/2 which is the same as [f(0+) + f(0−)]/2. Also, at x = ±π the
right–hand side is again 1/2 which is the same as [f(−π+) + f(π−)]/2.

Example 23.4. We shall use the Fourier trigonometric series

x +
1
4
x2 ∼ π2

12
+

∞∑
n=1

(−1)n

n2
[cosnx − 2n sinnx], − π < x < π

to show that
∑∞

n=1(1/n2) = π2/6.

Since f(x) = x + x2/4 ∈ C1
p (−π, π), by Theorem 23.4, we have

π2

12
+

∞∑
n=1

(−1)n

n2
[cosnx−2n sinnx] =

{
[f(x+) + f(x−)]/2, − π < x < π

[f(π−) + f(−π+)]/2, x = ±π.

Thus, at x = π, we find

π2

12
+

∞∑
n=1

(−1)n

n2
[cosnπ − 2n sinnπ] =

f(π−) + f(−π+)
2

and hence

π2

12
+

∞∑
n=1

(−1)n

n2
[(−1)n − 0] =

(π + π2/4) + (−π + π2/4)
2

=
π2

4
,

or
∞∑

n=1

1
n2

=
π2

4
− π2

12
=

π2

6
.

Example 23.5. We shall find the Fourier trigonometric series of the
function cosax on [−π, π] where a �= 0,±1,±2, · · · . For this, since cosax is
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an even function, bn = 0, n ≥ 1 and

an =
2
π

∫ π

0

cos ax cosnxdx =
1
π

∫ π

0

[cos(nx − ax) + cos(nx + ax)]dx

=
1
π

[
sin(nx − ax)

n − a
+

sin(nx + ax)
n + a

]∣∣∣∣
π

0

=
1
π

(−1)n+1

[
sin aπ

n − a
− sin aπ

n + a

]
=

1
π

(−a)n+1 sinaπ
2a

n2 − a2
.

Hence, it follows that

f(x) ∼ 2a

π
sin aπ

[
1

2a2
+

∞∑
n=1

(−1)n+1

n2 − a2
cosnx

]
.

Now in view of Theorem 23.4 at x = 0, we have

2a

π
sin aπ

[
1

2a2
+

∞∑
n=1

(−1)n+1

n2 − a2

]
= cos 0 = 1

and hence
aπ

sin aπ
= 1 + 2a2

∞∑
n=1

(−1)n+1

n2 − a2
.

Example 23.6. We shall use the Fourier trigonometric series

| sin x| ∼ 2
π
− 4

π

∞∑
n=1

cos 2nx

4n2 − 1
, − π < x < π

to find
∑∞

n=1 (−1)n/(16n2 − 1).

Clearly, the function f(x) = | sinx| ∈ C1
p [−π, π], and hence from Theo-

rem 23.4 we have

2
π
− 4

π

∞∑
n=1

cos 2nx

4n2 − 1
=

{
[f(x+) + f(x−)]/2, − π < x < π

[f(π−) + f(−π+)]/2, x = ±π.

At x = π/4, we find

2
π
− 4

π

∞∑
n=1

cos(2nπ/4)
4n2 − 1

=
f(π/4+) + f(π/4−)

2
=

1√
2

and hence

2
π
− 4

π

( ∞∑
k=1

cos(2kπ/2)
4(2k)2 − 1

+
∞∑

k=1

cos(2k − 1)π/2
4(2k − 1)2 − 1

)
=

1√
2
,
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or
2
π
− 4

π

∞∑
k=1

(−1)k

16k2 − 1
=

1√
2
,

which gives

∞∑
k=1

(−1)k

16k2 − 1
=

π

4

(
2
π
− 1√

2

)
=

1
2
− π

4
√

2
.

Theorem 23.5. Let f(x) and f ′(x) be piecewise continuous in the
interval [0, π]. Then, the Fourier cosine series of f(x) converges to [f(x+)+
f(x−)]/2 at each point in the open interval (0, π) and at x = 0 and π the
series converges, respectively, to f(0+) and f(π−).

Example 23.7. Since

x2 ∼ π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx, 0 < x < π

from Theorem 23.5 it follows that

π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx =

⎧⎪⎨
⎪⎩

f(x) = x2, 0 < x < π

f(0+) = 0, x = 0

f(π−) = π2, x = π.

Thus, at x = π, we have

π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnπ = π2

and hence
π2

3
+ 4

∞∑
n=1

1
n2

= π2,

which gives
∑∞

n=1(1/n2) = π2/6.

Theorem 23.6. Let f(x) and f ′(x) be piecewise continuous in the
interval [0, π]. Then, the Fourier sine series of f(x) converges to [f(x+) +
f(x−)]/2 at each point in the open interval (0, π) and at x = 0 and π the
series converges to 0.

Example 23.8. Since

π − x ∼ 2
∞∑

n=1

sin nx

n
, 0 < x < π
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from Theorem 23.6 it follows that

2
∞∑

n=1

sinnx

n
=

{
f(x) = π − x, 0 < x < π

0, x = 0, π.

Thus, at x = π/2 we have

2
∞∑

n=1

sinnπ/2
n

= π − π

2

and hence
1 − 1

3
+

1
5
− 1

7
+ · · · =

π

4
. (23.2)

Example 23.9. For the function f(x) =
{

0, − 3 < x < 0
1, 0 < x < 3 in view

of (20.12) we have

a0 =
1
3

∫ 3

−3

f(x)dx = 1, an =
1
3

∫ 3

−3

f(x) cos
nπx

3
dx = 0

and

bn =
1
3

∫ 3

−3

f(x) sin
nπx

3
dx =

1 − (−1)n

nπ
, n ≥ 1

and hence the Fourier trigonometric series (20.11) for this function is

f(x) ∼ 1
2

+
∞∑

n=1

1 − (−1)n

nπ
sin

nπx

3
= F (x), say.

Now from Theorem 23.4 (over the interval [−3, 3]) it follows that

F (x) =

{
f(x), x ∈ (−3, 0) ∪ (0, 3)

1/2, x = 0,−3, 3.

For the differentiation and integration of Fourier trigonometric series we
have the following results.

Theorem 23.7. Suppose f(x) is continuous in (−π, π), f(−π) = f(π)
and f ′(x) is piecewise continuous. Then,

f ′(x) =
∞∑

n=1

(−nan sinnx + nbn cosnx)

at each point x ∈ (−π, π) where f ′′(x) exists.
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Theorem 23.8. Suppose f(x) is piecewise continuous in (−π, π) and

f(x) ∼ a0

2
+

∞∑
n=1

(an cosnx + bn sin nx), − π < x < π.

Then, for x ∈ [−π, π]
∫ x

−π

f(t)dt =
∫ x

−π

a0

2
dt +

∞∑
n=1

∫ x

−π

(an cosnt + bn sinnt)dt

=
a0

2
(x + π) +

∞∑
n=1

1
n

[an sinnx − bn (cosnx − (−1)n)] .

Example 23.10. For the function f(x) = |x|, x ∈ [−π, π] we have
(see Problem 21.4(iv))

f(x) ∼ π

2
− 4

π

∞∑
n=1

cos(2n − 1)x
(2n − 1)2

, −π < x < π.

Clearly, f(x) is continuous on [−π, π], f(−π) = f(π) = π, f ′(x) ={
−1, − π < x < 0

1, 0 < x < π

}
, f ′(0) does not exist, f ′(x) ∈ Cp(−π, π), f ′′(x) =

0, x ∈ (−π, 0) ∪ (0, π) and f ′′(0) does not exist. Thus, Theorem 23.7 is
applicable and we have{
−1, − π < x < 0

1, 0 < x < π

}
= − 4

π

∞∑
n=1

−(2n−1) sin(2n−1)x
(2n − 1)2

=
4
π

∞∑
n=1

sin(2n−1)x
2n − 1

.

(23.3)
At x = π/2 this series immediately gives (23.2). Also, note that at x = 0
the left-hand side of (23.3) is not defined, but its right-hand side is zero.

Example 23.11. We shall use the relation

x2 ∼ π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx, − π < x < π

to find a polynomial p(x) such that

p(x) =
∞∑

n=1

(−1)n

n3
sin nx, − π ≤ x ≤ π.

Clearly, for the function f(x) = x2 all the conditions of Theorem 23.8 are
satisfied. Thus, on integrating the above relation from 0 to x, we get

∫ x

0

t2dt =
∫ x

0

π2

3
dt + 4

∞∑
n=1

∫ x

0

(−1)n

n2
cosntdt,
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or
x3

3
=

π2x

3
+ 4

∞∑
n=1

(−1)n

n3
sinnx

and hence

∞∑
n=1

(−1)n

n3
sin nx =

x3 − π2x

12
= p(x), − π ≤ x ≤ π.

Problems

23.1. Functions φ1(x) = 1, φ2(x) =
√

3(2x − 1) are orthonormal on
0 < x < 1. Define

F (a, b) =
∫ 1

0

(√
3x2 − aφ1(x) − bφ2(x)

)2
dx.

Find a, b such that F (a, b) attains its minimum. Find also the minimum
value of F (a, b).

23.2. Consider the function f(x) =
{

1, 0 < x ≤ π/2
0, π/2 < x < π.

It is given

that φn(x) =
√

2
π sin nx, n = 1, 2, 3 are orthonormal on the interval 0 <

x < π. Find the values of a, b at which the integral

F (a, b) =
∫ π

0

(f(x) − aφ1(x) − b(φ2(x) + φ3(x)))2 dx

attains its minimum.

23.3. Let f(x) =
{

0, x ∈ [−1, 0)
1, x ∈ [0, 1]. Show that

∫ 1

−1

(
f(x) − 1

2
− 3

4
x

)2

dx ≤
∫ 1

−1

(f(x) − d0 − d1x − d2x
2)2dx

for any set of constants d0, d1 and d2.

23.4. Show that the following cannot be the Fourier series represen-
tation for any piecewise continuous function

(i)
∞∑

n=1

n1/nφn(x) (ii)
∞∑

n=1

1√
n

φn(x).



Convergence of the Fourier Series (Cont’d.) 183

23.5. Find Parseval’s equality for the function f(x) = 1, x ∈ [0, c]

with respect to the orthonormal set
{√

2
c sin nπx

c , n = 1, 2, · · ·
}

.

23.6. Consider the function f(x) =
{

0, − π < x < 0√
x, 0 < x < π.

Use Parse-

val’s equality (22.11) to show that

∞∑
n=1

(∫ π

−π

f(x) cos nxdx

)(∫ π

−π

f(x) sin nxdx

)
≤ 5π3

36
.

23.7. Assume that Parseval’s equality holds for piecewise continuous
functions. If {a0, a1, b1, · · ·} and {α0, α1, β1, · · ·} are the sets of Fourier co-
efficients of piecewise continuous functions f and g, respectively, on [−π, π].
Show that

1
2
a0α0 +

∞∑
n=1

(anαn + bnβn) =
1
π

∫ π

−π

f(x)g(x)dx.

23.8. Let f(x) and g(x) be piecewise continuous in the interval [α, β]
and have the same Fourier coefficients with respect to a complete orthonor-
mal set. Show that f(x) = g(x) at each point of [α, β] where both functions
are continuous.

23.9. (i) Let ψn(x) = n
√

xe−nx2/2, x ∈ [0, 1]. Show that ψn(x) → 0
as n → ∞ for each x in [0, 1]. Further, show that

e2
n =
∫ 1

0

(ψn(x) − 0)2dx =
n

2
(1 − e−n),

and hence en → ∞ as n → ∞. Thus, pointwise convergence does not imply
convergence in the mean.
(ii) Let ψn(x) = xn, x ∈ [0, 1], and f(x) = 0 in [0, 1]. Show that

e2
n =
∫ 1

0

(ψn(x) − f(x))2dx =
1

2n + 1
,

and hence ψn(x) converges in the mean to f(x). Further, show that ψn(x)
does not converge to f(x) pointwise in [0, 1]. Thus, mean convergence does
not imply pointwise convergence.

23.10. Show that the sequence {x/(x + n)} converges pointwise on
[0,∞) and uniformly on [0, a], a > 0.

23.11. Consider the function f(x) =
{

0, − π ≤ x ≤ 0
sinx, 0 < x ≤ π.

The
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Fourier trigonometric series of f(x) is given by

f(x) ∼ 1
π

+
1
2

sin x − 2
π

∞∑
n=1

cos 2nx

4n2 − 1
.

(i) Show that the above series converges to f(x) everywhere in the interval
[−π, π].
(ii) Use Part (i) to show that

∞∑
n=1

(−1)n

4n2 − 1
=

1
2
− π

4
.

(iii) Find the sum of the series
∑∞

n=1 1/(4n2 − 1).

23.12. The Fourier series of ex on the interval −π < x < π is given
by

ex ∼ 2 sinhπ

π

[
1
2

+
∞∑

n=1

(−1)n

n2 + 1
(cosnx − n sin nx)

]
.

(i) Use the above correspondence to show that

∞∑
n=1

1
n2 + 1

=
π

2
cothπ − 1

2
.

(ii) Find the sum of the series
∞∑

n=1

(−1)n

n2 + 1
. Justify your answer.

23.13. Let f(x) be a twice continuously differentiable, periodic func-
tion with a period 2π. Show that

(i) the Fourier trigonometric coefficients an and bn of f(x) satisfy

|an| ≤ M

n2
and |bn| ≤ M

n2
, n = 1, 2, · · ·

where M = 1
π

∫ π

−π |f ′′(x)|dx

(ii) the Fourier trigonometric series of f(x) converges uniformly to f(x)
on [−π, π].

23.14. Suppose that f(x) is continuous in [−π, π], f(−π) = f(π),
and f ′(x) is piecewise continuous in [−π, π]. Show that

(i)
∑∞

n=1 |an| and
∑∞

n=1 |bn| converge,
(ii) nan → 0 and nbn → 0,
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(iii) the Fourier trigonometric series of f(x) converges to f(x) absolutely
and uniformly in [−π, π].

23.15. The proof of Theorem 23.4 requires the following steps:

(i) Establish Lagrange’s trigonometric identity

2
N∑

n=1

cosnθ = −1 +
sin
(
N + 1

2

)
θ

sin 1
2θ

.

(ii) If f(x) is piecewise continuous in the interval [a, b], then show that

lim
k→∞

∫ b

a

f(x) sin kxdx = 0.

(iii) If f(x) is piecewise continuous in the interval [0, b] and has a right-
hand derivative at x = 0, then show that

lim
k→∞

∫ b

0

f(x)
sin kx

x
dx =

π

2
f(+0).

(iv) Show that

Sn(x) =
1
2
a0 +

n∑
m=1

(am cosmx + bm sin mx)

=
1
π

∫ π

−π

f(t)
sin
((

n + 1
2

)
(t − x)

)
2 sin
(

1
2 (t − x)

) dt.

(v) If f(x) is piecewise continuous in the interval (a, b) and has derivatives
from the right and left at a point x = x0 where a < x0 < b, then show that

lim
k→∞

∫ b

a

f(x)
sin k(x − x0)

x − x0
dx =

π

2
[f(x0 + 0) + f(x0 − 0)].

Answers or Hints

23.1. In view of Theorem 22.1, F (a, b) is minimum when a =<
√

3x2, φ1 >

= 1/
√

3, b =<
√

3x2, φ2 >= 1/2. Now from (22.4), minF (a, b) = ‖
√

3x2‖2

−a2 − b2 = 1/60.

23.2. Let ψ(x) = (φ2(x) + φ3(x))/
√

2. Then, φ1(x), ψ(x) are orthonormal
on 0 < x < π. Thus, F (a, b) is the same as F (a, b) =

∫ π

0 (f(x) − aφ1(x) −
(
√

2b)ψ(x))2dx. Now F (a, b) is minimum when a =
√

2/π,
√

2b = 4/(3
√

π).
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23.3. For the given function Fourier–Legendre coefficients are c0 = 1/2, c1

= 3/4, c2 = 0.

23.4. Use Theorem 22.3(i).

23.5. ‖f‖2 = c, c2
n =
{

0, n even
8c/(n2π2), n odd.

Thus, c = 8c
π2

∑∞
n=1

1
(2n−1)2 .

23.6. Left-hand side =
∑∞

n=1(πan)(πbn) ≤ π2

2

∑∞
n=1(a

2
n + b2

n).

23.7. Add and subtract Fourier trigonometric series of f and g, write Par-
seval’s equalities for (f + g) and (f − g), use (u + v)2 − (u − v)2 = 4uv.

23.8. Let h(x) = f(x) − g(x) and {φn(x)} be a complete orthonormal set
on the interval [α, β] with respect to the weight function r(x). Note that for
the function h(x) Fourier coefficients cn = 0, n ≥ 0. Now apply Theorem
22.4.

23.9. (i) Use l’Hospital’s rule to show that ψn(x) → 0 as n → ∞, x ∈ [0, 1]
(ii) ψn(x) → 0 as n → ∞, x ∈ [0, 1), and ψn(1) = 1, n ≥ 0.

23.10.Use definition.

23.11.(i) Use Theorem 23.4 (ii) Let x = π/2 (iii) 1/2.

23.12.(i) Use Theorem 23.4 and let x = π (ii) Let x = 0,
∑∞

n=1
(−1)n

n2+1 =
π

2 sinhπ − 1
2 .

23.13.(i) an = 1
π

∫ π

−π
f(x) cos nxdx = − 1

n2π

∫ π

−π
f ′′(x) cos nxdx (ii)

∣∣ 1
2a0

+
∑∞

n=1(an cosnx + bn sin nx)| ≤ 1
2 |a0| +

∑∞
n=1(|an| + |bn|).

23.14.(i) If f ′(x) ∼ (α0/2) +
∑∞

n=1(αn cosnx + βn sin nx), then α0 =
0, αn = nbn, βn = −nan. Now Bessel’s inequality applied to f ′(x) implies

that
∑∞

n=1 β2
n converges. Since ρn =

∑n
k=1

|βk|
k ≤
√∑n

k=1 β2
k

√∑n
k=1

1
k2 ,

for each n, ρn is bounded. Further, since ρn is increasing, the sequence
{ρn} converges. Thus, ρn =

∑n
k=1

|βk|
k =

∑n
k=1 |ak| converges (ii) The

convergence of
∑∞

n=1 β2
n implies that βn = −nan → 0 (iii) From Theorem

23.4, f(x) = (a0/2)+
∑∞

n=1(an cosnx+bn cosnx), x ∈ [−π, π]. Finally, note
that |(a0/2) +

∑∞
n=1(an cosnx + bn cosnx)| ≤ (|a0|/2) +

∑∞
n=1(|an| + bn|)

and use (i)



Lecture 24
Fourier Series Solutions of

Ordinary Differential Equations

In this lecture we shall use Fourier series expansions to find periodic
particular solutions of nonhomogeneous DEs, and solutions of nonhomoge-
neous self-adjoint DEs satisfying homogeneous boundary conditions.

We begin with the second-order nonhomogeneous DE

y′′ + ay′ + by = f(x), x ∈ [−π, π], (24.1)

where a, b are constants, and the function f(x) is periodic of period 2π,
and satisfies the conditions of Theorem 23.4 so that it can be expanded in
a Fourier trigonometric series (20.8). Our interest here is to find a periodic
particular solution of (24.1), which we shall denote by yp(x) and call it a
steady periodic solution. We assume that

yp(x) =
A0

2
+

∞∑
n=1

(An cosnx + Bn sin nx) (24.2)

so that the term by term differentiation gives

y′
p(x) =

∞∑
n=1

(−nAn sin nx + nBn cosnx) (24.3)

and

y′′
p (x) =

∞∑
n=1

(−n2An cosnx − n2Bn sin nx). (24.4)

Substituting (24.2) – (24.4) and (20.8) in (24.1), we get

b
A0

2
+

∞∑
n=1

([−n2An+anBn+bAn] cosnx + [−n2Bn−anAn+bBn] sinnx)

=
a0

2
+

∞∑
n=1

(an cosnx + bn sin nx).

Now matching the coefficients, we find

bA0 = a0

(b − n2)An + anBn = an

−anAn + (b − n2)Bn = bn.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 24,
c© Springer Science+Business Media, LLC 2009
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Solving this system, we obtain

A0 =
a0

b
, An =

(b − n2)an − anbn

(b − n2)2 + a2n2
, Bn =

(b − n2)bn + anan

(b − n2)2 + a2n2
. (24.5)

Since for a given function f(x) the coefficients an, n ≥ 0 and bn, n ≥ 1
are known from (20.9), the unknowns An, n ≥ 0 and Bn, n ≥ 1 can be
determined explicitly from (24.5).

Example 24.1. We shall find the steady periodic solution of the
nonhomogeneous DE

y′′ + 3y = f(x) =
{

1, − π < x < 0
2, 0 < x < π.

From Problem 21.4 (ii), we have

f(x) =
3
2

+
2
π

(
sinx +

1
3

sin 3x +
1
5

sin 5x + · · ·
)

and hence an = 0, n = 1, 2, · · · , and

a0 = 3, b2n−1 =
2

π(2n − 1)
, b2n = 0, n = 1, 2, · · · .

Now since a = 0, b = 3 from (24.5), it follows that An = 0, n = 1, 2, · · ·
and

A0 = 1, B2n−1 =
2

π(2n − 1)[3 − (2n − 1)2]
, B2n = 0, n = 1, 2, · · · .

Hence, the required particular solution is

yp(x) =
1
2

+
∞∑

n=1

2
π(2n − 1)[3 − (2n − 1)2]

sin(2n − 1)x.

Using the same procedure we can obtain a steady periodic solution of
(24.1) over any interval [−L, L], L > 0. For this, we need to use the Fourier
series (20.11) of f(x) with the coefficients an, bn given in (20.12), and let

yp(x) =
A0

2
+

∞∑
n=1

(
An cos

nπx

L
+ Bn sin

nπx

L

)
. (24.6)

The unknown An, n ≥ 0 and Bn, n ≥ 1 are then determined from the
relations

A0 =
a0

b
, An =

(
b − n2π2

L2

)
an − anπ

L bn(
b − n2π2

L2

)2
+ a2 n2π2

L2

, Bn =

(
b − n2π2

L2

)
bn + anπ

L an(
b − n2π2

L2

)2
+ a2 n2π2

L2

.

(24.7)
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Example 24.2. We shall find the steady periodic solution of the
nonhomogeneous DE

y′′ + 5y = x, − 2 < x < 2.

Since

x =
4
π

∞∑
n=1

(−1)n+1

n
sin

nπ

2
x

we have a0 = 0, an = 0, bn = 4(−1)n+1/(nπ), and since a = 0, b = 5 from
(24.7) we obtain A0 = 0, An = 0 and

Bn =
bn(

5 − n2π2

4

) =
16(−1)n+1

nπ(20 − n2π2)
.

Thus, the required particular solution is

yp(x) =
16
π

∞∑
n=1

(−1)n+1

π(20 − n2π2)
sin

nπ

2
x.

Next we shall consider the nonhomogeneous self-adjoint DE

(p(x)y′)′ + q(x)y + μr(x)y = P2[y] + μr(x)y = f(x) (24.8)

together with the homogeneous boundary conditions (19.2). In (24.8) func-
tions p(x), q(x) and r(x) are assumed to satisfy the same restrictions as
in (19.1), μ is a given constant and f(x) is a given function in [α, β]. For
the nonhomogeneous boundary value problem (24.8), (19.2) we shall as-
sume that the solution y(x) can be expanded in terms of eigenfunctions
φn(x), n = 1, 2, · · · of the corresponding homogeneous Sturm–Liouville
problem (19.1), (19.2), i.e., y(x) =

∑∞
n=1 cnφn(x). To compute the coeffi-

cients cn in this expansion first we note that the infinite series
∑∞

n=1 cnφn(x)
does satisfy the boundary conditions (19.2) since each φn(x) does so. Next
consider the DE (24.8) that y(x) must satisfy. For this, we have

P2

[ ∞∑
n=1

cnφn(x)

]
+ μr(x)

∞∑
n=1

cnφn(x) = f(x).

Thus, if we can interchange the operations of summation and differentiation,
then ∞∑

n=1

cnP2[φn(x)] + μr(x)
∞∑

n=1

cnφn(x) = f(x).

Since P2[φn(x)] = −λnr(x)φn(x), this relation is the same as

∞∑
n=1

(μ − λn)cnφn(x) =
f(x)
r(x)

. (24.9)
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Now we assume that the function f(x)/r(x) satisfies the conditions of The-
orem 23.1, so that it can be written as

f(x)
r(x)

=
∞∑

n=1

dnφn(x),

where from (20.2) the coefficients dn are given by

dn =
1

‖φn‖2

∫ β

α

r(x)φn(x)
f(x)
r(x)

dx =
1

‖φn‖2

∫ β

α

φn(x)f(x)dx. (24.10)

With this assumption (24.9) takes the form

∞∑
n=1

[(μ − λn)cn − dn]φn(x) = 0.

Since this equation holds for each x in [α, β], it is necessary that

(μ − λn)cn − dn = 0, n = 1, 2, · · · . (24.11)

Thus, if μ is not equal to any eigenvalue of the corresponding homoge-
neous Sturm–Liouville problem (19.1), (19.2), i.e., μ �= λn, n = 1, 2, · · · ,
then

cn =
dn

μ − λn
, n = 1, 2, · · · . (24.12)

Hence, the solution y(x) of the nonhomogeneous problem (24.8), (19.2) can
be written as

y(x) =
∞∑

n=1

dn

μ − λn
φn(x). (24.13)

Of course, the convergence of (24.13) is yet to be established.

If μ = λm, then for n = m equation (24.11) is of the form 0 · cm−dm = 0.
Thus, if dm �= 0 then it is impossible to solve (24.11) for cm, and hence
the nonhomogeneous problem (24.8), (19.2) has no solution. Further, if
dm = 0 then (24.11) is satisfied for any arbitrary value of cm, and hence the
nonhomogeneous problem (24.8), (19.2) has an infinite number of solutions.
From (24.10), dm = 0 if and only if

∫ β

α

φm(x)f(x)dx = 0,

i.e., f(x) in (24.8) is orthogonal to the eigenfunction φm(x).

This formal discussion for the problem (24.8), (19.2) is summarized in
the following theorem.
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Theorem 24.1. Let f(x) be continuous in the interval [α, β]. Then,
the nonhomogeneous boundary value problem (24.8), (19.2) has a unique
solution provided μ is different from all eigenvalues of the corresponding
homogeneous Sturm–Liouville problem (19.1), (19.2). This solution y(x) is
given by (24.13), and the series converges for each x in [α, β]. If μ is equal
to an eigenvalue λm of the corresponding homogeneous Sturm–Liouville
problem (19.1), (19.2) then the nonhomogeneous problem (24.8), (19.2)
has no solution unless f(x) is orthogonal to φm(x), i.e., unless

∫ β

α

φm(x)f(x)dx = 0.

Further, in this case the solution is not unique.

Alternatively, this result can be stated as follows:

Theorem 24.2 (Fredholm’s Alternative). For a given con-
stant μ and a continuous function f(x) in [α, β] the nonhomogeneous prob-
lem (24.8), (19.2) has a unique solution, or else the corresponding homoge-
neous problem (19.1), (19.2) has a nontrivial solution.

Example 24.3. Consider the nonhomogeneous boundary value prob-
lem

y′′ + π2y = x − x2

y(0) + y′(0) = 0 = y(1).
(24.14)

This problem can be solved directly to obtain the unique solution

y(x) =
2
π4

cosπx − 1
π3

(
1 +

4
π2

)
sin πx +

1
π2

(
x − x2 +

2
π2

)
. (24.15)

From Example 19.2 we know that π2 is not an eigenvalue of the Sturm–
Liouville problem (19.3), (19.9). Thus, from Theorem 24.1 the nonhomoge-
neous problem (24.14) has a unique solution. To find this solution in terms
of the eigenvalues λn and eigenfunctions φn(x) of (19.3), (19.9) we note
that the function f(x) = x − x2 has been expanded in Example 21.4, and
hence from (24.9) and (24.11), we have

d0 =
1
4
, dn =

2

λ
3/2
n sin2 √λn

(2 − (2 + λn) cos
√

λn), n ≥ 1.

Thus, from (24.13) we find that the solution y(x) of (24.14) has the expan-
sion

y(x) =
1

4π2
(1 − x) +

∞∑
n=1

2

(π2 − λn)λ3/2
n sin2 √λn

× (2 − (2 + λn) cos
√

λn) sin
√

λn(1 − x).

(24.16)
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Problems

24.1. Find periodic particular solutions of the following nonhomoge-
neous DEs:

(i) y′′ + 3y =
{

x, − π < x < 0
0, 0 < x < π

(ii) y′′ + y =
{

−x, − 1 < x < 0
x, 0 < x < 1

(iii) y′′ + 2y′ + 3y = ex, − π < x < π

(iv) y′′ + 3y′ + 7y =
{

1, − π < x < 0
x, 0 < x < π.

24.2. Use Fourier trigonometric series to solve the following initial
value problems:

(i) y′ + y =
4
π

∞∑
n=1

sin(2n − 1)πx

2n − 1
, y(0) = 0

(ii) y′ + y =
∞∑

n=1

cosnx

n!
, y(0) = 0

(iii) y′′ + 4y =
4
π

∞∑
n=1

sin(2n − 1)x
2n − 1

, y(0) = y′(0) = 0

(iv) y′′ + y =
4
π

∞∑
n=1

sin(2n − 1)x
2n − 1

, y(0) = y′(0) = 0.

24.3. Solve the following nonhomogeneous boundary value problems
by means of an eigenfunction expansion:

(i) y′′ + 4y = 4x, y(0) = 0 = y(1)
(ii) y′′ + 11y = x2, y(0) = 0 = y(1)
(iii) y′′ + 3y = ex, y(0) = 0 = y(1)
(iv) y′′ − x = x, y(0) = 0 = y′(π)
(v) y′′ + 2y = −x, y′(0) = 0 = y(1) + y′(1)
(vi) y′′ + 2y = x, y′(0) = 0 = y′(π)

(vii)(xy′)′ +
3
x

y =
1
x

sin(ln x), y(1) = y(2) = 0.

24.4. A simply supported beam of length a has a constant load q0/a dis-
tributed over its length. The small deflections of the beam are governed by
the boundary value problem

EIy(4) =
q0

a
, y(0) = y′′(0) = 0, y(a) = y′′(a) = 0.
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Show that the deflections are given by the series

y(x) =
4q0a

4

EIπ5

∞∑
n=0

1
(2n + 1)5

sin
(2n + 1)πx

a
.

Answers or Hints

24.1. (i) − π
12 − 2

π

∑∞
n=1

1
(2n−1)2[(2n−1)2−3] cos(2n − 1)x

+
∑∞

n=1
(−1)n

n(n2−3) sinnx (ii) 1
2 + 4

π2

∑∞
n=1

1
(2n−1)2[(2n−1)2π2−1] cos(2n− 1)nπx

(iii) a = 2, b = 3, a0 = sinh π, an = (−1)n

1+n2 sinhπ, bn = (−1)n−1n
1+n2 sinh π

(iv) a = 3, b = 7, a0 = 1 + π
2 , an = (−1)n−1

πn2 , bn = (−1)n(1−π)−1
πn .

24.2. (i) 4
∑∞

n=1
1

1+(2n−1)2π2

(
e−x + 1

π(2n−1) sin(2n−1)πx − cos(2n−1)πx
)

(ii)
∑∞

n=1
1

n!(n2+1) (−e−x + cosnx + n sinnx) (iii) 2
π

∑∞
n=1

1
4−(2n−1)2×(

− sin 2x + 2
2n−1 sin(2n − 1)x

)
(iv) 2

π (sin x − x cosx)

+ 4
π

∑∞
n=2

1
(2n−1)2−1

(
sin x − 1

2n−1 sin(2n − 1)x
)

.

24.3. (i) 8
π

∑∞
n=1

(−1)n+1 sin nπx
n(4−n2π2) (ii) 2

∑∞
n=1

[
(−1)n+1

nπ − 2{1−(−1)n}
n3π3

]

× 1
(11−n2π2) sin nπx (iii) 2

∑∞
n=1

nπ(1+e(−1)n+1) sin nπx

(1+n2π2)(3−n2π2)

(iv) 32
π

∑∞
n odd

(−1)(n+1)/2

n2(n2+4) sin nx
2 (v) 2

∑∞
n=1

(2 cos
√

λn−1) cos
√

λnx

λn(λn−2)(1+sin2
√

λn)
, where

cot
√

λn =
√

λn (vi) π
2 + 2

π

∑∞
n=1

1−(−1)n

n2(n2−2) cosnx (vii) 2(ln 2)2 sin(ln 2)π

×
∑∞

n=1
(−1)nn

[3(ln 2)2−(nπ)2][(ln 2)2−(nπ)2] sin
(

nπ
ln 2 ln x

)
.



Lecture 25
Partial Differential Equations

Partial differential equations arise in many branches of science and tech-
nology, for example, in electromagnetic theory, elasticity, fluid mechanics,
heat transfer, acoustics, quantum mechanics, and so on. In this lecture we
shall introduce partial differential equations, and explain several concepts
through elementary examples. Here we shall also provide the most funda-
mental classification of second-order linear equations in two independent
variables.

A partial differential equation (DE) is a relation that involves partial
derivatives of an unknown function. Let the unknown function be u, and
x, y, z, · · · be independent variables, i.e., u = u(x, y, z, · · ·). Often, one of
these variables represents the time. Thus, a partial DE is an equation of
the form

F (x, y, z, u, ux, uy, uz, uxx, uxy, · · · , uxxx, · · ·) = 0. (25.1)

In (25.1) we have used the subscript notation for the partial differentiation,
i.e.,

ux =
∂u

∂x
, uxy =

∂2u

∂x∂y
, and so on.

We will always assume that the unknown function u is sufficiently well
behaved so that all necessary partial derivatives exist and corresponding
mixed partial derivatives are equal, e.g.,

uxy = uyx, uxzx = uxxz, and so on.

As in the case of ordinary DEs, we define the order of the partial DE
(25.1) to be the highest order partial derivative appearing in the equation.
Furthermore, we say that the partial DE (25.1) is linear if F is linear
as a function of the variables u, ux, uy, uz, uxx, · · · , i.e., F is a linear
combination of the unknown function and its derivatives. Equation (25.1)
is said to be quasilinear if F is linear as a function of the highest-order
derivatives.

The following are examples of partial DEs:

ux + uy = 3uz − 2x2 − 5z (first-order linear)
uxx + u = 4x2 (second-order linear)
5xyuxy − 3zuy + 2u = 0 (second-order linear)
uxz + 2uuy − 4z = 0. (second-order quasilinear)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 25,
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With a very few exceptions, we will limit our discussion to only first
and second-order partial DEs. Thus, our most general partial DE in three
independent variables can be written as

a1uxx+a2uyy+a3uzz+a4uxy+a5uyz+a6uzx+a7ux+a8uy+a9uz+a10u = f,
(25.2)

where u = u(x, y, z), f = f(x, y, z) and ai = ai(x, y, z), i = 1, · · · , 10.

In (25.2) it is understood that the function f and the coefficients ai

are known, and u is unknown. By a solution of (25.2) we mean a continu-
ous function u = u(x, y, z), with continuous first and second-order partial
derivatives, which, when substituted in (25.2), reduces equation (25.2) to
an identity.

Example 25.1. For the first-order partial DE

ux + uy = 0, u = u(x, y)

we shall show that u = φ(x−y), where φ is any function having continuous
first-order partial derivatives is a solution. Indeed, since

ux = φ′(x − y) × (1) and uy = φ′(x − y) × (−1)

it immediately follows that ux + uy = φ′(x − y) − φ′(x − y) = 0.

If f(x, y, z) ≡ 0 the partial DE (25.2) is called homogeneous; otherwise
it is called nonhomogeneous. If each coefficient ai is constant, then (25.2) is
called a partial DE with constant coefficients. If at least one of the ai is not
a constant, equation (25.2) is called a partial DE with variable coefficients.

Example 25.2. Consider the first-order partial DE

ux = x + y, u = u(x, y). (25.3)

Integrating (25.3) partially with respect to x, i.e., treating y as a constant,
we obtain

u =
1
2
x2 + xy + c. (25.4)

We note that the constant of integration is denoted by c. In order to verify
that u as given in (25.4) is a solution of (25.3), we need only to substitute
this expression for u in (25.3). When verifying this, notice that even when
c = c(y), u as given in (25.4) still is a solution of (25.3), since ∂c(y)/∂x = 0.
Thus, the general solution of (25.3) is

u =
1
2
x2 + xy + c(y), (25.5)

where c is an arbitrary function of y.
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Hence, in contrast with ordinary DEs the solution (25.5) of the partial
DE (25.3) contains an arbitrary function rather than an arbitrary constant.

Example 25.3. Consider the partial DE

uxy = z + x, u = u(x, y, z). (25.6)

First we integrate (25.6) partially with respect to y (treating x and z as
constants), to obtain

ux = yz + xy + f1(x, z),

where f1 is an arbitrary function of the variables x and z. Next we integrate
partially with respect to x (treating y and z as constants), to get

u = xyz +
1
2
x2y +

∫ x

f1(s, z)ds + g(y, z),

where g(y, z) is an arbitrary function of the variables y and z. If we set

f(x, z) =
∫ x

f1(s, z)ds,

then our solution takes the form

u = xyz +
1
2
x2y + f(x, z) + g(y, z), (25.7)

where f is an arbitrary function of x and z, and g is an arbitrary function
of y and z. Functions f and g must have continuous first-order partial
derivatives with respect to their arguments.

The general solution of a given partial DE of order n in k independent
variables usually involves n arbitrary functions of k−1 variables. Thus, the
solutions (25.5) and (25.7) are the general solutions of equations (25.3) and
(25.6), respectively. Each specific assignment of the arbitrary function(s) in
the general solution gives rise to a particular solution of the corresponding
partial DE Thus,

u =
1
2
x2 + xy + ey sin y

is a particular solution of equation (25.3), and

u = xyz +
1
2
x2y + z2 cosx + yez

is a particular solution of equation (25.6).

Now let
A[u] = a1(x, y, z)uxx + · · · + a10(x, y, z)u
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so that the partial DE (25.2) can be written as

A[u] = f. (25.8)

The principle of superposition, which plays a fundamental role in ordi-
nary DEs, for partial DEs can be stated as follows: Let fi = fi(x, y, z), 1 ≤
i ≤ m be given functions and let ci, 1 ≤ i ≤ m be arbitrary constants. If
ui = ui(x, y, z), 1 ≤ i ≤ m are respective solutions of the partial DEs
A[ui] = fi, 1 ≤ i ≤ m then u = c1u1 + · · · + cmum is a solution of the
partial DE A[u] = c1f1 + · · · + cmfm.

Two important consequences of the principle of superposition are as
follows:

(i) If u1, · · · , um are solutions of A[u] = 0 and c1, · · · , cm are any constants,
then
∑m

i=1 ciui is also a solution of A[u] = 0, i.e., any linear combination
of solutions is also a solution. Also a series built from an infinite number
of solutions

∑∞
i=1 ciui is a solution in a region D, provided the series and

the various derivative series required for substitution into the partial DE
converge uniformly in D.

(ii) If uh is a general solution of A[u] = 0 and if up is a particular solution
of A[u] = f, then u = uh + up is a solution of A[u] = f, i.e., the sum of a
general solution of the homogeneous equation and a particular solution is
also a solution.

If u(x, y, z, μ) is a solution of A[u] = 0 containing a parameter μ, then
by the principle of superposition

u(x, y, z, μ + Δμ) − u(x, y, z, μ)
Δμ

is also a solution. Generally, the limit uμ(x, y, z, μ) of this difference quo-
tient is also a solution. For all problems that we shall consider, for all
choices of integrable functions φ, the integral

∫ μ

μ0

φ(μ)u(x, y, z, μ)dμ

is another solution. Since the integral is the limit of a sum, this is a further
extension of the superposition theorem. We also note that if all coeffi-
cients of the equation A[u] = 0 are constants, then the various derivatives
ux, uy, uxx, · · · etc., are also solutions. In conclusion, the general solution
often does not represent the collection of all possible solutions.

Example 25.4. Consider again the partial DE (25.6). Clearly, uh =
f(x, z) + g(y, z) is the general solution of uxy = 0, where f and g are
arbitrary functions; u1 = xyz is a particular solution of uxy = z; and
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u2 = x2y/2 is a particular solution of uxy = x. Thus, the general solution
of (25.6) can be written as (25.7).

Now we shall discuss the most crucial classification of second-order linear
partial DEs in two independent variables

L[u] = A(x, y)uxx + B(x, y)uxy + C(x, y)uyy

+D(x, y)ux + E(x, y)uy + F (x, y)u = G(x, y), u = u(x, y),
(25.9)

where the functions A(x, t), · · · , G(x, t) are continuous in some open set
Ω ⊆ IR2. In (25.9), often y = t represents the time, and sometimes for con-
venience x and y are interchanged. Following the analogy of the quadratic
equation

ax2 + bxy + cy2 + dx + ey + f = 0

that it represents a hyperbola, parabola, or ellipse according as b2 − 4ac is
positive, zero, or negative, the operator L (and so the partial DE (25.9)) is
said to be hyperbolic, parabolic, or elliptic at a point (x0, y0) ∈ Ω according
as

B2(x0, y0) − 4A(x0, y0)C(x0, y0) (25.10)

is positive, zero, or negative. It is said to be hyperbolic, parabolic, or elliptic
in a domain, if it has the required property at each point of the domain.

Example 25.5. The wave equation in one dimension

∂2u

∂t2
= c2 ∂2u

∂x2
, c > 0 (25.11)

occurs in the study of processes of transversal vibrations of a string, the
longitudinal vibrations of rods, electric oscillations in conductors, the tor-
sional oscillations of shafts, gas vibrations, and so on. Clearly, for (25.11),
A = −c2, B = 0, C = 1 so that B2 − 4AC = 4c2 > 0, and hence it is
hyperbolic in any domain.

Example 25.6. The one-dimensional heat equation

∂u

∂t
= a

∂2u

∂x2
, a > 0 (25.12)

arises in the study of processes of the propagation of heat, the filtration of
liquids and gases in a porous medium, e.g., the filtration of oil and gas in
subterranean sandstones, some problems in probability theory, and so on.
Clearly, for (25.12), A = −a, B = 0, C = 0 so that B2 − 4AC = 0, and
hence it is parabolic in any domain.

Example 25.7. The potential, or Laplace equation in two dimensions,

∂2u

∂x2
+

∂2u

∂y2
= 0 (25.13)
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is invoked in the study of problems dealing with electric and magnetic fields,
stationary states, problems in hydrodynamics, diffusion, and so on. Clearly,
for (25.13), A = 1, B = 0, C = 1, so that B2 − 4AC = −4 < 0; and hence
it is elliptic in any domain. Solutions of (25.13) are often called potential
functions as well as harmonic functions.

In the literature equations (25.11)–(25.13) are known as the classical
equations of mathematical physics, as these equations keep on popping
up in various other applications. Further, these equations are important
examples of the three major types of linear partial differential equations.

Example 25.8. The Tricomi equation

yuxx + uyy = 0 (25.14)

occurs in the study of aerodynamics. This equation is elliptic for y > 0,
parabolic for y = 0, and hyperbolic for y < 0. The elliptic region corre-
sponds to smooth subsonic flow, the parabolic region to a sonic barrier,
and the hyperbolic region to supersonic propagation of shock waves.

Problems

25.1. Show that the given function satisfies the corresponding partial
DE

(i) u = f(x2 + y2), yux = xuy

(ii) u = f(xy), xux − yuy = 0
(iii) u = eyf(x − y), u = ux + uy

(iv) u = ax + by + ab, u = xux + yuy + uxuy

(v) (u + a2)3 = (x + ay + b)2, uu2
x + u2

y = 4/9.

25.2. Find where the following operators are hyperbolic, parabolic,
or elliptic:

(i) uyy + yuxy + xuxx

(ii) x2uyy − uxx + u

(iii) yuyy + 2uxy + xuxx + ux.

25.3. Show that for the one-dimensional heat equation (25.12) with
a = 1 the function

φ(x, t) = A + B

∫ x/
√

t

0

e−s2/4ds

as well as its partial derivatives φx(x, t) and φt(x, t) are solutions; here A
and B are arbitrary constants.
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25.4. Let ψ(τ) be an arbitrary function such that

φ(x, t) =
∫ ∞

0

ψ(τ)
1

(t + τ)1/2
exp
(
− x2

4(t + τ)

)
dτ

is convergent. Show that φ(x, t) is a solution of (25.12) with a = 1.

25.5. Show that if u = u(x, y) and v = v(x, y) satisfy Cauchy–
Riemann equations

ux = vy, uy = −vx

then each is a solution of Laplace’s equation (25.13).

25.6. Show that u = ln 1/r, where r =
√

(x − a)2 + (y − b)2 is a
solution of Laplace’s equation (25.13).

25.7. A linear approximation of one-dimensional isentropic flow of
an ideal gas (a gas in which the only stress across any element of area is
normal to it) is given by

ut + ρx = 0

ux + α2ρt = 0,

where u = u(x, t) is the velocity, and ρ = ρ(x, t) is the density of the gas.
Show that u and ρ both satisfy the wave equation (25.11).

25.8. A nonlinear partial DE that arises in shallow-water theory is
the Korteweg–de Vries equation

ut + (α + εu)ux + βuxxx = 0,

where α, β, ε are constants. Show that its one solution (the solitary wave,
or soliton) is given by

u = A sech2[(εA/12β)1/2(x − V t)], V = α + (1/3)εA.

Answers or Hints

25.1. Verify directly.

25.2. (i) Hyperbolic when y2 > 4x, parabolic on the parabola y2 = 4x,
elliptic when y2 < 4x (ii) Hyperbolic when x �= 0, parabolic when x = 0
(iii) Hyperbolic when xy < 1, parabolic on the hyperbola xy = 1, elliptic
when xy > 1.

25.3. Verify directly.
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25.4. Verify directly.

25.5. uxy = uyx.

25.6. Verify directly.

25.7. Differentiate the first equation with respect to x, and the second
equation with respect to t, and subtract.

25.8. Verify directly.



Lecture 26
First-Order Partial

Differential Equations

We begin this lecture with simultaneous DEs, which play an important
role in the theory of partial DEs. Then we shall consider quasilinear partial
DEs of the Lagrange type, and show that such equations can be solved
rather easily provided we can find solutions of related simultaneous DEs.
Finally, in this lecture we shall explain a general method to find solutions
of nonlinear first-order partial DEs which is due to Charpit.

Simultaneous DEs. To solve simultaneous DEs of the form
dx

P
=

dy

Q
=

du

R
, (26.1)

where P, Q, and R are functions of x, y, u, several different techniques are
known. We shall present here only the following two methods.

The method of grouping. If in dx/P = du/R the variable y can be
canceled or absent, leaving the equation in x and u only, then an integration
of this equation gives

φ(x, u) = c1. (26.2)

Again, if one variable, say, x, is absent or can be removed from dy/Q =
du/R, then an integration of this equation leads to

ψ(y, u) = c2. (26.3)

The general solution of (26.1) is then the solutions (26.2) and (26.3) taken
together.

Example 26.1. For the DE

dx

u2y
=

dy

u2x
=

du

y2x
(26.4)

we take first two fractions and cancel out u2, to get dx/y = dy/x or xdx −
ydy = 0, which can be integrated to obtain

x2 − y2 = c1. (26.5)

Again, we take second and third fractions and cancel out x, to have dy/u2 =
du/y2 or y2dy − u2du = 0, which on integration yields

y3 − u3 = c2. (26.6)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
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Equations (26.5) and (26.6) taken together gives the solution of (26.4).

The method of multipliers. By a proper choice of multipliers 
, m, n
which are not necessarily constants, we write

dx

P
=

dy

Q
=

du

R
=


dx + mdy + ndu


P + mQ + nR

so that 
P + mQ + nR = 0. Then 
dx + mdy + ndu = 0, and this can be
solved to get the integral

φ(x, y, u) = c1. (26.7)

Again we search for another set of multipliers λ, μ, ν so that λP + μQ +
νR = 0 giving λdx + μdy + νdu = 0, which on integration yields

ψ(x, y, u) = c2. (26.8)

These two integrals (26.7) and (26.8) taken together give the required so-
lution of (26.1).

Example 26.2. For the DE

dx

x(y2 − u2)
=

dy

−y(u2 + x2)
=

du

u(x2 + y2)
(26.9)

we use the multipliers x, y, u so that each fraction is the same as

xdx + ydy + udu

x2(y2 − u2) − y2(u2 + x2) + u2(x2 + y2)
=

xdx + ydy + udu

0
,

and hence xdx + ydy + udu = 0, which on integration gives

x2 + y2 + u2 = c1. (26.10)

Again using the multipliers 1/x, − 1/y, − 1/u we obtain

1
x

dx − 1
y
dy − 1

u
du = 0,

which can be solved to get the integral

yu = c2x. (26.11)

Hence, the solution of (26.9) is (26.10) and (26.11) taken together.

Lagrange’s first-order linear partial DE Now we shall
study the first-order quasilinear partial DE

Pux + Quy = R, u = u(x, y) (26.12)
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where P, Q, and R are functions of x, y, u. Such an equation is obtained
by eliminating an arbitrary function from the relation

φ(μ, ν) = 0, (26.13)

where μ, ν are some functions of x, y, u. Indeed differentiating (26.13)
partially with respect to x and y, we get

φμ(μx + μuux) + φν(νx + νuux) = 0

and
φμ(μy + μuuy) + φν(νy + νuuy) = 0.

Eliminating φμ and φν from these relations, we get
∣∣∣∣∣

μx + μuux νx + νuux

μy + μuuy νy + νuuy

∣∣∣∣∣ = 0,

which simplifies to

(μyνu − μuνy)ux + (μuνx − μxνu)uy = μxνy − μyνx. (26.14)

Clearly, equation (26.14) is of the form (26.12).

Now suppose that μ = a and ν = b, where a and b are constants, so
that

μxdx + μydy + μudu = dμ = 0

and
νxdx + νydy + νudu = dν = 0.

By cross-multiplication, we have

dx

μyνu − νyμu
=

dy

μuνx − μxνu
=

du

μxνy − μyνx
,

which in view of (26.14) and (26.12) is of the same form as (26.1). Now since
the solutions of these equations are μ = a and ν = b the required solution
of (26.12) can be written as φ(μ, ν) = 0. Thus, to solve (26.12) first we need
to form the subsidiary equations (26.1), and need to solve these to obtain
μ = a and ν = b, and finally write the solution as φ(μ, ν) = 0 or μ = f(ν).

We also note that any integral of (26.12), u = f(x, y) represents a
surface. We call it an integral surface of (26.12) and denote it by S. Con-
sider any point M(x0, y0, u0) on S. If ux and uy are evaluated at M, then
ux, uy,−1 are direction numbers of the normal to S and M. Thus, DE
(26.12) expresses the geometric fact that this normal is perpendicular to
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the line through M whose direction numbers are the values of P, Q and R
evaluated at M. This line, which is tangent to S at M, has the equations

x − x0

P
=

y − y0

Q
=

u − u0

R
.

Hence, at each point of S there is defined a direction whose direction num-
bers dx, dy, du satisfy the equations (26.1).

Although our above discussion is only for two independent variables, it
can be extended rather easily to the case of n independent variables. In
fact, analytic methods can be used to prove the following general theorem.

Theorem 26.1. If φi(x1, x2, · · · , xn, u) = ci, 1 ≤ i ≤ n are independent
solutions of the equations

dx1

P1
=

dx2

P2
= · · · =

dxn

Pn
=

du

R
, (26.15)

then the relation Ψ(φ1, φ2, · · · , φn) = 0, where the function Ψ is arbitrary,
is a general solution of the linear partial DE

P1ux1 + P2ux2 + · · · + Pnuxn = R. (26.16)

Example 26.3. For the partial DE

(mu − ny)ux + (nx − 
u)uy = 
y − mx (26.17)

the subsidiary equations are

dx

mu − ny
=

dy

nx − 
u
=

du


y − mx
.

Using multipliers x, y, u we find that each fraction is the same as (xdx +
ydy + udu)/0 and hence xdx + ydy + udu = 0, which on integration gives

x2 + y2 + u2 = a. (26.18)

Again using multipliers 
, m, n we have each fraction equal to (
dx+mdy +
ndu)/0 and thus 
dx + mdy + ndu = 0, which on integration yields


x + my + nu = b. (26.19)

Thus, from (26.18) and (26.19) the solution of (26.17) is x2 + y2 + u2 =
f(
x + my + nu).

Charpit’s method. We shall now explain a general method for
finding the solutions of first-order nonlinear partial DEs which is due to
Charpit. Consider the equation

f(x, y, u, p, q) = 0, (26.20)
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where for simplicity p = ux and q = uy. Since u depends on x and y, we
have

du = uxdx + uydy = pdx + qdy. (26.21)

If we can find another relation involving x, y, u, p, q such as

φ(x, y, u, p, q) = 0, (26.22)

then we can solve (26.20) and (26.22) for p and q and substitute in (26.21).
This will give the solution provided the resulting equation is integrable.

To determine φ, we differentiate (26.20) and (26.22) with respect to x
and y, to obtain

fx + fup + fppx + fqqx = 0 (26.23)

φx + φup + φppx + φqqx = 0 (26.24)

fy + fuq + fppy + fqqy = 0 (26.25)

φy + φuq + φppy + φqqy = 0. (26.26)

Eliminating px between the equations (26.23) and (26.24), we get

(fxφp − φxfp) + (fuφp − φufp)p + (fqφp − φqfp)qx = 0. (26.27)

Also eliminating qy between the equations (26.25) and (26.26), we obtain

(fyφq − φyfq) + (fuφq − φufq)q + (fpφq − φpfq)py = 0. (26.28)

Adding (26.27) and (26.28) and using qx = uxy = py, we find that the last
terms in both cancel and the other terms, on rearrangement, give

(−fp)φx + (−fq)φy + (−pfp − qfq)φu + (fx + pfu)φp + (fy + qfu)φq = 0.
(26.29)

This is Lagrange’s DE (26.16) with x, y, u, p, q as independent variables and
φ as the dependent variable. Its solution will depend on the solution of the
subsidiary equations

dx

−fp
=

dy

−fq
=

du

−pfp − qfq
=

dp

fx + pfu
=

dq

fy + qfu
=

dφ

0
. (26.30)

An integral of these equations involving p or q or both, can be taken as the
required relation (26.22).

Example 26.4. For the partial DE

(p2 + q2)y = qu, (26.31)

we have
f(x, y, u, p, q) = (p2 + q2)y − qu = 0. (26.32)
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Thus, the subsidiary equations are

dx

−2py
=

dy

u − 2qy
=

du

−qu
=

dp

−pq
=

dq

p2
.

The last two equations give pdp + qdq = 0, and hence

p2 + q2 = c2. (26.33)

Now we solve (26.32) and (26.33), to get p = (c/u)
√

u2 − c2y2, q = yc2/u.
Thus,

du = pdx + qdy =
c

u

√
u2 − c2y2dx +

c2y

u
du,

which is the same as
1
2

d(u2 − c2y2)√
u2 − c2y2

= cdx,

and hence on integration and squaring, we get

u2 = (a + cx)2 + c2y2,

which is the required solution of (26.31).

Problems

26.1. Solve the following simultaneous DEs:

(i)
dx

x2
=

dy

y2
=

du

nxy

(ii)
dx

mu − ny
=

dy

nx − 
u
=

du


y − mx

(iii)
dx

x2 − yu
=

dy

y2 − ux
=

du

u2 − xy

(iv)
dx

u(x + y)
=

dy

u(x − y)
=

du

x2 + y2

(v)
dx

x(y2 − u2)
=

dy

y(u2 − x2)
=

du

u(x2 − y2)

(vi)
dx

x2 − y2 − u2
=

dy

2xy
=

du

2xu
.

26.2. Solve the following first-order linear partial DEs:

(i) (x2 − y2 − u2)ux + 2xyuy = 2xu

(ii) (y − u)ux + (x − y)uy = u − x
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(iii) (x2 − yu)ux + (y2 − ux)uy = u2 − xy

(iv) y2ux − xyuy = x(u − 2y)
(v) x2ux + y2uy = (x + y)u.

26.3. Show that the conditions for exactness of the ordinary DE

μ(x, y)M(x, y)dx + μ(x, y)N(x, y)dy = 0

is a linear partial DE of the form (26.12).

26.4. Show that the general solution of the partial DE

ux + (a(x)y + b(x)u)uy = c(x)y + d(x)u

is of the form

φ

(
yv1(x) − uw1(x)

Z(x)
,

yv2(x) − uw2(x)
Z(x)

)
= 0,

where W (x) = c1w1(x) + c2w2(x), V (x) = c1v1(x) + c2v2(x) is the general
solution of the system of equations

DW

dx
= aW + bV,

dV

dx
= cW + dV

and Z = w1v2 − w2v1. Hence, solve the following partial DEs:

(i) ux + (−y + 2u)uy = 4y + u

(ii) ux +
2y + u

x
uy =

4y + 2u

x
.

26.5. Solve the following first-order nonlinear partial DEs:

(i) u = p2x + q2y

(ii) u2 = xypq

(iii) 1 + p2 = qu

(iv) pxy + pq + qy = yu

(v) u2(p2 + q2) = x2 + y2.

Answers or Hints

26.1. (i) 1
x = 1

y +c1, u = c2+ nxy
y−x ln x

y (ii) 
x+my+nu = c1, x2+y2+u2 =
c2 (iii) x−y

y−u = c1, xy+yu+xu = c2 (iv) x2−y2−2xy = c1, x2−y2−u2 =
c2 (v) xyu = c1, x2 + y2 + u2 = c2 (vi) y = c1u, x2 + y2 + u2 = c2u.

26.2. (i) x2 + y2 + u2 = uf(y/u) (ii) 1
2x2 + yu = φ(x + y + u)
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(iii) φ
(

x−y
y−u , xy + yu + xu

)
= 0 (iv) x2 + y2 = f(2 ln y + u/y)

(v) φ
(

xy
u , x−y

u

)
= 0.

26.3. Nμx − Mμy = μ(My − Nx).

26.4. (i) φ(e−3x(y + u), e3x(u − 2y)) = 0 (ii) f((2y + u)/x4, 2y − u) = 0.

26.5. (i) u = (
√

a +
√

x)2 + (b +
√

y)2 (ii) u = axby1/b (iii) u2

2 ±{
u
2

√
u2 − 4a2 − 2a2 ln(u +

√
u2 − 4a2)

}
= 2ax + 2y + b (iv) ln(u − ax) =

y − a ln(a + y) + b (v) Put u2 = U,u2 = b + x
√

(x2 + a2) + a ln{x +√
(x2 + a2)} + y

√
(y2 − a2) + a ln{y +

√
(y2 − a2)}.



Lecture 27
Solvable Partial

Differential Equations

In this lecture we shall show that like ordinary DEs, partial DEs with
constant coefficients can be solved explicitly. We shall begin with homoge-
neous second-order DEs involving only second-order terms, and then show
how the operator method can be used to solve some particular nonhomoge-
neous DEs. Then, we shall extend the method to general second and higher
order partial DEs.

For partial DEs of the form

uxx + k1uxy + k2uyy = 0, (27.1)

where k1 and k2 are constants, we write Dr
1 = ∂r/∂xr and Dr

2 = ∂r/∂yr,
so that in symbolic form it can be written as

(D2
1 + k1D1D2 + k2D

2
2)u = 0. (27.2)

Its symbolic operator equated to zero, i.e.,

D2
1 + k1D1D2 + k2D

2
2 = 0 (27.3)

is called the auxiliary equation. Let its roots be D1/D2 = m1, m2.

Case I. If the roots are distinct, then (27.2) is equivalent to

(D1 − m1D2)(D1 − m2D2)u = 0. (27.4)

It will be satisfied by the solution of (D1−m2D2)u = 0, i.e., ux−m2uy = 0.
This is a Lagrange equation and its subsidiary equations are

dx

1
=

dy

−m2
=

du

0

and hence y+m2x = a and u = b. Therefore, its solution is u = φ(y+m2x).

Similarly, equation (27.4) will also be satisfied by the solution of (D1 −
m1D2)u = 0, i.e., u = f(y + m1x). Hence, in this case the general solution
of (27.1) is

u = f(y + m1x) + φ(y + m2x).

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 27,
c© Springer Science+Business Media, LLC 2009
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Case II. If the roots are equal, i.e., m1 = m2, then (27.4) is equivalent to

(D1 − m1D2)2u = 0. (27.5)

Putting (D1−m1D2)u = v, it becomes (D1−m1D2)v = 0, which as earlier
gives v = φ(y + m1x). Therefore, (27.5) takes the form (D1 − m1D2)u =
φ(y + m1x), or

ux − m1uy = φ(y + m1x).

This is again a Lagrange equation and its subsidiary equations are

dx

1
=

dy

−m1
=

du

φ(y + m1x)
,

giving y + m1x = a and du = φ(a)dx, i.e., u = φ(a)x+ b. Thus, the general
solution of (27.1) in this case is

u = f(y + m1x) + xφ(y + m1x).

Example 27.1. For the partial DE

2uxx + 5uxy + 2uyy = 0

the auxiliary equation is 2m2 + 5m + 2 = 0, m = D1/D2, which gives
m1 = −2, m2 = −1/2. Hence, its general solution can be written as u =
f1(y − 2x) + f2(2y − x).

Example 27.2. For the partial DE

uxx + 6uxy + 9uyy = 0

the auxiliary equation is m2 + 6m + 9 = 0, m = D1/D2, which gives
m1 = −3, m2 = −3. Hence, its general solution can be written as u =
f1(y − 3x) + xf2(y − 3x).

Now we shall consider nonhomogeneous partial DEs of the form

L(D1, D2)[u] = (D2
1 + k1D1D2 + k2D

2
2)u = F (x, y). (27.6)

As in the case of ordinary DEs a particular solution up(x, y) of (27.6) can
be obtained by employing the operator method, i.e.,

up(x, y) =
1

L(D1, D2)
F (x, y). (27.7)

Case 1. F (x, y) = eax+by. Since

(D2
1 + k1D1D2 + k2D

2
2)e

ax+by = (a2 + k1ab + k2b
2)eax+by,
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i.e.,
L(D1, D2)[eax+by] = L(a, b)[eax+by]

operating both sides by 1/L(D1, D2), we get

up(x, y) =
1

L(D1, D2)
eax+by =

1
L(a, b)

eax+by if L(a, b) �= 0.

Case 2. F (x, y) = sin(mx + ny) or cos(mx + ny). Since

(D2
1 +k1D1D2 +k2D

2
2) sin(mx+ny) = (−m2−k1mn−k2n

2) sin(mx+ny)

operating both sides by 1/L(D1, D2), we find

up(x, y) =
1

L(D1, D2)
sin(mx + ny) =

1
−m2 − k1mn − k2n2

sin(mx + ny)

provided m2 + k1mn + k2n
2 �= 0. Similarly, we have

up(x, y) =
1

L(D1, D2)
cos(mx + ny) =

1
−m2 − k1mn − k2n2

cos(mx + ny).

Case 3. F (x, y) = xmyn, where m and n are nonnegative integers. Since

up(x, y) =
1

L(D1, D2)
xmyn = L(D1, D2)

−1
xmyn

we expand L(D1, D2)
−1 in ascending powers of D1 or D2 by the binomial

theorem and then operate on xmyn term by term.

Case 4. F (x, y) is any function of x and y. To evaluate (27.7) we resolve
1/L(D1, D2) into partial fractions treating L(D1, D2) as a function of D1

alone and operate each partial fraction on F (x, y), remembering that

1
D1 − mD2

F (x, y) =
∫

F (x, c − mx)dx,

where c is replaced by y + mx after integration. To show this, we let

1
D1 − mD2

F (x, y) = φ(x, y)

so that (D1 − mD2)φ(x, y) = F (x, y) for which

dx

1
=

dy

−m
=

dφ

F (x, y)

and hence y + mx = c, and

dx =
dφ

F (x, c − mx)
,
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which gives

φ(x, y) =
∫

F (x, c − mx)dx.

Example 27.3. For the partial DE

uxx − uxy = cosx cos 2y (27.8)

the auxiliary equation is m2 − m = 0, m = D1/D2, which gives m1 =
0, m2 = 1. Hence, its complementary function is uh(x, y) = f1(y)+f2(y+x).
Now for its particular solution, we have

up(x, y) =
1

D2
1 − D1D2

cosx cos 2y

=
1
2

1
D2

1 − D1D2
[cos(x + 2y) + cos(x − 2y)]

=
1
2

[
1

−1 + 2
cos(x + 2y) +

1
−1 − 2

cos(x − 2y)
]

=
1
2

cos(x + 2y) − 1
6

cos(x − 2y).

Hence, the general solution of (27.8) is

u(x, y) = f1(y) + f2(y + x) +
1
2

cos(x + 2y) − 1
6

cos(x − 2y).

Example 27.4. For the partial DE

uxx − 4uxy + 4uyy = e2x+y (27.9)

the auxiliary equation is (m − 2)2 = 0, m = D1/D2, which gives m1 =
2, m2 = 2. Hence, its complementary function is uh(x, y) = f1(y + 2x) +
xf2(y + 2x). Now for its particular solution

up(x, y) =
1

(D1 − 2D2)2
e2x+y

clearly Case 1 fails. However, we can apply Case 4. For this we note that
for the equation (D1 − 2D2)v = e2x+y the solution is

v(x, y) =
∫

F (x, c − mx)dx =
∫

e2x+(c−2x)dx = xec = xe2x+y

and since (D1 − 2D2)up = v = xe2x+y, the particular solution is

up(x, y) =
∫

xe2x+(c−2x)dx =
1
2
x2ec =

1
2
x2e2x+y.
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Hence, the general solution of (27.9) is

u(x, y) = f1(y + 2x) + xf2(y + 2x) +
1
2
x2e2x+y.

Example 27.5. For the partial DE

uxx + uxy − 6uyy = y cosx (27.10)

the auxiliary equation is m2 + m − 6 = 0, m = D1/D2, which gives m1 =
−3, m2 = 2. Hence, its complementary function is uh(x, y) = f1(y − 3x) +
f2(y + 2x). Now to find its particular solution

up(x, y) =
1

(D1 − 2D2)(D1 + 3D2)
y cosx

first we solve the equation (D1 + 3D2)v = y cosx, to find

v(x, y) =
∫

(c + 3x) cosxdx = (c + 3x) sinx + 3 cosx = y sin x + 3 cosx.

Now since (D1 − 2D2)up = v = y sin x + 3 cosx, the particular solution is

up(x, y) =
∫

[(c − 2x) sin x + 3 cosx]dx

= (c − 2x)(− cosx) − (−2)(− sinx) + 3 sinx = sin x − y cosx.

Hence, the general solution of (27.10) is

u(x, y) = f1(y − 3x) + f2(y + 2x) + sin x − y cosx.

From the above examples it is clear that the above procedure can be
extended rather easily for the higher order partial DEs of the form

∂nu

∂xn
+ k1

∂nu

∂xn−1∂y
+ · · · + kn

∂nu

∂yn
= F (x, y) (27.11)

provided the function F (x, y) is of a particular form. We illustrate the
technique in the following example.

Example 27.6. For the partial DE

uxxx − 2uxxy = 2e2x + 3x2y (27.12)

the auxiliary equation is m3 − 2m2 = 0, m = D1/D2, which gives m1 =
0, m2 = 0, m3 = 2. Hence, its complementary function is uh(x, y) =
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f1(y) + xf2(y) + f3(y + 2x). Now for its particular solution, we have

up(x, y) =
1

D3
1 − 2D2

1D2
(2e2x + 3x2y)

= 2
1

8 − 8 · 0e2x +
3

D3
1

(
1 +

2D2

D1
+

4D2
2

D2
1

+ · · ·
)

x2y

=
1
4
e2x +

3
D3

1

(
x2y +

2
3
x3

)

=
1
4
e2x +

1
20

x5y +
1
60

x6.

Hence, the general solution of (27.12) is

u(x, y) = f1(y) + xf2(y) + f3(y + 2x) +
1
4
e2x +

1
20

x5y +
1
60

x6.

Now we shall consider the general second-order partial DE

A(D1, D2)[u] = (D2
1 + k1D1D2 + k2D

2
2 + k3D1 + k4D2 + k5)[u] = F (x, y).

(27.13)
Having in mind that for homogeneous ordinary DEs with constant coeffi-
cients we can assume a solution of the form emx, for (27.13) with F (x, y) = 0
we assume that eλx+νy is a solution. This is possible if and only if

λ2 + k1λμ + k2μ
2 + k3λ + k4μ + k5 = 0. (27.14)

Since (27.14) is a single algebraic equation in two unknowns (representing
a conic section in λμ-plane), in general it will have an infinite number of
solutions (λ, μ). In particular, if (λi, μi), i = 1, 2, · · · , n are n solutions of
(27.14), then by the principle of superposition

∑n
i=1 cie

λix+μiy is a solution
of (27.13) with F (x, y) = 0.

Example 27.7. For the partial DE

uxx + 2uxy + uyy + 3ux + 3uy + 2u = 0 (27.15)

the equation corresponding to (27.14) is

λ2 + 2λμ + μ2 + 3λ + 3μ + 2 = 0.

For this equation it is easy to see that λ = −(2 + μ) is a solution. Hence,
e−(2+μ)x+μy is a particular solution of (27.15).

Finally, we note that we can always factorize A(D1, D2) into factors of
the form D1 − mD2 − c, and to find the solution of (D1 − mD2 − c)u = 0
we write it as ux − muy = cu. For this the subsidiary equations are

dx

1
=

dy

−m
=

du

cu
,
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which can be integrated to obtain u(x, y) = ecxφ(y + mx). The solutions
corresponding to various factors added up give the solution of (27.13) with
F (x, y) = 0. Finally, in some cases a particular solution of (27.13) can be
obtained by using the operator method.

Example 27.8. For the partial DE

(D2
1 + 2D1D2 + D2

2 − 2D1 − 2D2)u = sin(x + 2y) (27.16)

we have A(D1, D2) = (D1 + D2)(D1 + D2 − 2). Thus, the solution of the
homogeneous equation A(D1, D2)[u] = 0 is uh(x, y) = φ1(y−x)+e2xφ2(y−
x). Now to find the particular solution, we have

up(x, y) =
1

D2
1 + 2D1D2 + D2

2 − 2D1 − 2D2
sin(x + 2y)

=
1

−1 + 2(−2) + (−4) − 2D1 − 2D2
sin(x + 2y)

= − 1
2(D1 + D2) + 9

sin(x + 2y)

= − 2(D1 + D2) − 9
4(D2

1 + 2D1D2 + D2
2) − 81

sin(x + 2y)

= − 2(D1 + D2) − 9
4[−1 + 2(−2) − 4] − 81

sin(x + 2y)

=
1

117
[2{cos(x + 2y) + 2 cos(x + 2y)} − 9 sin(x + 2y)]

=
1
39

[2 cos(x + 2y) − 3 sin(x + 2y)].

Hence, the general solution of (27.16) is

u(x, y) = φ1(y − x) + e2xφ2(y − x) +
1
39

[2 cos(x + 2y) − 3 sin(x + 2y)].

Problems

27.1. Solve the following second-order linear partial DEs:

(i) uxx + uxy − 2uyy = 0
(ii) uxx − 5uxy + 6uyy = ex+y

(iii) uxx − 2uxy + uyy = sin x

(iv) uxx + 4uxy − 5uyy = y2

(v) uxx − uxy − 6uyy = xy

(vi) uxx − uyy = sin x cos 2y.
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27.2. Solve the following third order linear partial DEs:

(i) uxxx + uxxy − uxyy − uyyy = 0
(ii) uxxx − 3uxxy + 4uyyy = ex+2y

(iii) uxxx − 2uxxy = 2e2x + 3x2y.

27.3. Solve the following fourth order linear partial DEs:
(i) uxxxx − uyyyy = 0
(ii) uxxxx − 2uxxyy + uyyyy = 0.

27.4. Solve the following nonhomogeneous partial DEs:

(i) uxx − uyy + ux − uy = e2x+3y

(ii) 2uxy + uyy − 3uy = 3 cos(3x − 2y)
(iii) uxx − uxy + uy − u = cos(x + 2y) + ey

(iv) (D1 + D2 − 1)(D1 + 2D2 − 3)u = 4 + 3x + 6y

(v) D1(D1 + D2 − 1)(D1 + 3D2 − 2)u = xy + e2x+3y.

27.5. In elasticity certain problems in plane stress can be solved with
the aid of Airy’s stress function φ, which satisfies the partial DE

φxxxx + 2φxxyy + φyyyy = 0. (27.17)

This equation is called biharmonic equation and also occurs in the study of
hydrodynamics. Show that

(i) φ(x, y) = f1(y−ix)+xf2(y−ix)+f3(y+ix)+xf4(y+ix) is a solution
of (27.17)
(ii) if u(x, y) and v(x, y) are any two harmonic functions, then φ(x, y) =
u(x, y) + xv(x, y) is a solution of (27.17).

27.6. Solve the following partial DE:

x2uxx − 2xyuxy + y2uyy = 0.

Answers or Hints

27.1. (i) u = f1(y+x)+f2(y−2x) (ii) u = f1(y+2x)+f2(y+3x)+ 1
2ex+y

(iii) u = f1(y + x) + xf2(y + x) − sinx (iv) u = f1(y + x) + f2(y − 5x) +
1
2x2y2 − 4

3x3y + 7
4x4 (v) u = f1(y− 2x)+ f2(y +3x)+ 1

6x3y + 1
24x4 (vi) u =

f1(y) + f2(y + x) + 1
3 (sin x cos 2y + 2 cosx sin 2y).

27.2. (i) u = f1(y +x)+f2(y−x)+xf3(y−x) (ii) u = f1(y−x)+f2(y +
2x) + xf3(y + 2x) + 1

27ex+2y (iii) u = f1(y) + xf2(y) + f3(y + 2x) + 1
4e2x +

1
20x5y + 1

60x6.
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27.3. (i) u = f1(y + x) + f2(y − x) + f3(y + ix) + f4(y − ix) (ii) u =
f1(y + x) + xf2(y + x) + f3(y − x) + xf4(y − x).

27.4. (i) u = φ1(y+x)+e−xφ2(y−x)− 1
6e2x+3y (ii) u = φ1(x)+e3yφ2(2y−

x)+ 3
50{4 cos(3x− 2y)+ 3 sin(3x− 2y)} (iii) u = exφ1(y)+ e−xφ2(x+ y)+

1
2 sin(x+2y)−xey (iv) u = exφ1(y−x)+e3xφ2(y−2x)+x+2y+6 (v) u =
φ1(y)+exφ2(y−x)+e2xφ3(y−3x)+ 1

72e2x+3y + 1
8 (2x2y+6xy+5x2 +22x).

27.5. (i) Verify directly (ii) Verify directly.

27.6.
∑

Akxmkynk where 2nk = 2mk + 1 ± (8mk + 1)1/2.



Lecture 28
The Canonical Forms

In this lecture we shall show that coordinate transformations can be
employed successfully to reduce second-order linear partial DEs to some
standard forms which are known as canonical forms. These transformed
equations sometimes can be solved rather easily. Here the concept of char-
acteristic of second-order partial DEs plays an important role.

To solve the one-dimensional wave equation (25.11) we introduce the
new coordinates

ξ = x + ct, η = x − ct. (28.1)

Then, by the chain rule we have

uxx = uξξ + 2uξη + uηη

utt = c2[uξξ − 2uξη + uηη].

Substituting these expression in (25.11), we obtain

−4c2uξη = 0.

Now since c �= 0, it follows that uξη = 0 for which the solution can be
written as

u(ξ, η) = f1(ξ) + f2(η),

where f1 and f2 are arbitrary functions.

Thus, the general solution of (25.11) appears as

u(x, t) = f1(x + ct) + f2(x − ct). (28.2)

We shall now consider the general partial DE

L[u] = Autt + Butx + Cuxx = 0, (28.3)

where A, B, and C are given constants. We once again attempt to find a
linear transformation of coordinates

ξ = αx + βt, η = γx + δt, αδ − γβ �= 0 (28.4)

so that the differential operator L[u] in (28.3) becomes a multiple of uξη.
For this, by the chain rule we have

L[u] = (Aβ2 + Bαβ + Cα2)uξξ + (2Aβδ + B(αδ + βγ) + 2Cαγ)uξη

+(Aδ2 + Bγδ + Cγ2)uηη.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 28,
c© Springer Science+Business Media, LLC 2009
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Thus, to meet the desired form we need

Aβ2 + Bαβ + Cα2 = 0

Aδ2 + Bγδ + Cγ2 = 0.

If A = C = 0, the trivial transformation ξ = x, η = t gives L in the
desired form. We now suppose that either A or C is not zero. In what
follows we shall assume that A �= 0. Then, α �= 0 and γ �= 0 and we may
divide the first equation by α2 and the second equation by γ2. In this way
we obtain two identical quadratic equations for the ratios β/α and δ/γ.
The solutions of these equations are

β

α
=

1
2A

[−B ±
√

B2 − 4AC]

δ

γ
=

1
2A

[−B ±
√

B2 − 4AC].

In order for the coordinate transformation (28.4) to be nonsingular, the
ratios β/α and δ/γ must be different. Hence, we must take the plus sign
in the solution in one case, and the minus sign in the other. Moreover, we
must assume that the quantity B2 − 4AC is positive. For if it was zero,
the two ratios would still coincide, while if it was negative, neither of them
would be real.

Thus, we may transform L[u] to a multiple of uξη if and only if B2 −
4AC > 0; i.e., the operator L must be hyperbolic. The transformation in
this case is given by

ξ = 2Ax + [−B +
√

B2 − 4AC]t

η = 2Ax + [−B −
√

B2 − 4AC]t
(28.5)

and the operator becomes

L[u] = −4A(B2 − 4AC)uξη. (28.6)

The case A = 0 can be treated similarly, with ξ = t, η = x − (C/B)t.

Finally, from (28.6) it is clear that the general solution again can be
written as u = f1(ξ) + f2(η).

If B2 − 4AC = 0, i.e., L is parabolic, then there is only one value of
β/α which makes the coefficient of uξξ vanish. This is β/α = −B/(2A).
Since B/(2A) = 2C/B this choice also makes the coefficient of uξη vanish.
Indeed, we have

2Aβδ + Bαδ + Bβγ + 2Cαγ

= 2A

(
− B

2A
α

)
δ + Bαδ + B

(
− B

2A
α

)
γ +
(

B2

2A

)
αγ = 0.



The Canonical Forms 221

Thus, the transformation

ξ = 2Ax − Bt, η = t

transforms L[u] into
L[u] = Auηη.

The choice of η is quite arbitrary. We could choose any γx + δt as long
as δ/γ �= −B/(2A). If A = 0, we may choose η = x, ξ = t to obtain
L[u] = Cuηη. The general solution of L[u] = 0 is now

u = f1(ξ) + ηf2(ξ).

Finally, if B2 − 4AC < 0, i.e., the operator L is elliptic, then no choice
of β/α or δ/γ makes the coefficients of uξξ or uηη vanish. However, the
transformation

ξ =
2Ax − Bt√
4AC − B2

, η = t

makes
L[u] = A[uξξ + uηη].

Since 4AC > B2, A �= 0. A standard form for an elliptic differential equa-
tion L[u] = 0 is uξξ + uηη = 0, i.e., Laplace’s equation.

We shall now consider the general linear partial DE

L[u] = Autt + Butx + Cuxx + Dut + Eux + Fu = 0, (28.7)

where A, B, C, D, E, and F are functions of x and t. Our aim is to show
that in (28.7) the second-order terms may be reduced to one of the standard
forms obtained earlier in a whole domain where it is hyperbolic, parabolic
or elliptic. For this we need a more general (nonlinear) coordinate trans-
formation

ξ = ξ(x, t), η = η(x, t)

where ξ and η are twice continuously differentiable. By the chain rule it
follows that

L[u] = [A(ξt)2 + Bξxξt + C(ξx)2]uξξ + [2Aξtηt + Bξtηx + Bξxηt

+2Cξxηx]uξη + [A(ηt)2 + Bηxηt + C(ηx)2]uηη

+[L[ξ] − Fξ]uξ + [L[η] − Fη]uη + Fu.

If L is hyperbolic, the coefficients of uξξ and uηη may be made equal to
zero by putting (assuming A �= 0)

ξt

ξx
=

−B +
√

B2 − 4AC

2A
and

ηt

ηx
=

−B −
√

B2 − 4AC

2A
.
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Then, the curve ξ = constant (dξ = ξxdx + ξtdt = 0, i.e., ξt/ξx = −dx/dt)
is a solution of

dx

dt
=

B −
√

B2 − 4AC

2A
, (28.8)

while the curve η = constant, satisfies

dx

dt
=

B +
√

B2 − 4AC

2A
. (28.9)

In both cases dx/dt satisfies

A

(
dx

dt

)2

− B
dx

dt
+ C = 0.

The ordinary DEs (28.8) and (28.9) give two families of curves, which are
called the characteristic of L. The values of ξ and η may be prescribed
arbitrarily along the initial line t = 0.

If we obtain a one-parameter family of solutions x = f(t, a) of (28.8)
satisfying the initial condition f(0, a) = a, we can, in principle, solve for a
in terms of x and t. Then, ξ can be chosen to be any monotone function of
a(x, t). Similarly, if x = g(t, b) is the solution of (28.9) with g(0, b) = b, we
can solve for b(x, t) and choose η to be any monotone function of b.

If L is parabolic, the two characteristic equations (28.8) and (28.9) are
the same, so that there is only one family of characteristic. If the coordinate
ξ is chosen so that it is constant along the characteristic, i.e., the solution
of dx/dt = (B/2A), then the coefficients of uξξ and uξη vanish, so that the
only second derivative occurring in L is uηη (here η is arbitrary).

Finally, if L is elliptic, one can make the coefficient of uξη vanish by
choosing η arbitrary and making ξ constant along solutions of

dx

dt
=

Bηt + 2Cηx

2Aηt + Bηx
.

The other two second-order derivatives of u will then have coefficients with
the same sign as A.

Example 28.1. Consider the partial DE

t2utt − x2uxx = 0. (28.10)

Since B2 − 4AC = 4t2x2 > 0, equation (28.10) is hyperbolic everywhere
except on the t–and x–axes. We consider a region that does not include
any part of either axis, e.g., a region in the first quadrant. Then, the
characteristic equations (28.8) and (28.9) for (28.10) are

dx

dt
= ±x

t
.



The Canonical Forms 223

These DEs have solutions given by x = c1t and x = c2/t. Hence, we can
make the coordinate transformation ξ = x/t, η = tx. This transformation
reduces (28.10) to

uξη − 1
2η

uξ = 0.

We can solve this partial DE by observing that it is a first-order linear DE
in uξ. In fact, we get

u(ξ, η) = η1/2f(ξ) + g(η),

and hence the general solution of (28.10) is

u(x, t) =
√

txf
(x

t

)
+ g(tx).

Example 28.2. Consider the partial DE

t2utt + 2txutx + x2uxx = 4t2. (28.11)

Since B2 − 4AC = 0, equation (28.11) is parabolic everywhere. Thus, the
characteristic equations (28.8) and (28.9) for (28.11) are

dx

dt
=

B

2A
=

x

t
.

This DE can be solved to obtain the solution x/t = c. Hence, we can choose
the coordinate transformation ξ = x/t, η = x. This transformation reduces
(28.11) to

x2uηη = 4t2,

which is the same as

uηη = 4
t2

x2
=

4
ξ2

.

This partial DE can be solved rather easily, to obtain

u(ξ, η) =
2η2

ξ2
+ ηf(ξ) + g(ξ).

Hence, in terms of the original variables the general solution of (28.11) is

u(x, t) = 2t2 + xf
(x

t

)
+ g
(x

t

)
.

Example 28.3. Consider the partial DE

tutt + uxx = t2. (28.12)
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Since B2 − 4AC = −4t, equation (28.12) is elliptic in the half-plane t > 0.
In this region the characteristic equations are

dx

dt
= ±it−1/2

with solutions x = 2it1/2 + c1 and x = −2it1/2 + c2. We first make the
coordinate transformation σ = x + 2it1/2, τ = x − 2it1/2, but since these
are complex valued, we make a second coordinate transformation defined
by σ = ξ + iη, τ = ξ − iη. As a result of these two transformations, we
have ξ = x, η = 2t1/2. This transformation reduces (28.12) to the canonical
form

uξξ + uηη =
1
η
uη +

η4

16
.

Problems

28.1. Find the characteristic of the following partial DEs through the
point (0, 1):

(i) utt − tuxx

(ii) utt + 2exutx + e2xuxx + cosxut + sinxux + x2u

(iii) (cos2 x − sin2 x)utt + 2 cosxutx + uxx + u.

28.2. Find characteristic coordinates ξ, η for

utt + (ex + t2)utx + t2exuxx

such that ξ(x, 0) = η(x, 0) = x.

28.3. Transform the following partial DEs to canonical form:

(i) utt − 5utx + 6uxx = 0
(ii) utt + 2utx + uxx + 3ut + 9u = 0
(iii) 2utt − 2utx + 5uxx + u = 0
(iv) utt − t2uxx = 0
(v) utt + t2uxx = 0
(vi) utt + 2tutx + t2uxx = 0
(vii) utt + (2t + 3)utx + 6tuxx = 0
(viii) utt + (5 + 2x2)utx + (1 + x2)(4 + x2)uxx = 0.

28.4. Transform the following partial DEs to canonical forms and
then solve

(i) utt + 2utx + uxx = 0
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(ii) utt − 2 sin t utx − cos2 t uxx − cos t ux = 0
(iii) x2utt − 2txutx + t2uxx = (x2/t)ut + (t2/x)ux.

28.5. (i) Use the substitution u(x, y) = w(x, y)e−(bx+ay) to show that
the hyperbolic equation

∂2u

∂x∂y
+ a

∂u

∂x
+ b

∂u

∂y
+ cu = 0

can be written as
∂2w

∂x∂y
+ (c − ab)w = 0. (28.13)

(ii) Show that (28.13) reduces to a Bessel equation if we assume a solution
of the form w(x, y) = f(xy).

28.6. Use the substitution u(x, y) = w(x, y)e−(ax+by)/2 to show that
the elliptic equation

∂2u

∂x2
+

∂2u

∂y2
+ a

∂u

∂x
+ b

∂u

∂y
+ cu = 0

can be written as

∂2w

∂x2
+

∂2w

∂y2
+
(

c − a2

4
− b2

4

)
w = 0.

28.7. A partial DE which describes the advective transport of a
chemical u subject to first-order reaction is

R
∂u

∂t
= −V

∂u

∂x
− Ku, x > 0, t > 0,

where R is a retardation coefficient, V the velocity of the solution carrying
the chemical, and K the first-order reaction coefficient.

(i) Write this equation as

ut + cux + λu = 0, c = V/R, λ = K/R (28.14)

and make the change of variables ξ = x − ct, η = t to find its general
solution u(x, t) = f(x − ct)e−λt where f is an arbitrary function.
(ii) Show that the choice of f as

f(ξ) = u1(−ξ/c)e−λξ/c + [u0(ξ) − u1(−ξ/c)e−λξ/c]H(ξ),

where H(ξ) is the unit step function, i.e., H(ξ) = 1 if ξ > 0 and 0 otherwise,
gives a solution of (28.14) that satisfies the initial condition u(x, 0) = u0(x)
and the boundary condition u(0, t) = u1(t).
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Answers or Hints

28.1. (i) x+ 2
3 t3/2 = 2

3 , x− 2
3 t3/2 = − 2

3 (ii) t = 2−e−x (one characteristic
only) (iii) t = sinx + cosx, t = 2 + sin x − cosx.

28.2. ξ = − ln(e−x + t), η = x − 1
3 t3.

28.3. (i) Hyperbolic, ξ = 2t + x, η = 3t + x, uξη = 0 (ii) Parabolic,
ξ = −t+x, η = x, uηη = 3uξ − 9u (iii) Elliptic, ξ = 1

2 t+x, η = 3
2 t, uξξ +

uηη = − 2
9u (iv) Hyperbolic for t > 0, ξ = x + 1

2 t2, η = x − 1
2 t2, uξη =

1
4(ξ−η) (uξ − uη) (v) Elliptic for t > 0, ξ = x, η = 1

2 t2, uηη + uξξ =
− 1

2η uη (vi) Parabolic, ξ = x − 1
2 t2, η = t, uηη = uξ (vii) Parabolic

for t = 3
2 , ξ = −3t + x, η = t, uηη = 0; Hyperbolic for t �= 3

2 , ξ =
x − 3t, η = x − t2, uξη = 2

4(η−ξ)−9uη (viii) Hyperbolic, ξ = tan−1 x −
t, η = 1

2 tan−1 1
2x − t, uξη + 2x

9 (4 + x2)2uξ + 2x
9 (1 + x2)2uη = 0, where

x = tan1/3
(

1
4π + ξ − η

)
− cot1/3

(
1
4π + ξ − η

)
.

28.4. (i) Parabolic, ξ = t− x, η = t +x, uηη = 0, u = (x + y)f1(x− y)+
f2(x − y) (ii) Hyperbolic, ξ = cos t + t− x, η = cos t− t− x, the equation
reduces to uξη = 0, the solution is u = f(cos t − t − x) + g(cos t + t − x)
(iii) Parabolic, ξ = t2 + x2, η = x, the equation reduces to uηη = (1/η)uη,
the solution is u = x2f(t2 + x2) + g(t2 + x2).

28.5. Verify directly.

28.6. Verify directly.



Lecture 29
The Method of

Separation of Variables

The method of separation of variables involves a solution which breaks
up into a product of functions each of which contains only one of the vari-
ables. This widely used method for finding solutions of linear homogeneous
partial DEs we shall explain through several examples.

Example 29.1. For the one–dimensional wave equation (25.11) with
c = 1, we assume that the trial solution can be written as u = u(x, t) =
X(x)T (t), where the functions X, T are to be determined. For this, we
have utt = X(x)T ′′(t) (′= d/dt), uxx = X ′′(x)T (t) (′= d/dx). Substitution
of these in (25.11) leads to the relation

X(x)T ′′(t) = X ′′(x)T (t).

Dividing this equation by u = X(x)T (t) (assuming that u �= 0), we obtain

T ′′(t)
T (t)

=
X ′′(x)
X(x)

. (29.1)

Since T ′′(t)/T (t) does not contain the variable x, we note that changes in
x will not have any effect on the expression T ′′(t)/T (t). Thus, if (29.1) is
to be an equality, it must happen that changes in the variable x do not
affect the expression X ′′(x)/X(x) either. Similarly, changes in t should not
affect the expression T ′′(t)/T (t). Thus, we can conclude that in order for
(29.1) to be an equality, the expressions T ′′(t)/T (t) and X ′′(x)/X(x) must
be constants. In fact, they must be the same constant. If the constant is
denoted by λ, we can write

T ′′(t)
T (t)

= λ and
X ′′(x)
X(x)

= λ.

Thus, we obtain two second-order ordinary DEs:

X ′′(x) − λX(x) = 0

and
T ′′(t) − λT (t) = 0.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 29,
c© Springer Science+Business Media, LLC 2009



228 Lecture 29

These equations can be solved to obtain the solutions

X(x) =

⎧⎪⎨
⎪⎩

c1e
√

λx + c2e
−
√

λx, λ > 0

c1 + c2x, λ = 0

c1 cos
√
−λx + c2 sin

√
−λx, λ < 0

and

T (t) =

⎧⎪⎨
⎪⎩

c3e
√

λt + c4e
−
√

λt, λ > 0

c3 + c4t, λ = 0

c3 cos
√
−λt + c4 sin

√
−λt, λ < 0.

Thus, the solution of (25.11) can be written as

u = u(x, t) = X(x)T (t)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
c1e

√
λx + c2e

−
√

λx
)(

c3e
√

λt + c4e
−
√

λt
)

, λ > 0

(c1 + c2x)(c3 + c4t), λ = 0(
c1 cos

√
−λx + c2 sin

√
−λx
) (

c3 cos
√
−λt + c4 sin

√
−λt
)
,

λ < 0.

Without further information we have no way of knowing the value of λ;
hence we cannot specify the form of the solution. In many practical prob-
lems there are other conditions that the solution must satisfy. These con-
ditions usually dictate the value of λ and the form of the solution.

Example 29.2. For the partial DE

uxx − 2ux + uy = 0, u = u(x, y) (29.2)

we assume that the trial solution can be written as u = u(x, y) = X(x)Y (y).
Then, it is necessary that

X ′′Y − 2X ′Y + XY ′ = 0.

Separating the variables, we get

X ′′ − 2X ′

X
= −Y ′

Y
. (29.3)

Since x and y are independent variables, (29.3) can be true if each side is
equal to the same constant, λ (say). Therefore, it follows that

X ′′ − 2X ′

X
= −Y ′

Y
= λ

and hence
Y ′ + λY = 0 (29.4)
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and
X ′′ − 2X ′ − λX = 0. (29.5)

The solution of the first-order ordinary differential equation (29.4) is

Y (y) = c1e
−λy.

For the second-order ordinary differential equation (29.5) the auxiliary
equation is m2 − 2m − λ = 0, and its roots are m = 1 ±

√
(1 + λ). Thus,

the solution of (29.5) can be written as

X(x) = c2e
(1+

√
1+λ)x + c3e

(1−
√

1+λ)x.

Therefore, the solution of the partial DE (29.2) is

u = u(x, y) = X(x)Y (y) =
(
c2e

(1+
√

1+λ)x + c3e
(1−

√
1+λ)x
)

c1e
−λy

=
(
Ae(1+

√
1+λ)x + Be(1−

√
1+λ)x
)

e−λy.

Example 29.3. Consider a thin, tapered rod of constant density ρ lying
along the x-axis with cross-sectional area αx2 and moment of inertia βx
for some constants α and β. Suppose that the rod is undergoing oscillatory
motion. The displacement u(x, t) of a point x at time t satisfies the partial
DE

ραx2 ∂2u

∂t2
= − ∂2

∂x2

{
Eβx4 ∂2u

∂x2

}
, (29.6)

where E is Young’s modulus. We assume that the trial solution of (29.6)
can be written as u = u(x, t) = X(x)T (t). Then, it is necessary that

T ′′

T
= −Eβ

ρα

d2

dx2 (x4X ′′)
x2X

= λ,

which leads to the DEs T ′′ − λT = 0, and

x2X ′′′′ + 8xX ′′′ + 12X ′′ − k4X = 0, k4 = −λρα

Eβ
. (29.7)

Now for simplicity we assume that λ < 0, so that T (t) = c1 cosωt +
c2 sin ωt, ω =

√
−λ and to find the solution of (29.7) we rewrite it as

(xD2 + 3D + k2)(xD2 + 3D − k2)X = 0, D =
d

dx

or
(xD2 + 3D − k2)(xD2 + 3D + k2)X = 0.

Thus, if X1 and X2 are solutions of

(xD2 + 3D − k2)X = 0
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and
(xD2 + 3D + k2)X = 0

respectively, then X1 and X2 are solutions of the DE (29.7). Now from the
considerations of Lecture 9 it follows that

X(x) = x−1
[
AJ2(2kx1/2)+ BJ−2(2kx1/2)+ CI2(2kx1/2)+ DK2(2kx1/2)

]
.

Example 29.4. Suppose that the potential energy of a particle at x
is given by the function V (x). Then, the partial DE satisfied by the wave
function is the Schrödinger equation

− h2

8π2m

∂2u

∂x2
+ V (x)u =

ih

2π

∂u

∂t
. (29.8)

Now following the notational tradition in quantum mechanics we assume
that the trial solution of (29.8) can be written as u = u(x, t) = ψ(x)F (t).
Then, it is necessary that

− h2

8π2m

ψ′′(x)
ψ(x)

+ V (x) =
ih

2π

F ′(t)
F (t)

= E,

where from the physical reasons E is a real constant. This leads to two
DEs. The first equation,

F ′ +
2πiE

h
F = 0,

can be easily solved and yields F (t) = Ce−2πiEt/h. The second equation,
which is known as time-independent Schrödinger equation, appears as

ψ′′(x) +
8π2m

h2
[E − V (x)]ψ(x) = 0. (29.9)

Now recall that if the particle moves under the influence of a force F (x),
the potential energy is given by V (x) = −

∫ x

0
F (s)ds. In particular, for a

free particle we have F (x) = 0, then V (x) = 0. Thus, the equation (29.9)
simply reduces to

ψ′′(x) +
8π2m

h2
Eψ(x) = 0,

which can be solved rather easily.

For a particle on a spring F (x) = −kx, then V (x) = kx2/2, and the
equation (29.9) becomes

ψ′′(x) +
8π2m

h2

[
E − 1

2
kx2

]
ψ(x) = 0,
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which is the same as (3.20) in Problem 3.10, and hence can be transformed
to the Hermite equation (3.16).

We remark that the method of separation of variables should be used
with caution. In fact, often it fails to work even for simple partial DEs. For
example, consider the equation

uxy + uxx + 4u = 0.

We try a solution of the form u = X(x)Y (y). Then,

X ′Y ′ + X ′′Y + 4XY = 0.

Clearly, it is not possible to manipulate this equation algebraically to write
it in a form P (x) = Q(y). Similarly, the equation uxx + (x + y)uyy = 0 is
not separable.

Problems

29.1. Use the method of separation of variables to solve the following
partial DEs:

(i) uy = yux

(ii) xux = u + yuy

(iii) xux = yuy

(iv) x2uxx + 2xux + uyy = 0
(v) uxx + 4xux + uyy = 0
(vi) uxx − (1 + y2)uxy = 0.

29.2. Use the method of separation of variables to solve the following
partial DEs:

(i) ux = 2uy + u where u(x, 0) = 6e−3x

(ii) 4ux + uy = 3u where u(0, y) = 3e−y − e−5y

(iii) uxx = uy + 2u where u(0, y) = 0, ux(0, y) = 1 + e−3y

29.3. Find separated solutions of the equation uxx − uy = 0 in the
form

(i) u(x, y) = eiμxeβy where μ, β are real
(ii) u(x, y) = eαxeiωy where ω real and positive.

29.4. Show that for the partial DE (27.1) with k1 �= 0 the method
of separation of variables cannot be applied. However, a solution of the
form u = u(x, y) = eryX(x) can always be obtained and appears as u =
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ery(AX1(x)+BX2(x)), where X1 and X2 are linearly independent solutions
of the ordinary DE X ′′+k1rX

′+k2r
2X = 0. In particular, find the solution

for the case k1 = 4, k2 = 8.

29.5. Show that
urr +

2
r
ur = utt

has solutions of the form

u(r, t) =
R(r)

r
cosnt, n = 0, 1, 2, · · · .

Find a DE that R(r) must satisfy and find its general solution.

29.6. The nonlinear partial DE

(ux)n+1utt = c2uxx, u = u(x, t)

occurs in the study of the propagation of sound in a medium. Here the con-
stant c represents the velocity of sound in the medium. Set u = X(x)T (t)
to determine the ordinary DEs for X and T.

29.7. In the study of the supersonic flow of an ideal compressible fluid
past an obstacle, the velocity potential satisfies the linear partial DE

(M2 − 1)uxx − uyy = 0, u = u(x, y)

where the constant M > 1 is known as the Mach number of the flow. Set
u = X(x)Y (y) to determine the ordinary DEs for X and Y.

Answers or Hints

29.1. (i) Aek(x+y2/2) and in general f(2x+ y2) (ii) Axkyk−1 (iii) Axkyk

and in general f(xkyk) (iv) |x|−1/2[A1 cos(cλ ln |x|) + A2 sin(cλ ln |x|)]
×(A3e

√
−λy + A4e

−
√
−λy), λ < −1/4, cλ =

√
−λ − 1/4; (A1|x|−1/2 +

A2|x|−1/2 ln |x|)(A3e
y/2+A4e

−y/2), λ = −1/4; (A1|x|γ1+A2|x|γ2)(A3e
√
−λy

+A4e
−
√
−λy), −1/4 < λ < 0; (A1 + A2x

−1)(A3 + A4y), λ = 0; (A1|x|γ1 +
A2|x|γ2)(A3 cos

√
λy + A4 sin

√
λy), λ > 0 where γi = 1±

√
1+4λ
2 , i =

1, 2 (v) (Ae2ky + Be−2ky)(CX1(x) + DX2(x)) where X1 and X2 are lin-
early independent solutions of the DE X ′′ + 4xX ′ + 4k2X = 0 (vi) (c1 +
c2e

λx) exp(λ tan−1 y).

29.2. (i) 6e−3x−2y (ii) 3ex−y − e2x−5y (iii) 1√
2

sinh
√

2x + e−3y sin x

29.3. (i) cosμx e−μ2y + i(sin μx e−μ2y) (ii) ex
√

ω/2 cos(ωy + x
√

ω/2),
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ex
√

ω/2 sin(ωy + x
√

ω/2), e−x
√

ω/2 cos(ωy − x
√

ω/2), e−x
√

ω/2 sin(ωy −
x
√

ω/2).

29.4. er(y−2x)(A cos 2rx + B sin 2rx).

29.5. R′′ + n2R = 0, R(r) = c1 cosnr + c2 sin nr.

29.6. X ′′ + λ
c2 (X ′)n+1X = 0, T ′′ + λT−n = 0.

29.7. X ′′ + λ
(M2−1)X = 0, Y ′′ + λY = 0.



Lecture 30
The One-Dimensional

Heat Equation

We begin this lecture with the derivation of the one-dimensional heat
equation. Then we shall formulate initial-boundary value problems, which
involve the heat equation, the initial condition, and the homogeneous and
nonhomogeneous boundary conditions. We shall use the method of separa-
tion of variables also known as the Fourier method to solve these problems.

We recall that the fundamental principles involved in the problems of
heat conduction are—

(1). Heat flows from a higher temperature to the lower temperature.
(2). The quantity of heat in a body is proportional to its mass and tem-
perature.
(3). The rate of heat flow across an area is proportional to the area and
to the rate of change of temperature with respect to its distance normal to
the area.

Consider a homogeneous bar of uniform cross section S (cm2). Suppose
that the sides are covered with a material impervious to heat, so that the
stream lines of heat flow are all parallel and perpendicular to the area S.
Take one end of the bar as the origin and the direction of flow as the positive
x-axis (see Figure 30.1). Let ρ be the density (g/cm3), s the specific heat
(cal/g deg), and k the thermal conductivity (cal/cm deg sec).

Figure 30.1

x
0

R1
R2

x Δx

S

Let u(x, t) be the temperature at a distance x from O. If Δu is the
temperature change in a slab of thickness Δx of the bar, then by principle
(2) the quantity of heat in this slab = sρSΔxΔu. Hence, the rate of in-
crease of heat in this slab, i.e., sρSΔxut = R1 −R2, where R1 and R2 are,
respectively, the rates (cal/sec) of inflow and outflow of heat. Now since
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the rate of propagation of heat (i.e., the quantity of heat passing through
a cross-sectional area S with abscissa x in unit time) in view of (3) is given
by Fourier’s Law q = −kuxS, where k is a constant depending upon the
material of the body and called as the thermal conductivity, it follows that

R1 = −kS

(
∂u

∂x

)
x

and R2 = −kS

(
∂u

∂x

)
x+Δx

;

here the negative sign appears as a result of (1). Hence, we have

sρSΔx
∂u

∂t
= −kS

(
∂u

∂x

)
x

+ kS

(
∂u

∂x

)
x+Δx

,

which is the same as

∂u

∂t
=

k

sρ

{(
∂u
∂x

)
x+Δx

−
(

∂u
∂x

)
x

Δx

}
.

Denoting the constant k/sρ = c2, known as the diffusivity of the sub-
stance (cm2/sec), and taking the limit as Δx → 0, we obtain the equation
of heat conduction in a homogeneous rod

∂u

∂t
= c2 ∂2u

∂x2
, 0 < x < a, t > 0, c > 0. (30.1)

For the solution of (30.1) to be definite, the function u(x, t) must satisfy
some initial and boundary conditions corresponding to the physical condi-
tions of the problem. Let initially, i.e., when t = 0 a temperature be given
in various cross sections of the rod equal to f(x), which gives the initial
condition

u(x, 0) = f(x), 0 < x < a (30.2)

and let for simplicity the ends of the rod, i.e., x = 0 and x = a, be held at
zero temperature all the time, which gives the boundary conditions

u(0, t) = 0, t > 0 (30.3)

u(a, t) = 0, t > 0. (30.4)

These boundary conditions are of the first kind and are known as Dirichlet
conditions.

Now to solve the initial-boundary value problem (30.1)–(30.4) we shall
use the method of separation of variables. For this, we assume a solution
of (30.1) of the form u(x, t) = X(x)T (t) �= 0, so that

X(x)T ′(t) − c2X ′′(x)T (t) = 0,
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or
T ′(t)
T (t)

= c2 X ′′(x)
X(x)

= λ,

which leads to the differential equations

X ′′ − λ

c2
X = 0 (30.5)

and
T ′ − λT = 0. (30.6)

The boundary condition (30.3) demands that X(0)T (t) = 0 for all t ≥
0, thus X(0) = 0. Similarly, the boundary condition (30.4) requires that
X(a)T (t) = 0 and hence X(a) = 0. Thus, the function X has to be a
solution of the eigenvalue problem (30.5),

X(0) = 0, X(a) = 0. (30.7)

The eigenvalues and eigenfunctions of (30.5), (30.7) are

λn = −n2π2c2

a2
, n = 1, 2, · · · (30.8)

Xn(x) = sin
nπx

a
, n = 1, 2, · · · . (30.9)

With λ given by (30.8), equation (30.6) takes the form

T ′ +
n2π2c2

a2
T = 0

whose general solution appears as

Tn(t) = cne−(n2π2c2/a2)t,

where cn is an arbitrary constant.

We conclude that for each specific value of n (n = 1, 2, · · ·) the function
Xn(x)Tn(t) is a solution of (30.1) that satisfies conditions (30.3) and (30.4).
Now the condition (30.2), when u(x, t) = Xn(x)Tn(t) with n not specified,
but otherwise considered fixed, is satisfied provided Xn(x)Tn(0) = f(x),
i.e., (

sin
nπx

a

)
cn = f(x).

But the only way this can happen is for f(x) to be restricted to the form
A sin(nπx/a), where A is a constant. This places too great a restriction on
the permissible forms of f ; therefore we consider an alternative approach.
Since Xn(x)Tn(t) is a solution of (30.1) for each value of n (n = 1, 2, · · ·)
and since (30.1) is a linear partial differential equation, it seems reasonable
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to expect that
∑∞

n=1 Xn(x)Tn(t) is a solution of (30.1). Naturally, the
question of whether this infinite series converges is always there. We will
not investigate this question here, but rather emphasize the method of
solution. Thus, we consider

u(x, t) =
∞∑

n=1

Xn(x)Tn(t) =
∞∑

n=1

cne−(n2π2c2/a2)t sin
nπx

a
(30.10)

as a solution of (30.1) that satisfies conditions (30.3) and (30.4). Now
condition (30.2) is satisfied if and only if

∞∑
n=1

cn sin
nπx

a
= f(x),

i.e., the Fourier sine series for f(x) in the interval 0 ≤ x ≤ a be∑∞
n=1 cn sin(nπx/a). Consequently, cn is given by

cn =
2
a

∫ a

0

f(x) sin
nπx

a
dx, n = 1, 2, · · · . (30.11)

Hence, the solution of (30.1)–(30.2) can be written as (30.10) where cn is
given by (30.11).

In particular, we consider the initial-boundary value problem (30.1)–
(30.2) with c = 1, a = 1, f(x) = x. Clearly,

cn = 2
∫ 1

0

x sin nπxdx =
2(−1)n+1

nπ
.

Thus, in this case the solution is

u(x, t) =
∞∑

n=1

2(−1)n+1

nπ
e−n2π2t sin nπx.

Next we shall assume that the ends of the rod, i.e., x = 0 and x = a,
are insulated, which gives the boundary conditions

ux(0, t) = 0, t > 0 (30.12)

ux(a, t) = 0, t > 0. (30.13)

These boundary conditions are of the second kind and known as Neumann
conditions.

Clearly in this case also we have the same DEs (30.5) and (30.6); how-
ever, instead of (30.7) the new boundary conditions are

X ′(0) = 0, X ′(a) = 0 (30.14)
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For (30.5), (30.14) the eigenvalues and eigenfunctions are

λn = −n2π2c2

a2
, n = 0, 1, · · · (30.15)

Xn(x) = cos
nπx

a
, n = 0, 1, · · · (30.16)

and correspondingly

T0(t) =
a0

2
and Tn(t) = ane−(n2π2c2/a2)t. (30.17)

Therefore,

u(x, t) = X0(x)T0(t) +
∞∑

n=1

Xn(x)Tn(t)

=
a0

2
+

∞∑
n=1

ane−(n2π2c2/a2)t cos
nπx

a
.

(30.18)

Finally, condition (30.2) implies

f(x) =
a0

2
+

∞∑
n=1

an cos
nπx

a
,

which is the Fourier cosine series for f(x), and hence

an =
2
a

∫ a

0

f(x) cos
nπx

a
dx, n ≥ 0. (30.19)

Hence, the solution of (30.1), (30.2), (30.12), (30.13) can be written as
(30.18) where an is given by (30.19).

In particular, we consider the initial-boundary value problem (30.1),
(30.2), (30.12), (30.13) with c = 2, a = 1, f(x) = x. Clearly,

a0 = 2
∫ 1

0

xdx = 1

an = 2
∫ 1

0

x cos nπxdx =
2

n2π2
((−1)n − 1)

=

⎧⎨
⎩

− 4
π2(2n − 1)2

n odd

0, n even.

Hence,

u(x, t) =
1
2
− 4

π2

∞∑
n=1

1
(2n − 1)2

e−4(2n−1)2π2t cos(2n − 1)πx.
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Finally, we assume that the ends of the rod, i.e., x = 0 and x = a, are
kept at the fixed temperatures A and B, respectively. This means that we
have the boundary conditions

u(0, t) = A, t > 0 (30.20)

u(a, t) = B, t > 0. (30.21)

Now let u(x, t) be a solution of (30.1), (30.2), (30.20), (30.21). We claim
that the function

v(x, t) = u(x, t) +
(

x − a

a

)
A − x

a
B (30.22)

is a solution of the initial-boundary value problem

vt − c2vxx = 0, 0 < x < a, t > 0, c > 0

v(0, t) = 0, t > 0

v(a, t) = 0, t > 0

v(x, 0) = f(x) +
(

x − a

a

)
A − x

a
B, 0 < x < a.

(30.23)

For this, it suffices to note that

vx = ux +
A

a
− B

a
, vxx = uxx, vt = ut;

and hence vt − c2vxx = ut − c2uxx = 0, i.e., v satisfies the same differential
equation as u. Further, we have

v(0, t) = u(0, t) +
(

0 − a

a

)
A − 0

a
B = A − A = 0

v(a, t) = u(a, t) +
(

a − a

a

)
A − a

a
B = B − B = 0

v(x, 0) = u(x, 0) +
(

x − a

a

)
A − x

a
B = f(x) +

(
x − a

a

)
A − x

a
B.

Since the problem (30.23) is of the type (30.1)–(30.4), we can find its
solution v(x, t). The solution u(x, t) of (30.1), (30.2), (30.20), (30.21) is
then obtained by the relation (30.22).

In particular, we consider the initial-boundary value problem (30.1),
(30.2), (30.20), (30.21) with c2 = 5, a = π, f(x) = x, A = 10, B = 0. For
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this problem, (30.23) becomes

vt − 5vxx = 0, 0 < x < π, t > 0

v(0, t) = 0, t > 0

v(π, t) = 0, t > 0

v(x, 0) = x +
(

x − π

π

)
10, 0 < x < π

(30.24)

and

v(x, t) = u(x, t) +
(

x − π

π

)
10. (30.25)

Now from the consideration of (30.1)–(30.4) the solution of (30.24) can be
written as (see (30.10))

v(x, t) =
∞∑

n=1

cne−5n2t sin nx, (30.26)

where (see (30.11))

cn =
2
π

∫ π

0

[
x +
(

x − π

π

)
10
]

sin nxdx =
2

nπ

[
−10 + π(−1)n+1

]
. (30.27)

Hence, in view of (30.25)–(30.27) the solution u(x, t) of the given problem
appears as

u(x, t) =
10(π − x)

π
+

∞∑
n=1

2
nπ

[
−10 + (−1)n+1π

]
e−5n2t sinnx.



Lecture 31
The One-Dimensional

Heat Equation (Cont’d.)

In this lecture we shall use the method of separation of variables to solve
the general one-dimensional heat equation with the boundary conditions of
the third kind.

The partial differential equation that governs the temperature u(x, t) in
the rod whose material properties vary with position can be written as

∂

∂x

(
k(x)

∂u

∂x

)
= ρ(x)c(x)

∂u

∂t
, α < x < β, t > 0. (31.1)

We shall consider (31.1) with the initial condition

u(x, 0) = f(x), α < x < β (31.2)

and the boundary conditions

a0u(α, t) − a1
∂u

∂x
(α, t) = c1, t > 0, a2

0 + a2
1 > 0 (31.3)

d0u(β, t) + d1
∂u

∂x
(β, t) = c2, t > 0, d2

0 + d2
1 > 0 (31.4)

Equations (31.1)–(31.4) make up an initial-boundary value problem.

Boundary conditions (31.3) and (31.4) are of the third kind and are
known as Robin’s conditions. These boundary conditions appear when each
face loses heat to a surrounding medium according to Newton’s law of
cooling, which states that a body radiates heat from its surface at a rate
proportional to the difference between the skin temperature of the body
and the temperature of the surrounding medium.

Experience indicates that after a long time “under the same conditions”
the variation of temperature with time dies away. In terms of the function
u(x, t) that represents temperature, we expect that the limit of u(x, t), as
t tends to infinity, exists and depends only on x: limt→∞ u(x, t) = v(x)
and also that limt→∞ ut = 0. The function v(x), called the steady-state
temperature distribution, must still satisfy the boundary conditions and the
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heat equation, which are valid for all t > 0. Therefore, v(x) (steady–state
solution) should be the solution to the problem

d

dx

(
k(x)

dv

dx

)
= 0, α < x < β (31.5)

a0v(α) − a1v
′(α) = c1

d0v(β) + d1v
′(β) = c2.

(31.6)

Equation (31.5) can be solved to obtain

v(x) = A

∫ x

α

dξ

k(ξ)
+ B, (31.7)

which satisfies the boundary conditions (31.6) if and only if

a0B − a1
A

k(α)
= c1

d0

(
A

∫ β

α

dξ

k(ξ)
+ B

)
+ d1

A

k(β)
= c2.

(31.8)

Clearly, we can solve (31.8) if and only if

a0

(
d0

∫ β

α

dξ

k(ξ)
+

d1

k(β)

)
+

a1d0

k(α)
�= 0,

or

a0d0

∫ β

α

dξ

k(ξ)
+

a0d1

k(β)
+

a1d0

k(α)
�= 0. (31.9)

Thus, the problem (31.5), (31.6) has a unique solution if and only if condi-
tion (31.9) is satisfied.

Example 31.1. To find the steady-state solution of the problem (30.1),
(30.2), (30.20), (30.21) we need to solve the problem

d2v

dx2
= 0, v(0) = A, v(a) = B,

whose solution is v(x) = A + (B − A)x/a.

Now we define the function

w(x, t) = u(x, t) − v(x), (31.10)

where u(x, t) and v(x) are the solutions of (31.1)–(31.4) and (31.5), (31.6)
respectively. Clearly,

∂w(x, t)
∂x

=
∂u(x, t)

∂x
− dv(x)

dx
,
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and hence

k(x)
∂w(x, t)

∂x
= k(x)

∂u(x, t)
∂x

− k(x)
dv(x)
dx

,

which gives

∂

∂x

(
k(x)

∂w(x, t)
∂x

)
=

∂

∂x

(
k(x)

∂u(x, t)
∂x

)
− d

dx

(
k(x)

dv(x)
dx

)
. (31.11)

We also have

ρ(x)c(x)
∂w(x, t)

∂t
= ρ(x)c(x)

∂u(x, t)
∂t

. (31.12)

Subtraction of (31.12) from (31.11) gives

∂

∂x

(
k(x)

∂w

∂x

)
− ρ(x)c(x)

∂w

∂t

=
[

∂

∂x

(
k(x)

∂u

∂x

)
− ρ(x)c(x)

∂u

∂t

]
− d

dx

(
k(x)

dv

dx

)
= 0 − 0 = 0.

Therefore,

∂

∂x

(
k(x)

∂w

∂x

)
= ρ(x)c(x)

∂w

∂t
, α < x < β, t > 0. (31.13)

We also have

a0w(α, t) − a1
∂w

∂x
(α, t) = a0(u(α, t) − v(α)) − a1

(
∂u

∂x
(α, t) − v′(α)

)

=
[
a0u(α, t) − a1

∂u

∂x
(α, t)
]
− [a0v(α) − a1v

′(α)]

= c1 − c1 = 0;

i.e.,

a0w(α, t) − a1
∂w

∂x
(α, t) = 0, t > 0, (31.14)

and similarly

d0w(β, t) + d1
∂w

∂x
(β, t) = 0, t > 0. (31.15)

Now we shall solve (31.13) – (31.15) by using the method of separation
of variables. We assume w(x, t) = X(x)T (t) �= 0, to obtain

d

dx

(
k(x)

dX(x)
dx

)
T (t) = ρ(x)c(x)X(x)T ′(t),

or
d
dx

(
k(x)dX

dx

)
ρ(x)c(x)X(x)

=
T ′(t)
T (t)

= −λ,
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which in view of (31.14) and (31.15) gives

(k(x)X ′)′ + λρ(x)c(x)X = 0

a0X(α) − a1X
′(α) = 0

d0X(β) + d1X
′(β) = 0

(31.16)

and
T ′ + λT = 0. (31.17)

Clearly, (31.16) is a Sturm–Liouville problem, for which we already know
that

1. there are infinite number of eigenvalues 0 ≤ λ1 < λ2 < · · · ,
2. for each eigenvalue λn there exists a unique eigenfunction Xn(x),
3. the set of eigenfunctions {Xn(x)} is orthogonal with respect to the
weight function ρ(x)c(x), i.e.,

∫ β

α

ρ(x)c(x)Xn(x)Xm(x)dx = 0, n �= m.

For λ = λn equation (31.17) becomes T ′
n + λnTn = 0 and gives

Tn(t) = ce−λnt, n ≥ 1.

Hence, the solution of (31.13) – (31.15) can be written as

w(x, t) =
∞∑

n=1

anXn(x)e−λnt. (31.18)

Finally, we note that condition (31.2) gives

w(x, 0) = u(x, 0) − v(x) = f(x) − v(x) = F (x), say. (31.19)

The solution (31.18) satisfies (31.19) if and only if

w(x, 0) = F (x) =
∞∑

n=1

anXn(x),

which gives

an =

∫ β

α
ρ(x)c(x)Xn(x)F (x)dx∫ β

α ρ(x)c(x)X2
n(x)dx

, n ≥ 1. (31.20)

Therefore, in view of (31.10) and (31.18) the solution of (31.1)–(31.4) ap-
pears as

u(x, t) = v(x) +
∞∑

n=1

anXn(x)e−λnt, (31.21)
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where an, n ≥ 1 are given by (31.20).

From the representation (31.21) the following properties are immediate:

(i) Since each λn > 0, u(x, t) → v(x) as t → ∞.

(ii) For any t1 > 0, the series for u(x, t1) converges uniformly in α ≤ x ≤ β
because of the exponential factors; therefore u(x, t1) is a continuous function
of x.

(iii) For large t we can approximate u(x, t) by

v(x) + a1X1(x)e−λ1t.

Example 31.2. For the problem (30.1)–(30.3) and

hu(a, t) + ux(a, t) = 0, t > 0, h > 0, (31.22)

which is a particular case of (31.1)–(31.4), we have v(x) ≡ 0. The eigenval-
ues are c2λ2

n, where λn is the root of the equation h tanλa + λ = 0, and
the eigenfunctions are Xn(x) = sin λnx, (see Problem 18.1 (iv)). Thus, the
solution can be written as

u(x, t) =
∞∑

n=1

ane−c2λ2
nt sin λnx, (31.23)

where

an =

∫ a

0 f(x) sin λnxdx∫ a

0 sin2 λnxdx
=

2h
∫ a

0 f(x) sin λnxdx

ah + cos2 λna
, n ≥ 1. (31.24)

For a = 1, h = 2, f(x) = 1 this solution becomes

u(x, t) = 4
∞∑

n=1

1
λn

(
1 − cosλn

2 + cos2 λn

)
e−c2λ2

nt sin λnx.

Problems

31.1. Solve the initial-boundary value problem (30.1)–(30.4) when

(i) a = 1, c = 4, f(x) = 1 + x

(ii) a = π, c = 2, f(x) = x2

(iii) a = 1, c2 = 5, f(x) = ex.

31.2. Solve the initial-boundary value problem (30.1), (30.2), (30.12),
(30.13) when
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(i) f(x) = T0 sin2 πx

a
, 0 < x < a

(ii) f(x) = T0x
2, 0 < x < a

(iii) f(x) = T0e
x, 0 < x < a.

31.3. Solve the initial-boundary value problem (30.1), (30.2), (30.20),
(30.21) when

(i) a = 10, c = 10, f(x) = 0, A = 10, B = 30
(ii) a = 1, c = 1, f(x) = 3(1 − x), A = 3, B = 1

(iii) a = π, c =
√

3, f(x) = − cos 7x, A = −1, B = 1.

31.4. Find the solution of the initial-boundary value problem (30.1)–
(30.3), (30.13), and in particular solve when a = π, c = 1, f(x) = x(π−x).

31.5. Find the solution of the initial-boundary value problem (30.1),
(30.2), (30.4), (30.12), and in particular solve when a = π, c = 1, f(x) =
x(π − x).

31.6. Heat conduction in a thin circular ring (consider it as a rod,
bent into the shape of a circular ring by tightly joining the two ends) of
length 2a, labeled from −a to a leads to the equation ut = c2uxx, − a <
x < a, t > 0, c > 0 with the initial condition u(x, 0) = f(x), − a < x < a
and the periodic boundary conditions

u(−a, t) = u(a, t)

ux(−a, t) = ux(a, t), t > 0.
(31.25)

Find the solution of this initial-boundary value problem, and in particular
solve when a = π, f(x) = |x|.

31.7. Find the steady-state solution of the problem

∂

∂x

(
k(x)

∂u

∂x

)
= cρ

∂u

∂t
, 0 < x < a, t > 0

u(0, t) = T0, u(a, t) = T1, t > 0,

where k(x) = k0 + βx and k0 and β are constants.

31.8. Find the steady-state solution of the problem

∂2u

∂x2
+ γ2(U(x) − u) =

1
k

∂u

∂t
, 0 < x < a, t > 0

u(0, t) = U0,
∂u

∂x
(a, t) = 0, t > 0,

where U(x) = U0 + Sx and U0 and S are constants.
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31.9. Find the solution of the initial-boundary value problem (30.1),
(30.2), (31.22) and hu(0, t) − ux(0, t) = 0, t > 0.

31.10. If the lateral surface of the rod is not insulated, there is a heat
exchange by convection into the surrounding medium. If the surrounding
medium has constant temperature T0, the rate at which heat is lost from
the rod is proportional to the difference u − T0. The governing partial DE
in this situation is

c2uxx = ut + b(u − T0), 0 < x < a, b > 0. (31.26)

Show that the change of variable u(x, t) = T0 + v(x, t)e−bt leads to the
heat equation (30.1) in v. In particular, find the solution of (31.26) when
c = 1, b = 4, T0 = 5, a = 1, satisfying the initial and boundary conditions
u(x, 0) = 5 + x, u(0, t) = u(1, t) = 5.

31.11. Find the solution of the partial DE

ut = uxx + 2kux, 0 < x < a, t > 0

subject to the initial-boundary conditions (30.2)–(30.4); here k is a con-
stant.

Answers or Hints

31.1. (i)
∑∞

n=1
2

nπ (2(−1)n+1 + 1)e−16n2π2t sinnπx

(ii)
∑∞

n=1 −π
ne−16n2t sin 2nx +

∑∞
n=1

[
2π

2n−1 − 8
π(2n−1)3

]
e−4(2n−1)2t

× sin(2n − 1)x (iii)
∑∞

n=1
2nπ

n2π2+1

[
1 + e(−1)n+1

]
e−5n2π2t sinnπx.

31.2. (i) T0
2 (1−cos 2πx

a e−(4π2c2/a2)t) (ii) 1
3a2T0+

∑∞
n=1

4T0a2(−1)n

n2π2 cos nπx
a

×e−(n2π2c2/a2)t (iii) T0
a (ea−1)+

∑∞
n=1

2T0a(ea(−1)n−1)
a2+n2π2 cos nπx

a e−(n2π2c2/a2)t.

31.3. (i) 10 + 2x + 20
π

∑∞
n=1

3(−1)n−1
n sin

(
nπx
10

)
e−n2π2t (ii) 3 − 2x +∑∞

n=1
2(−1)n

nπ e−n2π2t sin nπx (iii) 2
π x−1+

∑∞
n=1,n�=7

98(n−(−1)n)
πn(n2−49) e−3n2t sin nx.

31.4. u(x, t) =
∑∞

n=1 cn sin (2n−1)πx
2a e−(2n−1)2π2c2t/4a2

, where cn =
2
a

∫ a

0 f(x) sin (2n−1)πx
2a dx,

∑∞
n=1

[
32

π(2n−1)3 + 8(−1)n

(2n−1)2

]
sin (2n−1)x

2

× e−(2n−1)2t/4.

31.5. u(x, t) =
∑∞

n=1 cn cos (2n−1)πx
2a e−(2n−1)2π2c2t/4a2

, where cn =
2
a

∫ a

0 f(x) cos (2n−1)πx
2a dx,

∑∞
n=1

[
32(−1)n−1

π(2n−1)3 − 8
(2n−1)2

]
cos (2n−1)x

2

× e−(2n−1)2t/4. The same solution can be obtained by replacing x in Prob-
lem 31.4 by a − x.
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31.6. π
2 − 4

π

∑∞
n=0

1
(2n+1)2 cos(2n + 1)xe−(2n+1)2c2t.

31.7. v(x) = A ln(k0 + βx) + B, where A = (T1 − T0)/ ln
(
1 + βa

k0

)
, B =

T0 − A ln k0.

31.8. v(x) = A cosh γx + B sinh γx + U0 + Sx where A = 0, B =
−S/(γ cosh γa).

31.9.
∑∞

n=1
λn cos λnx+h sin λnx

(λ2
n+h2)a+2h e−c2λ2

nt
∫ a

0 f(x)(λn cosλnx + h sin λnx)dx

where λn are the zeros of the equation tanλa = 2hλ/(λ2 − h2).

31.10. 5 + 2e−4t

π

∑∞
n=1

(−1)n+1

n e−n2π2t sin nπx.

31.11. u(x, t) =
∑∞

n=1 cn exp
{
−
[(

nπ
a

)2 + k2
]
t
}

e−kx sin nπx
a , where cn =

2
a

∫ a

0 f(x)ekx sin nπx
a dx.



Lecture 32
The One-Dimensional

Wave Equation

In this lecture we shall provide two different derivations of the one-
dimensional wave equation. The first derivation comes from the oscillation
of a elastic string, whereas the second one is from the electric oscillations in
wires. Then, we shall formulate an initial-boundary value problem, which
involves the wave equation, the initial conditions, and the boundary condi-
tions. Finally, we shall use the method of separation of variables to solve
the initial-boundary value problem.

Consider a tightly stretched elastic string of length a, initially directed
along a segment of the x-axis from O to a. We assume that the ends of the
string are fixed at the points x = 0 and x = a. If the string is deflected from
its original position and then let loose, or if we give to its points a certain
velocity at the initial time, or if we deflect the string and give a velocity
to its points, then the points of the string will perform certain motions.
In such a stage we say that the string is set into oscillation, or allowed to
vibrate. The problem of interest is then to find the shape of the string at
any instant of time.

We assume that the string is subjected to a constant tension T, which
is directed along the tangent to its profile. We also assume that T is large
compared to the weight of the string so that the effects of gravity are
negligible. We further assume that no external forces are acting on the
string, and each point of the string makes only small vibrations at right
angles to the equilibrium position so that the motion takes place entirely in
the xu-plane. Figure 32.1 shows the string in the position OPQa at time
t.

0 a··

u

T

φ

x + Δxx

φ + Δφ

T

P

Q

Figure 32.1

Consider the motion of the element PQ of the string between its points

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 32,
c© Springer Science+Business Media, LLC 2009
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P (x, u) and Q(x+Δx, u+Δu) where the tangents make angles φ and φ+Δφ
with the x-axis. Clearly, this element is moving upwards with acceleration
∂2u/∂t2. Also the vertical component of the force acting on this element is

= T sin(φ + Δφ) − T sin φ


 T [tan(φ + Δφ) − tan φ], since φ is small

= T

[(
∂u

∂x

)
x+Δx

−
(

∂u

∂x

)
x

]
.

If m is the mass per unit length of the string, then by Newton’s second law
of motion, we have

mΔx
∂2u

∂t2
= T

[(
∂u

∂x

)
x+Δx

−
(

∂u

∂x

)
x

]
,

which is the same as

∂2u

∂t2
=

T

m

[(
∂u
∂x

)
x+Δx

−
(

∂u
∂x

)
x

Δx

]
.

Finally, taking the limit as Q → P, i.e., Δx → 0, we obtain

∂2u

∂t2
= c2 ∂2u

∂x2
, c2 =

T

m
. (32.1)

This partial DE gives the transverse vibrations of the string. It is called
the one-dimensional wave equation.

Equation (32.1) by itself does not describe the motion of the string.
The required function u(x, t) must also satisfy the initial conditions which
describe the state of the string at the initial time t = 0 and the boundary
conditions which indicate to what occurs at the ends of the string, i.e.,
x = 0 and x = a. At t = 0 the string has a definite shape, that which we
gave it. We assume that this shape is defined by the function f(x). This
leads to the condition

u(x, 0) = f(x), 0 < x < a. (32.2)

Further, at t = 0 the velocity at each point of the string must be given, we
assume that it is defined by the function g(x). Thus, we must also have

∂u

∂t

∣∣∣∣
t=0

= ut(x, 0) = g(x), 0 < x < a. (32.3)

Now since we have assumed that the string at x = 0 and x = a is fixed, for
any t the following conditions must be satisfied

u(0, t) = 0, t > 0 (32.4)



The One-Dimensional Wave Equation 251

u(a, t) = 0, t > 0. (32.5)

The partial DE (32.1) together with the initial conditions (32.2), (32.3) and
the boundary conditions (32.4), (32.5) constitutes a typical initial-boundary
value problem.

Now we shall show that the problem of electric oscillations in wires also
leads to equation (32.1). The electric current in a wire is characterized by
the current flow i(x, t) and the voltage v(x, t), which are dependent on the
coordinate x of the point of the wire and on the time t. On an element Δx of
the wire the drop in voltage is equal to v(x, t)−v(x+Δx, t) 
 −(∂v/∂x)Δx.
This voltage drop consists of the ohmic drop which is equal to iRΔx, and
the inductive drop which is the same as (∂i/∂t)LΔx. Thus, we have

−∂v

∂x
Δx = iRΔx +

∂i

∂t
LΔx, (32.6)

where R and L are the resistance and the coefficient of self-induction per
unit length of wire. In (32.6) the minus sign indicates that the current flow
is in a direction opposite to the build-up of v. From (32.6) it follows that

∂v

∂x
+ iR + L

∂i

∂t
= 0. (32.7)

Further, the difference between the current leaving the element Δx and
entering it during the time Δt is

i(x, t) − i(x + Δx, t) 
 − ∂i

∂x
ΔxΔt.

In charging the element Δx it requires CΔx(∂v/∂t)Δt, and in leakage
through the lateral surface of the wire due to imperfect insulation we have
AvΔxΔt, where A is the leak coefficient and C is the capacitance. Equating
these expressions and canceling out ΔxΔt, we get the equation

∂i

∂x
+ C

∂v

∂t
+ Av = 0. (32.8)

Equations (32.7) and (32.8) are called telegraph equations.

Differentiating equation (32.8) with respect to x, (32.7) with respect to
t and multiplying it by C, and subtracting, we obtain

∂2i

∂x2
+ A

∂v

∂x
− CR

∂i

∂t
− CL

∂2i

∂t2
= 0.

Substituting in this equation the expression ∂v/∂x from (32.7), we get an
equation only in i(x, t),

∂2i

∂x2
= CL

∂2i

∂t2
+ (CR + AL)

∂i

∂t
+ ARi. (32.9)
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Similarly, we obtain an equation for determining v(x, t),

∂2v

∂x2
= CL

∂2v

∂t2
+ (CR + AL)

∂v

∂t
+ ARv. (32.10)

If we neglect the leakage through the insulation (A = 0) and the resis-
tance (R = 0), then equations (32.9) and (32.10) reduce to wave equations

c2 ∂2i

∂x2
=

∂2i

∂t2
, c2 ∂2v

∂x2
=

∂2v

∂t2
, (32.11)

where c2 = 1/(CL). Again the physical conditions dictate the formulation
of the initial and boundary conditions of the problem.

Now to solve the initial-boundary value problem (32.1)–(32.5) we shall
use the method of separation of variables also known as the Fourier method.
For this, we assume a solution of (32.1) to be of the form u(x, t) = X(x)T (t)
�= 0 where X, T are unknown functions to be determined. Substitution of
this into (32.1) yields

XT ′′ − c2X ′′T = 0.

Thus, we obtain
T ′′

T
=

c2X ′′

X
= λ,

where λ is a constant. Consequently, we have two separate equations:

T ′′ = λT (32.12)

and
c2X ′′ = λX. (32.13)

The boundary condition (32.4) demands that X(0)T (t) = 0 for all t ≥ 0,
thus X(0) = 0. Similarly, the boundary condition (32.5) leads to X(a)T (t) =
0 and hence X(a) = 0. Thus, in view of (32.13) the function X has to be a
solution of the eigenvalue problem

X ′′ − λ

c2
X = 0, X(0) = 0, X(a) = 0. (32.14)

The eigenvalues and eigenfunctions of (32.14) are

λn = −n2π2c2

a2
, Xn(x) = sin

nπx

a
, n = 1, 2, · · · . (32.15)

With λ given by (32.15), equation (32.12) takes the form

T ′′ +
n2π2c2

a2
T = 0
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whose solution appears as

Tn(t) = an cos
nπct

a
+ bn sin

nπct

a
, n = 1, 2, · · · (32.16)

where an and bn are the integration constants in the general solution.

Therefore, it follows that

u(x, t) =
∞∑

n=1

Xn(x)Tn(t) =
∞∑

n=1

(
an cos

nπct

a
+ bn sin

nπct

a

)
sin

nπx

a

(32.17)
is a solution of (32.1). Clearly, u(x, t) satisfies conditions (32.4) and (32.5),
and it will satisfy (32.2) provided

∞∑
n=1

an sin
nπx

a
= f(x), (32.18)

which is the Fourier sine series for f(x). Consequently, an is given by

an =
2
a

∫ a

0

f(x) sin
nπx

a
dx, n = 1, 2, · · · . (32.19)

Likewise condition (32.3) will be satisfied provided that

∞∑
n=1

sin
nπx

a

(nπc

a
bn

)
= g(x) (32.20)

and hence
nπc

a
bn =

2
a

∫ a

0

g(x) sin
nπx

a
dx,

which gives

bn =
2

nπc

∫ a

0

g(x) sin
nπx

a
dx, n = 1, 2, · · · . (32.21)

We conclude that the solution of the initial-boundary value problem
(32.1)–(32.5) is given by (32.17) where an and bn are as in (32.19) and
(32.21) respectively. This solution is due to Daniel Bernoulli.

Example 32.1. We shall find the solution of (32.1)–(32.5) with c =
2, a = π, f(x) = x(π − x), g(x) = 0. From (32.21) it is clear that bn =
0, n ≥ 1. Now from (32.19) we have
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an =
2
π

∫ π

0

x(π − x) sin nxdx

=
2
π

[
π

∫ π

0

x sin nxdx −
∫ π

0

x2 sinnxdx

]

=
2
π

[
π

{
−x cosnx

n

∣∣∣∣
π

0

+
1
n

∫ π

0

cosnxdx

−
{
−x2 cosnx

n

∣∣∣∣
π

0

+
2
n

∫ π

0

x cos nxdx

}]

=
2
π

[
π
−π cosnπ

n
+

π2 cosnπ

n
+

2
n

{
x

sin nx

n

∣∣∣∣
π

0

−
∫ π

0

sin nx

n

}]

=
2
π

[
π2(−1)n+1

n
− (−1)n+1π2

n
+

2
n2

× −cosnx

n

∣∣∣π
0

]

=
2
π

2
n2

[
1 − (−1)n

n

]
=

4
πn3

[1 − (−1)n].

Thus, the solution of (32.1)–(32.5) in this particular case is

u(x, t) =
∞∑

n=1

4
πn3

[1 − (−1)n] cos 2nt sinnx

=
∞∑

n=0

8
π(2n + 1)3

cos 2(2n + 1)t sin(2n + 1)x.

Now for simplicity we assume that g(x) ≡ 0, i.e., the string is initially
at rest. We further define f(x) for all x by its Fourier series (32.18). Then,
f(x) is an odd function of period 2a, i.e., f(−x) = −f(x) and f(x + 2a) =
f(x). With these assumptions bn = 0, n ≥ 1 and thus the solution (32.17)
by the trigonometric identity

sin
nπx

a
cos

nπct

a
=

1
2

(
sin

nπ

a
(x + ct) + sin

nπ

a
(x − ct)

)

can be written as

u(x, t) =
1
2

∞∑
n=1

an

(
sin

nπ

a
(x + ct) + sin

nπ

a
(x − ct)

)
,

which in view of (32.18) is the same as

u(x, t) =
1
2
[f(x + ct) + f(x − ct)]. (32.22)

This is d’Alembert’s solution. It is easy to verify that this indeed satisfies
(32.1)–(32.5) with g(x) ≡ 0 provided f(x) is twice differentiable. To realize
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the significance of this solution, consider the term f(x−ct) and evaluate it at
two pairs of values (x1, t1) and (x2, t2), where t2 = t1 + τ, and x2 = x1 + cτ.
Then x1 − ct1 = x2 − ct2 and f(x1 − ct1) = f(x2 − ct2), which means that
this displacement travels along the string with velocity c. Thus, f(x − ct)
represents a wave traveling to the right with velocity c, and similarly, f(x+
ct) represents a wave traveling to the left with velocity c. It is for this reason
that (32.1) is called the one-dimensional wave equation.



Lecture 33
The One-Dimensional

Wave Equation (Cont’d.)

In this lecture we continue using the method of separation of variables to
solve other initial-boundary value problems related to the one-dimensional
wave equation.

Suppose that the vibrating string is subject to a damping force that is
proportional at each instance to the velocity at each point. This results in
a partial DE of the form

∂2u

∂x2
=

1
c2

(
∂2u

∂t2
+ 2k

∂u

∂t

)
, 0 < x < a, t > 0, c > 0. (33.1)

We shall consider this equation together with the initial-boundary condi-
tions (32.2)–(32.5). In (33.1) the constant k is small and positive. Clearly,
if k = 0 the equation (33.1) reduces to (32.1).

Again we assume that the solution of (33.1) can be written as u(x, t) =
X(x)T (t) �= 0, so that

X ′′(x)T (t) =
1
c2

(X(x)T ′′(t) + 2kX(x)T ′(t))

and hence
X ′′

X
=

T ′′ + 2kT ′

c2T
= λ,

which leads to
X ′′ − λX = 0, X(0) = X(a) = 0 (33.2)

T ′′ + 2kT ′ − λc2T = 0. (33.3)

For (33.2), we have

λn = −n2π2

a2
, Xn(x) = sin

nπx

a
.

With λ = λn = −n2π2/a2 equation (33.3) takes the form

T ′′
n + 2kT ′

n +
n2π2c2

a2
Tn = 0. (33.4)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 33,
c© Springer Science+Business Media, LLC 2009



The One-Dimensional Wave Equation (Cont’d.) 257

The auxiliary equation for (33.4) is

m2 + 2km +
n2π2c2

a2
= 0,

or

(m + k)2 = −
(

n2π2c2

a2
− k2

)

and hence

m = −k ± iμn where μn =
(

n2π2c2

a2
− k2

)1/2

.

Recall k > 0 and small, so μn > 0, n ≥ 1.

Thus, the solution of (33.4) appears as

Tn(t) = e−kt (an cosμnt + bn sinμnt) .

Therefore, the solution of (33.1) which satisfies (32.4) and (32.5) can be
written as

u(x, t) =
∞∑

n=1

e−kt (an cosμnt + bn sinμnt) sin
nπx

a
. (33.5)

This solution satisfies (32.2) if

f(x) =
∞∑

n=1

an sin
nπx

a
,

which gives

an =
2
a

∫ a

0

f(x) sin
nπx

a
dx, n = 1, 2, · · · . (33.6)

Finally, condition (32.3) is satisfied if

g(x) =
∞∑

n=1

(−kan + bnμn) sin
nπx

a

and hence

−kan + bnμn =
2
a

∫ a

0

g(x) sin
nπx

a
dx,

which gives

bn = k
an

μn
+

2
μna

∫ a

0

g(x) sin
nπx

a
dx, n = 1, 2, · · · . (33.7)
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In particular, we shall find an and bn when g(x) = 0, and

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

h
2x

a
, 0 < x <

a

2

h

(
2 − 2x

a

)
,

a

2
< x < a, h > 0.

From (33.6), we have

an =
2
a

[∫ a/2

0

h
2x

a
sin

nπx

a
dx +
∫ a

a/2

h

(
2 − 2x

a

)
sin

nπx

a
dx

]

=
2h

a

[{(
2x

a

)
cos

nπx

a

(
− a

nπ

)
− 2

a
sin

nπx

a

(
− a2

n2π2

)}x=a/2

x=0

+
{(

2 − 2x

a

)
cos

nπx

a

(
− a

nπ

)
−
(
−2

a

)
sin

nπx

a

(
− a2

n2π2

)}a

x=a/2

]

=
2h

a

[
cos

nπ

2

(
− a

nπ

)
− 2

a
sin

nπ

2

(
− a2

n2π2

)

− cos
nπ

2

(
− a

nπ

)
+
(
−2

a

)
sin

nπ

2

(
− a2

n2π2

)]

=
2h

a
· 2
a
· a2

n2π2
· 2 · sin nπ

2

=
8h

π2
· sin nπ/2

n2
.

Finally, from (33.7) in view of g(x) = 0, we find bn = kan/μn.

Now we shall assume that for the vibrating string the ends are free—
they are allowed to slide without friction along the vertical lines x = 0
and x = a. This may seem impossible, but it is a standard mathematically
modeled case. This leads to the initial-boundary value problem (32.1)–
(32.3), and the Neumann boundary conditions

ux(0, t) = 0, t > 0 (33.8)

ux(a, t) = 0, t > 0. (33.9)

In this problem conditions (33.8), (33.9) are different from (32.4), (32.5);
therefore, if we assume a solution in the form u(x, t) = X(x)T (t) �= 0, X
must satisfy the eigenvalue problem

X ′′ − λ

c2
X = 0

X ′(0) = X ′(a) = 0 (instead of X(0) = X(a) = 0).
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For this problem the eigenvalues are

λ0 = 0, λn = −n2π2c2

a2
, n = 1, 2, · · ·

and the corresponding eigenfunctions are

X0(x) = 1, Xn(x) = cos
nπx

a
, n = 1, 2, · · · .

For λ0 = 0 the equation T ′′ − λT = 0 reduces to T ′′
0 = 0, and hence

T0(t) = b0t + a0.

For λn = −n2π2c2/a2 the equation T ′′−λT = 0 is T ′′
n +(n2π2c2/a2)Tn = 0

and hence the solution is the same as (32.16). Thus, the solution of (32.1)
satisfying (33.8), (33.9) can be written as

u(x, t) =
∞∑

n=0

Xn(x)Tn(t) = X0(x)T0(t) +
∞∑

n=1

Xn(x)Tn(t),

or

u(x, t) = (b0t + a0) +
∞∑

n=1

(
an cos

nπc

a
t + bn sin

nπc

a
t
)

cos
nπx

a
. (33.10)

The solution (33.10) satisfies (32.2) if and only if

f(x) = a0 +
∞∑

n=1

an cos
nπx

a

and hence

a0 =
1
a

∫ a

0

f(x)dx

an =
2
a

∫ a

0

f(x) cos
nπx

a
dx, n = 1, 2, · · · .

(33.11)

Finally, the solution (33.10) satisfies (32.3) if and only if

g(x) = b0 +
∞∑

n=1

bn
nπc

a
cos

nπx

a

and hence

b0 =
1
a

∫ a

0

g(x)dx

bn =
2

nπc

∫ a

0

g(x) cos
nπx

a
dx, n = 1, 2, · · · .

(33.12)



260 Lecture 33

Thus, the solution of (32.1)–(32.3), (33.8), (33.9) can be written as (33.10),
where the constants an, bn, n = 0, 1, · · · are given by (33.11) and (33.12),
respectively.

Next we shall consider the equation of the general vibrating string

∂

∂x

(
k(x)

∂u

∂x

)
=

ρ(x)
c2

∂2u

∂t2
, α < x < β, t > 0, c > 0 (33.13)

subject to the initial conditions (31.2),

ut(x, 0) = g(x), α < x < β (33.14)

and Robin’s boundary conditions (31.3), (31.4). These boundary conditions
describe some type of an elastic or spring attachment at both ends of the
string. Now following as in Lecture 31, although there is no steady state
for the wave equation (33.13), we let v(x) be the solution of the problem
(31.5), (31.6). Again, we define the function w(x, t) as in (31.10), which
satisfies the wave equation

∂

∂x

(
k(x)

∂w

∂x

)
=

ρ(x)
c2

∂2w

∂t2
α < x < β, t > 0, (33.15)

the initial conditions (31.19),

wt(x, 0) = g(x), α < x < β, (33.16)

and the boundary conditions (31.14), (31.15). We use the substitution
w(x, t) = X(t)T (t) �= 0, which leads to solving

(k(x)X ′)′ +
λ

c2
ρ(x)X = 0

a0X(α) − a1X
′(α) = 0

d0X(β) + d1X
′(β) = 0

(33.17)

and
T ′′ + λT = 0. (33.18)

Thus, the solution of (33.15), (31.14), (31.15) in terms of the eigenvalues
0 ≤ λ1 < λ2 < · · · and eigenfunctions Xn(x) of (33.17) appears as

w(x, t) =
∞∑

n=1

(an cos
√

λnt + bn sin
√

λnt)Xn(x). (33.19)

This solution satisfies the initial conditions (31.19), (33.16) if and only if

an =

∫ β

α ρ(x)Xn(x)F (x)dx∫ β

α
ρ(x)X2

n(x)dx
, bn =

∫ β

α ρ(x)Xn(x)g(x)dx
√

λn

∫ β

α
ρ(x)X2

n(x)dx
, n ≥ 1.
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Finally, the solution of (33.13), (31.2), (33.14), (31.3), (31.4) is obtained
from the relation u(x, t) = w(x, t) + v(x).

Problems

33.1. Solve the initial-boundary value problem (32.1)–(32.5) when

(i) a = π, c = 5, f(x) = sin 3x, g(x) = 4

(ii) a = π, c = 1, f(x) = x(π − x), g(x) = 3

(iii) a = 3, c = 2, f(x) =

⎧⎨
⎩

x, 0 < x < 1
1, 1 < x < 2
3 − x, 2 < x < 3

, g(x) = 0

(iv) a = π, c = 2/3, f(x) = sin2 x, g(x) = sin x

(v) a = π, c = 1, f(x) = x2(π − x), g(x) = 0.

33.2. A tightly stretched string with fixed end points x = 0 and x = a
is initially in a position given by u = u0 sin3 πx/a. If it is released from rest
from this position, find the displacement u(x, t).

33.3. The points of trisection of a string of length a are pulled aside
through the same distance h on opposite sides of the position of equilibrium
and the string is released from rest. Derive an expression for the displace-
ment of the string of subsequent time and show that the midpoint of the
string remains at rest.

33.4. Solve the initial-boundary value problem (32.1)–(32.4), ux(a, t)
= 0, t > 0, i.e., the string is fixed at the end x = 0 and free at the end
x = a.

33.5. Solve the initial–boundary value problem (32.1)–(32.3), (32.5),
ux(0, t) = 0, t > 0 i.e., the string is free at the end x = 0 and fixed at the
end x = a.

33.6. Suppose that u is a solution of the initial–boundary value
problem (32.1)–(32.3),

u(0, t) = A, t > 0

u(a, t) = B, t > 0
, (33.20)

where A and B are constants. Show that if

v(x, t) = u(x, t) +
(

x − a

a

)
A − x

a
B, (33.21)
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then v is a solution of the initial-boundary value problem (32.1),

v(x, 0) = f(x) +
(

x − a

a

)
A − x

a
B, 0 < x < a (33.22)

(32.3)–(32.5). In particular, solve the problem (32.1)–(32.3), (33.20) when

(i) a = π, c = 1, f(x) = x(π − x), g(x) = 3, A = 0, B = 5
(ii) a = π, c = 1, f(x) = x2(π − x), g(x) = 0, A = B = 2.

33.7. Consider the particular case of the telegraph equation (32.10),

vtt + 2avt + a2v = c2vxx,

with the initial conditions v(x, 0) = φ(x), vt(x, 0) = 0 and the boundary
conditions v(0, t) = v(a, 0) = 0. Show that the change of variable v(x, t) =
e−atu(x, t) transforms this initial–boundary value problem to (32.1)–(32.5)
with f(x) = φ(x) and g(x) = aφ(x).

33.8. Solve the initial-boundary value problem (33.1), (32.2)–(32.5)
when

(i) a = 1, c = 1, k = 1, f(x) = A sin πx, g(x) = 0
(ii) a = π, c = 1, k = 1, f(x) = x, g(x) = 0.

33.9. Solve the initial–boundary value problem (32.1)–(32.3), (33.8),
(33.9) when a, c, f(x) and g(x) are the same as in Problem 33.1 (i)–(v).

33.10. Show that the solution (32.17) of (32.1)–(32.5) can be written
as

u(x, t) =
1
2
[f(x + ct) + f(x − ct)] +

1
2c

∫ x+ct

x−ct

g(z)dz.

This is d’Alembert’s solution. Thus, to find the solution u(x, t), we need to
know only the initial displacement f(x) and the initial velocity g(x). This
makes d’Alembert’s solution easy to apply as compared to the infinite series
(32.24). In particular, find the solution on −∞ < x < ∞, t > 0 when

(i) f(x) = 1/(1 + 2x2), g(x) = 0

(ii) f(x) = e−|x|, g(x) = xe−x2

(iii) f(x) = sechx, g(x) = x/(1 + x2).

33.11. The partial DE which describes the small displacement w =
w(x, t) of a heavy flexible chain of length a from equilibrium is

∂2w

∂t2
= −g

∂w

∂x
+ g(a − x)

∂2w

∂x2
,

where g is the gravitational constant. This equation was studied extensively
by Daniel Bernoulli around 1732 and later by Leonhard Euler in 1781.
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(i) Set y = a−x, u(y, t) = w(a−x, t) to transform the above partial DE
to

∂2u

∂t2
= g

∂u

∂y
+ gy

∂2u

∂y2
. (33.23)

(ii) Use separation of variables to show that the solution of (33.23) which
is bounded for 0 ≤ y ≤ a and satisfies u(a, t) = 0 is

∞∑
n=1

J0

(
2λn

√
y

g

)
(an cosλnt + bn sin λnt),

where λn = (1/2)b0,n

√
g/a and b0,n is a positive root of J0(x).

33.12. A bar has length a, density δ, cross-sectional area A, Young’s
modulus E, and total mass M = δAa. Its end x = 0 is fixed and a mass
m is attached to its free end. The bar initially is stretched linearly by
moving m a distance d = ba to the right, and at time t = 0 the system
is released from rest. Find the subsequent vibrations of the bar by solving
the initial-boundary value problem (32.1), u(x, 0) = bx, ut(x, 0) = 0, (32.4)
and mutt(a, t) = −AEux(a, t).

33.13. Small transverse vibrations of a beam are governed by the
partial DE

∂2u

∂t2
+ c2 ∂4u

∂x4
= 0, 0 < x < a, t > 0,

where c2 = EI/Aμ, and E is the modulus of elasticity, I is the moment of
inertia of any cross section about the x-axis, A is the area of cross section,
and μ is the mass per unit length. Boundary conditions at the ends of the
beam are usually of the following type:

(1) A fixed end also known as built-in or a clamped end has its displacement
and slope equal to zero (see Figure 33.1a):

u(a, t) =
∂u

∂x
(a, t) = 0.

(2) A simply supported end has displacement and moment equal to zero
(see Figure 33.1b):

u(a, t) =
∂2u

∂x2
(a, t) = 0.

(3) A free end has zero moment and zero shear (see Figure 33.1c):

∂2u

∂x2
(a, t) =

∂3u

∂x3
(a, t) = 0.
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Figure 33.1a

Fixed
end

Figure 33.1b

Simply
supported

end

Figure 33.1c

Free
end

Find the solution for the vibration of a beam that has simply supported ends
at x = 0 and x = a with the initial conditions u(x, 0) = f(x), ut(x, 0) =
g(x), 0 < x < a. In particular, compute the solution when f(x) = Ax(a−x)
and g(x) = 0.

Answers or Hints

33.1. (i) cos 15t sin 3x +
∑∞

n=0
16

5(2n+1)2π sin 5(2n + 1)t sin(2n + 1)x

(ii)
∑∞

n=1

[
8

(2n−1)3π cos(2n − 1)t + 12
(2n−1)2π sin(2n − 1)t

]
sin(2n − 1)x

(iii)
∑∞

n=1
12

n2π2 sin nπ
2 cos nπ

6 sin nπx
3 cos 2nπt

3

(iv) 3
2 sin x sin 2t

3 − 8
π

∑∞
n=1

1
(2n−1)[(2n−1)2−4] sin(2n − 1)x cos 2(2n−1)t

3

(v) π3

12 +
∑∞

n=1 − π
2n2 cos 2nt cos 2nx +

∑∞
n=1

[
2π

(2n−1)2 − 24
(2n−1)4π

]
× cos(2n − 1)t cos(2n − 1)x.

33.2. Use sin3 θ = 1
4 (3 sin θ − sin 3θ), u(x, t) = u0

2

(
3 sin π

a x cos cπ
a t

− sin 3π
a x cos 3cπ

a t
)
.

33.3. In (32.1)–(32.5), f(x) = 3h
a

⎧⎨
⎩

x, 0 ≤ x ≤ a/3
(a − 2x), a/3 ≤ x ≤ 2a/3,
(x − a), 2a/3 ≤ x ≤ a

g(x) = 0,

u(x, t) = 9h
π2

∑∞
n=1

1
n2 sin 2nπ

3 sin 2nπ
a x cos 2nπc

a t.

33.4
∑∞

n=1

[
an cos (2n−1)πct

2a + bn sin (2n−1)πct
2a

]
sin (2n−1)πx

2a ,

an = 2
a

∫ a

0
f(x) sin (2n−1)πx

2a dx, n ≥ 1,

bn = 4
(2n−1)πc

∫ a

0
g(x) sin (2n−1)πx

2a dx, n ≥ 1.

33.5
∑∞

n=1

[
an cos (2n−1)πct

2a + bn sin (2n−1)πct
2a

]
cos (2n−1)πx

2a ,

an = 2
a

∫ a

0 f(x) cos (2n−1)πx
2a dx, n ≥ 1

bn = 4
(2n−1)πc

∫ a

0 g(x) cos (2n−1)πx
2a dx, n ≥ 1.
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33.6. (i) 5x
π +
∑∞

n=1
5

nπ cos 2nt sin 2nx +
∑∞

n=1

{[
8

(2n−1)3π − 10
(2n−1)π

]

× cos(2n − 1)t + 12
(2n−1)2π sin(2n − 1)t

}
sin(2n − 1)x

(ii) 2 +
∑∞

n=1 − 3
2n3 cos 2nt sin 2nx +

∑∞
n=1

[
4

(2n−1)3 − 8
(2n−1)π

]
× cos(2n − 1)t sin(2n − 1)x.

33.7. Verify directly.

33.8. (i) Ae−t
(
cos

√
π2 − 1t + 1√

π2−1
sin

√
π2 − 1t

)
sinπx (ii) 2e−t×[

(1 + t) sin x +
∑∞

n=2
(−1)n+1

n

(
cos

√
n2−1t + 1√

n2−1
sin

√
n2−1t

)
sinnx
]
.

33.9. Compute an and bn using (33.11) and (33.12) and substitute in
(33.10).

33.10.Use sin A sin B = 1
2 [cos(A − B) − cos(A + B)] and (32.22).

(i) 1
2

[
1

1+2(x+ct)2 + 1
1+2(x−ct)2

]
(ii) 1

2

[
e−|x+ct| + e−|x−ct|]

− 1
4c

(
e−(x+ct)2 − e−(x−ct)2

)
(iii) 1

2 (sech (x + ct) + sech (x − ct))

+ 1
4c

[
ln(1 + (x + ct)2) − ln(1 + (x − ct)2)

]
.

33.11.Compare the ordinary DE with (9.19).

33.12.u(x, t) =
∑∞

n=1 bn cos αnct
a sin αnx

a where bn = 4ab sin αn

αn(2αn+sin 2αn) and
αn is a root of the equation tan α = AEa

mc2
1
α . Use the fact that the set

{sin αnx
a } is not orthogonal on [0, a], however, in view of Problem 18.4 the

set {cos αnx
a } is orthogonal on [0, a].

33.13 See Problem 18.9(i),
∑∞

n=1

(
an cos cn2π2t

a2 + bn sin cn2π2t
a2

)
sin nπx

a ,

where an = 2
a

∫ a

0
f(x) sin nπx

a dx, bn = 2a
cn2π2

∫ a

0
g(x) sin nπx

a dx.
8Aa2

π3

∑∞
n=0

1
(2n+1)3 cos c(2n+1)2π2t

a2 sin (2n+1)πx
a .



Lecture 34
Laplace Equation

in Two Dimensions

In this lecture we give a derivation of the two-dimensional Laplace equa-
tion and formulate the Dirichlet problem on a rectangle. Then we use the
method of separation of variables to solve this problem.

Consider the flow of heat in a metal plate of uniform thickness α (cm),
density ρ (g/cm3), specific heat s (cal/g deg) and thermal conductivity k
(cal/cm sec deg). Let the XY -plane be taken in one face of the plate. If the
temperature at any point is independent of the z-coordinate and depends
only on x, y, and time t (for instance, its two parallel faces are insulated),
then the flow is said to be two-dimensional. In this case, the heat flow is in
the XY -plane only and is zero along the normal to the XY -plane.

Figure 34.1

x

y

A(x, y) B(x + Δx, y)

D(x, y + Δy) C(x + Δx, y + Δy)

0

Consider a rectangular element ABCD of the plate with sides Δx and
Δy as shown in Figure 34.1. By Fourier’s law, the amount of heat entering
the element in 1 sec from the side AB is

= − kαΔx

(
∂u

∂y

)
y

;

and the amount of heat entering the element in 1 sec from the side AD is

= − kαΔy

(
∂u

∂x

)
x

.

The quantity of heat flowing out through the side CD in 1 sec is

= − kαΔx

(
∂u

∂y

)
y+Δy

;
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and the quantity of heat flowing out through the side BC in 1 sec is

= − kαΔy

(
∂u

∂x

)
x+Δx

.

Hence, the total gain of heat by the rectangular element ABCD in 1 sec
is

= −kαΔx

(
∂u

∂y

)
y

− kαΔy

(
∂u

∂x

)
x

+ kαΔx

(
∂u

∂y

)
y+Δy

+ kαΔy

(
∂u

∂x

)
x+Δx

= kαΔxΔy

⎡
⎢⎣
(

∂u
∂x

)
x+Δx

−
(

∂u
∂x

)
x

Δx
+

(
∂u
∂y

)
y+Δy

−
(

∂u
∂y

)
y

Δy

⎤
⎥⎦ .

(34.1)
Also the rate of gain of heat by the element is

= ρΔxΔyαs
∂u

∂t
. (34.2)

Thus, equating (34.1) and (34.2), dividing both sides by αΔxΔy, and taking
limits as Δx → 0, Δy → 0, we get

k

(
∂2u

∂x2
+

∂2u

∂y2

)
= ρs

∂u

∂t
,

which is the same as

∂u

∂t
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
, (34.3)

where c2 = k/(ρs) is the diffusivity coefficient.

Equation (34.3) gives the temperature distribution of the plate in the
transient state. In the steady state, u is independent of t, so that ut = 0
and the equation (34.3) reduces to

Δ2u = uxx + uyy = 0, (34.4)

which is the well-known Laplace equation in two dimensions. Since there
is no time dependence in (34.4), no initial conditions are required to be
satisfied by its solution u(x, y). However, certain boundary conditions on
the boundary of the region must be satisfied. Thus, a typical problem
associated with Laplace’s equation is a boundary value problem. A common
way is to specify u(x, y) at each point (x, y) on the boundary, which is known
as a Dirichlet problem.
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Now we shall use the method of separation of variables to solve the
Dirichlet problem on the rectangle R = 0 < x < a, 0 < y < b, i.e., find the
solution u(x, y) of (34.4) on R satisfying the boundary conditions

u(x, 0) = f(x), 0 < x < a (34.5)

u(x, b) = g(x), 0 < x < a (34.6)

u(0, y) = 0, 0 < y < b (34.7)

u(a, y) = 0, 0 < y < b. (34.8)

This problem is illustrated in Figure 34.2.

Figure 34.2

x

y

0 a

(a, b)b

Δ2u = 0

u(x, 0) = f(x)

u(x, b) = g(x)

u(0, y) = 0 u(a, y) = 0

We seek a solution of (34.4) in the form u(x, y) = X(x)Y (y) �= 0. Thus,
it follows that

X ′′(x)Y (y) + X(x)Y ′′(y) = 0,

or
X ′′(x)
X(x)

+
Y ′′(y)
Y (y)

= 0,

which is the same as

−X ′′(x)
X(x)

=
Y ′′(y)
Y (y)

= λ (constant).

Hence, we have
X ′′ + λX = 0, (34.9)

and the conditions (34.7) and (34.8) imply

X(0) = 0, X(a) = 0. (34.10)

Also Y satisfies the differential equation

Y ′′ − λY = 0. (34.11)

The eigenvalues and eigenfunctions of the problem (34.9), (34.10) are re-
spectively given by

λn =
n2π2

a2
, n = 1, 2, · · · (34.12)
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and
Xn(x) = sin

nπx

a
, n = 1, 2, · · · . (34.13)

For λ as given in (34.12) the general solution of the differential equation
(34.11) is

Yn(y) = an cosh
nπy

a
+ bn sinh

nπy

a
. (34.14)

Thus, the solution of (34.4) satisfying (34.7) and (34.8) can be written as

u(x, y) =
∞∑

n=1

(
an cosh

nπy

a
+ bn sinh

nπy

a

)
sin

nπx

a
. (34.15)

Now (34.15) satisfies (34.5) if and only if

f(x) =
∞∑

n=1

an sin
nπx

a
,

which gives

an =
2
a

∫ a

0

f(x) sin
nπx

a
dx, n = 1, 2, · · · . (34.16)

Finally, (34.15) satisfies (34.6) provided

g(x) =
∞∑

n=1

(
an cosh

nπb

a
+ bn sinh

nπb

a

)
sin

nπx

a
,

which gives

an cosh
nπb

a
+ bn sinh

nπb

a
=

2
a

∫ a

0

g(x) sin
nπx

a
dx

and therefore

bn sinh
nπb

a
=

2
a

∫ a

0

g(x) sin
nπx

a
dx − an cosh

nπb

a
,

which in view of (34.16) gives

bn =
1

sinh nπb
a

[
2
a

∫ a

0

g(x) sin
nπx

a
dx

−
(

cosh
nπb

a

)
2
a

∫ a

0

f(x) sin
nπx

a
dx

]
, n ≥ 1.

(34.17)

Hence, the solution of the boundary value problem (34.4)–(34.8) is given
by (34.15) where an and bn are as in (34.16) and (34.17), respectively.
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In particular, we shall solve the boundary value problem (34.4)–(34.8)
with f(x) = 0, g(x) = x, a = 1, b = 1. Clearly, from (34.16) and (34.17),
we have

an = 0, n ≥ 1

bn =
1

sinh nπ

[
2
∫ 1

0

x sin nπxdx

]

=
2

sinh nπ

[
−x cosnπx

nπ

]∣∣∣1
x=0

=
2(−1)n+1

nπ sinh nπ
.

Thus, the solution in this particular case is

u(x, y) =
∞∑

n=1

2(−1)n+1

nπ sinh nπ
sinh nπy sinnπx.

Next we note that as for the problem (34.4)–(34.8) the solution u(x, y)
of the Dirichlet problem (34.4) on the rectangle R satisfying the boundary
conditions

u(x, 0) = 0, 0 < x < a (34.18)

u(x, b) = 0, 0 < x < a (34.19)

u(0, y) = h(y), 0 < y < b (34.20)

u(a, y) = k(y), 0 < y < b (34.21)

(see Figure 34.3) can be written as

Figure 34.3

x

y

0 a

(a, b)b

Δ2u = 0

u(x, 0) = 0

u(x, b) = 0

u(0, y) = h(y) u(a, y) = k(y)

u(x, y) =
∞∑

n=1

(
αn cosh

nπx

b
+ βn sinh

nπx

b

)
sin

nπy

b
, (34.22)

where

αn =
2
b

∫ b

0

h(y) sin
nπy

b
dy, n = 1, 2, · · · (34.23)
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and

βn =
1

sinh nπa
b

[
2
b

∫ b

0

k(y) sin
nπy

b
dy

−
(
cosh

nπa

b

) 2
b

∫ b

0

h(y) sin
nπy

b
dy

]
, n = 1, 2, · · · .

(34.24)

In the particular case h(y) = Ay(b−y), k(y) = 0 this solution simplifies
to

u(x, y) =
8Ab2

π3

∞∑
n=0

1
(2n + 1)3

sinh (2n+1)π
b (a − x)

sinh (2n+1)π
b a

sin
(2n + 1)π

b
y.

Finally, from the linearity of the problem as well as by direct substitution
it is clear that if u1(x, y) is the solution of the problem (34.4)–(34.8) and
u2(x, y) is the solution of the problem (34.4), (34.18)–(34.21) then

u(x, y) = u1(x, y) + u2(x, y) (34.25)

is the solution of the Dirichlet problem (34.4) on the rectangle R satisfying
the boundary conditions (34.5), (34.6), (34.20), (34.21) (see Figure 34.4).

Figure 34.4

x

y

0 a

(a, b)b

Δ2u = 0

u(x, 0) = f(x)

u(x, b) = g(x)

u(0, y) = h(y) u(a, y) = k(y)

In particular we shall solve the boundary value problem (34.4), (34.5),
(34.6), (34.20), (34.21) with f(x) = x, g(x) = 0, h(y) = sin y, k(y) =
0, a = b = 1. From (34.16), (34.17), (34.23) and (34.24) it follows that

an =
2(−1)n+1

nπ
, bn =

2(−1)n

nπ
coth nπ

αn =
(−1)n+12nπ sin 1

2n2π2 − 1
, βn = − cothnπ

(−1)n+12nπ sin 1
2n2π2 − 1

.
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Thus, the solution in this case appears as

u(x, y) = u1(x, y) + u2(x, y)

=
∞∑

n=1

[
2(−1)n+1

nπ
coshnπy +

2(−1)n

nπ
coth nπ sinh nπy

]
sin nπx

+
∞∑

n=1

[
(−1)n+12nπ sin 1

2n2π2 − 1
coshnπx

− cothnπ
(−1)n+12nπ sin 1

2n2π2 − 1
sinhnπx

]
sin nπy.

Problems

34.1. Solve the Dirichlet problem (34.4)–(34.8) with

(i) a = 2, b = 1, f(x) = 0, g(x) = ex

(ii) a = 1, b = 1, f(x) = x, g(x) = sinπx

(iii) a = 2, b = 2, f(x) = ex, g(x) = 4 cosx.

34.2. Solve the Dirichlet problem (34.4), (34.18)–(34.21) with

(i) a = 1, b = 1, h(y) = 0, k(y) = (1/2) cos y

(ii) a = 1, b = 1, h(y) = (1/2) cos y, k(y) = 0
(iii) a = 1, b = 1, h(y) = ey, k(y) = y.

34.3. Solve the Dirichlet problem (34.4)–(34.6), (34.20), (34.21) with

(i) a = 1, b = 1, f(x) = x, g(x) = sinπx, h(y) = 0, k(y) = (1/2) cos y

(ii) a = 1, b = 1, f(x) = x, g(x) = sinπx, h(y) = (1/2) cos y, k(y) = 0
(iii) a = 1, b = 1, f(x) = sin πx, g(x) = x2, h(y) = sin y, k(y) = 0.

34.4. Show that Neumann boundary value problem Δ2u = 0, uy(x, 0)
= f(x), uy(x, b) = g(x), ux(0, y) = 0 = ux(a, y) has an infinite number of
solutions.

34.5. Solve the Laplace equation (34.4) in the rectangle R = 0 <
x < π, 0 < y < 1 subject to the mixed boundary conditions u(x, 0) =
T0 cosx, u(x, 1) = T0 cos2 x, ux(0, y) = 0, ux(π, y) = 0.

34.6. Solve the Laplace equation (34.4) in the rectangle R = 0 <
x < 1, 0 < y < 1 subject to the mixed boundary conditions u(x, 0) =
x2, uy(x, 1) = 0, ux(0, y) = 0, ux(1, y) = 0.
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34.7. Solve the Laplace equation (34.4) in the rectangle R = 0 <
x < 1, 0 < y < 1 subject to the mixed boundary conditions u(x, 0) =
0, uy(1/2)− x, uy(x, 1) = (1/2) − x, ux(0, y) = 0, ux(1, y) = 0.

34.8. A rectangular plate with insulated surface is a cm wide and
so long compared to its width that it may be considered infinite in length
without introducing an appreciable error. If the temperature of the short
edge y = 0 is given by f(x), 0 < x < a and the two edges x = 0, x = a
are kept at 0oC, determine the temperature at any point of the plate in the
steady state. In particular, solve this problem for

(i) f(x) = T0

(ii) f(x) = cx

(iii) a = 10, f(x) =
{

20x, 0 < x < 5
20(10 − x), 5 < x < 10.

Answers or Hints

34.1. (i)
∑∞

n=1
2nπ

(n2π2+4) sinh(nπ/2) [1 − (−1)ne2] sinh nπy
2 sin nπx

2

(ii)
[

2
π coshπy +

(
1 − 2 cosh π

π

)
sinh πy
sinh π

]
sin πx

+
∑∞

n=2
2(−1)n+1

nπ [coshnπy − cothnπ sinh nπy] sin nπx

(iii)
∑∞

n=1

{
2nπ

n2π2+4 (1 − (−1)ne2) cosh nπy
2 +
[

2nπ(1−(−1)n cos 2)
(n2π2−1) sinhnπ

− 2nπ(1−(−1)ne2)cothnπ
n2π2+4

]
sinh nπy

2

}
sin nπx

2 .

34.2. (i)
∑∞

n=1
1

sinh nπ
nπ(1−(−1)n cos 1)

n2π2−1 sinh nπx sin nπy

(ii)
∑∞

n=1
nπ(1−(−1)n cos 1)

n2π2−1 (cosh nπx − cothnπ sinh nπx) sin nπy

(iii)
∑∞

n=1

{
2nπ

n2π2+1 (1 − (−1)ne) coshnπx −
[

2(−1)n

nπ sinh nπ

+ 2nπcothnπ
n2π2+1 (1 − (−1)ne)

]
sinh nπx

}
sinnπy.

34.3. (i) u1(x, y) + u2(x, y) where u1 is the solution of Problem 34.1(ii)
and u2 is the solution of Problem 34.2(i) (ii) u1(x, y)+u2(x, y) where u1 is
the solution of Problem 34.1(ii) and u2 is the solution of Problem 34.2(ii)
(iii)
[
coshπy +

(
2
π − 8

π3 − coshπ
)

sinhπy
sinh π

]
sin πx

+
∑∞

n=2

[
2−n2π2

n3π3 (−1)n − 2
n3π3

]
2 sinh nπy
sinh nπ sin nπx

+
∑∞

n=1

{
(−1)n+12nπ sin 1

n2π2−1 [coshnπx − coth nπ sinh nπx]
}

sin nπy.

34.4. If u is a solution, then u + K is also a solution.
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34.5. T0

(
1
2y + sinh(1−y)

sinh 1 cosx + sinh 2y
2 sinh 2 cos 2x

)
.

34.6. 1
3 + 4

π2

∑∞
n=1

(−1)n

n2 cosh nπ coshnπ(1 − y) cosnπx.

34.7. u(x, y) = 4
π3

∑∞
n=0

1
(2n+1)3

sinh((2n+1)πy)
cosh((2n+1)π) cos((2n + 1)πx).

34.8. u(x, t) =
∑∞

n=1 e−nπy/a sin nπx
a , an = 2

a

∫ a

0 f(x) sin nπx
a dx,

(i) 4T0
π

∑∞
n=0

1
2n+1e−(2n+1)πy/a sin (2n+1)πx

a (ii) 2ca
π

∑∞
n=1

(−1)n+1

n ×
e−nπy/a sin nπx

a (iii) 800
π2

∑∞
n=1

(−1)n+1

(2n−1)2 e−(2n−1)πy/10 sin (2n−1)πx
10 .



Lecture 35
Laplace Equation

in Polar Coordinates

In this lecture we shall discuss the steady-state heat flow problem in a
disk. For this, it is convenient to consider the Laplace equation in polar
coordinates instead of rectangular coordinates.

Consider the steady-state heat conduction problem for a flat plate in
the shape of a circular disk with the boundary curve x2 + y2 = a2. In
what follows we assume that the plate is isotropic; i.e., the flat surfaces
are insulated, and that the temperature is known everywhere on the cir-
cular boundary. The temperature inside the disk is then a solution of the
Dirichlet problem (see Figure 35.1) consisting of Laplace’s equation in polar
coordinates (see Problem 35.1)

∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
= 0, 0 < r < a, − π < θ ≤ π (35.1)

and the boundary condition

u(a, θ) = f(θ), − π < θ ≤ π. (35.2)

Figure 35.1

f(θ)

0

θ

a

In problem (35.1), (35.2) we notice that r = 0 is not a physical boundary;
rather we recognize it as a “mathematical boundary,” and for a solution
u(r, θ) to be physically meaningful we need to impose at r = 0 the implicit
boundary condition

|u(0, θ)| < ∞; (35.3)

i.e., the solution remains bounded at the origin. We also wish to allow θ to
assume any value rather than restrict it to the interval −π < θ ≤ π, and
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hence we assume that f(θ), and consequently u(r, θ) to be periodic with
period 2π. Thus, we also need the conditions

u(r, π) = u(r,−π), 0 < r < a (35.4)

∂u

∂θ
(r, π) =

∂u

∂θ
(r,−π), 0 < r < a, (35.5)

which are actually continuity requirements along the slit θ = π. The prob-
lem (35.1)–(35.5) is often called as an interior problem.

To solve (35.1)–(35.5) we assume u(r, θ) = R(r)Θ(θ) �= 0. Clearly, equa-
tion (35.1) becomes

R′′Θ +
1
r
R′Θ +

1
r2

RΘ′′ = 0,

which gives
r2R′′ + rR′

R
= −Θ′′

Θ
= λ

and hence
Θ′′ + λΘ = 0, − π < θ ≤ π (35.6)

and
r2R′′ + rR′ − λR = 0, 0 < r < a. (35.7)

Now (35.4) implies
Θ(−π) = Θ(π), (35.8)

whereas (35.5) gives
Θ′(−π) = Θ′(π). (35.9)

For (35.6), (35.8), (35.9) we know that the eigenvalues and eigenfunc-
tions are
⎧⎨
⎩

λ0 = 0, Θ0 = 1

λn = n2 (n ≥ 1), Θn = cosnθ and sinnθ
(two linearly independent eigenfunctions).

(35.10)
Next for λ = 0, equation (35.7) is

r2R′′
0 + rR′

0 = 0 (35.11)

for which the auxiliary equation is m(m−1)+m = 0, or m2 = 0 and hence
m = 0, 0. Thus, two linearly independent solutions of (35.11) are 1 and
ln r. However, in view of (35.3) the solution ln r is discarded because of its
behavior at r = 0. Thus, we have

R0(r) = 1. (35.12)
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For λ = λn = n2, equation (35.7) is

r2R′′
n + rR′

n − n2Rn = 0 (35.13)

for which the auxiliary equation is m(m−1)+m−n2 = 0, or m2−n2 = 0 and
hence m = n,−n. Thus, two linearly independent solutions of (35.13) are
rn and r−n. However, since the solution r−n is unbounded as r approaches
zero, to fulfill condition (35.3) we need to discard it. Thus, we obtain

Rn(r) = rn. (35.14)

Therefore, the solution u(r, θ) can be written as

u(r, θ) =
a0

2
+

∞∑
n=1

rn(an cosnθ + bn sin nθ). (35.15)

This solution satisfies (35.2) if

u(a, θ) = f(θ) =
a0

2
+

∞∑
n=1

an(an cosnθ + bn sin nθ). (35.16)

Clearly, (35.16) is a Fourier trigonometric series, and hence

an =
1

πan

∫ π

−π

f(φ) cos nφdφ, n ≥ 0

bn =
1

πan

∫ π

−π

f(φ) sin nφdφ, n ≥ 1.

(35.17)

In conclusion the solution of (35.1)–(35.5) can be written as (35.15), where
an and bn are given in (35.17).

As an example we shall solve (35.1)–(35.5) with

f(θ) =

⎧⎪⎨
⎪⎩

0, − π < θ < −π/2
1, − π/2 < θ < π/2

0, π/2 < θ < π.

From (35.17), we have

a0 =
1
π

∫ π/2

−π/2

1 · dφ =
1
π
· π = 1

an =
1

πan

∫ π/2

−π/2

1 · cosnφdφ =
1

πan

sin nφ

n

∣∣∣∣
π/2

−π/2

=
1

nπan

[
sin

nπ

2
− sin
(
−nπ

2

)]
=

2 sin(nπ/2)
nπan
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bn =
1

πan

∫ π/2

−π/2

1 · sin nφdφ =
1

nπan
cosnφ

∣∣∣∣
π/2

−π/2

= 0.

Hence, the solution of (35.1)–(35.5) in this particular case is

u(r, θ) =
1
2

+
∞∑

n=1

2 sin(nπ/2)
nπ

rn

an
cosnθ.

Now in (35.15) we substitute the coefficients an, bn from (35.17), inter-
change the order of summation and integration, and use some elementary
identities, to get

u(r, θ) =
1
2π

∫ π

−π

f(φ)dφ +
1
π

∞∑
n=1

rn

an

[
cosnθ

(∫ π

−π

f(φ) cos nφdφ

)

+ sinnθ

(∫ π

−π

f(φ) sin nφdφ

)]

=
1
π

∫ π

−π

f(φ)

[
1
2

+
∞∑

n=1

rn

an
(cos nθ cosnφ + sin nθ sin nφ)

]
dφ

=
1
π

∫ π

−π

f(φ)

[
1
2

+
∞∑

n=1

rn

an
cosn(θ − φ)

]
dφ

=
1
π

∫ π

−π

f(φ)

[
1
2

+
∞∑

n=1

rn

an

1
2

(
en(θ−φ)i + e−n(θ−φ)i

)]
dφ

=
1
2π

∫ π

−π

f(φ)

[
1 +

∞∑
n=1

{( r

a
e(θ−φ)i

)n
+
( r

a
e−(θ−φ)i

)n}]
dφ.

Now since |eiψ| = 1, for r < a we can sum the geometric series, to obtain

u(r, θ) =
1
2π

∫ π

−π

f(φ)

[
1 +

r
ae(θ−φ)i

1 − r
ae(θ−φ)i

+
r
ae−(θ−φ)i

1 − r
ae−(θ−φ)i

]
dφ,

which is the same as

u(r, θ) =
(a2 − r2)

2π

∫ π

−π

f(φ)
a2 + r2 − 2ra cos(θ − φ)

dφ, r < a. (35.18)

This formula is called the Poisson integral formula. It shows that the tem-
perature at any interior point (r, θ) of the disk of radius a may be obtained
by integrating the boundary temperatures according to the formula (35.18).
In particular, if r = 0, then the temperature at the center of the disk is

u(0, θ) =
1
2π

∫ π

−π

f(φ)dφ, (35.19)
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i.e., the temperature at the center is the integral average of the boundary
temperatures. This fact is called the mean value theorem and holds for all
functions that satisfy Laplace’s equation on the disk.

Now we shall find the solution of the Laplace equation (35.1) outside
the disk r = a (see Figure 35.2). For this, again we assume that the
conditions (34.2), (35.4), (35.5) are satisfied, but the condition (35.3) has
to be replaced by

lim
r→∞

|u(r, θ)| < ∞. (35.20)

Figure 35.2

0

θ

a
f(θ)

Clearly, for this exterior problem also all the steps remain the same as
for the case r < a, except that the solution of (35.13) which satisfies the
condition (35.20) is now r−n. This change leads to the solution

u(r, θ) =
α0

2
+

∞∑
n=1

r−n(αn cosnθ + βn sin nθ), (35.21)

where
αn =

an

π

∫ π

−π

f(φ) cosnφdφ, n ≥ 0

βn =
an

π

∫ π

−π

f(φ) sin nφdφ, n ≥ 1.

(35.22)

As an example, we let a = 1, and

f(θ) =
{

1, − π < θ < 0
θ, 0 < θ < π.

Then, from Example 19.3, we have

a0 = α0 = 1+
π

2
, an = αn =

(−1)n − 1
πn2

, bn = βn =
−1 + (1 − π)(−1)n

nπ
.
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Thus, the solution of the interior problem can be written as

u(r, θ) =
1 + π

2

2
+

∞∑
n=1

rn

(
(−1)n − 1

πn2
cosnθ +

−1 + (1−π)(−1)n

nπ
sin nθ

)
,

−π < θ < π

whereas the solution of the exterior problem is

u(r, θ) =
1 + π

2

2
+

∞∑
n=1

r−n

(
(−1)n−1

πn2
cosnθ +

−1+(1−π)(−1)n

nπ
sin nθ

)
,

−π < θ < π.

Finally, comparing (35.15), (35.17) with (35.21), (35.22) we see that
the only difference between the two sets of formulas is that r and a are
replaced by r−1 and a−1. Thus, with this change the Poisson’s formula for
the exterior problem appears as

u(r, θ) =
(r2 − a2)

2π

∫ π

−π

f(φ)
a2 + r2 − 2ra cos(θ − φ)

dφ, r > a. (35.23)

Problems

35.1. Make the change of variables x = r cos θ, y = r sin θ to show
that Laplace’s equation (34.4) in rectangular coordinates becomes

∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
= 0

in polar coordinates.

35.2. A circular plate of unit radius, whose faces are insulated, has
upper half of its boundary kept at constant temperature T1 and the lower
half at constant temperature T2. Find the steady-state temperature of the
plate.

35.3. Solve the Dirichlet problem (35.1)–(35.5) when

(i) f(θ) =
1
2
(1 + cos θ), − π < θ < π

(ii) f(θ) =
1
2
(1 + cos3 θ), − π < θ < π

(iii) f(θ) = |θ|, − π < θ < π

(iv) f(θ) =

{
cos θ, − π/2 < θ < π/2

0, otherwise.
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35.4. Show that a necessary condition for the existence of a solution
to the Neumann problem (35.1),

∂u

∂r
(a, θ) = f(θ), − π < θ ≤ π (35.25)

is that
∫ π

−π

f(φ)dφ = 0,

i.e., the mean value of the normal derivative on the boundary is zero.

35.5. Solve the Laplace equation (35.1) in the wedge with three sides
θ = 0, θ = β, and r = a (see Figure 35.3) and the boundary conditions
u(r, 0) = 0 = u(r, β), 0 < r < a, and (35.2) for 0 < θ < β.

Figure 35.3

u = 0

u = 0 f(θ)

β

0

35.6. Solve the same problem as in Problem 35.5 with condition (35.2)
replaced by the Neumann condition (35.25) for 0 < θ < β.

35.7. The diameter of a semi-circular plate of radius a is kept at 0oC
and the temperature at the semi-circular boundary at T oC. Show that the
steady–state temperature in the plate is given by

u(r, θ) =
4T

π

∞∑
n=1

1
2n − 1

( r

a

)2n−1

sin(2n − 1)θ.

35.8. A semi-circular plate of radius a has its circumference kept
at temperature kθ(π − θ), while the boundary diameter is kept at zero
temperature. Find the steady-state temperature distribution u(r, θ) of the
plate, assuming the lateral surfaces of the plate to be insulated.

35.9. Solve the Laplace equation (35.1) in the annulus 0 < a2 <
x2 + y2 < b2 (see Figure 35.4) with the Dirichlet conditions u(a, θ) =
f(θ), u(b, θ) = g(θ), − π < θ < π.
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Figure 35.4

a
0

b

u=f

u=g

Further, show that in the particular case f(θ) = T0, g(θ) = T1 the solution
reduces to

u(r, θ) = T0 +
ln r/a

ln b/a
(T1 − T0).

35.10. The velocity potential function u(r, θ) for steady flow of an
ideal fluid around a cylinder of radius r = a satisfies (35.1) for r > a with
the boundary conditions

ur(a, θ) = 0, u(r, θ) = u(r,−θ)

lim
r→∞

[u(r, θ) − U0r cos θ] = 0.

Find its solution and the components of the velocity.

35.11. From the real part of the solution of Laplace’s equation in two
independent variables

f(x + iy) =
aeiφ + x + iy

aeiφ − (x + iy)

show that Poisson’s integral

a2 − r2

2π

∫ 2π

0

V (φ)
a2 + r2 − 2ar cos(θ − φ)

dφ,

where x = r cos θ, y = r sin θ and V is an arbitrary function, is a solution.

Answers or Hints

35.1. Verify directly.

35.2. T1+T2
2 + 2

π (T1 − T2)
∑∞

n=1
1

2n−1r2n−1 sin(2n − 1)θ

= T1+T2
2 + T1−T2

π tan−1
(

2r sin θ
1−r2

)
.
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35.3. (i) 1
2

(
1 + r

a cos θ
)

(ii) 1
2

(
1 + 3

4
r
a cos θ + 1

4
r3

a3 cos 3θ
)

(iii) π
2 +∑∞

n=1
2((−1)n−1)

πn2
rn

an cosnθ (iv) 1
π + 1

2a cos θ +
∑∞

n=2
2 sin(n−1)π/2

π(n2−1)
rn

an cosnθ.

35.4. Use Green’s theorem
∫∫

S(fΔ2g − gΔ2f)dS =
∫
Γ

(
f ∂g

∂n − g ∂f
∂n

)
ds.

35.5. u(r, θ) =
∑∞

n=1 Anrnπ/β sin nπ
β θ, An = 2

β a−nπ/β
∫ β

0 f(φ) sin nπ
β φdφ.

35.6. u(r, θ) =
∑∞

n=1Anrnπ/β sin nπ
β θ, An = 2

nπ a1−nπ/β
∫ β

0
f(φ) sin nπ

β φdφ.

35.7. Use Problem 35.5.

35.8. u(r, θ) = 8k
π

∑∞
n=1

1
(2n−1)3

(
r
a

)2n−1 sin(2n − 1)θ.

35.9. u(r, θ) = 1
2 (c0+d0 ln r)+

∑∞
n=1(anrn+dnr−n)(An cosnθ+Bn sin nθ),

where the unknowns are determined by using the boundary conditions.

35.10.u(r, θ) = U0
r (r2+a2) cos θ, ux = U0

r2 (r2−a2 cos 2θ), uy = −U0
r2 a2 sin 2θ.

35.11.Verify directly.



Lecture 36
Two-Dimensional
Heat Equation

In this lecture we shall use the method of separation of variables to
find the temperature distribution of rectangular and circular plates in the
transient state.

Suppose that for a thin rectangular plate which occupies the plane re-
gion 0 ≤ x ≤ a, 0 ≤ y ≤ b, the top and bottom faces are insulated, and
that its four edges are held at zero temperature. If the plate has the ini-
tial temperature function u(x, y, 0) = f(x, y), then in the transient state
its temperature function u(x, y, t) is the solution of the following initial-
boundary value problem (see Lecture 34):

ut = c2 (uxx + uyy) , 0 < x < a, 0 < y < b, t > 0, c > 0 (36.1)

u(x, y, 0) = f(x, y), 0 < x < a, 0 < y < b (36.2)

u(x, 0, t) = 0, u(x, b, t) = 0, 0 < x < a, t > 0 (36.3)

u(0, y, t) = 0, u(a, y, t) = 0, 0 < y < b, t > 0. (36.4)

We shall find the solution of (36.1)–(36.4) by the method of separation
of variables. For this, we assume that

u(x, y, t) = φ(x, y)T (t) �= 0 (36.5)

so that
(φxx + φyy)T =

1
c2

φT ′

and hence on dividing by φT, we get

(φxx + φyy)
1
φ

=
T ′

c2T
.

Arguing as before the common value of the members of this equation
must be a constant, which we take to be −λ2. The equations that result
are

φxx + φyy = −λ2φ, 0 < x < a, 0 < y < b (36.6)

T ′ + λ2c2T = 0, t > 0. (36.7)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 36,
c© Springer Science+Business Media, LLC 2009
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It is also clear that (36.3) implies

φ(x, 0) = 0, φ(x, b) = 0, (36.8)

whereas (36.4) implies

φ(0, y) = 0, φ(a, y) = 0. (36.9)

Next to solve (36.6), (36.8), (36.9) we assume φ(x, y) = X(x)Y (y), to
obtain

X ′′(x)
X(x)

+
Y ′′(y)
Y (y)

= −λ2, 0 < x < a, 0 < y < b.

The sum of a function of x and a function of y can be constant only if these
two functions are individually constant, i.e.,

X ′′

X
= constant,

Y ′′

Y
= constant.

We assume that

X ′′

X
= −μ2 and

Y ′′

Y
= −ν2, (i.e., λ2 = μ2 + ν2)

so that
X ′′ + μ2X = 0 (36.10)

Y ′′ + ν2Y = 0. (36.11)

From (36.8) and (36.9) it also follows that

X(0) = 0, X(a) = 0 (36.12)

Y (0) = 0, Y (b) = 0. (36.13)

For (36.10), (36.12) the eigenvalues and eigenfunctions are

μ2
m =

m2π2

a2
, Xm(x) = sin

mπx

a
, m = 1, 2, · · · . (36.14)

Similarly, the eigenvalues and eigenfunctions of (36.11), (36.13) are

ν2
n =

n2π2

b2
, Yn(y) = sin

nπy

b
, n = 1, 2, · · · . (36.15)

Notice that the indices n and m are independent. This means that φ will
have a double index. Thus, a solution of (36.6), (36.8), (36.9) can be written
as

φmn(x, y) = Xm(x)Yn(y), λ2
mn = μ2

m + ν2
n. (36.16)

For λ = λmn, equation (36.7) takes the form

T ′
mn + λ2

mnc2Tmn = 0,
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which gives
Tmn(t) = exp

(
−λ2

mnc2t
)
. (36.17)

Hence, in view of (36.5), (36.16), and (36.17), the solution u(x, y, t) of (36.1)
satisfying (36.3) and (36.4) can be written as

u(x, y, t) =
∞∑

m=1

∞∑
n=1

amn sin
mπx

a
sin

nπy

b
exp
(
−λ2

mnc2t
)
, (36.18)

where

λ2
mn =

m2π2

a2
+

n2π2

b2
. (36.19)

Finally, this solution satisfies (36.2) if and only if

f(x, y) = u(x, y, 0) =
∞∑

m=1

∞∑
n=1

amn sin
mπx

a
sin

nπy

b
. (36.20)

Multiplying (36.20) by sin(pπx/a) and integrating over [0, a] gives

∫ a

0

f(x, y) sin
pπx

a
dx =

∞∑
m=1

∞∑
n=1

amn

(∫ a

0

sin
mπx

a
sin

pπx

a
dx

)
sin

nπy

b
.

However, since
∫ a

0

sin
mπx

a
sin

pπx

a
dx =
{

a/2 if m = p

0 if m �= p

it follows that
∫ a

0

f(x, y) sin
pπx

a
dx =

∞∑
n=1

apn
a

2
sin

nπy

b
. (36.21)

Now multiplying (36.21) by sin(qπy/b) and integrating over [0, b], we find

∫ b

0

(∫ a

0

f(x, y) sin
pπx

a
dx

)
sin

qπy

b
dy =

∞∑
n=1

apn
a

2

∫ b

0

sin
nπy

b
sin

qπy

b
dy,

which is the same as
∫ a

0

∫ b

0

f(x, y) sin
pπx

a
sin

qπy

b
dxdy =

a

2
· b

2
apq

and hence

amn =
4
ab

∫ a

0

∫ b

0

f(x, y) sin
mπx

a
sin

nπy

b
dxdy. (36.22)
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Therefore, the solution of (36.1)–(36.4) appears as (36.18) where amn

are given by (36.22).

In particular, we shall find the solution of (36.1)–(36.4) with a = b =
π, c = 1 and f(x, y) = xy. Clearly, from (36.22) we have

amn =
4
π2

∫ π

0

∫ π

0

xy sinmx sin nydxdy

=
4
π2

· π(−1)m+1

m
· π(−1)n+1

n
=

4(−1)m+n

mn
.

Hence, in view of (36.18), (36.19) the solution in this case is

u(x, y, t) =
∞∑

m=1

∞∑
n=1

4(−1)m+n

mn
sin mx sin ny e−(m2+n2)t.

Now we shall consider the heat equation (36.1) on a circular plate 0 <
x2 + y2 < a2. From Problem 35.1 it follows that (36.1) in polar coordinates
can be written as

ut = c2

(
urr +

1
r
ur +

1
r2

uθθ

)
, 0 < r < a, −π < θ ≤ π, t > 0, c > 0.

(36.23)
We will find the solution of (36.23) subject to the initial and boundary
conditions u(r, θ, 0) = f(r) and u(a, θ, t) = 0. Since these two conditions
are independent of θ, we must expect that u will also be independent of θ,
i.e., u = u(r, t). Thus, the problem we wish to solve is—

ut = c2

(
urr +

1
r
ur

)
, 0 < r < a, −π < θ ≤ θ, t > 0, c > 0 (36.24)

u(r, 0) = f(r), 0 < r < a (36.25)

u(a, t) = 0, t > 0 (36.26)

|u(0, t)| < ∞, t > 0. (36.27)

Let u = u(r, t) = R(r)T (t) �= 0 in equation (36.24), to obtain

T ′

c2T
=

R′′ + 1
r R′

R
= −λ2,

which leads to the ordinary DEs

rR′′ + R′ + rλ2R = 0 (36.28)

and
T ′ + c2λ2T = 0. (36.29)
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Note that (36.28) is the Bessel equation of order zero (see Problem 9.5),
and hence its solution is

R(r) = AJ0(λr) + BJ0(λr). (36.30)

In view of (36.26) and (36.27) we need this solution to satisfy

R(a) = 0 (36.31)

|R(0)| bounded. (36.32)

However, since J0(λr) → ∞ as r → 0, condition (36.32) implies that in
(36.30) the constant B must be zero. Now the condition (36.31) is satisfied
provided AJ0(λa) = 0, i.e., λa should be a root of the equation J0(α) = 0.
The function J0(α) has infinitely many positive zeros, which we write as
αn, n = 1, 2, · · · . Thus, the solution of (36.28), (36.31), (36.32) can be
written as

R(r) = J0(λnr), λn =
αn

a
, n = 1, 2, · · · . (36.33)

Now with λ2 = λ2
n the solution of equation (36.29) appears as

Tn(t) = e−λ2
nc2t. (36.34)

Hence, the general solution of (36.24), (36.26), (36.27) is

u(r, t) =
∞∑

n=1

Ane−λ2
nc2tJ0(λnr). (36.35)

This solution satisfies the condition (36.25) if and only if

f(r) =
∞∑

n=1

AnJ0(λnr). (36.36)

To determine the unknowns An, n = 1, 2, · · · we recall the orthogonality of
the Bessel functions. We multiply (36.36) by J0(λmr)r and integrate over
0 to a, to obtain

∫ a

0

f(r)J0(λmr)rdr = Am

∫ a

0

J2
0 (λmr)rdr;

and hence in view of (13.7), we have

An =

∫ a

0 f(r)J0(λnr)rdr∫ a

0 J2
0 (λnr)rdr

=
2
∫ a

0 f(r)J0(λnr)rdr

a2J2
1 (λna)

, n = 1, 2, · · · . (36.37)

In conclusion, the series (36.35) where An given by (36.37) is the solution
of the initial-boundary value problem (36.24)–(36.27).
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When f(r) = u0, we can use Problem 9.2(v), to get

An =
2u0

λnaJ1(λna)
;

and hence in this particular case the solution (36.35) reduces to

u(r, t) = 2u0

∞∑
n=1

1
λnaJ1(λna)

e−λ2
nc2tJ0(λnr).

Problems

36.1. Find the solution of the initial-boundary value problem (36.1)–
(36.4) when

(i) a = b = π, c = 1 and f(x, y) = sin x sin 2y

(ii) a = b = π, c = 1 and f(x, y) = x + y.

36.2. Find the solution of the initial-boundary value problem (36.1),
(36.2)

uy(x, 0, t) = 0, uy(x, b, t) = 0, 0 < x < a, t > 0

ux(0, y, t) = 0, ux(a, y, t) = 0, 0 < y < b, t > 0.
(36.38)

36.3. Find the solution of the initial-boundary value problem (36.1),
(36.2)

u(x, 0, t) = 0, u(x, b, t) = 0, 0 < x < a, t > 0

ux(0, y, t) = 0, ux(a, y, t) = 0, 0 < y < b, t > 0.
(36.39)

36.4. Find the solution of the initial-boundary value problem (36.1),
(36.2)

uy(x, 0, t) = 0, uy(x, b, t) = 0, 0 < x < a, t > 0

u(0, y, t) = 0, ux(a, y, t) = 0, 0 < y < b, t > 0.
(36.40)

36.5. Find the solution of the initial-boundary value problem (36.1),
(36.2)

u(x, 0, t) = 0, uy(x, b, t) = 0, 0 < x < a, t > 0

u(0, y, t) = 0, ux(a, y, t) = 0, 0 < y < b, t > 0.
(36.41)

36.6. Find the solution of the initial-boundary value problem (36.24),
(36.25), (36.27), and ur(a, t) = 0. In particular, show that when f(r) = u0,
then u(r, t) ≡ u0.
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36.7. Assume that a circular plate of radius a has insulated faces and
heat capacity s calories per degree per square centimeter. Find u(r, t) by
solving (36.24)–(36.27) when

f(r) =

⎧⎨
⎩

q0

sπε2
, 0 < r < ε

0, ε < r < a.

Further, use the fact that J1(x)/x → 1/2 as x → 0 to find the limiting
solution as ε → 0.

36.8. Find the solution of the initial–boundary value problem (36.24),
(36.25), (36.27), and hu(a, t) + kur(a, t) = 0, h > 0, k > 0. In particular,
find the solution when f(r) = u0.

36.9. Let u(r, t) be the temperature in a thin circular plate whose
edge, r = 1 is kept at temperature u = 0, and whose initial temperature
is u = 1, when there is surface heat transfer from the circular faces to
surroundings at temperature zero. The heat equation can then be written
as

ut = urr +
1
r
ur − hu,

where h is a positive constant. Find the series expansion of u(r, t).

Answers or Hints

36.1. (i) u(x, y, t) = e−5t sin x sin 2y (ii) u(x, y, t) =
∑∞

m=1

∑∞
n=1

4
πmn×

e−(m2+n2)t {−(−1)m − (−1)n + 2(−1)n+m} sinmx sin ny.

36.2. u(x, y, t) =
∑∞

m=0

∑∞
n=0 amn cos mπx

a cos nπy
b exp (−λ2

mnc2t), λ2
mn =

m2π2

a2 + n2π2

b2 .

36.3. u(x, y, t) =
∑∞

m=0

∑∞
n=1 amn cos mπx

a sin nπy
b exp (−λ2

mnc2t), λ2
mn =

m2π2

a2 + n2π2

b2 .

36.4. u(x, y, t) =
∑∞

m=0

∑∞
n=0 amn sin (2m+1)πx

2a cos nπy
b exp (−λ2

mnc2t),

λ2
mn = (2m+1)2π2

4a2 + n2π2

b2 .

36.5. u(x, y, t) =
∑∞

m=0

∑∞
n=0amn sin (2m+1)πx

2a sin (2n+1)πy
2b exp (−λ2

mnc2t),

λ2
mn = (2m+1)2π2

4a2 + (2n+1)2π2

4b2 .

36.6. u(r, t) = B0 +
∑∞

n=1 Bne−λ2
nc2tJ0(λnr), where λn = αn/a, αn is a

positive root of J ′
0(α) = 0, B0 = 2

a2

∫ a

0 rf(r)dr, Bn =
2
∫ a

0
f(r)J0(λnr)rdr

a2J2
0 (λna)

,
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use J1(αn) = −J ′
0(αn) = 0.

36.7. 2q0
sπa2

∑∞
n=1

1
J2
1 (λna)

J1(λnε)
(λnε) e−λ2

nc2tJ0(λnr) −→ q0
sπa2

∑∞
n=1

1
J2
1 (λna)

×
e−λ2

nc2tJ0(λnr) where λn = αn/a and αn is a positive root of J0(α) = 0.

36.8. u(r, t) =
∑∞

n=1 Cne−λ2
nc2tJ0(λnr), where λn = αn/a, αn is a positive

root of HJ0(α) + αJ ′
0(α) = 0, H = ah/k, Cn =

2λ2
n

∫ a

0
f(r)J0(λnr)rdr

(λ2
na2+H2)J2

0 (λna)
,

u(r, t) = 2u0

∑∞
n=1

λnaJ1(λna)
(λ2

na2+H2)J2
0 (λna)

e−λ2
nc2tJ0(λnr).

36.9. u(r, t) = 2e−ht
∑∞

j=1
J0(λjr)
λjJ1(λj)e

−λ2
j t, where λj are the positive roots

of J0(λ) = 0.



Lecture 37
Two-Dimensional
Wave Equation

Using the method of separation of variables in this lecture we shall
find vertical displacements of thin membranes occupying rectangular and
circular regions.

The vertical displacement u(x, y, t) of a thin rectangular membrane,
which is homogeneous, perfectly flexible, maintained in a state of uniform
tension, and occupying the plane region 0 ≤ x ≤ a, 0 ≤ y ≤ b satisfies the
two-dimensional wave equation

utt = c2(uxx + uyy), 0 < x < a, 0 < y < b, c > 0, (37.1)

where the positive constant c depends on the tension and physical properties
of the membrane. If all four edges of the membrane are fixed, and it is given
the initial shape f(x, y) and released with velocity g(x, y), then u(x, y, t)
satisfies the initial conditions (36.2),

ut(x, y, 0) = g(x, y), 0 < x < a, 0 < y < b (37.2)

and the boundary conditions (36.3), (36.4).

Following exactly as in Lecture 36, the solution of the initial-boundary
value problem (37.1), (36.2), (37.2), (36.3), (36.4) can be written as

u(x, y, t) =
∞∑

m=1

∞∑
n=1

(amn cosλmnct + bmn sin λmnct) sin
mπx

a
sin

nπy

b
,

(37.3)
where λmn and amn are the same as in (36.19) and (36.22), and

bmn =
4

abcλmn

∫ a

0

∫ b

0

g(x, y) sin
mπx

a
sin

nπy

b
dxdy. (37.4)

Now we shall consider the motion of a vibrating circular membrane that
is clamped along its edge. We assume that the center of the membrane is at
the origin of a polar coordinate system and the edge of the membrane lies
on the circle r = a. Let u(r, θ, t) represent the displacement of a point (r, θ)
of the membrane at time t. Again we assume that the membrane in thin,
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homogeneous, perfectly flexible, maintained in a state of uniform tension,
and subject to no external forces. Under these assumptions the equation
of motion of the membrane is

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
=

1
c2

∂2u

∂t2
, 0 < r < a, −π < θ ≤ π, t > 0. (37.5)

Since the membrane is clamped along its edge, we have

u(a, θ, t) = 0 (37.6)

for all θ and positive t.

We assume that the membrane is set into motion by displacing its equi-
librium position. Since there are no external forces, we can assume that
there are possible modes of vibration in which the motion of each point is
periodic. A normal mode of vibration is one in which all points of the mem-
brane vibrate with the same period and pass through their equilibrium
positions at the same time. We shall search for normal modes of vibra-
tion by considering possible displacement function of the form u(r, θ, t) =
v(r, θ) cos(ωt + d), where ω and d are some constants.

Since the membrane is circular, the function v must be periodic in θ
with period 2π. For simplicity, we assume that v(r, θ) = R(r) cos nθ, where
n is a nonnegative integer. Thus, it follows that

u(r, θ, t) = R(r) cos(nθ) cos(ωt + d).

A substitution of this choice of u into (37.5) and (37.6) yields

r2 d2R

dr2
+ r

dR

dr
+
[(ω

c

)2
r2 − n2

]
R = 0, R(a) = 0. (37.7)

From the considerations in Lecture 9, the general solution of the Bessel
DE in (37.7) can be written as

R(r) = AJn

(ω
c

r
)

+ BJ−n

(ω
c

r
)

, (37.8)

where A and B are arbitrary constants. Clearly, from the physical rea-
sons the displacement at the origin should be bounded; however, since
limr→0 |J−n(ωr/c)| → ∞, we must have B = 0. Finally, the condition
R(a) = 0 is satisfied provided

0 = R(a) = AJn

(ω
c
a
)

.

Thus, the constant ω = c bn,p/a, where bn,p is a root of Jn(x). Hence, any
function of the form

u(r, θ, t) = AJn

(
bn,p

a
r

)
cos(nθ) cos

(
c bn,p

a
t + d

)

gives a normal mode of vibration for the circular membrane.
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Now we shall consider the vibrations of a circular membrane governed
by the initial-boundary value problem (37.5),

u(r, θ, 0) = f(r, θ), 0 < r < a, − π < θ ≤ π (37.9)

∂u

∂t
(r, θ, 0) = g(r, θ), 0 < r < a, − π < θ ≤ π (37.10)

u(a, θ, t) = 0, t > 0, − π < θ ≤ π (37.11)

|u(0, θ, t)| < ∞, t > 0, − π < θ ≤ π (37.12)

u(r,−π, t) = u(r, π, t), 0 < r < a, t > 0 (37.13)

∂u

∂θ
(r,−π, t) =

∂u

∂θ
(r, π, t), 0 < r < a, t > 0. (37.14)

Clearly, this problem is a two-dimensional analog of (35.1)–(35.5).
We assume that u(r, θ, t) has the product form

u(r, θ, t) = φ(r, θ)T (t) �= 0, (37.15)

which leads to the equations

1
r

∂

∂r

(
r
∂φ

∂r

)
+

1
r2

∂2φ

∂θ2
= −λ2φ, 0 < r < a, − π < θ ≤ π (37.16)

and
T ′′ + λ2c2T = 0, t > 0. (37.17)

Next we assume that φ(r, θ) = R(r)Θ(θ) �= 0, so that (37.16) takes the
form

1
r
(rR′)′Θ +

1
r2

RΘ′′ = −λ2RΘ.

In this equation the variables can be separated if we multiply by r2 and
divide it by RΘ. Indeed, we get

r(rR′)′

R
+ λ2r2 = −Θ′′

Θ
= μ2,

which gives two differential equations

Θ′′ + μ2Θ = 0, − π < θ ≤ π (37.18)

and

(rR′)′ − μ2

r
R + λ2rR = 0, 0 < r < a. (37.19)

Clearly, in view of (37.13) and (37.14) we need to solve (37.18) with the
boundary conditions

Θ(−π) = Θ(π) (37.20)
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Θ′(−π) = Θ′(π). (37.21)

Further, equation (37.19) can be written as

rR′′ + R′ − μ2

r
R + λ2rR = 0,

or
r2R′′ + rR′ + (λ2r2 − μ2)R = 0. (37.22)

Note that (37.22) is the Bessel equation (2.15). In view of (37.11) and
(37.12) we need to solve (37.22) with the conditions

R(a) = 0 (37.23)

|R(0)| bounded. (37.24)

For the problem (37.18), (37.20), (37.21) we know the eigenvalues and eigen-
functions are

μ2
0 = 0, Θ0 = 1

μ2
m = m2, Θm(θ) = cosmθ and sinmθ, m = 1, 2, · · · .

(37.25)

From the considerations of Lecture 9 we note that for μ2 = μ2
m = m2 the

solution of (37.22) can be written as

Rm(r) =

{
AJm(λr) + BJ−m(λr) if m > 0

AJ0(λr) + BJ0(λr) if m = 0.

However, since J−m(λr) as well as J0(λr) → ∞ as r → 0, in Rm(r) the
constant B must be zero. So, we find that

Rm(r) = Jm(λr), m = 0, 1, · · · . (37.26)

Now this solution satisfies (37.23) if and only if

Rm(a) = Jm(λa) = 0,

i.e., λa must be a root of the equation Jm(α) = 0. However, we know that
for each m, Jm(α) = 0 has an infinite number of roots which we write as
αm1, αm2, · · · , αmn, · · · .

In conclusion, the solution of (37.19), (37.23), (37.24) appears as

R(r) = Jm(λmnr), (37.27)

where
λmn =

αmn

a
, m = 0, 1, 2, · · · , n = 1, 2, · · · . (37.28)
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From (37.25) and (37.27) it is clear that φ(r, θ) takes the form

⎧⎨
⎩

Jm(λmnr) cos mθ, Jm(λmnr) sin mθ, m = 1, 2, · · · , n = 1, 2, · · ·
and

J0(λ0nr).
(37.29)

Now for λ2 = λ2
mn equation (37.17) can be written as

T ′′
mn + λ2

mnc2Tmn = 0

for which solutions are cos(λmnct) and sin(λmnct). Thus, the solutions of
(37.5) satisfying (37.11) – (37.14) appear as

J0(λ0nr) cos(λ0nct), J0(λ0nr) sin(λ0nct)

Jm(λmnr) cos mθ cos(λmnct), Jm(λmnr) cos mθ sin(λmnct)

Jm(λmnr) sin mθ cos(λmnct), Jm(λmnr) sin mθ sin(λmnct).

Hence, the general solution of (37.5), (37.11) – (37.14) is

u(r, θ, t) =
∑

n

a0nJ0(λ0nr) cos(λ0nct)

+
∑
m,n

amnJm(λmnr) cosmθ cos(λmnct)

+
∑
m,n

bm,nJm(λmnr) sin mθ cos(λmnct)

+
∑

n

A0nJ0(λ0nr) sin(λ0nct)

+
∑
m,n

AmnJm(λmnr) cos mθ sin(λmnct)

+
∑
m,n

BmnJm(λmnr) sin mθ sin(λmnct).

(37.30)

This solution satisfies the condition (37.9) if and only if

f(r, θ) =
∑

n

a0nJ0(λ0nr) +
∑
m,n

amnJm(λmnr) cos mθ

+
∑
m,n

bmnJm(λmnr) sin mθ, 0 < r < a, − π < θ ≤ π.

(37.31)
Now recalling the orthogonality of the Bessel functions and the set {1,
cosmθ, sin nθ}, we can find unknowns a0n, amn, bmn from the above rela-
tion. For example, if we multiply (37.31) by rJ0(λ0pr) and integrate over
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0 to a with respect to r, and integrate over −π to π with respect to θ, we
obtain ∫ π

−π

∫ a

0

f(r, θ)J0(λ0pr)rdrdθ = a0p2π

∫ a

0

J2
0 (λ0pr)rdr

and hence

a0n =

∫ π

−π

∫ a

0
f(r, θ)J0(λ0nr)rdrdθ

2π
∫ a

0
J2

0 (λ0nr)rdr
, n = 1, 2, · · · .

Finally, we remark that the constants Amn, m = 0, 1, 2, · · · , n = 1, 2, · · ·
and Bmn, m = 1, 2, · · · , n = 1, 2, · · · can be calculated by using the condi-
tion (37.10).

In the particular case when the initial displacements are functions of r
alone, from the symmetry it follows that u will be independent of θ, and
then the problem (37.5), (37.9)–(37.14) simplifies to

1
r

∂

∂r

(
r
∂u

∂r

)
=

1
c2

∂2u

∂t2
, 0 < r < a, t > 0 (37.32)

u(r, 0) = f(r), 0 < r < a (37.33)

∂u

∂t
(r, 0) = g(r), 0 < r < a (37.34)

u(a, t) = 0, t > 0 (37.35)

|u(0, t)| < ∞, t > 0. (37.36)

From the above considerations the solution of the problem (37.32)–
(37.36) appears as

u(r, t) =
∑

n

a0nJ0(λ0nr) cos(λ0nct) +
∑

n

A0nJ0(λ0nr) sin(λ0nct), (37.37)

where

a0n =
2
∫ a

0 f(r)J0(λ0nr)rdr

a2J2
1 (λ0na)

, A0n =
2
∫ a

0 g(r)J0(λ0nr)rdr

λ0nca2J2
1 (λ0na)

, n = 1, 2, · · · .

Problems

37.1. Find the solution of the initial-boundary value problem (37.1),
(36.2), (37.2), (36.3), (36.4) when f(x, y) = Txy(x − a)(y − b) and
g(x, y) = 0.
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37.2. Find the solution of the initial–boundary value problem (37.1),
(36.2), (37.2), (36.3), (36.4) when a = 2, b = 3, c = 3,

f(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

xy 0 ≤ x < 1, 0 ≤ y < 3/2
x(3 − y) 0 ≤ x < 1, 3/2 ≤ y ≤ 3
(2 − x)y 1 ≤ x ≤ 2, 0 ≤ y < 3/2
(2 − x)(3 − y) 1 ≤ x ≤ 2, 3/2 ≤ y ≤ 3

and g(x, y) = 0.

37.3. Find the solution of the initial-boundary value problem (37.1),
(36.2), (37.2), (36.38).

37.4. Find the solution of the initial-boundary value problem (37.1),
(36.2), (37.2), (36.39).

37.5. Find the solution of the initial-boundary value problem (37.1),
(36.2), (37.2), (36.40).

37.6. Find the solution of the initial-boundary value problem (37.1),
(36.2), (37.2), (36.41).

37.7. Find the solution of the initial-boundary value problem (37.32)–
(37.36), when

(i) a = 1, f(r) =
{

1, 0 < r < 1/2
0, 1/2 < r < 1 and g(r) = 0

(ii) a = 1, f(r) = 0, g(r) = 1.

37.8. Find the solution of the initial-boundary value problem (37.32)–
(37.36) when f(r) = 0 and

g(r) =

⎧⎨
⎩

P0

ρπε2
, 0 < r < ε

0, ε < r < a.

Further, use the fact that J1(x)/x → 1/2 as x → 0 to find the limiting
solution as ε → 0.

Answers or Hints

37.1. 64Ta2b2

π6

∑∞
m=0

∑∞
n=0

1
(2m+1)3(2n+1)3 cosλ2m+1,2n+1ct sin (2m+1)πx

a

× sin (2n+1)πy
b , where λmn =

[(
mπ
a

)2 +
(

nπ
b

)2]1/2

.

37.2. u(x, y, t) = 96
π4

∑∞
m=1

∑∞
n=1

1
m2n2 sin mπ

3 sin nπ
2 cos(3λmnt) sin mπy

3

× sin nπx
2 , where λ2

mn = (mπ/3)2 + (nπ/2)2.
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37.3. u(x, y, t) =
∑∞

m=0

∑∞
n=0(amn cosλmnct + bmn sin λmnct) cos mπx

a

× cos nπy
b , λ2

mn = m2π2

a2 + n2π2

b2 .

37.4. u(x, y, t) =
∑∞

m=0

∑∞
n=1(amn cosλmnct + bmn sin λmnct) cos mπx

a

× sin nπy
b , λ2

mn = m2π2

a2 + n2π2

b2 .

37.5. u(x, y, t) =
∑∞

m=0

∑∞
n=0(amn cosλmnct + bmn sin λmnct)

× sin (2m+1)πx
2a cos nπy

b , λ2
mn = (2m+1)2π2

4a2 + n2π2

b2 .

37.6. u(x, y, t) =
∑∞

m=0

∑∞
n=0(amn cosλmnct + bmn sin λmnct)

× sin (2m+1)πx
2a sin (2n+1)πy

2b , λ2
mn = (2m+1)2π2

4a2 + (2n+1)2π2

4b2 .

37.7. (i) u(r, t) =
∑∞

n=1
J1(λ0n/2)

λ0nJ2
1 (λ0n)

J0(λ0nr) cos(λ0nct)

(ii) u(r, t) = 2
c

∑∞
n=1

sin(λ0nct)
λ2
0nJ1(λ0n)

J0(λ0nr).

37.8. 2P0c
(ρc2)πa

∑∞
n=1

1
(λ0na)J2

1 (λ0na)
J1(λ0nε)
(λ0nε) J0(λ0nr) sin(λ0nct) −→

P0c
(ρc2)πa

∑∞
n=1

1
(λ0na)J2

1 (λ0na)
J0(λ0nr) sin(λ0nct) where λ0n = α0n/a and α0n

is a positive root of J0(α) = 0.



Lecture 38
Laplace Equation

in Three Dimensions

The three-dimensional Laplace equation occurs in problems such as
gravitation, steady-state temperature, electrostatic potential, magnetostat-
ics, fluid flow, and so on. In this lecture we shall use the method of sepa-
ration of variables to find the solution of the Laplace equation in a three-
dimensional box, and in a circular cylinder.

If the stream lines are curves in space, i.e., the heat flow is three dimen-
sional, then instead of (34.3) we arrive at the equation

∂u

∂t
= c2

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
. (38.1)

In the steady state this equation reduces to

Δ3u = uxx + uyy + uzz = 0, (38.2)

which is the three-dimensional Laplace equation. First, we shall find the
solution of (38.2) in the three-dimensional box D = {0 < x < a, 0 < y <
b, 0 < z < c} satisfying the boundary conditions on the six sides

u(0, y, z) = f1(y, z), u(a, y, z) = f2(y, z), 0 < y < b, 0 < z < c

u(x, 0, z) = g1(x, z), u(x, b, z) = g2(x, z), 0 < x < a, 0 < z < c

u(x, y, 0) = h1(x, y), u(x, y, c) = h2(x, y), 0 < x < a, 0 < y < b.
(38.3)

Clearly, the solution of this problem can be obtained by summing the
solutions of six problems of the type (38.2),

u(0, y, z) = 0, u(a, y, z) = 0, 0 < y < b, 0 < z < c

u(x, 0, z) = 0, u(x, b, z) = 0, 0 < x < a, 0 < z < c

u(x, y, 0) = h1(x, y), u(x, y, c) = 0, 0 < x < a, 0 < y < b.

(38.4)

As such, Problem (38.2), (38.4) could occur in finding the potential
function inside a rectangular parallelepiped in which four lateral faces and
the top are at potential zero and the potential on the bottom is a given
function of x and y (see Figure 38.1).
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Figure 38.1

y

z

x

(0, b, c)

0

(a, b, 0)

(a, 0, c)

u(x, y, 0) = f(x, y)

Following exactly as in Lectures 36 and 37, we separate the variables,
i.e., assume that u = u(x, y, z) = X(x)Y (y)Z(z), and use the homogeneous
boundary conditions, to obtain

u(x, y, z) =
∞∑

m=1

∞∑
n=1

amn sinh λmn(c − z) sin
mπx

a
sin

nπy

b
, (38.5)

where λmn is the same as in (36.19), and

amn =
4

ab sinh(cλmn)

∫ a

0

∫ b

0

f(x, y) sin
mπx

a
sin

nπy

b
dxdy. (38.6)

In particular, when a = b = c = π, f(x, y) = xy the solution of the
problem (38.2), (38.4) can be written as

u(x, y, z) =
∞∑

m=1

∞∑
n=1

4(−1)m+n

mn sinh(πλmn)
sinhλmn(π − z) sinmx sin ny,

where λmn =
√

m2 + n2.

Now we shall find the steady-state temperature distribution in a solid
cylinder made of homogeneous material. For this, we need to consider the
Laplace equation in cylindrical coordinates (see Problem 39.6)

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
+

∂2u

∂z2
= 0, 0 < r < a, − π < θ ≤ π, 0 < z < h

(38.7)
with the boundary conditions

u(r, θ, 0) = α(r, θ) bottom

u(r, θ, h) = β(r, θ) top

u(a, θ, z) = γ(θ, z) lateral side.

(38.8)
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Figure 38.2

u = α(r, θ)

u = β(r, θ)

Δ3u = 0 u = γ(θ, z)

Clearly, the solution of this problem can be obtained by summing the
solutions of the following three problems:

(38.7), u(r, θ, 0) = 0, u(r, θ, h) = β(r, θ), u(a, θ, z) = 0, (38.9)

(38.7), u(r, θ, 0) = α(r, θ), u(r, θ, h) = 0, u(a, θ, z) = 0 (38.10)

and

(38.7), u(r, θ, 0) = 0, u(r, θ, h) = 0, u(a, θ, z) = γ(θ, z). (38.11).

To find the solutions of these problems, we shall apply the method of
separation of variables by assuming that u is a product of functions of r, θ,
and z, i.e., u = u(r, θ, z) = R(r)Θ(θ)Z(z). Substituting the appropriate
derivatives into the partial DE (38.7), we obtain

ΘZ

r

d

dr

(
r
dR

dr

)
+

RZ

r2

d2Θ
dθ2

+ RΘ
d2Z

dz2
= 0,

and now division of the above equation by RΘZ/r2 yields

r

R

d

dr

(
r
dR

dr

)
+

r2

Z

d2Z

dz2
= − 1

Θ
d2Θ
dθ2

.

Since the left-hand member of the last equation is independent of θ, the
equation can be satisfied only if both members are equal to a constant.
Hence,

− 1
Θ

d2Θ
dθ2

= m2,

or
Θ′′ + m2Θ = 0. (38.12)
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Note that we have chosen the separation constant m2. This will force Θ
(and u) to be periodic of period 2π in θ. This is in fact the desired situation
in many applied problems. Clearly, the solutions of (38.12) are cosmθ and
sin mθ, m = 0, 1, 2, · · · .

Now the second separation yields

1
rR

d

dr

(
r
dR

dr

)
− m2

r2
= − 1

Z

d2Z

dz2
= −λ.

Hence, we have
Z ′′ − λZ = 0 (38.13)

and
r2R′′ + rR′ + (λr2 − m2)R = 0. (38.14)

For the problem (38.9), we note that the condition u(a, θ, z) = 0 leads
to the boundary condition R(a) = 0. Further, as in Lecture 35 we need to
impose at r = 0 the implicit boundary condition |R(0)| < ∞. The Bessel’s
equation (38.14) together with the boundary conditions

|R(0)| < ∞, R(a) = 0 (38.15)

has the eigenvalues λ = λ2
mn and the eigenfunctions Jm(λmnr), m =

0, 1, 2, · · · , n = 1, 2, · · · , where λmn is the same as in (37.28). Now since
λ = λ2

mn > 0, from the equation (38.13) and the condition u(r, θ, 0) = 0
which implies Z(0) = 0, we have Z(z) = sinh(λmnz). Thus, by the prin-
ciple of superposition the solution of (38.7) satisfying u(r, θ, 0) = 0 and
u(a, θ, z) = 0 can be written as

u(r, θ, z) =
∞∑

m=0

∞∑
n=1

amn sinh(λmnz)Jm(λmnr) cos mθ

+
∞∑

m=1

∞∑
n=1

bmn sinh(λmnz)Jm(λmnr) sin mθ.

(38.16)

The unknowns amn and bmn in (38.16) are determined by using the
nonhomogeneous boundary condition u(r, θ, h) = β(r, θ). For this, a Fourier
series in θ and a Fourier–Bessel series in r are required.

The solution of the problem (38.10) can be obtained similarly, and ap-
pears as

u(r, θ, z) =
∞∑

m=0

∞∑
n=1

cmn sinh[λmn(h − z)]Jm(λmnr) cos mθ

+
∞∑

m=1

∞∑
n=1

dmn sinh[λmn(h − z)]Jm(λmnr) sin mθ.

(38.17)
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The unknowns cmn and dmn in (38.17) are obtained by using the nonho-
mogeneous boundary condition u(r, θ, 0) = α(r, θ).

Now we shall find the solution of the problem (38.11). We note that
the conditions u(r, θ, 0) = u(r, θ, h) = 0 imply that Z(0) = Z(h) = 0, and
hence the equation (38.13) has nontrivial solutions only when

λ = −
(nπ

h

)2
, n = 1, 2, · · · (38.18)

and Z(z) = sin nπz/h. Substituting (38.18) in (39.14), we obtain a modified
Bessel’s DE

r2R′′ + rR′ −
((nπ

h

)2
r2 + m2

)
R = 0. (38.19)

This equation with the transformation x = nπr/h, n = m is exactly the
same as (9.15). Thus, the solutions of (38.19) are

Im

(nπ

h
r
)

and Km

(nπ

h
r
)

.

Now since |R(0)| < ∞ and the solution Km is singular at r = 0, we need to
discard it. Hence, by the principle of superposition the solution of (38.7)
satisfying u(r, θ, 0) = u(r, θ, h) = 0 can be written as

u(r, θ, z) =
∞∑

m=0

∞∑
n=1

emnIm

(nπ

h
r
)

sin
nπz

h
cosmθ

+
∞∑

m=1

∞∑
n=1

fmnIm

(nπ

h
r
)

sin
nπz

h
sin mθ.

(38.20)

Again the unknowns emn and fmn in (38.20) are obtained by using the
nonhomogeneous boundary condition u(a, θ, z) = γ(θ, z).

In particular, if u is independent of z, then the temperature distribution
in every circular cross section along the z-axis will be the same. In this case
the problem is mathematically equivalent to the one we have discussed in
Lecture 35. Similarly, if the temperature on the surface of the cylinder is
prescribed in such a way that the functions α, β and γ are independent of
θ, then the temperature inside the cylinder will also be independent of θ.
In such a case, the problem (38.7), (38.8) reduces to

1
r

∂

∂r

(
r
∂u

∂r

)
+

∂2u

∂z2
= 0, 0 < r < a, 0 < z < h

u(r, 0) = α(r), u(r, h) = β(r), u(a, z) = γ(z);
(38.21)

and the solutions (38.16), (38.17) and (38.20), respectively, reduce to

u(r, z) =
∞∑

n=1

an sinh(λnz)J0(λnr), (38.22)
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u(r, z) =
∞∑

n=1

cn sinh[λn(h − z)]J0(λnr) (38.23)

and

u(r, z) =
∞∑

n=1

enI0

(nπ

h
r
)

sin
nπz

h
, (38.24)

where λn is the same as in (36.33).

In particular, when α(r) = u0, β(r) = γ(r) = 0, the solution (38.23)
simplifies to

u(r, z) =
2u0

a

∞∑
n=1

sinh[λn(h − z)]J0(λnr)
λnJ1(λna) sinh(λnh)

.

Similarly, when a = h = 1, α(r) = 0, β(r) = 1− r2, γ(z) = 0, the solution
(38.22) becomes

u(r, z) = 8
∞∑

n=1

sinh(λnz)J0(λnr)
λ3

n sinh λn J1(λn)
.



Lecture 39
Laplace Equation

in Three Dimensions (Cont’d.)

In this lecture we shall use the method of separation of variables to find
the solutions of the Laplace equation in and outside a given sphere. We
shall also discuss briefly Poisson’s integral formulas.

From Problem 39.10 we know that the Laplace equation in spherical
coordinates x = r sin φ cos θ, y = r sin φ sin θ, z = r cosφ, takes the form

1
r2

∂

∂r

(
r2 ∂u

∂r

)
+

1
r2 sinφ

∂

∂φ

(
sin φ

∂u

∂φ

)
+

1
r2 sin2 φ

∂2u

∂θ2
= 0. (39.1)

We assume that a solution of (39.1) can be written as u = u(r, θ, φ) =
R(r)Θ(θ)Φ(φ). Substituting the appropriate derivatives into the partial DE
(39.1), we obtain

ΘΦ
r2

d

dr

(
r2 dR

dr

)
+

RΘ
r2 sin φ

d

dφ

(
sin φ

dΦ
dφ

)
+

RΦ
r2 sin2 φ

d2Θ
dθ2

= 0;

and now division of the above equation by RΘΦ/r2 sin2 φ yields

sin2 φ

R

d

dr

(
r2 dR

dr

)
+

sinφ

Φ
d

dφ

(
sin φ

dΦ
dφ

)
= − 1

Θ
d2Θ
dθ2

.

As earlier since the left-hand member of the last equation is independent
of θ, the equation can be satisfied only if both members are equal to a
constant. Hence,

− 1
Θ

d2Θ
dθ2

= m2,

or
Θ′′ + m2Θ = 0. (39.2)

Note that again we have chosen the separation constant m2. This will
force Θ (and u) to be periodic of period 2π in θ. This is in fact the desired
situation in many applied problems. Clearly, the solutions of (39.2) are
cosmθ and sinmθ, m = 0, 1, 2, · · · .

The second separation yields

1
R

d

dr

(
r2 dR

dr

)
= −
[

1
Φ sin φ

d

dφ

(
sinφ

dΦ
dφ

)
− m2

sin2 φ

]
= λ.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 39,
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Hence, we have
d

dr

(
r2 dR

dr

)
− λR = 0 (39.3)

and
1

sinφ

d

dφ

(
sin φ

dΦ
dφ

)
+
(

λ − m2

sin2 φ

)
Φ = 0. (39.4)

Clearly, (39.3) can be written as a familiar Cauchy–Euler equation

r2R′′ + 2rR − λR = 0, (39.5)

which has a solution R = rk provided k2 + k − λ = 0. If we choose k = n,
then λ = n(n + 1), and if we choose k = −(n + 1), then also λ = n(n + 1).
Thus, with λ = n(n + 1), equation (39.5) has two linearly independent
solutions rn and r−(n+1).

In equation (39.4), we make the substitutions x = cosφ, Φ = y, so that

d

dφ
=

dx

dφ

d

dx
= − sinφ

d

dx

and hence
d

dφ

(
sinφ

dΦ
dφ

)
= − sinφ

d

dx

(
sin φ

dx

dφ

dΦ
dx

)

= sinφ
d

dx

(
sin2 φ

dy

dx

)

=
√

1 − x2
d

dx

(
(1 − x2)

dy

dx

)
.

Thus equation (39.4) becomes

(1 − x2)y′′ − 2xy′ +
[
n(n + 1) − m2

1 − x2

]
y = 0, (39.6)

which is exactly the same as Legendre’s associated DE (7.20) with solutions
Pm

n (x) and Qm
n (x) defined in (7.21) and (7.22).

Now we shall find the solution of (39.1) in a sphere of radius a, satisfying
the boundary condition (see Figure 39.1)

u(a, θ, φ) = f(θ, φ), 0 < θ < 2π, 0 < φ < π. (39.7)

For this, as in earlier lectures discarding the solutions r−(n+1) and Qm
n (x),

using Problem 7.12, and arranging the terms, we obtain

u(r, θ, φ) =
∞∑

n=0

( r

a

)n [1
2
a0nPn(cos φ)

+
n∑

m=1

(amn cosmθ + bmn sin mθ)Pm
n (cos φ)

]
,

(39.8)
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Figure 39.1

θ

φ

f(θ, φ)

u(r, θ, φ)

·

where

amn =
(2n + 1)(n − m)!

2π(n + m)!

∫ 2π

0

∫ π

0

f(θ, φ)Pm
n (cosφ) cosmθ sin φdφdθ,

(39.9)

bmn =
(2n + 1)(n − m)!

2π(n + m)!

∫ 2π

0

∫ π

0

f(θ, φ)Pm
n (cosφ) sin mθ sinφdφdθ.

(39.10)

Next we shall consider the problem when u(r, θ, φ) = u(r, φ). This is
not an unrealistic assumption, since many problems in electrostatics occur
in this manner. In such a case, equation (39.1) reduces to

1
r2

∂

∂r

(
r2 ∂u

∂r

)
+

1
r2 sinφ

∂

∂φ

(
sin φ

∂u

∂φ

)
= 0. (39.11)

We shall first consider (39.11) in a sphere of radius a, satisfying the bound-
ary condition

u(a, φ) = f(cosφ), 0 < φ < π. (39.12)

From (39.8) the solution of the problem (39.11), (39.12) appears as

u(r, φ) =
1
2

∞∑
n=0

( r

a

)n
Pn(cosφ)(2n + 1)

∫ 1

−1

f(x)Pn(x)dx, (39.13)

where in the integral we have used the substitution x = cosφ.

In particular, when

f(cosφ) =

{
V, 0 < φ < π/2 (0 < x < 1)

−V, π/2 < φ < π (−1 < x < 0)
(39.14)

we have

∫ 1

−1

f(x)Pn(x)dx =

⎧⎪⎨
⎪⎩

0 if n is even

2V

∫ 1

0

Pn(x)dx if n is odd,
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and hence (39.13) reduces to

u(r, φ) = V

[
3
2

r

a
P1(cosφ) − 7

8

( r

a

)3
P3(cosφ) +

11
16

( r

a

)5
P5(cosφ) + · · ·

]
.

Similarly, to find the solution of (39.1) outside the sphere of radius a,
satisfying the boundary condition (39.7), we discard the solutions rn and
Qm

n (x), of the equations (39.5) and (39.6), respectively, to obtain

u(r, θ, φ) =
∞∑

n=0

(a
r

)n+1
[
1
2
a0nPn(cosφ)

+
n∑

m=1

(amn cosmθ + bmn sin mθ)Pm
n (cos φ)

]
,

(39.15)

where the constants amn and bmn remain exactly the same as in (39.9) and
(39.10).

Thus, the solution of the problem (39.11), (39.12) outside the sphere of
radius a, can be written as

u(r, φ) =
1
2

∞∑
n=0

(a
r

)n+1

Pn(cosφ)(2n + 1)
∫ 1

−1

f(x)Pn(x)dx. (39.16)

This solution in particular, when f(cosφ) is given by (39.14) becomes

u(r, φ) = V

[
3
2

(a
r

)2
P1(cosφ) − 7

8

(a
r

)4
P3(cos φ)

+
11
16

(a
r

)6
P5(cos φ) + · · ·

]
.

By adjusting the terms it can be shown that the solution (39.8) can be
equivalently written as

u(r, θ, φ) =
a(a2 − r2)

4π

∫ 2π

0

∫ π

0

f(θ, φ) sin φdφdθ

(r2 + a2 − 2ra cosψ)3/2
, r < a, (39.17)

where
cosψ = cosφ cosφ + sin φ sin φ cos(θ − θ).

This is Poisson’s integral formula in three dimensions for the interior prob-
lem (39.1), (39.7). In this formula (r2 + a2 − 2ra cosψ)1/2 is the distance
from the point (r, θ, φ) to the point (a, θ, φ).

Similarly, the solution (39.15) of the exterior problem (39.1), (39.7) can
be written as Poisson’s integral formula:

u(r, θ, φ) =
a(r2 − a2)

4π

∫ 2π

0

∫ π

0

f(θ, φ) sin φdφdθ

(r2 + a2 − 2ra cosψ)3/2
, r > a. (39.18)
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From (39.8) as well as (39.17) it is clear that

u(0, θ, φ) =
1
4π

∫ 2π

0

∫ π

0

f(θ, φ) sin φdφdθ.

Thus, the value of u at the center of a sphere is the mean value of u(a, θ, φ)
over the surface of the sphere. This fact is called the mean value theorem
and holds for all functions that satisfy Laplace’s equation on the sphere.

Similarly, from (39.15) as well as (39.18) it follows that when r → ∞,

u(r, θ, φ) =
a

4πr

∫ 2π

0

∫ π

0

f(θ, φ) sin φdφdθ + O

(
1
r2

)
.

Finally, we consider a more general boundary condition for Laplace’s
equation (39.1) in the sphere r < a,

cosα
∂u

∂r
(a, θ, φ) + sin α u(a, θ, φ) = f(θ, φ). (39.19)

Here α may assume values between 0 and π/2. Clearly, for α = π/2, (39.19)
reduces to the Dirichlet condition (39.7), and for α = 0 it reduces to Neu-
mann condition (39.20) which is considered in Problem 39.11. An interme-
diate value of α corresponds to a mixed condition. Physically this occurs
when we have free radiation of heat according to Newton’s law of cooling.

For the mixed problem also the solution remains the same as (39.8),
and it satisfies the boundary condition (39.19) if and only if

f(θ, φ) =
∞∑

n=0

(
sin α +

n

a
cosα
) [1

2
a0nPn(cosφ)

+
n∑

m=1

(amn cosmθ + bmn sin mθ)Pm
n (cosφ)

]
.

Thus, the constants amn and bmn remain exactly the same as in (39.9) and
(39.10), except that each need to be divided by the factor

(
sin α + n

a cosα
)
.

In particular, when α = π/4, f(θ, φ) = f(cosφ) = (1/
√

2) cosφ, the
solution of the mixed problem (39.11), (39.19) in view of (39.13) can be
written as

u(r, φ) =
1
2

∞∑
n=0

( r

a

)n
Pn(cos φ)

2n + 1
1√
2

+ n
a

1√
2

∫ 1

−1

1√
2
xPn(x)dx

=
1
2

r

a
P1(cos φ)

3
1 + 1

a

2
3

=
r cosφ

1 + a
.
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Problems

39.1. Show that

u(x, y, z) =
∫ 2π

0

f(x cos t + y sin t + iz, t)dt

is a solution of Laplace’s equation (38.2).

39.2. Show that the gravitational potential due to the attraction of n
particles

μ

n∑
i=1

mi

ri
,

where mi is the mass of the particle, (ai, bi, ci) its coordinates, and r2
i =

(x − ai)2 + (y − bi)2 + (z − ci)2, satisfies Laplace’s equation (38.2).

39.3. Show that the potential of a body at an exterior point (x, y, z),

μ

∫∫∫
ρ(a, b, c)da db dc

[(x − a)2 + (y − b)2 + (z − c)2]1/2
,

where ρ is the density and the integral is extended over the body, satisfies
Laplace’s equation (38.2).

39.4. Find the solution of the boundary value problem (38.2), (38.4)
when a = b = c = π, h1(x, y) = sin x sin3 y.

39.5. Find the solution of the following initial-boundary value problem

ut = uxx + uyy + uzz, 0 < x < π, 0 < y < π, 0 < z < π, t > 0

u(x, y, z, 0) = f(x, y, z)

ux(0, y, z, t) = 0, ux(π, y, z, t) = 0

uy(x, 0, z, t) = 0, uy(x, π, z, t) = 0

uz(x, y, 0, t) = 0, uz(x, y, π, t) = 0.

In particular, find the solution when f(x, y, z) = xyz.

39.6. Show that in cylindrical coordinates, x = r cos θ, y = r sin θ, z =
z, Laplace’s equation (38.2) becomes

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
+

∂2u

∂z2
= 0.

39.7. Find the steady-state, bounded temperature distribution in the
interior of a solid cylinder of radius a and height h, given that the temper-
ature of the curved lateral surface is kept at zero, the base is insulated, and
the top is kept at u0.
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39.8. Find the steady-state, bounded temperature distribution in
the interior of a solid cylinder of radius 1 and height π, given that the
temperature of the curved lateral surface is γ(z) = z, and the base and top
are insulated.

39.9. Find the solution of the following problem:

urr + (1/r)ur + uzz = 0, 0 < r < a, z > 0

u(r, 0) = α(r), 0 < r < a

|u(r, z)| < ∞, 0 < r < a, z > 0

ur(a, z) + ku(a, z) = 0, z > 0, k > 0.

39.10. Show that in spherical coordinates, x = r sinφ cos θ, y =
r sin φ sin θ, z = r cosφ, Laplace’s equation (38.2) becomes

1
r2

∂

∂r

(
r2 ∂u

∂r

)
+

1
r2 sinφ

∂

∂φ

(
sin φ

∂u

∂φ

)
+

1
r2 sin2 φ

∂2u

∂θ2
= 0.

39.11. Find the solution of (39.1) in a sphere of radius 1, satisfying
the boundary condition

∂u

∂r
(1, θ, φ) = f(θ, φ), 0 < θ < 2π, 0 < φ < π (39.20)

where
∫ 2π

0

∫ π

0
f(θ, φ) sin φdφdθ = 0.

39.12. A solid hemisphere of radius a has its plane face perfectly
insulated, while the temperature of its curved surface is given by f(cosφ).
Find the steady-state, bounded temperature at any point in the interior of
the hemisphere.

39.13. The temperature on the surface of a solid homogeneous sphere
of radius a is prescribed by

u(a, φ) =

{
V, 0 < φ < π/2

0, π/2 < φ < π.

Find the steady-state temperature distribution in and outside the sphere.

39.14. Find the steady-state temperature distribution u(r, φ) in a
hollow sphere with its inner surface r = a is kept at temperature u(a, φ) =
f(cosφ), and its outer surface r = b at u(b, φ) = 0.

39.15. The Laplace equation can be used in mathematical modeling
of the growth of a spherical tumor as follows: Assume that the tumor is
initially the shape of a sphere of radius a, and as it grows remains a sphere
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of radius R(t). Let p(r, t) be the pressure within the tumor at distance r
from its center and at time t. Then, p satisfies

1
r2

∂2(rp)
∂r2

= S, r < R(t),

where S is the rate of volume change per unit volume. Let u(r, t) be the
nutrient concentration outside the tumor and u0 be that inside the tumor.
Then, u satisfies

1
r2

∂2(ru)
∂r2

= 0, r > R(t).

The above equations are subject to the following conditions:

(a) p(0, t) is bounded
(b) p(R(t), t) = β/R(t)
(c) ur − μ(u − u0)1/2 = 0 for r = R(t)
(d) limr→∞ u(r, t) = u∞,

where S, β, μ, u0 and u∞ are constants.

(i) Use (a) and (b) to find p(r, t), r < R(t).
(ii) Use (c) and (d) to find u(r, t), r > R(t).

Now we know p(r, t) and u(r, t) in terms of the unknown expanding radius
of the tumor R(t). However, R(t) can be determined by solving the initial
value problem

R′(t) = −∂p

∂r
+ λ(u − u0)1/2 for r = R(t), R(0) = a.

(iii) Find the limiting size of the tumor, i.e., R when R′(t) = 0.

Problems in which one of the boundary is unknown and changes with time
are known as moving boundary value problems.

39.16. The Schrödinger equation for a single particle of mass m
moving in a potential field V (x, y, z) is

ih

2π
ψt = − h2

8mπ2
Δ3ψ + V (x, y, z)ψ. (39.21)

(i) Show that separating out the t dependence as ψ(x, y, z, t) =
φ(x, y, z)e−2πiEt/h results in the partial DE

Δ3φ +
8mπ2

h2
(E − V )φ = 0; (39.22)

here h is Planck’s constant, and the total energy E is assumed to be a
constant.
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(ii) If V ≡ 0 in (39.22), the resulting equation is called Helmholtz’s equa-
tion. For this equation set φ = X(x)Y (y)Z(z) to determine the DEs for
X, Y, and Z.

39.17. The time-independent Schrödinger equation for a single particle
of mass m moving in a potential field V in spherical coordinates is given by

1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1
r2 sin φ

∂

∂φ

(
sin φ

∂ψ

∂φ

)
+

1
r2 sin2 φ

∂2ψ

∂θ2
+

8mπ2

h2
(E−V )ψ = 0,

where in some applications V = V (r). For this equation set
ψ = R(r)Φ(φ)Θ(θ) to determine the DEs for R, Φ and Θ.

Answers or Hints

39.1. Verify directly.

39.2. Verify directly.

39.3. Verify directly.

39.4. 3
4 sin x sin y sinh

√
2(π−z)

sinh
√

2π
− 1

4 sin x sin 3y sinh
√

10(π−z)

sinh
√

10π
.

39.5. u(x, y, z, t) = 1
8a000+ 1

4

∑
 a00e

−2t cos 
x+ 1
4

∑
m a0m0e

−m2t cosmy

+ 1
4

∑
n a00ne−n2t cosnz + 1

2

∑
m am0e

−(2+m2)t cos 
x cosmy

+ 1
2

∑
mn a0mne−(m2+n2)t cosmy cosnz + 1

2

∑
n a0ne−(2+n2)t cos 
x cosnz

+
∑

mn amne−(2+m2+n2)t cos 
x cosmy cosnz, where
amn = 8

π3

∫ π

0

∫ π

0

∫ π

0
f(x, y, z) cos 
x cosmy cosnzdxdydz. a000 = π3,

a00 = −2π[1 − (−1)]/
2, am0 = 4[1 − (−1)][1 − (−1)m]/(π
2m2),
amn = −8[1 − (−1)][1 − (−1)m][1 − (−1)n]/(π2
2m2n2).

39.6. Verify directly.

39.7. u(r, z) = 2u0
a

∑∞
n=1

cosh(λnz)J0(λnr)
λnJ1(λna) cosh(λnh) .

39.8. u(r, z) = π
2 − 4

π

∑∞
n=1

I0[(2n−1)r]
(2n−1)2I0(2n−1) cos(2n − 1)z.

39.9. u(r, z) = 2
a2

∑∞
n=1

λ2
n exp(−λnz)J0(λnr)

(λ2
n+k2)J2

0 (λna)

∫ a

0
rα(r)J0(λnr)dr, where λn

are the positive roots of λnJ ′
0(λna) + kJ0(λna) = 0.

39.10.Verify directly.

39.11.u(r, θ, φ) =
∑∞

n=1
rn

n

[
1
2a0nPn(cosφ) +

∑n
m=1(amn cosmθ

+bmn sin mθ)Pm
n (cosφ)] .
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39.12.We need to find the solution of (39.11) where 0 < r < a, 0 < φ <
π/2 with the boundary conditions uz(r, π/2) = 0, 0 < r < a, u(a, φ) =
f(cosφ), 0 < φ < π/2, |u(r, φ)| < ∞, 0 < r < a, 0 < φ < π/2. Since
z = r cosφ, ∂u

∂φ = ∂u
∂z

∂z
∂φ = −r sin φ∂u

∂z , and hence at φ = π/2 we have
∂u
∂z = − 1

r
∂u
∂φ and now the condition uz = 0 implies that uφ = 0 at φ = π/2.

u(r, φ) =
∑∞

n=0(4n + 1)
(

r
a

)2n
P2n(cosφ)

∫ 1

0 f(x)P2n(x)dx.

39.13.Use Problems 7.2, 7.8(i) to show that (39.13) and (39.16) reduce to
u(r, φ) = V

2

[
1 +
∑∞

n=0(−1)n
(

4n+3
2n+2

)
(2n)!

22n(n!)2

(
r
a

)2n+1
P2n+1(cosφ)

]
,

u(r, φ) = V
2

[
a
r +
∑∞

n=0(−1)n
(

4n+3
2n+2

)
(2n)!

22n(n!)2

(
a
r

)2n+2
P2n+1(cosφ)

]
.

39.14.u(r, φ) = 1
2

∑∞
n=0

b2n+1−r2n+1

b2n+1−a2n+1 (2n + 1)
(

a
r

)n+1
Pn(cos φ)

×
∫ 1

−1 f(x)Pn(x)dx.

39.15.Solve directly.

39.16.(i) Verify directly (ii) X ′′+μ2X = 0, Y ′′+ν2Y = 0, Z ′′+λ2Z = 0
where μ2 + ν2 + λ2 = 8mπ2E

h2 .

39.17. d2Θ
dθ2 = −m2

Θ (Azimuthal equation),
1
r2

d
dr

(
r2 dR

dr

)
+ 8mπ2

h2

[
E − V − h2

8mπ2
(+1)

r2

]
R = 0 (radial equation),

1
sin φ

d
dφ

(
sin φdΦ

dφ

)
+
[

(
 + 1) − m2

�

sin2 φ

]
Φ = 0 (angular equation),

where the constants 
 and m, respectively, are the orbital angular momen-
tum and magnetic quantum numbers.



Lecture 40
Nonhomogeneous Equations

In Lectures 30–39 we employed the Fourier method to solve homoge-
neous partial DEs together with appropriate initial and boundary condi-
tions. However, often in applications the governing partial DE is nonho-
mogeneous. In this lecture we shall demonstrate how the Fourier method
can be employed to solve nonhomogeneous problems. Here our approach is
similar to that of we have discussed in Lecture 24.

When a heat source is present within the domain of interest, instead of
(30.1), the governing partial DE is nonhomogeneous:

ut − c2uxx = q(x, t), 0 < x < a, t > 0, c > 0. (40.1)

We shall consider (40.1) with the initial condition (30.2), and the homoge-
neous Robin’s conditions

a0u(0, t) − a1ux(0, t) = 0, t > 0, a2
0 + a2

1 > 0 (40.2)

d0u(a, t) + d1ux(a, t) = 0, t > 0, d2
0 + d2

1 > 0. (40.3)

Let λn, Xn(x), n ≥ 1 be the eigenvalues and eigenfunctions of the
problem (30.5),

a0X(0) − a1X
′(0) = 0

d0X(a) + d1X
′(a) = 0.

(40.4)

We seek a solution of (40.1)–(40.3), (30.2) in the form

u(x, t) =
∞∑

n=1

Tn(t)Xn(x), (40.5)

where the time-dependent coefficients Tn(t) have to be determined. As-
suming that termwise differentiation is permitted, we obtain

ut =
∞∑

n=1

T ′
n(t)Xn(x) (40.6)

and

uxx =
∞∑

n=1

Tn(t)X ′′
n(x) =

1
c2

∞∑
n=1

λnTn(t)Xn(x). (40.7)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 40,
c© Springer Science+Business Media, LLC 2009
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Substituting these expressions (40.6) and (40.7) in equation (40.1), we ob-
tain

∞∑
n=1

[T ′
n(t) − λnTn(t)]Xn(x) = q(x, t). (40.8)

For a fixed value of t, equation (40.8) represents a Fourier series repre-
sentation of the function q(x, t), with Fourier coefficients

T ′
n − λnTn =

∫ a

0 q(x, t)Xn(x)dx∫ a

0 X2
n(x)dx

= Qn(t), say, n = 1, 2, · · · . (40.9)

Assuming λn �= 0, then for each n, (40.9) is a first-order linear ordinary DE
with general solution

Tn(t) =
[
cn +
∫ t

0

Qn(s)e−λnsds

]
eλnt, n = 1, 2, · · · . (40.10)

Substituting (40.10) in (40.5), we find the formal solution

u(x, t) =
∞∑

n=1

[
cn +
∫ t

0

Qn(s)e−λnsds

]
eλntXn(x). (40.11)

Finally, to determine the constants cn, n = 1, 2, · · · we set t = 0 in (40.11)
and use the prescribed initial condition (30.2), to get

u(x, 0) = f(x) =
∞∑

n=1

cnXn(x),

which immediately gives

cn =

∫ a

0
f(x)Xn(x)dx∫ a

0
X2

n(x)dx
, n = 1, 2, · · · . (40.12)

In particular, we consider the initial-boundary value problem

ut − uxx = −(1 − x) cos at, 0 < x < 1, t > 0

u(0, t) = 0, u(1, t) = 0, u(x, 0) = 0.
(40.13)

For (40.13) it is clear that λn = −n2π2, Xn(x) = sin nπx, cn = 0, and
hence from (40.11), we have

u(x, t) =
∞∑

n=1

[∫ t

0

{∫ 1

0 (τ−1) cosas sin nπτdτ∫ 1

0
sin2 nπτdτ

}
en2π2sds

]
e−n2π2t sin nπx

=
∞∑

n=1

[∫ t

0

{
−2 cosas

nπ

}
en2π2sds

]
e−n2π2t sin nπx

=
∞∑

n=1

2
nπ(a2+n4π4)

[
n2π2
(
e−n2π2t − cos at

)
− a sin at

]
sinnπx.
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In the derivation of the wave equation (32.1) if there is a force q(x, t) per
unit length acting at right angles to the string and m is the mass density
per unit length, then the resulting partial DE is nonhomogeneous

utt − c2uxx =
1
m

q(x, t), 0 < x < a, t > 0. (40.14)

We shall find the solution of (40.14) subject to the initial and boundary
conditions (32.2)–(32.5). Again, we assume that the solution can be written
as (40.5), where now Xn(x), n ≥ 1 are the eigenfunctions of the problem
(32.14), i.e.,

u(x, t) =
∞∑

n=1

Tn(t) sin
nπx

a
. (40.15)

Now substituting (40.15) in (40.14), we obtain

∞∑
n=1

[
T ′′

n (t) +
n2π2c2

a2
Tn(t)
]

sin
nπx

a
=

1
m

q(x, t)

and hence

T ′′
n +

n2π2c2

a2
Tn =

2
ma

∫ a

0

q(x, t) sin
nπx

a
dx = Rn(t), say, n = 1, 2, · · · .

(40.16)
Using the methods presented in Lecture 2, the general solution of (40.16)
can be written as

Tn(t) = an cos
nπct

a
+ bn sin

nπct

a
+

a

nπc

∫ t

0

sin
nπc

a
(t − s)Rn(s)ds.

Substituting this in (40.15), we get

u(x, t) =
∞∑

n=1

[
an cos

nπct

a
+ bn sin

nπct

a
+

a

nπc

∫ t

0

sin
nπc

a
(t − s)Rn(s)ds

]

× sin
nπx

a
. (40.17)

Finally, this solution satisfies the initial conditions (32.2) and (32.3) if and
only if an and bn are the same as in (32.19) and (32.21).

In particular, if the string is vibrating under the force of gravity, the
forcing function is given by q(x, t) = −g, and then we have

Rn(t) =
2

ma

∫ a

0

−g sin
nπx

a
dx = − 2g

mnπ
(1 − (−1)n) .

Now we assume

f(x) =

{
x, 0 < x < a/2

a − x, a/2 < x < a
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and g(x) = 0, so that

an =
2
a

[∫ a/2

0

x sin
nπx

a
dx +
∫ a

a/2

(a − x) sin
nπx

a
dx

]
=

4a

n2π2
sin

nπ

2

and bn = 0. Thus, in this case the required solution is

u(x, t) =
∞∑

n=1

[
4a

n2π2
sin

nπ

2
cos

nπct

a

− 2g

mnπ
(1 − (−1)n)

∫ t

0

sin
ncπ

a
(t − s)ds

]
sin

nπx

a

=
∞∑

n=1

[{
4a(−1)n+1

(2n − 1)2π2
+

4ga2

m(2n − 1)3π3c2

}
cos

(2n − 1)πct

a

− 4ga2

m(2n − 1)3π3c2

]
sin

nπx

a
.

Next we shall consider the nonhomogeneous Laplace equation known as
Poisson’s equation:

Δ2u = uxx + uyy = q(x, y), 0 < x < a, 0 < y < b. (40.18)

This equation appears in electrostatics theory. We shall find the solution
of the boundary value problem (40.18), (34.5)–(34.8). We assume that the
solution can be written as

u(x, y) =
∞∑

n=1

Xn(x)Yn(y) =
∞∑

n=1

sin
nπx

a
Yn(y), (40.19)

where Xn(x) = sin(nπx/a) are the eigenfunctions of the problem (34.9),
(34.10). Substituting (40.19) in (40.18), we obtain

∞∑
n=1

[
Y ′′

n (y) − n2π2

a2
Yn(y)
]

sin
nπx

a
= q(x, y)

and hence

Y ′′
n − n2π2

a2
Yn =

2
a

∫ a

0

q(x, y) sin
nπx

a
dx = Sn(y), say, n = 1, 2, · · · .

(40.20)
Now remembering that we will have to satisfy the boundary conditions
(34.5) and (34.6), we write the solution of (40.20) in terms of Green’s func-
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tion (see Problem 15.9) and substitute it in (40.19), to obtain

u(x, y) =
∞∑

n=1

(
1

sinh nπb
a

{[
an sinh

nπ(b − y)
a

+ bn sinh
nπy

a

]

− a

nπ

[
sinh

nπ(b − y)
a

∫ y

0

Sn(τ) sinh
nπτ

a
dτ

+ sinh
nπy

a

∫ b

y

Sn(τ) sinh
nπ(b − τ)

a
dτ

]})
sin

nπx

a
.

(40.21)
Clearly, the conditions (34.5) and (34.6) now easily determine

an =
2
a

∫ a

0

f(x) sin
nπx

a
dx, bn =

2
a

∫ a

0

g(x) sin
nπx

a
dx. (40.22)

In the particular case, when q(x, y) = −1, f(x) = g(x) = 0, we find
an = bn = 0,

Sn(y) = − 2
nπ

(1 − (−1)n)

and the solution (40.21) becomes

u(x, y) =
4a2

π3

∞∑
nodd

1
n3

[
1 −

sinh nπy
a + sinh nπ(b−y)

a

sinh nπb
a

]
sin

nπx

a
.

As in Lecture 34 we also note that if u1(x, y) is the solution of the
problem (40.18), (34.5)–(34.8), and u2(x, y) is the solution of the problem
(34.4), (34.18)–(34.21), then u(x, y) = u1(x, y) + u2(x, y) is the solution
of the Poisson equation (40.18) satisfying the boundary conditions (34.5),
(34.6), (34.20), (34.21).

Problems

40.1. Consider the nonhomogeneous partial DE

∂

∂x

(
k(x)

∂u

∂x

)
= ρ(x)c(x)

∂u

∂t
− q(x), α < x < β, t > 0

together with the initial and boundary conditions (31.2)–(31.4). Show that
its solution can be written as (31.21), where now v(x) is the solution of the
nonhomogeneous equation

d

dx

(
k(x)

dv

dx

)
= −q(x), α < x < β
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satisfying the same boundary conditions (31.6). In particular, find the
solution of the initial-boundary value problem

ut − c2uxx = q(x), 0 < x < a, t > 0, c > 0

satisfying (30.2)–(30.4), when

(i) q(x) = μ sin νx

(ii) q(x) = μe−νx (occurs in radioactive decay)

(iii) q(x) = μxe−νx.

40.2. Find the solution of the initial-boundary value problem (40.1),
(30.2)–(30.4) when

(i) a = 1, c = 1, f(x) = 0, q(x, t) = 2x − 5 sin t

(ii) a = 1, c = 1, f(x) = 2x, q(x, t) = x + t

(iii) a = π, c = 2, f(x) = (1/2)x(π − x)2, q(x, t) = xt2.

40.3. Find the solution of the nonhomogeneous partial DE

utt − c2uxx = q(x), 0 < x < a, t > 0

satisfying the initial and boundary conditions (32.2), (32.3), (33.20).

40.4. Find the solution of the initial-boundary value problem (40.14),
(32.2)–(32.5) when

(i) a = π, f(x) = 0, g(x) = 0, q(x, t) = mq0c
2 sin ωt

(ii) a = π, c = 1, f(x) = 0, g(x) = x, q(x, t) = mxt

(iii) a = 1, c = 1, f(x) = x(1 − x), g(x) = 0, q(x, t) = m(x + t)

(iv) a = 2π, c = 1, f(x) = x(x − 2π), g(x) = 0, q(x, t) =

m

{
x, 0 ≤ x < π
2π − x, π ≤ x ≤ 2π.

40.5. Find the solution of the initial-boundary value problem (40.14),
(32.2)–(32.4), ux(a, t) = 0, t > 0.

40.6. Find the solution of the initial-boundary value problem (40.14),
(32.2), (32.3), ux(0, t) = 0, t > 0, (32.5).

40.7. Find the solution of the boundary value problem (39.18), (34.5)–
(34.8) when

(i) a = π, b = π, f(x) = 0, g(x) = T0, q(x, y) = −xy

(ii) a = π, b = π, f(x) = 1, g(x) = 1, q(x, y) = − sin 3y.
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40.8. Find the solution of the following boundary value problem:

urr +
1
r
ur + uzz = −q(r, z), 0 < r < 1, 0 < z < h

u(r, 0) = 0, u(r, h) = 0, u(1, z) = f(z).

Answers or Hints

40.1. v(x) + 2
a

∑∞
n=1

(∫ a

0 (f(x) − v(x)) sin nπx
a dx
)
e−(n2π2c2/a2)t sin nπx

a

where v(x) = 1
ac2

[
(a − x)

∫ x

0 sq(s)ds + x
∫ a

x (a − s)q(s)ds
]

(i) v(x) =
μ

ac2ν2 (a sin νx −x sin νa) (ii) v(x) = μ
ac2ν2 [a(1 − e−νx) − x(1 − e−νa)]

(iii)v(x) = μ
ac2ν3 [2a(1 − e−νx) − 2x(1 − e−νa) − axν(e−νx − e−νa)] .

40.2. (i)
∑∞

n=1

[
4

n3π3 (−1)n−1(1 − e−n2π2t) − 10
nπ

(1−(−1)n)
1+n2π2 (n2π2 sin t

− cos t + e−n2π2t)
]
sin nπx (ii)

∑∞
n=1

2
n5π5

[
2(−1)n+1n4π4e−n2π2t

−((−1)n − 1)n2π2t + (e−n2π2t − 1)(1 − (−1)n + (−1)nn2π2)
]
sin nπx

(iii)
∑∞

n=1

[
2

n3 (2 + (−1)n)e−4n2t + (−1)n+1

16n7 (8n4t2 − 4n2t + 1 − e−4n2t)
]

× sinnx.

40.3. v(x) +
∑∞

n=1

(
an cos nπct

a + bn sin nπct
a

)
sin nπx

a where
an = 2

a

∫ a

0
(f(x) − v(x)) sin nπx

a dx, bn = 2
nπc

∫ a

0
(f(x) − v(x)) sin nπx

a dx

and v(x) = (a−x)
a A + x

aB + 1
ac2

[
(a − x)

∫ x

0 sq(s)ds + x
∫ a

x (a − s)q(s)ds
]
.

40.4. (i) 4q0c
π

∑∞
n odd

sin nx
n2(ω2−n2c2)(ω sin nct−nc sinωt) (ii)

∑∞
n=1

2(−1)n+1

n2

×
[(

1 − 1
n2

)
sinnt + t

n

]
sin nx (iii)

∑∞
n=1

2
n3π3 [(1 − (−1)n) (2 cosnπt + t

− 1
nπ sin nπt

)
+ (−1)n(cosnπt − 1)

]
sin nπx (iv)

∑∞
n=1

[
an cos nt

2 +
32

πn4 sin nπ
2

]
sin nx

2 , where an = − 32
πn4 sin nπ

2 + 16
πn3 ((−1)n − 1).

40.5. See Problem 33.4.

40.6. See Problem 33.5.

40.7. (i) 4T0
π

∑∞
n=1

sinh(2n−1)y
(2n−1) sinh(2n−1)π sin(2n−1)x+

∑∞
m=1

∑∞
n=1

4(−1)m+n

mn(m2+n2)

× sinmx sin ny (ii) 4
π

∑∞
n=1

sinh(2n−1)y+sinh(2n−1)(π−y)
(2n−1) sinh(2n−1)π sin(2n − 1)x

+ 4 sin 3y
π

∑∞
m=1

sin(2m−1)x
(2m−1)[(2m−1)2+9] .

40.8. u(r, z) =
∑∞

n=1 anI0

(
nπr
h

)
sin nπz

h +
∑∞

m=1

∑∞
n=1 bmnJ0(λnr) sin mπz

h ,

where J0(λn) = 0, n = 1, 2, · · · , anI0

(
nπ
h

)
= 2

h

∫ h

0
f(z) sin nπz

h dz, and
bmn = 4

hJ2
1 (λn)
(

m2π2

h2 +λ2
n

) ∫ 1

0

∫ h

0 q(r, z)rJ0(λnr) sin mπz
h dzdr.



Lecture 41
Fourier Integral and

Transforms

The Fourier integral is a natural extension of Fourier trigonometric series
in the sense that it represents a piecewise smooth function whose domain
is semi–infinite or infinite. In this lecture we shall develop the Fourier
integral with an intuitive approach, and then discuss Fourier cosine and sine
integrals which are extensions of Fourier cosine and sine series, respectively.
This leads to Fourier cosine and sine transform pairs.

Let fp(x) be a periodic function of period 2p that can be represented
by a Fourier trigonometric series

fp(x) =
a0

2
+

∞∑
n=1

(an cosωnx + bn sin ωnx), ωn =
nπ

p
,

where
an =

1
p

∫ p

−p

fp(t) cosωntdt, n ≥ 0

bn =
1
p

∫ p

−p

fp(t) sin ωntdt, n ≥ 1.

The problem we shall consider is what happens to the above series when
p → ∞. For this we insert an and bn, to obtain

fp(x) =
1
2p

∫ p

−p

fp(t)dt +
1
p

∞∑
n=1

[
cosωnx

∫ p

−p

fp(t) cosωntdt

+ sinωnx

∫ p

−p

fp(t) sin ωntdt

]
.

We now set

Δω = ωn+1 − ωn =
(n + 1)π

p
− nπ

p
=

π

p
.

Then, 1/p = Δω/π, and we may write the Fourier series in the form

fp(x) =
1
2p

∫ p

−p

fp(t)dt +
1
π

∞∑
n=1

[
(cos ωnx)Δω

∫ p

−p

fp(t) cos ωntdt

+(sin ωnx)Δω

∫ p

−p

fp(t) sin ωntdt

]
. (41.1)
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This representation is valid for any fixed p, arbitrarily large, but fixed.

We now let p → ∞ and assume that the resulting nonperiodic func-
tion f(x) = limp→∞ fp(x) is absolutely integrable on the x-axis, i.e.,∫∞
−∞ |f(x)|dx < ∞. Then, 1/p → 0, and the value of the first term on

the right side of (41.1) approaches zero. Also, Δω = π/p → 0 and the
infinite series in (41.1) becomes an integral from 0 to ∞, which represents
f(x), i.e.,

f(x) =
1
π

∫ ∞

0

[
cosωx

∫ ∞

−∞
f(t) cosωtdt + sinωx

∫ ∞

−∞
f(t) sinωtdt

]
dω.

(41.2)
Now if we introduce the notations

A(ω) =
1
π

∫ ∞

−∞
f(t) cosωtdt, B(ω) =

1
π

∫ ∞

−∞
f(t) sin ωtdt, (41.3)

then (41.2) can be written as

f(x) =
∫ ∞

0

[A(ω) cosωx + B(ω) sin ωx]dω. (41.4)

This representation of f(x) is called Fourier integral.

The following result gives precise conditions for the existence of the
integral in (41.4), and the meaning of the equality.

Theorem 41.1. Let f(x), − ∞ < x < ∞ be piecewise continuous
on each finite interval, and

∫∞
−∞ |f(x)| < ∞, i.e., f is absolutely integrable

on (−∞,∞). Then, f(x) can be represented by a Fourier integral (41.4).
Further, at each x,

∫ ∞

0

[A(ω) cosωx + B(ω) sin ωx]dω =
1
2
[f(x + 0) + f(x − 0)].

Example 41.1. We shall find the Fourier integral representation of
the single pulse function

f(x) =

{
1 if |x| < 1

0 if |x| > 1.

From (41.3), we have

A(ω) =
1
π

∫ ∞

−∞
f(t) cosωtdt =

1
π

∫ 1

−1

cosωtdt =
2 sinω

πω

B(ω) =
1
π

∫ 1

−1

sin ωtdt = 0.
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Thus, (41.4) gives the representation

f(x) =
2
π

∫ ∞

0

cosωx sin ω

ω
dω. (41.5)

Now from Theorem 41.1 it is clear that

∫ ∞

0

cosωx sin ω

ω
dω =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π

2
if |x| < 1

π

2
(1 + 0)

2
=

π

4
if x = ±1

0 if |x| > 1.

(41.6)

This integral is called Dirichlet’s discontinuous factor.

From (41.6) it is clear that
∫ ∞

0

sin ω

ω
dω =

π

2
. (41.7)

For an even or odd function, the Fourier integral becomes simpler. In-
deed, if f(x) is an even function, then B(ω) = 0 in (41.3) and

A(ω) =
2
π

∫ ∞

0

f(t) cosωtdt (41.8)

and the Fourier integral (41.4) reduces to the Fourier cosine integral,

f(x) =
∫ ∞

0

A(ω) cos ωxdω. (41.9)

Similarly, if f(x) is odd, then in (41.3) we have A(ω) = 0 and

B(ω) =
2
π

∫ ∞

0

f(t) sin ωtdt

and the Fourier integral (41.4) reduces to the Fourier sine integral

f(x) =
∫ ∞

0

B(ω) sin ωxdω. (41.10)

Example 41.2. We shall find the Fourier cosine and sine integrals of
the function f(x) = e−ax, x > 0, a > 0. Since

A(ω) =
2
π

∫ ∞

0

e−at cosωtdt

=
2
π
×− a

a2 + ω2
e−at
(
−ω

a
sin ωt + cosωt

)∣∣∣∞
0

=
2a/π

a2 + ω2
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it follows that
f(x) = e−ax =

2a

π

∫ ∞

0

cosωx

a2 + ω2
dω.

From this representation it is clear that
∫ ∞

0

cosωx

a2 + ω2
dω =

π

2a
e−ax. (41.11)

Further, since

B(ω) =
2
π

∫ ∞

0

e−at sin ωtdt =
2ω/π

a2 + ω2
,

we have
f(x) = e−ax =

2
π

∫ ∞

0

ω sin ωx

a2 + ω2
dω

and hence ∫ ∞

0

ω sin ωx

a2 + ω2
dω =

π

2
e−ax. (41.12)

The integrals (41.11) and (41.12) are known as Laplace integrals.

Now for an even function f(x) the Fourier integral is the Fourier cosine
integral (41.9) where A(ω) is given by (41.8). We set A(ω) =

√
2/π Fc(ω),

where c indicates cosine. Then, replacing t by x, we get

Fc(ω) =

√
2
π

∫ ∞

0

f(x) cos ωxdx (41.13)

and

f(x) =

√
2
π

∫ ∞

0

Fc(ω) cosωxdω. (41.14)

Formula (41.13) gives from f(x) a new function Fc(ω) called the Fourier
cosine transform of f(x), whereas (41.14) gives back f(x) from Fc(ω), and
we call it the inverse Fourier cosine transform of Fc(ω). Relations (41.13)
and (41.14) together form a Fourier cosine transform pair.

Similarly, for an odd function f(x), the Fourier sine transform is

Fs(ω) =

√
2
π

∫ ∞

0

f(x) sin ωxdx (41.15)

and the inverse Fourier sine transform is

f(x) =

√
2
π

∫ ∞

0

Fs(ω) sin ωxdω. (41.16)
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Relations (41.15) and (41.16) together form a Fourier sine transform pair.

Example 41.3. We shall find the Fourier cosine and sine transforms
of the function

f(x) =
{

k, 0 < x < a
0, x > a.

Clearly, we have

Fc(ω) =

√
2
π

k

∫ a

0

cosωxdx =

√
2
π

k

[
sin aω

ω

]
.

Fs(ω) =

√
2
π

k

∫ a

0

sin ωxdx =

√
2
π

k

[
1 − cos aω

ω

]
.

Example 41.4. We shall find the Fourier cosine transform of the
function e−x. Clearly, we have

Fc(ω) =

√
2
π

∫ ∞

0

e−x cosωxdx

=

√
2
π

e−x

1 + ω2
(− cosωx + ω sin ωx)

∣∣∣∣∣
∞

0

=

√
2/π

1 + ω2
.

If f(x) is absolutely integrable on the positive x-axis and piecewise con-
tinuous on every finite interval, then the Fourier cosine and sine transforms
of f exist. Furthermore, it is clear that Fc and Fs are linear operators, i.e.,

Fc(af + bg) = aFc(f) + bFc(g)

and
Fs(af + bg) = aFs(f) + bFs(g).

Theorem 41.2. Let f(x) be continuous and absolutely integrable on
the x-axis, let f ′(x) be piecewise continuous on each finite interval, and let
f(x) → 0 as x → ∞. Then,

(i) Fc(f ′(x)) = ωFs(f(x)) −
√

2
π

f(0), and

(ii) Fs(f ′(x)) = −ωFc(f(x)).

Proof. To show (i), we integrate by parts, to obtain

Fc(f ′(x)) =

√
2
π

∫ ∞

0

f ′(x) cos ωxdx

=

√
2
π

[
f(x) cosωx

∣∣∣∞
0

+ ω

∫ ∞

0

f(x) sin ωxdx

]

= −
√

2
π

f(0) + ωFs(f(x)).
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The proof of (ii) is similar.

Similarly, we can show that

Fc(f ′′(x)) = −ω2Fc(f(x)) −
√

2
π

f ′(0),

Fs(f ′′(x)) = −ω2Fs(f(x)) +

√
2
π

ωf(0).

Fourier Cosine Transforms

f(x) Fc(f)

1.

{
1, 0 < x < a
0, otherwise

√
2

π

sin aω

ω

2. xa−1, 0 < a < 1

√
2

π

Γ(a)

ωa
cos

aω

2

3. e−ax, a > 0

√
2

π

(
a

a2 + ω2

)

4. e−ax2
, a > 0

1√
2a

e−ω2/4a

5. xne−ax, a > 0

√
2

π

n!

(a2 + ω2)n+1
Re(a + iω)n+1

6.

{
cos x, 0 < x < a
0, otherwise

1√
2π

[
sin a(1 − ω)

1 − ω
+

sin a(1 + ω)

1 + ω

]

7. cos ax2, a > 0
1√
2a

cos

(
ω2

4a
− π

4

)

8. sin ax2, a > 0
1√
2a

cos

(
ω2

4a
+

π

4

)

9.
sin ax

x
, a > 0

{ √
π

2
, ω < a

0, ω > a

10.
e−x sin x

x

1√
2π

tan−1 2

ω2

11. J0(ax), a > 0

⎧⎨
⎩
√

2

π

1√
a2 − ω2

, ω < a

0, ω > a

12. sech ax, a > 0
√

π

2

1

a
sech

πω

2a
.
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Fourier Sine Transforms

f(x) Fs(f)

1.

{
1, 0 < x < a
0, otherwise

√
2

π

[
1 − cos aω

ω

]

2.
1√
x

1√
ω

3.
1

x3/2
2
√

ω

4. xa−1, 0 < a < 1

√
2

π

Γ(a)

ωa
sin

aπ

2

5. e−x

√
2

π

(
ω

1 + ω2

)

6.
e−ax

x
, a > 0

√
2

π
tan−1 x

a

7. xne−ax, a > 0

√
2

π

n!

(a2 + ω2)n+1
Im(a + iω)n+1

8. xe−ax2
, a > 0

ω

(2a)3/2
e−ω2/4a

9.

{
sin x, 0 < x < a
0, otherwise

1√
2π

[
sin a(1 − ω)

1 − ω
− sin a(1 + ω)

1 + ω

]

10.
cos ax

x
, a > 0

{ √
π

2
, a < ω

0, a > ω

11. tan−1 2a

x
, a > 0

√
2π

sinh aω

ω
e−aω

12. cosech ax, a > 0

√
π

2

1

a
tanh

πω

2a
.



Lecture 42
Fourier Integral and
Transforms (Cont’d.)

In this lecture we shall introduce the complex Fourier integral and the
Fourier transform pair, and find the Fourier transform of the derivative of a
function. Then, we shall state and prove the Fourier convolution theorem,
which is an important result.

We note that (41.2) is the same as

f(x) =
1
π

∫ ∞

0

∫ ∞

−∞
f(t)[cosωt cosωx + sinωt sin ωx]dtdω

=
1
π

∫ ∞

0

[∫ ∞

−∞
f(t) cos(ωx − ωt)dt

]
dω.

(42.1)

The integral in brackets is an even function of ω; we denote it by F̃ (ω).
Since cos(ωx−ωt) is an even function of ω, the function f does not depend
on ω, and we integrate with respect to t (not ω), the integral of F̃ (ω) from
ω = 0 to ∞ is 1/2 times the integral of F̃ (ω) from −∞ to ∞. Thus,

f(x) =
1
2π

∫ ∞

−∞

[∫ ∞

−∞
f(t) cos(ωx − ωt)dt

]
dω. (42.2)

From the above argument it is clear that

1
2π

∫ ∞

−∞

[∫ ∞

−∞
f(t) sin(ωx − ωt)dt

]
dω = 0. (42.3)

A combination of (42.2) and (42.3) gives

f(x) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
f(t)eiω(x−t)dtdω. (42.4)

This is called the complex Fourier integral.

From the above representation of f(x), we have

f(x) =
1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
f(t)e−iωtdt

]
eiωxdω. (42.5)
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The expression in brackets is a function of ω, is denoted by F (ω) or F (f),
and is called the Fourier transform of f. Now writing x for t, we get

F (ω) =
1√
2π

∫ ∞

−∞
f(x)e−iωxdx (42.6)

and with this (42.5) becomes

f(x) =
1√
2π

∫ ∞

−∞
F (ω)eiωxdω. (42.7)

The representation (42.7) is called the inverse Fourier transform of F (ω).

Finally, as in Theorem 41.1, if f(x), −∞ < x < ∞ is piecewise con-
tinuous on each finite interval, and

∫∞
−∞ |f(x)| < ∞. Then, the Fourier

transform (42.6) of f(x) exists. Further, at each x,

1√
2π

∫ ∞

−∞
F (ω)eiωxdω =

1
2
[f(x + 0) + f(x − 0)].

Example 42.1. We shall find the Fourier transform of

f(x) =

{
k, 0 < x < a

0, otherwise.

Clearly, we have

F (ω) =
1√
2π

∫ a

0

ke−iωxdx =
k(1 − e−iaω)

iω
√

2π
.

Example 42.2. We shall find the Fourier transform of f(x) = e−ax2
,

a > 0. We have

F (ω) =
1√
2π

∫ ∞

−∞
e[−ax2−iωx]dx

=
1√
2π

∫ ∞

−∞
exp

[
−
(√

ax +
iω

2
√

a

)2

+
(

iω

2
√

a

)2
]

dx

=
1√
2π

exp
(
−ω2

4a

)∫ ∞

−∞
exp

[
−
(√

ax +
iω

2
√

a

)2
]

dx

=
1√
2π

exp
(
−ω2

4a

)∫ ∞

−∞
exp
(
−v2
) dv√

a
,

√
ax +

iω

2
√

a
= v

=
1√
2π

exp
(
−ω2

4a

)
1√
a

√
π =

1√
2a

e−ω2/4a.
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Example 42.3. We shall find the Fourier transform of the square wave
function

f(x) =

⎧⎪⎨
⎪⎩

0, x < a

1, a ≤ x ≤ b

0, x > b.

From (42.6), we have

F (ω) =
1√
2π

∫ ∞

−∞
f(x)e−iωxdx =

1√
2π

∫ b

a

e−iωxdx

=

⎧⎪⎪⎨
⎪⎪⎩

e−iωb − e−iωa

−
√

2πiω
, ω �= 0

b − a√
2π

, ω = 0.

Further, it follows that

1√
2π

∫ ∞

−∞

e−iωb − e−iωa

−
√

2πiω
eiωxdω =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x < a
1/2, x = a
1, a < x < b
1/2, x = b
0, x > b.

Example 42.4. We shall find the Fourier transform of the function

f(x) =

{
x2e−x, x > 0

0, x < 0.

We have

F (ω) =
1√
2π

∫ ∞

0

f(x)e−iωxdx =
1√
2π

∫ ∞

0

x2e−xe−iωxdx

=
1√
2π

∫ ∞

0

x2e−x(1+iω)dx =

√
2
π

1
(1 + iω)3

.

The Fourier transform is a linear operation. We state this property in
the following result.

Theorem 42.1 (Linearity Property). The Fourier transform is
a linear operation, i.e., for arbitrary functions f(x) and g(x) whose Fourier
transforms exist and arbitrary constants a and b,

F (af + bg) = aF (f) + bF (g).

Now we state and prove the following two results, which will be used
repeatedly in the next two lectures.
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Theorem 42.2 (Transform of the Derivative). Let f(x) be
continuous on the x-axis and f(x) → 0 as |x| → ∞. Furthermore, let f ′(x)
be absolutely integrable on the x-axis. Then

F (f ′(x)) = iωF (f).

Proof. Integrating by parts and using f(x) → 0 as |x| → ∞, we obtain

F (f ′(x)) =
1√
2π

∫ ∞

−∞
f ′(x)e−iωxdx

=
1√
2π

[
f(x)e−iωx

∣∣∣∞
−∞

− (−iω)
∫ ∞

−∞
f(x)e−iωxdx

]

= iωF (f(x)).

It is clear that

F (f ′′) = iωF (f ′) = (iω)2F (f) = −ω2F (f).

Example 42.5. Clearly, we have

F
(
xe−x2
)

= F

(
−1

2
(e−x2

)′
)

= −1
2
F
(
(e−x2

)′
)

= −1
2
iωF
(
e−x2
)

= −1
2
iω

1√
2
e−ω2/4

= − iω

2
√

2
e−ω2/4.

Theorem 42.3 (Convolution Theorem). Suppose that f(x)
and g(x) are piecewise continuous, bounded, and absolutely integrable func-
tions on the x-axis. Then

F (f ∗ g) =
√

2πF (f)F (g), (42.8)

where f ∗ g is the convolution of functions f and g defined as

(f ∗ g)(x) =
∫ ∞

−∞
f(t)g(x − t)dt =

∫ ∞

−∞
f(x − t)g(t)dt. (42.9)

Proof. By the definition and an interchange of the order of integration,
we have

F (f ∗ g) =
1√
2π

∫ ∞

−∞

∫ ∞

−∞
f(τ)g(x − τ)e−iωxdτdx

=
1√
2π

∫ ∞

−∞

∫ ∞

−∞
f(τ)g(x − τ)e−iωxdxdτ.
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Now we make the substitution x − τ = ν, so that x = τ + ν and

F (f ∗ g) =
1√
2π

∫ ∞

−∞

∫ ∞

−∞
f(τ)g(ν)e−iω(τ+ν)dνdτ

=
1√
2π

∫ ∞

−∞
f(τ)e−iωτdτ

∫ ∞

−∞
g(ν)e−iωνdν

=
√

2π F (f)G(g).

By taking the inverse Fourier transform on both sides of (42.8) and
writing F (f) = f̂(ω) and F (g) = ĝ(ω), and noting that

√
2π and 1/

√
2π

cancel each other, we obtain

(f ∗ g)(x) =
∫ ∞

−∞
f̂(ω)ĝ(ω)eiωxdω. (42.10)

Fourier Transforms

1. f(x) F (ω)

2.

{
1, − b < x < b
0, otherwise

√
2

π

sin bω

ω

3.

{
1, b < x < c
0, otherwise

e−ibω − e−icω

iω
√

2π

4.
1

x2 + a2
, a > 0

√
π

2

e−a|ω|

a

5.

{
x, 0 < x < b
2x − a, b < x < 2b
0, otherwise

−1 + 2eibω − e−2ibω

√
2πω2

6.

{
e−ax, x > 0
0, otherwise

1√
2π(a + iω)

7.

{
eax, b < x < c
0, otherwise

e(a−iω)c − e(a−iω)b

√
2π(a − iω)

8.

{
eiax, − b < x < b
0, otherwise

√
2

π

sin b(ω − a)

ω − a

9.

{
eiax, b < x < c
0, otherwise

i√
2π

eib(a−ω) − eic(a−ω)

a − ω

10.
sin ax

x
, a > 0

{ √
π

2
, |ω| < a

0, |ω| > a.
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Problems

42.1. Find the Fourier integral representation of the following func-
tions:

(i) f(x) =

⎧⎨
⎩

−1, − 1 < x < 0
1, 0 < x < 1
0, otherwise

(ii) f(x) = e−|x|

(iii) f(x) =
{

1 − x2, |x| < 1
0, |x| > 1.

42.2. Use Fourier integral representation to show that

(i)
∫ ∞

0

sin xω

ω
dω =

⎧⎨
⎩

π/2, x > 0
0, x = 0
−π/2, x < 0

(ii)
∫ ∞

0

cosxω + ω sin xω

1 + ω2
dω =

⎧⎨
⎩

0, x < 0
π/2, x = 0
πe−x, x > 0

(iii)
∫ ∞

0

ω3 sin xω

ω4 + 4
dω =

π

2
e−x cosx if x > 0

(iv)
∫ ∞

0

1 − cosπω

ω
sin xωdω =

{
π/2, 0 < x < π
0, x > π

(v)
∫ ∞

0

cos(πω/2) cosxω

1 − ω2
dω =
{

(π/2) cosx, |x| < π/2
0, |x| > π/2

(vi)
∫ ∞

0

sin πω sin xω

1 − ω2
dω =
{

(π/2) sin x, 0 ≤ x ≤ π
0, x > π.

42.3. Show that

(i) cos ax2 =
1√
πa

∫ ∞

0

cos
(

ω2

4a
− π

4

)
cosωxdω, a > 0

(ii) sin ax2 =
1√
πa

∫ ∞

0

cos
(

ω2

4a
+

π

4

)
cosωxdω, a > 0

(iii) e−x cosx =
2
π

∫ ∞

0

ω2 + 2
ω4 + 4

cosωxdω, x > 0.

42.4. Show that

(i) e−x cosx =
2
π

∫ ∞

0

ω3

ω4 + 4
sin ωxdω, x > 0

(ii) tan−1 2a

x
= 2
∫ ∞

0

e−aω

ω
sinh aω sin ωxdω, a > 0, x > 0
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(iii) cosechax =
1
a

∫ ∞

0

tanh
πω

2a
sin ωxdω, a > 0, x > 0.

42.5. Find Fourier transforms of the following functions:

(i) f(x) =

{
e−x sin x, x > 0

0, x < 0

(ii) f(x) =

{
e−x, x > 0

e2x, x < 0

(iii) f(x) = e−a|x|, a > 0.

42.6. Parseval’s equality for the Fourier transform (42.6) and its
inverse (42.7) becomes

∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
|F (ω)|2dω.

Use Example 42.3 to show that

1
2π

∫ ∞

−∞

|e−iωb − e−iωa|2
ω2

dω = b − a.

42.7. Show that the solution of the integral equation
∫ ∞

0

f(ω) sinxωdω = g(x),

where g(x) = 1 when 0 < x < π, g(x) = 0 when x > π is

f(ω) =
2
π

1 − cosπω

ω
, ω > 0.

42.8. Show that the integral equation
∫ ∞

0

f(ω) cosxωdω = e−x,

has the solution

f(ω) =
2
π

1
1 + ω2

, ω > 0.

42.9. Find the solution of the integral equation

f(x) = g(x) +
∫ ∞

−∞
h(t)f(x − t)dt,
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where the functions f, g and h satisfy the conditions of Theorem 41.1. In
particular, solve the integral equation

∫ ∞

−∞

f(t)dt

(x − t)2 + a2
=

1
x2 + b2

, 0 < a < b.

42.10. Evaluate the following integrals

(i)
∫ ∞

−∞

dx

(x2 + a2)(x2 + b2)
, a > 0, b > 0

(ii)
∫ ∞

−∞

x2 dx

(x2 + a2)(x2 + b2)
, a > 0, b > 0.

Answers or Hints

42.1. (i) 2
π

∫∞
0

(
1−cos ω

ω

)
sinωxdω (ii) 2

π

∫∞
0

cos ωx
1+ω2 dω

(iii) 4
π

∫∞
0

(
sin ω−ω cos ω

ω3

)
cosωxdω.

42.5. (i) 1√
2π[(1+iω)2+1]

(ii) 3√
2π[2+iω+ω2]

(iii)
√

2
π

a
(a2+ω2) .

42.9. f(x) = 1√
2π

∫∞
−∞

F (g)

1−
√

2πF (h)
eiωxdω, a(b−a)

bπ(x2+(b−a)2) .

42.10.Put x = 0 in (4.9) and (4.10). (i) π
ab(a+b) (ii) π

(a+b) .



Lecture 43
Fourier Transform Method

for Partial DEs

Here and in the next lecture we shall consider problems in infinite do-
mains which can be effectively solved by finding the Fourier transform or
the Fourier sine or cosine transform of the unknown function. For such
problems usually the method of separation of variables does not work be-
cause the Fourier series are not adequate to yield complete solutions. This
is due to the fact that often these problems require a continuous superpo-
sition of separated solutions. We shall illustrate the method by considering
several examples.

Example 43.1. We will show how the Fourier transform applies to
the heat equation. We consider the heat flow problem of an infinitely long
thin bar insulated on its lateral surface, which is modeled by the following
initial-value problem

ut = c2uxx, −∞ < x < ∞, t > 0, c > 0

u and ux finite as |x| → ∞, t > 0

u(x, 0) = f(x), −∞ < x < ∞,

(43.1)

where the function f is piecewise smooth and absolutely integrable in
(−∞,∞).

Let U(ω, t) be the Fourier transform of u(x, t). Thus, from the Fourier
transform pair, we have

u(x, t) =
1√
2π

∫ ∞

−∞
U(ω, t)eiωxdω

U(ω, t) =
1√
2π

∫ ∞

−∞
u(x, t)e−iωxdx.

Assuming that the derivatives can be taken under the integral, we get

∂u

∂t
=

1√
2π

∫ ∞

−∞

∂U(ω, t)
∂t

eiωxdx

∂u

∂x
=

1√
2π

∫ ∞

−∞
U(ω, t)(iω)eiωxdω

∂2u

∂x2
=

1√
2π

∫ ∞

−∞
U(ω, t)(iω)2eiωxdω.
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In order for u(x, t) to satisfy the heat equation, we must have

0 =
∂u

∂t
− c2 ∂2u

∂x2
=

1√
2π

∫ ∞

−∞

[
∂U(ω, t)

∂t
+ c2ω2U(ω, t)

]
eiωxdω.

Thus, U must be a solution of the ordinary differential equation

dU

dt
+ c2ω2U = 0.

The initial condition is determined by

U(ω, 0) =
1√
2π

∫ ∞

−∞
u(x, 0)e−iωxdx

=
1√
2π

∫ ∞

−∞
f(x)e−iωxdx = F (ω).

Therefore, we have
U(ω, t) = F (ω)e−ω2c2t,

and hence

u(x, t) =
1√
2π

∫ ∞

−∞
F (ω)e−ω2c2teiωxdω. (43.2)

Now since
1√
2π

∫ ∞

−∞
e−ω2c2teiωxdω =

√
2π

e−x2/(4c2t)

√
4πc2t

,

if in (42.10) we denote F (ω) = f̂(ω) and ĝ(ω) = e−ω2c2t, then from (43.2)
it follows that

u(x, t) =
1√
2π

∫ ∞

−∞
f(μ)

√
2π

e−(x−μ)2/4c2t

√
4πc2t

dμ

=
∫ ∞

−∞
f(μ)

e−(x−μ)2/4c2t

√
4πc2t

dμ.

(43.3)

This formula is due to Gauss and Weierstrass.

For each μ the function (x, t) → e−(x−μ)2/4c2t/
√

4πc2t is a solution of
the heat equation and is called the fundamental solution. Thus, (43.3)
gives a representation of the solution as a continuous superposition of the
fundamental solution.

We recall that the standard normal distribution function Φ is defined as

Φ(c) =
1√
2π

∫ c

−∞
e−z2/2dz.
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This is a continuous increasing function with Φ(−∞) = 0, Φ(0) = 1/2,
Φ(∞) = 1. If a < b, then we can write

∫ b

a

e−(x−μ)2/4c2t

√
4πc2t

dμ =
1√
2π

∫ (x−a)/
√

2c2t

(x−b)/
√

2c2t

e−z2/2dz,
(x − μ)√

2c2t
= z

=
1√
2π

∫ (x−a)√
2c2t

−∞
e−z2/2dz − 1√

2π

∫ (x−b)√
2c2t

−∞
e−z2/2dz

= Φ
(

x − a√
2c2t

)
− Φ
(

x − b√
2c2t

)
.

(43.4)
From (43.3) and (43.4) it is clear that the solution of the problem

ut = c2uxx, −∞ < x < ∞, t > 0

u(x, 0) = f(x) =

⎧⎨
⎩

0, x < a
L, a ≤ x ≤ b
0, x > b

can be written as

u(x, t) = LΦ
(

x − a√
2c2t

)
− LΦ

(
x − b√
2c2t

)
.

Now using the properties Φ(−∞) = 0, Φ(0) = 1/2, Φ(∞) = 1 we can
verify that

lim
t→0

u(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x < a
L/2, x = a
L, a < x < b
L/2, x = b
0, x > b.

Example 43.2. Consider the problem

ut = c2uxx, x > 0, t > 0

u(0, t) = 0, t > 0

u and ux finite as x → ∞, t > 0

u(x, 0) = f(x), x > 0,

(43.5)

which appears in heat flow in a semi–infinite region. In (43.5) the function
f is piecewise smooth and absolutely integrable in [0,∞).

We define the odd function

f̄(x) =

{
f(x), x > 0

−f(−x), x < 0.
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Then from (43.3), we have

u(x, t) =
∫ ∞

−∞

e−(x−μ)2/4c2t

√
4πc2t

f̄(μ)dμ

=
∫ 0

−∞

e−(x−μ)2/4c2t

√
4πc2t

f̄(μ)dμ +
∫ ∞

0

e−(x−μ)2/4c2t

√
4πc2t

f̄(μ)dμ.

In the first integral we change μ to −μ and use the oddness of f̄ , to obtain
∫ 0

−∞

e−(x−μ)2/4c2t

√
4πc2t

f̄(μ)dμ = −
∫ ∞

0

e−(x+μ)2/4c2t

√
4πc2t

f(μ)dμ.

Thus, the solution of the problem (43.5) can be written as

u(x, t) =
∫ ∞

0

e−(x−μ)2/4c2t − e−(x+μ)2/4c2t

√
4πc2t

f(μ)dμ. (43.6)

The above procedure to find the solution of (43.5) is called the method
of images.

In an analogous way it can be shown that the solution of the problem

ut = c2uxx, x > 0, t > 0

ux(0, t) = 0, t > 0

u and ux finite as x → ∞, t > 0

u(x, 0) = f(x), x > 0

(43.7)

can be written as

u(x, t) =
∫ ∞

0

e−(x−μ)2/4c2t + e−(x+μ)2/4c2t

√
4πc2t

f(μ)dμ. (43.8)

Here, of course, we need to extend f(x) to an even function

f̄(x) =

{
f(x), x > 0

f(−x), x < 0.

In (43.7) the physical significance of the condition ux(0, t) = 0 is that
there is a perfect insulation, i.e., there is no heat flux across the surface.

Example 43.3. Consider the initial-value problem for the wave equa-
tion

utt = c2uxx, −∞ < x < ∞, t > 0, c > 0

u and ux finite as |x| → ∞, t > 0

u(x, 0) = f1(x), −∞ < x < ∞
ut(x, 0) = f2(x), −∞ < x < ∞,

(43.9)
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where the functions f1 and f2 are piecewise smooth and absolutely inte-
grable in (−∞,∞).

To find the solution of this problem, we introduce the Fourier transforms

Fj(ω) =
1√
2π

∫ ∞

−∞
e−iωxfj(x)dx, j = 1, 2

and its inversion formulas

fj(x) =
1√
2π

∫ ∞

−∞
eiωxFj(ω)dω, j = 1, 2.

We also need the Fourier representation of the solution u(x, t),

u(x, t) =
1√
2π

∫ ∞

−∞
U(ω, t)eiωxdω,

where U(ω, t) is an unknown function, which we will now determine. For
this, we substitute this into the differential equation (43.9), to obtain

0 =
1√
2π

∫ ∞

−∞

[
∂2U(ω, t)

∂t2
+ c2ω2U(ω, t)

]
eiωxdω.

Thus, U must be a solution of the ordinary differential equation

d2U

dt2
+ c2ω2U = 0,

whose solution can be written as

U(ω, t) = c1(ω) cosωct + c2(ω) sinωct.

To find c1(ω) and c2(ω), we note that

f1(x) = u(x, 0) =
1√
2π

∫ ∞

−∞
c1(ω)eiωxdω

f2(x) =
∂u(x, 0)

∂t
=

1√
2π

∫ ∞

−∞
ωcc2(ω)eiωxdω

and hence F1(ω) = c1(ω) and F2(ω) = ωcc2(ω).

Therefore, it follows that

U(ω, t) = F1(ω) cosωct +
F2(ω)

ωc
sinωct
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and hence the Fourier representation of the solution is

u(x, t) =
1√
2π

∫ ∞

−∞

[
F1(ω) cosωct +

F2(ω)
ωc

sin ωct

]
eiωxdω. (43.10)

Now since cos θ = (eiθ + e−iθ)/2, sin θ = (eiθ − e−iθ)/2i, we have

1√
2π

∫ ∞

−∞
F1(ω)(cosωct)eiωxdx

=
1
2

1√
2π

∫ ∞

−∞
F1(ω)

(
eiωct + e−iωct

)
eiωxdω

=
1
2

1√
2π

∫ ∞

−∞
F1(ω)

(
eiω(x+ct) + eiω(x−ct)

)
dω

=
1
2
[f1(x + ct) + f1(x − ct)].

Similarly,

1√
2π

∫ ∞

−∞
F2(ω)

sin ωct

ωc
eiωxdω

=
1
2

1√
2π

∫ ∞

−∞
F2(ω)

eiωct − e−iωct

iωc
eiωxdω

=
1
2

1√
2π

∫ ∞

−∞
F2(ω)

eiω(x+ct) − eiω(x−ct)

iωc
dω

=
1
2c

1√
2π

∫ ∞

−∞
F2(ω)

(∫ x+ct

x−ct

eiωξdξ

)
dω

=
1
2c

∫ x+ct

x−ct

[
1√
2π

∫ ∞

−∞
eiωξF2(ω)dω

]
dξ

=
1
2c

∫ x+ct

x−ct

f2(ξ)dξ.

Putting these together yields d’Alembert’s formula

u(x, t) =
1
2
[f1(x + ct) + f1(x − ct)] +

1
2c

∫ x+ct

x−ct

f2(ξ)dξ, (43.11)

which is also obtained in Problem 33.10.



Lecture 44
Fourier Transform Method
for Partial DEs (Cont’d.)

In this lecture we shall employ the Fourier transform, or the Fourier
sine or cosine transform to find solutions of the Laplace equation in infinite
domains. Here we shall also introduce finite Fourier sine and cosine trans-
forms, and demonstrate how easily these can be used directly to solve some
finite domain problems.

Example 44.1. We shall find the solution of the following problem
involving the Laplace equation in a half-plane:

uxx + uyy = 0, −∞ < x < ∞, y > 0

u(x, 0) = f(x), −∞ < x < ∞
|u(x, y)| ≤ M, −∞ < x < ∞, y > 0,

(44.1)

where the function f is piecewise smooth and absolutely integrable in
(−∞,∞). If f(x) → 0 as |x| → ∞, then we also have the implied boundary
conditions lim|x|→∞ u(x, y) = 0, limy→+∞ u(x, y) = 0.

For this, as in Lecture 43, we let

f(x) =
1√
2π

∫ ∞

−∞
F (ω)eiωxdω, F (ω) =

1√
2π

∫ ∞

−∞
f(x)e−iωxdx

and

u(x, y) =
1√
2π

∫ ∞

−∞
U(ω, y)eiωxdω.

We find that

0 = uxx + uyy =
1√
2π

∫ ∞

−∞

[
−ω2U(ω, y) +

∂2U(ω, y)
∂y2

]
eiωxdω.

Thus, U must satisfy the ordinary differential equation

d2U

dy2
= ω2U

and the initial condition U(ω, 0) = F (ω) for each ω.
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The general solution of the ordinary differential equation is c1e
ωy +

c2e
−ωy. If we impose the initial condition and the boundedness condition,

the solution becomes

U(ω, y) =

{
F (ω)e−ωy, ω ≥ 0

F (ω)eωy, ω < 0

}
= F (ω)e−|ω|y.

Thus, the desired Fourier representation of the solution is

u(x, y) =
1√
2π

∫ ∞

−∞
F (ω)e−|ω|yeiωxdω.

To obtain an explicit representation, we insert the formula for F (ω) and
formally interchange the order of integration, to obtain

u(x, y) =
1
2π

∫ ∞

−∞

(∫ ∞

−∞
f(ξ)e−iωξdξ

)
e−|ω|yeiωxdω

=
1
2π

∫ ∞

−∞

(∫ ∞

−∞
eiω(x−ξ)e−|ω|ydω

)
f(ξ)dξ.

Now the inner integral is∫ ∞

−∞
eiω(x−ξ)e−|ω|ydω = 2Re

∫ ∞

0

eiω(x−ξ)e−ωydω

= 2Re
1

y − i(x − ξ)
=

2y

y2 + (x − ξ)2
.

Therefore, the solution u(x, y) can be explicitly written as

u(x, y) =
1
π

∫ ∞

−∞

y

y2 + (x − ξ)2
f(ξ)dξ. (44.2)

This representation is known as Poisson’s integral formula.

In particular, for

u(x, 0) = f(x) =
{

1, a < x < b
0, otherwise

(44.2) becomes

u(x, y) =
1
π

∫ b

a

y

y2 + (x − ξ)2
dξ =

1
π

∫ b

a

dξ/y
(x−ξ)2

y2 + 1
.

Using the substitution v = (ξ − x)/y, we have dξ = ydv, so that

u(x, y) =
1
π

∫ (b−x)/y

(a−x)/y

1
1 + v2

dv

=
1
π

(
tan−1 b − x

y
− tan−1 a − x

y

)
=

1
π

(θb − θa),
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where θa and θb are as in Figure 44.1.

(x, y)

(x, 0) (a, 0) (b, 0)

Figure 44.1

θa

θb

Example 44.2. We shall employ the Fourier sine transform to find
the solution of the following problem involving the Laplace equation in a
semi-infinite strip:

uxx + uyy = 0, 0 < x < ∞, 0 < y < b

u(x, 0) = f(x), 0 < x < ∞
u(0, y) = 0, 0 < y < b

u(x, b) = 0, 0 < x < ∞,

(44.3)

where the function f is piecewise smooth and absolutely integrable in
[0,∞). We shall also need the boundary conditions limx→∞ u(x, y) = 0
and limx→∞ ux(x, y) = 0.

For this, we let

f(x) =

√
2
π

∫ ∞

0

Fs(ω) sin ωxdω, Fs(ω) =

√
2
π

∫ ∞

0

f(x) sin ωxdx

and

u(x, y) =

√
2
π

∫ ∞

0

Us(ω, y) sinωxdω.

This, as in Example 44.1, leads to the same ordinary DE U ′′
s = ω2Us, and

hence
Us(ω, y) = c1(ω) cosh ωy + c2(ω) sinh ωy.

Now the boundary condition Us(ω, b) = 0 yields

c1(ω) = −c2(ω)
sinh ωb

coshωb
.

Thus, we have

Us(ω, y) = −c2(ω)
sinh ωb

coshωb
coshωy + c2(ω) sinh ωy = c2(ω)

sinh ω(y − b)
coshωb

.
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Now since Us(ω, 0) = Fs(ω), we find

c2(ω) = −Fs(ω)
coshωb

sinh ωb
,

and therefore
Us(ω, y) = Fs(ω)

sinh ω(b − y)
sinh ωb

.

This gives the solution

u(x, y) =

√
2
π

∫ ∞

0

Fs(ω)
sinh ω(b − y)

sinh ωb
sinωxdω

=
2
π

∫ ∞

0

∫ ∞

0

f(t) sin ωt
sinhω(b − y)

sinh ωb
sin ωxdtdω.

Next we shall introduce finite Fourier sine and cosine transforms.

Definition 44.1. The finite Fourier sine transform of f(x), 0 < x < L
is defined as

Fs(n) =
∫ L

0

f(x) sin
nπx

L
dx, (44.4)

where n ≥ 1 is an integer. The function f(x) is then called the inverse
finite Fourier sine transform of Fs(n) and is given by

f(x) =
2
L

∞∑
n=1

Fs(n) sin
nπx

L
. (44.5)

Definition 44.2. The finite Fourier cosine transform of f(x), 0 < x <
L is defined as

Fc(n) =
∫ L

0

f(x) cos
nπx

L
dx, (44.6)

where n ≥ 0 is an integer. The function f(x) is then called the inverse
finite Fourier cosine transform of Fc(n) and is given by

f(x) =
1
L

Fc(0) +
2
L

∞∑
n=1

Fc(n) cos
nπx

L
. (44.7)

Finite Fourier transforms are useful in solving partial differential equa-
tions. For this, we note that
∫ L

0

∂u(x, t)
∂x

sin
nπx

L
dx = u(x, t) sin

nπx

L

∣∣∣L
0
− nπ

L

∫ L

0

u(x, t) cos
nπx

L
dx

and hence

Fs

(
∂u

∂x

)
= −nπ

L
Fc(n) (44.8)
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and, similarly,

Fc

(
∂u

∂x

)
=

nπ

L
Fs(n) − [u(0, t) − u(L, t) cosnπ], (44.9)

Fs

(
∂2u

∂x2

)
= −nπ

L
Fc

(
∂u

∂x

)

= −n2π2

L2
Fs(n) +

nπ

L
[u(0, t) − u(L, t) cosnπ],

(44.10)

Fc

(
∂2u

∂x2

)
= −n2π2

L2
Fc(n) − [ux(0, t) − ux(L, t) cosnπ]. (44.11)

Example 44.3. We will use finite Fourier sine transform to find the
solution of the problem

∂u

∂t
=

∂2u

∂x2
, 0 < x < 4, t > 0

u(x, 0) = 2x, 0 < x < 4

u(0, t) = u(4, t) = 0, t > 0.

(44.12)

Taking the finite Fourier sine transform with L = 4 of both sides of the
partial differential equation gives

∫ 4

0

∂u

∂t
sin

nπx

4
dx =
∫ 4

0

∂2u

∂x2
sin

nπx

4
dx.

Writing U for Fs(n) and using (44.10) with u(0, t) = 0, u(4, t) = 0 leads to

dU(n, t)
dt

= −n2π2

16
U,

which can be solved to obtain

U(n, t) = ce−n2π2t/16.

Now taking the finite Fourier sine transform of the condition u(x, 0) =
2x, we have

U(n, 0) =
∫ 4

0

2x sin
nπx

4
dx

=
[
2x

(
−cosnπx/4

nπ/4

)
− 2
(
− sin nπx/4

n2π2/16

)]∣∣∣∣
4

0

= − 32
nπ

cosnπ.

Since c = U(n, 0) it follows that

U(n, t) = − 32
nπ

cosnπe−n2π2t/16.
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Thus, from (44.5) we get

u(x, t) = −16
π

∞∑
n=1

cosnπ

n
e−n2π2t/16 sin

nπx

4
.

Problems

44.1. Use the Fourier transform to find the solution of the boundary
value problem

y′′ + ay′ + by = f(x)

y(x) → 0, y′(x) → 0 as |x| → ∞,

where the function f is piecewise smooth and absolutely integrable in
(−∞,∞). In particular, find the solution when a = 0, b = −1, f(x) = e−|x|.

44.2. Use the Fourier sine transform to find the solution of the bound-
ary value problem

y′′ − k2y = f(x), 0 < x < ∞, k > 0

y(0) = 1, y(x) → 0, y′(x) → 0 as x → ∞,

where the function f is piecewise smooth and absolutely integrable in [0,∞).

44.3. Use the Fourier cosine transform to find the solution of the
boundary value problem

y′′ − k2y = f(x), 0 < x < ∞, k > 0

y′(0) = 1, y(x) → 0, y′(x) → 0 as x → ∞,

where the function f is piecewise smooth and absolutely integrable in [0,∞).

44.4. Use the Fourier transform to find solutions of the following
ordinary DEs satisfying y(x) → 0, y′(x) → 0 as |x| → ∞ :

(i) xy′′ + y′ + xy = 0 (Bessel DE of order zero)
(ii) xy′′ + y′ − xy = 0 (modified Bessel DE of order zero)
(iii) y′′ + y′ + xy = 0.

44.5. Show that the solution (43.3) can be written as

u(x, t) =
1√
π

∫ ∞

−∞
e−w2

f(x + 2
√

c2t w)dw.
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44.6. Show that the solution (43.6) can be written as

u(x, t) =
2
π

∫ ∞

0

∫ ∞

0

f(μ)e−c2ω2t sin ωμ sinωxdωdμ.

44.7. Show that the solution (43.8) can be written as

u(x, t) =
2
π

∫ ∞

0

∫ ∞

0

f(μ)e−c2ω2t cosωμ cosωxdωdμ.

44.8. Find the solution of (43.1) when the initial temperature distri-
bution in the rod is given by

f(x) = e−x2/2, −∞ < x < ∞.

44.9. Find the solution of (43.5) when the initial temperature distri-
bution in the rod is given by

f(x) = xe−x2/4a2
, x > 0.

44.10. Use the Fourier cosine transform to solve the following problem:

ut = uxx, x > 0, t > 0

u(x, 0) = 0, x > 0

u(x, t) → 0 as x → ∞, t > 0

ux(0, t) = f(t), t > 0

where the function f is piecewise smooth and absolutely integrable in [0,∞).

44.11. Use the Fourier transform to solve the following problem for a
heat equation with transport term

ut = c2uxx + kux, −∞ < x < ∞, t > 0, c > 0, k > 0

u(x, 0) = f(x), −∞ < x < ∞
u(x, t) and ux(x, t) finite as |x| → ∞, t > 0

where the function f is piecewise smooth and absolutely integrable in
(−∞,∞).

44.12. Use the Fourier transform to solve the following nonhomoge-
neous problem

ut = c2uxx + q(x, t), −∞ < x < ∞, t > 0

u(x, 0) = f(x), −∞ < x < ∞
u(x, t) → 0, ux(x, t) → 0 as |x| → ∞, t > 0
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where the function f is piecewise smooth and absolutely integrable in
(−∞,∞).

44.13. Find the solution of the problem (43.9) when

(i) f1(x) = 3 sin 2x, f2(x) = 0
(ii) f1(x) = e−|x|, f2(x) = 0
(iii) f1(x) = 0, f2(x) = 4 cos 5x

(iv) f1(x) = 0, f2(x) = e−|x|.

44.14. Use the Fourier sine transform to solve the following problem:

utt = uxx, x > 0, t > 0

u(x, 0) = 0, x > 0

ut(x, 0) = 0, x > 0

u(0, t) = f(t), t > 0

u(x, t) and ux(x, t) → 0 as x → ∞, t > 0,

where the function f is piecewise smooth and absolutely integrable in [0,∞).

44.15. Find the solution of the wave equation

utt = c2uxx − ku, −∞ < x < ∞, t > 0, c > 0, k > 0

satisfying the same conditions as in (43.9).

44.16. Show that the solution of the following Neumann problem:

uxx + uyy = 0, −∞ < x < ∞, y > 0

uy(x, 0) = f(x), −∞ < x < ∞
u(x, y) and uy(x, y) → 0 as (x2 + y2) → ∞,

where the function f is piecewise smooth and absolutely integrable in
(−∞,∞), can be written as

u(x, y) = c +
1
2π

∫ ∞

−∞
f(ξ) ln[y2 + (x − ξ)2]dξ,

where c is an arbitrary constant.

44.17. Find the solution of the following problem:

uxx + uyy = 0, 0 < x < ∞, 0 < y < b

u(x, 0) = f(x), 0 < x < ∞
ux(0, y) = 0, 0 < y < b

uy(x, b) = 0, 0 < x < ∞,
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where the function f is piecewise smooth and absolutely integrable in [0,∞).

44.18. Find the bounded solution of the following problem:

uxx + uyy = 0, 0 < x < c, 0 < y < ∞
uy(x, 0) = 0, 0 < x < c

u(0, y) = 0, 0 < y < ∞
ux(c, y) = f(y), 0 < y < ∞,

where the function f is piecewise smooth and absolutely integrable in [0,∞).

44.19. Use the finite Fourier cosine transform to find the solution of
the following problem:

ut = c2uxx, 0 < x < a, t > 0, c > 0

u(x, 0) = f(x), 0 < x < a

ux(0, t) = ux(a, t) = 0, t > 0.

44.20. Use the finite Fourier sine transform to find the solution of the
following problem:

utt = c2uxx, 0 < x < a, t > 0, c > 0

u(x, 0) = f(x), 0 < x < a

ut(x, 0) = 0, 0 < x < a

u(0, t) = u(a, t) = 0, t > 0.

Answers or Hints

44.1. y(x) = −
∫∞
−∞ f(t)g(x − t)dt, where g(x) = 1√

a2−4b

× exp
[
− 1

2 (ax +
√

a2 − 4b |x|)
]
. y(x) = 1

2

{
−e−x(1 + x), x ≥ 0
xex, x < 0.

44.2. y(x) = e−kx −
√

2
π

∫∞
0

sin ωx
ω2+k2 F (ω)dω.

44.3. y(x) = − 1
k e−kx −

√
2
π

∫∞
0

cos ωx
ω2+k2 F (ω)dω.

44.4. (i) y(x) = c
π

∫∞
0

1
ω sin
(

1
ω + ωx

)
dω (ii) y(x) = c

π

∫∞
0

cos ωx√
1+ω2 dω

(iii) y(x) = c
π

∫∞
0

e−ω2/2 cos
(

ω3

3 − ωx
)

dω.

44.5. Use the substitution μ = x + 2
√

c2t w.



Fourier Transform Method for Partial DEs (Cont’d.) 353

44.6. Use e−ax2
= 1√

πa

∫∞
0

e−ω2/4a cosωxdω.

44.7. Use the same identity as in Problem 44.2.

44.8. u(x, t) = e−x2/(2+4c2t)/
√

1 + 2c2t.

44.9. u(x, t) = xe−x2/4(a2+c2t)/(1 + c2t/a2)3/2.

44.10.u(x, t) = − 1√
π

∫ t

0
1√
t−μ

f(μ) exp
(
− x2

4(t−μ)

)
dμ.

44.11.u(x, t) =
∫∞
−∞ f(μ) e−(x−μ+kt)2/4c2t

√
4πc2t

dμ.

44.12.u(x, t) =
∫∞
−∞ f(μ) e−(x−μ)2/4c2t

√
4πc2t

dμ

+
∫ t

0

∫∞
−∞ q(μ, τ) e−(x−μ)2/4c2(t−τ)√

4πc2(t−τ)
dμdτ.

44.13.(i) 3 sin 2x cos 2ct (ii) 2
π

∫∞
0

cos ωct cos ωx
1+ω2 dω (iii) 4

5c cos 5x sin 5ct

(iv) 2
πc

∫∞
0

sin ωct cos ωx
ω(1+ω2) dω.

44.14.u(x, t) = 2
π

∫∞
0

∫ t

0 f(μ) sin ω(t − μ) sin ωxdμdω.

44.15.u(x, t) = 1√
2π

∫∞
−∞

[
F1(ω) cos t

√
k+ω2c2 +F2(ω) sin t

√
k+ω2c2√

k+ω2c2

]
eiωxdω.

44.16.z = uy satisfies the Dirichlet problem (44.1).

44.17.Use the Fourier cosine transform
u(x, y) = 2

π

∫∞
0

∫∞
0

f(t) cosωt coshω(b−y)
cosh ωb cosωxdtdω.

44.18.Use the Fourier cosine transform
u(x, y) = 2

π

∫∞
0

∫∞
0

f(t) cosωt sinhωx
ω cosh ωc cosωydtdω.

44.19.u(x, t) = 1
aFc(0) + 2

a

∑∞
n=1 Fc(n)e−(n2π2c2/a2)t cos nπx

a ,

Fc(n) =
∫ a

0 f(x) cos nπx
a dx.

44.20.u(x, t) = 2
a

∑∞
n=1 Fs(n) cos nπct

a sin nπx
a ,

Fs(n) =
∫ a

0
f(x) sin nπx

a dx.



Lecture 45
Laplace Transforms

The method of Laplace transforms has the advantage of directly giving
the solutions of differential equations with given initial and boundary con-
ditions without the necessity of first finding the general solution and then
evaluating from it the arbitrary constants. Moreover, the ready table of
Laplace transforms reduces the problem of solving differential equations to
mere algebraic manipulations. In this lecture we shall introduce some basic
concepts of Laplace transform theory.

We begin with the following definition of Laplace transform.

Definition 45.1. The Laplace transform of a function f(x), 0 ≤ x < ∞
is defined by the improper integral

L[f(x)] = F (s) =
∫ ∞

0

e−sxf(x)dx, (45.1)

where it is assumed that the integral converges for at least one value of s,
say, s = s0. Clearly, then the integral converges for all s > s0.

Thus, the Laplace transform is an operator which transforms the func-
tion f(x) into its image F (s). The original function f(x) in (45.1) is called
the inverse transform, or inverse of F (s) and will be denoted by L−1[F ];
i.e., we shall write

f(x) = L−1[F ]. (45.2)

Of course, s may be a complex number whose real part is sufficiently
large to make (45.1) convergent, but in the early part of the theory, it is
more definite to think of s as a real positive number.

When evaluating the Laplace transform of some function f(x), we ac-
tually use f(x) only for 0 ≤ x < ∞. Hence it should be irrelevant, from
the mathematical point of view, if and how f(x) is defined for x < 0. How-
ever, some properties of Laplace transform, particularly those which reflect
a relationship with the Fourier integral, can be better understood if f(x) is
assigned the value zero for −∞ < x < 0.

Definition 45.2. The Heaviside function H(x), defined by

H(x) =
{

0, x < 0
1, x > 0,

(45.3)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 45,
c© Springer Science+Business Media, LLC 2009
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is a discontinuous function that is important in certain applications. It is
discontinuous at x = 0.

x

1

0

Figure 45.1

Example 45.1. To find Laplace transform of H(x), we note that
∫ ∞

0

e−sxH(x)dx =
∫ ∞

0

e−sxdx = lim
b→∞

∫ b

0

e−sxdx

= lim
b→∞

[
−e−sx

s

]∣∣∣∣
b

0

= lim
b→∞

[
1
s
− e−bs

s

]
.

Thus, if s > 0 the above limit exists and, we obtain

L[H ] = L[1] =
1
s
. (45.4)

Example 45.2.

L[eax] =
∫ ∞

0

eaxe−sxdx =
∫ ∞

0

e(a−s)xdx

=
1

a − s
e(a−s)x

∣∣∣∣
∞

0

=
1

s − a
, s > a.

(45.5)

Example 45.3.

L[xn+1] =
∫ ∞

0

e−sxxn+1dx = − 1
s
e−sxxn+1

∣∣∣∣
∞

0

+
(n + 1)

s

∫ ∞

0

e−sxxndx

=
(n + 1)

s

∫ ∞

0

e−sxxndx =
(n + 1)

s
L[xn].

Thus, in view of (45.4), we have

L[x] =
1
s
L[1] =

1
s2

, L[x2] =
2
s
L[x] =

2!
s3

, · · · ,L[xn] =
n!

sn+1
. (45.6)

Example 45.4. Let a > 0 be a number. Then,

L[xa] =
∫ ∞

0

e−sxxadx =
∫ ∞

0

e−τ
(τ

s

)a dτ

s
(using x = τ/s)

=
1

sa+1

∫ ∞

0

e−ττadτ =
Γ(a + 1)

sa+1
.

(45.7)
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Recall that Γ(n + 1) = n!, so that (45.6) follows from (45.7).

Example 45.5.

L[cos ax] =
∫ ∞

0

e−sx cos axdx

= e−sx sinax

a

∣∣∣∣
∞

0

−
∫ ∞

0

(−s)e−sx sin ax

a
dx

=
s

a

∫ ∞

0

e−sx sin axdx

=
s

a
e−sx cos ax

−a

∣∣∣∣
∞

0

− s

a

∫ ∞

0

(−s)e−sx cos ax

−a
dx

=
s

a2
− s2

a2
L[cos ax], s > 0

and hence
L[cos ax] =

s

s2 + a2
, s > 0. (45.8)

Similarly, we have
L[sin ax] =

a

s2 + a2
, s > 0. (45.9)

Theorem 45.1 (Linearity Property). Let fj(x), 1 ≤ j ≤
n, 0 ≤ x < ∞ be functions whose Laplace transforms exist, and let cj , 1 ≤
j ≤ n be real numbers. Then,

L[c1f1(x) + · · · + cnfn(x)] = c1L[f1] + · · · + cnL[fn]. (45.10)

Proof. Clearly, we have

L[c1f1(x) + · · · + cnfn(x)]

=
∫ ∞

0

e−sx(c1f1(x) + · · · + cnfn(x))dx

= c1

∫ ∞

0

e−sxf1(x)dx + · · · + cn

∫ ∞

0

e−sxfn(x)dx

= c1L[f1] + · · · + cnL[fn].

Theorem 45.2 (Uniqueness Property). If f(x) and g(x) are
continuous functions for 0 ≤ x < ∞ and if L[f ] = L[g], then f(x) = g(x),
and conversely.

In fact, if two functions defined on the positive real axis have the same
transform, then these functions cannot differ over an interval of positive
length, although they may differ at various isolated points. However, this
is not important in applications; we may say that the inverse of a given
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function is essentially unique. Of course, if two continuous functions have
the same transform, they must be identical.

Theorem 45.3 (Inverse Linearity Property). Let fj(x), 1 ≤
j ≤ n, 0 ≤ x < ∞ be continuous functions, and let Fj(s), 1 ≤ j ≤ n be
their Laplace transforms. Then

L−1[c1F1(s) + · · · + cnFn(s)] = c1L−1[F1] + · · · + cnL−1[Fn]

= c1f1(x) + · · · + cnfn(x),

where cj , 1 ≤ j ≤ n are real numbers.

Theorem 45.3 follows immediately from Theorem 45.2.

Example 45.6. Since cos2 x = (1 + cos 2x)/2, we have

L[cos2 x] = L
[
1
2

+
1
2

cos 2x

]

=
1
2
L[1] +

1
2
L[cos 2x] =

1
2
· 1
s

+
1
2
· s

s2 + 4
.

Example 45.7.

L[4x + 7e2x + 5 cos 3x] = 4L[x] + 7L[e2x] + 5L[cos 3x]

=
4
s2

+
7

s − 2
+

5s

s2 + 9
.

Example 45.8. Let

F (s) =
1

(s − a)(s − b)
, a �= b.

We shall find L−1[F ].

L−1[F ] = L−1

[
1

a − b

(
1

s − a
− 1

s − b

)]

=
1

a − b

[
L−1

[
1

s − a

]
− L−1

[
1

s − b

]]
=

1
a − b

(
eax − ebx

)
.

Example 45.9. Let

F (s) =
s

(s − a)(s − b)
, a �= b.

We shall find L−1[F ].

L−1[F ] = L−1

[
1

a − b

(
a

s − a
− b

s − b

)]
=

1
a − b

(
aeax − bebx

)
.
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If f(x) is a complex-valued function of the real variable x, i.e., f(x) =
u(x) + iv(x), where u(x) and v(x) are continuous real functions, then from
(45.10) it follows that

L[f ] = L[u + iv] = L[u] + iL[v].

Hence,
L[Real part of f ] = Real part of L[f ]

and
L[Imaginary part of f ] = Imaginary part of L[f ].

Example 45.10. Since

L[cosωx + i sinωx] = L[eiωx] =
1

s − iω
=

s + iω

s2 + ω2

=
s

s2 + ω2
+ i

ω

s2 + ω2

it follows that

L[cosωx] =
s

s2 + ω2
and L[sin ωx] =

ω

s2 + ω2
.

Thus, (45.8) and (45.9) can be obtained from (45.5).

Now we shall provide sufficient conditions which guarantee the existence
of the integral (45.1). For this, we need to introduce the following definition.

Definition 45.3. A function f(x) is said to be of exponential order α
if there exist positive constants X and M such that |f(x)| ≤ Meαx for all
x ≥ X.

Theorem 45.4 (Existence Theorem). If f(x) is piecewise
continuous on [0,∞) and of exponential order α, then L[f ] exists for s > α.

Proof. Clearly,
∫ ∞

0

e−sxf(x)dx =
∫ X

0

e−sxf(x)dx +
∫ ∞

X

e−sxf(x)dx, (45.11)

where X is the same as in Definition 45.3. The first integral in the right side
of (45.11) exists because f(x) and hence e−sxf(x) is piecewise continuous
on [0, X ] for any fixed s. Now since f(x) is of exponential order α, for x ≥ X
we have |f(x)| ≤ Meαx and hence

∣∣e−sxf(x)
∣∣ = e−sx|f(x)| ≤ e−sx · Meαx = Me−(s−α)x.

Therefore, it follows that for s > α,

∫ ∞

X

∣∣e−sxf(x)
∣∣ dx ≤ M

∫ ∞

X

e−(s−α)xdx =
Me−(s−α)X

s − α
< ∞,
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i.e., the second integral in the right side of (45.11) converges absolutely.
But then

∫∞
X e−sxf(x)dx exists for s > α. Finally, since both the integrals

in the right side of (45.11) exist for s > α, the Laplace transform L[f ] exists
for s > α.

The conditions in Theorem 45.4 are sufficient for most applications, and
it is easy to find whether a given function satisfies an inequality of the form
|f(x)| ≤ Meαx. For example, a bounded function is of exponential order
0. This is clear from the fact that |f(x)| ≤ M = Me0x. Thus, cos bx and
sin bx are of exponential order 0. The functions eax cos bx and eax sin bx are
of exponential order a. The function xn is of exponential order α for any
positive α, since by the Maclaurin series

eαx =
∞∑

n=0

αnxn

n!
>

αnxn

n!

so that xn < (n!/αn)eαx. However, the function ex2
is not of exponential

order, because, no matter how large we choose M and α, ex2
> Meαx for

all sufficiently large x.

It should be noted that the conditions of Theorem 45.4 are only sufficient
rather than necessary. For example, the function 1/

√
x is infinite at x = 0,

but its transform exists. Indeed, we have

∫ ∞

0

e−sxx−1/2dx =
1√
s

∫ ∞

0

e−ττ−1/2dτ =
1√
s
Γ
(

1
2

)
=
√

π

s
.

We also remark that if f(x) is of exponential order, then f ′(x) need
not be of exponential order, e.g., f(x) = sin ex2

is of exponential order 0,

however, f ′(x) = 2xex2
cos ex2

is not of exponential order. But, if f(x) is
of exponential order α, then

∫ x

0
f(τ)dτ is of exponential order α. For this

it suffices to note that

∣∣∣∣
∫ x

0

f(τ)dτ

∣∣∣∣ ≤
∫ x

0

|f(τ)|dτ ≤
∫ x

0

Meατdτ =
M

α
(eαx − 1) ≤ M

α
eαx.

Example 45.11. For the piecewise continuous function

f(x) =

{
x, 0 < x < 2

1, x > 2
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we have

L[f ] =
∫ 2

0

e−sxxdx +
∫ ∞

2

e−sxdx

=
[
−x

s
e−sx − 1

s2
e−sx

]∣∣∣∣
2

0

+
[
−1

s
e−sx

]∣∣∣∣
∞

2

=
1
s2

−
(

1
s

+
1
s2

)
e−2s, s > 0.

Example 45.12. For the piecewise continuous function

f(x) =

⎧⎪⎨
⎪⎩

−2, 0 ≤ x < 1

1, 1 ≤ x < 3

e2x, x ≥ 3

we have

L[f ] = −2
∫ 1

0

e−sxdx +
∫ 3

1

e−sxdx +
∫ ∞

3

e(2−s)xdx

= −2
s

+
3e−s

s
− e−3s

s
+

e3(2−s)

s − 2
, s > 2.



Lecture 46
Laplace Transforms (Cont’d.)

Using the definition of Laplace transforms to get an explicit expression
for L[f ] requires the evaluation of the improper integral, which is often
difficult. In the previous lecture we have already seen how the linearity
property of the transform can be employed to simplify at least some com-
putation. In this lecture we shall develop several other properties that can
be used to facilitate the computation of Laplace transforms.

Theorem 46.1 (Transform of the Derivative). Let f(x)
be continuous on [0,∞) and f ′(x) be piecewise continuous on [0,∞), with
both of exponential order α. Then,

L[f ′] = sL[f ] − f(0), s > α. (46.1)

Proof. Clearly, f ′ satisfies the conditions of Theorem 45.4, and hence
L[f ′] exists. If f ′(x) is continuous for all x ≥ 0, then we have

L[f ′] =
∫ ∞

0

e−sxf ′(x)dx = e−sxf(x)
∣∣∣∣
∞

0

+ s

∫ ∞

0

e−sxf(x)dx.

Since |f(x)| ≤ Meαx, the integrated portion on the right is zero at the
upper limit when s > α and the lower limit gives −f(0). Hence, it follows
that

L[f ′] = −f(0) + sL[f ].

If f ′(x) is only piecewise continuous, the proof remains the same, except
that now the range of integration in the original integral must be broken
up into parts such that f ′(x) is continuous in each such case.

Theorem 46.2. Let f (i)(x), 0 ≤ i ≤ n − 1 be continuous on [0,∞)
and f (n)(x) be piecewise continuous on [0,∞), with all f (i)(x), 0 ≤ i ≤ n
of exponential order α. Then

L[f (n)] = snL[f ] − s(n−1)f(0) − s(n−2)f ′(0) − · · · − f (n−1)(0). (46.2)

Proof. From (46.1) it follows that

L[f ′′] = sL[f ′] − f ′(0) = s[sL[f ] − f(0)] − f ′(0) = s2L[f ] − sf(0) − f ′(0).

The proof now can be completed by induction.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 46,
c© Springer Science+Business Media, LLC 2009
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Example 46.1. Let f(x) = sin2 x so that f ′(x) = 2 sinx cosx =
sin 2x, f(0) = 0. Thus, from (46.1) and (45.9), we have

sL[sin2 x] − 0 = L[sin 2x] =
2

s2 + 4
,

and hence
L[sin2 x] =

2
s(s2 + 4)

. (46.3)

Example 46.2. Let f(x) = x sin ωx so that f ′(x) = sin ωx+ωx cosωx,
f ′′(x) = 2ω cosωx − ω2x sin ωx = 2ω cosωx − ω2f(x), f(0) = f ′(0) = 0.
Thus, from (46.2) for n = 2, and (45.8), we have

s2L[x sin ωx] = L[2ω cosωx − ω2x sin ωx]

= 2ωL[cosωx] − ω2L[x sin ωx] =
2ωs

s2 + ω2
− ω2L[x sin ωx]

and hence
L[x sin ωx] =

2ωs

(s2 + ω2)2
. (46.4)

Theorem 46.3 (Transform of the Integral). If f(x) is
piecewise continuous on [0,∞) and of exponential order α, then

L
[∫ x

0

f(τ)dτ

]
=

1
s
L[f ], s > max{0, α}. (46.5)

Proof. Clearly, if f(x) is of negative exponential order, it is also of
positive exponential order, and hence we can assume that α > 0. Now
the integral g(x) =

∫ x

0 f(τ)dτ is continuous and as we have seen in the
previous lecture it is of exponential order α. Also, g′(x) = f(x) except for
points at which f(x) is discontinuous. Hence, g′(x) is piecewise continuous
and g(0) = 0. Thus, from (46.1) we have

L[f ] = L[g′] = sL[g] − 0 = sL
[∫ x

0

f(τ)dτ

]
, s > α

which is the same as (46.5).

From (46.5) and the definition of inverse transform it is clear that

L−1

[
1
s
F (s)
]

=
∫ x

0

f(τ)dτ. (46.6)

Example 46.3.

L
[

1
ω2

(1 − cosωx)
]

= L
[

1
ω

∫ x

0

sin ωτdτ

]

=
1
ω
· 1
s
· ω

s2 + ω2
=

1
s(s2 + ω2)

.
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Example 46.4.

L
[

1
ω2

(
x − sin ωx

ω

)]
= L
[

1
ω2

∫ x

0

(1 − cosωτ)dτ

]
=

1
s2(s2 + ω2)

.

Theorem 46.4 (s-shifting). If f(x) has the transform F (s) where
s > α, then eaxf(x) has the transform F (s − a), i.e.,

L [eaxf(x)] = F (s − a). (46.7)

Proof. Since F (s) =
∫∞
0

e−sxf(x)dx, we have

F (s−a) =
∫ ∞

0

e−(s−a)xf(x)dx =
∫ ∞

0

e−sx [eaxf(x)] dx = L [eaxf(x)] .

From (46.7) it follows that

L−1[F (s − a)] = eaxf(x) = eaxL−1[F (s)]. (46.8)

Example 46.5.

L [eaxxn] =
n!

(s − a)n+1
,

L [eax cosωx] =
s − a

(s − a)2 + ω2
,

L [eax sin ωx] =
ω

(s − a)2 + ω2
.

Example 46.6.

L−1

[
s + 2

s2 + 6s + 25

]
= L−1

[
(s + 3) − 1

(s + 3)2 + 16

]
= e−3xL−1

[
s − 1

s2 + 16

]

= e−3x

{
L−1

[
s

s2 + 16

]
− 1

4
L−1

[
4

s2 + 16

]}

= e−3x

(
cos 4x − 1

4
sin 4x

)
.

Theorem 46.5 (x-shifting). If f(x) has the transform F (s), then
the function

fa(x) =
{

0 if x < a
f(x − a) if x > a (a ≥ 0) (46.9)

has the transform e−asF (s).
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Proof. Since

f(x − a)H(x − a) =
{

0 if x < a
f(x − a) if x > a

(recall the definition of the Heaviside function H(x)) Theorem 46.5 can be
reformulated as follows: If L[f ] = F (s), then

L[f(x − a)H(x − a)] = e−asF (s). (46.10)

Now we have

e−asF (s) = e−as

∫ ∞

0

e−sτf(τ)dτ =
∫ ∞

0

e−s(τ+a)f(τ)dτ

=
∫ ∞

a

e−sxf(x − a)dx (τ + a = x)

=
∫ ∞

0

e−sxf(x − a)H(x − a)dx = L[f(x − a)H(x − a)].

From (46.10) it is clear that

L−1
[
e−asF (s)

]
= f(x − a)H(x − a). (46.11)

Example 46.7. The function

f(x) =

⎧⎨
⎩

1, 0 < x < π
0, π < x < 2π

sin x, x > 2π

can be written as

f(x) = H(x) − H(x − π) + H(x − 2π) sin x.

Thus, it follows that

L[f ] =
1
s
− e−πs

s
+

e−2πs

s2 + 1
.

Example 46.8. For the transformed function

F (s) =
1
s2

− e−2s

s2
− 2e−2s

s
+

2se−πs

s2 + 1

an application of (46.11) gives

f(x) = L−1[F (s)]

= x − (x − 2)H(x − 2) − 2H(x − 2) + 2 cos(x − π)H(x − π)

= x − xH(x − 2) − 2 cosxH(x − π)

=

⎧⎨
⎩

x, 0 < x < 2
0, 2 < x < π

−2 cosx, x > π.
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Remark 46.1. Formula (46.10) applies to translations to the right.
For translations to the left, we have

L[f(x + a)] =
∫ ∞

0

e−sxf(x + a)dx =
∫ ∞

a

e−s(τ−a)f(τ)dτ

= esaL[f ] −
∫ a

0

es(a−τ)f(τ)dτ.

(46.12)

The finite integral cannot be neglected unless f(x) = 0 for x < a, as it
accounts for the part of the function which has been “lost” by translation
to negative x values where the Laplace transform does not operate.

Remark 46.2. Let f(x) be a function and F (s) its Laplace transform.
Then, for a > 0, we have

L[f(ax)] =
∫ ∞

0

e−sxf(ax)dx =
1
a

∫ ∞

0

e−(s/a)τf(τ)dτ =
1
a
F
( s

a

)
.

(46.13)

Theorem 46.6 (Derivatives of Transforms). If f(x) is
piecewise continuous on [0,∞) and of exponential order α, then

L [xnf(x)] = (−1)nF (n)(s), s > α, n = 1, 2, · · · . (46.14)

Proof. Since F (s) =
∫∞
0

e−sxf(x)dx, a formal differentiation with re-
spect to s (under the integral sign) gives

F ′(s) =
∫ ∞

0

(−x)e−sxf(x)dx = −
∫ ∞

0

e−sx[xf(x)]dx = −L[xf(x)],

and hence
L[xf(x)] = −F ′(s), (46.15)

which is the same as (46.14) for n = 1. It is now easy to see that repeated
differentiations of (46.15) formally lead to (46.14).

From (46.14) it follows that

L−1
[
F (n)(s)

]
= (−1)nxnf(x). (46.16)

Example 46.9. From (46.15) it is clear that

L[x cosωx] = − d

ds

(
s

s2 + ω2

)
=

s2 − ω2

(s2 + ω2)2
,

L[x sin ωx] = − d

ds

(
ω

s2 + ω2

)
=

2ωs

(s2 + ω2)2
.
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Theorem 46.7 (Integration of Transforms). If f(x) is
piecewise continuous on [0,∞) and of exponential order α, and if f(x)/x
has a finite limit as x → 0+, then

L
[
f(x)

x

]
=
∫ ∞

s

F (τ)dτ. (46.17)

Proof. Clearly,

L
[
f(x)

x

]
=
∫ ∞

0

e−sx

x
f(x)dx =

∫ ∞

0

(∫ ∞

s

e−τxdτ

)
f(x)dx

=
∫ ∞

s

(∫ ∞

0

e−τxf(x)dx

)
dτ =
∫ ∞

s

F (τ)dτ ;

here changing the order of integration is justified by the absolute conver-
gence of the integral.

From (46.17), we have

L−1

[∫ ∞

s

F (τ)dτ

]
=

f(x)
x

. (46.18)

Example 46.10. From (46.17), we find

L
[
2(1 − cosωx)

x

]
=
∫ ∞

s

2
[

1
τ
− τ

τ2 + ω2

]
dτ = [2 ln τ −ln(τ2 + ω2)]

∣∣∣∣
∞

s

= ln
τ2

τ2 + ω2

∣∣∣∣
∞

s

= − ln
s2

s2 + ω2
= ln

s2 + ω2

s2
.

Remark 46.3. Formula (46.17) can be generalized, to obtain

L
[
x−nf(x)

]
=
∫ ∞

s

∫ ∞

τn

· · ·
∫ ∞

τ2

F (τ1)dτ1dτ2 · · · dτn. (46.19)

Remark 46.4. From the relations (46.5) and (46.17), we get

L
[∫ x

0

f(τ)
τ

dτ

]
=

1
s
L
[
f(x)

x

]
=

1
s

∫ ∞

s

F (τ)dτ. (46.20)

Theorem 46.8 (Transform of Periodic Functions). If
f(x) is piecewise continuous on [0,∞) and periodic of period T, then L[f ]
exists for s > 0 and is given by

L[f ] =
1

1 − e−sT

∫ T

0

e−sxf(x)dx. (46.21)
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Proof. Since

L[f ] =
∫ ∞

0

e−sxf(x)dx =
∫ T

0

e−sxf(x)dx +
∫ ∞

T

e−sxf(x)dx

if we change the variable in the second integral to τ = x − T, we obtain
∫ ∞

T

e−sxf(x)dx =
∫ ∞

0

e−s(τ+T )f(τ + T )dτ

= e−sT

∫ ∞

0

e−sτf(τ)dτ = e−sTL[f ]

and hence

L[f ] =
∫ T

0

e−sxf(x)dx + e−sTL[f ],

which can be solved for L[f ] to yield (46.21).

Example 46.11. We shall find Laplace transform of the half-wave
rectifier periodic function of period 2π/T defined by

f(x) =
{

sinTx if 0 < x < π/T
0 if π/T < x < 2π/T.

From (46.21), we have

L[f ] =
1

1 − e−2πs/T

∫ π/T

0

e−sx sin Txdx

=
1

1 − e−2πs/T

{
e−sx

s2 + T 2
(−s sin Tx − T cosTx)

∣∣∣∣
π/T

0

}

=
1

1 − e−2πs/T

T
(
e−πs/T + 1

)
s2 + T 2

=
T

(1 − e−πs/T )(s2 + T 2)
.

Theorem 46.9 (Convolution Theorem). Let f(x) and g(x)
satisfy the conditions of Theorem 45.4. Then, the product of their trans-
forms F (s) = L[f ] and G(s) = L[g] is the transform K(s) = L[k] of the
convolution k(x) of f(x) and g(x), written as f � g and defined by

k(x) = (f � g)(x) =
∫ x

0

f(τ)g(x − τ)dτ. (46.22)

Proof. Since for s > α,

e−sτG(s) = L[g(x − τ)H(x − τ)]

=
∫ ∞

0

e−sxg(x − τ)H(x − τ)dx =
∫ ∞

τ

e−sxg(x − τ)dx,
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we find

F (s)G(s) =
∫ ∞

0

e−sτf(τ)G(s)dτ =
∫ ∞

0

f(τ)
[∫ ∞

τ

e−sxg(x − τ)dx

]
dτ.

Here we integrate with respect to x

x

τ

0

x = τ

∞

Figure 46.1

from τ to ∞ and then over τ from 0
to ∞; this corresponds to the shaded
region extending to infinity in the xτ -
plane. Our assumptions on f and g al-
low us to change the order of integra-
tion. We then integrate first with re-
spect to τ from 0 to x and then over x
from 0 to ∞; thus

F (s)G(s) =
∫ ∞

0

e−sx

(∫ x

0

f(τ)g(x − τ)dτ

)
dx

=
∫ ∞

0

e−sxk(x)dx = L[k] = K(s).

Example 46.12. Let

K(s) =
s

(s2 + 1)2
=

s

s2 + 1
· 1
s2 + 1

.

From (46.22), we find

k(x) = L−1[K(s)] = cosx � sin x =
∫ x

0

cos τ sin(x − τ)dτ =
1
2
x sin x.

Remark 46.5. Using the definition of convolution f � g in (46.22) the
following properties are immediate

f � g = g � f (commutative law)

(f � g) � h = f � (g � h) (associative law)

f � (g + h) = f � g + f � h (distributive law)

f � 0 = 0 � f = 0.

However, f � 1 �= f in general. For example, 1/s2 has the inverse x and 1/s
has the inverse 1, and the convolution theorem confirms that

x � 1 =
∫ x

0

τ · 1dτ =
x2

2
.
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Laplace Transform Table

f(x) Y (s) = L[f ]

1. xn Γ(n + 1)

sn+1
, n > −1

2. xneax n!

(s − a)n+1

3. x−1/2
√

π

s

4. eax sin bx
b

(s − a)2 + b2

5. eax cos bx
s − a

(s − a)2 + b2

6. sinh ax
a

s2 − a2

7. cosh ax
s

s2 − a2

8.
eax − ebx

a − b

1

(s − a)(s − b)
, a �= b

9.
aeax − bebx

a − b

s

(s − a)(s − b)
, a �= b

10. x sin ax
2as

(s2 + a2)2

11. x cos ax
s2 − a2

(s2 + a2)2

12. x sinh ax
2as

(s2 − a2)2

13. x cosh ax
s2 + a2

(s2 − a2)2

14.
1

a
e−x/a 1

1 + as

15. 1 − e−x/a 1

s(1 + as)

16.
1

a2
xe−x/a 1

(1 + as)2

17. e−ax(1 − ax)
s

(s + a)2

18.
1

a2
(1 − cos ax)

1

s(s2 + a2)

19.
1

a3
(ax − sin ax)

1

s2(s2 + a2)

20.
1

2a3
(sin ax − ax cos ax)

1

(s2 + a2)2

21.
1

3
e−ax− 1

3
eax/2

(
cos

√
3

2
ax−

√
3 sin

√
3

2
ax

)
a2

s3 + a3

22.
1

2
(sinh ax − sin ax)

a3

s4 − a4

23.
e−ax

√
πx

1√
s + a
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Problems

46.1. Let f(x) and g(x) be piecewise continuous on [a, b]. Show that
f(x) + g(x) and f(x)g(x) also are piecewise continuous on [a, b].

46.2. Let f(x) and g(x) be of exponential order. Show that f(x)+g(x)
and f(x)g(x) also are of exponential order.

46.3. Show that if
∫∞
0

e−sxf(x)dx converges absolutely for s = s0, it
converges absolutely for each s > s0.

46.4. Let
∑∞

n=1 fn(x) be a uniformly convergent series of functions,
each of which has a Laplace transform defined for s ≥ α, i.e., L[fn] exists
for s ≥ α. Show that f(x) =

∑∞
n=1 fn(x) has a Laplace transform for s ≥ α

defined by L[f(x)] =
∑∞

n=1 L[fn(x)].

46.5. Let f(x) be a piecewise continuous function on [0,∞) and
periodic of period T. Show that f(x) is of exponential order α for any
α > 0.

46.6. (i) Differentiate (45.7) with respect to a to show that

Γ′(a + 1) − (ln s)Γ(a + 1)
sa+1

=
∫ ∞

0

e−sx(ln x)xadx.

(ii) Show that L[lnx] = (Γ′(1) − ln s)/s. The constant γ = Γ′(1) =
0.57721566 · · · is called Euler’s constant.

46.7. Assume that conditions of Theorem 45.4 are satisfied. Show
that lims→∞ F (s) = 0.

46.8. Use (46.1) to show that

(i) limx→0+ f(x) = lims→∞ sF (s)
(ii) limx→∞ f(x) = lims→0 sF (s).

46.9. Give an example of the function F (s) for which the inverse
Laplace transform does not exist.

46.10. Assume that conditions of Theorem 46.1 are satisfied except
that f(x) is discontinuous at x0 > 0, but f(x0−) and f(x0+) exist. Show
that

L[f ′] = sL[f ] − f(0) − [f(x0+) − f(x0−)]e−x0s.

46.11. Show that

(i) L[sinh ax] =
a

s2 − a2
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(ii) L[cosh ax] =
s

s2 − a2

(iii) L[sin 2x sin 3x] =
12s

(s2 + 1)(s2 + 25)

(iv) L[sin3 2x] =
48

(s2 + 4)(s2 + 36)

(v) L
[
e−3x(2 cos 5x − 3 sin 5x)

]
=

2s − 9
s2 + 6s + 24

(vi) L
[∫ x

0

sin τ

τ
dτ

]
=

1
s

cot−1 s.

46.12. Let f(x) be the square-wave function defined by

f(x) =

{
1 if 2i < x < 2i + 1

0 if 2i + 1 < x < 2i + 2, i = 0, 1, · · · .

Show that
L[f ] =

1
s(1 + e−s)

.

46.13. Let f(x) be the square-wave function defined by

f(x) =

{
E if 2iT < x < (2i + 1)T

−E if (2i + 1)T < x < (2i + 2)T, i = 0, 1, · · · .

Show that
L[f ] =

E

s
tanh

sT

2
.

46.14. Let f(x) be the sawtooth-wave function defined by

f(x) = k(x − iT ), iT < x < (i + 1)T, i = 0, 1, · · · .

Show that

L[f ] =
k

s2
− kTe−sT

s (1 − e−sT )
.

46.15. Let f(x) be the triangular-wave periodic function of period T
defined by

f(x) =

⎧⎪⎨
⎪⎩

2x

T
if 0 < x ≤ T

2

2
(
1 − x

T

)
if

T

2
≤ x < T.

Show that

L[f ] =
2

Ts2
tanh
(

1
4
sT

)
.
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46.16. For the Bessel function Jn(x) of order n show that

(i) L[J0(x)] = (s2 + 1)−1/2

(ii) L[J0(ax)] = (s2 + a2)−1/2, a > 0
(iii) L[J1(x)] = 1 − s(s2 + 1)−1/2 (Hint. use J ′

0(x) = −J1(x))
(iv) L[J0(

√
x)] = e−s/4/s.

46.17. The error function erf is defined by

erf (x) =
2√
π

∫ x

0

e−u2
du.

Show that
L[ erf (

√
x)] =

1
s
√

s + 1
.

46.18. Show that

(i) L−1

[
2s

(s − 2)(s − 3)(s − 6)

]
= e2x − 2e3x + e6x

(ii) L−1

[
6

(s2 + 1)(s2 + 4)

]
= 2 sinx − sin 2x

(iii) L−1

[
e−s

s(s + 1)

]
= H(x − 1) − e−(x−1)H(x − 1)

(iv) L−1

[
ln
(

s + 1
s − 1

)]
=

2 sinhx

x

(v) L−1
[π
2
− tan−1 s

2

]
=

sin 2x

x
.

46.19. Show that

L
[∫ ∞

0

sin xt

t
dt

]
=
∫ ∞

0

1
t2 + s2

dt =
π

2
· 1
s

and hence deduce that ∫ ∞

0

sinxt

t
dt =

π

2
.

46.20. Show that for x > 0,

(i)
∫ ∞

0

e−xt2dt =
1
2

√
π

x

(ii)
∫ ∞

0

cosxt

1 + t2
dt =

π

2
e−x

(iii)
∫ ∞

0

e−2x − e−3x

x
dx = ln

3
2



Laplace Transforms (Cont’d.) 373

(iv)
∫ ∞

0

xe−2x cosxdx =
3
25

.

46.21. Use convolution theorem to show that

(i) L−1

[
1

(s2 + 1)2

]
= −1

2
x cosx +

1
2

sin x

(ii) L−1

[
s

(s2 − a2)(s − b)

]
=

1
2

(
eax

a − b
− e−ax

a + b
− 2bebx

a2 − b2

)

(iii) L−1

[
1

(s − 1)
√

s

]
=

2ex

√
π

∫ √
x

0

e−τ2
dτ = ex erf (

√
x)

(iv) L−1

[
e−πs/2 s

(s2 + 1)(s2 + 9)

]
=
[
1
8

sin 3x +
1
8

sinx

]
H
(
x − π

2

)
.

Answers or Hints

46.1. Use definition.

46.2. Use definition.

46.3. Compare the integrands.

46.4. Since the series converges uniformly
∫ ∑

=
∑∫

.

46.5. Consider the function over [0, T ].

46.6. Verify directly.

46.7. From Theorem 45.4, we have F (s) <
∫ X

0
e−sxf(x)dx + Me−(s−α)X

s−α .

46.8. (i) In (46.1) let s → ∞ (ii) In (46.1) let s → 0.

46.9. See Problem 46.7. Take F (s) = 1.

46.10.Integrate over [0, x0−) and (x0+,∞).

46.12.Use Theorem 46.8.

46.13.Use Theorem 46.8.

46.14.Use Theorem 46.8.

46.15.Use Theorem 46.8.

46.17.Change the order of integration.

46.19.Integrate first with respect to x.



Lecture 47
Laplace Transform Method

for Ordinary DEs

Laplace transforms supply an easy, efficient, and quick procedure to
find the solutions of differential, difference, and integral equations. Here
we summarize this method to solve the second-order initial value problem

y′′ + ay′ + by = r(x), y(0) = y0, y′(0) = y1 (47.1)

where a and b are constants. Of course, this method can be extended to
higher order initial value problems rather easily. In engineering applications
the function r(x) is called the input (driving force) and y(x) is the output
(response).

The main steps are as follows:

1. Take Laplace transform of each side of equation (47.1), i.e.,

L[y′′ + ay′ + by] = L[r].

2. Use the linearity property of Laplace transforms, Theorem 46.2 and
the initial conditions in (47.1) to obtain a linear algebraic equation; i.e., if
we denote Y = Y (s) = L[y] and R = R(s) = L[r], then

(s2Y − sy(0) − y′(0)) + a(sY − y(0)) + bY = R,

which is the same as

(s2 + as + b)Y = (s + a)y0 + y1 + R.

3. Solve the algebraic equation for Y, i.e.,

Y =
(s + a)y0 + y1 + R

(s2 + as + b)
. (47.2)

4. Use the table of Laplace transforms to determine the solution
y(x) of the initial value problem (47.1). For this, often the partial fraction
decomposition of the right–hand side of (47.2) is required.

Example 47.1. For the initial value problem

y′′ − 2y′ + y = ex + x, y(0) = 1, y′(0) = 0 (47.3)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 47,
c© Springer Science+Business Media, LLC 2009
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we have
(s2Y − s) − 2(sY − 1) + Y =

1
s − 1

+
1
s2

and hence

Y =
s − 2

(s − 1)2
+

1
(s − 1)3

+
1

s2(s − 1)2

=
1

s − 1
− 1

(s − 1)2
+

1
(s − 1)3

+
1

(s − 1)2
− 2

s − 1
+

1
s2

+
2
s

= − 1
s− 1

+
1

(s − 1)3
+

1
s2

+
2
s
.

Thus, the solution of the problem (47.3) is

y(x) = L−1[Y ] = −ex +
1
2
x2ex + x + 2.

Example 47.2. For the initial value problem

y′′ + 4y = sin 2x, y(0) = 1, y′(0) = 0 (47.4)

we have
(s2Y − s) + 4Y =

2
s2 + 4

and hence
Y =

s

(s2 + 4)
+

2
(s2 + 4)2

.

Thus, the solution of the problem (47.4) is

y(x) = L−1[Y ] = cos 2x +
1
8
(sin 2x − 2x cos 2x). (47.5)

Remark 47.1. A simple observation shows that y = y(x) is a solution
of (47.1) if and only if φ = φ(x) = y(x − c) is a solution of

y′′ + ay′ + by = r(x − c), y(c) = y0, y′(c) = y1. (47.6)

Example 47.3. In the initial value problem

y′′ + y = 2x, y(π/4) = π/2, y′(π/4) = 2 −
√

2, (47.7)

since r(x) = 2x = 2(x − π/4) + π/2, in view of Remark 47.1, first we need
to solve the problem

y′′ + y = 2x + π/2, y(0) = π/2, y′(0) = 2 −
√

2. (47.8)
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For (47.8), we have
(

s2Y − 1
2
πs − 2 +

√
2
)

+ Y =
2
s2

+
π/2
s

and hence

Y =
1
2
π

s

s2 + 1
+ (2 −

√
2)

1
s2 + 1

+ 2
(

1
s2

− 1
s2 + 1

)
+

π

2

(
1
s
− s

s2 + 1

)

=
π

2
s +

2
s2

−
√

2
1

s2 + 1
,

which gives the solution of (47.8) as y(x) = (π/2)+2x−
√

2 sin x. Now once
again in view of Remark 47.1, the solution φ(x) of (47.7) can be obtained
from the relation φ(x) = y(x − π/4), i.e.,

φ(x) =
π

2
+ 2
(
x − π

4

)
−
√

2 sin
(
x − π

4

)
= 2x − sinx + cosx.

Now we shall consider the initial value problem (47.1) where the function
r(x) has discontinuities, is impulsive, or is periodic but not merely a sine or
cosine function. The Laplace transform technique shows its real power for
these kinds problems.

Example 47.4. For the initial value problem

y′′ − 4y′ + 3y = r(x), y(0) = 3, y′(0) = 1 (47.9)

where

r(x) =

⎧⎨
⎩

0, x < 2
x, 2 < x < 4
6, x > 4

= xH(x − 2) − xH(x − 4) + 6H(x − 4)

= (x − 2)H(x − 2) + 2H(x − 2) − (x − 4)H(x − 4) + 2H(x − 4)

in view of (46.10), we have

(s2Y − 3s − 1) − 4(sY − 3) + 3Y =
e−2s

s2
+

2e−2s

s
− e−4s

s2
+

2e−4s

s

and hence

Y =
3s − 11

s2 − 4s + 3
+

2s + 1
s2(s2 − 4s + 3)

e−2s +
2s − 1

s2(s2 − 4s + 3)
e−4s

=
4

s − 1
− 1

s − 3
+
[
10
9

1
s

+
1
3

1
s2

− 3
2

1
s − 1

+
7
18

1
s − 3

]
e−2s

+
[
2
9

1
s
− 1

3
1
s2

− 1
2

1
s − 1

+
5
18

1
s − 3

]
e−4s.
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Thus, from (46.11) it follows that

y(x) = 4ex − e3x +
[
10
9

+
1
3
(x − 2) − 3

2
e(x−2) +

7
18

e3(x−2)

]
H(x − 2)

+
[
2
9
− 1

3
(x − 4) − 1

2
e(x−4) +

5
18

e3(x−4)

]
H(x − 4)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4ex − e3x, 0 ≤ x ≤ 2(
4 − 3

2e2

)
ex +
(

7
18e6

− 1
)

e3x +
1
3
x +

4
9
, 2 ≤ x ≤ 4

(
4 − 3

2e2
− 1

2e4

)
ex +
(

7
18e6

+
5

18e12
− 1
)

e3x + 2, x ≥ 4.

Example 47.5. Consider the initial value problem

y′′ + ω2y = Ar(x), y(0) = y0, y′(0) = y1. (47.10)

This problem models undamped oscillations of a spring-mass system, simple
pendulum, or LC circuit depending on the interpretation of x, ω, Ar(x), y0,
and y1. We shall find the solution of (47.10) where r(x) is the square-wave
function (see Problem 46.12). We have

(s2Y − y0s − y1) + ω2Y =
A

s(1 + e−s)

and hence

Y =
s

s2 + ω2
y0 +

1
s2 + ω2

y1 +
A

s(s2 + ω2)

∞∑
n=0

(−1)ne−ns,

which in view of (45.8), (45.9), Example 46.3, and (46.11) gives

y(x) = y0 cosωx +
y1

ω
sin ωx +

A

ω2

∞∑
n=0

(−1)n(1 − cosω(x − n))H(x − n).

In physics and engineering often one encounters forces of very large
amplitude that act for a very short period of time, i.e., that are of an
impulsive nature. This situation occurs, for example, when a tennis ball
is hit, an airplane makes a hard landing, a system is given a blow by a
hammer, a ship is hit by a high single wave, and so on. We shall now show
that the Laplace transform technique works equally well for problem (47.1)
when r(x) is of an impulsive type. For this, we recall that in mechanics,
the impulse of a force f(x) over the interval a ≤ x ≤ a + p is defined by∫ a+p

a
f(x)dx.
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Now consider the function

fp(x) =
{

1/p, a ≤ x ≤ a + p

0, otherwise.
(47.11)

Clearly, the impulse of fp(x) is 1. The limit of fp(x) as p → 0 is denoted as
δ(x−a), and is called the Dirac delta function after Paul Dirac (1902–1984).
Sometimes this function is also termed as unit impulse function.

Definition 47.1. The Dirac delta function δ is characterized by the
following two properties:

(i). δ(x − a) = 0, x �= a, and

(ii).
∫ ∞

−∞
f(x)δ(x − a)dx = f(a) for any function f(x) that is continuous

on an interval containing x = a.

Now we shall show that for a ≥ 0,

L[δ(x − a)] = e−as. (47.12)

For this, we note that the function fp(x) defined in (47.11) can be written
as

fp(x) =
1
p
[H(x − a) − H(x − (a + p))].

Thus, from our earlier considerations

L[fp(x)] =
1
ps

[
e−as − e−(a+p)s

]
= e−as 1 − e−ps

ps
;

and hence in view of the linearity of Laplace transforms, we have

lim
p→0

L[fp(x)] = L
[
lim
p→0

fp(x)
]

= L[δ(x − a)] = e−as.

Finally, we remark that δ(x−a) is not a function in the ordinary sense as
used in calculus, but a so–called generalized function. An ordinary function
which is everywhere 0 except at a single point must have the integral 0, but∫∞
−∞ δ(x − a)dx = 1.

Example 47.6. For the initial value problem

y′′ + y = δ(x − π), y(0) = y′(0) = 0 (47.13)

we have
s2Y + sY = e−πs

and hence

Y =
e−πs

s2 + 1
,
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which in view of (46.11) gives

y(x) = sin(x − π)H(x − π) = − sinxH(x − π) =
{

0, 0 ≤ x < π
− sin x, x ≥ π.

Some initial value problems which involve differential equations with
variable coefficients can be solved by the method of Laplace transforms.
However, for such problems there is no general method. To apply Laplace
transforms to specific problems first from (46.2) and (46.14) we note that

L[xf ′(x)] = − d

ds
[sF (s) − f(0)] = −F (s) − sF ′(s) (47.14)

L[xf ′′(x)] = − d

ds
[s2F (s) − sf(0) − f ′(0)] = −2sF (s) − s2F ′(s) + f(0).

(47.15)
Hence, if a differential equation has coefficients such as (c0x+ c1), we get a
first-order differential equation for F (s), which can be solved. We illustrate
the method in the following example.

Example 47.7. For Laguerre’s DE (8.10) with a = 0, (47.14) and
(47.15) leads to

−2sY − s2Y ′ + y(0) + sY − y(0) − (−Y − sY ′) + nY = 0.

Thus, we have
(s − s2)Y ′ + (n + 1 − s)Y = 0,

which on separating the variables gives

dY

Y
=
(

n

s − 1
− n + 1

s

)

and hence

Y (s) =
(s − 1)n

sn+1
;

here the integration constant C we have taken as 1 (often C is determined
by using the fact that lims→∞ Y (s) = 0, or some other properties of the
initial value problems).

We shall show that

y(x) = L−1[Y (s)] = Ln(x) =
ex

n!
dn

dxn

(
xne−x

)
, n = 0, 1, 2, · · · .

For this, recall that

L
[
xne−x

]
=

n!
(s + 1)n+1
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and hence
L
[(

xne−x
)(n)
]

=
n! sn

(s + 1)n+1
.

Therefore,

L[Ln(x)] =
1
n!

n! (s − 1)n

sn+1
=

(s − 1)n

sn+1
.

Example 47.8. For Bessel’s DE of order zero, i.e., (2.15) with a = 0,
with the initial condition y(0) = 1, we have

−2sY − s2Y ′ + 1 + sY − 1 − Y ′ = 0

and hence
(s2 + 1)Y ′ + sY = 0,

which on integration gives

Y (s) =
C√

s2 + 1
=

C

s

(
1 +

1
s2

)−1/2

.

Now expanding the function Y (s) in binomial series for s > 1, we obtain

Y (s) =
C

s

[
1 − 1

2
1
s2

− 1
2

(
−3

2

)
1

2! s4
− · · ·
]

=
C

s

[
1 +

∞∑
m=1

(−1)m 1 · 3 · 5 · · · (2m − 1)
2m m! s2m

]

= C

∞∑
m=0

(−1)m (2m)!
(2m m!)2s2m+1

.

Thus, from the inverse transform it follows that

y(x) = C

∞∑
m=0

(−1)m

(2m m!)2
x2m.

However, since y(0) = 1 it follows that C = 1, and hence

y(x) =
∞∑

m=0

(−1)m

(m!)2
(x

2

)2m

= J0(x),

which is the same as given in (9.8) as it should.

Problems

47.1. Use the Laplace transform technique to solve the following initial
value problems:
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(i) y′ + 3y = 1, y(0) = 2
(ii) y′′ − 3y′ + 2y = e−x, y(0) = 3, y′(0) = 4
(iii) y′′ + 2y′ + 5y = 5, y(0) = 0, y′(0) = 0
(iv) y′′ + y = cos 3x, y(0) = 0, y′(0) = 0
(v) y′′ − 3y′ + 2y = H(x − 6), y(0) = y′(0) = 0
(vi) y′′ − 5y′ + 6y = xe2x + e3x, y(0) = 0, y′(0) = 1
(vii) y′′ − 3y′ − 4y = H(x − 1) + H(x − 2), y(0) = 0, y′(0) = 1
(viii) y′′ + 4y′ + 3y = x, y(−1) = 0, y′(−1) = 2
(ix) y′′ + 4y′ + 5y = δ(x − π) + δ(x − 2π), y(0) = 0, y′(0) = 2
(x) y′′ − 4y′ + 3y = 8δ(x − 1) + 12H(x − 2), y(0) = 1, y′(0) = 5
(xi) y′′′ + 4y′′ + 5y′ + 2y = 10 cosx, y(0) = 0, y′(0) = 0, y′′(0) = 3
(xii) y′′′ + 3y′′ − y′ − 3y = 0, y(0) = 1, y′(0) = 1, y′′(0) = −1
(xiii) y′′′′ − 2y′′′ + 5y′′ − 8y′ + 4y = 0, y(0) = 0, y′(0) = 0,

y′′(0) = 1, y′′′(0) = 3
(xiv) y′′′′ − k4y = 0, y(0) = y′(0) = y′′(0) = 0, y′′′(0) = 1
(xv) y′′′′ − k4y = 0, y(0) = 1, y′(0) = y′′(0) = y′′′(0) = 0.

47.2. Suppose y = y(x) is the solution of the initial value problem

y′′ + ay′ + by = 0, y(0) = 0, y′(0) = 1.

Show that the solution φ(x) of (47.1) with y0 = y1 = 0 can be written as

φ(x) = (y � r)(x) =
∫ x

0

y(x − τ)r(τ)dτ.

47.3. Use integration by parts to show that
∫ ∞

−∞
f(x)δ′(x)dx = −f ′(0).

In general prove that
∫ ∞

−∞
f(x)δ(n)(x)dx = (−1)nf (n)(0).

47.4. Suppose z = z(x) is the solution of the initial value problem

y′′ + ay′ + by = δ(x), y(0) = y′(0) = 0.

Show that the solution φ(x) of (47.1) with y0 = y1 = 0 can be written as

φ(x) = (z � r)(x) =
∫ x

0

z(x − τ)r(τ)dτ.
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47.5. Use Laplace transform technique to solve the following initial
value problems:

(i) y′′ + 2xy′ − 4y = 1, y(0) = y′(0) = 0
(ii) y′′ + 4xy′ − 8y = 4, y(0) = y′(0) = 0
(iii) y′′ + xy′ − 2y = 1, y(0) = y′(0) = 0
(iv) y′′ − 2xy′ + 2y = 0, y(0) = 0, y′(0) = 1
(v) y′′ − xy′ + y = 1, y(0) = 1, y′(0) = 2
(vi) xy′′ + y′ + 4xy = 0, y(0) = 3, y′(0) = 0
(vii) xy′′ + 2(x − 1)y′ + 2(x − 1)y = 2e−x cosx, y(0) = 0, y′(0) = −1
(viii) xy′′ − (2 + x)y′ + 3y = x − 1, y(0) = y′(0) = 0.

47.6. Consider the mechanical

K M μ

r(x)

Figure 47.1

system depicted in Figure 47.1. The
system consists of a mass M, a spring
with spring constant K, and a viscous
damper μ. The mass is subjected to an
external force r(x). Let y(x) denote the
deviation of the mass from its equilib-
rium at time x. Then, Newton’s and
Hooke’s laws lead to the differential equation

My′′ + μy′ + Ky = r(x), M > 0, K > 0 and μ ≥ 0.

Use the Laplace transform technique to obtain y(x) in each of the following
cases:

(i) r(x) ≡ 0, μ2−4MK = 0, y(0) = y0, y′(0) = y1 (critically damped)
(ii) r(x) ≡ 0, μ2 − 4MK > 0, y(0) = y0, y′(0) = y1 (overdamped)
(iii) r(x) ≡ 0, μ2 − 4MK < 0, y(0) = y0, y′(0) = y1 (underdamped)
(iv) r(x) = F sin ωx, μ = 0, K/M �= ω2, y(0) = y′(0) = 0

(simple harmonic motion with sinusoidal force)
(v) r(x) = F sin ωx, μ = 0, K/M = ω2, y(0) = y′(0) = 0 (resonance).

Answers or Hints

47.1. (i) 5
3e−3x+ 1

3 (ii) 4
3e2x+ 3

2ex+ 1
6e−x (iii) 1−e−x cos 2x− 1

2e−x sin 2x

(iv) 1
8 cosx− 1

8 cos 3x (v) H(x− 6)[12e2(x−6) − ex−6 + 1
2 ] (vi) e3x[x + 1]−

e2x[1+x+ x2

2 ] (vii) H(x− 1)[− 1
4 + 1

20e4(x−1) + 1
5e−(x−1)]+H(x− 2)[− 1

4 +
1
20e4(x−2) + 1

5e−(x−2)] + 1
5e4x − 1

5e−x (viii) 2e−(x+1) − 11
9 e−3(x+1) + 1

3x− 4
9

(ix) [2− e2πH(x−π)+ e4πH(x−2π)]e−2x sin x (x) 2e3x − ex +[4e3(x−1)−
4e(x−1)]H(x − 1) + [2e3(x−2) − 6e(x−2) + 4]H(x − 2). (xi) 2 sinx − cosx −
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e−2x+2e−x−2xe−x (xii) 3
4ex+ 1

2e−x− 1
4e−3x (xiii) 1

25ex+ 2
5xex− 1

25 cos 2x−
11
50 sin 2x (xiv) 1

2k3 sin kx (xv) 1
2 cosh kx + 1

2 cos kx

47.2. Use Convolution Theorem 46.9.

47.3. Verify directly.

47.3. Use Convolution Theorem 46.9.

47.5. (i) x2/2 (ii) 2x2 (iii) x2/2 (iv) x (v) 1+2x (vi) 3J0(2x) (vii) 1
2 (C−

1)e−x sin x − 1
2 (C + 1)xe−x cosx, C is arbitrary (viii) x/2.

47.6. (i) y(x) = e−(μ/2M)x
[
y0 + μ

2M y0x + y1x
]

(ii) y(x) = e−(μ/2M)x
[
y0 cosh θx + 1

θ

(
y1 + μ

2M y0

)
sinh θx

]
, θ =

√
μ2−4MK

2M

(iii) y(x) = e−(μ/2M)x
[
y0 cosφx + 1

φ

(
y1 + μ

2M y0

)
sin φx
]
, φ =

√
4MK−μ2

2M

(iv) y(x) = F
(K−Mω2)

[
sin ωx − ω

√
M
K sin
√

K
M x
]

(v) y(x) = F
2Mω

[
1
ω sin ωx − x cos ωx

]
.



Lecture 48
Laplace Transform Method for

Partial DEs

In this lecture we shall apply the Laplace transform technique to find
solutions of partial differential equations. For this, we note that for a given
function u(x, t) defined for a ≤ x ≤ b, t > 0, we have

L
[
∂u

∂t

]
=
∫ ∞

0

e−st ∂u

∂t
dt

= e−stu(x, t)
∣∣∣∞
0

+ s

∫ ∞

0

e−stu(x, t)dt

= −u(x, 0) + sL[u] = −u(x, 0) + sU(x, s),

where L[u] = U(x, s). Similarly, we find

L
[
∂u

∂x

]
=
∫ ∞

0

e−st ∂u

∂x
dt =

d

dx

∫ ∞

0

e−stu(x, t)dt =
dU(x, s)

dx
,

L
[
∂2u

∂t2

]
= L

[
∂

∂t

(
∂u

∂t

)]
= sL
[
∂u

∂t

]
− ∂u(x, 0)

∂t

= s2U(x, s) − su(x, 0) − ∂u(x, 0)
∂t

,

and

L
[
∂2u

∂x2

]
=

d2U(x, s)
dx2

.

Example 48.1. We shall find the solution of

ux = 2ut + u, u(x, 0) = 6e−3x (48.1)

which is bounded for all x > 0, t > 0.

Taking Laplace transforms of the given partial differential equation with
respect to t, we obtain

dU

dx
= 2 {sU − u(x, 0)} + U, U = U(x, s) = L[u(x, t)],

or
dU

dx
− (2s + 1)U = −12e−3x. (48.2)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 48,
c© Springer Science+Business Media, LLC 2009
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Thus, we find that Laplace transformation has transformed the partial dif-
ferential equation into an ordinary differential equation. Clearly, the solu-
tion of (48.2) can be written as

U(x, s) =
6

s + 2
e−3x + C(s)e(2s+1)x,

where C(s) is an arbitrary constant. Now since u(x, t) must be bounded
as x → ∞, we must have U(x, s) also bounded as x → ∞ and so we must
choose C(s) = 0. Hence,

U(x, s) =
6

s + 2
e−3x. (48.3)

From (48.3) it immediately follows that u(x, t) = 6e−2t−3x.

Example 48.2. We shall solve the problem

ux + xut = 0, x > 0, t > 0

u(x, 0) = 0, u(0, t) = t.
(48.4)

Taking Laplace transforms of the given partial differential equation with
respect to t, we find

dU

dx
+ x[sU(x, s) − u(x, 0)] = 0,

or
dU

dx
+ xsU = 0.

The general solution of this ordinary differential equation is

U(x, s) = C(s)e−sx2/2.

Now since L[u(0, t)] = L[t] = 1/s2, we have U(0, s) = 1/s2. Hence,

U(x, s) =
1
s2

e−sx2/2.

Thus, the solution of (48.4) can be written as

u(x, t) =
(

t − x2

2

)
H

(
t − x2

2

)
=

{
0, t < x2/2

t − (x2/2), t > x2/2.

Example 48.3. We shall find the solution of the following initial–
boundary value problem

ut = uxx, 0 < x < 1, t > 0

u(x, 0) = 3 sin 2πx, 0 < x < 1

u(0, t) = 0, u(1, t) = 0, t > 0.

(48.5)
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Taking Laplace transforms of the given partial differential equation with
respect to t, we obtain

sU − u(x, 0) =
d2U

dx2
,

or
d2U

dx2
− sU = −3 sin2πx.

The general solution of this ordinary differential equation is

U(x, s) = c1(s)e
√

sx + c2(s)e−
√

sx +
3

s + 4π2
sin 2πx.

Now taking Laplace transform of the boundary conditions, we have

L[u(0, t)] = U(0, s) = 0 and L[u(1, t)] = U(1, s) = 0.

Thus, it follows that

0 = c1(s) + c2(s)

0 = c1(s)e
√

s + c2(s)e−
√

s

and hence, c1(s) = c2(s) = 0. Therefore, we have

U(x, s) =
3

s + 4π2
sin 2πx,

which gives the solution of (48.5), u(x, t) = 3e−4π2t sin 2πx.

For our next example we recall the definition of the complementary error
function erfc(t) :

erfc(t) = 1 − erf(t) = 1 − 2√
π

∫ t

0

e−u2
du.

Example 48.4. We shall find the bounded solution of the problem

ut = uxx, x > 0, t > 0

u(x, 0) = 0, u(0, t) = u0.
(48.6)

Taking Laplace transforms of the given partial differential equation and
of boundary condition u(0, t) = u0, we find

d2U

dx2
− sU = 0, U(0, s) =

u0

s
.

The general solution of the above ordinary differential equation is U(x, s) =
c1(s)e

√
sx + c2(s)e−

√
sx. Since u(x, t) is bounded as x → ∞, U(x, s) must
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also be bounded as x → ∞. Thus, we must have c1(s) = 0, assuming
s > 0, so that U(x, s) = c2(s)e−

√
sx. This solution satisfies the condition

U(0, s) = u0/s provided c2(s) = u0/s, and hence

U(x, s) = u0
e−

√
sx

s
. (48.7)

Now we shall show that the inverse transform of (48.7), i.e., the solution
of (48.6) can be written as

u(x, t) = u0
2√
π

∫ ∞

x/2
√

t

e−u2
du = u0 erfc

(
x

2
√

t

)
. (48.8)

For this first we shall find L−1[e−
√

s]. Let Y = e−
√

s so that

Y ′ = −e−
√

s

2
√

s
, Y ′′ =

e−
√

s

4s
+

e−
√

s

4s3/2
.

Thus, it follows that

4sY ′′ + 2Y ′ − Y = 0, ′ =
d

ds
. (48.9)

Now Y ′′ = L[t2y] so that

sY ′′ =
d

dt
L[t2y] = L[t2y′ + 2ty].

Also Y ′ = L[−ty] so that (48.9) can be written as

4L[t2y′ + 2ty] − 2L[ty] − L[y] = 0,

or
4t2y′ + (6t − 1)y = 0,

which can be solved to find the solution

y(t) =
C

t3/2
e−1/4t,

where C is an arbitrary constant, and hence ty = (C/
√

t)e−1/4t. Next we
have

L[ty] = − d

ds
L[y] = − d

ds

(
e−

√
s
)

=
e−

√
s

2
√

s
.

Clearly, for large t, ty ∼ c/
√

t and L[ty] = C
√

π/
√

s. Further, for small
s, (e−

√
s/2

√
s) ∼ (1/2

√
s). Hence, from Problem 46.8(ii) it follows that

C
√

π = 1/2, or C = (1/2
√

π). Thus, we find

L−1
[
e−

√
s
]

=
1

2
√

πt3/2
e−1/4t. (48.10)
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Now using the convolution theorem, and letting u = 1/(4v2) we obtain

L−1

[
e−

√
s

s

]
=
∫ t

0

1
2
√

πu3/2
e−1/4udu

=
2√
π

∫ ∞

1/2
√

t

e−v2
dv = erfc

(
1

2
√

t

)
.

Finally, to find L−1[e−x
√

s/s] we use the change of scale property, i.e.,

L−1

[
e−

√
x2s

x2s

]
=

1
x2

erfc

(
1

2
√

t/x2

)
=

1
x2

erfc
(

x

2
√

t

)
.

Hence, we have

L−1

[
e−x

√
s

s

]
= erfc

(
x

2
√

t

)
. (48.11)

Example 48.5. We shall find the bounded solution of the problem

ut = c2uxx, x > 0, t > 0, c > 0

u(x, 0) = k, x > 0

u(0, t) = f(t), t > 0,

(48.12)

which generalizes (48.6).

Using Laplace transforms, we get the ordinary differential equation

sU − u(x, 0) = c2 d2U

dx2
,

which can be solved to obtain

U(x, s) = c1e
−px + c2e

px +
k

s
, p =

√
s/c.

Now the fact |u(x, t)| < ∞ implies that c2 = 0, and since U(0, s) = F (s),
we have

F (s) = c1 +
k

s
.

Thus, it follows that

U(x, s) =
k

s

(
1 − e−px

)
+ F (s)e−px.

However, since

L
[
erfc
(

x

2c
√

t

)]
=

e−px

s
,
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we obtain

L
[

d

dt
erfc
(

x

2c
√

t

)]
= L
[

x

2c
√

πt3/2
exp
(
− x2

4c2t

)]
= e−px.

Thus, in view of convolution theorem, the solution of (48.12) can be written
as

u(x, t) = k erf
(

x

2c
√

t

)
+

x

2c
√

π

∫ t

0

f(t − τ)
exp
(
−x2/4c2τ

)
τ3/2

dτ. (48.13)

The above representation of the solution is due to J.M.C. Duhamel (1797–
1872).

Example 48.6. We shall use Laplace transforms to find the bounded
solution of the problem

ut = c2uxx, x > 0, t > 0, c > 0

u(x, 0) = f(x), x > 0

u(0, t) = k, t > 0.

(48.14)

As in Example 48.5 it is clear that the corresponding ordinary differen-
tial equation is

d2U

dx2
− s

c2
U = − 1

c2
f(x),

which can be solved to obtain

U(x, s) = Aepx + Be−px − 1
pc2

∫ x

0

sinh p(x − τ)f(τ)dτ, p =
√

s/c

= epx

[
A − 1

2pc2

∫ x

0

e−pτf(τ)dτ

]
+ e−px

[
B +

1
2pc2

∫ x

0

epτf(τ)dτ

]
.

Thus, the condition that U(x, s) is bounded as x → ∞ yields

A =
1

2pc2

∫ ∞

0

e−pτf(τ)dτ

and the condition at x = 0 will then produce

B =
k

s
− 1

2pc2

∫ ∞

0

e−pτf(τ)dτ.
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Hence, it follows that

U(x, s) =
k

s
e−px − e−px

2pc2

∫ ∞

0

e−pτf(τ)dτ

+
epx

2pc2

∫ ∞

0

e−pτf(τ)dτ − 1
pc2

∫ x

0

sinh p(x − τ)f(τ)dτ

=
k

s
e−px +

1
2c
√

s

[∫ x

0

[
−e−px−pτ + e−px+pτ

]
f(τ)dτ

+
∫ ∞

x

[
−e−px−pτ + epx−pτ

]
f(τ)dτ

]

=
k

s
e−px +

1
2c
√

s

∫ ∞

0

f(τ)
[
e−|x−τ |p − e−(x+τ)p

]
dτ

and therefore,

u(x, t) = k erfc
(

x

2c
√

t

)
+

1
2c

∫ ∞

0

f(τ)[g(|x − τ |, t) − g(x + τ, t)]dτ,

where
L[g(x, t)] =

1√
s
e−px.

We shall show that

g(x, t) = L−1

[
1√
s
e−px

]
=

1√
πt

exp
(
− x2

4c2t

)
.

For this it suffices to establish the relation

L
[

1√
πt

e−a2/4t

]
=

e−a
√

s

√
s

. (48.15)

Since, L−1[sn] = 0, n = 0, 1, 2, · · · we have

L−1

[
e−a

√
s

√
s

]
= L−1

[
1√
s

(
1 − a

√
s

1!
+

(a
√

s)2

2!
− (a

√
s)3

3!
+ · · ·
)]

= L−1

[
1√
s

+
a2s1/2

2!
+

a4s3/2

4!
+ · · ·
]

= L−1

[ ∞∑
m=0

a2ms(2m−1)/2

(2m)!

]
=

∞∑
m=0

a2m

(2m)!
t−m−1/2

Γ(−m + 1/2)

=
t−1/2

Γ(1/2)
+

a2t−3/2

2Γ(−1/2)
+ · · · =

t−1/2

√
π

+
a2t−3/2

2 (−2
√

π)
+ · · ·

=
1√
πt

− a2

4
√

π t3/2
+ · · · =

1√
πt

e−a2/4t.
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Example 48.7. We shall solve the following initial-boundary value
problem

utt = uxx, 0 < x < a, t > 0

u(x, 0) = b sin
π

a
x, 0 < x < a

ut(x, 0) = −b sin
π

a
x, 0 < x < a

u(0, t) = 0, u(a, t) = 0, t > 0.

(48.16)

Transforming the equation and the boundary conditions yields

d2U

dx2
= s2U − bs sin

π

a
x + b sin

π

a
x

U(0, s) = U(a, s) = 0,

which has the solution

U(x, s) =
a2b(s − 1)
a2s2 + π2

sin
π

a
x.

Hence, the solution of (48.16) can be written as

u(x, t) = b sin
π

a
x
[
cos

π

a
t − a

π
sin

π

a
t
]
.

Example 48.8. We shall find the solution of the following initial-
boundary value problem

utt − 4uxx + u = 16x + 20 sinx, 0 < x < π, t > 0

u(x, 0) = 16x + 12 sin 2x − 8 sin 3x, ut(x, 0) = 0, 0 < x < π

u(0, t) = 0, u(π, t) = 16π, t > 0.

(48.17)

Taking Laplace transforms, we find

s2U − su(x, 0) − ∂u

∂t
(x, 0) − 4

d2U

dx2
+ U =

16x

s
+

20 sinx

s
,

which in view of the initial conditions is the same as

d2U

dx2
− 1

4
(s2 + 1)U = −4(s2 + 1)x

s
− 5 sin x

s
− 3s sin 2x+ 2s sin 3x. (48.18)

We need to solve (48.18) along with the boundary conditions

U(0, s) = 0, U(π, s) =
16π

s
. (48.19)

The general solution of the differential equation (48.18) can be written as

U(x, s) = c1e
− 1

2

√
s2+1x + c2e

1
2

√
s2+1x

+
16x

s
+

20 sinx

s(s2 + 5)
+

12s sin 2x

s2 + 17
− 8s sin 3x

s2 + 37
.
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The boundary conditions (48.19) imply that c1 = c2 = 0, and hence

U(x, s) =
16x

s
+

20 sinx

s(s2 + 5)
+

12s sin 2x

s2 + 17
− 8s sin 3x

s2 + 37
,

which gives the required solution

u(x, t) = 16x + 4 sinx(1 − cos
√

5t) + 12 sin 2x cos
√

17t − 8 sin 3x cos
√

37t.

Problems

48.1. Solve by Laplace transforms:

(i) ux + 2xut = 2x, x > 0, t > 0, u(x, 0) = 1, u(0, t) = 1
(ii) xux + ut = xt, x > 0, t > 0, u(x, 0) = 0, u(0, t) = 0
(iii) ux + xut = x3, x > 0, t > 0, u(x, 0) = 0, u(0, t) = 0
(iv) ux + ut = x, x > 0, t > 0, u(x, 0) = f(x), u(0, t) = 0

(assume that f ′(x) exists for all x)
(v) ux − ut = 1 − e−t, 0 < x < 1, t > 0, u(x, 0) = x, |u(x, t)| < ∞.

48.2. Solve by Laplace transforms:

(i) ut = 2uxx, 0 < x < 5, t > 0, u(x, 0) = 10 sin 4πx − 5 sin 6πx,
u(0, t) = u(5, t) = 0

(ii) ut = 3uxx, 0 < x < π/2, t > 0, u(x, 0) = 20 cos 3x − 5 cos 9x,
ux(0, t) = u(π/2, t) = 0

(iii) ut = uxx, 0 < x < a, t > 0, u(x, 0) = k + b sin(πx/a),
u(0, t) = u(a, t) = k

(iv) ut = c2uxx, x > 0, t > 0, c > 0, u(x, 0) = 0,
ux(0, t) = −k, lim

x→∞
u(x, t) = 0

(v) ut = uxx − 4u, 0 < x < π, t > 0, u(x, 0) = 6 sinx − 4 sin 2x,
u(0, t) = u(π, t) = 0.

48.3. Solve by Laplace transforms:

utt = c2uxx, x > 0, t > 0, c > 0

u(x, 0) = 0, x > 0

ut(x, 0) = 0, x > 0

u(0, t) = f(t), t > 0

lim
x→∞

u(x, t) = 0, t > 0.

In particular, find the solution when
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(i) c = 1, f(t) = 10 sin 2t

(ii) f(t) =
{

sin t, 0 ≤ t ≤ 2π
0, otherwise.

48.4. Solve by Laplace transforms:

(i) utt = 9uxx, 0 < x < 2, t > 0, u(x, 0) = 20 sin2πx − 10 sin 5πx,
ut(x, 0) = 0, u(0, t) = u(2, t) = 0

(ii) utt = c2uxx, x > 0, t > 0, c > 0, u(x, 0) = 0, ut(x, 0) = −1,
u(0, t) = t2, lim

x→∞
u(x, t) exists

(iii) utt = uxx, 0 < x < 1, t > 0, u(x, 0) = x − x2, ut(x, 0) = 0,
u(0, t) = u(1, t) = 0

(iv) utt = uxx + sin(πx/a) sin ωt, 0 < x < a, t > 0
u(x, 0) = ut(x, 0) = u(0, t) = u(a, t) = 0.

Answers or Hints

48.1. (i) t + 1 − (t − x2)H(t − x2) (ii) x(t − 1 + e−t) (ii) x2t − t2 +(
t − x2

2

)2
H
(
t − x2

2

)
(iv) Take Laplace transform with respect to x,

f(x − t)H(x − t) + 1
2x2 − 1

2 (x − t)2H(x − t) (v) x + 1 − e−t.

48.2. (i) 10e−32π2t sin 4πx− 5e−72π2t sin 6πx (ii) 20e−27t cos 3x− 5e−243t

× cos 9x (iii) k + be−π2t/a2
sin πx

a (iv) k
[
2c
√

t
π e−x2/4t − x erfc

(
x

2c
√

t

)]
(v) 6e−5t sin x − 4e−8t sin 2x.

48.3. f
(
t − x

c

)
H
(
t − x

c

)
. (i) 10 sin 2(t − x)H(t − x)

(ii)
{

sin
(
t − x

c

)
, x

c < t < x
c + 2π

0, otherwise.

48.4. (i) 20 sin 2πx cos 6πt − 10 sin 5πx cos 15πt (ii) −t +
[(

t − x
c

)
+
(
t − x

c

)2]
H
(
t− x

c

)
(iii) x−x2− t2+

∑∞
n=0(−1)n

[
(t−n−x)2H(t−n−x)

+(t−n−1+x)2H(t−n−1+x)
]

(iv) ωa2

π2−a2ω2

(
1
ω sin ωt − a

π sin πt
a

)
sin πx

a .



Lecture 49
Well-Posed Problems

A problem consisting of a partial DE in a domain with a set of initial
and/or boundary conditions is said to be well-posed if the following three
fundamental properties hold:

1. Existence: There exists at least one solution of the problem.

2. Uniqueness: There is at most one solution of the problem.

3. Stability: The unique solution depends continuously on data (initial and
boundary conditions): i.e., a slight change in the data leads to only a small
change in the solution.

From Problem 34.4 we know that the Neumann problem uxx + uyy =
0, 0 < x < a, 0 < y < b, uy(x, 0) = f(x), uy(x, b) = g(x), ux(0, y) =
0 = ux(a, y) has an infinite number of solutions, and hence it is not a well
posed problem. As another example, consider the problem uxx + uyy =
0, − ∞ < x < ∞, y > 0, u(x, 0) = 0, uy(x, 0) = (1/n) sinnx. It has
solution u ≡ 0 when uy(x, 0) = 0, but for positive values of n the solution
is u(x, y) = (1/n2) sinnx sinh ny. Clearly, uy(x, 0) = (1/n) sinnx → 0 as
n → ∞; however, u(x, y) = (1/n2) sin nx sinh ny �→ 0 as n → ∞. Thus, the
stability property is violated and the problem is not well posed.

In what follows we will only briefly comment on each of the three re-
quirements, because a detailed discussion of the conditions under which a
given problem is well-posed requires some deeper concepts. To ensure the
existence the series or integral representation of solutions of problems we
have obtained earlier will be verified in the next lecture. In this lecture we
shall address the uniqueness and stability of the solutions. An important
consequence of the uniqueness of solutions is that different methods lead
to the same solution; however, there may be distinct representations of the
same solution. We begin our discussion with the heat equation.

Since heat flows from a higher temperature to the lower temperature, in
the absence of any internal heat source, the hottest and the coldest spots
can occur only initially or on one of the two ends of the rod. If the rod
is burned at one end and the other end is in a freezer, the heat will flow
from the burning end to the end in the freezer. However, the end that is
burned will always be hotter than any other point of the rod, and the end
in the freezer will always be cooler than any other point on the rod. A
mathematical description of this observation is stated as follows:
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Theorem 49.1 (Maximum–Minimum Principle for the
Heat Equation). Let the function u(x, t) be continuous in a closed
rectangle R = {(x, t) : 0 ≤ x ≤ a, 0 ≤ t ≤ T } and satisfy the heat equation
(30.1) in the interior of R. Then u(x, t) attains its maximum and minimum
on the base t = 0 or on the vertical sides x = 0 or x = a of the rectangle.

As an application of this principle we shall prove the uniqueness of
solutions of the Dirichlet problem for the heat equation

ut − c2uxx = q(x, t), 0 < x < a, t > 0, c > 0

u(x, 0) = f(x), 0 < x < a

u(0, t) = g(t), t > 0

u(a, t) = h(t), t > 0.

(49.1)

Theorem 49.2. Assume that q, f, g, and h are continuous in their
domain of definition, and f(0) = g(0), f(a) = h(0). Then there is at most
one solution to the problem (49.1).

Proof. Assume to the contrary that there are two solutions u1(x, t) and
u2(x, t) of (49.1). Then the function w = u1 − u2 satisfies wt − c2wxx =
0, w(x, 0) = 0, w(0, t) = w(a, t) = 0. Let T > 0. In view of the maximum
principle, w(x, t) attains its maximum on the base t = 0 or on the vertical
sides x = 0 or x = a of the rectangle R = {(x, t) : 0 ≤ x ≤ a, 0 ≤ t ≤
T }. Therefore, it follows that w(x, t) ≤ 0, (x, t) ∈ R. Similarly, from the
minimum principle, we have w(x, t) ≥ 0, (x, t) ∈ R. Hence, w(x, t) ≡ 0,
i.e., u1(x, t) ≡ u2(x, t), (x, t) ∈ R. Finally, since T is arbitrary, the result
follows.

Alternative Proof. We can also prove Theorem 49.2 by a technique
known as the energy method as follows: Multiplying the equation wt −
c2wxx = 0 by w, we get

0 = w(wt − c2wxx) =
(

1
2
w2

)
t

− (c2wwx)x + c2w2
x.

Thus, an integration with respect to x gives

0 =
∫ a

0

(
1
2
w2

)
t

dx − c2wwx

∣∣∣∣
x=a

x=0

+ c2

∫ a

0

w2
xdx.

However, since w(0, t) = w(a, t) = 0 it follows that

d

dt

∫ a

0

1
2
[w(x, t)]2dx = −c2

∫ a

0

[wx(x, t)]2dx ≤ 0.

Therefore, in view of w(x, 0) = 0, we have∫ a

0

1
2
[w(x, t)]2dx ≤

∫ a

0

1
2
[w(x, 0)]2dx = 0,
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and hence
∫ a

0
[w(x, t)]2dx = 0 for all t > 0. But, this implies that w(x, t) ≡ 0,

i.e., u1(x, t) ≡ u2(x, t).

Clearly, the above proof holds as long as wwx|a0 = 0. Hence, our proof
applies to other boundary conditions also, e.g., in (49.1) we can replace
the Dirichlet conditions u(0, t) = g(t), u(a, t) = h(t) by the Neumann
conditions ux(0, t) = g(t), ux(a, t) = h(t).

The following stability result immediately follows from Theorem 49.1.

Theorem 49.3. Let u1(x, t) and u2(x, t) be solutions to the prob-
lem (49.1) with data f1, g1, h1 and f2, g2, h2, respectively. Further, let
T and ε be any positive real numbers. If max0≤x≤a |f1(x) − f2(x)| ≤ ε,
max0≤t≤T |g1(t) − g2(t)| ≤ ε and max0≤t≤T |h1(t) − h2(t)| ≤ ε, then

max
0≤x≤a, 0≤t≤T

|u1(x, t) − u2(x, t)| ≤ ε.

Next we shall discuss the Laplace equation. If in equation (34.4) we
consider u(x, y) as the steady-state temperature distribution in a plate,
then the temperature at any interior point cannot be higher than all other
surrounding points. In fact, otherwise the heat will flow from the hot point
to the cooler points. But, then the temperature will change with time, and
would lead to a contradiction to the steady-state condition. Because of the
same reasoning at any interior point the temperature cannot be lower than
all other surrounding points. Mathematically this result can be stated as
follows:

Theorem 49.4 (Maximum–Minimum Principle for the
Laplace Equation). Let D ⊂ IR2 be a bounded and connected
open set. Let u(x, y) be a harmonic function in D that is continuous on
D = D ∪ ∂D, where ∂D is the boundary of D. Then, the maximum and
minimum values of u are attained on ∂D, unless u is identically a constant.

As an application of this principle we shall prove the uniqueness of
solutions of the Dirichlet problem for the Laplace equation

uxx + uyy = q(x, y) in D

u(x, y) = f(x, y) on ∂D.
(49.2)

Theorem 49.5. Assume that q and f are continuous in their domain
of definition. Then there is at most one solution to the problem (49.2).

Proof. Assume to the contrary that there are two solutions u1(x, y) and
u2(x, y) of (49.2). Then, the function w = u1 − u2 satisfies wxx + wyy = 0
in D and w = 0 on ∂D. Thus, from the maximum–minimum principle w
must attain its maximum and minimum values on ∂D. Hence, w(x, y) ≡ 0;
i.e., u1(x, y) ≡ u2(x, y), (x, y) ∈ D.
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Alternative Proof. We can also prove Theorem 49.5 by using Green’s
identity (energy technique): Let D ⊂ IR2 be a bounded and open region
whose boundary ∂D is a piecewise continuously differentiable curve. Then,
for any function w = w(x, y) having continuous second-order partial deriva-
tives in D and continuous first-order partial derivatives on D ∪ ∂D the
following holds

∫∫
D

w(wxx + wyy)dxdy =
∮

∂D

w
∂w

∂n
ds −
∫∫

D

(w2
x + w2

y)dxdy,

where ∂w/∂n is the exterior normal derivative.

Green’s identity for the difference of two solutions of (49.2), i.e., w =
u1 − u2 reduces to ∫∫

D

(w2
x + w2

y)dxdy = 0,

which clearly implies that w is a constant. However, since w = 0 on ∂D,
this constant must be zero, i.e., w = u1 − u2 ≡ 0.

The following stability result is a direct consequence of Theorem 49.4.

Theorem 49.6. Let u1(x, y) and u2(x, y) be solutions to the problem
(49.2) with data f1 and f2, respectively. Further, let ε be any positive real
number. If max∂D |f1(x, y) − f2(x, y)| ≤ ε, then

max
D

|u1(x, y) − u2(x, y)| ≤ ε.

Finally, we shall employ the energy technique to prove the uniqueness
of solutions of the initial–boundary value problem for the wave equation

utt = c2uxx + q(x, t), 0 ≤ x ≤ a, t ≥ 0

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ a

u(0, t) = α(t), u(a, t) = β(t), t ≥ 0.

(49.3)

We multiply the wave equation by ut and integrate with respect to x, to
get

d

dt

∫ a

0

1
2
u2

t dx = c2

∫ a

0

uxxutdx +
∫ a

0

qutdx.

However, since
∫ a

0

uxxutdx = uxut

∣∣∣∣
a

0

−
∫ a

0

uxuxtdx

and

uxuxt =
∂

∂t

(
1
2
u2

x

)
,



398 Lecture 49

it follows that

d

dt

∫ a

0

1
2
[u2

t + c2u2
x]dx = c2uxut

∣∣∣∣
a

0

+
∫ a

0

qutdx. (49.4)

The identity (49.4) is called the energy equation for the wave equation.

Theorem 49.7. Assume that q, f, g, α, and β are sufficiently smooth
in their domain of definition. Then, there is at most one solution of (49.3)
which is continuous together with its first- and second-order partial deriva-
tives for 0 ≤ x ≤ a, t ≥ 0.

Proof. Assume to the contrary that there are two such solutions u1(x, y)
and u2(x, y) of (49.3). Then the function w = u1 − u2 satisfies wtt =
c2wxx, w(x, 0) = 0, wt(x, 0) = 0, w(0, t) = 0, w(a, t) = 0. But then, from
the assumptions on the solutions, we also have wx(x, 0) = 0, wt(0, t) = 0
and wt(a, t) = 0. Thus, for the function w, the identity (49.4) reduces to

d

dt

∫ a

0

1
2
[w2

t + c2w2
x]dx = 0.

Therefore, we have
∫ a

0

1
2
[w2

t (x, t) + c2w2
x(x, t)]dx =

∫ a

0

1
2
[w2

t (x, 0) + c2w2
x(x, 0)]dx = 0,

which immediately implies that w is a constant. However, since w(x, 0) = 0
and w is continuous this constant must be zero; i.e., w = u1 − u2 ≡ 0.



Lecture 50

Verification of Solutions

In our previous lectures the series or integral form of the solutions we
have obtained were only formal; there we did not attempt to establish
their validity. In this lecture we shall prove a few theorems which verify
that these are actually the solutions. For this, we shall need the following
results in two independent variables:

(P1). Weierstrass’s M -test: If the terms of a series of functions of two vari-
ables are majorized on a rectangle by the terms of a convergent numerical
series, then the series of functions is absolutely and uniformly convergent
on the rectangle.

(P2). If a series of continuous functions converges uniformly on a rectangle,
then its sum is continuous on the rectangle.

(P3). If the series obtained from a given convergent series by formal term-
by-term partial differentiation is a uniformly convergent series of continu-
ous functions on a closed rectangle, then the given series has a continuous
derivative which on the rectangle is the sum of the series obtained by term-
by-term differentiation.

(P4). Abel’s test: The series
∑∞

n=1 Xn(x)Yn(y) converges uniformly with
respect to the two variables x and y together, in a closed region R of the
xy-plane, provided the series

∑∞
n=1 Xn(x) converges uniformly with respect

to x in R, and for all y in R the functions Yn(y), n = 1, 2, · · · are monotone
(nondecreasing or nonincreasing) with respect to n and uniformly bounded;
i.e., |Yn(y)| < M for some M.

First we prove the following theorem for the heat equation.

Theorem 50.1. In the interval [0, a] let f(x) be continuous and f ′(x)
piecewise continuous, and let f(0) = f(a) = 0. Then the series (30.10) rep-
resents a unique solution to the problem (30.1)–(30.4) which is continuous
for all {(x, t) : 0 ≤ x ≤ a, t ≥ 0}.

Proof. The uniqueness of the solutions has already been proved in The-
orem 49.2. Thus, it suffices to show that the function u(x, t) defined by
the series (30.10) is a solution. Clearly, this u(x, t) satisfies the bound-
ary conditions (30.3) and (30.4). Next from (30.10), we have u(x, 0) =∑∞

n=1 cn sin nπx/a, and since the function f satisfies the conditions of The-
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orem 23.6, it follows that u(x, 0) = f(x). Now from (30.11), we find that

|cn| ≤ 2
a

∫ a

0

|f(x)|dx =: C

so that, for the n-th term of (30.10), we obtain the majorization
∣∣∣cne−(n2π2c2/a2)t sin

nπx

a

∣∣∣ ≤ Ce−(n2π2c2/a2)t0 ,

for all 0 ≤ x ≤ a, t ≥ t0 > 0. Next since the numerical series

∞∑
n=1

Ce−(n2π2c2/a2)t0

is convergent; from (P1) it follows that the series (30.10) is absolutely and
uniformly convergent for all 0 ≤ x ≤ a, t ≥ t0 > 0. Thus, from (P2) and
the fact that t0 is arbitrary, we conclude that the sum u(x, t) of the series
is continuous for all 0 ≤ x ≤ a, t > 0. Now we formally differentiate the
series (30.10) term-by-term with respect to t, to obtain

ut(x, t) = −π2c2

a2

∞∑
n=1

n2cne−(n2π2c2/a2)t sin
nπx

a
. (50.1)

This series has the majorizing series

π2c2

a2

∞∑
n=1

Cn2e−(n2π2c2/a2)t0

for all 0 ≤ x ≤ a, t ≥ t0 > 0. By the ratio test this numerical series is
convergent. Hence, again by (P1) it follows that the differentiated series
is absolutely and uniformly convergent for all 0 ≤ x ≤ a, t ≥ t0 > 0.
Therefore, (P3) implies that the sum u(x, t) of the series (30.10) has con-
tinuous partial derivative with respect to t for all 0 ≤ x ≤ a, t > 0 and this
derivative can be obtained term-by-term differentiation. In a similar man-
ner we can show that ux, uxx exist, are continuous, and can be obtained
by term-by-term differentiation. In fact, we have

uxx(x, t) = −π2

a2

∞∑
n=1

n2cne−(n2π2c2/a2)t sin
nπx

a
(50.2)

for all 0 ≤ x ≤ a, t ≥ t0 > 0.

Finally, from (50.1) and (50.2) it is clear that ut(x, t) = c2uxx(x, t) for
all 0 ≤ x ≤ a, t ≥ t0 > 0.
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Now we state the following theorem which confirms that the Gauss–
Weierstrass formula (43.3) (see equivalent representation in Problem 44.5)
is actually a unique solution of (43.1).

Theorem 50.2. Let f(x), −∞ < x < ∞ be a bounded and piecewise
continuous function. Then, the Gauss–Weierstrass integral (43.3) defines
a unique solution of the problem (43.1) with limt→0 u(x, t) = [f(x + 0) +
f(x − 0)]/2.

Our next result is for the initial value problem (43.9), where we do not
assume the condition that u and ux are finite as |x| → ∞, t > 0.

Theorem 50.3. Let for all −∞ < x < ∞ the function f1(x) be twice
continuously differentiable and the function f2(x) continuously differen-
tiable. Then, the initial value problem (43.9) has a unique twice continu-
ously differentiable solution u(x, t), given by d’Alembert’s formula (43.11)
(see also Problem 33.10).

Proof. From Lecture 28 (see (28.2)) it is clear that the solution of the
wave equation can be written as

u(x, t) = F (x + ct) + G(x − ct), (50.3)

where F and G are arbitrary functions. This solution u(x, t) is twice con-
tinuously differentiable provided that F and G are twice differentiable. Dif-
ferentiating (50.3) with respect to t, we get

ut(x, t) = cF ′(x + ct) − cG′(x − ct). (50.4)

Thus, u(x, t) satisfies the initial conditions u(x, 0) = f1(x), ut(x, 0) =
f2(x), if and only if,

F (x) + G(x) = f1(x)

cF ′(x) − cG′(x) = f2(x).
(50.5)

We integrate the second equation in (50.5), to obtain

cF (x) − cG(x) =
∫ x

0

f2(ξ)dξ + K, (50.6)

where K is an arbitrary constant. Combining (50.6) with the first equation
of (50.5), we can solve for F and G, to find

F (x) =
1
2
f1(x) +

1
2c

∫ x

0

f2(ξ)dξ +
1
2

K

c

G(x) =
1
2
f1(x) − 1

2c

∫ x

0

f2(ξ)dξ − 1
2

K

c
.
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Using these expressions in (50.3), we obtain d’Alembert’s formula (43.11).

The above explicit construction shows that if the problem (43.9) has a
solution it must be given by (43.11) and is unique. Conversely, since f1(x) is
twice continuously differentiable and f2(x) is continuously differentiable, it
is trivial to verify that (43.11) is indeed a twice continuously differentiable
solution of (43.9).

Now we shall prove a theorem for the boundary value problem (34.4) –
(34.8) with g(x) ≡ 0. We note that when g(x) ≡ 0, the solution (34.15) can
be written as

u(x, y) =
∞∑

n=1

an
sinh ωn(b − y)

sinh ωnb
sin ωnx, ωn =

nπ

a
(50.7)

where an is given in (34.16).

Theorem 50.4. In the interval [0, a] let f(x) be continuously differ-
entiable and f ′′(x) piecewise continuous, and let f(0) = f(a) = 0. Then,
the series (50.7) represents a unique solution u(x, y) to the problem (34.4)–
(34.8) with g(x) ≡ 0. This solution u and ux, uy are continuous in the
closed rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b, while uxx and uyy are continuous in
the rectangle 0 ≤ x ≤ a, 0 < y ≤ b.

Proof. The uniqueness of the solutions has already been proved in The-
orem 49.5. Thus, it suffices to show that the function u(x, y) defined by the
series (50.7) is a solution. Clearly, this u(x, t) satisfies the boundary con-
ditions (34.7), (34.8) and (34.6), and since the function f satisfies the con-
ditions of Theorem 23.6, it follows that u(x, 0) = f(x) =

∑∞
n=1 an sin ωnx

uniformly. Now we consider the sequence of functions

Yn(y) =
sinh ωn(b − y)

sinh ωnb
.

It is clear that 0 ≤ Yn(y) ≤ 1 for all n and 0 ≤ y ≤ b; i.e., these functions
are uniformly bounded. We claim that for all 0 ≤ y ≤ b the functions Yn(y)
are nonincreasing as n increases. This is immediate for y = 0 and y = b, and
for 0 < y < b it suffices to show that the function S(s) = sinh qs/ sinh ps,
where p > q > 0 is a decreasing function of s > 0. Since

2S′(s) sinh2 ps = 2q sinh ps cosh qs − 2p sinh qs cosh ps

= −(p − q) sinh(p + q)s + (p + q) sinh(p − q)s

= −(p2 − q2)
[
sinh(p + q)s

p + q
− sinh(p − q)s

p − q

]

= −(p2 − q2)
∞∑

n=0

[
(p + q)2n − (p − q)2n

] s2n+1

(2n + 1)!
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it follows that S′(s) < 0, and hence S(s) is a decreasing function of s > 0.
From this and the fact that Fourier sine series of f(x) converges uniformly,
(P4) implies that the series (50.7) converges uniformly to u(x, y) with re-
spect to x, y in the closed rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b. The continuity
of u in this rectangle immediately follows from (P2).

Next note that the function f ′ also satisfies the conditions of Theorem
23.6, and hence the Fourier cosine series

∑∞
n=1 anωn cosωnx, obtained by

differentiating the sine series term-by-term also converges uniformly for
0 ≤ x ≤ a. Thus, as above the series

∞∑
n=1

anωn
sinh ωn(b − y)

sinh ωnb
cosωnx

converges uniformly to ux(x, y) with respect to x, y in the closed rectangle
0 ≤ x ≤ a, 0 ≤ y ≤ b. The continuity of ux in this rectangle also follows
from (P2).

Now in view of Problem 23.14(i) the numerical series
∑∞

n=1 |anωn| con-
verges, and hence from (P1) the series

∑∞
n=1 anωn sin ωnx converges uni-

formly for 0 ≤ x ≤ a. We also note that the sequences of functions

Y n(y) =
coshωn(b − y)

sinhωnb

is nonincreasing as n increases for all 0 ≤ y ≤ b. In fact, this follows from
the relation

Y
2

n(y) =
1

sinh2 ωnb
+ Y 2

n (y) (50.8)

and our earlier considerations. The uniform boundedness of Y n(y) is also
immediate from (50.8). Combining these arguments, we find that the series

−
∞∑

n=1

anωn
cosh ωn(b − y)

sinh ωnb
sinωnx

converges uniformly to uy(x, y) with respect to x, y in the closed rectangle
0 ≤ x ≤ a, 0 ≤ y ≤ b. The continuity of uy in this rectangle once again
follows from (P2).

Finally, since |an| ≤ C, and for 0 ≤ y ≤ b,

sinhωn(b − y) <
1
2
eωn(b−y), sinh ωnb ≥ 1

2
eωnb
(
1 − e−2πb/a

)

for the series obtained by differentiating twice (50.7) with respect to x or
y, the terms have the absolute value less than

Cω2
n

1
2eωn(b−y)

1
2eωnb
(
1 − e−2πb/a

) = Cω2
n

e−ωny(
1 − e−2πn/a

) .
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Now since by the ratio test, the numerical series

∞∑
n=1

Cω2
n

e−ωny0(
1 − e−2πn/a

) ,

where 0 < y0 ≤ b converges, the series of the second derivatives obtained
from (50.7) by term-by-term differentiating twice with respect to x or y
converges uniformly for 0 ≤ x ≤ a, 0 < y ≤ b. The continuity of uxx, uyy

in this rectangle again follows from (P2).

Finally, we state the following theorem which confirms that the integral
(44.2) is actually a solution of (44.1).

Theorem 50.13. Let f(x), −∞ < x < ∞ be a bounded and piecewise
continuous function. Then, the integral (44.2) defines a unique solution of
the problem (44.1) with limy→0 u(x, y) = [f(x + 0) + f(x − 0)]/2.

If we allow unbounded solutions, then the uniqueness is lost. For exam-
ple, the function u(x, y) = y satisfies Laplace’s equation in the half-plane
and limy→0 u(x, y) = 0. This can be added to any solution.
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Abel identity, 8
Airy DE, 21, 25
Airy functions, 25
Airy stress function, 217
analytic function, 15
Angular equation, 315
associated Legendre functions, 55
Azimuthal equation, 315

Bernoulli DE, 6
Bessel DE, 13, 64
Bessel function of the first kind,

65
Bessel function of the second

kind, 66
Bessel functions of the third

kind, 67
Bessel inequality, 173
Beta function, 18
biharmonic equation, 217
boundary conditions, 104, 250
boundary layer, 139
boundary value problem, 104

canonical forms, 219
Cauchy-Euler equation, 4
Cauchy-Riemann equations, 200
characteristic, 222
characteristic polynomial, 3
Charpit method, 205
Chebyshev DE, 21, 27
Chebyshev polynomials, 57
Chebyshev polynomial of the

second kind, 61
Christoffel expansion, 55
Christoffel summation formula,

55
complementary error function,

386
complex Fourier integral, 330

confluent hypergeometric
function, 80

convolution theorem, 333, 367
Coulomb wave equation, 20
cylindrical functions, 64

d’Alembert’s solution, 254, 262,
343

Daniel Bernoulli solution, 253
Dirac delta function, 378
Dirichlet conditions, 235, 310
Dirichlet discontinuous factor,

325
Dirichlet problem, 267
Duffing equation, 132
Duhamel solution, 389

elliptic partial DE, 198
eigenfunctions, 145
eigenvalues, 145
energy method, 395, 397
error function, 372
even extension, 87
even function, 87
exponential order, 358
exponents, 32
exterior problem, 279

finite Fourier cosine transform,
347

finite Fourier sine transform, 347
forced Duffing’s equation, 136
Fourier-Bessel series, 165
Fourier-Chebyshev series, 165
Fourier coefficients, 158
Fourier cosine integral, 325
Fourier cosine series, 159
Fourier cosine transform, 326
Fourier cosine transform pair,

326
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Fourier-Hermite series, 165
Fourier integral, 324
Fourier-Legendre series, 163
Fourier method, 234
Fourier series, 158
Fourier sine integral, 325
Fourier sine series, 160
Fourier sine transform, 326
Fourier sine transform pair, 327
Fourier transform, 331
Fourier trigonometric series, 160
Fredholm alternative, 191
fundamental solution, 339

Gamma function, 17
Gauss-Weierstrass formula, 339
generalized function, 378
generating function, 50, 59, 62,

67
Green function, 119
Green identity, 397

Hankel functions, 67
harmonic function, 199
heat equation, 198, 235, 284
Heaviside function, 354
Helmholtz DE, 314
Hermite DE, 21, 27
Hermite functions, 27
Hermite polynomials, 60
hyperbolic DE, 198
hypergeometric DE, 21, 75
hypergeometric function, 75
hypergeometric series, 75

implicit boundary conditions,
275

indicial equation, 32
interior problem, 276
initial-boundary value problem,

251
initial condition, 1, 12, 250

initial value problem, 1, 12
inverse finite Fourier cosine

transform, 347
inverse finite Fourier sine

transform, 347
inverse Fourier cosine transform,

326
inverse Fourier sine transform,

326
inverse Fourier transform, 331
inverse transform, 354
irregular singular point, 19

Jacobi DE, 81

Korteweg-de Vries equation, 200

Lagrange first order DE, 203
Laguerre equation, 21, 37
Laguerre polynomial, 61
Lane-Emden equation, 43, 44
Laplace equation, 198, 267, 300
Laplace first integral

representation, 54
Laplace integral, 326
Laplace second integral

representation, 54
Laplace transform, 354
Legendre associated DE, 55
Legendre coefficient, 54
Legendre DE, 21, 47
Legendre polynomial, 49

maximum-minimum principle for
the heat equation, 395

maximum-minimum principle for
the Laplace equation,
396

mean convergence, 171
mean value theorem, 279, 310
method of Frobenius, 31
method of matched asymptotic

expansions, 140
method of images, 341
method of separation of

variables, 227
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method of variation of
parameters, 2, 9, 10

mixed condition, 310
modified Bessel DE, 67
modified Bessel function, 67
moving boundary value

problems, 313

Neumann boundary conditions,
237, 258, 310

Neumann function, 66
nonoscillatory, 18

odd extension, 87
odd function, 87
ordinary point, 19
orthogonal functions, 90
orthogonality of Bessel functions,

96
orthogonality of Chebyshev

polynomials, 93
orthogonality of Hermite

polynomials, 93
orthogonality of Laguerre

polynomials, 95
orthogonality of Legendre

polynomials, 92
orthonormal functions, 90
oscillatory solution, 18
outer expansion, 139
outer region, 139

parabolic DE, 198
Parseval equality, 173
periodic boundary conditions,

105, 246
periodic extension, 86
periodic function, 86
piecewise continuous, 84
piecewise smooth, 85
pointwise convergence, 171
Poisson equation, 319
Poisson integral formula, 278,

280, 282, 309, 345

potential equation, 198, 199
power series, 15
principle of superposition, 5, 197

quasilinear DE, 195

Radial equation, 315
Rayleigh DE, 29
Rayleigh quotient, 155
recurrence relation, 51, 57, 62,

68, 78
regular perturbation, 129
regular problem, 105
regular singular point, 19
regular Sturm-Liouville problem,

145
Riccati-Bessel equation, 20
Riccati equation, 10
Robin boundary conditions, 241,

260
Rodrigues formula, 49, 59, 60, 62

satellite DE, 135
Schrödinger wave equation, 21,

230, 313, 314
sectionally continuous, 84
sectionally smooth, 85
self–adjoint DE, 126
simultaneous DE, 202
singular perturbation, 138
singular point, 19
singular problem, 105
soliton, 200
spectrum, 145
steady periodic solution, 187
steady state, 241, 267
steady-state solution, 242
Sturm-Liouville conditions, 105
Sturm-Liouville problem, 145

Taylor series method, 29
telegraph equation, 251
transient state, 267
Tricomi equation, 199
trivial solution, 1
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uniform convergence, 171
unit impulse function, 378

Van der Pol equation, 29, 132

wave DE, 198, 250, 292
Weber function, 66

weight function, 90
well-posed problem, 394
White-dwarf equation, 44
Wronskian, 8

zeros of orthogonal polynomials,
100
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