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Preface

This book comprises 50 class-tested lectures which both the authors
have given to engineering and mathematics major students under the titles
Boundary Value Problems and Methods of Mathematical Physics at various
institutions all over the globe over a period of almost 35 years. The main
topics covered in these lectures are power series solutions, special func-
tions, boundary value problems for ordinary differential equations, Sturm—
Liouville problems, regular and singular perturbation techniques, Fourier
series expansion, partial differential equations, Fourier series solutions to
initial-boundary value problems, and Fourier and Laplace transform tech-
niques. The prerequisite for this book is calculus, so it can be used for
a senior undergraduate course. It should also be suitable for a beginning
graduate course because, in undergraduate courses, students do not have
any exposure to various intricate concepts, perhaps due to an inadequate
level of mathematical sophistication. The content in a particular lecture,
together with the problems therein, provides fairly adequate coverage of the
topic under study. These lectures have been delivered in one year courses
and provide flexibility in the choice of material for a particular one-semester
course. Throughout this book, the mathematical concepts have been ex-
plained very carefully in the simplest possible terms, and illustrated by a
number of complete workout examples. Like any other mathematical book,
it does contain some theorems and their proofs.

A detailed description of the topics covered in this book is as follows:
In Lecture 1 we find explicit solutions of the first-order linear differential
equations with variable coefficients, second-order homogeneous differential
equations with constant coefficients, and second-order Cauchy—FEuler differ-
ential equations. In Lecture 2 we show that if one solution of the homoge-
neous second-order differential equation with variable coefficients is known,
then its second solution can be obtained rather easily. Here we also demon-
strate the method of variation of parameters to construct the solutions of
nonhomogeneous second-order differential equations.

In Lecture 3 we provide some basic concepts which are required to con-
struct power series solutions to differential equations with variable coeffi-
cients. Here through various examples we also explain ordinary, regular
singular, and irregular singular points of a given differential equation. In
Lecture 4 first we prove a theorem which provides sufficient conditions so
that the solutions of second-order linear differential equations can be ex-
pressed as power series at an ordinary point, and then construct power se-
ries solutions of Airy, Hermite, and Chebyshev differential equations. These
equations occupy a central position in mathematical physics, engineering,
and approximation theory. In Lectures 5 and 6 we demonstrate the method
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of Frobenius to construct the power series solutions of second-order linear
differential equations at a regular singular point. Here we prove a gen-
eral result which provides three possible different forms of the power series
solution. We illustrate this result through several examples, including La-
guerre’s equation, which arises in quantum mechanics. In Lecture 7 we
study Legendre’s differential equation, which arises in problems such as the
flow of an ideal fluid past a sphere, the determination of the electric field due
to a charged sphere, and the determination of the temperature distribution
in a sphere given its surface temperature. Here we also develop the polyno-
mial solution of the Legendre differential equation. In Lecture 8 we study
polynomial solutions of the Chebyshev, Hermite, and Laguerre differential
equations. In Lecture 9 we construct series solutions of Bessel’s differential
equation, which first appeared in the works of Euler and Bernoulli. Since
many problems of mathematical physics reduce to the Bessel equation, we
investigate it in somewhat more detail. In Lecture 10 we develop series so-
lutions of the hypergeometric differential equation, which finds applications
in several problems of mathematical physics, quantum mechanics, and fluid
dynamics.

Mathematical problems describing real world situations often have so-
lutions which are not even continuous. Thus, to analyze such problems
we need to work in a set which is bigger than the set of continuous func-
tions. In Lecture 11 we introduce the sets of piecewise continuous and
piecewise smooth functions, which are quite adequate to deal with a wide
variety of applied problems. Here we also define periodic functions, and
introduce even and odd extensions. In Lectures 12 and 13 we introduce
orthogonality of functions and show that the Legendre, Chebyshev, Her-
mite, and Laguerre polynomials and Bessel functions are orthogonal. Here
we also prove some fundamental properties about the zeros of orthogonal
polynomials.

In Lecture 14 we introduce boundary value problems for second-order
ordinary differential equations and provide a necessary and sufficient con-
dition for the existence and uniqueness of their solutions. In Lecture 15
we formulate some boundary value problems with engineering applications,
and show that often solutions of these problems can be written in terms
of Bessel functions. In Lecture 16 we introduce Green’s functions of ho-
mogeneous boundary value problems and show that the solution of a given
nonhomogeneous boundary value problem can be explicitly expressed in
terms of Green’s function of the corresponding homogeneous equation.

In Lecture 17 we discuss the regular perturbation technique which re-
lates the unknown solution of a given initial value problem to the known
solutions of the infinite initial value problems. In many practical problems
one often meets cases where the methods of regular perturbations cannot
be applied. In the literature such problems are known as singular pertur-
bation problems. In Lecture 18 we explain the methodology of singular
perturbation technique with the help of some examples.
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If the coefficients of the homogeneous differential equation and/or of
the boundary conditions depend on a parameter, then one of the pioneer
problems of mathematical physics is to determine the values of the param-
eter (eigenvalues) for which nontrivial solutions (eigenfunctions) exist. In
Lecture 19 we explain some of the essential ideas involved in this vast field,
which is continuously growing.

In Lectures 20 and 21 we show that the sets of orthogonal polynomials
and functions we have provided in earlier lectures can be used effectively
as the basis in the expansions of general functions. This in particular leads
to Fourier’s cosine, sine, trigonometric, Legendre, Chebyshev, Hermite and
Bessel series. In Lectures 22 and 23 we examine pointwise convergence,
uniform convergence, and the convergence in the mean of the Fourier se-
ries of a given function. Here the importance of Bessel’s inequality and
Parseval’s equality are also discussed. In Lecture 24 we use Fourier series
expansions to find periodic particular solutions of nonhomogeneous differ-
ential equations, and solutions of nonhomogeneous self-adjoint differential
equations satisfying homogeneous boundary conditions, which leads to the
well-known Fredholm’s alternative.

In Lecture 25 we introduce partial differential equations and explain sev-
eral concepts through elementary examples. Here we also provide the most
fundamental classification of second-order linear equations in two indepen-
dent variables. In Lecture 26 we study simultaneous differential equations,
which play an important role in the theory of partial differential equations.
Then we consider quasilinear partial differential equations of the Lagrange
type and show that such equations can be solved rather easily, provided we
can find solutions of related simultaneous differential equations. Finally,
we explain a general method to find solutions of nonlinear first-order par-
tial differential equations which is due to Charpit. In Lecture 27 we show
that like ordinary differential equations, partial differential equations with
constant coefficients can be solved explicitly. We begin with homogeneous
second-order differential equations involving only second-order terms, and
then show how the operator method can be used to solve some particular
nonhomogeneous differential equations. Then, we extend the method to
general second and higher order partial differential equations. In Lecture
28 we show that coordinate transformations can be employed successfully
to reduce second-order linear partial differential equations to some standard
forms, which are known as canonical forms. These transformed equations
sometimes can be solved rather easily. Here the concept of characteristic
of second-order partial differential equations plays an important role.

The method of separation of variables involves a solution which breaks
up into a product of functions each of which contains only one of the vari-
ables. This widely used method for finding solutions of linear homoge-
neous partial differential equations we explain through several simple ex-
amples in Lecture 29. In Lecture 30 we derive the one-dimensional heat
equation and formulate initial-boundary value problems, which involve the
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heat equation, the initial condition, and homogeneous and nonhomogeneous
boundary conditions. Then we use the method of separation of variables
to find the Fourier series solutions to these problems. In Lecture 31 we
construct the Fourier series solution of the heat equation with Robin’s
boundary conditions. In Lecture 32 we provide two different derivations
of the one-dimensional wave equation, formulate an initial-boundary value
problem, and find its Fourier series solution. In Lecture 33 we continue
using the method of separation of variables to find Fourier series solutions
to some other initial-boundary value problems related to one-dimensional
wave equation. In Lecture 34 we give a derivation of the two-dimensional
Laplace equation, formulate the Dirichlet problem on a rectangle, and find
its Fourier series solution. In Lecture 35 we discuss the steady-state heat
flow problem in a disk. For this, we consider the Laplace equation in po-
lar coordinates and find its Fourier series solution. In Lecture 36 we use
the method of separation of variables to find the temperature distribution
of rectangular and circular plates in the transient state. Again using the
method of separation of variables, in Lecture 37 we find vertical displace-
ments of thin membranes occupying rectangular and circular regions. The
three-dimensional Laplace equation occurs in problems such as gravitation,
steady-state temperature, electrostatic potential, magnetostatics, fluid flow,
and so on. In Lecture 38 we find the Fourier series solution of the Laplace
equation in a three-dimensional box and in a circular cylinder. In Lecture
39 we use the method of separation of variables to find the Fourier series
solutions of the Laplace equation in and outside a given sphere. Here, we
also discuss briefly Poisson’s integral formulas. In Lecture 40 we demon-
strate how the method of separation of variables can be employed to solve
nonhomogeneous problems.

The Fourier integral is a natural extension of Fourier trigonometric series
in the sense that it represents a piecewise smooth function whose domain
is semi-infinite or infinite. In Lecture 41 we develop the Fourier integral
with an intuitive approach and then discuss Fourier cosine and sine inte-
grals which are extensions of Fourier cosine and sine series, respectively.
This leads to Fourier cosine and sine transform pairs. In Lecture 42 we
introduce the complex Fourier integral and the Fourier transform pair and
find the Fourier transform of the derivative of a function. Then, we state
and prove the Fourier convolution theorem, which is an important result.
In Lectures 43 and 44 we consider problems in infinite domains which can
be effectively solved by finding the Fourier transform, or the Fourier sine or
cosine transform of the unknown function. For such problems usually the
method of separation of variables does not work because the Fourier series
are not adequate to yield complete solutions. We illustrate the method by
considering several examples, and obtain the famous Gauss—Weierstrass,
d’Alembert’s, and Poisson’s integral formulas.

In Lecture 45 we introduce some basic concepts of Laplace transform
theory, whereas in Lecture 46 we prove several theorems which facilitate the
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computation of Laplace transforms. The method of Laplace transforms has
the advantage of directly giving the solutions of differential equations with
given initial and boundary conditions without the necessity of first finding
the general solution and then evaluating from it the arbitrary constants.
Moreover, the ready table of Laplace transforms reduces the problem of
solving differential equations to mere algebraic manipulations. In Lectures
47 and 48 we employ the Laplace transform technique to find solutions
of ordinary and partial differential equations, respectively. Here we also
develop the famous Duhamel’s formula.

A given problem consisting of a partial differential equation in a domain
with a set of initial and/or boundary conditions is said to be well-posed if
it has a unique solution which is stable. In Lecture 49 we demonstrate that
problems considered in earlier lectures are well-posed. Finally, in Lecture
50 we prove a few theorems which verify that the series or integral form of
the solutions we have obtained in earlier lectures are actually the solutions
of the problems considered.

Two types of exercises are included in the book, those which illustrate
the general theory, and others designed to fill out text material. These
exercises form an integral part of the book, and every reader is urged to
attempt most, if not all of them. For the convenience of the reader we have
provided answers or hints to almost all the exercises.

In writing a book of this nature no originality can be claimed, only a
humble attempt has been made to present the subject as simply, clearly,
and accurately as possible. It is earnestly hoped that Ordinary and Partial
Differential Equations will serve an inquisitive reader as a starting point in
this rich, vast, and ever-expanding field of knowledge.

We would like to express our appreciation to Professors M. Bohner, S.K.
Sen, and P.J.Y. Wong for their suggestions and criticisms. We also want
to thank Ms. Vaishali Damle at Springer New York for her support and
cooperation.

Ravi P. Agarwal
Donal O’Regan
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Lecture 1
Solvable Differential Equations

In this lecture we shall show that first-order linear differential equations
with variable coefficients, second-order homogeneous differential equations
with constant coeflicients, and second-order Cauchy—Euler differential equa-
tions can be solved in terms of the known quantities.

First-order equations. Consider the differential equation (DE)

, d

v +plx)y =q(x), "= i (1.1)

where the functions p(x) and ¢(z) are continuous in some interval J. The
corresponding homogeneous equation

Y +p()y =0 (1.2)
obtained by taking ¢(z) = 0 in (1.1) can be solved by separating the vari-
ables, i.e.,

L,

Yy +p(r)=0

y (z)

and now integrating it, to obtain

lny(z) + /w p(t)dt = Inc,

N y(z) = cexp (— / ' p(t)dt) . (1.3)

In dividing (1.2) by y we have lost the solution y(z) = 0, which is called the
trivial solution (for a linear homogeneous DE y(x) = 0 is always a solution).
However, it is included in (1.3) with ¢ = 0.

If ¢ € J, then the function

o) =mesp (- | jp@)dt) (1.4

clearly satisfies the DE (1.2) and passes through the point (zq, yo). Thus,
this is the solution of the initial value problem: DE (1.2) together with the
imitial condition

y(w0) = vo. (1.5)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 1,
(© Springer Science+Business Media, LLC 2009
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To find the solution of the DE (1.1) we shall use the method of variation
of parameters due to Lagrange. In (1.3) we assume that ¢ is a function of
x, i.e.,

y(2) = c(z) exp <— / Ip(t)dt) (1.6)

and search for ¢(x) so that (1.6) becomes a solution of the DE (1.1). For
this, setting (1.6) into (1.1), we find

Cwyexp (~ [ atar) ~comaren (- [ pioar)
retope)enn (- [ ploir) = ato)
which is the same as
¢ () = q(z) exp (/wp(t)dt) . (1.7)

Integrating (1.7), we obtain the required function

o@) = 1 + / " gt exp ( / t p(s)ds) dt.

Now, substituting this ¢(z) in (1.6), we find the solution of (1.1) as

y(@) = 1 exp (_ / ’ p(t)dt) + / " gt exp (— /t ’ p(s)ds) i (18)

This solution y(x) is of the form ¢ju(x)+v(z). It is to be noted that c¢u(x) is
the general solution of (1.2). Hence, the general solution of (1.1) is obtained
by adding any particular solution of (1.1) to the general solution of (1.2).

From (1.8) the solution of the initial value problem (1.1), (1.5), where
xg € J, is easily obtained as

o) =wesp (- [ jp<t>dt) + [ oo (= [ ois) @ (9)

Example 1.1. Consider the initial value problem
xy —dy+22°+4=0, x#0, y(l)=1. (1.10)

Since o = 1, yo = 1, p(x) = —4/z and q(x) = =2z — 4/x from (1.9) the
solution of (1.10) can be written as

! ¢ 4 !
exp </ dt) +/ <—2t — ) exp </ ds) dt
1t 1 t t S
T 4 334
4 —2t — dt
T —|—/1 ( i)

1
4—2):—a:4+a:2+1.
X

y(x)

1
= a:4+a:4< 5 T
x
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Alternatively, instead of using (1.9) we can find the solution of (1.10) as
follows: For the corresponding homogeneous DE y’ — (4/2)y = 0 the general
solution is cx?, and a particular solution of the DE (1.10) is

r 4 T4
/ <—2t— )exp </ ds) dt =22 +1
t : 8

and hence the general solution of the DE (1.10) is y(z) = cz* + 22+ 1. Now,
in order to satisfy the initial condition y(1) = 1, it is necessary that 1 =
c+1+41, or ¢ = —1. The solution of (1.10) is, therefore, y(z) = —2* + 22 +1.

Second-order equations with constant coefficients. We
shall find solutions of the second-order DE

y" +ay + by =0, (1.11)
where a and b are constants.

As a first step toward finding a solution to this DE we look back at the
equation ¢y’ + ay = 0 (a is a constant) for which all solutions are constant
multiples of e~%*. Thus, for (1.11) also some form of exponential function
would be a reasonable choice and would utilize the property that the differ-
entiation of an exponential function ™ always yields a constant multiplied
by e"*.

Thus, we try y = " and find the value(s) of . We have
r2e"™ 4 are”™ + be™ = 0,

or
(r* + ar +b)e™ =0,
or

r? +ar+b=0. (1.12)

Hence, €™ is a solution of (1.11) if 7 is a solution of (1.12). Equation (1.12)
is called the characteristic polynomial of (1.11). For the roots of (1.12) we
have the following three cases:

1. Distinct real roots. If r; and 7, are real and distinct roots

of (1.12), then e™* and e"* are two solutions of (1.11), and its general
solution can be written as

y(z) = 1™ + coe™".

In the particular case when ry = r, ro = —r (then the DE (1.11) is 3" —
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r?y = 0), we have

— (A+B> re <A_B) —rz
y(x) = c1e™ + coe™" e’ + e

2 2

et LT erT _ o TE
= A B
()

= Acoshrx + Bsinhrz.

2. Repeated real roots. If r; = ry = r is a repeated root of (1.12),
then €™ is a solution. To find the second solution, we let y(x) = u(z)e"™
and substitute it in (1.11), to get

e (u" 4 2ru’ + r?u) + ae™ (v + ru) + bue™ = 0,

or
u” + (2r +a)u’ + (r* +ar +b)u =u" + (2r +a)u’ = 0.
Now since r is a repeated root of (1.12), it follows that 2r + ¢ = 0 and
hence v’ =0, i.e., u(z) = ¢; + cox. Thus,
y(z) = (1 + cox)e™ = c1e"™ + cowe™.

Hence, the second solution of (1.11) is xze™.

3. Complex conjugate roots. Let r; = pu+ v and ro = p — iv,
where i = v/—1, so that

e(HET — ol® (o8 pg 4 i sin va).

Since for the DE (1.11) the real part (i.e., e** cosvz) and the imaginary
part (i.e., e** sinva) both are solutions, the general solution of (1.11) can
be written as

y(z) = c1e"” cosva + coel ¥ sinvz.

In the particular case when r1 = iv and ro = —iv (then the DE (1.11) is
y" + vy = 0) we have y(z) = c; cosvz + casinva.

Cauchy—Euler equations. For the Cauchy-Euler equation

d
t2y" +aty’ +by =0, t >0 (tis the independent variable), ' = it (1.13)

which occurs in studying the temperature distribution generated by a heat
source such as the sun or a nuclear reactor, we assume y(t) = t™ to obtain

t2m(m — D)t™ 2 + atmt™ 4 0t™ = 0,

or
m(m —1)+am+b=0. (1.14)



Solvable Differential Equations 5

This is the characteristic equation for (1.13), and as earlier for (1.12) the
nature of its roots determines the general solution:

Real, distinct roots my # ma: y(t) = c1t™ + cot™2,

Real, repeated roots m = my = ma: y(t) = c1t™ + co(Int)t™,

Complex conjugate roots my = p+iv, me = p—iv: y(t) = c1t* cos(v Int)
+ cott sin(vInt).

In the particular case

2y +ty —Ny=0, t>0, A>0 (1.15)

the characteristic equation is m(m—1)+m—A? = 0, or m? — A\ = 0. Thus,
the roots are m = ), and hence the general solution of (1.15) appears as

y(t) = et + cot ™. (1.16)

Problems

1.1. (Principle of Superposition). If y;(z) and ya(z) are solutions of
vy +p(x)y = ¢i(x), i = 1,2 respectively, then show that ciy; (z) + caya(2)
is a solution of the DE v’ + p(z)y = c1¢q1(x) + c2g2(x), where ¢1 and ¢y are
constants.

1.2. Find general solutions of the following DEs:
i) y — (cotz)y =2zsinz
i) y+y+r+ai+a®=0
i) (y* — 1)+ 2(x —y(1+y)*)y’ =0
iv) (1+y?) = (tan™ty —2)y.

(
(
(
(

1.3. Solve the following initial value problems:

1, 0<2<1

o )
R S SR UL,

2, 0<z<1

(ii) ¥ +plx)y =0, M®=1wmmﬂwz{1,x>L

1.4. Let ¢(x) be continuous in [0, 00) and lim,_. ¢(x) = L. For the
DE ¢ + ay = q(z) show that
(i) if @ > 0, every solution approaches L/a as x — oo

(ii) if @ < 0, there is one and only one solution which approaches L/a as
T — 00.
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1.5. Let y(z) be the solution of the initial value problem (1.1), (1.5)
in [2g,00), and let z(x) be a continuously differentiable function in [z, c0)
such that 2z’ + p(z)z < q(z), z(z0) < yo. Show that z(z) < y(x) for all z in
[0, 00). In particular, for the problem vy’ 4+ y = cosz, y(0) = 1 verify that
2¢ " —1<y(x) <1, z€[0,00).

1.6. Certain nonlinear first-order DEs can be reduced to linear equa-
tions by an appropriate change of variables. For example, this is always
possible for the Bernoulli equation:

Y +px)y =q(z)y”, n#0,1.

Indeed this equation is equivalent to the DE

y "y +p(@)y' T = q(a)

and now the substitution v = y'=" (used by Leibniz in 1696) leads to the
first-order linear DE

| pla) = g(a).

In particular, show that the general solution of the DE a3/ +y = 2232, x # 0
is y(z) = (cx — 2?7t 2 #0,c.

1.7. Find general solutions of the following homogeneous DEs:
(i) " +7y +10y=0
(il) 3" —8y +16y =0
(i) y" + 2y + 3y =0.

1.8.  Show that if the real parts of the roots of (1.12) are negative,
then lim, .o y(x) = 0 for every solution y(z) of (1.11).

1.9. Show that the solution of the initial value problem
y'=20r+ By +r’y =0, y(0)=0, y'(0)=1
can be written as

1
C2y/B2r + )

Further, show that limg_.o yg(z) = ze".

ys(z) [e[f’+ﬁ+\/ﬁ(2r+5)1r _ e[r+5—\/ﬁ(2r+ﬁ)]z} ,

1.10. The following fourth order DEs occur in applications as indi-
cated:

(i) 9" — k*y = 0 (vibration of a beam)
(i) y"" + 4k*y = 0 (beam on an elastic foundation)
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(iii) y"" — 2k%*y" + k*y = 0 (bending of an elastic plate),

where k # 0 is a constant. Find their general solutions.

Answers or Hints

1.1. Use the definition of a solution.
1.2. (i) csinz+a?sinz (i) ce 234222 —5z+5 (iii) z(y—1)/(y+1) =
Y2 4c(iv) z=tan "ty — 14 ce ton 'y,

ll—e?),0<2<1 e 0<x<1

: E , 0<a < . B

1 0@ = {ih )00 ST @ e = {0
1.4. (i) Iny(z) = y(xg)e 4@—=0) 4] fz eq(t)dt] /e take the limit z —
oo (i) In y(x) = e [y(a:o wo 4 [ etq(t)dt — [ et ()dt} choose
y(xo) so that y(zo)e®™ + [ e*q(t)dt = 0 (limy—co g(z) = L). Now in
y(z) = —[[.7 evq(t)dt]/e?” take the limit = — oo.

1.5. There exists a continuous function r(z) > 0 such that 2’ + p(z)z =
q(z) —r(z), z(xo) < yo. Thus, for the function ¢(z) = y(x) — z(z), ¢’ +
p()g =r(x) =0, ¢(x0) = yo — z(20) = 0.

1.6. Using the substitution v = y~! the given equation reduces to —zv’ +

U:x2.

1.7. (i) c1e72 + e (ii) (c1 + cow)e®® (iii) cre™® cosv/2x + cae™ X
sin \/2;10.

1.8. Use explicit forms of the solution.
1.9. Note that \/B(3 +2r) — 0 as 3 — 0.

1.10. (i) c1e*®+coe ¥+ coskrtcygsinkz (ii) e (cq cos kw+cq sin kx)+
e % (c3 cos kx + cysinkx) (iil) eF*(c; + cax) + e 77 (c3 + cax).



Lecture 2

Second-Order Differential
Equations

Generally, second-order differential equations with variable coeflicients
cannot be solved in terms of the known functions. In this lecture we shall
show that if one solution of the homogeneous equation is known, then its
second solution can be obtained rather easily. Further, by employing the
method of variation of parameters, the general solution of the nonhomo-
geneous equation can be constructed provided two solutions of the corre-
sponding homogeneous equation are known.

Homogeneous equations. For the homogeneous linear DE of
second-order with variable coefficients

Y+ pi(x)y’ + pa(x)y =0, (2.1)

where p;(z) and pa(z) are continuous in J, there does not exist any method
to solve it. However, the following results are well-known.

Theorem 2.1. There exist exactly two solutions y;(z) and y2(z) of
(2.1) which are linearly independent (essentially different) in J, i.e., there
does not exist a constant ¢ such that y; (z) = cya(x) for all x € J.

Theorem 2.2. Two solutions yi(z) and ya(x) of (2.1) are linearly
independent in J if and only if their Wronskian defined by

W) = Wionm)(o) = | 210 200 (22)

is different from zero for some x = zq in J.
Theorem 2.3. For the Wronskian defined in (2.2) the following Abel’s
identity holds:

W(x) = W (zo) exp (— / w pl(t)dt> el (2.3)

Thus, if Wronskian is zero at some xg € J, then it is zero for all z € J.

Theorem 2.4. If y;(z) and y2(z) are solutions of (2.1) and ¢; and ¢
are arbitrary constants, then c1y1(x) + coya(z) is also a solution of (2.1).

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 2,
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Further, if y; (z) and y2(x) are linearly independent, then any solution y(z)
of (2.1) can be written as y(z) = c1y1(x) + caya(x), where ¢ and co are
suitable constants.

Now we shall show that, if one solution y;(z) of (2.1) is known (by
some clever method) then we can employ variation of parameters to find
the second solution of (2.1). For this, we let y(z) = u(z)y1 (x) and substitute
this in (2.1), to get

(uy1)” + p1(uy1)’ + p2(uy1) = 0,
or
u''yy + 2u'y) + uyy + pru'ys + pruy) + pauyr =0,

or
u"y1 + (2y) + py)u + (y) + pryy + payi)u = 0.

However, since y; is a solution of (2.1), the above equation with v = v’ is
the same as
y1v' + (241 + p1y1)v = 0, (2.4)

which is a first-order equation, and it can be solved easily provided y; # 0
in J. Indeed, multiplying (2.4) by y1, we find

(yiv' + 2yiy1v) + pryiv = 0,

which is the same as
(y7v) + p1(yiv) = 0;

T
fo=cosn (- [0,
or, on taking ¢ =1,

o(z) = y%tx) exp (— / . (t)dt) .

Hence, the second solution of (2.1) is

w@ =@ [ e (- [ t pr(s)ds ) . (25)

Example 2.1. 1t is easy to verify that y;(x) = 22 is a solution of the
DE

and hence

22y —2xy' +2y=0, x#0.

For the second solution we use (2.5), to obtain

“1 b2 “1
yz(x):xQ/ 44 OXP <—/ <—S§) ds) dt:a:Z/ t4t2dt=—a:.
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We note that the substitution w = y'/y converts (2.1) into a first-order
nonlinear DE

w' + pr(z)w + pa(z) +w? = 0. (2.6)

This DE is called Riccati’s equation. In general it is not integrable, but
if a particular solution, say, w(x) is known, then by the substitution z =
w — w1 (x) it can be reduced to Bernoulli’s equation (see Problem 1.6). In
fact, we have

2+ wi(z) + pi(2)(z + wi (@) +pa(@) + (2 +wi(2))? = 0,
which is the same as
2+ (p1(z) 4+ 2w (x))z + 22 = 0. (2.7)

Since this equation can be solved easily to obtain z(x), the solution of (2.6)
takes the form w(z) = wy(z) + z(z).

Example 2.2. It is easy to verify that wy (x) = x is a particular solution
of the Riccati equation

w =1+ 2% — 22w + w?.

The substitution z = w — x in this equation gives the Bernoulli equation

whose general solution is z(z) = 1/(c—z), x # c. Thus, the general solution
of the given Riccati’s equation is w(z) =z + 1/(c — x), = # c.

Nonhomogeneous equations. Now we shall find a particular
solution of the nonhomogeneous equation

Y +pi(@)y + pa(x)y = r(x). (2.8)

For this also we shall apply the method of variation of parameters. Let
y1(z) and y2(x) be two solutions of (2.1). We assume y(z) = ¢1(z)y1(z) +
c2(z)y2(x) is a solution of (2.8). Note that ¢;(z) and cz(z) are two unknown
functions, so we can have two sets of conditions which determine ¢ (x) and
co(x). Since

Y = ca1y) + cayy + Sy + e

as a first condition we assume that
yr + chys = 0. (2.9)

Thus, we have
y' = c1y) + oy
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and on differentiation
y" = cryl + ey + iy + chyp.
Substituting these in (2.8), we get
ci(yy +pryt + payr) + ca(ys + prys + paye) + (c1yt + cays) = r(2).

Clearly, this equation, in view of y;(z) and ya(z) being solutions of (2.1),
is the same as
iy + chyp = 1(x). (2.10)

Solving (2.9), (2.10), we find

PR 4 CI1C) o @)
' ‘ yi(z) ye(z) |7 2 ' yi(z)  ya(z) "
yi(z)  ya() yi(z)  ya(w)

Yp(x) = ca@)yi(2) + c2(2)y2(2)
o [T e RO
- b )/ ' y1(t)  ya(t) ‘dt+y2( )/ ' yi(t) () 'dt
yi(t)  ys(t) yi(t)  ys(t)
= ’ H(x,t)r(t)dt,
(2.11)
where
) ya(t) yi(t)  y2(t)
H“”’”“ yi(@) (o) ‘/ ‘ ORI ‘ (2.12)
Thus, the general solution of (2.8) is
y(z) = c1yi(x) + cay2(2) + yp(2). (2.13)

The following properties of the function H(z,t) are immediate:
(i). H(z,t) is defined for all (z,t) € J x J;
(ii). 07H(z,t)/0x7, j =0,1,2 are continuous for all (z,t) € J x J;

(iii). for each fixed ¢t € J the function z(z) = H(z,t) is a solution of the
homogeneous DE (2.1) satisfying z(t) = 0, z/(¢t) = 1; and

(iv). the function

v(z) = /w H(z,t)r(t)dt
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is a particular solution of the nonhomogeneous DE (2.8) satisfying y(z¢) =
y'(z0) =0.
Example 2.3. Consider the DE

y' + 1y = cotx.

For the corresponding homogeneous DE y” + y = 0, sinz and cosz are
solutions. Thus, its general solution can be written as

sint cost
) T | sinx cosx | cost
y(z) = cisinx + cacosx + . )
sint  cost sint

cost —sint

. v . cost
= ¢18inx + cacosT — (sintcosx —sinxcost) |  dt
sint
. ) ) 1 —sin?t
= C1SINX + C3 COST — coSxSINx + sinx int
sin

xT xT
= clsina:+(32cosx—cosxsina:—sinx/ sintdt+sinx/ . tdt
sin

¥ cosect(cosect — cot t)

= c¢1sinx + cycosx +sinx
(cosect — cot t)

= ¢y sinx + ¢y cosx 4 sinx Infcosecx — cot z].

Finally, we remark that if the functions p; (), p2(x) and r(x) are contin-
uous on J and x¢ € J, then the DE (2.8) together with the initial conditions

y(zo) = yo, Y (x0) =01 (2.14)

has a unique solution. The problem (2.8), (2.14) is called an initial value
problem. Note that in (2.14) conditions are prescribed at the same point,
namely, xg.

Problems

2.1. Given the solution y; (z), find the second solution of the following
DEs:
i) (@@ -2y +Br—1)y+y=0 (x#0,1), vyi(x)=(

(
(i) z(@—-2)y"+2(x -1y -2y=0 (x#0,2), wn(z)=
t
(

—~ =R
[S
I
8
S~—

i) 2y’ —y —4ay=0 (z#0), yi(x)=exp(z?)
iv) (1—-22)y" —2zy' +2y=0 (|z[| <1), wi(z)=2z.
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2.2. The differential equation
zy" —(x+n)y +ny=0

is interesting because it has an exponential solution and a polynomial so-
lution.

(i)  Verify that one solution is y1(z) = e”.
(ii) Show that the second solution has the form ya(z) = ce® [ t"e tdt.
Further, show that with ¢ = —1/nl,

x? "

yala) =14 [y ot
Note that yo(x) is the first n + 1 terms of the Taylor series about x = 0 for
e®, that is, for y1(x).

2.3. The differential equation
y' +o(xy +y)=0

occurs in the study of the turbulent flow of a uniform stream past a circular
cylinder. Verify that y;(x) = exp(—dz?/2) is one solution. Find its second
solution.

2.4. Let y1(z) # 0 and y2(x) be two linearly independent solutions of
the DE (2.1). Show that y(z) = y2(z)/y1(z) is a nonconstant solution of
the DE

yi(@)y" + 2y (x) + pi(x)y1(2))y" = 0.

2.5. Let the function p; (z) be differentiable in J. Show that the substi-
tution y(z) = z(z)exp (—3 [“ p1(t)dt) transforms (2.1) to the differential
equation

1 1
4 (o) = Johte) — @) = =o.
In particular show that the substitution y(z) = z(x)/+/z transforms
Bessel’s DE
22y’ +xy + (2% — a®)y =0, (2.15)

where a is a constant (parameter), into a simple DE

1 —4a?
1"
z" + (1 + A2 ) z=0. (2.16)

2.6. Let v(z) be the solution of the initial value problem

Y +piy +py =0, y(0)=0, % (0)=1
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where p; and ps are constants. Show that the function

y(z) = /ﬂﬁ v(x —t)r(t)dt

0
is the solution of the nonhomogeneous DE
Y +py + pay =r(x)

satisfying y(zo) = v/ (zo) = 0.
2.7. Find general solutions of the following nonhomogeneous DEs:

(i) y" 44y =sin2z
(ii) y// 4 4y/ 4 3y — 3%
(iii) o” + 5y’ + 4y = e~ 4=,
2.8. Verify that y;(z) = 2 and ya(z) = 1/x are solutions of

23y + 2%y —ay = 0.

Use this information and the variation of parameters method to find the
general solution of

3y + 2y —ay=2/(1 + ).

Answers or Hints

2.1. (i) Ina/(z—1) (i) (1/2)(1—2)In[(x—2)/z]—1 (iii) e (iv)(z/2) x
In[(1+4+2)/(1 —2)] — 1.

. (i) Verify directly (ii) Use (2.5).
2.3. e 97/2 [T /2

2.4. Use y2(z) = y1(z)y(x) and the fact that y;(x) and ya(z) are solu-
tions.

2.

2.5. Verify directly.

2.6. Use Leibniz’s formula:

LD fa t)dt = f(o, B(2) D — fla,al@) e + [0 5 (@, Dt
2.7. (i) c1cos2x + cosin2z — txcos2x (i) cre™ + coe3* — Lae3
4 2
(i) c1e™™ + o4 — Lae 7.

2.8. cz+ (co/x)+ (1/2)[(x — (1/2))In(1 + ) — xlnx — 1].



Lecture 3

Preliminaries to Series
Solutions

In our previous lecture we have remarked that second-order differential
equations with variable coeflicients cannot be solved in terms of the known
functions. In fact, the simple DE 3" +xy = 0 defies all our efforts. However,
there is a fairly large class of DEs whose solutions can be expressed either
in terms of power series, or as simple combination of power series and
elementary functions. It is this class of DEs that we shall study in the
next several lectures. Here we introduce some basic concepts which will be
needed in our later discussion.

Power series. A power series is a series of functions of the form

o0
Z em (T —20)™ = co+c1(x —20) +ca(x — 20)2 4+ + (T —20)™ + - - -

m=0
in which the coefficients ¢,,,, m = 0,1, --- and the point x( are independent
of . The point x( is called the point of expansion of the series.

A function f(x) is said to be analytic at © = x¢ if it can be expanded in
a power series in powers of (x— ) in some interval of the form |z —xo| < g,
where > 0. If f(x) is analytic at = x¢, then

oo

fa) =3 emle =)™, o —zol <p
m=0
where ¢, = f™)(x)/m!, m = 0,1,--- which is the same as Taylor’s ex-

pansion of f(x) at z = xo.
The following properties of power series will be needed later:

1. A power series Y~ cm(x — x0)™ is said to converge at a point x if
limy, o0 Do o Cm (@ — 20)™ exists. It is clear that the series converges at
T = xo; it may converge for all x, or it may converge for some values of x
and not for others.

2. A power series Y cm(z — 29)™ is said to converge absolutely
at a point x if the series Y °_|cm(x — 20)™| converges. If the series
converges absolutely, then the series also converges; however, the converse
is not necessarily true.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 3,
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3. If the series Y °_ ¢m (2 —20)™ converges absolutely for |z —zo| < p
and diverges for |z — xg| > p, then p is called the radius of convergence.
For a series that converges nowhere except at xg, we define y to be zero;
for a series that converges for all x, we say p is infinite.

4. Ratio Test. If for a fixed value of =,

lim | e @ =20
m—oo cm(x — (Eo)m

3

then the power series Y.~ cm(z — 29)™ converges absolutely at values
of x for which L < 1, and diverges where L > 1. If L = 1, the test is
inconclusive.

5. Comparison Test. If we have two power series Z o0 Cm(x—x0)™
and Y7 Cp(z — o)™ where || < Cp, m=0,1,- and if the series
S o Cm(x—10)™ converges for |z —x| < y, then the series oo Cm(x—
xo)™ also converges for |z — xg| < p.

6. If a series Y~ (@ — 20)™ is convergent for |z — x| < p, then

for any z, |z —xo| = o < p there exists a constant M such that |¢,, |l <
M, m=0,1,---.

7. The derivative of a power series is obtained by term by term differ-
entiation; i.e., if f(z) =Y cm(z — x0)™, then

flx) = ¢ +2c(x—x0) + 3es(z — )% + - - -

oo

Z mep, (x — xo)mfl = (m~+Demar(z —20)™

m=0

Further, the radii of convergence of these two series are the same. Similarly,
the second derivative of f(x) can be written as

"(z) = 2co+ 3.2¢3(x —xo) + -+ = Z (m+1)(m + 2)emio(z — x0)™
m=0

8. Consider two power series f(z) = Y 7 cm(2z — o)™ and g(z) =

> o dm(z — x0)™, which converge for |z — zo| < p1 and |z — zo| < po

respectively. If g = min{uq, po}, then
o0
flz Zcm:td )z —x0)™,
m=0

and

oo
E am(x — 20)™,
m=0
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where
m m
Q= E Chldm—i = g Cm—kdg
k=0 k=0

converge for |z — xo| < p.

9. Gauss Test. If at the end points of the interval |z — xg| < p, the
successive terms of the series Y °_ ¢p (2 — @)™ are of fixed sign, and if
the ratio of the (m 4 1)th term to the mth term can be written in the form
1—(¢/m)+0(1/m?), where c is independent of m, then the series converges
if ¢ > 1 and diverges if ¢ < 1.

Gamma and Beta functions. It is possible to write long
expressions in very compact form using Gamma and Beta functions which
we shall define now. The Gamma function, denoted by I'(z), is defined by

I'(x) :/ t"te7tdt, x> 0. (3.1)
0

This improper integral can be shown to converge only for > 0; thus the
Gamma function is defined by this formula only for the positive values of
its arguments. However, later we shall define it for the negative values of
its arguments as well.

From the definition (3.1), we find

() = / e tdt = 1. (3.2)
0
Also, we have

+ x/ t" e tdt = 2T (),

Nz+1)= /000 tYe tdt = [ - tze_t} . |

which is the recurrence formula
I'(x 4+ 1) = al'(x). (3.3)

From (3.3) and (3.2) it is immediate that for any nonnegative integer n the
function I'(n 4+ 1) = n!, and hence the Gamma function, can be considered
as a generalization of the factorial function.

Now we rewrite (3.3) in the form

r 1
P =" (3.4)
x
which holds only for = > 0. However, we can use (3.4) to define I'(x) in the
range —1 < = < 0 since the right-hand side of (3.4) is well defined for = in
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this range. Also since

Pz +1) = P(;x:f))
when = > —1, we may write
Iz +2)
I'(z) = oz +1) (3.5)

for x > 0. But since I'(x + 2) is defined for x > —2, we can use (3.5) to
define I'(z) for —2 < 2 < 0, = # —1. Continuing this process, we have

r k

I(z) = (x+k)

x(z+1)---(x+k—-1)

for any positive integer k and for z > 0. By this formula the function I'(z)

is defined for —k <2 <0, © # —1,—2,---, —k + 1. Hence, I'(z) is defined
for all values of x other than 0, —1,—2,---, and at these points it becomes
infinite.

The Beta function B(x,y) is defined as

1
Bla,y) — /O =11 — B, (3.6)

which converges for = > 0, y > 0.

Gamma and Beta functions are related as follows:

I'(z) T(y)

PN = 1ty

(3.7)

Oscillatory equations. A nontrivial solution of the DE

Y +aq(x)y =0 (3.8)

is said to be oscillatory if it has no last zero, i.e., if y(x1) = 0, then there
exists a xo > w1 such that y(ze) = 0. Equation (3.8) itself is said to
be oscillatory if every solution of (3.8) is oscillatory. A solution which is
not oscillatory is called nonoscillatory. For example, the DE y” +y = 0 is
oscillatory, whereas ¢y’ —y = 0 is nonoscillatory in .J = [0, o). The following
easily verifiable oscillation criterion for the equation (3.8) is well known.

Theorem 3.1. If the function ¢(z) is continuous in J = (0, 00), and

/OO q(z)dz = 0, (3.9)

then the DE (3.8) is oscillatory in .J.



Preliminaries to Series Solutions 19

This result can be used easily to show that solutions of Bessel’s DE
(2.15) for all a, are oscillatory. For this, in Problem 2.5 we have noted that
the substitution y(z) = z(z)/+/z transforms this equation into a simple DE
(2.16). Clearly, this transformation does not alter the oscillatory behavior
of two equations; moreover, for all a, there exists a sufficiently large xg such
that for all z > xg,

1 — 4a? 1
42 7

° 1 — 4a?
1 = 00.
/ ( + A2 ) dr = oo

Thus, Theorem 3.1 implies that the equation (2.16) is oscillatory.

1+

and hence

Ordinary and singular points. If at a point # = z( the
functions p;(x) and pa(x) are analytic, then the point z¢ is said to be an
ordinary point of the DE (2.1). Further, if at © = z¢ the functions p;(x)
and/or pa(x) are not analytic, then z is said to be a singular point of (2.1).

Example 3.1. If in the DE (2.1), pi(z) and pa(z) are constants, then
every point is an ordinary point.

Example 3.2. Since the function po(x) = z is analytic at every point,
for the DE y” 4+ 2y = 0 every point is an ordinary point.

Example 3.3. In Euler’s equation

22y + a1xy’ + agy =0

x = 0 is a singular point, but every other point is an ordinary point.

A singular point zp at which the functions p(z) = (z — zo)p1(x) and
q(r) = (v — x0)?pa(x) are analytic is called a regular singular point of the
DE (2.1). Thus, a second-order DE with a regular singular point zy has
the form
"y p(x) ’ q(z)

(& — o) (x—xo)Qy: 0, (3.10)

Y
where the functions p(x) and ¢(z) are analytic at * = xy. Hence, in Example
3.3 the point xp = 0 is a regular singular point.

If a singular point x( is not a regular singular point, then it is called an
irreqular singular point.

Example 3.4. Consider the DE

Yy’ + (a:—l)Zy/+ x(x—1)y:0' (3.11)
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For the equation (3.11) the singular points are 0 and 1. At the point 0, we

have
x

apr(z) = (2 —1)2 =2(1 —z)?
and
) = BT = ga(1— )
xp2(x)_$($—1)__x( —(E) )

which are analytic at x = 0, and hence the point 0 is a regular singular
point. At the point 1, we have

_(x—-1) 1

which is not analytic at # = 1, and hence the point 1 is an irregular singular
point.

Problems

3.1. Show that
(i) T <;) =7

(i) for all p > —1 and ¢ > —1 the following holds:

~/2 1 (p+1 g+1\ _T("3H)T (%)
0P q — _ 2 2
/0 sin? x cos? xdx = 2B( 9 7 9 )_ 2I‘(p+g+2) .

3.2. Locate and classify the singular points of the following DEs:
(i) 22(x+2)0y" +2y —2r—1)y=0
(i) (z—1)%(x+3)y" +QRrx+1)y —y=0
(i) (1222 +2(1 )y + (1 +2)y =0
(iv) (2 —2—=2)y"+ (z—2)y +2y=0.
3.3. Show that zo = 0 is a regular singular point of the Riccati—Bessel

equation

22y’ — (2* —k)y=0, —oo<k<oo.

3.4. Show that z¢p = 0 is a regular singular point of the Coulomb wave
equation

o2y 4 [2? — 20z — K]y =0, (¢ fixed, —oo <k < oo.
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3.5. Let the point z = x(, where xy # 0 be an ordinary point of the
DE (2.1). Show that the change of the independent variable ¢t = z — g
leads to the DE

d*y dy
t ty = 12

for which the point ¢ = 0 is an ordinary point. Further, show that the
function y(t) = >°°_; cmt™, [t| < p is a solution of the DE (3.12) if and
only if the corresponding function y(z) = > °_ ¢m(x — 20)™, |2 — 20| < 1t
is a solution of the DE (2.1).

3.6. Let the DE (2.1) have a regular singular point at = x¢, where
xo # 0. Verify that the change of the independent variable t = x — xg leads
to the DE (3.12) which has a regular singular point at ¢ = 0.

3.7. Show that the substitution = 1/t transforms the DE (2.1) into

the form 2 g
Y 2 1 1 y 1 1
_ — 0. 1
dt2+<t t2p1<t>) dt+t4p2(t)y 0 (3:.13)

Thus, the nature of the point © = oo of (2.1) is the same as the nature of
the point ¢ = 0 of (3.13). Use this substitution to show that for the DE.

1/1 1 1
1 /!
=0
Y +2 (a:2+a:>y +2x3y
the point = oo is a regular singular point.

3.8. Show that for Bessel’s DE (2.15) the point « = co is an irregular
singular point.

3.9. Examine the nature of the point at infinity for the following DEs:

Airy’s DE: 3y — 2y =0 (3.14)
Chebyshev’s DE: (1 — x2)y"” — xy’ + a’y =0 (3.15)
Hermite’s DE: y" — 2xy’ 4+ 2ay = 0 (3.16)
Hypergeometric DE: (1 — x)y"” + [¢ — (a + b+ 1)z]y’ — aby =0 (3.17)
Laguerre’s DE: zy” + (a+1—x)y’ +by =0 (3.18)
Legendre’s DE: (1 — 2?)y" — 2xy’ + a(a + 1)y = 0. (3.19)

3.10. The Schrodinger wave equation for a simple harmonic oscillator
is

h? d*y K,
_ = F 3.20
8m2m dz? + 9 ° v ¥, (3.20)
where h is Planck’s constant; F, K, and m are positive real numbers, and
() is the Schrodinger wave function. Show that the change to dimension-

less coordinate x = az reduces (3.20) to

a2

g2+ (2a+1—2*) =0, (3.21)
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where ot = 47?mK/h? and 2a + 1 = (47E/h)\/m/K. Further, show that

the second change of variables 1) = ye~*"/2 reduces (3.21) to the Hermite
equation (3.16).

Answers or Hints

31. (i) (L) = [Tt V2etdt =2 [ e du, t = u® (i) Use the
substitution ¢ = sin® .

3.2. (i) 0, —2 regular singular points (ii) 1 irregular singular point, —3
regular singular point (iii) 1 regular singular point, —1 irregular singular
point (iv) 2, —1 regular singular points.

3.3. Use definition.
3.4. Use definition.

3.5. The change of the independent variable x = t 4 x( gives 32 =

2 2
lfft/, 3;4 = ’été/, p1(z) = p1(t + x0) = p1(t), and pa(x) = p2(t + x0) = pa(t),

thus, it reduces (2.1) to (3.12). Further, since this transformation shifts
every point by —xg, if 2 is an ordinary point of (2.1), then ¢ = 0 is an
ordinary point of (3.12).

3.6. The proof is similar to that of Problem 3.5.

. . d? 3—t\ d 1, _
3.7.  The transformed equation is ¥ + (%,") %/ + 5,y = 0.

3.8. Since ;p(;)=1,and 4q(}) = 1’5“2 is not analytic at ¢ = 0, the

point x = oo is an irregular singular point.

3.9. TIrregular singular, regular singular, irregular singular, regular singu-
lar, irregular singular, regular singular.

3.10. Verify directly.



Lecture 4

Solution at an Ordinary Point

In this lecture we shall construct power series solutions of Airy, Her-
mite and Chebyshev DEs. These equations occupy a central position in
mathematical physics, engineering, and approximation theory.

We begin by proving the following theorem, which provides sufficient
conditions so that the solutions of (2.1) can be expressed as power series at
an ordinary point.

Theorem 4.1. Let the functions p;(x) and pa(z) be analytic at 2 = x;
hence these can be expressed as power series in (x — xo) in some interval
|x — 20| < p. Then, the DE (2.1) together with the initial conditions

y(ro) =co, Y'(m0) =01 (4.1)

possesses a unique solution y(z) that is analytic at x, and hence can be

expressed as
o0

y(@) = 3 emla — a0)" (4.2)

m=0

in some interval |x — xg| < p. The coefficients ¢,,, m > 2 in (4.2) can be
obtained by substituting it in the DE (2.1) directly.

Proof. In view of Problem 3.5 we can assume that o = 0. Let

pi(@) =Y ppa™, pa(2) =) Bwa™, ol <u (4.3)

m=0 m=0

and

y(@) = > cma™, (4.4)
m=0

where ¢g and ¢; are the same constants as in (4.1). Then,

y'(@) =3 (m+ Deppa™, (@) =Y (m+1)(m + 2)cpioa™
m=0 m=0

and

pi)y (@) = (Z(k + 1)0k+1pmk> zm,

m=0 \k=0

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 4,
(© Springer Science+Business Media, LLC 2009
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pa(@)y( Z (Z CkPrm— k)

m=0

Substituting these expressions in the DE (2.1), we obtain

3 [m+1) m+2)cm+2+2k+1ck+1pmk+chm k}x =0.
m=0 k=0 k=0

Hence, y(x) is a solution of the DE (2.1) if and only if the constants ¢,
satisfy the recurrence relation

Cm+42 = —

Z {(k+ Dcky1pm_p, + chPm— k}] m2>0
(m+1)( m—|—2 P

which is the same as

m—2
1 -
Cm = ~(m — 1) [Z {(k+1)chs1Ppm_pp_2 + Ckpm_k_Q}‘| , m > 2.

k=0
(4.5)
By this relation cs, cs,--- can be determined successively as linear combi-
nations of ¢g and ¢;.

Now we shall show that the series with these coefficients converges for
|z] < p. Since the series for p1(z) and pa(x) converge for |z| < u, for any
|z] = po < p there exists a constant M > 0 such that

p;luh < M and [pilpd < M, j=0,1,---. (4.6)

Using (4.6) in (4.5), we find

m—2
M (k4 1)|ck+1] |kl M|em—1|po
lem| < _1 lE { s +%n_k_2 + 1) m > 2

m(m = T m(m
(4.7)

where the term M|cp,—1|uo/m(m — 1) has been included, the purpose of
which will be clear later.

Now we define positive constants C,,, by the equations Cy = |co|, Cy =
|Cl |7

o [m 2{ (k4 1)Clksa Ck }] MCp—1pto
0

P m k—2 ungk72 m(m _ ]_) ’

(4.8)
From (4.7) and (4.8) it is clear that |¢,| < Cp,, m=0,1,---.
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Next we replace m by m + 1 in (4.8), to obtain

m—1
M (k + 1)Ok+1 Ch MC, o
Om+1 = Z { m—k—1 + mkl} +
mm+1) | =1 ul m(m +1)
and hence
m—2
M pg (k+1)Ckiq Ck
10Com 11 m(m + 1) > { ety E
k=0 -~ Ho Ho (4.9)
Mo MCm,u(zJ
+m(m—|— 1 [MmChry + Cr—1] + m(m+1)°

Combining (4.8) and (4.9), we get

M m(m — 1)
poCmi1 = m(m + 1) [ Y Cm —,uOC'm_l]
MMO MCmM(%
m(m +1) [mCh, + Cr—1] + m(m +1)’
which is the same as
(m—1) mMugCpy  MCypyd

/LoCerl = (4.10)

(m+1)""  mim+1)  m(m+1)

Thus, the addition of M|cp,—1|mo/m(m — 1) in (4.7) has led to a two-term
recurrence relation (4.10) from which we have

Crngrz™ | m(m — 1) + mMpo + Mpj "
Cpa™ | pom(m + 1)
and hence
: Crprz™ ||
lim = .
m—oo mem o

Thus, the ratio test establishes that the series >~ Cp,z™ converges for
|z| < pio, and by the comparison test it follows that the series Y °_ cypz™
converges absolutely in |z| < po. Since po € (0, p) is arbitrary, the series
converges absolutely in the interval |z| < p.

Hence, we have shown that a function which is analytic at * = xg
is a solution of the initial value problem (2.1), (4.1) if and only if the
coefficients in its power series expansion satisfy the relation (4.5). Also,
from the uniqueness of the solutions of (2.1), (4.1) it follows that this will
be the only solution.

Airy’s equation. Solutions of Airy’s DE (3.14) are called Airy
functions, which have applications in the theory of diffraction. Clearly,
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for (3.14) hypotheses of Theorem 4.1 are satisfied for all x, and hence its
solutions have power series expansion about any point x = . In the case
zo = 0, we assume that y(z) = > °_ ¢,,@™ is a solution of (3.14). A direct
substitution of this in (3.14) gives

i m+ 1)(m + 2)cppoz™ —chmx =0,
m=0

m=0
which is the same as
2¢9 + Z [(m+1)(m+ 2)emts — Cm—1]z™ = 0.
m=1
Hence, it follows that

1
—0, cn= mes. M >3, 4.11
= rC m(m 1)C 3 M ( )

If m = 3k + 2, then (4.11) becomes

1 1.2.3.6.9- - (3k)
= 1 = = 0 k = ]-7 27
BT 3k 4 9)(3k + 1) ! (3k +2)!
If m = 3k + 1, then (4.11) is the same as
1 25+ (3k—1)
- = k=1,2,-.
T e+ 1)K T B+ o
If m = 3k, then (4.11) reduces to
1 1.4.7-+ (3k — 2)
= .= k=19 ---
C3k (3]{3)(3]{: - 1)c3k 3 (3]{:)' Co, )
Since
y(z) =co + a1z + Z 03kx3k + Z C3k+1x3k+1 + Z 03k+2x3k+2,
k=1 k=1 k=1

Airy functions are given by

$+Z 2.5 3/€—1)$3,€+1

14. 3k )
= 1
= +Z 3k +1)!

= coy1(w )+01y2( )'
(4.12)
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Finally, since y1(0) = 1, y1(0) = 0 and y2(0) = 0, y4(0) = 1 functions
y1(z) and yo(x) are linearly independent solutions of Airy’s equation (cf.
Theorem 2.2).

Hermite’s equation. Solutions of Hermite’s DE (3.16) are called
Hermite functions. This equation is used in quantum mechanics to study
the spatial position of a moving particle that undergoes simple harmonic
motion in time. In quantum mechanics the exact position of a particle at
a given time cannot be predicted, as in classical mechanics. It is possible
to determine only the probability of the particle’s being at a given location
at a given time. The unknown function y(x) in (3.16) is then related to
the probability of finding the particle at the position z. The constant a is
related to the energy of the particle. Clearly, for (3.16) also hypotheses of
Theorem 4.1 are satisfied for all z, and hence its solutions have power series
expansion about any point x = xy. In the case g = 0, we again assume
that y(z) = >°_, cma™ is a solution of (3.16), and obtain the recurrence

relation 2 ) )
m-—2—a

m = m—2, =2,3,---. 4.13

c (m—1) Cm—2, M (4.13)

From (4.13) it is easy to find

_(=)m2*mT (Ja+1) B
c2m_( )!I‘( a—m—|—1) o, m=0,1,-

and . .
(_1)m22m+11"l (2CL+ 2)

5 :0717""
2(2m+1)!I‘(§a—m+;)cl "

Com+1 =

Hence, Hermite functions can be written as

B 1 - (—1)™(2z)%™
y(x) = COF<2G+1)mZO(2m)'F(§a 1)
1 > (—1)™(2z)2m+1 (4.14)
+Cl2 ( @t )n; 2m+1'I‘( a—m+3})

= coy1(x) + c1y2(x).

Obviously, y1(x) and ya(z) are linearly independent solutions of Hermite’s
equation.

Chebyshev’s equation. The Chebyshev DE (3.15), where a
is a real constant (parameter), arises in approximation theory. Since the

functions 5

a

pi(@) = - 1— a2

xr
L, and pafe) =
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are analytic for |x| < 1, x = 2¢ = 0is an ordinary point. Thus, Theorem 4.1
ensures that its series solution y(z) = >~ ¢ma™ converges for [z| < 1. To
find this solution, we substitute it directly in (3.15), to find the recurrence
relation

(m? — a?)

(m+2)(m+1)™
which can be solved to obtain

(—a?)(2? —a?) -+ ((2m — 2)* — a?)

Cmt2 = m>0 (4.15)

m — 5 Z 1
C9 (2m) Co m
(12 —a?)(3%2 —a?)--- ((2m —1)? — a?)
p— >
Com+1 (2m+ 1)' c,, m>1

Hence, the solution of (3.15) can be written as

143 (e ) (om =2 - >x2m]

y(x) = co (2m)!

+Cl

_|_

T

o~ (12 =a?)(3 —a?) - (2m—1)? —a?®) ,,
Z (2m+1)! v +11

= copr(®) + crya ().
(4.16)
It is easy to verify that y1(z) and y2(x) are linearly independent solutions
of Chebyshev’s equation.

Problems

4.1.  Verify that for each of the following DEs the given point is an
ordinary point and express the general solution of each equation in terms
of power series about this point:

i) ' +2y+y=0, =0

(i) y"+a2*% +2y=0, z=0

(iii) y”+xy—0 z=0

(iv) (2% —1)y" —6zy' +12y =0, =0

(v) (x -1y +8xy' +12y =0, =0
(vi) ¥'—2(x+3)y —3y=0, z=-3
(vii) ¢ + (x —2)%y —T(x —2)y =0, =2
(viii) (2% = 22)y” +5(z — 1)y +3y =0, z=1.

4.2.  For each of the power series obtained in Problem 4.1 find the
radius of convergence and the interval of convergence (the interval centered
at zo in which the power series converges).
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4.3. Find series solutions of the following initial value problems:
i) y'+ay —2y=0, y(0)=1, y'(0)=0
i) z@2-2)y" -6(x-1)y —4y=0, y(1)=1, y'(1)=0
i) y” +e"y +(1+2%)y=0, y(0)=1, y'(0)=0
i)y — (sima)y =0, y(r) =1, y'(r)=0.

4.4. If the hypotheses of Theorem 4.1 are satisfied, then the solution
y(z) of (2.1), (4.1) possesses a unique Taylor’s series expansion at x, i.e.,

(M) (g
ya)=3 " (@0 (4 _ goym. (4.17)

|
m—0 m!

For many problems it is easy to find 3™ (z¢) for all m, and hence we can
start directly with (4.17). We call this procedure Taylor’s series method.
Use this method to solve the following problems:

i) ¥y +y=22-1, y(1)=1, y'(1)=3
(i) y"+4y +3y=0, y0)=1, ¥(0)=-1

4.5. Van der Pol’s equation,
1 2 /
Yy 1)y +y =0, (4.18)

finds applications in physics and electrical engineering. It first arose as an
idealized description of a spontaneously oscillating circuit. Find first three
nonzero terms of the power series solution about z = 0 of (4.18) with =1
subject to the conditions y(0) =0, y'(0) = 1.

4.6. Rayleigh’s equation,
my” + ky = ay’ — b(y')?, (4.19)

models the oscillation of a clarinet reed. Find first three nonzero terms of
the power series solution about z = 0 of (4.19) withm=k=a=1, b=1/3
subject to the conditions y(0) =1, 3/(0) = 0.

Answers or Hints

. [e%e] -1)™ m o =1)™ 2™ ml! m
41 () co Xy S b e Yoy T 2,

0 m 2.42.72...(3m—2)2 m
() o [1 4+ S (-1 T

00 m 22-52.82...(3m—1)2 3.,
+c |:x+2m:1(_1) (3m4£1)! " a H}

50 -1 m$4m 50 -1 m$4m+1
(iif) co [1 + Zm:l 3~7---((4m)—1) am m!:| +a Zm:O 1-5-9(---(4)m+1) am ml
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(iv) co(1+ 622 + z*) + ¢y (z + 2?)
(v) co Y00 g(m+ 1)(2m + 1)a®™ 4 oy Y50 (D) g2t
(vi) eo [+ 00, PTG (w4 3)2]

ter Yoo i) (o 4 3)2m

.. m—41 T 3m
(vii) co [1 + et 3m 775,'(317)71 1)2(2571 i§<3m 7)}

+or[(2—2) + S (@ —2) + (= 2)7]

1-3-5---(2m+1 m 2™ (m+1)! m
(vili) cod o o m|+ =1t e 2 m=0 135((2:rnJ)rl)(x_1)2 .

. 0o (=)™ om Cmg1| _ 2™ m! 2 \z\
4.2. (1) For 3 " om 1™, Cm | = 2m+1 (m+1)!|x| 2(m+1)
0, and hence the interval of convergence is the whole real line IR. For
oo (=)™ 2™ m! 2m1 Crt1| _ |z : :
Yoo Gminy T ol = gmas — 0, and hence again the in-

terval of convergence is ]R (i) R (i) R (iv) R (v) 1, (-1,1) (vi) R
(vil) R (vii) 1, (0,2).
4.3. (i) 1422 (i) Yo _o(m+1)(z—1)2™ (i) 1— 2%+ ja°— 2%+

m=0

habe(iv) 1= La—7)P+ d(z—7)P°+ g (e—m)5+--

4.4. (
y(2m+l)

i) y®(1) =0, m=12--; y@(1) =1
(1)=—-1, m=1,3,---; (2x—1)—|—sm(x—1)( i) e ™.

4.5. x4+ ya? — jat — Lab.

1.2 1.3 1,5
4.6. 1 3x 67+ 4T



Lecture 5

Solution at a Singular Point

In this lecture, through a simple example, first we shall show that at a
regular singular point the power series used earlier at an ordinary point does
not provide a solution, and hence we need to modify it. This modification is
called the method of Frobenius after George Frobenius (1849-1917). Then
we shall state and prove a general result which provides three possible
different forms of the power series solution. Once the particular form of the
solution is known its construction is almost routine. In fact, in the next
lecture we shall illustrate this result through several examples; this includes
a discussion of Laguerre’s equation (3.18).

We recall that a second-order DE with a regular singular point x is of
the form (3.10), where the functions p(x) and ¢(x) are analytic at x = x.
Further, in view of Problem 3.6, we can assume that zog = 0, so that
equation (3.10) reduces to

+ Y+ Sy =0 (5.1)

In comparison with at an ordinary point, the construction of a series
solution at a singular point is difficult. To understand the problem we
consider Euler’s equation

222" +ay —y = 0; (5.2)

which has a regular singular point at x = 0; and its general solution

—1/2

y(x) = 1 + cow (5.3)

exists in the interval J = (0, 00). Obviously, no solution of (5.2) can be
represented by a power series with « = 0 as its point of expansion in any
interval of the form (0,a), a > 0. For if y(z) = > °_ cpa™, 0 <z < a
is a solution of (5.2), then y(z) and all its derivatives possess finite right
limits at @ = 0, whereas no function of the form (5.3) has this property.
Hence, at a regular singular point, solutions of (5.1) need not be analytic
(in some instances solutions may be analytic, e.g., y(x) = c1z + co2? is the
general solution of z2y” — 2xy’ + 2y = 0). However, we shall see that every
such DE does possess at least one solution of the form

y(x) =" f: emx™, o # 0. (5.4)
m=0

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 5,
(© Springer Science+Business Media, LLC 2009
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Since p(z) and g(z) are analytic at = 0, these functions can be ex-
pressed as power series in x; i.e.,

= i pma™ and g(x Z gma™. (5.5)
m=0

Substituting (5.4) and (5.5) in (5.1), we obtain
" 22 m~+r)(m+r—1)cpz™ + (mex )( = 1Z(m+r)cmxm>
=0 m=0
+x2 (Z qum> <xr Z cmxm> =0,
m=0 m=0

{(m +r)Ym+r—1c, + Z[(k + 7)pm—k + Qm—k]Ck} FmHT=2 _ .
m=0 k=0

(5.6)
In (5.6) the coefficient of "2 does not lead to a recurrence relation, but
gives

which is the same as

coF'(r) = co[r(r — 1) + por + qo] = 0. (5.7)

The other terms lead to the recurrence relation

(m+r)(m+r—1)c, + Z[(kﬁ"f’)pmfk + qm-klck =0, m=1,2,---
k=0

which can be written as

Fir+m)em = [(m+r)(m+r—1)+ (m+7r)po+ qolem

ml (5.8)
= Z k+7‘pm k+qm k]cka m:172a"'~
k=0

Since ¢y # 0, the possible values of r are those which are the roots of the
indicial equation F(r) = 0. The roots r; and ro are called the ezponents of
the regular singular point = 0. Once r is fixed the relation (5.8) determines
¢, as successive multiples of ¢g. Thus, for two exponents r; and ry we can
construct two solutions of the DE (5.1). However, if r; = ro, then this
method gives only one formal solution. Further, if at any stage F(r + m)
vanishes then this method obviously breaks down. A simple calculation
shows that

F(r+m)=F(r)+m2r+p)+m—1)=0. (5.9)
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But from (5.7), we have r1 + ro = 1 — pg and hence if r = r; or ro, then
(5.9) implies that m = =£(ro — r1). Therefore, F'(r + m) vanishes if and
only if the exponents differ by an integer, and r is chosen to be the smaller
exponent. Thus, if r is taken to be the larger exponent, we can construct
one formal solution.

In conclusion, the DE (5.1) always has at least one solution of the form
(5.4), and the coefficients ¢,,,, m > 1 can be obtained by substituting it in
the equation directly. Further, to find the second solution either the method
provided in Lecture 2, or the method of Frobenius, can be employed. In the
following result we summarize the conclusions of Frobenius method.

Theorem 5.1. Let the functions p(z) and ¢(z) be analytic at x = 0,
and hence these can be expressed as power series given in (5.5) for |z| < u.
Further, let 7 and 73 be the roots of the indicial equation F(r) = r(r —
1) + por + go = 0. Then,

(i). if Re(r1) > Re(r2) and r; — 7o is not a nonnegative integer, then the
two linearly independent solutions of the DE (5.1) are

yi(z) = |2 Y ema™, (5.10)
m=0
and
yo(x) = |2]" Y ema™; (5.11)
m=0

(ii). if the roots of the indicial equation are equal, i.e., ro = r; then the
two linearly independent solutions of the DE (5.1) are (5.10) and

ya(x) = y1 () In |z| + |z|™ Z dpx™,; (5.12)
m=1
(iii). if the roots of the indicial equation are such that 11 —ro = n (a

positive integer) then the two linearly independent solutions of the DE
(5.1) are (5.10) and

ya(z) = cyr (z) In |z| + |x|™ Z ema™, (5.13)

m=0

where the coefficients ¢,,,, ¢, dm, €, and the constant ¢ can be determined
by substituting the form of the series for y(z) in the equation (5.1). The
constant ¢ may turn out to be zero, in which case there is no logarithmic
term in the solution (5.13). Each of the solutions given in (5.10) — (5.13)
converges at least for 0 < |z| < p.
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Proof. (i) Since r; and 7 are the roots of the indicial equation F(r) = 0,
we have from (5.7) that

Fry=r(r—=1)+por+qo=(r—m)(r—r2)
and from (5.9) that F(ry +m) = m(m + 1 — r2), and hence
|F(ry +m)| > m(m—|r; —ra]). (5.14)

Also, as in the proof of Theorem 4.1, for any |x| = po < p there exists a

constant M > 0 such that |pj|uO < M, and |qj|u0 <M, j=0,1,---. Thus,
on using these inequalities, from (5. 14) and (5.8) it follows that

m—1

m(m — |r1 — ra|)|em| < MZ (k+|r1) + Vg ™ er], m=1,2,---.
k=0

Now we choose an integer n such that n — 1 < |rq — r2| < n, and define
the positive constants C; as follows:

Cj = |cj|7 j=0,1---n-1
j—1
JG = lr =G = MY (k+|m|+ D Cr G=nm+ 1,
k=0
(5.15)

By an easy induction argument it is clear that |¢,,| < Cp,, m =0,1,---

Now the result of combining (5.15) with the equations obtained by re-
placing j by m and m — 1 leads to

Cm (m—1(m—1—1|r1 —ra|) + M(m+ |r])

Cm—1 pom(m — [ry — ral)
and hence
) Cpa™ ||
lim = .
m—oo Cm 1xm71 Ho
Thus, the ratio test shows that the series > ~_, C, 2™ converges for |z] <
to, and now by the comparison test y —0 cmx converges absolutely in

the interval |z| < po. However, since p is arbitrary, the series Y~ cppa™
converges absolutely for |z| < p. Finally, the presence of the factor |z|™
may introduce a singular point at the origin. Thus, we can at least say
that |z > ¢pma™ is a solution of the DE (5.1) and it is analytic for
0 < |z| < p.

If we replace r1 by ro in the above considerations, then it follows that
|22 >y ema™ is the second solution of (5.1) which is also analytic for
0 < |z| < p.

(ii) Since the roots of the indicial equation F(r) = 0 are repeated, i.e.,
r1 = ro, we have F(r1) = (0F/0r),=, = 0, and there exists a solution
yi(x) = 2™ Y °_ cma™ in the interval 0 < z < p.
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Now in (5.6) we assume that r is not a solution of the indicial equation,
but the coefficients ¢, satisfy the recurrence relation (5.8). Thus, if La[y]
represents the left side of (5.1), then

Loly(x)] = cox” 2 F(r), (5.16)
where y(z) = 2" > °_ ) cpa™

From (5.16), it follows that

2 Lol = £ [a%(f)] = co’ [mgir) ) 1“4

and hence Lo [(0y(z)/0r)r=r,] = 0, i.e., (Oy(x)/Or),—y, is the second formal
solution. Since

Oy(x) =z lancmaj + 2" Zacm ™,

or
we find
dy(x) NS
yo(x) = ( o ), =yi(x)lnz+x mZ::O dmx
where 5
Cm P ..
dm_<(’9r )T_l, m=0,1,---. (5.17)

Clearly, ¢o does not depend on 7, and hence dj is zero.

Finally, we note that the case —p < x < 0 can be considered similarly.
Further, since Y~ ¢pa™ is uniformly and absolutely convergent for x| <
w1 < u, it follows that > dpa™ is uniformly and absolutely convergent
for x| < p1 < p; this also justifies our assumption that differentiation with
respect to r can be performed term by term. Consequently, the solution
y2(x) is analytic for 0 < |z| < p.

(iil). Since the roots r1 and 7o of the indicial equation F(r) = 0 are such
that r; —ry = n (a positive integer), it is immediate that the solution y; (z)
corresponding to the exponent 71 can be given by (5.10). Further, y;(z) is
indeed analytic for 0 < |z| < p.

Corresponding to 7o we can obtain ¢, (re) for m = 1,2,---,n—1 as a
linear multiple of ¢y from the recurrence relation (5.8). However, since in
(5.8) the coefficient of ¢, (r2) is F(re +n) = F(r;) = 0 we cannot obtain
a finite value of ¢, (r2). To obviate this difficulty we choose ¢o(r) = r — ra,
so that ¢ (r2) =0 for m =0,1,---,n —1 and ¢, (r2) is indeterminate. Let
us choose an arbitrary value of ¢, (r2). Repeated application of (5.8) now
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yields ¢, 4m(r2) as linear multiples of ¢, (r2) for positive integers m. This
process produces the solution

oo oo o0
x"? Z Cm(re)x™ =" Z Cm(re)z™ = 2™ Z Cm(re)z™ ™"
m=n m=n m=n
oo
= g Z ci(ra)a”,
7=0
(5.18)
where ¢f(r2) = ¢pyr(r2), 7 =0,1,---. However, since the successive coef-

ficients are calculated from (5.8), this solution is a constant multiple of the
solution yq ().

Once again, as in Part (ii), we take r not to be the solution of the indicial
equation but the coefficients ¢, satisfy the recurrence relation (5.8), so that

"32[9(@] = CO$T72F(7") = CO$T72(7“ —r)(r—r2) = $T*2(7" —r)(r — 7"2)2-

r:r@} -

Now on account of the repeated factor, we have Ly [(y(z)/0r)
0, and hence (9y(z)/0r) is the second formal solution, i.e.,

=72
ya(x) = 2" In || i em ()™ + 2" i <8Cm> ™,
m=0 m=0 or T=r2
which from (5.18) is the same as (5.13), where
. Iem
c= lim (r —ro)c,(r) and e, = o , m=0,1,---. (5.19)
T3 r=ry

Clearly, this solution y»(z) is also analytic for 0 < |z| < p.



Lecture 6

Solution at a Singular Point
(Cont’d.)

In this lecture, we shall illustrate Theorem 5.1 through several examples.
We begin with Laguerre’s equation (3.18) which shows how easily Theorem
5.1(i) is applied in practice.

Laguerre’s equation. Inthe DE (3.18), a and b are real constants
(parameters). It arises in quantum mechanics. Clearly, in this equation
p(z) = (a+1—2) and ¢(x) = bx are analytic for all z, and hence the
point x = 0 is a regular singular point. Since pg = a + 1, go = 0 the
indicial equation is F'(r) = r(r — 1) + (a + 1)r = 0, and therefore the
exponents are r; = 0 and ro = —a. Further, since p; = —1, ¢ = b and
Pm = ¢m = 0, m > 2 the recurrence relation (5.8) for r; = 0 and ro = —a,
respectively, reduces to

m(m+a)em = (m—1—"0)cm_1

and
m(m —a)eym =(m—1—a—b)cy_1.

Thus, if a is not zero or an integer we easily obtain the solutions

B b b(b—1)
n(e) = 1= oty (a+1)(a+2)5”2_"'

=~ ()" T(a+1)TOh+1) .
Z:Om! T(m+a+1)Th+1-m)"

and

_ a a+b 1(@+b)(a+db-1) ,
vale) = lal (1_1—a$ A (1-a)2—a) © _)

e ()P T@ebnTO-a)
= Zm!F(a—l—b—Fl—m)F(m—Fl—a)gc'

(6.2)

m=0

Clearly, in view of Theorem 5.1(i) both of these solutions converge at least
for 0 < |z| < oco. Further, the general solution of (3.18) appears as y(x) =
Ayi(x) + Bya(x), where A and B are arbitrary constants.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 6,
(© Springer Science+Business Media, LLC 2009
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The following example also dwells upon the importance of Theorem

5.1(1).

Example 6.1. In the DE

1 1
x2y”+x(x— 2) y'+2y=0 (6.3)

p(z) = 2 — (1/2) and ¢(x) = 1/2 are analytic for all 2, and hence the point
x = 0 is a regular singular point. Since pg = —1/2 and g = 1/2 the indicial
equation is

F(T):r(r—l)—;T+;=(7‘—1)<r—;):O

and therefore the exponents are 1 = 1 and 5 = 1/2. Thus, Theorem 5.1(i)
is applicable and we can construct two linearly independent solutions in
any interval not containing the origin.

The recurrence relation (5.8) for r; = 1 reduces to

1

m (m—l— 2) Cm = —MCpy—1,

which is the same as 5
Cm = _2m+ 1Cm—l
and gives
(=™ 2" 1,2
Cm = (— Co, m=1,24,--
@m+1)2m—1)---37°
Similarly, the recurrence relation (5.8) for ro = 1/2 is simplified to

Cm = —Cm—1/m, which gives

1
Cm:(—l)mm|00, m:1a27"'~

Thus, the linearly independent solutions of the DE (6.3) are

B >0 m (2z)™
yl($) = |$| mZ:O(_l) (2m + 1)(2m _ 1) ...3

and
oo

ya(w) = [z Y (-1)™

m=0

xm

m!’
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Further, the general solution of (6.3) in any interval not containing the
origin is y(z) = Ayi(x) + Bya(x), where A and B are arbitrary constants.

Our next example uses Theorem 5.1(ii).
Example 6.2. In the DE

z(1—2)y" +(1—-2)y —y=0 (6.4)

p(x) = 1 and ¢(z) = —z/(1 — x) are analytic for all |z| < 1, and hence
the point x = 0 is a regular singular point. Since py = 1 and gy = 0, the
indicial equation is F'(r) = r(r — 1) +r = 0, and therefore the exponents
are r1 = ro = 0. Substituting directly y(z) = 2" > °_  ¢na™ in the DE
(6.4), we obtain

oo
rleor” "t + Z (m+ r —(m+r— 1)2cm,1 — cm,l} amtr=l = .
m=1
Thus, the recurrence relation is
(m+r—1)2+1
m = (m+r)2 Cm—1, m:172a"'

Now a simple calculation gives

Cm = (r+1)2(r+2)2-(r+m)? co, m=1,2--- (6.5)

and hence the first solution corresponding to » = 0 is

_1+2125 )2 —1D?+1)

To find the second solution we logarithmically differentiate (6.5) with
respect to 7, to find

m

M

i 2r+k—1
k:l (r+k—1)2 k:l r+k

m

and hence taking r = 0, we obtain

/
dm = ¢,

= 2¢m,
0

r=

- k—2
r:o; E((k—1)2+1)

Thus, the second solution can be written as

ya(@) = (@) Infal 423 0T (((m, (Z " )>xm.

m=1 k=1
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Clearly, in view of Theorem 5.1(ii) both of these solutions converge at
least for 0 < |z| < 1. Further, the general solution of (6.4) appears as
y(z) = Ay (z) + Bya(z), where A and B are arbitrary constants.

Our next two examples explain the importance of Theorem 5.1(iii).
Example 6.3. In the DE
xy" + 2y —y=0 (6.6)

both the functions p(z) = 2, ¢(x) = —z are analytic for |z| < co, and hence
the origin is a regular singular point. Since py = 2 and ¢y = 0, the indicial
equation is F(r) = r(r — 1) +2r = 72 + 7 = 0, and therefore the exponents
are r; = 0, ro = —1. Further, we note that the recurrence relation (5.8) for
the equation (6.6) reduces to

(m+r)(m+r+1)c, =cn_1, m=1,2,---

which easily gives

1
m = ) = 17 27
T D)+ 220 +3)2 (4 m)2(r +m+ 1)
(6.7)
For the exponent r1 = 0, (6.7) reduces to
Cm = ! c m=1,2 ;
m_m|(m+1)' 05 — L4 )

therefore, the first solution y;(x) is given by

oo

1 m
n@) =2 (m+11°

m=0
Now to find the second solution we let ¢g = r — ro = (r 4+ 1), so that

o e
¢=tim (rdDeu(r) = lm oy b =0

and (6.7) is the same as

1
cm_(7‘—|—2)2...(r—|—m)2(r+m—|—1)’ m=12-- (6.8)

Now a logarithmic differentiation of (6.8) with respect to r gives
/

c G 1
m—_9 - . om=1,2--
Cm 2(7"4—16) (r+m+1)
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and hence
eo=co(—1) =1
m—1
1 1 1
m=c (=1) = -9 —
e Cn(=1) 12~22~-~(m—1)2m[ ;k m}

m—1
1 1 1
_ P —1.2,....
m!(m—l)![;k+m’ mess

Thus, the second solution y»(x) appears as

o0

yo(x) = y1(z) In |z| + || ~* ll - Z ml (Ti ) <2 Z_: ]1€ + ;) xm] .
’ ’ k=1

Clearly, in view of Theorem 5.1(iii) both of these solutions converge at least
for 0 < |z| < oo. Moreover, the general solution of (6.6) can be written as
y(z) = Ay1(x) + Bya(x), where A and B are arbitrary constants.

Example 6.4. In the DE

xy” —y' + 423y =0 (6.9)
both the functions p(z) = —1, g(z) = 42* are analytic for |z| < co, and
hence the origin is a regular singular point. Since po = —1 and go = 0, the

indicial equation is F(r) = r(r — 1) —r = 72 — 2r = 0, and therefore the
exponents are r; = 2, ro = 0. Thus, two linearly independent solutions of
(6.9) are of the form (5.10) and (5.13). A direct substitution of these in the
equation (6.9) computes the solutions explicitly as

0o _1)ym
yi(z) = 2 mE:O (2(m_2 1)!;104’”
and

_ (_1)m 4m
pa(0) = 2 g o
Note that for the equation (6.9) in (5.13) the constant ¢ = 0. Further, in
view of Theorem 5.1(iii) both of these solutions converge at least for 0 <
|z| < co. Again, the general solution of (6.9) appears as y(z) = Ay, (z) +
Bys(z), where A and B are arbitrary constants.

m=0

Problems

6.1. Compute the indicial equation and their roots for the following
DEs:

(i) 22y"+y' +a2y=0
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(i) 2%y +xy + (22 —1/9)y =0

(iif) 2?y" + (v +a?)y’ —y=0

(iv) 2?y" +ay +(2* —1/4)y =0

(v) (e -1y’ + 2o —1)y — 2y =0
(vi) 2%y” + 3sinzy’ —2y =0

(vi)) 2?y” + (1/2)(z +sinz)y’ +y =0
(viil) 2%y” + zy’ + (1 — 2)y = 0.

6.2. Verify that each of the given DEs has a regular singular point at
the indicated point x = x(, and express their solutions in terms of power
series valid for x > xq:

(i) day"+2y+y=0, =0

(i)  92%y" +9zy' + (92> — 1)y =0, =0
(i) 22%y" +a2y —(x+1)y=0, =0

(iv) 1—-2?)y"+y +2y=0, z=-1

(v) %"+ (22 -7/36)y=0, x=0

(vi) 2%+ (2* —2)y' +2y=0, =0

(vii) 2%y" + (2?2 —2)y +y=0, =0

(viii) (1 —2)y" + (1 = bz)y’ —4y =0, =0
(ix) (@ +23)y" —(z+22)y +y=0, =0
(x) 2%y +2zy +2y=0, x=0

(xi) 2%’ +4zy +(2+2)y=0, =0

(xii) z(l—2)y” —=3zy' —y=0, =0

(xiil) 2%y” — (z+2)y =0, =0

(xiv) z(14+2)y" + (x+5)y —4y=0, =0
(xv) (x—2?)y" -3y +2y=0, z=0.

"

"

6.3 A supply of hot air can be obtained by passing the air through a
heated cylindrical tube. It can be shown that the temperature T" of the air
in the tube satisfies the differential equation

d*T  upCdT  2mrh

d? BA de + A (Tw—T)=0, (6.10)
where x = distance from intake end of the tube, u = flow rate of air, p =
density of air, C' = heat capacity of air, & = thermal conductivity, A =
cross—sectional area of the tube, r = radius of the tube, h = heat transfer
coefficient of air (nonconstant), T,, = temperature of the tube (see Jenson
and Jefferys, 1977). For the parameters they have taken, the differential
equation (6.10) becomes

2T dT
— 262 — 114302~ Y%(T, — T) = 0. 11
2 6 oodgc 3027 1/3( )=0 (6.11)
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(i)  Show that the substitution y = T, — T, = 2?2 transforms (6.11) into

d*y o Ay 2
22 (1+ 52400z )dz —45720z%y = 0, (6.12)
for which z = 0 is a regular singular point with exponents 0 and 2.

(ii) Find first few terms of the series solution of (6.12) at z = 0 for the
exponent 2.

6.4 In building design it is sometimes useful to use supporting columns
that are special geometrical designs. In studying the buckling of columns
of varying cross sections, we obtain the following differential equation:

Y

da?

where k£ > 0 and n is a positive integer. In particular, if n = 1, the column
is rectangular with one dimension constant, whereas if n = 4, the column is
a truncated pyramid or cone. Show that for the case n = 1, the point z = 0

is regular singular with exponents 0 and 1. Also, find the series solution at
x = 0 for the exponent 1.

+ k*y =0,

6.3 A large-diameter pipe such as the 30-ft-diameter pipe used in the
construction of Hoover Dam is strengthened by a device called a stiffener
ring. To cut down the stress on the stiffener ring, a fillet insert device
is used. In determining the radial displacement of the fillet insert due to
internal water pressure, one encounters the fourth order equation

22y 4+ 62y +6y" +y=0, x>0. (6.13)

Here y is proportional to the radial displacement and x is proportional to
the distance measured along an inside element of the pipe shell from some
fixed point. Find series solution of (6.13) at x = 0 for which the limit as
r — 0 exists.

6.6 Consider the Lane—Emden equation
2y’ + 2y +2y" =0 (6.14)
with the initial conditions
y(0) =1, 4/(0)=0. (6.15)

Astrophysicists and astronomers use equation (6.14) to approximate the
density and internal temperatures of certain stars and nebula. Show that
the series solution of (6.14), (6.15) can be written as
2 ol s ) 4 28
yl) = 1— 31 +n5! + (5n — 8n )3_7! + (70n —183n~ + 122n )9.9!

+(3150n — 108002 + 12642n° — 5032n?)

3310

451 T
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Thus, in particular deduce that

for n=0, y(z)=1-

for n=1, y(z)=
{,U2 —-1/2
for n =5, y(x):<1+3> .

6.7 The Lane—Emden equation
2y’ + 2y +ze? =0 (6.16)

appears in a study of isothermal gas spheres. Show that the series solution
of (6.16) with the initial conditions y(0) = 3'(0) = 0 can be written as

1 1, 8 4 122 o 61-67 4
6 5417 " o161 Tsrostt T 4951017

6.8 The Lane—Emden equation
zy" + 2y +aeV = (6.17)

appears in the theory of thermionic currents when one seeks to determine
the density and electric force of an electron gas in the neighborhood of a hot
body in thermal equilibrium. Find first few terms of the series expansion
of the solution of (6.17) satisfying the initial conditions y(0) = 3/(0) = 0.

6.9 The White-Dwarf equation,
zy” + 2y +x(y? — )% =0, (6.18)

was introduced by S. Chandrasekhar in his study of gravitational potential
of the degenerate (white-dwarf) stars. This equation for C' = 0 is the same
as (6.14) with n = 3. Show that the series solution of (6.18) with the initial
conditions (6.15) in terms of ¢ = 1 — C' can be written as

¢ 2 q* 4 q° 2 6 q° 2 8
y(z) = 1- 695 —|—40x ~ o (5¢° + 14)z +3.9!(339q +280)x
7
+, qw (1425¢* + 114364 + 4256)2'0 + - - -

6.10 Show that for the DE
2y @+ 1)y —y=0

xo = 0 is an irregular singular point. Find its solution in the form y =
Dm0 Cm@ "
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Answers or Hints

6.1. (i) r(r—1)+3r=0,r=07r2=3 (i) r(r—1)+r—§=0,r=
3or2=—3 (ili) r(r—=1)4r—1=0,r1=1Lro=-1(v) r(r—1)+r—} =
0, r1=123,ra=—4 (v) r(r=1)+r=0, 1. =r2 =0 (vi) r(r 1)—|—3r—2—
0, 1:—1—1—\/37'2 —1 — /3 (vii) (r—l)—i—r—i—l—O T =1, =
(viil) r(r=1)+r+1=0, 11 =i,ro =

. 00 _1\m ' 2m m T 2m

(1) wi(@) = ooy TV pa(a) = 2230, V)

.s 0o —1 M3mr2m

(i) yi(z) = z!/? {1 + 2t 2»4-6»»»((Qm))8»14»20m(6m+2):| )
(z)

_ [eS) —1)m3mg2m
=z |1+ Dot 2~4-6-~-(2m)4-10-16---(6m—2):|
(i) yi(x) =a[1+ o+ a2+,

yala) =212 1 [ T ;xQ — g% =]

(iv) yi(z)=1-2(x+1)+ ;(z+1)2

ya() = (+ 1)M2 [1= @+ 1) + Xy o Sy iy (1)

_qymam_2m

(v) yi(z) =27/ [1 + 31 22m(m'1)583 (3m+2)}

y2(x) =z 1/6 |:1 + Zm 1 22"‘m(’ 114m3(§m 2) 2m:|
(vi) w1(x) = z[p(x) cos(Inx) —¢p(x) sin(Inz)],

ya(x) = z[p(x) cos(Inz) + d(x )sin(ln x)], where

¢p(z) =1—Jo+; 137 o (x) = g — 2%
(vii)) yi(z) =2 Yoy a2,

() =p(@)ma+z[z—, (1+5)a>+ 5 (1+5+3)2%— ]
(Vi) 1 (2) = 5o (14 )™ () = ya(e) Iz —2 555y mm + L)

71""

1
() () = 21+ ), ole) = () + o [~20 = 5, (V" ]

(x) y(z) =20 m'(_(v’ln)Jrl)'x
y2(2) = —yr(z) nz + 21 {1 — =1 ml( 711) ! (22? 11 11 + ) m}

(xi) m(x)zx-lzzi_o ot o a™, ya(2) = —yi(a) Inw
1™ m—1 m

1_2771 lm’(ml <2Zk111€+ )ZII:|

(xii) yl(f)—x(l—f) ; yz( )=yi(e)Ina+ (1 -2)""

(Xlll) yl( )_x Zm 0 m! (m+3)lx

ya(z) = 12y1( r)Inz + 27} (1 — 2a:+ }La:Q — 3163334—---)
(xiv) yi(x) =1+ o+ La?, yo(x) = 274 (1 4 4o + 5a?)
(xv) wi(z) = So_y(m = 3)a™, yo(x) = 1+ Ju + ja?

6.3. ¢o [z2 +131002* + 30482° + 343230000 204 } (although coefficients
cn, are large, the series converges).



46 Lecture 6

K* 2 E* 3 kS 4 K8 5
6.4. ¢ (x— e PR A PTE e PITTE A I

w2m+1

%) m z2m oo m
6.5. ¢ Zm:()(_]‘) ((2m1))2(2m+1) +c1 Zm:()(_]‘) (2m+1))2(m+1)"

1,.2 1 .4 8 6 122 .8 61-67 .10
—6T

6.8. Ify(x)is asolution of (6.16), then —y(iz) a solution of (6.17), y(x) =

54t T ooret T og181T T 495.10

6.10. y=coy o wn_: = cpel/?.
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Legendre Polynomials
and Functions

The Legendre DE (3.19), where a is a real constant (parameter), arises in
problems such as the flow of an ideal fluid past a sphere, the determination
of the electric field due to a charged sphere, and the determination of the
temperature distribution in a sphere given its surface temperature. In this
lecture we shall show that if the parameter a is a nonnegative integer n,
then one of the solutions of (3.19) reduces to a polynomial of degree exactly
n. These polynomial solutions are known as Legendre polynomials. We
shall obtain explicit representations of these polynomials and discuss their
various properties.

Since the functions

2x ala+1)

pl(x):—l_xQ and po(x) = | g2

are analytic for |z| < 1, 2 = 2o = 0 is an ordinary point for (3.19). Thus,
Theorem 4.1 ensures that its series solution y(z) = > °_ ¢, z™ converges
for |z| < 1. To find this solution, we substitute it directly in (3.19), to
obtain

1—x Z m+ 1)(m + 2)cppoz™ —2952 (m+ Depyra™
m=0

m=0
o0
ala+1) Z Cmx™ =
m=0

which is the same as

(oo}

Z [(m+1)(m+2)cmyz —{(m—1)m+2m —ala+ 1)} ep] 2™ =0,
m=0

Z [(m+1)(m+2)cmq2 + (a+m+1)(a—m)ey) 2™ = 0.

m=0

But this is possible if and only if
(m+1)(m+2)emez + (a+m+1)(a—m)ey, =0, m=0,1,---
R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,

Universitext, DOI 10.1007/978-0-387-79146-3 7,
(© Springer Science+Business Media, LLC 2009
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or
(a+m+1)(a—m)

(m+1)(m+2)

which is the required recurrence relation.

Cmt2 = — Cm, m=0,1,--- (7.1)

Now a little computation gives

. (-D)™(a+2m—-1)(a+2m—3)---(a+ Dala—2)---(a —2m + 2)
e (2m)! .
F(éa+1)F(éa+m+ é)sz

= (_l)mr‘(;a—k ;)F(;a—m—i—l) (2m)!

co, m=12 .-

(7.2)
and
. _ (=D)™(a+2m)(a+2m—1)---(a+2)(a—1)(a—3)--- (a—2m—|—1)c
am (2m+1)! '
r (éa—k é) r (éa—{—m—{— 1) 22m+1

- (_1)m2r(;a+1)r(;a—m+ ) @m+1)

€1 m=1,2,---.

(7.3)

Thus, the series solution of (3.19) can be written as
1 1 -2
PR P T O RIS
2! 4!
o [ @R (D5
3! 5!
= coy1(z) + c1y2(x).
(7.4)
It is clear that yi(x) and yo(z) are linearly independent solutions of Leg-
endre’s equation.

If in the DE (3.19), a is an even integer 2n, then from (7.2) it is clear
that copta = Copta = -+ = 0; i.e., y1(x) reduces to a polynomial of degree
2n involving only even powers of x. Similarly, if a = 2n + 1, then yo(z)
reduces to a polynomial of degree 2n + 1, involving only odd powers of
x. Since y1(z) and ya(z) are themselves solutions of (3.19) we conclude
that Legendre’s DE has a polynomial solution for each nonnegative integer
value of the parameter a. The interest is now to obtain these polynomials
in descending powers of z. For this we note that the recurrence relation
(7.1) can be written as

(s+1)(s+2)
Cs = — Cst2, S<n-—2, 7.5
(n—s)(n+s+1) 2 (7.5)
where we have taken s as the index, and a as an integer n. With the help of
(7.5) we can express all nonvanishing coefficients in terms of the coefficient
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¢, of the highest power of . It is customary to choose

(2n)! 1.35.---(2n—1)
0 = gn(nny2 ~ l (7.6)

so that the polynomial solution of (3.19) will have the value 1 at z = 1.
From (7.5) and (7.6) it is easy to obtain

(2n — 2m)!
27 m! (n —m)! (n — 2m)!

(7.7)

Cn—2m = (_1)m

as long as n — 2m > 0.

The resulting solution of (3.19) is called the Legendre polynomial of
degree n and is denoted as P, (x). From (7.7) this solution can be written
as

(3]

Po(z) = ) (=)™

m=0

(2n — 2m)!

2 ml (n—m) (n—2mn® (9

From (7.8), we easily obtain

Py(z)=1, Pi(z)=uz PFP(zx)= ;(3;102 —1), Ps(x)= ;(5;103 — 3xz),

1 1
Py(z) = ¢ (352* — 302% +3), Ps(z) = < (632° — 702° + 152).

The other nonpolynomial solution of (3.19) is usually denoted as @, (z)
(see Problem 7.1). Note that for each n, Q,(z) is unbounded at z = +1.

Legendre polynomials P, (z) can be represented in a very compact form.
This we shall show in the following theorem.

Theorem 7.1 (Rodrigues’ Formula).
1 ar

_ 2 _ 1\n
P,(z) = on 1 dun (x® =1)" (7.9)
Proof. Let v = (22 —1)", then
(22 — 1)32 = 2nav. (7.10)

Differentiating (7.10), (n + 1) times by Leibniz’s rule, we obtain

d"t2y drtly d*v Zn{ drtly d”v}

2.1 2(n+1 1 1
(z )dx”+2+ (n+ )xdx"“ +n(n+ )dx T o + (n+ )dx"
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which is the same as

dnt2y drtly d™v

(1 —x2)dmn+2 =20 +n(n+1) =0. (7.11)

dzm
If we substitute z = d"v/dx™, then (7.11) becomes

d? d
(1- x2)dm§ - 2xd; +n(n+1)z=0,

which is the same as (3.19) with a = n. Thus, it is necessary that

dTL
z= dx: = cP,(x),

where ¢ is a constant. Since P, (1) = 1, we have

d"v ar dan
‘ (divn)w—l dam (x ) =1 da™ (x ) (m+ ) z=1
"\ /n n! i ™! & om
= Z(k)(n—k)!(x_l) k!(x—i—l) =2" nl
k=0 =1
Thus, it follows that
14" 1 n

Poa) = 14 " 2y

cdzm  2n pldzn

Let {fn(z)} be a sequence of functions in some interval J. A function
F(x,t) is said to be a generating function of { f,(x)} if

F(z,t) = fa(z)t".
n=0

The following result provides the generating function for the sequence
of Legendre polynomials {P, (x)}.

Theorem 7.2 (Generating Function).

(1 —2at 4+ t2)~Y2 = i Py (x)t". (7.12)
=0

Proof. If |z| <r where 7 is arbitrary, and [¢t| < (1 +72)Y/2 — r, then it
follows that

|22t — 2| < 2lz||t| + ||
< 20(1 42 =22 142 42 —2r(1 422 =1
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and hence we can expand (1 — 2zt + ¢2)~'/2 binomially, to obtain

1 13
-tz —]72 = 14 tQe—t)+  PQe—1)"+

13- (2n— 1)

2. (2m) b BEZDTAE

The coefficient of ¢" in this expansion is
1.3.---(2n—-1) 1.3.---(2n—=3) (n —

oden) P T o4 ey 1
1.3---(2n—5) (n—2)(n—3)

1) (21‘)7172

2.4 (2n — 4) 21 (2"
_ 1.3---(2n—1) o n(n—1) xn72+n(n—l)(n—2)(n—3)$n74_-.-
n! (2n—1)11.2 (2n—1)(2n—3) 2.4

= P,(z).

Now as an application of (7.12) we shall prove the following recurrence
relation.

Theorem 7.3 (Recurrence Relation).

(n+1)Pyyi(x) = 2n+ 1)zP,(x) —nPy_1(z), n=1,2,---. (7.13)
Proof. Differentiating (7.12) with respect to ¢, we get
(x —t)(1 — 2wt +12)73/2 = ZnP et
and hence
(. —t)(1 — 2wt +t2)7"Y2 = (1 — 2t + 12) ZnP L
n=1
which is the same as
(z—t ZP = (1—2at +1?) ZnP )L
n=1

Equating the coefficients of ¢, we get the relation (7.13).

Since Py(x) = 1 and Pi(x) = x the relation (7.13) can be used to
compute Legendre polynomials of higher degrees. Several other recurrence
relations are given in Problem 7.8.
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Next we shall consider (3.19) in the neighborhood of the regular singu-
larity at x = 1. The transformation x = 1 — 2t replaces this singularity to
the origin, and then the DE (3.19) becomes

2

d
1 — 1) dtﬁ +(1-2t)

dy

gt +ala+1)y=0. (7.14)

Considering the solution of (7.14) in the form y(t) = ">~ cmt™,
we obtain the indicial equation 72 = 0, i.e., both the exponents are zero.
Further, it is easy to find the recurrence relation

(m+7r)em=m+r+a)(m+r—a—1)ecn1, m=12---. (7.15)

For r =0, (7.15) when a not an integer and ¢y = 1, gives

. :F(m+a+1)F(m—a) 0]
" (mN2T(a+1) T(—a)’ o

Thus, in the neighborhood of = 1 the first solution of (3.19) can be
written as

- I‘a+m+1)I‘( —a) (1—2\"
I (1Y

m:O

xT) =
Since a is not an integer, and

1
— lim ‘<1—“+ )(1+ “)‘:1,
m—o00 m m

it follows that the series solution (7.16) converges for |[t—1| < 2 and diverges
for |z — 1| > 2.

lim
m—00

Cm—1

When a is a positive integer n, then ¢, =0 for all m > n + 1, and

(n+m)!

em = =" o (2

0<m<n

and hence (7.16) reduces to a polynomial solution of degree n,

(—D)™m(n+m)! (1 -2\
o (27 (7.17)

NE

0

3
]

To obtain the second solution of (7.14), we return to the recurrence
relation (7.15), whose solution with ¢y = 1 is

Cm = ﬁk—l—r—l—aﬁk—i—r—a—l ﬁk+r
k=1 k=1 k=1
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Now a logarithmic differentiation with respect to r yields
Cm _ i ( L 1 2 ) .
¢m i \k+r+a ktr—a-1 k+r 7
and hence for 7 = 0, we get
(1 1 2
dmzc;n(O):cm(O);<k+a+ a1 k), m=1,2,---.
Thus, from Theorem 5.1(ii) the second solution is given by

1—=x

1 Tla+m+DI'(m—a
) Z ( )I( )

I'(a+1)I'(=a) “= (m!)2

X {’é(kiaJrk—cllﬂ_i)}(l;x)m.
(7.18)

The general solution of (3.19) in the neighborhood of x = 1 can be easily
obtained from (7.16) and (7.18).

y2(z) = yi(z)In

Problems

7.1. For a = n, one solution of the DE (3.19) is P, (x) given in (7.8).
Show that the second solution is

r dt
n = Pn
@@ =P [ e, o
and hence deduce that
1, 1+x r. 1+
and 1 1+z 3
- 2 1)1 TV
@2lr) =, 3 Iy o

7.2.  Use Rodrigues’ formula (7.9) to show that

0, ifnisodd
P, (0) = (_1)n/21.3. o (n—1)
24---n

, if n is even.

7.3.  Use Rodrigues’ formula (7.9) to show that all the roots of P,(x)
lie in the interval (—1,1) and are distinct.
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7.4. Prove the following relations:

_ 42 00
(i) (1- 21xt f_ £2)3/2 = ;)(QTL +1) P, (2)t"
(ii) (1 — 2195:4{ 2)1/2 Z {Py(x) + Puy1(z)}t".

7.5. Show that if z = cosf = (e’ + e7?)/2, then the Legendre DE
(3.19) can be written as

d dy :
&0 (smGdG) +n(n+1)sinfy =0. (7.19)

Further, with this substitution, the relation (7.12) is the same as
(1 —te®)"1/2(1 — te™0)"1/2 = Z P, (cos )t

and hence

13---(2n—1)

y = P,(cosf) = 94...9n

[2 cosnb + 2 cos(n — 2)0

1.n
1.(2n — 1)

n(n—1) 1.3
(2n—1)@2n—3)1.22 ¢~ D0+ + T

is a solution of (7.19), where the final term T;, is cos @ if n is odd, and half
the constant term indicated if n is even. These functions are called the
Legendre coefficients. Deduce that the Legendre coefficients are uniformly
bounded, in fact |P,(cosf)| <1, n=0,1,2,--- for all real values of 6.

7.6. Prove Laplace’s first integral representation

P,(z) = ! /ﬂ[x + Va2 — 1 cos @)™ dg.
0

™

7.7. Prove Laplace’s second integral representation

o) = | /0”[ do

T x+ /22 — 1cos g|ntl

7.8. Prove the following recurrence relations:
(i) nP.(z)=aP,(z) - P, (z)
(i) 2n+1)Pu(z) = Py (z) = By (2)
(iif) (n+1)Pu(z) = Py (2) — 2P (2)
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(iv) (1—a?)P(z) = n(Pa-1(z) — 2Pa(r))

(v) (1—=2*)P(z) = (n+1)(xPu(x) — Pyyi(x))

(vi) (2n+1)(1 —2?)Py(z) = n(n+ 1)(Pa-1(z) = Pot1(2)).
7.9. Show that

i) P.(1) =

(il) Pu(—x) = (—1)”Pn(x), and hence P,(—1) = (—1)™.

7.10. Show that in the neighborhood of the point = 1 the DE (3.19)
for a = —n has a polynomial solution of degree n — 1. Find this solution.

7.11. Show that
(i)  Christoffel’s expansion
Pl(z)=2n—1)P,_1(z) + (2n — 5)P,_3(z) + (2n — 9) Py_s(x) + - - -,

where the last term is 3P;(x) or Py(z) according to whether n is even or
odd.

(ii) Christoffel’s summation formula

) PP~ P )P0
7;0(2T+1)PT($)PT(y) =(n+1) T—y .
7.12. The DE

2

(1 -2y — 22y + [n(n+1) — 1 g2

y=0 (7.20)
is called Legendre’s associated DE. If m = 0, it reduces to (3.19). Show
that when m and n are nonnegative integers, the general solution of (7.20)
can be written as
y(x) = AP (x) + BQ;! (x),

where P (z) and Q)'(x) are called associated Legendre’s functions of the
first and second kinds, respectively, and in terms of P,(z) and @, (x) are
given by

dm

P(z)=(1—a)™? " P,(x) (7.21)

d
Q) = (1= " Qu(a) (7.22)
Note that if m > n, P"(xz) = 0. The functions Q7"(x) are unbounded for
T = =*£1.
Further, show that

(n+m)!

/0 [P™(cos ¢)]? sin ¢pdg = on 41 (n—m)’
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Answers or Hints

7.1.  Use (2.5) and compute necessary partial fractions.

7.2.  First use Leibniz’s rule to obtain P, (0) = ., Y7 _(—1)* [(Z)]Q and
then equate the coefficients of 2™ in the relation (1+z)"(1—z)" = (1—x2)".
7.3. Use Rolle’s theorem repeatedly.

7.4. (i) Differentiate (7.12) with respect to ¢ (ii) Begin with the right-
hand side.

7.5. Equate the coefficients of ¢".

7.6. Use [/ aibcow = Jur_p2 (a? > b?) with a = 1 —tz, b=t /(22 — 1)
and equate the coefficients of ¢™.

7.7. Use the same formula as in Problem 7.6 with a = 2t — 1, b =
ty/(22 — 1) and equate the coefficients of t~"~1,

7.8. (i) Differentiate (7.12) with respect to x and ¢ and equate, to obtain
the relation ¢t Y~ nt" ' P,(z) = (x—t) Y.~ ,t" P/ (z). Finally equate the
coefficients of ¢ (ii) Differentiate (7.13) and use (i) (iii) Use (i) and (ii)
(iv) Use (iii) and (i) (v) Use (7.13) and (iv) (vi) Use (v) in (iv).

7.9. (i) Use (7.12) (ii) In (7.12) first replace x by —z and then ¢ by —t
and then equate.

7.10. When a = —n, the recurrence relation (7.15) reduces to m?c,, =

(m —n)(m+n—1)cm_1, m > 1, which can be solved to obtain

- (_1)m(n (::”Ty 1()| N2 €0 1<m<n-1
" 0, m > n.

Therefore, the polynomial solution of (3.19) is
Zn—l (=1)™ (n+m—1)! (17m)2 )

m=0 (n—m—1)! (m!)? 2

7.11. (i) Use Problem 7.8(ii) (ii) Use (7.13).
7.12. Verify directly.



Lecture 8

Chebyshev, Hermite, and
Laguerre Polynomials

In this lecture we shall show that if the parameter @ in (3.15) and
(3.16), whereas b in (3.18) is a nonnegative integer n, then one of the solu-
tions of each of these equations reduces to a polynomial of degree n. These
polynomial solutions are, respectively, known as Chebyshev, Hermite, and
Laguerre polynomials. We shall obtain explicit representations of these
polynomials and discuss their various properties.

Chebyshev polynomials. From the recurrence relation (4.15)
it is clear that in the case a = n one of the solutions of the Chebyshev DE
(3.15) reduces to a polynomial of degree n. Here we shall provide an easier
method to construct these polynomials. For this, in the Chebyshev DE of
order n,

(1—2%)y" —zy +n*y=0 (8.1)

we use the substitution x = cosf, to obtain

1 ( 1 d%y cosd dy) 9 1 dy

1—cos® 6 —
(1 = cos )sin 0 \sinf do? sin%6 do Y in 6 do

+n2y =0,

which is the same as

d?y

do?

Since for this DE sinnf and cosnf are the solutions, the solutions of (8.1)
are sin(ncos™! z) and cos(ncos™! x). The solution T}, (x) = cos(ncos™! z)
is a polynomial in x of degree n, and is called the Chebyshev polynomial
of the first kind. To find its explicit representation, we need the following
recurrence relation.

+n2y =0.

Theorem 8.1 (Recurrence Relation).
Tht1(x) = 22T (x) — Th—1(x), n>1 (8.2)
Proof. The proof is immediate from the identity

cos((n41) cos ™ z)+cos((n—1) cos™! x) = 2 cos(ncos™ ! ) cos(cos ™! x).

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 8,
(© Springer Science+Business Media, LLC 2009
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Since Tp(x) = cos(0) = 1, Ty(x) = cos(cos~tz) = x from the relation
(8.2), it immediately follows that

To(z) =222 — 1, Ty(x) =42 — 3z, Ty(z) = 8z* — 8% + 1.

Now we shall show that

T,(z) = cos(ncos ' x) = " Z (=)™ (n—m—1) (2z)" 2™ 0 >1.

2 m=0 m! (Tl - 2m)'
(8.3)
For this, in view of (8.2), we have
2] )
(2]
n—1 H"n—-—1-m-—1 n—1—2m
2 )m_o ( n)z! En—l—Zm)l ! ayri2
[
["21]+
n—1 —1)™(n —m —1)! o
—i—( ) ) Py (ni_ i)!((n_ o +)1)!(2x) +1-2m
Thus, if n = 2k, then [’;] = ["51] +l1=Fk= [n;rl] , and we get
Thy1(z) [ ]
Lo \nt1 201 am=m=Dn—m)n+1) . i1 om
=, (20)" 2 o (=1) il (n— 2m 4 1) (22)"*
["$]
(n+ 1) m (Tl—m)' n+1—-2m
T2 Z:O(_l) m! (n+1-— 2m)!(2$) ' :

Similarly, if n = 2k + 1, then ["} =k, [”;1} +1=Fk+1, and we find

2
Tn+1 (x)

3]
e 3 h T e
+(—pl"d']
["1']
- (THQ_ ! (_1)mm! (7(1”—#_1”1)!2771)!(2 i,
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Next for Chebyshev polynomials of the first kind we shall prove the
following results.

Theorem 8.2 (Rodrigues’ Formula).

(=2)" n! 2\1/2 d" 2\n—1/2
T.(z) = 1- 1—az°)" . 4
(@)= gy (L= 1L (1 =) (8.4)
Proof. Set v = (1 —2?)"~/2 to obtain (1 — 2?)v' + (2n — 1)vz = 0.
Differentiating this relation (n + 1) times, we obtain
2 n+2 n+1 2 n,, __ _ d
(I1—=2°)D""“v —3zD"" v+ (n* —1)D"v =0, D—d.
x

Let w = (1 — 22)/2D"v, to get

(1 —2®)w” — 2w’ + n*w
=(1-2%)Y2[1-2%)D""?v - 3zD" v + (n® — 1)D"v] = 0.
Thus, both w(z) and T),(x) are the polynomial solutions of the Chebyshev

DE (8.1), and hence T, (x) = cw(x), where the constant ¢ is yet to be
determined.

Since in view of Leibniz’s rule

(1 _ $2)1/2Dn( _ xQ)" 1/2

1—33 1/2 n>Dn g (14 z)"~ 1/2Dg( )n—l/Q

_1)ni <n— 1/2) <n— 1/2>( i 1),

Jj=0

the coefficient of ™ in the right side of the above relation is

g () v ()

where the last identity follows from Vandermonde’s equality. Thus, on
comparing the coefficients of =™ in both sides of T}, (z) = cw(z) we find
c=(=1)"2"nl/(2n)l

Theorem 8.3 (Generating Function).

1—¢2
| oy g2 = Dol +2ZT (8.5)
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Proof. In the expansion
Q-1 —t@e—t) ' =1 —)> t"2z—1)"
n=0

clearly the constant term is 1, and the coefficient of t" is
3 n—m n—m—1
22)" —_1)m 2 n—2m
o+ S { (") (M) e

I

(3

n(—=1)"(n —m —1)!

m! (n —2m)! (20)" 5" = 2T, (a)

Hermite polynomials. For the Hermite DE of order n, i.e.,
y" —2xy’ +2ny =0 (8.6)

we follow exactly as for Legendre polynomials. Indeed, in the case a = n
the recurrence relation (4.13) can be written as

(s+2)(s+1)
2(s —n)

Cs = Cs+2, S<n—2.

This relation with ¢, = 2" gives

(_1)m n! 2n72m

Cn=2m = (n —2m)! m!

Thus, Hermite polynomials of degree n represented as H,,(x) appear as

(3]

—1)™ nl

- 2m) (22)n~2m, (8.7)

m=0
From (8.7), we find
Ho(z) =1, Hi(z)=2z, Hy(z)=4a>—-2, Hs(zx)=8z"—12z.
Now for Hermite polynomials we shall prove the following result.
Theorem 8.4 (Rodrigues’ Formula).

o2 dV 2
H,(z) =(-1)"e g€ (8.8)
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Proof. We note that the DE (8.6) can be written as

(e‘rzy’)/ 1 2ne "y =0. (8.9)

2

Let y = (_1)”eI2D”e_”” , (D =d/dz) so that
2 2 2
y = (=1)"e" (2xD"e*w +D" (Deﬂ” )) ;
and hence
—x2% ! n n —z? n —2? n+1 —z?
(e"y) = (-1 [2D"e " + 20D (D) + D (~20e )
= 27”L(—1)”+1D"e*$2 = —2ne*””2y.
Thus, (—1)”6””2D"e*‘T2 and H,(z) both are solutions of the DE (8.9). But

this is possible only if H,(z) = ¢(—1)"e® D"e~*", where ¢ is a constant.
Finally, a comparison of the coefficients of ™ on both sides gives ¢ = 1.

Laguerre polynomials. For Laguerre’s DE of order n, i.e.,
2y’ +(a+1—2)y +ny=0 (8.10)

the solution yi(x) obtained in (6.1) reduces to a polynomial of degree n.
This solution multiplied by the constant I'(n+a+1)/[n! T'(a+1)] is called

the Laguerre polynomial L (z) and can be written as
n (_1)m$m

Li9(z)=T(n+a+1) Z m! (n—m)! T(m+a+1)

m=0

(8.11)

In the particular case a = 0, Laguerre polynomial of degree n is simply
represented as L, (x) and reduces to

Ln(z) = i_ nlu (::L)(—x)m. (8.12)

m=0 ’

Problems

8.1.  Verify that the nth degree Chebyshev polynomial of the second
kind defined by the relation

sin((n + 1) cos™! )
sin(cos™! x)

Un(x) =
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satisfies the DE

(1 -2y —3zy +n(n+2)y=0.

Show that
() Una)= | T
(i) Up(x) = [zg]:(_ ym (n—m)! (2)n-2m
m=0 m! (n —2m)!
(iii) U, (z) _27; f{;l)! (1 22)-1/2 dﬁj:n (1= 2)+1/2

(Rodrigues’ Formula)
(iv) 1 th L Z U, (2)t" (Generating Function)

(V) Unii(z) = 296Un( ) = Un-1(2), Up(z) =1, Ui(z) =2z
(Recurrence Relation).

8.2. For Hermite polynomials show that
: 2at—t = " . :
(i) e = Z H,(z) al (Generating Function)

(il) Hpq1(x) =22xHy(x) — 2nH,—1(z), Ho(z) =1, Hi(z)=2x
(Recurrence Relation)
(ili) H’ (z) = 2nH,_1(2).

8.3. For Laguerre polynomials show that

: (a) _ efxm d" —x,.n+a : )
(i) Ly (x)= ol dan (e 2"**)  (Rodrigues’ Formula)

(i) (1—t)""%exp ( ) Z LW (2)t" (Generating Function)
-t
(a) _2n+a+1- o n+a_(a)
(i) L (@) =" T @) - T, @),

L (x) =1, L) =14+ a—x (Recurrence Relation).

Answers or Hints

8.1. (i) Differentiate T}, 1(x) = cos((n + 1) cos™tz) (ii) Use (8.3) and
(i) (iii) Use (8.4) and (i) (iv) Expand (1—[2tz—t?])~1 (v) Set § = cos™ 1z
in the relation sin(n + 2)0 + sinnf = 2sin(n + 1)6 cos 6.
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8.2. (i) Expand e '’ ¢2** (ii) Differentiate both sides of (i) with respect
to ¢t and equate the coefficients of ¢ (ii) Differentiate (8.8).

8.3. (i) Use Leibniz’s rule (ii) Expand (1—t)~'~%exp (— fjt) (iii) Dif-
ferentiate both sides of (ii) with respect to ¢ and equate the coefficients of
t".



Lecture 9

Bessel Functions

Bessel’s differential equation (2.15) with @ = n first appeared in the
works of Euler and Bernoulli whereas Bessel functions, also sometimes
termed cylindrical functions, were introduced by Bessel, in 1824, in the
discussion of a problem in dynamical astronomy. Since many problems of
mathematical physics reduce to the Bessel equation, in this lecture we shall
investigate it in somewhat more detail.

In the Bessel DE (2.15) the functions
2

2
— TN _ 2 _2fT et o2 2
xp1 () —x(xQ) =1 and z°ps(z) == < 52 > =z —a

are analytic for all x, and hence the origin is a regular singular point.

Thus, in view of Theorem 5.1, we can assume that a solution of (2.15)
can be written as y(z) = 2" Y ~_, cmz™. Now a direct substitution of this
in (2.15) leads to the equations

co(r+a)(r—a)=0
aa(l+r+a)(l4+r—a)=0
cmm+r+a)(m+r—a)=—cp_2, m=2,3,---. (9.1)
We assume that ¢y # 0, so that from the first equation r; = a and r, = —a.

First, we shall consider the case when r; — ro = 2a is not an integer.

For this, we see that ¢; = 0 (2a # £1), and for r = @ and r = —a, (9.1)

reduces to
m(m + 2a)cy, = —Cp—2, Mm=2,3,--- (9.2)

and
m(m — 2a)em = —Cp—2, Mm=2,3,--- (9.3)

respectively. From these relations we easily obtain two linearly independent
solutions y1(x) and yo(x) which appear as

() =|1— 1 z? + ! at — ate
yir) = 2(1+all" 241 +a)(2+a)2! i
and
1 1
= 1 — ,2 /4 —_ —° *'
y2(2) [ 22(1 — )11 + 24(1 — a)(2 — a)2!" }m i

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 9,
(© Springer Science+Business Media, LLC 2009
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In the above solutions we take the constants

1 . 1
0= gart4a) ™M DT geap gy
to obtain N
w0 =% e () 09
and OO_
@ =3 -0 () ©9

These solutions are analytic for || > 0. The function y;(z) is called the
Bessel function of order a of the first kind and is denoted by Jo(x); y2(x)
is the Bessel function of order —a and is denoted by J_,(x). The general
solution of the DE (2.15) is given by y(z) = AJ,(x) + BJ_,(x), where A
and B are arbitrary constants.

Now we shall consider the case when r; — ro = 2a is a positive odd
integer, i.e., 2a = 2n + 1. Then, for r = a, ¢; = 0 and as before from (9.1)
we get

e (—1)™ 7\ 2mtn+1/2
Joi1/a(x) = ( ) 9.6
+1/2() mZ:Om!F(m—Fn—I—g) 2 (9.6)
For r = —a we have —a = —n — 1/2; then ¢p and ¢2,,41 are both arbitrary.

Finding the coefficients ca,,, m = 1,2, --- and coptom+1, m = 1,2, --- from
(9.1) in terms of ¢y and ca,41 leads to the solution

Lo ml“( n) om
y(ﬂ?) = 1z Z m) 22m —n4+ m) 332

S (_ )mF(n+3)
+ConanT n—1/2 2 x2n+l+2m
2t Z:Om!22ml"(n+m+g)
= AJ_n_l/Q(x) + BJn+1/2($), (97)
where A = ¢2 "~Y/2D (; — n) and B = 2nt1/2p (g + n) Cont1. Since ¢y

and co, 11 are both arbitrary, A and B are arbitrary constants, and hence
(9.7) represents the general solution of (2.15).

If we take 2a as a negative odd integer, i.e., 2a = —2n — 1, then we get
r1 = —n—1/2 and ro = n+ 1/2, and hence for ro = n + 1/2 we have the
same solution as (9.6), and for 11 = —n — 1/2 the solution is the same as
(9.7).

Next we consider the case when a = 0. Then the exponents are r; =
ro = 0. The first solution y;(x) in this case is easily obtained and appears
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as

() = Jolw) = 3 ((;j&? (" 98)

To obtain the second solution we return to the recurrence relation (9.1),
which with ¢y = 1 gives

(=™

T 22(r £ 4)2 - (1 + 2m)?
and hence
12 m
Com 1
O M
Com = + 2k
Thus, we find

1
dam = C/Qm(o) = _CQm(O) Z k

k=1

and now Theorem 5.1(ii) gives the second solution ys(z), which is denoted
as JO(z),

y2(x) = J) = Jo(a) e — ((;11!))’; <Z ;1) (92”)2’”. (9.9)

m=1 k=1

Finally, the general solution in this case can be written as y(z) = AJy(z) +
BJ(z).

The remaining case, namely, when r; — 75 is an even integer, i.e., when
2a = 2n is very important, which we shall consider now. For r; = n, there
is no difficulty and the first solution y; (z) can be written as y; (z) = J,,(z).
However, for the second solution ys(x) corresponding to the exponent ro =
—n we need some extra manipulation to obtain

ey = 2 [rem) oo L5 O
> B(m (b(kzo ) | 2mat (9.10)
)™ 1 )+ ¢p(n+m) sa\2mtn
’ mz::o ' m! (n +m)! (2) 1’

where ¢(0) =0, ¢(m) =>_7" (1/k) and v is the Euler constant defined by
v = hm (¢(m) —Inm) = 0.5772157 - - -.
This solution ys(x) is known as Weber’s Bessel function of the second

kind and is denoted by Y,,(x). In the literature some authors also call Y, (z)
the Neumann function.



Bessel Functions 67

Thus, the general solution in this case can be written as y(x) = AJ, (z)+
BY, (z).

The Bessel functions of the third kind also known as Hankel functions
are the complex solutions of the DE (2.15) for ¢ = n and are defined by
the relations

HWV (z) = Jo(x) + Y (z) (9.11)
and
H? (z) = J,(2) — i¥y (). (9.12)

The modified Bessel function of the first kind of order n is defined as
L(x) = i " J,(iz) = e " /2], (iz). (9.13)

If n is an integer, I_,(z) = IL,(x); but if n is not an integer, I,(x) and
I_,(x) are linearly independent.

The modified Bessel function of the second kind of order n is defined as

™ [I‘”("”.) ‘I"(“”)} CnA0,1,2,
2 sinnm

lim © [I—p(a{) — Ip(x)
sin pr

K (z) = (9.14)

=0,1,2,---.

p—n 2 } ) n ) 3 )

These functions are the solutions of the modified Bessel DE
22y + xy’ — (2% +n?)y = 0. (9.15)

The generating function for the sequence {J,(x)}22__ is given in the
following theorem.

Theorem 9.1 (Generating Function).

oo (e(-1))= 5w o

Proof. We shall expand the left-hand side of (9.16) in powers of ¢ and
show that the coefficient of t" is J,,(z). In fact, we have

or(iee-1)) = on(le)on()

e @) & ()
B Z 25 gl ;0 2rgryl

s=0

s+r ST

- ii(_l)r (;) strl’

s=0 r=0
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The coefficient of " in the above expression is

oo

T 2m-+n
Z .n+m (2) ’

which, by definition, is the same as J,,(z).

If in (9.16) we replace ¢t by —1/7, then it is the same as

1 1 = n,.—n S n
exp<2x <7'— T)) zn:z_:oan(a:)(—l) T :n:z_:oan(a:)T
and hence it is necessary that
Jn(x) = (=1)"J_p (). (9.17)

As in the case of Legendre polynomials, for Bessel functions J,,(z) also
several recurrence relations are known. In the following theorem we shall
prove one and give a few others as problems.

Theorem 9.2 (Recurrence Relation).
xJ) (2) = ndp(x) — 2Jpa1(2). (9.18)

Proof. From the definition of .J,,(x) in (9.4), we have

Tn(@) = i m!(&f)fn); (3)2m+n

and hence

SO

aJ)(z) = ngo m!((:imn)! (;)MM

e Z (m —(1_)!1()7:—1— n)! (;)2m+n71

m=1

( 1)m+1 (x)2m+n+1
na +xzm' (m+n+1)\2

= nJp(x) — xJpt1(2).

Finally, we note that when x is very small then from (9.5) with a =
n, yo(x) ~ constant x x~"; from (9.8) Jo(z) ~ constant; and from (9.9)
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JO(r) ~ In|z|. Thus, when a = n (> 0) the second solution of (2.15) for
very small  can be approximated by

Injz| if n=0
constant X .
™" if n>1.

Hence, the second solution tends to oo as x — 0. Similarly, the functions
Y, (x) and K, (x) are unbounded at « = 0.

We also note from the definition of J,(z) in (9.4) and the derivation of
(9.18) that the recurrence relation (9.18) in fact holds for all real numbers
n, i.e., n need not be an integer.

Problems

9.1. Prove the following relations:
1) xd)(z) = —ndy(z) + xJp_1(x)
i) 2J)(x) = Jp—1(x) — Jpt1(x)
i) 2ndp(x) = 2(Jp-1(2) + Jpt1(x))

) @) = e ()
() g a@)) = " s (@)
d

Vi), (@In(2) i (2)) = o(Jn(x) = i ()

(vil) } (2) + T () =2 (ZJ,%@) . 1J5+1<m>)

(viii) J3(z) + 2J%(z) + 2J2(x) + --- = 1, and hence |Jo(z)| < 1, |Ja(2)] <
1/V2.

9.2. From the definition of J,(x) show that
0 )=y 2 s
i = sin
1/2 x _ S x
() Tynle) = 2 cos
i) Jo =
1/2(% _ z

2 [sinz
(iii) J3/2(x) = \/mc ( , T~ cos x)

(iv) J_3/2(x) _ \/ 2 (_Cosx

— sin x)
T

T
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(v) / t"“Jn(t)dt = x"+1Jn+1(x), n > —1.
0

9.3. In a study of planetary motion Bessel encountered the integral

1 T
y(x) = / cos(nb — xsin 6)do.
T Jo

Show that y(z) = J,(z).

9.4. Show that for any a > 0, the function
y(z) =z / cos(z cos 6) sin®* Adf
0

is a solution to the Bessel DE (2.15).

9.5. Show that the transformation = at”, y = t?w, where «, 5 and
~ are constants, converts Bessel’s DE (2.15) to

.2 d*w

dw
dt? t

a "t (26%t%° +~% — a®*)w = 0. (9.19)

+(2y+1)
For =1, v =0, a =n (nonnegative integer) (9.19) reduces to

d? d
t2 d:: +1t d;” + (@*t? —n®)w = 0. (9.20)

(i)  Show that the solution of the DE

dPw

g2 +t"mw =0, m>0

can be expressed as

2 m 2 .
’U}(t) = t1/2 (AJl/(m+2) <m+2t( +2)/2) + BJ—l/(m+2) <m+2t( +2)/2)> )

(ii) Express the solution of DE

d?w w=0
dt? N

in terms of Bessel functions and deduce the relations given in Problem 9.2
Parts (i) and (ii)

9.6. Show that the general solution of the DE

y’=x2+y2
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is given by

Toaya (32) + ¢Jaya (327)

X)) =T 3
= g (352) = s (32)

where c is an arbitrary constant.

9.7. Consider a long, flat triangular piece of metal whose ends are
joined by an inextensible piece of string of length slightly less than that of
the piece of metal (see Figure 9.1). The line of the string is taken as the
x-axis, with the left end as the origin. The deflection y(z) of the piece of
metal from horizontal at = satisfies the DE

Ely" +Ty =0,

string

7~

Figure 9.1

where T is the tension in the string, E is Young’s modulus, and I is the
moment of inertia of a cross section of the piece of metal. Since the metal
is triangular, I = ax for some constant o > 0. The above equation thus
can be written as

zy” + k*y =0,

where k? = T/E«. Find the general solution of the above equation.

9.8. Consider a vertical column of length ¢, such as a telephone pole
(see Figure 9.2). In certain cases it leads to the DE

Py P

—a)=0,
a2 T pre W
where F is the modulus of elasticity, I the moment of inertia at the base
of the column about an axis perpendicular to the plane of bending, and P
and k are constants.



72 Lecture 9

y » Vertical Column
’

8
e - ————— >

Figure 9.2

Find the general solutions of the above equation.

9.9. A simple pendulum initially has the length £3 and makes an angle
0y with the vertical line. It is then released from this position. If the length
of the pendulum increases with time ¢ according to £ = £y + €t, where € is a
small constant, then the angle 6 that the pendulum makes with the vertical
line, assuming that the oscillations are small, is the solution of the initial
value problem

d*0 do de
(o—l—e)dtQ-l— edt—i—g 0, 6(0) =6y, dt(o) 0,
where ¢ is the acceleration due to gravity. Find the solution of the above
initial value problem.

9.10. The DE

d’E dE

2 2, v
x — px —k*2"E =0
dez M g
occurs in the study of the flow of current through electrical transmission
lines; here p, v are positive constants and E represents the potential dif-
ference (with respect to one end of the line) at a point a distance z from
that end of the line. Find its general solution.

9.11. Consider the wedge-shaped cooling fin as shown in Figure 9.3.
The DE which describes the heat flow through and from this wedge is

d*y | dy
x2dx2 —l—xdgc — pxy =0,
where z is distance from tip to fin; T, temperature of fin at x; T, constant
temperature of surrounding air; y = T — Tp; h, heat-transfer coefficient
from outside surface of fin to the surrounding air; k, thermal conductivity
of fin material; £, length of fin; w, thickness of fin at its base; 6, one-half
the wedge angle; and p = 2hsec(£0)/kw.
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Figure 9.3

Find the general solutions of the above equation.

9.12. Consider a horizontal beam of length 2¢ supported at both
ends, and laterally fixed at its left end. The beam carries a uniform load
w per unit length and is subjected to a constant end-pull P from the right
(see Figure 9.4). Suppose that the moment of inertia of a cross section of
the beam at a distance s from its left end is I = 2(s + 1). If origin is the
middle of the bar, then the vertical deflection y(x) at = is governed by the
nonhomogeneous DE

d?y
dx?

where F is Young’s modulus.

2E(x+1+4+10) — Py = ;w(x—i—Z)Q—w(z—i—Z),

w

EEEEEEN

A A
00 00

Figure 9.4

Find the general solutions of the above equation.

Answers or Hints

9.1. (i) See the proof of Theorem 9.2 (ii) Use (9.18) and (i) (iii) Use
(9.18) and (i) (iv) Multiply the relation (9.18) by ="~ (v) Multiply the
relation in (i) by 2"~! (vi) Use (9.18) and (i) (vii) Proceed as in (vi)
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(viii) Use (vii) to obtain { (JZ(z) + J§(2)) + i (JE(z)+ J3(z)) +--- = 0.
Finally use Jo(0) =1, Ji(0) =0, k> 1.

9.2. For (i) and (ii) use 2*™T'mIT(m + 3/2) = (2m + 1)!y/ (iii) Verify
directly, or use Problem 9.1(iii) for n = 1/2 and then use (i) and (ii)
(iv) Similar to that of (iii) (v) Use Problem 9.1(v).

9.3. Sett=e"in (9.16) and then use (9.17).

9.4. Verify directly.

9.5. = = at’, y = t"w imply that xgi’ = ét'y (t‘f;f + yw), ngié’ =
2

gt ((7 — B+ 1B py=BHLd w g ydwpy=F 4 (g — ﬁ)wﬂ—ﬁ—l)

(i) Compare ¢ CZZJ + M2y = 0 with (9.19) (ii) Compare t* Cgt”rf +2w =0

with (9.19).

9.6. The transformation y = —u'/u converts the DE ¢y’ = 22 + y2 to

u” + 2%u = 0. Now use Problem 9.5(i), Problem 9.1(i) and (9.18).

0.7 42 (AJy (2ke1V2) 4+ B (2ka1/%)).

9.8. Usez =y —a, 2u = k/{, v = \/P/EI to convert the DE as

2 . 2 2
9%+ v%e?®z = 0. Now use t = ve'® to obtain t2% 7 + 97 + ;22 = 0.

Finally, compare this with (9.19).

9.9. 0(t) = \/Zol+et {AJl (2\6/9 Vil + et) +BJ_, (2‘6/9\/60 + et)} where
A= VIO 1O g g (/2D O-VRIE) g Vol

Ji(e)JL (e)=J-1(e)J{(e) S (e)=J-1(e)Ji(e) €

9.10. The transformation z = at®, y = t"w, where o,  and v are con-
stants, converts (9.15) to

2 tf;tzv + (27 + 1)tcgf + (—0;25%25 +7% - n2ﬂ2)wk: 0. (9:21)
E(z) = 2 (1+n)/2 [AI(1+;L)/V (2 $u/2) + BK(H;L)/V (2 ggu/2)] .

v v

9.11. Compare with (9.21) to get y(z) = Al (2\/ux/?)+BK, (2\/pxl/?).

9.12. y(z) = 2¥/2 [AL (\/253:1/2) + BE, (\/25331/2)} — B4 02+
(P =2E)(z+10) — Euw.



Lecture 10

Hypergeometric Functions

In this lecture we shall study the hypergeometric DE (3.17) and its
solutions, known as hypergeometric functions. This DE finds applications
in several problems of mathematical physics, quantum mechanics, and fluid
dynamics.

A series of the form

ab ala+1)bb+1) 5 ala+1)(a+2)bb+1)(b+2) 4
e’ clc+1) 2! * clc+1)(c+2) 3! v

(& Ta+mTe+m) ) T
- <mz_:0 Tc+m)ml ° )I‘(a)l"(b)
(10.1)

1+

is called a hypergeometric series.

The ratio of the coefficients of ™!

and '™ in the series (10.1) is
b

(c+m)(m+1)

which tends to 1 uniformly as m — oo, regardless of the values of a, b and

c. Hence, by the ratio test, the series (10.1) has unit radius of convergence

in every case. Also, since (10.2) can be written as

1 o
1 +c—a b+0(12>7
m m

the series (10.1) converges absolutely at « = £1 by the Gauss test if ¢ >
a—+b.

The hypergeometric series is commonly designated by F(a,b, ¢, z) and
in this form it is called a hypergeometric function.

In the hypergeometric DE (3.17), a, b, and ¢ are parameters. It is
clear that © = 0 and 1 are regular singular points of (3.17), whereas all
other points are ordinary points. Also, in the neighborhood of zero we have
po = ¢, ¢o = 0 and the indicial equation r(r — 1) + ¢r = 0 has the roots
rim=0andr, =1—c.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 10,
(© Springer Science+Business Media, LLC 2009
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On substituting directly y(z) = 2" >~ ¢na™ in the equation (3.17),
we obtain the recurrence relation

(r+14+m)(r+ct+m)emi1 = (r+a+m)(r+b+m)e,, m=0,1,---. (10.3)

For the exponent r; = 0, the recurrence relation (10.3) leads to the
solution ¢oF'(a,b, ¢, z). Taking ¢y = 1, we find the first solution of the DE
(3.17) as

y(z) = F(a,b,c,x). (10.4)

The second solution with the exponent 79 = 1 — ¢ when c¢ is neither zero
nor a negative integer can be obtained as follows: In the DE (3.17) using
the substitution y = z'~w, we obtain

(1 —z)w” + [e1 — (a1 + b1 + D)zjw’ — arbyw =0, (10.5)

where ¢y =2 —¢, ag =a—c+ 1, by = b— c+ 1. This DE has a series
solution w(z) = F(a1, b1, c1,2), and hence the second solution of the DE
(3.17) is

ylx)=2'"Fla—c+1,b—c+1,2—cx). (10.6)

The general solution of the DE (3.17) in the neighborhood of z =0 is a
linear combination of the two solutions (10.4) and (10.6).

Solutions of the DE (3.17) at the singular point z = 1 can be obtained
directly or may be deduced from the preceding solutions by a change of
independent variable ¢ = 1 — z. Indeed, with this substitution DE (3.17)
reduces to

H1—1) f;f +lei— (at b+ 1) ZE —aby =0, (10.7)
where ¢y =a+b—c+ 1.
Thus, we have the solutions
y(x) = F(a,b,a+b—c+1,1—2) (10.8)
and
yx)=1—-2) " "Flc—bc—a,c—a—b+1,1—2) (10.9)

provided ¢ — a — b is not a positive integer.

The hypergeometric equation (3.17) has an interesting property that the
derivative of a solution satisfies an associated hypergeometric DE. Indeed,
differentiating (3.17), we obtain

z(1—2)y" +c+1—(a+1+b+1+1Dz]y” —(a+1)(b+ 1)y =0,
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which is a hypergeometric DE in ¢’ in which a, b, ¢ have been replaced by
a+1, b+ 1, ¢+ 1, respectively. Thus, it follows that

d

d F(a,b,c,z) = AF(a+1,b+ 1,c+ 1,x), (10.10)
x

where A is a constant.

Comparing the constant terms on both sides of (10.10), it follows that
A = ab/c. Hence, the following relation holds

d

1
dxF(a,b,c,a:): cab Fla+1,b+1,¢+1,2). (10.11)

In general for the mth derivative it is easy to find

am Tla+m) T(b+m) T(e)

dg™ (a,b,c, ) T(c + m) I'(a) T'(b) (a+m,b+m,c+m,zx)

(10.12)

Like Bessel functions (cf. Problem 9.3), hypergeometric functions can
also be represented in terms of suitable integrals. For this, we shall prove
the following theorem.

Theorem 10.1 (Integral Representation).

1

F(a,b,c,x) = Blbc—b

1
)/ (1 —t)s o= 1= 11 —xt)=%dt, ¢>b>0.
0

(10.13)

Proof. From the relation (3.7) and the definition of Beta function (3.6),
we have

a+m T(b+m)T(c—0b) /T(b) T(c—0b)\ ,,
F(a,b,c,z) = Z I < I'c +m) / )a:

Z a+m Bb+m,c—b) ,,
I'(a B(bc—b)

1 — [(a+m) ! —b—1 btm—1
= m 1—1¢)° toTMm T dt.
B(b,c—b)mZ:O T(a) m! * /0( )

Thus, on interchanging the order in which the operations of summation and
integration are performed, we obtain

1 i a m
Flab,c,z) = B(b,i—b)/o (1 et {mz_:o Pr((ajm!)(xt)m}dt.
(10.14)
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However, since
(a + m)
=(1—axt)™®
> (1~ 1)

the relation (10.14) immediately leads to (10.13).

As a consequence of (10.13), we find

1 ! c—a—b—1,b—1

B(b,c—b)/o(l_t) " dt

B(c—a—b,b) T(c—a—0b)I(c)
B(b,c—b)  T(c—a)T(c—b)

F(a,b,c, 1)

provided ¢ —a > b > 0.
Next we shall prove the following relation.

Theorem 10.2 (Recurrence Relation).
Fla+1,b,¢c,x) — F(a,b,c,x) = 1bx Fla+1,b+1,c+1,2). (10.15)
c

Proof. From (10.1), we have

F(a—|—1bcx)— (a,b,c,x)

T'(b+m)T(c) {r(a+m+1)_r(a+m)} m
— T(c+m) mT() | T(a+1) ra) §°
= Ta@+mIrb+m)Te)m ,
- Z T(c+m)mTB)T(a) a”

- Cla+m)Db+m)T(e) .,
=) T(c+m)(m—1)IT®) T(a+1)"

Z Tla+m+D)Tb+m+1)T(c+1)
be F(c+m+1)m!F(b—|—1)F(a+1)x

br Fla+1,b+1,c+ 1, 2),

1
¢ m=0
1

c

which is the right side of (10.15).

Legendre polynomials can be expressed in terms of hypergeometric func-
tions. We provide this relation in the following result.

Theorem 10.3. The following relation holds:

P,(z)=F(—n,n+1,1,(1 —x)/2). (10.16)
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Proof. From the Rodrigues formula for Legendre polynomials (7.9), we
have

Py = - T LT [(x—l)”{;(x—kl)}n]

27 n! dxm n! dxm

_ ;! dcf; {@;-1)"{1— ;(1—33)}”]
_ =yt [(1—3;)"{1—Z(l—x)+”(”_1)(1—3;)2—-.-}]

n!  dxn 22 2!

_ (‘nlg" [(_1)%! - ’2‘(—1)”(” N V-
n(n—1) (n+2)!

g2 (T, '(1_33)2_“}

(=n)(n+1) (1— x>+ (=n)(=n+ D)(n+1)(n+2) <1_ x)2+

=1+ 1-2-1-2 9

=F(-n,n+1,1,(1—x)/2).

In the DE (3.17) if we use the substitution x = ¢/b, then the hypergeo-
metric function F(a,b,c,t/b) is a solution of the DE

t\ d?y a+1 dy
t{1l— — 11 t —ay =0.
< b)dt?Jr[c <+ b i~ Y
Thus, letting b — oo, we see that the function limy o F(a,b,c,t/b) is a
solution of the DE
(L
dt?
Next from (10.1), we have

loned) - (S} v

and since

+(c—1t) Cj;é —ay =0. (10.17)

it follows that

. a+m pm L) )
b1i>noloF (a,b,c ) < ) o)~ F(a,c,t), say.
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The function F'(a,c,t) defined in (10.18) is called a confluent hypergeo-
metric function, and the DE (10.17) is known as confluent hypergeometric
equation.

Finally, we note that the second solution of the DE (10.17) is t! = F(a —
c+1,2—¢t).

Problems

10.1. Express the solutions of the following DEs in terms of F'(a, b, ¢, x)
i) z(l-=2)y" -3y +2y=0
i) 2z(1—a)y"+(1—-2)y +3y=0
i) z(l-2)y" +(2-32)y —y=0
iv) (2z +22%)y" + (1 +52)y' +y = 0.

10.2. Show that in the DE (3.17) the change of the dependent variable
y = (1 —2)°" %y leads to a hypergeometric equation having the solutions

y(x)=1—-2)"""Flc—a,c—b,c,x)

and
y(r) =2 (1 —2) " PF(l—a,1-b,2—cz).

Further, show that these are identical with (10.4) and (10.6), respectively.

10.3. Setting x = 1/t in the DE (3.17), find the exponents at infinity,
and derive the solutions

y(z) =27 "F(a,a—c+1l,a—b+1,1/z)

and
y(x) =2 PFbb—c+1,b—a+1,1/z).

10.4. Show that the DE
(2% + a1x + a2)y” + (asx + as)y’ + asy =0

can be reduced to the hypergeometric form by a suitable change of variable
provided the roots of 22 4+ a1z + as = 0 are distinct.

10.5. Use the result of Problem 10.4 to show that the Legendre
equation (3.19) with @ = n can be reduced to the hypergeometric form

t1—t)y" + (1 -2t)y +n(n+1)y=0

by the substitution z — 1 = —2¢. Hence, establish the relation (10.16).
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10.6. Use the transformation ¢t = (1 — z)/2 to convert the Chebyshev
equation (3.15) into a hypergeometric equation and show that its general
solution near x = 1 is given by

1/2
1 1— 1-— 1 1 31—
y(a:):cOF<a,—a,2, 2x>+61( 233) F(a—|—2,—a—|—2,2, 233).

10.7. Show that Jacobi’s DE
z(1—z)y" +la—(1+b)a]y +nb+n)y=0

is a hypergeometric equation, and hence its general solution near z = 0 can
be written as

y(x) =cF(n+b,—n,a,z) +cx' " "Fin+b—a+1,1-n—a,2—a,z).

10.8. Prove the following recurrence relations

i F(a,b,c,x) — F(a,b,c—1,2) = — abx Fla+1,b+1,c+1,x
clc—1)
(i) F(a,b—i—l,c—i—l,x)—F(a7b7c7x):ac((cclbl);F(a—i—l,b—i—l,c—i—Zx)
(a—b—1)x

(iii) Fla—1,b+1,¢,2) — F(a,b,c,z) = F(a,b+1,c+1,2).

¢
10.9. In the analysis of a deformation due to a uniform load on a
certain circular plate, the following equation occurs:

22(1 — (ex)®)¢" + z(1 — (ex)* — 3k(ex)®)¢' — (1 — (ex)* + 3kv(ex)*)p = 0,
(10.19)
where €, k, and v are constants; x is proportional to the distance from the
center of the plate, and ¢ is the angle between the normal to the deformed
surface of the plate and the normal to that surface at the center of the
plate. Show that the successive substitutions z = ex, ¢ = 21p, 2¥ = o
transform (10.19) to the hypergeometric equation
d?y k+2 2+ 3k dy  3(v+1)
a(l U)dUQ-l-{ A <1+ I )U]da K =0
with c = (k+2)/k, a+b= (2+3k)/k, ab= 3(v+1)/k. Hence, if « and
are the roots of kA% — (24 3k)A + 3(v + 1) = 0, the solution of (10.19) can
be written as ¢(z) = exF(a, 3, (k + 2)/k, e¥z*).

Answers or Hints

10.1. (i) F(-2,1,-3,z) (ii) F(1,-3/2,1/2,2) (i) F(1,1,2,z)
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(iv) F(1/2,1,1/2,—x).
10.2. Substitute y = (1 — 2)°~* Py in the DE (3.17) to get
z(l—2)u" +c—(c—a+c—b+ 1)z — (¢ —a)(c—b)u=0.

The identities follow from the uniqueness of the initial value problems for
(3.17).

10.3. Substitute x = 1/t in the DE (3.17) to get
2
flitg +lla+b—-1)—(c—2)t] t(tl—l) lj;t/ - t2(lil11)y =0.

For this DE ¢t = 0 is a regular singular point and the exponents are a and

b.

10.4. If 2° + a1z + az = (v — a)(x — b), then use the substitution ¢ =
(z —a)/(b—a).

10.5. Problem 10.4 suggests the substitution t = “”__21.
10.6. For this also Problem 10.4 suggests the substitution ¢ = w_’zl.
10.7. Compare the coefficients to get a =n +b,b = —n,c = a.
10.8. Use (10.1) directly.

10.9. Verify directly.



Lecture 11

Piecewise Continuous
and Periodic Functions

Mathematical problems describing real world situations often have so-
lutions which are not even continuous. Thus, to analyze such problems
we need to work in a set which is bigger than the set of continuous func-
tions. In this lecture we shall introduce the sets of piecewise continuous and
piecewise smooth functions, which are quite adequate to deal with a wide
variety of applied problems. Here we shall also define periodic functions,
and introduce even and odd extensions. These terms will be used in later
lectures repeatedly.

Recall that for a given function f(z) the right-hand and the left-hand
limits at the point xg are defined as follows:

flao+) = lm  f(@)= lim f(a),

T — 20 r—xo+ "
x > X0
and
flao-)= lm f(@)= lm f(a).
T — To TTo—
x < xo

We say f(x) has the limit at © = z¢ provided f(xzo+) = f(zo—). The
function f(x) is said to be continuous at a point g provided lim,_.., f(z) =
f(zp), and it is continuous in an interval a < x < f if it is continuous at
each point = for o < & < 3 (see Figure 11.1).

0
mo—):4
o/\ flwo) =1

N
kﬁkﬁ
— =
8
o
+
—
Il

\

T S
) xo I Zo xo
continuous at xg discontinuous at zg discontinuous at x
Figure 11.1

As an illustration, consider the function f(x) = cosl/z, 0 < = < 1.
For this function f(0+) does not exist. In fact, as © — 0+, f(x) oscillates
between —1 and 1. To see this let z, = 1/(2n7), n = 1,2,---. Then,

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 11,
(© Springer Science+Business Media, LLC 2009
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T, — 0 as n — oo, but f(z,) = cosl/z, = cos(2nw) = 1. Also, let
yn = 1/[2n+ 7], n = 1,2,---. Then, y, — 0 as n — oo but f(y,) =
cos 1/y, = cos(2n+1)m = —1. As another example, for the function f(x) =
1/z, 0 <z <1, f(0+) =limy_o4 1 /2 = Fo00.

Definition 11.1. A function f(z) is called piecewise continuous (sec-
tionally continuous) on an interval o < x < [ if there are finitely many
points a = xg < 1 < -+ < x, = ( such that

(i).  f(z) is continuous on each subinterval g < = < x1, 1 < = <
Ty, 0y Tp_1 < x < Ty, and

(ii). on each subinterval (xy_1,xy) both f(zr—1+) and f(xzp—) exist, i.e.,
are finite.

Note that the function f(x) need not be defined at the points x.

We shall denote the class of piecewise continuous functionson o < & <
by O;D (O[, 6) .

Example 11.1. Consider the function
22, 0<z<l1

flz)=¢9 -1, 1<z<2
z—1, 2<x<3.

We shall show that f(z) is piecewise continuous on 0 < x < 3. Note that
for this function g =0, x1 =1, 29 = 2, 23 = 3 (see Figure 11.2).

On0 <z < 1: f(zr) = 2? is con-

tinuous on 0 < z < 1, and f(04) = Y

lim, .oy 22 = 0, f(1-) = lim,_.;_ 22

=1 2
Onl<az<2 f(x)=-1is con- /

tinuous on 1 < z < 2, and f(1+) = 1

hmw%l+ f(f) = hmw*,1+(—]_) = —1’

f(2=) =limgo f(z) = —1. Op T
On2 <z <3 flr) =a2-1is 1 2 3

continuous on 2 < z < 3, and f(2+) = )

1, f(3=)=2. e °
Hence, f(z) € C,(0,3). Figure 11.2

Remark 11.1. (i). f(z) is not defined at = 0 and 2.

(ii). One can integrate a piecewise continuous function interval-wise, e.g.,
for the above function:

/OBf(x)d;v:/le2dx+/12—ldx+/23(x—1)dx:2.



Piecewise Continuous and Periodic Functions 85

Example 11.2. The function f(z) = cos1/x, 0 < x < 1 is continuous
on 0 < x < 1. However, since lim,_,o4+ f(x) does not exist, f(z) & Cp(0,1).
Similarly, f(xz) =1/ & C,(0,1).

Example 11.3. For the function f(x) = 2?sinl/z, 0 < x < 1 we

have g = 0, x; = 1. Clearly, on 0 < x < 1 this function is continuous,

and f(1-) = lim,_;_ 2?sin1/z = 1?sin1/1 = sin1. We shall show that

f(04) = lim, o4 2?sin1/z = 0. For this note that for z > 0, —1 <
sinl/x <1, and hence

2 2 . 1 2

—x° < z“sin <z

x

)

so by the sandwich theorem lim,_,o+ 2% sin1/z = 0. Thus, f(z) € C,(0,1).

Definition 11.2. A function f(z), a < = < 3 is said to be piecewise
smooth (sectionally smooth) if both f(z) and f'(z) are piecewise continuous
on a < x < (. The class of piecewise smooth functions on a@ < & < 3 is
denoted by C}(a, 3).

Note that f/(z) is piecewise continuous means that f’(x) is continuous
except at sq, - -, Sy, (these points include zg, - - -, z,, where f(x) is not con-
tinuous) and on each subinterval (si_1,si) both f/(sx_1+) and f'(sp—)
exist. Here f'(sj4) = lim, ., 4 f'(2) and f'(s;—) = lim, ., — f'(2).

Example 11.4. Consider the function

fz) = r+1, —-1<x<0
~ | sinz, 0<z<m/2

Clearly, f(z) € Cp(—1,7/2), z9 = —1, 1 = 0, z2 = 7/2 (see Figure
11.3(a)). Since

/ o 1, —1l<z<0
f(x)_{ cosz, O0<z<m/2

we have so = —1, s1 =0, s9 = /2 (see Figure 11.3(b)).

G—'\
& x D

-1 10 /2 -1 0 /2
Figure 11.3 (a) Figure 11.3 (b)

On —1 <z <0: f'(x) =11is continuous, and f'(—1+) =1, f/(0—) = 1.
On0 <z <w/2: f'(x) = cosx is continuous, and f'(0+) =1, f'(7/2—) =
0.
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Thus, f'(z) € Cp(—1,7/2). In conclusion, f(z) € C}(—1,—7/2).

Example 11.5. Consider the function

0.01, —-01l<z<0
fl)=9
z?cosl/x, 0<x<0.1

(see Figure 11.4).

Clearly, f(z) € Cp(—0.1,0.1), and

f,(gc):{ 0, —0l<z<0

Figure 11.4

2xcosl/x +sinl/z, 0<xz<0.1.

If f'(z) € Cp(—0.1,0.1), f/(0+) must exist. But, f'(0+) does not exist. In
fact, lim,_,o+ 22 cos 1 /2 = 0 by the sandwich theorem, but lim, o4 sin1/x
does not exist, because sinl/x oscillates between —1 and 1 as * — 0.
For this, let =, = 1/[(2n + )7, y» = 1/[(2n + 3)7] so that z, —
0+, yn — 0+ as n — oo. Clearly, sinl/z,, = 1, sinl/y, = —1. Thus,
f'(z) & Cp(=0.1,0.1), and hence f(z) ¢ C;(—0.1,0.1).

Rule of Thumb. If f(z) is defined in pieces, where each piece is
differentiable twice in a slightly larger interval, (e.g., (—o0,00)), such as
polynomials in z, e*, sinz, etc., then f(x) is piecewise smooth. For exam-
ple, the function
dr+2, O<z<l1
f(x)—{ er, l<ax<?2

is piecewise smooth.

Definition 11.3. A function f(z) is said to be periodic with period
wif f(x +w) = f(z) for all x. For example, f(x) = cosz is periodic with
period 27. In fact, f(z + 27) = cos(x + 27) = cosz = f(z) for all . For
n > 1 the function f(z) = sinnz is periodic with period 27, f(z + 27) =
sinn(z + 27) = sin(nz + 2nw) = sinnx = f(z).

Clearly, the expression
a o0
20 + nz_:l(an cos nx + by, sin nx)

is periodic with period 2.

Any function f(z) defined on —m < x < 7 can be extended to a periodic
function F'(z) with period 27. The function F(z) is called the periodic
extension of f(x).
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Example 11.6. For the function

0, —nm<x<0
f(a:)—{ r, 0<ax<m

the extension F'(x) is given in Figure 11.5.

y
s

/ /F(x)

S 5r % o 7 27 3r "

Figure 11.5

Remark 11.2. If a function f(x), —7 < 2 < 7 can be extended to a
periodic function with period 27, we must have f(—m) = f(7)

Example 11.7. For the function f(x) = 22, —7 < x < 7 the extension
F(z) is given in Figure 11.6.

Y
71_2
F(z)
™
xr
—4r —3r 27 -7 0 m 27 3 47
Figure 11.6

Finally, we recall that if a function g(z) is odd, i.e., g(—z) = —g(x) then
J°, g(x)dx =0, and if g(x) is even, i.e., g(—x) = g(z) then [ g(x)dz =
2 [, g(x)dx. Further, if g(x) is defined only on (0, ) we can extend it as
follows:

gz), 0<z<a
—g(—x), —a<zxz<0.

go(z) =

Clearly, go(x) is an odd function, and hence it is called an odd extension of
g(z). We can also extend g(x) as

) g9(), 0<z<a
9e(®) = g(—z), —a<z<O.

Since, ge(z) is even it is called an even extension of g(x).
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Graphically, the even extension is made by reflecting the graph in the
vertical axis. The odd extension is made by reflecting first in the vertical
axis and then in the horizontal axis (see Figure 11.7 for the function z, 0 <
r < 1).

=) X 1 1"
even extension
-1

odd extension

Figure 11.7

Problems

11.1. (i) Show that the function f(x) = y/xcos(1/x?) is piecewise
continuous on the interval (0, 1).

(ii) Is the function f(x) = sin(1/2?) piecewise continuous on the interval
(0,1)? Justify your answer.

11.2. Consider the function f(x) = 22 sin?(1/x) on the interval (0, 1).

(i) Show that f(x) is piecewise continuous on the interval (0, 1).

(ii) Is f(x) piecewise smooth on the interval (0,1)? Justify your answer.

11.3. Show that the function

V122 for 0<z<1
f(x)_{a: for 1<ax<?2

is piecewise continuous but not piecewise smooth on (0, 2).

11.4. Using I'Hospital’s rule find f(0+) and f/(0+) for the function

{ (1—e")/z, x#0

Deduce that f(z) is piecewise smooth on the interval (0, 1).

11.5. Consider the function

fa) = { g’(c"iﬂi? +sin(lnz)), 0<z<1
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Compute f/(z) for 0 < x < 1 and deduce that f(z) is not piecewise smooth
on the interval (0, 1).

11.6. Prove that if f(x) and f’(x) are both even functions, then f(x)
is a constant.

Answers or Hints
11.1. (i) See Example 11.3 (ii) Take z, = [(2n + 3)7]~Y/2, y, = [(2n —
bl

11.2. (i) f(0+) =0 (i) No. For f'(z) = 2xsin*(1/z) — sin(2/x) take
zn =2[2n+ D7]7Y yn =2[(2n — L)a]

11.3. f/(1) is undefined.
11.4. f(0+) = -1, f(0+) = —1/2, f(z) € C}(0,1).

11.5. f/(z) = 2cos(lnx) oscillates between —2 and 2 as * — 0 + . Take

Ty = e—2n7‘r’ Yn = e—(2n+1)7‘r.

11.6. Differentiate f(z) = f(—xz) and use f'(z) = f'(—=z).



Lecture 12

Orthogonal Functions
and Polynomials

In this lecture first we shall introduce orthogonality of functions, which
is a generalization of orthogonality of vectors in the sense that the sum
of products in the scalar multiplication (dot product) of vectors will be
replaced by the integral of products, and then show that the Legendre,
Chebyshev, and Hermite polynomials are orthogonal. The orthogonality of
Laguerre polynomials and Bessel functions will be shown in the next lecture.
Orthogonality of functions plays a fundamental role in constructing Fourier
series, which we shall discuss in detail later.

We begin with the following definition.

Definition 12.1. The set of functions {¢,(z) : n =0,1,---} each of
which is piecewise continuous in an infinite or a finite interval [a, §], is said
to be orthogonal in [a, §] with respect to the nonnegative function r(x) if

B
= G, Pn == / r(2)pm (z)ppn (x)de =0 for all m#n

[e3

and 5
/T($)¢i(x)da@ £ 0 forall n.

The function r(z) is called the weight function.

We shall always assume that r(z) has only a finite number of zeros in
[a, 8] and the integrals faﬂ r(z)pn (z)dr, n=0,1,- - exist.

The orthogonal set {¢,(z) : n=0,1,---} in [o, §] with respect to the
weight function r(x) is said to be orthonormal if

B
/r(:r:)gbi(a:)da:zl for all n.

Thus, orthonormal functions have the same properties as orthogonal func-
tions, but, in addition, they have been normalized, i.e., each function ¢, ()
of the orthogonal set has been divided by the norm of that function, which

is defined as
3 1/2
[pnll = ( / r(x)¢,%(x)dx> .

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 12,
(© Springer Science+Business Media, LLC 2009
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Example 12.1. The set
{1, cosnz, n=1,2,---}

is orthogonal on 0 < x < m with r(z) = 1. Indeed, for m # n, we have

T 1 T
/ cosmx cosnxdr = 5 / [cos(m — n)x + cos(m + n)z|dx
0 0

2

1 sin(m—n)x+sin(m+n)x T
B m—n m+n

0

1 Tsi _ .
_ [bln(m n)w 04 sin(m +n)m 0] _a.
2 m-—n m+n
Now since
. 1/2
ol = ([ v2ar) " = v
0

T 1/2 T 1/2
1 52
foul = ([ Ceotnads) "= ([T a ) -5

it follows that the set

1 2
, cosnr, n=1,2,---
N4 T

is orthonormal on 0 < = < m with r(z) = 1.

Example 12.2. The set

2
{\/ sinnx, n= 1,2,~-~}
T

is orthonormal on 0 < = < m with r(z) = 1.

Example 12.3. The set

1 1 1
, cosnx, sinnx, n=1,2,---
{\/27T VT Ve }

is orthonormal on —7 < 2 < 7 with r(x) = 1. For this we need to check

T 1 2 T 1 2 T 1 2
/ <\/2 ) de =1, / <\/ cosm:) dr =1, / (\/ sinm:) dr =1,
7 s — ™ - ™

o1 1 o1

1
X cosnzdr = 0, X sinnxdr = 0,
V21 T V2 T
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T 1 T 1
cos nT cosmzxdr = 0, sin nx sinmzdr =0, m#n
—7 \/77 VT - \/ vau
and

T 1
cosnx sinmxdr =0, m # n.

—r VT VT

Orthogonality of Legendre polynomials. We shall use
Rodrigues’ formula (7.9) to show the orthogonality of Legendre polynomials
n [—1, 1] with r(z) = 1. Indeed, from (7.9), we have

1 1
d’n.
2" / P (2) Po(2)dz = / Po(a) & (22— 1)da,
1 1 dx™
Now an integration by parts gives

/1P<)dn(2—1>"d
_1mxdx"$ X

1 1 n—1
d d
- P, 2 _1)"dx.
L ) g @7 e

However, since d"~!(z? — 1)"/dz"~! contains a factor (22 — 1), it follows

that
1 1 d qn—1 )
2"n! P, (z)P, =— P, —1)"dx.
w [ Pa@Puoye == [P = 1)

We can integrate the right side once again, and continue until we have
performed n such integrations. At this stage, we find

2%!/_11 Py (2)Py(z)da = (—1)" /_11 ( d Pm(x)) (22 — 1)"de. (12.1)

dx™

dn—l

= Pm (ZII) dxn—1

(@ —1)"

There is no loss of generality if we assume that m < n. If m < n, then
d"Pp,(z)/dx™ = 0 and it follows that

/1 P, (z)P,(x)dz = 0.
-1

Further, if m = n, then once again from (7.9), we have

d" 1 g
T o2n pl da2n

(2n)!

2 n
— 1) =
(2 ) 27 nl

and (12.1) gives

/_lpf(a:)da: = (;f Ei?));/ (22 — 1)"du. (12.2)
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Let y = 22 in the integral fil(x2 — 1)"dz, to obtain

1 1 1
CE2— L ra— CE2— Ny = (—1)" _.\n,,—1/2
/( 1) 2A( 1)rde = (~1) A(l Yy 2y

B W)
L(n+3)

1
(18 (01, = (1"
Thus, (12.2) is the same as

/1P3($)dm_ (2n)! n! T (3) 2
-1

T (4 ) (= )0 (1) T 2kt

Orthogonality of Chebyshev polynomials. We shall show
that Chebyshev polynomials of the first kind T}, (z) = cos(ncos™ '), n =
0,1,--- are orthogonal in [~1,1] with r(z) = (1 — 2?)~'/2. For this, it
suffices to note that

1

/1 (1 — 22) 12T, (2) T (2)da

—1

1
/ (1 —22)7Y2 cos(m cos ™' x) cos(n cos ™' x)da
~1

/ cosmb cosnfdf (x = cosb)
0

0, m#

= 71'/2, m

™, =

n
:n%
n =0.

Similarly, it follows that Chebyshev polynomials of the second kind
Un(z), n = 0,1,--- are orthogonal in [~1,1] with r(z) = (1 — 2?)!/2. In
fact, we have

1
/ (1 — )Y 20U, (2)U,, (2)dx = { 27/27771 #n

—1 m =n.

Orthogonality of Hermite polynomials. We shall show
that the set of Hermite polynomials {H,,(x), n =0,1,---} is orthogonal in
(=00, 00) with r(x) = e=*". Since H,(z) is a solution of the DE (8.9), we
have ,

(e*fH;(x)) + 2ne™" H,(z) = 0. (12.3)

Multiplying (12.3) by H,,(z) and integrating from —oo to oo, we find

o0

/OO (e_zzHr/z(ﬂf))/Hm(x)dx = —Zn/ e_man(x)Hm(x)dx,

— 0o — 0o
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which is the same as

e ™ H' (z)Hyp (z)

- / e H! (2)H., (z)dw

= —2n /OO e’w2Hn(x)Hm(x)dx

and hence
/ e~ H! (2)H!,(v)dz = 2n / e~ H,(x)Hy, (z)dz. (12.4)

Interchanging m and n in (12.4) and subtracting the resulting equation
from (12.4), we obtain

(2n —2m) /OO e*w2Hn(x)Hm(x)dx =0.
Thus, if m # n, we get
/00 e_zan(a:)Hm(a:)da: =0.
Next we shall show that
I, = /OO e_zzHi(a:)da: =2"n! /7. (12.5)

In view of Problem 8.2(iii), we have

/ T e H (1) Hy () — / T el () (1) © ey

— 00

I,

= (-1)" /_OO Hn(x)dcine*ﬁdx

n dn—1 2 e > dn—1 2
= (-1) lHn(x)dxn_le N —/700 H,'L(x)dxn_le dx
00 dnfl 5
— n+1 —z
= (=1 [m 2nH, 1 (x) dgn—16 dx
= 2nl,_1=2n2n—2)I,_2=---=2n(2n—-2)---2 I

= 2" n! IQ.
(12.6)
Now since I = [ e~ dx = \/m, (12.5) follows immediately from (12.6).



Lecture 13

Orthogonal Functions
and Polynomials (Cont’d.)

As mentioned in the previous lecture here first we shall establish the
orthogonality of Laguerre polynomials and Bessel functions and then prove
a fundamental property about the zeros of orthogonal polynomials.

Orthogonality of Laguerre polynomials. The Laguerre
DE (8.10) can be written as

(x““e*””y')/ +nxte "y = 0. (13.1)
Since LS{’)(x) is a solution of (13.1), it follows that
(a:““ewa,(f)/(a:))/ + nate L) (z) = 0.
The rest of the proof of
/000 e 2 L ()L (2)dz =0 for m#n

is similar to that for Hermite polynomials.

Next, from Problem 8.3(i), we have

/ e*wxalea) (x)lea) (x)dx _ / lea) (x) (efgcanra) de
0 0 dx™

n!
1 oo (@) dnfl e nta
= ; L)Y (x) dan—1 (e™"a"*?) da

(n)
However, since in view of (8.11), (Lq({z)(x)) = (—1)", we find

o 2 1 [ Tr 1
[ e () e [T e raninan < T D,
0 0

n! n!

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 13,
(© Springer Science+Business Media, LLC 2009
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Orthogonality of Bessel functions. In Lecture 3, as an
application of Theorem 3.1, we have seen that for all a every solution of
Bessel’s DE (2.15) has an infinite number of zeros in J = (0, c0). This in
turn implies that for every fixed a the solution J,(z) of the Bessel equation
has an infinite number of zeros in J = (0, 00). Let these zeros be {b,, n =
0,1,---}, where by < by < ---. We shall show that {J,(b,z), n=0,1,---}
is an orthogonal set in [0, 1] with respect to the weight function r(x) = .
In fact, we shall prove that

0 if by #b,

/1 xdo(bpx)Jo(bgx)dr = (13.2)
0

1 .
2J§+1(bp) if b, = bg.

For this, first we use the substitution « = pt (p > 0 is a constant) in the
Bessel DE (2.15). Since

dy dydt 1ldy and d?y 1 d?y
de dtdr pdt dz?  p2 de?’

we have 2 p
1 d%y 1dy
2,2 2,2 2 _
2 d? +ptpdt + (p°t* —a®)y =0,
or o
d?y . dy
t2 gz Tl T (p*t? — a*)y = 0.

Hence, if y = J, () is a solution of
1 a?
v+ vt <1— x2>y=0

then it follows that the functions u = J,(pux) and v = J,(vz) (1 and v are
distinct positive constants) satisfy the equations

" 1 / 2 a2

u +xu+ K= o u=20 (13.3)
and

" 1 / 2 a2

v+ 2" + (v — 2 ) U= 0. (13.4)

Multiplying (13.3) by v and (13.4) by u and subtracting, we obtain
d
dx
which is the same as

d
dx

1
(w'v —v'u) + (v —v'u) = (V* — p?)uw,
T

(z(u'v —v'u)) = z(v? — p?)uw
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and hence
1

=u'(1)J,(v) — 0" (1) Ja(p). (13.5)

1
(v? — ,uz)/o ruvdr = (z(u'v —v'u)) .

It follows that the integral on the left side is zero if y and v are distinct
positive zeros b, and b, of J,(x); i.e., then we have

/ by Ju by )i = 0. (13.6)
0

Now we multiply (13.3) by 222, to obtain

. (x2u’2 —|—u2x2u2 —a2u2) _ 2,u233uz
€T

and hence .

1
2,u2/ rudr = (x2u’2 + p22?u? — a*u?)
0

0

When z = 0 the expression in the bracket vanishes (a?u® = 0, since u =
Jo(pz) and J,(0) = 0 if @ > 0), and since v'(1) = pJ, (1), we have

' 2 Lo 2 1 a? 2
[t = )y (10 ) Gale)),
which from the recurrence relation (9.18) is the same as

1
1
/O xJ2(byx)dx = 2J3+1(bp). (13.7)

The following table contains the values of the p-th positive zero b,, ), of
the Bessel function J,, (x):

P 1 2 3 4 5

bo, 24048 55201 8.6537 11.7915 14.9309
by, 3.8317 7.0156 10.1735 13.3237 16.4706
by, 5.1356 84172 11.6198 14.7960 17.9598
bs, 6.3802 9.7610 13.0152 16.2235 19.4094
by, 7.5883 11.0647 14.3725 17.6160 20.8269
bs, 8.7714 12.3386 15.7002 18.9801 22.2178

Zeros of orthogonal polynomials. Now we shall consider
a fixed set of orthogonal polynomials {p,(z), n = 0,1,---} in the inter-
val [a, §] with respect to the weight function r(z). We shall represent the
polynomial p,,(z) as

pn(x) = me-xi, n=20,1,--- (13.8)
i=0
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where by, # 0. Although there are numerous properties of orthogonal poly-
nomials, we shall prove only that the zeros of each polynomial p,(z), n > 1
are real, simple, and lie in the open interval (a, 3). For this, we need the
following theorem.

Theorem 13.1. Any polynomial

has a unique representation of the form
Qn(z) = ZQZH(@ (13.9)
i=0

Proof. We define the following sequence of polynomials

0 n—1
Qua@) = Qula) = ;" pale) = > o
al n2 .
Qn-2(z) = Qn-1(z)— bn_t_nl_lpnfl(x) = 2 a%xz
an—1 s
Q(r) = Qu@)- "1 pi@) =af = po(@)
11 00
Now summing these relations, we obtain
n—1 n N g
D Qi)=Y Qi) =3 pil),
i=0 i=1 i=1 "

which is the same as

n —i

Qu(@) =3 @)+ Qola) =Y “b pia).

i=1 i=0

S

S

Thus, in (13.9) the constants ¢;, 0 < i < n are determined successively by
the relations

Cpn—i = ) izoalv"'vn'

To show the uniqueness, let us assume that

Qu(x) =Y cpi(x) =Y dipi(x)
=0 i=0
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and hence
n

> (i — di)pi(x) = 0.

i=0
However, from the orthogonality of the polynomials p,,(z), we find

n

B B
0= / r(z) (Z(Ci - di)pi($)> pj(e)dr = (¢j — dj)/ r(@)p; () de,

i=0
which implies that ¢; =d;, 0 <j < n.

Corollary 13.2. Let Qx(x) be any polynomial of degree k < n. Then,
B
/ r(2)pn(2)Qr (z)dx = 0.

Proof. From Theorem 13.1 there exist constants ¢;, i = 0,1, -- -,k such
that Qk(z) = Zf:o ¢ipi(x). Now the result immediately follows from the
orthogonality of the polynomials p,, ().

Theorem 13.3. The zeros of each orthogonal polynomial p,,(x), n > 1
are real, simple, and lie in the open interval («, 3).

Proof. Let p,(x) be of fixed sign in (a, 3), then

B B
0 # / r(x)pn (x)dx = L /r(x)pn(x)po(x)da:.

po(z)
However, this contradicts the definition of the orthogonality. Thus, p,(z1)
= 0 for some x; € (a, ). Next let z; € (a, ) be such that pgf)(xl) =
0,0<i<k-—1(2<Ek<n),then Qu, (z) = pu(2)/(x — x1)* will
be a polynomial of degree n — k. Hence, from Corollary 13.2, we have
ffr(x)pn(x)Qn,k(x)dx = 0. But, for k even

B 2(

A x
/ r(x)pn(a:)Qn_k(a:)da::/ r(x) Pn )kdx # 0.

e (x_xl)

This contradiction shows that the roots of p,(z) in (o, 5) cannot have even
multiplicity. Finally, let z1,xo, -, z, € (o, ), 1 <r < n be the only zeros
of p,(x); then

pu(@) = (& —21)(x = 22) -+ (2 = 27)Qn—r(2),

where Q,,—,(z) is a polynomial of degree n — r having fixed sign in («, 3).
Thus,
(z — x1)2(x - 552)2 (- $r)2Qn7r(x)
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is of fixed sign in (v, 3), and hence
B
/ r(x)(x —x1)%(x —29)? - (2 — 2,.)°Qn_r(x)dx
B
= / r(z)pn(x)(x —z1)(x — 22) -+ - (x — 2 )dx # 0,

which contradicts Corollary 13.2 and so r = n.

As a consequence of Theorem 13.3, we have

i)  The Legendre polynomial P,(x), n > 1 has n real simple zeros in

1)
ii) The Chebyshev polynomial of the first kind T,,(x), n > 1 has n real
imple zeros in (—1,1).

(

(-1

(i

si

(iii) The Chebyshev polynomial of the second kind U, (z), n > 1 has n
real simple zeros in (—1,1).

(iv) The Laguerre polynomial L )( ), n > 1 has n real simple zeros in
(0, 00).

(v)  The Hermite polynomial H,(z), n > 1 has n real simple zeros in
(=00

00).

We conclude this lecture by stating the following theorem.

Theorem 13.4. If z; < 5 < --- < x, are the zeros of p,(z), and
Y1 < Y2 < -+ < Ynt1 are those of p,41(x), then

A<y <1 <Y <X < <Yy < Ty < Y1 < P

Problems

13.1. (i) Show that the functions ¢1(x) = 1 and ¢2(z) = 22 — 1 are
orthogonal on the interval 0 < x < 1 with r(z) = 1. Further, determine
constants A and B so that the function ¢3(x) = 1+ Az + Ba? is orthogonal
to both ¢1(x) and ¢o(z).

(ii) From the orthogonal functions in part (i) find three orthonormal func-
tions on the interval 0 < x < 1 with r(z) = 1.

13.2.  Consider the functions ¢ (z) = V2, ¢2(z) = = and ¢3(z) =
22 + Ax + B. Tt is given that ¢3(z) is orthogonal to both ¢;(z) and ¢o(z)
on the interval 0 < < 1 with r(z) = 1. Find A and B.

13.3. Find constants a;, i = 1,2,3,4,5 so that the set of three
functions {a1, asx, azx?® + asx + as} forms an orthogonal set on [—1,1]
with weight function w(x) = 1.
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13.4.  Verify that the set of functions given in Example 12.2 is or-
thonormal on the interval 0 < z < 7 with r(z) = 1.

13.5. Show that the relation (13.6) holds if 1 and v are one of the
following:
(i)  zeros of J) (x)
(i) zeros of xJ) (x) + hJ,(x), where h is any constant
(iii) zeros of J,41(x)
(iv) zeros of J,_1(x).

13.6. For the Legendre polynomials show that

(1) / 2" Py (x)dx = 2 (n!)

.. ! 9 B 2n(n+ 1)

(i) /_1 2“Ppi1(z) P (x)de = (20— 1)(2n + 1)(2n + 3)
o[ 1 3 1

(i) /1 v Pa(@)dz = 8(2n —1) + 42n+1) * 8(2n + 3)

(iv) (m+n+1)/01men(a:)da: :m/()l 1P, 1 ()de

= (m —n—+ 2) A a:mPn_g(a:)da:

0 if m<n
1 m! T (im— in+3)
) [ Pz = 20 on T (ot dnt )
B it m—n(>0) iseven

0 if m—n(>0) isodd
(vi) /1 (1—a2*) P, (2)P.(x)dr =0, m#n

) L , B 2n(n+1)
(vii) /_1(33 — 1) Ppia(z) P (z)de = (2n+1)(2n+3)

13.7. Let 21, -+, 2, be the zeros of the Legendre polynomial P, (x),
n > 1. Show that

_27(n!)?

() 1) = (@) (o= a0) = " 1 Pa)
. 1 ) B 92n+1(pl)4
@[ W@a= o g

13.8. Find results similar to those in Problem 13.7 for the polynomials
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To(z), Un(z), L' (z) and H,(z), n > 1.

13.9. For the associated Legendre functions P (x) of the first kind
defined in Problem 7.12 show that

1 0, k#n
/ PP @)dr =4 2 (n+m)
—1

2n+1 (n—m)!l’ b=n.

13.10. A set {w,(x)} of complex-valued functions of a real variable
x is orthogonal in the Hermitian sense in an interval (v, 3) if

/j W (2)wy (x)dz =0, m #n.

Show that the set

1 2mnx
exp | % , n= O,:I:l,:|:2,~-~}
{W—a (ﬂ—a>

is orthogonal in the Hermitian sense in (a, 3).

Answers or Hints

13.1. (i) A=—-6, B=6 (i) 1, V322 —1), V5(62> — 6z +1).
13.2. A=—1, B=1/6.

13.3. aj # 0, ag # 0 but arbitrary, a3 = —3as, a4 = 0.

13.4. Use cos(m — n)z — cos(m + n)x = 2sinmaz sin na.

13.5. Relation (13.5) is the same as

(v = ) [ 2 () T (v)d = T2 (12) 1 () — 0T () (). (13.10)
(i) Use (13.10) (ii) Use (13.10) (iii) Use (13.10) and (9.18) (iv) Use
(13.10) and Problem 9.1(i)

13.6. (i) From (7.8), Py(z) = ,.*M 2" + Qn_1(z), where Q,_1(z) is a

2n (n1)2
polynomial of degree at most n—1 (i) Use 2?P,,_1(x) = 2n,§2?(;27)!1)!)2 antt
+@Qn(x) and (i) (iii) Use (7.13) (iv) Use Problem 7.8(i) and then Problem
7.8(iii) (v) Use Corollary 13.2 and (7.9) (vi) Integrate by parts and use
(3.19) with a = n (vii) Use Problem 7.8(iv) and (7.13).

13.7. From (7.8), Po(z) = (s (@ = 21) -+ (z — @p).
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13.8. I(z) = ,1\ Tulz), [1,(1—a2) V22 (2)de = .7,
H(z) = L Up(z), fil(l — )22 (2)de = 50

(z) = (~1)" Ly (@), [° e T2 (2)dz = n! T(n +a + 1)
H(z) = L Ha(z), [ e "' T2(x)de = "0

13.9. See the orthogonality of Legendre polynomials.

13.10. Verify directly.



Lecture 14

Boundary Value Problems

So far, we have concentrated only on initial value problems, in which
for a given DE the supplementary conditions on the unknown function
and its derivatives are prescribed at a fixed value xy of the independent
variable x. However, there are a variety of other possible conditions that
are important in applications. In many practical problems the additional
requirements are given in the form of boundary conditions: the unknown
function and some of its derivatives are fixed at more than one value of the
independent variable x. The DE together with the boundary conditions is
referred to as a boundary value problem. In this lecture we shall provide a
necessary and sufficient condition so that a given boundary value problem
has a unique solution.

We shall consider the second-order linear DE

po(2)y" + p1(x)y +pa(x)y =r(x), z€J=]apf] (14.1)

where the functions po(x), pi(x), p2(z) and r(x) are continuous in J. To-
gether with the DE (14.1) we shall consider the boundary conditions of the
form

1[y]
Ca[y]

where a;, b;, ¢;, d;, i =0,1and A, B are given constants. Throughout, we
shall assume that these are essentially two conditions, i.e., there does not
exist a constant ¢ such that (ag a1 bg b1) = ¢(co ¢1 do di). The boundary
value problem (14.1), (14.2) is called a nonhomogeneous two-point linear
boundary value problem, whereas the homogeneous DE

aoy() + ary' (@) + boy(B) + b1y’ (B) = A
B

coy(a) + 1y (@) + doy(B) + dvy/ (B) = (14.2)

)

po(@)y” +pi(2)y +pa(a)y =0, zeJ (14.3)
together with the homogeneous boundary conditions
Gyl =0, Lyl =0 (14.4)
will be called a homogeneous two—point linear boundary value problem.

Boundary conditions (14.2) are quite general and in particular include
the

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 14,
(© Springer Science+Business Media, LLC 2009
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(i)  first boundary conditions,

yla) =4, y(B) = B; (14.5)
(ii) second boundary conditions,

yla) = A, y'(8) =B, (14.6)

y'(e) =4, y(B)=D5; (14.7)

(iii) separated boundary conditions (third boundary conditions), also known
as Sturm-Liouville conditions,

+ary’(a) = A
aoy() aly/(a) (14.8)
doy(B) + dvy'(6) = B,
where a3 + a} # 0 and d3 + d? # 0; and
(iv) periodic boundary conditions,
y(e) =y(B), y'(a)=y(9). (14.9)

The boundary value problem (14.1), (14.2) is called regular if both «
and 3 are finite, and the function po(x) # 0 for all x € J. If @ = —0
and/or 3 = oo and/or po(x) = 0 for at least one point x in J, then the
problem (14.1), (14.2) is said to be singular. We shall consider only regular
boundary value problems.

By a solution of the boundary value problem (14.1), (14.2) we mean a
solution of the DE (14.1) satisfying the boundary conditions (14.2).

The existence and uniqueness theory for the boundary value problems
is more difficult than that of initial value problems. In fact, in the case of
boundary value problems a slight change in the boundary conditions can
lead to significant changes in the behavior of the solutions. For example, the
initial value problem y”4+y = 0, y(0) = ¢1, ¥’ (0) = ¢ has a unique solution
y(z) = ¢1 cosx+co sinz for any set of values ¢1, ¢o. However, the boundary
value problem y” +y = 0, y(0) = 0, y(7) = €(# 0) has no solution; the
problem ¢y’ +y =0, y(0) =0, y(8) =€, 0 < < 7 has a unique solution
y(x) = esinz/sin B; while the problem y” +y = 0, y(0) = 0, y(r) = 0
has an infinite number of solutions y(x) = ¢sinx, where ¢ is an arbitrary
constant.

Obviously, for the homogeneous problem (14.3), (14.4) the trivial solu-
tion always exists. However, from the above example it follows that besides
the trivial solution homogeneous boundary value problems may have non-
trivial solutions also. Out first result provides a necessary and sufficient
condition so that the problem (14.3), (14.4) has only the trivial solution.
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Theorem 14.1. Let y;(z) and y2(z) be any two linearly independent
solutions of the DE (14.3). Then, the homogeneous boundary value problem
(14.3), (14.4) has only the trivial solution if and only if

‘ £ 0. (14.10)

Proof. Any solution of the DE (14.3) can be written as
y(@) = iy (x) + capa ().
This is a solution of the problem (14.3), (14.4) if and only if

Uiy + coy2] = clifyn] + c2lafy2] =0

(14.11)
loleiyr + c2y2] = cilalyr] + calaly2] = 0.

However, the system (14.11) has only the trivial solution if and only if
A #£0.

Clearly, Theorem 14.1 is independent of the choice of the solutions y; (z)
and yo(x). Thus, for convenience we can always take y1(x) and y2(x) to be
the solutions of (14.3) satisfying the initial conditions

yi(e) =1, 7i(a) =0 (14.12)

and
y2(0) =0, phla) = 1. (14.13)

Corollary 14.2. The homogeneous boundary value problem (14.3),
(14.4) has an infinite number of nontrivial solutions if and only if A = 0.

The following examples illustrate how easily Theorem 14.1 and Corol-
lary 14.2 are applicable in practice.

Example 14.1. Consider the boundary value problem

zy’ —y — 4y =0 (14.14)
R

For the DE (14.14), y1(z) = cosh(oc2 —1) and ya(x) = (1/2) sinh(2? — 1) are
two linearly independent solutions. Further, for the boundary conditions
(14.15), we have

1 0

A= 0.
cosh3 (1/2)sinh3 #
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Thus, in view of Theorem 14.1, the problem (14.14), (14.15) has only the
trivial solution.

Example 14.2. Consider once again the DE (14.14) together with the
boundary conditions

Oyl =y (1) =0
Wl =vy'(1) (14.16)
bly] =y'(2) = 0.
Since v} (z) = 2z sinh(2z? — 1) and y4(x) = x cosh(x? — 1), for the boundary

conditions (14.16), we find

0 1
4sinh3 2cosh3

Thus, again in view of Theorem 14.1, the problem (14.14), (14.16) has only
the trivial solution.

Example 14.3. Consider the boundary value problem
v+ 2y +5y =0 (14.17)
Gyl =y(0) =0
boly] = y(m/2) = 0.

For the DE (14.17), y1(xz) = e *cos2z and y2(x) = e “sin2x are two
linearly independent solutions. Further, since for the boundary conditions
(14.18),

(14.18)

1 0
A:|

—e~ /2

the problem (14.17), (14.18) besides the trivial solution also has nontrivial
solutions. Indeed, from Corollary 14.2 if follows that it has an infinite
number of solutions y(z) = ce™? sin 2z, where ¢ is an arbitrary constant.

The following result provides a necessary and sufficient condition for the
existence of a unique solution of the boundary value problem (14.1), (14.2).

Theorem 14.3. The nonhomogeneous boundary value problem (14.1),
(14.2) has a unique solution if and only if the homogeneous boundary value
problem (14.3), (14.4) has only the trivial solution.

Proof. Let y;(x) and y2(2) be any two linearly independent solutions of
the DE (14.3) and z(z) be a particular solution of (14.1). Then, the general
solution of (14.1) can be written as

y(z) = aayr(z) + caye(x) + 2(). (14.19)
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This is a solution of the problem (14.1), (14.2) if and only if

él[clyl + coy2 + Z] = clél[yl] + Czél[yg] + 04 [Z] =A

(14.20)
Ualeryr + caya + 2] = cila[yr] + cololyo] + fofz] = B.
The nonhomogeneous system (14.20) has a unique solution if and only if
A # 0, i.e., if and only if the homogeneous system (14.11) has only the triv-
ial solution. From Theorem 14.1, A # 0 is equivalent to the homogeneous
boundary value problem (14.3), (14.4) having only the trivial solution.

Example 14.4. Consider the boundary value problem
xy” —y — 42y = 14 42 (14.21)

blyl =y(1) =0
byl =y(2) = 1.

Since the corresponding homogeneous problem (14.14), (14.15) has only the
trivial solution, Theorem 14.3 implies that the problem (14.21), (14.22) has
a unique solution. Further, to find this solution once again we choose the
linearly independent solutions of (14.14) to be yi(x) = cosh(x? — 1) and
y2(2) = (1/2) sinh(2% — 1), and note that z(x) = —x is a particular solution
of (14.21). Thus, the system (14.20) for the boundary conditions (14.22)
reduces to

(14.22)

C1 — 1=0
cosh3 ¢ + (1/2)sinh3 ¢o — 2 = 1.
This system can be easily solved to obtain ¢; = 1 and ¢o = 2(3 — cosh 3)/

sinh 3. Now substituting these quantities in (14.19), we find the solution of
(14.21), (14.22) as

(3 — cosh 3)

. 2 _ _
<inh 3 sinh(z® — 1) — x.

y(z) = cosh(z? — 1) +



Lecture 15

Boundary Value Problems
(Cont’d.)

In this lecture we shall formulate some boundary value problems with
engineering applications, and show that often solutions of these problems
can be written in terms of Bessel functions.

Example 15.1. Consider a string of length a with constant linear
density p which is stretched along the z-axis and fixed at x = 0 and x = a.
Suppose the string is then rotated about that axis at a constant speed w.
This is similar to two persons holding a jump rope and then twirling it in a
synchronous manner. We shall find the differential equation which defines
the shape (deflection from the initial position) y(z) of the string. For this,
we consider the portion of the string on the interval [z, 2 + Ax], where Az
is small. In what follows, for simplicity, we assume that the magnitude T’
of the tension T acting tangential to the string is constant along the string.
Now from Figure 15.1 it is clear that the net vertical force F' acting on the
string on the interval [z, z + Az] is

Figure 15.1

F =Tsinf; —Tsinf,.

If the angles 6; and 2 (measured in radians) are small, then we have
sinfly ~ tanfy ~ y'(z+ Az) and sinf; ~ tanf; ~ y'(z)

and hence
F =~ T[y(z+ Ax) -y (). (15.1)

The net force F' can also be given by Newton’s second law as F' = ma.
Clearly, the mass of the string on the interval [z, z 4+ Ax] is m = p Az, and
the centripetal acceleration of a point rotating with angular speed w in a

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 15,
(© Springer Science+Business Media, LLC 2009
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circle of radius 7 is a = rw?. Since Az is small, we can assume that r = y.
Thus, another formulation of the net force is

F ~ —(pAz)yw?, (15.2)

where the minus sign indicates the fact that the acceleration points in the
direction opposite to the positive y direction. From (15.1) and (15.2), we
get

Tly'(z + Az) —y'(x)] = — (pAz)yw?,

or
PV tdn) e
Ax
which as Az — 0 leads to the differential equation
d?y 2
TdtQ = —pwy. (15.3)

Since the string is fixed at the ends, the solution y(x) of (15.3) must also
satisfy the boundary conditions y(0) = 0, y(a) = 0. Thus, the shape of the
string y(x) can be determined by solving the boundary value problem

d2y pr
= = = . 1 .4
APy =0, y(0) = yla) =0 (15.4)
Clearly, y(x) = 0 is a solution of (15.4). However, in Lecture 19 we shall see
that for some special values of w the problem (15.4) has nontrivial solutions
also.

Finally, we note that if the magnitude T' of the tension is not constant
throughout the interval [0, a], then the boundary value problem which gives
the deflection curve of the string is

d

dy 2

o (T@) s pti=0. O =s =0 55)
Example 15.2. Consider the problem of a vertical column of uniform
material and cross section, bent by its own weight. Let a long thin rod be
set up in a vertical plane so that the lower end is constrained to remain
vertical (Figure 15.2). Suppose the rod is of length a and weight W, and
has the coefficient of flexural rigidity B (> 0). Then, if p = dy/dz, the
equation describing this system can be written as

d*p W (a—1x)
= 1-
dx2+B u p=20 (15.6)

p(0) =0 =p'(a). (15.7)
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xT

Rod

]
Figure 15.2

One possibility that is always present is that the rod does not bend at
all, which is just another way of saying that the problem has only the trivial
solution; i.e., p(x) = 0. One would expect that if the rod is short enough
(just how short it would need to be depends on the constants W, and B, of
course) the rod cannot bend at all, which is to say that the trivial solution
is the only solution of the problem, and the problem is accordingly said to
be stable. However, for all sufficiently large a, the rod can bend and the
problem has a nontrivial solution. Clearly, then uniqueness no longer holds
for the boundary value problem.

Equation (15.6) can be transformed into Bessel’s equation by the sub-
stitution

2 (W\?
=3 (ap) @0 p=nta-a)” (15.8)
In fact, it leads to the equation
d*>n  1dp 1
d£2+£d§+(1_9§2)n:0’ (15.9)

whose solution can be written as
n(§) = AJyy3(§) + BJ_1/3(8),
and hence the solution of (15.6) is
(&) = (a — )2 [AT1/3(8) + BJ_15()]. (15.10)

Now it a simple matter to see that p’(a) = 0 only if A = 0, and p(0) =0
provided J_;/3(£) = 0 at & = (2a/3)(W/B)'/2. Since

1 a*W 1 2w\ >
Tap® = 1=, 5 +3-6-2-5( B )
1 a?Ww\"
cee e (=1
oot )3-6---(3n)-2-5---(3n—1)< B )™

(15.11)
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the rod remains stable provided a?/B is less than the first zero, say, & of
(15.11). An easy computation shows that & = 7.84-- -, and hence the rod
will not bend by its own weight—i.e., it will remain stable—provided

a < (2.80---) (Vf’;)m. (15.12)

In a similar situation the following problem occurs:

d*¢  R? 2,
12 T ap@— 9P =0 (15.13)
#(0) =0=¢'(a). (15.14)
For this problem equations (15.8)—(15.12) take the following form:
_1 R 2 _ /2
€=y o= o=nla—9' (15.15)
d? 1d 1
d§727+5d7§7+(1_16§2>’7:0’ (15.16)
(€)= (a = 5)"*[A114(6) + BI_1a(9)], (15.17)
1 R%a* 1 R2a*\?
Tan©=1= 6 4c Y o.4.6.14 ( AC )
nr 1 R%a*\"
AR 2.4---(2n)-6-14--- (8n — 2) ( AC ) T
(15.18)
1/4
< MO i

where 7 is a number very close to 2.

Example 15.3. Consider a wedge-shaped canal of uniform depth ¢ that
empties into the open sea (see Figure 15.3). Assume that the water level at
the mouth of the canal varies harmonically, i.e., the depth at the mouth of
the canal is given by H coswt, where H and w are positive constants. This
assumption simulates the motion of the tides. Now the function h(z,t),
which gives the depth at a distance x from the inland end of the canal at
time ¢, has the form h(z,t) = y(z) coswt, where y(z) satisfies the DE

22y + xy + k22%y =0, (15.20)

where k > 0 is a constant.
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\i
»I\{

-~

I h(a,t) = H coswt

b=ax
Figure 15.3

Comparing (15.20) with (9.20), we find that its solution can be written
as
y(z) = AJy(kx) + BJ° (kx). (15.21)

Since at = 0 the depth of the water must be finite at all times, lim;_,o y(x)
has to be finite. However, since lim,_o |J(kz)| = oo, we need to assume
that B = 0. Hence, the depth h(z,t) can be written as

h(z,t) = AJy(kz) coswt. (15.22)

Next using the condition that the depth at the mouth of the canal is
H coswt, we have

H coswt = h(a,t) = AJy(ka) coswt

and hence A = H/Jy(ka) provided Jy(ka) # 0. Thus, the depth h appears
as

Jo(kx)
h(z,t) =H
@ =P
Clearly, from (9.8) we have Jy(0) = 1 and hence Jo(z) # 0 at least for
sufficiently small x > 0. Thus, the solution (15.23) is meaningful as long as
ka is sufficiently small.

cos wt. (15.23)

Example 15.4. Now in Example 15.3 we assume that the depth of the
canal is not uniform, but varies according as ¢(x) = Sz. Figure 15.4 shows
the lengthwise cross section of the canal.

Ba Sea

Figure 15.4
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Again we assume that the water level at the mouth of the canal varies
harmonically. Then the depth has the form h(z,t) = y(x) coswt, where y
satisfies the DE

22y 4 22y’ + K xy = 0; (15.24)

here k£ > 0 is a constant.

Comparing (15.24) with (9.19), we find that its solution can be written
as

y(w) = A2y (2k2'2) + Ba V20 (2ka'2). (15.25)

Since at x = 0 the depth of the water must be finite at all times, we need
to assume that B = 0. At t = 0 we have h(z,0) = Sz. In particular,
Ba = h(a,0) = y(a) = a='/2AJ;(2ka'/?) and hence A = 3a®/?/J,(2ka'/?).
Thus, the solution appears as

Ji (2kz!/?)

h(z.t) = Ba®/2z1/2
(x,t) = Ba*~x 7 (2ka1/2)

cos wt,

1/2

which is meaningful as long as 2ka"/* is small.

Problems

15.1. Solve the following boundary value problems:

e 1" / _

0 Yolel () Y or
y(0) =0, y(1)=1 y(0) =0, ¥'(1) =1
Yy — 6y +25y =0 22y + T2y + 3y =0

0= 1 s =0 W) =1y =2
y” +y=0 1" 2
! = vi Yy +y==x
v ZE(B :t gy(’?i)_:lg ) y(0) =0, y(r/2) =1

y// + y/ _|_ y =7
(viii) y(0) + 2y/(0) = 1
y(1) —y'(1) =8.

15.2. Solve the following periodic boundary value problems:

o Y2+ y=2x
) ) =0, y(2) =3

y" +2y +10y =0 Yy + 712y =0
(i) y(0) =y(x/6) (i) y(=1)=wy()
y'(0) =y'(r/6) y'(-1) =y'(1).

15.3. Show that the boundary value problem y” = r(x), (14.8) has a
unique solution if and only if

A = apdo(f — @) + apdr — ardy # 0.
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15.4. Determine the values of the constants 3, A, and B so that the
boundary value problem y” 4+ 2py’ + qy = 0, y(0) = A, y(8) = B with
p? — ¢ < 0 has only one solution.

15.5. Show that the boundary value problem " +p(z)y = q(x), (14.5)
where p(z) < 0 in [«, 4], has a unique solution.

15.6.  Let z(x) be the solution of the initial value problem (14.1),
z(a) = A, Z(a) =0, and ya(x) be the solution of the initial value problem
(14.3), (14.13). Show that the boundary value problem (14.1), (14.5) has a
unique solution y(x) if and only if y2(5) # 0 and it can be written as

(B —z(9))

y2(5) v2(z)

15.7. Let y1(x) and y2(x) be the solutions of the initial value problems

(14.3), y1(a) = a1, yi(a) = —ap and (14.3), y2(B8) = —d1, y4(B) = do,
respectively. Show that the boundary value problem (14.3), (14.8) has a
unique solution if and only if W (y1,y2)(a) # 0.

15.8.  Let yi(z) and y2(x) be the solutions of the boundary value
problems (14.3), (14.2) and (14.1), (14.4), respectively. Show that y(z) =
y1(2) 4+ y2(x) is a solution of the problem (14.1), (14.2).

15.9. For the homogeneous DE
Loly] = (2® + 1)y" — 22y’ + 2y =0 (15.26)

x and (22 — 1) are two linearly independent solutions. Use this information
to show that the boundary value problem

Loly] = 6(z* +1)%, y(0)=1, y(1)=2 (15.27)
has a unique solution, and find it.

15.10. A telephone cable stretched tightly with constant tension T’
between supports at z = 0 and x = 1 hangs at rest under its own weight.
For small displacements y the equation of equilibrium and the boundary
conditions are

y'=-mg/T, 0<az<1, y(0)=0=y(l), (15.28)

where m is the mass per unit length of the cable, and g is the gravitational
constant. Show that the solution of (15.28) can be written as y(z) =
mgx(1 —x)/(2T), i.e., the telephone cable hangs in a parabolic arc.

15.11. In the construction of large buildings a long beam is often
needed to span a given distance. To decide the size of the beam, the
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architect needs to calculate the amount of bending the beam will undergo
due to its own weight. If E represents the modulus of elasticity of the beam
material, I is the moment of inertia of a cross section about its center axis,
2a is the length of the beam, and W is the weight per unit length, then
the differential equation used to find the sag curve for a beam supported
at both ends is
Wa?

2 )
where y denotes the vertical sag distance per horizontal x unit. If the
beam is resting on two supports at its ends (simple beam), then the natural
boundary conditions are y(0) = 0, y(2a) = 0. Show that the solution of
this boundary value problem is

Ely' =aWz —

W la 1 a®
1 I

YO = pr 6% T2 3
Verify that y'(a) = 0 and give its interpretation.

15.12. The equation of equilibrium of a tightly stretched and initially
straight elastic string embedded in an elastic foundation of modulus k& > 0
is given by

y" = (k/T)y =0,

where y is the deflection of the string. Here the weight of the string is
neglected, the deflections are assumed to be small, and the tension T is
considered as a constant. The end = = 0 of the string is fixed, i.e., y(0) = 0,
and at the end x = a there is a displacement given by y(a) = 8 > 0. Show
that y(z) = 3 sinh(y/k/T)x/sinh(y/k/T)a is the solution of this boundary
value problem, and maxo<z<q y(z) = y(a) = 5.

15.13. A gas diffuses into a liquid in a narrow pipe. Let y(z) denote
the concentration of the gas at the distance x in the pipe. The gas is
absorbed by the liquid at a rate proportional to y’(z), and the gas reacts
chemically with the liquid and as a result disappears at a rate proportional
to y(x). This leads to the balance equation

y" — (k/D)y =0,

where k is the reaction rate and D is the diffusion coeflicient. If the initial
concentration is «, i.e., y(0) = « and at © = a the gas is completely

absorbed by the liquid, i.e., y(a) = 0, show that y(z) = asinh[\/k/D(a —
z)]/ sinh[\/k/Da).

15.14. A long river flows through a populated region with uniform
velocity u. Sewage continuously enters at a constant rate at the beginning
of the river x = 0. The sewage is convected down the river by the flow and
it is simultaneously decomposed by bacteria and other biological activities.
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Assume that the river is sufficiently narrow so that the concentration y of
sewage is uniform over the cross section and that the polluting has been
going on for a long time, so that y is a function only of the distance x
downstream from the sewage plant. If the rate of decomposition at z is
proportional to the concentration y(x) and k is the proportionality constant,
then y satisfies the DE

y' — By —a’y =0,

where 3 = u/D and o = k/(AD), A is the cross-sectional area of the river,
and D > 0 is a constant. If the concentrations at x = 0 and x = a are
known to be y(0) = yo, y(a) = y1 (< yo), then show that the concentration
in the stream for 0 < x < a is

y1e P4/2 — yq cosh Ha

y(x) = e’*/? |yo cosh Oz + sinh 0z | |

sinh fa

where 0 = /32 + 402 /2.

15.15. Suppose a hollow spherical shell has an inner radius r = « and
outer radius » = 3, and the temperature at the inner and outer surfaces
are uq and ug, respectively. The temperature u at a distance r from the
center (a < r < ) is determined by the boundary value problem

d*u du
2 = = Uq, = .
T + dr 0, u(a)=u u(B) = up

Show that

uga ™! — un Y Uy — U _
u(r) = ﬁa_l . + (a—l _ﬁﬁ_l) L

15.16. A steam pipe has temperature u, at its inner surface r = «
and temperature ug at its outer surface r = 3. The temperature u at a
distance r from the center (o < r < () is determined by the boundary
value problem

d*>u du
T a2 + P 0, ula)=uq, u(f)=ug.

Show that
u(r) = U In(r/B) —ugn(r/a)
In(a/pB) '

15.17. For the telephone cable considered in Problem 15.10, the large
displacements y are governed by the equation and boundary conditions

y" = _";9 V1I+ @), 0<z<1, y(0)=0=y). (15.29)
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Show that the solution of (15.29) can be written as

T mg mg 1 .
y(z) = mg {cosh oT cosh [ T <x 2)} },

i.e., the telephone cable hangs in a catenary.

Answers or Hints

:\ sinhx (s 21 sin \/3z T o :
15.1. (i) S (i) (\/3cosx/3—2;{131)\/3) (il) }e*sinda (iv)
[(16—27V0)g=3+V64 (26 _16)23 V6] (v) , L [{5(
2} cosz+ {5(3sinl —cos1l)+2}sinz| (vi) 2cosz+ (3 - ”42) sinz + 2?2 — 2

Y =T 3.2 18 1-2)/2 (g V3
(vii) e7™[24 (Je* — 1) ] +x — 2 (viii) 308 Vi 13 sin 436( )2 cos Vo
+z — 1.

1
(26 —2-V6) X
sinl+3cosl)—

15.2. (i) Trivial solution (ii) ¢;cosmx 4 cosinma, where ¢; and ¢y are
arbitrary constants.

15.3. For the DE ¢y = 0 two linearly independent solutions are 1, x. Now
apply Theorem 14.3.

BePP? — A cos \/q—pQB

; _ 2

15.4. 3 # \/”” ,» € P¥lAcos Va—pz +
q—p

15.5. Let y(x) be a nonnegative solution of 4" + p(z)y = 0, y(a) =0 =
y(8). Then, at the point 1 € (o, ) where y(x) attains its maximum

y"(z1) + p(x1)y(z1) < 0.

15.6. The function y(x) = z1(z) + cy1(x) is a solution of the DE (14.1).
15.7. Use Theorem 14.3.

15.8. Verify directly.

15.9. Use variation of parameters to find the particular solution z(z) =
x* + 322. The solution of (15.27) is z* + 222 — 22 + 1.

15.11o|y|max = |y(a’)| = 2540'4'
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Green’s Functions

The function H(x,t) defined in (2.12) is a solution of the homogeneous
DE (2.1) and it helps in finding an explicit representation of a particular
solution of the nonhomogeneous DE (2.8). In this lecture, we shall find an
analog of this function called a Green’s function G(x, t) for the homogeneous
boundary value problem (14.3), (14.4) and show that the solution of the
nonhomogeneous boundary value problem (14.1), (14.4) can be explicitly
expressed in terms of G(z,t). The solution of the problem (14.1), (14.2)
then can be obtained easily as an application of Problem 15.8.

In what follows throughout we shall assume that the problem (14.3),
(14.4) has only the trivial solution. Green’s function G(z,t) for the bound-
ary value problem (14.3), (14.4) is defined in the square [a, 8] x [a, 5] and
possesses the following fundamental properties:

(i) G(z,t) is continuous in [, 5] X [o, O],

(ii) OG(z,t)/dz is continuous in each of the triangles o < x <t < § and
a <t <z < f; moreover,

0G oG 1
tht) — t,t) =
83:( ) 83:( ) po(t)’
where
oG . 0G(z,1t) G, _ . 0G(z,1t)
tht)= 1 ’ t)y= 1 ’
Bx( ) xlft Ox and Ox ) xlglt or 7
T >t r <t
(iii) for every t € [, 3], z(x) = G(z,t) is a solution of the DE (14.3) in
each of the intervals [a t) and (¢, 3],
(iv) for every t € [, 0], z(x) = G(z,t) satisfies the boundary conditions
(14.4).

These properties completely characterize Green’s function G(z,t). To
show this, let yi(x) and ya(z) be two linearly independent solutions of
the DE (14.3). From the property (iii) there exist four functions, say,
Al(t), /\2 (t), M1 (t), and ,uz(t) such that

Gla,t) = { ()M () + y2(2)A2(t), a<z<t

y1(@)pur () + yo(2)pa(t), t<x<p. (16.1)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 16,
(© Springer Science+Business Media, LLC 2009
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Now using properties (i) and (ii), we obtain the following two equations:

Y1 ()M (1) + y2(B)A2(t) = y1 ()1 () + y2(t) 2 () (16.2)

Y1 (O () + ya(Hpa(t) = yi (A (t) — ya(t)Aa(t) = (16.3)

po(t)

Let v1(t) = p1(t) — A1(t) and v2(t) = pa(t) — A2(t), so that (16.2) and (16.3)
can be written as

y1(Ovi(t) + y2(t)r2(t) =0 (16.4)
KON +shORO = . (16.5

Since y1 (z) and yo(x) are linearly independent the Wronskian W (y1, y2)(t)
# 0 for all t € o, B]. Thus, the relations (16.4), (16.5) uniquely determine
v1(t) and vo(t).

Now using the relations 1 (t) = A1 (t) + v1(t) and pa(t) = A2 (t) + va2(t),
Green’s function can be written as

Gla,t) = Y1 (2)A1 (1) + y2(2)A2(t), a <z <t
@A) + @A) + @ @) + @), t<o< b

(16.6)
Finally, using the property (iv), we find
O] A (t) + Gfye)A2(t) = —bo(yi(B)vi(t) + y2(B)ra(t))
A + B0
Lolya]Ai(t) + Lafye]Xa(t) = —do(y1(B)ra(t) + y2(B)ra(t)) .
—di(y1 (B)vi(t) + y5(B)r2()).

Since the problem (14.3), (14.4) has only the trivial solution, from Theorem
14.1 it follows that the system (16.7) uniquely determines A;(¢) and A2 (%).

From the above construction it is clear that no other function exists
which has properties (i)-(iv); i.e., Green’s function G(x,t) of the boundary
value problem (14.3), (14.4) is unique.

As mentioned earlier, we shall now show that the unique solution y(x) of
the problem (14.1), (14.4) can be represented in terms of G(z,t) as follows:

B x B
y(w) = / Gla, yr(t)dt = / Gl )r(t)dt + / G, O)r(t)dt.  (16.8)

Since G(z,t) is differentiable with respect to x in each of the intervals, we
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find
z T s T
V(@) = G, 2)r(x) + / aGa(x’t)r(t)dt—G(x,x)r(x) + / 8ng’ Dt
T B X
= /a 8Ga(x 4) r(t)dt + /I aGa(x’t)r(t)dt
8 9G (1)
= [ Drat
(16.9)

Next since 0G(z,t)/0x is a continuous function of (x,t) in the triangles
a<t<z<pfand a <z <t <f, for any point (s,s) on the diagonal of
the square, i.e., t = x it is necessary that

oG, . 0G, | oG, . 0G, _
ax(s,s )= ax(s ,8) and ax(s,s )= P (s, 9). (16.10)

Now differentiating the relation (16.9), we obtain

V@) = 8G(§f>r<x>+ /ma Dty

(‘9Gxx+ / 82Gxt
r(t)dt,

which in view of (16.10) is the same as

+ 2
y'(z) = 8G(§ /@) 80( } / G, t r(t)dt.
X

Using property (ii) this relation gives

uoo o r() 702G (z,t)
y'(z) = po() —|—/a D2 r(t)dt. (16.11)
Thus, from (16.8), (16.9), and (16.11), and the property (iii), we get
po(x)y" () + pr(2)y'(x) + p2(2)y(x)
B 2G(z z

= ra) + / [po(x)a g;z’t) + (@) aGa(x’t) + pg(x)G(x,t)} r(t)dt

=r(z),
i.e., y(z) as given in (16.8) is a solution of the DE (14.1).

Finally, since

16} B
a) = / Gl yr(dt,  y(B) = / G (B, tyr(t)dt
5 9G(a 5
-/, ey ve = [ "t
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it is easy to see that

B B
tly] = / BG@E ()t =0 and ffy] = / 0:[G e, )] ()dt = 0
and hence y(x) as given in (16.8) satisfies the boundary conditions (14.4)
as well.
We summarize these results in the following theorem.

Theorem 16.1. Let the homogeneous problem (14.3), (14.4) have only
the trivial solution. Then, the following hold:

(i)  there exists a unique Green’s function G(x,t) for the problem (14.3),
(14.4),

(ii) the unique solution y(x) of the nonhomogeneous problem (14.1), (14.4)
can be represented by (16.8).

Example 16.1. We shall construct Green’s function of the problem
y' =0 (16.12)

apy(@) + a1y’ (a) =0
doy(B) + dry'(B) = 0. (16.13)

For the DE (16.12) two linearly independent solutions are y; (z) = 1 and
y2(x) = x. Hence, in view of Theorem 14.1 the problem (16.12), (16.13) has
only the trivial solution if and only if

ag apo + ay

A= do doB+dy

= aodo(ﬂ - OZ) + a0d1 - a1d0 7& 0

(see Problem 15.3). Further, equalities (16.4) and (16.5) reduce to
vi(t) +tra(t) =0 and wa(t) = 1.
Thus, v1(t) = —t and v5(t) = 1.
Next for (16.12), (16.13) the system (16.7) reduces to

ao)\l(t) + (a()Oé + al)/\g (t) =0
doA1(t) + (dofB + di)Xa(t) = —do(—t + ) — du,

which easily determines A (t) and A2 (t) as

1 1
/\1(t):A(a0a+a1)(d06—d0t+d1) and /\Q(t)ZAao(dot—doﬂ—dl).
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Substituting these functions in (16.6), we get the required Green’s func-
tion

G(z,t) =

1 { (dof — dot + di)(aoer — apz + a1), o<z <t (16.14)

(dof3 — dox + di)(apa — apt + a1), t<x <,
which is symmetric, i.e., G(z,t) = G(t, x).

Example 16.2. Consider the periodic boundary value problem
y'+ky=0, k>0 (16.15)

(0) = y(w)
JO0) —yw) w>0. (16.16)

For the DE (16.15) two linearly independent solutions are y; (x) = cos kx

and ya(z) = sinkz. Hence, in view of Theorem 14.1 the problem (16.15),
(16.16) has only the trivial solution if and only if

A = 4k sin? k;’ # 0, ie, we(0,21/k).

Further, equalities (16.4) and (16.5) reduce to

coskt v1(t) +sinkt vo(t) =0
—ksinkt v1(t) + k coskt va(t) = 1.

These relations easily give
1 1
v(t) = — f sinkt and ws(t) = j, €08 kt.
Next for (16.15), (16.16) the system (16.7) reduces to

1
(1 — coskw)A1(t) — sinkw Aao(t) = f sink(w —1t)

sinkw A1(t) 4+ (1 — cos kw)Aa(t) = ]1€ cosk(w —t),
which determines A1 (t) and A2(t) as
w 1 . w
A(t) = hsin b cosk(t— 2) and \o(t) = kamgwbmk (t— 2).

Substituting these functions in (16.6), we get Green’s function of the
boundary value problem (16.15), (16.16) as

1 cosk(x—t—i—;), 0<e<t

G(z,t) = o
2k sin w cosk(t—aH—L;), t<zr<w

(16.17)
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which as expected is symmetric.

Problems

16.1. Show that

—costsinz, 0<x<t
—sintcosz, t<z<m/2

G@ﬂ:{

is Green’s function of the problem y” +y = 0, y(0) = y(7/2) = 0. Hence,
solve the boundary value problem

y' +y=1+z y(0) =y(r/2)=1
16.2. Show that

1 i — i <zx<
Glat) = {smh(t 1)sinhz, 0<z <t

sinh1 | sinhtsinh(z —1), t<z <1

is Green’s function of the problem y” —y = 0, y(0) = y(1) = 0. Hence,
solve the boundary value problem

y' —y=2sinz, y(0)=0, y(1)=2.

16.3. Construct Green’s function for each of the boundary value
problems given in Problem 15.1, parts (vi) and (vii), and then find their
solutions.

16.4.  Verify that Green’s function of the problem (15.26), y(0) =
0, y(1)=01is

2 _
t(x 1)’ 0<t<az
B (t2 +1)2
G@t =9 -1
<t<1.
(#2 4 1)2° r<t<1

Hence, solve the boundary value problem (15.27).

16.5. Show that the solution of the boundary value problem

can be written as

1
y(x):/O Gz, t)r(t)dt,
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where )
1—1¢
= 2t> , TS
G(x,t) =
(%) t(1 - 22)
— 9 , x > t.

16.6. Show that the solution of the boundary value problem

y' —y=r(x), y(-o0)=0, yloo)=0
can be written as

y(x) = ;/OO e~ 17 tr(t)dt.

16.7. Consider the nonlinear DE

y' = flz,y,9) (16.18)

together with the boundary conditions (14.5). Show that y(z) is a solution
of this problem if and only if

R )
v =00 07 ps [ a0 s, o,

where G(z,t) is Green’s function of the problem y” = 0, y(a) = y(8) =0
and is given by

1 B-t)(a—x), a<z<t
G@ﬁ‘mg_@{(g—@m—w,t<x<5

Also establish that

(i) G(z,t) <0in [a, 8] X [, 4]

(i) G0 < (5 0)

(iii) / |G(z,t)|dt = ( )(x—a)<é(ﬁ—a)2

(iv) / G(x, t)| sin m(t _a)dt: (B—a)? <in m(x — a)

(6 - a) 2 (8- a)
8
v) /

(x—a)?+(B—2)? 1
2(8 — «) -2

16.8.  Consider the boundary value problem (16.18), (14.6). Show

that y(z) is a solution of this problem if and only if

OG (x,1)
Ox

-

6]
y(x) = A+ (z—a)B + / G, t)F (1 y(0), o/ (£))dt,
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where G(z,t) is Green’s function of the problem y” =0, y(«) =¢'(8) =0

and is given by
(a—2z), a<z<t
Gla,t) = { (a—t), t<zxz<p.
Also establish that
(i) G(z,t) <0in [a, f] X [, ]
(i) |Gz, )] < (B—«)

B
(iii) /a |G(x,t)|dt = ;(x—oz)@ﬁ— a—1x) < ;(ﬂ— a)?

A x
(iv) / aGégx, t)

16.9. Consider the nonlinear DE
y' —ky = f(z,y,9), k>0

together with the boundary conditions (14.5). Show that y(z) is a solution
of this problem if and only if

'dtzw—x)sw—a).

_ sinh \/k(ﬂ —x) sinh \/k(x — ) B N )
SR TR M CORTO RO

where G(z,t) is Green’s function of the problem " —ky = 0, y(a) = y(3) =
0 and is given by

Gla,t) = ! {Sinhwf(x—a)sinh%(ﬁ—t), a<z<t
T VksinhVE(B—a) | sinhVE(t — a)sinh VE(3 — ), t <2 < B.

Also establish that
(i) G(z,t) <0in [a, 8] x [, ]

B 1 cosh Vk (5'2"0‘—;16) 1 1
(11)/(1 |G (x,t)|dt = % (1— cosh Vi (B;a) ) < i (1_cosh\/k (B2a)) )

16.10. Show that
(i)  if we multiply the DE (14.3) by the integrating factor

= i (i)

then it can be written in the self-adjoint form

Lly] = (p(x)y') +a(z)y =0, (16.19)
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(ii) if y1(2) and ya(z) are two linearly independent solutions of (16.19) in
[ov, B, then p(x)W (y1,y2)(x) = C, where C' # 0 is a constant,

(iii) if y1(x) and yo(x) are solutions of (16.19) satisfying the same initial
conditions as in Problem 15.7, then Green’s function of the problem (16.19),
(16.13) can be written as

Glx,t) = é { v (B (), O‘_S “”_St (16.20)

which is also symmetric.

Answers or Hints

16.1. 1+ x— ’2T sin x.

16.2. (FsinD)

sinh 1 sinh x — sin x.

16.3. The associated Green’s functions are—

—costsinz, 0<x <t
—sintcosz, t<x<mw/2
—2(2—t)e @t 0<a<t
—f@2-2)e = t<z<2

for Problem 15.1(vi) G(z,t) = {
for Problem 15.1(vii) G(z,t) = {

16.4. Verify directly. 2* 4 222 — 22 + 1.
16.5. Verify directly.
16.6. Verify directly.

16.7. Verify directly. For Part (ii) note that |G(z,t)] < (8—2z)(z—a)/(8—
@).

16.8. Verify directly.

16.9. Verify directly.

16.10.(i) Verify directly (i) y2(pyi) — v1(pys)" = (y2py1 — yipys) = 0
(iii) From Problem 15.7 the homogeneous problem (16.19), (16.13) has only
the trivial solution; from the same problem it also follows that y;(z) and
y2(x) are linearly independent solutions of (16.19). Thus, in view of (2.13)
and (ii) the general solution of nonhomogeneous self-adjoint equation

Lly] = (p(z)y") + q(z)y = r(x), (16.21)

can be written as
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y(x) = ey () + caya(@) + & [ 1 (W)ya(@) — y2(t)yr (2)]r(t)dt.

This solution also satisfies the boundary conditions (16.13) if and only if
e = L [P ys(t)r(t)dt and ey =0,
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Regular Perturbations

In Theorem 4.1 we have obtained series solution of the second-order
initial value problem (2.1), (4.1) whose radius of convergence is at least as
large as that for both the functions p; (z) and pa(z). However, in many prob-
lems the functions p;(x) and pa(x) are not necessarily analytic; moreover,
we often need to find at least an approximate solution which is meaningful
for all z in a given interval. In this lecture we shall discuss the regular
perturbation technique which relates the unknown solution of (2.1), (4.1)
with the known solutions of infinite related initial value problems.

The essential ideas of regular perturbation technique can be exhibited
as follows: Suppose that the auxiliary DE

Y +pi(x)y + py(x)y =0 (17.1)

together with the initial conditions (4.1) can be solved explicitly to obtain
its solution yo(x). We write the DE (2.1) in the form

Y+ (p1(x) + pr(x) — pi(2)y + (po() + pa(z) — pa(z))y =0,
which is the same as
Y+ pi(2)y +po(x)y = @1 (@)Y + g2(2)y, (17.2)

where ¢1(z) = py(z) — p1(x) and g2(z) = py(z) — p2(z). We introduce a
parameter € and consider the new DE

Y 4 ()Y + po(x)y = e(qu(x)y’ + ga(2)y). (17.3)

Obviously, if € = 1, then this new DE (17.3) is the same as (17.2). We look
for the solution of (17.3), (4.1) having the form

(x) = Z €"yn(2) = yo(x) + eyr () + Eya(z) + - - . (17.4)
For this, it is necessary to have

Ze Yo (2)+p1 ()9}, (2)+po ()yn (z —ez 2)+q2(2)yn (x))

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 17,
(© Springer Science+Business Media, LLC 2009
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and
o0 o0
> yn(wo) =co, D €y (w0) = c1.
n=0 n=0
Thus, on equating the coefficients of €, n = 0,1, -+ we find the infinite

system of initial value problems
Yo (2) +p1(2)yo () + pa(@)yo(z) =0,  yolzo) = co,  Yolzo) =1 (17.5)

Yn () + p1(@)yn,(2) + Pa()yn (2) = q1(2)y5,—1 () + g2(2)Yn—1(2)

(17.6)n
yn(ffo) :y;L(xO):Oa n= 1727""

This infinite system can be solved recursively. Indeed, from our initial
assumption the solution yo(z) of the initial value problem (17.5) can be
obtained explicitly, and thus the term g1 (x)yf(z) + g2(z)yo(x) in (17.6); is
known; consequently the solution y; (z) of the nonhomogeneous initial value
problem (17.6); can be obtained by the method of variation of parameters.
Continuing in this way the functions yo (), y3(z), - can similarly be ob-
tained. Finally, the solution of the original problem is obtained by summing
the series (17.4) for e = 1.

The above formal perturbative procedure is not only applicable for the
initial value problem (2.1), (4.1) but can also be applied to a variety of
linear as well as nonlinear problems. The implementation of this powerful
technique consists the following three basic steps:

(i) Conversion of the given problem into a perturbation problem by intro-
ducing the small parameter €.

(ii) Assumption of the solution in the form of a perturbation series and
computation of the coefficients of that series.

(iii) Finally, obtaining the solution of the original problem by summing
the perturbation series for the appropriate value of e.

It is clear that the parameter e in the original problem can be intro-
duced in an infinite number of ways; however, the perturbed problem is
meaningful only if the zero-th order solution, i.e., yo(z) is obtainable ex-
plicitly. Further, in a large number of applied problems this parameter
occurs naturally, representing such diverse physical quantities as Planck’s
constant, a coupling coefficient, the intensity of a shock, the reciprocal of
the speed of light, or the amplitude of a forcing term.

The perturbation method naturally leads to the question, under what
conditions does the perturbation series converge and actually represent a
solution of the original problem? Unfortunately, often perturbation series
are divergent; however, this is not necessarily bad because a good approx-
imation to the solution when € is very small can be obtained by summing
only the first few terms of the series.
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We shall illustrate this fruitful technique in the following examples.
Example 17.1. The initial value problem
y' —lzly =0, y(0)=1, % (0)=0 (17.7)

has a unique solution in IR. However, in any interval containing zero the
series solution method cannot be employed because the function |z| is not
analytic. We convert (17.7) into a perturbation problem

y" = elzly, y(0)=1, y'(0)=0 (17.8)

and assume that the solution of (17.8) can be written as perturbation series
(17.4). This leads to an infinite system of initial value problems

Yo(x) =0, 0(0) =1, yp(0)=0 (17.9)
Yn(7) = [2|yn-1(2), yn(0) =y,(0)=0, n=12,- (17.10)

which can be solved recursively, to obtain

_1.47.---(3n—-2) { 23" Yzl if n odd

yo(r) =1, yn(x) = (3n)! 23", if n even.

Thus, the solution y(z, €) of the perturbation problem (17.8) appears as

147 (Bn—2) [ 2% z|, if n odd
Y =1+ e (3n) { Lo |if|n even (17.11)
n=1 ’ ’ '

Hence, the solution y(z) = y(x,1) of the initial value problem (17.7) can
be written as

B ~ 1.4.7---(3n—2) ( 2 Yz|, if n odd
y(@) = 1+Z (3n)! { 3", if n even. (17.12)

From (17.12) it is clear that for the problem y” — zy = 0, y(0) =
1, ¥’(0) = 0 the perturbation method as well as its series solution leads to
the same Airy function.

n=1

Example 17.2. Consider the initial value problem

Y +y=22-1, y)=1, y'(1)=3. (17.13)
We convert (17.13) into a perturbation problem

1

y' =e(~y+22-1), y(1)=1, y'(1)=3 (17.14)

and assume that the solution of (17.14) can be written as perturbation
series (17.4). This leads to the system

yo(r) =0, wmo(l)=1, y(1)=3
¥l (x) = —yo(z) + 22— 1, wi(1
Yn(x) = —yn-1(2), wyn(l) =1y,
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Thus, the solution y(x) of the problem (17.13) appears as

x_1)2n+1
y(z) —33:—2—!—2 (2n 1 1)! =2z — 1+ sin(z — 1).

Example 17.3. In the van der Pol’s equation (4.18) we consider u
as the perturbing parameter, and seek its solution in the form y(z) =
oo o W yn (). For this, we must have

o0 2 o0
Z 1 (Y () + yn (@) = p | 1 - <Z u"yn(ﬂr)> > 1"y (@)
n=0 n=0

which leads to the system

Yo (x) + yo(z) =0 (17.15)
yi(z) +y1(z) = (1 - y5(@))yo (@) (17.16)

v () +2(2) = (1 = y5(2))yi (z) — 2y0(x)y1 (2)yo () (17.17)

The general solution of (17.15) is readily available, and we prefer to
write it as yo(x) = acos(x + b), where a and b are arbitrary constants.
Substituting yo(x) in (17.16), one obtains

v/ (x) +y1(x) = —(1—a?cos®(z+b))asin(z +b)
a’ — 4a

1
= A sin(z + b) + 4a3 sin3(z +b),

which easily determines y;(z) as

a® —4da

1
y(z) = — 8 zcos(z +b) — __a®sin3(z +b).

32

With yo(z) and yi1(x) known, the right side of (17.17) is known. Thus,
y2(z) can be determined from (17.17) in a similar fashion. Certainly, for a
small p the solution y(z) of (4.18) is better approximated by the function

a’ — 4a
acos(x+b)—,u( 8 a:cos(x+b)+32

1
a®sin3(z + b))

compared to just acos(z + b).
Example 17.4. Duffing’s equation
my" +ay + by =0 (17.18)

models the free velocity vibrations of a mass m on a nonlinear spring,
where the term ay represents the force exerted by a linear spring, whereas
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the term by represents the nonlinearity of an actual spring. For simplicity,
in (17.18) let m = a = 1 so that (17.18) reduces to

y' +y+by® =0. (17.19)
We shall consider (17.19) together with the initial conditions
y(0) =0, ¥'(0)=0. (17.20)

In (17.19) let b be the perturbing parameter. We seek the solution of
(17.19), (17.20) in the form y(z) = Y " 0"y, (). This leads to the system

yo (@) +yo(x) =0, 4o(0) =0, y,(0)=0 (17.21)

i (@) +yi(z) = —yi(2),  51(0) =95(0) =0 (17.22)

From (17.21) and (17.22), it is easy to obtain the functions

yo(r) = wyocosw
3
yi(r) = —8y8xsinx—|— 32y8(cos3x—cosx).

Thus, the solution y(x) of the problem (17.19), (17.20) can be written as

1
y(x) = yo cosz + by <—Zx sinx + 39 (cos3x — cosx)) +O(b?).

Example 17.5. The boundary value problem

y'=-2yy, y(0)=1, y(1)=1/2 (17.23)
has a unique solution y(z) = 1/(1 + x). We convert (17.23) into a pertur-
bation problem

1

y' =e(=2yy"), w(0)=1, y(1)=1/2 (17.24)

and assume that the solution of (17.24) can be written as perturbation
series (17.4). This leads to the system

yo =0, y(0)=1, wyo(l)=1/2 (17.25)
v = —2yoyo,  ¥1(0) =91 (1) =0 (17.26)

ys = =2(yoys +y190),  y2(0) = y2(1) =0 (17.27)

From (17.25)—(17.27), we find the functions

yo(z) = ;(2 —z), wn(z)= 112(—5CC + 627 — )

1
(—17x + 7522 — 852° 4 30x* — 32°).

v2(7) = 159
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Thus, an approximation to the solution of the boundary value problem
(17.23) can be taken as

y(@) = yo() + () +y2(z)

1
150 (180 — 182z + 1652 — 1002* + 30x* — 32°).

In Table 17.1 we compare this approximate solution y(x) with the exact
solution y(x).

Table 17.1
T Exact solution Approximate solution Difference
0.0 1.000000 1.000000 0.000000
0.1 0.909091 0.907517 0.001574
0.2 0.833333 0.830261 0.003072
0.3 0.769231 0.765476 0.003755
0.4 0.714286 0.710763 0.003523
0.5 0.666667 0.664062 0.002605
0.6 0.625000 0.623637 0.001363
0.7 0.588235 0.588049 0.000186
0.8 0.555556 0.556139 —0.000583
0.9 0.526316 0.527008 —0.000692
1.0 0.500000 0.500000 0.000000
Problems

17.1. The initial value problem

(1+€9)d0 +6=0, 6(0)=1
dr

occurs in cooling of a lumped system. Show that

3

O(r)=e " +e(e ™ —e ) +¢ <eT —2e7% 5

637) +O(e%).

Compare this approximation with the exact solution Inf 4 ¢(6 — 1) = —7.
17.2. The initial value problem

d9+0+e(94:0, 6(0) =1
dr
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occurs in cooling of a lumped system. Show that

1 2
O(t)=¢"+ €q (e —e )+ 629 (e7m =27 +e ) +O(e%).
Compare this approximation with the exact solution
1 | 1+e03
n =
3 L+

17.3. For the initial value problem
y'+(1—ex)y=0, y(0)=1, ¢(0)=0
show that

1, . 1 1.
y(r) = cosx + ¢ 4% s1na:+4a:cosx—4sma:

1 5 7 7
+62<—32x4cosx+ 48333sina:+ 163:2cosx— 16xsina:> + O(€%).

17.4. Consider the case of dropping a stone from the height h. Let
r = r(t) denote the distance of the stone from the surface at time ¢. Then,
the equation of motion is

d?r yM
=— =h "0) = 17.2
dt? (R+1r)%’ r(0) » T0)=0, (17.28)

where R and M are the radius and the mass of the earth. Let e = 1/R in
(17.28), to obtain

d*r yMe?
i = (e "0 r’(0) = 0. (17.29)

In (17.29) use the expansion r(t) = Z?:o €'r;(t) to show that

B _’yM _2h t? 1
r(t)=nh R <1 R>2+O<R4)'

17.5. Consider the satellite equation
d*y

= ky?
dt2 +y Y
together with the initial conditions y(0) = A, y'(0) = 0. Show that
1 1 1 1 29
= Acos A2 _ _ 59 243 ( —
y(t) cost+ k (2 3cost g €0 t>+k 34—14400st

) 1 1
51 ‘2 S 3 .
+12t51nt+ 9(:05 t+ 48 c053t> + O(k?)
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17.6. For the harmonically forced Duffing’s equation
my" + ay + by® = Acos Qx

show that the periodic solution y(z) of period T' = 27/ can be written as
F 3F3
ylz) = W22 cos Qx + € {4(w2 _ g2y cos Qx
F3

(w2 — Q2)3(w? — 302) cos SQx} + O(e?),

+4
where w? = a/m # n?Q?, e=0b/m and F = A/m.
17.7. The boundary value problem

20, ,
xa — 0t =0 00 =0, 0(1)=1

occurs in heat transfer. Show that
1 1
O(X) =1+, (X* = 1)+ (X' =6X7+5) +O(e).

17.8. The boundary value problem

2 2
(1+60)5X92+6<5;> ~N29=0, 0(0)=0, 6(1)=1

occurs in heat transfer. Show that
1
0(X) = sechNcoshNX +¢ 5 sech® N (cosh 2Nsech N cosh N X

1 4 1
—cosh2NX) + € 6sechSN [( sech® N cosh? 2N — 2NtanhN

3

sech N cosh BN) coshNX — gsech N cosh2N cosh2N X

o © o ©

1
+_cosh3NX + 2NXsinhNX} + O(€).

17.9. The boundary value problem

d2U 1dU
dR2+RdR——P+69
d29+1d9_ .
dR2  Rd4R

U'(0) = 0'(0) =0, U(1)=0(1)=0
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occurs in a flow of a fluid. Show that

_P 2 P 6 4 2
U(R) =", (1= B + e o0 (R —9R" +27R* —19)
P
_ 2 10 8 6 4 2 3
€ L raseoo B — 25R" + 300R — 1900R" + 5275R? — 3651) + O(€”)
P 4 2 8 6 4 2
— —4 16R°—1 4R?—211
O(R) 64(R R+3)+el47456(R+6R 08R™ + 304R )
P
+€2 (R' — 36R'" + 675R® — T600R® + 47475R* — 131436 R?

© 9123366400
+90921) + O(e3).



Lecture 18

Singular Perturbations

In many practical problems one often meets cases where the parameter
€ is involved in the DE in such a way that the methods of regular per-
turbations cannot be applied. In the literature such problems are known
as singular perturbation problems. In this lecture we shall explain the
methodology of singular perturbation technique with the help of the follow-
ing examples.

Example 18.1. For the initial value problem
e +(1+e)y +y=0 (18.1)

y(0) =c1, ¢'(0) =c2 (18.2)

the explicit solution can be written as

y(z) = (e i 1) |:6(01 + cz)e’gc/6 — (coe + cl)eﬂ} .
Thus, it follows that
y'(z) = ! {—(cl + 02)6_“”/6 + (coe+ cl)e_z} )
(e—1)

Hence, as e — 0, y(z) — c1e™*, but ¢/ () has the following discontinuous

behavior:
—cie *, x>0
lim o' (z) = { !

e—0t co, x=0.

As a consequence, we find

tm (i, @) # i (i, )

Further, if we set ¢ = 0 in (18.1) then we are left with the first-order DE
y +y=0. (18.3)

Obviously, for the problem (18.3), (18.2) initial conditions are inconsistent

unless ¢; = —co.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 18,
(© Springer Science+Business Media, LLC 2009
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If we seek the solution of (18.1), (18.2) in the regular perturbation series
form (17.4), then it leads to the system of first-order DEs

Yo(x) +yo(z) =0, 30(0) =c1, yp(0) =c2
Y () + yn(2) = =(Yn_1(2) + yp_1(2)),  ya(0) =y,(0) =0, n>1,

which can be solved only if the initial conditions are consistent, i.e., ¢; =
—co. Further, in such a case it is easy to obtain yo(z) = c1e™%, yn(z) =
0, n > 1; and hence (17.4) reduces to just y(x) = c1e~*, which is indeed a
solution of (18.1), (18.2).

Example 18.2. For the DE (18.1) together with the boundary condi-
tions

y(0)=0, y(1)=1 (18.4)

an explicit solution can be written as

e~ _ 671/6

y(@) = 1 i (18.5)

which has the following discontinuous behavior

lim (2) el= x>0
—o Y 0, w=0.

Thus, it follows that

t (Lt o)) ti, (1)
This is due to the fact that the first-order DE (18.3) obtained by substi-
tuting € = 0 in (18.1), together with the boundary conditions (18.4) cannot

be solved. Hence, we cannot expect the solution of (18.1), (18.4) to have
the regular perturbation series form (17.4).

In Figure 18.1 we graph the solution (18.5) for e = 0.1, 0.01 and 0.001,
and note that y(x) is slowly varying in the region ¢ < x < 1. However, in
the small interval 0 < 2 < O(e) it undergoes an abrupt and rapid change.
This small interval is called a boundary layer. The boundary layer region
is called the inner region and the region of slow variation of y(x) is called
the outer region.

Thus, as illustrated, singular perturbation problems are in general char-
acterized by the nonanalytic dependence of the solution on €. One of the
ways of constructing a uniformly valid perturbation solution of such prob-
lems is to obtain straight forward solution (called an outer expansion) using
the original variables, and to obtain a solution (called an inner expansion)
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describing sharp variations using magnifying scales. The outer expansion
breaks down in the boundary layer region, whereas the inner expansion
breaks down in the outer region. Finally, these two solutions are matched
by a procedure known as the method of inner and outer expansions, or the
method of matched asymptotic expansions. This technique leads to global
approximations to the solutions of singular perturbation problems.

Y

2.691

2.153

1.615

1.076

0.538

0 0.167 0333 0.5  0.667 0.833 1

Figure 18.1

To appreciate this method, we reconsider the boundary value problem
(18.1), (18.4). Its exact solution (18.5) consists of two parts: e~ 7, a slowly
varying function in [0, 1], and e~*/¢, a function of rapid variations in the
boundary layer region 0 < x < O(e). We need to introduce the notion of
an inner and outer limits of the solution. The outer limit of the solution
y(z) denoted as yout(x) is obtained by prescribing a fixed = outside the
boundary layer, i.e., O(¢) < < 1 and letting ¢ — 0*. We therefore have

Your () = lim_y(z) = e, (18.6)

e—0t

This you:(z) satisfies the first-order DE
ygut(x) + yout(f) =0, (187)

which is the formal outer limit of the DE (18.1). Since yout(x) satisfies the
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boundary condition y(1) = 1 but not y(0) = 0, it is not close to y(x) near
z=0.

Next we consider the inner limit of the solution denoted by vy, (x) in
which ¢ — 07 in the boundary layer region 0 < z < O(e). To achieve
this we magnify this layer using the stretching transformation x = et. The
variable t is called an inner variable, its introduction is advantageous in the
sense that in the boundary layer region the solution given by (18.5) varies
rapidly as a function of x but slowly as a function of ¢. From (18.5) it is
clear that

Yin(@) = zin(t) = lim y(et) =e—e' ™", (18.8)
Further, defining y(x) = z(t), under the transformation = = et, (18.1) leads
to the DE P2 p
1d°z 1 z
1 =0. 18.
edt2+<e+)dt+z 0 (18.9)
Now for a given ¢, we let € — 0T to obtain
d? d
in(l in(t) = 0. 18.1
dtQZ()+dtZ() 0 (18.10)

The function z;,(t) given in (18.8) not only satisfies the DE (18.10), but
also z;,,(0) = 0.

The next step is to match z;, (t) and yout () asymptotically. This match-
ing will take place on an overlapping region described by the intermediate
limit # — 0, t = z/e — 00, € — 0F. From (18.6) and (18.8), we have

lin}J Yout(x) = € = tlim Zin(t). (18.11)

Satisfaction of (18.11) will ensure asymptotic matching. It also provides the
second boundary condition z;,(c0) = e for the solution of (18.10) to satisfy.
Observe here that although x € [0, 1], the matching region is unbounded.

We now seek a perturbation expansion of the outer solution of (18.1) in
the form

Yout (T) = Z €"yn(x) (18.12)
n=0

satisfying the relevant boundary condition y(1) = 1. This leads to the
infinite system of initial value problems

Yo(x) +yo(x) =0, yo(1) =1

Yn (@) +yn(x) = =y 1 (@) + 41 (2)), yn(1) =0, n=>1,
which can be solved to obtain yo(z) = e'=%, y,(z) = 0, n > 1. Thus,

Yout(z) = e!7%. (Note that y,u:(x) in (18.6) is not the same as in (18.12),
rather it is yo(x) in (18.12)).

(18.13)
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In order to obtain z;,(t), we assume that the DE (18.9) has the expan-
sion

Zin(t) =D €"zn(t) (18.14)
n=0

satisfying the other boundary condition z(0) = 0. This gives the infinite
system of initial value problems

() +2h(t) =0, 2(0) =0

18.15
A0 + 20 = GO+ 2 @), @ =0, nz1 U
The system (18.15) can be solved to find
Zo(t) = Ao(l — e*t)
(18.16),,

2n (1)

¢
/ (Ape ™ — zp—1(s))ds, n>1,
0

where A,,, n > 0 are constants of integration. To find these constants, we
shall match gy (@) with 2, (¢). For this, we have

2t2 3t3
Your(z) =e' " =e (1 —et+ 62! - 63! + - ) : (18.17)

Thus, on comparing zo(t) obtained in (18.16)¢ for large ¢ (— oo) with
the constant term on the right of (18.17), we have zy(t) ~ Ag = e. Once
20(t) is known, we easily obtain 21(t) = (A1 + Ao)(1 — e™?) — et. Hence,
on comparing z1(t) for large ¢ (— oo) with the second term on the right
of (18.17), we find z1(t) ~ (A + Ag) — et = —et, ie., A1 + A = 0, or
A1 = —Ap = —e, so that z1(t) = —et. Proceeding in a similar fashion we
arrive at z,,(t) = (—1)"(et™/n!), and finally the inner expansion is

nt’l’b

— (-1
zin(t) =€ Z e"( n)' —el Tt =l et (18.18)
n=0 ’

Clearly, z;,(t) is a valid asymptotic expansion not only for ¢ in the
boundary layer region 0 < ¢ < O(1), but also for large t (t = O(e™ %), 0 <
a < 1), while youe(z) is valid for € < & < 1, and not for x = O(e) since it
does not satisfy the boundary condition y(0) = 0. Further, from the above
construction we are able to match inner and outer expansions asymptoti-
cally in the region ¢ < z <1 to all orders in powers of e.

Finally, to construct a uniform approximation yun:s(z) of y(x) we may
take

yunzf(f) = yzn(ﬁ) + yout(ﬁ) - ymatch(x)a (1819)
where Ymaten () approximates y(x) in the matching region. If we compute
Yin(2), Yout(x) and Ymaten(x) up to nth-order, then |y(x) — yunir(z)| =
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O(e"*t1) (e — 07, 0 < x < 1). Since for the boundary value problem

(18.1), (18.4) we can compute Yout(z) = €', yin(z) = €'~ — el and
Ymateh () = €177 it follows that
Yunif(z) = €77 — el 7T/ (18.20)

is an infinite order approximation to y(x).

It is to be noted that yunir(z) # y(x), i.e. Yunis(z) is only asymptotic
to y(x) and one should not expect Yunif(z) — y(x) as n — oo.

We remark that the DE (18.1) is sufficiently simple so that we could per-
form the preceding perturbation analysis and could obtain uniformly valid
approximations to the solution of the problem (18.1), (18.4). However, in
general, straightforward computations of y;,(x) and y,.:(z) are practically
impossible. Matching criteria are in general very complicated and there is
no a priori reason to believe the existence of an overlapping region where
both outer and inner expansions remain valid. Finally, to obtain yunif(z)
one needs to make necessary modifications, at times one may have to have
composite, (e.g., multiplicative) expansions.

A careful analysis of the method of matched asymptotic expansions is
too complicated to be included in this elementary discussion on singular
perturbations.

Problems

18.1. For the initial value problem

(x+ey)y +y=0, y(1)=1
show that
2—1 2?1

. o1 B 3
0 y@)=_+e, , =€, 5 +0()

(if) the exact solution is

x 2 2 1/2

= 1

y(x) c + (62 + c + >

1 11, , 1 o

(iii) y(z) =1+ (1—-2)+ , 2(;10 —1)+ 0| |, which is the same as
€ € €

the expanded version of the exact solution.

18.2. For the initial value problem

1
y=1+2° y(1)=1

!
(r +ey)y 5
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show that

1 1
y(a) = 22747 —6)—c (16x3 — 17523/2 — 240z + 5392/

+10571/2 - 245) + O(e?),

18.3. For the initial value problem

do

L8 —0, 0(0) =1
dr

which occurs in cooling of a lumped system, show that
(i)  the exact solution is (1) = (14 e7)" ¢, € # 0

(ii) 6(r)=e "+ 637’2677— + 62;’ <ZT4 - 73> e +0(%).

18.4. For the boundary value problem

e +y +y=0, y0)=0, y(1)=1
show that

ew\/1746/26 —xzv/1—4€/2€

_ (1-2)/2¢ ¢
y(x) - € e\/1—4e/25 _ e—\/1—46/26

— eltT _eltror/e 49 ¢ 0.

18.5. For the boundary value problem

2 2
2
y $2 y $2 0

y(e) =0, y(1)=1
show that
(i)  the exact solution is

€

= 1_63(952—;1071)—1-1

y(z)

(ii) the constant function z(xz) = 1 satisfies both the DE and the right
boundary condition

(iii) limeoy(z) = z(x), 0 < < 1 and hence the solution has a boundary
layer near = 0.
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Sturm—Liouville Problems

In Lecture 14 we have seen that homogeneous boundary value problem
(14.3), (14.4) may have nontrivial solutions. If the coefficients of the DE
and/or of the boundary conditions depend on a parameter, then one of the
pioneer problems of mathematical physics is to determine the value(s) of
the parameter for which such nontrivial solutions exist. In this lecture we
shall explain some of the essential ideas involved in this vast field, which is
continuously growing.

A boundary value problem which consists of the DE
(p(2)y") +a(@)y + Ar(z)y = Ply] + Ar(z)y =0, € J=la,p] (19.1)
and the boundary conditions

apy(a) + ary'(a) =0, af+aj >0 (19.2)
doy(B) +dry'(8) =0, dj+di>0 '
is called a Sturm-Liouville problem. In the DE (19.1), X is a parameter,
and the functions ¢, r € C(J), p € C(J) and p(x) >0, r(z) > 0in J.

The problem (19.1), (19.2) satisfying the above conditions is said to
be a regular Sturm-Liouville problem. Clearly, y(x) = 0 is always a solu-
tion of (19.1), (19.2). Solving such a problem means finding values of A
called eigenvalues and the corresponding nontrivial solutions ¢y (x) known
as etgenfunctions. The set of all eigenvalues of a regular problem is called
its spectrum.

The computation of eigenvalues and eigenfunctions is illustrated in the
following examples.

Example 19.1. Consider the boundary value problem
v +Xy=0 (19.3)

y(0) = y(r) = 0. (19.4)

If A =0, then the general solution of (19.3) (reduced to y” = 0) is y(x) =
¢1 + cax and this solution satisfies the boundary conditions (19.4) if and
only if ¢4 = ¢2 = 0, i.e.,, y(z) = 0 is the only solution of (19.3), (19.4).
Hence, A = 0 is not an eigenvalue of the problem (19.3), (19.4).

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 19,
(© Springer Science+Business Media, LLC 2009
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If A # 0, it is convenient to replace A by p2, where i is a new parameter
and not necessarily real. In this case the general solution of (19.3) is y(x) =
1€ + coe” ™ and this solution satisfies the boundary conditions (19.4)
if and only if

c1+c2=0
e , (19.5)
cre'MT + coe T = 0.
The system (19.5) has a nontrivial solution if and only if
eI T — (), (19.6)
If 4 = a + ib, where a and b are real, condition (19.6) reduces to
e’ (cosam —isinar) — e "™ (cosar + isinan) = 0
or
('™ —e ") cosam — i(e"™ + e ") sinar = 0
or
2sinh b cosam — 2i coshbrsinar =0
or
sinh b cosam =0 (19.7)
and
coshbrsinar = 0. (19.8)

Since coshbr > 0 for all values of b, equation (19.8) requires that a = n,
where n is an integer. Further, for this choice of a, cosarm # 0 and equation
(19.7) reduces to sinhbr = 0, i.e., b = 0. However, if b = 0, then we cannot
have a = 0, because then u = 0, and we have seen it is not an eigenvalue.
Hence, p = n, where n is a nonzero integer. Thus, the eigenvalues of (19.3),
(19.4) are A, = p?> =n? n =1,2,---. Further, from (19.5) since ¢y = —¢;
for A\, = n? the corresponding nontrivial solutions of the problem (19.3),
(19.4) are

inx

bn(z) = c1 (™ — 7)) = 2ic; sinn,
or simply ¢, (x) = sinnax.

Example 19.2. Consider again the DE (19.3) but with the boundary
conditions

y(0) +y'(0) =0, y(1)=0. (19.9)
If A = 0, then the general solution y(x) = ¢1 + cox of (19.3) also satisfies the
boundary conditions (19.9) if and only if ¢; + c2 = 0, i.e., ca = —c¢;. Hence,

A = 0 is an eigenvalue of (19.3), (19.9) and the corresponding eigenfunction
is ¢o(z) =1 — .
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If A # 0, then once again we replace A by 12 and note that the general
solution y(z) = c1€"™* 4 coe™"* of (19.3) satisfies the boundary conditions
(19.9) if and only if

(c1+¢2) +ip(cr —ec2) =0

. N (19.10)
cre' 4 coe™" = 0.
The system (19.10) has a nontrivial solution if and only if
(1 4ip)e " — (1 —ip)e* =0,
which is equivalent to
tan g = p. (19.11)

To find the real roots of (19.11) we graph the curves y = p and y = tanp
and observe the values of ;1 where these curves intersect.

14 +

12 +

10 +

Figure 19.1

From Figure 19.1 it is clear that the equation (19.11) has an infinite
number of positive roots p,, n = 1,2, .-+ which are approaching the odd
multiples of 7/2, i.e., pu, >~ (2n+ 1)7/2. Further, since the equation (19.11)
remains unchanged if p is replaced by —pu, we find that the only nonzero
real roots of (19.11) are p, ~ +(2n+ 1)7/2, n=1,2,---.
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Thus, the problem (19.3), (19.9) also has an infinite number of eigenval-
ues, Ao =0, A\, =~ (2n+1)%72/4, n =1,2,---. Further, from (19.10), since
co = —c1e?™ for these A,, n > 1 the corresponding nontrivial solutions of
the problem (19.3), (19.9) are

y(x) = c1eVInT — cpe VATV = 90 ¢V gin /A, (1 — ).
Hence, the eigenfunctions of (19.3), (19.9) are

do(z)=1—2z
an(x):Sln\/An(l_x)v n:1527""

From Example 19.1 it is clear that the problem (19.3), (19.4) has an in-
finite number of real eigenvalues \,, which can be arranged as a monotonic
increasing sequence A\; < Ao < --- such that \, — oo as n — oo. Also,
corresponding to each eigenvalue A, of (19.3), (19.4) there exists a one-
parameter family of eigenfunctions ¢,,(x), which has exactly (n — 1) zeros
in the open interval (0, 7). Further, the eigenfunctions ¢, (x) = sinnz, n =
1,2,--- of (19.3), (19.4) are orthogonal in (0,7) with the weight function
r(z) = 1. Clearly, these properties are also valid for the problem (19.3),
(19.9). In fact, these properties hold for the general regular Sturm-Liouville
problem (19.1), (19.2). We shall state these properties as theorems and
prove the results.

Theorem 19.1. The eigenvalues of the regular Sturm-Liouville prob-
lem (19.1), (19.2) are simple; i.e., if A is an eigenvalue of (19.1), (19.2)
and ¢1(x) and ¢o(z) are the corresponding eigenfunctions, then ¢;(x) and
¢2(x) are linearly dependent.

Proof. Since ¢1(x) and ¢o(x) both are solutions of (19.1), we have

(p(x)91) + a(@)¢1 + Ar(z)p1 =0 (19.12)
and
(p(2)93)" + q(x)¢2 + Ar(z)¢2 = 0. (19.13)
Multiplying (19.12) by ¢2, and (19.13) by ¢1 and subtracting, we get
$2(p(z)$1)" — (p()9s) ¢1 = 0. (19.14)

However, since

from (19.14) it follows that
[$2(p(2)¢)) — (p(x)d5)¢1] =0
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and hence
p(z)[p29) — Pyp1] = constant = C. (19.15)

To find the value of C, we note that ¢, and ¢- satisfy the boundary condi-
tions, and hence
appr(a) + ar1¢i (o) =0

)
aopa(a) + azdh(a) =0,

which implies ¢1(a)@h(a) — da(a)@) () = 0. Thus, from (19.15) it follows
that
p(x)[pad;, — ¢h] =0 forall z € |a, .

Since p(x) > 0, we must have ¢a¢] — dhe1 = 0 for all x € [« §]. But, this
means that ¢, and ¢, are linearly dependent.

Theorem 19.2. Let \,, n = 1,2,--- be the eigenvalues of the reg-
ular Sturm-Liouville problem (19.1), (19.2) and ¢,(x), n = 1,2,--- be
the corresponding eigenfunctions. Then, the set {¢,(x) : n=1,2,---} is
orthogonal in [«, 5] with respect to the weight function r(z)

Proof. Let \; and Ay, (k # ) be eigenvalues, and ¢ (z) and ¢y(x) be
the corresponding eigenfunctions of (19.1), (19.2). Since ¢ (x) and ¢p(x)
are solutions of (19.1), we have

(p(2)9}) + q(@)dr + Arr(2)prp =0 (19.16)

and
(p(x)})" + a(@)de + Aer(z)¢e = 0. (19.17)
Now following the argument in Theorem 19.1, we get
[e(p(x)d1) — (P(2)Pp) k] + (Ae = Ae)r(x)rbe = 0,
which on integration gives

s 8
(Ae — /\k)/ r(2)gx(@)de(x)dz = p(a)pe(z)¢r (z) = Se(2)dn(2)]|

(19.18)
Next since ¢y (x) and ¢p(z) satisfy the boundary conditions (19.2), i.e.,

aodr(a) + a1¢y(a) =0, dodr(B) + dig)(B) =0
aope(a) + a1¢y(a) =0, dode(B) + digy(B) =0

it is necessary that

or(a)dy(a) — @ () de(a) = ¢ (B)d4(B) — ¢ (B)e(B) = 0.
Hence, the identity (19.18) reduces to

B
(A — )\k)/ r(2) i (x)pe(x)dx = 0. (19.19)
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However, since Ay # A, it follows that ff r(2)dr () de(x)dx = 0.

Corollary 19.3. Let A\; and Xy be two eigenvalues of the regular
Sturm-Liouville problem (19.1), (19.2) and ¢ (z) and ¢2(z) be the corre-
sponding eigenfunctions. Then, ¢ (z) and ¢3(z) are linearly dependent if
and only if \; = As.

Proof. The proof is a direct consequence of equality (19.19).

Theorem 19.4. For the regular Sturm-Liouville problem (19.1), (19.2)
the eigenvalues are real.

Proof. Let A\ = a+ib be a complex eigenvalue and ¢(x) = p(x) + iv(z)
be the corresponding eigenfunction. Then, we have

(p(x)( + i)"Y + q(z) (1 + iv) + (a + ib)r(z)(u + iv) = 0

and hence
(p(@)p’) + a(x)p+ (ap — bv)r(z) =0
and
(p(2)v") + q(x)v + (bp+ av)r(x) = 0.
Now following exactly the same argument as in Theorem 19.1, we get

B B
0= p)o ~ )| = [ [lan = bwr(e) + b+ avr(o)ds

&
= b/ r(z) (V2 (z) + 1P (z))dx.
Hence, it is necessary that b = 0, i.e., A is real.

Since (19.3), (19.9) is a regular Sturm-Liouville problem, from Theorem
19.4 it is immediate that the equation (19.11) has only real roots.

In the above results we have established several properties of the eigen-
values and eigenfunctions of the regular Sturm-Liouville problem (19.1),
(19.2). In all these results the existence of eigenvalues is tacitly assumed.
We now state the following very important result whose proof involves some
advanced arguments.

Theorem 19.5.  For the regular Sturm-Liouville problem (19.1),
(19.2) there exists an infinite number of eigenvalues \,, n = 1,2,---.
These eigenvalues can be arranged as a monotonically increasing sequence
A1 < A2 < --- such that \,, — oo as n — oo. Further, eigenfunction ¢, ()
corresponding to the eigenvalue A, has exactly (n — 1) zeros in the open
interval (a, 3).

The following examples show that the above properties for singular
Sturm—Liouville problems do not always hold.
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Example 19.3. For the singular Sturm-Liouville problem (19.3),
y(0) =0, Jy(z)|< M <oo forall ze€(0,00)

each A € (0, 00) is an eigenvalue and sin v/ Az is the corresponding eigenfunc-
tion. Thus, in comparison with the regular problems where the spectrum
is always discrete, the singular problems may have a continuous spectrum.

Example 19.4. Consider the singular Sturm-Liouville problem (19.3),

y(=m) =y(r), o (=m)=y'(m). (19.20)

This problem has eigenvalues \g = 0, A\, =n?, n =1,2,---. The eigenvalue
Ao = 0 is simple and 1 is the corresponding eigenfunction. The eigenvalue
An = n?, n > 1is not simple and two independent eigenfunctions are sin nx
and cosnx. Thus, in contrast with regular problems where the eigenvalues
are simple, there may be multiple eigenvalues for singular problems.

Finally, we remark that the properties of the eigenvalues and eigenfunc-
tions of regular Sturm-Liouville problems can be extended under appro-
priate assumptions to singular problems also in which the function p(z) is
zero at a or (3, or both, but remains positive in (o, 3). Some examples of
this type are given in Problems 19.13 — 19.18.

Problems

19.1. The deflection y of a uniform column of length a under a
constant axial load p is governed by the boundary value problem

EIZ :g +py=0, y(0)=yla)=0
here E is Young’s modulus, and [ is the moment of inertia of the column.
Find the values of p for which this problem has nontrivial solutions. The
smallest such value of p is the upper limit for the stability of the unde-
flected equilibrium position of the column. (This problem with different
terminology is the same as (15.4)).

19.2. Find the eigenvalues and eigenfunctions of the problem (19.3)
with the boundary conditions

i) y(0)=0,4(8)=0

i) y'(0)=0, y(B) =0
y'(0)=0, y(8)=0
iv) y(0 —0 y( )+y’(5)=

(
(
(i)
(
(

v) y(0)—
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(vi) y(0) =¥'(0) =0, y(B) +¥'(8) = 0.

19.3. Find the eigenvalues and eigenfunctions of each of the following
Sturm-Liouville problems:

i) ¥+ =0, y0)=y(r/2)=0

i) ¥+ (1+Ny=0, y(0)=y(r

~—
~—

iil) y"+2y +(1—-Ny=0, y(0) y( )=
iv) (2%y) + A7y =0, y(1)=y(2)=
V)

)=
(2
22y + 2y’ + (A\x? — (1/4))y = 0, (71'/2) =y(37/2) =
vi) (2 +1)y") +A@?+1)"ly =0, y(0)=y(1)=0.

19.4. Find the eigenvalues and eigenfunctions of the boundary value
problem

(
(
(
(
(
(

v+ y =0, y(0)=0, hy(B)+kBy(B)=0.
Further, show that the set of all its eigenfunctions is orthogonal on [0, 3].

19.5. Consider the boundary value problem

2y +ay +dy=0, l<z<e
y(1) =0, y(e) =0.

(i)  Show that (19.21) is equivalent to the Sturm-Liouville problem

(19.21)

A
(xy/)/—i-xy:O, l<z<e
y(1) =0, y(e)=0.

(ii) Verify that for (19.22) the eigenvalues are A\, = n?7% n = 1,2,
and the corresponding eigenfunctions are ¢, (z) = sin(nmIn a:)

(iii) Show that

(19.22)

| oo ={ , 2

19.6. Verify that for the Sturm—Liouville problem

A
(zy") + Y= 0, l<a<e
yl(].) — O7 y/(e27'r) — 0

the eigenvalues are An = n? 4 n = 0,1,--- and the corresponding eigen-
functions are ¢, (z) = cos ( ) Show that

27

/6 1¢m(x)¢n(x)dx =0, m#n.
. @
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19.7. Consider the DE in Problem 6.4 with n =4, i.e.,
a*y + Ky = 0. (19.23)
(i)  Verify that the general solution of (19.23) is
y(z) ==z <Acos]; + Bsin i) .

(ii) Find the eigenvalues and eigenfunctions of the Sturm-Liouville prob-
lem (19.23), y(a) = y(5) =0, 0 < a < 3.

19.8. Show that the problem

y' =AMy + 4Ny =0, y(0)=0, y(1)+y'(1)=0

has only one eigenvalue, and find the corresponding eigenfunction.

19.9.  Show that for the singular Sturm-Liouville problem (19.1),
(14.9) with p(«) = p(B) eigenfunctions corresponding to different eigenval-
ues are orthogonal in [«, 3] with respect to the weight function r(z).

19.10. Solve the following singular Sturm-Liouville problems:

1) ¢y +xy=0, ¥(0)=0, Jylx)<oco forall =ze (0,00)
(i) ¥+l =0, y(x)<oo forall z e (—o0,0).

19.11. Find the eigenvalues and eigenfunctions of the problem

-y =0 (19.24)
with the boundary conditions
(i) y(0) =y"(0) =y(B) =y"(B) = (19.25)
(ii) »(0) =y'(0) =y"(B) = y”’(ﬂ) (19.26)
(iii) y(0) =y'(0) =y(B) =¥'(B) = (19.27)

19.12. Find the eigenvalues and eigenfunctions of problem
y® + 2y =0 (19.28)

with the boundary conditions (19.25). Further, show that (19.28), (19.26)
is not an eigenvalue problem.

19.13. Consider the singular Sturm—Liouville problem
(1— a2y —2zy' + X y= (1 —22)y) + \y =0 (19.29)

hm1 ylx) < oo, 1im1 y(z) < oo. (19.30)
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Show that the eigenvalues of this problem are A, = n(n+1), n=0,1,2,---
and the corresponding eigenfunctions are the Legendre polynomials P, (x).

19.14. Consider the singular Sturm-Liouville problem (19.29),

y'(0) =0, lim y(z) < oo. (19.31)

r—1

Show that the eigenvalues of this problem are A\, = 2n(2n + 1), n =
0,1,2,---and the corresponding eigenfunctions are the even Legendre poly-
nomials Pa, ().

19.15. Consider the singular Sturm—Liouville problem (19.29),

y(0) =0, lim y(z) < oc. (19.32)

rx—1

Show that the eigenvalues of this problem are A\, = (2n +1)(2n+2), n =
0,1,2,--- and the corresponding eigenfunctions are the odd Legendre poly-
nomials Pay,11(z).

19.16. Consider the singular Sturm-Liouville problem

!/
Yy —2xy + )y =0= (ef‘fzy') + ey (19.33)
lim :T(Tk) < oo, lim y(f) < oo for some positive integer k.
r——00 |I r—o0 X

(19.34)
Show that the eigenvalues of this problem are A\, =2n, n =0,1,2,--- and
the corresponding eigenfunctions are the Hermite polynomials H, (z).

19.17. Consider the singular Sturm—Liouville problem

'+ (1 —2)y +Ay=0= (xe’””y')l + e Ty (19.35)
: . y(x) e
hH}J ly(z)] < oo, lim ok < for some positive integer k.
(19.36)
Show that the eigenvalues of this problem are A\, =n, n=0,1,2,--- and

the corresponding eigenfunctions are the Laguerre polynomials L, (z).

19.18. Let a > 0 be fixed, and b,,, n = 0,1,2,--- be the zeros of the
Bessel function J,(x). Show that the singular Sturm-Liouville problem

2
22y +ay' + (M —a®)y =0= (2y) + <)\x — ax > Yy (19.37)

lim y(z) < oo, y(1)=0 (19.38)

x—0
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has the eigenvalues A, = b2, n = 0,1,2,--- and the corresponding eigen-
functions are J,(byz).

19.19. Let g be an eigenvalue of the regular Sturm—Liouville problem
(19.1), (19.2) and ¢ (x) be the corresponding eigenfunction. Show that

—p(@)¢n(2)¢1. ()| + [1] [p(2) (6} (2))? — a(@)6} (2)] dw

A\ —
’ fﬁ (z)¢? (z)dx

This expression is called Rayleigh quotient. From this quotient it follows
that
() A > 0if —p(2)dr(2)}(2)]] > 0 and q(x) <0, € [a, §]

(ii) the minimum value of the Rayleigh quotient over all continuous func-
tions satisfying the conditions (19.2) is the smallest eigenvalue \;.

Answers or Hints
19.1. n?7?El/a® n=1,2,---.

2
19.2. (i) (2” 1) 2, sin (%7 1) (2’2‘51) 72, cos (2’2‘51)7733

2
(iii) (”El) 72, cos( ﬁl) 7z (iv) A2, where A = ), is a solution of

tan A3 + A = 0, sin\,z (v) A2, where A\ = ), is a solution of cot \3 =
A, sin A,z + A, cos Az (Vi) A2, where A = )\, is a solution of tan A\ =

20/ (A2 — 1), sin A,z + A, cos A\, .
19.3. (i) 4n?, sin2nx (i) n?—1, sinnz (iii) —n?72, e Tsinnrzr (iv) 4n
n

72, sin2nr (1- 1) (v) n? \/196 sinn (z — 7) (vi) 16n?, sin(4ntan—"' ).

2%

2

19.4. )\, = a,/fB? where a,, is a root of atana = h/k, cos “5°.
19.5. Verify directly.

19.6. Verify directly.

19.7. (i) Verify directly (ii) k, = "7, zsin [”g(ﬁg:ﬂ.

19.8. —1, ze 27,
19.9. Use (19.18).

19.10.(i)) A > 0, é(z) = cosVAz (i) A > 0, é(z) = c1cosvV Az +
o sin V.
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4_4

19.11.(1) A\, = "51 ¢n () = sin "5
ii) A\, = (un/B)* where p, is the n—th root of the equation cosh i cos y +
ju I

1—0 [cosh(unr/m—cos(unr/a) B Sinh(unz/ﬁ)—sin(unr/ﬁ)}
- cosh iy, +cos iy sinh fo,, +sin py,

(iii) An = (pn/B)* where p,, is the n—th root of the equation cosh i cos pn —
1=0 [COS(unz/ﬁ)—cosh(unr/ﬁ) _ Sin(unr/ﬁ)—sinh(unr/ﬁ)] .

08 fir, —cosh fin sin i, —sinh p,

19.12.0, = "I, ép(x) = sin "7°.

19.13.See Lecture 7.

19.14.See Lecture 7.

19.15.See Lecture 7.

19.16.See Lecture 8.

19.17.See Lecture 8.

19.18.See Lectures 9 and 13.

19.19.Multiply (19.16) by ¢ (z) and integrate over [a, f].



Lecture 20

Eigenfunction Expansions

Often we need to expand a given function in terms of other functions
with specified exactness so as to be able to compute it in practice. In this
and the next lecture we shall show that the sets of orthogonal polynomials
and functions we have provided in earlier lectures can be used effectively
as the basis in the expansions of general functions.

The basis {e!,---,e"} (e* is the unit vector) of R" has an important
characteristic—namely, for every u € R"™ there is a unique choice of con-
stants aq,---,a, for W_hich u = ZZL:l a;e'. Further, from the orthonor-
mality of the vectors e’, 1 < i < n we can determine a;, 1 < i < n as
follows:

n n
< >= <Zaiei,eﬂ'> =Y ai<d.d>=a; 1<j<n
=1

i=1
Thus, the vector u has a unique representation u =Y . | < u,e' > e'.

A natural generalization of this result which is widely applicable and
has led to a vast amount of advanced mathematics can be stated as follows:
Let {¢n(z), n=0,1,2,---} be an orthogonal set of functions in the interval
[a, 8] with respect to the weight function r(z). Then, an arbitrary function
f(x) can be expressed as an infinite series involving orthogonal functions
(bn(x)a n= Oa 1723 cceas

F@) = catn(2). (20.1)
n=0

It is natural to ask the meaning of equality in (20.1), i.e., the type of
convergence, if any, of the infinite series on the right so that we will have
some idea as to how well this represents f(z). We shall also determine the
constant coefficients ¢,,, n =10,1,2,---in (20.1).

Let us first proceed formally without considering the question of con-
vergence. We multiply (20.1) by r(z)¢,, () and integrate from « to 3, to
obtain

16} B
/ r(@)m(@)f(@)dz = / S car(@)n (@) bm (2)d2
@ X n=0

B8
. / F(@) 62, (@)dz = ey

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 20,
(© Springer Science+Business Media, LLC 2009
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Thus, under suitable convergence conditions the constant coefficients ¢,
n=0,1,2,--- are given by the formula

B
en= [ r()on@)f(a)ds / 6l (20.2)

However, if the set {¢,(x)} is orthonormal, so that ||¢, | = 1, then we have

B
cn:/ 7(2)pn (z) f(x)dz. (20.3)

[e3

If the series > 7 ¢p¢n(x) converges uniformly to f(z) in [a, f], then
the above formal procedure is justified, and then the coefficients ¢, are
given by (20.2).

The coefficients ¢,, obtained in (20.2) are called the Fourier coefficients
of the function f(x) with respect to the orthogonal set {¢,(z)} and the
series Y7 cn¢n(x) with coefficients (20.2) is called the Fourier series of

f(z).
We shall write

n=0

which, in general, is just a correspondence, i.e., often f(z) # > o cndn (),
unless otherwise is proved.

Fourier cosine series. In Lecture 12, we have seen that the set

{%(’I) = \/17r, On(x) = \/i cosnxz, n=1,2,-- }

is orthonormal on 0 < x < 7. Thus, for any piecewise continuous function
flx)on 0 <z <,

0o B co 0o 9
flx) ~ copo(z) + ;cnd%(x) = Jr + ngl cn\/ﬂ cosnz,

where

Hence,

flz) ~ ; X i/oﬂf(t)dt+§: <72T/07r f(t)cosntdt) cosnz,
n=1
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which can be written as

ag =
flx) ~ 5 + ;an cosn, (20.4)
where 5 /7
ap, = / f(t) cosntdt, n>0. (20.5)
™ Jo

The series (20.4) is known as the Fourier cosine series.

Example 20.1. We shall find the Fourier cosine series of the function
f(z) =2, 0 <z < m. Clearly,

2 [T 2 [T
ap = / t cos Otdt = / tdt =,
™Jo ™Jo
2 { sinnt
t

2 (7 T ™ sinnt
p, = / tcosntdt — _ / St dt]
iy 0 n 0 0 n

2 {O—O cosmr—l] 2 (=1)" -1
= + =

™

2

™ n n

Thus, from (20.4), we have

2 (-1)" —1
xN72r+n¥17r( ;2 cosnr, 0<z <.

Fourier sine series. Recall that the set

{(bn(a:) = \/i sinnz, n= 1,2,...}

is orthonormal on 0 < = < 7. Thus, for any piecewise continuous function

flz)on0 <z <m,
flx) ~ ;cn\/ﬂsmnx,

T 2
Cn = / f(t)\/ sinntdt, n > 1.
0 s

Again we can rewrite it as

where

(oo}

flx) ~ ansinnx, (20.6)

n=1
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where
2 ™
= / f(t)sinntdt, n>1. (20.7)
0
This representation of f(z) is called the Fourier sine series.

Example 20.2. We shall find the Fourier sine series of the function

f(;v):{ 2, 0<z<m/2

0, m/2<z<m.

Clearly, for n > 1

2 U 2 7T/2 4 _ 2 1
= / f(t) sin ntdt = / 9 sin ntdt — [ COS(nw/ ) +

n
Thus,

- 1- 2
Z [ cosnﬂ'/ )}sinna}, 0<z<m.

Fourier trigonometric series. In Lecture 12, we have verified
that the set

{ 0(33) = \/127_‘_7 ¢2n—1(x) = \/17_(_ cosn, ¢2n($) - \/1 SiHTLZII, n= 1727}

™

is orthonormal on —7 < z < 7. Thus, for any piecewise continuous function
flz)on —m <z <,

where

g 1
0o = /7Ff(t)\/27rdt

g 1

Cop—1 = f) I cosntdt, n>1
g 1

Con = f(t) , sinntdt, n>1.

NS

On rewriting the above relation, we have the Fourier trigonometric series

flx) ~ w0y Z(an cosnx + by, sinnzx), (20.8)
2 n=1



Eigenfunction Expansions 161

where Lo
an = f(t)cosntdt, n>0
L
1 (7 (20.9)
b, = f(t)sinntdt, n > 1.
™ —T
For our later use we note the following relations:
Co = \/gao, Con—1 = VTap, Con = /by, (20.10)

Example 20.3. We shall find the Fourier trigonometric series of the

function
1, —wm<x<0
f(x)_{a:, 0<z<m.

From (20.9), we have

1 [" I I
ap, = f(t)cosntdt = / 1 cosntdt + / t cosntdt
T ) I T Jo
1 [tsinnt  cosnt||”
= 0+ +
T n n 0

_ 1<(—1)’;—1)’ -

1 /0 1 [t
ag = / 1-1dt + /t-1dt=1+”,
T T Jo 2

—T

1 /0 1 (7 1+ (1—m)(=1)"
b, = /1-sinntdt+ /tsinntdt: HA=mEDt Sy
™ Jo

)
™) _n nw

Hence, we have

1+7 [(=1)" -1 -1+ (1 —m)(-1)"
flz) ~ 224—;[( 7T')TL2 cosnz + + m:r)( ) sin nx

)

—rnr<x<T.

It is clear that the constants a,, b, for the Fourier trigonometric se-
ries are different from those for the Fourier cosine and Fourier sine series.
However, if the function f(z) is odd, then since

1 us
ap, = f(t)cosntdt =0, n >0
L

by = f(t)sinntdt = / f@)sinntdt, n>1
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the Fourier trigonometric series reduces to the Fourier sine series. Thus,
we conclude that if f(z) is odd, or defined only on (0, 7) and we make its
odd extension then the Fourier sine series (20.6) holds on (—m, 7). Exactly,
in the same way if f(x) is even, or defined only on (0, 7) and we make its
even extension then since

1 (" 2 [T
ap, = f(t) cosntdt = / f(t)cosntdt, n >0
™ J_x m™Jo
1 /" )
by, = f(t)sinntdt =0, n>1
™

—Tr
the Fourier trigonometric series reduces to the Fourier cosine series.
Finally, we remark that if the piecewise continuous function f(x) is

defined on —a < x < a, then its Fourier trigonometric series (20.8) takes
the form

= nwr nwx
, by si ) , 20.11
f(z g (a cos + by, sin " ( )
where 1
/ cos dt, n>0
a
B (20.12)
/ s1n dt, n > 1.
a



Lecture 21

Eigenfunction Expansions

(Cont’d.)

In this lecture also, we shall expand a given function in terms of or-
thogonal polynomials and functions we have provided in Lectures 12 and
13.

Fourier—Legendre series. We have proved that the set of Leg-
endre polynomials {¢,(z) = P,(z), n=0,1,---} is orthogonal on [—1, 1]
with r(z) = 1. Also,

2

1
P|?= [ P(x)dx = .
1R = [ Piajas =, %

Thus, for any piecewise continuous function f(z) on —1 < z < 1 the
Fourier—Legendre series appears as

fl@) ~ Y enPalw), (21.1)
n=0
where .
Cn = 2n2—|—1 /71 P, (x)f(z)dz, n>0. (21.2)

Example 21.1. For the function f(z) = cos(mx/2) (recall explicit form
of Po(z), Pi(z), Pa(x), Ps(x) and Py(x)) it is easy to find from (21.2) that

10 ,
00:71'7 01:07 02:_7_‘_3(12_7‘—)

18
3 =0, c4= 5 (7% — 18072 4+ 1680), ¢5 = 0.

Hence, the Fourier—Legendre series of the function f(x) = cos(mwx/2) up to
Py(z) in the interval [—1,1] is

2 10 18
Py(z) — (12 —=7)Py(x) + (7" — 1807 + 1680) Py(x).
™ s ™

Note that Py, (x) is an even function, whereas Ps,,11(x) is odd. So, if
f(x) is even or defined on (0,1) and we make its even extension, then the

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 21,
(© Springer Science+Business Media, LLC 2009
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Fourier-Legendre series (21.1) reduces to

f@) ~ Y comPam(2), (21.3)
m=0
where .
com = (dm + 1)/0 Py (z) f(x)dz, m > 0. (21.4)

In our previous example the function f(x) = cos(mwz/2) is even, and hence
all odd ¢,,’s are zero.

Similarly, if f(x) is odd or defined on (0,1) and we make its odd exten-
sion, then the Fourier-Legendre series (21.1) reduces to

f(@) ~ ZCZerlP%nJrl(x)a (21.5)
m=0
where L
Com+t1 = (4m—|—3)/ Pypy1(z) f(x)dz, m > 0. (21.6)
0

Example 21.2. For the function

] 0, —-1<z<0
g(x) = z, 0<z<l1

denote the Fourier—Legendre series by >~ 7 ¢, P, (). Then, since the func-
tion

_ Pi(x) _ v [ —w/2, —~1<z<0] _ |z

is even, in the expansion

.- Py(x)

f(z) ~ Z enPo(x) —

n=0

the odd Fourier coefficients are zero, i.e.,
1
01—2:0, 0320, 05:0,--'.

Hence, the expansion of the function g(x) reduces to

coPo () + ;Pl(x) + 3 e Pon(a). (21.7)
m=1
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Fourier—Chebyshev series. We have shown that the set of
Chebyshev polynomials {(bn(x) = T,(z), n =0,1,---} is orthogonal in
[—1,1] with 7(z) = (1 — 2%)~1/2. Also,

1T, |* = /11(1 — ) VTR () de = { /2, n#0

, n =0.

Thus, for any piecewise continuous function f(z) on —1 < z < 1 the
Fourier—Chebyshev series appears as

fl@) ~ D enTu(w), (21.8)
n=0
where
1
o= 2 [ @), L g s (21.9)

T Jo1 V1 g2 2’

Fourier—Hermite series. Following the argument in the earlier
cases this series over the interval (—oo, 00) appears as

flx) ~ iann(m), (21.10)
n=0
where
=gy e | I@ @ nz0. )

Fourier—Bessel series. Let m > 0 be a fixed integer and let
{bn, n=0,1,---} be the zeros of the Bessel function .J,,(z). In Lecture 13
we have seen that the set {J,,(b,z), n = 0,1,---} is orthogonal on [0, 1]
with respect to the weight function z, i.e.,

/l Oa p 7é q
Ty (bpx) I (bg)dw = 1
0 ! ! 2J3n+1(bp)7 q=p.

Now following the argument in the earlier cases the Fourier-Bessel series
can be written as

fz) ~ ianm(bnx), z €10,1] (21.12)
n=0
where .
Cn = 1o ?(b )/0 TJm (bpz) f(x)dx, n > 0. (21.13)
m—+ n
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We also remark that with little adjustment the above series can be
written over the interval [0, ] instead of [0, 1]. Indeed, if {a,, n=10,1, -}
are the positive roots of the equation J,,(ac) = 0, then (21.12) can be
written as

f@) ~ ) endm(an), @ €0, (21.14)
n=0
where
2 c
Cn = 2J2  (anc) /0 zJm(an) f(x)dz, n > 0. (21.15)

Our last two examples illustrate how the eigenfunctions of a regular
Sturm—Liouville problem can be used to expand a given function.

Example 21.3. To obtain the Fourier series of the function f(x) = 1in
the interval [0, 7] in terms of the eigenfunctions ¢, (z) = sinnx, n=1,2,---
of the eigenvalue problem y” + Ay = 0, y(0) = y(7) = 0 (see Example 19.1)
we recall that

pnll? = / sin? nwdz = -
0 2
Thus, it follows that

2
m

1 /71' . ™ . 2
Cn = f(x) sinnxdx = / sin nxdx = 1—(=1)").
loal? Jo 7 ; nr (17 1Y

Hence, we have

1 1
1 ~ sin(2n — 1)z = F; . 21.1
- Z (2n—1) sin(2n — 1)x 1(x), say (21.16)

n=

—

Example 21.4. We shall obtain the Fourier series of the function
f(x) = 2 — 2% =z € [0,1] in terms of the eigenfunctions ¢o(z) = 1 — x,
dn(x) =sin /A, (1 —x), n=1,2,--- of the eigenvalue problem y" + \y =
0, y(0) +4'(0) =0, y(1) = 0 (see Example 19.2). For this, we note that

1
fool? = [ 1= wpde =,

1 1
lonll2 = / sin? /A, (1 — 2)dz — ;/ (1= cos 24/ A (1 — 2))da
0 0 1
1 1 . 1 .
=, {x+2\/>\nsm2\/)\n(1—a:)] LT {1—2\//\7151112\/)\"

1 1 . ) I
: {1—2\/)\?125111\/)\”605\//\”} —2[1 cos \/)\n]

= ; sin? \/An,
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where we have used the fact that tan v/ A, = VM.

Thus, it follows that

1
00:3/0 (1—{E)($—$2)d$=i

and for n > 1,

2 1
= \//\n/O (z — 2%) sin /A (1 — 2)da

_ 2 b cos VA (1—2) | ! cos v, (1—1x)
sin® VA, {(x—aj ) A, _/0 (1—2x) A, dx]

0
1

-2 sin v A, (1—2) /1 sin v/, (1—x)

= 1-2 - =2 d

\/)\n Sin2 \/)\n |:< x) _\//\n 0 0 _\/)\n v
B -2 [sin\/)\n 2 cosVA(1 - ) !
V) bin2\/)\ VA VA Vn 0
= 2 2\/)\ {\/)\ sm\/)\ —2—}—2005\//\}
= /\ncos\/)\n—2+2005\//\n

AS/2 si1212 Vn [ }
= A2 Un {2 — (24 \p) cos \//\n} .

Hence, we have

T—2° ~ 1 x+z 3/2 (2= (24 An) cos v/ An) sin /A (1— )
o1 A\ sin2 o

= Fy(x), say. (21.17)

Problems

21.1. Find the Fourier cosine series on the interval 0 < = < 7 of each
of the following functions:

0, 0<z<m/2

() f@)=22 (i) f(2) :{ U ajreeen i) f@)=coss

21.2. Find the Fourier sine series on the interval 0 < x < 7 of each of
the following functions:

i) f@)=1 () f@)=r-u
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21.3. Find the Fourier sine series on the interval 0 < < 7 of each of
the functions (i)—(iii) given in Problem 21.1.

21.4. Find the Fourier trigonometric series of each of the following
functions:

@) fl@)= { (1): 0_<7Ta:<<xar< D) @)= { ;: 0_<7Ta:<<x7r< '
(ili) f(z)=ax—-7, —7m<z<wm (iv) flx)=lz|, —-7n"<z<nm
r, —rm<x<0
v) fl@)=22, —-rm<z<m (vi) f(z)=<¢ 2, =0
e O<z<m
(vii) f(z) =2t —m<z<T

Further, for each series sum a few terms graphically, and compare with
the function expanded.

21.5. Find the Fourier trigonometric series of each of the following
functions:
0, —2<z<-1
() flx) =22, O<zxz<2r (i) fla)=¢ 1, —-1l<z<1
0, 1<x<2
21.6. Establish the identities sin®z = (3/4)sinz — (1/4)sin3z and
cos?x = (3/4) cosz + (1/4) cos 3z. Prove that in each case expression on

the right-hand side is the Fourier series for the function on the left-hand
side.

21.7. Let f(z) be a periodic function with period 27 such that its
Fourier coefficients exist. Suppose further that f(m — ) = f(x) for all z.
Show that a,, = 0 when n is odd and b,, = 0 when n is even.

21.8. In the expansion (21.7) find cp, co and ¢q.

21.9. Find the Fourier-Legendre series of the function

0, —1l<z<0
f(x)_{ 1, 0<z<l.

21.10. Show that the Fourier series expansion of the function f(x) =

mx — 22, 0 < 2 < 7 in terms of the orthonormal functions ¢,(z) =

\/727 sinne, 0 <z <7, n=1,2,--- can be written as

Z 7r(2n8— )3 sin(2n — 1)x.

n=1
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21.11.  Expand the function f(z) = 1 when 0 < & < ¢ in series of

functions Jo(A;jx), where A; are the positive roots of the equation Jy(Ac) =
0.

21.12. Expand the function

1, O<z<l1
flz)y=< 1/2, z=1

0, 1<x<2

in series of Jo(\;x) where A; are the roots of Jy(2X) = 0.

21.13. Expand the function f(z) =z, 0 < z <1 in series of J1(\;z)
where \; are the positive roots of Ji(A\) = 0. Also find the function repre-
sented by the series in the interval —1 < z < 0.

21.14. Show that

2 2(A2 —4)Jo(\jx)

2 J J

= E -1 1
x 2 )\? 1(/\j R <z <

)

where \; are the positive roots of Jo(A) = 0.

Answers or Hints

21.1. (i) ”32 +>07 4(;21)n cosna (i) 5+ >0, _QS“:Z(:’T/Z) cosnx
(iii) cosz.

21.2. (i) 23000 SO DT (i) gy sinna

n=1 2n—1 n

21.3. (i) >.°° (277(_1)71+1 —|—4_1:(n_31)n)sinna:

n=1 n

(i) 300, 2 (1™ + cos ™) sinna (i) Y20%, 2 Y sinna.

n=1 nx n=2 ® n2-1
21.4. (i) 3+ 2 (sinz+ }sin3z+ ! sinbz+--)
i) 342 (sinz+ Lsin3z+ sinbz +-- ) (i)~ 2D
2 T 3 5 n=1 n
iv) T3 2 ((=1)" —1)cosnzx (v AT (_12)n COS NI
( ) 2 Zn—l ™ 3 n=1 n
- o 1 )t
(vi) — (e o -+ Z) + 1y, [(H( nlz) + 1 114)_712 )cosmc

(e 0 ) 2

sinnx

1+n?
.. 4 2
(vii) T 48307, (:;2 - 7164) (—1)" cosnz.

21.5. (i) 47; + 307 (% cosnz — AT sinna)
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(i) 54+ 2307, }sin ™ cos "

21.6. Note that

s . v .
an = 7172 _ . sinzcosnrdr — 71”11 _ . sin3z cos nxdx,
v . . v . .
b, = 13 sinzsinnxdr — 11 sin 3z sin nxdx
T4 J—m T4 J—m
3 1
and hence a, =0, n >0, by = ;7 by =0, b3=—, 7, b, =0, n>4.

21.7. For n odd, successively, we have

Gn = }Tffﬂf(a:) cosnxdr = }szoﬂ f(m —y)cosn(m —y)(—1)dy
27 27
717 0 fly)(=1)" cosnydy = —71r fo f(y) cosnydy
= —}r ffﬂ fly) cosnydy = —a,,
where we have used the fact that f(y)cosny is periodic. Hence, a,, = 0.
21.8. Co — 1/4, Cy = 5/16, Cq4 — —3/32

21.9. From (21.2), ¢o = 1/2, ¢; = 3/4, use Problems 7.8(ii) and 7.9(i)
to get ¢, = 5(Pp—1(0) — Po41(0)) which in view of Problem 7.2 gives
Con =0, conyr = J(=1) D D,

21.10.See Example 21.3.

2 0o Jo(Njx)
21111 =252, PN o< <e

o0 J )\j
2112.(z) = } 557%, , 0L e o(Nya), 0 <z < 2.

— oo Ji(Aj@)
21.13.2 =237, 'y, —l<z <l



Lecture 22

Convergence of the
Fourier Series

In this and the next lectures we shall examine the convergence of the
Fourier series of the function f(z) to f(x). For this, to make the analysis
widely applicable, we assume that the functions ¢, (x), n = 0,1,--- and
f(z) are only piecewise continuous on [«,3]. Let the sum of first N +

1 terms Efj:o cn®n(x) be denoted by Sy (x). We consider the difference
|Sn(x) — f(z)| for various values of N and x. If for an arbitrary ¢ > 0
there is an integer N(e) > 0 such that [Sy(z) — f(x)| < ¢, then the Fourier
series converges uniformly to f(x) for all  in [«, 3]. On the other hand, if
N depends on z and € both, then the Fourier series converges pointwise to
f(x). However, for the moment both of these types of convergence are too
demanding, and we will settle for something less. To this end, we need the
following definition.

Definition 22.1. Let each of the functions 1, (x), n > 0 and ¥ (z) be
piecewise continuous in [, 3]. We say that the sequence {1, (z)} converges
in the mean to 1 (x) (with respect to the weight function (z)) in the interval

[a, O] if
B8
Jim [, =l = lim [ @) n(e) ~ v@)Pde =0 (221)

Thus, the Fourier series converges in the mean to f(x) provided

B
lim r(z)(Sn (z) — f(z))*dz = 0. (22.2)

N—oo [,

Before we prove the convergence of the Fourier series, let us consider
the possibility of representing f(z) by a series of the form Y 7  d,dy (),
where the coefficients d,, are not necessarily the Fourier coefficients. Let

N
Tn(xido,dy, - dy) =Y dnén(z)

n=0
and let ey be the quantity |7 — f]|. Then, from the orthogonality of the
R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
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functions ¢, (z) it is clear that
8 N °
& = ITw—fI? = / (@) (Z%%(z)—f@)) ds
N B
> d: / (@)% () Z [ @@ s
/ﬁ
r(z

= Z dp llpnll* -2 Z dncnllénl® + 1 £11?

n=0 n=0
N N

= Z [ 6nll*(dn — n)? — Z lonll®cq + 11112
n=0 n=0

(22.3)
Thus, the quantity ey is least when d,, = ¢, forn =0,1,---, N. Therefore,
we have established the following theorem.

Theorem 22.1. For any nonnegative integer IV, the best approximation

in the mean to a function f(x) by an expression of the form Zi:;o dpn(x)
is obtained when the coefficients d,, are the Fourier coefficients of f(z).

Now in (22.3) let d,, = ¢,,, n=0,1,---, N to obtain

N
1Sn = 12 = 1£17 =D llgnl*c- (22.4)
Thus, it follows that
N
1T — fII? = Z [6nll*(dn — ca)® + (IS8 — FI1*. (22.5)
Hence, we find
0 < [[Sv—=fl < 1T~ = £l (22.6)

If the series Y. 7 dn¢n(x) converges in the mean to f(z), ie., if
limy_oo |[Tn — f|l = 0, then from (22.6) it is clear that the Fourier series
converges in the mean to f(x), i.e., limy_ [|[Sy — f|| = 0. However,
then (22.5) implies that

N
: 207 N2 _
A}gnoo ngo | Pnll“(dn — cn) 0.

But this is possible only if d,, = ¢, n =0, 1,---. Thus, we have proved the
following result.
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Theorem 22.2. If a series of the form >or o dntn(x) converges in the
mean to f(x), then the coefficients d,, must be the Fourier coefficients of

f(x).
Now from the equality (22.4) we note that
0 < [[Sns1—fIl < IS8 = flI-
Thus, the sequence {||Sy— f||, N =0,1,---} is nonincreasing and bounded
below by zero, and therefore it must converge. If it converges to zero, then

the Fourier series of f(z) converges in the mean to f(z). Further, from
(22.4) we have the inequality

N
D lienllPen < IIFIP
n=0

Since the sequence {Cny, N = 0,1,---} where Cy = Zﬁ;o | fn e is
nondecreasing and bounded above by || f]|?, it must converge. Therefore,
we have

o loal’en < If1% (22.7)
n=0

Hence, from (22.4) we see that the Fourier series of f(x) converges in the
mean to f(z) if and only if

F11* = llgnll e (22.8)
n=0

For the case when ¢,,(x), n =0,1,2,--- are orthonormal, (22.7) reduces
to Bessel’s inequality

S < 1P (22.9)
n=0

and (22.8) becomes the well-known Parseval’s equality
1717 =" e (22.10)
n=0

We summarize the above considerations in the following theorem.

Theorem 22.3. Let {¢,(z), n=0,1,2,---} be an orthonormal set,
and let ¢, be the Fourier coefficients of f(x) given in (20.3). Then, the
following hold:
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(i)  the series Y>> 2 converges, and therefore

n=0""n
B
lim ¢, = lim r(x)dn (z) f(x)dx =0,

(03

(ii) the Bessel inequality (22.9) holds,

(iii) the Fourier series of f(z) converges in the mean to f(z) if and only if
Parseval’s equality (22.10) holds.

Now let Cpla, 5] be the space of all piecewise continuous functions in
[, B]. The orthogonal set {¢,(z), n = 0,1,---} is said to be complete in
Cpla, B] if for every function f(x) of Cplw, (] its Fourier series converges
in the mean to f(z). Clearly, if {¢,(z), n =0,1,---} is orthonormal then
it is complete if and only if Parseval’s equality holds for every function in
Cpla, f]. The following property of an orthogonal set is fundamental.

Theorem 22.4. If an orthogonal set {¢,(z), n=0,1,---} is complete
in Cple, ], then any function of Cp [, 5] that is orthogonal to every ¢, (x)
must be zero except possibly at a finite number of points in [, 5].

Proof. Without loss of generality, let the set {¢,(z), n = 0,1,---}
be orthonormal. If f(x) is orthogonal to every ¢, (x), then from (20.3) all
Fourier coefficients ¢, of f(x) are zero. But, then from the Parseval equality
(22.10) the function f(x) must be zero except possibly at a finite number
of points in [a, 4].

The importance of this result lies in the fact that if we delete even
one member from an orthogonal set, then the remaining functions can-
not be a complete set. For example, the sets {cosnx, n = 1,2,---} and
{sinnrz, n = 1,2,---} are orthogonal in [0, 7] and [—1, 1], respectively,
with respect to the weight function r(x) = 1, but not complete.

Unfortunately, there is no single procedure for establishing the com-
pleteness of a given orthogonal set. However, the following results are
known.

Theorem 22.5. The orthogonal set {¢,(z), n=0,1,---} in the inter-
val [a, §] with respect to the weight function r(x) is complete in C[w, 3] if
¢n(x) is a polynomial of degree n.

As a consequence of this result, it is clear that the Fourier—Legendre
series of a piecewise continuous function f(z) in [—1,1] converges in the
mean to f(z). The same conclusion holds for other series also.

Theorem 22.6. The set of all eigenfunctions {¢,(z), n=1,2,---} of
a regular Sturm-Liouville problem is complete in the space Cpla, 3].

Example 22.1. In view of Theorem 22.6 the expansion Fj(z) of the
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function 1 obtained in (21.16) converges in the mean to 1 on the interval
[0, 7]. Similarly, the expansion Fy(z) of x — 2? given in (21.17) converges
in the mean to the function  — 22 on the interval [0, 1].

Theorem 22.6 can be extended to encompass the periodic eigenvalue
problem (19.1), (19.20). Thus, in particular, the set {1, cosnz, sinnz, n
> 1} is complete in Cp,[—m, 7], and therefore, the Fourier trigonometric
series of any function f(z) in C,[—m,n] converges in the mean to f(z).
Similarly, Fourier sine and cosine series of any function f(x) in C,[0,7]
converge in the mean to f(z).

In view of the above remark and the relations (20.10), for the Fourier
trigonometric series Parseval’s equality can be written as

(\/ ) ZV”% Tt = [ P

—T

or

i 2102 = 717 ﬂfz(x)dac. (22.11)

Example 22.2. The Fourier trigonometric expansion of the function
x|, —7m<z<mis
|z| ~ T4 i 4 cos(2n—1)z, —w<z<m. (22.12)
2 — 7(2n —1)?
Clearly, |z| € Cy(—m, 7). Further, comparing (22.12) with the Fourier

trigonometric series, we have

ag ™ 4
9 = o agn, =0, ag,-1=—

Thus, equality (22.11) gives

2 T
1 2
+z[ S I

T

which is the same as

and hence
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Convergence of the
Fourier Series (Cont’d.)

The analytic discussion of uniform and pointwise convergence of the
Fourier series of the function f(z) to f(x) is difficult. Therefore, in this
lecture we shall state several results without proofs. These results are easily
applicable to concrete problems.

Theorem 23.1. Let {¢,(x), n=1,2,---} be the set of all eigenfunc-
tions of a regular Sturm—Liouville problem. Then, the following hold:

(i) the Fourier series of f(z) converges to [f(x+)+ f(z—)]/2 at each point
in the open interval (a, 8) provided f(z) and f’(z) are piecewise continuous

in [o, O],

(ii) the Fourier series of f(x) converges uniformly and absolutely to f(x) in
[a, 8] provided f(z) is continuous having a piecewise continuous derivative
f'(x) in [, 8], and is such that f(a) = 0 if ¢, (o) = 0 and f(8) = 0 if

Example 23.1. For the expansion Fy(z) of the function f(z) = 1
obtained in (21.16), Theorem 23.1(i) ensures that Fj(z) =1 at each point
of the open interval (0, 7). However, Fi(z) # 1 at = 0 and 7, i.e., at the
end points of the interval. We also note that since ¢,,(0) = ¢, (7) = 0, but
f(0) = f(m) =1, Theorem 23.1(ii) cannot be applied.

Example 23.2. For the expansion F,(x) of the function f(r) = 2 — 2
given in (21.17), Theorem 23.1(ii) ensures that Fy(z) = x — 22 uniformly
in [0, 1]. In fact, here ¢, (1) = 0 so does f(1) = 0, however, ¢,,(0) # 0, but
£(0) = 0 (see if in Theorem 23.1(ii)).

Theorem 23.2. Let f(x) and f'(x) be piecewise continuous in the
interval [—1,1]. Then, the Fourier-Legendre series of f(z) converges to
[f(z+)+ f(z—)]/2 at each point in the open interval (—1,1), and at z = —1
the series converges to f(—14) and at = 1 it converges to f(1—).

Theorem 23.3. Let f(x) and f/'(x) be piecewise continuous in the
interval [0, ¢]. Then, the Fourier—Bessel series of f(x) converges to [f(xz+)+
f(z—)]/2 at each point in the open interval (0, c).

Theorem 23.4. Let f(x) and f’'(x) be piecewise continuous in the
R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
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interval [—m, 7]. Then, the Fourier trigonometric series of f(z) converges to
[f(z+)+ f(z—)]/2 at each point in the open interval (—m,7) and at & = 7
the series converges to [f(—7m+) + f(7—)]/2.

0, x€[-m0)
1, x=€l0,n].
Clearly, f(x) € C}(—m,7) and has a single jump discontinuity at 0. For
this function (see Problem 21.4(i)), the Fourier trigonometric coefficients
are ap =1, ap, =0, b, = (1 — (=1)") /nx. Thus, we have

Example 23.3. Consider the function f(x) = {

flx) ~ ; + 72T Z (2n1— 1 sin(2n — 1)x = F(z), say. (23.1)

n=1

From Theorem 23.4 in (23.1) the equality F(x) = f(x) holds at each point
in the open intervals (—m,0) and (0, 7), whereas at = 0 the right-hand
side is 1/2 which is the same as [f(0+) + f(0—)]/2. Also, at © = £7 the
right—hand side is again 1/2 which is the same as [f(—7+) + f(7—)]/2.

Example 23.4. We shall use the Fourier trigonometric series

4l 7T2+§:(_1)n[ 2n sin na) <z<
x x ~ COSNT — 2N SINNT — T X m
4 1272 p2 ’

to show that > 7  (1/n?) = w2/6.
Since f(x) =z +2?/4 € C}(—m, ), by Theorem 23.4, we have

s cosnz—2nsinnx] = [flt)+ f@=))f2, —m<z<nm
12+n§1 w | i | { [f(m=) + f(—7+)]/2, = =+r.

Thus, at x = 7, we find

7T2 oo —1)" T— -7
530w fr=)+ fmh)

[cosnm — 2nsinnn] = 5

and hence

7;2 "‘Z (—nlz)” (—1)" 0] = (m+7m2/4)+ (—r+7/4) 7

2 4’
or
il_ﬂ2 7r2_7r2
—n? 4 12 67

Example 23.5. We shall find the Fourier trigonometric series of the
function cosax on [—m, 7] where a # 0,+1, 42, ---. For this, since cosaz is
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an even function, b, =0, n > 1 and

2 (7 1 [
an, = / cosax cosnxdr = / [cos(nx — ax) + cos(nx + ax)]dx

T Jo m™Jo

1 [sin(nz —ax) | sin(nz +ax)]|"

o n—a n—+a 0
1 a1 |Sinam  sinam 1 ntl s 2a

= (=1 - = (—a)""sinarw .
T n—a mn+a ™ n? —a?

Hence, it follows that

2a

1)n+1
flx) ~ sin ar
T

! Z ( —
+ cosnx| .
2a2 1 n2 a?

Now in view of Theorem 23.4 at x = 0, we have

2 1 = (=1t
71_smmr 2a2+;n2—a2 =cos0=1
and hence )
am = (=1t
=1+ 2a2 .
sinam +a Z n? —a?

n=1

Example 23.6. We shall use the Fourier trigonometric series

o
Isinal 2 4 cos 2nx oy
sinx| ~ — —nr<r<T
T 14n2—1’
n—

to find > 77 | (—=1)"/(16n? —1).

Clearly, the function f(x) = |sinz| € C}[—m, 7], and hence from Theo-
rem 23.4 we have

2 4 X cos2nx [f(z+)+ f(x=)]/2, —7<z<m
iy {

a2 =1\ [fn—)+ f(—m+)]/2, = =+m

™
n=1

At © = m/4, we find

2 4 XK cos(2nm/d)  f(m/A+) + f(mn/4—) 1

T i 4n2 -1 2 V2
and hence

2 4 [x=cos(2km/2) o= cos(2k—1)m/2) 1
T oo <Z 4(2k)2 — 1 2. 4(2k—1)2—1> RVOX

k=1 k=1
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or

which gives

— (- mx/2 1\ 1
216k2—1_4<w_\/2>_2_4\/2'

k=1

Theorem 23.5. Let f(x) and f/(x) be piecewise continuous in the
interval [0, 7r]. Then, the Fourier cosine series of f(x) converges to [f(z+)+
f(xz=)]/2 at each point in the open interval (0,7) and at = 0 and 7 the
series converges, respectively, to f(0+) and f(7—).

Example 23.7. Since
2 oo 1)
22~ 7; +47;(n2) cosnr, 0<z<m

from Theorem 23.5 it follows that

) o . flx)y=2° O<z<m
+4Z(_n? cosnx =< f(0+)=0, =0
n=1 f(m=)=7% =zx=nm

7Tz—l—éli( ncosmr:7r2
3 n=1 2

and hence
2

™ = 1 9
3 —|—4nz::1 2 =
which gives Y7 (1/n?) = 72/6.

Theorem 23.6. Let f(x) and f'(x) be piecewise continuous in the
interval [0, 7]. Then, the Fourier sine series of f(z) converges to [f(z+) +
f(z—)]/2 at each point in the open interval (0,7) and at = 0 and 7 the
series converges to 0.

Example 23.8. Since

o0 .
sinnz
7T—x~2§ , O<ae<m
n
n=1
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from Theorem 23.6 it follows that

>\ sinnz flay=mr—2z, O0<z<mw
25 -
n=1

0, xz=0,m.

Thus, at = 7/2 we have

= n 2
and hence L1 1
™
1_ _ R 23.2
3+5 7+ 4 (23.2)

0, —3<x<0

in view
1, 0<z<3

Example 23.9. For the function f(z) = {
of (20.12) we have

1 /3 1 /3
ao = / flx)dr =1, a,= / f(x)cos -
3 -3 3 -3 3

and .
1 1—(=1)"
by, = /f(a:)sinmmda:: ( ), n>1
3/, 3

nm

and hence the Fourier trigonometric series (20.11) for this function is

1 =1—(=1)"
CENEDY O 0"~ F(a), say

Now from Theorem 23.4 (over the interval [—3, 3]) it follows that

Fle) = flx), ze€(-3,00U(0,3)
] 1/2, x=0,-3,3.

For the differentiation and integration of Fourier trigonometric series we
have the following results.

Theorem 23.7. Suppose f(z) is continuous in (-7, 7), f(—7) = f(n)
and f’(x) is piecewise continuous. Then,

f(z)= Z(—nan sinnx + nb,, cosnz)
n=1

at each point « € (—m, 7) where f”(z) exists.
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Theorem 23.8. Suppose f(z) is piecewise continuous in (—, ) and

flz) ~ C;0—|—Z(ancosmc—l—bnsinnzzc), —r<x<m.

n=1

Then, for x € [—m, 7]

ftydt = / aodt+Z/ (4 cosnt + by, sinnt)dt
2 n=1"v""7

—T —T

ag - 1 . n
5 (x—|—ﬂ')—|—nz_:ln [an sinnz — by, (cosnz — (—1)")].

Example 23.10. For the function f(x) = |z|, * € [~7, 7] we have
(see Problem 21.4(iv))

T 4 = cos(2n — 1)z
flz) ~ 2_772 Gn—1)2 -1 <x <.

n=1

Clearly, f(x) is continuous on [—m, 7], f(—m) = f(x) = =, fl(x) =

Lo =m <@ <01 w0) does not exist, f'(z) € Cp(—m,7), f"(z) =

l,O<ae<m ’ ’ p e

0, z € (—m,0) U (0,7) and f”(0) does not exist. Thus, Theorem 23.7 is
applicable and we have

-1, —m<x<0| 4 i —(2n—1)sin(2n—1)x 4 i sin(2n—1)x

L,0<z<nm [ « (2n —1)2 s 2n—1

(23.3)

At x = 7/2 this series immediately gives (23.2). Also, note that at x = 0
the left-hand side of (23.3) is not defined, but its right-hand side is zero.

n=1 n=1

Example 23.11. We shall use the relation
2 > —1)"
22~ 7; +4§(n2) cosnr, —T<x<T
to find a polynomial p(x) such that
p(z) = i (=1)" sinnz, —7 <z <.
n=1 n3 B B

Clearly, for the function f(x) = 22 all the conditions of Theorem 23.8 are

satisfied. Thus, on integrating the above relation from 0 to x, we get

/wtzdt:/w 7Tzchtjuxi/m (D" s ntdt
0 o 3 =1 /0 n? ’
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or
3 0 n
xg = W;C +4; ( 3) sinnx
and hence
S inne = T ), —mses
sinnx = =p(x —n<x<mT.
Lo 12 PR, =r=
Problems

23.1. Functions ¢1(z) = 1, ¢2(z) = v/3(22 — 1) are orthonormal on
0 < z < 1. Define

1 2
F(a,b) = / (\/33:2 —api(x) — b(bg(x)) dx.
0
Find a, b such that F(a,b) attains its minimum. Find also the minimum

value of F(a,b).

1, 0<z<m/2

0, 7/2<z<m It is given

23.2. Consider the function f(z) = {

that ¢, (z) = \/727 sinnz, n = 1,2,3 are orthonormal on the interval 0 <

x < . Find the values of a, b at which the integral

Fla,b) = / " (F(@) — adi(x) — b(a() + ds(2)))? do
attains its minimum.

23.3. Let f(x) Show that

/_11 <f(x)—;—ia:>2dx }

for any set of constants dy, d; and ds.

I
—N

(f(x) —do — drz — do®)?dx

IA
—

23.4. Show that the following cannot be the Fourier series represen-
tation for any piecewise continuous function

i)Y @) (@)Y L o).
n=1 n=1 \/TL
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23.5. Find Parseval’s equality for the function f(z) =1, = € [0, (]
with respect to the orthonormal set {\/3 sin " n=1,2,- } .
23.6. Consider the function f(z) = 0, —m<z<0 Use Parse-
Ve, 0<z<m.

val’s equality (22.11) to show that

oo

Z( 7; f(z) cosm:da:) < trf(a:) sinnmdm) < 5;;3.

n=1

23.7. Assume that Parseval’s equality holds for piecewise continuous
functions. If {ag,a1,b1,---} and {ap, a1, 1, -} are the sets of Fourier co-
efficients of piecewise continuous functions f and g, respectively, on [—, 7].
Show that

1

1 o0
apo + Z(anan + bnﬁn) = .

; f(@gla)ds,

n=1

23.8. Let f(z) and g(z) be piecewise continuous in the interval [a, f]
and have the same Fourier coefficients with respect to a complete orthonor-
mal set. Show that f(z) = g(z) at each point of [a, 5] where both functions
are continuous.

23.9. (i) Let b, (2) = ny/ze """ /2, 2 € [0,1]. Show that t,(z) — 0
as n — oo for each x in [0, 1]. Further, show that

e = /O (n(a) —0)%dz = o (1 —e™)

and hence e,, — 0o as n — oco. Thus, pointwise convergence does not imply
convergence in the mean.

(ii) Let ¢ (z) = 2™, x € [0,1], and f(x) =0 in [0,1]. Show that

1

1
= [ W - f@Par=, |
and hence 1, (x) converges in the mean to f(z). Further, show that v, (z)
does not converge to f(x) pointwise in [0, 1]. Thus, mean convergence does
not imply pointwise convergence.

23.10.  Show that the sequence {z/(z + n)} converges pointwise on
[0,00) and uniformly on [0,a], a > 0.

0, —<x<0

. The
sinz, 0 <z <.

23.11. Consider the function f(z) = {
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Fourier trigonometric series of f(z) is given by

@) 1 +1 . 2 X cos 2nx
T) ~ sinz — .
T 2 7Tn214n2—1

(i)  Show that the above series converges to f(x) everywhere in the interval
[—m, 7.
(ii) Use Part (i) to show that

1 T
Z4n2—1 2 4

(iii) Find the sum of the series Y - 1/(4n* — 1).

23.12. The Fourier series of e* on the interval —m < z < 7 is given
by
2sinhm [1 o= (—1)"

e’ ~ cosnx — nsinnx
T 2 n2+1( )

(i)  Use the above correspondence to show that

oo

Z ! —7Tcoth7r—1
n?4l 2 2

o0 _1 n
(ii) Find the sum of the series Z (2 +) 1 Justify your answer.
n

23.13. Let f(x) be a twice continuously differentiable, periodic func-
tion with a period 27. Show that

(i)  the Fourier trigonometric coefficients a,, and b,, of f(x) satisfy

M M
lan| <, and |b,| < ., n=1,2--
n n

where M = L [ |f"(z)|dx
(ii) the Fourier trigonometric series of f(x) converges uniformly to f(x)

on [—m, 7).

23.14.  Suppose that f(z) is continuous in [—m, 7], f(—m) = f(w),
and f'(z) is piecewise continuous in [—7, 7]. Show that

() >oZilan| and 3277, by converge,
(i) na, — 0 and nb, — 0,
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(iii) the Fourier trigonometric series of f(x) converges to f(x) absolutely
and uniformly in [—7, 7.

23.15. The proof of Theorem 23.4 requires the following steps:
(i) Establish Lagrange’s trigonometric identity

N
2Zcosn9 =1+
n=1

(ii) If f(z) is piecewise continuous in the interval [a, b], then show that

sin(N+ ;)9

i L
sin 0

b
klirn f(z)sin kxdx = 0.

(iii) If f(z) is piecewise continuous in the interval [0,b] and has a right-
hand derivative at x = 0, then show that

b .
lim / f(x)smfxdx:” £(40).

k—o0 0 2
(iv) Show that
1 = .
Sp(x) = 530 + mZﬁl(am cos mx + by, sinmz)
1 /77 it sin ((n —|—1;) (t —x)) it
) . 2sin (4 (t — x))

(v) If f(x) is piecewise continuous in the interval (a, b) and has derivatives
from the right and left at a point © = xg where a < xy < b, then show that

lim/f bmkx_xo)dx:g[f(a:o+0)+f(a:0—0)].

k—oo Tr — X9

Answers or Hints

23.1. In view of Theorem 22.1, F(a, b) is minimum when a =< /322, ¢ >
=1/v3, b =< V/32% ¢ >= 1/2. Now from (22.4), min F(a,b) = ||v/322||?
—a? — b? = 1/60.

23.2. Let (z) = (¢2(z) + ¢3(z))/V/2. Then, ¢1(z), ¥(z ) are orthonormal
on 0 <z < m. Thus, F(a,b) is the same as F(a,b) = [, (f(z) — ap1(z) —

(v/2b)1p(x))?dx. Now F(a,b) is minimum when a = \/2/7r, \/2b =4/(3/m).
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23.3. For the given function Fourier-Legendre coefficients are co = 1/2, ¢1
=3/4, ca =0.

23.4. Use Theorem 22.3(i).

0, n even
2 _ 2 ) __ 8¢ oo 1
23.5. ||flI*=¢, ¢ = { 8¢/(n?72), 1 odd. Thus, c= 5 > ", (@n—1)2-

23.6. Left-hand side = >_°7  (way,)(7h,) < ”22 S0 (a2 +b2).

n=1 n=1

23.7. Add and subtract Fourier trigonometric series of f and g, write Par-
seval’s equalities for (f + g) and (f — g), use (u + v)? — (u — v)? = 4uw.

23.8. Let h(z) = f(z) — g(x) and {¢, ()} be a complete orthonormal set
on the interval [a, 8] with respect to the weight function r(z). Note that for
the function h(x) Fourier coefficients ¢, = 0, n > 0. Now apply Theorem
22.4.

23.9. (i) Usel'Hospital’s rule to show that ¢, (x) — 0asn — oo, = € [0,1]
(i) Yn(x) = 0asn — oo, z €[0,1), and ¢,(1) =1, n > 0.

23.10.Use definition.
23.11.(i) Use Theorem 23.4 (ii) Let z = /2 (iii) 1/2.

23.12.(i) Use Theorem 23.4 and let z =7 (ii) Let z =0, > 2, (n;i): =

T 1
2sinh 2°
23.13.()) an =} [T f(z)cosnade = — 5 ["_ f"(x)cosnxdx (i) |ao
+ 307 (an cosnx + by sinnz)| < Yaol + X (Jan| + [ba]).

23.14.(1) If f'(z) ~ (ao/2)+ Do (ancosnz + B, sinnzx), then ap =
0, an = nby, Bn = —na,. Now Bessel’s inequality applied to f’(z) implies

that 3°° | 32 converges. Since p, = S p_, 1% < /S0 2 \/Zzzl e
for each n, p, is bounded. Further, since p, is increasing, the sequence
{pn} converges. Thus, p, = > 7_; Iﬁk’cl = > p_, lak| converges (ii) The
convergence of Y- | 32 implies that £, = —na, — 0 (iii) From Theorem
23.4, f(z) = (ao/2)+>. 2 (ay cosnz+b, cosnz), x € [—m, . Finally, note
that |(a0/2) + 3272, (an cos na + by cos nx)| < (laol/2) + 32521 (lan] + bal)
and use (i)



Lecture 24

Fourier Series Solutions of
Ordinary Differential Equations

In this lecture we shall use Fourier series expansions to find periodic
particular solutions of nonhomogeneous DEs, and solutions of nonhomoge-
neous self-adjoint DEs satisfying homogeneous boundary conditions.

We begin with the second-order nonhomogeneous DE
y' +ay +by = f(x), z¢€|-mn], (24.1)

where a, b are constants, and the function f(x) is periodic of period 2,
and satisfies the conditions of Theorem 23.4 so that it can be expanded in
a Fourier trigonometric series (20.8). Our interest here is to find a periodic
particular solution of (24.1), which we shall denote by y,(z) and call it a
steady periodic solution. We assume that

yp(z) = 1‘;0 + Z(An cosnz + By, sinnx) (24.2)

n=1

so that the term by term differentiation gives

() = Z(—nAn sin nx + nB,, cosnx) (24.3)
n=1
and -
" _ 2 2 :
Yp(z) = Z(—n Ay cosnz — n” By, sinn). (24.4)
n=1
Substituting (24.2) — (24.4) and (20.8) in (24.1), we get

A oo
b 20 + Z([—nQAn—i—aan—f—bAn] cosnz + [—n?B, —anA,+bB,] sin nx)

n=1
— a20 + ;(an cos nx + by, sin nx).
Now matching the coefficients, we find
bA() = Qo
(b—n?)A, +anB, = a,
—anA, + (b —n?)B,, = b,.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 24,
(© Springer Science+Business Media, LLC 2009
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Solving this system, we obtain

(b —n?)b, + anay,
Bo= s 4 g+ (249

(b —n?)a, — anb,
(b—n2)2 +a?n?’

ao
Ay = A, =

0 b )
Since for a given function f(x) the coefficients a,, n > 0 and b,, n > 1
are known from (20.9), the unknowns A,, n > 0 and B,, n > 1 can be

determined explicitly from (24.5).

Example 24.1. We shall find the steady periodic solution of the
nonhomogeneous DE

" o - 1, —rm<x<0
y+3y—f(x)—{2’ 0<z<m.
From Problem 21.4 (ii), we have
3 2 1 1
flz)=_+ sinz + _sin3z + _sinbz 4 ---
2 0w 3 )
and hence a, =0, n=1,2,---, and
ap=3, b = 2 bon =0, n=1,2
0 — 9 2n71_7T(27’L—1)7 2n — Y, = 1,4

Now since a = 0, b = 3 from (24.5), it follows that 4, =0, n =1,2,---
and
2

A= B = o DB @n— 1)

By =0, n=1,2,-

Hence, the required particular solution is

= 2
- sin(2n — 1)z
vple) = o + n; (2 — )3 — (2n — 12 = DT
Using the same procedure we can obtain a steady periodic solution of

(24.1) over any interval [-L, L], L > 0. For this, we need to use the Fourier
series (20.11) of f(x) with the coefficients ay,, b, given in (20.12), and let

A oo
wle) =+ (An cos ”zx + By sin ”Zx) . (24.6)
n=1

The unknown A,, n > 0 and B,, n > 1 are then determined from the
relations

2_2 2_2
” (b= 33" ) an — a7 bn (b= 35" )bu+ayan
AO: b’ An: n2m2\2 2n272 ’ Bn: n2w2\2 2n2m2 '
(b_ L2) +a” e (b_ L2) +a® s

(24.7)
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Example 24.2. We shall find the steady periodic solution of the
nonhomogeneous DE

y' +hy=2, —-2<x<2.
Since
4 X (-1t
x—ﬁ;fjl sin "

we have a9 =0, a, =0, b, = 4(— )”“/(mr) and since a = 0, b =5 from
(24.7) we obtain Ay =0, A, =0 and

O

o bo 161
T (35— ") nm(20 —n?r2)’

Thus, the required particular solution is

o n+l
sin xT.
Z 20 - n2772 2

n=1

Next we shall consider the nonhomogeneous self-adjoint DE

(p(x)y") + q(x)y + pr(x)y = Paly] + pr(z)y = f(x) (24.8)

together with the homogeneous boundary conditions (19.2). In (24.8) func-
tions p(x), g(x) and r(x) are assumed to satisfy the same restrictions as
n (19.1), p is a given constant and f(z) is a given function in [, §]. For
the nonhomogeneous boundary value problem (24.8), (19.2) we shall as-
sume that the solution y(z) can be expanded in terms of eigenfunctions
On(x), n = 1,2,--- of the corresponding homogeneous Sturm-Liouville
problem (19.1), (19.2), i.e., y(x) = 3.7, ¢n¢n(x). To compute the coeffi-
cients ¢,, in this expansion first we note that the infinite series Y7 | ¢, ¢ ()
does satisfy the boundary conditions (19.2) since each ¢, (z) does so. Next
consider the DE (24.8) that y(x) must satisfy. For this, we have

P2 [Z Cn(bn ({E)

Thus, if we can interchange the operations of summation and differentiation,
then

+ pr(x) Z cn@n(x) = f(2).

Z cn'P2 [¢n + /”' Z Cn¢n = )
n=1
Since Pa[pn(x)] = —=Anr(x)dn (), this relation is the same as

D (= A)eadn(x) = f((;)) (24.9)
n=1
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Now we assume that the function f(x)/r(z) satisfies the conditions of The-
orem 23.1, so that it can be written as

@) S g a).
T( ) n=1

X

where from (20.2) the coefficients d,, are given by

fx

r(z

1
[6n?

With this assumption (24.9) takes the form

B B
d, / (%) () ))da::| ¢1H2 / (@) f(@)dz.  (24.10)

o0

(1t = An)en — dn) (@) = 0.

n=1
Since this equation holds for each z in [a, (], it is necessary that

(b—Ap)en —dp =0, n=1,2,---. (24.11)

Thus, if p is not equal to any eigenvalue of the corresponding homoge-
neous Sturm-Liouville problem (19.1), (19.2), i.e., g # A, n = 1,2,
then
p— dn
=
Hence, the solution y(x) of the nonhomogeneous problem (24.8), (19.2) can
be written as

n=1,2---. (24.12)

Cn

00 dn
y(z) = E On (). (24.13)
n=1 K= )\n
Of course, the convergence of (24.13) is yet to be established.

If 4 = Ay, then for n = m equation (24.11) is of the form 0 ¢,,, —d,,, = 0.
Thus, if d,, # 0 then it is impossible to solve (24.11) for ¢,,, and hence
the nonhomogeneous problem (24.8), (19.2) has no solution. Further, if
dp, = 0 then (24.11) is satisfied for any arbitrary value of ¢,,, and hence the
nonhomogeneous problem (24.8), (19.2) has an infinite number of solutions.
From (24.10), d,,, = 0 if and only if

B8
/ b (1) f () = 0,

i.e., f(z) in (24.8) is orthogonal to the eigenfunction ¢, (z).

This formal discussion for the problem (24.8), (19.2) is summarized in
the following theorem.
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Theorem 24.1. Let f(z) be continuous in the interval [, 3]. Then,
the nonhomogeneous boundary value problem (24.8), (19.2) has a unique
solution provided p is different from all eigenvalues of the corresponding
homogeneous Sturm-Liouville problem (19.1), (19.2). This solution y(x) is
given by (24.13), and the series converges for each z in [a, §]. If p is equal
to an eigenvalue A, of the corresponding homogeneous Sturm-Liouville
problem (19.1), (19.2) then the nonhomogeneous problem (24.8), (19.2)
has no solution unless f(x) is orthogonal to ¢,,(x), i.e., unless

B
/ Om(x) f(z)dz = 0.

Further, in this case the solution is not unique.
Alternatively, this result can be stated as follows:

Theorem 24.2 (Fredholm’s Alternative). TFor a given con-
stant p and a continuous function f(z) in [a, §] the nonhomogeneous prob-
lem (24.8), (19.2) has a unique solution, or else the corresponding homoge-
neous problem (19.1), (19.2) has a nontrivial solution.

Example 24.3. Consider the nonhomogeneous boundary value prob-

lem

y”+7r2y:x—x2

y(0) +4'(0) = 0 = y(1).

This problem can be solved directly to obtain the unique solution

(24.14)

2 1 4 1 2
y(x) = 4 COSTT — g (1 + 7r2) sinmx + 2 <x —x? + 71'2> . (24.15)

From Example 19.2 we know that 72 is not an eigenvalue of the Sturm-—
Liouville problem (19.3), (19.9). Thus, from Theorem 24.1 the nonhomoge-
neous problem (24.14) has a unique solution. To find this solution in terms
of the eigenvalues A, and eigenfunctions ¢, (z) of (19.3), (19.9) we note
that the function f(r) = x — 2?2 has been expanded in Example 21.4, and
hence from (24.9) and (24.11), we have

1 2
do= , d,= (2= (2+ M) cosVAn), n>1.
4 A% sin? VA,
Thus, from (24.13) we find that the solution y(z) of (24.14) has the expan-
sion

1 = 2
ylx) = 1—2z)+
(@) gr2t =) z:: 72 — M)A 2 sin? /A, (24.16)

n .

X (2—=(24 M) cos v/ An sm\//\ 1—x).
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Problems

24.1. Find periodic particular solutions of the following nonhomoge-
neous DEs:

. I oz, —m<2<0
) y+3y—{o, O<z<nm

.. I )z, —1<2<0
(i1) y+y_{a:, 0<z<l

(i) ¥"+2y+3y=e*, —m<ax<nw

. 1 —rm<x<0
1 ! _ b
(iv) y+3y+7y_{x, 0<z<m.

24.2.  Use Fourier trigonometric series to solve the following initial
value problems:

) 4 sin(2n — 1)mx
/ —
i) y+y= o § om— 1 . y(0)=0

n=

.. > Ccosnx
(i) v+y=) " w0)=0

n=1
4 N sin(2n — 1)z
(il) y” +4y Wg:l on_1 @ Y0O=y(0)=0
, 4 XNsin(2n — 1)x
" _ — —
(iv) v +y—wn§:1 on_1 » YO)=y(0)=0

24.3. Solve the following nonhomogeneous boundary value problems
by means of an eigenfunction expansion:

(i) y"+4y=dx, y(0)=0=y(1)
(i) »"+11y=2a% y(0)=0=y(1)
(iii y”+3y—e y(0) =0 =y(1)
(iv) v"—z=2, y(0)=0=y (7
(
(
(

11

=
=

v) ¥+ 2y=—x, ¢ (0)=0=y(1)+y (1)
vi) ¥ +2y ==, y(0)=0=y'(m)
3 1
vi)(zy') + y = sin(lnz). y(1) =y(2) = 0.
24.4. A simply supported beam of length a has a constant load ¢o/a dis-

tributed over its length. The small deflections of the beam are governed by
the boundary value problem

Ery® =" 50)=y"0)=0, y(a)=1y"(a)=0.
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Show that the deflections are given by the series

4qoa’ &= 1 . (2n+ )mz
= sin .
Elrd £~ (2n+1)°

y(z)

a

Answers or Hints

24.1. () =y — 23000 on_1)[@n_1)2_g COS(2n — 1)z

+3 07 n((;zl)_ng) sinnz (i) 3+ 5 >0, (2n—1)2[(2111—1)271-2—1] cos(2n — 1)nmx

(iii) a =2, b =3, ag = sinh7, a, = (1;173: sinh7, b, = (73_2_21" sinh 7
(iv)a=3,b=7a=1+7, a, ="V, p, = D01

24.2. (i) 4377, 1+(2n£1)2w2 (e‘r + Tr(271171) sin(2n—1)rx — cos(2n—1)7m:)
(i) >0, n!('nl2+1) (—e™® + cosnz +nsinnz) (i) 2 Y07, 47(271171)2 X

(— sin2z + , 2 | sin(2n — l)x) (iv) 2(sina — zcosz)

+A3, (2n—11)2—1 (sinx — 5 sin(2n — 1)x) :

24.3. () 300, O ) 23, [ -0

n=1 n(4—n2?n2) nm n3w3
. 0o na(l4e(—1)"11) sinnwa
x (11—17,271'2) SN (111> 2277,:1 gl+n(2ﬂ2§(3_,)12ﬂ2)
: 32 e8] —ntn/2 0o (2cosVA,—1)cosvVApx
(V) % 2nodd m2(neay SIS (V) 220000 50, D) hsin® v
cot VA = VA, (vi) T +230 711;(5:21_)2) cosnz (vii) 2(In2)? sin(In 2)7

0o —1)"n . nm
X D nei [3(In 2)2— (n7)2][(In 2)2— (n)2] S (fa Inw).

, where
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Partial Differential Equations

Partial differential equations arise in many branches of science and tech-
nology, for example, in electromagnetic theory, elasticity, fluid mechanics,
heat transfer, acoustics, quantum mechanics, and so on. In this lecture we
shall introduce partial differential equations, and explain several concepts
through elementary examples. Here we shall also provide the most funda-
mental classification of second-order linear equations in two independent
variables.

A partial differential equation (DE) is a relation that involves partial
derivatives of an unknown function. Let the unknown function be wu, and
x, Y, z,--- be independent variables, i.e., v = u(z,y, 2, - - -). Often, one of
these variables represents the time. Thus, a partial DE is an equation of
the form

F(CE, Yy 25Uy Ugy Uyy Uy Uy Uy =+ Uggzy *° ) =0. (251)

In (25.1) we have used the subscript notation for the partial differentiation,
i.e.,
ou 0%u

) U = )
ox T 0xoy
We will always assume that the unknown function w is sufficiently well
behaved so that all necessary partial derivatives exist and corresponding
mixed partial derivatives are equal, e.g.,

Uy = and so on.

Ugy = Uyz, Ugzz = Ugrz, and so on.

As in the case of ordinary DEs, we define the order of the partial DE
(25.1) to be the highest order partial derivative appearing in the equation.
Furthermore, we say that the partial DE (25.1) is linear if F is linear
as a function of the variables u, wu;, Uy, U., Uzg, -, ie., F' is a linear
combination of the unknown function and its derivatives. Equation (25.1)
is said to be quasilinear if F' is linear as a function of the highest-order
derivatives.

The following are examples of partial DEs:

Ug + Uy = 3u, — 227 — 5z (first-order linear)

Ugy + u = 422 (second-order linear)
STYUzy — 32Uy + 2u = 0 (second-order linear)

Ugr + 2uty — 4z = 0. (second-order quasilinear)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 25,
(© Springer Science+Business Media, LLC 2009
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With a very few exceptions, we will limit our discussion to only first
and second-order partial DEs. Thus, our most general partial DE in three
independent variables can be written as

A1 UgzF 02Uy +A3Uz 2 +AgUgyFA5Uy» F AUz +A7UL F AUy AU, +A10U = 1
(25.2)
where u = u(z,y,2), f= f(z,y,2) and a; = a;(x,y,2), 1 =1,---,10.

In (25.2) it is understood that the function f and the coefficients a;
are known, and v is unknown. By a solution of (25.2) we mean a continu-
ous function v = u(z,y, z), with continuous first and second-order partial
derivatives, which, when substituted in (25.2), reduces equation (25.2) to
an identity.

Example 25.1. For the first-order partial DE
Up +uy =0, uw=u(zy)

we shall show that u = ¢(z —y), where ¢ is any function having continuous
first-order partial derivatives is a solution. Indeed, since

ue = ¢'(x —y) x (1) and uy =¢'(x —y) x (=1)
it immediately follows that u, + uy = ¢'(x —y) — ¢'(x —y) = 0.

If f(z,y,2) =0 the partial DE (25.2) is called homogeneous; otherwise
it is called nonhomogeneous. If each coefficient a; is constant, then (25.2) is
called a partial DE with constant coefficients. If at least one of the a; is not
a constant, equation (25.2) is called a partial DE with variable coefficients.

Example 25.2. Consider the first-order partial DE
Uy =x+y, u=ux,vy). (25.3)

Integrating (25.3) partially with respect to z, i.e., treating y as a constant,
we obtain )

u= 2x2 +ay +c. (25.4)
We note that the constant of integration is denoted by c. In order to verify
that w as given in (25.4) is a solution of (25.3), we need only to substitute
this expression for u in (25.3). When verifying this, notice that even when
¢ = c(y), was given in (25.4) still is a solution of (25.3), since de(y)/dz = 0.
Thus, the general solution of (25.3) is

1
u= 2x2 +zy + c(y), (25.5)

where c¢ is an arbitrary function of y.
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Hence, in contrast with ordinary DEs the solution (25.5) of the partial
DE (25.3) contains an arbitrary function rather than an arbitrary constant.

Example 25.3. Consider the partial DE

First we integrate (25.6) partially with respect to y (treating x and z as
constants), to obtain

Uy =yz+xy+f1(x,z),

where f7 is an arbitrary function of the variables x and z. Next we integrate
partially with respect to = (treating y and z as constants), to get

1 xT
u=xyz + 2x2y—|—/ fi(s,2)ds + g(y, 2),

where ¢(y, z) is an arbitrary function of the variables y and z. If we set

fw2) = [ hs, s

then our solution takes the form

1
u =Yz + 2x2y + flz,2) + g(y, 2), (25.7)
where f is an arbitrary function of z and z, and ¢ is an arbitrary function
of y and z. Functions f and ¢ must have continuous first-order partial
derivatives with respect to their arguments.

The general solution of a given partial DE of order n in k independent
variables usually involves n arbitrary functions of k —1 variables. Thus, the
solutions (25.5) and (25.7) are the general solutions of equations (25.3) and
(25.6), respectively. Each specific assignment of the arbitrary function(s) in
the general solution gives rise to a particular solution of the corresponding
partial DE Thus,

1
uw= 2952 +xy + eYsiny

is a particular solution of equation (25.3), and
1
u=xyz + 2x2y + 2% cos z + ye*

is a particular solution of equation (25.6).

Now let
‘A[u] =m ({E, Y, z)umw + -+ alo(%y, Z)u
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so that the partial DE (25.2) can be written as
Alu] = f. (25.8)

The principle of superposition, which plays a fundamental role in ordi-
nary DEs, for partial DEs can be stated as follows: Let f; = fi(z,y,2), 1 <
i < m be given functions and let ¢;, 1 < i < m be arbitrary constants. If
u; = ui(x,y,z), 1 < i < m are respective solutions of the partial DEs
Alu;) = fi, 1 <@ < m then u = cjuy + -+ + ¢y is a solution of the
partial DE Afu] = c1fi1 + -+ + cm fm-

Two important consequences of the principle of superposition are as
follows:

(i) Ifwuy,---,uy, are solutions of Alu] = 0 and ¢y, - -, ¢, are any constants,
then Y7 ¢;u; is also a solution of Afu] = 0, i.e., any linear combination
of solutions is also a solution. Also a series built from an infinite number
of solutions Y .=, ¢;u; is a solution in a region D, provided the series and
the various derivative series required for substitution into the partial DE
converge uniformly in D.

(i) If up is a general solution of Afu] = 0 and if u,, is a particular solution
of Alu] = £, then u = uj, + u, is a solution of Afu] = f, i.e., the sum of a
general solution of the homogeneous equation and a particular solution is
also a solution.

If u(z,y, z, ) is a solution of AJu] = 0 containing a parameter u, then
by the principle of superposition

U(%%%M"’ A/J,) - u(x,y,z,u)
Ap

is also a solution. Generally, the limit u,(x,y, z, 1) of this difference quo-
tient is also a solution. For all problems that we shall consider, for all
choices of integrable functions ¢, the integral

i
p(p)u(x,y, z, p)dp
o

is another solution. Since the integral is the limit of a sum, this is a further
extension of the superposition theorem. We also note that if all coeffi-
cients of the equation A[u] = 0 are constants, then the various derivatives
Ug, Uy, Ugg, - €tc., are also solutions. In conclusion, the general solution
often does not represent the collection of all possible solutions.

Example 25.4. Consider again the partial DE (25.6). Clearly, uj, =
f(x,z) + g(y, z) is the general solution of ug, = 0, where f and g are
arbitrary functions; w; = zyz is a particular solution of u,, = z; and
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us = z%y/2 is a particular solution of u,, = z. Thus, the general solution
of (25.6) can be written as (25.7).

Now we shall discuss the most crucial classification of second-order linear
partial DEs in two independent variables

Llu] = A(z,y)use + B2, y)tay + C(z,y)uy,
+D(z,y)ug + E(z,y)uy + F(z,y)u = G(z,y), u=u(z,y),
(25.9)
where the functions A(x,t),---,G(x,t) are continuous in some open set

Q C R? In (25.9), often y = t represents the time, and sometimes for con-
venience x and y are interchanged. Following the analogy of the quadratic
equation

az® +bry +cy’ +drt+ey+ f=0
that it represents a hyperbola, parabola, or ellipse according as b? — 4ac is
positive, zero, or negative, the operator £ (and so the partial DE (25.9)) is

said to be hyperbolic, parabolic, or elliptic at a point (zg, yo) €  according
as

B*(xo0,10) — 4A(z0,10)C (%0, y0) (25.10)

is positive, zero, or negative. It is said to be hyperbolic, parabolic, or elliptic
in a domain, if it has the required property at each point of the domain.

Example 25.5. The wave equation in one dimension

Pu 0%

o2 0z’
occurs in the study of processes of transversal vibrations of a string, the
longitudinal vibrations of rods, electric oscillations in conductors, the tor-
sional oscillations of shafts, gas vibrations, and so on. Clearly, for (25.11),
A=—c% B=0, C=1sothat B2 —4AC = 4¢®> > 0, and hence it is
hyperbolic in any domain.

c>0 (25.11)

Example 25.6. The one-dimensional heat equation

ou 0%u

ot = %92 @ >0 (25.12)
arises in the study of processes of the propagation of heat, the filtration of
liquids and gases in a porous medium, e.g., the filtration of oil and gas in
subterranean sandstones, some problems in probability theory, and so on.
Clearly, for (25.12), A = —a, B = 0, C = 0 so that B2 — 4AC = 0, and
hence it is parabolic in any domain.

Example 25.7. The potential, or Laplace equation in two dimensions,

0%u  0%u
92> T a2 = O (25.13)
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is invoked in the study of problems dealing with electric and magnetic fields,
stationary states, problems in hydrodynamics, diffusion, and so on. Clearly,
for (25.13), A=1, B=0,C =1, so that B> — 4AC = —4 < 0; and hence
it is elliptic in any domain. Solutions of (25.13) are often called potential
functions as well as harmonic functions.

In the literature equations (25.11)-(25.13) are known as the classical
equations of mathematical physics, as these equations keep on popping
up in various other applications. Further, these equations are important
examples of the three major types of linear partial differential equations.

Example 25.8. The Tricomi equation
Ylgg + Uyy = 0 (25.14)

occurs in the study of aerodynamics. This equation is elliptic for y > 0,
parabolic for y = 0, and hyperbolic for y < 0. The elliptic region corre-
sponds to smooth subsonic flow, the parabolic region to a sonic barrier,
and the hyperbolic region to supersonic propagation of shock waves.

Problems

25.1. Show that the given function satisfies the corresponding partial

DE

(1) u=fz*+v?), yu, = au,

(i) u= f(zy), zus —yu, =0

(i) u=eVflz—y), u=1uz+u,

(iv) u=ax+by+ab, u=zuy+yu, + uzuy
(

v) (u+a®)?=(z+ay+b)? wul+u;=4/9.

25.2. Find where the following operators are hyperbolic, parabolic,
or elliptic:

(1) uyy + YUzy + TUgg
(i) 22wy — Ugy +u

25.3. Show that for the one-dimensional heat equation (25.12) with
a = 1 the function

/'t R
oz, t) = A—|—B/ e 5 s
0

as well as its partial derivatives ¢, (z,t) and ¢.(z,t) are solutions; here A
and B are arbitrary constants.
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25.4. Let ¢(7) be an arbitrary function such that

ox,t) = /Ooow(ﬂ (t +1T>1/2 exp (‘4(:;2 T)) i

is convergent. Show that ¢(z,t) is a solution of (25.12) with a = 1.

25.5. Show that if v = wu(x,y) and v = v(x,y) satisfy Cauchy—
Riemann equations
Uy = Uy, Uy = —Uq

then each is a solution of Laplace’s equation (25.13).

25.6.  Show that u = Inl/r, where r = \/(z —a)2 + (y —b)? is a
solution of Laplace’s equation (25.13).

25.7. A linear approximation of one-dimensional isentropic flow of
an ideal gas (a gas in which the only stress across any element of area is
normal to it) is given by

ut + pgp =0
um+a2pt:0,

where u = u(z,t) is the velocity, and p = p(x,t) is the density of the gas.
Show that u and p both satisfy the wave equation (25.11).

25.8. A nonlinear partial DE that arises in shallow-water theory is
the Korteweg-de Vries equation

ur + (@ + ew)ug + Bugge =0,

where «, 3, € are constants. Show that its one solution (the solitary wave,
or soliton) is given by

u = Asech®[(eA/1206)Y%(x — V)], V =a+ (1/3)eA.

Answers or Hints

25.1. Verify directly.

25.2. (i) Hyperbolic when y? > 4z, parabolic on the parabola y? = 4z,
elliptic when y? < 4z (ii) Hyperbolic when 2 # 0, parabolic when z = 0
(iii) Hyperbolic when xy < 1, parabolic on the hyperbola xy = 1, elliptic
when xy > 1.

25.3. Verify directly.
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25.4. Verify directly.
25.5. Upy = Uyz.
25.6. Verify directly.

25.7. Differentiate the first equation with respect to z, and the second
equation with respect to t, and subtract.

25.8. Verify directly.



Lecture 26

First-Order Partial
Differential Equations

We begin this lecture with simultaneous DEs, which play an important
role in the theory of partial DEs. Then we shall consider quasilinear partial
DEs of the Lagrange type, and show that such equations can be solved
rather easily provided we can find solutions of related simultaneous DEs.
Finally, in this lecture we shall explain a general method to find solutions
of nonlinear first-order partial DEs which is due to Charpit.

Simultaneous DEs. To solve simultaneous DEs of the form

dr _dy du

P Q@ R’

where P, @, and R are functions of z, y, u, several different techniques are
known. We shall present here only the following two methods.

(26.1)

The method of grouping. If in dx/P = du/R the variable y can be
canceled or absent, leaving the equation in  and u only, then an integration

of this equation gives
d(z,u) = c1. (26.2)

Again, if one variable, say, x, is absent or can be removed from dy/Q =
du/R, then an integration of this equation leads to

P(y, u) = co. (26.3)
The general solution of (26.1) is then the solutions (26.2) and (26.3) taken
together.

Example 26.1. For the DE

d d d
o (26.4)
wy  ulr  yix

we take first two fractions and cancel out u?, to get dz/y = dy/x or xdx —
ydy = 0, which can be integrated to obtain

2 —y? =c. (26.5)

Again, we take second and third fractions and cancel out x, to have dy/u? =
du/y? or y*dy — u*du = 0, which on integration yields

v —ud = co. (26.6)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
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Equations (26.5) and (26.6) taken together gives the solution of (26.4).

The method of multipliers. By a proper choice of multipliers ¢, m, n
which are not necessarily constants, we write

dv dy du  ldr+ mdy+ ndu
P Q@ R (P+mQ+nR

so that /P +m@Q + nR = 0. Then ¢dx + mdy + ndu = 0, and this can be
solved to get the integral
P(z,y,u) = c1. (26.7)

Again we search for another set of multipliers A, p, v so that AP + u@ +
vR = 0 giving Adx + pdy + vdu = 0, which on integration yields

Y(z,y,u) = co. (26.8)

These two integrals (26.7) and (26.8) taken together give the required so-
lution of (26.1).

Example 26.2. For the DE

)yl at) T a1 209
we use the multipliers x, y, u so that each fraction is the same as
xdr + ydy + udu _ zdr +ydy + udu
22(y? — u?) — y2(u? + 22) + u?(2? + y?) 0 ’
and hence xdz + ydy + udu = 0, which on integration gives
224y +u? =cy. (26.10)
Again using the multipliers 1/, —1/y, — 1/u we obtain
glcdx - ;dy - 7idu =0,
which can be solved to get the integral
YU = Co. (26.11)

Hence, the solution of (26.9) is (26.10) and (26.11) taken together.

Lagrange’s first-order linear partial DE Now we shall
study the first-order quasilinear partial DE

Pu, +Quy =R, u=u(z,y) (26.12)



204 Lecture 26

where P, @), and R are functions of z, y, u. Such an equation is obtained
by eliminating an arbitrary function from the relation

o(p,v) =0, (26.13)

where p, v are some functions of z, y, u. Indeed differentiating (26.13)
partially with respect to z and y, we get

(b#(,ur + ,uuuz) + d)l/(yr + Vuur) =0

and
Gu(py + putly) + du (vy + vuuy,) = 0.

Eliminating ¢, and ¢, from these relations, we get

Hao + pulle Ve + Vulz | 0
Hy + oty Vy + Vyly ’

which simplifies to
(Ny”u - Nuyy)uz + (Ve — /Lryu)uy = HaVy — fyVz. (26.14)
Clearly, equation (26.14) is of the form (26.12).

Now suppose that ¢ = a and v = b, where a and b are constants, so
that

Hadx + pydy + pydu = dp =0

and
Vpdx + vydy + v,du = dv = 0.

By cross-multiplication, we have

dx dy du

- - Y
,uyl/u - Vy,uu HuVe — HalVy ,Usz - Uyyr

which in view of (26.14) and (26.12) is of the same form as (26.1). Now since
the solutions of these equations are ; = a and v = b the required solution
of (26.12) can be written as ¢(u, v) = 0. Thus, to solve (26.12) first we need
to form the subsidiary equations (26.1), and need to solve these to obtain
= a and v = b, and finally write the solution as ¢(p,v) =0 or = f(v).

We also note that any integral of (26.12), u = f(z,y) represents a
surface. We call it an integral surface of (26.12) and denote it by S. Con-
sider any point M (xo, Yo, uo) on S. If u, and u, are evaluated at M, then
Ug, Uy, —1 are direction numbers of the normal to S and M. Thus, DE
(26.12) expresses the geometric fact that this normal is perpendicular to
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the line through M whose direction numbers are the values of P, and R
evaluated at M. This line, which is tangent to S at M, has the equations

T—%o _Y—Yo _u—tUo
P Q R
Hence, at each point of S there is defined a direction whose direction num-
bers dz, dy, du satisfy the equations (26.1).

Although our above discussion is only for two independent variables, it
can be extended rather easily to the case of n independent variables. In
fact, analytic methods can be used to prove the following general theorem.

Theorem 26.1. If ¢;(x1, 72, -, 2,,u) = ¢;, 1 <i < nareindependent
solutions of the equations

dry  dxo dx, du
= == = 26.1
Py Py P, R’ ( 5)

then the relation W (¢1, @2, -+, ¢,) = 0, where the function W is arbitrary,
is a general solution of the linear partial DE

Piug, + Potig, + -+ + Poug, = R. (26.16)

Example 26.3. For the partial DE
(mu — ny)uy + (ne — lu)uy = by — max (26.17)
the subsidiary equations are

dx _dy  du
mu—ny nx—Llu ly—mx’

Using multipliers z,y,u we find that each fraction is the same as (zdx +
ydy + udu)/0 and hence xdx + ydy + udu = 0, which on integration gives

2?4+ y? +u’ =a. (26.18)

Again using multipliers ¢, m,n we have each fraction equal to (¢dx +mdy +
ndu)/0 and thus ¢dz + mdy + ndu = 0, which on integration yields

lx +my + nu = b. (26.19)
Thus, from (26.18) and (26.19) the solution of (26.17) is 22 + y? + u® =
fllx + my + nu).

Charpit’s method. We shall now explain a general method for
finding the solutions of first-order nonlinear partial DEs which is due to
Charpit. Consider the equation

f($7y7 u,p, (]) = 07 (2620)
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where for simplicity p = u, and ¢ = u,. Since u depends on z and y, we
have
du = uydx + uydy = pdx + qdy. (26.21)

If we can find another relation involving x, y, u, p, ¢ such as
o(x,y,u,p,q) =0, (26.22)

then we can solve (26.20) and (26.22) for p and ¢ and substitute in (26.21).
This will give the solution provided the resulting equation is integrable.

To determine ¢, we differentiate (26.20) and (26.22) with respect to x
and y, to obtain

fo+ fup + fppa + fqgz =0 (26.23)
bo + up + PpPz + Pqde =0 (26.24)
fy + fuaq + fopy + fqqy =0 (26.25)
by + Puq + Gppy + Pqqy = 0. (26.26)

Eliminating p, between the equations (26.23) and (26.24), we get
(fw¢p - ¢wfp) + (fu¢p - ¢ufp)p + (fq¢p - ¢qu)qw =0. (26-27)

Also eliminating g, between the equations (26.25) and (26.26), we obtain

(fydq — byfq) + (fudq — Pufe)a + (fpPq — dpfo)py = 0. (26.28)

Adding (26.27) and (26.28) and using ¢, = ugzy = py, we find that the last
terms in both cancel and the other terms, on rearrangement, give

(_fp)¢r + (_fq)(by + (_pfp - qu)¢u + (fz +pfu)¢p + (fy + qu)(b(q = 0-)
26.29
This is Lagrange’s DE (26.16) with z, y, u, p, ¢ as independent variables and
¢ as the dependent variable. Its solution will depend on the solution of the
subsidiary equations
dx dy du dp dq _do

_fp B _fq B _pfp_LIfq B fz+pfu - fy"'q}cu 0

An integral of these equations involving p or ¢ or both, can be taken as the
required relation (26.22).

(26.30)

Example 26.4. For the partial DE
(P + %)y = qu, (26.31)

we have
f@y,u,p,9) = (0> + @)y — qu =0. (26.32)
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Thus, the subsidiary equations are

de.  dy  du  dp dg
—2py  u—2qy —qu —pq P>

The last two equations give pdp + gdg = 0, and hence

207

(26.33)

Now we solve (26.32) and (26.33), to get p = (c/u)\/u® — c2y2, q = yc?/u.

Thus,
2

du = pdx + qdy = c\/u2 — 2y2dr + ¢ ydu,
u u

which is the same as
1d(u? — cy?)
2 \/u2 — 22

and hence on integration and squaring, we get

= cdx,

u? = (a+ cx)? + 2y?,

which is the required solution of (26.31).

Problems

26.1. Solve the following simultaneous DEs:

Q) dx _ dy _ du

2 Y2  nay
. dz dy du
(ii) = =

mu—ny nx—Llu Lly—mx
de dy du
(i) 22 —yu Y2 —ux u—ay
. de dy _du
(iv) uz+y) ulx—y) 2242

dx B dy B du
Y a2 ) Ty - 0) Tl - )
dx _dy du

22—y —u?  2zy  2zu’
26.2. Solve the following first-order linear partial DEs:
(i) (2% —y? —u?)uy + 2zyu, = 220

(i) (y—wuz+ (z—yuy=u—x
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(iii) (2% — yu)uy + (y? — ux)uy, = u? —zy

(iv) y*u, — zyu, = x(u — 2y)
(v) 2 +y*uy = (2 +y)u.

26.3. Show that the conditions for exactness of the ordinary DE

pu, y) M (z, y)da + p(x, y)N(z, y)dy = 0
is a linear partial DE of the form (26.12).

26.4. Show that the general solution of the partial DE

Uy + (a(x)y + b(z)u)uy = c(z)y + d(x)u
is of the form

yor(z) —wwn(z)  yoa() —wws(z))
¢< 2 2@ )‘0’

where W (z) = cywy(z) + cowa(x), V() = civ1(x) + cava(z) is the general
solution of the system of equations

PW _owiw, WV _wiav
dx dx

and Z = wivs — wovy. Hence, solve the following partial DEs:

(i) ue+(—y+2u)uy =4y +u

2 Ay + 2
() wet YTy, =T
X X

26.5. Solve the following first-order nonlinear partial DEs:
(i) w=p’z+q¢y

(ii) w®==zypq

(i) 1+p®=qu

(iv) pry+pg+qy =yu

(v) w?(p® +¢%) = a® +y*

Answers or Hints

26.1. (i)
co (iil) ;
ca (V) zyu = c1, 22 +y? +u? =y (Vi) y = cru, 2% + 9% +u? = cou.

= ;—i—cl, u = cz—i—;f'z In § (ii) bx+my+nu = c1, 22 +y*+u? =
Y=cp, zytyutau=cy (iv) 2®—y?—2ay = c1, ¥ —y* —u® =

26.2. (i) 2% +y? +u? =uf(y/u) (i) §x2+yu=¢(x+y+u)
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(iii) ¢ (;:vay +yu + xu) =0 (iv) 22 +9?> = f(2lny +u/y)

v) o (7. "") =0

26.3. Ny — Mp, = p(M, — N,).

26.4. (i) ¢(e™>*(y+u),e*(u—2y)) =0 (i) f((2y+u)/z*,2y —u)=0.
26.5. (i) u = (Va+v2)2+ b+ y)? () u= aby'/t (i) % +
{¥Vu? —4a® — 20° In(u+ Vu? — 4a?)} = 2az + 2y + b (iv) In(u—azx) =

y—aln(a+y)+b (v) Put u?® = Uu? = b+ 2y/(22 +a?) + aln{z +
V(@2 +a®)} +yy/(y? — a?) +aln{y +/(y* - a?)}.



Lecture 27

Solvable Partial
Differential Equations

In this lecture we shall show that like ordinary DEs, partial DEs with
constant coefficients can be solved explicitly. We shall begin with homoge-
neous second-order DEs involving only second-order terms, and then show
how the operator method can be used to solve some particular nonhomoge-
neous DEs. Then, we shall extend the method to general second and higher
order partial DEs.

For partial DEs of the form
Ugr + klumy + kguyy = 0, (271)

where k1 and ko are constants, we write D] = 9" /02" and D} = 9" /0y",
so that in symbolic form it can be written as

(D? 4 k1 D1 Do + ko D3)u = 0. (27.2)
Its symbolic operator equated to zero, i.e.,
D? 4+ k1D Dy + ko D3 =0 (27.3)
is called the auziliary equation. Let its roots be D1/Ds = mq, ma.
Case I. If the roots are distinct, then (27.2) is equivalent to
(D1 —m1D2) (D1 — maDa)u = 0. (27.4)

It will be satisfied by the solution of (D —maD2)u = 0, i.e., uy —mou, = 0.
This is a Lagrange equation and its subsidiary equations are

dx dy du

and hence y+mox = a and u = b. Therefore, its solution is u = ¢(y+max).

Similarly, equation (27.4) will also be satisfied by the solution of (D; —
mi1Do)u = 0, i.e., u = f(y + mix). Hence, in this case the general solution
of (27.1) is

u= f(y+miz) + ¢(y + mox).

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 27,
(© Springer Science+Business Media, LLC 2009
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Case II. If the roots are equal, i.e., m; = ma, then (27.4) is equivalent to
(Dl - mng)zu =0. (275)

Putting (D1 —mjDs)u = v, it becomes (D1 —m1D2)v = 0, which as earlier
gives v = ¢(y + mix). Therefore, (27.5) takes the form (Dy — m1Dy)u =
o(y +max), or

Uy — MUy = Gy + mix).

This is again a Lagrange equation and its subsidiary equations are

dx dy du

1 -my  dy +mix)’

giving y +mix = a and du = ¢(a)dz, i.e., u = ¢(a)x +b. Thus, the general
solution of (27.1) in this case is

u= f(y+mix) + zod(y + mix).
Example 27.1. For the partial DE
2Ugy + SUgy + 2Uyy =0

the auxiliary equation is 2m? + 5m + 2 = 0, m = D;/Ds, which gives
my = —2, my = —1/2. Hence, its general solution can be written as u =
fily = 22) + f2(2y — 2).

Example 27.2. For the partial DE
Uy + OUgy + YUy =0

the auxiliary equation is m? + 6m + 9 = 0, m = D;/Ds, which gives
m1 = —3, me = —3. Hence, its general solution can be written as u =
fily = 3z) + 2 fo(y — 32).

Now we shall consider nonhomogeneous partial DEs of the form
L(Dy, D2)[u] = (D3 + k1D Dy + ko D3)u = F(z,7y). (27.6)

As in the case of ordinary DEs a particular solution u,(z,y) of (27.6) can
be obtained by employing the operator method, i.e.,

1

DhDQ)F(x,y). (27.7)

up(xv y) = L(

Case 1. F(z,y) = e® %, Since

(D% + k1D1Dy + k2D§)e‘”+by — (CL2 + kyab + k2b2)eaw+by’
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ie.,
L(D1, Da)[e™* ] = L(a,b)[e** ]

operating both sides by 1/£(D1, Ds), we get

1 1
eaz+by _

_ ax+by :
Up(z,y) (D, D) . b)e if L(a,b) #0.

Case 2. F(x,y) = sin(mx + ny) or cos(mz + ny). Since
(D? + k1 D1 Dy + ko D3) sin(ma 4+ ny) = (—m? — kymn — kyn?) sin(ma 4+ ny)
operating both sides by 1/£(D1, D5), we find

1

sin(ma + ny) = Cm? ki — yn?

sin(mz + ny)

@y = ., "
YT p Dy, Dy)

provided m? + kymn + kan? # 0. Similarly, we have

1

cos(mx + ny) = —m?2 — kymn — kon?

upl(y) = . (ma + ny)
» ’y_E(Dl,Dz) cos(mx + ny).

Case 3. F(x,y) = 2™y", where m and n are nonnegative integers. Since

1 -1
Up(ﬂ?,y) E(D],Dg)x Yy L( 1 2) -y

we expand £(D1,Dy)” " in ascending powers of Dy or Dy by the binomial
theorem and then operate on z™y" term by term.

Case 4. F(xz,y) is any function of x and y. To evaluate (27.7) we resolve
1/L£(D1, D2) into partial fractions treating £(D1, D2) as a function of Dy
alone and operate each partial fraction on F(x,y), remembering that

1

D, szF(x,y) = /F(x,c — ma)dz,

where c is replaced by y 4+ mx after integration. To show this, we let

D, _1mD2F(w, y) = o(z,y)
so that (D1 — mDs)¢(x,y) = F(x,y) for which
de. dy  do¢
1 -m  F(x,y)
and hence y + max = ¢, and
dr = d¢

F(z,c—mx)’
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which gives
o(x,y) = /F(x, ¢ —maz)dz.
Example 27.3. For the partial DE
Ugg — Ugy = COS T COS 2y (27.8)
the auxiliary equation is m? —m = 0, m = D, /Do, which gives m; =

0, ms = 1. Hence, its complementary function is up(x, y) = f1(y)+ f2(y+x).
Now for its particular solution, we have

1
up(x,y) = D? — DyDs cOs T cos 2y
1 1
= 2D%_DlDz[cos(aH—Zy)+cos(ar:—2y)]
= (z +2y) + ! (x —2y)
= g |_pyooslet)+ |, cos(z—2y

1 1
= cos(z + 2y) —  cos(x — 2y).
2 6
Hence, the general solution of (27.8) is
1 1
u(@,y) = fiy) + faly +2) +, cos(a +2y) — , cos(z — 2y).

Example 27.4. For the partial DE
Upy — Ay + 4y, = >V (27.9)
the auxiliary equation is (m — 2)2 = 0, m = D;/Ds, which gives m; =

2, mg = 2. Hence, its complementary function is up(z,y) = f1(y + 2z) +
zf2(y + 2z). Now for its particular solution

1

_ 2z+y
U’P(xay) (Dl —2D2)2

e

clearly Case 1 fails. However, we can apply Case 4. For this we note that
for the equation (D; — 2D3)v = €2*7¥ the solution is

v(z,y) = /F(x, ¢ —mx)dr = /621+(c_21)d$ = ze¢ = ge?*tY
and since (D1 — 2Ds)u, = v = xe?* ¥, the particular solution is

1 1
up(z,y) = /xe%*(“%)dx = 2x2e° = 2x2e2w+y.
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Hence, the general solution of (27.9) is
1
u(z,y) = fily +22) + xfa(y + 22) + 2a:zez’ﬂ“fy.

Example 27.5. For the partial DE
Ugpy + Ugy — OUyy = ycosT (27.10)
the auxiliary equation is m24+m—6=0, m=D; /Ds, which gives m;

—3, mg = 2. Hence, its complementary function is up(z,y) = f1(y — 3z) +
fa(y + 2z). Now to find its particular solution

1

COS T
Dy — 2D5)(Dy + 3D»)"

Up(ﬁ,y) = (
first we solve the equation (Dq 4+ 3D3)v = ycosz, to find
v(x,y) = /(c + 3z) cosaxdr = (¢ + 3x)sinz + 3cosz = ysinz + 3cosz.

Now since (D1 — 2D3)u, = v = ysinx + 3 cosz, the particular solution is

up(z,y) = /[(c — 2x)sinx + 3cosz]dx

(¢ —2z)(—cosz) — (—2)(—sinz) + 3sinx = sinx — ycosz.
Hence, the general solution of (27.10) is

u(z,y) = f1(y — 3z) + fo(y + 2x) + sinx — y cos x.

From the above examples it is clear that the above procedure can be
extended rather easily for the higher order partial DEs of the form

3u+k1 o0"u “+kn8u
oy™

. =F 27.11
o dzn—10y + (xay) ( 7 )

provided the function F(z,y) is of a particular form. We illustrate the
technique in the following example.

Example 27.6. For the partial DE

Uppw — gy = 227 + 322y (27.12)

the auxiliary equation is m® — 2m?2 = 0, m = D; /D5, which gives m;
0, me = 0, mg = 2. Hence, its complementary function is up(z,y) =
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f1(y) + xf2(y) + f3(y + 2x). Now for its particular solution, we have

1
up(z,y) = (2¢** + 32%y)
P D3 —2D2?D,

1 3 2Dy 4D3 2
- 9 2z 1
3_35.0° +D%<+D1+D%+ 7y

12w 3 2 23

1 1
. 2x 5 6
= 46 +20x y+60x .

Hence, the general solution of (27.12) is

1 1 1
u(@,y) = fily) +2faly) + foly+22) + €+ 2’y + af

Now we shall consider the general second-order partial DE

A(Dy, D2)[u] = (D3 + kyDy Do + ko D3 + k3 Dy + kaDo + ks)[u] = F(z,y).

(27.13)
Having in mind that for homogeneous ordinary DEs with constant coefhi-
cients we can assume a solution of the form e™*, for (27.13) with F(z,y) =0
we assume that e ¥ is a solution. This is possible if and only if

N b kg A A+ kop® + kA + kap + ks = 0. (27.14)

Since (27.14) is a single algebraic equation in two unknowns (representing
a conic section in Ap-plane), in general it will have an infinite number of
solutions (A, u). In particular, if (N\;, u;), ¢ = 1,2,---,n are n solutions of
(27.14), then by the principle of superposition >, c; e Y g a solution
of (27.13) with F'(z,y) = 0.

Example 27.7. For the partial DE
Ugpz + Uy + Uyy + Uz + 3uy +2u =0 (27.15)
the equation corresponding to (27.14) is
N o+ 2+ 30+ 3u+2=0.

For this equation it is easy to see that A = —(2 + p) is a solution. Hence,
e~ (2HmzHny g a particular solution of (27.15).

Finally, we note that we can always factorize A(D7, D2) into factors of
the form D; — mDsy — ¢, and to find the solution of (D1 — mDs — ¢)u =0
we write it as u, — mu, = cu. For this the subsidiary equations are

dx dy du

1 -m  cu’



216 Lecture 27

which can be integrated to obtain u(z,y) = e“*¢(y + mx). The solutions
corresponding to various factors added up give the solution of (27.13) with
F(z,y) = 0. Finally, in some cases a particular solution of (27.13) can be
obtained by using the operator method.

Example 27.8. For the partial DE
(D? 42Dy Dy + D3 — 2Dy — 2Do)u = sin(z + 2y) (27.16)

we have A(D1, Dy) = (D1 + D2)(D1 + Dy — 2). Thus, the solution of the
homogeneous equation A(D1, D2)[u] = 0 is up(z,y) = ¢1(y— ) +e* da(y —
x). Now to find the particular solution, we have

1

W) = p2iop,p,+ 32D, —2p, M)
T o142(-2)+ (—14) _op, —2p, 0@+ 2)
— 2D, +1D2) o sin(z + 2y)
T a2 i(lzjll;Dl;iB 1;59) g S )
2(D1+ D3)—9

= T4[-142(-2) — 4] - 81 sin(z + 2y)

1
= 117[2{(:05(3: +2y) + 2cos(z + 2y)} — 9sin(z + 2y)]

1
= 39 [2 cos(z + 2y) — 3sin(z + 2y)].

Hence, the general solution of (27.16) is

! [2 cos(x + 2y) — 3sin(z + 2y)].

ulw,y) = bily - 7) + oy — ) + 4

Problems

27.1. Solve the following second-order linear partial DEs:

1) Upy + Uzy — 2Uyy =0

i) Ups — 2Upy + Uyy =sinz

(
(
(
(iv) Uy + gy — By, = y?
(V) Upa — Upy — OBUyy = 2y
(

Vi) Ugy — Uyy = sina cos 2y.
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27.2. Solve the following third order linear partial DEs:

.. . 2
(1) Upgs — BUggy + Uy, = €T
(i) Ugpe — 2Uszy = 2627 + 322y.

27.3. Solve the following fourth order linear partial DEs:
(i)  Ugpzws — 2Upayy + Uyyyy = 0.

27.4. Solve the following nonhomogeneous partial DEs:

. _ 2243
1) Upgp — Uyy + Uy — Uy = T

i) 2ugy + uyy — 3uy = 3cos(3z — 2y)

(
(
(ill) Uy — Upy + Uy — u = cos(x + 2y) + e¥
(
(v) Di(Dy+ Dy —1)(Dy +3Dg — 2)u = zy + €273V,

27.5. In elasticity certain problems in plane stress can be solved with
the aid of Airy’s stress function ¢, which satisfies the partial DE

This equation is called biharmonic equation and also occurs in the study of
hydrodynamics. Show that

(i)  o(z,y) = fily—ix)+zxfo(ly—iz)+ f3(y+iz)+xfa(y+ix) is a solution
of (27.17)
(ii) if w(z,y) and v(x,y) are any two harmonic functions, then ¢(x,y) =
u(z,y) + zv(z,y) is a solution of (27.17).

27.6. Solve the following partial DE:

Uy — 20YUgy + Y Uyy = 0.

Answers or Hints

+z)+ fo(y—27) (ii) u= fl(y+2x)+f2(y+3a:)+§er+y
+afoly+ ) —sinz (iv) u= f1(y + =) + fo(y — 5z) +
Y () u= fily—2x)+ fo(y+3z) + 23y + 5 2t (vi)u =
3 (sin @ cos 2y + 2 cos x sin 2y).

27.2. (i) u= fily+x)+ foly—z)+afs(y—2) (ii) u= fi(y—2)+ fo(y+
20) + x fs(y +22) + 5,2 (i) w= fi(y)+zfo(y) + fa(y+22) + ;e +

1.5 1.6
20%°Y + 6%
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27.3. (i) u= fily+a)+ faly — ) + f3(y +iz) + faly —iz) (i) v =
fily+a) +afoly +2) + f3ly — z) + 2 faly — z).

27.4. (i) u=¢1(y+z)+e "a(y—x)— ;€23 (ii) u = ¢1(x)+eha(2y—
x)+ 530 {4 cos(3z — 2y) + 3sin(3x — 2y)} (ili) u=e"¢1(y)+e “da(z+y)+
ysin(z+2y)—we¥ (iv) u=e"¢1(y—x)+ea(y—2z)+a+2y+6 (v) u=
&1 (y) +eSda(y—x)+e* p3(y —3x) + 712 e2r 3y 1 é(2x2y+6xy+5x2 +22z).

27.5. (i) Verify directly (ii) Verify directly.
27.6. > Apa™ry™ where 2ny = 2my, + 1 £ (8my + 1)1/2.
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The Canonical Forms

In this lecture we shall show that coordinate transformations can be
employed successfully to reduce second-order linear partial DEs to some
standard forms which are known as canonical forms. These transformed
equations sometimes can be solved rather easily. Here the concept of char-
acteristic of second-order partial DEs plays an important role.

To solve the one-dimensional wave equation (25.11) we introduce the
new coordinates

E=x+ct, n=uz—ct. (28.1)
Then, by the chain rule we have
Uz = Uge + 2Ugy + Upy
un = luge — 2ugy + ).

Substituting these expression in (25.11), we obtain
—4c*ug, = 0.
Now since ¢ # 0, it follows that ue, = 0 for which the solution can be
written as
where f; and fy are arbitrary functions.
Thus, the general solution of (25.11) appears as
u(z,t) = fi(z + ct) + fo(x — ct). (28.2)
We shall now consider the general partial DE
Llu] = Augt + Buse + Cuge = 0, (28.3)

where A, B, and C' are given constants. We once again attempt to find a
linear transformation of coordinates

E=ax+pt, n=~vyxr+dt, ad—v6#0 (28.4)

so that the differential operator L[u] in (28.3) becomes a multiple of wug,.
For this, by the chain rule we have

Llu] = (AR + Bap+ Ca?)uge + (2AB5 + B(ad + By) + 2Cary)ug,
+(A8? 4+ By + Cy*)uyy,.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 28,
(© Springer Science+Business Media, LLC 2009
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Thus, to meet the desired form we need

AB? +BaB+Ca? =0
Ad% + Bys + Cy? = 0.

If A =C =0, the trivial transformation £ = x, n = ¢ gives £ in the
desired form. We now suppose that either A or C is not zero. In what
follows we shall assume that A # 0. Then, « # 0 and v # 0 and we may
divide the first equation by o and the second equation by 2. In this way
we obtain two identical quadratic equations for the ratios 5/a and 6/7.
The solutions of these equations are

g1 9
L= ol B+ /B2 — 4AC)|
5 1

_ 2
- ol B+ /B? — 4AC).

In order for the coordinate transformation (28.4) to be nonsingular, the
ratios #/« and §/v must be different. Hence, we must take the plus sign
in the solution in one case, and the minus sign in the other. Moreover, we
must assume that the quantity B? — 4AC is positive. For if it was zero,
the two ratios would still coincide, while if it was negative, neither of them
would be real.

Thus, we may transform L[u] to a multiple of ug, if and only if B? —
4AC > 05 i.e., the operator £ must be hyperbolic. The transformation in
this case is given by

§=2Ax+[-B+ VB2 —4AC)t

28.5
n=2Ar+[-B — VB2 - 4AC]t (28.5)

and the operator becomes
Lu] = —4A(B? — 4AC )ug,. (28.6)

The case A =0 can be treated similarly, with £ =¢, n =2 — (C/B)t.

Finally, from (28.6) it is clear that the general solution again can be
written as u = f1(£) + f2(n).

If B2 — 4AC = 0, i.e., £ is parabolic, then there is only one value of
(/a which makes the coefficient of uge vanish. This is /o = —B/(2A).
Since B/(2A) = 2C/B this choice also makes the coefficient of ug, vanish.
Indeed, we have

2A30 + Bad + BBy 4+ 2Cay

B B B?
:2A<—2Aa)5+Ba5+B<—2Aa)’y+ (2A) ay = 0.
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Thus, the transformation
E=2Ax—Bt, n=t

transforms L[u] into
Llu] = Aty,.

The choice of n is quite arbitrary. We could choose any vx + 6t as long
as 0/y # —B/(24). If A = 0, we may choose n = z, £ = t to obtain
L{u] = Cuyy. The general solution of L[u] = 0 is now

u = f1(§) +nfa(§).

Finally, if B? — 4AC < 0, i.e., the operator £ is elliptic, then no choice
of B/a or 6/v makes the coefficients of uge or w,, vanish. However, the

transformation
2Ax — Bt

$= JaAc — B

n=t
makes
Llu] = Aluge + uny].
Since 4AC > B2, A # 0. A standard form for an elliptic differential equa-
tion Llu] = 0 is uge + uyy = 0, i.e., Laplace’s equation.
We shall now consider the general linear partial DE

L[u] = Aust + Bugg + Ctgy + Duy + Eug 4 Fu = 0, (28.7)

where A, B,C, D, E, and F are functions of = and ¢t. Our aim is to show
that in (28.7) the second-order terms may be reduced to one of the standard
forms obtained earlier in a whole domain where it is hyperbolic, parabolic
or elliptic. For this we need a more general (nonlinear) coordinate trans-
formation

f:f(x,t), ﬁ:n(xat)
where £ and 7 are twice continuously differentiable. By the chain rule it
follows that
Llu] = [A(&)? + B&E + C(&a)Juee + [2A&m; + BEma + By
+20€ . Jugn + [A(ne)? + Bnane + C(n2) gy
+ILIE] = Félue + [L[n] = Fnlu, + Fu.

If £ is hyperbolic, the coefficients of uge and u,, may be made equal to
zero by putting (assuming A # 0)

& _ —B+VB?—4AC o _ —B—VB?—4AC
& 2A Ne 24 '
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Then, the curve £ = constant (d§ = &, dx + &dt = 0, ie., & /& = —dx/dt)
is a solution of
dr B — VB2 —4AC

it oA , (28.8)
while the curve n = constant, satisfies
d B B2 —4AC

dt 2A
In both cases dxz/dt satisfies

dz\? dx
A - B = 0.
(dt) dt+c 0

The ordinary DEs (28.8) and (28.9) give two families of curves, which are
called the characteristic of L. The values of £ and 1 may be prescribed
arbitrarily along the initial line £ = 0.

If we obtain a one-parameter family of solutions = = f(¢, a) of (28.8)
satisfying the initial condition f(0,a) = a, we can, in principle, solve for a
in terms of x and ¢. Then, £ can be chosen to be any monotone function of
a(z,t). Similarly, if © = g(¢,b) is the solution of (28.9) with ¢(0,b) = b, we
can solve for b(z,t) and choose 7 to be any monotone function of b.

If £ is parabolic, the two characteristic equations (28.8) and (28.9) are
the same, so that there is only one family of characteristic. If the coordinate
£ is chosen so that it is constant along the characteristic, i.e., the solution
of dz/dt = (B/2A), then the coefficients of u¢e and e, vanish, so that the
only second derivative occurring in £ is u,, (here 7 is arbitrary).

Finally, if £ is elliptic, one can make the coefficient of u¢, vanish by
choosing 71 arbitrary and making £ constant along solutions of

dr  Bny+2Cn,
dt  2An,+ Bn,

The other two second-order derivatives of u will then have coefficients with
the same sign as A.

Example 28.1. Consider the partial DE
t2ugy — 22Uy = 0. (28.10)

Since B? — 4AC = 4t?2% > 0, equation (28.10) is hyperbolic everywhere
except on the t—and x—axes. We consider a region that does not include
any part of either axis, e.g., a region in the first quadrant. Then, the
characteristic equations (28.8) and (28.9) for (28.10) are

dx x

==+ .
dt t
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These DEs have solutions given by x = ¢;t and x = ¢y /t. Hence, we can
make the coordinate transformation £ = x/t, n = tx. This transformation
reduces (28.10) to

1

2n

We can solve this partial DE by observing that it is a first-order linear DE
in ug¢. In fact, we get

Ugny — Ug = 0.

u(&,n) =n"2£(€) + g(n),

and hence the general solution of (28.10) is
x
u(z,t) = Vixf (t) + g(tx).

Example 28.2. Consider the partial DE
gy + 20Uy + 22 Upy = 42 (28.11)

Since B2 — 4AC = 0, equation (28.11) is parabolic everywhere. Thus, the
characteristic equations (28.8) and (28.9) for (28.11) are

dr. Bz
d 24 t’
This DE can be solved to obtain the solution x/t = ¢. Hence, we can choose
the coordinate transformation £ = x/t, n = x. This transformation reduces
(28.11) to
x2um7 = 4¢2,

which is the same as

This partial DE can be solved rather easily, to obtain

2
u(é,n) = 25”2 +0f(E) +g(O).

Hence, in terms of the original variables the general solution of (28.11) is

u(z,t) = 2t% 4+ of (f) +g(f).

Example 28.3. Consider the partial DE

tuge + Uy = 2 (28.12)



224 Lecture 28

Since B2 — 4AC = —4t, equation (28.12) is elliptic in the half-plane ¢ > 0.
In this region the characteristic equations are

dx
= Lit~ /2
at
with solutions z = 2it*/2 4+ ¢; and = = —2it'/2 + ¢,. We first make the

coordinate transformation o = z + 2it'/2, 7 = x — 2it'/2, but since these
are complex valued, we make a second coordinate transformation defined
by o = £ +in, T =& —in. As a result of these two transformations, we
have ¢ = x, 1 = 2t'/2. This transformation reduces (28.12) to the canonical

form
4

1
Uge + Unn = nun + 16

Problems

28.1. Find the characteristic of the following partial DEs through the
point (0, 1):
(1) Ut — tum
(i) wy + 265Uy + €2 ugy + cosTuy + sinz u, + r%u

(iii) (cos®x — sin? T)Ut + 2 COST Upy + Ugy + U.

28.2. Find characteristic coordinates &, 7 for
Ut + (em + tQ)Utz + tQEIUIm

such that £(z,0) = n(x,0) = «.

28.3. Transform the following partial DEs to canonical form:
(1) Ut — 5utw + 6um =0
(11) Ugt + 2utw + Ugpy + 3Ut +9u =0
(iil) 2ug — 2Upy + DUge +u =0
(IV) Ut — tzum =0
(V) ug+ t*uyy =0
(vi) wg + 2tugy 4+ t2upe = 0
(vil) wge + (2 + 3)ugy + Gtug, =0
(viii) uge + (5 + 22 uge + (1 + 22)(4 + 22)uze = 0.

28.4.  Transform the following partial DEs to canonical forms and
then solve

(l) Ut + 2utw + Ugpy = 0
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(i) g — 2sintug, — cos? t Uy, — costu, =0
(iii) 2%ugy — 2tause + 2upe = (22 /t)us + (t2/2)u,.

28.5. (i) Use the substitution u(z,y) = w(z,y)e~*+%) to show that
the hyperbolic equation

O%u +a8u +b8u +cu=20
0x0dy Ox oy N
can be written as
0w

92y + (¢ — ab)w = 0. (28.13)

(ii) Show that (28.13) reduces to a Bessel equation if we assume a solution
of the form w(z,y) = f(xy).

28.6. Use the substitution u(z,y) = w(z,y)e (@*+?)/2 to show that
the elliptic equation

O%u + O +a8u +b8u +cu=0
0x?2  Oy? Ox Oy N

can be written as

82w+32w+ _a2_b2 _0
ox2  Oy? Ty T )T

28.7. A partial DE which describes the advective transport of a
chemical u subject to first-order reaction is

ou ou
R@t ——Vax—Ku, x>0, t>0,

where R is a retardation coefficient, V' the velocity of the solution carrying
the chemical, and K the first-order reaction coefficient.

(i)  Write this equation as
up+cugy +Au=0, ¢=V/R, A=K/R (28.14)

and make the change of variables £ = © — ¢t, 7 = t to find its general
solution u(z,t) = f(x — ct)e”* where f is an arbitrary function.
(ii) Show that the choice of f as

F(&) = ur(=€/)e™ ¢ + [uo(§) — ur(=€/c)e N/ H(€),

where H (&) is the unit step function, i.e., H(§) = 1 if £ > 0 and 0 otherwise,
gives a solution of (28.14) that satisfies the initial condition u(x,0) = ug(z)
and the boundary condition u(0,%) = wu;(?).
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Answers or Hints

28.1. (i) x—|—§t3/2 =2, a- §t3/2 = —2 (ii) t =2—e"" (one characteristic

only) (iii) ¢t =sinx + cosz, t =2+ sinz — cosz.
28.2. {=—In(e™® +1), n=ux— 3t°.

28.3. (i) Hyperbolic, { = 2t + =z, n = 3t +x, ug, = 0 (ii) Parabolic,
E=—t+x, n=21x, Uy, =3u¢—9u (ili) Elliptic, { = ;t—i—x, n= gt, uge +
Uny = —gu (iv) Hyperbolic for t > 0, § =z + 3%, n =z — 3%, ugy =
4(51717) (ue — uy) (v) Elliptic for t > 0, & = 2, n = Jt%, uyy + uge =
—gnUy (vi) Parabolic, & = o — 3%, n = t, uy, = ug (vii) Parabolic
for t = g, § = -3t+z n =t, uy = 0; Hyperbolic for ¢t # g, £ =
r—3t, n=x—1t2 ug = 4(77725)79%7 (viii) Hyperbolic, £ = tan™!x —
t, n = ytan~' Ju —t, uey + (4 + 2?)%ue + % (1 + 2%)%u, = 0, where
x = tan!/3 (iw—l—f—n) — cot!/3 (}ﬂr—i—{—n).

28.4. (i) Parabolic,{ =t—z, n=t+2z, uy =0, u=(z+y)fi(z—y)+
fa(x —y) (i) Hyperbolic, £ = cost 4+t —x, n = cost —t — x, the equation
reduces to ug¢, = 0, the solution is u = f(cost —t — x) 4+ g(cost +t — )
(iii) Parabolic, £ = t? + 22, 1 = z, the equation reduces to u,, = (1/1)u,,
the solution is u = 22 f(t? + 2?) + g(t* + 2?).

28.5. Verify directly.
28.6. Verify directly.
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The Method of
Separation of Variables

The method of separation of variables involves a solution which breaks
up into a product of functions each of which contains only one of the vari-
ables. This widely used method for finding solutions of linear homogeneous
partial DEs we shall explain through several examples.

Example 29.1. For the one-dimensional wave equation (25.11) with
¢ = 1, we assume that the trial solution can be written as u = u(z,t) =
X (x)T(t), where the functions X, T are to be determined. For this, we
have uy = X (2)T"(t) (= d/dt), ugze = X" (x)T(t) ("= d/dx). Substitution
of these in (25.11) leads to the relation

X(2)T"(t) = X" (2)T(t).
Dividing this equation by v = X (z)T'(¢) (assuming that u # 0), we obtain

1 "

) _ XMz (29.1)
T  X(z)
Since T"(t)/T(t) does not contain the variable z, we note that changes in
2 will not have any effect on the expression T”(t)/T(t). Thus, if (29.1) is
to be an equality, it must happen that changes in the variable x do not
affect the expression X" (z)/ X (x) either. Similarly, changes in ¢ should not
affect the expression T"(¢t)/T(t). Thus, we can conclude that in order for
(29.1) to be an equality, the expressions T"(¢)/T(t) and X" (x)/X (x) must
be constants. In fact, they must be the same constant. If the constant is
denoted by A, we can write

T//(t) B X//(x) B
() =) and X(z) =\

Thus, we obtain two second-order ordinary DEs:
X" (z) = XX (x) =0
and

T"(t) — XT(t) = 0.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 29,
(© Springer Science+Business Media, LLC 2009
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These equations can be solved to obtain the solutions

cle‘/)‘”” + cze"/)‘gﬁ, A>0
X(x) =KX c1 +coz, A=0
€1cosV—=AT + casiny =z, A <0
and
czeVAt 4 646_\/”, A>0
T(t) =< c3+ cyt, A=0
¢ cos V=Nt + ¢4 sin\/—/\t, A <0.

Thus, the solution of (25.11) can be written as
u = u(x,t)=X(x)T(t)
(cle‘/)‘z + cze_\/h”) (636\/” + 646_‘/)‘t) ., A>0

_ (c1 + cox)(cs + cat), A=0

(01 cos v/ —Azx + ¢o sin \/—)\x) (03 cos v/ =\t + ¢4 sin \/—)\t) ,
A <O.

Without further information we have no way of knowing the value of A;
hence we cannot specify the form of the solution. In many practical prob-
lems there are other conditions that the solution must satisfy. These con-
ditions usually dictate the value of A and the form of the solution.

Example 29.2. For the partial DE
Upy — 22Uz +uy =0, u=u(z,y) (29.2)

we assume that the trial solution can be written as u = u(z,y) = X(2)Y (y).
Then, it is necessary that

X"Y -2X'Y + XY’ =0.
Separating the variables, we get
X// _ 2X/ Y/
X =~y (29.3)

Since x and y are independent variables, (29.3) can be true if each side is

equal to the same constant, A (say). Therefore, it follows that
X// _ 2X/ Y/

= — = A

X Y

and hence
Y +AY =0 (29.4)
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and
X" -2X'—AX =0. (29.5)

The solution of the first-order ordinary differential equation (29.4) is
Y (y) = cre™ M.

For the second-order ordinary differential equation (29.5) the auxiliary
equation is m? — 2m — A = 0, and its roots are m = 1 £ /(1 + A). Thus,
the solution of (29.5) can be written as

X(x) _ 626(1+\/1+>\)m + 036(17\/1+)\)m.
Therefore, the solution of the partial DE (29.2) is

u=u(z,y) =X(@)Y(y) = (cze(H‘/HA)I + 636(1_‘/1+)‘)I) cre™ M
— (Ae(1+\/l+)\)z + Be(l—\/l+)\)z) e—Ay.

Example 29.3. Consider a thin, tapered rod of constant density p lying
along the z-axis with cross-sectional area a? and moment of inertia Bx
for some constants o and (3. Suppose that the rod is undergoing oscillatory
motion. The displacement u(z,t) of a point = at time ¢ satisfies the partial

PP 0? 0? 0
20 4
paT” oy = T g2 {Eﬁx P }, (29.6)

where E is Young’s modulus. We assume that the trial solution of (29.6)
can be written as u = u(x,t) = X (z)T'(t). Then, it is necessary that

2u
2

T// - Eﬂ dd;? ($4X”) .y
T  pa 22X 7

which leads to the DEs T" — AT = 0, and
- Apa

22 X" 4 8x X" +12X" — kX =0, k'= (29.7)

Now for simplicity we assume that A < 0, so that T(t) = ¢; coswt +
casinwt, w=+/—\ and to find the solution of (29.7) we rewrite it as

d

(xD* +3D + k*)(xD* +3D —k*)X =0, D= "

or
(xD? +3D — k*)(xD* + 3D + k*)X = 0.

Thus, if X; and X5 are solutions of

(xD?* +3D - k)X =0



230 Lecture 29

and
(zD* + 3D+ k)X =0

respectively, then X; and X5 are solutions of the DE (29.7). Now from the
considerations of Lecture 9 it follows that

X(x) = 27 AJy(2kx/?) 4+ BJ_o(2kz'/?)+ CIy(2kz'/?) + DK, (2kz/?)| .

Example 29.4. Suppose that the potential energy of a particle at
is given by the function V(z). Then, the partial DE satisfied by the wave
function is the Schrédinger equation

h? 0%u ih Ou
— \%4 = . 29.8
8m2m Ox? + V(@) 27 Ot (29.8)
Now following the notational tradition in quantum mechanics we assume
that the trial solution of (29.8) can be written as u = u(z,t) = ¥(z)F(t).
Then, it is necessary that

W)
8m2m ()

V@ = ;Z Z;/((;)) =

where from the physical reasons E is a real constant. This leads to two
DEs. The first equation,
2mE

'+ b F =0,

can be easily solved and yields F(t) = Ce~2™t/" The second equation,
which is known as time-independent Schrédinger equation, appears as

8m2m

' (x) + B2 [E —V(x)]w(z) = 0. (29.9)

Now recall that if the particle moves under the influence of a force F(x),
the potential energy is given by V(z) = — foz F(s)ds. In particular, for a
free particle we have F'(z) = 0, then V(x) = 0. Thus, the equation (29.9)
simply reduces to

8m2m
W)+

which can be solved rather easily.

Ep(z) =0,

For a particle on a spring F(z) = —kx, then V(z) = kz?/2, and the
equation (29.9) becomes

8m2m

W)+ V" B ke v =
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which is the same as (3.20) in Problem 3.10, and hence can be transformed
to the Hermite equation (3.16).

We remark that the method of separation of variables should be used
with caution. In fact, often it fails to work even for simple partial DEs. For
example, consider the equation

Ugy + Uzg + 4u = 0.
We try a solution of the form v = X (2)Y (y). Then,
XY+ X"Y +4XY =0.
Clearly, it is not possible to manipulate this equation algebraically to write

it in a form P(x) = Q(y). Similarly, the equation ug, + (x + y)uy, = 0 is
not separable.

Problems

29.1. Use the method of separation of variables to solve the following
partial DEs:

1) uy =yug

1) TUz = U+ YUy

~—

(
(
(iil) zuy = yu,

(iv) 22ugy + 22Uy + Uyy =0
(
(

v

~—

Uy + 42Uz + Uyy = 0
Vi) Upp — (14 y%)ugy = 0.
29.2. Use the method of separation of variables to solve the following
partial DEs:
(i) uy = 2uy + u where u(z,0) = 63"
(ii) 4ug + uy = 3u where u(0,y) = 3e™¥ — e
(iii) wge = uy + 2u where u(0,y) =0, u,(0,y) =1+ 3
29.3. Find separated solutions of the equation uz, —u, = 0 in the
form
(i)  wu(z,y) = e*®ePY where u, (3 are real
(i) u(z,y)
29.4. Show that for the partial DE (27.1) with k1 # 0 the method

of separation of variables cannot be applied. However, a solution of the
form u = u(z,y) = "X (z) can always be obtained and appears as u =

= ™'Y where w real and positive.
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e"Y(AX1(x)+BXa(x)), where X7 and X, are linearly independent solutions
of the ordinary DE X" +k;r X’ +kor?X = 0. In particular, find the solution
for the case k1 =4, ko = 8.

29.5. Show that

Upy + Tur = Ut

has solutions of the form

u(r,t) = R(r) cosnt, n=0,1,2,---.
T

Find a DE that R(r) must satisfy and find its general solution.
29.6. The nonlinear partial DE
()" gy = Puge, uw=u(z,t)

occurs in the study of the propagation of sound in a medium. Here the con-
stant ¢ represents the velocity of sound in the medium. Set u = X (x)T(t)
to determine the ordinary DEs for X and T.

29.7. In the study of the supersonic flow of an ideal compressible fluid
past an obstacle, the velocity potential satisfies the linear partial DE

(M? = 1ug, — Uyy =0, u=u(z,y)

where the constant M > 1 is known as the Mach number of the flow. Set
u= X(x)Y (y) to determine the ordinary DEs for X and Y.

Answers or Hints

29.1. (i) Ae*@H+v°/2) and in general f(2z +y?) (i) AzFy*—! (i) AzFy*
and in general f(zFy*) (iv) |z|~'/?[A; cos(cxIn|z|) + Agsin(cy In |z])]

X (AzeV™N 4 Age™VIN) N < —1/4, e = /A —1/4; (A2 +
Aslz| 712 In|z|) (Age¥/ 2+ Age¥/2), X = —1/4; (Ay |z +Ag|z2) (AzeV Y
+AgemVIM) —1/4 < X < 0; (A + Agz V) (As + Agy), A= 0; (Ay|z| +
Ap|z|)(Ascos vV Ay + AgsinvVAy), A > 0 where v; = 1i‘/21+“, i =
1,2 (v) (Ae®*Y + Be ) (CX,(x) + DX5(x)) where X; and X are lin-
early independent solutions of the DE X" + 4z X’ + 4k*X = 0 (vi) (¢ +
c2e™®) exp(Atan~1y).

29.2. (i) 6c7372 (if) 3¢V — ¢ (ifi) J sinhv2z+e Wsing

29.3. (i) cosux e Y 4 i(sin px e”ﬁy) (ii) o Vw2 cos(wy + 1/w/2),
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eV 2 iy + oy/w/2), e TVI cos(wy — oy/w)2), eV sin(wy —
x\/w/Q).

29.4. ¢"W=2%)(Acos 2rz + Bsin2rz).
29.5. R” +n’R =0, R(r) = cicosnr + cysinnr.
29.6. X"+ A (X)X =0, T"+XT~" =0.

29.7. X'+ 0 X =0, Y+ Y =0.
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The One-Dimensional
Heat Equation

We begin this lecture with the derivation of the one-dimensional heat
equation. Then we shall formulate initial-boundary value problems, which
involve the heat equation, the initial condition, and the homogeneous and
nonhomogeneous boundary conditions. We shall use the method of separa-
tion of variables also known as the Fourier method to solve these problems.

We recall that the fundamental principles involved in the problems of
heat conduction are—

(1). Heat flows from a higher temperature to the lower temperature.

(2). The quantity of heat in a body is proportional to its mass and tem-
perature.

(3). The rate of heat flow across an area is proportional to the area and
to the rate of change of temperature with respect to its distance normal to
the area.

Consider a homogeneous bar of uniform cross section S (cm?). Suppose
that the sides are covered with a material impervious to heat, so that the
stream lines of heat flow are all parallel and perpendicular to the area S.
Take one end of the bar as the origin and the direction of flow as the positive
r-axis (see Figure 30.1). Let p be the density (g/cm3), s the specific heat
(cal/g deg), and k the thermal conductivity (cal/cm deg sec).

Az N

Figure 30.1

Let u(z,t) be the temperature at a distance = from O. If Aw is the
temperature change in a slab of thickness Az of the bar, then by principle
(2) the quantity of heat in this slab = spSAzAu. Hence, the rate of in-
crease of heat in this slab, i.e., spSAzu; = Ry — Ro, where Ry and Ry are,
respectively, the rates (cal/sec) of inflow and outflow of heat. Now since

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 30,
(© Springer Science+Business Media, LLC 2009
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the rate of propagation of heat (i.e., the quantity of heat passing through
a cross-sectional area S with abscissa x in unit time) in view of (3) is given
by Fourier’s Law q = —ku,S, where k is a constant depending upon the
material of the body and called as the thermal conductivity, it follows that

Rlz—k5<8u) and Ry = —kS (a“) :
or ), ox et A

here the negative sign appears as a result of (1). Hence, we have

ou ou ou
A = —
spS T o kS (ax)w+k5<ax>w+Aw,
which is the same as

) )
ou _ k (Bg)erAm - (Bg)w
ot  sp Az '

Denoting the constant k/sp = ¢, known as the diffusivity of the sub-
stance (cm?/sec), and taking the limit as Az — 0, we obtain the equation
of heat conduction in a homogeneous rod

2
Z?ZCQZ;’ O<az<a, t>0, c¢>0. (30.1)
For the solution of (30.1) to be definite, the function u(x,t) must satisfy
some initial and boundary conditions corresponding to the physical condi-
tions of the problem. Let initially, i.e., when ¢ = 0 a temperature be given
in various cross sections of the rod equal to f(x), which gives the initial

condition
u(z,0) = f(z), 0<z<a (30.2)

and let for simplicity the ends of the rod, i.e., = 0 and = = a, be held at
zero temperature all the time, which gives the boundary conditions

w(0,6) =0, t>0 (30.3)

u(a,t) =0, t>0. (30.4)

These boundary conditions are of the first kind and are known as Dirichlet
conditions.

Now to solve the initial-boundary value problem (30.1)—(30.4) we shall
use the method of separation of variables. For this, we assume a solution
of (30.1) of the form u(x,t) = X (x)T'(t) # 0, so that

X(2)T'(t) — X" (z)T(t) = 0,
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or / "
() _ o X'@) _
T(t) X(z) ’
which leads to the differential equations
X" A X=0 30.5
- C2 - ( . )
and
T — AT = 0. (30.6)

The boundary condition (30.3) demands that X (0)T'(¢) = 0 for all ¢ >
0, thus X(0) = 0. Similarly, the boundary condition (30.4) requires that
X(a)T(t) = 0 and hence X(a) = 0. Thus, the function X has to be a
solution of the eigenvalue problem (30.5),

X(0)=0, X(a) =0. (30.7)

The eigenvalues and eigenfunctions of (30.5), (30.7) are

222
Ay = — " ;c Con=1,2,-- (30.8)
X, (z) = sin ”Zx n=1,2-. (30.9)
With A given by (30.8), equation (30.6) takes the form
222
7+ " =0
a

whose general solution appears as
(222 2
Tn(t) =cpe (n®m“c?/a )t’
where ¢, is an arbitrary constant.

We conclude that for each specific value of n (n = 1,2, ---) the function
X, (x)T,(t) is a solution of (30.1) that satisfies conditions (30.3) and (30.4).
Now the condition (30.2), when u(z,t) = X, ()T, (t) with n not specified,
but otherwise considered fixed, is satisfied provided X, (z)T,(0) = f(z),
ie.,

(sin m;x) cn = f(2).

But the only way this can happen is for f(z) to be restricted to the form
Asin(nmx/a), where A is a constant. This places too great a restriction on
the permissible forms of f; therefore we consider an alternative approach.
Since X, (z)T),(t) is a solution of (30.1) for each value of n (n = 1,2,--+)
and since (30.1) is a linear partial differential equation, it seems reasonable
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to expect that Y7 | X, (2)T,(t) is a solution of (30.1). Naturally, the
question of whether this infinite series converges is always there. We will
not investigate this question here, but rather emphasize the method of
solution. Thus, we consider

u(z,t) = 3 Xu(@)Tu(t) = Y cpe T/ gin ”Zx (30.10)
n=1 n=1

as a solution of (30.1) that satisfies conditions (30.3) and (30.4). Now
condition (30.2) is satisfied if and only if

> nmTr
> casin = f(z),
n=1 a

i.e., the Fourier sine series for f(z) in the interval 0 < z < a be

Yoo | ensin(nmz/a). Consequently, ¢, is given by

2 a
Cn = / fl@)sin " dr, n=1,2,-. (30.11)
a Jo a
Hence, the solution of (30.1)—(30.2) can be written as (30.10) where ¢, is
given by (30.11).

In particular, we consider the initial-boundary value problem (30.1)—
(30.2) with ¢ =1, a =1, f(x) = z. Clearly,
1 n+1
2(—1)"*
cn:2/ rsinnrrdr = (=1) .
0 nm
Thus, in this case the solution is

o0
2(—1 n+1
u(z,t) :Z (=1) e ™ sinnma.
— o

Next we shall assume that the ends of the rod, i.e., z = 0 and = = a,
are insulated, which gives the boundary conditions

ug(0,6) =0, t>0 (30.12)
ug(a,t) =0, t>0. (30.13)

These boundary conditions are of the second kind and known as Neumann
conditions.

Clearly in this case also we have the same DEs (30.5) and (30.6); how-
ever, instead of (30.7) the new boundary conditions are

X'(0)=0, X'(a)=0 (30.14)
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For (30.5), (30.14) the eigenvalues and eigenfunctions are

2,22
)\n:_nzc’ n:()’l’._,
a
X, (x) = cos mm:’ n=0,1,---
a
and correspondingly
To(t) = a2° and T (t) = ape” (W7 /a1,
Therefore,
u(,t) = Xo(x)To(t) + Y Xn(2)Tn(t)
n=1
- aZO ' ngl I AL nZﬂC.

Finally, condition (30.2) implies
f(z) = a20 +;ancos nzx,
which is the Fourier cosine series for f(x), and hence

2 a
an = / f(x)cos nm;dw, n > 0.
a /o a

Lecture 30

(30.15)

(30.16)

(30.17)

(30.18)

(30.19)

Hence, the solution of (30.1), (30.2), (30.12), (30.13) can be written as

(30.18) where a,, is given by (30.19).

In particular, we consider the initial-boundary value problem (30.1),

(30.2), (30.12), (30.13) with c =2, a =1, f(z) = z. Clearly,

1
ag = 2/ xdr =1
0

1
2
an = 2/0 x cosnmxdr = 22 ((=1)"—=1)
4
- dd
_ m@en-132 " °

0, n even.

oo

B 4 1
2 w4 (2n-1)

n=

) em4(@n—1)’%t cos(2n — 1)mz.
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Finally, we assume that the ends of the rod, i.e., x = 0 and = = a, are
kept at the fixed temperatures A and B, respectively. This means that we
have the boundary conditions

u(0,t) =A, t>0 (30.20)
u(a,t) =B, t>0. (30.21)

Now let u(z,t) be a solution of (30.1), (30.2), (30.20), (30.21). We claim
that the function

(@, t) = u(z,t) + (”” . a) A- ZB (30.22)

is a solution of the initial-boundary value problem

Ve — CPUge =0, O<z<a, t>0, ¢>0

v(0,t) =0, t>0

v(a,t) =0, t>0 (30.23)
olo0) = @)+ (

x_a)A—xB, 0<v<a.
a a

For this, it suffices to note that

A B
Vg = Ug + - ) Vgx = Uza, UVt = Ut;
a a

and hence v; — ?vgp = Uy — gy = 0, i.e., v satisfies the same differential
equation as u. Further, we have

v(O,t)zu(O,t)—i—(O;Q>A—SB:A—A:0

v(a,t) = u(a,t)—l—(a_a)A— B=B-B=0

a

2 8 & 9

v(z,0) = u(,0) + <$;a)A— B=f(z)+ (“”;“)A— 23.

Since the problem (30.23) is of the type (30.1)—(30.4), we can find its
solution v(x,t). The solution u(z,t) of (30.1), (30.2), (30.20), (30.21) is
then obtained by the relation (30.22).

In particular, we consider the initial-boundary value problem (30.1),
(30.2), (30.20), (30.21) with ¢2 =5, a =, f(x) =z, A=10, B =0. For
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this problem, (30.23) becomes

v — DU, =0, O<z<m, t>0
v(0,t) =0, t>0
v(m,t) =0, t>0 (30.24)

v(x,())zx—l—(x_ﬂ-) 10, O0<z<m
T

and

o(z,t) = ulz,t) + <x;”) 10. (30.25)

Now from the consideration of (30.1)-(30.4) the solution of (30.24) can be
written as (see (30.10))

Z cne " tsinna, (30.26)
where (see (30.11))

Cn = 2 / [x—|— <$ B W) 10] sin nxdr = 2 [—10+7T(—1)n+1} - (30.27)
T Jo T nw

Hence, in view of (30.25)—(30.27) the solution u(z,t) of the given problem
appears as

o0
u(z,t) = O(r — =) + Z =10+ (=1)""'n] e~ sin na.
n=1 nm



Lecture 31

The One-Dimensional
Heat Equation (Cont’d.)

In this lecture we shall use the method of separation of variables to solve
the general one-dimensional heat equation with the boundary conditions of
the third kind.

The partial differential equation that governs the temperature u(x,t) in
the rod whose material properties vary with position can be written as

8895 <k(3‘)gz> = p(a:)c(a“)?:, a<z<pf, t>0. (31.1)

We shall consider (31.1) with the initial condition
u(z,0) = f(z), a<z<p (31.2)

and the boundary conditions

agu(a,t) — ay 8Z (,t)=c1, t>0, ai+ai>0 (31.3)
ou 5 9
dou(ﬁ,t)+d18x(ﬁ,t) =co, t>0, d0+d1 >0 (314)

Equations (31.1)—(31.4) make up an initial-boundary value problem.

Boundary conditions (31.3) and (31.4) are of the third kind and are
known as Robin’s conditions. These boundary conditions appear when each
face loses heat to a surrounding medium according to Newton’s law of
cooling, which states that a body radiates heat from its surface at a rate
proportional to the difference between the skin temperature of the body
and the temperature of the surrounding medium.

Experience indicates that after a long time “under the same conditions”
the variation of temperature with time dies away. In terms of the function
u(x,t) that represents temperature, we expect that the limit of u(x,t), as
t tends to infinity, exists and depends only on x: lim_ o u(z,t) = v(z)
and also that lim; o, u; = 0. The function v(x), called the steady-state
temperature distribution, must still satisfy the boundary conditions and the

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 31,
(© Springer Science+Business Media, LLC 2009
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heat equation, which are valid for all ¢ > 0. Therefore, v(x) (steady-state

solution) should be the solution to the problem

d dv
de <k(x)dx) =0, a<z<p

apv(a) — a1v’(a) = ¢
dov(B) + div'(8) = ca.
Equation (31.5) can be solved to obtain

v(a:)zA/a k(E) + B,

which satisfies the boundary conditions (31.6) if and only if

A
k(e)

Bode A
do(A/a k(f)+B>+dlk(ﬁ)262

Clearly, we can solve (31.8) if and only if
Bde dy ardy
ap | d / + + 0,
( S k© Tk ) ki) 7

s df a0d1 a1d0
ado | 56 T ) T h) 7O

a()B — a1 =C1

or

(31.5)

(31.6)

(31.7)

(31.8)

(31.9)

Thus, the problem (31.5), (31.6) has a unique solution if and only if condi-

tion (31.9) is satisfied.

Example 31.1. To find the steady-state solution of the problem (30.1),

(30.2), (30.20), (30.21) we need to solve the problem
d*v
dx?

whose solution is v(z) = A+ (B — A)z/a.

=0, v(0)=A4, wv(a)=B8,

Now we define the function

w(z, t) = u(x,t) — v(z),

(31.10)

where u(z,t) and v(x) are the solutions of (31.1)—(31.4) and (31.5), (31.6)

respectively. Clearly,

ow(z,t) _ Ou(z,t)  du(z)
or Oz dv -’
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and hence
ow(z,t) ou(z,t)

B dv(zx)
or () ox

k() dr ’

— k(z)

which gives

o O ol R Bl C T BCIES

We also have 5 . 5 ,
p(@)e() "0 = paye(a) ™00, (31.12)

Subtraction of (31.12) from (31.11) gives
0 ow ow
o (B2 50 ) = plaet) s

_ {853: (k(x) ZZ) —p(x)c(x)‘gﬂ - d‘i <k(x)jz> —0-0=0.

Therefore,

d 9 0
P (k(az) (';alc)) = p(x)c(x) 81:, a<z<p, t>0. (31.13)

We also have

agw(a, t) — ay

‘Z‘: (a,t) = ao(ua,t) —v(a)) — a1 <gz (a,t) — 1/(04))

ou

[aou(a, H—ary (a, t)] — agv(@) — a1v’ ()]

=c —c =0
ie.,
w
apw(a,t) —ay O (o, 1) =0, t>0, (31.14)
and similarly
dow(B3,t) + dy (Z;U (8,t) =0, t>0. (31.15)

Now we shall solve (31.13) — (31.15) by using the method of separation
of variables. We assume w(z,t) = X (z)T'(t) # 0, to obtain

d (k@:) dX(“”)) T(t) = p(a)ela) X ()T (1),

or
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which in view of (31.14) and (31.15) gives
(k(2)X") + Ap(z)e(x) X =0
apX (o) — a1 X' (a) =0 (31.16)
do X (B)+d1 X'(B) =0

and
T' + AT = 0. (31.17)

Clearly, (31.16) is a Sturm-Liouville problem, for which we already know
that

1. there are infinite number of eigenvalues 0 < A\; < Ay < -+,
2. for each eigenvalue )\, there exists a unique eigenfunction X, (),

3. the set of eigenfunctions {X, (z)} is orthogonal with respect to the
weight function p(z)c(z), i.e.,

For A = A, equation (31.17) becomes T, + A\, T,, = 0 and gives
T,(t) =ce ™t n>1.

Hence, the solution of (31.13) — (31.15) can be written as
= Z anXp(z)e Mt (31.18)
n=1

Finally, we note that condition (31.2) gives
w(z,0) =u(z,0) —v(zr) = f(x) —v(z) = F(x), say. (31.19)
The solution (31.18) satisfies (31.19) if and only if

w(z,0) Zan

which gives )
4y, = Jo @D Xnle )F(x)dx, n>1. (31.20)
7 p(@)e(z) X2 (2)dx

Therefore, in view of (31.10) and (31.18) the solution of (31.1)-(31.4) ap-
pears as

u(z,t) = v(x) + Z anXn(x)e Mt (31.21)
n=1
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where a,,, n > 1 are given by (31.20).

From the representation (31.21) the following properties are immediate:

(i)  Since each A, > 0, u(x,t) — v(x) as t — oco.

(ii) For any ¢; > 0, the series for u(z, t1) converges uniformly in a« < 2 < 3
because of the exponential factors; therefore u(x, t1) is a continuous function
of .

(iii) For large t we can approximate u(z,t) by
v(z) + ay X1 (z)e M,
Example 31.2. For the problem (30.1)-(30.3) and
hu(a,t) + uy(a,t) =0, ¢t>0, h>0, (31.22)

which is a particular case of (31.1)-(31.4), we have v(x) = 0. The eigenval-
ues are c¢?\2, where ), is the root of the equation htana + A = 0, and

the eigenfunctions are X,,(z) = sin A\, z, (see Problem 18.1 (iv)). Thus, the
solution can be written as

u(z,t) = Z ane ¢ Ml sin A,z (31.23)
n=1
where
0 — Jo f(2)sin \pxda _2h Jy fz)sin )\nxdx’ n> 1. (31.24)

foa sin® A\, zdx ah + cos? \,a

Fora=1, h =2, f(x) =1 this solution becomes

1 [ 1—coshn | _.2x2 .
u(x’t):4z/\ <2+C082/\ )e it .
TL:]. n n

Problems

31.1. Solve the initial-boundary value problem (30.1)—(30.4) when
(i) a=1,c=4, fla)=1+=x
(i) a=m, c=2, f(z)=2?
(iii) a=1, =5, f(x) =€

31.2. Solve the initial-boundary value problem (30.1), (30.2), (30.12),
(30.13) when
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i) S

(i) f(=z)

(iif) (=)
31.3. Solve the initial-boundary value problem (30.1), (30.2), (30.20),

30.21) when

i) a=10, c=10, f(z)=0, A=10, B=30

i) a=1,¢=1, f(z)=31-2), A=3, B=1

iii) a=m, c=+3, f(xr)=—cosTx, A=—-1, B=1.

. o T
f(z) =Tpsin® "7, 0<z<a
a

Tox?, 0<z<a
The®, 0 < x < a.

~

31.4. Find the solution of the initial-boundary value problem (30.1)—
(30.3), (30.13), and in particular solve when a = 7, ¢ = 1, f(z) = z(7 —z).
31.5. Find the solution of the initial-boundary value problem (30.1),
(30.2), (30.4), (30.12), and in particular solve when a =7, ¢ =1, f(x) =

x(m — x).

)

31.6. Heat conduction in a thin circular ring (consider it as a rod,
bent into the shape of a circular ring by tightly joining the two ends) of
length 2a, labeled from —a to a leads to the equation u; = gy, —a <
x < a, t >0, ¢ >0 with the initial condition u(z,0) = f(z), —a <z <a
and the periodic boundary conditions

u(—a,t) = wu(a,t)

31.25
ug(—a,t) = wug(a,t), ¢>0. ( )

Find the solution of this initial-boundary value problem, and in particular
solve when a =7, f(z) = |z|.

31.7. Find the steady-state solution of the problem

0 ou ou
o <k(x)8x>zc'08t’ 0<z<a, t>0

U(O,t) = TO) u(a,t) = Tlv t> 07
where k(x) = ko + B2 and ko and (3 are constants.
31.8. Find the steady-state solution of the problem

0%u 1 0u

—i—’yz(U(x)—u):kat, O<zx<a, t>0

u(0,t) = Uy, Z;‘ (a,t) =0, t>0,

where U(z) = Uy + Sz and Uy and S are constants.
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31.9. Find the solution of the initial-boundary value problem (30.1),
(30.2), (31.22) and hu(0,t) — ug(0,£) = 0, ¢ > 0.

31.10. If the lateral surface of the rod is not insulated, there is a heat
exchange by convection into the surrounding medium. If the surrounding
medium has constant temperature Ty, the rate at which heat is lost from
the rod is proportional to the difference u — Ty. The governing partial DE
in this situation is

C2uzz = u + b(u — T()), 0<zx<a, b>0. (3126)

Show that the change of variable u(z,t) = Ty + v(z,t)e” " leads to the
heat equation (30.1) in v. In particular, find the solution of (31.26) when
c=1, b=4, Ty =5, a = 1, satisfying the initial and boundary conditions
u(z,0) =542z, u(0,t) = u(l,t) =5.

31.11. Find the solution of the partial DE
Up = Ugy + 2kU,, O0<z<a, t>0

subject to the initial-boundary conditions (30.2)—(30.4); here k is a con-
stant.

Answers or Hints

31.1. (1) 2, 2 (2(=1)"+! 4 1)e 167" gin prar

n=1 nw
- o —16n t 2 8 —4(2n—1)%¢
(i) X, —ne sin2na + 3207, {27171 - 77(2n71)3:| e X )

xsin(2n — D)a (i) Y02, 240 [1+e(—=1)"1] e ™ tsinnra.

31.2. (1) 7;0 (1—COS 2rx 7(47T2c2/a )t) (11) 1 2TO+Z - 4Toa2(71)'ﬂ cos T

n2m2
Xe—(n2ﬂ2c2/a2)t (111) 1;)( )+EOO 2T0a(§jr(n2;)2 )COS nwx _( 271-202/(12)15.
31.3. (1) 104220+ 20y, 3“173"*1 sin (") e T (i) 3 — 22 +

0 2(=1" —n?r?t 98(n—~(—1)") ,—3n%t
Dot m € sinnrz (i) 2a—14+Y " Ln#T mn(n?—49) € sin nz.

31.4. u(a: t)=> 0" cpsin (2”53)” —(2"—1)27720%/4&2, where ¢, =
2 (2n—1) 32 8(—=1)" | ;. (2n—1)
2 Jo f(x)sin Cro DT, S [ﬂ(zn st (2n71)2:| sin "5 °

o—(2n—1)%t/4
31.5. u(x,t) =Y .7 ¢pCOS (2";;)”e‘(2n‘1)2”262t/4a2, where ¢,, =
a 2n—1)wx LS 32(—1)""1 o2n—1)z
2o f@) cos | 211) dr, 3,21 |:ﬂ((2n21)3 - (2n§1)2:| cos | 2 :

x e~(2n=1’t/4 The same solution can be obtained by replacing x in Prob-
lem 31.4 by a — z.
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31.6. T — 13070 (ani1)e cos(2n+ 1)ze~Cnt1) et

31.7. v(z) = Aln(ko + ) + B, where A = (T} — Tp)/In (1 + gg) , B =
TO — Aln k().

31.8. v(z) = Acoshyzr + Bsinhvyx + Uy + Sz where A = 0, B =
-5/ (v cosh~a).

3L.9. 3oL, M bt et [ f (@) (A cos Ap + hisin Ayz)da

where ), are the zeros of the equation tan Aa = 2h\/(\? — h?).

31.10. 5+ 25;4t > (D" o=n7® gin .

n=1 n

31.11. u(wz,t) =>."7, cpexp {— [(";)2 + k2] t} e ke sin " where ¢, =

n=1
2 [y flx)er sin " da.



Lecture 32

The One-Dimensional
Wave Equation

In this lecture we shall provide two different derivations of the one-
dimensional wave equation. The first derivation comes from the oscillation
of a elastic string, whereas the second one is from the electric oscillations in
wires. Then, we shall formulate an initial-boundary value problem, which
involves the wave equation, the initial conditions, and the boundary condi-
tions. Finally, we shall use the method of separation of variables to solve
the initial-boundary value problem.

Consider a tightly stretched elastic string of length a, initially directed
along a segment of the z-axis from O to a. We assume that the ends of the
string are fixed at the points = 0 and x = a. If the string is deflected from
its original position and then let loose, or if we give to its points a certain
velocity at the initial time, or if we deflect the string and give a velocity
to its points, then the points of the string will perform certain motions.
In such a stage we say that the string is set into oscillation, or allowed to
vibrate. The problem of interest is then to find the shape of the string at
any instant of time.

We assume that the string is subjected to a constant tension 7', which
is directed along the tangent to its profile. We also assume that 7" is large
compared to the weight of the string so that the effects of gravity are
negligible. We further assume that no external forces are acting on the
string, and each point of the string makes only small vibrations at right
angles to the equilibrium position so that the motion takes place entirely in
the zu-plane. Figure 32.1 shows the string in the position OPQa at time
t.

0 T z+ Ax a
Figure 32.1

Consider the motion of the element PQ of the string between its points

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 32,
(© Springer Science+Business Media, LLC 2009
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P(x,u) and Q(x+Ax, u+Au) where the tangents make angles ¢ and ¢+A¢
with the z-axis. Clearly, this element is moving upwards with acceleration
0%u/0t%. Also the vertical component of the force acting on this element is

= Tsin(¢ + A¢) — T'sin ¢
Tltan(¢ + A¢) — tan @], since ¢ is small

(-]

If m is the mass per unit length of the string, then by Newton’s second law

of motion, we have
ou [ Ou
0T ) 1\ As or ),

CONNE <zz>z] |

Az

R

T

0%u
mAx 12 =T

)

which is the same as

0w T

ot2  m

Finally, taking the limit as Q@ — P, i.e., Ax — 0, we obtain

0? 0? T
e T (32.1)
ot? 0x? m
This partial DE gives the transverse vibrations of the string. It is called
the one-dimensional wave equation.

Equation (32.1) by itself does not describe the motion of the string.
The required function u(z,t) must also satisfy the initial conditions which
describe the state of the string at the initial time ¢ = 0 and the boundary
conditions which indicate to what occurs at the ends of the string, i.e.,
x =0 and x = a. At t = 0 the string has a definite shape, that which we
gave it. We assume that this shape is defined by the function f(z). This
leads to the condition

u(z,0) = f(z), 0<z<a. (32.2)

Further, at t = 0 the velocity at each point of the string must be given, we
assume that it is defined by the function g(z). Thus, we must also have

ou

ot =u(r,0) =g(z), 0<z<a. (32.3)

t=0

Now since we have assumed that the string at x = 0 and = = a is fixed, for
any t the following conditions must be satisfied

w(0,) =0, t>0 (32.4)
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u(a,t) =0, ¢>0. (32.5)

The partial DE (32.1) together with the initial conditions (32.2), (32.3) and
the boundary conditions (32.4), (32.5) constitutes a typical initial-boundary
value problem.

Now we shall show that the problem of electric oscillations in wires also
leads to equation (32.1). The electric current in a wire is characterized by
the current flow i(x,t) and the voltage v(z,t), which are dependent on the
coordinate z of the point of the wire and on the time t. On an element Az of
the wire the drop in voltage is equal to v(x, t) —v(z+Ax,t) ~ —(Ov/0x)Aw.
This voltage drop consists of the ohmic drop which is equal to iRAz, and
the inductive drop which is the same as (9i/9t) LAx. Thus, we have

0 0i

- a:; Az = iRAz + 8;LA:C, (32.6)
where R and L are the resistance and the coefficient of self-induction per
unit length of wire. In (32.6) the minus sign indicates that the current flow
is in a direction opposite to the build-up of v. From (32.6) it follows that

0 0
0 0

Further, the difference between the current leaving the element Ax and
entering it during the time At is

v %
iR+ L_ =0. 32.7
. +iR+ ; (32.7)

0i

AxAt.
ox
In charging the element Az it requires CAxz(0v/0t)At, and in leakage
through the lateral surface of the wire due to imperfect insulation we have
AvAzAt, where A is the leak coefficient and C'is the capacitance. Equating
these expressions and canceling out AxAt, we get the equation

01 ov
o + Oat + Av =0. (32.8)

Equations (32.7) and (32.8) are called telegraph equations.

i(z,t) —i(z + Az, t) ~ —

Differentiating equation (32.8) with respect to x, (32.7) with respect to
t and multiplying it by C, and subtracting, we obtain
9% v di 9%

A —-CR_ —CL__=0.
o2 " o T o T o
Substituting in this equation the expression dv/0x from (32.7), we get an
equation only in i(x,t),

2 2,
il CR+AL)§

7 .
9 2 -+ ARi. (32.9)
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Similarly, we obtain an equation for determining v(z,t),

2 2
v _ % L or+ar)?

v
B2 a2 + ARv. (32.10)

ot

If we neglect the leakage through the insulation (A = 0) and the resis-
tance (R = 0), then equations (32.9) and (32.10) reduce to wave equations

0% 0% 0?v 9%
2 2

“ouz "o Con2 T o (52.11)
where ¢ = 1/(CL). Again the physical conditions dictate the formulation
of the initial and boundary conditions of the problem.

Now to solve the initial-boundary value problem (32.1)—(32.5) we shall
use the method of separation of variables also known as the Fourier method.
For this, we assume a solution of (32.1) to be of the form u(x,t) = X (x)T'(t)
# 0 where X, T are unknown functions to be determined. Substitution of
this into (32.1) yields

XT" - AX"T = 0.

Thus, we obtain

T// C2X//
= = A
T X ’
where A is a constant. Consequently, we have two separate equations:
T" = \T (32.12)
and
AX" = \X. (32.13)

The boundary condition (32.4) demands that X (0)T'(t) = 0 for all ¢ > 0,
thus X (0) = 0. Similarly, the boundary condition (32.5) leads to X (a)T'(t) =
0 and hence X (a) = 0. Thus, in view of (32.13) the function X has to be a
solution of the eigenvalue problem

A
X"- X =0, X(0)=0, X(a)=0. (32.14)

The eigenvalues and eigenfunctions of (32.14) are

7’L27T2C2 nmwx

An == aQ ) Xn(x) = sin a ’ n= 1727 Tt (3215)

With A given by (32.15), equation (32.12) takes the form

n?n?c?

T" + T=0
a
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whose solution appears as

¢ ¢
T(t) = ancos " 4 bysin T, m=1,2,- (32.16)
a a

where a,, and b,, are the integration constants in the general solution.

Therefore, it follows that

u(a,t) =Y Xn(@)Tu(t) = <an cos m;C + by, sin m;C > sin m;x
n=1 n=1

(32.17)
is a solution of (32.1). Clearly, u(z, t) satisfies conditions (32.4) and (32.5),
and it will satisfy (32.2) provided

Y a,sin "Z‘T = f(x), (32.18)
n=1

which is the Fourier sine series for f(z). Consequently, a, is given by

2 a
ap = / fl@)sin " dr, n=1,2,---. (32.19)
a Jo a

Likewise condition (32.3) will be satisfied provided that

i sin ”Zx (nZCbn) = g(z) (32.20)
n=1

and hence

which gives

2 a
by = / g(@)sin " dy, n=1,2,---. (32.21)
0 a

We conclude that the solution of the initial-boundary value problem
(32.1)—(32.5) is given by (32.17) where a, and b, are as in (32.19) and
(32.21) respectively. This solution is due to Daniel Bernoulli.

Example 32.1. We shall find the solution of (32.1)-(32.5) with ¢ =
2, a=m, f(r) =2(r —x), glz) = 0. From (32.21) it is clear that b, =
0, n > 1. Now from (32.19) we have
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Ay =

s 1 T
+ / cos nxdx
o M™Jo

o) o]
+ x cosnxdx
o MNJo

—mcosnw  wicosnm 2 sin nx
T + + x

T /’T sinnx}]
n n n no | 0o n

2
m
2 {WQ(—l)nH (=t N 2 cosna
e
2

n n 7’L2 n
o A BN

Thus, the solution of (32.1)—(32.5) in this particular case is

u(z,t) = —1)"] cos 2nt sin nx

2n L1y 5 €082(2n + 1)tsin(2n + 1)z.

Z
2

Now for simplicity we assume that g(z) = 0, i.e., the string is initially
at rest. We further define f(x) for all x by its Fourier series (32.18). Then,
f(z) is an odd function of period 2a, i.e., f(—z) = —f(z) and f(z + 2a) =
f(z). With these assumptions b,, = 0, n > 1 and thus the solution (32.17)
by the trigonometric identity

. nmx nmct 1/, nm . onm
sin cos = (sm (r+ct)+sin (x— ct))
a a 2 a a
can be written as

. nw
Z (5111 (r+ct) +sin (x— ct)) ,
a

which in view of (32.18) is the same as

w(a ) = ;[f(a: +et)+ fla—ct)]. (32.22)

This is d’Alembert’s solution. It is easy to verify that this indeed satisfies
(32.1)—(32.5) with g(z) = 0 provided f(z) is twice differentiable. To realize
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the significance of this solution, consider the term f(x—ct) and evaluate it at
two pairs of values (x1,¢1) and (z2, t2), where to = t1 +7, and zo = x1 +cT.
Then 1 — ¢ty = x9 — cto and f(z1 — ct1) = f(x2 — cta), which means that
this displacement travels along the string with velocity ¢. Thus, f(x — ct)
represents a wave traveling to the right with velocity ¢, and similarly, f(x+
ct) represents a wave traveling to the left with velocity c. It is for this reason
that (32.1) is called the one-dimensional wave equation.



Lecture 33

The One-Dimensional
Wave Equation (Cont’d.)

In this lecture we continue using the method of separation of variables to
solve other initial-boundary value problems related to the one-dimensional
wave equation.

Suppose that the vibrating string is subject to a damping force that is
proportional at each instance to the velocity at each point. This results in
a partial DE of the form

ox?2 2

0%u 1 [/9%u ou
ot2 ot

+ 2k ), O<zx<a, t>0, c>0. (33.1)

We shall consider this equation together with the initial-boundary condi-
tions (32.2)—(32.5). In (33.1) the constant & is small and positive. Clearly,
if kK = 0 the equation (33.1) reduces to (32.1).

Again we assume that the solution of (33.1) can be written as u(x,t) =
X(x)T(t) # 0, so that

XM(@)T() = 5 (X(2)T"(8) + 26X (2)T"(#))

2
and hence
X// B T// _|_ 2kT/ B )\
X 2T o
which leads to
X"-AX =0, X(0)=X(a)=0 (33.2)
T" + 2kT" — \*T = 0. (33.3)
For (33.2), we have
2.2
p— —nag , Xnp(x) =sin maTT

With A = \,, = —n?7%/a® equation (33.3) takes the form
n*m?c?

T+ 26T+, Ta =0, (33.4)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 33,
(© Springer Science+Business Media, LLC 2009
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The auxiliary equation for (33.4) is

2.2 2
m2+2/€m—|—n7r20 =0,
a
or 2.2 2
(m+k)2:—<” e —k2>
a
and hence

22 2 1/2
m = —k +ip, where p, = (n 226 —k2> )
Recall k£ > 0 and small, so u, >0, n > 1.

Thus, the solution of (33.4) appears as
T,(t) = et (@, cOS it + by, sin p,t) .
Therefore, the solution of (33.1) which satisfies (32.4) and (32.5) can be
written as

o0
u(z,t) = Z e * (ay, cos fint + by sin ju,t) sin . (33.5)
a
n=1

This solution satisfies (32.2) if

= nmwx
flx) = Z @y, Sin ,
n=1

a

which gives

2 a
an = / fla)sin " de, n=1,2,---. (33.6)
a Jo a

Finally, condition (32.3) is satisfied if

g(x) = Z(—kan + by iy, sin e
n=1
and hence 5 ra
—kay + by, = / g(z) sin e dx,
a 0 a

which gives

n 2 ¢ .
b, = ke + / g(z) sin mmdx, n=12---. (33.7)
0
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In particular, we shall find a,, and b,, when g(x) = 0, and

2
Bt 0<a<

a
f(x) =
b <2 B 2;10) ’
a
From (33.6), we have
2 /2 9y nwT @ 2z nwx
an / h  sin dr + / h <2 — > sin dx
a 0 a a a/2 a a
2h 2x nmwx ( a ) 2 . nwx a? v=a/2
= cos — — " sin -
a a a nm a a n?m2 ) J .,
)_ _2 sin nrr (- a? ¢
a a n2m? v=a)2

a
2
g<x<a, h > 0.

2h 2 a2 5. g
— . . . - Sin

a a n3m? 2
~ 8h sinnm/2
Tz o2

Finally, from (33.7) in view of g(x) = 0, we find b,, = kay/pin,.

Now we shall assume that for the vibrating string the ends are free—
they are allowed to slide without friction along the vertical lines =z = 0
and x = a. This may seem impossible, but it is a standard mathematically
modeled case. This leads to the initial-boundary value problem (32.1)-
(32.3), and the Neumann boundary conditions

us(0,t) =0, t>0 (33.8)
ug(a,t) =0, t>0. (33.9)

In this problem conditions (33.8), (33.9) are different from (32.4), (32.5);
therefore, if we assume a solution in the form w(z,t) = X (2)T'(t) # 0, X
must satisfy the eigenvalue problem

X" - );XZO
c

X'(0) = X'(a) =0 (instead of X(0) = X (a) = 0).
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For this problem the eigenvalues are

n?n2c?

A =0, Ap=-— , n=1,2-..
and the corresponding eigenfunctions are
Xo(z) =1, X,(x)=cos mrx’ n=12---
a

For Ao = 0 the equation 7" — AT' = 0 reduces to T} = 0, and hence
To(t) = bot + ag.

For A, = —n?12c?/a? the equation T” — AT = 0is T + (n*72c? /a®)T,, =
and hence the solution is the same as (32.16). Thus, the solution of ( 32.1
satisfying (33.8), (33.9) can be written as

=" X (@)Tu(t) = Xo(2)To(t) + > Xn()Talt
n=0 n=1

0
1)

or
u(x,t) = (bot + ao) + nij:l (an cos n;rct + b, sin n;rct) cos nza:. (33.10)
The solution (33.10) satisfies (32.2) if and only if
- nmw
x) = a0+;ancos "
and hence

ag = 611/0 f(x)dx

o pa — (33.11)
an = / f(x)cos dv, n=1,2,--
a o a
Finally, the solution (33.10) satisfies (32.3) if and only if
> nmc  nmx
=b bn S
x) =by + 7; 0 % 4
and hence
1 a
by = / g(z)dz
“Jo (33.12)

2 a
by, / g(z) cos mrxdx, n=1,2---.
nmwe Jo a
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Thus, the solution of (32.1)-(32.3), (33.8), (33.9) can be written as (33.10),
where the constants a,, b,, n=0,1,--- are given by (33.11) and (33.12),
respectively.

Next we shall consider the equation of the general vibrating string

0 ou\  p(x) 0%u
P (k(x)ax) =2 g a<z<p, t>0, ¢>0 (33.13)

subject to the initial conditions (31.2),
u(z,0) =g(z), a<z<p (33.14)

and Robin’s boundary conditions (31.3), (31.4). These boundary conditions
describe some type of an elastic or spring attachment at both ends of the
string. Now following as in Lecture 31, although there is no steady state
for the wave equation (33.13), we let v(z) be the solution of the problem
(31.5), (31.6). Again, we define the function w(z,t) as in (31.10), which
satisfies the wave equation

0 ow\  pz) 0*w
P <I€(x) 83:) =2 gp © <z <pf, t>0, (33.15)
the initial conditions (31.19),
we(z,0) =g(z), a<z<f, (33.16)

and the boundary conditions (31.14), (31.15). We use the substitution
w(z,t) = X (t)T(t) # 0, which leads to solving

(k(z)X") + /\Zp(x)X =0

apX (o) — a1 X'(a) =0 (33.17)
doX () +d1 X'(B) =0
and
T" 4 \T = 0. (33.18)

Thus, the solution of (33.15), (31.14), (31.15) in terms of the eigenvalues
0 <A1 < A2 < --- and eigenfunctions X,,(x) of (33.17) appears as

= > (an cos v/ Ant + by sin /A t) X (). (33.19)
n=1

This solution satisfies the initial conditions (31.19), (33.16) if and only if

_ Sl e@Xa@)F@yde [ () Xa(@)g(@)ds

ﬁ ) , n = 3 ) , n>1.
a p(ﬂc)Xn(ﬂc)dfr VA [, p() X3 (x)dz
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Finally, the solution of (33.13), (31.2), (33.14), (31.3), (31.4) is obtained
from the relation u(z,t) = w(z,t) + v(x).

Problems

33.1. Solve the initial-boundary value problem (32.1)-(32.5) when
(i) a=m ¢=5, f(x) =sin3zx, g(z) =4
(ii)) a=m c=1, f(x)=a(r —x), gx) =3
z, O0<zx<l1

(iii) a=3,¢=2, fla)y=¢ 1, 1< <2 , g(x)=0
3—z, 2<x<3

(iv) a=m, ¢c=2/3, f(z) =sin’z, g(z) =sinz
(v) a=m, c=1, f(z)=2*(m —x), g(z) =0.

33.2. A tightly stretched string with fixed end points x = 0 and z = a
is initially in a position given by u = ug sin® 7z /a. If it is released from rest
from this position, find the displacement u(x,t).

33.3. The points of trisection of a string of length a are pulled aside
through the same distance h on opposite sides of the position of equilibrium
and the string is released from rest. Derive an expression for the displace-
ment of the string of subsequent time and show that the midpoint of the
string remains at rest.

33.4. Solve the initial-boundary value problem (32.1)—(32.4), uy(a,t)
=0, t > 0, i.e., the string is fixed at the end x = 0 and free at the end
T =a.

33.5. Solve the initial-boundary value problem (32.1)-(32.3), (32.5),
u.(0,¢) =0, t > 0 i.e., the string is free at the end x = 0 and fixed at the
end x = a.

33.6. Suppose that u is a solution of the initial-boundary value
problem (32.1)-(32.3),

u(0,t) = A, t>0

: 33.20
u(a,t) = B, t>0 ( )

where A and B are constants. Show that if

v(a,t) = ulz, t) + (I . a’) A ZB, (33.21)
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then v is a solution of the initial-boundary value problem (32.1),

r—a

v(z,0) = f(x) + ( )A— zB, 0<z<a (33.22)

a

(32.3)—(32.5). In particular, solve the problem (32.1)—(32.3), (33.20) when
i) a=mec=1, fla)=x(r —x), g(x) =3, A=0, B=5
(i) a=m c=1, f(z)=2*(r—z), g(x) =0, A= B=2.

33.7. Consider the particular case of the telegraph equation (32.10),

ver + 2avs + a?v = CQ’UME,

with the initial conditions v(z,0) = ¢(z), v4(x,0) = 0 and the boundary
conditions v(0,t) = v(a,0) = 0. Show that the change of variable v(z,t) =
e~ %u(z,t) transforms this initial-boundary value problem to (32.1)-(32.5)

with f(z) = ¢(z) and g(x) = ad(z).

33.8.  Solve the initial-boundary value problem (33.1), (32.2)—(32.5)
when

(i) a=1,¢c=1, k=1, f(z)=Asinmz, g(z) =0
i) a=m c=1, k=1, f(z) ==z, g(x)=0.

33.9. Solve the initial-boundary value problem (32.1)—(32.3), (33.8),
(33.9) when a, ¢, f(x) and g(z) are the same as in Problem 33.1 (i)—(v).

33.10. Show that the solution (32.17) of (32.1)—(32.5) can be written

as
x+ct

u(z,t) = ;[f(a: +ect)+ flz—ct)] + 2lc / g(z)dz.

—ct

This is d’Alembert’s solution. Thus, to find the solution u(z,t), we need to
know only the initial displacement f(z) and the initial velocity g(x). This
makes d’Alembert’s solution easy to apply as compared to the infinite series
(32.24). In particular, find the solution on —oo < z < 0o, t > 0 when

(i) ) =1/(1+22%), g(x) =0
(ii) Yy=eI*l g(z) = ze=®
(iii) f(x) =sechx, g(x) = xz/(1+ 2?).

flx
flz
33.11. The partial DE which describes the small displacement w =

w(z,t) of a heavy flexible chain of length a from equilibrium is

32w__ 8w+ (a— )8210
oz~ Top TIV T gy

where g is the gravitational constant. This equation was studied extensively
by Daniel Bernoulli around 1732 and later by Leonhard Euler in 1781.
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(i) Sety=a—z, u(y,t) =w(a—x,t) to transform the above partial DE
to
u  Ou 0u
= . 33.23
oz = 9oy + gy oy? ( )

(ii) Use separation of variables to show that the solution of (33.23) which
is bounded for 0 < y < @ and satisfies u(a,t) = 0 is

Z Jo (ZAn\/zg/) (an cos A\pt + by, sin A\, t),
n=1

where A\, = (1/2)bo.n\/g/a and by ,, is a positive root of Jo(x).

33.12. A bar has length a, density J, cross-sectional area A, Young’s
modulus F, and total mass M = §Aa. Its end x = 0 is fixed and a mass
m is attached to its free end. The bar initially is stretched linearly by
moving m a distance d = ba to the right, and at time t = 0 the system
is released from rest. Find the subsequent vibrations of the bar by solving
the initial-boundary value problem (32.1), u(z,0) = bz, w(x,0) =0, (32.4)
and muy(a,t) = —AFEug(a,t).

33.13.  Small transverse vibrations of a beam are governed by the
partial DE
Pu 0%
ot? te Ox?t
where ¢ = EI/Au, and E is the modulus of elasticity, I is the moment of
inertia of any cross section about the z-axis, A is the area of cross section,
and p is the mass per unit length. Boundary conditions at the ends of the
beam are usually of the following type:

=0, O0<z<a, t>0,

(1) A fized end also known as built-in or a clamped end has its displacement
and slope equal to zero (see Figure 33.1a):

ou

u(a,t) = 9

(a,t) = 0.

(2) A simply supported end has displacement and moment equal to zero
(see Figure 33.1b):
0%u
u(a,t) = 92 (a,t) =0.

(3) A free end has zero moment and zero shear (see Figure 33.1c):

0%u 3u
ax2 (CL, t) = 5:63 (a7 t) = 0
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y Sim 7
Fixed suppoprted / Free
d d d

en en en
1 § ) |
Figure 33.1a Figure 33.1b Figure 33.1c

Find the solution for the vibration of a beam that has simply supported ends
at x = 0 and & = a with the initial conditions u(z,0) = f(z), ui(x,0) =
g(z), 0 < & < a. In particular, compute the solution when f(x) = Az(a—2x)
and g(z) = 0.

Answers or Hints
33.1. (i) cos16tsinda + 32070 5o, 1)en
(i) O, [@)n 8o c08(2n — 1)t + 5,12 sin(2n — 1)75] sin(2n — 1)z
(i) D07, 322 sin " cos "\ sin "3* cos *'y

n=1 n2n 3
)3 g 2t _ 8 1 . _ 2(2n—1)t
(iv) 5sinzsin? — 53 (@n—1)[(2n—1)2—4] sin(2n — 1)z cos =77

w3 o ™ oo T
(V) To + 221 —onp2 COS2ntcos2na + 307, {(gn{l)z - (2n341)47r:|
x cos(2n — 1)t cos(2n — 1)x.

sin5(2n + 1)tsin(2n + 1)x

33.2. Usesin®f = }(3sin6 —sin36), u(z,t) = “ (3sin "z cos Tt

i 3T 3em
—sin *7x cos 27t .

z, 0<z<a/3
33.3. In (32.1)-(32.5), f(z) = *" { (a—2z), a/3 <z <2a/3, g(z) =0,
(x—a), 2a/3<z<a

u(z,t) = %3 L sin 227 sin 2" g cos 27¢L,
=1ln 3

In—1)met . (@n-Dret] - (2n—1
33.4 Y . {an cos 27 2a)m + by, sin 3" 2a)m } sin ( "Qa)”,

an =2 [ f(z)sin (2”;;)7”0(196, n>1,

by = (211—41)71'0 foag(x) sin (%;)m dr, n>1.

33.5 Z;;o ) |:an oS (2n— 1)7rct 1 b, sin (Zn;lll)ﬂct:| COS (QnEi)ﬂ'm’

= 2f0 ) cos 2"21)”6156 n>1

bn = (2n— 1)71_0 fO COS (27121)7Tzd$ n>1.
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33.6. (1) E:-rz + Z;;O:l nir cos 2nt sin 2nx + Z:,ozl { |:(2n—81)37r B (2n1—01)7r:|
x cos(2n — 1)t + (%ﬁ)zﬂ sin(2n — 1)t} sin(2n — 1)z

(i) 24> 07, —,25 cos2ntsin2nx + Y07, [(271471)3 — (2n§1)ﬂ}
x cos(2n — 1)tsin(2n — 1)x.

33.7. Verify directly.
33.8. (i) Ae (cos Va2 —1t+ 1 sinyr? - 1t) sinma (i) 2e~tx
[(1 +t)sine+ > 7, (717):“ (cos Vn2—1t + \/n£71 sin v/n2— 1t) sin nx] .

33.9. Compute a,, and b, using (33.11) and (33.12) and substitute in
(33.10).

33.10.Use sin Asin B = }[cos(4 — B) — cos(A + B)] and (32.22).

0 5 [vathren T 1eaameye | (D) 3 [e71betl 4 emlomet]

-1 (e—<r+ct>2 - e—<r—ct>2) (i) L (sech (2 + ct) + sech (z — ct))

+ L I+ (z+ct)?) —In(1 + (z — ct)?)] .

33.11.Compare the ordinary DE with (9.19).

33.12.u(z,t) = > 07 bycos “sin 7" where b, = an(ggiﬁgx%an) and
an is a root of the equation tana = ﬁﬁ;’ I Use the fact that the set

{sin ®»*} is not orthogonal on [0, a], however, in view of Problem 18.4 the
set {cos “»"} is orthogonal on [0, a].

a

33.13 See Problem 18.9(i), Y07, (an cos C"Z;th + b, sin °”2§2t> sin "7

__ 2 ra L NTX _ 2a a L NTX
where a, = 2 fo f(x)sin "7 cﬁm,z bn = 5 fo g(x)sin "7 dx.
8Aa? oo 1 c(2n+1)°7%t . (2n+1l)7z
e =0 (2n41y3 COS 2 sin T



Lecture 34

Laplace Equation
in Two Dimensions

In this lecture we give a derivation of the two-dimensional Laplace equa-
tion and formulate the Dirichlet problem on a rectangle. Then we use the
method of separation of variables to solve this problem.

Consider the flow of heat in a metal plate of uniform thickness « (cm),
density p (g/cm?), specific heat s (cal/g deg) and thermal conductivity k
(cal/cm sec deg). Let the XY -plane be taken in one face of the plate. If the
temperature at any point is independent of the z-coordinate and depends
only on z, y, and time ¢ (for instance, its two parallel faces are insulated),
then the flow is said to be two-dimensional. In this case, the heat flow is in
the X'Y-plane only and is zero along the normal to the XY -plane.

Y
D(z,y + Ay) T C(z+ Az,y + Ay)
z
0
Figure 34.1

Consider a rectangular element ABC' D of the plate with sides Az and
Ay as shown in Figure 34.1. By Fourier’s law, the amount of heat entering
the element in 1 sec from the side AB is

= —kaAx (6u> ;
9/,

and the amount of heat entering the element in 1 sec from the side AD is

= —kalAy (g;) .

The quantity of heat flowing out through the side CD in 1 sec is

= —kalAx (3u> ;
Iy y+Ay

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 34,
(© Springer Science+Business Media, LLC 2009
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and the quantity of heat flowing out through the side BC in 1 sec is

= —kalAy (gZ) .
x+Ax

Hence, the total gain of heat by the rectangular element ABCD in 1 sec
is

= —kocAa:(au> —kosz(au> +kan<au) —I—kosz(au)
%/, o), 9/ gy 0 ) s n

ou _ [ 0Ou
(g;)w+Aw_ (gg)m (ay)y+Ay (ay)u

= kaAzA
kaAzxAy A Ay
(34.1)
Also the rate of gain of heat by the element is
ou
= pAzA . 4.2
pAzlyas o (34.2)

Thus, equating (34.1) and (34.2), dividing both sides by aAzAy, and taking
limits as Az — 0, Ay — 0, we get

% 82u+82u - S@u
a2 " oy2 ) PPar

ou o (0%u  0*u
g =€ (8332 + 8y2) ; (34.3)

which is the same as

where ¢? = k/(ps) is the diffusivity coefficient.

Equation (34.3) gives the temperature distribution of the plate in the
transient state. In the steady state, u is independent of ¢, so that u; = 0
and the equation (34.3) reduces to

Aot = Uge + Uyy = 0, (34.4)

which is the well-known Laplace equation in two dimensions. Since there
is no time dependence in (34.4), no initial conditions are required to be
satisfied by its solution u(z,y). However, certain boundary conditions on
the boundary of the region must be satisfied. Thus, a typical problem
associated with Laplace’s equation is a boundary value problem. A common
way is to specify u(z, y) at each point (z,y) on the boundary, which is known
as a Dirichlet problem.
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Now we shall use the method of separation of variables to solve the
Dirichlet problem on the rectangle R =0 < x < a, 0 <y < b, i.e., find the
solution u(x,y) of (34.4) on R satisfying the boundary conditions

u(z,0) = f(z), 0<z<a (34.5)
u(z,b) =g(x), 0<z<a (34.6)
u(0,y) =0, 0<y<b (34.7)
u(a,y) =0, 0<y<h. (34.8)
This problem is illustrated in Figure 34.2.

)

b u(z,b) = g(z) (a,b)

u(0,y) =0 Asu =10 u(a,y) =0

O w(z,0)=flx) @
Figure 34.2

We seek a solution of (34.4) in the form u(z,y) = X (2)Y (y) # 0. Thus,
it follows that
X"(@)Y (y) + X (2)Y"(y) =0,

" X)) V')
X@) v

which is the same as

X _Y') =\ (constant).

X(z)  Y(y)
Hence, we have
X"+ X =0, (34.9)
and the conditions (34.7) and (34.8) imply
X(0)=0, X(a)=0. (34.10)

Also Y satisfies the differential equation
Y” —\Y =0. (34.11)

The eigenvalues and eigenfunctions of the problem (34.9), (34.10) are re-

spectively given by

n?n?

A= 5 m=12 (34.12)



Laplace Equation in Two Dimensions 269

and
nwx

X (x) = sin , n=12.--. (34.13)
a

For A as given in (34.12) the general solution of the differential equation
(34.11) is

Yo(y) = an cosh ™Y 4 by, sinh "' (34.14)
Thus, the solution of (34.4) satisfying (34.7) and (34.8) can be written as

u(z,y) = Z (an cosh nzy + by, sinh nzy) sin nzx. (34.15)

n=1

Now (34.15) satisfies (34.5) if and only if

ad . nrw
= E an sin ,
n=1 a
which gives
2 a
- / Fx)sin " dr, n=1,2,---. (34.16)
a Jo a

Finally, (34.15) satisfies (34.6) provided

= Z ( osh nb + b, sinh mrb) sin mm:’
— a a

which gives

b b 2 [
ay, cosh no b, sinh e / g(z) sin T e
a a a o a

and therefore

b 2 nwb

a
.o . nTT
by, sinh = g(z) sin dx — a, cosh
a a fo a

which in view of (34.16) gives

1 2 [
b, = .hmb{ /Og(x)sinn;mdx

S a

b\ 2 [
- <cosh " ) / f(x)sin " , n>1
a ) aly a

Hence, the solution of the boundary value problem (34.4)-(34.8) is given
by (34.15) where a,, and b, are as in (34.16) and (34.17), respectively.

(34.17)
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In particular, we shall solve the boundary value problem (34.4)-(34.8)
with f(z) =0, g(x) =2z, a =1, b= 1. Clearly, from (34.16) and (34.17),

we have

a, = 0, n>1
1 1
b, = . [2 / 2 sin nwxdx}
sinh nw 0
B 2 [ xcosmrx} L 2(=1)nHt
" sinhnr nmw 2=0 nmsinhnr’

Thus, the solution in this particular case is

o0
2(—1)n+!
u(z,y) = Z n7(r sin)h o sinh nmy sin nwx.

Next we note that as for the problem (34.4)—(34.8) the solution u(x,y)
of the Dirichlet problem (34.4) on the rectangle R satisfying the boundary
conditions

u(z,0)=0, 0<z<a (34.18)
u(z,b) =0, 0<z<a (34.19)
u(0,y) =h(y), 0<y<b (34.20)
u(a,y) =k(y), 0<y<b (34.21)
(see Figure 34.3) can be written as
Y
L )
u(0,y) = h(y) Asu =0 u(a,y) = k(y)
xT
0 u(z,0) =0 a
Figure 34.3

u(z,y) = Z (Ocn cosh n;r;v + (3, sinh ngx) sin mbry’ (34.22)

n=1
where

2 b
an =, / h(y) sin nzydy, n=12,--- (34.23)
0
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and

1 2 [
On = [ / k(y) sin Y dy
b Jo b

sinh "g“

nmway 2 [° . nmy
—(cosh b )b/o h(y) sin b dy], n=12---.

(34.24)

In the particular case h(y) = Ay(b—y), k(y) = 0 this solution simplifies
to

8Ab? i 1 sinh ®"VT@—2)  @n+ )

u(x,y) = 3 ~ (2n + 1)3 sinh (2nng)7ra Sl b Y.

Finally, from the linearity of the problem as well as by direct substitution
it is clear that if wi(x,y) is the solution of the problem (34.4)—(34.8) and
uz(x,y) is the solution of the problem (34.4), (34.18)—(34.21) then

u(z,y) = wi(z,y) + uz(z,y) (34.25)

is the solution of the Dirichlet problem (34.4) on the rectangle R satisfying
the boundary conditions (34.5), (34.6), (34.20), (34.21) (see Figure 34.4).

Y

u(z,b) = g(x)

uw(0,y) = h(y) Aou=0 u(a,y) = k(y)

0 u(e,0)=f(x) @
Figure 34.4

In particular we shall solve the boundary value problem (34.4), (34.5),
(34.6), (34.20), (34.21) with f(z) = =z, g(z) = 0, h(y) = siny, k(y) =
0, a =b=1. From (34.16), (34.17), (34.23) and (34.24) it follows that

_1\n+1 _1\n

an:2( 1) ’ bn:2( 1)

nmw nm

(=1 2n7sin
2n2p2 -1 7

coth nmw

(=) 2n7rsinl

B, = —cothnm on2r? — 1

Ay =
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Thus, the solution in this case appears as

u(z,y) = wi(z,y) + u2(r,y)

— [2(—1)"*! 2(—1)"
= E [ coshnmy + (=1) coth nm sinh nwy} sinnmx
nm
=1

S

> 1)"*12nrsinl
+ Z [ on2n? — | coshnmr

n=1
(=) 2p7rsinl

— cothnr onZr? — 1

sinh mm:] sin nmy.

Problems

34.1. Solve the Dirichlet problem (34.4)—(34.8) with
(i) a=2,b=1, f(x) =0, g(z) =¢€"
(ii)) a=1,b=1, f(z) ==z, g(x) =sinmx
(ili) a=2, b=2, f(z)=¢€", g(x) =4cosuz.
34.2. Solve the Dirichlet problem (34.4), (34.18)—(34.21) with
(i) a=1,b=1, h(y)=0, k(y) = (1/2)cosy
(i) a=1,b=1, h(y)=(1/2)cosy, k(y) =0
(iii) a=1, b=1, h(y) =¢€Y, k(y) =v.

34.3. Solve the Dirichlet problem (34.4)—(34.6), (34.20), (34.21) with

(i) a=1b=1, f(x) ==, gx) =sinmz, h(y) =0, k(y) = (1/2) cosy
i) a=1,b=1, f(x)==z, g(x)=sinmz, h(y) =(1/2)cosy, k(y) =0
(iii) a=1, b=1, f(z) =sinnwz, g(z) = 2%, h(y) =siny, k(y) = 0.

34.4. Show that Neumann boundary value problem Asu = 0, u,(z,0)
= f(x), uy(z,b) = g(x), uz(0,y) = 0 = uy(a,y) has an infinite number of
solutions.

34.5.  Solve the Laplace equation (34.4) in the rectangle R = 0 <
x < m 0 <y < 1subject to the mixed boundary conditions u(z,0) =
Ty cosx, u(x,1) = Tycos® x, u,(0,y) =0, uz(m,y) = 0.

34.6.  Solve the Laplace equation (34.4) in the rectangle R = 0 <
x <1, 0 <y < 1 subject to the mixed boundary conditions wu(z,0)
22, uy(2,1) =0, ug(0,y) =0, uy(l,y) =0.
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34.7.  Solve the Laplace equation (34.4) in the rectangle R = 0 <
x <1, 0 <y < 1subject to the mixed boundary conditions u(z,0) =
0, uy(l/Q) =z, uy(w,1) = (1/2) — 2, uz(0,y) =0, uz(1l,y) =0.

34.8. A rectangular plate with insulated surface is ¢ cm wide and
so long compared to its width that it may be considered infinite in length
without introducing an appreciable error. If the temperature of the short
edge y = 0 is given by f(z), 0 < < a and the two edges =0, z = a
are kept at 0°C, determine the temperature at any point of the plate in the
steady state. In particular, solve this problem for

i) f@)=T
(i) fl2)=co

20z, 0<zxz <5
(iii) a =10, f(x) = { 20(10 — z), 5 <z < 10.

Answers or Hints

34.1. (1) X001 (o gy emin(nn 2y (1 — (—1)"€?] sinh "7Y sin 77

n=1

(ii) [727 coshmy 4 (1 — 2eosh) Ssi?nhh:y] sin

n+1
+3 0, 2(771”)7 [coshny — coth nr sinh nary] sin nra

(i) 30 {20 (1 = (<176 eosh "5+ [ G Y

244 (n?72—1) sinh nmw

2nmw(1—(—1)"e?)coth . .
_ 2n( (ngizii "1 sinh "7Y b sin "77 .

. 0o 1 nm(l—(—=1)"cos1) _. .
34.2. (1) D021 snhne ( ngﬂz)_l ) sinh n sin nry

(i) 07, ”’T“;g;i)flm Y (coshnma — coth nar sinh nrrz) sin nrry

(i) 327, {niﬁéﬂl (1= (=1)"e) coshnrz — |:n72r(si_nlh)j’m

—I—Q"’TCOth"’T(l - (—1)"6)] sinh nmc} sin nmy.

n2w241

34.3. (i) wi(z,y) + ue(z,y) where u; is the solution of Problem 34.1(ii)
and ug is the solution of Problem 34.2(i) (i) w1 (z,y)+ua(x,y) where ug is
the solution of Problem 34.1(ii) and ug is the solution of Problem 34.2(ii)

(iil) {cosh my+ (2 — % — coshr) sinh ”y} sin

3 sinh
o0 2—n?7? n 2 2sinhnry _:
+ Zn:Z [ n3m3 (_]‘) T n3g3 sinhnx SHNTL

—1)"*t2nm sin1 . .
+ >y { (0", 2nmsind [eosh nra: — coth nar sinh nwx]} sinnmy.

34.4. If u is a solution, then u + K is also a solution.
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34.5. Ty (;y + “n:l‘é;y) cosT + ;lg’ll;jg cos 295) )

34.6. 5+ LY, nz(_l)n coshnn(1 —y) cosnrz.

cosh nm

0o sinh((2n+1)7
34.7. u(z,y) = L300, (2n41r1)3 COSIS(((QHJ;B):)) cos((2n + 1)mx).

34.8. u(z,t) = 07 e "™/ egin "™ q, = 2 [ f(x)sin """ dx,

B ATH x0T —(2ndl)my/a g @ndDTe oy 2ea ghoo (1)
(i) = Enzo on+16 Sin a (ii) . > :nzl n X
n+1
—nwy/a iy e (ji5) 800 §oeo (1) —(2n—1)7y/10 ;.. (2n—1)mz
e sin "7 (i) L Y4 (2n_1)2 € sin 00



Lecture 35

Laplace Equation
in Polar Coordinates

In this lecture we shall discuss the steady-state heat flow problem in a
disk. For this, it is convenient to consider the Laplace equation in polar
coordinates instead of rectangular coordinates.

Consider the steady-state heat conduction problem for a flat plate in
the shape of a circular disk with the boundary curve z? + y? = a?. In
what follows we assume that the plate is isotropic; i.e., the flat surfaces
are insulated, and that the temperature is known everywhere on the cir-
cular boundary. The temperature inside the disk is then a solution of the
Dirichlet problem (see Figure 35.1) consisting of Laplace’s equation in polar
coordinates (see Problem 35.1)

0%u  10u 1 9%u

8r2+7“37"+7“2892 0, 0<r<a, T<O<m (35.1)
and the boundary condition
u(a,0) = f(0), —n<0<m. (35.2)
f(9)

A0

Figure 35.1

In problem (35.1), (35.2) we notice that r = 0 is not a physical boundary;
rather we recognize it as a “mathematical boundary,” and for a solution
u(r, 0) to be physically meaningful we need to impose at r = 0 the implicit
boundary condition

[u(0,0)] < oo; (35.3)

i.e., the solution remains bounded at the origin. We also wish to allow 6 to
assume any value rather than restrict it to the interval —m < 6 < 7, and

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 35,
(© Springer Science+Business Media, LLC 2009
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hence we assume that f(6), and consequently u(r,6) to be periodic with
period 27. Thus, we also need the conditions

u(r,m) =ulr,—7m), 0<r<a (35.4)
ou ou
50 (r,m) = 20 (r,—m), 0<r<a, (35.5)

which are actually continuity requirements along the slit & = 7. The prob-
lem (35.1)-(35.5) is often called as an interior problem.

To solve (35.1)-(35.5) we assume u(r,0) = R(r)©(0) # 0. Clearly, equa-
tion (35.1) becomes

1 1
R'®©+ RO+ RO"=0,
r r2

which gives
T,ZR// + TR/ @//

= — = A
R )
and hence
0"+X0=0, —-n7<f<nmw (35.6)
and
r?R"4+rR —AR=0, 0<r<a. (35.7)
Now (35.4) implies
O(—m) = O(n), (35.8)
whereas (35.5) gives
O'(—m) = 0'(n). (35.9)

For (35.6), (35.8), (35.9) we know that the eigenvalues and eigenfunc-
tions are

=0, ©y=1
An=n? (n>1), ©,=cosnf and sinnd
(two linearly independent eigenfunctions).
(35.10)

Next for A = 0, equation (35.7) is
Ry +rR) =0 (35.11)

for which the auxiliary equation is m(m —1) +m = 0, or m? = 0 and hence
m = 0,0. Thus, two linearly independent solutions of (35.11) are 1 and
Inr. However, in view of (35.3) the solution Inr is discarded because of its
behavior at » = 0. Thus, we have

Ro(r) = 1. (35.12)
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For A = \,, = n?, equation (35.7) is

R 4+ rRl, —n’R, =0 (35.13)
for which the auxiliary equation is m(m—1)+m-n? = 0, or m*—n? = 0 and
hence m = n, —n. Thus, two linearly independent solutions of (35.13) are
r™ and r~". However, since the solution 7~ is unbounded as r approaches
zero, to fulfill condition (35.3) we need to discard it. Thus, we obtain

Ry (r) =" (35.14)
Therefore, the solution wu(r, ) can be written as

ao

u(r,0) = 5

+ Z " (ay, cosnd + by, sinnd). (35.15)

n=1

This solution satisfies (35.2) if

u(a,0) = f(0) = a; + Z a" (ay, cosnf + by, sinnf). (35.16)

n=1

Clearly, (35.16) is a Fourier trigonometric series, and hence

an = 1n ’ f(¢)cosngdp, n >0
ma” J_.
L (35.17)
bn = | f(¢)sinngdp, n=>1.
ma™ J_.

In conclusion the solution of (35.1)—(35.5) can be written as (35.15), where
an and b, are given in (35.17).

As an example we shall solve (35.1)—(35.5) with

0, —m<l<—-7/2
fOy=¢ 1, —-w/2<0<m/2
0, w/2<0<m.

From (35.17), we have

1 [/ 1
aO:/ l-dp="-7=1

m —7/2 7T
1 /2 1 s w/2
anp = " / L-cosngdp = sinng
ma" J_z/2 Ta L P

1 mrﬂ _ 2 sin(nm/2)

.. nmw .
= sin —sin [ —
nmwa™ 2 2 nmwam™
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w/2

IR 1
b= / 1-sinngdg = ,, Cosng = 0.
Ta" | /2 nma )2

Hence, the solution of (35.1)—(35.5) in this particular case is

2 2
u(r, 0 +Z sin( mr/ )a cosnd.

Now in (35.15) we substitute the coefficients a,,, b, from (35.17), inter-
change the order of summation and integration, and use some elementary
identities, to get

u(r,0) = 217r flp)do + 717 Z Z: [cos nf < f(@) cos mbdqﬁ)
- n=1 -

+sinnd < ! f(@)sin Wbd(b)}

1 (" 1 & -
— f(@) 5 + Z n (cosnf cosng + sin nf sin mb)] do

ik +Z " cosn(0— )| do

_ 1 [T f(¢) 2 + Z Zn , (en(e_qb)i + e—n(0—¢)i)‘| do

o (e R NI

Now since [e!¥| = 1, for 7 < a we can sum the geometric series, to obtain

Te(97¢)i T67(9 d’)

1 s
u(r,0) = [W flo) |1+ 1 _a T o(0—@)i + 1 _a —(6— ¢)Z] do,

2

which is the same as

_(a®=r?) [T f(#)
u(r,0) = o /777 a2+ 12 — 2racos(f — &) do, r<a. (35.18)

This formula is called the Poisson integral formula. It shows that the tem-
perature at any interior point (r, ) of the disk of radius @ may be obtained
by integrating the boundary temperatures according to the formula (35.18).
In particular, if 7 = 0, then the temperature at the center of the disk is

u(0,6) = _ﬂ f(o)de, (35.19)

2
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i.e., the temperature at the center is the integral average of the boundary
temperatures. This fact is called the mean value theorem and holds for all
functions that satisfy Laplace’s equation on the disk.

Now we shall find the solution of the Laplace equation (35.1) outside
the disk r = a (see Figure 35.2). For this, again we assume that the
conditions (34.2), (35.4), (35.5) are satisfied, but the condition (35.3) has
to be replaced by

lim |u(r,0)] < oc. (35.20)

T—00

Figure 35.2

Clearly, for this exterior problem also all the steps remain the same as
for the case r < a, except that the solution of (35.13) which satisfies the
condition (35.20) is now ™. This change leads to the solution

u(r, 0) 04 ZT‘ " (v, cosnb + By, sinnd), (35.21)
n=1
where -
an = [ f(d)cosngdd, n>0
77
e (35.22)
B, = “ | f(¢)sinngdg, n>1.
™ -7

As an example, we let a = 1, and

1, —7m<6<0
f(9)—{ , 0<O<m.

Then, from Example 19.3, we have

e G

m
aO:aO:1+ , Qp = Qp = 2 )
2 ™ nm
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Thus, the solution of the interior problem can be written as

1 ™ 0 _1\n _ _ _ _1\n
u(r,0) = ;2 +Zr”<( 173n2 " cosnd + L+ (-m(=1) sinn9),
n=1

nm
—T<f<m7
whereas the solution of the exterior problem is
1+7 & —1)"—1 —1+(1—m)(-1)"
u(r, 6) = 5 2 +; " <( 77)712 cosnf + *+ n:)( ) sinn@),
—T <0<

Finally, comparing (35.15), (35.17) with (35.21), (35.22) we see that
the only difference between the two sets of formulas is that r and a are
replaced by »—! and ¢~!. Thus, with this change the Poisson’s formula for
the exterior problem appears as

_ (P =a®) [T f(9)
u(r,0) = o /_7T a2 112 — 2racos(f — ) dp, r>a.  (35.23)
Problems

35.1. Make the change of variables x = rcosf, y = rsinf to show
that Laplace’s equation (34.4) in rectangular coordinates becomes

0%u  10u 1 0%u

3r2+r37'+r2392:0

in polar coordinates.

35.2. A circular plate of unit radius, whose faces are insulated, has
upper half of its boundary kept at constant temperature 77 and the lower
half at constant temperature T5. Find the steady-state temperature of the
plate.

35.3. Solve the Dirichlet problem (35.1)—(35.5) when
(i) f(9)=;(1+0059), —r<f<m
() F(0) = ;(1+cos30), r<f<n
(iii) fO) =10, —n<b<m
(v) F(6) = { cosf), —m/2<0<7/2

0, otherwise.



Laplace Equation in Polar Coordinates 281

35.4. Show that a necessary condition for the existence of a solution
to the Neumann problem (35.1),

ou

oy (@0 =fO), —m<f<m (35.25)

is that

| f(@)dg =0,

i.e., the mean value of the normal derivative on the boundary is zero.

35.5.  Solve the Laplace equation (35.1) in the wedge with three sides
0 =0, 0 =0, and r = a (see Figure 35.3) and the boundary conditions
u(r,0) =0=wu(r,3), 0 <r <a,and (35.2) for 0 < 0 < 3.

Figure 35.3

35.6. Solve the same problem as in Problem 35.5 with condition (35.2)
replaced by the Neumann condition (35.25) for 0 < 6 < §.

35.7. The diameter of a semi-circular plate of radius a is kept at 0°C'
and the temperature at the semi-circular boundary at T°C. Show that the
steady—state temperature in the plate is given by

oo

4T 1 r\2n—1
= in(2n — 1)6.
u(r, 0) - gz o 1 (a) sin(2n — 1)0
35.8. A semi-circular plate of radius a has its circumference kept

at temperature k6(m — ), while the boundary diameter is kept at zero
temperature. Find the steady-state temperature distribution u(r, 8) of the
plate, assuming the lateral surfaces of the plate to be insulated.

35.9.  Solve the Laplace equation (35.1) in the annulus 0 < a2
2?2 + y? < b* (see Figure 35.4) with the Dirichlet conditions u(a, )
£(0), u(,0)=g9g(0), —7<0<m.

<
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™/

Figure 35.4

Further, show that in the particular case f(6) = To, ¢g(#) = T} the solution
reduces to
Inr/a

u(r,0) =Tp + Inb/a

(Th — Top).

35.10.  The velocity potential function u(r,0) for steady flow of an
ideal fluid around a cylinder of radius r = a satisfies (35.1) for r > a with
the boundary conditions

ur(a,0) =0, wu(r,0)=u(r,—0)
lim [u(r,0) — Uyr cosd] = 0.

T—00
Find its solution and the components of the velocity.

35.11. From the real part of the solution of Laplace’s equation in two
independent variables
fla +iy) acl + iy
r+iy)= .
Y= geid — (x +1y)
show that Poisson’s integral

a? - 12 /2” V(9)
0

d
27 a? +r2 — 2ar cos(f — @) Z

where x = rcosf, y =rsinf and V is an arbitrary function, is a solution.

Answers or Hints

35.1. Verify directly.
35.2. DT 4 2(my 1) >0 ot P lsin(2n — 1)0

_ Th+T> T, —T> —1 ( 2rsiné
=140 2 tan (1_7,2).
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35.3. (i) 3 (1+7cos6) (i) 3 (1+37cos0+ )75 cos30) (i) 3 +

Dot 2((;17);71) ZZ cosnd (iv) | + 5, cos+ 307, 2Si:((Z;—li;/2 Z: cosnf.

35.4. Use Green’s theorem [[o(fA2g — gAsf)dS = [, ( gg - ggf) ds.

35.5. u(r,0) =307 A,r"™/Psin 0, Ap = éa*"”/ﬁ fog f(¢)sin "] ¢dg.

35.6. u(r,0) = Yo" Ayr"™/Psin V70, A, = 2 al-n/8 17 £(¢)sin " Gdo.

nm

35.7. Use Problem 35.5.
35.8. u(r,0) =% 300 L (5)7"  sin(2n - 1)6.

a

35.9. u(r,0) = 1 (co+doInr)+> 0" (anr™+dyr~")(A, cosnf+ B, sinnf),
where the unknowns are determined by using the boundary conditions.

35.10.u(r,0) = U (r*+a?) cos b, u, = Y2 (r*—a? cos 20), u, = — 2 a® sin 26.

35.11. Verify directly.



Lecture 36

Two-Dimensional
Heat Equation

In this lecture we shall use the method of separation of variables to
find the temperature distribution of rectangular and circular plates in the
transient state.

Suppose that for a thin rectangular plate which occupies the plane re-
gion 0 <z < a, 0 <y <b, the top and bottom faces are insulated, and
that its four edges are held at zero temperature. If the plate has the ini-
tial temperature function w(z,y,0) = f(x,y), then in the transient state
its temperature function u(z,y,t) is the solution of the following initial-
boundary value problem (see Lecture 34):

up = (Upy +uyy), 0<z<a, 0<y<b t>0 >0 (36.1)

u(z,y,0) = f(z,y), 0<zx<a, O0<y<bd (36.2)
u(z,0,t) =0, wu(z,b,t)=0, 0<z<a, t>0 (36.3)
w(0,y,t) =0, w(a,y,t) =0, 0<y<b, t>0. (36.4)

We shall find the solution of (36.1)-(36.4) by the method of separation
of variables. For this, we assume that

u(z,y,t) = ¢(z,y)T(t) # 0 (36.5)

so that .
((bzz + Qbyy) T = 2 ¢T/

and hence on dividing by ¢T, we get

1 T

((bww + ¢uu) b = 2T

Arguing as before the common value of the members of this equation
must be a constant, which we take to be —\2. The equations that result
are

Gow + Py = —N20, 0<x<a, 0<y<b (36.6)

T+ NT =0, t>0. (36.7)
R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,

Universitext, DOI 10.1007/978-0-387-79146-3 36,
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It is also clear that (36.3) implies
d(x,0) =0, ¢(z,b) =0, (36.8)
whereas (36.4) implies
?(0,y) =0, ¢(a,y) =0. (36.9)
Next to solve (36.6), (36.8), (36.9) we assume ¢(z,y) = X (2)Y (y), to

obtain
X"z)  Y'(y)
X(z)  Y(y)
The sum of a function of z and a function of y can be constant only if these
two functions are individually constant, i.e.,

==X\, 0O<z<a, O<y<b.

XI/ "
= constant, v = constant.

X
We assume that
XI/ YI/
x = —u% and v = —v2 (e, A =p?+0?)
so that
X"+ u’X =0 (36.10)
Y" 4+ 127 =0. (36.11)
From (36.8) and (36.9) it also follows that
X(0)=0, X(a)=0 (36.12)
Y(0) =0, Y(b)=0. (36.13)
For (36.10), (36.12) the eigenvalues and eigenfunctions are
5  m2m? . mrx
P = 2 Xm(x) =sin 0 m=1,2,---. (36.14)

Similarly, the eigenvalues and eigenfunctions of (36.11), (36.13) are

2.2
5 nem nmy

= Yn = 1 5
v , (y) = sin b

Notice that the indices n and m are independent. This means that ¢ will
have a double index. Thus, a solution of (36.6), (36.8), (36.9) can be written
as

n=1,2--. (36.15)

Smn(2,Y) = Xon(@)Ya(y), - N = po + V- (36.16)
For A = A, equation (36.7) takes the form

Thn + AT = 0,



286 Lecture 36

which gives
Trnn(t) = exp (—AZ,,c%t) . (36.17)

Hence, in view of (36.5), (36.16), and (36.17), the solution u(z,y,t) of (36.1)
satisfying (36.3) and (36.4) can be written as

u(w,y,t) = mzz:l nZ::l G SID m;m: sin n7bry exp (—A2,,c%t), (36.18)
where - -
o mim? nfm

X, =" b2 (36.19)

Finally, this solution satisfies (36.2) if and only if

T . mTr . nuy
= = mn . 2
f(z,y) = u(z,y,0) Z Z mn Sin - osin (36.20)

m=1n=1

Multiplying (36.20) by sin(pma/a) and integrating over [0, a] gives

a S a
. pTx . mmTxT . prT . nmy
z,y)sin dx = a sin sin dx | sin .
/0 f(z,y) " > > nn ( /0 " " > b

m=1n=1

However, since

/Sinmmc sin P g a/2. it m=p
0 a a 0 if m;«ép

it follows that
/0 f(z,y)sin pzxdm = nz::lapn; sin n7bry (36.21)

Now multiplying (36.21) by sin(¢ry/b) and integrating over [0, b], we find

b

b a e}

. pTx . qmy a . Ny . qmy

3 d dy = n S d ,
/0 (/0 f(x,y)sin " x)sm b Yy ;ap 2/0 sin b sin ) Y
which is the same as

ot prr . qmy a b

i si dedy = -
/O/Of(a:,y)sm u sin b xdy 5 2apq

and hence

4 a b
U = /0 /0 f(z,y)sin m;rx sin mbry dxdy. (36.22)



Two-Dimensional Heat Equation 287
Therefore, the solution of (36.1)-(36.4) appears as (36.18) where @,
are given by (36.22).

In particular, we shall find the solution of (36.1)-(36.4) with a = b =
7, ¢=1and f(z,y) = zy. Clearly, from (36.22) we have

4 T T
Qmn = 2/ / zy sinma sin nydrdy
™ Jo Jo
4 p(=nmtt op(=1)ntt 4=yt
2 m n N mn

Hence, in view of (36.18), (36.19) the solution in this case is

oo 00 )ern ) 7(m2+n2)t
{E y, = E E sinmx smnye .
m=1

Now we shall consider the heat equation (36.1) on a circular plate 0 <
2? +y? < a®. From Problem 35.1 it follows that (36.1) in polar coordinates
can be written as

1 1
utzcz<uw+ Uy + 2u99), O<r<a, —-n<0<m t>0, ¢>0.
r r

(36.23)
We will find the solution of (36.23) subject to the initial and boundary
conditions u(r,6,0) = f(r) and u(a,d,t) = 0. Since these two conditions
are independent of 8, we must expect that v will also be independent of 6,
i.e., u = u(r,t). Thus, the problem we wish to solve is—

1
ut:c2(uw—|—rur>, O<r<a, —-w<0<6, t>0, c¢>0 (36.24)

u(r,0) = f(r), 0<r<a (36.25)
u(a,t)=0, t>0 (36.26)
u(0,8)] < oo, t>0. (36.27)

Let uw = u(r,t) = R(r)T(t) # 0 in equation (36.24), to obtain

T/ R// + 1R/

_ _ 2
R
which leads to the ordinary DEs
rR"+ R +r\*R=0 (36.28)

and
T +ANT = 0. (36.29)
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Note that (36.28) is the Bessel equation of order zero (see Problem 9.5),
and hence its solution is

R(r) = AJo(M\r) + BJ°(\r). (36.30)

In view of (36.26) and (36.27) we need this solution to satisfy
R(a) =0 (36.31)
|R(0)| bounded. (36.32)

However, since J°(Ar) — oo as r — 0, condition (36.32) implies that in
(36.30) the constant B must be zero. Now the condition (36.31) is satisfied
provided AJy(Aa) = 0, i.e., Aa should be a root of the equation Jo(«) = 0.
The function Jy(«) has infinitely many positive zeros, which we write as
ap, n = 1,2,---. Thus, the solution of (36.28), (36.31), (36.32) can be
written as

R(r) = Jo(Aur), A\p = L= 1,2, (36.33)

Now with A? = A2 the solution of equation (36.29) appears as
To(t) = e et (36.34)

Hence, the general solution of (36.24), (36.26), (36.27) is

i et Ty (Anr). (36.35)
This solution satisfies the condition (36.25) if and only if

- i ApJo(Mnr). (36.36)

To determine the unknowns A,,, n =1,2,--- we recall the orthogonality of
the Bessel functions. We multiply (36.36) by Jo(\,,7)r and integrate over
0 to a, to obtain

/ f(r)Jo(Amr)rdr = Am/ JE(Amr)rdr;
0 0
and hence in view of (13.7), we have

) Jo(Anr)rdr 2 ) Jo(Anr)rd
An_fo o(Anr)rdr 2 [ f( ) 20 nr)r Y n=1,2,---. (36.37)
Jo JEAnr)rdr a?Ji(Ana)

In conclusion, the series (36.35) where A,, given by (36.37) is the solution
of the initial-boundary value problem (36.24)—(36.27).
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When f(r) = up, we can use Problem 9.2(v), to get

2U0

An = ;
Anadi(Ana)

and hence in this particular case the solution (36.35) reduces to

S 1 2 2
t) =2 A Jo(Anr).
u(r,t) uo; Nt o(Anr)

Problems

36.1. Find the solution of the initial-boundary value problem (36.1)-
(36.4) when

(i) a=b=m, c=1and f(z,y) = sinzsin 2y
(i) a=b=m, c=1and f(z,y) =z +vy.
36.2. Find the solution of the initial-boundary value problem (36.1),
(36.2)
. Uy(z,0,t) O<zr<a, t>0

= 0’
36.38
ug(0,y,t) =0, wux(a,y,t)=0, 0<y<b, t>0. ( )

36.3. Find the solution of the initial-boundary value problem (36.1),
(36.2)
u(z,0,t) =0, wu(z,b,t)=0, 0<z<a, t>0

36.39
ug(0,y,t) =0, wux(a,y,t)=0, 0<y<b t>0. ( )

36.4. Find the solution of the initial-boundary value problem (36.1),
(36.2)
Uy(x,0,t) =0, uy(z,0,t)=0, 0<z<a, t>0

36.40
w(0,y,t) =0, wuz(a,y,t)=0, 0<y<b, t>0. ( )

36.5. Find the solution of the initial-boundary value problem (36.1),
(36.2)

u(z,0,t) =0, wuy(x,b,t)=0, 0<zx<a, t>0
(,0,1) " >_0 o)

w(0,y,t) =0, ug(a,y,1) 0<y<b, t>0.
36.6. Find the solution of the initial-boundary value problem (36.24),

(36.25), (36.27), and u,(a,t) = 0. In particular, show that when f(r) = uo,
then u(r,t) = ug.
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36.7. Assume that a circular plate of radius ¢ has insulated faces and
heat capacity s calories per degree per square centimeter. Find u(r,t) by
solving (36.24)—(36.27) when

q0
f(r) = sme2’
0, e<r<a.

O<r<e

Further, use the fact that Ji(x)/x — 1/2 as * — 0 to find the limiting
solution as € — 0.

36.8. Find the solution of the initial-boundary value problem (36.24),
(36.25), (36.27), and hu(a,t) + ku,(a,t) = 0, h > 0, k > 0. In particular,
find the solution when f(r) = ug.

36.9. Let u(r,t) be the temperature in a thin circular plate whose
edge, r = 1 is kept at temperature u = 0, and whose initial temperature
is w = 1, when there is surface heat transfer from the circular faces to
surroundings at temperature zero. The heat equation can then be written
as

1
Ut = Uppr +  Up — hu,
r

where h is a positive constant. Find the series expansion of u(r,t).

Answers or Hints

36.1. (i) u(z,y,t) =e tsinzsin2y (i) u(z,y,t) =3 >0, 4 x
e~ (™)t (_(_1)m _ (—1)" 4 2(—1)"T™} sinma sin ny.

36.2. u(z,y,t) =D o D0 ) amn cos T cos "pY exp (—AZ,, %), A2, =

2,2 2,2
RS
36.3. w(x,y,t) = o (> 07 mpcos T sin 7Y exp (—AZ, c%t), A2, =
m27r2 TL27T2

a2 + b2
36.4. u(z,y,t) =D 0 o> 0" ) Amn Sin (2m;ral)m cos "7¥ exp (—AZ,,,c%t),
A2 — (2m+41)%n? n?n?

mn 4a? b2 -

36.5. u(w,y,t) = Yoo Yol g sin "5 sin @™ exp (<2, ),
A2 (2m+1)2n2 (2n+1)%x2

mn 4a? + 4b2 :

36.6. u(r,t) =Bo+ > ., Bne_)‘ictho()\nr), where A, = oy /a, a, is a

.. a 2 [ F(r)Jo(Anr)rdr
positive root of Ji(a) = 0, By = % [y rf(r)dr, B, = Js a2J§(0)\na) ,
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use Jy (o) = —J)(ay,) = 0.

36.7. 200 Y01 i iy e I Mar) — B0 S X

e’AiC%JO()\nT) where \,, = a,,/a and «, is a positive root of Jy(a) = 0.

36.8. u(r,t) = 3.2 Cpe 2 LIy (A7), where A, = an/a, ay, is a positive
222 [ f ()T An7)rdr

root of HJy(a) + aJj(a) = 0, H = ah/k, C, = o 70T

(A%a2+H2)J§()\na) ?
2 2
u(rt) =2uo 35,2, (Ai22"f212(>§%?;na)e_A"c " Jo(Anr).

36.9. u(r,t) = 2737, AJjO‘](?(J‘)\TJ_))e_)‘?t, where )\; are the positive roots



Lecture 37

Two-Dimensional
Wave Equation

Using the method of separation of variables in this lecture we shall
find vertical displacements of thin membranes occupying rectangular and
circular regions.

The vertical displacement u(x,y,t) of a thin rectangular membrane,
which is homogeneous, perfectly flexible, maintained in a state of uniform
tension, and occupying the plane region 0 < x < a, 0 <y < b satisfies the
two-dimensional wave equation

Ut = (U +Uyy), 0<x<a, 0<y<b >0, (37.1)

where the positive constant ¢ depends on the tension and physical properties
of the membrane. If all four edges of the membrane are fixed, and it is given
the initial shape f(z,y) and released with velocity g(z,y), then u(zx,y,t)
satisfies the initial conditions (36.2),

u(x,y,0) =g(x,y), 0<zxr<a, 0<y<bd (37.2)
and the boundary conditions (36.3), (36.4).

Following exactly as in Lecture 36, the solution of the initial-boundary
value problem (37.1), (36.2), (37.2), (36.3), (36.4) can be written as

> - . . mmrxr . nuy
mn 5 )\mn t bmn 5 )\mn t 5 > Y
u(x,y,t mz::lnz::l Gmn COS ct + sin ct) sin . SR
(37.3)
where Ay, and @,y are the same as in (36.19) and (36.22), and
bimn = 1 /a /b (x,y)sin T in " dwd (37.4)
" abeAmn Jo Jo gl a b v '

Now we shall consider the motion of a vibrating circular membrane that
is clamped along its edge. We assume that the center of the membrane is at
the origin of a polar coordinate system and the edge of the membrane lies
on the circle r = a. Let u(r, ,t) represent the displacement of a point (r, 6)
of the membrane at time ¢. Again we assume that the membrane in thin,

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 37,
(© Springer Science+Business Media, LLC 2009
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homogeneous, perfectly flexible, maintained in a state of uniform tension,
and subject to no external forces. Under these assumptions the equation
of motion of the membrane is
10 ou 1 0% 10%

r = , 0<r<a, —m<60<m t>0. (375
ror ( Br) r2 002 2 Ot? - (87:5)

Since the membrane is clamped along its edge, we have
u(a,0,t) =0 (37.6)
for all # and positive t.

We assume that the membrane is set into motion by displacing its equi-
librium position. Since there are no external forces, we can assume that
there are possible modes of vibration in which the motion of each point is
periodic. A normal mode of vibration is one in which all points of the mem-
brane vibrate with the same period and pass through their equilibrium
positions at the same time. We shall search for normal modes of vibra-
tion by considering possible displacement function of the form w(r,6,t) =
v(r, 0) cos(wt 4 d), where w and d are some constants.

Since the membrane is circular, the function v must be periodic in 6
with period 27. For simplicity, we assume that v(r,8) = R(r) cosnf, where
n is a nonnegative integer. Thus, it follows that

u(r,0,t) = R(r) cos(nf) cos(wt + d).
A substitution of this choice of u into (37.5) and (37.6) yields

d’R dR w\?2
L +Td7“ + [(C) r—mn ] R=0, R(a)=0. (37.7)

From the considerations in Lecture 9, the general solution of the Bessel
DE in (37.7) can be written as

R(r) = AJ,, (‘;’r) +BJ_, (“c’r) : (37.8)

where A and B are arbitrary constants. Clearly, from the physical rea-
sons the displacement at the origin should be bounded; however, since
lim, ¢ |J_p(wr/c)| — oo, we must have B = 0. Finally, the condition
R(a) = 0 is satisfied provided

0=R(a) = AJ, (‘;’a) :

Thus, the constant w = ¢by, ,/a, where b, , is a root of J,(x). Hence, any
function of the form

u(r,0,t) = A, <b2’p r) cos(nf) cos <Cb;’pt + d)

gives a normal mode of vibration for the circular membrane.
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Now we shall consider the vibrations of a circular membrane governed
by the initial-boundary value problem (37.5),

u(r,0,0) = f(r,0), 0<r<a, -—-w<0<mw (37.9)
ou

8t(r,9,0):g(r,9), 0<r<a, —-7m<6<m (37.10)
wa,0,t) =0, t>0, —-r<0<n (37.11)
[u(0,0,t)] < o0, t>0, —w<O<m7 (37.12)
u(r, —m,t) = u(r,mt), 0<r<a, t>0 (37.13)

ou ou
89(7",—#,2?)— ae(r,w,t), O<r<a, t>0. (37.14)

Clearly, this problem is a two-dimensional analog of (35.1)—(35.5).
We assume that u(r, 6,t) has the product form

u(r,0,t) = ¢(r,)T(t) # 0, (37.15)

which leads to the equations

10 ( 0¢ 1 0% 9
= — —_ < .
T8T<T8T>+7’2892 Ao, 0<r<a, T<0<m (37.16)

and
T+ X2PT =0, t>0. (37.17)

Next we assume that ¢(r,0) = R(r)©(0) # 0, so that (37.16) takes the

form

1 1
T(TR’)'@ + 4 RO" = —\’R6.

In this equation the variables can be separated if we multiply by 72 and
divide it by RO. Indeed, we get

7"(7“]]:/)/ +A2r2 = _%ﬁ = 2,
which gives two differential equations
0" +u*0=0, —71<0<7 (37.18)
and 5
(rR'Y — ‘i R+)rR=0, 0<r<a. (37.19)

Clearly, in view of (37.13) and (37.14) we need to solve (37.18) with the
boundary conditions

O(—r) = O(n) (37.20)
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O'(—n) = 0'(m). (37.21)

Further, equation (37.19) can be written as

2
rR" + R — ’i R+MrR=0,

or
r?R" + 1R + (\*r? — p*)R = 0. (37.22)

Note that (37.22) is the Bessel equation (2.15). In view of (37.11) and
(37.12) we need to solve (37.22) with the conditions

R(a) =0 (37.23)

|R(0)] bounded. (37.24)

For the problem (37.18), (37.20), (37.21) we know the eigenvalues and eigen-
functions are

M%ZO, Op=1

37.25
p2 =m?  0,(0) =cosmf and sinmh, m=1,2---. ( )

From the considerations of Lecture 9 we note that for u? = p2, = m? the
solution of (37.22) can be written as

Ron(r) = Adp(Ar) + BJ_p(Ar) if m >0
"N Ado(Wr) 4+ BJO(Ar) if m =0,

However, since J_,,(\r) as well as JO(\r) — oo as r — 0, in R,,(r) the
constant B must be zero. So, we find that

Rin(r) = Jm(Ar), m=0,1,---. (37.26)
Now this solution satisfies (37.23) if and only if
Ry, (a) = Jp(Aa) =0,

i.e., Aa must be a root of the equation J,,(«) = 0. However, we know that
for each m, J,,,(«) = 0 has an infinite number of roots which we write as
Am1; Om2, " Amp, *° "

In conclusion, the solution of (37.19), (37.23), (37.24) appears as
R(r) = Jm()\mnr)a (3727)

where o
Aon = ", m=0,1,2,---, n=12---. (37.28)
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From (37.25) and (37.27) it is clear that ¢(r,6) takes the form

T Amnr) cosmb,  Jp(Apnr)sinmf, m=1,2,---, n=1,2,---
and
J()()\Qn’l").
(37.29)

Now for A2 = A2, equation (37.17) can be written as
T 4N T, =0

for which solutions are cos(Apmnct) and sin(Ay,,ct). Thus, the solutions of
(37.5) satisfying (37.11) — (37.14) appear as

J()()\Qn’l“) COS()\QnCt), JQ(/\()nT) sin()\(mct)
T Amnr) cosml cos(Amnct),  Jm (Amnt) cos m8 sin( A, ct)
I (Amnm) sinml cos(Amnct),  Jm (Amnt) sinmb sin(Ap,,ct).

Hence, the general solution of (37.5), (37.11) — (37.14) is
u(r,0,t) = ZaonJo (AonT) cos(Aonct)
—|—Zamn m (Amn 1) cos mb cos(Apnct)

+ Z bin.ndm (Amnr) sin mé cos(Apnct)

+ 3" AonJo(Aonr) sin(Aonct) (37:30)
+ i AvinIm (Amn 1) cosm sin( Ay, ct)
+ Z BrnIm (Amn ) sinmf sin( A, ct).
This solution satisfies the condition (37.9) if and only if
Z aonJo(AonT) + Z A I (AmnT) cos M
+men m(Amnr)sinmb, 0<r<a, —7w<0<m.
(37.31)

Now recalling the orthogonality of the Bessel functions and the set {1,
cosmf,sinnf}, we can find unknowns agp, @mn, bmyn from the above rela-
tion. For example, if we multiply (37.31) by rJo(Aopr) and integrate over
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0 to a with respect to 7, and integrate over —m to m with respect to 6, we
obtain

/ / f(r,G)JO()\Opr)rdrdG:a0p27r/ Jg(/\opr)rdr
-7 JO 0

and hence
f fo r,0)Jo(Aonr)rdrdd
Aon = ) n:1727""
21 fo JE(Nonr)rdr
Finally, we remark that the constants A,,,, m =0,1,2,---, n=1,2,---
and By, m=1,2,---, n=1,2,--- can be calculated by using the condi-

tion (37.10).

In the particular case when the initial displacements are functions of r
alone, from the symmetry it follows that u will be independent of 6, and
then the problem (37.5), (37.9)—(37.14) simplifies to

igr (rg:f) - 612 ?;t;‘, 0O<r<a, t>0 (37.32)
u(r,0) = f(r), 0<r<a (37.33)

‘3‘; (r0)=g(r), 0<r<a (37.34)

u(a,t) =0, t>0 (37.35)

[u(0,t)] < oo, t>0. (37.36)

From the above considerations the solution of the problem (37.32)-
(37.36) appears as

t) = aonJo(Aonr) cos(Aonct) + Y AonJo(Aonr) sin(Aonct), (37.37)

where
2[0 r)Jo(Aonr)rdr 2f0 r)Jo(Xonr)rdr
Oon — 2 72 ) AOn— 2 n:1727"'~
a?Ji (Aona) Xonca? JZ (Aona)
Problems

37.1. Find the solution of the initial-boundary value problem (37.1),
(36.2), (37.2), (36.3), (36.4) when f(x,y) = Tay(zx — a)(y — b) and
g(x,y) =0.
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37.2. Find the solution of the initial-boundary value problem (37.1),
(36.2), (37.2), (36.3), (36.4) when a =2, b=3, ¢ =3,

Ty 0<z<l1l, 0<y<3/2
f(ﬂ:y)z x(3—y) 0<z <1, 3/2§y§3
’ (2—2)y 1<z<2 0<y<3/2

2-2)3-y) 1<x<2 3/2<y<3
and g(z,y) = 0.

37.3. Find the solution of the initial-boundary value problem (37.1),
(36.2), (37.2), (36.38).

37.4. Find the solution of the initial-boundary value problem (37.1),
(36.2), (37.2), (36.39).

37.5. Find the solution of the initial-boundary value problem (37.1),
(36.2), (37.2), (36.40).

37.6. Find the solution of the initial-boundary value problem (37.1),
(36.2), (37.2), (36.41).

37.7. Find the solution of the initial-boundary value problem (37.32)-
(37.36), when

(i) a=1, f(r):{(l): ?/Ziji/% and g(r) =0

(i) a=1, f(r)=0, g(r)=1.

37.8. Find the solution of the initial-boundary value problem (37.32)—
(37.36) when f(r) =0 and
P

g(r)=q pre®’
0, e<r<a.

O<r<e

Further, use the fact that Ji(x)/x — 1/2 as * — 0 to find the limiting
solution as € — 0.

Answers or Hints

64Ta’b? oo o0 1 o (2mAD)Tx
37.1. 6 Zm:O Zn:O (2m+1)3(2n+1)3 COS /\2m+172n+1ct S a

X sin (2”21)”’, where A\, = {(";”)2 + (”;)2} 1/2.

37.2. wu(w,y,t) = 2930 S0, sin T sin T cos(3Apmnt) sin MY
x sin "7*, where A2, = (mm/3)? + (nm/2)%
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37.3. u(@,y,t) =3 o> o(@mn COS App €t + by SID Ay ct) cos "
nmy 2 _ m2m? n2m?
xcos P AL, =0 T

37.4. u(x,y,t) =3 o> rr 1 (Amn COS AppCt + by SID Ay ct) cos "
nwy /\2 - m227r n2;r2
— a b2 -

37.5. u(@,y,t) =3 o> o (@ COS Apun €t + by SIN A ct)
(2m+1)mx nTy A2 (2m+1)272 n2m?
2a COS 7y Amn = 4a? b2 -

X sin

X sin

37.6. u(x,y,t) =3 o> (A COS ApnCt + by SIN A t)
2m+1)rz . (2n+1)7r'u )\2 _ (2m4+1)%x2 (2n+1)%7?
2q S gy = 4a? a2

37.7. (1) u(r,t) =32, AJoi(;fOF<fj) Jo(AonT) cos(Aonct)

X sin

.. sin(Xon ¢
(if) u(rt) = 23702, "o Jo(Aonr).
c 00 Aon € .
37.8. (p2c};g7'ra Zn:l (Agna)}f(Aona) Jéigze))JO()\onT) Sln()‘OHCt) -
(p:;(’)ira P (AOna)Jlf(Aona) Jo(Xon7) sin(Aonct) where Mg, = apy,/a and agy,
is a positive root of Jy(a) = 0.



Lecture 38

Laplace Equation
in Three Dimensions

The three-dimensional Laplace equation occurs in problems such as
gravitation, steady-state temperature, electrostatic potential, magnetostat-
ics, fluid flow, and so on. In this lecture we shall use the method of sepa-
ration of variables to find the solution of the Laplace equation in a three-
dimensional box, and in a circular cylinder.

If the stream lines are curves in space, i.e., the heat flow is three dimen-
sional, then instead of (34.3) we arrive at the equation

ou 5 (*u  Pu  u
= . 38.1
ot~ ¢ <8x2 * 0y? i 022 (38.1)
In the steady state this equation reduces to
A3t = Ugy + Uyy + Uz, =0, (38.2)

which is the three-dimensional Laplace equation. First, we shall find the
solution of (38.2) in the three-dimensional box D = {0 < z < a, 0 <y <
b, 0 < z < ¢} satisfying the boundary conditions on the six sides

U(O,y72):f1(y7z)7 u(avyaz):fQ(yaz)a 0<y<b7 0<z<ec

u(x,0,2) = q1(z,2), wu(z,b,2)=go(z,2), 0<z<a, 0<z<c

u(xvyao):hl(xvy)a U’(xvyac):hQ(xay)v 0<z<a, O<y<b'
(38.3)

Clearly, the solution of this problem can be obtained by summing the
solutions of six problems of the type (38.2),

u(0,y,2) =0, ula,y,z)=0, 0<y<b, 0<z<c
u(x,0,2) =0, u(z,b,2)=0, 0<z<a, 0<z<c (38.4)
u(z,y,0) = hi(z,y), u(r,y,c)=0, 0<zx<a, 0<y<b.

As such, Problem (38.2), (38.4) could occur in finding the potential
function inside a rectangular parallelepiped in which four lateral faces and
the top are at potential zero and the potential on the bottom is a given
function of z and y (see Figure 38.1).

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 38,
(© Springer Science+Business Media, LLC 2009
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(0,b,¢)
(a,0,c)
Y y
u(z,y,0) = f(z,y)
x (a,b,0)
Figure 38.1

Following exactly as in Lectures 36 and 37, we separate the variables,
i.e., assume that u = u(z,y,2) = X(2)Y (y)Z(z), and use the homogeneous
boundary conditions, to obtain

u(z,y,z) = Z Z A SIND Apy, (¢ — 2) sin m;m: sin m;'yj (38.5)
m=1n=1

where A, is the same as in (36.19), and

B mrx . nwy
Qmn = abbmh o) / / f(z,y)sin . g dzxdy. (38.6)

In particular, when a = b = ¢ = 7, f(x,y) = xy the solution of the
problem (38.2), (38.4) can be written as

o0 o0
@y, 2) = Z:: z:: mnsmh

where Apmn = Vm?2 + n2.

m+n
sinh Ay, (T — 2) sin ma sin ny,
mn)

Now we shall find the steady-state temperature distribution in a solid
cylinder made of homogeneous material. For this, we need to consider the
Laplace equation in cylindrical coordinates (see Problem 39.6)

2 2
16(8u) 1 0%u auzo, O<r<a, —7w<0<m 0<z<h

(38.7)

ror \" or r2 002 + 022
with the boundary conditions
u(r,0,0) = a(r,0) bottom

u(r,0,h) = B(r,0) top (38.8)
u(a,d,z) =~(0, z) lateral side.



302 Lecture 38

U= ﬁ(T7 0)

Asu =10 u="(6,z2)

>

u = ar,0)

Figure 38.2

Clearly, the solution of this problem can be obtained by summing the
solutions of the following three problems:

(38.7), wu(r,0,0)=0, wu(r,0,h)=703(r0), u(a,b,z)=0, (38.9)
(38.7), wu(r,0,0) =«a(r,0), wu(r,0,h) =0, wu(a,0,z)=0 (38.10)

and
(38.7), w(r,0,0)=0, wu(r,0,h)=0, wu(a,0,2z)=~(0,2). (38.11).

To find the solutions of these problems, we shall apply the method of
separation of variables by assuming that u is a product of functions of r, 6,
and z, i.e., u = u(r,0,z) = R(r)0(0)Z(z). Substituting the appropriate
derivatives into the partial DE (38.7), we obtain

2 2
07 d (chilf> RZd@+R@dZ:0,

r dr r2 do? dz?

and now division of the above equation by ROZ/r? yields

Rdr \" dar Zd2  ©de?-

r d ( dR) r2d*Z 1 d’©
Since the left-hand member of the last equation is independent of @, the
equation can be satisfied only if both members are equal to a constant.
Hence,

1 d*0e 9

— =m

O db? ’
or
0" +m?e = 0. (38.12)
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Note that we have chosen the separation constant m?2. This will force ©
(and u) to be periodic of period 27 in #. This is in fact the desired situation
in many applied problems. Clearly, the solutions of (38.12) are cosm#f and
sinmf, m=0,1,2,---.

Now the second separation yields

1 d ( dR) m? 1d*Z

rRdr \"dr ) 2 T T Zd2 T
Hence, we have
7" _\7Z =0 (38.13)
and
PR +rR + ()\7.2 _ m2)R =0. (38.14)

For the problem (38.9), we note that the condition u(a, 6, z) = 0 leads
to the boundary condition R(a) = 0. Further, as in Lecture 35 we need to
impose at = 0 the implicit boundary condition |R(0)| < co. The Bessel’s
equation (38.14) together with the boundary conditions

|R(0)] < oo, R(a)=0 (38.15)
has the eigenvalues A = A2 and the eigenfunctions J,(Amnr), m =

0,1,2,--+, n =1,2,---, where A, is the same as in (37.28). Now since
A=) >0, from the equation (38.13) and the condition u(r,6,0) = 0

which implies Z(0) = 0, we have Z(z) = sinh(\,,2). Thus, by the prin-
ciple of superposition the solution of (38.7) satisfying u(r,6,0) = 0 and
u(a,d,z) =0 can be written as

u(r,0,z) = Z Z e SINW (A 2) T (A7) cos mé
m=on=l (38.16)
+ Z Z by sinh (A 2) I (A ) sinmé.

m=1n=1

The unknowns a,,, and b, in (38.16) are determined by using the
nonhomogeneous boundary condition u(r, 8, h) = 3(r,0). For this, a Fourier
series in # and a Fourier—Bessel series in r are required.

The solution of the problem (38.10) can be obtained similarly, and ap-
pears as

u(r,0,z) = Z Z Cmn SINW [ A (B = 2)] T (An 1) cosmé
e (38.17)
+ 3> dyn sinh[Apn (h = 2)] T (A7) sinmé.

m=1n=1
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The unknowns ¢, and d,,, in (38.17) are obtained by using the nonho-
mogeneous boundary condition u(r, 0,0) = a(r, §).

Now we shall find the solution of the problem (38.11). We note that
the conditions u(r,6,0) = u(r,8,h) = 0 imply that Z(0) = Z(h) = 0, and
hence the equation (38.13) has nontrivial solutions only when

A:—(”;)Q, n=1,2,- (38.18)

and Z(z) = sinnmz/h. Substituting (38.18) in (39.14), we obtain a modified
Bessel’s DE

2
R’ +rR' — <(an7) r? 4+ m2) R=0. (38.19)

This equation with the transformation x = nzr/h, n = m is exactly the
same as (9.15). Thus, the solutions of (38.19) are

I, (TZTT) and K,, (TZTT) .

Now since |R(0)| < oo and the solution K, is singular at r = 0, we need to
discard it. Hence, by the principle of superposition the solution of (38.7)
satisfying u(r,6,0) = u(r, 0, h) = 0 can be written as

u(r,0,z) = i i emndm (n;r) sin nzz cosmb
m=on=l (38.20)
+ Z Z fmndm (nhwr) sin nzz sin mé.
m=1n=1

Again the unknowns e, and f,,, in (38.20) are obtained by using the
nonhomogeneous boundary condition u(a, 8, z) = (0, 2).

In particular, if u is independent of z, then the temperature distribution
in every circular cross section along the z-axis will be the same. In this case
the problem is mathematically equivalent to the one we have discussed in
Lecture 35. Similarly, if the temperature on the surface of the cylinder is
prescribed in such a way that the functions «, 3 and 7 are independent of
0, then the temperature inside the cylinder will also be independent of 6.
In such a case, the problem (38.7), (38.8) reduces to

10 [ Ou 0%u
Tar(rar)—i—aZQ—O, O0<r<a, 0<z<h (38.21)
u(r,0) = a(r), u(r,h) =pB(r), ula,z)=7(2);

and the solutions (38.16), (38.17) and (38.20), respectively, reduce to

u(r, z) = Z ap, sinh(A\, 2) Jo(Anr), (38.22)

n=1
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=Y cnsinh[A, (b — 2)]Jo(Anr) (38.23)
n=1
and -
nm nmz
z) = Z enlo r) sin , (38.24)
St (7)™

where A, is the same as in (36.33).
In particular, when «o(r) = ug, 8(r) = v(r) = 0, the solution (38.23)

simplifies to

_ 2ug Z sinh[A, (h — 2)]Jo(An7)
= i )\ a)sinh(Ap,h)

Similarly, when a = h =1, a(r) =0, 3(r) =1—1r?, v(z) = 0, the solution
(38.22) becomes

sinh(Ap2)Jo(AnT)
u(r;2) _SZ A3 sinh A\, J1(An)



Lecture 39

Laplace Equation
in Three Dimensions (Cont’d.)

In this lecture we shall use the method of separation of variables to find
the solutions of the Laplace equation in and outside a given sphere. We
shall also discuss briefly Poisson’s integral formulas.

From Problem 39.10 we know that the Laplace equation in spherical
coordinates x = rsin¢cosf, y = rsin¢gsinf, z = rcos ¢, takes the form

r2 Or (T 87“) + r2 sin ¢ 9 <51n¢a¢) + P2 sin? 062 0. (39.1)

We assume that a solution of (39.1) can be written as u = u(r,6,¢) =
R(r)©(0)P(¢). Substituting the appropriate derivatives into the partial DE
(39.1), we obtain

0d d 2 dR RO d singbdq) R® d?0©
r2 dr dr r2sin ¢ do do r2sin? ¢ db?
and now division of the above equation by RO® /r?sin? ¢ yields
sin¢ d [ ,dR\ sing d [ .  dP 1 d%0
r + sin ¢ =— .
R dr dr d do do O dh?

As earlier since the left-hand member of the last equation is independent
of 6, the equation can be satisfied only if both members are equal to a
constant. Hence,

1o _
©dez
or
0" +m?e = 0. (39.2)

Note that again we have chosen the separation constant m?. This will
force © (and u) to be periodic of period 27 in . This is in fact the desired
situation in many applied problems. Clearly, the solutions of (39.2) are
cosmf and sinmf, m=0,1,2,---.

The second separation yields
1d( ,dR 1 d i (bd(I) m? 3
= — 111 — =
Rdr " dr P sin ¢ do do sin ¢

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 39,
(© Springer Science+Business Media, LLC 2009



Laplace Equation in Three Dimensions (Cont’d.) 307

Hence, we have

d [ ,dR
AR = .
o <r 0 ) R=0 (39.3)
and d d® 2
1 m
i - P =0. A4
o (%16) * (Vo) 20 oy
Clearly, (39.3) can be written as a familiar Cauchy—Euler equation
r?R" 4+ 2rR — AR = 0, (39.5)

which has a solution R = 7* provided k? 4+ k — X\ = 0. If we choose k = n,

then A =n(n + 1), and if we choose k = —(n + 1), then also A = n(n + 1).

Thus, with A = n(n + 1), equation (39.5) has two linearly independent
solutions " and r—("+1),

In equation (39.4), we make the substitutions x = cos ¢, ® = y, so that

d dvd ——sinqu

dé — dodr dx

d . dd
do (sm¢d¢>

and hence

ood
— sin (bdx (sm 10}

: d .o dy
sm¢dm <sm ¢da:)
d dy
_r2 _ 2
V1 e <(1 x)da:)

Thus equation (39.4) becomes
m2
(1—2%)y" —2zy + {n(n +1) - . x2} y =0, (39.6)

which is exactly the same as Legendre’s associated DE (7.20) with solutions
P (z) and Q) (x) defined in (7.21) and (7.22).

Now we shall find the solution of (39.1) in a sphere of radius a, satisfying
the boundary condition (see Figure 39.1)

u(a,0,9) = f(0,0), 0<O<2m, 0<o<m. (39.7)

For this, as in earlier lectures discarding the solutions 7~ (*1) and Q" (),
using Problem 7.12, and arranging the terms, we obtain

u(r,0,6) = i(;)" Ba(mPn(cosd))
=0 (39.8)

+ Z (@mn c0SMO + by sSinmO) P (cos @) |

m=1
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— f(0.9)
u(r,0, )
Figure 39.1
where
2m

Qmn = (2n2+(1l +m) / / (0, @) P (cos @) cosmb sin ¢pdpdl,
39.9
(2n + 1)( m (39:9)

bmn = (n + m) / / £(0, )P (cos ¢) sin mb sin ¢pdpde.
(39.10)

Next we shall consider the problem when u(r,6,¢) = u(r,¢). This is
not an unrealistic assumption, since many problems in electrostatics occur
in this manner. In such a case, equation (39.1) reduces to

10 ( ,0u 1 0
r2 Or ( 87") + r2sin ¢ d¢ <bm¢8¢) (39-11)

We shall first consider (39.11) in a sphere of radius a, satisfying the bound-
ary condition
u(a, ) = f(cos¢), 0< ¢ <m. (39.12)

From (39.8) the solution of the problem (39.11), (39.12) appears as

u(r, ¢) = ;Z (2) Pn(cos¢)(2n+1)/_1f(x)Pn(x)dx, (39.13)

n=0

where in the integral we have used the substitution = cos ¢.
In particular, when
V, 0<¢<n/2 0O<z<]1)
f(cos @) = (39.14)
-V, w/2<¢<7m (-l<x<0)

we have

0 if n iseven

1
1 ZV/ P,(x)dx if n isodd,
0
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and hence (39.13) reduces to

11

16 (2)5]35(005(;5) + ] '

Similarly, to find the solution of (39.1) outside the sphere of radius a,
satisfying the boundary condition (39.7), we discard the solutions r™ and
Q" (x), of the equations (39.5) and (39.6), respectively, to obtain

u(r 6, ¢) = Z(j)"“ Ba()nPn(cosqS)

n=0

u(r,p) =V B;Pl(cosqb) — ; (2)3P3(cos¢) +

(39.15)

+ Z @ cOSMO + by, sSiNMO) P (cOs gb)]
—1

where the constants a,,, and b,,, remain exactly the same as in (39.9) and
(39.10).

Thus, the solution of the problem (39.11), (39.12) outside the sphere of
radius a, can be written as

u(r, ¢) = ;Z (i)’”1 Pn(cos¢)(2n+1)/_1f(x)Pn(x)dac. (39.16)

n=0

This solution in particular, when f(cos ¢) is given by (39.14) becomes

u(rd) = V [2 (“) Prteosa) — ¢ (“) Pyteoso)
+1é (Z)6P5(cos¢)+--}.

By adjusting the terms it can be shown that the solution (39.8) can be
equivalently written as

— o dpdo
u(r,8,¢) = afa® —r? / / (r2 —|—a2 ¢)sin ¢de r<a, (39.17)

— 2ra cos)3/2’
where
cos 1) = cos ¢ cos ¢ + sin ¢ sin ¢ cos(6 — ).

This is Poisson’s integral formula in three dimensions for the interior prob-
lem (39.1), (39.7). In this formula (r? + a® — 2racos)'/? is the distance
from the point (r,0, ¢) to the point (a, 8, @).

Similarly, the solution (39.15) of the exterior problem (39.1), (39.7) can
be written as Poisson’s integral formula:

_ 2m
u(r,0,¢) = (r? —a? / / (r2 + aQ ) sin $dd0 r>a. (39.18)

— 2racos)3/2’
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From (39.8) as well as (39.17) it is clear that

u(0,6,¢) = An /%/ (0, ¢) sin pdpdb.

Thus, the value of u at the center of a sphere is the mean value of u(a, 0, ¢)
over the surface of the sphere. This fact is called the mean value theorem
and holds for all functions that satisfy Laplace’s equation on the sphere.

Similarly, from (39.15) as well as (39.18) it follows that when r — oo,

2T ™
u(r, 0, 6) = 47‘;4/0 /0 £(6,6) sin ¢dpdd + O <T12) .

Finally, we consider a more general boundary condition for Laplace’s
equation (39.1) in the sphere r < a,

Cos «v ZQ: (a,0,¢) +sina u(a,0,¢) = f(0, ). (39.19)
Here oo may assume values between 0 and /2. Clearly, for « = 7/2, (39.19)
reduces to the Dirichlet condition (39.7), and for v = 0 it reduces to Neu-
mann condition (39.20) which is considered in Problem 39.11. An interme-
diate value of a corresponds to a mized condition. Physically this occurs
when we have free radiation of heat according to Newton’s law of cooling.

For the mixed problem also the solution remains the same as (39.8),
and it satisfies the boundary condition (39.19) if and only if

f(0,9) = Z (sina + Zcos a) BaOnPn(cos 0)

n=0

+ Z (amn cosmb + by, sinmb) P (cos @) | .
=1

Thus, the constants @, and b,,, remain exactly the same as in (39.9) and
(39.10), except that each need to be divided by the factor (sina + ? cosa) .

In particular, when o = 7/4, f(6,¢) = f(cos®) = (1/1/2)cos ¢, the
solution of the mixed problem (39.11), (39.19) in view of (39.13) can be
written as

wrd) = 330 (1) Paleoso) Z”HJ/ P

n=0

1r 2
= 2a]—’;[(cosqb)l 313

7 COS ¢

1+a’
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Problems

39.1. Show that
27

u(x,y,z) = f(xcost+ysint + iz, t)dt
0

is a solution of Laplace’s equation (38.2).

39.2. Show that the gravitational potential due to the attraction of n

particles
n

m;
ny
1=1
where m; is the mass of the particle, (a;, b;,c;) its coordinates, and r? =
(x —ai)® + (y — b))% + (2 — ¢;)?, satisfies Laplace’s equation (38.2).

39.3. Show that the potential of a body at an exterior point (z,y, z),

/// p(a,b,c)dadbde
a (@ — )2 + (y — b)2 + (2 — )2]1/2
where p is the density and the integral is extended over the body, satisfies

Laplace’s equation (38.2).

39.4. Find the solution of the boundary value problem (38.2), (38.4)
when a = b=c=m, hi(z,y) = sinzsin®y.

39.5. Find the solution of the following initial-boundary value problem

Ut = Ugy + Uyy + U2z, O0<z<7m, O0<y<m O0<z<m t>0
u($7y7270):f(x7y7z

~—

uz(0,y,2,t) =0,  uz(my,z,t)=0
uy(x,0,2,t) =0, wuy(x,m 2,t)=0
uy(r,y,0,t) =0, wus(w,y,mt) =0.

In particular, find the solution when f(z,y,2) = zyz.

39.6. Show that in cylindrical coordinates, x = rcosf, y = rsinf, z =
z, Laplace’s equation (38.2) becomes

10 ([ Ou +1(‘92u+82u 0
r =0.
ror \' Or r2 062 022
39.7. Find the steady-state, bounded temperature distribution in the
interior of a solid cylinder of radius a and height h, given that the temper-
ature of the curved lateral surface is kept at zero, the base is insulated, and
the top is kept at ug.
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39.8. Find the steady-state, bounded temperature distribution in
the interior of a solid cylinder of radius 1 and height 7, given that the
temperature of the curved lateral surface is y(z) = z, and the base and top
are insulated.

39.9. Find the solution of the following problem:

Upp + (1/7)up +u,, =0, 0<r<a, 2z>0
u(r,0)=a(r), 0<r<a

lu(r,z)] <oo, 0<r<a, z>0
ur(a,z) + ku(a,z) =0, z>0, k>0.

39.10. Show that in spherical coordinates, x = rsin¢cosf, y =
rsingsind, z = rcos ¢, Laplace’s equation (38.2) becomes

10 rzau n 1 0 Sin(b@u . 1 82u_0
r2 or or r2sin¢ 0¢ oo} r2sin® ¢ 062

39.11. Find the solution of (39.1) in a sphere of radius 1, satisfying
the boundary condition

ou
or

where [77 [T £(6, ¢) sin pdgpdd = 0.

39.12. A solid hemisphere of radius a has its plane face perfectly
insulated, while the temperature of its curved surface is given by f(cos ¢).
Find the steady-state, bounded temperature at any point in the interior of
the hemisphere.

(1,6,0) = f(0,0), 0<O<2m, 0<op<m (39.20)

39.13. The temperature on the surface of a solid homogeneous sphere
of radius a is prescribed by

V., 0<o¢<m/2
P) =
ula-0) {0, T/2 < ¢ <.

Find the steady-state temperature distribution in and outside the sphere.

39.14. Find the steady-state temperature distribution u(r, ¢) in a
hollow sphere with its inner surface r = a is kept at temperature u(a, ¢) =
f(cos @), and its outer surface r = b at u(b, ¢) = 0.

39.15. The Laplace equation can be used in mathematical modeling
of the growth of a spherical tumor as follows: Assume that the tumor is
initially the shape of a sphere of radius a, and as it grows remains a sphere
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of radius R(t). Let p(r,t) be the pressure within the tumor at distance r
from its center and at time ¢. Then, p satisfies

1 9%(rp)
r2 Or?
where S is the rate of volume change per unit volume. Let wu(r,t) be the

nutrient concentration outside the tumor and wuy be that inside the tumor.
Then, u satisfies

=S, r<R({),

1 02(ru)
r2  Or?
The above equations are subject to the following conditions:
(a) p(0,t) is bounded
(b) p(R(t),t) = B/R(t)
(
(

=0, 7> R(t).

¢) uy — p(u —ug)t/? =0 for r = R(t)

d) lim, oo u(r, t) = Uoo,

where S, 3, p, up and us, are constants.

(i)  Use (a) and (b) to find p(r,t), r < R(t).

(ii) Use (c) and (d) to find u(r,t), r > R(t).

Now we know p(r,t) and u(r,t) in terms of the unknown expanding radius

of the tumor R(t). However, R(t) can be determined by solving the initial
value problem

5 + Au —up)/? for r=R(t), R(0)=a.
r

R(t) =

(iii) Find the limiting size of the tumor, i.e., R when R'(t) = 0.

Problems in which one of the boundary is unknown and changes with time
are known as moving boundary value problems.

39.16. The Schrédinger equation for a single particle of mass m
moving in a potential field V (x,y, 2) is

T L NS (39.21)
g2 23 x, Y, 2). .

(i)  Show that separating out the t dependence as ¥(z,y,z,t) =

b(x,y, 2)e” 27/ results in the partial DE
8mm?
Asgp+ —p, (E=V)o=0; (39.22)

here h is Planck’s constant, and the total energy E is assumed to be a
constant.
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(ii) If V =0 in (39.22), the resulting equation is called Helmholtz’s equa-
tion. For this equation set ¢ = X (z)Y (y)Z(z) to determine the DEs for
X, Y and Z.

39.17. The time-independent Schrodinger equation for a single particle
of mass m moving in a potential field V' in spherical coordinates is given by

10 (,00 1 oY 1 0% 8mn? B
r2 Or (T 8r)+7‘2 sin ¢ O¢ <51n¢ <Z5> r2 sin? ¢ 062 + h? (B=V)$ =0,

where in some applications V= V(r). For this equation set
1 = R(r)®(¢)O(0) to determine the DEs for R, ® and O.

Answers or Hints

39.1. Verify directly.
39.2. Verify directly.
39.3. Verify directly.
sinh v/10(7—2)

39.4. 3si L sinhv2(r—z) 1

. ysinzsiny sin z sin 3y

sinh v/27 4 sinh V107
2
39.5. u(z,y,z t) a000+ Ze apooe —t cog éx—i—i > @omoe” ™t cosmy
1 —n? E2+m2 t .
+1 2, Goone tcosnz + 5 Ezm apmoe( )t cos Lx cos my

3 Xmn agmne” " T cos my cosnz + > agone~CH ) cos Lz cosnz
+> o agmne*(éz+m2+”2)t cos {x cos my cos nz, where

aemn = 5 [ Jo Jo f(x,y, 2) cos la cos my cos nzdadydz. agpo = 7,

ago = —27[1 — (=1)°] /02, amo = 4[1 — (—1)][1 — (=1)™]/(7t>m?),

Aomn = —8[1 — (=D)Y[1 — (=1)™][1 — (=1)"]/(x26>m>n?).

39.6. Verify directly.

u cosh(An2z)Jo(Anr
39.7. u(r,z) = 2wy, Jl((A a))coos(h(A )h)

39.8. u(r,z) =7 — 13>, 2n1"1)22"10(12);] 1y cos(2n — 1)z.

39.9. u(r,z) = 2>, X eif;p+k2)"j2(‘])?(2;r) Jo ra(r)Jo(Anr)dr, where A,

are the positive roots of A, J{(Ana) + kJo(Apa) = 0.
39.10. Verify directly.

39.11.u(r,0,0) = 300 | " [LaonPu(cosd) + 30 (amn cosm

=1 n

+bimn sinml) P (cos ¢)] .
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39.12.We need to find the solution of (39.11) where 0 < r < a, 0 < ¢ <
7/2 with the boundary conditions u,(r,7/2) =0, 0 < r < a, u(a,¢) =
f(cos¢) 0 < ¢ < 7r/2 lu(r,¢)| < 0o, 0 <7 < a, 0 <¢ < m/2. Since

Z = TCosQ, a¢ = az 8; = —rsinégz, and hence at ¢ = 7/2 we have
g: = Tl,gg and now the condition u, = 0 implies that ug = 0 at ¢ = /2.

u(r, @) =307 (4n+1) ( ) Py, (cos ¢) fo x) Py, (x)dx.

39.13.Use Problems 7.2, 7.8(i) to show that (39.13) and (39.16) reduce to
u(r,8) = [1+ 202 (-1)" (472) <<’> ()" Pansa(cos )]
u(r,8) = Y [0+ 020 (=17 (353) 2% ()7 Pana(cos 9)] -

b2n+1 2n+41

39.14. u(r ¢) = % I pent1_gznr (204 1) ( )n+1 Pr(cos ¢)
% [ (@) Pala)de.

39.15.80lve directly.

39.16.(i) Verify directly (i) X" +p?X =0, Y/'+12Y =0, Z"+\*Z =

2
where p? + 12 4+ A2 = Smh’; =

39.17. ‘39? = —m?0 (Azimuthal equation),
b (2R + 87;;’ [B—V = 7, ] R =0 (radial equation),

8m7'r2 r2

Sirll(b o (sin Z‘};) + {6(64— 1) — siT2£¢:| ® = 0 (angular equation),
where the constants ¢ and my, respectively, are the orbital angular momen-
tum and magnetic quantum numbers.



Lecture 40

Nonhomogeneous Equations

In Lectures 30-39 we employed the Fourier method to solve homoge-
neous partial DEs together with appropriate initial and boundary condi-
tions. However, often in applications the governing partial DE is nonho-
mogeneous. In this lecture we shall demonstrate how the Fourier method
can be employed to solve nonhomogeneous problems. Here our approach is
similar to that of we have discussed in Lecture 24.

When a heat source is present within the domain of interest, instead of
(30.1), the governing partial DE is nonhomogeneous:

U — Py = q(x,t), 0<z<a, t>0, c¢>0. (40.1)

We shall consider (40.1) with the initial condition (30.2), and the homoge-
neous Robin’s conditions

aou(0,t) — aju, (0,t) =0, t>0, a2+a?>0 (40.2)
dou(a,t) + diug(a,t) =0, t>0, di+di>D0. (40.3)

Let A,, X,(z), n > 1 be the eigenvalues and eigenfunctions of the
problem (30.5),

X(0) - a1 X'(0)=0
20X (0) = a1 X(0) (40.4)
doX(a) + le’(a) =0.
We seek a solution of (40.1)—(40.3), (30.2) in the form
u(a,t) = Tn(t)Xn(x), (40.5)
n=1

where the time-dependent coefficients T,,(¢) have to be determined. As-
suming that termwise differentiation is permitted, we obtain

w =y T, (t)Xn(z) (40.6)

and - -
e = Y Ta(OXE() = & S AT (0 Xo(e). (40.7)

n=1 n=1

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 40,
(© Springer Science+Business Media, LLC 2009
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Substituting these expressions (40.6) and (40.7) in equation (40.1), we ob-
tain

SOITLE) = ATa(®) Xn(2) = g, 1), (10.8)
n=1

For a fixed value of ¢, equation (40.8) represents a Fourier series repre-
sentation of the function ¢(z,t), with Fourier coefficients

)X, (z)dx
Iy X2( Ydx

Assuming \,, # 0, then for each n, (40.9) is a first-order linear ordinary DE
with general solution

r ot = o9 —Qult), say, =12 (10.9)

t
To(t) = {cn+/ Qn(s)e_)‘"sds] Mt n=1,2,---. (40.10)
0

Substituting (40.10) in (40.5), we find the formal solution

u(z,t) = nij:l {cn + /Ot Qn(s)e_)‘"sds] Mt X, (). (40.11)

Finally, to determine the constants ¢,, n =1,2,--- we set t =0 in (40.11)
and use the prescribed initial condition (30.2), to get

u(z,0) ch

which immediately gives

2)d
Cn = fof X2( )d e o (40.12)

In particular, we consider the initial-boundary value problem
Ut — Uge = —(1 —x)cosat, O0<z<1l, t>0
w(0,t) =0, wu(l,t)=0, wu(z,0)=0.

For (40.13) it is clear that A, = —n’r?, X,(x) = sinnrz, ¢, = 0, and
hence from (40.11), we have

o0 t 1 .
7—1) cosassin nrrdr
u(x,t) E [/0 {fo ( 1) L }6”2”25(15] et sinnra

(40.13)

— Jo sin® nwrdr
—4C08as 22 2.2,
= E eV ™ 8ds| e T tsinnrx
0 nm
n=1

o

2 2.2 . .

= Z o a4 {n2772 ( T cos at) — asin at} sinnmwx.
nm(a?+nint)

n=1
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In the derivation of the wave equation (32.1) if there is a force ¢(z, t) per
unit length acting at right angles to the string and m is the mass density
per unit length, then the resulting partial DE is nonhomogeneous

1
Upt — Uy = mq(x,t), O<z<a, t>0. (40.14)
We shall find the solution of (40.14) subject to the initial and boundary
conditions (32.2)—(32.5). Again, we assume that the solution can be written
s (40.5), where now X, (), n > 1 are the eigenfunctions of the problem
(32.14), i.e
u(z, t) = Z sm . (40.15)

Now substituting (40.15) in (40.14), we obtain

> n27r2c2 . nmx 1
> [mw+ " mo] T = e

n=1 a
and hence
2.2 2 a
nmwec 2 nwx
T + 7r2 T, = / q(x,t)sin ™y = R, (t), say, n=1,2,---.
a ma Jg a

(40.16)
Using the methods presented in Lecture 2, the general solution of (40.16)
can be written as

nmct nmct a ¢ nmc
T, (t) = a, cos ey by, sin ey / sin (t — s)R,(s)ds.
a a nwc Jo a

Substituting this in (40.15), we get

00 t
t t
= § [an cos " 4 by, sin nreky @ / sin "¢ (t—s)Rp(s)ds
a a nwe Jo a

xsin . (40.17)
a

Finally, this solution satisfies the initial conditions (32.2) and (32.3) if and
only if a,, and b,, are the same as in (32.19) and (32.21).

In particular, if the string is vibrating under the force of gravity, the

forcing function is given by ¢(z,t) = —g, and then we have
2 [ nwx 2g
R,(t) = —gsi dr = — 1—(=1)").
0= o [ s == M -1y

Now we assume

f(x):{ x, 0<z<a/2

a—z, af2<z<a
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and g(x) = 0, so that

2 a/2 nm “ . nwx da . nm
ap, = esin T dx + (a — x)sin dz| = , ,sin
a |Jo a /2 a nAm 2

and b, = 0. Thus, in this case the required solution is

> . nmwct
u(z,t) = Z {n%r? " cos "
29 o [t mer . nTT
- (I—-(=1)") [ sin (t — s)ds| sin
mnm 0 a a
B i )”*1 N 4ga® cos (2n — 1)mct
N — 2n —1)2 m(2n — 1)3mw3¢2 a

4ga2 nmwx

m(2n — 1)377362] S g

Next we shall consider the nonhomogeneous Laplace equation known as
Poisson’s equation:

Aot = Ugy + Uyy = ¢(z,y), 0<z<a, 0<y<b (40.18)

This equation appears in electrostatics theory. We shall find the solution
of the boundary value problem (40.18), (34.5)—(34.8). We assume that the
solution can be written as

i X, (z Z sin' " Y (y), (40.19)
n=1

where X,,(x) = sin(nma/a) are the eigenfunctions of the problem (34.9),
(34.10). Substituting (40.19) in (40.18), we obtain

> Tl27T2 . nmx
> (v =" vt i "7 = gt
n=1
and hence
2.2 2 a
ve-" e [Caesin T de = Su(w). sy, n=1,20
0

(40.20)
Now remembering that we will have to satisfy the boundary conditions
(34.5) and (34.6), we write the solution of (40.20) in terms of Green’s func-
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tion (see Problem 15.9) and substitute it in (40.19), to obtain

00 1 _
u(z,y) = Z ( [ 7 {[an sinh nr(b-y) + by, sinh mry}

a a
n=1

a
(40.21)
Clearly, the conditions (34.5) and (34.6) now easily determine
2 [ . NI 2 [ . nmx
ap, = / f(z)sin dx, b, = / g(x)sin dx. (40.22)
a Jo a a Jo a

In the particular case, when ¢(z,y) = —1, f(z) = g(z) = 0, we find
ap = b, = 0,
2

Sp(y)=— " (1—(=1)"
=—> (-1
and the solution (40.21) becomes
4a? 1 sinh "™ 4 sinh "7Y) nwx
— 1— a a Si .
U(ZIJ, y) 3 Z n3 [ sinh nwb s a
nodd a

As in Lecture 34 we also note that if wy(z,y) is the solution of the
problem (40.18), (34.5)—(34.8), and uz(x,y) is the solution of the problem
(34.4), (34.18)—(34.21), then w(z,y) = ui(x,y) + ua(z,y) is the solution
of the Poisson equation (40.18) satisfying the boundary conditions (34.5),
(34.6), (34.20), (34.21).

Problems

40.1. Consider the nonhomogeneous partial DE

;x <I€(x) gz> = p(z)e(x) 681; —q(x), a<z<pf, t>0

together with the initial and boundary conditions (31.2)—(31.4). Show that
its solution can be written as (31.21), where now v(x) is the solution of the
nonhomogeneous equation

dic (k(x) (CZ) =—q(r), a<z<p
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satisfying the same boundary conditions (31.6). In particular, find the
solution of the initial-boundary value problem

ut—c2um:q(x), O<z<a, t>0, ¢>0

satisfying (30.2)—(30.4), when
(i) g¢(x) = psinve

(ii) q(x) = pe™"
(iil) q(x) = pxe ",

(occurs in radioactive decay)

40.2. Find the solution of the initial-boundary value problem (40.1),
30.2)—(30.4) when

i) a=1, c=1, f(x) q(z,t) =z +t

(
(i) a=1,¢c=1, f(x)=0, g(z,t) =2z — 5sint

( z,

(iii) a=m, c=2, f(z)=(1/2)z(r — )%, q(z,t) = xt>.

40.3. Find the solution of the nonhomogeneous partial DE
utt—czum:q(x), O<z<a, t>0
satisfying the initial and boundary conditions (32.2), (32.3), (33.20).

40.4. Find the solution of the initial-boundary value problem (40.14),
32.2)-(32.5) when

i) a=m, f(x)=0, g(z) =0, q(z,t) = mgoc® sinwt

i) a=1, c=1, f(z) =z(1—2x), g(x) =0, q(z,t) =m(zx + 1)
iv) a=2m, c¢=1, f(z)=2(r—-27m), g(z)=0, qz,t)=
z, 0<zx<m
m 2r —x, w™<ux <27,

(
(
(ii)) a=m c=1, f(x) =0, g(z) ==z, q(z,t) = mat
(
(

40.5. Find the solution of the initial-boundary value problem (40.14),
(32.2)—(32.4), uy(a,t) =0, t > 0.

40.6. Find the solution of the initial-boundary value problem (40.14),
(32.2), (32.3), uz(0,t) =0, t > 0, (32.5).

40.7. Find the solution of the boundary value problem (39.18), (34.5)—
(34.8) when

({E) =0, g(ﬁ) = Tp, q(x,y) = -1y
() =1, g(z) =1, q(z,y) = —sin 3y.
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40.8. Find the solution of the following boundary value problem:

1
urr—|—rur—|—uu:—q(r,z), O<r<l1, 0<z<h

u(r,0) =0, wu(r,h)=0, u(l,z)=f(2).

Answers or Hints

40.1. v(z) + 2300 ([H(f(x) — v(@))sin T dr) e~ (/@) g
where v(z) = L [(a — ) [ sq(s)ds +z [ (a — s)q(s)ds] (i) v(z) =
weye (asinve —xsinva) (i) v(z) = b2 [a(l —e ") —2(1 —e )]
(iii)v(z) = b 2a(l —e™*) = 22(1 — ™) —azv(e™" — e V)].

40.2. (i) 32, [nfﬂg(—l)”*l(l — ettty _ 10 (-0 (22 gin g

—cost + e’”z’f%)} sinnmx (i) Yoo, 2 [2( 1)n+ipdpde—n’n’t

(=) = Dn2e2t 4 (e 1)(1— (—1)" + (— 1)nn2w2)} sinnmz
(iii) S0 [n3 (2+ (- 1)”)6_4”2t + (_116)::1 (8ntt? —dn?t +1 — 6_4"%)}

n=1
X sinnx.

40.3. v(z) + Z (an cos "7 + by, sin "mt) sin T Where
an =2 [ (f( (x)) sin ””dm bn =2, fo (z))sin "7 dx
and v(r) = aI)A—I—wB—I—ac2 [(a—2) [ sq(s ds—|—a:f a—s) (s)ds}

40.4. (i) *°°3> 14 n2(:‘)i§‘_"1f2c2)(w sinnct —nesinwt) (i) Y07, 2(7,:%"“
x [(1— %) sinnt+ !]sinne (i) Yo7 26 (1= (=1)") (2cosnmt +t

! sin n7rt) + (—1)"((:08 nnt —1)] sinnrz (1V) S [an cos 4

T am !
32 where a,, = 7731124 sin nﬂ + 7'rn3 ((_1)71 - 1)

Sy sin Ty } sin "',

40.5. See Problem 33.4.
40.6. See Problem 33.5.

40.7. (i) oy sinh(2n=Dy - gin (2 — Dz+> 0 S A

n=1 (2n—1) smb(?n—l)ﬂ' n=1 mn(m2+n?2)
x sinmasinny (i) 2307, Smh(z&ﬂ?fﬁfﬁ?gi’i1;37(77 Y sin(2n — 1)z
4 sin 3y o sin(2m—1)x
T Y=t (@mo1)[(@m—1)219]"
40.8. u(r,z) =>"0" anly ("}") sin "7* +Zm 1Zn 1 brnnJo(Anr) sin "7F
where Jo(A,) =0, n=1,2,---, a,l ( ) =2 fo )sin "T*dz, and

. 4 1 rh s .omTz
bimn = W2 (725 +32) Jo fo q(r, 2)rJo(Anr) sin ™7 dzdr.



Lecture 41

Fourier Integral and
Transforms

The Fourier integral is a natural extension of Fourier trigonometric series
in the sense that it represents a piecewise smooth function whose domain
is semi-infinite or infinite. In this lecture we shall develop the Fourier
integral with an intuitive approach, and then discuss Fourier cosine and sine
integrals which are extensions of Fourier cosine and sine series, respectively.
This leads to Fourier cosine and sine transform pairs.

Let f,(x) be a periodic function of period 2p that can be represented
by a Fourier trigonometric series

oo
a . nm
fplz) = o4 Z(an COSwn T + by Sinw, ), w, = ,
2 n=1 p
where

1 P
anp = fp(t) coswptdt, n >0

DJ—p

1 P
b, = fp(t)sinwptdt, n>1.

PJ-p
The problem we shall consider is what happens to the above series when
p — o00. For this we insert a,, and b,,, to obtain
o0

fplx) = 21p j) fp(t)dt + ; Z [coswnx 717 fp(t) coswytdt

n=1

P
—|—sinwnaj/ fp(t) sin wntdt] .
-p

We now set ( 0
n—+ 1) nm T
Aw=wpi1 — Wy = - = .
p p p

Then, 1/p = Aw/7, and we may write the Fourier series in the form

fplx) = 21p /_1; fp(t)dt + ;_ ,i [(cos wn ) Aw /_Z; fp(t) coswytdt
+(sinw,z)Aw ’ fp(t) sinwntdt} . (41.1)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 41,
(© Springer Science+Business Media, LLC 2009
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This representation is valid for any fixed p, arbitrarily large, but fixed.

We now let p — oo and assume that the resulting nonperiodic func-
tion f(z) = lim, .o fp(x) is absolutely integrable on the z-axis, i.e.,
7 |f(z)|dz < co. Then, 1/p — 0, and the value of the first term on

the right side of (41.1) approaches zero. Also, Aw = 7/p — 0 and the
infinite series in (41.1) becomes an integral from 0 to oo, which represents

f(x), ie.,

flz) = ! /OO [cosww /OO f(t) coswtdt + sinwx /OO ft) sinwtdt} dw.
0 —c0 oo

T
(41.2)
Now if we introduce the notations

Alw) = jr / T ) coswtdt,  B(w) = jr / T () sinwtdt,  (41.3)
then (41.2) can be written as
flx) = /OO[A(w) coswz + B(w) sinwz]dw. (41.4)
0

This representation of f(x) is called Fourier integral.

The following result gives precise conditions for the existence of the
integral in (41.4), and the meaning of the equality.

Theorem 41.1. Let f(z), — oo < 2 < co be piecewise continuous
on each finite interval, and [_|f(z)| < oo, i.e., f is absolutely integrable

on (—oo,00). Then, f(z) can be represented by a Fourier integral (41.4).
Further, at each =z,

/OOO[A(w) coswz + B(w) sinwz]dw = ;[f(x—i—O) + f(x —0)].

Example 41.1. We shall find the Fourier integral representation of
the single pulse function

o [ <
TV 0 i Jof > L

From (41.3), we have

I e 2si
Alw) = f(t) coswtdt = coswtdt = <O
T J_oo TJ_1 w

1 1
B(w) = / sinwtdt = 0.
71'

-1
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Thus, (41.4) gives the representation

2 [ coswzsinw

flx) = /0 dw. (41.5)

™ w

Now from Theorem 41.1 it is clear that

72T if |z| <1
> coswz sinw
/ dw=¢q 7A+0) 7 o, (41.6)
0 w 2 2 4
0 if |z > 1.

This integral is called Dirichlet’s discontinuous factor.

From (41.6) it is clear that
/ Y e =T, (41.7)
0

For an even or odd function, the Fourier integral becomes simpler. In-
deed, if f(x) is an even function, then B(w) = 0 in (41.3) and

2 [ee)
Alw) = / f(t) coswtdt (41.8)
T Jo
and the Fourier integral (41.4) reduces to the Fourier cosine integral,
f(z) = / A(w) cos wrdw. (41.9)
0
Similarly, if f(x) is odd, then in (41.3) we have A(w) = 0 and
2 [ .
B(w) = / f(t) sinwtdt
T Jo
and the Fourier integral (41.4) reduces to the Fourier sine integral

flz) = /000 B(w) sinwzdw. (41.10)

Example 41.2. We shall find the Fourier cosine and sine integrals of
the function f(z) = e %*, >0, a > 0. Since

2 > —at
Aw) = e~ " coswtdt
™ Jo
2 a Cat [ W o0 2a/m
= X = 5€ (— smwt—i—coswt)‘ = , 9
T a® +w a 0 a® +w
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it follows that ) -
F) = =07 = a/ coswzT
0

w.
T a? + w?

From this representation it is clear that

°° coswr T uw
/0 a2 4 o? dw = 0, (41.11)
Further, since
2 [ 2
B(w) = / e “sinwtdt = 2w/7r2’
T Jo a®+w
we have 0 1% s
wsinwx
f@y == [
and hence N
wsinwz T on
/0 2 4 w? dw = 0 (41.12)

The integrals (41.11) and (41.12) are known as Laplace integrals.

Now for an even function f(x) the Fourier integral is the Fourier cosine
integral (41.9) where A(w) is given by (41.8). We set A(w) = \/2/7 F.(w),
where ¢ indicates cosine. Then, replacing t by =, we get

Fuw) = \/ fr /O b () coswardz (41.13)

and

2 o0
flx) = \/ / F.(w) coswzdw. (41.14)
™ Jo
Formula (41.13) gives from f(x) a new function F,(w) called the Fourier
cosine transform of f(x), whereas (41.14) gives back f(z) from F.(w), and

we call it the inverse Fourier cosine transform of F,.(w). Relations (41.13)
and (41.14) together form a Fourier cosine transform pair.

Similarly, for an odd function f(z), the Fourier sine transform is

Fi(w) = \/i /000 f(z) sinwzdx (41.15)

and the inverse Fourier sine transform is

flx) = \/i /000 Fy(w) sinwzdw. (41.16)
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Relations (41.15) and (41.16) together form a Fourier sine transform pair.
Example 41.3. We shall find the Fourier cosine and sine transforms

of the function i
, O<zx<a
flz) = { 0, z>a.

Clearly, we have

Fo(w) = \/ k/ coswrdr = \/2k {suzdaw} .
T
1 — cosaw
\/k/ smwxdx—\/k{ " ]

Example 41.4. We shall find the Fourier cosine transform of the
function e~*. Clearly, we have

2 o0
\/ / e~ *coswrxdr
™Jo

e
= \/ 1+ , (= coswr + wsinwr)
Tl+w

F.(w)

_ V2

1l 4w?

0

If f(x) is absolutely integrable on the positive z-axis and piecewise con-
tinuous on every finite interval, then the Fourier cosine and sine transforms
of f exist. Furthermore, it is clear that F, and F are linear operators, i.e.,

F.(af +bg) = aF.(f) + bF.(g)

and
F.(af +bg) = aFs(f) + bF.(g).

Theorem 41.2. Let f(z) be continuous and absolutely integrable on
the x-axis, let f’(x) be piecewise continuous on each finite interval, and let
f(z) — 0 as x — oco. Then,

() Ff @) = wF. \/ £(0), and

(if) Fo(f'(2) = —wFe(f(2)
Proof. To show (i), we integrate by parts, to obtain

F(f'(@) = \/ / F() coswada
\/ {f(x)coswxo +w/ f(x Slnwxd;v]

\/f 0) + wFs(f(x)).
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The proof of (ii) is similar.

Similarly, we can show that

10.

11.

12.

Lecture 41

FAP(#) = R @) 21 0),

R (@) = ~2E(f@) + f0).

Fourier Cosine Transforms

1, 0<z<a
0, otherwise

¢l 0<a<1

e a>0

n_ —azr

{cosw7 O<z<a

0, otherwise

cosaz®, a >0

sinaz®, a>0

sin ax
, a>0

e “sinx
T

Jo(azx), a>0

sechax, a >0

Fe(f)

2 sin aw
T w

\/ 2T(a)  aw
COSs
T w? 2

V20

1 67w2/4a

\/2@
2 n!
7 (a? + w?)nt!

1—w

V2o
1 cos w? o
\/2@ 4da 4

! cos w? + T
V' da 4

2a
\/ﬂ- w<a
{ 27

0, w>a

1 1 2
tan

\/271' w?
2 1
T \/a2 _ (U2

0, w>a

\/7r 1sechmu.
2a 2a

1 [Sina(l —w)

Re(a + iw)" !

sina(l + w)
1+w

)
)

, w<a
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Fourier Sine Transforms

f(z) F(f)
1 1, 0<z<a 2[1—cosaw}
’ 0, otherwise T w
9 1 1
. VT Vw
1
3 23/2 2v/w
4. 7t O<a<1 \/2 [(a) sin 47
T wo 2
2 w
5 —&x
‘ \/ﬂ (1 + w? )
e 2 _
6 , a>0 \/ tan~* v
T
7. z"e” " a>0 2 n Im(a 4 iw)" ™"
7 (a2 + w?)n+1
—ax? w 71.«)2/411
8. Te , a>0 (20)3/ e
9 sinz, 0<z<a 1 |sina(l -—w) sina(l+w)
' 0, otherwise Vo 1—w 14w
™
0. Y aso0 \/27 “se
z 0, a>w
11. tan ™" 2a7 a>0 \/27rsmh W g—aw
x

w
12. cosechax, a >0 \/ﬂ- 1tanhﬂw.
2a 2a



Lecture 42

Fourier Integral and
Transforms (Cont’d.)

In this lecture we shall introduce the complex Fourier integral and the
Fourier transform pair, and find the Fourier transform of the derivative of a
function. Then, we shall state and prove the Fourier convolution theorem,
which is an important result.

We note that (41.2) is the same as

1 o0 (o)
flz) = / / f(t)[coswt cos wx 4 sin wt sin wz|dtdw
™ Jo —00

_ jr/ooo U_O; £(t) cos(wa —wt)dt] do.

The integral in brackets is an even function of w; we denote it by F(w).
Since cos(wx — wt) is an even function of w, the function f does not depend

on w, and we integrate with respect to ¢ ~(not w), the integral of F(w) from
w =0 to oo is 1/2 times the integral of F'(w) from —oo to co. Thus,

(42.1)

f(z) ! /OO {/(: f(t) cos(wz — wt)dt] dw. (42.2)

~or oo

From the above argument it is clear that
1 oo oo .
9 / [/ f(t) sin(wz — wt)dt] dw = 0. (42.3)
T J—c0 —o0
A combination of (42.2) and (42.3) gives

1 (o) (o) .

f) =, / / F()e @D dtd, (42.4)
T J—coJ—oc0

This is called the complex Fourier integral.

From the above representation of f(z), we have

fz) = j% /_ Z[ 1% /_ O; f(t)e‘i“’tdt} iy (42.5)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 42,
(© Springer Science+Business Media, LLC 2009
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The expression in brackets is a function of w, is denoted by F(w) or F(f),
and is called the Fourier transform of f. Now writing = for ¢, we get

Flw)= \/127r /700 flx)e ™ dx (42.6)

and with this (42.5) becomes

1 > W
flx) = Jon [m F(w)e"dw. (42.7)

The representation (42.7) is called the inverse Fourier transform of F(w).

Finally, as in Theorem 41.1, if f(z), — oo < & < oo is piecewise con-
tinuous on each finite interval, and ffooo |f(z)] < oco. Then, the Fourier

transform (42.6) of f(x) exists. Further, at each x,

o | Z F(@)e“do = L [f(z +0) + fa - 0]

Example 42.1. We shall find the Fourier transform of

fz) =

k, 0<z<a
0, otherwise.

Clearly, we have

Flw)= ! / ke ™%dy = k(1 —e )
V27 Jo w2

2

Example 42.2. We shall find the Fourier transform of f(z) = e~%*",
a > 0. We have

1 o -
Fw) =y | el

= \/127r /O:O exp [— (\/ax—i— ;\C/Ua)Q + <2i\c/da)2] dx
2 o iw \?
= \/127r exp <_Za> /_Oo exp l— <\/ax+ 2\/a>

= \/127r exp <— j) /Z exp (—v?) \CZL, Vax + ;ja =
)

dx

1%: 1 aa
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Example 42.3. We shall find the Fourier transform of the square wave
function

0, z<a
flx) = 1, a<x<b
0, x>b.

From (42.6), we have

1 oo . 1 b
Flw) = r)e  “rdr = / e "“Tdx
( ) \/27T /—oo f( ) \/27T a
e—iwb o e—iwa
w#0
_ —V/2miw 7
b—a
, w=0.
Vor
Further, it follows that
0, z<a
1 o] e—iwb _ e—iwa o 1/2, r=a
) e“fdu=< 1, a<z<b
V21 ) —V2miw 1/2, z=b
0, x>b.

Example 42.4. We shall find the Fourier transform of the function

o) = { 22e ™™, x>0

0, z<0.

‘We have

1 o , 1 e ,
F(w) \/27r,/0 f(x)e_“””dx:\/%r/o e e dy

_ 1 /oo xgefgg(ljtiw)dm _ \/2 1 .
N m (14 iw)?

The Fourier transform is a linear operation. We state this property in
the following result.

Theorem 42.1 (Linearity Property). The Fourier transform is
a linear operation, i.e., for arbitrary functions f(z) and g(x) whose Fourier
transforms exist and arbitrary constants a and b,

F(af +bg) =aF(f)+bF(g).

Now we state and prove the following two results, which will be used
repeatedly in the next two lectures.
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Theorem 42.2 (Transform of the Derivative). Let f(z) be
continuous on the z-axis and f(z) — 0 as |z| — co. Furthermore, let f/(z)
be absolutely integrable on the x-axis. Then

F(f'(x)) = iwF(f).

Proof. Integrating by parts and using f(z) — 0 as |2| — oo, we obtain

\/127r /_Z fl(x)e ™" dx

_ \/1% [f(x)e—w‘f’ ~ (—iw) /_ O;f(a:)e—iw%]

— WF(f(2).

F(f'(x))

It is clear that
F(f") = iwF(f') = (iw)*F(f) = —w*F(f).

Example 42.5. Clearly, we have

1 2 1 2
F ( 712) — F _ —x7\/ — _ F ( —x /)
e (=5 ) == ()
1 1 1
—Zin (efwz) —2iw e /4
- w 67“}2/4.

2v/2

Theorem 42.3 (Convolution Theorem). Suppose that f(z)
and g(x) are piecewise continuous, bounded, and absolutely integrable func-
tions on the z-axis. Then

F(f=g) =V2rF(f)F(g), (42.8)

where f * ¢ is the convolution of functions f and ¢ defined as
(f*g)(x / ft)g(x —t)dt = / flz—1t)g (42.9)

Proof. By the definition and an interchange of the order of integration,
we have

Freg) = o [ [ i@aa = neranas
= \/127r /_O:o /_O:O f(N)g(x — 1)e”“*dxdr.
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Now we make the substitution z — 7 = v, so that x = 7 + v and

F(f*g)

o | N /- " frgwe

por | I

V21 F(f)G(g).

oo
lUJTdT /
o0

— ) dydr

g(v)e ™" dy

By taking the inverse Fourier transform on both sides of (42.8) and

writing F'(f) =

f(w) and F(g) =

cancel each other, we obtain

10.

(f*g)(x

)= [

w)g(w

zwmdw

Fourier Transforms

f(x)
1, —-b<ax<b
0, otherwise
1, b<zx<c
0, otherwise
1
2?2 +a2 ¢ >0
z, 0<x<b
2z —a, b<xz <2b
0, otherwise

e x>0
0, otherwise

ax

€
0,

, b<z<e
otherwise

far - _p<x<h

otherwise

e poxr<e

otherwise

F(w)

2 sin bw
T

(&

w

ibw

iw
m™e
2

—icw

—e
Vo

—alwl

a

-1 4 267,bu1 _ 6—2'wa

V2r(a +

e(afiw)c

/

i

V27

{

\/27rw2

1
iw)

_ e(afiw)b

V2r(a — iw)
2 sinb(w — a)

™

w—a

ib(a—w) ic(a—w)

— €
a— w

\/2 lw| < a

0,

|w| > a.

G(w), and noting that v/27 and 1/v/27

(42.10)
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Problems

42.1. Find the Fourier integral representation of the following func-
tions:

-1, —-1<x<0
(i) flr)=4¢ 1, 0<z<1
0, otherwise

) f@)=e
i s ={ o L

0, |z|>1.

42.2. Use Fourier integral representation to show that

. % Gin zw /2, x>0
(i) dov=< 0, =0
0 @ /2, <0
.. °° cos zw + wsin zw 0, <0
(i) dw=1< 7©/2, =0
1+ w?
0 me *, x>0

w? sin zw T .
(iil) / dw = o€ Tcosx it x>0
0

wt 44
oo 1_
(iv) / Coswwsinxwdwz{ /2, 0<z<m
o w 0, z>m
. /oo Cos(ww/2)(2:osxwdw _ { (r/2)cosz, |z|<m/2
0 1—w 0, |z|>m/2
(vi) s1nﬂ'wblnxw (r/2)sinz, 0<z<m
0 1—w? 0, z>m.

42.3. Show that

\/7TCL

(ii) sinaz? =

(i) cosar® = ( ) coswrdw, a >0

) coswzrdw, a >0

\/7m

2
(iil) e " cosx = / 4 coswa:dw x> 0.
42.4. Show that
2 [ 3
(i) e Pcosz = / 4w sinwzdw, x>0
)y wt+4

2a o emaw
(ii) tan~! = 2/ sinh aw sinwzdw, a >0, x>0
X 0 w
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o0
w .
(iii) cosechaz = / tanh _ sinwzdw, a >0, z>0.
aJo 2a

42.5. Find Fourier transforms of the following functions:

e Tsinxk, x>0

(i) flz)= {

0, =<0
. e, x>0
(i) f(@)= { P

(iii) f(z) =e "l a>0.

42.6.  Parseval’s equality for the Fourier transform (42.6) and its
inverse (42.7) becomes

[ vwra= [ P,

— 00 — 00

Use Example 42.3 to show that

1 00 |e—iwb _ e—iwa|2
) dw=1>b—a.
2w w

— 00

42.7. Show that the solution of the integral equation

/ " fw)sinawds = g(z),

where g(x) =1 when 0 < z <7, g(x) =0 when © > 7 is

21—
flw) = cosmu’ w0

™ w

42.8. Show that the integral equation

/ f(w) coszwdw = e 7,
0

has the solution

2 1
f(w)_wl—sz’ w > 0.

42.9. Find the solution of the integral equation

f@) = 90)+ [ T b vy,
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where the functions f, g and h satisfy the conditions of Theorem 41.1. In

particular, solve the integral equation

o f(t)dt 1
= b.
/Oo(x—t)2+a2 242 V<as

Evaluate the following integrals

42.10.
oo
/ 332—|—a2 x2—|—b2) @>0, 5>0
2% dx
a>0, b>0.
/OO 22 + a2) (22 + b2)’
Answers or Hints
42.1. (i) 2 [;7 (") sinwadw (i) 2 [ 2 dw
(iii) fo (Si““:g’cos“’)coswxdw.

a

. 1 .. 3 2

42.5. () o tioeey ) o ses (i) \/ (@ tw?)
1 o0 F( ) wT U«(b*a)

42.9. f(x) = Vor Loo 1—\/27fF(h)e dw, b (z?4(b—a)?) "

42.10.Put = = 0 in (4.9) and (4.10). (i) 0, () 7y



Lecture 43

Fourier Transform Method
for Partial DEs

Here and in the next lecture we shall consider problems in infinite do-
mains which can be effectively solved by finding the Fourier transform or
the Fourier sine or cosine transform of the unknown function. For such
problems usually the method of separation of variables does not work be-
cause the Fourier series are not adequate to yield complete solutions. This
is due to the fact that often these problems require a continuous superpo-
sition of separated solutions. We shall illustrate the method by considering
several examples.

Example 43.1. We will show how the Fourier transform applies to
the heat equation. We consider the heat flow problem of an infinitely long
thin bar insulated on its lateral surface, which is modeled by the following
initial-value problem

utzc%m, —o<r<oo, t>0, ¢>0
u and wu, finiteas |z|] — oo, t>0 (43.1)
u(z,0) = f(z), —oo<x< o0,

where the function f is piecewise smooth and absolutely integrable in
(—00, 00).

Let U(w,t) be the Fourier transform of u(z,t). Thus, from the Fourier
transform pair, we have

u(z,t) = \/127T / Ul(w, t)e™?dw
1 e ,
Ulw,t) = Jon / u(z, t)e "“rdu.

Assuming that the derivatives can be taken under the integral, we get

ouw 1 U (w,t) om
o Ve /_oo o "
g;‘ _ j% [ U i)
0%u 1 ° 9

— t 1 wr .
92 Jon /_OO U(w,t)(iw)“e™*dw

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 43,
(© Springer Science+Business Media, LLC 2009
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In order for u(z,t) to satisfy the heat equation, we must have

COou 0% 1 < [oU(w,t) o o iz
0= ot € 3x2_\/27r/ [ ot + ccwU(w,t)| e““dw.

—0o0
Thus, U must be a solution of the ordinary differential equation

dUu

ot WU = 0.

The initial condition is determined by

1 e -
U(w,0) = Jon / u(x,0)e”"“"dx

1 > —lwT _ w
= \/27r/700f(x)e dx = F(w).

Therefore, we have
Ulw,t) = F(w)e ",

and hence

u(z,t) = \/127r/ F(w)e*“’%%ei‘”dw. (43.2)

Now since

2 2
1 S ] —x/(4c"t)
/ e—w2c2tezwrdw _ \/27_(_6 ,
Ver oo Vame2t

if in (42.10) we denote F(w) = f(w) and §(w) = ="t then from (43.2)
it follows that

(2 —p)/4c?t

1 o e~
uz,t) = \/27(/;00,]0(,[14)\/27'(' VArct

/oo f( )67(17N)2/4c2td

dp
(43.3)

This formula is due to Gauss and Weierstrass.

For each y the function (z,t) — e~ (@=m*/4¢% /\/ax2t is a solution of
the heat equation and is called the fundamental solution. Thus, (43.3)
gives a representation of the solution as a continuous superposition of the
fundamental solution.

We recall that the standard normal distribution function ® is defined as

1 ¢ 2
)= / /2,
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This is a continuous increasing function with ®(—oc0) = 0, ®(0) = 1/2,
®(o0) = 1. If a < b, then we can write

b o—(z—p)?/4c’t 1 (z—a)/V2et —22/2 (x —p)
dp = e dz, =z
a Vet V21 Ja—b)/v/2e2e V2ert
(z—a) ()
_ 1 /\/2c2t 6_Z2/2d2 - 1 /\/2c2t 6_22/2d2
V2r ) s V2r J oo
T —a x—0b
(\/2622?) (\/262t>
(43.4)
From (43.3) and (43.4) it is clear that the solution of the problem
ut:c2um, —oo<r<oo, t>0
0, z<a
u(z,0) = f(z) =4 L, a<z<b
0, z>b

can be written as

s =ro () e (0)

Now using the properties ®(—o0) = 0, ®(0) = 1/2, ®(c0) = 1 we can
verify that
0, z<a
L/2, z=a
}%u(ﬁ,t)z L, a<z<b
L/2, x=b
0, x>b.

Example 43.2. Consider the problem

ut:c2um, x>0, t>0

u(0,t) =0, t>0

u and wu, finiteas x — oo, t>0
u(z,0) = f(z), x>0,

(43.5)

which appears in heat flow in a semi-infinite region. In (43.5) the function
f is piecewise smooth and absolutely integrable in [0, c0).

We define the odd function
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Then from (43.3), we have

o) e—(z—p)2/4c2t B
u(z,t) = / f(w)dp

oo VAT
/0 e*(ﬂ”*“)2/4c2tf( v oo ef(zfu)2/4c2tf( \d
oo Vw2t : 0 Vare2t :

In the first integral we change p to —p and use the oddness of f, to obtain
0 e—(z—p)2/402t B 00 e—(r+;¢)2/402t
/_oo Vamert Fludp = _/0 VAamet Fwydp.
Thus, the solution of the problem (43.5) can be written as
o0 ef(wfu)2/4c2t _ ef(w+u)2/4c2t
uw.t) = [ i fdn.  (436)

The above procedure to find the solution of (43.5) is called the method
of images.

In an analogous way it can be shown that the solution of the problem

utZCQum, x>0, t>0
ug(0,6) =0, t>0

. (43.7)
u and wu, finiteas x* — oo, t>0
u(z,0) = f(z), >0
can be written as
0o L —(x—p)?/4c%t —(x4p)?/4c?t
e +e
u(x,t) = dj. 43.8
@i = | Sl fdi (438)

Here, of course, we need to extend f(z) to an even function

=) fl@), z>0
f(x)—{ f(=z), x<O.

In (43.7) the physical significance of the condition u,(0,t) = 0 is that
there is a perfect insulation, i.e., there is no heat flux across the surface.

Example 43.3. Consider the initial-value problem for the wave equa-
tion
uttZCQUIz, —o<r<oo, t>0, ¢>0

u and wu, finiteas |z|] — oo, t>0
u(z,0) = fi(z), —oco<z <00
ut(x,0) = fa(z), —o0o <z < o0,

(43.9)
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where the functions f; and fs are piecewise smooth and absolutely inte-
grable in (—o0, 00).

To find the solution of this problem, we introduce the Fourier transforms

1 > —ilwx .
Fj(w) = \/27r/ e filx)dz, j=1,2

and its inversion formulas

1 < .
filz) = \/27r/ e Fi(w)dw, j=1,2.

We also need the Fourier representation of the solution wu(z,t),

1 e ;
u(z,t) = \/277/ U(w,t)e""dw,

where U(w,t) is an unknown function, which we will now determine. For
this, we substitute this into the differential equation (43.9), to obtain

1 > [0?U(w,t) 2 2 iwz
0= \/271_/ { 12 +cw U(w,t)} e"“Tdw.

Thus, U must be a solution of the ordinary differential equation

— 0o

d?U 9 9

+ c*w U =0,
dt?

whose solution can be written as

U(w,t) = c1(w) coswet + co(w) sinwet.

To find ¢1(w) and c2(w), we note that

fl ({E) = u(x,O) = \/127r /_OO Cl(w)eiwzdw

Cou(z,0) 1 [
fale)y = 5 ‘m/m

and hence Fj(w) = ¢1(w) and Fh(w) = weea(w).

wees (w)e® dw

Therefore, it follows that

F
U(w,t) = Fi(w) coswet + 2(w) sinwet
we
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and hence the Fourier representation of the solution is

1 e F )
u(x,t) = / [Fl (w) coswet + ZJ(ZJ) sinwet | €“"dw. (43.10)

Ve s

Now since cos = (e +¢e7)/2, sin@ = (e’ — e~%)/2i, we have

1 o0 )
Fi(w)(coswet)e™*dx
o | P osct)
_ 1 1 /°° Fl(w) (eiwct + e—iwct) eiwzdw
2 \/27T —o0

11 o X .
_ ) \/271. [m 3 (UJ) (ezw(erct) +ezw(17ct)> dw

= ;[fl(x +ct) + fi(z — ct)].

Similarly,

sinwct
ezww dw

1 o0
Fo(w
V2 [oo 2()
1 1 00 iwet _ ,—iwet
= / F2(w)e ) € e"“*dw

221 J_o iwce
1 1 oo eiw(r—i—ct) o eiw(z—ct)

= d
221 /_OO 2(«) wce n

1 1 [e'e) F x+ct iwgd d
2 Van /—oo () (/z—ct ‘ §> .

1 x+ct 1 o i

o [ [
x+ct

| R

20 —ct

Putting these together yields d’Alembert’s formula

xr+ct

w(z, ) = ;[fl(x—kct)—i—fl(x—ct)]—i— 216/ RO)de,  (43.11)

—ct

which is also obtained in Problem 33.10.
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Fourier Transform Method
for Partial DEs (Cont’d.)

In this lecture we shall employ the Fourier transform, or the Fourier
sine or cosine transform to find solutions of the Laplace equation in infinite
domains. Here we shall also introduce finite Fourier sine and cosine trans-
forms, and demonstrate how easily these can be used directly to solve some
finite domain problems.

Example 44.1. We shall find the solution of the following problem
involving the Laplace equation in a half-plane:

Ugy +Uyy =0, —o00<x <00, y>0
u(z,0) = f(z), —oco<zx<o0 (44.1)
lu(z,y)| <M, —oco<z<oo, y>0,

where the function f is piecewise smooth and absolutely integrable in
(—o00,00). If f(z) — 0 as |z| — oo, then we also have the implied boundary
conditions lim|,| o u(z,y) =0, lim, ., u(z,y) = 0.

For this, as in Lecture 43, we let

1 > WwT o 1 > —lwT
flx) = Jon LwF(w)e dw, F(w)= Jon /700 f(z)e dx

and

1 e ;
u(z,y) = \/27r/ U(w,y)e™ dw.

— 00

We find that

L[ 02U (w, .
0= Ugz + Uyy = V2 / [—w2U(wa y) + a(yu; v) e dw.
T J—o0

Thus, U must satisfy the ordinary differential equation

d?U 9
i =wU

and the initial condition U(w,0) = F(w) for each w.

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 44,
(© Springer Science+Business Media, LLC 2009
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The general solution of the ordinary differential equation is cje®*¥ +
coe” @Y. If we impose the initial condition and the boundedness condition,
the solution becomes

U(wv y) = {

Fw)e ™, w>0
Fw)e*?, w<0

} = F(w)e™1*W,
Thus, the desired Fourier representation of the solution is
1 e -
u(z,y) = /2 / F(w)e “lveiwsqy,
T J—-—

To obtain an explicit representation, we insert the formula for F'(w) and
formally interchange the order of integration, to obtain

MM):;[XfMWM@KWWW

217r /_OO </_OO eiW(r—f)e—wydw> f(&)de.

Now the inner integral is

/ GO, olug, — 9Re / (o) - g,
e ;

1 B 2y
y—ile—¢ P+ @-9*

Therefore, the solution u(z,y) can be explicitly written as

_ 1= y
wew) = L[ s (14.2)

This representation is known as Poisson’s integral formula.

= 2Re

In particular, for

1, a<z<b
u(z,0) = f(z) = { 0, otherwise

(44.2) becomes
L y Lot dgfy
wimy) = 7T/a v+ (w— 2™ T W/a @9 41
y

Using the substitution v = (£ — x)/y, we have d§ = ydv, so that

1 =2y ¢
u(z,y) / ,dv
T Ja-a)py 10

1 - — 1
(tan_1 b tan—! “ x) = (6h—0.),
T y y T
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where 6, and 6, are as in Figure 44.1.

(z,y)

O
Oy

(z,0) (a,0) (b,0)

Figure 44.1

Example 44.2. We shall employ the Fourier sine transform to find
the solution of the following problem involving the Laplace equation in a
semi-infinite strip:

Upy +Uyy =0, 0<z <00, 0<y<b

u(z,0) = f(z), 0<zx<oo

u(0,y) =0, 0<y<b

u(z,b) =0, 0<z<oo,

(44.3)

where the function f is piecewise smooth and absolutely integrable in
[0,00). We shall also need the boundary conditions lim,_.. u(z,y) = 0
and lim, .o u.(z,y) = 0.

For this, we let

flz)= \/i /000 Fy(w)sinwzdw, Fy(w)= \/i /000 f(x)sinwzdz

and
u(x,y) = \/2 / Us(w,y) sinwzdw.
™ Jo

This, as in Example 44.1, leads to the same ordinary DE U = w?Uj, and
hence
Us(w,y) = ¢1(w) coshwy + ¢o(w) sinh wy.

Now the boundary condition Us(w, b) = 0 yields

sinh wb

c(w) = —co(w)

coshwbd’

Thus, we have

inhwb sinh w(y — b
Uslw) = —e2() ™2 coshuy + e3(w) sinhwy = ex(w) 240 —0)

cosh wb cosh wb
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Now since Us(w, 0) = Fs(w), we find

cosh wb

co(w) = —Fs(w)

sinh wb’

and therefore

sinhw(b — vy
Usfeny) = By 200

This gives the solution

\/2 / Fy(w) smh.w(b— v) sinwaxdw
T Jo sinh wb

2 [ [ inhw(b —
/ / f@) sinwt o .w( v) sin wxdtdw.
T Jo Jo sinh wb

u(z,y)

Next we shall introduce finite Fourier sine and cosine transforms.

Definition 44.1. The finite Fourier sine transformof f(x), 0 < x < L
is defined as
nmwx
dx

L
Fy(n) :/0 f(x)sin . (44.4)

where n > 1 is an integer. The function f(x) is then called the inverse
finite Fourier sine transform of Fs(n) and is given by

f(z) = z Y Fy(n)sin m;” (44.5)

Definition 44.2. The finite Fourier cosine transform of f(x), 0 < x <
L is defined as

L
Fu(n) = /0 Fla)eos " d, (44.6)

where n > 0 is an integer. The function f(x) is then called the inverse
finite Fourier cosine transform of F.(n) and is given by

fz) = iFC(O) + i nz_:l Fu(n)cos 7" (44.7)

Finite Fourier transforms are useful in solving partial differential equa-
tions. For this, we note that

L L
Ju(x,t L
~/0 uéz’ ) siu nzm du = u(x, t) sin ngx ‘O B anT /0 U(x’ t) o8 ngx du

and hence

F, (3”) =-"TF.(n) (44.8)
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and, similarly,

Fe (gg) = TFS(”) — [u(0,t) — u(L,t) cosnm], (44.9)
32u nm au
Pl (W) - " (ax)
2_2 (44.10)
n-=m nm
= — s Fy(n) + I [u(0,t) — u(L,t) cos nm,
2 2,2
F. (g Z) = _nL72T F.(n) — [ug(0,t) — ug (L, t) cosnm]. (44.11)
T

Example 44.3. We will use finite Fourier sine transform to find the
solution of the problem

ou  d*u
ot o2’
u(z,0) =2z, O0<x<4

u(0,t) =u(4,t) =0, t>0.

O<w<4, t>0
(44.12)

Taking the finite Fourier sine transform with L = 4 of both sides of the
partial differential equation gives

/4 Ju . nmx e 4 9%y sin nwT e
sin = .
0 3t 4 0 81:2 4
Writing U for Fs(n) and using (44.10) with «(0,t) = 0, w(4,t) = 0 leads to

dU (n,t) _n2772

dt 16

which can be solved to obtain

U,

U(n,t) = ce /16,

Now taking the finite Fourier sine transform of the condition u(x,0) =
2x, we have

4
U(n,0) = /23:sinmm:dx
O 4

() )]

Since ¢ = U(n,0) it follows that

4
32

= —  cosnm.

0 nm

32
U(n,t) = — "~ cosnme " ™ /16,
n
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Thus, from (44.5) we get

16 o= cosnm _, 2 2 . nmr
u(x,t):—ﬂ Z 0 © nmt/16 6in 4
n=1
Problems

44.1. Use the Fourier transform to find the solution of the boundary
value problem

y' +ay +by = f(x)
ylz) — 0, y(x) — 0 as |z|— oo,

where the function f is piecewise smooth and absolutely integrable in
(—00,00). In particular, find the solution when a = 0, b = —1, f(z) = e~ I7l.

44.2. Use the Fourier sine transform to find the solution of the bound-
ary value problem

y' —k*y=f(z), 0<z<oo, k>0
y(0)=1, y(z) — 0, ¢y'(r) — 0 as x— oo,
where the function f is piecewise smooth and absolutely integrable in [0, 00).

44.3. Use the Fourier cosine transform to find the solution of the
boundary value problem

y' —ky=f(z), 0<x<oo, k>0
y(0)=1, y(x) — 0, y(r) — 0 as x— oo,
where the function f is piecewise smooth and absolutely integrable in [0, 00).

44.4.  Use the Fourier transform to find solutions of the following
ordinary DEs satisfying y(x) — 0, ¢/(z) — 0 as |z| — oo :

(i)  2y” +y' +xy =0 (Bessel DE of order zero)
(ii) 2y” +y' —zy =0 (modified Bessel DE of order zero)
(i) " 4+y +2y=0.

44.5. Show that the solution (43.3) can be written as

u(w,t) = \/lﬂ_ /_OO e_wzf(x + 2Vt w)dw.
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44.6. Show that the solution (43.6) can be written as
2 >~ >~ —c2W?t :
u(z,t) = flpe sinwp sin wrdwdp.
T™Jo Jo
44.7. Show that the solution (43.8) can be written as
2 > > —c?w?t
u(z,t) = f(pe cos wit coswrdwdy.
m™Jo Jo

44.8. Find the solution of (43.1) when the initial temperature distri-
bution in the rod is given by

flx) = e ™2 _oco< < oo

44.9. Find the solution of (43.5) when the initial temperature distri-
bution in the rod is given by

flx) = ze "/ 0.
44.10. Use the Fourier cosine transform to solve the following problem:

Up = Ugg, >0, t>0
w(z,0) =0, x>0

u(z,t) — 0 as x—o0, t>0
uy(0,t) = f(t), t>0

where the function f is piecewise smooth and absolutely integrable in [0, 00).

44.11. Use the Fourier transform to solve the following problem for a
heat equation with transport term
Up = gy + kuy, —oo<z<oo, t>0, ¢>0, k>0
u(z,0) = f(z), —oco<zx<o0
u(z,t) and wug(x,t) finite as |z — o0, ¢>0

where the function f is piecewise smooth and absolutely integrable in
(—o00, 00).

44.12. Use the Fourier transform to solve the following nonhomoge-
neous problem
up = gy +q(x,t), —oco<wz<oo, t>0
u(z,0) = f(z), —oco<ax<o0

u(z,t) — 0, ug(z,t) — 0 as |z —o00, t>0
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where the function f is piecewise smooth and absolutely integrable in
(—o0, 00).

44.13. Find the solution of the problem (43.9) when
(i) fi(z) =3sin2z, fo(z) =0
(i) fi(x)=e Tl fo(z) =0
( fi(x) =0, fa(x) =4cosbx
(iv) fi(x) =0, fa(z) =e I
44.14. Use the Fourier sine transform to solve the following problem:
Uit = Ugg, $>O, t>0
w(z,0) =0, x>0
ug(z,0) =0, x>0
u(0,t) = f(t), t>0
u(z,t) and wug(z,t) — 0 as x—o0, t>0,
where the function f is piecewise smooth and absolutely integrable in [0, 00).
44.15. Find the solution of the wave equation
uttZCQum—ku, —o<zr<oo, t>0, ¢>0, k>0
satisfying the same conditions as in (43.9).
44.16. Show that the solution of the following Neumann problem:
Ugg + Uyy =0, —o00<x <00, y>0
uy(z,0) = f(z), —oo<z<oo

u(z,y) and wuy(r,y) — 0 as (22 +y?) — oo,

where the function f is piecewise smooth and absolutely integrable in
(—00,0), can be written as

o) =ct y [ HOE + (@ - €7

where c¢ is an arbitrary constant.
44.17. Find the solution of the following problem:
Ugz FUyy =0, 0<xz <00, 0<y<db
u(z,0) = f(z), 0<x<oo
uz(0,9) =0, 0<y<b
uy(x,0) =0, 0<a < oo,
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where the function f is piecewise smooth and absolutely integrable in [0, 00).
44.18. Find the bounded solution of the following problem:

Ugy +Uyy =0, 0<2<e, 0<y<oo
uy(z,0) =0, O0<z<c

u(0,y) =0, 0<y<oo
uz(c,y) = f(y), 0<y< oo,

where the function f is piecewise smooth and absolutely integrable in [0, 00).

44.19. Use the finite Fourier cosine transform to find the solution of
the following problem:
U = gy, 0<x<a, t>0, ¢>0
u(z,0) = f(z), 0<z<a
uz(0,t) = uz(a,t) =0, t>0.

44.20. Use the finite Fourier sine transform to find the solution of the
following problem:
Ut = CUgy, O0<2x<a, t>0, ¢>0
u(z,0)=f(z), 0<z<a
u(x,0) =0, 0<z<a
u(0,t) = u(a,t) =0, t>0.

Answers or Hints

44.1. y(z) = — [7_ f(t)g(x — t)dt, where g(z) = \/a2174b
—e F(1+z), x>0
X exp [—%(ax—i— Va2 —4b |x|)} cy(z) = % { et a(:< 0.)

14.2. y(o e 2 s P
44.3. y(z) = — ! *kw—\/ I e p(w) da.

44.4. () Sy Lsin (L Hww)dw (i) ylo) = £ f7 68 dw
(iii) y(z) = fooooe w?/2 cos( 33 —wx) dw.

44.5. Use the substitution u = = + 2v/¢2t w.
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00 2
ew/4a

—ar2
44.6. Use e *" = [}

coswzdw.
44.7. Use the same identity as in Problem 44.2.
44.8. u(x,t) = e‘r2/(2+462t)/\/l + 2¢%t.

44.9. u(w,t) = ze ™ /U (14 Pt /a?)32,

2
44.10.u(z,t) = — jﬂ N W{Mf(u) exp (—4<f_#>) dp.

e—(@—n )2 /4c2t
441 .u(z,t) = [ f(u (\/:c;t“ 1.

o= (@—m)?/4ct
44.12.u(x,t) f Fe e,

—(a—m)? /4 (=)
—|—f0 [ alp T \/4ﬂc2(t7T) dpdr.

44.13.(i) 3sin2zcos2ct (i) 2 [;° 8959 du

0 14+w?
: 2 0 sinwect cos wx
(IV) Te f() w(l4w?) dw.

(iii) .2 cosbxsinb5et

44.14.u(z,t) = 2 [° fo )sinw(t — p) sinwzdudw.

44.15.u(z,t) = >~ [Fl(w) cos tvk+w?c? + Fy(w) Si“t‘/k“’chei‘”dw.

\/2 Vk+w?c?

44.16.z = u,, satisfies the Dirichlet problem (44.1).

44.17.Use the Fourier cosine transform

y) =25 Jo f(t) coswt Coi};;(f:;y) cos wrdtdw.

44.18.Use the Fourier cosine transform

zy) =2 [7 JT Ft) coswt FMheT cos wydtdw.

44.19.u(z,t) = LF.(0)+ 2307, F.(n)e=(n*m"c/a®)t qoq nm
n) = [y f(x)cos "7 dx.

44 20 u(, t) 23 Fi(n)cos "¢ sin "
= [ f(z)sin "T" da.



Lecture 45

Laplace Transforms

The method of Laplace transforms has the advantage of directly giving
the solutions of differential equations with given initial and boundary con-
ditions without the necessity of first finding the general solution and then
evaluating from it the arbitrary constants. Moreover, the ready table of
Laplace transforms reduces the problem of solving differential equations to
mere algebraic manipulations. In this lecture we shall introduce some basic
concepts of Laplace transform theory.

We begin with the following definition of Laplace transform.

Definition 45.1. The Laplace transform of a function f(z), 0 < 2 < 0o
is defined by the improper integral

£l = Fo) = [ e (o, (45.1)

where it is assumed that the integral converges for at least one value of s,
say, s = sg. Clearly, then the integral converges for all s > sg.

Thus, the Laplace transform is an operator which transforms the func-
tion f(x) into its image F'(s). The original function f(z) in (45.1) is called
the inverse transform, or inverse of F(s) and will be denoted by £~1[F];
i.e., we shall write

flz) = L7[F). (45.2)

Of course, s may be a complex number whose real part is sufficiently
large to make (45.1) convergent, but in the early part of the theory, it is
more definite to think of s as a real positive number.

When evaluating the Laplace transform of some function f(z), we ac-
tually use f(z) only for 0 < x < oco. Hence it should be irrelevant, from
the mathematical point of view, if and how f(x) is defined for z < 0. How-
ever, some properties of Laplace transform, particularly those which reflect
a relationship with the Fourier integral, can be better understood if f(x) is
assigned the value zero for —co < x < 0.

Definition 45.2. The Heaviside function H(x), defined by

0, <0
H(a:):{ L 250 (45.3)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 45,
(© Springer Science+Business Media, LLC 2009
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is a discontinuous function that is important in certain applications. It is
discontinuous at x = 0.

11—

0

Figure 45.1

Example 45.1. To find Laplace transform of H(z), we note that

/ e *"H(x)dx
0

o) b
/ e **dr = lim e du
0

b—oo Jg

—sz|b —bs
= lim [_e ] = lim {1—6 }
b—oo S 0 b—oo | S S
Thus, if s > 0 the above limit exists and, we obtain
1

L[H] = L[1] = o (45.4)

Example 45.2.
Lle*™] = / ee dr = / ela=9)2 gy
0 0
) 45.
1 (a—s)z 1 ( ’ 5)
= e = 5 S > a.
a—s 0 s—a
Example 45.3.
Llz"+1] = / e T dr = — e T 4 (n+ )/ e " r"dx
0 $ 0 s 0
1) [~ 1
S 0 S
Thus, in view of (45.4), we have
1 1 9 2 2! " n!
E[Qf]: S‘C[l]zsga L[ﬂ? ]: S£[$]2837"'7‘C[x ]:Sn+l' (456)

Example 45.4. Let a > 0 be a number. Then,
Llz®] = / e Tadx :/ e " (T)a dr (using = =171/5s)
0 0 S

s

L[ . T+l

= sa“/ e "1t%lT = gat1
(45.7)
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Recall that T'(n + 1) = n!, so that (45.6) follows from (45.7).
Example 45.5.

o0
Llcosax] = / e cos axdx
0
. 00 fo's) .
_pSinazx _pSinazx
= e —/ (—s)e dx
a 0 0 a

s o0
= e **sinaxdr
a Jo

s cosazx|™ s [ cos ax
e 5" - / (—s)e™™* dx
0

a —-a |, a —a
2
= ;2 - Zgﬁ[cosax], 5>0
and hence s
L[cosaz] = 24a2 ® > 0. (45.8)
Similarly, we have
i a
Llsinax] = 24g2 ° > 0. (45.9)
Theorem 45.1 (Linearity Property). Let f;(z), 1 < j <
n, 0 <z < oo be functions whose Laplace transforms exist, and let ¢;, 1 <
7 < n be real numbers. Then,
Llefr(z) 4+ -+ enfu(@)] = aLlfi] + -+ cnL]fn] (45.10)

Proof. Clearly, we have
E[lel(x) + o+ Cnfn(x)]
. / (e fr(@) 4+ enfule))de
0

= /Ooefswﬂ(x)dx +-Fen /OO e fu(x)dx
0 0
= Clﬁ[fl] + -4 Cnﬁ[fn]

Theorem 45.2 (Uniqueness Property). If f(z) and g(z) are
continuous functions for 0 < z < oo and if L[f] = L[g], then f(x) = g(z),
and conversely.

In fact, if two functions defined on the positive real axis have the same
transform, then these functions cannot differ over an interval of positive
length, although they may differ at various isolated points. However, this
is not important in applications; we may say that the inverse of a given
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function is essentially unique. Of course, if two continuous functions have
the same transform, they must be identical.

Theorem 45.3 (Inverse Linearity Property). Let f;(z), 1 <
j <mn, 0 <2 < oo be continuous functions, and let Fj(s), 1 < j < n be
their Laplace transforms. Then

L1 Fi(s)+ -+ cenFn(s)] = LR+ + o L7HE)
= afi(@)+-+enfu(®),
where ¢;, 1 < j < n are real numbers.
Theorem 45.3 follows immediately from Theorem 45.2.

Example 45.6. Since cos® z = (1 + cos 2x)/2, we have

1 1
2 _
Llcos*z] = L [2 + ) COSQ$:|
1 1 11 1 s
= 2£[1]+ 2£[c052x] =5 Ty 244
Example 45.7.
LAz + Te*® +5cos3x] = 4L[x] + 7L[e**] + 5L][cos 3]
4 7 DS

- 32+S—2+52+9'

Example 45.8. Let

|
Q
| =
S
| —
3
-
| —
¥
| =
IS
—_
[y
-
| —
¥
| =
o
—_
—_
Il
Q
| =
S
—
a
Q
8
|
(9]
il
8
SN—

1 a b 1
—1 _ =1 _ _ ar __ bx
LTF) =L {a—b<s—a s—b)} a_b(ae be) .
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If f(z) is a complex-valued function of the real variable z, i.e., f(z) =
u(x) + iv(x), where u(z) and v(z) are continuous real functions, then from
(45.10) it follows that

L[f] = Llu+ iv] = Llu] + iL[v].

Hence,
L[Real part of f] = Real part of L[f]

and
L[Imaginary part of f] = Imaginary part of L[f].

Example 45.10. Since

. . 1 S+ tw

Llcoswzx + isinwz] = Lle™*] = = )
S — 1w s“ +w
s 4 w
i
52 4+ w? 52 4+ w?
it follows that
w

and L[sinwx] = 2 2
24w

Llcoswz]| = 22

Thus, (45.8) and (45.9) can be obtained from (45.5).

Now we shall provide sufficient conditions which guarantee the existence
of the integral (45.1). For this, we need to introduce the following definition.

Definition 45.3. A function f(z) is said to be of exponential order o
if there exist positive constants X and M such that |f(x)] < Me*® for all
x> X.

Theorem 45.4 (Existence Theorem). If f(z) is piecewise
continuous on [0, c0) and of exponential order «, then £[f] exists for s > a.

Proof. Clearly,

00 X 0o
/ e T f(x)dx z/ e_srf(a:)da:—F/ e % f(x)dx, (45.11)
0 0 X
where X is the same as in Definition 45.3. The first integral in the right side
of (45.11) exists because f(x) and hence e~** f(z) is piecewise continuous
on [0, X] for any fixed s. Now since f(x) is of exponential order a, for x > X
we have |f(z)| < Me*® and hence

}e_szf(a:)| — e—sz|f($)| < e Me™ = Me—(s—a)z.
Therefore, it follows that for s > «,

SS] SS] M —(s—a)X
/ le™ f(z)| do < M/ e(moegy = € < 00,
b's b's

S —
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i.e., the second integral in the right side of (45.11) converges absolutely.
But then f;o e 5% f(x)dx exists for s > . Finally, since both the integrals
in the right side of (45.11) exist for s > «, the Laplace transform L[f] exists
for s > a.

The conditions in Theorem 45.4 are sufficient for most applications, and
it is easy to find whether a given function satisfies an inequality of the form
|f(x)] < Me**. For example, a bounded function is of exponential order
0. This is clear from the fact that |f(z)] < M = Me. Thus, cosbxr and
sin bz are of exponential order 0. The functions e®* cos bz and e*” sin bx are
of exponential order a. The function z" is of exponential order a for any
positive «, since by the Maclaurin series

o0
o az" az"
e = E >
n! n!

n=0

so that 2" < (n!/a™)e™”. However, the function ¢*” is not of exponential

order, because, no matter how large we choose M and «, e®” > Me™® for
all sufficiently large x.

It should be noted that the conditions of Theorem 45.4 are only sufficient

rather than necessary. For example, the function 1/+/x is infinite at = = 0,
but its transform exists. Indeed, we have

e 1 e 1 1
/ e ST 2y = / e Tt Y%dr= T < > = \/W.
0 Vs Jo Vs o\ 2 s

We also remark that if f(z) is of exponential order, then f’(x) need
not be of exponential order, e.g., f(z) = sin e*” is of exponential order 0,

however, f'(z) = 2ze® cose® is not of exponential order. But, if f(z) is
of exponential order «, then for f(1)dr is of exponential order «. For this
it suffices to note that

/Oz f(r)dr

Example 45.11. For the piecewise continuous function

f(x):{x’ O<zr<?2

M

x x M
< / |f()|dr < / Me*Tdr =" (e —=1) < e,
0 0 « «

1, T > 2
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we have

il
)
I

2 [e%s)
/ efswxdx—F/ e Pdx
0 2
[ x —ST 1 sw:| 2 { 1 sw:|
— e - o€ + |— e
s s 0 s

1 1 1Y\
= 52_(s+s2>e , s>0.

Example 45.12. For the piecewise continuous function

(oo}

2

-2, 0<x<1
flx) = 1, 1<z<3
e >3

we have

1 3 o)
—2/ e_smda:—l—/ e_smda:—l—/ 297 gy
0 1 3

2 3e—% e—3s 83(2—5)
= — + - + , 8> 2.
S S S s—2

il
)
I



Lecture 46
Laplace Transforms (Cont’d.)

Using the definition of Laplace transforms to get an explicit expression
for L[f] requires the evaluation of the improper integral, which is often
difficult. In the previous lecture we have already seen how the linearity
property of the transform can be employed to simplify at least some com-
putation. In this lecture we shall develop several other properties that can
be used to facilitate the computation of Laplace transforms.

Theorem 46.1 (Transform of the Derivative). Let f(z)
be continuous on [0,00) and f/(x) be piecewise continuous on [0, cc), with
both of exponential order «. Then,

LIf] = sClf] — £(0), s> a. (46.1)

Proof. Clearly, f’ satisfies the conditions of Theorem 45.4, and hence
L[] exists. If f/(z) is continuous for all > 0, then we have

clf = / T e fla)de = e f(2)

+ s/ e " f(x)dx.
0 0

Since |f(z)| < Me**, the integrated portion on the right is zero at the
upper limit when s > « and the lower limit gives — f(0). Hence, it follows

that
L[f'] = —f(0) + sL[f].

If f'(x) is only piecewise continuous, the proof remains the same, except
that now the range of integration in the original integral must be broken
up into parts such that f/(z) is continuous in each such case.

Theorem 46.2. Let f(z), 0 <i < n— 1 be continuous on [0, c0)
and f(™(z) be piecewise continuous on [0, 00), with all f()(z), 0 <i <n
of exponential order o. Then

LIFM) = s L[f] = sV F(0) = s 2 f(0) = - = f7D(0). (46.2)
Proof. From (46.1) it follows that
LI = sLIf'] = f'(0) = s[sL[f] = f(0)] = £'(0) = s*L[f] — s£(0) — f'(0).
The proof now can be completed by induction.
R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,

Universitext, DOI 10.1007/978-0-387-79146-3 46,
(© Springer Science+Business Media, LLC 2009
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Example 46.1. Let f(z) = sin’x so that f/(z) = 2sinxzcosz =
sin2z, f(0) =0. Thus, from (46.1) and (45.9), we have

R R 2
sL[sin” z] — 0 = Lsin 2z] = 24
and hence 9
) -
L[sin* x] = s(s2 +4)° (46.3)

Example 46.2. Let f(z) = zsinwz so that f/(r) = sinwx +wz cosw,
f(x) = 2wcoswzr — wlrsinwr = 2wcoswr — wW?f(z), f(0) = f'(0) = 0.
Thus, from (46.2) for n = 2, and (45.8), we have

s’Llrsinwr] = L[2wcoswr — w’rsinwz]
= 2wl[coswz] — w?L[zsinwz] = 522:—122 — WLz sinwa]
and hence s
Llzsinwz] = (52 4 w2)?" (46.4)

Theorem 46.3 (Transform of the Integral). If f(z) is

piecewise continuous on [0, 00) and of exponential order «, then
r 1
L [/ f(T)dT:| = SE[f], s > max{0, a}. (46.5)
0

Proof. Clearly, if f(z) is of negative exponential order, it is also of
positive exponential order, and hence we can assume that o > 0. Now
the integral g(z) = [ f(7)dr is continuous and as we have seen in the
previous lecture it is of exponential order . Also, ¢'(x) = f(z) except for
points at which f(z) is discontinuous. Hence, ¢'(x) is piecewise continuous
and ¢(0) = 0. Thus, from (46.1) we have

LIf] = L[g] =sLg] —0=sL {/0 f(T)dT:| . s> a
which is the same as (46.5).

From (46.5) and the definition of inverse transform it is clear that
1 x
£t [SF(S)] :/ f(r)dr. (46.6)
0
Example 46.3.

1 1 [*
L [ o (1= coswa:)] = L [ / siandT}
w w Jo
11 w 1

w s s2+w?  s(s2+w?)
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Example 46.4.

1 sinwx 1 /7 1
L [wQ <x— " )] =L [WQ/O (1 —COSCUT)dT:| = (524 w2)’

Theorem 46.4 (s-shifting). If f(z) has the transform F(s) where
s > a, then e f(x) has the transform F(s — a), i.e.,

Lef(x)] = F(s — a). (46.7)

Proof. Since F(s) = [;7 e f(z)dx, we have
Floma) = [ e fade = [T e o)) do = £ (o).

From (46.7) it follows that
L7UF(s —a)] = e f(x) = e L7 F(s)]. (46.8)

Example 46.5.

ax ., n!
E [e xr ] = (S CL)"+1 9
s—a
L]e* coswz] = (5— ) +w?
axr s w
Le*sinwz] = (5— a)? + w?

Example 46.6.
1 s+ 2 - 1 (5"‘3)—1 3z p—1 s—1
£ [s2+65+25] = £ {(s+3)2+16 =L e e

_ =3z ) p—1 $ _1 -1 4
- {‘C [52—1—16} 4F [52+16]}

1
= 3 (cos4x ~ 4 sin4a:> .

Theorem 46.5 (x-shifting). If f(x) has the transform F(s), then
the function

0 if x<a
f“(x):{ flx—a) if xia (a>0) (46.9)

has the transform e~ *SF(s).
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Proof. Since
fla-ane-a={

(recall the definition of the Heaviside function H (x)) Theorem 46.5 can be
reformulated as follows: If L[f] = F(s), then

Lf(x —a)H(x —a)] = e *“F(s). (46.10)

0 if x<a
x—a) if >a

Now we have
U F(s) = e /O°° =57 F(r)dr = /O°° =5(+) f(7)dr
- /aooe”f(x—a)dx (r+a=a)
_ /Ooo e~ f(x — a)H(z — a)de = L[f(z — a)H(z — a)).

From (46.10) it is clear that
L7 e F(s)] = f(z — a)H(z — a). (46.11)

Example 46.7. The function

1, O<zx<m

f(x):{ 0, 7m<zx<2m

sinxz, x>27
can be written as
f(z)=H(z) —H(x — )+ H(x — 2m)sin z.
Thus, it follows that
1 e n e=2ms
s s s2+1°
Example 46.8. For the transformed function
—2s —2s —7s
Fls) = L e ) _268 +28526+1
an application of (46.11) gives
f@) = LFG)]
= z—(x—2)H(x—2)—2H(z —2) 4+ 2cos(z —m)H(z — 7)
= x—zH(x—2)—2cosaxH(x —m)
{ z, O<z<?2
= 0, 2<x<m

—2cosx, x> T.
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Remark 46.1. Formula (46.10) applies to translations to the right.
For translations to the left, we have

r+a) = Ooe_sx T+ a)dr = OO‘8_5(7_‘1) T)dT
fara) = [ efaran= | A,

= e*L[f] - /Oa es(a_T)f(T)dT.

The finite integral cannot be neglected unless f(x) = 0 for = < a, as it
accounts for the part of the function which has been “lost” by translation
to negative x values where the Laplace transform does not operate.

Remark 46.2. Let f(z) be a function and F(s) its Laplace transform.
Then, for a > 0, we have

L[f(ax)] = /OOO e flax)dx = clz /OO e/ f(r)dr = CllF (2) :

0
(46.13)

Theorem 46.6 (Derivatives of Transforms). If f(z) is
piecewise continuous on [0, 00) and of exponential order «, then

Lz"f(x)] = (-1)"F™(s), s>a, n=12---. (46.14)

Proof. Since F(s) = [;7 e " f(x)dz, a formal differentiation with re-
spect to s (under the integral sign) gives

- [ (e ) = — / " e (a))de = —Llef (),
and hence
Llzf(x)] = —F'(s), (46.15)

which is the same as (46.14) for n = 1. It is now easy to see that repeated
differentiations of (46.15) formally lead to (46.14).

From (46.14) it follows that
L [F<n>(s)} = (~1)"z" f(z). (46.16)

Example 46.9. From (46.15) it is clear that
d s s2 — w?
Llwcoswa] = ds <82 +w2> (s w?)?’

. d w 2ws
Llrsinwz] = “as g2t o2 :(s2+w2)2'
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Theorem 46.7 (Integration of Transforms). If f(z) is
piecewise continuous on [0, c0) and of exponential order a, and if f(z)/x
has a finite limit as 2 — 0T, then

f@)] _ [~
E[ . } —/S F(r)dr. (46.17)
Proof. Clearly,

c {fif”)} - /OOO eff(x)dxz /OOO (/OO ede> F(@)dz
- /:O (/OOO e”f(gc)dx) dr = /:O F(r)dr;

here changing the order of integration is justified by the absolute conver-
gence of the integral.

From (46.17), we have

-1 [ / F(T)df} _ @ (46.18)
s x
Example 46.10. From (46.17), we find
5[2(1_608“}@} = / 2[1 - 4 2]dq-:[21n7—111(72—|—u12)]
T s T Tt w s
2| 52 s? +w?
= lnr2+w25 :_lns2—|—w2 =,

Remark 46.3. Formula (46.17) can be generalized, to obtain

(27" f(x / / / F(r)dridrs---dr, (46.19)

Remark 46.4. From the relations (46.5) and (46.17), we get

E[/O””f(:)dﬂ: [ ] /F (46.20)

Theorem 46.8 (Transform of Periodic Functions). If
f(x) is piecewise continuous on [0, c0) and periodic of period T, then L[f]
exists for s > 0 and is given by

1—esT

T
L[f] = 1_ /0 e f(x)dx. (46.21)
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Proof. Since
00 T 0o
L[f] = / e f(x)dx = / e f(x)dx —l—/ e ¥ f(x)dx
0 0 T
if we change the variable in the second integral to 7 = = — T', we obtain

/OO e T f(x)dx /000 e s f(r + T)dr

T

= e*ST/ e ST f(r)dr = e T L[f]
0
and hence .
Lifl = [ e pade + e TLlf),
0
which can be solved for L[f] to yield (46.21).

Example 46.11. We shall find Laplace transform of the half-wave
rectifier periodic function of period 27 /T defined by

o) = sinTz if 0<z<nw/T
N 0 if 7/T <az<2n/T.

From (46.21), we have

1 /T e
L[f] = | e—2ns/T /0 e T sin Txdx
1 e 5% ) n/T
= | oyt { 82+T2(—ssmTa:—TcosTa:) . }
B 1 T(e™/T+1) T
T 1 —e—2ms/T §2 4+ T2 - (1 _ e—rrs/T)(SQ 4 TQ)'

Theorem 46.9 (Convolution Theorem). Let f(z) and g(z)
satisfy the conditions of Theorem 45.4. Then, the product of their trans-
forms F(s) = L[f] and G(s) = L]g] is the transform K(s) = L[k] of the
convolution k(z) of f(z) and g(z), written as f x g and defined by

k(z) = (f*g)(x /f g(z —7)d (46.22)

Proof. Since for s > «,
e TG(s) = Llgla —17)H(x — T)]
= /00 e Tgle —T)H(x — 7)dx = /OO e gz — 7)dx,
0 T
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F(s)G(s) = /O T ST ()G s)dr = /O e [ / oSt g(w — T)da| dr.

Here we integrate with respect to x
from 7 to oo and then over 7 from 0
to oo; this corresponds to the shaded
region extending to infinity in the x7-
plane. Our assumptions on f and g al-
low us to change the order of integra-
tion. We then integrate first with re-
spect to 7 from 0 to x and then over x Figure 46.1

from 0 to oo; thus
/ e 5" (/ fr)glz — T)dT) dx
0 0

/0 e "k(x)dx = L[k] = K(s).

F(s)G(s)

Example 46.12. Let

s s 1
K(s) = - - .
() (s241)2 s2+1 s2+1

From (46.22), we find

* 1
k(x) = L7 'K(s)] = cosx xsinz = / cosTsin(x — 7)dT = 2xsina:.
0

Remark 46.5. Using the definition of convolution f x g in (46.22) the
following properties are immediate

fxg = gxf (commutative law)
(fxg)*xh = f*x(gxh) (associative law)
fx(g+h) = fxg+fxh (distributive law)

fx0 = 0xf=0.

However, fx1 # f in general. For example, 1/s? has the inverse z and 1/s
has the inverse 1, and the convolution theorem confirms that

x 2
$*1:/T'1d7':x.
O 2
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Laplace Transform Table

f(z) Y(s) = L[f]
n L(n+1)
1. x gnt1 n>—1
n!
2 n _axr
z"e (5 — )+
3 /2 \/77
. < i
4. 4T g
e” sin bx (5—a)? + b2
ax S—a
5. e** cos bx (s— ) + 2
6. sinh ax 42 f 2
s
7. cosh ax $2 _ g2
8 eaz o eb:v 1
' a—>b (s—a)(s—1b)’
9 ae®® — he’® s
' a—1b (S—Qa)(s—b)7
. as
10. x sin ax (2 + a2)?
2 3
s —a
11. T Ccos ar (s + a?)?
. 2as
12. z sinh ax (2 — a?)?2
2 3
s +a
13. x cosh ax (52 — a?)2
1 1
14. e /e
a 1+ %8
15. 1—e /@
s(1+ as)
1 /e 1
16. a2 Te (1 + as)?
X s
17. (1 —
e (1 — ax) (5 + a)2
1 1
18. 1—-
a? (1 = cosax) s(s? +a?)
1 1
19. — si
o3 (ax — sinax) $2(s2 + a?)
1
20. 93 (sinax — ax cos ax) (52 + a2)?
1 ax 1 aa . ?
21. 36 —36 /2<30s \égaa:—\/ZSsm \23(”) 53(—1&—a3
22 L (sinh az — sin ax) o’
’ 2 st — a4
23.  °© L

VT

369
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Problems

46.1. Let f(x) and g(z) be piecewise continuous on [a,b]. Show that
f(z) + g(x) and f(z)g(x) also are piecewise continuous on [a, b].

46.2. Let f(z) and g(x) be of exponential order. Show that f(z)+g(z)
and f(x)g(x) also are of exponential order.

46.3. Show that if fooo e 5% f(x)dx converges absolutely for s = sq, it
converges absolutely for each s > s¢.

46.4. Let > 7, fn(x) be a uniformly convergent series of functions,
each of which has a Laplace transform defined for s > «, i.e., L[f,] exists
for s > . Show that f(z) =~ fu(z) has a Laplace transform for s > «

defined by L[f(x)] = 300, L[fn(2)].

46.5.  Let f(x) be a piecewise continuous function on [0,00) and
periodic of period 7. Show that f(x) is of exponential order « for any
a > 0.

46.6. (i) Differentiate (45.7) with respect to a to show that

T’ 1) — (1 I 1 °
(a+1) Sa(JrnlS) (a+1) :/ e F(lnx)xdx.
0

(ii) Show that L[lnz] = (I'(1) — Ins)/s. The constant v = I’(1) =
0.57721566 - - - is called Euler’s constant.

46.7. Assume that conditions of Theorem 45.4 are satisfied. Show
that lims_.o F'(s) = 0.

46.8. Use (46.1) to show that

(1)  lm, o+ f(z) = lims_ o0 SF(5)
(i) limg— oo f(z) = lims_0 sF(s).

46.9.  Give an example of the function F(s) for which the inverse
Laplace transform does not exist.

46.10. Assume that conditions of Theorem 46.1 are satisfied except
that f(x) is discontinuous at z¢ > 0, but f(zo—) and f(xo+) exist. Show
that

LIf'] = sLIf] = f(0) = [f(zo+) — fzo—)]e ™"
46.11. Show that

. . a
(i) L[sinhaz] = 22
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. s
(ii) L[coshax] = 2 g2
12s
(s2 4 1)(s2 + 25)

48

(2 +4)(s2 + 36)
(v) £ [6_31(2 cosb5r — 3sin 53:)] =

(vi) L [/ SlanT:| = 1cot*1 s.
0 T S

46.12. Let f(z) be the square-wave function defined by

(iii) L[sin2zsin3x] =

(iv) L[sin®2z] =

2s—9
52+ 6s+ 24

fz) =

1 if 2i<ar<2i+1
0 if 2i+l<ax<2i+2, i=0,1,---.

Show that .

£l = s(1+e%)’

46.13. Let f(z) be the square-wave function defined by

£@) E if 2T <z<(2i+1)T
€Tr) =
—E if 2i+1)T<z<(2i+2)7T, i=0,1,---.

Show that 5 T
s
= h .
L[f] . tan )

46.14. Let f(z) be the sawtooth-wave function defined by
flz) =k(z—iT), T <z<(+1)T, i=0,1,---.

Show that .
k kTe *
Llfl=

s2 s(1—esT)

46.15. Let f(z) be the triangular-wave periodic function of period T

defined by

2 T
v it 0<w<)

2(1—;) if §§x<T.

Show that ) .
= h T).
L[f] Tg2 tan <4s )
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46.16. For the Bessel function J,(x) of order n show that

(i) Llo(2)]=(s*+1)""/?

(i) L[Jo(az)] = (s +a?)"V2 a>0

(iii) L[Ji(x)] =1 — s(s> +1)"/2 (Hint. use Jj(z) = —J1(x))
(iv) L[Jo(

Jo(Vx)] = e/ /s.
46.17. The error function erf is defined by

erf (z) = \/277/0 e~ du.

1
s\/s—l—l'

Show that

Llerf (V)] =

46.18. Show that

I P R
(i) £ :(32 N 1)12 +4)] = 2sina — sin 2z

(ili) £ :5(5:1)] —H@—-1)—e " VH@-1)
o et (£ 1)) < P

(v) £t ;T —tan™! ;] = sin$2x.

46.19. Show that

E/Oosinxtdt :/0021 dt:ﬂ-'l
0 t 0 t+82 2 S

and hence deduce that
* sin at T
/ at=".

46.20. Show that for z > 0,

0 [rrasly
0 €T
/OO oS a:t (L

0o 1+ t2 2
@

0o 72w —

d;vzln
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(iv) /0 ze 2 cos xdr = 235.

46.21. Use convolution theorem to show that
1 1 1 .
= — _xcoszT + 9 sinx

UN )

L (s2+1)2
I s L1 ew e gpebe
(i) £ _(52—a2)(s—b)]_2<a—b_a+b_a2—b2)
IO | 2" (VT N

(i) £7* (s—l)\/s} = \/W/o e dr = e erf ()

: -1 | _ —ms/2 s _ 1. 1. T
(iv) L _e (52 4 1)(s2 +9)] [8sm3x+ 8 smx} H (x 2).

Answers or Hints

46.1. Use definition.

46.2. Use definition.

46.3. Compare the integrands.

46.4. Since the series converges uniformly [>> =3 [.
46.5. Consider the function over [0, 7.

46.6. Verify directly.

—(s—a)X

46.7. From Theorem 45.4, we have F(s) < fOX e fx)dw + M "
46.8. (i) In (46.1) let s — oo (ii) In (46.1) let s — 0.

46.9. See Problem 46.7. Take F(s) = 1.

46.10.Integrate over [0, x0—) and (zo+, 00).

46.12.Use Theorem 46.8.

46.13.Use Theorem 46.8.

46.14.Use Theorem 46.8.

46.15.Use Theorem 46.8.

46.17.Change the order of integration.

46.19.Integrate first with respect to x.



Lecture 47

Laplace Transform Method
for Ordinary DEs

Laplace transforms supply an easy, efficient, and quick procedure to
find the solutions of differential, difference, and integral equations. Here
we summarize this method to solve the second-order initial value problem

y' +ay +by=r(x), y0)=y, ¥(0)=u (47.1)

where a and b are constants. Of course, this method can be extended to
higher order initial value problems rather easily. In engineering applications
the function r(z) is called the input (driving force) and y(x) is the output
(response).

The main steps are as follows:
1. Take Laplace transform of each side of equation (47.1), i.e.,
Lly" + ay’ + by] = L[r].

2. Use the linearity property of Laplace transforms, Theorem 46.2 and
the initial conditions in (47.1) to obtain a linear algebraic equation; i.e., if
we denote Y =Y (s) = L[y] and R = R(s) = L]r], then

(Y — sy(0) - ¢/ (0)) + a(sY — y(0)) + bY = R,
which is the same as
(s*+as+b)Y = (s+a)yo +y1 + R.

3. Solve the algebraic equation for Y, i.e.,

(s+a)yo+y1 +R

Y:
(s2+as+b)

(47.2)

4. Use the table of Laplace transforms to determine the solution
y(z) of the initial value problem (47.1). For this, often the partial fraction
decomposition of the right—hand side of (47.2) is required.

Example 47.1. For the initial value problem
y' =2y +ry=e"+a, y0)=1, y'(0)=0 (47.3)
R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,

Universitext, DOI 10.1007/978-0-387-79146-3 47,
(© Springer Science+Business Media, LLC 2009
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we have . )
Y —s)—2(sY —1)+Y =
(s s)—2(s )+ c— 1 + 2
and hence
5—2 1 1
Y =
s—12 T s—1)p T s —1)2
1 Lo 2 1,2
oos—1 (s—=1)2  (s—1)3  (s—1)2 s—1 g2
B R S
o s—1 (s—1)3 2 s’
Thus, the solution of the problem (47.3) is
-1 x 1 2 x
ylx) = LTY] = —€e" + Nt +x+2.
Example 47.2. For the initial value problem
y" +4y =sin2z, y(0)=1, 3'(0)=0 (47.4)
we have
2 —
(s°Y —s)+4Y = 244
and hence
v — s n 2
R MG
Thus, the solution of the problem (47.4) is
1
y(x) = L7HY] = cos 2z + 8(sin 2x — 2x cos 2x). (47.5)

Remark 47.1. A simple observation shows that y = y(x) is a solution
of (47.1) if and only if ¢ = ¢(z) = y(z — ¢) is a solution of

y'+ay +by=r(x—c), ylc)=yo, ¥(c)=u (47.6)
Example 47.3. In the initial value problem
y'ty=2z, y(r/4)=n/2, y(r/4)=2-V2, (47.7)

since r(x) = 2z = 2(x — w/4) 4+ 7/2, in view of Remark 47.1, first we need
to solve the problem

' +y=2x+7/2, y0)=n/2, y'(0)=2-V2. (47.8)
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For (47.8), we have

1 2 2
(82Y—27T8—2+\/2>+Y= —|—7T/

52 s

and hence

1 S 1 1 T (1 S
Y = 2 +2 - -

272 11 + \/)2+1 (52 52—|—1)+2(s 52+1)

s 2 1

= —V2
2% T g2 ‘/s2+1’

which gives the solution of (47.8) as y(z) = (7/2) 42z — v/2sin 2. Now once
again in view of Remark 47.1, the solution ¢(x) of (47.7) can be obtained
from the relation ¢(x) = y(x — w/4), i.e

o(x) = 9 (x— Z) — V/2sin (x— Z) =2z —sinx + cos .

2

Now we shall consider the initial value problem (47.1) where the function
r(z) has discontinuities, is impulsive, or is periodic but not merely a sine or
cosine function. The Laplace transform technique shows its real power for
these kinds problems.

Example 47.4. For the initial value problem

y' =4y +3y=r(x), y0)=3, y(0)=1 (47.9)
where
0, <2
r(z) = r, 2<xz<4
6, =>4

= zH(x—2)—aH(zx—4)+6H(z—4)
= (2—2)H(z —2)+2H(z —2) — (x — ) H(x — 4) + 2H(z — 4)

in view of (46.10), we have

, e~25 925 o—ds  g9o—ds
(s*Y —3s—1) —4(sY —3)+3Y = 2 + s T g2 + 5
and hence
35—11 2s+1 o2 25 -1 _4s
Y= 43+3+52( 4s+3) 52(52—454—3)6
4 01 11 3 1 7 1 .
T os—1 s-3 +[ 352_25—1+185—3]6
21 11 1 1 5 1 i
[95 352_25—1+185—3]6 '
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Thus, from (46.11) it follows that

10 1 3 7
y(x) = 4e” — e [9 + 3(33—2) - Qe(r_z) + 1863(1_2):| H(x —2)
2 1 1 5
_ —4)— elz—4) 3@ | H(x —4
—I—[g 3(33 ) o€ + 18€ (x —4)
4e® — €37, 0<x<2
3 7
4— v —1)e* 2<r<4
= < 22) +(1866 ) T3ty =r=

31 7 5 ;

_ _ & — I > 4.

<4 2¢? 2e4> o (1866 T iger > etz o=
Example 47.5. Consider the initial value problem

Y +w’y = Ar(z), y(0)=yo, ¥ (0)=uy. (47.10)

This problem models undamped oscillations of a spring-mass system, simple
pendulum, or LC circuit depending on the interpretation of z, w, Ar(x), yo,
and y;. We shall find the solution of (47.10) where r(z) is the square-wave
function (see Problem 46.12). We have

A

2 2
Y — — Y =
(s Yos —y1) + s(1+e%)

and hence

s 1 >
Y: + TL —TLS
32—|—w2y0 52 _|_w2y —l—wQ Z

which in view of (45.8), (45.9), Example 46.3, and (46.11) gives
y(x )—yocoswx+y sinwzx + 22 "(1—cosw(x —n))H(z —n).

In physics and engineering often one encounters forces of very large
amplitude that act for a very short period of time, i.e., that are of an
impulsive nature. This situation occurs, for example, when a tennis ball
is hit, an airplane makes a hard landing, a system is given a blow by a
hammer, a ship is hit by a high single wave, and so on. We shall now show
that the Laplace transform technique works equally well for problem (47.1)
when 7(x) is of an impulsive type. For this, we recall that in mechanics,
the impulse of a force f(z) over the interval a < x < a + p is defined by

[ f(2)dw
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Now consider the function

[ 1/p, a<z<a+p
Iol@) = { 0, otherwise. (47.11)

Clearly, the impulse of f,(x) is 1. The limit of f,(z) as p — 0 is denoted as
0(z—a), and is called the Dirac delta function after Paul Dirac (1902-1984).
Sometimes this function is also termed as unit impulse function.

Definition 47.1. The Dirac delta function ¢ is characterized by the
following two properties:

(i). d(x—a)=0, x #a, and
(ii) / f(x)é(x — a)dz = f(a) for any function f(z) that is continuous
on an interval containing = = a.
Now we shall show that for a > 0,
L(x—a)] =e . (47.12)

For this, we note that the function f,(z) defined in (47.11) can be written
as

1
folz) = p[H(x —a)— H(z - (a+p))].
Thus, from our earlier considerations
1—e™P¢
— —as _ ,—(atp)s| _ ,—as .
L[fp(z)] s {e e } e ps

and hence in view of the linearity of Laplace transforms, we have
lim L[f,(z)] =L [lim fp(x)] =L[6(x —a)] = e .
p—0 p—0

Finally, we remark that 6(z—a) is not a function in the ordinary sense as
used in calculus, but a so—called generalized function. An ordinary function
which is everywhere 0 except at a single point must have the integral 0, but

7 0(x — a)dz = 1.
Example 47.6. For the initial value problem
y'+y=d—m), y0)=y(0)=0 (47.13)

we have
Y +sY =e ™"

and hence
e*T(S

T os2417
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which in view of (46.11) gives

0, 0<z<m

y(z) =sin(x —m)H(z —7) = —sinc H(x — ) = { —sinz, x>

Some initial value problems which involve differential equations with
variable coefficients can be solved by the method of Laplace transforms.
However, for such problems there is no general method. To apply Laplace
transforms to specific problems first from (46.2) and (46.14) we note that

Llzf'(x)] = _js[SF(s) — £(0)] = —F(s) — sF'(s) (47.14)
Llzf" ()] = — ! [s°F(s) = sf(0) = f'(0)] = —2sF(s) — s>F'(s) + f(0).

ds
(47.15)

Hence, if a differential equation has coefficients such as (coz + ¢1), we get a
first-order differential equation for F'(s), which can be solved. We illustrate
the method in the following example.

Example 47.7. For Laguerre’s DE (8.10) with a = 0, (47.14) and
(47.15) leads to

—25Y — 82V 4+ y(0) + sY —y(0) — (=Y —sY') +nY = 0.

Thus, we have
(s —s))Y' +(n+1-5)Y =0,

which on separating the variables gives
ay n n+1
Yy \s—1 S

(s—1)"
SnJrl ’

and hence
Y(s) =

here the integration constant C' we have taken as 1 (often C' is determined
by using the fact that lims_.o, Y (s) = 0, or some other properties of the
initial value problems).

‘We shall show that
e d”

y(e) = LY (s)] = L) =

(x"e*””), n=0,1,2,---.
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and hence "

n_—z\(n) _ TL!S
E[(x € ) } T (s 1)nr
Therefore,
I nl(s=1)" (s=1)"

‘C[Ln(x)] = TL' Sn+l = Sn+1

Example 47.8. For Bessel’s DE of order zero, i.e., (2.15) with a = 0,
with the initial condition y(0) = 1, we have

—25Y =Y +14sY —1-Y'=0

and hence
(s> +1)Y' +sY =0,

which on integration gives

C C 1\ /2
Y(S)_\/82+1_3<1+52> :

Now expanding the function Y'(s) in binomial series for s > 1, we obtain

C 11 1 3 1
Yio) = {1_ 252 2 <_2> 21 g4 _}
C = 1-3-5---(2m—1)
1 -1)™m
s + mzz:l( ) 2m ) g2m ]
(=)™ (2m)!
C .
T’IZ:O (2m m!)282m+1

Thus, from the inverse transform it follows that

- -1 2m
y(z) :CZ (2(m )!)Zx .

m
m=0

However, since y(0) = 1 it follows that C' = 1, and hence

v =3 O (5)" = o),

m=0

which is the same as given in (9.8) as it should.

Problems

47.1. Use the Laplace transform technique to solve the following initial
value problems:
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(i) y+3y—1 y(0) =2

(i) y" =3y +2y=e"", y(0)=3, y'(0)=4
(iii) y” +2y +5y=5, y(0)=0, y(0)=0
(iv) ¥"4+y=-cos3z, y(0)=0, y'(0)=0

(v) y '=3y' +2y=H(z—-6), y(0)= ()20

(vi) y" =5y + 6y =z +e3  y(0)=0, y(0) =

(vii) " =3y —4dy=H(x — 1)+ H(z —2), y(0)

(viil) y” +4y" + 3y ==, y(-1)=0, y'(-1) =2

(ix) v"+4y +5y=056(x — )+ d(x —2x), y(0)=0, y'(0)=2
( !

(
(xi
(

x) ¥ —4y +3y=85(x—1)+12H(xz—2), y(0)=1, ¥y (0)=5
xi) y"” +4y" + 5y +2y =10cosz, y(0) =0, y'(0)=0, y'(0) =3
xii) y" +3y" —y' =3y =0, y(0)=1, y'(0)=1, y"(0) = -1
xiii) y"" — 2y"" + 5y" — 8y’ + 4y =0, y(0) =0, y'(0) =0,
y'(0)=1, y"(0)=3
(xiv) ¥ — k'y =0, y(0) =y'(0) =4"(0) =0, y"(0) =1
(xv) ¥ —k'y =0, y(0)=1, y'(0) =y"(0) =y"(0) = 0.

47.2. Suppose y = y(x) is the solution of the initial value problem
y'+ay +by=0, y(0)=0, y'(0)=1

Show that the solution ¢(z) of (47.1) with yo = y1 = 0 can be written as
o@) = 1)@ = [yl = rr()ar

47.3. Use integration by parts to show that

/ @) (@)dx = — f(0).

[ 7 (@)™ (2)dz = (~1)" ().

In general prove that

47.4. Suppose z = z(x) is the solution of the initial value problem
y" +ay +by=d(x), y(0)=y'(0)=0.

Show that the solution ¢(x) of (47.1) with yo = y1 = 0 can be written as

o(x) = (z*7)(z) = /Ow z(x — 7)r(r)dr.
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47.5. Use Laplace transform technique to solve the following initial
value problems:

) Y2y —4y=1, y

iii) y” +ay —2y=1, y(0)=9¢'(0)=0

iv) v’ =22y +2y=0, y(0)=0, y(0)=1
v) ¥ —ay +y=1, y(0)=1, y'(0)=2
vi) ay” +y +4xy =0, y(0)=3, ¥’ (0)=0

vil) 2y’ +2(x — 1)y’ + 2(x — 1)y = 2e " cosz, y(0) =0, ¢'(0)=-1

(i
(i
(
(
(
(
(vi
(vili) 2y” — 2+ )y’ +3y =2 — 1, y(0) =y (0) =

47.6. Consider the mechanical
system depicted in Figure 47.1. The
system consists of a mass M, a spring K M
with spring constant K, and a viscous 7 E
damper p. The mass is subjected to an g_,v\/\/\’_o_‘
external force r(z). Let y(z) denote the r(z)—

deviation of the mass from its equilib-
rium at time x. Then, Newton’s and Fi A7 1
Hooke’s laws lead to the differential equation lgure 4.
My" +uy' + Ky=r(x), M>0, K>0 and pu>0.

Use the Laplace transform technique to obtain y(x) in each of the following
cases:

(i) r@)=0, pP?—4MK =0, y(0) =yo, y'(0) =1 (critically damped)
(i) 7(z)=0, p?>—4MK >0, y(0) =y, ¥'(0)=y; (overdamped)
(iii) r(z) =0, p?—4MK <0, y(0) =y, ¥ (0) =1y (underdamped)
(iv) 7(z) = Fsinwz, p=0, K/M #w? y(0)=1y(0)=

(simple harmonic motion with smusoidal force)
(v) r(z)=Fsinwz, p=0, K/M=w? y(0)=19'(0)=0 (resonance).

Answers or Hints

2z

47.1. (i) 3 ’3w—|— (i) se

) se”+ ge (i) 1—e " cos2z—ye " sin2a
(iv) §cosz— g cos3a: ( -

6)[162(”” 6) — =6 4 %] (vi) e[z +1] -
e[l +z+ 2] (vil) H(z—1)[—}+ (””_1)4—ée_(r_l)]+H(x—2)[—}l+
21064(1—2) + 56—(1—2)] + 1641 _ ;‘)6 T (Vlll) 26—(z+1) _ 1916—3(z+1) 4 %33 _ 3
(ix) 2—€e>H(z—7)+ 64”H( 2m)|e 2% sinx (x) 2e3* —e® 4 [4e3(=1) —
4@V H(z — 1) + [2¢3@=2) — 6e@=2) + 4]H (2 — 2). (xi) 2sinz — cosz —

4
3
)

+
v) H(z
-
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—2x —x_ —x s 3z 1 —x_ 1 _—3x 1 x,2,. ¢z 1 o
611 +2e 23:61 (xii) je +216 e 1(Xm) gef e — o cos2x
50 8N 2% (xiv) o5 sinkx (xv) ,coshkx 4 ; coskx

47.2. Use Convolution Theorem 46.9.

47.3. Verify directly.

47.3. Use Convolution Theorem 46.9.

47.5. (i) x2/2 (ii) 222 (iii) x2/2 (iv) @ (v) 142z (vi) 3Jo(2x) (vii) %(C—
e “sina — }(C 4+ 1)ze * cosz, C is arbitrary (viii) /2.

47.6. (i) y(z) = e W2z [yo o K yor 4yl

. —(u/2M)x 1 m . \/p,274MK
(ii) y(z) =¥ [yo cosh Oz +  (y1 + 4, v0) sinhfz], 6 = o
(iii) y(z) = e~ W/2M)= [yo cosdz + 4 Ly + S vo) singbx} o= \/4MK W
(iv) y(z) = (K Mw2) [smwa:—w\/K sin \/M ]
(

v) y(z) = .5, [} sinwr — zcoswa].

2Mw lw



Lecture 48

Laplace Transform Method for
Partial DEs

In this lecture we shall apply the Laplace transform technique to find
solutions of partial differential equations. For this, we note that for a given
function wu(z,t) defined for a <z <b, t > 0, we have

ou < _40u
E{at] B /0 ‘ atdt

= e*St / e sty u(x, t)dt

= —u(z, 0)+s£ u] = —u(z,0) + sU(z, s),

where L[u] = U(z, s). Similarly, we find
13} o 0 d [~ d
L[ u] z/ et at = / e *tu(x, t)dt = U(x,s)7
0 0

ox Ox dz dx
0%u 0 (Ou ou ou(x,0)
E[aﬂ} - E{m(atﬂ_%[at]_ ot
ou(x,0)
_ 2 _ _ ’
= s$°U(x,s) — su(z,0) PV
and
r *u|  d*U(x,s)
ox2|  da?
Example 48.1. We shall find the solution of
Uy = 2u; +u, u(z,0) = 6e3" (48.1)

which is bounded for all x > 0, ¢t > 0.

Taking Laplace transforms of the given partial differential equation with
respect to t, we obtain

fg — 2 (5T — (@, 00} + U, U =Ulz,s) = Llulz, )],
or dU
— 25+ 1)U = —12e73%. 48.2
i (2s+ 1)U e (48.2)

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 48,
(© Springer Science+Business Media, LLC 2009
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Thus, we find that Laplace transformation has transformed the partial dif-
ferential equation into an ordinary differential equation. Clearly, the solu-
tion of (48.2) can be written as

6

. 26—395 + 0(5)6(25+1)I,

U(x,s) =
where C(s) is an arbitrary constant. Now since u(z,¢) must be bounded

as © — 0o, we must have U(z, s) also bounded as x — oo and so we must
choose C(s) = 0. Hence,

U(z,s) = . _?_ 26731. (48.3)
From (48.3) it immediately follows that u(z,t) = 62137,
Example 48.2. We shall solve the problem
Uy +axur =0, >0, t>0 (48.4)

u(z,0) =0, u(0,t)=t.

Taking Laplace transforms of the given partial differential equation with
respect to t, we find

au
de + z[sU(z,s) — u(x,0)] =0,
or o
+ xsU = 0.
dz

The general solution of this ordinary differential equation is
U(z,s) = C(s)e*”ﬁ/z.
Now since L[u(0,t)] = L[t] = 1/s%, we have U(0, s) = 1/s*. Hence,

1
Ulz,s) = , e 2,

Thus, the solution of (48.4) can be written as

22 22 0, t< 332/2
u(x,t) = (t— H|t— =
() ( 2) ( 2) {t—(x2/2), t>a?/2.
Example 48.3. We shall find the solution of the following initial-
boundary value problem
Ut = Uze, O0<ax <1, t>0
u(z,0) =3sin2rz, 0<z<l1 (48.5)
u(0,t) =0, wu(l,t)=0, t>0.
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Taking Laplace transforms of the given partial differential equation with
respect to t, we obtain

d*U
sU —u(x,0) = dg?
or 2
dag — sU = —3sin2mx.

The general solution of this ordinary differential equation is

3
Uz, s) = c1(s)eY* + ca(s)e™ Vs 4 s+ dx2 sin 27z.

Now taking Laplace transform of the boundary conditions, we have
Lu(0,t)] =U(0,s) =0 and Lu(l,t)]=U(1,s)=0.
Thus, it follows that
0=rci(s)+ca(s)
0=ci(s)eVs +cas)e Vs

and hence, ¢1(s) = ca(s) = 0. Therefore, we have

sin 27x,

3
U(z,s) = o dn?

which gives the solution of (48.5), u(z, t) = 3¢~4™ ¢ sin 2.

For our next example we recall the definition of the complementary error
function erfe(t) :

2 [t e
erfc(t) =1 —erf(t) =1 — /e_"du.
() w-1- [
Example 48.4. We shall find the bounded solution of the problem

Ut = Ugyg, x>0, t>0

48.6
u(z,0) =0, u(0,t) = uo. ( )
Taking Laplace transforms of the given partial differential equation and
of boundary condition u(0,t) = ug, we find
dQU (27
2 —sU=0, U(0,s) = e
The general solution of the above ordinary differential equation is U(x, s) =
c1(8)eVs® + co(s)e”V*®. Since u(x,t) is bounded as x — oo, U(z,s) must
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also be bounded as x — oo. Thus, we must have c¢i(s) = 0, assuming
5 > 0, so that U(z,s) = ca(s)e”V**. This solution satisfies the condition
U(0,s) = ug/s provided ca(s) = ug/s, and hence
67\/81
U(z,s) =uop s (48.7)

Now we shall show that the inverse transform of (48.7), i.e., the solution
of (48.6) can be written as

2 & 2 T
1) = " du = ugerfc . 48.8
u(x,t) uo\/ﬂ /m/m/te U = ug er (2\/t> ( )

For this first we shall find £~ '[e~V*]. Let Y = e~ V* so that

yro O e e
2y/s’ 4s 453/2°
Thus, it follows that

4sY" 42y —Y =0, = j . (48.9)
s
Now Y = L[t?y] so that
d
sY" = dtﬁ[t2y] = L[t*y + 2ty).

Also Y’ = L]|—ty] so that (48.9) can be written as
AL[t2y + 2ty] — 2L[ty] — L[y] = 0,
or
4%y’ + (6t — 1)y = 0,
which can be solved to find the solution

c _
y(t) = t3/26 1/4t’

where C' is an arbitrary constant, and hence ty = (C/v/t)e~"/*. Next we
have

d d eV
t = — = — 7\/8 = .
Elty] dsﬁ[y] ds (e ) 24/s
Clearly, for large t, ty ~ ¢/v/t and L[ty] = C\/m/\/s. Further, for small
s, (e7V*/2y/s) ~ (1/24/s). Hence, from Problem 46.8(ii) it follows that
Cy/m=1/2,or C = (1/2y/). Thus, we find

1
—1 —/s| __ —1/4t
c [e V} = 5 ymti2® /4t (48.10)



388 Lecture 48

Now using the convolution theorem, and letting u = 1/(4v?) we obtain

—s t 1
—11]¢€ o —1/4u
L l = /0 2\/ﬂ'u3/26 du

s
2 / e~ dv = erfc < ! > .
VT 1/2v/t 2/t

Finally, to find £~} [e*‘“/S /s] we use the change of scale property, i.e.,

eV L erfc ! ! erfc .
= T = T .
z2s z? 2./t/x? z? 2Vt

Lt [e:ﬁ} = erfe <2‘3t) . (48.11)

Example 48.5. We shall find the bounded solution of the problem

E_l

Hence, we have

Ur = ugy, x>0, t>0, ¢>0
u(z,0) =%k, x>0 (48.12)
u(0,t) = f(t), t>0,

which generalizes (48.6).
Using Laplace transforms, we get the ordinary differential equation

L d2U

sU —u(x,0) =¢ dp2

which can be solved to obtain
k
U(z,s) = cre P* + coeP® + g D= Vs/ec.
Now the fact |u(z,t)| < oo implies that c; = 0, and since U(0,s) = F(s),

we have

k
F(s)=c1+ o

Thus, it follows that
k —px —px
U(zx,s) = . (1—e ") + F(s)e ",

However, since
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we obtain

d T T x?
f = — — 71)1.
gt (a0 )] = ey 0 ()] =¢

Thus, in view of convolution theorem, the solution of (48.12) can be written
as

exp (—z%/4c7)

w(z,t) = kerf(%gi/t) + 25/77 /Otf(t—T) o dr. (48.13)

The above representation of the solution is due to J.M.C. Duhamel (1797
1872).

Example 48.6. We shall use Laplace transforms to find the bounded
solution of the problem

Ur = gy, >0, t>0, ¢>0
u(z,0) = f(z), >0 (48.14)
w(0,t) =k, ¢>0.

As in Example 48.5 it is clear that the corresponding ordinary differen-
tial equation is

d’U s 1
dxg - 02U - _Cgf(x)a

which can be solved to obtain

Ul(x,s)

1 T
At + BerT = / sinhp(z —7)f(T)dr, p=+/s/c
0

1 * 1 *
pr| A _ —p7 —px pT
e [A ZPCQ/O e f(T)dT] +e [B + 2p62/0 e f(T)dT:| .

Thus, the condition that U(x,s) is bounded as  — oo yields

1
 2pc?

/OOO e PTf(r)dr

and the condition at x = 0 will then produce

k 1

B= -
s 2pc?

/O e f()dr
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Hence, it follows that

k —px e Pt >~ —pT
U(z,s) = Se — ope |, e PTf(r)dr

L /Ooe_’”f( yar — | /zsinh (z — ) f(r)d

T)dT — — 1) f(r)dr
2pc? Jo pc? Jo P
k 1 *
— —pz _ ,—px—DpT —px+pT
Se + 2ey/s [/0 [ e +e ]f(T)dT

+/ [—e PPTPT 4 PP PT f(T)dT]
k 1 o
— —pz —le—7lp _ —(z+7)p
$€ +2C\/8/0 f(r) [e e :|d7'

and therefore,

w(z, ) = kerfe (2;75) + 210 /OOO FOg(e = 71,8) — gl + 7, B)dr,
where 1
Llg(z,t)] = \/Se_pz-

We shall show that
1 1 x?
) =L71 = — .
ooty =t | e = e (=)

For this it suffices to establish the relation

1 2 e—avs
L T/t = : 48.15
{\/m‘e ] Vs (#8-15)
Since, £L71[s"] =0, n=0,1,2,--- we have
Efl e—a\/s _ £71 [ 1 1— CL\/S + (a‘\/s)Q o (CL\/S)3 4.
Vs Vs 1! 2! 3!
1 2512 g3/
_ -1
= £ Vs g oy 7 ]
= [ 2, g2mg(2m—1)/2 < 2m f—m—1/2
N mZ::O (2m)! N mz::O (2m)! T(—m +1/2)
t—l/-2 a2t_3/2 t—l/Q a2t_3/2
vy Torci2) T T e Tocaym T
_ 1 CL2 1 e_a2/4t.

Vrt Ay/m 32 it
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Example 48.7. We shall solve the following initial-boundary value
problem
Ut = Uze, O0<zx<a, t>0

u(z,0) = bsinﬂaj, 0<z<a
“ (48.16)

ut(x,0) = —bsin =z, 0<z<a

a

u(0,t) =0, wu(a,t)=0, t>0.
Transforming the equation and the boundary conditions yields
d*U
dx?
U(0,s) =U(a,s) =0,

.o LT
= 52U —bssin x+bsin =z
a a

which has the solution
a’b(s —1)

Ulz,s) = a?s? + 72

.
sin .
a

Hence, the solution of (48.16) can be written as

LT T, a . m
u(x,t) =bsin  x|cos t— sin tf.
a a T a

Example 48.8. We shall find the solution of the following initial-
boundary value problem

Ut — AUpy +u = 162 + 20sinz, O0<x<m, >0
u(z,0) = 162 + 12sin2x — 8sin3z, us(r,0) =0, 0 <z <m  (48.17)
u(0,t) =0, wu(mt)=16w, t>0.

Taking Laplace transforms, we find

d? 1 20 si
(';1;(%0)_4 U+U: 6x+ Osmx,

2
s°U — su(x,0) —
(2,0) dx? S s
which in view of the initial conditions is the same as

v 1, 4(s?+ 1)z bHsinz . )
PR 4(5 +1)U = — . - —3ssin2z +2ssin3z. (48.18)
We need to solve (48.18) along with the boundary conditions
16
U0,5) =0, Ulr,s)= :' (48.19)

The general solution of the differential equation (48.18) can be written as

U(CE,S) _ cleféx/s%rlm +c2eé\/s2+1w
162 " 20sinx " 12ssin2x  8ssin3x
s s(s2+5) s2+17 2437
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The boundary conditions (48.19) imply that ¢; = ¢ = 0, and hence

16x 20sinx 12ssin2x  8ssin3x

Ulw,s) = s +8(52—|—5)+ 2417 24377

which gives the required solution

u(z,t) = 16z + 4sin z(1 — cos V/5t) + 12sin 2z cos V17t — 8 sin 3z cos V/37t.

Problems

48.1. Solve by Laplace transforms:

(i) g +2zur =2z, >0, t>0, u(z,0)=1, u(0,t)=1
(i) auy +uw =at, x>0, t>0, ulz,0)=0, u(0,t)=
(iii) we +auy =23, >0, t>0, u(z,0)=0, u(0,t)=
(

iv) up+u=xz, x>0, t>0, u(z,0)=f(x), uw(0,t)=0
(assume that f'(z) exists for all x)
(V) wp—us=1—-e"t 0<axz<l, t>0, ulz,0)=a, u(z,t)]<occ.
48.2. Solve by Laplace transforms:
(i) w =2uUpy, 0<z<b, t>0, u(z,0)=10sindrx — 5sinbmz,
u(0,t) = u(5,t) =0

(il) wy =3uge, 0<z<m/2, t>0, u(xz,0)=20cos3x—5cos9z,
ug(0,t) = u(n/2,t) =0

(iil) ur =ugs, 0<z<a, t>0, u(zr,0)==~k+bsin(rz/a),
u(0,t) =u(a,t) =k

(iv) wp =gy, >0, t>0, ¢>0, u(z,0) =0,
ug(0,t) = =k, lim w(z,t) =0

(V) up=uge —4u, 0<z<m t>0, u(x,0)=06sinz — 4sin2x,
u(0,t) = u(mw,t) = 0.

48.3. Solve by Laplace transforms:

Upe = CUge, x>0, t>0, ¢>0
w(z,0)=0, x>0

ug(z,0) =0, x>0

u(0,t) = f(t), t>0

lim w(z,t) =0, t>0.

xr—00

In particular, find the solution when
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(i) e=1, f(t)=10sin2t
sint, 0<t<2mw
Ft) = { 0, otherwise.

48.4. Solve by Laplace transforms:

(i)  ww =Use, 0<z <2, t>0, u(xz,0)=20sin27z — 10sin b7z,
ug(x,0) =0, u(0,t) =u(2,t)=0

(i) wg = ugy, >0, t>0, ¢>0, u(z,0)=0, ux,0)=—1,
w(0,t) =12,  lim u(w,t) exists

(i) ug = Upe, 0<ax <1, t>0, u(z,0)=a—12% uir,0)=0,
u(0,t) =u(l,t) =0

(iv) Uy = Uge + sin(mx/a)sinwt, 0 <z <a, t>0
u(z,0) = ut(x,0) = u(0,t) = u(a,t) = 0.

Answers or Hints

48.1. (i) t+1—(t—2>)H(t —2?) (ii) 2t —1+e7t) (i) 2%t — 12+
2

(t— ””22) H (t - ””22) (iv) Take Laplace transform with respect to z,

fl@a—t)H@—t)+ a2 — Yz —t)*Hx—t) (v) z+1—e".

48.2. (i) 10e327" gin dra — e~ 72"t sin 67 (i) 20e~ 27 cos 3z — He~ 243t
x cos 9z (i) k+be ™ /% sin ™ (iv) k [20\/;6_952/‘“ — zerfc (Zi/t)}
(v) 6e Stsinz — 4e~ % sin 2.

48.3. f(t—*)H(t—"). (i) 10sin2(t—z)H(t — x)

(ii) { sm(t— ), T<t< T+ 2m

c
0, otherwise.

48.4. (i) 20sin 27z cos6mt — 10sin 5wz cos 157t (i) —t+ [(t — 7)
(e =) B (- 7) () w—a? =24 0 (-1)" [(t-n—2)2H(t—n—2)
+(t—n—1+z)*H(t—n—1+x)] (iv) way (! sinwt — @ sin ™) sin ™.

m—a?w? \w



Lecture 49
Well-Posed Problems

A problem consisting of a partial DE in a domain with a set of initial
and/or boundary conditions is said to be well-posed if the following three
fundamental properties hold:

1. Ezistence: There exists at least one solution of the problem.
2. Uniqueness: There is at most one solution of the problem.

3. Stability: The unique solution depends continuously on data (initial and
boundary conditions): i.e., a slight change in the data leads to only a small
change in the solution.

From Problem 34.4 we know that the Neumann problem g, + uy, =
0,0 <z<a 0<y<b ulz,0) = f(z), uy(z,b) = g(z), uz(0,y) =
0 = u,(a,y) has an infinite number of solutions, and hence it is not a well
posed problem. As another example, consider the problem g, + 1y, =
0, —oc0o <z <oo, y>0, ul0) =0, uy(z,0) = (1/n)sinnz. It has
solution u = 0 when u,(z,0) = 0, but for positive values of n the solution
is u(z,y) = (1/n?)sinnzsinhny. Clearly, u,(z,0) = (1/n)sinnz — 0 as
n — 00; however, u(x,y) = (1/n?)sinnzsinhny /4 0 as n — oo. Thus, the
stability property is violated and the problem is not well posed.

In what follows we will only briefly comment on each of the three re-
quirements, because a detailed discussion of the conditions under which a
given problem is well-posed requires some deeper concepts. To ensure the
existence the series or integral representation of solutions of problems we
have obtained earlier will be verified in the next lecture. In this lecture we
shall address the uniqueness and stability of the solutions. An important
consequence of the uniqueness of solutions is that different methods lead
to the same solution; however, there may be distinct representations of the
same solution. We begin our discussion with the heat equation.

Since heat flows from a higher temperature to the lower temperature, in
the absence of any internal heat source, the hottest and the coldest spots
can occur only initially or on one of the two ends of the rod. If the rod
is burned at one end and the other end is in a freezer, the heat will flow
from the burning end to the end in the freezer. However, the end that is
burned will always be hotter than any other point of the rod, and the end
in the freezer will always be cooler than any other point on the rod. A
mathematical description of this observation is stated as follows:

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 49,
(© Springer Science+Business Media, LLC 2009
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Theorem 49.1 (Maximum-Minimum Principle for the

Heat Equation). Let the function u(z,t) be continuous in a closed
rectangle R = {(z,t) : 0 < 2 < a, 0 <t < T} and satisfy the heat equation
(30.1) in the interior of R. Then u(x,t) attains its maximum and minimum
on the base t = 0 or on the vertical sides = 0 or « = a of the rectangle.

As an application of this principle we shall prove the uniqueness of
solutions of the Dirichlet problem for the heat equation

up — gy = q(z,t), 0<x<a, t>0, ¢>0
u(z,0) = f(z), 0<z<a

u(0,t) =g(t), t>0

u(a,t) =h(t), t>0.

(49.1)

Theorem 49.2. Assume that ¢, f, g, and h are continuous in their
domain of definition, and f(0) = ¢(0), f(a) = h(0). Then there is at most
one solution to the problem (49.1).

Proof. Assume to the contrary that there are two solutions uy(z,t) and
ug(z,t) of (49.1). Then the function w = u; — ug satisfies wy — Pwy, =
0, w(z,0) =0, w(0,t) = w(a,t) = 0. Let T > 0. In view of the maximum
principle, w(x,t) attains its maximum on the base t = 0 or on the vertical
sides = 0 or = a of the rectangle R = {(z,¢) : 0 <z <a, 0 <t <
T'}. Therefore, it follows that w(z,t) < 0, (x,t) € R. Similarly, from the
minimum principle, we have w(z,t) > 0, (z,t) € R. Hence, w(z,t) = 0,
ie., ui(z,t) = us(z,t), (z,t) € R. Finally, since T is arbitrary, the result
follows.

Alternative Proof. We can also prove Theorem 49.2 by a technique
known as the energy method as follows: Multiplying the equation w; —
2wy, = 0 by w, we get

1
0 = w(w; — wyy) = <2w2> — (Cwwy), + Aw?.
t
Thus, an integration with respect to x gives
a 1 r=a a
0= / ( w2) dx — Cww, + 02/ w?dz.
0 2 t =0 0
However, since w(0,t) = w(a,t) = 0 it follows that
d [*1 2 2 [ 2
[w(z,t)]*dx = —c [wg(z,t)]*dz < 0.

Therefore, in view of w(z,0) = 0, we have

/Oa ;[w(w,t)Fd:v < /Oa ;[w(x,O)]de =0,
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and hence [;'[w(z,t)]*dz = 0 for all ¢t > 0. But, this implies that w(x,t) = 0,
e, ui(z,t) = us(z,t).

Clearly, the above proof holds as long as ww, |3 = 0. Hence, our proof
applies to other boundary conditions also, e.g., in (49.1) we can replace
the Dirichlet conditions u(0,t) = g(¢), u(a,t) = h(t) by the Neumann
conditions u,(0,t) = g(t), ug(a,t) = h(t).

The following stability result immediately follows from Theorem 49.1.

Theorem 49.3. Let uy(x,t) and us(z,t) be solutions to the prob-
lem (49.1) with data f1,91,h1 and fa, g2, ha, respectively. Further, let
T and € be any positive real numbers. If maxo<y<q |f1(x) — fo(z)] < €,
maxo<s<7 |g1(t) — g2(t)| < € and maxo<i<7 |h1(t) — ha(t)| < ¢, then

nggrgagcgtST|u1(x,t) us(x,t)] < e

Next we shall discuss the Laplace equation. If in equation (34.4) we
consider u(z,y) as the steady-state temperature distribution in a plate,
then the temperature at any interior point cannot be higher than all other
surrounding points. In fact, otherwise the heat will flow from the hot point
to the cooler points. But, then the temperature will change with time, and
would lead to a contradiction to the steady-state condition. Because of the
same reasoning at any interior point the temperature cannot be lower than
all other surrounding points. Mathematically this result can be stated as
follows:

Theorem 49.4 (Maximum—Minimum Principle for the

Laplace Equation). Let D C RR? be a bounded and connected
open set. Let u(x,y) be a harmonic function in D that is continuous on
D = DU 0D, where 0D is the boundary of D. Then, the maximum and
minimum values of u are attained on 0D, unless u is identically a constant.

As an application of this principle we shall prove the uniqueness of
solutions of the Dirichlet problem for the Laplace equation

umm"‘uyy:q(xay) in D

(49.2)
u(z,y) = f(z,y) on OID.

Theorem 49.5. Assume that ¢ and f are continuous in their domain

of definition. Then there is at most one solution to the problem (49.2).

Proof. Assume to the contrary that there are two solutions u; (z,y) and
uz(z,y) of (49.2). Then, the function w = uy — ug satisfies wgy + wyy =0
in D and w = 0 on 9D. Thus, from the maximum-minimum principle w
must attain its maximum and minimum values on dD. Hence, w(z,y) = 0;
ie., ui(z,y) = ua(x,y), (z,y) € D.
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Alternative Proof. We can also prove Theorem 49.5 by using Green’s
identity (energy technique): Let D C IR? be a bounded and open region
whose boundary 0D is a piecewise continuously differentiable curve. Then,
for any function w = w(x, y) having continuous second-order partial deriva-
tives in D and continuous first-order partial derivatives on D U 9D the
following holds

// W(Wea + Wyy)daedy = 7{ wawds - // (w2 + w?)dady,
D ap On D ‘

where dw/0On is the exterior normal derivative.

Green’s identity for the difference of two solutions of (49.2), i.e., w =

uy — ug reduces to
//D(wi + wi)dajdy =0,

which clearly implies that w is a constant. However, since w = 0 on 9D,
this constant must be zero, i.e., w = u; — ugy = 0.

The following stability result is a direct consequence of Theorem 49.4.

Theorem 49.6. Let u;(x,y) and uy(x,y) be solutions to the problem
(49.2) with data f; and fa, respectively. Further, let € be any positive real
number. If maxsp |f1(z,y) — f2(x,y)| <€, then

max |’U/1($, y) - UQ(!E, y)' < e
D
Finally, we shall employ the energy technique to prove the uniqueness
of solutions of the initial-boundary value problem for the wave equation

U = gy +q(2,t), 0<z<a, t>0
u(0,t) = a(t), wu(a,t)=p(), t>0.

We multiply the wave equation by u; and integrate with respect to z, to

get
d/alzd 2/a d+/a d
Uy dxr = C U Ut AT quiax.
dt Jo 2" 0 0

However, since

a
/ Upz Ut AT = Uy Us
0

and
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it follows that

d [(*1
0

+ / quedz. (49.4)
o Jo

The identity (49.4) is called the energy equation for the wave equation.

Theorem 49.7. Assume that ¢, f, g, «, and 3 are sufficiently smooth
in their domain of definition. Then, there is at most one solution of (49.3)
which is continuous together with its first- and second-order partial deriva-
tives for 0 <z < a, t > 0.

Proof. Assume to the contrary that there are two such solutions u; (z,y)
and wug(z,y) of (49.3). Then the function w = wu; — ug satisfies wy =
Awez, w(w,0) =0, wi(z,0) =0, w0,t) =0, w(a,t) = 0. But then, from
the assumptions on the solutions, we also have wy(z,0) = 0, w:(0,t) =0
and wy(a,t) = 0. Thus, for the function w, the identity (49.4) reduces to

d [*1
gt /0 ) [w? + 2w?]dx = 0.

Therefore, we have
N 2 2 dr — Y1, 2 2 do —
; Q[wt (x,t) + cwy(z,t)]dx = ; 2[wt(x,0)+c w(x,0)]dx =0,

which immediately implies that w is a constant. However, since w(x,0) = 0
and w is continuous this constant must be zero; i.e., w = u; —uy = 0.
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Verification of Solutions

In our previous lectures the series or integral form of the solutions we
have obtained were only formal; there we did not attempt to establish
their validity. In this lecture we shall prove a few theorems which verify
that these are actually the solutions. For this, we shall need the following
results in two independent variables:

(P1). Weierstrass’s M -test: If the terms of a series of functions of two vari-
ables are majorized on a rectangle by the terms of a convergent numerical
series, then the series of functions is absolutely and uniformly convergent
on the rectangle.

(P2). If a series of continuous functions converges uniformly on a rectangle,
then its sum is continuous on the rectangle.

(P3). If the series obtained from a given convergent series by formal term-
by-term partial differentiation is a uniformly convergent series of continu-
ous functions on a closed rectangle, then the given series has a continuous
derivative which on the rectangle is the sum of the series obtained by term-
by-term differentiation.

(P4). Abel’s test: The series Y~ | X, (2)Y,(y) converges uniformly with
respect to the two variables x and y together, in a closed region R of the
zy-plane, provided the series > ° | X, (x) converges uniformly with respect
to z in R, and for all y in R the functions Y, (y), n = 1,2, are monotone
(nondecreasing or nonincreasing) with respect to n and uniformly bounded;
ie., |Ya(y)| < M for some M.

First we prove the following theorem for the heat equation.

Theorem 50.1. In the interval [0, a] let f(z) be continuous and f’(x)
piecewise continuous, and let f(0) = f(a) = 0. Then the series (30.10) rep-
resents a unique solution to the problem (30.1)-(30.4) which is continuous
for all {(x,t):0<x <a, t>0}.

Proof. The uniqueness of the solutions has already been proved in The-
orem 49.2. Thus, it suffices to show that the function u(x,t) defined by
the series (30.10) is a solution. Clearly, this u(x,t) satisfies the bound-
ary conditions (30.3) and (30.4). Next from (30.10), we have u(z,0) =
>0 | ensinnrz/a, and since the function f satisfies the conditions of The-

R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations,
Universitext, DOI 10.1007/978-0-387-79146-3 50,
(© Springer Science+Business Media, LLC 2009
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orem 23.6, it follows that u(x,0) = f(x). Now from (30.11), we find that

2 a
eal < 2 / f@)ldz = C

so that, for the n-th term of (30.10), we obtain the majorization

222/ 2 nmwx 2 2.2/ 2
—(n“m%c” /a”)t ,: n“wc”/a”)t
Cn€ ( /et sin “ ‘ < Ce ! / )0,

forall 0 < x <a, t >ty > 0. Next since the numerical series

Z Cef(n 2% Ja®)t

is convergent; from (Pq) it follows that the series (30.10) is absolutely and
uniformly convergent for all 0 < z < a, t >ty > 0. Thus, from (P3) and
the fact that to is arbitrary, we conclude that the sum u(z,t) of the series
is continuous for all 0 < x < a, t > 0. Now we formally differentiate the
series (30.10) term-by-term with respect to ¢, to obtain

ug(x,t) Zn cpe” (T AN iy . (50.1)
a

This series has the majorizing series
2.2 ©©
TC Cn2ei(n2ﬂ,2cz/a2)to
a2 E :

forall 0 <z < a, t > tyg > 0. By the ratio test this numerical series is
convergent. Hence, again by (P;) it follows that the differentiated series
is absolutely and uniformly convergent for all 0 < = < a, t > to > 0.
Therefore, (P3) implies that the sum u(x,t) of the series (30.10) has con-
tinuous partial derivative with respect to t for all 0 < x < a, ¢t > 0 and this
derivative can be obtained term-by-term differentiation. In a similar man-
ner we can show that wu,, wu., exist, are continuous, and can be obtained
by term-by-term differentiation. In fact, we have

Uge (T, 1) = — 22 Z n2c,e ("m0t gip nz’a: (50.2)

n=1

foral0<x<a, t>ty>0.

Finally, from (50.1) and (50.2) it is clear that u¢(z,t) = c*uy.(z,t) for
all0 <z <a, t>ty>0.
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Now we state the following theorem which confirms that the Gauss—
Weierstrass formula (43.3) (see equivalent representation in Problem 44.5)
is actually a unique solution of (43.1).

Theorem 50.2. Let f(z), —oo < z < oo be a bounded and piecewise
continuous function. Then, the Gauss-Weierstrass integral (43.3) defines
a unique solution of the problem (43.1) with lim;—o u(z,t) = [f(z + 0) +

flz = 0)]/2.

Our next result is for the initial value problem (43.9), where we do not
assume the condition that w and wu, are finite as |z| — oo, ¢t > 0.

Theorem 50.3. Let for all —co < 2 < oo the function fi(x) be twice
continuously differentiable and the function fo(x) continuously differen-
tiable. Then, the initial value problem (43.9) has a unique twice continu-
ously differentiable solution wu(z,t), given by d’Alembert’s formula (43.11)
(see also Problem 33.10).

Proof. From Lecture 28 (see (28.2)) it is clear that the solution of the
wave equation can be written as

u(z,t) = Fa + ct) + G(z — ct), (50.3)

where F' and G are arbitrary functions. This solution u(z,t) is twice con-
tinuously differentiable provided that F' and G are twice differentiable. Dif-
ferentiating (50.3) with respect to ¢, we get

u(x, t) = cF'(x + ct) — G’ (x — ct). (50.4)

Thus, u(z,t) satisfies the initial conditions u(xz,0) = fi(x), w(x,0) =
fa(z), if and only if,

Flr)+Gx) = fil=)
cF'(x) — cG' () = fa(x). (50.5)
We integrate the second equation in (50.5), to obtain
P (o)~ cGlo) = [ fa(€)de + K. (50.6)
0

where K is an arbitrary constant. Combining (50.6) with the first equation
of (50.5), we can solve for F' and G, to find

1 [* 1K
fla)+y, [ p@d+,

1
¥ K
@)=y, [ ROdE =,

1
2
1
of
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Using these expressions in (50.3), we obtain d’Alembert’s formula (43.11).

The above explicit construction shows that if the problem (43.9) has a
solution it must be given by (43.11) and is unique. Conversely, since f;(z) is
twice continuously differentiable and f2(x) is continuously differentiable, it
is trivial to verify that (43.11) is indeed a twice continuously differentiable
solution of (43.9).

Now we shall prove a theorem for the boundary value problem (34.4) —
(34.8) with g(z) = 0. We note that when g(x) = 0, the solution (34.15) can
be written as

o0 inh N b
u(z,y) = Zansm wn(b—y) sinw,x, wp, = " (50.7)

sinh w,,b a
n=1

where a,, is given in (34.16).

Theorem 50.4. In the interval [0,a] let f(z) be continuously differ-
entiable and f”(x) piecewise continuous, and let f(0) = f(a) = 0. Then,
the series (50.7) represents a unique solution u(z,y) to the problem (34.4)—
(34.8) with g(x) = 0. This solution v and u,, u, are continuous in the
closed rectangle 0 < x < a, 0 <y < b, while ug, and u,, are continuous in
the rectangle 0 < x <a, 0 <y <b.

Proof. The uniqueness of the solutions has already been proved in The-
orem 49.5. Thus, it suffices to show that the function u(x,y) defined by the
series (50.7) is a solution. Clearly, this u(z,t) satisfies the boundary con-
ditions (34.7), (34.8) and (34.6), and since the function f satisfies the con-
ditions of Theorem 23.6, it follows that u(z,0) = f(z) = > .7 | ap sinw,x
uniformly. Now we consider the sequence of functions

sinhw, (b —y)
Yuly) = sinhw,b
It is clear that 0 < Y, (y) < 1 for all n and 0 < y < b; i.e., these functions
are uniformly bounded. We claim that for all 0 < y < b the functions Y, (y)
are nonincreasing as n increases. This is immediate for y = 0 and y = b, and
for 0 < y < b it suffices to show that the function S(s) = sinhg¢s/sinhps,
where p > ¢ > 0 is a decreasing function of s > 0. Since

25(s) sinh?ps = 2gsinh pscoshgs — 2psinh ¢s cosh ps
= —(p—q)sinh(p+q)s+ (p+q)sinh(p — q)s
sinh(p+q)s  sinh(p — q)s
_ _(p2 _ q2) |: ( ) _ ( )
p+gq pP—q

= -’ -4) i [+ = (p—q)?*] -
(2n +1)!

n=0
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it follows that S’(s) < 0, and hence S(s) is a decreasing function of s > 0.
From this and the fact that Fourier sine series of f(x) converges uniformly,
(P4) implies that the series (50.7) converges uniformly to u(x,y) with re-
spect to x, y in the closed rectangle 0 < x < a, 0 <y < b. The continuity
of u in this rectangle immediately follows from (Ps3).

Next note that the function f’ also satisfies the conditions of Theorem
23.6, and hence the Fourier cosine series Y | a,wy, cosw,x, obtained by
differentiating the sine series term-by-term also converges uniformly for
0 <z < a. Thus, as above the series

o0 . h n _
Zanwnsm wn(b—1y)

. COSWnT
sinh w,,b

n=1

converges uniformly to u;(z,y) with respect to z, y in the closed rectangle
0<z<a, 0<y<b. The continuity of u, in this rectangle also follows
from (P3).

Now in view of Problem 23.14(i) the numerical series 7 | |a,wy| con-
. o0 . .
verges, and hence from (P;) the series )"~ | anpwy, sinw,x converges uni-
formly for 0 < x < a. We also note that the sequences of functions
coshw, (b—y
Vo(y) = “nen ()
sinh w,,b
is nonincreasing as n increases for all 0 < y < b. In fact, this follows from

the relation )
2 2
Y, (y) = +Y; 50.8
0= e,y P YW (50.5)
and our earlier considerations. The uniform boundedness of Y, (y) is also
immediate from (50.8). Combining these arguments, we find that the series

oo
coshwy,(b—y) |
- E Apwn . sinwyx
— sinh wyb

converges uniformly to u,(z,y) with respect to x, y in the closed rectangle
0 <z <a, 0 <y <b The continuity of u, in this rectangle once again
follows from (P2).

Finally, since |a,| < C, and for 0 < y <,

;e“"(b_y), sinhwpb > ;e“’"b (1 —e‘z’”’/“)

for the series obtained by differentiating twice (50.7) with respect to x or
y, the terms have the absolute value less than

sinhw,(b—y) <

5 %ewn(bfy) ) e—wny
Cw =Cuw .
n ;ewnb (1 _ e—Qﬂb/a) n (1 _ e—27‘rn/a)
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Now since by the ratio test, the numerical series

—wWnlYo

L) , o
1;1 Cw" (1 _ e—27‘rn/a) ’

where 0 < yg < b converges, the series of the second derivatives obtained
from (50.7) by term-by-term differentiating twice with respect to = or y
converges uniformly for 0 < z < a, 0 < y < b. The continuity of uzz, Uyy
in this rectangle again follows from (P2).

Finally, we state the following theorem which confirms that the integral
(44.2) is actually a solution of (44.1).

Theorem 50.13. Let f(z), —oo < z < oo be a bounded and piecewise
continuous function. Then, the integral (44.2) defines a unique solution of
the problem (44.1) with lim, .o u(z,y) = [f(z 4+ 0) + f(z — 0)]/2.

If we allow unbounded solutions, then the uniqueness is lost. For exam-
ple, the function u(x,y) = y satisfies Laplace’s equation in the half-plane
and lim, o u(x,y) = 0. This can be added to any solution.
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