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Chapter 1

Tensor Algebra

The concept of a tensor has its origin in the development of differential geometry
by Gauss, Riemann and Christoffel. Ricci and Levi-Civita have developed ‘tensor
calculus’ or rather ‘tensor analysis’, which is generalisation of vector analysis, also
known as absolute differential calculus. Tensor analysis is concerned with the study
of abstract objects, called tensors, whose properties are independent of the reference
frames used to describe the objects. If a tensor is defined at every point of a space, we
say that we have a tensor field over the space. Tensor calculus is concerned essentially
with the study of tensor fields.

1.1 Tensors

Tensor is a natural and logical generalisation of the term vector. A tensor is repre-
sented in a particular reference frame by a set of functions, termed as components, just
as a vector is determined in a given reference frame by a set of components. Whether
a given set of functions represents a tensor depends on the law of transformation of
these functions from one co-ordinate system to another. The main aim of ‘tensor
calculus’ is the study of those objects of a space endorsed with a co-ordinate system
where the components of objects transform according to a law when we change from
one co-ordinate system to another. Regarding the concept of a tensor the following
points should be noted:

(i) It is an object of a space and depends on the nature of transformation of co-
ordinate system and the nature of the law according to which its components in
one system are transformed, when referred to another co-ordinate system.

(ii) The components of a tensor may be chosen arbitrarily in any system of co-
ordinates. Its components in any other system are uniquely determined by the
corresponding law of transformation.

(iii) The components describing a tensor generally change with the change of co-
ordinate system, but the concept of a tensor does not change with the change of
co-ordinate system.

1



2 Tensor Algebra

(iv) The components of a tensor are always supposed to be functions of the co-
ordinates of a point. We say, using geometrical language, that they depend on
the position of the point and that our tensor algebra is a geometry of position,
independent of any notion of measure.

(v) A tensor represents a mathematical object which exists at a point just as a force
represents a physical object which exists at a point.

Scalars and vectors are both special cases of more general object, called a tensor of
order N whose specification in any co-ordinate system requires 3N numbers, called the
components of tensor. In fact, scalars are tensors of order zero with 3◦ = 1 component.
Vectors are tensors of order one with 31 = 3 components.

Physical and geometrical facts have the peculiarity that although they may be es-
tablished by using co-ordinate systems their contents are independent of such systems.
This peculiarity is also possessed by a tensor, i.e. although co-ordinate systems are
used to describe tensors, their properties are independent of co-ordinate systems. For
this reason tensor calculus is an ideal tool for the study of geometrical and physical
objects. As a result, tensor calculus has its applications to the branches of theoretical
physics.

In the case of tensors, it is not possible (or at least not easy) to make any geomet-
rical pictures, and hence tensors have to be introduced only through their transfor-
mations under changes of the co-ordinate systems. In the book vector, authors have
developed pictorial ways of representating vectors and one-forms; this can to some
extent be extended to tensors of higher type, but the pictures rapidly become very
complicated. It is perhaps better to avoid picturing most tensors directly.

A study of tensor calculus requires a certain amount of background material that
may seem unimportant in itself, but without which one proceed very far. Included
in that prerequisite material is the topic of the present chapter, the summation con-
vention. As the reader proceeds to later chapters he or she will see that it is this
convention which makes the results of tensor analysis surveyable.

1.1.1 Space of N Dimensions

An ordered set of N real numbers x1, x2, . . . , xN is called N -tuple of real numbers and
is denoted by

(
x1, x2, . . . , xN

)
. Here the number i in xi be the index of x, not power of

x. The set of all N -tuples of real numbers is said to form an N dimensional arithmetic
continuum and each N -tuple is called the point of this continuum. Such a continuum
shall be denoted by VN . The VN is sometimes called an N dimensional space, because
it can be endowed with the structure of an N -dimensional linear space.

For development of algebra of tensor, a co-ordinate system is set up in a cer-
tain manner, this implies that the co-ordinates

(
x1, x2, . . . , xN

)
can be assigned to

every point in VN with respect to a chosen co-ordinate system establishing a one-
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to-one correspondence between the points of VN and the set of all co-ordinates like(
x1, x2, . . . , xN

)
.

If
(
x1, x2, . . . , xN

)
be the co-ordinate of a point P in VN we shall say that the

co-ordinate of P is xi and the corresponding co-ordinate system is denoted by
(
xi
)
.

1.1.2 Dummy and Free Index

When in an indexed expression an index occurs once as a lower index and is an upper
index so that the summation conversion is applied, then this index is called dummy
index (or suffix). For example, in the expression aib

i or aii or aki x
i, the index i is

dummy. In the expression aijx
ixj , both the indices i and j are dummy.

Dummy or umbral or dextral index can be replaced by another dummy suffix not
used in that term. For example, aki x

i = akjx
j . Also, two or more than two dummy

suffixes can be interchanged. In an indexed expression if an index is not dummy, then
it is called free index. For example, aijx

i, the index i is dummy but index j is free.

Note 1.1.1 By a system of order zero, we shall mean a single quantity having no
index, such as A.

Note 1.1.2 The upper and lower indices of a system are called its indices of con-
travariance and covariance, respectively. For example, for the system Aijk, the index
i is the index of contravariance and the indices j, k are indices of covariance. Accord-
ingly, Aij is called a contravariant system, the system Aij is called a covariant system,
while the system Aij is called mixed system.

Note 1.1.3 The numbers of components of a system of components of a system of
kth order in which each of the indices takes values from 1 to N in Nk.

EXAMPLE 1.1.1 If ui = aipv
p and wi = biqu

q, show that wi = bipa
p
qvq.

Solution: From ui = aipv
p we get, uq = aqpvp. Hence,

wi = biqu
q = biqa

q
pv
p = bipa

p
qv
q,

where we have to replace the dummy indices q and p by p and q, respectively.

1.1.3 Summation Convention

Let us consider the sum
N∑
i=1

N∑
j=1

aijx
ixj . In order to avoid such awkward way of expres-

sion using the sigmas (
∑
s) we shall make use of a convention used by Einstein, in his

development of the theory of relativity, which is accordingly called Einstein summation
convention. Instead of using the traditional sigma for sums, the strategy is to allow
the repeated subscript to become itself the designation for the summation. If in an
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indexed expression a dummy index occurs, then the expression has to be considered
as the sum with respect to that index over the prescribed range. Thus the expression

a1x
1 + a2x

2 + a3x
3 + · · ·+ aNx

N =

N∑
i=1

aix
i

will be written in summation convention as aix
i in N dimensions. Similarly, according

to this convention
N∑
i=1

N∑
j=1

aijx
ixj will be written as aijx

ixj in N dimensional space.

Therefore, according to this convention, if an index is repeated in a term, summa-
tion over it from 1 to N is implied.

Nonidentities: The following nonidentities should be carefully noted

aij
(
xi + yj

)
̸= aijx

i + aijy
j ; aijx

iyj ̸= aijy
ixj ; (aij + aji)x

iyj ̸= 2aijx
iyj .

Valid identities: The following identities should be carefully noted:

aij
(
xj + yj

)
= aijx

j + aijy
j ; aijx

iyj = aijy
jxi

aijx
ixj = ajix

ixj ; (aij + aji)x
ixj = 2aijx

ixj ; (aij − aji)x
ixj = 0.

EXAMPLE 1.1.2 Express the sum
N∑
i=1

N∑
j=1

aiju
ivj by using summation convention

and hence find all the terms of the sum in which each of the indices takes values from
1 to 3.

Solution: Since each of the indices i, j occurs twice, once as lower index and again
as upper index, the required expression is aiju

ivj . Since both the indices are dummy,

aiju
ivj =

3∑
i=1

3∑
j=1

aiju
ivj =

3∑
i=1

(
ai1u

iv1 + ai2u
iv2 + ai3u

iv3
)

=
3∑
i=1

ai1u
iv1 +

3∑
i=1

ai2u
iv2 +

3∑
i=1

ai3u
iv3

=
(
a11u

1v1 + a21u
2v1 + a31u

3v1
)
+
(
a12u

1v2 + a22u
2v2 + a32u

3v2
)

+
(
a13u

1v3 + a23u
2v3 + a33u

3v3
)

= a11u
1v1 + a22u

2v2 + a33u
3v3 + a12u

1v2 + a21u
2v1

+a13u
1v3 + a31u

3v1 + a23u
2v3 + a32u

3v2.

EXAMPLE 1.1.3 If the aij are constants, calculate ∂
∂xk

(
aijx

ixj
)
.
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Solution: Returning to Einstein summation convention, we have∑
i,j

aijx
ixj =

∑
i̸=k,j ̸=k

aijx
ixj +

∑
i=k,j ̸=k

aijx
ixj +

∑
i ̸=k,j=k

aijx
ixj +

∑
i=k,j=k

aijx
ixj

= C +

∑
j ̸=k

akjx
j

xk +

∑
i̸=k

aikx
i

xk + akk(x
k)2,

where C is independent of xk. Differentiating with respect to xk,

∂

∂xk

∑
i,j

aijx
ixj

 = 0 +
∑
j ̸=k

akjx
j +

∑
i ̸=k

aikx
i + 2akkx

k

=
∑
j

akjx
j +

∑
i

aikx
i = akix

i + aikx
i = (aik + aki)x

i,

where we are going back to the Einstein summation convention.
Further, if aij = aji are constants then

∂2

∂xk∂xl
(
aijx

ixj
)
=

∂

∂xk

[
∂

∂xl
(
aijx

ixj
)]

=
∂

∂xk
[
(alj + ajl)x

j
]

=
∂

∂xk
[
2ailx

i
]
= 2ailδ

i
k = 2akl.

1.1.4 Kronecker Delta

A particular system of second order, denoted by δij ; i, j = 1, 2, . . . , N which is defined
as follows:

δij = δij = δij =

{
1 ; for i = j
0 ; for i ̸= j.

(1.1)

Such a system is called a Kronecker symbol. It is also called a Kronecker delta.

Property 1.1.1 If the coordinates x1, x2, . . . , xN are independent, then

∂xi

∂xj
=

{
1 ; for i = j
0 ; for i ̸= j.

This implies that, if xi and xj belong to the same co-ordinate system and independent,
then ∂xi

∂xj
= δij . It is also written as

∂xi

∂xj
=
∂xi

∂xk
∂xk

∂xj
= δij

where, as per convention, summation over k is implied.



6 Tensor Algebra

Property 1.1.2 Following Einstein summation convention, we get

δii = δ11 + δ22 + · · ·+ δNN = 1 + 1 + · · ·+ 1(N times) = N.

Property 1.1.3 According to the Einstein summation convention, we get

δ1jA
jk = δ11A

1k + δ12A
2k + δ13A

3k + · · ·+ δ1NA
Nk

= A1k + 0 + 0 + · · ·+ 0 = A1k

δ2jA
jk = A2k, δ3jA

jk = A3k, . . . , δNj A
jk = ANk.

Generalising this we obtain δijA
jk = Aik. Also, δjkA

ik = Ajk, in which in the expression

Ajk we replace the index j by the i. Similarly, δijA
k
i = Akj . Thus the symbol δij allows

us to replace one index by another, for this reason, the symbol δij is sometimes called
the substitution operator.

Property 1.1.4 Using the Einstein summation convention, we get

δijδ
j
k = δi1δ

1
k + δi2δ

2
k + · · ·+ δiiδ

i
k + · · ·+ δiNδ

N
k

= 0δ1k + 0δ2k + · · ·+ 1δik + · · ·+ 0δNk = δik.

Using definition of δij we get,

δijδ
j
k =

∂xi

∂xj
∂xj

∂xk
=
δxi

δxk
= δik.

In particular, when k = i we get

δijδ
j
i = δii = δ11 + δ22 + · · ·+ δNN = N.

EXAMPLE 1.1.4 If Ai = girarsys, yi = birxr and airbrj = δij, find A
i in terms of

the xr.

Solution: First write, ys = bstxt. Then by substitution,

Ai = girarsbstxt = girδrtxt = girxr.

EXAMPLE 1.1.5 Evaluate δirδ
r
j and δijδ

j
l δ
l
k the indices take all values from 1 to N .

Solution: Using Einstein summation convention, we have,

δirδ
r
j = δi1δ

1
j + δi2δ

2
j + · · ·+ δiNδ

N
j .

So, according to summation convention,

δ1rδ
r
j = δ11δ

1
j + δ12δ

2
j + · · ·+ δ1Nδ

N
j

= δ1j + 0 + · · ·+ 0 = δ1j ; for all j.
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Similarly, δ2rδ
r
j = δ2j , . . . , δ

N
r δ

r
j = δNj . From these equations it follows that, δirδ

r
j = δij .

Using this result, we get

δijδ
j
l δ
l
k =

δxi

δxj
δxj

δxl
δxl

δxk
=
δxi

δxk
= δik.

EXAMPLE 1.1.6 Calculate δijxixj for N = 3.

Solution: For N = 3, we have

δijxixj = 1x1x1 + 1x2x2 + 1x3x3

= (x1)
2 + (x2)

2 + (x3)
2.

In general, δijxixj = xixi and δ
r
jairxi = aijxi.

1.1.5 Manifolds and Tensors

It is hard to imagine a physical problem which does not involve some sort of con-
tinuous space. It might be physical three-dimensional space, four-dimensional space
time, phase space for a problem in classical or quantum mechanics, the space of all
thermodynamic equilibrium states, or some still more abstract space.

For instance, in dealing with the states of gas determined by the pressure (p), the
volume (v), the temperature (T ) and the time (t), one may wish to co-ordinate these
entities with ordered set of four real numbers (x1, x2, x3, x4). Here the diagrammatic
representation of the states of gas by points in the physical space is already impossible.
However, the essential idea in the concept of co-ordinate system is not a pictorial
representation but the one-to-one reciprocal correspondence of objects with sets of
numbers.

All these spaces have different geometrical properties, but they all share something
in common, something which has to do with their being continuous spaces rather
than, say, lattices of discrete points. The key to differential geometry’s importance to
modern physics is that it studies precisely those properties common to all such spaces.
The most basic of these properties go into the definition of the differentiable manifold,
which is the mathematically precise substitute for the word ‘space’.

Definition 1.1.1 Let us denote ℜn by the set of all n-tuples of real numbers
(x1, x2, . . . , xn). A set of ‘points’ M is defined to be a manifold if

(i) each point of M has an open neighbourhood and

(ii) has a continuous one-to-one map onto an open set of ℜn, for some n.

Clearly the dimension of M is n. By definition, the map associates with a point P
of M an n-tuple

[
x1(P ), x2(P ), . . . , xn(P )

]
. These numbers x1(P ), x2(P ), . . . , xn(P )

are called the co-ordinates of P under this map. Then an n dimensional manifold
is that it is simply any set which can be given n independent co-ordinates in some
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neighbourhood of any point, since these co-ordinates actually define the required map
to ℜn.

The usefulness of the concept of a manifold really comes from its generality, the
fact that it embraces sets which one might not ordinarily regard as spaces. By defini-
tion, any set that can be parameterized continuously is a manifold whose dimension
is the number of independent parameters. For example,

(i) The set of all rotation of a rigid object in three dimensions is a manifold, since
it can be continuously parameterized by the three ‘Euler angles’.

(ii) The set of all Lorentz transformation is likewise a three dimensional manifold;
the parameters are the three components of the velocity of the boost.

(iii) For N particles the numbers consisting of all their positions (3N numbers) and
velocities (3N numbers) define a point in a 6N-dimensional manifold, called phase
space.

(iv) Given an equation (algebraic or differential) for a dependent variable y in terms
of an independent variable x, one can define the set of all (y, x) to be a manifold;
any particular solution is a curve in this manifold. This concept is easily extended
to arbitrary numbers of dependent and independent variables.

A particular set of n real numbers (x10, x
2
0, . . . , x

n
0 ) can be thought to specify a point

P0 in the n-dimensional metric manifold covered by a co-ordinate system (xi).

Note that, the map is only required to be one-to-one, not to preserve lengths or
angles or any other geometrical notion. Indeed, the idea of distance becomes devoid
to geometrical sense even in familiar representation of the states of gas (the pressure p
and the volume v) by points in the Cartesian pv-plane. It is manifestly absurd to speak
of the distance between two states characterised by ordered pairs of numbers (p, v).
Thus, length is not defined at this level of geometry, and, we shall encounter physical
applications in which we will not want to introduce a notion of distance between two
points of our manifolds.

1.2 Transformation of Co-ordinates

We consider a transformation from one co-ordinate system
(
x1, x2, . . . , xN

)
to another

co-ordinate system
(
x1, x2, . . . , xN

)
in the same space VN , related by the N equations

T : xi = ϕi
(
x1, x2, . . . , xN

)
; i = 1, 2, . . . , N (1.2)

where ϕi are single valued, continuous functions of co-ordinates x1, x2, . . . , xN and have
continuous partial derivatives up to any desired order and further the determinant
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J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ϕ1

∂x1
∂ϕ1

∂x2
· · · ∂ϕ1

∂xN

∂ϕ2

∂x1
∂ϕ2

∂x2
· · · ∂ϕ2

∂xN
...

...
...

...

∂ϕN

∂x1
∂ϕN

∂x2
· · · ∂ϕN

∂xN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0. (1.3)

This determinant (1.3) is called the Jacobian of transformation (1.2) and is denoted

by

∣∣∣∣∂ϕi∂xi

∣∣∣∣ , ∣∣∣∣∂xi∂xi

∣∣∣∣ or

∣∣∣∣∂x∂x
∣∣∣∣. A well known theorem from analysis states that T is locally

bijective on an open set in ℜN if and only if J ̸= 0 at each point on the open set. In
virtue of (1.3) the functions ϕi are independent and the Eq. (1.2) can be solved for
the xi as functions of xi giving

T−1 : xi = ψi
(
x1, x2, . . . , xN

)
; i = 1, 2, . . . , N. (1.4)

where the functions ψi(x1, x2, . . . , xN ) are single valued.

The relations (1.2) and (1.4) are called formulas of transformation of co-ordinates
of VN . They help to determine the co-ordinates of any point of VN with respect to one
co-ordinate system when the co-ordinates of the same point with respect to another
co-ordinate system are known. We shall refer to a class of co-ordinate transforma-
tions with this properties as admissible transformations. Below are some examples of
admissible transformations of co-ordinates.

(i) Consider a system of equations specifying the relation between the spherical
polar co-ordinates xi and the rectangular Cartesian co-ordinates xi in E3 (three-
dimensional Euclidean space),

T : x1 = x1 sinx2 cosx3; x2 = x1 sinx2 sinx3; x3 = x1 cosx2

where, x1 > 0, 0 < x2 < π, 0 ≤ x3 < 2π. The Jacobian of this transformation is
given by

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂x1
∂x1

∂x2
∂x1

∂x3

∂x2

∂x1
∂x2

∂x2
∂x2

∂x3

∂x3

∂x1
∂x3

∂x2
∂x3

∂x3

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
(
x1
)2

sinx2 ̸= 0.
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The inverse transformation is given by

T−1 :



x1 =
√(

x1
)2

+
(
x2
)2

+
(
x3
)2

x2 = cos−1 x3√
(x1)

2
+(x2)

2
+(x3)

2
= tan−1

√
(x1)

2
+(x2)

2

x3

x3 = tan−1 x
2

x1
.

(ii) In ℜ2, let a curvilinear co-ordinate system (xi) be defined from rectangular co-
ordinates (xi) by the equation

T : x1 = x1x2; x2 =
(
x2
)2

so

J =

∣∣∣∣x2 x1

0 2x2

∣∣∣∣ = 2
(
x2
)2 ̸= 0.

Thus the curvilinear co-ordinates are admissible for the region x2 > 0 and x2 < 0
(both open sets in a plane).

(iii) The relation between the cylindrical co-ordinates yi and the rectangular Carte-
sian co-ordinates xi is given by

x1 = y1 cos y2; x2 = y1 sin y2; x3 = y3,

where, y1 ≥ 0, 0 ≤ y2 < 2π, −∞ < y3 <∞.

(iv) The relation between the parabolic cylindrical co-ordinates yi and the rectangu-
lar Cartesian co-ordinates xi is given by

x1 =
1

2

[
(y1)2 − (y2)2

]
; x2 = y1y2; x3 = y3,

where, −∞ < y1 <∞, y2 ≥ 0, −∞ < y3 <∞.

(v) The relation between the elliptic cylindrical co-ordinates yi and the rectangular
Cartesian co-ordinates xi is given by

x1 = a cosh y1 cos y2; x2 = a sinh y1 sin y2; x3 = y3,

where, y1 ≥ 0, 0 ≤ y2 < 2π, −∞ < y3 <∞.

(vi) The relation between the paraboloidal co-ordinates yi and the rectangular
Cartesian co-ordinates xi is given by

x1 = y1y2 cos y3; x2 = y1y2 sin y3; x3 =
1

2

[
(y1)2 − (y2)2

]
,

where, y1 ≥ 0, y2 ≥ 0, 0 ≤ y3 < 2π.
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The components of a tensor change under transformation of co-ordinates but the
entity called a tensor does not change under co-ordinate transformation. If, starting
from a system of co-ordinates xi, we allow only transformations which are expressed
by function which have derivatives up to any order, and can be solved, these new
co-ordinates will be called allowable co-ordinates.

Below are some properties of admissible transformations of co-ordinates.

Property 1.2.1 If a transformation (1.2) of co-ordinates possesses an inverse trans-
formation (1.4) with respective Jacobians J and K, respectively, then JK = 1.

Proof: Since xis are independent and xis are also independent functions of xis, by the
formula of partial differentiation and summation convention we can write

∂xi

∂xj
=
∂xi

∂xk
∂xk

∂xj
; k = 1, 2, . . . , N

or

δ
i
j = δij =

∂xi

∂xk
∂xk

∂xj

or ∣∣δij∣∣ = ∣∣∣∣ ∂xi∂xk

∣∣∣∣ ∣∣∣∣∂xk∂xj

∣∣∣∣
or

1 =

∣∣∣∣ ∂xi∂xk

∣∣∣∣ ∣∣∣∣∂xk∂xj

∣∣∣∣ ; as
∣∣δij∣∣ = 1

or

1 = JK; J =

∣∣∣∣ ∂xi∂xk

∣∣∣∣ and K =

∣∣∣∣∂xk∂xj

∣∣∣∣ .
Incidentally it follows from this result that J ̸= 0.

Property 1.2.2 The Jacobian of the product transformation is equal to the product
of the Jacobians of transformations entering in the product.

Proof: Let us consider any two admissible transformations

T1 : x
i = xi

(
x1, x2, . . . , xN

)
; T2 : x

i
= x

i (
x1, x2, . . . , xN

)
,

where i = 1, 2, . . . , N. The transformation T3 : x
i → x

i
defined by

T3 : x
i
= x

i [
x1
(
x1, x2, . . . , xN

)
, . . . , xN

(
x1, x2, . . . , xN

)]
is called the product of T2 and T1 and we write T3 = T2T1 (Figure 1.1). If the Jacobian
of T3 is denoted by J3, it follows that:
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Figure 1.1: The transformation.

J3 =

∣∣∣∣∣ ∂x
i

∂xk
∂xk

∂xj

∣∣∣∣∣ =
∣∣∣∣∣ ∂x

i

∂xk

∣∣∣∣∣
∣∣∣∣∂xk∂xj

∣∣∣∣ = J2J1,

where J2 and J1 are the Jacobians of T2 and T1, respectively.

Property 1.2.3 The set of all admissible transformations of co-ordinates forms a
group.

Proof: The set of all admissible transformations of co-ordinates forms a group if the
following four axioms are satisfied:

(i) The product of two admissible transformations is a transformation belonging to
the set of admissible transformations. This property is known as the property
of closure.

(ii) The product transformation possesses an inverse, since the transformations
appearing in the product have inverses.

(iii) The identity transformation
(
xi = xi

)
obviously exists.

(iv) The associative law T3 (T2T1) = (T3T2)T1 obviously holds.

These properties are precisely the ones entering in the definition of an abstract group.
The fact that admissible transformations forms a group justifies us in choosing as a
point of departure any convenient co-ordinate system, as long as it is one of those
admitted in the set.

EXAMPLE 1.2.1 Find Cartesian co-ordinates of a point whose cylindrical co-
ordinates are

(
4, π3 , 2

)
.

Solution: The relation between the cylindrical co-ordinates yi and the rectangular
Cartesian co-ordinates xi is given by

x1 = y1 cos y2; x2 = y1 sin y2; x3 = y3.

Here, y1 = 4, y2 = π
3 and y3 = 2. Therefore,

x1 = 4 cos
π

3
= 4 · 1

2
= 2; x2 = 4 sin

π

3
= 4 ·

√
3

2
= 2

√
3 and x3 = 2.

Thus, the required co-ordinates are (2, 2
√
3, 2).
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EXAMPLE 1.2.2 Find cylindrical co-ordinates of a point whose spherical co-
ordinates are

(
4, π2 ,

π
3

)
.

Solution: The relation between the rectangular Cartesian co-ordinates yi and the
spherical co-ordinates xi is given by

y1 = x1 sinx2 cosx3; y2 = x1 sinx2 sinx3; y3 = x1 cosx2.

Here, x1 = 4, x2 = π
2 , x

3 = π
3 . Therefore,

y1 = 4 sin
π

2
cos

π

3
= 4 · 1 · 1

2
= 2

y2 = 4 sin
π

2
sin

π

3
= 4 · 1 ·

√
3

2
= 2

√
3; y3 = 4 cos

π

2
= 0.

Thus, Cartesian co-ordinates of the point
(
4, π2 ,

π
3

)
are (2, 2

√
3, 0). Now we are to find

the cylindrical co-ordinates of the point, whose Cartesian co-ordinates are (2, 2
√
3, 0).

The relation between the cylindrical co-ordinates yi and the rectangular
Cartesian co-ordinates xi is given by x1 = y1 cos y2; x2 = y1 sin y2; x3 = y3. Here,
x1 = 2, x2 = 2

√
3, x3 = 0, therefore,

2 = y1 cos y2; 2
√
3 = y1 sin y2

⇒ 22 + (2
√
3)2 =

(
y1 cos y2

)2
+
(
y1 sin y2

)2
⇒ (y1)2 = 16 ⇒ y1 = 4.

and
tan y2 =

√
3 ⇒ y2 =

π

3
.

Thus, the required co-ordinates are (4, π3 , 0).

EXAMPLE 1.2.3 Find spherical co-ordinates of a point whose cylindrical co-
ordinates are

(
2
√
2, π4 , 1

)
.

Solution: The relation between the cylindrical co-ordinates yi and the rectangular
Cartesian co-ordinates xi is given by x1 = y1 cos y2; x2 = y1 sin y2; x3 = y3. Here,
y1 = 2

√
2, y2 = π

4 , y
3 = 1, therefore,

x1 = 2
√
2 cos

π

4
= 2

√
2 · 1√

2
= 2

x2 = 2
√
2 sin

π

4
= 2

√
2 · 1√

2
= 2 and x3 = 1.

Thus, Cartesian co-ordinates of the point
(
2
√
2, π4 , 1

)
are (2, 2, 1). Now, we are to find

the spherical co-ordinates of the point, whose rectangular co-ordinates are (2, 2, 1).
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The relation between the spherical co-ordinates yi and the rectangular Cartesian co-
ordinates xi is given by

y1 =

√
(x1)2 + (x2)2 + (x3)2 =

√
4 + 4 + 1 = 3

y2 = cos−1 x3√
(x1)2 + (x2)2 + (x3)2

= cos−1 1√
4 + 4 + 1

= cos−1 1

3

y3 = tan−1 x
2

x1
= tan−1 1 =

π

4
.

Thus, the required co-ordinates are
(
3, cos−1 1

3 ,
π
4

)
.

EXAMPLE 1.2.4 Show that the equation x1 = 4 cosx2 in spherical co-ordinates
represents a sphere.

Solution: The relation between the Cartesian co-ordinates yi and the spherical co-
ordinates is given by

y1 = x1 sinx2 cosx3; y2 = x1 sinx2 sinx3; y3 = x1 cosx2.

Then,
x1 =

√
(y1)2 + (y2)2 + (y3)2

and

x2 = cos−1

[
y3

(y1)2 + (y2)2 + (y3)2

]
The given equation can therefore be written as√

(y1)2 + (y2)2 + (y3)2 = 4
y3√

(y1)2 + (y2)2 + (y3)2

or
(y1)2 + (y2)2 + (y3 − 2)2 = 4

which represents the equation of a sphere.

1.3 e-Systems

In this section we shall define two completely skew-symmetric systems (of functions)
eαβ and eαβ explicitly. The second order e-system eij or e

ij are defined by

e11 = 0, e22 = 0, e12 = 1, e21 = −1

e11 = 0, e22 = 0, e12 = 1, e21 = −1

}
. (1.5)
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The covariant ε tensor of second order is defined by

ε11 = 0, ε12 =
√
g, ε21 = −√

g, ε22 = 0, g = |gij |. (1.6)

This tensor is skew-symmetric. Accordingly by tensor law of transformation,

εij =
∂up

∂ui
∂uq

∂uj
εpq

or

εij =
∂u1

∂ui
∂u2

∂uj
ε12 +

∂u2

∂ui
∂u1

∂uj
ε21; as ε11 = 0, ε22 = 0

or

εij =
√
g

∣∣∣∣∣∣∣∣
∂u1

∂ui
∂u2

∂ui

∂u1

∂uj
∂u2

∂uj

∣∣∣∣∣∣∣∣ =
√
g
∂(u1, u2)

∂(ui, uj)
.

Therefore, ε11 = ε22 = 0 and

ε12 =
√
g
∂(u1, u2)

∂(u1, u2)
=

√
g; ε21 = −√

g
∂(u1, u2)

∂(u1, u2)
= −√

g.

Let us consider εij as εij = εrsg
irgjs (1.7)

which is called the contravariant ε tensor of second order. Since ε11 = ε22 = 0, we find

εij =
√
g
[
gi1gj2 + gi2gj1

]
and therefore, ε11 = ε22 = 0 and

ε12 =
√
g
[
g11g22 − (g12)2

]
=

1
√
g
and ε21 = − 1

√
g
.

Therefore, the contravariant ε tensor has the components

ε11 = 0; ε12 =
1
√
g
; ε21 = − 1

√
g
; ε22 = 0

Similarly, we get εij as

εij =
1
√
g
eij . (1.8)

The third order e-system eijk or e
ijk known as permutation symbols in three-dimensional

space are defined by

e123 = e231 = e312 = 1; e213 = e321 = e132 = −1

e123 = e231 = e312 = 1; e213 = e321 = e132 = −1

}
(1.9)
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and the remaining 21 components are zero. Further, let us define

εijk =
1
√
g
eijk; ε

ijk =
√
g eijk; g = |gij | (1.10)

which are, respectively, the covariant and contravariant tensors, are called permutation
tensors in three-dimensional space. Thus, the permutation tensor ϵijk is given by

ϵijk =


+1; when i, j, k are in even permutation of 1, 2, 3
0; when any two of the indices i, j, k are equal
−1; when i, j, k are in odd permutation of 1, 2, 3.

These are also called fully antisymmetric tensor of rank 3 with 3! non-vanishing com-
ponents. We shall now establish some results using e-systems of second and third
orders.

Property 1.3.1 e-systems of second order: According to the definition of deter-
minants,

∣∣aij∣∣ =
∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ = a11a
2
2 − a12a

2
1

= e12a
1
1a

2
2 + e21a

2
1a

1
2; as e12 = 1, e21 = −1

or ∣∣aij∣∣ = eija
i
1a
j
2 (by summation convention). (1.11)

Similarly, it can be shown that
∣∣∣aij∣∣∣ = eija1i a

2
j . Let us now consider the expression

eija
i
pa
j
q where the indices p and q are free and can be assigned values 1 and 2 at will.

We have

eija
i
1a
j
2 = e12a

1
1a

2
2 + e21a

2
1a

1
2 = e12a

1
1a

2
2 − e12a

2
1a

1
2 = e12

∣∣aij∣∣.
Similarly, it can be shown that eija

i
2a
j
1 = e21

∣∣∣aij∣∣∣. From this two results we can write

eija
i
pa
j
q = epq

∣∣aij∣∣⇒ ∣∣aij∣∣ epq = eija
i
pa
j
q. (1.12)

Similarly, it can be shown that ∣∣aij∣∣ epq = eijapi a
q
j . (1.13)
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Property 1.3.2 e-system of third order: If we take,

∣∣aij∣∣ =
∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣,
then, by the similar arguments as in property 1.3.1, the following results hold:∣∣∣aij∣∣∣ = eijka

i
1a
j
2a
k
3∣∣∣aij∣∣∣ = eijka1i a

2
ja

3
k∣∣∣aij∣∣∣ epqr = eijka

i
pa
j
qakr∣∣∣aij∣∣∣ epqr = eijkapi a
q
ja
r
k


. (1.14)

The above definitions of e-systems of second and third order can obviously be extended
to define e-systems of nth order ei1,i2,...,in and ei1,i2,...,in involving n indices. If

|aij | =

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
...

...

aN1 aN2 · · · aNN

∣∣∣∣∣∣∣∣∣∣∣
Then results analogous to (1.14) will hold.

Property 1.3.3 The product of eij and epq is called the generalised Kronecker delta

and is denoted by δijpq, i.e.

δijpq = eijepq. (1.15)

Similarly, δijkpqr = eijkepqr. The product ei1,i2,...,inej1,j2,...,jn is called the generalised

Kronecker delta is denoted by δi1,i2,...,inj1,j2,...,jn
. It is to be noted that

eijkepqk = δijpq and eijkepjk = 2δip. (1.16)

EXAMPLE 1.3.1 Evaluate eije
ik, in e-systems of the second order, if i, j = 1, 2.
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Solution: According to the Einstein summation convention, we get

eije
ik = e1je

1k + e2je
2k.

When, j = k = 1 or 2, then

ei1e
i1 = e11e

11 + e21e
21 = 1 · 1 + 0 · 0 = 1

ei2e
i2 = e12e

12 + e22e
22 = 0 · 0 + 1 · 1 = 1.

Thus, when j = k, then eije
ik = 1. Again, when j ̸= k, say j = 1, k = 2 or j = 2, k = 1,

we get

ei1e
i2 = e11e

12 + e21e
22 = 1 · 0 + 0 · 1 = 0

ei2e
i1 = e12e

11 + e22e
21 = 0 · 1 + 1 · 0 = 0.

Thus, when j ̸= k, then eije
ik = 0. Therefore in general, eije

ik = δkj . In particular,
when j = k, we get,

eije
ij = δij = δ11 + δ22 + · · ·+ δNN = N.

EXAMPLE 1.3.2 Establish the following identity:

erijerkl ≡ δikδjl − δilδjk. (1.17)

Solution: The identity implies n = 3, so that there are potentially 34 = 81 separate
cases to consider. However, this number can be quickly reduced to only four cases as
follows:

If either i = j or k = l, then both sides vanish. For example, if i = j, then the left
erij = 0, and on the right

δikδjl − δikδjl = 0.

Hence, we need only consider the cases in which both i ̸= j and k ̸= l. Upon writing
out the sum on the left, two of the terms drop out, since i ̸= j,

e1ije1kl + e2ije2kl + e3ije3kl = e1′2′3′e1′kl; i = 2′, j = 3′,

where (1′2′3′) denotes some permutation of (123). Thus, there are left only two cases,
each with two subcases.

Case 1: Let e1′2′3′e1′kl ̸= 0; i = 2′, j = 3′. Here, either k = 2′ and l = 3′ or k = 3′

and l = 2′. If the former, then the left member of Eq. (1.17) is +1, while the right
member equals

δ2′2′δ3′3′ − δ2′3′δ3′2′ = 1− 0 = 1.



1.4 Tensor Notation on Matrices 19

If the latter, then both members equal to −1, as can be easily verified.

Case 2: Let e1′2′3′e1′kl = 0; i = 2′, j = 3′. Since, k ̸= l, either k = 1′ and l = 1′. If
k = 1′ then the right member of Eq. (1.17) is

δ2′1′δ3′l − δ2′lδ3′1′ = 0− 0 = 0.

If l = 1′, we have

δ2′kδ3′1′ − δ2′1′δ3′k = 0− 0 = 0.

This completes the examination of all cases, and the identity is established.

1.4 Tensor Notation on Matrices

It is known that if the range of the indices of a system of second order is from 1 to N ,
then the number of its components is N2. A system of second order can be of three
types, namely, aij , aij and aij . By matrices of systems of second order we mean the

matrices
(
aij

)
, (aij) and

(
aij
)
, i.e.


a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
...

...
aN1 aN2 · · · aNN

 ,


a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
...

...
aN1 aN2 · · · aNN

 and


a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
...

...
aN1 aN2 · · · aNN


each of which is an N×N matrix. The determinants of their matrices are, respectively,

denoted by
∣∣∣aij∣∣∣ , |aij | and ∣∣aij∣∣. We shall now establish the following results on matrices

and determinants of system of second order:
In terms of the Kronecker deltas, the identity matrix of order N is

I = (δij)N×N =
(
δij
)
N×N =

(
δij
)
N×N , (1.18)

which has the property IA = AI = A for any square matrix A of order N .
A square matrix A = (aij)N×N is invertible, if there exists a (unique) matrix

B = (bij)N×N , called the inverse of A, such that AB = BA = I. In terms of compo-
nents, the criterion reads

airbrj = birarj = δij ; airb
r
j = bira

r
j = δij ; airbrj = birarj = δij . (1.19)

If A = (aij) and B = (bij) be two matrices conformable for multiplication, then aijb
j
p =

AB is the multiplication of two matrices, where i and p are not summed on.
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Property 1.4.1 If aijb
j
p = cip, then

(
aij

)(
bjp
)
=
(
cip
)
and

∣∣∣aij∣∣∣ ∣∣∣bjp∣∣∣ = ∣∣cip∣∣.
Proof: Since we take a system of second order, so

cip = aijb
j
p = ai1b

1
p + ai2b

2
p

or (
c11 c12

c21 c22

)
=

(
a11b

1
1 + a12b

2
1 a11b

1
2 + a12b

2
2

a21b
1
1 + a22b

2
1 a21b

1
2 + a22b

2
2

)
=

(
a11 a12

a21 a22

)(
b11 b12

b21 b22

)
or (

cip
)
=
(
aij
) (
bjp
)
. (1.20)

Taking determinants of both sides, we get∣∣cip∣∣ = ∣∣aij∣∣ ∣∣bjp∣∣ ; as |AB| = |A||B|. (1.21)

We shall prove these results by taking the range of the indices from 1 to 2. Generalising
this to a finite numbers, we get∣∣∣aikbkhchi , . . . , prj ∣∣∣ = ∣∣aik∣∣ ∣∣∣bkh∣∣∣ ∣∣∣chi ∣∣∣ · · · ∣∣prj ∣∣.
Thus, the results hold, in general, when the range is from 1 to N .

Property 1.4.2 If aijb
ik = ckj , then

(
bik
)T

(aij) =
(
ckj

)
and

∣∣bik∣∣ |aij | = ∣∣∣ckj ∣∣∣, where(
bik
)T

is the transpose of
(
bik
)
.

Proof: Since we take a system of second order, so

ckj = aijb
ik = a1jb

1k + a2jb
2k

or(
c11 c12

c21 c22

)
=

(
a11b

11 + a21b
21 a12b

11 + a22b
21

a11b
12 + a21b

22 a12b
12 + a22b

22

)
=

(
b11 b21

b12 b22

)(
a11 a12

a21 a22

)
or (

ckj

)
=
(
bik
)T

(aij) . (1.22)

Taking determinants of both sides, we get∣∣∣ckj ∣∣∣ = ∣∣∣bik∣∣∣T |aij | =
∣∣∣bik∣∣∣ |aij | ; since

∣∣BT
∣∣ = |B|T = |B|. (1.23)

We shall prove these results by taking the range of the indices from 1 to 2. But the
results hold, in general, when the range is from 1 to N .
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Property 1.4.3 Let the cofactor of the element aij in the determinant |aij | be denoted
by the symbol Aji . Then by summation convention,

aijA
j
k = ai1A

1
k + ai2A

2
k + · · ·+ aiNA

N
k = δik|aij | = δika, (1.24)

and

aijA
k
j = a1jA

k
1 + a2jA

k
2 + · · ·+ aNj A

k
N = δkj |aij | = δkj a. (1.25)

where a = |aij |. These formulas include the familiar simple Laplace developments of

|aij |. The first of these then represents the expansion in terms of these elements of the

ith row; the second, in terms of the elements of the jth column of |aij |.
If the elements of the determinant a is denoted by aij , we shall write the cofactor

of aij as Aij . Simple Laplace developments corresponding to (1.24) and (1.25) assume
the form

aijAij = a and aijAik = a.

Property 1.4.4 Let us consider a system of n linear equations as

aijx
j = bi; i, j = 1, 2, . . . , n (1.26)

in n unknown xi, where |aij | ≠ 0. Multiplying both sides of equations in (1.26) by Aki ,
and sum with respect to i yields

aijA
k
i x

j = biAki

or,
aδkj x

j = biAki ; using (1.25)

or,

axk = biAki ⇒ xk =
1

a
biAki . (1.27)

This is the Cramer’s rule for the solution of the system of n linear equations (1.26).

Property 1.4.5 Consider the determinant |aij | = a. Let the elements aijA
j
k be func-

tions of the independent variables x1, x2, . . . xN then,

∂a

∂x1
=

∣∣∣∣∣∣∣∣∣∣∣∣

∂a11
∂x1

∂a12
∂x1

. . .
∂a1N
∂x1

a21 a22 . . . a2N
...

... · · ·
...

aN1 aN2 . . . aNN

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1N

∂a21
∂x1

∂a22
∂x1

. . .
∂a2N
∂x1

...
... · · ·

...

aN1 aN2 . . . aNN

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1N

a21 a22 . . . a2N
...

... · · ·
...

∂aN1
∂x1

∂aN2
∂x1

. . .
∂aNN
∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
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=

(
∂a11
∂x1

A1
1 +

∂a12
∂x1

A2
1 + · · ·+

∂a1N
∂x1

AN1

)
+

(
∂a21
∂x1

A1
2 +

∂a22
∂x1

A2
2 + · · ·+

∂a2N
∂x1

AN2

)
+ · · ·+

(
∂aN1
∂x1

A1
N +

∂aN2
∂x1

A2
N + · · ·+

∂aNN
∂x1

ANN

)

=
∂a1i
∂x1

Ai1 +
∂a2i
∂x1

Ai2 + · · ·+ ∂aNi
∂x1

AiN =
∂aji
∂x1

Aij .

Therefore, in general, we get

∂a

∂xp
=
∂aji
∂xp

Aij , (1.28)

where Aij is the cofactor aji in the determinant a = |aij |.

Property 1.4.6 Consider the transformations zi = zi
(
yk
)

and yi = yi
(
xk
)

(Figure 1.1). Let the N functions zi
(
y1, y2, . . . , yN

)
be independent on N variables

y1, y2, . . . , yN so that
∣∣∣∂zi∂yi

∣∣∣ ̸= 0. In this case the N equations zi = zi
(
yk
)
are solvable

for the z’s in terms of y’s. Similarly suppose that N functions yi
(
x1, x2, . . . , xN

)
are

independent functions so that
∣∣∣ ∂yi∂xk

∣∣∣ ̸= 0. Using the chain rule of differentiation, we

get, the relation

∂zi

∂xk
=
∂zi

∂y1
∂y1

∂xk
+
∂zi

∂y2
∂y2

∂xk
+ · · ·+ ∂zi

∂yN
∂yN

∂xk
=
∂zi

∂yj
∂yj

∂xk

or ∣∣∣∣ ∂zi∂xk

∣∣∣∣ = ∣∣∣∣ ∂zi∂yj

∣∣∣∣ ∣∣∣∣ ∂yj∂xk

∣∣∣∣ = ∣∣∣∣ ∂zi∂yj

∣∣∣∣ ∣∣∣∣ ∂yi∂xj

∣∣∣∣, (1.29)

connecting the functional determinants. Consider the particular case in which zi = xi,
then Eq. (1.29) becomes,∣∣∣∣ ∂xi∂xk

∣∣∣∣ = ∣∣∣∣∂xi∂yj

∣∣∣∣ ∣∣∣∣ ∂yi∂xj

∣∣∣∣ or
∣∣δik∣∣ = ∣∣∣∣∂xi∂yj

∣∣∣∣ ∣∣∣∣ ∂yi∂xj

∣∣∣∣
or

1 =

∣∣∣∣∂xi∂yj

∣∣∣∣ ∣∣∣∣ ∂yi∂xj

∣∣∣∣⇒ ∣∣∣∣∂xi∂yj

∣∣∣∣ = 1∣∣∣ ∂yi∂xj

∣∣∣ .
Thus, the Jacobian of direct transformation is the reciprocal of Jacobian of inverse
transformation.
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EXAMPLE 1.4.1 Prove that
∣∣∣aij∣∣∣ ∣∣bkm∣∣ = ∣∣∣cij∣∣∣, where cim = aipb

p
m.

Solution: Using formula (1.14), we get∣∣aij∣∣ ∣∣∣bkm∣∣∣ = ∣∣aij∣∣ ekmsbk1bm2 bs3 = [ekms ∣∣aij∣∣] bk1bm2 bs3
=
[
eijta

i
ka
j
ma

t
s

]
bk1b

m
2 b

s
3; by Eq. (1.14)

= eijt

(
aikb

k
1

) (
ajmb

m
2

) (
atsb

s
3

)
= eijtc

i
1c
j
2c
t
3 =

∣∣cij∣∣ .
The above result can be stated as follows:∣∣aij∣∣ ∣∣∣bkm∣∣∣ = ∣∣aipbpm∣∣ ,
which is well known result on multiplication of two determinants of third order.

Result 1.4.1 Here we consider second order determinants in various forms

(i)
∣∣∣cβα∣∣∣ , determinant of mixed form;

(ii) |cαβ| , determinant of double covariant form;

(iii)
∣∣cαβ∣∣ , determinant of double contravariant form.

(i) Now, according to the definition of determinant,∣∣∣cβα∣∣∣ =
∣∣∣∣∣ c11 c12c21 c

2
2

∣∣∣∣∣ = c11c
2
2 − c12c

2
1 (1.30)

= e12e
1
1c

2
2 + e21e

1
2c

2
1 (1.31)

= eαβc
α
1 c
β
2 = eαβc1αc

2
β .

From this, generalising, we get∣∣∣cβα∣∣∣ eρσ = eαβc
α
ρ c
β
σ (1.32)

and ∣∣∣cβα∣∣∣ eρσ = eαβcραc
σ
β . (1.33)

(ii) Now, according to the definition of determinant,

|cαβ | =

∣∣∣∣∣ c11 c12

c21 c22

∣∣∣∣∣ = c11c22 − c12c21

= eαβc1αc2β = eαβcα1cβ2.
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From this, generalising, we get

|cαβ | eρσ = eαβcραcσβ (1.34)

and

|cαβ| eρσ = eαβcαρcβσ. (1.35)

(iii) In the similar way, we get, ∣∣∣cαβ∣∣∣ eρσ = eαβc
ραcσβ (1.36)

and ∣∣∣cαβ∣∣∣ eρσ = eαβc
αρcβσ. (1.37)

Result 1.4.2 We know, the Jacobian of transformation from xi → xi is a determinant
in mixed system. Hence,

J =

∣∣∣∣∂xα∂xβ

∣∣∣∣ = eρσ
∂xρ

∂x1
∂xσ

∂x2
.

Generalising, ∣∣∣∣∂xα∂xβ

∣∣∣∣ eλµ = eρσ
∂xρ

∂xλ
∂xσ

∂xµ

or

Jeλµ = eρσ
∂xρ

∂xλ
∂xσ

∂xµ
. (1.38)

Tensors are defined by means of their properties of transformation under co-ordinate
transformations.

1.5 Contravariant Vector and Tensor

Tensors are defined by means of their properties of transformation under coordinate
transformation. Let Ai be a set of N functions of N co-ordinates x1, x2, . . . , xN in a
given co-ordinate system

(
xi
)
. Then the quantities Ai are said to form the components

of a contravariant vector, if these components transform according to the following rule
on change of co-ordinate system from

(
xi
)
to another system

(
xi
)
:

A
i
=
∂xi

∂xj
Aj ; i = 1, 2, . . . , N. (1.39)
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The contravariant vector is also called a contravariant tensor of rank 1. Multiplying
both sides of Eq. (1.39) by ∂xp

∂xi
, we get

∂xp

∂xi
A
i
=
∂xp

∂xi
∂xi

∂xj
Aj = δpjA

j = Ap

or

Ap =
∂xp

∂xi
A
i
. (1.40)

The formula expressing the components Ai in a co-ordinate system
(
xi
)
in terms of

those in another system
(
xi
)
.

Let Aij be a set of N2 functions of N co-ordinates xi in a given system of co-
ordinates

(
xi
)
. The quantities Aij are said to form the components of a contravariant

tensor of order two (or of rank 2), if these components transform according to the
following rule on change of co-ordinate system from

(
xi
)
to another system

(
xi
)
:

A
ij
=
∂xi

∂xp
∂xj

∂xq
Apq; 1 ≤ i, j ≤ N. (1.41)

Multiplying both sides of Eq. (1.41) by ∂xr

∂xi
∂xs

∂xj
, we get

∂xr

∂xi
∂xs

∂xj
A
ij
=
∂xr

∂xi
∂xs

∂xj
∂xi

∂xp
∂xj

∂xq
Apq

=
∂xr

∂xi
∂xi

∂xp
∂xs

∂xj
∂xj

∂xq
Apq

= δrpδ
s
qA

pq = Ars

or

Ars =
∂xr

∂xi
∂xs

∂xj
A
ij
. (1.42)

The tensor Aij is of the type (2, 0). Similarly, a contravariant tensor of order n may
be defined by considering a system of order n of type Aα1α2,...,αn .

A tensor of second rank can be written as a square matrix of order N , just as a
tensor of the first rank can be treated as anN -component vector. Thus, a contravariant
tensor of rank two can be written as

Aij =


A11 A12 · · · A1N

A21 A22 · · · A2N

...
... · · ·

...
AN1 AN2 · · · ANN

 .
However, the converse is not true. The elements of an arbitrary square matrix do not
form the components of a second rank tensor.



26 Tensor Algebra

EXAMPLE 1.5.1 If the components of a contravariant vector in
(
xi
)
co-ordinate

system are (3, 4), find its components in
(
xi
)
co-ordinate system, where

x1 = 7x1 − 5x2 and x2 = −5x1 + 4x2.

Solution: Here, A1 = 3 and A2 = 4. From the transformation rule, the two sets of

functions Ai and A
i
are connected by relations (1.39). For i = 1, we get,

A
1
=
∂x1

∂xj
Aj =

∂x1

∂x1
A1 +

∂x1

∂x2
A2 = 7 · 3 + (−5) · 4 = 1.

For i = 2, we get

A
2
=
∂x2

∂xj
Aj =

∂x2

∂x1
A1 +

∂x2

∂x2
A2 = (−5) · 3 + 4 · 4 = 1.

EXAMPLE 1.5.2 Let the components of a contravariant vector in
(
xi
)
co-ordinate

system are (x2, x1), find its components in
(
xi
)
co-ordinate system, under the change

of co-ordinates
x1 = (x2)2 ̸= 0 and x2 = x1x2.

Solution: Let A1 = x2 and A2 = x1, then by definition (1.39) of contravariance,

A
i
=
∂xi

∂xj
Aj =

∂xi

∂x1
A1 +

∂xi

∂x2
A2; i = 1, 2

so

A
1
=
∂x1

∂x1
A1 +

∂x1

∂x2
A2 = A1 · 0 +A2(2x2) = 2x1x2 = 2x2.

and

A
2
=
∂x2

∂x1
A1 +

∂x2

∂x2
A2 = A1 · x2 +A2 · x1 = (x1)2 + (x2)2 = 2x1 +

(x2)2

x1
.

EXAMPLE 1.5.3 Let the components of a contravariant tensor Aij of order two
in
(
xi
)
co-ordinate system are A11 = 1, A12 = 1, A21 = −1 and A22 = 2. Find its

components A
ij

in
(
xi
)
co-ordinate system, under the change of co-ordinates x1 =

(x1)2 ̸= 0 and x2 = x1x2.

Solution: We have to tackle this problem by using matrices. Writing J ij = J ′j
i ≡ ∂xi

∂xj
.

We have from (1.41)

A
ij
=
∂xi

∂xp
∂xj

∂xq
Apq = J ipA

pqJ ′q
j

or

A = JAJT =

(
2x1 0
x2 x1

)(
1 1

−1 2

)(
2x1 x2

0 x1

)

=

(
4(x1)2 2x1x2 + 2(x1)2

2x1x2 − 2(x1)2 2(x1)2 + (x2)2

)
.
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In particular, at the point (1,−2),

A
11

= 4(1)2 = 4; A
12

= 2.1(−2) + 2.12 = −2

A
21

= 2.1(−2)− 2.12 = −6; A
22

= 2.12 + (−2)2 = 6.

EXAMPLE 1.5.4 If xi be the co-ordinate of a point in N dimensional space, show
that dxi are components of a contravariant vector.

Solution: Let x1, x2, . . . , xN are co-ordinates in (xi) co-ordinate system and x1, x2, . . . ,
xN are co-ordinates in (xi) co-ordinate system. Now

xi = xi
(
x1, x2, . . . , xN

)
or

dxi =
∂xi

∂x1
dx1 +

∂xi

∂x2
dx2 + · · ·+ ∂xi

∂xN
dxN =

∂xi

∂xj
dxj .

It is law of transformation of contravariant vector. Therefore, the co-ordinate differ-
entials dxi are the components of a contravariant tensor of rank one—the infinitesimal
displacement vector. Note that the co-ordinate xi, in spite of the notation, are not
the components of a tensor.

EXAMPLE 1.5.5 Show that fluid velocity and acceleration at any point is a compo-
nent of contravariant vector.

Solution: Let the co-ordinates of a point in the fluid be xi(t) at any time t. Then the

velocity vi at any point in the co-ordinate system (xi) is given by, vi = dxi

dt . Here, dx
i

dt
are the components of the tangent vector of the point xi in the (xi) co-ordinate system.
Let the co-ordinates xi be transformed to new co-ordinates xj . In this transformed
co-ordinates the velocity vj is given by

vj =
dxj

dt
=
∂xj

dxi
∂xi

dt
=
∂xj

∂xi
vi, (i)

using the concept of chain rule of partial differentiation. Note that, the component of
the tangent vector in the co-ordinate system (xi) are dxi

dt . Thus, we can say that the
velocity vi, i.e. component of tangent vector on the curve in N dimensional space are
components of a contravariant vector or contravariant tensor of rank 1.

The co-ordinates xi is dxi

dt are the co-ordinates of, say, a particle in motion, while

the coefficients dxj

dxi
only denote a relation between two co-ordinate systems, which is

independent of time (i), we get

āj =
dv̄j

dt
=
∂x̄j

∂xi
dvi

dt
=
∂xj

∂xi
ai (ii)

This shows that, acceleration ai is also a contravariant vector.
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1.6 Covariant Vector and Tensor

Let Ai be a set of N functions of N co-ordinates x1, x2, . . . , xN in a given co-ordinate
system

(
xi
)
. Then the quantities Ai are said to form the components of a covariant

vector, if these components transform according to the following rule on change of
co-ordinate system from

(
xi
)
to another system

(
xi
)
:

Ai =
∂xj

∂xi
Aj ; i = 1, 2, . . . , N. (1.43)

The covariant vector is also called a covariant tensor of rank 1. Multiplying both sides
of Eq. (1.43) by ∂xi

∂xp , we get

∂xi

∂xp
Ai =

∂xi

∂xp
∂xj

∂xi
Aj = δjpAj = Ap

or

Ap =
∂xi

∂xp
Ai. (1.44)

The formula expressing the components Ai in a co-ordinate system
(
xi
)
in terms of

those in another system
(
xi
)
.

Let Aij be a set of N2 functions of N co-ordinates xi in a given system of co-
ordinates

(
xi
)
. Then the quantities Aij are said to form the components of a covariant

tensor of order two (or of rank 2), if these components transform according to the
following rule on change of co-ordinate system from

(
xi
)
to another system

(
xi
)
:

Aij =
∂xp

∂xi
∂xq

∂xj
Apq; 1 ≤ i, j ≤ N. (1.45)

Multiplying both sides of Eq. (1.45) by ∂xi

∂xr
∂xj

∂xs , we get

∂xi

∂xr
∂xj

∂xs
Aij =

∂xi

∂xr
∂xj

∂xs
∂xp

∂xi
∂xq

∂xj
Apq

=
∂xi

∂xr
∂xp

∂xi
∂xj

∂xs
∂xq

∂xj
Apq

= δprδ
q
sApq = Ars

or
Ars =

∂xi

∂xr
∂xj

∂xs
Aij . (1.46)

The tensor Aij is of the type (0, 2). Similarly, a covariant tensor of order n is of the
form Aα1α2,...,αn .
Note: In the case of a Cartesian co-ordinate system, the co-ordinate direction xi coin-
cides with the direction orthogonal to the constant-xi surface, so that the distinction
between the covariant and contravariant tensors vanishes.
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EXAMPLE 1.6.1 Show that ∂ϕ
∂xi

is a covariant vector, where ϕ is a scalar function.

Solution: Let x1, x2, . . . , xN are co-ordinates in (xi) co-ordinate system and x1, x2, . . . ,
xN are co-ordinates in (xi) co-ordinate system. Consider

ϕ
(
x1, x2, . . . , xN

)
= ϕ

(
x1, x2, . . . , xN

)
or

∂ϕ =
∂ϕ

∂x1
∂x1 +

∂ϕ

∂x2
∂x2 + · · ·+ ∂ϕ

∂xN
∂xN

or
∂ϕ

∂xi
=

∂ϕ

∂x1
∂x1

∂xi
+

∂ϕ

∂x2
∂x2

∂xi
+ · · ·+ ∂ϕ

∂xN
∂xN

∂xi
=
∂xj

∂xi
∂ϕ

∂xj
.

It is law of transformation of covariant vector. Therefore, ∂ϕ
∂xi

are components of a
covariant vector. This shows that gradient of a scalar field is a covariant vector and
is represented in terms of components in the direction orthogonal to the constant
co-ordinate surfaces.

EXAMPLE 1.6.2 Let the components of a covariant vector in
(
xi
)
co-ordinate sys-

tem are (x2, x1+2x2), find its components in
(
xi
)
co-ordinate system, under the change

of co-ordinates x1 = (x2)2 ̸= 0 and x2 = x1x2.

Solution: Let A1 = x2 and A2 = x1 + 2x2, then by definition (1.43) of covariance,

Ai =
∂xj

∂xi
Aj =

∂x1

∂xi
A1 +

∂x2

∂xi
A2; i = 1, 2.

so

A1 =
∂x1

∂x1
A1 +

∂x2

∂x1
A2 = A1

(
−x1

2(x2)2

)
+A2 1

2x2
= 1

and

A2 =
∂x1

∂x2
A1 +

∂x2

∂x2
A2 = A1

(
1

x2

)
+A2 · 0 = 1.

Hence, the components are (1, 1) at all points in the (xi) system (x1 = 0 excluded).

EXAMPLE 1.6.3 Let the components of a contravariant tensor Aij of order two
in
(
xi
)
co-ordinate system are A11 = x2, A12 = 0 = A21 and A22 = x1. Find its

components Aij in
(
xi
)
co-ordinate system, under the change of co-ordinates x1 =

(x1)2 ̸= 0 and x2 = x1x2.

Solution: In terms of the inverse Jacobian matrix, the covariant transformation law
[Eq. (1.45)] is given by

Aij =
∂xr

∂xi
Ars

∂xs

∂xj
= J

r
iArsJ

s
j = J ′i

rArsJ
s
j
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or

A = J
T
AJ =

 1

2x1
−x2

2(x1)2

0 1
x1

(x2 0

0 x1

)
1

2x1
0

−x2

2(x1)2
1

x1



=


x1x2 + (x2)2

4(x1)3
−x2

2(x1)2

−x2

2(x1)2
1

x1

.
Continuing in the matrix approach from Example 1.5.3, we get

AijAij =

(
1 1

−1 2

)(
x2 0
0 x1

)
=

(
x2 x1

−x2 2x1
)
.

Therefore, t = trace = x2 + 2x1. Now,

A
ij
Aij =

(
4(x1)2 2x1x2 + 2(x1)2

2x1x2 − 2(x1)2 2(x1)2 + (x2)2

)
x1x2 + (x2)2

4(x1)3
−x2

2(x1)2

−x2

2(x1)2
1

x1



=

 0 2x1

−3x2

2
x2 + 2x1

.
Therefore, t = trace = x2 + 2x1, so that AijAij is an invariant.

EXAMPLE 1.6.4 Prove that εij is a covariant tensor of rank 2.
Solution: Let us consider a transformation of co-ordinates from xi → xi. Then,

gγδ = gαβ
∂xα

∂xγ
∂xβ

∂xδ

or √
g =

√
g J ; g = |gij |,

where the transformation is positive. From Eq. (1.38), we get√
g eλµ =

√
g eρσ

∂xρ

∂xλ
∂xσ

∂xµ

or

ελµ = ερσ
∂xρ

∂xλ
∂xσ

∂xµ
; from (1.10).

This shows that εij is a covariant tensor of rank 2.
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1.7 Mixed Tensor

Let Aij be a set of N2 functions of N co-ordinates x1, x2, . . . , xN in a given co-ordinate

system
(
xi
)
. Then the quantities Aij are said to form the components of a mixed

tensor of order two (or of rank 2), if these components transform according to the
following rule on change of co-ordinate system from

(
xi
)
to another system

(
xi
)
:

A
i
j =

∂xi

∂xp
∂xq

∂xj
Apq . (1.47)

Multiplying both sides of (1.47) by ∂xr

∂xi
∂xj

∂xs , we get

∂xr

∂xi
∂xj

∂xs
A
i
j =

∂xr

∂xi
∂xj

∂xs
∂xi

∂xp
∂xq

∂xj
Apq

=
∂xr

∂xi
∂xi

∂xp
∂xj

∂xs
∂xq

∂xj
Apq

= δrp δ
q
s A

p
q = Ars

or

Ars =
∂xr

∂xi
∂xj

∂xs
A
i
j . (1.48)

The formula expressing the components Aij in a co-ordinate system
(
xi
)
in terms of

those in another system
(
xi
)
. The tensor Aij is of the type (1, 1). The upper position

of the suffix is reserved to indicate contravariant character, whereas the lower position
of the suffix is reserved to indicate covariant character.

Let Aijk be a set of N3 functions of N co-ordinates xi in a given system of co-

ordinates
(
xi
)
. Then the quantities Aijk are said to form the components of a mixed

tensor of order three (or of rank 3) with first order contravariance and second order
covariance, if these components transform according to the following rule on change
of co-ordinate system from

(
xi
)
to another system

(
xi
)
:

A
i
jk =

∂xi

∂xp
∂xq

∂xj
∂xr

∂xk
Apqr. (1.49)

Multiplying both sides of (1.49) by ∂xl

∂xi
∂xj

∂xm
∂xk

∂xn , we get

∂xl

∂xi
∂xj

∂xm
∂xk

∂xn
A
i
jk =

∂xl

∂xi
∂xj

∂xm
∂xk

∂xn
∂xi

∂xp
∂xq

∂xj
∂xr

∂xk
Apqr

=
∂xl

∂xi
∂xi

∂xp
∂xj

∂xm
∂xq

∂xj
∂xk

∂xn
∂xr

∂xk
Apqr

= δlp δ
q
m δrn A

p
qr = Almn
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or

Almn =
∂xl

∂xi
∂xj

∂xm
∂xk

∂xn
A
i
jk. (1.50)

The formula expressing the components Aijk in a co-ordinate system
(
xi
)
in terms of

those in another system
(
xi
)
. Similarly, a mixed tensor Ai1i2,...,irj1j2,...,js

of the type (r, s) of
order r + s with rth order of contravariance and sth order of covariance is defined.
This tensor has N r+s components.

EXAMPLE 1.7.1 Show that the Kronecker delta is a mixed tensor of rank 2.

Solution: Let x1, x2, . . . , xN are co-ordinates in (xi) co-ordinate system and x1, x2, . . . ,
xN are co-ordinates in (xi) co-ordinate system. Let the component of Kronecker delta

in (xi) system δij and component of Kronecker delta in (xi) system δ
i
j , then by defini-

tion,

δ
i
j =

∂xi

∂xj
=
∂xi

∂xk
∂xl

∂xj
∂xk

∂xl

or

δ
i
j =

∂xi

∂xk
∂xl

∂xj
δkl .

This shows that Kronecker delta δij is a mixed tensor of rank 2. It is sometimes called
the fundamental mixed tensor.

EXAMPLE 1.7.2 Show that there is no distinction between contravariant and co-
variant vectors when the transformations are of the type

xi = aimx
m + di,

where di and aim are constants such that aira
i
m = δrm.

Solution: The given transformation is xi = aimx
m+di, where di and aim are constants

such that aira
i
m = δrm. Differentiating both sides with respect to xm, we get

∂xi

∂xm
= aim + 0 = aim.

Multiplying both sides of the given transformation by air, we get

xi air = air a
i
m xm + air d

i

= δrm xm + air d
i = xr + air d

i
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or
xr = xi air − air d

i

or
xj = xi aij − aij d

i.

Differentiating with respect to xi, we get

∂xj

∂xi
= aij − 0 = aij ⇒

∂xi

∂xj
=
∂xj

∂xi
= aij .

Thus, the relation A
i
= ∂xi

∂xj
Aj takes the form,

A
i
=
∂xi

∂xj
Aj = aijA

j

and the relation Ai =
∂xj

∂xi
Aj takes the form

Ai =
∂xj

∂xi
Aj = aijAj .

Thus, we see that both the vectors Ai and Ai transform in an identical manner.
It is important to note the essential difference between a contravariant and a co-

variant tensor. In the case of contravariant tensor, the tensor is represented by com-
ponents in the direction of co-ordinate increase, whereas in the case of a covariant
tensor, the tensor is represented by components in the directions orthogonal to con-
stant co-ordinate surfaces.

EXAMPLE 1.7.3 Prove that the transformation of contravariant vectors form a
group.

Solution: Let Ai be a contravariant vector. Let S be the set of transformations of
contravariant vectors and T1, T2 be two such transformations from the system

(
xi
)
to

the system
(
xi
)
and from

(
xi
)
to
(
x
i
)
given by

T1 : A
i
=
∂xi

∂xp
Ap; T2 : A

i =
∂x

i

∂xr
A
r
.

Then the product of transformation T2T1 : x
i → x

i
is given by

T2T1 : A
i =

∂x
i

∂xr
∂xr

∂xp
Ap =

∂x
i

∂xp
Ap,

from which it follows that T2T1 ∈ S. Let I be the transformation given by

I : Ai =
∂xp

∂xp
A
i
,
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then
IT1 = T1I = T1.

Hence, I is the identity transformation and from this relation, it follows that I ∈ S.
Now, consider, the transformation

T1 : A
i
=
∂xi

∂xp
Ap,

from which it follows that

T ∗
1 : Ap =

∂xp

∂xi
A
i
.

Since T ∗
1 represents the transformation from the system

(
xi
)
to
(
xi
)
, it is the inverse

of T1 and T ∗
1 ∈ S. Finally, if T3 represents a transformation from the system

(
x
i
)
to(

x
i
)
, then

T3(T2T1) = (T3T2) T1.

In virtue of these results, it is expressed by saying that transformations of a contravari-
ant vector form a group.

EXAMPLE 1.7.4 If

(
x1

x2
,
x2

x1

)
is a covariant vector in cartesian co-ordinates x1, x2;

find its components in polar co-ordinates (x1, x2).

Solution: The transformation law from the cartesian co-ordinate (x1, x2) to polar
co-ordinates (x1, x2) are x1 = x1 cosx2; x2 = x1 sinx2.

Let Ai denotes the components of a covariant vector in co-ordinates xi and Ai
denotes its components in co-ordinates xi, then, we have the transformation law (1.43).

In the present case, A1 =
x1

x2
;A2 =

x2

x1
. Let these quantities are A1 and A2 in (x1, x2)

co-ordinate system. Using the transformation law, we have

A1 =
∂xj

∂x1
Aj =

∂x1

∂x1
A1 +

∂x2

∂x1
A2

= cosx2
x1 cosx2

x1 sinx2
+ sinx2

x1 sinx2

x1 cosx2
=

cos3 x2 + sin3 x2

sinx2 cosx2
.

Also, using the transformation law, we have

A2 =
∂xj

∂x2
Aj =

∂x1

∂x2
A1 +

∂x2

∂x2
A2

= −x1 sinx2 x
1 cosx2

x1 sinx2
+ x1 cosx2

x1 sinx2

x1 cosx2

= x1
(
sinx2 − cosx2

)
.
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EXAMPLE 1.7.5 If X,Y, Z are the components of a contravariant vector in
Cartesian co-ordinates x, y, z in E3 find the components of the vector in cylindrical
co-ordinates.

Solution: Let x1 = x, x2 = y, x3 = z and x1 = r, x2 = θ and x3 = z, then the relation
between Cartesian and cylindrical co-ordinates is given by

x1 = x1 cosx2; x2 = x1 sinx2; x3 = x3

or

x1 =

√
(x1)2 + (x2)2; x2 = tan−1 x

2

x1
; and x3 = x3.

Let Ai denotes the components of a contravariant vector in co-ordinates xi and A
i
are

that in xi co-ordinates. In the present case, A1 = X,A2 = Y and A3 = Z. Therefore,
from Eq. (1.39), we get

A
1
=
∂x1

∂xj
Aj =

∂x1

∂x1
A1 +

∂x1

∂x2
A2 +

∂x1

∂x3
A3

=
x1√

(x1)2 + (x2)2
X +

x2√
(x1)2 + (x2)2

Y + 0 · Z

= X cosx2 + Y sinx2.

A
2
=
∂x2

∂xj
Aj =

∂x2

∂x1
A1 +

∂x2

∂x2
A2 +

∂x2

∂x3
A3

= − x2

(x1)2 + (x2)2
X +

x1

(x1)2 + (x2)2
Y + 0 · Z

= −X 1

x1
sinx2 + Y

1

x1
cosx2.

A
3
=
∂x3

∂xj
Aj =

∂x3

∂x1
A1 +

∂x3

∂x2
A2 +

∂x3

∂x3
A3

= 0 ·X + 0 · Y + 1 · Z = Z.

EXAMPLE 1.7.6 If Ai is a covariant vector, determine whether ∂Ai

∂xj
is a tensor.

Solution: Since Ai is a covariant vector, we have the transformation law (1.43).
Differentiating both sides with respect to xk, we get

∂Ai

∂xk
=

∂2xj

∂xk∂xj
Aj +

∂xj

∂xi
∂Aj

∂xk

=
∂2xj

∂xk∂xj
Aj +

∂xj

∂xi
∂Aj
∂xl

∂xl

∂xk
.
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From this it follows that ∂Ai

∂xj
is not a tensor due to the presence of the first term in

the right-hand side.

EXAMPLE 1.7.7 If the relation aijv
j = 0 holds for arbitrary contravariant vector

vi, show that aij = 0.

Solution: The given relation aijv
j = 0 can be written as

ai1v
1 + ai2v

2 + · · ·+ aiNv
N = 0.

Since vj is arbitrary contravariant vector, we can choose it at will. First, we take vj

as (1, 0, . . . , 0), then v1 = 1, v2 = 0, . . . , vN = 0. Hence,

ai1 · 1 + ai2 · 0 + · · ·+ aiN · 0 = 0 ⇒ ai1 = 0.

Next we take vj as (0, 1, 0, . . . , 0), (0, 0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1) in succession. Then
we get

ai2 = 0; ai3 = 0; aiN = 0.

Hence, it follows that aij = 0.

EXAMPLE 1.7.8 If the relation aijv
ivj = 0 holds for arbitrary contravariant vector

vi, show that aij + aji = 0.

Solution: Let P = aijv
ivj = 0. Differentiating with respect to vk we get

∂P

∂vk
= aij

∂vi

∂vk
vj + aij v

i ∂v
j

∂vk
= 0

or
∂P

∂vk
= aij δ

i
k v

j + aij v
i δjk = 0

or
∂P

∂vk
= akj v

j + aik v
i = 0.

Further, differentiating with respect to vl we get

∂2P

∂vl∂vk
= akj

∂vj

∂vl
+ aik

∂vi

∂vl
= 0

or
∂2P

∂vl∂vk
= akjδ

j
l + aikδ

i
l = 0

or
∂2P

∂vl∂vk
= akl + alk = 0.

Replacing the dummy indices k and l by i and j respectively, we get, aij + aji = 0. If
further aij is symmetric, then aij = 0.
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EXAMPLE 1.7.9 If Bij = Aji, a covariant tensor, show that Bij is a tensor of
order two.

Solution: Since Aij is a covariant tensor, we have Eq. (1.45). Now,

Bij = Aji =
∂xp

∂xj
∂xq

∂xi
Apq =

∂xp

∂xj
∂xq

∂xi
Bqp; as Bij = Aji

=
∂xq

∂xi
∂xp

∂xj
Bqp.

From this relation, it follows that Bij is a covariant tensor of order two.

EXAMPLE 1.7.10 If the relation aiju
iuj = 0 holds for all vectors ui such that

uiλi = 0, where λi is a given covariant vector, show that

aij + aji = λivj + λjvi,

where vj is some covariant vector.

Solution: From the given relation uiλi = 0, we get, uiλivju
j = 0, where vj is some

covariant vector. Using the given relation aiju
iuj = 0, we get

aiju
iuj = uiλivju

j

or
(aij − λivj)u

iuj = 0.

Since uiuj is arbitrary contravariant vector, uiuj ̸= 0, and so,

aij − λivj = 0 ⇒ aij = λivj .

Interchanging the dummy suffixes i, j in the relations aiju
iuj = 0 and uiλi vju

j = 0,
we get

ajiu
jui = 0 and ujλjviu

i = 0

or
ajiu

jui = ujλjviu
i

or
(aji − λjvi)u

iuj = 0

or
aji = λjvi; as uiuj ̸= 0.

Adding we get

aij + aji = λivj + λjvi.
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EXAMPLE 1.7.11 If the equality aijui = σuj holds for any covariant vector ui such

that uiv
i = 0, where vi is a given contravariant vector, show that

aij = σδij + λjv
i,

where λi is some covariant vector.

Solution: From the given equality aijui = σuj , we get

aijui = σuj + λjuiv
i; as uiv

i = 0

or
aijui = σδijui + λjuiv

i; as δijui = uj

or
ui
[
aij − σδij − λjv

i
]
= 0,

where λi is some covariant vector. Since ui is arbitrary, so

aij − σδij − λjv
i = 0 or aij = σδij + λjv

i.

EXAMPLE 1.7.12 If A = (aij) is a symmetric 4 × 4 matrix such that aijx
ixj = 0

for all xi such that gijx
ixj = 0, prove that there exists a fixed real number λ such that

aij = λgij .

Solution: Observe that the vector (1,±1, 0, 0) satisfies gijx
ixj = 0. Hence, substitut-

ing these components into the equation aijx
1xj = 0 yields,

a00 ± a01 ± a10 + a11 = 0

or
a00 + a11 = 0 = a01 + a10,

by symmetry of A. Similarly, using the vectors (1, 0,±1, 0) and (1, 0, 0,±1), we get

a00 = −a11 = −a22 = −a33 = λ; cij = 0; i = 0 or j = 0.

Finally, employing the vectors (
√
2, 1, 1, 0), (

√
2, 1, 0, 1) and (

√
2, 0, 1, 1), we obtain

a12 = a13 = a23 = 0.

1.8 Invariants

Objects, functions, equations or formulas that are independent of the co-ordinate
system used to express them have intrinsic value and are fundamental significance;
they are called invariants. Let ϕ be a function of N co-ordinates xi in a co-ordinate
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system
(
xi
)
in VN and ϕ be its transform in another co-ordinate system

(
xi
)
. Then ϕ

is called an invariant or scalar of VN with respect to the transformation

xi = ψi
(
x1, x2, . . . , xN

)
; i = 1, 2, . . . , N,

if
ϕ
(
x1, x2, . . . , xN

)
= ϕ

(
x1, x2, . . . , xN

)
or

ϕ
(
x1, x2, . . . , xN

)
= ϕ

[
ψ1
(
x1, . . . , xN

)
, . . . , ψN

(
x1, . . . , xN

)]
. (1.51)

A scalar is invariant under any co-ordinate transformations. Obvious physical
examples of a scalar in Newtonian mechanics are length, mass, energy, volume etc,
which are independent of the choice of the co-ordinate system.

Differentiating Eq. (1.51) with respect to xi, we get

∂ϕ

∂xi
=

∂ϕ

∂xj
∂xj

∂xi
=
∂xj

∂xi
∂ϕ

∂xj
; as ϕ = ϕ. (1.52)

Now, ∂ϕ
∂xj

may be considered as the components of a system of first order of type Ai
and Eq. (1.52) shows that these components transform according to a certain rule on
transformation of co-ordinates from a system

(
xi
)
to another system

(
xi
)
. The rule

indicated by Eq. (1.52) leads to the definition of a covariant vector of VN .
We shall agree to call an invariant or a scalar a tensor of order zero or of type

(0, 0).

EXAMPLE 1.8.1 Show that the Kronecker delta is an invariant, i.e. it has same
components in every co-ordinate system.

Solution: Let x1, x2, . . . , xN are co-ordinates in (xi) co-ordinate system and x1, x2, . . . ,
xN are co-ordinates in (xi) co-ordinate system. Let the component of Kronecker delta

in (xi) system δij and component of Kronecker delta in (xi) system δ
i
j , then according

to the law of transformation,

δ
i
j =

∂xi

∂xk
∂xl

∂xj
δkl =

∂xi

∂xk

(
∂xl

∂xj
δkl

)
=
∂xi

∂xk
∂xk

∂xj
; as

∂xl

∂xj
δkl =

∂xk

∂xj

=
∂xi

∂xj
= δij ; as

∂xi

∂xj
= δij .

This shows that δij is an invariant.
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EXAMPLE 1.8.2 Show that the determinant of a tensor of type (1, 1) is an
invariant.

Solution: Since xis are independent and xis are also independent functions of the
xis, by the formula of partial differentiation and summation convention, we can write

∂xi

∂xj
=
∂xi

∂xp
∂xp

∂xj
; p = 1, 2, . . . , N

or

δij =
∂xi

∂xp
∂xp

∂xj

or ∣∣δij∣∣ = ∣∣∣∣ ∂xi∂xp

∣∣∣∣ ∣∣∣∣∂xp∂xj

∣∣∣∣
or

1 = JJ ′; where, J =

∣∣∣∣ ∂xi∂xp

∣∣∣∣ ; J ′ =

∣∣∣∣∂xp∂xj

∣∣∣∣.
Let Aij be a mixed tensor of type (1, 1), then by tensor law of transformation,

A
i
j =

∂xi

∂xp
∂xq

∂xj
Apq

or (
A
i
j

)
=

(
∂xi

∂xp

)(
Apq
)(∂xq

∂xj

)
,

where, (Apq) denotes the matrix of Apq and other symbols have similar meanings. Taking
determinants of both sides of the above equality, we get∣∣∣Aij∣∣∣ = ∣∣∣∣ ∂xi∂xp

∣∣∣∣ ∣∣Apq∣∣ ∣∣∣∣∂xq∂xj

∣∣∣∣ ; as |AB| = |A||B|

or ∣∣∣Aij∣∣∣ = ∣∣∣∣ ∂xi∂xp

∣∣∣∣ ∣∣∣∣∂xq∂xj

∣∣∣∣ ∣∣Apq∣∣
or ∣∣∣Aij∣∣∣ = JJ ′ ∣∣Apq∣∣ = ∣∣Apq∣∣ ; where J =

∣∣∣∣ ∂xi∂xp

∣∣∣∣ and J ′ =

∣∣∣∣∂xq∂xj

∣∣∣∣.
From this it follows that

∣∣∣Aij∣∣∣ is an invariant.

EXAMPLE 1.8.3 If ui is an arbitrary contravariant vector and aiju
iuj is an invari-

ant, show that aij + aji is a covariant tensor of second order.



1.8 Invariants 41

Solution: Let ui be an arbitrary contravariant vector. Since, aiju
iuj is an invariant,

we have, aij u
i uj = aiju

iuj . Applying tensor law of transformation, we get

aij u
i uj = aij

∂xi

∂xp
up

∂xj

∂xq
uq

= aij
∂xi

∂xp
∂xj

∂xq
up uq.

Replacing the dummy indices i, j; p, q by p, q; i, j respectively, we get

aij u
i uj = apq

∂xp

∂xi
∂xq

∂xj
ui uj .

Interchanging the suffixes i and j, we get

ajiu
jui = apq

∂xp

∂xj
∂xq

∂xi
ujui.

On interchanging the dummy indices p, q, we get

ajiu
jui = aqp

∂xq

∂xj
∂xp

∂xi
ujui

or

ajiu
iuj = aqp

∂xp

∂xi
∂xq

∂xj
uiuj ; as ujui = uiuj .

Adding properly, we get

(aij + aji)u
iuj =

[
(apq + aqp)

∂xp

∂xi
∂xq

∂xj

]
uiuj

or [
(aij + aji)− (apq + aqp)

∂xp

∂xi
∂xq

∂xj

]
uiuj = 0.

Since ui and uj are arbitrary, we have

aij + aji − apq + aqp
∂xp

∂xi
∂xq

∂xj
= 0

or

aij + aji = (apq + aqp)
∂xp

∂xi
∂xq

∂xj
.

This confirms the covariant second rank tensor law of transformation. Therefore, aij+
aji is a covariant tensor of order two.

EXAMPLE 1.8.4 If aij is a covariant tensor such that |aij | ̸= 0, determine whether
the determinant |aij | is an invariant.
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Solution: Since aij is a covariant tensor of second order, we have

aij =
∂xp

∂xi
∂xq

∂xj
apq

or

|aij | =
∣∣∣∣∂xp∂xi

∣∣∣∣ ∣∣∣∣∂xq∂xj

∣∣∣∣ |apq|
or

|aij | =
∣∣∣∣∂xp∂xi

∣∣∣∣2 |apq| ; as

∣∣∣∣∂xp∂xi

∣∣∣∣ = ∣∣∣∣∂xq∂xj

∣∣∣∣
or

|aij | = J2 |apq| ; where, J =

∣∣∣∣∂xp∂xi

∣∣∣∣ ,
where J is the Jacobian of transformation xi = xi

(
x1, x2, . . . , xN

)
; i = 1, 2, . . . , N.

From this result, it follows that |aij | is not, in general, an invariant due to the presence
of the term J2 in the right-hand side. In this case, |aij | is said to be a relative invariant
of weight 2.

EXAMPLE 1.8.5 If aij are components of a covariant tensor of second order and
λi, µj are components of two contravariant vector, show that aijλ

iµj is an invariant.

Solution: Since aij are components of a covariant tensor of type (0, 2), we have,
aij =

∂xp

∂xi
∂xq

∂xj
apq. We have to show that aijλ

iµj is an invariant. Now,

aijλ
i
µj =

∂xp

∂xi
∂xq

∂xj
apq

∂xi

∂xr
λr
∂xj

∂xs
µs

=
∂xp

∂xi
∂xq

∂xj
∂xi

∂xr
∂xj

∂xs
apqλ

rµs

=
∂xp

∂xi
∂xi

∂xr
∂xq

∂xj
∂xj

∂xs
apqλ

rµs

= δprδ
q
sapqλ

rµs = δprapqδ
q
sµ

sλr

= arqµ
qλr = arpλ

rµq.

Replacing the dummy indices r and p by i and j, we get

aijλ
i
µj = aijλ

iµj ,

from which it follows that aijλ
iµj is an invariant.

EXAMPLE 1.8.6 If aijk λiµjν
k is a scalar invariant, λi, µj and ν

k are vectors, show

that aijk is a mixed tensor of type (2, 1).
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Solution: Since aijk λiµjν
k is a scalar invariant, so,

aijk λiµjν
k = aijk λiµjν

k = aαβp λαµβν
p

or

aijk
∂xα

∂xi
λα
∂xβ

∂xj
µβ
∂xk

∂xp
νp = aαβp λαµβν

p

or [
aijk

∂xα

∂xi
∂xβ

∂xj
∂xk

∂xp
− aαβp

]
λαµβν

p = 0

or

aijk
∂xα

∂xi
∂xβ

∂xj
∂xk

∂xp
= aαβp .

From this relation it follows that, aijk is a mixed tensor of type (2, 1).

EXAMPLE 1.8.7 If f is an invariant, determine whether ∂2f
∂xp∂xq is a tensor.

Solution: Since f is an invariant, so f = f . Let f be a scalar function of co-ordinates
xi. Consider a co-ordinate transformation xi → xi, i.e. xi = xi(xk). Evidently,

∂f

∂xi
=

∂f

∂xp
∂xp

∂xi
; as f = f.

This is a covariant law of transformation. Hence, the gradient of a scalar function f ,
i.e. ∂f

∂xi
is a covariant vector. Now,

∂2f

∂xi∂xj
=

∂f

∂xp
∂2xp

∂xj∂xi
+

∂

∂xj

(
∂f

∂xp

)
∂xp

∂xi

=
∂f

∂xp
∂2xp

∂xj∂xi
+

∂2f

∂xq∂xp
∂xq

∂xj
∂xp

∂xi
.

Therefore, if f is an invariant, ∂2f
∂xp∂xq is not a tensor due to the presence of the first

term in the right-hand side.

1.9 Addition and Subtraction of Tensors

Two tensors can be added or subtracted provided they are of the same rank and similar
character. Note that, these two binary operations relate to tensors at same point.

Theorem 1.9.1 If Aijk and Bij
k be tensors, then their sum and difference are tensors.
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Proof: Let Aijk and Bij
k be tensors so that they satisfy the tensor law of transformations

namely,

A
ij
k =

∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
Apqr

and

B
ij
k =

∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
Bpq
r .

(i) Let the sum of the two tensors Aijk and Bij
k be defined as

Aijk +Bij
k = Cijk

and the algebraic operation by which the sum is obtained is called addition of
tensors. We have to show that Cijk is a tensor. Now,

A
ij
k +B

ij
k =

∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
(Apqr +Bpq

r )

or

C
ij
k =

∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
Cpqr .

This shows that Cijk satisfies the tensor law of transformation and hence Cijk is

a tensor. In general, if A
i1i2···ip
j1j2...jq

and B
i1i2...ip
j1j2...jq

are components of two tensors of

type (p, q), then the sum

A
i1i2...ip
j1j2...jq

+B
i1i2...ip
j1j2...jq

are the components of another tensor of type (p, q).

(ii) Let the difference of the two tensors Aijk and Bij
k be defined as

Aijk −Bij
k = Dij

k

and the algebraic operation by which the sum is obtained, is called subtraction
of tensors. Now,

A
ij
k −B

ij
k =

∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
(Apqr −Bpq

r )

or

D
ij
k =

∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
Dpq
r .

This shows that Dij
k satisfies the tensor law of transformation and hence Dij

k is

a tensor. In general, if A
i1i2···ip
j1j2···jq and B

i1i2···ip
j1j2···jq are components of two tensors of

type (p, q), then the difference

A
i1i2···ip
j1j2···jq −B

i1i2···ip
j1j2···jq

are the components of another tensor of type (p, q).
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1.10 Multiplication by a Scalar

Let Aijk be the components of the tensor in a co-ordinate system
(
xi
)
and A

ij
k be its

components in another system
(
xi
)
. Let the scalar be denoted by ϕ and ϕ in the

co-ordinate systems
(
xi
)
and

(
xi
)
, respectively. Then,

ϕ A
ij
k = ϕ

∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
Apqr

= ϕ
∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
Apqr ; as ϕ = ϕ

=
∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
ϕApqr .

From this it follows that ϕAijk are the components of a tensor of type (2, 1). This
tensor is called the product of the tensor and the scalar under consideration and the
algebraic operation by which it is obtained, is called the multiplication of the tensor
by the scalar.

In general, if A
i1···ip
j1···jp are components of the tensor and ϕ be a scalar, then ϕA

i1···ip
j1···jp

are the components of a tensor of the type (p, q), called the multiplication of the tensor
by a scalar. Note that, this operation relates to a tensor and a scalar at the same point.

Result 1.10.1 (Zero tensor): The components of a tensor may be all zero in a

co-ordinate system. Let the components A
i1···ip
j1···jp of a tensor of the type (p, q) be all

zero in a co-ordinate system
(
xi
)
. Denote its components in another system

(
xi
)
by

A
i1···ip
j1···jp . Then by the tensor law of transformation, we have

A
i1···ip
j1···jp =

∂xi1

∂xt1
· · · ∂x

ip

∂xtp
∂xr1

∂xj1
· · · ∂x

rq

∂xjq
A
t1···tp
r1···rq

= 0; as by condition A
t1···tp
r1···rq = 0.

Thus, if the components of a tensor are all zero in one co-ordinate system, then they
are also zero in every other co-ordinate system. A tensor whose components are all
zero in every co-ordinate system is called a zero tensor.

Result 1.10.2 (Equality of two tensors): Two tensors of the same type are said
to be equal in the same co-ordinate system if they have the same contravariant rank
and the same covariant rank and every component of one is equal to the corresponding
component of the other.

Thus, if A
i1i2···ip
j1j2···jq and B

i1i2···ip
j1j2···jq are components of two equal tensors of type (p, q)

in the same co-ordinate system, then

A
i1i2···ip
j1j2···jq = B

i1i2···ip
j1j2···jq .
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Let A
i1i2···ip
j1j2···jq and B

i1i2···ip
j1j2···jq are components of two equal tensors in a co-ordinate system(

xi
)
. Hence, the difference

A
i1i2···ip
j1j2···jq −B

i1i2···ip
j1j2···jq

are the components of a zero tensor in the co-ordinate system (xi). Therefore, the
difference of the two tensors under consideration must be a zero tensor in every other
co-ordinate system. This means that the tensors are equal in every other co-ordinate
system. Thus two tensors of the same type are said to be equal if their components
are equal to each other in every co-ordinate system.

Result 1.10.3 Any linear combination of tensors of the same type and rank is again
a tensor of the same type and rank.

1.11 Outer Multiplication

Let Aijk and Bm
n be tensors of type (1, 2) and (1, 1), respectively, then

A
i
jk =

∂xi

∂xr
∂xs

∂xj
∂xt

∂xk
Arst

and

B
m
n =

∂xm

∂xu
∂xv

∂xn
Bu
v .

Let the product of two tensors Aijk and Bm
n be defined as

AijkB
m
n = Cimjkn, say. (1.53)

Since Aijk has N3 components, Bm
n has N2 components, so, Cimjkn has NS components.

Now,

A
i
jkB

m
n =

∂xi

∂xr
∂xs

∂xj
∂xt

∂xk
Arst

∂xm

∂xu
∂xv

∂xn
Bu
v

=
∂xi

∂xr
∂xs

∂xj
∂xt

∂xk
∂xm

∂xu
∂xv

∂xn
ArstB

u
v

or

C
im
jkn =

∂xi

∂xr
∂xs

∂xj
∂xt

∂xk
∂xm

∂xu
∂xv

∂xn
Crustv.

From this relation it follows that Cimjkn = AijkB
m
n are the components of a tensor

of type (2, 3). The tensor AijkB
m
n is called the open or outer product or Kronecker

product of the tensors Aijk and Bm
n and its rank is higher than that of each of the
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tensors from which it is obtained and the operation by which this tensor is obtained,
is called outer multiplication. In general, if we multiply a tensor Ai1i2···ilj1j2···jm , of the type

(l,m) by a tensor Bp1p2···pr
q1q2···qs , of the type (r, s), where r and s not being both zero, then

the product obtained is

Ai1i2···ilj1j2···jmB
p1p2···pr
q1q2···qs , (1.54)

of rank (l + r,m+ s), this product is called the open or outer product of two tensors.

Result 1.11.1 In taxing the out product of any number of tensors, care should be
taken to use distinct indices. For example, it should be wrong to write the outer
product of Aij , Bk and C lmkp as AijBkC

lm
kp , because the covariant index k is repeated.

Result 1.11.2 The operation of outer product/multiplication relates to tensors of
any two types [the type (0, 0) being excluded] at the same point.

Result 1.11.3 The outer product of two tensors is a tensor whose order is sum of the
orders of the two tensors. This provides us with an easy method of forming tensors of
higher rank and of any variance (co or contra).

Result 1.11.4 Let Cij be the open product of two vectors Ai and Bj , then C
i
j = AiBj

is a mixed tensor of order two. But every mixed tensor of order two is not necessarily
the tensor product of contravariant vector and a covariant vector. Note that, every
tensor can not be written as a product of two tensors of lower rank. For this reason
division of tensors is not always possible.

1.12 Contraction

If we set in a mixed tensor one covariant and one contravariant suffixes equal, the
process is called contraction. Let Aijklm be a mixed tensor of type (2, 3), then by tensor
law of transformation,

A
ij
klm =

∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
∂xs

∂xl
∂xt

∂xm
Apqrst.

Replacing the lower index l by the upper index i and taking summation over i, we get

A
ij
kim =

∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
∂xs

∂xi
∂xt

∂xm
Apqrst

=
∂xi

∂xp
∂xs

∂xi
∂xj

∂xq
∂xr

∂xk
∂xt

∂xm
Apqrst

= δsp
∂xj

∂xq
∂xr

∂xk
∂xt

∂xm
Apqrst =

∂xj

∂xq
∂xr

∂xk
∂xt

∂xm
Apqrpt.
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If we denote Apqrpt by B
q
rt and A

ij
kim by B

j
km, then the above relation can be written as

B
j
km =

∂xj

∂xq
∂xr

∂xk
∂xt

∂xm
Bq
rt,

which shows that Bj
km, i.e. A

ij
kim is a tensor of type (1, 2). The tensor Aijkim is called

a contracted tensor of the given tensor and the operation by which it is obtained, is
called contraction. Therefore, contraction reduces rank of tensor by two. In general,
if Ai1i2···ilj1j2···jm , of the type (l,m); l ̸= 0,m ̸= 0, then the quantities obtained by replacing
any one upper index ip and one lower index jq by the same index ip and performing
summation over ip, are the components of a tensor of type (l − 1,m− 1).

(i) A tensor can be repeatedly contracted. Thus the tensor Aijklm of total rank 5, on

contraction, gives the tensor Aijkim of total rank 3, which can be further contracted

go give the tensor Aijkij or Aijkik of contravariant rank 1.

(ii) It should be evident that the inner product of tensors can be thought of as their
outer product followed by contraction. Thus, the inner product Aijk B

k
q = Cijk can

be obtained by first taking the outer product Aijk B
p
q = Dijp

kq , then contracting

this tensor by equating the indices p and k, and finally identifying Cijq with Dijp
pq .

(iii) If two similar indices of a tensor are equated, the resulting entity is not a tensor.
Thus, if Dijp

kq is a tensor, Dijp
kq and Dijp

kk are not tensors.

Note 1.12.1 Contraction is to be operated with respect to an upper index and a
lower index and not with respect to two indices of the same kind.

Note 1.12.2 Contraction ofm pairs of indices of a tensor of type (p, q) yields a tensor
of type (p −m, q −m), whose rank is less than that of original tensor by 2m. Thus
contraction can lower the rank of a tensor by an even number only. Let us consider a
mixed tensor Aij of the type (1, 1), then by tensor law of transformation, we get

A
i
j =

∂xi

∂xp
∂xq

∂xj
Apq .

Contracting with respect to i and j, we get,

A
i
i =

∂xi

∂xp
∂xq

∂xi
Apq = δqpA

p
q = App = Aii,

which is an invariant. Thus, contraction of a pair of indices of a tensor of type (1, 1)
yields a tensor of type (0, 0), i.e. an invariant.
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1.13 Inner Multiplication

Inner multiplication is a combination of outer multiplication and contraction. If an
outer product of two tensors be contracted with respect to an upper index of one factor
and lower index of other, then a tensor is obtained which is called an inner product
of two tensors.

Let Apr and Bqs
t be the components of mixed tensors of the type (1, 1) and (2, 1),

respectively. Then the outer product of these two tensors is AprB
qs
t . The inner product

of these tensors are given by AprBrs
t . By tensor law of transformation, we get

A
p
r B

rs
t =

∂xp

∂xi
∂xj

∂xr
Aij
∂xr

∂xk
∂xs

∂xl
∂xm

∂xt
Bkl
m

=
∂xp

∂xi
∂xj

∂xr
∂xr

∂xk
∂xs

∂xl
∂xm

∂xt
AijB

kl
m

=
∂xp

∂xi
δjk
∂xs

∂xl
∂xm

∂xt
AijB

kl
m

=
∂xp

∂xi
∂xs

∂xl
∂xm

∂xt
AikB

kl
m.

But this is the law of transformation of the mixed tensor of rank 3. Thus, the inner
product AprBrs

t is a mixed tensor of rank 3. Consider the following two particular cases:

(i) The outer product AiB
jk of the tensors Ai and B

jk, when contracted for indices
i and j, produces the tensor AiB

ik, which is of the type (1, 0). This tensor is an
inner product of the tensors Ai and B

jk. Another inner product AiB
ji can be

obtained by contracting for the indices i and k in the outer product AiB
jk.

(ii) The outer product AiB
j of the vectors Ai and Bj , when contracted for the

indices i and j, produces the tensor AiB
i of type (0, 0), namely a scalar. This

inner product is called the scalar product of vectors Ai and B
j , because it is a

scalar. This scalar product is an invariant, i.e. it has the same value in any set
of co-ordinates.

If we set in a product of two tensors one contravariant and one covariant suffixes
equal, the process is called inner multiplication and the resulting tensor is called the
inner product of two tensors. For example,

Aijk B
k
pqr; A

ij
k B

s
ipr; A

ij
k B

s
pjr

all the inner products of the tensors Aijk and Bs
pqr. No index should occur more than

twice. For example, it should be wrong to write the inner product as Aijk B
i
q because

two contravariant indices has been equated, or as Aikk B
k
k , because k is repeated four

times.
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Note: Each of the above mentioned algebraic operations on tensor or tensors produces
again a tensor at the same point. These operations constitute what is called the tensor
algebra of VN .

1.14 Quotient Law of Tensors

The name quotient law is in a certain sense appropriate because the application of this
law produces a tensor from two tensors just as the operation of division of two numbers
produces a number, namely, their quotient. If the result of taking an inner product
of a given set of functions with a particular type of tensor of arbitrary components is
known to be a tensor, then the given functions will form the components of a tensor.

Let a quantity A(p, q, r) be such that in the co-ordinate system
(
xi
)
,

A(p, q, r)Bqs
r = Csp ,

where Bqs
r is an arbitrary tensor and Csp is a tensor. In the

(
xi
)
co-ordinate system,

this is transformed to

A(i, j, k)B
jl
k = C

l
i.

Applying tensor law of transformation, we get

A(i, j, k)Bqt
r

∂xj

∂xq
∂xl

∂xt
∂xr

∂xk
= Csp

∂xl

∂xs
∂xp

∂xi

or

A(i, j, k)Bqt
r

∂xj

∂xq
∂xl

∂xt
∂xr

∂xk
∂xs

∂xl
∂xi

∂xp
= Csp

or

A(i, j, k)Bqt
r

∂xj

∂xq
∂xl

∂xt
∂xs

∂xl
∂xr

∂xk
∂xi

∂xp
= Csp

or

A(i, j, k)Bqt
r

∂xj

∂xq
δst
∂xr

∂xk
∂xi

∂xp
= Csp

or

A(i, j, k)Bqs
r

∂xj

∂xq
∂xr

∂xk
∂xi

∂xp
= A(p, q, r)Bqs

r

or [
A(i, j, k)

∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
−A(p, q, r)

]
Bqs
r = 0.

Since Bqs
r is arbitrary so the expression within the third bracket is zero and con-

sequently,

A(p, q, r) = A(i, j, k)
∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
,
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which confirms the tensor law of transformation. Thus A(p, q, r) is a tensor of the

type Arpq. In general, let A
i1···ip
j1···jqk be a set of quantities where k, the i’s and j’s take

the values from 1 to N . Let uk be an arbitrary vector. If the inner product B
i1···ip
j1···jq

given by

B
i1···ip
j1···jq = A

i1···ip
j1···jqku

k

is a tensor, then A
i1···ip
j1···jqk is a tensor. It is important in the use of the quotient law

that the tensor with which inner product is taken should be an arbitrary tensor. The
following statements are useful criteria or ‘tests’ for tensor character; they may all be
derived as special cases of the quotient law:
(i) If AiB

i ≡ E is invariant for all contravariant vectors Bi, then Ai is a covariant
vector.

(ii) If AijB
i ≡ Cj are components of a covariant vector for all contravariant vectors

Bi, then Aij is a covariant tensor of order two.

(iii) If AijB
iCj ≡ E is invariant for all contravariant vectors Bi and Ci, then Aij is

a covariant tensor of order two.

(iv) If Aij is symmetric and AijB
iBj ≡ E is invariant for all contravariant vectors

Bi, then Aij is a covariant tensor of order two.

EXAMPLE 1.14.1 Using quotient law of tensor, prove that Kronecker delta is a
mixed tensor of rank 2.

Solution: Let Ak be an arbitrary vector. Using the definition of Kronecker delta, we
have, δijA

j = Ai.

Thus, we see that the inner product of δij with an arbitrary vector Ak is a con-

travariant vector of rank 1. Hence, by quotient law δij is also a tensor. We see that,

δij has one subscript and one superscript, so that δij is a mixed tensor of rank 2.

Deduction 1.14.1 Tensor equations: Much of the importance of tensors in math-
ematical physics and engineering resides in the fact that if a tensor equation or identity
is true in one co-ordinate system, then it is true in all co-ordinate systems.

There are some simple rules for checking the correctness of indices in a tensor
equation.

(i) A free index should match in all terms throughout the equation.

(ii) A dummy index should match in each term of the equation separately.

(iii) No index should occur more than twice in any term.

(iv) When a co-ordinate differential such as ∂xi occurs, is a term i is to be regarded as
a contravariant index if ∂xi occurs in the numerator and as a covariant index if it
occurs in the denominator. Thus, in an expression such as ∂xi

∂xj
, i is a contravariant

index, while j is a covariant index.
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1.15 Symmetric Tensor

If in a co-ordinate system two contravariant or covariant indices of a tensor can be
interchanged without altering the tensor, then it is said to be symmetric with respect
to these indices in the co-ordinate system. So, a tensor Aij is said to be symmetric if

Aij = Aji.

For a general tensor of arbitrary rank, symmetry can be defined for a pair of similar
indices. For example, a tensor Aijk is symmetric in the suffixes j and k if

Almpijk = Almpikj .

It is important to specify the positions of the indices rather than the indices themselves.

Property 1.15.1 Symmetric property remains unchanged by tensor law of transfor-
mation, i.e. if a tensor is symmetric with respect to two contravariant or covariant
indices in any co-ordinate system, then it remains so with respect to these two indices
in any other co-ordinate system.

Proof: Let a tensor Aij be symmetric in one co-ordinate system
(
xi
)
, i.e. Aij = Aji

and Aij in another co-ordinate system
(
xi
)
. Now,

Aij =
∂xp

∂xi
∂xq

∂xj
Apq =

∂xp

∂xi
∂xq

∂xj
Aqp

=
∂xq

∂xj
∂xp

∂xi
Aqp = Aji.

This shows that symmetry with respect to i and j also holds in the system
(
xi
)
. Similar

result may be obtained by tracing the case of a covariant tensor or a mixed tensor.
Thus the property of symmetry is an intrinsic property of a tensor and is independent
of the choice of the co-ordinate system.

Note 1.15.1 It is to be noted that symmetry cannot, in general, be defined for a
tensor with respect to two indices of which one is contravariant and the other is
covariant, except the tensor δij , which has the interesting property that it is symmetric
in i and j and this symmetry is preserved under co-ordinate transformation. Thus,

δij = δji and δ
i
j = δ

j
i ; as δij = δ

i
j .

Property 1.15.2 In an N dimensional space, a symmetric covariant tensor of second
order has atmost N(N+1)

2 different components.
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Proof: Let Aij be a symmetric covariant tensor of second order, then it has N2 com-
ponents in VN . These components are

A11 A12 · · · A1N

A21 A22 · · · A2N
...

... · · ·
...

AN1 AN2 · · · ANN

.

These components are of two types:

(i) Those in which the indices i and j are the same, i.e. the components along the
diagonal. The maximum number of distinct components of this type is N .

(ii) Those in which the indices i and j are different, i.e. the components along the
nondiagonal. Hence, the maximum number of components of this type is

= N2 −N = N(N − 1).

But due to symmetry of Aij , (the components above and below the diagonal)

the maximum number of distinct components of this type is N(N−1)
2 .

Therefore, the maximum number of independent components is given by

N +
N(N − 1)

2
=
N

2
(N + 1).

EXAMPLE 1.15.1 Assume ϕ = ajkA
jAk, show that ϕ = bjkA

jAk, where bjk is
symmetric.

Solution: In the given relation ϕ = ajkA
jAk, interchanging the indices k and j, we

get, ϕ = akjA
kAj . Therefore,

2ϕ = (ajk + akj)A
jAk

or

ϕ =
1

2
(ajk + akj)A

jAk = bjkA
jAk, say

where, bjk =
1
2 (ajk + akj). Also,

bjk =
1

2
(ajk + akj) =

1

2
(akj + ajk) = bkj .

Therefore, bjk is symmetric.
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EXAMPLE 1.15.2 If the tensors aij and bij are symmetric, and ui, vi are compo-
nents of contravariant vectors satisfying the equations

(aij − kbij)u
i = 0

(aij − k′bij) v
i = 0

}
; i, j = 1, 2, . . . , n and k ̸= k′,

show that biju
ivj = 0 and aiju

ivj = 0.
Solution: Since aij and bij are symmetric, so aij = aji, bij = bji. Multiplying the
first equation by vj and the second by uj , respectively, and subtracting, we get

aiju
ivj − aijv

iuj − kbiju
ivj + k′bijv

iuj = 0

or
aiju

ivj − ajiv
iuj − kbiju

ivj + k′bjiv
iuj = 0

or
aiju

ivj − aiju
ivj − kbiju

ivj + k′biju
ivj = 0

(interchanging dummy indices i, j)

or −(k − k′)biju
ivj = 0 ⇒ biju

ivj = 0 as k ̸= k′.

Multiplying the first equation by vj , we get

aiju
ivj − kbiju

ivj = 0.

or
aiju

ivj = 0; as biju
ivj = 0.

EXAMPLE 1.15.3 If aij is symmetric tensor and bi is a vector and

aijbk + ajkbi + akibj = 0,

then prove that aij = 0 or bk = 0.
Solution: The equation is

aijbk + ajkbi + akibj = 0; aijbk + ajkbi + akibj = 0.

Using tensor law of transformation, we get

apq
∂xp

∂xi
∂xq

∂xj
br
∂xr

∂xk
+ apq

∂xp

∂xj
∂xq

∂xk
br
∂xr

∂xi
+ apq

∂xp

∂xk
∂xq

∂xi
br
∂xr

∂xj
= 0

or

apqbr

[
∂xp

∂xi
∂xq

∂xj
∂xr

∂xk
+
∂xp

∂xj
∂xq

∂xk
∂xr

∂xi
+
∂xp

∂xk
∂xq

∂xi
∂xr

∂xj

]
= 0

or
apqbr = 0 ⇒ apq = 0 or br = 0

or
aij = 0 or bk = 0.
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1.16 Skew-symmetric Tensor

If by interchanging every pair of contravariant or covariant indices of a tensor each
of its components is altered in sign, but not in magnitude, then the tensor is said to
be skew-symmetric or anti-symmetric with respect to these indices in the co-ordinate
system. Therefore, a tensor Aij is said to be anti-symmetric if

Aij = −Aji.

Similarly, a tensor Aijk is anti-symmetric in the suffixes j and k if

Aijk = −Aikj .

Antisymmetry of an arbitrary tensor can be defined for any pair of similar indices.

Property 1.16.1 If a tensor is skew-symmetric with respect to a pair of contravariant
or covariant indices in any co-ordinate system, then it remains so with respect to these
two indices in any other co-ordinate system.

Proof: Let a tensor Aij be skew-symmetric in one co-ordinate system
(
xi
)
, i.e. Aij

= −Aji and Aij in another co-ordinate system
(
xi
)
. Now,

Aij =
∂xp

∂xi
∂xq

∂xj
Apq = −∂x

p

∂xi
∂xq

∂xj
Aqp

= −∂x
q

∂xj
∂xp

∂xi
Aqp = −Aji.

This shows that anti-symmetry with respect to i and j also holds in the system
(
xi
)
.

Property 1.16.2 In an N dimensional space, a skew-symmetric covariant tensor of
second order has atmost N(N−1)

2 different components.

Proof: Let Aij be a skew-symmetric covariant tensor of second order, then it has N2

components in VN . These components are

0 A12 · · · A1N

A21 0 · · · A2N
...

... · · ·
...

AN1 AN2 · · · 0

.

These components are of two types:

(i) Those in which the indices i and j are the same. In this case

Aii = −Aii ⇒ Aii = 0; i = 1, 2, . . . , N.
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(ii) Those in which the indices i and j are different, i.e. the components along the
non-diagonal. Hence, the maximum number of components of this type is

= N2 −N = N(N − 1).

But due to anti-symmetry of Aij (the components above and below the diagonal)

the maximum number of distinct components of this type is N(N−1)
2 .

Therefore, the maximum number of independent components is given by

0 +
N(N − 1)

2
=
N

2
(N − 1).

Property 1.16.3 If Aij and Bpq are skew-symmetric tensors, then outer product is
symmetric tensor.

Proof: Since Aij and Bpq are skew-symmetric, so by definition,

Aji = −Aij and Bqp = −Bpq.

If the outer product of Aij and Bpq be Cijpq, then,

Cijpq = AijBpq.

Thus

Cijpq =
(
−Aji

)
(−Bqp) = AjiBqp = Cjiqp,

shows that Cijpq = the outer product of the skew-symmetric tensors Aij and Bpq is
symmetric tensor.

EXAMPLE 1.16.1 If Aijk is completely skew-symmetric and the indices run from 1

to N , show that the number of distinct non-vanishing components of Aijk is
N(N−1)(N−2)

6 .

Solution: A tensor Aijk is anti-symmetric in the suffixes i and j if Aijk = −Ajik.
This tensor has

=
N

2
(N − 1) ·N =

N2

2
(N − 1)

independent components. A tensor Aijk is anti-symmetric in the suffixes i, j and k if

Aijk = −Ajik, Aijk = −Akji and Aijk = −Aikj .

Taking i = j = k, then the tensor Aijk is of the type Aiii and in this case

Aiii = −Aiii ⇒ Aiii = 0; for all i.
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In this case, the number of independent components of Aijk is zero. When Aijk is of
the type Aiik, then

Aiik = −Aiik ⇒ Aiik = 0.

In the case, the number of independent components of Aijk is zero. This means that
the number of independent components of Aijk is

NC3 =
N(N − 1)(N − 2)

3!
.

Thus, the non-vanishing components of Aijk is
N(N−1)(N−2)

6 . For the symmetric tensor
the maximum number of non-vanishing components are

NC1 +
NP2 +

NC3 =
N(N + 1)(N + 2)

6
.

EXAMPLE 1.16.2 If Ai be the component of a covariant vector, show that ∂Ai

∂xj
− ∂Aj

∂xi

are components of a skew-symmetric covariant tensor of rank 2.

Solution: Since Ai be the component of a covariant vector, by law of transformation
Ai =

∂xk

∂xi
Ak. Differentiating it with respect to xj partially,

∂Ai
∂xj

=
∂

∂x̄j

(
∂xk

∂xi
Ak

)
=

∂2xk

∂xj∂xi
Ak +

∂xk

∂xi
∂Ak
∂xj

=
∂2xk

∂xj∂xi
Ak +

∂xk

∂xi
∂xl

∂xj
∂Ak
∂xl

. (i)

Similarly,
∂Aj
∂xi

=
∂2xk

∂xi∂xj
Ak +

∂xk

∂xj
∂xl

∂xi
∂Ak
∂xl

.

Interchanging the dummy indices k and l, we get

∂Aj
∂xi

=
∂2xk

∂xi∂xj
Ak +

∂xk

∂xi
∂xl

∂xj
∂Al
∂xk

. (ii)

Subtracting, (i) and (ii) we get

∂Ai
∂xj

− ∂Aj
∂xi

=
∂xk

∂xi
∂xl

∂xj

(
∂Ak
∂xl

− ∂Al
∂xk

)
.

This is the law of transformation of covariant tensor of rank 2. Therefore, ∂Ai

∂xj
− ∂Aj

∂xi

are components of a covariant tensor of rank 2. Now,

Pij =
∂Ai
∂xj

− ∂Aj
∂xi

= −
(
∂Aj
∂xi

− ∂Ai
∂xj

)
= −Pji.

Thus, ∂Ai

∂xj
− ∂Aj

∂xi
are components of a skew-symmetric covariant tensor of rank 2.
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EXAMPLE 1.16.3 The components of a tensor of type (0, 2) can be expressed
uniquely as a sum of a symmetric tensor and a skew-symmetric tensor of the same
type.

Solution: Let aij be the components of a tensor of type (0, 2). Now, aij can be
written in the form

aij =
1

2
(aij + aji) +

1

2
(aij − aji)

= Aij +Bij , say,

where
Aij =

1

2
(aij + aji) and Bij =

1

2
(aij − aji).

Since aij is a tensor of type (0, 2), aji is also a tensor of type (0, 2). Since addition,
subtraction of two tensors of the same rank and scalar multiplication with a tensor is
a tensor, similar character, both Aij and Bij are tensors of type (0, 2). Now,

Aji =
1

2
(aji + aij) =

1

2
(aij + aji) = Aij

Bji =
1

2
(aji − aij) = −1

2
(aij − aji) = −Bij .

Thus, Aij is symmetric and Bij is skew-symmetric. Therefore, the components of a
tensor of type (0, 2) can be expressed as a sum of a symmetric tensor and a skew-
symmetric tensor of the same type.

Uniqueness: Now, we have to show that the representation is unique. For this, let
aij = Cij +Dij , where Cij is symmetric and Dij is skew-symmetric. Now,

aij = Cij +Dij ⇒ aji = Cij −Dij

⇒ Cij =
1

2
(aij + aji) = Aij ; Dij =

1

2
(aji − aij) = Bij .

Thus, the representation is unique. Therefore, every tensor of type (0, 2) can be ex-
pressed uniquely as a sum of a symmetric tensor and a skew-symmetric tensor of the
same type.

EXAMPLE 1.16.4 If aij (̸= 0) are the components of a covariant tensor of order
two such that baij + caji = 0, where b and c are non-zero scalars, show that either
b = c and aij is skew-symmetric or b = −c and aij is symmetric.

Solution: The given relation baij + caji = 0 can be written as baij = −caji. Multi-
plying both sides by b, we get

b2aij = −bcaij = −c (baji) = −c (caij) = c2aij
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or
(b2 − c2)aij = 0 ⇒ b2 − c2 = 0; as aij ̸= 0

or
b = ±c, as aij ̸= 0.

When b = c, then from the given relation we get

caij = −caji ⇒ aij = −aji,

which shows that aij is skew-symmetric. Again, when b = −c, it follows from the given
relation that:

−caij = −caji ⇒ aij = aji,

which shows that aij is symmetric.

EXAMPLE 1.16.5 If aij is a skew-symmetric tensor, prove that(
δijδ

k
l + δilδ

k
j

)
aik = 0.

Solution: Since aij is a skew-symmetric tensor, so, aij = −aji. Now,

LHS =
(
δijδ

k
l + δilδ

k
j

)
aik = δijδ

k
l aik + δilδ

k
j aik

= δijail + δilaij = ajl + alj = ajl + (−ajl) = 0.

EXAMPLE 1.16.6 If a tensor aijk is symmetric in the first two indices from the left
and skew-symmetric in the second and third indices from the left, show that aijk = 0.

Solution: Using the definition of aijk, we have

aijk = ajik; symmetric with respect to i, j

= −ajki; skew-symmetric with respect to i, k

= −akji; symmetric with respect to j, k

= akij ; skew-symmetric with respect to j, i

= aikj ; symmetric with respect to k, i

= −aijk; skew-symmetric with respect to k, j

or
2aijk = 0; i.e. aijk = 0.
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1.17 Pseudo-Tensors

Pseudo tensors have been studied and it is used somewhere in mechanics.

(i) In VN , consider N vectors ai, bi, ci, . . .. The outer product

aibjck, . . .

has NN components, but only N ! distinct components.

(ii) In the Euclidean E3, consider two vectors ai, bj and form

cij = aibj − ajbi.

Then,

(cij) =

 0 c12 c13
c21 0 c23
c31 c32 0

 =

 0 c12 −c31
−c12 0 c23
c31 −c23 0

 .

This has only three independent components c23,−c31, c12. They are the com-
ponents of the cross-product of the theory of vectors. They form an axial vector.

(iii) In a V4, consider two vectors {
a b c d
u v w t

.

From these, we construct six determinants such as∣∣∣∣a b
u v

∣∣∣∣ = av − bu.

More generally, in a VN consider two vectors ai and bj . We then form

cij = aibj − ajbi.

Then the number of independent components is 1
2N(N − 1) > N , if N > 3. A

set of two vectors will be called a bi-vector, to which we associate cij .

(iv) In a VN , consider N elementary displacements

d1x
i, d2x

i, . . . , dNx
i.

The indices which affect the letter d have no tensorial significance, they are
simply labels which distinguish the vectors. Consider the determinant

∆ =

∣∣∣∣∣∣∣∣∣
d1x

1 d1x
2 . . . d1x

N

d2x
1 d2x

2 . . . d2x
N

...
... . . .

...
dNx

1 dNx
2 . . . dNx

N

∣∣∣∣∣∣∣∣∣ .
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If we exchange the vectors, in any manner, ∆ will preserve its value, but only
change its sign. There is only one independent ∆.

We have seen that in V4 there are exactly six independent components of the tensor
cij . If we pass to any other system of co-ordinates, we may consider the law of
transformation of this set of six components to the corresponding set of components
in the new system of co-ordinates. We say that these six components form a pseudo-
tensor.

1.18 Reciprocal Tensor of a Tensor

Let aik be a symmetric tensor of type (0, 2) satisfying the condition |aik| ̸= 0. Let bij

be the cofactor of aij in |aij | divided by |aij |, i.e.

bij =
cofactor of aij in |aij |

|aij |
. (1.55)

From the theory of determinants, we get,

aijb
ik =

{
1; when k = j
0; when k ̸= j

(1.56)

or

aijb
ik = δkj .

Let ξi be an arbitrary contravariant vector and let Bi = aijξ
j , then according to the

definition of inner product Bi is an arbitrary vector, as ξi is so. Now,

Bib
ik = aijξ

jbik = ξjaijb
ik = ξjδkj = ξk.

Applying quotient law to the equation Bib
ik = ξk, we conclude that bik is a contravari-

ant tensor of type (2, 0). The tensor bik is symmetric because aik is so. Thus, from the
symmetric tensor aij of type (0, 2), we get a symmetric tensor bij of type (2, 0). This
tensor bij is called the reciprocal or conjugate tensor of the tensor aij .

Result 1.18.1 If bij is the reciprocal tensor of the tensor aij , then aij is the reciprocal
tensor of the tensor bij .

Proof: Since aijb
ik = δkj , it follows that:

|aij |
∣∣∣bik∣∣∣ = ∣∣∣δkj ∣∣∣ = 1 ⇒

∣∣∣bik∣∣∣ ̸= 0.
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Let us define another tensor cij as

cij =
cofactor of bij in |bij |

|bij |
.

From the theory of determinants, we get, cijb
ik = δkj . Multiplying both sides by alk,

we get

cijb
ikalk = δkj alk

or

cijδ
i
l = alj ⇒ clj = alj . (1.57)

Since cij is the reciprocal tensor of b
ij , it follows from (1.57) that aij is the reciprocal

tensor of bij . Thus, if bij is the reciprocal tensor of the tensor aij , then aij is the
reciprocal tensor of the tensor bij . Hence, if the relation aijb

ik = δkj is satisfied, then

we say that aij and b
ij are mutually reciprocal tensors.

EXAMPLE 1.18.1 If aij , bkl are components of two symmetric tensors in an N
dimensional space, such that |bkl| ̸= 0 and

aijbkl − ailbjk + ajkbil − aklbij = 0,

prove that aij = λbij, where λ is some scalar.

Solution: Since bkl are components of two symmetric tensors and |bkl| ̸= 0, we can
get the reciprocal tensor cij , the cofactor of bij in |bij |, such that bijc

ik = δkj . Now,

multiplying both sides of the given relation by ckl we get

aijc
klbkl − ailc

klbjk + ajkc
klbil − aklc

klbij = 0

or

aijN − ailδ
l
j + ajkδ

k
i − ρbij = 0; ρ = aklc

kl

or

Naij − aij + aji − ρbij = 0

or

Naij − ρbij = 0; as aij = aji

or

aij =
ρ

N
bij = λbij ,

where λ = ρ
N is a scalar because ρ is so.
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1.19 Relative Tensor

A system of order p+q whose components a
i1···ip
j1···jp in a co-ordinate system

(
xi
)
transform

according to the following formula, when referred to another co-ordinate system
(
xi
)
:

a
i1i2···ip
j1j2···jp = Jω

∂xi1

∂xt1
∂xi2

∂xt2
· · · ∂x

ip

∂xtp
∂xr1

∂xj1
· · · ∂x

rq

∂xjq
a
t1t2···tp
r1r2···rq , (1.58)

where J is the Jacobian of transformation (1.2) is called a relative tensor of weight w.

The sets of quantities a
t1t2...tp
r1r2...rq obeying this law of transformation (1.58) are called

the components of a relative tensor of weight w. In addition, form the linear and
homogeneous character of this transformation (1.58) it follows that if all components
of a relative tensor vanish in one co-ordinate system, they vanish in every co-ordinate
system.

An immediate corollary of this is that a tensor equation involving relative tensors
when true is one co-ordinate system is valid in all co-ordinate systems. In this case
the relative tensors on two sides of equations must be same weight.

(i) Relative tensors of the same type and weight may be added, and the sum is
relative tensor of the same type and weight.

(ii) Relative tensors may be multiplied, the weight of the product being the sum of
the weights of tensors entering in the product.

(iii) The operation of contraction on a relative tensor yields a relative tensor of the
same weight as the original tensor.

To distinguish mixed tensors, considered in the preceding sections, from relative ten-
sors, the term absolute tensor is frequently used to designate the former. We shall
encounter several relative tensors in applications of tensor theory.

A function f(x1, x2, . . . , xN ), represents a scalar in theX-reference frame whenever
in the Y -reference frame determined by the transformation

xi = xi(y1, y2, . . . , yN ),

the scalar is given by the formula

g(y1, y2, . . . , yN ) = f [x1(y), x2(y), . . . , xN (y)].

We will encounter functions f(x) which transform in accordance with the more general
law, namely

g(y1, y2, . . . , yN ) = f [x1(y), x2(y), . . . , xN (y)]

∣∣∣∣∂xi∂yj

∣∣∣∣w , (1.59)
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where
∣∣∣∂xi∂yi

∣∣∣ denotes the Jacobian of the transformation and w is a constant. The

formula (1.59) determines a class of invariant functions known as relative scalars of
weight w.

A relative scalar of weight zero is the scalar. Sometimes a scalar of weight zero is
called an absolute scalar. If the weight of a relative tensor is zero, then the relative
tensor is called an absolute tensor.

A relative scalar of weight 1 is called scalar density. A relative tensor of weight
1 is called a tensor density. The reason for this terminology may be seen from the
expression for the total mass of a distribution of matter of density p(x1, x2, x3), the
co-ordinates xi being rectangular Cartesian.

EXAMPLE 1.19.1 If aij is a covariant symmetric tensor of order two and |aij | = a,
show that

√
a is a tensor density.

Solution: Since aij is a covariant tensor of order two, we have

aij =
∂xp

∂xi
∂xq

∂xj
apq

or

|aij | =
∣∣∣∣∂xp∂xi

∣∣∣∣ ∣∣∣∣∂xq∂xj

∣∣∣∣ |apq| = ∣∣∣∣∂xp∂xi

∣∣∣∣2 a
or

a =

∣∣∣∣∂xp∂xi

∣∣∣∣2 a; where |aij | = a

or √
a =

∣∣∣∣∂xp∂xi

∣∣∣∣√a = J1√a; J =

∣∣∣∣∂xp∂xi

∣∣∣∣.
From this relation it follows that

√
a is a relative tensor of weight 1. In other words√

a is a tensor density.

EXAMPLE 1.19.2 Show that the equations of transformation of a relative tensor
possess the group property.

Solution: Let Aij be a relative tensor of weight ω. Consider the co-ordinate trans-
formations

xi → xi → x
i

Aij → Aij → Aij

In case of transformation xi → xi, we have

Aαβ =
∂xp

∂xα
∂xq

∂xβ

∣∣∣∣∂x∂x
∣∣∣∣ω Apq.
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In case of transformation xi → x
i
, we have

Aij =
∂xα

∂x
i

∂xβ

∂x
j

∣∣∣∣∂xi
∂x

j

∣∣∣∣ω Aαβ
= Apq

∂xp

∂xα
∂xq

∂xβ
∂xα

∂x
i

∂xβ

∂x
j

∣∣∣∣∂xi
∂x

j

∣∣∣∣ω ∣∣∣∣∂x∂x
∣∣∣∣ω

= Apq
∂xp

∂x
i

∂xq

∂x
j

∣∣∣∣ ∂xi∂xk
∂xk

∂x
j

∣∣∣∣ω = Apq
∂xp

∂x
i

∂xq

∂x
j

∣∣∣∣∂xi
∂x

j

∣∣∣∣ω
or

Aij = Apq
∂xp

∂x
i

∂xq

∂x
j

∣∣∣∣∂x∂x
∣∣∣∣ω .

This proves that, if we make the direct transformation from xi → x
i
, we get the same

law of transformation. Therefore, relative law of transformations possess the group
property.

EXAMPLE 1.19.3 Prove that the scalar product of a relative covariant vector of
weight ω1 and a contravariant vector of weight ω2 is a relative scalar of weight ω1+ω2.

Solution: Let Ai be the components of relative contravariant vector of weight ω1,
then

A
i
= Ap

∂xi

∂xp

∣∣∣∣∂x∂x
∣∣∣∣ω1

= Ap
∂xi

∂xp
Jω1

and Bi be the components of relative covariant vector of weight ω2, then

Bi = Bq
∂xq

∂xi

∣∣∣∣∂x∂x
∣∣∣∣ω2

= Bq
∂xq

∂xi
Jω2 .

We have to show that the scalar product AiBi is a relative scalar of weight ω1 + ω2.
For this, we have

A
i
Bi = ApBq ∂x

i

∂xp
∂xq

∂xi
Jω1+ω2

= ApBq ∂x
q

∂xp
Jω1+ω2

= ApBqδqpJ
ω1+ω2 = ApBpJω1+ω2 .

From this, it follows that AiBi is a relative scalar of weight ω1 + ω2.
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EXAMPLE 1.19.4 If Aij and Aij are components of symmetric relative tensors of
weight ω, show that∣∣∣Aij∣∣∣ = ∣∣Aij∣∣ ∣∣∣∣∂x∂x

∣∣∣∣w−2

and
∣∣Aij∣∣ = |Aij |

∣∣∣∣∂x∂x
∣∣∣∣w+2

.

Solution: Since Aij are components of symmetric relative tensors of weight ω, by
definition,

A
ij
= Aαβ

∂xi

∂xα
∂xj

∂xβ

∣∣∣∣∂x∂x
∣∣∣∣w .

Taking modulus of both sides and noting that
∣∣∣ ∂xi∂xα

∣∣∣ = ∣∣∣ ∂xj∂xβ

∣∣∣ = ∣∣∂x∂x ∣∣ , we get∣∣∣Aij∣∣∣ = ∣∣∣Aαβ∣∣∣ ∣∣∣∣∂x∂x
∣∣∣∣ ∣∣∣∣∂x∂x

∣∣∣∣ ∣∣∣∣∂x∂x
∣∣∣∣w

=
∣∣∣Aαβ∣∣∣ ∣∣∣∣∂x∂x

∣∣∣∣−2 ∣∣∣∣∂x∂x
∣∣∣∣w ; as

∣∣∣∣∂x∂x
∣∣∣∣ = ∣∣∣∣∂x∂x

∣∣∣∣−1

=
∣∣Aij∣∣ ∣∣∣∣∂x∂x

∣∣∣∣w−2

; as
∣∣∣Aαβ∣∣∣ = ∣∣Aij∣∣.

Since Aij are components of symmetric relative tensors of weight w. By definition,

Aij = Aαβ
∂xα

∂xi
∂xβ

∂xj

∣∣∣∣∂x∂x
∣∣∣∣w

or ∣∣Aij∣∣ = |Aαβ |
∣∣∣∣∂x∂x

∣∣∣∣ ∣∣∣∣∂x∂x
∣∣∣∣ ∣∣∣∣∂x∂x

∣∣∣∣w = |Aij |
∣∣∣∣∂x∂x

∣∣∣∣w+2

.

1.20 Cartesian Tensors

A tensor of Euclidean space En, obtained by orthogonal transformation of coordinate
axes, is called a Cartesian tensor. Thus a Cartesian tensor of rank r in a three-
dimensional Euclidean space is a set of 3r components which transform according to
the rule

A
i1i2···ir
j1j2···jr =

∂xi1

∂xα1
· · · ∂x

ir

∂xαr

∂xβ1

∂xj1
· · · ∂x

βr

∂xjr
Aα1α2···αr
β1β2···βr (1.60)

only under orthogonal co-ordinate transformations

T : xi = aijx
j ; (aij) is orthogonal (1.61)
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so that |aij | ≠ 0. This is a weaker condition than that imposed on general tensor. Since
a general tensor satisfies Eq. (1.60), for all co-ordinate transformation, it is clear that
a general tensor is also a Cartesian tensor but a Cartesian tensor is not necessarily a
general tensor.

1.20.1 Affine Tensor

A transformation of the form

T : xi = aijx
j ; |aij | ̸= 0 (1.62)

takes a rectangular co-ordinate system (xi) into a system (xi) having oblique axes.
Tensors corresponding to admissible co-ordinate changes, Eq. (1.62), are called affine
tensors. Thus, affine tensors are defined on the class of all such oblique co-ordinate
systems. Since the Jacobian matrices of T and T−1 are

J =

[
∂xi

∂xj

]
rr

=
[
aij
]
rr

and J−1 =

[
∂xi

∂xj

]
rr

=
[
bij
]
rr

the laws for affine tensors are,

Contravariant : A
i
= aipA

p;A
ij
= aipa

j
qA

pq, . . .

Covariant : Ai = bpiAp;Aij = bpi b
q
jApq, . . . (1.63)

Mixed : A
i
j = aipb

q
jA

p
q ;A

i
jk = ailb

m
j b

n
kA

l
mn, . . .

Under the less stringent condition Eq. (1.63), more objects can qualify as tensors than
before. From Eq. (1.62), we have

∂xi

∂xj
=
∂xj

∂xi
= aij

indicates that the distinction between covariance and contravariance vanishes. Thus,
we can use all indices as subscripts, so long as we are confining ourselves to orthogonal
co-ordinate transformations of the type of Eq. (1.61). The transformation law for a
Cartesian tensor thus reduces to

A
i1i2···ir = ai1j1a

i2
j2
· · · airjrA

j1j2···jr . (1.64)

Equation (1.61) suggests that xi is also a Cartesian vector, though it is not a general
vector. Since the co-ordinate differentials dxi constitute a general vector, hence also
a Cartesian vector.
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The Kronecker delta δij and the fully anti-symmetric tensor εijk are also Cartesian
tensors in which all indices can be written as covariant indices. This follows from the
fact that:

δ
p
q = api a

j
qδ
i
j = api a

i
q = δpq . (1.65)

Thus δij is a general tensor. Note that, the quotient law is valid for Cartesian tensors
also.

Thus, we conclude that an ordinary position vector (xi) becomes an affine tensor
and the partial derivatives of a tensor define an affine tensor.

1.20.2 Isotropic Tensor

A Cartesian tensor whose components remain unchanged under a rotation of axes is
called isotropic tensor. We say that an isotropic tensor transforms into itself under
orthogonal transformations.

Since the only values the Kronecker delta symbol takes are 1 and 0, it is seen that,
it is an isotropic tensor, that is, has the same components in any co-ordinate system.

A scalar is an isotropic tensor of rank zero, as it remains the same value in all
co-ordinate systems. Let u = (u1, u2, u3) be a vector and A = [aij ] an arbitrary
orthogonal transformation. Let, u = (u1, u2, u3) be the transformed vector, then,

u = Au;A = transformed matrix. (1.66)

But if u is an isotropic vector, we must have

u = u; i.e. ui = ui for i = 1, 2, 3. (1.67)

Thus, Eq. (1.66) reduces to

Au = u ⇒ (A− I)u = 0. (1.68)

where 0 is the null matrix. If this is to be true for every orthogonal matrix A, it is
clear that the only solution of Eq. (1.68) is u = 0. Thus, there is no isotropic tensor
of rank 1 except the null vector.

1.21 Exercises

1. (a) If xi = aipy
p and yi = biqz

q, show that xi = aiqb
q
pzp.

(b) Show that the expression bijyiyj becomes in terms of x variable as cijxixj
if yi = cijxj and b

ijcik = δjk.
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2. (a) If A = apx
p for all values of independent variables x1, x2, . . . , xN and aps

are constants, show that

∂

∂xj
(apx

p) = aj .

(b) Calculate

(i)
∂

∂xk
(
aijx

j
)
, (ii)

∂

∂xk
[aijx

i(xj)2]; aij = aji, (iii)
∂

∂xl

(
aijkx

ixjxk
)
;

where aijk are constants.

(c) Find the following partial derivative if aij are constants:

∂

∂xk
(
a11x

1 + a12x
2 + a13x

3
)
; k = 1, 2, 3.

(d) Using the relation ∂xp

∂xq = δpq, show that

∂

∂xk
(
aijx

ixj
)
= (aik + aki)x

i.

3. Write all the terms in each of the following sums expressed in summation con-
vention:

(a) aijku
k; k = 1, 2, . . . , N.

(b) δiju
iuj ; i, j = 1, 2, . . . , N.

(c) aijku
iujuk; i, j, k = 1, 2, . . . , N.

4. Evaluate each of the following (range of indices 1 to N):

(a) δijA
j and δijA

jk.

(b) δpqAstp and δijδ
k
l A

jl.

(c) ajaiδ
i
j and δ

i
kδ
k
l δ
l
i.

(d) δijδ
j
l δ
l
kδ
k
i and δijδ

ij .

5. Show that the expression bijyiyj becomes in terms of x variables as cijxixj , if

yi = cijxj and b
ijcik = δjk.

6. Explain with examples why Kronecker deltas are called substitution operator in
tensor analysis.

7. Suppose that the following transformation connects the (xi) and (xi) co-ordinate
system x1 = ex

1+x2 ; x2 = ex
1−x2 . Calculate the Jacobian matrix J, |J | and J−1.

Calculate also J .
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8. Show that for independent functions xi = xi
(
x1, x2, . . . , xN

)
,

∂xi

∂xr
∂xr

∂xj
= δij .

Take the partial derivative with respect to xk, to establish the formula,

∂2xi

∂xk∂xr
∂xr

∂xj
= − ∂2xr

∂xs∂xj
∂xi

∂xr
∂xs

∂xk
.

9. Discuss the transformations in which the co-ordinates xi are rectangular
Cartesian is E3:

x1 = x1 cosx2; x2 = x1 sinx2; x3 = x3,

where x1, x2, x3 are in cylindrical co-ordinate system.

10. (a) Discuss the transformations in which the co-ordinates xi are rectangular
Cartesian is E3:

x1 =
1√
6
x1 +

2√
6
x2 +

1√
6
x3; x2 =

1√
2
x1 − 1√

3
x2 +

1√
3
x3;

x3 =
1√
2
x1 − 1√

2
x3.

Write this system of equations in tensor form.

(b) If f(x1, x2, . . . , xN ) is a homogeneous function of degree m, prove that

∂f

∂xi
xi = mf.

11. Show that the cylindrical co-ordinates of the points whose Cartesian co-ordinates

(i) (4, 8, 3) (ii) (0, 1, 1) (iii) (0,−3,−3) (iv) (−2, 3, 2)

are given by

(i)
(
4
√
5, tan−1 2, 3

)
(ii)

(
1, π2 , 1

)
(iii)

(
3, π2 ,−3

)
(iv)

(√
13, tan−1

(
−3

2

)
, 2
)
.

Also find the spherical polar co-ordinates in each case.

12. Show that the Cartesian co-ordinates of the points whose cylindrical co-ordinates

(i)
(
6, π3 , 2

)
(ii)

(
2
√
3,−π

4 , 3
)

(iii)
(
8, 2π3 ,−4

)
(iv)

(
4, π6 , 1

)
are given by

(i)
(
3, 3

√
2, 2
)

(ii) (2,−2, 3) (iii)
(
−4, 4

√
3,−4

)
(iv)

(
2
√
3, 2, 1

)
.

Hence, find the spherical polar co-ordinates in each case.
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13. Show that the cylindrical co-ordinates of the points whose spherical co-ordinates

(i)
(
4, π4 ,

π
6

)
(ii)

(
6, π3 ,

2π
3

)
(iii)

(
8, 2π3 ,

π
3

)
(iv)

(
2, 2π3 ,

5π
6

)
are given by

(i)
(
2
√
2, π6 , 2

√
2
)

(ii)
(
3
√
3,−π

3 , 3
)

(iii)
(
4
√
3, π3 ,−4

)
(iv)

(√
3,−π

6 ,−1
)
.

14. Show that the spherical co-ordinates of the points whose cylindrical co-ordinates

(i)
(
4, π2 , 3

)
(ii)

(
1, 5π6 ,−2

)
(iii)

(
7, 2π3 ,−4

)
(iv)

(
3,−π

4 , 2
)
.

are given by

(i)
(
5, cos−1 1

5 ,
π
2

)
(ii)

(√
5, cos−1 −2√

5
, −π6

)
(iii)

(√
65, cos−1 −4√

65
, −π3

)
(iv)

(√
13, cos−1 2√

13
, −π4

)
.

15. Show that eijke
ijk = 6, where eijk and eijk are e-systems of third order, if

i, j, k = 1, 2, 3.

16. Expand for N = 2

(i) eija1i a
2
j (ii) eija2i a

1
j (iii) eαβaiαa

j
β = eij |a|.

17. Verify that

(i) δijαβa
αβ = aij − aji.

(ii) δijkαβγa
αβγ = aijk − aikj + ajki − ajik + akij − akji.

18. Prove that

ekαβe
kij = δijαβ =

∣∣∣∣∣δ
i
α δiβ

δjα δjβ

∣∣∣∣∣ and δijkαβγ =

∣∣∣∣∣∣∣
δiα δiβ δiγ

δjα δjβ δjγ

δkα δkβ δkγ

∣∣∣∣∣∣∣ .
19. Suppose that two sets of functions ui and ui (i = 1, 2, . . . , N) are connected by

the relations

ui =
∂xi

∂xj
uj ; i = 1, 2, . . . , N.

Prove that uk = ∂xk

∂xj
uj .

20. If the components of a contravariant vector in
(
xi
)
co-ordinate system are (8, 4),

show that its components in
(
xi
)
co-ordinate system are (24, 52), where x1 = 3x1

and x2 = 5x1 + 3x2.

21. If the components of a contravariant vector in
(
xi
)
co-ordinate system are

(2, 1, 1), show that its components in
(
xi
)
co-ordinate system are (5, 5, 5), where,

x1 = 3x1 − 3x2 + 2x3, x2 = 2x2 + 3x3 and x3 = x1 + x2 + 2x3.
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22. Show that if λ and µ are invariants and Ai and Bi are components of a con-
travariant vectors, the vector defined in all co-ordinate systems by (λAi + µBi)
is a contravariant vector. Using it verify that 2Ai + 3Bi is also a contravariant
vector.

23. The components of a contravariant vector in the (x) co-ordinate system are 2
and 3. Find its components in the (x) co-ordinate system if

x1 = 3(x1)2 and x2 = 5(x1)2 + 3(x2)2.

24. If the components of a contravariant tensor of type (2, 0) in

V2 :
{(
x1, x2

)
: x1, x2 ∈ ℜ

}
are A11 = 1, A12 = 0 = A21, A22 = 1, find A

ij
in

V 2 :
{(
x1, x2

)
: x1, x2 ∈ ℜ

}
where functional relation between co-ordinate systems are x1 = (x1)2, x2 =
(x2)2.

25. (a) Show that the component of tangent vector of a smooth curve in N dimen-
sional space are components of a contravariant vector.

(b) Prove that the gradient of an arbitrary differentiable function is a covariant
vector.

(c) If a vector has components
d2x

dt2
,
d2y

dt2
is rectangular Cartesian co-ordinates,

show that they are

d2r

dt2
− r

(
dθ

dt

)2

;
d2θ

dt2
+

2

r

dr

dt

dθ

dt

is polar co-ordinates.

(d) Obtain the components of the gradient of a scalar field in terms of polar
co-ordinates in a two dimensional space.

26. (a) Show that if the transformation T : yi = aijx
j is orthogonal, then the

distinction between the covariant and contravariant laws disappears.

(b) Prove that there is no distinction between contravariant and covariant vec-
tors when we restrict ourselves to rectangular Cartesian transformation of
co-ordinates.

27. Prove that the transformation of covariant vectors form a group.

28. Prove that the transformation of the tensors of the type (1, 1) form a group.
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29. If a covariant vector has components

(
x2

x1
,
x1

x2

)
in rectangular Cartesian co-

ordinates x1, x2; prove that its components in polar co-ordinates (x1, x2) are

sinx2 + cosx2; −x1 sin
2 x2

cosx2
+ x1

cos2 x2

sinx2
.

30. If a covariant vector has components
(
x1
)2
,
(x1)

3

x2
in rectangular Cartesian co-

ordinates x1, x2; prove that its components in polar co-ordinates (x1, x2) are

2
(
x1
)2

cos2 x2; −
(
x1
)3

sinx2 cos2 x2 +
(
x1
)3 cos4 x2

sinx2
.

31. If X,Y, Z are the components of a covariant vector in rectangular Cartesian co-
ordinates x, y, z in E3 show that the components of the vector in spherical polar
co-ordinates are

X cosx2 sinx3 + Y sinx2 sinx3 + Z cosx3;

Y x1 sinx2 cosx3 − Zx1 sinx3;

−Xx1 sinx2 sinx3 + Y x1 cosx2 sinx3.

32. IF X,Y, Z are the components of a contravariant vector in rectangular Cartesian
co-ordinates x, y, z in E3 show that the components of the vector in spherical
polar co-ordinates are

X sinx2 cosx3 + Y sinx2 sinx3 + Z cosx3;

−Xx1 cosx2 cosx3 − Y x1 sinx2 sinx3 − 1(
x1
)2Z;

− sinx2

x1 sinx3
X +

cosx2

x1 sinx3
Y.

33. Prove that if Aijkl is a tensor such that in the (xi) co-ordinate system, Aijkl

= 3Ailjk, then A
i
jkl = 3TAiljk in all co-ordinate systems.

34. (a) A covariant tensor has components xy, 2y−z2, xz in rectangular co-ordinates.
Determine its components in spherical polar co-ordinates.

(b) In orthogonal Cartesian co-ordinate system a contravariant vector is given
by (1, 1, 1). Find its components in cylindrical co-ordinate system.

35. (a) Prove that εijk and εijk are covariant and contravariant tensors of order
three, respectively.
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(b) Prove that δij and δij have different components in different co-ordinate
systems.

36. (a) Show that an inner product of tensors Aijk and Blm
n is a tensor of type (2,

2). How many inner products are possible in this case?
(b) If Cijk is an arbitrary mixed tensor and B(i, j, k)Cijk an invariant, prove

that B(i, j, k) is a tensor of type Bjk
i .

37. Prove that
∂Ai
∂xj

is not a tensor though Ai is a covariant vector. Hence show that

∂Ai
∂xj

− ∂Aj
∂xj

is a covariant tensor of type (0, 2).

38. If the relation bijvi = 0 holds for any arbitrary covariant vector vi, show that

bij = 0.

39. If the relation aijvivj = 0 holds for any arbitrary covariant vector vi, show that
aij + aji = 0.

40. If the relation aijv
ivj = bijv

ivj holds for any arbitrary values of vi, show that
aij + aji = bij + bji. If aij and bij are symmetric tensors, then further show that
aij = bij .
Hints: Take cij = aij − bij , then the given relation becomes cijv

ivj = 0.

41. If the equality aijvi = βvj holds for every covariant vector vi, where β is a scalar,

show that aij = βδij .

Hints: Take bij = aij − βδij , then the relation aijvi = βδijvi becomes bijvi = 0.

42. If the equality aijv
j = βvi holds for every contravariant vector vi, where β is a

scalar, show that aij = βδij .

43. (a) If Aijk is a mixed tensor, then prove that Cj = Aiji is a covariant vector.

(b) Show that if A(i, j, k)BiCjDk is a scalar for arbitrary vectors Bi, Cj , Dk,
then A(i, j, k) is a tensor.

(c) Assume that X(i, j)Bj = Ci, where B
j is an arbitrary contravariant vector

and Ci, is a covariant vector. Show that X(i, j) is a tensor. What is its
type?

44. If the relation ahijkλ
hµiλjµk = 0, where λi and µj are components of two arbi-

trary contravariant vectors, then

ahijk + ahkji + ajihk + ajkhi = 0.

45. If the relation aijkλ
iλjλk = 0 holds for any arbitrary contravariant vector λi,

show that

aijk + ajki + akij + ajik + akji + aikj = 0.

46. If Aij is a symmetric tensor and Bij = Aji, show that Bij is a symmetric tensor.
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47. If aijuiuj is an invariant for an arbitrary covariant vectors ui, show that aij+aji

is a contravariant tensor of second order.

48. If aij are components of a covariant tensor of second order and λi, µj are com-
ponents of two contravariant vectors, show that aijλ

iµj is an invariant.

49. If aiju
iuj is an invariant, where ui is an arbitrary contravariant vector. If aij is

a symmetric tensor and ui = λi + µi, show that aijλ
iµj is an invariant.

50. (a) If f is an invariant scalar function, determine whether ∂f
∂xi

are components
of a covariant vector.

(b) Show that the second derivatives of a scalar field f , i.e.
∂2f

∂xi∂xj
, are not

the components of a second order tensor.

51. (a) Prove that contraction of a mixed tensor Aij is a scalar invariant.

(b) Prove that any contraction of a tensor Aijk results in a covariant vector.

(c) Show that if Aijkl are tensor components, Aijij is an invariant.

(d) Prove that the contraction of a tensor of order (2, 3) is a tensor of order
(1, 2).

52. (a) Verify that the outer product of a contravariant vector and a covariant
vector is a mixed tensor of order two.

(b) If Ai and Bj are two contravariant vectors, then the N2 quantities AiBj

are the components of a contravariant tensor of order two.
(c) If Aij is a covariant tensor and Bi is a contravariant vector, prove that

AijB
i is a covariant vector.

53. Prove that the inner product of covariant and contravariant vectors is a scalar
invariant.

54. If vi is an arbitrary contravariant vector and aij(i, j = 1, 2, . . . , N) are N2 func-
tions such that aijv

j are components of a covariant vector, what can be said
about aij , justify your answer.

55. If (aij) be a matrix defined in a given co-ordinate system along with correspond-
ing matrices in other co-ordinates such that Bj = aijξ

i is a covariant vector for
any arbitrary contravariant vector ξi, show that aij is a covariant tensor.

56. If aij is symmetric tensor and bi is a vector and

aijbk + ajkbi + akibj = 0,

then prove that aij = 0 or bk = 0.

57. If aij is a component of a covariant symmetric tensor and bi is a non-zero co-
variant vector such that

aijbk + aikbj + akibj = 0,

then prove that aij = 0.
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58. Suppose that x components Aijk of a mixed tensor of order three are symmetric

in the subscripts j and k. Show that x components A
i
jk of the same mixed tensor

of order three are also symmetric in the subscripts j and k.

59. If the relation aijkλ
iλjλk = 0 holds for any arbitrary contravariant vector λi,

where aijk is a symmetric tensor in i and j, show that

aijk + ajki + akij = 0.

60. (a) If aij is a component of a symmetric covariant tensor and ui, vi are two
contravariant vectors, show that aiju

ivj is an invariant.
(b) If A(i, j)dxidxj is an invariant for an arbitrary vector dxi and A(i, j) is

symmetric, show that A(i, j) is a tensor Aij .
(c) It is given that A(i, j, k)Bjk = ξi, where Bjk is an arbitrary symmetric

tensor and ξi is an arbitrary contravariant vector. Show that A(i, j, k) +
A(i, k, j) is a tensor. Hence deduce that, if A(i, j, k) is symmetric in j and
k, then A(i, j, k) is a tensor.

61. If aij is a skew-symmetric covariant tensor of rank 2 and Aj is an arbitrary
contravariant vector, prove that aijA

iAj = 0.

62. If Aijk is completely symmetric and the indices run from 1 to N , show that the

number of distinct components of Aijk is N(N+1)(N+2)
6 .

63. If aij and bij are components of two covariant tensors in an N dimensional space,
where bij = bji and |bij | ≠ 0, satisfying

aijbkj − aijbjk + akjbij − akjbij = 0,

prove that aij = aji for all i and j.

64. The square of the element of arc ds appears in the form: ds2 = gijdx
idxj . Let T

be the admissible transformation of co-ordinates xi = xi
(
y1, y2, . . . , yN

)
, then

ds2 = hijdy
idyj . Prove that |gij | is a relative scalar of weight 2.

65. If aij are the components of a contravariant tensor and bij are the components of
a symmetric tensor such that b = |bij | ≠ 0, show that

√
baij are the components

of a tensor density.

66. If aij is a contravariant tensor such that
∣∣aij∣∣ ̸= 0, show that

∣∣aij∣∣ is a relative
invariant of weight −2.

67. If aij is a symmetric tensor such that
∣∣aij∣∣ ̸= 0 and bij is the cofactor of aij in∣∣aij∣∣, prove that bij is a relative tensor of weight 2.

68. (a) Verify the following formulas for the permutation symbols eij and eijk (for
distinct values of the indices only):

eij =
j − i

|j − i|
; eijk =

(j − i)(k − i)(k − j)

|j − i||k − i||k − j|
.
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(b) Prove the general formula,

ei1i2···in =
(i2 − i1)(i3 − i1) · · · (in − i1)(i3 − i2) · · · (in − i2) · · · (in − in−1)

|i2 − i1||i3 − i1| · · · |in − i1||i3 − i2| · · · |in − i2| · · · |in − in−1|
.

69. Prove that

(a) εiksεmps = δimδkp − δipδkm.
(b) εiksεmks = 2δim.
(c) Apply contraction on δij and find its value.

70. Prove that εijk and εijk are relative tensors of weight –1 and 1, respectively.
Also show that they are associated.

71. If ai is any vector, show that εijkajak = 0.

72. Show that the determinant of a square matrix A = [aij ]N×N can be expressed
using the fully antisymmetric tensor of rank N as

detA = εijk...p a1ia2ja3k . . . aNp;

where {i, j, k, . . . , p} is set of N indices. Further show that

εijk...p ariasjatk . . . azp = (detA)εrst,...,z,

where {r, s, t, . . . , z} is another set of N indices.

73. Show that

εijkε
ist =

∣∣∣∣ δsj δtj
δsk δtk

∣∣∣∣ .
Hence deduce that

(i) εijkε
ijt = 2δtk, (ii) εijkε

ijk = 3!.



Chapter 2

Riemannian Metric

In Chapter 1 we have considered some algebraic operations on tensors in VN which
constitute the so-called tensor algebra in VN . Each of these operations on a tensor or
tensors produces again a tensor.

The notion of distance (or metric) is fundamental in applied mathematics. Fre-
quently, the distance concept most useful in a particular application is non-Euclidean
(under which the Pythagorean relation for geodesic right triangles is not valid). Tensor
calculus provides a natural tool for the investigation of general formulas of distance; it
studies not only non-Euclidean metrices but also the forms assumed by the Euclidean
metric in particular co-ordinate system.

A space which admits an object called an affine transformation possesses sufficient
structure to permit the operation of tensor calculus within it. It is known that a
Riemannian space is necessarily endowed with an affine connection. Therefore, for
the development of tensor calculus we can either consider a VN endowed with an
affine connection or can consider a Riemannian space. In this chapter we consider
the alternative for the development of tensor calculus. This calculus has an important
application in physics, specially in the theory of relativity.

Calculus texts often contain derivations of arc-length formulas for polar co-ordinates
that apparently apply only to that one co-ordinate system. Here we develop a coincise
method for obtaining the arc length formula for any admissible co-ordinate system.

2.1 The Metric Tensor

Let us consider a space of N dimensions. Let us consider a displacement vector dxi;
i = 1, 2, 3, . . . , N determined by a pair of neighbouring points xi and xi + dxi. The
distance ds between the two adjacent points whose co-ordinates in any system are xi

(i = 1, 2, 3, . . . , N) and xi + dxi is given by the quadratic formula

ds2 = gijdx
idxj ; i, j = 1, 2, 3, . . . , N (2.1)

where the coefficients gij are arbitrary functions of co-ordinates xi such that
g = |gij | ̸= 0. This quadratic differential form gijdx

idxj , we expresses the distance

78
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between two neighbouring points, is called a metric or a Riemannian metric or line
element. The coefficient gij in Eq. (2.1) is called metric tensor or fundamental tensor
of the Riemannian metric.

(i) The quadratic form gijdx
idxj is positive definite, if it is positive for all the values

of the differentials dxi, not all equal to zero.

(ii) Since the distance between the two continuous points is independent of the co-
ordinate system, the line element ds is an invariant. ds is called the element of
arc in VN .

(iii) The tensor is called the metric tensor, because, all essential metric properties
of Euclidean space are completely determined by this tensor. We have intro-
duced a metric since we are now able to define the measure ds of an elementary
displacement.

(iv) If ds is real, it is called an elementary distance. In relativity, dsmay be imaginary
and is called elementary interval.

(v) The signature of ds2 is the difference between the number of positive squares
and the number of negative squares. Signature is invariant in a transformation
of variables (follows from “the theorem of inertia” of vector space).

(vi) Every three-dimensional Euclidean space E3 referred to an orthogonal Cartesian
system can be written as

ds2 = δijdx
idxj ; i, j = 1, 2, 3 and δij = gij ,

where δij is Kronecker delta defined in Eq. (1.1). Somtimes, ds2 = egijdx
idxj

where the numerical factor e, called the indicator, equal to +1 or −1 so that ds2

is always non-negative. Thus if all the coefficients gij are independent of xi, the
space becomes Euclidean space.

An N dimensional space characterised by this metric is called Riemannian space of N
dimensions and is denoted by VN . Geometry based on this metric is called Riemannian
geometry of N dimensions. Now, we are going to establish the nature of gij .

Theorem 2.1.1 In a Riemannian space, the fundamental tensor gij is a covariant
symmetrical tensor of order two.

Proof: The metric is given by Eq. (2.1). Let us consider a covariant transformation
from xi to xi(i = 1, 2, 3, . . . , N) given by

xi = xi
(
x1, x2, . . . , xN

)
(2.2)

so that the metric ds2 = gijdx
idxj transforms to ds2 = gijdx

idxj .

Step 1: Here, we have to show that dxi is a contravariant vector. Now,

xi = xi
(
x1, x2, . . . , xN

)
or dxi =

∂xi

∂xp
dxp.
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It is the law of transformation of contravariant vector. So, dxi is a contravariant vector.

Step 2: To show that gij is a covariant tensor of rank 2. Since dxi and dxj are
contravariant vectors, we get, by tensor law of transformation

dxi =
∂xi

∂xp
dxp and dxj =

∂xj

∂xq
dxq. (2.3)

Since ds2 is invariant under co-ordinate transformation, we have

gijdx
idxj = gijdx

idxj

or

gijdx
idxj = gij

∂xi

∂xp
∂xj

∂xq
dxpdxq; by Eq. (2.3)

or

gpqdx
pdxq = gij

∂xi

∂xp
∂xj

∂xq
dxpdxq

(Changing the dummy indices i, j by p, q)
or [

gpq − gij
∂xi

∂xp
∂xj

∂xq

]
dxpdxq = 0.

Since dxp and dxq are arbitrary vectors, we get

gpq − gij
∂xi

∂xp
∂xj

∂xq
= 0 ⇒ gpq = gij

∂xi

∂xp
∂xj

∂xq
. (2.4)

This is a second rank covariant tensor law of transformation. Therefore, gij is covariant
tensor of rank 2.

Step 3: Finally, we have to show that gij is symmetric. Now, gij can be written as

gij =
1

2
(gij + gji) +

1

2
(gij − gji) = Aij +Bij ; say, (2.5)

where

Aij =
1

2
(gij + gji) and Bij =

1

2
(gij − gji).

Since linear combination of two tensors is also a tensor of same rank, so Aij is a sym-
metric covariant tensor andBij is anti-symmetric covariant tensor of rank 2. Therefore,

gijdx
idxj = Aijdx

idxj +Bijdx
idxj

or

(gij −Aij) dx
idxj = Bijdx

idxj . (2.6)
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Interchanging the dummy indices i and j in Bijdx
idxj , we get

Bijdx
idxj = Bjidx

jdxi

= −Bijdxjdxi; Since Bij is anti-symmetric

= −Bijdxidxj

or

2Bijdx
idxj = 0 i.e. Bijdx

idxj = 0.

Therefore, from Eq. (2.6) we get

(gij −Aij) dx
idxj = 0.

Since dxi and dxj are arbitrary, we conclude that

gij −Aij = 0 ⇒ gij = Aij

⇒ gij is symmetric as Aij is so.

Therefore, the coefficient gij of the Riemannian metric form a symmetric tensor of
type (0, 2). The tensor gij is called fundamental covariant tensor of VN . Since gij are
symmetric, the number of independent components of the metric tensor gij cannot
exceed 1

2N(N + 1).

In an N -dimensional space, a co-ordinate system in terms of which gij = 0 for
i ̸= j is called an orthogonal co-ordinate system. Further, a system in which gii = 1
for 1 ≤ i ≤ N (no summation over i) and gij = 0 for i ̸= j is called a Cartesian
co-ordinate system.

Theorem 2.1.2 The line element gijdx
idxj is an invariant.

Proof: Let us consider a co-ordinate transformation from xi to xi given by

xi = xi
(
x1, x2, . . . , xN

)
; i = 1, 2, . . . , N.

Since gij is a covariant tensor of rank 2, we have

gij = gpq
∂xp

∂xi
∂xq

∂xj
⇒ gpq = gij

∂xi

∂xp
∂xj

∂xq
.

Interchanging the dummy indices i, j by p, q[
gpq − gij

∂xi

∂xp
∂xj

∂xq

]
= 0
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or [
gpq − gij

∂xi

∂xp
∂xj

∂xq

]
dxpdxq = 0

or

gpqdx
pdxq = gij

∂xi

∂xp
∂xj

∂xq
dxpdxq

or

gpqdx
pdxq = gij

∂xi

∂xp
dxp

∂xj

∂xq
dxq ⇒ gpqdx

pdxq = gijdx
idxj .

From this, we conclude that, gijdx
idxj is invariant.

EXAMPLE 2.1.1 Prove that invariance of the volume element dV where

V =

∫∫
· · ·
∫
√
gdx1dx2 · · · dxn

of a finite region R of VN bounded by a closed VN−1.

Solution: Let us consider a co-ordinate transformation from xi to xi(i = 1, 2, . . . , n).
Since gij is a covariant tensor of rank 2, we have

gpq =
∂xi

∂xp
∂xj

∂xq
gij .

Taking determinant of both sides,

∣∣gpq∣∣ = ∣∣∣∣ ∂xi∂xp

∣∣∣∣ ∣∣∣∣∂xj∂xq

∣∣∣∣ |gij |
or

g = gJ2 ⇒
√
g

g
= J ; where J =

∣∣∣∣∂x∂x
∣∣∣∣.

Since the transformation from xi to xi exists, we have

dx1dx2 · · · dxn =

∣∣∣∣∂x∂x
∣∣∣∣ dx1dx2 · · · dxn.

Hence √
g

g
=
dx1dx2 · · · dxn

dx1dx2 · · · dxn
or √

gdx1dx2 · · · dxn =
√
gdx1dx2 · · · dxn.

This shows that the volume element dV =
√
gdx1dx2 · · · dxn is an invariant.
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2.1.1 Fundamental Contravariant Tensor

Let gij be the components of the reciprocal or the conjugate tensor of gij , given by

gij =
cofactor of gij in g

g
; where g = |gij | ̸= 0, (2.7)

then the tensor gij is called the contravariant fundamental tensor of VN . gij is called
first fundamental tensor and gij is the second fundamental tensor.

Property 2.1.1 The properties of reciprocal tensor gij are (i) gijg
kj = δki , (ii) g

ijgij =
N and (iii) gij is also a symmetric contravariant tensor of rank 2.

Proof: (i) Let the cofactor of gij in g be denoted by ξ(i, j). From properties of deter-
minants, we have

gijξ(i, j) = g; g = |gij |

or

gij
ξ(i, j)

g
= 1 ⇒ gijg

ij = 1; using Eq. (2.7),

where the summation is taken over i and j. Now,

gijξ(k, j) = 0 ⇒ gij
ξ(k, j)

g
= 0; as g ̸= 0

or
gijg

kj = 0 if k ̸= i, using Eq. (2.7).

Therefore, we conclude that

gijg
kj = 1; if i = k

= 0; if i ̸= k

and hence gijg
kj = δki .

(ii) Using the above property, we get

gijg
ij = δij = δ11 + δ12 + · · ·+ δ22 + · · ·+ δNN

= δ11 + δ22 + · · ·+ δNN

= N as δij = 1, if i = j and 0, if i ̸= j.

(iii) Using property (i), we have

gijg
kj = δki ⇒ |gij |

∣∣∣gkj∣∣∣ = ∣∣∣δki ∣∣∣ = 1

⇒
∣∣∣gkj∣∣∣ ̸= 0.
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Let us define a tensor rij as

rij =
cofactor of gij in

∣∣gij∣∣
|gij |

(2.8)

then

rijg
ik = δkj .

Multiplying both sides by glk, we get

rijg
ikglk = δkj glk = gij

⇒ rijδ
i
l = glj ⇒ rlj = glj

⇒ rij = gij .

Since rij is a reciprocal tensor of gij , it follows that gij is the reciprocal tensor of
gij . Since gij is symmetric tensor of rank 2, so, gij is also a symmetric tensor of rank
2. This tensor gij is called the conjugate metric tensor or fundamental contravariant
tensor of the type (2, 0).

EXAMPLE 2.1.2 Find the expression of metric, the matrix and component of first
and second fundamental tensors in spherical co-ordinates.

Solution: Let E3 be covered by orthogonal Cartesian co-ordinates xi and consider a
transformation

x1 = y1 sin y2 cos y3, x2 = y1 sin y2 sin y3, x3 = y1 cos y2

where the yi are spherical polar co-ordinates. The metric in Euclidean space E3, re-
ferred to Cartesian co-ordinates is given by

ds2 =
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2
.

Comparing this, with Eq. (2.1), we see that

g11 = g22 = g33 = 1 and gij = 0; for i ̸= j.

The fundamental symmetric tensor gij in spherical co-ordinates are given by

g11 =
∂xi

∂y1
∂xj

∂y1
gij =

(
∂x1

∂y1

)2

g11 +

(
∂x2

∂y1

)2

g22 +

(
∂x3

∂y1

)2

g33
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=
(
sin y2 cos y3

)2 × 1 +
(
sin y2 sin y3

)2 × 1 +
(
cos y2

)2 × 1

= sin2 y2
(
cos2 y3 + sin2 y3

)
+ cos2 y2 = 1.

g22 =
∂xi

∂y2
∂xj

∂y2
gij =

(
∂x1

∂y2

)2

g11 +

(
∂x2

∂y2

)2

g22 +

(
∂x3

∂y2

)2

g33

=
(
y1 cos y2 cos y3

)2 × 1 +
(
y1 cos y2 sin y3

)2 × 1 +
(
−y1 sin y2

)2 × 1

=
(
y1
)2

cos2 y2
(
cos2 y3 + sin2 y3

)
+
(
y1
)2

sin2 y2

=
(
y1
)2 [

cos2 y2 + sin2 y2
]
=
(
y1
)2
.

g33 =
∂xi

∂y3
∂ij

∂y3
gij =

(
∂x1

∂y3

)2

g11 +

(
∂x2

∂y3

)2

g22 +

(
∂x3

∂y3

)2

g33

=
(
−y1 sin y2 sin y3

)2 × 1 +
(
y1 sin y2 cos y3

)2 × 1 + 0× 1

=
(
y1
)2

sin2 y2
[
sin2 y3 + cos2 y2

]
=
(
y1
)2

sin2 y2.

g12 =
∂xi

∂y1
∂xj

∂y2
gij =

∂x1

∂y1
∂x1

∂y2
g11 +

∂x2

∂y1
∂x2

∂y2
g22 +

∂x3

∂y1
∂x3

∂y2
g33

=
(
sin y2 cos y3

) (
y1 cos y2 cos y3

)
+
(
sin y2 sin y3

) (
y1 cos y2 sin y3

)
+
(
cos y2

) (
−y1 sin y2

)
= y1 sin y2 cos y2

(
cos2 y3 + sin2 y3

)
− y1 sin y2 cos y2

= y1 sin y2 cos y2 − y1 sin y2 cos y2 = 0.

g13 =
∂xi

∂y1
∂xj

∂y3
gij =

∂x1

∂y1
∂x1

∂y3
g11 +

∂x2

∂y1
∂x2

∂y3
g22 +

∂x3

∂y1
∂x3

∂y3
g33

=
(
sin y2 cos y3

) (
−y1 sin y2 sin y3

)
+
(
sin y2 sin y3

) (
y1 sin y2 cos y3

)
+
(
cos y2

)
· 0 = −y1 sin2 y2 sin y3 cos y3 + y1 sin2 y2 sin y3 cos y3 = 0 = g31.

g23 =
∂xi

∂y2
∂xj

∂y3
gij =

∂x1

∂y2
∂x1

∂y3
g11 +

∂x2

∂y2
∂x2

∂y3
g22 +

∂x3

∂y2
∂x3

∂y3
g33

=
(
y1 cos y2 cos y3

) (
−y1 sin y2 sin y3

)
+
(
y1 cos y2 sin y3

) (
y1 sin y2 cos y3

)
+
(
−y1 sin y2

)
· 0

= −
(
y1
)2

sin y2 cos y2 sin y3 cos y3 +
(
y1
)2

sin y2 cos y2 sin y3 cos y3 = 0 = g32.
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Thus, the symmetric metric tensor gij in spherical polar co-ordinates can be written
in matrix form as

[
gij
]
=

g11 g12 g13

g21 g22 g23

g31 g32 g33

 =

1 0 0

0
(
y1
)2

0

0 0
(
y1
)2

sin2 y2

 .
The expression for the metric in spherical polar co-ordinates is given by

ds2 = gijdy
idyj ; i, j = 1, 2, 3

= g11
(
dy1
)2

+ g22
(
dy2
)2

+ g33
(
dy3
)2

=
(
dy1
)2

+
(
y1
)2 (

dy2
)2

+
(
y1
)2 (

sin y2
)2 (

dy3
)2
.

Let g =
∣∣gij∣∣, then it is given by

g =

∣∣∣∣∣∣∣
1 0 0

0
(
y1
)2

0

0 0
(
y1
)2

sin2 y2

∣∣∣∣∣∣∣ =
(
y1
)4

sin2 y2 ̸= 0.

Therefore, the conjugate or reciprocal symmetric tensor gij are given by

g11 =
cofactor of g11 in g

g
=

1

(y1)4 sin2 y2

∣∣∣∣∣
(
y1
)2

0

0
(
y1
)2

sin2 y2

∣∣∣∣∣ = 1.

g22 =
cofactor of g22 in g

g
=

1

(y1)4 sin2 y2

∣∣∣∣1 0

0
(
y1
)2

sin2 y2

∣∣∣∣ = 1

(y1)2
.

g33 =
cofactor of g33 in g

g
=

1

(y1)4 sin2 y2

∣∣∣∣1 0

0
(
y1
)2 ∣∣∣∣ = 1

(y1)2 sin2 y2
.

Similarly, gij = 0, for i ̸= j. Hence, the reciprocal tensor gij can be represented in
matrix form as

[
gij
]
=

g
11 g12 g13

g21 g22 g23

g31 g32 g33

 =


1 0 0

0
1

(y1)2
0

0 0
1

(y1)2 sin2 y2

 .

EXAMPLE 2.1.3 Find the expression of metric and component of first and second
fundamental tensor in cylindrical co-ordinates.
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Solution: Let xi be the orthogonal Cartesian co-ordinates and yi be the cylindrical
co-ordinates, then the transformation formula is

x1 = y1 cos y2, x2 = y1 sin y2, x3 = y3.

The metric in Cartesian co-ordinates is given by

ds2 =
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2
.

Comparing this, with Eq. (2.1), we see that

g11 = g22 = g33 = 1 and gij = 0; for i ̸= j.

Let gij and gij be the symmetric metric tensors in Cartesian co-ordinates and cylin-
drical co-ordinates, respectively. On transformation

gpq = gij
∂xi

∂yp
∂xj

∂yq
; i, j = 1, 2, 3,

where gij is covariant tensor of rank 2. Thus,

g11 =
∂xi

∂y1
∂xj

∂y1
gij =

(
∂x1

∂y1

)2

g11 +

(
∂x2

∂y1

)2

g22 +

(
∂x3

∂y1

)2

g33

=
(
cos y2

)2 × 1 +
(
sin y2

)2 × 1 + 0× 1 = 1.

g22 =
∂xi

∂y2
∂xj

∂y2
gij =

(
∂x1

∂y2

)2

g11 +

(
∂x2

∂y2

)2

g22 +

(
∂x3

∂y2

)2

g33

=
(
−y1 sin y2

)2 × 1 +
(
y1 cos y2

)2 × 1 + 0× 1 =
(
y1
)2
.

g33 =
∂xi

∂y3
∂xj

∂y3
gij =

(
∂x1

∂y3

)2

g11 +

(
∂x2

∂y3

)2

g22 +

(
∂x3

∂y3

)2

g33

= 0× 1 + 0× 1 + 1× 1 = 1.

g12 =
∂xi

∂y1
∂xj

∂y2
gij =

∂x1

∂y1
∂x1

∂y2
g11 +

∂x2

∂y1
∂x2

∂y2
g22 +

∂x3

∂y1
∂x3

∂y2
g33

= cos y2 ·
(
−y1 sin y2

)2 · 1 + sin y2 ·
(
y1 cos y2

)2 · 1 + 0 · 0 · 1 = 0 = g21.

g13 =
∂xi

∂y1
∂xj

∂y3
gij =

∂x1

∂y1
∂x1

∂y3
g11 +

∂x2

∂y1
∂x2

∂y3
g22 +

∂x3

∂y1
∂x3

∂y3
g33

= cos y2 × 0× 1 + sin y2 × 0× 1 + 0× 1× 1 = 0 = g31.

g23 =
∂xi

∂y2
∂xj

∂y3
gij =

∂x1

∂y2
∂x1

∂y3
g11 +

∂x2

∂y2
∂x2

∂y3
g22 +

∂x3

∂y2
∂x3

∂y3
g33 = 0 = g32.
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Thus, the metric tensors in cylindrical co-ordinates can be written in matrix form as

[
gij
]
=

g11 g12 g13

g21 g22 g23

g31 g32 g33

 =

1 0 0

0
(
y1
)2

0

0 0 1

.
The expression for the metric in cylindrical co-ordinates is given by

ds2 = gijdy
idyj = g11

(
dy1
)2

+ g22
(
dy2
)2

+ g33
(
dy3
)2

=
(
dy1
)2

+
(
y1
)2 (

dy2
)2

+
(
dy3
)2
.

Let g =
∣∣gij∣∣, then it is given by

g =

∣∣∣∣∣∣∣
1 0 0

0
(
y1
)2

0

0 0 1

∣∣∣∣∣∣∣ =
(
y1
)2 ̸= 0.

Therefore, the conjugate or reciprocal symmetric tensor gij are given by

g11 =
cofactor of g11 in g

g
=

1

(y1)2

∣∣∣∣∣
(
y1
)2

0

0 1

∣∣∣∣∣ = 1

g22 =
cofactor of g22 in g

g
=

1

(y1)2

∣∣∣∣1 0
0 1

∣∣∣∣ = 1

(y1)2

g33 =
cofactor of g33 in g

g
=

1

(y1)2

∣∣∣∣1 0

0
(
y1
)2 ∣∣∣∣ = 1.

Similarly, gij = 0, for i ̸= j. Hence, the reciprocal tensor gij can be represented in
matrix form as

[
gij
]
=

g
11 g12 g13

g21 g22 g23

g31 g32 g33

 =


1 0 0

0
1

(y1)2
0

0 0 1

.
EXAMPLE 2.1.4 If the metric is given by

ds2 = 5
(
dx1
)2

+ 3
(
dx2
)2

+ 4
(
dx3
)2 − 6dx1dx2 + 4dx2dx3

evaluate g and gij.
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Solution: Comparing the given metric with (2.1), we have

g11 = 5, g22 = 3, g33 = 4, g12 = g21 = −3, g23 = g32 = 2 and g13 = g31 = 0.

If g = |gij |, then it is given by

g =

∣∣∣∣∣∣
5 −3 0

−3 3 2
0 2 4

∣∣∣∣∣∣ = 4 ̸= 0.

Now, the conjugate or reciprocal tensor gij are given by

g11 =
cofactor of g11 in g

g
=

1

4

∣∣∣∣3 2
2 4

∣∣∣∣ = 2

g22 =
cofactor of g22 in g

g
=

1

4

∣∣∣∣5 0
0 4

∣∣∣∣ = 5

g33 =
cofactor of g33 in g

g
=

1

4

∣∣∣∣ 5 −3
−3 3

∣∣∣∣ = 3

2

g12 =
cofactor of g12 in g

g
=

−1

4

∣∣∣∣−3 2
0 4

∣∣∣∣ = 3 = g21

g13 =
cofactor of g13 in g

g
=

1

4

∣∣∣∣−3 3
0 2

∣∣∣∣ = −3

2
= g31

g23 =
cofactor of g23 in g

g
=

−1

4

∣∣∣∣5 3
0 2

∣∣∣∣ = −5

2
= g32.

Therefore, the reciprocal tensor gij can be represented in the matrix form as

[
gij
]
=

g
11 g12 g13

g21 g22 g23

g31 g32 g33

 =

 2 3 −3
2

3 5 −5
2

−3
2 −5

2
3
2

 .
EXAMPLE 2.1.5 Let gmn and gmn be the fundamental metric tensors and the re-
ciprocal tensors respectively. Show that

gmn
∂

∂xs
gmn + gmn

∂

∂xs
gmn = 0

and
∂ log g

∂xs
= gmn

∂

∂xs
gmn = −gmn

∂

∂xs
gmn; where g = |gmn|.
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Solution: Let gij be the components of the reciprocal or the conjugate tensor of gij ,
given by

gij =
cofactor of gij in g

g
; where, g = |gij | ̸= 0,

then gij are the contravariant fundamental tensor of VN . From the property of recip-
rocal tensor gij , as gmng

mn = N we get, after differentiation with respect to xs,

gmn
∂

∂xs
gmn + gmn

∂

∂xs
gmn = 0.

Let the cofactor of gmn in g be denoted by ξ(m,n). From properties of determi-
nants, we have

gmnξ(m,n) = g ⇒ ∂g

∂gmn
= ξ(m,n); g = |gmn|.

Also, using the relation gmnξ(m,n) = g, we get

gmsgmnξ(m,n) = gmsg ⇒ ξ(m, s) = ggms.

Differentiating with respect to xs we get

∂g

∂xs
=

∂g

∂gmn

∂gmn
∂xs

= ξ(m,n)
∂gmn
∂xs

or
∂g

∂xs
= ggmn

∂gmn
∂xs

; as ξ(m, s) = ggmn

or

gmn
∂gmn
∂xs

=
1

g

∂g

∂xs
=
∂ log g

∂xs

or
∂ log g

∂xs
= −gmn

∂

∂xs
gmn; as gmn

∂

∂xs
gmn + gmn

∂

∂xs
gmn = 0.

Thus, we get

∂ log g

∂xs
= gmn

∂

∂xs
gmn = −gmn

∂

∂xs
gmn; where g = |gmn|.

EXAMPLE 2.1.6 Prove that in a VN ,

(ghjgik − ghkgij) g
hj = (N − 1)gik,

where gij and gij have their usual meanings.
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Solution: Here, gij is the fundamental metric tensor and gij is the reciprocal tensor
of gij . Using the properties we get

(ghjgik − ghkgij) g
hj = ghjg

hjgik − ghkg
hjgij

= Ngik − δjkgij = Ngik − gik = (N − 1)gik.

Hence, the result follows.

EXAMPLE 2.1.7 For a V2 in which g11 = E, g12 = F, g22 = G, prove that

g = EG− F 2, g11 =
G

g
, g12 = −F

g
, g22 =

E

g
.

Solution: Since gij is a symmetric covariant tensor of rank 2, so, g12 = g21 = F .
Now, in V2,

g = |gij | =

∣∣∣∣∣g11 g12

g21 g22

∣∣∣∣∣ =
∣∣∣∣∣E F

F G

∣∣∣∣∣ = EG− F 2 ̸= 0.

The reciprocal tensor gij are given by

g11 =
cofactor of g11 in g

g
=
G

g
=

G

EG− F 2

g22 =
cofactor of g22 in g

g
=
E

g
=

E

EG− F 2

g12 =
cofactor of g12 in g

g
= −F

g
= − F

EG− F 2
= g21.

Result 2.1.1 Assume that a matrix field g = (gij) exists satisfying in all (admissible)
co-ordinate systems (xi) and in some (open) region of space.

(i) All second order partial derivatives of the gij exist and are continuous.

(ii) gij is symmetric, i.e. gij = gji.

(iii) g = (gij) is nonsingular, i.e. |gij | ̸= 0.

(iv) The differential form (2.1) and hence, the distance concept generated by gij is
invariant with respect to change of co-ordinates.

Sometimes, particularly in geometric applications of tensors, a property stronger (iii)
above is assumed: g = (gij) is positive definite.

Under this property, |gij | and g11, g22, . . . , gNN are all positive. Furthermore, the
inverse matrix field g−1 is also positive definite.
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2.1.2 Length of a Curve

Consider a continuous curve in a Riemannian VN . Curve is continuous implies that the
co-ordinates of any current point on it are expressible as functions of some parameter
t (say). Let s denote arc length of the curve measured from a fixed point P0 on the
curve. The length ds of the arc between the points, whose co-ordinates are xi and dxi,
given by Eq. (2.1).

Let L denote arc length of the curve between the points P1 and P2 on the curve
which corresponds to the two values t1 and t2 of the parameter t. Then

L =

∫ P2

P1

ds =

∫ t2

t1

(
gij
dxi

dt

dxj

dt

)1/2

dt. (2.9)

If gij
dxi

dt
dxj

dt = 0 along the curve, then the points P1 and P2 are zero distance, despite
of the fact that they are not coincident. Such a curve is called minimal or null curve.
If ds2 is positive definite, null curves will not exist.

A curve is null if it or any of its subarcs has zero length. Here, a subarc is understood
to be nontrivial; i.e. it consists of more than one point and corresponds to an interval
c ≤ t ≤ d, where c < d. A curve is null at a point if for some value of the parameter
t the tangent vector is a null vector; i.e. gij

dxi

dt
dxj

dt = 0. The set of t values at which
the curve is null is known as the null set of the curve. In the space-time continuum of
relativity certain lines of length zero are identified as the world-lines of light.

Theorem 2.1.3 Formula (2.9) for arc length does not depend on the particular pa-
rameterisation of the curve.

Proof: Given a curve C : xi = xi(t); a ≤ t ≤ b, suppose that C : xi = xi(t); a ≤ t ≤ b
is a different parameterisation, where t = ϕ(t), with ϕ′(t) > 0 and a = ϕ(a), b = ϕ(b).
Then by the chain rule and substitution rule for integrals,

L =

∫ b

a

(
gij
dxi

dt

dxj

dt

)1/2

dt =

∫ b

a

(
gij
dxi

dt

dxj

dt

)1/2

ϕ′(t)dt

=

∫ b

a

(
gij
dxi

dt

dxj

dt

)1/2

dt = L.

This shows that, formula (2.9) for arc length does not depend on the particular pa-
rameterisation of the curve.

EXAMPLE 2.1.8 A curve in spherical co-ordinates xi is given by

x1 = t, x2 = sin−1

(
1

t

)
, x3 = 2

√
t2 − 1.

Find the length of arc for 1 ≤ t ≤ 2.
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Solution: In the spherical co-ordinate, the metric is given by

ds2 = (dx1)2 + (x1)2(dx2)2 + (x1 sinx2)2(dx3)2

= (dt)2 + t2
(
− dt

t
√
t2 − 1

)2

+

[
t · 1
t

]2( 2t

t
√
t2 − 1

dt

)2

=
5t2

t2 − 1
(dt)2 ⇒ ds =

√
5

t√
t2 − 1

dt.

Thus, the required length of the arc, 1 ≤ t ≤ 2 is given by∫ t2

t1

ds =
√
5

∫ 2

1

t√
t2 − 1

dt =
√
15 units.

EXAMPLE 2.1.9 Find the length of arc for 1 ≤ t ≤ 2 for the curve x1 = 1, x2 = t,
if the metric is that of the hyperbolic plane (x2 > 0): g11 = g22 =

1
(x2)2

; g12 = g21 = 0.

Solution: For the given hyperbolic plane the metric is given by

ds2 =
1

(x2)2
[
(dx1)2 + (dx2)2

]
=

1

t2
(dt)2.

Thus, the required length of the arc, 1 ≤ t ≤ 2 is given by

L =

∫ 2

1

1

t
dt = log 2 units.

EXAMPLE 2.1.10 Under the metric ds2 = (dx1)2 + (dx2)2 + (dx3)2 − (dx4)2, con-
sider a curve given by

x1 = 3 cos t, x2 = 3 sin t, x3 = 4t and x4 = 5t.

Find the length of arc for 0 ≤ t ≤ 1.

Solution: For the given metric, we have

ds2 = (dx1)2 + (dx2)2 + (dx3)2 − (dx4)2

=
[
9 sin2 t+ 9 cos2 t+ 16− 25

]
(dt)2 = 0.

Thus, the required length of the arc, 0 ≤ t ≤ 1 is given by

L =

∫ 1

0
0ds = 0.

Thus, according to the definition the given curve is a null curve.
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2.2 Associated Tensors

One of the fundamental concepts of tensor calculus resides in the ‘raising’ or ‘lowering’
of indices in tensors.

In EN the covariance or contravariance of a tensor was a quality which it was
impossible to change. With the introduction of a metric in EN this barrier falls in VN .
We have at our disposal the fundamental tensors gij and g

ij which allow us a number
of combinations.

Let Ai and Bi be a contravariant and covariant vector, respectively, in (xi) system.
Define two vectors Ai and B

i as follows:

Ai = gijA
j and Bi = gijBj . (2.10)

Then the associate to a contravariant vector Aj is formed by lowering its index by
the fundamental metric tensor gij and the associate to a given covariant vector Bj is
formed by raising its index by the conjugate metric tensor. Now,

gijAj = gijgjkA
k = δikA

k = Ai. (2.11)

The procedure of raising and lowering indices is clearly reversible. From Eq. (2.11)
it follows that the associate to Ai is A

i. Consequently, if Ai is the associate to Ai,
then Ai is the associate to Ai. Thus, Ai and A

i are mutually associated and so they
are associate vectors.

Next, we consider tensors of order greater than one. Any index of such a tensor
can be lowered or raised by the fundamental tensors as in the case of vectors. Consider
a tensor Aij and form the following inner products:

Ai•j = gikAkj ; A
j
i• = gjkAik and Aij = gikgjlAkl. (2.12)

The tensor Ai•j , A
j
i• and A

ij are called associates to the tensor Aij . It is to be noted

that any two of the four tensors Aij , A
i
•j , A

j
i•, A

ij may be formed from each other by
lowering and raising indices. For example,

Ai•j = gikAkj = gikgmjA
m
k•; as gilA

j
i• = Ail

and so on. In general, gikAjk = Aij• and gikAkj = Ai•j are different. But they are

identical, whenever Aij = Aji and it is denoted by Aij .
Similarly, consider a tensor Aijk and form the following inner products

gmiAijk = Am•jk, g
mjAijk = Ami•k and gmkAijk = Amij• (2.13)

All these tensors are associated with the tensor Aijk. Operating on these tensors
with gij again, we can form another associated tensor.
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Let A
i1···ip
j1···jq be a given tensor of order (p, q), i.e. of rank (p+ q). A tensor obtained

by the process of inner multiplication of A
i1···ip
j1···jq with either of the fundamental metric

tensor gij or its reciprocal g
ij are called associated tensors of the given tensor.

For a particular case, from the fundamental tensor gij , we get

gi•j = gikgkj = δij ; g
i
j• = gikgjk = δij

and
gij = gikgjlgkl.

Since gi•j and gji• are equal, it is not necessary to distinguish between them, so that

we can write gij . Since the metric tensor gij in an En with rectangular Cartesian
co-ordinates is δij , the Eq. (2.10) becomes

Ai = δijA
j = Ai

in these co-ordinates. This circumstance shows that in VN covariant and contravariant
vectors Ai and A

i which are connected by the equality (2.10) may not be considered
as two distinct objects existing independent of co-ordinate system. The reason is
that if we assume the contrary, then we come to the contradiction that in rectangular
Cartesian system we will not find them as distinct. These circumstances show the
propriety of an agreement to regard pairs of tensors like Ai, A

i, gij , g
ij , Aij , A

ij as
different types of components of the same tensor of corresponding order.

EXAMPLE 2.2.1 If Ai and Bj are two covariant vectors, show that

gij (AiBj −AjBi) = 0,

where gij is the contravariant fundamental tensor.

Solution: Using the definition of associated vectors, we have

gij (AiBj −AjBi) = gijAiBj − gijAjBi

= AjBj −AiBi = AiBi −AiBi = 0,

where, we have changed the dummy index j by i. Hence the result follows.

EXAMPLE 2.2.2 If gpqA
q = Bp, then show that Ap = gpqBq.

Solution: Since in gpqA
q the q is dummy, therefore, there is summation over q. Now,

giving the values 1, 2, . . . , N we have following N linear equations:

g11A
1 + g12A

2 + · · ·+ g1NA
N = B1

g21A
1 + g22A

2 + · · ·+ g2NA
N = B2

...
...

...
...

gN1A
1 + gN2A

2 + · · ·+ gNNA
N = BN .
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Solving these equations by the method of determinants, we obtain

A1 = g11B1 + g12B2 + · · ·+ g1NBN

A2 = g21B1 + g22B2 + · · ·+ g2NBN
...

...
...

...

AN = gN1B1 + gN2B2 + · · ·+ gNNBN .

These equations may be written as Ap = gpqBq. Hence, the result follows.

EXAMPLE 2.2.3 Prove the following relations:

(i) AijB
ij = AijBij and (ii) AklB

li = AikB
l
i.

Solution: (i) We have, by definition,

Akl = gkigljA
ij and Bkl = gkigljBij .

Using this result we get

AklB
kl = gkigljA

ijgkigljBij = gkigkig
ljgljA

ijBij

= AijBij ; as gkigki = 1,

or
AijB

ij = AijBij .

(ii) According to the definition,

gkiBl
i = Bkl ⇒ gki g

kiBl
i = Bli and gliA

i
k = Akl ⇒ gligliA

i
k = Aki,

where, gik = δik. Therefore,

AkiB
li = gilgilA

i
kg
i
kg
kiBl

i = giiA
i
kg
iiBl

i = AikB
l
i.

EXAMPLE 2.2.4 Express the relationship between following pairs of associated ten-
sors:

(i)Bjkl and Bpqr, (ii)B•k
j•l and B

qkr, (iii)Bp•rs•
•q••t and B•••st

jqk••

Solution: (i) According to the definition,

Bjkl = gjpgkqglrBpqr and Bpqr = gjpgkqglrB
jkl.

(ii) Using the definition,

B•k
j•l = gjqglrB

qkr ⇒ Bqkr = gjqglrB•k
j•l.
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(iii) Using the definition we get

Bp•rs•
•q••t = gpjgrkgtlB

•••sl
jqk

or

B•••sl
jqk = gpjgrkg

tlBp•rs•
•q••t .

EXAMPLE 2.2.5 Let the vectors ui, vi be defined by ui = gijuj and vi = gijvj.
Show that

ui = giju
j , uivi = uiv

i and uigiju
j = uig

ijuj .

Solution: Given that ui = gijuj and v
i = gijvj . Therefore,

giku
i = gikg

ijuj = δjkuj = uk

or
uk = giku

i = giku
j

or
ui = gjiu

j = giju
j ; as gij = gji.

Now, we have to show that uivi = uiv
i. For this

uivi =
(
gijuj

)
vi =

(
gijvi

)
uj = vjuj = viui = uiv

i.

Lastly, we have to deduce that uigiju
j = uig

ijuj . For this

uigiju
j =

(
uigij

)
uj = uju

j =
(
uig

ij
)
uj = uig

ijuj .

Thus, the results are proved.

2.2.1 Magnitude of a Vector

The magnitude or length A of a contravariant vector Ai in a curvilinear co-ordinate
system E3 is defined as

A2 = gijA
iAj ; i.e. A =

√
gijAiAj . (2.14)

Equation (2.14) can be written in the form,

A2 = AigijA
j = AiAi = Aig

ijAj = gijAiAj .

Similarly, the magnitude or length B of a covariant vector Bi is defined as

B2 = gijBiBj . (2.15)
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Equation (2.15) can be written in the form,

B2 = gijBiBj = Big
ijBj = BiB

i = gijB
iBj .

Thus, it follows that the magnitude of the two associated vectors Ai, Ai and Bi, B
i

are same. A vector with unity as magnitude is called a unit vector. In this case,

gijA
iAj = 1; gijBiBj = 1. (2.16)

A vector whose magnitude is zero is called a null vector. In that case,

gijA
iAj = 0 = gijBiBj . (2.17)

A null vector should be distinguished from a zero vector each of whose component is
zero. So it is different from a zero vector.

EXAMPLE 2.2.6 Show that the magnitude of two associated vectors is same.

Solution: Let A and B be magnitudes of associate vectors Ai and Ai respectively,
then by definition of magnitude,

A2 = gijA
iAj and B2 = gijAiAj .

We have to show that A = B. Using the definition of associate vectors, we have

A2 =
(
gijA

i
)
Aj = AjA

j

B2 =
(
gijAi

)
Aj = AjAj

⇒ A2 = B2; i.e. A = B.

Thus the magnitude of associate vectors Ai and Ai are equal. Therefore, Ai and Ai
are referred to as contravariant and covariant components, respectively, of the same

vector
−→
A . Also, it is clear that

A2 = gijA
iAj = gijAiAj = AiAi.

This result is of vital importance.

EXAMPLE 2.2.7 Show that dxi

ds is a unit contravariant vector.

Solution: From the definition of Riemannian metric, we have

ds2 = gijdx
idxj ⇒ 1 = gij

dxi

ds

dxj

ds
,

which according to the definition of unit vector, dx
i

ds is a contravariant vector of mag-

nitude with the unit vector, dx
i

ds is defined as unit tangent vector to a some curve C in
Riemannian VN .
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EXAMPLE 2.2.8 Show that in the V4 with line element

ds2 = −
(
dx1
)2 − (dx2)2 − (dx3)2 + c2

(
dx4
)2

the vector
(
−1, 0, 0, 1c

)
is a null vector.

Solution: Let
(
−1, 0, 0, 1c

)
be the components of a contravariant vector Ai in V4,

then A1 = −1, A2 = 0, A3 = 0 and A4 = 1
c . Now, comparing the given metric with

Eq. (2.1), we get, g11 = −1 = g22 = g33, g44 = c2 and gij = 0 for i ̸= j. Therefore,

gijA
iAj = g11A

1A1 + g22A
2A2 + g33A

3A3 + g44a
4A4

= (−1) · (−1) · (−1) + (−1) · 0 · 0 + (−1) · 0 · 0 + 1

c2
· c · c

= −1 + 0 + 0 + 1 = 0.

Hence, Ai is a null vector in V4. Note that, its components are not all zero, so it
is different from a zero vector.

EXAMPLE 2.2.9 Show that in the V4 with line element

ds2 = −
(
dx1
)2 − (dx2)2 − (dx3)2 + c2

(
dx4
)2

the vector
(
1, 0, 0,

√
2
c

)
is a unit vector.

Solution: Let
(
1, 0, 0,

√
2
c

)
be the components of a contravariant vector Ai in V4,

then A1 = 1, A2 = 0, A3 = 0 and A4 =
√
2
c . Now, comparing the given metric with

Eq. (2.1), we get g11 = −1 = g22 = g33, g44 = c2 and gij = 0 for i ̸= j. Therefore,

gijA
iAj = g11A

1A1 + g22A
2A2 + g33A

3A3 + g44A
4A4

= (−1) · 1 · 1 + (−1) · 0 · 0 + (−1) · 0 · 0 + c2 ·
√
2

c
·
√
2

c

= −1 + 0 + 0 + 2 = 1.

Hence, Ai is a unit vector in V4.

EXAMPLE 2.2.10 Prove that the length of a vector is invariant.

Solution: Using the transformation formula for contravariant vector and covariant
tensor of type (0, 2), we get from Eq. (2.14),

A2 = gijA
iAj = gmn

∂xm

∂xi
∂xn

∂xj
A
s ∂xi

∂xs
Al
∂xj

∂xl

= gmnδ
m
s δ

n
l A

s
A
l
= gmnA

m
A
l
.
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Similarly, from Eq. (2.15), we get

B2 = gijBiBj = gmnBmBn.

Thus, the length of a vector is an invariant.

EXAMPLE 2.2.11 If Ai = 1√
gpqBpBq

Bi, where Bi is a contravariant vector and gij

is the fundamental tensor, show that Ai is a unit vector.

Solution: According to the definition,

gijA
iAj = gij

1√
gpqBpBq

Bi 1√
gpqBpBq

Bj =
gijB

iBj

gpqBpBq
= 1.

Therefore, Ai is a unit vector.

2.2.2 Angle Between Two Vectors

Let Ai and Bi be any two non-null contravariant vectors, then the angle θ between
them is defined by the formula,

cos θ =
gijA

iBj√
gijAiAj

√
gijBiBj

; 0 ≤ θ ≤ π. (2.18)

The angle θ between two non-null covariant vectors Ai and Bi is given by

cos θ =
gijAiBj√

gijAiAj
√
gijBiBj

; 0 ≤ θ ≤ π. (2.19)

If any one the vectors considered is the null vector, the angle is not defined. If A and B
are two non-null vectors with Ai, Ai;B

i, Bi as respective contravariant and covariant
components, then the angle θ between A and B is given by

cos θ =
AiBi√

AjAj
√
BkBk

. (2.20)

Note that, if two vectors are such that one of them is a null vector or both of them
are so, then the angle between them is not defined.

EXAMPLE 2.2.12 Show that the angle between the vectors (1, 0, 0, 0) and(√
2, 0, 0,

√
3
c

)
, c being constant, in a space with line element given by

ds2 = −
(
dx1
)2 − (dx2)2 − (dx3)2 + c2

(
dx4
)2

is not real.
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Solution: The quantities gijA
iAj , gijB

iBj and gijA
iBj are given by

gijA
iAj = g11A

1A1 + g22A
2A2 + g33A

3A3 + g44A
4A4

= −1 · 1 · 1 + (−1) · 0 · 0 + (−1) · 0 · 0 + c2 · 0 · 0 = −1.

gijB
iBj = g11B

1B1 + g22B
2B2 + g33B

3B3 + g44B
4B4

= −1 ·
√
2 ·

√
2 + (−1) · 0 · 0 + (−1) · 0 · 0 + c2 ·

√
3

c
·
√
3

c
= 1.

and

gijA
iBj = g11A

1B1 + g22A
2B2 + g33A

3B3 + g44A
4B4

= −1 · 1 ·
√
2 + (−1) · 0 · 0 + (−1) · 0 · 0 + c2 · 0 ·

√
3

c
= −

√
2.

If θ be the angle between Ai and Bi, then from Eq. (2.18) is given by

cos θ =
gijA

iBj√
gijAiAj

√
gijBiBj

=
−
√
2

√
−1

√
1
.

Thus, the angle between the two vectors is not real.

2.2.3 Orthogonality of Two Vectors

If θ = π
2 , the vectors are called orthogonal. Therefore, two non-null vectors Ai and Bi

are said to be orthogonal, if

gijA
iBj = 0. (2.21)

Similarly, two vectors Ai and Bi are said to be orthogonal if

gijAiBj = 0. (2.22)

It follows from Eqs. (2.21) and (2.22) that the angle between two non-null orthogonal
vectors Ai, Bi is π/2 and that between two non-null orthogonal vectors Ai, Bi is also
π/2. According to the definition of orthogonality given by Eqs. (2.21) and (2.22) it
follows that a null vector Ai or Ai is self-orthogonal.

EXAMPLE 2.2.13 If ui and vi are orthogonal unit vectors, show that

(ghjgki − ghkgji)u
hviujvk = 1.
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Solution: Since ui and vi are orthogonal unit vectors, so by definition (2.19),

giju
iuj = 1, gijv

ivj = 1 and giju
ivj = 0.

Using these results, we get

LHS = (ghjgki − ghkgji)u
hviujvk

= ghju
hujgkiv

kvi − ghku
hvkgjiu

jvi = 1 · 1− 0 · 0 = 1.

EXAMPLE 2.2.14 If θ be the angle between two non-null vectors Ai and Bi at a
point, prove that

sin2 θ =
(gijgpq − gipgjq)A

iBpAjBq

(gijAiAj) (gpqBpBq)
.

Solution: Let θ be the angle between two non-null vectors Ai and Bi at a point, then
by definition (2.19),

cos θ =
gijA

iBj√
gijAiAj

√
gpqBpBq

.

Using the result cos2 θ = 1− sin2 θ, we get

sin2 θ = 1− cos2 θ = 1− gijA
iBjgpqA

pBq

(gijAiAj) (gpqBpBq)

=
gijgpqA

iAjBpBq − gijgpqA
iApBjBq

(gijAiAj) (gpqBpBq)

=
gijgpqA

iBpAjBq − gipgjqA
iBpAjBq

(gijAiAj) (gpqBpBq)

(Replacing the dummy indices j and p by p and j)

=
(gijgpq − gipgjq)A

iBpAjBq

(gijAiAj) (gpqBpBq)
.

EXAMPLE 2.2.15 Show that under the metric for polar co-ordinates, the vectors
Ai =

(
3
5 ,

4
5x1

)
and Bi =

(
−4

5 ,
3

5x1

)
are orthogonal.

Solution: Using matrices, we have

gijA
iAj =

(
3

5

4

5x1

)(
1 0
0 (x1)2

)
3

5
4

5x1

 =
9

25
+

16x1

25x1
= 1.
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Likewise, gijB
iBj = 1. Now,

gijA
iBj =

(
3

5

4

5x1

)(
1 0
0 (x1)2

) −4

5
3

5x1

 = −12

25
+

12x1

25x1
= 0.

Thus, under the metric for polar co-ordinates in V2, the vectors Ai =
(
3
5 ,

4
5x1

)
and

Bi =
(
−4

5 ,
3

5x1

)
are orthogonal.

EXAMPLE 2.2.16 If Ai and Bi are two non-null vectors such that

gijU
iU j = gijV

iV j ; U i = Ai +Biand V i = Ai −Bi,

show that Ai and Bi are orthogonal.

Solution: Since, U i = Ai +Bi and V i = Ai −Bi, we have

gijU
iU j = gijV

iV j

or
gij(A

i +Bi)(Aj +Bj) = gij(A
i −Bi)(Aj −Bj)

or
gijA

iAj + gijB
iBj + 2gijA

iBj = gijA
iAj + gijB

iBj − 2gijA
iBj

or
4gijA

iBj = 0 ⇒ gijA
iBj = 0.

Hence, Ai and Bj are orthogonal.

EXAMPLE 2.2.17 If aij is a symmetric tensor of type (0, 2) and Ai, Bi are unit
vectors orthogonal to a vector Ci satisfying the conditions

(aij − κ1gij)A
i + λ1gijC

i = 0

and
(aij − κ2gij)B

i + λ2gijC
i = 0,

where, κ1 ̸= κ2, show that Ai and Bi are orthogonal and aijA
iBj = 0.

Solution: Since Ai, Bi are unit vectors orthogonal to a vector Ci, so,

gijA
iAj = 1; gijB

iBj = 1; gijA
iCj = 0; gijB

iCj = 0.

Multiplying the given first relation by Bj we get

(aij − κ1gij)A
iBj + λ1gijC

iBj = 0
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or
aijA

iBj − κ1gijA
iBj = 0. (i)

Similarly, multiplying the given second relation by Aj we get

(aij − κ2gij)B
iAj + λ2gijC

iAj = 0

or
aijB

iAj − κ2gijB
iAj = 0

or
ajiA

jBi − κ2gjiA
jBi = 0; as aij , gij are symmetric.

Replacing the dummy indices i and j by j and i, respectively, we get

aijA
iBj − κ2gijA

iBj = 0. (ii)

Subtracting (ii) from (i), we get

(κ2 − κ1)gijA
iBj = 0 ⇒ gijA

iBj = 0; as κ2 ̸= κ1.

Hence, Ai and Bj are orthogonal. In virtue of the last result gijA
iBj = 0, it follows

from (i) that aijA
iBj = 0.

EXAMPLE 2.2.18 Show that under the metric for cylindrical co-ordinates, the con-
travariant vectors A =

[
0, 1, 2bx2

]
and B =

[
0,−2bx2, (x1)2

]
are orthogonal. Interpret

geometrically along x1 = a, x2 = t, x3 = bt2.

Solution: Using matrices for cylindrical co-ordinates, we have

gijA
iBj =

(
0 1 2bx2

)1 0 0

0 (x1)2 0

0 0 1


 0

−2bx2

(x1)2

 = 0.

The geometric interpretation is that x1 = a, x2 = t, x3 = bt2, for real t, represents
a sort of variable-pitch helix on the right cylinder r = a, having tangent field A.
Therefore, any solution of

du1

dx
= B1 = 0;

dx2

du
= B2 = −2bx2;

dx3

du
= B3 = a2

will represent a curve on that cylinder that is orthogonal to this pseudo-helix.

2.3 Some Loci

Let us suppose that the metric is positive definite.



2.3 Some Loci 105

2.3.1 Co-ordinate Curve

A curve along which only one co-ordinate varies is called a co-ordinate curve. If only
the particular co-ordinate xi (i being a particular integer) varies, the curve is called
the xi curve. Along this curve dxj = 0, when j ̸= i.

Angle between two co-ordinate curves: The angle between two co-ordinate curves
is defined as the angle between their tangents. The xj co-ordinate curve is defined by

xi = ci; for every i,

except i = j. Differentiating,

dxi = 0; for every i,

except i = j and dxj ̸= 0. Hence,

dxi =
(
0, 0, . . . , dxj , . . . , 0, 0

)
.

Let Ai and Bi be the tangent vectors to the xp co-ordinate curve and xq co-ordinate
curve respectively. Therefore,

Ai = dxi = (0, 0, . . . , Ap, . . . , 0, 0)

Bi = dxi = (0, 0, . . . , Bq, . . . , 0, 0).

Let θ be the angle between the two co-ordinate curves, then,

cos θ =
gijA

iAj√
gijAiAj

√
gijBiBj

(2.23)

=
gpqA

pBq√
gppApAp

√
gqqBqBq

; no summation on p, q

=
gpqA

pBq

√
gppgqqApBq

=
gpq√
gppgqq

.

The tangent field to a family of smooth curves is a contravariant vector, so that
Eq. (2.23) yields the geometrical. The angle θij between xi co-ordinate curve and xj

co-ordinate curve is given by

cos θij =
gij√
giigjj

.

If the co-ordinate curves of parameter xi and xj are orthogonal, then,

θij =
π

2
⇒ cos θij = cos

π

2
= 0

⇒ gij√
giigjj

= 0, i.e. gij = 0.
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Therefore, the xi co-ordinate curve and xj co-ordinate curve are orthogonal if gij = 0.
In a general co-ordinate syst em, if Ai and Bi are the tangent vectors to two families
of curves, then the families are mutually orthogonal if and only if gijA

iBj = 0.

Result 2.3.1 The physical components of a vector Ap or Ap denoted by Au, Av and
Aw are the projections of the vector on the tangents to the co-ordinates curves, and
are given in the case of orthogonal co-ordinates by

Au =
√
g11A

1 =
1

√
g11

A1;Av =
√
g22A

2 =
1

√
g22

A2;

Aw =
√
g33A

3 =
1

√
g33

A3.

Result 2.3.2 The angle between the two parametric lines through a surface point is

cos θ = g12/
√
g11g22.

The two families of parametric lines from an orthogonal net if and only if g12 = 0 at
every point of S.

EXAMPLE 2.3.1 Prove that for the surface

x1 = a sinu1 cosu2; x2 = a sinu1 sinu2; x3 = a cosu1,

the co-ordinates curves are orthogonal where (xi) are orthogonal Cartesian co-ordinates
and a is a constant.

Solution: Let E3 be covered by orthogonal Cartesian co-ordinates xi, and consider
a transformation x1 = a sinu1 cosu2; x2 = a sinu1 sinu2; x3 = a cosu1 a = constant.
The metric in Euclidean space E3, referred to Cartesian co-ordinates is given by

ds2 =
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2
.

Comparing this, with Eq. (2.1), we see that g11 = g22 = g33 = 1 and gij = 0; for i ̸= j.
The fundamental symmetric tensor gij ; i ̸= j is given by

g12 =
∂xi

∂u1
∂xj

∂u2
gij =

∂x1

∂u1
∂x1

∂u2
g11 +

∂x2

∂u1
∂u2

∂u2
g22 +

∂x3

∂u1
∂x3

∂u2
g33

= a cosu1 cosu2
(
−a sinu1 sinu2

)
+ a cosu1 sinu2 · a sinu1 cosu2 +

(
−a sinu1

)
· 0

= 0.

Similarly, it can be shown that g13 = 0 and g23 = 0. Therefore, the co-ordinate curves
are orthogonal.
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EXAMPLE 2.3.2 Show that each member of the family of curves given in polar co-
ordinates by e1/r = a(sec θ+tan θ); a ≥ 0 is orthogonal to each of the curves (limacons
of Pascal) r = sin θ + c; c ≥ 0.

Solution: In polar co-ordinates x1 = r, x2 = θ, and with curve parameter t, the first
curve becomes

1

x1
= log a+ log | sec t+ tan t|; x2 = t.

With curve parameter u, the second curve becomes x1 = sinu+ c, x2 = u. Therefore,

Ai =

(
dx1

dt
,
dx2

dt

)
=
[
−(x1)2 secx2, 1

]
Bi =

(
dx1

du
,
dx2

du

)
=
(
cosx2, 1

)
.

Now the Euclidean metric tensor in polar co-ordinates is given by

gijA
iBj = g11A

1B1 + g22A
2B2 + 0 · (A1B2 +A2B1)

= 1[−(x1)2 secx2] cosx2 + (x1)2 · 1 · 1 = −(x1)2 + (x1)2 = 0.

2.3.2 Hypersurface

Let t1, t2, . . . , tM be M parameters. The N equations

xi = xi
(
t1, t2, . . . , tM

)
; i = 1, 2, . . . , N ;M < N (2.24)

definesM dimensional subspace VM of VN . If we eliminate theM parameters t1, t2, . . . ,
tM , from these N equations we shall get (N −M) equations in xis which represent M
dimensional curve in VN . In particular if M = N − 1, we get only one equation as

N −M = N − (N − 1) = 1,

in xis which represent N − 1 dimensional curve in VN . This particular curve is called
hypersurface in VN . Thus, a family of hypersurfaces of VN is determined by

ϕ(xi) = ϕ
(
x1, x2, . . . , xN

)
= constant, (2.25)

where ϕ(xi) is a scalar function of co-ordinates xi. Thus a hypersurface is obtained if
xi are functions of (N − 1) independent parameters.

A parametric hypersurface is a hypersurface on which one particular co-ordinate
xi (say) is constant, while the others vary. Let us call it the xi-hypersurface, with
equation xi = c = constant.
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Angle between two hypersurfaces: The angle between two curves is defined as
the angle between their normals at their point of intersections. Let

ϕ(xi) = ϕ
(
x1, x2, . . . , xN

)
= constant (2.26)

ψ(xi) = ψ
(
x1, x2, . . . , xN

)
= constant (2.27)

represent two families of hypersurfaces. Now differentiating (2.26) we get

∂ϕ

∂xi
dxi = ϕidx

i = 0; where ϕi =
∂ϕ

∂xi
. (2.28)

These partial derivatives are, by definition, components of a covariant vector. The
relation (2.28) shows that, at any point, the vector ϕi is orthogonal to all displacements
dxi at P , on the surface and hence dxi is in the tangential to hypersurface (2.26). Thus,
gradient vector ϕi at any point of the hypersurface is normal to the hypersurface at
the point.

Similarly, ψi =
∂ψ
∂xi

is the normal to the hypersurface (2.27). Let ω be the angle
between the hypersurfaces (2.26) and (2.27), then by definition ω is the angle between
their respective normals. Hence, the required angle ω is given by

cosω =
gijϕiψj√

gijϕiϕj
√
gijψiψj

=
gij

∂ϕ

∂xi
∂ψ

∂xj√
gij

∂ϕ

∂xi
∂ϕ

∂xj

√
gij

∂ψ

∂xi
∂ψ

∂xj

. (2.29)

In particular, let the hypersurfaces (2.26) and (2.27) be taken as co-ordinate hy-
persurfaces of parameters say xp and xq, respectively, then we have

ϕ = xp = constant (2.30)

ψ = xq = constant. (2.31)

Then the angle ω between (2.30) and (2.31) is given by

cosω =
gij
∂xp

∂xi
∂xq

∂xj√
gij
∂xp

∂xi
∂xp

∂xj

√
gij
∂xq

∂xi
∂xq

∂xj

=
gijδpi δ

q
j√

gijδpi δ
p
j

√
gijδqj δ

q
j

=
gpq√
gppgqq

. (2.32)

The angle ωij between the co-ordinate hypersurfaces xi = constant and xj = constant
is given by

cosωij =
gij√
giigjj

. (2.33)
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If gij = 0 when i ̸= j, the parametric curves are orthogonal to each other and so also
are the parametric hypersurfaces. Therefore, if the co-ordinate hypersurfaces xi and
xj are orthogonal, then

ωij =
π

2
⇒ cosωij = 0 ⇒ gij = 0. (2.34)

Hence, the co-ordinate hypersurfaces of parameters xi and xj are orthogonal if gij = 0.

N ply orthogonal system of hypersurfaces: If in a VN , there are N families of
hypersurfaces such that, at every point, each hypersurface is orthogonal to the N − 1
hypersurfaces of the other families which pass through that point, they are said to
form as N ply orthogonal system of hypersurfaces.

Theorem 2.3.1 The necessary and sufficient condition for the existence of an N ply
orthogonal system of co-ordinate hypersurfaces is that the fundamental form must be
of the form

ds2 = g11
(
dx1
)2

+ g22
(
dx2
)2

+ · · ·+ gNN
(
dxN

)2
= gii

(
dxi
)2
. (2.35)

Proof: Condition necessary: Let us suppose that co-ordinate hypersurfaces form
an N ply orthogonal system of hypersurfaces. Since the co-ordinate hypersurfaces
form an N ply orthogonal system of hypersurfaces, we have

gij = 0; for every i, j = 1, 2, . . . , N and i ̸= j. (2.36)

If △ denotes the determinant of |gij |, then,

△ =
1

g
=

∣∣∣∣∣∣∣∣∣
g11 0 · · · 0
0 g22 · · · 0
...

... · · ·
...

0 0 · · · gNN

∣∣∣∣∣∣∣∣∣⇒ △ =
1

g
= g11g22 . . . gNN ̸= 0.

Since △ ̸= 0, so none of the quantities g11, g22, . . . , gNN are zero. Now,

gij =
cofactor of gij in △

△

or

△gij = cofactor of gij in △

or
gij
g

= cofactor of gij in △
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or
gij
g

= 0; for i ̸= j ⇒ gij = 0; for i ̸= j.

Thus, the fundamental form is of the form

ds2 = gijdx
idxj = g11

(
dx1
)2

+ g22
(
dx2
)2

+ · · ·+ gNN
(
dxN

)2
= gii

(
dxi
)2
.

Condition sufficient: Suppose the fundamental form is given by

ds2 = g11
(
dx1
)2

+ g22
(
dx2
)2

+ · · ·+ gNN
(
dxN

)2
= gii

(
dxi
)2
,

then we have to show that co-ordinate hypersurfaces form an N ply orthogonal system
of co-ordinate hypersurfaces. Comparing the given fundamental form Eq. (2.35) with
Eq. (2.1) we see that

gij = 0; for every i, j = 1, 2, . . . , N and i ̸= j and gij ̸= 0; for i = j.

Also, the reciprocal tensor gij is given by

gij =
cofactor of gij in g

g
; g = |gij | ⇒ gij =

0

g
= 0; for i ̸= j,

which is necessary and sufficient condition for orthogonality. This proves the sufficient
condition.

Deduction 2.3.1 Here, we to show that an arbitrary VN does not admit an N ply
orthogonal system of hypersurfaces. Suppose that an arbitrary VN admits N ply
orthogonal system of hypersurfaces. The fundamental form in this case is given by

ds2 = g11
(
dx1
)2

+ g22
(
dx2
)2

+ · · ·+ gNN
(
dxN

)2
= gii

(
dxi
)2
.

Let an N ply orthogonal system of hypersurfaces is given by the hypersurfaces

ϕi = ci; i = 1, 2, . . . , N

where ci are constants. Now, the condition that the hypersurfaces determine an N
ply orthogonal system of hypersurfaces is

gij
∂ϕp
∂xi

∂ϕq
∂xj

= 0; for p ̸= q; i, j = 1, 2, . . . , N.

These equations admit N(N − 1)/2 simultaneous partial differential equations to find
N unknowns. In other equations admit N solutions, we have

N(N − 1)

2
= N.
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These equations are consistent if

N(N − 1)

2
̸> N ⇒ N ≤ 3.

This is in contradiction to our supposition that diagonalisation is possible for all
values of N . Hence, an arbitrary VN does not admit an N ply orthogonal system of
hypersurfaces.

Definition 2.3.1 (Congruence of curves): A congruence of curves in a VN is a
family of curves, one of which passes through each point of VN .

2.3.3 Orthogonal Ennuple

An orthogonal ennuple in a Riemannian VN consists of N mutually orthogonal con-
gruence of curves. Consider N unit tangents λih|;h = 1, 2, . . . , N to congruence
λh|;h = 1, 2, . . . , N of an orthogonal ennuple in a Riemannian VN . The subscript
h followed by an upright bar simply distinguishes one congruence from other. It does
not denote tensor suffix. The quantities λh|i; i = 1, 2, . . . , N and λih| denote the covari-
ant and contravariant components of λh|, respectively.

Suppose any two congruences of orthogonal ennuple are λh| and λk| so that

λh|λk| = δhk , and gijλ
i
h|λ

j
k| = δhk

⇒ gijλ
i
h|λ

j
h| = 1 and gijλ

i
h|λ

j
k| = 0.

Let us define,

λih| =
cofactor of λh|i in the determinant |λh|i|∣∣λh|i∣∣ .

Also, from the determinant property, we have

N∑
h=1

λih|λh|i = δij . (2.37)

Multiplying Eq. (2.37) by gjk, we have,

N∑
h=1

λih|λh|ig
jk = δijg

jk

or

gik =

N∑
h=1

λih|λ
k
h| ⇒ gij =

N∑
h=1

λih|λ
j
h|. (2.38)
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Multiplying Eq. (2.37) by gik, we have

N∑
h=1

λih|λh|igik = δijgik

or

gjk =
N∑
h=1

λh|kλh|j ⇒ gij =
N∑
h=1

λk|iλh|j . (2.39)

Equations (2.38) and (2.39) give the values of the fundamental tensors gij and gij

in terms of the components of the unit tangent λh|;h = 1, 2, . . . , N to an orthogonal
ennuple.

Deduction 2.3.2 Let us consider a vector u which can be written in the form

ui =

N∑
h=1

Chλ
i
h|, (2.40)

where Ch are constants to be determined. Multipling Eq. (2.40) by λk|i, we get

uiλk|i =
N∑
h=1

Che
i
h|λk|i =

N∑
h=1

Chδ
h
k = Ck

⇒ Ck = Projection of ui on λk|i = uiλk|i.

Therefore,

ui =

N∑
h=1

ujλh|jλ
i
k|, from (2.40).

If u denotes the magnitude of the vector u, then,

u2 = u2 = uiui =

(
N∑
h=1

Chλ
i
h|

)(
N∑
k=1

Ckλ
i
k|

)

=

N∑
h=1

N∑
k=1

ChCkλ
i
h|λ

i
k| =

N∑
h=1

N∑
k=1

ChCkδ
h
k

=

N∑
h=1

ChCh =

N∑
h=1

C2
h. (2.41)
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Equation (2.41) shows that

u = 0 ⇐⇒ u2 = 0 ⇐⇒ Ch = 0.

Therefore, if the magnitude of a vector u is zero iff all the projections of the vector u
on N mutually orthogonal directions λih| are zero.

2.4 Affine Co-ordinates

Let us consider the transformation from a given co-ordinate system (xi) to a rectan-

gular system (x̄i). The Jacobian matrix for such transformation is J =
(
∂x̄i

∂xj

)
. Then

the matrix G = (gij) of the Euclidean metric tensor in the (xi) system is G = JTJ .

Our task, to find G = (gij) for the three dimensional affine co-ordinates (xi).
From section 1.20.1, we see that position vectors are contravariant affine vectors—in
particular, the unit vectors

Figure 2.1: Oblique axes.

u = (δi1), v = (δi2) w = (δi3)

along the oblique axes (Figure 2.1). Now, using Eq. (2.18), we obtain

cos α =
gij δ

i
1 δ

i
2√

gpq δ
p
1 δ

q
1

√
grs δr2 δ

s
2

=
g12√
g11

√
g22

= g12

as obviously, g11 = g22 = g33 = 1. Likewise,

cosβ = g13, and cos γ = g23

The complete symmetric matrix is
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G = (gij) =

 1 cosα cosβ
cosα 1 cos γ
cosβ cos γ 1


The corresponding metric is given by

ds2 = (dx1)2 + (dx2)2 + (dx3)2 + 2 cosαdx1dx2 + 2 cosβdx1dx3 + 2 cos γdx2dx3.

Note that the matrix G defining the Enclidean metric is non diagonal in affine co-
ordinates.

2.5 Curvilinear Co-ordinates

In Chapter 1, we have discussed cylindrical and spherical polar co-ordinates in the
three-dimensional Euclidean space E3. In this section, we shall study a type of
co-ordinates in E3 of which above two polar co-ordinates will be a particular one.
Such co-ordinates are called curvilinear co-ordinates (Figure 2.2). Consider a general
functional transformation T defined by

T : xi = xi
(
y1, y2, y3

)
; i = 1, 2, 3 (2.42)

Figure 2.2: Curvilinear co-ordinates.

such that each single valued xi is a continuously differentiable function of
(
y1, y2, y3

)
in some region R of E3. Since x1, x2, x3 must be independent, the Jacobian

J =
∂
(
x1, x2, x3

)
∂ (y1, y2, y3)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂y1
∂x1

∂y2
∂x1

∂y3

∂x2

∂y1
∂x2

∂y2
∂x2

∂y3

∂x3

∂y1
∂x3

∂y2
∂x3

∂y3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0. (2.43)
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Under these conditions y1, y2, y3 can be obtained as single valued functions of x1, x2, x3

with continuous partial derivatives of the first order. Thus the inverse transformation

T−1 :yi = yi
(
x1, x2, x3

)
; i = 1, 2, 3 (2.44)

will then be single-valued and the transformations T and T−1 establish one-to-one
correspondence between the sets of the values

(
x1, x2, x3

)
and

(
y1, y2, y3

)
. The co-

ordinates
(
y1, y2, y3

)
are called the curvilinear co-ordinate system in R of E3. The

curvilinear co-ordinates y1, y2, y3 in E3 are related to the rectangular Cartesian co-
ordinates x1, x2, x3 by the formula (2.42).

2.5.1 Co-ordinate Surfaces

Let one of y1, y2, y3 be kept fixed, say y1 = c1 = constant in T of Eq. (2.42), where
c1 is a constant and let y2, y3 be allowed to vary. Then, P

(
x1, x2, x3

)
will satisfy the

relations

xi = xi
(
c1, y2, y3

)
; i = 1, 2, 3,

which defines a surface and the point P
(
x1, x2, x3

)
will lie on the surface which will

be denoted by y1 = c1. If the constant is now allowed to assume different values, we
get a one-parameter family of surfaces. Similarly,

xi = xi
(
y1, c2, y3

)
and xi = xi

(
y1, y2, c3

)
; i = 1, 2, 3

define two families of surfaces y2 = c2 and y3 = c3. Each of the surfaces y1 = c1,
y2 = c2 and y3 = c3 is called a co-ordinate surface of the curvilinear co-ordinate system
and their intersections pair-by-pair are the co-ordinate lines (Figure 2.3). There will be

Figure 2.3: Co-ordinate surfaces.

three families of such surfaces corresponding to different values of c1, c2, c3. Through
a given point P

(
x1, x2, x3

)
, there pass three co-ordinate surfaces corresponding to
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fixed values of c1, c2, c3. The condition that the Jacobian J ̸= 0 in the region under
consideration expresses the fact that the surfaces

y1 = c1, y2 = c2, y3 = c3 (2.45)

intersect in one and only one point.

2.5.2 Co-ordinate Curves

Let two of the co-ordinates y1, y2, y3 be kept fixed in T , say y2 = c2, y3 = c3, where c2

and c3 are constants, and y1 be allowed to vary. Then, P
(
x1, x2, x3

)
will satisfy the

relations

xi = xi
(
y1, c2, c3

)
; i = 1, 2, 3.

Since x1, x2, x3 are functions of only one variable, it follows that P
(
x1, x2, x3

)
will lie

on a curve, called a co-ordinate curve (Figure 2.4). This co-ordinate curve

y2 = c2 and y3 = c3

is called the y1 curve.

Figure 2.4: Co-ordinate surfaces.

Thus, the line of intersection of y2 = c2, y3 = c3 is the y1 co-ordinate line because
along this line the variable y1 is the only one that is changing. Therefore, the y1 curve
lies on both the surfaces y2 = c2 and y3 = c3. Similarly, we can define y2 and y3 curve.
It is to be noted that through a given point P

(
x1, x2, x3

)
, there pass three co-ordinate

curves corresponding to fixed values c1, c2, c3.

EXAMPLE 2.5.1 Show that
(
x1, x2, x3

)
defined by the transformations

T : x1 = u1 sinu2 cosu3; x2 = u1 sinu2 sinu3; x3 = u1 cosu2,

are curvilinear co-ordinates. Also find the co-ordinate surfaces and curves.
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Solution: Consider a co-ordinate system defined by the given transformation, the
Jacobian of transformation is given by

J =

∣∣∣∣∣∣∣
sinu2 cosu3 u1 cosu2 cosu3 −u1 sinu2 sinu3

sinu2 sinu3 u1 cosu2 sinu3 u1 sinu2 cosu3

cosu2 −u1 sinu2 0

∣∣∣∣∣∣∣ = (u1)2 sinu2 ̸= 0.

Hence, the inverse transformation exists and T−1 is given by

u1 =
√

(x1)2 + (x2)2 + (x3)2; u2 = tan−1

√
(x1)2 + (x2)2

x3
; u3 = tan−1

(
x2

x1

)
if, u1 > 0, 0 < u2 < π, 0 ≤ u3 < 2π. Here x1, x2, x3 are the rectangular Cartesian
co-ordinates of a point P and u1, u2, u3 be its spherical co-ordinates.

Therefore, the given co-ordinate system are curvilinear co-ordinate system. This
is the familiar spherical co-ordinate system Figure 2.5. The co-ordinate surfaces are
given by u1 = constant =

√
c1, say, where c1 is constant and u2, u3 are allowed to vary

then

Figure 2.5: Spherical co-ordinates.

(x1)2 + (x2)2 + (x3)2 = c1,

which represents the equation of the sphere with centre at origin and radius is
√
c1.

Thus u1 = c1 represents a surface. Next, let u2 be kept fixed, say u2 = c2, where c2 is
a constant then

tan−1

√
(x1)2 + (x2)2

x3
= c2 say
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or
(x1)2 + (x2)2 = (x3)2 tan2 c2,

which are circular cones whose vertex is the origin and axis is the x3 axis (Figure 2.5).
Thus u2 = c2 represents a surface. Lastly, we keep u3 fixed, say u3 = c3 = constant,
then

tan−1

(
x2

x1

)
= c3 ⇒ x2 = x1 tan c3,

which are planes containing the x3 axis. Thus u3 = c3 represents a surface. Each of
the Surfaces u1 =

√
c1, u2 = c2, u3 = c3, is called a co-ordinate surface. There will be

three families of these surfaces corresponding to different values of c1, c2, c3. Through
a given point P (u1, u2, u3) there pass three co-ordinate surfaces corresponding to fixed
values of c1, c2, c3. It is to be noted that of the three surfaces through a point, u1 =

√
c1

is a sphere, u2 = c2 is a cone and u3 = c3 is a plane through the x3-axis.
Let two of the co-ordinates x1, x3 be kept fixed, say x1 = c1 and x3 = c3, where c1

and c2 are constants and x2 be allowed to vary. Then

x1 = c1 sin c2 cosu
3, x2 = c1 sin c2 sinu

3, x3 = c1 cos c2.

Hence

(x1)2 + (x2)2 = c21 sin
2 c2(cos

2 u3 + sin2 u3)

= c21 sin
2 c2 = λ2;λ = c1 sin c2 = constant.

Thus
(x1)2 + (x2)2 = λ2, x3 = µ (i)

from which it follows that the point P (u1, u2, u3) is the intersection of a cylinder having
x3-axis as its axis and a plane parallel to the x1 − x2 plane. Thus (i) represents a
circle in the plane x3 = µ (Figure 2.5).

Thus (i) is a curve which is called a co-ordinate curve. This curve is called the
u3-curve. Next, let x1 and x3 be kept fixed, say x1 = c1 and x3 = c3 where c1 and c3
are constants and let x2 be allowed to vary. Then

(x1)2 + (x2)2 + (x3)2 = c21 and x2 = x1 tan c3. (ii)

From (ii) it follows that the point P (u1, u2, u3) lies on the intersection of a sphere and
a plane through the x3-axis. This intersection is a great circle.

Thus x1 = c1, x
3 = c3 is a curve. This curve is called another co-ordinate curve.

It is called the u2-curve. Lastly, let x2 and x3 be kept fixed, say x2 = c2 and x3 = c3
and let x1 be allowed to vary. Then

cos c2 =
x3

x1
=

x3√
(x1)2 + (x2)2 + (x3)2

;
x2

x1
= tan c3
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or
(x1)2 + (x2)2 = (λ2 − 1)(x3)2; x2 = x1 tan c3 (iii)

where λ = sec c2 = a constant. From (iii) it follows that the point P (x1, x2, x3) lies on
the intersection of a cone with the origin as its vertex and a plane through the u3-axis.
This intersection is therefore a straight line passing through the origin.

Thus x2 = c2, x
3 = c3 is a curve. This curve is called a third co-ordinate curve. It

is called the u1-curve.
Through a given point P (u1, u2, u3) there pass three co-ordinate curves correspond-

ing to fixed values of c1, c2, c3. It is to be noted that of these three curves, two are
circles and the remaining one is a straight line through the origin.

EXAMPLE 2.5.2 Find the co-ordinate surface, defined by the transformation

T : x1 = u1 cosu2, x2 = u1 sinu2, x3 = u3.

Also find the co-ordinate lines.

Solution: The Jacobian of transformation is given by

J =

∣∣∣∣∣∣
cos u2 −u1 sin u2 0
sin u2 u1 cos u2 0

0 0 1

∣∣∣∣∣∣ = u1 ̸= 0.

Hence the inverse transformation exists and is given by

T−1 : u1 =
√

(x1)2 + (x2)2, u2 = tan−1 x
2

x1
, u3 = x3

if u1 ≥ 0, 0 ≤ u2 < 2π,−∞ < u3 < ∞. This co-ordinate system defines a cylindrical
co-ordinate system (Figure 2.6). The co-ordinate surface are given by

Figure 2.6: Cylindrical co-ordinates.

u1 = constant =
√
c1, say

i.e.
(x1)2 + (x2)2 = c1



120 Riemannian Metric

which are circles. Now, u2 = constant, i.e.

tan−1 x
2

x1
= c2, say ⇒ x2 = x1 tan c2

which is a straight line. Also u3 = constant gives x3 = constant = c3 (say), which is
a plane parallel to the x1x2-plane.

2.5.3 Line Element

Here, we have to obtain the line element of E3 in curvilinear co-ordinates. Let
P
(
y1, y2, y3

)
and Q

(
y1 + dy1, y2 + dy2, y3 + dy3

)
be two neighbouring points in a re-

gion R of E3 in which a curvilinear co-ordinate system

xi = xi
(
y1, y2, y3

)
; i = 1, 2, 3

is defined. The Euclidean distance between a pair of such points is determined by the
quadratic form

ds2 =
[(
y1 + dy1

)
− y1

]2
+
[(
y2 + dy2

)
− y2

]2
+
[(
y3 + dy3

)
− y3

]2
=
(
dy1
)2

+
(
dy2
)2

+
(
dy3
)2

=
∑
i

(
dyi
)2

=

[
∂yh

∂xi
∂yh

∂xj

]
dxidxj ; as dyi =

∂yi

∂xj
dxj

= gijdx
idxj ; where gij =

∂yh

∂xi
∂yh

∂xj
; i, j = 1, 2, 3. (2.46)

This is the elementary arc length in curvilinear co-ordinate system. Obviously, gij
is symmetric. Moreover, by quotient law of tensor, since ds2 is an invariant and the
vector dxi is arbitrary, we call gij the fundamental metric tensor. Denoted by g, the
determinant g = |gij |; is positive in R since gijdx

idxj is a positive definite form. Hence,
we can introduce the conjugate symmetric tensor gij , defined Eq. (2.7) as

gij =
cofactor of gij in g

g
; where g = |gij | ̸= 0. (2.47)

Hence, gij is a symmetric (2, 0) tensor conjugate to gij . The tensor gij plays an im-
portant role in deriving metric properties of the space E3.

2.5.4 Length of a Vector

Consider a contravariant vector Ai in a curvilinear co-ordinate system. Now, we form
the invariant

A =
[
gijA

iAj
]1/2

. (2.48)
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In orthogonal Cartesian co-ordinates gij = δij , and we get A =
√
AiAi. Therefore, in

the orthogonal Cartesian frame the invariant Eq. (2.48) assumes the form

A =
[
(A1)2 + (A2)2 + (A3)2

]1/2
.

We see that A represents the length of the vector Ai. Similarly, the length of the
covariant vector Ai is defined by the formula

A =
[
gijAiAj

]1/2
. (2.49)

A vector whose length is 1 is called a unit vector. From Eq. (2.46), we see that

1 = gij
dxi

ds

dxj

ds
. (2.50)

It follows from Eq. (2.50) that dxi

ds is a contravariant vector, gij is a tensor of type

(0, 2) and 1 is an invariant. Hence, if we write λi = dxi

ds , Eq. (2.50) can be written as

gijλ
iλj = 1.

Therefore, the vector with components λi is a unit vector. If xi = yi, i.e. the
co-ordinate system is Cartesian, then

dx1

ds
= λ1,

dx2

ds
= λ2,

dx3

ds
= λ3

are precisely the direction cosines of the displacement vector
(
dx1, dx2, dx3

)
. Accord-

ingly, we take the vector λi to define the direction in space relative to a curvilinear
co-ordinate system X (Figure 2.7). Let ds(1) denote the element of arc along x1 curve

Figure 2.7: Length of a vector.

at P
(
x1, x2, x3

)
. Along the x1 curve, x2 = constant and x3 = constant, so that

dx2 = 0 and dx3 = 0. Therefore, the length of the elementary arc measured along the
co-ordinate curves of the curvilinear co-ordinate system is given by

ds2(1) = g11dx
1dx1 = g11(dx

1)2 ⇒ ds(1) =
√
g11dx

1,
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where s(1) denotes the arc length along x1 curve (Figure 2.8). Similarly,

ds(2) =
√
g22dx

2 and ds(3) =
√
g33dx

3.

From developments of this section we see that the metric properties of E3 re-
ferred to a curvilinear co-ordinate system x, are completely determined by the ten-
sor gij . Accordingly, this tensor is called the metric tensor and the quadratic form
ds2 = gijdx

idxj is termed as fundamental quadratic form.

Figure 2.8: Curvilinear co-ordinate system.

2.5.5 Angle between Two Vectors

Let Ai and Bi be any two non-null contravariant vectors. Then from the definition of
the length of a vector, the angle θ between them is defined by the formula,

cos θ =
gijA

iBj√
gijAiAj

√
gijBiBj

; 0 ≤ θ ≤ π.

⇒ AB cos θ = gijA
iBj ,

where A and B represent the lengths of the vectors Ai and Bi respectively. Let
Ai and Bi be any two non-null contravariant vectors. Then from the definition of the
length of a vector, the angle θ between them is defined by the formula,

cos θ =
gijAiBj√

gijAiAj
√
gijBiBj

; 0 ≤ θ ≤ π.

If x1, x2, x3 are curvilinear co-ordinates of a point P and λi = dxi

ds ; i = 1, 2, 3, then the
unit vector λi is defined to be a direction at a point P . Thus, if λi and λj are two
directions at a given point, then the angle θ between them is given by

cos θ = gijλ
iλj .

EXAMPLE 2.5.3 Prove that the angles θ12, θ23 and θ31 between the co-ordinate
curves in a three dimensional co-ordinate system are given by

cos θ12 =
g12√
g11g22

; cos θ23 =
g23√
g22g33

and cos θ31 =
g31√
g33g11

.
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Solution: The square of the elementary arc length ds between two neighbouring
points P (x1, x2, x3) and Q(x1 + dx1, x2 + dx2, x3 + dx3) is given by

ds2 = gijdx
idxj ; i, j = 1, 2, 3.

Along the x1 curve, x2 = constant and x3 = constant, so the length of the elementary
arc measured along the co-ordinate curves of the curvilinear co-ordinate system is
given by

ds2(1) = g11dx
1dx1 = g11(dx

1)2 ⇒ ds(1) =
√
g11dx

1,

where s(1) denotes the arc length along x1 curve (Figure 2.9). Similarly,

ds(2) =
√
g22dx

2 and ds(3) =
√
g33dx

3.

Figure 2.9: Angle between co-ordinate curves.

Now, the displacement vectors along x1 curve, x2 curve, x3 curve are, respectively,
given by (dx1, 0, 0), (0, dx2, 0), and (0, 0, dx3) and the length of the displacement vec-
tors are

√
g11dx

1,
√
g22dx

2 and
√
g33dx

3 respectively. Let θij be the angle between the
xi and xj co-ordinate curves; i, j = 1, 2, 3 and i ̸= j, then

cos θ12 =
g12dx

1dx2√
g11dx1dx1

√
g22dx2dx2

=
g12√
g11g22

.

Similarly, we obtain

cos θ13 =
g13√
g11g33

and cos θ23 =
g13√
g22g33

.
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We see that, for an orthogonal system, θ12 = θ23 = θ31 = 90◦. Using the fact that
gij = gji, it follows that, g12 = g23 = g31 = 0. Thus, the necessary and sufficient
condition that the curvilinear co-ordinate system to be orthogonal is that gij = 0 for
i ̸= j; i, j = 1, 2, 3 and gii ̸= 0 for all i = 1, 2, 3 at every point of the region R of E3.

Result 2.5.1 Let us consider the co-ordinate curves of the curvilinear co-ordinate
system. Along the x1 curve, x2 = constant and x3 = constant, so the length of the
elementary arc measured along the co-ordinate curves of the curvilinear co-ordinate
system is given by

ds2(1) = g11dx
1dx1 = g11(dx

1)2 ⇒ dx1

ds(1)
=

1
√
g11

,

where s(1) denotes the arc length along x1 curve. Let ξi(1), ξ
i
(2), ξ

i
(3) be the unit vectors

along the directions of the tangents to the co-ordinate curves at P . Then,

ξi(1) =
1

√
g11

δi(1); ξ
i
(2) =

1
√
g22

δi(2); ξ
i
(3) =

1
√
g33

δi(3).

It is to be noted that the angle between two co-ordinate curves is defined as the angle
between their tangents.

2.5.6 Reciprocal Base System

For the desired interpretation of some results of tensor analysis in E3 referred to a
curvilinear co-ordinate system in the language and notation of ordinary vector analysis
referred to curvilinear co-ordinate system, it is necessary to introduce the notation of
reciprocal base system.

Now, we shall find the nature of the vector in E3 referred to curvilinear co-ordinate
system. Let a Cartesian system of axes be determined by a set of orthogonal base
vectors b1,b2,b3 (Figure 2.10). Then the position vector r of any point P

(
y1, y2, y3

)
can be represented in the form

r = y1b1 + y2b2 + y3b3 = yibi; i = 1, 2, 3. (2.51)

Since the base vectors bi are independent of the position of the point P
(
y1, y2, y3

)
,

we deduce from Eq. (2.51) that

dr = dy1b1 + dy2b2 + dy3b3 = dyibi; i = 1, 2, 3. (2.52)

By definition the square of the elementary arc length ds between two neighbouring
points P (y1, y2, y3) and Q(y1 + dy1, y2 + dy2, y3 + dy3) is ds2 = dr · dr. Using this
result, Eq. (2.52) becomes

ds2 = bi · bjdy
idyj = δijdy

idyj = dyidyi,
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Figure 2.10: Reciprocal base system.

which is the expression for the square of the element of arc in orthogonal Cartesian
co-ordinates. Let a set of equations of transformation

xi = xi(y1, y2, y3); i = 1, 2, 3,

define a curvilinear co-ordinate system X. The position vector r can now be regarded
as a function of co-ordinates xi, and we write

dr =
∂r

∂xi
dxi,

and

ds2 = dr · dr =
∂r

∂xi
· ∂r
∂xj

dxidxj

= gijdx
idxj ; gij =

∂r

∂xi
· ∂r
∂xj

= ai · aj

where, ai =
∂r
∂xi
. Now, ∂r

∂x1
, ∂r
∂x2

and ∂r
∂x3

represent geometrically the respective tangent
vectors to the x1 curve, x2 curve and x3 curve at a point P . We observe that the base
vectors ai are no longer independent of the co-ordinates

(
x1, x2, x3

)
. The base vectors

cannot be, in general, taken to be unit vector or orthogonal as ai · aj = gij ̸= 1 and
ai ·aj = gij = 0 is not given. Now, any vectors a1,a2,a3 with initial point P are called
base vectors in curvilinear co-ordinate system. So, we can write

dr = aidx
i and gij = ai · aj .

Now, any vector with initial point at P can be uniquely expressed as linear combination
of the base vectors a1,a2,a3. The use of covariant notation for the base vectors ai and
bi can be justified by observing from Eq. (2.52) that

ajdx
j = bidy

i = bi
∂yi

∂xj
dxj ⇒ aj =

∂yi

∂xj
bi
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as dxj is arbitrary. This is the law of transformation of the components of covariant
vectors. Now, any vector A can be written in the form A = kdr, where k is a suitable
scalar. Therefore,

A =
∂r

∂xi
(
kdxi

)
; as dr =

∂r

∂xi
dxi

= aiA
i; where Ai = kdxi.

The numbers Ai are the contravariant components of the vector A, and the vectors
A1a1, A

2a2, A
3a3 form the edges of the parallelepiped whose diagonal is A. Since

the ai are not unit vectors in general, we see that the lengths of the edges of the
parallelepiped, or the physical components of A, are determined by the formulas

A1√g11, A2√g22, A3√g33

since g11 = a1 · a1, g22 = a2 · a2 and g33 = a3 · a3. Let a1,a2,a3 be base vectors at
a point P in the region R of E3 and let a1,a2,a3 be three independent vectors at P
such that

ai · aj = δij ; where δij = Kronecker delta.

Then the three vectors a1,a2,a3 are called the reciprocal base vectors of the base
vectors a1,a2,a3 at each point P of R in E3. Let us define the non-coplanar vectors

a1 =
a2 × a3
[a1a2a3]

, a2 =
a3 × a1
[a1a2a3]

and a3 =
a1 × a2
[a1a2a3]

, (2.53)

where a2×a3, etc., denote the vector product of a2 and a3, and [a1 a2 a3] is the triple
scalar product a1 · a2 × a3. It is obvious from definition Eq. (2.53) that ai · aj = δij ,
and

[a1 a2 a3] = εijk
∂yi

∂x1
∂yj

∂x2
∂yk

∂x3
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂y1

∂x1
∂y2

∂x1
∂y3

∂x1

∂y1

∂x2
∂y2

∂x2
∂y3

∂x2

∂y1

∂x3
∂y2

∂x3
∂y3

∂x3

∣∣∣∣∣∣∣∣∣∣∣∣∣
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or

[a1 a2 a3]
2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂y1

∂x1
∂y2

∂x1
∂y3

∂x1

∂y1

∂x2
∂y2

∂x2
∂y3

∂x2

∂y1

∂x3
∂y2

∂x3
∂y3

∂x3

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂y1

∂x1
∂y2

∂x1
∂y3

∂x1

∂y1

∂x2
∂y2

∂x2
∂y3

∂x2

∂y1

∂x3
∂y2

∂x3
∂y3

∂x3

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂yp

∂x1
∂yp

∂x1
∂yp

∂x1
∂yp

∂x2
∂yp

∂x1
∂yp

∂x3

∂yp

∂x2
∂yp

∂x1
∂yp

∂x2
∂yp

∂x2
∂yp

∂x2
∂yp

∂x3

∂yp

∂x3
∂yp

∂x1
∂yp

∂x3
∂yp

∂x2
∂yp

∂x3
∂yp

∂x3

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
g11 g12 g13
g21 g22 g23
g31 g32 g33

∣∣∣∣∣∣ = g

or

[a1 a2 a3] =
√
g; g = |gij |, (2.54)

that the triple scalar products
[
a1a2a3

]
and [a1a2a3] are reciprocally related, so that[

a1a2a3
]
= 1√

g . Therefore, the vectors a1,a2,a3 are non-coplanar. Moreover,

a1 =
a2 × a3

[a1a2a3]
, a2 =

a3 × a1

[a1a2a3]
and a3 =

a1 × a2

[a1a2a3]
(2.55)

with the aid of Eq. (2.53). In view of this it is natural to call the system of vectors
a1,a2,a3 the reciprocal base system. Using the reciprocal base system, we have dr =
aidxi, where the dxi are the appropriate components of dr. Therefore,

ds2 = dr · dr =
(
aidxi

)
·
(
ajdxj

)
= ai · ajdxidxj = gijdxidxj , where g

ij = ai · aj = gji. (2.56)

Using the system of base vectors determined by Eq. (2.53), an arbitrary vector A with
initial point P can be expressed as

A = aiAi = aiA
i,

where A1, A2, A3 are suitable scalars (Figure 2.12). Thus the covariant components of
a vector A with base vectors a1,a2,a3 has contravariant components A1, A2, A3 and
the corresponding covariant components will be determined by reciprocal base vectors
a1,a2,a3 and will be given by A1, A2, A3.
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Figure 2.11: Representation of A.

The scalar product of the vector Aia
i with the base vector aj , and note that the

later is directed along the xi co-ordinate line, we get

Aia
i · aj = Aiδ

i
j = Aj .

Thus
Aj√
gjj

(no summation on j) is the length of the orthogonal projection of the

vector A on the tangent to the xj co-ordinate curve at the point P (Figure 2.11),

whereas
Aj√
gjj

is the length of the edge of the parallelepiped whose diagonal is the

vector A. Since
A = aiA

i = aiAi,

Figure 2.12: Orthogonal projection.

We have,
ai · ajAi = ai · ajAi



2.5 Curvilinear Co-ordinates 129

or
gijA

i = djiAi = Aj .

We see that the vector obtained by lowering the index in Ai is precisely the co-
variant ventor Ai. The two sets of quantities Ai and Ai are thus seen to represent the
same vector A referred to two different base systems. Thus, the distinction between
the covariant and contravariant components of A disappears whenever the base vectors
are orthogonal.

2.5.7 Partial Derivative

Let A be a vector localised at some point P
(
y1, y2, y3

)
of E3 referred to an orthogonal

Cartesian frame Y . If at each point of some region R about P we have a uniquely
defined vectorA, we refer to the totality of vectorsA in R as a vector field.We suppose
that the components of A are continuously differentiable functions of ui in R, and, if
we introduce a curvilinear system of co-ordinates X by means of transformation

T : xi = xi
(
y1, y2, y3

)
,

the corresponding components Ai(x) will be continuously differentiable functions of
the point P

(
x1, x2, x3

)
determined by the position vector r

(
x1, x2, x3

)
. We will be

concerned with the calculation of the vector change△A inA as the point P
(
x1, x2, x3

)
assumes the different position

P ′ (x1 +△x1, x2 +△x2, x3 +△x3
)
.

Using the system of base vectors determined by (2.53), an arbitrary vector A with
initial point P can be expressed as

A = aiA
i; ai =

∂r

∂xi
, (2.57)

where A1, A2, A3 are suitable scalars. Therefore,

A =
(
Ai +△Ai

)
(ai +△ai)−Aiai

= △Aiai +Ai△ai +△Ai△ai.

As in ordinary calculus we denote the principal part of the change by dA and write

dA = aidA
i +Aidai. (2.58)

This formula states that the differential change in A arises from two sources

(i) Change in the components Ai as the values
(
x1, x2, x3

)
are changed.
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(ii) Change in the base vectors ai as the position of the point
(
x1, x2, x3

)
is altered.

The partial derivative of A with respect to xj is defined as the limit of the quotient,

lim
△xj→0

△A

△xj
=
∂A

∂xj
,

and it follows from the expression for the increment △A that:

∂A

∂xj
=
∂Ai

∂xj
ai +

∂ai
∂xj

Ai. (2.59)

Now, we find the components of the vector ∂A
∂xj

referred to a basis ai. Since gij = ai ·aj ,
hence,

∂gij
∂xk

=
∂ai
∂xk

· aj +
∂aj
∂xk

· ai.

Permuting the indices in this formula, we get

∂gik
∂xj

=
∂ai
∂xj

· ak +
∂ak
∂xj

· ai; and
∂gjk
∂xi

=
∂aj
∂xi

· ak +
∂ak
∂xi

· aj .

If we assume that T is of class C2, then,

∂ai
∂xj

=
∂aj
∂xi

; as ai =
∂r

∂xi

and
∂ai
∂xj

=
∂

∂xj

(
∂r

∂xi

)
=

∂

∂xi

(
∂r

∂xj

)
=
∂aj
∂xi

.

Using this relation, we get

∂ai
∂xj

· ak =
1

2

{
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

}
= [ij, k]

or
∂ai
∂xj

= [ij, k]ak

or
∂ai
∂xj

· aα = [ij, k]ak · aα = [ij, k]gkα =

{
α
i ȷ

}
or

∂ai
∂xj

=

{
α
i j

}
· aα.
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Substituting this result in Eq. (2.59), we get

∂A

∂xj
=
∂Ai

∂xj
ai +

{
α
i j

}
· aαAi =

[
∂Aα

∂xj
+

{
α
i j

}
Ai
]
aα = Aα,jaα, (2.60)

where Aα,j means the covariant derivative of Aα with respect to the metric tensor of

E3. Therefore, Eq. (2.60) can be written as

∂A

∂xj
= Aα,jaα. (2.61)

In virtue of Eq. (2.61) we can state the following interpretation of the covariant deriva-
tive of a vector Ai.

Interpretation: If a vector A of E3 has contravariant components Ai referred to
a basis ai, then the covariant derivative of the vector Ai with respect to the metric
tensor of E3 is a vector whose components are those of the vector ∂A

∂xj
referred to the

basis ai.

EXAMPLE 2.5.4 If gij is the metric tensor of Euclidean space E3 in curvilinear
co-ordinates xi, and yi are rectangular Cartesian co-ordinates, show that

∂yi

∂xp
= gpq

∂xq

∂yi
.

Solution: We know, gpq =
∂yj

∂xp
∂yj

∂xq . Multiplying both sides by ∂xq

∂yi
, we get

gpq
∂xq

∂yi
=
∂yj

∂xp
∂yj

∂xq
∂xq

∂yi
=
∂yj

∂xp
δji =

∂yi

∂xp
.

Therefore, ∂yi

∂xp = gpq
∂xq

∂yi
.

EXAMPLE 2.5.5 If gij is the conjugate metric tensor of Euclidean space E3 in
curvilinear co-ordinates xi, and yi are rectangular Cartesian co-ordinates, show that

∂xp

∂yi
= gpq

∂yi

∂xq
.

Solution: Since gij is the conjugate metric tensor of Euclidean space E3 in curvilinear
co-ordinates xi, and yi are rectangular Cartesian co-ordinates, we find according to
the law of transformation of a (2, 0) tensor we have, gpq = δij ∂x

p

∂yi
∂xq

∂yj
.Multiplying both

sides by ∂yi

∂xq , we get

gpq
∂yi

∂xq
= δij

∂xp

∂yi
∂xq

∂yj
∂yi

∂xq

= δij
∂xp

∂yi
∂yi

∂xq
∂xq

∂yj
= δijδpq

∂yi

∂xq
=
∂xp

∂yi
.
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EXAMPLE 2.5.6 If yi and xi are rectangular Cartesian and curvilinear co-ordinates,
respectively, show that in E3,

[ij, k] =
∂2yp

∂xi∂xj
∂yp

∂xk
and

{
i

j k

}
=

∂2yp

∂xj∂xk
∂xi

∂yp
.

Solution: Here, yi and xi are rectangular cartesian and curvilinear co-ordinates
respectively. Using the relation gik =

∂yp

∂xi
∂yp

∂xk
, we get

∂gik
∂xj

=
∂2yp

∂xj∂xi
∂yp

∂xk
+
∂yp

∂xi
∂2yp

∂xj∂xk
.

Similarly
∂gjk
∂xi

=
∂2yp

∂xi∂xj
∂yp

∂xk
+
∂yp

∂xj
∂2yp

∂xi∂xk

and
∂gij
∂xk

=
∂2yp

∂xk∂xi
∂yp

∂xj
+
∂yp

∂xi
∂2yp

∂xk∂xj
.

Therefore, the Christoffel symbol of first kind is given by

[ij, k] =
1

2

(
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)
=

∂2yp

∂xi∂xj
∂yp

∂xk
.

Now, the Christoffel symbol of second kind is given by{
k
i j

}
= gkm[ij,m] = gkm

1

2

(
∂gim
∂xj

+
∂gjm
∂xi

− ∂gij
∂xm

)
= gkm

∂2yp

∂xi∂xj
∂yp

∂xm
=

∂2yp

∂xi∂xj
gkm

∂yp

∂xm
=

∂2yp

∂xj∂xk
∂xi

∂yp
.

EXAMPLE 2.5.7 Show that the area of the parallelogram constructed on the base
vectors a2 and a3 is

√
gg11, where gij and gij are the metric and conjugate metric

tensors in curvilinear co-ordinate system and g = |gij |.
Solution: Using the relation gij = ai · aj , we get

g11 = a1 · a1 =
∣∣a1∣∣2 ⇒ ∣∣a1∣∣ =√g11.

Also, from Eqs. (2.53) and (2.54) we get the relations

a1 =
a2 × a3
[a1a2a3]

and [a1a2a3] =
√
g

⇒ √
ga1 = a2 × a3

⇒ |a2 × a3| =
∣∣√ga1∣∣ = √

g
∣∣a1∣∣ = √

g
√
g11.
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Area of the parallelogram constructed on the base vectors a2 and a3 is given by

|a2 × a3| =
√
g
√
g11 =

√
gg11.

Similarly, the area of the parallelogram constructed on the base vectors a3 and a1
is
√
gg22 and on the base vectors a1 and a2 is

√
gg33. If V be the volume of the

parallelopiped constructed on the base vectors a1,a2,a3, then

V = a1 · (a2 × a3) = [a1a2a3] =
√
g.

Let xi denote the curvilinear co-ordinates. The volume dV of the element of the
parallelopiped constructed on the vectors a1dx

1,a2dx
2,a3dx

3 is given by

dV =
(
a1dx

1
)
·
(
a2dx

2 × a3dx
3
)
=

√
gdx1dx2dx3.

EXAMPLE 2.5.8 Find the physical components of the vector with components Ai

in spherical polar co-ordinates.

Solution: The expression for the metric in spherical polar co-ordinates is given by

ds2 =
(
dx1
)2

+
(
x1
)2 (

dx2
)2

+
(
x1
)2 (

sinx2
)2 (

dx3
)2
.

Therefore, in spherical polar co-ordinates (xi), g11 = 1, g22 = (x1)2 and g33 = (x1 sinx2)2,
gij = 0, for i ̸= j. If Ai denote the physical components, then using the relation

Ai =
gijA

j

√
gii

=
gi1A

1 + gi2A
2 + gi3A

3

√
gii

,

we get

A1 =
g11A

1

√
g11

= A1;A2 =
g22A

2

√
g22

=
√
g22A

2 = x1A2

and

A3 =
g33A

3

√
g33

=
√
g33A

3 = (x1 sinx2)A3.

Hence, the required physical components of the vector with components Ai are A1,
x1A2, (x1 sinx2)A3 in spherical polar co-ordinates.

2.6 Exercises

1. If gij is the metric tensor in a Riemannian space and gij its reciprocal, show
that,

(a) gij is a symmetrical contravariant tensor
(b) and giαgαj = δij .
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2. In V2, find the quantities gij where gij = i+ j.

3. Prove that the maximum number of independent components of the metric gij
in VN is 1

2N(N + 1).

4. Find g and the reciprocal tensors, if the metric is given by

(i) ds2 = 5(dx1)2 + 4(dx2)2 − 3(dx3)2 + 4dx1dx2 − 6dx2dx3.

(ii) ds2 = a(du)2 + b(dv)2 + c(dw)2 + 2fdvdw + 2gdwdu+ 2hdudv.

(iii) ds2 = −a(dx1)2 − b(dx2)2 − c(dx3)2 + d(dx4)2.

(iv) ds2 = 3(dx1)2 + 2(dx2)2 + 2(dx3)2 − 4dx1dx2.

(v) ds2 = (dx1)2 − 2(dx2)2 + 3(dx3)2 − 8dx2dx3.

(vi) ds2 = (dx1)2 + 2 cosαdx1dx2 + (dx2)2.

5. (a) Find the metric for the surface of sphere of constant radius a interms of
spherical polar co-ordinates.

(b) Show that in a case of an orthogonal co-ordinate system, a covariant com-
ponent of a tensor is related only to the corresponding contravariant com-
ponent of a tensor.

(c) Show that with respect to a cartesian co-ordinate system, the distinction
among the contravariant, the covariant and the mixed components of a
tensor vanishes.

6. Show that

(a) if y1 = a cosu, y2 = a sinu, y3 = v, ds2 = a2(du)2 + (dv)2.
(b) if y1 = u cos v, y2 = u sin v, y3 = av, ds2 = (du)2 + [(u)2 + a2](dv)2.
(c) if y1 = u, y2 = v, y3 = ψ(u, v),

ds2 = (1 + ψ2
1)(du)

2 + 2ψ1ψ2dudv + (1 + ψ2)(dv)
2.

7. Show that, if the relation between the Cartesian co-ordinates (x1, x2, x3) and

(a) the parabolic cylindrical co-ordinates (x1, x2, x3) be

x1 =
1

2

[
(x1)2 − (x2)2

]
; x2 = x1x2; x3 = x3,

the metric is given by

ds2 =
[
(x1)2 + (x2)2

]
{(dx1)2 + (dx2)2}+ (dx3)2.

(b) the paraboloidal co-ordinates (y1, y2, y3) be

x1 = y1y2 cos y3, x2 = y1y2 sin y3, x3 =
1

2
[(y1)2 − (y2)2],

then the metric is given by

ds2 =
[
(y1)2 + (y2)2

]
{(dy1)2 + (dy2)2}+ (y1y2)2(dy3)2.
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(c) the elliptic cylindrical co-ordinates (y1, y2, y3) be

x1 = a cosh y1 cos y2, x2 = a sinh y1 sin y2, x3 = y3,

then the metric is given by

ds2 = a2
[
(sinh y1)2 + (sin y2)2

]
{(dy1)2 + (dy2)2}+ (dy3)2.

(d) the oblate spherical co-ordinates (y1, y2, y3) be

x1 = a cosh y1 cos y2 cos y3, x2 = a cosh y1 cos y2 sin y3, x3 = a sinh y1 sin y2,

then the metric is given by

ds2 = a2
[
(sinh y1)2 + (sin y2)2

]
{(dy1)2 + (dy2)2}+ a2 cosh2 y1 cos2 y2(dy3)2.

8. (a) Prove that, in Vn,

(i) (ghjgik − ghigjk) g
hj = (N − 1)gik

(ii) ∂ϕ
∂xj

(ghkgil − ghlgik) g
hj = ∂ϕ

∂xk
gil − ∂ϕ

∂xi
gik, if ϕ is invariant

where gij and g
ij have their usual meanings.

(b) If the Jacobian matrix of the transformation from a given co-ordinate sys-

tem (xi) to a rectangular system (x̄i) is J =
(
∂x̄i

∂xj

)
, then prove that the

matrix G = (gij) of the Euclidean metric tensor in (xi) system in G = JTJ .

9. (a) Show that the length of the arc of the curve x1 = 3t; x2 = et; 0 ≤ t ≤ 2 is
10 for the metric components g11 = 2; g12 = g21 = (x2)−1; g22 = (x2)−2.

(b) A curve in cylindrical co-ordinates xi is given by x1 = a cos t; x2 = a sin t;
x3 = bt, where a and b are positive constants. Show that the length of arc
for 0 ≤ t < c is c

√
a2 + b2.

(c) A curve in spherical co-ordinates xi is given by x1 = t; x2 = a sin−1 1
t ;

x3 =
√
t2 − 1. Show that the length of arc for 1 ≤ t ≤ 2 is

√
6.

(d) Using the Euclidean metric for polar co-ordinates, compute the length of arc
for the curve x1 = 2a cos t;x2 = t; 0 ≤ t ≤ π

2 , and interpret geometrically.
(e) Calculate the length of the curve x1 = 3 − t, x2 = 6t + 3, x3 = log t for

1 ≤ t ≤ e, for the metric

12 4 0
4 1 1
0 1 (x1)2

.
10. Show that the tensors gpq, g

pq and δpq are associated tensors.

11. Prove that the associated tensors of Aij are Ajm and Amn.
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12. Prove that the relationship between the pairs of

(a) the associated tensors Apq and A•q
j is

Apq = gpjA•q
j .

(b) the associated tensors Ap•r•q and Ajql is

Ap•r•q = gpjgrlAjql.

(c) the associated tensors A••r
pq and Ajk••l is

A••r
pq = gpjgqkg

rlAjk••l.

(d) associated tensors of Bjkl and Bpqr is

Bjkl = gjpgkqglrBpqr.

13. Show that for an orthogonal co-ordinate system

g11 =
1

g11
, g22 =

1

g22
and g33 =

1

g33

Considering an N-dimensional Euclidean space EN with rectangular Cartesian
co-ordinates as a particular case of VN , show that in EN there is no distinction
between covariant and contravariant vectors.

14. Illustrate the concept of an associate vector in a Riemannian space. If in a two-
dimensional Riemannian space, the components of a metric tensor are g11 = 1,
g12 = 0, g22 = r2, find the components of the associated tensor.

15. Let E3 be covered by orthogonal Cartesian co-ordinates xi and let xi = aijy
j

where |aij | ̸= 0(i, j = 1, 2, 3) represent a linear transformation of co-ordinates.
Determine the metric coefficients gij(y). Discuss the case when the transforma-
tion is orthogonal.

16. Let gij and g
ij be reciprocal symmetric tensor of the second order and ui, vi be

component of covariant vectors. If ui and vi are defined by

ui = gijuj , v
i = gijvj ; i, j = 1, 2, . . . , N.

Show that ui = giju
j , uivi = uiv

i and uigiju
j = uig

ijuj .

17. (a) Prove that the necessary and sufficient condition that the curvilinear co-
ordinate system to be orthogonal is that gij = 0 for i ̸= j; i, j = 1, 2, 3 and
gii ̸= 0 for all i = 1, 2, 3 at every point of the region R of E3.

(b) Under the Euclidean metric for spherical co-ordinates, determine a partic-
ular family of curves that intersect x1 = a, x2 = bt, x3 = t orthogonally.
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18. Show that in the V4 with line element

ds2 = −
(
dx1
)2 −(dx2)2 − (dx3)2 + c2

(
dx4
)2

each of the following vectors is unit vector (i)
(
1, 1, 0,

√
3
c

)
and (ii)

(√
2, 0, 0,

√
3
c

)
.

19. If Ap is a vector field, then show that the corresponding unit vector is

Ap/
√
ApAq or Ap/

√
gpqApAq.

20. If Ai =
1√

gpqBpBq
, where Bi is a covariant vector, show Ai is unit vector.

21. If A and B are orthogonal vectors of length l, prove that

(ghjgik − ghkgij)A
hAjBiBk = −l4.

22. Prove that the magnitude of two associated vectors is equal. Prove also that the
relation of a vector and its associated vector is reciprocal.

23. (a) Prove that the angle between the two non-null vectors is invariant.

(b) Show that the angle between two contravariant vectors is real when the
Riemannian metric is positive definite.

(c) Show that is a Cartesian co-ordinate system, the contravariant and the
covariant components of a vector are identical.

24. Show that the cosines of the angles which the three-dimensional unit vector U i

make with the co-ordinate curves are given by

U1/
√
g11, U2/

√
g22, U3/

√
g33.

25. Show that
(
x1, x2, x3

)
defined by the transformations

T : x1 = u1 cosu2; x2 = u1 sinu2; x3 = u3,

where x1, x2, x3 are rectangular Cartesian co-ordinates are curvilinear co-ordinates
and also find the co-ordinate curves and surfaces.

26. If λi is a unit vector, show that the cosines of the angles which its direction
makes with the co-ordinates curves are

λ1
√
g11

;
λ2

√
g22

;
λ3

√
g33

.

27. Find a necessary and sufficient condition for two contravariant vectors ui and vi

defined in a Riemannian space, to be orthogonal.
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28. If θ be the angle between two non-null vectors Ai and Bi at a point, prove that

sin2 θ =
(gijgpq − gipgjq)A

iBpAjBq

(gijAiAj) (gpqBpBq)

Hence, show that, if Ai and Bi are orthogonal unit vectors then

(gijgpq − gipgjp)A
iBpAjBq = 1.

29. If aij are components of a symmetric covariant tensor and ui, vi are unit vectors
orthogonal to w and

(aij − αgij)u
i + λwj = 0

(aij − βgij)v
i + Pλwj = 0; where α ̸= β

then prove that ui and vi are orthogonal and aiju
ivj = 0.

30. If Ai and Bi are two unit vectors. Prove that they are inclined at a constant
angle iff Ai,kBi +Bi

,kAi = 0.

31. Define the angle between two vectors at a point in a Riemannian space. Show
that it is an invariant under a co-ordinate transformation.

32. Define the magnitude of any covariant vector in a Riemannian space. Prove that
the square of the magnitude of a covariant vector is the scalar product of the
vector and its associative contravariant vector.

33. Find the form of the line element ds2 of VN when its co-ordinates hypersurfaces
form an N ply orthogonal system.

34. (a) Show that an arbitrary VN does not admit an N ply orthogonal system of
hypersurfaces.

(b) Prove that the magnitude of any vector u is zero if the projections of u on
λh| are all zero.

35. (a) If gij is the conjugate metric tensor of Euclidean space E3 in curvilinear
co-ordinates xi, and yi are rectangular Cartesian co-ordinates, show that
∂xp

∂yi
= gpq ∂y

i

∂xq .

(b) If gij is the conjugate metric tensor of Euclidean space E3 in curvilinear
co-ordinates xi, and yi are rectangular Cartesian co-ordinates, show that
gij = ∂xi

∂yr
∂xj

∂yr .

36. If A = Aia
i show that ∂A

∂xj
= Ai,ja

i.

37. Prove that (
ai × aj

)
· ak = gipepjk,

where eijk has its usual meaning.
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38. If ai and ai are base and reciprocal base vectors of a curvilinear co-ordinate
system, show that

a1 =
a2 × a3

[a1a2a3]
,a2 =

a3 × a1

[a1a2a3]
and a3 =

a1 × a2

[a1a2a3]
.

39. If yi are rectangular Cartesian co-ordinates, show that in E3,

[αβ, γ] =
∂2yi

∂xα∂xβ
∂yi

∂xγ
and

{
γ
α β

}
=

∂2yi

∂xα∂xβ
∂xγ

∂yi
.

40. Prove that the area of the parallelogram constructed on the base vectors a3 and
a1 is

√
gg22 and on the base vectors a1 and a2 is

√
gg33.

41. Find the physical components of the vector with components Ai in (i) spherical
polar co-ordinates (ii) in cylindrical polar co-ordinates.



Chapter 3

Christoffel’s Symbols and
Covariant Differentiation

We now consider two expressions due to Elwin Bruno Christoffel involving the deriva-
tives of the components of the fundamental tensors gij and g

ij . In fact, the operation
of partial differentiation on a tensor does not always produce a tensor. A new oper-
ation of differentiation may be introduced with the help of two functions formed in
terms of the partial derivatives of the components of the fundamental tensor.

3.1 Christoffel Symbols

Here, we consider two expressions due to Christoffel involving of the components of gij ,
which will prove useful in the development of the calculus of tensors. The Christoffel
symbol of first kind, (N3 functions) denoted by [ij, k], is defined as

[ij, k] =
1

2

(
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)
; i, j, k = 1, 2, . . . , N (3.1)

which is also called the Christoffel 3 index symbols of the first kind. The Christoffel 3

index symbols of the second kind, denoted by

{
k
i j

}
or Γkij is defined as

{
k
i j

}
= gkm[ij,m] =

1

2
gkm

(
∂gim
∂xj

+
∂gjm
∂xi

− ∂gij
∂xm

)
, (3.2)

where gij is the reciprocal tensor for the fundamental metric tensor gij . Either kind
of these symbols in VN is a set of functions of co-ordinates xi in a given co-ordinate
system (xi). Note that, in the Christoffel symbol, the contraction always takes place
at the third index. For example,

gmj [ij, k] ̸=
{
m
i k

}
.

140
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In a VN , it is always possible to choose a co-ordinate system such that all the Christoffel
symbols vanish at a particular point P0. Such a co-ordinate system is called a geodesic
co-ordinate system with the point P0 as pole.

There are N distinct Christoffel symbols of each kind for each independent gij .
Since gij is symmetric tensor of rank 2 and has 1

2N(N + 1) independent components,
so, the number of independent components of Christoffel’s symbols are

N · 1
2
N(N + 1) =

1

2
N2(N + 1).

EXAMPLE 3.1.1 Find the Christoffel symbols of the second kind for the V2 with
line element

ds2 = a2
(
dx1
)2

+ a2 sin2 x1
(
dx2
)2
,

where a is a constant.

Solution: Comparing the given metric with Eq. (2.1), we get

g11 = a2, g22 = a2 sin2 x1, g12 = 0 = g21.

⇒ g =

∣∣∣∣a2 0
0 a2 sin2 x1

∣∣∣∣ = a4 sin2 x1.

The reciprocal tensors gij for the tensor gij are given by

g11 =
cofactor of g11 in g

g
=
a2 sin2 x1

a4 sin2 x1
=

1

a2

g22 =
cofactor of g22 in g

g
=

a2

a4 sin2 x1
=

1

a2 sin2 x1

g12 =
cofactor of g12 in g

g
= 0 = g21.

Now, the Christoffel symbols of first kind are

[11, 1] =
1

2

(
∂g11
∂x1

+
∂g11
∂x1

− ∂g11
∂x1

)
=

1

2

∂g11
∂x1

= 0

[11, 2] =
1

2

(
∂g12
∂x1

+
∂g12
∂x1

− ∂g11
∂x2

)
= −1

2

∂g11
∂x2

= 0

[12, 1] =
1

2

(
∂g21
∂x1

+
∂g11
∂x2

− ∂g21
∂x1

)
=

1

2

∂g11
∂x2

= 0 = [21, 1]
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[12, 2] =
1

2

(
∂g12
∂x2

+
∂g22
∂x1

− ∂g12
∂x2

)
=

1

2

∂g22
∂x1

= a2 sinx1 cosx1

[22, 1] =
1

2

(
∂g21
∂x2

+
∂g21
∂x2

− ∂g22
∂x1

)
= −1

2

∂g22
∂x1

= −a2 sinx1 cosx1

[22, 2] =
1

2

(
∂g22
∂x2

+
∂g22
∂x2

− ∂g22
∂x2

)
=

1

2

∂g22
∂x2

= 0.

The Christoffel symbols of second kind are{
1

1 1

}
= g1k[11, k] = g11[11, 1] + g12[11, 2] =

1

a2
× 0 + 0× 0 = 0.{

1
1 2

}
= g1k[12, k] = g11[12, 1] + g12[12, 2]

=
1

a2
× 0 + 0× a2 sinx1 cosx1 = 0 =

{
1

2 1

}
.{

1
2 2

}
= g1k[22, k] = g11[22, 1] + g12[22, 2]

=
1

a2
×
(
−a2 sinx1 cos1

)
+ 0× 0 = − sinx1 cos1 .{

2
1 1

}
= g2k[11, k] = g21[11, 1] + g22[11, 2]

= 0× 0 +
1

a2 sin2 x1
× 0 = 0.{

2
1 2

}
= g2k[12, k] = g21[12, 1] + g22[12, 2]

= 0× 0 +
1

a2 sin2 x1
× a2 sinx1 cosx1 = cotx1 =

{
2

2 1

}
.{

2
2 2

}
= g2k[22, k] = g21[22, 1] + g22[22, 2]

= 0×
(
−a2 sinx1 cos1

)
+

1

a2 sin2 x1
× 0 = 0.

EXAMPLE 3.1.2 Calculate the Christoffel symbols

{
k
i j

}
corresponding to the

metric ds2 = du2 + f2dv2, where f is a function of u and v.
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Solution: Comparing the given metric with Eq. (2.1), we get,

g11 = 1, g22 = f2, g12 = 0 = g21 ⇒ g =

∣∣∣∣1 0
0 f2

∣∣∣∣ = f2.

The reciprocal tensors gij for the tensor gij are given by

g11 = 1; g22 =
1

f2
; g12 = 0 = g21.

Now, the Christoffel symbols of first kind are

[11, 1] =
1

2

∂g11
∂u

= 0; [11, 2] = −1

2

∂g11
∂v

= 0

[12, 1] =
1

2

∂g11
∂v

= 0 = [21, 1]; [12, 2] =
1

2

∂g22
∂u

= f
∂f

∂u
= [21, 2]

[22, 1] = −1

2

∂g22
∂u

= f
∂f

∂u
; [22, 2] =

1

2

∂g22
∂v

= f
∂f

∂v
.

The Christoffel symbols of second kind are{
1

1 1

}
= g1k[11, k] = g11[11, 1] + g12[11, 2] = 0.{

1
1 2

}
= g1k[12, k] = g11[12, 1] + g12[12, 2] = 0 =

{
1

2 1

}
.{

1
2 2

}
= g1k[22, k] = g11[22, 1] + g12[22, 2] = −f ∂f

∂u
.{

2
1 1

}
= g2k[11, k] = g21[11, 1] + g22[11, 2] = 0.{

2
1 2

}
= g2k[12, k] = g21[12, 1] + g22[12, 2] =

1

f

∂f

∂u
=

{
2

2 1

}
.{

2
2 2

}
= g2k[22, k] = g21[22, 1] + g22[22, 2] =

1

f

∂f

∂u
.

3.1.1 Properties of the Christoffel Symbols

In this section we proceed to deduce several properties and identities involving Christof-
fel symbols, which will prove useful to us in the sequel.

Property 3.1.1 The Christoffel symbols of First and Second kind defined in Eqs. (3.1)
and (3.2) are symmetric with respect to the indices i and j.
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Proof: In the definition of Christoffel symbol (3.1) of first kind, interchanging of i and
j, provides

[ji, k] =
1

2

(
∂gjk
∂xi

+
∂gik
∂xj

− ∂gji
∂xk

)
=

1

2

(
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)
; as gij is symmetric

= [ij, k].

Thus, [ij, k] = [ji, k], shows that Christoffel symbol of first kind defined by Eq. (3.1) is
symmetric with respect to the indices i and j. In the definition of Christoffel symbol
of second kind (3.2), interchanging of i and j, we get.{

k
j i

}
= gkm[ji,m] = gkm[ij,m] =

{
k
i j

}
.

Therefore, the 3 index Christoffel symbol of second kind defined in Eq. (3.2) is sym-
metric with respect to i and j.

Property 3.1.2 The necessary and sufficient condition that all the Christoffel sym-
bols vanish at a point is that gij are constants.

Proof: Let gij be constants, at a point P
(
xi
)
, then

∂gij
∂xk

= 0,
∂gik
∂xj

= 0 and
∂gjk
∂xi

= 0.

Using definition (3.1) of Christoffel symbol of first kind, we get

[ij, k] =
1

2

[
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

]
= 0,

it follows that they will be all zero at the point P . From the definition (3.2) of
Christoffel symbol of second kind, we get{

k
i j

}
= gkm[ij,m] = 0; as [ij,m] = 0,

at P. Therefore, the condition is necessary. Conversely, if the Christoffel symbols
vanish at a point, we have

1

2

[
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

]
= 0.
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Since the co-ordinates xi are independent, the above relation holds, if

∂gij
∂xk

= 0,
∂gik
∂xj

= 0 and
∂gjk
∂xi

= 0.

This means that, gpq is independent of xi for all i, i.e. gij are constants at the point(
xi
)
. Therefore, the condition is sufficient. Thus, in any particular co-ordinate system,

the Christoffel symbols uniformly vanish if and only if the metric tensor has constant
components in that system.

EXAMPLE 3.1.3 Is it true that if all [ij, k] vanish in any co-ordinate system, then
the metric tensor has constant components in every co-ordinate system?

Solution: By Property 3.1.2, the conclusion would be valid if the [ij, k] vanished
in every co-ordinate system. But [ij, k] is not a tensor, and the conclusion is false.
For instance, all [ij, k] = 0 for the Euclidean metric in rectangular co-ordinates, but
g22 = (x1)2 in spherical co-ordinates.

Property 3.1.3 To establish [ij,m] = gkm

{
k
i j

}
.

Proof: We see from the defining formula (3.2) that we can pass from the symbol of

the first kind [ij,m] to the symbol

{
k
i j

}
by forming the inner product gkm[ij,m].

Therefore, the inner multiplication of

{
k
i j

}
with gkm gives

gkm

{
k
i j

}
= gkmg

kp[ij, p]; as

{
k
i j

}
= gkp[ij, p]

= δpm[ij, p]; as gkmg
kp = δpm

= [ij,m].

This is the relation between the two symbols. The formulas{
k
i j

}
= gkm[ij,m] and [ij,m] = gkm

{
k
i j

}
are easy to remember if it is noted that the operation of inner multiplication of [ij,m]
with gkm raises the index and replaces the square brackets by the braces. The mul-

tiplication of

{
k
i j

}
by gkm, on the other hand, lowers the index and replaces the

braces by the square brackets.

Property 3.1.4 To establish [ij, k] + [jk, i] = ∂gik
∂xj

.
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Proof: Using definition (3.1) of Christoffel symbol of first kind, we get

[ij, k] + [jk, i] =
1

2

(
∂gjk
∂xi

+
∂gik
∂xj

− ∂gij
∂xk

)
+

1

2

(
∂gki
∂xj

+
∂gji
∂xk

−
∂gjk
∂xi

)
=

1

2

(
∂gik
∂xj

+
∂gki
∂xj

)
=
∂gki
∂xj

=
∂gik
∂xj

= ∂jgik.

This is an expression for the partial derivative of the fundamental tensor gij in terms
of the symbols of first kind. In the similar manner, we get

[jk, i]− [ij, k] =
∂gij
∂xk

−
∂gjk
∂xi

.

Property 3.1.5 To establish ∂jgik =
∂gik

∂xj
= −ghk

{
i
hj

}
− ghi

{
k
hj

}
.

Proof: The formula for the partial derivatives of the contravariant tensor gik can be
obtained by differentiating the identity gpmg

mi = δip, where δ
i
p is the Kronecker delta,

with respect to xj , we get

∂

∂xj
(
gpmg

mi
)
= 0 ⇒ ∂ (gpm)

∂xj
gmi + gpm

∂
(
gmi
)

∂xj
= 0

or

gmi
∂gpm
∂xj

= −gpm
∂gmi

∂xj
.

To solve this system of equations for ∂gmi

∂xj
, we multiply both sides by gpk, we get

gmigpk
∂gpm
∂xj

= −gpkgpm
∂gmi

∂xj

or

gmigpk[pj,m] + gmigpk[jm, p] = −gpkgpm
∂gmi

∂xj(
since

∂gpm
∂xj

= [pj,m] + [jm, p]
)

or

gpk
{

i
p j

}
+ gmi

{
k

m j

}
= −δkm

∂gmi

∂xj
; as gpkgpm = δkm

or

gpk
{

i
p j

}
+ gmi

{
k

m j

}
= −∂g

ik

∂xj

or

∂gik

∂xj
= −ghk

{
i

h j

}
− ghi

{
k
h j

}
,

where we have to replace dummy indices p and m by h.
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Property 3.1.6 To establish

{
i
i j

}
=

{
i
j i

}
= ∂

∂xj

(
log

√
g
)
, where g = |gij | ̸= 0.

Proof: According to the definition of reciprocal tensor, we have

gij =
cofactor of gij in |gij |

|gij |
=
Gij

g
,

where Gij denotes the cofactor of gij in g = |gij |. Since, g = |gij |, we get

g =

∣∣∣∣∣∣∣∣∣
g11 g12 · · · g1N
g21 g22 · · · g2N
...

...
...

...
gN1 gN2 · · · gNN

∣∣∣∣∣∣∣∣∣ .
The derivative of a determinant is obtained by differentiating each row of it separately
and keeping the other rows the same. Therefore, differentiating g = |gij | with respect
to xj , we have

∂g

∂xj
=

∣∣∣∣∣∣∣∣∣∣∣∣

∂g11
∂xj

∂g12
∂xj

· · · ∂g1N
∂xj

g21 g22 · · · g2N
...

...
...

...
gN1 gN2 · · · gNN

∣∣∣∣∣∣∣∣∣∣∣∣
+ · · ·+

∣∣∣∣∣∣∣∣∣∣∣∣∣

g11 g12 · · · g1N

g21 g22 · · · g2N
...

...
...

...

∂gN1

∂xj
∂gN2

∂xj
· · · ∂gNN

∂xj

∣∣∣∣∣∣∣∣∣∣∣∣∣
Clearly, cofactor of ∂g11

∂xj
= cofactor of g11 in g, so summing the resulting determinants

obtained, we get

∂g

∂xj
= Gik

∂gik
∂xj

= ggik
∂gik
∂xj

= ggik ([ij, k] + [kj, i])

= ggik[ij, k] + ggik[kj, i] = g

{
i
i j

}
+ g

{
k
k j

}
.

Replacing the dummy index k by i, we get

∂g

∂xj
= g

{
i
i j

}
+ g

{
i
i j

}
= 2g

{
i
i j

}
or {

i
i j

}
=

1

2g

∂g

∂xj
=

∂

∂xj
(log

√
g) =

1

2

∂

∂xj
log g =

1

2
∂j log g.

The quantities

{
i
i j

}
are sometimes called contracted Christoffel symbols. The de-

rived formula for the derivative of the logarithm of the determinant g = |gij | plays an
important role in tensor calculus.
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EXAMPLE 3.1.4 If |gij | ̸= 0, show that

gαβ
∂

∂xj

{
β
i k

}
=

∂

∂xj
[ik, α]−

{
β
i k

}
([βj, α] + [αj, β]).

Solution: By definition of the Christoffel symbol of second kind, we get

{
β
i k

}
=

gβα[ik, α]. Multiplying innerly by gαβ, we get

gαβ

{
β
i k

}
= gαβg

βα[ik, α]

or

gαβ

{
β
i k

}
= [ik, α]; as gαβg

βα = 1.

Differentiating this relation with respect to xj partially, we get,

∂

∂xj

(
gαβ

{
β
i k

})
=

∂

∂xj
[ik, α]

or

gαβ
∂

∂xj

{
β
i k

}
+

{
β
i k

}
∂gαβ
∂xj

=
∂

∂xj
[ik, α]

or

gαβ
∂

∂xj

{
β
i k

}
+

{
β
i k

}
([βj, α] + [αj, β]) =

∂

∂xj
[ik, α],

as
∂gαβ
∂xj

= [βj, α] + [αj, β]

or

gαβ
∂

∂xj

{
β
i k

}
=

∂

∂xj
[ik, α]−

{
β
i k

}
([βj, α] + [αj, β]).

EXAMPLE 3.1.5 Evaluate the Christoffel symbols of both kinds for spaces, where,

gij = 0, if i ̸= j.

Solution: The definition of Christoffel symbols of first kind is given by Eq. (3.1). We
consider the following four cases:

Case 1: Let i = j = k, then Eq. (3.1) becomes

[ij, k] = [ii, i] =
1

2

(
∂gii
∂xi

+
∂gii
∂xi

− ∂gii
∂xi

)
=

1

2

∂gii
∂xi

.
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Case 2: Let i = k ̸= j, then, we get from above definition

[ij, k] = [ij, i] =
1

2

(
∂gji
∂xi

+
∂gii
∂xj

− ∂gij
∂xi

)
=

1

2

∂gii
∂xj

.

Case 3: Let i = j ̸= k, then, we get from above definition

[ij, k] = [ii, k] =
1

2

(
∂gik
∂xi

+
∂gik
∂xi

− ∂gii
∂xk

)
= −1

2

∂gii
∂xk

; as gik = 0 for i ̸= k.

Case 4: If i ̸= j ̸= k and noting gij = 0 if i ̸= j, we get [ij, k] = 0.
In the above such four results, no summation is applied. Now, we know, if co-ordinate
system is orthogonal, then gij = 1

gij
, where no summation is used. The definition of

Christoffel symbol of second kind is given by Eq. (3.2). Clearly if k ̸= h,{
k
i j

}
= 0; as gkh = 0,

and if k = h, {
k
i j

}
= gkk[ij, k] =

1

gkk
[ij, k].

Using the above cases, we get the following four subcases for the Christoffel symbol of
second kind:

Case 1: If i = j = k, then we have{
i
i i

}
=

1

gii
[ii, i] =

1

2gii

∂gii
∂xi

=
∂

∂xi
(log

√
gii) .

Case 2: If i = k ̸= j, then we have{
i
i j

}
=

1

gii
[ij, i] =

1

2gii

∂gii
∂xj

=
∂

∂xj
(log

√
gii) .

Case 3: If i = j ̸= k, then we have{
k
i i

}
=

1

gkk
[ii, k] = − 1

2gkk

∂gii
∂xk

.

Case 4: If i ̸= j ̸= k, then we have

{
k
i j

}
= 0.

EXAMPLE 3.1.6 Calculate the non-vanishing Christoffel symbols corresponding to
the metric

ds2 = −(dx1)2 − (dx2)2 − (dx3)2 + f(x1, x2, x3)(dx4)2.
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Solution: Comparing the given metric with Eq. (2.1), we get

g11 = −1 = g22 = g33; g44 = f(x1, x2, x3); gij = 0; for i ̸= j.

⇒ g =

∣∣∣∣∣∣∣∣
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 f

∣∣∣∣∣∣∣∣ = −f.

For orthogonal co-ordinates gij = 1
gij

(no summation). So, the reciprocal tensors gij

for gij are given by

g11 = −1 = g22 = g33; g44 =
1

f
; gij = 0; for i ̸= j.

Since g11, g22, g33 are constants, from Example 3.1.5, the non-vanishing Christoffel
symbols of the two kinds are

[14, 4] = [41, 4] =
1

2

∂g44
∂x1

=
1

2

∂f

∂x1
;

{
4

1 4

}
=

{
4

4 1

}
=

∂

∂x1
log
√
f.

[24, 4] = [42, 4] =
1

2

∂g44
∂x2

=
1

2

∂f

∂x2
;

{
4

2 4

}
=

{
4

4 2

}
=

∂

∂x2
log
√
f.

[34, 4] = [43, 4] =
1

2

∂g44
∂x3

=
1

2

∂f

∂x1
;

{
4

3 4

}
=

{
4

4 3

}
=

∂

∂x3
log
√
f.

[44, 1] = −1

2

∂g44
∂x1

= −1

2

∂f

∂x1
;

{
1

4 4

}
= − 1

2g11

∂g44
∂x1

=
1

2

∂f

∂x1
.

[44, 2] = −1

2

∂g44
∂x2

= −1

2

∂f

∂x1
;

{
2

4 4

}
= − 1

2g11

∂g44
∂x2

=
1

2

∂f

∂x2
.

[44, 3] = −1

2

∂g44
∂x3

= −1

2

∂f

∂x3
;

{
3

4 4

}
= − 1

2g11

∂g44
∂x3

=
1

2

∂f

∂x3
.

EXAMPLE 3.1.7 Calculate the non-vanishing Christoffel symbols of first and sec-
ond kind (in cylindrical co-ordinates) for the V3 corresponding to the line element

ds2 =
(
dx1
)2

+
(
x1
)2 (

dx2
)2

+
(
dx3
)2
.

Solution: Comparing the given metric with Eq. (2.1), we get

g11 = 1, g22 =
(
x1
)2
, g33 = 1, gij = 0 for i ̸= j.

⇒ g =

∣∣∣∣∣∣
1 0 0

0
(
x1
)2

0
0 0 1

∣∣∣∣∣∣ = (x1)2.
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The reciprocal tensors gij for the metric tensor gij are given by

g11 =
cofactor of g11 in g

g
=

(
x1
)2

(x1)2
= 1; g22 =

cofactor of g22 in g

g
=

1

(x1)2
;

g33 =
cofactor of g33 in g

g
=

(
x1
)2

(x1)2
= 1; g12 =

cofactor of g12 in g

g
= 0 = g21;

and
g13 = 0 = g31; g23 = 0 = g32.

Since gij = 0 for i ̸= j, according to Theorem 3.1.5, we get

[ij, k] = 0 and

{
i
j k

}
= 0; for i ̸= j ̸= k

⇒ [12, 3] = [21, 3] = 0; [23, 1] = [32, 1] = 0; [13, 2] = [31, 2] = 0;

and

{
1

2 3

}
= 0;

{
2

1 3

}
= 0;

{
3

1 2

}
= 0.

For i = j = k, the Christoffel symbols [ii, i] of first kind are given by

[11, 1] =
1

2

(
∂g11
∂x1

+
∂g11
∂x1

− ∂g11
∂x1

)
=

1

2

∂g11
∂x1

= 0.

[22, 2] =
1

2

(
∂g22
∂x2

+
∂g22
∂x2

− ∂g22
∂x2

)
=

1

2

∂g22
∂x2

= 0.

[33, 3] =
1

2

(
∂g33
∂x3

+
∂g33
∂x3

− ∂g33
∂x3

)
=

1

2

∂g33
∂x3

= 0.

For i = k ̸= j, the Christoffel symbols [ij, i] of first kind are given by

[12, 1] =
1

2

(
∂g21
∂x1

+
∂g11
∂x2

− ∂g21
∂x1

)
=

1

2

∂g11
∂x2

= 0 = [21, 1].

[13, 1] =
1

2

(
∂g11
∂x3

+
∂g31
∂x1

− ∂g13
∂x1

)
=

1

2

∂g11
∂x3

= 0 = [31, 1].

[12, 2] =
1

2

(
∂g12
∂x2

+
∂g22
∂x1

− ∂g12
∂x2

)
=

1

2

∂g22
∂x1

= 2x1 = [21, 2].

[23, 2] =
1

2

(
∂g22
∂x3

+
∂g32
∂x2

− ∂g23
∂x2

)
=

1

2

∂g22
∂x3

= 0 = [32, 2].

[13, 3] =
1

2

(
∂g13
∂x3

+
∂g33
∂x1

− ∂g13
∂x3

)
=

1

2

∂g33
∂x1

= 0 = [31, 3].

[23, 3] =
1

2

(
∂g23
∂x3

+
∂g33
∂x2

− ∂g23
∂x3

)
=

1

2

∂g33
∂x2

= 0 = [32, 3].
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For i = j ̸= k, the Christoffel symbols [ii, k] of first kind are given by

[11, 2] =
1

2

(
∂g12
∂x1

+
∂g12
∂x1

− ∂g11
∂x2

)
= −1

2

∂g11
∂x2

= 0.

[11, 3] =
1

2

(
∂g13
∂x1

+
∂g13
∂x1

− ∂g11
∂x3

)
= −1

2

∂g11
∂x3

= 0.

[22, 1] =
1

2

(
∂g21
∂x2

+
∂g21
∂x2

− ∂g22
∂x1

)
= −1

2

∂g22
∂x1

= −x1.

[22, 3] =
1

2

(
∂g23
∂x2

+
∂g23
∂x2

− ∂g22
∂x3

)
= −1

2

∂g22
∂x3

= 0.

[33, 1] =
1

2

(
∂g31
∂x3

+
∂g31
∂x3

− ∂g33
∂x1

)
= −1

2

∂g33
∂x1

= 0.

[33, 2] =
1

2

(
∂g32
∂x3

+
∂g32
∂x3

− ∂g33
∂x2

)
= −1

2

∂g33
∂x2

= 0.

For i = j = k, the Christoffel symbols of second kind are given by{
1

1 1

}
= g1k[11, k] = g11[11, 1] + g12[11, 2] + g13[11, 3]

= 1× 0 + 0× 0 + 0× 0 = 0.{
2

2 2

}
= g2k[22, k] = g21[22, 1] + g22[22, 2] + g23[22, 3]

= 0×
(
−x1

)
+

1

(x1)2
× 0 + 0× 0 = 0.

{
3

3 3

}
= g3k[33, k] = g31[33, 1] + g32[33, 2] + g33[33, 3]

= 0 ·
(
−x1 sinx2

)
+ 0 ·

[
−
(
x1
)2

sinx2 cosx2
]
+

1

(x1)2 sin2 x2
· 0 = 0.

For i = k ̸= j, the Christoffel symbols of second kind are given by{
1

1 2

}
= g1k[12, k] = g11[12, 1] + g12[12, 2] + g13[12, 3]

= 1× 0 + 0× x1 + 0× 0 = 0 =

{
1

2 1

}
.



3.1 Christoffel Symbols 153

{
1

1 3

}
= g1k[13, k] = g11[13, 1] + g12[13, 2] + g13[13, 3]

= 1× 0 + 0× 0 + 0× x1 sin2 x2 = 0 =

{
1

3 1

}
.{

2
1 2

}
= g2k[12, k] = g21[12, 1] + g22[12, 2] + g23[12, 3]

= 0× 0 +
1

(x1)2
× x1 + 0× 0 =

1

(x1)2
=

{
2

2 1

}
.{

3
1 3

}
= g3k[13, k] = g31[13, 1] + g32[13, 2] + g33[13, 3]

= 0× 0 + 0× 0 +
1

(x1)2 sin2 x2
× x1 sin2 x2 =

1

x1
=

{
3

3 1

}
.{

3
2 3

}
= g3k[23, k] = g31[23, 1] + g32[23, 2] + g33[23, 3]

= 0× 0 + 0× 0 +

(
x1
)2

sinx2 cosx2

(x1)2 sin2 x2
= cotx2 =

{
3

3 2

}
.{

1
2 2

}
= g1k[22, k] = g11[22, 1] + g12[22, 2] + g13[22, 3]

= 1×
(
−x1

)
+ 0× 0 + 0× 0 = −x1.{

1
2 3

}
= g1k[23, k] = g11[23, 1] + g12[23, 2] + g13[23, 3]

= 1× 0 + 0× 0 + 0×
(
x1
)2

sinx2 = 0 =

{
1

3 2

}
.{

1
3 3

}
= g1k[33, k] = g11[33, 1] + g12[33, 2] + g13[33, 3]

= 1×
(
−x1 sin2 x2

)2
+ 0× 0 + 0× 0 = −x1 sin2 x2.{

2
1 1

}
= g2k[11, k] = g21[11, 1] + g22[11, 2] + g23[11, 3].

= 0× 0 +
1

(x1)2
× 0 + 0× 0.

{
2

2 3

}
= g2k[23, k] = g21[23, 1] + g22[23, 2] + g23[23, 3]

= 0× 0 +
1

(x1)2
× 0 + 0×

(
−x1

)2
sinx2 = 0 =

{
2

3 2

}
.
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{
2

3 3

}
= g2k[33, k] = g21[33, 1] + g22[33, 2] + g23[33, 3]

= 0×
(
−x1 sin2 x2

)
+

−
(
x1
)2

sinx2 cosx2

(x1)2
+ 0.0 = − sinx2 cosx2.

{
3

1 1

}
= g3k[11, k] = g31[11, 1] + g32[11, 2] + g33[11, 3]

= 1× 0 + 0× 0 +
1

(x1)2 sin2 x2
× 0 = 0.

{
3

1 2

}
= g3k[12, k] = g31[12, 1] + g32[12, 2] + g33[12, 3]

= 0× 0 + 0× x1 +
1

(x1)2 sin2 x2
× 0 = 0 =

{
3

2 1

}
.

EXAMPLE 3.1.8 Calculate the non-vanishing Christoffel symbols of first and sec-
ond kind (in spherical co-ordinates) corresponding to the metric

ds2 =
(
dx1
)2

+
(
x1
)2 (

dx2
)2

+
(
x1
)2

sin2 x2
(
dx3
)2
.

Solution: Comparing the given metric, with Eq. (2.1), we get g11 = 1, g22 =
(
x1
)2
,

g33 =
(
x1
)2

sin2 x2 and gij = 0 for i ̸= j. For orthogonal co-ordinates gij = 1
gij

(no

summation). Therefore, g = (x1)4 sin2 x2 and

g11 =
1

g11
= 1, g22 =

1

g22
=

1

(x1)2
; g33 =

1

g33
=

1

(x1)2 sin2 x2
,

and gij = 0 for i ̸= j. The Christoffel symbols of first kind are given by

[11, 1] =
1

2

(
∂g11
∂x1

+
∂g11
∂x1

− ∂g11
∂x1

)
=

1

2

∂g11
∂x1

= 0.

[11, 2] =
1

2

(
∂g12
∂x1

+
∂g12
∂x1

− ∂g11
∂x2

)
=
∂g12
∂x1

− 1

2

∂g11
∂x2

= 0.

[12, 1] =
1

2

(
∂g11
∂x2

+
∂g21
∂x1

− ∂g12
∂x1

)
=

1

2

∂g11
∂x2

= 0 = [21, 1].

[12, 2] =
1

2

(
∂g12
∂x2

+
∂g22
∂x1

− ∂g12
∂x2

)
=

1

2

∂g22
∂x1

= x1 = [21, 2].

[12, 3] =
1

2

(
∂g13
∂x2

+
∂g23
∂x1

− ∂g12
∂x3

)
= 0 = [21, 3].
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[11, 3] =
1

2

(
∂g13
∂x1

+
∂g13
∂x1

− ∂g11
∂x3

)
=
∂g13
∂x1

− 1

2

∂g11
∂x3

= 0.

[13, 1] =
1

2

(
∂g11
∂x3

+
∂g31
∂x1

− ∂g13
∂x1

)
=

1

2

∂g11
∂x3

= 0 = [31, 1].

[13, 3] =
1

2

(
∂g13
∂x3

+
∂g33
∂x1

− ∂g13
∂x3

)
=

1

2

∂g33
∂x1

= x1 sin2 x2 = [31, 3].

[22, 2] =
1

2

(
∂g22
∂x2

+
∂g22
∂x2

− ∂g22
∂x2

)
=

1

2

∂g22
∂x2

= 0.

[22, 3] =
1

2

(
∂g23
∂x2

+
∂g23
∂x2

− ∂g22
∂x3

)
=

1

2

∂g22
∂x3

= 0.

[22, 1] =
1

2

(
∂g21
∂x2

+
∂g21
∂x2

− ∂g22
∂x1

)
= −1

2

∂g22
∂x1

= −x1.

[23, 1] =
1

2

(
∂g21
∂x3

+
∂g31
∂x2

− ∂g23
∂x1

)
= 0 = [32, 1].

[23, 3] =
1

2

(
∂g23
∂x3

+
∂g33
∂x2

− ∂g23
∂x3

)
=

1

2

∂g33
∂x2

=
(
x1
)2

sinx2 cosx2 = [32, 3].

[33, 3] =
1

2

(
∂g33
∂x3

+
∂g33
∂x3

− ∂g33
∂x3

)
=

1

2

∂g33
∂x3

= 0.

[33, 1] =
1

2

(
∂g31
∂x3

+
∂g31
∂x3

− ∂g33
∂x1

)
= −1

2

∂g33
∂x1

= −x1 sin2 x2.

[33, 2] =
1

2

(
∂g32
∂x3

+
∂g32
∂x3

− ∂g33
∂x2

)
=

1

2

∂g33
∂x2

= −
(
x1
)2

sinx2 cosx2.

[32, 2] =
1

2

(
∂g32
∂x2

+
∂g22
∂x3

− ∂g32
∂x2

)
=

1

2

∂g22
∂x3

= 0 = [23, 2].

[31, 2] =
1

2

(
∂g32
∂x1

+
∂g12
∂x3

− ∂g31
∂x2

)
= 0 = [13, 2].

The Christoffel symbols of second kind are given by{
1

1 1

}
= g1k[11, k] = g11[11, 1] + g12[11, 2] + g13[11, 3]

= 1× 0 + 0× 0 + 0× 0 = 0.
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{
1

1 2

}
= g1k[12, k] = g11[12, 1] + g12[12, 2] + g13[12, 3]

= 1× 0 + 0× x1 + 0× 0 = 0 =

{
1

2 1

}
.

{
1

2 2

}
= g1k[22, k] = g11[22, 1] + g12[22, 2] + g13[22, 3]

= 1×
(
−x1

)
+ 0× 0 + 0× 0 = −x1.{

1
1 3

}
= g1k[13, k] = g11[13, 1] + g12[13, 2] + g13[13, 3]

= 1× 0 + 0× 0 + 0× x1 sin2 x2 = 0 =

{
1

3 1

}
.{

1
2 3

}
= g1k[23, k] = g11[23, 1] + g12[23, 2] + g13[23, 3]

= 1× 0 + 0× 0 + 0×
(
x1
)2

sinx2 = 0 =

{
1

3 2

}
.{

1
3 3

}
= g1k[33, k] = g11[33, 1] + g12[33, 2] + g13[33, 3]

= 1×
(
−x1 sin2 x2

)
+ 0×

[
−
(
x1
)2

sinx2 cosx2
]
+ 0× 0 = −x1 sin2 x2.{

2
1 1

}
= g2k[11, k] = g21[11, 1] + g22[11, 2] + g23[11, 3]

= 0× 0 +
1

(x1)2
× 0 + 0× 0 = 0.

{
2

1 2

}
= g2k[12, k] = g21[12, 1] + g22[12, 2] + g23[12, 3].

= 0× 0 +
1

(x1)2
× x1 + 0× 0 =

1

x1
=

{
2

2 1

}
.

{
2

1 3

}
= g2k[13, k] = g21[13, 1] + g22[13, 2] + g23[13, 3]

= a× 0 +
1

(x1)2
× 0 + 0× x1 sin2 x2 = 0 =

{
2

3 1

}
.



3.1 Christoffel Symbols 157

{
2

2 2

}
= g2k[22, k] = g21[22, 1] + g22[22, 2] + g23[22, 3]

= 0×
(
−x1

)
+

1

(x1)2
× 0 + 0× 0 = 0.

{
2

2 3

}
= g2k[23, k] = g21[23, 1] + g22[23, 2] + g23[23, 3]

= 0× 0 +
1

(x1)2
× 0 + 0×

(
−x1

)2
sinx2 cosx2 = 0 =

{
2

3 2

}
.

{
2

3 3

}
= g2k[33, k] = g21[33, 1] + g22[33, 2] + g23[33, 3]

= 0×
(
−x1 sin2 x2

)
+

−
(
x1
)2

sinx2 cosx2

(x1)2
+ 0× 0 = − sinx2 cosx2.

{
3

1 1

}
= g3k[11, k] = g31[11, 1] + g32[11, 2] + g33[11, 3]

= 1× 0 + 0× 0 +
1

(x1)2 sin2 x2
× 0 = 0.

{
3

1 2

}
= g3k[12, k] = g31[12, 1] + g32[12, 2] + g33[12, 3]

= 0× 0 + 0× x1 +
1

(x1)2 sin2 x2
× 0 = 0 =

{
3

2 1

}
.

{
3

1 3

}
= g3k[13, k] = g31[13, 1] + g32[13, 2] + g33[13, 3]

= 0× 0 + 0× 0 +
1

(x1)2 sin2 x2
× x1 sin2 x2 =

1

x1
=

{
3

1 3

}
.

{
3

2 3

}
= g3k[23, k] = g31[23, 1] + g32[23, 2] + g33[23, 3]

= 0× 0 + 0× 0 +

(
x1
)2

sinx2 cosx2

(x1)2 sin2 x2
= cotx2 =

{
3

3 2

}
.

{
3

3 3

}
= g3k[33, k] = g31[33, 1] + g32[33, 2] + g33[33, 3]

= 0×
(
−x1 sinx2

)
+ 0 ·

[
−
(
x1
)2

sinx2 cosx2
]
+

1

(x1)2 sin2 x2
· 0 = 0.
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We can verify Theorem 3.1.5. When i ̸= j ̸= k, then both the first kind [ij, k] = 0

and second kind

{
k
i j

}
= 0. Therefore, the non-vanishing Christoffel symbols of first

kind are

[12, 2] = x1 = [21, 2]; [13, 3] = x1 sin2 x2 = [31, 3].

[22, 1] = −x1; [23, 3] =
(
x1
)2

sinx2 cosx2.

[33, 1] = −x1 sin2 x2; [33, 2] = −
(
x1
)2

sinx2 cosx2.

The non-vanishing Christoffel symbols of second kind are{
1

2 2

}
= −x1;

{
1

3 3

}
= −x1 sin2 x2;

{
2

1 2

}
=

{
2

2 1

}
=

1

x1{
2

3 3

}
= − sinx2 cosx2;

{
3

1 3

}
=

{
3

3 1

}
=

1

x1
;

{
3

2 3

}
=

{
3

3 2

}
= cotx2.

EXAMPLE 3.1.9 If aij are components of a symmetric tensor, show that

ajk[ij, k] =
1

2
ajk

∂gjk
∂xi

,

where gjk have their usual meaning.

Solution: Here, we use the relation

[ji, k] + [ki, j] =
∂gjk
∂xi

,

for the Christoffel symbol of first kind. Multiplying both sides by ajk, we get

ajk[ji, k] + ajk[ki, j] = ajk
∂gjk
∂xi

or

ajk[ji, k] + akj [ki, j] = ajk
∂gjk
∂xi

; as ajk = akj

or

ajk[ji, k] + ajk[ki, j] = ajk
∂gjk
∂xi

.

Replacing the dummy indices k and j in the second term by j and k, respectively, we
get

2ajk[ji, k] = ajk
∂gjk
∂xi

or
2ajk[ij, k] = ajk

∂gjk
∂xi

; as [ji, k] = [ij, k]

Therefore
ajk[ij, k] =

1

2
ajk

∂gjk
∂xi

.



3.1 Christoffel Symbols 159

EXAMPLE 3.1.10 Show that the maximum number of independent components of
the Christoffel symbols in a VN ,a N dimensional Riemannian space is 1

2N
2(N + 1).

Solution: Since the dimension of the Riemannian space VN is N , the i and j of the
fundamental tensor gij varies from 1 to N . Thus, gij has N

2 components.
As gij is symmetric, the maximum number of distinct components, where i ̸= j

are 1
2(N

2 −N). Therefore, total number of distinct components of gij has atmost

N +
1

2
(N2 −N) =

1

2
N(N + 1)

components. Since k varies from 1 toN in
∂gij
∂xk

, the number of independent components
will be

N
1

2
N(N + 1) =

N2

2
(N + 1).

Since the Christoffel symbols [ij, k] and

{
l
i j

}
of first and second kinds, respectively,

are the linear combination of the terms
∂gij
∂xk

, so the maximum number of independent

components is N2

2 (N + 1).

EXAMPLE 3.1.11 Prove that the following

∂

∂xj
(√
ggij

)
+

√
g

{
i

j k

}
gjk = 0.

Solution: Here we use the properties of Christoffel symbols. We have

∂

∂xj
(√
ggij

)
=
∂
√
g

∂xj
gij +

√
g
∂gij

∂xj

=
∂
√
g

∂xj
gij +

√
g

[
−gjp

{
i
p j

}
− git

{
j
t j

}]
=
∂
√
g

∂xj
gij −√

g

{
i
p j

}
gjp −√

ggit
{

j
t j

}
=
∂
√
g

∂xj
gij −√

g

{
i
p j

}
gpj −√

ggit
1

2g

∂g

∂xt

=
1

2
√
g

∂g

∂xi
gij − 1

2
√
g

∂g

∂xt
git −√

g

{
i
p j

}
gpj

= −√
g

{
i
p j

}
gpj .
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Therefore,

∂

∂xj
(√
ggij

)
+

√
g

{
i
j k

}
gjk = 0.

EXAMPLE 3.1.12 If Aij is a skew-symmetric tensor, show that Aik
{

i
j k

}
= 0.

Solution: Since Aij is a skew-symmetric, so, by definition Aki = −Aik. Therefore,

Aik
{

i
j k

}
= Aki

{
i
k j

}
,

where, we have to replace the dummy indices k by j and j by k. Therefore,

Aik
{

i
j k

}
= −Aik

{
i
k j

}
; as Aki = −Aik.

= −Aik
{

i
j k

}
; as

{
i
k j

}
=

{
i
j k

}
or

2Aik
{

i
j k

}
= 0, i.e. Aik

{
i
j k

}
= 0.

3.1.2 Transformation of Christoffel Symbols

Here, we have to calculate the transformation formula of Christoffel symbols. Let the

fundamental tensors gij , g
ij and the symbols [ij, k],

{
k
i j

}
are defined in xi co-ordinate

systems. Let these quantities be gij , g
ij [ij, k],

{
k
i j

}
in xi co-ordinate systems.

Law of transformation of Christoffel symbols of the first kind: From the
tensor law of transformation of covariant tensor gij of type (0, 2), we see that

glm =
∂xi

∂xl
∂xj

∂xm
gij .

The transformation law for the [ij, k] can be inferred from that for the gij . Differen-
tiating partially with respect to xn, we get

∂glm
∂xn

=
∂xi

∂xl
∂xj

∂xm
∂gij
∂xk

∂xk

∂xn
+

∂2xi

∂xl∂xn
∂xj

∂xm
gij +

∂xi

∂xl
∂2xj

∂xm∂xn
gij . (3.3)
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Similarly differentiating the transformation law with respect to xl, we get

∂gmn
∂xl

=
∂xi

∂xm
∂xj

∂xn
∂gij
∂xk

∂xk

∂xl
+

∂2xi

∂xm∂xl
∂xj

∂xn
gij +

∂xi

∂xm
∂2xj

∂xn∂xl
gij

=
∂xi

∂xl
∂xj

∂xm
∂xk

∂xn
∂gjk
∂xi

+
∂2xj

∂xm∂xl
∂xk

∂xn
gjk +

∂2xk

∂xn∂xi
∂xj

∂xm
gjk, (3.4)

where, we have to replace the dummy indices i, j, k by j, k, i, respectively. Further,

∂gln
∂xm

=
∂xi

∂xl
∂xj

∂xn
∂gij
∂xk

∂xk

∂xm
+

∂2xi

∂xl∂xm
∂xj

∂xn
gij +

∂2xj

∂xn∂xm
∂xi

∂xl
gij

=
∂xi

∂xl
∂xj

∂xm
∂xk

∂xn
∂gik
∂xj

+
∂2xi

∂xl∂xm
∂xk

∂xn
gjk +

∂2xk

∂xm∂xn
∂xi

∂xl
gik, (3.5)

where we have to replace the dummy indices j and k by k and j, respectively. Adding
Eqs. (3.4) and (3.5) and subtracting Eq. (3.3) from the result thus obtained, we get

∂gmn
∂xl

+
∂gnl
∂xm

− ∂glm
∂xn

=

(
∂gjk
∂xi

+
∂gik
∂xj

− ∂gij
∂xk

)
∂xi

∂xl
∂xj

∂xm
∂xk

∂xn
+

(
∂xk

∂xn
∂2xj

∂xm∂xl
+
∂xj

∂xm
∂2xk

∂xn∂xl

)
gjk

+

(
∂xk

∂xn
∂2xi

∂xl∂xm
+
∂xi

∂xl
∂2xk

∂xn∂xm

)
gik −

(
∂xj

∂xm
∂2xi

∂xl∂xn
+
∂xi

∂xl
∂2xj

∂xm∂xn

)
gij

=

(
∂gjk
∂xi

+
∂gik
∂xj

− ∂gij
∂xk

)
∂xi

∂xl
∂xj

∂xm
∂xk

∂xn
+

(
∂xi

∂xn
∂2xj

∂xm∂xl
+
∂xj

∂xm
∂2xi

∂xn∂xl

)
gji

+

(
∂xj

∂xn
∂2xi

∂xl∂xm
+
∂xi

∂xl
∂2xj

∂xn∂xm

)
gij −

(
∂xj

∂xm
∂2xi

∂xl∂xn
+
∂xi

∂xl
∂2xj

∂xm∂xn

)
gij (3.6)

(replacing k by i and k by j in the second and third term)

=

(
∂gjk
∂xi

+
∂gik
∂xj

− ∂gij
∂xk

)
∂xi

∂xl
∂xj

∂xm
∂xk

∂xn
+
∂xi

∂xn
∂2xj

∂xm∂xl
gij +

∂xj

∂xn
∂2xi

∂xl∂xm
gji

=

(
∂gjk
∂xi

+
∂gik
∂xj

− ∂gij
∂xk

)
∂xi

∂xl
∂xj

∂xm
∂xk

∂xn
+ 2

∂xi

∂xn
∂2xj

∂xl∂xm
gij .

Therefore,

[lm, n] = [ij, k]
∂xi

∂xl
∂xj

∂xm
∂xk

∂xn
+
∂xi

∂xn
∂2xj

∂xl∂xm
gij . (3.7)

In the second and third relations of Eq. (3.7), we have to replace the dummy indices
k by i and k by j, respectively. Equation (3.7) gives the law of transformation of the
components, [ij, k] of the Christoffel symbols of the first kind from one co-ordinate
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system to another. From this law it follows that the components [ij, k] do not transform
like a tensor due to the presence of the second term in the right-hand side of Eq. (3.7).
This provides that Christoffel symbol of the first kind (or, connection coefficient) does
not follow the tensor law of transformation and hence it is not a tensor.

Law of transformation of Christoffel symbols of the second kind: Since gij

is a tensor of type (2, 0), we have the transformation law

gnp = grs
∂xn

∂xr
∂xp

∂xs
. (3.8)

Inner multiplication of both sides of Eq. (3.7) by the corresponding side of Eq. (3.8)
gives

gnp[lm, n] = grs
∂xn

∂xr
∂xp

∂xs
[ij, k]

∂xi

∂xl
∂xj

∂xm
∂xk

∂xn
+ gij

∂xi

∂xn
∂2xj

∂xl∂xm
grs

∂xn

∂xr
∂xp

∂xs

or {
p

l m

}
= grs

∂xk

∂xr
[ij, k]

∂xp

∂xs
∂xi

∂xl
∂xj

∂xm
+ gij

∂xi

∂xr
∂xp

∂xs
grs

∂2xj

∂xl∂xm

= gks[ij, k]
∂xp

∂xs
∂xi

∂xl
∂xj

∂xm
+ grjg

rs∂x
p

∂xs
∂2xj

∂xl∂xm
; as

∂xk

∂xr
= δkr

=

{
s
i j

}
∂xp

∂xs
∂xi

∂xl
∂xj

∂xm
+ δsj

∂xp

∂xs
∂2xj

∂xl∂xm

=

{
s
i j

}
∂xp

∂xs
∂xi

∂xl
∂xj

∂xm
+
∂xp

∂xj
∂2xj

∂xl∂xm
. (3.9)

Equation (3.9) gives the law of transformation of the components

{
l
i j

}
of the

Christoffel symbols of the second kind. From this law it follows that the components
do not transform like a tensor due to presence of the second term in the right-hand
side of Eq. (3.9). Therefore, from the form of Eq. (3.9), it is clear that the set of
Christoffel symbols is a third order covariant affine tensor but is not a general tensor.
Sometimes, it is called Christoffel connection.

Result 3.1.1 Here we have deduced a result relative to the Christoffel connection
which will play a vital role in the matter of introducing a new kind of differentiation
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in VN . Inner multiplication of Eq. (3.9) by ∂xr

∂xp gives,

∂xr

∂xp

{
p

l m

}
=

{
s
i j

}
∂xp

∂xs
∂xi

∂xl
∂xj

∂xm
∂xr

∂xp
+
∂xr

∂xp
∂xp

∂xj
∂2xj

∂xl∂xm

=

{
s
i j

}
δrs
∂xi

∂xl
∂xj

∂xm
+ δrj

∂2xj

∂xl∂xm

=

{
r
i j

}
∂xi

∂xl
∂xj

∂xm
+

∂2xr

∂xl∂xm

or

∂2xr

∂xl∂xm
=
∂xr

∂xp

{
p

l m

}
− ∂xi

∂xl
∂xj

∂xm

{
r
i j

}
, (3.10)

which is the second derivative of x’s with respect to x’s in terms of symbols of sec-
ond kind and first derivative. This important formula (3.10) were first deduced in as
entirely different way by Christoffel in a memoir concerned with the study of equiv-
alence of quadratic differential forms. We will make use formula (3.10) to define the
operations of tensorial differentiation in VN . Needless to say, Eq. (3.10) holds barred
and unbarred co-ordinates are interchanged.

EXAMPLE 3.1.13 Find the most general three-dimensional transformation xi =
xi(x1, x2, x3) of co-ordinates such that (xi) is rectangular and (xi) is any other co-
ordinate system for which the Christoffel symbols are{

1
1 1

}
= 1;

{
2

2 2

}
= 2;

{
3

3 3

}
= 3,

and all other components are zero.

Solution: Since

{
r
i j

}
= 0, relation (3.10) reduces to the system of linear partial

differential equation with constant coefficients as

∂2xr

∂xl∂xm
=
∂xr

∂xp

{
p

l m

}
. (i)

It is simplest first to solve the intermediate, first order system

∂urm
∂xl

= urp

{
p

l m

}
; where urp =

∂xr

∂xp
(ii)
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or

∂um

∂xl
= up

{
p

l m

}
, (iii)

where temporarily replace urp by up and xr by x as the first systems (ii) for r = 1, 2, 3
are the same. For m = 1, (iii) becomes,

∂u1
∂x1

=

{
1

1 1

}
u1 +

{
2

1 1

}
u2 +

{
3

1 1

}
u3 = u1

∂u1
∂x2

=

{
1

2 1

}
u1 +

{
2

2 1

}
u2 +

{
3

2 1

}
u3 = 0

∂u1
∂x3

=

{
1

3 1

}
u1 +

{
2

3 1

}
u2 +

{
3

3 1

}
u3 = 0.

Thus, u1 is a function of x1 alone, and the first differential equation integrates to give,

u1 = b1e
x1 ; where b1 = constant.

In the same way, we find for j = 2 and j = 3,

u2 = b2e
2x2 ; u3 = b3e

3x3 ; where b2, b3 = constants.

Since ∂x
∂xi

= ui, with the above solutions, we get,

∂x

∂x1
= b1e

x1 ;
∂x

∂x2
= b2e

2x2 ;
∂x

∂x3
= b3e

3x1 . (iv)

Solution of the first equation of (iv) gives,

x = b1e
x1 + ψ(x1, x1)

and the second and third equations of (iv) give,

∂ψ

∂x2
= b2e

2x2 ⇒ ψ = a2e
2x2 + φ(x3)

∂φ

∂x3
= b3e

3x3 ⇒ φ = a3e
3x3 + a4.

This means that, with a1 = b1,

x = a1e
x1 + a2e

2x2 + a3e
3x3 + a4,

so that the general solution of (i) becomes,

xk = ak1e
x1 + ak2e

2x2 + ak3e
3x3 + ak4,

where k = 1, 2, 3.
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Result 3.1.2 The Christoffel symbols are objects different from tensors, because their
components do not transform according to the law corresponding to that for a tensor
of type (0, 3) or (1, 2).

Result 3.1.3 We have provided that Christoffel symbols are not tensor quantities.
But in some very special cases of linear transformation of co-ordinates were ∂2xj

∂xl∂xm
= 0,

Eqs. (3.7) and (3.9) reduce to give tensor law of transformations and symbols behave
like tensors. Consider a linear transformation

xj = ajlx
l + bj ,

where ajl and b
j are constants. Thus, relations (3.7) and (3.9) becomes

[lm, n] = [ij, k]
∂xi

∂xl
∂xj

∂xm
∂xk

∂xn

and {
p

l m

}
=

{
s
i j

}
∂xp

∂xs
∂xi

∂xl
∂xj

∂xm
.

Thus, the second term of Eqs. (3.7) and (3.9) will vanish identically. If the co-ordinate
transformation is of affine i.e. xj = ajlx

l + bj , where ajl and bj are constants, then
the Christoffel symbols are tensors. For this Christoffel symbols are sometimes called
affine tensors of rank 3.

Theorem 3.1.1 The transformation of Christoffel’s symbols from a group, i.e. pos-
sess the transitive property.

Proof: Let the co-ordinates xi be transformed to the co-ordinate system xi and xi

be transformed to x
i
. When the co-ordinates xi be transformed to xi, the law of

transformation of Christoffel’s symbols of second kind (3.9) is{
k
i j

}
=

{
s
p q

}
∂xk

∂xs
∂xp

∂xi
∂xq

∂xj
+
∂xk

∂xs
∂2xs

∂xi∂xj
. (3.11)

When co-ordinate xi be transformed to x
i
, then{

r
u v

}
=

{
k
i j

}
∂xi

∂x
u
∂xj

∂x
v
∂x

r

∂xk
+
∂x

r

∂xk
∂2xk

∂x
u
∂x

v

=

{
s
p q

}
∂xk

∂xs
∂xp

∂xi
∂xq

∂xj
∂xi

∂x
u
∂xj

∂x
v
∂x

r

∂xk

+
∂2xs

∂xi∂xj
∂xk

∂xs
∂xi

∂x
u
∂xj

∂x
v
∂x

r

∂xk
+
∂x

r

∂xk
∂2xk

∂x
u
∂x

v

=

{
s
p q

}
∂xp

∂x
u
∂xq

∂x
v
∂x

r

∂xs
+

∂2xs

∂xi∂xj
∂x

r

∂xs
∂xi

∂x
u
∂xj

∂x
v +

∂x
r

∂xk
∂2xk

∂x
u
∂x

v . (3.12)
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Differentiating with respect to x
v
, of the relation ∂xs

∂xi
∂xi

∂x
u = ∂xs

∂x
u , we get

∂

∂x
v

(
∂xs

∂xi

)
∂xi

∂x
u +

∂xs

∂xi
∂

∂x
v

(
∂xi

∂x
u

)
=

∂2xs

∂x
u
∂x

v

or
∂2xs

∂xi∂xj
∂xj

∂x
v
∂xi

∂x
u +

∂xs

∂xi
∂2xi

∂x
u
∂x

v =
∂2xs

∂x
u
∂x

v

or
∂2xs

∂xi∂xj
∂xj

∂x
v
∂xi

∂x
u
∂x

r

∂xs
+
∂xs

∂xi
∂2xi

∂x
u
∂x

v
∂x

r

∂xs
=

∂2xs

∂x
u
∂x

v
∂x

r

∂xs

or

∂2xs

∂xi∂xj
∂xj

∂x
v
∂xi

∂x
u
∂x

r

∂xs
+

∂2xk

∂x
u
∂x

v
∂x

r

∂xk
=

∂2xs

∂x
u
∂x

v
∂x

r

∂xs
, (3.13)

where we have to replace the dummy index i by k in the second term on the left hand
side. Using this relation (3.13), from (3.12) we get

{
r
u v

}
=

{
s
p q

}
∂xp

∂x
u
∂xq

∂x
v
∂x

r

∂xs
+

∂2xs

∂x
u
∂x

v
∂x

r

∂xs
.

This shows that if we make direct transformation from xi to x
i
, we get the same law of

transformation. This property is called transformation of Christoffel’s symbols form
a group.

EXAMPLE 3.1.14 Let the Christoffel symbols formed from the symmetric tensors

aij(x) and bij(x) be a

{
i

j k

}
and b

{
i

j k

}
, prove that the quantities

a

{
i

j k

}
− b

{
i

j k

}
are components of a mixed tensor of rank 3.

Solution: From the Eq. (3.9), we get{
p

l m

}
=

[{
r
i k

}
∂xi

∂xl
∂xk

∂xm
+

∂2xr

∂xl∂xm

]
∂xp

∂xq
.

Hence, we may write the two results as follows, on using the above:{
p

l m

}
a

=

[{
r
i k

}
a

∂xi

∂xl
∂xk

∂xm
+

∂2xr

∂xl∂xm

]
∂xp

∂xq
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and {
p

l m

}
b

=

[{
r
i k

}
b

∂xi

∂xl
∂xk

∂xm
+

∂2xr

∂xl∂xm

]
∂xp

∂xq
.

Subtracting, we obtain[{
p

l m

}
a

−
{

p
l m

}
b

]
=

[{
r
i k

}
a

−
{

r
i k

}
b

]
∂xi

∂xl
∂xk

∂xm
∂xp

∂xr
,

which is of the form

A
p
lm =

∂xi

∂xl
∂xk

∂xm
∂xp

∂xr
Arik.

This equation shows that {
i
j k

}
a

−
{

i
j k

}
b

≡ Aijk,

say, represents the components of a mixed tensor of type (1, 2).

EXAMPLE 3.1.15 If Bi are the components of a covariant vector, determine whether

Γijk =

{
i

j k

}
+ 2δijBk are components of a tensor.

Solution: The law of transformation of Christoffel symbols of the second kind is{
i
j k

}
=

{
r
t s

}
∂xi

∂xr
∂xt

∂xj
∂xs

∂xk
+

∂xi

∂xm
∂2xm

∂xj∂xk
.

From the given relation for Γijk, we get

Γijk =

{
i
j k

}
+ 2δijBk =

{
r
t s

}
∂xi

∂xr
∂xt

∂xj
∂xs

∂xk
+

∂xi

∂xm
∂2xm

∂xj∂xk
+ 2δij

∂xp

∂xk
Bp

=

[{
r
t s

}
+ 2δrtBs

]
∂xi

∂xr
∂xt

∂xj
∂xs

∂xk
+

∂xi

∂xm
∂2xm

∂xj∂xk

= Γrts
∂xi

∂xr
∂xt

∂xj
∂xs

∂xk
+

∂xi

∂xm
∂2xm

∂xj∂xk
.

From this relation it follows that Γijk are not the components of a tensor due to the
presence of the second term in its right-hand side.
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3.2 Covariant Differentiation

In Chapter 1, we have already studied the algebraic operations of tensors, consisting
the so-called tensor algebra of VN . These algebras are such that when applied to ten-
sors, they produce again tensors. But regarding differentiation the matter is somewhat
different, because although the partial differentiation of an invariant produces a tensor
of type (0, 1); i.e. a covariant vector, partial differentiation of a tensor of rank ≥ 1
does not, in general, produce a tensor. The necessity therefore, arises to introduce a
new kind of differentiation which when applied to a tensor will produce a tensor. Such
a differentiation, called covariant differentiation will be considered in this section.

It is to be noted that the word ‘covariant’ was also used to mean, independent of
the choice of co-ordinates, as in the principle of covariance of the general theory of
relativity which asserts that the laws of Physics must be independent of the space-time
co-ordinates. It seems more plausible that the name covariant differentiation is just
due to this property.

Covariant differentiation of covariant vectors: Partial differentiation of the
transformation law (1.43) of a covariant vector Ai with respect to xj , we get

∂Ai
∂xj

=
∂xk

∂xi
∂Ak
∂xl

∂xl

∂xj
+

∂2xk

∂xi∂xj
Ak; using chain rule,

=
∂xk

∂xi
∂xl

∂xj
∂Ak
∂xl

+
∂xk

∂xp

{
p
i j

}
Ak −

∂xm

∂xi
∂xn

∂xj

{
k

m n

}
Ak; from (3.10)

or

∂Ai
∂xj

−
{

p
i j

}
∂xk

∂xp
Ak =

∂Ak
∂xl

∂xk

∂xi
∂xl

∂xj
−
{

k
m n

}
∂xm

∂xi
∂xn

∂xj
Ak.

Replacing the dummy indices k and l in the first term of the right-hand side by t and
s, respectively, and the dummy indices k,m, n in the second term of the right-hand
side by r, t and s, respectively, we get

∂Ai
∂xj

−
{

p
i j

}
∂xk

∂xp
Ak =

∂At
∂xs

∂xt

∂xi
∂xs

∂xj
−
{

r
t s

}
∂xt

∂xi
∂xs

∂xj
Ar

=

[
∂At
∂xs

−
{

r
t s

}
Ar

]
∂xt

∂xi
∂xs

∂xj
. (3.14)

From Eq. (3.14) it follows that the N2 function ∂At
∂xs −

{
r
t s

}
Ar containing the partial

derivatives of a covariant vector and the Christoffel symbols of second kind are the
components of a covariant tensor of type (0, 2), known as the covariant derivative,
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denoted by At,s. This tensor is defined to be the covariant derivative of a covariant
vector with components Ai of type (0, 1). Thus,

At,s =
∂At
∂xs

−
{

r
t s

}
Ar. (3.15)

In other words, when the components of ∂At
∂xs are corrected by subtracting certain

linear combinations of the combinations At, the result is a tensor (and not just an
affine tensor).

(i) The two covariant indices are noted t and, s to emphasise that the second index
arose from an operation with respect to the sth co-ordinate.

(ii) The covariant derivative and the partial derivative coincide when the gij are
constants (as in a rectangular co-ordinate system).

(iii) The function Ai,j is said to be the jth covariant derivative of the vector Ai.

EXAMPLE 3.2.1 Show that if the covariant derivative of a covariant vector is sym-
metric, then the vector is gradient.

Solution: If the covariant derivative of a covariant vector is symmetric, then Ai,j =
Aj,i. Hence, from Eq. (3.15), we get

∂Ai
∂xj

−
{
m
i j

}
Am =

∂Aj
∂xi

−
{
m
j i

}
Am.

Therefore

∂Ai
∂xj

− ∂Aj
∂xi

= 0 ⇒ ∂Ai
∂xj

dxj =
∂Aj
∂xi

dxj

or

dAi =
∂

∂xi
(
Ajdx

j
)

or

Ai =

∫
∂

∂xi
(
Ajdx

j
)
=

∂

∂xi

∫
Ajdx

j .

But
∫
Ajdx

j is a scalar quantity, let it be ϕ. Hence, we get from above

Ai =
∂ϕ

∂xi
= ϕ,i = gradϕ.

Covariant differentiation of covariant tensors: Now, let Aij be the components
of a tensor of the type (0, 2), then by, tensor law of transformation,

Apq =
∂xi

∂xp
∂xj

∂xq
Aij .
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Differentiating this relation with respect to xr, we get

∂Apq
∂xr

=
∂Aij
∂xh

∂xh

∂xr
∂xi

∂xp
∂xj

∂xq
+Aij

∂2xi

∂xr∂xp
∂xj

∂xq
+Aij

∂xi

∂xp
∂2xj

∂xr∂xq

=
∂Aij
∂xh

∂xh

∂xr
∂xi

∂xp
∂xj

∂xq
+Aij

∂xj

∂xq

[
∂xi

∂xs

{
s
r p

}
− ∂xm

∂xr
∂xn

∂xp

{
i

m n

}]

+Aij
∂xi

∂xp

[
∂xj

∂xt

{
t
r q

}
− ∂xu

∂xr
∂xv

∂xq

{
j
u v

}]
; using Eq. (3.10)

=

{
s
r p

}
∂xj

∂xq
∂xi

∂xs
Aij −

{
t
r q

}
∂xi

∂xp
∂xj

∂xt
Aij +

∂Aij
∂xh

∂xh

∂xr
∂xi

∂xp
∂xj

∂xq

−
{

i
m n

}
∂xm

∂xr
∂xn

∂xp
∂xj

∂xq
Aij −

{
j
u v

}
∂xi

∂xp
∂xv

∂xq
∂xu

∂xr
Aij .

Replacing the dummy indices i,m, n in the second term of the right-hand side by t, h, i
respectively and the dummy indices j, u, v in the third term of this side by t, h and j
respectively, we get

∂Apq
∂xr

=

{
s
r p

}
∂xj

∂xq
∂xi

∂xs
Aij −

{
t
r q

}
∂xi

∂xp
∂xj

∂xt
Aij +

∂Aij
∂xh

∂xh

∂xr
∂xi

∂xp
∂xj

∂xq

−Atj
{

t
h i

}
∂xi

∂xp
∂xj

∂xq
∂xh

∂xr
−Ait

{
t
h j

}
∂xi

∂xp
∂xj

∂xq
∂xh

∂xr

or

∂Apq
∂xr

−
{

s
r p

}
Asq −

{
t
r q

}
Apt

=

[
∂Aij
∂xh

−Atj

{
t
i h

}
−Ait

{
t
j h

}]
∂xi

∂xp
∂xj

∂xq
∂xh

∂xr
. (3.16)

From Eq. (3.16) it follows that
∂Aij

∂xh
−Atj

{
t
i h

}
−Ait

{
t
j h

}
are the N2 components

of a tensor of the type (0, 3). This tensor is defined to be the covariant derivative of
the covariant tensor with components Aij and is denoted by Aij,h. Thus,

Aij,h =
∂Aij
∂xh

−Atj

{
t
i h

}
−Ait

{
t
j h

}
. (3.17)

Thus, the covariant derivative of a tensor of the type (0, 2) is a tensor of type (0, 3).
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Covariant differentiation of contravariant vectors: Let Ai be the component of

contravariant vector, then by the law of transformation Eq. (1.40), we get, Ak = ∂xk

∂xi
A
i
.

Differentiating both sides with respect to xj we get

∂Ak

∂xj
=
∂A

i

∂xp
∂xp

∂xj
∂xk

∂xi
+A

i ∂2xk

∂xi∂xp
∂xp

∂xj

=
∂A

i

∂xp
∂xp

∂xj
∂xk

∂xi
+A

i∂xp

∂xj

[
∂xk

∂xm

{
m
i p

}
− ∂xt

∂xi
∂xs

∂xp

{
k
t s

}]
; using Eq. (3.10)

=
∂A

i

∂xp
∂xp

∂xj
∂xk

∂xi
+A

i∂xp

∂xj
∂xk

∂xm

{
m
i p

}
−At

{
k
t j

}
or

∂Ak

∂xj
+At

{
k
t j

}
=

[
∂A

i

∂xp
+A

m
{

i
m p

}]
∂xp

∂xj
∂xk

∂xi
,

where we have to replace the dummy index i by m and m by i. Multiplying both sides
by ∂xi

∂xp
∂xj

∂xk
we get

∂xi

∂xp
∂xj

∂xk

[
∂Ak

∂xj
+At

{
k
t j

}]
=
∂xi

∂xp
∂xj

∂xk
∂xp

∂xj
∂xk

∂xi

[
∂A

i

∂xp
+A

m
{

i
m p

}]

=
∂A

i

∂xp
+A

m
{

i
m p

}
; as

∂xi

∂xp
∂xj

∂xk
∂xp

∂xj
∂xk

∂xi
= 1

or

∂A
i

∂xp
+A

m
{

i
m p

}
=
∂xi

∂xp
∂xj

∂xk

[
∂Ak

∂xj
+At

{
k
t j

}]
. (3.18)

From Eq. (3.18) it follows that ∂Ak

∂xj
+ At

{
k
t j

}
are the N2 components of a mixed

tensor of type (1, 1) and is denoted by Ak,j . This tensor is defined to be the covariant

derivative of the contravariant vector with components Ai. Therefore,

Ak,j =
∂Ak

∂xj
+At

{
k
t j

}
. (3.19)

Similarly, the covariant derivative of a contravariant tensor of order two is given by
the formula

Aik,j =
∂Aik

∂xj
+

{
i
j l

}
Alk +

{
k
j l

}
Ail. (3.20)

From Eq. (3.20) it follows that, the covariant derivative of a tensor of type (2, 0) is a
tensor of type (2, 1).



172 Christoffel’s Symbols and Covariant Differentiation

EXAMPLE 3.2.2 A fluid in motion in a plane has the velocity vector field given by
vi = (x2, y2) in Cartesian co-ordinates. Find the covariant derivative of the vector
field in polar co-ordinates.

Solution: Let us choose the usual polar co-ordinates and let ui denote the velocity
vector in polar co-ordinates. A simple transformation from the Cartesian components
vi to the polar components ui according to Eq. (1.40) gives,

u1 = r2(cos3 θ + sin3 θ); u2 = r sin θ cos θ(sin θ − cos θ).

Let us take x1 = r and x2 = θ, then the non-vanishing Christoffel symbols of the
second kind are {

1
2 2

}
= −r;

{
2

1 2

}
=

{
2

2 1

}
=

1

r
.

The covariant derivative of ui is given by (3.19) as

ui,j =
∂ui

∂xj
+ uk

{
i
j k

}
.

Thus, the components of the covariant derivatives in polar co-ordinates are found to
be

u1,1 =
∂u1

∂x1
+ uk

{
1

1 k

}
=
∂u1

∂x1
+ u1

{
1

1 1

}
+ u2

{
1

1 2

}
=
∂u1

∂x1
= 2r(cos3 θ + sin3 θ).

u1,2 =
∂u1

∂x2
+ uk

{
1

2 k

}
=
∂u1

∂x2
+ u1

{
1

1 1

}
+ u2

{
1

2 2

}
= 2r2 sin θ cos θ(sin θ − cos θ).

u2,1 =
∂u2

∂x1
+ uk

{
2

1 k

}
= 2 sin θ cos θ(sin θ − cos θ).

u2,2 =
∂u2

∂x2
+ uk

{
2

2 k

}
= 2r sin θ cos θ(sin θ + cos θ).

Covariant differentiation of tensor of type (1,1): Let Aij be a mixed tensor of
rank 2, so by tensor law of transformation,

A
i
j = Aαβ

∂xi

∂xα
∂xβ

∂xj
⇒ A

i
j

∂xα

∂xi
= Aαβ

∂xβ

∂xj
.
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Differentiating both sides partially with respect to xk, we get

∂A
i
j

∂xk
∂xα

∂xi
+A

i
j

∂2xα

∂xi∂xk
=
∂Aαβ
∂xγ

∂xβ

∂xj
∂xγ

∂xk
+Aαβ

∂2xβ

∂xj∂xk

or

∂A
i
j

∂xk
∂xα

∂xi
+A

i
j

[{
h
i k

}
∂xα

∂xh
−
{

α
m γ

}
∂xm

∂xi
∂xγ

∂xk

]
=
∂Aαβ
∂xγ

∂xβ

∂xj
∂xγ

∂xk

+Aαβ

[{
h
j k

}
∂xβ

∂xh
−
{

β
n γ

}
∂xβ

∂xj
∂xγ

∂xk

]
; from Eq. (3.10)

or

∂A
i
j

∂xk
∂xα

∂xi
+A

i
j

{
h
i k

}
∂xα

∂xh
−Aαβ

{
h
j k

}
∂xβ

∂xh

=
∂Aαβ
∂xγ

∂xβ

∂xj
∂xγ

∂xk
+A

i
j

∂xα

∂xi
∂xγ

∂xk

{
α

m γ

}
−Aαβ

∂xβ

∂xj
∂xγ

∂xk

{
β
n γ

}
or

∂A
i
j

∂xk
∂xα

∂xi
+A

i
j

{
h
i k

}
∂xα

∂xh
−Aij

{
h
j k

}
∂xα

∂xi

=
∂Aαβ
∂xβ

∂xβ

∂xj
∂xγ

∂xk
+A

m
n

∂xm

∂xj
∂xγ

∂xk

{
α

m γ

}
−Aαβ

∂xm

∂xj
∂xγ

∂xk

{
β
n γ

}
or [

∂A
i
j

∂xk
+A

h
j

{
i

h k

}
∂xα

∂xh
−Aih

{
h
j k

}]
∂xα

∂xi

=

[
∂Amβ
∂xγ

+Aαβ

{
α

m γ

}
−Aαm

{
m
β γ

}]
∂xβ

∂xj
∂xγ

∂xk
. (3.21)

If we write,

Aαβ,γ =
∂Aαβ
∂xγ

+Amβ

{
α

m γ

}
−Aαm

{
m
β γ

}
,

then Eq. (3.21) becomes

A
i
j,k

∂xα

∂xi
= Aαβ,γ

∂xβ

∂xj
∂xγ

∂xk
⇒ A

i
j,k =

∂xβ

∂xj
∂xγ

∂xk
∂xi

∂xα
Aαβ,γ (3.22)
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which confirms the tensor law of transformation. Equation (3.22) declares that Aαβ,γ
is a mixed tensor of rank 3. In general, the covariant derivative of a tensor of type
(p, q) is given by

A
i1···ip
j1···jq ,k =

∂A
i1···ip
j1···jq
∂xk

+ A
αi2···ip
j1···jq

{
i1
α k

}
+ · · ·+A

αi2···ip−1α
j1···jq

{
ip
α k

}
− A

αi1···ip
βj2···jq

{
β

j1 k

}
− · · · −A

αi1···ip
j1···jq−1β

{
β

jq k

}
. (3.23)

In fact, the covariant differentiation of sums and products of tensors obey the same
rule as that of ordinary differentiation.

Covariant differentiation of an invariant: The covariant derivative of an invariant
(tensor of rank zero) or scalar ϕ is defined to be the partial derivative of ϕ and is
denoted by ϕ,j . Thus,

ϕ,j =
∂ϕ

∂xj
. (3.24)

Since ∂ϕ
∂xj

is a covariant vector, the covariant derivative of an invariant is a tensor.
Thus, the covariant derivative of a tensor of type (0, 0) is a tensor of type (0, 1).
Equation (3.24) shows that the covariant derivative of a tensor of rank zero is indentical
with its ordinary derivative.
Result: Ordinary differentiation of the product of two functions satisfies the distribu-
tive law. For example, (uv)′ = u′v+uv′, where u and v are functions of some variable
and the primes denote differentiation with respect to the variable. It can be shown
that covariant differentiation of the product of two or more tensors also satisfies the
same distributive law.

Theorem 3.2.1 (Ricci Theorem): The fundamental tensors and the Kronecker
delta behave in covariant differentiation as through they were constants.

Proof: We have to show that gij,k = 0, gik,j = 0 and δik,j = 0.

(i) gij,k =
∂gij
∂xk

−
{

α
i k

}
gαj −

{
α
j k

}
giα

=
∂gij
∂xk

− [ik, j]− [jk, i]

=
∂gij
∂xk

− ([ik, j] + [jk, i]) =
∂gij
∂xk

− ∂gij
∂xk

= 0.

The statement that the covariant derivative of the fundamental tensor gij is zero,
is known as Ricci’s lemma.
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(ii) The covariant differentiation of Kronecker delta δij with respect to xk is given by

δij,k =
∂δij
∂xm

−
{

α
j k

}
δiα +

{
i

α k

}
δαj

=
∂δij
∂xm

−
{

i
j k

}
+

{
i
j k

}

=
∂δij
∂xm

= 0; for δij = 1 or 0 = constant.

(iii) From the property of reciprocal tensor, we have gijg
jk = δki . Differentiating

partially with respect to xm, we obtain

∂

∂xm

(
gijg

jk
)
= 0; i.e.

∂gij
∂xm

gjk + gij
∂gjk

∂xm
= 0

or

gij
∂gjk

∂xm
+ gjk ([im, j] + [jm, i]) = 0

or

gijg
li∂g

jk

∂xm
+ gligjk[im, j] + gligjk[jn, i] = 0

or

δlj
∂gjk

∂xm
+ gli

{
k
i m

}
+ gjk

{
l

j m

}
= 0

or
∂

∂xm

(
δljg

jk
)
+ gli

{
k
i m

}
+ gjk

{
l

j m

}
= 0; as

∂δlj
∂xm

= 0

or
∂glk

∂xm
+ gli

{
k
i m

}
+ gjk

{
l

j m

}
= 0

or
glk,m = 0; i.e. gij,k = 0.

Thus, we conclude that the metric tensors are covariant constants with respect
to Christoffel symbols. From Ricci’s theorem we conclude that the fundamental
tensors may be taken outside the sign of covariant differentiation. Because of
property of the metric tensor and its inverse, the operation of covariant differ-
entiation commutes with those of raising and lowering indices. For example,

Aij,k =
(
gipApj

)
,k
= gipApj,k.

EXAMPLE 3.2.3 Write down the expression for Ai,j, show that Ai,i is an invariant.
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Solution: The covariant derivative of the contravariant vector Ai with respect to xj

is denoted by Ai,j whose transformation law is

Ai,j =
∂xm

∂xj
∂xi

∂xk
A
k
,m.

By contraction, we have

Ai,i =
∂xm

∂xi
∂xi

∂xk
A
k
,m =

∂xm

∂xk
A
k
,m = δmk A

k
,m = A

k
,k;

which shows that Ai,i is an invariant.

EXAMPLE 3.2.4 If at a specified point, the derivatives of the gij with respect to xp

are all zero, prove that the components of covariant derivative at that point are same
as ordinary derivatives.

Solution: We are given that at a point P ,
∂gij
∂xp = 0 for all values of i, j, p. Consider

a contravariant tensor Aij . Then,

Aij,p =
∂Aij

∂xp
+Aik

{
i

k p

}
+

{
j
k p

}
Aij =

∂Aij

∂xp
at P ;

as the Christoffel symbols of second kind

{
j
k p

}
contains term of the type

∂gij
∂xp . This

shows that, if at a specified point, the derivatives of the gij with respect to xp are all
zero, then the components of covariant derivative at that point are same as ordinary
derivatives.

EXAMPLE 3.2.5 If Ai is a contravariant vector, show that Ai,i =
1√
g
∂
∂xi

(√
gAi
)
;

where, g = |gij | > 0.

Solution: The covariant derivative of the contravariant vector Ai with respect to xj

is given by

Ai,j =
∂Ai

∂xj
+

{
i
r j

}
Ar.

By contraction, we have

Ai,i =
∂Ai

∂xi
+

{
i
r i

}
Ar =

∂Ai

∂xi
+Ar

∂

∂xr
(log

√
g)

=
∂Ai

∂xi
+
Ai
√
g

∂

∂xi
√
g; replacing the dummy index r by i

=
1
√
g

[
√
g
∂Ai

∂xi
+Ai

∂

∂xi
√
g

]
=

1
√
g

∂

∂xi
(√
gAi
)
.
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EXAMPLE 3.2.6 Show that Aij,i = 1√
g
∂
∂xi

(√
gAij

)
, where Aij is a skew-symmetric

tensor.

Solution: The covariant derivative of the contravariant tensor Aij with respect to xk

as in Eq. (3.20), is given by

Aij,k =
∂Aij

∂xk
+

{
i

k α

}
Aαj +

{
j

k α

}
Aiα.

Given that Aij is a skew-symmetric tensor. Therefore,

Ajk
{

i
j k

}
= Akj

{
i
k j

}
= Akj

{
i
j k

}
= −Ajk

{
i
j k

}
⇒ Ajk

{
i
j k

}
= 0.

By contraction, we have

Aij,i =
∂Aij

∂xi
+

{
i
i α

}
Aαj +

{
j
i α

}
Aiα

=
∂Aij

∂xi
+

{
i
i α

}
Aαj ; as Aij is skew-symmetric

=
∂Aij

∂xi
+Aαj

∂

∂xα
(log

√
g) =

∂Aij

∂xi
+
Aαj
√
g

∂

∂xα
(
√
g)

=
1
√
g

[
√
g
∂Aij

∂xi
+Aαj

∂

∂xα
(
√
g)

]
=

1
√
g

∂

∂xα
(√
gAij

)
=

∂
√
g

∂

∂xi
(√
gAij

)
,

where, we have to replace the dummy index α by i.

EXAMPLE 3.2.7 Find the covariant derivative of AjkB
lm
n with respect to xq.

Solution: According to the definition of covariant derivative, we get

(
AjkB

lm
n

)
q
=
∂
(
AjkB

lm
n

)
∂xq

−
{

s
k q

}
AjsB

lm
n −

{
s
n q

}
AjkB

lm
s

+

{
j
q s

}
AskB

lm
n +

{
l
q s

}
AjkB

sm
n +

{
m
q s

}
AjkB

ls
n

=

(
∂Ajk
∂xq

−
{

s
k q

}
Ajs +

{
j
q s

}
Ask

)
Blm
n

+Akj

(
∂Blm

n

∂xq
−
{

s
n q

}
Blm
s +

{
l
q s

}
Bsm
n +

{
m
q s

}
Bls
n

)
= Ajk,qB

lm
n +AjkB

lm
n,q.
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This example shows that the covariant derivatives of a product of tensors obey rules
like those of ordinary derivatives of products in elementary calculus.

EXAMPLE 3.2.8 If Aijk is a skew-symmetric tensor, show that 1√
g

∂
∂xk

(√
gAijk

)
is

a tensor.

Solution: According to the covariant derivative formula and contraction, we have

Aijl,i =
∂Aijl

∂xl
+

{
l
α l

}
Aαjl +

{
j
α l

}
Aiαl +

{
l
α l

}
Aijα

=
∂Aijl

∂xl
+

{
l
α l

}
Aijα; as

{
j
α l

}
Aiαl = 0

=
∂Aijl

∂xl
+Aijα

∂

∂xα
(log

√
g) =

∂Aijl

∂xl
+
Aijα
√
g

∂

∂xα
(
√
g)

=
1
√
g

[
√
g
∂Aijl

∂xl
+Aijα

∂

∂xα
(
√
g)

]
=

1
√
g

∂

∂xα
(√
gAijα

)
=

1
√
g

∂

∂xk

(√
gAijk

)
Since the left hand side is a tensor, the right-hand side is also.

EXAMPLE 3.2.9 If Aij is a symmetric tensor, show that Aij,k is symmetric with
respect to indices i and j.

Solution: The covariant derivative of a contravariant vector Aij with respect to xk

is given by

Aij,k =
∂Aij
∂xk

−
{

α
i k

}
Aαj −

{
α
j k

}
Aiα.

Since Aij is a tensor of the type (0, 2), Aji is so. Hence,

Aji,k =
∂Aji
∂xk

−
{

α
j k

}
Aαi −

{
α
i k

}
Ajα

=
∂Aij
∂xk

−
{

α
i k

}
Aαj −

{
α
j k

}
Aiα

as Aij is skew-symmetric and

{
i
j k

}
is symmetric with respect to the indices j and

k. From these two results, we get

Aij,k = Aji,k ⇒ Aij,k is symmetric in i and j.
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EXAMPLE 3.2.10 Let Aij be a symmetric tensor. Prove that the covariant deriva-
tive of Aji with respect to xk is given by

Aji,k =
∂Aji
∂xk

−
{

α
i k

}
Ajα +

{
j

α k

}
Aαi .

Hence calculate Aji,j.

Solution: Since Aij be a symmetric tensor, so Aij = Aji. Putting j = k, we get

Aji,j =
∂Aji
∂xj

+

{
j
α j

}
Aαi −

{
α
i j

}
Ajα

=
∂Aji
∂xj

+
∂
(
log

√
g
)

∂xα
Aαi − glα[ij, l]Ajα

=
∂Aji
∂xj

+
Aji√
g

∂

∂xj
(
√
g)−Ajl[ij, l]; as Aij is symmetric

=
1
√
g

∂

∂xj

(
Aji

√
g
)
−Ajk[ij, k].

This expression for Aji,j does not require any calculation of Christoffel symbols. But,
we know

Ajk[ij, k] =
1

2
Ajk

(
∂gjk
∂xi

+
∂gki
∂xj

− ∂gij
∂xk

)
=

1

2

(
Ajk

∂gjk
∂xi

+Akj
∂gji
∂xk

−Ajk
∂gij
∂xk

)
,

where we have to interchange the dummy suffixes j and k for the second term. There-
fore,

Ajk[ij, k] =
1

2

(
Ajk

∂gjk
∂xi

+Ajk
∂gij
∂xk

−Ajk
∂gij
∂xk

)
=

1

2
Ajk

∂gjk
∂xi

(since Ajk = Akj and gij = gji).

Using the result, we get

Aji,j =
1
√
g

∂

∂xj

(
Aji

√
g
)
− 1

2
Ajk

∂gjk
∂xi

.

This the expression for Aji,j in terms of the metric tensors gij .



180 Christoffel’s Symbols and Covariant Differentiation

3.3 Gradient, Divergence and Curl

The most frequently occurring equations in theoretical physics are expressed with the
help of a small number of operators called gradient, divergence, Curl and Laplacian.
In this section, we are introducing these notations.

3.3.1 Divergence

Divergence of a contravariant vector: Let Ai be a contravariant vector. Then
its covariant derivatives Ai,j , given by

Ai,j =
∂Ai

∂xj
+

{
i

α j

}
Aα, (3.25)

is a tensor of type (1, 1). If we now contract the indices i and j, we get the tensor
Ai,i, which is a tensor of the type (0, 0), i.e. an invariant. This invariant is called the

divergence of the contravariant vector Ai and is denoted by divAi, i.e.

divAi = ∇iA
i = Ai,i. (3.26)

Note that, the divergence of a vector is an invariant. Now, we derive an expression for
the divergence of a contravariant vector Ai. Now

divAi = Ai,i =
∂Ai

∂xi
+

{
i
α i

}
Aα

=
∂Ai

∂xi
+

∂

∂xα
(log

√
g)Aα

=
∂Ai

∂xi
+

∂

∂xi
(log

√
g)Ai =

1
√
g

∂

∂xi
(√
gAi
)
, (3.27)

where g = |gij |. Taking
√
gAi = Bi, we get

divAi =
1
√
g

∂Bi

∂xi
=

1
√
g

[
∂B1

∂x1
+
∂B2

∂x2
+ · · ·+ ∂BN

∂xN

]
.

The advantage of this formula is that it does not require the calculation of the
Christoffel symbols.

Result 3.3.1 Let A and B be two arbitrary vectors, then, div(A+B) = divA+divB.

Proof: We know from Eq. (3.27) that

divAi = Ai,i =
1
√
g

∂

∂xi
(√
gAi
)
,
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where g = |gij |. Putting Ai +Bi in this relation, we get

div
(
Ai +Bi

)
=

1
√
g

∂

∂xi
[√
g
(
Ai +Bi

)]
=

1
√
g

∂

∂xi
(√
gAi
)
+

1
√
g

∂

∂xi
(√
gBi

)
= divA+ divB.

Divergence of a covariant vector: Let Ai is a covariant vector, then gjkAj,k is
an invariant. This invariant is defined to be the divergence of the vector Ai and is
denoted by divAi. Thus

divAi = gjkAj,k. (3.28)

According to definition Eq. (3.28), we get

divAi = gjkAj,k =
(
gjkAj

)
,k
; as gjk,k = 0

= Ak,k = divAk = divAi.

Thus, if Ai and Ai are, respectively, the covariant and contravariant components of

the same vector
−→
A , then div Ai = divAi.

EXAMPLE 3.3.1 Prove that

divAij = ∇jA
ij = Aij,j =

1
√
g

∂

∂xj
(
Aij

√
g
)
+

{
j

α k

}
Aiα.

Find the expression for div Aij , when Aij is skew-symmetric.

Solution: The covariant derivative of Aij with respect to xk is given by

Aij,k =
∂Aij

∂xk
+

{
i

α k

}
Aαj +

{
j

α k

}
Aiα.
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Putting j = k, we get

Aij,j =
∂Aij

∂xj
+

{
i

α j

}
Aαj +

{
j
α i

}
Aiα

=
∂Aij

∂xj
+

{
i
j k

}
Ajk +

∂

∂xα
(log

√
g)Aiα

=
∂Aij

∂xj
+
Aiα
√
g

∂

∂xα
(
√
g) +

{
i
j k

}
Ajk

=
∂Aij

∂xj
+
Aij
√
g

∂

∂xj
(
√
g) +

{
i
j k

}
Ajk

=
1
√
g

∂

∂xj
(
Aij

√
g
)
+

{
i
j k

}
Ajk,

which gives the first result. If Aij is skew-symmetric, Ajk = −Akj . On interchanging
the dummy indices j and k we get

Ajk
{

i
j k

}
= Akj

{
i
k j

}
= −Ajk

{
i
k j

}
= −Ajk

{
i
j k

}
; as

{
i
j k

}
=

{
i
k j

}
or

Ajk
{

i
j k

}
+Ajk

{
i
j k

}
= 0 ⇒ Ajk

{
i
j k

}
= 0.

Thus, when Aij is skew-symmetric, the expression for divergence becomes

divAij = ∇jA
ij = Aij,j =

1
√
g

∂

∂xj
(
Aij

√
g
)
.

EXAMPLE 3.3.2 Express the divergence of a vector Ai in terms of its physical
components for (i) cylindrical co-ordinates and (ii) spherical co-ordinates.

Solution: (i) In the cylindrical co-ordinate, the metric is given by

ds2 = (dx1)2 + (x1)2(dx2)2 + (dx3)2,

where g11 = 1, g22 = (x1)2, g33 = 1 and gij = 0 for i ̸= j. Thus,

g = |gij | =

∣∣∣∣∣∣
1 0 0
0 (x1)2 0
0 0 1

∣∣∣∣∣∣ = (x1)2.
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Let the physical components be denoted by A1, A2 and A3, then they are given by

A1 =
√
g11A

1 = A1; A2 =
√
g22A

2 = x1A2 and A3 =
√
g33A

3 = A3.

Therefore, the divergence of Ai is given by

divAi =
1
√
g

∂

∂xk

(√
gAk

)
=

1

x1

[
∂

∂x1
(
x1A1

)
+

∂

∂x2
(
x1A2

)
+

∂

∂x3
(
x1A3

)]
=

1

x1

[
∂

∂x1
(
x1A1

)
+
∂A2

∂x2
+

∂

∂x3
(
x1A3

)]
.

(ii) In the spherical co-ordinates, the metric is given by

ds2 = (dx1)2 + (x1)2(dx2)2 + (x1 sinx2)2(dx3)2,

where g11 = 1, g22 = (x1)2, g33 = (x1 sinx2)2 and gij = 0 for i ̸= j. Thus,

g = |gij | =

∣∣∣∣∣∣
1 0 0
0 (x1)2 0
0 0 (x1 sinx2)2

∣∣∣∣∣∣ = (x1)4(sinx2)2.

Let the physical components be denoted by A1, A2 and A3, then they are given by

A1 =
√
g11A

1 = A1; A2 =
√
g22A

2 = x1A2

and

A3 =
√
g33A

3 = x1 sinx2A3.

Therefore, the divergence of Ai is given by,

divAi =
1
√
g

∂

∂xk

(√
gAk

)
=

1

(x1)2 sinx2

[
∂

∂x1

{(
x1
)2

sinx2A1
}

+
∂

∂x2

{(
x1
)2

sinx2A2
}
+

∂

∂x3

{(
x1
)2

sinx2A3
}]

=
1

(x1)2
∂

∂x1
{
(x1)2A1

}
+

1

x1 sinx2
∂

∂x2
(
sinx2A2

)
+

1

x1 sinx2
∂A3

∂x3
.

EXAMPLE 3.3.3 Prove that in a V2 with line element ds2 = (dx1)2 + (x1)2(dx2)2,
the divergence of the covariant vector with components x1 cos 2x2,−(x1)2 sin 2x2 is
zero.
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Solution: Comparing the given metric with Eq. (2.1), we get g11 = 1, g22 = (x1)2

and gij = 0 for i ̸= j. Thus,

g = |gij | =
∣∣∣∣1 0
0 (x1)2

∣∣∣∣ = (x1)2.

The reciprocal tensors are given by g11 = 1; g22 = 1
(x1)2

and g12 = 0 = g21. The

physical components be denoted by A1 = x1 cos 2x2 and A2 = −(x1)2 sin 2x2, and so,

A1 =
√
g11A

1 = A1; A2 =
√
g22A

2 = x1A2.

Therefore, the divergence of Ai is given by

divAi =
1
√
g

∂

∂xk

(√
gAk

)
=

1
√
g

[
∂

∂x1
(√
gA1

)
+

∂

∂x2
(√
gA2

)]

=
1

x1

[
∂

∂x1
(
x1A1

)
+

∂

∂x2

(
x1

x2
A2

)]
=

1

x1

[
∂

∂x1
{
(x1)2 cos 2x2

}
+

∂

∂x2
{
−(x1)2 sin 2x2

}]
=

1

x1
[
2x1 cos 2x2 − 2x1 cos 2x2

]
= 0.

EXAMPLE 3.3.4 Express the divergence theorem in tensor form.

Solution: If V is the volume bounded by a closed surface S and
−→
A is a vector function

of position with continuous derivatives, then∫ ∫ ∫
V

−→
∇ ·

−→
V dV =

∫ ∫
S

−→
A · n̂ds,

where n̂ is the positive normal to S. Let Ak define a tensor field of rank 1 and let νk
denote the outward drawn unit normal to any point of a closed surface S bounding a
volume V . Then the divergence theorem states that∫ ∫ ∫

V
Ak,kdV =

∫ ∫
S
Akνkds.

For N dimensional space the triple integral is replaced by an N -tuple integral, and
the double integral by an N − 1 tuple integral. The invariant Ak,k is the divergence of

Ak. The invariant Akνk is the scalar product of Ak and νk, analogous to
−→
A · n̂ in the

vector notation.
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EXAMPLE 3.3.5 If A is the magnitude of Ai, prove that A,j = Ai,j
Ai

A .

Solution: If A be the magnitude of Ai, then by definition, A2 = gikA
iAk, therefore,

2AA,j = (gik),jA
iAk + gik

(
AiAk

)
,j

= gik

[
Ai,jA

k +AiAk,j

]
; as gik,j = 0

= gikA
i
,jA

k + gkiA
k
,jA

i = 2gkiA
k
,j = 2

(
gkiA

k
)
,j
Ai = 2Ai,jA

i

or

AA,j = Ai,jA
i ⇒ A,j = Ai,j

Ai

A
.

3.3.2 Gradient of an Invariant

The partial derivative of an invariant ϕ is a covariant vector, which is called the
gradient of ϕ and is denoted by gradϕ or ∇ϕ. Thus,

gradϕ = ∇ϕ = ϕ,j , (3.29)

which is a covariant tensor of rank 1.

Result 3.3.2 Let A be an arbitrary vector and ϕ be a scalar function, then,

div(ϕA) = grad (ϕ)A+ ϕdivA.

Proof: We know from Eq. (3.27) that, divAi = Ai,i =
1√
g
∂
∂xi

(√
gAi
)
, where g = |gij |.

Therefore,

div
(
ϕAi

)
=
(
ϕAi

)
,i
=

1
√
g

∂

∂xi
(√
gϕAi

)
=

1
√
g

[
∂

∂xi
(
√
gAi)ϕ+

√
gAi

∂ϕ

∂xi

]

=
∂ϕ

∂xi
Ai + ϕ

1
√
g

∂

∂xi
(√
gAi
)
= grad (ϕ)A+ ϕdivA.

EXAMPLE 3.3.6 If Ai is a contravariant vector such that Ai,k = akA
i, where ak is

a covariant vector, show that ak is a gradient.
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Solution: By using the given condition, we have

gijA
iAjak = gij

(
akA

i
)
Aj = gijA

i
,kA

j .

Again, (
gijA

iAj
)
,k
= gij,kA

iAj + gij

(
Ai,kA

j +AiAj,k

)
= gij

(
Ai,kA

j +AiAj,k

)
; as gij,k = 0.

Now, replacing the dummy indices j and i in the second term of the right-hand side
by i and j, respectively, we get(

gijA
iAj
)
,k

= gijA
i
,kA

j + gjiA
jAi,k

= gijA
i
,kA

j + gijA
jAi,k = 2gijA

i
,kA

j ; as gij = gji

⇒ gijA
i
,kA

j =
1

2

(
gijA

iAj
)
,k
= gijA

iAjak

⇒ ϕak =
1

2
ϕ,k; where ϕ = gijA

iAj = an invariant

or

ak =
1

2ϕ

∂ϕ

∂xk
=

∂

∂xk
log ϕ1/2.

So, ak is the gradient of the invariant logϕ1/2, i.e. ak is a gradient.

3.3.3 Laplacian Operator

Let ϕ be the scalar function of co-ordinates xi, then divergence of grad ϕ is defined to
be Laplacian of an invariant ϕ and it is denoted by ∇2ϕ. Thus,

div grad ϕ = div∇ϕ = ∇2ϕ. (3.30)

Now, we derive an expression for the Laplacian in terms of co-ordinates xi.

(i) If ϕ is a scalar function of co-ordinates xi, then we know

grad ϕ = ∇ϕ = ϕ,j =
∂ϕ

∂xj
.

Also, if Ai is a covariant vector, then the divergence is given by

div Ai = Ai,i =
1
√
g

∂

∂xi
(
Ai

√
g
)

=
1
√
g

∂

∂xi
(
gijAj

√
g
)
= div Ai.
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Now, set Ai = ϕ,i, so that Ai is a covariant vector, and thus gijAj = Ai is a
contravariant vector. Therefore

div ϕ,i =
1
√
g

∂

∂xi
(
gijϕ,j

√
g
)

or

div gradϕ = div (gijϕ, j) =
1
√
g

∂

∂xi
(√
ggijϕ,j

)
or

∇2ϕ =
1
√
g

∂

∂xk

(
√
ggkj

∂ϕ

∂xj

)
.

This expression for ∇2ϕ does not include any Christoffel symbol.

(ii) By definition of divergence, the contraction of covariant derivative of gijϕ,i is
called the div ϕ,i, i.e. div grad ϕ. Thus,

∇2ϕ = div gradϕ = gijϕ,ij = gijϕi,j =
δϕ,i
δxj

= gij
[
∂ϕi
∂xj

−
{

k
i j

}
ϕ,k

]
= gij

[
∂

∂xj

(
∂ϕ

∂xi

)
−
{

k
i j

}
∂ϕ

∂xk

]
= gij

[
∂2ϕ

∂xi∂xj
−
{

k
i j

}
∂ϕ

∂xk

]
,

where ϕ is a scalar function of co-ordinates xi. Interchanging i and j, we get

ϕ,ji =
∂2ϕ

∂xj∂xi
−
{

k
j i

}
∂ϕ

∂xk
=

∂2ϕ

∂xj∂xi
−
{

k
i j

}
∂ϕ

∂xk
; as

{
k
j i

}
=

{
k
i j

}
=

∂2ϕ

∂xj∂xi
−
{

k
i j

}
∂ϕ

∂xk
; as

∂2ϕ

∂xi∂xj
=

∂2ϕ

∂xi∂xj

= ϕ,ij .

This shows that ϕ,ij is symmetric. This expression requires the calculations of
Christoffel symbols.

EXAMPLE 3.3.7 Express ∇2ϕ in (i) cylindrical co-ordinates and (ii) spherical co-
ordinates.

Solution:

(i) In the cylindrical co-ordinate, the metric is given by,

ds2 = (dx1)2 + (x1)2(dx2)2 + (dx3)2,
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where g11 = 1, g22 = (x1)2, g33 = 1 and gij = 0 for i ̸= j. Thus, g = |gij | = (x1)2.
The reciprocal tensors are g11 = 1; g22 = 1

x1
; g33 = 1. Therefore, the expression

for ∇2ϕ in cylindrical co-ordinates is given by

∇2ϕ =
1
√
g

∂

∂xk

(
√
ggkj

∂ϕ

∂xj

)
=

1

x1

[
∂

∂x1

(
x1 · 1 ∂ϕ

∂x1

)
+

∂

∂x2

(
x1

1

(x1)2
∂ϕ

∂x2

)
+

∂

∂x3

(
x1 · 1 ∂ϕ

∂x3

)]
=

1

x1
∂

∂x1

(
x1

∂ϕ

∂x1

)
+

1

(x1)2
∂2ϕ

(∂x2)2
+

∂2ϕ

(∂x3)2
.

(ii) In the spherical co-ordinates, the metric is given by,

ds2 = (dx1)2 + (x1)2(dx2)2 + (x1 sinx2)2(dx3)2,

where g11 = 1, g22 = (x1)2, g33 = (x1 sinx2)2 and gij = 0 for i ̸= j. Thus,
g = |gij | = (x1)4(sinx2)2. The reciprocal tensors are given by g11 = 1; g22 =

1
(x1)2

; g33 = 1
(x1 sinx2)2

. Therefore, the expression for∇2ϕ in spherical co-ordinates

is given by

∇2ϕ =
1
√
g

∂

∂xk

(
√
ggkj

∂ϕ

∂xj

)
=

1

(x1)2 sin2 x2

[
∂

∂x1

{(
x1
)2

sinx2 · 1 · ∂ϕ
∂x1

}

+
∂

∂x2

{(
x1
)2

sinx2

(x1)2
∂ϕ

∂x2

}
+

∂

∂x3

{(
x1
)2

sinx2

(x1)2 sinx2
∂ϕ

∂x3

}]

=
1

(x1)2
∂

∂x1

(
(x1)2

∂ϕ

∂x1

)
+

1

(x1)2 sinx2
∂

∂x2

(
sinx2

∂ϕ

∂x2

)
+

1

(x1 sinx2)2
∂2ϕ

(∂x3)2
.

3.3.4 Curl

Curl of a covariant vector: A skew-symmetric tensor of type (0, 2) formed from a
covariant vector assumes particular importance in E3, where it can be identified with
a vector. We now introduce such a skew-symmetric tensor in VN which is called the
curl of a covariant vector.

Let us consider a covariant vector Ai. Then Ai,j is a tensor of type (0, 2). Hence,
Aj,i is also a tensor of type (0, 2). Consequently, Ai,j − Aj,i is a tensor of type (0, 2),
which evidently skew-symmetric. This skew-symmetric tensor is called the curl or the
rotation or the rotator of the vector Ai and is denoted by curl Ai or RotAi. Thus,

curl Ai = Ai,j −Aj,i =
∂Ai
∂xj

− ∂Aj
∂xi

. (3.31)
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Now, we derive an expression for the curl of a covariant vector Ai. We know,

Ai,j =
∂Ai
∂xj

−
{

k
i j

}
Ak

or

Aj,i =
∂Aj
∂xi

−
{

k
j i

}
Ak.

Therefore, the tensor Ai,j −Aj,i of rank 2 is given by,

curl Ai = Ai,j −Aj,i =
∂Ai
∂xj

−
{

k
i j

}
Ak −

∂Aj
∂xi

+

{
k
j i

}
Ak

=
∂Ai
∂xj

−
{

k
i j

}
Ak,−

∂Aj
∂xi

+

{
k
i j

}
Ak

=
∂Ai
∂xj

− ∂Aj
∂xi

.

Hence, is calculating the curl, we may replace covariant derivative by ordinary deriva-
tive.

Theorem 3.3.1 A necessary and sufficient condition that the curl of a vector field
vanishes is that the vector field be gradient.

Proof: Let Ai be a covariant vector. Let the curl of the vector Ai vanish, so that

curl Ai = Ai,j −Aj,i =
∂Ai
∂xj

− ∂Aj
∂xi

= 0.

We have to show that Ai = ∇ϕ, where ϕ is a scalar. Now,

Ai,j −Aj,i =
∂Ai
∂xj

− ∂Aj
∂xi

= 0

⇒ ∂Ai
∂xj

dxj =
∂Aj
∂xi

dxj

⇒ dAi =
∂

∂xi
(
Ajdx

j
)
; as dAi =

∂Aj
∂xi

dxj

⇒ Ai =

∫
∂

∂xi
(
Ajdx

j
)
=

∂

∂xi

∫
Ajdx

j ; integrating.

But
∫
Ajdx

j is a scalar quantity, let
∫
Ajdx

j = ϕ, a scalar, then,

Ai =
∂ϕ

∂xi
= ∇ϕ.
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Hence, Ai is the gradient of ϕ, i.e. Ai is a gradient.

Conversely, suppose that a vector Ai is such that Ai = ∇ϕ, where ϕ is a scalar.
We have shown that curl grad ϕ = 0. Now

Ai = ∇ϕ⇒ Ai =
∂ϕ

∂xi

or
∂Ai
∂xj

=
∂2ϕ

∂xj∂xi
=

∂2ϕ

∂xi∂xj

or
∂Ai
∂xj

− ∂Aj
∂xi

=
∂2ϕ

∂xi∂xj
− ∂2ϕ

∂xj∂xi
= 0

or

curl Ai = Ai,j −Aj,i =
∂Ai
∂xj

− ∂Aj
∂xi

= 0.

From this theorem, we conclude that, a necessary and sufficient condition that the
covariant derivative of a covariant vector be symmetric is that the vector field be
gradient.

EXAMPLE 3.3.8 If Aij is the curl of a covariant vector, prove that

Aij,k +Ajk,i +Aki,j = 0.

Solution: Let Aij be the components of the curl of a covariant vector Bi, so that

Aij = curl Bi = Bi,j −Bj,i.

Interchanging i and j, we get

Aji = Bj,i −Bi,j = −(Bi,j −Bj,i) = −Aij

or

Aij +Aji = 0.

This proves that Aij is skew-symmetric. Therefore,

Aij = curl Bi = Bi,j −Bj,i

=
∂Bi
∂xj

−
{
α
i j

}
Bα −

[
∂Bj
∂xi

−
{
α
j i

}
Bα

]
=
∂Bi
∂xj

− ∂Bj
∂xi

; as

{
α
i j

}
=

{
α
j i

}
.
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or
∂Aij
∂xk

=
∂2Bi
∂xk∂xj

− ∂2Bj
∂xk∂xi

.

Using the expressions for Aij,k, we get

Aij,k =
∂Aij
∂xk

−
{

α
i k

}
Aαj −

{
α
j k

}
Aik

=
∂2Bi
∂xk∂xj

− ∂2Bj
∂xk∂xi

−
{

α
i k

}
Aαj −

{
α
j k

}
Aik.

Taking the sum of this and similar equations obtained by cyclic permutation of i, j, k,
we obtain,

Aij,k + Ajk,i +Aki,j

=
∂2Bi
∂xk∂xj

− ∂2Bj
∂xk∂xi

−
{

α
i k

}
Aαj −

{
α
j k

}
Aik

+
∂2Bj
∂xi∂xk

− ∂2Bk
∂xi∂xj

−
{
α
j i

}
Aαk −

{
α
k i

}
Ajα

+
∂2Bj
∂xj∂xi

− ∂2Bi
∂xj∂xk

−
{

α
k j

}
Aαi −

{
α
i j

}
Akα

= 0; as Aij is skew-symmetric and
∂2Bi
∂xj∂xk

=
∂2Bi
∂xk∂xj

.

This result equivalently can be written as

∂Aij
∂xk

+
∂Ajk
∂xi

+
∂Aki
∂xj

= 0

or
∇kAij +∇iAjk +∇jAki = 0.

Curl of a covariant vector in V3: Let Ai be a covariant vector, then Ai,k is a
tensor of type (0, 2). Then the inner product

εiklAl,k = Bi, (say); εijk = permutation tensor

a contravariant vector of type (1, 0), is called the curl of the vector Ai. Thus, in V3,

curl Ai = Bi = εiklAl,k

⇒ Bi =
1
√
g
eiklAl,k; as εijk =

1
√
g
eikl. (3.32)
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This Eq. (3.32) can be written in the component form as

B1 =
1
√
g
e1klAl,k =

1
√
g
e123A3,2 +

1
√
g
e132A2,3 =

1
√
g
(A3,2 −A2,3);

B2 =
1
√
g
e2klAl,k =

1
√
g
e231A1,3 +

1
√
g
e213A3,1 =

1
√
g
(A1,3 −A3,1);

B3 =
1
√
g
e3klAl,k =

1
√
g
e312A2,1 +

1
√
g
e321A1,2 =

1
√
g
(A2,1 −A1,2).

Using relation (3.31), the components of curl Ai can be written in the form

1
√
g
(A3,2 −A2,3),

1
√
g
(A1,3 −A3,1),

1
√
g
(A2,1 −A1,2)

or
1
√
g

(
∂A3

∂x2
− ∂A2

∂x3

)
,
1
√
g

(
∂A1

∂x3
− ∂A3

∂x1

)
,
1
√
g

(
∂A2

∂x1
− ∂A1

∂x2

)
.

Deduction 3.3.1 Vector product of two covariant vectors in V3: Let Ai and
Bi be two covariant vectors of a V3. Then the product

εijkAjBk = Ci (say),

a tensor of type (1, 0), i.e. a covariant vector, is called the vector product or cross
product of the vectors Ai and Bi. Now,

Ci = εijkAjBk =
1
√
g
eijkAjBk. (3.33)

This Eq. (3.33) can be written in the component form as

C1 =
1
√
g
e123A2B3 +

1
√
g
e132A3B2 =

1
√
g
(A2B3 −A3B2);

C2 =
1
√
g
e231A3B1 +

1
√
g
e213A1B3 =

1
√
g
(A3B1 −A1B3);

C3 =
1
√
g
e312A1B2 +

1
√
g
e321A2B1 =

1
√
g
(A1B2 −A2B1).

Thus, the components of the vector product of two covariant vectors Ai and Bj can
be written in the form

1
√
g
(A2B3 −A3B2);

1
√
g
(A3B1 −A1B3);

1
√
g
(A1B2 −A2B1)
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If Ai and Bi be the covariant components of the vectors
−→
A and

−→
B , then their vector

products, denoted by
−→
A ×

−→
B, is given by

−→
A ×

−→
B = εijkAjBk. Hence, in a V3

−→
A ×

−→
B =

[
1
√
g
(A2B3 −A3B2);

1
√
g
(A3B1 −A1B3);

1
√
g
(A1B2 −A2B1)

]
. (3.34)

EXAMPLE 3.3.9 Express Stokes’ theorem in tensor form.

Solution: Let S be an open, two-sided surface bounded by a closed, non-intersecting

simple closed curve C. If −→A has continuous derivatives,∮
C

−→
A · d−→r =

∫ ∫
S

(
∇×

−→
A
)
· n̂ds =

∫ ∫
S

(
∇×

−→
A
)
· d−→s ·

We consider the covariant derivative Ai,j of the vector Ai and from the contravariant

vector Bi = −εijkAj,k. We shall define the vector
−→
B to the curl of

−→
A. Also,(

∇×
−→
A
)
· n̂ = Biνi = −εijkAj,kνi.

Let dxp

ds be the unit tangent vector to the closed curve C and νp is the positive unit
normal to the surface S, which has C as a boundary. Then Stokes’ theorem can be
written in the form ∮

C
Ap
dxp

ds
ds = −

∫ ∫
S
εpqrAq,rνpds.

The integral
∮
C Apdx

p is called the circulation of
−→
A along the contour C.

3.4 Intrinsic Derivative

In Section 3.2, we have introduced covariant differentiation in a Riemannian space.
Such a concept is regarded as a generalisation of partial differentiation in Euclidean
space with orthogonal Cartesian co-ordinates. In this section, we introduce another
kind of differentiation of tensors, called intrinsic differentiation or absolute differenti-
ation, which is the generalisation of ordinary differentiation. Following McConnell we
will make free use of intrinsic differentiation in the treatment of geometry of curves
and surfaces.

Let C be a certain space curve described by the parametric equations in VN , a
Riemannian space as,

C : xi = xi(t); i = 1, 2, . . . , N, (3.35)

where xi(t) are N functions of a single parameter t, which obey certain continuity con-
dition. In general, it will be sufficient that derivatives exist up to any order required.
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Let A
i1i2...ip
j1j2...jq

be a tensor field of type (p, q) defined on the points of C, i.e. whose
components are continuous functions of the parameter t along C. Then the covariant
derivative of this tensor is given by

A
i1i2...ip
j1j2...jq ,k

=
∂

∂xk
A
i1i2...ip
j1j2...jq

+A
αi2...ip
j1j2...jq

{
i1
α k

}
+ · · ·+Ai1i2...αj1j2...jq

{
ip
α k

}
−Ai1i2...ipβj2...jq

{
β

j1 k

}
− · · · −A

i1i2...ip
j1j2...jq−1β

{
β

jp k

}
. (3.36)

This is the generalisation of the directional derivative of the classical theory of vec-

tors. For an Euclidean space with orthogonal Cartesian co-ordinates

{
i
j k

}
= 0, so

Eq. (3.36) becomes

A
i1i2...ip
j1j2...jq ,k

=
∂

∂xk
A
i1i2...ip
j1j2...jq

. (3.37)

Let
dxk

dt
be the tangent vector of the curve C, then the absolute or intrinsic derivative

of such a tensor with respect to t, along the curve C, denoted by δ
δtA

i1i2...ip
j1j2...jq

is defined
by

δ

δt
A
i1i2...ip
j1j2...jq

= A
i1i2...ip
j1j2...jq ,k

dxk

dt
, (3.38)

where (, ) denotes the covariant differentiation. Since A
i1i2...ip
j1j2...jq ,k

is a tensor and dxk is

a tensor (and hence dxk

dt is a tensor), it follows from the quotient law that the intrinsic
derivative defined by Eq. (3.38) is a tensor. Accordingly, the intrinsic derivative of a
tensor is a tensor of the same order and type as the original tensor.

Using Eqs. (3.38) and (3.19), the absolute or intrinsic derivative of a tensor of
type (1, 0) with components Ai along C is given by

δAi

δt
= Ai,k

dxk

dt
=

[
∂Ai

∂xk
+Am

{
i

m k

}]
dxk

dt

=
dAi

dt
+Am

{
i

m k

}
dxk

dt
. (3.39)

Similarly, the absolute or intrinsic derivative of a tensor of type (0, 1) with components
Ai along C is given by

δAi
δt

= Ai,k
dxk

dt
=
dAi
dt

−Am

{
m
i k

}
dxk

dt
. (3.40)
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Equations (3.39) and (3.40) are also sometimes written in the differential form

δAi = dAi +

{
i
k j

}
Ajdxk; δAi = dAi −

{
j
k i

}
Ajdx

k. (3.41)

From the definition of intrinsic derivatives, it follows that the familiar rules for
differentiation of sums, products, etc., remain valid for the process of intrinsic differ-
entiation. Intrinsic derivatives to tensors of rank greater than one is defined as

δAijk
δt

≡
dAijk
dt

+

{
i

α β

}
Aαjk

dxβ

dt
−
{

α
j β

}
Aiαk

dxβ

dt
−
{

α
k β

}
Aijα

dxβ

dt
. (3.42)

Intrinsic derivatives of higher order are easily defined. For example,

δ2Aij
δt2

=
δ

δt

(
δAij
δt

)
=

(
Aij,k

dxk

dt

)
,l

dxl

dt
. (3.43)

In general, intrinsic differentiation is not commutative. The intrinsic differentiation is
useful in the study of differential geometry of curves and surfaces due to the fact that
this differentiation of a tensor produces again a tensor.

Result 3.4.1 Let I(xi) is a scalar field, so that I = I(t) along the curve C. So I is
an invariant. The intrinsic derivative of I along C is given by

δI

δt
= I,k

dxk

dt
=

∂I

∂xk
dxk

dt
=
dI

dt
,

which is invariant. That is the intrinsic derivative of scalar field or invariant coincides
with the ordinary derivative along the curve C.

Result 3.4.2 Using Eq. (3.38), the intrinsic derivative along the curve C of the fun-
damental tensors gij is given by

δ

δt
gij = gij,k

dxk

dt
= 0; as gij,k = 0

and
δ

δt
gij = gij,k

dxk

dt
= 0; as gij,k = 0.

The intrinsic derivative of the Kronecker delta is given by

δ

δt
δij = δij,k

dxk

dt
= 0.

Thus, the intrinsic derivatives along any curves of the fundamental tensors and the
Kronecker delta are zero. Since

δgij
δt = 0, the fundamental tensors gij and gij can be

taken outside the sign of intrinsic differentiation.
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Result 3.4.3 Uniqueness of the intrinsic derivative: The tensor derivative
from a given tensor Ai that coincides with the ordinary derivative dAi

dt along some
curve C in a rectangular co-ordinate system is the absolute derivative of Ai along that
curve C.

EXAMPLE 3.4.1 If Ai is a vector field defined along a curve such that δAi

δt = 0,

show that δAi
δt = 0, where Ai is the associate to Ai.

Solution: If Ai is the associate to the contravariant vector Ai, then by definition,
Aj = gijA

i. Now, the intrinsic derivative of Ai is given by

δAj
δt

=
δ

δt

(
gijA

i
)
=
δgij
δt

Ai + gij
δAi

δt

= 0Ai + gij0 = 0; as
δgij
δt

= 0.

EXAMPLE 3.4.2 If the intrinsic derivative of a non-null vector Ai along a curve Γ
vanishes at all points of Γ, show that the magnitude of Ai is constant along Γ.

Solution: By the given condition, we have δAi

δt = 0. Now,

δ

δt

(
gijA

iAj
)
=

(
δ

δt
gij

)
AiAj + gij

(
δ

δt
AiAj

)
= 0 + gij

(
δAi

δt
Aj +Ai

δAj
δt

)
= 0; as

δgij
δt

= 0;
δAi

δt
= 0.

From the relation it follows that gijA
iAj , the square of the magnitude of the vector

Ai, is constant along the curve. In other words, the magnitude of the vector Ai is
constant along the curve.

EXAMPLE 3.4.3 Show that

d

dt

(
gijA

iAj
)
= 2gijA

i δA
j

δt
.

Solution: Since gijA
iAj is an invariant, we have

d

dt

(
gijA

iAj
)
=

δ

δt

(
gijA

iAj
)
=

δ

δt
gij
(
AiAj

)
+ gij

δ

δt

(
AiAj

)
= 0

(
AiAj

)
+ gij

(
δAi

δt
Aj +Ai

δAj

δt

)
; as

δgij
δt

= 0

= gij
δAi

δt
Aj + gjiA

j δA
i

δt

= gij
δAi

δt
Aj + gijA

j δA
i

δt
= 2gijA

i δA
j

δt
.
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EXAMPLE 3.4.4 Show that intrinsic differentiation of the product of two or more
tensors satisfies the distributive law, i.e.

d

dt

(
gijA

iBj
)
= gij

δAi

δt
Bj + gijA

i δB
j

δt
.

Hence show that

d

dt

(
AiBi

)
=
δAi

δt
Bi +Ai

δBi
δt

.

Solution: Since gijA
iBj is a scalar, its ordinary derivative with respect to t is its

intrinsic derivative. Thus,

d

dt

(
gijA

iBj
)
=

δ

δt

(
gijA

iBj
)
=

δ

δt
gij
(
AiBj

)
+ gij

δ

δt

(
AiBj

)
= 0

(
AiBj

)
+ gij

(
δAi

δt
Bj +Ai

δBj

δt

)
; as

δgij
δt

= 0

= gij
δAi

δt
Bj + gjiA

i δB
j

δt
= gij

δAi

δt
Bj + gijA

i δB
j

δt

= gij
δAi

δt
Bj + gijA

i δB
j

δt
.

According to the definition of associate vector, we have, gijB
j = Bi. Thus, the expres-

sion becomes

d

dt

(
AiBi

)
=
δAi

δt
Bi +Ai

δBi
δt

as required. This is the distributive law of intrinsic derivative.

EXAMPLE 3.4.5 Show that

δ

δt

(
dxi

dt

)
=
d2xi

dt2
+

{
i

j k

}
dxj

dt

dxk

dt
.

Solution: We know dxi

dt are the components of a contravariant vector. According to
definition (3.38), we have

δ

δt

(
dxi

dt

)
=

(
dxi

dt

)
,k

(
dxk

dt

)
=

[
∂

∂xk

(
dxi

dt

)
+

{
i
j k

}
dxj

dt

]
dxk

dt

=
∂

∂xk

(
dxi

dt

)
dxk

dt
+

{
i
j k

}
dxj

dt

dxk

dt

=
d2xi

dt2
+

{
i
j k

}
dxj

dt

dxk

dt
.
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EXAMPLE 3.4.6 Find the expression of acceleration for the particle.

Solution: Let a particle moves along a curve xk = xk(t), where t is the parameter

time t. In the co-ordinate system xk, the velocity at any point has components dxk

dt .
In rectangular co-ordinates, the acceleration vector of a particle is the time derivative
of its velocity vector, or the second time derivative of its position xk(t) as

ak =
dvk

dt
=

d

dt

(
dx

dt

)
=
d2xk

dt2
.

The length of this vector at time t is the instantaneous acceleration of the particle

a =
√
gijaiaj .

It is not in general a tensor and so cannot represent the physical quantity in all co-
ordinate systems. Since vk = dxk

dt is a covariant tensor, we define the acceleration ak

as the intrinsic derivative of the velocity. Since derivatives are taken along the particle
trajectory, the natural generalisation of ak is

ak =
δvk

δt
=
dvk

dt
+

{
k
q p

}
vp
dxq

dt

=
d2xk

dt2
+

{
k
p q

}
dxp

dt

dxq

dt
.

Thus, ak = δvk

δt is a covariant tensor of rank 1 and a =
√

|δijaiaj |.

EXAMPLE 3.4.7 A particle is in motion along the circular is given perimetrically
in spherical co-ordinates by x1 = b, x2 = π

4 , x
3 = ωt, t = time. Find the acceleration.

Solution: The metric components along the circle are g11 = 1; g22 = (x1)2 = b2; g33 =

(x1)2 sin2 x2 = b2

2 . For the given problem, the non-vanishing Christoffel symbols are,

{
1

2 2

}
= −x1 = b;

{
1

3 3

}
= −x1 sin2 x2 = − b

2{
2

1 2

}
=

1

x1
=

1

b
;

{
2

3 3

}
= − sinx2 cosx2 = −1

2{
3

1 3

}
=

1

x1
=

1

b
;

{
3

2 3

}
= cotx2 = 1.
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Therefore, the components of acceleration are

a1 =
d2x1

dt2
+

{
1
p q

}
dxp

dt

dxq

dt

= 0 +

{
1

2 2

}(
dx2

dt

)2

+

{
1

3 3

}(
dx3

dt

)2

= −bω
2

2
.

a2 =
d2x2

dt2
+

{
2
p q

}
dxp

dt

dxq

dt

= 0 + 2

{
2

1 2

}
dx1

dt

dx2

dt
+

{
2

3 3

}(
dx3

dt

)2

= −ω
2

2
.

a3 =
d2x2

dt2
+

{
3
p q

}
dxp

dt

dxq

dt

= 0 + 2

{
3

1 3

}
dx1

dt

dx3

dt
+ 2

{
3

2 3

}
dx2

dt

dx3

dt
= 0.

The length of this vector at time t is the instantaneous acceleration of the particle

a =
√
gijaiaj =

bω2

√
2
.

3.5 Exercises

1. Show that, if gij = 0 for i ̸= j, then

{
k
i j

}
= 0 whenever i, j and k are distinct.

2. Show that, if gij = 0 for i ̸= j, then{
i
i i

}
=

1

2

∂

∂xi
log gii;

{
i
i j

}
=

1

2

∂

∂xj
log gij ;

{
i
j j

}
= − 1

2gii

∂gjj
∂xi

,

where we suspend the summation convention and suppose that i ̸= j.

3. Calculate the Christoffel symbols in rectangular co-ordinates.

4. Surface of a sphere in two-dimensional Riemannian space is given by

ds2 = (x1)2(dx2)2 + (x1)2 sin2 x2(dx3)2.

Compute the Christoffel symbols of first and second kinds.

5. Calculate the non-zero Christoffel symbols corresponding to the metric

(i) ds2 = (dx1)2 +
[
(x2)2 − (x1)2

]
(dx2)2.

(ii) ds2 = (dx1)2 +G(x1, x2)(dx2)2.
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(iii) ds2 = (dx1)2 + f(x1, x2)(dx2)2 + (dx3)2.

(iv) ds2 = −a(dx1)2 − b(dx2)2 − c(dx3)2 + d(dx4)2.

(v) ds2 =
[
(x1)2 + (x2)2

]
{(dx1)2 + (dx2)2}+ (dx3)2.

(vi) ds2 =
[
(y1)2 + (y2)2

]
{(dy1)2 + (dy2)2}+ (y1y2)2(dy3)2.

(vii) ds2 = a2
[
(sinh y1)2 + (sin y2)2

]
{(dy1)2 + (dy2)2}+ (dy3)2.

(viii) ds2 = f(u, v)(du)2 + h(u, v)(dv)2.

(ix) ds2 = −e−λdr2 − r2dθ2 − r2sin2θdϕ2 + eµdt2.

6. If Apq is a symmetric tensor, show that, Aqm[iq,m] = 1
2A

qm ∂gqm
∂xi

.

7. If gij ̸= 0, show that

gαβ
∂

∂xj

{
β
i k

}
=

∂

∂xj
[ik, α]−

{
β
i k

}
([βj, α] + [αj, β]) .

8. If yi = aijx
j is a transformation from a set of orthogonal Cartesian variables yi

to a set of oblique Cartesian co-ordinates xi covering E3, what are the metric
coefficients gij in ds

2 = gijdx
idxj?

9. If yi are rectangular Cartesian co-ordinates and xi are curvilinear co-ordinates,

prove that the Christoffel symbols of the second kind

{
i
j k

}
are given by{

i
j k

}
=

∂2yp

∂xj∂xk
∂xi

∂yp
.

10. (a) Show that for affine transformation of co-ordinates xi = aipx
p + bi; i, p =

1, 2, . . . , N the Christoffel symbols possess tensor character.

(b) How do the Christoffel symbols of the first and the second kinds transform
under co-ordinate transformations?

11. If Apqr is a skew-symmetric tensor, then show that

Apqr
{

l
p q

}
= Apqr

{
l
q r

}
= Apqr

{
l
p r

}
= 0.

12. If Γmnp =

{
m
n p

}
+ 2δmn Ak; where Ak is a covariant vector, then show that

gtnΓ
t
mp + gtmΓ

t
np − 4gmnAk =

∂gmn
∂xk

.

13. If Ai are the components of a covariant vector, then show that

{
i
j k

}
+ 2δijAk

are not components of a tensor.

14. Show that

∂2xr

∂xk∂xl
=

{
i
k l

}
∂xr

∂xi
−
{

r
s t

}
∂xs

∂xk
∂xt

∂xl
.
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15. Prove that the following expressions are tensors

(i) Aij,k =
∂Aij

∂xk
+

{
i

α k

}
Aαj +

{
j

α k

}
Aiα.

(ii) Aij,k =
∂Ai

j

∂xk
−
{

α
j k

}
Aiα +

{
i

α k

}
Aαj .

(iii) Aij,k =
∂Aij

∂xk
−
{

α
i k

}
Aαj +

{
α
j k

}
Aiα.

(iv) Arijk,l =
∂Ar

ijk

∂xl
−
{
α
i l

}
Arαjk +

{
α
j l

}
Ariαk −

{
α
k l

}
Arijα +

{
r
α l

}
Aαijk.

16. Prove that the covariant derivative with respect to xq of

(a) the tensor Ajkl is

Ajkl,q =
∂Ajkl
∂xq

−
{
α
l q

}
Ajkα +

{
j
q α

}
Aαkl +

{
k
q α

}
Ajαl .

(b) the tensor Ajklm is

Ajklm,q =
∂Ajklm
∂xq

−
{
α
l q

}
Ajkαm −

{
α

m q

}
Ajklα +

{
j
q α

}
Aαklm +

{
k
q α

}
Ajαlm.

(c) the tensor Ajklm is

Ajklm,q =
∂Ajklm

∂xq
−
{

α
m q

}
Ajklα +

{
j
q α

}
Aαklm +

{
k
q α

}
Ajαlm +

{
l

q α

}
Ajkαm .

(d) the tensor Ajklmn is

Ajklmn,q =
∂Ajklmn
∂xq

−
{
α
l q

}
Ajkαmn −

{
α

m q

}
Ajklαn −

{
α
n q

}
Ajklmα

+

{
j
q α

}
Aαklmn +

{
k
q α

}
Ajαlmn.

17. If A is the magnitude of Ai, show that A,j =
1
A

(
Ai,jA

i
)
.

18. Find covariant derivative of (a) gjkA
k (b) AjBk and (c) δjkAj with respect to xq.

19. Prove that the covariant derivative of an arbitrary tensor is a tensor of which
the covariant order exceeds that of the original tensor by exactly one.

20. (a) Prove that a

{
k
i j

}
− b

{
k
i j

}
are components of a tensor of rank 3, where

the two Christoffel symbols formed from the symmetric tensors aij(x) and
bij(x).
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(b) Prove that in the covariant derivative of a contravariant vector, the order
is increased by one covariantly.

21. If aij is a skew-symmetric tensor, show that aij,k is skew-symmetric in the indices
i and j.

22. If Aij is a skew-symmetric tensor such that Aij,k = Aik,j , prove that Aij,k = 0.

23. Prove that,

∂

∂xk

(√
ggjk

)
+

√
g

{
i

k m

}
gkm = 0.

24. Prove that

Aij,j =
1
√
g

∂

∂xj
(
Aij

√
g
)
+Ajk

{
i
j k

}
,

where Aij is a tensor of type (2, 0). What will happen, if Aij is skew-symmetric?

25. If Aij is a symmetric tensor and Aji = Ajkgik, prove that

Aji,j =
1
√
g

∂

∂xj

(
Aji

√
g
)
− 1

2
Ajk

∂

∂xi
gjk.

26. Show that the operation of raising or lowering of indices can be performed either
before or after covariant differentiation.

27. IfAij is a symmetric tensor such that Aij,k = Aik,j , show thatAij,k is a symmetric
tensor.

28. Prove that Aji,j =
1√
g
∂
∂xj

(
Aji

√
g
)
+Ajk

{
k
i j

}
.

29. If curl of a covariant vector Ai vanishes identically, then Ai is gradient.

30. If Aij is the curl of a covariant vector, show that Aij,k +Ajk,i +Aki,j = 0. Show
further that this expression is equivalent to

∂Aij
∂xk

+
∂Ajk
∂xi

+
∂Aki
∂xj

= 0.

31. (a) If Aij = Bi,j −Bj,i, prove that Aij,k +Ajk,i +Aki,j = 0.

(b) If Aij is an antisymmetric tensor, show that Aij,k +Ajk,i+Aki,j is a tensor
which is antisymmetric is any pair of indices.

32. If Apq is a skew-symmetric tensor, show that Apq,p = 1√
g

∂
∂xp

(√
gApq

)
.

33. If Aijk is a skew-symmetric tensor, show that 1√
g

∂
∂xk

(√
gAijk

)
is a tensor.

34. Let A and B be two arbitrary vectors and ϕ, ψ are scalar functions. Then show
that
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(i) curl (A+B) = curlA+ curlB.

(ii) grad (ϕψ) = ϕ gradψ + ψ gradϕ

(iii) ∇2(ϕψ) = ϕ∇2ψ + ψ∇2ϕ+ 2∇ϕ∇ψ.
(iv) curl(ϕA) = ϕ curl A+A×∇ϕ.

35. If Ai is a vector field along a curve such that δAi

δt = 0, show that δAi
δt is also zero.

36. Prove that in co-ordinate systems in which the gij are constants, absolute dif-
ferentiation reduces to ordinary differentiation.

37. If Ai = gijA
j , show that Aj,k = giαA

α
,k.

38. Show that

∂

∂xk
(
gijA

iBj
)
= Ai,kB

i +AiBi,k.

39. Prove that if A is the magnitude of Ai, then A,j = Ai,jA
i/A.

40. (a) The velocity vector field of a fluid in motion in a plane is vi = (x, 2y) is
Cartesian co-ordinates. Find its covariant derivative in polar co-ordinates.

(b) Find the intrinsic derivative of this vector field along the spiral r = aθ +
b; a > 0, b > 0.

41. Prove in general that intrinsic differentiation of the product of two or more
tensors satisfies the distributive law.

42. Find the Christoffel symbols of:

(i) A surface of revolution represented in the form x(u1, u2) = (u2 cosu1, u2 sinu1,
h(u2)).

(ii) A surface represented in the form x3 = F (x1, x2).



Chapter 4

Riemannian Geometry

The covariant derivative of a tensor, in general, is a tensor. If the resulting tensor is
again subjected to covariant differentiation, then we again get a tensor. This tensor
obtained after two operations is called the second covariant derivative of the origi-
nal tensor. The tensor obtained by covariant differentiation of the second covariant
derivative is called the third covariant derivative of the original tensor and so on.

In case of an invariant, the operation of covariant differentiation is commutative.
But for a tensor of order greater than or equal to one the operation is not, however,
commutative. This is due to the peculiarity of the environment in which the operation
is undertaken, namely Riemannian space.

The characteristic peculiarity of such a space consists in a certain tensor is called
the curvature tensor whose components can be expressed with the help of the compo-
nents of the fundamental tensors. The following discussion will show why the operation
of covariant differentiation is not, in general, commutative in a Riemannian space and
will reveal the role played by the curvature tensor in this matter.

4.1 Riemann–Christoffel Tensor

Here, we will investigate the commutative problem with respect to covariant differ-
entiation. Let Bi be an arbitrary covariant vector, then its covariant derivative with
respect to xj is given by

Bi,j =
∂Bi
∂xj

−
{
α
i j

}
Bα, (4.1)

which is a covariant tensor of rank 2. Further differentiating covariantly Bi,j with
respect to xk, we get

(Bi,j),k = Bi,jk =
∂Bi,j
∂xk

−
{

α
i k

}
Bα,j −

{
α
j k

}
Bi,α (4.2)

204
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and is known as the second covariant derivative of the given covariant vector. Using
Eq. (4.1), we get

Bi,jk =
∂

∂xk

[
∂Bi
∂xj

−
{
α
i j

}
Bα

]
−
[
∂Bα
∂xj

−
{

β
α j

}
Bβ

]{
α
i k

}
−
[
∂Bi
∂xα

−
{

β
i α

}
Bβ

]{
α
j k

}
=

∂2Bi
∂xj∂xk

−
{
α
i j

}
∂Bα
∂xk

−
{

α
i k

}
∂Bα
∂xj

−
{

α
j k

}
∂Bi
∂xα

−Bα
∂

∂xk

{
α
i j

}
+Bβ

{
β
α j

}{
α
i k

}
+Bβ

{
β
i α

}{
α
j k

}
.

Interchanging the dummy indices α and β in last two terms, we get

=
∂2Bi
∂xj∂xk

−
{
α
i j

}
∂Bα
∂xk

−
{

α
i k

}
∂Bα
∂xj

−
{

α
j k

}
∂Bi
∂xα

−Bα
∂

∂xk

{
α
i j

}
+Bα

{
α
β j

}{
β
i k

}
+Bα

{
α
i β

}{
β
j k

}
. (4.3)

Interchanging j and k in Eq. (4.3), we have

Bi,kj =
∂2Bi
∂xk∂xj

−
{

α
i k

}
∂Bα
∂xj

−
{
α
i j

}
∂Bα
∂xk

−
{

α
k j

}
∂Bi
∂xα

−Bα
∂

∂xj

{
α
i k

}
+Bα

{
α
β k

}{
β
i j

}
+Bα

{
α
i β

}{
β
k j

}
. (4.4)

Subtracting Eq. (4.4) from Eq. (4.3), we get

Bi,jk −Bi,kj =

[
− ∂

∂xk

{
α
i j

}
+

∂

∂xj

{
α
i k

}
+

{
α
β j

}{
β
i k

}
−
{

α
β k

}{
β
i j

}]
Bα. (4.5)

This shows that the covariant differentiation is not commutative in a non-Euclidean
space. Since Bi is an arbitrary covariant vector, it follows from the quotient law that
the expression in the square brackets of Eq. (4.5) is a mixed tensor of the fourth order,
contravariant order one and covariant order three. If we write, N4 components Rαijk as
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Rαijk = − ∂

∂xk

{
α
i j

}
+

∂

∂xj

{
α
i k

}
+

{
α
β j

}{
β
i k

}
−
{

α
β k

}{
β
i j

}
(4.6)

=

∣∣∣∣∣∣∣∣
∂

∂xj
∂

∂xk{
α
i j

} {
α
i k

}
∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣

{
α
β j

} {
α
β k

}
{
β
i j

} {
β
i k

}
∣∣∣∣∣∣∣∣∣ , (4.7)

then Eq. (4.5) can be written in the form

Bi,jk −Bi,kj = BαR
α
ijk. (4.8)

Since Bi,jk is a tensor of third order, so the left-hand side of Eq. (4.8) is a covariant
tensor of rank 3. But Bα is an arbitrary vector and hence, it follows from quotient
law that Rαijk, of the type (1, 3) is a mixed tensor of order four.

The tensor Rαijk is called Riemann–Christoffel tensor of the second kind or the cur-
vature tensor of the Riemannian space. The symbols Rαijk are referred to as Riemann’s
symbol of the second kind. It is formed exclusively from the fundamental tensor gij
and its derivatives up to and including the second order. This tensor does not depend
on the choice of the vector Bi.

Property 4.1.1 The necessary and sufficient condition that the covariant differentia-
tion of all vectors be commutative is that the Riemann tensor Rαijk vanishes identically.

Proof: If the left-hand side of Eq. (4.8) is to vanish, i.e. the order of covariant differ-
entiation is to be immaterial, then Rαijk = 0. Since Bi is arbitrary, in general Rαijk ̸= 0,
so that the order of covariant differentiation is no immaterial. Thus, it is clear from
Eq. (4.8) that the necessary and sufficient condition for the validity of inversion of the
order of covariant differentiation is that the tensor Rαijk vanishes identically.

Property 4.1.2 The Riemann–Christoffel curvature tensor Rαijk is skew-symmetric
with respect to the indices j and k.

Proof: The Riemann–Christoffel curvature tensor Rαijk is given by Eq. (4.6). Inter-
changing j and k, in the expression for Rαijk, we get

Rαikj = − ∂

∂xj

{
α
i k

}
+

∂

∂xk

{
α
i j

}
+

{
α
β k

}{
β
i j

}
−
{

α
β j

}{
β
i k

}
.

= −
[
∂

∂xj

{
α
i k

}
− ∂

∂xk

{
α
i j

}
+

{
α
β j

}{
β
i k

}
−
{

α
β k

}{
β
i j

}]
= −Rαijk.

This shows that the Riemann–Christoffel curvature tensor Rαijk is skew-symmetric with
respect to the indices j and k.
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Property 4.1.3 The curvature tensor Rαijk satisfies cyclic property, i.e.

Rαijk +Rαjki +Rαkij = 0; i.e. Rα[ijk] = 0.

Proof: The Riemannian curvature tensor Rαijk is given by Eq. (4.6). Taking the sum
of this and two similar equations obtained by cyclic permutation of i, j, k we obtain

Rα[ijk] = Rαijk +Rαjki +Rαkij

= − ∂

∂xk

{
α
i j

}
+

∂

∂xj

{
α
i k

}
+

{
α
β j

}{
β
i k

}
−
{

α
β k

}{
β
i j

}
− ∂

∂xi

{
α
j k

}
+

∂

∂xk

{
α
j i

}
+

{
α
β k

}{
β
j i

}
−
{

α
β i

}{
β
j k

}
− ∂

∂xj

{
α
k i

}
+

∂

∂xi

{
α
k j

}
+

{
α
β i

}{
β
k j

}
−
{

α
β j

}{
β
k i

}
= 0; as

{
α
i j

}
=

{
α
j i

}
, etc.

Hence, the cyclic property is established. Thus, if contravariant index α of the tensor
Rαijk is held fixed while the remaining three indices are cyclically permuted and the
components added, the result is zero.

Property 4.1.4 The Riemann–Christoffel curvature tensor of the second kind can
be contracted in two ways: one of these leads to a zero tensor and the other to a
symmetric tensor.

Proof: Starting from the curvature tensor Rαijk, we get the three different contracted
tensors Rααjk, R

α
iαk and Rαijα by contracting two indices. From Eq. (4.6), we have

Rααjk = − ∂

∂xk

{
α
α j

}
+

∂

∂xj

{
α
α k

}
+

{
α
β j

}{
β
α k

}
−
{

α
β k

}{
β
α j

}
= − ∂

∂xk

[
∂

∂xj
(log

√
g)

]
+

∂

∂xj

[
∂

∂xk
(log

√
g)

]
+

{
α
β k

}{
β
α j

}
−
{

α
β k

}{
β
α j

}
= − ∂2

∂xk∂xj
(log

√
g) +

∂2

∂xj∂xk
(log

√
g) = 0.
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Thus, contraction of Rαijk with respect to the suffixes α and i leads to a zero tensor.
Using the skew-symmetric property, we have Rαiαk = −Rαikα. Lastly,

Rαijα =
∂

∂xj

{
α
i α

}
− ∂

∂xα

{
α
i j

}
+

{
α
β j

}{
β
i α

}
−
{

α
β α

}{
β
i j

}
=

∂

∂xj

[
∂

∂xi
(log

√
g)

]
− ∂

∂xα

{
α
i j

}
+

{
α
β j

}{
β
α i

}
−
{

α
β α

}{
β
j i

}
, (4.9)

which is not identically zero. Thus, of the three contracted tensors the last one only
needs consideration, because the second one is the negative of the last and the first
one is identically zero. The contracted tensor Rαijα is not identically zero.

4.1.1 Ricci Tensor

The Riemann–Christoffel tensor Rαijk can be contracted in three ways with respect to
α and any one of its lower indices, i.e. Rααjk, R

α
iαk and Rαijα. The contracted tensor

Rαijα, which is not identically zero is called the Ricci tensor of the first kind and its
components are denoted by Rij . Now, using Eq. (4.9) and write Rij = Rαijα, the Ricci
tensor of the first kind is defined by

Rij =
∂2

∂xj∂xi
(log

√
g)− ∂

∂xα

{
α
i j

}
+

{
α
β j

}{
β
α i

}
−
{

α
β α

}{
β
j i

}
, (4.10)

which is a tensor of the type (0, 2), plays an important role in Einstein’s theory of
gravitation. From Eq. (4.10) it follows that:

Rji = Rαjiα =
∂2

∂xi∂xj
(log

√
g)− ∂

∂xα

{
α
j i

}
+

{
α
β i

}{
β
α j

}
−
{

α
β α

}{
β
i j

}
=

∂2

∂xj∂xi
(log

√
g)− ∂

∂xα

{
α
i j

}
+

{
α
β j

}{
β
α i

}
−
{

α
β α

}{
β
j i

}
= Rij ,

where we will replace the dummy indices β and α in the third term of the right-hand

side by α and β, respectively, and

{
α
i j

}
=

{
α
j i

}
, etc. Thus,

Rji = Rαjiα = Rαijα = Rij .

This shows that the Ricci tensor Rij is symmetric. Also,

Rαiαk = −Rαikα −Rik and Rααjk = 0.
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The Ricci tensor of the second kind Rij is given by

Rij = giαRαj . (4.11)

The scalar curvature or curvature invariant R is defined by

R = Rii = giαRαi (4.12)

EXAMPLE 4.1.1 Find the scalar curvature of a sphere in E3 with constant
radius a.

Solution: In E3 the line element of a sphere of constant radius a can be taken in
spherical polar co-ordinates as

ds2 = a2(dx1)2 + a2 sin2 x1(dx2)2.

For the given metric, we have g11 = a2; g12 = 0 = g21; g22 = a2 sin2 x1. Since g =
a4 sin2 x1, so the reciprocal tensors gij are given by

g11 =
1

a2
; g12 = 0 = g21; g22 =

1

a2 sin2 x1
.

The non-vanishing Christoffel symbols of second kind are{
1

2 2

}
= − sinx1 cosx1;

{
2

1 2

}
=

{
2

2 1

}
= cotx1.

Using formula Eq. (4.10), the Ricci tensors of first kind are given by

R11 =
∂2

(∂x1)2
(log

√
g)− ∂

∂xα

{
α
1 1

}
+

{
α
β 1

}{
β
α 1

}
−
{

α
β α

}{
β
1 1

}

= −cosec2x1 +

{
2

2 1

}{
2

2 1

}
= −cosec2x1 + cot2 x1 = −1.

R22 =
∂2

(∂x2)2
(log

√
g)− ∂

∂xα

{
α
2 2

}
+

{
α
β 2

}{
β
α 2

}
−
{

α
β α

}{
β
2 2

}

= cos 2x1 +

{
1

2 2

}{
1

1 2

}
+

{
1

2 2

}{
2

1 2

}
+

{
2

1 2

}{
1

2 2

}

−
{

2
1 2

}{
1

2 2

}
= − sin2 x1.

Therefore, the scalar curvature R is given by Eq. (4.12) as

R = g11R11 + g22R22 =
1

a2
· (−1) +

1

a2 sin2 x1
· (− sin2 x1) = − 2

a2
.
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Hence, the required scalar curvature = − 2
a2
. Using Eq. (4.6), the Riemannian curvature

tensors Rαijk can be written as

R1
212 = − ∂

∂x2

{
1

2 1

}
+

∂

∂x1

{
1

2 2

}
+

{
1
β 1

}{
β
2 2

}
−
{

1
β 2

}{
β
2 1

}
.

=
∂

∂x1

{
1

2 2

}
−
{

1
2 2

}{
2

2 1

}
= sin2 x1.

R2
212 = − ∂

∂x2

{
2

2 1

}
+

∂

∂x1

{
2

2 2

}
+

{
2
β 1

}{
β
2 2

}
−
{

2
β 2

}{
β
2 1

}
= 0.

The only non-vanishing covariant curvature tensor is given by

R1212 = g1αR
α
212 = g11R

1
212 + g12R

2
212 = g11R

1
212 = a2 sin2 x1.

Thus, the Riemannian curvature κ given by

κ =
R1212

g
=
R1212

g11g22
=
a2 sin2 x1

a4 sin2 x1
=

1

a2
.

Thus, if κ and R are, respectively, the curvature and scalar curvature of a sphere of
constant radius a, then 2κ+R = 0.

4.1.2 Covariant Curvature Tensor

The completely covariant curvature tensor Rhijk of rank 4 is defined as

Rhijk = ghαR
α
ijk. (4.13)

The associated tensor Rhijk is referred to as the covariant Riemann–Christoffel tensor
or the Riemann–Christoffel tensor of the first kind. Now, we have

ghα
∂

∂xk

{
α
i j

}
=

∂

∂xk

[
ghα

∂

∂xk

{
α
i j

}]
−
{
α
i j

}
∂ghα
∂xk

=
∂

∂xk
[ij, h]−

{
α
i j

}
∂ghα
∂xk

and

ghα
∂

∂xj

{
α
i k

}
=

∂

∂xj
[ik, h]−

{
α
i k

}
∂ghα
∂xj

. (4.14)
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Therefore, using Eqs. (4.6) and (4.14), the expression for Rhijk as Eq. (4.13) becomes

Rhijk = ghα

[
− ∂

∂xk

{
α
i j

}
+

∂

∂xj

{
α
i k

}
+

{
α
β j

}{
β
i k

}
−
{

α
β k

}{
β
i j

}]

= − ∂

∂xk
[ij, h] +

{
α
i j

}
∂ghα
∂xk

+
∂

∂xj
[ik, h]−

{
α
i k

}
∂ghα
∂xj

+ghα

{
α
β j

}{
β
i k

}
− ghα

{
α
β k

}{
β
i j

}

= −1

2

∂

∂xk

(
∂gjh
∂xi

+
∂gih
∂xj

− ∂gij
∂xh

)
+

{
α
i j

}
([αk, h] + [hk, α])

+
1

2

∂

∂xj

(
∂gih
∂xk

+
∂ghk
∂xj

− ∂gik
∂xh

)
−
{

α
i k

}
([αj, h] + [hj, α])

+

{
β
i k

}
[βj, h]−

{
β
i j

}
[βk, h].

=
1

2

(
∂2gij
∂xh∂xk

+
∂2ghk
∂xi∂xj

−
∂2ghj
∂xi∂xk

− ∂2gik
∂xh∂xj

)
+

{
α
i k

}
[αj, h]−

{
α
i j

}
[αk, h].

=
1

2

(
∂2gij
∂xh∂xk

+
∂2ghk
∂xi∂xj

−
∂2ghj
∂xi∂xk

− ∂2gik
∂xh∂xj

)
+

{
α
i j

}
[hk, α]−

{
α
i k

}
[hj, α] (4.15)

=
1

2

(
∂2gij
∂xh∂xk

+
∂2ghk
∂xi∂xj

−
∂2ghj
∂xi∂xk

− ∂2gik
∂xh∂xj

)
+

{
α
i j

}{
β
h k

}
gαβ −

{
β
h j

}{
α
i k

}
gαβ . (4.16)

Therefore, Rhijk can also be written in the form

Rhijk = − ∂

∂xk
[ij, h] +

∂

∂xj
[ik, h] +

{
α
i j

}
[hk, α]− [hj, α]

{
α
i k

}

=

∣∣∣∣∣∣
∂

∂xj
∂

∂xk

[ij, h] [ik, h]

∣∣∣∣∣∣+
∣∣∣∣∣∣
{
α
i j

} {
α
i k

}
[hj, α] [hk, α]

∣∣∣∣∣∣ . (4.17)
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Using the property gijg
kj = δki and Eq. (4.13), the Ricci tensor of first kind can be

written as

Rij = Rαijα = gkhRihkj . (4.18)

Property 4.1.5 The covariant curvature tensor Rhijk is skew-symmetric with respect
to h, i and j, k; i.e.

Rhijk = −Rihjk and Rhijk = −Rhikj

and symmetric in two pairs of indices Rhijk = Rjkhi. We say that two components of
a curvature tensor are not distinct if they are equal or differ only by their signs.

Proof: We shall prove these properties one by one. Here, we use expression (4.15) for
the covariant curvature tensor Rhijk. Interchanging i and h, we get

Rihjk =
1

2

(
∂2ghj
∂xi∂xk

+
∂2gik
∂xh∂xj

− ∂2ghk
∂xi∂xj

− ∂2gij
∂xh∂xk

)
+

{
α
h j

}
[ik, α]−

{
α
h k

}
[ij, α]

= −1

2

(
∂2gij
∂xh∂xk

+
∂2ghk
∂xi∂xj

−
∂2ghj
∂xi∂xk

− ∂2gik
∂xh∂xj

)
+

{
β
h j

}{
α
i k

}
gαβ −

{
α
i j

}{
β
h k

}
gαβ ,

where we have interchanged the dummy indices α and β. Therefore, by using Eq. (4.15),
we have Rihjk = −Rhijk. Similarly, interchange j and k in Eq. (4.15) and proceed as
above, we get, Rhijk = −Rhikj . Interchanging h and j in Eq. (4.15), we get

Rjihk =
1

2

(
∂2gih
∂xj∂xk

+
∂2gjk
∂xi∂xh

−
∂2gjh
∂xi∂xk

− ∂2gik
∂xj∂xh

)
+

{
α
i h

}{
β
j k

}
gαβ −

{
β
j h

}{
α
i k

}
gαβ.

Now, interchanging k and i, we get

Rjkhi =
1

2

(
∂2gkh
∂xj∂xk

+
∂2gjk
∂xi∂xh

−
∂2gjh
∂xk∂xi

− ∂2gki
∂xj∂xh

)
+

{
α
k h

}{
β
j i

}
gαβ −

{
β
j h

}{
α
k i

}
gαβ.
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Interchanging the dummy indices α and β in the third term, we get

Rjkhi =
1

2

(
∂2gkh
∂xj∂xk

+
∂2gjk
∂xi∂xh

−
∂2gjh
∂xk∂xi

− ∂2gki
∂xj∂xh

)
+

{
α
i j

}{
β
h k

}
gαβ −

{
β
h j

}{
α
i k

}
gαβ = Rhijk.

This shows that, the curvature tensor Rhijk is symmetric in two pairs of indices.

Property 4.1.6 The covariant curvature tensor Rhijk satisfies cyclic property, i.e.

Rhijk +Rhjki +Rhkji = 0.

Proof: The covariant curvature tensor Rhijk is given by Eq. (4.16,) from which we get,

Rhjki =
1

2

(
∂2gjk
∂xh∂xi

+
∂2ghi
∂xj∂xk

− ∂2gji
∂xh∂xk

− ∂2ghk
∂xi∂xj

)

+

{
α
j k

}{
β
h i

}
gαβ −

{
α
j i

}{
β
h k

}
gαβ .

Rhkji =
1

2

(
∂2gki
∂xj∂xh

+
∂2gjh
∂xk∂xi

−
∂2gkj
∂xh∂xi

− ∂2ghi
∂xk∂xj

)

+

{
α
k i

}{
β
h j

}
gαβ −

{
α
k j

}{
β
h i

}
gαβ .

Taking the sum of the equations, we obtain Rhijk +Rhjki +Rhkji = 0. This property
of Rhijk is called cyclic property.

Property 4.1.7 The curvature tensor Rhijk satisfies the differential property

Rαijk,m +Rαikm,j +Rαimj,k = 0; i.e. Rhijk,l +Rhikl,j +Rhilj,k = 0.

Proof: Let us choose a system of geodesic co-ordinates with the pole at P0, then at
P0 Christoffel symbols vanish and first covariant derivative reduce to corresponding
ordinary partial derivatives, i.e. at P0,

[ki, j] = 0;

{
j
i k

}
= 0.

Differentiating Eq. (4.6) for the expression of Riemann–Christoffel symbol Rαijk, co-
variantly with respect to xm and then imposing condition of geodesic co-ordinates
with the pole at P0, we get

Rαijk,m =
∂

∂xm
(
Rαijk

)
= − ∂2

∂xm∂xk

{
α
i j

}
+

∂2

∂xm∂xj

{
α
i k

}
.
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Cyclic interchange of j, k and m gives us two relations

Rαikm,j = − ∂2

∂xj∂xm

{
α
i k

}
+

∂2

∂xj∂xk

{
α
i m

}
and

Rαimj,k = − ∂2

∂xk∂xj

{
α
i m

}
+

∂2

∂xk∂xm

{
α
i j

}
.

Taking the sum of the equations, we obtain

Rαijk,m +Rαikm,j +Rαimj,k = 0. (4.19)

Multiplying innerly Eq. (4.19) by ghα and summing over α, we get

Rhijk,l +Rhikl,j +Rhilj,k = 0. (4.20)

Now, each term of Eqs. (4.19) and (4.20) is a tensor. Therefore, Eqs. (4.19) and (4.20)
are tensorial equations, true at the pole P0 of the geodesic system of co-ordinates.
Thus, it holds for every co-ordinate system at pole. Further any point can be chosen
as a pole in the geodesic co-ordinate system. This means that these equations hold in
every co-ordinate system and at every points of space (since P0 is an arbitrary point
of VN ). They are, therefore, called Bianchi identities. Equations (4.19) and (4.20)
are, respectively, called Bianchi first identity and Bianchi second identity.

Property 4.1.8 The number of distinct non-vanishing components of the covariant
curvature tensor does not exceed 1

12N
2(N2−1) and that is independent from the rest.

Proof: Here, we have to show that the covariant curvature tensor Rhijk has 1
12N

2

(N2 − 1) distinct non-vanishing components. Now, the covariant curvature tensor
Rhijk satisfies four properties namely

(i) First skew-symmetry: Rhijk = −Rihjk,
(ii) Second skew-symmetry: Rhijk = −Rhikj ,
(iii) Block symmetry: Rhijk = Rjkih,

(iv) Cyclic property: Rhijk +Rhjki +Rhkij = 0.

Due to these properties all the N4 components of the tensor Rhijk of fourth order
are not independent. The following four cases may arise:
Case 1: When Rhijk is of the form Rhhhh. Here all the four indices are same. Now,
by skew-symmetric property, we observe

Rhhhh = −Rhhhh ⇒ 2Rhhhh = 0 ⇒ Rhhhh = 0.

Hence Rhhhh has no component.
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Case 2: When Rhijk is of the form Rhjhj . There are two distinct suffixes h and
j, where h, j = 1, 2, . . . , N . Now, the index j can be chosen in N different ways.
Then giving to j particular value, the index h can be given remaining (N − 1) values.
Hence, the number of ways in which h and j can be chosen are N(N − 1). But by
skew-symmetric property we have

Rhjhj = −Rjhhj or Rhjhj = Rjhjh,

i.e. by interchanging indices h and j, we have the same components. Thus, due to
this property, the number N(N − 1), is reduced to 1

2N(N − 1). Clearly by symmetric
property, there is no reduction. Also, by cyclic property there is no reduction since

Rhjhj + Rhhjj +Rhjjh = 0

⇒ −Rhjjh + 0 +Rhjjh = 0 ⇒ 0 = 0,

i.e. cyclic property is itself satisfied. Hence, in this case total number of distinct
non-vanishing components of Rhijk are 1

2N(N − 1).

Case 3: When Rhijk is of the form Rhihk. As in case 2, the indices h, i, k can be chosen
inN(N−1)(N−2) ways. Clearly due to skew-symmetric property there is no reduction
in number of components. Now, due to the symmetric property Rhihk = Rhkhi, the
number N(N − 1)(N − 2) reduced to N

2 (N − 1)(N − 2). Lastly by cyclic property, we
have

Rhihk + Rhhki +Rhkih = 0

⇒ Rhkhi + 0 +Rhkih = 0

⇒ −Rhkih + Rhkih = 0 ⇒ 0 = 0,

i.e. cyclic property is itself satisfied. Hence, there is no reduction due to cyclic property
also. Therefore, in this case, the total number of distinct non-vanishing components
of Rhijk are 1

2N(N − 1)(N − 2).

Case 4: When Rhijk has all the four distinct suffixes. The indices h, i, j, k can be
chosen in N(N − 1)(N − 2)(N − 3) ways. By skew-symmetric property, we have

Rhijk = −Rihjk = Rihkj and Rhijk = −Rhikj = Rihkj .

Therefore, the number N(N−1)(N−2)(N−3) is reduced to 1
22
N(N−1)(N−2)(N−3).

Due to the symmetric property Rhijk = Rjkhi, the number 1
22
N(N −1)(N −2)(N −3)

is reduced to 1
23
N(N − 1)(N − 2)(N − 3). Lastly, by cyclic property, we have

Rhijk + Rhjki +Rhkij = 0

⇒ Rhjki = −(Rhijk +Rhkij).
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Thus, there is a relation between three components and hence, two components are
independent out of three components. Hence, above number is reduced to

2

3
· 1

23
N(N − 1)(N − 2)(N − 3) =

1

12
N(N − 1)(N − 2)(N − 3),

which are the total number of distinct non-vanishing components of Rhijk.
Combining the above four cases, the total number of distinct non-vanishing com-

ponents of Rhijk are

= 0 +
1

2
N(N − 1) +

1

12
N(N − 1)(N − 2) +

1

12
N(N − 1)(N − 2)(N − 3)

=
1

12
N(N − 1) [6 + (N − 2)(N + 3)] =

1

12
N2(N2 − 1).

EXAMPLE 4.1.2 Calculate the components Rhijk of the Riemannian tensor for the
metric

ds2 = (dx1)2 − (x2)−2(dx2)2.

Solution: For the given metric, we have g11 = 1; g12 = 0 = g21; g22 = −(x2)−2. Since
g = −(x2)−2, so the reciprocal tensors gij are given by

g11 = 1; g12 = 0 = g21; g22 = (x2)2.

The only non-vanishing Christoffel symbols of second kind is

{
2

2 2

}
= −(x2)−1.

Using Eq. (4.6), the Riemannian curvature tensors Rαijk can be written as

R1
212 = − ∂

∂x2

{
1

2 1

}
+

∂

∂x1

{
1

2 2

}
+

{
1
β 1

}{
β
2 2

}
−
{

1
β 2

}{
β
2 1

}
= 0.

R2
212 = − ∂

∂x2

{
2

2 1

}
+

∂

∂x1

{
2

2 2

}
+

{
2
β 1

}{
β
2 2

}
−
{

2
β 2

}{
β
2 1

}
= 0.

Using Eq. (4.13), the only non-vanishing covariant curvature tensor is given by

R1212 = g1αR
α
212 = g11R

1
212 + g12R

2
212 = 0.

EXAMPLE 4.1.3 For the metric of spherical co-ordinates

ds2 =
(
dx1
)2

+
(
x1
)2 (

dx2
)2

+
(
x1
)2

sin2 x2
(
dx3
)2
.

Calculate the non-zero components of Rhijk, if any.

Solution: For N = 3, there are six potentially non-zero components
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(i) R1212, R1313, R2323

(ii) R1213, R1232(= R2123), R1323(= R3132).

The non-vanishing Christoffel symbols of second kind are{
1

2 2

}
= −x1;

{
1

3 3

}
= −x1 sin2 x2;

{
2

1 2

}
=

{
2

2 1

}
=

1

x1{
2

3 3

}
= − sinx2 cosx2;

{
3

1 3

}
=

{
3

3 1

}
=

1

x1
;

{
3

2 3

}
=

{
3

3 2

}
= cotx2.

Using Eq. (4.6), the Riemannian curvature tensors Rαijk can be written as

R1
212 = − ∂

∂x2

{
1

2 1

}
+

∂

∂x1

{
1

2 2

}
+

{
1
β 1

}{
β
2 2

}
−
{

1
β 2

}{
β
2 1

}

=
∂

∂x1

{
1

2 2

}
−
{

2
2 1

}{
1

2 2

}
= −1− (−x1) 1

x1
= 0.

R1
313 = − ∂

∂x1

{
1

3 1

}
+

∂

∂x1

{
1

3 3

}
+

{
1
β 1

}{
β
3 3

}
−
{

1
β 3

}{
β
3 1

}

=
∂

∂x1

{
1

3 3

}
−
{

3
3 1

}{
1

3 3

}
= − sin2 x2 − 1

x1
(−x1 sin2 x2) = 0.

R2
323 = − ∂

∂x3

{
2

3 2

}
+

∂

∂x2

{
2

3 3

}
+

{
2
β 2

}{
β
3 3

}
−
{

2
β 3

}{
β
3 2

}
=

∂

∂x2

{
2

3 3

}
+

{
1

3 3

}{
2

1 2

}
−
{

3
3 2

}{
2

3 3

}
= − cos 2x2 − sin2 x2 + cos2 x2 = 0.

R1
323 = − ∂

∂x3

{
1

3 2

}
+

∂

∂x2

{
1

3 3

}
+

{
1
β 2

}{
β
3 3

}
−
{

1
β 3

}{
β
2 2

}

=
∂

∂x2

{
1

3 3

}
+

{
2

3 3

}{
1

2 2

}
−
{

3
3 2

}{
1

3 3

}
= −2x1 sinx2 cosx2 + x1 sinx2 cosx2 + cotx2(x1 sin2 x2) = 0.

R1
213 = − ∂

∂x3

{
1

2 1

}
+

∂

∂x1

{
1

2 3

}
+

{
1
β 1

}{
β
2 3

}
−
{

1
β 3

}{
β
2 1

}
= 0.

R1
232 = − ∂

∂x2

{
1

2 3

}
+

∂

∂x3

{
1

2 2

}
+

{
1
β 3

}{
β
2 2

}
−
{

1
β 2

}{
β
2 3

}
= 0.

Since none of Rαijk is non-zero, therefore, Rhijk = 0, for all i, j, k, l.
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EXAMPLE 4.1.4 Prove that in a Riemannian space div
(
Rαijk

)
= Rij,k −Rik,j .

Solution: Here, we will use the Bianchi identity Eq. (4.19), Rαijk,m +Rαikm,j +Rαimj,k
= 0. Contracting α and m in the above relation, we get

Rαijk,α +Rαikα,j +Rαiαj,k = 0

or

Rαijk,α = −Rαiαj,k −Rαikα,j = Rαijα,k −Rik,j ; as Rαikα = Rik

= Rij,k −Rik,j .

In other words, div
(
Rαijk

)
= Rij,k −Rik,j .

EXAMPLE 4.1.5 If Rij,k = 2BkRij+BiRkj+BjRik, prove that Bk =
∂
∂xk

(
log

√
R
)
,

for any covariant vector Bi.

Solution: The given relation is Rij,k = 2BkRij+BiRkj+BjRik. Using the definition
of associated tensor Bj = gijBi and the scalar curvature R = gijRij , we get

gijRij,k = 2Bkg
ijRij + gijBiRkj + gijBjRik

= 2BkR+BjRkj +BiRik

or

R,k = 2BkR+BiRki +BiRik = 2BkR+ 2BiRik; Rij = Rji. (i)

Also, from the given condition, we have

Rij,k −Rik,j = Rij −BjRik

or
gijRij,k − gijRik,j = Bkg

ijRij −Bjg
ijRik

or

R,k −
1

2
Rjk,j = BkR−BiRik

or

R,k −
1

2
R,k = BkR−BiRik ⇒ R,k = 2BkR− 2BiRik. (ii)

Therefore, from Eqs. (i) and (ii) it follows that:

BiRik = 0 ⇒ R,k = 2BkR from (i)

or

Bk =
1

2R
R,k =

1

2R

∂R

∂xk
=

∂

∂xk

(
log

√
R
)
.
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4.2 Riemannian Curvature

Expression for Riemannian curvature: We are given two unit vectors pi and
qi defined at a point P0 of VN . Consider the vector ti = αpi + βqi, where α and
β are parameters. This vector determines pencils of direction of pi. Similarly, one
and only one geodesic will pass through in the direction of qi. These two geodesics
through P0 determine a two-dimensional geodesic surface through P0 determined by
the orientation of the unit vectors pi and qi. Call this surface by the name S.

The Gaussian curvature for the surface S at P0 is called Riemannian curvature
of VN at P0 determined by the orientation of pi and qi. Introduce Riemannian co-
ordinates yi with the origin at P0. The equation of the surface S interms of yi is

yi =
(
αpi + βqi

)
s, (4.21)

where s denotes the arc length measured from P0 to any point P along the geodesic
Eq. (4.21) through P0 in the direction of ti. By taking αs = u1 and βs = u2, three
parameters namely, α, β and s can be reduced to two parameters u1 and u2. Here, u1

and u2 are taken as co-ordinates of any current point on the surface S defined by

yi = u1pi + u2qi, (4.22)

where pi and qi being fixed. Let ds2 = aijdu
iduj , be the metric for the surface S. Let{

k
i j

}
g

and

{
γ
α β

}
a

be the Christoffel symbols of the second kind corresponding to

the co-ordinates yi and ua, respectively, then

[αβ, γ]a = gkm
∂yi

∂uα
∂yj

∂uβ
∂yk

∂uγ

{
m
i j

}
g

. (4.23)

Let Rαβγδ and Rhijk be the curvature tensors corresponding to the metrices
aαβdu

αduβ and gijdy
idyj , where α, β, γ, δ take values 1 and 2; i and j take values

from 1 to N . The number of independent components of Rαβγδ is 22(22−1)
12 = 1. We

have,

R
′
αβγδ =

∂uα

∂u1
∂uβ

∂u2
∂uγ

∂u1
∂uδ

∂u2
Rαβγδ =

∂u1

∂u1
∂uβ

∂u2
∂uγ

∂u1
∂uδ

∂u2
R1βγδ +

∂u2

∂u1
∂uβ

∂u2
∂uγ

∂u1
∂uδ

∂u2
R2βγδ

=
∂u1

∂u1
∂u2

∂u2
∂uγ

∂u1
∂uδ

∂u2
R12γδ +

∂u2

∂u1
∂u1

∂u2
∂uγ

∂u1
∂uδ

∂u2
R21γδ

=
∂u1

∂u1
∂u2

∂u2
∂u1

∂u1
∂u2

∂u2
R1212 +

∂u1

∂u1
∂u2

∂u2
∂u2

∂u1
∂u1

∂u2
R1221

+
∂u2

∂u1
∂u1

∂u2
∂u1

∂u1
∂u2

∂u2
R2121 +

∂u2

∂u1
∂u1

∂u2
∂u2

∂u1
∂u1

∂u2
R2121
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=

[(
∂u1

∂u1
∂u2

∂u2

)2

− 2
∂u1

∂u1
∂u2

∂u2
∂u2

∂u1
∂u1

∂u2
+

(
∂u2

∂u1
∂u1

∂u2

)2
]
R1212

= J2R2121; where J =

∣∣∣∣∣∣∣∣
∂u1

∂u1
∂u1

∂u2

∂u2

∂u1
∂u2

∂u2

∣∣∣∣∣∣∣∣ =
∣∣∣∣∂u∂u

∣∣∣∣ . (4.24)

Since aij is a covariant tensor, by Eq. (1.45), we get

aαβ =
∂uγ

∂uα
∂uδ

∂uβ
aγδ ⇒ |aαβ | =

∣∣∣∣∂uγ∂uα

∣∣∣∣ ∣∣∣∣ ∂uδ∂uβ

∣∣∣∣ aγδ ⇒ a = J2a. (4.25)

Dividing Eq. (4.24) by Eq. (4.25), we get

R′
1212

a
=
R1212

a
= κ(say). (4.26)

This κ, which is an invariant for transformation of co-ordinates, is defined as
Gaussian curvature of the surface S at P0. Hence, κ is the Riemannian curvature of
S at P0. Since Riemannian co-ordinate yi with the origin at P0 behave as geodesic

co-ordinates with the pole at P0. Thus, at P0,

{
k
i j

}
g

and

{
γ
α β

}
a

= 0. Therefore,

we have

Rαβγδ =

(
− ∂

∂uδ
[βγ, α]a +

∂

∂uγ
[βδ, α]a

)
at P0

or

R1212 = − ∂

∂u2
[21, 1]a +

∂

∂u1
[22, 1]a at P0. (4.27)

or

κ =
1

a

(
− ∂

∂u2
[21, 1]a +

∂

∂u1
[22, 1]a

)
, by Eq. (4.26). (4.28)

This is an expression for Riemannian curvature at P0.

Formula for Riemannian curvature: Here, we have to derive a formula for
Riemannian curvature interms of covariant curvature tensor of VN . We know that

[αβ, γ]a = [ij, k]g
∂yi

∂uα
∂yj

∂uβ
∂yk

∂uγ
+ gij

∂2yi

∂uαuβ
∂yj

∂uγ

= [ij, k]g
∂yi

∂uα
∂yj

∂uβ
∂yk

∂uγ
; by Eq. (4.22). (4.29)
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In particular, we have,

[21, 1]a = [ij, k]g
∂yi

∂u2
∂yj

∂u1
∂yk

∂u1
= [ij, k]gq

ipjpk

or

∂

∂u2
[21, 1]a =

∂

∂u2
[ij, k]gq

ipjpk = qipjpkqh
∂

∂yh
[ij, k]g

= qipjphqk
∂

∂yk
[ij, h]g; interchanging h and k. (4.30)

By virtue of Eq. (4.29), we get

[22, 1]a = [ij, k]g
∂yi

∂u2
∂yj

∂u2
∂yk

∂u1
= [ij, k]gq

iqjqk

or

∂

∂u2
[22, 1]a = qiqjpkph

∂

∂yh
[ij, k]g

= qiqkpjph
∂

∂yh
[ik, j]g; interchanging j and k

= qiqkphpj
∂

∂yj
[ik, h]g; interchanging h and j. (4.31)

Thus using Eqs. (4.30) and (4.31), from Eq. (4.27), the expression for R1212 at P0

becomes

R1212 = phqipjqk
(
− ∂

∂yk
[ij, h]g +

∂

∂yj
[ik, h]g

)
= phqipjqkRhijk, at P0. (4.32)

Using the relation aαβ = gij
∂yi

∂uα
∂yj

∂uβ
, we get

a11 = gij
∂yi

∂u1
∂yj

∂u1
= gijp

ipj = ghjp
hpj .

a22 = gij
∂yi

∂u2
∂yj

∂u2
= gijq

iqj = ghkq
iqk.

a12 = gij
∂yi

∂u1
∂yj

∂u2
= gijp

ipjghkp
hqk = a21.

a =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = phqipjqk [ghjgik − gijgkh] . (4.33)
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Dividing Eq. (4.32) by Eq. (4.33), we get

κ =
R1212

a
=

phqipjqkRhijk
phqipjqk [ghjgik − gijgkh]

=
HhijkRhijk
GhijkHhijk

, (4.34)

where the N4 functions Hhijk and Ghijk are given by

Hhijk =

∣∣∣∣ph pi

qh qi

∣∣∣∣ ∣∣∣∣pj pk

qj qk

∣∣∣∣ (4.35)

and

Ghijk = ghj gik − gij gkh. (4.36)

Equation (4.34) is the required expression for Riemannian curvature κ of VN at P0

determined by the orientation of the unit vectors pi and qj at P0. If the Riemannian
curvature at P0 does not change with the orientation of a 2-flat through P0, then the
co-ordinates of P0 is called isotropic. Thus, if N = 2, Eq. (4.34) reduces to

κ =
R1212

g11g22 − g212
=
R1212

g

shows that all points of a two-dimensional Riemannian space are isotropic. Thus, at
a given point in Riemannian 2-space, the curvature is determined by the gij and their
derivatives, and is independent of the directions of P and Q.

Theorem 4.2.1 If at each point, the Riemannian curvature of a space is independent
of the orientation chosen, then it is constant throughout the space.

Proof: Let κ be the Riemannian curvature of VN at P0 determined by the orientation
of the unit vectors pi and qj , then it is given by

κ =
R1212

a
=

phqipjqkRhijk
phqipjqk [ghjgik − gijghk]

.

If κ is independent of orientation determined by pi and qi, then

κ =
Rhijk

(ghjgik − gijghk)
⇒ Rhijk = (−gijghk + ghjgik)κ. (4.37)

Here κ is constant throughout the space VN . If N = 2, then at any point of V2
there is only one orientation, which is same at every point and the theorem is obvious.

So, we consider the case of VN , where N ≥ 3. Since gij are constants with respect
to the covariant differentiation, so covariant differentiation of Eq. (4.37) yields

Rhijk,l = (−gijghk + ghjgik)κ,l. (4.38)
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where κ,l denotes the partial derivative of κ with respect to xs (as κ is scalar). Taking
the sum of Eq. (4.38) and two similar equations obtained by cyclic permutation of the
suffixes j, k and l

(−gijghk + ghjgik)κ,l + (−gikghl + gilghk)κ,j + (−gilghj + gijghl)κ,k

= Rhijk,l +Rhikl,j +Rhilj,k = 0; by Eq. (4.20). (4.39)

Since N ≥ 3 and therefore we can give three distinct values to the suffixes j, k and l.
Multiplying Eq. (4.39) by ghj and using the fact that ghjghl = δjl , we get

(−δhi ghk +Ngik)κ,l + (−gikδjl + gilδ
j
k)κ,j + (−Ngil + δhi ghl)κ,k = 0

or

(N − 1)gikκ,l + (1−N)gilκ,k = 0; as δij = 0 for i ̸= j

or

gikκ,l − gilκ,k = 0; as N ̸= 1

or

gikgikκ,l − gikgilκ,k = 0; multiplying gik

or

Nκ,l − κ,k = 0; as gikgik = N and gikgil = δkj

or

(N − 1)κ,l = 0 ⇒ κ,l =
∂κ

∂xl
= 0; as N ̸= 1.

This implies that the partial derivatives of κ with respect to xs are all zero. Hence,
κ is a constant at P0. But P0 be an arbitrary point of VN . Hence, the Riemannian
curvature κ is constant throughout the space VN . This is known as Schurt’s theorem.

EXAMPLE 4.2.1 Calculate κ for the Riemannian metric

ds2 = (x1)−2(dx1)2 − (x1)−2(dx2)2.

Solution: For the given metric, we have g11 = (x1)−2; g12 = 0 = g21; g22 = −(x1)−2.
Since g = −(x1)−4, so the reciprocal tensors gij are given by

g11 = (x1)2; g12 = 0 = g21; g22 = −(x1)2.

The non-vanishing Christoffel symbols of second kind are{
1

1 1

}
= − 1

x1
=

{
1

2 2

}
;

{
2

1 2

}
=

{
2

2 1

}
= − 1

x1
.
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Using Eq. (4.6), the Riemannian curvature tensors Rαijk can be written as

R1
212 = − ∂

∂x2

{
1

2 1

}
+

∂

∂x1

{
1

2 2

}
+

{
1
β 1

}{
β
2 2

}
−
{

1
β 2

}{
β
2 1

}
.

=
∂

∂x1

{
1

2 2

}
+

{
1

1 1

}{
1

2 2

}
−
{

1
2 2

}{
2

2 1

}
.

=
1

(x1)2
− 1

x1
·
(
− 1

x1

)
−
(
− 1

x1

)
·
(
− 1

x1

)
=

1

(x1)2
.

R2
212 = − ∂

∂x2

{
2

2 1

}
+

∂

∂x1

{
2

2 2

}
+

{
2
β 1

}{
β
2 2

}
−
{

2
β 2

}{
β
2 1

}
= 0.

Using Eq. (4.13), the only non-vanishing covariant curvature tensor is given by

R1212 = g1αR
α
212 = g11R

1
212 + g12R

2
212 = g11R

1
212.

Thus, the Riemannian curvature κ given by Eq. (4.34) as

κ =
R1212

g
=
g11R

1
212

g11g22
=
R1

212

g22
= −1.

EXAMPLE 4.2.2 Evaluate the Riemannian curvature at any point (xi) of
Riemannian 3 space in the directions P = (1, 0, 0) and Q = (0, 1, 1) if the metric
is given by

g11 = 1; g22 = 2x1; g33 = 2x2; gij = 0, for i ̸= j.

Hence, calculate Rij , R
i
j and R.

Solution: Since g = 4x1x2, so the reciprocal tensors gij are given by

g11 = 1; g22 =
1

2x1
; g33 =

1

2x2
; gij = 0 = gji, i ̸= j.

The non-vanishing Christoffel symbols of second kind are{
1

2 2

}
= −1;

{
2

1 2

}
=

{
2

2 1

}
=

1

2x1
,

{
2

3 3

}
= − 1

2x1
;

{
3

2 3

}
=

{
3

3 2

}
=

1

2x2
.
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Since N = 3, only six components of the Riemannian tensor need to be considered:
R1212, R1313, R2323, R1213, R1232, R1323. Using Eq. (4.6), the Riemannian curvature
tensors Rαijk can be written as

R1
212 = − ∂

∂x2

{
1

2 1

}
+

∂

∂x1

{
1

2 2

}
+

{
1
β 1

}{
β
2 2

}
−
{

1
β 2

}{
β
2 1

}
=

∂

∂x1

{
1

2 2

}
−
{

1
2 2

}{
2

2 1

}
=

1

2x1

and similarly, we get

R1
313 = 0, R2

323 =
1

4x1x2
, R1

213 = 0, R2
123 = 0, R3

132 =
1

4x1x2
.

Using Eq. (4.13), three non-zero terms of covariant curvature tensor Rijkl of rank 4
are given by

R1212 = g11R
1
212 =

1

2x1
; R2323 = g22R

2
323 =

1

2x2

and

R3132 = g33R
3
132 =

1

2x1
.

Since g = (gij) is diagonal, all the non-zero Gijkl will be derivable from the relation,

Gijij = giigjj ; i < j and no summation.

Thus, the non-vanishing Gijkl are given by

G1212 = g11g22 = 2x1; G1313 = g11g33 = 2x2; G2323 = g22g33 = 4x1x2.

For

[
P
Q

]
=

[
1 0 0
0 1 1

]
, the coefficients Hhijk are given by Eq. (4.35). Therefore,

H1212 =

∣∣∣∣1 0
0 1

∣∣∣∣2 = 1; H2323 =

∣∣∣∣0 0
1 1

∣∣∣∣2 = 0;

H3132 =

∣∣∣∣0 1
1 0

∣∣∣∣ ∣∣∣∣0 0
1 1

∣∣∣∣ = 0; H1313 =

∣∣∣∣1 0
0 1

∣∣∣∣2 = 1.

Thus, the Riemannian curvature κ given by Eq. (4.34) as

κ =
R1212H1212 +R2323H2323 +R3132H3132 +R1332H1332

G1212H1212 +G2323H2323 +G3132H3132 +G1332H1332

=

(
1/2x1

)
· 1 +

(
1/2x2

)
· 0 + 2

(
1/2x1

)
· 0

(2x1) · 1 + (2x2) · 0 + 2 (4x1x2) · 0
=

1

4x1(x1 + x2)
.
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Using formula (4.10), the Ricci tensors of first kind are given by

Rij = Rαijα = R1
ij1 +R2

ij2 +R3
ij3

= g11R1ij1 + g22R2ij2 + g33R3ij3.

Therefore, the non-zero Ricci tensors are given by

R11 = g22R2112 = − 1

4(x1)2
; R22 = g11R1221 + g33R3223 = − 1

2x1
− 1

4(x1)2

R33 = g22R2332 = − 1

4x1x2
; R12 = g33R3123 = − 1

4x1x2
= g33R3213 = R21.

Using formula (4.11), the Ricci tensors of first kind are given by

Rij = giαRαj = gi1R1j + gi2R2j + gi3R3j .

So

R1
1 = g11R11 + g12R21 + g13R31 = − 1

4(x1)2
.

R2
2 = g12R12 + g22R22 + g23R32 =

1

2x1

[
− 1

2x1
− 1

4(x1)2

]
.

R3
3 = g31R13 + g32R23 + g33R33 =

1

2x2

[
− 1

4x1x2

]
.

Therefore, the total curvature R is given by Eq. (4.12) as

R = Rij = R1
1 +R2

2 +R3
3

= − 1

4(x1)2
− 1

4(x1)2
− 1

8x1(x2)2
− 1

8x1(x2)2
= −x

1 + 2(x2)2

4(x1x2)2
.

Deduction 4.2.1 Isotropic points: If the Riemannian curvature at x does not
change with the orientation of a 2-flat through x, then x is called isotropic. All points
of a two-dimensional Riemannian space are isotropic.

EXAMPLE 4.2.3 Find the isotropic points in the Riemannian space R3 with metric

g11 = 1, g22 = (x1)2 + 1 = g33, gij = 0; for i ̸= j

and calculate the Riemannian curvature κ at that points.

Solution: Since g = [(x1)2 + 1]2, so the reciprocal tensors gij are given by

g11 = 1; gij = 0 = gji; g22 =
1

(x1)2 + 1
= g33.
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The non-vanishing Christoffel symbols of second kind are,{
1

2 2

}
= −x1 =

{
1

3 3

}
;

{
2

2 1

}
=

x1

(x1)2 + 1
=

{
3

3 1

}
.

Using Eq. (4.6), the Riemannian curvature tensors Rαijk can be written as

R1
212 = − ∂

∂x2

{
1

2 1

}
+

∂

∂x1

{
1

2 2

}
+

{
1
β 1

}{
β
2 2

}
−
{

1
β 2

}{
β
2 1

}
=

∂

∂x1

{
1

2 2

}
−
{

1
2 2

}{
2

2 1

}
= −1− x1

(x1)2 + 1
(−x1) = − 1

(x1)2 + 1
.

R1
313 = − ∂

∂x3

{
1

3 1

}
+

∂

∂x1

{
1

3 3

}
+

{
1
β 1

}{
β
3 3

}
−
{

1
β 3

}{
β
3 1

}
=

∂

∂x1

{
1

3 3

}
−
{

1
3 3

}{
3

3 1

}
= −1− x1

(x1)2 + 1
(−x1) = − 1

(x1)2 + 1
.

R2
323 =

{
1

3 3

}{
2

1 2

}
= − (x1)2

(x1)2 + 1
.

R1
213 = R2

123 = R3
132 = 0.

Using Eq. (4.13), the non-vanishing covariant curvature tensor Rhijk are given by

R1212 = g11R
1
212 = −

[
(x1)2 + 1

]−1
= R1313 = g11R

1
313;R2323 = g22R

2
323 = −(x1)2.

Using Eq. (4.36), the non-vanishing tensors Ghijk are given by

G1212 = g11g22 = (x1)2 + 1 = G1313 = g11g33;G2323 = g22g33 =
[
(x1)2 + 1

]2
.

If the curvature κ is to be independent of Hhijk, defined in Eq. (4.35) (which vary
with the direction of the 2 flat), then (x1)2 = 1, i.e. x1 = ±1. Therefore, the isotropic
points compose two surfaces, on which the curvature has the value given by

κ =
−
[
(x1)2 + 1

]−1
H1212 −

[
(x1)2 + 1

]−1
H1313 − (x1)2H2323

[(x1)2 + 1]H1212 + [(x1)2 + 1]H1313 + [(x1)2 + 1]2H2323

= −
[
(x1)2 + 1

]−2 H1212 +H1313 + (x1)2
[
(x1)2 + 1

]
H2323

H1212 +H1313 + [(x1)2 + 1]H2323

= − [1 + 1]−2 · 1 = −1

4
.
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EXAMPLE 4.2.4 Show that every point of R3 is isotropic for the metric

ds2 = (x1)−2(dx1)2 + (x1)−2(dx2)2 + (x1)−2(dx3)2.

Solution: For the given metric, we have g11 = (x1)−2 = g22 = g33; gij = 0 = gji; for
i ̸= j. Since g = (x1)−6, so the reciprocal tensors gij are given by

g11 = (x1)2 = g22 = g33; gij = 0 = gji; for i ̸= j.

The non-vanishing Christoffel symbols of second kind are{
1

1 1

}
= − 1

x1
=

{
2

1 2

}
=

{
3

1 3

}
;

{
1

2 2

}
=

1

x1
=

{
1

3 3

}
.

Using Eq. (4.6), the Riemannian curvature tensors Rαijk can be written as

R1
212 = − ∂

∂x2

{
1

2 1

}
+

∂

∂x1

{
1

2 2

}
+

{
1
β 1

}{
β
2 2

}
−
{

1
β 2

}{
β
2 1

}
.

=
∂

∂x1

{
1

2 2

}
−
{

1
2 2

}{
1

1 1

}
−
{

2
2 1

}{
1

2 2

}
= − 1

(x1)2
.

R1
313 = − ∂

∂x3

{
1

3 1

}
+

∂

∂x1

{
1

3 3

}
+

{
1
β 1

}{
β
3 3

}
−
{

1
β 3

}{
β
3 1

}
.

=
∂

∂x1

{
1

3 3

}
+

{
1

3 3

}{
1

1 1

}
−
{

3
3 1

}{
1

3 3

}
= − 1

(x1)2
.

R2
323 =

{
1

3 3

}{
2

1 2

}
= − 1

(x1)2
; R1

213 = R2
123 = R3

132 = 0.

Using Eq. (4.13), the non-vanishing covariant curvature tensors Rhijk are given by

R1212 = R1313 = R2323 = −(x1)−4; G1212 = G1313 = G2323 = (x1)−4.

The Riemannian curvature κ is given by

κ =
R1212H1212 +R1313H1313 +R2323H2323

G1212H1212 +G1313H1313 +G2323H2323

=

[
−(x1)−4

]
[(x1)−4]

H1212 +H1313 +H2323

H1212 +H1313 +H2323
= −1.

Thus, we see that this Riemannian space is more than just isotropic; it is a space of
constant curvature.
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4.2.1 Space of Constant Curvature

If the Riemannian curvature κ is constant in a space VN , then that space VN is said
to be of constant curvature.

Let us consider an Euclidean space SN of N dimensions. We have to show that
Rhijk = 0. In the case of SN , the metric tensor gij is either 1 or 0. Hence,

[ij, k] = 0 =

{
k
i j

}
. (4.40)

Using Eq. (4.17), the covariant curvature tensors Rhijk are given by

Rhijk =

∣∣∣∣∣∣
∂

∂xj
∂

∂xk

[ij, h] [ik, h]

∣∣∣∣∣∣+
∣∣∣∣∣∣
{
α
i j

} {
α
i k

}
[hj, α] [hk, α]

∣∣∣∣∣∣ = 0; by Eq. (4.40).

Conversely, let Rhijk = 0 in a space VN , we have to show that the space VN is an
Euclidean space SN . The Riemannian curvature κ at any point P of VN is given by

κ =
phqipjqkRhijk

phqipjqk [ghjgik − gijghk]
= 0; as Rhijk = 0.

Consequently, geodesics through P are straight lines. But P is an arbitrary point of
VN . Hence, geodesics through every point of VN are straight lines. This will happen
only if VN is SN . Therefore, a necessary and sufficient condition that a space VN be
an Euclidean space of N dimensions is that the curvature tensor vanishes.

4.2.2 Zero Curvature

A fundamental question has run unanswered through preceding sections: How can one
tell whether a given metrisation of RN is an Euclidean or not?

Let us consider a specified co-ordinate system (xi) in which a Riemannian metric
g = (gij). Now, consider a co-ordinate system in which gij = δij , which is a rectangular
system. Suppose that a rectangular system (xi) does exist. Then κ̃ = 0, since all
Christoffel symbols vanish in (xi). But the Riemannian curvature is an invariant, so
that κ = 0 in the original co-ordinate (xi) as well. Moreover,

giju
iuj = uiuj ≥ 0.

Thus, we see that a Riemannian metric (gij) is the Euclidean metric if the Riemannian
curvature κ is zero at all points and the metric is positive definite. To prove the
converse portion, we set up a system of first order partial differential equations for N
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rectangular co-ordinates xi as functions of the given co-ordinates xj(j = 1, 2, . . . , N).
The system that immediately comes to mind is G = JTJ, or,

∂xk

∂xi
∂xk

∂xj
= gij

(
x1, x2, . . . , xN

)
. (4.41)

But the partial differential equation Eq. (4.41) is generally intractable because of
its nonlinearity. Instead, we select the linear system that results when barred and

unbarred co-ordinates are interchanged in Eq. (3.10) and then the

{
i
j k

}
are

∂2xk

∂xi∂xj
=

{
r
i j

}
∂xk

∂xr
. (4.42)

Setting ω ≡ xk and ui ≡ ∂xk

∂xi
yields the desired first order system

∂ω

∂xi
= ui and

∂ui
∂xj

=

{
r
i j

}
ur. (4.43)

A Riemannian metric g = (gij), specified in a co-ordinate system (xi), is the Euclidean
metric, if, under some permissible co-ordinate transformation Eq. (1.2) g = (δij).

EXAMPLE 4.2.5 Show that R3 under the following metric is Euclidean.

ds2 = [(x1)2 + (x2)2](dx1)2 + [(x1)2 + (x2)2](dx2)2 + (dx3)2.

Solution: For the given metric, we have g11 = (x1)2 + (x2)2 = g22 g33 = 1; gij = 0 =

gji; j ̸= i. Since g33 = constant, and g11 and g22 independent of x3, so

{
i
j k

}
= 0,

whenever i, j or k equals to 3. Consequently, of the six independent components of
the Riemannian tensor, R1212 is possibly non-zero. Since g = [(x1)2 + (x2)2]2, so the
reciprocal tensors gij are given by

g11 =
1

(x1)2 + (x2)2
; g22 =

1

(x1)2 + (x2)2
; g33 = 1.

The non-vanishing Christoffel symbols of second kind are{
1

1 1

}
=

x1

(x1)2 + (x2)2
=

{
2

1 2

}
;

{
1

2 2

}
= − x1

(x1)2 + (x2)2{
1

1 2

}
=

x2

(x1)2 + (x2)2
=

{
2

2 2

}
;

{
2

1 1

}
= − x2

(x1)2 + (x2)2
.
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Using Eq. (4.6), the Riemannian curvature tensors Rαijk can be written as

R1
212 = − ∂

∂x2

{
1

2 1

}
+

∂

∂x1

{
1

2 2

}
+

{
1
β 1

}{
β
2 2

}
−
{

1
β 2

}{
β
2 1

}
.

=
−√

g + x1(2x1)

g
−

√
g − x2(2x2)

g
+

−x1
√
g

· x
1

√
g
+
x2
√
g

x2
√
g
− x2

√
g

x2
√
g
− x1

√
g

−x1
√
g

= 0.

Consequently, R1212 = 0 = κ. As the metric is clearly positive definite, so the space is
Euclidean.

EXAMPLE 4.2.6 Consider the two-dimensional metric g11 = 0; g12 = 0 = g21;
g22 = (x2)2. Find the general solution in (xi) co-ordinate system.

Solution: Since g = (x2)2, so the reciprocal tensors gij are given by

g11 = 1; g12 = 0 = g21; g22 = (x2)2.

The only non-vanishing Christoffel symbol of second kind is

{
2

2 2

}
= 1

x2
, so the

metric is obviously positive definite. Using Eq. (4.6), the Riemannian curvature tensors
Rαijk can be written as

R1
212 = − ∂

∂x2

{
1

2 1

}
+

∂

∂x1

{
1

2 2

}
+

{
1
β 1

}{
β
2 2

}
−
{

1
β 2

}{
β
2 1

}
= 0.

R2
212 = − ∂

∂x2

{
2

2 1

}
+

∂

∂x1

{
2

2 2

}
+

{
2
β 1

}{
β
2 2

}
−
{

2
β 2

}{
β
2 1

}
= 0.

Using Eq. (4.13), the covariant curvature tensor is given by

R1212 = g1αR
α
212 = g11R

1
212 + g12R

2
212 = 0.

Thus, the Riemannian curvature κ is κ = R1212
g = 0. Let us introduce,

f1 =
∂x1

∂x1
; f2 =

∂x1

∂x2
; f3 =

∂x2

∂x1
; f4 =

∂x2

∂x2
,

then the system of Eq. (4.41) becomes,

f21 + f23 = 1; f1f2 + f3f4 = 0; f22 + f24 = (x2)2

⇒ f1 = f1; f2 = x2
√

1− f21 ; f3 = −
√

1− f21 ; f4 = x2f1.



232 Riemannian Geometry

Therefore, the system of equations becomes two simple first order systems in x1 alone
and x2 alone

I :
∂x1

∂x1
= f1;

∂x1

∂x2
= x2

√
1− f21

II :
∂x2

∂x1
= −

√
1− f21 ;

∂x2

∂x2
= x2f1.

The unknown function f1 is determined by the requirements that the two conditions
I and II be compatible

∂f1
∂x2

=
∂

∂x1

(
x2
√

1− f21

)
and

∂

∂x2

(
−
√

1− f21

)
=

∂

∂x1
(
x2f1

)
.

The only function satisfying these two compatibility condition is

f1 = constant = cosα

and I and II immediately integrate to give

x1 = x1 cosα+
1

2
(x2)2 sinα+ c

x2 = −x1 sinα+
1

2
(x2)2 cosα+ d,

where c and d are constants and we use, of course, free to set α = c = d = 0. From
Eq. (4.43) we have to solve,

∂ω

∂x1
= u1;

∂ω

∂x2
= u2

∂u1
∂x1

= 0,
∂u1
∂x2

= 0;
∂u2
∂x1

= 0,
∂u2
∂x2

= u2

{
2

2 2

}
=
u2
x2
.

⇒ ω = a1x
1 + a2(x

2)2 + a3; a1, a2, a3 = constant

⇒ xk = ak1x
1 + ak2(x

2)2 + ak3; ak1 = constant,

which is similar to the solution set x1 and x2 as above.

Deduction 4.2.2 The quasilinear first-order system,

∂uλ
∂xj

= Fλj(u0, u1, . . . , um; x
1, x2, . . . , xn); λ = 0, 1, . . . ,m; j = 1, 2, . . . , n

where the functions Fλj are of the differentiability class C1, has a nontrivial solution
for the uλ, bounded over some region of Rn, if and only if

∂Fλj
∂uν

Fνk +
∂Fλj
∂xk

=
∂Fλk
∂uν

Fνj +
∂Fλk
∂xj

; λ = 0, 1, . . . ,m; 1 ≤ j < k ≤ n,

where ν summations run from 0 to m. The conditions Rhijk = 0 are the sufficient
condition for compatibility.
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4.2.3 Einstein Tensor

The covariant tensor

Γij = Rij −
1

2
Rgij (4.44)

is called Einstein tensor. The mixed tensor

Γij = Rij −
1

2
δijR; gαiRαj = Rij and g

ijRij = R (4.45)

is called the Einstein tensor. This tensor is widely used in the general theory of
relativity.

EXAMPLE 4.2.7 Prove that for any Riemannian metric, the divergence of the
Einstein tensor is zero at all points.

Solution: The Einstein tensor Γij is given by

Γij = Rij −
1

2
δij R,

where gαiRαj = Rij and gijRij = R. Covariant differentiation of the Einstein tensor

Γij with respect to xk is

Γij,k = Rij,k −
1

2
δij,kR− 1

2
δijR,k

= Rij,k −
1

2
δijR,k; as δij,k = 0.

Hence, the divergence of the Einstein tensor Γij is given by

Γij,i = Rij,i −
1

2
δijR,i

= Rij,i −
1

2
R,j =

1

2
R,j −

1

2
R,j = 0.

Thus, Einstein tensor is divergence free. This equation plays an important role in the
theory of relativity.

4.2.4 Flat Riemannian Spaces

We know, covariant differentiation of all vectors is commutative if and only if the
Riemann–Christoffel curvature tensor Rαijk is identically zero. The covariant curvature
tensors of fourth order Rhijk are zero, then all the components of the tensor Rhijk are
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zero and vice versa. A Riemannian space whose curvature tensor is identically zero is
called a flat space.

If in a neighbourhood N of a point O of VN , there exists a co-ordinate system with
respect to which the metric tensor has constant values, then VN is said to be locally
flat at O. The Riemannian space VN is said to be locally flat, if the metric tensor gij
has constant values throughout VN .

A space is Euclidean (or flat) if it is possible to find a Cartesian co-ordinate system
everywhere in it; if this is not possible, the space is non-Euclidean (or curved).

Theorem 4.2.2 The necessary and sufficient condition that a space VN be locally flat
(or flat) in the neighbourhood of O is that the curvature tensor be identically zero.

Proof: First let VN be locally flat in the neighbourhood of O, so that gij = constant
for all i and j. Thus,

∂gij
∂xk

= 0 ⇒
{

k
i j

}
= 0,

in the neighbourhood of O. The Riemann–Christoffel symbol Rαijk is given by

Rαijk = − ∂

∂xk

{
α
i j

}
+

∂

∂xj

{
α
i k

}
−
{
β
i j

}{
α
β k

}
+

{
β
i k

}{
α
β j

}
= 0; in the neighbourhood of O.

Conversely, let Rαijk = 0 in the neighbourhood of O. To prove that VN is locally flat, it
is enough to prove that gij = constant in the neighbourhood of O. Given co-ordinate
system xi, let us choose co-ordinate system xi such that{

α
β γ

}
=

∂2xl

∂xα∂xβ
∂xγ

∂xl
. (4.46)

The tensor law of transformation for the Christoffel symbol is{
k
i j

}
=

{
γ
α β

}
∂xα

∂xi
∂xβ

∂xj
∂xk

∂xγ
+

∂2xl

∂xi∂xj
∂xk

∂xl

or {
k
i j

}
=

{
γ
α β

}
∂xα

∂xi
∂xβ

∂xj
∂xk

∂xγ
+

∂2xl

∂xi∂xj
∂xk

∂xl

or
∂2xl

∂xi∂xj
∂xk

∂xl
=

{
k
i j

}
−
{

γ
α β

}
∂xα

∂xi
∂xβ

∂xj
∂xk

∂xγ
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or {
γ
α β

}
∂xα

∂xi
∂xβ

∂xj
∂xk

∂xγ
= 0

or {
γ
α β

}
δαl δ

β
mδ

k
γ = 0; multiplying

∂xi

∂xl
∂xj

∂xm
∂xp

∂xk

or {
β
l m

}
= 0; δαl =

{
1; for α = l
0; for α ̸= l

, etc.

or

R
h
ijk = 0; i.e. Rhijk = 0.

Since if a tensor vanishes in one co-ordinate system, then it vanishes in all systems.
It follows that Eq. (4.46) is a solution of Rhijk = 0, which is given. Hence, co-ordinate

system xi exists, and

∂gij

∂xk
= 0 ⇒ gij = constant.

Consequently, a co-ordinate system xi exists relative to which gij is constant. Hence,
VN is locally flat.

EXAMPLE 4.2.8 Determine whether the following metric is flat and/or Euclidean:

ds2 = (dx1)2 − (x2)2(dx2)2; N = 2.

Solution: For the given metric, we have g11 = 1; g12 = 0 = g21; g22 = −(x2)−2. Since
g = −(x2)2, so the reciprocal tensors gij are given by

g11 = 1; g12 = 0 = g21; g22 = − 1

(x2)2
.

Since the metric is not positive definite, it cannot be Euclidean. The only non-

vanishing Christoffel symbol of second kind is

{
2

2 2

}
= (x2)3. Using Eq. (4.6), the

Riemannian curvature tensors Rαijk can be written as

R1
212 = − ∂

∂x2

{
1

2 1

}
+

∂

∂x1

{
1

2 2

}
+

{
1
β 1

}{
β
2 2

}
−
{

1
β 2

}{
β
2 1

}
= 0.

R2
212 = − ∂

∂x2

{
2

2 1

}
+

∂

∂x1

{
2

2 2

}
+

{
2
β 1

}{
β
2 2

}
−
{

2
β 2

}{
β
2 1

}
= 0.
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Using Eq. (4.13), the covariant curvature tensor is given by

R1212 = g1αR
α
212 = g11R

1
212 + g12R

2
212 = 0.

Hence, the given space is flat.

EXAMPLE 4.2.9 Consider the Riemannian metric

ds2 = (dx1)2 + 4(x2)2(dx2)2 + 4(x3)2(dx3)2 − 4(dx4)2(dx4)2.

(a) Calculate the Riemannian curvature. (b) Find the solution (xi), by considering
that the space is flat.

Solution: (a) For the given metric, we have g11 = 1; g22 = 4(x2)2; g33 = 4(x3)2 and
g44 = −4(x4)2. Since g = −64(x2x3x4)2, so the reciprocal tensors gij are given by

g11 = 1; g22 =
1

4(x2)2
; g33 =

1

4(x3)2
; g44 = − 1

4(x4)2
.

The non-vanishing Christoffel symbols of second kind are{
2

2 2

}
=

1

x2
;

{
3

3 3

}
=

1

x3
and

{
4

4 4

}
=

1

x4
.

Because

{
i
j k

}
= 0 unless i = j = k, the partial derivative terms drop out of

Eq. (4.6), leaving

Rαijk =

{
r
i k

}{
α
r j

}
−
{

r
i j

}{
α
r k

}
=

{
α
α α

}{
α
α α

}
−
{

α
α α

}{
α
α α

}
= 0; (not summed),

which in turn implies that Rhijk = 0 and κ = 0.

(b) For the above calculated Christoffel symbols, system (4.43) becomes,

∂u1
∂x1

= 0,
∂u2
∂x2

=
u2
x2
,
∂u3
∂x3

=
u3
x3
,
∂u4
∂x4

=
u4
x4
,

with ∂ui
∂xj

= 0 for i ̸= j. Integrating,

u1 = f1
(
x2, x3, x4

)
, u2 = x2f2

(
x1, x3, x4

)
,

u3 = x3f3
(
x1, x2, x4

)
, u4 = x4f4

(
x1, x2, x3

)
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for arbitrary functions fi. But the remaining part of Eq. (4.43), ∂ω
∂xi

= ui, gives rise

to the compatibility relations ∂ui
∂xj

=
∂uj
∂xi

, which is satisfied only if fi = ci = constant.
Therefore,

ω = a1x
1 + a2(x

2)2 + a3(x
3)2 + a4(x

4)2 + a5

and the transformation must be of the general form,

xk = ak1x
1 + ak2(x

2)2 + ak3(x
3)2 + ak4(x

4)2 + ak5; aki constants.

EXAMPLE 4.2.10 For the Euclidean space under the following metric:

ds2 = [(x1)2 + (x2)2](dx1)2 + [(x1)2 + (x2)2](dx2)2 + (dx3)2

exhibit a transformation from the co-ordinate system (xi) to a rectangular system (xi).

Solution: For the given metric, we have g11 = (x1)2 + (x2)2 = g22 g33 = 1; gij = 0 =
gji; j ̸= i. Since g = [(x1)2 + (x2)2]2, so the reciprocal tensors gij are given by

g11 =
1

(x1)2 + (x2)2
; g22 =

1

(x1)2 + (x2)2
; g33 = 1.

The non-vanishing Christoffel symbols of second kind are{
1

1 1

}
=

x1

(x1)2 + (x2)2
=

{
2

1 2

}
;

{
1

2 2

}
= − x1

(x1)2 + (x2)2{
1

1 2

}
=

x2

(x1)2 + (x2)2
=

{
2

2 2

}
;

{
2

1 1

}
= − x2

(x1)2 + (x2)2
.

For the above calculated Christoffel symbols, system Eq. (4.43) becomes,

∂u1
∂x1

=
x1u1 − x2u2√

g
,
∂u1
∂x2

=
x2u1 + x1u2√

g
,
∂u1
∂x3

= 0, (i)

∂u2
∂x1

=
x2u1 + x1u2√

g
,
∂u2
∂x2

=
−x1u1 + x2u2√

g
,
∂u2
∂x3

= 0, (ii)

∂u3
∂x1

= 0,
∂u3
∂x2

= 0,
∂u3
∂x3

= 0. (iii)

Thus, u1 and u2 are functions of x1, x2 alone, and u3 = constant. Since the gij are
all polynomials of degree 2 in x1, x2, use the method of undetermined coefficients,
assuming polynomial forms

ui = ai(x
1)2 + bix

1x2 + ci(x
2)2 + dix

1 + eix
2 + fi; i = 1, 2.
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The compatibility relations ∂u1
∂x2

= ∂u2
∂x1

implied by the second part of Eq. (i) and the
first part of Eq. (ii) require,

b1 = 2a2; 2c1 = b2; e1 = d2.

Similarly, the compatibility relations ∂u1
∂x1

= −∂u2
∂x2

imply

2a1 = −b2; b1 = −2c2; d1 = −e2.

From the first part of Eq. (i), we get

a1 = 0 = a2; c1 = b2, b1 = −c2, d1 = −e2, f1 = 0 = −f2.

⇒ b1 = b2 = c1 = c2 = 0.

Thus, the solution can be written in the form

u1 = ax1 + bx2; u2 = bx1 − ax2; u3 = c,

where we are redenoting the constants d1 and e1. The first part of Eq. (4.43) gives

∂ω

∂x1
= ax1 + bx2;

∂ω

∂x2
= bx1 − ax2;

∂ω

∂x3
= c,

or
ω =

a

2
(x1)2 + bx1x2 − a

2
(x2)2 + cx3 + d

or

xk =
ak

2
(x1)2 + bkx1x2 − ak

2
(x2)2 + ckx3 with d = 0.

It is clear that we take c1 = c2 = 0 = a3 = b3 and c3 = 1;

x1 =
1

2
a1(x1)2 + b1x1x2 − 1

2
a1(x2)2

x2 =
1

2
a2(x1)2 + b2x1x2 − 1

2
a2(x2)2; x3 = x3.

Now, the Jacobian matrix J satisfies JTJ = G. Here

J =


a1(x1)2 + b1x1x2 b1x1x2 − 1

2a
1(x2)2 0

a2(x1)2 + b2x1x2 b2x1x2 − 1
2a

2(x2)2 0

0 0 1


⇒ (a1)2 + (a2)2 = 1, a1b1 + a2b2 = 0, (b1)2 + (b2)2 = 1; as JTJ = G.

So, take a1 = 0, a2 = 1, b2 = 0, b1 = 1. Finally, the transformation is given by

x1 = x1x2; x2 =
1

2
[(x1)2 − (x2)2], x3 = x3.
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Deduction 4.2.3 Let the metric tensors gij are constants, then all the partial deriva-
tives of gij are zero. Consequently, all Christoffel symbols will vanish and all Rijkl = 0,
i.e. κ = 0. Thus, by Theorem 4.2.2, the space is flat. If x = Ax, then J = A and

G = JTGJ = ATGA.

However, since G is real and symmetric, its eigenvectors form an orthogonal matrix
which we now choose as A, with

AGA−1 = AGAT = D; D = diagonal matrix

of eigenvalues of G. Hence, G = AGAT = D. Hence, if the metric tensor is constant,
the space is flat and the transformation x = Ax, where A is a rank N matrix of
eigenvalues G = (gij), diagonalises the metric, i.e. gij = 0 for i ̸= j.

EXAMPLE 4.2.11 Find the signature of the flat metric

ds2 = 4(dx1)2 + 5(dx2)2 − 2(dx4)2 − 4dx2dx3 − 4dx2dx4 − 10dx3dx4.

Solution: For the given metric, we have g11 = 4; g22 = 5, g33 = −2, g44 = 2, g23 = −2,
g24 = −2 and g34 = −5. Now, we find the eigenvalues of G = (gij). The characteristic
equation is

|G− λI| =

∣∣∣∣∣∣∣∣
4− λ 0 0 0
0 5− λ −2 −2
0 −2 − 2− λ −5
0 −2 −5 2− λ

∣∣∣∣∣∣∣∣ = 0

⇒ −(4− λ)(5− λ)(37− λ2) = 0

⇒ λ = 4, 5,±
√
37.

This means that there is a transformation which changes the metric into the form

ds2 = 4(dx1)2 + 5(dx2)2 +
√
37
[
(dx3)2 − (dx4)2

]
= (dx1)2 + (dx2)2 + (dx3)2 − (dx4)2,

with the obvious change of co-ordinates. Hence, the signature is (+ + +−), or some
permutation thereof.

4.2.5 Projective Curvature Tensor

The projective curvature tensor or Weyl tensor, denoted by Whijk, is defined by

Whijk = Rhijk +
1

1−N
(gklRhj − gkhRij), (4.47)

where Rhijk is the Riemannian curvature tensor and Rij is the Ricci tensor.
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Theorem 4.2.3 A necessary and sufficient condition that a Riemannian space
VN (N > 3) to be of constant Riemannian curvature is that the Weyl tensor vanishes
identically throughout VN .

Proof: Let κ be the constant Riemannian curvature of VN given by

κ =
phqipjqkRhijk

phqipjqk [ghjgik − gijghk]
= constant.

Since κ is constant, it is independent of the orientation determined by pi and qj and
hence

κ =
Rhijk

ghjgik − gijghk
⇒ Rhijk = (−gijghk + ghjgik)κ

or
ghkRhijk = ghk(−gijghk + ghjgik)κ

or
Rij = ghk(−Ngij + δkj gik)κ = (1−N)gijκ

or
gijRij = (1−N)gijgijκ

or

R = (1−N)Nκ⇒ Rij =
R

N
gij . (4.48)

Since κ is constant, Eq. (4.48) shows that R is constant. Now, the Weyl tensor Whijk

is given by

Whijk = Rhijk +
1

1−N
(gkiRhj − gkhRij)

= Rhijk +
1

1−N

[
gki

1

N
Rghj − gkh

1

N
Rgij

]
= Rhijk +

R

N(1−N)
[gkighj − ghkgij ]

= Rhijk +
R

N(1−N)

1

κ
Rhijk

= Rhijk + κ
1

κ
Rhijk = 2Rhijk = 0; as κ is constant.

Thus, the condition is necessary. Conversely, let the Weyl tensor Whijk = 0, we have
to prove that κ = constant. Since Whijk = 0, we have

Rhijk +
1

1−N
[gikRhj − ghkRij ] = 0
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or

ghkRhijk +
1

1−N

[
ghkgikRhj − ghkghkRij

]
= 0

or

Rij +
1

1−N

[
δhi Rhj −NRij

]
= 0

or

Rij +
1

1−N
[Rij −NRij ] = 0

or

Rij +
1−N

1−N
Rij = 0 ⇒ Rij = 0

or
Rij = ghkRhijk = 0 ⇒ either ghk = 0 or Rhijk = 0.

If Rhijk = 0, then the Riemann curvature κ = 0. If ghk = 0, then ghk = 0 and hence,

κ =
phqipjqkRhijk

phqipjqk [ghjgik − 0gij ]
=
phqipjqkRhijk
phqipjqkghjgik

=
phqipjqkRhijk

(phpjghj) (qiqkgik)

=
phqipjqkRhijk

p2q2
; p2 = 1 = ghjp

hpj ; q2 = 1 = gikq
iqk

or

κ = phqipjqkRhijk = constant as Rij = 0.

Since 0 is constant, in either case κ is a constant. Thus, the condition is necessary.

4.2.6 Uniform Vector Field

The construction of a field of parallel vectors is possible only when the Riemann–
Christoffel curvature tensor vanishes. Here, we have to prove that, when Riemann–
Christoffel tensor vanishes the differential equations

Aµ,ν =
∂Aµ
∂xν

−
{

a
µ ν

}
Aa = 0

are integrable. Let Aµ be a covariant vector, then by definition

∂Aµ
∂xν

−Aα

{
α
µ ν

}
= Aµ,ν = 0, (4.49)
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where we suppose that, Aµ,ν = 0. We want to show that Eq. (4.49) can be integrated
only when curvature tensor Raijk = 0. From Eq. (4.49) we get,

∂Aµ
∂xν

dxν = Aα

{
α
µ ν

}
dxν

or ∫
∂Aµ
∂xν

dxν =

∫
Aα

{
α
µ ν

}
dxν

or ∫
dAµ = Aµ =

∫
Aα

{
α
µ ν

}
dxν . (4.50)

This means that Eq. (4.49) is integrable only when the right hand side of Eq. (4.50) is

integrable, for which the condition is Aα

{
α
µ ν

}
dxν must be perfect differential. So,

we can write,

Aα

{
α
µ ν

}
dxν = dBµ =

∂Bµ
∂xν

dxν

or [
Aα

{
α
µ ν

}
− ∂Bµ
∂xν

]
dxν = 0

or

Aα

{
α
µ ν

}
=
∂Bµ
∂xν

; as dxν is arbitrary. (4.51)

Differentiating Eq. (4.51) with respect to xσ, we get

∂Aα
∂xσ

{
α
µ ν

}
+Aα

∂

∂xσ

{
α
µ ν

}
=

∂2Bµ
∂xσ∂xν

. (4.52)

Interchanging ν and σ we get

∂Aα
∂xν

{
α
µ σ

}
+Aα

∂

∂xν

{
α
µ σ

}
=

∂2Bµ
∂xν∂xσ

. (4.53)

Subtracting Eq. (4.53) from Eq. (4.52), we get

∂Aα
∂xσ

{
α
µ ν

}
+Aα

∂

∂xσ

{
α
µ ν

}
− ∂Aα
∂xν

{
α
µ σ

}
−Aα

∂

∂xν

{
α
µ σ

}
= 0
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or {
α
µ ν

}
Ac

{
c

α σ

}
+Aα

∂

∂xσ

{
α
µ ν

}
−
{

α
µ σ

}
Ac

{
c

α ν

}
−Ac

∂

∂xν

{
c

µ σ

}
= 0 by Eq. (4.49)

or{
α
µ ν

}
Ac

{
c

α σ

}
+Ac

∂

∂xσ

{
c

µ ν

}
−
{

α
µ σ

}{
c

α ν

}
Ac −Ac

∂

∂xν

{
c

µ σ

}
= 0

or [{
α
µ ν

}{
c

α σ

}
+

∂

∂xσ

{
c

µ ν

}
−
{

α
µ σ

}{
c

α ν

}
− ∂

∂xν

{
c

µ σ

}]
Ac = 0

or [
− ∂

∂xν

{
c

µ σ

}
+

∂

∂xσ

{
c

µ ν

}
−
{

α
µ σ

}{
c

α ν

}
+

{
α
µ ν

}{
c

α σ

}]
Ac = 0

or
RcµσνAc = 0, i.e. Rcµσν = 0; as Ac is arbitrary.

Thus, we see that the RHS of Eq. (4.50) is integrable only when the curvature tensor
vanishes. Consequently, Eq. (4.49) is integrable only when Rcµσν = 0.

Now, we can carry the vector Aµ to any point by parallel displacement. This gives
a unique result independent of the path of transfer. If a vector is displaced in this way
we obtain a uniform vector field. Thus, the construction of uniform vector field is only
possible when the curvature tensor vanishes.

4.3 Einstein Space

Einstein space is defined as a space which is homogeneous with regard to the Ricci
tensor Rij . Thus, a space for which

Rij = λgij ; λ = invariant at all points (4.54)

at every point of the space, then that space is called Einstein space. Inner multiplica-
tion of gij shows that

gijRij = λgijgij ⇒ R = λN. (4.55)

Thus for an Einstein space,

Rij = λgij =
1

N
Rgij . (4.56)

Hence, for an Einstein space Eq. (4.56) holds at every point of the space.
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Theorem 4.3.1 A space of constant curvature is an Einstein space.

Proof: Let the Riemannian curvature κ at P of VN for the orientation determined by
pi and qi, is given in Eq. (4.34) as

κ =
phqipjqkRhijk

phqipjqk [ghjgik − gijgkh]
.

Since κ is constant and independent of the orientation so,

κ =
Rhijk

ghjgik − gijgkh

or

Rhijk = κ [ghjgik − gijgkh] .

Multiplying by ghk, we get

κghk [ghjgik − gijgkh] = ghkRhijk

or

κ
(
δhi ghj −Ngij

)
= Rij ; since, ghkRhijk = Rij

or

κ (gij −Ngij) = Rij

or

κ (1−N) gijg
ij = Rijg

ij ; multiplying by gij

or

κN(1−N) = R; as Rijg
ij = R.

Therefore,

Rij = (1−N)gij
R

N(1−N)
=
R

N
gij .

This is the necessary and sufficient condition for the space VN to be Einstein space.

EXAMPLE 4.3.1 If gikRkj = Rij and gijRij = R, show that Rij,i =
1
2
∂R
∂xj

. Hence,
show that for an Einstein space, the scalar curvature R is constant.

Solution: Here, we use the Bianchi identity, Eq. (4.20), Rpkjt,i+Rpkti,j +Rpkij,t = 0.
The covariant differentiation of the relation gikRkj = Rij with respect to xl is given by

Rij,l = gik,l Rkj + gikRkj,l = gikRkj,l; as gik,l = 0.
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Thus, the divergence of Rij is given by

Rij,i = gikRkj,i = gikRtkjt,i; as Rtkit = Rkj

= gik
(
gptRpkjt

)
,i
; as gptRpkjt = Rtkjt

= gikgptRpkjt,i; as gpt,i = 0

= −gikgpt [Rpkti,j +Rpkij,t] = −gpt
[
gikRpkti,j + gikRpkij,t

]
= −gpt

[
gkiRkpti,j + gikRkpji,t

]
as Rkpti = −Rpkti and Rkpji = Rpkij

= −gpt
[
−Ripti,j +Ripji,t

]
= −gpt [−Rpt,j +Rpj,t]

=
(
gptRpt

)
,j
− gptRpj,t = R,j −Rtj,t = R,j −Rij,i

replacing the dummy index t by i

or

2Rij,i = R,j =
∂R

∂xj
⇒ Rij,i =

1

2

∂R

∂xj
.

For an Einstein space, Rij =
R
N gij , therefore,

gkiRij =
R

N
gijg

ki ⇒ Rkj =
R

N
δkj

or

Rkj,k =
1

N
R,kδ

k
j =

1

N
R,j

or
1

2
R,j =

1

N
R,j ⇒ R,j = 0; for N > 2.

Therefore, for an Einstein space, the scalar curvature R is constant.

EXAMPLE 4.3.2 For a V2 referred to an orthogonal system of parametric curves
(g12 = 0), show that

R12 = 0, R11g22 = R22g11 = R1221

R = gijRij =
2R1221

g11g22
, consequently, Rij =

R

2
gij .

Hence, show that V2 is an Einstein space.
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Solution: Given that, in a V2, g12 = 0 so that g12 = 0. Also,

gij =
1

gij
⇒ g11 =

1

g11
, g22 =

1

g22
.

The metric of V2 is given by

ds2 = gijdx
idxj ; i, j = 1, 2

= g11(dx
1)2 + g22(dx

2)2; as g12 = 0.

Also, we know that ghkRhijk = Rij and

g =

∣∣∣∣g11 g12
g21 g22

∣∣∣∣ = ∣∣∣∣g11 0
0 g22

∣∣∣∣ = g11g22.

(a) Here, we have to show that R12 = 0. For this,

R12 = ghkRh12k = gh1Rh121 + gh2Rh122 = gh1Rh121; as Rh122 = 0

= g11R1121 + g21R2121 = 0; as g12 = 0 and R1121 = 0.

(b) Using the relation ghkRhijk = Rij we get

R11 = ghkRh11k = g2kR211k = g22R2112 =
R2112

g22
.

R22 = ghkRh22k = g1kR122k = g11R1221 =
R1221

g11
.

Since R2112 = R1221, it follows that, R11g22 = R1221 = R22g11. Therefore, in a
two-dimensional Riemannian space the components of a Ricci tensor are propor-
tional to the components of a metric tensor.

(c) From the definition of R, we get

R = gijRij = gi1Ri1 + gi2Ri2

= g11R11 + g22R22; as g12 = 0

=
R11

g11
+
R22

g22
=
R1221

g22g11
+
R1221

g11g22

=
2R1221

g11g22
; as R2112 = R1221.
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(d) From (c), we see that

R =
2R1221

g11g22
=

2R1221

g
; as g = g11g22

⇒ R1221 =
1

2
Rg.

Therefore, the relation in (b) can be written in the form

R11g22 =
1

2
Rg = R22g11

from which it follows that

R11 =
Rg

2g22
=
Rg11g22
2g22

=
1

2
Rg11

R22 =
Rg

2g11
=
Rg11g22
2g11

=
1

2
Rg22

R12 =
1

2
Rg12 = 0; as g12 = 0.

Consequently, we get Rij =
R
2 gij . This shows that V2 is an Einstein space.

4.4 Mean Curvature

Let λih| be the components of unit vector in a direction at a point P of a VN . Let λ
i
k|

be the components of unit vector forming an orthogonal ennuple. One vector out of
N vectors λik| is λ

i
h| and hence, we can say that λik| are components of N − 1 vectors

where h ̸= k and k = 1, 2, . . . , N.
Let the Riemannian curvature at P of VN for the orientation determined by λih|

and λik| (k ̸= h) be denoted by Khk and is given by

Khk =
λph|λ

q
k|λ

r
h|λ

s
k|Rpqrs

λph|λ
q
k|λ

r
h|λ

s
k| (gprgqs − gpsgqr)

=
λph|λ

q
k|λ

r
h|λ

s
k|Rpqrs(

λph|λ
r
h|gpr

)(
λqk|λ

s
k|gqs

)
−
(
λph|λ

s
k|gps

)(
λqk|λ

r
h|gqr

) . (4.57)

Since unit vectors λih| and λ
i
k| are orthogonal, so,

λph|λ
r
h|gpr = 1 and λph|λ

s
k|gps = 0.
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Therefore, from Eq. (4.57), we get

Khk =
λph|λ

q
k|λ

r
h|λ

s
k|Rpqrs

1.1− 0.0
= λph|λ

q
k|λ

r
k|λ

s
k|Rpqrs. (4.58)

Since the right-hand side of Eq. (4.58) vanishes for h = k, and so we say Khh is equal
to zero. Let Mh =

∑N
k=1Khk. Hence from Eq. (4.58) we have,

N∑
k=1

Khk =Mh =

N∑
k=1

λph|λ
q
k|λ

r
h|λ

s
k|Rpqrs

= λph|λ
q
h|

N∑
k=1

λqk|λ
s
k|Rpqrs

= λph|λ
r
h|g

qsRpqrs; as
N∑
k=1

λqk|λ
s
k| = gqs

= −λph|λ
r
h|g

qsRqprs = −λph|λ
r
h|R

s
pqs = −λph|λ

r
h|Rpr. (4.59)

This shows thatMh is independent of (N−1) orthogonal direction choosen to complete
an orthogonal ennuple. Here, Mh is defined as mean curvature or Riccian curvature
of VN for the direction λph|. Summing Eq. (4.58) over the N mutually orthogonal
directions, we get

N∑
h=1

Mh = −
N∑
h=1

λph|λ
r
h|Rpr = −gprRpr = −R,

where R is the scalar curvature. This proves that the sum of mean curvatures for N
mutual orthogonal directions is independent of the directions chosen to complete an
orthogonal ennuple and has the value −R.

4.4.1 Ricci’s Principal Directions

Let us suppose that λih| is not a unit vector and therefore, the mean curvature Mh in
this case is given by

Mh = −
Rijλ

i
h|λ

j
h|

gijλih|λ
j
h|

⇒ (Rij +Mhgij)λ
i
h|λ

j
h| = 0.

Differentiating this equation with respect to λih|, we get

∂Mh

∂λih|
gjkλ

j
h|λ

k
h| + 2 (Rij +Mhgij)λ

j
h| = 0.
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For extreme value of Mh, we must have ∂Mh

∂λi
h|

= 0, and so

(Rij +Mhgij)λ
j
h| = 0,

which are called Ricci’s principal direction of the space and they are principal direc-
tions of Ricci tensor Rij .

EXAMPLE 4.4.1 For a two-dimensional manifold, prove that Kpq = −R
2 .

Solution: In V2, we know R1212 is the only non-vanishing Riemann–Christoffel tensor
given by

R1212 =
1

2
Rg;R = total curvature.

Let the Riemannian curvature at P of VN for the orientation determined by λip| and

λiq| (q ̸= p) be denoted by Kpq and from Eq. (4.57) we get,

Kpq =
λhp|λ

i
q|λ

j
p|λ

k
q|Rhijk

λhp|λ
i
q|λ

j
p|λ

k
q| (ghjgik − ghkgij)

=
λ1p|λ

2
q|λ

1
p|λ

2
q|R1212

λ1p|λ
2
q|λ

1
p|λ

2
q| (g11g22 − g12g21)

=
R1212

g212 − g11g22
=
R1212

−g
= −1

2
R.

4.5 Geodesics in a VN

Consider a curve Γ : xi = xi(t) in a VN , an N -dimensional Riemannian space, on it
and let xi(t) be the co-ordinates of a general point P on it. Let the points A and B
of the path correspond, respectively, to the value t1 and t2 of the parameter.

Consider two points on the path close to each other with co-ordinates xi and
xi+dxi. Let the parameter take values t and t+dt corresponding to these two points,
respectively. The interval ds between the two points is given by

ds2 = gijdx
idxj = gij

dxi

dt

dxj

dt
dt2. (4.60)

The total interval between A and B along the path therefore,

S =

∫ t2

t1

√
gij
dxi

dt

dxj

dt
dt

=

∫ B

A
F (xi, ẋi)dt, say; where F (xi, ẋi) =

√
gij ẋiẋj . (4.61)
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In order Γ is a geodesic, integral Eq. (4.61) should be stationary. In order that integral
Eq. (4.61) is stationary, we have the Euler-Lagrange condition,

∂F

∂ẋl
− d

dt

(
∂F

∂ẋl

)
= 0

or
1

2ṡ

∂gij
∂xl

ẋiẋj −
[
− s̈
ṡ
gliẋ

i +
1

ṡ

∂gli
∂ẋj

ẋj ẋi +
1

ṡ
gliẍ

i

]
= 0

or

gliẍ
i − s̈

ṡ
gliẋ

i + [li, j]ẋiẋj = 0. (4.62)

Multiplying this relation by glm and perform summation over l, we get

ẍm − s̈

ṡ
ẋm +

{
m
i j

}
ẋiẋj = 0. (4.63)

Equation (4.63) of geodesic can be further simplified by taking s = t, so that ṡ = 1,
s̈ = 0, and therefore, Eq. (4.63) becomes

d2xi

ds2
+

{
i
j k

}
dxj

ds

dxk

ds
= 0, (4.64)

where s itself is chosen as the parameter. This, of course, represents a set of N coupled
differential equations. Equation (4.64) is known as geodesic equation in VN .

EXAMPLE 4.5.1 Show that on the surface of a sphere all great circles are geodesics
while no other circle is a geodesic.

Solution: The components of the metric tensor on the surface of a sphere of radius
a are g11 = a2, g22 = a2 sin2 θ, g12 = g21 = 0 and g = a4 sin2 θ so that the metric is
ds2 = a2(dθ)2 + a2 sin2 θ(dϕ)2. The non-vanishing Christoffel symbols are{

2
1 2

}
= cot θ =

{
2

2 1

}
;

{
1

2 2

}
= − sin θ cos θ.

Thus, the geodesic equation reduces to (with θ = x1, ϕ = x2)

d2θ

ds2
− sin θ cos θ

(
dϕ

ds

)2

= 0 (i)

d2ϕ

ds2
+ 2 cot θ

dθ

ds

dϕ

ds
= 0. (ii)
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(a) Consider a great circle on the surface of the sphere and choose the z axis (θ = 0)
to be normal to the plane of the circle, so that the great circle is the equator.
The parametric equation of the great circle is

θ =
π

2
, ϕ = cs+ d; c ̸= 0, (iii)

where c and d are independent of s, θ and ϕ. It is evident that Eq. (iii) satisfy
Eqs. (i) and (ii), so that the great circle is a geodesic. Since the choice of the
polar axis θ = 0 is arbitrary, it follows that any great circle is a geodesic.

(b) Consider a circle on the sphere such that the plane of the circle does not pass
through the centre of the sphere. Again, choose the direction θ = 0 to be normal
to the plane of the circle so that the parametric equation of the circle is

θ = θ0, ϕ = ps+ q; θ0 ∈ (0, π)−
{π
2

}
; p ̸= 0, (iv)

where p and q are independent of s, θ and ϕ. On substitution, it is seen that
Eq. (ii) is satisfied but Eq. (i) is reduces to

p2 sin θ0 cos θ0 = 0.

The conditions on θ0 and p of Eq. (iv) show that this equation cannot be satisfied,
proving that the circle is not a geodesic.

Now, we find the lines of shortest distance of the sphere. From Eq. (4.61), we
have,

S = a

∫ B

A
F (xi, ẋi)dt,

where

F (xi, ẋi) =
√
gij ẋiẋj =

√
1 + ϕ̇2 sin2 θ.

In order Γ is a geodesic, then Euler–Lagrange equation reduces to,

Fϕ̇ = constant ⇒ ϕ̇ sin2 θ√
1 + ϕ̇2 sin2 θ

= c

⇒ ϕ̇2 =
c2

sin4 θ − c2 sin2 θ
=

c2cosec4 θ

(1− c2)− c2 cot2 θ

⇒ ϕ̇ =
k cosec2θ√
1− k2 cot2 θ

; k2 =
c2

1− c2

⇒ ϕ = α− sin−1(k cot θ); i.e. sin(α− ϕ) = k cot θ.
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Let us verify these curves are great circles. Multiplied last equation by α sin θ,
we get

(α sin θ cosϕ) sinα− (α sin θ sinϕ) cosα = kα cos θ

or
x sinα− y cosα = kz.

This represents a plane through the centre of the sphere, and the section of the
sphere by this plane is a great circle.

4.5.1 Parallel Vector Fields

In an Euclidean space, a vector field Ai(x
j) is said to be a field of parallel vectors if

the components Ai are constants, i.e. Ai,j = 0, i.e. or, suppose that a vector Ai defined
at a point xj undergoes a displacement dxj to the point xj + dxj , where, the vector
becomes Ai + ∂Ai. We shall say that Ai undergoes a parallel displacement if ∂Ai

∂xj
= 0.

For example, a uniform electric field is a field of parallel vectors; the gravitational field
of the earth in a sufficiently small region of space is a field of parallel vectors.

Here, our object is to generalise the concept of parallel displacement of surface
vectors and tensors in Riemannian space, due to Levi Civita. Let us consider a space
curve Γ, total of points, whose co-ordinates satisfy equation of the form

Γ : xi = xi(t), (4.65)

where xi (belongs to the class C1) are functions of a single parameter t. Let a vector
A be localised at some point P of Γ whose components Ai are functions of t. If we
construct at every point of Γ, a vector equal to A in magnitude and parallel to it in
direction, we obtain what is known as a parallel field of vectors along the curve Γ. We
have shown in Chapter 3 that if Ai is a vector, its co-ordinate derivative ∂Ai

∂xj
is not

a tensor, but the intrinsic derivative δAi
δt along the curve Eq. (4.65) is a tensor. To

retain the tensor character, therefore, we must define the parallel displacement of a
tensor in a Riemannian space differently. If Ai is a solution of the system of differential
equation

δAi

δt
=
dAi

dt
+

{
i
j k

}
Aj
dxk

ds
(4.66)

then the vectors Ai are said to form a parallel vector field along the curve Γ given by
Eq. (4.65). We say that if the vector A is a parallel field along Γ, then the vectors
A do not change along the curve. Thus, the vector A suffers a parallel displacement
along Γ if the intrinsic derivative of the tensor along the curve vanishes, (Figure 4.1),
i.e.

Ai,j
dxi

dt
=
δAi

δt
= 0. (4.67)
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Conversely, we can show that every solution of system Eq. (4.67) yields a parallel
vector field along Γ. Indeed, from the theory of differential equations it is known that

Figure 4.1: Parallel vectors AiP and AiQ.

this system of first order differential equations has a unique solution when the values
of the components Ai are specified at a point of Γ. But the vector field formed by
constructing a family of vectors of fixed lengths, parallel to a given vector, satisfies the
system. Hence, every solution of Eq. (4.67) satisfies the initial conditions must form
a parallel field along Γ.

In other words, we say that Ai is parallely displaced with respect to Riemannian
space along the curve Γ, if Eq. (4.67) holds at all points of Γ. Thus, we have a field of
parallel vectors, if,

Ai,j
dxi

dt
= 0 ⇒ gik

(
Ai,j

dxj

dt

)
= 0 ⇒

(
gikA

i
)
,j
dxj

dt
= 0

⇒ Ak,j
dxj

dt
= 0; i.e. Ai,j

dxj

dt
= 0

or [
dAi

dxj
+

{
i

α j

}
Aα
]
dxj

dt
= 0

or
dAi

dt
+

{
i

α j

}
Aα

dxj

dt
= 0

or

dAi = −
{

i
j k

}
Ajdxk (4.68)

along the curve. The converse follows, as previously, for the existence and uniqueness
of solution of such systems of differential equations. Similarly, the condition for a
parallel displacement of a covariant vector Ai is

dAi =

{
j
i k

}
Ajdx

k. (4.69)
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Also, it follows from the observation that Ai,k = giαA
α
,k whenever Ai = gijA

j . Thus,

the increments in Ai and Ai due to a displacement dxj along the curve are given by
Eqs. (4.68) and (4.69), respectively.

Result 4.5.1 Now, consider a point P (xi) and two displacements dxi and δxi from P
giving rise to the points Q(xi+dxi) and R(xi+δxi), respectively, as seen in Figure 4.2.

Figure 4.2: Generalised infinitesimal parallelogram.

Imagine the segment PR = δxi being parallely displaced such that as the end point
P goes to Q, the other end R goes to S. The displacement QS will be

QS ≡ δxiQ = δxi + d(δxi), (4.70)

which makes the co-ordinates of the points S,

S ≡
[
xi + dxi + δxiQ

]
=
[
xi + dxi + δxi + d(δxi)

]
, (4.71)

where by Eq. (4.68), we have

d(δxi) = −
{

i
j k

}
P

δxjdx
k. (4.72)

The subscript P on the Christoffel symbol means is to be evaluated at P . Similarly,
imagine the segment PQ = dxi being parallely displaced such that as the point P goes
to R, the other end Q goes to S′. The displacement RS′ will be given by

RS = dxiR = δxi + d(δxi), (4.73)

which makes the co-ordinates of the point S′

S′ ≡
[
xi + dxi + δxiR

]
=
[
xi + δxi + dxi + δ(dxi)

]
, (4.74)

where, δ(dxi) = −
{

i
j k

}
P

dxjδx
k = −

{
i
j k

}
P

dxkδx
j , (4.75)

which follows by interchanging j and k and using the symmetric property of the
Christoffel symbol. Equations (4.72) and (4.75) show that d(δxi) = δ(dxi) indicating
that the point S′ coincides with S. The closed figure PQRS can be regarded as the
generalised infinitesimal parallelogram with opposite sides parallel to each other in the
Riemannian space.
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Result 4.5.2 (Curvature of Riemannian space). Here we have introduced the
curvature tensor by considering the parallel displacement of a vector along two different
paths. Consider an infinitesimal parallelogram PQRS (Figure 4.3) as described with
adjacent sides PQ = dxi and PR = δxi. Imagine a constravariant vector Aip defined
at the point P being parally displaced is the following two ways:

Figure 4.3: Curvature of Riemannian space.

(i) Displace Aip parallely from P to Q resulting AiQ and then displace AiQ parallely

from Q to S giving the vector AiSQ.

(ii) Displace Aip parallely from P to R giving AiR parallely from R to S resulting the
vector AiSR.

The vector AiQ obtained by a parallel displacement of AiP is given by

AiQ = AiP + dAiP ; where dAiP = −
{

i
j k

}
P

AiPdx
k. (i)

This vector is parallely displaced from Q to S resulting the vector AiSQ which will be
given by

AiSQ = AiQ + δAiQ = AiQ −
{

i
l h

}
Q

AlQ δx
h. (ii)

The Christoffel symbol depends on the metric tensor which in turn is a function of
co-ordinates. For a small displacement, we can therefore write{

i
l h

}
Q

=

{
i

l h

}
P

+

{
i

l h

}
P,m

dxm (iii)
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where

{
i

l h

}
P,m

=

[
∂

∂xm

{
i

l h

}]
at P

. Substituting Eqs. (iii) and (i) in Eq. (ii),

we have

AiSQ = AiP −
{

i
j k

}
P

AjP dx
k −

[{
i

l h

}
P

+

{
i

l h

}
P,m

dxm

]
[
AlP −

{
l

j k

}
P

AjP dx
k

]
δxh

= Ai −
{

i
j k

}
Aj dxk −

{
i

l h

}
Alδxh −

{
i

l h

}
,m

Al dxm δxh

+

{
i

l h

} {
l

j k

}
Aj dxk dxh + O

[
(dxk)3

]
, (iv)

where we have dropped the subscript P from the right hand side of (iv) because
all the quantities are to be evaluated at P . The vector AiSR obtained by a parallel
displacement along the path PRS will be simply given by an interchange of dxi and
dxi in the expression for AiSQ:

AiSR = Ai −
{

i
j k

}
Aj δxk −

{
i

l h

}
Aldxh −

{
i

l h

}
,m

Al δxm dxh

+

{
l

l h

} {
l

j k

}
Ajδxk dxh + O

[
(dxk)3

]
. (v)

Subtracting (iv) from (v) we get

AiSR − AiSR =

{
i

l h

}
,m

Al dxm δxh −
{

i
l h

}
,m

Al δxm dxh

+

{
i

l h

} {
l

j k

}
Aj δxk dxh −

{
i

l h

} {
l

j k

}
Aj dxk δxh. (vi)

Replacing l by j and m by k in the first two terms on the right hand side of (vi) and
interchanging k and h in the second and third terms, the Eq. (vi) can be written as

AiSR − AiSQ = Rijhk A
j dxk δxh, (vii)

where

Rijkh =

{
i

j h

}
, k

−
{

i
j k

}
, h

+

{
i

l k

} {
i

j h

}
−
{

i
l h

} {
l

j k

}
(viii)
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Since Aj , dxk and δxh are arbitrary vectors, if follows from quotient law that Rijkh
is a tensor of rank four, known as the Riemann-Christoffel curvature tensor. It is
independent of the vector Ai and depends only on the metric tensor and its first and
second derivatives.

It follows that if a tensor is parallely displaced along a closed curve until we come
back to the starting point, the resulting vector will not necessarily be the same as the
original vector in a non-Euclidean space.

EXAMPLE 4.5.2 If Ai and Bi are two vectors of constant magnitudes and undergo
parallel displacements along a curve then show that they are inclined at a constant
angle.

Solution: Let the two vectors Ai and Bi be of constant magnitudes, so that their
lengths do not change as we move along the curve Γ. Let these vectors suffer parallel
displacement along a curve Γ, so by hypothesis

δAi

δt
= 0 =

δBi

δt
,

at each point of Γ. The angle θ between the vectors Ai and Bi, is given by

cos θ = gijA
iBj .

The angle θ between the vectors Ai and Bi remains fixed as the parameter t is allowed
to change. Here, gijA

iBj is an invariant. Differentiating intrinsically with respect to
t, we get

δ

δt
(cos θ) =

δ

δt

(
gijA

iBj
)
=

d

dt

(
gijA

iBj
)

= gij
δAi

δt
Bj + gijA

i δB
j

δt
= gij · 0 ·Bj + gijA

i · 0 = 0

or
d

dt
(cos θ) = 0 ⇒ cos θ = constant, i.e. θ = constant.

Thus, we conclude that gijA
iBj is constant along Γ. It follows directly from the result

that, if Ai = Bi, then gijA
iAj = A2 is constant along Γ and this implies θ = constant.

EXAMPLE 4.5.3 Prove that geodesics are autoparallel curves.

Solution: To prove the result, it is enough to prove that the unit tangent vector, say
λi, suffers a parallel displacement along a geodesic curve Γ. Let Γ : xi = xi(t) be a
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geodesic in a Riemannian space. Then the co-ordinates of the points on the geodesic
satisfy the geodesic equation,

d2xi

dt2
+

{
i
j k

}
dxj

dt

dxk

dt
= 0

or
dλi

dt
+

{
i
j k

}
λj
dxk

dt
= 0

or [
∂λi

∂xk
+

{
i
j k

}
λj
]
dxk

dt
= 0

or

λi,k
dxk

dt
= 0; i.e. λi,j

dxj

dt
= 0,

at each point on Γ. This result shows that the unit vectors form a system of parallel
vectors along a geodesic. Hence, it follows from the definition of parallel displacement
that the field of tangent vectors to a geodesic is a field of parallel vectors.

EXAMPLE 4.5.4 Any vector of constant magnitude which undergoes a parallel dis-
placement along a geodesic is inclined at a constant angle to the curve.

Solution: Let a vector Ai of constant magnitude undergo a parallel displacement
along a geodesic Γ, so that,

δAi

δt
= Ai,j

dxj

dt
= 0

at each point of Γ. Let λi be a unit tangent vector to the curve Γ, so that,

δλi

δt
= λi,j

dxj

dt
= 0

at each point of Γ, since geodesics are autoparallel curves. Let θ be the angle between
the vector λi and a curve Γ at any point of Γ, i.e. θ is the angle between Ai and λi,
then,

Aiλi = A · 1 · cos θ

or
d

dt
(A cos θ) =

d

dt
(Aiλi) = (Aiλi),j

dxi

dt
or

−A sin θ
dθ

dt
= Ai,j

dxj

dt
λi +Aiλi,j

dxj

dt

= 0t1 +Ai0 = 0.
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or

sin θ
dθ

dt
= 0; as A ̸= 0,

or

sin θ = 0 or
dθ

dt
= 0 ⇒ θ = 0 or θ = constant.

EXAMPLE 4.5.5 If the intrinsic derivative of a vector vanishes, then show that the
magnitude of the vector is constant.

Solution: Let the intrinsic derivative of a vector Ai be zero so that

δAi

δt
= Ai,j

dxj

dt
= 0.

We have to show that A2 = AiAi is constant. Differentiating both sides with respect to
a parameter t and noting that the intrinsic derivative of a scalar is ordinary derivative,
we have

dA2

dt
=

d

dt

(
AiAi

)
=
(
AiAi

)
,j

dxj

ds

= Ai,j
dxj

dt
Ai +AiAi,j

dxj

ds
= 0Ai +Ai0 = 0

or

A2 = constant ⇒ A = constant.

Thus, if the derived vector of a given vector A in the direction of a given curve Γ
vanishes at all points of a curve, then the magnitude of the vector is constant. If Ai

forms a field of parallel vectors along the curve xi = x(t), then we have

δAi

δt
= Ai,j

dxj

dt
= 0.

Then similarly, as above we can show that A = constant. Thus, the magnitude of a
vector remain invariant under parallel displacement.

EXAMPLE 4.5.6 Show that the parallel displacement of a vector taken all around
a circle on the surface of a sphere does not lead back to the same vector except when
the circle is a great circle, that is, a geodesic.

Solution: Choose spherical polar co-ordinates x1 = θ and x2 = ϕ on the surface of
the sphere. The non-vanishing Christoffel symbols are,{

2
1 2

}
= cot θ =

{
2

2 1

}
;

{
1

2 2

}
= − sin θ cos θ.
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Choose a small circle normal to the polar axis so that its parametric equation is

θ = α, ϕ = ps+ q; p ̸= 0 with
dθ

dt
= 0.

Consider a vector Ai = (a1, A2) at a point on the circle which may be taken to be ϕ = 0.
When the vector is displaced parallely along the circle, the change in its components
is given, from Eq. (4.69), by

dA1

dt
= −

{
1
j k

}
Aj
dxk

dt
= A2 sinα cosα

dϕ

dt
(i)

dA2

dt
= −

{
2
j k

}
Aj
dxk

dt
= −A cotα

dϕ

dt
. (ii)

Now, for any function f of θ and ϕ through t, we have

df

dt
=
∂f

∂θ

dθ

dt
+
∂f

∂ϕ

dϕ

dt
=
∂f

∂ϕ

dϕ

dt
,

which reduces Eqs. (i) and (ii) to

∂A1

∂ϕ
= A2 sinα cosα;

∂A2

∂ϕ
= −A1 cotα. (iii)

Differentiating once again with respect to ϕ and substituting one in the other, Eq. (iii)
give rise to the decoupled equations

∂2A1

∂ϕ2
= −A1 cos2 α;

∂2A2

∂ϕ2
= −A2 cos2 α, (iv)

whose solution, consistent with Eq. (iii), is

A1 = sinα [c cos(ϕ cosα) + d sin(ϕ cosα)]

A2 = d cos(ϕ cosα)− c sin(ϕ cosα).

At ϕ = 0, the components of the vector are given by

A1(ϕ = 0) = c sinα, A2(ϕ = 0) = d, (v)

whereas, after parallel displacement once around the circle, the components become,

A1(ϕ = 2π) = sinα [c cos(2π cosα) + d sin(2π cosα)]

A2(ϕ = 2π) = d cos(2π cosα)− c sin(2π cosα),

which are not the same as those given by Eq. (v) except when α = π
2 , i.e. when the

displacement is along the geodesic.
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4.6 Exercises

1. Obtain the geodesic equations in cylindrical co-ordinates and spherical polar
co-ordinates for the three-dimensional Euclidean space.

2. Consider a great circle on the surface of a sphere and choose the polar axis to lie
in the plane of the great circle is a meridian. With this choice of co-ordinates,
show that any meridian on a sphere is a geodesic.

3. Show that parallel displacement of a vector along any closed curve in an
Euclidean space leads back to the original vector.

4. Prove that cyclic property of the covariant curvature tensor by setting a geodesic
co-ordinate system.

5. Verify that, Rijkl,m +Rijlm,k +Rijmk,l = 0.

6. In a two-dimensional Riemannian space, the components of the Ricci tensor are
proportional to the components of the metric tensor.

7. Given the relation
Aij = Rij + δij(λR+ µ)

where λ, µ are constants. Show that for the value of λ = −1
2 , A

i
j,i = 0.

8. Let in a V2 space the line element is ds2 = 2f(x1, x2)dx1dx2. Find R1212 for the
space. Prove that the space is flat, if

f
∂2f

∂x1∂x2
=

∂f

∂x1
∂f

∂x2
.

Show also if f is independent of at least one of the two co-ordinates x1 and x2,
then the space is flat.

9. Prove that a necessary and sufficient condition for a Riemannian VN (N > 2), to
be of constant Riemannian curvature is that the Weyl tensor vanishes identically
throughout VN .

10. Prove that the mean curvature in the direction λi at a point of a VN is the
sum of N − 1 Riemmanian curvatures along the direction pairs consisting of the
direction and N − 1 other directions forming with this directions an orthogonal
frame.

11. Prove that the sum of mean curvatures of a VN for a mutually orthogonal direc-
tions at a point, is independent of the ennuple chosen. Obtain the value of this
sum.

12. Prove that a Riemannian metric (gij) is the Euclidean metric if and only if the
Riemannian curvature κ is zero at all points and the metric is positive definite.

13. (a) Calculate the Riemannian curvature for the metric

ds2 = (dx1)2 − 2x1(dx2)2.
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(b) Show that the componentsR1212 of the curvature tensor for a two-dimensional
space with metric ds2 = dx2 + f(x, y)dy2 equals

−1

2

∂2f

∂x2
+

1

4f

(
∂f

∂x

)2

.

(c) A two-dimensional space have the metric

ds2 = f(u, v)du2 + h(u, v)dv2.

Find the components R1212 of the curvature tensor for the space.

14. Show that the Riemannian curvature at any point (xi) of Riemannian 3 space in
the direction P = (0, 1, 0) and Q = (1, 1, 0) is 1

4(x
1)−2, if the metric is given by

g11 = 1; g22 = 2x1; g33 = 2x2; gij = 0, for i ̸= j.

15. Prove that, in a V2,

Rijkl = −R
2
[gikgjl − gilgjk] .

16. Consider the metric ds2 = (dx1)2 − (x1)2[(dx2)2 + (dx3)2]. Show that R1212 = 2
and that, therefore, the space is not flat.

17. Prove that a Riemannian space is an Einstein space if

Rαijk = µ
(
δαj gjk − δαk gij

)
,

where µ is a constant. Hence, show that for an Einstein space, the scalar curva-
ture R is constant.

18. Prove Schur’s theorem. If all points in some neighbourhood in a Riemannian RN

are isotropic and N ≥ 3, then κ is a constant throughout that neighbourhood.

19. Verify that ds2 = (dx1)2 + (x1)2(dx2)2 represents the Euclidean metric in polar
co-ordinates.

20. Determine whether the following metric is flat and/or Euclidean:

(a) ds2 = (dx1)2 − (x1)2(dx2)2;N = 2.

(b) ds2 = (dx1)2 + (x3)2(dx2)2 + (dx3)2.

21. Find the isotropic points for the Riemannian metric

ds2 = (log x2)
[
(dx1)2 + (dx2)2 + (dx3)2

]
; x2 > 1,

and find the curvature κ at those points.
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22. Show that R3 under the metric

g11 = ex
2
; g22 = 1; g33 = ex

2
; gij = 0; for i ̸= j

has constant Riemannian curvature with all points isotropic, find that curvature.

23. If Γji is the Einstein tensor, prove that

(a) Γji,j =
(
Rji −

1
2δ
j
iR
)
,j
= 0.

(b) The Einstein invariant Γ = Γii, vanishes if the space is flat.

24. For a two-dimensional space (V2), show that

gRij = −gijR1212 and gR = −2R1212.

Hence, deduce that every V2 is an Einstein space.

25. The metric of the V2 formed by the surface of a sphere of radius r is

ds2 = r2dθ2 + r2 sin2 θdϕ2

in spherical polar co-ordinates. Show that the surface of a sphere is a surface of
constant curvature.

26. In an Euclidean V4, prove that the hypersurface, x1 = c sinu1 sinu2 sinu3, x2 =
c sinu1 sinu2 cosu3, x3 = c sinu1 cosu2, x4 = c cosu1 has a constant curvature
c−2.

27. Show that an Einstein space V3 has constant curvature.

28. In a space in which the relation

Rijgkl −Rilgjk +Rjkgil −Rklgij = 0

holds, show that the space is an Einstein space.

29. Find the lines of shortest distance of a sphere of radius a.

30. Show that the magnitude of a vector and angle between two vectors remain
invariant under parallel displacement.

31. If two unit vectors are such that at all points of a given curve Γ, their intrinsic
derivatives along Γ are zero, show that they are inclined at a constant angle.

32. Show that the field of tangent vectors to a geodesic is a field of parallel vectors.



Chapter 5

Geometry of Space Curve

For the study of a curve by the method of calculus, its parametric representation is
covariant. In this chapter, three vectors (tangent, normal, binormal) of fundamental
importance to curve theory are discussed. A curve is determined uniquely except for
position by measures of two notions associated with it, called its curvature and torsion.
For a given curve there is a set of important formulas dealing with its curvature and
torsion. These formulas are called Serret–Frenet formulae, which will be established
in the next theory.

5.1 Curve Theory

A curve C in E3 is the image of a class C3 mapping, r, from an interval of real numbers
into E3. The moving frame of the curve

C : r = r(s) =
(
x1(s), x2(s), x3(s)

)
(5.1)

with the arbitrary parameter s, has been defined as an image of the real number for
the arc length parameterization. Let s be the arc length. Then,

r′ = T =
dr

ds
=
(
x1

′
(s), x2

′
(s), x3

′
(s)
)

r′′ =
d2r

ds2
=
(
x1

′′
(s), x2

′′
(s), x3

′′
(s)
)
=
dT

ds
= κN

r′′′ =
d3r

ds3
=
(
x1

′′′
(s), x2

′′′
(s), x3

′′′
(s)
)

=
d

ds
(κN) = κ′N+ κ

dN

ds
= κ′N+ κ (−κT+ τB).

We have at once for the unit tangent vector,

T̂ = r̂′ =
1

|r′|
r′ =

1

|r′|

(
x1

′
(s), x2

′
(s), x3

′
(s)
)
.

264
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Since r′′ = dT
ds = κN̂, where N is the normal vector, we have |r′′| = κ, and so, the unit

normal vector is given by

N̂ =
1

|r′′|
r′′ =

1

|r′′|

(
x1

′′
(s), x2

′′
(s), x3

′′
(s)
)
.

κ is called the curvature. The unit vector N̂ is perpendicular to T̂ and in the plane
of the tangents at P and a consecutive point. This plane, containing two consecutive
tangents and three consecutive points at P , is called the plane of curvature or the
osculating plane at P . If R is any point in this plane, then the equation of the
osculating plane

[R− r, T̂ , N̂ ] = 0, i.e. [R− r, r′, r′′] = 0.

The unit vectors T̂ and N̂ are perpendicular to each other, and their plane is the plane
of curvature. The straight line through P parallel to N̂ is called the principal normal
at P (Figure 5.1). If R be the current point on the line, its equation is

R = r+ uN̂.

Figure 5.1: Planes.

The circle of curvature at P is the circle passing through three points on the curve
ultimately coincident at P . Its radius P

(
= 1

κ

)
is called the radius of curvature, and

its centre C the centre of curvature. This circle is clearly lies on the osculating plane
at P , and its curvature is the same as that of the curve at P , for it has two consecutive
tangents in common with the centre. The centre of curvature C lies on the principal
normal, and

−−→
PC = ρN̂ =

1

κ
N̂

The direction cosines of N̂ can be written as

N̂ = ρ
dT̂

ds
= ρ r′′.
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Finally, for the binormal vector, we have

B = T×N = r′ × 1

|r′′|
r′′ =

1

|r′′|
(
r′ × r′′

)
.

The positive direction along the binormal is taken as that of B, just as the positive
direction along the principal normal is that of N̂. The equation of the binormal is

R = r+ uB.

Since B is a vector of constant length, it follows that dB
ds is perpendicular to B.

Moreover differentiating the relation T.B = 0 with respect to s we find

kN · B + T · dB
ds

= 0

⇒ T · dB
ds = 0, as N is perpendicular to B. This equation shows that dB

ds is
perpendicular to T, which is perpendicular to B, and must therefore parallel to N.
We may then write

dB

ds
= − τN.

In this equation dT
ds = κN, the scalar κ measures the arc-rate of turning of the unit

vector T, so here τ measures the arc-rate of turning of the unit vector B. This rate of
turning of binormal is called the torsion of the curve at the point P . It is of course the
rate of rotation of the osculating plane. The negative sign indicates that the torsion
is regarded as positive when the rotation of the binormal as s increase is in the same
sense as that of a right handed screw travelling in the direction of T. Now

dN

ds
=

d

ds
(B × T) = −τN × T + B × (κN)

= τB − κT.

The formulas for dT
ds ,

dN
ds and dB

ds gather together gives

dT

ds
= κN;

dN

ds
= τB− κT;

dB

ds
= −τN.

These equations are the vector equivalents of the Serret–Frenet formulae for the deriva-
tives of the direction cosines of the tangent, the principal normal and the binormal.
Therefore

δ

δs

T
N
B

 0 κ 0
−κ 0 τ
0 −τ 0

T
N
B


which is the Serret–Frenet formulae in the matrix form. The coefficient matrix is
Skew-symmetric.
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Now, we have to calculate [r′, r′′, r′′′] as[
r′, r′′, r′′′

]
=
[
T, κN, κ′N+ κ (−κT+ τB)

]
= [T, κN, κτB] = κ2τ [T,N,B] = κ2τ

⇒ τ =
1

κ2
[
r′, r′′, r′′′

]
=

1

|r′′|2
[
r′, r′′, r′′′

]
.

An alternative formula giving the square of the torsion, may be deduced from the
expression for r′′′ found above. On squaring this and diving throughout by κ2 we
obtain the result

τ2 =
1

κ2
r′′′2 − κ2 −

(
κ′

κ

)2

.

By analogy with the relation that the radius of curvature is equal to the reciprocal of
the curvature, it is customary to speak of the reciprocal of the torsion, and to denote
it by σ. So σ = 1

τ . But there is no circle of torsion or centre of torsion associated with
the curve in the same way as the circle and centre of curvature.

Let the equation of the curve be

C : r = r(t) =
(
x1(t), x2(t), x3(t)

)
, (5.2)

where t is a parameter. Therefore,

ṙ =
dr

dt
=
(
ẋ1(t), ẋ2(t), ẋ3(t)

)
=
dr

ds

ds

dt
= r′ṡ = ṡT

r̈ =
d2r

dt2
=
(
ẍ1(t), ẍ2(t), ẍ3(t)

)
=

d

dt
(ṡT) = s̈T+ κṡ2N

˙̈r =
d3r

dt3
=
(
˙̈x1(t), ˙̈x2(t), ˙̈x3(t)

)
=

d

dt

(
s̈T+ κṡ2N

)
=
dT

ds
ṡs̈+T ˙̈s+ κ̇ṡ2N+ κ (−κT+ τB) ṡ3 + 2κṡs̈N.

Since T · r̈ = s̈, so, s̈ = ṙ·r̈
|ṙ| . Therefore,

r̈ = s̈T+ κṡ2N =
ṙ · r̈
|ṙ|

ṙ

|ṙ|
+ κṡ2N

or

κN =
1

|ṙ|2

[
r̈− (r · r̈)

|ṙ|2
ṙ

]
or

κ =
1

|ṙ|2

[
|r̈| − (r · r̈)

|ṙ|

]
=

|ṙ× r̈|
|ṙ|3

.
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Therefore, the normal vector is given by

N =
1

κ|ṙ|2

[
|r̈| − (r · r̈)

|ṙ|
ṙ

]
.

Now, we have to calculate
[
ṙ, r̈, ˙̈r

]
as[

ṙ, r̈, ˙̈r
]
=
[
ṡT, κṡ2N, κτ ṡ3B

]
= κ2τ ṡ6 [T,N,B] = κ2τ ṡ6.

or

τ =

[
ṙ, r̈, ˙̈r

]
κ2ṡ6

=

[
ṙ, r̈, ˙̈r

]
|ṙ× r̈|2

|ṙ|6

|ṙ|6
=

[
ṙ, r̈, ˙̈r

]
|ṙ× r̈|2

,

which is the expression for torsion.

5.2 Plane Curve

When the curve xi = f i(s) lies on the plane, then it is defined as a plane curve. Every
planner curve has a principal normal vector. A necessary and sufficient condition for
a curve xi = f i(s) lies on a plane is

ϕ =

∣∣∣∣∣∣
f1

′
f2

′
f3

′

f1
′′

f2
′′

f3
′′

f1
′′′

f2
′′′

f3
′′′

∣∣∣∣∣∣ = 0.

Let the curve xi = f i(s) lie on the plane

a1x
1 + a2x

2 + a3x
3 + a0 = 0

or
a1f

1(s) + a2f
2(s) + a3f

3(s) + a0 = 0.

Differentiate with respect to s thrice, we have

a1f
1′(s) + a2f

2′(s) + a3f
3′(s) = 0

a1f
1′′(s) + a2f

2′′(s) + a3f
3′′(s) = 0

a1f
1′′′(s) + a2f

2′′′(s) + a3f
3′′′(s) = 0.

Eliminating a1, a2, a3 from the above three equations, we get

ϕ =

∣∣∣∣∣∣
f1

′
f2

′
f3

′

f1
′′

f2
′′

f3
′′

f1
′′′

f2
′′′

f3
′′′

∣∣∣∣∣∣ = 0.
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Therefore, the condition is necessary. To prove the sufficient condition, we have ϕ = 0.
So the rank of ϕ may be 0, 1, 2.

Case 1: Let rank ϕ = 0, i.e. all the elements of ϕ are zero, i.e.

f1
′
(s) = f2

′
(s) = f3

′
(s) = 0

or

f1(s) = f2(s) = f3(s) = constant

or

x1(s) = k1;x
2(s) = k2;x

3(s) = k3.

Thus, the curve xi = f i(s) reduces to a point. Therefore, the given curve is a plane
curve. (Trivial case).

Case 2: Let the rank of ϕ be 1, then any row will be proportional to any other row
of ϕ, i.e.

f1
′′

f1′
=
f2

′′

f2′
=
f3

′′

f3′

or

log f1
′
= ψ(s) + c1 ⇒ f1

′
= eψ(s)+c1 = a1e

ψ(s)

or

xi = f i(s) = ai

∫
eψ(s)ds+ bi = aiξ(s) + bi

or
x1 − b1
a1

=
x2 − b2
a2

=
x3 − b3
a3

= ξ(s),

which is an equation of a line passing through bi. Hence, the curves is a plane curve.

Case 3: Let the rank of ϕ be 2, then at least one of the minors of order two does not
vanish. We assume that

b1 =

∣∣∣∣ f2′ f3
′

f2
′′

f3
′′

∣∣∣∣ , b2 = ∣∣∣∣ f3′ f1
′

f3
′′

f1
′′

∣∣∣∣ , b3 = ∣∣∣∣ f1′ f2
′

f1
′′

f2
′′

∣∣∣∣ .
So, there exists three numbers b1, b2, b3 such that

b1f
1′(s) + b2f

2′(s) + b3f
3′(s) = 0 (i)

b1f
1′′(s) + b2f

2′′(s) + b3f
3′′(s) = 0 (ii)

b1f
1′′′(s) + b2f

2′′′(s) + b3f
3′′′(s) = 0. (iii)
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Differentiating with respect to s, we get from Eq. (i),

bif
i′′(s) + b′if

i′(s) = 0 ⇒ b′if
i′(s) = 0; using Eq. (ii).

Similarly, differentiate Eq. (ii) with respect to s and using Eq. (iii), we get, b′if
i′′(s) = 0.

So, there exists a unique solution to the linear equations

b′1f
1′(s) + b′2f

2′(s) + b′3f
3′(s) = 0

b′1f
1′′(s) + b′2f

2′′(s) + b′3f
3′′(s) = 0.

Solving, we get

b′1∣∣∣∣ f2′ f3′f2
′′
f3

′′

∣∣∣∣ =
b′2∣∣∣∣ f3′ f1′f3
′′
f1

′′

∣∣∣∣ =
b′3∣∣∣∣ f1′ f2′f1
′′
f2

′′

∣∣∣∣
⇒ b′1

b1
=
b′2
b2

=
b′3
b3

= ψ′(s); say,

or
log bi = ψ(s) + ci ⇒ bi = eψ(s)+ci = aie

ψ(s).

But bif
i′ = 0, from Eq. (i) replacing bi, we get

aie
ψ(s)f i

′
= 0 ⇒ aif

i′ = 0; as eψ(s) ̸= 0

or
a1f

1′ + a2f
2′ + a3f

3′ = 0

or
a1f

1 + a2f
2 + a3f

3 + a0 = 0.

Hence, the curve is a plane curve. When the curve is not plane, then it is called skew
curve.

EXAMPLE 5.2.1 Determine ζ(t) such that the curve x1 = a cos t, x2 = a sin t,
x3 = ζ(t) is a plane curve and what is the nature of the conic?

Solution: Since the given curve is a plane curve, we have∣∣∣∣∣∣
x1

′
x2

′
x3

′

x1
′′

x2
′′

x3
′′

x1
′′′

x2
′′′

x3
′′′

∣∣∣∣∣∣ =
∣∣∣∣∣∣
−a sin t a cos t ζ ′

−a cos t −a sin t ζ ′′

a sin t −a cos t ζ ′′′

∣∣∣∣∣∣ = 0

or
ζ ′′′ + ζ ′ = 0 ⇒ ζ(s) = a1 + b cos t+ c sin t.

The nature of the curve will be intersected between the cylinder x2 + y2 = a2 and the
plane lx+my + nz = k.
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5.3 Twisted Curve

A curve in E3 which does not lie on a plane is called twisted curve. Thus, the twisted
curve is not a plane curve.

EXAMPLE 5.3.1 Find the curvature and the torsion of the circular helix

r =

(
a cos

s

c
, a sin

s

c
,
bs

c

)
; c =

√
a2 + b2,

where s is arc length.

Solution: By differentiation with respect to the arc length, the tangent vector is
given by

T = r′ =
(
−a
c
sin

s

c
,
a

c
cos

s

c
,
s

c

)
.

The normal vector N is given by

N = r′′ =
(
− cos

s

c
,− sin

s

c
, 0
)

as c =
√
a2 + b2.

Finally, the binormal vector is given by

B = T×N =

∣∣∣∣∣∣∣∣
i j k

−a
c sin

s
c

a
c cos

s
c

s
c

− cos sc − sin s
c 0

∣∣∣∣∣∣∣∣ =
(
b

c
sin

s

c
,−b

c
cos

s

c
,
a

c

)
.

Therefore, the curvature and the torsion of the circular helix are given by,

κ =
a

c2
cos2

s

c
+
a

c2
sin2

s

c
+ 0 =

a

c2

τ =
b

c2
cos2

s

c
+

b

c2
sin2

s

c
+ 0 =

b

c2
.

Thus the curvature and the torsion are both constant, and therefore their ratio is
constant. The principal normal intersects the axis of the cylinder orthogonally and
the tangent and binormal are inclined at constant angles to the fixed direction of the
generators.

5.4 Space Curve Theory

In this section we describe the geometry of the space curve. Formulae analogous to
those of Frenet also occur in the theory of surfaces. This section contains a set of three
remarkable formulas, generally known as Serret–Frenet formulae, which characterise,
in the small, all essential geometric properties of space curves.
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5.4.1 Serret–Frenet Formulae

In this section we will investigate the theory of twisted curves. Let the curve Γ be
given by the equation

Γ : xi = xi(s), (5.3)

where the parameter s measures the arc distance along the curve. As arc length s
along a curve remains invariant, we consider s as the parameter to study the geometry
of the space curves. The square of the length of the elements of arc of Γ is given by

ds2 = gijdx
idxj

or

1 = gij
dxi

ds

dxj

ds
, (5.4)

showing that dxi

ds is a unit vector. Let P be a given point with co-ordinates (xi) and
Q be a neighbouring point with co-ordinates (xi + dxi) on Γ, corresponding to an

increment ds in the arc (Figure 5.2). Then the vector lim
Q→P

−−→
PQ
ds is called the tangent

vector and we shall denote it by λi. Thus, Eq. (5.4) can be written as

1 = gijλ
iλj ; where λi =

dxi

ds
. (5.5)

Figure 5.2: Tangent, normal, binormal.

These are precisely the direction cosines of the tangent vector to the curve Γ. We
shall assume that curve Γ is of class C2, so that it has continuously turning tangent at
all points of Γ. Taking the intrinsic derivative of Eq. (5.5) with respect to s, we have

gij
δλi

δs
λj + gijλ

i δλ
j

δs
= 0
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or

gijλ
i δλ

j

δs
= 0.

Thus, either δλj

δs vanishes or is orthogonal to the tangent vector at some point of a
curve, is said to be a normal vector of that curve at that point. Hence, the condition
that a vector µi be normal to Γ at P is

gijλ
iµj = 0. (5.6)

Thus, if δλi

δs does not vanish, we denote the unit vector codirectional with δλj

δs by µj

and write it as

µj =
1

κ

δλj

δs
, (5.7)

where κ > 0 is so chosen to make µj a unit vector. The vector µi, determined by
Eq. (5.7) is called the principal normal vector to the curve Γ at P and κ is called the
curvature of the curve Γ at that point P . The plane determined by the tangent λ and
the normal µ is called the osculating plane to the curve Γ at P .

Since µ is a unit vector, so the quadratic relation

gijµ
iµj = 1 (5.8)

is satisfied. Differentiating Eq. (5.8) intrinsically, we get

gij
δµi

δs
µj + gijµ

i δµ
j

δs
= 0 ⇒ gijµ

i δµ
j

δs
= 0. (5.9)

Taking the intrinsic derivative of the orthogonal relation Eq. (5.5) we get

gij
δλi

δs
µj + gijλ

i δµ
j

δs
= 0

or

gijλ
i δµ

j

δs
= −gij

δλi

δs
µj = −gijκµiµj ; from Eq. (5.7)

= −κ; from Eq. (5.8)

= −κgijλiλj ; from Eq. (5.5)

or

gijλ
i

(
δµj

δs
+ κλj

)
= 0. (5.10)
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Also, from Eq. (5.6) we can write gijµ
iλj = 0, as gij = gji, i.e.

κgijµ
iλj = 0

or

gijµ
i δµ

j

δs
+ κgijµ

iλj = 0

or

gijµ
i

(
δµj

δs
+ κλj

)
= 0. (5.11)

From Eqs. (5.10) and (5.11) we see that, the vector
(
δµj

δs + κλj
)
is orthogonal to both

the tangent vector λi and the principal normal vector µi. Hence, we choose a vector
γi such that

γi =
1

τ

(
δµi

δs
+ κλi

)
(5.12)

and τ is chosen to make γ, a unit vector. The constant τ thus introduced is called
the torsion of the curve. Note that, it may be positive or negative in contrast to the
curvature which is essentially positive, being the magnitude of a vector.

The sign of τ is not always positive but we agree to choose the sign of τ in such a
way that (λ, µ, γ) form a right-hand system, i.e.

εijkλ
iµjγk = +1, (5.13)

where

εijk =
√
geijk; and g =

∣∣∣∣ ∂yi∂xj

∣∣∣∣2 , (5.14)

so that the left-hand member of Eq. (5.13) is an invariant. The vector γ is called the
binormal of Γ at P . Also, using Eqs. (5.13) and (5.14), we get

√
geijkλ

iµjγk = 1

or
epqr

√
geijkλ

iµjγk = epqr

or
δpi δ

q
j δ
r
k

√
gλiµjγk = epqr

or

λpµqγr =
1
√
g
epqr =

1
√
g
erpq
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or
gipλ

igjqµ
jλpµqγr = gipλ

igjqµ
jεpqr; by Eq. (5.14)

or

γr = εpqrλpµq i.e. γ
i = εijkλjµk. (5.15)

Differentiating Eq. (5.15) intrinsically, we get

δγi

δs
= εijk

δλj
δs

µk + εijkλj
δµk

δs

= εijkκµjµk + εijkλi [τγk − κλk] ,

which reduces on account of skew symmetry of εijk to

δγi

δs
= τεijkλjγk.

But λi, µi and γi form a right-handed system of unit vectors, so εijkλjγk = −µi.
Therefore,

δγi
δs

= −τµi. (5.16)

Equations (5.7), (5.12) and (5.16) are called the Frenet formulae for space curve. On
account of their importance in the theory of curves, we group these formulae together
for convenient reference in the form

δλi

δs
= κµi

δµi

δs
= −κλi + τγi

δγi

δs
= −τµi


. (5.17)

Equation (5.17) can be written in the matrix form as

δ

δs

λi

µi

γi

 =

 0 κ 0
−κ 0 τ
0 −τ 0

λi

µi

γi

.
The coefficient matrix is skew symmetric. Formulae analogous to those of Frenet also
occur in the theory of surfaces.

Note 5.4.1 If the curve lies on a plane, then it is called a plane curve, otherwise it
is called a skew curve.
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Figure 5.3: Osculating, normal rectifying plane.

Note 5.4.2 The plane determined by the tangent λ and principal normal µ is called
the osculating plane at a point P (xi0) of a space curve (Figure 5.3). It’s equation is

gij
(
xi − xi0

)
γj = 0,

where xi is any point on the plane. The plane determined by principal normal µ and
binormal γ is called the normal plane at P (xi0) and its equation is given by

gij
(
xi − xi0

)
λj = 0.

The plane determined by binormal ν and tangent λ is called the rectifying plane
at P (xi0) and its equation is given by (Figure 5.3)

gij
(
xi − xi0

)
µj = 0.

EXAMPLE 5.4.1 Show that

(i) κ =

(
gmn

δλm

δs

δλn

δs

)1/2

(ii) τ = εrstλ
rµs

δµt

δs

(iii) γi =
1
τ

(
δµi
δs

+ κλi

)
(iv) κγi = εijkλ

i δλ
k

δs

(v) µi =
1
κ

δλi
δs
,

where the symbols have their usual meanings.
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Solution:

(i) We know that

µm =
1

κ

δλm

δs
;
δλm

δs
= κµm,

where κ > 0 is so chosen to make µm a unit vector. Thus,

gmn
δλm

δs
µn = κgmnµ

mµn

or

gmn
δλm

δs
µn = κ as gmnµ

mµn = 1

or

κ = gmn
δλm

δs

1

κ

δλn

δs
or

κ2 = gmn
δλm

δs

δλn

δs
or

κ =

(
gmn

δλm

δs

δλn

δs

)1/2

; as κ > 0.

(ii) From the second Frenet formula we have

δµt

δs
= −κλt + τγt

or

εrstλ
rµs

δµt

δs
= −εrstλrµs

(
κλt + τγt

)
= −κεrstλrµsλt + τεrstλ

rµsγt

= 0 + τγtγt; as εrstλ
rµt = 0

= τ ; as γtγt = 1,

which is the required result.

(iii) Follows from Eq. (5.12).

(iv) Using relation Eq. (5.17), we get δλk

δs = κµk, i.e.

εijkλ
j δλ

k

δs
= εijkλ

jκµk = κεijkλ
jµk = κγi, from Eq. (5.15).
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(v) We see that

1

κ

δλi
δs

=
1

κ

δ

δs

(
gijλ

j
)
=

1

κ
gij
δλj

δs
=

1

κ
gijκµ

j = µi.

EXAMPLE 5.4.2 Show that

gij
δµi

δs

δµj

δs
= κ2 + τ2.

Solution: Using Eq. (5.17), we get

gij
δµi

δs

δµj

δs
= gij

(
−κλi + τγi

) (
−κλj + τγj

)
= gij

(
κ2λiλj − κτλiγj − κτλjγi + τ2γiγj

)
= κ2gijλ

iλj − κτgijλ
iγj − κτgijλ

jγi + τ2gijγ
iγj

= κ2 · 1− κτ · 0− κτ · 0 + τ2 · 1 = κ2 + τ2.

EXAMPLE 5.4.3 Show that

(i)
δ2λi

δs2
=
dκ

ds
µi + κ

(
τγi − κλi

)
(ii)

δ2µi

δs2
=
dτ

ds
γi − (κ2 + τ2)µi − dκ

ds
λi

(iii)
δ2γr

δs2
= τ (κλr − τγr)− dτ

ds
µr,

where the symbols have their usual meanings.

Solution:
(i) Using Eq. (5.7), we get, δλi

δs = κµi; where κ > 0. Differentiating intrinsically
with respect to the parameter s we get

δ2λi

δs2
=

δ

δs

(
κµi
)
=

d

ds

(
κµi
)
+ κµj

{
i
j k

}
dxk

ds

=
dκ

ds
µi + κ

dµi

ds
+ κµj

{
i
j k

}
dxk

ds

=
dκ

ds
µi + κ

[
dµi

ds
+ µj

{
i
j k

}
dxk

ds

]
=
dκ

ds
µi + κ

δµi

δs
=
dκ

ds
µi + κ

[
−κλi + τγi

]
; from Eq. (5.17)

δ2λi

δs2
=
dκ

ds
µi + κ

(
τγi − κλi

)
,

which is the result as required.
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(ii) Using Eq. (5.17), we get δµi

δs = τγi − κλi.

δ2µi

δs2
=

δ

δs

(
τγi
)
− δ

δs

(
κλi
)

=
d

ds

(
τγi
)
+ τγj

{
i
j k

}
dxk

ds
−
[
d

ds

(
κλi
)
+ κλj

{
i
j k

}
dxk

ds

]
=
dτ

ds
γi + τ

[
dγi

ds
+ γj

{
i
j k

}
dxk

ds

]
− dκ

ds
λi − κ

[
dλi

ds
+ λj

{
i
j k

}
dxk

ds

]
=
dτ

ds
γi + τ

δγi

δs
− dκ

ds
λi − κ

δλi

δs

=
dτ

ds
γi + τ(−τµi)− dκ

ds
λi − κκµi =

dτ

ds
γi − (κ2 + τ2)µi − dκ

ds
λi.

(iii) Using Eq. (5.17), we get δγi

δs = −τµi. Differentiating intrinsically with respect to
the parameter s we get

δ2γi

δs2
= − δ

δs

(
τµi
)
= − d

ds

(
τµi
)
− τµj

{
i
j k

}
dxk

ds

= −dτ
ds
µi − τ

[
dµi

ds
+ µj

{
i
j k

}
dxk

ds

]
= −dτ

ds
µi − τ

δµi

δs

= −dτ
ds
µi − τ

[
−κλi + τγi

]
; from Eq. (5.17)

= τ
(
κλi − τγi

)
− dτ

ds
µi.

EXAMPLE 5.4.4 Show that

τ =
1

κ2
εijkλ

i δλ
i

δs

δ2λk

δs2
,

where the notations have their usual meaning.

Solution: Using Eq. (5.7), we get δλi

δs = κµi; where, κ > 0. Differentiating intrinsi-
cally with respect to the parameter s we get,

δ2λi

δs2
=
δκ

δs
µi + κ

δµi

δs
=
δκ

δs
µi + κ

(
τγi − κλi

)
.
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Using the Frenet formula [Eq. (5.17)], we get,

1

κ2
εijkλ

i δλ
i

δs

δ2λk

δs2

=
1

κ2
εijkλ

iκµj
[
δκ

δs
µk + κ

(
τγk − κλk

)]
=

1

κ

[
δκ

δs
εijkλ

iµjµk + κτεijkλ
iµjγk − κ2εijkλ

iµjλk
]

=
1

κ
(0 + κτ − 0) = τ.

EXAMPLE 5.4.5 Find the curvature and torsion at any point of a given curve
(circle) Γ, given by

Γ: x1 = a, x2 = t, x3 = 0,

where ds2 =
(
dx1
)2

+ (x1)2
(
dx2
)2

+
(
dx3
)2
.

Solution: The square of the element of arc in cylindrical co-ordinates as

ds2 =
(
dx1
)2

+ (x1)2
(
dx2
)2

+
(
dx3
)2
.

For the given metric, the non-vanishing Christoffel symbols are{
1

2 2

}
= −x1,

{
2

1 2

}
=

{
2

2 1

}
=

1

x1
;

and g11 = 1 = g33 and g22 = (x1)2 = a2. The tangent vector λi is given by

λi =
dxi

ds
=

(
dx1

ds
,
dx2

ds
,
dx3

ds

)
=

(
0,
dt

ds
, 0

)
.

As λ is a unit vector, so gijλ
iλj = 1, i.e.

g11λ
1λ1 + g22λ

2λ2 + g33λ
3λ3 = 1

or

a2
(
dt

ds

)2

= 1 ⇒ dt

ds
=

1

a
.

Therefore

λi =

(
0,
dt

ds
, 0

)
=

(
0,

1

a
, 0

)
.
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Now, from the Serret–Frenet formula [Eq. (5.7)], i.e. κµi = δλi

δs , we get,

κµ1 =
δλ1

δs
=
dλ1

ds
+

{
1
j k

}
λj
dxk

ds

=
dλ1

ds
+

{
1

2 2

}
λ2
dx2

ds
= 0 + (−x1)1

a

dt

ds
= −1

a
.

κµ2 =
δλ2

δs
=
dλ2

ds
+

{
2
j k

}
λj
dxk

ds

= 0 +

{
2

1 2

}
λ1
dx2

ds
+

{
2

2 1

}
λ2
dx1

ds

=
1

x1
0λ2 +

1

x1
1

a
λ1 = 0.

Similarly, κµ3 = 0. Since µ is a unit vector, so,

gijµ
iµj = 1; i.e. g11µ

1µ1 + g22µ
2µ2 + g33µ

3µ3 = 1

or

1 · 1

κa
· 1

κa
+ 0 + 0 · 0 · 0 = 1 ⇒ κ =

1

a
; as κ > 0.

Consequently,

κµ1 = −1

a
⇒ µ1 = −1.

So, µi = (−1, 0, 0). From Eq. (5.17), we get δµi

δs = −κλi + τγi; i = 1, 2, 3, thus,

τγ1 − κλ1 =
δµ1

δs
=
dµ1

ds
+

{
1
j k

}
µj
dxk

ds

= 0 +

{
1

2 2

}
µ2λ2 = 0.

Therefore, τγ1 = κλ1 = 0. Now

τγ2 − κλ2 =
δµ2

δs
=
dµ2

ds
+

{
2
j k

}
µj
dxk

ds

= 0 +

{
2

1 2

}
µ1λ2 +

{
2

2 1

}
µ2λ1

=
1

a
(−1)

1

a
+ 0 = − 1

a2
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or

τγ2 = κλ2 − 1

a2
=

1

a

1

a
− 1

a2
= 0.

and

τγ3 − κλ3 =
δµ3

δs
=
dµ3

ds
+

{
3
j k

}
µj
dxk

ds
= 0.

Therefore τγ3 = κλ3. Since γ is a unit binormal vector, so

τγ1 = τγ2 = τγ3 = 0 ⇒ τ = 0.

To determine the component of γ, using γi = εijkλjµk we get

γ1 = ε1jkλjµk = ε123λ2µ3 + ε132λ3µ2 = 0

γ2 = ε2jkλjµk = ε231λ3µ1 + ε213λ1µ3 = 0

γ3 = ε3jkλjµk = ε312λ1µ2 + ε321λ2µ1

= ε321λ2µ1 =
1

g
e321λ2µ1; g = a2.

Now, using the relation λ2 = g2mλ
m and µ1 = g1mµ

m, we get

λ2 = g2mλ
m = g22λ

2 = a2 · 1
a
= a

µ1 = g1mµ
m = g11µ

1 = −1.

Thus

γ3 =
1

a
(−1)a(−1) = 1.

Hence, the component of the binormal γ = (0, 0, 1).

Deduction 5.4.1 Let xi are curvilinear co-ordinates and

{
i
j k

}
are Christoffel sym-

bols corresponding to the metric tensor of E3. According to definition (3.38), we have

δλi

δs
= λi,k

dxk

ds
,

where the comma (,) notation denotes covariant differentiation with respect to the
metric tensor. Hence,

δλi

δs
=

[
δλi

δxk
+ λp

{
i

p k

}]
dxk

ds

=
dλi

ds
+ λp

{
i

p k

}
dxk

ds
=
d2xi

ds2
+

{
i

p k

}
dxk

ds

dxp

ds
.
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Thus, the formula δλi

δs = κµi can be written as

dλi

ds
+ λp

{
i
j k

}
dxj

ds
= κµi

or

d2xi

ds2
+

{
i
j k

}
dxj

ds

dxk

ds
= κµi.

Similarly, we have,

δµi

δs
=
dµi

ds
+

{
i
j k

}
µj
dxk

ds

and

δνi

δs
=
dνi

ds
+

{
i
j k

}
νj
dxk

ds
. (5.18)

These are the Serret–Frenet formulas in curvilinear co-ordinates E3.

EXAMPLE 5.4.6 Find the equation of the straight line in curvilinear co-ordinate
system E3.

Solution: Let Γ be a straight line in E3 and (xi) be the curvilinear co-ordinates of
any point on it. Then the direction of the tangent vector of Γ is fixed. Hence,

δλi

δs
= 0; i.e. κµi = 0.

Since µi is not zero, it follows that κ = 0. Hence, from Eq. (5.18) we get

d2xi

ds2
+

{
i
j k

}
dxj

ds

dxk

ds
= 0.

Since this result holds for any point P (xi) on Γ, it is the equation of Γ in curvilinear
co-ordinates E3.

EXAMPLE 5.4.7 Show that a space curve is a straight line if and only if its curva-
ture is zero at all points of it.

Solution: First, suppose that the curvature κ = 0 at all points of a space curve Γ.
Then by the Frenet formula,

δλi

δs
= κµi ⇒ δλi

δs
= 0

for all s. This means that λi is a fixed direction. Hence Γ is a straight line.
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Conversely, let Γ be a straight line, then the direction of the tangent vector of Γ
is fixed. Hence,

δλi

δs
= 0 ⇒ κµi = 0.

Since µi is not zero, it follows that the κ = 0. From this example, we can say that the
curvature of a curve measures how much the curve differ from being a straight line.

EXAMPLE 5.4.8 Prove that a space curve is a plane curve if and only if its torsion
is zero at all points of it.

Solution: First, suppose that a space curve Γ is a plane curve. Then the osculating
plane at every point Γ is the plane of Γ. Hence, the binormal γi has a fixed direction,

so δγi

δs = 0. Using Frenet formula we have

δγi

δs
= −τµi ⇒ τ = 0 as µi ̸= 0.

Next, we suppose that for a space curve Γ, τ = 0 at every point of it. Then δγi

δs = 0,
which means that the binormal vector γi has a fixed direction. Hence, the curve Γ is
a plane curve. From this example, we can say that the torsion of a curve measures
how far the curve departs from lying in a plane.

EXAMPLE 5.4.9 If (aλr + bµr + cγr) forms a parallel vector field along Γ, prove
that

da

ds
− κb = 0;

db

ds
+ κa− τc = 0;

dc

ds
+ τb = 0,

where the notations have their usual meanings.

Solution: Let Ar = aλr+bµr+cγr. This vector Ar forms a parallel vector field along
Γ, if,

δAi

δs
= Ai,j

dxj

ds
= 0

or
δ

δs

(
aλi + bµi + cγi

)
= 0

or
da

ds
λi +

db

ds
µi +

dc

ds
γi + a

δλi

δs
+ b

δµi

δs
+ c

δγi

δs
= 0

or
da

ds
λi +

db

ds
µi +

dc

ds
γi + aκµi + b

(
τγi − κλi

)
+ c(−τµi) = 0
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or (
da

ds
− κb

)
λi +

(
db

ds
+ κa− τc

)
µi +

(
dc

ds
+ τb

)
γi = 0.

Since λi, µi and γi are arbitrary, we get

da

ds
− κb = 0;

db

ds
+ κa− τc = 0;

dc

ds
+ τb = 0.

Thus the curvature and the torsion are both constant, and therefore their ratio
is constant. The principal normal intersects the axis of the cylinder orthogonally an
the tangent and binormal are inclined at constant argles to the fixed direction of the
generators.

5.5 Bertrand Curves

Saint–Venant proposed and Bertrand solved the problem of finding the curves whose
principal normals are also the principal normals of another curve. If the two curves Γ
and Γ given by (Figure 5.4)

Γ: xi = xi(s) and Γ : xi = xi(s), (5.19)

have a common principal normal, at any of their points, the one is called the Bertrand
of another or one is called the Bertrand associate of another.

Figure 5.4: Bertrand curve.

EXAMPLE 5.5.1 If Γ is a plane curve, find a curve Γ̄ such that Γ and Γ̄ are
Bertrand curves.

Solution: Let E be a plane evolute of Γ, then all involutes Γ̄ of E have the same
principal normal as the given curve Γ̄, because by definition of the involute, these
curves intersect orthogonally any tangent to E (Figure 5.5). Γ and any of the curve
Γ̄ are therefore Bertrand curves. Moreover, the distance measured along the common
principal normal, between corresponding points of any two of these involutes is con-
stant. Two plane curves are therefore called plane parallel curves if they have common
principal normals.
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Figure 5.5: Plane curve.

EXAMPLE 5.5.2 Find the necessary and sufficient condition for two curves Γ and
Γ̄ are Betrand.

Solution: Let: Γ : xi = xi(s) and

Γ̄ = x̄i = x̄i(s) = xi(s) + a(s)µi (5.20)

Differentiating with respect to s intrinsically, we get

δxi

δs
=
δxi

δs
+ a1(s)µi + a(s)

δµi

δs

= λi + a1(s)µi + a(s)
[
τγi1 − κλi

]
or

λ
ids

ds
= λi + a1(s)µi + a(s)

[
τγi1 − κλi

]
. (5.21)

Since the two curves are Bertrand, so µi is parallel to µi. Taking the inner product of
Eq. (5.21) with µi we get

µiλ
ids

ds
= λiµi + a1(s)µiµi + a(s)

[
τγi1µ

i − κλiµi
]

or
0 = 0 + a1(s)1 + a(s)[τ · 0− κ · 0] ⇒ a(s) = constant,

which is the necessary condition that the two curves are Bertrand curves. Also, from
Eq. (5.21), we get

λ
ids

ds
= λi + a(s)

[
τγi1 − κλi

]
= λi[1− aκ] + aτγi.

Further, refer to the curve Γ, we have

d

ds
(λi · λi) = κµiλ

i
+ λi(κµi)

ds

ds
= 0 ⇒ λi · λi = constant.
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Thus, the tangents to the two curves are inclined at a constant angle. But the principal
normals coincide, and therefore, the binormals of the two curves are inclined at the
same constant angle. Let θ be the inclination of γi to γi, then θ is constant. If the
curve Γ is not plane, i.e. τ ̸= 0, then from Eq. (5.21), we get

λ
i
= λi[1− aκ]

ds

ds
+ aτγi

ds

ds
. (5.22)

λi lies in the plane λiγi, i.e. on the rectifying plane. Moreover, it is obvious from the
Figure (5.6) that

λ
i
= cos θλi + sin θγi. (5.23)

Figure 5.6: The triad.

Comparing Eqs. (5.22) and (5.23), we get

1− aκ

cos θ
=

aτ

sin θ
=
ds

ds
⇒ 1− aκ = aτ cot θ. (5.24)

Differentiating Eq. (5.23) with respect to s, we get

κµ
ds

ds
= − sin θλi

dθ

ds
+ cos θλµi + cos θγi

dθ

ds
− τµi sin θ

= µi (κ cos θ − τ sin θ) +
(
γi cos θ − λi sin θ

) dθ
ds
.

Since the curves are Bertrand curve, so µi and µi are parallel and equal. Therefore,(
γi cos θ − λi sin θ

) dθ
ds

= 0

⇒ dθ

ds
= 0 ⇒ θ = constant

⇒ 1− aκ = aτ cot θ = bτ(say),

where b = a cot θ = constant. Thus, we get a linear equation in κ and τ with constant
coefficients as aκ + bτ = 1. This is the necessary condition that the two curves are
Bertrand curves when the curves is not plane.
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We shall now show that if X and Y satisfying aκ+bτ = 1, where a, b are constants,
then Γ is Bertrand of Γ. Differentiating Eq. (5.20) intrinsically with respect to s, we
get

λ
ids

ds
= λi[1− aκ] + aτγi = λibτ + aτγi

= τ
(
bλi + aγi

)
; as aκ+ bτ = 1

or

λ
i
= τ

(
bλi + aγi

) ds
ds

= d
(
bλi + aγi

)
.

Since λ
i
is unit vector, so

1 = a2d2 + b2d2 ⇒ d =
1√

a2 + b2
= constant.

Therefore
λ
i
= pλi + qγi;

where p and q are constants. Differentiating with respect to s, we get

κµ
ds

ds
= pκµi − qτµi = µi(pκ− qτ)

⇒ µi is parallel to µi ⇒ µi = µi.

Hence, the curves are Bertrand curves. Thus, the condition is sufficient.

Deduction 5.5.1 If the curve is a plane curve, then τ = 0 and so

λ
ids

ds
= λi[1− aκ], (5.25)

i.e. λ
i
is parallel to λi. Since ds

ds and (1−aκ) are constants, λi and λi are both constant

vectors and λ
i
= λi. Differentiating intrinsically, with respect to s, we get,

δxi

δs

ds

ds
=
δλi

δs
⇒ κµi

ds

ds
= κµi,

which shows that µi is parallel to µi. Thus a = constant is the necessary and sufficient
condition that the two curves Γ and Γ are Bertrand curves, if Γ is a plane curve.

Deduction 5.5.2 There is a linear relation with constant coefficients between the
curvature and torsion of Γ. On comparing, we get

cos θ = (1− aτ)
ds

ds
; sin θ = aτ

ds

ds
.
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Now, the relation between the curves Γ and Γ is clearly a reciprocal one. Hence,

cos θ = (1 + aτ)
ds

ds
; sin θ = aτ

ds

ds
.

On multiplying together of the above equations we obtain the relation

ττ =
1

a2
sin2 θ.

This shows that the torsions of the two curves have the same sign, and their product
is constant. This theorem is due to Schell. Also,

cos2 θ = (1− aτ)(1 + aτ)

This shows that if P, P1 are corresponding points on the two conjugate Bertrand
curves, and O,O1 their centres of curvature, the cross ratio of the range (POP1O1) is
constant and equal to sec2 θ. This theorem is due to Mannheim.

5.6 Helix

A space curve traced on the surface of a cylinder, and cutting the generators at a
constant angle, is called a helix. Therefore, the tangent vector at every point to a
helix makes a constant angle with the fixed direction. Let

Γ: xi = xi(s) (5.26)

be an equation of a helix. Let the tangent vector λi to the helix Γ makes a constant
angle α with a fixed direction ai (parallel to the generators of the cylinder), where ai

is a unit vector (Figure 5.7). Then,

cosα = gijλ
iaj ; 0 < |α| ≤ 1

2
π. (5.27)

Differentiating Eq. (5.27) intrinsically with respect to s, we get

gij
δλi

δs
aj = 0

or

gijκµ
iaj = 0; as

δλi

δs
= κµi

or

gijµ
iaj = 0; as κ > 0.
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Figure 5.7: Helix.

So, ai is orthogonal to µi. Thus, since the curvature of the helix does not vanish,
the principal normal is everywhere perpendicular to the generators. Hence, the fixed
direction of the generators is parallel to the plane of µi and γi; and since it makes a
constant angle with λi, it makes a constant angle 90◦ − α with γi.

An important property of all helices is that the curvature and torsion are in a
constant ratio. Since the angle between ai and γi is 90◦ − α, so,

gijγ
iaj = cos(90◦ − α) = sinα. (5.28)

Differentiate the relation gijµ
iaj = 0, we get

gij
(
τγi − κλi

)
ai = 0.

Thus, λi is perpendicular to τγi− κλi. Since ai must lie in the plane of µi and γi,
we can find scalars a and b such that

ai = aλi + bγi (5.29)

or
gija

iλj = agijλ
iλj + bgijγ

iλj

or
cosα = a; as gijλ

iλj = 1 and gijγ
iλj = 0.

Similarly, from Eq. (5.29) we get,

gija
iγj = agijλ

iγj + bgijγ
iγj

or
sinα = b; as gijλ

iγj = 0 and gijγ
iγj = 1.
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Thus, Eq. (5.29) can be written as

ai = λi cosα+ γi sinα. (5.30)

Differentiating Eq. (5.30) intrinsically with respect to s we get

δai

δs
=
λai

δs
cosα+

γai

δs
sinα; as α = constant

or
0 = κµi cosα− τµi sinα

or
κ cosα− τ sinα = 0; as µi ̸= 0.

or
κ

τ
= tanα = constant.

But ai is parallel to the plane of λi and γi, and must therefore be parallel to the vector
τλi + κγi, which is inclined to λi at an angle tan−1 κ

τ . But this angle is constant.
Therefore, the curvature and torsion are in a constant ratio.

Conversely, we may prove that a curve whose curvature and torsion are in a
constant ratio is a helix. We suppose that for a space curve different from a straight
line κ

τ is a constant, i.e. τ = cκ; c = constant. Then using Frenet formula we get

δγi

δs
= −κcµi = −cκµi = −cδλ

i

δs

or
δ

δs

(
γi + cλi

)
= 0.

Therefore, γi + cλi is a constant vector, say ai. Now,

gija
iλj = gij

(
γi + cλi

)
λj

= gijγ
iλj + cgijλ

iλj = 0 + c = c.

This shows that the tangent vector λi makes a constant angle with a fixed direction
ai, and the curve is therefore a general helix.

5.6.1 Cylindrical Helix

The cylindrical helix is a curve upon a cylinder which cuts the generator of the cylinder
at a constant angle α with a fixed direction. Let us take z axis (x3) as the axis of the
cylindrical. Then the equation of the cylinder

xi = ρi(t); i = 1, 2.



292 Geometry of Space Curve

Figure 5.8: Cylindrical helix.

Any curve on the cylinder can be defined by C: xi = f i(t); i = 1, 2, 3 (Figure 5.8).
Let α be the angle at any point P on the curve made by the tangent at P and the
generator of this cylinder passing through P . Let the unit vector along the generator
is −→

k = (0, 0, 1) = (k1, k2, k3)

and the unit tangent to the curve at P is

λi =
δxi

δs
=
δxi/δt

δs/δt
=

δxi/δt

|δxi/δf |

=

[
f1(t), f2(t), f3(t)

]
[{f1(t)}2 + {f2(t)}2 + {f3(t)}2]1/2

.

Hence, by given condition of the helix,

cosα = gijλ
ikj =

ḟ3(t)[
{ḟ1(t)}2 + {ḟ2(t)}2 + {ḟ3(t)}2

]1/2
or

{ḟ3(t)}2 = cos2 α
[
{ḟ1(t)}2 + {ḟ2(t)}2 + {ḟ3(t)}2

]
or

{ḟ3(t)}2 sin2 α = cos2 α
[
{ḟ1(t)}2 + {ḟ2(t)}2

]
or

ḟ3(t) = cotα
[
{ḟ1(t)}2 + {ḟ2(t)}2

]1/2
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or

f3(t) = cotα

∫ [
{ḟ1(t)}2 + {ḟ2(t)}2

]1/2
+ constant

or

f3(t) = x3(t) = cotα

∫ [
{ẋ1}2 + {ẋ2}2

]1/2
+ constant.

Therefore, the equation of the cylindrical helix can be written as

x1 = f1(t), x2 = f2(t)

x3 = f3(t) = cotα
∫ [

{ẋ1}2 + {ẋ2}2
]1/2

+ constant.

}
(5.31)

5.6.2 Circular Helix

If a space curve Γ lies on a circular cylinder and the tangent at each point of it makes
a constant angle with the axis of the cylinder, then the curve is a helix. Such a helix is
called a circular helix. Thus, a particular case of the cylindrical helix is circular helix,
which can be defined by x1 = a cos t and x2 = a sin t. Hence, by Eq. (5.33), we get

x3(α) = cotα

t∫
0

√
a2(cos2 t+ sin2 t)dα

= a cotαt = bt, where b = a cotα = constant.

Thus, the parametric equation of the circular helix can be written as

C : x1 = a cos t, x2 = a sin t, x3 = bt; b ̸= 0. (5.32)

This curve [Eq. (5.32)] can be defined by giving a constant rotation about the axis of
the cylinder and a constant translation about the same axis (Figure 5.9).

Figure 5.9: Circular Helix.
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The circular helix is a twisted curve. The orthogonal projection of the helix into
the x1x2-plane is the circle

(x1)2 + (x2)2 − a2 = 0, x3 = 0,

which is the intersection of this plane with the cylinder of revolution on which the
helix lies. Projecting the helix orthogonally into the x1x3-plane, we obtain the sine
curve

x2 − a sin
x3

b
= 0, x1 = 0.

A cosine curve is obtained by projecting the helix orthogonally into the x1x3-plane.
Now

dr⃗

dt
= (−a sin t, a cos t, b).

Therefore the arc s(t) is given by

s(t) =

t∫
o

[
dr⃗

dt
· dr⃗
dt

]1/2
dt =

t∫
o

(a2 + b2)1/2dt

=
√
a2 + b2 t = wt; where w =

√
a2 + b2.

Thus the parametric representation of the circular helix with s as parameter is given
by

r⃗ =

(
a cos

( s
w

)
, a sin

( s
w

)
,
b

w

)
; w =

√
a2 + b2.

The unit tangent vector to this curve is of the form

λ⃗ =
dr⃗

ds
=

(
− a

w
sin t,

a

w
cos t,

b

w

)
; w =

√
a2 + b2.

The osculating plane of the circular helix can be represented in the form∣∣∣∣∣∣
z1 − a cos t −a sin t −a cos t
z2 − a sin t a cos t −a sin t
z3 − bt b 0

∣∣∣∣∣∣ = 0

which is equivalent to

z1b sin t− z2b cos t+ (z3 − bt)a = 0

The osculating plane passes through the tangent to the helix and passes through the
straight line z∗(e) = (c cos t, c sin t, bt) where t is fixed and c is a real parameter. This
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line is parallel to x1x2-plane. It passes through the axis of the cylinder on which the
helix lies as well as through a point P of the helix. Moreover, it is orthogonal to the
tangent to the helix at P . Now the curvature and torsion of the circular helix are

κ =

∣∣∣∣dr⃗ds
∣∣∣∣ =

√
d2r⃗

ds2
· d

2r⃗

ds2
=

a

a2 + b2

τ =

∣∣∣∣[dr⃗ds , d2r⃗ds2 , d3r⃗ds3
]∣∣∣∣(

dr⃗

ds
· dr⃗
ds

) (
d2r⃗

ds2
· d

2r⃗

ds2

)
−
(
dr⃗

ds
· d

2r⃗

ds2

)2 =
b

a2 + b2
.

The circular helix r = (a cos t, a sin t, bt) is said to be right-handed (Figure 5.10)
if b > 0, where the curvature k = a

a2+b2
. As the torsion τ = b

a2+b2
so the curve is

right-handed when τ > 0.

Figure 5.10: Circular Helix τ > 0.

Similarly, the circular helix r = (a cos t, a sin t, bt) is said to be left-handed if b < 0,
that is τ < 0 (Figure 5.11).

Figure 5.11: Circular Helix τ < 0.

If b tends to 0, the radius of curvature ρ = 1
κ tends to the radius a of the circle of

intersection between x1x2-plane and the cylinder of revolution on which the helix lies.
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EXAMPLE 5.6.1 Prove that

εijk
δλi

δs

δ2λj

δs2
δ3λk

δs3
= κ5

d

ds

(τ
κ

)
.

Hence, a curve is a helix if and only if

εijk
δλi

δs

δ2λj

δs2
δ3λk

δs3
= 0.Solution: Using Eq. (5.7), we get

δλi

δs
= κµi; where κ > 0.

Differentiating intrinsically with respect to the parameter s we get

δ2λi

δs2
=
δκ

δs
µi + κ

δµi

δs
=
δκ

δs
µi + κ

(
τγi − κλi

)
.

δ3λi

δs3
=
δ2κ

δs2
µi +

δκ

δs

δµi

δs
+
δκ

δs
τνi

+κ
δτ

δs
γi + κτ

δγi

δs
− 2

δκ

δs
κλi − κ2

δλi

δs

=
δ2κ

δs2
µi +

δκ

δs

(
τγi − κλi

)
+

(
δκ

δs
τ + κ

δτ

δs

)
νi

+κτ
(
−τµi

)
− 2

δκ

δs
κλi − κ2

(
κµi
)

=

(
δ2κ

δs2
− κτ2 − κ3

)
µi +

(
2
δκ

δs
τ + κ

δτ

δs

)
γi +

(
−3κ

δκ

δs

)
λi.

Therefore the given expression becomes,

εijk
δλi

δs

δ2λj

δs2
δ3λk

δs3

= εijkκµ
i

[
δκ

δs
µj + κ

(
τγj − κλj

)] [(δ2κ
δs2

− κτ2 − κ3
)
µk

+

(
2
δκ

δs
τ + κ

δτ

δs

)
γk +

(
−3κ

δκ

δs

)
λk
]

=

(
κ
δκ

δs
εijkµ

iµj + κ2τεijkµ
iγj − κ3εijkµ

iλj
)

×
[(

δ2κ

δs2
− κτ2 − κ3

)
µk +

(
2
δκ

δs
τ + κ

δτ

δs

)
γk +

(
−3κ

δκ

δs

)
λk
]

=
(
0 + κ2τλk + κ3γk

)[(δ2κ
δs2

− κτ2 − κ3
)
µk +

(
2
δκ

δs
τ + κ

δτ

δs

)
γk

+

(
−3κ

δκ

δs

)
λk
]
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=

(
δ2κ

δs2
− κτ2 − κ3

)(
κ2τλkµk + κ3µkγk

)
+

(
2
δκ

δs
τ + κ

δτ

δs

)
×
(
κ2τλkγk + κ3γkγk

)
− 3κ

δκ

δs

(
κ2τλkλk + κ3γkλk

)
= κ3

(
2
δκ

δs
τ + κ

δτ

δs

)
− 3κ

δκ

δs
(κ2τ)

= κ3
(
κ
δτ

δs
− τ3κ

δκ

δs

)
= κ5

1

κ2

(
κ
δτ

δs
− τ3κ

δκ

δs

)
= κ5

d

ds

(τ
κ

)
.

Thus the result is established. Now,

εijk
δλi

δs

δ2λj

δs2
δ3λk

δs3
= 0

or (
τλi + κγi

)
µi(κ2 + τ2) = 0

or
τλi + κγi = 0; as κ2 + τ2 ̸= 0 and µi is arbitrary

or
gij
(
τλi + κγi

)
= 0.

If ai is the fixed direction, then by hypothesis gija
iλj = cosα and gija

iγj = sinα.

Therefore,
gija

i
(
τλi + κγi

)
= 0

or
κ cosα+ τ sinα = 0

or
κ

τ
= − tanα = constant.

Hence, the curve is a helix.

EXAMPLE 5.6.2 Prove that a circular helix is a Bertrand curve.

Solution: We know the circular helix is a twisted curve. The principal normals to
a circular helix Γ intersect the axis of rotation of the cylinder Z on which Γ lies at
right angles. The points of intersection of these normals with any cylinder Z∗, coaxial
with Z, determine a circular helix Γ (Figure 5.12). Obviously Γ and Γ are Bertrand
curves, and there exist infinitely many helices Γ of this type which, together with Γ,
are Bertrand curves.
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Figure 5.12: Coaxial circular helices τ < 0.

If two curves Γ : xi(s), k > 0 and Γ : xi(s) are Bertrand curves then, Γ can be
represented in the form

x̄i(s) = xi(s) + a(s)µi(s)

where µi(s) is the unit principal normal vector to Γ and the scalar a(s) is the distance
of a point P ∗ of Γ from the corresponding point P of Γ. Now a(s) is constant, that
is, is dependent of S. Hence the circular helix is a Bertrand curve.

EXAMPLE 5.6.3 If the tangent and binormal to a space curve make angles θ and
ϕ with a fixed direction, show that

κ

τ
= − sin θ

sinϕ

dθ

dϕ
.

Solution: Let the tangent vector with components λi to a space curve C make an
angle θ with a fixed direction ci, where the vector with components ci is a unit vector
and the binormal µi makes an angle ϕ with ci. Then,

gijλ
icj = cos θ and gijµ

icj = cosϕ.

Since θ and ϕ are invariants,

δθ

δs
=
dθ

ds
and

δϕ

δs
=
dϕ

ds
.
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Taking intrinsic derivative of both the sides of the equation gijλ
icj = cos θ, we get

gij
(
κλi
)
cj =

δ

δs
cos θ =

d

ds
(cos θ)

or

κgijλ
icj = − sin θ

dθ

ds
.

Similarly, from the relation gijµ
icj = cosϕ, we get

−τgijλicj = − sinϕ
dϕ

ds
.

Combining these two results, we get

κ

τ
= − sin θ

sinϕ

dθ

dϕ
.

EXAMPLE 5.6.4 A curve Γ is defined in cylindrical co-ordinates xi as follows:

x1 = a, x2 = t, x3 = bt; b ̸= 0

where a and b are constants of which a is positive and t is a function of the natural
parameter s. Find the curvature and torsion of Γ.

Solution: The components of the tangent vector λi are given by

λ1 =
dx1

ds
= 0;λ2 =

dx2

ds
=
dt

ds
;λ3 =

dx3

ds
= b

dt

ds
.

Since gijλ
iλj = 1, we get

g11λ
1λ1 + g22λ

2λ2 + g33λ
3λ3 = 1

or

0 +
(
x1
)2( dt

ds

)2

+ b2
(
dt

ds

)2

= 1

or

(a2 + b2)

(
dt

ds

)2

= 1 ⇒
(
dt

ds

)2

=
1

a2 + b2
.

From the relation

κµi =
dλi

ds
+

{
i
j k

}
λj
dxk

ds
,
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we get

κµ1 =
dλ1

ds
+

{
1

2 2

}
λ2
dx2

ds
= −x1

(
dt

ds

)2

= − a

a2 + b2

κµ2 =
dλ2

ds
+

{
2

2 1

}
λ2
dx1

ds
+

{
2

1 2

}
λ1
dx2

ds
= 0

κµ3 = 0.

Using gijµ
iµj = 1, we get

g11µ
1µ1 + g22µ

2µ2 + g33µ
3µ3 = 1

or
− a

κ(a2 + b2)
.− a

κ(a2 + b2)
= 1 ⇒ κ =

a

a2 + b2
.

So µ1 = −1, µ2 = 0, and µ3 = 0. From the relation

dµi

ds
+

{
i
j k

}
µj
dxk

ds
= −κλi + τγi,

we get
dµ1

ds
+

{
1

2 2

}
µ2
dx2

ds
= −κλ1 + τγ2

or
0 + 0 = τγ1 ⇒ τγ1 = 0.

Similarly, τγ2 =
−b2

a(a2 + b2)3/2
and τγ3 =

−ab
(a2 + b2)3/2

. Using gijγ
iγj = 1, we get

g11γ
1γ1 + g22γ

2γ2 + g33γ
3γ3 = 1

or

0 + a2
−b2

τa(a2 + b2)3/2
· −b2

τa(a2 + b2)3/2
+

−ab
τ(a2 + b2)3/2

· −ab
τ(a2 + b2)3/2

= 1

or

τ2 =
b2(a2 + b2)

(a2 + b2)3
=

b2

(a2 + b2)2
⇒ τ =

b

a2 + b2
.

Thus, for the given helix, both the curvature κ and the torsion τ are constants. Next,
we shall show that κ and τ are constants, thus, there exists a unique circular helix.
Let κ = l and τ = m be constants. Choose

l =
a

a2 + b2
and m =

b

a2 + b2
,
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where a and b are constants. Therefore,

l

a
=
m

b
=

1

a2 + b2
⇒ a = l(a2 + b2), b = m(a2 + b2).

Also

l2 +m2 =
a2 + b2

(a2 + b2)2
=

1

a2 + b2

So
a

l
=

b

m
= a2 + b2 =

1

l2 +m2
.

Let us form a curve

Γ: xi(t) =

{
l

l2 +m2
cos t,

m

l2 +m2
sin t,

m

l2 +m2
t

}
,

which will satisfy all the necessary conditions for a circular helix.

5.7 Spherical Indicatrix

The locus of a point, whose position vector is equal to unit tangent λi of a given curve,
is called the spherical indicatrix of the tangent to the curve. Such a locus lies on the
surface of a unit sphere; hence the name. Let the two curves Γ and Γ be given by

Γ: xi = xi(s) and Γ: xi = xi(s).

of class 2 with non-vanishing curvature. We assume that the tangent principal normal
and the binormal vectors undergo a parallel displacement (Figure 5.13) and become
bound at the origion O is space. Then the terminal points of these vectors λ(s), µ(s)
are γ(s) lie on a unit sphere S with centre O and generate, is general, three curves on S
which are called tangent indicatrix, the principal normal indicatrix and the binormal
indicatrix, respectively, of the curve Γ.

Thus, according to the definition of tangent indicatrix, xi(s) = λi, therefore,

λ
i
=
dxi

ds
=
dλi

ds

ds

ds
= κµi

ds

ds

showing that the tangent to the spherical indicatrix is parallel to the principal normal
at the corresponding point of the given curve.

The linear element ds1, dsN and dsB of these indicatrices or spherical images can
be obtained by means of Eq. (5.17) for the Serret-Frenet formula. Since λ(s), µ(s) and
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Figure 5.13: Curve Γ and corresponding tangent indicatrix.

γ(s) are the vector functions representing these curves we find

ds̄2T =
dλi

ds

dλj

ds
ds2 = k2µiµjds2 = k2ds2

ds̄2N =
dµi

ds

dµj

ds
ds2 = (−kλi + τγi)(−kλi + τγi)ds2 = (k2 + τ2)ds2

ds̄2B =
dγi

ds

dγi

ds
ds2 = (τµi)(τµj)ds2 = τ2ds2.

Moreover we obtain the Equation of Lancret ds2N = ds2T + ds2B. The expression√
ds2T + ds2B is sometimes called the third and total curvature of a curve.

We may measure s so that λ
i
= µi and therefore ds

ds = κ. For the curvature κ of

the indicatrix, on differentiating the relation λ
i
= µi, we find the formula

κµi =
dµi

ds

ds

ds
=

1

κ

(
τγi − κλi

)
.

Squaring both sides we obtain the result

κ2 =
1

κ2
(κ2 + τ2),

so that the curvature of the indicatrix is the ratio of the screw curvature to the circular
curvature of the curve. The unit binormal of the indicatrix is

γi = εijkλjµk =
1

κκ
(τλi + κγi).
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Using the result

εijk
δλi

δs

δ2λj

δs2
δ3λk

δs3
= κ3

(
κ
δτ

δs
− τ

δκ

δs

)
the torsion can be obtained as

κ2τ

(
ds

ds

)6

= εijk
δλi

δs

δ2λj

δs2
δ3λk

δs3
= κ3

(
κ
δτ

δs
− τ

δκ

δs

)
⇒ τ =

1

κ(κ2 + τ2)

(
κ
δτ

δs
− τ

δκ

δs

)
.

Similarly, the spherical indicatrix of the binormal of the given curve is the locus of a
point whose position vector is xi = γi. Therefore,

λ
i
=
dγi

ds

ds

ds
= −τµids

ds
.

We may measure s so that λ
i
= −µi, and therefore ds

ds = τ. To find the curvature

differentiate the equation λ
i
= −µi, we get

κµi =
d

ds
(−µi)ds

ds
=

1

τ
(κλi − τγi),

giving the direction of the principal normal. On squaring this result we get

κ2 =
1

τ2
(κ2 + τ2).

Thus, the curvature of the indicatrix is the ratio of the screw curvature to the torsion
of the given curve. The unit binormal is

γi =
1

τκ
(τλi + κγi)

and the torsion, found as in the previous case, is equal to

τ =
1

τ(κ2 + τ2)

(
−κδτ

δs
+ τ

δκ

δs

)
.

Different curves may have the same spherical images. Simple examples illustrating this
fact are circles in the same plane, with arbitrary radius and centre, and also circular
helices on coaxial cylinders (Figure 5.12) for which the ratio a : b is the same.
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5.8 Exercises

1. If the principal normal of a space curve vanishes identically, show that its equa-
tion in curvilinear co-ordinates xi is given by

d2xi

ds2
+

{
i
j k

}
dxj

ds

dxk

ds
= 0.

2. If εijk is the covariant permutation tensor, show that

(i) εijkµiγj = λk = −εijkγiµj
(ii) εijkγiλj = µk = −εijkλiγj
(iii) εijkλiµj = γk = −εijkµiλj .

3. Show that

(i) gij
δλi

δs

δλj

δs
= −κτ

(ii) gij
δµi

δs

δµj

δs
= κ2 + τ2

(iii) gij
δγi

δs

δγj

δs
= τ2;

(iv) gij
δλi

δs

δµj

δs
= 0.

4. Prove that,

εijk
δγi

δs

δ2γj

δs2
δ3γk

δs3
= τ5

d

ds

(κ
τ

)
.

5. Prove that

(i) −κ = gij
δµi

δs
λj = −gijµi

δλj

δs

(ii) τ = gij
δµi

δs
γj = −gijµi

δγj

δs

(iii)
δµi

δs
=

(
gij
δµi

δs
λj
)
λi +

(
gij
δµi

δs
µj
)
µi +

(
gij
δµi

δs
γj
)
γi

(iv) gij
δγi

δs
λj = 0; (v)gijγ

i δλ
j

δs
= 0; (vi)gij

δµi

δs
µj = 0.

6. If ai = τλi + κγj , prove that

δλk

δs
= εijkaiλj ;

δµk

δs
= εijkaiµj ;

δγk

δs
= εijkaiγj .
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7. Prove that a space curve is helix if and only if

εijk
δλi

δs

δ2λj

δs2
δ3λk

δs3
= 0.

8. Find the curvature and torsion at any point of a given curve Γ, given by

Γ: x1 = a, x2 = t, x3 = ct,

where ds2 =
(
dx1
)2

+ (x1)2
(
dx2
)2

+
(
dx3
)2
, a, c are non-zero constants. Also,

show that the ratio of the curvature and torsion is a constant.

9. Show that the ratio of the curvature to the torsion of a space curve different
from a straight line is a non-zero constant if and only if the curve is a helix.

10. If the curvature and torsion of a space curve are both constants, prove that the
curve is a circular helix.

11. If κ and τ are the curvature and torsion of a circular helix given in cylindrical
co-ordinates xi by

x1 = a, x2 = t, x3 = bt; b ̸= 0,

where a(> 0) and b are non-zero constants, show that

(a) aκ+ bτ = 1.

(b) a =
κ

κ2 + τ2
, b =

τ

κ2 + τ2
.

12. Show that the curvature and torsion of a helix are in a constant ratio to the
curvature of the plane section of the cylinder perpendicular to the generators.

13. Defining a Bertrand curve as a space curve for which aκ+ bτ = 1, where a and
b are non-zero constants with a > 0, prove that a circular helix is a Bertrand
curve.

14. Prove that the principal normal of a cylindrical helix is everywhere perpendicular
to the generators of the cylinder.

15. Prove that a circular helix C is the only twisted curve for which more than one
curve C∗ exists such that C and C∗ are Bertrand curves.

16. Prove that the product of the torsions of Bertrand curves is constant.

17. Find the curves of which
(a) the tangent indicatrix
(b) the binormal indicatrix

degenerates a point. What does it mean when a spherical image of a closed
curve?

18. Investigate the spherical images of a circular helix.



Chapter 6

Intrinsic Geometry of Surface

We will investigate the differential geometry of surfaces by means of tensor calculus. A
great advantage of this method lies in the fact that it can immediately be generalized
to Riemannian spaces of higher dimension which have assumed increasing importance
during the last few decades. In addition, many aspects of the theory of surfaces are
simplified when treated with the aid of tensor calculus which thus leads to a better
and deeper insight into several problems of differential geometry.

In this chapter we will study the geometric properties of surfaces imbedded in a
three-dimensional Euclidean space by means of differential geometry. The reasoning
which will lead us to a definition of a surface is similar to that which led us to the
concept of a curve. It will be shown that certain of these properties can be phrased
independently of the space in which the surface is immersed and that they are con-
cerned solely with the structure of the differential quadratic form for the element of
an arc of a curve drawn on a surface. All such properties of surfaces are termed as the
intrinsic properties and the geometry based on the study of this differential quadratic
form is called the intrinsic geometry of the surface.

6.1 Curvilinear Co-ordinates on a Surface

A surface often arises as the locus of a point P which satisfies some restrictions. We
find it convenient to refer the space in which surface is imbedded to a set of orthogonal
Cartesian axes Y and regarded the locus of points satisfying the equation

F
(
y1, y2, y3

)
= 0 (6.1)

as an analytical implicit or constraint definition of a surface S. We suppose that only
two of the variables yi in Eq. (6.1) are independent and that the specification of, say
y1 and y2 in some region of the Y 1Y 2-plane determines uniquely a real number y3 such
that the F

(
y1, y2, y3

)
reduces to 0. If we suppose that F

(
y1, y2, y3

)
, regarded as a

function of three independent variables, is of class C1 in some region R about the point

P0

(
y10, y

2
0, y

3
0

)
with

(
∂F
∂y3

)
P0

̸= 0 and F
(
y10, y

2
0, y

3
0

)
= 0, then the fundamental theorem

306
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on implicit function guarantees the existence of a unique solution y3 = f
(
y1, y2

)
, such

that y30 = f
(
y10, y

2
0

)
.

We are now going to investigate the properties of a surface in its relation to the
surrounding space. Consequently, we are dealing with two distinct system of co-
ordinates namely, the three curvilinear co-ordinates for the surrounding space which
we denote by yi; i = 1, 2, 3 and the two curvilinear co-ordinates of the surface which
we denote by uα; α = 1, 2. A surface S is defined, in general, due to Gauss, as the
set of points whose co-ordinates are functions of two independent parameters. Let us
denote the equation of a surface S embedded in E3 by

S : y1 = y1(u1, u2); y2 = y2(u1, u2); y3 = y3(u1, u2)

or

S : yi = yi
(
u1, u2

)
; i = 1, 2, 3 (6.2)

where u11 ≤ u1 ≤ u12 and u21 ≤ u2 ≤ u22 are parameters and the yi are real functions
of class C1 in the region of definition of the independent parameters u1, u2. The
function yi(u1, u2) are single-valued and continuous, and are here assumed to possess
continuous partial derivatives of the rth order. In this case the surface is said to be of
class r. In order to reconcile these two different definitions we shall require that the
functions yi

(
u1, u2

)
be such that the Jacobian matrix

J =


∂y1

∂u1
∂y2

∂u1
∂y3

∂u1

∂y1

∂u2
∂y2

∂u2
∂y3

∂u2

 (6.3)

be of rank 2, so that not all the determinants of the second order selected from this
matrix vanish identically in the region of definition of parameters ui. The three second
order matrices

J1 =


∂y2

∂u1
∂y2

∂u2

∂y3

∂u1
∂y3

∂u2

; J2 =

∂y3

∂u1
∂y3

∂u2

∂y1

∂u1
∂y1

∂u2

; J3 =

∂y1

∂u1
∂y1

∂u2

∂y2

∂u1
∂y2

∂u2


are called permuted submatrices of J . This requirement ensures that it is possible to
solve two equations in Eq. (6.2) for u1 and u2 in terms of some pair of variables yi,
and the substitution of these solutions in the remaining equation leads to an equation
of the form y3 = y3

(
y1, y2

)
. A representation of the form [Eq. (6.2)] is said to be

an allowable representation, and parameters u1, u2 are frequently called curvilinear
co-ordinates.

Note that, if any two determinants formed from the matrix [Eq. (6.3)] vanish
identically, then the third one also vanishes, provided that the surface S is not a plane
parallel to one of the co-ordinate planes.
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6.1.1 Nature of Surface Co-ordinates

Since u1 and u2 are independent variables, the locus defined by Eq. (6.2) in two-
dimensional, and these equations give the co-ordinates yi of a point on the surface when
u1 and u2 are assigned particular values. This point of view leads one to consider the
surface as a two-dimensional manifold S imbedded in a three-dimensional enveloping
space E3. We can also show surface without reference to the surrounding space, and
consider parameters u1 and u2 as co-ordinate points in the surface. A familiar example
of this is the use of the latitude and longitude as co-ordinates of points on the surface
of the earth.

The intersection of a pair of co-ordinate curves obtained by setting u1 = u10;u
2 = u20

determines a point P0. The variables u1, u2 determining the point of S are called the
curvilinear or Gaussian co-ordinates of the surface (Figure 6.1).

Figure 6.1: Curvilinear co-ordinates.

Obviously, the parametric representation of a surface is not unique and there are
infinitely many curvilinear co-ordinate systems which can be used to locate points on
a given surface S. For example,

x1 = u1 + u2; x2 = u1 − u2; x3 = 4u1u2

and
x1 = v1 cosh v2; x2 = v1 sinh v2; x3 = (v1)2

represent the same surface

(x1)2 − (x2)2 = x3; hyperbolic paraboloid.

The two representation may be related by the parametric transformation

v1 = 2
√
u1u2; v2 =

1

2
log

(
u1

u2

)
.

Let us examine the geometric significance of these co-ordinates (u1, u2). If in
Eq. (6.2) of the surface S we put, u1 = c, a constant and let u2 only vary, we get a
locus given by a single variable parameter (one-dimensional manifold). Such a curve

S : yi = yi
(
c, u2

)
; i = 1, 2, 3 (6.4)
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is called a u2 curve, characterised by the equation

u2 curve: u1 = constant.

For different values of u1, we shall get a family of u1 curves covering the whole surface.
Similarly, for constant value of u2 we get a family of curves, each called an u1 curve.
In this way we get a family of u1 curves and a family of u1 curves, each family covering
the whole surface. Thus, u1 curve is characterised by the equation

u1 curve: u2 = constant.

Both the families are called family of co-ordinate curves. Together they are
called the co-ordinate net. For example, on the surface of revolution x = u cosϕ,
y = u sinϕ, z = f(u) the parametric curves are

u curve: x = u cos c1, y = u sin c1, z = f(u); c1 = constant.

ϕ curve: x = c2 cosϕ, y = c2 sinϕ, z = f(c2); c2 = constant.

EXAMPLE 6.1.1 A surface S is generated by a curve rotating about a fixed straight
line. Find a parametric representation of S.
Solution: A surface S generated by a curve rotating about a fixed straight line A
is called a surface of revolution. A is called the axis of the surface S. A surface of
revolution S, not a cylinder, can be represented in the form (Figure 6.2).

r =
(
x1, x2, x3

)
=
[
x1
(
u1, u2

)
, x2

(
u1, u2

)
, x3

(
u1, u2

)]
=
(
u1 cosu2, u1 sinu2, f(u1)

)
.

Figure 6.2: Surface of revolution.
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This representation is allowable when u1 > 0 and df
du1

<∞, i.e. at any point of the
rotating curve C which does not lie on the axis A of S or at which the tangent to C is
not parallel to A. The curves u2 = constant are called the meridians, which are the
curves of intersection of S and the planes passing through the x3 axis and the curves
u1 = constant are called parallels, which are the circles parallel to the x1x2 plane.

EXAMPLE 6.1.2 Find a parametric representation of a right conoid.

Solution: A surface S is called a right conoid if it can be generated by a moving
straight line G intersecting a fixed straight line G0 so that G and G0 are always or-
thogonal. Let us choose the co-ordinates in space so that the straight line G0 coincides
with x3 axis. Then G is parallel to the x1x2 plane, and a right conoid S generated by
G can be represented in the form (Figure 6.3)

r =
(
x1, x2, x3

)
=
[
x1
(
u1, u2

)
, x2

(
u1, u2

)
, x3

(
u1, u2

)]
=
(
u1 cosu2, u1 sinu2, f(u2)

)
.

Figure 6.3: Right conoid.

This representation is allowable at any point at which
df

du2
< ∞ and (u1)2 +(

df

du2

)2

> 0. The co-ordinate curves u2 = constant are called straight lines; each

value of u2 corresponds to a certain position of G in space. Any co-ordinate line u1 =
constant is the locus of all points of S which are at the same distance from G0.

If in particular f is a linear function of u2, say f = cu2+d, the corresponding right
conoid is called a helicoid. In this case, the curves u1 = constant are circular helices.

EXAMPLE 6.1.3 Find a parametric representation of a general helicoid.
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Solution: A helicoid is a surface generated by the screw motion of a curve about
a fixed line, the axis. The various positions of the generating curve thus obtained
by first translating it through a distance a parallel to the axis and then rotating it
through an angle u2 about the axis, where a

u2
has a constant value. The constant 2πa

u2

is the pitch of the helicoids, being the distance translated in one complete revolution.
If a twisted curve C rotates about a fixed axis A and, at the same time, is displaced
parallel to A so that the velocity of displacement is always proportional to the angular
velocity of rotation, then C generates a surface S which is called general helicoid. The
intersection M of a helicoid S and a plane passing through the axis A of S is called
a meridian of S. The meridians are congruent curves. Consequently, any general
helicoid can be generated by a plane curve. We choose as axis A the x3 axis of the
co-ordinate space. Then M can be represented in the form x3 = f(u1), where u1 is
the distance of the points of M from A. We assume that at the start of the motion
M lies in the x1x2 plane. Let u2 denote the angle of rotation. The displacement of M
has the direction of the x3 axis and is proportional to u2. We may thus represent S in
the form

r =
(
x1, x2, x3

)
=
[
x1
(
u1, u2

)
, x2

(
u1, u2

)
, x3

(
u1, u2

)]
=
(
u1 cosu2, u1 sinu2, cu2 + f(u1)

)
.

where C is a constant, and 2πc is called the pitch of the helicoidal motion. If
c ̸= 0 this local representation is allowable at any point at which the tangent to
M is not parallel to A. The curves u1 = constant are circular helices; the curves
u2 = constant are the meridians of the helicoid.

EXAMPLE 6.1.4 Find the parametric representation of the sphere.

Solution: Here we are dealing with a surface of a sphere of radius r, and that three
mutually perpendicular diameters are chosen as co-ordinate axes. The sphere of radius

r with centre at (0, 0, 0) can be represented in the form Eq. (6.1) by
n
Σ
i=1

(xi)2−r2 = 0.

The latitude u2 of a point P on the surface may be defined as the inclination of the
radius through P to the x1x2 plane, and the longitude u1 as the inclination of the
plane containing P and the x3-axis to the x3x1-plane. From this we can obtain a
representation of the form (6.2)

x3 = ±
√
r2 − (x1)2 − (x2)2,

depending on the choice of the sign this is a representation of one of the two hemi-
spheres x3 ≥ 0 and x3 ≤ 0. The parametric representation of the sphere under
consideration is (Figure 6.4)

r = (x1, x2, x3) = (r cosu2cosu1, r cosu2 sinu1, r sinu2)
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or, at length

x1 = r cosu2cosu1, x2 = r cosu2 sinu1, x3 = r sinu2

Figure 6.4: Parametric representation of sphere.

where 0 ≤ u1 < 2π,−1
2π ≤ u2 ≤ 1

2π are polar angles. This co-ordinate system is used
especially in geography for determining the latitude and longitude of points on the
globe. Indeed, the co-ordinate curves u1 = constant and u2 = constant are the great
circles ‘meridians’ and ‘parallels’, respectively. The ‘equator’ is given by u2 = 0 and
the ‘poles’ by u2 = ±1

2π. At the poles the corresponding matrix

J =

(
−r cosu2 sinu1 r cosu2 cosu1 0
−r sinu2 cosu1 −r sinu2 sinu1 r cosu2

)
is of rank 1, i.e. these points are singular with respect to the representation. Every
co-ordinate curve u1 = const. Passes through these points, are the curves u2 = ±1

2π
degenerate into points. If these two systems of curves cut each other at right angles,
we say the parametric curves are orthogonal.

EXAMPLE 6.1.5 Find the parametric representation of a cone of revolution.

Solution: A cone of revolution with apex at (0, 0, 0) and with x3 axis as axis of
revolution can be represented in the form

a2
[
(x1)2 + (x2)2

]
− (x3)2 = 0

The resulting representation of the form
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x3 = ±a
√

(x1)2 + (x2)2

represents one of the two portions x3 ≥ 0 and x3 ≤ 0 of this Cone, depending on the
choice of the sign of the square root. Now,

r = (x1, x2, x3) = (u1cosu2, u1sinu2, au1)

is the parametric representation (Figure 6.5) of the cone.

Figure 6.5: Cone of revolution.

The curve u1 = constant are circles parallel to x1x2 plane while the curves u2 =
constant are the generating straight lines of the cone. The corresponding matrix

J =

(
cosu2 sinu2 a

−u1 sinu2 u1 cosu2 0

)
is of rank 1 at u1 = 0; the apex is a singular point of the cone.

EXAMPLE 6.1.6 Find the parametric representation of an elliptical helix.

Solution: An elliptical helix (Figure 6.6) is a helix lying on an elliptical cylinder
(x1)2

a2
+

(x2)2

b2
= 1 in the x1x2x3 space. The parametric representation of the elliptical

helix under consideration is given by

r = (x1, x2, x3) = (a cos t, b sin t, ct)

where c is defined as pitch. At length

x1 = a cos t, x2b sin t, x3 = ct.
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Figure 6.6: Elliptical helix.

6.1.2 Regular Surfaces

Surfaces are generally encountered in the calculus in the form z = F (x, y); i.e. as
graphs of two variable functions in three-dimensional space. A surface S in E2 is the
image of a C3 vector function,

r(x1, x2) = [f(x1, x2), g(x1, x2), h(x1, x2)],

which maps some region V of E2 into E3. The co-ordinate breakdown of the
mapping r,

x = f(x1, x2) y = g(x1, x2) z = h(x1, x2) (6.5)

is called the Gaussian form or representation of S. Point P is a regular point of S if
∂r
∂x1

× ∂r
∂x2

̸= 0 at P ′; otherwise, P is a singular point. If every point of S is a regular
point, then S is a regular surface.

EXAMPLE 6.1.7 Show that x1 = u1 cosu2, x2 = u1 sinu2, x3 = u1u2 is a regular
surface.

Solution: The condition which is necessary for

r =
(
x1, x2, x3

)
=
[
x1
(
u1, u2

)
, x2

(
u1, u2

)
, x3

(
u1, u2

)]
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to be a surface is that ru1 × ru2 ̸= 0. Here,

r =
(
x1, x2, x3

)
=
(
u1 cosu2, u1 sinu2, u1u2

)
.

Hence, ru1 =

(
∂x1

∂u1
,
∂x2

∂u1
,
∂x3

∂u1

)
=
(
cosu2, sinu2, u2

)
ru2 =

(
∂x1

∂u2
,
∂x2

∂u2
,
∂x3

∂u2

)
=
(
−u1 sinu2, u1 cosu2, u1

)
⇒ ru1 × ru2 =

(
u1 sinu2 − u1u2 cosu2, u1u2 sinu2 + u1 cosu2, u1

)
̸= 0.

Therefore, x1 = u1 cosu2, x2 = u1 sinu2, x3 = u1u2 is a regular surface.

6.2 Intrinsic Geometry

In Section 6.1 we see that the properties of surfaces that can be described without ref-
erence to the space in which the surface is imbedded are termed as intrinsic properties.
A study of intrinsic properties is made to depend on a certain quadratic differential
form describing the metric character of the surface. A transformation T of space
co-ordinate from one system

(
xi
)
to another system

(
xi
)
will be written as

T : xi = xi
(
x1, x2, x3

)
(6.6)

a transformation of Gaussian surface co-ordinates will be

uα = uα
(
u1, u2

)
. (6.7)

We will now determine the element of arc of such a curve. Suppose that all functions
appearing here are of class C2 in the region of their definition. Let P and Q be two
neighbouring points on the surface S with co-ordinates uα and uα+ duα, respectively,
then from Eq. (6.2), we get

yi = yi
(
u1, u2

)
so that dyi =

∂yi

∂uα
duα (6.8)

where the yi are the orthogonal Cartesian co-ordinates covering the space E3 in which
the surface S is imbedded, and a curve C on S defined by

C : uα = uα(t); t1 ≤ t ≤ t2; so that, duα =
duα

dt
dt, (6.9)

where the uαs are the Gaussian co-ordinates covering S. Viewed from the surrounding
space, the curve defined by Eq. (6.9) is a curve in a three-dimensional Euclidean space
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and its element of arc is given by the formula

ds2 = dyidyi =
∂yi

∂uα
∂yi

∂uβ
duαduβ

= aαβdu
αduβ(say); where aαβ =

∂yi

∂uα
∂yi

∂uβ
. (6.10)

The expression for ds2, namely Eq. (6.10), is the square of the linear element of C
lying on the surface S, and the right-hand member of Eq. (6.10), i.e. aαβdu

αduβ is
called the metric form or first fundamental quadratic form of the surface. aαβs are
functions of u’s and is called the coefficients of the first fundamental form. The first
fundamental form of a regular surface is positive definite. This form (6.10) enable us
to measure arc lengths, angles, and areas on a surface; so it defines a metric on the
surface.

The length of arc of the curve defined by Eq. (6.7) is given by

S =

∫ t2

t1

√
aαβu̇αu̇βdt, where u̇

α =
duα

dt
. (6.11)

Since in a non-trivial case ds2 > 0, it follows at once from Eq. (6.10) upon setting.
u2 = constant and u1 = constant in turn, that

ds2(1) = a11
(
du1
)2

and ds2(2) = a22
(
du2
)2
.

Thus, a11 and a22 are positive functions of u1 and u2.

Theorem 6.2.1 Show that aαβ is a symmetric covariant tensor of order two.

Proof: Consider a transformation of surface co-ordinates

uα = uα
(
u1, u2

)
so that duα =

∂uα

∂uγ
duγ (6.12)

with the Jacobian J =
∣∣∣∂uα
∂uβ

∣∣∣ ̸= 0. The square of the linear element, i.e. ds2 of C lying

on the surface S, is given by the expression

ds2 = aαβdu
αduβ =

∂yi

∂uα
∂yi

∂uβ
duαduβ .

Also

ds2 = aγδdu
γduδ =

∂yi

∂uγ
∂yi

∂uδ
duγduδ.
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Due to invariant property, we get

∂yi

∂uα
∂yi

∂uβ
duαduβ =

∂yi

∂uγ
∂yi

∂uδ
duγduδ

or
∂yi

∂uα
∂yi

∂uβ
duαduβ =

∂yi

∂uγ
∂yi

∂uδ
∂uγ

∂uα
∂uδ

∂uβ
duαduβ

or [
∂yi

∂uα
∂yi

∂uβ
− ∂yi

∂uγ
∂yi

∂uδ
∂uγ

∂uα
∂uδ

∂uβ

]
duαduβ = 0

or [
aαβ − aγδ

∂uγ

∂uα
∂uδ

∂uβ

]
duαduβ = 0

Since duα, duβ are arbitrary tensors, we have

aαβ − aγδ
∂uγ

∂uα
∂uδ

∂uβ
= 0 ⇒ aγδ =

∂uα

∂uγ
∂uβ

∂uδ
aαβ ,

which shows that aαβ is a tensor of order two. Now, we have to show that aαβ is
symmetric tensor. Let

aαβ =
1

2
(aαβ + aβα) +

1

2
(aαβ − aβα)

= Aαβ +Bαβ ; say

where

Aαβ =
1

2
(aαβ − aβα) and Bαβ =

1

2
(aαβ + aβα) .

It is clear that Aαβ is symmetric and Bαβ is skew symmetric. Now,

aαβdu
αduβ = Aαβdu

αduβ +Bαβdu
αduβ

or

(aαβ −Aαβ) du
αduβ = Bαβdu

αduβ (6.13)

or
(aαβ −Aαβ) du

αduβ = −Bβαduαduβ ;Bαβ is antisymmetric

or

(aαβ −Aαβ) du
αduβ = −Bαβduβduα;

interchanging the dummy indices α, β

or

(aαβ −Aαβ) du
αduβ = −Bαβduαduβ. (6.14)
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From Eqs. (6.13) and (6.14) we get

2Bαβdu
αduβ = 0 ⇒ Bαβ = 0

as duα and duβ are arbitrary tensors. Therefore, aαβ = Aαβ , where aαβ is a symmetric
tensor. Thus, we see that the set of quantities aαβ represents a symmetric covariant
tensor of rank 2, with respect to the admissible transformation Eq. (6.12) of surface
co-ordinates. The tensor aαβ is called the covariant metric tensor of the surface and
are also called fundamental magnitudes of the first order.

Definition 6.2.1 Since the form Eq. (6.10) is positive definite, the determinant

a =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ > 0

and we can define the reciprocal tensor aαβ by

aαβ =
cofactor of aαβ in a

a

with the property aαβaβγ = δαγ . Also, aαβ is a contravariant tensor of order two.

The contravariant tensor aαβ is called the contravariant metric tensor. a is called the
discriminant of the form.

Since our space admits of arbitrary contravariant vectors, let λα be any arbitrary
contravariant vector defined at any general point on the surface. Then the equation

λα = aαβλ
β (6.15)

is uniquely solvable if |aαβ | ̸= 0. This shows that the correspondence is one to one.
Since λα here is a covariant vector, we find that our space admits of arbitrary covariant
vector. Taking inner product with aαγ of Eq. (6.15) we get

aαγλα = aαγaαβλ
β = δγβλ

β = λγ

or

aαγλαλγ = λγλγ = |λ|2. (6.16)

This relation shows that aαγ is that contravariant tensor of second order. Interchanging
the dummy indices α and γ in Eq. (6.16) we get

aγαλγλα = |λ|2.

Therefore, aαγ is a symmetric tensor.
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EXAMPLE 6.2.1 Find the first fundamental form of a plane with respect to polar
co-ordinates.

Solution: Let x1 = u1 cosu2, x2 = u1 sinu2, where x1, x2 are Cartesian co-ordinates
and u1, u2 are polar co-ordinates. Thus, the parametric representation is given by

x1 = u1 cosu2, x2 = u1 sinu2, x3 = 0

i.e.

r = (x1, x2, x3) =
(
u1 cosu2, u1 sinu2, 0

)
.

Thus, the coefficients aαβ of the first fundamental form are given by

a11 =

(
∂x1

∂u1

)2

+

(
∂x2

∂u1

)2

+

(
∂x3

∂u1

)2

= 1.

a22 =

(
∂x1

∂u2

)2

+

(
∂x2

∂u2

)2

+

(
∂x3

∂u2

)2

= (u1)2.

a12 =
∂xi

∂u1
∂xi

∂u2
=
∂x1

∂u1
∂x1

∂u2
+
∂x2

∂u1
∂x2

∂u2
+
∂x3

∂u1
∂x3

∂u2

= cosu2 · (−u1 sinu2) + sinu2(u1 cosu2) + 0 = 0 = a21.

Therefore, the first fundamental form for the surface is given by

ds2 = aijdu
iduj = a11(du

1)2 + 2a12du
1du2 + a22(du

2)2

= (du1)2 + (u1)2(du2)2.

EXAMPLE 6.2.2 Find the first fundamental form of the right helicoid.

Solution: The parametric representation of the right helicoid is given by

x1 = u1 cosu2, x2 = u1 sinu2, x3 = cu2

i.e.

r = (x1, x2, x3) =
(
u1 cosu2, u1 sinu2, cu2

)
,

where c is a constant. Now,

∂x1

∂u1
= − cosu2;

∂x2

∂u1
= sinu2;

∂x3

∂u1
= 0

∂x1

∂u2
= −u1 sinu2; ∂x

2

∂u2
= u1 cosu2;

∂x3

∂u2
= c.
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Thus, the coefficients aαβ of the first fundamental form are given by

a11 =

(
∂x1

∂u1

)2

+

(
∂x2

∂u1

)2

+

(
∂x3

∂u1

)2

= 1.

a22 =

(
∂x1

∂u2

)2

+

(
∂x2

∂u2

)2

+

(
∂x3

∂u2

)2

= (u1)2 + c2.

a12 =
∂xi

∂u1
∂xi

∂u2
=
∂x1

∂u1
∂x1

∂u2
+
∂x2

∂u1
∂x2

∂u2
+
∂x3

∂u1
∂x3

∂u2

= cosu2(−u1 sinu2) + sinu2(u1 cosu2) + 0 · c = 0 = a21.

Therefore, the first fundamental form for the surface is given by

ds2 = aijdu
iduj = a11(du

1)2 + 2a12du
1du2 + a22(du

2)2

= (du1)2 + [(u1)2 + c2](du2)2.

The metric for R2 corresponding to the right helicoid is non-Euclidean. Now, the
parameters u1, u2 which are actual polar co-ordinates in the x1x2 plane of E3,
(Figure 6.7) formerly keep that significance when the plane is considered abstractly as
parameter space. This is an instance of the formal use of familiar co-ordinate system
in non-Euclidean space.

Figure 6.7: Right helicoid.

EXAMPLE 6.2.3 Find the first fundamental form for any surface of revolution, and
specialise to a right circular cone (Figure 6.8).

Solution: The Gaussian form of a surface of revolution about z axis is

r(x1, x2) =
(
f(x1) cosx2, f(x1) sinx2, g(x1)

)
; f(x1) > 0.
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From this parametric representation, we get

∂r

∂x1
=
(
f ′(x1) cosx2, f ′(x1) sinx2, g′(x1)

)
;
∂r

∂x2
=
(
−f(x1) sinx2, f(x1) cosx2, 0

)
.

Figure 6.8: Right circular cone.

Thus, the coefficients aαβ of the first fundamental form are given by

a11 =
∂r

∂x1
.
∂r

∂x1
= (f ′)2 + (g′)2; a22 =

∂r

∂x2
.
∂r

∂x2
= f2;

a12 =
∂r

∂x1
.
∂r

∂x2
= 0 = a21.

Therefore, the first fundamental form for the surface is given by

ds2 = a11(dx
1)2 + 2a12dx

1dx2 + a22(dx
2)2

=
(
(f ′)2 + (g′)2

)
(dx1)1 + f2(dx2)2.

For a right circular cone, f(x1) = x1 and g(x1) = ax1; hence,

ds2 =
(
1 + a2

)
(dx1)1 + (x1)2(dx2)2.

EXAMPLE 6.2.4 Find the first fundamental form for the catenoid x = a coshx1,
z = ax1 and compute the length of the curve x1 = t, x2 = t; 0 ≤ t ≤ log(1 +

√
2).

Solution: For that case, f(x1) = a coshx1, g(x1) = ax1. Therefore, the first funda-
mental form for the surface is given by

ds2 = a2 cosh2 x1
[
(dx1)2 + (dx2)2

]
.
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Thus, the required length of the arc, 0 ≤ t ≤ log(1 +
√
2) is given by

L = a
√
2

∫ log(1+
√
2)

0
cosh tdt = a

√
2 sinh[log(1 +

√
2)] = a

√
2 units.

EXAMPLE 6.2.5 Find the first fundamental form of the surface is given in Monge’s
form x3 = f(u1, u2), where the co-ordinates u1, u2 may be taken as parameters.
Solution: The parametric representation of the right helicoid is given by

x1 = u1, x2 = u2, x3 = f(u1, u2)

i.e.
r = (x1, x2, x3) =

(
u1, u2, f(u1, u2)

)
,

From this parametric representation, we get

∂x1

∂u1
= 1;

∂x2

∂u1
= 0;

∂x3

∂u1
=

∂f

∂u1
= f1

∂x1

∂u2
= 0;

∂x2

∂u2
= 1;

∂x3

∂u2
=

∂f

∂u2
= f2,

where ∂f
∂ui

= fi. Thus, the coefficients aαβ of the first fundamental form are given by

a11 =
∂xi

∂u1
∂xi

∂u1
=

(
∂x1

∂u1

)2

+

(
∂x2

∂u1

)2

+

(
∂x3

∂u1

)2

= 1 + f21 .

a22 =
∂xi

∂u2
∂xi

∂u2
=

(
∂x1

∂u2

)2

+

(
∂x2

∂u2

)2

+

(
∂x3

∂u2

)2

= 1 + f22 .

a12 =
∂xi

∂u1
∂xi

∂u2
=
∂x1

∂u1
∂x1

∂u2
+
∂x2

∂u1
∂x2

∂u2
+
∂x3

∂u1
∂x3

∂u2
= f1f2 = a21.

Therefore, the first fundamental form for the surface is given by

ds2 = aijdu
iduj = a11(du

1)2 + 2a12du
1du2 + a22(du

2)2

= (1 + f21 )(du
1)1 + 2f1f2du

1du2 + [1 + f22 ](du
2)2.

Note 6.2.1 Along with the first fundamental form, tensor calculus enters the picture.
For the intrinsic properties of a particular surface S in E3 (the properties defined by
measurements of distance on the surface) are all implicit in Eq. (6.10), which can be
interpreted as a particular Riemannian metrication of the parameter plane. Thus, the
study of intrinsic properties of surfaces becomes the tensor analysis of Riemannian
matrices in R2 and this may be conducted without any reference of E3 whatever.
Observe that the metrices under consideration will all be positive definite but not
necessarily Euclidean. Accordingly, we shall drop the designation E2 for the parameter
plane, which shall henceforth be referred to general co-ordinates.
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6.2.1 Angle Between Two Intersecting Curves

Here, we have to find the angle between two intersecting curves on a surface. The
equation of a curve C drawn on the surface S can be written in the form

C : uα = uα(t); t1 ≤ t ≤ t2. (6.17)

Since the uα(t) is assumed to be of class C2, the curve C has a continuously turning
tangent. Let C1 and C2 be two such curves intersecting at the point P of S. We take
the equations of S, referred to orthogonal Cartesian axes yi, in the form

yi = yi (u1, u2) ; i = 1, 2, 3 (6.18)

and denote the direction cosines of the tangent lies to C1 and C2 at P by ξi and ηi,
respectively, then

ξi =
∂yi

∂uα
duα

dS(1)
=

dyi

dS(1)
and ηi =

∂yi

∂uβ
duβ

dS(2)
=

dyi

dS(2)
,

where the subscripts 1 and 2 refer to the elements of arc of C1 and C2, respectively.
We can write the unit vectors in the directions of the tangents C1 and C2 as

λα =
duα

dS(1)
; µα =

duα

dS(2)
and ξi =

∂yi

∂uα
λα; ηi =

∂yi

∂uβ
µβ . (6.19)

The cosine of the angle θ between C1 and C2, calculated by a geometer in the enveloping
space E3, (Figure 6.9) is

cos θ = ξiηi =
∂yi

∂uα
∂yi

∂uβ
λαµβ

= aαβλ
αµβ = aαβ

duα

dS(1)

duβ

dS(2)
. (6.20)

Figure 6.9: Angle between two intersecting curves.
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In two-dimensional manifold, the skew-symmetric e-systems can be defined by
formula (1.5) as e11 = e22 = e11 = e22 = 0; e12 = −e21 = e12 = −e21 = 1 and since
these systems are relative tensors, the expressions

εαβ =
√
aeαβ and εαβ =

1√
a
eαβ (6.21)

are absolute tensors. Let θ be the angle between two unit vectors λα, µα, then,

sin2 θ = 1− cos2 θ =
(
ξiξi

) (
ηiηi

)
−
(
ξiηi

)2
=

∣∣∣∣ξ1 η1

ξ2 η2

∣∣∣∣2 + ∣∣∣∣ξ2 η2

ξ3 η3

∣∣∣∣2 + ∣∣∣∣ξ3 η3

ξ1 η1

∣∣∣∣2 ; by Lagrange identity

=


∣∣∣∣∣∣∣∣
∂y1

∂u1
∂y1

∂u2

∂y2

∂u1
∂y2

∂u2

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣
∂y2

∂u1
∂y2

∂u2

∂y3

∂u1
∂y3

∂u2

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣
∂y3

∂u1
∂y3

∂u2

∂y1

∂u1
∂y1

∂u2

∣∣∣∣∣∣∣∣
2
∣∣∣∣∣λ

1 µ1

λ2 µ2

∣∣∣∣∣
2

=
(
J2
1 + J2

2 + J2
3

) (
λ1µ2 − λ2µ1

)2
= a

(
λ1µ2 − λ2µ1

)2
or

sin θ =
√
a
(
λ1µ2 − λ2µ1

)
=

√
a eαβλ

αµβ = εαβλ
αµβ . (6.22)

Equation (6.22) εαβλ
αµβ = sin θ, is numerically equal to the area of the parallelogram

constructed on the unit vectors λα and µα. It follows from this result that a necessary
and sufficient condition for the orthonormality of two surface unit vectors λα and µα

is
∣∣εαβλαµβ∣∣ = 1.
If the curves C1 and C2 are orthogonal,

aαβλ
αµβ = 0 (6.23)

Also, if the surface vectors λα and µβ are taken along the co-ordinate curves

λ1 =
1

√
a11

, λ2 = 0, µ1 = 0, and µ2 =
1

√
a22

,

then from Eq. (6.23) the co-ordinate curves will form an orthogonal net if and only
if a12 = 0 at every point of the surface. If in particular, the vectors λα, µβ are taken
along the parametric curves, then, for the u′-curve, du2 = 0. Consequently, Eq. (6.10)

reduces to dS2
(1) = a11

(
du1
)2

and hence, the unit vector λα(1) along u
1 curve is

λα(1) =

(
du1

dS(1)
,
du2

dS(1)

)
=

(
1

√
a11

, 0

)
=

1
√
a11

δα(1).

Similarly, the unit vector µα(2) along u
2 curve is

µα(2) =

(
du1

dS(2)
,
du2

dS(2)

)
=

(
1

√
a22

, 0

)
=

1
√
a22

δα(2).
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EXAMPLE 6.2.6 Show that the arc length lying on the plane z = 0 is the same in
both the systems.

Solution: Let P and Q be two points on the plane z = 0, whose co-ordinates are
say P

(
xi
)
= P

(
x1, x2, x3

)
and Q

(
xi + dxi

)
= Q

(
x1 + dx1, x2 + dx2, x3 + dx3

)
. Now,

the symmetric tensors aij are given by

a11 =
∂xi

∂u1
∂xi

∂u1
=

(
∂x1

∂u1

)2

+

(
∂x2

∂u1

)2

+

(
∂x3

∂u1

)2

= 1.

a12 =
∂xi

∂u1
∂xi

∂u2
=
∂x1

∂u1
∂x1

∂u2
+
∂x2

∂u1
∂x2

∂u2
+
∂x3

∂u1
∂x3

∂u2
= 0 = a21.

a22 =
∂xi

∂u2
∂xi

∂u2
=

(
∂x1

∂u2

)2

+

(
∂x2

∂u2

)2

+

(
∂x3

∂u2

)2

= 1.

Now, the square of the linear element is given by

ds2 = aαβdu
αduβ = a11

(
du1
)2

+ 2a12du
1du2 + a22

(
du2
)2

= a11
(
dx1
)2

+ 2a12dx
1dx2 + a22

(
dx2
)2

;

as u1 = x1, u2 = x2, u3 = 0

= 1
(
dx1
)2

+ 1
(
dx2
)2

=
(
dx1
)2

+
(
dx2
)2

= dxidxi.

Therefore, the arc length lying on the plane z = 0 is the same in both the systems.

EXAMPLE 6.2.7 If θ be the angle between the parametric curves lying on a surface,
immersed in E3, show that

cos θ =
a12√

a11
√
a22

and sin θ =
a

√
a11

√
a22

and hence, show that the parametric curves on a surface are orthogonal iff a12 = 0.

Solution: Since θ be the angle between the parametric curves, so,

cos θ = aαβλ
α
(1)λ

β
(2) = a11λ

1
(1)λ

1
(2) + a22λ

2
(1)λ

2
(2) + a12λ

1
(1)λ

2
(2) + a21λ

2
(1)λ

1
(2)

= a11
1

√
a11

× 0 + a22 × 0× 1
√
a22

+ a12 ×
1

√
a11

× 1
√
a22

+ a21 × 0× 0

=
a12√

a11
√
a22

.
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Using the identity cos2 θ = 1− sin2 θ we get

sin2 θ = 1− cos2 θ = 1− a212
a11a22

=
a11a22 − a212
a11a22

=
a

a11a22

⇒ sin θ =

√
a

√
a11

√
a22

.

If the parametric curves on the surface S are orthogonal, i.e. if θ = π
2 , then,

√
a

√
a11

√
a22

= sin
π

2
= 1

so that a11 and a22 ̸= 0 and so a > 0 and so,

cos
π

2
= 0 =

a12√
a11

√
a22

⇒ a12 = 0.

EXAMPLE 6.2.8 Prove that the parametric curves on a surface given by
x1 = a sinu cos v, x2 = a sinu sin v, x3 = a cosu form an orthogonal system.

Solution: For the given surface, the symmetric covariant tensor aαβ of order two are
given by

a11 =

(
∂x1

∂u

)2

+

(
∂x2

∂u

)2

+

(
∂x3

∂u

)2

= (a cosu cos v)2 + (a cosu sin v)2 + (−a sinu)2 = a2.

a22 =

(
∂x1

∂v

)2

+

(
∂x2

∂v

)2

+

(
∂x3

∂v

)2

= (−a sinu sin v)2 + (a sinu cos v)2 + 02 = a2 sin2 u

a12 =
∂x1

∂u

∂x1

∂v
+
∂x2

∂u

∂x2

∂v
+
∂x3

∂u

∂x3

∂v

= a cosu cos v × (−a sinu sin v) + a cosu sin v

× (a sinu cos v) + (−a sinu)× 0 = 0 = a21.

Since a12 = 0, so the co-ordinate curves are orthogonal. Let λα and λβ be taken along
the parametric curves. For the u-curve, dv = 0 and for the v -curve, du = 0. Thus,
the unit vector λα(1) along the u-curve is

λα(1) =

(
du

ds(1)
,
dv

ds(1)

)
=

(
1

√
a11

, 0

)
=

(
1

a
, 0

)
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and the unit vector λβ(2) along the v-curve is

λβ(2) =

(
du

ds(2)
,
dv

ds(2)

)
=

(
0,

1
√
a22

)
=

(
0,

1

a sinu

)
.

If θ be the angle between the parametric curves, then

cos θ = aαβλ
α
(1)λ

β
(2) = a11λ

1
(1)λ

1
(2) + a22λ

2
(1)1λ

2
(2) + a12λ

1
(1)λ

2
(2)

= a2 × 1

a
× 0 + a2 sin2 u× 0× 1

a sinu
+ 0× 1

a
× 1

a sinu
+ 0× 0× 0

= 0 ⇒ θ =
π

2
.

Thus, the parametric curves on the surface given by x1 = a sinu cos v, x2 = a sinu sin v,
x3 = a cosu form an orthogonal system.

6.2.2 Element of Surface Area

Let r denotes the position vector of any point P on the surface S, and the bi are the
unit vectors directed along the orthogonal co-ordinate axes Y , then from Eq. (6.18)
of the surface S can be written in the vector form as

r (u1, u2) = biy
i (u1, u2) .

According to the representation of the surface S, it follows that

ds2 = dr · dr =
∂r

∂uα
· ∂r
∂uβ

duαduβ

= aαβdu
αduβ ; where, aαβ =

∂r

∂uα
· ∂r
∂uβ

.

Setting ∂r
∂uα = aα, where a1 and a2 are obviously tangent vectors to the co-ordinate

curves, we see that

a11 = a1 · a1; a12 = a1 · a2; a22 = a2 · a2.

In the notation of Eq. (6.19) the space components of a1 and a2 are ξi and ηi, re-
spectively. Let us define an element of area dσ of the surface S by the formula,
(Figure 6.10)

dσ = |a1 × a2| du1du2

=
√
a11a22 − a212 du

1du2 =
√
a du1du2.

This formula has widely used to calculate the volume element.
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Figure 6.10: Element of area.

EXAMPLE 6.2.9 Find the element of area of the surface of radius r, if the equations
of the surface are given in the form

y1 = r sinu1 cosu2, y2 = r sinu1 sinu2, y3 = r cosu1,

where the yi are orthogonal Cartesian co-ordinates.

Solution: The parametric representation of the surface of radius r is given by

y1 = r sinu1 cosu2, y2 = r sinu1 sinu2, y3 = r cosu1

i.e.
r = (y1, y2, y3) =

(
r sinu1 cosu2, r sinu1 sinu2, r cosu1

)
.

From this parametric representation, we get

∂y1

∂u1
= r cosu1 cosu2;

∂y2

∂u1
= r cosu1 sinu2;

∂y3

∂u1
= −r sinu1

∂y1

∂u2
= −r sinu1 sinu2; ∂y

2

∂u2
= r sinu1 cosu2;

∂y3

∂u2
= 0.

Thus, the coefficients aαβ of the first fundamental form are given by

a11 =

(
∂y1

∂u1

)2

+

(
∂y2

∂u1

)2

+

(
∂y3

∂u1

)2

=
(
r cosu1 cosu2

)2
+
(
r cosu1 sinu2

)2
+
(
−r sinu1

)2
= r2.

a22 =

(
∂y1

∂u2

)2

+

(
∂y2

∂u2

)2

+

(
∂y3

∂u2

)2

= r2 sin2 u1.
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a12 =
∂y1

∂u1
∂y1

∂u2
+
∂y2

∂u1
∂y2

∂u2
+
∂y3

∂u1
∂y3

∂u2

=
(
r cosu1 cosu2

)
·
(
−r sinu1 sinu2

)
+
(
r cosu1 sinu2

)
·
(
r sinu1 cosu2

)
+
(
−r sinu1

)
· 0 = 0 = a21.

Therefore,

a =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = ∣∣∣∣r2 0
0 r2 sin2 u1

∣∣∣∣ = r4 sin2 u1.

The element of area dσ of the surface S of radius r by the formula,

dσ =
√
a du1 du2 = r2 sinu1du1du2.

6.3 Geodesic on a Surface

Here, we will discuss the problem of finding curves of minimum length or shortest arc
joining a pair of given points on the surface. We will carry out our calculation for the
case of the n-dimensional Riemannian manifolds, since our results will be of interest
not only in connection with the geometry of surfaces but also in the study of dynamical
trajectories. Obviously this is a problem of calculus of variation, first considered by
J. Bernoulli.

Let metric properties of the n-dimensional manifold Rn be determined by

ds2 = gijdu
iduj ; ; i, j = 1, 2, . . . , n, (6.24)

where gij = gji are specified functions on the variables ui. Let us suppose that the
form Eq. (6.24) is positive definite and the functions gij are of class C2. Let C be a
curve given by (Figure 6.11)

C : ui = ui(t); t1 ≤ t ≤ t2

and the length of the curve between two points P and Q on it be given by

S =

∫ t2

t1

√
gαβu̇αu̇βdt; α, β = 1, 2, · · · , n. (6.25)

The extremals of the functional Eq. (6.25) will be termed as geodesics in Rn. Let
C be any curve in the neighbourhood of C joining P and Q and let it be given by

C : ui = ui(t) + εwi(t),
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Figure 6.11: Geodestic on a surface.

where wi is a function of t such that wi(t) = 0 at P (t1) and Q(t2) and ε is a number
of infinitesimal order. The arc length between P and Q along C is given by

S =

∫ t2

t1

√
gαβu̇

α
u̇
β
dt.

Let us consider the integral,

I =

∫ t2

t1

ϕ(uα, uα)dt,

where ϕ is a function and

I =

∫ t2

t1

ϕ (uα + εwα, uα + εwα) dt

=

∫ t2

t1

ϕ(uα, uα) dt+ ε

∫ t2

t1

[
wα

∂ϕ

∂uα
+ ẇα

∂ϕ

∂u̇α

]
dt,

by Taylor’s theorem, on neglecting the other terms. Therefore, the increment I − I is
given by

I − I = ε

∫ t2

t1

[
wα

∂ϕ

∂uα
+ ẇα

∂ϕ

∂u̇α

]
dt; α = 1, 2

= ε

∫ t2

t1

wα
∂ϕ

∂uα
dt+ ε

∫ t2

t1

∂ϕ

∂u̇α
ẇαdt,

= ε

∫ t2

t1

wα
∂ϕ

∂uα
dt+ ε

[
∂ϕ

∂u̇α
wα
]t2
t1

− ε

∫ t2

t1

d

dt

(
∂ϕ

∂u̇α

)
wαdt,

= ε

∫ t2

t1

[
∂ϕ

∂uα
− d

dt

(
∂ϕ

∂u̇α

)]
wαdt. (6.26)
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If C is a geodesic, then the increment I − I must be zero for all neighbouring curves
through P and Q, i.e. Eq. (6.26) must vanish for all arbitrary values of the vector wα

along C. Thus,
d

dt

(
∂ϕ

∂u̇α

)
− ∂ϕ

∂uα
= 0, (6.27)

which is called Euler’s or Lagrange’s equations for ϕ. In our case,

ϕ(uα, u̇α) =
√
gαβu̇αu̇β

⇒ ∂ϕ

∂uγ
=

1

2

(
gαβu̇

αu̇β
)−1/2 ∂gαβ

∂uγ
u̇αu̇β

and
∂ϕ

∂u̇γ
=

1

2

(
gαβu̇

αu̇β
)−1/2

gαγ u̇
α.

Hence, the Euler’s equation [Eq. (6.27)] gives,

d

dt

[
gαγ u̇

α√
gαβu̇αu̇β

]
− 1

2
√
gαβu̇αu̇β

∂gαβ
∂uγ

u̇αu̇β = 0

or
d

dt

[
gαγ u̇

α

ds/dt

]
− 1

2ds/dt

∂gαβ
∂uγ

u̇αu̇β = 0

or

gαγ ü
α +

∂gαγ
∂uβ

u̇αu̇β − 1

2

∂gαβ
∂uγ

u̇αu̇β =
1

ds/dt
gαγ u̇

αd
2s

dt2

or

gαγ ü
α +

1

2

(
∂gαγ
∂uβ

+
∂gβγ
∂uα

−
∂gαβ
∂uγ

)
u̇αu̇β =

1

ds/dt
gαγ u̇

αd
2s

dt2

or

gαγ ü
α + [αβ, γ]u̇αu̇β = gαγ u̇

α d
2s/dt2

ds/dt
. (6.28)

These are the desired equations of geodesics on an arbitrary surface the Eq. (6.28) of
geodesics for the curves of minimal length will play a role similar to that of straight
lines in a plane. Also, this can be written as

gγδgαγ ü
α + gγδ[αβ, γ]u̇αu̇β = gγδgαγ u̇α

d2s/dt2

ds/dt

or

üδ +

{
δ

α β

}
u̇αu̇β =

d2s/dt2

ds/dt
u̇δ. (6.29)

If we choose the parameter t to be the arc length s of the curve, i.e. if we get s = t,
then,
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ds

dt
= ϕ =

√
gαβu̇αu̇β = 1 and

d2s

dt2
=
dϕ

dt
= 0

then Eq. (6.28) reduces to

gαγ ü
α + [αβ, γ]u̇αu̇β = 0, (6.30)

where ‘.’ denotes the differentiation with respect to the arc parameter s. Multiplying
Eq. (6.30) by gδγ and sum, we obtain a simple form of the equations of geodesics in
Rn as

gδγgαγ ü
α + gδγ [αβ, γ]u̇αu̇β = 0,

or

üδ +

{
δ

α β

}
u̇αu̇β = 0

or

d2uδ

ds2
+

{
δ

α β

}
duα

ds

duβ

ds
= 0; δ, α, β = 1, 2, · · · , n, (6.31)

which is the differential equation of a geodesic in Rn. Since Eq. (6.31) is an ordinary
second order differential equation it possesses a unique solution when the values ui(s)

and the first derivatives dui

ds are prescribed arbitrarily at a given point ui(s0). If we
regard a given surface S as a Riemannian two-dimensional manifold R2, covered by
Gaussian co-ordinates uα, then Eq. (6.31) takes the form

d2uδ

ds2
+

{
δ

α β

}
duα

ds

duβ

ds
= 0; δ, α, β = 1, 2. (6.32)

Hence, at each point of S there exists a unique geodesic with an arbitrarily prescribed
direction λα = duα

ds . Thus, if there exists a unique solution uα(s), passing through two
given points on S, then the curve uα(s) is the curve of shortest length joining these
points. The solution of the system (6.32) of second order differential equations will
define the geodesics ui = ui(s).

Deduction 6.3.1 (Necessary and sufficient condition for a geodesic): Let us intro-
duce

T (uα, u̇α) =
1

2
gαβu̇

αu̇β , Uα ≡ d

dt

(
∂T

∂u̇α

)
− ∂T

∂uα
=

1

2T

dT

dt

∂T

∂u̇α
, (6.33)

where α, β = 1, 2. The expression Uα so defined are important in relation to any
curve, whether it is a geodesic or not. Now,

u̇αUα =
d

dt

(
u̇α

∂T

∂u̇α

)
− üα

∂T

∂u̇α
− u̇α

∂T

∂uα
=

d

dt
(2T )− dT

dt
=
dT

dt
, (6.34)
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where T is a function of uαu̇α homogeneous of degree 2 in u̇α. Since also the expression
for Uα on the right how side of Eq. (6.33) satisfy the same identity, i.e.

u̇α
(

1

2T

dT

dt

∂T

∂u̇α

)
=

1

2T

dT

dt

(
u̇α

dT

du̇α

)
=
dT

dt
,

it follows that the equations in Eq. (6.33) are not independent, they are therefore

equivalent to only one equation for the unknowns uα(t). Eliminating
dT

dt
in Eq. (6.33)

we get

uα
∂T

∂u̇β
− uβ

dT

∂u̇α
= 0 : α, β = 1, 2. (6.35)

This, then, is necessary for a geodesic. To prove that it is also sufficient, suppose
that it is satisfied by functions uα(t), whose first derivatives do not vanish simultane-

ously at any point. The
∂T

∂u̇α
cannot vanish together. Hence

Uα = µ
∂T

∂u̇α
; for some µ,

and then from Eq. 6.34 we get

dT

dt
= µ

(
u̇α

∂T

∂u̇α

)
= 2Tµ⇒ µ =

1

2T

dT

dt
.

The function uα(t) therefore satisfy Eq. (6.33).

Deduction 6.3.2 Intrinsic curvature: The intrinsic curvature of a curve C in the
surface S is the function

κ̃ =
√
gijbibj ; b

i =
δ

δs

(
dxi

ds

)
,

where the intrinsic curvature vector bi is given by

bi =
δ

δs

(
dxi

ds

)
=
d2xi

ds2
+

{
i
p q

}
dxp

ds

dxq

ds
.

Intrinsic curvature can be shown to be the instantaneous rate of change of the angle
between the tangent vector of C and another vector in the tangent space that is
transported parallely along the curve. A curve on a surface is a geodesic if and only
if its intrinsic curvature κ̃ is identically zero.

EXAMPLE 6.3.1 Prove that the curves of the family
v3

u2
= constant are geodesics

on the surface with metric v2du2 − 2uvdudv + 2u2dv2;u > 0, v > 0.
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Solution: Let
v3

u2
= c(> 0) so that the parametric form of the equation of the curve

is u = ct3, v = ct2. Construct.

T =
1

2

(
v2u̇2 − 2uvu̇v̇ + 2u2v̇2

)
Therefore,

∂T

∂u
= −vu̇v̇ + 2uv̇2 = 2c3t5,

∂T

∂v
= vu̇2 − uu̇v̇ = 3c3t6

∂T

∂u̇
= v2u̇− uvv̇ = c3t6,

∂T

∂v̇
= −uvu̇− 2u2v̇ = c3t7

U̇1 =
d

dt
(c3t6)− 2c3t5 = 4c3t5, V 2 =

d

dt
(c3t7)− 3c3t6 = 4c3t6

Since V
∂T

∂u̇
− U

∂T

∂v̇
= 0 , i.e. the curve is a geodesic for every value of c.

EXAMPLE 6.3.2 Show that the geodesics are straight lines when the co-ordinates
are Cartesian.

Solution: Consider the Euclidean space E3 of 3 dimensions. In this case, the metric
is ds2 = gijdx

αdxβ , where the tensor gij is denoted by aij and gij = aij = δij . Thus,
the components of the Christofell symbols are given by

gij = δij ⇒
{

k
i j

}
= 0 = [ij, k],

relative to En. The differential equation of a geodesic in En, with Euclidean co-
ordinates xi is

d2xi

ds2
+

{
i
j k

}
dxj

ds

dxk

ds
= 0

or
d2xi

ds2
= 0 ⇒ xi = ais+ bi, s = arc length,

where ai and bi are constants with gija
iaj = 1. Thus, from each point x = b of space

there emanates a geodesic ray in every direction (unit vector) a. This equation can be
written in the form

x1 − b1

a1
=
x1 − b1

a1
=
x1 − b1

a1
(= s).

The equation xi = ais + bi represents the equation of straight lines in E3. Thus in
affine co-ordinates, where all gij are constants and all Christoffel symbols vanish, the
geodesics are straight lines.
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EXAMPLE 6.3.3 Find the differential equations for the geodesic in spherical co-
ordinates.

Solution: The relation between Cartesian and spherical co-ordinates is

x1 = u1 sinu2 cosu3, x2 = u1 sinu2 sinu3, x3 = u1 cosu2.

The expression for the metric in spherical co-ordinates is given by

ds2 =
(
du1
)2

+
(
u1
)2 (

du2
)2

+
(
u1
)2

sin2 u2
(
du3
)2
.

Comparing the given metric, with ds2 = aijdu
iduj , we get

a11 = 1; a22 =
(
u1
)2

; a33 =
(
u1
)2

sin2 u2 and aij = 0 for i ̸= j.

⇒ a =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = (u1)4 sin2 u2.

Therefore, the reciprocal tensors are given by

a11 =
cofactor of a11 in a

a
= 1; a22 =

cofactor of a22 in a

a
=

1

(u1)2
.

a33 =
cofactor of a33 in a

a
=

1

(u1)2 sin2 u2
.

a12 = 0 = a21; a13 = 0 = a31; a23 = 0 = a32.

The non-vanishing Christofell symbols of the second kind are{
1

2 2

}
= −u1;

{
2

1 2

}
=

1

(u1)2
=

{
2

2 1

}
;

{
2

3 3

}
= − sinu2 cosu2;

{
3

1 3

}
=

1

u1
=

{
3

3 1

}
;

{
1

3 3

}
= −u1 sin2 u2;

{
3

2 3

}
= cotu2 =

{
3

3 2

}
.

The differential equation of a geodesic for the surface is given by

d2ui

ds2
+

{
i
j k

}
duj

ds

duk

ds
= 0; i, j, k = 1, 2, 3. (6.36)

For i = 1, the differential equation becomes

d2u1

ds2
+

{
1
j k

}
duj

ds

duk

ds
= 0
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or
d2u1

ds2
+

{
1

1 k

}
du1

ds

duk

ds
+

{
1

2 k

}
du2

ds

duk

ds
+

{
1

3 k

}
du3

ds

duk

ds
= 0

or

d2u1

ds2
+

{
1

1 1

}(
du1

ds

)2

+ 2

{
1

1 2

}
du1

ds

du2

ds
+ 2

{
1

1 3

}
du1

ds

du3

ds

+

{
1

2 2

}(
du2

ds

)2

+ 2

{
1

2 3

}
du2

ds

du3

ds
+

{
1

3 3

}(
du3

ds

)2

= 0

or

d2u1

ds2
− u1

(
du2

ds

)2

− u1 sin2 u2
(
du3

ds

)2

= 0

For i = 2, the differential equation becomes

d2u2

ds2
+

{
2
j k

}
duj

ds

duk

ds
= 0

or
d2u2

ds2
+

{
2

1 k

}
du1

ds

duk

ds
+

{
2

2 k

}
du2

ds

duk

ds
+

{
2

3 k

}
du3

ds

duk

ds
= 0

or

d2u2

ds2
+

{
2

1 1

}(
du1

ds

)2

+ 2

{
2

1 2

}
du1

ds

du2

ds
+ 2

{
2

1 3

}
du1

ds

du3

ds

+

{
2

2 2

}(
du2

ds

)2

+ 2

{
2

2 3

}
du2

ds

du3

ds
+

{
2

3 3

}(
du3

ds

)2

= 0

or

d2u2

ds2
+

2

(u1)2
du1

ds

du2

ds
− sinu2 cosu2

(
du3

ds

)2

= 0.

For i = 3, the differential equation becomes

d2u3

ds2
+

{
3
j k

}
duj

ds

duk

ds
= 0

or
d2u3

ds2
+

{
3

1 k

}
du1

ds

duk

ds
+

{
3

2 k

}
du2

ds

duk

ds
+

{
3

3 k

}
du3

ds

duk

ds
= 0
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or

d2u3

ds2
+

{
3

1 1

}(
du1

ds

)2

+ 2

{
3

1 2

}
du1

ds

du2

ds
+ 2

{
3

1 3

}
du1

ds

du3

ds

+

{
3

2 2

}(
du2

ds

)2

+ 2

{
3

2 3

}
du2

ds

du3

ds
+

{
3

3 3

}(
du3

ds

)2

= 0

or
d2u3

ds2
+

2

u1
du1

ds

du3

ds
+ cotu2

du2

ds

du3

ds
= 0.

EXAMPLE 6.3.4 Find the differential equations for the geodesic in cylindrical co-
ordinates.

Solution: The relation between Cartesian and cylindrical co-ordinates is

x1 = u1 cosu2, x2 = u1 sinu2, x3 = u3.

The expression for the metric in cylindrical co-ordinates is given by

ds2 =
(
du1
)2

+
(
u1
)2 (

du2
)2

+
(
du3
)2
,

from which, the coefficients aαβ of the first fundamental form are given by

a11 = 1; a22 = (u1)2; a33 = 1 and aij = 0; for i ̸= j,

so that a = (u1)2. The reciprocal tensors aαβ are given by

a11 = 1; a22 =
1

(u1)2
; a33 = 1

a12 = 0 = a21; a13 = 0 = a31; a23 = 0 = a32.

The non-vanishing Christofell symbols of the second kind are{
1

2 2

}
= −u1;

{
2

1 2

}
=

1

u1
=

{
2

2 1

}
.

The differential equation of a geodesic for the surface is given by Eq. (6.36). For
i = 1, the differential equation becomes

d2u1

ds2
+

{
1
j k

}
duj

ds

duk

ds
= 0

or
d2u1

ds2
+

{
1

1 k

}
du1

ds

duk

ds
+

{
1

2 k

}
du2

ds

duk

ds
+

{
1

3 k

}
du3

ds

duk

ds
= 0
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or

d2u1

ds2
+

{
1

1 1

}(
du1

ds

)2

+ 2

{
1

1 2

}
du1

ds

du2

ds
+ 2

{
1

1 3

}
du1

ds

du3

ds

+

{
1

2 2

}(
du2

ds

)2

+ 2

{
1

2 3

}
du2

ds

du3

ds
+

{
1

3 3

}(
du3

ds

)2

= 0

or
d2u1

ds2
− u1

(
du2

ds

)2

= 0

For i = 2, the differential equation becomes

d2u2

ds2
+

{
2
j k

}
duj

ds

duk

ds
= 0

or
d2u2

ds2
+

{
2

1 k

}
du1

ds

duk

ds
+

{
2

2 k

}
du2

ds

duk

ds
+

{
2

3 k

}
du3

ds

duk

ds
= 0

or

d2u2

ds2
+

{
2

1 1

}(
du1

ds

)2

+ 2

{
2

1 2

}
du1

ds

du2

ds
+ 2

{
2

1 3

}
du1

ds

du3

ds

+

{
2

2 2

}(
du2

ds

)2

+ 2

{
2

2 3

}
du2

ds

du3

ds
+

{
2

3 3

}(
du3

ds

)2

= 0

or
d2u2

ds2
+

2

u1
du1

ds

du2

ds
= 0.

EXAMPLE 6.3.5 Find the differential equations of the geodesic for the metric

ds2 = (dx1)2 + {(x2)2 − (x1)2}(dx2)2.

Solution: The square of the elementary arc length is given by

ds2 = (dx1)2 + {(x2)2 − (x1)2}(dx2)2.

The coefficients aαβ of the first fundamental form are given by

a11 = 1; a22 = (x2)2 − (x1)2 and a12 = 0 = a21.
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so that a = (x2)2 − (x1)2. The reciprocal tensors aαβ are given by

a11 = 1; a22 =
1

(x2)2 − (x1)2
; a12 = 0 = a21.

The non-vanishing Christofell symbols of the second kind are{
1

2 2

}
= x1;

{
2

1 2

}
= − x1

(x2)2 − (x1)2
;

{
2

2 2

}
=

x2

(x2)2 − (x1)2
.

The differential equation of a geodesic for the surface is given by

d2xi

ds2
+

{
i
j k

}
dxj

ds

dxk

ds
= 0; i, j, k = 1, 2. (6.37)

For i = 1, the differential equation becomes

d2x1

ds2
+

{
1
j k

}
dxj

ds

dxk

ds
= 0

or
d2x1

ds2
+

{
1

1 k

}
dx1

ds

dxk

ds
+

{
1

2 k

}
dx2

ds

dxk

ds
= 0

or
d2x1

ds2
+

{
1

1 1

}(
dx1

ds

)2

+ 2

{
1

1 2

}
dx1

ds

dx2

ds
+

{
1

2 2

}(
dx2

ds

)2

= 0

or
d2x1

ds2
+ x1

(
dx2

ds

)2

= 0.

For i = 2, the differential equation becomes

d2x2

ds2
+

{
2
j k

}
dxj

ds

dxk

ds
= 0

or
d2x2

ds2
+

{
2

1 k

}
dx1

ds

dxk

ds
+

{
2

2 k

}
dx2

ds

dxk

ds
= 0

or
d2x2

ds2
+

{
2

1 1

}(
dx1

ds

)2

+ 2

{
2

1 2

}
dx1

ds

dx2

ds
+

{
2

2 2

}(
dx2

ds

)2

= 0

or
d2x2

ds2
− 2x1

(x2)2 − (x1)2
dx1

ds

dx2

ds
+

x2

(x2)2 − (x1)2

(
dx2

ds

)2

= 0,

which are the required equations of the geodesic.
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EXAMPLE 6.3.6 Find the geodesics on the surface

x1 = u1 cosu2, x2 = u1 sinu2, x3 = 0,

embedded in E3, where xi are orthogonal Cartesian co-ordinates.

Solution: The square of the elementary arc length is given by

(ds)2 = (dx1)2 + (dx2)2 + (dx3)2

=
[
du1 cosu2 + u1(− sinu2)du2

]2
+
[
du1 sinu2 + u1 cosu2du2

]2
+ 0

= (du1)2 + (u1)2(du2)2.

The coefficients aαβ of the first fundamental form are given by

a11 = 1; a22 = (u1)2 and a12 = 0 = a21,

so that a = (u1)2. The reciprocal tensors aαβ are given by

a11 = 1; a22 =
1

(u1)2
; a12 = 0 = a21.

The non-vanishing Christofell symbols of the second kind are{
1

2 2

}
= −u1;

{
2

1 2

}
=

1

u1
=

{
2

2 1

}
.

The differential equation of a geodesic for the surface is given by Eq. (6.37). For
i = 1, the differential equation becomes

d2u1

ds2
+

{
1
j k

}
duj

ds

duk

ds
= 0

or
d2u1

ds2
+

{
1

1 k

}
du1

ds

duk

ds
+

{
1

2 k

}
du2

ds

duk

ds
= 0

or
d2u1

ds2
+

{
1

1 1

}(
du1

ds

)2

+ 2

{
1

1 2

}
du1

ds

du2

ds
+

{
1

2 2

}(
du2

ds

)2

= 0

or
d2u1

ds2
− u1

(
du2

ds

)2

= 0. (i)

For i = 2, the differential equation becomes

d2u2

ds2
+

{
2
j k

}
duj

ds

duk

ds
= 0
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or
d2u2

ds2
+

{
2

1 k

}
du1

ds

duk

ds
+

{
2

2 k

}
du2

ds

duk

ds
= 0

or
d2u2

ds2
+

{
2

1 1

}(
du1

ds

)2

+ 2

{
2

1 2

}
du1

ds

du2

ds
+

{
2

2 2

}(
du2

ds

)2

= 0

or
d2u2

ds2
+

2

u1
du1

ds

du2

ds
= 0; i.e.

d2u2

ds2
/
du2

ds
+

2

u1
du1

ds
= 0

or

log

(
du2

ds

)
+ 2 log u1 = log c; c = constant

or

log

[
(u1)2

du2

ds

]
= log c⇒ du2

ds
=

c

(u1)2
. (ii)

Therefore, from Eq. (i) we get

d2u1

ds2
− u1

c2

(u1)4
= 0; i.e. 2

du1

ds

d2u1

ds2
= 2

c2

(u1)3
du1

ds

or (
du1

ds

)2

= − c2

(u1)2
+ c21; c1 = constant

= c21

[
1− c2

c21(u
1)2

]
= c21

(u1)2 − d2

(u1)2
; d =

c

c1

or
u1 du1

(u1)2 − d2
= c1ds⇒ (u1)2 = (c1s+ e)2 + d2,

where e is an integration constant. Therefore, from Eq. (ii) we get

du2

ds
=

c

(u1)2
=

c

d2
1

1 +
(
c1s+e
d

)2
or

u2 =
c

d2
1

c1
tan−1

(
c1s+ e

d

)
or

u2 =
1

p
tan−1

(
c1s+ e

d

)
; p =

d2c1
c

or
d tan(pu2) = c1s+ e,

which is the required equation of the geodesic.
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EXAMPLE 6.3.7 On a right helicoid of pitch 2πa, a geodesic makes as angle α with

a generator at a point distant c from the axis (0 < α <
π

2
, c > 0). Find the condition

that the geodesics meets the axis.

Solution: The first fundamental form of the right helicoid is given by

ds2 = du2 + (u2 + a2)dv2.

The non-vanishing Christofell symbols of the second kind are{
1

2 2

}
= −u,

{
2

2 1

}
=

u

u2 + a2
=

{
2

1 2

}
.

The differential equation of geodesics are

d2u

ds2
− u

(
dv

ds

)2

= 0 and
d2v

ds2
+

du

u2 + a2
du

ds

dv

ds
= 0.

Thus the first integral of the geodesic equations is

dv

du
= ± k

{(u2 + a2)(u2 + a2 − k2)}1/2
,

where k is an arbitrary positive constant. Further integration in general requires el-
liptic functions.

The given point is (c, 0) for a suitable choice of axes, and α is the angle between

the direction (1, 0) and

(
du

ds
,
dv

ds

)
at this point, then

tanα = (a11a22 − a212)
1/2 dv/ds

du/ds
= k(c2 + a2 − k2)−1/2

⇒ k = (c2 + a2)1/2 sinα.

There are two geodesics satisfying the given initial conditions, but it will be sufficient

to consider the one for which
dv

du
< 0 initially. Now we consider the following three

cases:

(i) k2 > a2, i.e. c tanα > a. Since which
dv

du
< 0 initially, u deereases as v increases

until
u = (k2 − α2)1/2 = (c2 sin2 α− a2 cos2 α)1/2.

As v continues to increase, the sign of which
dv

du
changes and u increases indefi-

nitely. The least distance from the axis is therefore (c2sin2α− a2 cos2 α)1/2.
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(ii) k2 < a2, i.e. c tanα < a. In this case which
dv

du
< 0 for all v, and u decreases

indefinitely as v increases. There is a point on the curve at which u = 0, i.e. the
curve meets the axis.

(iii) k2 = a2, i.e. c tanα = a. In this special case

dv

du
=

−a
u
√
u2 + a2

⇒ v = −β + sinh1
(a
u

)
where β = sinh−1(a/c), as v = 0, when u = c. The geodesic is therefore given
by

u sinh(v + β) = a, β = sinh−1(a/c).

As v increases, the curve approaches the axis without reaching it. In the opposite
sense, u→ ∞ as v → −β, showing that the generator v = −β is an asymptote.

6.4 Geodesic Co-ordinates

If a Riemannian space is Euclidean, a co-ordinate system exists in which the
components of the metric tensors gij are constant throughout the space and hence,
∂gij
∂xk

= 0; for all i, j, k. Consequently, the vanishing of the Christoffel symbols, as
Eq. (3.1). This is not true for any Riemannian space. But if in a Riemannian space,
there exists a co-ordinate system, in fact infinitely many, with respect to which the
Christoffel symbols vanish at a given point, then, that system is called a geodesic
co-ordinate system and the point is called the pole of the given system.

Let us consider a surface S whose curvilinear co-ordinates are u1, u2 and also
consider a point P (u10, u

2
0) on S. If vα; α = 1, 2 are the co-ordinates of some net on S,

then we consider a transformation

uα = uα
(
v1, v2

)
; α = 1, 2. (6.38)

The second derivative formula yields the relation,

∂2uα

∂vλ∂vµ
+

{
α
β γ

}
u

∂uβ

∂vλ
∂uγ

∂vµ
=

{
γ
λ µ

}
v

∂uα

∂vγ
, (6.39)

where

{
α
β γ

}
u

and

{
γ
λ µ

}
v

are the Christoffel symbols in u co-ordinate system

and v co-ordinate system, respectively. However, if there exists a transformation of

co-ordinates Eq. (6.38) for which

{
γ
λ µ

}
v

vanish at P , then for that particular point

∂2uα

∂vλ∂vµ
+

{
α
β γ

}
u

∂uβ

∂vλ
∂uγ

∂vµ
= 0. (6.40)
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Next, we exhibit next a solution of the Eq. (6.40) yielding transformation Eq. (6.38)
to a co-ordinate system vα in which the Christoffel symbols vanish at P (u10, u

2
0) on S.

Let us take a second degree polynomial

uα = uαP + vα −
{

α
λ µ

}
P

vλvµ, (6.41)

where uαP is the value of uα at P . On differentiation, from Eq. (6.41), we get

∂uα

∂vµ
= δαµ −

{
α
λ µ

}
P

vλ and
∂2uα

∂vλ∂vµ
= −

{
α
λ µ

}
P(

∂uα

∂vµ

)
P

= δαµ and

(
∂2uα

∂vλ∂vµ

)
P

= −
{

α
λ µ

}
P

. (6.42)

Since the Jacobian determinant
∣∣∣(∂uα∂vl

)
P

∣∣∣ = |δαµ | = 1 ̸= 0, so the given transformation

is permissible in the neighbourhood of P (u10, u
2
0) on S. Using the formula,

uα,λµ =
∂2uα

∂vλ∂vµ
−
{

k
λ µ

}
∂uα

∂vk
,

we see that at P (u10, u
2
0) on S,(
uα,λµ

)
P
=

(
∂2uα

∂vλ∂vµ

)
P

−
{

k
λ µ

}
P

(
∂uα

∂vk

)
P

=

{
α
λ µ

}
P

−
{

k
λ µ

}
P

δαk = 0. (6.43)

Therefore, the values in Eq. (6.42) satisfies Eq. (6.40) at P . From Eq. (6.41), we see
that at P , the new co-ordinates, given by vα = 0 are the geodesic co-ordinates.

EXAMPLE 6.4.1 Prove that the co-ordinate system uα defined by

uα = ajm(v
m − um0 ) +

1

2
ajh

{
h
l m

}
P

(vl − ul0)(v
m − um0 )

is a geodesic co-ordinate, where the coefficients ajm being constants and are such that
their determinant do not vanish.

Solution: The necessary and sufficient condition that a system of co-ordinates be
geodesic with pole at P are that their second covariant derivatives with respect to the
metric of the space all vanish at P . From the given relation,

uα = ajm(v
m − um0 ) +

1

2
ajh

{
h
l m

}
P

(vl − ul0)(v
m − um0 ),
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we get after differentiation,

∂uα

∂vl
= ajmδ

m
l +

1

2
ajh

{
h
l m

}
P

(vm − um0 ) +
1

2
ajh

{
h
l m

}
P

(vl − ul0)δ
m
l

= ajl +
1

2
ajh

{
h
l m

}
P

(vm − um0 ).

⇒
(
∂uα

∂vl

)
P

= ajl .

Since the Jacobian determinant
∣∣∣(∂uα∂vl

)
P

∣∣∣ = |ajl | ̸= 0, so the given transformation is

permissible in the neighbourhood of P (u10, u
2
0) on S. Again differentiating with respect

to vm, we get (
∂2uα

∂vm∂vl

)
P

= ajh

{
h
l m

}
P

.

Using the formula,

uα,lm =
∂2uα

∂vl∂vm
−
{

h
l m

}
∂uα

∂vh
,

we see that at P (u10, u
2
0) on S,

(
uα,lm

)
P
=

(
∂2uα

∂vl∂vm

)
P

−
{

h
l m

}
P

(
∂uα

∂vh

)
P

= ajh

{
h
l m

}
P

− ajh

{
h
l m

}
P

= 0. (6.44)

This shows that the new co-ordinate system uα defined in the given relation is a
geodesic co-ordinate system with the pole at P .

6.5 Parallel Vector Fields on a Surface

The concept of parallel vector fields along a curve C imbedded in E3 was generalised
by Levi-Civita to curves imbedded in an n-dimensional Riemannian manifolds. As an
illustration of the usefulness of the concept, consider a surface S immersed in E3 and
a curve C on S, whose equations are taken in the form

C : uα = uα(t); t1 ≤ t ≤ t2; α = 1, 2 (6.45)
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where u1, u2 are the curvilinear co-ordinates covered by the surface S. Let the metric
properties of the surface S are governed by the co-ordinates of the first fundamental
form aαβ . Let Aα be a surface vector field defined along C, then the surface intrinsic
derivative of Aα along C is

δAα

δt
=
dAα

dt
+

{
α
β γ

}
Aβ

duγ

dt
, (6.46)

which is identical with the form of Eq. (3.39) defining the parallel vector field along a
space curve. Thus, if δA

α

δt = 0, the differential Eq. (6.46) becomes

dAα

dt
+

{
α
β γ

}
Aβ

duγ

dt
= 0, (6.47)

which determines a unique vector field when the components of the vector are specified
at an arbitrary point of C as the definition of the parallel vector field along a curve C
on the surface S. If the parameter t is chosen as the arc length s and if Aα is taken as
the unit tangent vector to C, i.e. if we take

Aα =
duα

ds
= λα; with aαβλ

αλβ = 1,

then Eq. (6.47) reduces to

d

dt

(
duα

ds

)
+

{
α
β γ

}
duβ

ds

duγ

ds
= 0

or

d2uα

ds2
+

{
α
β γ

}
duβ

ds

duγ

ds
= 0, (6.48)

which is the equation of a geodesic on the surface S. From uniqueness of the solution of
Eq. (6.48), it follows that the property of tangency of a parallel vector field to a surface
curve is both a necessary and sufficient condition for a geodesic. Also, Eq. (6.47) can
be written in the form

d

dt

(
duα

ds

)
+

{
α
β γ

}
duβ

ds

duγ

ds
= 0

or
∂

∂uβ

(
duα

ds

)
duβ

ds
+

{
α
β γ

}
duβ

ds

duγ

ds
= 0

or [
∂

∂uβ

(
duα

ds

)
+

{
α
β γ

}
duγ

ds

]
duβ

ds
= 0
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or (
duβ

ds

)
,β

duβ

ds
= 0.

Therefore, the vector obtained by the parallel propagation of the tangent vector to a
geodesic always remains tangent to the geodesic.

6.5.1 Geodesic Parallels

The ‘field of geodesics’ was introduced by Weierstrass. A one-parameter family of
geodesics on a surface S is said to be a field of geodesics in a portion S′ of S if through
every point of S′ there passes (just once) exactly one of those geodesics. For example,
a family of parallel straight lines is a field of geodesics in a plane. The generating
straight lines of a cylinder constitute a field of geodesics.

Suppose a family of geodesics is given, and that a parameter system is chosen so
that the geodesics of the family are the curves v = constant and their orthogonal
trajectories are the curves u = constant. Since the co-ordinates are orthogonal, we
have a12 = 0. Since the curves v = constant are geodesics we have

(χg)v=constant = 0 ⇒ − 1
√
a22

∂

∂v
(log

√
a11) = 0 ⇒ ∂a11

∂v
= 0,

that is a11 depends on u only. The metric is of the form

ds2 = a11(u) du
2 + a22(u, v) dv

2.

Consider the distance between any two orthogonal trajectories, say u = a and u = b,
measured only the geodesic v = c. Along v = c, dv = 0, so

ds =
√
a11(u) du.

Therefore, the length of a geodesic intercepted between the trajectories u = a and
u = b is

b∫
a

√
a11(u) du = c dependent.

The distance is thus the same along whichever geodesic v = constant it is measured
and is called geodesic distance between two curves. Because of this property, the
orthogonal trajectories u = constant are called geodesic parallels.

Hence, if we take
∫ √

a11 du as a new parameter u, the first fundamental form is
given by the expression

ds2 = (du)2 + a22(u, v)(dv)
2 = (du)2 + a(dv)2,

which is characteristic for geodesic co-ordinates. In this metric the parameter u can
be specialized by taking it to be the distance from some fixed parallel to the parallel
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determined by u, the distance being meased along any geodesic v = c, i.e. a11 = 1.
Since a11 is now equal to unity, the length of an element of arc of a geodesic is du.

Consider the two points P,Q in which a geodesic is cut by the parallels u = a, u = b.
The length of the arc of the geodesic joining the two points is (b− a). For any other
curve joining them the length of arc is

Q∫
P

ds =

Q∫
P

√
(du)2 + a(dv)2 >

b∫
a

du,

since a is positive. Thus the distance is least in the case of geodesic. Hence, for any
given family of geodesics, a parameter system can be chosen so that the metric takes
the form (du)2 + a(dv)2. The given geodesics are the parametric curves v = constant
and their orthogonal trajectories are u = constant, u being the measured along a
geodesic from some fixed parallel.

EXAMPLE 6.5.1 Prove that the geodesic is an auto parallel curve.

Solution: An autoparallel curve is a curve whose tangent vector field constituted
by the tangents at each point of the curve is a parallel vector field. The differential
equation of the geodesic C is given by

d2xα

ds2
+
dxγ

ds

dxβ

ds

{
α
β γ

}
= 0

or
∂λα

∂s
+ λγ

dxβ

ds

{
α
γ β

}
= 0

or [
∂λα

∂xβ
+ λγ

{
α
γ β

}]
dxβ

ds
= 0 ⇒ λα,βλ

β = 0,

which shows that the curve C possesses the property that the tangents at all its points
are parallel. Also, λα,βλ

β = 0 shows that the unit tangent λα = dxα

ds suffers a parallel
displacement along a geodesic, i.e. a geodesic is an autoparallel curve.

6.6 Gaussian Curvature

The meaning of the curvature tensors will be explained here in connexion with parallel
displacement and absolute differentiation.

Let us consider a surface S, embedded in E3 whose fundamental tensors are aαβ .
On the surface S, where the metric is Eq. (6.10), with u1, u2 as the Gaussian co-
ordinates for the surface S, the Riemann-Christoffel curvature tensor or simply the
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curvature tensor is given by

Rαβγδ =
∂

∂uγ

{
α
β δ

}
− ∂

∂uδ

{
α
β γ

}
+

{
σ
β δ

}{
α
σ γ

}
−
{

σ
β γ

}{
α
σ δ

}

=

∣∣∣∣∣∣
∂
∂uγ

∂
∂uδ{

α
β γ

} {
α
β δ

}∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
{

σ
β δ

} {
σ
β γ

}
{

α
σ δ

} {
α
σ γ

}
∣∣∣∣∣∣∣∣ (6.49)

and the associated tensor is given by

Rσβγδ = aσα Rαβγδ, (6.50)

where Rσβγδ are the components of the Riemann curvature tensor for the surface S,
given by

Rσβγδ =
∂

∂uγ
[βδ, σ]− ∂

∂uδ
[βγ, σ] +

{
λ
β γ

}
[σδ, λ]−

{
λ
β δ

}
[σγ, λ]. (6.51)

Note that, this associated tensor Rσβγδ defined in Eq. (6.50) in skew symmetric in the
first two and last two indices. Therefore,

Rσσγδ = Rσβγγ = 0, i.e. R1212 = −R2112 = −R1221 = R2121.

Hence, every non-vanishing components of the Riemann curvature tensor for a surface
is R1212 or to its negative. Let a surface S be immersed in E3 with metric tensor aαβ .
Define a quantity by

κ =
R1212

a
=

1

a
a1αR

α
212; where a = |aαβ | ≠ 0 (6.52)

=
1

a
a1α

[
∂

∂u1

{
α
2 2

}
− ∂

∂u2

{
α
2 1

}
+

{
σ

2 2

}{
α
σ 1

}
−
{

σ
2 1

}{
α
σ 2

}]
.

Such a quantity κ is called the total curvature or the Gaussian curvature of the surface
S. The Eq. (6.49) is a representation of the Gaussian curvature k in terms of the
Christoffel symbols. Since only the metric tensor aαβ and its derivatives are involved
in expression (6.52) for κ, the properties described by κ are intrinsic properties of
the surface S. Let us introduce an e-system eαβ , e

αβ defined by Eq. (1.5), and the
permutation tensor by Eq. (6.21). With the help of ε tensor, Eq. (6.52) can also be
written in the form

R1212 = aκ =
√
a e12

√
a e12κ = ε12ε12κ.
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In general

Rαβγδ = κεαβ εγδ. (6.53)

Also, we have

εαβεαβ = ε1βε1β + ε2βε2β = ε11ε11 + ε12ε12 + ε21ε21 + ε22ε22

=
√
ae11

e11√
a
+

√
ae12

e12√
a
+

√
ae21

e21√
a
+

√
ae22

e22√
a

= 0 + 1 + (−1) · (−1) + 0 = 2.

Therefore, from Eq. (6.53) we obtain

εαβεγδRαβγδ = εαβεγδ κ εαβ εγδ = 4κ

or

κ =
1

4
Rαβγδε

αβεγδ (6.54)

from which it is evident that the Gaussian curvature κ is an invariant. Again, from
(6.53), we get

aαδaβγRαβγδ = a11aβγRβ11γ + a22aβγRβ22γ + a12aβγRβ12γ + a21aβγRβ21γ

= a11a22R2112 + a12a21R2121 + a21a12R1212 + a22a11R1221

= −a11a22R1212 + a12a21R1212 + a21a12R1212 − a22a11R1221

= 2R1212

(
a12a21 − a11a22

)
= −2R1212

[a22
a

a11
a

−
(
−a12
a

)(
−a12
a

)]
= −2R1212

( a
a2

)
= −2κ; a = |aαβ | = a11a22 − a212

or

κ = −1

2
R; where R = aαδaβγRαβγδ = aαβRαβ. (6.55)

Rαβ = Rγαβγ = aλγRλαβγ is the Ricci tensor. The invariant R in Eq. (6.55) is some-
times defined as the scalar curvature or Einstein curvature of the surface S. A surface
on which holds

Rαβγδ = ρ(aαδaβγ − aαγaβδ) (6.56)
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where ρ is a scalar, is called a surface of constant curvature. In particular, if ρ = 0,
the surface is called a flat surface.

Geometrical properties which are expressible in terms of the first fundamental form,
may be called intrinsic Properties. Since only metric coefficients aαβ are involved in
the definition of κ in Eq. (6.55), the properties of κ are intrinsic properties of the
surface.

EXAMPLE 6.6.1 If the co-ordinate system is orthogonal, show that

κ = − 1

2
√
a

[
∂

∂u1

(
1√
a

∂a22
∂u1

)
+

∂

∂u2

(
1√
a

∂a11
∂u2

)]
.

Solution: If the system of co-ordinates is orthogonal, then a12 = 0 = a21. Therefore,

a =

∣∣∣∣a11 0
0 a22

∣∣∣∣ ; a11 = 1

a11
; a22 =

1

a22
.

The non-vanishing Christoffel symbols of the first kind are

[11, 1] =
1

2

∂a11
∂u1

; [12, 1] =
1

2

∂a11
∂u2

= −[11, 2]

[22, 1] = −1

2

∂a22
∂u1

= −[12, 2]; [22, 2] =
1

2

∂a22
∂u2

.

The non-vanishing Christofell symbols of the second kind are{
1

1 1

}
=

1

2a11

∂a11
∂u1

;

{
1

1 2

}
=

1

2a11

∂a11
∂u2

;

{
1

2 2

}
= − 1

2a11

∂a22
∂u1

;{
2

1 1

}
= − 1

2a22

∂a11
∂u2

;

{
2

1 2

}
=

1

2a22

∂a22
∂u1

;

{
2

2 2

}
=

1

2a22

∂a22
∂u2

.

Using formula (6.51), the Riemann tensor R1212 is given by

R1212 =
∂

∂u1
[22, 1]− ∂

∂u2
[21, 1] +

{
λ

2 1

}
[12, λ]−

{
λ

2 2

}
[11, λ]

=
∂

∂u1
[22, 1]− ∂

∂u2
[21, 1] +

{
1

2 1

}
[12, 1] +

{
2

2 1

}
[12, 2]

−
{

1
2 2

}
[11, 1]−

{
2

2 2

}
[11, 2]
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= −1

2

∂

∂u1

(
∂a22
∂u1

)
− 1

2

∂

∂u2

(
∂a22
∂u2

)
+

1

2a11

∂a11
∂u2

.
1

2

∂a11
∂u2

+
1

2a22

∂a22
∂u1

· 1
2

∂a22
∂u1

+
1

2a11

∂a22
∂u1

.
1

2

∂a11
∂u1

+
1

2a22

∂a22
∂u2

· 1
2

∂a11
∂u2

= −1

2

[
∂2a11
(∂u2)2

+
∂2a22
(∂u1)2

]
+

1

4a11

[(
∂a11
∂u2

)2

+
∂a11
∂u1

∂a22
∂u1

]

+
1

4a22

[(
∂a22
∂u1

)2

+
∂a11
∂u2

∂a22
∂u2

]

= − 1

2
√
a11a22

[
∂

∂u1

(
1

√
a11a22

∂a22
∂u1

)
+

∂

∂u2

(
1

√
a11a22

∂a11
∂u2

)]
= − 1

2
√
a

[
∂

∂u1

(
1√
a

∂a22
∂u1

)
+

∂

∂u2

(
1√
a

∂a11
∂u2

)]
.

This is a representation of the Gaussian curvature κ in terms of the coefficients of
the first fundamental form.

EXAMPLE 6.6.2 Calculate the Gaussian curvature for the surface with metric

ds2 = a2 sin2 u1(du2)2 + a2(du1)2.

Solution: Comparing the given metric with Eq. (6.10), we get a11 = a2, a22 = a2 sin2 u1

and a12 = 0 = a21, so that

△ =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a4 sin2 u1.

The non-vanishing Christoffel symbols of first kind are

[22, 1] = −a
2

2
sin 2u1; [12, 2] =

a2

2
sin 2u1 = [21, 2].

The reciprocal or conjugate tensors are

a11 =
a2 sin2 u1

a4 sin2 u1
=

1

a2
; a22 =

a2

a4 sin2 u1
=

1

a2 sin2 u1

and a12 = 0 = a21. The non-vanishing Christoffel symbols of second kind are{
1

2 2

}
= a1k[22, k] = a11[22, 1] + a12[22, 2] = −1

2
sin 2u1{

1
2 1

}
= a2k[21, k] = a21[21, 1] + a22[21, 2] = cotu1 =

{
1

1 2

}
.
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The Riemann tensor R1212 is given by

R1212 = a1αR
α
212 = a11R

1
212 + a12R

2
212 = a11R

1
212

= a11

[
∂

∂u1

{
1

2 2

}
− ∂

∂u2

{
1

2 1

}
+

{
σ

2 2

}{
1
σ 1

}
−
{

σ
2 1

}{
1
σ 2

}]
= a2

[
∂

∂u1

(
−1

2
sin 2u1

)
− ∂

∂u2
(
cotu1

)
+

{
1

2 2

}{
1

1 1

}
+

{
2

2 2

}{
1

2 1

}
−
{

1
2 1

}{
1

2 1

}
−
{

2
2 1

}{
1

2 2

}]
= a2

[
− cos 2u1 − cotu1 ×

(
−1

2
sin 2u1

)]
= a2 sin2 u1.

The total curvature or the Gaussian curvature of the surface S is given by

κ =
R1212

△
=
a2 sin2 u1

a4 sin2 u1
=

1

a2
.

EXAMPLE 6.6.3 For a surface of revolution defined by x1 = u1 cosu2, x2 =
u1 sinu2, x3 = f(u1), where f is of class C2, find the Gaussian curvature κ.

Solution: The parametric representation of the right helicoid is given by

x1 = u1 cosu2, x2 = u1 sinu2, x3 = f(u1)

i.e.
r = (x1, x2, x3) =

(
u1 cosu2, u1 sinu2, f(u1)

)
.

From this parametric representation, we get

∂x1

∂u1
= cosu2;

∂x2

∂u1
= sinu2;

∂x3

∂u1
=

∂f

∂u1
= f1

∂x1

∂u2
= −u1 sinu2; ∂x

2

∂u2
= u1 cosu2;

∂x3

∂u2
=

∂f

∂u2
= 0,

where ∂f
∂u1

= f1. Thus, the coefficients aαβ of the first fundamental form are given by

a11 =

(
∂x1

∂u1

)2

+

(
∂x2

∂u1

)2

+

(
∂x3

∂u1

)2

= 1 + f21 .

a22 =

(
∂x1

∂u2

)2

+

(
∂x2

∂u2

)2

+

(
∂x3

∂u2

)2

= (u1)2.

a12 =
∂x1

∂u1
∂x1

∂u2
+
∂x2

∂u1
∂x2

∂u2
+
∂x3

∂u1
∂x3

∂u2

= cosu2(−u1 sinu2) + (u1 cosu2) sinu2 + f1 · 0 = 0 = a21.
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Therefore, a = (1 + f21 )(u
1)2. The reciprocal tensors aαβ are given by

a11 =
1

1 + f21
; a22 =

1

(u1)2
; a12 = 0 = a21.

The non-vanishing Christoffel symbols of the first kind are

[11, 1] =
1

2

∂a11
∂u1

= f1f2; [12, 2] =
1

2

∂a22
∂u1

= u1 = [21, 2]

[22, 1] = −1

2

∂a22
∂u1

= −u1,

where we use the notations f1 = df
du1

and f2 = d2f
(du1)2

. The non-vanishing Christoffel

symbols of the second kind are{
1

1 1

}
= a11[11, 1] =

f1f2
1 + f21

;

{
1

2 2

}
= a11[22, 1] = − u1

1 + f21{
2

2 1

}
= a22[21, 2] =

1

u1
=

{
2

1 2

}
.

The Riemann tensor R1212 is given by

R1212 = a1αR
α
212 = a11R

1
212 + a12R

2
212 = a11R

1
212

= a11

[
∂

∂u1

{
1

2 2

}
− ∂

∂u2

{
1

2 1

}
+

{
σ

2 2

}{
1
σ 1

}
−
{

σ
2 1

}{
1
σ 2

}]
= a11

[
∂

∂u1

(
−u1

1 + f21

)
+

{
1

2 2

}{
1

1 1

}
+

{
2

2 2

}{
1

2 1

}
−
{

1
2 1

}{
1

2 1

}
−
{

2
2 1

}{
1

2 2

}]
= (1 + f21 )

[
− 1

1 + f21
+

2u1f1f2
(1 + f21 )

2
+

(
−u1

1 + f21

)(
f1f2
1 + f21

)
− 1

u1

(
−u1

1 + f21

)]
= (1 + f21 )

u1f1f2
(1 + f21 )

2
=
u1f1f2
1 + f21

.

The total curvature or the Gaussian curvature of the surface S is given by

κ =
R1212

△
=
u1f1f2
1 + f21

× 1

(1 + f21 )(u
1)2

=
f1f2

u1[1 + (f1)2]2
.
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6.7 Isometry

The properties of surfaces (i.e. the lengths of curves, angle between intersecting
curves), which have been already stated are expressed completely by means of first
fundamental quadratic form ds2 as given in Eq. (6.10). These properties constitute a
body of what is known as the intrinsic geometry of surfaces. We have seen that intrin-
sic property of a surface depend on the metric tensor of the surface and its derivatives.
But the metric of the surface is a local property and it may happen that two surfaces
have the same metric.

Two surfaces S1 and S2 be such that there exists a co-ordinate system with respect
to which the linear element on S1 and S2 are characterised by the same metric tensors
aαβ , then, they are said to be isometric, and the transformation of parameters is
called an isometry. For example, the surfaces of the cylinder and cone are isometric
with the Euclidean plane, since these surfaces can be rolled out, or developed, on the
plane without changing the lengths of arc elements, and hence without altering the
measurements of angles and areas.

The problem of finding surfaces isometric to a plane is of special importance. For
this we now introduce the concept of a ruled surface and the developable surface. A
surface is called a ruled surface (Figure 6.12) if it contains (at least) one one-parameter

Figure 6.12: Portion of a ruled surface.

family of straight lines which can be chosen as co-ordinate curves on the surface. The
straight lines are called generators of a ruled surface. One of the examples of a ruled

surface is the hyperbolic paraboloid
(x1)2

a2
− (x2)2

b2
− x3 = 0 (Figure 6.13).

Consequently a ruled surface may be generated by a continuous motion of a straight
line in space. Such a motion is completely determined if the path y(s) (with arc length
s) of a point of the moving line (Figure 6.12) is given and also the direction of the line
for every values of s, for example, by a unit vector z(s). A ruled surface may therefore
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Figure 6.13: Hyperbolic paraboloid.

be represented in the form

x(s, t) = y(s) + tz(s). (6.57)

Obviously the co-ordinate t is the (directed) distance of the points of this surface
Eq. (6.57) from the centre y(s), measured along the corresponding generator.

A surface which is isometric to a plane is called a developable surface or simply
developable. A developable surface is a special ruled surface with the property that
it has the same targent plane at all points on one and same generator. The tangent
surface is always a developable surface. The principal normal surface and the binor-
mal surface are developable surfaces if and only if the corresponding curve is plane.
Developable surfaces are of particular importance because they are the only surfaces
which can be mapped isometrically into a plane. The Gaussian curvature enables us
to determine the circumstances under which a given surface is developable or not.
The following theorem shows that, a developable surface is a surface which can be
developed in a plane:

Theorem 6.7.1 Prove the κ = 0 is the necessary and sufficient condition for a surface
to be a developable.

Proof: The Gaussian curvature of the total curvature κ of the surface S is given by

κ =
Rαβγδ
a

; a = |aαβ |,

where the tensor Rαβγδ is skew symmetric in the first two and last two indices. Now,
when a surface S is isometric with the Euclidean plane, there exists on S a co-ordinate
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system with respect to which

a11 = a22 = 1; a12 = 0 = a21 ⇒ a = 1 ̸= 0.

In this case, the Riemann curvature tensor Rαβγδ = 0 for the surface S, in this
particular co-ordinate system, and since Rαβγδ is a tensor, it must vanish in every
co-ordinate system. Thus Rαβγδ = 0, and hence the Gaussian curvature κ = 0 for the
surface S.

Conversely, let κ = 0, i.e. the Riemann tensors Rαβγδ vanishes at all points of
the surface. A necessary and sufficient condition that a symmetric tensor aαβ with
|aαβ | ̸= 0 reduces under a suitable transformation of co-ordinates to a tensor hαβ ,
where hαβ are constants, is that the Riemann curvature tensor formed from the aαβs
be a zero tensor.

Hence, it guarantees that there exists co-ordinate systems on the surface such that
a11 = a22 = 1, a12 = 0. Hence, the surface is isometric with the Euclidean plane.

EXAMPLE 6.7.1 Prove that the following surfaces:

S1 : y
1 = v1 cos v2, y2 = v1 sin v2, y3 = a cosh−1 v

1

a

S2 : y
1 = u1 cosu2, y2 = u1 sinu2, y3 = au2

are isomorphic but non developable.

Solution: The first surface S1 is the catenoid obtained by revolving the catenary

y2 = cosh
(
y3

a

)
about the y3 axis. Now,

a11 =

(
∂yi

∂v1

)2

=

(
∂y1

∂v1

)2

+

(
∂y2

∂v1

)2

+

(
∂y3

∂v1

)2

= (cos v2)2 + (sin v2)2 +

(
a√

(v1/a)2 − 1

1

a

)2

=
(v1)2

(v1)2 − a2
.

a22 =

(
∂yi

∂v2

)2

=

(
∂y1

∂v2

)2

+

(
∂y2

∂v2

)2

+

(
∂y3

∂v2

)2

= (−v1 sin v2)2 + (v1 cos v2)2 + 0 = (v1)2.

a12 =
∂y1

∂v1
∂y1

∂v2
+
∂y2

∂v1
∂y2

∂v2
+
∂y3

∂v1
∂y3

∂v2

= cos v2(−v1 sin v2) + sin v2(v1 cos v2) +
a√

(v1)2 − a2
.0 = 0 = a21.
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Thus, the first fundamental quadratic form for the surface S1 becomes,

ds2 = aαβdv
αdvβ = a11(dv

1)2 + a22(dv
2)2 + 2a12dv

1dv2

=
(v1)2

(v1)2 − a2
(dv1)2 + (v1)2(dv2)2

=
(v1)2

(v1)2 − a2
(dv1)2 + [a2 + {(v1)2 − a2}](dv2)2.

The second surface S2 is a right helicoid. Now,

a11 =

(
∂yi

∂u1

)2

=

(
∂y1

∂u1

)2

+

(
∂y2

∂u1

)2

+

(
∂y3

∂u1

)2

= (cosu2)2 + (sinu2)2 + 0 = 1.

a22 =

(
∂yi

∂u2

)2

=

(
∂y1

∂u2

)2

+

(
∂y2

∂u2

)2

+

(
∂y3

∂u2

)2

= (−u1 sinu2)2 + (u1 cosu2)2 + a2 = (u1)2 + a2.

a12 =
∂y1

∂u1
∂y1

∂u2
+
∂y2

∂u1
∂y2

∂u2
+
∂y3

∂u1
∂y3

∂u2

= cosu2(−u1 sinu2) + sinu2(u1 cosu2) + 0 · a = 0.

Thus the first fundamental quadratic form for the surface S2 is given by

ds2 = aαβdu
αduβ = a11(du

1)2 + a22(du
2)2 + 2a12du

1du2

= (du1)2 + [a2 + (u1)2](du2)2.

Now, if we set (v1)2 − a2 = (u1)2 and v2 = u2, then the two surfaces have the same
metric. Thus, the surfaces S1 and S2 are isometric.

Now, we calculate the Gaussian curvature for the first surface S1. The reciprocal
tensors for the first fundamental quadratic form are

a11 =
(v1)2 − a2

(v1)2
; a22 =

1

(v1)2
; a12 = 0 = a21.

The non-vanishing Christoffel symbols of first kind are

[11, 1] =
1

2

[
∂a11
∂v1

+
∂a11
∂v1

− ∂a11
∂v1

]
=

1

2

∂a11
∂v1

= − a2v1

[(v1)2 − a2]2

[22, 1] =
1

2

[
∂a21
∂v2

+
∂a21
∂v2

− ∂a22
∂v1

]
= −1

2

∂a22
∂v1

= −v1

[12, 2] =
1

2

[
∂a12
∂v2

+
∂a22
∂v1

− ∂a12
∂v2

]
=

1

2

∂a22
∂v1

= v1 = [21, 2].
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The non-vanishing Christoffel symbols of second kind are{
1

1 1

}
= a1k[11, k] = a11[11, 1] + a12[11, 2]

= −(v1)2 − a2

(v1)2
× a2v1

[(v1)2 − a2]2
= − a2

v1[(v1)2 − a2]{
1

2 2

}
= a1k[22, k] = a11[22, 1] + a12[22, 2]

=
(v1)2 − a2

(v1)2
× (−v1) = −(v1)2 − a2

v1{
2

2 1

}
= a2k[21, k] = a21[21, 1] + a22[21, 2] =

v1

(v1)2
=

1

v1
=

{
2

1 2

}
.

The Riemann tensor R1212 is given by

R1212 = a1αR
α
212 = a11R

1
212 + a12R

2
212 = a11R

1
212

= a11

[
∂

∂v1

{
1

2 2

}
− ∂

∂v2

{
1

2 1

}
+

{
σ

2 2

}{
1
σ 1

}
−
{

σ
2 1

}{
1
σ 2

}]
= a11

[
∂

∂v1

(
−(v1)2 − a2

(v1)2

)
− 0 +

{
1

2 2

}{
1

1 1

}
+

{
2

2 2

}{
1

2 1

}
−
{

1
2 1

}{
1

2 1

}
−
{

2
2 1

}{
1

2 2

}]
=

(v1)2

(v1)2 − a2

[
− 2a2

(v1)3
+

a2

(v1)3
+

(v1)2 − a2

(v1)3

]
=

(v1)2 − 2a2

v1[(v1)2 − a2]
.

The Gaussian curvature of the surface S1 is given by

κ =
R1212

a
=

(v1)2 − 2a2

v1[(v1)2 − a2]
× (v1)2 − a2

(v1)4
=

(v1)2 − 2a2

(v1)5
̸= 0.

Thus, the surface S1 is non-developable. Now, the reciprocal tensors for the first
fundamental form to S2 are

a11 = 1; a22 =
1

a2 + (u1)2
, a12 = 0 = a21.

The non-vanishing Christoffel symbols of first and second kinds are

[22, 1] =
u1

[a2 + (u1)2]2
, [12, 2] = − u1

[a2 + (u1)2]2
= [21, 2].{

1
2 2

}
=

u1

[a2 + (u1)2]2
;

{
2

2 1

}
= − u1

[a2 + (u1)2]3
=

{
2

1 2

}
.
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The Riemann tensor R1212 is given by

R1212 = a1αR
α
212 = a11R

1
212 + a12R

2
212 = a11R

1
212

= a11

[
∂

∂u1

{
1

2 2

}
− ∂

∂u2

{
1

2 1

}
+

{
σ

2 2

}{
1
σ 1

}
−
{

σ
2 1

}{
1
σ 2

}]
=

∂

∂u1

(
u1

[a2 + (u1)2]2

)
− 0 +

{
1

2 2

}{
1

1 1

}
+

{
2

2 2

}{
1

2 1

}
−
{

1
2 1

}{
1

2 1

}
−
{

2
2 1

}{
1

2 2

}
=

a2 − 3(u1)2

[a2 + (u1)2]3
+

(u1)2

[a2 + (u1)2]5
.

The Gaussian curvature of the surface S2 is given by

κ =
R1212

a
=

a2 − 3(u1)2

[a2 + (u1)2]2
+

(u1)2

[a2 + (u1)2]4
̸= 0.

Thus, the surface S2 is non-developable.

EXAMPLE 6.7.2 Determine whether the surface with the metric ds2 = (u2)2(du1)2

+ (u1)2(du2)2 is a developable or not?

Solution: From the given metric, we see that a11 = (u2)2, a22 = (u1)2, a12 = 0 = a21,
so that a = (u1u2)2. Now, the reciprocal tensors aαβ are given by

a11 =
1

(u2)2
; a22 =

1

(u1)2
, a12 = 0 = a21.

The non-vanishing Christoffel symbols of first and second kinds are

[11, 2] = −u2, [12, 1] = u2 = [21, 1], [12, 2] = u1 = [21, 2], [22, 1] = −u1.{
1

2 1

}
=

1

u2
=

{
1

1 2

}
;

{
2

2 1

}
=

1

u1
=

{
2

1 2

}
;

{
1

2 2

}
= − u1

(u2)2
.

The Riemann tensor R1212 is given by

R1212 = a1αR
α
212 = a11R

1
212 + a12R

2
212 = a11R

1
212

= a11

[
∂

∂u1

{
1

2 2

}
− ∂

∂u2

{
1

2 1

}
+

{
σ

2 2

}{
1
σ 1

}
−
{

σ
2 1

}{
1
σ 2

}]
= (u2)2

[
∂

∂u1

(
− u1

(u2)2

)
− ∂

∂u2

(
1

u2

)
+

{
1

2 2

}{
1

1 1

}
+

{
2

2 2

}{
1

2 1

}
−
{

1
2 1

}{
1

2 1

}
−
{

2
2 1

}{
1

2 2

}]
= (u2)2 × 0 = 0.
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The Gaussian curvature for the given surface is given by

κ =
R1212

a
=

0

(u1u2)2
= 0.

Thus, the surface is developable.

EXAMPLE 6.7.3 Show that the surface given by x1 = f1(u
1), x2 = f2(u

1),
x3 = u2 is a developable, where f1, f2 are differentiable functions.

Solution: The first fundamental forms for the given surfaces are given by

a11 =

(
∂xi

∂u1

)2

=

(
∂x1

∂u1

)2

+

(
∂x2

∂u1

)2

+

(
∂x3

∂u1

)2

= (f ′1)
2 + (f ′2)

2.

a22 =

(
∂xi

∂u2

)2

=

(
∂x1

∂u2

)2

+

(
∂x2

∂u2

)2

+

(
∂x3

∂u2

)2

= 1.

a12 =
∂x1

∂u1
∂x1

∂u2
+
∂x2

∂u1
∂x2

∂u2
+
∂x3

∂u1
∂x3

∂u2
= 0 = a21.

Therefore, a = (f ′1)
2 + (f ′2)

2. The reciprocal tensors are given by

a11 =
1

(f ′1)
2 + (f ′2)

2
; a22 = 1; a12 = 0 = a21.

The only non-vanishing Christoffel symbols of first kind and second kinds are

[11, 1] = f ′1f
′′
1 + f ′2f

′′
2 ;

{
1

1 1

}
=
f ′1f

′′
1 + f ′2f

′′
2

(f ′1)
2 + (f ′2)

2
.

The Riemann tensor R1212 is given by

R1212 = a1αR
α
212 = a11R

1
212 + a12R

2
212 = a11R

1
212

= a11

[
∂

∂u1

{
1

2 2

}
− ∂

∂u2

{
1

2 1

}
+

{
σ

2 2

}{
1
σ 1

}
−
{

σ
2 1

}{
1
σ 2

}]
= a11

[
∂

∂u1
0− ∂

∂u2
0 +

{
1

2 2

}{
1

1 1

}
+

{
2

2 2

}{
1

2 1

}
−
{

1
2 1

}{
1

1 2

}
−
{

2
2 1

}{
1

2 2

}]
= 0.

The Gaussian curvature for the given surface is given by

κ =
R1212

a
=

0

(f ′1)
2 + (f ′2)

2
= 0.

Thus, the surface is developable.
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6.8 Geodesic Curvature

In this section we will describe the geodesic curvature of surface curves on a surface
S of class ≥ 2. Here, using the intrinsic geometry of surfaces we will derive a formula
describing the behaviour of the tangent vector to a surface curve. Let C be a surface
curve given by a parametric representation

C : uα = uα(s), (6.58)

where s measures arc distance along the curve C. Then, at an arbitrary point P of
the curve, we have the condition

aαβ
duα

ds

duβ

ds
= 1. (6.59)

The quantities du1

ds ;
du2

ds obviously determine a tangent vector λα to C, and so writing

the unit values λα for duα

ds we have from Eq. (6.59) that

aαβ
duα

ds

duβ

ds
= aαβλ

αλβ = 1. (6.60)

Differentiate the quadratic relation (6.60) intrinsically with respect to s, we get

aαβλ
α δλ

β

δs
= 0

from which it follows that either the surface vector δλβ

δs is orthogonal to λα or δλβ

δs = 0.

If δλβ

δs ̸= 0, we introduce a unit surface vector ηβ normal to λβ (codirectional with
δλβ

δs ), (Figure 6.14), so that

δλβ

δs
= χgη

β , (6.61)

where χg is a suitable scalar, positive or negative. We choose the sense of η such that
the rotation (λα, ηα) is positive, i.e. ξαβλ

αηβ = 1. The scalar χg is called the geodesic
curvature of the curve C on the surface. The geodesic curvature was introduced by
Lionville.

(i) Now we give the geometrical significance of the geodesic curvature χg. Let C′

be the orthogonal projection of C on the tangent plane to S at P (Figure 6.14).
The geodesic curvature χg of C at P is defined as the curvature of the projected
curve Ċ at P , taken with a suitable sign.

(ii) The sign of χg is defined as follows: Suppose that the curvature of C′ at P is
not zero. Then χg is positive sign if the centre of curvature C′ at P lies in the
direction of the unit vector ν = η × λ, where η is the unit normal vector to S
at P and λ is the tangent vector to C at P . χg is negative sign if that centre
of curvature lies in the direction opposite to the vector ν. The sign of χg thus
depends on the orientations of S and C. (In Figure 6.14 , χg is negative).
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Figure 6.14: Geodesic curvature.

Since λα = εαβηβ and ηβ = εαβλα, taking the intrinsic derivative, we get

δηβ

δs
= εαβ

δλα
δs

= εαβ
δ

δs

(
aαβλ

β
)

= εαβaαβ
δλβ

δs
= εαβaαβχgη

β

or

δηβ

δs
= χgε

αβηα = −χgεβαηα = −χgλβ

or

δηα

δs
= −χgλα. (6.62)

We may refer this pair of Eqs. (6.61) and (6.62) as the Serret–Frenet formulae for the
curve C relative to the surface. The transversion of δλαδs = χgηα by ηα, we get

χg =
δλα
δs

λα =
δλα
δs

(
εαβλβ

)
= εαβλβ

δλα
δs

=
1√
a
eαβλα

δλα
δs

=
1√
a

∣∣∣∣∣∣
λ1 λ2

δλ1
δs

δλ2
δs

∣∣∣∣∣∣ .
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Alternatively, using
δλα

δs
= χgη

α, we get

χg = εαβλ
α δλ

β

δs
=

1√
a

∣∣∣∣∣∣
λ1 λ2

δλ1

δs

δλ2

δs

∣∣∣∣∣∣
=

√
a

∣∣∣∣∣∣∣∣
du1

ds

du2

ds

d2u1

ds2
+

{
1
β γ

}
duβ

ds

duγ

ds

d2u2

ds2
+

{
2

β γ

}
duβ

ds

duγ

ds

∣∣∣∣∣∣∣∣ . (6.63)

These expressions are known as Beltrami’s formula for geodesics curvature.

Theorem 6.8.1 The necessary and sufficient condition for a curve on a surface to
be a geodesic is that its geodesic curvature is zero.

Proof: The differential equation of the geodesic is

d2uα

ds2
+

{
α
β γ

}
duβ

ds

duγ

ds
= 0

or
d

ds

(
duα

ds

)
+

{
α
β γ

}
duβ

ds

duγ

ds
= 0

or
∂

∂uβ

(
duα

ds

)
duβ

ds
+

{
α
β γ

}
duβ

ds

duγ

ds
= 0

or [
∂

∂uβ

(
duα

ds

)
+

{
α
β γ

}
duγ

ds

]
duβ

ds
= 0

or (
duα

ds

)
,β

duβ

ds
= 0.

According to the intrinsic derivative of a tensor of type (1, 0) with component uα, the
above relation becomes

δ

δs

(
duα

ds

)
= 0 ⇒ δ

δs
λα = 0

⇒ χgη
α = 0; as

δλα

δs
= χgη

α

⇒ χg = 0 as ηα is a unit vector.
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Hence, the curve on a surface is to be a geodesic if the geodesic curvature is zero.

Conversely, let χg = 0, identically, then we have

δ

δs

(
duα

ds

)
=

δ

δs
λα = χgη

α = 0

⇒ duα

ds
= A⇒ uα = As+B.

This shows that, a geodesic of a surface is, therefore, analogous to a straight line in a
plane. Therefore, a curve C on a surface S is a geodesic curve or geodesic if its geodesic
curvature χg vanishes identically. Straight lines on any surface are geodesics.

EXAMPLE 6.8.1 Find the geodesic curvature of the small circle

C : u1 = constant = u10 ̸= 0, u2 = u2

on the surface of the sphere S.

Solution: On the surface of sphere

S : y1 = a cosu1 cosu2, y2 = a cosu1 sinu2, y3 = a sinu1.

If the arc length s of C is measured from the plane u2 = 0, we have u2 =
s

a cosu10
, and

the equation of C can be written in the form

u1 = u10, u2 =
s

a cosu10
,

whose metric is ds2 = a2
(
du1
)2

+ a2
(
cosu1

)2 (
du2
)2
, where the metric coefficients

of s are a11 = a2, a12 = 0 and a22 = a2 cos2 u1. The components of the unit tangent
vector λα = duα

ds along C are given by

λα =
(
λ1, λ2

)
=

(
du1

ds
,
du2

ds

)
=

(
0,

1

a cosu10

)
.

The only non-vanishing Christoffel symbols are{
1

2 2

}
= a11[22, 1] =

1

a11
∂a22
∂u1

= cosu10 sinu
1
0{

2
1 2

}
= a22[12, 2] =

1

a22
∂a22
∂u1

= − tanu10 =

{
2

2 1

}
.
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Using the definition of intrinsic derivative, we get

δλ1

δs
=
dλ1

ds
+

{
1

α β

}
λα
duβ

ds
=
dλ1

ds
+

{
1

1 1

}
λ1
du1

ds
+

{
1

1 2

}
λ1
du2

ds

+

{
1

2 1

}
λ2
du1

ds
+

{
1

2 2

}
λ2
du2

ds
=

{
1

2 2

}
λ2λ2

δλ2

δs
=
dλ2

ds
+

{
2

α β

}
λα
duβ

ds
= 0 +

{
2

2 2

}
λ2λ2

Using the formula (6.62) we get

χgη
1 =

δλ1

δs
=

{
1

2 2

}
λ2λ2 = cosu10 sinu

1
0

(
1

a cosu10

)2

=
1

a2
tanu10

χgη
2 =

{
2

2 2

}
λ2λ2 = 0.

Since C is not a geodesic, χg ̸= 0 and we conclude that η2 = 0. But η2 is a unit vector
so that aαβη

αηβ = 1, i.e.

a11η
1η1 + 2a12η

1η2 + a22η
2η2 = 1

or

a2η1η1 = 1 ⇒ η1 =
1

a
.

Here χg is given by

χg =
1

η1
1

a2
tanu10 =

1

a
tanu10.

Hence, the geodesic curvature is 1
a tanu

1
0.

EXAMPLE 6.8.2 Consider the surface of the right circular cone

C : x1 = u1 cosu2, x2 = u1 sinu2, x3 = u1,

where u1, u2 are the curvilinear co-ordinates on S and the curve C whose equation taken

in the form C : u1 = a, u2 = s
a , where s is the arc parameter. Show that χg =

√
2

2
√
a
.

Solution: Here, the metric is given by

ds2 = 2
(
du1
)2

+
(
u1
)2 (

du2
)2
,
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where the metric coefficients of S are a11 = 2, a22 =
(
u1
)2
, a33 = 0 and a12 = 0 so

that a = 2
(
u1
)2
. The conjugate tensors are given by

a11 =
1

a11
= 2, a22 =

1

(u1)2
and a33 = 0; a12 = 0 = a21.

The only non-vanishing Christoffel symbols of second kind are{
1

2 2

}
= − 1

2a11

∂a22
∂u1

= −u1 = −a.

Now, the components of the unit tangent vector λα = duα

ds along C are given by

λα =
(
λ1, λ2

)
=

(
du1

ds
,
du2

ds

)
=

(
0,

1

a

)
.

Using the definition of intrinsic derivative, we get

δλ1

δs
=
dλ1

ds
+

{
1

α β

}
λα
duβ

ds

=
dλ1

ds
+

{
1

1 1

}
λ1
du1

ds
+

{
1

2 2

}
λ2
du2

ds
+

{
1

2 1

}
λ2
du1

ds
+

{
1

1 2

}
λ1
du2

ds

=

{
1

2 2

}
λ2
du2

ds
= − 1

2a

δλ2

δs
=
dλ2

ds
+

{
2

α β

}
λα
duβ

ds

=
dλ2

ds
+

{
2

1 1

}
λ1
du1

ds
+

{
2

2 2

}
λ2
du2

ds
+

{
2

1 2

}
λ2
du1

ds
+

{
2

2 1

}
λ1
du2

ds
= 0.

Using formula (6.62), we get

χgη
1 =

δλ1

δs
= − 1

2a
and χgη

2 =
δλ2

δs
= 0.

Since C is not a geodesic χg ̸= 0 and we conclude that η2 = 0. But η2 is a unit vector
so that aαβη

αηβ = 1, i.e.

a11η
1η1 + a22η

2η2 + 2a12η
1η2 = 1

or

2
(
η1
)2

+
(
u1
)2 (

η2
)2

= 1 ⇒
(
η1
)2

=
1

2

⇒ χg =
1

η1
×
(
− 1

2a

)
=

1√
2

1

2a
=

1

a2
√
2
.
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EXAMPLE 6.8.3 Show that the geodesic curvature of the curve u = c on a surface
with metric ϕ2(du)2 + µ2(dv)2 is 1

ϕµ
∂µ
∂u .

Solution: For the given metric ds2 = ϕ2(du)2 + µ2(dv)2, the metric coefficients are
a11 = ϕ2, a22 = µ2 and a12 = 0 and so, a = ϕ2µ2. Thus, the conjugate tensors are
given by

a11 =
a22
a

=
1

ϕ2
; a22 =

a11
a

=
1

µ2
; a12 = 0 = a21.

The Christoffel symbols of first kind are

[11, 1] =
1

2

∂a11
∂u1

= ϕ
dϕ

du
; [22, 2] =

1

2

∂a22
∂u2

= µ
dµ

dv

[11, 2] =
1

2

[
∂a12
∂u1

+
∂a12
∂u1

− ∂a11
∂u2

]
= −ϕdϕ

dv

[21, 1] =
1

2

[
∂a21
∂u1

+
∂a11
∂u2

− ∂a21
∂u1

]
=

1

2

∂a11
∂u2

= ϕ
dϕ

dv
= [12, 1]

[22, 1] =
1

2

[
∂a21
∂u2

+
∂a21
∂u2

− ∂a22
∂u1

]
= −1

2

∂a22
∂u1

= −µdµ
du

[12, 2] =
1

2

[
∂a12
∂u2

+
∂a22
∂u1

− ∂a12
∂u2

]
=

1

2

∂a22
∂u1

= µ
dµ

du
= [21, 2].

The Christoffel symbols of second kind are{
1

1 1

}
= a1k[11, k] = a11[11, 1] =

1

ϕ

dϕ

du{
1

2 1

}
= a1k[21, k] = a11[21, 1] + a12[21, 2] =

1

ϕ

dϕ

dv
=

{
1

1 2

}
{

1
2 2

}
= a1k[22, k] = a11[22, 1] + a12[22, 2] = − µ

ϕ2
dµ

du{
2

2 1

}
= a2k[21, k] = a21[21, 1] + a22[21, 2] =

1

µ

dµ

du
=

{
2

1 2

}
{

2
2 2

}
= a2k[22, k] = a21[22, 1] + a22[22, 2] =

1

µ

dµ

dv{
2

1 1

}
= a2k[11, k] = a21[11, 1] + a22[11, 2] = − ϕ

µ2
dϕ

dv
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Let χg be the geodesic curvature, then from Beltrami’s formula (6.63), we have

χg =
√
a

[
du1

ds

(
d2uα

ds2
+

{
2
β γ

}
duβ

ds

duγ

ds

)
− du2

ds

(
d2uα

ds2
+

{
1

β γ

}
duβ

ds

duγ

ds

)]

=
√
a

[
du

ds

(
d2v

ds2
+

{
2

1 1

}(
du

ds

)2

+

{
2

2 2

}(
dv

ds

)2

+ 2

{
2

1 2

}
du

ds

dv

ds

)

−dv
ds

(
d2u

ds2
+

{
1

1 1

}(
du

ds

)2

+

{
1

2 2

}(
dv

ds

)2

+ 2

{
1

1 2

}
du

ds

dv

ds

)]
Since for the v parametric curve, u = c = constant, so,

χg = −
√
a
dv

ds

{
1

2 2

}(
dv

ds

)2

= −
√
a

{
1

2 2

}(
dv

ds

)3

= −
√
a

{
1

2 2

}
1

a22
√
a22

; as
dvdv

ds2
=

dvdv

a22dvdv
=

1

a22

= −ϕµ×
[
−1

2

∂

∂u
(µ2)

]
× 1

µ3
=

1

ϕµ

∂µ

∂u
.

EXAMPLE 6.8.4 Show that the condition that the parametric curves u1 and u2 on
a portion of a surface be geodesic are respectively{

2
1 1

}
= 0 and

{
1

2 2

}
= 0.

Solution: Let χ
(1)
g and χ

(2)
g be the geodesic curvatures of the u1 and u2 parametric

curves, respectively. Then from Beltrami’s formula (6.63), we get

χ(1)
g =

√
a

[
du1

ds

(
d2u2

ds2
+

{
2

1 1

}(
du1

ds

)2

+

{
2

2 2

}(
du2

ds

)2

+ 2

{
2

1 2

}
du1

ds

du2

ds

)

−du
2

ds

(
d2u1

ds2
+

{
1

1 1

}(
du1

ds

)2

+

{
1

2 2

}(
du2

ds

)2

+ 2

{
1

1 2

}
du1

ds

du2

ds

)]
.

Since for the u1 parametric curve, u2 = c1 = constant, so,

χ(1)
g =

√
a
du1

ds

{
2

1 1

}(
du1

ds

)2

=
√
a

{
2

1 1

}(
du1

ds

)3

=
√
a

{
2

1 1

}
1

a11
√
a11

; as
du1du1

ds2
=

du1du1

a11du1du1
=

1

a11
.
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Similarly, for the u2 parametric curve, u1 = c2 = constant, so,

χ(2)
g = −

√
a

{
1

2 2

}
1

a22
√
a22

.

We can derive these results by using the formula

χg = εαβλ
α δλ

β

δs
; where λα(1) =

(
1

√
a11

, 0

)
and λα(2) =

(
0,

1
√
a22

)
.

If the geodesic curvature vanishes identically, then the curve is a geodesic. Thus, from
the relations

χ(1)
g =

√
a

{
2

1 1

}
1

a11
√
a11

and χ(2)
g = −

√
a

{
1

2 2

}
1

a22
√
a22

we get that parametric curves are geodesic if and only if{
2

1 1

}
= 0 and

{
1

2 2

}
= 0; as a = |aαβ| ≠ 0.

EXAMPLE 6.8.5 Show that the condition that the parametric curves on a portion
of a surface

r = (c cosu2 cosu1, c cosu2 sinu1, c sinu2)

be geodesic.

Solution: In the representation of the sphere r(u1, u2), the co-ordinates u1, u2 are
orthogonal. We have

a11 = c2 cos2 u2, a22 = c2,
∂a22
∂u1

= 0, and a12 = 0 = a21.

Therefore, the Christoffel symbol

{
1

2 2

}
is given by{

1
2 2

}
=

1

2a

[
a22

(
2
∂a12
∂u2

− ∂a22
∂u1

)
− a12

∂a22
∂u2

]
=

1

2c4 cos2 u2
[
c2(2 · 0− 0)− 0.0

]
= 0

that is, the curves u1 = constant are geodesics. Now,

{
2

1 1

}
=

1

2a

[
a11

(
2
∂a12
∂u1

− ∂a11
∂u2

)
− a12

∂a11
∂u1

]
=

1

2c4 cos2 u2
[
c2 cos2 u2(2 · 0 + 2c2 cosu2 sinu2)− 0 · 0

]
= cosu2 sinu2 = 0; if u2 = 0
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that is, along the equator which is the only geodesic of the curves u2 = constant. At

the poles u2 =
π

2
and also

{
2

1 1

}
= 0 but

x1 = c cosu2 cosu1, x2 = c cosu2 sinu1, x3 = c sinu2.

is not valid at these points. Furthermore we see from

(χg)u1=constant =
1

√
a11

∂

∂u1
(log

√
a22)

(χg)u2=constant = − 1
√
a22

∂

∂u2
(log

√
a11)

that the co-ordinate curves of orthogonal co-ordinates are geodesics if and only if a11
does not depend on u2 and a22 does not depend on u1.

6.9 Exercises

1. On the surface of revolution r = (u cosϕ, u sinϕ, f(u)) what are the parametric
curves for u = constant and what are the curves ϕ = constant.

2. On the right helicoid given by r = (u cosϕ, u sinϕ, cϕ) , show that the parametric
curves are circular helices and straight lines.

3. On the hyperboloid of one sheet

x

a
=

λ+ µ

1 + λµ
;
y

b
=

1− λµ

1 + λµ
;
z

c
=

λ− µ

1 + λµ
,

the parametric curves are the generators. What curves are represented by λ = µ
and by λµ = constant?

4. What types of surface are determined by the following representations:

(a) r = (x1, x2, x3) = (0, u1, u2),

(b) r = (x1, x2, x3) = (u1 + u2, u1 + u2, u1),

(c) r = (x1, x2, x3) = (a cosu1, a sinu1, u2).

Investigate the behaviour of the corresponding matrices and find representation
of the form (6.1).

5. Find a parametric representation of the cylinder generated by a straight line G
which moves along a curve.

C : x(s) = (h1(s), h2(s), h3(s))

and is parallel to the x3 axis; consider the corresponding matrix.
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6. Find a representation of the form (6.1) of the following surfaces

(a) Ellipsoid: r = (a cosu2cosu1, bcosu2 sinu1, c sinu2).

(b) Elliptic paraboloid: r = (au1 cosu2, bu1 sinu2, (u1)2)).

(c) Hyperbolic paraboloid : r = (au1 coshu2, bu1 sinhu2, (u1)2).

(d) Hyperboloid of two sheets : r = (a sinhu1 cosu2, b sinhu1 sinu2, c coshu1).

What kind of co-ordinate curves do you have in each case?

7. Show that the first fundamental form for

(a) the surface x1 = a cosu1, x2 = a sinu1, x3 = u2 is given by

ds2 = a2(du1)2 + (du2)2.

(b) the surface x1 = u1 cosu2, x2 = u1 sinu2, x3 = 0 is given by

ds2 = (du1)2 + (u1)2(du2)2.

(c) the surface x1 = c cosu1 sinu2, x2 = c sinu1 sinu2, x3 = c cosu2 is given
by

ds2 = c2 sin2 u2(du1)2 + c2 cos2 u2(du2)2.

(d) the surface of revolution x1 = u1 cosu2, x2 = u1 sinu2, x3 = f(u1) is given
by

ds2 = (1 + f21 )(du
1)2 + (u1)2(du2)2.

(e) the paraboloid x1 = u1, x2 = u2, x3 = (u1)2 − (u2)2 is given by

ds2 = [1 + 4(u1)2](du1)2 − 4u1u2du1du2 + [1 + 4(u2)2](du2)2.

(f) the sphere x1 = c cosu1 cosu2, x2 = c cosu1 sinu2, x3 = c sinu1 is given by

ds2 = c2(du1)2 + c2 cos2 u1(du2)2.

(g) a plane with respect to polar co-ordinates.

8. Prove that on the surface given by

x1 = a(u1 + u2); x2 = b(u1 − u2); x3 = u1u2

the parametric curves are straight lines.
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9. Determine the first fundamental form of the cylinder

r = (x1, x2, x3) =
(
h1(u

1), h2(u
1), u2

)
and of a cylinder of revolution.

10. Prove that at regular points of a surface the first fundamental form is positive
definite.

11. If θ be the angle between the parametric curves lying on a surface, immersed in
E3, show that

sin θ =

√
a

√
a11

√
a22

and tan θ =

√
a

a12

and hence, show that the parametric curves on a surface are orthogonal if and
only if a12 = 0.

12. Show that the area of the anchor ring

r = ((b+ a cosu) cos v, (b+ a cosu) sin v, a sin v)

where 0 < u < 2π, 0 < v < 2π is 4π2ab.

13. Prove that a necessary and sufficient condition that a surface S be isometric
with the Euclidean plane is that the Riemann tensor (or the Gaussian curvature
of S) be identically zero.

14. (a) Prove that εαβ and ε
αβ can be obtained from the other by raising or lowering

of indices with the help of the metric tensors.

(b) If λα, µα are two unit vectors the rotation λα, µα is positive, show that

sin θ = εαβλ
αµα.

(c) If λα, µα are two parallel vector fields, show that εαβλ
αµα remains constant.

15. Prove that the vector obtained by parallel propagation of the tangent vector to
a geodesic always remains tangent to the geodesic.

16. Find the differential equations of the geodesic in (i) Rectangular co-ordinates;
(ii) Spherical co-ordinates; (iii) Cylindrical co-ordinates.

17. Show that an elliptic helix is not in general a geodesic on an elliptic cylinder.

18. Show that the differential equations of the geodesic for
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(a) the metric ds2 = (dx1)2 + [(x1)2 + c2](dx2)2 are

d2x1

ds2
− x1

(
dx2

ds

)2

= 0;
d2x2

ds2
+

2x1

(x1)2 + c2
dx1

ds

dx2

ds
= 0.

(b) the metric ds2 = (du)2 + (sinu)2(dv)2 are

d2u

ds2
− sinu cosu

(
dv

ds

)2

= 0;
d2v

ds2
+ 2 cotu

du

ds

dv

ds
= 0.

19. Obtain the differential equations of geodesics for metric

(i) ds2 = f(x)dx2 + dy2 + dz2 +
1

f(x)
dt2.

(ii) ds2 = e−2kt
[
dx2 + dy2 + dz2

]
+ dt2.

20. Show that the geodesics of a sphere of radius a determined by the equation

y1 = a cosu1 cosu2; y2 = a cosu1 sinu2; y3 = a sinu1,

are great circles, i.e. the great circles on sphere are geodesics.

21. Determine the components of curvature tensors

(i) of a surface of revolution r = (u2 cosu1, u2 sinu1, f(u2)),
(ii) of a right conoid r = (u2 cosu1, u2 sinu1, f(u1)),
(iii) of a surface represented in the form x3 = f(x1, x2).

22. On the surface generated by the tangents to a twisted curve, find the differential
equation of the curves which cut the generators at a constant angle α.

23. If vα are geodesic co-ordinates in the neighbourhood of a point if they are sub-
jected to the transformation

uα = vα +
1

6
Cαβγλ vβvγvλ,

where C’s are constants, then show that uα are geodesic co-ordinates in the
neighbourhood of the origin O.

24. (a) If Xα is a vector field satisfying δXα

δt = 0, show that aαβX
αXβ remains

constant along the curve. Deduce that the magnitudes of the parallel vector
fields are equal.

(b) Prove that the unit tangent vector λα = duα

ds of a geodesic is a parallel
vector field along the geodesic.
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(c) Prove that the necessary and sufficient condition that a system of co-
ordinates be geodesic with pole at P are that their second covariant deriva-
tives with respect to the metric of the space all vanish at P .

(d) Prove that the geodesic curvature of a curve C on a surface S depends on
the first fundamental form of S only.

25. Prove that the co-ordinate system uα defined by

uα = vα − uα0 +
1

2

{
α
β γ

}
P

(vβ − uβ0 )(v
γ − uγ0),

is a geodesic co-ordinate system with the pole at P (u10, u
2
0).

26. Prove that the catenoid,

ds2 = a2 cosh2 x1(dx1)2 + a2 cosh2 x2(dx2)2

and the right helicoid

ds2 = (dy1)2 + [(y1)2 + a2](dy2)2

are locally isometric.

27. Prove that, if the system of co-ordinates is orthogonal, the non-vanishing Christofell
symbols of the second kind are{

1
1 1

}
=

1

2a11

∂a11
∂u1

;

{
1

1 2

}
=

1

2a11

∂a11
∂u2

;

{
1

2 2

}
= − 1

2a11

∂a22
∂u1{

2
1 1

}
= − 1

2a22

∂a11
∂u2

;

{
2

1 2

}
=

1

2a22

∂a22
∂u1

;

{
2

2 2

}
=

1

2a22

∂a22
∂u2

.

28. Prove that for a helicoids of non-zero pitch the sections by planes containing the
axis are geodesics if and only if these sections are straight lines.

29. Prove that, on a general surface, a necessary and sufficient condition that the
curve v = c be a geodesic is EE2 + FE1 − 2EF1 = 0 for all values of u, where
E = r21, F = r1.r2, G = r22.

30. Prove that if a surface admits two orthogonal families of geodesics, it is isometric
with the plane.

31. Show that, if the line element is of the form ds2 = (du1)2 + a22(du
2)2, the

Gaussian curvature is

κ = − 1
√
a22

∂2

(∂u1)2
√
a22.
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32. Prove that the Gaussian curvature is an invariant.

33. Find the Gaussian curvature of the surface given (in Monge form) by z = f(x, y),
where x and y are taken as parameters.

34. Show that the Gaussian curvature is − 1
λ
∂2λ
∂u2

for a surface with the metric

ds2 = (du)2 + λ2(dv)2

35. Show that for the sphere of radius c, with the equation of the form

x1 = c sinu1 cosu2;x2 = c sinu1 sinu2; x3 = c cosu1,

where c is a constant, the total curvature is κ = 1
c2
.

36. Show that the surface given by

x1 = f1(u
1), x2 = f2(u

1), x3 = u2

is a developable, where f1, f2 are differentiable functions.

37. Determine whether the surface of a helicoid given by

x1 = u1 cosu2; x2 = u1 sinu2;x3 = cu1

is developable, where c is a constant and u1, u2 are curvilinear co-ordinates of
the surface.

38. Show that the surface with the metric

(a) ds2 = (du1)2 + [(du1)2 + c2](du2)2 is not developable.

(b) ds2 = (u2)2(du1)2 + (u1)2(du2) is developable.

39. Find the equations of the surface of revolution for which ds2 = du2+(a2−u2)dv2.

40. Prove that a ruled surface x(s, t) = y(s) + tz(s) is a developable surface if and
only if |[ẏ, z, ż]| = 0, where a dot denotes the derivatives with respect to the arc
length s of the curve y(s) and [.,.,.] denotes the scalar triple product.

41. Find an analytic expression of the Gaussian curvature of a ruled surface and
prove that a ruled surface is developable surface if and only if its Gaussian
curvature vanishes.

42. Show that

(i) χg = −εαβηβ δu
α

ds = εαβλ
α δuβ

ds .
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(ii) χ2
g = aαβ

δλα

δs

δλβ

δs
; and χg = εαβλ

α δλ
β

δs

(iii)
d2uα

δs2
+

{
α
β γ

}
duβ

δs

duγ

δs
= −χgεαβaβγ

duγ

δs
.

43. Show that the geodesic curvature of the curve u = c with the metric

ds2 = λ2(du)2 + µ2(dv)2 is
1

λµ

∂µ

∂u
.

44. When the parametric curves are orthogonal, prove that

χ(1)
g = − 1

2
√
a22

∂ log a11
∂u2

and χ(2)
g =

1

2
√
a11

∂ log a22
∂u1

.

45. Deduce that

χ(1)
g =

1√
a

[
∂

∂u1

(
a12√
a11

)
−
∂
√
a11

∂u2

]
; χ(2)

g =
1√
a

[
− ∂

∂u2

(
a12√
a22

)
+
∂
√
a22

∂u1

]
.

46. Prove that the geodesic curvatures for the co-ordinate curves are

χ(1)
g =

√
a

(a11)3/2

{
2

1 1

}
and χ(2)

g = −
√
a

(a22)3/2

{
1

2 2

}
.

47. Prove that the necessary and sufficient condition for a curve on a surface to be
a geodesic is that its geodesic curvature be zero.

48. Show that the formula for the Gaussian curvature κ can be written in the form

κ =
1

2
√
a

[
∂

∂u1

{
a12

a11
√
a

∂a11
∂u2

− 1√
a

∂a22
∂u1

}
+

∂

∂u2

{
2√
a

∂a12
∂u1

− 1√
a

∂a11
∂u2

− a12
a11

√
a

∂a11
∂u1

}]
.

49. Prove that any circular helix C on a cylinder of revolution S is a geodesic on C.

50. Prove that if a geodesic on a surface of revolution cuts the meridians at a constant
angle, the surface is a right cylinder.

51. Prove that the meridians of a ruled helicoid are geodesics.

52. Prove that the orthogonal trajectories of the helices on a helicoid are geodesics.

53. Show that if a geodesic on a surface of revolution cuts the medians at a constant
angle, the surface is a right cylinder.



Chapter 7

Surfaces in Space

With the exception of occasional references to the surrounding space, our study of
geometry of surfaces was carried out from the point of view of a two-dimensional being
whose universe is determined by the surface parameters u1 and u2. The treatment of
surfaces in space presented in this chapter was based entirely on the study of the
first quadratic differential form. In this chapter, the geometric shape and properties
of a surface have discussed in the neighbourhood of any of its points. Of curse, this
problem is of fundamental importance.

7.1 The Tangent Vector

We are now going to investigate the properties of a surface in its relation to the
surrounding space. Consequently, we are dealing with two distinct system of co-
ordinates namely, the three orthogonal Cartesian co-ordinates for the surrounding
space which we denote by yi; i = 1, 2, 3 and the two curvilinear co-ordinates of the
surface which we denote by uα;α = 1, 2. Let us denote the equation of a surface S
embedded in E3 by

y1 = y1(u1, u2); y2 = y2(u1, u2); y3 = y3(u1, u2)

yi = yi(u1, u2); i = 1, 2, 3. (7.1)

The line element of arc ds of a curve lying on S is determined by the formula,

ds2 = aαβdu
αduβ; where aαβ =

∂yi

∂uα
∂yi

∂uβ
. (7.2)

The choice of Cartesian variables yi in the space enveloping the surface is clearly
not essential, and we could have equally well referred the points of E3 to a curvilinear
co-ordinate system X related to Y by the transformation

xi = xi(y1, y2, y3).

378
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Now, relative to the frame X, the line element in E3 is given by

ds2 = gmndx
mdxn; where, gmn =

∂yk

∂xm
∂yk

∂xn
(7.3)

and the set of Eq. (7.1) for the surface S can be written as

S : xi = xi(u1, u2); i = 1, 2, 3. (7.4)

If we take a small displacement duα on the surface, the corresponding component of
the displacement in space are given by

dxi =
∂xi

∂uα
duα (7.5)

and hence expression (7.3) for the surface element of arc assumes the form

ds2 = gijdx
idxj = gij

∂xi

∂uα
∂xj

∂uβ
duαduβ . (7.6)

A comparison of Eq. (7.6) with Eq. (7.2) leads to the conclusion that

aαβ = gij
∂xi

∂uα
∂xj

∂uβ
; i, j = 1, 2, 3 and α, β = 1, 2. (7.7)

Now, dxi is a space vector and is surface invariant, i.e. its components are unal-
tered Gaussian co-ordinates alone one transformed. Similarly, duα is a surface vector
and is also a space invariant. Hence, if we regard [Eq. (7.5)] first from the point of
view of a transformation of space co-ordinates and then from the point of view of a
transformation of surface co-ordinates and then from the point of view of a transfor-
mation of surface co-ordinates, we see that ∂xi

∂uα is a contravariant space vector and
also a covariant surface vector, so that, it may be represented by

dxi =
∂xi

∂uα
duα = xiαdu

α; where, xiα =
∂xi

∂uα
, (7.8)

where the indices properly describe the tensor character of this set of quantities.

Let r be the position vector of an arbitrary point P on S. The point P is deter-
mined by a pair of Gaussian co-ordinates (u1, u2), or by a triplet of space co-ordinates
(x1, x2, x3). Accordingly, the vector r can be viewed as a function of the space variables
xi satisfying Eq. (7.4). Thus,

∂r

∂uα
=

∂r

∂xi
∂xi

∂uα
. (7.9)
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But ∂r
∂xi

are the base vectors bi at P , associated with the curvilinear co-ordinate

system X, whereas ∂r
∂uα are the base vectors aα at P relative to the Gaussian co-

ordinate system U . Hence, Eq. (7.9) yields

aα = bi
∂xi

∂uα
. (7.10)

It is clear from this representation that

a1 = bi
∂xi

∂u1
and a2 = bi

∂xi

∂u2
,

so that ∂xi

∂uα ≡ xiα, (α = 1, 2), are the contravariant components of the surface base
vectors aα referred to the base systems bi. Thus, the set of quantities

xi1 :

(
∂x1

∂u1
,
∂x2

∂u1
,
∂x3

∂u1

)
and xi2 :

(
∂x1

∂u2
,
∂x2

∂u2
,
∂x3

∂u2

)
transform in a contravariant manner relative to the transformation of space co-ordinates
xi. Now the three surface vectors

x1α :

(
∂x1

∂u1
,
∂x1

∂u2

)
, x2α :

(
∂x2

∂u1
,
∂x2

∂u2

)
and x3α :

(
∂x3

∂u1
,
∂x3

∂u2

)
transform according to the covariant law with respect to the transformation of Gaus-
sian surface co-ordinates uα. Indeed, consider a transformation uα = uα

(
u1, u2

)
; then

Eq. (7.4) of S go over into xi = xi
(
u1, u2

)
and

∂xi

∂uα
=
∂xi

∂uβ
∂uβ

∂uα
. (7.11)

But ∂xi

∂uβ
= xiβ , and Eq. (7.11) yields the covariant law

xiα =
∂uβ

∂uα
x̄iβ ; i = 1, 2, 3.

Let ds be an element of arc joining a pair of points P (u1, u2) and Q(u1 + du1, u2

+ du2) on S. The direction of the line element ds is given by the direction parameters
duα

ds = λα. The same direction can be specified by an observer in the enveloping space

by means of three parameters dxi

ds = λi, and from the Eq. (7.5), we find that

λi =
dxi

ds
=
∂xi

∂uα
duα

ds
; i.e. λi = xiαλ

α. (7.12)

This formula tells us that any surface vector Aα can be viewed as a space vector with
components Ai determined by

Ai = xiαA
α. (7.13)

We shall refer to a vector Ai determined by Eq. (7.13) as a tangent vector to the surface
S.
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7.2 The Normal Line

An entity that provides a characterisation of the shape of the surface as it appears
from the enveloping surface is the normal line to the surface.
Let A and B be a pair of surface vectors drawn at some point P on the surface S,
such that the rotation A,B is positive. The unit normal vector ξ to the surface S
is orthogonal to both A and B and is so oriented that (A,B,ξ) from a right-handed
system (Figure 7.1), i.e.

εijkA
iBjξk = 1 (7.14)

Figure 7.1: The normal lines to the surface.

where

ξ =
1

|A×B|
(A×B) =

1

AB sin θ
(A×B)

where θ is the angle between A and B. We call the vector ξ the unit normal vector
to the surface S at P . Clearly, ξ is a function of co-ordinates

(
u1, u2

)
, and as the

point P
(
u1, u2

)
is displaced to a new position Q

(
u1 + du1, u2 + du2

)
, the vector ξ

undergoes a change

dξ =
∂ξ

∂uα
duα = ξα duα, say, (7.15)

whereas the position vector r is changed to the amount

dr =
∂r

∂uβ
duβ = rβdu

β , say. (7.16)

The behaviour of the normal line as its foot displaced along the surface depends on
the shape of the surface, and it occurred to Gauss to describe certain properties of
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surfaces with the aid of a quadratic form that depends in a fundamental way on the
behaviour of the normal line. Let us form the scalar product

dξ · dr = ∂ξ

∂uα
· ∂r
∂uβ

duαduβ = ξα · rβduαduβ

= −bαβduαduβ , say , (7.17)

if we define bαβ as

bαβ = −1

2

(
∂ξ

∂uα
· ∂r
∂uβ

+
∂ξ

∂uβ
· ∂r
∂uα

)
= −1

2
(ξα · rβ + ξβ · rα) (7.18)

The left-hand side of Eq. (7.17), being the scalar product of two vectors, is an in-
variant. Thus, the second fundamental form is invariant with respect to any allowable
co-ordinate transformation which preserves the sense of ξ. Since the co-ordinate differ-
entials duα have a contravariant transformation behaviour and the second fundamental
form is invariant, the coefficients bαβ of this form are the components of a covariant
tensor of second order with respect to co-ordinate transformations. From the quotient
law, bαβ is a covariant tensor of order (0, 2) and from Eq. (7.18) it is symmetric with
respect to α and β. The quadratic form

B ≡ bαβdu
αduβ (7.19)

introduced by Gauss, is called the second fundamental quadratic form of the surface.
This differential form Eq. (7.19) plays an important part in the study of the geometry
of the surface when they are viewed from the surrounding space.

Now, we shall write Eq. (7.14) in terms of the components xiα of the base vectors.
The Eq. (7.13) tells us

Ai = xiαA
α; Bj = xjβB

β .

If θ be the angle between Ai and Bj , we can write

AB sin θ = εαβA
αBβ .

Let the contravariant components of the unit surface normal ξ by ξi and the covariant
components ξi is, then

ξi =
εijkx

j
αAαxkβB

β

εαβAαBβ

or (
ξiεαβ − εijkx

j
αx

k
β

)
AαBβ = 0.
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This relation is valid for all surface vectors. Since, Aα and Bβ are arbitrary, we have

ξiεαβ = εijkx
j
αx

k
β .

Multiplying this relation through by εαβ , and noting εαβεαβ = 2, we get

ξiεαβε
αβ = εαβεijkx

j
αx

k
β

or

ξi · 2 = εγδεijkx
j
γx

k
δ

or

ξi =
1

2
εγδεijkx

j
γx

k
δ .

It is clear from the structure of this formula that ξi is a space vector which does not
depend on the choice of surface co-ordinates. This fact is also obvious from purely
geometrical considerations.

EXAMPLE 7.2.1 Calculate the second fundamental form for the right helicoid given
by r = (u cos v, u sin v, cv) .

Solution: Since r = (u cos v, u sin v, cv), so

A =
dr

du
= (cos v, sin v, 0) and B =

dr

dv
= (−u sin v, u cos v, c) .

A×B =

∣∣∣∣∣∣
î ĵ k̂

cos v sin v 0
−u sin v u cos v c

∣∣∣∣∣∣ = c sin vî− c cos vĵ + uk̂.

Thus, the normal vector is given by

ξ =
1

|A×B|
(A×B) =

1√
c2 + u2

(c sin v,−c cos v, u) .

The symmetric covariant tensor bαβ are given by

b11 = −1

2

[
∂ξ

∂u1
· ∂r
∂u1

+
∂ξ

∂u1
· ∂r
∂u1

]
= − ∂ξ

∂u1
· ∂r
∂u1

= −∂ξ
∂u

· ∂r
∂u

= −

(
cu sin v

(c2 + u2)
3
2

,
cu cos v

(c2 + u2)
3
2

,
c2

(c2 + u2)
3
2

)
· (cos v, sin v, 0) = 0
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b22 = −∂ξ
∂v

· ∂r
∂v

=
1√

c2 + u2
(c cos v, c sin v, 0) · (−u sin v, u cosu, c)

= − 1√
c2 + u2

(−uc sin v cos v + uc sin v cos v + 0) = 0

b12 = −1

2

[
∂ξ

∂u1
· ∂r
∂u2

+
∂ξ

∂u1
· ∂r
∂u2

]
= −1

2

[
∂ξ

∂u
· ∂r
∂v

+
∂ξ

∂v
· ∂r
∂u

]

= −1

2

[(
−cu sin v
(u2 + c2)

3
2

,
cu cos v

(u2 + c2)
3
2

,
c2

(u2 + c2)
3
2

)
· (−u sin v, u cos v, c)

+
1√

u2 + c2
(c cos v, c sin v, 0) · (cos v, sin v, 0)

]

= −1

2

[
cu2 sin2 v + cu2 cos2 v + c3

(u2 + c2)
3
2

+
c cos2 v + c sin2 v√

u2 + c2

]

= −1

2

[
c√

u2 + c2
+

c√
u2 + c2

]
= − c

(u2 + c2)
1
2

= b21.

Thus, the second fundamental quadratic form becomes

B ≡ b11(du)
2 + 2b12dudv + b22(dv)

2 = 2b12dudv ≡ − 2c

(u2 + c2)
1
2

dudv.

EXAMPLE 7.2.2 Calculate the second fundamental form for the paraboloid given
by r =

(
u, v, u2 − v2

)
.

Solution: Since r =
(
u, v, u2 − v2

)
, so A = (1, 0, 2u), B = (0, 1,−2v) and

A×B = −2uî− 2vĵ + k̂.

Thus, the unit normal vector is given by

ξ =
1

|A×B|
(A×B) =

1√
4u2 + 4v2 + 1

(−2u,−2v, 1).

The symmetric covariant tensors bαβ are given by

b11 = −∂ξ
∂u

· ∂r
∂u

=
1

(4u2 + 4v2 + 1)
3
2

(
2
{
4v2 + 1

}
,−8uv, 4u

)
· (1, 0, 2u)

=
2
(
4u2 + 1

)
+ 8u2

(4u2 + 4v2 + 1)
3
2

=
2√

4u2 + 4v2 + 1
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b22 = −∂ξ
∂v

· ∂r
∂v

=
1

(4u2 + 4v2 + 1)
3
2

(
−8uv,−2(4u2 + 1), 4v

)
· (0, 1,−2v)

=
−2
(
4u2 + 1

)
− 8v2

(4u2 + 4v2 + 1)
3
2

= − 2√
4u2 + 4v2 + 1

b12 = −1

2

[
∂ξ

∂u
· ∂r
∂v

+
∂ξ

∂v
· ∂r
∂u

]
= 0 = b21.

Thus the second fundamental quadratic form becomes

B ≡ b11(du)
2 + b22(dv)

2 + 2b12dudv ≡ 2√
4u2 + 4v2 + 1

[
(du)2 − (dv)2

]
.

EXAMPLE 7.2.3 Show a surface of revolution is regular and exhibit the unit surface
normal.

Solution: The Gaussian form of a surface of revolution about z axis is

r(x1, x2) =
(
f(x1) cosx2, f(x1) sinx2, g(x1)

)
; f(x1) > 0.

From this parametric representation, we get

A =
∂r

∂x1
=
(
f ′(x1) cosx2, f ′(x1) sinx2, g′(x1)

)
;

B =
∂r

∂x2
=
(
−f(x1) sinx2, f(x1) cosx2, 0

)
.

so
A×B =

(
−fg′ cosx2,−fg′ sinx2, ff ′

)
.

Therefore, the norm is |A×B| = f
√
f ′2 + g′2. Now f = f(x1) ̸= 0; further, the

generating curve is regular, which means that, with t = x1, the tangent vector of the
curve, (

dx

dt
, 0,

dz

dt

)
= (f ′, 0, g′)

is non-null and f ′2 + g′2 ̸= 0. Therefore, f
√
f ′2 + g′2 ̸= 0 and the surface is regular.

Thus, the unit surface normal vector is given by

ξ =
1

|A×B|
(A×B) =

1

f
√
f ′2 + g′2

(
−fg′ cosx2,−fg′ sinx2, ff ′

)
=

(
− g′√

f ′2 + g′2
cosx2,− g′√

f ′2 + g′2
sinx2,

f ′√
f ′2 + g′2

)
.
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EXAMPLE 7.2.4 Prove that the tangent planes to a cone of revolution at the points
of its generating straight lines coincide.

Solution: The parametric representation to a cone of revolution is

r = (x1, x2, x3) = (u1 cosu2, u1 sinu2, au1).

The first fundamental form of the surface, aαβ are given by

a11 =

(
∂x1

∂u1

)2

+

(
∂x2

∂u1

)2

+

(
∂x3

∂u1

)2

= 1 + a2

a22 =

(
∂x1

∂u2

)2

+

(
∂x2

∂u2

)2

+

(
∂x3

∂u2

)2

= (u1)2

a12 =
∂x1

∂u1
∂x1

∂u2
+
∂x2

∂u1
∂x2

∂u2
+
∂x3

∂u1
∂x3

∂u2
= 0.

Now A and B vectors are given by

A =
∂r

∂u1
= (cosu2, sinu2, a)

B =
∂r

∂u2
= (−u1 sinu2, u1 cosu2, 0).

Thus, the unit surface normal is given by

ξ =
1

|A×B|
(A×B) =

(
− a cosu2√

1 + a2
,− a sinu2√

1 + a2
,

1√
1 + a2

)
,

that is, the normal direction to the cone is independent of u1. Since the curves u2

= constant are the generating straight lines of the cone, ξ is constant along any of
those generators; hence the tangent planes to the cone at the points of any generating
straight line coincide.

7.3 Tensor Derivative

In this section, we are introducing new tensors by differentiation of given vector fields.
Consider a curve C lying on a given surface S. If Ai is a component of a space vector,
defined along the curve C. If t is a parameter along C, the intrinsic derivative δAi

δt of
Ai is given by

δAi

δt
=
dAi

dt
+ g

{
i
j k

}
Aj
dxk

dt
. (7.20)
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The Christoffel symbols of second kind in Eq. (7.20) refer to the space co-ordinates xi

and are formed from the metric coefficients gij . This is indicated by the prefix g on
the symbol. Again, if we consider a surface vector Aα, defined along the same curve
C, we can form the intrinsic derivative with respect to the surface variables, namely,

δAα

δt
=
dAα

dt
+ a

{
α
β γ

}
Aβ

duγ

dt
, (7.21)

where the Christoffel symbols of second kind in Eq. (7.21) are formed from the metric
coefficients aαβ associated with the Gaussian surface co-ordinates uα. The correspond-
ing formulas for the intrinsic derivatives of the covariant vectors with components Ai
and Aα are

δAi
δt

=
dAi
dt

− g

{
k
i j

}
Ak

dxi

dt

and

δAα
δt

=
dAα
dt

− a

{
γ
α β

}
Aγ

duβ

dt
(7.22)

A geometric interpretation of these formulas is at hand where Ai and Aα are such that

δAi

δt
= 0 and

δAα

δt
= 0. (7.23)

In the first case of Eq. (7.23) the vectors Ai form a parallel field with respect to C,
considered as a space curve, where as in the later case of Eq. (7.23), the vectors Aα

form a parallel field with respect to C regarded as a surface curve.
Consider a tensor field T iα, which is a contravariant vector with respect to a trans-

formation of space co-ordinates xi and a covariant vector relative to a transformation
of the surface co-ordinates uα. For example, a field of this type is a tensor xiα intro-
duced in Eq. (7.8). If T iα is defined along a surface curve C, with t as parameter, then
T iα is a function of t. We form an invariant

ϕ(t) = T iαAiB
α,

where a parallel vector field Ai along C, regarded as a space curve, and a parallel
vector field Bα along C, viewed as a surface curve. The derivative of ϕ(t) with respect
to the parameter t is given by

dϕ(t)

dt
=
dT iα
dt

AiB
α + T iα

dAi
dt

Bα + T iαAi
dBα

dt
, (7.24)

which is obviously an invariant relative to both the space and surface co-ordinates.
But since the fields Ai(t) and B

α(t) are parallel,

dAi
dt

= g

{
k
i j

}
Ak

dxi

dt
and

dBα

dt
= −a

{
α
β γ

}
Bβ du

γ

dt
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therefore, Eq. (7.24) becomes

dϕ

dt
=

[
dT iα
dt

+ g

{
i
j k

}
T jα
dxk

dt
− a

{
µ
α γ

}
T iµ
duγ

dt

]
AiB

α. (7.25)

Since this is invariant for an arbitrary choice of parallel fields Ai and B
α, by quotient

law, the expression in the bracket of Eq. (7.25) is a tensor of the same character as T iα
with respect to the parameter t, and we write

δT iα
δt

=
dT iα
dt

+ g

{
i
j k

}
T jα
dxk

dt
− a

{
µ
α γ

}
T iµ
duγ

dt
. (7.26)

If the field T iα is defined over the entire surface S, its components are functions of us
and we have a tensor field over the surface. Also, if C is any curve on the surface, we
can argue that

δT iα
δt

=

[
∂T iα
∂uγ

+ g

{
i
j k

}
T jα
∂xk

∂uγ
− a

{
µ
γ α

}
T iµ

]
duγ

dt

=

[
∂T iα
∂uγ

+ g

{
i
j k

}
T jαx

k
γ − a

{
µ
γ α

}
T iµ

]
duγ

dt

is a tensor field. Since duγ

dt is an arbitrary surface vector (for C is arbitrary) and since
the right-hand side of this last equation is a tensor, we conclude that

T iα,γ =
∂T iα
∂uγ

+ g

{
i
j k

}
T jαx

k
γ − a

{
µ
α γ

}
T iµ (7.27)

is a tensor which is singly contravariant in the space co-ordinates and doubly covariant
in the surface co-ordinates. We shall call T iα,γ , the tensor derivative of T

i
α with respect

to uγ . Similarly, the tensor derivative of T iαβ with respect to uγ is given by

T iαβ,γ =
∂T iα
∂uγ

+ g

{
i
j k

}
T jαβx

k
γ − a

{
µ
β γ

}
T iαµ − a

{
µ
α γ

}
T iµβ. (7.28)

If the surface co-ordinates at any point of the surface are geodesics and the space
co-ordinates are orthogonal Cartesian, we see that at that point the tensor derivatives
reduce to ordinary derivatives. This leads us to conclude that the operations of tensor
differentiation of products and sums follow the usual rules and that the tensor deriva-
tives of gij , aαβ , εαβ and their associated tensors vanish. Accordingly, they behave as
constants in the tensor differentiation.
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7.3.1 The Second Fundamental Form of a Surface

Before we introduce the new quadratic form, we must point out the relations, de-
scriptions in the study of surfaces. Let us take the tensor derivative of the tensor xiα,
representing the components of the surface base vectors aα, we find from Eq. (7.27)
that

xiα,β =
∂2xi

∂uα ∂uβ
+ g

{
i
j k

}
xjαx

k
β − a

{
µ
α β

}
xiµ (7.29)

from which it follows that xiα,β = xiβ,α. Tensor differentiation of the relation aαβ
= gmnx

m
α x

n
β gives

gmnx
m
α,γx

n
β + gmnx

m
α x

n
β,γ = 0. (7.30)

Interchanging α, β, γ cyclically, we get

gmnx
m
β,αx

n
γ + gmnx

m
β x

n
γ,α = 0 (7.31)

and

gmnx
m
γ,β xnα + gmnx

m
γ x

n
α,β = 0. (7.32)

Adding, Eqs. (7.31) and (7.32) and subtracting (7.30), we get

gmnx
m
α,βx

n
γ = 0; as xmα,β = xmβ,α. (7.33)

This orthogonality relation interpreted geometrically, states that xiα,β , from the point
of view of the space co-ordinates is a space vector normal to the surface, and hence,
it is codirectional with the normal vector ξi. Consequently, there must exist a set of
functions ηαβ such that

xiα,β = ηαβξ
i, (7.34)

where ηαβ = bαβ . The quantities bαβ are the components of a symmetric surface
tensor, and the differential quadratic form

B ≡ bαβdu
αduβ (7.35)

is the desired second fundamental form. Equation (7.34) is known as Gauss’s formula.

Deduction 7.3.1 Equivalence of the two definitions of the second funda-
mental quadratic form: Let us consider a surface S embedded in E3 with the first
fundamental form given by

ds2 = aαβdu
αduβ
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where (u1, u2) are the Gaussian co-ordinates for the surface S defined by

xi = xi(u1, u2); i = 1, 2, 3;

xi being the Cartesian co-ordinates of E3. Let r be the position vector of any point P
whose surface co-ordinates are (u1, u2) and space co-ordinates are (x1, x2, x3). Now,

aα =
∂r

∂uα
; α = 1, 2;

are the surface base vectors and

bα =
∂r

∂xα
; α = 1, 2, 3;

are the space base vectors and they are usually related by

aα =
∂r

∂uα
=

∂r

∂xi
∂xi

∂uα
= xiαbi. (7.36)

Let ξ be the unit vector at P normal to the tangent plane, so, we get

ξ = ξibi and ξ · ξ = 1; ξ · aα = 0. (7.37)

Since the vectors ξ and aα are orthogonal, so

ξ · ∂r
∂uα

= 0 and ξ · ∂r
∂uβ

= 0.

Differentiating these two scalar products with respect to uα and uβ , respectively, and
then adding, we get

∂ξ

∂uβ
· ∂r
∂uα

+ ξ · ∂2r

∂uβ∂uα
+

∂ξ

∂uα
· ∂r
∂uβ

+ ξ · ∂2r

∂uαuβ
= 0

or
1

2

[
∂ξ

∂uβ
· ∂r
∂uα

+ 2ξ · ∂2r

∂uα∂uβ
+

∂ξ

∂uα
.
∂r

∂uβ

]
= 0

or

−1

2

[
∂ξ

∂uβ
.
∂r

∂uα
+

∂ξ

∂uα
.
∂r

∂uβ

]
= ξ.

∂2r

∂uα∂uβ

or

bαβ = ξ.
∂2r

∂uα∂uβ
using Eq. (7.18). (7.38)
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Now, differentiating the relation aα = xiαbi with respect to uβ , we get

∂2r

∂uα∂uβ
= bi

∂xiα
∂uβ

+
∂bi
∂uβ

xiα = bi
∂2xiα
∂uα∂uβ

+
∂bi
∂xj

xiαx
j
β

= bh

[
∂2xh

∂uα∂uβ
+ g

{
h
i j

}
xiαx

j
β

]
, (7.39)

where in the last step, we made use of formula

∂bi
∂xj

= g

{
h
i j

}
bh

for the derivatives of the base vector bi. Using Eq. (7.29),

xiα,β =
∂2xi

∂uα∂uβ
+ g

{
i
j k

}
xjαx

k
β − a

{
µ
α β

}
xiµ

expression (7.39) reduces to

∂2r

∂uα∂uβ
=

[
xhα,β + a

{
γ
α β

}
xhγ

]
bh

= bαβξ
hbh + a

{
γ
α β

}
xhγbh; as xiα,β = bαβξ

i

= bαβξ + a

{
γ
α β

}
xhγaγ ; using Eq. (7.37). (7.40)

Multiplying Eq. (7.39) scalarly by ξ, we get

ξ · ∂2r

∂uα∂uβ
= bαβξ · ξ + a

{
γ
α β

}
xhγaγ · ξ

= bαβ + 0 = bαβ; as aγ · ξ = 0 (7.41)

This establishes the equivalence of the two definitions Eqs. [(7.38) and (7.41)] of the
second fundamental quadratic form.

Deduction 7.3.2 The integrability conditions: In order to get insight into the
significance of the tensor bαβ , let us examine the Gauss’s formula Eq. (7.34), as

xiα,β = bαβ ξi,

where

xiα,β =
∂2xi

∂uα∂uβ
+ g

{
i
j k

}
xjαx

k
β − a

{
δ

α β

}
xiδ

ηi =
1

2
εαβεijkx

j
αx

k
β and xiα =

∂xi

∂uα
.



392 Surfaces in Space

If we insert these expressions in Eq. (7.34), we obtain a set of second order partial
differential equations, in which the dependent variables xi are the functions of the
surface co-ordinates uα. The coefficients in the differential equations are functions of
the metric coefficients gij of the manifold in which the surface S, defined by

xi = xi(u1, u2); i = 1, 2 (7.42)

are immersed; they are also functions of

aαβ = gij
∂xi

∂uα
∂xj

∂uβ

and bαβ . If Eq. (7.42) is given, we can compute aαβ and bαβ , insert the approximate
expressions in Eq. (7.34) and, of course, Eq. (7.34) will be satisfied identically.

Conversely, if the functions aαβ and bαβ are given, Eq. (7.34) will become the
equation of conditions and in general they will have no solutions yielding Eq. (7.42)
of the surface S. In order that the terms aαβ and bαβ are related to some surface, it
is necessary that xi satisfy the conditions of integrability

∂2xiα
∂uγ∂uβ

=
∂2xiα

∂uβ ∂uγ
, (7.43)

whenever the function xαi are continuously differentiable of degree 2. Equation (7.43)
is equivalent to

xiα,βγ − xiα,γβ = Rµαβγx
i
µ, (7.44)

where Rµαβγ is the Riemann second kind curvature tensor, of type (1, 3), formed with
the coefficients aαβ of the first fundamental quadratic form. Equation (7.44) involve
third order partial derivatives of the co-ordinates xi and we shall assume from now on
that the functions entering in Eq. (7.42) are continuously thrice differentiable.

We shall see that the conditions of integrability Eq. (7.44) impose certain restric-
tions on the possible choice of functions bαβ and aαβ . These restrictive conditions are
known as the equations of Gauss and Codazzi.

7.4 Structure Formulas for Surfaces

Two fundamental sets of relationships involve the parts of the moving triad (A,B, ξ)
of a surface at any point P . Any vector bound at P can be represented as a linear com-
binations of those vectors. If the derive of those vectors exist, then the corresponding
combinations are called the formulae of Frenet.
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7.4.1 Equations of Weingarten

Weingarten’s formula is an expression for the derivatives of the unit normal vector ξi

to the surface S. Since ξi, the contravariant components of the normal vector ξ is a
unit vector, so,

gijξ
iξj = 1. (7.45)

Here we have to show that the partial derivatives of this vector with respect to the
co-ordinates u1 and u2 can be represented as a linear combination of vectors. Using
the tensor derivative formula

ξi,α =
∂ξi

∂uα
+ g

{
i
j k

}
ξixkα

we have from Eq. (7.45)

gijξ
i
,αξ

j + gijξ
iξj,α = 0 ⇒ gijξ

iξj,α = 0. (7.46)

Geometrically, Eq. (7.46) shows that ξj,α, from the point of view of space co-ordinates,
considered as a space vector, is orthogonal to the unit normal ξi, and hence, it lies in
the tangent plane to the surface. Accordingly, it can be expressed as a linear form in
the base vectors xiα, as

ξi,α = cβαx
i
β , (7.47)

where cβαs are to be determined. Since ξi is normal to the surface, the tensor derivative
of the orthogonality relation gijx

i
αξ

j = 0 gives

gijx
i
α,βξ

j + gijx
i
αξ

j
,β = 0

or
gijbαβξ

iξj + gijx
i
αξ

j
,β = 0; as xiα,β = bαβξ

i

or
bαβ + gijx

i
αc
γ
βx

j
γ = 0

or
bαβ + aαγc

γ
β = 0; as aαβ = gijx

i
αx

j
β

or
aαγbαβ + aαγ aαγc

γ
β = 0

or

cγβ = −aαγ bαβ , as aαβaβγ = δαγ . (7.48)



394 Surfaces in Space

Consequently, Eq. (7.47) reduces to

ξi,α = −aγβbγαxiβ . (7.49)

These equations are known as Weingarten’s formula, which can be used to derive
the equations of Gauss and Codazzi. We have noticed that the formulae of Weingarten
are the analogue of the formulae of Frenet. If we write

Cαβ = gij ξ
i
,α ξ

j
,β, (7.50)

we see that Cαβ is symmetric tensor of order (0, 2) and we call the quadratic form

C ≡ Cαβdu
αduβ (7.51)

the third fundamental form of the surface. Using Weingarten formula Eq. (7.49), we
get

Cαβ = gij ξ
i
,αξ

j
,β = gij

(
aηγbηαx

i
γ

) (
aµνbµβx

j
ν

)
= aγνa

ηγbηαa
µνbµβ = aηµbηαbµβ .

This is a relation between three fundamental forms on a surface. This relation also
shows that the third fundamental form is not actually a fundamental form, because
this can be obtained from first and second fundamental forms.

Deduction 7.4.1 From the Weingarten formula Eq. (7.49), we get

ξi,α = −aβγbβαxiγ = 0; if bαβ = 0.

Hence, ξi is a constant vector. Hence, the surface is a plane. Therefore, if bαβ = 0,
then the normal vector to the surface is constant which means that the surface is a
plane.

7.4.2 Equations of Gauss and Codazzi

The question arises whether, if functions aαβ(u
1, u2) and bαβ(u

1, u2) are given, there
always exists a surface such that the given functions are the coefficients of the corre-
sponding fundamental forms. In the case of functions of class ≥ 3 the answer to this
problem is negative unless certain integrability conditions are satisfied which we will
now derive. Let us consider the tensor derivative of Eq. (7.34), we get

xiα,βγ = bαβ,γ ξi + bαβξ
i
,γ

= bαβ,γ ξi − bαβa
µσbµγx

i
σ; using Eq. (7.49)
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or

xiα,βγ − xiα,γβ = (bαβ,γ − bαγ,β)ξ
i + bαγa

µσbµβx
i
σ − bαβa

µσbµγx
i
α

= (bαβ,γ − bαγ,β)ξ
i + aµσ(bαγbµβ − bαβbµγ)x

i
σ

or

(bαβ,γ − bαγ,β)ξ
i − aµσ(bαβbµγ − bαγbµβ)x

i
σ ≡ Rσαβγx

i
σ, (7.52)

if we write

xiα,βγ − xiα,γβ = Rσαβγx
i
σ,

where Rσαβγ is the Riemann curvature of the surface. Multiplying Eq. (7.52) by ξi and

using the fact that ξiξi = 1 and xiσξi = 0, we get

bαβ,γ − bαγ,β = 0. (7.53)

These equations are called the Codazzi equations of the surface, which will constitute all
integrability conditions of the formulae of Weingarten. Again, multiplying Eq. (7.52)
by gijx

j
ρ, we get

aρσR
σ
αβγ = aρσbαγa

µσbµβ − aρσbαβa
µσbµγ

or

Rραβγ = bρβbαγ − bργbαβ . (7.54)

These equations are called the Gauss equations of surface. Since α, β assume values
1, 2 and bαβ = bβα, we see that there are two independent equations of Codazzi given
by

bαα,β − bαβ,α = 0; α ̸= β (7.55)

or
∂bαα
∂uβ

−
∂bαβ
∂uα

− bαµ

{
µ
α β

}
+ bµβ

{
µ
α α

}
= 0; α ̸= β

and only one independent equation of Gauss is

b = b11b22 − b212 = R1212; where, b = |bij |. (7.56)

This equation relates the coefficients bαβ and aαβ in the two fundamental quadratic
forms. Thus, it follows from the theory of partial differential equation that if the
tensors aαβ and bαβ are the fundamental tensors of the surface S : xi = xi

(
u1, u2

)
,

Eqs. (7.53) and (7.56) are satisfied. Conversely, if the two sets of functions aαβ and
bαβ satisfying Eqs. (7.53) and (7.56) are prescribed, and if aαβdu

αduβ is a positive
definite form, then the surface S is determined (locally) to within a rigid body space.
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Deduction 7.4.2 It is clear that, when β = γ, we get identities from bαβ,γ−bαγ,β = 0
of the form 0 = 0. Again the equation with β = p and γ = q is equivalent to the
equation β = q and γ = p. Hence, there are only two independent equations, as

b11,2 − b12,1 = 0 and b21,2 − b22,1 = 0.

These two equations are equivalent to

bαα,β − bαβ,α = 0; α ̸= β.

This shows that, bαβ,γ − bαγ,β = 0 is equivalent to bαα,β − bαβ,α = 0; α ̸= β.

Deduction 7.4.3 From Codazzi equations, we get bαβ,γ − bαγ,β = 0; α ̸= β. Let
bαβ = λaαβ, then

bαβ,γ = λ,γaαβ and bαγ,β = λ,βaαγ

or
λ,γaαβ − λ,βaαγ = 0

or
λ,γaαβa

αβ − λ,βaαγa
αβ = 0

or
2λ,γ − λ,βδ

β
γ = 0 ⇒ λ,γ = 0,

which implies that λ is a constant. Thus, if bαβ = λaαβ , where λ is a scalar, then λ is
a constant.

7.4.3 Curvatures of a Surface

From Eq. (6.52), the total curvature κ of a surface is given by

κ =
R1212

a
; a = a11a22 − a212 = |aij |. (7.57)

Using the Gauss equation [Eq. (7.56)], the total curvature κ is given by

κ =
b11b22 − b212
a11a22 − a212

=
b

a
. (7.58)

Thus, the Gaussian curvature is equal to the quotient of the determinants of the second
and first fundamental quadratic forms. A surface S is said to be developable if κ = 0
identically at each point of the surface. A developable surface is a surface which can
be developed into a plane. We now define another important invariant H, given by
the formula

H ≡ 1

2
aαβbαβ, (7.59)

which is called the mean curvature of the surface. The invariants κ,H are connected
with the ordinary curvatures of certain curves formed by taking normal sections of the
surface (Section 8.2).
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7.4.4 Minimal Surfaces

If at every point of a surface of class ≥ 2, the total curvature

H ≡ 1

2
aαβbαβ = 0, (7.60)

then the surface S is called a minimal surface. Minimal surfaces derive their name from
the fact that they are surfaces of minimum area satisfying given boundary conditions.
They are illustrated by the shapes of thin soap films in equilibrium, with the air
pressure the same on both sides. If this property of least area be taken as defining
minimal surfaces, the use of the calculus of variations leads to the vanishing of the
first curvature as an equivalent property. Later, we have to prove the following very
important properties:

(i) Minimal surfaces cannot have elliptical points.

(ii) The lines of curvature on a minimal surfaces form an isometric system.

(iii) The asymptotic lines on a minimal surface form an orthogonal system.

(iv) Asymptotic lines on a minimal surface form on orthogonal system.

Theorem 7.4.1 (Theorema Egregium of Gauss): The Gaussian curvature κ is
an intrinsic property of a surface, depending only on the first fundamental form and
their derivatives but is independent of the second fundamental form.

Proof: The total curvature κ is given by

κ =
b

a
=

b11b22 − b212
a11a22 − a212

.

Thus, the total curvature, as obtained, depends upon the first fundamental form as
well as the second fundamental form. But we have the equations of Gauss,

Rαβγδ = bαγbβδ − bαδbβγ ;

from which it follows that R1212 = b11b22−b212. Therefore, κ = R1212
a . But the Riemann

curvature tensor depends only upon the first fundamental form aαβ together with their
derivatives. Hence, the theorem.

The practical question of whether inhabitants of a fog-enshrouded planet could,
solely by measuring distances on the surface of the planet, determine its curvature, is
answered in the affirmative by this theorem. Now,

(i) If two surfaces are locally isometric, then this theorem shows that, the Gaussian
curvatures are identical.
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(ii) Minding’s theorem states that, if two surfaces are the same constant Gaussian
curvature, then they are locally isometric.

(iii) In the case of constant Gaussian curvature, Beltrami’s theorem tells us that
there is a parameterisation for S for which the first fundamental form takes the
form

Metric Gaussian curvature

ds2 = a2(dx1)2 + a2 sinh2 x1(dx2)2 κ = − 1
a2
< 0

ds2 = (dx1)2 + (dx2)2 κ = 0

ds2 = a2(dx1)2 + a2 sin2 x1(dx2)2 κ = 1
a2
> 0

(iv) From Eq. (7.54) we see that in case of surfaces of vanishing curvature (for
example planes, cones, cylinders) all components of the curvature tensor are
zero.

EXAMPLE 7.4.1 Show that

bαβ = gijx
i
α,βξ

j =
1

2
εγδεijkx

i
α,βx

j
γx

k
δ .

Solution: Equation (7.13) tells us Ai = xiαA
α; Bj = xjβB

α. If θ be the angle between

the vectors Ai and Bj , we can write

AB sin θ = εαβA
αBβ .

If ξ is the unit surface normal, then

ξi =
εijkx

j
αAαxkβB

β

εαβAαBβ
⇒

(
ξiεαβ − εijkx

j
αx

k
β

)
AαBβ = 0.

Since Aα and Bβ are arbitrary, we have, ξiεαβ = εijkx
j
αxkβ and therefore

ξiεαβε
αβ = εαβεijkx

j
αx

k
β

or

ξi · 2 = εγδεijkx
j
γx

k
δ ⇒ ξi =

1

2
εγδεijkx

j
γx

k
δ .

Using Eq. (7.34) as xiα,β = bαβξ
i, the Gauss’s formula, we get

bαβ = xiα,βξi = xiα,βgijξ
j = gijx

i
α,βξ

j .

Also, using the Eq. (7.34), we get

bαβ = gijx
i
α,βξi =

1

2
εijkx

j
γx

k
δx

i
α,β .
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Combining these results, we get

bαβ = gijx
i
α,βξ

j =
1

2
εγδεijkx

i
α,βx

j
γx

k
δ .

EXAMPLE 7.4.2 Prove that C − 2HB + κA = 0, where the notations have their
usual meaning.

Solution: The notations have the following expressions:

C : The third fundamental form of the surface ≡ cαβdu
αduβ .

B : The second fundamental form of the surface ≡ bαβdu
αduβ .

A : The first fundamental form of the surface ≡ aαβdu
αduβ .

κ : The Gaussian curvature = R1212
a .

H : The mean curvature of the surface = 1
2a

αβbαβ .

Let us take the Gauss’s formula,

Rραβγ = bρβbαγ − bργbαβ and Rραβγ = κεραεβγ ,

we get

κεραεβγ = bρβbαγ − bργbαβ .

Multiplying both sides by aργ , we get

κεραεβγa
ργ = aργbρβbαγ − aργbργbαβ

or

−κaαβ = aργbρβbγα − aργbργbαβ ; as aαβ = −aργεραεβγ

or

κaαβ = 2Hbαβ − cαβ ; as cαβ = aργbργbαβ

or

cαβ − 2Hbαβ + κaαβ = 0

or

cαβdu
αduβ − 2Hbαβdu

αduβ + κaαβdu
αduβ = 0

or

C − 2HB + κA = 0.

EXAMPLE 7.4.3 Show that
(i) aαβcαβ = 4H2 − 2κ. (ii) gijξ

iξj,αβ = −cαβ .
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Solution: (i) Using the relation κaαβ = 2Hbαβ − cαβ , we get

κaαβλ
αλβ = 2Hbαβλ

αλβ − cαβλ
αλβ

or

κ = 2Hbαβλ
αλβ − cαβλ

αλβ .

Also, using the relation κaαβ = 2Hbαβ − cαβ , we get

cαβa
αβ − 2Hbαβa

αβ + κaαβa
αβ = 0

or

aαβcαβ − 2H · 2H + κ · 2 = 0; as aαβa
αβ = 2

or

cαβa
αβ = 4H2 − 2κ.

(ii) We know that, gijξ
iξj,α = 0. Taking the tensor derivative of both sides, we get

gijξ
i
,βξ

j
,α + gijξ

iξj,αβ = 0

or

gijξ
iξj,αβ = −gijξi,βξj,α = −cαβ.

EXAMPLE 7.4.4 If bγδ is the cofactor of bγδ in |bγδ|, divided by |bγδ|, show that

xiα = −aαδbδγξi,γ .

Solution: From the definition,

bγδ =
cofactor of bγδ in |bγδ|

|bγδ|

with the property bγδbαδ = δγα. Hence,

−aαδbδγxi,γ = −aαδbδγ
(
−aβσbβγxiσ

)
= aαδa

βσbσγbβγx
i
σ

= aαµa
βσδµβx

i
σ = aαµa

µσxiσ = δσαx
i
σ = xiα.

EXAMPLE 7.4.5 Find the Gaussian curvature at the point (2, 0, 1) of the surface
(x1)2 − (x2)2 = 4x3, where x1, x2, x3 are rectangular Cartesian co-ordinates.
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Solution: Let the parametric representation of the surface is given by

x1 = u1 + u2, x2 = u1 − u2, x3 = u1u2

i.e.

r = (x1, x2, x3) = (u1 + u2, u1 − u2, u1u2).

Therefore, at (2, 0, 1), we have

u1 =
1

2
(x1 + x2) = 1 and u2 =

1

2
(x1 − x2) = 1.

For the first fundamental form of the surface [Eq. (7.2)] the tensors aαβ are given by

a11 =
∂xi

∂u1
∂xi

∂u1
=

(
∂x1

∂u1

)2

+

(
∂x2

∂u1

)2

+

(
∂x3

∂u1

)2

= 12 + 12 + (u2)2 = 2 + (u2)2.

a22 =
∂xi

∂u2
∂xi

∂u2
=

(
∂x1

∂u2

)2

+

(
∂x2

∂u2

)2

+

(
∂x3

∂u2

)2

= 12 + (−1)2 + (u1)2 = 2 + (u1)2.

a12 =
∂xi

∂u1
∂xi

∂u2
=
∂x1

∂u1
∂x1

∂u2
+
∂x2

∂u1
∂x2

∂u2
+
∂x3

∂u1
∂x3

∂u2

= 1 · 1 + 1 · (−1) + u2 · u1 = u1u2 = a21.

Therefore,

a =

∣∣∣∣2 + (u2)2 0
0 2 + (u2)2

∣∣∣∣ = 2{(u1)2 + (u2)2 + 2}.

For the given parametric surface, A = (1, 1, u2), B = (1,−1, u1) and so

A×B = (u1 + u2)̂i+ (u2 − u1)ĵ − 2k̂.

Therefore, the normal vector ξ is given by

ξ =
1

|A×B|
(A×B) =

1√
2{(u1)2 + (u2)2 + 2}

(u1 + u2, u2 − u1,−2).

Thus the covariant tensors bαβ for the second fundamental form are given by

b11 =
−1

√
2K

3
2

(
(u2)2 + 2− u1u2,−{(u2)2 + 2 + u1u2}, 2u1

)
· (1, 1, u2),

[where K = (u1)2 + (u2)2 + 1];
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=
−1

√
2K

3
2

[
(u2)2 + 2− u1u2 − (u2)2 − 2− u1u2 + 2u1u2

]
= 0.

b22 =
−1

√
2K

3
2

(
(u1)2 + 2− u1u2, {(u1)2 + 2 + u1u2}, 2u2

)
· (1,−1, u1)

=
−1

√
2K

3
2

[
(u1)2 + 2− u1u2 − (u1)2 − 2− u1u2 + 2u1u2

]
= 0.

b12 = −1

2

[
∂ξ

∂u1
· ∂r
∂u2

+
∂ξ

∂u2
· ∂r
∂u1

]

= − 2

2
√
2

[
(u2)2 + 1 + (u1)2

{(u1)2 + (u2)2 + 1}
3
2

+
(u1)2 + 1 + (u2)2

{(u1)2 + (u2)2 + 1}
3
2

]

= − 2√
2{(u1)2 + (u2)2 + 2}

.

Therefore,

b =

∣∣∣∣∣∣
0 −2√

2{(u1)2+(u2)2+2}
−2√

2{(u1)2+(u2)2+2}
0

∣∣∣∣∣∣ = − 2

(u1)2 + (u2)2 + 2
.

Thus, the Gaussian curvature κ is given by

κ =
b

a
= − 1

[(u1)2 + (u2)2 + 2]2
= − 1

16
; at (u1, u2) = (1, 1).

EXAMPLE 7.4.6 Find the Gaussian and mean curvature of the surface x1x2 = x3.

Solution: Let the parametric representation of the surface (hyperbolic paraboloid)
is given by, x1 = u1, x2 = u2 then, x3 = u1u2. i.e.

r = (x1, x2, x3) = (u1, u2, u1u2).

The symmetric covariant tensors aαβ of the first fundamental form are given by

a11 =

(
∂x1

∂u1

)2

+

(
∂x2

∂u1

)2

+

(
∂x3

∂u1

)2

= 1 + (u2)2.

a22 =

(
∂x1

∂u2

)2

+

(
∂x2

∂u2

)2

+

(
∂x3

∂u2

)2

= 1 + (u1)2.

a12 =
∂x1

∂u1
∂x1

∂u2
+
∂x2

∂u1
∂x2

∂u2
+
∂x3

∂u1
∂x3

∂u2
= u1u2 = a21.
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Therefore,

a =

∣∣∣∣1 + (u2)2 u1u2

u1u2 1 + (u1)2

∣∣∣∣ = 1 + (u1)2 + (u2)2.

The reciprocal tensors are given by

a11 =
1 + (u1)2

1 + (u1)2 + (u2)2
; a22 =

1 + (u2)2

1 + (u1)2 + (u2)2
; a12 =

−u1u2

1 + (u1)2 + (u2)2
= a21.

Since r = (x1, x2, x3) = (u1, u2, u1u2), we have, A = (1, 0, u2), B = (0, 1, u1) and so

A×B = −u2î− u1ĵ + k̂.

Therefore, the normal vector ξ is given by

ξ =
1

|A×B|
(A×B) =

1√
(u1)2 + (u2)2 + 1

(−u2,−u1, 1).

The symmetric covariant tensors bαβ are given by

b11 = − ∂ξ

∂u1
· ∂r
∂u1

=
−1

{(u1)2 + (u2)2 + 1}
3
2

(
u1u2,−{(u2)2 + 1},−u1

)
· (1, 0, u2)

=
−1

{(u1)2 + (u2)2 + 1}
3
2

[
u1u2 − u1u2

]
= 0.

b22 = − ∂ξ

∂u2
· ∂r
∂u2

=
−1

{(u1)2 + (u2)2 + 1}
3
2

[
−{(u1)2 + 1},−u1u2, u2

]
· (0, 1, u1)

=
1

{(u1)2 + (u2)2 + 1}
3
2

[
u1u2 − u1u2

]
= 0.

b12 = −1

2

[
∂ξ

∂u1
· ∂r
∂u2

+
∂ξ

∂u2
· ∂r
∂u1

]

= −1

2

[
− (u2)2 + 1 + (u1)2

{(u1)2 + (u2)2 + 1}
3
2

− (u1)2 + 1 + (u2)2

{(u1)2 + (u2)2 + 1}
3
2

]

=
1√

(u1)2 + (u2)2 + 1
= b21.

Therefore,

b =

∣∣∣∣∣∣∣∣
0

1√
(u1)2 + (u2)2 + 1

1√
(u1)2 + (u2)2 + 1

0

∣∣∣∣∣∣∣∣ = − 1

(u1)2 + (u2)2 + 1
.
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The Gaussian curvature κ is given by the formula,

κ =
b

a
= − 1

[(u1)2 + (u2)2 + 1]2
< 0.

Therefore, the mean curvature H is given by

H =
1

2
aαβbαβ =

1

2

[
a11b11 + a22b22 + 2a12b12

]
=

1

2

[
0 + 0 +

−u1u2

1 + (u1)2 + (u2)2
× 1√

(u1)2 + (u2)2 + 1

]

=
−u1u2

{1 + (u1)2 + (u2)2}3/2
.

EXAMPLE 7.4.7 Find the mean curvature of the surface r = (u, v, u2 − v2).

Solution: For the first fundamental form of the surface [Eq. (7.2)], aαβ are given by

a11 =

(
∂x1

∂u

)2

+

(
∂x2

∂u

)2

+

(
∂x3

∂u

)2

= 1 + 4u2.

a22 =

(
∂x1

∂v

)2

+

(
∂x2

∂v

)2

+

(
∂x3

∂v

)2

= 1 + 4v2.

a12 =
∂x1

∂u

∂x1

∂v
+
∂x2

∂u

∂x2

∂v
+
∂x3

∂u

∂x3

∂v
= −4uv = a21.

Therefore,
a = (1 + 4u2)(1 + 4v2)− 16u2v2 = 1 + 4u2 + 4v2.

The reciprocal tensors are given by

a11 =
1 + 4v2

1 + 4u2 + 4v2
; a22 =

1 + 4u2

1 + 4u2 + 4v2
; a12 =

4uv

1 + 4u2 + 4v2
= a21.

For the second fundamental form, the symmetric covariant tensors are given by

b11 =
2√

1 + 4u2 + 4v2
; b22 =

−2√
1 + 4u2 + 4v2

and b12 = 0 = b21.

Therefore, the mean curvature H is given by

H =
1

2
aαβbαβ =

1

2

[
a11b11 + a22b22 + 2a12b12

]
=

1

2

[
2(1 + 4v2)

(1 + 4u2 + 4v2)3/2
− 2(1 + 4u2)

(1 + 4u2 + 4v2)3/2
+ 2 · 4uv

1 + 4u2 + 4v2
· 0
]

=
1 + 4v2 − 1− 4u2

(1 + 4u2 + 4v2)3/2
=

4(v2 − u2)

(1 + 4u2 + 4v2)3/2
.
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EXAMPLE 7.4.8 Show that the right helicoid given by

x1 = u1 cosu2; x2 = u1 sinu2; x3 = cu2

is a minimal surface.

Solution: For the first fundamental form of the surface [Eq. (7.2)], aαβ are given by

a11 = (cosu2)2 + (sinu2)2 + 0 = 1.

a22 = (−u1 sinu2)2 + (u1 cosu2)2 + (c)2 = (u1)2 + c2.

a12 =
∂x1

∂u1
∂x1

∂u2
+
∂x2

∂u1
∂x2

∂u2
+
∂x3

∂u1
∂x3

∂u2

= cosu2(−u1 sinu2) + sinu2(u1 cosu2) + 0 = 0 = a21.

Therefore, a = c2 + (u1)2. The reciprocal tensors are given by

a11 =
c2 + (u1)2

c2 + (u1)2
= 1; a22 =

1

c2 + (u1)2
; a12 = 0 = a21.

Now, we calculate the tensors of second fundamental form. Since r = (x1, x2, x3)
= (u1 cosu2, u1 sinu2, cu2), so,

A = (cosu2, sinu2, 0) and B = (−u1 sinu2, u1 cosu2, c)

A×B =

∣∣∣∣∣∣
î ĵ k̂

cosu2 sinu2 0
−u1 sinu2 u1 cosu2 c

∣∣∣∣∣∣ = c sinu2î− c cosu2ĵ + u1k̂

ξ =
1

|A×B|
(A×B) =

1√
c2 + (u1)2

(c sinu2,−c cosu2, u1).

Thus, the covariant tensors bαβ for the second fundamental form are given by

b11 = 0, b22 = 0 and b12 = − c√
c2 + (u1)2

= b21.

Therefore, the mean curvature H is given by

H =
1

2
aαβbαβ =

1

2

[
a11b11 + a22b22 + 2a12b12

]
=

1

2

[
1× 0 +

1

c2 + (u1)2
× 0 + 2× 0×

(
−c√

c2 + (u1)2

)]
= 0.

Since the mean curvature H = 0, at every point of the given surface, so, it is a
minimal surface.
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EXAMPLE 7.4.9 Calculate the fundamental magnitudes for the conicoid

x1 = u1 cosu2; x2 = u1 sinu2; x3 = f(u2),

where u1, u2 are parameters. Find also Gaussian and mean curvature.

Solution: The parametric representation of the surface is given by

r = (x1, x2, x3) =
(
u1 cosu2; u1 sinu2; f(u2)

)
,

The first fundamental magnitudes aαβ are given by

a11 =

(
∂x1

∂u1

)2

+

(
∂x2

∂u1

)2

+

(
∂x3

∂u1

)2

= (cosu2)2 + (sinu2)2 + 02 = 1,

a22 =

(
∂x1

∂u2

)2

+

(
∂x2

∂u2

)2

+

(
∂x3

∂u2

)2

= (−u1 sinu2)2 + (u1 cosu2)2 + f21 = (u1)2 + f21 ,

a12 =
∂x1

∂u1
∂x1

∂u2
+
∂x2

∂u1
∂x2

∂u2
+
∂x3

∂u1
∂x3

∂u2
= 0 = a21,

where f1 =
∂f
∂u2

. Therefore,

a =

∣∣∣∣a11 a12
a12 a22

∣∣∣∣ = ∣∣∣∣1 0
0 (u1)2 + f21

∣∣∣∣ = (u1)2 + f21 .

The reciprocal tensors are given by

a11 =
(u1)2 + f21
(u1)2 + f21

= 1; a22 =
1

(u1)2 + f21
; a12 =

0

(u1)2 + f21
= 0 = a21.

Since r = (x1, x2, x3) =
(
u1 cosu2; u1 sinu2; f(u2)

)
, we have

A = (cosu2, sinu2, 0) and B = (−u1 sinu2, u1 cosu2, f1)

A×B =

∣∣∣∣∣∣
î ĵ k̂

cosu2 sinu2 0
−u1 sinu2 u1 cosu2 f1

∣∣∣∣∣∣ = f1 sinu
2î+ f1 cosu

2ĵ + u1k̂

Therefore, the normal vector ξ is given by

ξ =
1

|A×B|
(A×B) =

1√
(u1)2 + f21

(
f1 sinu

2,−f1 cosu2, u1
)
.
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The symmetric covariant tensors bαβ are given by

b11 =
∂ξ

∂u1
· ∂r
∂u1

= (0, 0, 0).
1√

(u1)2 + f21

(
f1 sinu

2,−f1 cosu2, u1
)
= 0

b22 =
∂ξ

∂u2
· ∂r
∂u2

= (− sinu2, cosu2, 0).
1√

(u1)2 + f21

(
f1 sinu

2,−f1 cosu2, u1
)

= − f1√
(u1)2 + f21

b12 =
(
−u1 cosu2,−u1 sinu2, f2

)
.

1√
(u1)2 + f21

(
f1 sinu

2,−f1 cosu2, u1
)

=
u1f2√

(u1)2 + f21
= b21,

where f2 =
∂2f

(∂u2)2
. Therefore,

b =

∣∣∣∣ b11 b12
b12 b22

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

0
u1f2√

(u1)2 + f21
u1f2√

(u1)2 + f21
− f1√

(u1)2+f21

∣∣∣∣∣∣∣∣∣ = −
(
u1f2

)2
(u1)2 + f21

.

The Gaussian curvature κ is given by the formula

κ =
b

a
= −

(
u1f2

)2[
(u1)2 + f21

]2 < 0.

Therefore, the mean curvature H is given by

H =
1

2
aαβbαβ =

1

2

[
a11b11 + a22b22 + 2a12b12

]
=

1

2

[
0 +

1

(u1)2 + f21
×

(
−f1√

(u1)2 + f21

)
+ 0

]
=

−f1
2{(u1)2 + f21 }3/2

.

7.5 Exercises

1. Prove that the space vector perpendicular to λi and tangent to the surface is

µi = xiαµ
α,

where µi is the unit normal vector in the surface.
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2. (i) Prove that for any curve on a surface κ2 = χ2
g + κ2(n).

(ii) Prove that the covariant derivative bαβ,γ can be written in the form

bαβ,γ =
∂bαα
∂uγ

− a

{
µ
α γ

}
bµβ − a

{
µ
β γ

}
bαµ.

3. Show that (i) bαβ = −gijξi,αx
j
β; (ii) a

αβxrα,β = 2Hξr.

4. If the space co-ordinates are rectangular Cartesian, show that

bαβ =
1√
a
εijk

∂2xi

∂uα∂uβ
xj1x

k
2.

5. Show that a surface is a sphere if and only if its second fundamental form is a
non-zero constant multiple of the first fundamental form.

6. Show that the second fundamental form for the

(i) paraboloid r = (u, v, u2 − v2) is given by

B ≡ 2√
4u2 + 4v2 + 1

[(du)2 − (dv)2].

(ii) helicoid r = (u cos v, u sin v, f(u) + cv) is given by

B ≡ 1√
u2 + f21u

2 + c2
[uf11(du)

2 − 2cdudv + f1u
2(dv)2].

(iii) the surface of revolution r = (u cosϕ, u sinϕ, f(u)) is given by

B ≡ 1√
1 + f21

[f11(du)
2 + uf1(dϕ)

2].

7. Determine the second fundamental form of a surface represented in the form
x3 = f(x1, x2).

8. Prove by direct calculation that the coefficients of the second fundamental form
are the components of a covariant tensor of second order with respect to co-
ordinate transformations which preserve the sense of the unit normal vector ζ.

9. Taking x, y as parameters, calculate the fundamental magnitudes to the surface

2z = ax2 + 2hxy + by2

and show that the normal to the surface is given by

ξ =
1√

1 + (ax+ hy)2 + (hx+ by)2
(−ax− hy,−hx− by, 1).
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10. Show that the mean curvature for the

(i) paraboloid r = (u, v, u2 − v2) is given by

H =
4(v2 − u2)

[4u2 + 4v2 + 1]3/2
.

(ii) hyperbolic paraboloid x1x2 = x3 is given by

H = − x3

[(x1)2 + (x2)2 + 1]3/2
.

(iii) helicoid r = (u cos v, u sin v, f(u) + cv) is given by

H =
1

2

(1 + f21 )u
2f1 + 2c2f11 + uf11(u

2 + c2)

[u2 + f21u
2 + c2]3/2

.

(iv) right helicoid r = (x1, x2, x3) =
(
u1 cosu2;u1 sinu2; cu2

)
is zero.

11. Show that the Gaussian curvature for the

(i) paraboloid r = (u, v, u2 − v2) is given by

κ = − 4

[4u2 + 4v2 + 1]2
.

(ii) the surface of revolution r = (u cosϕ, u sinϕ, f(u)) is given by

κ =
f1f11

u(1 + f21 )
2
.

(iii) helicoid r = (u cos v, u sin v, f(u) + cv) is given by

κ =
u3f1f22 − c2

[u2 + f21u
2 + c2]2

.

(iv) right helicoid r = (x1, x2, x3) =
(
u1 cosu2;u1 sinu2; cu2

)
is given by

κ = − c2

(u2 + c2)2
.

(v) the anchor ring

r = (x1, x2, x3) =
(
(b+ a cosu1) cosu2; (b+ a cosu1) sinu2; a sinu1

)
is given by κ =

cosu1

a(b+ a cosu1)
.
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12. Calculate the fundamental magnitudes and unit normals for the

(i) x1 = u1 cosu2; x2 = u1 sinu2; x3 = cu2,
(ii) x1 = u1 cosu2; x2 = u1 sinu2; x3 = f(u1),
(iii) x1 = u1 cosu2; x2 = u1 sinu2; x3 = f(u1) + cu2,

where u1, u2 are parameters. Find also Gaussian and mean curvature.

13. Determine the discriminant b of the second fundamental form of a sphere.

14. Prove that a surface for which at every point all coefficients of the second fun-
damental form vanish is a plane.

15. If two curves on a surface cut at right angles, show that the sum of their geodesic
torsion is zero.

16. Prove that a surface, all of whose points are umbilics, is a sphere or a plane.

17. Prove that at each non-umbilical point of a surface, there exist two mutually
orthogonal directions for which the normal curvature attains its extreme values.

18. Find the equation for the principal curvatures of the surface

x1 = u1, x2 = u2, x3 = f(u1, u2),

the x co-ordinates being rectangular Cartesian.

19. Show that the equation of the principal curvatures for

(i) surface of revolution are κ(1) =
f11

(1+f21 )
3/2 and κ(2) =

f1
u(1+f21 )

3/2 .

(ii) surface (x1)2 + (x2)2 + (x3)2 = 1 are −1 and 1.

20. If two conjugate directions make angles θ1 and θ2 with a principal direction,
show that

tan θ1 tan θ2 = −κ1
κ2
.

21. If a geodesic on a surface is a plane curve, show that it is also a line of curvature
and conversely.

22. Prove that the lines of curvature on a surface are given by

εγµaαγaβµdu
αduβ = 0.

23. Show that the lines of curvature of the helicoid

x1 = u1 cosu2, x2 = u1 sinu2, x3 = f(u1) + cu2

are given by

c
[
1 + f21 + u1f1f11

]
(du1)2 − c

[
(u1)2 + c2 + (u1)2f21

]
(du2)2

+
[
{(u1)2 + c2}u1f11 − (1 + f21 )(u

1)2f1
]
du1du2 = 0.
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24. Show that the lines of curvature for the surface catenoid, given by

x1 = u1 cosu2, x2 = u1 sinu2, x3 = c cosh−1 u
1

c
,

where c is a constant, are the parametric curves.

25. If the co-ordinate curves are lines of curvature, prove that a12 = 0 = b12 and
conversely.

26. Calculate the Christoffel symbols of the second kind for the right helicoid, show
that circular helices on the surface are geodesics.

27. Calculate κ,H for two different parameterisation of the paraboloid
z = a(x2 + y2):

(i) as the surface of revolution for which f = x1, g = a(x1)2;
(ii) as the surface r = (y1, y2, a(y1)2 + a(y2)2).

Interpret the results.

28. Find the values of the mean curvature H and Gaussian curvature κ, when para-
metric curves are asymptotic lines.

29. If θ be the angle between the asymptotic directions, find the value of tan θ
2 .

30. Prove that on a surface is given by

x1 = a(u1 + u2), x2 = b(u1 − u2), x3 = u1u2,

where a and b are constants, the parametric curves are asymptotic lines.

31. Show that the parametric curves are asymptotic lines of the surface

x1 = u1 cosu2, x2 = u1 sinu2, x3 = au2.

Hints: For the surface we have to show that

b11 = 0, b22 = 0 and b12 = − a√
a2 + (u1)2

.

32. Prove that for an asymptotic direction the normal curvature is zero.

33. Show that if every point of a surface S is parabolic, then S is developable.



Chapter 8

Curves on a Surface

In Chapter 7, we assumed the surface co-ordinates to be uα and the space co-ordinates
xi, then the equation of a surface be given by

S : xi = xi(u1, u2). (8.1)

If the co-ordinates uα are given as functions of a parameter then the point represented
by these co-ordinates describes a curve on the surface as the parameter varies. We
shall take the arc length s of the curve as the arc parameter and consequently, the
equation of a smooth curve C lying on the surface S is given by

C : uα = uα(s). (8.2)

We see from Eq. (8.1) that the space co-ordinates of any point of the curve are also
functions of the arc parameter s and we obtain the space co-ordinates xi in the form

S : xi = xi(s) = xi
(
u1(s), u2(s)

)
, (8.3)

which is the equation of C regarded as a space curve. The properties of C can then
be studied with the aid of the Frenet–Serret formula, by analyzing the rates of change
of the unit tangent vector λ, the unit principal normal µ and the unit binormal ν.
Then its curvature κ and its torsion τ are connected with these vectors by the Frenet
formulae [Eq. (5.17)] as

δλi

δs
= κµi

δµi

δs
= −κλi + τγi

δγi

δs
= −τµi


(8.4)

Considering the curve as a curve on the surface we shall denote its unit tangent vector
by λα and its unit normal vector in the surface by ζα.

412
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8.1 Curves Theory on a Surface

If we regard C as a surface curve, defined by Eq. (8.2), the components λα of the unit
tangent vector λ are related to the space components λi of the same vector by the
formulas

λi =
dxi

ds
=
∂xi

∂uα
duα

ds
≡ xiαλ

α; where λα =
duα

ds
. (8.5)

If ζα is the unit normal to C in the tangent plane to the surface (Figure 8.1) and χg
is the geodesic curvature of C, then from Eq. (6.61) we get

δλα

δs
= χgζ

α.

Figure 8.1: Tangent and normals on the surface.

If we differentiate Eq. (8.5) intrinsically with respect to s, we get

δλi

δs
= xiα,βλ

αdu
β

ds
+ xiα

δλα

δs

or

χµi = xiα,βλ
αλβ + χgx

i
αζ

α,

where we use the Frenet formula δλi

δs = χµi. Using the Gauss’s formula xiα,β = bαβξ
i

and the space components ζi of ζ as ζi = xiαζ
α, the Eq. (8.5) becomes

χµi = bαβλ
αλβξi + χgζ

i, (8.6)
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where ξi is the unit normal to the surface S. Formula (8.6) states that the principal
normal µ to the curve C lies on the plane of the vectors ξ and ζ. Since ξ, ζ and λ are
orthogonal and ξ × ζ = λ, we have,

εijkξ
jζk = λi. (8.7)

Let θ be the angle between µ and ξ. Since the tangent vector λ is orthogonal to
the plane of ξ and µ, we have

µ× ξ = − sin θλ, i.e. εijkµ
jξk = − sin θλi. (8.8)

On multiplying by χ, the foregoing Eq. (8.8) becomes

εijkχµ
jξk = −χ sin θλi

or
εijk

(
bαβλ

αλβξj + χgζ
j
)
ξk = −χ sin θλi; using Eq. (8.6)

or

χg = χ sin θ; as εijkξ
jξk = 0 and εijkζ

jξk = −λi. (8.9)

Also, as θ be the angle between the principal normal µi and the surface normal ξi,
then the angle between µi and ζi is π

2 − θ, therefore,

cos θ = µiξj and cos
(π
2
− θ
)
= µiζj .

Therefore, using Eq. (8.6), we get

χµiξj = bαβλ
αλβξiξj + χgζ

iξj

or

χ cos θ = bαβλ
αλβξiξj + χgζ

iξj = bαβλ
αλβ. (8.10)

From Eq. (8.10) we see that the quantity bαβλ
αλβ is the same for all curves on the

surface S which have the same tangent vector λα at P. In particular, it has the same
value for the curve formed by the intersection of the normal plane containing ξ and
λ. But for every normal plane section the angle θ is either 0 or π radians, so that for
the normal plane section

χ cos θ = χ or − χ

and consequently, χ cos θ is also the same for all such curves. Since bαβλ
αλβ is an

invariant, the value of χ cos θ for every curve C tangent to λ is equal to the curvature
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χ(n) of the normal section in the direction λ. The curvature χ(n) is called the normal
curvature of the surface S in the direction λ. Thus Eq. (8.10) can be written as

χ(n) = χ cos θ = bαβλ
αλβ . (8.11)

Therefore, from Eq. (8.11), we state that, for all curves on a surface, which have the
same tangent vector, the quantity χ cos θ has the same value, where θ is the angle
between the surface normal and the principal normal, χ being the curvature of the
curve. Accordingly, Eq. (8.6) can be written in the form

χµi = χ(n)ξ
i + χgζ

i. (8.12)

Equation (8.12) states that χ(n) and χg are the components of the curvature χµi in
the direction of the vectors ξi and ζi.

Result 8.1.1 The radius of curvature ρ = 1
χ of any curve at a given point on the sur-

face is equal to the product of the radius of curvature ρ(n) =
1

χ(n)
of the corresponding

normal section at that point by cosine of the angle between the normal to the sur-
face and the principal normal to the curve. This is known as Meusnier’s theorem.
Mathematically, we have

ρ = ±ρ(n) cos θ. (8.13)

If S is a sphere, every normal section is a great circle of the sphere, and if C is any circle
drawn on the sphere, then the result [Eq. (8.13)] becomes obvious from elementary
geometric considerations.

If ds2 = aαβdu
αduβ and λα = duα

ds , Eq. (8.11) can be written in the form

χ(n) = bαβλ
αλβ = bαβ

duα

ds

duβ

ds

=
bαβdu

αduβ

ds2
=
bαβdu

αduβ

aαβduαduβ
=

B
A
. (8.14)

Result 8.1.2 If the surface is a plane, the normal curvature χ(n) = 0 at all points

of the plane, and if it is a sphere χ(n) = 1
R , where R is the radius of the sphere.

Accordingly, we conclude from Eq. (8.14) that for the plane bαβ = 0. Also, for the
sphere

bαβdu
αduβ =

1

R
aαβdu

αduβ (8.15)

so that aαβ = Rbαβ at all points of the sphere and for all directions duα. Therefore,
for a sphere bαβ = 1

Raαβ , i.e. bαβ and aαβ are proportional.



416 Curves on a Surface

Deduction 8.1.1 Since ζi is perpendicular to λi, it lies in the plane containing ξi

and µi. Also, it is tangent to the surface and hence the angle between µi and ζi is
π
2 − θ. If we multiply Eq. (8.6) by ζi, we get

χ cos
(π
2
− θ
)
= χg ⇒ χg = χ sin θ, (8.16)

which is the formula connecting the geodesic curvature of a surface curve with its
curvature.

Deduction 8.1.2 From Eq. (8.14), we have

χ(n) =
bαβdu

α duβ

aαβduα duβ
=

B
A
.

Squaring and adding Eqs. (8.11) and (8.16), we obtain

χ2
(n) + χ2

g = (χ cos θ)2 + (χ sin θ)2 = χ2.

Also, from the Eq. (8.12), it follows that:

gijχµ
iµj = gijbαβλ

αλβξiµj + χggijζ
iµj

or

χ = bαβλ
αλβ cos θ + χg cos

(π
2
− θ
)

= χ(n) cos θ + χg sin θ.

Deduction 8.1.3 On using relations (8.9) and (8.10), we get from Eq. (8.6)

χµi = bαβλ
αλβξi + χgζ

i

or
χµi = χ cos θξi + χ sin θζi

or
µi = cos θξi + sin θζi.

Deduction 8.1.4 If the surface is a plane, then any normal section at any point of
the plane is a straight line and, therefore, its curvature is zero and hence χ(n) = 0.
Therefore,

bαβdu
αduβ = 0,

for all directions duα, i.e. bαβ = 0. Thus, for a plane bαβ = 0.
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Deduction 8.1.5 The normal sections of a sphere are great circles, any other plane
section is a small circle. At any point the circles of curvature are identical with the
normal sections and therefore lie on the sphere.

EXAMPLE 8.1.1 Find the normal curvature of the right helicoid.

Solution: The parametric representation of the right helicoid is given by

x1 = u1 cosu2; x2 = u1 sinu2; x3 = cu2

i.e.

r = (x1, x2, x3) =
(
u1 cosu2; u1 sinu2; cu2

)
.

The symmetric covariant second order tensors aαβ for the first fundamental form of
the surface are given by

a11 = 1; a22 = (u1)2 + c2 and a12 = 0 = a21.

⇒ |aαβ | =
∣∣∣∣1 0
0 c2 + (u1)2

∣∣∣∣ = c2 + (u1)2 > 0.

The symmetric covariant tensors bαβ for the second fundamental form are given by

b11 = 0, b22 = 0 and b12 = − c√
c2 + (u1)2

.

⇒ |bαβ | =

∣∣∣∣∣∣∣
0 − c√

c2 + (u1)2

− c√
c2 + (u1)2

0

∣∣∣∣∣∣∣ = − c2

c2 + (u1)2
.

Therefore, the Gaussian curvature is given by

κ =
|bαβ |
|aαβ |

= − c2

[c2 + (u1)2]2
< 0.

Thus, the given surface is a surface of negative curvature. Also, it is a minimal surface
(as H = 0). Thus, the principal curvatures χ(1) and χ(2) are related as

χ(1) + χ(2) = 2H = 0 and χ(1).χ(2) = κ = − c2

[c2 + (u1)2]2
.
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Now, the normal curvature χ(n) of the given right helicoid is given by

χ(n) =
bαβdu

αduβ

aαβduαduβ
=

b11(du
1)2 + b22(du

2)2 + 2b12du
1du2

a11(du1)2 + a22(du2)2 + 2a12du1du2

=

[
−2c/

√
c2 + (u1)2

]
du1du2

(du1)2 + {c2 + (u1)2}(du2)2
.

= − 1√
c2 + (u1)2

2cdu1du2

[(du1)2 + {c2 + (u1)2}(du2)2]
.

EXAMPLE 8.1.2 Prove that the normal curvatures in the directions of the co-
ordinate curves are b11

a11
and b22

a22
, respectively.

Solution: Let the co-ordinate curve or parametric curve be taken, then for u1 curve;
i.e. du2 = 0, the normal curvature χ(n1) is given by

χ(n1) =
bαβdu

αduβ

aαβduαduβ
=

b11(du
1)2 + b22(du

2)2 + 2b12du
1du2

a11(du1)2 + a22(du2)2 + 2a12du1du2

=
b11(du

1)2

a11(du1)2
=
b11
a11

; as du1 ̸= 0.

The normal curvature χ(n2) along the u2 curve is given by

χ(n2) =
bαβdu

αduβ

aαβduαduβ
=

b11(du
1)2 + b22(du

2)2 + 2b12du
1du2

a11(du1)2 + a22(du2)2 + 2a12du1du2

=
b22(du

2)2

a22(du2)2
=
b22
a22

; as du2 ̸= 0.

EXAMPLE 8.1.3 If a curve is a geodesic on the surface, prove that it is either a
straight line or its principal normal is orthogonal to the surface at every point and
conversely.

Solution: From the formula, χg = χ sin θ, we get for a geodesic

χg = χ sin θ = 0 ⇒ either χ = 0 or sin θ = 0.

Therefore, when χ = 0, the curve is a straight line. If sin θ = 0, then θ = 0 or π. If θ = 0
or π, then the principal normal and the surface normal are colinear. Consequently,
the principal normal is orthogonal to the surface at every point.

EXAMPLE 8.1.4 Given the paraboloid of revolution S;x3 = (x1)2 + (x2)2. Deter-
mine the radius and centre of the circle of curvature of the normal section of S at a
point P : x3 = x30 whose tangent at P is parallel to the x1x2-plane.
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Solution: The intersection of the paraboloid S and the plane E : x3 = x30 is a circle
(Figure 8.2) of radius ρ =

√
x30 = r0. This is not a normal section of S. Let θ be the

angle between E and the normal to S, this can be obtained

tan

[
1

2
π − θ

]
= tanα = 2r0

or

cos θ = sinα =
tanα√

1 + tan2 α
=

2r0√
1 + 4r20

Figure 8.2: Paraboloid of revolution.

According to Meusnier’s theorem we thus obtain

ρ(n) =
ρ

cos θ
=

1

2

√
1 + 4r20

The centre of curvature of the normal section under consideration lies on the axis of
revolution.

8.2 Principal Curvatures

The point of intersection of consecutive normals along a line of curvature at P is
called a centre of curvature of the surface; and its distance from P , measured in the
direction of the unit normal, is called a (principal) radius of curvature of the surface.
The reciprocal of the principal radius of curvature is called a principal curvature.

Here, we will concern with the determination of the principal curvatures of a
surface. In Section 8.1 we considered the normal curvature χ(n) at an arbitrary point
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P of a surface as a function of the direction of the tangent to the normal sections at
P as Eq. (8.14)

χ(n) =
bαβdu

αduβ

ds2
=
bαβdu

αduβ

aαβduαduβ
=

B
A
.

The normal curvature χ(n) at a point depends on the directions of λα = duα

ds . We

shall now find out those directions λα = duα

ds (i.e. those values of du2 : du1) on the
surface for which the normal curvature χ(n) has the extreme values. These directions
are called the principal directions at the given point and the corresponding values for
χ(n) are called principal normal curvatures of the surface at P . Let us denote χ(n) by
χ(p) for the principal curvatures.

Since the vector λα is a unit vector, χ(n) has to be maximised subject to the

constraint aαβλ
αλβ = 1. The necessary condition for the extremum is

bαβλ
β + ϑaαβλ

β = 0;ϑ = Lagrangian parameter

or

bαβλ
αλβ + ϑaαβλ

αλβ = 0

or

χ(p) + ϑ1 = 0 ⇒ ϑ = −χ(p).

Thus, the equation, for the determination of directions yielding extreme values of χ(n)

as χ(p), can be written as(
bαβ − χ(p)aαβ

)
λβ = 0; α = 1, 2. (8.17)

The above set of homogeneous equations will possess non-trivial solutions for λβ if
and only if, the values of χ(p) are the roots of the determinant equation∣∣bαβ − χ(p)aαβ

∣∣ = 0

or ∣∣∣∣∣ b11 − χ(p)a11 b12 − χ(p)a12

b21 − χ(p)a21 b22 − χ(p)a22

∣∣∣∣∣ = 0

or

b11b22 − (a11b22 + a22b11)χ(p) + χ2
(p)a11a22

−b12b21 + (a12b21 + a21b12)χ(p) − χ2
(p)a12a21 = 0
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or

(b11b22 − b12b21) + χ2
(p)(a11a22 − a12a21)

+χ(p)(a12b21 + a21b12 − a11b22 − a22b11) = 0.

or

χ2
(p) −

a11b22 + b11a22 − 2a12b12
a

+
b

a
= 0; b = |bαβ|, a = |aαβ |. (8.18)

The roots of the quadratic Eq. (8.18) determine those directions for which the normal
curvature χ(n) becomes extreme. Those directions are called the principal directions
of normal curvature (or curvature directions) at the point P under consideration. The
centres of curvature of the corresponding normal sections are called the centres of
principal curvature of the surface S at P .

Also, since a11 = aa22, a12 = −aa21, a21 = −aa12 and a22 = aa11, so the above
equation can be written in the form

aχ2
(p) − (aa22b22 + aa11b11 + aa21b21 + aa12b12)χ(p) + b = 0

or

aχ2
(p) − aaαβbαβχ(p) + b = 0

or

χ2
(p) − aαβbαβχ(p) +

b

a
= 0

or

χ2
(p) − 2Hχ(p) + κ = 0, (8.19)

where H = 1
2a

αβbαβ is the mean curvature and κ = b
a is the Gaussian curvature. We

shall denote the two roots of χ(p) by χ(1) and χ(2) and call them the principal curvature
of the surface and the directions corresponding to χ(1) and χ(2) are called principal
directions of the surface. Note that, the principal directions on the surfaces are real.

Definition 8.2.1 Those portions of the surface on which the two principal curvatures
χ(1) and χ(2) have the same sign are said to be synclasic. The surface of a sphere or
of an ellipsoid as synclasic at all points. On the other hand if the principal curvatures
have opposite signs on any part of the surface, this part is said to be anticlastic. The
surface of a hyperbolic paraboloid is anticlastic at all points.

Result 8.2.1 The principal directions are real and orthogonal.
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Proof: The reality of the principal directions is obvious geometrically. From Eq. (8.19)
it is clear that, the principal curvatures χ(1) and χ(2) are related to the mean and
Gaussian curvatures by the formulas

χ(1) + χ(2) = 2H and χ(1)χ(2) = κ. (8.20)

From Eq. (8.17), it follows that, the principal directions λβ(1), λ
β
(2), say, corresponding

to χ(1) and χ(2), respectively, are determined by(
bαβ − χ(1)aαβ

)
λβ(1) = 0(

bαβ − χ(2)aαβ
)
λβ(2) = 0

}
(8.21)

Multiplying the first part of Eq. (8.21) by λα(2) and second part of Eq. (8.21) by
λα(2) and subtracting, we get(

χ(2) − χ(1)

)
aαβ λα(1)λ

β
(2) = 0. (8.22)

A point at which χ(1) = χ(2) is called an umbilic point or naval point. At an umbilic
point, Eq. (8.19) has coincident roots, i.e. H2 = κ, so that, it can be written in the
form [

aαβbαβ

]2
= 4

b

a
or [

a11b11 + a22b22 + a21b21 + a12b12
]2

= 4
b

a
or

4a(a11b12 − a12b11)
2 + [a11(a11b22 − a22b11)− 2a12(a11b12 − a12b11)]

2 = 0.

Since aijdx
idxj is positive definite, a is positive, and thus, we have

a11b12 − a12b11 = a11b22 − a22b11 = 0

⇒ b11
a11

=
b12
a12

=
b22
a22

. (8.23)

Thus, at an umbilic we have the above condition Eq. (8.23). From Eq. (8.14), since

χ(n) =
bαβdu

αduβ

aαβduαduβ
,

so, χ(n) is independent of the direction duα

ds , i.e. at an umbilic, the normal curvature
is the same in every directions. At all other points where χ(1) ̸= χ(2), we have

aαβλ
α
(1)λ

β
(2) = 0. (8.24)
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Therefore, at each non-umbilical point of a surface there exist two mutually or-
thogonal directions for which the normal curvature attains its extreme values.

If the principal curvatures at any point of a surface are equal in magnitude and
opposite in sign and the indication is a rectangular hyperbola then it is a minimal
surface.

EXAMPLE 8.2.1 Find the principal curvature of the surface defined by

x1 = u1;x2 = u2; x3 = f(u1, u2).

Solution: The parametric representation of the given curve is given by

x1 = u1; x2 = u2; x3 = f(u1, u2)

i.e.

r = (x1, x2, x3) =
(
u1, u2, f(u1, u2)

)
.

The symmetric covariant second order tensors aαβ for the first fundamental form
of the surface are given by

a11 =

(
∂xi

∂u1

)2

= 12 + 02 +

(
∂f

∂u1

)2

= 1 + f21 .

a22 =

(
∂xi

∂u2

)2

= 02 + 12 +

(
∂f

∂u2

)2

= 1 + f22 .

a12 =
∂xi

∂u1
∂xi

∂u2
= 1.0 + 0.1 +

∂f

∂u1
∂f

∂u2
= f1f2 = a21

where f1 =
∂f
∂u1

and f2 =
∂f
∂u2

. Therefore,

a = |aαβ| =

∣∣∣∣∣1 + f21 f1f2

f1f2 1 + f22

∣∣∣∣∣ = 1 + f21 + f22 .

The reciprocal tensors are given by

a11 =
1 + f22

1 + f21 + f22
; a22 =

1 + f21
1 + f21 + f22

; a12 = − f1f2
1 + f21 + f22

= a21.

Now, we calculate the tensors of second fundamental form. Since

r = (x1, x2, x3) =
(
u1, u2, f(u1, u2)

)
,
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so

A = (1, 0, f1) and B = (0, 1, f2); A×B = (−f1,−f2, 1)

ξ =
1

|A×B|
(A×B) =

1√
f21 + f22 + 1

(−f1,−f2, 1) .

Thus, the covariant tensors bαβ for the second fundamental form are given by

b11 = − ∂ξ

∂u1
· ∂r
∂u1

= −(f21 + f22 + 1)−1/2[(−f11,−f12, 0) · (1, 0, f1)

−(f21 + f22 + 1)(f1f11 + f2f12)(−f1,−f2, 1) · (1, 0, f1)]

=
f11√

f21 + f22 + 1
.

b22 = − ∂ξ

∂u2
· ∂r
∂u2

= −(f21 + f22 + 1)−1/2[(−f21,−f22, 0) · (0, 1, f2)

−(f21 + f22 + 1)(f1f21 + f2f22)(f1, f2,−1) · (0, 1, f2)]

=
f22√

f21 + f22 + 1
.

b12 = −1

2

[
∂ξ

∂u1
· ∂r
∂u2

+
∂ξ

∂u2
· ∂r
∂u1

]
= −1

2
(f21 + f22 + 1)−1/2[{(−f11,−f12, 0) · (0, 1, f2)

+(f21 + f22 + 1)(f1f11 + f2f12)(−f1,−f2, 1) · (0, 1, f2)}

+{(−f21,−f22, 0) · (1, 0, f1) + (f21 + f22 + 1)(f1f21 + f2f22)(f1, f2,−1) · (1, 0, f1)}]

=
f12√

f21 + f22 + 1
= b21.

The symmetric covariant tensors bαβ for the second fundamental form are given by

b11 =
f11√

f21 + f22 + 1
, b22 =

f22√
f21 + f22 + 1

and b12 =
f12√

f21 + f22 + 1
= b21.

⇒ b = |bαβ | =

∣∣∣∣∣
f11
P

f12
P

f12
P

f22
P

∣∣∣∣∣ = f11f22 − f212
1 + f21 + f22

; P =
√
f21 + f22 + 1,

where fi =
∂f
∂ui

and fij =
∂2f

∂ui∂uj
. The equation giving the principal curvatures is

χ2
ρ − aαβbαβχρ +

b

a
= 0
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or

χ2
ρ −

[
(f11 + f22)−

f21 f11 + f22 f22 + 2f1f2f12
1 + f21 + f22

]
χρ + f11f22 − f212 = 0.

This is a quadratic equation in χρ which gives the two values of χρ. At an umbilic, we
have

b11
a11

=
b12
a12

=
b22
a22

⇒ f11
1 + f21

=
f12
f1f2

=
f22

1 + f22
.

EXAMPLE 8.2.2 Find the principal curvature of the surface defined by

x1 = u1 cosu2; x2 = u1 sinu2; x3 = f(u1).

Find the condition that it is a minimal surface.

Solution: The parametric representation of the surface of revolution is given by

x1 = u1 cosu2;x2 = u1 sinu2; x3 = f(u1)

i.e.
r = (x1, x2, x3) =

(
u1 cosu2;u1 sinu2; f(u1)

)
.

The first fundamental magnitudes aαβ of the surface are given by

a11 = 1 + f21 ; a22 = (u1)2 and a12 = 0 = a21.

⇒ a = |aαβ| =
∣∣∣∣1 + f21 0

0 (u1)2

∣∣∣∣ = (u1)2(1 + f21 ),

where f1 =
∂f
∂u1

. The reciprocal tensors are given by

a11 =
1

1 + f21
; a22 =

1

(u1)2
; a12 = 0 = a21.

The symmetric covariant tensors bαβ for the second fundamental form are given by

b11 =
f11√
1 + f21

, b22 =
u1f1√
1 + f21

and b12 = 0 = b21.

⇒ |bαβ | =

∣∣∣∣∣∣∣∣
f11√
1 + f21

0

0
u1f1√
1 + f21

∣∣∣∣∣∣∣∣ =
u1f1f11
1 + f21

,

where f1 =
∂f
∂u1

and f11 =
∂2f

∂u1∂u1
. The equation giving the principal curvatures is

χ2
ρ − aαβbαβχρ +

b

a
= 0
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or

χ2
ρ −

[
f11

(1 + f21 )
3/2

+
f1

u1
√

1 + f21

]
χρ +

f1f11
u1(1 + f21 )

2
= 0.

This is a quadratic equation in χρ which gives the following two values of χρ:

χ(1) =
f11

(1 + f21 )
3/2

; χ(2) =
f1

u1(1 + f21 )
1/2

.

If ρ1 and ρ2 be the corresponding radii of curvatures then

ρ1 =
1

χ(1)
=

(1 + f21 )
3/2

f11
; ρ2 =

1

χ(2)
=
u1(1 + f21 )

1/2

f1
.

The condition for the surface to be minimal is that

2H = χ(1) + χ(2) = 0

or
f11

(1 + f21 )
3/2

+
f1

u1(1 + f21 )
1/2

= 0

or

f1(1 + f21 ) + u1f11 = 0.

EXAMPLE 8.2.3 Find the principal curvature of the surface defined by

x1 = u1 cosu2;x2 = u1 sinu2; x3 = a log
(
u1 +

√
(u1)2 − a2

)
.

Prove that it is a minimal surface and is the only minimal surface.

Solution: From example 8.2.2 we see that, the parametric representation of the
surface of revolution is given by

x1 = u1 cosu2; x2 = u1 sinu2; x3 = f(u1),

where f(u1) = a log
(
u1 +

√
(u1)2 − a2

)
. Therefore,

f1 =
∂f

∂u1
=

a√
(u1)2 − a2

; f11 =
∂2f

(∂u1)2
= − au1

[(u1)2 − a2]3/2
.

Therefore, χ(1) and χ(2) are given by

χ(1) =
f11

(1 + f21 )
3/2

=
−a
(u1)2

; χ(2) =
f1

u1(1 + f21 )
1/2

=
a

(u1)2
.
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Since 2H = χ(1) + χ(2) = 0, the surface is a minimal surface. Now, we will prove that
the given surface of revolution is the minimal surface. Let the equation of any surface
of revolution be

x1 = u1 cosu2;x2 = u1 sinu2; x3 = f(u1).

As in example 8.2.2, the condition for the minimal surface is

f1(1 + f21 ) + u1f11 = 0

or

u1
d2f

d(u1)2
+

df

du1

[
1 +

(
df

du1

)2
]
= 0

or
dp

p(1 + p2)
+
du

u
= 0; where, p =

df

du1

or

log p− 1

2
log(1 + p2) + log u1 = constant

or
p2(u1)2

1 + p2
= a2 (say) ⇒ p =

df

du1
=

a√
(u1)2 − a2

or

x3 = f(u1) = a cosh−1 u
1

a
+ c1 = a log

(
u1 +

√
(u1)2 − a2

)
+ c1.

Choosing x3 = a log a when u1 = a so that c1 = 0, so,

x3 = f(u1) = a log
(
u1 +

√
(u1)2 − a2

)
= a cosh−1

√
(x1)2 + (x2)2

a

or √
(x1)2 + (x2)2 = a cosh

x3

a
.

Thus, except for position in space, the only surface of revolution is

x1 = u1 cosu2;x2 = u1 sinu2; x3 = a log
(
u1 +

√
(u1)2 − a2

)
or
√

(x1)2 + (x2)2 = a cosh x3

a is the only minimal surface formed by revolution of

catenary x1 = a cosh x3

a about x1 axis, i.e. directrix.
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EXAMPLE 8.2.4 Find the equation for the principal curvatures of the surface for
the right helicoid.

Solution: The parametric representation of the right helicoid is given by

x1 = u1 cosu2; x2 = u1 sinu2; x3 = cu2

i.e.

r = (x1, x2, x3) =
(
u1 cosu2; u1 sinu2; cu2

)
.

The symmetric covariant second order tensors aαβ for the first fundamental form
of the surface are given by

a11 = 1; a22 = (u1)2 + c2 and a12 = 0 = a21.

⇒ |aαβ | =

∣∣∣∣∣1 0

0 c2 + (u1)2

∣∣∣∣∣ = c2 + (u1)2.

The reciprocal tensors are given by

a11 =
c2 + (u1)2

c2 + (u1)2
= 1; a22 =

1

c2 + (u1)2
; a12 = 0 = a21.

The symmetric covariant tensors bαβ for the second fundamental form are given by

b11 = 0, b22 = 0 and b12 = − c√
c2 + (u1)2

.

⇒ |bαβ | =

∣∣∣∣∣∣
0 − c√

c2+(u1)2

− c√
c2+(u1)2

0

∣∣∣∣∣∣ = − c2

c2 + (u1)2
.

The equation giving the principal curvatures is

χ2
ρ − aαβbαβχρ +

b

a
= 0

or

χ2
ρ −

[
a11b11 + a22b22 + 2a12b12

]
χρ +

b

a
= 0

or

χ2
ρ −

[
1 · 0 + 1

c2 + (u1)2
· 0 + 0 ·

(
− c2

c2 + (u1)2

)]
χρ +

b

a
= 0

or

χ2
ρ −

c2

[c2 + (u1)2]2
= 0 ⇒ χρ = ± c

c2 + (u1)2
.



8.2 Principal Curvatures 429

This is a quadratic equation in χρ which gives the following two values of χρ:

χ(1) =
c

c2 + (u1)2
; χ(2) = − c

c2 + (u1)2
.

Since 2H = χ(1) + χ(2) = 0, the surface is a minimal surface.

EXAMPLE 8.2.5 Calculate the principal curvatures for the conicoid

x1 = u1 cosu2; x2 = u1 sinu2; x3 = f(u2),

where u1, u2 are parameters. Hence, find the Gaussian and the mean curvature.

Solution: The parametric representation of the surface is given by

r = (x1, x2, x3) =
(
u1 cosu2; u1 sinu2; f(u2)

)
.

The first fundamental magnitudes aαβ are given by

a11 = 1; a22 = (u1)2 + f21 ; a12 = 0 = a21,

where f1 =
∂f
∂u2

. Therefore, a = (u1)2 + f21 . The reciprocal tensors are given by

a11 =
(u1)2 + f21
(u1)2 + f21

= 1; a22 =
1

(u1)2 + f21
; a12 =

0

(u1)2 + f21
= 0 = a21.

The symmetric covariant tensors bαβ are given by

b11 = 0; b22 = − f1√
(u1)2 + f21

; b12 =
u1f2√

(u1)2 + f21
= b21,

where f2 =
∂2f

(∂u2)2
so, b =

−(u1f2)
2

(u1)2+f21
. The equation giving the principal curvatures is

χ2
ρ − aαβbαβχρ +

b

a
= 0

or

χ2
ρ +

[
f1

{(u1)2 + f21 }3/2

]
χρ −

(
u1f2

)2[
(u1)2 + f21

]2 = 0.

This is a quadratic equation in χρ which gives the two values χ(1) and χ(2). The mean
curvature H is given by

H =
1

2
[χ(1) + χ(2)] =

1

2

−f1
{(u1)2 + f21 }3/2

and the Gaussian curvature κ is given by the formula,

κ = χ(1)χ(2) = −
(
u1f2

)2[
(u1)2 + f21

]2 .
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EXAMPLE 8.2.6 Show that the surface 4c2(x3)2 = ((x1)2 − 2c2)((x2)2 − 2c2) has a
line of umbilic lying on the surface (x1)2 + (x2)2 + (x3)2 = 4c2.

Solution: Let (x1)2 − 2c2 = (u1)2 and (x2)2 − 2c2 = (u2)2, then the parametric
representation of the surface is given by

r = (x1, x2, x3) =

(√
2c2 + (u1)2;

√
2c2 + (u2)2;

u1u2

2c

)
.

The first fundamental magnitudes aαβ are given by

a11 =
(u1)2

4c2 + (u1)2
+

(u2)2

4c2
; a22 =

(u2)2

4c2 + (u2)2
+

(u1)2

4c2
; a12 =

u1u2

4c2
= a21,

where f1 =
∂f
∂u2

. The symmetric covariant tensors bαβ are given by

b11 =
−c(u2)2

a(2c2 + (u1)2)3/2(2a2 + (u2)2)1/2
;

b22 =
−c(u1)2

a(2c2 + (u1)2)1/2(2a2 + (u2)2)3/2
;

b12 =
−cu2

2ca
√

(2c2 + (u1)2)(2a2 + (u2)2)
,

where a = |aαβ |. At an umbilic, we have b11
a11

= b12
a12

= b22
a22

, i.e. b11a22 = b22a11, and so,[
(u1)2

2c2 + (u2)2
+

(u2)2

4c2

]
(u1)2

2c2 + (u2)2
=

[
(u2)2

2c2 + (u2)2
+

(u1)2

4c2

]
(u2)2

2c2 + (u1)2

or

(u1)4 − (u2)4

(2c2 + (u1)2)(2c2 + (u2)2)
+

(u1)2(u2)2

4c2

[
1

2c2 + (u2)2
− 1

2c2 + (u1)2

]
= 0

or

(u1)4 − (u2)4 +
(u1)2(u2)2

4c2
[
(u1)2 − (u2)2

]
= 0

or

(u1)2 + (u2)2 +
(u1u2)2

4c2
= 0 ⇒ (x1)2 + (x2)2 + (x3)2 = 4c2.

Thus, the umbilic lie on the surface (x1)2 + (x2)2 + (x3)2 = 4c2.
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8.2.1 Surfaces of Positive and Negative Curvatures

In order to determine the shape of a surface S in a neighbourhood of any of its points
we first considered arbitrary curves on S. We enabled us to restrict of S and planes
which are orthogonal to the tangent plane to S at a point P under consideration. That
investigation led us to the introduction of the normal curvature [Eq. (8.14)]

χ(n) =
bαβdu

αduβ

aαβduαduβ
=

B
A
.

|χ(n)| is the curvature of the normal section of S at P whose tangent direction is
du2 : du1. We will now see that there are three different possible forms of S in a
neighbourhood of a point at which the second fundamental form does not vanish
identically. For this purpose we consider the behaviour of χ(n) as a function of the
direction du2 : du1 of the tangent to the normal sections at P .

We know, the first fundamental form [Eq. (7.2)] is positive definite, hence the sign
of χ(n) depends on the second fundamental form only.

(i) A surface is called a surface of positive curvature, if at all points, the Gaussian
curvature κ > 0, i.e.

b = b11b22 − b212 > 0; as a > 0 on the surface. (8.25)

That is the second fundamental form is positive definite. In this case, χ(n) has the
same sign for all possible directions of the normal sections at P , i.e. the centres of
curvature of all normal sections lie on the same side of the surface S. The point P
on the surface S is called elliptic. Figure 8.3 shows the shape of a surface S in the
neighbourhood of an elliptic point.

Figure 8.3: Elliptic point.

(ii) A surface is called a surface of negative curvature, if at all points, the Gaussian
curvature κ < 0, i.e.

b = b11b22 − b212 < 0; as a > 0 on the surface. (8.26)
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If b < 0 at a point P of a surface χ(n) does not maintain the same sign for all
directions du2 : du1. More precisely, there exists two real asymptotic directions for
which χ(n) = 0. These directions separate the directions for which χ(n) is positive
from which χ(n) is negative, P is then called a hyperbolic or saddle point of the surface
S. Figure 8.4 shows the shape of a surface in the neighbourhood of a hyperbolic point.

Figure 8.4: Hyperbolic point.

This figure shows also the tangent plane at that point.
(iii) If b = 0 at a point P of a surface S, χ(n) does not change sign, but there is

exactly one direction where χ(n) = 0, i.e. exactly one real asymptotic direction. P is
then called a parabolic point or flat point or planner point of the surface S. Figure 8.5
shows the shape of a surface S in the neighbourhood of a parabolic point.

Figure 8.5: Parabolic point.

b of second funda-
mental form

Name Number of real
asymptotic di-
rections

Figures

b > 0 Elliptic point 0 8.3
b = 0 Parabolic point 1 8.5
b < 0 Hyperbolic point 2 8.4

Since the conditions b >= 0 corresponds to a geometric property of the surface, they
must be invariant with respect to any allowable co-ordinate transformation.
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Deduction 8.2.1 Consider the section of the surface by a plane parallel and infinitely
close to the tangent plane at the point P (Figure 8.6). Suppose the surface is synclastic
in the neighbourhood of P . Then near P it lies entirely on one side of the tangent
plane. Let the plane be taken on this (concave) side of the surface, parallel to the
tangent plane at P , and at an infinitesimal distance from it, whose measure is h in
the direction of the unit normal µ. Let the principal radii of curvature be α, β, then

αχ(1) = 1 and βχ(2) = 1.

Figure 8.6: Dupin’s indicatrix.

Thus, h has the same sign as α and β. Consider also any normal plane QPQ′

through P , cutting the former plane in QQ′. Then if ρ is the radius of curvature of the
normal section, and 2r the length of QQ′, we have r2 = 2hρ to the first order. If θ is
the inclination of the normal section to the principal direction, Euler’s formula gives

1

α
cos2 θ +

1

β
sin2 θ =

1

ρ
=

2h

r2
,

If then we write ς = r cos θ and υ = r sin θ, we have

ς2

a
+
υ2

b
= 2h.

Thus, the section of the surface by the plane parallel to the tangent plane at P , and
indefinitely close to it, is similar and similarly situated to the ellipse

ς2

|α|
+
υ2

|β|
= 1, (8.27)

whose axes are tangents to the lines of curvature at P . This ellipse is called the Dupin’s
indicatrix at the point P , and P is said to be an elliptic point. It is sometimes described
as a point of positive curvature, because the second curvature κ is positive.

Let the principal radii, α and β, have opposite signs, and the surface lies partly
on the other side of the tangent plane at P . In this case the Gaussian curvature κ
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is negative at P , so that the surface is anticlastic in the neighbourhood. Two planes
parallel to this tangent plane, one on either side, and equidistant from it, cut the
surface in the conjugate hyperbola

ς2

a
+
υ2

b
= ±2h.

These are similar and similarly situated to the conjugate hyperbolas

ς2

α
+
υ2

β
= ±1, (8.28)

which constitute the indicatrix at P . The point P is then called a hyperbolic point,
or a point of negative curvature. The normal curvature is zero in the directions of
the asymptotes. When the Gaussian curvature κ is zero at the point P it is called
a parabolic point. One of the principal curvatures is zero, and the indicatrix is a
pair of parallel straight lines. Consequently, the principal directions bisect the angles
between directions corresponding to the same normal curvature, in particular the
angles between the asymptotic direction.

EXAMPLE 8.2.7 Show that the right helicoid is a surface of negative curvature.

Solution: The parametric representation of the right helicoid is given by

x1 = u1 cosu2; x2 = u1 sinu2; x3 = cu2

i.e.

r = (x1, x2, x3) =
(
u1 cosu2; u1 sinu2; cu2

)
.

The symmetric covariant second order tensors aαβ for the first fundamental form
of the surface are given by

a11 = 1; a22 = (u1)2 + c2 and a12 = 0 = a21.

⇒ |aαβ | =

∣∣∣∣∣1 0

0 c2 + (u1)2

∣∣∣∣∣ = c2 + (u1)2 > 0.

The symmetric covariant tensors bαβ for the second fundamental form are given by

b11 = 0, b22 = 0 and b12 = − c√
c2 + (u1)2

.

⇒ |bαβ | =

∣∣∣∣∣∣
0 − c√

c2+(u1)2

− c√
c2+(u1)2

0

∣∣∣∣∣∣ = − c2

c2 + (u1)2
.
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Therefore, the Gaussian curvature is given by

κ =
|bαβ |
|aαβ |

= − c2

[c2 + (u1)2]2
< 0.

Thus, the given surface is a surface of negative curvature.

EXAMPLE 8.2.8 Find the nature of a point on a unit sphere

(x1)2 + (x2)2 + (x3)2 = 1.

Solution: The parametric representation of a unit sphere is given by

x1 = cosu1 cosu2; x2 = sinu1 cosu2; x3 = sinu2

i.e.
r = (x1, x2, x3) =

(
cosu1 cosu2; sinu1 cosu2; sinu2

)
.

The first fundamental magnitudes aαβ of the surface are given by

a11 = cos2 u2; a22 = 1 and a12 = 0 = a21.

⇒ a = |aαβ| =

∣∣∣∣∣cos2 u2 0

0 1

∣∣∣∣∣ = cos2 u2 > 0.

The symmetric covariant tensors bαβ for the second fundamental form are given by

b11 = − cos2 u2, b12 = 0 = b21 and b22 = −1.

⇒ b = |bαβ | =

∣∣∣∣∣− cos2 u2 0

0 −1

∣∣∣∣∣ = cos2 u2.

Therefore, the Gaussian curvature is given by

κ =
b

a
=

cos2 u2

cos2 u2
= 1 > 0.

Since κ > 0, it follows that the nature of the point on the sphere is elliptic.

8.2.2 Isometric Lines

Suppose that, in terms of the parameters u, v the square of the linear element of the
surface has the form

ds2 = λ(du2 + dv2), (8.29)

where λ is a function of u, v or a constant. Then the parameters curves are orthogonal
because a12 = 0. Further, the lengths of elements of the parametric curves are

√
λdu
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and
√
λdv, and these equal if du = dv. Thus, the parametric curves corresponding to

the values u, u+ du, v, v+ dv bound a small square provided du = dv. In this way the
surface may be mapped out into small squares by means of the parametric curves, the
sides of any one square corresponding to equal increments in u and v.

More generally, if the square of the linear element has the form

ds2 = λ(Udu2 + V dv2), (8.30)

where U is a function of u only and V is a function of v only, we may change the
parameters to ϕ, φ by the transformation

dϕ =
√
Udu; dφ =

√
V dv.

This does not alter the parametric curves; for the curves u = constant are identical
with the curves ϕ = constant; and similarly the curves v = constant are identical with
the curves φ = constant. Equation (8.30) then becomes

ds2 = λ(dϕ2 + dφ2), (8.31)

which is of the same form as Eq. (8.29). Whenever the square of the linear element
has the form Eq. (8.30), so that, without alteration of the parametric curves, it may
be reduced to the form Eq. (8.29), the parametric curves are called isometric lines,
and the parameters isometric parameters.

In the form Eq. (8.29) the fundamental magnitudes a11 and a22 are equal; but in
the more general form Eq. (8.30) they are such that

a11
a22

=
U

V
and, therefore,

∂2

∂u∂v
log

a11
a22

= 0. (8.32)

Either of these equations, in conjunction with a12 = 0, expresses the condition that
the parametric variables may be isometric. If it is satisfied, ds2 has the form Eq. (8.30)
and may therefore be reduced to the form Eq. (8.29).

EXAMPLE 8.2.9 Prove that isometric curves is afforded by the meridians and par-
allels on a surface of revolution, given by

Solution: With the usual notation, let S is a surface of revolution, given by

x1 = u cos v; x2 = u sin v; x3 = f(u); where f(u) ∈ C2.

The first order magnitudes are given by

a11 = 1 + f21 ; a22 = u2 and a12 = 0 = a21,
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where f1 =
∂f
∂u . In terms of the parameters u, v the square of the linear element of the

surface has the form

ds2 = (1 + f21 )du
2 + u2dv2 = u2

[
1 + f21
u2

du2 + dv2
]
,

which is of the form Eq. (8.30). The parametric curves are the meridians v = constant
and the parallels u = constant. If we make the transformation

dω =
1

u

√
1 + f21du,

the curves ω = constant are the same as the parallels, and the square of the linear
element becomes

ds2 = u2(dω2 + dv2),

which is of the form Eq. (8.29). Thus, the meridians and parallels of a surface of
revolution are isometric lines.

8.3 Lines of Curvature

A curve drawn on a surface, and possessing the property that the normals to the
surface at consecutive points intersect, is called a line of curvature. Thus, for a line
of curvature, a curve on a surface such that the tangent line to it at every point is
directed along a principal direction. The differential equation for which the lines of
curvature on S are the integral curves from directly from Eq. (8.17), as

bαβλ
β = χ(p)aαβλ

β .

Therefore,

b1βλ
β = χ(p)a1βλ

β; when α = 1

b2βλ
β = χ(p)a2βλ

β ; when α = 2.

If we eliminate χ(p) from these equations and set λβ = duβ

ds , we get

b1β
a1β

duβ

duβ
=
b2β
a2β

duβ

duβ

or

(b11a12 − b12a11)(du
1)2 + (b11a22 − b22a11)du

1du2

+(b12a22 − b22a12)(du
2)2 = 0. (8.33)
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This quadratic Eq. (8.33) represents the lines of curvature of the surface, showing
that at every point of the surface there are two principal directions. Thus, at each
point of a surface there exist two mutually orthogonal directions for which the normal
curvature attains its extreme values.

It follows from the above that the direction of a line of curvature at any point
is the principal direction at that point. Through each point on the surface pass two
lines of curvature cutting each other at right angles; and on the surface there are two
system of lines of curvature whose differential equation is Eq. (8.33).

Deduction 8.3.1 The existence of (real) asymptotic curves on a surface S depends
on the geometric shape of S the lines of curvature are always real. At each point of
S where either bαβdu

αduβ ̸= 0 or is not proportional to aαβdu
αduβ , the Eq. (8.33)

specifies two orthogonal directions

du2

du1
= ϕα

(
u1, u2

)
; α = 1, 2, (8.34)

which coincide with directions of the principal curvatures. Each equation in [Eq. (8.34)]
determines a family of curves on S covering the surface without gaps. These two
families of curves are orthogonal, and, if they are taken as a parametric net on S, the
first fundamental form has the form

(ds)2 = a11(du
1)2 + a22(du

2)2.

Accordingly, Eq. (8.33) in the co-ordinate system uα takes the form

−b12a11(du1)2 + (b11a22 − b22a11)du
1du2 + b12a22(du

2)2 = 0

and its solutions are

u1 = constant, u2 = constant.

If we take du1 ̸= 0 and du2 = 0, we see that b12 = 0, since a11 = 0. Thus, a necessary
condition for the net of lines of curvature to be orthogonal is that a12 = 0 = b12.
Consequently we may always choose co-ordinates u1, u2 on S so that the lines of
curvature are the co-ordinate curves of this system which is allowable at any point
of S which is not umbilic. Conversely, if a12 = 0 = b12, then Eq. (8.33) has the
solutions u1 = constant and u2 = constant, so that the co-ordinate lines are the lines
of curvature.

Note that, for every orthogonal net on a plane or a sphere a12 = 0 = b12. Formula
(8.14), for the normal curvature, when the co-ordinate system is taken to be the net
of lines of curvature becomes

χ(n) =
b11(du

1)2 + b22(du
2)2

a11(du1)2 + a22(du2)2
.
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If we set du1 = 0, du2 ̸= 0, and du2 = 0, du1 ̸= 0, we get

χ(1) =
b11
a11

; χ(2) =
b22
a22

for the curvatures of the co-ordinate lines u1 = constant and u2 = constant. The lines
of curvature on S should not be confused with the normal sections of S. The normal
sections are necessarily plane curves, whereas the lines of curvature ordinarily are not
plane curves. Thus the lines of curvature of any (real) surface S of class ≥ 3 are real
curves.

Deduction 8.3.2 A point on a surface is called umbilic if at that point bαβ = λaαβ ,
where λ is a scalar. In particular, if λ = 0, the point is called a planer point. Note
that, at an umbilic point the normal curvature κ(n) is the same for all directions. If S
has no umbilics the lines of curvature form an orthogonal net everywhere on S.

Theorem 8.3.1 (Rodrigue’s formula): A line of curvature is characterised by

∂ξi

∂s
+ χ(n)

dxi

ds
= 0,

where χ(n) is the principal curvature of the surface.

Proof: From Weingarten formula Eq. (7.49), we have

ξi,α = −aβγ bβγxiγ

or

ξi,α
duα

ds
= −aβγbβγxiγ

duα

ds
or

∂ξi

∂s
= −aβγbβγxiγλα. (8.35)

Again, we know that for a line of curvature,

bαβλ
β = χ(n)aαβλ

β ; i.e. bαβλ
α = χ(n)aαβλ

α,

as aαβ and bαβ are symmetric. Using result (8.35), we get

∂ξi

∂s
= −aβγχ(n)aαβλ

αxiγ

= −δγαχ(n)λ
αxiγ = −χ(n)λ

αxiα

= −χ(n)
∂uα

∂s

∂xi

∂uα
= −χ(n)

dxi

ds
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or
∂ξi

∂s
+ χ(n)

dxi

ds
= 0.

Hence, the theorem is proved. Conversely, let the relation

∂ξi

∂s
+ χ(n)

dxi

ds
= 0

holds. Using Weingarten formula Eq. (7.49), we have

∂ξi

∂s
= −aβγbβγxiγλα

or

−aβγbβγxiγλα + χ(n)
dxi

ds
= 0.

Taking the inner product with gikx
k
p, we get

−aβγbβγgikxkpxiγλα + χ(n)gikx
k
p

dxi

ds
= 0

or

−aβγbβαapγλα + χ(n)gkix
i
p

dxk

ds
= 0.

Interchanging the dummy indices i and k in the second term, we get

−bpαλα + χ(n)gikx
i
p

∂xk

∂uα
duα

ds
= 0

or

−bpαλα + χ(n)gikx
i
px
k
αλ

α = 0

or

−bpαλα + χ(n)apαλ
α = 0

or (
χ(n)apα − bpα

)
λα = 0,

which is the equation of the line of curvature. The Rodrigues formulae are character-
istic for the lines of curvature.

EXAMPLE 8.3.1 Show that the parametric curves are the lines of curvature if and
only if a12 = 0 = b12.
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Solution: Let us assume that the parametric curves be the lines of curvature. Then
they form an orthogonal net and will satisfy Eq. (8.33). Now, for u1 curve, du2 = 0
and hence from Eq. (8.33), we get

b11a12 − a11b12 = 0; as du1 ̸= 0

and for u2 curve, du1 = 0 and hence from Eq. (8.33), we get

b12a22 − a12b22 = 0; as du2 ̸= 0.

Multiplying first equation by a22 and second by a11 and adding, we get

a12 (a22b11 − a11b22) = 0

⇒ either a12 = 0 or
a11
b11

=
a22
b22

.

For the parametric curve, a22b11 ̸= a11b22 and so a12 = 0. The condition a12 = 0 is
that of orthogonality satisfied by all lines of curvature. Similarly, multiplying first
equation by b22 and second by b11 and adding, we get

b12 (a22b11 − a11b22) = 0 ⇒ b12 = 0.

Thus b12 = 0, is the necessary and sufficient condition that the parametric curves form
a conjugate system. Conversely, let a12 = 0 = b12, then Eq. (8.33) reduces to

(a22b11 − a11b22) du
1du2 = 0.

If the lines of curvature exist, then a22b11− a11b22 ̸= 0 and the curves are the solution
of the equation du1du2 = 0. Hence,

when du1 ̸= 0; du2 = 0 ⇒ u2 = constant.

when du2 ̸= 0; du1 = 0 ⇒ u1 = constant.

Hence, the parametric curves are the lines of curvature. Thus, if in particular the
co-ordinates are chosen so that the co-ordinate curves are lines of curvature on the
surfaces S then a12 = b12 = 0 and therefore the Rodrigues formulae becomes

∂ξi

∂S
= − bii

aii

dxi

ds
(no summation); i = 1, 2.

EXAMPLE 8.3.2 Show that the lines of curvature on a minimal surface form an
isometric systems.
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Solution: If the parametric curves are the lines of curvature, then a12 = 0 = b12.
Now, for the minimal surface,

H =
1

2
aαβbαβ = 0

⇒ H =
1

2a
[a22b11 + a11b22] = 0; as a12 = 0 = b12

⇒ b11 = b22 = 0; as a ̸= 0

⇒ bαβ = 0.

Therefore, the surface is a plane, i.e. the surface is isomorphic with Euclidean plane.

Theorem 8.3.2 (Euler’s theorem on normal curvature): If the lines of curva-
ture are not indeterminant at a given point P on the surface and if θ is the angle
between a given direction and a principal direction at P , then the normal curvature is
given by the formula

χ(n) = χ(1) cos
2 θ + χ(2) sin

2 θ.

Proof: We assume that P is not an umbilic. If the parametric curves are taken as the
lines of curvature, then the principal curvatures are given by

χ(1) =
b11
a11

and χ(2) =
b22
a22

.

Let θ be the angle between a given direction (δu1, δu2) and a principal direction at a
given point P . Since the co-ordinate curves are orthogonal, we have

cos θ =
√
a11

du1

ds
and sin θ =

√
a22

du2

ds
.

Also, let χ(1), χ(2) be the principal curvatures at P . If the parametric curves are
taken as lines of curvature, then the normal curvature at P is given by

χ(n) =
b11(du

1)2 + b22(du
2)2

ds2
= b11

(
du1

ds

)2

+ b22

(
du2

ds

)2

=
b11
a11

cos2 θ +
b22
a22

sin2 θ = χ(1) cos
2 θ + χ(2) sin

2 θ.

This is Euler’s theorem on normal curvature. This theorem tells us that, the normal
curvature corresponding to any direction can be simply represented in terms of the
principal curvatures. The Gaussian and total curvature in this case is given by

κ =
b11
a11

b22
a22

and H =
1

2

(
b11
a11

+
b22
a22

)
.
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From this we conclude the lines of curvature on a minimal surface form an isometric
system.

Deduction 8.3.3 Let χ(n1) and χ(n2) denote normal curvatures in two orthogonal
directions on the surface and θ be the angle between the first direction du2 = 0; thus,
the angle between the second direction and the principal direction du1 = 0 will be
π
2 + θ. Thus, from Euler’s theorem, we have

χ(n1) = χ(1) cos
2 θ + χ(2) sin

2 θ,

χ(n2) = χ(1) cos
2
(π
2
+ θ
)
+ χ(2) sin

2
(π
2
+ θ
)

= χ(1) sin
2 θ + χ(2) cos

2 θ.

Now, adding, we get

χ(n1) + χ(n2) = χ(1) + χ(2).

Thus, the sum of the normal curvatures in two orthogonal directions is equal to the
sum of the principal curvatures at that point. This is known as Dupin’s theorem.

Result: The theorem of enter and the theorem of Meusnier give complete information
on the curvature of any curve on a surface.

EXAMPLE 8.3.3 Find the equations for the lines of curvature for the surface given
by r = (u cos v, u sin v, cv) .

Solution: For the given surface, the symmetric covariant second order tensors aαβ
for the first fundamental form are given by

a11 = 1; a22 = u2 + c2; a12 = 0 = a21;

and the second fundamental magnitudes bαβ are given by

b11 = 0; b22 = 0; b12 = − c√
u2 + c2

= b21.

Since a12 = 0 = b12, this given parametric curve has the line of curvature. The lines
of curvature are given by

(b11a12 − b12a11)(du)
2 + (b11a22 − b22a11)du dv

+(b12a22 − b22a12)(dv)
2 = 0

or
−b12a11(du)2 + b12a22)(dv)

2 = 0
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or
c√

u2 + c2
(du)2 − c√

u2 + c2
(u2 + c2)(dv)2 = 0

or
du√
u2 + c2

= ±dv ⇒ v = ± sinh−1 u

c
+ k,

where k is a constant.

EXAMPLE 8.3.4 Given an ellipsoid of revolution, whose surface is determined by

x1 = a cosu1 sinu2, x2 = a sinu1 sinu2, x3 = c cosu2

where a2 > c2. Find aαβ, bαβ and κ = χ(1)χ(2). Discuss the lines of curvature.

Solution: The parametric representation of the ellipsoid of revolution is given by

x1 = a cosu1 sinu2, x2 = a sinu1 sinu2, x3 = c cosu2

i.e.
r = (x1, x2, x3) =

(
a cosu1 sinu2, a sinu1 sinu2, c cosu2

)
.

The symmetric covariant second order tensors aαβ for the first fundamental form of
the surface of the ellipsoid of revolution are given by

a11 =

(
∂x1

∂u1

)2

+

(
∂x2

∂u1

)2

+

(
∂x3

∂u1

)2

= (−a sinu1 sinu2)2 + (a cosu1 sinu2)2 + 02 = a2 sin2 u2.

a22 =

(
∂x1

∂u2

)2

+

(
∂x2

∂u2

)2

+

(
∂x3

∂u2

)2

= (a cosu1 cosu2)2 + (a sinu1 cosu2)2 + (−c sinu2)2

= a2 cos2 u2 + c2 sin2 u2.

a12 =
∂x1

∂u1
∂x1

∂u2
+
∂x2

∂u1
∂x2

∂u2
+
∂x3

∂u1
∂x3

∂u2
= 0 = a21.

Therefore,

a =

∣∣∣∣a2 sin2 u2 0
0 a2 cos2 u2 + c2 sin2 u2

∣∣∣∣ = a2 sin2 u2(a2 cos2 u2 + c2 sin2 u2).

To calculate the tensors of second fundamental form, we have

A = (−a sinu1 sinu2, a cosu1 sinu2, 0) and

B = (a cosu1 cosu2, a sinu1 cosu2,−c sinu2)

A×B =
(
−ac cosu1 sinu2, ac sinu1 sinu2,−a2 sinu2 cosu2

)
.
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The normal vector is given by

ξ =
1√

a2 cos2 u2 + c2 sin2 u2

(
−ac cosu1 sinu2, ac sinu1 sinu2,−a2 sinu2 cosu2

)
.

Thus, the covariant tensors bαβ for the second fundamental form are given by

b11 =
ac sin2 u2√

a2 cos2 u2 + c2 sin2 u2
; b22 =

ac√
a2 cos2 u2 + c2 sin2 u2

; b12 = 0.

⇒ b = b11b22 − b212 =
a2c2 sin2 u2

a2 cos2 u2 + c2 sin2 u2
.

Therefore, the Gaussian curvature κ is given by

κ =
b

a
=

a2c2 sin2 u2

a2 cos2 u2 + c2 sin2 u2
× 1

a2 sin2 u2(a2 cos2 u2 + c2 sin2 u2)

=
c2(

a2 cos2 u2 + c2 sin2 u2
)2 .

Since a12 = 0, b12 = 0, so the equation of the lines of curvature is given by

(b11a22 − b22a11) du
1du2 = 0,

(a2 − c2) sin4 u2du1du2 = 0.

EXAMPLE 8.3.5 Show that any curve on a sphere is a line of curvature.

Solution: The parametric representation of the sphere of radius a is given by

x1 = a sinu1 cosu2, x2 = a sinu1 sinu2, x3 = a cosu2

i.e.

r = (x1, x2, x3) =
(
a sinu1 cosu2, a sinu1 sinu2, a cosu2

)
.

For the given surface, the symmetric covariant second order tensors aαβ for the first
fundamental form are given by

a11 = a2; a22 = a2 sin2 u1; a12 = 0 = a21

and the symmetric covariant second order tensors bαβ for the second fundamental form
are given by

b11 = −a; b22 = −a sin2 u1; b12 = 0 = b21.
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Since a12 = 0 = b12, this given parametric curve has the line of curvature. In fact,

b11
a11

=
b12
a12

=
b22
a22

= −1

a
,

i.e. bαβ are proportional to aαβ . Now,

(b11a12 − b12a11)(du
1)2 + (b11a22 − b22a11)du

1du2

+(b12a22 − b22a12)(du
2)2 =

(
−a3 sin2 u1 + a3 sin2 u1

)
du1du2 = 0.

This shows that the equation of the lines of curvature reduces to an identity. Hence,
any curve on a sphere is a line of curvature.

EXAMPLE 8.3.6 Given a surface of revolution S

x1 = u1 cosu2;x2 = u1 sinu2; x3 = f(u1)

with f(u1) of class C2. Prove that the lines of curvature on S are the meridians u2 =
constant and the parallels u1 = constant.

Solution: The parametric representation of the right helicoid is given by

x1 = u1 cosu2; x2 = u1 sinu2; x3 = f(u1)

i.e.
r = (x1, x2, x3) =

(
u1 cosu2; u1 sinu2; f(u1)

)
.

The symmetric covariant second order tensors aαβ for the first fundamental form
of the surface are given by

a11 = 1 + f21 ; a22 = (u1)2 and a12 = 0 = a21

⇒ a =

∣∣∣∣∣1 + f21 0

0 (u1)2

∣∣∣∣∣ = (u1)2(1 + f21 ),

where f1 =
∂f
∂u1

. The symmetric covariant tensors bαβ for the second fundamental form
are given by

b11 =
f11√
1 + f21

, b22 =
u1f1√
1 + f21

and b12 = 0 = b21.

⇒ |bαβ| =

∣∣∣∣∣∣∣∣
f11√
1 + f21

0

0
u1f1√
1 + f21

∣∣∣∣∣∣∣∣ =
u1f1f11
1 + f21

,
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where f1 =
∂f
∂u1

and f11 =
∂2f

∂u1∂u1
. Equation (8.33) giving the principal curvatures is

(b11a12 − b12a11)(du
1)2 + (b11a22 − b22a11)du

1du2

+(b12a22 − b22a12)(du
2)2 = 0

or [(
1 + f21

) u1f1√
1 + f21

+
(
u1
)2 f11√

1 + f21

]
du1du2 = 0

or
du1du2 = 0 ⇒ u2 = constant, or, u1 = constant.

EXAMPLE 8.3.7 Find the differential equation of lines of curvature of the helicoid

x1 = u1 cosu2; x2 = u1 sinu2; x3 = f(u1) + cu2,

where u1, u2 are parameters.

Solution: The parametric representation of the surface is given by

r = (x1, x2, x3) =
(
u1 cosu2; u1 sinu2; f(u1) + cu2

)
.

The first fundamental magnitudes aαβ are given by

a11 =

(
∂x1

∂u1

)2

+

(
∂x2

∂u1

)2

+

(
∂x3

∂u1

)2

= 1 + f21 ,

a22 =

(
∂x1

∂u2

)2

+

(
∂x2

∂u2

)2

+

(
∂x3

∂u2

)2

= (u1)2 + c2,

a12 =
∂x1

∂u1
∂x1

∂u2
+
∂x2

∂u1
∂x2

∂u2
+
∂x3

∂u1
∂x3

∂u2
= cf1 = a21,

where f1 =
∂f
∂u1

. Therefore,

a =

∣∣∣∣1 + f21 cf1
cf1 (u1)2 + c2

∣∣∣∣ = (u1)2(1 + f21 ) + c2.

The reciprocal tensors are given by

a11 =
(u1)2 + c2

(u1)2(1 + f21 ) + c2
; a22 =

1 + f21
(u1)2(1 + f21 ) + c2

;

a12 =
−cf1

(u1)2(1 + f21 ) + c2
= a21.
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Since r = (x1, x2, x3) =
(
u1 cosu2; u1 sinu2; f(u1) + cu2

)
, we have

A = (cosu2, sinu2, f1) and B = (−u1 sinu2, u1 cosu2, c)

A×B = (c sinu2 − u1f1 cosu
2)̂i+ (−c cosu2 − u1f1 sinu

2)ĵ + u1k̂.

Therefore, the unit normal vector ξ is given by

ξ =
1√

(u1)2(1 + f21 ) + c2

(
c sinu2 − u1f1 cosu

2,−c cosu2 − u1f1 sinu
2, u1

)
.

The symmetric covariant tensors bαβ are given by

b11 =
u1f2√

(u1)2(1 + f21 ) + c2
; b22 =

(u1)2f1√
(u1)2(1 + f21 ) + c2

; b12 =
−c√

(u1)2(1 + f21 ) + c2
,

where f2 =
∂2f

(∂u2)2
. Therefore,

b =

∣∣∣∣∣∣∣∣∣
u1f2√

(u1)2(1 + f21 ) + c2
−c√

(u1)2(1 + f21 ) + c2

−c√
(u1)2(1 + f21 ) + c2

(u1)2f1√
(u1)2(1 + f21 ) + c2

∣∣∣∣∣∣∣∣∣ =
(u1)3f1f2 − c2

(u1)2(1 + f21 ) + c2
.

The equation giving the principal curvatures is

χ2
ρ − aαβbαβχρ +

b

a
= 0

or

χ2
ρ +

[
(1 + f21 )(u

1)2f1 + 2c2f1 + ((u1)2 + c2)u1f2[
(u1)2(1 + f21 ) + c2

]3/2
]
χρ +

(u1)3f1f2 − c2[
(u1)2(1 + f21 ) + c2

]2 = 0.

This is a quadratic equation in χρ giving the two values χ(1) and χ(2). The mean
curvature H is given by

H =
1

2
[χ(1) + χ(2)] =

1

2

[
(1 + f21 )(u

1)2f1 + 2c2f1 + ((u1)2 + c2)u1f2[
(u1)2(1 + f21 ) + c2

]3/2
]

and the Gaussian curvature κ is given by the formula,

κ = χ(1)χ(2) =
(u1)3f1f2 − c2[

(u1)2(1 + f21 ) + c2
]2 .
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From this relation, we see that, along the helix u1 = constant, the value of κ is constant
and is independent of parameter u2. The differential equation giving the directions of
the lines of curvatures is

(b11a12 − b12a11)(du
1)2 + (b11a22 − b22a11)du

1du2

+(b12a22 − b22a12)(du
2)2 = 0

or

c[u1f1f2 + 1 + f21 ](du
1)2 + [u1f2{(u1)2 + c2} − (u1)2f1(1 + f21 )]du

1du2

−c[(u1)2(1 + f21 ) + c2](du2)2 = 0.

If the meridians are lines of curvature, i.e. curves u2 = constant are lines of curvature
then du2 = 0 and so, we get

c[u1f1f2 + 1 + f21 ](du
1)2 = 0

or
u1f1f2 + 1 + f21 = 0 as c ̸= 0; du1 ̸= 0,

which is the required condition for the meridians to be lines of curvatures.

EXAMPLE 8.3.8 Prove that the line of curvature of the paraboloid x1x2 = ax3 lie
on the surface

sinh−1 x
1

a
± sinh−1 x

2

a
= c,

where c is an constant. Hence find the equation of the cone passes through a line of
curvature of the paraboloid x1x2 = ax3.

Solution: If the parameter x3 can be written in the form

x3 = f(x1, x2) =
x1x2

a

then the parametric equation of the paraboloid x1x2 = ax3 can be written in the form

r = (x1, x2, x3) =
(
x1; x2; f(x1, x2)

)
.

The first fundamental magnitudes aαβ are given by

a11 =

(
∂x1

∂u1

)2

+

(
∂x2

∂u1

)2

+

(
∂x3

∂u1

)2

= 1 + f21 ,

a22 =

(
∂x1

∂u2

)2

+

(
∂x2

∂u2

)2

+

(
∂x3

∂u2

)2

= 1 + f22 ,

a12 =
∂x1

∂u1
∂x1

∂u2
+
∂x2

∂u1
∂x2

∂u2
+
∂x3

∂u1
∂x3

∂u2
= f1f2 = a21,
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where f1 =
∂f
∂u1

and f2 =
∂f
∂u2

. Therefore,

a =

∣∣∣∣∣1 + f21 f1f2

f1f2 1 + f22

∣∣∣∣∣ = 1 + f21 + f22 .

Since r =
(
x1; x2; f(x1, x2)

)
, we have A = (1, 0, f1) and B = (0, 1, f2)

A×B = −f1î− f2ĵ + k̂.

Therefore, the unit normal vector ξ is given by

ξ =
1√

1 + f21 + f22
(−f1,−f2, 1) .

The symmetric covariant tensors bαβ are given by

b11 =
f11√

1 + f21 + f22
; b22 =

f22√
1 + f21 + f22

; b12 =
f12√

1 + f21 + f22
,

where fij =
∂2f

∂ui∂uj
. Therefore,

b =

∣∣∣∣∣∣∣∣∣
f11√

1 + f21 + f22

f12√
1 + f21 + f22

f12√
1 + f21 + f22

f22√
1 + f21 + f22

∣∣∣∣∣∣∣∣∣ =
f11f22 − f212
1 + f21 + f22

.

The differential equation giving the directions of the lines of curvatures is

(b11a12 − b12a11)(dx
1)2 + (b11a22 − b22a11)dx

1dx2

+(b12a22 − b22a12)(dx
2)2 = 0

or
1

a

(
1 +

(x2)2

a2

)
(dx1)2 − 1

a

(
1 +

(x1)2

a2

)
(dx2)2 = 0

or
dx1√

a2 + (x1)2
± dx2√

a2 + (x2)2
= 0

or

sinh−1 x
1

a
± sinh−1 x

2

a
= c,

where c is a constant. This equation can be written as

sinh−1

[
x1

a

√
1 +

(x2)2

a2
± x2

a

√
1 +

(x1)2

a2

]
= c
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or
x1

a

√
1 +

(x2)2

a2
± x2

a

√
1 +

(x1)2

a2
= sinh c = p; (say)

or

x3

x2

√
1 +

(x3)2

(x1)2
± x3

x1

√
1 +

(x3)2

(x2)2
= p

or
x3
[√

(x1)2 + (x3)2 ±
√

(x2)2 + (x3)2
]
= px1x2.

This is a homogeneous second degree equation and hence represents a cone passes
through the paraboloid x1x2 = ax3.

EXAMPLE 8.3.9 Find the principal directions and the principal curvatures on the
surface

x1 = a(u1 + u2), x2 = b(u1 − u2), x3 = u1u2.

Solution: The parametric representation of the surface is given by

r = (x1, x2, x3) =
(
a(u1 + u2), b(u1 − u2), u1u2

)
.

The first fundamental magnitudes aαβ are given by

a11 =

(
∂x1

∂u1

)2

+

(
∂x2

∂u1

)2

+

(
∂x3

∂u1

)2

= a2 + b2 +
(
u2
)2
.

a22 =

(
∂x1

∂u2

)2

+

(
∂x2

∂u2

)2

+

(
∂x3

∂u2

)2

= a2 + b2 +
(
u1
)2
.

a12 =
∂x1

∂u1
∂x1

∂u2
+
∂x2

∂u1
∂x2

∂u2
+
∂x3

∂u1
∂x3

∂u2
= a2 − b2 + u1u2 = a21.

Therefore,

△ = 4a2b2 + a2
(
u1 − u2

)2
+ b2(u1 + u2)2.

The reciprocal tensors are given by

a11 =
a2 + b2 +

(
u1
)2

△
; a22 =

a2 + b2 +
(
u2
)2

△
; a12 =

a2 − b2 + u1u2

△
= a21.

Since r = (x1, x2, x3) =
(
a(u1 + u2), b(u1 − u2), u1u2

)
, we have

A = (a, b, u2) and B = (a,−b, u1)

A×B =
(
b(u1 + u2), a(u2 − u1),−2ab

)
.
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Therefore, the unit normal vector ξ is given by

ξ =
1√
△
(
b(u1 + u2), a(u2 − u1), − 2ab

)
.

The symmetric covariant tensors bαβ are given by

b11 =
∂ξ

∂u1
· ∂r
∂u1

= 0; b22 =
∂ξ

∂u2
· ∂r
∂u2

= 0; b12 =
−2ab√

△
.

Therefore, b∗ = −4a2b2

△
.

The equation giving the principal curvatures is

χ2
ρ − aαβbαβχρ +

b∗

△
= 0

or

χ2
ρ −

4ab

△3/2

[
a2 − b2 + u1u2

]
χρ −

4a2b2

△2
= 0.

This is a quadratic equation in χρ giving the two values χ(1) and χ(2). The first
curvature H is given by,

H =
1

2
[χ(1) + χ(2)] =

2ab

△3/2

[
a2 − b2 + u1u2

]
and the specific curvature κ is given by the formula,

κ = χ(1)χ(2) = −4a2b2

△2
.

The differential equation giving the directions of the lines of curvatures is

(b11a12 − b12a11)(du
1)2 + (b11a22 − b22a11)du

1du2

+(b12a22 − b22a12)(du
2)2 = 0

or [
a2 + b2 +

(
u2
)2]

(du1)2 −
[
a2 + b2 +

(
u1
)2]

(du2)2 = 0

or
du1√

a2 + b2 + (u1)2
= ± du2√

a2 + b2 + (u2)2

or

log

(
u1 +

√
a2 + b2 + (u1)2

)
= ± log

(
u2 +

√
a2 + b2 + (u2)2

)
+ C.
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8.3.1 Null Lines

The null lines (or minimal curves) on a surface are defined as the curves of zero
length. Therefore, they are imaginary on a real surface, and their importance is
chiefly analytic. The differential equation of the null lines is obtained by equating to
zero the square of the line element. It is therefore,

a11du
2 + 2a12dudv + a22dv

2 = 0. (8.36)

If the parametric curves are null lines, this equation must be equivalent to dudv = 0.
Hence a11 = 0, a12 = 0 and a12 ̸= 0. These are the necessary and sufficient conditions
that the parametric curves be null lines. In this case the square of the line element has
the form ds2 = λdudv, where λ is a function of u, v or a constant; and the parameters
u, v are then said to be symmetric.

When the parametric curves are null lines, so that a11 = 0, a22 = 0, a = −a212, the
differential equation of the lines of curvature is

b11du
2 − b22dv

2 = 0.

Therefore, the Gauss curvature κ and the mean curvature H are, respectively, given
by

κ =
b11b22 − b212

−a212
; H =

2b12
a12

.

8.3.2 Conjugate Directions

Let Q be a point on the surface adjacent to P , and let PR be the line of intersection
of the tangent plane at P and Q. Then, as Q tends to coincidence with P , the
limiting directions of PQ and PR are said to be conjugate directions at P . Thus, the
characteristic of the tangent plane, as the point of contact moves along a given curve,
is the tangent line in the direction conjugate to that of the curve at a point of contact.

At a point P ∈ S, let two directions (du1, du2) and (δu1, δu2) satisfy the relation

b11du
1δu1 + b12

(
du1δu2 + du2δu1

)
+ b22du

2δu2 = 0,

or

bαβdu
αδuβ = 0, (8.37)

then these are called conjugate directions at P . Thus, the necessary and sufficient
condition that the direction δu1

δu2
be conjugate to the direction du1

du2
is

b11
du1

du2
δu1

δu2
+ b12

(
du1

du2
+
δu1

δu2

)
+ b22 = 0 (8.38)
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and the symmetry of the relation shows that the property is a reciprocal one. Moreover,
Eq. (8.38) is linear in each of the ratios du1 : du2 and δu1 : δu2; so that to a given
direction there is one and only one conjugate direction.

EXAMPLE 8.3.10 Find a necessary condition so that the two directions determined
by pαβdu

αduβ = 0; pαβ = pβα are conjugate.

Solution: Given that, pαβdu
αduβ = 0, i.e.

p11(du
1)2 + 2p12du

1du2 + p22(du
2)2 = 0.

Let (du1, du2) and (δu1, δu2) be the solutions, then

du1

du2
+
δu1

δu2
= −2

p12
p11

and
du1

du2
.
δu1

δu2
=
p22
p11

.

From Eq. (8.37), we get

b11
p22
p11

+ b12

(
−2

p12
p11

)
+ b22 = 0

or
b11p22 − 2b12p12 + b22p11 = 0

or
bαβpαβ = 0,

where bαβ are given by

bαβ =
cofactor of bαβ in |bαβ |

|bαβ |
.

Theorem 8.3.3 Parametric curves have conjugate directions if and only if b12 = 0.

Proof: Curve conjugate to u1 curve is given by Eq. (8.37) as

b11du
1δu1 + b12du

1δu2 = 0; as du2 = 0.

Since the conjugate of u1 curve is the u2 curve, δu1 = 0 but δu2 ̸= 0. Therefore,
b12 = 0 which is the necessary condition.

Conversely, if b12 = 0, then the curve conjugate of u1curve is given by

b11δu
1 = 0 ⇒ δu1 = 0,

which shows that it is the u2 curve. Hence, the principal directions at a point of
the surface are conjugate directions. Thus the null lines on a minimal surface form a
conjugate system.
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Deduction 8.3.4 Let the lines of curvature be taken as parametric curves, so that
a12 = 0 and b12 = 0. The directions du

1

du2
and δu1

δu2
are inclined to the curve u2 = constant

at angles θ, θ′, such that

tan θ =

√
a22
a11

du1

du2
; tan θ′ =

√
a22
a11

δu1

δu2
.

The condition that two directions be conjugate may be expressed

b11
du1

du2
δu1

δu2
+ b12

(
du1

du2
+
δu1

δu2

)
+ b22 = 0

or

tan θ tan θ′ = − b11
a11

a22
b22

= −β
α
, as b12 = 0,

that is to say, provided they are parallel to conjugate diameters of the indicatrix.

EXAMPLE 8.3.11 Show that the parametric curves are conjugate on the surface of
revolution

x1 = u1 cosu2; x2 = u1 sinu2; x3 = f(u1)

with f(u1) of class C2.

Solution: The parametric representation of the right helicoid is given by

x1 = u1 cosu2; x2 = u1 sinu2; x3 = f(u1)

i.e.

r = (x1, x2, x3) =
(
u1 cosu2;u1 sinu2; f(u1)

)
.

The symmetric covariant tensors bαβ for the second fundamental form are given by

b11 =
f11√
1 + f21

, b22 =
u1f1√
1 + f21

and b12 = 0 = b21.

where f1 = ∂f
∂u1

and f11 = ∂2f
∂u1∂u1

. Since b12 = 0, the parametric curves on the given
surface are conjugate.

8.3.3 Asymptotic Directions

The asymptotic directions at a point on the surface are the self-conjugate directions;
and the asymptotic line is a curve whose direction at every point is self-conjugate.
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Consequently, in Eq. (8.38) connecting conjugate directions we put δu1

δu2
equal to du1

du2
,

the directions on the surface given by

b11(du
1)2 + 2b12du

1du2 + b22(du
2)2 = 0

or

bαβdu
αduβ = bαβλ

αλβ = 0 (8.39)

and are called the asymptotic directions. The curves whose tangents are asymptotic
directions are called an asymptotic line. Thus, there are two asymptotic directions at
a point. The asymptotic directions are

(i) real and distinct, when b212 − b11b22 is positive, i.e. χ < 0;

(ii) imaginary, when χ > 0;

(iii) identical, when χ = 0.

Now, the normal curvature χ(n) is given in Eq. (8.14). In the case (iii) the surface is a
developable, and the single asymptotic line through a point is a generator. Since for
an asymptote direction Eq. (8.39) holds, it follows that, for an asymptotic direction
the normal curvature is zero, i.e.

χ(n) = 0 ⇒ bαβdu
αduβ = 0

for the asymptotic directions. These directions are, therefore, the directions of the
asymptotes of the indicatrix. They are at right angles when the indicatrix is a rectan-
gular hyperbola, i.e. when the principal curvature are equal and opposite. Thus, the
asymptotic lines are orthogonal when the surface is a minimal surface. The osculating
plane at any point of an asymptotic line is the tangent plane to the surface.

Deduction 8.3.5 Let (du1, du2) be the direction of asymptotic line at P then we
know

bαβdu
αduβ = b11(du

1)2 + 2b12du
1du2 + b22(du

2)2 = 0.

Now, the normal curvature χ(n) is given by

χ(n) =
b11(du

1)2 + 2b12du
1du2 + b22(du

2)2

a11(du1)2 + 2a12du1du2 + a22(du2)2
= 0.

If χa and χb are principal curvatures at P , then, by Euler’s theorem

χa cos
2 θ + χb sin

2 θ = χ(n) = 0. (8.40)
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Now, if χ be the normal curvature in a direction perpendicular to asymptotic line then
from Eq. (8.40), we get

χ = χa cos
2
(π
2
+ θ
)
+ χb sin

2
(π
2
+ θ
)

or

χ = χa sin
2 θ + χb cos

2 θ. (8.41)

Adding Eqs. (8.40) and (8.41), we get

χ = χa + χb = 2

(
χa + χb

2

)
= twice of mean normal curvature at P.

Thus, the normal curvature in a direction perpendicular to an asymptotic line is twice
the mean normal curvature.

EXAMPLE 8.3.12 Show that a straight line on a surface is an asymptotic line.

Solution: We know, the normal curvature χ(n) is given by

χ(n) = χ cos θ,

where χ is the curvature of the curve on the surface and θ is the angle between the
principal normal and the surface normal. Since for a straight line χ = 0, so,

χ(n) =
bαβdu

αduβ

aαβduαduβ
= 0

⇒ bαβdu
αduβ = bαβλ

αλβ = 0.

Hence, any straight line on a surface is an asymptotic line. From this result, it follows
that at each point of an asymptotic curve C, at which κ > 0, the principal normal of C
lies in the tangent plane of the surface. Thus the generating straight lines of a cylinder
or as cone are asymptotic curves on the surface. From this we obtain the following
important property of asymptotic curves.

At any point of an asymptotic curve C for which the curvature κ > 0, the binormal
of C and the normal to the surface coincide. Consequently, at any point of C, the
osculating plane of C and the tangent plane to the surface then coincide.

Theorem 8.3.4 The parametric curves are asymptotic lines if and only if

b11 = b22 = 0.
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Proof: First, let the parametric curves u1 = constant and u2 = constant be asymptotic
lines. Then from Eq. (8.39), we get

bαβdu
αduβ = bαβλ

αλβ = 0.

For u1 curve, i.e. du2 = 0, this equation reduces to

bαβλ
α
(1)λ

β
(1) = bαβ

1
√
a11

δα(1)
1

√
a11

δβ(1) = 0

⇒ b11
a11

= 0 ⇒ b11 = 0.

Similarly, for u2 curve, i.e. du1 = 0; i.e.

bαβλ
α
(2)λ

β
(2) = bαβ

1
√
a22

δα(2)
1

√
a22

δβ(2) = 0

⇒ b22
a22

= 0 ⇒ b22 = 0.

Conversely, let b11 = b22 = 0, then the differential Eq. (8.39) determining the asymp-
totic lines is

b12du
1du2 = 0 ⇒ du1du2 = 0; as b12 ̸= 0,

i.e. the curves are parametric. Of course, co-ordinates of this type can be introduced
on a surface S if and only if at any point of S there are two (different real) asymptotic
directions.

EXAMPLE 8.3.13 Prove that the parametric curves on a surface are asymptotic
lines if and only if b11 = b22 = 0 and show that

κ = −b
2
12

a
; H = −a12b12

a
;
a12
b12

=
H

κ
.

Solution: We know, parametric curves are asymptotic lines if and only if b11 = b22 = 0.
Now, the Gaussian curvature κ is given by

κ =
b

a
=

b11b22 − b212
a11a22 − a212

= − b212
a11a22 − a212

= −b
2
12

a
.

Since b11 = b22 = 0, therefore, the mean curvature H is given by

H =
1

2
aαβbαβ =

1

2

[
a11b11 + a22b22 + 2a12b12

]
= a12b12 = −a12b12

a
.
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These are the values of the mean curvature H and the Gaussian curvature κ, when
parametric curves are asymptotic lines. Thus, the ratio is given by

H

κ
= −a12b12

a
×
(
− a

b212

)
=
a12
b12

.

EXAMPLE 8.3.14 Show that the parametric curves are asymptotic lines to the sur-
faces

x1 = u1 cosu2; x2 = u1 sinu2; x3 = cu2.

Prove that the asymptotic lines consist of generators and the curves of intersection
with coaxial right circular cylinders.

Solution: The parametric curves are asymptotic lines if b11 = 0, b22 = 0 and b12 ̸= 0.
For the given surface

x1 = u1 cosu2; x2 = u1 sinu2; x3 = cu2

or

r = (x1, x2, x3) =
(
u1 cosu2;u1 sinu2; cu2

)
the symmetric covariant tensors bαβ for the second fundamental form are given by

b11 = 0, b22 = 0 and b12 = − c√
c2 + (u1)2

̸= 0.

The differential equation giving the asymptotic lines is

bαβdu
αduβ = b11(du

1)2 + 2b12du
1du2 + b22(du

2)2 = 0

or

− c√
c2 + (u1)2

du1du2 = 0

or

u1 = constant and u2 = constant,

i.e. the parametric curves. Now, the curves u2 = constant are generators, whereas
the curves u1 = constant are the curves of intersection of the given helicoid with the
circular cylinders (x1)2 + (x2)2 = (u1)2. The axis of these coaxial cylinders is x3 axis
which is also the axis of the given helicoid.

EXAMPLE 8.3.15 Determine the asymptotic curves of a cylinder of revolution.
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Solution: Let the parametric equation of the surface S is of the form

r = (x1, x2, x3) = (a cosu1, a sinu1, u2).

We know any straight line on a surface S of class r ≥ 2 is an asymptotic curve. Thus
the generating straight lines of a cylinder (or a cone) S are asymptotic curves on these
surfaces. We will prove that those curves are the only asymptotic curves of S. The
second fundamental magnitudes are given by

b12 = b22 = 0 and b11 = −1 ̸= 0

Thus Eq. (8.39) takes the form

b11(du
1)2 + b22(du

2)2 + 2b12du
1du2 = 0

⇒ b11(du
1)2 = 0; where b11 = −1 ̸= 0

⇒ du1 = 0, that is, u1 = constant.

Since this is the only solution of that equation the above straight lines are the only
asymptotic curves on the cylinder.

EXAMPLE 8.3.16 Show that the two directions given by hαβdu
αduβ = 0, are or-

thogonal if and only if aαβhαβ = 0.

Solution: The given equation hαβdu
αduβ = 0 can be written in the form

h11(du
1)2 + h12du

1du2 + h21du
2du1 + h22(du

2)2 = 0

or

h11

(
du1

du2

)2

+ (h12 + h21)
du1

du2
+ h22 = 0.

Let du1

du2
and δu1

δu2
be the roots of the quadratic equation. Then

du1

du2
+
δu1

δu2
= −h12 + h21

h11
and

du1

du2
δu1

δu2
=
h22
h11

.

The two directions (du1, du2) and (δu1, δu2) will be perpendicular if and only if

a11du
1δu1 + a12du

1δu2 + a21du
2δu1 + a22du

2δu2 = 0

or

a11
du1

du2
δu1

δu2
+ a12

[
du1

du2
+
δu1

δu2

]
+ a22 = 0
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or

a11
h22
h11

− a12

[
h12 + h21

h11

]
+ a22 = 0

or

a11h22 − a12(h12 + h21) + a22h11 = 0

or

a
[
a22h22 + a12h12 + a21h21 + a11h11

]
= 0

or

aαβhαβ = 0; as a ̸= 0.

EXAMPLE 8.3.17 The asymptotic lines are at right angles if and only if H = 0.

Solution: The asymptotic lines are given by the equation

bαβdu
αduβ = bαβλ

αλβ = 0.

Thus, the asymptotic lines are at right angles if and only if

aαβbαβ = 0 ⇒ H =
1

2
aαβbαβ = 0,

where H is the mean curvature. Thus, the asymptotic lines are right angles if and only
if the surface is a minimal surface. Hence the asymptotic lines form an orthogonal
system, bisecting the angles between the lines of curvature.

EXAMPLE 8.3.18 Show that on a sphere there is no real asymptotic line.

Solution: The parametric representation of the sphere of radius a is given by

x1 = a sinu1 cosu2, x2 = a sinu1 sinu2, x3 = a cosu2

or

r = (x1, x2, x3) =
(
a sinu1 cosu2, a sinu1 sinu2, a cosu2

)
.

For the given surface, the symmetric covariant second order tensors aαβ for the first
fundamental form are given by

a11 = a2; a22 = a2 sin2 u1; a12 = 0 = a21

and the symmetric covariant second order tensors bαβ for the second fundamental form
are given by

b11 = −a; b22 = −a sin2 u1; b12 = 0 = b21.
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Since a12 = 0 = b12, this given parametric curve has the line of curvature. In fact,

b11
a11

=
b12
a12

=
b22
a22

= −1

a
,

i.e. bαβ are proportional to aαβ . Now, the asymptotic lines are given by

bαβdu
αduβ = b11(du

1)2 + 2b12du
1du2 + b22(du

2)2 = 0

or

−a(du1)2 − a sin2 u1(du2)2 = 0

or

(du1)2 + sin2 u1(du2)2 = 0.

Hence, there is no real asymptote.

Theorem 8.3.5 The torsion of an asymptotic line equals to ±
√
−κ, where κ is the

Gaussian curvature of the surface.

Proof: From Eq. (8.6), we have, for an asymptotic curve,

χµi = bαβλ
αλβξi + χgζ

i,= χgζ
i; as bαβλ

αλβ = 0, (8.42)

where µi is the principal normal and ζi is the space vector giving the same direction
on the surface as ξi; the unit normal to the surface S. Therefore,

(χµi)(χµi) = (χgζ
i)(χgζ

i)

or

χ2 = χ2
h ⇒ χ = ±χh (8.43)

from which we conclude that the curvature and the geodesic curvature of an asymptotic
line are equal in magnitude. Also,

χµi = χgζ
i ⇒ µi = ±ζi. (8.44)

We now derive the well known formula for torsion of an asymptotic line. From
Eq. (8.44), it follows that the principal normal µi of an asymptotic line is tangent
to the surface and hence the binormal of an asymptotic line coincides with the surface
normal ξi, i.e.

γi = ±ξi. (8.45)
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Taking intrinsic derivative of both the sides of Eq. (8.45), we get

δγi

δs
=
δξi

δs
⇒ τµi = ±ξi,α

duα

ds
= ±ξi,αλα.

Therefore,

τ2 = gij(τµ
i)(τµj) = gijξ

i
,αξ

j
,βλ

αλβ

= cαβλ
αλβ ; as cαβ = gijξ

i
,αξ

j
,β.

Using the relation

cαβ − 2Hbαβ + κaαβ = 0,

where H is the mean curvature and κ is the Gaussian curvature, we get

cαβλ
αλβ − 2Hbαβλ

αλβ + κaαβλ
αλβ = 0

or
τ2 − 0 + κ2 = 0 ⇒ τ = ±

√
−κ.

Therefore, the torsions of the two asymptotic lines through a point are equal in magni-
tude and opposite in sign; and the square of either is negative of the specific/Gaussian
curvature of the surface. This theorem is formulated by Beltrami Enneper.

EXAMPLE 8.3.19 Find the asymptotic lines on the surface of revolution

x1 = u1 cosu2, x2 = u1 sinu2, x3 = f(u1).

Find also the values of their torsions.

Solution: For the given surface

x1 = u1 cosu2, x2 = u1 sinu2, x3 = f(u1)

or
r = (x1, x2, x3) =

(
u1 cosu2, u1 sinu2, f(u1)

)
the symmetric covariant tensors bαβ for the second fundamental form are given by

b11 =
u1f11√
1 + f21

, b12 = 0 = b21 and b22 =
(u1)2f1√
1 + f21

.

The differential equation giving the asymptotic lines is

b11(du
1)2 + 2b12du

1du2 + b22(du
2)2 = 0
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or

f11(du
1)2 + u1f1(du

2)2 = 0.

Using Beltrami Enneper’s formula the torsion of an asymptotic line equals to ±
√
−κ,

where κ is the Gaussian curvature of the surface, as

τ = ±
√
−κ = ±

√
−(u1)3f11f1

(u1)2(1 + f21 )
.

8.4 Conformal Mapping

Isometric mappings of a surface S on another surface S∗ have been already mentioned.
It is often convenient to consider mappings which are more general than isometrices-
for example, it is useful to map parts of the earth’s surface onto a flat atlas. Certain
of these maps are particular cases of conformal mappings.

A surface S is said to be conformally mapped on a surface S∗ if there is a
differentiable homomorphism of S on S∗ such that the angle between any two curves
at an arbitrary point P on S is equal to the angle between the corresponding curves
on S∗.

An isometric mappings preserves both distances and angles, whereas a conformal
mapping just preserves angles. Let the fundamental forms of S, S∗ be respectively

ds2 = a11du
2 + 2a12dudv + a22dv

2

ds∗2 = a∗11du
2 + 2a∗12dudv + a∗212dv

2

the correspondence being such that corresponding points P, P ∗ have the same para-

metric values. Then if
ds∗

ds
has the same value for all directions at the given point, we

must have

a∗11
a11

=
a∗12
a12

=
a∗22
a22

=
ds∗2

ds2
= ρ2, (8.46)

where ρ is function of u and v or a constant. Equation (8.46) is evidently a necessary
and sufficient condition for a differentiable homomorphism to be conformal. Therefore

ds∗ = ρds.

The quantity ρ may be called the linear magnification. When ρ = 1, for all points of
the surface, ds∗ = ds. The conformal representation is then said to be isometric, and
the surfaces are said to be applicable. In this case, corresponding elements of the two
surfaces are congruent. Thus every isometric mapping is conformal.
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EXAMPLE 8.4.1 Prove that every point on a surface has a neighbourhood which
can be mapped conformably on some neighbourhood of any other surface.

Solution: Let S be the given surface with metric

ds2 = a11du
2 + 2a12dudv + a22dv

2

in some co-ordinate domain. At any point P there are two (imaginary) directions such
that ds2 = 0. These are called isotropic directions at P , and since a = a11a22−a212 ̸= 0
if follows that these directions are always distinct.

When curves along these directions are chosen as parametric curves the metric
assumes the form ds2 = λdudv. The change of parameters

u = U + iV, v = U − iV,

where U and V are real, leads to a metric of the form

ds2 = ∆2[dU2 + dV 2].

If this is compared with the metric of the plane

ds2 = du∗2 + dv∗2,

it is rapidly seen that the mapping u∗ = U, v∗ = V gives a conformal mapping of a
region of the given surface on a region of the plane. Hence the result follows.

EXAMPLE 8.4.2 Show that null lines on a surface correspond to null lines in the
conformal representation.

Solution: We have deduce that ds∗2 = r2ds2, if ds2 vanishes along a curve S, ds∗2
will vanish along the corresponding curve on S∗. Conversely, let the null lines be taken
as parametric curves. Then

a11 = a22 = 0 and a∗11 = a∗22 = 0

⇒ ds∗2

ds2
=

2a∗12dudv

2a12dudv
=
a∗12
a12

.

Since the
ds∗

ds
has the same value for all arcs through a given point, the representation

is conformal. Thus, if null lines on S corresponds to null lines on S∗, the representation
is conformal.
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8.5 Spherical Image

We shall now consider briefly the spherical representation of a surface, in which each
point or configuration on the surface has its representation on a unit sphere, whose
centre may be taken as origin. If ξ is the unit normal at the point P on the surface
S, the point Q whose position vector is ξ is said to correspond to P , or the image of
P . Clearly, Q lies on the unit sphere; and if P moves in any curve on the surface, Q
moves in the corresponding curve on the sphere. The mapping thus defined is called
the Gaussian spherical mapping of the surface S. The set of all image points is called
the spherical image of S. Since the position vector r of Q is given by r = ξ, it follows
that

∂r̄

∂u
=
∂ : ξ

∂u
=

1

a2

[
(a12b12 − a22b11)

∂r

∂v
+ (a12b11 − a11b12)

∂r

∂v

]
∂r̄

∂v
=
∂ξ

∂v
=

1

a2

[
(a12b22 − a22b11)

∂r

∂u
+ (a12b12 − a11b12)

∂r

∂v

]
.

Consequently, if a∗11, a
∗
12, a

∗
22 denote the fundamental magnitudes of the first order for

the spherical image

a∗11 =
1

a2
[
a11b

2
12 − 2a12b11b12 + a22b11

]
,

a∗12 =
1

a2
[
a11b12b22 − a12b

2
12 − a12b11b22 + a22b11b12

]
,

a∗22 =
1

a2
[
a11b

2
22 − 2a12b12b22 + a22b

2
12

]
,


(8.47)

or, in terms of the first and second curvatures

a∗11 = Hb11 − ka11; a∗12 = Hb12 − ka12; a∗22 = Hb22 − ka22 (8.48)

In virtue of Eq. (8.48) we may write the square of the linear element of the image.

ds∗2 = H(b11du
2 + 2b12dudv + b22dv

2)− k(a11du
2 + 2a12dudv + a22dv

2),

or, if χ(n) is the normal curvature of the given surface in the direction of the arc-length

ds∗2 =
[
χ(n)H − k

]
ds2.

If then χ(1) and χ(2) are the principal curvatures of the surface, we may write this in
virtue of Euler’s theorem

ds∗2 =
[{
χ(1) + χ(2)

}{
χ(1) cos

2 θ + χ(2) sin
2 θ
}
− χ(1)χ(2)

]
ds2

=
[
χ(1) cos

2 θ + χ2
(2) sin

2 θ
]
ds2. (8.49)
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It is clear from either of these formulae that the value of the quotient ds∗

ds depends
upon the direction of the arc element. The fundamental magnitudes for the spherical
representation, as given by Eq. (8.48), become in the case of a minimal surface

a∗11 = −κa11; a∗12 = −κa12; a∗22 = − κa22. (8.50)

From these relations several interesting general properties may be deduced.

EXAMPLE 8.5.1 Show that the spherical image is not a conformal representation
in general.

Solution: The spherical image be conformal, however, if χ(1) = ±χ(2). When
χ(1) = −χ(2) at all points, the Gaussian curvature becomes

H =
1

2

[
χ(1) + χ(2)

]
= 0

i.e. H vanishes indentically and the surface is a minimal surface. Thus, for a minimal
surface

ds∗2 = −κds2.

Thus
ds∗

ds
is independent of the direction of the arc-element through the point, and

the representation is conformal. The magnification has the value
√
−κ, the second

curvature being essentially negative for a real minimal surface. Thus, the spherical
representation of a minimal surface is conformal. Therefore, in general, the spherical
image is not a conformal representation.

Moreover it follows from Eq. (8.49) that the turning values of
ds∗

ds
are given by

cos θ = 0 and sin θ = 0. Thus the greatest and least values of the magnification at
a point are numerically equal to the principal curvatures. From this it follows that
if the spherical image of a surface is a conformal representation, either the surface is
minimal, or else its principal curvatures are equal at each point.

EXAMPLE 8.5.2 Prove that null lines on a minimal surface become both null lines
and asymptotic lines in the spherical representation.

Solution: Let the null lines be taken as parametric curves, then a11 = 0 = a22.
Therefore

Hb11 − κa11 = 0 and Hb22 − κa22 = 0.

Thus the parametric curves in the spherical image are null lines. Again considering
the second order magnitudes for the sphere, we have

b11 = 0 = b12
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and therefore, the parametric curves in the spherical image are also asymptotic lines.
Conversely, let the null lines are parametric curves, then a11 = 0 = a22; and since the
parametric curves are also null lines in the spherical image

Hb11 − ka11 = 0;Hb22 − ka22 = 0

⇒ Hb11 = 0 and Hb22 = 0.

Consequently, either H = 0 and the surface is minimal, or else b11 = 0 = b22. In the
later case, it follows that

H =
2b12
a12

and k =
b212
a212

⇒ H2 − 4κ = 0,

which is the condition that the principal curvatures should be equal. Thus, if the null
lines in the spherical representation, either the surface is minimal, or else its principal
curvatures are equal.

EXAMPLE 8.5.3 Show that the isometric lines on a minimal surface are also iso-
metric in the spherical representation.

Solution: If the isometric lines are taken as parametric curves, we have

a12 = 0 and
a11
a22

=
U(u)

V (v)
,

where U is a function of u only and V is a function of v only. Therefore, it follows
that

H

κ
=
a12
b12

;
a12
a22

=
U(u)

V (v)
,

showing that the parametric curves in the spherical image are also isomorphic. Hence
the theorem. This result is obvious from the fact that the spherical image on a minimal
surface is conformal.

In particular, the spherical image of the lines of curvature on a minimal surface
are isometric curves, for the lines of curvature on a minimal surface have been shown
to be isometric.

EXAMPLE 8.5.4 Show that the lines of curvature on a surface are orthogonal in
their spherical representation.

Solution: The lines of curvature on a surface are orthogonal in their spherical rep-
resentation. For if they are taken as parametric curves, we have a12 = 0 = b12, hence
a∗12 = 0 which proves the statement. Further if a12 = 0 and a∗12 = 0 we must also have
b12 = 0 unless the Gaussian curvature H vanishes identically. Thus, if the surface is
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not a minimal surface, the lines of curvature are the only orthogonal system whose
spherical image is orthogonal.

Moreover, by Rodrigue’s formula along a line of curvature dr is parallel to dξ and
therefore also to dr. Hence the tangent to a line of curvature is parallel to the tangent
to its spherical image at the corresponding point.

Conversely if dr is parallel to dr̄ it is parallel to dξ. The vectors ξ, ξ + dξ, dr are
therefore coplanar, and the line is a line of curvature. Thus if the relation holds for a
curve on a surface it must be a line of curvature.

EXAMPLE 8.5.5 Prove that if two directions are conjugate at a point on a given
surface, each is perpendicular to the spherical image of the other at the corresponding
point.

Solution: If dr and ds be two infinitesimal displacements on a given surface, and dξ
the change in the unit normal due to the former, the directions of the displacements
will be conjugate provided

dξ · ds = 0.

Conversely this relation holds if the directions are conjugate. But dξ = dr̄, where dr̄
is the spherical image of dr. Consequently

dr̄ · ds = 0.

Thus if two directions are conjugate at a point on a given surface, each is perpendicular
to the spherical image of the other at the corresponding point. It follows that the
inclination of two conjugate directions are equal, or supplementary, to that of their
spherical representations.

Further, an asymptotic line is self-conjugate. Hence an asymptotic line on a surface
is perpendicular to its spherical image at the corresponding point.

8.6 Surface of Revolution

A surface of revolution may be generated by the rotation of a plane curve about an
axis in its plane. Let C : x3 = f(x1) be a curve drawn on the plane x2 = 0, where xi

are Cartesian co-ordinates of a point. Let P (x1, 0, x3) be a point on the curve, then
P traces a circle as the curve C is rotated about the x3 axis. The surface generated
by the curve is called the surface of revolution and its implicit equation is

x3 = ϕ
(√

(x1)2 + (x2)2
)
. (8.51)

To obtain the parametric equation of the surface, let the generating curve be given by

x1 = f1(u
1), x2 = 0, x3 = f2(u

2).
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Let u2 be the angle of rotation about the x3 axis measured from the x1 axis, then

x1 = f1(u
1) cosu2, x2 = f1(u

1) sinu2, x3 = f2(u
1).

This is the parametric representation of the surface of revolution obtained by rotating
a curve about the x3 axis. The curve C is called the generator of the curve.

Let the axis of rotation be x3 and u1 denote perpendicular distance from it, the
co-ordinates of a point on the surface may be expressed

x1 = u1 cosu2;x2 = u1 sinu2; x3 = f(u1),

the longitude u2 being the inclination of the axial plane through the given point to
the x3x1 plane. The parametric curves u2 = constant are the meridian lines, or
intersections of the surface by the axial planes; the curves u1 = constant are the
parallels, or intersection of the surface by planes perpendicular to the axis.

EXAMPLE 8.6.1 Let S is a surface of revolution

x1 = u1 cosu2;x2 = u1 sinu2; x3 = f(u1); f(u1) ∈ C2.

(a) Find the surface of revolution that has a minimal surface.
(b) Find the surface of revolution that has a constant negative Gaussian curvature.
(c) Find the complete integral of the equations of geodesics.

Solution: With u1, u2 as parameters, the parametric representation of the right
helicoid is given by

x1 = u1 cosu2;x2 = u1 sinu2; x3 = f(u1)

i.e.
r = (x1, x2, x3) =

(
u1 cosu2;u1 sinu2; f(u1)

)
.

Here we have to show that the catenoid is the only minimal surface of revolution. The
first order magnitudes are given by

a11 = 1 + f21 ; a22 = (u1)2 and a12 = 0 = a21,

⇒ a = |aαβ | =

∣∣∣∣∣1 + f21 0

0 (u1)2

∣∣∣∣∣ = (u1)2(1 + f21 ),

where f1 =
∂f
∂u1

. Since a12 = 0, it follows that the parallels cut the meridians orthogo-
nally. The second order magnitudes are given by

b11 =
f11√
1 + f21

, b22 =
u1f1√
1 + f21

and b12 = 0 = b21,

⇒ b = |bαβ | =

∣∣∣∣∣∣∣∣
f11√
1 + f21

0

0
u1f1√
1 + f21

∣∣∣∣∣∣∣∣ =
u1f1f11
1 + f21

,
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where f1 = ∂f
∂u1

and f11 = ∂2f
∂u1∂u1

. Since a12 = 0 and b12 = 0, the parametric curves
are the lines of curvature. The equation for the principal curvatures reduces to

u1(1 + f21 )
2χ2

ρ −
√

1 + f21
[
u1f11 + f1(1 + f21 )

]
χρ + f1f11 = 0.

This is a quadratic equation in χρ which gives the two values χ(1) and χ(2) given by

χ(1) =
f11

(1 + f21 )
3/2

; χ(2) =
f1

u1
√

1 + f21
.

The first of those is the curvature of the generating curve. The second is the reciprocal
of the length of the normal intercepted between the curve and the axis of rotation.

(a) Now, the mean curvature H is given by

H =
a11b22 − 2a12b12 + a22b11

a
=
f1(1 + f21 ) + u1f11

u1(1 + f21 )
3/2

.

The surface will be a minimal surface if H = 0, i.e. if

f1(1 + f21 ) + u1f11 = 0

or

F (1 + F 2) + u1F1 = 0; F = f1 =
∂f

∂u1

or
du1

u1
+

dF

F (1 + F 2)
= 0

or

log u1 + logF − 1

2
log(1 + F 2) = log c; integrating

or
u1F√
1 + f21

= c⇒ F =
∂f

∂u1
= ± c√

(u1)2 − c2
.

Take the positive sign (the other case is exactly similar) and integrating we get

f + c1 = cosh−1

(
u1

c

)
⇒ u1 = c cosh(x3 + c1).

Hence, the required surface is the surface of revolution obtained by revolving the cate-
nary u1 = c cosh(x3 + c1) about x

3 axis. Thus the only minimal surface of revolution
is that formed by the revolution of a catenary about its directrix.

(b) Now, the Gaussian curvature κ is given by

κ =
b

a
=

f1f11
(u1)2(1 + f21 )

.
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Given that, the surface of revolution that has a constant negative Gaussian curvature,
say κ = − 1

c2
. Therefore,

f1f11
(u1)2(1 + f21 )

= − 1

c2

or
dF

F 2
= −2u1du1

c2
; F = 1 + f21 = 1 +

(
∂f

∂u1

)2

or
1

F
=

1

1 + f21
=

(u1)2

c2
; integrating

or

1 + f21 =
c2

(u1)2
⇒ f1 = ±

√
c2 − (u1)2

u1
,

where we choose the constant of integration equal to 0. Take the positive sign (the
other case is exactly similar) and integrating we get

f = x3 =
√
c2 − (u1)2 +

c

2
log

c−
√
c2 − (u1)2

c+
√
c2 − (u1)2

.

Hence, the required surface is the surface of revolution obtained by revolving the
tractrix

x3 =
√
c2 − (u1)2 +

c

2
log

c−
√
c2 − (u1)2

c+
√
c2 − (u1)2

.

about x3 axis, which is the axis of tractrix.
(c) The second equation for geodesics is of the form

d2u2

ds2
+

2

u1
du1

ds

du2

ds
= 0.

On multiplication by u2 this equation becomes exact, and has for its integral

(u1)2
du2

ds
= h; h = constant.

If θ is the angle at which the geodesics cuts the meridian, we may write u1 sin θ = h, a
theorem due to Clairant. This is a first integral of the equation of geodesics, involving
one orbitrary constant h.

To obtain the complete integral we observe that, for any arc on the surface,

ds2 = (1 + f21 )(du
1)2 + (u1)2(du2)2

and therefore, for the arc of a geodesic
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(u1)4(du2)2 = h2(1 + f21 )(du
1)2 + h2(u1)2(du2)2

or

du2 = ± h

u1

√
1 + f21

(u1)2 − h2
du1

or

u2 = c± h

∫
1

u

√
1 + f21

(u1)2 − h2
du1

involving the two arbitrary constants c and h, is the complete integral of the equation
of geodesics on a surface of revolution.

8.7 Exercises

1. Find the principal curvatures of the surface S defined by

x1 = u1;x2 = u2; x3 = f(u1, u2).

2. Show that the principal curvatures are −1,−1 for the surface

(x1)2 + (x2)2 + (x3)2 = 1.

3. Find the equation for the principal curvatures, and the differential equation of
the lines of curvature, for the surfaces

(i) 2z =
x2

a
+
y2

b
, (ii) 3z = ax3 + by3, (iii) z = c tan−1 y

x .

4. Examine the curvature, and find the lines of curvature, on the surface xyz = abc.

5. Find the principal direction and principal curvatures on the surface

x1 = a(u1 + u2); x2 = b(u1 − u2); x3 = u1u2.

Show also that on the surface the parametric curves are asymptotic.

6. Find equations for the principal radii, the lines of curvature, and the first and
second curvatures of the following surfaces:

(i) the conoid x1 = u1 cosu2; x2 = u1 sinu2; x3 = f(u1);

(ii) the catenoid x1 = u1 cosu2; x2 = u1 sinu2; x3 = c log
(
u1 +

√
(u1)2 − c2

)
;

(iii) the cylindroid x3((x1)2 + (x2)2) = 2mx1x2; find also the lines of curvature
and the principal curvatures;

(iv) the surface 2z = ax2 + 2hxy + by2;
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(v) the surface

x1 = 3u1(1 + (u2)2)− (u1)3;

x2 = 3u2(1 + (u1)2)− (u2)3;

x3 = 3
(
(u1)2 − (u2)2

)
;

Also show that the asymptotic lines are u± v = constant.
(vi) the surface

x

a
=

1 + uv

u+ v
;
y

b
=
u− v

u+ v
;
z

c
=

1− uv

u+ v
;

(vii) the surface xyz = a3.

7. Find the principal curvatures and the lines of curvature on the surface
z2(x2 + y2) = c4.

8. Prove that along a line of curvature of a conoid, one principal radius varies as
the cube of the other.

9. Prove that if a plane cuts a surface everywhere at the same angle, the section is
a line of curvature on the surface.

10. Prove that the only developable surface which have isometric lines of curvature
are either conical or cylindrical.

11. Prove that the co-ordinate surfaces of every triply orthogonal curvilinear co-
ordinate system in E3 intersect along the lines of curvature of co-ordinate sur-
faces.

Hints: Consider the surface x3 = constant and take x1 = u1, x2 = u2 as surface
co-ordinates on it. Show that along the co-ordinate lines u1 = constant, u2 =
constant, b12 = 0 if a12 = 0.

12. Find the components of the curvature tensors Rαβγδ and R
α
βγδ on x

3 = f(x1, x2).

13. Prove that the Gaussian curvature k depends only on the coefficients of the first
fundamental form (and their derivatives) but not on the second fundamental
form.

14. Given an ellipsoid of revolution, whose surface is given by

x1 = a cosu1 sinu2; x2 = a sinu1 sinu2; x3 = c cosu2,

where a and c are constants satisfying a2 > c2 and
(
x1, x2, x3

)
are orthogonal

Cartesian co-ordinates. Show that

a11 = a2 sin2 u2; a12 = 0; a22 = a2 cos2 u2 + c2 sin2 u2,

b11 =
ac sin2 u2√

a2 cos2 u2 + c2 sin2 u2
; b12 = 0; b22 =

ac√
a2 cos2 u2 + c2 sin2 u2
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and the total curvature K is given by

K = χ1χ2 =
c2

(a2 cos2 u2 + c2 sin2 u2)2
.

Discuss the lines of curvature on this surface.

15. Show that the lines of curvatures for the surface given by

(x1)2 + (x2)2 + (x3)2 = 1

are the parametric curves.

16. Show that the lines of curvatures for the surface given by

r = (u cos v, u sin v, cv)

are given by v = ± sinh−1 u
c + constant. Also, show that on the surface the

parametric curves are asymptotic lines.

17. Show that a system of confocal ellipses and hyperbolas are isometric lines in the
plane.

18. Show that the umbilics of the surface(
x1

a

)2/3

+

(
x2

b

)2/3

+

(
x3

c

)2/3

= 1

lie on a sphere of radius abc/(ab+ bc+ ca) whose centre is the origin.

19. If a > b > c, the ellipsoid
x2

a2
+
y2

b2
+
z2

c2
= 1 has umbilici at the points

y = 0, x2 =
a2(a2 − b2)

a2 − c2
; z2 =

c2(b2 − c2)

a2 − c2
.

20. Show that the surface 4a2z2 = (x2 − 2a2)(y2 − 2a2) has a line of umbilics lying
on the sphere x2 + y2 + z2 = 4a2.

21. Prove that, at any point of the surface, the sum of the radii of normal curvature
in conjugate directions is constant.

22. Prove that the product of the radii of normal curvature in conjugate directions
is a minimum for the lines of curvature.

23. Prove that the normal curvature in a direction perpendicular to an asymptotic
line is twice the mean curvature.

24. Show that on the paraboloid 2z =
x2

a2
− y2

b2
the asymptotic lines are

x

a
± y

b
= constant.
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25. Find the asymptotic lines on the surface

x = a(1 + cosu) cot v; y = a(1 + cosu); z =
a cosu

sin v
.

26. Prove that the asymptotic lines of the right conoid

x1 = u1 cosu2;x2 = u1 sinu2; x3 = f(u2)

are given by u2 = constant, ∂f
∂u2

= (u1)2c. Hence, find the asymptotic lines of
the cylindroid

x1 = u1 cosu2; x2 = u1 sinu2; x3 = m sin 2u2.

Determine f(u2) so that on this conoid the parametric curves may be isometric
lines.

27. Prove that the asymptotic lines of the catenoid u1 = c cosh x3

c lie on the cylinders

2u1 = c

(
aeu

2
+

1

a
e−u

2

)
,where a is arbitrary.

Hints: Consider the parametric representation of the curve as

x1 = u1 cosu2;x2 = u1 sinu2; x3 = f(u1) = c cosh−1 u
1

c
.

28. Find the asymptotic lines on the surface z = y sinx.

29. Prove that the asymptotic lines on the surface of revolution

x1 = u1 cosu2;x2 = u1 sinu2; x3 = f(u1)

are given by f11d(u
1)2 + u1f1d(u

2)2 = 0. Write down the value of the torsions.

Further if u1 = a sinϕ and f(u1) = a(log tan ϕ
2 + cosϕ) the asymptotic lines are

given by du2 = ± dϕ

sinϕ
.

30. Find the asymptotic lines and torsions on the surface whose equation is

r = (x1, x2, x3) =
(
x1; x2; f(x1, x2)

)
.

Hence, show that

(i) if f(x1, x2) = x2 sinx1, then the asymptotic line is (x2)2 cosx1 = c1.

(ii) if f(x1, x2) =
1

2

[
(x1)2

a2
− (x2)2

b2

]
, then the asymptotic line is

x1

a
± x2

b
= c1.
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31. Prove that the generating straight lines of a cylinder or a cone are asymptotic
curves on those surfaces.

32. Prove that the asymptotic lines on a minimal surface form an orthogonal system.

33. Prove that the indicatrix at a point of a surface z = f(x, y) is a rectangular
hyperbola if

(1 + p2)t− 2pqs+ (1 + q2)r = 0.

Also, show that the asymptotic lines and torsions are

rdx2 + 2sdxdy + tdy2 = 0; τ = ±
√
s2 − rt

1 + p2 + q2
.

34. Prove that the indicatrix at every point of a helicoid z = c tan−1 y
x is a rectan-

gular hyperbola.

35. Show that the parametric curves are conjugate on the surface

x3 = f(x1) + f(x2),

where x1 and x2 are parameters.

36. If a curve is a geodesic on the surface, prove that it is either a straight line or
its principal normal is orthogonal to the surface at every point and conversely.

37. Prove that the normal curvature in a direction perpendicular to an asymptotic
line is twice the mean normal curvature.

38. Prove that the sum of the normal curvatures in two directions at right angles is
constant, and equal to the sum of the principal curvatures.

39. Prove that, at each non-umbilical point of a surface there exist two mutually
orthogonal directions for which the normal curvature attains its extreme values.

40. Show that the helicoid

x1 = u1 cosu2; x2 = u1 sinu2; x3 = au2

is a surface of negative curvature.

41. If S is a surface of revolution

x1 = u1 cosu2; x2 = u1 sinu2; x3 = f(u1)

with f(u1) of class C2, show that the points on a surface of revolution S for
which f ′f ′′ > 0 are elliptic; those for which f ′f ′′ < 0 are hyperbolic; and if
f ′′ = 0, then S is a cone.
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42. Find the differential equation of the asymptotic curves of a surface of revolution

x1 = u1 cosu2; x2 = u1 sinu2; x3 = f(u1)

and determine the location of elliptic, parabolic, and hyperbolic points on this
surface.

43. Prove that the co-ordinate curves of any allowable co-ordinate system on a
surface S coincide with the lines of curvature if and only if for this system
a12 = 0 = b12 at any point where those co-ordinates are allowable.

44. Prove that at elliptic points the Gaussian curvature is positive, at parabolic ones
it vanishes, and at hyperbolic ones it is negative.

45. Prove that if every point of a surface S which has a representation of class ≥ 3
is an umbilic, S is a plane or a sphere.

46. Show that on a cylinder x1 = c cosu1; x2 = c sinu1; x3 = u2 one distinct real
asymptotic direction is given by u1 curve.

47. Prove that the osculating plane to an asymptotic line which is not a straight line
coincides with the tangent plane.

48. Prove that if every point of the surface S is parabolic, then S is developable.

49. Prove that any point of the following ellipsoid is elliptic

x1 = a cosu1 cosu2; x2 = b sinu1 cosu2; x3 = c sinu2.

50. Prove that any point of a cylinder or of a cone is parabolic.

51. If S is a surface of revolution

x1 = u1 cosu2;x2 = u1 sinu2; x3 = f(u1)

with f(u1) of class C2, show that a parallel surface S is also a surface of revolu-
tion.

52. Show that the meridians and parallels on a sphere form an isometric system,
and determine the isometric parameters.

53. On the surface formed by the revolution of a parabola about its directrix, one
principal curvature is double the other.

54. Find the surface of revolution for which

ds2 = du2 + (a2 − u2)dv2.

55. If the surface of revolution is a minimal surface,

u
d2f

du2
+
df

du

[
1 +

(
df

du

)2
]
= 0.
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Hence, show that the only real minimal surface of revolution is that formed by
the revolution of a catenary about its directrix.

56. Find the equations of the helicoid generated by a circle of radius a, whose plane
passes through the axis; and determine the lines of curvature on the surface.

57. Prove that the null lines are conjugate if and only if the surface is minimal.

58. Show that the only minimal surface of the type z = f(x) + F (y) is the surface
az = log cos(ax)− log cos(ay).

59. Show that the surface sin az = sinh ax sinh ay is minimal.

60. Show that the surfaces

x1 = u1 cosu2, x2 = u1 sinu2, x3 = cu2

and

x1 = u1 cosu2, x2 = u1 sinu2, x3 = c cosh−1 u
1

c

are applicable.

61. Find the first and second curvatures for the spherical image.

62. Prove that the osculating planes of a line of curvature and of its spherical image
at corresponding points are parallel.

63. Show that the lines of curvature of a surface of revolution remains isometric in
their spherical representation.

64. Show that the spherical images of the asymptotic lines on a minimal surface, as
well as the asymptotic lines themselves, are an isometric system.

65. Show that the helicoids

x1 = u1 cosu2, x2 = u1 sinu2, x3 = cu2 + c

∫ √
(u1)2 + c2

(u1)2 − c2
du1

u1

is a minimal surface.



Chapter 9

Classical Mechanics

Differential geometry is the building block in different branches of physics. Classical
mechanics was originated with the work of Galileo and was developed extensively by
Newton. It deals with the motion of particles in a fixed frame of reference (rectangular
co-ordinate system). The basic premise of Newtonian mechanics is the concept of
absolute time measurement between two reference frames at constant velocity relative
to each other. Within those frames, other co-ordinate systems may be used so long as
the metric remains Euclidean. This means that some of the theory of tensors can be
brought to bear on this study.

9.1 Newton’s Laws of Motion

Newton’s laws of motion are the basis of the development of mechanics. Newton’s
laws of motion are stated in the following form:

(i) Everybody continues to be in its state of rest or of uniform motion in a straight
line unless it is compelled to change that state by external forces acting on it
(Law of inertia).

(ii) The time rate of change of momentum of the particle is proportional to the
external force and is in the direction of the force (Law of causality).

(iii) To every action there is always an equal and opposite reaction. This law pre-
scribes the general nature of forces of reaction in relation to the forces of action
(Law of reciprocity).

Here, we will derive the equation of motion of a particle. Let the equation of path
C of the particle in E3 be

C : xi = xi(t) (9.1)

and the curve C, the trajectory of the particle. Let at time t, particle is at P{xi(t)}.
If vi be the component of velocity of the moving particle then vi = dxi

dt , and if ai be
the component of acceleration of moving particle then

ai =
δvi

δt
=
dvi

dt
+

{
i
j k

}
vj
dxk

dt

480
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or

ai =
d2xi

dt2
+

{
i
j k

}
dxj

dt

dxk

dt
, (9.2)

where δvi

δt is the intrinsic derivative. If m be the mass of a particle then by Newton’s
second law of motion

F i = m
δvi

δt
= mai = m

[
d2xi

dt2
+

{
i
j k

}
dxj

dt

dxk

dt

]
. (9.3)

Deduction 9.1.1 If there is no external force, then

dvi

dt
+

{
i
j k

}
vjvk = 0

or
∂vi

∂xp
up +

{
i
j k

}
vjvk = 0

or [
∂vi

∂xp
+

{
i
j p

}
vp
]
vp = 0

or

vi,pu
p = 0 ⇒ δvi

δt
= 0

Show that the acceleration is zero, which is the Newton’s first law. Thus, Newton’s
first law can be derived from the second law.

Deduction 9.1.2 If there is external force, then

δ

δt

(
dxi

dt

)
= 0 ⇒ δ

δt

(
m
dxi

dt

)
= 0 ⇒ δpi

δt
= 0

⇒ δpi
δt

= 0 ⇒ pi,j
dxj

dt
= 0 ⇒ pjpi,j = 0

⇒ pj
[
pi,j −

{
α
i j

}
pα

]
= 0

⇒ m
δpi
δxj

δxj

δt
−m

{
α
i j

}
pαp

j = 0

⇒ m
dpi
dt

= gαρ [αj, ρ] pαp
j
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or

m
dpi
dt

=
1

2
(gαρpα) (gjρ,i + giρ,j − gij,ρ) p

j =
1

2
gjρ,ip

ρpj .

Therefore, if all the metric coefficients are independent of the xi co-ordinate then pi
is constant along the trajectory.

Deduction 9.1.3 If there is external force, then from Eq. (9.2), we get

d2xi

dt2
+

{
i
j k

}
dxj

dt

dxk

dt
= 0

or

2giα
d2xi

dt2
dxα

dt
+ 2

(
giα

{
i
j k

})
dxj

dt

dxk

dt

dxα

dt
= 0

or

2giα
dxα

dt

d2xi

dt2
+ (gkα,j + gjα,k − gjk,α)

dxj

dt

dxk

dt

dxα

dt
= 0

or

2giα
dxα

dt

d2xi

dt2
+ gkα,j

dxj

dt

dxk

dt

dxα

dt
= 0

or
d

dt

(
giα

dxα

dt

dxi

dt

)
= 0 ⇒ giα

dxα

dt

dxi

dt
= constant,

this shows that the tangent vector dxi

dt is parallely transported along the geodesic and
its magnitude is constant.

9.1.1 Work Done

We define the element of work done by the force F in producing a displacement dr by
invariant

dW = F · dr. (9.4)

Since the components of F and dr are F i and dxi, respectively, so,

dW = gijF
idxi = Fjdx

j ; (9.5)

where Fj = gijF
i. The work is done in displacing a particle along the trajectory C,

joining a pair of points P1 and P2 is given by

W =

∫ P2

P1

Fidx
i =

∫ P2

P1

mgij
δvi

δt
dxj

=

∫ P2

P1

mgij
δvi

δt

dxj

dt
dt =

∫ P2

P1

mgij
δvi

δt
vjdt.
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Since gijv
ivj is an invariant, then

δ

δt

(
gijv

ivj
)
=

d

dt

(
gijv

ivj
)

or
d

dt

(
gijv

ivj
)
= 2gij

δvi

δt
vj

or

gij
δvi

δt
vj =

1

2

d

dt

(
gijv

ivj
)
.

The work is done in displacing a particle along the trajectory C, joining a pair of points
P1 and P2 is given by

W =

∫ P2

P1

m

2

d

dt

(
gijv

ivj
)
dt =

m

2

[
gijv

ivj
]P2

P1
.

Let T denote the kinetic energy at P on the trajectory C, then

T =
1

2
mgijv

ivj =
1

2
mv2. (9.6)

Let T1 and T2 be the kinetic energies of the particle at P1 and P2, respectively, then

W =
m

2

[
gijv

ivj
]P2

P1
= T2 − T1.

Let the force field Fi be such that the integral W =
∫ P2

P1
Fidx

i is independent of

the path. In this case, Fidx
i is an exact differential and we can write

Fi = −∂V
∂xi

, (9.7)

where V is a function of co-ordinates xi, known as the force potential or potential
energy. This force field is called conservative force field.

Theorem 9.1.1 A necessary and sufficient condition that a force field Fi, defined in
a simply connected region, be conservative is that Fi,j = Fj,i.

Proof: First, let the force field Fi be conservative then Fi = − ∂V
∂xi
. Now,

Fi,j =
∂Fi
∂xj

−
{

k
i j

}
Fk =

∂

∂xj

(
−∂V
∂xi

)
−
{

k
i j

}
Fk

= − ∂2V

∂xj∂xi
−
{

k
i j

}
Fk.
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Similarly,

Fj,i = − ∂2V

∂xi ∂xj
−
{

k
j i

}
Fk.

From the above two relations of Fi,j and Fj,i it follows that

Fi,j − Fj,i = − ∂2V

∂xj ∂xi
−
{

k
i j

}
Fk +

∂2V

∂xi ∂xj
+

{
k
j i

}
Fk.

= − ∂2V

∂xi∂xj
−
{

k
i j

}
Fk +

∂2V

∂xi ∂xj
+

{
k
i j

}
Fk = 0.

Therefore, if the force field Fi be conservative then Fi,j = Fj,i. Conversely, let the
relation Fi,j = Fj,i holds, then

∂Fi
∂xj

−
{

k
i j

}
Fk =

∂Fj
∂xi

−
{

k
j i

}
Fk

or
∂Fi
∂xj

=
∂Fj
∂xi

; as

{
k
i j

}
is symmetric.

So if we take Fi = − ∂V
∂xi

then the relation Fi,j = Fj,i holds. Hence, Fi is conservative.

9.1.2 Lagrange’s Equation of Motion

Consider a particle moving on the curve be C : qi = qi(t) and the curve C the trajectory
of the particle. Let at time t, particle is at P{qi(t)}. The kinetic energy T = 1

2mv
2

can be written as

T =
1

2
mgij q̇

iq̇j =
1

2
mgjkq̇

j q̇k; as q̇i = vi. (9.8)

Differentiating Eq. (9.8) with respect to qi, we get

∂T

∂qi
=

1

2
m
∂gjk
∂qi

q̇j q̇k. (9.9)

Differentiating Eq. (9.8) with respect to q̇i, we get

∂T

∂q̇i
=

1

2
m gjk

[
∂q̇j

∂q̇i
q̇k + q̇j

∂q̇k

∂q̇i

]
=

1

2
m gjk

(
δji q̇

k + q̇jδki

)
=

1

2
m
(
gjkδ

j
i q̇
k + q̇jgjkδ

k
i

)
=

1

2
m
(
gikq̇

k + gjiq̇
j
)

=
1

2
m
(
gij q̇

j + gij q̇
j
)
= mgij q̇

j = mgikq̇
k; as gij = gji. (9.10)
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Differentiating Eq. (9.10) with respect to t, we get

d

dt

(
∂T

∂q̇i

)
=m

d

dt

(
gikq̇

k
)
= m

(
d

dt
gikq̇

k + gikq̈
k

)
=m

(
∂gik
∂qi

dqj

dt
q̇k + gikq̈

k

)
. (9.11)

Therefore, from Eqs. (9.9) and (9.11), we get

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= m

∂gik
∂qi

dqj

dt
q̇k +mgikq̈

k − 1

2
m
∂gjk
∂qi

q̇j q̇k

=mgikq̈
k +

1

2
m
∂gik
∂qj

q̇j q̇k +
1

2
m
∂gik
∂qj

q̇j q̇k − 1

2
m
∂gjk
∂qi

q̇j q̇k

=mgikq̈
k +

1

2
m
∂gik
∂qj

q̇j q̇k +
1

2
m
∂gij
∂qk

q̇kq̇j − 1

2
m
∂gjk
∂qi

q̇j q̇k

=mgikq̈
k +

1

2
m

(
∂gik
∂qj

+
∂gij
∂qk

−
∂gjk
∂qi

)
q̇j q̇k

=mgikq̈
k +m [jk, i] q̇j q̇k

=mgikq̈
k +mgilgil [jk, i] q̇

j q̇k

=mgilq̈
l +mgilgil [jk, i] q̇

j q̇k

=mgil

(
q̈l + gil [jk, i] q̇j q̇k

)
=mgil

(
q̈l +

{
l

j k

}
q̇j q̇k

)
; as gil [jk, i] =

{
l

j k

}
=mgila

l; as al = q̈l +

{
l

j k

}
q̇j q̇k,

where ai is the component of acceleration. If Fi = mai are the components of force
field, then

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= mai = Fi, (9.12)

which is known as Lagrange’s equation of motion. For a conservative system, forces
Fi are derivable from scalar potential function V , of position only but not generalised
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velocities, i.e.

Fi = −∇iV = −∂V
∂ri

.

⇒ Qj =
∑
i

Fi ·
∂ri
∂qj

= −
∑
i

∂V

∂ri
· ∂ri
∂qj

= −∂V
∂qj

.

Hence, Eq. (9.12), we get

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= −∂V

∂qj
.

or
d

dt

(
∂T

∂q̇j

)
− ∂

∂qj
(T − V ) = 0

or

d

dt

[
∂

∂q̇j
(T − V )

]
− ∂

∂qj
(T − V ) = 0

since V is not a function of q̇j

or

d

dt

[
∂L

∂q̇j

]
− ∂L

∂qj
= 0, (9.13)

where L = T − V is known as Lagrangian for conservative system. Equation (9.13) is
known as Lagrange’s equation of motion for conservative, holonomic system.

9.1.3 Hamilton’s Canonical Equations

Consider a conservative holonomic dynamical system with n degrees of freedom and
the integral

J =

∫ t2

t1

L(q, q̇)dt, (9.14)

where L = T − V is the kinetic potential. Using variational principle J will be
extremum if it satisfies the Euler’s equation, i.e. it consists of the n simultaneous
second order ordinary differential equations in the form

dLq̇i

dt
− Lqi = 0; i = 1, 2, . . . , n (9.15)
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by using the subscript notation for partial derivatives of L(q, q̇). The function

L(q, q̇) = T (q, q̇)− V (q)

depends on n generalised co-ordinates qi and n generalised velocities q̇i. Instead of
the variables q̇i we can introduce a set of n new variables pi defined by the relations

pi = Lq̇i(q, q̇); i = 1, 2, . . . , n, (9.16)

where we suppose that this system Eq. (9.16) is solvable for the q̇i in terms of pi and

qi as
∣∣∣∂Lq̇i

∂q̇j

∣∣∣ ̸= 0. Let us construct a function H(p, q) of the independent variables p

and q as

H(q, p, t) = piq̇
i − L(q, q̇, t), (9.17)

which is related to the Lagrangian L. Differentiating Eq. (9.17) with respect to qj , we
get

Hqj =
∂q̇i

∂qj
pj − Lqj − Lq̇i

∂q̇i

∂qj
= −Lqj ; using Eq. (9.16). (9.18)

Similarly, differentiating Eq. (9.17) with respect to pj , we get

Hpj = q̇j +
∂q̇i

∂pj
pi − Lq̇i

∂q̇i

∂pj
= q̇j ; using Eq. (9.16). (9.19)

Since the Lagrange’s equation of motion [Eq. (9.15)] gives
dLq̇i

dt = Lqi , from formulas
[Eqs. (9.16) and (9.18)] we obtain a set of n first order equations

dpi
dt

= −Hqi ; i = 1, 2, . . . , n, (9.20)

which together with n equations [Eq. (9.19)]

dqi

dt
= Hpi ; i = 1, 2, · · · , n, (9.21)

constitute the system of 2n first order Hamilton’s canonical equations. The function
H defined in Eq. (9.17) is called Hamiltonian or Hamilton’s function. Normally, the
Hamiltonian function for each problem must be constructed via Lagrangian formula-
tion. Thus, H consists of two quantities:

(i) piq̇
i is the part that is homogeneous in q̇i in the second degree and

(ii) L is a part of Lagrangian independent of generalised velocities.
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The quantities qk and pk form a set of independent variables in Hamiltonian formalism,
whereas qk and q̇k form the independent set in Lagrangian formulation.

The Hamilton’s function H(p, q) has an important physical meaning. The kinetic
energy T = 1

2mv
2 can be written as

T =
1

2
aij q̇

iq̇j ⇒ ∂T

∂q̇i
= aij q̇

j

or

q̇i
∂T

∂q̇i
= aij q̇

iq̇j = 2T.

Since L = T − V and V is a function of the qi alone, we can rewrite Eq. (9.17) as

H(p, q, t) = q̇i
∂L

∂q̇i
− L(q, p, t) = q̇i

∂L

∂q̇i
− T + V

= T + V.

Thus, H is the total energy of the system. The variables

pi =
∂L

∂q̇i
= aij q̇

j

are called generalised momenta. The square of the magnitude of the vector pi is

p2 = aijpipj = aijaikajlq̇
kq̇l = aklq̇

kq̇l = 2T.

EXAMPLE 9.1.1 For the planetary problem, the kinetic energy T and potential
energy V are, respectively, given by

T =
1

2
m[ṙ2 + r2θ̇2]; V = −µ

r
.

L = T − V =
1

2
m[ṙ2 + r2θ̇2] +

µ

r
.

The conjugate momenta are given by pr = ∂L
∂ṙ = mṙ; pθ = ∂L

∂θ̇
= mr2θ̇. Thus, the

Hamiltonian H is given by

H(r, θ, pr, pθ) = T + V =
1

2
m[ṙ2 + r2θ̇2]− µ

r
=

1

2m
[p2r +

p2θ
r2

]− µ

r
.

The Hamilton’s canonical equation of motion gives

ṙ =
∂H

∂pr
=
pr
m

; ṗr = −∂H
∂r

=
p2θ
mr3

− µ

r2

θ̇ =
∂H

∂pθ
=

pθ
mr2

; ṗθ = 0.
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Now

ṗθ = 0 ⇒ d

dt
(mr2θ̇) = 0 ⇒ mr2θ̇ = constant = l( say )

⇒ mr̈ =
l2

mr3
− µ

r2
.

I have discussed the nature of the solution in my book of Mechanics.

9.1.4 Hamilton’s Principle

Hamilton’s principle states that, the motion of a conservative, holonomic dynamical
system from time t1 to t2 takes place along such a path (among of all possible paths)
that the line integral of the Lagrangian of the system between the limits t1 and t2 is
extremum (stationary) for the path (consistent with constraints, if any) of the motion.
Mathematically

J =

∫ t2

t1

L(q, q̇, t)dt = extreme;

or

δJ = δ

∫ t2

t1

L(q, q̇, t)dt = 0,

where δ is variation symbol, that does not include time variation. Unlike all other
techniques, this one does not start with a differential equation, rather it starts with
an integral which is then optimised against some possible variations of the path. This
principle helps to distinguish the actual path of the system from the infinite number
of neighboring possible paths. For the deduction of the principle, the following two
conditions must be satisfied by the system:

(i) All paths are traversed in the same time, i.e. at time t1, the system must be at
point P and at time t2, it must be at Q, i.e. δt must be zero at the end points
P and Q.

(ii) For all paths whether dynamical or varied, have the same termini. Since the
points P and Q are fixed in configuration space, the co-ordinate variation δr
must be zero at the end points P and Q.

If the particle is in motion under the influence of the force F, and our problem is to
determine the trajectory in a three-dimensional manifold E3 as

C : xi = xi(t); i = 1, 2, 3, t1 ≤ t ≤ t2,

where t denotes the time. The kinetic energy T of the particle is given by

T (qi, q̇i) =
1

2
m gjkq̇

j q̇k as q̇i = vi.
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Let us consider another curve C′, joining t1 and t2 close to be C is

C′ : xi(ε, t) = xi(t) + δxi(t) (9.22)

with δxi(t) = εξi(t) and ξi(t1) = ξi(t2) = 0, belonging to the h neighbourhood of C.
If δT be the variation in T , then

δT =
∂T

∂ẋi
δẋi +

∂T

∂xi
δxi.

Now, ∫ t2

t1

[
(δT + Fi) δx

i
]
dt

=

∫ t2

t1

[
∂T

∂ẋi
δẋi +

∂T

∂xi
δxi + Fiδx

i

]
dt

=

∫ t2

t1

∂T

∂ẋi
δẋidt+

∫ t2

t1

∂T

∂xi
δxidt+

∫ t2

t1

Fiδx
idt

=

[
∂T

∂ẋi
δxi
]t2
t1

−
∫ t2

t1

d

dt

(
∂T

∂ẋi

)
δxidt+

∫ t2

t1

∂T

∂xi
δxidt+

∫ t2

t1

Fiδx
idt

=

∫ t2

t1

∂T

∂xi
δxidt−

∫ t2

t1

d

dt

(
∂T

∂ẋi

)
δxidt+

∫ t2

t1

Fiδx
idt

as δxi(t1) = 0 and δxi(t2) = 0; i.e.

[
∂T

∂ẋi
δxi
]t2
t1

= 0

=

∫ t2

t1

[
∂T

∂xi
− d

dt

(
∂T

∂ẋi

)
+ Fi

]
δxidt. (9.23)

Since the particle satisfies the Lagrange’s equation of motion, so

d

dt

(
∂T

∂ẋi

)
− ∂T

∂xi
= Fi.

Therefore, Eq. (9.23) reduces to∫ t2

t1

[
(δT + Fi) δx

i
]
dt =

∫ t2

t1

[−Fi + Fi]δx
idt

or ∫ t2

t1

[
(δT + Fi) δx

i
]
dt = 0.
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Theorem 9.1.2 (Integral of energy): The motion of a particle in a conservative
field of force is such that the sum of its kinetic and potential energies is a constant.

Proof: Consider a particle moving on the curve

C : xi = xi(t); t1 ≤ t ≤ t2,

where t denotes the time. The kinetic energy T of the particle is given by

T (qi, q̇i) =
1

2
m gij q̇

iq̇j =
1

2
m gijv

ivj .

As T is invariant, taking intrinsic derivative with respect to t, we get

dT

dt
=
δT

δt
=

δ

δt

(
1

2
m gijv

ivj
)

=
1

2
m gij

(
δvi

δt
vj + vi

δvj

δt

)
=

1

2
m

(
gij
δvi

δt
vj + gijv

i δv
j

δt

)
=

1

2
m

(
gij
δvi

δt
vj + gjiv

j δv
i

δt

)
=

1

2
m2gij

δvi

δt
vj = mgij

δvi

δt
vj ; as gij = gji.

Therefore, the intrinsic derivative of T is given by

dT

dt
=mgij

δvj

δt
vi = mgija

jvj ; as aj =
δvi

δt

=maiv
i = Fiv

i; since gija
j = ai

as Fi = mai is a component of force field. But given Fi is conservative, then Fi = − ∂V
∂xi
,

where V is potential energy. Therefore,

dT

dt
= −∂V

∂xi
vi = −∂V

∂xi
dxi

dt
= −dV

dt

or

dT

dt
+
dV

dt
= 0 ⇒ d

dt
(T + V ) = 0

⇒ T + V = h = constant.
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9.1.5 Principle of Least Action

The principle of least action is of fundamental importance in classical mechanics. An
important variational principle associated with Hamiltonian formulation is the prin-
ciple of least action. To obtain the principle of least action we restrict our further
considerations by three important qualifications:

(i) Only systems are considered for which L, and so H, are not explicit functions of
time, and consequently H is conserved.

(ii) The variation is such that H is conserved on the varied path as well as on the
actual path.

(iii) The varied paths are constrained requiring that △qk vanish at the endpoints but
not △t.

Let us consider the integral,

A =

∫ P2

P1

mv ds, (9.24)

evaluated over the path C : xi = xi(t); t1 ≤ t ≤ t2, where C is the trajectory of the
particle of mass m moving in a conservative field of force. We suppose that neither
the kinetic energy T nor the potential energy V is a function of time. In the three-
dimensional space with curvilinear co-ordinates, integral Eq. (9.24) can be written
as

A =

∫ P2

P1

mgij
dxi

dt
dxj =

∫ t(P2)

t(P1)
mgij

dxi

dt

dxj

dt
dt

=

∫ t(P2)

t(P1)
2Tdt; as T =

1

2
mgij

dxi

dt

dxj

dt
dt.

This integral has a physical meaning only when evaluated over the trajectory C, but
its value can be computed along any varied path joining the points P1 and P2. Let us
consider a particular set of admissible paths C′ along which the function T + V , for
each value of parameter t, has the same constant value h. The integral A in Eq. (9.24)
is called the action integral.

The principle of least action states that “of all curves C′ passing through P1 and
P2 in the neighbourhood of the trajectory C, which are traversed at a rate such that,
for each C′, for every value of t, T + V = h, that one for which the action integral A
is stationary is the trajectory of the particle”.
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9.2 Exercises

1. Show that the covariant components of the acceleration vector in a spherical
co-ordinate with

ds2 = (dr)2 + r2(dθ)2 + r2 sin2 θ(dϕ)2.

Hence, derive the Lagrange’s equation of motion.

2. Use Lagrangian equations to show that, if a particle is not subjected to the
action of forces, then its trajectory is given by yi = ait+ bi, where the ai and bi

are constants and yi are orthogonal Cartesian co-ordinates.

3. Prove that if a particle moves so that its velocity is constant in magnitude then
its acceleration vector is either orthogonal to the velocity or it is zero.

4. Find, with the aid of Lagrange equations, the trajectory of a particle moving in
a uniform gravitational field.

5. Find the dynamical equations in spherical co-ordinates with

ds2 = (dr)2 + r2(dθ)2 + r2 sin2 θ(dϕ)2.

6. Find the dynamical equations in cylindrical co-ordinates with

ds2 = (dr)2 + r2(dθ)2 + (dz)2.

7. Let a particle of mass m be constrained to move on the surface of a sphere
of radius a. Relate the orthogonal Cartesian co-ordinate yi to the surface co-
ordinates ui by the formula

y1 = a sinu1 cosu2, y2 = a sinu1 sinu2, y3 = a cosu1.

Show that Eq. (9.12) yield

ü1 − (u̇2)2 sinu1 cosu2 =
F1

ma2

ü2 sin2 u1 + 2u̇1u̇2 sinu1 cosu1 =
F2

ma2
.

Solve these equations for the case when F i = 0, and show that the trajectory is
an arc of a great circle and the speed is constant.

8. A particle of mass m oscillates about the lowest point of a smooth surface
z = 1

2(ax
2 + 2hxy + by2), where the co-ordinates are orthogonal Cartesian and

the z axis is directed vertically up. We suppose that the vertical component of
the velocity is small, so that T = 1

2(ẋ
2 + ẏ2) and V = mgz. Obtain equations of

motion, determine the solutions.
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9. If a particle of mass m is constrained to move on a smooth surface, show that
the system of Hamilton’s equations are

dui

dt
=
∂H

∂pi
;
dpi

dt
= −∂H

∂ui
; i = 1, 2

with pi = maij u̇
j and H = 1

2ma
ijpipj + V.



Chapter 10

Relativistic Mechanics

Differential geometry was used to great advantage by Einstein in his development of
relativity. The formulation of the fundamental laws of classical mechanics is based on
the hypothesis that physical phenomena take place in a three-dimensional Euclidean
space. It is also assumed that these phenomena can be ordered in the one-dimensional
continuum of time t. The time variable t is regarded to be independent not only
the space variable xi but also of the possible motion of the space reference systems.
The mass m of the body is likewise supposed to be independent of the motion of
reference systems, and in particular, it is invariant with respect to a group of Galilean
transformations of co-ordinates.

10.1 Event Space

It is first necessary to give the concepts of time and space. Thus, each event (atomic
collision, flash of lighting, etc.) is assigned four co-ordinates (x, y, z, t), where t is
the time (in seconds) of the event and (x, y, z) is the location (in metres) of the
event in ordinary rectangular co-ordinates. Such co-ordinates are called space-time
co-ordinates.

An event space in an R4 whose points are events, co-ordinated by (xi) = (x1, x2, x3,
x4) where x4 = ct is the temporal co-ordinate, and

(
x1, x2, x3

)
= (x, y, z) the rect-

angular positional co-ordinates of an event. Two events E1 and E2 are identical if
xi1 = xi2, for all i. Thus,

(i) Compositional: xi1 = xi2; i = 1, 2, 3

(ii) Simultaneous : x41 = x42.

The spatial distance between E1 and E2 is the number

d =
√

(∆x1)2 + (∆x2)2 + (∆x3)2,

where ∆xi = xi2 − xi1; i = 1, 2, 3.

495
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10.1.1 Inertial Reference Frames

The general settings for Einstein’s special theory of relativity consists of two (or more)
observers O,O,′ · · · moving at constant velocities relative to each other, which is set
up of space-time co-ordinates (xi), (xi), · · · to record events and make calculations
for experiments they conduct. Such co-ordinate systems in uniform relative motion
are called inertial frames provided by Newton’s first law in each system. All the
systems are assumed to have a common origin at some instant, which is taken as
t = t = · · · = 0.

Let us consider two inertial frames of reference S and S′ having their respective
axes parallel Figure (10.1). For simplicity, let the inertial frame S′ be moving with

Figure 10.1: Galilean transformation.

a relative constant velocity v along the x direction relative to the frame S. Let us
suppose from the instant (t = t = 0), the origin O and O′ of the frames S and S′

coincide with each other. Suppose that as measured by the observer of the frame S,
a particle which is moving in space, is at a point P at any time t, whose co-ordinates
are (x1, x2, x3) with respect to the origin of the frame S. Let the observer of frames
S′ measures the co-ordinates of P as

(
x1, x2, x3

)
at any time t. According to the

Newton’s concept of time the time flows uniformly without any reference to anything
external, i.e. there is no effect of the motion of the frame S′ on the flow of time.
Therefore, t = t. The co-ordinates are related to each other by the transformation
equations

x1 = x1 − vt; x2 = x2; x3 = x3 and t = t. (10.1)

These set of equations [Eq. (10.1)] are called Galilean Transformation from stationary
frame S to moving from S′. To the observer of frame S′, the frame S appears to move
with the same speed, but along negative x-axis i.e. with velocity −v. Thus, we have
the following set of equations:

x1 = x1 + vt; x2 = x2; x3 = x3 and t = t. (10.2)
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These set of equations [Eq. (10.2)] are called inverse Galilean Transformation. If
the measurement of a physical quantity does not undergo a change under Galilean
Transformation or its measurement is independent of relative motion of the observer,
it is called a Galilean Invariance.

10.1.2 Invariance of Space

Let us consider, two inertial frames of reference S and S′, where the frame S′ is moving
with a constant velocity v along x direction. Let a rod AB be placed in the frame S′

parallel to the direction of x axis. For the observer of the frame S′, the rod AB is at
rest. Let the distances of the two ends A and B of the rod from the origin of frame
S′ be x1 and x2, respectively. Then length of the rod as measured by the observer of
the frame S′ is

L0 = x′2 − x′1,

where the suffix ‘0’ tells that the observer of the frame S′ measures the length of the rod
at rest. For the observer of frame S, the rod is in motion. Hence, to measure the length
correctly, the observer of the frame S measures the distance x1 and x2 of the ends A
and B of the rod from the origin simultaneously. From Galilean transformations, we
have

x′1 = x1 − vt; x′2 = x2 − vt

⇒ L0 = (x2 − vt)− (x1 − vt) = x2 − x1 = L,

where L is the length of the rod as measured by the observer of the frame S. Therefore,
when the length is measured in two inertial frames moving with uniform velocity
relative to each other, the length interval remains unchanged.

10.1.3 Invariance of Time Interval

Suppose that an event, say a flash of light, occurs in frame S′ at time t′1 and then
again at time t′2. Then as observed by an observer of the frame S′, the time interval
between the two flashes is given by

τ0 = t′2 − t′1.

Here, the suffix zero tells that the event of flashing of light occurs at rest with respect
to the observer of the frame S′. Suppose that the observer of frame S records the time
of occurrence of the two flashes as t1 and t2. According to Galilean transformations,
t′1 = t1 and t′2 = t2. Thus,

τ0 = t′2 − t′1 = t2 − t1 = τ,



498 Relativistic Mechanics

where τ = t2 − t1 is the time interval between the flashes as recorded by the observer
of the frame S. Thus, τ0 = τ. Hence, the time interval does not change, when it is
measured in two inertial frames moving with uniform velocity relative to each other.

10.1.4 Invariance of Velocity

Here, we will discuss how the velocity of a particle in one inertial frame of reference
are measured by the observer of another frame moving with a uniform velocity relative
to each other. The Galilean transformation from frame S to S′ are given by

x′ = x− vt, y′ = y, z′ = z, t′ = t

⇒ dx′

dt
=
dx

dt
− v;

dy′

dt′
=
dy

dt
;
dz′

dt′
=
dz

dt

⇒ u′x = ux − v;u′y = uy;u
′
z = uz (10.3)

u′ = u− v

where u = (ux, uy, uz) is the velocity of the particle with respect to the observer of the
frame S and u′ = (u′x, u

′
y, u

′
z) is of the frame S′. The set of transformation equations

[Eq. (10.3)] is the classical velocity addition formula in Newtonian mechanics. Also,
from equations [Eq. (10.3)], we conclude that velocity of a particle is not a Galilean
invariant. Also, the inverse Galilean velocity transformations are

ux = u′x + v; uy = u′y; uz = u′z.

10.1.5 Invariance of Acceleration

Differentiating the transformation set of equations [Eq. (10.3)], with respect to time
t, we get

du′x
dt

=
dux
dt

;
du′y
dt

=
duy
dt

;
du′z
dt

=
duz
dt

⇒ du′x
dt′

=
dux
dt

;
du′y
dt′

=
duy
dt

;
du′z
dt′

=
duz
dt

as t = t′.

Since the components of the acceleration of the particle measured in the two inertial
frames are independent of the uniform relative velocity of the two frames, acceleration
of the particle is invariant under Galilean transformation.

10.1.6 Invariance of Newton’s Law

In fact, Newton’s first law of motion, whether a given frame of reference is an inertial
frame of reference or not. Since Newton’s first law of motion always holds good in an
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inertial frame of reference, it will also hold in two inertial frames of reference moving
with uniform velocity relative to each other. We know that, the measurement of accel-
eration of a particle is independent of the uniform relative motion of the two inertial
frames, i.e. a′ = a. Let m be the mass of the particle. In Newtonian mechanics, mass
is a constant quantity and is independent of the motion of the observer. Multiplying
both sides of the above equation with m, we have

ma′ = ma ⇒ F′ = F,

where F′ = ma′ and F = ma. Thus, the observers of the two inertial frames of
reference moving with uniform velocity with respect to each other measure the force
on the particle to be the same. Therefore, equations of motion (F = ma) of a particle
is invariant under Galilean transformation. In other words, Newton’s second law of
motion is Galilean invariant. Since measurement of force is not affected by the uniform
relative motion between the two inertial frames of reference, Newton’s third law of
motion F12 = −F21 must also hold in the two inertial frames moving with uniform
velocity relative to each other. Hence, Newton’s laws of motion are invariant under
Galilean transformations.

10.1.7 Light Cone and Relativistic Length

A flash of light at position (0, 0, 0) at time t = 0 sends out an expanding spherical
wave front, with equation x2 + y2 + z2 = c2t2, or

−(x1)2 − (x2)2 − (x3)2 + (x4)2 = 0. (10.4)

Equation (10.4) is the equation of the light cone in event space, relative to the inertial
frame (xi). Figure 10.2 shows the projection of the light cone onto hyperplane x3 = 0.
In any other inertial frame (xi), the equation of the light cone is exactly the same
(since all observers measure the velocity of light as c)

−(x1)2 − (x2)2 − (x3)2 + (x4)2 = 0. (10.5)

Figure 10.2: Light cone.
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As one of the four components of the four radius vector is imaginary, the square
of its magnitude may be positive, negative or zero.

For an arbitrary event E(x), the quantity the left hand expression of Eq. (10.4)
may be positive, negative or zero. The relativistic distance from E(x) to the origin
E0(0) is the real number s ≥ 0, such that,

s2 = −(x1)2 − (x2)2 − (x3)2 + (x4)2. (10.6)

More generally, the length of interval or relativistic distance between E1(x1) and
E2(x2) is the unique real number ∆s ≥ 0, such that,

(∆s)2 = −(∆x1)2 − (∆x2)2 − (∆x3)2 + (∆x4)2, (10.7)

where ∆xi = xi2 − xi1 for i = 0, 1, 2, 3. The chief significance of this length concept is
relative distance is an invariant across all inertial frames. The interval between E1(x1)
and E2(x2) is

(i) spacelike if: (∆x1)2 + (∆x2)2 + (∆x3)2 > (∆x4)2

(ii) lightlike if: (∆x1)2 + (∆x2)2 + (∆x3)2 = (∆x4)2

(iii) timelike if: (∆x1)2 + (∆x2)2 + (∆x3)2 < (∆x4)2.

Also, the categorisation is independent of the particular inertial frame.

10.2 Postulates of Relativity

The special theory of relativity is based on the following two postulates:

(i) Principle of relativity and invariance of uniform motion: All the basic
laws of physics which can be expressed in the form of equations have the same
form in all the inertial frames of reference moving with an uniform velocity with
respect to one another.

(ii) Invariance of light speed: The measured speed of light in free space has
always the same value c for all the observers irrespective of the relative motion
of the source of light and the observer.

The first postulate bears the fact that, there is no existence of an universal frame. If
we reformulate the different laws of physics for observers in a relative constant motion
with respect to one another, we obtain other set of transformations in place of Galilean
Transformation, under which the laws would be invariant.

The second postulate requires that the bijective transformation

T : xi = F i
(
x1, x2, x3, x4

)
; x4 = ct (10.8)
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be such as to map straight lines into straight lines. Consequently, each F i must be a
linear function. Since F i(0, 0, 0, 0) = (0, 0, 0, 0), constants aij exist such that

T : xi = aijx
j . (10.9)

These postulates of the special theory of relativity do not appear so radical at first
sight, but lead to very revolutionary ideas. The concepts of the invariance of mass,
length interval and time interval and their mutual independence are neither invariant
nor independent of one another in special theory of relativity.

The name special theory of relativity comes from the fact that this theory permits
the independence of the physical laws of those co-ordinate systems which are moving
with constant velocity relative to one another. Later, Einstein propounded his general
theory of relativity which allows for the indepence of the physical laws of all co-ordinate
systems, having any general relative motion.

These two postulates of special theory of relativity look to be very simple, but
they have revolutionized the physics with far reaching consequences. First we deduce
transformation equations, connecting any two inertial systems moving with constant
relative velocity. The transformation should be such that they are applicable to both
Newtonian mechanics and electromagnetism. Such transformations were deduced by
Einstein in 1905 and are known as Lorentz transformations because Lorentz deduced
them first in his theory of electromagnetism.

10.3 Lorentz Transformation

In classical physics, we are concerned with invariance of physical quantities under
Gallilean transformations, according to which all physical phenomena appear to be
the same to all observers, who are stationary relative to each other.

In 1904, H.A. Lorentz derived a set of transformations for space and time co-
ordinates of an event in two inertial frames moving with a uniform velocity relative to
each other. However, Einstein obtained these transformations quite independently on
the basis of the two postulates of the special theory of relativity. These equations are
known as Lorentz–Einstein transformations or simply Lorentz transformations. This
transformation should confirm to the following general requirements:

(i) The transformation must be linear, i.e. any single event in one inertial frame
must transform to a single event in another frame, with a single set of co-
ordinates.

(ii) The postulate of the equivalence of all interval frames requires that the direct
and inverse transformations should be symmetrical with respect to each other.

(iii) In case, there are no relative motion between the two frames of reference, Lorentz
transformations should be reduce to identity transformations.
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(iv) In case, the velocity of moving frame is very small as compared to the velocity
of light, Lorentz transformation should reduce to Galilean transformations.

(v) The relativistic law of addition of velocities as derived from the Lorentz trans-
formations should leave the velocity of light as invariant.

The invariance of the equation of the light cone (in consequence of postulate 2)
may be expressed as

gijx
ixj = 0 = gijx

ixj , (10.10)

where g11 = g22 = g33 = −1, g44 = 1 and gij = 0 for i ̸= j. Now, using Eq. (10.9), from
Eq. (10.10), we get

gijx
ixj = gij

(
airx

r
) (
aisx

s
)

= grsa
r
ia
s
jx
ixj = 0 whenever gijx

ixj = 0. (10.11)

Now, apply Examples 1.7.12 to 10.11, with grsa
r
ia
s
j = cij , where C = (cij) = ATGA is

symmetric, we obtain

grsa
r
ia
s
j = λgij , or A

TGA = λG. (10.12)

Since G2 = I, multiplication of Eq. (10.12) by λ−1G gives,{
G(λ−1AT )G

}
A = I

⇒ A−1 =
1

λ
GATG =



−a
1
1

λ
−a

2
1

λ
−a

3
1

λ

a41
λ

a12
λ

a22
λ

a32
λ

−a
4
2

λ

a13
λ

a23
λ

a33
λ

−a
4
3

λ

a14
λ

a24
λ

a34
λ

−a
4
4

λ


= B = (bij)4×4, say, (10.13)

In particular, b41 =
a41
λ . Now, since observers O and O are receding from each other

at constant velocity v and are using identical measuring devices, it is clear that each
views the other in the same way. It follows that:

a41 = b41 and λ =
a41
b41

= 1.
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Hence, Eq. (10.12) can be written as

ATGA = G or, gija
i
ra
j
s = grs. (10.14)

Equation (10.14) can also be written as

−(a1j )
2 − (a2j )

2 − (a3j )
2 + (a4j )

2 = −1; j = 1, 2, 3

−(a14)
2 − (a24)

2 − (a34)
2 + (a44)

2 = 1

−a1i a1j − a2i a
2
j − a3i a

3
j + a4i a

4
j = 0; for, i ̸= j.

Now, from the relation ATGA = G, we get

(Ax)TG(Ax) = xT (ATGA)x = xTGx = q. (10.15)

Therefore, the gijx
ixj = 0 is invariant due to invariance of gijx

ixj = q, for every value
of q, so that ATGA = G is a criterion for the quadratic form xTGx to be invariant.
Any 4×4 matrix (or corresponding linear transformation) that preserves the quadratic
form xTGx is called Lorentz. If the terms gij ≡ gij are defined for the (xi) system,
then Eq. (10.14) becomes

grs = gija
i
ra
j
s;

which makes gij a covariant tensor of the second order under Lorentz transformations
of co-ordinates. Therefore, the metric for R4 is chosen as

ds2 = gijdx
idxj = −(dx1)2 − (dx2)2 − (dx3)2 + (dx4)2. (10.16)

Let us consider two inertial frames of reference S and S having their respective
axes parallel to each other. The frame S is moving with a relative constant velocity v
along x1-direction. According to Galilean transformation, the velocity transformations
are

ux1 = ux1 − v; ux2 = ux2 ; ux3 = x3,

which violate the postulates of the special theory of relativity. The first postulates
of the special theory of relativity implies that a uniform linear motion is one frame
of reference must appear as the same in the other inertial frame also and likewise a
linear relationship among (x1, x2, x3) and t must go over a linear relationship among
(x1, x2, x3) and t. Let us assume that x1 and x1 may be connected by the relation

x1 = ax1 + bx4, (10.17)

where a and b are constants. Further as the motion of the frame S is only along
x1 direction, we have x2 = x2 and x3 = x3. In the special theory of relativity, space
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and time are independent and they form a space time continumn. Therefore, time
co-ordinates t and t′ may be assumed to be connected by the relation

x4 = px1 + qx4, (10.18)

where p and q are some constants. To determine the constants a, b, p, q we use the
second postulate of special theory of relativity. If according to the observer of the
frame S, the spherical wavefront passes through the point P (x1, x2, x3) in space at
time t, then

(x1)2 + (x2)2 + (x3)2 = (x4)2. (10.19)

Let the point P in the frame S be observed as P ′(y1, y2, y3) at a time t in frame S.
Since according to second postulate of the special theory of relativity, the speed of the
light is same in all the inertial frames, i.e.

(x1)2 + (x2)2 + (x3)2 = (x4)2. (10.20)

Using Eq. (10.14), we get

q2 − b2 = 1; p2 − a2 = −1; pq − ab = 0.

By considering the co-ordinates which O and O would assign to each other’s origin,
we find that

b = −
(v
c

)
q ≡ −βq and q = a,

where β = v
c . Noting q > 0, we get

q =
(
1− β2

)−1/2
= a and p = −β

(
1− β2

)−1/2
= b.

Therefore, the co-ordinate transformation takes on the simplest form

x1 =
1√

1− β2
x1 − β√

1− β2
x4 =

1√
1− β2

(
x1 − βx4

)
,

x4 = − β√
1− β2

x1 +
1√

1− β2
x4 =

1√
1− β2

(
x4 − βx1

)
,

where the Lorentz matrix A is given by

A =



− β√
1− β2

1√
1− β2

0 0

0 0 1 0

0 0 0 1

1√
1− β2

− β√
1− β2

0 0


=


b a 0 0
0 0 1 0
0 0 0 1
a b 0 0

 ,
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where a2− b2 = 1, will be termed simple Lorentz. The relative velocity in the physical
situation modelled by A is recovered as β = − b

a . Hence, putting these values in
Eqs. (10.17) and (10.18), we obtain

x1 =
x1 − vt√
1− (v2/c2)

; x2 = x2; x3 = x3; t =
t− (vx1)/c2√
1− (v2/c2)

. (10.21)

These set of equations are called Lorentz transformations. The inverse of the simple
Lorentz matrix A is given by

A−1 =


−b a 0 0
0 0 1 0
0 0 0 1
a −b 0 0

 .
Thus, one can obtain x1, x2, x3 and t in terms of x1, x2, x3 and t as

x1 =
x1 + vt√
1− (v2/c2)

; x2 = x2; x3 = x3; t =
t+ (vx1)/c2√
1− (v2/c2)

, (10.22)

which is called inverse Lorentz transformations. The direct and inverse Lorentz trans-
formations are symmetrical with respect to each other. Now,

(i) When v → 0, the Lorentz transformation relations [Eq. (10.21)] reduces to
x1 = x1, x2 = x2, x3 = x3 and t = t, which are termed as identity transfor-
mations. Thus, in the limit, when v → 0, the Lorentz transformation reduces to
identity transformations.

(ii) When v ≪ c, the factor v2

c2
can be neglected as compared to 1 and vx1

c2
in compar-

ison to t. So, when v ≪ c, the Lorentz transformation [Eq. (10.21)] reduces to
x1 = x1 − vt, x2 = x2, x3 = x3 and t = t, which is the Galilean transformations.
Thus, the Lorentz transformation equations reduce to the Galilean transforma-
tions when relative velocity v is very small in comparison with velocity c of
light.

(iii) Note that, Lorentz transformation put an upper limit on the velocity, a moving
frame of reference (or an object) can possess. It follows that, in case v = c, or
v > c, the Lorentz transformation gives unphysical results. Hence, the relative
velocity of an inertial frame with respect to another must always be less than
the velocity of light.

Result 10.3.1 The particular set of equations [Eq. (10.21)] leaves the quadratic form

dσ2 = (dx4)2 − dxidxi (10.23)
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invariant, which plays an important role in Minkowski space. If instead of cartesian
variables xi we had chosen curvilinear co-ordinates ui, related to Cartesian co-ordinates
xi by formula (2.42)

T : xi = xi
(
u1, u2, u3

)
,

then the form [Eq. (10.23)] would be

dσ2 = c2dt2 − gijdu
iduj ; where gij =

∂xk

∂ui
∂xk

∂uj
. (10.24)

The determinant of coefficients of this form [Eq. (10.24)] has the value −c2g.

Result 10.3.2 The forgoing formulas can be cast in a symmetric form by setting
t = u4, then Eq. (10.24) becomes

dσ2 = aαβdu
αduβ ; α, β = 1, 2, 3, 4. (10.25)

where
aij = −gij ; i, j = 1, 2, 3; ai4 = 0, a44 = c2, and a = −c2g.

Now, we shall discuss some physical implication of the simple Lorentz transformations.

10.3.1 Length Contraction

Suppose that a rod AB is placed along the axis of x1 in the moving frame of reference
S, whose respective axes are parallel to the reference frame S and which is moving
with a constant velocity v along x1 direction relative to frame S. A frame in which
the object AB is at rest is known as proper frame and the length of the rod in such
a frame is called the proper length. Let y1 and x2 be the distances of the ends A and
B of the rod from the origin O′ of the moving reference frame S, if L0 be the proper
length then L0 = x2 − x1.

To an observer of frame S, the rod AB is moving with a constant velocity v and its
length L (say) as measured by the observer of frame S is called non-proper or moving
length of the rod. The process of measuring the length of moving object requires that
the distances of the two ends from the origin must be measured simultaneously. Thus,
if at any instant t, the distances of the ends A and B of the rod AB from the origin
O of the frame S are x1 and x2, respectively, then L = x2 − x1.

Now, let us find length L of the rod in system S relative to which the rod is in
motion with velocity v. The direct Lorentz transformation equations give
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x1 =
x1 − vt√
1− (v2/c2)

; x2 =
x2 − vt√
1− (v2/c2)

⇒ L0 = x2 − x1 =
(x2 − x1)− v(t2 − t1)√

1− v2/c2

=
L√

1− v2/c2
− v√

1− v2/c2
(t2 − t1).

Here, t2 and t1 are the times at which the end co-ordinates x2 and x1 of the rod are
measured. Since the measured should be simultaneous in frame S for determining the
length of the rod, we have

L0 =
L√

1− v2/c2
⇒ L = L0

√
1− v2/c2.

If follows that L < L0, i.e. the length of the rod in motion with respect to an observer
appears to the observer to be shorter than when it is at rest with respect to him/her,
and the length appears to contract by a factor

√
1− v2/c2. Hence, it is clear that, the

length of an object is a maximum in the frame of reference in which it is stationary.
This phenomenon is known as Lorentz–Fitzgerald contraction.

10.3.2 Time Dilation

Let us suppose that a light signal is emitted in space from P (x′, 0, 0) in frame S (which
is moving with a constant velocity v along x-direction with respect to the frame S)
at time t′1 and again at time t′2 from the same point. Thus, the proper time τ0 is the
time interval between the two light signals and so τ0 = t′2 − t′1.

Suppose that t1 and t2 are two instants recorded by the observer in the frame S,
then the non-proper time τ is the time interval between the two signals and is given
by τ = t2 − t1. The observer in frame S, however, measures these instants given by
the Lorentz transformation equations give

t1 =
t′1 +

x′v
c2√

1− v2/c2
; t2 =

t′2 +
x′v
c2√

1− v2/c2

⇒ τ =
t′2 − t′1√
1− v2/c2

=
τ0√

1− v2/c2
.

Since
√

1− v2/c2 is a fraction, it follows that τ > τ0, i.e. the time interval between
two light signals as recorded by the clock of the frame S. Since the event of emitting
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of light signal takes place in frame S and it appears to the observer of frame S in mo-
tion, the time interval between the two light signals is recorded by the clock of frame
S in motion. In other words, to an observer in motion relative to the clock, the time
intervals appear to lengthened. The phenomenon of kinematical effect of relativity of
time is called time dilation. Now, we are able to observe the following phenomena:

(i) The time dilation effect is expected only, when the relative velocity of frame S′

is comparable to the velocity of light. In case v << c, i.e. v2

c2
<< 1, then τ = τ0.

(ii) The opinion of the observer will also reciprocal in nature, like length contraction
effect,

τ =
τ0√

1− v2/c2
=

τ0√
1− (−v)2/c2

.

Hence, to the observer of the frame S′, the clock of frame S will appear to run
slower.

(iii) Time does not run backward for any observer. The sequence of the events in
a series of events is never altered for any observer. Since the velocity available
for communication is always less than or equal to c, the intervals of the time
between any two events may be different.

(iv) No observer can see an event before it takes place.

10.3.3 Relativistic Velocity and Acceleration

Let us consider a body that moves with respect to both inertial frames of reference S
and S having their respective axes parallel and the frame S is moving with a constant
velocity v along x direction relative to frame S. In the inertial frame xi =

(
x1, x2, x3

)
,

let a particle describe the class C2 curve

Γ: (xi) = (r(t), ct) =
(
x1(t), x2(t), x3(t), ct

)
.

Let P
(
x1, x2, x3

)
be the position of the particle at time t with respect to the observer

of the frame S. Then the velocity is given by the classical formula as

(vi) =

(
dxi

dt

)
= (v, c) , where, v =

dr

dt

and
v̂ = |v| =

√
(v1)2 + (v2)2 + (v3)2.

At the instant, let P
(
x1, x2, x3

)
be the position of the particle at time t. An observer of

the frame of reference S makes the following measurements of velocity v =
(
v1, v2, v3

)
of the body measured by him/her as

(vi) =

(
dxi

dt

)
= (v, c) , v̂′ = |v| =

√
(v1)2 + (v2)2 + (v3)2.
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The acceleration is given by the classical formula as

(ai) =

(
d2xi

dt2

)
= (a, 0) , where a =

dv

dt

and â = |a| . As defined, neither the velocity nor the acceleration is a tensor under
Lorentz transformation [Eq. (10.21)]. Now, we find the Lorentz transformations of
velocity and acceleration, that define how S tracks the motion of the particle in S’s
frame. To simplify notation, let γ ≡ (1−β2)−1/2, then the transformation [Eq. (10.21)]
becomes

x1 = γ(x1 − βct); x2 = x2; x3 = x3; ct = γ(ct− βx1). (10.26)

Differentiate the last equation with respect to t, we get

c =
(
c− βv1

) dt
dt

⇒ dt

dt
=

1

γ
(
1− vv1

c2

) ; β =
v

c
.

Now, differentiate the first three equations of Eq. (10.26), we get,

v1 =
dx1

dt
= γ(v1 − βc)

dt

dt
=

γ(v1 − βc)

γ
(
1− vv1

c2

) =
v1 − v

1− vv1

c2

v2 =
dx2

dt
=

v2

γ
(
1− vv1

c2

) =
v2
√

1− β2

1− vv1

c2

v3 =
dx3

dt
=

v3

γ
(
1− vv1

c2

) =
v3
√

1− β2

1− vv1

c2

.

These equations constitute the relativistic transformation law equations of addition
of velocities. These equations transform the velocity components of a particle in
unprimed frame S to the velocity components in primed frame S moving with a
constant velocity v with respect to the reference frame S. The inverse transformation
laws are

v1 =
v1 + v

1 + v
c2
v1

; v2 =
v2
√

1− v2/c2

1 + v
c2
v1

; v3 =
v3
√

1− v2/c2

1− v
c2
v1

. (10.27)

By differentiation of the velocity components just found the acceleration components
as

a1 =
dv1

dt

dt

dt
=

(a1 − 0)

(
1− v1v

c2

)
− (v1 − v)

(
0− a1v

c2

)
(
1− vv1

c2

)2

dt

dt
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=
a1 − a1v1v

c2
+
v1a1v

c2
− a1v · v

c2

γ

(
1− vv1

c2

)3 =
a1(1− β2)3/2(
1− vv1

c2

)3

a2 =
dv2

dt

dt

dt
=

a2
(
1− v1v

c2

)
− v2

(
0− a1v

c2

)
(
1− vv1

c2

)2

1− β2(
1− v1v

c2

)

=
a2 +

(
a1v2 − v1a2

) v
c2(

1− v1

c2

)3 (1− β2).

a3 =
dv3

dt

dt

dt
=
a3 +

(
a1v3 − v1a3

) v
c2(

1− v1

c2

)3 (1− β2).

Following are some points about the relativistic law of addition of velocities:

(i) In case, the reference frame S′ moves with a velocity very small as compared to

the velocity of light, then both v2

c2
and vv1

c2
can be neglected as compared to 1.

Hence, the direct velocity transformations reduces to

v1 = v1 − v; v2 = v2; v3 = v3

i.e. the relativistic law of addition of velocities reduces to Galilean law of addition
of velocities.

(ii) In case the motion of the particle is confined to x direction, i.e. v1 = u, v2

= v3 = 0, then the direct velocity transformation reduces to

v1 =
u− v

1− uv
c2

; v2 = v3 = 0.

(iii) Let v1 = c, v2 = v3 = 0, i.e. the ray of light signal is emitted with velocity c
along x direction in frame S. Applying the direct velocity transformation, we
get

v1 =
c− v

1− vc
c2

= c; v2 = v3 = 0.

Thus, we find that the two inertial frames moving relative to each other, the
velocity of light remains the same, which is consistent with the second postulate
of the theory of relativity. From this we also conclude that c is the highest limit
to the velocity that can be acquired by material bodies.



10.4 Minkowski Space 511

EXAMPLE 10.3.1 Verify that the following matrix is Lorentz:

√
2 0 0

√
3

√
6

2

1

2

1

2
1

√
6

2
−1

2
−1

2
1

0 −
√
2

2

√
2

2
0


.

Solution: We verify directly condition Eq. (10.14) which can be written as

−(a11)
2 − (a21)

2 − (a31)
2 + (a41)

2

= −(
√
2)2 −

(√
6

2

)2

−

(√
6

2

)2

+ (0)2 = −1

−(a12)
2 − (a22)

2 − (a32)
2 + (a42)

2

= −
(
1

2

)2

−
(
1

2

)2

−

(
±
√
2

2

)2

+ (0)2 = −1.

Similar calculations give

−(a14)
2 − (a24)

2 − (a34)
2 + (a44)

2 = 1

−a1i a1j − a2i a
2
j − a3i a

3
j + a4i a

4
j = 0; for, i ̸= j.

Therefore, the given matrix is Lorentz.

10.4 Minkowski Space

Consider a point P whose space co-ordinates relative to some reference frame S are(
x1, x2, x3

)
. Let the velocity of P , relative to this frame at that instant t, be v. We

shall introduce a Galilean reference frame S moving with the point P so that, at each
instant t, the point P is at rest relative to the system S. We shall call the system S
a local or proper co-ordinate system.

Obviously the choice of local co-ordinate systems is not unique, since the definition
just laid down merely requires that the velocity of the local frame be the same as that
of the particle. This implies that the estimates of time (measured by the clocks carried
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in two different local co-ordinate frames) are the same. Hence, the transformation from

one local system S to another S
′
has the form

x′i = x′i
(
x1, x2, x3

)
; t

′
= t.

The interval dσ is defined by the formula

dσ2 = aαβdx
αdxβ = c2dt2 − gijdx

idxj ,

or (
dσ

dt

)2

= c2 − gij
dxi

dt

dxj

dt
= c2 − v̂2, (10.28)

where v is the magnitude of the velocity v of the point P relative to the X co-ordinate
frame. If a local co-ordinate system X is introduced at P, then, relative to X, v̂ = 0
and then dσ

dt = c in the local system. Using the particular set of equations [Eq. (10.21)],
we see that

c2dt2 − dxidxi = c2dt
2 − dxidxi. (10.29)

This invariance of this equation with respect to Lorentz transformations [Eq. (10.21)]
suggests that the Minkowski space or space time continuum defined by the metric

dσ2 = c2(dx4)2 − (dx1)2 − (dx2)2 − (dx3)2, (10.30)

where we have written x4 = t, is appropriate for the geometrical discussion of special
relativity. We denote the line-element of this four-dimensional space by dσ (not by ds)
in order to emphasise that dσ is not the physical distance between two neighbouring
points. A comparison of the metric given by Eq. (10.30) in the Minkowski space with
Eq. (2.1) shows that the metric tensor of the space with the chosen co-ordinate system
is

(gij) =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


or

g11 = g22 = g33 = −1; g44 = 1 and gij = 0 for i ̸= j. (10.31)

The Minkowski space is flat and its signature, which equals the excess of the number
of positive terms over the number of the negative terms in its metric is −2. It is
well known that there is no real transformation of co-ordinates which will reduce
[Eq. (10.30)] to the metric of a four-dimensional Euclidean space, whose signature is
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4. Thus, the geometry of Minkowski space differs in many respects from Euclidean
geometry; for example, there exist real null curves and real null geodesics.

The Lorentz transformation [Eq. (10.21)] for x1 and t co-ordinates are

x1 =
x1 − vt√
1− (v2/c2)

; t =
t− (vx1)/c2√
1− (v2/c2)

,

which can be written in the form,

or
x1 =

x1 − (v/c).ct√
1− (v2/c2)

; ct =
ct− (v/c)x1√
1− (v2/c2)

or

x1 =
x1 − βω√
1− β2

; ω =
ω − βx1√
1− β2

; ω = ct. (10.32)

This four-dimensional world which is a linking together of space and time is called the
four-dimensional space-time continuum. Any four-dimensional space involving time
in one of the axes is referred to as four space or world space. The four space with ict
as the fourth co-ordinate is referred to as the Minkowski four space. Thus, events are
defined by four space time co-ordinates and represented by points called points.

Minkowski referred to space-time as the world and a point in space-time as the
world point. The motion of a particle in space-time can be represented by a curve
called world line, which gives the loci of space-time points corresponding to the motion.
Since the homogeneous second degree equation

(dx4)2 − (dx1)2 + (dx2)2 + (dx3)2 = 0

represents a cone, so, the world line of a particle must lie in its light cones. The
quantity dσ defined in Eq. (10.30) is an invariant under Lorentz transformation. The
quantity dσ is called the element of proper time or world time in the Minkowski four
space. As one of the four components of the four radius vector is imaginary, the square
magnitude may be positive, negative or zero. The four radius vector is called space
like interval, if (dσ)2 < 0. Also, if (dσ)2 > 0, then it is called time like interval. If
(dσ)2 = 0, then the corresponding interval is called a light-like interval.

10.4.1 Minkowski Velocity and Acceleration

The velocity v of a particle, which is at the point xα has the components uα by the
formula,

uα =
dxα

dσ
; α = 1, 2, 3, 4 (10.33)
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referred to the system S, known asMinkowski velocity vector. It follows from Eq. (10.28)
that

dt

dσ
=

1

c

[
1− v̂2

c2

]−1/2

=
1√

c2 − v̂2
. (10.34)

Let vα be the nonrelativistic components of velocity. Using Eq. (10.24), the velocity
components can be written as

uα =
dxα

(c2dt2 − gijdxidxj)1/2
=
dxα

dt
· 1√

c2 − v̂2
=

vα√
c2 − v̂2

.

For the local co-ordinate system, v1 = v2 = v3 = 0, x4 = t so the components of
velocity in a local co-ordinate system are

(
0, 0, 0, 1c

)
. TheMinkowski acceleration vector

fα is given by

fα ≡ duα

dσ
=
d2xα

dσ2
; α = 1, 2, 3, 4. (10.35)

Thus, the acceleration components can be written as

fα =
duα

dt

dt

dσ
=

d

dt

(
vα√
c2 − v̂2

)
dt

dσ

=
aα

√
c2 − v̂2 − vα 1

2

(
c2 − v̂2

)−1/2 (−2a1v1 − 2a2v2 − 2a3v3
)

c2 − v̂2
dt

dσ

=
aα

(c2 − v̂2)
+

(a · v)vα

(c2 − v̂2)2
.

Using the intrinsic differentiation, theMinkowski acceleration vector fα by the formula

fα =
δuα

δσ
=
d2xα

dσ2
+

{
α

β γ

}
dxβ

dσ

dxγ

dσ
; α, β, γ = 1, 2, 3, 4. (10.36)

If our local reference frame X is Cartesian so that

dσ2 = c2dt
2 − dyidyi,

the components f
α
of the Minkowski acceleration relative to it are

f
α
=
d2yα

dσ2
=

d

dt

(
dyα

dσ

)
dt

dσ
=

1

c

d

dt

(
dyα

dσ

)
=

1

c2
d2yα

dt
2 ,

so that,

f
i
=

1

c2
d2yi

dt
2 ; i = 1, 2, 3 and f

4
= 0; as y4 = t.
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10.4.2 Minkowski Momentum

The four-dimensional Minkowski momentum vector is defined by

pα = m0c
dxα

dσ
; where, m0 = the constant. (10.37)

The special theory identifies the fourth component m0c
dx4

dσ with mass m of the moving
particle. In virtue of Eq. (10.34), we have

m = m0c
dt

dσ
= m0

[
1− v2

c2

]−1/2

=
m0√
1− β2

. (10.38)

The constant m0 is the mass when v = 0 so, it is called the rest mass of the particle.
The mass m, which clearly increases with the velocity, is called the relativistic mass
of the particle. The components

m0c
dxα

dσ
= m0c

dxα

dt

dt

dσ
= m

dxα

dt

and are evident generalisations of the Newtonian momentum vector.

10.4.3 Minkowski Four Force Vector

In Newtonian mechanics, the generalised equation of motion is given by

Fk =
d

dt
(mvk)

which is not invariant under Lorentz transformation. Its relativistic generalisation
should be a four-vector equation, in special part of which reduce to the above equa-
tion in the limit as β → 0. Now, we have the following assumptions:

(i) Since time t is not Lorentz invariant, it should be replaced by proper time τ .

(ii) The mass m can be taken as an invariant property of the particle.

(iii) In place of the velocity vi, world velocity vµ should be substituted.

(iv) Force Fi should be replaced by some four vector, called the Minkowski force.

In the Minkowski space, a quantity is called a four-vector it has four components,
each of which can be transformed by using the Lorentz transformation equations.

We define the four-dimensional Minkowski force vector Fα by

Fα = m0c
2d

2xα

dσ2
= c2

d

dσ

(
m0

dxα

dσ

)
.
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Consider the formula suggested by Newton’s second law,

Fα =
δ

δσ
(m0u

α); α = 1, 2, 3, 4,

where uα = dxα

dσ is the Minkowski velocity and m0 is a constant whose significance will
appear presently. Now,

Fα =
δ

δt
(m0u

α)
dt

dσ
=

1√
c2 − v2

δ

δt

(
m0

dxα

dσ

)
=

1√
c2 − v2

δ

δt

(
m0√
c2 − v2

dxα

dt

)

=
1

c2
√

1− β2
δ

δt

(
m0√
1− β2

dxα

dt

)
or √

1− β2Fα =
1

c2
δ

δt

(
m
dxα

dt

)
. (10.39)

The Newtonian force vector is Xα = δ
δt

(
mdxα

dt

)
so, Eq. (10.39) can be written as

Fα =

(
1− v2

c2

)−1/2

Xα.

In the local co-ordinate system Y , since β = 0 and m = m0, we have

F
α
=
m0

c2
d2yα

dt
2 = m0f

α
. (10.40)

This is the form of the Newton’s second law used in classical mechanics. We see that
the invariant m0 is the mass of the particle P referred to a local reference frame. It is
called the rest or proper mass of the particle. The quantity m is called the relativistic
mass, or simply mass. Since Eq. (10.40) is a tensor equation, we can write the force
equation as Fα = m0f

α, which is valid in all Galilean reference frames. We shall
rewrite Eq. (10.39) in the form

Fα =
δ

δt

(
m0v

2√
1− β2

)
, (10.41)

where vα = dxα

dt , and Fα = c2
√

1− β2Fα, and shall take it as the equation of motion
of a particle in the restricted theory of relativity.



10.4 Minkowski Space 517

10.4.4 Mass-energy Relation

Let us consider a body of rest massm0 moving with velocity v. For simplicity in writing
we suppose that the co-ordinates xi used in this section are rectangular Cartesian; and
we recall that the work done by the force Fi; i = 1, 2, 3; in producing a displacement
dxi is equal to the change in the kinetic energy. Therefore, classical theory gives

T − T0 =

∫ v

v0

mvdv =

∫ v

v0

m
dxi

dt
d

(
dxi

dt

)

=

∫ t

t0

m
dxi

dt

d2xi

dt2
dt =

∫ P

P0

m
d2xi

dt2
dxi =

∫ P

P0

Fidx
i.

If we take as our definition of kinetic energy in the restricted theory of relativity the
expression

T =

∫ P

P0

Fidxi =
∫ P

P0

δ

δt

(
m0v

i

1− β2

)
dxi

=m0

∫ t

t0

[
d

dt

(
1

1− β2

)
vi
dxi

dt
+
dvi

dt

1

1− β2
dxi

dt

]
dt

where

β2 =
v2

c2
=
vivi

c2
; vi =

dxi

dt
and vi

dxi

dt
= β2c2,

vi

c2
dvi

dt
= ββ̇

=m0

∫ t

t0

[
d

dt

(
1

1− β2

)
β2c2 + c2ββ̇

1

1− β2

]
dt

=m0

∫ t

t0

[
ββ̇

(1− β2)3/2
β2c2 + c2ββ̇

1

1− β2

]
dt

=m0c
2

∫ t

t0

ββ̇

(1− β2)3/2
dt = m0c

2

∫ P

P0

βdβ

(1− β2)3/2

=m0c
2

∫ P

P0

d

[
1

(1− β2)1/2

]
or

T =
m0c

2√
1− β2

+ constant.

If we wish to have T = 0 when β = v
c = 0, the constant of integration is −m0c

2, so
that

T =

[
m0√
1− β2

−m0

]
c2 = (m−m0)c

2. (10.42)
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Thus, the KE of a moving body is equal to the product of the increase in the mass
with square of the speed of light. Since the body possesses mass m0 even when at rest,
it may, therefore, be assumed that the rest mass of the body is due to an internal store
of energy E0 = m0c

2. The quantity E0 is called the rest mass energy or the intrinsic
energy of the body. Now, Eq. (10.42) can be written as

mc2 = E = T +m0c
2 = T + E0,

where E = mc2 = total energy of the body; m0c
2 = the intrinsic energy and T = the

KE. This famous relation is known as Einstein’s mass-energy relation and it shows
the equivalence of mass and energy. The expression E0 = m0c

2 shows that mass is
yet another form of energy. Since mass and energy are related to each other, we have
to consider a principle of conservation of mass and energy. Mass can be created or
destroyed, provided that an equivalent amount of energy vanishes or is being created
and vice versa. Now, when v ≪ c (non-relativistic approximation), we have

T =mc2 −m0c
2 =

m0c
2√

1− v2/c2
−m0c

2

=m0c
2[(1− v2

c2
)−

1
2 − 1] = m0c

2[1 +
1

2

v2

c2
− 3

8

v4

c4
− · · · ] ≈ 1

2
m0c

2,

which is the expression for KE of the particle in Newtonian mechanics. Now,

F 4 =

(
1− v2

c2

)−1/2
dm

dt
=

1

c2

(
1− v2

c2

)−1/2
dE

dt
.

The motion of a particle which moves under the action of some force system can be
represented in Minkowski space by a curve, called the world line of the particle. If no
forces act on the particle, we see from Eq. (10.39) that d2xα

dσ2 = 0. Thus, the world-line
of a free particle is a geodesic of the Minkowski space.

The velocity of a light ray is the constant c, and so we see from Eq. (10.23) that
for such a ray dσ = 0. Accordingly the world line of a light ray is a null geodesic of
the Minkowski space.

10.4.5 Differential Operator

We now consider the differential operator in the four-dimensional space time. By the
chain rule of partial differentiation, we have

∂

∂xα
≡ ∂xi

∂xα
∂

∂xi
. (10.43)
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A comparison of Eq. (10.43) with Eq. (1.43) shows that ∂
∂xi

is a covariant vector
operator. The components of the operator are

∂

∂xi
≡
(

∂

∂x1
,
∂

∂x2
,
∂

∂x3
,
∂

∂x4

)
≡
(

∂

∂x1
,
∂

∂x2
,
∂

∂x3
,
1

c

∂

∂t

)
. (10.44)

Noting that, the first three components just make the Galilean gradient operator ∇,
we can write

∂i ≡
∂

∂xi
≡
(
∇, ∂

∂x4

)
. (10.45)

Since gij = gij , we can write the contravariant vector operator

∂i ≡ ∂

∂xi
≡
(
−∇, ∂

∂x4

)
; xi = gijx

j , (10.46)

so that xi = −xi for i = 1, 2, 3 and x4 = x4. Let
(
A1, A2, A3, A4

)
be any four vector

with respect to the frame S, so that, A1, A2, A3 are the components of a Galilean vector
A and A4 is a Galilean scalar. If

(
A1, A2, A3, A4

)
are contravariant components of Ai,

its covariant components Ai are given by Eq. (2.10), by lowering the index. Using the
metric tensor of Eq. (10.31), we see that

A1 = −A1, A2 = −A2, A3 = −A3, A4 = A4. (10.47)

Noting that, A1, A2, A3 are the components of a Galilean vector A and A4 is a Galilean
scalar, we can write the contravariant and covariant components of a four vector
precisely as

Ai =
(
A, A4

)
, Ai =

(
−A, A4

)
. (10.48)

10.5 Maxwell Equations

The classical theory of electrodynamics, according to Lorentz, is specified by the elec-
tric potential ϕ, which is a scalar and the magnetic potential Ai which is a vector. The
electric field strength vector Ei and the magnetic field strength vector Hi are derived
from those potentials by the equations

Ei = −grad ϕ− 1

c

∂Ai
∂t

(10.49)

Hi = curl Ai. (10.50)

We shall denote the components of E and H by Ex, Ey, Ez, not by E
1, E2, E3, etc., as

E and H are not parts of a four vector. We can write the x components of Eqs. (10.49)
and (10.50), by using Eq. (10.46) as

Ex = −
(
−∂1A4 + ∂4A1

)
; Hx = −

(
−∂2A3 − ∂3A2

)
. (10.51)
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This form of Ex and Hx suggests that we define a second rank tensor,

F ij = ∂iAj − ∂jAi. (10.52)

This shows that F ij is an antisymmetric tensor, so that the diagonal elements of F ij

vanish. The tensor F ij then takes the form

F ij =


−Ex −Ey −Ez 0
0 −Hz Hy Ex
Hz 0 −Hx Ey
−Hy Hx 0 Ez

 (10.53)

and is known as the electromagnetic field strength tensor. Equation (10.53) gives F ij

explicitly in terms of E and H, while Eq. (10.52) gives F ij in terms of the scalar and
the vector potentials Φ and A. We can obtain the covariant field strength tensor

Fij = gikgjlF
kl. (10.54)

Remembering that gij is given by Eq. (10.31) and is diagonal, we have

Fij = giigjjF
ij ; no summation

=


Ex Ey Ez 0
0 −Hz Hy −Ex
Hz 0 −Hx −Ey
−Hy Hx 0 −Ez

 . (10.55)

We also often dual field strength tensor F ij defined by

F ij =
1

2
εijklFkl =


−Hx −Hy −Hz 0
0 −Ez Ey Hx

−Ez 0 Ex Hy

Ey − Ex 0 Hz

 , (10.56)

where εijkl is a fully antisymmetric tensor of rank 4. Using electrostatic units, the
four Maxwell field equations for electromagnetic field in terms of E and H are

∇ ·E = 4πϱ; div Ei = 4πϱ (10.57)

∇ ·H = 0; div Hi = 0 (10.58)

∇×E +
1

c

∂H

∂t
=

−→
0 ; curl Ei +

1

c

∂Hi

∂t
= 0 (10.59)

∇×H − 1

c

∂E

∂t
=

4π

c

−→
J ; curl Hi −

1

c

∂Ei
∂t

=
4π

c
Ji, (10.60)
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where Ji is the current density vector and ϱ is the charge density. The first and last
of the above equations are inhomogeneous equations and contain the components of
the four vector Ji on the right-hand side. The middle two equations are homogeneous
equations. In Minkowski space, with the metric Eq. (10.30), let us form the four-
dimensional potential vector Φα and the four-dimensional current density vector Jα

defined, respectively, by

Φα ≡ (A1, A2, A3,−cϕ); Jα = (J1, J2, J3, ϱ)

with respect to a particular co-ordinate system. Using Eq. (10.53) and covariant
differential operator Eq. (10.45), Eq. (10.57) can be written as

∂1F
14 + ∂2F

24 + ∂3F
34 =

4π

c
J4

or

∂iF
i4 =

4π

c
J4, (10.61)

where we have used the fact F 44 = 0. The x component of Eq. (10.60) can be written
as

∂Hz

∂y
− ∂Hy

∂z
− 1

c

∂Ex
∂t

=
4π

c
J1.

Using Eq. (10.53) for F ij and Eq. (10.45) for covariant differential operator, the above
expression can be written in the form

∂2F
21 + ∂3F

31 + ∂4F
41 =

4π

c
J1

or

∂iF
i1 =

4π

c
J1

or

∂iF
ij =

4π

c
Jj ; j = 1, 2, 3, 4. (10.62)

Combining to the homogeneous equations, we see that Eq. (10.58) can be written as

∂Hx

∂x
+
∂Hy

∂y
+
∂Hz

∂z
= 0.

In terms of the tensors F ij or F ij , this equation can be written as

∂1F
32 + ∂2F

13 + ∂3F
21 = 0 (10.63)
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and

∂1F14 + ∂2F24 + ∂3F34 = 0; i.e. ∂iF i4 = 0. (10.64)

The x component of Eq. (10.59) is

∂Ez
∂y

− ∂Ey
∂z

+
1

c

∂Hx

∂t
= 0.

In terms of Field tensors, this equation takes the form

∂2F
34 + ∂3F

42 + ∂4F
32 = 0 (10.65)

or
∂iF i1 = 0.

The generalisations in terms of dual field-strength tensor is immediately obvious and
gives

∂iF ij = 0, (10.66)

which is equivalent to Eqs. (10.58) and (10.59). Thus, the Maxwell’s Eqs. (10.57),
(10.58), (10.59) and (10.60) can be written in the covariant form as

∂iF
ij =

4π

c
Jj ; j = 1, 2, 3, 4

∂iF ij = 0.

While in Eq. (10.63), the indices 1, 2, 3 appear in a cyclic manner in the three terms,
we see that 4, 2, 3 in Eq. (10.65) do not appear in a cyclic manner, due to the third
term. To rectify this, we use the contravariant differentiation operator rather than
covariant operator, so that Eq. (10.65) becomes

∂2F 34 + ∂3F 42 + ∂4F 23 = 0,

where the indices 4, 2, 3 appear in a cyclic manner in the three terms. This does not
affect Eq. (10.63) in which all the terms get multiplied by −1, so that Eq. (10.63)
becomes

∂1F 23 + ∂2F 31 + ∂3F 12 = 0.

These above two equations suggest the generalisation

∂iF jk + ∂jF ki + ∂kF ij = 0, (10.67)

where i, j, k take any of the possible values 1, 2, 3, 4. We have accordingly written
Maxwell’s equations in tensor form in Minkowski space. Thus, they are invariant
under the Lorentz group of transformations.
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10.6 Generalised Relativity

We now turn to the general theory of relativity which was developed by Einstein in
order to discuss gravitation. He postulated the principle of covariance, which asserts
that the laws of physics must be independent of the space-time co-ordinates. This
swept away the privileged role of the Lorentz transformation. As a result, Minkowski
space was replaced by the metric coefficients of the four-dimensional relativity manifold
by gij

(
x1, x2, x3, x4

)
, with the general metric

dσ2 = gijdx
idxj ; i, j = 1, 2, 3, 4. (10.68)

In the special instance of the restricted theory the form Eq. (10.68) can be reduced by
a suitable transformation to the canonical form

dσ2 = c2(dt)2 − dyidyi. (10.69)

Einstein also introduced the principle of equivalence, which in essence states that the
fundamental tensor gij can be chosen to account for the presence of the gravitational
field. That is, gij depends on the distribution of matter and energy in physical sense.

Matter and energy can be specified by the energy momentum tensor T ij which in
the special theory satisfies the equation

T ij,j = F j ; F j = external force.

The only forces, namely those due to gravitation, are however already taken into
account by the choice of the fundamental tensor gij . We therefore, ignore F j and, in
accordance with the principle of covariance, the energy momentum tensor must now
satisfy

T ij,i = 0; equivalently, T i.j,i = 0, (10.70)

where T i.j = gjkT
ik is the mixed energy momentum tensor. The problem now is to

determine T i.j as a function of the gij and their derivatives up to the second order,

bearing in mind that T i.j,i = 0.

The Riemannian curvature tensor Rijkl, associated with the manifold of restricted
theory, vanishes, and the rectilinear geodesics of the manifold correspond to the trajec-
tories of particles in absence of a gravitational field. Consequently, if the manifold with
the metric Eq. (10.68) is to account for non-rectilinear trajectories, the Riemannian
curvature tensor must not vanish.

We recall from Eq. (4.45) that Einstein tensor defined by

Γij = gikRjk −
1

2
Rδij = Rij −

1

2
δijR = 0, (10.71)
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as we assume, with Einstein, that the field of large gravitating mass is such that the
potential functions gij satisfy in vacuum Eq. (10.71). The equations of motion require
T i.j,i = 0, but very remarkably Γi.j,i = 0, is an identity in Riemannian geometry. If we

contract Γij , we get,

R− 1

2
4R = 0 ⇒ R = 0 i.e. Rij ≡ Rαijα = 0, (10.72)

where Rij the Ricci tensor. The left-hand side of Eq. (10.72) can also be written from
Eq. (4.10) as

Rij =
∂2 log

√
|g|

∂xj∂xi
− ∂

∂xα

{
α
i j

}
+

{
α
β j

}{
β
α i

}
−
{
β
i j

}
∂ log

√
|g|

∂xβ
(10.73)

These equations include the flat manifold of restricted theory and admit the case for
which the components of the curvature tensor do not vanish. It is obvious from the
forgoing that the system of ten nonlinear partial differential equations Rij = 0 for
the ten unknown functions gij is extremely complicated. The general solution of this
system is not known, and one is obliged to seek particular solutions, essentially by trial,
and use Newtonian mechanics as a guide in selecting sensible forms for the coefficients
gij . Once a set of gijs satisfying Eq. (10.72) is found, we can form the equations of
geodesics

d2xi

dσ2
+

{
i
j k

}
dxj

dσ

dxk

dσ
= 0, (10.74)

agrees to the first order of small quantities with the corresponding situations in New-
tonian theory, all is well.

In the special theory, the world lines of free particles and of light rays are, re-
spectively, the geodesics and the null geodesics of Minkowski space. The principle of
equivalence demands that all particles be regarded as free particles when gravitation
is the only force under consideration. Then it follows from the principle of covariance
that the world-line of a particle under the action of gravitational forces is a geodesic
of the V4 with the metric [Eq. (10.68)]. Similarly the world line of a light ray is a null
geodesic.

10.6.1 Spherically Symmetric Static Field

Generally relativity discusses several important problems in which the co-ordinate
system r, θ, ϕ and t is such that the metric in the presence of a spherically symmetrical
static gravitational field,

dσ2 = c2f1(r)(dt)
2 − f2(r)(dr)

2 − r2(dθ)2 − r2 sin2 θ(dϕ)2, (10.75)
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where f1 and f2 are unknown functions of r, each reducing to unity, when r is increased
indefinitely. The coefficients of (dr)2 and (dt)2 have been selected as exponentials in
order of ensure that the signature of dσ2 is −2. Therefore, for the purpose of calculating
f1 and f2 it is convenient to set,

f1(r) = eµ(r) = eµ; f2(r) = eλ(r) = eλ,

where λ and µ are the functions of r. Since effects of the gravitational field diminish as
r → ∞, the function λ and µ must be tend to zero when r increases infinitely. Thus,
the spherically symmetric metric [Eq. (10.75)] takes the form

dσ2 = −eλ(dr)2 − r2(dθ)2 − r2 sin2 θ(dϕ)2 + c2eµ(dt)2. (10.76)

Let us write, x1 = r, x2 = θ, x3 = ϕ and x4 = ct, then the components of the
fundamental tensor are

g11 = eλ; g22 = −r2; g33 = −r2 sin2 θ; g44 = eµ

and

gij = 0, for i ̸= j.

Therefore,

g = g11g22g33g44 = −r4eλ+µ sin2 θ.

The covariant tensor gij is given by the matrix

(gij) =



−e−λ 0 0 0

0 − 1

r2
0 0

0 0 − 1

r2 sin2 θ
0

0 0 0 e−µ


.

The non-vanishing Christoffel symbols of second kind are given by{
1

1 1

}
=

1

2
λ′;

{
2

1 2

}
=

1

r
;

{
3

1 3

}
=

1

r
;{

4
1 4

}
=

1

2
µ′;

{
1

2 2

}
= −re−λ;

{
3

2 3

}
= cot θ;{

1
3 3

}
= −r sin2 θe−λ;

{
2

3 3

}
= − sin θ cos θ;

{
1

4 4

}
=

1

2
eµ−λµ′;
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where a dash denotes differentiation with respect to r. We now calculate the compo-
nents of the Ricci tensor by means of Eq. (10.73) and obtain after tedious but simple
calculations of the following set of differential equations:

R11 = −1

r
λ′ − 1

4
λ′µ′ +

1

2
µ′′ +

1

4
(µ′)2 = 0 (10.77)

R22 = −1 + e−λ
[
1− 1

2
rλ′ +

1

2
rµ′
]
= 0 = cosec2θR33 (10.78)

R44 = e−λ+µ
[
1

4
λ′µ′ − 1

2
µ′′ − 1

r
µ′ − 1

4
(µ′)2

]
= 0 (10.79)

and

Rij = 0, for i ̸= j.

These lead the curvature invariant

R =
2

r2
+ e−λ

[
− 2

r2
+

2

r
λ′ +

1

2
λ′µ′ − µ′′ − 2

r
µ′ − 1

2
(µ′)2

]
.

Therefore, the necessary and sufficient condition that a space with a spherically sym-
metric metric be an Einstein space is

2

r2
+ e−λ

[
− 2

r2
+

2

r
λ′ +

1

2
λ′µ′ − µ′′ − 2

r
µ′ − 1

2
(µ′)2

]
= 0.

The components of the Einstein tensor for the spherically symmetric metric Eq. (10.76)
are given by

Γ1
.1 = − 1

r2
+ e−λ

[
1

r2
+

1

r
µ′
]

Γ2
.2 = Γ3

.3 = e−λ
[
− 1

2r
λ′ − 1

4
λ′µ′ +

1

2
µ′′ +

1

2r
µ′ +

1

4
(µ′)2

]
Γ4
.4 = − 1

r2
+ e−λ

[
1

r2
− 1

r
λ′
]
; Γi.j = 0; for i ̸= j.

We now seek the spherically symmetric metric Eq. (10.76) consistent with the existence
of one gravitating point particle situated at the origin, and surrounded by empty space.
When the origin itself is excluded from our discussion, the energy momentum tensor
T i,j is zero at all points, so that Γi,j = 0. Now, from Eqs. (10.77) and (10.79), we get

λ′ = −µ′ ⇒ λ = −µ+ constant.
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Since as r → ∞; λ, µ→ 0, so λ(r) = −µ(r). Thus, Eq. (10.78) becomes

eµ
(
1 + rµ′

)
= 1

⇒ γ + γµ′ = 1; eµ = γ

⇒ γ = 1− 2m

c2r
≡ eµ,

where 2m is a constant of integration. We shall identify m physically with the rest
mass of the graviting particle. Noting that eµ = e−λ = γ, the metric Eq. (10.76) is
given by

dσ2 = −γ−1(dr)2 − r2(dθ)2 − r2 sin2 θ(dϕ)2 + γ(dt)2, (10.80)

= −
(
1− 2m

c2r

)−1

(dr)2 − r2(dθ)2 − r2 sin2 θ(dϕ)2 + c2
(
1− 2m

c2r

)
(dt)2,

where γ = 1− 2m
c2r

and is known as Schwarzschild metric. If the constant of integration
2m vanishes, γ = 1, and the resulting manifold is the flat manifold of restricted theory.
For m ̸= 0, the manifold is a curve. The solution obtained is of interest because it
is only static solution of our equations satisfying specified boundary conditions at
infinity.

10.6.2 Planetary Motion

Let us investigate the motion of a planet in the gravitational field of the sun. The sun
will be selected as a gravitating particle and the planet as a free particle whose mass
is so small that it does not affect the metric, and whose world line is then a geodesic
in the V4 with the Schwarzschild metric [Eq. (10.80)], given by

−
(
1− 2m

c2r

)−1( dr
dσ

)2

− r2
(
dθ

dσ

)2

− r2 sin2 θ

(
dϕ

dσ

)2

+c2
(
1− 2m

c2r

)(
dt

dσ

)2

= 1. (10.81)

The trajectory of the particle is a geodesic, so we have to solve the set of four equations

d2xi

dσ2
+

{
i
j k

}
dxj

dσ

dxk

dσ
= 0,

where, x1 = r, x2 = θ, x3 = ϕ and x4 = ct. We shall omit one of these equations,
in practice the most formidable one involving d2r

dσ2 . Thus, we no longer require the
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Christoffel symbols of the type

{
1
i j

}
. The remaining non-vanishing symbols of the

second kind are{
2

1 2

}
=

1

r
=

{
3

1 3

}
;

{
3

2 3

}
= cot θ;

{
2

3 3

}
= − sin θ cos θ;

{
4

1 4

}
=

2m

c2r2

(
1− 2m

c2r

)−1

.

Thus, the equations of the geodesic are

d2θ

dσ2
+

2

r

dr

dσ

dθ

dσ
− sin θ cos θ

(
dϕ

dσ

)2

= 0 (10.82)

d2ϕ

dσ2
+

2

r

dr

dσ

dϕ

dσ
+ 2 cot θ

dϕ

dσ

dθ

dσ
= 0 (10.83)

d2t

dσ2
+

2m

c2r2

(
1− 2m

c2r

)−1 dr

dσ

dt

dσ
= 0. (10.84)

We may assume that the planet moves initially in the plane θ = π
2 . That is, dθ

dσ and

cos θ are both initially zero. Then Eq. (10.82) tells us that d2θ
dσ2 is also zero. Repeated

differentiation of this equation shows that diθ
dσi vanishes at t = 0 for all i. Hence, θ = π

2
permanently, Eqs. (10.81), (10.83), (10.84) simplify to

−
(
1− 2m

c2r

)−1( dr
dσ

)2

− r2
(
dϕ

dσ

)2

+ c2
(
1− 2m

c2r

)(
dt

dσ

)2

= 1 (10.85)

d2ϕ

dσ2
+

2

r

dr

dσ

dϕ

dσ
= 0 (10.86)

d2t

dσ2
+

2m

c2r2

(
1− 2m

c2r

)−1 dr

dσ

dt

dσ
= 0. (10.87)

We can immediately integrate Eqs. (10.86) and (10.87) and the results are

r2
dϕ

dσ
= h;

(
1− 2m

c2r

)
dt

dσ
= k, (10.88)

where h and k are constants. On eliminating t and σ from Eqs. (10.85) and (10.88)
we obtain,

− 1

r4

(
dr

dϕ

)2

− 1

r2

(
1− 2m

c2r

)
+
c2k2

h2
=

1

h2

(
1− 2m

c2r

)
or

d2u

dϕ2
+ u =

m

c2h2
(1 + 3h2u2); u =

1

r
, (10.89)
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which is the relativistic equation for the orbit of a planet. For the planets of our solar
system, the term m

c2h2
is much larger than 3mu2

c2
and this justifies us in attempting

to obtain a solution of this equation by the method of perturbations. But when we
neglect this latter term, we obtain Newton’s equation for the motion of a planet.
Accordingly, we neglect the small term 3mu2

c2
and obtain for our first approximation

u1 the Newtonian equation

d2u1
dϕ2

+ u1 =
m

c2h2
⇒ u1 =

m

c2h2
[1 + e cos(ϕ− ω)], (10.90)

where e is the eccentricity of the elliptic orbit and ω is the longitude of the perihelion.
Putting Eq. (10.90) in the right-hand side of Eq. (10.89), we get

d2u

dϕ2
+ u =

m

c2h2
(1 + 3h2u21)

=
m

c2h2
+

6m3

c2h4
e cos(ϕ− ω) +

3m3e2

2c2h4
[1 + cos 2(ϕ− ω)] +

3m3

c2h4
. (10.91)

Since planetary orbits are nearly circular, the contribution of the perturbation term
containing e2 will be negligible. Also, the term 3m3

c2h4
will not have significant effect

on the shape of the orbit, but the second term, containing cos(ϕ − ω), may have a
pronounced cumulative effect on the displacement of the perihelion. Thus, Eq. (10.91)
becomes

d2u

dϕ2
+ u =

m

c2h2
+

6m3

c2h4
e cos(ϕ− ω).

The solution of this linear equation is clearly made up of the solution u1 and the
solution of

d2u

dϕ2
+ u =

6m3

c2h4
e cos(ϕ− ω).

A second approximation u2 to the solution can then be obtained in the form

u2 =
m

c2h2

[
1 + e cos(ϕ− ω) +

3m2

c4h2
eϕ sin(ϕ− ω)

]
.

Let us introduce, ∆ω = 3m2ϕ
c4h2

and note that

cos(ϕ− ω) + ∆ωϕ sin(ϕ− ω) =
√

1 + (∆ω)2 cos(ϕ− ω − α),

where α = tan−1∆ω ≈ ∆ω, the approximation u2 can be written in the form

u2 ≈
m

c2h2
[1 + e cos(ϕ− ω −∆ω)] . (10.92)
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This means that the major axis of the elliptic orbit is slowly rotating about its focus
(the sun). The increase of ∆ω corresponding to a complete revolution ϕ = 2π is thus
3m2

c4h2
2π rad. Equation (10.92) represents a closed orbit, only approximately elliptical

in shape, because ∆ω is a function of ϕ. Since u = 1
r , we have

c2h2/m

r
= 1 + e cos(ϕ− ω −∆ω),

where the semi latus rectum l = c2h2

m .

10.6.3 Einstein Universe

Einstein was led by cosmological considerations to consider the universe with the
metric

dσ2 = −
(
1− r2

R2

)−1

(dr)2 − r2(dθ)2 − r2 sin2 θ(dϕ)2 + c2(dt)2, (10.93)

where R is a constant. Thus metric is spherically symmetrical with e−λ =
(
1− r2

R2

)
and µ = 0. The non-vanishing Christoffel symbols of second kind are given by{

1
1 1

}
=

r

R2

(
1− r2

R2

)−1

;

{
2

1 2

}
=

1

r
;

{
3

1 3

}
=

1

r
;{

1
2 2

}
= −r

(
1− r2

R2

)
;

{
3

2 3

}
= cot θ;{

1
3 3

}
= −r sin2 θ

(
1− r2

R2

)
;

{
2

3 3

}
= − sin θ cos θ.

Let us investigate the path of a ray of light in Einstein’s universe. The path must be a
null geodesic and so its equations are given by three of the four equations of Eq. (4.64)
taken together with the equation

d2θ

du2
+

2

r

dr

du

dθ

du
− sin θ cos θ

(
dϕ

du

)2

= 0 (10.94)

d2ϕ

du2
+

2

r

dr

du

dϕ

du
+ 2 cot θ

dϕ

du

dθ

du
= 0;

d2t

du2
= 0

−
(
1− r2

R2

)−1(
dr

du

)2

− r2
(
dθ

du

)2

− r2 sin2 θ

(
dϕ

du

)2

+ c2
(
dt

du

)2

= 0,
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where u is some parameter. Again, following the argument as in Section 10.5, Eq. (10.94)
tells us that we can take θ to have the permanent value π

2 . With this choice, the equa-
tions reduces to

d2ϕ

du2
+

2

r

dr

du

dϕ

du
= 0;

d2t

du2
= 0 (10.95)

−
(
1− r2

R2

)−1(
dr

du

)2

− r2
(
dϕ

du

)2

+ c2
(
dt

du

)2

= 0. (10.96)

We integrate Eq. (10.95) and obtain

r2
dϕ

du
= h;

dt

du
= k ⇒ dt

dϕ
=
k

h
r2, (10.97)

where h and k are constants, and then eliminate t and u from these equations and
Eq. (10.96). The result is(

dr

dϕ

)2

= r2
(
1− r2

R2

)(
c2k2

h2
r2 − 1

)
. (10.98)

The solution of Eq. (10.98) is

1

r2
=

1

R2
cos2(ϕ− ξ) +

c2k2

h2
sin2(ϕ− ξ), (10.99)

where ξ is a constant. We immediately see that r regains its initial value when ϕ
is increased by π and that r is never infinite for any value of ϕ. Thus, all the null
geodesics of the Einstein’s universe, that is the light rays, are closed curves. Hence,
the time taken for a light ray to make a complete circuit is given by, from Eq. (10.97),
as

T =
k

h

∫ 2π

0

[
1

R2
cos2(ϕ− ξ) +

c2k2

h2
sin2(ϕ− ξ)

]−1

dϕ.

Owing to the periodicity of ϕ, we have

T =
k

h

∫ 2π

0

[
1

R2
cos2 ϕ+

c2k2

h2
sin2 ϕ

]−1

dϕ

=
4k

h

∫ π/2

0

[
1

R2
cos2 ϕ+

c2k2

h2
sin2 ϕ

]−1

dϕ =
2πR
c

.

Other cosmological considerations suggested to DeSitter that the universe could be
described by the spherically symmetry metric

dσ2 = −
(
1− r2

R2

)−1

(dr)2 − r2(dθ)2 − r2 sin2 θ(dϕ)2 + c2
(
1− r2

R2

)
(dt)2, (10.100)
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where the constant R has not the same value as the corresponding constant of the
Einstein universe. In this case the geodesic is given by

1

r
= a cos(ϕ− ξ),

where ξ is a constant. These trajectories correspond to straight lines and arc not
closed, since r becomes infinite when ϕ− ξ = π/2.

10.7 Exercises

1. Verify that the following matrices are Lorentz and calculate the velocity between
the two observers

(i)



√
2 0 0

√
3

√
6

2

1

2

1

2
1

√
6

2
−1

2
−1

2
1

0 −
√
2

2

√
2

2
0


; (ii)



1

2

1

4
−1

2

5

4

−5

6
− 5

12

5

6
−3

4
2

3

2

15

11

15
0

−1

3

14

15

2

15
0


.

2. A relativistic transformation of the space time co-ordinates of two inertial sys-
tems whose relative motion is parallel to x1 axis is

x1 = γ1(x
1 − β1x

4), x2 = x2, x3 = x3, x4 = γ1(x
4 − β1x

1),

where β1 =
γ1
c , γ1 = (1− β21)

−1/2 and γ1 is the relative velocity between the two
frames. If we express the co-ordinate four vectors as column vectors
x =

{
x1, x2, x3, x4

}
), x =

{
x1, x2, x3, x4

}
), write this transformation through

a matrix equation in the form x = A1x and determine A1.

3. Show that the expression dx2 + dy2 + dz2 − c2dt2 is invariant under Lorentz
transformations.

4. Prove that the four-dimensional volume element dxdydzdt is invariant under
Lorentz transformation.

5. Show that, under the Lorentz transformation, the wave equation for the propa-

gation of the electromagnetic potential ∇2ϕ− 1
c2
∂2ϕ
∂t2

= 0, where △2 = ∇2− 1
c2

∂2

∂t2

is the D’Alembert operator remains invariant.

6. Find the relativistic expression for KE of a particle, whose rest mass is m0,
moving with velocity v. Obtain the relation E2 = p2c2 +m2

0c
4. Show also that,

in the limit of low velocities the usual expression for KE can be obtained from
the relativistic expression of it.
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7. What should be the speed of a particle of rest massm0 in order that its relativistic
momentum is m0c. Show that its total relativistic energy is

√
2m0c

2.

8. A rod of proper length L rests in the xy plane inclined at an angle θ to the
x axis. What does the observer moving with speed v along the x axis. Find its
length and the angle of inclination.

9. Show that the metric of the Minkowski space in spherical polar co-ordinates
(r, θ, ϕ) can be written as

dσ2 = c2dt2 − dr2 − r2dθ2 − r2 sin2 θdϕ2.

10. Consider the transformation

x1 = r sin θ cosϕ sinhψ; x2 = r sin θ sinϕ sinhψ;

x3 = r cos θ sinhψ; x4 = r coshψ

form the co-ordinates
(
x1, x2, x3, x4

)
to (r, θ, ϕ, ψ) in Minkowski space.

(i) Obtain the metric in terms of (r, θ, ϕ, ψ).

(ii) Obtain the inverse transformation giving (r, θ, ϕ, ψ) in terms of (x1, x2,
x3, x4).

11. Find the necessary and sufficient conditions that a space with a spherically sym-
metric metric be an Einstein space.

12. Show that a space with Schwartzschild’s metric is an Einstein space, but not a
space of constant curvature.

13. Show that the Einstein universe is neither an Einstein space nor a space of
constant curvature.

14. Prove that the curvature invariant of Einstein’s universe is R = 6
R2 .

15. Show that the DeSitter universe is an Einstein space with constant curvature
12
R2 .
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