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Preface

Tensors and differential geometry play an important role in the spheres of mathematics,
physics, and engineering due to their inherent viabilities. The aim of this textbook is to
give rigorous and thorough analysis and applications of various aspects of tensor algebra
and analysis with applications to differential geometry and mechanics, both classical and
relativistic. Also, the present book has been designed in a lucid and coherent manner
so that the undergraduate and postgraduate students of mathematics and physics of
various universities may reap considerable benefit out of it. I have chosen the topics
with great care and have tried to present them systematically with various examples.

This book consists of ten chapters. Chapter 1 provides an informative introduction
concerning the origin and nature of the tensor concept and the scope of the tensor
calculus. Then tensor algebra has been developed in an N-dimensional space. In Chapter
2, an N-dimensional Riemannian space has been chosen for the development of Tensor
calculus. In Chapter 3, some symbols and their properties are described. Using these
symbols, covariant differentiation of tensors is explained in a compact form.
Characteristic peculiarity of Riemannian space consists of curvature tensor, which is
covered in Chapter 4. In Chapter 5, geometry of space curve is given. The intrinsic
property of surfaces is given in Chapter 6. Chapters 7 and 8 consist of surfaces in space
and curves on a surface respectively. Chapter 9 deals with the application of tensors
to classical mechanics. Differential geometry was used to great advantage by FKEinstein
in his development of relativity, which is explained in Chapter 10.

I express my sincere gratitude to my teacher, Professor. N. Bhanja, Department of
Mathematics, R.K. Mission Residential College, Narendrapur, who taught me this
course at the undergraduate level. I am thankful to my friends and colleagues, especially,
Dr. S. Bandyopadhyay, Mr. Utpal Samanta and Mr. Arup Mukhopadhyay of Bankura
Christian College and Dr. Joydeep Sengupta, North Bengal University, for their great
help and valuable suggestions in the preparation of the book. I extend thanks to Dr.
Madhumangal Pal, Department of Applied Mathematics, Vidyasagar University, Dr.
R.R.N. Bajpai, Principal, Bankura Christian College, for their encouragement and
suggestions.

This book could not have been completed without the loving support and
encouragement of my parents, wife (Mousumi) and son (Bubai). I extend my thanks to
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other well wishers, relatives and students for embalming me to sustain enthusiasm for

this book. Finally, T express my gratitude to PHI Learning, New Delhi for bringing out

this book.
Critical evaluation, suggestions and comments for further improvement of the book

will be appreciated.

PRASUN KUMAR NAYAK



CHAPTER 1

Tensor Algebra

The concept of a tensor has its origin in the development of differential geometry
by Gauss, Riemann and Christoffel. Ricci and Levi-Civita have developed ‘tensor
calculus’ or rather ‘tensor analysis’, which is generalisation of vector analysis, also
known as absolute differential calculus. Tensor analysis is concerned with the study
of abstract objects, called tensors, whose properties are independent of the reference
frames used to describe the objects. If a tensor is defined at every point of a space, we
say that we have a tensor field over the space. Tensor calculus is concerned essentially
with the study of tensor fields.

1.1 Tensors

Tensor is a natural and logical generalisation of the term vector. A tensor is repre-
sented in a particular reference frame by a set of functions, termed as components, just
as a vector is determined in a given reference frame by a set of components. Whether
a given set of functions represents a tensor depends on the law of transformation of
these functions from one co-ordinate system to another. The main aim of ‘tensor
calculus’ is the study of those objects of a space endorsed with a co-ordinate system
where the components of objects transform according to a law when we change from
one co-ordinate system to another. Regarding the concept of a tensor the following
points should be noted:

(i) It is an object of a space and depends on the nature of transformation of co-
ordinate system and the nature of the law according to which its components in
one system are transformed, when referred to another co-ordinate system.

(i) The components of a tensor may be chosen arbitrarily in any system of co-
ordinates. Its components in any other system are uniquely determined by the
corresponding law of transformation.

(iii) The components describing a tensor generally change with the change of co-
ordinate system, but the concept of a tensor does not change with the change of
co-ordinate system.
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(iv) The components of a tensor are always supposed to be functions of the co-
ordinates of a point. We say, using geometrical language, that they depend on
the position of the point and that our tensor algebra is a geometry of position,
independent of any notion of measure.

(v) A tensor represents a mathematical object which exists at a point just as a force
represents a physical object which exists at a point.

Scalars and vectors are both special cases of more general object, called a tensor of
order N whose specification in any co-ordinate system requires 3%V numbers, called the
components of tensor. In fact, scalars are tensors of order zero with 3° = 1 component.
Vectors are tensors of order one with 3! = 3 components.

Physical and geometrical facts have the peculiarity that although they may be es-
tablished by using co-ordinate systems their contents are independent of such systems.
This peculiarity is also possessed by a tensor, i.e. although co-ordinate systems are
used to describe tensors, their properties are independent of co-ordinate systems. For
this reason tensor calculus is an ideal tool for the study of geometrical and physical
objects. As a result, tensor calculus has its applications to the branches of theoretical
physics.

In the case of tensors, it is not possible (or at least not easy) to make any geomet-
rical pictures, and hence tensors have to be introduced only through their transfor-
mations under changes of the co-ordinate systems. In the book vector, authors have
developed pictorial ways of representating vectors and one-forms; this can to some
extent be extended to tensors of higher type, but the pictures rapidly become very
complicated. It is perhaps better to avoid picturing most tensors directly.

A study of tensor calculus requires a certain amount of background material that
may seem unimportant in itself, but without which one proceed very far. Included
in that prerequisite material is the topic of the present chapter, the summation con-
vention. As the reader proceeds to later chapters he or she will see that it is this
convention which makes the results of tensor analysis surveyable.

1.1.1 Space of N Dimensions

An ordered set of N real numbers z!, 22, ...,z is called N-tuple of real numbers and

is denoted by (a:l, z2, ..., .CCN). Here the number i in z* be the index of x, not power of
x. The set of all N-tuples of real numbers is said to form an N dimensional arithmetic
continuum and each N-tuple is called the point of this continuum. Such a continuum
shall be denoted by Viy. The Vy is sometimes called an N dimensional space, because
it can be endowed with the structure of an N-dimensional linear space.

For development of algebra of tensor, a co-ordinate system is set up in a cer-
tain manner, this implies that the co-ordinates (:cl,:vQ, o ) can be assigned to

every point in Vi with respect to a chosen co-ordinate system establishing a one-
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to-one correspondence between the points of Vy and the set of all co-ordinates like
(xl x? v

I .

If (a:l,xQ, e ,xN) be the co-ordinate of a point P in Vj we shall say that the

co-ordinate of P is ' and the corresponding co-ordinate system is denoted by (xz)

1.1.2 Dummy and Free Index

When in an indexed expression an index occurs once as a lower index and is an upper
index so that the summation conversion is applied, then this index is called dummy
index (or suffix). For example, in the expression a;b' or al or afz’, the index i is
dummy. In the expression a;;z’z?, both the indices i and j are dummy.

Dummy or umbral or dextral index can be replaced by another dummy suffix not
used in that term. For example, afxi = af:cj. Also, two or more than two dummy
suffixes can be interchanged. In an indexed expression if an index is not dummy, then
it is called free index. For example, aijxi, the index ¢ is dummy but index j is free.

Note 1.1.1 By a system of order zero, we shall mean a single quantity having no
index, such as A.

Note 1.1.2 The upper and lower indices of a system are called its indices of con-
travariance and covariance, respectively. For example, for the system Aé.k, the index
1 is the index of contravariance and the indices j, k are indices of covariance. Accord-
ingly, A% is called a contravariant system, the system A;j is called a covariant system,
while the system A; is called mixed system.

Note 1.1.3 The numbers of components of a system of components of a system of
kth order in which each of the indices takes values from 1 to N in N,

EXAMPLE 1.1.1 Ifu' = a;,vp and w' = bzuq, show that w' = b;aqu.

i

Solution: From u* = aj,

vP we get, u? = a}vP. Hence,

Ul @ — B G, P — D4
w' = byu? = byagv” = baqv?,

where we have to replace the dummy indices ¢ and p by p and ¢, respectively.

1.1.3 Summation Convention

N N o
Let us consider the sum ) > a;jz'2’. In order to avoid such awkward way of expres-
i=1j=1
sion using the sigmas (> _s) we shall make use of a convention used by Einstein, in his
development of the theory of relativity, which is accordingly called Einstein summation
convention. Instead of using the traditional sigma for sums, the strategy is to allow

the repeated subscript to become itself the designation for the summation. If in an
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indexed expression a dummy index occurs, then the expression has to be considered
as the sum with respect to that index over the prescribed range. Thus the expression

N
a1zt + asr® + asx® + -+ anzN = g a;x’
=1

will be written in summation convention as a;z" in N dimensions. Similarly, according
N N
to this convention ) ) aj;z’a’ will be written as a;;2'z? in N dimensional space.
i=1j=1
Therefore, according to this convention, if an index is repeated in a term, summa-
tion over it from 1 to N is implied.

Nonidentities: The following nonidentities should be carefully noted
aij (2" +47) # aya’ +agy’; aga'y #agy'a’s (aij+ag)aty’ # a2ty
Valid identities: The following identities should be carefully noted:
aij () +97) = ayr’! + ayy’s ayz'y’ = agya’
aijx'e! = ajx'a?; (aij + aj)r's? = 2a5'27; (ai; — aj)xte? = 0.
N N o
EXAMPLE 1.1.2 Ezxpress the sum Z; ]21 aj;uv? by using summation convention

and hence find all the terms of the sum in which each of the indices takes values from
1to 3.

Solution: Since each of the indices i, j occurs twice, once as lower index and again
as upper index, the required expression is a;ju'v’. Since both the indices are dummy,

3

3 3
ajju'v’ = g g ajju'v’ = E (ailuzful + ajputv® + aigulvg)
i=1 j=1 i=1

3 3 3
= E apuivt + E aputv® + E azsutv®
i=1 i=1 i=1

Sol) + (a12u'v? + anuv® + azu’v?)
+ (a13u'v® + aszu®v® + agzuv?)

= (auulvl + a21u2v1 + asiu

2,2 3,3

= allulvl + azu”v® + azzu’v” + algul

v? + a21u2vl

+a13U1’U3 + a31u3v1 + a23u2v3 + a32u3v2.

EXAMPLE 1.1.3 If the a;; are constants, calculate % (aijmixj).
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Solution: Returning to Einstein summation convention, we have

gaijarzscjz E ajjr'e’ + g ajjr'z’ + g ajjz's! + E a;jz'z?!
1,J

i#k,j7#k 1=k,j#k i#k,j=k i=k,j=k

=C+ Zakj:cj z* + Zaikxi zk + akk(xk)2,
ik ik

where C is independent of . Differentiating with respect to z*,

Za”az 2] =0+ Z aij] + Zalkx + 2appx”

J#k i#£k
= g ap;r’ + E aipx’ = agix’ + agpxt = (i + ag;) «°,
j i
where we are going back to the Einstein summation convention.
Further, if a;; = a;; are constants then

0? o ) o 9 '
dxkxl (aija'a?) = ok [axl (aijx x])} = ok [(a; + aj;) 2]

o , A
= W [Qail:vz] = 26%[(5}6 = 2akl.

1.1.4 Kronecker Delta

A particular system of second order, denoted by 5;'-; 1,7 =1,2,..., N which is defined
as follows:

; ” 1; fori=j
R 7’ g v = ’
0ij =05 =0 {O ; for i # . (1.1)
Such a system is called a Kronecker symbol. It is also called a Kronecker delta.

Property 1.1.1 If the coordinates z!, 22, ...,z are independent, then

(973:"_ 1; fori=3j
dxd | 0; fori#j.

This implies that, if #° and 27 belong to the same co-ordinate system and independent,

then gmj = (5’ It is also written as

873;’2' oz’ b 5
0xd — Ozk Oxi I

where, as per convention, summation over k is implied.
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Property 1.1.2 Following Einstein summation convention, we get
6l =01 4+654---+6N=1+14---+1(N times) = N.

Property 1.1.3 According to the Einstein summation convention, we get

0jATF = 61 AY 4 65 APF 4 63 A% - 5 ANE

=A% 4040+ +0=A"

AR = A% ATk = A% SN AR = AN

J , 05 sy 05 .
Generalising this we obtain 5§Aj k= A% Also, 5iAik = A7%_in which in the expression
AJ* we replace the index j by the i. Similarly, (53-14? = A;?. Thus the symbol 5; allows

us to replace one index by another, for this reason, the symbol 5;- is sometimes called
the substitution operator.

Property 1.1.4 Using the Einstein summation convention, we get
80] = 010) + 0h0F + -+ + 010}, + -+ + SO
=00} + 002 + -+ 16, +--- + 055 = o}
Using definition of 5; we get,

. Ox' Oxd ozt .
U VA v )
0% = Oxd Oxk — dxk k-
In particular, when k = i we get
816 =0l =061 + 03+ + 0N = N.
EXAMPLE 1.1.4 If A" = gla,sys,yi = birw, and airbrj = 05, find A® in terms of
the x,.

Solution: First write, ys = bgsxs. Then by substitution,
Ai = giarsbstxt = g;é(srtxt = gixr-

EXAMPLE 1.1.5 Evaluate 5;'5;7 and 5;5{62 the indices take all values from 1 to N.

Solution: Using Einstein summation convention, we have,
0107 = 0107 + 0407 + -+ + S0y .
So, according to summation convention,
N
0,65 = 616 + 0505 + -+ + 570
=(5]1-+0+--~+0:(5j1-; for all j.
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Similarly, 53(5; = 532», oo, 0N 5; = 5§V . From these equations it follows that, 5};6}" = &t
Using this result, we get

Szt §xd 5t B Szt
dxd ozl sxk  Sak
EXAMPLE 1.1.6 Calculate d;;x;x; for N = 3.
Solution: For N = 3, we have

51675}, = = 3j..

5ij$i$j = 1z121 + 122072 + 12373
= (21) + (22)? + (23)%.

In general, 0;jz;x; = z;z; and 6§airxi = a;jT;.

1.1.5 Manifolds and Tensors

It is hard to imagine a physical problem which does not involve some sort of con-
tinuous space. It might be physical three-dimensional space, four-dimensional space
time, phase space for a problem in classical or quantum mechanics, the space of all
thermodynamic equilibrium states, or some still more abstract space.

For instance, in dealing with the states of gas determined by the pressure (p), the
volume (v), the temperature (7') and the time (¢), one may wish to co-ordinate these
entities with ordered set of four real numbers (z1,x2, z3,z4). Here the diagrammatic
representation of the states of gas by points in the physical space is already impossible.
However, the essential idea in the concept of co-ordinate system is not a pictorial
representation but the one-to-one reciprocal correspondence of objects with sets of
numbers.

All these spaces have different geometrical properties, but they all share something
in common, something which has to do with their being continuous spaces rather
than, say, lattices of discrete points. The key to differential geometry’s importance to
modern physics is that it studies precisely those properties common to all such spaces.
The most basic of these properties go into the definition of the differentiable manifold,
which is the mathematically precise substitute for the word ‘space’.

Definition 1.1.1 Let us denote R™ by the set of all n-tuples of real numbers
(x1 2%, ..., 2™). A set of ‘points’ M is defined to be a manifold if

(i) each point of M has an open neighbourhood and
(ii) has a continuous one-to-one map onto an open set of R", for some n.

Clearly the dimension of M is n. By definition, the map associates with a point P
of M an n-tuple [z!(P),z*(P),...,z"(P)]. These numbers z'(P),z*(P),...,z"(P)
are called the co-ordinates of P under this map. Then an n dimensional manifold
is that it is simply any set which can be given n independent co-ordinates in some
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neighbourhood of any point, since these co-ordinates actually define the required map
to R™.

The usefulness of the concept of a manifold really comes from its generality, the
fact that it embraces sets which one might not ordinarily regard as spaces. By defini-
tion, any set that can be parameterized continuously is a manifold whose dimension
is the number of independent parameters. For example,

(i) The set of all rotation of a rigid object in three dimensions is a manifold, since
it can be continuously parameterized by the three ‘Euler angles’.

(ii) The set of all Lorentz transformation is likewise a three dimensional manifold;
the parameters are the three components of the velocity of the boost.

(iii) For N particles the numbers consisting of all their positions (3N numbers) and
velocities (3N numbers) define a point in a 6N-dimensional manifold, called phase
space.

(iv) Given an equation (algebraic or differential) for a dependent variable y in terms
of an independent variable z, one can define the set of all (y, z) to be a manifold;
any particular solution is a curve in this manifold. This concept is easily extended
to arbitrary numbers of dependent and independent variables.

A particular set of n real numbers (ZL'(l), x%, ...,xy) can be thought to specify a point
Py in the n-dimensional metric manifold covered by a co-ordinate system (z?).

Note that, the map is only required to be one-to-one, not to preserve lengths or
angles or any other geometrical notion. Indeed, the idea of distance becomes devoid
to geometrical sense even in familiar representation of the states of gas (the pressure p
and the volume v) by points in the Cartesian pv-plane. It is manifestly absurd to speak
of the distance between two states characterised by ordered pairs of numbers (p,v).
Thus, length is not defined at this level of geometry, and, we shall encounter physical
applications in which we will not want to introduce a notion of distance between two
points of our manifolds.

1.2 Transformation of Co-ordinates

We consider a transformation from one co-ordinate system (1:1, 22, N ) to another
co-ordinate system (El, z2, ...,z ) in the same space Vy, related by the N equations

T:7=¢ (24,2%,...,2Y)i=1,2,...,N (1.2)
where ¢’ are single valued, continuous functions of co-ordinates ', 22, ...,z and have

continuous partial derivatives up to any desired order and further the determinant
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ol Ot ot

0% 0¢? D>
J=|az 9z 9xN|£o. (1.3)

ool 9N oM

orl 022 92N

This determinant (1.3) is called the Jacobian of transformation (1.2) and is denoted
d¢'| |0z T
oxt || O’ Ox
bijective on an open set in RV if and only if J # 0 at each point on the open set. In
virtue of (1.3) the functions ¢° are independent and the Eq. (1.2) can be solved for

the z' as functions of ¥ giving

by or . A well known theorem from analysis states that T is locally

)

T2t =yt (7,77, 7Y); i=1,2,...,N. (1.4)

where the functions ¢ (z!,z?%,...,z"V)

are single valued.

The relations (1.2) and (1.4) are called formulas of transformation of co-ordinates
of Viy. They help to determine the co-ordinates of any point of Vi with respect to one
co-ordinate system when the co-ordinates of the same point with respect to another
co-ordinate system are known. We shall refer to a class of co-ordinate transforma-
tions with this properties as admissible transformations. Below are some examples of

admissible transformations of co-ordinates.

(i) Consider a system of equations specifying the relation between the spherical
polar co-ordinates ' and the rectangular Cartesian co-ordinates Z* in E? (three-
dimensional Euclidean space),

2 3 2 1

T:7' =atsinz cosx’; T ==z sin 22

sin x3; 7% = 2! cos 2?

where, 2! > 0,0 < 22 < 7,0 < 2% < 2. The Jacobian of this transformation is

given by
ozl 022 023
ox? 0x? 0% 2 .
J = Wl 97 9| (ml) sm:rQ;éO.
ozl 0x2 023
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(i)

(iii)

Tensor Algebra

The inverse transformation is given by

(o1 = /(@) + (@) + ()
. —1\2 |, [—2)\2
_— 22 — cos—1 — i — - tan—1 (z )f:(x )
V@) +(32) 4+ (2%)
—2
{ a:3 = tan_1 f—l
X

In R2, let a curvilinear co-ordinate system (z*) be defined from rectangular co-
ordinates (z*) by the equation

SO
$2 (L‘l

0 g | =20 A0

Thus the curvilinear co-ordinates are admissible for the region 22 > 0 and z? < 0
(both open sets in a plane).
The relation between the cylindrical co-ordinates 4° and the rectangular Carte-
sian co-ordinates ! is given by

ot =yleosy?; x?=ylsing? 23 =47,
where, y! >0, 0 <% < 27, —00 < 3% < 0.
The relation between the parabolic cylindrical co-ordinates y* and the rectangu-
lar Cartesian co-ordinates ' is given by

e (U R U R BT

where, —oo < y! < 00, 42 >0, —00 < 33 < 0.
The relation between the elliptic cylindrical co-ordinates 3 and the rectangular
Cartesian co-ordinates z* is given by

x' = acoshy' cosy?; 2 =asinhy'siny?; 2 =y,

where, y! >0, 0 < 9% < 27, —00 < 33 < 0.
The relation between the paraboloidal co-ordinates 3’ and the rectangular
Cartesian co-ordinates z° is given by

ot =yly?cosy?®; 2? =yly?sing?®; 2 =

where, y! >0, y?> >0, 0 < y3 < 27.
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The components of a tensor change under transformation of co-ordinates but the
entity called a tensor does not change under co-ordinate transformation. If, starting
from a system of co-ordinates z*, we allow only transformations which are expressed
by function which have derivatives up to any order, and can be solved, these new
co-ordinates will be called allowable co-ordinates.

Below are some properties of admissible transformations of co-ordinates.

Property 1.2.1 If a transformation (1.2) of co-ordinates possesses an inverse trans-
formation (1.4) with respective Jacobians J and K, respectively, then JK = 1.

Proof: Since T's are independent and z's are also independent functions of Z's, by the
formula of partial differentiation and summation convention we can write

or o ok

— = k=1,2,....N
ozl Oxk 9m’ Y
or » i
5=si= 00 o
oxk o7’
or .
‘(51"_ aj aignk
N oxk | | oz
or . .
oz'| |0z ;
or . i
oz’ ox

Incidentally it follows from this result that J # 0.

Property 1.2.2 The Jacobian of the product transformation is equal to the product
of the Jacobians of transformations entering in the product.

Proof: Let us consider any two admissible transformations

T :T =7 (ml,xz, ,xN), Th:Z =T (xl,iz, ,TN),
where i = 1,2,..., N. The transformation T3 : z* — % defined by
==l 2 N =N (.1 .2 N
T3: 2 =7 [x (x,:z:,...,:z: ),...,:17 (x,:v,...,:c )]

is called the product of 75 and T and we write T5 = ToT} (Figure 1.1). If the Jacobian
of T3 is denoted by Js, it follows that:
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Figure 1.1: The transformation.

o7
oxk

oT oT*

J3 = .
3 ozt  OxJ

87k
’ T = L,

ozJ

where Js and J; are the Jacobians of T5 and 711, respectively.

Property 1.2.3 The set of all admissible transformations of co-ordinates forms a
group.

Proof: The set of all admissible transformations of co-ordinates forms a group if the
following four axioms are satisfied:

(i) The product of two admissible transformations is a transformation belonging to
the set of admissible transformations. This property is known as the property
of closure.

(ii) The product transformation possesses an inverse, since the transformations
appearing in the product have inverses.

(iii) The identity transformation (Z' = ") obviously exists.
(iv) The associative law T3 (12171) = (131%) 11 obviously holds.

These properties are precisely the ones entering in the definition of an abstract group.
The fact that admissible transformations forms a group justifies us in choosing as a
point of departure any convenient co-ordinate system, as long as it is one of those
admitted in the set.

EXAMPLE 1.2.1 Find Cartesian co-ordinates of a point whose cylindrical co-
ordinates are (4, R 2) .

Solution: The relation between the cylindrical co-ordinates 3* and the rectangular
Cartesian co-ordinates z* is given by

ot =yleosy?; 2?=ylsing? 23 =47

Here, y' =4, 3% = 7 and y3 = 2. Therefore,

1 3
x1:4cosg:4-§:2; x2:4sin§:4-\2f:2\/§andx3:2.

Thus, the required co-ordinates are (2,2v/3,2).



1.2 Transformation of Co-ordinates 13

EXAMPLE 1.2.2 Find cylindrical co-ordinates of a point whose spherical co-

ordinates are (4, 5 %)

Solution: The relation between the rectangular Cartesian co-ordinates y' and the
spherical co-ordinates x* is given by

yt = ztsinz?cosz®;  y? = atsina®sing®;  y® = 2! cosz?

Here, 2! =4, 22 = 5 z8 = 5. Therefore,

3

=2

[\
N)\»a

y1:4sin—cosg:4-l

%

3

y? = 4dsin “sint =41

3 7_2f y —4COS§ 0

\]

Thus, Cartesian co-ordinates of the point (4, 5 g) are (2,2+/3,0). Now we are to find

the cylindrical co-ordinates of the point, whose Cartesian co-ordinates are (2, 2v/3, 0).

The relation between the cylindrical co-ordinates y® and the rectangular
Cartesian co-ordinates z' is given by 2! = y' cosy?; 2> = y'siny?; 23 = y>. Here,
z! =2, 2% = 2/3,23 = 0, therefore,

2 =ylcosy?;, 2v3=y'siny?
=22 4 (2V3)% = (y* cos y2)2 + (y! siny2)2
= @)Y =16=y' =4

and
tany2:\/§:>y2:—

Thus, the required co-ordinates are (4, §,0).

EXAMPLE 1.2.3 Find spherical co-ordinates of a point whose cylindrical co-
ordinates are (2\/5, I 1) .

Solution: The relation between the cylindrical co-ordinates y* and the rectangular

Cartesian co-ordinates z' is given by 2! = y'cosy?; 22 = y'siny?; 23 = y>. Here,

Yyt =22, = g,y3 = 1, therefore,
T

z! = 2\/5(:052 =2V2.
2 T

T° = Qﬂsmz 22 -

S\

—2andx =1.

S\

Thus, Cartesian co-ordinates of the point (2\/5, e 1) are (2,2,1). Now, we are to find
the spherical co-ordinates of the point, whose rectangular co-ordinates are (2,2, 1).
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The relation between the spherical co-ordinates y* and the rectangular Cartesian co-
ordinates z* is given by

g = @)+ @+ (@9 = VITITI=3

3
T _ 1 _
1 = cos ™! = cos ™!

V@ + @2 + (a2 viTaT

y2 = cos

W =

2
3 -1 -1 4
=tan " — =tan 1= —

y zl 4

Thus, the required co-ordinates are (3, cos™! %, %)

EXAMPLE 1.2.4 Show that the equation x' = 4cosx? in spherical co-ordinates
represents a sphere.

Solution: The relation between the Cartesian co-ordinates y* and the spherical co-
ordinates is given by

y1 = 2! sin 2? cos z%; y2 = 2! sin 2? sin 2%, y3 = 2! cosz?.
Then,
#t = V)2 + (2?2 + ()
and 5
2 1 Y

r° = cos”
(W')? + (W*)? + (¥°)?
The given equation can therefore be written as

W2+ @)+ (-2 =4

which represents the equation of a sphere.

1.3 e-Systems

In this section we shall define two completely skew-symmetric systems (of functions)
eqp and e®? explicitly. The second order e-system ei; or e are defined by

e11 =0, eso =0, eja =1, eg; =—1
11 22 12 21 } (1.5)

ell=0, e2 =0, e2=1, ¥ =-1
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The covariant ¢ tensor of second order is defined by

e11 =0, €12 = /9, €21 = —/g, €22 =0, g = |gi;]- (1.6)
This tensor is skew-symmetric. Accordingly by tensor law of transformation,
ouP dul

€ij = 35 A ¢
T ot ow M

or
_ oul ou? ou? oul 0 0
Eji = — ——¢ ———¢91; as €11 = 0,699 =
= s g 2 o o oY 11 , €22
o ol ou?
_ ou  ou | A(u',u?)
S =9 oul  ou?| Vo o, w)
ow  ow
Therefore, €11 = €90 = 0 and
B O(ut, u?) _ O(ut,u?)
€12 = \/EW = \/§; €21 = —\/gm = —\/?7-
Let us consider % as el = g,,g" g (1.7)
= &g .

which is called the contravariant e tensor of second order. Since €11 = €99 = 0, we find
gl — NG [gilng +gi2gj1]
and therefore, e!! = £?2 = 0 and
1 1
12 11,22 1242 21
e =Vg9lg g —(g7)]=—F7ande” =-——.
[ ] 7 7
Therefore, the contravariant € tensor has the components

1 1
11 12 21 22
e =0 e =—; e =——; =0
V9 V9
Similarly, we get €% as
= (1.8)

The third order e-system e;;;, or ek known as permutation symbols in three-dimensional
space are defined by

(1.9)
123 __ 231 __ 6312 — 1; 6213 321 __ 132

€123 = €231 = €312 = 1; €213 = €321 = €132 = -1
e =e = =e =e =-1
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and the remaining 21 components are zero. Further, let us define

1 ” ”
Eijk = Nz eijk; €77 = /g €7 g =|gi] (1.10)
which are, respectively, the covariant and contravariant tensors, are called permutation
tensors in three-dimensional space. Thus, the permutation tensor €;;;, is given by

+1; when 1, j, k are in even permutation of 1,2, 3
€k = 0;  when any two of the indices ¢, j, k are equal
—1; when i, j, k are in odd permutation of 1,2, 3.

These are also called fully antisymmetric tensor of rank 3 with 3! non-vanishing com-
ponents. We shall now establish some results using e-systems of second and third
orders.

Property 1.3.1 e-systems of second order: According to the definition of deter-
minants,

11
a; a
j 1 2 1.2 1.2
(2 - —
‘a]‘ = 9 9| = 109 — Q907
ay a3
12 2.1, _ _
= €12a10G9 + €21a710G9; as €12 = 1,621 =—1
or
!aﬂ = e;;atal  (by summation convention). (1.11)

Similarly, it can be shown that aé = ¥ ailag. Let us now consider the expression

eija;ag where the indices p and g are free and can be assigned values 1 and 2 at will.
We have

i g 1.2 2 1 _ 1.2 2 1 _ i
eija1a2 = €12a10Q9 + €2141G9 = €12G4109 — €12G0709 = €12 ‘aj}.
Similarly, it can be shown that eijaéa]l = e91 )a;‘ From this two results we can write

eija;ag = €pq ‘aﬂ = ’aﬂ €pqg = eija;ag. (1.12)

Similarly, it can be shown that

|af| e?? = e alal. (1.13)
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Property 1.3.2 e-system of third order: If we take,

ap ey a3
il — 12 a2 42
‘aj| =l|ai a3 a3,

3 3 3

then, by the similar arguments as in property 1.3.1, the following results hold:

i R A Y
a/j —eukala2 3
% _ ,ijk 1,23
CLj =€ aiajak
(1.14)
7 IR A I
;| Epgr = €;jkyUgQy
i| ,pqr _ ijk P ,4,.7
aj € =€ al-ajak

The above definitions of e-systems of second and third order can obviously be extended
to define e-systems of nth order e;, ;, . 4, and g2 inyolving n indices. If

n

1 1 1

a a4y 0 ay

2 2 2

; ap az - ay
‘a]‘ =

N N N

ay  ay o ay

Then results analogous to (1.14) will hold.

Property 1.3.3 The product of €” and e,, is called the generalised Kronecker delta
and is denoted by &y, i.e.

5 = eYep,. (1.15)

Similarly, (5;];1]7? = eijkepqr. The. prodgct ei17i27”"i”ej17j27,,,7jn is called the generalised
Kronecker delta is denoted by 5;13223’; It is to be noted that

ke g = 5% and efe, ;. = 268, (1.16)

€ P

EXAMPLE 1.3.1 FEwvaluate eijeik, in e-systems of the second order, if 1,7 =1,2.
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Solution: According to the Einstein summation convention, we get

k 2k

i 1k
eije’ = ejje " + egje

When, j =k =1 or 2, then
et =epetl +eqe?t=1-140-0=1
6i26i2 =epeltepe®=0-0+1-1=1.

Thus, when j = k, then eijeik = 1. Again, when j £ k,say j=1,k=2o0rj=2k=1,
we get

eine? =epe? +e9e2=1-040-1=0
eioe’t = e19e!! +e99e?' =0-14+1-0=0.

Thus, when j # k, then eijeik = 0. Therefore in general, eijeik = 5;?. In particular,
when j = k, we get,

eije’ =0 =61+ 65+ -+ 0y = N.
EXAMPLE 1.3.2 Establish the following identity:

erijerkl = Oik0j1 — Oi1jk- (1.17)

Solution: The identity implies n = 3, so that there are potentially 3* = 81 separate
cases to consider. However, this number can be quickly reduced to only four cases as
follows:

If either ¢ = j or k = [, then both sides vanish. For example, if ¢ = j, then the left
erij = 0, and on the right

0idj1 — 005 = 0.
Hence, we need only consider the cases in which both ¢ # j and k # [. Upon writing
out the sum on the left, two of the terms drop out, since i # 7,
erijeikl + e2ijear + esijesy = evyzery; =27 =13,

where (1'2'3") denotes some permutation of (123). Thus, there are left only two cases,
each with two subcases.

Case 1: Let epageyy # 054 = 2,5 = 3'. Here, either k =2 andl =3 or k = 3/
and [ = 2'. If the former, then the left member of Eq. (1.17) is +1, while the right
member equals

(52/2/63/3/ — 52/3/53/2/ = 1 — O = 1
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If the latter, then both members equal to —1, as can be easily verified.

Case 2: Let eyygeyy = 031 =2',5 = 3. Since, k # [, either k = 1" and [ = 1'. If
k =1’ then the right member of Eq. (1.17) is

(52/1/(53/1 —_ 62’l53’1/ =0—-0=0.
If | = 1, we have
091103117 — 091703, =0 —0=0.

This completes the examination of all cases, and the identity is established.

1.4 Tensor Notation on Matrices

It is known that if the range of the indices of a system of second order is from 1 to NV,
then the number of its components is N2. A system of second order can be of three
types, namely, aé, a;; and a". By matrices of systems of second order we mean the

matrices (aé) , (a;;) and (a%), i.e.

1 1 1

al (12 aN a1l ai2 +-- QN all a12 alN

ai a3 .-+ a% ag aze -+c A2N a?t a® .. a?N
N and

N N N1, N2 .. NN

ajlvaév---a% aNi1 an2 -+ GNN a’-a " a

each of which is an N x N matrix. The determinants of their matrices are, respectively,
denoted by ‘aé‘ ,|ai;j| and ‘aij ‘ We shall now establish the following results on matrices

and determinants of system of second order:
In terms of the Kronecker deltas, the identity matrix of order N is

I'=(00i)nun = (5;)N><N - (5ij)N><N7 (1.18)
which has the property IA = AI = A for any square matrix A of order N.
A square matrix A = (a;j) v is invertible, if there exists a (unique) matrix

B = (bij) y« n- called the inverse of A, such that AB = BA = I. In terms of compo-
nents, the criterion reads

airbrj = birar; = 0i5; aibg = b,ina;T = (53-; A" = b = 6. (1.19)

If A= (aé) and B = (b;) be two matrices conformable for multiplication, then aé-bj =
AB is the multiplication of two matrices, where ¢ and p are not summed on.
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Property 1.4.1 If a}b{) = c;, then (az-) (%) = (C;)) and

i i | — |
a; bl" - ‘Cp"
Proof: Since we take a system of second order, so

i g o il | ip2
¢, = ajbl, = ajb, + asby,

1 1 131 172 171 17,2 1 1 1 1
CECAN ajby +a3by  ajbs + azbs (e ay by b3
2 2 | 271 212 211 212 | 2 2 2 2
i ajby +asby  ajbs + asb; ay a3 bl b3

(cp) = (a5) (5)- (1.20)

Taking determinants of both sides, we get

or

or

|cy| = |a%] )] as|AB| = |A[|B|. (1.21)

We shall prove these results by taking the range of the indices from 1 to 2. Generalising
this to a finite numbers, we get

e

= |a] o5

b,
Thus, the results hold, in general, when the range is from 1 to N.

Property 1.4.2 If a;;b%* = c?, then (b““)T (a;j) = (c;“) and b | |a;;j| = ‘c;“ , where
(bik)T is the transpose of (b’k)

Proof: Since we take a system of second order, so

k ik 1k 2k
cj = (lijb = aljb + agjb

or

cd _ artb™ + ag b a19b'! + agb®t _ bt 2t ai; a2
C% C% B anblz + a21b22 alzl)l? + (I22b22 B b2 p?2 as| G922
or
N\NT
(c;?) - (b”“) (aij) (1.22)
Taking determinants of both sides, we get

4] = [o 0¥ lag since |BT =B = (Bl (29

T
laij| =

We shall prove these results by taking the range of the indices from 1 to 2. But the
results hold, in general, when the range is from 1 to N.
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Property 1.4.3 Let the cofactor of the element a3 in the determinant \aé\ be denoted

by the symbol Ag . Then by summation convention,
aé»A{c =l A} +abA2 -y AY = 5,2\a§-| = dia, (1.24)
and

i Ak 1 4ok 2 Ak N 7k k| i k

where a = |a%|. These formulas include the familiar simple Laplace developments of

1
|a§-]. The ﬁrst] of these then represents the expansion in terms of these elements of the
ith row; the second, in terms of the elements of the jth column of |a3]

If the elements of the determinant a is denoted by a;;, we shall write the cofactor
of a;; as A;j. Simple Laplace developments corresponding to (1.24) and (1.25) assume
the form

az-inj =a and aiink = a.
Property 1.4.4 Let us consider a system of n linear equations as
ase! =b'; i,j=1,2,...,n (1.26)

in n unknown !, where |a§~] # 0. Multiplying both sides of equations in (1.26) by A¥,
and sum with respect to ¢ yields

i Ak, d _ pi gk
ajAiz? = b'A;

or,
aéfx] =biA¥,  using (1.25)

or,
. 1.,
az® = b AR = 2F = Zpi Ak (1.27)
a
This is the Cramer’s rule for the solution of the system of n linear equations (1.26).

Property 1.4.5 Consider the determinant ]aé-] = a. Let the elements a,;Ai be func-
tions of the independent variables x1, xo,...x N then,

da} dal dal, al ad ... dk al a ... ay

Ory Oxy ~~ Oxq 2 a2 2 2 2 2
P Oajy Oas Oay ai a; ... ay

a 2 2 2 — = ...
— =0 a3 ... ay |+ |0z Ox; Ory |+
Oy o . . . : :
: oal dad) daly
N _N N N N N
ay ay ... ay ay ay ... ay or, 01, o,
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Oaq 8@ Oa}
= Al + 2AT+ - 4 RAY
<8£L’1 o0x1 * O0xy >
da? |  Oa’ aa N AN
LAl 2424 — A5
+ <8$1 2 + ox T 6 T
. A A N AN
+ + <8x1 N + 8 I 6$1
3&1 8a2 i 3 i\/ 7, aag 7
2t Aj.
8$1 ox r1 a 85(51
Therefore, in general, we get
da  dal
e B L2 1.28
oz,  Oxp 7 (1.28)
where AZ is the cofactor a in the determinant a = \a |.
Property 1.4.6 Consider the transformations z' = 2° (yk) and y* = ¢f (xk)

(Figure 1.1). Let the N functions z° (yl,yQ, e
so that

JyN ) be independent on N variables

‘ (yk) are solvable

2 ’$N)

yloy?yN

for the z’s in terms of y ’s. Slmllarly suppose that N functions y* (x T are

independent functions so that ’ # 0. Using the chain rule of dlfferentlatlon we

get, the relation

0z B 07" 37111 07" aiy? 0zt oyN B 07" %
oxk oyl oxk = Oy? Oxk oyN oxk Oyl Oxk
or
0z 0z | | 0y’ 02| | Oy
iy = = . . 1.2
‘axk oyl | | Oxk Oyl | | Oxd |’ (1.29)

connecting the functional determinants. Consider the particular case in which 2z = 27,
then Eq. (1.29) becomes,

o]
oxk|

oy

ozt | | Oyt
oyl | | OxI
ox'| | oyt

oxJ

51|

o) _
oyl |

oz' | | by’
oyI | | OxI
1

oyt |
oz

Thus, the Jacobian of direct transformation is the reciprocal of Jacobian of inverse

transformation.
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ct

EXAMPLE 1.4.1 Prove that e where cfn = a;bﬁl.

[om] =

7
a;

Solution: Using formula (1.14), we get

i Bk | = a5 xmsbe5'85 = [epms |at]] bEb5'0;
= [eijtaf‘cagnaé] bbb by Eq. (1.14)
= €ijt (Cﬂgblf) (ainbgl) (agbg)
= 6@10%0%6% = ’Cﬂ .

The above result can be stated as follows:

AL

a5l

which is well known result on multiplication of two determinants of third order.
Result 1.4.1 Here we consider second order determinants in various forms

(i)

(ii

)
(iii) |ca5 |, determinant of double contravariant form.
)

cg , determinant of mixed form:;

|cas| , determinant of double covariant form:;

(i) Now, according to the definition of determinant,

ci ¢
Bl — _ 12 12
)ca =], ,|=aa—aq (1.30)
€1 ¢
= e1eics + earescs (1.31)
15} aBf .1 .2

= eqpcicy = e*eycp.
From this, generalising, we get

Alep = eagcf,‘cg (1.32)

and

‘cﬁ’ el = eo‘ﬁcgcg. (1.33)

(ii) Now, according to the definition of determinant,

C11 €12
\Ca5| = = C11C22 — C12€21
C21 €22
(0% (0%
=e ’BCmCzﬁ =e€ BcalcﬂQ-
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From this, generalising, we get

Capl €pr = €*Ppucop (1.34)
and
Capl €po = € capcse (1.35)
(iii) In the similar way, we get,
Bl er? = enpcPcP (1.36)
and
Bl er? = enpcP (1.37)

Result 1.4.2 We know, the Jacobian of transformation from x* — # is a determinant
in mixed system. Hence,

S0t oaronr
~|ozf | ozl oz?
Generalising,
ozP | M T P o) ozt
or
oz? 0x°
Jex, = epa@@- (1.38)

Tensors are defined by means of their properties of transformation under co-ordinate
transformations.

1.5 Contravariant Vector and Tensor

Tensors are defined by means of their properties of transformation under coordinate
transformation. Let A’ be a set of N functions of N co-ordinates z',z2,... 2" in a
given co-ordinate system (:cz) Then the quantities A* are said to form the components
of a contravariant vector, if these components transform according to the following rule

on change of co-ordinate system from (xz) to another system (EZ):

a

T
zaxjAJ; i=1,2,...,N. (1.39)
X
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The contravariant vector is also called a contravariant tensor of rank 1. Multiplying
both sides of Eq. (1.39) by 227 we get

aii 9
0xP—;  OxP 0T ,
A = AT = 6P A = AP
oT' ozt 0xJ J
or
P_;
ar = 9851 (1.40)
oz?

The formula expressing the components A° in a co-ordinate system (:L'l) in terms of
those in another system (Tl)

Let A be a set of N? functions of N co-ordinates 2’ in a given system of co-
ordinates (xl) The quantities AY are said to form the components of a contravariant
tensor of order two (or of rank 2), if these components transform according to the
following rule on change of co-ordinate system from (xl) to another system (EZ)

Vi — @@Az’q.
OxP Oz~ '
Multiplying both sides of Eq. (1.41) by g;: g;j, we get
Ox" 0x°—ij  Ox" Ox° ﬁj@ -
oT' 07/~ 07 0T OxP Oxd
oo orow
9T OxP 0T Oxd
= 0,0, AP = A"*

1<i,j<N. (1.41)

or
_ 0x" 0x® —j
- o7 0T
The tensor A% is of the type (2,0). Similarly, a contravariant tensor of order n may
be defined by considering a system of order n of type A*1@2>%n,

A tensor of second rank can be written as a square matrix of order N, just as a

tensor of the first rank can be treated as an IN-component vector. Thus, a contravariant
tensor of rank two can be written as

ATS

(1.42)

All A12 AlN
A21 A22 A2N

AV =
A].\fl ANQ . A];TN
However, the converse is not true. The elements of an arbitrary square matrix do not
form the components of a second rank tensor.
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EXAMPLE 1.5.1 If the components of a contravariant vector in (a:z) co-ordinate
system are (3,4), find its components in (fl) co-ordinate system, where

Tl =72 =522 and 7T* = —5z! 4 422
Solution: Here, A}1 = 3 and A? = 4. From the transformation rule, the two sets of
functions A% and A" are connected by relations (1.39). For i = 1, we get,

ozt ;. ozt 1y ozt
A =—A=—A+_—SA"= -4 =1.
O’ ox! 81‘2 =73+(=9)

For i = 2, we get
T2 _ 8& W — oz? A1 oz?
OxI ox! 81:2
EXAMPLE 1.5.2 Let the components of a contravariant vector in ($’) co-ordinate
system are (x2,z1), find its components in (T) co-ordinate system, under the change

of co-ordinates

S A= (=5)-3+4-4=1.

= 1?)2#0 and T =zla?

Solution: Let A' = 22 and A% = 2!, then by definition (1.39) of contravariance,

—i oz . 07 oz’
A= A= A4 A% =12
0z T ot T o270 1T
SO ol ol
1 L 1y T 12 1 2002\ _ o, 1.2 _ o=2
A 8561A 8x2A =A -0+ A%(22%) =22 2" = 27°.
and
—2 _ 07 1y o> o 1.2 2 1 1,2 22 _ o1, (T2
A axA 8x2A =A "+ A= () + (29) =2 + -
EXAMPLE 1.5.3 Let the components of a contravariant tensor AY of order two
n (xz) co-ordinate system are At = 1, A = 1, A% = —1 and A?*> = 2. Find its

components A7 i (T) co-ordinate system, under the change of co-ordinates T' =

(x1)2 £ 0 and T° = 'z
Solution: We have to tackle this problem by using matrices. Writing J Jl =
We have from (1.41)

Ji'j = gi;.
—ii 0T o
AV = S AP = AT
oxP 0x4
or
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In particular, at the point (1, —2),

At =) =4 A =21(-2) 4212 = 2
2

A =21(-2) - 212 = -6, A =212+ (-2)%2=6.

EXAMPLE 1.5.4 If z' be the co-ordinate of a point in N dimensional space, show

that dz' are components of a contravariant vector.

Solution: Let z', 22, ..., 2" are co-ordinates in (x%) co-ordinate system and z*, 72, . . . |
z" are co-ordinates in (Z') co-ordinate system. Now

71:71(:13 ,x2,. ,:UN)
o oz Oz oz oz
i _ 0% 1 0T s 0T N _ 0T
dz’ = 83:1dx +8a:2dx + +8de$ = 8a:jdx'

It is law of transformation of contravariant vector. Therefore, the co-ordinate differ-
entials dz’ are the components of a contravariant tensor of rank one—the infinitesimal
displacement vector. Note that the co-ordinate z?, in spite of the notation, are not
the components of a tensor.

EXAMPLE 1.5.5 Show that fluid velocity and acceleration at any point is a compo-

nent of contravariant vector.
Solution: Let the co-ordinates of a point in the fluid be z*(t) at any time t. Then the
velocity % at any point in the co-ordinate system (z°) is given by, v* = %. Here, %
are the components of the tangent vector of the point z* in the (z) co-ordinate system.
Let the co-ordinates ! be transformed to new co-ordinates z7. In this transformed
co-ordinates the velocity 7/ is given by

,j:dij:afj axl :@’UZ (1)

dt  dxt dt Ozt

using the concept of chain rule of partial differentiation. Note that, the component of
the tangent vector in the co-ordinate system (Z') are %. Thus, we can say that the
velocity v*, i.e. component of tangent vector on the curve in N dimensional space are
components of a contravariant vector or contravariant tensor of rank 1.

The co-ordinates z* is 92" are the co-ordinates of, say, a particle in motion, while

dt
the coefficients 9Z; only denote a relation between two co-ordinate systems, which is

independent of time (i), we get

S A _ 0w dvt  0ad (ii)
dt — 9xf dt Ozt

This shows that, acceleration a* is also a contravariant vector.
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1.6 Covariant Vector and Tensor

Let A; be a set of N functions of N co-ordinates z', 22,...,z" in a given co-ordinate

system (.CCz) Then the quantities A; are said to form the components of a covariant
vector, if these components transform according to the following rule on change of
co-ordinate system from (xl) to another system (EZ)

— 02 _
The covariant vector is also called a covariant tensor of rank 1. Multiplying both sides
of Eq. (1.43) by %, we get

oT' — 0% 027

Sy Y Y V'

OxP OzP O
or
oz —
@Ai. (1.44)
The formula expressing the components A’ in a co-ordinate system (ml) in terms of
those in another system (fl)

Let A;; be a set of N? functions of N co-ordinates 2 in a given system of co-
ordinates (az’) Then the quantities A;; are said to form the components of a covariant
tensor of order two (or of rank 2), if these components transform according to the
following rule on change of co-ordinate system from ( ) to another system (EZ):

ozt 077
Multiplying both sides of Eq. (1.45) by 2292,
oz 0w o | OF' O Ox? 0a”
Ox™ Oz~ Oxr Oz 07 0T~
ozt OxP 07 029
" 0u" 0% Oz° OF
= 0704 Apg = Ars

Ap=

A= Apg; 1<i,j<N. (1.45)

or A oz %jZ
" O Qs

The tensor A;; is of the type (0,2). Similarly, a covariant tensor of order n is of the

form Aalag,...,an

Note: In the case of a Cartesian co-ordinate system, the co-ordinate direction z* coin-

cides with the direction orthogonal to the constant-z* surface, so that the distinction

between the covariant and contravariant tensors vanishes.

(1.46)



1.6 Covariant Vector and Tensor 29

EXAMPLE 1.6.1 Show that ‘%i s a covariant vector, where ¢ is a scalar function.

Solution: Let 2!, 22,... 2N 2.

.,z are co-ordinates in (2%) co-ordinate system and Z*, 72,

7V are co-ordinates in (7?) co-ordinate system. Consider
a(fl,fg,...,TN) = gzb(:pl,:v2,...,xN)
. 06 1, 00 L 09
0p = (91:1 8 3 +- (9 ax
or _
%_%81‘1+@8x2+ +8¢833 0z’ O¢
ozt 0z ox'  02% OT oxN ozt ozt Oxd
¢

It is law of transformation of covariant vector. Therefore, 575 are components of a
covariant vector. This shows that gradient of a scalar field is a covariant vector and
is represented in terms of components in the direction orthogonal to the constant
co-ordinate surfaces.

EXAMPLE 1.6.2 Let the components of a covariant vector in (a: ) co-ordinate sys-
tem are (2%, x +2x ), find its components in (:1:’) co-ordinate system, under the change
of co-ordinates T+ = (22)? # 0 and 7* = x'2?.

Solution: Let A' = 2% and A? = x' 4 222, then by definition (1.43) of covariance,

oxJ Oxt Ox?

om i T g e = h
S0 ) 1 o 2 1
1, = 9 I 4 — pt [ =F 2 1 _
A= gmr it g Az = A <2(m2)2> A T
and - 02
_ Tz 1
Ay = o7 2A1+3 2A2:A1 (ﬂ>+A2-0—1.

Hence, the components are (1,1) at all points in the (z¢) system (! = 0 excluded).

EXAMPLE 1.6.3 Let the components of a contravariant tensor A% of order two

mn (ac’) co-ordinate system are A1; = 22, A1p = 0 = Aoy and Ag = 2b. Find its

components A;j in (Ez) co-ordinate system, under the change of co-ordinates T' =

(x1)? #0 and 7% = 2'22.

Solution: In terms of the inverse Jacobian matrix, the covariant transformation law
[Eq. (1.45)] is given by

Ay = 0T 4,00

rS A_; j:Arst = T;Arsjs
ort " oTl J J
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or
1
1 —$2 9 0 F 0
N — x
A=7a7=|2" 29 |("
. 0 ! -z 1
ol 2(x1)2  xt
2la? + (22)? _g2
A(z1)? 2(x1)2
B —x
2(z1)2 2l
Continuing in the matrix approach from Example 1.5.3, we get
¥ 1 1 2 0 z? 2!
A — =
AT <—1 2)( 0 x1> (—x22x1>‘
Therefore, t = trace = 2% 4 2z!. Now,
l,le 4 (x2)2 _x2
i 4(xt)? 2zl2? 4 2(xt)? 4(x1)3 2(x1)?
AT Ay = 1\2 2\2
2222 —2(21)? 2(2')? + (2?) —z? 1
2(z1)2 o
0 22!
= 2
73% z? 4 22t

Therefore, t = trace = 2% + 22!, so that A” 4;; is an invariant.

EXAMPLE 1.6.4 Prove that €;; is a covariant tensor of rank

2.

Solution: Let us consider a transformation of co-ordinates from x* — Z*. Then,

_ dx® dxP
Iv6 = 9B gz od
or
VI =975 9=gil,

where the transformation is positive. From Eq. (1.38), we get

— oxP 0x°
VI = I o
or a ) 8 .
i X
Exp = 5;)0@ @; from (110)

This shows that ¢;; is a covariant tensor of rank 2.
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1.7 Mixed Tensor

Let Aé be a set of N2 functions of N co-ordinates z!',z2,..., 2" in a given co-ordinate

system (:E’) Then the quantities Ai are said to form the components of a mixed
tensor of order two (or of rank 2), 1f these components transform according to the
following rule on change of co-ordinate system from ( ) to another system (f’):

—i OT* 0z4

5= 5o g3 (1.47)
Multiplying both sides of (1.47) by g’fz g;i, we get
Ox" 070 —i _ Ox" 0 O Oat
ozt Oxrs ~ 7 Ozt Oxs Oz 97 1
_ox” oz 0T % Ap
9Tt OxP Oxs 0T
=0, 0 Ah = A
or
. O0x" 070

The formula expressing the components A; in a co-ordinate system (xz) in terms of
those in another system (EZ) The tensor A; is of the type (1,1). The upper position
of the suffix is reserved to indicate contravariant character, whereas the lower position
of the suffix is reserved to indicate covariant character.

Let A;k be a set of N3 functions of N co-ordinates z' in a given system of co-
ordinates (mz) Then the quantities A;'.k are said to form the components of a mixed
tensor of order three (or of rank 3) with first order contravariance and second order
covariance, if these components transform according to the following rule on change
of co-ordinate system from (wl) to another system (EZ)

— OTt Oz Ox”
ik = 9P oz Ozk ar

Multiplying both sides of (1.49) by gﬂ g;f; g:fn, we get

(1.49)

0z' 0x' 0z* i 02! o' 0z 0x' 0xt 02"
oz’ dxz™m dzm Ik T gzt Gz dxm Oxp O oz I
3$l oF O Ox? oT* Ox"

T ox dxP dz™ oz Ozm ozF I

= ol o4, oy AP = Al

p “m “n
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or

g 0at om0zt
mn gz gam dan Ik

(1.50)

The formula expressing the components A;k in a co-ordinate system (CL’Z) in terms of
those in another system (z'). Similarly, a mixed tensor AG2 of the type (r,s) of
order r + s with rth order of contravariance and sth order of covariance is defined.

This tensor has N"™% components.

EXAMPLE 1.7.1 Show that the Kronecker delta is a mized tensor of rank 2.

Solution: Let x',2%,... 2" are co-ordinates in (2') co-ordinate system and 7', 72, . . . ,

zV are co-ordinates in (') co-ordinate system. Let the component of Kronecker delta

in (z') system 5; and component of Kronecker delta in (z') system 5;-, then by defini-
tion,

< oz! B oT' oz dx*
I 97 Oxk oI Ol
or
= uf o
This shows that Kronecker delta 5; is a mixed tensor of rank 2. It is sometimes called
the fundamental mixed tensor.

EXAMPLE 1.7.2 Show that there is no distinction between contravariant and co-
variant vectors when the transformations are of the type

T = a2+ d,
i i Qi §T
where d* and al, are constants such that alal, = o).

Solution: The given transformation is 7° = a’, 2™ +d’, where d’ and a’,, are constants
such that alal, = 9, . Differentiating both sides with respect to ™, we get

T =a +0=a'.

6xm m m

Multiplying both sides of the given transformation by a, we get

T al

_ i i oomo Qi
. =a.a, X" +a.d

=6, 2" +a. d =2"+a,d
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or
" =7 al —al d
or
=7 aé- — aé- d'.
Differentiating with respect to Z*, we get
Oz’

om Y

0= ié%iiaxjii
YT o T am Y

Thus, the relation A= %Aj takes the form,

0T i — al Al

A==
ox!

and the relation 4; = %Aj takes the form

-  ox ,
A; = @Aj = ajA;.
Thus, we see that both the vectors A* and A; transform in an identical manner.

It is important to note the essential difference between a contravariant and a co-
variant tensor. In the case of contravariant tensor, the tensor is represented by com-
ponents in the direction of co-ordinate increase, whereas in the case of a covariant
tensor, the tensor is represented by components in the directions orthogonal to con-
stant co-ordinate surfaces.

EXAMPLE 1.7.3 Prove that the transformation of contravariant vectors form a
group.

Solution: Let A’ be a contravariant vector. Let S be the set of transformations of
contravariant vectors and 17,75 be two such transformations from the system (SEl) to

the system (f‘) and from (IZ) to (fz) given by

i 0T — . 0T
T : A =22 g4r. y At= A
! oxp 0 T2 oT"

Then the product of transformation 75T} : ' — 7 is given by

=, oF oz T
T : A = — AP = — AP
2 OT" DxP dzp
from which it follows that 7577 € S. Let I be the transformation given by
I . AZ _ 8xp —
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then
1Ty =TI =1T;.

Hence, I is the identity transformation and from this relation, it follows that I € S.
Now, consider, the transformation

from which it follows that
oxP —;
T AP = —A".
! oz

Since T} represents the transformation from the system (EZ) to (a:z), it is the inverse

of Th and T} € S. Finally, if T3 represents a transformation from the system (?) to

—i
(T ) , then

In virtue of these results, it is expressed by saying that transformations of a contravari-
ant vector form a group.

T3(T5Th) = (T3T3) Th.

LUI 332
29

EXAMPLE 1.7.4 If < = 2,
Xz xr

> is a covariant vector in cartesian co-ordinates x', x

find its components in polar co-ordinates (T*,7?).

Solution: The transformation law from the cartesian co-ordinate (z',2?%) to polar

co-ordinates (z',7?) are x' = 7' cosT?; 22 = T'sinz>.
Let A; denotes the components of a covariant vector in co-ordinates z' and A;

denotes its components in co-ordinates Z?, then, we have the transformation law (1.43).

1 2
X . — - . 1
In the present case, Ay = —; A2 = —. Let these quantities are A; and Aj in (z!,7?)
co-ordinate system. Using the transformation law, we have
— oxl ozt 0x?
Al = — A] = =1 Al + a— A2
0T 0T 0T
5 Tl cosz? . _o T'sin@?  cos® T2 + sin’® 72
= CcOoST ﬁ+smx = — = 5 —
T sinT T COST Sin T cos T
Also, using the transformation law, we have
1 o0xJ A ozt At 0z? A
2= 75 Aj =75 A1+ 5 A2
oz2 7 oz2 oz?
1 . _9 7! cos T2 1 9 ! sin T2
= =T ST —{ 5 +T COST —7———5
T sinT T COST

=7t (sian — cos f2).
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EXAMPLE 1.7.5 If XY, Z are the components of a contravariant wvector in
Cartesian co-ordinates x,y,z in E3 find the components of the vector in cylindrical

co-ordinates.

Solution: Let ' = z,2%2 =y, 2% = z and 2! = r, 2> = 0 and 2> = z, then the relation

between Cartesian and cylindrical co-ordinates is given by

1 =1 =2 2 =1 iy 52 3

r =T cosxT’; =T SInx"; T =73

or
2

x
T =1/(z")? + (22)% T =tan~! —; and 7 =23
x
Let A’ denotes the components of a contravariant vector in co-ordinates z* and A are
that in Z° co-ordinates. In the present case, A' = X, A2 =Y and A3 = Z. Therefore,
from Eq. (1.39), we get

—1 ozt i ozt 1L ozt 2, ozt .
A =g =gat T4 +:4
- 2! X + 2> Y40-2
(z1) + (22)? (z1)* + (2)?
— X cosT? + Y sin 72
A =gV =gat ozt ast
ZL‘2 l'l
- X + Y407
(z1)? + (22)? (1) + (22)?
1 1
= —le sin 72 + le cos 2.
X
53 _ 0T ;07 @3 2, 07° 3
A oxi A Oxt A 3:U2 A 6 A

=0-X+0-Y+1-Z=27
EXAMPLE 1.7.6 If A; is a covariant vector, determine whether 2 o ; is a tensor.
Solution: Since A; is a covariant vector, we have the transformation law (1.43).
Differentiating both sides with respect to Z¥, we get

04; 9% o dxl OA;
ozF — ozkom T T ox ozF
0247 oz’ 0A; Ox!

= A .
ozkozs t o oz 0zl ozF
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From this it follows that
the right-hand side.

ngf is not a tensor due to the presence of the first term in

EXAMPLE 1.7.7 If the relation az-vj = 0 holds for arbitrary contravariant vector
v, show that aé- =0.
Solution: The given relation a%vj = 0 can be written as

aivt +abv? -+ a?VvN =0.

Since v7 is arbitrary contravariant vector, we can choose it at will. First, we take v’
as (1,0,...,0), then v! = 1,02 =0,...,v" = 0. Hence,

ai - 14d5-04+---4+ay-0=0=d} =0.

Next we take v/ as (0,1,0,...,0), (0,0,1,0,...,0),...,(0,0,...,1) in succession. Then
we get

Hence, it follows that aé- =0.
EXAMPLE 1.7.8 If the relation aijvivj = 0 holds for arbitrary contravariant vector
vt, show that a;; + aj; = 0.

Solution: Let P = aijvivj = 0. Differentiating with respect to v* we get

or o' j ; Ovl
guF ~ M R T Gk =
or op
Sok = i 6 v +ag v 6] =0
or op
w :akj ’Uj‘i_az'kvizo.
Further, differentiating with respect to v! we get
0*P ov? n o' 0
— Qi 4 e —
Ol vk Kopl TR gl
or o2
P . .
ook ar;0) + airdj =0
or
9*pP
Jolgok — Gk T Ak = 0.

Replacing the dummy indices k£ and [ by 7 and j respectively, we get, a;; + a;; = 0. If
further a;; is symmetric, then a;; = 0.
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EXAMPLE 1.7.9 If B;; = Aj;, a covariant tensor, show that B;j is a tensor of
order two.

Solution: Since A;; is a covariant tensor, we have Eq. (1.45). Now,

= - OxP Ox4 OxP Ox4
Bii =4 = oz m M1 = g o Dt % Pu = A
0z OxP

ozt o

From this relation, it follows that B;; is a covariant tensor of order two.

EXAMPLE 1.7.10 If the relation aijuiuj = 0 holds for all vectors u' such that
u'\; = 0, where \; is a given covariant vector, show that

ai; + aj; = )\ivj + /\j’l)i,

where v; 18 some covariant vector.

Solution: From the given relation u’)\; = 0, we get, ui)\ivjuj = 0, where v; is some
covariant vector. Using the given relation a;ju'v’ = 0, we get

agju'e’ = u'\vju’
or
(aij - )\ivj) ’U,Z’U,] =0.
Since u'u’ is arbitrary contravariant vector, u'u’ # 0, and so,

Q5 — )\ﬂ)j =0= A5 = )\Z"Uj.

Interchanging the dummy suffixes 4, j in the relations al-juiuj = 0 and u'); vjuj =0,
we get o 4 '
ajiw’u' =0 and W Ajvu’ =0

or
ajiujui = uj)\jviui
or
(aji — /\jvi) uiuj =0
or

_ . i, ]
Qj; = )\jvi, as u'u! 75 0.

Adding we get

aij + aj; = )xﬂij + )\jvi.
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EXAMPLE 1.7.11 If the equality aéui = ou;j holds for any covariant vector u; such
that u;v® = 0, where v' is a given contravariant vector, show that

i i i
aj =00 + A’

where \; is some covariant vector.
Solution: From the given equality aé-ui = ouj, we get

i,

aju; = ouj + Ajuv's as uv' =0

or
Z‘.

aj

U = J(S;ui + Aju;v'; as 5;ul = u;
or

u; [aé- — 05;- — )\jvq =0,
where \; is some covariant vector. Since u; is arbitrary, so

i i i i i g
aj; 05]- Ajv' =0 or aj—afsj—i-)\ﬂ).

EXAMPLE 1.7.12 If A = (a;j) is a symmetric 4 x 4 matriz such that a;jz'z? =0
for all z* such that gz-j:ci:):j = 0, prove that there exists a fixed real number \ such that
aij = Agij-
Solution: Observe that the vector (1,=+1,0,0) satisfies g;;z’z7 = 0. Hence, substitut-
ing these components into the equation aijxlzcj = 0 yields,

apo * apr = ayp +ayp =0
or

apo + a1 = 0 = a1 + aio,

by symmetry of A. Similarly, using the vectors (1,0,41,0) and (1,0,0,+£1), we get
CLOO:*CLHZ*CLQQ:*CL;B:)\; cz-j:O; 1 =0 OerO.

Finally, employing the vectors (v/2,1,1,0), (v/2,1,0,1) and (v/2,0,1,1), we obtain

aj2 = ajg = a3 = 0.

1.8 Invariants

Objects, functions, equations or formulas that are independent of the co-ordinate
system used to express them have intrinsic value and are fundamental significance;
they are called invariants. Let ¢ be a function of N co-ordinates x* in a co-ordinate
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system (aﬂ) in Viy and ¢ be its transform in another co-ordinate system (T) . Then ¢
is called an invariant or scalar of Vi with respect to the transformation

. 1 N
ZEZ:?/’Z(SU ST, .., T );221,2,...,]\7,

if

or
o (@77 ) =9 vt (&, ... 7). N (7. 7Y)]. (1.51)

A scalar is invariant under any co-ordinate transformations. Obvious physical
examples of a scalar in Newtonian mechanics are length, mass, energy, volume etc,
which are independent of the choice of the co-ordinate system.

Differentiating Eq. (1.51) with respect to T*, we get

85_35 ij_axj 0 =
o7~ 9 o7 ox aa) BP9 (152)

Now, % may be considered as the components of a system of first order of type A;
and Eq. (1.52) shows that these components transform according to a certain rule on
transformation of co-ordinates from a system (ac’) to another system (T) The rule
indicated by Eq. (1.52) leads to the definition of a covariant vector of Vi.

We shall agree to call an invariant or a scalar a tensor of order zero or of type

(0, 0).

EXAMPLE 1.8.1 Show that the Kronecker delta is an invariant, i.e. it has same
components in every co-ordinate system.
Solution: Let 2!, 22, ... 2" are co-ordinates in (2?) co-ordinate system and z',72, . . .,

z" are co-ordinates in (') co-ordinate system. Let the component of Kronecker delta
in (2') system 6;- and component of Kronecker delta in (Z') system 3;-, then according

to the law of transformation,

17 9xk gz 1 0ak \9x
0z’ 92 ] ozt . OaF
~ ook o o ' T o

o . ow

This shows that (5;'- is an invariant.
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EXAMPLE 1.8.2 Show that the determinant of a tensor of type (1,1) is an
tnoariant.

Solution: Since Z's are independent and a's are also independent functions of the
T's, by the formula of partial differentiation and summation convention, we can write

oz 0z Oz

- =— —:;p=1,2,....N
o3 owr oz LT T
or '
52'_@@
I 9ap o7
or '
6] = |22 ] |92
I oxp| |07
or .
oz’ oxP
— /. —_ ] . ,—7
1—JJ7Where,J—‘axp ; J = &Ej’.

Let A;- be a mixed tensor of type (1, 1), then by tensor law of transformation,

— 0T Oxl
1 AP
J OxP o7 4

(%) = (5) 0 (5)

where, (A}) denotes the matrix of AY and other symbols have similar meanings. Taking
determinants of both sides of the above equality, we get

or

45| = gfp | 42| g;j. . as |AB| = | 4||B|
or . .
%)= |55 5| 14
or .
)Z;’ =JJ ’Ag‘:|A§|; where J = ‘aj; and J' = gij.

From this it follows that ’A; is an invariant.

EXAMPLE 1.8.3 Ifu' is an arbitrary contravariant vector and aijuiuj i an invari-
ant, show that a;j + aj; is a covariant tensor of second order.
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Solution: Let u' be an arbitrary contravariant vector. Since, a;;u'u’ is an invariant,
we have, @;; U’ W = a;;u'v’. Applying tensor law of transformation, we get

ox’ ozt
o © gz

oxt 9xd

— i i
Y ozP 9Tl

ai; u' ) = ajj
uP ul.

Replacing the dummy indices i, j; p, ¢ by p, q; %, j respectively, we get

OxP Oz

G =a .
“ P oz ot
Interchanging the suffixes ¢ and j, we get
0xP Jx4 i
@ =a —u’u’.
gt pq8 - O
On interchanging the dummy indices p, ¢, we get
i Oz OaP .,
W =a
I P oz ozt
or
0xP 0x?_

=] *J it — ot
aﬂuu _aqpyzyy uw; aswu =uul.

Adding properly, we get

- i O0xP 0x4
(@ij + ;i) '’ = {(apq + agp) 7 9T 0% j:| u'w

or
_ _ OxP Oz _, .
(@ij +aji) — (apg +agp) —— o 8$J:| 7 = 0.

Since ' and W/ are arbitrary, we have

_ OxP Ox4
Gij + Qji — apq + dgp oF oI

or

OxP Ox4

ozt oml

This confirms the covariant second rank tensor law of transformation. Therefore, a;; +
aj; is a covariant tensor of order two.

@jj + @ji = (apg + aqp)

EXAMPLE 1.8.4 Ifa;j is a covariant tensor such that |a;;| # 0, determine whether
the determinant |a;;| is an invariant.
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Solution: Since a;; is a covariant tensor of second order, we have

_ oxP 0x4
Qi == — — a
N A
or
_ oxP | | 0x?
‘aw‘ - afl a i ’ pQ|
or )
@] oxP ] oxP ozt
Qij| = |7= | |9pql; a8 | 7= p—
J oz’ pat oz’ o’
or 5
p
— 2 . _ X
|aij| = J* |apg| ; where, J = o |
where J is the Jacobian of transformation 2! = 2 (fl,TQ, e ,EN) i =1,2,...,N.

From this result, it follows that |a;;| is not, in general, an invariant due to the presence
of the term J? in the right-hand side. In this case, |a;;| is said to be a relative invariant
of weight 2.

EXAMPLE 1.8.5 If a;; are components of a covariant tensor of second order and
N pd are components of two contravariant vector, show that a;; Ay is an invariant.

Solution: Since a;; are components of a covariant tensor of type (0,2), we have,

a;j = ‘gff ‘gfj apq- We have to show that a;; A7 is an invariant. Now,

i OxP Oz ozt .07’ Iy

oz oz p 79 8375

OxP Ozl 0T OF

= 07 0 0xr ds P H
OxP 9T Oz 077 , s
A

= o7 Ox" o 0w
= 070dapg A\ 1i® = 6L apg0p® A"

= apgp?\" = app A" pl.
Replacing the dummy indices r and p by ¢ and j, we get

aijxiﬁj = ag A"y,
from which it follows that aij)\i,uj is an invariant.

EXAMPLE 1.8.6 If ag/\iujuk is a scalar invariant, \;, p; and vk are vectors, show
that ay! is a mized tensor of type (2,1).
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Solution: Since a? )\i,ujvk is a scalar invariant, so,

agxiﬁjfk = azj)\iujuk = ag‘ﬁ)\auﬁup

or
0x™ 9P oxF
W i g M g = ap” Napigr”
or P
. 0x® Oz O
—i] Yy ap D __
U oz o g W | M =0
or

a 8xo.l —83:5. @ = a%P.
k ozt 0 OxP P

From this relation it follows that, azj is a mixed tensor of type (2,1).

EXAMPLE 1.8.7 If f is an invariant, determine whether % is a tensor.

Solution: Since f is an invariant, so f = f. Let f be a scalar function of co-ordinates
z'. Consider a co-ordinate transformation z* — 7*, i.e. ' = 7*(2¥). Evidently,

af of ozP -
e = as f — f
ox*  OxP Ozt
This is a covariant law of transformation. Hence, the gradient of a scalar function f,
i.e. ggi is a covariant vector. Now,

0ridr) O 9xidzi | 0xd \ oz ) Ox

G pw 9T mow
9T Oridxt  OTIOTP Oxd Oxt

% f of o0%zP n 0 (8f)8x”

Therefore, if f is an invariant, ag:% is not a tensor due to the presence of the first
term in the right-hand side.
1.9 Addition and Subtraction of Tensors

Two tensors can be added or subtracted provided they are of the same rank and similar
character. Note that, these two binary operations relate to tensors at same point.

Theorem 1.9.1 If Azj and B,ij be tensors, then their sum and difference are tensors.
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Proof: Let Ag and B,ij be tensors so that they satisfy the tensor law of transformations
namely,

and

i _ 0% 0 o
k™ 9xp 029 o7k T

Sy _ 07 0% o
k OzP Oxd Ok

(i) Let the sum of the two tensors Aij and Bij be defined as

A” BU CZ]
and the algebraic operation by which the sum is obtained is called addition of
tensors. We have to show that Ck] is a tensor. Now,
oz’ 077 Ox”

—ii | i 0T 0w
A+ BE = 5 o o

(AR? + BP)
or . .

i _ 0T ox o

k™ 9xp 029 o7

This shows that Clij satisfies the tensor law of transformation and hence C’,ij is

11721 1112..
a tensor. In general, if A, ]" and B]i e j are components of two tensors of

type (p, q), then the sum

Auzz Jip i1i2...4p
Jij2.. ]q + J1J2---Jq

are the components of another tensor of type (p, q).
Let the difference of the two tensors A}/ and B}/ be defined as
i ij _ yid
Ay = By = Dy
and the algebraic operation by which the sum is obtained, is called subtraction
of tensors. Now,

B - oz o7’ 0a"
Ozl Ox1 9Tk
i _ O 0% o’
k™ 9xp 024 9z

This shows that D% satisfies the tensor law of transformation and hence DY is
k k

Ay (A7 — BY)

or

7 -4 7
a tensor. In general, if A]11 - .5 and B ]22 j” are components of two tensors of

type (p,q), then the difference

Ailig-uip _ pliieip
J1J2°*Jq J1J2°"Jq

are the components of another tensor of type (p, q).
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1.10 Multiplication by a Scalar

Let Aff be the components of the tensor in a co-ordinate system (xz) and sz be its
components in another system (Tl) Let the scalar be denoted by ¢ and ¢ in the
co-ordinate systems (xz) and (EZ), respectively. Then,

——ij =0T 0T’ Oz
¢ Ayl = P 52p Bt 5
oz 0! Ox”

OxP Ox1 Oz

B ozt 0T Ox”

OxP Oz Oz

P as p=¢

PATI.

From this it follows that qSAZj are the components of a tensor of type (2,1). This
tensor is called the product of the tensor and the scalar under consideration and the
algebraic operation by which it is obtained, is called the multiplication of the tensor
by the scalar.

In general, if A;ll " are components of the tensor and ¢ be a scalar, then ¢A“ ¥

Jidp
are the components Of a tensor of the type (p, q), called the multiplication of the tensor

by a scalar. Note that, this operation relates to a tensor and a scalar at the same point.

Result 1.10.1 (Zero tensor): The components of a tensor may be all zero in a
1 Zp

co-ordinate system. Let the components A 5 of a tensor of the type (p,q) be all

zero in a co-ordinate system ( ) Denote 1ts components in another system (T) by

A;ll sz Then by the tensor law of transformation, we have

—i1-ip oz" oz Jz™ ox"e t1-tp

A g S L
Jude o Pyt Oxte O 8:63‘1 1t

= 0; as by condition AT1 rq =0.

Thus, if the components of a tensor are all zero in one co-ordinate system, then they
are also zero in every other co-ordinate system. A tensor whose components are all
zero in every co-ordinate system is called a zero tensor.

Result 1.10.2 (Equality of two tensors): Two tensors of the same type are said
to be equal in the same co-ordinate system if they have the same contravariant rank
and the same covariant rank and every component of one is equal to the corresponding
component of the other.

Thus, if A7 and B2 are components of two equal tensors of type (p,q)

) J1j2+Jq Jijz-
in the same co- ordlnate system, then

ivioeip | pitizeip
Ajljz'"jq - Bj1j2-"jq'
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Let Ajl1 322 5 and Bji Jz i are components of two equal tensors in a co-ordinate system

(:1:’). Hence, the difference

ivigip | pivineip
Ajljz'"jq J1j2-+Jq
are the components of a zero tensor in the co-ordinate system (x%). Therefore, the
difference of the two tensors under consideration must be a zero tensor in every other
co-ordinate system. This means that the tensors are equal in every other co-ordinate
system. Thus two tensors of the same type are said to be equal if their components

are equal to each other in every co-ordinate system.

Result 1.10.3 Any linear combination of tensors of the same type and rank is again
a tensor of the same type and rank.

1.11 Outer Multiplication
Let Aj-k and B]" be tensors of type (1,2) and (1, 1), respectively, then

—i 07" 92 Ozt
Ik oz oz ok

and
—m _ 0x™ 0x¥ _,

mo Qxu gz Y

Let the product of two tensors A;k and B, be defined as

AL B = CIl | say. (1.53)

Since Aé.k, has N3 components, B™ has N? components, so, C;Z‘n has N° components.
Now,
T 5" — o' 8:1:5" Ozt o ox™ ox' _,
kT 9ar oI ok Qv 9T
07" 92° Oat OT™ 0¥ |,

Oz oz/ oz O oz Y
or .
am _ oz Oz® dOxt 9T™ 2 .,
From this relation it follows that ]“,Z;l = A;kB,T are the components of a tensor

of type (2,3). The tensor A;kBTT is called the open or outer product or Kronecker
product of the tensors A;k and B)"' and its rank is higher than that of each of the
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tensors from which it is obtained and the operation by which this tensor is obtained,
is called outer multiplication. In general, if we multiply a tensor Aﬁzzj’m, of the type
(I,m) by a tensor BYL2 P of the type (r, s), where r and s not being both zero, then
the product obtained is

iviz-i ppipa-pr
Aj1j2-~~ijQ1q2---qs ) (1.54)

of rank (I 4+ r,m + s), this product is called the open or outer product of two tensors.

Result 1.11.1 In taxing the out product of any number of tensors, care should be
taken to use distinct indices. For example, it should be wrong to write the outer
product of A}, By, and C,lg as A;BkC}C’g, because the covariant index k is repeated.

Result 1.11.2 The operation of outer product/multiplication relates to tensors of
any two types [the type (0,0) being excluded] at the same point.

Result 1.11.3 The outer product of two tensors is a tensor whose order is sum of the
orders of the two tensors. This provides us with an easy method of forming tensors of
higher rank and of any variance (co or contra).

Result 1.11.4 Let C’} be the open product of two vectors A’ and Bj, then C'Ji- = AiBj
is a mixed tensor of order two. But every mixed tensor of order two is not necessarily
the tensor product of contravariant vector and a covariant vector. Note that, every
tensor can not be written as a product of two tensors of lower rank. For this reason
division of tensors is not always possible.

1.12 Contraction

If we set in a mixed tensor one covariant and one contravariant suffixes equal, the
process is called contraction. Let Ay}, = be a mixed tensor of type (2, 3), then by tensor
law of transformation,

—ij ox' 077 0" Ox* Oxt g
~ OxP 0z 9T+ ozt oz T
Replacing the lower index [ by the upper index i and taking summation over 7, we get

—ij oz’ 077 0" Ox® Oxt pq

A

kim = §xp Oz ozk oFt oF™ Tt

s @ % Ozt pq OT Oz Ozt pq

-~ Poxegzk ozt Qx4 ok oz TP
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If we denote A}l by B, and sz by Eim, then the above relation can be written as
B o 0w 0x" 0at
kT 9 ok oz T

which shows that Bim, ie. Azm is a tensor of type (1,2). The tensor Az]m is called
a contracted tensor of the given tensor and the operation by which it is obtained, is
called contraction. Therefore, contraction reduces rank of tensor by two. In general,
if A;llljzzjlm, of the type (I,m);1 # 0, m # 0, then the quantities obtained by replacing
any one upper index i, and one lower index j, by the same index 7, and performing

summation over i,, are the components of a tensor of type (I —1,m — 1).

(i) A tensor can be repeatedly contracted. Thus the tensor A;ﬁf of total rank 5, on

contraction, gives the tensor AZﬁf of total rank 3, which can be further contracted
ijk
tj
(ii) It should be evident that the inner product of tensors can be thought of as their
outer product followed by contraction. Thus, the inner product A}/ B(’; = C} can

go give the tensor A°" or Agf of contravariant rank 1.

be obtained by first taking the outer product Aing = D;‘qup , then contracting
this tensor by equating the indices p and k, and finally identifying C;j with D%p .

(iii) If two similar indices of a tensor are equated, the resulting entity is not a tensor.
Thus, if D;qup is a tensor, D;chp and D} are not tensors.

Note 1.12.1 Contraction is to be operated with respect to an upper index and a
lower index and not with respect to two indices of the same kind.

Note 1.12.2 Contraction of m pairs of indices of a tensor of type (p, q) yields a tensor
of type (p — m,q — m), whose rank is less than that of original tensor by 2m. Thus
contraction can lower the rank of a tensor by an even number only. Let us consider a
mixed tensor Aé» of the type (1,1), then by tensor law of transformation, we get

—i OT' Oxl »
N A

Contracting with respect to 7 and j, we get,

—i 0T Ox4 »

e A

which is an invariant. Thus, contraction of a pair of indices of a tensor of type (1,1)
yields a tensor of type (0,0), i.e. an invariant.
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1.13 Inner Multiplication

Inner multiplication is a combination of outer multiplication and contraction. If an
outer product of two tensors be contracted with respect to an upper index of one factor
and lower index of other, then a tensor is obtained which is called an inner product
of two tensors.

Let A? and BJ® be the components of mixed tensors of the type (1,1) and (2, 1),
respectively. Then the outer product of these two tensors is AL B{”. The inner product
of these tensors are given by AYB!®. By tensor law of transformation, we get

g 07 00 07 05 0u
T T gat 9z 9xk Ol 0T
_ Oah 0w 0 0 O i
Ox' 0" Oxk Oxl OFt
_ OzP ;07° O™
Az Bk’l
- Ot : o2 ozt
_ o o 0"
Ozt Oxb OF
But this is the law of transformation of the mixed tensor of rank 3. Thus, the inner
product A? B}? is a mixed tensor of rank 3. Consider the following two particular cases:

(i) The outer product A;B/* of the tensors A; and B7*, when contracted for indices
i and j, produces the tensor 4; B, which is of the type (1,0). This tensor is an
inner product of the tensors A; and B*. Another inner product A;B7* can be
obtained by contracting for the indices i and k in the outer product A;B7*.

(ii) The outer product A;B? of the vectors A; and B, when contracted for the
indices i and j, produces the tensor A; B’ of type (0,0), namely a scalar. This
inner product is called the scalar product of vectors A; and B, because it is a
scalar. This scalar product is an invariant, i.e. it has the same value in any set
of co-ordinates.

Al BM.

If we set in a product of two tensors one contravariant and one covariant suffixes
equal, the process is called inner multiplication and the resulting tensor is called the
inner product of two tensors. For example,

AYBE . AYB AYB:;

pgr ; wpr ; kE “pjr

all the inner products of the tensors A 7 and Bp,- No index should occur more than
twice. For example, it should be wrong to write the inner product as A;j Bé because
two contravariant indices has been equated, or as A};’“B’kf, because k is repeated four

times.
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Note: Each of the above mentioned algebraic operations on tensor or tensors produces
again a tensor at the same point. These operations constitute what is called the tensor
algebra of V.

1.14 Quotient Law of Tensors

The name quotient law is in a certain sense appropriate because the application of this

law produces a tensor from two tensors just as the operation of division of two numbers

produces a number, namely, their quotient. If the result of taking an inner product

of a given set of functions with a particular type of tensor of arbitrary components is

known to be a tensor, then the given functions will form the components of a tensor.
Let a quantity A(p, q,r) be such that in the co-ordinate system (azl),

A(p.q,r)BY = Cy,

where B}® is an arbitrary tensor and C, is a tensor. In the (f’) co-ordinate system,
this is transformed to

A, j,k)B) =C

Z‘-
Applying tensor law of transformation, we get

— oI Tt dx” O Oz
.. qt 9" 0L OT = ~s or-
Ali, 3, k) By Oz4 Ozt ok Cp 0zs OT"

or
— 0! 97! Ox" Ox® O
A .- Bqtiiiii — s
(. k) BE o ot ot or — C7
or
— 0% 07! Oz Ox" OT'
A(i i LBt 2 22 27 T 08
(4,5, k) By 0x1 9zt 9% 9T OxP Cp
or
— oF __Ox" OT"
.. qt S _ S
A(Zvjvk)Br 8xq5t afk oxP - Cp
o OF Oz 0T
— ) Ox" O
A1, 9, k)BY — —=A BY*
(27.77 k) T axq 8Ek axp (p7 q? T) T
or

— oz’ 077 O™
OxP Ox1 Oz
Since B}’ is arbitrary so the expression within the third bracket is zero and con-
sequently,

— A(p,q,7)| B¥ =0.

Ozt 0T Ox”

A(pa q,r) = Z(iaja k)%%ﬁa
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which confirms the tensor law of transformation. Thus A(p,q,r) is a tensor of the
[A%S zp

type Aj,. In general, let A . be a set of quantities where k, the i’s and j’s take

the values from 1 to N. Let uF be an arbitrary vector. If the inner product B;i g
given by
111 111
By = A
is a tensor, then A;lllj’; ;. is a tensor. It is important in the use of the quotient law
that the tensor with which inner product is taken should be an arbitrary tensor. The
following statements are useful criteria or ‘tests’ for tensor character; they may all be
derived as special cases of the quotient law:
(i) If A;B® = E is invariant for all contravariant vectors B’, then A; is a covariant
vector.
(ii) If A;;B® = C; are components of a covariant vector for all contravariant vectors
B', then A;; is a covariant tensor of order two.
(iii) If A;;B'CY = F is invariant for all contravariant vectors B’ and C?, then A;; is
a covariant tensor of order two.
(iv) If A;; is symmetric and A;jB'B/ = F is invariant for all contravariant vectors
B’ then A;; is a covariant tensor of order two.

EXAMPLE 1.14.1 Using quotient law of tensor, prove that Kronecker delta is a
mixed tensor of rank 2.
Solution: Let A* be an arbitrary vector. Using the definition of Kronecker delta, we
have, 5§Aj = A’

Thus, we see that the inner product of 5; with an arbitrary vector A is a con-
travariant vector of rank 1. Hence, by quotient law 5;» is also a tensor. We see that,
(5;- has one subscript and one superscript, so that 5;- is a mixed tensor of rank 2.

Deduction 1.14.1 Tensor equations: Much of the importance of tensors in math-
ematical physics and engineering resides in the fact that if a tensor equation or identity
is true in one co-ordinate system, then it is true in all co-ordinate systems.

There are some simple rules for checking the correctness of indices in a tensor
equation.
(i) A free index should match in all terms throughout the equation.
(ii) A dummy index should match in each term of the equation separately.
(iii) No index should occur more than twice in any term.
)

(iv) When a co-ordinate differential such as dz° occurs, is a term i is to be regarded as
a contravariant index if 9z’ occurs in the numerator and as a covariant index if it
occurs in the denominator. Thus, in an expression such as 1 is a contravariant
index, while j is a covariant index.

aw
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1.15 Symmetric Tensor

If in a co-ordinate system two contravariant or covariant indices of a tensor can be
interchanged without altering the tensor, then it is said to be symmetric with respect
to these indices in the co-ordinate system. So, a tensor A;; is said to be symmetric if

Aij = Aﬂ

For a general tensor of arbitrary rank, symmetry can be defined for a pair of similar
indices. For example, a tensor A;;;, is symmetric in the suffixes j and k if

Imp _ Almp
Aijk - Aikj :

It is important to specify the positions of the indices rather than the indices themselves.

Property 1.15.1 Symmetric property remains unchanged by tensor law of transfor-
mation, i.e. if a tensor is symmetric with respect to two contravariant or covariant
indices in any co-ordinate system, then it remains so with respect to these two indices
in any other co-ordinate system.

Proof: Let a tensor A;; be symmetric in one co-ordinate system (mz), ie Ay = Ay
and A;; in another co-ordinate system (El) Now,

4 ot 0P da
RO S N
0z 0aP — A,

ozl ozt

This shows that symmetry with respect to ¢ and j also holds in the system (fz) Similar
result may be obtained by tracing the case of a covariant tensor or a mixed tensor.
Thus the property of symmetry is an intrinsic property of a tensor and is independent
of the choice of the co-ordinate system.

Note 1.15.1 It is to be noted that symmetry cannot, in general, be defined for a
tensor with respect to two indices of which one is contravariant and the other is
covariant, except the tensor (5;'., which has the interesting property that it is symmetric
in 7 and j and this symmetry is preserved under co-ordinate transformation. Thus,

P N VR
0; = ¢ and §; = d;; as 05 = 9.

Property 1.15.2 In an N dimensional space, a symmetric covariant tensor of second

order has atmost w different components.
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Proof: Let A;j be a symmetric covariant tensor of second order, then it has N 2 com-
ponents in V. These components are

An Ao AN
Agy Az Aan
Ant An2 - Ann

These components are of two types:

(i) Those in which the indices ¢ and j are the same, i.e. the components along the
diagonal. The maximum number of distinct components of this type is V.

(ii) Those in which the indices i and j are different, i.e. the components along the
nondiagonal. Hence, the maximum number of components of this type is

=N?-N=N(N-1).

But due to symmetry of A;;, (the components above and below the diagonal)

the maximum number of distinct components of this type is w

Therefore, the maximum number of independent components is given by

N(N-1) N

EXAMPLE 1.15.1 Assume ¢ = ajkAjAk, show that ¢ = bjkAjAk, where by, is
symmetric.

Solution: In the given relation ¢ = ajkAj A interchanging the indices k and j, we
get, ¢ = aijkAj . Therefore,

26 = (aji + ax;) AT AP
or
1 J Ak J Ak
o= i(ajk—i-akj)A A¥ = b ATAY, say
where, b;, = % (ajr + ax;). Also,

1 1
bjk = 3 (ajk + agj) = 5 (akj + aji) = by;.

Therefore, bj), is symmetric.
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EXAMPLE 1.15.2 If the tensors a;; and b;; are symmetric, and u?, v’ are compo-
nents of contravariant vectors satisfying the equations

(az’j—ksz)uizo} - /
i ;4,7 =1,2,...,n and k # K,
(a;j — K'bjj)v" =0 J a

show that bijuivj =0 and aijuivj =0.
Solution: Since a;; and b;; are symmetric, so a;; = aj;, b;j; = bj;. Multiplying the
first equation by v7 and the second by u’, respectively, and subtracting, we get

aijuivj — aijviuj — kbijuivj + k'bijviuj =0
or

aiju’v] — CLjZ"l)luJ — k:bijulv] + k/bjﬂ}lu] =0

aijuzvj — aiju’v] — kbl-juzv] + k"bijuzv] =0
(interchanging dummy indices 4, j)
or —(k — K)bjju'v? =0 = bjju'v! =0as k # k.
Multiplying the first equation by v/, we get

aiju'v! — kbjjuv? = 0.
or o ‘
a;ju'v’ = 0; as bjju'v’ =0.
EXAMPLE 1.15.3 If a;; is symmetric tensor and b; is a vector and
aijbk + ajkbi + akib]’ =0,
then prove that a;; = 0 or b, = 0.
Solution: The equation is
aijbk + ajkbi + akibj = O;Eijgk + ajk@ + E}cigj =0.
Using tensor law of transformation, we get
OxP Ozt b oz” OxP Ox1 b oz" ozP dx1 b oz”

Plozt oz "ozt Moz ozF ozt ozt ozt oz

o OxP 0z 0x"  OxP Ox? 0z"  OxP Ozl 02" |
| oz ol ozt | ox) ok 07 | OTF T T
or
apgbr =0=ape =0 or b.=0
or

a;; =0 or by=0.
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1.16 Skew-symmetric Tensor

If by interchanging every pair of contravariant or covariant indices of a tensor each
of its components is altered in sign, but not in magnitude, then the tensor is said to
be skew-symmetric or anti-symmetric with respect to these indices in the co-ordinate
system. Therefore, a tensor A;; is said to be anti-symmetric if

Ay = —Ajy;.
Similarly, a tensor A;j;;, is anti-symmetric in the suffixes j and £ if
Aijle = —Aigj-
Antisymmetry of an arbitrary tensor can be defined for any pair of similar indices.

Property 1.16.1 If a tensor is skew-symmetric with respect to a pair of contravariant
or covariant indices in any co-ordinate system, then it remains so with respect to these
two indices in any other co-ordinate system.

Proof: Let a tensor A;; be skew-symmetric in one co-ordinate system (ml), ie. Ay
= —Aj; and A;; in another co-ordinate system (f‘) . Now,

4 00 dar 0t
Yooamozs M am oz
Ox4 OzP

= " ow o e = A

This shows that anti-symmetry with respect to ¢ and j also holds in the system (E’) .

Property 1.16.2 In an N dimensional space, a skew-symmetric covariant tensor of

second order has atmost w different components.

Proof: Let A;; be a skew-symmetric covariant tensor of second order, then it has NV 2
components in V. These components are

0 A1z e AN
Ao 0 o Aoy
Ant Ane -+ 0

These components are of two types:

(i) Those in which the indices i and j are the same. In this case

Ajij=—-A;=>A4;=0;0=1,2,...,N.
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(ii) Those in which the indices i and j are different, i.e. the components along the
non-diagonal. Hence, the maximum number of components of this type is

=N?_-N=N(N-1).

But due to anti-symmetry of A;; (the components above and below the diagonal)

the maximum number of distinct components of this type is w

Therefore, the maximum number of independent components is given by

N(N-1) N

Property 1.16.3 If AY and BP9 are skew-symmetric tensors, then outer product is
symmetric tensor.

Proof: Since AY and BP9 are skew-symmetric, so by definition,
AT = —AY and B? = —BP.
If the outer product of A% and BP? be C'*/P4, then,
CUPe — AV BPY
Thus
CIPa — (_Aji) (_qu) — AR — Cjiqp,

shows that C%P4 = the outer product of the skew-symmetric tensors A% and BPY is
symmetric tensor.

EXAMPLE 1.16.1 If A;j; is completely skew-symmetric and the indices run from 1

to N, show that the number of distinct non-vanishing components of A;jy, is W.

Solution: A tensor A;j; is anti-symmetric in the suffixes i and j if A;j, = —Aj.

This tensor has

N N?
S (N=1)-N=—-(N-1)

independent components. A tensor A;;;, is anti-symmetric in the suffixes ¢, j and k if
Aije = = Ajik, Aijie = —Agji and Agjp = — Ay
Taking ¢ = j = k, then the tensor A;j is of the type A;; and in this case

Azw = _Azzz = Azw = O; for all 7.
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In this case, the number of independent components of A;j is zero. When A;j;, is of
the type Ay, then

Ajik = —Ajik = Aiir, = 0.

In the case, the number of independent components of A;;;, is zero. This means that
the number of independent components of A;jj, is

N(N - 1)(N - 2)
31 '

Thus, the non-vanishing components of A, is w. For the symmetric tensor

the maximum number of non-vanishing components are
N(N +1)(N +2)

Noy+ NPy +Noy = 5 :

EXAMPLE 1.16.2 If A; be the component of a covariant vector, show that gﬁ} — %;‘Z

Nng

are components of a skew-symmetric covariant tensor of rank 2.

Solutiokn: Since A; be the component of a covariant vector, by law of transformation
A; = 922 A, Differentiating it with respect to @’ partially,

- ot
04; 9 (da* %t ok DA,
o o \oz %) owoz " ox om
92k ozF oxt O A,
= 714 T T T 7 . i
owior " T oz 0w oal ®)
Similarly, o
0A; 92k ozF 0zt 9 A,

ozt orom ¢ omd o7 oxl
Interchanging the dummy indices k£ and [, we get
OA; 9%k ozF ox! DA,
- = ———A - — . ii
or  owow ' ox o o (i)
Subtracting, (i) and (ii) we get
0A; 0A;  0a* 02! <8Ak 8Al)

ozl o 0% om0 \ oxl Oz

This is the law of transformation of covariant tensor of rank 2. Therefore, 574 — 54

are components of a covariant tensor of rank 2. Now,

0A; 04A;  [(0A; 0A;\ _ _p.
oxd  Oxt oxt  Oxi ) IV

P =

. 0A; . .
Thus, gﬁ; — 5, are components of a skew-symmetric covariant tensor of rank 2.
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EXAMPLE 1.16.3 The components of a tensor of type (0,2) can be expressed
uniquely as a sum of a symmetric tensor and a skew-symmetric tensor of the same

type.

Solution: Let a;; be the components of a tensor of type (0,2). Now, a;; can be
written in the form

1 1
aij = 5 (aij + aji) + 5 (@i — aji)

= A;; + Byj, say,

where

1
Aij = 5 (aij +aji) and By = o (aij — aji).
Since a;; is a tensor of type (0,2), aj; is also a tensor of type (0,2). Since addition,
subtraction of two tensors of the same rank and scalar multiplication with a tensor is

a tensor, similar character, both A;; and B;; are tensors of type (0,2). Now,

1 1
Aji = 5 (aji +aij) = 5 (aij + aji) = Ajj
1 1

Bji = 5 (aji — aij) = =5 (aij — aji) = —Bjj.

Thus, A;; is symmetric and B;; is skew-symmetric. Therefore, the components of a
tensor of type (0,2) can be expressed as a sum of a symmetric tensor and a skew-
symmetric tensor of the same type.

Uniqueness: Now, we have to show that the representation is unique. For this, let
a;; = Cjj + D;j, where Cj; is symmetric and D;; is skew-symmetric. Now,

Qai; = Cz‘j + Dij = Qj; = Cij — Dij
1 1
= Cij = 5 (aij +aji) = Aij; Dy = 5 (aji — aij) = Byj.-

Thus, the representation is unique. Therefore, every tensor of type (0,2) can be ex-
pressed uniquely as a sum of a symmetric tensor and a skew-symmetric tensor of the
same type.

EXAMPLE 1.16.4 If a;j(# 0) are the components of a covariant tensor of order
two such that ba;; + caj; = 0, where b and c are non-zero scalars, show that either
b = c and a;; is skew-symmetric or b = —c and a;; is symmetric.

Solution: The given relation ba;; 4 caj; = 0 can be written as ba;; = —caj;. Multi-
plying both sides by b, we get

bzaij = —bcaij = —C (ba,ji) = —C (caij) = 02(11']'
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or
(b2—02)aij =0=0—-¢c?=0; as a;j # 0

or

b= :i:C, as g ?50

When b = ¢, then from the given relation we get

Ch;; = —CAj; = Qi5 = —Qjy,
which shows that a;; is skew-symmetric. Again, when b = —c, it follows from the given
relation that:

—CQjj = —CAj; = Qjj = Qjj,

which shows that a;; is symmetric.

EXAMPLE 1.16.5 If a;; is a skew-symmetric tensor, prove that

(d50F + 6705 ) ain = 0.

Solution: Since a;; is a skew-symmetric tensor, so, a;; = —aj;. Now,
LHS — (5;6,’“ n 5;'5;) agp = 6 ay, + 810k ay
= 5;-(11'1 + 5liaij =aj +a =aj+ (—aﬂ) =0.

EXAMPLE 1.16.6 If a tensor a;j;, is symmetric in the first two indices from the left
and skew-symmetric in the second and third indices from the left, show that a;j, = 0.

Solution: Using the definition of a;;;, we have
a;ji = ajix; symmetric with respect to i, j
= —a,;; skew-symmetric with respect to i, k
= —ayj; symmetric with respect to j, k
= ay;j; skew-symmetric with respect to j,i
= ajk;; symmetric with respect to k,i
= —a;jk; skew-symmetric with respect to &, j

or
2al-jk = 0; i.e. Qi = 0.
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1.17 Pseudo-Tensors

Pseudo tensors have been studied and it is used somewhere in mechanics.

(i)

(i)

(iii)

In Vi, consider N vectors a;, b;, ¢;, . ... The outer product
aibjcy, ...

has N components, but only N! distinct components.

In the Euclidean E3, consider two vectors a;, b; and form

Cij = aibj — ajbi.

Then,
0 c2 ci3 0 cl2  —eC31
(cij)=|ca 0 o3| =/|—ci 0 C23
c31 cz2 0 €31 —C23 0

This has only three independent components ce3, —c31, c12. They are the com-
ponents of the cross-product of the theory of vectors. They form an axial vector.

In a Vj, consider two vectors

a b ¢ d
u v ow t
From these, we construct six determinants such as
a b

= av — bu.
u v

More generally, in a Vi consider two vectors a; and b;. We then form

Cij = aibj — ajbi.
Then the number of independent components is %N(N —1)>N,if N >3. A
set of two vectors will be called a bi-vector, to which we associate c;;.

In a Vi, consider N elementary displacements

dll‘z, dzl‘z, ey dN.%‘Z.

The indices which affect the letter d have no tensorial significance, they are
simply labels which distinguish the vectors. Consider the determinant

dl.iCl d1x2 dla;N

doxt  dyx® doxN
A— 2 2 2'

dN.%'l d]\[.%'2 dN.’EN
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If we exchange the vectors, in any manner, A will preserve its value, but only
change its sign. There is only one independent A.

We have seen that in Vy there are exactly six independent components of the tensor
cij- 1f we pass to any other system of co-ordinates, we may consider the law of
transformation of this set of six components to the corresponding set of components
in the new system of co-ordinates. We say that these six components form a pseudo-
tensor.

1.18 Reciprocal Tensor of a Tensor

Let a;, be a symmetric tensor of type (0,2) satisfying the condition |a;z| # 0. Let b
be the cofactor of a;; in |a;;| divided by |a;;l, i.e.

cofactor of a;; in |a;;|

b = (1.55)
|aij|
From the theory of determinants, we get,
; 1; when k =5
L pik ) J
aijb {O; when k # j (1.56)
or
aijbik = 5?

Let & be an arbitrary contravariant vector and let B; = a;;&7, then according to the
definition of inner product B; is an arbitrary vector, as £ is so. Now,

Applying quotient law to the equation B;b** = £*, we conclude that b is a contravari-
ant tensor of type (2,0). The tensor b** is symmetric because a; is so. Thus, from the
symmetric tensor a;; of type (0,2), we get a symmetric tensor b% of type (2,0). This
tensor b¥ is called the reciprocal or conjugate tensor of the tensor aij.

Result 1.18.1 If b¥ is the reciprocal tensor of the tensor ai;, then a;; is the reciprocal
tensor of the tensor b,

Proof: Since aijbik = 5;-“, it follows that:

:‘5}“’:1:

£ 0.

|aij|
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Let us define another tensor c¢;; as

_ cofactor of b in |b"|
T 7]

From the theory of determinants, we get, cl-jbik = 5}“. Multiplying both sides by a;,
we get,
cijb®ay = 5;?6%

or
cijéf = ajj = 5 = ay. (1.57)

Since ¢;; is the reciprocal tensor of b7, it follows from (1.57) that a;; is the reciprocal
tensor of b¥. Thus, if b is the reciprocal tensor of the tensor a;j, then a;; is the
reciprocal tensor of the tensor b*. Hence, if the relation aijblk = 5;“ is satisfied, then

we say that a;; and b are mutually reciprocal tensors.

EXAMPLE 1.18.1 If a;j, by are components of two symmetric tensors in an N
dimensional space, such that |bg| # 0 and

aijbr — aybjp + ajpby — agbi; =0,

prove that a;; = Ab;j, where A is some scalar.

Solution: Since by are components of two symmetric tensors and |bg;| # 0, we can
get the reciprocal tensor ¢, the cofactor of bij in |bi;|, such that bijc”g = 5;-“. Now,

multiplying both sides of the given relation by ¢* we get

kl kl kl kl
a;;c" by — ac™ b + ajpc by — apc by =0

or
a;jN — ailéé- + ajkaf —pbij = 0;p = ag ™
or
Naij — aij + aji — pbij = 0
or
Naij — pbij = 0; as aij = CLjZ‘
or

aij = %sz = Abyj,

where A\ = £ is a scalar because p is so.
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1.19 Relative Tensor

A system of order p+q whose components a;ll',','_é.’; in a co-ordinate system (a:l) transform

according to the following formula, when referred to another co-ordinate system (f“) :

_ivigip | 7,071 0T? 0x' Ox™ O ghtety
Jij2-dp Ot Orte Ot Oz e (12T

(1.58)

where J is the Jacobian of transformation (1.2) is called a relative tensor of weight w.

The sets of quantities af}l%tfq obeying this law of transformation (1.58) are called
the components of a relative tensor of weight w. In addition, form the linear and
homogeneous character of this transformation (1.58) it follows that if all components
of a relative tensor vanish in one co-ordinate system, they vanish in every co-ordinate
system.

An immediate corollary of this is that a tensor equation involving relative tensors
when true is one co-ordinate system is valid in all co-ordinate systems. In this case

the relative tensors on two sides of equations must be same weight.

(i) Relative tensors of the same type and weight may be added, and the sum is
relative tensor of the same type and weight.

(ii) Relative tensors may be multiplied, the weight of the product being the sum of
the weights of tensors entering in the product.

(iii) The operation of contraction on a relative tensor yields a relative tensor of the
same weight as the original tensor.

To distinguish mixed tensors, considered in the preceding sections, from relative ten-
sors, the term absolute tensor is frequently used to designate the former. We shall
encounter several relative tensors in applications of tensor theory.

)

A function f(z!,22,...,2"), represents a scalar in the X-reference frame whenever

in the Y-reference frame determined by the transformation
=2y
the scalar is given by the formula

g v? ™) = flet (), 27 (), 2N (y)].

We will encounter functions f(z) which transform in accordance with the more general
law, namely

w

o0\ (1.59)

oyI

g y) = W), W) 2N )] \
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where ’ By denotes the Jacobian of the transformation and w is a constant. The
formula (1.59) determines a class of invariant functions known as relative scalars of
weight w.

A relative scalar of weight zero is the scalar. Sometimes a scalar of weight zero is
called an absolute scalar. If the weight of a relative tensor is zero, then the relative
tensor is called an absolute tensor.

A relative scalar of weight 1 is called scalar density. A relative tensor of weight
1 is called a tensor density. The reason for this terminology may be seen from the
expression for the total mass of a distribution of matter of density p(x1,x2,x3), the
co-ordinates z° being rectangular Cartesian.

EXAMPLE 1.19.1 Ifa;; is a covariant symmetric tensor of order two and |a;;| = a,
show that \/a is a tensor density.

Solution: Since a;; is a covariant tensor of order two, we have

_ OxP Ox
Yij = ot o P
or
_ OxP | | 0x AP |?
ol =[5 || o ol = [ 55|
or
_ OxP |2 _ _
a=|o=| where |a;;| =a
or
Va= ‘ Va=J%a;J = ‘Zi.

From this relation it follows that \/a is a relative tensor of weight 1. In other words
Va is a tensor density.

EXAMPLE 1.19.2 Show that the equations of transformation of a relative tensor
possess the group property.

Solution: Let A;; be a relative tensor of weight w. Consider the co-ordinate trans-
formations

= T = T
Aij — Aij — Aij
In case of transformation z* — Z*, we have

— 0xP Ozt
of = oza 978

oz |¥

=| A
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. — :’L
In case of transformation " — T, we have

=  9rv 07’ |07 |Y
Aij == =5 |=5| Aes
ox 0x’ |0x
02 0x 9z 0z | 0T |” | O |
- Moz o’ o7 o7 lo7 | 0T
| O oxt 00t 07k o7 ot | ot |
or
= OxP 0z | Oz |”
Aij = Ap— 5 | o=
or o0’ 10T

This proves that, if we make the direct transformation from z? — fi, we get the same
law of transformation. Therefore, relative law of transformations possess the group

property.
EXAMPLE 1.19.3 Prove that the scalar product of a relative covariant vector of
weight w1 and a contravariant vector of weight wo is a relative scalar of weight wi 4 wa.

Solution: Let A’ be the components of relative contravariant vector of weight wy,

then

» 0T
oxP

@
oT

w1 =0
— AP 8:0

A=A = Ao

J

and B; be the components of relative covariant vector of weight wo, then

w2 Oz
= B,— J“2.
Loz

Ox

— ox?
B oz

LT Pz

We have to show that the scalar product A’B; is a relative scalar of weight wy + ws.
For this, we have

afl %leerz

oxP 0T

- APBQ%JUHJFWQ

oxP

= APBILJ T2 = APBP JUiTeR,

A'B; = APBY

From this, it follows that A’B; is a relative scalar of weight wy + wo.
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EXAMPLE 1.19.4 If AY and A are components of symmetric relative tensors of
weight w, show that

w—2 w2

‘Z’j ' ‘% and \Awl—lAzﬂ 8$

Solution: Since AY are components of symmetric relative tensors of weight w, by
definition,

—ij oz’ oz’ |0z |”
A7 = AoP
0z 0zP | O
Taking modulus of both sides and noting that g % = }% , we get
oz || ox|"
A8 el
[ =] oz |9
) AoB O " oz — Oz
8:1: oz ox 0T
| ox g
= |A||Z2 (Aaﬁ — |AY].
5|2 49

Since A;; are components of symmetric relative tensors of weight w. By definition,

S 0at 0a | o[
0Tl g ol | o
. ox||ox|” ox |12
‘AZ-7| |A 856 % :| 'L]| ax

1.20 Cartesian Tensors

A tensor of Euclidean space E™, obtained by orthogonal transformation of coordinate
axes, is called a Cartesian tensor. Thus a Cartesian tensor of rank r in a three-
dimensional Euclidean space is a set of 3" components which transform according to
the rule

Ap = oF | 0xr 0al | 00 oiasa (1.60)
” axal axaT awﬂl af]r 6162 Br

only under orthogonal co-ordinate transformations

T:7 = aéxj; (ag-) is orthogonal (1.61)
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so that \aé\ # 0. This is a weaker condition than that imposed on general tensor. Since
a general tensor satisfies Eq. (1.60), for all co-ordinate transformation, it is clear that
a general tensor is also a Cartesian tensor but a Cartesian tensor is not necessarily a
general tensor.

1.20.1 Affine Tensor
A transformation of the form

T : % =asa’;|al| #0 (1.62)
takes a rectangular co-ordinate system (z‘) into a system (z') having oblique axes.
Tensors corresponding to admissible co-ordinate changes, Eq. (1.62), are called affine

tensors. Thus, affine tensors are defined on the class of all such oblique co-ordinate
systems. Since the Jacobian matrices of T and T~! are

8Ei i _ 8:1:1 i
/= |:8$j:|rr = [4j],, and T = [axj}rr = b5,

the laws for affine tensors are,

Contravariant : A' = a;Ap; A7 = a;agqu, ..
Covariant : A; = b Ap; Ayj = b0 Apg, . .. (1.63)
. —1 i —1 i l
Mixed : A; = a,biAD; Ay = apb'bp A

mns

Under the less stringent condition Eq. (1.63), more objects can qualify as tensors than
before. From Eq. (1.62), we have

oT! B oz’ o
ori  om

indicates that the distinction between covariance and contravariance vanishes. Thus,
we can use all indices as subscripts, so long as we are confining ourselves to orthogonal
co-ordinate transformations of the type of Eq. (1.61). The transformation law for a
Cartesian tensor thus reduces to

i1t iy _ St 02 e AJ1J2

A =ajap---af AT (1.64)
Equation (1.61) suggests that ¢ is also a Cartesian vector, though it is not a general

vector. Since the co-ordinate differentials da’ constitute a general vector, hence also
a Cartesian vector.
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The Kronecker delta 5; and the fully anti-symmetric tensor €;j;, are also Cartesian
tensors in which all indices can be written as covariant indices. This follows from the
fact that:

P _ P jsi __ P,i __ Sp

0, = a;a}0; = a;a, = 0}, (1.65)
Thus 5; is a general tensor. Note that, the quotient law is valid for Cartesian tensors
also.

Thus, we conclude that an ordinary position vector (2*) becomes an affine tensor
and the partial derivatives of a tensor define an affine tensor.

1.20.2 Isotropic Tensor

A Cartesian tensor whose components remain unchanged under a rotation of axes is
called isotropic tensor. We say that an isotropic tensor transforms into itself under
orthogonal transformations.

Since the only values the Kronecker delta symbol takes are 1 and 0, it is seen that,
it is an isotropic tensor, that is, has the same components in any co-ordinate system.

A scalar is an isotropic tensor of rank zero, as it remains the same value in all
co-ordinate systems. Let u = (u1,ug,u3) be a vector and A = [a;;] an arbitrary
orthogonal transformation. Let, @ = (uy, U2, U3) be the transformed vector, then,

u = Au; A = transformed matrix. (1.66)
But if u is an isotropic vector, we must have
u=u; ie w=u; for 1=1,23. (1.67)
Thus, Eq. (1.66) reduces to
Au=u= (A—-Iu=0. (1.68)

where 0 is the null matrix. If this is to be true for every orthogonal matrix A, it is
clear that the only solution of Eq. (1.68) is u = 0. Thus, there is no isotropic tensor
of rank 1 except the null vector.

1.21 Exercises

1. (a) If 2' = aly? and " = b, 2%, show that 2’ = albjz".
(b) Show that the expression b¥y;y; becomes in terms of x variable as ¢;;z;;
if y; = ¢;jx; and b9 ey, = 07,
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2. (a) If A = apz? for all values of independent variables zh 22, . 2N and aps

are constants, show that

0

Ee (apa?) = a;.

(b) Calculate

N, ; 0 o .. O o
M) 5% (aijz’), (i) @[aijf(ﬂﬁ]ﬂ; aij = aji,  (if) 57 (aijkxzxjxk)Q
where a;;;, are constants.

(c) Find the following partial derivative if a;; are constants:

9o (anxl + a12x2 + a13x3); k=1,2,3.

(d) Using the relation % = 0pq, show that

9 o .
—_— (aijmzxj) = (a; + ag;)x".

oxk

3. Write all the terms in each of the following sums expressed in summation con-
vention:
(a) aijkuk; k=1,2,...,N.
(b) §iutud; i, j=1,2,...,N.
(c) aijkuzujuk; i,5,k=1,2,...,N.

4. Evaluate each of the following (range of indices 1 to N):
(a) 6;-Aj and 5;A3k A
(b) 6§A;t‘and 5;5;%]1.
(c) aja?(S;- and & 6FsL.
(d) 5;5{5255’ and 6;;6%.

5. Show that the expression b y;y; becomes in terms of x variables as ¢;jz;x;, if
yi = cijzj and b ey = 67

6. Explain with examples why Kronecker deltas are called substitution operator in
tensor analysis.

7. Suppose that the following transformation connects the (%) and (z?) co-ordinate
system T' = e”' t7°; 72 = ¢*' ~*°_ Calculate the Jacobian matrix J,|.J| and J L.
Calculate also J.



70

10.

11.

12.

Tensor Algebra
. Show that for independent functions z#* = 7 (xl, 2. .. ,a:N) ,
oz c%:f _ 5
ox" O’ a

Take the partial derivative with respect to z*, to establish the formula,

0%zt Oa” o0*z" o7 O7°

0xk0z" 0T~ 9z°0T Ox" Ok

. Discuss the transformations in which the co-ordinates Z' are rectangular

Cartesian is F3:

7zt =2t cosxz; 72 =gt sinxz; 75 = x3,

where z!, 22, 23 are in cylindrical co-ordinate system.

(a) Discuss the transformations in which the co-ordinates ' are rectangular
Cartesian is E3:

1 2 1 1 1 1
V= —gl+ —=2? + —23 7 = —o2! — —=2? + —=2

Ve V6 V6 YPRRRVERVE

=3 1 1 1 3

Write this system of equations in tensor form.

Sl

(b) If f(z',22,...,2") is a homogeneous function of degree m, prove that
af
D ' =mf.

Show that the cylindrical co-ordinates of the points whose Cartesian co-ordinates
(i) (4,8,3) (i) (0,1,1) (iii) (0,-3,-3) (iv) (—=2,3,2)

are given by

(i) (4v5,tan"12,3) (i) (1,5,1) (i) (3,%,-3) (iv) (V13,tan"! (=3),2).
Also find the spherical polar co-ordinates in each case.

Show that the Cartesian co-ordinates of the points whose cylindrical co-ordinates
() (6,52) () (2v3,-%,3) (i) (8,5, —4) (i) (4.5.1)

are given by

(i) (3,3v2,2) (i) (2,-2,3) (iii) (—4,4v3,-4) (iv) (2v/3,2,1).

Hence, find the spherical polar co-ordinates in each case.
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13.

14.

15.

16.

17.

18.

19.

20.

21.

Show that the cylindrical co-ordinates of the points whose spherical co-ordinates
0 4.3.5) @ (6.5%) ) 65,5 ) (2FF)
are given by

() (2v2,7,2v2) (i) (3V3,-Z,3) (i) (4v/3,%,—4) (iv) (V3,-%,—1).

Show that the spherical co-ordinates of the points whose cylindrical co-ordinates
(i) (4,%,3) (i) (1,57,-2) (i) (7, %, -4) (iv) (3,-7F,2).
are given by

(i) (5,cos™? é,g) (ii) (\/5, cos~! ;—%,%) (iii) (\/@, cos~! \7—%,?)
(iv) <\/ﬁ, cos ! %, %’T)

Show that eijkeijk = 6, where e;;, and ek are e-systems of third order, if
i,7,k=1,2,3.
Expand for N =2

(i) eala?  (ii) eaZal  (ii)) e*Palal = e ]al.
Verify that
(i) 52]’5(10‘6 = a' — o',

(ii) 5%2&” = qk — ki 4 gIFt _ qJik 4 qkid _ gkii,

Prove that
P e %Y
ehape™ =69, = & O and 6795 = |64 &L 8.
0 56 k k k
Oy (55 0y
Suppose that two sets of functions u’ and @’ (i = 1,2,..., N) are connected by
the relations
o'
1 J _
= 57 1=1,2,...,N

k.
Prove that uf = 2% 7.
oz’

If the components of a contravariant vector in (:UZ) co-ordinate system are (8,4),
show that its components in (EZ) co-ordinate system are (24,52), where 7! = 32!
and 72 = 5! + 322.

If the components of a contravariant vector in (:r’) co-ordinate system are
(2,1,1), show that its components in (T) co-ordinate system are (5,5, 5), where,

7t =3z! — 322 + 223, 7% = 222 4 323 and 72 = 2! + 2% + 243,
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22. Show that if A and p are invariants and A* and B’ are components of a con-
travariant vectors, the vector defined in all co-ordinate systems by (AA? + pBY)
is a contravariant vector. Using it verify that 2A4° + 3B is also a contravariant
vector.

23. The components of a contravariant vector in the (z) co-ordinate system are 2
and 3. Find its components in the () co-ordinate system if

7' = 3(2")? and 7% = 5(2')? + 3(2?)2.
24. If the components of a contravariant tensor of type (2,0) in
Va: {(:Ul,x2) cata? e §R}
are A =1, A2 = 0= A" A?? =1, find A7 in
Vy: {(z",7%) : 7", 7% € R}

where functional relation between co-ordinate systems are 7' = (2!)2,72 =
(z?)2.
25. (a) Show that the component of tangent vector of a smooth curve in N dimen-
sional space are components of a contravariant vector.
(b) Prove that the gradient of an arbitrary differentiable function is a covariant
vector.
d*x d?

PToR EZQ/ is rectangular Cartesian co-ordinates,

(c) If a vector has components

show that they are

Pr (AN PO 2drdd
dt? dt ) ' dt2  rdtdt

is polar co-ordinates.
(d) Obtain the components of the gradient of a scalar field in terms of polar
co-ordinates in a two dimensional space.

26. (a) Show that if the transformation T : y® = aé:cj is orthogonal, then the
distinction between the covariant and contravariant laws disappears.
(b) Prove that there is no distinction between contravariant and covariant vec-
tors when we restrict ourselves to rectangular Cartesian transformation of
co-ordinates.

27. Prove that the transformation of covariant vectors form a group.

28. Prove that the transformation of the tensors of the type (1,1) form a group.
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2 .1
xt x| .
— 2) in rectangular Cartesian co-
oz
ordinates !, 22; prove that its components in polar co-ordinates (z',z?) are

29. If a covariant vector has components (

252 2

T _1C08° T
2 2

2

L . _1sin
sin T2 -+ cos a:2; —z! — —
COST sinx

()"

. 2 . .
30. If a covariant vector has components (xl) , =3~ in rectangular Cartesian co-
ordinates z!, 2%; prove that its components in polar co-ordinates (z!,7?) are

_1\2 _ _1\3 . _ _ :z,cos‘lf2
2(331) cos2x2; —(xl) 81nx20052x2+(a:1) W

31. If X,Y, Z are the components of a covariant vector in rectangular Cartesian co-
ordinates x,y, z in E3 show that the components of the vector in spherical polar
co-ordinates are

X cosT2sinZ + Y sinZ2sin 7> + Z cos T°;
YZ! sinZ2 cos T — ZZ' sin 53;
—X7'sinZ?sinz® + YT cos T sin7°.

32. IF XY, Z are the components of a contravariant vector in rectangular Cartesian
co-ordinates z,y, z in E3 show that the components of the vector in spherical
polar co-ordinates are

X sinZ? cos T + Y sinZ2sinz° + Z cos T°;
. . 1
—X7'cosT?cos T — YT sinZ2 sin 7> — ——7;
(=)
sin 72 cos T2
Z! sinz?3 Z! sinz3

33. Prove that if Aé.k,l is a tensor such that in the (z°) co-ordinate system, Aé-kl
= 3Afj > then Z;‘kl = 3TA§jk in all co-ordinate systems.

34. (a) A covariant tensor has components zy, 2y—22, vz in rectangular co-ordinates.
Determine its components in spherical polar co-ordinates.
(b) In orthogonal Cartesian co-ordinate system a contravariant vector is given
by (1,1,1). Find its components in cylindrical co-ordinate system.

35. (a) Prove that €;;, and €% are covariant and contravariant tensors of order
three, respectively.
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36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Tensor Algebra

b) Prove that §;; and 6% have different components in different co-ordinate
J
systems.

(a) Show that an inner product of tensors Aé-k and B!™ is a tensor of type (2,
2). How many inner products are possible in this case?
(b) If C’;.k is an arbitrary mixed tensor and B(i,j, k:)C']’k an invariant, prove

that B(i,j, k) is a tensor of type szk

0
Prove that a—; is not a tensor though A; is a covariant vector. Hence show that
2

0A; 0A;

- — ——= ig a covariant tensor of type (0, 2).
Jai ~ ows B ype (0, 2)
If the relation biv; = 0 holds for any arbitrary covariant vector v;, show that
b = 0.
If the relation a® v;v; = 0 holds for any arbitrary covariant vector v;, show that
a4 a’' = 0.
If the relation aijvivj = bijvivj holds for any arbitrary values of v?, show that
ai; + aj; = bij +bj;. If a;; and b;; are symmetric tensors, then further show that

Qi = bij.

Hints: Take c¢;; = a;j — b;;, then the given relation becomes cijvivj =0.

If the equality aévi = Bv; holds for every covariant vector v;, where 3 is a scalar,
show that af = 6(5;.

Hints: Take b;'- = a} — 65;-, then the relation aé@i = 55;-1}1' becomes b}vi = 0.

If the equality az-vj = Bv* holds for every contravariant vector v, where £ is a
scalar, show that aé- = 55;.

(a) If A;k is a mixed tensor, then prove that C; = Azz is a covariant vector.

(b) Show that if A(i,j, k)B'C? Dy, is a scalar for arbitrary vectors B*,C7?, Dy,
then A(i, j, k) is a tensor.

(c) Assume that X (i, j)B? = C;, where B7 is an arbitrary contravariant vector
and Cj, is a covariant vector. Show that X(i,7) is a tensor. What is its
type?

If the relation ahijk)\h/ﬁ)\j wF =0, where X\ and p? are components of two arbi-
trary contravariant vectors, then

Qhijk T Qhkji + jink + ajrn; = 0.

If the relation aijk)\i)\j A =0 holds for any arbitrary contravariant vector A?,
show that

Qijk + Qjki + Qkij + ik + Qkjs + Qi = 0.

If A;; is a symmetric tensor and B;; = Aj;, show that B;; is a symmetric tensor.
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47.

48.

49.

50.

o1.

52.

53.

o4.

55.

56.

o7.

If a¥u;u; is an invariant for an arbitrary covariant vectors u;, show that a* + a’*
is a contravariant tensor of second order.

If a;; are components of a covariant tensor of second order and A, i/ are com-
ponents of two contravariant vectors, show that a;; A"y’ is an invariant.

y . var w . . variant v ' i
If a;ju'v’ is an invariant, where u* is an arbitrary contravariant vector. If a;; is
a symmetric tensor and u' = A\ + p', show that a;;\*p’ is an invariant.

of
oz

(a) If f is an invariant scalar function, determine whether
of a covariant vector.

are components

2
(b) Show that the second derivatives of a scalar field f, i.e. ——=—, are not

OxtOxJ

the components of a second order tensor.

Prove that contraction of a mixed tensor A; is a scalar invariant.

Prove that any contraction of a tensor A}k results in a covariant vector.

)
)

(c) Show that if Az are tensor components, AZ is an invariant.
)

Prove that the contraction of a tensor of order (2, 3) is a tensor of order

(1, 2).

(a) Verify that the outer product of a contravariant vector and a covariant
vector is a mixed tensor of order two.

(b) If A* and B’ are two contravariant vectors, then the N? quantities A'B7
are the components of a contravariant tensor of order two.

(c) If A;; is a covariant tensor and B' is a contravariant vector, prove that

AijBi is a covariant vector.

Prove that the inner product of covariant and contravariant vectors is a scalar
invariant.

If v* is an arbitrary contravariant vector and a;ij(i,j =1,2,...,N) are N 2 func-
tions such that aijvj are components of a covariant vector, what can be said
about a;j, justify your answer.

If (ai;j) be a matrix defined in a given co-ordinate system along with correspond-
ing matrices in other co-ordinates such that Bj = a;;¢" is a covariant vector for
any arbitrary contravariant vector ¢¢, show that a;; is a covariant tensor.

If a;; is symmetric tensor and b; is a vector and

aijbk + (ijbi + akibj =0,

then prove that a;; = 0 or by, = 0.

If a;; is a component of a covariant symmetric tensor and b; is a non-zero co-

variant vector such that
aijbr + aib; + arib; =0,

then prove that a;; = 0.



76

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Tensor Algebra

Suppose that £ components A;k of a mixed tensor of order three are symmetric

in the subscripts j and k. Show that T components sz of the same mixed tensor
of order three are also symmetric in the subscripts j and k.

If the relation aijk)\i)\j M = 0 holds for any arbitrary contravariant vector A’
where a;j;, is a symmetric tensor in ¢ and j, show that

Qijk + Qi + Qg = 0.

(a) If a;j is a component of a symmetric covariant tensor and u’,v’ are two
contravariant vectors, show that al-juivj is an invariant.
(b) If A(i,j)dx'dz? is an invariant for an arbitrary vector dz’ and A(i,j) is
symmetric, show that A(7,j) is a tensor A;;.
(c) It is given that A(i, 7, k)B’* = ¢, where B/* is an arbitrary symmetric
tensor and ¢! is an arbitrary contravariant vector. Show that A(i, j, k) +
A(i, k,7) is a tensor. Hence deduce that, if A(7, 7, k) is symmetric in j and
k, then A(i,j,k) is a tensor.
If a;; is a skew-symmetric covariant tensor of rank 2 and A7 is an arbitrary
contravariant vector, prove that al-inAj =0.

If A;j1, is completely symmetric and the indices run from 1 to N, show that the

number of distinct components of A;;;, is w.

If a;; and b;; are components of two covariant tensors in an N dimensional space,
where b;; = bj; and |b;;| # 0, satisfying

al-jbkj — aijbjk + akjbij — akjbij = 0,

prove that a;; = aj; for all 7 and j.
The square of the element of arc ds appears in the form: ds? = gijda:ida:j . Let T
be the admissible transformation of co-ordinates ' = z° (yl,yQ, oyl ), then
ds®> = hijdyidyj. Prove that |g;;| is a relative scalar of weight 2.
If a are the components of a contravariant tensor and b;; are the components of
a symmetric tensor such that b = |b;;| # 0, show that Vba' are the components
of a tensor density.
If a¥ is a contravariant tensor such that ‘aij ‘ # 0, show that }aij ‘ is a relative
invariant of weight —2.
If a;; is a symmetric tensor such that ‘a” ! # 0 and b¥ is the cofactor of a;; in
‘aij ’, prove that b¥ is a relative tensor of weight 2.

(a) Verify the following formulas for the permutation symbols e;; and e;j; (for

distinct values of the indices only):

j—1. (G =)k —i)(k—Jj)

€ij = T €ijk — . . A .
=il Y i —illk —dllk —
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(b) Prove the general formula,

(ig —i1)(ig — @1) - -+ (in, — 1) (43 — d2) - -+ (i — 12) - -+ (% — In—1)
lig — dy||iz —i1| - |in — d1||iz —d2| - |in —d2| -+ |in — in—1|

Cirig-in =

69. Prove that

(a) EiksEmps = 51m5k:p - 57Lp5k:m-
(b) EiksEmks = 20im.- .
(c) Apply contraction on d; and find its value.

70. Prove that e;;, and 7k are relative tensors of weight —1 and 1, respectively.
Also show that they are associated.

71. If a; is any vector, show that €;;za;a; = 0.
72. Show that the determinant of a square matrix A = [a;j]nxn can be expressed
using the fully antisymmetric tensor of rank N as

det A = gjjk..p 150203k - . . ANp;
where {i,7,k,...,p} is set of N indices. Further show that

€ijk..p AriQsjQtk - . . Azp = (det A)£7"St,...,2’7

where {r,s,t,...,z} is another set of N indices.
73. Show that ,
. 55 St
t
EijkElS = J % .
oF Ok

Hence deduce that

(1) Eijk&"ijt = 2(5};, (11) Sijké‘ijk = 3.



CHAPTER 2

Riemannian Metric

In Chapter 1 we have considered some algebraic operations on tensors in Vy which
constitute the so-called tensor algebra in Viy. Each of these operations on a tensor or
tensors produces again a tensor.

The notion of distance (or metric) is fundamental in applied mathematics. Fre-
quently, the distance concept most useful in a particular application is non-Euclidean
(under which the Pythagorean relation for geodesic right triangles is not valid). Tensor
calculus provides a natural tool for the investigation of general formulas of distance; it
studies not only non-Euclidean metrices but also the forms assumed by the Euclidean
metric in particular co-ordinate system.

A space which admits an object called an affine transformation possesses sufficient
structure to permit the operation of tensor calculus within it. It is known that a
Riemannian space is necessarily endowed with an affine connection. Therefore, for
the development of tensor calculus we can either consider a V endowed with an
affine connection or can consider a Riemannian space. In this chapter we consider
the alternative for the development of tensor calculus. This calculus has an important
application in physics, specially in the theory of relativity.

Calculus texts often contain derivations of arc-length formulas for polar co-ordinates
that apparently apply only to that one co-ordinate system. Here we develop a coincise
method for obtaining the arc length formula for any admissible co-ordinate system.

2.1 The Metric Tensor

Let us consider a space of N dimensions. Let us consider a displacement vector dx’;
i=1,2,3,...,N determined by a pair of neighbouring points =’ and z* + dz*. The
distance ds between the two adjacent points whose co-ordinates in any system are x’
(i=1,2,3,...,N) and 2 + da’ is given by the quadratic formula

ds? = gijdxidxj; ,j=1,2,3,....N (2.1)

where the coefficients g;; are arbitrary functions of co-ordinates z' such that
g = |gij| # 0. This quadratic differential form gijdxida:j , we expresses the distance

78



2.1 The Metric Tensor 79

between two neighbouring points, is called a metric or a Riemannian metric or line
element. The coefficient g;; in Eq. (2.1) is called metric tensor or fundamental tensor
of the Riemannian metric.

(i) The quadratic form g;; dx'dx? is positive definite, if it is positive for all the values
of the differentials dz?, not all equal to zero.

(ii) Since the distance between the two continuous points is independent of the co-
ordinate system, the line element ds is an invariant. ds is called the element of
arc in Vy.

(iii) The tensor is called the metric tensor, because, all essential metric properties
of Fuclidean space are completely determined by this tensor. We have intro-
duced a metric since we are now able to define the measure ds of an elementary
displacement.

(iv) If dsisreal, it is called an elementary distance. In relativity, ds may be imaginary
and is called elementary interval.

(v) The signature of ds? is the difference between the number of positive squares
and the number of negative squares. Signature is invariant in a transformation
of variables (follows from “the theorem of inertia” of vector space).

(vi) Every three-dimensional Euclidean space E3 referred to an orthogonal Cartesian
system can be written as

d82 = (5Z'jd.%'idxj; i,j = 1, 2,3 and 6z’j = gij,

where 5; is Kronecker delta defined in Eq. (1.1). Somtimes, ds®> = eg;;dz'dx?
where the numerical factor e, called the indicator, equal to +1 or —1 so that ds?
is always non-negative. Thus if all the coefficients g;; are independent of z', the
space becomes Euclidean space.
An N dimensional space characterised by this metric is called Riemannian space of N
dimensions and is denoted by V. Geometry based on this metric is called Riemannian
geometry of N dimensions. Now, we are going to establish the nature of g;;.

Theorem 2.1.1 In a Riemannian space, the fundamental tensor g;; is a covariant
symmetrical tensor of order two.

Proof: 'The metric is given by Eq. (2.1). Let us consider a covariant transformation
from z' to '(i = 1,2,3,..., N) given by
T =7 (xl,xz,...,a:N) (2.2)
so that the metric ds? = gijdxidxj transforms to ds? = gijdﬁdﬁ.
Step 1: Here, we have to show that dz’ is a contravariant vector. Now,
ozt

T =T (l’l,l’Q,...,l‘N) or dT' = ——da?.
oxP
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It is the law of transformation of contravariant vector. So, dz’ is a contravariant vector.

Step 2: To show that g;; is a covariant tensor of rank 2. Since dz’ and dz/ are
contravariant vectors, we get, by tensor law of transformation

. o1 G i
=i P J— a
dz" = 8xpd$ and dz’ = (%qux . (2.3)

Since ds? is invariant under co-ordinate transformation, we have

gijda’dz’ = g;;dz'dz’

or
o = O
gijda'dy’ = @-j@%dxpdajq; by Eq. (2.3)
or o
ox' 07!
Pipd — 5. 20 G ap g
GpgdaPdz? =g, 9P D dzPdx
(Changing the dummy indices 7, j by p, q)
or S
oz' 07’

gpq — ?l]@% d:cpdxq = 0

Since dzP and dx? are arbitrary vectors, we get

_ ozt oY _ ozt o)
990 = 91 g a0 = 9 = 9 oy (24)

This is a second rank covariant tensor law of transformation. Therefore, g;; is covariant
tensor of rank 2.

Step 3: Finally, we have to show that g;; is symmetric. Now, g;; can be written as

1 1

9is = 5 (9is + 95i) + 5 (935 = 950) = Aig + Bigi. sy, (2.5)
where
1 1
Ay = 3 (gij + gji) and By; = 5 (955 — 954)-

Since linear combination of two tensors is also a tensor of same rank, so A;; is a sym-
metric covariant tensor and B;; is anti-symmetric covariant tensor of rank 2. Therefore,

gijdxidxj = Aijda:ida?j + Bijdwidxj
or

(91 — Aij) da'da’ = Bijda'da’. (2:6)



2.1 The Metric Tensor 81

Interchanging the dummy indices ¢ and j in Bijda;ida:j, we get
Bijdxidxj = Bjidxjdxi

= —Bijdl'j dmi; Since B;; is anti-symmetric

= —Bijd:vidacj
or . . . .

2B;;dx"'dx’ =0 ie. Bijdx'dx’ = 0.
Therefore, from Eq. (2.6) we get
(gij — Aij) da'da? = 0.
Since dz’ and da? are arbitrary, we conclude that
gij — Aij = 0= gi5 = Ayj

= gi; is symmetric as A;; is so.

Therefore, the coefficient g;; of the Riemannian metric form a symmetric tensor of
type (0,2). The tensor g;; is called fundamental covariant tensor of V. Since g;; are
symmetric, the number of independent components of the metric tensor g;; cannot
exceed SN (N +1).

In an N-dimensional space, a co-ordinate system in terms of which g;; = 0 for
1 # j is called an orthogonal co-ordinate system. Further, a system in which ¢; = 1
for 1 < i < N (no summation over ¢) and g;; = 0 for i # j is called a Cartesian
co-ordinate system.

Theorem 2.1.2 The line element gijd:cidacj 18 an invariant.

Proof: Let us consider a co-ordinate transformation from z' to Z* given by
=2 (z4,7%,...,7Y); i=1,2,...,N.

Since g;; is a covariant tensor of rank 2, we have

_ O0xPOxt oz 0z7
9ii = I i bz~ Iva = 9 o -
Interchanging the dummy indices 7, 7 by p, q
- oxt 9xd
Tra = 94 57
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or
_ oxt 0z7
Tpa ~ 9id gzp g | 47 AT =0
or o
o ox' 0x? _
gpqdfﬁpdfq = gljﬁﬁdjpdﬁq
or , A
7 AP d74 Oz’ =P a 74 5 D J7:4 (]
Gpgdr?dz? = gijﬁdx %dﬂc = Jpgdz’dx? = g;jdx"da’.

From this, we conclude that, gijdxidasj is invariant.

EXAMPLE 2.1.1 Prove that invariance of the volume element dV where

V_//---/\/gdxldﬁ---dx”

of a finite region R of Vx bounded by a closed Vi _1.

Solution: Let us consider a co-ordinate transformation from z* to 7'(i = 1,2,...,n).
Since g;; is a covariant tensor of rank 2, we have

_ oxt Oxd
Tra = G o

Taking determinant of both sides,

oxd

ozP

g—gJ2:>\/§—J; where J = a—f
g 0T

Since the transformation from z* to T* exists, we have

}gpq‘ = |9ij’

or

dr'de® - da" = ‘896 A7 dZ2 - - A"
xr
Hence
g _ detdatda”
g dzldz?---dz"
or

Vgdztdz? - - dz" = Jgdatdx? - - dam.

This shows that the volume element dV = \/gdacldmz ---dz™ is an invariant.
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2.1.1 Fundamental Contravariant Tensor
Let ¢g* be the components of the reciprocal or the conjugate tensor of g;;, given by

cofactor of g;; 1
= : p 95 29 where g = |gij| #0, (2.7)

g"

then the tensor g% is called the contravariant fundamental tensor of V. gij is called
first fundamental tensor and ¢ is the second fundamental tensor.

Property 2.1.1 The properties of reciprocal tensor g% are (i) g;;9% = 6F, (i) g g;; =
N and (iii) g% is also a symmetric contravariant tensor of rank 2.

Proof: (i) Let the cofactor of g;; in g be denoted by (i, 7). From properties of deter-
minants, we have

9i5€(4,7) = g; g = |gijl

or

gijﬁ(Z]) =1= gijgij = 1; using Eq. (2.7),
where the summation is taken over 7 and j. Now,

. k,j
9i;€(k, j) :Ojgijg(g ) =0; asg#0

or
9ij9" =0 if k+#4, using Eq. (2.7).

Therefore, we conclude that
=0; ifi#k

and hence gijgkj = 55.
(ii) Using the above property, we get

997 =0t =01 + 05+ + 05+ -+ 0N
=01+ 05+ + 0N
=Nasd =1, ifi=jand 0, if i # j.
(iii) Using property (i), we have

oFl=1

9i9™ = & = |9l ’gkj’ =

= ‘gkj‘ #0.
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Let us define a tensor Ti; as

cofactor of ¢¥ in ‘ g ’

lg%7|

Tij =
then
rijgik = 5}“.
Multiplying both sides by g, we get
rijg" g = 5fgzk = 9ij
= 1ij0] = gij = 11 = 915
= Tij = Gij-

Since 7;; is a reciprocal tensor of g;;, it follows that g;; is the reciprocal tensor of
g% . Since g;j is symmetric tensor of rank 2, so, g% is also a symmetric tensor of rank
2. This tensor g% is called the conjugate metric tensor or fundamental contravariant
tensor of the type (2,0).

EXAMPLE 2.1.2 Find the expression of metric, the matriz and component of first
and second fundamental tensors in spherical co-ordinates.

Solution: Let E3 be covered by orthogonal Cartesian co-ordinates x* and consider a
transformation
2! = ytsiny? cosy®, 22 = ylsiny?siny?, 2® = y! cosy?

where the 3 are spherical polar co-ordinates. The metric in Euclidean space E3, re-
ferred to Cartesian co-ordinates is given by

ds® = (Clﬂcl)2 + (d:(:2)2 + (dw3)2.
Comparing this, with Eq. (2.1), we see that
g11 = g22 = g3z = 1 and g;; = 0; for i # j.

The fundamental symmetric tensor g;; in spherical co-ordinates are given by

L L R L W A
gll—ayl aylgzg— AL g oy g22 Ayt 933
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= (siny2 cosy3)2 x 14 (siny2 siny?’)2 x 14 (cosy2)2 x 1

= sin? y2 (cos2 y3 + sin? y3) + cos? y2 =1.

S i N A R L oA
922 = 32 92 9ij = g2 g11 D92 922 Dy 933
= (y1 cos y? cos y3)2 x 14 (yl cos 2 siny3)2 x 14 (—yl siny2)2 x 1
2 . 2 .
= (yl) cos? y2 (cos2 y3 + sin? y3) + (yl) sin? y2

= (y1)2 [(:os2 y? + sin? yz} = (y1)2 .

9t o o1\ 922\ 93\
= oo~ (o) 1+ (o) o2+ (o55) o0
= (—yl sin 3/ sinyg’)2 x 14 (yl sin 3/ cosy3)2 x1+0x1
= (yl)2 sin? 2 [sin2 y> + cos? yz] = (y1)2 sin? 2.
_ o0z’ O’ ozt Ox! 0x? 0z 0x3 03
912 = TylaT/Qgij = @@gll + 87y187y2922 =+ 87;1373/2933
= (sin y2 cos y3) (y1 cos y2 cos y3) + (sin y2 sin y3) (y1 cos y2 sin y3)
+ (cos y2) (—yl sin y2)
= y! siny? cosy? (cos2 y® + sin? y3) — ytsiny? cosy?
= y1 sin y2 cos y2 — yl sin y2 cos y2 =0.

_ ox't Ol o oxt ozt n Ox? 02 N ox3 Ox?
913 = Ayl ayggU = gt 8y3911 Dyl 8y3922 Dyt 9y 933

= (sin y? cos yg) (—y1 siny/? sin y3) + (sin vy sin y3) (y1 sin 42 cos y3)
+ (Cos y2) -0 = —y'sin? y?siny® cos y® + y' sin® y? siny® cosy® = 0 = g31-

_owod _odtor oot otort
923 = ayQ 8y3.gl] - ayQ ay3 g11 ayQ 8:1/3 g22 ay2 ayg g33

= (y1 cos y2 cos y3) (—yl sin y2 sin y3) + (yl cos y2 sin y3) (yl sin y2 cos yg)
+ (—yl sin y2) -0

= —(y1)2 sin y2 cos y2 sin y3 cos y3 + (y1)2 sin y2 cos y2 sin y3 cos y3 =0 = gao.

85
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Thus, the symmetric metric tensor g;; in spherical polar co-ordinates can be written
in matrix form as

g1 912 913 1 0 0
_ T 2
[Gij] = |91 Too Fo3| = |0 (¥') S
931 32 033 U (y!)" siny?

The expression for the metric in spherical polar co-ordinates is given by
2 _ 2 _ 2
(dy")” + Goa (dy®)” + 33 (dy°)

=911
= (dy")" + (v")" (d®)* + ()" (sing?)” ()"

Let g = \gij , then it is given by
1 0 0
g=10 (y1)2 0 = (y1)4sin2 y? £ 0.

0 O (y1)2 sin? 2

Therefore, the conjugate or reciprocal symmetric tensor g are given by

il = cofactor of g1; ing 1 (y1)2 0 _
g (y)*siny2 | 0 (y1)2 sin? ¢/2 '

_99  cofactor of gyy in g 1 1 0 1

= — pu— 2 . =

g (y})'sin>y? [0 (y!) siny? | (y1)”

_a3  cofactor of g33 in g 1 1 0 1

g = — = 102,20 12|~ 1)2 ¢in2 4,2
9 (y')" sin”y ()71 (y")*sin’y

Similarly, g = 0, for i # j. Hence, the reciprocal tensor g/ can be represented in
matrix form as

11 12 13 1 0 0
g g g 1
i _ _ _ 0 0
[gu] _ 921 922 923 _ (y1)2
§31 §32 §33 0 0 21. .
(y')” sin® g2

EXAMPLE 2.1.3 Find the expression of metric and component of first and second
fundamental tensor in cylindrical co-ordinates.
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Solution: Let z° be the orthogonal Cartesian co-ordinates and g* be the cylindrical

co-ordinates, then the transformation formula is

3 3

! :ylsiny2,$ =y

zt =yl cosy?, 2?

The metric in Cartesian co-ordinates is given by
ds® = (dz")? + (da?)® + (da®)”
Comparing this, with Eq. (2.1), we see that

911 = g22 = g33 = 1 and g;; = 0; for ¢ # j.

Let g;; and g;; be the symmetric metric tensors in Cartesian co-ordinates and cylin-

drical co-ordinates, respectively. On transformation

ox' Oxd

?pq = gljaiypaiyq’ 7’7] = 172737

where g;; is covariant tensor of rank 2. Thus,

U K S £V N oL
911 = Gyl 8y1‘ql] = 8y1 gi1 8y1 g22 Y

= (cosy2)2 x 14 (siny2)2 Xx14+0x1=1.

B L L N A N A
go2 = ayg 83/2 9ij = ayg g11 ayz g22 y2

= (-y' Siny2)2 x 1+ (y! cosy2)2 x1+0x1=(y")

_ ozt dzd ozt 2 o2 2 o3 2
9= 539,59 ~\a) T \55) 27\ a5

=0x1+0x1+1x1=1.
ox' Oxd oxt ozt Ox? 02 ox3 Ox?

- _ - 7" 4= 7 + —— 4+ —
912 Ayt ayzgz] Dyl 8y2911 By 3y2922 Dyt 0y 933

= cosy? - (—y1 sinyQ)2 -1+ siny?- (y1 cosy2)2 14+0-0:-1=0=099.

_ ox't Oxd o oxt ozt n Ox? 02 N ox3 O3
913 = ayl ayggw = gt 8y3gll Dyl 8y3922 Dyt 9y 933
—cosy? x0x1+siny? x0x14+0x1x1=0=7s.
Ozt Oxd ozt 0zt 0xz? 0z? 0x3 0z3

923 92 0 9ij Dy Oy g11 + 912 018 922 + 3y° O 933 932
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Thus, the metric tensors in cylindrical co-ordinates can be written in matrix form as

g 912 913 10 0
_ _ 2
[Gi5] = |G21 T2 Gas| =0 (y')" ©
931 932 J33 0 0

The expression for the metric in cylindrical co-ordinates is given by
N 2 _ 2 _ 2
ds® = g;;dy'dy’ = gvy (dy')” + 9oz (dy®)” + 733 (dy°)

= (dy")" + (v")" (dy?)” + (dv®)”.

Let g = \gij , then it is given by
1 0 0
7=10 ()" 0|=(") #0
0 0 1

2

44 cofactor of gy, in g 1) o )
g = — = =

g W 0 1
_99  cofactor of gyy in g 1 |1 0 ‘ 1
g = — = =

g W10 11 ()
_g3  cofactor of g33 in g 1 |1 0

g 10 (v)

Similarly, g = 0, for i # j. Hence, the reciprocal tensor g”/ can be represented in
matrix form as

§11 §12 §13 1 (1) 0
_ _ _ )
931 932 g33 0 0 )

EXAMPLE 2.1.4 If the metric is given by
ds® = 5 (dz")? + 3 (d2?)” + 4 (da®)” — 6da’da® + 4dada®

evaluate g and g
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Solution: Comparing the given metric with (2.1), we have
g1 =05,92=3 933=4 g12=921=-3, g23=g¢g32=2 and gi3=g31 =0.

If g = |gij|, then it is given by

gnzcofactorofgu ingzl 3 2’:2

7] 412 4
gQZZCofactor of going 1|5 0|:5

g 410 4
33 cofactorof ggging 1| 5 —3| 3
9= g T 1|3 3’_2
912:C0fact01” (;fglg ing:—éll‘—g 2'232921
13 cofactorof g13ing  1|-3 3| 3 3
9= 7 _4‘ 0 2‘__2_9
93 cofactorof go3ing 115 3 5 32
g = 3 1o 2‘__2_9

Therefore, the reciprocal tensor g* can be represented in the matrix form as

gll g2 g3 2 3 _%
[gm} = | g2 g2 ¢B| = 3 5 _%
Bt g3 ¢33 _% _% %

EXAMPLE 2.1.5 Let gy, and g™ be the fundamental metric tensors and the re-
ciprocal tensors respectively. Show that

mn

and
dlogg

oxs

9

mn

oxs

B Jmn

Imn + Imn %

B 0
= ~gmng 29

mnzo

g

. where g = |gmn|-
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Solution: Let g be the components of the reciprocal or the conjugate tensor of Gij
given by

cofactor of g;; in g
g

i = ; where, g = |gi;] # 0,

then g% are the contravariant fundamental tensor of Viy. From the property of recip-
rocal tensor g%, as gmng™" = N we get, after differentiation with respect to x,

mn

0
g 83:3 Imn + gmn%g

mn:O

Let the cofactor of g, in g be denoted by £(m,n). From properties of determi-
nants, we have

Jg
O0Ymn

gmnf(m,n)zgj zf(m,n);g: |gmn|
Also, using the relation g,,,&(m,n) = g, we get

9" gmn&(m,n) = g"°g = £(m,s) = gg™".

Differentiating with respect to x* we get

99 _ 99 Ogmn _ £(m,n) Ogmn
0xs  Ogmn O0x° O
or 3 3
g g
ops — 99 a;”; as §(m, s) = gg™"
or
mnO9mn _ 1 09 _ Ologg
oz’ g 0x* oz’
o ) 9 )
0gyg . _
oxs = _gmn%gmny as gmn%an + gmn%gmn =0
Thus, we get

Ox g %gmn = _gmn%g ; where g = |gmn|.

EXAMPLE 2.1.6 Prove that in a Vy,
(gnigi — gnkgis) 9™ = (N = 1) g,

where g;; and g% have their usual meanings.
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Solution: Here, g;; is the fundamental metric tensor and g% is the reciprocal tensor
of g;;. Using the properties we get

hj hj hj
(9njgix — 9nk9ij) 97 = 9n; 9" gix — 9nkg" 9ij

= Ngir — 6,.9ij = Ngir — gi = (N — 1)gip-
Hence, the result follows.

EXAMPLE 2.1.7 For a V5 in which g11 = E, g12 = F, goo = G, prove that

G F E
g=EG-F? g'l=—, g% =—— ¢g%="—.
g g g

Solution: Since g;; is a symmetric covariant tensor of rank 2, so, gi2 = g21 = F.
NOW, in Vg,

g gi2 E
9= lgij|l = = =EG—-F*+#0.
921 22 F G
The reciprocal tensor g% are given by
11 _ cofactorof g1iing G G
N g g EG-F?
9o _ cofactor of ggoing E E
9= g g FEG-F?
g2 = cofactor of g2 in g _ F _ F _ a1
g g EG — F?

Result 2.1.1 Assume that a matrix field g = (g;;) exists satisfying in all (admissible)
co-ordinate systems (z') and in some (open) region of space.

(i) All second order partial derivatives of the g;; exist and are continuous.
(ii) gi; is symmetric, i.e. gi; = gji-
(iii) g = (g4j) is nonsingular, i.e. |g;;| # 0.
(iv) The differential form (2.1) and hence, the distance concept generated by g;; is
invariant with respect to change of co-ordinates.

Sometimes, particularly in geometric applications of tensors, a property stronger (ii7)
above is assumed: g = (g;;) is positive definite.

Under this property, |gi;| and g11, g22,...,gnn are all positive. Furthermore, the
inverse matrix field g~! is also positive definite.
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2.1.2 Length of a Curve

Consider a continuous curve in a Riemannian V. Curve is continuous implies that the
co-ordinates of any current point on it are expressible as functions of some parameter
t (say). Let s denote arc length of the curve measured from a fixed point Py on the
curve. The length ds of the arc between the points, whose co-ordinates are ' and dx?,
given by Eq. (2.1).

Let L denote arc length of the curve between the points P, and P, on the curve
which corresponds to the two values 1 and to of the parameter ¢. Then

Py t2 dzt da? 1/2
L= ds = i —— dt. 2.9
/P1 ’ /t1 (gj dt dt ) ( )
If dxt da?

9ii‘gr ‘g = 0 along the curve, then the points P and P, are zero distance, despite
of the fact that they are not coincident. Such a curve is called minimal or null curve.
If ds? is positive definite, null curves will not exist.

A curve is null if it or any of its subarcs has zero length. Here, a subarc is understood
to be nontrivial; i.e. it consists of more than one point and corresponds to an interval
c <t <d, where ¢ < d. A curve is null at a point if for some value of the parameter
t the tangent vector is a null vector; i.e. gij%% = 0. The set of ¢ values at which
the curve is null is known as the null set of the curve. In the space-time continuum of

relativity certain lines of length zero are identified as the world-lines of light.
Theorem 2.1.3 Formula (2.9) for arc length does not depend on the particular pa-

rameterisation of the curve.

Proof: Given a curve C : x° = x%(t); a < t < b, suppose that C : 2* = z%(f); a
is a different parameterisation, where t = ¢(t), with ¢'(¢) > 0 and @ = ¢(a), b
Then by the chain rule and substitution rule for integrals,

b i 7.9\ 1/2 b i i\ 1/2
dx* dx? dx* dx?

L= i dt = i '(t)dt
/a<gﬂdt dt) L(g’dt dt) ot
‘/b N L
~ e Y@t a v

This shows that, formula (2.9) for arc length does not depend on the particular pa-
rameterisation of the curve.

I

EXAMPLE 2.1.8 A curve in spherical co-ordinates = is given by
1
' =t, 2% =sin! (t)’ 3 = 2¢/t2 — 1.

Find the length of arc for 1 <t < 2.
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Solution: In the spherical co-ordinate, the metric is given by

ds® = (da')? 4 (21)?(d2?)? + (2! sin 2?)?(da?)?

dt \? 172 2t 2
= (dt)* +t* <—> + {t] <dt)
(dt) tV12 —1 t] \tv/e2—1

52 t
- dt)? = ds = /5 dt.
gl = ds = Vo e

Thus, the required length of the arc, 1 <t < 2 is given by

/ ds-f/ \/7 = V15 units.

EXAMPLE 2.1.9 Find the length of arc for 1 <t <2 for the curve ' =1,2% =t,
if the metric is that of the hyperbolic plane (x >0): g11 = g22 = @ %)2; g12 = g21 = 0.

Solution: For the given hyperbolic plane the metric is given by
1
(22)?

Thus, the required length of the arc, 1 <t < 2 is given by

ds® =

[(dx1)2 + (dx2)2] = t%(dt)Q.

21
L= / —dt = log 2 units.
Lt
EXAMPLE 2.1.10 Under the metric ds* = (dz')? + (dz?)? + (d2®)? — (dz*)?, con-
sider a curve given by
z' = 3cost, 2% = 3sint, 2 = 4t and 2* = 5t.

Find the length of arc for 0 <t < 1.
Solution: For the given metric, we have

ds® = (da')? + (dz?)? + (da®)? — (da™)?
= [9 sin?t +9cos®t + 16 — 25] (dt)*> = 0.

Thus, the required length of the arc, 0 < ¢ <1 is given by

1
L:/ 0ds = 0.
0

Thus, according to the definition the given curve is a null curve.
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2.2 Associated Tensors

One of the fundamental concepts of tensor calculus resides in the ‘raising’ or ‘lowering’
of indices in tensors.

In EV the covariance or contravariance of a tensor was a quality which it was
impossible to change. With the introduction of a metric in E¥V this barrier falls in V.
We have at our disposal the fundamental tensors g;; and g% which allow us a number
of combinations.

Let A and B; be a contravariant and covariant vector, respectively, in (z?) system.
Define two vectors A; and B’ as follows:

Ai = gijAj and BZ = giij. (210)

Then the associate to a contravariant vector A7 is formed by lowering its index by
the fundamental metric tensor g;; and the associate to a given covariant vector B; is
formed by raising its index by the conjugate metric tensor. Now,

gijAj = gijgjkAk = 5};14]“ = A% (2.11)

The procedure of raising and lowering indices is clearly reversible. From Eq. (2.11)
it follows that the associate to A; is A’. Consequently, if A; is the associate to A’
then A’ is the associate to A;. Thus, A; and A’ are mutually associated and so they
are assoctate vectors.

Next, we consider tensors of order greater than one. Any index of such a tensor
can be lowered or raised by the fundamental tensors as in the case of vectors. Consider
a tensor A;; and form the following inner products:

ALy = g™ Ay Al = g% Ay and AV = gikgil Ay, (2.12)

The tensor A’ = A{. and AY are called associates to the tensor A;;. It is to be noted
that any two of the four tensors A;;, AL A’

(YRR T 3]
lowering and raising indices. For example,

A% may be formed from each other by

Ay =g Ay = g% gmi A as gudl, = Aq

and so on. In general, gikAjk = A;. and gikAkj = Aij are different. But they are
identical, whenever A;; = A;; and it is denoted by A;
Similarly, consider a tensor A;j;, and form the following inner products

9" Aije = Ay, g™ Ay = Ay, and g™ Ay = A (2.13)

ij®

All these tensors are associated with the tensor A;j;. Operating on these tensors
with g% again, we can form another associated tensor.
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Let A;lll]’; be a given tensor of order (p,q), i.e. of rank (p+ ¢). A tensor obtained

by the process of inner multiplication of A;Zf;
tensor g;; or its reciprocal g% are called associated tensors of the given tensor.

For a particular case, from the fundamental tensor g;;, we get

with either of the fundamental metric

9oj = 9"k = 0% Gje = 9" gk = 6
and
97 = g"¢" g
Since gij and gg. are equal, it is not necessary to distinguish between them, so that
we can write gi. Since the metric tensor g;; in an E™ with rectangular Cartesian
co-ordinates is d;;, the Eq. (2.10) becomes

A =047 = A

in these co-ordinates. This circumstance shows that in Vjy covariant and contravariant
vectors A; and A® which are connected by the equality (2.10) may not be considered
as two distinct objects existing independent of co-ordinate system. The reason is
that if we assume the contrary, then we come to the contradiction that in rectangular
Cartesian system we will not find them as distinct. These circumstances show the
propriety of an agreement to regard pairs of tensors like A;, A%, 9ij g%, Aij,Aij as
different types of components of the same tensor of corresponding order.

EXAMPLE 2.2.1 If A; and B; are two covariant vectors, show that
9" (AiBj — AjBy) =0,
where g is the contravariant fundamental tensor.
Solution: Using the definition of associated vectors, we have
97 (A;Bj — A;B;) = g A;B; — g A; B,
= AIB; — A'B; = A'B; — A'B; = 0,
where, we have changed the dummy index j by 7. Hence the result follows.

EXAMPLE 2.2.2 If g,iA? = B,, then show that AP = gP1B,.

Solution: Since in gy, A7 the ¢ is dummy, therefore, there is summation over ¢q. Now,
giving the values 1,2,..., N we have following N linear equations:

g A + g12A? + -+ gAY = By
o1 At + g0 A? + -+ gon AN = By

gn1AY + gnoAZ + -+ gyn AN = By.
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Solving these equations by the method of determinants, we obtain

A'=g"Bi+¢"”By+ -+ ¢V By
A22921Bl+g22B2+"'+g2NBN

AN = ¢MB) + ¢V By + - + ¢V By.
These equations may be written as AP = g??B,. Hence, the result follows.
EXAMPLE 2.2.3 Prove the following relations:
(i) AijBY = AYB;; and (ii) AyB" = ALB..
Solution: (i) We have, by definition,
Ap = grig; AY and B = g*gliB;;.
Using this result we get
ApB" = g1i91;AY ¥ 6" Bij = 6" g1ig¥ 91, AY By
= A"Bij; as gMgp =1,

or

A;jBY = AU By;.
(ii) According to the definition,
9"'Bj = B = gi¢" Bi = B" and g A}, = A = gigu Ay, = A,
where, 9;; = 5,@. Therefore,
A B" = gi9aAlg49" B} = giiAyg" Bl = A}, B.

EXAMPLE 2.2.4 Ezpress the relationship between following pairs of associated ten-
sors:

(i)B/* and By, (ii)Bjl and B (iii)Blese; and Bloes,
Solution: (i) According to the definition,
BIM = gjpgkqgerqu and Bpgr = gjpgkqgerjkl~
(ii) Using the definition,

Bja = gjgur BY" = BT = g71g" B3y,
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(iii) Using the definition we get

peTse
Boqoot

= " g™ gu Bl

or

eoes] perse

o = 0pjgrig" Bheet -

EXAMPLE 2.2.5 Let the vectors u’,v' be defined by u' = gijuj and v' = gijvj.
Show that

Uy = gijuj, uivi = Uﬂ)i and uigijuj = uigijuj.
Solution: Given that u’ = g u; and vl = g v;. Therefore,
i_ i, ST,
giku' = gikg”u; = dju; = uy
or
— g — g
Uk = GikWh = GikW
or
] — ey C— ..
Ui = G5iU giju”; as gij = Gji-
Now, we have to show that u'v; = u;v’. For this
w'v; = (g”uj) v; = (g”vi) uj = v'uj = v'u; = '
Lastly, we have to deduce that u'g;;u’ = u;g"u;. For this
u'giju = (ulgij) v =’ = (uig”) uj = uigu;.

Thus, the results are proved.

2.2.1 Magnitude of a Vector

The magnitude or length A of a contravariant vector A’ in a curvilinear co-ordinate

system E3 is defined as
A2 = giinAj; ie. A= Hgi]’AiAj. (214)

Equation (2.14) can be written in the form,
A% = Alg i AT = ATA; = Aigl Aj = g A A
Similarly, the magnitude or length B of a covariant vector B; is defined as

B? = ¢ B;B;. (2.15)
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Equation (2.15) can be written in the form,
B? = ¢”B;B; = Big" B; = B;B' = ¢;;B'B’.

Thus, it follows that the magnitude of the two associated vectors A%, A; and B;, B’
are same. A vector with unity as magnitude is called a unit vector. In this case,

gi;A'AY =1; ¢ B;B;j = 1. (2.16)
A vector whose magnitude is zero is called a null vector. In that case,
9i;A'A) =0 = ¢ B;B;. (2.17)

A null vector should be distinguished from a zero vector each of whose component is
zero. So it is different from a zero vector.

EXAMPLE 2.2.6 Show that the magnitude of two associated vectors is same.

Solution: Let A and B be magnitudes of associate vectors A’ and A; respectively,
then by definition of magnitude,

A? =g ;A'AT and B? = g A A
We have to show that A = B. Using the definition of associate vectors, we have
A% = (giin) Al = AjAj
B? = (giin) Aj = AjAj
= A? = B?% ie. A=B.
Thus the magnitude of associate vectors A’ and A; are equal. Therefore, A* and A;

are referred to as contravariant and covariant components, respectively, of the same
vector Z Also, it is clear that

A? = g ATAT = gUAA; = AA;
This result is of vital importance.

EXAMPLE 2.2.7 Show that % is a unit contravariant vector.

Solution: From the definition of Riemannian metric, we have

_ dx’ dal

~ s ds

which according to the definition of unit vector, d—‘f is a contravariant vector of mag-
nitude with the unit vector, % is defined as unit tangent vector to a some curve C in
Riemannian V.

ds?® = gijdxid:cj =1
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EXAMPLE 2.2.8 Show that in the Vy with line element
ds® = — (d2")? = (d2?)” = (da®)” + ¢ (da*)”
the vector (—1, 0,0, %) is a null vector.

Solution: Let (—1,0,07 %) be the components of a contravariant vector A® in Vj,
then A! = —1,4%2 = 0,A4% = 0 and A% = % Now, comparing the given metric with
Eq. (2.1), we get, g11 = —1 = ga2 = ¢33, gaa = ¢* and g;; = 0 for i # j. Therefore,

gAY = g ATA + g AP A 4 gy AP AP + gugat A
1
:(—1)-(—1)-(—1)+(—1)-0-0+(—1)-0-0+C—2-c-c
=—-1+0+0+1=0.

Hence, A’ is a null vector in V;. Note that, its components are not all zero, so it
is different from a zero vector.

EXAMPLE 2.2.9 Show that in the V4 with line element
ds? = —(dz')” = (da?)” = (d2®)” + &2 (da*)’
the vector <1, 0,0, ?) 18 a unit vector.
Solution: Let (1,0,0, ?) be the components of a contravariant vector A® in Vj,

then A' = 1,A4%2 = 0,42 = 0 and A* = V2, Now, comparing the given metric with

C

Eq. (2.1), we get g11 = —1 = g2 = g33, 944 = ¢® and g;; = 0 for i # j. Therefore,

gij ATAT = g1 AT AL 4 g9 AZA?  g33 AP A3 gy ATAY

° %
oS

=(=1)-1-14(=1)-0-0+(=1)-0-0+¢2-
=—-14+04+0+2=1.
Hence, A? is a unit vector in Vj.

EXAMPLE 2.2.10 Prove that the length of a vector is invariant.

Solution: Using the transformation formula for contravariant vector and covariant
tensor of type (0,2), we get from Eq. (2.14),

ox™ 9" —s 02" 027

A2 goAipi—g 9T 0T gz
9ii Imn u xd o7 o
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Similarly, from Eq. (2.15), we get
B? = ¢“B;Bj = §"" By By,
Thus, the length of a vector is an invariant.

EXAMPLE 2.2.11 If A* = \/ﬁBi, where B is a contravariant vector and g;;
rq

is the fundamental tensor, show that A® is a unit vector.
Solution: According to the definition,
1 . 1 i gijBiBj .

CATAT = g B! BJ —
Gij Gij \/gpq BrBa \/ 9pg BP B GpqBP BY

Therefore, A® is a unit vector.

2.2.2 Angle Between Two Vectors
Let A® and B’ be any two non-null contravariant vectors, then the angle 6 between

them is defined by the formula,

i At BI
Jig __.0<0<m. (2.18)
V9ij AP AT/ g;; B BI

The angle 6 between two non-null covariant vectors A; and B; is given by

cosf =

9ij AiB; .
V'9iiAiAj\/9i;BiB;’
If any one the vectors considered is the null vector, the angle is not defined. If A and B

are two non-null vectors with A%, A;; B?, B; as respective contravariant and covariant
components, then the angle § between A and B is given by

cosf =

0<f<m. (2.19)

AiB;
VATA;\/BFB,

Note that, if two vectors are such that one of them is a null vector or both of them
are so, then the angle between them is not defined.

(2.20)

cosf =

EXAMPLE 2.2.12 Show that the angle between the wvectors (1,0,0,0) and
(x/i, 0,0, @), ¢ being constant, in a space with line element given by

ds” = — (da")” — (da®)” — (da®)" + ¢* (da")”

18 not real.
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Solution: The quantities g;;A*A7, g;;B'B7 and g¢;; A'B’ are given by
gij ATAT = g AT AL - gog A2 A?  g33 A3 A3 4 gy At A
=—1-1-14+(=1)-0-0+(~=1)-0-04+c*-0-0=—1.
9i;B'B? = g11B' B + 992 B>B? + g33B*B? 4 guB*B*

:—1-f2wf2+(—1)-0'0+(—1)-0-o+c2-\?-\le.
and
9i;A'B? = g11 A' B + 999 A*B* + g33A*B? + g4 A*B*
:—1-1-\/§+(—1)-0-0+(—1)-0-0+c2-0-‘f:—\@.

If 6 be the angle between A® and B?, then from Eq. (2.18) is given by

gijA'B/ V2
Vi ATAI\/gi;BIBI /=11’

Thus, the angle between the two vectors is not real.

cosf =

2.2.3 Orthogonality of Two Vectors

101

If 0 = 7, the vectors are called orthogonal. Therefore, two non-null vectors A? and B’

are said to be orthogonal, if
giinBj = 0.
Similarly, two vectors A; and B; are said to be orthogonal if

gijAZ’Bj =0.

(2.21)

(2.22)

It follows from Egs. (2.21) and (2.22) that the angle between two non-null orthogonal
vectors A*, B' is /2 and that between two non-null orthogonal vectors A;, B; is also
/2. According to the definition of orthogonality given by Egs. (2.21) and (2.22) it

follows that a null vector A’ or A; is self-orthogonal.

EXAMPLE 2.2.13 Ifu' and v' are orthogonal unit vectors, show that

(9njgrki — 9nkGji) uvluiok = 1.
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Solution: Since u' and v’ are orthogonal unit vectors, so by definition (2.19),
giju'w? = 1,g;;00" =1 and g;ju'v? = 0.
Using these results, we get

LHS = (ghjgri — gnrgji) w'v'u/ v

= ghjuhujgkivkvi — ghkuhvkgjiujvi =1-1-0-0=1.

EXAMPLE 2.2.14 If 6 be the angle between two non-null vectors A* and B' at a
point, prove that

(9ij9pg — Gipgjq) A'BP AT BY
(9ij AT AY) (gpq BP BY)

sin? 6 =
Solution: Let 0 be the angle between two non-null vectors A* and B* at a point, then
by definition (2.19),
gij AiBj
V/9i ATAT /gy BPBT

Using the result cos?0 = 1 — sin® 6, we get

cosf =

giinngququ
(91 A A7) (gpg BP BY)
_ gijgquiAijBq — gijgquiAijBq
(9ij A" A7) (gpqg BP BY)
_ gijgquinAqu — gipgquinAqu
(9i A* A7) (gpg BP BY)

sin0=1—cos?0=1—

(Replacing the dummy indices j and p by p and j)

(9ij9pg — 9ipgjq) A'BPAIBY
(9i;A*A7) (gpg BPBY)

EXAMPLE 2.2.15 Show that under the metric for polar co-ordinates, the vectors
Al = (3 4 ) and B* = ( 4.3 ) are orthogonal.

57 5zl "5 5zl
Solution: Using matrices, we have
3
o 3 4 1 0 5 9 16z!
CATAT = = — - = =1
Jig (5 51:1> (0 (:1:1)2) 4 25 251

5zl
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Likewise, gijBiBj = 1. Now,
4

o 3 4 1 0 5 12 122!
..AIBJ: —_ - _ _ - =0
Jig <5 5x1> <0 (xw2> 3 25 T 2541

5zl
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Thus, under the metric for polar co-ordinates in Vs, the vectors A = (g, %) and

B = (—%, 5—21) are orthogonal.
EXAMPLE 2.2.16 If A® and B* are two non-null vectors such that
9 UV = g;;VVI;, Ul = A"+ Bland V' = A' — B',

show that A* and B* are orthogonal.
Solution: Since, U' = A + B' and V' = A® — B*, we have

g U7 = g5 V'V

or
9ij (A" + B) (A + BY) = g;j(A' — B')(A — B)
Or . . . . . . . . . . . .
gijAZAj —l—gijB’BJ + 292']‘AZB] = gijAZAJ +g,~jB’B3 — 2_gijAZB]
or

4giinBj =0= gl-inBj =0.

Hence, A* and BJ are orthogonal.

EXAMPLE 2.2.17 If a;; is a symmetric tensor of type (0,2) and Al B are unit

vectors orthogonal to a vector C* satisfying the conditions
(aij — K19ij) A" + A1giiC* =0

and i i

(aij — K2gij)B* + A2gi;C* =0,

where, k1 # ko, show that A® and B' are orthogonal and aiinBj = 0.

Solution: Since A’ B' are unit vectors orthogonal to a vector C?, so,
giinAj = 1; gijBiBj = 1; giinCj = 0; gijBiCj =0.
Multiplying the given first relation by B’ we get

(aij — ngij)AiBj + AlgijCiBj =0
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. aijA'B) — k1gijA'B? = 0. (i)
Similarly, multiplying the given second relation by A7 we get
(ai; — K}Qgij)BiAj + )\ggijC"'Aj =0
or . . . .
a;jB'A? — kogi;B'A7 =0
or . . .
a;j;A'B' — Kkog;; A’ B' = 05 as ajj, g;j are symmetric.
Replacing the dummy indices ¢ and j by j and 4, respectively, we get
a;;A'BY — kog;; A'B? = 0. (ii)
Subtracting (ii) from (i), we get
(ko — ml)giinBj =0= giinBj =0; as Ko # K1.
Hence, A" and B’ are orthogonal. In virtue of the last result g;;A*B’ = 0, it follows

from (i) that a;; A°B? = 0.

EXAMPLE 2.2.18 Show that under the metric for cylindrical co-ordinates, the con-
travariant vectors A = [0, 1, 2bx2] and B = [0, —2ba?, (;1:1)2] are orthogonal. Interpret
geometrically along ' = a,z? = t, x3 = bt

Solution: Using matrices for cylindrical co-ordinates, we have

1 0 0 0
9;A'B7 = (0 1 2bz®)| 0 (21)? 0 || —2b2? | =0.
0 0 1)\ (212
The geometric interpretation is that z' = a,2? = t,23 = bt2, for real t, represents

a sort of variable-pitch helix on the right cylinder » = a, having tangent field A.
Therefore, any solution of

du! dz? dz3
— =B'=0; =—/— = B%= —2bz?; —
dx 0 du R

will represent a curve on that cylinder that is orthogonal to this pseudo-helix.

:B3:a2

2.3 Some Loci

Let us suppose that the metric is positive definite.
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2.3.1 Co-ordinate Curve

A curve along which only one co-ordinate varies is called a co-ordinate curve. If only
the particular co-ordinate z* (i being a particular integer) varies, the curve is called
the z' curve. Along this curve da’/ = 0, when j # i.

Angle between two co-ordinate curves: The angle between two co-ordinate curves
is defined as the angle between their tangents. The z7 co-ordinate curve is defined by

z' = ¢'; for every i,
except ¢ = j. Differentiating,
dz' = 0; for every 1,
except i = j and da’ # 0. Hence,
dz' = (0,0,...,dz’,...,0,0).

Let A® and B? be the tangent vectors to the zP co-ordinate curve and z¢ co-ordinate
curve respectively. Therefore,

A" =dz' = (0,0,...,AP,...,0,0)
B =dz' =(0,0,...,B%,...,0,0).
Let 0 be the angle between the two co-ordinate curves, then,
giinAj
V9ij AT AT/ gij BI BI
AP B4
= Ipa ; no summation on p, ¢
V9o AP AP\ /g B1B1
gpgAPBT gy

\/gppgqquBq a v/ 9rpYqq .

The tangent field to a family of smooth curves is a contravariant vector, so that
Eq. (2.23) yields the geometrical. The angle 6;; between 2’ co-ordinate curve and z/
co-ordinate curve is given by

(2.23)

cosf =

9ij
v/ 39ii9j5

If the co-ordinate curves of parameter z* and 7 are orthogonal, then,

cosl;; =

0i; = g = cos 0;; :cosg =0

= L - 0, ie. gi; =0.

v/ 9ii9575
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Therefore, the z* co-ordinate curve and 27 co-ordinate curve are orthogonal if gij = 0.
In a general co-ordinate syst em, if A* and B’ are the tangent vectors to two families
of curves, then the families are mutually orthogonal if and only if g;; A'B’ = 0.

Result 2.3.1 The physical components of a vector A” or A, denoted by A,, A, and
A,, are the projections of the vector on the tangents to the co-ordinates curves, and
are given in the case of orthogonal co-ordinates by

1
V311
1
1933

Result 2.3.2 The angle between the two parametric lines through a surface point is

cosf) = 912/\/911922-

The two families of parametric lines from an orthogonal net if and only if g1o = 0 at
every point of S.

1

— A%
V922 ’

Ay = /Al = AL A, = g A =

Aw = \/gggAg = A3.

EXAMPLE 2.3.1 Prove that for the surface

z! = asinu! cosu2; z? = asinut sinu2; = acosul,

the co-ordinates curves are orthogonal where (x*) are orthogonal Cartesian co-ordinates
and a is a constant.

Solution: Let E> be covered by orthogonal Cartesian co-ordinates z?, and consider

a transformation 2! = asinu! cosu?; 22 = asinu'sinu?; 3 = acosu' a = constant.

The metric in Euclidean space E3, referred to Cartesian co-ordinates is given by
ds® = (dx1)2 + (d:v2)2 + (d$3)2.

Comparing this, with Eq. (2.1), we see that gi11 = g22 = g33 = 1 and g;; = 0; for i # j.
The fundamental symmetric tensor g;;;i # j is given by

_ ox' dxI o ozt dxt N 0x? Ou? n ox> dx3
9127 30 5029 = 50l 929" T oul 9292 T Gl 92
= acosu’ cosu® (—a sinu' sin u2) + acosul sinu? - asinu! cosu? + (—a sin ul) -0
=0.
Similarly, it can be shown that g3 = 0 and g,3 = 0. Therefore, the co-ordinate curves
are orthogonal.
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EXAMPLE 2.3.2 Show that each member of the family of curves given in polar co-
ordinates by e'/" = a(sec@+tanh); a > 0 is orthogonal to each of the curves (limacons
of Pascal) r =sinf + ¢; ¢ > 0.

Solution: In polar co-ordinates z! = r, 22 = 6, and with curve parameter ¢, the first
curve becomes

1 2
— =loga +log|sect + tant|; z° =t.
x

1 2

With curve parameter u, the second curve becomes z* = sinu + ¢, z° = u. Therefore,

: dxt  dz?
A — (12 2 4
(dt I ) [ (x7) sec x”, ]

, dz' dx?
Bl ==, = = (cosz? 1).
< du’ du ) ( 1)
Now the Euclidean metric tensor in polar co-ordinates is given by

giinBj = gnAlBl + 922A232 +0- (A1B2 + AQBI)

=1[—(zh?seca?|cosz? + (21?2 1-1= ()2 + (z})2 = 0.

2.3.2 Hypersurface
Let t!,¢2,...,tM be M parameters. The N equations

=t (e M) i=1,2,. .. N;M < N (2.24)

defines M dimensional subspace Vis of Viy. If we eliminate the M parameters t!,¢2, ...,
tM from these N equations we shall get (N — M) equations in z’s which represent M
dimensional curve in Viy. In particular if M = N — 1, we get only one equation as

N-M=N-(N-1)=1,

in 2’s which represent N — 1 dimensional curve in Viy. This particular curve is called
hypersurface in Viy. Thus, a family of hypersurfaces of Vi is determined by

o(z') = ¢ ($1,$2, .. ,ZCN) = constant, (2.25)

where ¢(z%) is a scalar function of co-ordinates x'. Thus a hypersurface is obtained if
x' are functions of (N — 1) independent parameters.

A parametric hypersurface is a hypersurface on which one particular co-ordinate
(say) is constant, while the others vary. Let us call it the xi-hypersurface, with
equation z' = ¢ = constant.

.TZ
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Angle between two hypersurfaces: The angle between two curves is defined as
the angle between their normals at their point of intersections. Let

p(z") = ¢ (z',2%,...,2") = constant (2.26)
P(a) =9 (2',2%,...,2") = constant (2.27)
represent two families of hypersurfaces. Now differentiating (2.26) we get

oo . . - 0¢
- t = ; v = . P = . 22
e dx' = ¢;dx"' = 0; where ¢ D (2.28)

These partial derivatives are, by definition, components of a covariant vector. The
relation (2.28) shows that, at any point, the vector ¢; is orthogonal to all displacements
dz' at P, on the surface and hence dz’ is in the tangential to hypersurface (2.26). Thus,
gradient vector ¢; at any point of the hypersurface is normal to the hypersurface at
the point.

Similarly, 1; = g;ﬁ is the normal to the hypersurface (2.27). Let w be the angle
between the hypersurfaces (2.26) and (2.27), then by definition w is the angle between
their respective normals. Hence, the required angle w is given by

) i 96 9%
gions; I 07 a . (2.29)
V9T 0i0i\/ g it \/ i 00 06 [ 0% 9
9 0ri 023 9 92 93

COSWwW =

In particular, let the hypersurfaces (2.26) and (2.27) be taken as co-ordinate hy-
persurfaces of parameters say zP and z4, respectively, then we have

¢ = 2P = constant (2.30)
¢ = 27 = constant. (2.31)

Then the angle w between (2.30) and (2.31) is given by
i 027 Ot ij §P 54
dz' dai _ 9”09 _ g
N N N T R
Ox* OxJ Ox* OxJ

COSw =

(2.32)

The angle w;; between the co-ordinate hypersurfaces 2' = constant and 2/ = constant
is given by

ij
COSwjj = J (2.33)
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If g;; = 0 when 7 # j, the parametric curves are orthogonal to each other and so also
are the parametric hypersurfaces. Therefore, if the co-ordinate hypersurfaces x* and
2’ are orthogonal, then

wij = g = cosw;j = 0= g =0. (2.34)

Hence, the co-ordinate hypersurfaces of parameters z° and z7 are orthogonal if g = 0.

N ply orthogonal system of hypersurfaces: If in a Vjy, there are N families of
hypersurfaces such that, at every point, each hypersurface is orthogonal to the N — 1
hypersurfaces of the other families which pass through that point, they are said to
form as N ply orthogonal system of hypersurfaces.

Theorem 2.3.1 The necessary and sufficient condition for the existence of an N ply
orthogonal system of co-ordinate hypersurfaces is that the fundamental form must be
of the form

ds* = g1 (d:cl)2 + 922 (da:2)2 +-+ 9NN (de)2 = Gii (dﬂfi)Q . (2.35)

Proof: Condition necessary: Let us suppose that co-ordinate hypersurfaces form
an N ply orthogonal system of hypersurfaces. Since the co-ordinate hypersurfaces
form an N ply orthogonal system of hypersurfaces, we have

g9 =0; forevery i,j=1,2,...,N and i # j. (2.36)

If A denotes the determinant of |g%|, then,

gll 0 0
1 0 922 e 0 1
A=-—=]| . . =A== =gM"¢2 . NNV £,
g : : : g
Since A # 0, so none of the quantities g'!, ¢?2, ... ,gNN are zero. Now,

cofactor of g” in A
9ij = A

or
Agi; = cofactor of ¢ in A
or

94— cofactor of ¢ in A
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or
gﬂ:(); for i # j = g;; = 0; for ¢ # j.
9

Thus, the fundamental form is of the form
ds®> = gijd:vid:cj =911 (Cl:zcl)2 + goo (dx2)2 + -4+ gNN (d:UN)2 = gy (dwi)z.
Condition sufficient: Suppose the fundamental form is given by
ds® = g1 (d$1)2 + goa (dx2)2 + -+ gNN (dazN)Z = Gii (dxi)z ,

then we have to show that co-ordinate hypersurfaces form an N ply orthogonal system
of co-ordinate hypersurfaces. Comparing the given fundamental form Eq. (2.35) with
Eq. (2.1) we see that

gij = 0; for every 4,5 =1,2,...,N and i # j and g;; # 0; for i = j.
Also, the reciprocal tensor ¢ is given by
cofactor of g;; in g

.. 0 . )
= v 9= 19| = 97 = - =0; fori#j,
g g

g

which is necessary and sufficient condition for orthogonality. This proves the sufficient
condition.

Deduction 2.3.1 Here, we to show that an arbitrary Vi does not admit an N ply
orthogonal system of hypersurfaces. Suppose that an arbitrary Vy admits N ply
orthogonal system of hypersurfaces. The fundamental form in this case is given by

2 2 2 i\ 2
ds® = g11 (dz')” + gao (dz®)” + -+ + g (dz™)” = gii (da')”.
Let an N ply orthogonal system of hypersurfaces is given by the hypersurfaces
bi=c;i=1,2,...,N

where ¢; are constants. Now, the condition that the hypersurfaces determine an N
ply orthogonal system of hypersurfaces is

Oy 9¢q
9ij ozt OxI

=0; forp#q;i,7=1,2,...,N.
These equations admit N (N — 1)/2 simultaneous partial differential equations to find
N unknowns. In other equations admit N solutions, we have

N(N - 1)
2

= N.
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These equations are consistent if

N(N —1)

5 »N=N<3.

This is in contradiction to our supposition that diagonalisation is possible for all
values of N. Hence, an arbitrary Vi does not admit an N ply orthogonal system of
hypersurfaces.

Definition 2.3.1 (Congruence of curves): A congruence of curves in a Vy is a
family of curves, one of which passes through each point of V.

2.3.3 Orthogonal Ennuple

An orthogonal ennuple in a Riemannian Vj consists of N mutually orthogonal con-
gruence of curves. Consider N unit tangents A§L|;h = 1,2,..., N to congruence
Apih = 1,2,...,N of an orthogonal ennuple in a Riemannian Vy. The subscript
h followed by an upright bar simply distinguishes one congruence from other. It does
not denote tensor suffix. The quantities Ap;;¢=1,2,..., N and )‘Z\ denote the covari-
ant and contravariant components of Ay, respectively.

Suppose any two congruences of orthogonal ennuple are Ay and Ay so that

An Ak = OF, and gijAj X, = OF

Let us define,
; cofactor of \y); in the determinant |\,

m | Al

Also, from the determinant property, we have

N . .
> Ny = 5 (2.37)
h=1

Multiplying Eq. (2.37) by ¢7*, we have,

N
> Anig’ = 00"
h=1

or

N N
g = N = 9T =D NN (2.38)
h=1 h=1
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Multiplying Eq. (2.37) by gix, we have

N
Z /\2|)\h\igik = 0'gik
h—1
or
N N
Gik = D MpAng = Gig = O it (2.39)
h=1 h=1

Equations (2.38) and (2.39) give the values of the fundamental tensors g;; and g*
in terms of the components of the unit tangent Ay;h =1,2,..., N to an orthogonal
ennuple.

Deduction 2.3.2 Let us consider a vector u which can be written in the form
N
u' =" CpAy, (2.40)
h=1

where C), are constants to be determined. Multipling Eq. (2.40) by Ay;, we get

N N
u i = > Chely e = > Cidi = Ci
h=1 h=1

= O = Projection of u’ on Akl = ui)\k‘i.

Therefore,
u' = Z“j/\hlj)‘;ﬂ’ from (2.40).
h=1

If u denotes the magnitude of the vector u, then,

. N . N .
w? = u? = vhy; = ( Ch)&”) (Z Ck)‘;ﬂ)
h=1

= k=1
N N o N N
=Y ) GO = D1 ChCiop
h=1k=1 h=1k=1
N N
=Y =Y C1. (2.41)
h=1 h=1
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Equation (2.41) shows that
u=0<u’=0<=C,=0.

Therefore, if the magnitude of a vector u is zero iff all the projections of the vector u
on N mutually orthogonal directions )\2‘ are zero.

2.4 Affine Co-ordinates

Let us consider the transformation from a given co-ordinate system (z') to a rectan-

gular system (z'). The Jacobian matrix for such transformation is J = (%) Then

the matrix G = (g;;) of the Euclidean metric tensor in the (z%) system is G = J7J.

Our task, to find G = (g;;) for the three dimensional affine co-ordinates (x?).
From section 1.20.1, we see that position vectors are contravariant affine vectors—in
particular, the unit vectors

Figure 2.1: Oblique axes.

u= (), v=(0% w= (%)

along the oblique axes (Figure 2.1). Now, using Eq. (2.18), we obtain

oS o — gij 01 05 @

2
vV 9pq 0% 61/ Grs 05 03 V911:/922

as obviously, g11 = go2 = g33 = 1. Likewise,

= 9J12

cos = gi3, and cosy = ga3

The complete symmetric matrix is
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1 cosa cos [
G = (gij) = |cosa 1  cosvy
cos S cosy 1

The corresponding metric is given by
ds® = (dz")? + (dz?)? + (d2®)? + 2 cos adz'dx? + 2 cos Bda' da® + 2 cos yda*da.

Note that the matrix G defining the Enclidean metric is non diagonal in affine co-
ordinates.

2.5 Curvilinear Co-ordinates

In Chapter 1, we have discussed cylindrical and spherical polar co-ordinates in the
three-dimensional Euclidean space E3. 1In this section, we shall study a type of
co-ordinates in E? of which above two polar co-ordinates will be a particular one.
Such co-ordinates are called curvilinear co-ordinates (Figure 2.2). Consider a general
functional transformation 7' defined by

T:z' =o' (yl,yZ,y3); i=1,2,3 (2.42)

1 Y
Y

Figure 2.2: Curvilinear co-ordinates.

such that each single valued ' is a continuously differentiable function of (yl, Y2, y3)

in some region R of E3. Since !, 22, 2% must be independent, the Jacobian

oyl oy? Oy
o 17 2’ 3 2 2 2
PR oo W T U (2.43)

Y2 y3) oyt oy? oy’
oyt oyr 0y
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Under these conditions y', %2, 3> can be obtained as single valued functions of !, z2, 23

with continuous partial derivatives of the first order. Thus the inverse transformation
T Ly =4 (:cl,azz,m?’); 1=1,2,3 (2.44)

will then be single-valued and the transformations 7" and 7! establish one-to-one
correspondence between the sets of the values (3:1,3:2,3:3) and (yl,yQ,y3) . The co-
ordinates (yl,yz,y?’) are called the curvilinear co-ordinate system in R of E3. The
curvilinear co-ordinates y', 42, %> in E3 are related to the rectangular Cartesian co-

ordinates z!, 2%, 3 by the formula (2.42).

2.5.1 Co-ordinate Surfaces

Let one of y', 42, y> be kept fixed, say y' = ¢! = constant in T of Eq. (2.42), where
¢! is a constant and let y2, 43 be allowed to vary. Then, P (xl, z2, x?’) will satisfy the

relations
ot =a' (2 y%); i=1,2,3,

which defines a surface and the point P (xl, z2, x3) will lie on the surface which will
be denoted by y' = ¢!. If the constant is now allowed to assume different values, we
get a one-parameter family of surfaces. Similarly,

zt = ot (yl,c2,y3) and 2! = ' (yl,y2,03); 1=1,2,3
define two families of surfaces y?> = ¢? and y®> = ¢3. Each of the surfaces y! = ¢!,

y? = ¢? and y® = 3 is called a co-ordinate surface of the curvilinear co-ordinate system
and their intersections pair-by-pair are the co-ordinate lines (Figure 2.3). There will be

3
x

Figure 2.3: Co-ordinate surfaces.

three families of such surfaces corresponding to different values of ¢!, ¢?, ¢3. Through
a given point P (acl,a:2,x3), there pass three co-ordinate surfaces corresponding to
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fixed values of ¢!, c?, ¢3. The condition that the Jacobian J # 0 in the region under
consideration expresses the fact that the surfaces

yl=c, =2, y*=¢ (2.45)

intersect in one and only one point.

2.5.2 Co-ordinate Curves

Let two of the co-ordinates 3!, y2, 3> be kept fixed in T, say y? = ¢2, y> = ¢3, where ¢?

and ¢ are constants, and y' be allowed to vary. Then, P (ml, x2, x?’) will satisfy the
relations
2t = gt (y1,02,03); 1=1,2,3.

Since x!, 22, 23 are functions of only one variable, it follows that P (xl, x2, x3) will lie

on a curve, called a co-ordinate curve (Figure 2.4). This co-ordinate curve
y? = and y? = &

is called the y!' curve.

3
3 Yy~ curve

1
X

Figure 2.4: Co-ordinate surfaces.

Thus, the line of intersection of 32 = 2, y? = ¢ is the y! co-ordinate line because
along this line the variable y! is the only one that is changing. Therefore, the y' curve
lies on both the surfaces 32 = ¢ and 3? = ¢3. Similarly, we can define y? and y> curve.
It is to be noted that through a given point P (:cl, x2, x3), there pass three co-ordinate

curves corresponding to fixed values ¢!, ¢?, ¢3.

EXAMPLE 2.5.1 Show that (acl, mz,xS) defined by the transformations

T:z' = u'sinu? cos u3; z? = ulsinu? sinu3; 23 =t cosu2,

are curvilinear co-ordinates. Also find the co-ordinate surfaces and curves.
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Solution: Consider a co-ordinate system defined by the given transformation, the
Jacobian of transformation is given by

sinu?cosu®  ulcosu?cosu® —wulsinwu?sinu?
J = |sinu?sinu®  wulcosu?sinu®  wl'sinu®cosu® | = (u')*sinu® # 0.
cos u? —ul sin u? 0

Hence, the inverse transformation exists and T~ is given by

12 2)2 2
ut = /(21)2 4 (22)2 + (23)2; u? = tan™! (2 ):c: (z%) s ud =tan~! (;)
if, u! > 0,0 <w? <m 0<uwu®< 2r. Here z!, 22, 2% are the rectangular Cartesian
co-ordinates of a point P and u', u?,u? be its spherical co-ordinates.

Therefore, the given co-ordinate system are curvilinear co-ordinate system. This
is the familiar spherical co-ordinate system Figure 2.5. The co-ordinate surfaces are
given by u! = constant = \/¢1, say, where c; is constant and u?, u? are allowed to vary
then

2
u = constant

1
% = constant

2
u = constant

1
T

Figure 2.5: Spherical co-ordinates.

(@)% + (@%)* + (2°)* = cu,

which represents the equation of the sphere with centre at origin and radius is \/c;.
Thus u! = ¢; represents a surface. Next, let u? be kept fixed, say u? = ¢y, where ¢y is
a constant then

21 V(@) 4 (22)?
3

tan = cg say
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or
()% 4 (2%)? = (3)? tan? e,
which are circular cones whose vertex is the origin and axis is the 2% axis (Figure 2.5).

Thus u? = cy represents a surface. Lastly, we keep u? fixed, say u? = c3 = constant,
then

2

tan—! 7N 2 _ 1

an S |=a=1 = tan cs,
T

which are planes containing the 2% axis. Thus u® = ¢® represents a surface. Each of
the Surfaces u! = V/€1,u2 = c2,u3 = c3, is called a co-ordinate surface. There will be
three families of these surfaces corresponding to different values of ¢y, co, c3. Through
a given point P(u!, u?, u?) there pass three co-ordinate surfaces corresponding to fixed
values of ¢y, cg, c3. It is to be noted that of the three surfaces through a point, u! = /1
is a sphere, u? = ¢y is a cone and u? = c3 is a plane through the z3-axis.

Let two of the co-ordinates z!, 2> be kept fixed, say 2! = ¢; and 23 = c3, where ¢;

and ¢y are constants and z2 be allowed to vary. Then

! = €1 sin ¢y cos ug,xz = ¢y 8incy sinu3,x3 = (1 COS 3.

Hence
()2 + (2%)% = & sin? ca(cos? u® 4 sin” u®)
= c% sin? cy = )\2; A = ¢ sin ¢y = constant.
Thus
(@) + (a?)? = N2 = pu (i)
from which it follows that the point P(u!, u?,u?) is the intersection of a cylinder having

r3-axis as its axis and a plane parallel to the z! — 22 plane. Thus (i) represents a

circle in the plane 23 = p (Figure 2.5).

Thus (i) is a curve which is called a co-ordinate curve. This curve is called the
u-curve. Next, let 2! and 23 be kept fixed, say 2! = ¢; and 2% = ¢3 where ¢; and c3
are constants and let 22 be allowed to vary. Then

(2 + (2°)% + (2®)? =& and 2% = 2! tancs. (ii)

From (ii) it follows that the point P(u', u?,u3) lies on the intersection of a sphere and
a plane through the z3-axis. This intersection is a great circle.

Thus 2! = ¢,2% = ¢ is a curve. This curve is called another co-ordinate curve.
It is called the u?-curve. Lastly, let 22 and 2? be kept fixed, say x> = ¢y and 23 = c3
and let ! be allowed to vary. Then

3 3 z?
COSCyp = — = ; — = tan c3

o VEP @7 @P
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or
(2?2 + (22)2 = (A2 = 1)(2®)?; 2? =zltancs (iii)

where \ = sec co = a constant. From (iii) it follows that the point P(z!, 22, 23) lies on
the intersection of a cone with the origin as its vertex and a plane through the u3-axis.
This intersection is therefore a straight line passing through the origin.
3 = ¢3 is a curve. This curve is called a third co-ordinate curve. It
is called the u'-curve.

Through a given point P(u', u?, u?) there pass three co-ordinate curves correspond-
ing to fixed values of c¢1,co,c3. It is to be noted that of these three curves, two are
circles and the remaining one is a straight line through the origin.

Thus 22 = ¢, x

EXAMPLE 2.5.2 Find the co-ordinate surface, defined by the transformation

T:z' =4t cosu2,x2 =t sian,x?’ = ud.

Also find the co-ordinate lines.

Solution: The Jacobian of transformation is given by

cos u? —ulsinu? 0
J = |sinu? w'cosu? 0| = ul # 0.
0 0 1

Hence the inverse transformation exists and is given by

2
771wl = (@1)? + (22)2, W? = tan_lx—l, ud = o3
T

if u! > 0,0 <u? < 271, —00 < u? < co. This co-ordinate system defines a cylindrical
co-ordinate system (Figure 2.6). The co-ordinate surface are given by

3

u® = Constant

u' = Constant

u? = Constant

Figure 2.6: Cylindrical co-ordinates.

u! = constant = \/C1, say

N (1) + (22)? = &1
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which are circles. Now, u? = constant, i.e.
2 2
tan — = C2, say = x° =11 tan co
T

3

which is a straight line. Also u = constant gives 2% = constant = c3 (say), which is

a plane parallel to the z'z?-plane.

2.5.3 Line Element

Here, we have to obtain the line element of E? in curvilinear co-ordinates. Let
P (yl, v, y3) and @ (y1 +dyt,y? +dy?, 3 + dy3) be two neighbouring points in a re-
gion R of E? in which a curvilinear co-ordinate system

=2 (y', %Y%) i =1,2,3

is defined. The Euclidean distance between a pair of such points is determined by the
quadratic form

ds = [(u" +dy') =o'+ [ + ) = " + (6" + dy®) — o]

(dy")* + (dy?)" + (dy®)* = Y (dy')’

i

oy oy i i 0y
_[axiﬁxi dx'dx’; as dy —@daj
) ) o ha h
= gijdz'dz’; where g;; = %%;i,j =1,2,3. (2.46)

This is the elementary arc length in curvilinear co-ordinate system. Obviously, g;;
is symmetric. Moreover, by quotient law of tensor, since ds? is an invariant and the
vector dx' is arbitrary, we call gij the fundamental metric tensor. Denoted by g, the
determinant g = |g;;; is positive in R since g;; dx'dz’ is a positive definite form. Hence,
we can introduce the conjugate symmetric tensor g/, defined Eq. (2.7) as

- cofactor of g;; in
gY = P Jig g; where g = |gi;| # 0. (2.47)
Hence, g% is a symmetric (2,0) tensor conjugate to gij- The tensor g;; plays an im-
portant role in deriving metric properties of the space ES.

2.5.4 Length of a Vector

Consider a contravariant vector A* in a curvilinear co-ordinate system. Now, we form
the invariant

1/2
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In orthogonal Cartesian co-ordinates g;; = d;;, and we get A = V A?A?. Therefore, in
the orthogonal Cartesian frame the invariant Eq. (2.48) assumes the form

A _ [(A1)2 + (AQ)Q + (A?))Q] 1/2 )

We see that A represents the length of the vector A?. Similarly, the length of the
covariant vector A; is defined by the formula

A=[giaA)" (2.49)
A vector whose length is 1 is called a unit vector. From Eq. (2.46), we see that
da® da?
= g 2.
99745 ds (2:50)

It follows from Eq. (2.50) that ‘% is a contravariant vector, g;; is a tensor of type

(0,2) and 1 is an invariant. Hence, if we write \' = %’ Eq. (2.50) can be written as
gij)\i)\j =1.

Therefore, the vector with components A\’ is a unit vector. If 2* = 3, i.e. the
co-ordinate system is Cartesian, then
da?

el
ds ’

da? — )2 dia:g
ds " ds

=3

are precisely the direction cosines of the displacement vector (dxl, dz?, dm3). Accord-
ingly, we take the vector A\’ to define the direction in space relative to a curvilinear
co-ordinate system X (Figure 2.7). Let ds(;) denote the element of arc along z! curve

3 3
Xi=y 7

x'=vy!
Figure 2.7: Length of a vector.

at P(:cl,a:2,a:3). Along the z!' curve, 22 = constant and 23 = constant, so that

dz? = 0 and da? = 0. Therefore, the length of the elementary arc measured along the
co-ordinate curves of the curvilinear co-ordinate system is given by

d3%1) = gnda'dz' = g1 (da')? = ds() = v/guda’,
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where s(1) denotes the arc length along x! curve (Figure 2.8). Similarly,

ds(g) = Vg2dz?  and ds(z) = Vozsda®.

From developments of this section we see that the metric properties of E® re-
ferred to a curvilinear co-ordinate system x, are completely determined by the ten-
sor g;;. Accordingly, this tensor is called the metric tensor and the quadratic form
ds? = gijdwidxj is termed as fundamental quadratic form.

3
T curve

2
€T curve

1
T curve

Figure 2.8: Curvilinear co-ordinate system.

2.5.5 Angle between Two Vectors

Let A® and B’ be any two non-null contravariant vectors. Then from the definition of
the length of a vector, the angle # between them is defined by the formula,

gijA'B .
V9ijATAT\/g;; B BT’
= ABcosf = giinBj,

6 <.

cosf =

where A and B represent the lengths of the vectors A® and B’ respectively. Let
A; and B; be any two non-null contravariant vectors. Then from the definition of the
length of a vector, the angle 6 between them is defined by the formula,

A B.
cosf = ”g it/ ; <f<m.
\/gZ]AiAj \/gZ]BiBj
If 2!, 22, 23 are curvilinear co-ordinates of a point P and A\’ = %;i =1,2,3, then the

unit vector A is defined to be a direction at a point P. Thus, if \' and M are two
directions at a given point, then the angle § between them is given by

cosf = gij)\i)\j.

EXAMPLE 2.5.3 Prove that the angles 012,023 and 031 between the co-ordinate
curves in a three dimensional co-ordinate system are given by

12 23 31
cos 019 = 97;008 Oo3 = g and cos bz = 9

/911922 v/ 922933 V933911 '
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Solution: The square of the elementary arc length ds between two neighbouring
points P(x!, 22 2%) and Q(x! + dx', 2% + d2?, 23 + da3) is given by

ds? = g;jda‘dx’; i,5 =1,2,3.

Along the z!' curve, 22 = constant and 23 = constant, so the length of the elementary

arc measured along the co-ordinate curves of the curvilinear co-ordinate system is
given by

ds%l) = glldxld;(}l = gu(dxl)Q = dS(l) = ,/glldx1’
where s(;) denotes the arc length along x! curve (Figure 2.9). Similarly,

ds) = VG22dz? and ds(z) = Vg33dz3.

Figure 2.9: Angle between co-ordinate curves.

Now, the displacement vectors along x! curve, 22 curve, 23 curve are, respectively,

given by (dz',0,0), (0,dz?,0), and (0,0, dx?) and the length of the displacement vec-
tors are \/gridaz', /goadx? and \/gzzda® respectively. Let 0;; be the angle between the
z' and 7 co-ordinate curves; 4,5 = 1,2,3 and i # j, then

grodztda? 912
cos b9 = =

\/gud:cldasl \/g22dx2dx2 V11922

Similarly, we obtain

J13 and cosfy3 = 913

/911933 v 922933 ‘

cos B3 =
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We see that, for an orthogonal system, 612 = 633 = 031 = 90°. Using the fact that
9ij = gji, it follows that, g12 = go3 = g31 = 0. Thus, the necessary and sufficient
condition that the curvilinear co-ordinate system to be orthogonal is that g;; = 0 for
i# 44,5 =1,2,3 and g # 0 for all i = 1,2, 3 at every point of the region R of E3.

Result 2.5.1 Let us consider the co-ordinate curves of the curvilinear co-ordinate
system. Along the z! curve, 2 = constant and 23 = constant, so the length of the
elementary arc measured along the co-ordinate curves of the curvilinear co-ordinate
system is given by
da? 1
ds?, = gudatdet = g11(d:c1)2 = = ,
M dsay /911
where s(;) denotes the arc length along z! curve. Let 521),§é2),£fg) be the unit vectors
along the directions of the tangents to the co-ordinate curves at P. Then,
. 1 . 1 . 1
Ely = =0y &l = ——=0iays €l = ——="la)
1) N (1) 5(2) N (2)> 5(3) N (3)
It is to be noted that the angle between two co-ordinate curves is defined as the angle
between their tangents.

2.5.6 Reciprocal Base System

For the desired interpretation of some results of tensor analysis in E® referred to a
curvilinear co-ordinate system in the language and notation of ordinary vector analysis
referred to curvilinear co-ordinate system, it is necessary to introduce the notation of
reciprocal base system.

Now, we shall find the nature of the vector in E® referred to curvilinear co-ordinate
system. Let a Cartesian system of axes be determined by a set of orthogonal base
vectors by, ba, bg (Figure 2.10). Then the position vector r of any point P (yl, Y2, y3)
can be represented in the form

r =y'by +y?bs + bz = y'by; i =1,2,3. (2.51)

Since the base vectors b; are independent of the position of the point P (yl, v y3),
we deduce from Eq. (2.51) that

dr = dy'by + dy*bs + dy’bs = dy'b;; i = 1,2, 3. (2.52)

By definition the square of the elementary arc length ds between two neighbouring
points P(y',y?,4%) and Q(y' + dy',y? + dy?,y> + dy?) is ds®> = dr - dr. Using this
result, Eq. (2.52) becomes

ds® = b; - bjdyidyj = 5ijdyidyj = dyidyia
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& e A
a3
2
T
3 a

b, !

T z 1

9 2
b.
b, 2 Y

Yl

Figure 2.10: Reciprocal base system.

which is the expression for the square of the element of arc in orthogonal Cartesian
co-ordinates. Let a set of equations of transformation

' =2y %) i =1,2,3,

define a curvilinear co-ordinate system X. The position vector r can now be regarded
as a function of co-ordinates x*, and we write

or

dr = —dx'
r e ',
and
ds® =dr - dr = g;-aa;,dxidxj
i or Or
= gijda'da’; 95 = Hri i —

where, a; = 86;. Now, %, % and % represent geometrically the respective tangent

vectors to the z! curve, 22 curve and 2 curve at a point P. We observe that the base
vectors a; are no longer independent of the co-ordinates (xl, z2, x?’) . The base vectors
cannot be, in general, taken to be unit vector or orthogonal as a; - a; = g;; # 1 and
a;-a; = g;; = 0 is not given. Now, any vectors ap, a, a3 with initial point P are called
base vectors in curvilinear co-ordinate system. So, we can write

i
dr = a;dz’ and g;; = a; - a;.

Now, any vector with initial point at P can be uniquely expressed as linear combination
of the base vectors ay, as, ag. The use of covariant notation for the base vectors a; and
b; can be justified by observing from Eq. (2.52) that

[
oI

, . ot
ajdr’ = b;dy" = biayj dr’ = a; = b;

X
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as dx’ is arbitrary. This is the law of transformation of the components of covariant
vectors. Now, any vector A can be written in the form A = kdr, where k is a suitable
scalar. Therefore,

A dx’

or N _Or
= o (kda: ), as dr = py

= a; A%, where A" = kdz'.

The numbers A’ are the contravariant components of the vector A, and the vectors
Ala;, A%ay, A3ag form the edges of the parallelepiped whose diagonal is A. Since
the a; are not unit vectors in general, we see that the lengths of the edges of the
parallelepiped, or the physical components of A, are determined by the formulas

AL air, A%/ga2, AP\/g33

since g11 = aj - ai, gog = ag - ag and g33 = ag - ag. Let a;,as, a3 be base vectors at
a point P in the region R of E? and let a!,a?, a3 be three independent vectors at P
such that

a’- aj = 5;-; where 5;- = Kronecker delta.

Then the three vectors a',a? a® are called the reciprocal base vectors of the base

vectors ap, ag,as at each point P of R in E3. Let us define the non-coplanar vectors

1_a2><a3 2_a3><a1 a; X ag

== - =277 andad= 12"
[alagag] ’ [313233] [alagag] ’

(2.53)
where ay x ag, etc., denote the vector product of as and ag, and [a; ag as] is the triple
scalar product a; - az x az. It is obvious from definition Eq. (2.53) that a; - a; = ¢,
and

oy’ oy* oy’
ozl Ox! Ozl
LWt og o oy

P92l a2 O3 0z2 Ox2 Hz2
oyt oy? oy
03 O3 O3

[a; ag ag]
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or

Oy oy* oy’ || dy' oy? Oy°
ozl Ox! Ozl || 0zt Ox! Oxl
oy' oy® oy’ | | oy oy* dy®
O0x2 0x2 0x2 || 0x2 Ox2 0x2
Oy’ oy* oy° || Oy’ Oy* Oy°
0x3 0x3 0x3 11 0z3 23 Oz3

[a; ag a3)® =

oyP OyP OyP OyP OyP oyP

Ozl 0zl Ozl x2 Ozl a3

AyP dyP AyP dyP yP yP g 912 913

T | 92202 022042 D2 08| TR 92 BT
931 932 933

oyP oyP OyP oyP OyP oyP

03 0zl 03 0x2 O3 a3

or

a1 a2 a3] = /g5 9 = |9ij], (2.54)

that the triple scalar products [a1a2a3] and [ajagas] are reciprocally related, so that

[alaQag} = ﬁ. Therefore, the vectors a',a? a® are non-coplanar. Moreover,

a2><a3 3 1 aIXaQ

a; = (2.55)

[ala?ad]

with the aid of Eq. (2.53). In view of this it is natural to call the system of vectors
a',a?, a3 the reciprocal base system. Using the reciprocal base system, we have dr =

a‘dx;, where the dz; are the appropriate components of dr. Therefore,
ds®> =dr-dr = (aidxi) . (ajdxj)
=a'-aldy;dr; = g¥dv;dzj, where g =a'-al = ¢7". (2.56)

Using the system of base vectors determined by Eq. (2.53), an arbitrary vector A with
initial point P can be expressed as

A= aiAi = aiAi,

where Ap, Ay, Az are suitable scalars (Figure 2.12). Thus the covariant components of
a vector A with base vectors aj,as, a3 has contravariant components A!, A%, A3 and
the corresponding covariant components will be determined by reciprocal base vectors

a',a?, a? and will be given by Aj, Ao, As.
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K% A
% g
»
LoX
b
N X?»
N 3
a 1 A’ay
3
2y
P 1 2
A'a; + A’a,
a; 0
1 A’a
Aa, 2

Figure 2.11: Representation of A.

The scalar product of the vector A;a’ with the base vector aj, and note that the
later is directed along the z co-ordinate line, we get

Aiai c Gy = Az% = Aj.

A
Thus —2- (no summation on j) is the length of the orthogonal projection of the

9jj
vector A on the tangent to the 2/ co-ordinate curve at the point P (Figure 2.11),
A,

whereas is the length of the edge of the parallelepiped whose diagonal is the
953
vector A. Since ‘ '
A= aiAZ = a’Ai,

_____________

A3/ B3 ~_

\
\
S
Do
~
5
[N

Figure 2.12: Orthogonal projection.

We have,
a; - ajA' =a" - a;A;
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or ' )
gijAZ = Clzz4Z = Aj.

We see that the vector obtained by lowering the index in A? is precisely the co-
variant ventor A;. The two sets of quantities A” and A; are thus seen to represent the
same vector A referred to two different base systems. Thus, the distinction between
the covariant and contravariant components of A disappears whenever the base vectors
are orthogonal.

2.5.7 Partial Derivative

Let A be a vector localised at some point P (yl, Y2, y3) of E3 referred to an orthogonal
Cartesian frame Y. If at each point of some region R about P we have a uniquely
defined vector A, we refer to the totality of vectors A in R as a vector field. We suppose
that the components of A are continuously differentiable functions of w’ in R, and, if
we introduce a curvilinear system of co-ordinates X by means of transformation

T:z'=2'(y', % y%),

the corresponding components A’(x) will be continuously differentiable functions of

the point P (:Ul,:cQ,x?’) determined by the position vector r (:cl,a;Q,a:?’). We will be

concerned with the calculation of the vector change AA in A as the point P (:Ul, z2, 333)
assumes the different position

P (ml + Axt, 2?4+ A 23 + A:L"?’).

Using the system of base vectors determined by (2.53), an arbitrary vector A with
initial point P can be expressed as

or

— 0. At o —
A—aZA7 al—@,

(2.57)
where A', A%, A3 are suitable scalars. Therefore,
A= (A"+ AAY) (a; + Da;) — A'a;
= NA'a; + A'Na; + NA Na;.
As in ordinary calculus we denote the principal part of the change by dA and write
dA = a;dA’ + A'da;. (2.58)

This formula states that the differential change in A arises from two sources

(i) Change in the components A° as the values (acl, z2, a:3) are changed.
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ii) Change in the base vectors a; as the position of the point (z!, 22, 23) is altered.
g

The partial derivative of A with respect to z7 is defined as the limit of the quotient,

Aot so Azd . Oad’

and it follows from the expression for the increment AA that:

DA DA Dda

Now, we find the components of the vector % referred to a basis a;. Since g;; = a;-a;,
X

hence,

oxk  oxk TV Oxk
Permuting the indices in this formula, we get
agik Oa; Oay, agjk 8aj Oay,
oxd  Oxl .ak—i_@.ai’ and ozt Ozt .ak+@.aj'
If we assume that T is of class C?, then,
8&1' . aaj. as & — or
oxi  Oxt’ L0t

and

da; O (or\ 0 (0r\ Oa
Oz Oxd \Oxt) Ozt \0xi) Ozt

Using this relation, we get

Oa; Cay = % {3gik n 39j(c B 3gij} _lij. K]

dzd dri ~ Oxt  Oxk
or
gz; = [ij, k]a*
or
22; -a% = [ij, k]a® - a® = [ij, k]g** = {io;}
or

8&1' . « a
ord i j @
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Substituting this result in Eq. (2.59), we get

0A oA {iaj} Al — [aA N { 'aj}Az] a, = A%.,,  (2.60)

dxd — Oxd O i

where A?} means the covariant derivative of A% with respect to the metric tensor of
E3. Therefore, Eq. (2.60) can be written as

oA .

In virtue of Eq. (2.61) we can state the following interpretation of the covariant deriva-
tive of a vector A'.

Interpretation: If a vector A of E3 has contravariant components A’ referred to
a basis a;, then the covariant derivative of the vector A" with respect to the metric
tensor of E® is a vector whose components are those of the vector 22 referred to the

) oxJd
basis a;.

EXAMPLE 2.5.4 If g;; is the metric tensor of Fuclidean space E? in curvilinear
co-ordinates x*, and ' are rectangular Cartesian co-ordinates, show that

oy’ 0t
- owr gy
Solution: We know, g,q = %%. Multiplying both sides by g:;/j’ we get

000 0y 00 _ 0y 1y 0y’
PLOyt — OxP Oz Oyt OxP * OaP

i
Therefore, % = Upq ggf.

EXAMPLE 2.5.5 If g is the conjugate metric tensor of Euclidean space E> in
curvilinear co-ordinates x*, and y* are rectangular Cartesian co-ordinates, show that

0zb _ 04"

oyt I oua
Solution: Since g% is the conjugate metric tensor of Euclidean space E? in curvilinear
co-ordinates x*, and y* are rectangular Cartesian co-ordinates, we find according to

the law of transformation of a (2, 0) tensor we have, gP? = §% ng %. Multiplying both

sides by %’ we get

oy’ _ ;000 00t Oy

dxd Oy Oyl Oxd
_ i 92" Oy’ 0

gpq

Oyt Ox1 Oyl 19z Oyt
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EXAMPLE 2.5.6 Ify' and z are rectangular Cartesian and curvilinear co-ordinates,
respectively, show that in E3,

O%yP OyP J i 0%yP  Ox'
k

(25, k] = oridwi oxk " T Oxi Ok oyp’

Solution: Here, y* and z' are rectangular cartesian and curvilinear co-ordinates

respectively. Using the relation g; = gi’; %, we get

dgir _ OPyP OyP  OyP PP
Oxd  Oxidxt Oxk Ozt dxidxk”

Similarly
i e
oxt  O0xidxi OxF  Oxd Oxidxk

and
dgij _ OPyP OyP Oy Py
oxk  Ozkdxi Oz Oxt Oxkoxd’
Therefore, the Christoffel symbol of first kind is given by
. 1 (0gi  Ogjr  0gij O*yP oyP
kl == . ~ — = — .
i, K] 2 <8x3 T T ok dx'oxd Ok

Now, the Christoffel symbol of second kind is given by
E L kmr ~ em! (09im  Ogim  Ogij
{i j}_g ligyml =g 2<(9:Uj + drt  dx™m
Ckm O%P OyP O, 0yP OPyP O

9xi0r Ozm  Oxidwi’  dxm OxI Ok dyr”

EXAMPLE 2.5.7 Show that the area of the parallelogram constructed on the base
vectors ap and ag is \/gg'l, where g;; and g% are the metric and conjugate metric
tensors in curvilinear co-ordinate system and g = |gij|.

Solution: Using the relation g = a’ - a/, we get

2
gt =al-al = ‘al‘ = ’al‘ = /gl
Also, from Egs. (2.53) and (2.54) we get the relations
al = 22 X a3 and [ajazaz] = /¢

[alagag]
= \/Eal = ay X ag

= |ag x ag| = |\/§a1‘ = \/§|al‘ = gV g'.
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Area of the parallelogram constructed on the base vectors as and ag is given by

lag x az] = /g g = Vgg'l.

Similarly, the area of the parallelogram constructed on the base vectors asz and a;
is \/gg?? and on the base vectors a; and a is /gg®3. If V be the volume of the
parallelopiped constructed on the base vectors aj, as, ag, then

V=a- (ag X a3) = [alagag] = \/a

Let z' denote the curvilinear co-ordinates. The volume dV of the element of the
parallelopiped constructed on the vectors a;dz!, asdz?, azda? is given by

dV = (ald:vl) . (agdac2 X agdm?’) = \/§dzcld:):2dac3.

EXAMPLE 2.5.8 Find the physical components of the vector with components A
i spherical polar co-ordinates.

Solution: The expression for the metric in spherical polar co-ordinates is given by

ds® = (dz")? + ()% (da?)® + (1) (sina?)” (da®)” .

Therefore, in spherical polar co-ordinates (x%), g11 = 1, g22 = (21)? and g33 = (2! sin 2?)?,

gij = 0, for i # j. If A; denote the physical components, then using the relation

T _ gij A _ gin Al + gin A% + g3 A3

A; ,
Gii Gii
we get
o Al o A2
Al — g11 — AI;AQ — g22 — \/QEAQ — .ﬁUlAQ
V911 v 922
and

3
—= _ g33A 3 1o 2y 43
As = = /g33A° = (z" sinx®)A°.
V933
Hence, the required physical components of the vector with components A* are Al,
21 A?, (2! sin 2?) A3 in spherical polar co-ordinates.

2.6 Exercises

1. If g;; is the metric tensor in a Riemannian space and g% its reciprocal, show
that,
(a) g¥ is a symmetrical contravariant tensor
(b) and ¢"¥ga; = 5;
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2. In V%, find the quantities g”/ where 9ij =1+ J.

3. Prove that the maximum number of independent components of the metric g;;
in Vy is N(N +1).

4. Find ¢ and the reciprocal tensors, if the metric is given by

()

ds? = 5(dz')? + 4(dz?)? — 3(dx3)? + 4dztdz? — 6dx?da’.

ds® = a(du)? + b(dv)? + c(dw)? + 2 fdvdw + 2gdwdu + 2hdudv.

ds? = —a(dzt)? — b(dx?)? — c(dx®)? + d(dz*)?.

ds? = 3(dz')? + 2(dz?)? + 2(dx3)? — 4dz'dz?.

ds? = (dzt)? — 2(dx?)? + 3(dx?)? — 8da?da3.

ds? = (dz')? + 2 cos adz'dx? + (dz?)?.

Find the metric for the surface of sphere of constant radius a interms of
spherical polar co-ordinates.

Show that in a case of an orthogonal co-ordinate system, a covariant com-
ponent of a tensor is related only to the corresponding contravariant com-
ponent of a tensor.

Show that with respect to a cartesian co-ordinate system, the distinction
among the contravariant, the covariant and the mixed components of a
tensor vanishes.

6. Show that

(a)
(b)
()

if y' = acosu,y? = asinu,y® = v, ds® = a®(du)? + (dv)?.
if y! = wcosw,y? = usinv,y® = av, ds®> = (du)? + [(u)? + a?](dv)%.
if y' = u,y? = v,y = Y(u,v),
ds? = (14 ¥?)(du)? + 2¢1¢hadudv + (1 + 1h9)(dv)?.
1.2

7. Show that, if the relation between the Cartesian co-ordinates (2!, 22, 2%) and

(a)

(b)

the parabolic cylindrical co-ordinates (z!,z2,7%) be

the metric is given by
ds* = [(@")? + @)% {(dz")? + (d7*)?} + (d7°)*.
the paraboloidal co-ordinates (y', 32, v%) be

1
a' = yly? cosy?, 2% = yly?singy?, 2% = 5[(1/1)2 — (v,

then the metric is given by

ds® = [(y")* + (*)*] {(dy")* + (dy*)*} + (y'v*)* (dy*)*.
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(c) the elliptic cylindrical co-ordinates (y',y?, y3) be

1

z! = acoshy' cosy?, 22

= asinhy'siny?, 2® = 3,

then the metric is given by
ds® = a* [(sinhy')® + (siny?)?] {(dy")* + (dy*)*} + (dy*)*.
(d) the oblate spherical co-ordinates (y!,4?%,y%) be

1

z! = acoshy! cosy? cosyy?, 2

= acoshy! cosy?siny?®, z® = asinhy' siny?,

then the metric is given by
ds® = a® [(sinhy')? + (siny?)?] {(dy")* + (dy?)*} + a® cosh? y' cos® y?(dy®)*.
8. (a) Prove that, in V},,

(i) (gnjgir — 9nigjx) 9" = (N = 1)gix

N O ; 9 9 . .. .

(i) 22 (grrgi — gngin) 9 = L% gu — 2% gir, if ¢ is invariant
where g;; and g% have their usual meanings.

(b) If the Jacobian matrix of the transformation from a given co-ordinate sys-

oI

matrix G = (g;;) of the Euclidean metric tensor in (z?) system in G = J7J.

tem (x') to a rectangular system (Z;) is J = (8—?), then prove that the

9. (a) Show that the length of the arc of the curve z* = 3t; 22 = ef; 0 <t < 2is

10 for the metric components g1 = 2;g12 = go1 = (%)™ g2o = (22) 2.

(b) A curve in cylindrical co-ordinates z? is given by z! = acost; 2% = asint;
2% = bt, where a and b are positive constants. Show that the length of arc
for 0 <t < cis cva? + b2.

(c) A curve in spherical co-ordinates 2’ is given by 2! = ¢; 22 = asin~
23 = V12 — 1. Show that the length of arc for 1 <t < 2is V6.

(d) Using the Euclidean metric for polar co-ordinates, compute the length of arc
for the curve o' = 2acost;z? =t;0<t < 5, and interpret geometrically.

(e) Calculate the length of the curve ! = 3 — ¢, 22 = 6t + 3,2% = logt for

11,
1

12 4 0
1 <t <e, for the metric | 4 1 1
0 1 (2b)?

10. Show that the tensors g, g?? and & are associated tensors.

11. Prove that the associated tensors of A% are A, and A,
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12.

13.

14.

15.

16.

17.

Riemannian Metric

Prove that the relationship between the pairs of

(a) the associated tensors AP? and A;q is
Pqg — 4P A%
AP? = ¢ Aj .
b) the associated tensors Abe and A, is
q Jja
AR = gPIg A

ik

(c) the associated tensors AP and A, is

1 pdk
A% = 9pi9ak9” Avar:
(d) associated tensors of B! and B, is
ikl ip kq |
B = ¢"g"g" Bpgr-
Show that for an orthogonal co-ordinate system

1 1 1
gil=—, ga2 = — and g3z = —
911 922 933
Considering an N-dimensional Euclidean space En with rectangular Cartesian
co-ordinates as a particular case of Vi, show that in Ey there is no distinction
between covariant and contravariant vectors.

Ilustrate the concept of an associate vector in a Riemannian space. If in a two-
dimensional Riemannian space, the components of a metric tensor are g;; = 1,
g12 = 0, goo = 72, find the components of the associated tensor.

Let E2 be covered by orthogonal Cartesian co-ordinates 2’ and let z! = aé-yj
where |a§~] # 0(i,j = 1,2,3) represent a linear transformation of co-ordinates.
Determine the metric coefficients g;;(y). Discuss the case when the transforma-
tion is orthogonal.

Let g;; and g% be reciprocal symmetric tensor of the second order and u;, v; be
component of covariant vectors. If u’ and v’ are defined by

u' = guj, v' =g 4,5 =1,2,...,N.

Show that u; = gz-juj, u'v; = uvt and uigijuj = uigijuj.

(a) Prove that the necessary and sufficient condition that the curvilinear co-
ordinate system to be orthogonal is that g;; = 0 for i # j; 7,7 = 1,2,3 and
gii # 0 for all i = 1,2, 3 at every point of the region R of E3.

(b) Under the Euclidean metric for spherical co-ordinates, determine a partic-
ular family of curves that intersect 2! = a, 2% = bt, 2% = t orthogonally.
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18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

Show that in the V; with line element
ds® = — (do")? —(da?)” — (d2®)” + & (da*)’

each of the following vectors is unit vector (i) (1, 1,0, ?) and (ii) (\/5, 0,0, @)

If AP is a vector field, then show that the corresponding unit vector is

AP/ JAPA, or  AP)\ /g AP A,

If A, = —L— where B; is a covariant vector, show A; is unit vector.
A \/m) (A b YA

If A and B are orthogonal vectors of length [, prove that
(9njgik — gnigij) A"AIBIBY = —1%,

Prove that the magnitude of two associated vectors is equal. Prove also that the
relation of a vector and its associated vector is reciprocal.

(a) Prove that the angle between the two non-null vectors is invariant.

(b) Show that the angle between two contravariant vectors is real when the
Riemannian metric is positive definite.

(c) Show that is a Cartesian co-ordinate system, the contravariant and the
covariant components of a vector are identical.

Show that the cosines of the angles which the three-dimensional unit vector U*
make with the co-ordinate curves are given by

Ul/\/ﬁ, UQ/@? U3/\/g§‘

Show that (ZL‘l, x2, :c3) defined by the transformations

T:z' =u'cosu?; 22 =ulsinu?; 23 =4
) b )

where z!, 22, 23 are rectangular Cartesian co-ordinates are curvilinear co-ordinates
and also find the co-ordinate curves and surfaces.

If \' is a unit vector, show that the cosines of the angles which its direction
makes with the co-ordinates curves are

Al A2 A3
V311 ’ \/922’ \/933'

Find a necessary and sufficient condition for two contravariant vectors u* and v*
defined in a Riemannian space, to be orthogonal.
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28

29.

30.

31.

32.

33.

34.

35.

36
37
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. If 9 be the angle between two non-null vectors A* and B? at a point, prove that

(9ij9pq _Agipgjq) A'BP A B
(9i5 AT A7) (9pq BP BY)

sin 6 =

Hence, show that, if A’ and B' are orthogonal unit vectors then
(9ij9pq — GipGip) A'BPAIBY = 1.

If a;; are components of a symmetric covariant tensor and ', v" are unit vectors
orthogonal to w and

(aij — agij)u' + dwj =0
(aij — Bgij)v" + PAw; = 0; where o # 3

then prove that u’ and v’ are orthogonal and aijuivj = 0.

If A* and B* are two unit vectors. Prove that they are inclined at a constant
angle iff A?kBi + Bkai =0.

Define the angle between two vectors at a point in a Riemannian space. Show
that it is an invariant under a co-ordinate transformation.

Define the magnitude of any covariant vector in a Riemannian space. Prove that
the square of the magnitude of a covariant vector is the scalar product of the
vector and its associative contravariant vector.

Find the form of the line element ds? of Viy when its co-ordinates hypersurfaces
form an N ply orthogonal system.

(a) Show that an arbitrary Vx does not admit an N ply orthogonal system of
hypersurfaces.

(b) Prove that the magnitude of any vector w is zero if the projections of u on
Ap| are all zero.

(a) If g¥ is the conjugate metric tensor of Euclidean space E3 in curvilinear

co-ordinates x', and y* are rectangular Cartesian co-ordinates, show that
ozP __ pq oy*

gyt 9" oz )
(b) If g is the conjugate metric tensor of Euclidean space E® in curvilinear
co-ordinates x', and y* are rectangular Cartesian co-ordinates, show that
ij _ Oz Oxd
g - ayr 8yr .
. If A= A;a’ show that 25 = A; ja’.

. Prove that

(ai X aj) cap = gipepjk,

where e;;;, has its usual meaning.
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38. If a; and a' are base and reciprocal base vectors of a curvilinear co-ordinate

system, show that

a? x a* a? x al al x a2
],82: and az =

al == —————
'” [alaZa’

[alaZa?] [alaZa?]’

39. If y* are rectangular Cartesian co-ordinates, show that in Fjs,

[aﬁ ] B a2yi 6yi and ~ _ a2yz’ %
T R a B 0xe0xP oyt

40. Prove that the area of the parallelogram constructed on the base vectors ag and
a; is \/gg?? and on the base vectors a; and as is 1/gg33.

41. Find the physical components of the vector with components A; in (i) spherical
polar co-ordinates (ii) in cylindrical polar co-ordinates.



CHAPTER 3

Christoffel’s Symbols and
Covariant Differentiation

We now consider two expressions due to Elwin Bruno Christoffel involving the deriva-
tives of the components of the fundamental tensors g;; and g/. In fact, the operation
of partial differentiation on a tensor does not always produce a tensor. A new oper-
ation of differentiation may be introduced with the help of two functions formed in
terms of the partial derivatives of the components of the fundamental tensor.

3.1 Christoffel Symbols

Here, we consider two expressions due to Christoffel involving of the components of g;;,
which will prove useful in the development of the calculus of tensors. The Christoffel
symbol of first kind, (N3 functions) denoted by [ij, k], is defined as

o0 _ L (0gik | Ogjr  Ogi
[ 4] = 2 (8361 dzt Ok

i, k=1,2,...,N (3.1)

which is also called the Christoffel 3 index symbols of the first kind. The Christoffel 3
index symbols of the second kind, denoted by {ikj } or Ffj is defined as

k Emre - 1 km 6gzm 6gjm 5gij
R = — — + — — 2
{Z J } gl m] 29 ( ox7 oz dxm )’ (3:2)

where ¢ is the reciprocal tensor for the fundamental metric tensor gij- Either kind
of these symbols in Vy is a set of functions of co-ordinates z* in a given co-ordinate
system (2%). Note that, in the Christoffel symbol, the contraction always takes place
at the third index. For example,

gwmm¢bﬂ}

140
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In a Vi, it is always possible to choose a co-ordinate system such that all the Christoffel
symbols vanish at a particular point Fy. Such a co-ordinate system is called a geodesic
co-ordinate system with the point Py as pole.

There are N distinct Christoffel symbols of each kind for each independent g;;.
Since g;; is symmetric tensor of rank 2 and has %N (N + 1) independent components,
so, the number of independent components of Christoffel’s symbols are

1 1
N-SN(N+1) = 5NQ(N +1).

EXAMPLE 3.1.1 Find the Christoffel symbols of the second kind for the Va with
line element

2 . 2
ds® = a? (dml) + a®sin® z! (dm2) ,
where a is a constant.

Solution: Comparing the given metric with Eq. (2.1), we get

2 2.2 1
g1 =a",g2=a"sin"x, g2 =0 = go1.

a? 0

0 a?sin? z!

4 2.1

=g= =a"sin“z .

The reciprocal tensors g* for the tensor gij are given by

11 cofactor of g1 ing  a®sin®a! 1
g atsin?z! a2
99  cofactor of ggo in g a? 1
g atsin? ! a?sin? z!

12 cofactor of g1 ing

g

Now, the Christoffel symbols of first kind are

1 (0g11 , Ogun  Ogn 1 9g11
11,1] = - X =T =
[11,1] 2 (8331 oxrl  Ox! 2 Ox! 0
1 (0912  Og12 Og11\ 10911 _
[11,2] = 2 <3l‘1 oxl  ox2 ) 2022 0
_1(dga1  Ogn  Oga\ _1dgu _
12,1]=3 <ax1 92 oa1) 2002 07 LI
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1 (0g12 | Og22  Ogi2 1 0gao 9 . 1 1
[12’2]:2<0:172 + 92l 9g2 ) = 3gp1 — @ sinwcosw

1 (0ga1  Oga1  Ogao 1 0g22 2 . 1 1
[22,1] = B <8x2 922 Bgl ) = 5 — ¢ sinzcosz

1

2

1 (0g22  Ogaz g2\ _ 1992
22,2 = <8a:2 + 0x2  0x2 ) 2022

The Christoffel symbols of second kind are

1
{111} = g"[11,k] = "' [11,1] + ¢"*[11,2] = — x 0+ 0 x 0 = 0.
a

{11} =020 =gn2 11+ g2

_ 1 2.1 1_q6_J) 1
—$x0+0><a sinx” cosx —0—{2 1}.

{4}, ) = = g2+ 22

= X (—a2 sinz! cosl) +0x0=—sinz'cos'.
a

{21} = 0nn =g g2

1
=0x0+ ———x0=0.
a2 sin? z!

{12} =020 = n2)+ 22

1 . 2
:OXO—}—ﬁXCLQSIH.TICOS{EIZCOtl‘lz .
a®sin“ z

{2} =2 h =2+ 2

1

a? sin?

1

=0 x (—aQSin:c cosl) + x 0=0.

rl

EXAMPLE 3.1.2 Calculate the Christoffel symbols {zkj} corresponding to the

metric ds® = du® + f2dv?, where f is a function of u and v.
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Solution: Comparing the given metric with Eq. (2.1), we get,

g =1,g2=f*ga=0=gn=g= ‘OfQ = /%
The reciprocal tensors g% for the tensor gij are given by
1
gl =1, g2 = ﬁ; g2 =0= g
Now, the Christoffel symbols of first kind are
19911 19911
11,1 ==-—— =0, |11,2| = —= =0
[ ) ] 2 8u ? [ ) ] 2 8/1)
19911 1 3922 of _
12,1 77—0—211 12,2| = = = 21,2
1 0ga2 of 1 8922 of
22,1 = —=—— = f—; |22,2 =f—.
122,1] 2 Ou f@u’[’] 2 v v
The Christoffel symbols of second kind are
{111} W1, k) = g™ [11,1] + ¢'2[11,2] = 0.
! M2,k = gM[12,1] + ¢'?[12,2] =0 = !
1 2 g Y g ) 2 1 *
of
= g"[22,k] = ¢g"[22,1] + ¢"%[22,2] = —f ==
g1022,1] + 912222 = —f

2
11

ML, K] = ¢ 11,1] + ¢*?[11,2] = 0.

2
12

U)o
(o) =
05 =
{2} = n2n =2+ 2z = 102 L
{2} =2 h = e P2 = 5L

3.1.1 Properties of the Christoffel Symbols

In this section we proceed to deduce several properties and identities involving Christof-
fel symbols, which will prove useful to us in the sequel.

Property 3.1.1 The Christoffel symbols of First and Second kind defined in Egs. (3.1)
and (3.2) are symmetric with respect to the indices i and j.
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Proof: In the definition of Christoffel symbol (3.1) of first kind, interchanging of ¢ and
7, provides

g 1 (0gjk | Ogi  Ogji
k] == 2 CA
s K] 2 < dzt  Oxd Oz
_ 1 (09 Ogjk _ 9gij
2\ 0xd = Oxt  Ozxk
= [ij, k.
Thus, [ij, k] = [ji, k], shows that Christoffel symbol of first kind defined by Eq. (3.1) is
symmetric with respect to the indices ¢ and j. In the definition of Christoffel symbol
of second kind (3.2), interchanging of ¢ and j, we get.

{j""} — g"™[ji, m] = g™ [ij, m] = {k] } .

Therefore, the 3 index Christoffel symbol of second kind defined in Eq. (3.2) is sym-
metric with respect to ¢ and j.

); as gj; is symmetric

Property 3.1.2 The necessary and sufficient condition that all the Christoffel sym-
bols vanish at a point is that g;; are constants.

Proof: Let g;; be constants, at a point P (xl), then

0gij 89ik:0 and agj(c

oxk 7 Qxd ot 0-

Using definition (3.1) of Christoffel symbol of first kind, we get

i, K] = 1 [391'1@ n 99k 0Ogij

I k ) =0
2 | OxJ oxt  Ozk ’

it follows that they will be all zero at the point P. From the definition (3.2) of
Christoffel symbol of second kind, we get

{k]} — i, m] = 0; as [ig,m] =0,

at P. Therefore, the condition is necessary. Conversely, if the Christoffel symbols
vanish at a point, we have

=0.

1 [9gik | Ogjk  0Ogij
2 | OxI ozt  Oxk
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Since the co-ordinates z are independent, the above relation holds, if

i ; Ha.:
99i 0gk_0 and ik

oxk 7 0xd ox? =0

This means that, g, is independent of z* for all i, i.e. g;; are constants at the point
(:c’) Therefore, the condition is sufficient. Thus, in any particular co-ordinate system,
the Christoffel symbols uniformly vanish if and only if the metric tensor has constant
components in that system.

EXAMPLE 3.1.3 Is it true that if all [ij, k] vanish in any co-ordinate system, then
the metric tensor has constant components in every co-ordinate system?

Solution: By Property 3.1.2, the conclusion would be valid if the [ij, k] vanished
in every co-ordinate system. But [ij, k] is not a tensor, and the conclusion is false.
For instance, all [ij, k] = 0 for the Euclidean metric in rectangular co-ordinates, but
go2 = (z1)? in spherical co-ordinates.

Property 3.1.3 To establish [ij, m] = gxm { ikj }
Proof: We see from the defining formula (3.2) that we can pass from the symbol of

the first kind [ij, m| to the symbol {Z i } by forming the inner product g*™[ij, m).
k

Therefore, the inner multiplication of i } with gg,, gives

i {Zk]} = grmd""[i4,p); & {Z j} = g"[ij, p]

= OB [ig, pl; as grmg™ = o%,
= [ij,m].

This is the relation between the two symbols. The formulas

{kj} — g"™[ij,m] and [ij, m] :gkm{fj}

are easy to remember if it is noted that the operation of inner multiplication of [ij, m]
with ¢*™ raises the index and replaces the square brackets by the braces. The mul-

k
tiplication of i by ggm, on the other hand, lowers the index and replaces the

braces by the square brackets.

Property 3.1.4 To establish [ij, k] + [jk,i] = %‘;1]’“.
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Proof: Using definition (3.1) of Christoffel symbol of first kind, we get

1(39jk 6Qik_agij> 1<3gki 9g;i 3gjk>

17, k| 4+ [k — 4 > k — -
i3, k] + 7k, i) = Oxt Oxd  Oxk oxl  OxF  Oxt

1 (0gik | Ogki\ _ Ogki _ O9ik _ ,

N dri | Oxi ) 0 owi | I
This is an expression for the partial derivative of the fundamental tensor g;; in terms
of the symbols of first kind. In the similar manner, we get

[jkﬂ] - [1]7 k] =

J0gi;  Ogj

oxk  oxt’

Proof: The formula for the partial derivatives of the contravariant tensor ¢** can be
obtained by differgntiating the identity gpmg™ = 5;, where 5; is the Kronecker delta,
with respect to a7, we get

Property 3.1.5 To establish 0;g;;, = 99" _ —gh* { Z.} —gh { k. }

9 0 (9pm) i 9 (g™)
gz (9md™) = 0= =5 5™ g 5 =0
or ,
miOpm _ _ 09"
&rj I g
To solve this system of equations for 2 8 -, we multiply both sides by gP* . we get
mi pk 8gpm — _ bk agmz
OxJ I Ipm = i
or
mi pkr. - mi pkr _ Dk 8gmi
g™ 9" g, m] + g™ 9" [im, p] = =" gpm —
. gpm . .
(since %z = [pj.m] + [Jm,p])
or ‘
k) +mi{k}: .aSpk ok
or
pk )
PR P
or

agik _ _ghk i _ ghi k
oI h j hjf’

where we have to replace dummy indices p and m by h.
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: i i 9
Property 3.1.6 To establish {z j} = {j z} = % (log\/g), where g = |g;j| # 0.
Proof: According to the definition of reciprocal tensor, we have
g = cofactor of g;; in |gi;] _ g
19351 g

where G denotes the cofactor of g;; in g = |g;;|. Since, g = |gi;|, we get

)

g11 G912 -+  GIN

g21 G922 - Q92N
g=1 . . .

gN1 gN2 - gNN

The derivative of a determinant is obtained by differentiating each row of it separately
and keeping the other rows the same. Therefore, differentiating g = |g;;| with respect
to 27, we have

dgu1 9912 Ogin g1 912 - GIN
J J J
o Ox) O Oz g21  g22 -+ Q92N
i: 921 922 92N | 4.4
O/ : I
' dgn1 Ogn2 OgnNN
gN1 gN2 " gNN 0z Oz O
9911

Clearly, cofactor of = cofactor of g1; in g, so summing the resulting determinants

obtained, we get

oxJI

g ik OYik & O9ik T .
- — v - = v - = t k k

= g9""[ij, k] + g9 [k‘m]—g{i j}+g{k j}.

Replacing the dummy index k by ¢, we get
g i i 9 i
AR IR AR

i 1 dg ) 19 1
{Z j} 29 0x1 ~ O (log v/9) 5 57 1089 50ilogg

or

The quantities ilj are sometimes called contracted Christoffel symbols. The de-

rived formula for the derivative of the logarithm of the determinant g = |g;;| plays an
important role in tensor calculus.
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EXAMPLE 3.1.4 If |g;;| # 0, show that

g | b = alimeal = {7 b gl + oo

Solution: By definition of the Christoffel symbol of second kind, we get {iﬂ k:} =
g°%[ik, a]. Multiplying innerly by g.s, we get
Jap { Zﬁk } - gaﬁgﬁa [ik% a]

or

9ap {Zﬁk} = [ik7a]; as gaﬁgﬁa =1

Differentiating this relation with respect to x/ partially, we get,

or
0 ﬁ ﬁ 89(1,8 . g ..
Qaﬂaxj{i k}+{z k} el @[zk‘,a]
or a 8
9B {zﬁk} + {zﬂk} (185, 0] + [0, B]) = 5[k, o,
as -
Ozl (84, a] + [, B]
or

o {50 ) = agtial = {0 H gl + odos.

EXAMPLE 3.1.5 FEwvaluate the Christoffel symbols of both kinds for spaces, where,
gij =0, if i #j.

Solution: The definition of Christoffel symbols of first kind is given by Eq. (3.1). We
consider the following four cases:

Case 1: Let i = j = k, then Eq. (3.1) becomes

oo e L (0gi  0gi 0gi\ _ 10gii
i) =l = 5 (o 5 - ) — 200,

ozt  Oxt  Ort
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Case 2: Let ¢ = k # j, then, we get from above definition

1 (0gji | 0gi  0gi\ _ 10gi
2 207

[Zj7k] = [2]71] = Ot Oxd Oxt

Case 3: Let i = j # k, then, we get from above definition

lij, k] = [id, K] = 1 <8Qik n (991‘1'@ _ agii> _ 1 9Gii . as gip = 0 for i £ k.

2 \ Ozt ozt Oxk 20xF’

Case 4: If i # j # k and noting g;; = 0 if ¢ # j, we get [ij, k] = 0.

In the above such four results, no summation is applied. Now, we know, if co-ordinate
system is orthogonal, then g% = g%_j, where no summation is used. The definition of
Christoffel symbol of second kind is given by Eq. (3.2). Clearly if k # h,

k —0N- kh __
{i j}—(), as g =0,

{ k }:gkk[ij,k]:gik[ij,k]

iJ

and if kK = h,

Using the above cases, we get the following four subcases for the Christoffel symbol of
second kind:

Case 1: If i = j = k, then we have
i\ 1,.. ., 1 9gs O
{i ’L} - f[”vl] = 29 O = gl (log\/gzz)'

Case 2: If i = k # j, then we have

i\ _ 1. 1 9gs 0 ]

Case 3: If i = j # k, then we have

Bl L= L O
N

Case 4: If i # j # k, then we have {zk]} =0.

EXAMPLE 3.1.6 Calculate the non-vanishing Christoffel symbols corresponding to
the metric

ds* = —(dz')? — (dz?)? — (dz®)* + f(a!, 22, 23)(dzh)%
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Solution: Comparing the given metric with Eq. (2.1), we get

gi = —1=goy = gs3; gaa = f(z', 2% 2°); gij = 0; for i # j.
0
0
o| =~/
f

For orthogonal co-ordinates g = 57 (no summation). So, the reciprocal tensors g%/
for g;; are given by

1
9 =—1=9222933;g44—f g7 =0; fori# j.

Since g'!, %2, ¢ are constants, from Example 3.1.5, the non-vanishing Christoffel
symbols of the two kinds are

B C1dgu 10f [ 4 [ 4 _ 0
44 =BLa =551 = 28:c1’{1 4}—{4 1}—axll°gﬁ-
- 10w _10f Kl

3.4y = L0091 _10F [ 4 _ 9

44 1]:_1%:_1ﬁ _ 1 O9gau _10f
’ 2 Oxt 29z’ 4 2911 Ozt 20zt
[44,2] = _10gu _ 10f _ 1 O9gu _10f
2022 20ab 4 2911 02 2022

[443]__}3944 1of 1 Ogaa 10f
T8 T 208 44 T2, 07 2048

EXAMPLE 3.1.7 Calculate the non-vanishing Christoffel symbols of first and sec-
ond kind (in cylindrical co-ordinates) for the V3 corresponding to the line element

ds? = (dx1)2 + (561)2 (dw2)2 + (dx3)2.
Solution: Comparing the given metric with Eq. (2.1), we get
2 .,
g1=1, goo=(2")", gs3=1, gi;j =0 fori # j.

1 0 0
=g=|0 (:cl)2 0= (55‘1)2-
0 0 1
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The reciprocal tensors g* for the metric tensor gij are given by

cofactor of gi; in 9 _ a:l)

11
g = 2

1

g T

cofactor of g3 in g _

33 _
7= g x1)?

(
(
(
(

and

13 _ (= g%

)
zt)?
)

)

=19

—1: 922 _

cofactor of gag in g

12

cofactor of gi2 in ¢

9

28 _ ()= g%

9

Since g;; = 0 for ¢ # j, according to Theorem 3.1.5, we get

[ij, k] =0 and {jzk}:(); fori#j#k

= [12,3] =
1 2
and {2 3}—0,{1 3

[11,1] =

[21,3] = 0; [23,1] =

}:0;{132

dg11

32,1] = 0; [13,2] =

b-o

For i = j = k, the Christoffel symbols [ii, 4] of first kind are given by

0911

1 0g11

dgn
< Dal

ozt
0ga2

Ot

0ga2

>:

2 Ox!

10g22

[22,2] =

1 (Dga2
2 <6$2 *

0x2
0933

0z?
0933

>:

2012

10933

33,3] =

1 (Ogss
2 <6$3 *

ox3

oz3

>:

2013

For i = k # j, the Christoffel symbols [ij, ] of first kind are given by

2= 5 (5 + 58~ 5 ) =3 =0=E11)
13.0= 5 (5 + 5~ 5) =3 =0=B11)
120 = 5 (G + 5 - 58 ) ~ g - =)
5.2=5 (58 + 50~ 58) = 3a8 ~0=127
1.9~ 5 (G + 5 )w
5.9 =5 (58 + 50~ 58 ) = 3o ~0=123)

[31,2] = 0;
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For i = j # k, the Christoffel symbols [ii, k] of first kind are given by

_ 1 /0g12  Ogi2  Ogu\ _ 1dgu _
12 =3 <3m1 Tont Ta2) T T2

_ 1 (0gq13  Ogi3  Ogu\ _ 1dgu _
11,3] =3 (83:1 ot 07 ) T 2027

1 (0go1 | Oga1  Oga2\ = 1092 1
[22,1] 2 <8x2 + z2 ozl ) 2 8l

_ 1 8923 8923 a922 o 1 8922 _
[22,3] 5 (81‘2 + a$2 - 3333 - _5 8.173 - 0

_ 1 /0gs1 | Ogsnn Ogss\ _ 10gs3
33,1 =3 (8:163 T o) T 2oer
33.2] = 1 /9932  9gs2  Ogs3\ _ 10933 _

’ 2\ 0z 023  Oa? 2 0x?

For i = j = k, the Christoffel symbols of second kind are given by

{111} — gL K] = g1, 1] + g'2[11,2] + ¢19[11,3

=1x04+0x0+0x0=0.

{5} =2 = P+ Pp2 2 P2y

:ox(—x1)+%xo+0xo:0.
xlh)

{ 333 } = ¢33, k] = ¢°'[33,1] + ¢°2[33,2] + ¢*[33, 3]

1
=0- (—xl sin:l:Q) +0- [— (:Bl)2sinx2 cosac?] t 0=0.
(21)” sin? 22

For i = k # j, the Christoffel symbols of second kind are given by
1
{115} = nh = g2+ 2022 4 g2 p2,3

:1><O+0><:L‘1—|—()><O:0:{211}.
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{115} =m0 = g0+ 42032 4 91133

:1><O+0><0+0><951sin2x2:0:{311}.

{2} =020 =020+ 2022+ P 12,3

{1} =030 = 03,00+ 47032+ 21133

1 1
:OXO+OX0+(1)2‘22X.’E181112$2:1:{ 3 }
X SN~ T X

{3} =% = Pl + g7 2 4 03

(x1)2 sin 22 cos a2 3
=0x0+0x0+ :cotx2:{ }
(zzcl)2 sin? 22 32

{4y} =z = g2 4 2222 4 P23

=1x(-2')+0x0+0x0=—z".

{45} = b = g3 0) + 028,24 933

2 . 1
=1x0+0x0+0x (z') Slnx2:0:{3 2}.

{ 313 } = g'*[33, k] = g" [33,1] + ¢'2[33, 2] + ¢*3[33, 3]

=1x (—xlsin2x2)2+0 x0+0x0=—x'sin’ 2z

{ 121} = ¢?*[11, k] = g?'[11,1] + ¢*%[11, 2] + ¢*3[11, 3].

1
:Ox0+—2><0+0><0.
(z1)

{2} =m0 = )+ 2282 4 P33

_ 1 1\2 . 2 A 2
_0><0—|—7)2><0+0><(—m) sin x —0—{3 2}.
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{ 2 }=g2’f[33,k]=921[337 1] + ¢**[33,2] + ¢**[33, 3]

9 2) n — (m1)2sinm2 cos 2

=0 x (—ml sin“ x ( 1>2 + 0.0 = — sin 22 cos 2°.
x

{ 3 }zg?”f[n,k]:931[1171]+g32[1172J+g33[11,3J

1

{12} =020 =2+ 22+ 9123

1 3
— 1 ———————————— p— p—
=0x0+0x=x +($1)2sin2x2x0 0 {2 1}.

EXAMPLE 3.1.8 Calculate the non-vanishing Christoffel symbols of first and sec-
ond kind (in spherical co-ordinates) corresponding to the metric

ds® = (dx1)2 + (x1)2 (da:2)2 + (x1)251n T (d:v ) .

Solution: Comparing the given metric, with Eq. (2.1), we get g11 = 1, go2 = ( )
1

a5 (no

g3z = (ml)zsin2 z? and gij = 0 for ¢ # j. For orthogonal co-ordinates g9 =

summation). Therefore, g = (z!)*sin? 2% and
gll_i:l 22:i: 1 33:i: 1

911 922 (ml)Q’ 933 (x1)?*sin? 2’

and g% = 0 for i # j. The Christoffel symbols of first kind are given by

[11,1] = 1 /09  Ogu  Ogu\ _ 19911 _
2\ ozt oxt o2t ) 202
11,2 = 1 (0912 0912 Ogu\ _ 9912 10gu _
=5\ 0t T o T 02 drl 2 Ox?
1 (Ogi1 | 9gn  Ogiz 1 dg11
= =29 =211
[12,1] 2 (83;2 oxl  Ox! 2 0x? =0=[211.
_ 1 (9912 3922 9912\ _ 19922 _ 1 _
12,2 = 2 <8x2 ox? ) 2 0zt =a' =[21,2)
_ 1/ 0g13 3923 dg12'\ _
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11,3] = 1 (3913 Og13 0911) _Og13 10911 _

2\ Ozt OQxt Qa3 ozl 2 0a3
S e
[13,3] = = <%€;§ + %ff - %‘?;) = %% = z'sin® 2% = 31, 3].
=5 (55 55 ~5) ~ra 0
il =5 (52 + 5 58 3an O
= (5 5 ) = aom -
23,1] = % (%f; + %f; - %ff) —0=[32,1].
[23,3] = % <88€§§ + %fg - %f;) = %% = (xl)zsinﬂz:2 cosz? = [32,3].
=5 (5 + 55 ~5) ~2a0 0
33,1] = % @g;’; + %f; - giff) = —%% = —atsin? 2.
[33,2] = % (aaif; + 861332 - 68?3?)2:))) = %% =— (xl)zsinx2 cos 2.
=5 (G + 5 ) ~ap —0 -2
01,20~ 5 (G + 5~ 5 ) =0l

The Christoffel symbols of second kind are given by

{111} — g1, k] = g1[11,1] + g12[11,2] + ¢12[11, 3

=1x0+0x04+0x0=0.
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{115} =020 = g2+ 4222 4 92,3

:1><0—|—0><3:1+0><0:0:{211}.

{212} — g2, K] = "2, 1) + g2[22,2] + 62,3

=1x(-z')+0x0+0x0=—z.

{ 113 } = g [13,k] = g1 [13,1] + ¢'%[13,2] + ¢'*[13, 3]

:1><0—|—O><0+0><ﬂclsin2:v2:0:{311}.

{55} =m0 = g a] + 020232 4 9.3

1\2 . 2 1
=1x04+0x0+0x (z') sinz _0_{3 2}.

{43} = oo = s34 203,20+ 4733,3

=1x (—xl sin? m2) + 0 x [— (x1)2sinx2 cosxﬂ +0x0= —xtsin? 22

2

{ 121 } = g** 11, k] = g [11,1] 4+ g**[11,2] + ¢**[11, 3]

=0x0+ Xx0+0x0=0.

(@

{ 122} — g12,k] = ¢1[12,1] + ¢2(12,2] + ¢®[12,3).

=0x0 1 100—1— 2
=0 X +($1)2xx+ X =1 V21 ("

{25} =030 = 200+ 421132+ 21133

2

1 1.:.2,.2
:a><0+72><0+0><x sin“ x _O_{S 1

(x1)
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{2} =2 b = P2+ 22 4 P2y

1 1
=0x (—2')+-—=x0+0x0=0.
(1)

{2} = = )+ 232+ 23

=0x0+

_12. 2 2 N 2
><0—|—0><( a:) sinz“ cos x —0—{3 2}.

(@)

{ 323 } — ¢?*[33, k] = ¢*1[33,1] + 9233, 2] + ¢*°[33, 3]

— (331)2 sin 22 cos 2

5 +0x 0= —sina?cosz>.
(z1)

=0x (—:cl sin? a:2) +

{ 131 } = ¢ [11, k] = ¢*' 11, 1] + ¢%2[11, 2] + ¢*3[11, 3]

1

{1} = n2 0 =2+ 222+ 9123

=0x0+0xa+

{15} =080 = 103104 213,20+ 4713.3

_ 1 1.292 1 3
—0x0+0x0+mxx sin“ x _ggl_{l 3}.

{3} =% =)+ 470282 4 P 3

L 0X0+0x0 (:vl)zsinxQCost_ a2 3
=0x0+0x0+ (x1)2sin2x2 =cotx” = 3 9("

{ 333 } = ¢3(33, k] = ¢31[33, 1] + ¢%2[33, 2] + ¢%3[33, 3]

=0x (—l’l sinx2) +0- [— ({L‘I)QSinIL‘2 cost} +—————5—--0=0
(x1)* sin? 22
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We can verify Theorem 3.1.5. When i # j # k, then both the first kind [ij, k] = 0
and second kind {ikj } = 0. Therefore, the non-vanishing Christoffel symbols of first
kind are

[12,2] = ' = [21,2]; [13,3] = 2! sin? 2% = [31, 3].

22,1] = —z'; [23,3] = (951)251r1902 cos z°.

33,1] = —2!'sin®2?; [33,2] = — (x1)2 sin 2 cos 2.

The non-vanishing Christoffel symbols of second kind are

1 _ 1. 1 12 2, 2 — 2 _i
{2 2}_ x’{33}_ TERES 2 T 21 T A2

2 w2 2. 3 o 3 _i' 3 . 3 o 2
{3 3}— sinx cos:c,{1 3}—{3 1}_1‘1’{2 3}—{3 2}—cotx.

EXAMPLE 3.1.9 Ifa¥ are components of a symmetric tensor, show that

; 1 09,
gkis Kl == ik ]'
a’"ij, k] 50 i
where gji have their usual meaning.
Solution: Here, we use the relation
. .. 39jk
(i, k] + ki, j] = 227,
for the Christoffel symbol of first kind. Multiplying both sides by a*, we get
. . - Agir
ik ke IR 7] = ik 29!
a’*[ji, k] + a’"[ki, ] = o’ 55
or 5
a*[ji, k] + a" ki, j] = ajk—agjf, as /¥ = ¥
x
or

T TR 5 09k
Ik (ji, k] + o [ki, §] = a?* 22
a’*lji, k] + o’ [ki, j] = o™ 7

Replacing the dummy indices k£ and j in the second term by j and k, respectively, we
get

, o 0g;
2498 ji, k] = a]k%
or . .00
207" [ij, k] = ajk%; as [ji, k] = [ij, k]
Therefore ajk[ij, K = lajk 893'@'

2 ox*
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EXAMPLE 3.1.10 Show that the mazimum number of independent components of
the Christoffel symbols in a V,a N dimensional Riemannian space is %NQ(N +1).

Solution: Since the dimension of the Riemannian space Vi is IV, the ¢ and j of the
fundamental tensor g;; varies from 1 to N. Thus, g;; has NV 2 components.

As gi; is symmetric, the maximum number of distinct components, where i # j
are %(N 2 — N). Therefore, total number of distinct components of g;; has atmost

1 1
N+§(N2—N) = 5NV +1)

99
8:Ck 9

components. Since k varies from 1 to N in the number of independent components

will be

1 N2

Since the Christoffel symbols [ij, k| and {z lj } of first and second kinds, respectively,

09
oxk

are the linear combination of the terms so the maximum number of independent

components is N72(N +1).

EXAMPLE 3.1.11 Prove that the following
57 (V997) + 9 iefe =

Solution: Here we use the properties of Christoffel symbols. We have

99 ij

0 ii g%
oa VI9") = 558" VT

]

i i _ lti@
p j}g Vo9 2g Ox*

1 99 4 1 Jg

- - AP~ i DJ
250" 2./500") \@{p j}g

- _\/‘a{pij}gpj'

_Wg.._\/g{
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Therefore,

EXAMPLE 3.1.12 If AY is a skew-symmetric tensor, show that A™* {jzk} =0.

Solution: Since AY is a skew-symmetric, so, by definition A¥ = — A% Therefore,

ik ) o ki)t
4 {jk}‘A {m}

where, we have to replace the dummy indices k£ by j and j by k. Therefore,

Aik{jik}:_Aik{klj}; as AR — _ ik
i i\
= e U

7 A : k) 1| _
2A {] k}—(), ie. A {] k}—O.

3.1.2 Transformation of Christoffel Symbols

or

Here, we have to calculate the transformation formula of Christoffel symbols. Let the

fundamental tensors g, g“ and the symbols [ij, k], { ikj } are defined in ! co-ordinate

oy — Sy T - 17 k . J— .
systems. Let these quantities be g,;,g" [ij, k], {z i } in T' co-ordinate systems.

Law of transformation of Christoffel symbols of the first kind: From the
tensor law of transformation of covariant tensor g;; of type (0,2), we see that

_ oxt Oxd
9im = ﬁafimgij .

The transformation law for the [ij, k] can be inferred from that for the g;;. Differen-
tiating partially with respect to 2", we get
OGi _ 02’ 02 gy 0 9a' 0a) | 0x' %)
oz~ 0zl oz daF 0" | oz'oz oz ol oxm o

gi]‘. (33)
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Similarly differentiating the transformation law with respect to T*, we get

OGpm Ot 027 Dg;j Ox* 0%zt 07 ozt 0%l
I Ham §mn k a7l + —1 5-nJii + el —1 9
0z ox™ oz" Oz* 9x*  OT™OT OT 0z 9T 0T
Ozt Ozd OxF 09k 0%z Ok 0%zk Ozl
= — : i - ; 4
ozl 97 o7 a1 | ozmor ot T gmam o O (3:4)

where, we have to replace the dummy indices ¢, j, k by 7, k, i, respectively. Further,

9g;,  0x' 027 Dg;j OxF 0%t Oxd - 0?z7 % -

T ozl 97" Oz oz | omlozm oz T grraz™ ozt
- % oI 0x* gy, 0%zt Ozk o2k oxt (3.5)
= 9F 07 07" 0w | odlozm oz Uk T ozt Ik '

ox™oT"™ 0%
where we have to replace the dummy indices j and k by k and j, respectively. Adding
Egs. (3.4) and (3.5) and subtracting Eq. (3.3) from the result thus obtained, we get
8§mn 6?71[ _ 8glm

Ot oT™  ox"
_ (9gjx | Ogi  Dgij\ Ox' da? da* N oxk  92x) ozl 0%zk
“\ow "o 0t ) odomm oz | \ 07 gzrort | on ozrant ) Y
n 37%]“ 9%t N % 9%k - oxd 9%t ox'  9%xd
o7 ooz | o ozroz ) Y T\ orm oo T ol omromt ) 9
<8gjk gk 8gij> ox' Ox? Ok <aa:i 9% oxd 9%zt )
= - + 9ji

9 | 0u 0k ) oxl 0z oz |\ 07" omror | 0 omon
iﬂ 0%at n % 0%ad o 0x? 0%zt n % 027 - (3.6)
oz ooz | o ozrozm ) I T \ oz ozter | ax oxmort ) T\
(replacing k£ by 7 and k by j in the second and third term)

_ (99jk | Ogik  Ogij 0z’ Oxd Oxk n ozt 0%x) - % 0%t

"\ i " 9w 92k ) o oz 0z | o7 ozmod Y T ox" ooz

([ 99jk | Ogik B dgij\ Ox' Oz Oz 49 or' 0%

“\ 02t T 9w 92k ) oF oz oz | oz ooz

Therefore,

ox' Ox? ok n oxt 9%l
ozt 9™ oz 9T OT oT™ Jij

[lm,n] = [ij, k] —— (3.7)
In the second and third relations of Eq. (3.7), we have to replace the dummy indices
k by i and k by j, respectively. Equation (3.7) gives the law of transformation of the
components, [ij,k] of the Christoffel symbols of the first kind from one co-ordinate
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system to another. From this law it follows that the components [ij, k] do not transform
like a tensor due to the presence of the second term in the right-hand side of Eq. (3.7).
This provides that Christoffel symbol of the first kind (or, connection coefficient) does
not follow the tensor law of transformation and hence it is not a tensor.

Law of transformation of Christoffel symbols of the second kind: Since g%/
is a tensor of type (2,0), we have the transformation law

oz" OxP
=np TS
g I ar 9z (3:8)

Inner multiplication of both sides of Eq. (3.7) by the corresponding side of Eq. (3.8)
gives

7P [im, ] = rsaf”@i, Bia:i(%ﬂ 5‘3:’“+ 02t 9%a) rs 0T" OTP
gl =9 0 P ogt gz oz T 99 o gztoz? Dar 0w
or
Pl _ rsafﬂk[, ]@% 0z’ . 0" 0z ., 0%
Lm =9 9o o ozm " Vi ou oY ortomm
OzP Oz 07 oTP  9%d oxk
_ ksy: . hdadided s . _ sk
=9l MG s am e 999 g gmamnt & Gar T Or

s @% oz’ _Hss@fp 0%’
i j[ 0z oz oz™ ' I oxs 9Tl oT™

(3.9)

o ort 0w ow o
i j| Oxs oFt oz™ = Oxd oFoT™

Equation (3.9) gives the law of transformation of the components {ilj} of the

Christoffel symbols of the second kind. From this law it follows that the components
do not transform like a tensor due to presence of the second term in the right-hand
side of Eq. (3.9). Therefore, from the form of Eq. (3.9), it is clear that the set of
Christoffel symbols is a third order covariant affine tensor but is not a general tensor.
Sometimes, it is called Christoffel connection.

Result 3.1.1 Here we have deduced a result relative to the Christoffel connection
which will play a vital role in the matter of introducing a new kind of differentiation
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in V. Inner multiplication of Eq. (3.9) by g%; gives,

8$T{ P } _{ s }6@7’ Ox' Ox7 Ox"  Ox" OxP Ol

Oxs 9Tt O™ 0T | OFP 02 9T OT™

orP |l m i J
i 5. 2 j
:{.S.}dgam Or’ | o 0
v ozl oT™ TV gzloz™

oxt Oxd o%x"

r

B {l j} o7l 07" | omloT™

or

d%x" oz p ozt OxI T 310
W_afp{lm}_8xl%m{ij}’ (3.10)

which is the second derivative of x’s with respect to T’s in terms of symbols of sec-
ond kind and first derivative. This important formula (3.10) were first deduced in as
entirely different way by Christoffel in a memoir concerned with the study of equiv-
alence of quadratic differential forms. We will make use formula (3.10) to define the

operations of tensorial differentiation in Vjy. Needless to say, Eq. (3.10) holds barred
and unbarred co-ordinates are interchanged.

EXAMPLE 3.1.13 Find the most general three-dimensional transformation z* =

2'(z1,7%,@3) of co-ordinates such that (x%) is rectangular and (T') is any other co-

ordinate system for which the Christoffel symbols are

and all other components are zero.

Solution: Since {irj} = 0, relation (3.10) reduces to the system of linear partial

differential equation with constant coefficients as

0%x" _ Oa” D (i)
ozlozm  oxP |l m [’ !

It is simplest first to solve the intermediate, first order system

ryi T
oy,

_ ) p L __ Ox y
9 —up{l m}’ where %, = 5P (ii)
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or

My, P
ol —up{l m}’ (iii)

where temporarily replace %, by %, and z" by z as the first systems (ii) for r = 1,2,3
are the same. For m =1, (111 ) becomes,

on (1 f2 0 [ .
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Thus, % is a function of Z! alone, and the first differential equation integrates to give,
u; = blefl; where by = constant.
In the same way, we find for j =2 and 5 = 3,

- —2 —3
Ty = boe®™ ; Ty = b3e>™ ; where by, b3 = constants.

Since g,z u;, with the above solutions, we get,
Ox 1 Oz oz2  Ox 351 )
@:blem;afzzbgex;@:bgem. (iv)

Solution of the first equation of (iv) gives,
T =be” +w( Lah

and the second and third equations of (iv) give,

0 _ _

87;2 = b2€2$2 == a2€2$2 + QD(T?))
9 . _

8—; = b3€313 == a363x3 + aq.

This means that, with a1 = by,

xr = aleE1 + aQeQ52 + age%?’ + agq,
so that the general solution of (i) becomes,

:z:k—alfe‘r +a§ez‘r +al§e3x +af,

where k =1, 2, 3.
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Result 3.1.2 The Christoffel symbols are objects different from tensors, because their
components do not transform according to the law corresponding to that for a tensor
of type (0,3) or (1,2).

Result 3.1.3 We have provided that Christoffel symbols are not tensor quantities.
But in some very special cases of linear transformation of co-ordinates were agfg;m =0,
Egs. (3.7) and (3.9) reduce to give tensor law of transformations and symbols behave
like tensors. Consider a linear transformation

= a{ 7 + v ,
where a{ and b’ are constants. Thus, relations (3.7) and (3.9) becomes

_ o9zt Oxd 9k
o] = 1 Mt o o

P[5 | omen 0w
I m| i 7 oxs oz oz™'

Thus, the second term of Egs. (3.7) and (3.9) will vanish identically. If the co-ordinate
transformation is of affine i.e. 2/ = a{fl + b/, where a{ and b/ are constants, then
the Christoffel symbols are tensors. For this Christoffel symbols are sometimes called
affine tensors of rank 3.

and

Theorem 3.1.1 The transformation of Christoffel’s symbols from a group, i.e. pos-
sess the tramsitive property.

Proof: Let the co-ordinates z* be transformed to the co-ordinate system 7' and 7
be transformed to Z'. When the co-ordinates 2’ be transformed to Z', the law of
transformation of Christoffel’s symbols of second kind (3.9) is

k\_[ s ) 050202t 07" &
i jf  \pqf 0xs0zT OF  Oxs OTOT

(3.11)

When co-ordinate Z' be transformed to fi, then

(.}

{ 95 05’ 07" | oz 90
{ s } 97" 9a? 07 0z 9T’ 0T
p q | Ox® OF o7 O 0" OTF
N 9%z T OT @ oz N o 0%z
0T 0TI 0xs 0" 0T OTF  OTF 0T 0T
) Yamen o v o or 0w on o
T \p qf 07" 07 0z° ' oxox! 0T° 0T 9% | OTF 97 0T

k }(%i ol o 0T 0%*TF
(]

(3.12)
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dz® 9z' __ 0x°
G = 22 we o

Differentiating with respect to T , of the relation

0 <8$S> oFt  Ox* 0 <8§2> 9%xs

o \o7 ) o' " or on \oz" ) on'on
or
0%xs oF T Ox® 0T B 9%xs
T 0T 07 oz | OT 0z 0z 0z 0T
. Pz T oF OF Ot T oT  0%a® OT
oo 07' 0" 0x  OT 0z Oz Ox° Iz Oz O
or

0% @ OTt @ 0’zk ox" B 0% @
OT' 0T 97" Oz 0z Oz 0T OTF 0T 0T O’

(3.13)

where we have to replace the dummy index i by k in the second term on the left hand
side. Using this relation (3.13), from (3.12) we get

r | _ [ s | 0xP 0x1 oz 0%z 0T
wvf  \pqfozor 0z 0z 0T O
This shows that if we make direct transformation from z* to fi, we get the same law of

transformation. This property is called transformation of Christoffel’s symbols form
a group.

EXAMPLE 3.1.14 Let the Christoffel symbols formed from the symmetric tensors

aij(x) and b;j(x) be a{ i Zk} and b{ i Zk }, prove that the quantities

”{jik}_b{jik}

are components of a mized tensor of rank 3.

Solution: From the Eq. (3.9), we get

p | _ r @8$k n 0?x" oz?
I m |  |\i k[ oztoz™ ' oxtoz™| Oze

Hence, we may write the two results as follows, on using the above:

D B r % Ox* N 0?x" oz?
tmf, |\i kf, oztoz™ = oxloz™ ] Oxd
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D B r %836’“ n 0%x" ozP
I mf,  [\i k[, ozt oz™ = oztoz™| Ozt

Subtracting, we obtain

Lo -l -l s

which is of the form

and

—p 8.TZ a.’L’k 3§p r
Al = = 7m0 Ak
ozt 0™ Ox

; i
{j k}a‘{j k}b:Aﬂ"“

say, represents the components of a mixed tensor of type (1,2).

This equation shows that

EXAMPLE 3.1.15 If B; are the components of a covariant vector, determine whether

F;'.k — {jzk} 4 25;-Bk are components of a tensor.
Solution: The law of transformation of Christoffel symbols of the second kind is

i [ oz 871"58.%5 n oz’ 0%x™
g kJ \t s oz owozk  Oxm omi Tk

From the given relation for I‘;k, we get

i . — =1 t s Yo 2,.m ) p
FZ'_{jZk}+2}Bk={T}8x Ox 8$+81: 0%z +25?8xB

gk~ t s oz ox ozF | O™ 0TI 0T o
r ozt Oxt Ox° ozt %™
20 By| —— :
Ht s} 20 ] 02" 07 07" | 0™ omI o
L, 0% 0at 02 OF 0Pam
TS 9xr oI ok | Ox™ O oTk

From this relation it follows that Fék are not the components of a tensor due to the
presence of the second term in its right-hand side.
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3.2 Covariant Differentiation

In Chapter 1, we have already studied the algebraic operations of tensors, consisting
the so-called tensor algebra of Viy. These algebras are such that when applied to ten-
sors, they produce again tensors. But regarding differentiation the matter is somewhat
different, because although the partial differentiation of an invariant produces a tensor
of type (0,1); i.e. a covariant vector, partial differentiation of a tensor of rank > 1
does not, in general, produce a tensor. The necessity therefore, arises to introduce a
new kind of differentiation which when applied to a tensor will produce a tensor. Such
a differentiation, called covariant differentiation will be considered in this section.

It is to be noted that the word ‘covariant’ was also used to mean, independent of
the choice of co-ordinates, as in the principle of covariance of the general theory of
relativity which asserts that the laws of Physics must be independent of the space-time
co-ordinates. It seems more plausible that the name covariant differentiation is just
due to this property.

Covariant differentiation of covariant vectors: Partial differentiation of the
transformation law (1.43) of a covariant vector A; with respect to 77, we get

04 — Ox" 0A 871}[ kaA . using chain rule
ol oF ol oz | oFem & ’
_0xkboul 04, odt [ p ), 0amOx" [k
T o7 o ool oxP i g oz' oz

}Ak; from (3.10)

m n

or

OA; | dxk  9Ag axk% B k oz™ Jx"
o \ijfom* T oxl oriom \m n| o o *

Replacing the dummy indices k and [ in the first term of the right-hand side by ¢ and
s, respectively, and the dummy indices k, m,n in the second term of the right-hand
side by r,t and s, respectively, we get

0A; _{ D }fhtkA 0A; Oxt Ox* _{ r }8ajt8x5
i J

T oz T drs o oz \t s| oz o "
0A; r oxt 0x*
= |— — — . .14
[8x5 {t S}AT:| ozt o7 (3.14)

From Eq. (3.14) it follows that the N2 function gﬁﬁ -

¢ s A, containing the partial

derivatives of a covariant vector and the Christoffel symbols of second kind are the
components of a covariant tensor of type (0,2), known as the covariant derivative,
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denoted by A;s. This tensor is defined to be the covariant derivative of a covariant
vector with components A; of type (0,1). Thus,

. 814,5 T
Aps = 55 = {t . } A, (3.15)

In other words, when the components of gﬁg are corrected by subtracting certain
linear combinations of the combinations A;, the result is a tensor (and not just an

affine tensor).

(i) The two covariant indices are noted ¢ and, s to emphasise that the second index
arose from an operation with respect to the sth co-ordinate.

(ii) The covariant derivative and the partial derivative coincide when the g;; are
constants (as in a rectangular co-ordinate system).

(iii) The function A; ; is said to be the jth covariant derivative of the vector A;.

EXAMPLE 3.2.1 Show that if the covariant derivative of a covariant vector is sym-
metric, then the vector is gradient.

Solution: If the covariant derivative of a covariant vector is symmetric, then A; ; =
A;;. Hence, from Eq. (3.15), we get

04; m 0A; m
L I e A
oxJ {z j} ox? {] z}

Therefore
0A;  0A; 0A; j_('?A] »
oxri  Oxt =0 = oxJ du 8z’d
or
aA; = 2 (4409
ozt
or

A_/3 Adxj— /Adx

But [ Ajdazj is a scalar quantity, let it be ¢. Hence, we get from above

¢
ozt

A = = ¢ = grado.

Covariant differentiation of covariant tensors: Now, let A;; be the components
of a tensor of the type (0,2), then by, tensor law of transformation,

— oz 0x7
R T
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Differentiating this relation with respect to T", we get

Oy _ 040" 00 00 |t 00 ot O
o Ozh 0T 0P OTY Y oz TP 0T Y oz 9T 0T

_ 0A;; 0z 92’ % . A% ox' (s O™ O™ i
- Ozh oz 0TP 07T Yozl |0z | r p oz" 0zP \'m n

ozt | 027 [ ¢ ox" 0x" [ 5 .
i [ax{ q} o7 o {u }] using Eiq- (3.10)

T Newar, T \orow,  o4y0ut o o
“\r pfozeozs Y rqfozP ozt Y 9zt 0T OTP 0T

i\ oamostort o f ) 0xi0rtoa
m n | 0z" ozP oxd” " uw v [ ozP oz T
Replacing the dummy indices ¢, m, n in the second term of the right-hand side by ¢, h, ¢

respectively and the dummy indices j, u, v in the third term of this side by ¢, h and j
respectively, we get

oz rpfozior Y \r qfow ozt Y duh 97" Ozp o7

LtV oetaadadh f ot Ot dad Out
Y\ h i oz ozt 0F" “Nh j[ ozr ozt OF"

azpq _ { S }amﬂ al'Z { t }81‘1 8xj 814” a$h 8:::’ amj

or

0A;; t t ozt Oxd Ozl
- [axh _Atj{z' h}_A“{j hH oo o (>16)

; th } — Ay {j th } are the N2 components

of a tensor of the type (0,3). This tensor is defined to be the covariant derivative of
the covariant tensor with components A;; and is denoted by A;; ;. Thus,

8Aij t t
Az‘j,h— 78$h _Atj {Z h} _Azt{j h} (3'17)

Thus, the covariant derivative of a tensor of the type (0,2) is a tensor of type (0, 3).

From Eq. (3.16) it follows that % — Ay {
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Covariant differentiation of contravariant vectors: Let A’ be the component of

contravariant vector, then by the law of transformation Eq. (1.40), we get, A¥ = ‘ggff

Differentiating both sides with respect to =7 we get
oAb _ oA omr 0rt | i P2* owr
oxi Oz Oxd O 0T OzP O

OA' oz 0z* 0w [9xk [m | 0at0x® [ k .
= o ow 0w 1 oa [amm{ ) G Lt |0 B (310

OA o1P 0xk 07 0k [ m K
ozP 0xI 0T oxd 0™ |1 p t g

oA [ RN _[OA ] i || oaroat
oxJ t il  |ozP m p || 0z 0%’

where we have to replace the dummy index ¢ by m and m by 7. Multiplying both sides

by%%weget
A i
A
8fp+ {m p}]

or

o 0w [04 (K \] _ o0t 0 o ot
OzP Oxk | Ox7 t il oz oxk oxi oFt

OA o i\, 00w oa dut
oz mpf[ * 9zP 0k 917 o

or
OA o ox' T [9AF k
22 LA A Ay D N 1
o {m p} OzP Oxk [6:69 + {t JH (3.18)

From Eq. (3.18) it follows that %—ﬁ + At{ } are the N? components of a mixed

t
tensor of type (1,1) and is denoted by Akj This tensor is defined to be the covariant
derivative of the contravariant vector with components A?. Therefore,

AP k
E _ t
A% = 9 + A {t j}' (3.19)
Similarly, the covariant derivative of a contravariant tensor of order two is given by
the formula

, DA 1 k ;

ik lk il
A’j_amj+{jl}A +{jl}A. (3.20)

From Eq. (3.20) it follows that, the covariant derivative of a tensor of type (2,0) is a
tensor of type (2,1).
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EXAMPLE 3.2.2 A fluid in motion in a plane has the velocity vector field given by
vl = (22,y?) in Cartesian co-ordinates. Find the covariant derivative of the vector
field in polar co-ordinates.

Solution: Let us choose the usual polar co-ordinates and 