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Preface

This book is designed primarily to supplement standard texts in elementary
differential equations. All types of ordinary and partial differential equations
found in current texts. together with the various procedures for solving
them, are included. Since the beginning student must be concerned largely
with mastering the methods of solving a variety of different type equations,
it is felt that there is need for a comprehensive problem book such as this.
It should prove also of equal service to practicing engineers and scientists who
feel the need for a review of the theory and problem work in this increasingly

important field.

Each chapter, except for the third which is entirely expository. begins with
a brief statement of definitions. principles. and theorems. followed by a set of
solved and supplementary problems. These solved problems have been selected
to make a careful study of each as rewarding as possible. Equal attention has
been given to the chapters on applications. which include a wide variety of

yroblems from geometry and the physical seiences.
I ) ) phy

Much more material is presented here than can be taken up in most first
courses. This is done not only to meet any choice of topies which the instructor
may make. but also to stimulate further interest in the subject and to provide
a handy book of reference. However. this book is definitely not a formal text-

“eet on” with the problems, those

book and. since there is always a tendency to
being introduced to the subject for the first time are warned against using it as

a means of avoiding a thorough study of the regular text.

The author is pleased to acknowledge his indebtedness to Mr. Louis Sand-
ler. associate editor of the publishers. for invaluable suggestions and critical.

review of the entire manuscript.

FFrRANK AYRES, JR.
Carlisle, Pa.
September, 1952 -
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CHAPTER 1

Origin of Differential Equations

A DIFFERENTIAL EQUATION is an equation which involves derivatives. For example,

d
1) Y- oxs 5 5) (yn? + (v + 3y = x°
dx
d? d 3 2
2) S22+ 3% 49y =0 g) 2% - , + x2%
ds? dx 3x oy
' _ 2 2
3) Xy +y 3 7) 9’z + _a_Z = x2 + y.
ax? dy?

4) y" + 2(y”)2 +y' = cos x

If there is a single independent variable, as in 1)-5), the derivatives are
ordinary derivatives and the equation is called an ordinary differential equa-
tion.

If there are two or more independent variables, as in 6)-7), the deriva-
tives are partial derivatives and the equation is called a partial differen-
tial equation.

The order of a differential equation is the order of the highest derivative
which occurs. Equations 1), 3), and 8) are of the first order; 2), 5), and 7)
are of the second order; and 4) is of the third order.

The degree of a differential equation which can be written as a polynomial
in the derivatives is the degree of the highest ordered derivative which then
occurs. All of the above examples are of the first degree except 5) which is
of the second degree.

A discussion of partial differential equations will be given in Chapter 28.
For the present, only ordinary differential equations with a single dependent
variable will be considered.

ORIGIN OF DIFFERENTIAL EQUATIONS.
a) Geometric Problems. See Problems 1 and 2 below.
b) Physical Problems. See Problems 3 and 4 below.

¢) Primitives. A relation between the variables which involves n essential
arbitrary constants, as y = x*+Cx or y = Ax?2+ Bx, is called a primitive.
The n constants, always indicated by capital letters here, are called essen-
tial if they cannot be replaced by a smaller number of constants. See Prob-
lem 5.

In general, a primitive involving n essential arbitraryconstants will give
rise to a differential equation, of order n, free of arbitrary constants. This
equation is obtained by eliminating the n constants between the (n +1) equa-
tions consisting of the primitive and the n equations obtained by differen-
tiating the primitive n times with respect to the independent variable. See
Problems 6-14 below.
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ORIGIN OF DIFFERENTIAL EQUATIONS

SOLYED PROBLEMS

A curve is defined by the condition that at each of its points (x,y), y
its slope dy/dx is equal to twice the sum of the coordinates of the
point, Express the condition by means of a differential equation,
dy Px,y)
The differential equation representing the condition is E; = 2(x+y). x

0]

A curve is defined by the condition that the sum of the x- and y-intercepts of its tangents is
always equal to 2., Express the condition by means of a differential equation,

The equation of the tangent at (x,y) on the curve is Y-y = §%<xu.x) and the x- and y-

intercepts are respectively X = x-y gﬁ and Y = y-x gi. The differential equation represent-
Y

ing the condition is X + Y =‘x—yg—; + y—x'Z—i’ =2 or x(i—i)2 - (x+y~ Z)gz +y=0.
X

One hundred grams of cane sugar in water are being converted into dextrose at a rate which is
proportional to the amount unconverted., Find the differential equation expressing the rate of
conversion after ¢ minutes.

Let q denote the number of grams converted in ¢t minutes, Then (100 - q) is the number of grams
unconverted and the rate of conversion is given by gg = k(100 -q), k being the constant of

proportionality.

A particle of mass m moves along a straight line (the x-axis) while subject to 1) a force pro-
portional to its displacement x from a fixed point O in its path and directed toward O and 2)
a resisting force proportional to its velocity. Express thetotal forceas a differential equa-
tion,

The first force may be represented by —k,x and the second by —k23§ » where k, and k, are

factors of proportionality.
d’x dx
The total force (mass x acceleration) is given by m - = ~kix ~- kg E—-
dt t

B
In each of the equations a) y:= x2+A+B, b y = At , ¢)y=A+ 1nBx showthatonly one
of the two arbitrary constants is essential.

a) Since A +B is no more than a single arbitrary constant, only one essential arbitrary con-
stant is involved.

x+B

B
b) y = Ae = Aee’, and Ae® is no more than a single arbitrary constant.

¢) y=A+1InBx = A+ 1InB+ 1lnx, and (A + 1n B) is no more than a single constant.

Obtain the differential equation associated with the primitive y = Ax® + Bx +C.

Since there are three arbitrary constants, we consider the four equations
3
y = A2+ BrsC,  DooareB, oo, 4o,
dx dx? dx3
diy
The last of these -—;. being free of arbitrary constants and of the proper order, is the
dx



7.

8.

10.

ORIGIN OF DIFFERENTIAL EQUATIONS

required equation.

Note that the constants could not have been eliminated between the first three of the above
equations., Note also that the primitive can be obtained readily from the differential equa-
tion by integration,

Obtain the differential equation associated with the primitive z°y’ + x°y’ = C.

Differentiating once with respect to x, we obtain (2xy5 + 3x2y2:—i) + (3x2y5+ 5x5yq %) = 0

or, when x% # 0, (2y + 3x le) + xy2(3y + Sx%) = 0 as the required equation.

When written in differential notation, these equations are
1) (2xy5dx + 3x2y2dy) + (3x2y5dx + 5x3yudy) =0
and 2) (2ydx + 3xdy) + xyz(Sydx + 5xdy) = 0.

Note that the primitive can be obtained readily from 1) by integration but not so readily
from 2), Thus, to obtain the primitive when 2) is given, it is necessaryto determine the fac--
tor xy2 which was removed from 1).

Obtain the differential equation associated with the primitive y = A cos ax + B sin ax, 4
and B being arbitrary constants, and a being a fixed constant.

Here fi—}—l = —Aa sin ax + Ba cos ax
dx
42
and &Y - _Ad® cos axr - Ba? sin ax = -a2(A cos ax + B sin ax) = —azy.
dx2
a2
The required differential equation is -—% + a2y = 0.
dx

Obtain the differential equation associated with the primitive y = Ae?* v B+ C.

d d> &
Here X - ope? 4 B, S . 44 + B, Y - gae®™ + B~
dx dx? 3
3 2 2 3 2 2
Then dy _dy . 4Ae?% dy _dy _ 24¢2*, and dy _dy | 2(‘1_1 _ ‘il),
ded  dx? dx?  dx ded  di? dx?  dx
&> d° d
The required equation is =% - 32X 4 24 - g,
dx5 dx2 dx

2
Obtain the differential equation associated with the primitive y = Ciesx + Cye x Csex.

d
Here 2. 3C1e3x + 2C2e2x + Cgex, 4y . 9C1e5x + 4C2e2x + Csex,
dx dx2
5}’ 3x 2x x
and —= = 27C e + 8C,e " + Cae
dx?

The elimination of the constants by elementary methods is somewhat tedious. If three of
the equations are solved for C,, C,, C;, using determinants, and these substituted in the
fourth equation, the result may be put in the form (called the eliminant):



1 ORIGIN OF DIFFERENTIAL EQUATIONS
eﬁx e2x ex y 111y
300°  2e°7 F y! . 3 2 1 y! 6
o = e = ey 1yt -2y 12y = 0.
9eX 4”& yn 9 4 1 y”
27677 ge? &y 27 8 1 y"
3 2
The required differential equation is &2 - 6 %Y « 11 % _ ¢ - 0.
dx3 dx? dx

11. Obtain the differential equation associated with the primitive y = Cx’ + ¢t

. dy 1 dy 2 .2 1 dy 2 1 dyz2
Since —= = 2Cx, C === and = C ce - X e (=yE,
o X o de n y X+ % Tr x" + 4x2 (dx)
) . . . . dy 2 3 dy 2
The required differential equation is (E—x) + 2x E - 4xy = 0.

Note. The primitive involves one arbitrary constant of degree two and the resulting dif-
ferential equation is of order one and degree two,

12. Find the differential equation of the family of circles of fixed radius i with centers on the

x-axis,
The equation of the family is (x—C)2 + y2 = r2,
C being an arbitrary constant.
dy dy
Then (x-C)+ y = =0, x~C =~y -%, and the
( ) Y o Y ax
. . . . 2 dy 2 2 2
differential equation is y (Ix) +y = 1.

13. Find the differential equation of the family of parabolas with foci at the origin and axes
along the x-axis,

/Y
F—zA*\
x? +y2 = (24 +x)?

y2 = 4A(A+x)

('A-O)/

y2 = 4A (A + x)

The equation of the family of parabolas is y2 = 4A(A + x).
Then yy' = 24, A =3yy’, and yz = 2yy ' (syy' + 2).

dy2 oy o,

The required equation is =
q y(dx) N
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ORIGIN OF DIFFERENTIAL EQUATIONS

Form the differential equation representing all tangents to the parabola y2 = 2x,
At any point (A,B) on the parabola, the equation of the tangent is y-B = (x-A4)/B or,

since A = 3B2, By = x + 4+B?, Eliminating B between this and By’ = 1, obtained by differenti-
ation with respect to x, we have as the required differential equation 2x(y')? - 2yy'+1=0.

SUPPLEMENTARY PROBLEMS

Classify each of the following equations as to order and degree.

a) dy + (xy - cos x)ydx = 0 Ans. Order one; degree one

2
b L4 g Y

=0 Ans, Order two; degree one
dt? dt C
ey y" e xy” + 2y(y’)2 +xy =0 Ans, Order three; degree one
d% dv dv 2
dy —— — (-—) = Ans, Order-two; degree one
dx2 dx.
3 2
e) (51_3)2 - ((—1—2)4 + v =0 Ans. Order three; degree two
dv? dv?
H e’ - xy"+y=0 Ans., Order three; degree does not apply
g) vp'+p = sin O Ans. Order one; degree one
By y' +x = (y—xyh)™ Ans. Order one; degree four

1) d,o = / (i'lf)z Ans. Order two; degree four
d6?

Write the differential equation for each of the curves determined by the given conditions.

a) At each point (x,y) the slope of the tangent is equal to the square of the abscissa of the
point, Ans. y' = x?

b) At each point (x,y) the length of the subtangent is equal to the sum of the coordinates of
the point. Ans. y/y' = x+y or (x+y)y' =y

¢) The segment joining P(x,y) and the point of intersection of the normal at P with the x-axis

is bisected by the y-axis. Ans. y + xgx— =3y or yy' +2x=0

d) At each point (p,0) the tangent of the angle between the radius vector and the tangent is

equal to 1/3 the tangent of the vectorial angle. Ans. p gﬁ = % tan 6
o

e) The area bounded by the arc of a curve, the x-axis, and two ordinates, one fixed and one
variable, is equal to twice the length of the arc between the ordinates.

Hint: f ydx = f¢1+(y) Ans., y = 21/1+(y’)2

ot



17.

18.

19.

20.

21.

22.

ORIGIN OF DIFFERENTIAL EQUATIONS

Express each of the following physical statements in differential equation form,
a) Radium decomposes at a rate proportional to the amount Q present. Ans. dQ/dt = —kQ

by The population P of a city increases at a rate proportional to the population and to the
difference between 200,000 and the population, Ans., dP/dt = kP (200,000 - P)

¢) For a certain substance the rate of change of vapor pressure (P) with respect to temper-
ature (T) is proportional to the vapor pressure and inversely proportional to the square

of the temperature, Ans. dP/dT = kP/T?

d) The potential difference E across an element of inductance L is equal to the product of L

and the time rate of change of the current i in the inductance. Ans. E =L Z—z
2
e) Mass x acceleration = net force, Ans. m d—v =F or m d_s = F
dt dt?

Obtain the differential equation associated with the given primitive, A and B being arbitrary
constants,

ay y = Ax Ans. y' = y/x e) y = sin(x+A4) Ans. (y’)2 =1 - y2
by y =Ax + B Ans, y" =0 fry=A¢" +B Ans. y" =y’

c)y = T o pe” Ans. Y' =y g) x = A sin(y+B) Ans. y" = x(y'y

dy y = A sin x Ans. y' =y cotx hy Iny = Ax> + B

Ans. xyy" - yy' - x(y'Y =0

Find the differential equation of the family of circles of variable radii r with centers on
the x-axis., (Compare with Problem 12,)

Hint: (x—-A)® +y2 = r%, A and r being arbitrary constants. Ans. yy” + (y’)2 +1=9

Find the differential equation of the family of cardiods p = a(l — cos 8).
Ans. (1 - cos @)dp = p sin 6 dB

Find the differential equation of all straight lines at a unit distance from the origin,

Ans. (xy'-y)? =1+ (y')

Find the differential equation of all circles in the plane.

Hint: Use x°+y°~24x-2By+C = 0. Ans. [1+ (2 1y" = 3y'(y"Y? = 0



CHAPTER 2

Solutions of Differential Equations

THE PROBLEM in elementary differential equations is essentially that of recovering
the primitive which gave rise to the equation. In other words, the problem of
solving a differential equation of order n is essentially that of finding a
relation between the variables involving n independent arbitrary constants
which together with the derivatives obtained from it satisfy the differential
equation. For example:

Differential Equation Primitive
dly \ .
1) — =0 y =Ax? + Bx +C (Prob.6, Chap.1)
dx’>
2) gix - Gng + lng -6y =0 =C,e" + C,e + C, eF (Prob. 10, Chap.1)
dx dx? dx y=" 2 5 - 20, Lhap.
3) yz(j—)yf +y2=r? (x-=C)2+ y?=r? (Prob. 12, Chap.1)

THE CONDITIONS under which we can be assured thata differential equation is solv-
able are given by Existence Theorems.

For example, a differential equation of the form y’=g(x,y) for which
a) g(x,y) 1s continuous and single valued over a region R of points (x,y),
by 28

oy
admits an infinity of solutions f(x,y,C) =0 (C, an arbitrary constant) such
that through each point of R there passes one and only one curve of the fam-
ily f(x,y,C) =0. See Problem 5.

exists and is continuous at all points in R,

A PARTICULAR SOLUTION of a differential equation is one obtained from the primitive
by assigning definite values to the arbitrary constants. For example, in 1)
above y=0 (A=B=C=0), y=2x+5 (A=0, B=2, C=5), and y=x?2+2x+3 (4
=1, B=2, C=3) are particular solutions.

Geometrically, the primitive is the equation of a family of curves and a
particular solution is the equation of some one of the curves. These curves
are called integral curves of the differential equation.

As will be seen from Problem 6, a given form of the primitive may not in-
clude all of the particular solutions. Moreover, as will be seen from Prob-
lem 7, a differential equation may have solutions which cannot be obtained from
the primitive by any manipulation of the arbitrary constant as in Problem 6.
Such solutions, called singular solutions, will be considered in Chapter 10.

The primitive of a differential equation is usually called the general so-
lution of the equation. Certain authors, because of the remarks in the para-
graph above, call it a general solution of the equation.



SOLUTIONS OF DIFFERENTIAL EQUATIONS

A DIFFERENTIAL EQUATION % = g(x,y) associates with each point (x,,y,) in the re-

1.

gion R of the above existence theorem a direction m = dy = g(xy,¥o) .
dx | (o, Yo)
The direction at each such point is that of the tangent to the curve of the

family f(x,y,C) =0, that is, the primitive, passing through the point.

The region R with the direction at each
of its points indicated is called a direc-
tion field. In the adjoining figure, a num-
ber of points with the direction at each is
shown for the equation dy/dx = 2x. The in-
tegral curves of the differential equation
are those curves having at each of their
points the direction given by the equation.
In this example, the integral curves are
parabolas.

Such diagrams are helpful in that they
aid in clarifying the relation between a
differential equation and its primitive, but

sin the integral cu re nerall & R L
ce the integ rves a gene y Smw_ﬂ'///ii/// \\ \ slope =4

quite complex, such a diagram does not aid love - 2 S
materially in obtaining their equations. owe - siope=

slope = 0

SOLVED PROBLEMS

Show by direct substitution in the differential equation and a check of the arbitrary constants
that each primitive gives rise to the corresponding differential equation.
2
a) y = Cysinx + Cox (1-xcotx)‘—i—y—xd—y+y=o
dx? dx
x x -x 2 x d’ d? dy x
by y = Cie” + Coxe” + Cge ~ + 2x'e -—Z———-Z——+y=86
i dx? A
d 45
a) Substitute y = Cy sinx + Cox, d—y = Cy cosx + Oy, -——% = -Cy;sinx in the differential equa-
X

tion to obtain
(1 - x cotx)(~C, sinx) -~ x(Cy cosx + Cp) + (Cysinx + Cox) =

-Cysinx + Cyxcosx ~ Cixcosx — Cox + Gy sinx + Cox = 0.

The ordér of the differential equation (2) and the number of arbitrary constants (2) agree,

b) y = Ciex + szex + Cae_x + szex,
y' = (Cy + Cpe” + Coxe® - Cge™ ™ + wle” + 4xe”,
y' = (Cy+ 20" + Coxe® + Cge* + 2™+ gxe® + 4e”,
Yy = (Cy+3C)e" + Coxe” - Cge™* + 2e® + 120e® 4 1267,
and y" - y" — y' + y = 8¢, The order of the differential equation and the number of arbitrary

constants agree.

Show that y = 2x+»Cex is the primitive of the differential equation gz -y =2(1-x) and find
X

the particular solution satisfied by x=0, y =3 (i.e., the equation of the integral curve through
0,3).
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SOLUTIONS OF DIFFERENTIAL EQUATIONS 9

Substitute ¥ = 2x + Ce™ and Z—% = 2+ Ce” in the differential equation to obtain 2+Cex—(2x+ Cex)
= 2-2x, When x=0,y=3, 3= 2:0+Ce® and C=3. The particular solution is y = 2x+ 3e”,
d? d
Show that y = Clex+ C282x+ x 1is the primitive of the differential equation —}2' - 3d—z + 2y =
dx
2x -3 and find the equation of the integral curve through the points (0,0) and (1,0).
d d’y

Substitute y = Cye” + Cpe "+ x, d—z = Cre™t 20,67 11, =2 - Cre® +4Cpe?™  in the dif-
dx

ferential equation to obtain Clex+ 4C2e2x— 3(C1ex+ 2C2e2x +1) +2(Cre™+ C2e2x+ x) = 2x -3,

When x =0, y=0: Cy+C, = 0. When x =1, y=0: C1e+C2e2 = -1,

. . 54
and the required equation is y = x + ——— .

Then C; = -C, =
82—8 e —é

Show that (y—C)Z: Cx is the primitive of the differential equation t}:c(g-i/)2 + 2:c3—y -y =0
X

and find the equations of the integral curves through the point (1,2).

dy dy c
H 2y-0) X = ¢ ¢ ¥ = .
ere (y >dx an o 5 -0
c? c CPx+ Cx(y =C) = y(y =€)’ y[Cx ~ (y-C)?]
Then 4x + 2x -y = = = 0.
4(y-0)? 2(y -0 (y-0? (y -0)?

When x =1, y=2: (2—C)2=C and C =1, 4,

2
The equations of the integral curves through (1,2) are (y - 1)2 =x and (y - 4) = 4x.

The primitive of the differential equation % =
tegral curve through a) (1,2) and b) (0,0).

R

is y = Cx. Find the equation of the in-

2x.

it

a) When x =1, y=2: (=2 and the required equation is y

b) When x =0, y=0: C is not determined, that is, all of the integral curves pass through the
origin. Note that g(x,y) = y/x is not continuous at the origin andhence the existence theorem
assures one and only one curve of the family y = Cx through each point of the plane except the
origin,

Differentiating xy = C(x-1)(y-1) and substituting for C, we obtain the differential equa-
tion

dy dy xy dy
2oy = {a-DF v y-1) = — L {x-nPiy-1)
a7 PR (x-1)(y-1) Gt
or 1) x(x—l)ﬂ + y(y-1) = 0.
dx

Now both y=0 and y =1 are solutions of 1), since, for each, dy/dcx=0 and 1) is satisfied,
The first is obtained from the primitive by setting C =0, but the second y =1 cannot be obtained
by assigning a finite value to C. Similarly, 1) may be obtained from the primitive in the form
Bxy = (x -1)(y ~1). Now the solution y =1 is obtained by setting B=0 while the solution y=0
cannot be obtained by assigning a finite value to B. Thus, the given form of a primitive may
not include all of the particular solutions of the differential equation. (Note that x =1 is
also a particular solution.)
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Differentiating y = Cx+2Cz, solving for C = C-IZ ,» and substituting inthe primitive yields the

differential equation

dy 2 dy
n ¥ 9y oy - .
) ( )+x(!) Y 0

. 1 2 dy
Since = - = —-
Y g% g

Now the primitive is represented by a family of straight lines and it is clear that the

equation of a parabola cannot be obtained by manipulating the arbitrary constant. Such a solu-
tion is called a singular solution of the differential equation,

= - %x satisfies 1), P 8y = 0 is a solution of 1),

Verify and reconcile the fact that y = Cycos x + Cosinx and y = A cos(x +B) are primitives

2
of (i—y+y = 0.
dx?
Fromy = C, cosx + Cy, sinx, y’= -C, sinx+ C,cosx and .
y"= -Cycosx ~ C,sinx = -y or é-Z+y = 0.
dx?

"

Fromy = Acos(x+B), y/= -Asin(x+B) and y"= ~Acos(x+B) = ~y,

Now y = Acos(x+B) = A(cosx cosB - sinx sinB)
= (AcosB)cosx + (~Asin B) sinx = C,cosx + Cosinx.
2 x
Show that 1n x? + 1ny—2 = A+x may be written as y? = Be”.
X
2 2 2 2 2 2 A+ x 4 x x
In x +1an-=1n(x y——-2)=lny = A+x. Then y° = e = e+e = Be.
X x

Show that Arc sinx - Arc siny = A may be written as le—y2 -y 1-x2 = B.
sin(Arc sin x - Arc sin y) = sin 4 = B,

Then sin(Arc sin x) cos(Arc sin y) - cos(Arc sin x) sin(Arc sin y) = x|/1—y2 ~-yv 1-x2 = B,

Show that 1n(l+y) + In(l+x) = A may be written as xy+x+y ="C,
In(l+y) + In(l+x) = In(l+y)(l+x) = A.

Then (1+y)(1+x)=xy+x+y+1:eA=B and xy+x+y =B~1=20C,

Show that sinh y + coshy = Cx may be written as y = lnx + 4,

Here sinhy + coshy = ‘g(ey—e-y) + é(ey+ e-y) = ¢ = Cx.

Then y = InC+ 1lnx = A+ Inx,
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SUPPLEMENTARY PROBLEMS

Show that each of the following expressions is a solution of the corresponding differential
equation, Classify each as a particular solution or general solution (primitive).

13. v = 2, xy! = 2y. Particular solution
2 2 N

4. = +y =¢, yy'+ x = 0. Primitive
15, y=Cx+ C, y =y + (9N Primitive

2 3 5., 2 2 . .
16. (1-x)y ==x7, 2"yl = y(y  +3x7). Particular solution
17. y = '+, y' -~ 2y’ +y =0, Particular solution
18. y = Cyx + Cye”, (x-1)y" =2y’ +y =0. General solution
19. vy = C1ex + Cge ™, y' -y =0. General solution
20. y =Cie” + Coe ™ + x - 4, y' -y =4 -2 General solution
21. y = Ciex + C.‘,ezx, y" -3y’ + 2y = 0. General solution

22, y = Clex + CQezx + xzex, y' - 3y" + 2y = 2ex(1-x). General solution



CHAPTER 3

Equations of First Order and First Degree

A DIFFERENTIAL EQUATION of the first order and first degree may be written in the form
D H(x,y)dx + N(x,y)dy = 0.

EXAMPLE 1. a) 3—;’ + ij—i = 0 may be written as (y +x)dx + (y-x)dy =0 in

which ¥(x,y) =y +x and N(x,y)=y-x.
b) g—i = 1+x’y may be written as (1+x’y)dx —dy=0 in which
M(x,y)=1+x’y and N(x,y)=-1.
If M(x,y)dx+N(x,y)dy is the complete differential of a function u(x,y),

that i i
at is, if M(x,y)dx + N(x,y)dy = du(x,y).

1) is called exact and u(x,y) = C is its primitive or general solution.

EXAMPLE 2. 3x°y’dx + 2y dy =0 is an exact differential equation since
3x"y?dx + 20y dy = d(x’y®). Its primitive is x>y = C.
If 1) is not exact but
£, MM (x,y)dx + N(x,y)dy} = du(x,y),
£(x,y) is called an integrating factor of 1) and w(x,y)=C is its primitive.
EXAMPLE 3. 3y dx +2x dy =0 is not an exact differential equation but when

multiplied by &(x,y) = x’y, we have 3x?y%dx + 2x’y dy = 0 which is exact. Hence,
the primitive of 3y dx +2xdy =0 is x’y? = C. See Example 2.

If 1) is not exact and no integrating factor can be found readily, it may
be possible by a change of one or both of the variables to obtain an equation
for which an integrating factor can be found.

EXAMPLE 4. The transformation x = t-y, dx = dt -dy, (i.e., x+y = t¢t),

reduces the equation (x+y +D)dx + (2x+ 2y +3)dy = 0
to (t+1)(dt ~dy) + (2t +3)dy = 0
or (t+1)dt + (t+2)dy = 0.

By means of the integrating factor , 12 the equation takes the form

dy + 22l dysde- L ar - o,
t+2 t+2
Then y+t-1n(t+2) =C
and, since t = x +y, 2y + x - In(x+y +2) =C.

Note. The transformation x+y+1=t or 2x+2y +3=2s is also suggested by
the form of the equation.

12
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A DIFFERENTIAL EQUATION for which an integrating factor is found readily has the

form
2) £i(x)8,(y)dx + fo(x)-6.(y)dy = 0.
By means of the integrating factor —————l————— » 2) 1is reduced to
fz(x)’gz()’)
f
2") L Gy 80D G
£, (x) £2(y)
whose primitive is
fl(X)dx + g1(}’)dy - C.
f2(x) gQ(Y)

Equation 2) is typed as Variables Separable and in 2') the variables are sep-
arated.

EXAMPLE 5. When the differential equation
(3x%y —xy)dx + (2x5y2+x5yq)dy =0

is put in the form y(8x%~x)dx + x> (2y° +y*)dy = 0

it is seen to be of the type Variables Separable. The integrating factor —l;

yx

reduces it to (% - J;)dx + (2y +y’)dy = 0 in which the variables are sepa-
X

rated. Integrating, we obtain the primitive

1 2, 1 v _
31nx+)—(+y+zy—c.

IF EQUATION 1) admits a solution f(x,y,C) = 0, where C is an arbitrary constant,
there exist infinitely many integrating factors £ (x,y) such that

E(x,){M(x,y)dx + N(x,y)dy} = O

is exact. Also, there exist transformations of the variables which carry 1)
into the type Variables Separable. However, no general rule can be stated here
for finding either an integrating factor or a transformation. Thus we are
limited to solving certain types of differential equations of the first order
and first degree, i.e., those for which rules may be laid down for determin-
ing either an integrating factor or an effective transformation.

Equations of the type Variables Separable, together with equations which
can be reduced to this type by a transformation of the variables are con-
sidered in Chapter 4.

Exact differential equations and other types reducible to exact equations
by means of integrating factors are treated in Chapter 5.

The linear equation of order one

3) % + P(x).y = 0(x)

and equations reducible to the form 3) by means of transformations are con-
sidered in Chapter 6.
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These groupings are a matter of convenience. A given equation may fall into
more than one group.

EXAMPLE 6. The equation xdy -y dx=0 may be placed in any one of the
groups since

a) by means of the integrating factor 1/xy the variables are separated; thus,
dy/y — dx/x =0 so that lny —lnx =1lnC or y/x = C.

b) by means of the integrating factor 1/x%2 or 1/y? the equation is made ex-

act;thus,wzo andZ:C or M:O and_{:C“
x?2 X y2 y
y__ 1 _¢.
x c,
c) when written as ;i_y -1 Yy = 0, it is a linear equation of order one.
X ). ¢

Attention has been called to the fact that the form of the primitive is
not unique. Thus, the primitive in Example 6 might be given as

a) Iny - Inx = 1n C, b) y/x = C, c) y = Cx, d) x/y = K, etc.

It is usual to accept any one of these forms with the understanding, already
noted, that thereby certain particular solutions may be lost. There is an
additional difficulty!

EXAMPLE 7. It is clear that y=0 is a particular solution of dy/dx =y or
dy-y dx =0. When y #0, we may write dy/y —dx=0 and obtain lny-x=1n C
with C#0; in turn, this may be written as y=Ce*, C#0. Thus, to include
all solutions, we should write y=0; y=Ce* C#0. But note that y = Ce¥,
free of the restrictions imposed on y and C, includes all solutions.

This situation will arise repeatedly as we proceed but, as is customary,
we shall refrain from pointing out the restrictions; that is, we shall write
the primitive as y = Ce*, with C completely arbitrary. In defense, we offer
the following observation. Let us multiply the given equation by e~* to ob-
tain e™*dy - ye™®dx = 0 from which, by integration, we get e*y = C or
y = Ce*. In this procedure, it has not been necessary to impose any restric-
tion on y or C.



CHAPTER 4

Equations of First Order and First Degree

VARIABLES SEPARABLE AND REDUCTION TO
VARTABLES SEPARABLE

VARIABLES SEPARABLE. The variables of the equation M#(x,y)dx + N(x,y)dy = 0 are
separable if the equation can be written in the form

1) fi(x) 6,(y)dx + f(x)-8,(y)dy = 0.

The integrating factor 1 , found by inspection, reduces 1) to the

fo(x) £2(y)

form
f X
1 ( ) ' ¥

fQ(x) gz(}’)

Mdy:(}

from which the primitive may be obtained by integration.

For example, (x—l)zydx + x2(y +1)dy = 0 is of the form 1). The integrat-
2
ing factor —l— reduces the equation to L}—(——l—)—dx + Q’_’L_l_)_ dy = 0 in which
X2Y X2 y

the variables are separated. See Problems 1-5.

HOMOGENEOUS EQUATIONS. A function f(x,y) is called homogeneous of degree n if
FOxAy) = N F(x, ).

For example:
a)y f(x,y) = x' - Xy is homogeneous of degree 4 since
FOx,Ay) = ) - P ) = X (- Xy = X f(x ).

b) f(x,y) = ey/x + tang is homogeneous of degree 0 since
f(x,\y) = ™M 4 tan >>_:Z = ¥y tani—: =N f(x,y).
X

2 . . -
x° + sinx cosy 1is not homogeneous since

fOx,hy) = A2x2 + sin(Ax) cos(hy) # N f(x,y).

c) f(x,y)

The differential equation M(x,y)dx + N(x,y)dy = 0 is called homogeneous
if M(x,y) and N(x,y) are homogeneous and of the same degree. For example,

2
x ln})—; dx + y? arc sin ;-}; dy = 0 is homogeneous of degree 1, but

neither (x2+y3)dx - (xy?-y>)dy =0 nor (x+y%)dx + (x-y)dy = 0 is a
homogeneous equation.
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The transformation v = vx, dy = vdx +x dv

will reduce any homogeneous equation to the form
P(x,v)dx + Q(x,v)dv = 0

in which the variables are separable. After integrating, v is replaced by y/x
to recover the original variables. See Problems 6-11.

EQUATIONS IN WHICH ¥(x,y) AND N(x,y) ARE LINEAR BUT NOT HOMOGENEOUS.
a) The equation (a,x+ b,y +c)dx + (a,x + byy +c,)dy = 0, (a,b,—ayb, = 0),

is reduced by the transformation

aix+b1y = t’ dy = gf_..__a]i{
bl
to the form P(x,t)dx + Q(x, t)dt = 0
in which the variables are separable. See Problem 12.

b) The equation (a;x+ by +cpdx + (a,x+ b,y +c,)dy =0, (a;b,-a,b, # 0),
is reduced to the homogeneous form
(a;x’ + byy)Ydx' + (a,x' + byy')dy’ = 0

by the transformation X = x' +h, y =yl +k

in which x=h, y=k are the solutions of the equations

ayx+by+c, =0 and a,x+b,y+c, = 0, See Problems 13-14.

EQUATIONS OF THE FORM y. f(xy)dx + x.g(xy)dy = 0. The transformation

z dy:xdz——zdx
X x2

Xy = z, y =

reduces an equation of this form to the form

P(x,z)dx + Q(x,z)dz = 0

in which the variables are separable. See Problems 15-17.

OTHER SUBSTITUTIONS. Equations, not of the types discussed above, may be reduced
to a form in which the variables are separable by means of a properly chosen
transformation. No general rule of procedure can be given; in each case the
form of the equation suggests the transformation. See Problems 18-22.

SOLVED PROBLEMS
VARIABLES SEPARABLE.

1. Solve x’dx + (y+1)2dy = 0.
The variables are separated. Hence, integrating term by term,

4 3
X, (y+1)
4 3

= Cy or 3%+ 4(y+1)3 = C.
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v 2. solve xz(y+1)dx + yz(x-—l)dy = 0.

The integrating factor N S reduces the equation to Zd+ X dy = 0.
(y+H(x-1) x-1 y+1
. . 1 1
Then, integrating (x+1 + ydx + (y~1+ ydy = 0,
x -1 y+1

'gxz + x + In(x -1) +'5y2- y+ In(y+1) = Cy,
r oyt 22— 2+ 2ln(x-1(y+1) = Ci,

and x+12+ (y-n¥+ 2lnGx -y +1) = C.

v 3, solve 4xdy - ydx = xzdy or ydx + (x2—4x)dy = 0.

The integrating factor —21— reduces the equation to —dx—— + ﬂ = 0 in which the
y(x° - 4x) x(x-4) y
variables are separated,
|
The latter equation may be written as 5% _ B dy |0 o A dx o dy o
x -4 x y x -4 x y

Integrating, In(x-4) - lnx + 4 Iny = InC or (x—4)yu = Cx.,

v 4. Solve i—z L AN x(y -3)dy = 4ydx.

x(y=-3)
. . 1 . ¥y -3 4
The integrating factor ;; reduces the equation to —'Tdy = —dx,
x
Integrating, y -3 1lny = 4 1lnx + InCy or y = ln(Clqui).

This may be written as Clxuy5 =e¢ or x“y5 = Ce’.

v B. Find the particular solution of (1+x5)dy - xzydx = 0 satisfying the initial conditions x =1,

y=2.
First find the primitive, using the integrating factor ——l—
y(1+x%)
2
Then & - X4z -0, lny - Y1n(1+2%) = €;, 3lny =1In(1+x%)+InC, ¥y =Ci+sd).
M 1+x3 3

When x =1, y=2: 25 = C(1+1), C=4, and therequired particular solution is y5 =4(1 +x5).

HOMOGENEOUS EQUATIONS.

/ 6. When Mdx + Ndy = 0 is homogeneous, show that the transformation y = vx will separate the
variables.

When Mdx + Ndy = 0 is homogeneous of degree n, we may write

Mdx + Ndy

xn{Ml(%)dx+ Nl(%)dy} = 0  whence Ml(%)dx ¥ N1(%)dy = 0.

The transformation y = vx, dy = vdx + xdv reduces this to
Myyde + Nyy{vde+xdv} =0 or {M;(v) + vNy(v)}dx + xN;(v) dv = 0

or, finally, dx + Ni(v) dv

————eee— = in which the variables are separated.
x Mi(v) + vNy(v)
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; %. Solve (15+y3)dx - 3xy2dy = 0,

The equation is homogeneous of degree 3, We use the transformation y = wvx, dy = vdx + xdv
tai
to obtain P{(1+vdydr - 3P (wdr + xdv)} =0 or  (1-20%)dx - 3Pz dy = 0
in which the variables are separable.

2
1
Upon separating the variables, using the integrating factor ——— d—x - v dv =0,

x(1-207) x 1-203

and Inx+ §1n(1-2°) =Cy, 21Inx + In(1=20") = 1InC, or x2(1-2v0) = C.
Since v = y/x, the primitive is x°(1-2y’/x’) =C or z -2y = Ca.

Note that the equation is of degree 3 and that after the transformation x5 is a factor of

the left member of 1). This factor may be removed when making the transformation,

J 8. Solve xdy — ydo-vVx*-y% dx = o.

The equation is homogeneous of degree 1. Using the transformation y =ux, dy = vdx + xdv
and dividing by x, we have

vde + xdv - vdx - V1-v2 dx =0 or xdv - V1-v% dx = 0.

When the variables are separated, using the integrating factor ! ’ dv -

le—v2 V1i-0?

Then arc sinv — Inx = InC or arc sin v = In(Cx), and returning to the original va- .

= In(Cx) or Cx = earc sin y/x.

=0,

® R

riables, using v = y/x, arc sin

® <

J 9. Solve (2xr sinh % + 3y cosh %)dx - 3x cosh % dy = 0.

The equation is homogeneous of degree 1., Using the standard transformation and dividing by

%, we have 2 sinhv dx -~ 3x coshv dv = 0,
Then, separating the variables, 2 2 - 3 C(_)Sh v dv = 0.
x sinh v

Integrating, 2 1fix - 3 ln sinhv = 1n C, 2L=C sinhsv, and x2 = C sinh’ %

v 10, Solve (2v+ 3y)dx + (y-x)dy = 0.

The equation is homogeneous of degree 1. The standard transformation reduces it to

(2+3v)dx + (v -1)(vdx + xdv) =0 or (v2+2v0+2)dx + x(v=1)dv = 0.

Separating the variables, & 4+ — ULl g o &, W2 0 2dv
o 242042 x v2+ 20 +2 w+)2+1
Integrating, Inx + $ In(v?+ 2v+2) - 2arctan(v+1) = C,
In xz(v2+ 2v+2) - 4arctan(v+1) = C, and 1n(y2+ 2xy+2x2) - darctan 22Y - C.
x

v 1. solve (1+26 M ax + 2771 - Ji)dy = 0.
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The equation is homogeneous of degree 0. The appearance of x/y throughout the equation

suggests the use of the transformation =x=wvy, dxr = vdy + ydv.

Then (1+2")(vdy + ydv) + 2" (1-v)dy = 0, (v+2%ydy + y(1+2¢%dv = 0,
v
and dy + 1+?e dv = 0.
Y v+2eU

Integrating and replacing v by x/y, Iny + In(v+2") = InC and x + 2yex/y = C.

LINEAR BUT NOT HOMOGENEOUS,

+ 12. solve (x+y)dx + (3x+3y-4)dy = 0.

- 13,

/14,

The expressions (x +y) and (3x +3y) suggest the transformation x+y = t,

o

We use y = t-x, dy = dt-dx to obtain tdx + (3t-4)(dt-dx) =
or (4-2t)dx + (3t-4)dt = 0
in which the variables are separable,

Then 2dx + "% 4t = 2dx - 3dt +

Integrating and replacing t by x+y, we have

2¢x -3t-21n(2-t) = Cy, 2c~3(x +y)~-2In(2~x-y) =C;, and x+3y+2In(2-x-y) =C,

Solve (2x -5y +3)dx — (2x +4y -6)dy = 0,

First solve 2x-5y+3 =0, 2x+4y -6 = 0 simultaneously to obtain x=h=1, y=k=1,

The transformation x=x'+ h=x"+1, dx = dx’
y=y'tk=y+1, dy=dy’

reduces the given equation to (2x'~5y’)dx’ ~ (2x'+ 4y')dy’ = 0

which is homogeneous of degree 1. (Note that this latter equation can bewritten down without
carrying out the details of the transformation.)

Using the transformation y =vx', dy'=vdd+ x'dv,

we obtain (2-5v)dx’ — (2+4v)(vdx'+ x'dv) =0, (2-"Tv —4v2)dx’— x"(2+4v)dv = 0,
!
and finally ix—- + é dv g dv = 0,
x’ 3 4v-1 3v+2

Integrating, Inx’ + %15(41; -1) + éln (v+2) = InCy or x’3(4v—1)(v+ 2)2 = C.

Replacing v by y'/x’, (dy'~x')(y'+ )’ = C,
2
and replacing x’ by x -1 and y’ by y~1, we obtain the primitive (4y—x-3)(y+22-3)" = C.

Solve (x-y-1dx + (4y+x -1)dy = 0,

Solving x-y-1=0, 4y+x-1=0 simultaneously, we obtain x=h=1, y=k=0,
The transformation x=x"+h=x"+1, dx = dx’
y=y'+k=y , dy-=dy

reduces the given equation to (x'-y’)dx’ + (4y'+x')dy’ = 0 which is homogeneous of de-
gree 1. (Note that this transformation x-1=x/, y=y’ could have been obtained by inspection,
that is, by examining the terms (x -y -1) and (4y +x -1).)
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Using the transformation y'=vx!, dy'=vde' + x'dv

we obtain (1-v)dx'+ (4v+ (v dx'+ x'dv) = 0.
! !
Then é7‘—+41}+1dv=d—-f—-+$ 8v dv + dv = 0,
x! 42 + 1 x! 42+ 402+1
2
In x! + ‘gln(4v2+ 1) + 3 arctan 2v = C,, in x'/ (41;2 +1) + arc tan2v = C,
2 2 !
In(4y’ + x' ) + arc tan oo C, and 1n[4y2+ (x—1)2] + arc tan 2y1 = C/
x! X =
FORM y f(xy)dx + xg(xy)dy = 0.
J15. Solve y(xy+1ydx + x(1+xy+x2y%)dy = O.
The transformation xy=v, y=v/x, dy = x—dl-j-—;—wif
X
reduces the equation to Z—:(u+1)dx + x(1+v+v2) f—(w—_z—v—i—if = 0
X
which, after clearing of fractions and rearranging, becomes v3 dx — x(l+v+ vz)dv = 0.
Separating the variables, we have 9 - ﬂ - il—} - ﬂ = 0.
x v v2 v
1 1 2 v .2
Then lnx + —— +>—-1lnv = (4, 2°1ln(=) - 2v -1 = (v,
21.)2 v X
and szyz Iny - 2xy -1 = szyz.

16. Solve (y-xylydx - (x+x%y)dy = 0 or y(l-xy)dx - x(1+xy)dy = 0.

AY

The transformation xy=v, y=v/x, dy = aLv-zv_g reduces the equation to
X
;(1—v)dx—x(1+v)i§-v—%ﬂ =0 or 2vdx-zx(l+v)dv = 0,
x
dx 1+v 2 x
Then 27 - dv = 0, 21lnx -lnv-v = 1In C, 7_=Cev. and x=Cyey

! 17. solve (1—xy+x2y2)dx + (xsy—xz)dy =0 or  y(l-xy+ xzyz)dx + x(xzyz—xy)dy = 0.

The transformation xy=v, y=v/x, dy = x—d-li:z—vix— reduces the equation to
x
5(1—v+v2)dx+x(v2—v)ﬂli—-_2—v—dj =0 or vdx+x(v2—v)dv = 0.

x

Then d.?x + (v-1Ddv = 0, Inx +3v2-v =C, and Inx = =xy- %x"’y'Z + C.
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MISCELLANEOUS SUBSTITUTIONS.
J18. solve % = (y-4x)) or dy = (y-4x)dx.
The suggested transformation y-4x=v, dy=4dx+dv reduces the equation to

dde + dv = vidx  or  dr - %

= 0.
vZ-4
Then x+nlnv+2=C1, In v+2=1nC—4x, v+2=Ce_w, and 3—,———41—+—2-=Ce’ux.
V=2 v-2 v -2 y-4x -2
/19. solve tan’(x+y)dx — dy = 0.
The suggested transformation x+y = v, dy = dv—dx reduces the equation to
tan’y dx - (dv —dx) = 0, dx——d—v—=0, or dx - cos v dv = 0.
1+ tanv
Integrating, X~ 5V - s8in2v = C; and 2(x-y) = C + sin 2(x +y).
v 20. Solve (2+ Zny%)ydx + (xzy%+2)x dy = 0.
2 % v? 2v @’
The suggested transformation x"y = v, y = =’ dy = —;dv— —— dx reduces the equation
X X x
to
V7 v 40’
(2+20)—dx + x(V+2)(—dv - —dx) = 0 or v(3+v)dx — x(v+2)dv = 0.
4 4 5
x X X
Then & _2& 1 & o oy 21nv-Inw+3) - In Ci, = Cyv(v+3),

C.

and 1= Clxy(xzy%Jr 3) or xy(xzy%+ 3)

21. Solve (2¢°+ 3y’ -T)x dx - (3x° +2y°-8)y dy = o.
The suggested transformation xZ= u, y2= v reduces the equation to
(2u+3v-Tdu - (B3u+2v-8)dv = 0
which is linear but not homogeneous.

The transformation u = s+2, v = t+1 yields the homogeneous equation (2s+3t)ds — (3s+2t)dt
= 0, and the transformation s = rt, ds = rdt+ tdr yields 2(r2—1)dt + (2r+3)tdr = 0.

Separating the variables, we have 2éz + 2r+3dr = 2gz —l dr +—5- dr = .
t r2.1 t 2r+1 2r-1
Then 4 Int —-1In(r+1) + 51In(r-1) = 1nC,
4 5 5 ] 2 2 5
tr=8 _(s-ty _ (w-v-ly  (xT-yt -1 C, and (x%-y2-1® = C(x2+y2-3).
r+1 s+t u+v-3 22+ y2-3

| 22. solve xz(xdx+ydy) + y(xdy -ydx) = 0.

Here xdx+ ydy = %d(x2+y2) and x dy-ydx = xzd(y/x) suggest x%+ y2 = ,02, y/x = tan 0,
or x =pcosBH, y=psinB, de= -0 sinB db + cosB do, dy = p cosB d6 + sin O dp.

The given equation takes the form pzcos26 (0 dp) + p sin 9(,02 d6) = 0
or dp + tan® secB dB = 0,

Then £ + secH = C,, Val+ y2 (xil) = C,, and (12+y2)(x+1)2 = Gl
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SUPPLEMENTARY PROBLEMS

23. Determine whether or not each of the following functions is homogeneous and, when homogene-
ous, state the degree.

a) xz..xy, homo. of degree two. e) arc sin xy, not homo.
b) xy_, not homo, H xey/x+»yex/y. homo, of degree one.
x + y2
x g) Inx -Iny or <, homo, of degree zero.
c) Y homo. of degree zero. Y

2 2 /
Tty h) X2y 2xy+3y2, homo. of degree one.

Y

d) X+ ycos

homo. of degree one, 1) x siny + y sinx, not homo.

Classify each of the equations below in one or more of the following categories:

(1) Variables separable

(2) Homogeneous equations

(3) Equations in which M(x,y) and N(x,y) are linear but not homogeneous
(4) Equations of the form y f(xy)dx + x g(xy)dy = 0

(5) None of the above apply.

/24, 4ydx+xdy = 0 Ans, (1); (2), of degree one
95, (14 2y)dx + (4-xD)dy = 0 1

26. y2 dx - 27 dy =0 (1); (2), of degree two

27. (L+y)dx - (1+x)dy = 0 (1; )

28. (xy"+ yydx + ("y-x)dy = 0 )

29. (x sin % - ¥ cos %)dx + X COS % dy =0 (2), of degree one

30. y (x*+ 2)dx + (£ +y ) (ydx ~ xdy) = 0 (5)

3l. y Vézi:;i dx - x(x + VQE:T;E)dy =0 (2), of degree two

32. (x+y+1ldx + (2x+2y+1)dy = 0 (3)

33. Solve each of the above equations (Problems 24-32) which fall in categories (1)-(4).

Ans. 24, xuy =C 28. y = Cxe™

9 _
2. (1+2y) = C
2+

26, y = x + Cxy 31. Cx—¢x2+)'2 =x1n(vx2+y2-x)

27. (1+y) = C(1+x) 32. x+2y + In(x+y) =C

29. x sin = =

r
R
o}

8

Solve each of the following equations.

4. (1+2y)dx — (4-x)dy = 0 Ans, (x—4)2(1+ 2y) = C
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35. xydx + (1+ xz)dy =0 Ans. y2(1+x2) =C

36. cot O dp + pd6 = 0 Ans. p =C cos 6

37. (x +2y)dx + (2x + 3y)dy = 0 Ans. x2+4xy+3y2 =C

38. 2vdy - 2ydx = Vx?+ay? dx Ans. 1+ 4Cy - %P =0

39. (3y—Tx+ Tydx + (Ty—3x+3)dy = 0 Ans. (y-x+1Y (y+x=1) = C

40, xydy = (y+1)(1-x)dx Ans. y+x = InCx(y+1)

41, (¥ =xPydx + xydy = 0 Ans, 22yt =1+ cC

42, y(1+ 2xy)dx + x(1-xy)dy = 0 Ans. y = Cxle L/

43. dx + (1—x2)cotydy =0 Ans. sinzy =C i:i

44. (x5+y5)dx + 3xy2dy =0 Ans. %'+ 4xy5 =C

45, (3x+2y+1)dx — (3x+2y-1)dy = 0 Ans. 1n(15x + 10y - 1) + %(x—y) =C
In each of the following, find the particular solution indicated.

46, xdy + 2ydx = 0; whenx =2, y = 1. Ans, x2y=4

47, (x2+y2)dx +xydy = 0; whenx =1, y = -1, Ans. x + 2x2y2 =3
48. cosy dx + (1+e'x)siny dy = 0; whenx =0, y = n/4, Ans, (1+ex)se<:y = 2v2
49. (y2+xy)dx - xzdy =0; whenx =1, y = 1. Ans. x = &V

50. Solve the equation of Problem 30 using the substitution y = vx.

Ans. x2y Inx -y + o - ﬁyi = Cx2y

51. Solve y’ = -2(2x+ 3y)2 using the substitution z = 2x+ 3y,
Vet
Ans, L* V3(2x+3y) _ 3%
1 - v3(2x+3y)
52. Solve (x - 2siny + 3)dx + (2x ~ 4siny ~ 3)cosy dy = 0 using the substitution siny = z.

Ans. 8siny + 4x + 9 1ln(4x - 8siny +3) = C



CHAPTER 5

Equations of First Order and First Degree
EXACT EQUATIONS AND REDUCTION TO EXACT EQUATIONS

THE NECESSARY AND SUFFICIENT CONDITION that

1 M(x,y)dx + N(x,y)dy = O
be exact is

M
2) o _ N .

oy ox

At times an equation may be seen to be exact after a regrouping of its tei'ms.
The equation in the regrouped form may then be integrated term by term.

For example, (x2~y)dx + (y2-x)dy =0 1is exact since

oM 9, 2 9, 2 oN
_—_ = — — = —1 = — - X = —
5 ay(x y) ax(y ) o

This may also be seen after regrouping thus: xPdx + y2dy - (ydx + xdy) = 0.

This eqyation may be integrated term by term to obtain the primitive x3/3 +

y33 —xy = C. The equation (y2-x)dx + (x2—y)dy = 0, however, is not exact
JN

since o _ 2y £ 2x = — See also Problem 1.
Jy Ox

IF 1) IS THE EXACT DIFFERENTIAL of the equation u(x,y) = C,

du = §ﬂ“dx + ?_/:fdy = N(x,y)dx + N(x,y)dy.
ox dy
Then ‘g&dx = M(x,y)dx and uix,y) = fx”(x'y)d"+¢(”)’
X

where fx indicates that in the integration y is to be treated as a constant
and ¢(y) is the constant (with respect to x) of integration. Now

O 9 x dop
o= 2T M, ydx )y + B = Nk,
3 > J7 M(x,y)dx } dy (x,y)
from which dg = ¢'(y) and, hence, ¢(y) can be found. See Problems 2-3.

INTEGRATING FACTORS. If 1) is not exact, an integrating factor is sought.

W N

dy ox

a) If ——T— = f(x), a function of x alone, then effmubC is an integrat-

ing factor of 1).

24
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o) 3 d
If _X-M—E = —g(y), a function of y alone, then efg(y) J is an inte-
grating factor of 1). See Problems 4-6.

is an integrating factor.
See Problems 7-9.

by If 1) is homogeneous and Mx + Ny #0, then

Mx+ Ny

c) If 1) can be written in the form y f(xy)dx + x g(xy)dy = 0, where f(xy)
1 _ 1

= is an integrating factor.
xy{f(xy) - g(xy)} Wx - Ny

# g(xy), then

See Problems 10-12.

d) At times an integrating factor may be found by inspection, after regroup-
ing the terms of the equation, by recognizing a certain group of terms as’
being a part of an exact differential. For example:

GROUP OF TERMS INTEGRATING FACTOR EXACT DIFFERENTIAL
2 %2 x
xdy - ydx —1-2. _}_'_dx_;xﬂ = d(- 5
y y J
d dx
xdy - ydx 1 X_Z . d(1n 9
xy Yy x x
xdy-ydx
2
xdy - ydx ! rdy-yde x - d(arc tan )
x2+y2 x2+ y2 1+(Z>2 X
X
fﬁy:i_dr - d{—=1 3}, irns1
1 (xy) (n =1 ="
xdy + ydx -
(xy) XYYE L nay), ifnx1
xy
1 (x"+ %) 2n-1 "+ y")*
xdx + ydy >
n
+
@y x______dx+ydy = d{s ln(12+y2)}, if n=1
x2+ y?

See Problems 13-19.

e) The equation xrys (my dx + nx dy) + xpyo(/.ny dx+ vxdy)=0, where r,s,mn,
P,0,, v are constants and my-nu # 0, has an integrating factor of the form

x‘fy’s. The method of solution usually given consists of determining a and 8

by means of certain derived formulas. In Problems 20-22, a procedure, essen-
tially that used in deriving the formulas, is followed.
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SOLVED PROBLEMS

1. Show first by the use 2) and then by regrouping of terms that each equation is exact, and solve,

a)
b)

c)

a)

b)

c)

d)

e)

3.3 4.2 2 _ 2 2
(4x°y = 2xy)dx + (B3x y —=x")dy = 0 ) Zx(yex—l)dx+exdy=0

(3¢”*y ~20)dx+ >*dy = 0 ; 62 _
€) (6;\¢’y5 + 4x3y5)dx + (3x y +5x vy )dy =0

(cosy + ycos x)dx + (sin x - x sin y)dy = 0
By 2): B_M = 12x3y2 - 2x = B_N and the equation is exact,
Jy ox
By inspection: (4x5y§dx + Bxuyzdy) ~ (2xy dx + xzdy) = d(xuys) - d(xzy) = 0.

The primitive is x'y’ - 2%y = C.

By 2): 8_!11 = 3e3x = B_I_V and the equation is exact.
dy ox
By inspection: (3e3xydx + eaxdy) - 2x dx = d(eixy) -dixbH = o.
The primitive is eSxy -%% = C.
9 )
By 2): —M = -s8iny + cosx = -1—V and the equation is exact.
oy dx

By inspection: (cosy dx - x siny dy) + (y cosx dx + sinx dy)

= d(x cos y) + d(y sin x) = 0, Theprimitive is x cosy + ysinx = C.

3 2 N
By 2): —M = 2¢¢® = == and the equation is exact.
dy dx
x2 x2 x2 2
By inspection: (2xye” dx + e dy) - 2x dx = d(ye” ) —d(x") = 0.
PN . x2 2
The primitive is ye - x° = C,
M
By 2): ?-— = 18x5y2 + 20x§yu = B—N and the equation is exact,
y ox
By inspection: (6x5y3dx + 3x6y2dy) + (4x5y5dx + quyqdy) = d(xbys) + d(x4y5) = 0.

The primitive is x(’y3 + x“y5 = C.

Solve (2t +3y)dx + (3x+y~1)dy = 0.

al{ = 3 = ‘a_lv
QY ox

and the equation is exact.

x
Solution 1. Set u(x,y) = I (2::5 + 3y)dx = ixt o+ 3xy + P(y).

3
Then a_“ = 3x+ ¢y = Nixy) = 3x+y-1, ') =y-1, By =4y~ y,
y

and the primitive is 'zxu+ 3xy+%y2—y =C, or A 6xy + y2 -2y = C.

Solution 2, Grouping the terms thus 20 dx + ydy —dy + 3(ydx+ xdy) = 0

and recalling that ydx + xdy = d(xy), we obtain, by integrationm, szu + }":yz -y + 3xy = Cy
as before,
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2 x 2 3 X 2 2
3. Solve (y e Yy ax Ydx + (2xye yo_ 3y )dy = 0.
2 2
é@ = 2yexy + 2xy5€xy — and the equation is exact.
Ay x
x 2 2
set wx,y) = J (%™ v adydxr = €+ 2t oy,
Bp xy2 ; xy2 2 ; 2 3
Then = = 2xye + @ (y) = 2xye - 3y, ¢ (y) = -3y, dy) = -y,
2
and the primitive is ™ + x* - y5 = C.
2 2
The equation may be solved by regrouping thus 4’ dx - 3y2dy + (yzexy dx + 2xyexy dy) =0

2 2
and noting that yzexy dx + 2xyexy dy

4. solve (x2+y2+x)d.x + xydy = 0.

oM oN
—_ = 2y' — =y
Ay dx
o
3 -
However, J o = -y =
N xy

is an integrating factor.

(x5 + xy2+ xz)dx + xzy dy

1
Z = f(x)
x

2
d(exy )e

the equation is not exact,

and eff(x)dx

0 or dex + xzdx +

efdx/x

Introducing the integrating factor, we have

(xyzdx + xzy dy) = 0.

Then, noting that xy2dx + x2y dy = d(%x2y2), we have for the primitive

4

x 0 v 322y
4 3 z

= 3xq + 4x5 +

C1 or

B Solve (2ay'e” + 20y’ + yyde + (x%y'e” - 2%y% - 3x)dy = o.
L sxy’e’ + 2uy'e” + 6y 4 1, L 2y'e” - 2y - 3;
Ay <
oM  oN
However, oM _ A gxy’e” + 8xy?+ 4 and 9y  °x _
By Bx M
Then efg(y)dy = e‘4fd57y - o4 1ny

ing it, the equation takes the form

6x2y2 C.

the equation is not exact.

-8,

= l/yu is an integrating factor and, upon introduc-

.

¢'(y) = 0, ¢P(y) = constant,

2
(ery+ 2%y l—)dx + (xzey_ % - 3%)dy =0 and is exact.
Yy ¥ yi oy
x x 1 2 x2 x
Set  u(x,y) = J (2xe” + 2% + —ydxr = xel + L 4+ X
b y5 y y3
ou 2y 2 x , 2y 2 x
Then a—-xe——2~3—u+¢(y)=xe—~2—3—u-.
Y y y y y
2
and the primitive is x2e” +  + i} -G
Y

y
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6. Solve (20y2 + axy + 20y2 + 2y’ + dx + 200 + 2'y + ndy = 0.

M N

g— = 4x5y + 4x2 + 4xy + 43cy5 + 2, g— = 2(2xy +1); the equation is not exact.

y X

oM oN

9 2 2

9 9 _ 9 and the integrating factor is J2d % wen it is introduced, the
AT

given equation becomes
2

L 2 2 Y x2 3 2 x .
(20°y + 4xy+ 2y v xy +2y)e dx + 2y +x ytx)e dy =0 and is exact.
2
x
Set  u(x,y) = f (2x5y2 + 4x2y + 2;\:y2 + xyu + 2y)ex dx

x 2 x 2 x 2
f (2xy2+ 2x§y2)exdx + f (2y+4x2y)ex dx + f xy“exdx

2 2 2
= xzyzex + 2xyex + ‘zyuex + Dy

3 2 2 L2 2
Then a—‘f = 2x2yex b oome” o+ Zy’e’C + Ply) = 2(y3 + xzy v e, ¢'(y) =0,
Y
2
and the primitive is (2x2y2 + 4xy + yu)ex = C.

7. Show that , where Mx +Ny is not identically zero, is an integrating factor of the ho-

Mx + Ny
mogeneous equation M(x,y)dx+N(x,y)dy =0 of degree n. Investigate the case Mx+ Ny =0 iden-

tically.
M N

We are to show that dx + — dy = 0 is an exact equation, that is, that
Mx + Ny Mx + Ny
B M L BN
39y Mx+ Ny ox Mx + Ny
M M N oM 3N
Mc+Ny)y &2 - M(x 2= + N+ y =) Ny & MV - My =
oM Y 3y dy yay ) dy Y 3y
3y Mx+ Ny (Mx + Ny)z (Mx + Ny)2
and 3N M N N M
Mcr Nyy & - Nx ==+ M = Mx & - MN - Nx —
B( N ) . W+ y)Bx (x8x+ +yax) _ xax xax
ox Mx + Ny (Mx + Ny)2 (Mx + Ny)2
oM oM oN oN .
NxZ + vy —Max=+y>)
s 3 N L ey T e Ty N e
3y Mz Ny o Mx+ Ny Mx + Ny)? Mx + Ny)”
(by Euler's Theorem on homogeneous functions).
If Mx+ Ny =0 identically, then % = - % and the differential equation reducesto ydx - xdy
- 0 for which l/xy is an integrating factor.
8, Solve (x' +y )dx - xy’dy = 0.
The equation is homogeneous and —-—-}——— = i is an integrating factor. Upon its intro-

Mx + Ny )
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4 3
duction, the equation becomes (;1- + Zﬁ-)dx - dey =0 and is exact,
x X
x4 yu 1 yu
S = g A = - - .
et u(x,y) J e s Inx - 35+ 4
3 3 3
Then 2F - _ Y. + Pl (y) = - Y, d'(y) =0, and the primitive is
a)’ x* %
1y 4 " "
lnx—zy_uzcl or y = 4x lnx+ Cx .
x

Note., The same integrating factor is obtained by using the procedure of a) above, The equa-
tion may be solved by the method of Chapter 4,

9. solve yzdx bl - xy - yz)a’y = 0.

The equation is homogeneous and ! — = 1 is an integrating factor.
e Ny y?-y?)
x2 x 2
Upon introducing it the given equation becomes R dx + TRy dy = 0 which is exact.
2 2 2 2
X =Yy yY(x® - y%)
Xy 1 % 1 1 1 X~y
S t = = -~ - dx = —_ .
et M,y f xz‘_yzdx 2f (x—y x+y) 2lnx+y+¢(y)
2
) x x —xy - 1 x 1
Ten = = - X ugry - TERY 1o F o gy -l gy -y,
Y x“ -y y(x© - y9) Y x“-y M

2

and the primitive is 5 1n x:i + Iny = 1nC, or (x —y)y2 = C(x+y).
x

10. show that » when Mx- Ny is not identically zero, is an integrating factor for the

Mx - Ny
equation Mdx + Ndy = yfi(xy)dx + xf,(xy)dy = 0. Investigate the case Mx-Ny=0 identically,

The equation Y f1(xy) dx + x f2 (xy) dy = 0 is exact
xy{f1(xy) - falzy)} xy{fi(xy) - falxy)}
since
of1 _ of1 _af'z df1 2
3{ fi - x(f1- f2) 3 fix(ay 3y ) ) fo 3y + fy 3y ,
oy x(f1-f2) x2(f1_f2)2 x(fy - f2)?
ofs _ ofs _ofe of2 ofs
B fo , - y(fi=f2) = f2y(8x o ) _ f1 3 f2 S
%% y(f1-f2) Y fa - £2)° y(fr-f2)
and
afl afl af2 af?
(-y &2+ x Yy o 002 | 22
Sy Sy Sy _tfo 4 L J2 "y " 3 f1 G dy Y )_.
9 x(fy -f2) 9% y(fy - fa) Z.Y(f1—f2)2

This is identically zero since y gi__(xy_)

I AC2 00
y ox
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If Mx-Ny=0, then

ZI=

- Y and the equation reduces to xdy + ydx=0 with solution xy=C.
X

11. Solve y(xly®+2)dx + x(2 -2y )dy = 0.
o1
Mx-Ny 3%y

is an inte-

The equation is of the form yf, (xy)dx + x fo(xy)dy = 0 and

grating factor.

2 2 2 2
xy +2 dx + E—---—EJ—'E——y—-dy =0 and is exact,

Upon introducing it, the equation becomes

3955}'2 3xzy5
x 2Py x 1 2. 1 1
set wxry) = J L—Sdx = [ (g~ yde =z Inx - v P,
3x5y2 x 13963}'2 3x2y2
e 2 2 -2’y 2 2
Then = = + dly) = =7, Py = - —> Py = -z Iny,
oy 3x2y? 3x2y3 3y 3
2,2
and the primitive is 1 Inx - Lo 2 iny = In Cy or x = cyzel/x Y,
3 3x22 3
b
The equation may be solved by the method of Chapter 4,
12. Solve y(2xy +1)dx + x(1 +2xy-—x5y5)dy = 0.
1
The equation is of the form yf; (xy)dx+ xfo(xy)dy = 0 and — = is an inte-
. Mx—Ny  x4y*
grating factor,
. L . 1 1 2 1
Upon introdueing it, the equation becomes ( + Ydx + ( + - =)dy = 0 and
) Dy 2ty Sy 22y Y
is exact,
x 2 1 1 1
set wx,y) = J ( + ydx = - - + Py
x3y2 x“y3 x2y2 3x5y5
9 2 1 1 2 1 1
men - e g s g O -5 )=y
Yy x y3 x5y x5y x y5 Y y
3.3
and the primitive is -1Iny - 1 = Cy or y = Ce Gxy*+1)/6x y).
x2y2 3x5y5

13. Obtain an integrating factor by inspection for each of the following equations.

a) (nyuey + 2xy5 + y)dx + (xzyuey - x2y2 - 3x)dy = 0 (Problem 5)
by (x2y} + 2y)dx + (2 - 20y )dy = 0 (Problem 11)
<) (ny2 + y)dx + (x + 2x2y - x“ya)dy =0 (Problem 12)

a) When the equation is written in the form
y“(2xeydx4»x2eydy) + 2xy5dx - x2y2dy + ydx - 3xdy = 0

the term y“(erydx<+x2eydy) = y%(an exact differential) suggests that 1/y4 is a possible
integrating factor. To show that it is an integrating factor, we verify that its introduction
produces an exact equation.

b) When the equation is written in the form 2(y dx+xdy) + x2y3dx - 2x5y2dy = 0, the term
(y dx + x dy) suggests l/(xy)k as a possible integrating factor. An examination of the remaining
terms shows that each will be an exact differential if k =3, i.e., 1/(xy)5 is an integrating
factor.



14

15.

16.

18.

19.

EXACT EQUATIONS 31

¢) When the equation is written in the form (x dy+ydx) + 2xy(x dy + ydx) - qusdy =0 the
first two terms suggest 1/(xy)k. The third term will be an exact differential if k = 4;
thus, 1/(xy)“ is an integrating factor,

Solve ydx+x(1—3x2y2)dy =0 or =xdy+ ydex - 3x5y2dy = 0.

The terms xdy+ydx suggest 1/(xy)k and the last term requires k = 3,

d 3
Upon introducing the integrating factor » the equation becomes rayryax tydx --dy = 0
(xy)> Byl Y
2,2
whose primitive is =t 31lny =C;, 6lny = 1nC - 1 or yo - Ce—l/(x y )‘

2x2y2 x2y2

Solve xdx + ydy + 4y (x* +y3)dy = 0.

The last term suggests 1/ (x2+ y2) as an integrating factor,

Introducing it, the equation becomes M + 4y3dy = 0 and is exact,
iy
Y
2
The primitive is 1In(x +y°) +y' = InC; or  (x2+ y)e? = C.

Solve xdy - ydx — (1-x°)dx = 0.
Here 1/x2 is the integrating factor, since all other possibilities suggestedby x dy -y dx

render the last term inexact.

. —ydx s
Upon introducing it, the equation becomes x_ﬁdy_z_y___ - (i2 -~ 1yde = 0 whose primitive
X x

Solve (x+xu+ 2x2y2+yu)d.x +ydy =0 or xdx+ ydy+ (x2+y2)2d.x = 0,
1

An integrating factor suggested by the form of the equation is -—————_ . Using it, we

(x2+ yz)z
2
have M + dx = 0 whose primitive is - ——1— +x =(Cy or (C+2x)(x2+y )y = 1.
(;\r2 + yz)2 2(x2 + y2)

Solve «x2 gxz + oxy + 1—:c2y2 =0 or x(xdy+ydx) + 1—x2y2 dx = 0,
d

The integrating factor ——1-—-——— reduces the equation to the form x__yde + (i_x =0

x 1—962)’2 1_x2y2

whose primitive is arc sin (xy) + Inx = C,

2 3
Solve & . YTEY — X or (x5+xy2—y)dx + (y3+x2y+x)dy = 0.

x +x2y+y3

When the equation is written thus (x2 + y2) (x dx + ydy) + x dy—ydx =0, the terms x dy- ydx
suggest several possible integrating factors. By tridl, we determine 1/(x2+ y2) which reduces



EQUATIONS OF FIRST ORDER AND FIRST DEGREE

x dy -ydx
2
the given equation tothe form xdx + ydy + % = xdx+ ydy + - = o
x°+y 1+(Z)2
x
The primitive is §x2475y2+~arc tan% =(Cy, or x2+—y24»2 arc tan % = C.

Solve x(dydx + 2xdy) + y (3ydx + 5xdy) = O.

8
Suppose that the effect of multiplying the given equation by xay is to produce an equation

atl B+l at2 8 a+ly,5+5

A) ™ e 2 % 37y M + sx dy) =0

each of whose two terms isan exact differential, Then the first term of A) is proportional to

] A 8
B) A% s @ty e o By dy,
that is,
") at2 _Brl g a-28-0.

Also, the second term of A) is proportional to

3 1
D d(leyBN) = (a+1)xay Pdx o+ B+ 4)xa+ yﬁ+5dy,
that is,
E) a;1:5;4 and 5a - 38 = 1.

Solving a-28 =0, 5a-383 = 7 simultaneously, we find a = 2, B =1

When these substitutions are made in A), the equation becomes
(4x3y2dx + le’ydy) + (3x2y5dx + 5x3y“dy) = 0,

2
The primitive is qu + x5y5 = C.

Solve (8ydx + 8xdy) + 2°y (4ydx + 5xdy) = O.

8 :
Suppose that the effect of multiplying thegiven equation by xay is to produce an equation

B+1 1 +2 [B+u +3 B+

A (8xay + de + 8xa+ dey) N (4xa de + 5xa 5}’ de) -0

each of whose two terms is an exact differential, Then the first term is proportional to
+ 1 B+1 1 8

B) d(xa 1yB+ Yy = (a+ 1)xay Hax o+ (B+1)xa+ Yy dy,

that is,

o atl Br1 and a-f=0.

Also, the second term is proportional to

2 B B
D) d(xa+5y6+u) = (a+ 3)xa+ y de + (ﬁ+4)xa+5y +5dy,
that is,
E) a+t3 _ prd and 50 - 48 = 1.

4 5

Solving a -3 = 0, 5a—-408 = 1 simultaneously, we find a =1, 8= 1.
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When these substitutions are made in A), the equation becomes
(8xy'de + 8x°ydy) + (42'y dx + 5:°y'dy) = o.

The primitive is ax’y? + 2ty -

Note. In this and the previous problem it was not necessary to write statements B) and D)
since, after a little practice, the relations C) and E) may be obtained directly from A).

22. Solve x’y’ (2ydr+xdy) — (Sydx+Txdy) - 0.

B
Multiplying the given equation by xay , We have

+ 4 4 8+l +1
A) (2" 5y5* de + 2° y8+5)dy - B5xy de+ T yﬁdy) = 0.
If the first term of A) is to be exact, then a;4 = ’8——1“1 and a - 28 = 4.
If the second term of 4) is to be exact, then a;l = ﬁ;l and Ta - 50 = -2,

Solving a-28 =4, Ta-58=-2 simultaneously, we find a = -8/3, [ = -10/3.

- - - - =1
Then, from 4), (2x1/5y2/3d.x + x*&/iy 1/ dy) - (5x 8/5)' 7/‘xdx + Tx 5/3 y o/5dy) = 0,
each of the two terms is exact, and the primitive is

§x-+/5y2/3 + o370 y-7/5 -, J(4/3y2/5 b oo y-7/5

- Cx5/5 y7/5

= C or x3y5+2:

SUPPLEMENTARY PROBLEMS

23. Select from the following equations those which are exact and solve,
a) (xz—y)dx—xdy:O Ans. xy=x5/3+C
2
b) y(x—-2y)dx - x°dy = 0

c) (x2+y2)dx +xydy =0

d) (x2+y2)dx + 2xydy =0 Ans, xy2 + x3/3 =C
e) (x+ycosx)dx + sinxdy = 0 Ans. x°+ 2y sinx =(C
H oa+ ew)dp + Zpewdﬁ =0 Ans. p(l + ezg) =C

g) dx ~ va? - x? dy =0

hy (2x+3y+ 4)dx + (3x+4y+5)dy = 0 Ans. x4 3xy + 2y2 +4x + 5y = C
1) (4x5y5 + %)dx + (3qu2 - i)dy =0 Ans, x4y5 + In(x/y) = C
N 2(u2+ uv)du + (u2+ vz)dv =0 Ans. 2’ + 3u’v + v = C

k) (x 1/Jc2+ y2 - y)dx + (y]/xz+y2 -x)dy = 0 Ans, (ch+y"’)5/2 -3xy =C
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Iy (x+y+1)yde = (x-y=-3)dy =0

m) (x+y+1)yde — (y-x+3)dy =0 Ans, x2+2xy-—y2+2x—6y=C
ny csc 8 tan & dr - (r csc G + tanze)dﬁ =0 Ans., recscf =1nsecB +C

0) (yz-;?;%-;;+2)dx+ [x1y+2y(x+1)]dy=0 Ans. 1nx—:Z+(x+1)()’2+2)=C

2 2 2 2 2 2
/ ; 2
) (2xyex y +yzexy + 1)dx + (xzex " 2xyexy - 2y)dy = 0 Ans, &FY v &Y ox - y =C

24. Solve the remaining problems above [b), ¢), g), 1)) using the appropriate procedure of Chap. 4.

Ans., by x/y =21nx+C g) y =arc sinx/a + C
c) xu+2x2y2=C 1) ln‘A2+y2-2x+4y+5 - arc tani+f = C
25. For each of the following, obtain an integrating factor by inspection and solve.
s a) xdx + ydy = (x2+y2)dx Ans, 1/(x2+y2) ; x2+y2 - Ce™
b) (2y-3x)dx + xdy = 0 Ans. x; x2y =20+ C
c) (x—yz)dx+ 2xydy = 0 Ans., 1/x2; y2+x In x = Cx
d) xdy - ydx = 3x2(x2+ yz)d.x Ans, 1/(x2+ y2) ; arc tan y/x = 2+ C
e) ydx —xdy + Inx dx =0 Ans., 1/x2; y+1lnx + 1 =Cx
) (3x2+y2)dx - 2xydy =0 Ans., 1/x2; 3x2 - y2 = Cx
g) (xy-2y2)dx - (x2—3xy)dy =0 Ans., 1/xy2; x/y + ln(yi/xz) =C
hy (x+y)dx — (x=y)dy = 0 Ans. 1/(x2+y2); x2+y2 = Ce? are tan y/x
i) 2yd.x—-3xy2dx ~-xdy =0 Ans., x/yz; x2/y -2 =C
J)y ydx + x(xzy—l)dy =0 Ans, y/x5 ; 3y2 - ?,xzy3 - ot

k) (y+x5y+212)dx + (x+ 4xyu+ 8y5)dy =0 Ans, 1/(xy+2); 1n(:cy+2)3 v a0 3yq =C

926. For each of the following, obtain an integrating factor and solve.

a) xdy - ydx = xledx Ans, y =Cx + xe”

by (1+y2)dx = (x+x2)dy Ans. arc tany = ln x/(x+1) + C
c) (2y—x%dx +xdy =0 Ans. x2y - x5/5 = C

d) yzdy+ydx—xdy=0 Ans, y2+x=Cy

e) (3y5_xy)dx - (x2+ nyz)dy =0 Ans, 3y2 + x In(xy) = Cx

H 3x2y2dx + 4(x5y—3)dy =0 Ans. xiyu - 4y5 =C

g y(x+y)dx - x2dy = 0 Ans. x/y + Inx = C

h) (2y+3xy2)dx + (x+2x2y)dy =0 Ans., x2y(1+xy) =C

1) y(y2—2x2)d.x + x(2y2—x2)dy =0 Ans, x2y2(y2—x2) =C

27. Show that -l;f(y/x) is an integrating factor of x dy -y dx = 0.
x



CHAPTER 6

Equations of First Order and First Degree

LINFAR EQUATIONS AND THOSE REDUCIBLE TO THAT FORM

THE EQUATION 1) —Z—y + yP(x)y = 0(x),
X

whose left member is linear in both the dependent variable and its derivative,
is called a linear equation of the first order. For example,

Z—y + 3xy = sinx is called linear wlille Z——y + 3xy2 = sin x 1s not.
X X

. Plx)dx JP@ydx TPy dx Py o
Since —g(yef * ) = dy JTEE yP(x)e " = e (ﬂ/ +yPx).),
dX dX X
JP@) dx
e

is an integrating factor of 1) and its primitive is

yejp(x)dx = J;Q(x)-ejp(x)dx dx + C. See Problems 1-7.

BERNOULLI'S EQUATION. An equation of the form

Doy ypeo = yhom  or yT Ly PG = 000
x dx

is reduced to the form 1), namely,

?’ + v{(1-mPE)} = (1-n)Q(x), by the
X
transformation

y—n+l -y -n dy _ 1 ﬂ’. See Problems 8-12.
dx 1-n dx

OTHER EQUATIONS may be reduced to the form 1) by means of appropriate transforma-
tions. As in previous chapters, no general rule can be stated; in each in-
stance, the proper transformation is suggested by the form of the equation.

See Problems 13-18.
SOLYED PROBLEMS

LINEAR EQUATIONS.

1. Solve &y, 2y = 4x,
dx

2
fP(x)dx = f2xdx = x? and efP(x)dx = ¢° is an integrating factor.
2 2 2 2
Then yex = Jaxe®dx = 27 + C or y = 2+ Ce™™ .
d
2. Solve 2 X = y+ x4+ 3%’ - or ﬂ—ly'x2+3x—2
dx dx x
JPeyde = —f‘-ii‘ - ~Inx and ¢ 8% .1
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Then yxi - f%(x2+31—2)dx - J (x+3—§)d.x = 427+ 3x-21lnx+ Cy,  or

2y = 15 £ 6x’ - 4x Inx + Cx.

dy 3 dy 1 2
3. Solve -2y =y + 2(x -2 or 2 - = 2x-2).
-5, Ty E-d e x-2° x-2
JPxyde = -f —dx—2 - —1n(x ~2) and an integrating factor is e—ln(x~2) - —1-5
x - x -
1 2 2 . 3 -
Then  y( 2) = 2f(x-2)"- de = 2 (@=-2)dx = (x=2) +C or y = (x-2) + C(x=2).
x — x —

4. Solve gxz +ycotx = Secosx. Find the particular solution, given the initial conditions:
x = %T[’ y = -
An integrating factor is e‘rCOtx o = eln six . sin x and
y sinx = 5) % Fsinx dx = ~-559% % Lo,
When x = 37, y = -4: (~4)(1) = =5(1) + C and (C = 1, The particular solution is
. . COoS X
y sinx + bSe = 1.
d 2 d 2-3 2
A. sotve 20 &+ (2-3")y = & or 24 Xy = 1L
dx dx %3
2
2-3 .
f X odx - - 1 3 Inx and an integrating factor is ! .
%3 x 3 142
X e
2
Then ——--y——2— = dx = = 12 + Cy or 2y = X+ Cxael/x .
et/ <3 el/x 9eVx
dy
6. Solve ol 2y cot 2x = 1 - 2x cot 2x -~ 2 csc 2x.
An integrating factor is e_f2 cot 2x dx = e In sin 2x = ¢sc 2x.,

Then y csc 2x = f(csc 2x — 2xcot 2x csc2x - 2 csc? 2x)dx = x csc2x + cot 2x + C

or y = x + cos 2x + C sin 2x.

M. Solve ylnydx + (x - 1lny)dy = 0.

. dx
The equation, with x taken asdependent variable, may be put in the form — +

Then efdy/(y Iny) . eln(lny) = 1lny 1is an integrating factor.

2
Thus, xIlny = flnyc;—y = éln2y+K and the solution is 2x lny = In y + C,
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BERNOULLI’S EQUATION.

dy 5 -5 dy -y
8. solve < - = x or —_— - = x,
T Yy Y Y o y
, - -5 dy 1 dv .
The transformation = v, e reduces the equation to
Y Y s T ik a
1 dv _ dv _ . ) ) 4fdx _ ux
-3 E - v =x oOr Z + 4v = —4x. An integrating factor is e = e,
Then wve' ~ = -4 fxeuxdx = ey 2,
y e o xe*Ty e 4 or 1. b+ CeYE,
¥t
dy 4 -4 dy -3
. Solve — + 22y + x =0 or - + 2 = =X,
9 = y + xy < Y
The transformation y"3 = v, —3y-“ Z-Z = ‘2}- reduces the equation to g;—} - 6xv = 3x.
2
Using the integrating factor e Jexdx e >, we have
2 2 2 2
ve ™ = [3xe™™ dx = - 1", ¢ or & - -1y,
2 3 2
h
d 1 1 u ~u d: 1 -3 1
10. Solve & + 2y = Z(1-20) or ¥, 2 = Z(1-2%).
o 3)’ 3( )Y Y P 3)’ 3(
The transformation y'5 = v —3y—u dy = 2 reduces the equation to éi} -v = 2x -1
’ dx dx dx
for which e ¥ is an integrating factor. Then, integrating by parts,
ve ¥ = f(2x—1)e—xdx = e T -e 4+ C or —13 = 1= 2%+ Ce.
Y
2 d - .
11. solve —d—y+y = y’(cos x - sin x) or y 2 4yt o cosx - sinax.
dx dx
The transformation y—lz v, —y'Zd— = fd—v reduces the equation to fd—l—j -~ v = sinx - cos x
dx  dx dx

for which e " is an integrating factor. Then

ve ™ = J(sinx - cos xye Ydx = -e ¥ sinx + C or ; - —sinx + Ce'.
3 -3 dy 1 -2
12. solve xdy -~ {y + xy’(1 + Inx)}dx = 0 or — ") C 1+ 1nx.
The transformation y-2= v, —Zy-5 Z—% = ﬂ} reduces the equation to % + xgv =~2(1+1nx)
for which efz dx/x = x2 is an integrating factor. Then
2
vx2= —2f(x2+ lenx)dxr _§x5-§x51nx+c or %:—§x5(§+lnx)+C.

<
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MISCELLANEQUS SUBSTITUTIONS.

EQUATIONS OF FIRST ORDER AND FIRST DEGREE

13. An equation of the form f'(y) dy , (y) P(x) = Q(x) is a linear equation of the first order
Y %

dv

T + vP(x) = Q(x) 1in the new variable v = f(y). (Note that the Bernoulli equation
X
-n dy -7 41 -n dy -n+1 )
y = +y P(x) = X(x) or (—n+lyy o +y n+1)P(x) = (n+1)Qx) 1is an example.)
Solve dy +1 = 4¢7sinx or e’ dy + ¢ = 4 sinx.
dx dx
. y . dv . N x .
In the new variable v = f(y) = e, the equation becomes = + v =4 sinx for which e is
an integrating factor, Then
ve® = 4 [e’ sinx dx = 2 (sinx - cosx)+C  or ¢ = 2(sinx - cosx) + Ce .
) dy . 2 . dy .2
14. Solve siny £ = cosx(2cosy - sin x) or -siny == + cos y(2 cosx) = sin x cos x,
2
In the new variable v = cos y, the equation becomes — + 2vcosx = sin x cosx for
which ezfcosx(h: = 6251nx is an integrating factor. Then
s1in 2si
ve 25X fezsmx sin’x cos x dx = ,Eezsinx sinzx - %ezsinx sinx + e sinx ¢
-2 81
or cosy = %sinzx—'gsinx+ﬁ+Cezsnx.
d i 1
15. Solve 'sinyaxZ = cosy(l —x cosy) or SILZ‘YEZ - —— = —x,
cos'y dx cos 'y
. d 1 sin y . .
Since —(———) = » we take v = and obtain the equation — - v = —-x,
dy cosy 2
cos’y
Using the integrating factor e, we obtain
ve™ = [—xeTdx = xe ¥ s eF 4+ C or v = —1 < sec y = x+ 1+Ce”.
cos y
2
16. Solve «x 3% -y + 3x5y ~xX =0 or xdy — ydx + 3x5yak - xdx = 0.
Here (x dy - ydx) suggest the transformation % = v,
Then fli{:gigi + 3x2 Ydx - dx = 0 is reduced to 35 + 3x2v = 1 forwhich ¢~ 1is an
X
x
integrating factor.
x5 JC3 -)C5 X5 -)C‘5
Thus ve = Je¥ dx + C or y = xe fe dx + Cxe © .

The indefinite integral here cannot be

evaluated in terms of elementary functions.
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17. Solve (4r25 ~ 6)dr + rads =0 or (rds + sdr)y + 3sdr = —62—dr.
r

The first term suggests the substitution rs =t which reduces the equation to

dt+3£dr:—idr or é£+§t=—6.
r r dr r r?
Then r5 is an integrating factor and the solution is
tr) = s = 3fh or s=~3+£-
2 n
r r
in6 d6
18. Solve =xsin8 ¢8 + (xi— %2 cos B + cos B)dx = 0 or - xsin ; cos © dx + 2cosOdx = x dx.
X
The substitution xy = cos 6, dy = - x 5in 6 d92+ cos 9 dx reduces the equation to
x
dy
dy + 2xy dx = xdx or — + 2xy = =x.
dx
L2
An integrating factor is e and the solution is
2 . 2 2 2 2
ye* = 222 0 e’ = fe" xdx = -;ex + K or 2cos 8 = x+ Cxe™” .
pA

SUPPLEMENTARY PROBLEMS

19. From the following equations, select those which are linear, state the dependent variable,

and solve,

a) dy/dx +y =2+ 2 k) y(L+yiyde = 2¢1- 2xy>)dy

b) dp/df + 3p = 2 by yy' - :cy2 +x=0

¢y dy/dx -y = xy° my xdy-ydx = xv/x*-y% dy

d) xdy-2ydx = (x=-2)e'dx ny ¢y (ty dx/dt + xdp(t) = 1

e) di/dt - 6i = 10 sin 2t 0) 2dx/dy - x/y + x> cosy = 0

£ dy/de + y = y2e* p) xy' = y(l-xtanzx) + 2% cos x

g) ydx+ (xy+x-3y)dy = 0 q) (2+y2)dx—(xy+2y+y3)dy:0

hy (2s-¢*"yds = 2(se?’ ~ cos 2t)dt r (1+y%)dx = (arc tan y - x)dy

i) xdy+ ydv = ¥y’ds s) 2y’ —y)dx + 2xdy = 0

J) dr + (2r cot 8 + sin 26)d0 = 0 ty (1+sin y)de = [2y cos y - x(secy + tan y)ldy
Ans.

a)y y; LF., e y=2+Ce™ ey 1i; LF., e oo 4(3 sin 2t + cos 2t) + ce®
by p; ILF., 656; 3p =2+ ce? g) x; LF., ye'; xy =3(y-1) + Ce™”

d) y; LF,, 1/12; y=ex+Cx2 jy i LF., sinzﬁ; 2r sin’6 + sin*6 = C
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20.

21.

22.

k)

EQUATIONS OF FIRST ORDER AND FIRST DEGREE

x; I.F., (1+y2)2; (1+y2)2x=21ny+y2+C
v LF. NEROLZAC) o oJ B2(BaL/B1() ff—‘ Jrnam ) o o
3 (1)

-arc tany

n)
Py I'F"}_C(ISE‘;; y=x2cosx+Cxcosx
q) =x; I.F‘.,1/2+y_2_; x=2+y2+C/2Ty—2
ry x; I.F., earc tany; x = arc tany — 1 + Ce
t) x; I'.F‘., secy + tany; =x(secy + tany) = y2 + C
From the
Ans. ¢) y—l =v; 1l/y = l-x+ ce™* 1)
) yl=uv (Crayyet+1=0 0)
i) y“5 = 2/y = c® + 520 s)

Solve the remaining equations, h) and m), of Problem 19.

Ans. h) 52 - sezt + sin 2t = C m) y =x sin(y+ C)
Solve:
; 3 x . 2, x
a) xy' =2y + x’e  subject to y = 0 when x = 1. Ans. y = x (e —¢)
by L g% + Ri = E sin 2t, where L,R,E are constants, subject to the condition 1 =0 when t=0.
Ans. 1 = —2—E—;(R sin 2t — 2L cos 2t + 2Le-Rt/L)
R+ 4L

a)
b)
c)
d)

e)

. Solve:

2 dy . ) .
x Ccosy e = 2¢x siny ~ 1, using siny = 2.

4x2yy’ = 3x(3y2+2) + 2(33/2+2)5 , using 3y2

(xys—y5—xzex)a'.x + 3xy2dy = (0, using y3 =
dy/dx + x(x+y) = 2 (x+y) - L

(y+ ey—e_x)dx + (1+ey)dy = 0.

+2 =2z,

VX.

Y

-2

remaining equations in Problem 19, solve those of the Bernoulli type.
52
=1+ Ce

y=cosy + ysiny + C

322 = (4x°+C)y"

Ans.,

Ans.,

Ans,

Ans.

Ans.,

3x siny = Cx’ o+ 1

4’ = (Co3y @3yt +2)

3 x

2y'e = xezx

+ Cx

2
1/(x +y)2 =xly 1fCex

y + e” = (x+C)e-x



CHAPTER 7

Geometric Applications

IN CHAPTER 1 it was shown how the differential equation

1) f(x,y,y) = 0
of a family of curves
2) g(x,y,C) = 0

could be obtained. The differential equation expresses analytically acertain
property common to every curve of the family.

Conversely, if a property whose analytic representation involves the de-
rivative is given, the solution of the resulting differential equation rep-
resents a one parameter family of curves, all possessing the given property.
Each curve of the family is called an integral curve of 1) and particular in-
tegral curves may be singled out by giving additional properties, for example,
a point through which the curve passes.

For convenience, the following properties of curves which involve the de-
rivative, are listed.

RECTANGULAR COORDINATES. Let (x,y) be a general point of a curve F(x,y) = 0.

2
<
y 5 y
'8
] f
/g
(=]
“ 1
Om =
/L b/l
7 (x'y) tangent
&
&
X X
0 0

a) gi—l is the Slope of the tangent to the curve at (x,y).

by - (;ix is the slope of the normal to the curve at (x,y).
Y
cy Y-y = %(X—x) is the equation of the tangent at (x,y), where (X,Y) are the coordinates

of any point on it.

d) Y-y = - (—;‘x—-(X-x) is the equation of the normal at (x,y), where (X,Y) are the coordinates
Y

of any point on it.

e) x—yji and y—xZ—Z are the x- and y-intercepts of the tangent.

1
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N x+y§x}—’ and y+x-§—§ are the x- and y-intercepts of the normal,

gy y /1 + (g—'x-)2 and x /1 + (Z—Z)2 are the lengths of the tangent between (x,y) and the x-
Y

and y-axes,

hy y /1 + (%)2 and x /1 + (j_x)z are the lengths of the normal between (x,y) and the x-
Y

and y-axes,

1) y% and y% are the lengths of the subtangent and subnormal.

J)y ds = V (dx)2 + (dy)2 = dx [1+ (dy)z = dy [1+ (;#)2 is an element of length of arc.
24

dx

k) ydx or xdy 1is an element of area.

POLAR COORDINATES. Let (p,8) be a general point on a curve p = f(6).

6
l)y tany = p g—. where ¥ is the angle between the radius vector and the part of the tan-
fo)

gent drawn toward the initial line.

%
,02 Z— is the length of the polar subtangent.
0

i

m) © tan y

ny p cot Y = Z—’; is the length of the polar subnormal,

0y p siny = pz Li[? is the length of the perpendicular from the pole to the tangent.
S
/S 2 2, .2 2]
p) ds = (dp)2+ pz(dé’)2 = do.f1+ pz(g;)2 = df /(gg)z + p2 is an element of length
of arc,

q) '§p2d9 is an element of area,
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TRAJECTORIES. Any curve which cuts every member of a given family of curves at the
constant angle » is called an w-trajectory of the family. A 90° trajectory of
the family is commonly called an orthogonal trajectory of the family. For ex-
ample, in Figure (a) below, the circles through the originwith centers on the
y-axis are orthogonal trajectories of the family of circles through the origin
with centers on the x-axis.

7/5

(a) (b)

In finding such trajectories, we shall use:
A) The integral curves of the differential equation

"~ tan w
3 fx. , _y____ = 0
) (x.y 1+y’tanw)

are the w-trajectories of the family of integral curves of

1) f(x,y,y"y = 0.

To prove this, consider the integral curve C of 1) and an w-trajectory which
intersect at P(x,y), as shown in Figure (b) above. At each point of C for
which 1) defines a value of y', we associate a triad of numbers (x,y;y’), the
first two being the coordinates of the point and the third being the corres-
ponding value of y’ given by 1). Similarly, with each point of T for which
there is a tangent line, we associate a triad (x,y;y’), the first two being
the coordinates of the point and the third the slope of the tangent. To avoid
confusion, since we are to consider the triads associated with P as a point
on C and as a point on T, let us write the latter (associated with P on T) as
(x,7;¥’). Now, from the figure, x=X%, y=y at P while y'=tan 6 and y’= tan ¢
are related by
tan¢ - tanw _ y'-tanow )
1+tan¢ tanw 1+y’tanw

y' = tan 6 = tan(¢—-w) =

Thus, at P (a general point in the plane) on an w-trajectory, the relation
/!
Fx,yy) = f(Ry, WLy _
1+ y'tanw
1
holds, or, dropping the dashes, f(x,y, _y_—_’Ean_w_) = 0.
1+ y'tan w
B} The integral curves of the differential equation
4) f(x,y,-1/y"y = 0

are the orthogonal trajectories of the family of integral curves of‘l).
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C) In polar coordinates, the integral curves of the differential equation

2 df

5 f(p,8, —p° =)y = 0
) (p pdp)

are the orthogonal trajectories of the integral curves of

dp
6 [ )8: - = 0.
) (p 3 )

)

SOLVED PROBLEMS

1. At each point (x,y) of a curve the intercept of the tangent on the y-axis is equal to 2xy2.
Find the curve.

Using e), the differential equation of the curve is

y - X‘(Q = 21)’2 or M = 2x dx.
dx y?

Integrating, § =27y C or x - xzy = Cy.
The differential equation may also be obtained di-

dy _y - 2xy?
dx x

rectly from the adjeining figure as

9. At each point (x,y) of a curve the subtangent is proportional to the square of the abscissa.
Find the curve if it also passes through the point (1,e).

Using t), the differential equation is yE? o or é; = k QZ »  where k is the
Yy x Y
proportionality factor,
Integrating, klny = - % +C, Whenx=1, y=e: k=-1+C and C=kFk+1,

1
The required curve has equation kIny = - st k+ 1,

3. Find the family of curves for which the length of the part of the tangent betweenthe point of
contact (x,y) and the y-axis is equal to the y-intercept of the tangent,

[ dy 2 dy 2 2 dy
Fr and e), we h 1+ (== = y-x< or A) = - 2xy—= .
om g) and e), we have z (dx) y xdx x y ydx

The transformation y = vx reduces A) to

(1+ vz)dx + 2uxdv = 0 or

Integrating, In x + ln(l+‘v2) = 1n C,

2

Then x(1 + Z;) = C or x" + y° = Cx 1is the equation of the family.
X
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4. Through any point (x,y) of a curve which passes through the origin, lines are drawn parallel
to the coordinate axes. Find the curve given that it divides the rectangle formed by the two
lines and the axes into two areas, one of which is three times the other,

y Px,y)
Y B
B P(x,y)
X X
0 A 0 A
(a) by

There are two cases illustrated in the figures.
X x X
a) Here 3(area OAP) = area OPB., Then 3f0 ydex = xy - fo ydx or 4f0 ydx = xy.

To obtain the differential equation, we differentiate with respect to x.

dy dy 3y
Thus, 4y = + 2 or ay _ 2,
4 Y xdx dx x

An integration yields the family of curves y = Cka.

b) Here area OAP = 3(area OPB) and 4f0x ydx = 3xy.

The differential equation is g% = X, and the family of curves has equation y5 = Cx,

X
Since the differential equation in each case was obtained by a differentiation, extraneous
solutions may have been introduced. It is necessary therefore to compute the areas as a check,
In each of the above cases, the curves found satisfy the conditions. However, see Problem 5.

5. The areas bounded by the x-axis, a fixed ordinate x =a, a variable ordinate, and the part of a
curve intercepted by the ordinates is revolved about the x-axis., Find the curve if the volume
generated is proportional to a) the sum of the two ordinates, &) the difference of the two
ordinates.

a) Let A be the length of the fixed ordinate. The differential equation obtained by differen-
s X 2 . 2 dy ,
tiating 1) nj; y'de = kR(y+ Ay is mny‘ = ka; + Integrating, we have 2) y(C - nx) = k.

When the value of y given by 2) is used in computing the left member of 1), we find

2 2 2

* kT dx k k
3) n _— = - = k(y - A),
fa (C - mx)? C-nx C-na @ )

Thus, the solution is extraneous and no curve exists having the property a).

x
b) Repeating the above procedure with 1') nj; y2 dx = k(y - 4), we obtain the differen-

tial equation ny2 = kg% whose solution is 2") y(C - mx) = k.

It is seen from 3) that this equation satisfies 1'). Thus, the family of curves 2') has the
required property.,
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6. Find the curve such that at any point on it the angle between the radius vector and the tan-
gent is equal to one-third the angle of inclination of the tangent.

Let O denote the angle of inclination of the radius vector, 7 the angle of inclination of
the tangent, and Y the angle between the radius vector and the tangent.

Since ¢ = 7/3 = (Y + 0)y/3, then Y = 30 and tany = tan 50.

Using 1), tany = p d__@ = tan 39- so that L. cot 36 d6.
dp 2
Integrating, Inge = 2 1n sin 36 + 1n C4 or p = Cy sin? 36 = C(1 - cos ),

7. The area of the sector formed by an arc of a curve and the radii vectors to the end points is
one-half the length of the arc, Find the curve.

Let the radii vectors be given by & = 6; and 6 = 6,

8 [}
. I 2 _ I do 2 2
Using ¢) and p), 2f91 p°dé = ifai /(d—e) + p° db.

Differentiating with respect to &, we obtain the differential equation

P’ = <Z—§>2+ P2 or 1) dp = tpvpi-1 db.

If ,02= 1, 1) reduces to dp = 0. It is easily verified that © = 1 satisfies the condition
of the problem,

If pZ#l, we write the equation in the form —L = +df and obtain the solution
pYpt-1
o = sec(C * &). Thus, the conditions are satisfied by the circle 0 =1 and the family of curves
o = sec(C + 8)., Note that the families o0 = sec(C + &) and p = sec(C - 8) are the same.

8. Find the curve for which the portion of the tangent between the point of contact and the foot
of the perpendicular through the pole to the tangent is one-third the radius vector to the
point of contact.,

(a) b

In Figure (a): P = 3a = 30 cos(X — Y) = —30 cosy, cosy =-1/3, and tany = - 2V2.
In Figure (b): p£ = 3a =30 cosy¥ and tany = 2V2,

6 8
Using l) and combining the two cases, tany = p d— = +2v2 or ‘1'[—3 = -d— .
dp P 2v2
-6,
The required curves are the families p = Cee/2ﬁ and p = Ce /2‘/?.
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9. Find the orthogonal trajectories of the hyperbolas xy = C,

The differential equation of the given family is xZ—Z +y =0, obtained by differenti-

ating xy = C. The differential equation of the orthogonal trajectories, obtained by replacing
dy dx dx

~ by -—, is -x=~+y=0 or dy - xdx = 0.

dx dy dy Y yay

Integrating, the orthogonal trajectories are the family of curves (hyperbolas) yz—xzr C.

Problem 9 Problem 10
2 2
10. sShow that the family of confocal conics T + Cy 5 = 1, where C is an arbitrary constant,
is self-orthogonal,
Differentiating the equation of the family with respect to x yields g + Cyp}\ = 0, where
N
p = d—y Solving this for C, we find C = Ax so that C-A = i AN When these replace-
dx x+yp x+yp
ments are made in the equation of the family, the differential equation of the family is found

to b
o e (x+yp)(px-y) - Ap = O.

Since this equation is unchanged when p is replaced by -1/p, it is also the differential
equation of the orthogonal trajectories of the given family.

11. Determine the orthogonal trajectories of the family of cardiods p = C(1 + sin 6).

1
Differentiating with respect to & to obtain d_p = C cos 8, solving for C = —— ide ,
df cos 0 df
and substituting for C in the given equation, the differential equation of the given family

Is do _ pcosf

dé 1+sint9.

The differential equation of the orthogonal trajectories, obtained by replacing j—-g by

- “—if is
dp _d6 . _cosO or a0 (sec O + tan £)d6 = 0.
dp £(1 + sin @) P
) C cos 8 :
Thén Inp + In(sec @ + tan8) = lncos 8 = InC or p = ——————— = C(1-sinf).

sec § + tan 8
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12. Determine the 45° trajectories of the family of concentric circles x2+y? = C.

The differential equation of the family of circles is x+yy' = 0.
The differential equation of the 45° trajectories, obtained by replacing y’ in the above

[ ° r_ r_
equation by y - tand5 - y-t is x+ yy L

= , 0 or (x+y)dy + (x-y)dx = 0.
1+y’'tan 45 1+y’ 1+y!

Using the transformation y =vx, this equation is reduced to

. +1
(v +Ddx + x(v+Ddv = 0 or dx + X dv = 0,
x v+ 1
Integrating, 1nx + %ln(v24»1) + arctanv = ln K,, 1n x2(1+-v2) = InK - 2 arc tanv,
- t
and 22+ y2 = Ke zarctan y/x.

. . 2 ~-26 6

In polar coordinates, the equation becomes ©° = Ke or pe = C,

SUPPLEMENTARY PROBLEMS

13. Find the equation of the curve for which
a) the normal at any point (x,y) passes through the origin. Ans. x2+y2 =C

b) the slope of the tangent at any point (x,y) is % the slope of the line from the origin to

the point, Ans, y2 = (x

c) the normal at any point (x,y) and the line joining the origin to that point form an isos-
celes triangle having the x-axis as base. Ans. y2—x2 =C

d) the part of the normal drawn at point (x,y) between this point and the x-axis is bisected
by the y-axis, Ans, y2 +2% = C

e) the perpendicular from the origin to a tangent line of the curve is equal to the abscissa
of the point of contact (x,y). Ans. x2+y2 = Cx

f) the arc length from the origin to the variable point (x,y) is equal to twice the square
root of the abscissa of the point. Ans. y = t(arc sinvx + vVx = 22 Yy + C
g) the polar subnormal is twice the sine of the vectorial angle. Ans., p=C - 2cosf

h) the angle between the radius vector and the tangent is % the vectorial angle.
Ans. p = C(l - cos 60)

. 4
1) the polar subtangent is equal to the polar subnormal. Ans. p = Ce

14. Find the orthogonal trajectories of each of the following families of curves,

a) x+2y = C Ans, y-2x = K Yy =x-1+Ce™" Ans, x = y-1+ Ke™”
by xy = C A gy = 2%(1-Cx) Z+3y% In(Ky) = 0
6)12+2y2=C y=Kx2 hy o = a cos & p=1"5sinf

dy y = Ce™ % ¥y = x4 K 1) p =a(l+sinfd) p = b(l-sin &)

e) y2 = x5/(C—x) (x2+y2)2=K(2x2+y2) J)y P =a(secH +tan @) p = be‘sma



CHAPTER 8

Physical Applications

MANY OF THE APPLICATIONS of this and later chapters will be concerned with the mo-
tion of a body along a straight line. If the body moves with varying velocity
v (that is, with accelerated motion) its acceleration, given by dv/dt, is due
to one or more forces acting in the direction of motion or in the opposite
direction. The net force on the mass is the (algebraic) sum of the several
forces.

EXAMPLE 1. A boat is moving subject to a force of 20 pounds on its sail
and a resisting force (lb) equal to 1/50 its velocity (ft/sec). If the direc-
tion of motion is taken as positive, the net force (lb) is 20~ v/50.

EXAMPLE 2. To the free end of a spring of negligible mass, hanging verti-
cally, a mass is attached and brought to rest. There are two forces acting on
the mass - gravity acting downward and a restoring force, called the spring
force, opposing gravity. The two forces, being opposite in direction, are equal
in magnitude since the mass is at rest. Thus, the net force is zero.

Newton’s Second Law of Motion states in part that the product of the mass
and acceleration is proportional to the net force on the mass. When the sys-
tem of units described below is used, the factor of proportionality is k=1
and we have

mass x acceleration = net force.

THE U. S. ENGINEERING SYSTEM is based on the fundamental units: the pound of force
(the pound weight), the foot of length, and the second of time. The derived
unit of mass is the slug, defined by

weight in pounds

mass in slugs = >
g in ft/sec

Hence, )
mass in slugs x acceleration in ft/sec = net force in pounds.

The acceleration g of a freely falling body varies but slightly over the
earth’s surface. For convenience in computing, an approximate value g = 32
ft/sec? is used in the problems.

SOLVED PROBLEMS

1. If the population of a country doubles in 50 years, in how many years will it treble under the
assumption that the rate of increase is proportional to the number of inhabitants?

Let y denote the population at time t years and y, the population at time t=0. Then

dy

d:
1) o ky or _5’- = kdt, where k is the proportionality factor.

dt

First Solution. Integrating 1), we have 2) lny = kt + 1In(C or y= Cekt.

At time t =0, y =y, and, from 2), C = yo. Thus, 3) y = yoekt

49



50 PHYSICAL APPLICATIONS

At t =50, y=2yo. From 3), 2y, = yoe50k or eﬁOk = 2.

kt

kt
When y = 3y,, 3) gives 3 = e , Then 350 = e50

50k t t
e

= ( y = 2 and t = 79 years,

Second Solution. Integrating 1) between the limits t=0, y=yo, and t =50, ¥ =2yo,

2%, dy 50
f - = k dt, In 2y = 1In yo = 50k and 50k = 1n 2,
Y% b ()

Integrating 1) between the limits t=0, y=y, and t=¢t, y=3y,,

3% t
f (—i—x = k f dt, and 1n 3 = kt,
Y, Y ()
Then 50 In3 = 50kt = ¢t 1n 2 and t = @-—1—1—12—3 = 79 years.
In

2. In a certain culture of bacteria the rate of increase is proportional to the number present,
(a) If it is found that the number doubles in 4 hours, how many may be expected at the end
of 12 hours? (b) If there are 10" at the end of 3 hours and 4.10% at the end of 5 hours, how
many were there in the beginning?

Let x denote the number of bacteria at time t hours. Then

1) % = kx or d——{ = kdt.
dt x
. . t
a) First Solution, Integrating 1), we have 2) Ilnx = kt + InC or =x = Cek .
Assuming that x = 2, at time ¢t =0, C =x, and x = erkt.
At time t = 4, x = 2x0. Then 2 = xoe © and e'” - 2.

When t = 12, «x = xoemk = xo(euk)5 = 10(25) = 8xp, that is, there are 8 times the original
number,

Second Solution, Integrating 1) between the limits t=0, x=x, and t=4, x=2xo,
('8

%o
dx
— = k dt, 1n 2x5 - 1n x5 = 4k and 4k = 1n 2.
0

%o x
Integrating 1) between the limits ¢t =0, x=xo and t=12, x =x,

x 12
f gf = kf dt, and 1n X = 12k = 3(4k) = 3 In2 = 1n 8.
x 0

x X0
o

Then x = 8xy, as before.

3k 10

b) First Solution. When t = 3, x = 10%, Hence, from 2), 10“ = Ce and C = =i°
4 4 k 4 10» )
When t = 5, x = 4-10 . Hence, 4-10 = Ce5 and C = el
10" 4.10° 2k : k
Equating the values of C, ey = P Then e =4 and e = 2.
e3 e5
. . 10" 10" -
Thus, the original number is C = — = = bacteria.
3k 8
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Second Solution., Integrating 1) between the limits t =3, «x :104 and t =5, x:=4-10u,

l&-10u dx )
f‘ — = kf dt, ln 4 = 2k and k = 1n 2.
100 % 3
Integrating 1) between the limits t=0, x=x, and t=3, x=10",
u
0 3 [ 4
f é = kf dt, ln—m—:Sk:31n2=ln8 and x0=1iasbefore.
% x 0 Xo 8

3. According to Newton’s law of cooling, the rate at which a substance cools in moving air is
proportional to the difference between the temperature of the substance and that of the air.
If the temperature of the air is 30° and the substance cools from 100° to 70° in 15 minutes,
find when the temperature will be 40°,

Let T be the temperature of the substance at time t minutes.

Then éz1 = ~k(T - 30) or dT
dt T~ 30
(Note. The use of —k here is optional, It will be found that k is positive, but if +k is

used it will be found that k is equally negative.)

= -kdt,

Integrating between the limits ¢t = 0, T = 100 and t = 15, T = 170,

10

15
‘/ﬂ T = -k V/1 dt, 1n 40 — 1In 70 = -~15k = In 2 and 15k = 1n z = 0.56.
00 T = 30 0 7 4
Integrating between the limits ¢t =0, T = 100 and t = t, T = 40,
40 t -
f dr = -k f dt, In10-In70=—-kt, 15kt=151n"7, t-= 15In7 = 52 min,
0o T - 30 (0 0.56

4. A certain chemical dissolves in water at a rate proportional tothe product of the amount un-
dissolved and the difference between the concentration in a saturated solution and the con-
centration in the actual solution. In 100 grams of a saturated solution it is known that 50
grams of the substance are dissolved. If when 30 grams of the chemical are agitated with 100
grams of water, 10 grams are dissolved in 2 hours, how much will be dissolved in 5 hours?

Let x denote the number of grams of the chemical undissolved after t hours, At this time

the concentration of the actual solution is 30-2 and that of a saturated solution is -1%%
Then

dr | (30 _30-x L, 1r 2 or dr __dx kg,

dt 100 100 100 x x+ 20 5

Integrating between t = 0, x =30 and t = 2, x = 30~10 = 20,
20 20 2
é—f dx = Efdt, audk=§1n§=—0.46.
%0 x 30 x+ 20 5 (1} 2 6

Integrating between t = 0, x = 30 and t = 5, x

* ¥ ' 5 3 -0.u6
f _ - = -f dt, Im—2% __ -k =-0.46, =270
30 X 30 x + 20 5 Jy 3(x +20) x+20 5

= 0.38, and x = 12, Thus, the amount diésolved after 5 hours is 30 -12 = 18 grams.

X,




22 PHYSICAL APPLICATIONS

5. A 100 gallon tank is filled with brine containing 60 pounds of dissolved salt. Water runs into
the tank at the rate of 2 gallons per minute and the mixture, kept uniform by stirring, runs
out at the same rate. How much salt is in the tank after 1 hour?

Let s be the number of pounds of salt in the tank after ¢t minutes, the concentration then
being s/100 1b/gal. During the interval dt, 2dt gallons of water flows inte the tank and

2dt gallons of brine containing szi dt = gs(—)dt pounds of salt flows out.

Thus, the change ds in the amount of salt in the tank is ds = - S dr.

50

. =1/50
e .

-3/
Integrating, s = C ’50.

At t = 0, s = 60; hence, C = 60 and s = 60e

-6/%
e

When t = 60 minutes, s = 60 = 60(.301) = 18 pounds.

6. The air in a certain room 150'x50'x12' tested 0.2% C0,. Fresh air containing 0.05% CO, was
then admitted by ventilators at the rate 9000 ft3/min. Find the percentage CO, after 20 minutes.

Let x denote the number of cubic feet of CO, in the room at time t, the concentration of
CO, then being x/90,000. During the interval dt, the amount of CO, entering the room is
x

9,000(.0005)dt £t2 and the amount leaving is 9,000 dt fts.

’

x - 45 dt.

Hence, the change dx in the interval is dx = 9,000(.0005 — g——f——-)dt = -

Integrating, 10 In(x -~ 45) = -t + InC, and x = 45 + Ce-t/lo.

~-t/10

At t =0, x = .,002(90,000) = 180. Then C = 180 -45 = 135 and x = 45 + 135e 2 .

e " -2 . 63

When t = 20, x = 45 + 1356 = 63. The percentage CO, is then = .0007 = 0.07%.

90,000
7. Under certain conditions the constant quantity
Q calories/second of heat flowing through a wall ’a—125 cm—-1
is given by
dT ~
Q = —kA -, AN
dx | ~
H NN
where k is the conductivity of the material, - | AN
A(cm?) isthe area of a face of the wall perpen- = I ]
dicular to the direction of flow, and T is the : L I
temperature x(cm) fromthat face such that T de- L “I’ IF* * o
creases as x increases, Find the number of cal- N " I Oﬁ
ories of heat per hour flowing through 1 square AN Y I y
meter of the wall of a refrigerator room 125 cm A NN : E~
thick for which k = 0,0025, if the temperature % ~ |
: . I} N

of the inner face is -5 C and that of the outer

. o
face is 75 C. direction of flow

Let x denote the distance of a point within
the wall from the outer face.

Integrating dT = - 1;% dx fromx =0, T=17 to x =125, T = -5,

-5 125 2
f ar - - ¢ j &, 80 - 2(125), and @ - 80K4 . 8000250 _ . cal
% kA Yo kA 125 125 sec

Thus, the flow of heat per hour = 3600Q = 57,600 cal.
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8. A steam pipe 20 cm in diameter is protected with a
covering 6 cm thick for which k& = 0.0003. (a) Find
the heat loss per hour through a meter length of
the pipe if the surface of the pipe is 200°C and
that of the outer surface of the covering is 30°C.
(by Find the temperature ata distance x > 10 cm from
the center of the pipe.

At a distance x >10 cm from the center of the
pipe, heat is flowing across a cylindrical shell of
surface area 2Mx cm> per cm of length of pipe. From
Problem 7,

Q = —kA é? = _znkxgz or onk dT = -Q E{,
dx dx x

a) Integrating between the limits T = 30, x = 16
and T = 200, x = 10,

200 10
2nk f dT = -0 f dx , 340k = Q(In 16 -1n10) = QInl.6 and Q=
30 1 X

3407k

cal/sec.

nl,6

Thus, the heat loss per hour through a meter length of pipe is 100(60)2Q = 245,000 cal ,

by Integrating 2nkdT = - ?40ni EE between the limits T = 30, x = 16 and T =T, x = x,
nlé x
! 170 X dx 170 x 170 16
f dT = - f — T-30 = - In — and T = (30 + 1In—)°C.
30 1n 1.6 16 X 1n 1.6 16 1n 1.6 x
170

Check. When x =10, T= 30 + T in1.6 = 200°C. When x=16, T = 30 + 0 = 30°C,
n

0, Find the time required for a cylindrical tank of radius 8 ft and height 10 ft to empty through
a round hole of radius 1 inch in the bottom of the tank, given that water will issue from such
a hole with velocity approximately v = 4.8V4; ft/sec, h being the depth of the water in the
tank,

The volume of water which runs out per second may be thought of as that of a cylinder 1 inch
in radius and of height v. Hence, the volume which runs out in time dt sec is

n(Ly? (4.8VR)dt = —(4.8VR)dt.
12 144

Denoting by dh the corresponding drop in the water level in the tank, the volume of water
which runs out is also given by 64ndh. Hence,

2 4.8/hydt = —eandh or  dt = -8 dh B
144 4.8 i Vi
Integrating between t = 0, h = 10 and t =t¢t, h =0,
t ° 4 .
f dt = -1920 f @, and t =-3840/FLD - 384010 sec =3 hr 22min.
o 1w vh

10. A ship weighing 48,000 tons starts from rest under the force of a constant propeller thrust of
200,000 lb. a) Find its velocity as a function of time t, given that the resistance in pounds
is 10,000v, with v = velocity measured in ft/sec. b) Find the terminal velocity (i.e., v when
t -®) in miles per hour. (Take g = 32 ft/sec?.)
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Since mass (slugs) x acceleration (ft/secz) = net force (lb)
= impetus of propeller - resistance,

then 38000020000 dv o) h0h 10,0000 or 1y . 2 - 20
32 dt dt 300 300
/
Integrating, vet/3oo = Jﬁleet,soo dt ZOet/300 + C.
300
a) When t = 0, v = 0; € =-20 and v = 20 — 20e /3% - 20(1 = & ¥/3%,

by As t -, v = 20; the terminal velocity is 20 ft/sec = 13.6 mi/hr. This may also be ob-

. . d
tained from 1) since, as v approaches a limiting value, EE —+ 0. Then v = 20, as before.
t

A boat is being towed at the rate 12 miles per hour. At the instant (t = 0) that the towing
line is cast off, a man in the boat begins to row in the direction of motion, exerting a force
of 20 1b, If the combined weight of the man and boat is 480 1b and the resistance (1b) . is
equal to 1,75v, where v is measured in ft/sec, find the speed of the boat after 5 minute.

i

net force (1b)
= forward force - resistance,

Since mass (slugs) x acceleration (ft/secZ)

then @d_v = 20 - 1,750 or d—v + —7-v = ?_
32 dt dt 60 3
Integrating, vew/bO = %fem/bo dt = %(—)en/bo + C,
When t = 0, v = lgﬁégﬁgl - 88 ;. C = %%? and v - 20, 216 e'7w60.
(60) 5 7 35
When t = 30, v o= 80 + El§e'5-5 11.6 ft/sec.

7 35

A mass is being pulled across the ice on a sled, the total weight including the sled being
80 1b. Under the assumption that the resistance offered by the ice to the runners is negli-
gible and that the air offers a resistance in pounds equal to 5 times the velocity (v ft/sec)
of the sled, find

a) the constant force (pounds) exerted on the sled which will give it a terminal velocity of
10 miles per hour, and

b) the velocity and distance traveled at the end of 48 seconds.

Since mass (slugs) x acceleration (ft/secz) = net force (1b)
forward force - resistance,

then 80 @ F-5v or éy + 2v = gl’, where F (1b) is the forward force.
32 dt dt 5
Integrating, v = g + Ce-zt. When t=0, v=0; then C = - g and A) v = 5(1 - e_zt).
5
a) As t -, E =y = 19£§2§91 - 44 The required force is F = 239 1b,
2 3
(60)
b) Substituting from a) in A), v - %(1 - e,
_ 48 48 Y
When t =48: v = %(l—e 96)=43—4ft/s,ec, and s = fo vdt = 4—3?-‘] (1 - e7?"dt = 697 ft.
0
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13. A spring of negligible weight hangs vertically., A mass of m slugs is attached to the other
end. If the mass is moving with velocity vy ft/sec when the spring is unstretched, find the
velocity v as a function of the stretch x ft,

According to Hooke’s law, the spring force (force opposing the stretch) is proportional to
the stretch,

Net force on body weight of body - spring force.

dv dv dx dv . dx
Then m— = mg — kx or m— — = mv— = mg - kx, since — = v,
dt dx dt dx dt
: 2 2
Integrating, mv- = 2mgx - kx" + C.
When x = 0, v = v5. Then C = mvg and my> = 2mgx ~ kx? + mvg.

14. A parachutist is falling with speed 176 ft/sec when his parachute opens. If the air resis-
tance is Wv?/256 1b, where W is the total weight of the man and parachute, find his speed as
a function of the time t after the parachute opened. :

Net force on system = weight of system - air resistance,
2
Then Ejg’l_) = W_}j.li. or _;J;U__ = _gf.
g dt 256 v2 - 256 8

Integrating between the limits t = 0, v = 176 and t =¢t, v = v,

v t v t
-1
f i— = - 1 f dt' _1 in v 6 = ._.E ,
176 v2_ 256 8 Jo 32 v +16 [175 8o
16 5 16 5 6+5e "
In 2222 _o1n 2 - gy, voIS L 2% and v o= 16 2128
v +16 6 v+16 6 5 50"t

Note that the parachutist quickly attains an approximately constant speed, that is, the
terminal speed of 16 ft/sec,

15. A body of mass m slugs falls from rest in a medium for which the resistance (1b) is propor-
tional to the square of the velocity (ft/sec). If the terminal velocity is 150 ft/sec, find
a) the velocity at the end of 2 seconds, and
b) the time required for the velocity to become 100 ft/sec.

Let v denote the velocity of the body at time t seconds.

Net force on body = weight of body - resistance, and the equation of motion is
dv 2
1 m— = - Kv*.
) ot mg
Taking g = 32 ft/sec?, it is seen that some simplification ispossible by choosing K = 2mk%
Then 1) reduces to ﬂf = 2(16 - kzvz) or ~——iﬁi——— = -2dt.
dt k2v2 - 16
- - -16
Integrating, 1n EE——E = ~16kt + InC or kv -4 = Ce L k{
kv + 4 kv +4
When t =0, v =0, Then C=-1 and 2) ko4 _e Bk
kv+ 4
~16kt 2 v =150 - 43t

When t -, v = 150. Then e =0, k= = and 2) becomes = -—e .

v+ 150
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a) When t = 2, IO _ =B _ 403 and v - 61 ft/sec.
v+ 150
b) When v = 100, e "'=.2 = ™% and t = 3.7 sec.
A body of mass m falls from rest in a medium for which the resistance (1b) is proportional to

the velocity (ft/sec). If the specific gravity of the medium is one-fourth that of the body
and if the terminal velocity is 24 ft/sec, find (a) the velocity at the end of 3 sec and b)
the distance traveled in 3 sec,

Let v denote the velocity of the body at time t sec. In addition to the two forces acting
as in Problem 15, there is a third force which results from the difference in specific grav-
ities. This force is equal in magnitude to the weight of the medium which the body displaces
and opposes gravity,

Net force on body = weight of body - buoyant force - resistance, and the equation of
motion is i dv i 1 i o - 3 ne o
dt 83" 4 )
. 2 , . v dv
Taking g = 32 ft/sec” and K = 3mk, the equation becomes == = 3(8-kv) or ryy 3dt.
- kv
Integrating from t =0, v =0 to t=1¢, v = v,
1 v t -3kt
—Eln(8--lzv)0 = 31&0 s -1n(8~kv) + In8 = 3kt, and kv = 8(l-e ).
When t -, v = 24, Then k=1/3 and 1) v = 24(1—e-t).
a) When t = 3, v = 24(1 — e ’) = 22.8 ft/sec.
. dx -t
b) Integrating v = ;r = 24(1-e ') betweent =0, x =0 and t = 3, x = «x,
t
x 3

-t -
x 0 24(t + e ) 0 and x = 24(2+ e ") = 49,2 ft.

The gravitational pull on a mass m at a distance s feet from the center of the earth is pro-
portional to m and inversely proportional to sz. a) Find the velocity attained by the mass
in falling from rest at a distance 5R from the center to the earth’s surface, where R = 4000
miles is taken as the radius of the earth. b) What velocity would correspond to a fall from
an infinite distance, that is, with what velocity must the mass be propelled vertically up-
ward to escape the gravitational pull? (All other forces, including friction, are to be neg-
lected.)

The gravitational force at a distance s from the earth’s center is km/s?, To determine k,
note that the force is mg when s = R; thus mg = km/R2 and k = ng. The equation of motion is

2
mdv ds dv o v mgR

1) — =
dt dt ds ds s2

or vdv = -gR

2 ds
e
S

the sign being negative since v increases as s decreases.

a) Integrating 1) fromv = 0, s =5R to v = v, s = R,

v R
Jovan - _gR? I5R d_:, 502 - ng<;1{_5_;) = %gB, v? = 2(32)(4000)(5280),
S

and v = 2560vV165 ft/sec or approximately 6 mi/sec.
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b) Integrating 1) fromv =0, s—-® to v =1v, s =R,

v 2 K ds 2 . .
fo vdv = —gR fm = v° = 2gR, v = 6400y 33 ft/sec or approximately 7 mi/sec.
S

One of the basic equations in electric
circuits is

di . .
1) L 5 + Ri = E(t), L L
where L(henries) is called the induc- E, = E(t) ’\)

']
i

tance, R(ohms) the resistance, i(am-
peres) the current, and E(volts) the
electromotive force or emf, (In this R R
book, R and L will be constants,)

a) Solve 1) when E(t)=F, and the ini-
tial current is ig.

a b
by Solve 1) when L = 3 henries, R = 15 (@) (©)
ohms, E(t) is the 60 cycle sine wave of
amplitude 110 volts, and t= 0 when t =0.
3 . Rt/L R Es R . ~Rt/L
a) Integrating Lé—l-+R1:Eo, te t/]: que t/Ldt= D¢ E/L+C or 1 =E—O+Ce /.
dt L R
. . E ~Rt/L . =Rt/L
When t=0, t=1g. Then (1:10—1-53 and T =-3(1-e“/) + 1ge /.
R R
Note that as t -, 1 = Ey/R, a constant,
b) Integrating 3% + 151 = E5 sinwt = 110 sin 2n(60)t = 110 sin 120nt,
t
) S i nt - T e nt
lest _ &jew sin 1207 dt = _1_}9 est 5 sin 120 120 2cos 120 c
3 25 + 144001
22 sin 120mt - 247 cos 1207t -5t
or 1 = = + Ce 77,
3 1+ 576n?
22-24m

When t =0, t=0. Then C =

H

3(1 + 5761%)

-ht
22 sin 120nt - 247 cos 120Mt + 24mM e >

3 1+ 57612

and 1=

A more useful form is obtained by noting that the sum of the squares of the cpefficients
of the sine and cosine terms is the denominator of the fraction above. Hence, we may define

T
sin ¢ = ~———24—% and cos = ! 7
(1 + 57612 (1+ 576m2)
-5t
so that i = —__22_% (cos ¢ sin 120mt - sin ¢ cos 120mt) + mi——z .
3(1 + 57612 1+ 576W
...5t
s
= 2 sin(1oomt - by 1761e

3(1 + 576m%y"° 1+ 57612
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If an electric circuit contains a resistance R(ohms) and a con- R
denser of capacitance C(farads) in series, and an emf E(volts),
the charge g(coulombs) on the condenser is given by W
d
RE L 9 - L
dt* C

3

E(t)C’\b
If R = 10 ohms, C = 10" ° farad and E(t) = 100 sin 120mt volts,
a) find g, assuming that q = 0 when t = 0,

b) use i =dq/dt tofind i, assuming that i =5 amperes when t =0, —-—Il-——d

Cc
di
Integrating 10 Bit] +10°g = 100 sin 1207t,  we have
i - n 12
q.eloot . mfeloot sin 120t dt = melo(n 100 sin 1207t 1207 cos 1201t A
10,000 + 14,4007?
- elOOt 10 sin 120mt - 127 cos 1207t A
100 + 144n?
and 1) q = ——1———% sin(120mt — Py + Ae~100t
(100 + 1447%)
where sin¢ = -——————-——12“ m and cos P = ————————10 7 .
(100 + 1447%) (100 + 144n?)
-100t
T n
a) When t =0, g=0. Then A = ——3———— and q = ————1——% sin(i20mt - @) + e 3
25 + 3677 2(25+ 361°) 25 + 361
b) Differentiating 1) with respect to t, we obtain
) d -60T -10
o= 4 . —60——% cos(120mt — @) - 100Ae °r,
dt (25 + 361%)
When t=0, i=5. Then 1004 = ——Gon——zcoscb -5 = _3_09_1{_2 -5
(25 + 36m%) 25+ 367
. n n -1
and i o= _60_? cos(120mt — Py - (—3&(-1—5 - 5)e 0ot
(25 + 361%)° 25 + 361
A boy, standing in corner A of a rectangular y
pool, has a boat in the adjacent corner B on B
the end of a string 20 feet 1long., He walks
along the side of the pool toward C keeping p
the string taut. Locate the boy and boat when *'J')
the latter is 12 feet fromAC, AN
I
. | N
Choose the coordinate system so that AC is ‘ N )
. . . ~
along the x-axis and A.B'ls along the y-axis, . l /400 —y2 N \\ x
Let (x,y) be the position of the boat when 1 E C
the boy has reached E, and let 6 denote the
angle of inclination of the string.
S o2
Then tan 6 = d_y = __;y__- or dx = = :ﬂ_—y_ dy_
dx /400 - y? J
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/ 2
Integrating, x = - /400 - yZ + 20 In 20+ V400 -y C.

y
When the boat is at B, x = 0 and y = 20.
/ 2
Then C =0 and x = - \/400—y2 + 20 In U_Q:L isthe equation of the boat’spath.
Y
/ 2
Now AE = x + V400 —y2 = 20 1n 20+ V400 -y Hence, when the boat is 12 feet from

Y
AC (i.e., y = 12), x+16 = 20 1n 3 = 22,

The boy is 22 feet from A and the boat is 6 feet from AB.

21. A substance Y is being formed by the reaction of two substances & and R in which a grams of @
and b grams of f form (a+ b) grams of y, If initially there are x, grams of «, yo grams of [,
and none of y present and if the rate of formation of Y is proportional to the product of the
quantities of @ and @ uncombined, express the amount (z grams) of y formed as a function of

time t.
The z grams of vy formed at time t consists of grams of o and bz grams of [,
a+b a+ b
Hence, at time t there remain uncombined (xo - ﬁ—)grams of & and (yo - bz ygrams of R.
a+b a+ b
d B {ab b b
Then 2 = K(xp - —Zy(yp - 22y = Reb _avb o erb 4
dt a+b a+b (a+b)?
) )
- k(A-2)(B-2), where k_"_ﬂ_? g larbixe g o (atbiyo
(a+b) a b
There are two cases to be considered: 1) 4 # B, say A>B, and 2) A4 = B.
1) Here ___gz___ = —_~1_. dz + —1— dz = kdt.
A-2YB-2) A-BA-: A-B B-:
Integrating from ¢t = 0, z =0 to t =1t, z = z, we obtain
1 A-z|f l 1 A-2z A A A (4-5)t
In = = ktl, . e (In —Z — In 2y = kt, “2 o DTk,
A-B  B-zls 0 A-B B-: B B-z B
~(4=B)kt
and z = AB(I-eA 5 +>
A —Be B
2) Here ——di— = kdt. Integrating from ¢t =0, 2 =0 to t = t, z = z, we obtain
A -2)*
z 2
1 t
= ktl ’ 1 . l = kt, and P - A kt .
A=zl 0 A-z A 1+ Akt
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PHYSICAL APPLICATIONS

SUPPLEMENTARY PROBLEMS

A body moves in a straight line so that its velocity exceeds by 2 its distance from a fixed
point of the line. If v =5 when ¢t =0, find the equation of motion, Ans, x - Set—A2

Find the time required for a sum of money to double itself at 5% per annum compounded con-
tinuously. Hint: dx/dt = 0.05x, where x is the amount after t years, Ans. 13.9 years

Radium decomposes at a rate proportional to the amount present, If half the original amount
disappears in 1600 years, find the percentage lost in 100 years., Ans. 4.2 9

In a culture of yeast the amount of active ferment grows at a rate proportional to the amount
present. If the amount doubles in 1 hour, how many times the original amount may be antici-
pated at the end of 22 hours? Ans. 6.73 times the original amount

1f, when the temperature of the air is 20°C, a certain substance cools from 100°C to 60°C
in 10 minutes, find the temperature after 40 minutes, Ans. 25 C

A tank contains 100 gal of brine made by dissolving 60 1lb of salt in water, Salt water con-
taining 1 1b of salt per gal runs in at the rate 2 gal/min and the mixture, kept uniform by
stirring, runs out at the rate 3 gal/min, Find the amount of salt in the tank at the end of
1 hr. Hint: dx/dt = 2 - 3x/(100~t). Ans. 37.4 1b

Find the time required for a square tank of side 6 ft and depth 9 ft to empty through a one
inch circular hole in the bottom. (Assume, as in Prob.9, v = 4.8Vﬂ ft/sec.) Ans., 137 min

A brick wall (k = 0.0012) is 30 cm thick. If the inner surface is 20°C and the outer is 0°C,
find the temperature in the wall as a function of the distance from the outer surface and
the heat loss per day through a square meter. Ans. T = 2x/3; 691,000 cal

A man and his boat weigh 320 1b. If the force exerted by the oars in the direction of motion
is 16 1b and if the resistance (in 1b) to the motion is equal to twice the speed (ft/sec),
find the speed 15 sec after the boat starts from rest. Ans. 7.6 ft/sec

A tank contains 100 gal of brine made by dissolving 80 1b of salt in water. Pure water runs
into the tank at the rate 4 gal/min and the mixture, kept uniform by stirring, runs out at
the same rate, The outflow runs into a second tank which contains 100 gal of pure water ini-
tially and the mixture, kept uniform by stirring, runs out at the same rate, Find the amount
of salt in the second tank after 1 hr,

Hint: & . aEe™ ™™ 4 % £or the second tank. Ans. 17.4 1b
dt 5 100

A funnel 10 in. in diameter at the top and 1 in, in diameter at the bottom is 24 in, deep.
If initially full of water, find the time required to empty. Ans. 13.7 sec

Water is flowing into a vertical cylindrical tank of radius 6ft and height 9 ft at the rate
671 ft3/min and is escaping through a hole 1 in. in diameter in the bottom. Find the time re-

s

quired to fill the tank., Hint: (E- - 4.8vh)dt = 36n dh. Ans. 65 min

(24)°

A mass of 4 slugs slides on a table, The friction is equal to four times the velocity, and
the mass is subjected to a force 12 sin 2t 1b., Find the velocity as a function of ¢ if v = 0

h t = 0. -
when 0 Ans., v = g(sin 2t - 2 cos 2t + 2e t)

A steam pipe of diameter 1 ft has a jacket of insulating material (k = 0.00022) % ft thick,
The pipe is kept at 475°F and the outside of the jacket at 75°F, Find the temperature in the
Jacket at a distance x ft from the center of the pipe and the heat loss per day per foot of
pipe. Ans. T =175 - 400(1n x)/(1n 2); 69,000 B.T.U,

The differential equation of a circuit containing a resistance R, capacitance C, and emf e =
E sinwt is R di/dt + 1/C = de/dt, Assuming R,C,E,» to be constants, find the current i

t ti t. . . -
at time Ans, 1 = —EE—C—C‘—)—(cos wt + RCwsinwt) + Cqe t/kC

-1+1'412C2w2



CHAPTER 9

Equations of First Order and Higher Degree

A DIFFERENTIAL EQUATION of the first order has the form f(x,y,y") =0 or f(x,y,p)=0,
where for convenience y' = gX is replaced by p. If the degree of p is greater
X

than one, as in p?-3px +2y = 0, the equation is of first order and higher
(here, second) degree.

The general first order equation of degree n may be written in the form

n-l

1) Pl Py (x,y)p T A t Pooyi(6y)p + Po(x,y) = 0.

It may be possible, at times, to solve such equations by one or more of
the procedures outlined below. In each case the problem is reduced to that
of solving one or more equations of the first order and first degree.

EQUATIONS SOLVABLE FOR p. Here the left member of 1), considered as a polynomial
in p, can be resolved into n linear real factors, that is, 1) can be put in

the form
¢ (P~F ) (p=Fy)eevese (p-F,) = 0,
where the F’s are functions of x and y.

Set each factor equal to zero and solve the resulting n differential equa-
tions of first order and first degree

d d

Do hy, L= Ry, e . L= Ry
to obtain
2) f1(XrY1C):01 fQ(X)Y:C)ZO! ....... ’ fn(x,y,C)=0.

The primitive of 1) is the product
3) f1(X.Y;c)'f2(X,Y,C) """"" ﬁx(x)yyc) = O
of the n solutions 2).

Note. Each individual solution of 2) may be written inany one of its sev-
eral possible forms before being combined into the product 3). See Prob.1-3.

EQUATIONS SOLVABLE FOR y, i.e., y = f(x,p).

Differentiate with respect to x to obtain

g:p:lfv{».a_{gg

dp
= F(X, y — )
dx ox 9p dx P dx)

an equation of the first order and first degree.
dp .
Solve p = F(x,p, a;) to obtain ¢(x,p,C) = 0.

Obtain the primitive by eliminating p between y = f(x,p) and ¢(x,p,C)=0,
when possible, or express x and y separately as functions of the parameter p.
See Problems 4-7.

61
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EQUATIONS SOLVABLE FOR x, i.e., x = f(y,p).

Differentiate with respect to y to obtain

dx

1 of of dp dp
- = — + = —= = F(Yr b, _> H
dy P dy dp dy dy

an equation of the first order and first degree.
1 _ dp . B
Solve 5" F(y,p, E—) to obtain ¢é(y,p,C) = 0.
y

Obtain the primitive by eliminating p between x = f(y,p) and ¢(y,p,C)=0,
when possible, or express x and y separately as functions of the parameter p.
See Problems 8-10.
CLAIRAUT’S EQUATION. The differential equation of the form
y = px + f(p)
is called Clairaut’s equation. Its primitive is
y = Cx + f(C)
and is obtained simply by replacing p by C in the given equation,

See Problems 11-16.

SOLVED PROBLEMS

1. Solve p* - (x+2y+1)p> + (x+2y+2xy)p? = 2xyp =0 or p(p-1)(p-2)(p-2y) = O.

The solutions of the component equations of first order and first degree

are respectively y-C=o0, y-x-C =0, 2y—x2—C -0, y_cezx - 0.

The primitive of the given equation is (y-C)(y—x—C)(Zy—xz—C)(y—Cezx) = 0.
2. Solve xyp2 + (x2+xy+y2)p +x%y xy =0 or (xp+x+y)(ypt+tx) = 0.
. . dy dy
The solutions of the component equations x z +x+y=0 and ¥y E +x=0

are respectively 2xy + x2-C=0 and 2%+ y2 -C=0.

The primitive of the given equation is (2xy+x2—C)(x2+ yz-C) = 0.

3. Solve (x2+x)p2+ (x2+x—2xy—y)p+y2—xy=0 or [(x+1)p—y][xp+x—y] =0,

The solutions of the component equations (x+1) Z—Z -y =0 and x% +x-y=0

are respectively y-Cx+1) =0 and y+x 1lnCx =0.

The primitive of the given equation is [y - C(x+ 1)]{y + x 1n Cx] = 0.
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2
4. Solve 1627 + 2p2y - pr =0 or 2y = px - 18 % .
p

d] d
Differentiating the latter form with respect to «, 20 = p+tx Ep - & + 32x d

Clearing of fractions and combining, p(p5 + 32x) ~ Jc(p3 + Bb)g—i =0

3 dp
r 1 + 32x -x—) = 0.
0 ) (p )(p - x d.x>

d
This equation is satisfied when p5+ 32x=0 or p=- x(dTi = 0. From the latter, -5 = éx—x and

p = Kx. When this replacement for p is made in the given equation, we have
16:° + ?szzy - Ky -0 or 2+ Czy -2 = 0,
after replacing K by 2C.

The factor p5+ 32x of 1) will not be considered here since it does not contain the -de-
rivative dp/dx. Its significance will be noted in Chapter 10,

f. Solve y = 2px + puxQ‘
) L . B dp y 3 2 dp
Differentiating with respect tox, p = 2x e +2p + 2px t+ 4px o

or o+ =x®y e op’xy - o,
dx

The factor 1+ 2p§x is discarded as in Problem 4, From p + 2xi—i =0, xp2 = C.

In parametric form, we have «x = C/p?, y = 2C/p + C2, the second relationbeing obtained
by substituting x = C/p? in the differential equation.

Here p may be eliminated without difficulty between the relation xp? = C or p? = C/x and

the given equation. The latter may be put in the form y - p“x2 = 2px and squared to give

(y - p*x®)% = 4p®x®. Then, substituting for p?, we have (y - C*)? = 4Cx.

6. Solve x = yp + p2 or y = :‘)—P-
Differentiating with respect to x, p = 1 . é}-) - EZB or p5 - p+ (x+ p2)£’£ = 0,
P p2 dx  dx dx
Then (Pi—P)g +x+pP=0 or & _x = - _PF
dp b pi-p p?-1
3_ /.2 _
The latter is a linear equation for which efdﬁ/(f) P A ! is an integrating fac-

tor, Using it,

/.2
x__E;.l = _I_L = - In(p + ‘/p2__'1)+C

and x = - —2 1n(p+/p2-1)+_.C_P_. Y= =p - ——In(p+Vp2-1) + c_..
p? -1 p?-1 p’-1 p?-1
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7. Solve y = (2+p)x + p2.

Differentiating with respect to x, p=2+p+ (x+ 2p)i—i or j—x +5x = ~p.
P
| |
This is a linear equation having ezfdp = eﬂJ as an integrating factor.
i il 1 L
Then xezﬁ = -—fpezp dp = —2pezp+ 4e2¢ + C
-3p 2 -3P
and x = 2(2-p) + Ce s y =8-p°+ (2+p)Ce .
8. Solve y = 3px + 6p’y>.
Solving for x, 3x = i—; Z prz. Then, differentiating with respect to y,

= = - = - - 6y° @ _ 12py and (1+ 6p°y)(2p + y d—P) = 0.
dy dy

The second factor equated to zero yields py2 = C. Solving for p and substituting in the
original differential equation yields the primitive y3 = 3Cx + 6C2

2
9. solve p° - 2xyp + 4y° = 0 or P R A
y P
Differentiating with respect to vy,

2 24 2 1 d d
2LR® R 4oL o -2y D@t -ph =0
P y dy 2 P p2dy dy

Integrating p - ZySE = 0 and eliminating p between the solution p2 = Ky and the original

differential equation, we have 16y = K’(K—Zx)Q. This may be put in the form 2y = C(C—Jc)2
by letting K = 2C.

10. Solve 4x = py(p2—3).

Differentiating with respect to y,

4 d d 3p(p? - 1)d,
- = p(p2—3) + 3y(p2 _1)_p or ay | 2P(P 2) P - 9.
p dy Y (pZ-4)(P*+ 1)

Integrating, by partial fractions, Iny + 2 In(p+2) + 13 In(p-2) + %1n(p2+ 1) = In C.
10 0

Cp(p®-3)
(p?- 4)9/10 2+ 1)5/5

C 1

Th = y = =

en Y 2 9/10 2 3/5 x 4
(p°-4) P+

CLAIRAUT’S EQUATION,

11. Solve y = px+ V4+p. The primitive is y = Cx+ V4 + ct.

12. solve (y—px)2 = 1+ pz.

Here y = px £ V/1+p2,

The primitive is (y - Cx - vV 1+ C2)(y— Cx + vV 1+ C2) =0 or (y - Cx)2 = 1+ C2.
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13. solve y = 3px + 6y°p%. (See Problem 8.)

This may be reduced to the form of a Clairaut equation.

Multiply the equation by y2 to obtain y3 = 3y2px + Sy“pz.

Using the transformation y3: v, 3y2p:51-1—1 , this becomes v = x ﬂ} + g(d—if)z,
dx dx 3 dx

The primitive is v = Kx + §K2 or y3 = Kx + -32-1(2 or y5 = 3Cx + 6C2,

14. solve cos’y p® + sinx cosx cosy p - siny cos’x = 0.

cos y du

The transformation siny = u, sinx = v, reduces the equation to

du du 2
u = v —= +

dv (Et-z) )

coS x dv

Then u=Cv+ G or siny:Csinx«»Cz‘

15. Solve (px - y)(py + x) = 2p.

The transformation y2 = u, x?= v, p= %ﬁ d—l-‘ reduces the equation to
u v
( du - u%)(v% du + v'%) = 21}/2 du or (vd—g - u)(d—u + 1) = 2 —
o d o dv dv dv dv
o du
Then u:vd~u~ dv. and u:Cv——"Zi or y2=Cx2- 2
dv du 1+ C 1+C
1+ =~
dv
16. Solve pix(x=2) + p(2y-2xy-x+2) + y2+ y = 0.
The equation may be written as (y —px+ 2p)(y —px + 1) =0,
Each of y = px-2p and y = px—1 1is a Clairaut equation,
Thus the primitive is (y —Cx + 20)(y - Cx + 1) = 0.
SUPPLEMENTARY PROBLEMS
Find the primitive of each of the following.
2 2 -
17, 2°p® + xyp ~6y° = 0 Ans. (y-—sz)(y—Cx 5) =0
2 2
18. xp” + (y-1-x)p -2(y~-1) =0 Ans, (2y-x2+C)(xy—x+C) =0
19. xp2 - 2yp + 4x = 0 Ans, Cy = PR o
20. Bxupz -xp -y =0 Ans, xy = C(3Cx-1)
2 _ 2 2
2. 8yp " -~ 2xp+y =0 Ans. y" - Cx +2C" =0
22. y2p2+3px—y=0 Ans. y - 3Cx-C? =0
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23.

24.

25.

26.

27.

28.

29.

30.

31.

EQUATIONS OF FIRST ORDER AND HIGHER DEGREE

y=CJc—C2

yu = C(x - C)

(y-Cx-CHC=Cy+1)

x = C(p +1)ep, y = Cp2e

¥ =26 + O

. }’:2—p2+C(1+p)e-

2

2 Inp + 1n(p+|/1+p2) +C, y-= 2p+1/1+p2

5/

/4

pz—xp+y=0 Ans,
3 2
16y°'p" —4xp +y = 0 Ans.
2

Jcp5 - ypq + (Jc2+1)p5 - 2xyp + (x+y2)p -~y =0 Ans,

xpz—yp—y=0 Ans.

y = 2px + y2p5 (Use yzzz.) Ans,
- 2

pP—xp—y=0 Ans. 3x =2p + C/Vp, 3y =p -C/vp

2 4

y = (l+p)x + p Ans., x = 2(1-p) + Ce

y:2p+V1+p2 Ans, x =

yp2 ~xp + 3y =0 Ans, x = Cpl/z(p2+ 3)(p2 +2)-5

y =Cp

3/2

2
(p +

2y

v

0



CHAPTER 10

Singular Solutions—Extraneous Loci

THE DIFFERENTIAL EQUATION
1) y = px +2p°
has as primitive the family of straight lines of equation
2) y = Cx + 2c%.

With each point (x,y) in the region of points for which x? +8y >0, equation
1) associates a pair of distinct real directions and equation 2) associates
a pair of distinct real lines having the directions determined by 1). For ex-
ample, when the coordinates (-2,4) are substituted in 1), we have 4 = -2p +2p?
or p2—p-2 =0 and then p = 2,~1. Similarly, when 2) is used, we obtain C =
2,~1. Thus, through the point (-2,4) pass the lines y = 2x+8 and y = -x+2
of the family 2) whose slopes are given by 1). Points for which x?+8y < 0
yield distinct imaginary p- and C-roots.

lines of family
y = Cx+2C2

envelope
x2+8y =0

(a) ()]

Through each point of the parabola x%+8y = 0 there passes but one line
of the family, that is, the coordinates of any point on the parabola are so
related that for them the two C-roots of 2) and the two p-roots of 1) are e-
qual. For example, through the point (-8,-8) there passes but one line, y =
2x +8, and through the point (4,-2) but one line, y = ~x +2. (See Fig. a.)

It is easily verified that the line of 2) through a point of x? + 8y =0
is tangent to the parabola there, that is, the direction of the parabola at
any one of its points is given by 1). Thus, x2+8y = 0 1is a solution of 1).
It is called a singular solution since it cannot be obtained from 2) by a
choice of the arbitrary constant, that is, since it is not a particular solu-
tion., The corresponding curve, the parabola, is called an envelope of the fam-
ily of lines 2). (See Fig. b above.)
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SINGULAR SOLUTIONS — EXTRANEOUS LOCI

Summary and Extension:

A singular solution of a differential equation satisfies the differential
equation but is not a particular solution of the equation.

At each point of its locus (envelope) the number of distinct directions
given by the differential equation and the number of distinct curves given
by the corresponding primitive are fewer than at points off the locus.

THE SINGULAR SOLUTIONS of a differential equation are to be found by expressing

the conditions
a) that the differential equation (p-equation) have multiple roots, and
b) that the primitive (C-equation) have multiple roots.

In general, an equation of the first order does not have singular solu-
tions; if it is of the first degree it cannot have singular solutions. More-
over, an equation f(x,y,p) = 0 cannot have singular solutions if f(x,y,p) can
be resolved into factors which are linear in p and rational in x and y.

The simplest expression, called the discriminant, involving the coeffi-
cients of an equation F(X) = 0 whose vanishing is the condition that the equa-
tion have multiple roots is obtained by eliminating X between F(X) = 0 and
F'(X) = 0. The discriminant of

aX?+bX +c =0 is b? _ 4ac,

11

of ax? +bX?* +cX+d =0 is b2c? + 18abcd — 4ac? ~ 4b>d — 27a%d?.

See Problem 1.

For the example above, the discriminants of the p- and C-equations are iden-
tical, being x? + 8y.

If E(x,y) = 0 is a singular solution of the differential equation f(x,y,p)
= 0, whose primitive is g(x,y,C) = 0, then E(x,y) is a factor of both discrim-
inants. Bach discriminant, however, may have other factors which give rise to
other loci associated with the primitive. Since the equations of these loci
generally do not satisfy the differential equation, they are called extraneous.

EXTRANEOUS LOCI. (Differential equation, f(x,y,p) = 0; primitive, g(x,y,C) = 0.)

a) Tac Locus.

Let P be a point for which two or more of the n distinct curves of the fam-
ily g(x,y,C) = 0 through it have a common tangent at P. Now the number of dis-
tinct directions at P is less than n so that the p-discriminant must vanish
there. The locus, if there is one, of all such points is called a tac locus.
If T(x,y) = 0 is the equation of the tac locus, then T(x,y) is a factor of the
p-discriminant. In general, T(x,y) is not a factor of the C-discriminant and
T(x,y) = 0 does not satisfy the differential equation.

|
I
1
1

%

y=0 is a tac locus,
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b) Nodal Locus.

Let one of the curves of the family through P have a node (a double point
with distinct tangents) there. Since two of the n values of p are thus ac-
counted for, there can be no more than n-1 distinct curves through P; hence,
the C-discriminant must vanish at P. The locus, if there is one, of all such
points is called a nodal locus. If N(x,y) = 0 is the equation of the nodal
locus, then N(x,y) is a factor of the C-discriminant. In general, N(x,y) is
not a factor of the p-discriminant and N(x,y) = 0 does not satisfy the dif-
ferential equation.

¢) Cusp Locus.

Let one of the curves of the family through P have a cusp (a double point
with coincident tangents) there. Since one of the p-roots is of multiplicity
two, the p-discriminant must vanish at P. Moreover, as in the case of a node,
there can be no more than n-1 curves through P and the C-discriminant must
vanish at P. The locus, if there is one, of all such points is a cusp locus.
If C(x,y) = 0 is the equation of the cusp locus, then C(x,y) 1s a factor of
both the p- and C-discriminants. In general, C(x,y) = 0 does not satisfy the
differential equation.

|y v

VA VAR VAR VA E E; E E E
( <i> (j> (j> O x
|
y =0 is a nodal locus. y=0 is a cusp locus.

If the curves of the family g(x,y,C) = 0 are straight lines, there are no
extraneous loci.

If the curves of the family are conics, there can be neither a nodal nor
cusp locus.

THE p-DISCRIMINANT RELATION. The discriminant of the differential equation f(x,y,p)
= 0, the p-discriminant, equated to zero includes as a factor

1) the equation of the envelope (singular solution) once. See Problems 2-4.
(The singular solution satisfies the differential equation.)

2) the equation of the cuspidal locus once. See Problem 7.
(The equation of the cuspidal locus does not satisfy the differential equa-
tion unless it is also a singular solution or particular solution.)

3) the equation of the tac locus twice. See Problem 5.
(The equation of the tac locus does not satisfy the differential equation
unless it is also a singular solution or particular solution.)

THE C-DISCRIMINANT RELATION. The discriminant of the primitive g(x,y,C) = 0, the
C-discriminant, equated to zero includes as a factor

1) the equation of the envelope or singular solution once.

2) the equation of the cuspidal locus three times.
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3) the equation of the nodal locus twice. See Problem 6.
(The equation of the nodal locus does not satisfy the differential equa-
tion unless it is also a singular solution or particular solution.)

When any locus falls in two of the categories, the multiplicity of its e-
quation in a discriminant relation is the sum of the multiplicities for each
category; thus, a cuspidal locus which is also an envelope is included twice
in the p-discriminant and four times in the C-discriminant relation.

The identification of extraneous loci is, however, more than a mere count-
ing of multiplicities of factors.

SOLVED PROBLEMS
Find the discriminant relation for each of the following:
a) p3+px—y:0, b) psx—2p2y—16x2 = 0, c) y=C(x—C)2.

Note. These discriminant relations may be written readily using the formula given above.
We give here a procedure which may be preferred.

a) We are to eliminate p between f(x,y,p) = p3+px—y =0 and g—f = 3p2+x = 0. This is best
p

done by eliminating p between

3f - pg—f = 3p5+3px—3y—3p5—px = 2px-3y = 0 and g—f = 3p2+x = 0. Solving the first
P P
3 2 27y° 2

for p = Ey and substituting in the second, we find 3p +x = y2 +x =0 or 4x5+ 27y = 0,

4x

Note, If f(x,y,p) =0 is of degreen in p, we eliminate p between nf—pg—f = 0 and :~f = 0.
P P

b) We are to eliminate p between 3f—p§i = 3p5x-6p2y—48x2—- 3p51+4p2y = -2p2y - 48x2 = 0
p

9

and éj—[ = 3p2x~4py = 0. From the latter we obtain qux2 = 16p2y2 or gpuxz —16p2y2 =0
P 2 x2 2 2 4

and from the former p° = -24 —y— . Substituting for p°, we obtain «x (2y3 +27x ) = 0.

c) Here g(x,y,C) = IS You (. y =0 and we are to eliminate C between

1) 3g-C 2—“2 =30 - 6C%% + 3Gx° -3y -3C% + aC% - & - —2¢% + 2Gx%-3y = 0 and

2) Eig: = 3C2—4Cx+x2 = 0.
oC
Multiplying 1) by 3 and 2) by 2r, and adding, we have -2Cx° + 2x° — 9y = 0.
20 - 9y
212

Substituting C = in 2) and simplifying, we obtain y(4x§—-27y)

I
o

2
2. Solve y = 2xp -yp  and examine for singular solutions.

Solving for 2x = % + yp and differentiating with respect to y, we have
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2 1 y dp dp 2 dp
2o 2Lyt or (P -(p+y-—) = 0.
P h Ty P p PHY T

Integrating p + yj__p = (0 to obtain py =(C and substituting for p =
o

2
ferential equation, we obtain the primitive y = 2Cx - C2.

<IO

in the given dif-

The p- and C-discriminant relations are ch—-y2 = 0. Since both y = x and y = —x satisfy
the given differential equation, they are singular solutions.

If p is eliminated between the differential equation and the relation p2-1 = 0, discarded
in this solution, the equation of the envelope x2—y2 = (0 1is again obtained, The presence
of such a factor implies the existence of a singular solution but not conversely. Hence, this
procedure is not to be used in finding singular solutions.

The primitive represents a family of parabolas with principal axis along the x-axis., Each
parabola is tangent to the line y = x at the point (C,C) and to the line y = —x at the point
(C,-C). See Figure (a) below.

Fig. (@) Prob, 2 Fig. (b) Prob. 3
Family of parabolas y2 = 2Cx - C2, Family of straight lines y = Cx + C5,
envelope y = tx, envelope 4a3 + 27y2 = 0,

Examine p3 +px-y = 0 for singular solutions.

This is a Clairaut equation, the primitive being y = Cx + C3.

The p- and C-discriminant relation 4x’ + 2’7_)'2 = 0 1is a singular solution since it satis-
fies the differential equation,

The primitive represents a family of straight lines tangent to the semi-cubical parabola
4x3 +2'7y2 = 0, the envelope. See Figure (b) above.

Examine 6p2y2+ 3px -y = 0 for singular solutions.

From Problem 13, Chapter 9, the primitive is y5 = 3Cx + 6C2.

Both the p- and C-discriminant relations are 3% + 8y3 = 0. Since this satisfies the dif-
ferential equation, it is a singular solution.

Solve (12— 4)p2- 2xyp-x2 = 0 and examine for singular solutions and extraneous loci.

Solving for 2y = xp - ;p - :—) and differentiating with respect to x, we have
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2p :p+xgE+4—p—éé£—l+ic—1£ or (p2x2-4p2+x2)(p—xd—‘lz) = 0.
de 42 *dx P p?ax dx
dp . s . 2,2 : .
From p —xd—x =0, p=Cx and the primitive is C (x"-4) - 2Cy - 1 = 0. The p-discrim-

inant relation is xz(xz +y2— 4) = 0, and the C-discriminant relation 1is X%+ y2— 4 = 0.

Now x2+y2 = 4 occurs once in the p- and C-discriminant relations and satisfies the dif-
ferential equation; it is a singular solution. Also x = 0 occurs twice in the p-discriminant
relation, does not occur in the C-discriminant relation, and does not satisfy the differen-
tial equation; it is a tac locus.

R . . 2
The primitive represents a family of parabolas having the circle x2+ y =4 as envelope.
See Figure (c¢) below,

Note 1. The two parabolas through a point P of the tac locus x =0 have at P a common tan-

gent.
Jacio1 1
Note 2. A curve of the family meets the envelope in the points (i——C—, - 6> ; hence,

2
only those parabolas given by C° 2 § touch the circle.

[on 1
|Y Yy |
i ! § C=- 4£
‘ | | 9
| |
\
! C-0
X
43
9
Family of parabolas Family of cubic curves
C%(x2-4)-2Cy-1=0. (y+C¥ = x(x-1)%
Fig. (¢) Prob.5 Fig. (d) Prob. 6

2 2
6. Solve 4xp” - (3x~1)" = 0 and examine for singular solutioms and extraneous loci.

. - 1/2
Solving for p = +( xl/2 - %x l/2), we obtain by integration y = i(x5/2 - x / y+Cy or

[CR R

(y+C)2 = x(x—l)z. The p-discriminant relation is :c(3x—1)2 = 0, and the C-discriminant
relation is z:(:t:—l)2 = 0.

Here x = 0 is common to the two relations and satisfies the differential equation, that is,

d
x =0, gx— = 0 satisfies the equation when written in the form 4x - (31—1)2 (iﬁ)2 = 0. It
Y Y

is a singular solution.

3x-1=0 is a tac locus since it occurs twice in the p-discriminant relation, does not
occur in the C-discriminant relation, and does not satisfy the differential equation.

x—-1=0 is a nodal locus since it occurs twice in the C-discriminant relation, does not
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occur in the p-discriminant relation, and does not satisfy the differential equation.

The primitive represents a family of cubics obtained by moving y2 = x(x —1)2 along the
y-axis, These curves are tangent to the y-axis and have a double point at x = 1. Moreover,
through each point on x = 1/3 pass two curves of the family having a common tangent there,
See Figure (d) above,

{« Solve 9yp2+-4 = 0 and examine for singular solutions and extraneous loci.

Solving for 9y = —4/p2 and differentiating with respect to x, we have

8 fﬁ and x+C = - 8.

9 4 27p3

dx =

Eliminating p between this latter relation and the differential equation, the primitive

is y3 + (x+rC)2 = 0.

The p-discriminant relation is y = 0, and the (-discriminant relation is y5 = 0. Since
Y = 0 occurs once in the p-discriminant relation, three times in the C-discriminant relation,
and does not satisfy the differential equation, it is a cusp locus.

o . . . . . 2
The primitive represents the family of semi-cubical parabolas obtained by moving y3+—x =0
along the x-axis. Each curve has a cusp at its intersection with the x-axis, and y =0 is the
locus of these cusps. See the figure below,

| Y
(0]

Family of semicubical parabolas
y5+(x+C)2=0

2 . . ) .
8. Solve xap ~+x2yp +1 = 0 and examine for singular solutions and extraneous loci.

. 1 oy ;
Solving for y = — 5= " %P and differentiating with respect to x, we have
xrp

3 2 dp
1-x 2p+x—) = 0.
( P )(2p I
From 2P‘*xgg =0, px2= C and, eliminating p between this and the differential equation,
the primitive is (%« Cxy+x = 0,

The p-discriminant relation is xa(xy2__4) = 0, and the C-discriminant relation is x(xyz-4)
= 0.

xyz__4 = 0 satisfies the differential equation and is a singular solution.

x =0 1is a particular solution (€ = 0). Note that it occurs three times in the p-dis-
criminant relation and once in the C-discriminant relation,
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Examine pix-szy—Ize = 0 for singular solutions and extraneous loci.
C s : 3 2 2
From Problem 4, Chapter 9, the primitive is C'x” - C'y -~ 2 = 0.

The p-discriminant relation is x2(2y5+ 2’7x4) = 0, and the C-discriminant relation is
2y3 + 272t = 0.

Since 2y5 +97x" = 0 is common to the discriminant relations and satisfies the differen-
tial equation, it is a singular solution. At each point of the line x = 0, two parabolas of
the family are tangent there (for y< 0, the parabolas are real)., Thus, x = 0 is a tac locus,
Also, x = 0 is a particular solution. Since it is obtained by letting C — ©, it is sometimes
called an infinite solution, Note however that when the primitive is written as x"’-—l(y—ZK5
= 0, this solution is obtained when K = 0.

SUPPLEMENTARY PROBLEMS

Investigate for singular solutions and extraneous loci.

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

y = px—2p2. Ans, primitive, y = Cx-—2C2; singular solution, x = 8y.

y2p2+3xp-y = 0. Ans, prim., y3+3Cx—C2 = 0; S.S., 9x2+ 4y3 = 0.

xp2—2yp+4x = 0. Ans. prim., C2x2—Cy+1 = 0; 8.S., y2—4x2 = 0.

2 . 2 2 2 2

xp =2yp+x+2y = 0. Ans, prim., 2x°+2C(x-y)+C = 0; 8.8., x +2xy-y = 0.
2 2 . W2 2

By -1y p~ = 4y. Ans, oprim., x+C)" = y(y-1)"; s.s., y =0, t.l., y = 1/3;

nl., y = 1.
4 2 . 2 2

y = ~=xp+x p . Ans. prim,, xy = C+C'x; s.s., 1+4x"y =0, t.l., x =0.
2 R 3 2 2 3

2y = p + 4xp. Ans. prim., (4x" +3xy+C) = 2(2x +y) , no s.s.;

c.l., 2x2+y = 0.

y(3—4y)2p2 =4(1~y). Ans. prim., (Jc-C)2 = y5(1-y); s.s., y=1 c.l., ¥y =0,
t.1., y = 3/4.

p5—4xqp+8x3y 0. Ans. prim,, y = Cx2—C3; S.S., 4x6—2’7y2 =0; t.l., ¥ =0.

!

(p2+1)(x—y)2 (x +yp)2. Ans. prim., (x—-C)2+ (y-—C)2 = C2; S.5., xy=0; t.l., y=x.
Hint: Use x = p cos B,
y = p sin 6,



CHAPTER 11

Applications of First Order and Higher Degree Equations

IN FINDING THE EQUATION of a curve having a given property, (for example, that its
slope at any point is twice the abscissa of the point), we obtained in Chap-
ter 7 a family of curves (y = x?+ C) having the property. 1In this chapter
the family of curves will frequently be a family of straight lines. In such
cases, thecurve inwhich we are most interested is the envelope of the family.

SOLVED PROBLEMS

1. Find the curve for which:

Yy
a) the sum of the intercepts of the tangent line on
the coordinate axes is equal to k.
b) the product of the intercepts of the tangent line
on the coordinate axes is equal to k.
¢) the portion of the tangent line intercepted by
the coordinate axes is of constant length k.
f)
Let the equation of the tangent line be
y = px + f(p), y=px+f(p)
the x- and y-intercepts being —f(p)/p and f(p) re-
spectively. x
0 -fp)/
a) Since f(p) ~f(p)/p = k. f(p) = —kp/(1~-p), and PP
k
the equation of the tangent line is y = px - 1—E~'
-p

This is a Clairaut equation, the primitive being
k

the family of lines y = Cx - I—gé or sz-—(x +y-k)C + y = 0. The required curve, the en-
- % Y%

velope of the family, has equation (x+y--k)2 = 4xy or x% t y'° = k. Note that this curve is

an envelope (singular solution) since it satisfies the differential equation and cannot be ob-

tained from the primitive by assigning a value to C.

by since f(p)l-fp)/pl =k, f(p) = tv -kp, and the equation of the tangent line is y =

px * v —kp. This is a Clairaut equation, the primitive being ‘
y=Cx = +V_Ck  or 2C*+ (k-2uy)C + y° = 0.

The required curve, the envelope of the family, has equation 4xy = k,

c) Since [{f(p)}2 + {—f(p)/p}z]% =k, fp)=*% kp/V 1+p?, and the equation of the tangent
line is y = px + kp/V/1+p%. The primitive of this equation is y = Cx + kCA/1+(?%

Differentiating with respect to C, we have 0 = x + k/(l*»Cz)B/{
Then x = ¥ k/(1+-C2)5/2, y = Cx + kC’/(1+C2)l/2 = i;kCE/(1+C2)5/% and the equation of
the envelope is x2/5 + y2/5 = kz/?(L+C2) + kz/BCZ/(L+C2) = k2/§_

-

(a1
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2. Find the curve for which:
a) the sum of the distances of the points (a,0) and (-a,0) from the tangent line is equal to k.
b) the sumof the distances of the points (a,0) and (0,a) from the tangent line is equal to k,

Take w =0

V1+p2

as the normal form of the equation of a tangent line.

—ap +f(p)
S

v1+ p?

(~a,0)

(a) (b)

wrfp) g e
V14 p? V1+p?
2f(p)

spectively. Thus, =k, f(p) =%k p/1+p2, and the equation of the tangent line is y =
1+p

a) The distances of the points (a,0) and (-a,0) from the line are

g

px + sk ¢1+p2. The primitive of this Clairaut equation is
y = Cx + —g—k\/1+C2 or (4x2—k2)C2— 8xyC + 4y2—k2 = 0.

The required curve, the envelope of this family of lines, has as equation x2 + y2 = ﬁkz.

+f —-a+
b) The distances of the points (a,0) and (0,a) from the line are A and atf ) re-

1/1+p2 V1+p2

Tatap2fp) k, f(p)= $[kV1+p? —ap+d], and the equation of the

¢1+p2

tangent line is y = px + 2[kvV/1+p? —ap+ a]. The primitive is y = Cx+ 3[ky/1+ C% —aC+a].

spectively. Thus,

Differentiating with respect to C, we have 0 = x + %[kC/‘/H C? -~ al.

Then x = - $[kCA/1+C% —a), y = $[k//1+C? + a], andthe envelope of the family of lines

3
has equation x%+yZ—ax-ay = (k%= 22%).

3. Find the curve such that the tangent line at any of y
its points P bisects the angle between the ordinate
at P and the line joining P and the origin, Px,y)
Let 6 be the angle of inclination of a tangent
line and ¢ be the angle of inclination of OP. Then, 90°-¢b
if M is the foot of the ordinate through P,
angle OPM = 90° — & = 2(90°-6) = 180° - 24. --90°- 0

Now tan(90°-¢) = cot ¢=tan(180°-26) = —tan 26

and tan¢ tan 268 = -1,

0 / M
Since tan® =y/x and tan §=y'= p, we obtain the
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differential equation of the curve % 2p2 = -1 or 2y =xp — x/p. Differentiating with
1-p
1 x dp 2 2 dp
respect tox, 2p =p - =+ (x + =)= +1) = x +1)=*~» and xdp - pdx = 0.
p x PP ( Z)dx pip ) (p )dx P -P

1
Integrating, Inp = Inx + InC or p =Cx. Substituting for p in the differential equa-
tion, we obtain the family of parabolas C%? - 2Cy -1 = 0.

Find the shape of a reflector such that light y
coming from a fixed source is reflected in
parallel rays.

Let the fixed point be at the origin of ,
coordinates and the reflected rays be parallel r
to the x-axis., The reflector is then a sur-
face of revolution generated by revolving a P(x,y)\/(x'i) =0

curve f(x,y) = 0 about the x-axis, Q

Confining ourselves to the x(Oy plane, let b :
P(x,y) be a point on the curve f(x,y) = 0, / x
TPT’ be the tangent line at P, and PQ be the =
reflected ray. Since the angle of incidence T 0

is equal to the angle of reflection, it fol-
lows that /OPT = ¢ = ZOQPT'.

Now p = S% = tan ZOTP = tan¢ and tan ZTOP = tan(n-2¢) = —tan 2¢ =

—2tan¢v:_z_
x

1-tan’p

:_2L or %:Zuyp_

hence,
2
1-p

R
=l

Differentiating with respect to y, 1—3 -1y (—i-‘e -p- yd_;z and ‘-if = - El-z « Then, p = (1 .

P p2dy dy p Y Y
Eliminating p between this relation and the original differential equation, we have the family
of curves y2 = 2Cx+ C%  Thus, the reflector is a member of the family of paraboloids of
revolution y2? + z2 = 2Cx + C2

SUPPLEMENTARY PROBLEMS

Find the curve for which each of its tangent lines forms with the coordinate axes a triangle

of constant area a2, Ans. 2xy = a®

Find the curve for which the product of the distances of the points (¢,0) and (-a,0) from the
tangent lines is equal to k. Ans, kx? = (k+a2)(}z—y2)

Find the curve for which the projection upon the y-axis of the perpendicular from the origin
upon any tangent is equal to k,  Ans. x? = 4k(k-~y)

Find the curve such that the origin bisects the portion of the y-axis intercepted by the tan-
gent and normal at each of its points, Ans. x2 + 2Cy = c?

Find the curves for which the distance of the tangent from the origin varies as the distance

of the origin from the point of contact. 2 5
1k
Yol

Hint: ————— = kp, Ans. p :C86 k

Vo?+ (dp/d 6y




CHAPTER 12

Linear Equalions of Order n

A LINEAR DIFFERENTIAL EQUATION of order n has the form

n n=1 n—-2

n P, dy P, d v , P, d_y R + P,_, dy | Py = 0,
dx” dx ™1 dxn—Z - dx

where P, £0, P,, P,, ++... , Po, 0 are functions of x or constants.

If 9 =0, 1) has the form

n n-1 n—2

2) Pody+P1d y+P2d Yoh t Py, =+ Py =0
dx™ dx ™t dx ™2 dx

and is called homogeneous to indicate that all of the terms are of the same
(first) degree in y and its derivatives.

& d? d
Examples. A) x4 ox &Y _ 5 2 _ xy = sinx, of order 3.
dx’ dx? dx
d’ d
B Y _ 3% 4 2y = 0, of order 2.
dX2 dX

Equation B) is an example of a homogeneous 1inear equation.

SOLUTIONS. If y = y,(x) is a solution of 2), then y = C,y,(x), where C, is an ar-
bitrary constant, is also a solution. If Y=yi(X), y=y,(X), y=yz(x), +++++

are solutions of 2), then y = C,y, (x) + C,y, (x) + Coyg(X) + sovnvs is also a
solution.
A set of solutions y =y, (x), y=y,(x), ««-+, Yy=yn(x) of 2) is said to be
linearly independent if the equality
C1¥1 t Coyy + Cayg  srereeen t cyn = 0,
where the ¢’s are constants, holds only when Ci = Cy = C3 = +o+v =¢p = 0.

Example 1. The functions e* and e % are linearly independent. To show this,
form c,e” + c,e™ = 0, where c, and c, are constants, and differentiate to
obtain c,e* - c,e”™ = 0. When the two relations are solved simultaneously for
¢, and c,, we find c. = ¢, = 0.

X

Example 2. The functions e, 2e¥, and e™* are linearly dependent, since.

x -
cie” + 2c,e” + c,e”* = 0 when €y =2, c, =~1, ¢ =0.

A necessary and sufficient condition that the set of n solutions be lin-
early independent is that:

78
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Y1 Y Y3 Yn
Y1 Y2 Ys Ya
W = y;r }";’ y(;r . y';r £ 0
(n-1) (n-1) (n=1) (n-1)
yl y2 yS n

If y=y,(x), y=yo(x), +++ee++, y=y,(x) are n linearly independent solu-
tions of 2), then
3) Yy =Ciy(x) + Coyo(x) + ¢ovee + Cryn (x)
is the primitive of 2).

If y = R(x) is a particular solution, also called particular integral, of
1), then

4) V= Cy(x) + Coy,(x) + «vnvn + Gy, (x) + R(x)

is the primitive of 1). Note that 4) contains all of 3). This part of 4) is
called the complementary function. Thus the primitive of 1) consists of the
sum of the complementary function and a particular integral.

Attention has been called to the fact that the primitive of a differential
equation is not necessarily the complete solution of the equation. However,
when the equation is linear, the primitive is its complete solution. Thus 3)
and 4) may be called complete solutions of 2) and 1) respectively.

LINEAR DIFFERENTIAL EQUATIONS with constant coefficients (equation B) above) will
be treated in Chapters 13-16. Those with variable coefficients (equation A4)
above) will be considered in Chapters 17-19.

SOLVED PROBLEMS

2
1. Show that the equation i_z - day - 2y = 0 has two distinct solutions of the formy = e .
dx
If y = eax, for some value of a, is a solution then the given equation is satisfied when the
d d’ 2 a
replacements y = eax, e aeax, ¢y . a e * are made in it.
dx dx?
d? d 2
We obtain —-yz- - d—z -2y = e™(@-a-2) = 0 which is satisfied when a = -1, 2.
dx

- 2
Thus y = e * and y=e " are solutions.

2. Show that y = Cle"x + CQezx is the primitive of the equation of Problem 1,

Substituting for y and its derivatives in the differential equation, it is readily checked

that y = Cle-x + C2e2x is a solution. To show that it is the primitive, we note first that
the number (2) of arbitrary constants and the order (2) of the equation agree and second that



80
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-X 2x
€ € x -X 2x .
since # = = 3 #£ 0, y =e andy = e are linearly independent.
i 2€2x
3 dy dy
Show that the differential equation =x -3 - 6x E; + 12y = 0 has three linearly inde-
dx
pendent solutions of the form y = <.
After making the replacements
2 3
- - d -
y = xr, él = rx l, é_l = r(r-—l)xr 2, ¢y . r(r-l)(r-2)xr ’
dx dx? 3

in the left member of the given equation, we have xr(rs-3r2— 4r +12) =0 which is satisfied

-2 .
when r = 2,3,-2. The corresponding solutions y = x2, y = xB, y =x are linearly independent

x2 x5 x_z
. , 2 -3 A : 2 3 -2
since W = [2x 3x -2x = 20 £ 0. The primitive is y = Cyx” + Cox” + Cax .
2 6x 6x
d’ d
Verify that y = - sinx is a particular integral of ——% - ;f -2y = cosx + 3sinx and
dx

write the primitive.

Substituting for y and its derivatives in the differential equation, it is found that the
equation is satisfied., From Problem 2, the complementary function is y = Cle'x + Cgezx.

s . -x 2% .
Hence, the primitive is y = Cye  + Cye - sin x.

dy

3
54y 6 ¥ 419y - 12Inx -4 and
3 dx

Verify that y = Inx is a particular integral of =x° —
dx

write the primitive.

Substituting for y and its derivatives in the given equation, it is found that the equation
. c e . . -2
is satisfied, From Problem 3, the complementary function is y = C1x2 + C'Qx3 + Cgx 7,

Hence, the primitive is y = Cox’ v Cox + ng-2 + 1n x.

4 3
Show that E_Z - é_l - 3 —= + 5 QZ - 2y =0 has only two linearly independent solu-
dx* 3 dx? dx .
tions of the form y = e,
Substituting for y and itsderivativesin the given equation, we have eax(au-a5-3a2+5a-2) =0
which is satisfied when a = 1,1,1,-2.

x x x -2Xx
e e e e
x -2X x x x -2x
e e e e e -2e
Since % 0, but = 0, the linearly independent
x -2Xx x X x -2X
13 -2e e e e 4e
x x x -2x
e e [4 -8e

. -2%
solutions are y = e* and y = e™ ",
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7. Verify that y = e”, y = xe®, y = xzex, and y = %" are four linearly independent solutions
of the equation of Problem 6 and write the primitive.

By Problem 6, y = ¢* and y = e %" are solutions, By direct substitution inthe given equa-
tion it is found that the others are solutions,

x x 2 x -2x
4 xe X € €
- 100 1
e” xe* + ¥ xPe" + 2me” ~2¢” %% <1110 -2 x
Since W = = e = -54¢" # 0,
x x 2 x 2 x 4 x 9 x -2x 122 4
e xe + 2e x e + dxe” + 2e 4e 1386 -8
ex xex+ 3ex x2ex+ Gxex+ Gex _86-296
these solutions are linearly independent and the primitive is
y = Clex + ngejC + ngzex + C4e-2x.
-2x -2x d2y dy
8. Verify that y=e€e "cos3x and y = e “sin3x are solutions of - + 4 e + 13y = 0 and
dx

write the primitive,

Substituting for y and its derivatives, it is found that the equation is satisfied,

Y

Since W = 3¢~ x # 0, the solutions are linearly independent.

Hence, the primitive is y = e-2x(C1 cos 3x + C, sin 3x).

SUPPLEMENTARY PROBLEMS

9. Show that each of the following sets of functions are linearly independent.

2

. 2
a) sin ax, cos ax cy 1, x, x e} Inx, xlnx, x° lnx

by e** sinbx, e™ cos bx dy e%, ebF ¢CF (4 #b #c)

Form the differential equation having the given primitive.

10. y = Ciezx + CQe'M Ans. y" +y' -6y =0
11. y = Clezx + CQxezx + Caxzezx y" - 6y” + 12y’ - 8y = 0
120 y = Cye” + Coe™ + %12 Y -3yl v 2y =
13. y = Cycos 3x + C,sin 3x + (4x cosx + sin x)/32 y" + 9y = x cos x
14 _C 2 2 2 1 ! -
» Yy =Cix" + Cox” lnx xy” -~ 3xy' + 4y = 0
15. y = Cyx + Cpx 1 Cax 1n’ 4 Sy s xy! = 3%
« ¥y =Cix + CoxInx + Cax In"x + x /9 Ty txyl -y =3z
. 2 2 " 3
16. y = C, sinx” + C, cos x xy" -y + 4x’y =0
17. y = 1n sin@x-Cy) + C, y" o+ (y’)2 +1=0
18. y2 = Cix + Cy + 2% yy" + (y’)2 =2

19. x =Cy + Coy + y1ny e 'Y =0



CHAPTER 13

Homogeneous Linear Equations with Constant Coefficients

THE HOMOGENEOUS LINEAR EQUATION with constant coefficients has the form

n 7n-1 n=2
1) Po_d___Xq-Pld y+PQd Y o e +Pn_1i}:+Pny:0
dx” dx ™t dx "2 dx
in which P, #0, P,, Py,+---- , B, are constants.
2
By a convenient change of notation, writing dy = Dy, Q_X -4 QX) = D:-Dy
2 dx dx? dx dx
=Dy, etc., 1) becomes
2y (P.D" + PD o+ P04 . + P.D + By = 0.

Now D = 5& is an operator which acts on y, and

3y  PD + PO 4 P b t+ By D+ By

is simply a much more complex operator. However, we shall find it very con-
venient to consider 3) at times as a polynomial in the variable D and to de-
note it by F(D). Thus, 1) may be written briefly as

4) F(D)y = 0.

It can be shown in general and will be indicated by an example that when 3)
is treated as a polynomial and factored as

5) F(D) = Py(D-my) (D=-my)(D—mg)++er=rve- (D-mp_ ) (D -my),
then
6) F(Dyy = Po(D—my)(D=mpy)(D=mg)rercevre- (D=-myy)(D=—mp)y =0

remains valid, i.e., is equivalent to 1) when D is treated as an operator.

dy  d> d 3 2

EXAMPLE. 1In the D notation ¢y _ 2y _ 4_y + 4y =0 becomes (D' -D -4D+4)y =0
dx  dx? dx

and, in factored form, (D-1)(D-2)(D+2)y = 0. Now

D-DO-20+1y = D-HO-DE+ 2y - O-DO-2E + 2y
2
d dy dy d’y
= D-D{=(H +2y) -2 + 2 = -1 -
D=-D{ (= + 2y 2 + 20} (D )(dx2 4y)
2 2
. d.dy d’y
= E(E - 4y) - 1(;‘—2 - 4y)
3 2 3 2
S 4y gl Ay Ly, o dy dy L d

4 = + 4y = 0,
dx Y

dx dr  dy? dx’  dx?

In Problem 1 below, it will be indicated that the order of the factors here is immaterial.
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THE EQUATION F(D) = (D~m)(D=my)(D~mg)-+rene- (D-mp_}(D~my) =0
is sometimes called the characteristic equation of 1) and the roots my, my,
Mg, ++++, mp are called the characteristic roots. Note that it is never nec-

essary to write the characteristic equation since its roots can be read di-
rectly from 6).

TO OBTAIN THE PRIMITIVE of 1) we first write the equation in the form 6).
a) SUppose my # my, # My # cevrenenn £ my_y # my. Then
y = C,e™™ C,e™?" Coe™" + i, + C,e™”,

involving n linearly independent solutions of 1) with n arbitrary constants,
is the primitive.

3 2
Thus in the example above, where (—i——X - d—X - 4 (—jX + 4y = 0 or
3 2 dx
dx dx :
(D-1)(P-2)(D+2)y = 0, the characteristic roots are 1,2,-2 and the primi-
tive is y = C,e* + C,e?* + C,e" %%, See also Problems 5-7.
b) Suppose my, = m, # Mg # soveseens £ my_, # my. Then
y = Cie™* + C,xe™* + C,e™" 4+ o + Cpe™”

is the primitive.
In general, to a root m occurring r times there corresponds

m m. 2. m =1 7
Clex+szex+C3xex+ """ + C,x T e™

in the primitive.

2
Thus to solve Q - 2 i—}—’ - 4 d—y + 8 = 0, write the equations as
dx3 dx? dx

(D>~ 20" 4D +8)y = (D=2)2(D+2)y = 0. The characteristic roots are 2,2,-2

and the primitive is y = C,e® + C,xe®™ + C,e"? .  See also Problems 8-10.

c) If the coefficients of 1) are real and if a+bi is a complex root of 6), so
also is a-bi. The corresponding terms in the primitive are

Ae(a+bi)x + Be(a—bi)x - eax(Aebix + Be—bix)
= e (C,cos bx + C,sin bx)

= Pe"  sin(bx + Q) = Pe® cos(bx + R),

where 4,B,C,,C,,P,Q,R are arbitrary constants.

2
Thus the characteristic roots of g—r -4 Z—xy + 5y =0 or (DQ— 4D +5)y =0
dx

are 2+i. Here a=2, b=1 and the primitive is y = ezx(Clcos x + C,s8in x).

See also Problems 11-15.
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SOLVED PROBLEMS

1. show that (D~a)(D-bY(D-c)y = D -b)y(D-c)(D -a)y.

2
d’y dy
(D—a)(-d? - (b+c)£ + bey)

I
I

d
(D -a)(D-b)(D-c)y (D—a)(D—b><a—Z - cy)

3 2
= u - (a+b+c)u + (ab+bc+ac)i-y - abey,
dx’ dx2 dx

2
(D_b)(% - (a+c)z—z + acy)

i}
"

O-bD-)D-a)y = D-5)D-e)(E - ay)

3 2
= é—y - (a+b+c)g---Z + (ab+ac+bc)(—iz — abcy.
dx? dx

dx3

2. Verify that y = Cieax+ Cerx+C3ecx satisfies the differential equation (D-a)(D-b)Y(D-c)y=0.
We are to show that (D—a)(D—b)(D—c)(Cleax+ Czebx+C9ecx) = 0.

D-a)D-b)D=-c)Cre™ = D=byD-c)D-a)Cie™ = (D-b)(D-c)0 = 0, and similarly for
the other two terms.

3. Verify that y = Cye™ + Cpxe™ + Cox’e™ satisfies the differential equation (D-m)’y = 0.

This follows since: a) (D-m)BCIemx = (D—m)2 (D—m)Ciemx = (D-m)20 = 0,
X

b) (D—m)§C2xe"-Lx = (D—m)zc.‘,em = D-m)0 = 0, and

X

X aD-mCoxe™ = 2D-m)0 = O.

c) (D—m)5 Csxzem

4. Find the primitive of (D—m)zy = 0 (a) by assuming a solution of the form y = xreM and (b)
by solving the equivalent pair of equations (D-m)y = v, (D-m)v = 0.

-1 mx r-2emx

a) (D-—m)2y = (D—m)(D—m)xremx = (D-myrx e = r(r-Ix = 0 whenr = 0,1,

Thus the equation has two linearly independent solutions y = e™ and y = xe™,

The primitive is y = Clemx + ngemx.

b) If we write (D-m)y = v, then (D-m)zy = D-myD-my = D-mv = 0,

d . -
Solving (D-m)v = 0, we obtain v = Cgemx. Since (D-m)y = d—i -my = CQemx is linear of
the first order, its solution by the method of Chapter 6 is
ye_mx = fe—mx(CQemx)dx = C; + Cox or y = Ciemx + szemx.

DISTINCT REAL ROOTS.

2
5. Solve d——y+d—y—6y:0.
dx? dx

We write the equation as (D2+D—6)y = D-2(D+3)y = 0.

. 2 -3x
The characteristic roots are 2,-~3, and the primitive is y = Cje * Cye 3 .
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3 2
dy _dy % L,
ded dx? dx

We write the equation as dﬁ—Dz—lﬂny:O or DID-~-4)(D+3)y = 0.

The characteristic roots are 0,4,-3, and the primitive is y = Cy + Céeux + Cge"5 .

7. Solve

X

3 2
dy , 44y _ 59

- 6y = 0.
dx5 d.x2 dx 4

We write the equation as (D5472D2—-5D-6)y or D-2yD+1HD+3)y = 0.

2x - -
The characteristic roots are 2,-1,-3, and the primitive is y = Cye” + Cye * Cae 3 .

X

REPEATED ROOTS,

8 Solve (0°-3D°+3D-Dy=0 or (D-1y=o.

2
The characteristic roots are 1,1,1, and the primitive is y = Clex + C}xex + Cox e

9. solve '+ 6D’ +50°-24D-36)y =0 or (D-2)(D+2)(D+3)y - 0.

. ; .2 ~21 .- -
The characteristic roots are 2,-2,-3,-3. The primitive is y = Cye X+—C§e x+—Cse 5’C+C‘,Jce

10. solve (D'-D’—ob®—11D-4)y =0 or (D+1) (D-4)y = 0.

85

3%

- ) 2 4
The characteristic roots are -1,-1,-1,4., The primitive is y = e Y(Ci+ Cox +Cax™) + Cye .

COMPLEX ROOTS.

11.

13.

1.

15.

Solve
The

Solve

The

Solve

The

Solve

The

since

Solve

2
(D" -2D +10)y = 0.
characteristic roots are 1+3t, and the primitive is

y = ex(C1COS 3x + C,sin 3x) or Cgexsin(3x+—C;) or C@excos(3x+—C5).

W +amyy =0 or DD+ 4y = 0.

characteristic roots are 0,+2i, and the primitive is y = Cy + Cycos 2¢ + Czsin 2x.

DD e opisyy=0 or D +2D+3)D~D+)y = 0.
characteristic roots are -1+iv2, t+5iv3, and the primitive is

y = ¢ “(Cycos VT x + Cypsin VI x) + e? (Cacos 33 x + Casin V3 x).

@ +30%-36)y =0 or ((D-4)D*+9)y = o0.

characteristic roots are +2, 31, and the primitive is

y = Ae¥ L By Cycos 3x + Cysin 3x
= Cycosh 2x + Cysinh 2x + Cycos 3x + (ssin 3x
cosh 2 = 5(e?* + ¢ **) and sinh 2x = $(°° - € 7).

(DQ-2D<+5)2y = 0. The characteristic roots are 1121, 1+2i, and the primitive

ex(Clcos 2x + Cpsin 2x) + xex(Cscos 2x + (4s8in 2x)

W

Y

o

e {(Cy + Cax)cos 2x + (Cy+Cax)sin 2x} .

is
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SUPPLEMENTARY PROBLEMS

Solve.

6. D* +2D - 15)y = 0 Ans. y = Cieix + Cze-ﬁx

17. D> +D*-2Dyy =0 y = Cy + Coe™ + Coe™™

18. D*+6D+ 9y =0 y = Cre 2% 4 Coxe ™

19. (Du 6D + 12D - 8D)y = 0 y =Cq + C2e2x + Caxezx + C4x2e2x
20. D*-4D +13)y =0 y = ez’C(C1 cos 3x + C, sin 3x)

21. (D* + 25)y = 0 y = C, cos 5x + Cy sin 5x

2. (Da—D2+9D—9)y=0 y = Cye* + C, cos 3x + Cy sin 3x
23. (D" + 4D2)y =0 y =Cy + Cox + C3 cos 2x + C4 sin 2x
2. - 6D +13D° 12D + 4)y = 0 y = €y + Coxye™ + (Cq + Cax)e™™

25. (Dﬁ + oDt + 24D + 18)y = 0 y =Cy cosx + C, sinx + (Ca+ Cyx)cos 2x

+ (Cg+ Cgx)sin 2x



CHAPTER 14

Linear Equations with Constant Coefficients

THE PRIMITIVE OF
1) F(D)y = (PoD" + P,D"™ + ovvuunn. + PyyD + Py = 0(x),

where P, #0, P,, Py, «+:os , P, are constants and Q = Q(x) # 0, is the sum of
the complementary function (primitive of F(D)y = 0 obtained in the preceding
chapter) and any particular integral of 1). (See Chapter 12.)

At times a particular integral may be found by inspection. For example,
y = 7x is a particular integral of (D’-3D?+ 2)y =x, since D’y =D%y =0. Such
equations occur infrequently, however, and we proceed to consider inthis chap-
ter two general procedures for obtaining a particular integral. Other pro-
cedures will be given in the next two chapters.

In each of the procedures below, use will be made of an operator de-

fined by the relation

;)-F(D)y = y. When the operator is applied to 1) we

obtain
L rmy =y = Lo
F(D) F(D)
or
2) y = 1 . 1 . 1 .............. 1 Q.
D-my D-m, D-m, D—my,

FIRST METHOD. This consists of solving a succession of linear differential equa-
tions of order one, as follows:

SET SOLVE TO OBTAIN

u:—l——Q 9,E—m,zu = Q u :em"foe-m"xdx
D-m, dx

v = ! u dv _ mp_ Vv = u v = e"m-t¥ fue M=1% iy
D—m,_, dx

y = 1 w d _ my = w y = emixfwe-mlx dx.
D-m dx

As is indicated inProblem 3 below, the following formula may be established:

A y = e™¥ fe(mg-m)x fe(ms—mzhf ,,,,,,,, e(%_%-l)xfoe-mnx(dx)n.

See Problems 1-6.
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88 LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

as the sum of n partial fractions:

SECOND METHOD. This consists of expressing 7 ID)

N N. /
t oy AN T + N Then
D —m, D—-m, D—m,
B) y = N, e f()e-mlx dx + N,e"?" er-mi’x dx + et Ny em"xfoe—mnxdx-

See Problems 4-5.

In evaluating both A4) and B), it is customary to discard the constants of
integration as they appear; otherwise, one obtains the primitive rather than
a particular integral of the differential equation. The complementary func-
tion is then obtained by inspection and added to the particular solution to
form the primitive.

THE FOLLOWING FORMULAS will be found useful.

I - .
e = cos bx + isinbx e = cos bx - isin bx
eibx _ e~ibx eibx + e—ibx
sin bx = ————+— cos bx =
21
bx . -bx .
e = cosh bx + sinh bx e = cosh bx - sinh bx
sinh bx = (e’ — & %) cosh bx = $(e"" + &)
SOLVED PROBLEMS
1. Solve (D2—3D+2)y =& or DP-HD-2)y = e
.. x 2x . . . 1 1 x
The complementary functionis y = Cie” + Cye”, and a particular integral is y = D_ .D e”.
-1 -2
Let u = €. Then (D-2)u=e* or Z—: —u=et, we - Je* & dx = fe¥dx = -
and u = —e*,
1 dy -x x X -x x
Now y:D 1u, D~y =u or E-x—yr—e, and y=ef—ee dx = -xe .

P s X X . 2x x
The primitive is y = Cie” % Coe’” - xe .

2. Solve (D°+3D*—d)yy =x¢ 2  or (D-1(D+2)ly = xe 2%,

. . -2 -2 . . .
The complementary function is y = Clex + Che * Cyxe x, and a particular integral is

1 1 1 -2x
y = . . xe .
D-1 D+2 D+2
Let u = xe ., Then 4 ou- 2 and u - &2 Sxe . ™ dx = 1,277,
+2 dx 2
Let v = L u. Then -d-y + 2v = ! 2 and v = e-zx_fl L dx = 1 xse-zx.
+2 dx 2 2 6
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7} - 1 - - 1 -
Now y = L v, Then 2 _ y = }xie 2 and y = exf— e e A = —exfx5e M dx
h-1 dx 6 6 6
= ~—e'—2x(x3+x2+ gJchg).
18 3 9
The primitive is y = (fley‘ + Cze'zx + Csxe'zx - 1i8(X5+ xz)e—zx. the remaining terms of the

particular integral being absorbed by the complementary function.

3. Find a particular integral of (D-ayd-byy = Q.

. . 1 1
A particular integral is given by y = o — 0,

D-a D-b

Let ILQT u.,  Then ?—buzo and u = ¢ [0 dx.
X

b -
Now y = u. Then d ay = u = e JQe ™ & and
D-a dx
y - o7 ch R f(\)e_f)x(/x dr = ¥ J‘e(o-a)xfoe—bx (dx)z.
4. solve (D°-3D+2yy - &  or  (D-1)(D-2yy - .
: 1
The complementary function is y = (e + (TQezx, and a particular integral is y = D—l . 5 ! 5 et)x.
. : - - 2
First Method. y = b . 1 erﬂ = exje(z 1)x fe5x~e 2 (dx)
D-1 D=2
; % 1

- exferfe” (d:c)2 = exfe %e“dx = §exf Y ody = —1-e5x.

Second Method, y = S S F = (- I - )€5x
D-HyD-2) D-1 D~-2
= _exIeﬁx.e-x de  + erfesx.e—Zx dx
1 x ux 1 2x 3x 1 sx
= ~Z€ e + Zee = - e
4 3 12
1

The primitive is y = ClejC + Cgezx + D e,

5. Solve (D*+5D+4)y = 3-2¢ ar (D+1)(D+4)y = 3 -2

- -4 . . .
The complementary function is y = Cje x4 Cae *, and a particular integral is

-1 (3-2.
D+1HD+9)

First Method. y = 2.1 (g 05 o &% [ 0% [3_ 00 (ar)?

= — - -x.

- - 1 11
(ze” - 3%€ t g€ yde = exf(gex—éxex)dx = ex(gex—éxex+ Eex)
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Second Method. y = 1.1 (3-2x) = «( LA 1/3)(3—2x)
D+1 D+4 D+1 D+4
1 e x 1 —yx 4x
= ge f(3—2x)e dx - ge f(3—2x)e dx
= = e (3 - ;e + 2%y - 1 e—“x(ge”— lxeux + lelm) . 1Jc
3 8 8
The primitive is y = Cye * + Cpe™™* — %x £ 181 .

2x

6. solve (D -5D°+8D-a)y = ¢ or (D-1(D-2°y = e

. . - 2 2 . ) .
The complementary function is y = Ciex + Cpe * . Caxe x, and a particular integral is

1 2x
y = ——————¢ .
D-1D-2)
1 1 1 2%
y = e e
D~-1 D-2 D-2
- exfe(z_l)x fe(z-z)x fezx 6‘--Zx (dx)a
= e et ff(dx)5 AN fx(dx)z = e fex 'zxz dx
= éexfxzex dx = éex(xzex - e v Zex) = |562950112—22: +2).
The primitive is y = CleY + Czez‘x + Csxezx + §x2e2x, the remaining terms of the particular

integral being absorbed in the complementary function.

.2
(~ Solve (D - 9y = x cos x.

The complementary function is y = Cycos 3x + Cpsin 3x, and a particular integral is

1 ~31 J i ) -3 2
y = . ~ x COSX = eBwae(BHM)%ijOSX e3x(dx).
D"+9
It will be simpler here to use cos x = “j(elx+ e-w), so that:
“3iv o bix w24y —ix 2
v o= 553\Je \jx(e +8MX)(0/-’C)
iy o biv 1. <2ix ~21 1 -uix )
303 feb (—-zxezx+lezx+—1xeuy+—1‘ewx)dx
2 v 2 4 4 16
1 -3ix IS 1 wix 2 1 2ix
Ee f(lexc +ze + —1lxe +1—6e ) dx
1 -34y Wi 1 4ix 1 . uix 1 2ix 1 2ix 1 2ix
= - (—xe — i€ ~ — 1€ + —xe + — 1€ -~ — 1€
2 32 16 16 32
ix -1ix ix —-1x
1 i ~i 1 . ixv  -ix 1 e " + e 1 e =-~-ce¢
= x{e +e ) - —1(e -—e = -x y + —( - )
16 64 ¢ ) 8 ¢ 2 32 2t

: 1 1 .
: éx cos x - %sin x. The primitive is y = Cycos 3x + Cpsin 3x + 5% cosx + zmsina,
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8. Solve (D2+ 4)y = 2 cosx cos3x = cos 2x + cos 4x,

The complementary function is y = Cycos 2¢x + C,sin 2x, and a particular integral is

y = (cos 2x + cos 4x) = li( 1 - - ! -)(Cos 2x + CoS 4x)

D2+ 4 4 D+21 D-2t
= 4iA{ e'uxf(cos 2 + cos 4x)e27“xdx - ezm‘f(cos 2 + cos 4x)e"2mdx}
_ 'LlIl { e-zwfeux[%(e“x + e-ZLx) + %(ewx + e-lnx)] dx

_ e2tx fe-sz [%(eux + e—Z‘LX) 4 %(eutx + e-lux)] dx }

_ é{e-ztxf(eux+ 1+e°1'x+e_21'x)idx _ e”xf(1+e-“x+ e“x+e-6m)idx}
- l{e-2ix (leuix +ix 4 1eoix 1e-2ix) eZix(ix ie-—w}x ; lezix le—oix)}

8 4 6 2 4 2 6
- —{—Lx(e“x- R 21x) N }(e21,x+ -21x) B E(Gtmx e-wx)}

4 3
2ix -2 1x 29x ~-21x 4 1x 4 ix

- lx (e - ) 1 (e e ) 1 (e +e )

4 21 16 2 12 2
= ixsian +Tlé0052x——1—1§cos4x.

The primitive is y = Cycos 2x + C,sin 2x + 412: sin 2x — 1—12 cos 4x.

...Bx
9. solve (D°-9D+18)y = ¢°

6 . . .
The complementary function is y = C1e5x + Cse x, and a particular integral is

1 49-39C ()xf 3x f e“’”C 3x 2
E = e ~ e ce dx)
7T D-ewm-3 ) (
-3x -3x -3x
% 3% (- -:liee Ydx = %ebx Jef (—e_ax)d_x = %ee -ebx.

1 e_jx 6x

x+(C2+§e Ye .

The complete solution is y = C1e3

_.5x
~b 2
Note. When the factors are reversed, a particular integral is y = eufe”fee e ¥ (dx)
Using the substitution e > = v, we obtain
1 (1 v 2 1 v,1 1 1 v
= —)—je v(dv = e (== )dv = —— e
Y 9va2'r ) 9vj (v v2) gv?
-3x

or y = %e _ebx, as before,
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SUPPLEMENTARY PROBLEMS

10. Evaluate, omitting the arbitrary constant.

a)D+1e7C Ans. %ex d) Dil(x2+1) Ans. x2—2x+3
b) 1 e” Ans. xe” e) 1 sin 3x Ans. —1-(2 sin 3x — 3 cos 3x)
-1 D+2 13
c) 1 (x +1) Ans., x ) L o sinax Ans. -1 e cos 3x
+1 D+2 3
Solve.
2 3%
11. (dPd°-4D + 3y =1 Ans, y = Cye + Cpe” + 1/3
12. (D2 -4Dyy =5 y =Cy + CQeW - 5x/4
13. D - 4D2)y =5 y =Cy + Cox + Cge“x - 5x2/8

14. (D’ - 4Dy =Cy + Cox + C3x2 + C4e2x + Cse-zx - 5x5/24

i
o
[

15. (D> - 4D)y = x y =Cy + CQeZJC + Cae—zx - x%/8

16. (D2 - 6D + 9y = e?* y = C1e5x + C2xe3x ;e

17 D*+D-2)y =2(1 +x - x%) y = Cye” + CQe-zx + x°

18. (Dz_ 1y = axe” y = Cie" + Cpe” + ex(x2 - x)

19. D*-1)y = sin’x = %(1- cos 2x) y = Clex + C2e_x - % + 1—10cos 2x

20. (D*-1)y = (1+ e %2 y = Ciex + CQe-x ~1+eFln+eH

21. (D®+1)y = csc x y =C,cosx + C,sinx + sinx Ilnsinx - x cosx

2%

2. (D*~-3D + 2)y = sine~ y = Cie” + Coe” " = e sin e



CHAPTER 15

Linear Equations with Constant Coefficients
VARIATION OF PARAMETERS, UNDETERMINED COEFFICIENTS

TWO OTHER METHODS for determining a particular integral of a linear differential
equation with constant coefficients

1 F(Dyy = (Dn + P1Dn—1 + Pan-2 LRGN + PoyD + Py =0

will be exhibited by means of examples,

VARITATION OF PARAMETERS. From the complementary function of 1),
vy = Gy (x) + Coya(x) + evvvennn + Cpyn (x),
we obtain a basic relation

2) Y o= Ly(x) yo(x) + Ly(x) y,(X) + cvevres v+ Ly(x) yn(x)

by replacing the C’s by unknown functions of x, the L’s. The method consists

of a procedure for determining the L’s so that 2) satisfies 1).
See Problems 1-4.

UNDETERMINED COEFFICIENTS. The basic relation here is

3) y = An(x) + Bryx) + Crgx) + +orveeeen + G r(x),
where the functions r,(x), «++-- , rt(x) are the terms of Q and those arising
from these terms by differentiation, and 4,B,C,-..,G are constants.

For example, if the equation is F(D)y = xi, we take for 3)
y =Ax5+Bx2+Cx+D;
if the equation is £(D)y = e*+ e**, we take for 3)
y = Ae" + B,
since no new terms are obtained by differentiating e* and e>*:
if the equation is F(D)y = sin ax, we take for 3)
y = Asinax + Bcosax;

if the equation is F(D)y = sec x, the method fails since the number of new
terms obtained by differentiating Q = sec x is infinite.

Substituting 3) in 1), the coefficients 4,B,C,.... are found from the re-
sulting identity. See Problems 5-6.

The procedure must be modified in case:

a) A term of Q is also a term of the complementary function. If aterm of Q,
say u, is also a term of the complementary function correspondingto an s-fold
root m, then in 3) we introduce a term xSu plus terms arising from it by dif-
ferentiation.

For example, in finding a particular integral of (D-—2)2(D +3)y = ezxi-xz,

93
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the basic relation is y = Ax2e?” + Bxe?™ + Ce®” + Dx* + Ex +F, the first three
terms arising from the fact that the term e?* of Q is also a term of the com-
plementary function corresponding to a double root m=2; hence, use is made
of x2e2* gnd all terms arising by differentiation. See Problems 7-8.

b) A term of Q is x"u and u is a term of the complementary function. If u
corresponds to an s-fold root m, 3) must contain the term x"*Su plus terms
arising from it by differentiation.

For example, in finding a particular integral of (D —2)3 (D +3)y = X2’ + xz,

the basic relation is

y 25 2
y = Ax’e? + Bx'e® + cx3e® + Dx%e®™ + Exe™ + Fe?™ + Gx° + Hx + J,

the first six terms arising from the fact that e? 1is a part of the comple-
mentary function corresponding to the triple root m=2. See Problem 9.

SOLVED PROBLEMS

VARIATION OF PARAMETERS.

1. Show that if y = Cyyy + Cpys + Cays is the complementary function of

FiD)y = (O + PD*+ PoD + Py)y = Q

then

1)

y = Lyys + Loys + Lays,

where Ly, L,, Ly satisfy the conditions

A

! ! !
Liy, + Loyo + Lgyg = 0
Lyyi + Lyys + Lgys = 0
Liyy, + Lays + Lays = Q,

is a particular solution of the differential equation.

B)

We obtain, in view of A), by successively differentiating y = Liy, + Lays + Lays:

Dy = Liyi + Loys + Loye + (Liys + Lays + Laye) = Liyi + Loys + Lays
D% = Liyl + Loy + Lays + (Liyi + Liys + Lays) = Liyi + Loys + La¥s

D’ = Liys + Loys + Lays + (Liys + Lays + Liys) = Layi + Lays + Lays + Q.
Then F(D)y = Ly{ys + Piyi + Poyi + Payr} + La{ys + Piyz + Pays + Pays)

+ La{ys + Ply! + PQYé + Pgys} + Q
= Ly FDyy, + Loy FD)y, + LaFDys + Q = 0+0+0+0Q = Q,

since y;, y», yas are solutions of F(D)y = 0.

a)

b)

<)

d)
e)

In using this method:

Write the complementary function.

Form the L function 1), which is to be a particular integral, by replacing the C's of the
complementary function with L’s.

Obtain equations B) by differentiating 1) as many times as the degree of the differential
equation, After each differentiation, set the sum of all terms containing derivatives of-the
L's equal to zero, except in the case of the last differentiation when the sum is set equal
to Q. The equations obtained by setting the sums equal to zero and Q are the equations A).

Solve these equations for Ly, Ly, +evevvss.

Obtain Ly, Lo, ++++++++ by integration.
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VARIATION OF PARAMETERS, UNDETERMINED COEFFICIENTS

2
Solve (D" -2D)y = e sinx.
The complementary function is y = Cy + CQ€2x-

We form the relation y = L, + L2e2x.

A Léezx),

and set 1) Li + L;eu = 0.

obtain, by differentiation Dy = 2L,e’

1 2% 7 2x
Q

Since now Dy = 2L2e2x, D2y = 4L2e2X + 2Lje and we set 2Lje’* = Q = ¢ sinx.

1 - . - .
Thus, L, = e sinx and L, = — 4e “(sin x + cos x).
2x x . )
From 1), L; =-Lje’” = ~%e*sinx and L, = - 4e"(sin x - cos x).
A particular integral of the given equation is

2x x, . X, . X .
y = Ly + Lse = -4e(sinx - cosx) - ge (Sinx + cosx) = - 3e sinx,

PR . 2x x .
and the primitive is y = Gy + Coe”" - %¢" sinx.

Solve (D3+ D)y = csc x.,
The complementary function is y = C, + Cycosx + Cgsinx.

From the relation y = Ly + Lycosx + Lgsinx
we obtain Dy = (~L,sinx + Lycosx) + (L; + Ljcos x + L,,'sin x)

and set 1) L+ Licosx + Lisinx = 0.

Then Dy = -L,sinx + Lgcos x,
D2y = (-Lycos x - Lgsinx) + (—L;sinx + Lécos %),

and we set 2) ~Lisin x + Licosx = 0.

Then Dzy = -L,cos x - Lgsin x,
Diy = (Lysinx - Ljcos x) + (—-Lécos x - Lglsinx),

7 .
and we set 3) -Lycos x - Lgsinx = Q = cscx,

Adding 1) and 3), L; =c¢cscx and L, = - In(cscx + cot x).
Solving 2) and 3), L. = -1 and Ly = — cot x, so that Ly = -x and L, = - 1n sin x,
Thus, a particular integral of the differential equation is
y = Ly + L,cosx + Lysinx = - In(cscx + cot x) - cosx In sinx — xsinx,
and the primitive is

y = Cy + Cycosx + Cgsinx — In(cscx + cot x) — cosx lnsinx — x sinx.

Solve (D°-6D+9)y = e /x2.

The complementary function is y = Clesx + ngeBX.

From the relation y = LleigC + LQxesx

we obtain Dy = (3L, + Lg)e5x + 3L2xe5x + (Lileix + Léxeix)

and set 1) LieBx + Léxeix = 0.
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! !
Then Dzy = (9L, + GLQ)esx + 9L2xe5x + 3Ly + L;)eix + 3L2xe5x,
and we set 2) (3Li + L;)ey + 3L;x65x = eM/xz.
Solving 1) and 2), L'1 = - 1/x and L; - 1/x%, sothat L= —lnx and L,= -1/x.
Thus, a particular integral of the differential equation is
y = Llesx + I,Qxeax =~ - e5x,

and the primitive is y = C1e5x + nge596 - Inx.

UNDETERMINED COEFFICIENTS.
§. solve (D°-2D)y = e' sinx.

The complementary function is y = Cy + CQeX . As a particular integral, we take

y = Ae” sinx + Be* cosx .

Then Dy = (A —B)e’C sinx + (A+ B)ex cos x ,
D2y - _2Be® sinx + 24¢° cosx,
2 x - x X .
and (D°-2Dyy = - 24¢ sinx - 2Be cosx = € sinx = Q.

Equating coefficients of like terms, -24 = 1 and -2B = 0, so that A=-% and B =0,
Hence, a particular integral of the differential equation is

y = Ae* sinx + Be* cosx = - %ex sinx,

and the primitive is y = Cy + Coe = - 'ze sinx .

This was solved above as Problem 2.

6. Solve (D2—2D+3)y = x3 + sinx.

The complementary function is y = eX(Clcos V2 x + Cpsin V2 x). As a particular integral,

we take y:Ax5+Bx2+Cx+E+Fsinx+Gcosx
Then Dy = 3Ax*+ 2Bx + C - G sin x + F cos x,
Dzy = 6Ax + 2B — F sin x -~ G cos «x,

and (D%—2D+3)y = 3Ax> + 3(B-24)x’+ (3C-4B+64)x + (3E-2C+2B) + 2(F+ G)sinx + 2(G-F)cos x

3 .
= x~ + sin x.

Equating coefficients of like terms, 34 =1 and 4 = ¥/3; B -24 =0 and B = 2/3;
3C-4B+64=0 and C=2/9; 3E-2C+2B=0 and E = -8/21; 2(F+G) =1, G-F=0 and F=G = 4.

Thus, a particular integral of the differential equation is

8 + }(sinx+cosx),

2 2
x + -x + -xXx - —
3 9 217 4

and the primitive is

y = eX(Clcos V2 x +Czsin/§x) + 2—17(9x5 + 18x2 + 6x - 8) + %(sinx+c05x).
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Solve (D5+ 2D2—D—2)y = e+ x2.

The complementary function is y = Cye’ + Cpe ~ + Cge'zx. Since ¢* occurs in Q and also in
the complementary function corresponding to a root of multiplicity one, we take as a particu-

1 int 1
ar integra 1) y = Ax? « Bx + C + Exé® + Fe&

Then Dy = 24x + B + Exe” + (E+F)e”,
Dzy = 94 + Exe* + (2E+F)ex,
D5y = Exe® + (3£ +F)ex,

and (D +207-D-2)y = ~2Ax® - 2B+A)x + (4A-B-2C) + 6E" = €+ 17,

Equating coefficients of like terms, -24 =1, B+A4 =0, 44-B-2C =0, 6E = 1; hence,
A = -ZL, b=+ cC-= -%, E = —6'—, and F is arbitrary, Now F should be arbitrary here, since
Cle’C is a term of the complementary function., Thus, in writing 1), the inclusion of Fe* was
unnecessary.

Hence, a particular integral is y = - l x2 + lx - ?- + Exex,
2 2 4 6
and the primitive is y = Cje’ + CQe’_x + Cge'zx - _;xz + Tl'zx _3 éxex.

2
Solve (D" -4D+4)y = xsezx + xezx.

. . 2 2% .
The complementary function is y = C,e * ngebC Now €~ is a part of Q and also occurs
in the complementary function corresponding to a root of multiplicity two. As aparticular in-

tegral, we take
5 2x Y 2x

y = Ax e + Bxe  + Cx’e®”

2 2x
+ Ex e,

2x . s .
Note that terms involving xe * and ezx are not included, since they appear inthe complementary
function with arbitrary coefficients. Then

Dy = 2Ax5e2’c + (54 +25)xue2x + (4B+2C)x5e2x + (3C+2E)x2e2x + 2Exe2x,

2 5 2x 4 2x 3 2x 2 2x 2x 2x
D'y = 4Ax e+ (204+4B)x e + (204 + 16B+4C)x e + (12B+12C+ 4E)x e + (60 + 8E)yxe™ ™ + 2Ee™,
and  (D?-4D+4)y = 20Ax0e? + 12Bx°e®" + 6Cxe®” + 26e”F = e+ xV.

Equating coefficients of like terms, 204 = 1, 12B =10, 6C =1, 2E =0; hence, 4 =1/20,
B=9, C=1vVe, E=0.

Thus, a particular integral is y = 516

and the primitive is y = Clezx + CQxe’C + —ZLOX e+

Solve (D2 +4)y = x% sin 2x.

The complementary function is y = Cjcos 2x + Cpsin 2x.

Since x2 sin 2x occurs in Q and sin 2x is a part of the complementary function correspond-
ing to a root of multiplicity one, we take as a particular integral

y = Ax) cost+Bxssin2x+szcos2x + Ex®sin 2¢ + Fx cos 2x + Gr sin 2x.

Note that Hcos2x+ Ksin2x is not included, since these terms are in the complementary func-
tion. Then ) 2
Dy = ZBx5 cos 2x - 24%° sin 2x + (34 +2E)x” cos 2x + (3B ~2C)x" sin 2x

+ (2C +2G)x cos 2x + (2E -2F)x sin 2¢ + F cos 2x + G sin 2x,
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2 3 3 . 2 2 .
D'y = -4Ax’ cos 2x - 4Bx” sin 2x + (12B-4C)x" cos 2x + (-124-4F)x sin 2x

+ (6A+8E~4F)x cos 2x + (6B-8C~-4G)x sin2x + (2C+4G)cos 2x + (2E - 4F)sin 2x,

and

(D2+ )y = 12Bx” cos 2x — 12Ax2 sin 2x + (6A+8E)x cos2x + (6B-8C)x sin2x
+ (2C+4G)cos 2x + (2E-4F)sin 2x = z%sin 2.

Equating coefficients of like terms, -124

=1, 12B = 0, 64 + 8E = 0, 6B - 8C = 0,
2C + 4G =0, 2E -4F =0; hence, A=-1/12, B=0, C=0, E =116, F = 1/32, G = 0.

A particular integral is y = - 1—12 X0 cos2x + I%xz sin2x + 3—12 x cos 2x,

3

1
and the primitive is y = Cjycos 2x + Cpsin 2x - ‘1l2x cos 2x + 1—6x251n2x + 3—12xc052x.

SUPPLEMENTARY PROBLEMS

Solve, using the method of variation of parameters.

10.

1l

12.

13.

14.

(D% + 1)y = csc x Ans. y = C,cosx + Cp,sinx + sinx Insinx - x cosx
(D2 +4)y = 4 sec” 2x Ans. y = Cycos 2x + Cps5in 2x — 1 + sin 2x In(sec 2x + tan 2x)
(D2 -~ 4D + 3)y = (1+ e“x)"l Ans., y = Ciejc + C2e5x + l2e2x + 1§(ex-e5x) In(1 + e
(D2 - Iyy = e sine™  + cos e Ans., ¥y = Ciex + C2e-x _e*sin e

0" -~ Ly = (1+ e-_x)-2 Ans. y = Cie” + Cpe™ " =1 + e 1In(l+e")

Solve, using the method of undetermined coefficients.

15.

16.

17.

18.

19.

20.

21.

D* + 2)yy =€+ 2 Ans, y = Cycos V2x + Cy5in v2x + e’/3 + 1
D? — 1)y = ° sin 2 Ans. y = Cye” + Cpe ¥ — e”*(sin 2x + cos 2x)/8
2 2 . -x . 1 2 1 .
D"+ 2D + 2)y = x +sinx Ans. y = e (Cycosx+ Cysinx) + E(x—l) + g(smx— 2 cosx)
(D* - 9y = x+e?¥_sin2x Ans. y = Cie596 ¥ CQe—ix - x/9 - e2x/5 + ;:73- sin 2x
(D5 +3D% + 2Dy = xlidax+ 8 (Use Axd 4+ Bx% 4+ Cx.)
- -2x 13 12 11
Ans. = C, + Ce " + Cge 21’ + <x" o+ =
Y 1 2 3 6 3 41
(D2+1)y=—231nx+41005x Ans, y = C,cosx + Cysinx + 2x cos x +x2 sin x

(Da—D2—4D+4)y = 2:2—4x—1+2x2e2x+5xe2x+ezx

Ans. y = Cye* + Coe?* + Coe™ % + _;_xz + é—x%u



CHAPTER 16

Linear Equations with Constant Coefficients
SHORT METHODS

A PARTICULAR INTEGRAL of a linear differential equation F(D)y = Q with constant

1
F D) Q.
volved in evaluating this symbol may be considerably shortened, as follows:

coefficients is given by vy For certain forms of Q the labor in-

a) If 0 is of the form e%*,

ax

1 ax  _ 1

= , F 0.
y FDy e oo e (a) #
See Problems 2-3 when F(a) # 0, and Problems 4-5 when F(a) = 0.
by 1If QO is of the form sin(ax+b) or cos{ax+b),
y = 1 sin(ax +b) = sin(ax + b}, F(—a2) # 0,
F(D?Y F(-a%)
_ 1 _ 1 2
y = cos(ax +b) = cos(ax + b), F(-a“) # 0.
F(D%) F(-a%)
See Problems 7-11 when F(-a’) # 0, and Problem 12 when F(-a’) = 0.
c) If 0 is of the form x",
= x" (ag + a;D + a,D" + ««0 + amDm)xm, as # 0,

F(D)

obtained by expanding in ascending powers of D and suppressing all terms

beyond D", since D"x™ = 0 when n >m. See Problems 13-15.

ax 1

d) If 0 is of the form e**V(x), y = e = —_—V
F(D) F(D + a)
See Problems 17-20.
14
e) If ¢ is of the form xV(x), y = L xy = 1y FD) vy,
F(D) F(D) (F(DY P
See Problems 21-23.
SOLVED PROBLEMS
1. Establish the rule in a) above.
Since when y = ¥, Dy = aeax, D2y =a eax, ------------- , D™ = areax,
F(D)eax = ZP,.Dreax = ZP,,,areax = Fa)e Hence, ! & = 1 e
r T F) F(a)
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9. Solve (D5—2D2—5D+6)y = eux or D-1HD-3)D+2)y = e

4x

-2
The complementary function is y = Ciex + C2e5x + Cge x,

1 4x

A particular integral is y = e
D-1HD-3(D+2)

- 1 eux - 1 eux _ 1 ux
(4-1Y(4-3)(4+2) 3:1+6 18
Hence, the primitive is y = Cie' + Cpe™ + Cse-zx + Tléeux_
3. Solve (D’ -2D°-5D+6)y = (2 +3)°.
. . x 3% ~2x
The complementary function is, from Problem 2, y = Cie + Coe”” + Cge
A particular integral is y = ! (e2x+ 3)2
D-1)(D-3YD+2)
_ 1 e\bx N 6 eZ?C N 9 er
D-1DHD=-3)D+2) DO-1DHD-3D+2) (D—l)(D-—B)(D+2)
1 4x 6 2x 9 eux 3€2x 3
= —e + e + —— = — = + =
3(1)6 1(-1)4 (-1)(-3)2 18 2 2
2 eux 3e2x 3
The primitive is y = Cye + Cgesx + Cae T+ = - + = .
18 2 2
4. Solve (D’ —2D°-5D+6)y = ",
The complementary function is y = Ciex + Cgeax + Caemzx
A particular integral is y = ! esx. Now F(a) = F(3) = 0, and the short
(D—l)(D—-3)(D+2)
method does not apply. However, we may write
1 3% 1 1 3% 1,1 3x 1 1 3%
y = e = ( e = —-—(-— e ) = -
D-DHD-3)(D+2) D-3 D-1)YD+2) D-3 2-5 10 D-3
1 3x r 3x -3x 1 3% 1 3x
= — e e e dx = —e dx = —=xe .
10 f 10 j 10

-2%
The primitive is y = Clex + C.L,esjC + Cge + xeix/lo.

5. Solve (D’-35D°+8D-d)y = e +2e +3¢ ",
y

. .2 2 . ) .
The complementary function is y = Clex + Coe _ Cyxe x, and a particular integral is

1 2x 2 x 3 -x
y = ———— € fe———— + ¢
D-1HD-2) D-1)D-2) D-1)({D-2)
- 1 - 1 2x) . 2 1 ; ex) . 3 - R
D-2 D-1 D-1 (D-2) D-1HD-2)
1 2% 2 x 3 -
= ——— + — e + ——-—2—e
(D -2)? D-1 (-2)(-3)
= e2xff(dx)2 + 2exfdx - (_13€-x = éxzen + 2me” - é
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The primitive is y = Clex + CQer + Caxezx + -;-xzezx + 2" - ée-x.
6. Establish the rule in b) above for cos(ax +b).
. 2 2 i 2.2
Since, when y = cos(ax+b), Dy = —-a" cos(ax+b), Dy = (=a") cos(ax+b), sereces seves,

D”y = (_az‘)rcos(ax +b), then
F(O®) cos(ax +b) = SPDcostax+b) = I P (-a®) cos(ax+b) = F(-a®) cos(ax +b).
r T

cos(ax +b) = L cos(ax +b).

Hence, 5 2
Fby Fl-a)

{~ Solve (D2+ 4)y = sin 3x.

The complementary function is y = Cycos 2¢x + Cysin 2¢, and a particular solution is

y = 21 sin 3x = ———i—sin:ix = -—%sin3x.
D"+ 4 -(3) +4

1
The primitive is y = Cjcos 2x + Cpsin 2x ~ gsin3:c.

8 Solve (D'+10D°+9)y = cos(2x+3).

The complementary function is y = Cjcos x + Cosinx + Cgcos 3x + (;sin 3x, and a particu-
lar integral is

Yy o= ML—“‘COS(Z’C“” = —-—1—-Cos(2x+3) = —icos(2x+3),
O+ 1y + 9) (-3)(5) 15

The primitive is y = Cjcosx + Cysinx + Cgcos 3x + Cysin 3x — 1—1, cos(2x +3).
3

9. Soive (D +3D-4)y = sin 2x.

. . -4 . . .
The complementary function is y = CleJC + Cye x, and a particular integral is

y = ——I—-—Sin2x = ~—L———sin2x.
p*+3D -4 D-1)D+4)

, and the short method does not apply. However,

The operator here is not of the form

F%
we may use either of the following procedures to shorten the work.
ayy = -—1—-——sin2x = -—(2L+—l—)(—D2-:4—)—sin2x = -L(DZ—BD'-A) sin 2x
D-1HD+9) (D° < 1y(D" -~ 16) 100
=—1~(—4sin2x—60052x—4sin2x) = ——1(4sin2x+3c052x).
100 50
b)y=—2—1——sin2x =——1——-sin2x = 1 sin 2x :Msian
D%+ 3D -4 (-4) +3D -4 3D -8 9D*— 64
1 ) 1 . 1 .
= - ——(3D+8)sin2x = ~  — (6 cos 2¢x + 8 sin 2x) = - — (4 sin 2x + 3 cos 2x),
100 100 50
s R x —4x 1 .
The primitive is y = Cye  + Cye - ~5T)(4 sin 2x + 3 cos 2x).
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10. solve (D5+D2+D+ 1)y = sin 2x + cos 3x.

The complementary function is y = Cjcosx + Cpsinx + Cse-x, and a particular integral is

y = —m——l——(sin2x+cos 3x) = —2——1—-—sin2x + —2——-1-—————cos3x
DF+ 1D+ 1) DD+ 1 @DPr 1D+ 1)
- o1 sin 2x - 1 cos 3x = 101 sin 2 ~ 1 D-1 cos 3x
3D+1 8D+1 3p2_ 8 p2_1

"
"

—1 (D -1)sin 2x + -1— (D -1ycos 3x i(2 cos 2x - sin 2x) - -1(3 sin 3x + cos 3x).
15 80 15 80

The primitive is

y = Cycosx + Cysinx + Cae'x + 1—15(2 cos 2x - sin 2x) - 8—10(3 sin 3x + cos 3x).

11. solve (D2—D+1)y = sin 2x,

1x
The complementary function is y = e® (Cicos V3 x + Cpsin +/3 x), and a particular inte-

gral is
D -
y=—1———sin2x =—1——sin2x = - 1sin2x:—2351n2x
DZ-D+1 (-4)-D +1 D+3 Di_g
1 . 1 )
= —(D-3)sin2x = —(2 cos 2x - 3 sin 2x).
13 13

N

x 1
The primitive is y = e (Cicos3v3 x + Cpsinzv3 x) + E(2 cos 2x — 3 sin 2x).

12. Solve (D*+ 4)y = cos 2x + coS 4x.

The complementary function is y = Cjycos 2x + Cpsin 2x, and a particular integral is

y = 5 (cos 2x + cos 4x) = 21 cos 2x + > 0S8 4x.,
D" +4 D" +4 D"+ 4
2,
The method of this chapter cannot be used to evaluate > cos 2x since, when D™ isre-
D +4
placed by -4, D2+4 =0, However, the following procedure may be used.
Consider > cos(2+h)x = ———1—2—-— cos(2+h)x = - ! 5 cos(2+h)x
D"+ 4 -(2+h) + 4 4h+ h
1 . ) 2
= - —— (cos 2x — hx sin2x - 3(hx) cos 2x + **r>.- seee )
h(4 +h)

by Taylor’s theorem., The first term, cos 2x, is part of the complementary function and need
not be considered here, Hence, a particular integral is

cos(2+h)x = 1 (hx sin 2x + %(hx)zcos 20 — ceeeeceans )
D%+4a h(4+h)
1 . 132
= (x sin 2x + Zzhx“COS 2x — eeesresecs ) |
4+h

Letting h—0, we obtain cos 2x = -l-x sin 2x. Since cos 4x = - —1 cos 4x,

D +4 4 D+ 4 12
the primitive is y = Cicos 2x + Cysin 2x + zll-xsin 2x - IIECOS 4x. (Compare this solution

with that given in Problem 8, Chapter 14,)
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13. solve (20%+2D+3)y = x2+2x 1.

]
-ilx :
The complementary function is y = e ° (Cycos 3v5 x + Cpsin+v/5 x), and a particular in-

tegral is
y = -—2—-1_——(x2+2x-1> - A2 2ph oo
2D +2D +3 3 9 21
1 2 5
- Iafiamon - 2w - 22 - 12 E B
3 9 27 3 9 27
Note: —-2_£-— = (l - ED - EDQ + sesevseses )y by direct division.
2D° +2D +3 3 9 21
L _
The primitive is y = e 2X(Cicosﬁw./Sx + Cysin$v5 x) + %xz + Sx - z—: .

14. solve (D> -2D+4)y = x' +3x%—5x+2.

NN . -2 . . )
The complementary function is y = Cje o ex(CQCos x + Cygsinx), and a particular in-

tegral is
y o= o Gt is?osreny = (s ip s Ap? CL1pd B NGt so s
D’ -2D+4 4 8 16 32 64
1 13 3 2 7
= —x + Zx + Zx - Zx - -
4 2 8

The primitive is y = Cie'zx + e(Cocos x + Casinx) + ix"‘ + éxs + %xz - Zx - -g .

15. Solve (D’ —4D®+3D)y = x°.

The complementary function is y = C; + CQex + Csc}x' and a particular integral is

1
y = _Zi._____ x2 = - (._2.._.1_.__)12 = E(_l. + ED + EDZ)xZ
D(D* -4D +3) D p*_4p+3 b3 9 21
112 8 26 13 4 2 26 . 1
= S (ZxT+ Sx+ =) = Zx  + —x° + =x, since ={f(x)} = (x) dx.
D 3 9 27 9 9 27 D f } ff
The primitive is y = C, + Cgex + C3e5x+ gx5 + g-xz + z—ix .

16. sotve (D*+2D°-3D%y = x%+3¢°"+ 4 sinx.

The complementary function is y = C; + Cox + Csex + C,,e-sx, and a particular integral is

y = ———L——— (x2+3e2x+4 sinx)

D%(D?+ 2D - 3)

=———-—l—————x2+ 3——-—-—1———62x+4—————-}———sinx

D* (D% + 2D - 3) D %+ 2D -3) DA% +2p-3)

3 4 .
1 x2 + ——————-—ezx + —_— sl x

1
D? {D2+2D—3 4(4+4-3) (=1) (~1 + 2D ~3)
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= _1 (- l — _2.D - .7_1)2);[2 + ier - sin x
D? 3 9 27 20 D~-2
= __li(gx2+12x+14) + _B_ezx - 2 D+2 sin x
27 p? 20 D%-4
= - _1_(§x“+ 2x3+7x2) + .i e2x + g(cos;c + 2 sinx).
27 4 20 5

The primitive is

x

2
- 3 2x 2

= C+Cx+Cex+C65 -~x—(3x2+8x+28)+—e + =(cos x + 2 sinx).
Y teo 8 “ 108 20 5

17. Establish the rule in d) above by first showing that F(D)eaxU = eaxF(D+ a)U,

Since when y = e™U, Dy = ae®U + DU = e (D +a)l,
Dzy = aeaX(D+a)U + eaXD(DJra)U = eaX(D2+2aD+a2)U = eax(D+a)2U, ---------- ..,
Dry = eaX(D+a)rU, and
L FDeE™U = SPD (Tl - SheT D) U = e TP D) U = e F(D + a)l.

1

Let V = FD+a)U sothat U = ——m—V, Then, from 1),
FD+a)
FDe®™ —L v o ™y ana eV = Lo pme™ —L vy e Ly,
FD +a) F Dy FD) F(D+a) FD+a)

18. solve (D2—4)y = xPe",

. . 2 -2 . . .
The complementary function is y = Cje * Cye x, and a particular integral is

B 1 2 3x 35 1 2 3x 1 2
Yy = 2 x € = € —-—?-— x = € 2—— X
D" -4 D+3) -4 D"+6D+5
1 2
X (= - 5p. ﬂpz)f - e 2, 82,
5 25 125 5 25 125
The primitive is y = Clezx + Cze"zx + -%258576(25962—60x+62).

19. soive D%+ 2D +4)y = € sin 2x.

The complementary function is y = e “(Cycos V3 x + Cpsin 3 x), andaparticular integral

is
y = 2—1———exsin2x S 5 ! sin 2x = ex——?———l—siHZx
D™+ 2D +4 D+ +2(D+1)+4 D" +4D+7
X x
- & L sinax - e’C4—Dzisin2x - _ % @4D-3)sin2x = - < (8cos 2x — 3sin 2x).
x

The primitive is y = e_X(Clcos V3 x + Cysin V3x) - 2—3(8 cos 2x — 3 sin 2x),
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20. Solve (D2-4D+3)y = %e” + 3¢% cos 2x.

The complementary function is y = Clex + Cgesx, and a particular integral is

y = —2-—1~—-— (erax + 3¢ cos 2x) = 2 —Z—L———xeu + 3 2——1——-—- ¢’ cos 2x
D" -4D+3 D" -4D+3 D" -4D+3
= 2e§x —2——1—— x + 3" 5 1 cos 2x = 2e3x l 1 x + 3F cos 2x
D%+ 2D D% 2D D D+z -4 -
= 2e5x E(l - ED)x - § e D-2 cos 2x = E e5x l(Zx-l) + —3— ex(D—Z)COSZx
D2 4 2 p?_g 2 D 16
1 3
= -~ eax(xz_x) - = ex(cos 2x + sin 2x).
2 8
c s X x 3x 1 3x 2 3 x .
The primitive is y = Cje” + Che” + 56 (x" ~x) — ge (cos 2x + sin 2x).

91. Establish the rule in e) above by first showing that FD)xU = xF(D)U + F'(D)U.

.

Since when y = xU, Dy = xDU + U, D%y = xD*U + 2DU, R AR REE R
Dy = xDU+ DU = xDU + (di;) D), then

D FDU = SR Uy = SHaU + 3P (d% DY = xFDWU + F' (DU

Let V = F(D)U so that U = 1 V. Then, substituting in 1),
FDyx —— V = xFD) —2V + FIDy =V, xV = Fyx ——V - F'D) ——,
FD F(D) 19)) F) FDy
I
and ——xv s v o Ly Ly -ty o FD oy
F) FD) FD) FD) FD) (Fy Y

2
22. solve (D" +3D+2)y = x sin 2x.
The complementary function is y = Cle—x + CQe-zx, and a particular integral is

1 1 2D + 3

D +3D+2 D +3D+2 D" +3D+2)
= x——l——sin2x - " 2D+z sin 2x
3D-2 D'+ 6D>+13D% + 12D +4
= x ; sin 2x - 5 2D+3 sin 2x, replacing 02 by -4,
3b-2 (=) + 6(-4)D + 13(~4) +12D + 4
= x 30;2 sin 2x + l__________(ZD+31(3D—8) sin 2x
oD’ -4 4 9p® -6

-x(3 cos 2x + sin 2x) . 24 sin 2x + 7 cos 2x
20 200
2x 30x -7 5x - 12

The primitive is = Cre * + Coe™ © - cos 2x -
P Y * 2 200 100

sin 2x.
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23. Solve (D2—1)y = 2% sin 3x.

The complementary function is y = Ciex + Cge—x, and a particular integral is

1 2 . . 2D .
y = 5 x sin 3x = x 5 x sin 3x - —5 x sin 3x
D" -1 D" -1 D" -1
3
= if 1 sin3x - «x %sin 3x - 2D {«x ﬁsin&c - iL—;—D—zsin%}
p?-1 (0% -1) D*-2p%+1 (0*-2D%+1)
2
S 21 sin3x - x ——231—)———2»sin3x - 2D {«x —ZI—;SinSx} + —;B—-SiHBx
p*-1 0% -1 -1 0* -1y

= - —1— x2 sin3x - -i x co33x - —1 D(x sin3x) + —9— sin 3x
10 50 50 125

= -—lxzsian— —Bxcos3x+ —l—%-sin:%x.
10 25 250
25x° - 13 3
The primitive is y = Cye” + Cpe & - =2~ = sin3x - — x cos 3x.
250 25

94. Solve (D°-3D°—6D+8)y = xe ",
. . x Ux ~-2x . - .
The complementary function is y = Cye” + Cye + Cge , and a particular integral is

1 =3x
Yy = ee—xe T,

p’-3p®-6D+8

- 1 - 1
By a): y=e5x 5 x = esx 5 P x
D=3y -3(D-3)" —6(D-3)+8 D> -12D%+ 39D - 28
- - 3
= e 3% —_ i - _.33 ) = e 596(_ _.1. - _9 .
28 784 28 784
1 3D%-6D-6 3x
By e)y: y = x—-—2-————e—3x — 3 > 2e
D> ~3p% —6D +8 (D> -3D%- 6D+ 8)
x 3D°-6D-6 -3x 1 o3 39 -3
= - —2Xxe€ - —————2-— € = - -2-518 - .78_4 e
28 (~28)
-3x

-2x €

1y
The primitive is y = Gy + Coe  + Cge  — (28x + 39).

784

25. Denote the real and imaginary parts of a complex number z by Re[z] and Im[z] respectively. An
alternate short method for Problems 9-11 makes use of sinbx = Im[e?®*] and cos bx = Relet?*].

Consider, for example, FDyz = (D3+D2+D+1)z = e2ix eiix for which
, 627196 . e}ix o eZix _ eaix
F(21) F@31) 3+ 61 8+ 241
= 2i=l(cos2x+ isin2x) + 3E=l(cos3x+ isin3x) = z + g
15 80

is a particular integral. Then

Re[zl] + Re[zz] = - 115(2 sin2x + cos 2x) - $(3 sin3x + cos 3x)
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is a particular integral of F(D)y = cos2x + cos3x,

_ 1 .
Im[zl] + Im[zz-] = E(Z cos 2x — sin 2x)

is a particular integral of F(D)y = sin2x + sin3x,
Re [zl] + Im[zz]
is a particular integral of F(D)y = cos2x + sin3x,

Imlz;] + Relz,]

is the particular integral in Problem 10.

107

1 .
+ 56(3 cos 3x - sin3x)

and

SUPPLEMENTARY PROBLEMS

Find a particular integral,

26.

21.

28.

29.

30.

3L

32.

33.

34.

35.

36.

31.

38.

39.

40.

(D% + D+ Dy = % + 6e¥ - 3e7?% + 5 Ans. y = e3%/13 + 2¢¥ — e + 5
(D2—1)y=ex y=xex/2
2
(D - 2)2y = " 4 xe™* y =e*+ e’ /6
1 .
(Dq_l)y=sin2x y=1—5$1n2x
3 } -1 - si
(D7 + )y = cos x y 2(cosz sin x)
2 s __1 9
(D° + 4)y = sin 2x y = 4:ccos x
(D2+5)y=cos 5 x y={—§xsin 5x
- - 1 . ’
(D5+D2+D+1)y=ex+ex+sinx y=%(ex+21e x)—;x(smx+c05x)
2 _ 2 _ 2
D" -1y =x y=—-2x" -2
1 6 4
D' - 1y = «° Y= - s+ 308)
- 1 2 1 -2 1
(D2+2)y=x5+x2+e2x+cos 3x y:-i(x5+x _3x—1)+ée x—;icosBx
1
(D2—2D-1)y=excos:c y=—-§excosx
2
(D—-2)2y=¢32x/x2 y=-e lnzx
(D2 -y = xe¥ y = -——e3x(4x—3)
32
(D% +5D + 6)y = e'zx(sec2x)(1 + 2tan x) y = e % tanx



CHAPTER 17

Linear Equations with Variable Coefficients
THE CAUCHY AND LEGENDRE LINEAR EQUATIONS

THE CAUCHY LINEAR EQUATION

d™y dm? dy
1 px* ==+ p x"* B f P, x -ty = 06,
A dx- 1 dx
in which p,,p,,*-+++,p, are constants, and the Legendre linear equation
n N1
2) p (ax+ b)n.(i_X +p (ax + bY"~1 _(Z__Z e + p (ax +b).(_jX t py = 0(x),
o dx™ i dx™1 n-i dx n

of which 1) is the special case (a=1, b=0), may be reduced to linear equa-
tions with constant coefficients by properly chosen transformations of the
independent variable.

THE CAUCHY LINEAR EQUATION. Let x = e°; then if ¥ is defined by § = (-;—1— )

z
% dy dz 1 dy d
Dy = i. = L = L= - l — E
dx dz dx x dz and xby dz Y
2
i1 dy 1.,d% dy -
pry =LA Ldy d - 98-
) dx x dz) 2<d22 dz) and x' Dy (9 Dy,
Py - 2y _dyy, 1dy dYy
x? dz? dz x> dz3 dz?
3
: {
=L@y 50y 0y g 2Py = 98- (82,

XDy = B -1)(H=2)---- (O~r +1)y.
After making these replacements, 1) becomes

(B, 9O -1(®-2)-+-P-n+1) + p BB -1(® =2+ (B-n+2) + -vvrvns -
tp,_, 0+ ply = 0,

a linear equation with constant coefficients. See Problems 1-3.

THE LEGENDRE LINEAR EQUATION. Let ax+bh =e°; then

dy dz _ a dy dy
D = e e S e d +b = _— = _@ ,
Y dz dx ax+b dz an (ax ) Dy adz avy
2 2
Dy = 2 -(g—z - QZ) and (ax-+b)2D2y = aZD(D-—l)y,

(ax + b)2 dz’ dz

108



THE CAUCHY AND LEGENDRE LINEAR EQUATIONS 109

.....................

.....................

(ax +b) D'y = a B -1y -+-- H-r+1)y.

After making these replacements, 2) becones
{p,d 80 -1 (B=-2) o (B-n+1) + pa BB -1 =2) e - (Bon+2) + +vnnnn.
e’ ~ b)

a

tp,_ab+ply = 0

1 i /itlh ste ffici .
a linear equation with constant coefficients See Problems 4-5.

SOLVED PROBLEMS

1. Solve (x5Daf 3x2D2—2xD+ 2)y = 0.

The transformation x = ez reduces the equation to

{00-1(B-2) + 300-1) - 20+ 2}y = 9 - 30+ Dy =0

. . .z . 2 . =2z
whose solution is y = (Cye” « Coze® + Cge ~.

Since z =1lnx, the complete solution of the given equation is y = Cix + Cox Inx + (Is/xz.

2. Solve (xBD5 + 2 ~2)y = x2 Inx + 3x.

The transformation x = e~ reduces the equation to

{BW-1H0-2) + 20 - 2}y = B-Dd®-20+2)y = 267 + 367,

The complementary function is y = (71ez + CZ(C‘QCOS 2 + (C3sin z), and a particular integral is

1 22 z 2z 1 1 z
yt——z———-——(ze +3e ) = e 3 3 z + 3 p e
0 —30% v a2 B2 —30+2)% a2y -2 W-1) B -20+2)
_ 822 21 ;4 3 1 ez
0P+ 30% 44+ 2 M -1y (1)
= ezz('g - Dyz + 3ezfez-e—z dz = ezz(%z - 1) + 3ze2.
2
Thus, the solution is y = Clez + eZ(Cgcos z + Casinz)+ Le 2(2—2) + 3267
= Cyx + 2(Cycos Inx + Cesin Inx) + sx°(Inx =2) + 3x Inx.
3. Solve (x2D2—xD+4)y = cos lnx + x sin 1ln x.

The transformation x = eZ reduces the equation to

{Bw-1n -0 +4}y = (192—2.®+4)y = cosz+ e sinz.

The complementary function is y = eZ(C1COS V32 o+ C,sin \/§z), and a particular solution
is 1 1 .
y ¥ —————cosz +2————e sin z
0°~20+4 0 -20+4

1 1
sinz = —(3cosz - 2sinz)+ =¢ sinz,
13 2

1 z
= cos z + e
3-208 043
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Thus, the solution is

> ~ 1 ) 1
y = € (Cicos V32 + Cosinv32) + E(B cosz — 2 sinz) + -2-eZ sin z

1 1
= x(Cicos V3-Inx + Cysinv3-lnx) + E(3 cos Inx -~ 2sin Inx) + 5% sin Inx.

2
4. Solve (x+2)2 dy _ (x+2)ﬂ+ y = 3x + 4,
2 dx

dx

Put x+2 = eZ; then the given equation becomes

{(BW-1 -9+ 1}ty = B-D°y = 3°-2,

The complementary function is y = Cye” + ngez, and a particular integral is

1 3 2
y = __1_2_(3e2—2) = 332 ff(dl)z - 2 —2 eOZ = 52 ez— 2.
H-1 -1
3 2
The solution is y = C1e2 + ngez + 57 e -2 or, since z = In(x +2),
. . 3 2
y = x+2[Ci+ Colnx+2)+ 5 In (x+2)] - 2,

5. Solve {(3x+2) D%+ 3(3x+2)D - 36}y - 3x° + dx + 1,

The transformation 3x+ 2 = ez reduces the equation to

{908 -1+ 9636}y = 9(8°—4yy - %(9x2+12x+ 3) = %(ezz-l) or (8°-4)y = —2%(e22—1).

2 . =2 1 1 2 1
The complete solution is y = Cje Z 4 Coe (R — > e - 2 eoz)
2T 924 B2 -4
“2z 1 2
= Cref Cpe == (27 4 1)

108

2 -2 1 2

or y = C1(3x+2) + CQ(3_x+2) + m[(3x+2) In(3x +2) + 1].

SUPPLEMENTARY PROBLEMS

Solve.
6. (x2])2-3xD+4)y =x+ x°Inx Ans, y = Cix2 + ngz Inx + x + é 2 1n’x
2
1. (xzD ~2xD+2)y = 1n%x = 1n % Ans. y = Cyx + Csz + '5(ln2x +1n x) + &
3.3 2.2 . ]
8. (D’ +2x"D")y = x + sin(ln x) Ans. ¥y = Cy + Cox + Cglnx + x Inx
+ I5(00s In x + sin In x)
9. xsy”'+ xy! -y = 3% Ans. y = Cix + Cox Inx + Cux n’x + xu/Q

10. [x+DD% + x+ 1D = 1]y = Inx+1)2 + x - 1 ,
Ans. y = Cy(x+1) + Cox+1)™F — In(x +1)° + S(x +1)-In(x+1)+2

11. (2x+1)2y" - 2(2x + 1)y’ - 12y = 6x Ans., y = C1(2x+1)-l + C2(2x+1)3 - 3x/8 + 1/16



CHAPTER 18

Linear Equations with Variable Coefficients
EQUATIONS OF THE SECOND ORDER

A LINEAR DIFFERENTIAL EQUATION of the second order has the form

1 ay R(")Z_i Sy = 0(x).

If the coefficients R and S are constants, the equation can be solved by
the methods of the preceding chapter; otherwise, no general method is known.
In this chapter certain procedures are given which at times will yield a so-
lution.

CHANGE OF DEPENDENT VARIABLE. Under the transformation

y = uv, u = u(x) and v = v(x),
2 2 2
d—y = ug‘_/ + Vil , d_}: = ud_v + 21‘., @ + V_d_u ,
dx dx dx dx? dx? dx dx dx?
1) becomes
d? d
2) R+ SV = o)
dx dx
. _ 2 du 1 d?u du Q(x)
with R (x) = = —d—}_( + R(x), Si(x) = ;{E + R(x) E{ + S()u}, Qux) = —-

2
a) If uis a particular integral of g—% + R(x) gﬁ + Sx)y =0, then S, =0
dx

and 2) becomes

d? d
3) ;% bR T = o).
2
The further substitution ﬂY = p, g—% = ﬂe reduces 3) to
dx
d
4) =t Rp = 0.0,
a linear equation of the first order. See Problems 1-6.
. . 2 du du i
b) If u is chosen so that R,(x) = 2 o t+ R(x) =0 or -— = -3R(x)dx, then
u u

e'éf[?(x) dx

111
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2
Now Y - -5uR(x) and du _ -%R(x)gi’ _ su R so that
dx 2 dx Ix
R(x) du . 1 d’u R(x) du | dR _ 2 &R
S,(x) = Sx) + —+ = — =S + f—= = -5 = = SR - L=
) ) u dx u dx? ) 2 u dx 2 dx ¥ 2 dx
and Q, = Q/u.
2
If S,(x) = S —ﬁRz—‘fj—R = A, a constant, 2) becomes Z—Z + Av = Q/u,
X Ix

a linear equation with constant coefficients.

2
If S,(x) = A/xz, 2) becomes x? d—: + Av = sz/u, a Cauchy equation,
dx

and the substitution x = e” will reduce it to one with constant coefficients.
See Problems 7-10.

CHANGE OF INDEPENDENT VARIABLE. Let the transformation be z = 6(x). Then

dy _ dyde dy _ dydzz , dy d’z
dx dz dx ' s dz? dx dz ge?
and 1) becomes
2 2
d’y dz.2 dz dz dy
—Z (= + (— + RS2 + Sy =
dzz(d ) (dx2 dx)dz y Q
or
2
, d’z | R dz
5) dy , &  dxdy ) S o .
dz*® (dzy2  dz(dzye (422
dx dx dx
dz S . . .
Let z = 6(x) be chosen so that s = - the sign being that which makes
a
% real and a’ being any positive constant. (One may consistently take al= 1.)
2
If now é(———— = A, a constant, then 5) becomes d—}—/ + Ai)-’ + a2y = —-L,
(dz)2 dz?  dz (dxy?
dx dx
a linear equation with constant coefficients. See Problems 11-14.

OPERATIONAL FACTORING. It may be possible to separate the left member of
{P(x)D® + R(x)D + S(x)}y = Q(x)
into two linear operators F, (D) and F, (D) so that

&) {Fi(D)-Fo(D)}y = Fy(D){F.(D)y} = {P(x)D* + R(x)D + S(x)}y = O(x).

Then, setting F,(D)y = v, 6) becomes F,(D)v = 0(x), a linear equation of
order one.
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The factorization in this section differs from that of Chapter 13. With
possible exceptions, the factors here contain the independent variable x,
they are not commutative, and the factorization differs from that when D is
treated as a variable. For example,

(xD* = T+ 2D + x}y = {(xD-2)(D=x)}y,
since

((xD=2)(D ~x)}y = (xD-2><;%{-x>y = (xD=2)(y'=xy)

(XE(:} ~2) (ymxy) = x(y'=y —xy') = 2(y'=x¥)

XV”—(X2+ 2y’ + xy = {(XDQ—(X2+2)D+X}Y.

I

The factors are not commutative, since
{(D-x)(xD-2)}y (D-x)(xy'-2y) = xy"+y' -2 —x°y’+ 2xy

XY""(X2+ Dy'+ 2xy = {XD2~—(X2<+1)D +2x}y.

It

it

Finally, when D is treated as a variable rather than an operator,
{(xD=2)(D-x)}y = {xD*—(x*+2)D+2x)}y. See Problems 15-17.

IN SUMMARY, the following procedure is suggested for solving

2
ZTZ + R(x)g-))-: + Sx)y = Q(x).

1) Find by inspection, or otherwise, a particular integral u = u(x) of the
equation when Q(x) = 0. The substitution y = uv will yield a linear equa-~

tion in which the dependent variable v does not appear. This equation is
of the first order in dv/dx = p.

2) If a particular integral cannot be found, compute - ﬁRZ—-é SE- If this
X
is a constant K or K/xz, the transformation y = ve reduces the given

equation to a linear equation with constant coefficients or to a Cauchy

-5fRdx

equation.
3) If the above procedure does not apply, put gﬁ ) (choosing the sign
a
2
dz REE
. dx? dx :
so that the square root is real) and substitute in e . If this
dz.?
(dx)

is a constant, the transformation z = Jn Eg dx yields a linear equation
a

with constant coefficients.

4) If the left member of the equation is operationally factorable, the prob-
lem is then reduced to that of solving two linear equations of order one.

Note. As a partial check on the work, it is desirable to know the type of equa-
tion which results when the transformations in 1)-3) are made.
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SOLVED PROBLEMS

1. For the equation (D2+RD+S)y = 0, show that

a)

b)

y = x is a particular integral if R+ xS = 0,
y = e* is a particular integral if 1+R+S = 0,
¢) y = ¢ * is a particular integral if 1-R+S = 0,
Yy

d) =™ is a particular integral if m?+mR+S = 0.

a) If y = x is a particular integral of (D2+ RD+S8)y = 0 then, since Dy=1 and DzyIO, R+Sx=0.

d) If y = ™ is a particular integral of (D2+ RD+S)y = 0 then, since Dy = my and D2y = m2y,
m?+ mR+S)y =0 and m2+mR +S =0, b) and c¢) are special cases (m = 1, m = =1) of d).

9. solve (D° - ;D <3y sz,
X

Here R+Sx = 0 and y = x is a particular integral of (D2 - gD + —BE)y = 0.
X

2
The transformation y =xv, Dy = x% + v, D2y = x‘—i—: + Zd—v reduces the given equation to
d _dv . dv 3 3 d%  dv v 1dv 1
X —+2— ~3——-—-VU+ -V = X —=—— - — = 2x -1 or —_— - == = 2~ =
dx? dx dx x x dx?2  dx dx2 x dx x
Putting dv . D d—-g - dp » this becomes C—IB - lp = 2 . for which ef-dx/x = I/x is
dx dx2 dx dx x x
integrating factor. Then
I 2 1 1 dv
- = (== —=)dx = 21Inx+ ~+K, p = — = 2xInx + 1+ Kx,
x x L2 x dx

v o= % = f(2x Inx +1+Kx)dx = z% lnx+x+ C1x2+ C,, and y = Cix5 + Cox + ©1lnx + x°.

2
'}

3. Solve x2<x+1)¢1_% - x(2+4“"2)% + (2+4x+xd)y = -2t - 23,
dx

2 2
Here, R + Sx = _x(2+4x+x ) +ox 2+4x +x

x2(x+1) xz(x + 1)

the equation with its right member replaced by zero.

The transformation y = xv, d_y = ch{E + v, d_z = xd——v- + 2ﬂ reduces the given equation
dx dx dx2 dx2 dx
2
to B TN AL 2@ xyx Zor vy v 2rariyaw = -2t - 20
dx? dx dx
2
d'v x+2 dv x+2
or — - = = -
dx? x+1 dx x+1
1
—f(1+ =yax -x
Puttinggg:}h this becomes dp _xr2 _ _xr2 for which e x+1 = L is an
dx dx  x+1 x+1 x+1

integrating factor., Then

= 0 and y = x is a particular integral of



EQUATIONS OF THE SECOND ORDER 115

e ” (x +2) e e dv x
po= - | S - + Ca, P = 2 = 1+ Crne,
x+1 (x + 1)2 x+1 dx
v o= % = x + Clxex + Cq, and y = C1x2ex + Cox + x2.
d’ d 2
4. solve x ZF — (2 + DY 4+ x+1)y = (@Pex-1)e?%,
2 dx
dx
Here 1+R+S =1 - Z+1 + x: ! =0 and y = e is a particular integral of the equation

with its right member replaced by zero.

The transformation y = exv, d_y = ex(d—v + v), d_y = ex(g_v + 2d-—v + v) reduces the
dx dx dx? dx? dx
dv  1dv 1
given equation to — - == = (x + 1~ —)ex.
de X dx X
Putting % = p, this becomes Zx—g - ;}p = (x+1 -~ %)ex for which % is an integrating factor,
Then
xe” — e x e dv x x
B=f(ex+*—-)dx=e+—-+1(, p = — = xe + e + Kx,
x 52 x dx
v o= L = ke +C112+C2, and y—Cx2ex+Ce + xe ”,
x .
4

d? d
B. solve (x-2% - (-1 + (4x-6)y - 0.
dx? dx

Here m2+mR+S = m? - m 2% _27 & _26 =0 whenm=2, and y = e?* is a particular integral.
X — X -
2 d; 2x dv 2 d? 2% d’v 2x dv 2
The transformation yzexv, -Zzex—+2exv, —y:ex—+4ex—+4exv
dx dx dx? dx? dx
reduces the given equation to
d2v dv d d2v 1 dv
(F=2)(—— + 4=+ 40) - -T2+ ) + 4x=-6v=0 or —2_ 2 %_,,
dx? dx dx de?2 x-2dx
Putting @ = p, this becomes d_p - p = 0. Then
dx dx x -2
2
p = % = K(x—2), v o= % = Cl(x—2)2 + CQ, and Yy - C1€2x(x—2)2 + CQC x-

€

d° d
6. Solve 2 _ 2tanx & 4+ 3y = 2 secx.
dx? dx
2
By inspection, it is seen that y = sinx is a particular integral of (D -2tanx D+ 3)y=0,

The transformation y = v sinx reduces the given equation to
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116
2 .2 2
sin x g—v + 2(cos x - 510 x @ = 2secx, or d_g + 2(cot x — tan x)‘—i-g = 4 csc 2x.
dx? cos x dx 2 dx
The substitution % = p reduces this to % + 2(cot x ~ tanx)p = 4 csc 2x for which an
integrating factor is z&sin2 2x. Then
N .2 ) , . dv 2
4p sin“2x = [sin2x dx = — % cos 2 + 4K,, p = o = -2c¢sc2x cot 2x + K,csc” 2x,
= Siil’ = csc 2x + Kcot2x + C,, and y = 5 secx + Cy(cos x - 3 secx) + Cpsinx.
d’y 24 2
7. Solve ¢y _ 2y + (1 + =)y = xe™
dxz x dx x2
2 d -5 (R
Here R--Z,S=1+—2—. S—ﬁR—%—I—%=1 and =e2’rdx:efdx/x:
x x2 dx
d dv d? d’ dv
The transformation y = wv = xv, . X — + v, 2y . x ev, 2 — reduces the given
dx dx de dx?
d2v
equation to - + v = ex, a linear equation with constant coefficients, whose complete solu-
dx
tion is v = L = Cicos x + Cosinx + . e’ = Cicos x + Cpsinx +se”.
x D +1
Thus, y = Cix cos x + Cox sinx + sxe .
d2 d; 2 5%+ 2x)
8. solve LY _ 90 & | (4 +2)y = e° .
dx? dx
2
- L R L
Here R = -2r, S = 22+2, S—ﬁﬂz—%%z?,, and u - e 2/R9 %

2
The transformation y = e ¥ v reduces the equation to

Nl

d
——g + 3v = ex whose complete solu-

1,2 —
tion is v = yfe?” = Cicosv3x + Cosinv3 x + 21 e’ = Cycosv3x + Cpsinv3x + ke,
D" +3
sa? 5 ( 2+2 )
Thus, y ‘= e (Cicos vBx + Cosinv3I x) + 4e’ - x),
9. solve (D2 - ,%D + %)y = 2 - 1, (Problem 2.)
X
oL -1
Here S—ﬁRz—%@ = —3———%-—-3— = -i and u = e o JRax = e 5[ -3ax/x =x3/2.
dx %2 4x2 22 4x?

The transformation y = uv = x5/2v reduces the equation to

2
3 -
5 -1 x2 d—-v - z-v = 2x5/2 - xl/2 , a Cauchy equation,

-3, -
4x L dx?

=8
<

%
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2 3 ;2 272
Putting x = e¢°, we have (0° - 0 - 1)1,* W
) . . =z2/2 N 34,2 . . .
The complementary function is v = Cye '~ ~ C293 , and a particular integral is
1 /2 z/ 1 2/2 z/2 /2 /2
v o= T__(265?/ - ez 2 = 83 + ez = 193 / + e .
92 _0-3/4 H-3/2
. . 2 L =12 ;2 /2 1/2
The complete solution is voo= y/xS/ = (yx + ng3 + x5 Inx + «7
. . 2
and y = Cyix + ngs + 0 Inx + a0,
2 2

10. solve (i— - 4x — + 4x2y = xe’ .
dx dx

2
2 & \
Here S-ﬁRz_%‘i{{:z and uzeijac:
dx
: d2v
The transformation y = ve® reduces the equation to —— + 2v=x whose complete solu-
i dx
tion is
v = C1COS x/ﬁx + CQS’iI’l ‘/ix + %x.
x x2 x2
Then y = ve = e (Cicos V2x + Cosinv2x) + fxe .

2 d 2 + %)
25 1+ 4eHY 4 3Py 2t e
dx? dx

2x 2 2 x X, X
¥hen % _ /_S_ _ /3e = * d"z/dx" + R(dz/dx) e -qQ +24e ye© 4= 4
a? 3 (dz/d.x)2 (ex)

The introduction of z = ex as new independent variable leads to

x
2 2 2(x +e’) x
d d
u+A_‘Z+a2y=__g_._ or d_z_4_z+3y:f_____:e2e2622
dZ2 dz (dz/d.x)2 dz2 dz e2x
. . z 3z 1 2z 2 3z 2z
whose complete solution is y = Cie” + Coe”” + ———— ¢ = Cie” + Coe™” ~ e 7,
H2-40+3
X x x
Replacing z by ex, we have y = Clee + Cgeie - e
. 2 . . . 2 dz x -4
Note. The choice of a“ = 3 is one of convenience only. Taking a' =1, —= = vV3e andA = ——.
dx V3
2
The transformation z = v3 e~ yields Q -4 d_y + y = }_ezz/ﬁ whose solution is
dz2 V3 dz 3
V3 3 * x x
y = CleZ/ >4 Coe 32 _ ezz//i. Then y = Ciee + Czeje - e , as before.

12. solve LY cot x d _ sin’x y = cosx - cosx.
dx? dx

2 2 .
Here S = —sinzx and when d_z = llg = sinx, d z/dx +R(;iz/dx) - So8xY (—cc;tx)(smx):o
o 1 (dz/dx) sin"x
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Thus the introduction of z =

- c¢os x as new independent variable leads to

) -
‘ Z -y = CcosSx = -z whose complete solution is y = Clez + Cye Z 4 z.
dz
Upon replacing z by - cos x, we have y = Cle—cosx + (]Qecosx - COS X,
2 2
13.Solve—y-+gd_y+_ly:2x+1
dx? x dx 2t £°
2 2
d ‘ ,
When d—z = V5 = —t— = iz' d z/dx” + R(;jz/dx) = 0., Thus the introduction of z= - =
* x x (dz/dx)
d2 2
as new independent variable leads to -—% +y = 2 + 2z whose complete solution is
dz

y = Cicos z + Ksinz + z°,
Upon replacing z by -1/x, we have

y = Cycos(-1/x) + K sin(-1/x) + 1/x2
= Cyeos(l/x) + Cosin(l/x) + 1/x2.

2
14. sotve 42 4+ (4x - LY | ax’y = 3xe™F
dx? x dx
2 2
When - T - o - 2x, LEHE +B(jz/dx) S 2ria “21/")2" 2. Thus the in-
dx (dz/dx) (20)
d2 d 3¢
troduction of z = x2 as new independent variable leads to AR, S y = whose com-
dz dz 4v7
plete solution is y = Cie—z + sze_Z + ——3/-4—; 6_22-1/2 = C,_e—z + ngevz + 23/2 e
D+1)
2 2 i
Upon replacing z by x2, we have y = Coe™™ + Coxe™™ + x°e™ .
2 3 3
15. solve (D° - ;D t)y s x-L (Problem 2,)
X
. . . 2 3 3
a, The equation is equivalent to D'y - D(; y) = DD - ;)y = 2x - 1,

Putting (D-g-)y=v, we have Dv = 2x-1 and v = x° - x + K.

Now (D - ;)y = x?_x+K for which -% is an integrating factor. Then
x

A f(l—iJrﬁ)dx = 1nx+1+‘ﬁ+(12 and y =C1x+CQx3+x2(1+x1nx).
xi X x2 x3 x x2
b.

The equaticn (xD2 - 3D + g)y = 22 -x 1is equivalent to D - z) @D - 1)y = 2?2,

Putting (xD-1)y = v, we have (D - g)v = %% _x for which —1-3- is an integrating factor,

x

Then LA f(g—i)dx = 21nx+1+K and
3 x 2 x

x X
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@xD-1)y = v = 2 lnx + x° + Kz’ or (D-1/x)y = ?.xz Inx + x + sz.

Here 1/x is an integrating factor so that

x = J(2¢x lnx + 1 + Kx)dx = o2 ln:c—%x2 + x +K1x2+ C, = lenx +x +C1x2+C2
b

and y = C1x5+ng+x2(1+x1nx).

16. solve [xD® + (1-2)D - 2(1+x)]y = e *(1-6x).
The equation is equivalent to [xD + (1+x)][D - 2]y = e (1 -6x).

Putting (D-2)y = v, we have [xD+1+xlv = e “(1-6x) or (D + % + v = e-x(% - 6).

Now ze™ is an integrating factor so that wxe® = f(l -6x)dx = x - Bx2 + K
and D-2y = v = (1—3x)e-x+ Ke-x/x.

Here e-u is an integrating factor so that

-3x
ye'zx = f[(1-3x)e'5x + Ke'sx/x]dx = xe ¥+ lee p dx + C,
-3x
- 2
and y =xex+Ciexfex dx+C262x.
17. Solve [(x+3)D° - (2 +mD + 2]y = (x +3)2e".
The equation may be written as [(x+3)D - 1][D - 2]y = (x +3)%e",

Putting (D ~2)y = v, we have [(x +3)D~1]v = (x+3)2ex or D - :3)11 = (x +3)ex.
X

Using the integrating factor 1/(x +3), we have v/(x+3) = fexdx = &+ K
s0 that D=2y = v = (x+3)e” + K(x +3).
Using the integrating factor e'u, we have

ye-zx = f[(x +3)e_x + K(x +3)e-2x]dx = —xe ¥ — g™+ K(- éxe-zx— Ze-zx) + C,

and y = - xe¥ - 4e” + Ci(2x+7T) + C2e2x.

18. show that the Riccati equation Z—: + yPx) + yzQ(x) = R(x), Qx) # 0, is reduced to a

linear equation of the second order by the substitution y = 61— Ld;xl—l .
u
2
Since & - L Q - —1—(d—u)2 - L d—Q @ »  the substitution yields
Qu gx?  Qu? Qfu dx dx

2 2
1 1
_d_lf_.__(d_u)z_id_o.ii_l_l.pﬁd_ll*._l—(d_lf)z—}?:O or g+(_i(_i_o)@_RQ—0
Qu 4,2 Qu2 dx Q2u dx dx Qu dx Qu2 dx dx2 Q dx dx

19. Use the procedure outlined in Problem 18 to solve % + %y + %xsyz = ;1

The substitution y = i gi; E

2 di
Qu 2y dx
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2 3 2
da 2 wade 1o 1de 12
dx? X x3g dx 2 2 dx? x dx 4
N =S 4x? . .
In turn, the substitution — = ? = —f: = x reduces this equation to
d%u 1 iz iz
—— - —-u = 0 whose solution is u = Cxe2 + Cae 27,
dz? 4
1z -tz L2 2
1 du 2 L(Cie? < Ce 27 1 e ke ® C,
Then Yy = ———E = = T2 ~IZ x = —2.—'LX’2—_1—2—' where k = = .
Qu 0 Cie® + Cgpe ? E AL P Cy
20. solve Z—z - (tanx + 3cosx)y + y coslzx = —2.
2
1 du sec’x du
The substitution = =~ — = -— reduces the equation to
Y T O 7 & d
2
d—g + (tanx -~ 30081)@ + 2ucos2x = 0.
dx? dx
. . dz 2 cosZx . .
In turn, the substitution T = —2— = c¢os x, or z = sin x, reduces this equa-
dzu di 2
tionto =2 - 3% 4 2y = 0 whose solution is u = Ciez + Coe Z,
dz? dz
1 2 sl
1 du seczx(Clez + 2C2€22) €SN 4 ake” TX
Then y = — o = P cosx = SeCx STh YT
Qu Ciez + Cue ? e * 4 ke
SUPPLEMENTARY PROBLEMS
Solve.
21, xy" - (x+2)y" + 2y =0 Ans. y = Ciex + C2(x2+2x +2)
22. (1+x2)y” - 2xy' + 2y =2 y = Cyx + C2(x2—1) + 2
23. i a)y” - 2xy! - - z z
. y" - 22y’ + 2y = 8 Yy =Ci(x"=4) + Cox + x
24, (x+Dy" - (2x+3)y' +(x+2)y = (Jc2 +2x +1)e2x y = C1ex + Coe™(x +1)2 + xe?*
25. y" - 2tanx y’ - 10y = 0 y = (Cieix+C2e-5x)sec x
26. xzy” - x(2x+ 3)y’ + (x2+3x+3)y = (6—x2)ex y = C1x5ex + CQxex + ex(:c2 +2)
2
2 -
21. 4x2y”+4x3y’+ (x +1)2y=0 y=/;ex/u(C1+C2 In x)
2
28. x"y" + (x—4x2)y’ + (1_2x+4x2)y = (xz_x +1)ex y = ezx(Cicos Inx +C,sin 1Inx) + e
" ’ 3 . 2 2
29, xy" -y’ + 4x’y =0 y = Cysin x° + Cycos x

30. xuy” + 2x5y’ +y = (1+x)/x = Cycos(1/x) + Cysin(l/x) + (l+x)/x

~<
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xay,, + 4x7y’ +y = 1/;\:5 Ans., y = C,cos(1/3x5)+ CQSin(l_/&c}) + l/x5
(x sinx + cosx)y” —xcosx y’ + ycosx = x y = Cix + Cycos x ~ sin x
xy" - 3y’ + 3y/x =x + 2 y=C,_x+C2x5—x2—xlnx

Solve Problem 21 by factoring,

[(7c+1)D2 - Bx+4)D + 3ly = 3x+ 2)65’6 y = Cy(3x +4) + Cerx + xe”
2_, 2 2 . o

xy" ~dxy’ + (6+9x )y =0 y = x (Cjcos 3x + C,sin 3x)
xy" 4+ 2yt 4 4xy = 4 y = (Cicos 2x + Cp8in 2x + 1) /x

(1+x2)y" - 2xy! + 2y = (1—12)/x = Cl(xz—l) + Cox +x Inx

<
i



CHAPTER 19

Linear Equations with Variable Coefficients
MISCELLANEOUS TYPES

IN THIS CHAPTER various types of differential equations of order higher than the

first and with variable coefficients will be considered. There is no general
procedure comparable to that for linear equations. However, for the types
treated here, the procedure consists in obtaining from the given equation
another of lower order. For example, if the given equation is of order three
and if, by some means, anh equation of order two, which is solvable by one of
the methods of the previous chapters can be obtained from it, the given equa-
tion can be solved.

DEPENDENT VARIABLE ABSENT. If the equation is free of y, that is, is of the form

n n=1
1) f(g—}:rd yr L ) "d-X) x):O,
dxn dxn-l dx
L d 2 .
the substitution EX = p, Q—X = gg, ++«. will reduce the order by one.
X dx? dx
2 diy d2y dy dy. 2 3
EXAMPLE. The equation x° —< + 2 ——2 = _ 3x(-2)° + x° = 0, of order three, is re-
dd dx? dx
d? d d d?
duced to x2 £E 4 2p % _ 34p% + x3 = 0, of order two, by the substitution & =p, &Y -
2 dx dx 2
do dy _ dp
dx' 13 P

n ne=1 k
2) f(g_X, d vy, , dav, x) =0,
dx™ dx™t dx”
dk dk+1 d
the substitution < = g, Y -2, .... will reduce the order by k.
k d k+1 dx

See Problems 1-5.

INDEPENDENT VARIABLE ABSENT. If the equation is free of x, that is, is of the form

n
3) f(d_i:, d_n_{, % ¥ =0,
dx”  dx
2
the substitution L P, dy _dp dy _ 52,
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will reduce the order of the differential equation by one.

2 3 2
d d d d d,
EXAMPLE. The substitution & = p, “Y-p B, LY _ 24P, 2 Lohices the
dx de? dy g3 dy? dy
2
) d d,
equation yy" - y”(y’)2 = 1, of order three, to yp? dp py(—B)z_p5 W .1, of order
dy2 dy dy
two,

See Problems 6-10.

LINEAR EQUATIONS WITH KNOWN PARTICULAR INTEGRAL. If a particular integral y =u(x)
of the equation

4) (PoD™ + PLD™ "% 4 L. + PpyD + Py =0
is known, then the substitution y =uv will transform
5) (PoD™ + P,D™ ™" + oottt + PuyD + Py = (%)

into an equation of the same order but with the dependent variable absent. In
turn, the order of this equation may be reduced by the procedure of the first
section of this chapter. Equation 4) is called the reduced equation of 5).

EXAMPLE. Since y = x is a solution of (D2 ~xD + 1)y = 0, the substitution y = uvx,

2 2
d. d d - d
—Z:x—UJrv, d_y:xg_erz_v reduces (DQ—xD+1)y:e2x to <2+ 2ox dv ¢
dx dx dx? dx? dx dx? x dx x
Here, the dependent variable v is missing and the procedure of the first section above applies,

See Problems 11-14.

EXACT EQUATIONS. The differential equation

dny, dn-—ly

6) [( ’
dx"  dx™t
is called an exact equation if it can be obtained by differentiating once an
equation

dn-l dﬂ"z d
Y, Y,......,—y,y,x) = 0:1(x) + C

dx"™t ax"? dx

7) a(

of one lower order. For example, the equation
BTy + layy'y' + 4y ¢ 12y'y" = 2x
is an exact equation since it may be obtained by differentiating once the equa-

tion _3y2y” + 4y(y')2 ' 6(}")2 = o2y c.
The linear equation 4) is exact provided
! " n o (n) . .
Py~ P, + P _, + oo+ (-1)"P]" =0, identically.

EXAMPLE. Consider the equation (x> - 2x)y" + (8x%- 5)y" + 15xzy" + 5y = 0 in which P,

=5, P, =15xandP, =15, P, - 8x°-5 and P, = 16, and B, = x’- 2 and P." = 6. The equa-
tion is exact since P, - P; + P1” - Pc;” = 5-15+16-6 = 0. The given equation is the exact de-

rivative of (x — 20)y" + (522 -y’ + 5xy = C.
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If equation 6) is not linear no simple test for exactness can be stated.
In this case, we show that 6) is exact by producing the equation of one lower
order from which it may be obtained by a differentiation.

If 8) is not exact, it may be possible to find an integrating factor.
Again, no general rule can be stated for determining an integrating factor.

See Problems 15-21.
SOLVED PROBLEMS

DEPENDENT VARIABLE ABSENT.

2
1. Solve 2d~——Z - (d—}:)2 + 4 =0,
dx* dx
The substitution i—z = p reduces the equation to 2 d—p = p2 -4 or zdp dx.
p -4
-2 -2 2(1+Cye”") 2C, "
Integrating, + lnP =x+ Ink; EBZZ- Ciezx. p= LLRAC LR -——Lz—).
p+2 p+2 1 - Ce?” 1-Cye”
and y = 2x - 2 ln(l—Clezx) + Cs.
3 2
2. Solve xd__y ~ 2d_y = 0.
dx’ z
) ) d2y . dq
The substitution — 9 reduces the equation to =x ol 2g = 0.
d?
Then 1nq=ln12+1nK, q=——y=Kx2, and y = Cyix* + Cox + Ca.
dx?
4 3
9. Solve dy, dy | 1,
de* dxd
e dsy _ . dg 2
The substitution —3 " q reduces the equation to g 7 =1 and ¢ = 2x + Cy.
d’y vz dY 1 3/2 dy 1 5/2
Then g = — = +(2x+Cy)" ", — =+ (2x+Cq)" "+ K, = =1t =(2c+Cy) "+ Kx+Ks,
dx5 cbc2 3 dx 15
1
y = % E(waLCl)VZ + K2x2 + Kox + K, or 105y = +(2x+ C1)7/2 + C2x2 + Cax + Cq4.
3 2
4. solve ((—i——y)2+ xfl__z_t_i_l = 0.
dx’ de®  di?
2
- . dy . dq 2 dg dg dq 2
The substitution —= = g reduces the equation to (=) +x =2 —q¢ =0 or =x — + (50,
w2 7 a ) tx -4 g=x— + ()
a Clairaut equation.
2
d
Then g =27 =Kx+K2, &y =-1-Kx2+K2x+C.‘,= Cx2+4C2x+C2, and
dx? dx 2

y = %cf v 2082 4 Cox + Gy = Cyxd + 18C%7% + Cox + Ca.
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3 2
5. solve (1+20%Y + 4 LY _ (q_an®
dx5 dx2 dx
. dy .
The transformation p = T reduces the equation to
4x 1-2 e
s 9 " 4 ' 1 - 2% - -X r " ’ - _ .
(1 p o+ dxp - ( )p =€ o 7% P v P 17 on

Since 1-R+S =0, we use the substitution
p=e v, p'-= e_x(v’— v), p"-= e-x(v”—Zv’+ v)
to obtain.(1+2x)v"—2v’: 1 or (1+2x)2v”—2(1+2x)v’ = (1+2x), a Legendre linear equation.

et or HO-2)v = ﬁet.

The substitution 1+2¢x e’ reduces the equation to [48(8-~1)-48]v

Then v = K1+K2e2t-—,'1et = K1+K2(1+2x)2—ﬁ(1+2x),
p = g% = ey = Kie-x+ K2(1+2x)2e_x— -L'-‘(1+2x)e-x,
and y = Cie* 4+ Cotax?+ 120+ 13)e™ + Ca + 4(2x+3)e *
or y = Ae ¥ + Bx®+3x)e ¥+ C+ %xe—x.

INDEPENDENT VARIABLE ABSENT.

6. Solve y" = (y’)5 + yl,

The substitution y’=p, y”=p@ reduces the equation to p dp _ p§+ p or d _ p2+ 1.
dy dy dy
Then db__ dy, arc tan p = y + K,, and p = ﬂ = tan(y+ Ky).
p2 +1 dx

Now cot(y+Ki)dy = dx, 1n sin(y+K,) = x+K,, sin(y+K,)=Coe”, and y = arc sinCQex+ C,.

7. Solve yy" = 2(y’)2 - 2y’.

The substitution y’=p, y"=p @ reduces the equation to p(y j—e - 2p + 2) =0.
Y

dy
Here p = 0 and y = C is a solution, or
p_ 2211, ln(p—1)=1nA2y2, p=A2y2+ 1, or —‘%—; = dx.
p-1 Y 1+A"y
Then % arc tan 4y = x + K, arc tan Ay = Ax + B, and Ay = tan(Ax+ BY,
8. Solve yy" - (y’)2 = y2 Iny.
The substitution y’=p, ¥"=p Z—p reduces the equation to
Y
2 2
ypd—p—pzzyzlny or pdp - 2y dy 21nyd-y-
dy 4 Y
Y
2
Then % = lnzy + C, dy = +dx, and In{lny + ¢1n2y+C) = tx + 1In K.
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Now 1n +V1n2y+C = Keix, /I’y +C = Keix—lny. and C = K2e*? _2ge*” Iny.
Yy Y

This may be written as lny = Cieix + Cpe**  or, finally, Iny = Clex + Cge“x
since C; and C, are arbitrary constants.

9. solve yy” + anh? =y

" dp 2

d
The substitution y’=p, y"=p ™ reduces the equation to pyd—p + p2 = y° for which y
Y Y

is an integrating factor. The solution of py2 dp + pzy dy = y5 dy is 2p2y2 = yq + 2

/u 2
Now /§p =\/§Z—i’— i-—y——yi—g—

2
whose solution is 2 sinh " % - 4 2%+ K/2. Then
2

2
sinh™* % - +v/2x+K, % - sinh(tv3x+K) = + sinh(/2x+K,), and y2 = C; sinh (V2 x+ Cy).

10. solve ZTz = ¢ given that y=y'=0 when x= 0.

2
Putting y” = p SB. we have 2pdp = 2e2ydy whose solution is p2 = e+ K.
Y

d .
Using the initial conditions, 0 = 1+K and K= ~1. Now p = d_il = +/e?Y _1 which, by the

substitution ezy:z, becomes ___dz_ - +dx. The solution of this equation is arctan vz -1
2zvz -1

= +x + C or, in the original variables, arc tan VeV _1 = tx + C. Here, the initial con-

ditions require C =0 so that ;/ezy -1 = tan(+x) = + tanx and, finally, ezy - sec’x.

It should be noted that the form of the solution of the given equation depends on the sign
of the first constant of integration. If in p2 = e+ K, K is positive and = A2, we solve

dz 1 Vzr A2 - A ‘/z+A2 -A BeizAx

———~ - = t+dx. and obtain 5 In——— — = +x + C. Then and
2z/z+A2 2 1/2+A2 + A 1/z+A2+A
t24x 2 24x 2
% = Jz+ 4%, Since A is arbitrary, we may write z+A% = A—(—l—%—;— and
1- Be*?%¥ (1= Be*™
2. 24x Ax
obtain 2z = ezy - -LB:T—; or ey = iez]f .
(1 - Be *y 1 - Cze *
LINEAR EQUATIONS WITH KNOWN PARTICULAR INTEGRAL.
11. Solve x° (sin 0y - (3x% sinx+x° cos x)y" + (6x sinx + 2 cosx)y’ — (6sinx+ 2x cosx)y = 0,
By inspection it is seen that y=x is a particular integral,
By means of the substitution y = xv, y’ = av’'+v, y" = xv"+ 2", y" = 2"+ 30", the
3 2 2
equation is reduced to sinx v _ cos x dv 0. In turn, the substitution d_g = q
& 2 de?
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d
reduces this equation to sin x % - qcosx =0 or ~qg = cotx dx.
dzv
Then 1n g = 1nsinx + 1nC, q=——2:Csinx, and v=Z=Cisinx+C2x+Cg.
dx x
Thus, the solution is y = Cyx sinx + ngz + Cyx,
12. solve (x5 3y 6x—6)y1v - xiy”' + 3x2y” - Bxy' + By = 0.
By inspection it is seen that y =x is a particular integral,
Hi (i 1 1 "
The substitution y=xv, y'=xv'+wv, y"=xv"+20", ¥ =x"+ 30", y Vo xo s 4w
i i
reduces the equation to (:cLb S TV I 6x2 - 6x)v v + (—acu voax? - 12%2 + 24x - 24)v" = 0.
div
Putting — = g, this equation becomes
dx3
2
3x° -
230 6o % ¢ x4 12 2 —2yg =0 or a1t o660,
dx q o x3_3x?+6x -8
;3 3 2
d -3 6x — 6
Integrating, Ing = x-4 1nx+1n(x5—3x2+ 6x-6)+1n4d or g = V. A Y oox v-P e .
dx? P
2 3 2 3 2
Then dv Afx—Sx +6x—6exdx - A.l<x - 3x +6x—6ex)
4+ D 4
x x
1 -3+ 6:-6 1 1 3 6 6
= AéS (L T2X TRXTR L ge” (c-2.85_5,,
D+1 * D+1 x 2 3 4
1 1 1 6
Now D(=) = - —, Dz(l) = -2-. and DS(—) = - =,
x 2 x 3 x 4
x p 1 X
1 1 3 6 6 1 1 1 1 1 1 1
so that (2-2+ 220y o L [243pe) #3050 + DPHD] = ——D+1) ()
D+1 x xz x5 xu D+1 =x X ) x x D+1 x
2 1 o242
= D +2D+ (=) = - .
x 3
x
2 2 x
Thus, d—izAx_zx+2ex+B, @:Ag-_—l)e—+3x+c,
da? x> dx x?
ex 2 x 3 2
v:%=C1—x-+ng + Cgx + C4, and y = Cie” + Cox” + Cax + Cax.

In this example, it is fairly easy to see that y=x, ¥y =x2, y =x5, and y:ex are particu-
lar integrals, Thus the complete solution could have been written down immediately.

"

138. solve (2 sin x -~ x sin x — x cos x)y” + (2x cos x — sin x -~ cos x)y" + x(sin x - cos x)y’

+ (cos x —sinx)y = 2sinx - x cos x — x sin x.

By inspection it is seen that y = x, y = e*, and y = sinx are particular integrals of the
reduced equation, We shall obtain a particular integral of the given equation using the method
of vartiation of parameters.
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We take y = Lyx+ Lgex + Lgsin x .
Then y' = Ly + LQeX + Lgcos x + (L;x + Léex + L;sin x)
and we set
A) Lix + Loe™ + Lgsinx = 0.
Now y" = Lpe” - Lygsinx + (L} + Loe™ + Licos x)
and we set , L x ,
B) Ly + Loe” + Lycos x = 0,
Then y" = Ly — Lycos x + (Lye* ~ Lysin x)

and we set
I X 14 . . .
C) Lye” — Lygsinx = 2 sinx - x cosx — x sinx,

Solving A), B), C) simultanecusly, we obtain

Ly = -sinx + cosx and L, = cos x + sin x,
! - . -X . -X . -X

L, = —-e (x cos x — sin x) and Ly, = fxe (-sinx + cos x) - e sinx -~ 3e cosx,
! _ i 2

Ly = -1+=x and Ls = -x + 3x°,

Thus, the complete solutioén is

1
y = Cix + C;,ex + Cgsinx + éxz sinx + %x cosx — éxsinx - ECOSI.

He 2
Solve (x2+x)y" — (x°+3x +1)y" + (x+4 + %)y’ -1+ % F Sy - 37 (x + )2,
x

By inspection it is seen that y =x is a particular integral of the reduced equation. The
substitution y = xv reduces the given equation to

(12+x)v”' - (x2—2)v” - (x+2)v! = 3x(x+ 1)2
and, in turn, the substitution v’= u reduces this to
A) (Zrxyu’ - (P-u’ - (x4 Du = Bxx+ 7.

Since the sum of the coefficients of the reduced equation of A) is identically zero, u:=ex
is a particular integral and we use the substitution

u = exw, u = ew + exw, u’ = &w' + 2w’ +‘exw
to reduce 4) to
2 " 2 1 -X 2
(x +x)uw” + (x + 2+ 2w’ = 3Jxe (x+1) .
Using the substitution w’ =z, this becomes
- 2
(x24Ax)z’ + (x2+-2x4-2)z = 3xe x(x +1)
dz -x . xZe” . .
or — + (1 + == Yz = 3e (x+1) for which is an integrating factor,
dx x x+1 x+1
x2e 2 3 dw - x+1 ox
Then z = 3x7dx = x* + Ky, — = 2z = x(x+le + Ky e,
x+1 dx x2
u 2 e dv 2 C x
22w o= —xte ™ m3xe™ - 37+ €y — + (O, == o33+ 22 e,
e* x dx x
xu 3 2
and y = xv = - 5 §x5 - 3x + Cyx lnx + ngex + Csx.
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EXACT EQUATIONS.

15.

16.

d

v "

Show that R (x)y + P,(x)y
7 n " v

PA—P3+P2—P1+PO = 0,

+ Py + Ppx)y' + Bb(x)y = 0 is exact if and only if

Let the given differential equation be obtained by differentiating

1

Ry(x) y"

Since this differentiation yields Royiv + (RE+RDY" + (R{+R)y" + (Ry+R)y" + Rly = 0,
I ! !

we have P = R, P, = R, + R, P,=R +R,, P, =R,+R,, and P, =R

+ R y" + Ryx)y’ + Ry(x)y = Ca.

!

[o} 6] 3
" n iv i i
Now P, - P/« B~ P+ - Rl - @®[+R) + ®'+R) - R+RY + RY - 0.
"t 1 .
Conversely, suppose P, - Ps' + P,‘,"— Py o+ POV = 0, Since

"

% [Ryy™ + (P, - Ehy” + (P, - P1, + Byy' + (P, - PQ' + P1" - Pyl

1 w e iv
= %yv+P1y +P2y”+P3y’—(—P3'+P2"—P1+% )y
= R)yiv + Pyy" + P,y" + By’ + P,y, the given differential equation is exact.

Solve xy" + (x2+x+3)y" + (4x+2)y' + 2y = 0.

1"

The equation is exact since P, - PQ' + P1H -P = 2-4+2-0 = 0.
Consider the left member xy” + (x+ x+3)y" + (4x +2)y’ + 2y.

To obtain the first term we must differentiate xy”. Now %(xy") = xy”+y” and when this

is removed, we have (x2+ x+2)y" + (4x+2)y’ + 2y, To obtain the first term of the result-

ing relation, we must differentiate (x°+ x + 2)y’. When %(x2 +x+2)y' = (Jc2 +x+2)y"+ (20 + Dy’

is removed, we have (2x +1)y’ + 2y = %(Zx +1)y. Thus the given equation is the exact de-

rivative of
A) xy” + (x2+x+2)y' + (2x+ Dy = C,.

Since P, ~P/ +P' = (x+1) - (231 +0 = 0, we now treat the left member of A)
precisely as we did the corresponding member of the original equation.

We remove (—i%(xy’) = xy”"+y’ and have (x2+x + Dy’ + (Zx+ Dy = (—Z—(x2+x +Dy.

Hence A) is the exact derivative of
B) xy! + (x2+x+1)y = (Cyx + Cy,

$x(x +2)

a linear equation for which xe is an integrating factor.

Thus, the complete solution of the given equation is
) ] !
L 5 2
xyeix(x+2) = lexezx(x*z)dx + C2fe2x(x+ Vax + Cs.

The following scheme will be found convenient.
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xy" + (Zrx+d)y” & (dx+ 2y + 2y
xyH xyu/ ¥ y”
(x2-+x<+2)y" + (4x+ 2)y' + 2y
(% + x+ 2y’ xZax+2)y" + (2 + D)y’
(2« + D)y + 2y
(2x + 1)y (2 + L)y’ + 2y
A) xy" + (e xe Dy + (2x+ Dy = Cy
xy! xy" + y!
(Zrx+ Dy + (2 + D)y
(x2+—x + 1y (x2+-x +Dy" + (2x+ Dy
B) xy' + (x2+x+1y = Cyx + Co.
3 2
17. solve 2yd—y—+64_ld_y=_i.
dx3 dx2 dx 12
3 2
We write oy 42 g LY &
dx’ dx? dx
2 3 2
2y 42 oy 4Y L XY
dx® dx’ dx? dx
dy.2 d% d
2% g YL
dx dxz dx

Thus, the given equation is exact, being obtained by differentiating

2
dy 2 1
R C N -f—aa
dx x

dx

dy _

A second integration yields 2y == = lnx + Kyx + Ko

dx

2

whose solution

1
;+K1.

¥ = xlnx + C1x2+CQx+C3.

0

is

18. solve (1+3xy2)y'” + 9(y2+2xyy’)y” + 18y(y’)2 + 6x(y’)5 = 6.
We write (1+3xy2)y" + 9y2y” + 18xyy'y” + 18y(y H? 6x(y’)>
(1+3zy2)y"” (1+3xy2)y" + 3y%y" + 6xyy'y"
6y%y" + 12xyy'y" + 18y(y)? + 6x(y")
6y%y’ 6y°y” + 12y(y"?
12cyy'y" + 6y(y")? + 6x(y")
6xy(y")? 12yy'y” + 6y(yH? + 6x(y')
The given equation is exact, being obtained by differentiating

(1+ 3xy2)y” + 6y2y’
(1+3xy2)y" + 3y°y’

(1+ 3xy2)y’

3y%y’

3y°y

!

i Bxy(y')? = 6x+ K
+ 6xy(y')?
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and this equation is obtained by differentiating (14—3xy2)y’ + y5 = 312 + Kx + Cy,
In turn, this equation is exact and we have xy5 +y = 2+ C1x2 + Cox + Cs.

19. solve xiym + 5x2y” + (2x-x5)y’ - (2~+x2)y = 40x - ax’.

It is readily verified that this linear equation is not exact. To test whether or not it
has an integrating factor of the form x™, we multiply by x" to get

m+2

yy' - 2"+ 2 Yy = @0 - 4x0)x"

mE3 m+3

+ 5xm+2y,, + (vaml o
and write the condition

S AT Come A" e i s (me Dxt - (m43)(m+2)(m+ Da

= (m+2)xm+2 + (m«+2)(m-m2)xm = 0, for all values of x.
Then m = -2, and x_2 is an integrating factor. Using it, we have
2
Xy 4 5y G-y < (2 ¢ Dy = 40x - &
x %2
xy” xy/” + yrr
2 2
" e _ li —
AN b x)y —(2+1)y
x
2 2 2
! - _ 1 - - r - —
'+ ;- Dy dy" + (o - Xy (x2 + 1Dy
" , 2 _ 2 4
and xy” + 4y’ + ¢ - )y = 20x° - x + K.

5

The transformation y = reduces this equation to v’ -v = (D2 -y = 0% - 2+ Kx,

Mole

and the complete solution is v Cie’ + Cpe™™ - (1+-D2+-Du+»D6+ ce) (2027 - 2 + Kx)

"
=
N
<
H

x -x 5
= Cye + Coe 7+ Ggx + x7,

20. solve 2yy" + 2(y+3y’)y" + 2(y’)2 = 2,

We write 2yy" + 2yy" 4+ By'y" + 2(y') = 2
2yy” 2yy" + 2y'y"
2yy" + 4y'y" + 207"
29y’ + 20y 2yy" + dy'y" + 2y’

and thus obtain by integration

2yy" + 2(y’)2 + 2yy’ = 2x + K,
2yy’ 2yy" + 2(y")’
2yy’
y? 2yy"

and obtain 2yy’ + y2 = 2% 4 Kyx + K,. By inspection, ¢’ is an integrating factor; then

2 x x x X x 2 2 -X
ye = x"e - 2xe + 2 + Ky(xe” - e7) + Kge” + C, or ¥y = x7 + Cy + Cox + Cge 7
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21. solve =xcosy y" - 3xsiny y’y” — cosy y" - x cos (y’)5 + siny(y’)2+xcosy y - siny =0,
Yy yry Yy Y Y

d sin y

since 2y xcosy y' - siny
dx

. 1
y = 3 , the last two terms of the given equation suggest -
X

x X

as a possible integrating factor., Using it and integrating,

cosy y" - Siny(y’)2 , siny
x x

= or cosyy” ~ siny (y’)2 + siny = Cyix.

The substitution siny =2z reduces this equation to z"+ z=Cyx whose complete solution

s z = siny = Cyx + Cycosx + Cgsinx.
SUPPLEMENTARY PROBLEMS
Solve,
2. y"+ (y’)2 +1=0 Ans. y = 1n cos(x-Cy) + C,
23 (1+x0)y" + 2xy’ = 2> y =Cy + Coarctanx + 1/x
24. xy" -y’ =-2/x - lnx y=C1x2+C2+(x+1)1nx
25. y" + y" = <2 y = Cle-x + Cox + Cq + x2(x2—4x+ 12)/12
26. yy"+ (y7)° =0 x=Cy +Coy +ylny
27, yy" + (y’)2 =2 y2 = 2% 4 Cix + Cy
28. yy" = (y’)2(1 -y cosy+ yy' siny) x =Cy + Colny + siny
29. (2x-3)y" - (6x-T)y" + dxy’' -4y = 8 y = Cox + Cpe” + Coe?¥ - 2
Hint: y =x is a particular integral of the reduced equation,
30. (21c5 —-Ly" - 6x2y” + 6xy’ =0 y = Cl(xu +4x) + C2x2 + Cy
31. yy" — (3" = yilny Iny = Cye" + Cpe ©
Hint: Use Iny = z.
32. (x+2y’ v 2’y ¢ 2y =2 yary) = 2"+ Cax + Co
33 (1+2 +3y2)y”’+ 6y [y" + (y’)2 +3yy"] = x y + y2 + y3 = C1x2 + Cox + Cg + x /24
3. 3x(y’y" + 6yy'y" + 200V ) = 3ylyy" + 200 ] = - 2/x
Hint: 1/x2 is an integrating factor. Ans, y5 = C1x5 + Cox + Cq + x 1In x
35. yy" + 3y'y" - 2yy" - 2(y’)2 + yy! = e?* Ans, y2 = Cy + Cgex + Caxex ;e
Hint: e~ is an integrating factor. Solve also using y2 = v,
36. 2y +Lyy" + 2()")2 + y2 +2y =0 Ans. y2 + 2y =C, cosx + C, sinx

Hint: Use y2 +2y = v.



CHAPTER 20

Applications of Linear Equations

GEOMETRICAL APPLICATIONS. In rectangular coordinates the radius of curvature R of
a curve y = f(x) at a general point on it is given by

dy 2] 3/2
[1 + (&)
d2y

R =
dx?
AN
N\
P(x,y)
AW
AN
AN
|
S
N 1y
< |
i x
y>0, )’”<0

Let the normal at the point be drawn toward the x-axis. It is clear from
the figures that the normal and radius of curvature at any point have the same
direction when y and d?y/dx? have opposite signs and have opposite directions
when y and d?y/dx? have the same signs.

PHYSICAL APPLICATIONS. OSCILLATORY MOTION. Consider a ball bobbing up and down at
the end of a rubber string.

If the other end of the string is held fixed and no external force is ap-
plied to the ball to keep it moving once it has been started, and if the mass.
of the string and the resistance offered by the air are such that they may be
neglected, the ball will move with simple harmonic motion

x = Acoswt + Bsinuwt
where x is the displacement of the ball at time ¢ from its position of rest
or equilibrium.

133
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For simple harmonic motion:
a) The amplitude or maximum displacement from equilibrium position is ¢A2-+B%
since when dx/dt = 0, tan wt = A/B, and x = /A% + B2,

b) The period or number of units (sec) of time for a complete oscillation is
2n/w sec, since when t is changed by 2n/w sec the values of x and dx/dt
are unchanged, while for any change of t less thanthis amount one (or both)
of x and dx/dt is changed.

c) The frequency or number of oscillations (cycles) per sec is w/2n cycles/sec.
2

d) The differential equation of simple harmonic motion is n,ﬂ_; = —kx, where
L . . . dt
k is a positive quantity. In the above illustration
2
mﬂ = - mw?(d cos wt + B sinwt) = - kx
dt?

where m is the mass of the ball and k = mw?.

If the above assumptions are modified so that the resistance of the air
cannot be neglected, the ball will move with free damped motion

x = e'St(A cos wt + B sinwt).

The motion is oscillatory as before but never repeats itself. Since the damp-

ing factor e~S' decreases as t increases, the amplitude of each oscillation
is less than that of the preceding one. The frequency is w/2n cycles/sec.

See Problem 8a.

If the resistance offered to the motion is sufficiently great, other cases

will arise. See Problem 8h.

If in addition to a resistance, there is an external force acting on the
ball or the complete system is given a motion, the motion of the ball is said
to be forced. If the forcing function is harmonic with period 2n/A, the mo-
tion of the ball is the result of two motions — a free damping motion which
dies out as time increases (called the transient phenomenon) and a simple
harmonic motion with period that of the forcing function (called the steady-
state phonomenon) . See Problem 9.

HORIZONTAL BEAMS. The problem is that of determining the deflection (bending) of

a beam under given loadings. Only beams which are uniform in material and
shape will be considered. It is convenient to think of the beam as consist-
ing of fibers running lengthwise. In the bent beam shown, the fibers of the
upper half are compressed and those of the lower half stretched, the two
halves being separated by a neutral surface whose fibers are neither com-
pressed nor stretched. The fiber which originally coincided with the hori-
zontal axis of the beam now lies in the neutral surface along a curve (the
elastic curve or curve of deflection). We seek the equation of this curve.

y&% .
i
!
1

i !

Px,y)
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Consider a cross section of the beam at a distance x from one end. Let 4B
be its intersection with the neutral surface and P its intersection with the
elastic curve. It is shown in Mechanics that the moment ¥ with respect to AB
of all external forces acting on either of the two segments into which the
beam is separated by the cross section (a) is independent of the segment con-
sidered and (b) is given by

A) EI/R = #.

Here, E = the modulus of elasticity of the beam and I = the moment of inertia
of the cross section with respect to AB are constants associated with the
beam, and R is the radius of curvature of the elastic curve at P.

For convenience, think of the beam as replaced by its elastic curve and
the cross section by the point P. Take the origin at the left end of the beam
with the x-axis horizontal and let P have coordinates (x,y). Since the slope
dy/dx of the elastic curve at all of its points is numerically small,

d 3/2
[1+ 7]
R = = » approximately,
d2y
ax?

5N
N[
~<

|

&M

and A) reduces to
2

B) Er 4y - y.
dx?

The bending moment ¥ at the cross section (point P of the elastic curve)
is the algebraic sum of the moments of the external forces acting on the seg-
ment of the beam (segment of the elastic curve) about the 1line AB in the
cross section (about the point P of the elastic curve). We shall assume here
that upward forces give positive moments and downward forces give negative
moments.

EXAMPLE. Consider a 30 foot beam resting on two vertical supports, as in the figure
below, Suppose the beam carries a uniform load of 200 1b/ft of length and a load of 2000
1b at its middle.

Y e 30-x
e %x 3x—- 5(30-x) — ——e——— %(30—1)“7
O‘ — 15 = /_‘AB ‘x
v p 2000
4000 200x 6000 — 200x 4000

The external forces acting on OP are (a) an upward thrust at O, x feet from P, equal to
one-half the total load, i.e., $(2000+ 30-200) =4000 1Ib, and (b) a downward force of 200x
Ib thought of as concentrated at the middle of OP and thus 3x feet from P. The bending mo-
ment at P is

M = 4000x - 200x(x) = 4000x — 100x2.

To show that the bending moment at P is independent of the segment used, consider the
forces acting on PR: (a) an upward thrust of 4000 1b at R, 30 ~x ft from P, (b) the load
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of 2000 1b acting downward at the middle of the beam, 15-x ft from P, and (c¢) 200(30 -x)
1b downward thought of as concentrated at the middle of PR, $(30-x) ft from P. Then

M

I

4000(30 —x) - 2000(15~x) — 200(30 —x)* 3(30 -x)
= 4000x — 100x2, as before,

A beam is said to be fixed at one end if it is held horizontal there by
the masonry. In the example above the beam is not horizontal at O and is said
to be freely supported there,

SIMPLE ELECTRIC CIRCUITS. The sum of the voltage drops L
across the elements of a closed circuit is equal
to the total electromotive force E in the circuit.
The voltage drop across a resistance R ohms is Ri,
across a coil of inductance L henries is L di/dt, E@
and across a condenser of capacitance (capacity)

C farads is g/C. Here, the current i amperes and W
R

the charge ¢ coulombs are related by i=dg/dt. We
will consider R, L, and C as constants.

The differential equation of an electric circuit containing an inductance
L, a resistance R, a condenser of capacitance C, and an electromotive force
E(t) 1s therefore

di

chH L v+ ri + 2 = gt
dt C (t)
or, since i=dq/dt, di/dt= d’q/dt?,
2
) L9 pdr 9 _ pepy
dt? dt ¢

from which g = g(t) may be found.

By differentiating C') and using %’ = 1, we have
2. . .
D) Ly pdi oL L gy
dt2 dt c

from which i = i(t) may be found.

SOLVED PROBLEMS

GEOMETRIC APPLICATIONS.

1. Determine the curve whose radius of curvature at any point P(x,y) is equal to the normal at P
and (a) in the same direction, (b) in the opposite direction,

3/2
1+ (yH?)
"

Y

1/2
a) Here = -y[1+ (y,)z] or yy" + (y’)2 + 1 = 0,

The equation is exact and an integration yields yy ' +x-C,=0 or ydy+ (x-Ci)dx = 0,



APPLICATIONS OF LINEAR EQUATIONS 137

. . .2 . . .
Integrating again, 5y2 + §<x<—c1)2 = K or y2 Fx=-C) = C,, a family of circles

with centers on the x-axis,
- 3,2
(1 y)H]

"

Y

1/2 2
b) Here = yl1+ (3] or yy" - (yH" -1 = o.

The substitution y’/ = p, y" =p gg of Chapter 19 reduces the equation to
Y

d
- or pdp Ay
dy 1+p2 h
d
Then In(1+ pz) = 1n y2 + 1n Cf, 1+ p2 = nyz, or 2 - tdx.
V2y2 1
Byt -
Integrating, cosh™ Ciy = £CGx+ Co, Ciy = cosh(zCix + Cy), or
y - 1 [e(iC’ix+Cg) . e-—(icﬁ*cz)]‘

2C1
The curves are catenaries and the equation may be written in the form

A[e(Bix)/A N e-{th)/A]

M=

y = ,  where A = 1? and B = Qg.
Cy

“1

PHYSICAL APPLICATIONS
MOTION OF A PENDULUN.

2. A pendulum, of length [ and mass m, suspended at P (see
figure) moves in a vertical plane through P. Disregard-
ing all forces except that of gravity, find its motion. Lo

Under the assumptions, the center of gravity C of the l
bob moves on a circle with center P and radius . Let 8,
positive when measured counterclockwise, be the angle
which the string makes with the vertical at time t. The
only force is gravity, positive when measured downward,
and its component along the tangent to the path of the \\\\\~\_____4
bob is mgsin®. If s denotes the length of arc CoC, then
s = 16 and the acceleration along the arc is

dt? dt?
2 2
Thus  m-l 46 -mg sin® or [ 49 ~ g sin 6,
dt? dt?

dt
Multiplying by 23—6 and integrating, l(%?)z = 2g cos B + Cy or —L— =t —-.
t

V'2g cos® + C, Vi

This integral cannot be expressed in ‘terms of elementary functions.

When 6 is small, sin © = 8, approximately. When this replacement is made in the original
2

differential equation, we have — +
dt

~ 0%

8 =0 whose solutionis 6 = C, cos\/z;t + Cy sin\/%t.

. ./ 2 L [1
This is an example of simple harmonic motion. The amplitude is Cf+C2 and the period is 2n é'



138 APPLICATIONS OF LINEAR EQUATIONS

MOTION ALONG A STRAIGHT LINE.

3. A mass m is projected vertically upward from O with initial
velocity vg. Find the maximum height reached, assuming that the Kv
resistance of the air is proportional to the velocity.

Take upward direction from O as positive, and let x denote m
the distance of the mass from O at time t. The mass is acted
upon by two forces, the gravitational force of magnitude mg mg

Hence, using
mass x acceleration = net force,

and the resistance of magnitude Kv = K% each directed down., ¥ T
0

2
d—x:—mg—k’f or d—x+ k%:—g, where K= mk,
dt2 dt dtz dt

m

Integrating, 1) x = C; + Coe - and then differentiating once with respect to t,

Eal (0]
o~

dx . -kt g
2) v == =.-k(C - 2.
v dt o€ k

When t=0, x=0 and v=1vy. Then C,+ C,=0, vo:—kCQ—%. and C, = -C, = 24 &,

1 -kt
Making these replacements in 1), we have x = —2(g + kug)(1 - e ) - %t.

The maximum height is reached when v =0, From 2), e—kt: —& . g

= and t = =
k2C2 gt kl)o k g

g y_&glgrkn

Then the maximum height is =x = -l(g+ kvg)(1- —=—
2 g+ kug k k

1
) = ;(Uo—;

4. A mass m, free to move along the x-axis, is attracted toward the origin with a force propor-
tional to its distance from the origin, Find the motion (a) if it starts from rest at x = xo
and (b) if it starts at x = xo with initial velocity vy, moving away from the origin.

Let x denote the distance from the origin to the mass at time t.
2 2
2
Then md—x = - Kx or g—x + k2x = 0, where K = mk .
dt? dt?

Integrating, 1)

=
|

= C, sinkt + C, cos kt, and differentiating once with respect to t,

2y v = - kC, sinkt + kC, cos kt.

a) When t=0, x=x5 and v=0, Then C;=0 from 2), C,=x4 from 1), and
x = x5 COS kt,
b) When t=0, x=x5 and v=vy. Then C,=x5, C,=uvo/k, and

vo .
x = —kclsm kt + xo cos kt.

In a) the motion is simple harmonic motion of amplitude x5 and period 2m/k.

/7 2 2
+
In b) the motion is simple harmonic of amplitude _Uo__k__k_fo_ and period 21/k,
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MOTION OF A COMPLEX SYSTEN.

5. A chain hangs over a smooth peg, 8 feet being on one side and 12 feet on the
other. Find the time required for it to slide off (a) neglecting friction and
(b) if the friction is equal to the ‘weight of 1 foot of the chain.

a) Denote the total mass of the chain by m and the length (feet) of the chain
which has moved over the peg at time t by x. At time t there are (8 —x) feet of
chain on one side and (12 +x) feet on the other. The excess (4 + 2x) feet on one

side produces an unbalanced force of (4 +2x)% pounds, Thus,

d2 d2
e or 10 22 - gx o+ 2
dt? 20 dt?
Solution 1.
2 — ——
Integrating d—f - éx - £ » we have x = (e g0t Cse g/10 ¢ 2.
dt2 10 5

Differentiating once with respect to t,

<
1l

Jlti (Cie\/g/lo t CQe-/g/lo t

).
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R
|
(2]
N
1 —
R
<
=
4

When t=0, x=0 and v=0, Then Cy;=Cy=1 and x = e g/10t+e- g0t -2 = ZCoshJT%t—Z.

2

10 -1, 10, x+ 2+v/x%+4x
Hence t = —g—cosh 5(x+2) = —g—ln————————-

When x = 8 ft has moved over the peg, t = /B In(5 + 2;/5)sec.
g

Solution 2. Multiplying the equation by % and integrating, we have

2

dx d'x dx dx dx 2 | 2
10 — — = — ¥+ 2g = and 5(— = x° + 2gx + Csq.
dt g2 & Tt & Y 28 gx Tt

When t =0, x=0 and dx/dt =0, Then C;=0 and

dx 2 2 10 dx
S5(=) = s5gx° + 2gx or dt = /~ —_—
dt 2¢ ¢ g Vx2+4x

(The positive square root is used here since x increases with t.)

Integrating, t = [E f——fi-x——- = E In(x + 2+ Vil 4x ) + Cy.
£V /xr2i—4 vV E

/2
—liggln2, and t = 101n1+2+ Xt

¥hen t =0, x=0. Then C, =

g 2
d2 d2
b) Here niX - (4+2x)E - e or 20X - (2 +3)g.
dt? 2 2 dt?
Multiplying by % and integrating, we have 10(3—")2 = gx2 + 3gx + Cy.
t

When ¢t =0, x=0 and v =0. Then Cy =0, and ﬁ = é(:c2+3x) or dt = E
dt 10 g

Then ¢t = /-lgﬂln(x+-2-+1/x§+3x)+62.

Vx2 + 3x

as before,
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When t=0, x=0. Then C, = - l(—)ln§ and t = E1r1 -2~(x+§+Vx2+3x).
g 2 g 3 2
When x =8, t = ,—glnﬁigﬁ = 1.4 sec,

6. A bead slides without friction along a straight
rod of negligible mass as the rod rotates with
constant angular velocity w about its midpoint O, S
Determine the motion (a) if the bead is initially
at rest at O and (b) if the bead is initially at %
O moving with velocity g/2w,

Let the bead he x units from O at time t. It )\
is being acted upon by two forces, (i) gravity and
(ii) the centrifugal force nw’x acting along
the rod and directed away from O, Since the rod
has rotated through an angle wt, the component
of the gravitational force along the rod has magnitude mg sinwt; its direction is toward O.

Y

t
e

Hence 2 2

d'x 2 . dx 2 ]

m—— = mw x - mg sin wt or —_— - W x = - g sinwt,
dt? dt®
. wl -wt g . . st .
Integrating, H x = Cpe + Cye + —— sinwt, Differentiating once with re-
20
spect to t, . .
2) v o= wCe’" - (;)C?e’w + Eg— cos wt.,
8]

a) When t=0, x=0 and v =0,

Then C,+ Cy;=0 from 1), C1—C2+—g—- =0 from 2), Cy=-Cy = - —g§ , and
2w? 4w
x = _g_(e-mt - ewt) + £ sinwt = - £ sinhwt + £ sin wt,
qw? 2w? 26 2w
b) When t =0, x=0 and v = g/2uw.
Then Cy;+Cy=0, (C3~-Co=0, CCy=C,=0, and x = _g_2 sin wt.
2w
SPRINGS.
7. A spring, for which k = 48 1b/ft, hangs in a vertical position with its s

upper end fixed. A mass, weighing 16 1b, is attached to the lower end.
After coming to rest, the mass is pulled down 2 inches and released.
Discuss the resulting motion of the mass, neglecting air resistance,

Take the origin at the center of gravity of the mass, after coming
to rest, and let x, positive when measured downward, be the change in
position of the mass at time t. When the mass is at rest the spring force

is equal to but opposite in direction to the gravitational force, The ————9
net force at time t is the spring force —kx corresponding to the change __1

x in the position of the mass, Then

2 2
2 - 48 or X 96x - 0, taking g = 32 ft/sec’.

|

LY PN
&

Q
N

QL

iy
N

t
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Integrating, x = (4 sin VOB t + C, cos V96 t,

d. — . .
Differentiating once with respect to t, v o= ﬁ = V96 (Cy cos V96t — C, sin V96 t).
1 1 1 =
When t =0, x=-é and v = 0. Then C; = & Cy =0, and =x = 5 cos V96 t.
This represents a simple harmonic motion. The period is Z—K = 0,641 sec, the frequency is
V56
V96 . . 1
Et_ = 1.56 cycles/sec, and the amplitude is 5 ft.

8. Solve Problem 7 if the medium offers a resistance (1b) equal to (a) v/64 and (b) 64v, where v
is expressed in ft/sec.

2

a) Here —6 d—— = - 48x - —1 ﬁ or d—f + i % + 96x = 0, Using the D nota-
8 qt2 64 dt dt? 32 dt

tion, 0+ 3—12 D+96)x = [D- (-0.0156+9.80)][D - (=0.0156-9.81)]x = 0,

and x = e-'O'Oismt(C1 cos 9.8t + Cy, sin 9.81t).

Differentiating once with respect to t,

dx -0.01586¢
e [

i (9.8C,~-0.0156C1)c0s 9.8t — (9.8Cy + 0.0156C,)sin 9.8¢t].

When t=0, v=0 and x=1/6. Then C, = 1/6, 0= 9.8C,~- 0,0156Cy, and C, = 0.000265.

Thus,
-0.0158¢ 1

x = e (E, cos 9.8t + 0.000265 sin 9.8¢t).
This represents a damped oscillatory motion, Note that the frequency = 9—-§ = 1.56 cycles/sec
i

remains constant throughout the motion, while the amplitude of each oscillation is smaller than
-0.0188¢

the preceding one due to the damping factor e . At t = 0 the magnitude of the damping
-0. t
factor is 1. It will be 2/3 when e 0.0186% _ 2/3 or after t = 26 sec. It will be 1/3 when
-0.01581
e 0.0186% _ 1/3 or after t = 70 sec.
16 d> dx 2
b) Here = =X = _48x - 64 Z or (D° + 128D + 96)x = 0.
32 dtq dt
-0. -127.
Integrating, x = (Cye 0.78% Coe £7.24t .
Differentiating once with respect to t,
-0.7 -127.241
v o= —0.76C e 07 _ 127,24 Ce 4
When t=0, x=1/6 and v=0, Then Cy + C, = 1/6, -0.76Cy - 127.24C,=0, C, = 0.1686,
C, = -=0.001, and
~0.7 -127.
x = 0.1668 e 77T _ g.001 e B70RAT,

The motion is not vibratory. After the initial displacement, the mass moves slowly toward
the position of equilibrium as ¢t increases,
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Solve Problem 8a if, in addition, the support of the spring is /
given a motion y =cos 4t ft,

Take the origin asin Problem 8 and let x represent the change
in position of the mass after t sec. From the figure, it is seen
that the stretch in the spring is (x-y) and the spring force
is -48(x -y) = ~-48(x —~ cos4t) 1b., Hence,

EU[—x:—48(x—cos4t)--ié
g dt2 64 dt
2 1
or (D" + % D+ 96)x = 96 cos 4t.

t
(Cy cos9.8t + C, 8in9.8t) + ___ % cos 4t

D2 + D/32 + 96

. -0.0158
Integrating, x = e

-0.01586¢
e

(Cycos 9.8t + C; 8in9.8t) + 0.0019 sin 4t + 1.2 cos 4t,

Differentiating once with respect to ¢,

~-0.01581
= €

[(9.8C, - 0.0156C,)cos 9.8t — (9.8Cy + 0.0156C,)sin 9.8t ]
+ 0.0076 cos 4t - 4.8 sin 4t.

When t=0, v=0 and x = 1+1/6=7/6. Then C,=-1/30, C,= -0.0008, and

-0.0156¢
X = €

(-0.0333 cos 9.8t - 0.0008 sin 9.8t) + 0.0019 sin 4t + 1.2 cos 4t,

The motion consists of a damped harmonic motion which gradually dies away (transient phe-
nomenon) and a harmonic motion which remains (steady-state phenomenon), After atime the only
effective motion is that of the steady-state. These steady-state oscillations will have a
period and a frequency equal to those of the forcing function y = cos 4t, namely, a period of
2n/4 = 1,57 sec and a frequency of 4/2n = 0.637 cycle/sec.

The amplitude is v/(0.0019)2 + (1.2)2 = 1.2 ft.

A mass of 20 1b is suspended from a spring which is thereby stretched 3 inches. The upper end
of the spring is then given a motion y = 4(sin 2t + cos 2t)ft. Find the equation of the motion,
neglecting air resistance,

Take the origin at the center of gravity of the mass when at rest, Let x represent the
change in position of the mass at time t, The change in the length of the spring is (x -y),
the spring constant is 20/'ﬁ = 80 1b/ft, and the net spring force is -80(x —y). Then
2 2

X = - 80(x - 4 sin 2t - 4 cos 2t) or dx | logr - 512(sin 2t + cos 2t).

]
I&

au
N

Iy

Py
N

t

Integrating, x = (Cycosv128¢t + C, sin V128t + %(sin 2t + cos 2t).

Differentiating once with respect to t,

v = - V128 C, sinvI28t + V128 C, cos VIZB ¢ + %(_ sin 2t + cos 2t).
When ¢ =0, x =4 and v =0.

12
Then 4 =C4 + 3—18. Cy = -0.129; and V128 C, + -235—16 =0, C;=-0.730.

Hence, x = -0.13 cosv128t - 0.73 sin V128t + 4,13(sin 2t + cos 2t).
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11. A mass of 64 1b is attached to a spring for which k = 50 lb/ft and brought to rest. Find the
position of the mass at time t if a force equal to 4sin 2t is applied to it.

Take the origin at the center of gravity of the mass when at rest. The equation of motion
is then

2 2
EE g—f + 50x = 4 sin 2t or g—i + 25x = 2 sin 2t.
32 g2 dt?
. § - 2
Integrating, x = (Cq cos 5t + C, sin 5t + 5 sin 2t,
. . 4
Differentiating once with respect to t, v = =5C4 sin 5t + 5C, cos 5t + 3 cos 2t.
4
Using the initial conditions x=0, v=0 when t=0, Ci=0, Cy=- IEET' and

x = - 0,038 sin 5t + 0.095 sin 2t.

The displacement here is the algebraic sum of two harmonic displacements of different periods,

12. A mass of 16 1b is attached to a spring for which &k = 48 1b/ft and brought to rest, Find the
motion of the mass if the support of the spring is given a motion y = sin V3gt ft.

Take the origin at the center of gravity of the mass when at rest and let x represent the
change in position of the mass at time ¢,
The stretch in the spring is (x —y) and the spring force is -48(x -y). Thus,
2 d2
.- 48(x — sin v3g t) or ——% + 3gx = 3g sinV3gt.
t dt

o | &
2 e
N

Integrating, x = Cycosv3gt + C,sinv3gt — 5vV3gt cosvV3gt

and v = —C,V3gsinv3gt + C, V3g cosv3gt ~ 5V3g cosv3gt + %ft sin v3g t.
Using the initial conditions x =0, v=0 when t=0, Cy =0, C,= % , and

3
x = %sinv/Sgt - /-—2—§tcosx/3gt.
The first term represents a simple harmonic motion while the second represents a vibratory

motion with increasing amplitude (because of the factor t), As t increases, the amplitude of
the oscillation increases until there is a mechanical breakdown,

13. A cylindrical buoy 2 ft in diameter stands in water (density 62.4

1b/ft5) with its axis vertical, When depressed slightly and re- <:ii::::>
leased, it is found that the period of vibration is 2 seconds, i
Find the weight of the cylinder, 4

Take the origin at the intersection of the axis of the cylin-
der and the surface of the water when the buoy is in equilibrium,
and take the downward direction as positive,

Let x (ft) denote the change in the position of the buoy at P
time t., By Archimedes’ Principle, a body partly or totally sub- \\\\_L_’/)
merged in a fluid is buoyed up by a force equal to the weight of
the fluid it displaces. Thus, the corresponding change in the
buoying force is 62.4 K(l)zx and

Hljﬁ
il

Q.

2 2
T - _62.4nx or dx 2009 .,
t dt? W

=
%
N

where W (1b) is the weight of the buoy and g = 32.2 ft/secz.
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Integrating, x = C; sinvV/'2009n/Wt + C, cosy 2009n/H t.

Since the period is L 2ynH/2009 = 2, W = 2009

v 20091/ W

= 640 1b,

HANGING CABLE.

14. Determine the shape of a uniform cable which hangs under its Q y
own weight, w 1b/ft of length,

Choose the coordinate axes as in the figure, the origin T
being at the lowest point of the cable, Consider the part be-
tween O and a variable point P(x,y). This part is in equilib-
rium under the action of (1) a horizontal force of magnitude 4]
H at O, (2) the tension T along the tangent at P, and (3) the p
weight W of OP,

Since OP is in equilibrium, all force acting horizontally H -
toward the right and all force acting horizontally toward the 0 l
left must be equal in magnitude, and, also, all force acting 4
vertically upward and all force acting vertically downward.

. d
Hence, T cos 8 = H, T sin 8 = W, and tan 6 = Ey = !

Now H is constant, being due to the part OQ of the cable, while W = ws, where s is the

length of OP. Thus,
w ds _ ;‘; /1+ (dy/dx)z.

(<M
|

d
dx?

|

I
SIS
|
|
I

To solve the above equation, write % = p and obtain

o _ v 1+ p? or dp = 2 dx.
dx H /1+ pz H
Integrating between the limits x=0, p=0 and x=x, p=p,
sinn™ p - 2x and p = d . sinh 2 x.
H dx

Integrating dy = sinh Ili; x dx between the limits x=0, y=0 and x=x,y=y,
H w
= - - - t .
¥y w(cosh i x D), a catenary
If the origin had been taken at a distance H/w under the lowest point of the cable (thus

making H/w the y-intercept of the curve) the equation of the curve would have been

= Hcshw
y = Z 0 1—17(.
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HORIZONTAL BEAXS.

15. A horizontal beam of length 21 feet is freely supported at both ends. Find the equation of
its elastic curve and its maximum deflection when the load is w 1b/ft of length.

y
ol * ’ R x
x=0/ - > e \x=21
y=0 ——fx— P (x,y) \X=l ¥=0
y'=0
wl wx wl

Take the origin at the left end of the beam with the x-axis horizontal as in the figure.
Let P, any point on the elastic curve, have coordinates (x,y).

Consider the segment OP of the beam. There is an upward thrust wl 1b at O, x ft from P,
and the load wx 1b at the midpoint of OP, %x ft from P. Then, since El dzy/abc2 = M,

2
D EI d—% = wlx -~ wxGx) = wlx - %wxz.
dx
Solution 1, Integrating 1) once, EI % = —éwle - Zwx’ o+ Ci.
At the middle of the beam x =1 and dy/dx = 0. Then C, = - = wl’ and
2) El él = lwlx2 - lwx5 - lwli.
dx 2 6 3
. 1 3 1 4 1 3
Integrating 2), FEly = ngx ey wx - 3 wl’x + C;. At O, x=y=0. Then C,=0 and
w 3 Y 3
3 = ——(4lx’ - x - 8l”x).
) YT %E
Solution 2. Integrating 1) twice, Ely = éwlx5 - 2—; we' 4 Cix + C,.

At O, x=y=0, while at R, x=2l, y =0, Using these boundary conditions in turn, we find
C; =0 and C; = ~ % wli, as before,

The deflection of the beam at any distance x from O is given by —y. The maximum deflec-
tion occurs at the middle of the beam (x =1) and is, from 3),

n
w " 4 4 Swl

- = - 4" =1 —8l) = .
Imax W ET ) 24 EI

16. solve Problem 15 if there is in addition a load of W 1b at the middle of the beam,

y y % .
x . E—

|
- re o el
y j
P(xm_/' P(x'y)
wl+ s vx W wl+ W wl+ 5W wx W wi+ s

0O<x<l l<x<2l
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Choose the coordinate system as in Problem 15. Since the forces acting on a segment OP of
the beam differ according as P lies to the left or right of the midpoint, two cases must be
considered,

When 0< x <1, the forces acting on OP are an upward thrust of (wl+ +W)1lb at O, x ft from
P, and the load wx acting downward at the midpoint of OP, $x ft fromP. The bending moment is
th
en L M = @l+sMx - wx(sx) = wlx + sWx - %wxz.

When l<x < 2l, there is an additional force — the load W 1b at the midpoint of the beam,
(x =1) ft from P. The bending moment is then

2y M = wl+ihHhx - wxGx) - Wax-1) = wlx + sWx - %wx2 - Wx -1y,

Both 1) and 2) yield the bending moment M = %w12+ sWl when x = [, The two cases ‘may be

treated at the same time by noting that for 1)

wix + sWx - 5wx2 = wlx - '5wx2 - sW(l-x) + WL
and for 2) wlx + sWx - 'waz -Wx -1 = wlx - ‘waz + SW(l-x) + $WL, Then
42
3 EIZY - wilx - bwx® T SW(1 —x) + LWL
dx?
with the understanding that the upper sign holds for O<x <! and the lower for l<x <2l.
Integrating 3) twice, Ely = iwlx5 -4 vzt 3 iW(l-x)5 + lWlx2 + Cix + Cy.
6 24 12 4
Using the boundary conditions x=y=0 at O and x =21, y=0 at R,
Co= W0, 21C,+ o= =2l v 200 s LW W, and ¢y - - Lwl® - LWi% Then
12 3 3 12 3 2
Ely = —wld - 2w - Lutle 5 Lwa-n® + Dwie? - ke o Lo
24 3 12 4 2 12
3
= lun® o Xt o Lule o Lwioal v Lwi® - Lwize o Loy,
6 24 3 12 4 2 12
w 3 M 3 W 2 3 2 3
and = ——(4lx’ - - 8l — (3lx" - |- - 61 .
Yy 24EI( x x x) + 12EI( x | x1 x + )
swl® Wl
The maximum deflection, occurring at the middle of the beam, is ~Yma I SR
x 24 ET 6EI
A horizontal beam of length [ feet is fixed 4y
at one end but otherwise unsupported, Find / 1
the equation of its elastic curve and the x $(l—x)
maximum deflection when the uniform load is
w 1b/ft of length. = x
g P(x,y)
Take the origin at the fixed end and let R
P have coordinates (x,y). Consider the seg-
ment PR, The only force is the weight w(l—x) w(l-x)
1b at the midpoint of PR, 5(l-x) ft from P.
Then )
d
EI—Z = —w(l-x)e3(l-x) = —sz(l—x)z. Integrating once, EI ‘—11 = éw(l—x)5 + Cq.
dx

Moz x=0, Lo c1=-éwz’ and 515-1 - éwu_x)’_éwﬁ.

Integrating again, Ely = - -2171 w(l—x)u - %wlix + Co.
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At O: x=y=0;, then C, = 5% wl“, Ely = - -élz w(l—x)u - f_li wl’x + -2% wlu, and
w 3 2 2 4
= ——(4lx" - 6l ~x ).
J 24EI( * * *
1 wit

—— « Note that this is not a

The maximum deflection, occurring at R (x =10), is ~Ymax - i

relative minimum as in Problem 16 but an absolute minimum occurring at an end of the inter-
val 0<x<l,

A horizontal beam of length 3l feet is fixed at one end but otherwise unsupported, There is
a uniform load of w 1b/ft of length and two loads of W 1b each at points | and 21 £t from the
fixed end., Find the equation of the elastic curve and the maximum deflection,

SO SAY
AT
/]

P 3Bl
- -2l-x ‘—L—¢
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Bl-x)w

L(Bl—x)w

Take the origin at the fixed end and let P have coordinates (x,y). There are three cases
to be considered according as P is on the interval (0 <x< 1), (I<x<2l), or (2l<x <3y, In
each case, use will be made of the right hand segment of the beam in computing the three bend-
ing moments,

When Q<x< [, (P=P; in the figure), there are three forces acting on P,R: the weight
(3l -x)w 1b taken at the midpoint of P,R, $(3l~x) ft from P,; the load W 1b, (l-=x) ft from
Py; and the load W 1b, (2l -=x) ft from P;. The bending moment about P, is

My = ~Blox)ws3l-x) - W(l-x) ~ W2l-2) = - 3uwBl-x) - W(l-x) - W(2l-x),

and d2 2
ETEY - _tul-x)’ - W(l-x) - W(2l-x).
dx2

Integrating, EI ?ixl = éw(Bl—x)5 + éW(l—x)z + éw(ﬂ—x)z + Cq,

At O: x-0 and dy/dx = 0; then C, - _%wﬂ - %wzz,
EI % - éw(3l—x)5 + éW(l—x)z + %W(Zl-x)Q - %wﬂ - %wzz,
and 1 4 1 3 1 : 3 9 3 5 2
Ely = - w@l-x) - cW(l-x) - 2H@2l-2) - suls = Wl G

At O: x=y=0; then C; = %wl“+ ng and
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1 Y 1 3 1, 3 9 3 5 .2 27 4 3 3
SR —x) - S W(l-x) - = —x) - 2 -2 il Swid,
A) Ely 24w(31 x) 6W(l x) 6W(Zl x) 2wlx 2Wlx+ 8wl +2 l
When [l<x<2l, (P=P, in the figure), the bending moment about P, is
M, = - '§w(3l—x)2 - W2l -x),
and d2 2
Er &Y - _ sw(3l-x) - W(2l-x). Integrating twice, we obtain
o
BY Ely = - %wwl—x)“ - éW(ZZ—x)3 + Cax + Ca.

When x = [, B'y and A) must agree in deflection and slope Z—Z so that Cq= C, and C, = C,. Thus,

2
B) Ely = - élzw(sl_xf‘ - éwm_xf - %wz% _ %lex N ng“ ; %wﬁ.
When 2l< x<3l, (P=P; in the figure), the bending moment about Py is Mz = — %w(3l~x)2,
2
and EISi—y = -ﬁw(3l—x)2. Then
ik
. 2
¢ Ely = - —2—1;w(3l—x)q 4 Cox + Cq = - Elawwz_x)“ - %wﬁx - gnlzx + ng“ N %wﬁ,
since, when x =20, there must be agreement with B) in deflection and slope.
A), B), C) may be written in the form
w 3 2 2 Y4 W 3 2
= —— (12lx" - 54l - + ——(2x - 9lx7), 0<x<l,
YT Er *or) g ) =7
[ ST P B YY LV S A B T N TL M LI 1<x <2l
24 EI 6EI
wo 3 2 2 4 W 3 2
= ———(12lx" - 54l - — (31" - 51 , 2l < x < 31,
y 24EI( X 4( x x ) + 2EI( x) < x <
The maximum deflection, occurring at R (x =31), is -y = L(Blwlu + 48W13).
max 8EI

Note that the elastic curve consists of arcs of three distinct curves, the slopes of each
pair of arcs at a junction point being equal.

19. A horizontal beam of length I ft is fixed at both ends. Find the equation of the elastic
curve and the maximum deflection if it carries a uniform load of w lb/ft of length.

/N
///;/ - -
77

0 Rl N x
— 7

wx swl

N
N
)

-
&€
—~

Take the origin at the left end of the beam and let P have coordinates (x,y).

The external forces acting on the segment OP are: a couple of unknown moment K exerted
by the wall to keep the beam horizontal at O; an upward thrust of swllb at O, x ft from P;
and the load wx 1lb acting downward at the midpoint of OP, 3x ft from P, Thus,
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42
ETLY - g« swlx - Suwx?.
)

. . dy 1 2 1 3
Integrating once and using x=0, dy/dx =0 at O, EI ol Kx + szx - wa .
At R: x =1, dy/dx = 0 since the beam is fixed there. Then

1
Kl + lwﬁ - Eu‘l5 =0, K = -1 wl2, and EI ‘—11 = - = wlzx + lwlx2 - lwxi.
4 6 12 dx 12 4 6
Integrating and using x =y=0 at O,
1 22 1 3 1 u wx? 2 2
Ely = - —wlx" + = uwlx’ - —ux and = 2lx - 1" - x"),
Y 24 12 24 Y 24 EI(
wlt
The maximum deflection, occurring at the middle of the beam (x=31l), is ~Ymax = m .

20. solve Problem 19 when in addition there is a weight W 1b at the middle of the beam,

A\

/ T‘J‘,xa x -3l

o T R

oA TT S — 1
W

swl+ W) wx wx swl+ W)y

Using the coordinate system of Problem 19, there are two cases to be considered: from x=0
tox=3l and from x=3%1 to x = 1.

When O<x <31, the external forces on the segment to the left of P; (x,y) are: a couple of
unknown moment K at O; an upward thrust of s(wl+ #¥) 1b at O, x ft from P,; and the load wx
1b, 5x ft from P,. Thus,

2
EI u = K + l,(lerW)x - lw:c2 = K + }wlx - lw)c2 + lWx.
de? 2 2 2 2 2

Integrating once and using x=0, dy/dx =0 at O,

AN EI @' = Kx + -l-wlx2 . wx® o+ 1 WxZ.
dx 4 6 4
Integrating and using x=y=0 at O,
A) Ely = lez + 1 wlx® - 1 wxt 4 L e
2 12 24 12

When 3l<x< [, there is in addition the weight W 1b at the middle of the beam, (x - 51)
ft from P,. Thus,

EI 2 = K + %wlx - éwxz + -;-Wx - Wx - 5D). Integrating twice,
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21.

1,2 1 3 1 4 1 3 1. 13
B' EIy = =Kx¢% + —wlx’ - —wx  + — W’ = = Wx - 351 + Cix + Cau
) Y 2 12 24 12 g 2 t z
When x = 31, the values of y and dy/dx for B'Y must agree respectively with those for A). Thus,
C1: CQ'—‘ 0 and
4 1

B) Ely = EKx2+—11—éwlx5—2—14wx +—1—2Wx5—éW(x—£l)5.

To determine K, use x=3%l, dy/dx=0 in A"y, Then

T Lo oL 2o 0 and K- - Lwi®- 1w, substituting in A) and B),
2 16 48 16 12 8
Ely = - L wl®® & 1 wle® - 1 wx' o+ 1 W - 1 Wix® and
2 12 24 12 16
y = 2w - 18-t M an® — 3l:?y 0<x<3l
24 E] 48 EI ’ =TEer
By = - 2wt Lud o 1wt v Iwd - Dwe -4’ - Zwie’ and
2 1 24 1 6 16
w 3 2 2 " W 3 2 2 3 \
= 2lx” - I"x" - «x + (I - 6l"x + 9lx” - 4x7), I $x< 1.
vy YT 2

1 4 3
- = L +2Wl).
Ymax 384 EI @ )

The maximum deflection, occurring at the middle of the beam, is

A horizontal beam of length | ft is fixed at one end and freely supported at the other end.
(a) Find the equation of the elastic curve if the beam carries a uniform load v 1b/ft of length
and a weight W 1b at the middle. (b) Locate the point of maximum deflection when [ = 10 and
W= 10w,

’7/ Y

R S

o g(l-x) l-x

L slox s(l-x)

Take the origin at the fixed end and let P have coordinates (x,y). There are two cases to
be considered.

When 0 <x< 41, the external forces acting on the segment P;R are: an unknown upward thrust
S 1b at B, (l-=x) ft from P,; the load w(l-x) 1b at the midpoint of PyR, $(l-x) ft from P,;
and W 1b, (3l -x) ft from P,. Thus,

2
EI Z_x% = S(l-x) - wil-x)3(l-x) - WEl-x) = S(l-x) - 'zw(l—x)z - Wl -x),

Integrating pnce and using x=0, dy/dc = 0 at O,

B - _lsaoe? s Yuaoey + Lwaton? « 1si2 - 1ud o gt
dx 2 6 2 2 6 8
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Integrating again and using x=y=0 at O,
1 3 1 4 1 3 1,2 1 3 1 .2 1..3 1 1 3
A Iy = =Sd- - —w(l- — Sl - Zwl” - 2L - =81 —uwl + —Wl".
) EBly = §80=n - Zwdl-n) g etV s T ot Rt
When 3l<x<l, the forces acting on P,R are the unknown upward thrust S at R, (l-x) ft

from P, and the load w(l-x) 1b, $(l-x) ft from P,. Thus,

2

EI é—y = S(l-x) - —1~w(l—x)2 and
dx2 2
Bl Ely = Ysa-x) - Luw-x + e + G
6 24

When x = 31, the values of Ely and EI% as given by 4) and B') must agree. Hence, Cy and C,

in B') have the values of the corresponding constants of integration found in determining A4),
and B') becomes

1 3 1 Y4 1,,2 1 .3 1.2 1.3 1 N 1 3
= ZS(- -~ —w(l- = - = - =W - —wl — Wi,
By Ely 68(1 x) 24w(l x) o+ (ZSZ 6wl 3 M« 6.51 + T + v

To determine S, use x=1[, y=0 at R in B); then S = gwl + %W. Making this replace-

ment in A) and B),

2 2 W )
y = 4811;51 (5lx5 - 3lx" - Zx“) + m(1u3 - 9%y, 0<x< il and
2 W . |
Y R (O R LA ST T

It is clear that the maximum deflection occurs to the right of the midpoint of the beam.
When [ =10, W=10w, the equation immediately above becomes
Y

w 3 2
= ——(~2x + 25x° + 450x - 6000x + 10000).
Y B )

Since Z—i’ = 0 at the point of maximum deflection, we solve
3 2
8x” ~ T5x - 900x + 6000 = O

for the real root x =5.6, approximately, Thus, the maximum deflection occurs at the point
approximately 5.6 ft from the fixed end.

ELECTRIC CIRCUITS.

22. An electric circuit consists of an inductance of 0.1 henry, aresistance of 20 ohms and a con-
denser of capacitance 25 microfarads (1 microfarad = 1078 farad). Find the charge g and the
current 1 at time t, given the initial conditions (a) g = 0.05
coulomb, i = dg/dt = 0 when t=0, (b) ¢ = 0.05 coulomb, i =

-6
~ 0.2 ampere when t =0. C=25%x10 f
% T
Since L = 0.1, R =20, C = 25.10"", E(t) = o0, "
=2
2 —
L dyq + R dq P E(t) °
dt? . C 2
reduces to 2
29, 200 % . 400,000 - o. M-
dt? dt

R =20 ohms
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-1
Integrating, g = e OOt(A cos 100 v/39t + B sin 100 v39 t).

Differentiating once with respect to t,

-1 — — —
- % = 100e 9% [ (/3B - A)cos 100/35 t — (V39 A + B)sin 100/35¢].
. o . . 0.05
a) Using the initial conditions ¢ = 0.05, i = O when t=0, A = 0.05 and B = —
V39
-1
Hence, g = ¢ °%0.05 cos 624.5¢t + 0.008 sin 624.5¢)
. -1
and i = —0.32¢ %% gin 624.5 ¢,

= 0,008.

b) Using the initial conditions ¢ = 0.05, 1 = -0.2 when t=0, A = 0,05 and B = 0.0077.

Hence, g = e 1°9%0.05 cos 624.5¢ + 0.0077 sin 624.51¢)

-100t
4

and T o= (- 0.2 cos 624.5t — 32.0 sin 624,51)

Note that g and i are transients, each becoming negligible very quickly.

23. A circuit consists of an inductance of 0.05 henry, a resist- E=100V
ance of 20 ohms, a condenser of capacitance 100 microfarads,

. alnl
and an emf of E = 100 volts. Find i and ¢, given the initial '|If
conditions ¢ =0, 1t =0 when t =0.

-2
2 n
Here o.osd—g+20%+——9——6— = 100 e
dt 100 1
100+ 10 o
2
d
or 29 | 400 3% + 200,000g = 2000.

2
dt l___.

-6
-200t -
Integrating, g = e -°°'(A cos 400t + B sin 400t) + 0.01. C=100x10 f
Differentiating once with respect to t,

1= Z——Z = 2008-200t[(-A+ZB)COS 400t + (~B -24) sin 400t].

Using the initial conditions: A = -0.01, -4+ 2B =0, and B = -0.005.

=200t
e

Then q (- 0.01 cos 400t - 0.005 sin 400t) + 0.01

and i = 5e 2% gin 400t.

Here i becomes negligible very soon while g, for all purposes, becomes g = 0.01.

24. Solve Problem 23 assuming that there is a variable emf of E =100 cos 200t

2

E(t) = 100 cos 200t. N\
&
The differential equation is now
2
d -
49 . 400 9 4 200,0009 - 2000 cos 200t. Then 8
dt? dt S
"
-200t
= e (A cos 400t + B sin 400t) + 0.01 cos 200t =
+ 0.005 sin 200t and
200t =}
i=e [(~200A + 400B) cos 400t + (~200B — 4004) sin 400t] -6
C=100x10 f

- 2 sin 200t + cos 200t.

20 ohms

R=

20 ohms

B=
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Using the initial conditions: A4 = -0,01, -2004 + 4008 + 1 = 0 and B = -0.0075. Then
=200t . .
qg = e (- 0.01 cos 400t - 0.0075 sin 400t) + 0.01 cos 200t + 0.005 sin 200t
and

-200
€

. t
T o= (- cos 400t + 5.5 sin 400¢) - 2 sin 200t + cos 200t.

Here the transient parts of g and i very quickly become negligible. For this reason, when
the transients may be neglected, one needs find only the steady-state solutions
g = 0.01 cos 200t + 0.005 sin 200t and 1 = cos 200t - 2 sin 200t.

The frequency 200/2n cycles/sec of the steady-state solutions is equal to the frequency of
the applied emf. (See also Problem 25.)

25. For a circuit consisting of an inductance L, a resistance R, L

a capacitance C, and an emf E(t) = Egsinwt, derive the (UW ‘

formula for the steady-state current

. Eq . X Es .
1 = (g sinwt - - coswt) = =2 sinwt - 0),
Z(I.; Z ) Z ¢ )
1 a: Z Com éﬂ
where X = Lo — o v Z=yX + R, and 6 is determined
W
X R
from sin6 = <= and cos 9 = = .
Z ‘ —©
d2q dq g E=Eq sin wt
By differentiating L— + R+ 1 = E; sinwt
dt? dt C
and using 1 = d_q » we obtain
dt
d2' di ! 2
1) Let g  J (LD” + RD + 1/C)y1 = wE, cos wt.
dt2 dt C

The required steady-state solution is the particular integral of 1):

i = —M—E‘)—-—coswt = —-—mgo—l-——cosmt
LD® + RD + 1/C RD - (Lw - —)w
Cw
W cos wt = —2—b9——2 (R sinwt - X cos wt)
RD - X'w R+ X
&(1—? sinwt—{cosmt) = b—osin(mt—e).
zZ 7 VA Z

X 1is called the reactance of the circuit; when X - 0, the amplitude of i is greatest (the
circuit is in resonance), Z, called the impedance of the circuit, is also the ratio of the
amplitudes of the emf and the current. 6 is called the phase angle,

At times t = m/2w, 3M/2w, ++++++ the emf attains maximum amplitude, while at times given
n/2+6 3n/2+6

0] ’ W )
maximum amplitude. Thus the voltage leads the current by a time 6/w or the current and volt-
age are out of phase by the phase angle 9.

by wt-6 =mn/2, 3n/2, *+++++, that is, when t - +e«++. the current attains

Note that 6 = 0 when X = 0, that is, © = 0 if there is resonance.
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26. The circuit consisting of an inductance L, a condenser of
capacitance C, and an emf E is known as an harmonic oscil-

E=Eg cos wt

lator. Find q and @ when E = E;coswt and the initial con- @f
ditions are g=gqo5, 1 =1, when t =0,
Since R = 0, the differential equation is L ::C
2
E
d_q + _q_ = —9cos wt,
dt2 CL L
There are two cases to be considered:
(a)w;é—l- and (b)w:——l——.
v CL vCL
1
a) q=Acos—1—t+Bsin1—t+Ib-2—coswt
VL VL L p*vycL
= Acosl—t+ Bsin—l——t+ EOZC cos wt
vCL vCL 1-w CL
and i = ——1—(—A sin L 4 Beos Lt) - —E—O—C‘;—w— sin wt.
vCL vCL Y CL 1-w CL
Using the initial conditions: 4 = g4 - ——E—O-Z—C—- and B = v/CL 1. Then
1-w CL
q = (qo—i’i—)cos —l—t + VCL 14 sin —1—t EoC cos wt
2 - 2.
1-w CL vCL vVCL 1-w CL
and 1 = 1, cos Lt - —L—(qo—bo—f)sin—l—t - —EO—CQ-L‘-)—sinwt.
vCL vCL 1-w"CL vCL 1-w CL
2
b) Here ﬂ + w2q = Ei’ cos wt,
dt? L
Then q = Acoswt + Bsinwt + Eo t sinwt
2Lw
} . Eos 1 .
and 1 = w(-A sinwt + B cos wt) + ﬁ(ﬁ sin wt + t cos wt).
Using the initial conditions: A = g5 and B = i,/w.
Then q = g, coswt + B ginwt + £ ¢ sin wt
W 2L W
. . : Eo 1 .
and L = 15 COS Wt ~ g W sin wt + EL_(G sinwt + t cos wt).

Note that in (b) the frequency of the emf is the natural frequency of the oscillator, that
is, the frequency when there is no emf. The circuit is in resonance since the reactance X =

1

Lw - C— =0 when w = L + The presence of the term ELLt cos wt, whose amplitude increases
2

w /oL

with t, indicates that eventually such a circuit will be destroyed.
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SUPPLEMENTARY PROBLEMS

Determine the curve for which the radius of curvature is proportional to the slope of the
tangent,

/'Q_——A—_Z‘
/2 Z . b n k-~ (x+Cy) -k

Ans. y = + (VK = (x+Cy) ) + Ce
x +Cy

A 6 inch pendulum is released with a velocity of 1/2 rad/sec, toward the vertical, from a po-
sition 1/5 rad from the vertical. Find the equation of motion,

Ans, 6 = 1 cos 8t - L sin 8t
5 16

A particle of mass m is repelled from O with a force equal to k>0 times the distance from
O. If the particle starts from rest at a distance a from O, find its position t sec later.
Vi/m t . e-/k/m t)

Ans. x = a(e

If, in Problem 29, k=m and a =12 ft, determine a) the distance from O and the velocity when
t =2 sec, b) when it will be 18 ft from O and its velocity then.

Ans. a) x = 45.1 ft, v = 43.5 ft/sec; by t = 0.96 sec, v = 13.4 ft/sec

A chain hangs over a smooth peg, 8 ft on one side and 10 ft on the other, If the force of
friction is equal to the weight of 1 ft of chain, find the time reaquired for it to slide off,

Ans, 3 In(17 + 12v2) sec
V8

When the inner of two concentric spheres of radii ry and r,, ry < r,, carries an electric
charge, the differential equation for the potential V at any point between the two spheres
at a distance r from their common center is

dr?

+ = 0.

2 dv
r dr
Solve for V given V=V, when r=r, and V=V, when r=r,.

Vorg(r=ry) = Vyry(r=ry)

r(ro=~ry)

Ans. V

A spring is such that it would be stretched 3 in. by a 9 lb weight. A 24 1b weight is.attached
and brought to rest. Find the equation of the motion if the weight is then

a) pulled down 4 in. and released,

6) pulled down 2 in, and given an upward velocity of 2 ft/sec.

c) pulled down 3 in. and given a downward velocity of 4 ft/sec.

d) pushed up 3 in, and released.

e) pushed up 4 in. and given an upward velocity of 5 ft/sec.

"

Wi

V3 V3
Ans, ) x cos 4v3t, b)x = é cos 4/3¢t - 7; sin 4v3t, «¢) x = % cos 4V§t-+?§ sin 43¢,

d) x = i—cos 4v3¢t, e)x:——;-cos 4v3t - i-?sin 4v31

i
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34.

35.

36.

37.

38.

39.

40.
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A spring is such that it would be stretched 3 in. by a 30 1b weight. A 64 lb weight is at-
tached and brought to rest. The resistance of the medium is numerically equal to 8 dx/dt 1b,
Find the equation of the motion of the weight if
a) it is started downward with velocity 10 ft/sec.
b) it is pulled down 6 in. and given an upward velocity of 10 ft/sec.

5v14

Ans. a) x = i e~2% sin 2v14 ¢, b) x = e-zt(écos ov1dt - gz‘gzsin 2V14¢t )

A spring is such that it would be stretched 6 in. by a 3 1b weight. A 3 1b weight is attached
and brought to rest. The weight is then pulled down 3 in. and released. Determine the equa-
tion of motion if

. . . 1 3 . .
) an impressed force %sm 6t acts on the spring. Ans. x = 3 cos 8t — 7 sin 8t + %sm 6t

fl

b) an impressed force %sin 8t acts on the spring., Ans. «x %(1—41&)005 8t + %sin 8t

A beam of length I ft is fixed at one end and otherwise unsupported. Find the equation of
the elastic curve and the maximum deflection if there is a uniform load of w 1b/ft of length
and a load W 1b at the free end,

1

Y
~Ymax = 24EI(3wl + 8W15)

) W 3 2
Ans. y = 2@l —el%P o2ty ¢ o’ =3lDy,
ns y 24EI( x x x ) + 6[:'I(x x )

A beam of length 2l ft is freely supported at both ends and carries a uniform load of w 1b/ft
of length, Taking the origin at the midpoint (low point) of the beam, find the equation of
the elastic curve and the maximum deflection, Compare with Problem 15.

Hint: £ly" = wi(l-x) = sw(l-x)° = 4w(i®~x%) and y = y/ = 0 when x = 0.

4

) 5wl

Ans. y = L Glzxz—xq), =
24EI( Ymax T oapp

A beam of length 31 ft is freely supported at both ends. There is a uniform load of w 1b/ft
of length and loads of W 1b at a distance | ft from each end. Taking the origin as in Prob-
lem 37, find the maximum deflection.

2 2
. w 9l 2 31 l 31 w 9l 2 l
Hint: = (i = —_— - = —_ = (- - =
int: M 2(4 x)+W(2 x), 2<x<2, and M 2(4 x7) + WI, 0<x<2
Ans. y. = —1 (a05wl® + 368K17)
A circuit consists of an inductance of 0.05 henry, a resistance of 5 ohms, and a condenser

of capacitance 4(10)~" farad. If g=1=0 when t =0, find g and ¢ in terms of ¢t when a) there

is a constant emf = 110 volts, b) there is an alternating emf = 200 cos 100t. Find the steady
state solutions. in b),

- 11 . vV . v -50t . . —
Ans. a) q = e 507:(— ——cos 50 V19t — 11v19 sin 50/19¢t) + E. 1= u € % sin 50v19t
250 4750 250 19
b) g = e'5°t(— 16 cos 5019t - 12v19 (in 50/10t) + _f-(4 cos 100t + sin 100t),
170 1615 170
] -50t 4 Vv
{2 e 0020 s sovige + 1820VI9 i sovinty + 20¢cos 100t - 4 sin 100t)
17 323 17
Solve Problem 39 after replacing the 5 ohm resistance with a 50 ohm resistance.
-53¢ -9u7t . 53¢ —ou7t
Ans. a) q = - 0.047¢” " + 0.0026e """ + 0,044, i = 2.46(e 2" = VT
K3t -
= - 0.018¢”" 4 0.005¢"™*"" + 0.034 sin 100t + 0.014 cos 100t,

b) ¢q

i -535¢ -947t

0.98e - 4.43e + 3.45 cos 100t -~ 1.38 sin 100t

n



CHAPTER 21

Systems of Simultaneous Linear Equations

IN PREVIOUS CHAPTERS, differential equations involving only two variables have been
treated. In the next several chapters, equations involving more than two va-
riables will be considered. If but one of the variables is independent, the
equations are ordinary differential equations; if more of the variables are
independent, the equations are called partial differential equations. In this
chapter we shall be concerned with systems of ordinary linear differential
equations with constant coefficients such as

2 gf + SZ - 4x -y = et
tooat 2D-2x + D=1y = e
A) or A') d
dx B (D+3)x + y = 0, where D = —
— + 3 +y=0 dt
dt
and
(aw
dt  dt Y

i
—_

Dx + (D+1)y

B)< %—%+2x+z:1 or B') D+2yx = (D-1z =1
D+Dy + D+2)z =0
dy dz
Al 2z =
dt ' dt ry+2z=0

.

in which the number of simultaneous equations is equal to the number of depen-
dent variables.

THE BASIC PROCEDURE for solving a system of n ordinary differential equations in
n dependent variables consists in obtaining, by differentiating the given equa-
tions, a set from which all but one of the dependent variables, say x, can be
eliminated. The equation resulting from the elimination is then solved for
this variable x, Each of the dependent variables is obtained in a similar
manner,

EXAMPLE. Consider system 4): 1) 23% + g% - 4x -~y = et, 2) g; + 3x +y = 0.

Solution 1.

First, we note that the general solution x = x(t), y = y(t) of this system will alsc
satisfy .
g_f + 3 dx + él

3) —
dt? dt dt

obtained by differentiating 2). Moreover, multiplying 1) by -1, 2) by -1, 3) by 1, and add-

ing, we obtain
dzx

4) —_ + x = - et

dt?

which is also satisfied by x = x(t), y = y(t). This latter differential equation, being

free of y and its derivatives, may be solved readily; thus,
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1 ¥ t

x = Cpcost + Cy sin t — > et = Cycost + Cp sint - e,
D +1

To find y in a similar manner, we differentiate 1) to obtain

2 2
dx dy ,d& dy _ ¢

- 2 ——
>) dt? dt? dt dt

and between this and equations 1),2),3) eliminate x and its derivatives, However, it is
simpler here to proceed as follows. From 2), we have

y = - g; - 3x = —(~Cysint + Cycost - %et) ~ 3(Cy cost + Cysint - %et)

= (Cy -3Cy)sint - (3Cy + Cy)cos t + 2et.

Thus, x = C,cost + C,sint -~ %et, y = (Cy - 3Cy)sint - (3Cy+ Cp)cos t + 2et is the
general solution.

When the equations are written in the D notation, there is a striking similarity between
the procedures used here and the method of solving a system of n equations in n unknowns,
This is due to the fact, noted in previous chapters, that the operator D may at times be
treated as a variable (letter).

Solution 2. Consider the system A'): 1H 20-2)x + (D-Dy = et

2y (D+3)x + y = 0.

Proceeding as in the case of two equations in two unknowns x and y, we multiply 2) by

D~1., Actually, we operate on 2) with D-~-1 = (5% - 1), to get

D-1HD+PHx + (D-1)y = 0

and subtract 1) from it to obtain

[(D-1)(D+3) - 2(D-2)]x = -e’ or  (D*+hx = et

Now this is 4) above as might have been anticipated, since operating on 2) with D-1 is
equivalent to differentiating 2) and adding -1 times 2) as in the previous solution. The
general solution is obtained as in Solution 1.

Solution 3. We may also effect a solution using determinants. From system A') we obtain

2AD-2) D-1 et D-1 2D-2) D-1 AD-2) et
x = and y =
D+3 1 0 1 D+3 1 D+3 0
or (D2 +1Dx = -et and (D2 + 1y = 4et.

The first of these equations is 4) above, and the second would have been obtained by the
procedure rejected in Solution 1. We shall now show why it was rejected. When the two equa-
tions are solved, we have

t

6) x = Cycost + Cpsint — ze and 7) y = Csgcost + C, sint + 2et,

We know from Solution 1 that 6) and 7) contain extraneous solutions, To eliminate them (that
is, to reduce the number of arbitrary constants), we substitute in 2) and see that

(Cs + 3Cy+C3)cost + (3C,-Cy+Cyysint = 0
for every value of t. Thus,
Cy = =(3Cy+Cy) and C, = Cy - 3C,.

When these values are substituted in 6) and 7), we obtain the general solution found above.
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THE NUMBER OF INDEPENDENT ARBITRARY CONSTANTS appearing in the general solution of
the system
f,(Dyx + g, (D)Yy

f,(Dyx + g,(DYy

W

hy (t)
hy (t)

"

£.(D)  4.(D)
is equal to the degree in D of the determinant A =

£,(D) g (D)

provided A does not vanish identically. If A = 0, the system is dependent;
such systems will not be considered here.

2(D -2) D-1

For the system 4'), A = = - (D% +1).

D+3 1

The degree (2) in D agrees with the number of arbitrary constants appearing
in the general solution.

The theorem may be extended readily to the case of n equations in n depen-
dent variables.

SOLVED PROBLEMS

1. Solve the system: ) (D-Lyx +Dy = 2t +1
2) (2D+1)x + 2Dy = t.

Subtracting twice 1) from 2), we have 3x = -3t -2, Substituting x= -t-2/3 in 1), we

obtain Dy = 2t +1~-(D-1x = t+% and y:%t2+%t+ci.
The complete salution is x=-t - g. y = étz + %t + Cyq.
D-1 D
Note that is of degree 1 in D and there is but one arbitrary constant.
2D+ 1 2D
2. Solve the system: 1) (D+2)yx + 3y =0
t
2) 3x + (D+2)y = 2e’’.
2t
Operating on 1) with D+2, multiplying 2) by -3, and adding: (Dz+4D—5)x = —6e .
- t -5t
Then «x = Clet + Cye A %eu. From 1), = - %(D«\Z)x = ~Cye + Cge "y %e”.
8. solve the system: D D-3Nx + 2(D+2)y = 2 sint
2y 2(D+x + (D-1)y = cost.
Operating on 1) with D~1 and on 2) with 2(D +2), we have
3) (D-DH(D-3)x + 2(D-1)(D+2y = (D-1[2sint] = 2cost - 2sint
4y 4D+2(D+Dix + 2D+ 23D~y = 2(D+2)cost = 4cost - 2sint,

Subtracting 3) from 4) and noting that (D-1)(D+2) = (D+2)(D~-1), since the operators
have constant coefficients,
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2
(4D®+3D+2) - (D*—4D+3)]x = (3D°+16D+5)x = 2cost
and x = Cie-st + Cge"t/5 + ——2—2————-— cost = Cle'ﬁt + Cge—t/5 + —— cos t
3D°+16D +5 8D +1
= Cie-w + Cge"t/3 + (8 sint + cos t)/65.
From 2), (D-1)y = cost = 2(D+Dx
= cost + 8C1e'5t - %CQe-t/5 ~ (18 cost + 14 sint)/65
= 8C16-5t - écge't/3 + (47 cost ~ 14 sin t)/65.,
- - —ut/ t - int -
Then ot - f(8C1€ 6t §C2e st/3 | 47 cos W sint -t
3 65
4 . -6t Y 4 6l sin t — 33 cos t -t
= -3 Cie + Cge 3y 136 e + Cg
- -t in t - t
and y = = % Cye ot + Cye /3 + 61 sin t13033 cos + Cget.

Since the degree of A is 2, the general solution has but two arbitrary constants. Hence,
when these expressions are substituted for x and y in 1) it is found that C; = 0. Then

- - i + - - i - t
x:C1e5t+C2et/5+8smt cost' y:—éC1e5t+C2et/5+61smt 33 cos
65 3 130
is the general solution,
2 2t
4. Solve the system: H D' =22 ~3y = e
2
2y (D +2)y+x = 0.

Find the particular solution satisfying the conditions x=y =1, Dx=Dy=0 when t=0.

2t 2
Operating on 1) with p? to obtain D“x—2D2x—3D2y:4e and making the replacements D'x

t
= 2x+3y+e2t from 1) and D2y = —x -2y from 2), we have (Du—l)x = Ge2 .
t -t ) 2 2t .
Then x = Cie + Cye  +Cycost + Cysint + ge and, using 1),
- 1 2
y = 1[(D2—2)x —e?) - - l(Ciet + Cqe by - (Cgcost + Cysint) - — e ¢
3 3 15
Note that x could also be obtained by the use of determinants, Thus,
D2—2 -3 e2t 3 N 2t
x = ) or (D -x = 6e , etc,
1 D"+ 2 0 D" +2
2 4
When t = 0, x:C1+C2+C3+5:1 and Dx:Ci—C2+C4+g=O,
1 1 1 2
= - Z(Cy4+Cy) —Cg - —= =1 and = —Z(Cy-C3) - Cs - — = 0.
b 3( 1+ C3) s~ 15 Dy 3( 1-C2) =I5

1t

Then C, = 3/4, C, = 7/4, Cg = -19/10, C, = 1/5, and the required particular solution is

- 1
et s ey - Lo cos t — 2 sin ) + 22,
3 10 5

s
I

1 t -1 1 1 2t
= - —(3e + Te + —(19 cost - 2sint)y - —e .
Y 12 ) 10( ) 15
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H. Solve the system: i§)

Operating on 1) with D2+D+1 and on 2)

2y = t2+2t—3et
Operating on 1) with DZ—D+ 1 and on 2)

2 t
t -2t + e

2% =
b+1 D-1
Note that ) ) = 2
D +D+1 D -D+1
constants in the solution,
f. Solve the system: 1) sz - m2y = 0,

D+ Dx + (D-1)y =

161

t
ety 2y DP+D+x + (DP=Dilyy = to.
with D+ 1, and subtracting, we have

1 2 3 ¢
-t

and = + t - = .
Y73 2 ¢
with D -1, and subtracting, we have
1 2 1 ¢
and x = =t —t+ =e,
2 2

is of degree 0 in D; hence, there are no arbitrary

2) D% + n’x = o.

Operating on 1) with 1)2 and substituting D2y = _m?x from 2), we obtain

Dux - m2(—m2x)

and «x em/ﬂ

Substituting for x in 1) and solving,

y - 12 em//z‘
m2

7. Solve the system:

4 1Y
= Dx+mx =

(Cy cos mt/V2 + Cp sin mt/V/2) + e

(Cy cos mt/V2 - Cy sin mt/V2) + e

1) (D°+4)x —=3Dy = 0

D' + m*yx = 0. Then D -+ ﬂzu + 1)

%

—m//z—(Cs cos mt/V2 + C4 sin mt/V2).

""t/‘/i(cs sin mt/v2 - C, cos mt/vV2).

2) 3Dx + (D°+ 4)y = 0.

Operating on 1) with D2+ 4 and on 2) with 3D, and adding, we have

(D% + a2+ 90%x = D2+ 16)D%+ )x = 0

and

x = Cy cos4t + Cg sindt + Cgcost + C4 sint,

Operating on 1) with 3D and on 2) with Dz+ 4, and adding, we have

(0°+ 16)(D*+ 1)y = 0 and

To eliminate the extraneous solutions, substitute for x and y in 1).

y = K, cos4t + K,;sin4t + Kg cost + K, sint,

We have

-12C4 cos4t - 12C, sin4dt + 3Czcost + 3C, sint + 12K, sin4t - 12K, cos4t + 3K, sint

for all values of ¢; thus, K, = C,,

The complete solution is: x =
y =

8. Solve the system: 1)

2)
3)

Subtracting 3) from 1), we have

Operating on 2) with D and on 4) with D+ 2, and subtracting, we have

1 -4t/5

z = - =+ Cye .
5 1

Ko = ~Cy,

C, cos 4t - C,

4) Dx -(D+2)z =1

Substituting for z in 3),

- 3K, cost = 0

Kg = - Cs, Ks =Cs.

Cy, cos 4t + C, sin 4t + C5 cos t + C, sin ¢,

sin 4t - C, cos t + Cy sin t.

Dx + (D+1y =1
D+2yx - (D-1)z = 1
(D+1)y + (D+2)z = 0.

which is free of y.

(5D+4)yz2 = -2; then

-4t
D+ 1y = -(D+2)z = 1 -—gCle “#/5. then
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- - -4, -t
y = e ¢ f(et - g Clet/s)dt = e t(et - (:";Clet/5 + Cs) = 1 - 6Cqe 4/ + Cge .
o
—ut/ -
Substituting for y in 1), Dx = 1-(D+1)y = gC1e Y5 then x = - % Ce™ " 4 .
D D+1 0
Since |D+2 0 -D-~1) = —(5D2+9D+4) is of degree 2 in D, there are but two ar-

0 D+1 D+2

bitrary constants in the general solution. Substituting for x and z in 2), we obtain

w

-4t/5

- - -4
(g Cye - 3C,e 4t/ + 2C3) - (- % Cye wi/5 + -é— Cye u‘/5) = 1 and, hence, C; = Z Thus,
- - - 1 -4t
x:§—§Ciew/5, y=1—6C1eut/5+C2et, z:——‘rCleu/5
4 2 2
is the general solution,
9. Solve the system: 1) D+ 12z + 2Dy + 3Dz = 1
2) Dx + 2z =90
3) x - Dy - Dz = 0.
Find the particular solution for which x =z =1, y=0 when t =0.
First, operate on 2) with D to obtain 4) D2x + Dz =0,
Next, add twice 3) to 1) and subtract 4) to get (2D+3)x = 1; then
, 1 ~3t/2
xeV? - lfg”“ dt _l_est/z + Cy and x = = + Cpe 3t/ .
2 3 3
From 2), z = -Dx = g Cle'at/z
- -3t 13 ~3t/2
From 3), Dy = x ~Dz = %+C1€ 5t/2+ 9C1e 32 %+TC 575/’ then
1 S
Yy = gt - '1—3C16 375/2 + CQ»

D+ 20 3D

Since D 0 1 = 2D2 +3D 1is of degree 2in D, there are 2 arbitrary constants
1 -D =D .
- 13 -3 3 ~3t/2
and the general solution is x = é+ Cye n/z' y = %t - Ecie 3/2+ Csy 2= 5C1e 5t/ .
1 2 132 13
When t =0: =~+(Cy =1 and C, = =; = (- =)(2) +Co =0 and Co = —-
x 3 1 1 3 b ( 6)(3) 2 2 )

Thus, the required particular solution is

-3t/2
= e .

2 -3t/2 1 13 -3t/2 13
-€ , y ==t - —e + —
3 9 9

Note that a particular solution satisfying a given set of initial conditions cannot always
be found. For example, there is no solution satisfying the conditions x =1, y =z =0 when t =0
since x=1, y=0 contradicts x=1/3 + 2z/3. Similarly, y=0, z =1, dx/dt =1 when t =0 con-
tradicts dx/dt =—-z.

1
x ==+
3

W
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SUPPLEMENTARY PROBLEMS

Solve the following simultaneous equations.

10. Dx - (D+lyy = —e?

x+ (D-1)y = th

11. D+2)x + D+1)y = ¢t
5¢ + (D+3)y = t

12 D+Lx + 2D+ T)y = e +2
— 2%+ D4y =el1

13. D-Lx + D+3)y =e "~ 1

D+2yx + D+)y =€+t -

4. (D*+16)x - 6Dy

It
<

6Dx + (D° + 16)y

[}
[e=]

15. (D2+4)x +y = sin? 2
(D2+1)y - 2x = coszz

16 D*+D+yx + (D24 l)y =

D%+ Dyx + Dzy -7t
7. D-~Lx + (D+2)y = 1 + et
D+yy + D+1)z = 2 + et
t

D-Dx + D+1)z =3 + e

Ans.

= (Cy=Cyycos t + (Cy+Cy)sint + BeZt/S

= Cicos t + Cosin t + 2e2t/5 + et/2

. 3C,+C 2
s1nt—_(L__3cost~t +t+ 3

_ C1‘3CQ
5 2

= Cyqcos t + Cosint + 2t° - 3t - 4

5et 13

1 -4t . . .
5 Cae [cos(t+C,) - jln(t+(,2)] “ e Y T

-4t 2e 3
C sin(t+C,) + = + =
1€ (t+Co) * 55 ¥ 15

= 2C,_e"7t/5 + ie%
17

3C1€-7t/5 - Le” + le't + lt - %6
17 2 7 49

= Cycos 2t - Cysin 2t + C,cos 8t + C,sin 8t

= Cycos 2t + Cy5in 2t + C,cos 8t - C,sin 8t

= 1008 (V22 + Cp) + Cycos (V32 + C,) + % cos 2z
=-2C1co8(vV2z + Cy) ~ Cgcos(v3z + C,) + 5 — S cos 2z

—et—-Qe_t—Ci

= 2et + e-t + Cy

t
=~1+ tet/2 + Cue
-2t
= et/6 + Cye z

=2+ et/4 + Cse't



CHAPTER 22

Total Differential Equations

THE DIFFERENTIAL EQUATIONS

A) (3x2y2 — e z)dx + (2x3y + sin z)dy + (y cos z - e")dz = 0,
B) (3xz + 2y)dx + xdy + x?dz = 0,
C) ydx + dy + dz = 0,
being of the general form
P(x,y,z,~-+,t)dx + Q(x,y,z,+++,t)dy + «ce: + S(x,y,z,*+-,t)dt =0,
are called total differential equations.
It may be verified readily that 4) is the exact differential of
f(x,y,z) = xay2 — ez + ysinz = C,
C being an arbitrary constant. Such an equation is called exact.
Equation B) is not exact, but the use of x as an integrating factor yields
(3x2z + 2xy)dx + xzdy + x> dz =0

3

which is the exact differential of x z-+x2y =C. Equations A) and B) are

called integrable.
Equation C) is not integrable; that is, no primitive
1) f(x,y,z) = C

can be found for it. It will be shown later (Problem 32) that for sucii equa-
tions a solution 1) can be obtained consistent with any prescribed relation
g(x,y,z) = 0 of the variables.

THE CONDITION OF INTEGRABILITY of the total differential equation

2) P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz =0
is
3) P(QQ _ Ry O(QE - éf) + R oF _ QQ) = (0, identically. See Problem 1.
dz dy ox dz Jy  Ox
ExaMPLE 1. For equation B),
Poaxzray, Log gy 0=x, Loy, Lo, r=x?, Roox, oo, and
dy oz dx dz 9x "9y

3) becomes (3xz +2y) (0 —0) + x(2x —3x) +x°(2-1) = 0 —x* +x*=0. The equation
is integrable.

EXAMPLE 2. For equation C),

P:y'a—P:I’ EI_):O’ Q:l,a—Q:a—Q: M R:l, aR—aR

qy dz 3x 2z ' =0, and 3) becomes

y(0-0) +1(0-0) +1(1-0) # 0. The equation is not integrable.

161
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THE CONDITIONS FOR EXACTNESS of 2) are

4)

P 30 30 _ 3R 3R _ 3P

EXAMPLE 3. For equation 4),

P = 3x2y2-exz, ?f = 6x2y, éf = —ex;
dy dz

Q = 2x5y~fsin z, §Q = 6x2y, QQ = CO0S z;
x dz

R =ycosz-e", ?E:—ex, %:cosz,
Ox dy

and the conditions 4) are satisfied. The equation is exact.

EXAMPLE 4. From Example 1 it is readily seen that 4) is not satisfied;

hence, equation B) is not exact.

TO SOLVE AN INTEGRABLE TOTAL DIFFERENTIAL EQUATION in three variables:

a)

b)

c)

d)

If 2) is exact, the solution is evident after, at most, a regrouping of
terms. See Problem 3.

If 2) is not exact, it may be possible to find an integrating factor. See
Problems 4-6.

If 2) is homogeneous, one variable, say z, can be separated from the others
by the transformation -x =uz, y =vz. See Problems 7-10.

If no integrating factor can be found, consider one of the variables, say
z, as a constant. Integrate the resulting equation, denoting the arbitrary
constant of integration by ¢(z). Take the total differential of the inte-
gral just obtained and compare the coefficients of its differentials with
those of the given differential equation, thus determining ¢(z). This pro-
cedure is illustrated in Problem 13. See also Problems 14-16.

PAIRS OF TOTAL DIFFERENTIAL EQUATIONS IN THREE VARIABLES. The solution of the si-
multaneous total differential equations

5)
6)

P dx + Q,dy + R,dz
Pydx + Q,dy + R,dz

I
o o

consists of a pair of relations

)
8)

To
€)

f)

8)

f(er;Z) = C1
g(x:sz) = CQ'

solve a given pair of equations:

If 5) and 8) are both integrable, each may be solved by one or more of the
procedures a)-d). Then, 7), say, is the complete solution (primitive) of
5), and 8) is the complete solution of 6). See Problem 18.

If 5) is integrable but 6) is not, then 7)., say, is the complete solution
of 5). To obtain 8), we use 5),6),7) to eliminate one variable and its dif-
ferential, and integrate the resulting equation. See Problem 19.

If neither equation is integrable, we may use the method of Chapter 21,
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TOTAL DIFFERENTIAL EQUATIONS

treating two of the variables, say x and y, as functions of the third vari-
able z.

At times it may be simpler to proceed as follows: Eliminate in turn dy and
dz (or any other pair) between 5) and 6) to obtain

Pl Ql Qi Rl Rl Pl Qi Ri
dx - dz =0, dx - dy =0
P? Q‘Z QQ RQ R2 P2 Q‘Z R2
and express them in the symmetric form
dx _ dy _ dz
9 X Y z’
Q. R, R, P, Py 0,
where X = A , Y = A , Z =X , N #£ 0.
QQ RQ R2 P2 PQ QQ

(Note that this is the procedure for obtaining the symmetric form of the
equations of a straight line when the two-plane form is given.)

Of the three equations
9"y Ydx = Xdy, Xdz = Zdx, Zdy = Ydz

given by 9), any one may be obtained from the other two. Hence, in obtaining
9), we merely replace the original pair of differential equations by an equiv-
alent pair, that is, any two of 8').

If two of 9') are integrable, we proceed as in e). See Problem 20.

If but one of 9') is integrable, we proceed as in f). See Problem 21.

If no one of 9') is integrable, we increase the number of possible equa-
tions. By a well known principle,

dx _ dy _ dz :lldx+m1dy+n1dz _ lydx + mpdy + nydz

X Y Z LX +mY +nZ LX + m)Y + n, Z

where the I,m,n are arbitrary functions of the variables such that
1IX + mY + nZ # 0.

By a proper choice of the multipliers, it may be possible to obtain an inte-
grable equation, say

dy ldx+mdy+ndz or ad«+bdy+cdz _ pdx+ qdy + rdz

Y IX + mY + nZ aX + bY + cZ pX + q¥Y + rZ

If so, we proceed as in f). See Problem 22.

In actual practice, it may be simpler at times to find by means of multi-
pliers a second integrable equation, rather than to proceed as in f). See
Problems 23-24.

If IX+mY+nZ = 0, then also Idx+mdy+ndz = 0.
If now Idx+mdy +ndz = 0 1is integrable, we integrate and have one of
the required relations. See Problems 25-29.
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SOLVED PROBLEMS

1. Obtain the condition of integrability of Pdx+ Qdy + Rdz = 0.

Suppose that the given equation is obtained by differentiating

‘1 flx,y,z) = C
and, perhaps, removing a common factor u(x,y,z). Since from 1) gi; dx + %dy + % dz = 0,
. of of of _
it follows that 3 C uP, _5; = nQ, and 3 uR.
Now assuming the existence and continuity conditioms,
2
A P W 30 u Pf
A = — + P L = = + Q== =
Vonm Ty Ty R %% T aw
2 2
gy L . 20, m ¥ pw . ¥
3z Ay Jdz Az Ay By dy V2
2 2
3 f oR S oP u _ 9of
- el R & - el p % - .
© 9x 9z ey ' 9% ® dz * Az dz dx
Upon multiplying these relations by R,P,Q, respectively and adding,
opP 90 R 30 oR P
R— + P = + — = R= 4+ P = + —)
rUESS R 5 Y5
s o0 9R SR oP oP 30
and th diti P(= - — —_— = R(— - ==y = 0 follows,
" ¢ condibion (Bz ay) * Q(ax az) : (By ax) °

s 2. 1f ulx,y,z) = 1 in Problem 1, the differential equation is exact. Show that this implies

3 _ 30  3Q _ 3R M/ _ P

Qdy Ox 9z Ay Ox oz

These relations follow from A),B),C) in Prob, 1. For example, if x = 1, A) yields B_P = —S-Q
y x
4 3, Solve (x-y)dx — xdy + 2dz = 0.
Since % = -1 = g—g- 2—8 =0 = %?l, g—f =0 = g—i. the equation is ex'act.
Upon regrouping thus =xdx-~(xdy+ydx)+ zdz=0 and integrating, we have
ﬁ—xz—xy+£—zz=l( or X2~ 2y + 22 = C.
4. solve y?dx - zdy + ydz = 0.
oP oP o0 230 oR oR
Here P =y?, = =2, =—-=0; =-z, =%=0, =<:-1; R=y, ==0, —=1
-V Q=-2 3, 3 A 3y
2Q 3R oR 9P 9P 2Q 2
then P(= - —) + = - =)+ R(—= ~ = = -1-1) - - -0) = -
(az By) Q(ax az) (ay ax) ¥y (-1-1) ~2(0 -0) +y(2y -0) =0 and the equa

ydz-zdy
Y

tion is integrable, The integrating factor l/y2 reduces the equation to Jdx+ = 0 whose

solution is x + z/y = C.
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Solve (2x5y+1)dx + xt dy + x%tanz dz - 0.

The condition of integrability is satisfied since
(2y +1)(0 -0) + x* (2 tanz ~0) + x” tanz (2’ - 42%) = 0.
The integrating factor 1/x2 reduces the equation to

1
(2xy + iz)dx + xzdy +tanz dz = 0 or (2xy dx + xzdy) + —de + tanz dz = 0
X X

. . 2 1
whose solution is x°y - = + Insecz = C.
x

Solve (2x5—2)1 dx + 2x2yz dy + x(z+x)dz = 0.

The normal procedure here would be to show that the equation is integrable and then to seek
an integrating factor. By examining the preceding problems it will be found that, upon using
the integrating factor, one variable appears only in an exact differential, for example, the
variable z in tanz dz in Problem 5.

When the equation of this problem is divided by x2z, the variable y appears only in the term
2y dy which is an exact diffefential., Thus, we shall use 1/x%z as a possible integrating fac-
xdz—-zdx

tor. The result is 2xdx + 2ydy+ %dz + 5
x

L 2 z .
0 whose solution is x° + y2 +Inz+ ==C,
x

Of course, the separation of the variable here does not indicate that the equation is inte-
grable; for example, xdx+zdy+dz =0 1is not integrable although x appears only in an exact
differential.

Show that if Pdx+Qdy+Rdz =0 is homogeneous (i.e., if P, Q, R are homogeneous and of the
same degree) then the substitution x =uz, y=wvz will separate the variable z from the vari-
ables u and v.

Let the coefficients P, (J, R be of degree n in the variables.
Substituting x =uz, y =vz, the given equation becomes

P(uz,vz,z) ludz+ zdu] + Quz,vz,2)[vdz+ zdv] + R(uz,vz,z)dz = 0.
Dividing out the common factor zn and rearranging, we have

z2[Pu,v, Ddu + Qu,v, dv] + [uP(u,v,1) + vQ(u,v, 1) + Reu,v,1)]dz = 0

or Z2(Pydu + Gydv) + (uPy + vQq + Ry)dz = 0, where Py = P(u,v, 1), etc.
. . Py 0y 1 . .
This may be written as A) du + dv + =dz = 0 in which
uPy + vQy + Ry uPy, + vQq + Ry z

the variable z occurs only in the last term,

9 01 3 Py

1
Now the condition of integrability for A), —(=— — — —
2 %u uP, + v0y + Ry Ov uPy + vQy + Ry

) =0,

is satisfied provided the original equation is integrable and, when this occurs, the sum of the
first two terms of A) is an exact differential. Moreover, since the third termis an exact dif-
ferential, A) is an exact differential equation provided only that Pdx + Qdy + Ridz = 0 is
integrable,

Solve the homogeneous equation  2(y +z)dx — (x +z)dy + (2y —x +z)dz = 0.

The equation is integrable since 2y +2)(~1=-2) -~ (x+2)(-1-2) + (2y-x+2)(2+1) =0,
The transformation x =uz, y =vz reduces the given equation to

2z(v+1)(udz+zdu) - zu+ ) (vdz+zdv) + z(2v-u+1)dz = 0.
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bBividing by z and rearranging, we have 22(v+1)du ~ z(u+ V)dv + (uv+ru+v+ 1)dz =

2 du dv dz
+ =

dividing by z(uv+u+v+1) = z(u+1)(v+1y, - = 0.
u+t+l v+1 z

Then 2 Inu+1) - In(v+1) + Inz = InK, z(u+1)2 = Kw+1,
(x+z)2 = K(y +2) or y+z:C(x+z)2.

Solve the homogeneous equation yzdx - 22 dy - xydz = 0.

The equation is integrable since yz(-2z +x) - 22 (-y-y) - xy(z-0) =
The transformation x =uz, y=vz reduces it to

vzz(u dz + z2du) - zz(u dz+ zdv) - wz?dz = 0.

Dividing by z? and rearranging, vzdu-zdv-vdz=0 or du - — - 2 =

Then u-1Inv -~1lnz = InKk, vz = Ce" or y =

Solve  (2y -2)dx + 2(x —z)dy - (x + 2y)dz = 0.

169

0 or,

The equation is homogeneous and, by inspection, is seen to be exact since it may be writ-

ten as 2ydet xdy) - (zdr+xdz) - 2(zdy+ ydz) =

The sclution is 2y - xz - 2yz = C,

Show that xP + yQ + zR = C  is the solution of Pdx + Qdy + Rdz = when the equation

is exact and homogeneous of degree n # -1,

First, we check the theorem using the equation of Problem 10, Here
xP + yQ + zR = x(2y-2) + 2y(x —z) - 2(x+2y) = 2(2xy-2xz-2y2)
and we obtain the solution above,

From xP + yQ + zR = C, we obtain by differentiation

¥, 0, . 30 R ¥ . 0. N
A) (P — dx tx —+ty=+z=)y+(R+x—+y =X+ 2z )dz=0,
A AW a) PQrx yay 230 TV
30 _ R _ P R _ 20

Since the given equation is exact, = —, —_ = = —=

ox By Ox 9z By oz

Making these replacements, A) becomes

B) (P+x—‘£)+ya—P+zg—P)dx+(Q+xEQ+y§Q+zaQ)dy+(R+xa—R+yg—R+

Ox Ay Ox y Ox y

opP P oP

Since the given equation is homogeneous, X — + y— + z — = npP, etc,,
Ox Ay Jz

to Euler’s Formula on homogeneous functions,

Making these replacements, B) becomes
(n+HPdx + (n+1)Qdy + (n+1)Rdz = 0
or, since n ¥ ~1, Pdx + Qdy + Rdz = 0,

oR

—)dz
B)

according
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12. solve (y2 r2% 2y + 2xz)dx + (x2 +2% 2xy + 2yz)dy + (x2+ y2 +2xz + 2y2)dz = 0.
The equation is homogeneous of degree 2 and is also exact since

8_1?22(y+x) :%_Q, B_C): 2(Z+y) :%, ‘.a_l_?:z(x+z) :.’a_P-
X

Oy dz dy Ox Qdz
RN 2, .2 2 2 2 .2 _
The solution is  x(y" +z" +2xy +2xz) + y(x“+ 2" + 2xy +2yz) + 2(x° +y "+ 22z + 2yz) = K
or x(y2+22) + y(x2+22) + z(x2+y2) = C.
13. Solve the differential equation Pdx + Qdy + Rdz = 0 given only that the condition of in-
tegrability is satisfied.

Consider one of the variables, say z, as a constant for the moment and let the solution of
the resulting equation

1) Pdx + Qdy = 0
be
2) u(x,y,2) = $(z).
Differentiating 2) with respect to all the variables,
du du du
3) —dx + —dy + —dz = ¢p'(z)dz = do.
= EPAAR ¢
du du . . : .
Now — = puP and é— = pQ, where 4 = pu(x,y,z) is an integrating factor of 1). Substi-
x Y
: . du
tuting in 3), we have wPde + uQdy + 3, dz = do,
z

But from the given equation uPdx + uQdy + uRdz = 0 so that

d¢p = a—udz - uRdz = (B_u - uRydz,
dz 9z

This relation is free of dx and dy and, using 2) if necessary, can be written as a differ-
ential equation in z and ¢. Solving the integral for ¢ and substituting in 2), we have the
required solution,

14. Solve 2(y+z)dx - (x+2)dy + (2y-x+2z)dz = 0. (See Problem 8.)

dy 2 2z
Wi - = —_ - = ’
e treat z as a constant and solve 2(y+z)dx - (x+2z)dy =0 or el Y*: 0
using the integrating factor e—2fdx/(x+z) = ———1—, to obtain
(x +2)
y 2z z
4) 2=f d = - ——— + P(2).
(x +2) (x -&-z)5 (x +2)
Differentiating A) with respect to all variables,
b Y (drids) = - —B v 2 hidn s dep
(x +z)2 (x +z)5 (x +z)2 (x +2)

or 2(y +z)dx — (x+2)dy + (2y —x +2)dz + (x+z)3d¢> = 0.

Comparing this with the given equation, it is seen that (x+z)5 dp=0 and ¢ = C.
Since, from A), y +z = p(x +2)2, the solution is y+z = C(x +2)2.
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15. solve (e*y+e)dx + (e?z+eX)dy + (7 -e*y-e’z)dz = 0.

The equation is integrable since
(exy+ eZ)(ey— eV + ¥+ eyz) + (eyz +ex) (—exy —ez) + (ey—exy— eyz)(ex—ex) = 0.
Considering z as a constant and solving the resulting equation
(e"y dx + e¥dy) + e’z dy + e“dx = 0,
we have exy + e’z + e%x = P (z).
Differentiation with respect to all variables yields
(exy+e2)dx + (eyz+ex)dy + (ey+ezx)a'z = do.

Y

From the given equation, (ex +e2)dx + (eyz+ex)d + (eX+efydz = (exy+e z +ezx)dz.
Yy Y

Thus, d¢ = (exy+eyz+ezx)dz = ¢dz and ¢ = Ce®. The required solution is

y Z

x z2
e’y + e’z +ex = Ce,

16. solve yzdx + (xz—yzs)dy - 2xydz = 0.

The equation is integrable since yz(x—3y22+2x) + (xz—yzi)(—2y—y) - 2xy(z-2z) = 0,
Considering y as a constant and solving the resulting equation
yzdx — 2xydz = 0 or zdx - 2xdz = 0,
we obtain Inx - 21lnz = Ind(y) or x = qbzz,
Differentiating this result and making the replacement ¢ = x/zz, we have

dx — %pz2dz - 22dp = 0, dx—ZJZ—Edz—-zzakﬁ:O, or yzdx - 2xydz — yz22d$ = 0.

Comparing this with the given differential equation, we have
(xz—yza)dy + yzidcﬁ = (d>z5—y25)dy + y23d¢' = 0 or ¢dy + ydd - ydy = 0.
Then ¢y -~ y2 = K or ¢ = 3y + K/y, so that the solution is
x = ¢p2° = oy + K/y) or 2y = y222 + 22,

17. Discuss geometrically the solution of the integrable total differential equation
Pdx + Qdy + Rdz = 0.

Let (x5,¥0,20) be a general point in space for which not all of Py = P(xg,¥5,20)s O =
Q(x5,¥5,29), Ry = R(x0,¥0,20) are zero.
Assuming that P,Q,R are single-valued, the set (P,,Q,,R,) may be considered as direction

numbers of a unique line through the point. Hence, the given differential equation may be
thought of as defining at each point (xg,¥o,20)

a line Y-X _ Y=Y _ Z-%
PO QO RO
and a plane Po(x~x0) + Qo (y ~¥a) + Ro(z —-20) = 0 normal to the line.

The solution f(x,y,z)=C of the given differential equation represents a family of sur-
faces such that through a general point (x5,Y¥0,20) of space there passes a single surface S,
of the family. The equation of the tangent plane my to this surface at the point is

of of of

(x~%)— + (¥y=-yo)=— + (z2-20)— =0
Xo Yo 29
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-— — A
and the equations of the normal line L, are % _ YzXo . %o,

LA A
Ox o) Byo alo

From Problem 1, :_f = AP, g}( = AQ, _i—f = AR. Hence, the solution of an integrable total
x y z

differential equation in three variables is a family of surfaces whose tangent plane and
normal at each point are respectively the plane and line associated with the point by the
differential equation,

PAIRS OF TOTAL DIFFERENTIAL EQUATIONS IN THREE VARIABLES.

18. Solve the system: (y +z)dx + (z +x)dy + (x +y)dz = 0
(x +2z)dx + ydy + xdz = 0.
Both equations are integrable. The first may be written as
(ydx + xdy) + (z2dy + ydz) + (xdz + zdx) = 0
and the solution is xy + yz + zx = (4.
The second may be written as xdx + ydy + (zdx + xdz) = 0 and the solution is
x2+y2+2xz = Co.
Thus, =xy +yz +zx=C,, x? +y2 +2xz=C, constitute the general solution.

Through each point in space there passes a single surface of each of the two families.
Since the two surfaces on a point have a curve in common, the solution of the pair of differ-
ential equations is a family of curves. This family of curves may be given by the equations
of any two families of surfaces passing through the family of curves. For example,

xy +yz +2x = C4, x? +y2+2(C1—xy -yz) = Cy

also constitute the general solution.

19. Solve the system: 1) yzdx + xzdy + xydz = 0
2) zz(dx+dy) + (xz+yz-xy)dz = 0,

The first equation is integrable, with solution 3) xyz = Cy, but the second is not,

Multiply 1) by z, multiply 2) by y, and subtract to obtain zz(y—x)dy + yz(z—x)dz = 0.
Multiply this by yz, and substitute xyz=C, from 3). The result is

zz(yzz—Cl)dy + yz(yzz—Ci)dz =0 or zdy + ydz - Ci(d%l + %) =0

Y z

whose solution is 4) yz + Ci(y;zz) = Cq.

Equations 3) and 4) constitute a general solution. However, 4) may be replaced by the
simpler form 4') xy+yz+xz = C;, obtained from 4) by substituting for C,.

20. Solve the system: dx + 2dy — (x +2y)dz = 0
2dx + dy + (x - y)dz = 0,
2 —(x+2y) —(x+2) 1 1 2
Here X = A =3\, Y=A ==3\x+y), Z=A = -3\,
1 x -y x -y 2 2 1
For the choice A = -1/3, X=—x, Y=x+y, Z=1, and we write the system in the symmetric form

& dy | odz,

-x x+y 1
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de d
From the integrable equation — = TZ' we obtain z + Inx = Cy.
—-X
. . dy . 2
From the integrable equation — = » we obtain x5+ 2xy = C,,
-x  x+y

Thus, z + lnx = C,, x% o+ 2xy = C, constitute the general solution.

Solve the system ﬁ = —_— = = Find the equations of the integral curves through the
X

points a) (1,1,1) and b) (2,1,1).

Consider the equations fi—x = d—i— and
X -

=3 The first is integrable and yields xz =
x

de _ _dy
x

C,. The second is not integrable but is reduced to dy = (1 + C,_/xz)dx by the substitution
z = Cy/x. Integrating, we have y = x — Cy/x + C, or, substituting C, = xz, y —x + z = C,.
Thus, xz = Cy, y—-x+2z = C, constitute the general solution.

The integral curve through the point (1,1,1) isthe intersection of the hyperbolic cylinder
xz = 1 and the plane y -x+2z = 1, The integral curve through (2,1,1) is the intersection of
the cylinder xz = 2 and the.plane y -x +z = 0.

Solve dx = dy dz .
y-z zZ-x Yy —-x

No equation is integrable, By means of the multipliers [(=m=1, n=0, we obtain

dz ldx + mdy + ndz dx +dy

= = or dx +dy ~dz = 0. Then
y-x Wy-2) + m(z-x) + n(y -x) y-x
A) - x+y-z = Cy.
Using A) to eliminate z in dx = dy » we obtain dx = dy Then
y-2 z-x Cy-x y-Cy

In(x-Cy) + In(y-Cy) = InC,, or (x-Cy)(y-Cy) = C,, or, eliminating C, by means of A4),
B) (z-y)(z-x) = Cqu

A) and B) constitute the general solution.

Solve = = ==
y5 x3 z
xdx 24
From the integrable equation - Yy or x5dx - y5dy = (0, we obtain
y3 %
A) AL
dz _ y2dy
We may then use A) to eliminate x in the non-integrable equation — = e However, it
z x

2 2
is simpler to use the multipliers l=m=1, n=0 to obtain % = M Then x3+ yiz C27.3.

z By
Solve the system dx = EL = —(ZZ__ .
x 4+ y2 2y (x + y)3 z
Using l=m=1, n=0, we obtain dz = dx + dy or dz _ (x +y)(dx+dy). Then
4

(x+yYz  (x+y)?
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(x+y)2— 21Inz = Cq.

dx + dy _ dx - dy

l, =1, my=-1, ny,=0, we obtain =

Using I, =my =1, n; =0 and
2 2
(x+y) (x-y)

+ K or y:C.z(xz—yz).

dy _ dz

i 95, Solve the system @ = .
y -x 2x - 3y
- dx dy B A . 2 2
The equation n = or xdx + ydy = 0 1is integrable and we obtain x" +y" =
Using [ =3, m=2
3x+2y+2z = Ca.

4 26. Solve the system dx = dy = dz .
4y -3z 4x - 2z 2y - 3x

C1.

We seek multipliers l,m,n such that A) l(4y -3z) + m(4x -2z) + n(2y -3x) = 0.

Rearranging A) in the form (d4m-3n)x+ (4l +2n)y+ (-3l -2m)z =0,

satisfied when 4m -3n =0, 4l+2n =0, -3l-2mn =0 or l:m:n = 2:-3:-4., Then

2dx - 3dy -4dz =0 and 2x -3y —4z = Cyq.

Using the arrangement 4(ly +mx) +3(-lz -nx) +2(ny-mz) = 0 and setting
-lz -nx = 0, ny-mz = 0, we obtain l:m:n=x:-y:-z, Then

xdx - ydy - zdz =0 and xz-y2—22=C2.

p dx _ q dy - r dz
(g-r)yz (r-p)xz (p-q)xy

27. Solve the system

Consider l(g-ryyz + m(r -p)xz + n(p-q)xy = 0.

From q(lyz-nxy) + r(mxz -lyz) + p(nxy-mxz) = 0 we obtain Il:m:n=x:y:
pxdx + qydy + rzdz = 0 and px2+qy2+r22 = Cy.
From z(lgy -mpx) + y(npx —lrz) + x(mrz -nqy) = 0 we obtain [l:m:n=px:qy

p2xdx + q2y dy + rlzdz = 0 and p212+q2y2+ r2.? - C,.

28. Solve the system dx = dy = dz_ |
Pyt yz —x? —y2+xz (x-y)z

Using l=m=1, n=-~1, we obtain (x2+y2—yz) + (_xz_y2+u) - (x=-y)z = 0.
dx + dy —dz = 0 and x+y-2=0Cs.
Using l=xz, m=yz, n:—(x2+y2), we find

xz(12+y2—yz) + yz(—xz—y2+xz) - (x2+y2)(x—y)z = 0.

Then xzd.x+yzdy—(12+y2)dz=0 or M_d__z:o
x2+y2 2
2 2
and In(x“+y°) ~21nz = 1In G,

2 2 2
or 2+ y = Coz”.

ly + mx

Tz,

. rz.,

Then

Then

, n=1, we find 3(y) + 2(-x) + (2x -3y) = 0. Hence, 3dx + 2dy+dz =0 and

we see that it will be

=0,

Then

Then
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Solve the system éf = QZ = ___gi—__.
% 4 dxy® - 22
de _ dy 2 _ : ; 4 2 2 - Q-
From 5; = 2 we have =xy° = Cj. By inspection, 2y (2x) + 2yz(-y) -y (4xy" -2z) = 0;
then 2y dx + 2yz dy - y’dz=0 or 2dx - uz_:;g_y_zﬂ =0, and 2 - -12 = Cy.
Yy Yy
Discuss geometrically the general solution of éf = QZ = éf_
p Q

For convenience, let us assume that in solving the given system we have obtained a pair of
integrable equations

Pydx + Qidy + Rydz = 0 and Pydx + Qudy + Rodz = 0
whose integrals are respectively
g(x.y-l) = Cl and h'(x'y!z) = C?'

Through a general point (xg,Yo,2o) Of space there pass two surfaces (one of each of the
above families) whose curve of intersection C, is the integral curve of the givensystem through
the point. The tangent planes to the two surfaces at (xq,Yo,20) are normal to the directions
(P1,04,Ry) and (P,,0,,R,) evaluated at the point, and the line of intersection Lo of these
planes is normal to the two directions. Let (X, Y,Z) be a set of direction numbers for Ly;
then

01 Ry Ry Py Py @
X =A , Y = Al , Z =X\
Qx Ry Ry, P, Py, Q

are proportional to P,Q,R (all evaluated at the point).

Now L, is the tangent to Cy at (xo, ¥o,20), Since the tangent to a space curve at one of
its points lies in the tangent plane at the point of any surface containing the curve. Hence,

the integral curves of the system % = = = d_z consist of a doubly infinite system of curves

characterized by the fact that at any point (xq, ¥, zo) the tangent to the curve through the
point has (Py,05,Ry) as direction numbers,

Show that the family of integral surfaces of 1) Pdx + Qdy + Rdz = 0 and the family of
integral curves of 2) dp—; = Eg = %; are orthogonal,

This follows from the fact that at any general point (xq, Yo,2o) the direction (Po,(Qs.Ro)
is: a) normal to the integral surface of 1) through the point (see Problem 17) and
b) the direction of the integral curve of 2) through the point (see Problem 30).

Solve 1) ydx+ xdy — (x+y+2z)dz = 0 consistent with ay z=a, byx+y+2z-=0,
) x+y =0, d)xy-=a.

Equation 1) is not integrable, From each given surface we may obtain an integrable total
differential equation. Our problem then is to solve this differential equation simultaneously
with 1) using the particular solution of the former rather than the general solution as in
f) of the introduction of this chapter.

a) Here z=a, dz=0., Substituting in 1), we obtain ydx+xdy = 0; then =zxy = C.
Equations z=a, xy=C are said to constitute a solution of 1),
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33.

34.
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b) Substituting x+y+2z = 0 in 1), we obtain ydx+xdy = 0 and xy = C.
The solution is =xy =C, x+y+2z = 0.

¢) Here y = —x, dy = —dx. Substituting in 1), we obtain xdr+zdz = 0 and x°+z2 = C.

The solution is x2+2z%=C, x+y = 0.

d) Here =xy = a, xdy + ydx = 0. Equation 1) reduces to (x +y+2z)dz = 0.
Then, either x+2y+2z =0 or dz.=0 and z = C,
xy =a, x+y+2z =0 and z =C, xy = a constitute the solution.

Discuss geometrically the problem of solving Pdx+Qdy+Rdz = 0 consistent with the given
relation g(x,y,z) = 0.

From the relation g(x,y,z) = 0, we obtain §§ dx + @_g dy + B_g dz = 0.
ox Ay 0z

We solve the system Pdx+Qdy+Rdz = 0, s—gdx + _ggdy + %Edz = 0 using the particular
x ¥ z

solution g(x,y,z) =0 of the latter. Let
f(x!yvl) = C, g(x,y,z) =0

constitute the solution. The integral curves are those cut out on the surface g(x,y,2) = 0
by the system of surfaces f(x,y,z) = C. Thus, Problem 32c may be stated as: Find all curves
lying on the surface (plane) x +y =0 which satisfy the differential equation

ydx + xdy - (x #y+ 2z)dz = 0.

At a general point (xo,¥s,20) on the surface g(x,y,z) =0, the line of intersection Lo of
the tangent planes to g(x,y,z) =0 and the surface of the system f(x,y,z)=C, through the point,
is tangent to the curve of intersection of the two surfaces. Thus, we have found the family
of curves on the given surface g(x,y,z) =0 whose tangent at any point lies in the plane, through
this point, determined by the differential equation. (See Problem 17.)

For example, consider Problem 32c¢., On the prescribed surface x +y = 0, choose any point
(a,—a,b). At this point, the tangent plane to x+y = 0 (here, the plane itself) is normal to
the direction (1,1,0) and the tangent plane to the surface (of the family) x2+ 22 = o+ b2
is normal to the direction (a,0,b). A set of direction numbers for the line of intersection
L of these planes [the tangent to the curve through (a,-a,b)] is (=b,b,a).

Now the plane through (a,-a,b) determined by the given differential equation is normal to
the direction [y,x,—(x+y+2z)](a’_a,b) = (~a,q,~2b), Since (-b,b,a) and (-a,a,-2b) are normal

directions, the line L lies in the plane determined by the differential equation,

Solve 1) 2zdx+dy+ydz =0 consistent with 2) x+y+z = 0,

From 2), y s-x-z and dy = -dx-dz. Substituting for y and dy in 1), we obtain
3) (2z2-1)dx - (x+z+1)dz = 0.

The transformation z = 2;+1/2, x = x;-3/2 reduces 3) to

4) 2zydxq - (%3 + z1)dzy = 0, a homogeneous equation,
. dzy 2 du
The transformation x,=uz, reduces 4) to (u—1)dzy + 22,du=0 or <2 4 - = 0.
24 u -~
Then Inzy + 2 1n(u~1)=1nkK
or zi(u—1)2=K.

Replacing u by x4/z,, x, by x +3/2 and 2z, by z-1/2, this becomes

(x -z +2)2 = C(2z ~1).



Test for integrability and solve when possible.
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SUPPLEMENTARY PROBLEMS

(y +32)dx + (x +2z)dy + (3x +2y)dz =

(cos x + exy)d.x + (ex+ eyz)dy v edz = 0

dx + (x+z)dy + dz = 0
2dx +zdy - 2ydz = 0O
xlde - szy —-xydz =0

(x +z)2dy + yz(dx+dz) =0

2x(y +z)dx + (2yz—x2 + yz— zz)dy +(2yz -xlz—y2 + 22)dz =0 x

yzdx - 2xzdy + xydz = 0

xdx + ydy + (x2+y2+z2+1)zdz =0

0

z(x2—yz-22)dx + xz(x+2z)dy + x(zz—xz—xy)dz =0

Solve the following pairs of equations.

Ve
45.

/51.

52.

dx +dy + (x+y)dz =0

Ans. xy + 2yz + 3xz = C

yz+sinx=C

exy+e
y + In(x+2z) = C
xz2 4 y = Cz2

Not integrable,
y(x+z) =Cx+y+2)
2 + y2 + 22 = C(y +2)
yZ:sz

2
(xz+y2 +22)ez = C

(x+y)/z + (y+2)/x = C

177

2(dx+dy) + (x +y)dz = 0
2yzdx +x(zdy +ydz) = 0 2. _ 2 _
yde—x2zdy + ydz = 0 yz =Cy, xz+x+2=0C
xﬂ:ﬂ_:éﬁ xl}_yu_ci' x2-z =C2
3 2 3
y'z x z y
3 dx dy dz 2 i 2 )
yz  xz  xy 32" =y =Cy, ¥y -2" =0y
g:d_yz i 2 x -y =0Cyq, Z=xy+x2y2+x3y5+C2
1 (x+y)(1+2xy+3x2y)
—L—:—d—l~—£ y = Cs2, xz+y2+z2zcgz
x _y2-22 2xy 9%z

dv _ dy _  dz x+2 +32=Cy, x +y +2 =0C,
3y-2z z-3x 2x -y

dx . dy - l}ulzu iy = o 2yt et -G
x(2y -z )  y(z -2x) z(x -y)

2dx — = 2dy — = 2dz _ B
x(z —-y) y(x -~z ) z{(y -x)



CHAPTER 23

Applications of Total and Simultaneous Equations

WHEN A MASS m moves in a plane subject to a force F, its acceleration continues to
satisfy Newton’s Second Law of Motion: mass x acceleration = force.

To obtain the equations of motion, when rectangular coordinates are used,
consider the components of the vectors force and acceleration along the axes.
The components of acceleration a, and a, are given by

and, denoting the components of the force by F, and F&, the equations of mo-
tion are

COMPONENTS OF F IN RECTANGULAR AND POLAR COORDINATES.

In polar coordinates, the corresponding equations are

d2,0 db. 2
£ - (= = F_, I
m{dt2 p(dt)} i m{ & Jf pdtz

where F, and F, are the radial and transverse components of force, i.e., the
components along the radius vector at P and a line perpendicular to it.

SOLVED PROBLEMS

- 1n e amily ol curves or ogona [¢] e surraces X + Y + z = .
1. Find the family of th 1 to th £ 2,024 -¢

Since x2+ 2y2+4z2= C 1is the primitive of the total differential equation
xdx + 2y dy + 4zdz = 0,
the differential equation of the family of orthogonal curves is

dx _ dy _ dz

(See Chapter 22, Problem 31.)
x 2y 4z

178



APPLICATIONS OF TOTAL AND SIMULTANEOUS EQUATIONS 179

d
Solving éx_ -9 » we have y = Ax?, Solving éz =2, we have z-= Byz.
x 2y 2y 4z

The required family of curves has equations y = Ax?, z = By2.

9. Show that there is no family of surfaces orthogonal to the system of curves

x2—y2 =ay, x+y= bz,

Differentiating the given equations and eliminating the constants, we have

2 2
- +
2xclx—2ydy=xyy dy, dx + dy xzydz.
2, .2
The first can be written as —2— - 9. Solving it for dv, dx - *% dy, and substi-
x2+-y2 2xy 2y

2 .2

tuting in the second, we have (ily— + Ddy = Y4, or ﬁ -4 .
z 2xy (x+y)z
Thus, the differential equations in symmetric form of the given family of curves are
dx _ody dz
x2 4 y2 2xy (x+y)z

Since the equation (x2+ yz)dx+2xy dy +(x+y)zdz = 0 does not satisfy the condition of
integrability, there is no family of surfaces cutting the curves orthogonally.

3. The x-component of the acceleration of a particle of unit mass, moving in a plane, is equal to
its ordinate and the y-component is equal to twice its abscissa, Find the equation of its
path, given the initial conditions x=y=0, dx/dt=2, dy/dt=4 when t=0.

d* d*
The equations of motion are — =y, 2 - o,
dt? dt?
d' d?
Differentiating the first twice and substituting from the second, i P A and
dt*  dit?
x = C1eat + Cge—at + Cgz cosat + C, sin at, where at = 2
dzx t t
Then, y = — = az(Clea + CQe-a - Cg cos at -~ C, sinat),
dt?
dx -
= = a(Cleat - Cze o Cg sinat + C, cos at),
t
dy 3 at -at .
and d— = a (Cye - Cye + C4 sinat - C4 cos at),
t
Using the initial conditions: Cy;+ Cy+C3=0, C4+Cy;-C3=0, C;-Cy+Cy= 52' Ci-Cy-Cs= % .
a
2 2
Then C;=-Cp=222%, ¢y-0, and €, - L22.
24> a’

The parametric equations of the path are:
Y Y
V2t T Y v

Y - 5(2-v2) V2 sin V21,

- €

y 4
" - 4 ¥
Y o= 243 \/{;(e‘/z_t —e ‘/Et) + $(2-v2) v/8 sin /2t.

x = {(2+V2) &i(e
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4. A particle of mass m is repelled from the origin O by a force varying inversely as the cube of
the distance o from O. If it starts at p=a, G =0 with velocity vo, perpendicular to the ini-

tial line, find the equation of the path.

2
The radial and transverse components of the repelling force are: Fp = % = ﬂ]%, Fe = 0.
P P
d’% db 2 mk? do db d%
Hence, n(—= - p(=)) = —, n(22 2+ p—=) = 0
dt2 dt 03 dt dt dt?
2 2 2
k e e
or y L8 @ K 5 pdZ, 94
dt2 dt p5 dt2 dt dt
Integrating 2), p2 glg = (Cy., When t=0, p=a and p‘d—e = vy; then C; = avy and ‘ZQ - o
dt dt dt 2
yej
2 2 2 2
Substituting for 3—9 in 1), (—i—f = 2%, k—} Multiplying by ZZL:.
t dt ,05 0
do d% ol v k2 dp o2 vl + K
2&-—2: 2—55 and (C—i?) = _—T+CQ.
dt P P
2 2 2
When t=0, P=a and d;o =0; then C, = u and
dt . a2
do 2 2 2 2 1 1 2 2 2 ,o2 a®
(=) = (avg +R)(=-=) = (avg + k)
dt P a?p?
2 2 22 ,2 2,2 2 /2 2 2
Dividing by ((di?)2 - L=, (@) - L@tk ipz(p ~% ) and do__ _ Ya %o ALY
t P do a vg P ,02--a2 a Yo
/2 2 2
Integrating, al arc secg = —-‘L;t—k— 8 + Cs.
a vp
Va2v2+k2
When t=0, p=a and §=0; then C3=0 and p = asec—a%——— a.
)
5. A projectile of mass m is fired into the air with initial velocity vo at an angle 8 with the

ground. Neglecting all forces except gravity and the resistance of the air, assumed propor-

tional to the velocity, find the position of the projectile at time t.

In its horizontal motion, the projectile is affected
only by the x-component of the resistance., Hence,

b

d* dx dx d° dx
1) nti . kE . g% or 2 Rk Z.

dt? dt dt dt2 dt

Kv
In its vertical motion, the projectile is affected Vo m

by gravity and by the y-component of the resistance.
Hence,

2 2 9\ mg x

d

2) md——=—mg—mk Y or d—:—g—kd—y-- 0
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1 -kt
Integrating 1), % = - kx + Cy and x = 3 Cy + Che .
.- 1 1
Integrating 2), él = ~ gt -ky+ K, and y = EK1 + Kpe Rt g(=t - —),
dt k k k2
. s s dx dy .
Using the initial conditions x=y-=0, T Yo cos 0, = = vo 8in & when t =0:
. - 1 . . 1 . 1
Cy = vg cosé, €, =~ 7 o cos 8; Ky = v sinf, K; = - P vo sinf - — &

k

kt

Thus, x = ;l(vo cos O (1 ~e ), y = El{(% + vy sin ) (1 ~ e_kt) - gt}.

Two masses, m, and m,, are separated by a spring for which k = k, 1b/ft
and m, is attached to a support by a spring for which k& = k, 1b/ft as in
the figure, After the system is brought to rest, the masses are displaced
a feet downward and released, Discuss their motion.

x
Let positive direction be downward and let x, and x, denote the dis- 1{
placement of the masses at time t from their respective positions at rest.
The elongation of the upper spring is then x, and that of the lower spring
is x,-x4. The corresponding restoring forces in the springs are
—kyxy + ko(xg—2x4) acting on m, X2 {
and ~Ro(xo=~2xq) acting on m,.

The equations of motion are

d’ d’
my 22 = Ryxy + kg(xp —xq) and m, =22 = - ko(xy —xy)
2 2
dt dt
or 1) [m1D2+ (ke + ky)]xy — koxy = 0 and 2) (ran)2+Ie2)x2 - kpxy = 0.

Operating on 1) with (m2D2+k2) and substituting from 2),
2 2 2 2 2 2
(meD" + k) (mD™ + kg + kg)xy — ko(maD" + kg)xy = (moD™ + ko) (myD” + ky+ kp)xy — kpxy = 0

or (Du s (13.1+_Ie2+ k_,‘,)Dz . kik,

Jx; = o.
my mg mymy

Denoting the roots of the characteristic equation by tia, +if3, where

o2 pY - %_(M+EZ) i/(u+k_z)2_4k1kz ,
2

my my my mymy
ot s . »
Xy = Ciew' + Cye tet + Cge“?t + Cse st and
2 2
1 _ . _; a . i3
Xy = —(m1D2+ ky+ ky)xy = M(Clemt+c2e w.t) + k—it—Mﬁ—(Cget'Bt+C4e ¢ t)
ko kg k,
= #(CN«’Mt + Cge—mt) + v(Csewt + C,,e-“st).
Using the initial conditions =x;=x,=a, ix—‘ = & =0 when t =0,
dt dt
av-1 a lzj_—m,_,ﬁ2 a ky— ma?
Ci = € = —(=——=) = —— (2 and Ca.= Cp = - = (FazMd,,
. 2V~-u 2my a2—,82 2m, ag—ﬁg
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A uniform shaft carries three disks as in the ad-

joining figure, The polar moment of inertia of the

disk at either end is I, and that of the disk at

the middle is 4I. The torsional stiffness constant

of the shaft between two disks (the torque required i Z
to produce an angular displacement difference of 2yt
one radian between successive disks) is k. Find

the motion of the disks if a torque 27Tysinwt is

applied to the middle disk, assuming that at t=10

the disks are at rest and there is no twist in the

shaft.

At time t, let the angular displacement of the disk at either end be 0, and thatof the disk
at the middle be &,. The differences of the angular twists of the ends of the two pieces of
shaft, from left to right, are 8,~6, and &,~ 6,. The restoring torques acting on the disks
are k(9,~0;), k(8,-6,) - k(6,~06,) and -k(8, - 8,) respectively. The net torque acting on a
mass when rotating is equal to the product of the polar moment of inertia of the mass about
the axis of rotation and its angular acceleration; hence the equation of motion of the middle
disk is
d%6,
dt?

1y 41 = k(O1~05) - k(G;-64) + 2Ty sinwt or (2ID2+ kY8, = kO + Tysinwt

and that of either end disk is

! 4%,

2)
dt?

= k(Oy-6y) or  (ID*+ k)6, = kb,

Operating on 2) with (ZIDZ+ k) and substituting from 1),
2 2 2 2 .
(2ID"+ RYUID + k)G, = kQID"+k)B, = kG, + Tok sinwt, or
2 2.2 .
3) D@ID" + 3k)B; = Tyk sinwt,
The characteristic roots are 0, 0, at, —at, where & = 3k/21, and

Tok sinwt
Iw2(21a)2 - 3k)
Tok

2I2w2(a)2 - az)

il

4) 8, Cy + Cat + Cgcosat + Cysinat +

Cy + Cyt + Cgcos at + Cusin at + sin wt.

il

From 2), 0, (% D+ 16, and

2
5) B = Cy+ Cat + Ca(l- zaz)cos at + Ca(1 - { a?ysin at + M—I—— sin wt.
k k 22 2 2
2I'w (w - a”)
From 4) and 5), we obtain by differentiation,
d
4" —91 = Cy - Cga sin at + C4a cos at + ——L— cos wt, and
dt 2 2 2
2I'w(w” - a%)
d _ 2
51 & = Cy - Caa(l - { az)sin at + Cya(l - £a2)cos at + M cos wt,
dt k k 2 2
2I'w(w” -~ a®)
d6; - dBs

Using the initial conditions @,=6,=0, —= =0 when t=0, we have C, + C5 = O,

dt dt
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- 2
Bk o and Gy Caai- Lty TkoBeT

2% (? - a?) 2% (w? - a?)
Toa) C To ,
31w

Cy + Ca(1- %az) =0, Cp+ Cea+

Then C, =Cs =0, Cq=-

"

3la(w?-a?)

2 . ; 3 ; 3 .
6, - T95_)+ a”sinwt wsmat) _ ZE(E . a smc:t—w s1na.t)’ and
3I a)z(wZ—a2) a(w2 - a2) 3 @ aw (a)z—a'z)
Ty (o sinwt - w sin at
B, = 64 - o ( ).
2Ia(cu2—a2)
8. The fundamental equations of a transformer are
diy di . dt di .
1 ~1 4 L, =2 4+ Ry, =0, 2y M =2 + L, =X + Ryi, = E(t),
U7 2 dt 2z M tdt e

where i,(t) and i,(t) denote the currents, while M, L,, L,, Ry, R, are constants.
Assuming M2 < L4L,, show that

2

A Ll -3 (R1L2+RQL1)ZL + RBoiy = RoE(t) + LE'(1),
dt t
2.d%i di
BY (LyL,-M5) 22 + (RyLp+RoLy)—2 + RyRpi, = - ME'(1).
dt dt
Solve the system when E(t) = E5, a constant.
Differentiating 1) and 2) with respect to t,
2. 2. . 2. 2. .
3)M%1+L2d;?+ﬂ2d_l—2: , 4)Md;2+L1d;1+Rid—li=E’(t).
dt dt dt dt dt
Multiplying 3) by M and 4) by L,, and subtracting,
2.d’ di di
(Lily -MHEE o poL, &2 _Mr, &2 - LE' ().
dt2 dt dt
Substituting for Z-% from 2), we obtain A).
Multiplying 3) by Ly and 4) by M, and subtracting,
2. d% di di
(Lilo-MHE L2+ R,L, 222 _ Ry ZEE = _ME'(1).
di? dt dt

Substituting for 3—11- from 1), we obtain B).
t

2.
d1y
2

dt

When E(t) = Ey, equation A) is (L1L2—M2)

+ (R1L2+RQL,_)§-:-£ + RyRoiy = RoFo. -

2 2
Leta, 8 = 3 “(Rilg + Roly) £ /(731142 “Roly) + 4M Rl denote the characteristic roots,

LiL, - M?
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. t B8t
Then ia = Cie® + Cpe’ + EQ-

1

To find i,, multiply 1) by M and 2) by L;, and subtract to obtain

MRyi, = (L1L2—M2)g-;-l + LoRyiy - LaEo.

Then s = [yl ~MD @Cye™ + BCoe%T) + LoRy(Cre®™ + Coe®H 1.

i 2

2 .
Note that since M° < L,L,, both ¢ and (3 are negative. Then after a time, the primary cur-
rent becomes approximately constant = En/R, and the secondary current i, becomes negligible.

9. A moving particle of mass m is attracted to a fixed point O by a central force which varies
inversely as the square of the distance of the particle from O. Show that the equation of its
path is a conic having the fixed point as focus.

Using polar coordinates with O as pole, the equations of motion are

2 2 2 2
d d6 K mk d do k
1 m[—§ - 'O(E)z] = - —2 = = __.; or ——5 - p(d—;)z = - -—2 ,
dt P P dt Iej
2 2
do d& d°6 do dof d6
) m[2 L2+ p—=1]1=0 or 2L -+ p— = 0.
dt dt d12 dt dt dt2
d  2df 2 df
F s o =) = d — = Cy.
rom 2) dt( dt) 0 an T 1
Let o = E Then q’ﬁ = C._l = C1U2, dﬁ = d;O d_g = - .i dﬁr d_@ - - C1 g N and
P 0? dt do dt o2 db dt dé
d? d do d%o db 2 d
—_— = -Cy ) g —— = —Cf —— . Substituting in 1) and simplifying, we have
di2 dt do d6° dt 4o
dza k2
1') — * o = v a linear equation with constant coefficients, Solving,
dé 1
2 2,2
o = C,cos(0+Cy) + K or o = 1 - Cy/k )
c? K’ C,C2
1 Z+ Cycos(8+Cy) 1+ 222 cos(6+Cy)
2 2
Cy k
. 2,2 2,,2 . l
Writing C,/k" = [, |C2C,/k | = e, Cg=a, this becomes p = —————————, the equa-

11 ecos(f+a)

tion of a conic having O as focus.
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SUPPLEMENTARY PROBLEMS

Find the family of curves orthogonal to the family of surfaces x2+ y2+ 212 = C.

Ans. y = Ax, 2z =By2

Find the family of surfaces orthogonal to the family of curves y = (Cx, P y2+ 22° = Co.

Ans. z = C(x2+y2)

A particle of mass m is attracted to the origin O by a force varying directly as its distance
from O, If it starts at (a,0) with velocity vg in a direction making an angle 6 with the hor-
izontal, find the position at time t.

vy cos B vo 8in 6

Ans. x = acoskt + sinkt, y = -——k——-—sinkt

The currents i,, i,, 1 = 14 +1, in a certain network satisfy the equations

200 + 0.1222 - 5, 4i + iy + 10009y = 1.

Determine the currents subject to the initial conditions 1t = 14 = i, = 0 when t = Q.

d d° d
Hint: Use iy = 91 to obtain =9t + 240 291 + 40,0009, = 0.
dt di2 dt
A 1 - - - .
Ans, 14 = - —e lZOtSin 160t, 1, = %(1 -e€ 120 cos 160t) + é—e 12°t51n 160t

Initially tank I contains 100 gal of brine with 200 1b of salt, and tank II contains 50 gal
of fresh water. Brine from tank I runs into tank II at 3 gal/min, and from tank II into tank
I at 2 gal/min., If each tank is kept well stirred, how much salt will tank I contain after
50 minutes?

Hint: g, + g, = 200, 99, _ 29, _ 3% Ans. 68,75 1b

dt 50+t 100 -t



CHAPTER 24

Numerical Approximations to Solutions

IN MANY APPLICATIONS it is required to find the value y of y corresponding to x =
xo+h from the particular solution of a given differential equation

D) y' = f(x,y)

satisfying the initial conditions y =y, when x=x,. Such problems have been
solved by first finding the primitive

2) y = F(x) + C
of 1), then selecting the particular solution
3) y = &(x)

through (x,,y,), and finally computing the required value y = g(xo+h).

When no method is available for finding the primitive, it is necessary to
use some procedure for approximating the desired value. Integrating 1) between
the limits x=x5,y =y, and x=x,y =y, Wwe obtain

x
4) y = yo * f f(x,y)dx.
Xo

The value of y when x =x,+h is then

+h
5) y = yo + fix,y)dx.

%o

The methods of this chapter will consist of procedures for approximating 4)
or 5).

PICARD’S METHOD. For values of x near x =x,, the corresponding value of y = g(x)
is near y, = g(x0). Thus, a first approximation y, of y =g(x) is obtained by
replacing y by yo in the right member of 4), that is,

x
Y1 = Yo t f f(x,yo)dx.
X0

A second approximation, y,, is then obtained by replacing y by y, in the right
member of 4), that is,

2%
Yo = Yo 1t f f(x,y,)dx.
X0

Continuing this procedure, a succession of functions of x

Yo, Y1) Ya, Ya, <+

is obtained, each giving a better approximation of the required solution than
the preceding one. See Problems 1-2.

Picard’s method is of considerable theoretical value. In general, it is
unsatisfactory as a practical means of approximation because of difficulties
which arise in performing the necessary integrations.

186
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TAYLOR SERIES. The Taylor expansion of y = g(x) near (xq,,Ys) 1is
6) ¥ = 8(x0) + (x-Xo) £'(x0) + é(x-xofg"(xo) + é(x-xofg'”(xo) Foaeennn

From 1), ¥y’ = g'(x) = f(x,y); hence, by repeated differentiation,

of , af dy _ of  ,Bf

" = " = —_— = — + f—— ’
Y g"(x) Ix Ay dx dx Ay
d ,of df 2 3., of of
" — 1t — Iy Sl f-— — L 4 f-——— 2 f——-—)
n Y £ = G5 T SRS TS
2 2 2
- of  of of | 2f ot f(éf)2 . 22t ete.
Jx?2 9x Oy Oxdy oy 8y2
2 2 2
f
For convenience, write p = E‘—f. qg = Ef. r = 9—f, s = 9 » t = §—£ and
ox 3y ax? %Ay 2
let f,,p0,90,+++ denote the values of f,p,q,--+ at (x0,¥0). Substituting in

6) the results of 7) and evaluating for x =xy,+h, we obtain

8) ¥V =y, + hef, + %hz(po-rfo-qo) + éhB(ro+-po-qo+-2fo-so+~fo-q§~+f§-to)

This series may be used to compute y; it is evident, however, that addi-
tional terms will be increasingly complex. See Problems 3-4.

FIRST DERIVATIVE METHOD. A procedure involving only first derivatives, that is,
using only the first two terms of Taylor series, follows.

d

As a first approximation of y, take the first two terms of 8)
Y & Yo + hf(x0,¥0)-

To interpret this approximation geometrically, let PQ be the integral curve
of 1) through P(x,,y,) and let Q be the point on the curve corresponding to
x=xo+h. Then y = #Q = y,+k. If 6 is the angle of inclination of the tangent
at P, then from 1) tan 6 = f(x,,y,) and the approximation

Yo + hf(xg,y0) = LP + htan8 = MN + NA = NA.
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To obtain a better approximation, let the interval L¥ of width h be divided
into n subintervals of widths h,,hy, ... h,. (In the figure, n = 3.) Let the
line x =x,+h, meet PA in R(xo+h,,yotky) = (x1,¥1). Then

Yi = Vo t ki = yo ¢t hy f(xo,¥0) -

Let RS be the integral curve of 1) through R, and on its tangent at R take T
having coordinates (x,+hg, yi+ky) = (x,,¥2). Then

Y = Y1 t ko = yi hy f(xq4,y,) = Yyt hy f(xg+hy, yothy o).

After a sufficient number of repetitions, we reach finally an approximation
#C of MQ. It is clear from the figure that the accuracy will increase as the
number of subintervals is increased in such a manner that the widths of the
subintervals decrease. See Problems 5-6,

RUNGE’S METHOD. From 5) and 8) we obtain

xo+h
9) k =Y¥V-yo = £(x,y)dx
%o
. 1,2 1,3 2 2
= his+ ’éh (Po + fo%) + éh (ro + podo + 2fos0 + fodo + foto) + =vrereet

Assume for the moment that the values y,,y;,¥. 0f ¥y = £(x) corresponding to
Xo, Xy = Xo +3h, x,=x0+h are known. Then by Simpson’s Rule,

l

Xyt e
10) k ‘j f(x,y)dx = ?[f(xO Vo) + 4f(xq+ 5h, yi) + f(xs+h, ya)l.
X0 D

Actually, only y, is known. Runge’s Method is based on certain approxima-
tions of y, and y.,,
Y1 & Yo t shf(xs,¥0) = Yo t ‘Eths

Yo & Yo t+ hf(xsth, yothfy),

chosen so that when k, found by 10), is expanded as a power series in h the
first three terms coincide with those of the right member of 9). Thus 10) be-
comes

11) k& =~ g{fo + 4f(xq+ sh, yo+ shfy,) + f{xgth, yvot+hf(xy+h, yothfy)1}.
These calculations are best made as follows:
k, = hf,, k, = hf(xo+h,yo+ky), kg = hf(xoth,ys+k,), k, = h[(xo+|§tho+|§k1)»
k » é—(k1+4k4+k3).
Note. Since the approximation of k obtained here differs from the value as

given by 8) in the terms containing powers of h greater than 3, the approxi-
mation may be poor if f, > 1. See Problems 7-11.

KUTTA-SIMPSON METHOD. Various modifications of the Runge Method have been made by

Kutta. One of these, known as Kutta’s Simpson’s Rule uses the following cal-
culations:

ky = hf,, k2:hf(x0+%hIYO+%k1)r ks:hf(xo+|§h,Yo+|§k2)y ky = hf(xoth,yotks),

k =~ %(k1-+2k2 + 2k, + ki), See Problem 12.
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SIMULTANEOUS FIRST ORDER DIFFERENTIAL EQUATIONS. Approximations to that solution
of the simultaneous differential equations
Loty L= ey

for which y =y, and z = z, when x =x,, may be obtained by the use of Picard’s
Method, Taylor Series, Runge’s Method, or Kutta-Simpson Method. The necessary
modifications of the formulas given above are made in Solved Problems 13-14.
Further extensions to three or more simultaneous first order equations may be
readily made.

DIFFERENTIAL EQUATIONS OF ORDER n. The differential equation

d nel
——}; = £y, vyt ey )
dx
dy d’
where y/ = = y! = ay, .., may be reduced to the system of simultaneous
Ix dx?
first order equations
dy dy, dyn_, dyn .y
_— = , —— = y Trseaa , —_— = -1 T = f X,¥y, , et R - N
Te Vi e Yo T Yne1 e (X, Y, Y1,¥2 Yno1)
When initial conditions x=x5, Y=¥o, ¥' = F1do» Y =Fsdos* ¥V =(¥no1 Do
are given, the methods of the preceding paragraph apply.
d’ d
EXAMPLE. The second order differentfial equation ——Z + 2x;y ~4y =0 is equiva-
dx
lent to the system of simultaneous first order differential equations
&y =z, dz 4y ~ 2xz. See Problems 15-16.
dx dx

SOLVED PROBLEMS

1. Use Picard’s Method to approximate y when x= 0.2, given that y =1 when x=0, and dy/dx=x~y.

Here f(x,y) = x~y, x0=0, yo =1. Then

x x
1
Y1 = Yo + ‘/; flx,y0)dx = 1+ ‘/0‘ (x -Ddx = E3cz—x+ 1,
% X 1 2 1 3 2
= + , ¥ )dx = 1+ -= 2-Ddx = - = - x + 1,
Yo Yo ‘g f(x,y1) fo ( 5% * ) gx x
x 1 5 2 1w 13 o
Ys = Yo * f flx,y.)dx = 1+ f (=x" -x +2x-1)dx = —x - =x" + x° - x + 1,
0 0 6 24 3
% x 5 4 3
1 1 3 2 x x x 2
= + (x, de = 1+ — —x + =x"=x + 2 -Ddt = - — + ——=+2x —x+1,
Ya Yo fof ¥a) fo( o 3 ) TR TR
1 b 1 5 1 1 3 2
= —— X - — + —x - - x + - + 1, tsres s,
e 720 0 12 o

When x=0.2, yo=1, y:=0.82, yo=0.83867, y5=0.83740, y,-0.53746, y5=0.83746.
Thus, to five decimal places, y = 0.83746.
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Note. The primitive of the given differential equation is y = x -1+ Ce™, The particular

solution satisfying the initial conditions x=0,y=1 is y = x=1+2 . Replacing e by its
3 1 1 5 1 [

MacLaurin series, we have y = 1—x+x2—lx 4+ = x - —=x’ 4+ =—x + eeeccevsee, Upon
3 12 60 360

comparing this with the successive approximations obtained above, it seems reasonable to sup-
pose that the sequence of approximations given by Picard’s Method tends tothe exact solution
as a limit.

Use Picard’s Method to approximate the value of y when x=0.1, giventhat y =1 when x =0, and
dy/dx = 3x+y?,

Here f(x,y) :3x+y2, %5 =0, yo =1. Then

2
x +x+ 1,

[ ARV

x 2 X
Yy = yo+f0(3x+yo)dx = 1+_f(; (3x+ )dx =

x
1+ f (gxu+3x§+4x2+5x+1)dx = —9—x5+§xu+ il-x5+-531c2+x+1,
0o 4 20 4 3 2

i

x
2
Y2 = Yot j; (3x + y1)dx

x
8 -
yg = 1+ f (_8£x10 + zng + —14—1x + lzJc7 + l-15—‘Jc6+ ——136x5 + ___125;» + g§;\:5 F6x°+ 5%+ 1ydx
0 400 40 80 4 180 15 12 3

81 11 27 10 47 9 17 8 1157 7 68 ¢ 25 5 23 4
= —x o+ b X A =X F ——X + —X + —X + —X

3 5 2
— + 27 + =x + x + 1.,
4400 400 240 32 1260 45 12 12 2

When x=0.1, yo=1, yi=1.115, y,=1.1264, ys=1.12721.

d
If Ey = x -y, use the Taylor Series Method to approximate y when:

a) x=0.2, given that y =1 when x=0.
b) x=1.6, given that y=0.4 when x =1,

a) Here y = g(x), g(xo) = 1, y' = g (x) = -y", g"(x0) = -2,
i 1 1
y =g =x-y, gl (%) = -l g = o gV = 2
}’" - g”(x) = 1_),!, g"(xo) =2, yv - gv(x) - _yiv' gv(xo) - -2, etc.,
. 2 1 3 1 1 5
and equation 6) becomes y = 1 -x +x — =x" + —x = — X" 4 ceccrees Then
3 12 60

- 1 1
y = 1-0.2+0.04 - 5(0.008) + 1—12(0.0016) - 66(0.00032) + «++ 2 0,83746. (See Problem 1.)

"

0.4, g (xo) = ~0.4, 81v(xo) = 0.4, etc,,

by Here g(xo) = 0.4, g'(xo) = 0.6, g"(x0)
and equation 6) becomes
h? h Kt h° h

y = 0.4+ 0,6h+ 0.4 —~0.4—+0.4—~-0.4——+0.4_——+ covver- . where h = x —xo.
2 6 24 120 720

When x = 1.6, h = 0.6 and

¥ = 0.4 + 0.6(0.6) + 0.4(0.18) ~ 0.4(0.036) + 0.4(0.0054) - 0.4(0.000648) + 0.4(0.0000648)
+ cessercnen

~ 0.81953.



NUMERICAL APPROXIMATIONS TO SOLUTIONS 191

4. 1f d_y = 3x+y2, use the Taylor Series Method to approximate y when:
a) x=0.1, given that y =1 when x =0.
by x=1.1, given that y = 1.2 when x =1,
a) Here (x0,¥%) = (0,1), g(x5) = 1,
y'o= g'(x) = 3x+y? g' (%) = 1,
yro= g"x) = 3+2yy, g"(x0) = 5,
i i 2 "
yUo= gt = 2y + 2y, g"(xo) = 12,
ylv _ giv(x) = Gylyl+ 2}’)’"’, giv(xo) = 54,
Y= g = 6(y”)2+8y’y”+2yy1v, g' (xg) = 354, and 6) becomes
5 2 309 4 177 5
= 1+ + = + 2x7 + = 4 — + serecestanes, = .1,
b x 21 41 0 x When x = 0.1
Yy = 1+0.1+0.025+ 0.002 + 0.00022 + 0.00003 + +«+-- + a 1,12725. (See Problem 2.)
by Here (x0,y0) = (1,1.2), g(xo) = 1.2, g'(xp) = 4.44, g"(xo) = 13.656, g (x0) = 72.202,
glv(xo) = 537.078, g’ (xo) = 4973, sesveresee and 6) becomes
2 3 4 )
h h h h
y = 1.2 + 4,44h + 13.656 — + 72,202 — + 537.078 — + 4973 —— + (EERERRE ,
2 6 24 120
where h = x —xo. When x=1,1, h = 0.1 and

y

5. Use the First Derivative Method,
when x =1 and dy/dx = 3x+yZ.

Here h =0.1 and we take hy =hy,=hg=h, = 0.025.

1.2 + 0.1(4.44) + 0.01(6.828) + 0.001(12.03) + 0,0001(22.4) + 0.00001(41) + -+

x 1.7270.

with n = 4, to approximate y when x = 1,1, given that y=1.2
See Problem 4b,

We seek yo+kyi+hky+kgthk, = ya+kg.

a) (%0,¥) = (1,1.2), hy =0.025, f(x0,¥%) = 4.44, ky = hyf(x0,¥0) = 0.111
Y1 = Yo + kg = 1.311.

b) (x1,y1) = (1.025,1.311), hy, = 0.025, f(x1.¥1) = 4.7937, ks = hof(x4,y1) = 0.1198;
Y2 = yi + ks = 1.4308.

©) (xg,¥2) = (1.05,1.4308), hy = 0,025, f(x3,¥2) = 5.1972, kg = hgf(xs,y5) = 0.1299;
Yo = Y2 * kg = 1.5601.

d) (x3,¥3) = (1.075,1.5607), hs = 0.025, f(xs,¥s) = 5.6608, ks = hef(xg,ys) = 0.1415;
Y n ys + k, = 1.7022,

H. Use the First Derivative Method,
%

dy 2
when x =1 and £ = (x“ +2
dx ”)

Here h = 0.4 and we take h, =

with n = 4, to approximate y when x = 1.4, given that y=0.2

hy=hg=h, = 0.1.

a) (%5,¥0) = (1,0.2), hy = 0.1, f(x0,¥) =vV1.4 = 1.183, ky = hyf(x5,¥5) = 0.1183;
Y1 = Yo + ks = 0.3183.

b) (x3,¥1) = (1.1,0.3183), hy = 0.1, f(xy,y;) = 1.359, k, = hof(xy,¥1) = 0.1359;
Yo = yi + kyc = 0.4542,

€) (x2,¥2) = (1.2,0.4542), hy = 0.1, f(xo,¥2) = 1.532, ky = hyf(x,,¥5) = 0.1532
Ys = Yo+ kg = 0.6074.
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d) (x3,¥s) = (1.3,0.6074), hy = 0.1, flxg,ya) = 1.704, k4 = haf(xa,¥5) = 0.1704;
Yy &~ ys+ ks = 0.7778.

Use Runge’s Method to approximate y when x = 1.6, given that y =0.4 when x =1 and dy/dx = x -y.
(See Problem 3b.)

Here (x0,¥o) = (1, 0.4), h = 0.6, fo = 1-0.4 = 0.6. Then
ky = hf, = 0.36,

ky = hf(xoth, yo+ks) = 0,6[(1+0.6) -(0.4+0.36)] = 0.504,

ka = hf(xo+h, yo+ky) = 0.6[(1+0.6) —(0.4+0.504)] = 0.4176,

ka = hf(xotsh, yorsk,) = 0.6[(1+0.3)-(0.4+0.18)] = 0.432,

kR x -é(kﬁ 4ky+ ky) = é[0.36+4(0.432)+0.4176]:0.4176. and ¥ = yo + k % 0.8176.

The difference between this approximation and that found in Problem 3b arises from the fact
that h=0.6. In finding the value of y when x = 1.1, (thatis, h=0.1), the Taylor series gives
y = 0.4+ 0.6(0.1) + 0.4(0.005) — 0.4(0.00017) + 0.4(0.000004) = <" IERRES ~ 0.46193,
while by Runge’s Method

ky = 0.1(0.6) = 0.06, k, = 0.1(1.1-0.46) = 0.064, ks = 0.1(1.1-0.464) = 0.0636,

k, = 0.1(1.05~-0.43) = 0.062, k=X é(kl + 4k + ky) = 0.06193, and y & 0.46193.

Use Runge’s Method to approximate y when x =0,1, given that y =1 when x =0 and dy/dx = 3x+ y2.

Here (x0,Y¥o) = (0,1), h =0.1, fo = L Then
ky = hfs = 0.1,

k, = hf(xoth, yotky) = 0.1[30+0.1) +(1+0.D%] = 0.151,
ke - hf(xoth, yotks) = 0.1[3(0+0.1) +(1+0.151)°) = 0.16248,
ke = hf(xorbh, yosbky) = 0.1[3(0 +0.05) + (1+0.05)°] = 0.12525,
1 _
ko~ E(k1+ dky+ ky) = é[0.1+4(0.12525)+0.16248] = 0.12725, and y = ys + k =& 1.12725,

(See Problems 2 and 4a.)

Use Runge’s Method to approximate y when x = 1.1, given that y=1,2 when x=1 and dy/dx = 3x + yz.

Here (x0,¥0) = (1, 1.2), h =0.1, fo = 4.44, Then
k, = hfo = 0.444,

k, = hf(xgth, yotky) = 0.1[3(1+0.1)+ (1.2+0.444)°] = 0.600274,
ky = hf(xoth, yotks) = 0.1[3(1+0.1)+ (1.2+0.6002D°] = 0.654097,
ky = hf(xo+sh, yot+sky) = 0.1[3(1+o.05>+(1.2+0.222)2] = 0.517208,
1
k=~ g(kﬁ dk, +kg) = é[0.444+4(0.517208) + 0.654097) = 0.527822, and
y = yo+ k x 1.727822.

Comparing this result with that obtained in Problem 4b, it is to be noted that the approx-
imation is better than might have been expected in view of the value fo = 4.44.



NUMERICAL APPROXIMATIONS TO SOLUTIONS

193

10. Use Runge’s Method to approximate y when x =0.8 for that particular solution of dy/dx = vx +y
satisfying y =0.41 when x = 0.4,

Here (xo._)’o) = (0.4, 0-41)1

11. Solve Problem 10, first approximating y when x =0,6 and then, using this pair of values

hfs = 0.36,

= hf(xg+h, Yot+ky)

hf(xo+h, Yot+ks)

h = 0.4,

fo =v0.81 = 0.9, Then

= 0.4v1.57 = 0.50120,
= 0.4v1.7112 = 0.52325,

hf(xo+sh, yotsky) = 0.

4v1.19 = 0.43635,

%(k1 + 4k, + kg)y = 0.43811, and Yy = yo + k

(x0,Y0), approximate the required value of y.

First, (xo,¥o) = (0.4, 0.41),

kq

k=~

Next, take (x0,¥0) = (0.6, 0.61028),

=~
&2

12. solve Problem 10

Here (xo,¥o)

1]

1

hfo = 0.18,
hf(xoth, yo+kq)
hf(xoth, yotks)
hf(xo+3h, yotzky)

h =0.2,

fo = v0.81 = 0.9. Then

= 0.2/1.19 = 0.21817,
= 0,2/1,22817 = 0.22165,

= 0.

2

“y

X 0.84811.

-é(le1 + 4k, + kz) = 0.20028, and y = yo + k % 0.61028.

hfo = 0.22002,
hf(zoth, yotki)
hf(xoth, Yotksy)
hf(xotsh, Yo+zkye)

é(kl ¢ aky + ko)

0.2/71. 63030
0.2v1.66565 = 0.25812,

1"

0.255317,

= 0.2v1.42029 = 0.23836,

= 0.23860, and Y = yo + kK

using the Kutta-Simpson Method.

= (0.4, 0.41), h =0.4,

hfo = 0.36,
hf(xotsh, yot+zky)
h f(xg+zh, Yotzks)

h f(xo+h, yotkyz) =

é(kl + 2k, + 2kg + ky) = 0.43893, and y =

fo =v0.81 = 0.9, Then

= 0.4v1.19 = 0.43635,

= 0.4v1, 22817
0.4/1.65329 = 0.51432,

&}

0.44329,

h = 0.2, Then fg =v1.21028 = 1.1001,

~  0.84888.

Yo + k

~
~

0.84893.

as

13. Use Picard’s Method to approximate y and z corresponding to x =0,1 for that particular solu-

tion of

dy _
- f(x,y,2)

satisfying y =2, z=1 when x =0,

=x+z,

L ey = xoy’
dx rJ
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For the first approximations,

X % R

Yy = Yo t fo flx,¥o,20)dx = 2+ fo(1+x)dx = 2+ x + 3x,
X x 2

zy = zg + jo g(x,¥o,20)dx = 1+ /(; (-4+x)dx = 1 - 4x + 2x .

For the second approximations,
x x 3 1
_ - N .2 - 32, 13
Yo = Yo +f0j(x,y1,zl)dx 2+ fo(l—3x+2x ydx 2+ x 5% + Gx,

—
+

% x
2 = I t f08(1,3’1,21)dx f;)(—4—3x—3x2-x3—ﬁxu)dx

= 1 —496—§9c2 —xa—lxq— ix5.
2 4 20
For the third approximations,
% %
2 5 14 1 5
Ys = yo+£)f(x,y2,22)dx 2+j;)(1—3x——x i e Ydx
= 2 +x-§x2——-x5——x“——1—Jc5 —be,
4 20 120
x %
B .2 T3 31y 15 1 %
g = zo+f0g(x,y2,zi)dx = 1+ J;(—4—3x+ox +§x «Ex +§x - 35 Ydx
5 3 1
= 1 - 4x - §x2+ 315+ lxu— 2x5+ ——xo— —-1—x7,
2 3 12 60 12 252
and so on.
When x = 0.1: y, = 2.105 2y = 0.605
yo = 2.08517 z5 = 0.58397
ys = 2.08447 zg = 0.58672.

14. Use Runge’s Method to approximate y and z when x = 0.3 for that particular solution of the
system % = x4z = f(x,y,2), dé =y - vz = g(x,y,z) satisfying y=0.5,2=0 when x =0.2.

Here (xOvy01ZO) = (002' 0'5’ 0): h = 0-1, fo = Ou2, 8o ~ 0.5. Then

ky = hfs = 0.02,

ly = hge = 0.05,

ky, = hf(xoth, yotks, Zo+ly) = 0.1(0.3+/0.05) = 0.05236,

l, = hgxo+th, yo+ks, zo+ly) = 0.1(0.52-v0.05) = 0.02964,

ks = hf(xo+h, Yo+ka, zotly) = 0.1(0.3+ /0.02964) = 0.047216,
la = hglxo+h, Yotks, zo+lz) = 0.1(0.52 -1/0.02964) = 0.034784,
ke = hf(xg+sh, yo+sky, zo+ly) = 0.1(0.25 +V0.025) = 0.040811,

It

la = hg(xotsh, yot+zki, 2ot+zly) 0.1(0.51 - /0.025) = 0.035189,

o S(kv ko ko = o0.03841 L% Sy v 4lo+ Ly = 0.03739,

and y = ¥, +k x 0.53841, zZ = z,+ 1 % 0.03759.

15. Use the Taylor Series Method to approximate the value of & corresponding to t=0.05 for that
d?0

particular solution of — = _8sin 8 satisfying & = 7/4, (g =1 when t=0.
dt
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The given differential equation is equivalent to the system

%? = ¢ = f(t,6,%), %% = -~ § sin 8 = g(t,6,¢)
with initial conditions t =0, &=7/4, =1, Then
Z-?:Q’:qﬁ gl =1 ¢' = -8sind by = —4V2

6"= ¢ Gl =-4/2 ¢" = -86cos§ P =-4/2

gl " G- -a/3 " = 88 sin 6 - 80" cosb

67 -9" 67 - a3 +32 ¢o = 4/3(1+ 4V2)

2 3 #

and O = w4 o+t - 4/552— - 4/536— + 4(8+/‘2‘)-;-Z b oeeeeeeeses = 0.82821

16. Use the Kutta-Simpson Method to approximate y corresponding to x= 0.1 for that particular so-
2
lution of &Y + 2c® _ 4y - o satisfying y=0.2, &= 0.5 when x=o0.
dx? dx dx

The given equation with initial conditions is equivalent to the system

Z—Z =27 flx,y,2), % = 4y -2z = g(x,¥,2)
with initial conditions x=0, y=0.2, z=0.5.

Here (xg,¥0,20) = (0, 0.2,0.5), h =0.1, fo =0.5, g = 0.8  Then
ky = hfs = 0.05,
ly = hgy = 0.08,
ko, = hf(xotsh, yo+sky. zo+3ly) = 0.1(0.54) = 0.054,
Iy = hg(xo+th, Yotiky, Zo+ily) = 0.1(0.846) = 0.0846,
kg = hf(xg+dh, yotiko, zo+%ly) = 0.1(0.5423) = 0.05423,
ls = hg(xo+sh, yotike, zot5ly) = 0.1(0.85377) = 0.085377,
ke = hf(xgth, Yotks, 2o+ls) = 0.1(0.585377) = 0.0585377,

x
P

1 -
A E(k1 + 2ky + 2k; + k) = 0.0541663, and  y = yo + k ~ 0.25417.
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17.

18.

19.

20.

21.

24.
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SUPPLEMENTARY PROBLEMS

Approximate y when x= 0.2 if dy/dx = x+ y2 and y =1 when x =0, using a) Picard’s method,
by Taylor series, and c) the First Derivative method with n=4.

Ans. a) y, = 1.22, y, = 1.2657, ys = 1.2727; b) 1.2735; ¢) 1.2503

X 2 . .
Approximate y when x=0.1 if dy/dx = x—y and y =1 when x=0, using a) Picard’s method,
b) Taylor series, and c¢) the First Derivative method with n =4.

Ans, a) y, = 0.905, y, = 0.9143, ys = 0.9138;, b) 0.9138; ¢) 0.9107

Use Runge’s method to approximate y when x =0.025 if dy/dx = x +y and y=1 when x=0.
Ans. 1.0256

Use Runge’s method to approximate y when x =2,2 if dy/dx = 1+y/x and y=2 when x =2,
Ans. 2.4096

f

Use Runge’s method to approximate y when x = 0.5 if dy/dx = vx +2y and y=0.17 when x=0.3.

Ans. 0.3607

Solve Problem 21 using the Kutta-Simpson method. Ans. 0.3611

. Use Runge’s method to approximate y and z when x=0.2 for the particular solution of the

system dy/dx = y+z, dz/dx = x? +y satisfying y=0.4, z=0.1 when x=0.1.
Ans. y A7 0.4548, 2z X 0.1450

Use the Kutta-Simpson method to approximate y when x =0.2 for that particular solution of

2
dy dy . . dy
—2 + 3x-~ +y =0 satisfying =0.1, = = 0.2 when x=0.1. Ans, 0.,1191
2 e Y Yy o



CHAPTER 25

Integration in Series

EQUATIONS OF ORDER ONE. The existence theorem of Chapter 2 fora differential equa-
tion of the form
dy

) 2= f(x,
1) I (x,¥)

gives a sufficient condition for a solution. In the proof using power series,
y is found in the form of a Taylor series

2y = At Ai(x=x0) b A (x=x0)" 4 veeenn t A (x=xg)" b e :

where for convenience y, has been replaced by A,. This series 1) satisfies
the differential equation 1), i7) has the value Y =yo When x=x,, and iii) is
convergent for all values of x sufficiently near x =x,.

A. To obtain the solution of 1) satisfying the condition Yy =yo when x=0:

a) Assume the solution to be of the form

y = AO + A1X + A,ZXQ + A3X5 + v e e + Anxn F oee e
in which A, =y, and the remaining A’s are constants to be determined.

b) Substitute the assumed series in the differential equation and proceed as
in the Method of Undetermined Coefficients of Chapter 15.

EXAMPLE 1. Solve y’ = P Yy 1in series satisfying the condition y =y, when x =0,

Since f(x,y) = x2+y is single valued and continuous while 9f/3y =1 is continuous over
any rectangle of values (x,y) enclosing (0,Yo), the conditions of the Existence Theorem are
satisfied and we assume the solution

2 4 n
Yy :AO+A1X+AQX +A3x3+A4x +"°"'+Anx 4 eeesas

Now, within the region of convergence, this series may be differentiated term by term
yielding a series which converges to the derivative y'. Hence,

y' o= Ay + 2A,x + 34522 + QAgx0 + eerenn 4 nAnxn—l+
1 2

and
Y= x" -y = (A - 4o) + (24, - ADx + (34, - A, - 1)x2 + (44, -As)x5 4 oereensses

+ (nAn - An_l)xn—l fosesrreees =,

In order that this series vanish for all values of x in some region surrounding x = 0, it is
necessary and sufficient that the coefficients of each power of x vanish, Thus,

Ay - Ao =0 and Ay = Ao - yo, 345 ~ A, - 1 =0 and A3:§+éyo,
1 1 1 1 1
24, ~A; =0 and A, = ZA, = 245 = -y, 4A, - A3 =0 and A, = = + —~y,,
1 2= 517 5o 2}’0 4 3 4 13 24}’0
1
NAy - Anoy = 0 and Ap = = Apy, nz 4.
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This latter relation, called a recursion formula, may be used to compute additional coef-
ficients; thus,

1 1 1 1 1 1
Ar = ZAy = — + — ¥, Ap = ZAs = — + —— , veun
5 7 5™ T g 12000 6 7 %" 7 3e0  T20°
It is also possible to obtain the coefficients as follows:
1 1 1
Since Ap = -An., and Ap., = 1 Apn_g, Ap = ———— Ap_,. But Ay_, = An-g, **s
n n-1 n{n-1) n-2
1 1 | 1 S
hence, Ay, = A; = (1+ 345) = —(2+y), n=z 3.
nn-1)(n=2)+«+«- 4 nn-1)(n-2)+-«-- 4.3 nt
When the values of the A’s are substituted in the assumed series, we have
1 2 1 1 3 1 1 " 1 n
= + X+ =y x4+ (=4 = X’ 4+ (—+ —yo)x 4 ccreres (24 y0)x 4 ceeeee
Y Yo + Yo 2)’0 (3 6)’0) (12 24}'0 o Yo
= (yo+2)(1+x+ix2+—1x5+ ...... +_1_xn+ ...... ) —12 - 2% - 2
21 3! n!

= o+ e’ - 2% — 2 - 2
The given differential equation may be solved using the integrating factor e-x; thus,
ye ¥ = fxze-x de = (-x2-2-2) %+ C and y = Ce* - % o - 2,

Using the initial condition, y=yo when x =0, C = yo+2, and y = (¥ +2)ex—x2—2x—2,
as before,

B. To obtain the solution of 1) satisfying the condition y =y, when x =x,:

a) Make the substitution x-x, = v, that is,

d d.
X = V+XO, ——.di = —_di//
resulting in dy/dv = F(y,y).

b) Use the procedure of 4 to obtain the solution of this equation satisfying
the condition y =y, when v =0.

c) Make the substitution v = x-x, 1n the solution.

EXAMPLE 2. Solve y' = X - 4x+y+1 satisfying the condition y =3 when x =2,

First make the substitution x = v+ 2 and obtain ? = W2 y — 3. We seek the solu-
v

tion satisfying y =3 when v =0; hence, we assume the series solution

y = 3+A1U+A2U2+A3U5+A‘Uu+ ...... een +A,ﬂvn+ ...... cee
dy _ 2 3 n-1
Then o Ay + 24,0 + 34507 + 4ALV7 + seeesesee + nAgy +oesereeses
v
and
d
d—y-UZ_y+3 = Ay 4 (24, —ADv + (3Ag = Ay = D)v 4 (dhy = A0 + reeresaees
v
+(nAn—An_1)vn~l+ ..... veee = Q.

Equating the coefficients to zero, we have: Ay = 0, 24,-A4, =0 and 4, = 0,
345-4,-1 =0 and Az = 1/3, 4A4-Ag =0 and A, = 1/12, vececceee
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1 .
The recursion formula A, = ;An-i yields

1 1 2
Ay = } Anoy = ———— Ap_, = eeese = A = =, n 2 3.
n n(n ~-1) nn-1)(n-2)++++4 n!
2
Thus, y = 3+ lvs + ivk\ F et recsercesrtersesvaenens + _vn 4 eersesrsesee
3 12 n!
2
= 3 4 —~(x—2)3 + i(x~2>'$ 4+ secesvevessees + _(x_.z)n + sseecae
4! n!

See also Problems 1-4.

LINEAR EQUATIONS OF ORDER TWO. Consider the equation
3) PO(X)YH'*'P!.(X)YI"'PQ(X)Y =0

where the P’s are polynomials in x. We shall call x=a an ordinary point of
3) if Py(a) # 0; otherwise, a singular point.

If x=0 is an ordinary point, 3) may be solved in series about x=0 as
4) y = A{series in x} + B{series in x},
in which A and B are arbitrary constants. The two series are linearly inde-

pendent and both are convergent in a region surrounding x=0, The procedure
for equations of order one in the section above may be used to obtain 4).

See Problems 5-7.

SOLVED PROBLEMS

EQUATIONS OF ORDER ONE.

-y

l1-x

1. solve Zx—y = in series satisfying the condition y =y, when x=0.

Assume the series tobe y = Ay + Agx + A.‘,x2 + Agx3 + A4xu +oeeeses ¢ Anxn oo
2 3 Nl
where A, = yo. Then y' = Ay + 24px + 3A5x" + 4A,x” 4 cveeer + nAnx AR RN
Substituting «in the given differential equation (1-2)y'-2x+y = (¢, we have
(1-x)(A1 + 24,x + 3A3x2 + 4A,.,x3 +oreeees 4 nA,,lxn_l 4 eeeses)

- 2x + (Ao + Aix + A2x2 + Asx5 +oeerees + Anxn T oeecens) = 0,
or
2

(A +Ag) + (245~ 2)x + (345 —Ao)x” + (44, _z,aia)x3 #ooeee + [(n4 DAggg— (n=DA)" + +oee = 0,

(Note. In finding the general term in the line immediately above, we may write a number of
terms on either side of the general term of the assumed series for y, differentiate each in
getting y’, carry out the required multiplications, and pick out the terms in x” OR learn to
write the required term using the general term of the assumed series and its derivative, In

the present problem we wish the term in xz” when the substitutions are made in ¥y —xy' —2t+ y

= 0. First, we need the term in x™ of y’ when we have the term in x™ . We simply replace n
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- 7n n -
by (n+1) in nAnxn ! and obtain (n+ 1)Aﬂ+1xn. The remaining terms -nApx +Apx are obvious.)

Equating the coefficients of distinct powers of x to zero yields

Ay + Ag = 0 and A, = - A, 345 — A, - 0 and As:%AQZ%,
24, -2 =0 and A, = 1, 44,~24, =0 and A4:%A3:é.
n-1 >
(n+DAnsqy -~ (N=DAy = 0 and Ansq = Ay, (n 2 2),
n+l
- - - - -3)(n-4
Now A, = = 2,4,1_1 = wAn_Q . (n-2)(n-3)(n )An-s = eeeeens
n nn-1) nn-1(n-2)
- (n_.2>(n_3)(n_4)¢-.-.-201A2 _ 2 , ni2.
n(n_l)(n_Z)-..... ..... 4.3 n(n_l)
2
Thus, Yy = Yo(l-x)+ x2 + _]:x5 + lx‘l» + _1.15 4 eeseese 4 xn + crseen
3 6 10 n(n-1)

o}

= yo(l-x) + 2 ——-2—— xn.
n=g n(n-1)

n+l
A"L E le 1im n = lxi.
noo n+1

Using the ratio test, lim
N o0

Anx
The series converges for |x| <1,
Note. By means of the integrating factor 1/(l1-x) the solution of the differential equation

is y = 2(1-x)In(1-x) + 2x + C(1-x). The particular integral required is
Y = yo(l~x) + 2(1-x)In(l-x) + 2x.

2. solve (l-xy)y’- y =0 in powers of x.

It

Assume the series to be y Ag + Agx + A2x2 + Asx5 + Aqu +oesees g Anxn + «+ese,  Then

y' = Ay + 24,x + 3A3x2 + 4A4x5 doseeee 4 nAnxn-l + +ese+ and
(I-xy)y' =y
= (1 - Apx —A1x2 —AQx3 —Asxu - e —A,,Lx"Hl —see) (A + 240x + 3A3x2 + 4A..jc5 EERRERR
+nAnxn-l +oeees) = (Ag + Agx + A2x2 +A:;x3 + e +Anxn+ seee)

(A1-A0) + (245-AcA1-Ay)x + (3/1:3—2/10/12—/421—/‘2)5\52+ (4/44—3/4014:3—31‘11/‘2—143)5’65 +oeeee =0,

i

Equating to zero the coefficients of distinct powers of x,
Ay~ 4 =0 and A, = Ao,
24, - ApA, — A, =0 and A, = %A1(1+AO) = %A0(1+AO),

34, — 24Ay — A3 — A, = 0  and  Ag = -;(:ZAOA2 v AZ A, - éAO(H 540+ 240y,

2
44, - 3A0As — 3AA, — Ag = 0 and A, - 2_14‘40(1 + 1TAg + 2642 + 642),

tesersent s sesr e D I I I A A A S S P ST AT A A Y
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2
Thus, y = Aol + x + 517(1+ AO)x2 + El‘—(lir 540 + 2A§)x3 + ZIT(I+17AO+ 2640 + eA§>x” +oeareenen],

Wwe shali not attempt to obtain a recursion formula here nor to test for convergence,

3. Solve «x "wy-x-1=0 1in powers of (x-1).
Y

d . . :
Setting x = z+ 1, the equation becomes (z+ 1)d—y ~y~-2z-2 =0, Since we seek its solution
z
in powers of 2z, assume the series to be

2 n
Ao + Agz + A27 + Az’ + Agz 4+ ceeeenine b Anz 4 sereneen., Then

]

v

gz = Ay + 24,z + 3A$z2 + 4A,,z5 + oeeenes ve nAnzn-l +osreseaes and
z
dy
(z+1)=> -y -2z -2
dz Y
= (z+1)(Ay + 24,z + 3A322 + 4A4z3 toevese 4 nAnzn_l ASREERED)
—z~2—(AO+A,_z+A222+A325+ ----- +Anzn+---.-)
= Ay = 2= Ao) + (2, = 1)z + (BAy + Az + (4ha + 245)20 4 ceererenen
+ [+ Dhpss + (M=DAg)z " 4 cevnennene = 0,
Equating to zero the coefficients of the distinct powers of z,
1 1
A; -2 -Ap =0 and A, = 2 + Ao, 34; + A, =0 and A3=—§A2=—g:
24, ~ 1 =0 andAtl 44, + 24, = 0 and A, = 1A—1
2 2 2' 4 3 4 2 3 12'
(n+DAp,, + (N-DA, = 0 and Aty = — n- Ay, n22
n+1
From Problem 1, 4, = (~1)" (""2)(”'3)”""2'1/42 = =" —L1 ., nz2a
nn=1)ceseeeseesed 3 n(n ~1)
and y = AOJ’ (2+AO)Z + ..1.22._ EZ§+ izu_......+ (-l)n_l__zn+.......
2 8 12 n(n-1)
Replacing z by (x -1), we have
1 2 1 3 1 4
= Agx 4+ 2(x-1) 4 S(x =17 - S(x~1)Y 4 (X ~1) - ceerencenn
b ) 2( ) 6( ) 12( )
< 1
\
= Aox v 2x-1) + 2 (-1 — _x-.
n=o n(n-1)
. . . AnﬂzrHl ; n-1 | |
Using the ratio test, lim | 2225 = iz| lim = |z = Jx-1].
nom Anln n—o n+1

The series converges for |x-1|<1,
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y

4. Solve y’-—xz— e’ = 0 satisfying the condition y =0 when x =0,

In view of the initial condition, assume the series to be

y = Agx + /12x2 + Agx5 + A4Jcu + Asx5 +oereasenn,
; 2 3 4
Then y' o= Ay + 24,x + 3AgxT + 4AsxT + DAgx 4 ceessecees,
y = 1 2 1 5 1 l‘ “ar s e e e
Also, e—1+y+-é-!-y +é_!y +Z}Ty+
1
= 1+ (A1x+A2x2+ A3x§+A4xu teeee) # —2—‘[Afx2+2A1A2x5+ (A§+2A1A3)x“+ ------
1 .33 2, 4 1 44
+-3—'(A1x +3AA0x +evaee) +4—'(A1x Foeses Y 4 evenes reeeea REEEE)
1,2 2 1,35 3
= 1+ A+ (A4 ’éAl)x + (Ag +A1A'z+gAi)’f
1.2 1.2 1 %
+ (A + ~Ag + AjAg + —AJAL + —A)x + orerreeeeseses,
(A, Az e+ Az + 2/

Substituting in the differential equation,

2 3
Ay = 1) + (A= ApDx + (s = 1 = Ay - é 4227 4 @Ay = Ag - ArAy — S 4K
1 .2 1 .2 1 4% g
+ (BAg — As ..._2.,42 — A4As _5A1A2 _ﬁAi)x + ssssseesessacsssres =
Equating coefficients of distinct powers of x to zero,
1 1
Ay -1=0 and A, =1, 24, - Ay = 0 andA2=§A1:§'
1 2 1 1,2 2
3A3—1—A2—§A1:0 and As:§(1+A2+§A1) =§,
44, Ay —Ady ~ 2 A0 =0 and A, = 1Ay + A, + 2ady =L,
6 4 6 3
1,2 1,2 1 ¢ 17
54, — A, - A, — A Ay — - A, A, - — A, = 0 and Ag = “— s ceectesnne
5 4 2 2 133 2 132 24 1 =3 60
and y = x + lx2 + 215 + lx“ + Exb 4 eseesesenenne
2 3 3 60
LINEAR EQUATIONS OF ORDER TWO.
5. Solve (1+x%)y”" + xy! —y =0 in powers of x.
Here Po(x) = 1+ x2, Ps(0) # 0 and x = 0 is an ordinary point.
We assume the series
y = A0+A11+A2x2+A315+A4xu+.....o.-. +Anxn+ cesressne,

Then y!

-1
Ay + 24.x + 3A=;Jc2 + 4,44x5 F oeeveens 4 nAnxn

and y" = 24, + 6Azx + 124,57 + seeeenee + n(n=1)Anz""?

+

+

ssecceese
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Substituting in the given differential equation,

(1+x2)[2A2 + 6Agx + 12/14952 +oeees + n(n—l)Anxn_z +oeees] ¢ x(Ag+ 24,0 + 3A3x2+ 4A4Jc5 oo
+nAnxn_l +oeees) = (Ag + Agx +A2x2 + Asx5 + Adxu +osene + Anxn + ey = 0,
2
or (24, - Ag) + 6Asx + (124, + 3A)x + cevr + [N+ 2 (n+ DAp,, + (n2—1)An]xn+'--- = 0.

Equating to zero the coefficients of the distinct powers of «x,

1
24,-Ao=0 and AQ:%AO, 64320 and Ag=0, 124,+34;=0 and Ag=- Ao, eeeee

n-1

(n+2)(n+DAn,, + ("Z—I)An =0 and Anse = - 9 An .
n
From the latter relation it is clear that A; = Ag = 4, = «+++ =0, that is, A4p,, = 0 if n
is odd, If n is even, (n = 2k), then
_ - - B 1¢3¢5ecese(2k -3
Ay = - MAzk-z - MMAM_“ O T AL (2-3) , .
2k 2k (2k - 2) 2 ki

Thus, the complete solution is

Ao (1 + -1-x2 - lxu + ixé - —5—;\:8 +oreres) o+ Aux
2 8 16 128

il

Y

®
Ao [l + éxz N 2(_1)k+1 16350000 (2k-3) ka] v A

k
k=2 2" k!
12 &k 103:5-.404(2k=3) 2k
= Aol + 35 - Z(—l) - 7] + A

k=2 2" k!

A n+2 2 1
Here  1lim nt2% = x° 1im 222 = x% and the series converges for |x| < 1.

7@ Anxn now nN+2

6. solve y" - xzy, -y =0 in powers of x.

Here Po(x) = 1 and x=0 is an ordinary point, We assume the series

y = A0+A1X+A212+A3x5+""""' +Anxn+ ceseseene Then
Y = Ay 4 2A,x + 3Agx% 4 eeverenene 1 oA b e
" o_ 2 3 ne?2
y' = 2A2 + GAax + 12‘4‘1 + ZOAsx 4+ sesseeves + n(n_l)Anx LR REERRRERIN and
. 2
y'-xy -y
= (2 - Ao) + (6Ag ~ Ay)x + (124, — Ay — A)x” + (20Ag — 24, ~ Ag)x> + venes
+ [+ 2)(n+DAnss = (R=DAnoyg = Aglx + creeevnceennns = 0, -

Equating to zero the coefficients of the distinct powers of «x,

2A,~A0 =0 and A, = %Ao, 643-4A;=0 and 4, = %Al, 12A,-A;-A,=0 and A = 2—4Ao+ 1—2-A1,

D N R N S N N N A AP AP SR
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; ~DAp_q + A
(n+2)(n+ DAnyy ~ (n=DAny -4y = 0 and Anye = - DAny * A, nZl.
(n+1Y(n+2)

Th lete solution i ho(1+ 2,2, Lv Ls Lo, 18 7 )
e complete solution is =/ —x B A = IEREERE
g YOI ET TR TR Tt T B
T o6 7
+A1(x+_x3+~—r“+—x5+——‘—x . 411 cereaes)
12 120 360 5040
= " w 2 I _ 2 . . .
(» Solve y" - 2x'y’ + dxy = x + 2% + 2 in powers of x.

Assume the series to be

¥y = Ap + Ajx o+ Asz + Agx5 + A‘,xu + Asxf’ toeeeeaese + ,4nxn dorreceans . Then
ne-l
yl = Ay + 24,x ¢+ 3Asx2 + 4/14x5 + 5A5x“ +oeevesee s ndyy AR SN
12
y' = 24, + BA4xx - 12,441'2 + 20A515 Foaaeseceenicne o n(n—l)Anxr Foeeaeaes , and
I 2 I3 2 o~ N « 2 5
iy v dxy—x - 202 = (24, -2) + (BAg+ 4o ~2)x 4+ (124, + 24, ~1)x" + 20Agx° + ceeseen

+ [(n+ 2Y(n+ DAnsy — 20 =DAp_4 + 4An_1]xn +oreeeees =,

Equating the coefficients to zero, we obtain

12 11
S ZA, At -4, Ag =0,
373 12 8t ®

2A,-2 =0 and A4,-1, 643+ 4A5 -2 = 0 and A, =

_2(n -3)

——Ap._y, n 23,
n+H(n+2) not

(n+2)y(n+DAnsy — 20 ~3)Ap_y = 0 and Anss =

The complete solution is

2 3 2 6 2 9 1 4 1 7 1 10
= Al - 2 x7 - Zoxt o 27 e ) + Ajlx - 2 x - x - I x — ecrsesne .)
J ol =3 45 405 ) 1= 63 567
2 1 3 [ 1 1 1 9 1 10
tx +t -3 +— Xt —mx + —— X o+ —— x o+ X+ reeranan
3 12 45 126 405 1134

8 Solve y"+ (x-1)y' + y =0 in powers of x - 2.

d .
Put x = v +2 in the given equation and obtain Z + (v + 1)<Ty +y =0 which is to be
dv v
integrated in powers of v, Assume the series
Y = Ag + Av o+ A;,vz + .43115 + Au)“ LEREEE RN + Anvn t oeereecnns . Then
dy 2 3 n-1
T = Ay + 24,0 + BASU t 4AV7 F seenneenn + ndnv +oeeeenenan,
av
d? 2 2
2’ = 24, + BAgv 4 124,07 F eereenenns = DAt 2 b everaies . and
dv*
d? d 2
% + (v+1)f/~ Ty = (24, v Ap + Ag) ¢ (645 + 24, + 2A)v + (124, + 34, + 345007 + veeeeess
dv v
+ [<”+2)(”*1)An+2 + (n+ DA, + (n+1)An+1]vn + ossessesss = (),
Equating the coefficients of powers of v to zero, we obtain
1 1 1 1 1
A, = - E(Ao+,41), Ay = ~ §(,41+ 4,) = 5('40_/11)' Ay = - g(A:,&Ag) = E(AO+2A1),

1

(n+2)(n+ DAnyy + (n+ DAy + (n+ DAg,y = 0 and Anso = - 5
n+

(An + Apyq).
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Thus, noting that v = x -2, the complete solution is

1 2 1 1 1 1 6
y = Ao[1 -E(x—Z) + é(x—2)5 + E(x—Z)u - %(x_zf - %(x_z) 4 rerees]

calemn - 2@-2 - a2’ 2Eo - e e ]

SUPPLEMENTARY PROBLEMS

9. solve (l-x)y' = xz—y in powers of «x.

Ans. y:Ao(l_x)+x3(l+lx+_l_x2+.....+__an+.....)
3 6 10 n+2)(n+3)

10. Solve xy’ = 1-x+2y in powers of x-1. Also integrate directly.

Hint: Let x-1=2z and solve (z+ 1)31 = -z +2y in powers of z.
Z
Ans. y = Aol + 2x-1) + (x-1)°) + L+ (x-1y

11. Solve y’ = sz+3y in powers of x.
Ans. y = Aol + 3x + 9x2/2 + 9x5/2 R AE W 1+ (2x§/3 X2 b eeaee)

12, Solve (x+ 1)y’ = x2—2x+y in powers of =x.

Ans. y = Ap(1 +x) - x4 2x5_/3 - xq/3 + x5/5 - ?.xo/ls + oeeeees

13. Solve y"+xy = 0 in powers of x.

R.F. A, = - 1 Ap_g, n 2 3; convergent for all x.

n(n-1)
Ans. y = Ap(1 - x5/6 + x°/180 - reene ) 4+ Aj(x - x“/12 + 17/504 ~ cseaes)

14. Solve y”+ 2x2y = 0 in powers of x,

R.F. An = - 2z An.4; convergent for all x.

n(n-1)
Ans. y = Ao(l ~ x*/6 + 2/168 — ceveet) 4 Ay(x = 20/10 £ 2/360 = ceerne)

15. Solve y"—xy'+ x2y = 0 in powers of x.
R.F. n(n-DAy ~ (n~DAp_, + A4n_s = 0, n 2 4,

[} 4
Ans. y = Ag(l - xu/12 - x /90 + xP/3360 +oeees) + A (X H xi/e - 15/40 - x7/144 - reed)

16. Solve (l—xz)y”— 2y’ + p(p+ 1)y = 0, where p is a constant, in powers of x. (Legendre Equation)

n-2-p)y(n+p -1

R.F. Ay =
" n(n-1)

An.. ; convergent for |x| < 1.

~ P(PZ'+ 1) 2. (p—2)p(p4'+ Ly (p +3) o

Ans. ¥y = As(1

e eeerreneed)

(pP-L(p+2) . (p=-E-DLEP+HE+D 0

+ Ag(x T + 5 ceeerenas)
g2 2 . 1
17. Solve y"+x"y = 1+x+x in powers of x. R.F, 4n = - —-——I—An-4 . convergent for all x.
n(n-1)
4. 8, ) 9
Ans. y = Ao(l = x /12 4+ x /672 = «vunns )+ Ag(x — x7/20 + x7/1440 — ceeves)

2 . .
+x/2+ x3/6 + x“/12 - xb/GO - 17/252 - xa/’672 oeranen



CHAPTER 26

Integration in Series

WHEN x =a IS A SINGULAR POINT OF THE DIFFERENTIAL EQUATION
1 Py (%) y”+P1(x)Y, + P,(x)y = 0,

in which P;(x) are polynomials, the procedure of the preceding chapter will
not yield a complete solution in series about x =a.

EXAMPLE 1. For the equation xzy”+ (xz—x)y’+ 2y=0, x=0 is a singular point since
Ps(0) = 0. If we assume a solution of the form
(i) Y= Ag t Agx + Agx’ & Agxd 4 eeees
and substitute in the given equation, we obtain
240 + Agx + (2A2+A1)x2 + (5/43+2AQ);\;5 F oeesnerees = 0,

In order that this relation be satisfied identically, it is necessary that A, = 0, A, = 0,
Ay, = 0, A = 0, =+, hence, there is no series of the form (i) satisfying the given equa-
tion.

A SINGULAR POINT x=a OF 1) IS CALLED REGULAR IF, when 1) is put in the form

1') y"+ R_’-(_)Qy’+_&.(_x)_.y—_—0’

X-—a (x - a)?

R, (x) and R,(x) can be expanded in Taylor series about x = a.

EXAMPLE 2. For the equation (1+x)y”"+ 2xy’-3y=0, x=-11is a singular point since
Ps(-1) = 1+ (=1) = 0. When the equation is put in the form

)’” ¥ R]_(X) y/ + R2(x) y = y" + 2x yl + _3(x+21) 0'
x+1 <x+1)2 x+1 x+1)
the Taylor expansions about x = -1 of R,(x) and R,(x) are

Ry(x) = 2x = 2(x+1)-2 and Ryo(x) = =3(x+1).

Thus, x = -1 1is a regular singular point.

EXAMPLE 3. For the equation ©y”"+zx’y’+y =0, x=0 is a singular point, Writing
the equation in the form

it is seen that Ro(x) = 1/x cannot be expanded in a Taylor series about x = 0. Thus, x = 0
is not a regular singular point.

200
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WHEN x=0 IS A REGULAR SINGULAR POINT OF 1), there always exists a series solution
of the form

®
m n m m+1 mt 2 m+n
2) y = x 2 Anx = Agx + A,x + A,x + oo+ Apx o,
n=0

with 4, #0, and we shall proceed to determine m and the A’s so that 2) sat-
isfies 1).

EXAMPLE 4. Solve in series 2ty”" + (x+ 1)y’ + 3y = O.

Here, x =0 is a regular singular point, Substituting

y = onm+A1x7n+l+A2xm4‘2+...-.+AnXM+n+.....,
y' = mAox" 4 (m+ DAE" + (4 DA" T e 4 (m+mAg™ T
- - ~2
y" = (m_l)onxm 2, m(m+1)A1xm l+(m+1)(m+2)A2xm +oeer + (mtn-1)(m+ n)Anxmn e

in the given differential equation, we have

(1) m2n-DAox" " 4 [(m+1)(2m+ DAy + (m+)AJa" + [(m+2)(2m+3)A, + (m+ DA J2"

+ eeeee & [(mAn)(2m+2n = DAy + (m+n+2)An-1]xm+n-—l+ ......... . =0,

Since Ao # 0, the coefficient of the first term will vanish provided m(2m -1) = 0, that is,
provided m = 0 or m = %, However, without regard to m, all terms after the first will vanish
provided the A’s satisfy the recursion formula

m+n+2

A’Vl = - A’Vl-i' n—_>- 1.
(m+n)(2m +2n -1)

Thus, the series

2,) 7 = onm [1- m+3 x 4 (m+3)(m+4) x2
(m+1)(2m+1) (m+ 1) (m+2)(2m+1)(2m+ 3)

_ (m+4)(m+3) B b eeeeeenees]
(m+1Ly(m+2)(2m+1)(2m +3)(2m + 5)

satisfies the equation

(1) 27" + (x+)F + 37 = m(2m-DAgx .

The right hand member of (ii) will be zero when m=0 or m=%. When m = 0, we have from 2')
with Ay = 1, the particular solution

Yy = 1—3x+2x2—2x5/3+-----“-,
and when m = % with Ao = 1, the particular solution
Yo = Va(l - Tx/6 + 21x°/40 = 11x7/80 + vevvvr).

The complete solution is then

Y Ay, + By,

il

A(1 - 3x + 2% - 2x3/3 + eevesd) + BVE(1 ~ /6 + zu2/4o - 11x5/so +oeeens),

The coefficient of the lowest power of x in (i), (also, the coefficient in the right hand
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member of (ii)), has the form f(m)4,. The equation f(m) =0 is called the indicial equation.
The linearly independent solutions y; and y, above correspond to the distinct roots m = 0
and m = % of this equation,

In the Solved Problems below, the roots of the indicial equation will be:
a) distinct and do not differ by an integer,
by equal, or
c) distinct and differ by an integer.

The first case is illustrated in the example above and also in Problems 1-2.

When the roots m, and m, of the indicial equation are equal, the solutions
corresponding will be identical. The complete solution is then obtained as

BY

Mm="Mq 'am

y = Ay See Problems 3-4.

m=my

When the two roots m, < m, of the indicial equation differ by an integer,
the greater of the roots m, will always yield asolution while the smaller root
my, may or may not. In the latter case, we set A, = By(m-m,) and obtain the
complete solution as

Yy = A; + Ba—y

m="Mg ‘am

See Problems 5-17.

m="me

The series, expanded about x=0, which appear in these complete solutions
converge always in the region of the complex plane bounded by two circles cen-
tered at x=0. The radius of one of the circles is arbitrarily small while that
of the other extends to the finite singular point of the differential equation
nearest x=0., It is clear that the series obtained in Example 4 converge also
at x=0; moreover, since the differential equation has but one singular point
x =0, these series converge for all finite values of x.

COMPLETE SOLUTION OF
3) Po(x)y" + P(x)y' + Pp(x)y = 0

consists of the sum of the complementary function (complete solution of 1)),
and any particular integral of 3). A procedure for obtaining a particular in-
tegral when Q is a sum of positive and negative powers of x is illustrated in
Problem 8.

LARGE VALUES OF x. It is at times necessary to solve a differential equation 1) for

large values of x. In such instances the series thus far obtained, even when
valid for all finite values of x, are impractical.

To solve an equation in series convergent for large values of x or "about
the point at infinity", we transform the given equation by means of the sub-
stitution

x = 1/z

and solve, if possible, the resulting equation in series near z=0.
See Problems 9-10.
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SOLVED PROBLEMS

Solve in series 2x2y”-xy'+-(x2‘*1)y = 0.

Substituting
Yo Aox” AT At AT e
y' = mAox™ ™t + (m FDAE" + (m DA e P AT s
Y= (m=DmAox" 2+ (m+ DmAgax™ b (mt 1) (m+ DAga b eeees fmrn—1)(m+mdna" e

in the given differential equation, we obtain
(m=1)(2m = DA™ + m(2n + DAyx™ 7 + {[(n+2)(2m+ 1) + 1Ap + Agtx™ 2 + vevvees
+ {lmeny(2n+2n-3) + 1)4, + Aot T+ seseeaes = 0,

Now all terms except the first two will vanish if A3,Ag,++++ satisfy the recursion formula

1
1) A = - An_o, n2 2
" (meny(2m+2n -3y +1 2

The roots of the indicial equation, (m-1)(2m-1) = 0, are m = 5,1, and for either value
the first term will vanish., Since, however, neither of these values of m will cause the second
term to vanish, we take A, = 0. Using 1), it follows that Ay = Az = Ag = «++ves = 0, Thus,

- m 1 2 1 4

Yy = Agx (1 - x4+ X = eeseseeans)
(m+2)(2m+1) +1 [(m+2)(2m+1y +1][(m+4)(2m+5) + 1]

satisfies 2°F" - 45+ P DY = (m-1)(2m - DAox"

and the right hand member will be 0 when m = zorm=1,

When m = 5 and 4, = 1, we have y1 = V(1 - 12/6 + xu/lsg - x6/11088 +oeerenen

.
.
.

~

and when m = 1, with 45 = 1, we have Yo x(1 - x2/10 + 14/360 - x6/28080 UEEREEREERTD N
The complete solution is then
Yy = Ays + By,

AVE(L - x%/6 + 2"/168 = x°/11088 + +++) + Br(l - x°/10 + x*/360 - x°/28080 + -+-).

)

Since x =0 is the only finite singular point, the seriesconverge for all finite values of x.

Solve in series  3xy” +2y’+»x2y = Q.
Substituting for y, y’, and y'" as in the problem above, we have

m@Br-DAcx™  + (m+1)(3n+ A" + (m+2)(3m+5)Ae™ Tt 4 [(m+3)(3n+8)Aq + Aolx™ "2
M4+ N=—1

+oeeeere + [(m+n)(3m+3n -1)Ay + Ap-qlx F oaeeses = Q.
All terms after the third will vanish if Ag,Ag,* oo+ satisfy the recursion formula
- 1 >
Ay = - An.s, n 2 3.

(m+n)(3m+3n-1)
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The roots of the indicial equation m(3m-1)=0 are m = 0, 1/3. Since neither will cause the
second and third terms to vanish, we take A, = A, = 0. Then, using the recursion formula,
Ay = A4 = A5 = «+« =0 and A, = Ag = A5 = - 0. Thus the series

([N

1) y = onm(l - ——————1————X5 + 1 xé — devens )
(m+3)(3m+8) (m+3)(m+6)(3m+8)(3m+17)

. . — — 2_ m-1

satisfies 3xy 42y +xy = m@Bm-DAox .
6

For m = 0, with 45 = 1, we obtain from 1) y, = 1- x5/24 +x /2448 — ceeenns
and for m = 1/3, with Ay = 1, we obtain Yo = xl/5(1 - x§/30 + xb/3420 S EETERTD I

The complete solution is

6, 1 6

Yy o= Ays f By, = A(l - x0/24 ¢ x°/2448 — vennn y o+ BxP (1= 2330 + x%/3420 = cenn).

The series converge for all finite values of =x.

ROOTS OF INDICIAL EQUATION EQUAL.

3. solve in series xy"+y’-y = 0.

Substituting for y, y’, and y” as in Problems 1 and 2 above, we obtain

m?onm-l + [(m +1)2A1 — A ]x" ¢ [(m +2)2A2 - Al]xm+l

Foeeenees + [(M<+n)24n _.An_1]1m+n'l + eeeeees = 0,
All terms except the first will vanish if A;,A4,, <« satisfy the recursion formula
1 >
D Ay, = ——ZAn_l, ng 1.
(m +n)
Thus,
y = onm(l + L 5 x + 21 5 x2 + 5 ! P 3 x3 + eeeee eed)
(m+1) (m+1) (m+2) (m+1)y (m+2) (m+3)
satisfies
2) AR A A

The roots of the indicial equation are m = 0,0. Hence, there corresponds but one series so-
lution satisfying 2) with m = 0. However, regarding y as a function of the independent variables

x and m,
— _ _ _
L Ei(§1> = ji(?l) = (@Z)’
om om dx dx om om
and ¥ - 2 Ei(?l) . 9 jZ(QZ) . 9 ji(?l) = (él)",
om om dx dx dx om ox dx dx Im om

and we have by differentiating 2) partially with respect to m,

3) s &y ) L o™ 4 r4ex™ s,
om m om
From 2) and 3) it follows that y; =¥ ned and y, = gl are solutions of the given dif-
= m|m=0Q

ferential equation. Taking A = 1, we find



INTEGRATION IN SERIES

211

. x"Inx [1 + _I;x + _21_2_;:2 + - 1 - - PN ceeeneeean]
om (m+1) (m+ 1) (m+2) mr 12 (m+2)° (m+3)
TSR 2 . 22 5)x2_( : 22 :
(m+1y m+1Y’ m+2 P (n+2) (m+1) (m+2)° (m+3)
+ . 2 + . 2 5 )x5 m tereeneees]
M+ 2 43 e m+ 2 (m+3)]
:ylnx—me[ 1 x + ( ! -t 21 )x2
(m+1) (m+1)’ (me2)® (e (me2y
+ 12 * : " 2 12 )x5+”“]'
me1yY m+2 3" ) e 3’ e mr 2 (me3)
2 xS
Then y; = y'm:o = 1 + x + o Foeeessecaes ,
21 (3
Yo = o = yyInx - 2{x + (1+l)x2 + 12(1+l+1)x5 + oeeaseenes ],
om |m=0 (21 2 31
and the complete solution is
Yy = Ays + By, = A+Blnx)ll + x + 12x2+ 1215+........]
2!) (31
- 2B[x + -—~l7;(1 + l)x2 + L 2(1 + 1 + —)x3 + oseens eee ]
2 (31 2

The series converge for all finite

. . 2
Solve in series xy"+y’+x"y = Q.

Substituting for y, y’, and y”,
+ (m+1)2A1xm +

2 m=-1
m”Agx

+ [(m+

The two roots of the indicial equation are equal, We take Ag =

values of x # 0.

we obtain

]xm+2

(m+ 22 Ax™h w [(m 3P4, + 4 '

D I A I Y

2 n+n-1
n Ap + An_slx + eereanee cees =

1, A4, = A, = 0, and the re-
1

maining A’s satisfying the recursion formula An = - An_g.
(m+n)
Then Ay =A; = 4; = «-- =0, A, = A5 = 45 = = 0,
y = xm(l - -——1—2.x5 + 21 2 xb - 5 1 5 2 x9 + --.......)
(m+3) (m+3) (m+86) (m+3) (m+6) (m+9)
and, following the procedure of Problem 3 above,
T yme s " [ L. I P
m (m+3) m+3Y (m+6° (m+3)(m+6)
( 1 + ! + 1 )x9 - o--..].

(m+ 3)5 (m + 6)2 (m+ 9)2

(m+3)2(m+6) (n+9)°  (m+3) (n+6) (m+9)
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Using the root m = 0 of the indicial equation,
- 1 3 1 6 1 9
ylzy_ = ] - —— x 4 —. X - —— x + eeseesesne
Im_o 32 34(2!)2 36(3!)2
and y, = 91 = yg Inx + 2[_£ x5 - —-—j;—;(l + l)x6 + ; ! 2(1 + =+ -31-)x9 - . 1.
om |m=0 3’ 3 (21) 37 (31)
The complete solution is
y = Ay1+By2 = (A+B]nx)[1_%x5 +_u_l._?xb __.b__l_?xg + --...-..]
3 3°(2H) 3(3H
n ZB[ixi - 1 2(1+l)x° +—7—1——-2~(1+1+-1-)x9 .
3’ 3% (a1y 2 37 (31) 3
The series converge for all finite values of x # 0.
ROOTS OF INDICIAL EQUATION DIFFERING BY AN INTEGER.
H. Solve in series xy”-3y’+xy = 0.
Substituting for y, y', and y/f we obtain
m+l

(m=&mAox™F + (m=3)(n+ DAx" + [(m=2)(m+ DAy + Ag)x boeeeeenes

RSN

+ [(men-a)y(m+n)dy + Ap_,)x o oeersease = 0,

The roots of the indicial equation are m = (0,4, and we have the second special case men-
tioned above since the difference of the two roots is an integer. We take A, = 0 and choose
the remaining A’s to satisfy the recursion formula

1

Ay = - ——— A, n
(m+n-4)(m+n)

v

2,

It is clear that this relation yields finite values when m = 4, the larger of the roots, but
when m = 0, A, - . Since the root m = 0 gives difficulty, we replace Ao by Bo(m — 0) = Bym
and note that the series

o= Aex” [1- L 2 ! x - 21’ %°
(m=2)(m+2) m(m—2)(m+2)(m+4) m(m—~2)(m+2)" (m+4)(m+6)
; - 1 ; X ]
m(m=2)(m+2) (m+4) (m+6)(m+38)
= Box'[m - —D %, ! PA. 21 <
(m—-2)(m+2) (m~2)(m+2)(m+4) (m=2)(m+2) (m+4)(m+86)
+ 1 xa - sesasse ---.-.]

(m=2)(m+2)% (m+4)% (m+6)(m+8)

satisfies the equation N ) L
x7" =35 + xy = (m-d)mAox" = (m—4)m Box" .

Since the right hand member contains the factor mz, it follows by the argument made in Problem 3
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that y and QZ, with m = 0, are solutions of the given differential equation,

We find
m
3y n n’ i 2 1 1
oy . YyInx + Box [1+ x - + +
on [(m-2)(n+2))° (m=2)(m+2)(m+4) m~2 m+2 m+4
R 21 - TS SV
(mM=2Y(m+2) (m+d)y(m+6) mM—2 m+2 m+4d m+6
1 1 2 2 1
- 2 7 + + ek
(m=-2y(m+2) " (m+4) (m+6)y(m+8) m-2 m+2 m+4 m+8
Using the root m = 0, with By, = 1, we obtain
— 1 4 1 [ 1 8
)’1:}'“_0 = - x +——2—x - T Xt seeeenvans
= 2:2.4 202446 2:2+4 +6:8
and
Yz = B_y = yy,lnx + 1 + —1;:2 + 1 xq - 1 (1+E+l)xb
dm|mn=0 92 2 o 26 31 1r 2 3
8 1
C ol e L (e dededidy ooy
2" a1 21 2 42 920 51 g 3 5
The complete solution is
y = Ay + By,
= A+ BInx){- ! o+ 1 xﬁ - = 1 xB b oeees
2% o1 2 311 2 a1
+ B{1 + —%xz + 1 AR TTi__(1+l+lﬂ6 + jri—_ﬁl+é+l+l)+3h8
2 2% a1 2% 31 11 2% 41 21 342
1
- —E—~——{(1+E+l+l+l)+(1+1ﬂxm oeeeveaes ],
U 2345 23

Tre series converge for all finite values of x # 0.

Solve in series (x-xz)y"-By’+»2y = 0.

Substituting for y, y’, and y”, we obtain

(m-miox™ + [(m=3)(m+ DAy~ (m=2)(m+ DAJE" + [(m=2)(m+2)Ap~ (m~1) (m+ 2)A, ]

Foerecenas + [(m+n—4)(m+n)An—(m+n—3)(m+n)An_1]x

m+n-3

m4n-1

The recursion formula is 4, = ———Z A,_, so that
m+n-4
) y = onm[l + m—2x + m-lx2 PR A m+1xu + m+2x5 , mr3
m-3 m-3 m-3 m-3 m-3 m-3

satisfies the differential equation

(x—xz)y" -3y’ + 2y

(m—4)mAox™ T,

= 0,

6
x

m+l
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The roots m = 0,4 of the indicial equation differ by an integer., However, when m=0 the ex-
pected vanishing of the denominator in the coefficient of x* does not occur since the factor m
appears in both numerator and denominator and thus cancels out. Note that the coefficient of
x3 is zero when m = 0.

Thus, with A5 = 1,

Yo =Y

I

6 7
o 1+ 20/3 +27/3+0=x"/3=20/3~32/3=4x/3 = covreees

and

Y, = ¥ = xu(1+21+3x2+4x3+--- """ )

o

so that y, = (1 + 2¢/3 + x2/3) - y5/3.

The complete solution is y = Cyyq + Coys = Cy(1 + 2x/3 + x2/3) + (Cy = C1/3)y2

s AT i 2 43) B (12 3T AR 4 eeeenn)

[
A +2x +3) +B—x-2-o
(1-x)

[}

There are finite singular points at x =0 and x =1, The series converge for |x| <1,

Solve in series axy”"+(x-1y’ -y = 0.
Substituting for y, y’, and y”, we obtain

(m_2)onxm-l + [(m—l)(m+1)A1+(ln-1)Ao]xu + [m(m+2)A2+mA1]xm*l + oeeeenns .

+ [(m+n—2)(m+n)An+(m+n—2)/1.,1_,1]96”“’”-l + ereseeee = 0,

The roots of the indicial equation are m = 0,2 which differ by an integer. We choose the
A’'s to satisfy the recursion formula
m+n -2 1

(m+n-2)(m+n) m+n

At this point we see that no A; - o for m = 0, the smaller root, as in Problem 5. This is
due, of course, to the fact that the factor m+n -2 cancels out. Thus, since

Yy = on,,n{l -

x + X —_ + LR S A Y
m+1 (m+1(m+2) (m+1)(m+2)(m+3)

1 2 1 3 ]

satisfies xi" V(x —1)?’ -5 = (m-2)mA0xm-l,

we obtain, with Ag=1 and m=0, m=2 respectively,

Yy = yl = 1_x+x2/2! _15/3! 4+ eececcseee = e-x
n=0
and
yo = y|m:2 = 2P o 20730 + 2wt e - 20/50 4 eeeinnins = 2T x - 1),
The complete solution is y = Cye ™ + Cp[2(e ¥+ x -1)] = Ae” " + B(1-x), convergent

for all finite values of x.
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PARTICULAR INTEGRAL.
8. Solve (xz—x)y" + 3y -2y = x + 3/7c2 near x = Q.
Substituting for y, y’, and y” as in Problem 6, we obtain the condition
m=1 m
1) m(4 —m)on + [(m+1)(3 —m,)A1 + (m+1)(m_2)Ao]x 4+ eseen vee e
+ [(men) (4 —m—n)An + (meny(men—Ddp_, 127" 4 ceeiii. = x o+ 3/2

To find the complementary function, we set the left member of 1) equal to zero and proceed

as before.
The recursion formula is A, = min-3 Ap-3, and thus
m+n-4
y = onm(l + m_2~x + m—lx2 PR R m+1xu F oeeesseanen )
m-3 m-3 m-3 m-3

satisfies

- - — -1
2) (xz—x)y" + 3y’ - 2y = m(4—m)onm .

The right hand member of 2) will be 0 when m = 0,4. For m = 0 with 4y = 1, we have

yio= 1+ 2/3+27/3-x"/3 - 2/3 -3 a3 o

and for m = 4 with Ay = 1, we have
Yo =xq(1+2x+3x2+4x5+5xu+.... ....... cene),

Then y, = (1 + 2¢/3 + x2/3) -~ y,/3 and (See Problem 6) the complementary function is
y = A@?+ 20 +3) + Bx'/(1-x)2,

In finding a particular integral, we consider each of the terms of the right member of the
given differential equation separately. Setting the right member of 2) equal to x, that is,

-1
m(4—m)onm = x, identically,

we have m = 2 and A4g = 4. For m = 2, the recursion formula is A, = n-l Ap.,; thus, A; = A,
n-2

=Ag = +eee. = 0. The particular integral corresponding to the term x is x2/4.
Again, setting the right member of 2) equal to 3/x2, that is,
m(4-mAox" © = 3/2%, identically,

- 3 1
we have m = -1 and Ap = -3/5. Form = -1, Ay = z :An-i; thus, A4 = ZAO' A, = 5A(g, Ag =
n-—

%Ao, Ay = As = Ag = ++++. = 0, The particular integral corresponding to the term 3/x2 is

-1
- gx (1 + Zx + %xz + ixs). The required complete solution is
4
3
y = A(x2+2x+3) +——§L? -2 .8 _ix +_1x2
(1-x) 5x 20 10 10
y
= ,C(x2+2x+3) + __B_x_z_ + lch - ri
(l—x) 4 oX

Note. A partial check of the work is obtained by showing that the particular integral y =
x%/4 - 3/5x satisfies the differential equation.
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Since x = 1 is the only other finite singular point, the series converge in the annular re-
gion bounded by a circle of arbitrarily small radius and a circle of radius one, both centered
at x = 0.

EXPANSION FOR LARGE VALUES OF x.
9. Solve 2x2(x -y”" + x(3x+ 1)y’ -~ 2y = 0 1in series convergent near x = ®.

The substitution

2 2
col, g odrd Ly ady o 2dy Ldy L vdy gl
z dz dx x2 dz dz x5 dz x" dz dz 2z

transforms the given equation into

2

d

az- LY 4w 1o ® 2y -0
d22 dl

for which z = 0, the transform of x = w, is a regular singular point. We next assume the se-
ries solution

+n

+2 n
+ orveeesene + Apz + eesevens

+
y = Aozm + Alzm by AQZm
and obtain the condition

m(2m —DAoz™ 0 + {(m+1)(2m+ DAy — (2m°+ 3m+ 2)Ag}z" 4 ereveernnins

b e an o —DAg - (207 - (man) £ 04} 6 e <0

2(m+n)2— (m+n)+1
(m+n)(2m+2n-1)

The recursion formula is Ay = An_., and thus the series

_ n on? + 3m + 2 m?+3m+ 2 2P Tme T 2
y = Agz (1 _— 2 4+ . z seesenns)
(m+1)(2m+ 1) (m+1)(2m+1) (m+2)(2m+3)
satisfies
2 d’§ dy -1
2(z>~2")—= + (1-52)— - 2¥ = m(2m-1)Apz .
d22 dl
For m = 0, with Ao = 1, we have  yy = 1+ 2z + T2°/3 + 11227/45 + ceeeeees
2 7 112
= 1 4+ = 4 e + 4+ secssscsces |
x 34?7 450

|
and for m = 5, with Ag = 1, we have Yo 25(1 + 42/3 + 22;2/15 + 434;3/315 + oeseseens)

-
= x 2(1 + ét + 22 + 484

x 1512 3ISx5

+ eveevses),

The complete solution is

V]

-k
y = Ays + By, = A1+ =+ 2 + 112 + eeees) + Bx (1 + éi + 22 + 484

2
3 451 % 152’ 31500

»®

The series in z converge for lz]< 1, that is, for all z inside a circle of radius 1, cen-
tered at z = 0. The series in x converge for |x| >1, that is, for all x outside a circle of
radius 1, centered at x = 0.
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3 . ;
10. solve x’y” + x(1~x)y’ + y = 0 in series convergent near x - w .,
Making the substitution x = 1/z as in Problem 9, we obtain

2
k9] z(—i—%+(3-—z)ﬁ+y=0
dZ dZ

for which z = 0 is a regular singular point, We next assume the series solution

y = Aozm + Aizm+1 + A2zm+2 F oesennans + A"met + oavscanes R
substitute in 1), and obtain
m(m+2)Aozm"l flmahmedy = (m-DAg)2" + [(m+2)(m+d)A, - mAi]zmﬂ Forecerseeaacs
-1
+ [(m+ny(m+n+ DAy, ~ (m+n—2).4n_1]zm+n R R T

The roots of the indicial equation are m = 0,-2 and differ by an integer. From the recur-

sion formula A4, = ——”iin—_g—.w— Apn.1 it is seen that A, — o when m = -2. We replace A,

(m+n)y(m+n+2)

by By (m +2) and note that the series

y - Bozm[(m*2) ' (m—1y(m+2) - (m-Un 12 N (m—-1)m 25
(m+1)(m+3) (m+1)(m+3)(m+4) (m+3)2 (m+4)(m+5)
+ (m - Dym(m + 2) 2t e o)

(m +3)2 (m+4)2 (m+3)(m+86)

satisfies the equation 2

z (-Il—y + (3-1)‘2 +y = Bom(m+2)zzw_l.
d22 dl
Hence,
Z_BZ - Fnz o+ Bozm{l ol 2m+ 1 _(m=DH(m+2), 1 N 1 Mz o+
om (m+ 1) (m+3) (m+1)y(m+3) m+1 m+3
2m -1 _ (m-1m (1 ' 1 N 1 )]22 N

(m+1y(m+3)(m+4) m+DH(m+3)(m+4) m+1 m+3 m+4

2m -1 _ (m=-1ym ( 2 ‘_‘_l_+ 1 )]25 .
(m+3Z(m+4)ym+5) (m+3)2(m+d)(m+5) m+3 m+4 m+5
[ 3m2+2m—2 _ (m~1)ym(m+2) ( 2 ; 2 N 1 . 1)]2“

m+3)2(m+ ) (n+5)(m+6) (m+3(n+a)2(meS)y(n+6) M+3 m+4 m+5 m+6

b ovieersianeen } also satisfies this equation.

Using m = -2 with By = 1, we find

o= | , - T3t by - %—3 and
ay -2 2 3, 4
Yo =_5— = ysInz o+ 2z (14 324 427 ~ 1127/3 4 2 /8 + eeees)
Mim= -2
= ¥y ln% w2l e 3+ 4 - 11/3x + 1/812 + sresverees., The complete solution
is y = Ay, + By, = (A+Bln;l)(1/x—3) +B(x2+3x+4-11/3x+ 1/'8x2+ ----- cen),

The series converge for all values of x # 0.
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SUPPLEMENTARY PROBLEMS

Solve in series near x =0.

11. 2(x2+x3>y” - (x —3x2)y’ +y=0.
R.F. A = ~Ap_,

Ans, y = Avx +Bx)(1 = x + L cesen), Converges for |x|<1.

12 dxy” + 2(1-x)y’ -y = 0.

1
R.F. Ay = ——— Ay_
n Zm+n) ne1
x z x5 x x2 x5
Ans. y = A(l + + = + +....)+B/;(1+_+ %
2411 22_2! 23,31 1-3  1-3:5  1+3+5-7

Converges for all finite values of x.

13, 2%y" — xy’ + (1-22)y = 0.

R.F. An = 1 An_o , n even, Ay, = 0, n odd,
(m+n-1)(2m +2n ~-1)
x2 x“ 16
Ans. y = Ax(l + — + + F oanesnenas veesas)
2.5 2:4+5-8 2:4+6:5-9-13
x2 x“ xb
+ Bvx(l + =— + + b oereressiensanes),

2¢3  2:4¢3-7 2:4:6:3-7-11

Converges for all finite values of x.

14. xy" +y’ +xy = 0.
R.F. A4p = —A;An_g, n even; Ay = 0, n odd,
(m +n)
x° x °
Ans, y = (A+Blnx)(1——2+ rCIRIT 2+..........)
2 24 2:4-6
2 4 6
+ B[f; - : 2(1+%) + _2_"_2_2_(1+-12.+%) e erereenand]
2 2.4 2°.4%. 8

Converges for all finite values of x # 0.

15. xzy” - xy’ + (12 +1)y = 0. R.F, 4y = -~ ——-1-——2- Ap-, , neven, A, = 0, n odd.
(m+n-1)
12 xu xb
Ans., y:(A+Blnx)x(1——2+“ > = % ~SRARARREEEEE )

2 27 (21) 27(31)

2 4 6

x x 1 x 1 1

+BX[—-————(1+—)+———————(1+—+—)+°""""'].
2 ot 2 by 23

Converges for all finite values of x # O.
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16. xy" - 2y" +y = 0. R.F. Ap = - — Apey

(m+n-3)(m+n)

3 4 5 2 3 4 5
Ans. y = (4 +Blnx)(—x—+f—-f_+...)+B(1+£+f—+x——19x +137x

12 48 480 2 4 36 576 28800

Converges for all finite values of x # 0.

17. xy” + 2y’ + 2y = o. R.F. 4, = - —I—An_Q , neven; A, = 0, n odd.
(m+n)y(m+n+1)
1 12 xq x2 14
Ans. y = Ax (1-=—+—-.....) + BA-Z+X ...
2! 4! 3! 5!
Converges for all finite values of x # 0.
18. x2(x +hy" + x(x+ 1)y’ -y = 0.
Singular points: x = 0,-1. R.F. Ap = - m_+_n_—1 ne1 o
m+n+1

Ans. 'y = Ax(l - x/3 +12/6 —x3/10 Foeverenan) + Bx-l(l + x).

Converges in the annular region bounded by a circle of arbitrarily small radius
and a circle of radius one, both centered at x = .

1
19. 2xy” + y’ -y = x + 1. R.F. An = N1
(m+n)(2m +2n ~1)
Ans. y = A(L+x + 22/6 + 22/90 + cevv) + BYE(L + /3 + 22/30 + XO/630 4 veeeees )
1 2 2 3
+gx (1 + x/15 + x /420 + x” /18900 + ++vvnrse ) - 1.
Converges for all finite values of «x.
Solve in series near x = o .
20. iny” + xzy’ +y =0, R.F. Ap = - ! An_y
(m+n)(2m+2n +1)
Ans. y =A(1--l+ LI Foeneeas) 4 Bﬁ(1-%+-1—- 1 +oeeeees),
3¢ 3002 63047 6x?  90x
Converges for all finite values of x # 0.
21. xjy" + (x2+x)y’ -y =0. R.F. A, = 1 Aney
m+n
Ans, y = (A + Blni)(l +J%+L + -1— +eee) + B[% + L(1+—1-) + i(1+1+l) +oeee],
2x2 6x5 2x2 2 6x5 2 3

Converges for all finite values of x # 0.
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The Legendre, Bessel, and Gauss Equations

THE THREE DIFFERENTIAL EQUATIONS to be considered here are solved by the methods
of the preceding chapter. The first two have important applications in math-
ematical physics. The solutions of all three have many interesting properties.

THE LEGENDRE EQUATION

(1-x5)y"=2xy' + p(p +1)y = 0.

A solution of this equation in series convergent near x =0, an ordinary point, was called
for in Problem 16, Chapter 25, Under certain conditions on p which will be stated later, we
shall obtain here the solution convergent near x - . Using the substitution x = 1/z (see
Chapter 26) the equation becomes

4 2d2y 3
(z —z)——7 + 2z

dz

QZ + p(p+ly = 0
z

for which z =0 is a regular singular point,

+2 +n

. +1
Putting y = Aozm +Alzm + AQZM +oeeeee + Anzm RN we have

{—n(m=1) + p(p+DMoz™ + {=m(m+1) + p(p+ DIz™ " 4 {[-(m+D(m+2) + p(p+DIA,

+ m(m+1)A0}zm+2 + oo + {[-(meny(m+n=1)+p(p + D]JA, + (m+n—2)(m+n—1)An_2}zm+n

+ eesee = 0,

We take A, = 0 and Ay = (mtn-2)(m+n-1) An-,, and see that
(m+n)y(m+n-1)-p(p+1)

y = Aozm[l . m(m + 1) 52 . m(m+1y(m+ 2)(m+3) K

(m+1)(m+2)—p(p+1) [m+H(m+2)-pp+DI[(m+3)m+4) -p(p +1)]

m(m+1)(m+2)y(m+3)(m+4)y(m+53) Zb
[n+H(m+2)=pp+1)[(m+3)(m+4)-p(p+ D] [(m+35)(m+6)~p(p+1)]

+ oeeene]
satisfies the equation

d5
dz?

"

(z -z2) + 22 + p(p+ 1y = [—m(m—1)+p(p+1)]Aozm = (m+p)(—m+p+1)Aozm.

5 dy
dz
For m = -p with 4, =1, we obtain

cP o Pe-D 2 PE-DE=DE®=3) pPp-DPE-2p-3)(p-HP-5) °
2(2p-1) 2:4(2p -1)(2p - 3) 2:4:6(2p - 1)(2p -3)(2p - 5)

H

n oy

+oeereenenis]

"

WPlo- BP=D -z peoDE D@3 4 PE-DE-2E=3) P = (P =5) -6
2(2p-1) 2:4(2p -1 (2p -3) 2:4-6(2p -1)(2p =3)(2p ~5)

P

220
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For m = p+1 with 45 =1, we obtain

(P+L(p+2)(p+r3)(p+d)y v

2-4(2p +3)(2p + 5)

A (p+1)(p+2) ,2

1+
2(2p +3)

2)

Yo

P+ (p+2){(p+N(p+4(p+5)(p+6) ,0
2:4-6(2p+3)(2p +5)(2p + 1)

b o ]

(p+1H(p+2) 2.
2(2p +3)

prHP+2)(p+3)(p+4) -
2:4(2p +3)(2p +5)

Meat [1 +

(p+1)(p+2)(p+3)(p+4)(p+5)(p+6) 50
2:4-8(2p +3)(2p +5)(2p+77)

+ + ..........]

Thus, y Ay, + By,

is the complete solution, convergent for |x| > 1, provided that p # 1/2, 3/2, 5/2, **+**
or p # -3/2, -5/2,

221

Suppose p is a positive integer including 0 and consider the solution y; which is a poly-

nomial, say up(x). Putting p = 0,1,2,3,¢*+*+ in 1), we have

ug(x) = 1, uy(x) = x, uy(x) = 12_1/3' uz(x) = x3_31/5’ . vesecessanns cees

fe] k(k -1 k-2n+1 k

— tessee e - -27

w0 = 3 (-p" 82D ( ) e,

n=0 2" nl (Zk=1)seeeese(2k=-2n+1)
where [fk] denotes the greatest integer $ +k (i.e., [3k] = 3 if k=17, [3k] = 4 if k =8).

The polynomials defined by
3) Pp(x) - M?U(X) 1'3-5-..-(2P—1) up(x)’ p:O' 1. 2,.-00-,
2P (pt) P!

are called Legendre polynomials., The first few of these are:

Po(x) = ug(x) = 1,
Py(x) = ug(x) = zx,
1.3 3 2 1
PQ(x) = ? uz(x) = Ex - 51
1. 3.5 5 3
Py(xy = n ug(x) = 515 - Ex'
1357 5¢7 w4 3.5 2 1-3
P,(x x =T — X = 22— X ot ——
« (%) 4! + () 24 24 2-4
1:345+7-9 79 57 3 3¢5
P = L= = —Zx - 25— + —~x,
s (x) 51 us (%) oW o x 2.4"
Po(xy = X301l oy o TSdle 5579 % 5357 2 135
6! 2+4.6 2+4+6 2:4.6 2+4-6
Py (x) _1__3_._.;1_3 U, (x) = 9-11-13 7 - 37.9.11 LN 5.7.9::5 - 3-5‘71, ete.
" 2+4+6 2:4+6 2:4-6 2:4+6

It is clear from 3) that Pj,(x) is a particular solution of the Legendre equation
(1-2%)y" — 2y’ + p(p+1) = 0.

See Problems 1-6,
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THE BESSEL EQUATION

Xy xy' + (x* - k%y = 0.

It is evident that x =0 is a regular singular point. To obtain the solution in series,
convergent near x =0, we substitute

+1 +2

m m mn m
y = Apx + Ayx + Apx + eeseses + Apx 4 eeesene

ang obtain

(mz-kz)onm + {(m+1)2—122}Alxm+l + {[(m+2)2-1z2]A2 + Ao}x’“z +oseeereeaaens

+ {[(m+n)2—k2]An b AT e e = 0.
We take A,=0 and A, = - —————l;——~—»An_2 and see that
(m+n) ~k
¥ = ox" {1 - 12 2’62+ 2 21 72 3
(m+2)" —k [(m+2) <k ]l(m+4)" - k"]
- > 12 2 2 > xb + ..--..--.u}
[n+2)" —k ] [(n+ &) < k"] [(m+6) k]
satisfies the equation xzy” .1+ (xz‘_kz)y; B (mz__kz)onm.
For m = k with A; =1, we obtain
Y. = xk{l_ __1—12 + > 1 x“ - ! xb + eeevress}
4(k+ 1) 4220k + 1) (k + 2) 42031 (k +1) (k +2) (k +3)
and for m = ~k with Ay =1, we obtain
Yo = x—k{l,_ __}.___xz + 5 1 xu - 1 xb + ----..--}.
4(1-k) 422 (1-k)y(2-k) 42431 (1=k)(2-k) (3 -k)

Note that y, = y, if k=0, y; is meaningless if k is a negative integer, and y, is meaning-
less if k is a positive integer. Except for these cases, the complete solution of the Bessel
equation is y = Ay, + By,, convergent for all x # 0.

The Bessel functions of the first kind are defined by

1 x k.1 1 x 2 1 x4 1 x. 6

J = = - —_—_ - —_— (- —_— _ —_—— (= 4 qeses

0 9% k1 Y1 <2) {k! 1!(k+1)!(2) " ko) 5 3!(k+3)!(2) x
J_p(x) = (—l)ka(x), where k is a positive integer including O.

Of these, Jo(xy = 1 - ._1_2‘(f)2 + 1 (f)" _ 1 Z(f)b b seesceces .
(1?2 20’ 2 CI
1 x2 1 xu 1 =x6

and J = f 1 - —-(= — (= - (= + eseesecvess

" 1) @1 TR A E TR, 34T 2 }

are more frequently used.
See Problems 7-10.
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THE GAUSS EQUATION

(x —=x%)y" + [y ~(a+B8+1)x]y’ — afy = 0.

To obtain the solution in series, convergent near x =0, substitute

n m+l m42
y = Aox + Ayx + Ayx 4 eesecsnn + Apx 4 eanesean

and obtain
mm+y - DA™ 4 {m e D) (mey)Ay = [m(ne as B+ aBlAgha” 4 ceereeiees

m+n-1

+ {(menym+n+y DAy ~ [(m+n-Lym+n+a+8-1)+aBlAn_}x 4 oreeene = 0.

(m+n -ym+n+a+B-1+af

(m+n)y(m+n+7y-1)

We take Ay

An_y and see that

7 - Agx™ (1 + m(m+a+ﬁ)+aﬁx R m(m+a+ﬁ)+a,3.(m+1)(m+a+ﬁ+l)+a,812

(m+1)(m+7) (m+1)(m+7%) (m+2)(m+y+1)
, mm+ra+f)+af (m+1)(m+a+,3+1)+aﬁ.(m+2)(m+a+ﬁ+2)+a,6x5 P ]
(m+1)(m+y) (m+2)(m+y+1) (m+3)(m+y+2)

satisfies the equation

(x-2)7" + [y—(@+B+1x]¥ - aBy = m(m+y -Dhox" '

For m = 0, with A; =1, we obtain

1. eB @ DABY 2 ot D@+ DEBDBD) 3

+ —x

1.y 1 2¢9(y + 1) 102:3ey(y + 1) (¥ +2)

Y1 =

and for m = 1-7y, ¥ # 1, with A5 =1, we obtain

LYy Loy @By oy h@-y DBy HBE-yr2) 2
1(2-%) 1.2(2-7)(3~7)

Yo =

, =y+D@a=-y+29@-y+3)HB-y+H(B-y+2)(B-y+3) X 4 rressaeacas 1.
1:2:3(2=M) (3 =Y (4 =Y

The series y,, known as the hypergeometric series, is convergent for |x| <1 and is repre-
sented by
Y1 = F(C’-.ﬁ,'y. x).
Note that Yo = 77 Fa-y+1, B-v+1, 2-v, x)
is of the same type. Thus, if 7y is non-integral (including 0), the general solution is

y = Ay, + By, = AF@, By, x) + Bx' " Fa-y+1, B=y+1, 2-y, x).

There are numerous special cases, depending upon the values of a, S5, and 7y. Some of these
will be treated in the Solved Problems.
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SOLVED PROBLEMS

THE LEGENDRE EQUATION .

p IR
1. Verify that 2" ptP (x) = —(x =-1) . (Rodrigues’ Formula)
P P
dx
p . \ -
By the binomial theorem, (x2 - 1)¢7 = z (-1) Y SN Then
o nl(p-ny!
2 , (z9) . ' b
Q ! -
L e oy = B en P pomyp -1y (p =20+ 1)x
dxﬁ n=0 n! (p —n)‘.
[éﬂ 2, 1 2n 2 2n-1 1 ! p-2n
= (-1y" 22Ep-D - Go=ntl) o) o (p-2n-1)++ ponsnp 2@ 20 PP P
n=0 2p(2p=1)...(2p-2n+1) (p=-2n) (p-2n=1)«..1 n!(p-n)!

Now (in the denominator) 2p(2p-1)+-*(2p~2n+1) = 2" p(p 1)+ p-n+1)]{(2p-1)(2p-3) -+ (2p-2n+1)]
and when multiplied by (p-n)! yields 2np! [(2p-1)(2p=3)*""*(2p~2n+1)]. Hence,

dﬁ 2 (z7] 1)1 p! 2
t p! —on
L - 3 e = p)! p P
dx . n=0 2p[(2p-1)(2p -3y (2p-2n+D](p-2n)tn!
(z4]
_ 2 (—l)n (2p)! ) p(p=1)--+(p-2n+1) xﬁ-zn
n=0 2nn!p! (20 -1)(2p =3)+++(2p=-2n+1)
_ o 2p)! P
= ___p! up(x) = 2 p!Pﬁ(x).
(27) o1
2. Show that P, (x) = > -y (2p - 2m)! P From Problem 1 above,
n=0 Zﬁ n! (p-n)! (p -2n)!
al¢> 2 p (&) !
4ty - T e B gpemp -ty DT
dxﬁ n=0 n!(p-n)!
(27] ‘ '
c S D @ -myp - e (potn ey B BL e
n=0 (p-2n)! ni(p-n)!
(2#) ‘
- 1 -
= 1" (2p -2n)' p! s
n=0 n! (p~-n)! (p -2n)!
S (2]
- ! -
Hence, Pp(x) = ‘——1—'—‘(1:2_1)1; - 2(_1)71 (2p - 2n)! x1> 2n'
2P p! dx? n=0 2¢n! (p-m)! (p - 2n)!
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1
9. Evaluate f P (x) P(x) dx.
N L

Using Rodrigues’ formula (Problem 1),

1 1 r s

f Pr(x) I)?(x‘) dx = —1———— f i—(952 - 1)T- i(xz - 1)S dx.
1 S r4s 1 v s
2 rl st dx dx
1’r dS 2 Tl 2 .7 s=i 5
Let u = L—(x2- 1)7 and dv = —(x —l)sdx. Then du = +l(x -1) dx, v = l(x -1,
dx” dx” dx’ de’®
x=1 x =1 x=1
and f udv = uv - v du
x=w=1 x=w-l x=-1
r s=1 1 1 r+1 s-1
s d 2 d 2
- iy(:f Syl Py - f — - n. —(x - 1 dx.
dx T -1 - d dx

5=~ 1
Now _(xz—l){] =0, for j=1,2,.+-,s5-1; hence, after one integration by parts,

dx®” a1

1 1 41 s-1
f P.xy P(x) de = ~ — ! f d r+1(x2 EI d 1(x2 -1)° dx.
-1 ARSI TRRCS S dx®”

A second integration by parts yields

* 1 1 amt2 r ds-2 2
f Pox) Px) dv = ———— f ¢ — -1 —(x 1) dx
-1 2 Trist Y-l dx dx

and, after s integrations by parts, we have formally

1 +s
A) f P(x) P(x) dx - ,( b’ ( Y d” (x* =1 ax.
-] - +s r -1 dx r+5
2 27 2r-2 TS o, r
Suppose s »r. Then, since (x° ~1) = x° — rx’ "2 4 eeeeee + (1), —@ -1 =0
S
fl Po(x) P(x) dx = 0. Since r and s enter symmetrically, this relation holds also

when r > s, Thus, it holds when r # s.
Suppose s = r. Then A) Dbecomes

r 2r
{‘l

1
2 -
B) f P (x)dx = &b J o1y P o1y da.
-1 227’ (r!)2 -1 dx27‘
¥ 2 r voe -7 (2r)! Yo
Now . (x" -1y = (2r)!. Hence, f P (x)ydx = ——-—-————2' f (x"-1) dx
dc?” -1 227 (r1y -1
(-1’ (2r)! r A (2ry! 2™ 2
e (-1) 2 f sin 8dé = e . = s using the
27 1¢3+ee(2r +1) 2r+1

27 (r1y? 0 22 (r1y?
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1
z7 n

1
substitution x = cos & and Wallis’ Formula f sin?”™M oo - —2 .
0

4. Express f(x) = X+ 27c3 + sz—x—B in terms of Legendre polynomials,

Since P,(x) = gxu - —1-5312 + §, then x@ = —B—P,,(x) + §x -
8 4 8 35 7

0
—)+2x3+212—x—3=~—8—P4(x)+2x5+2—x-x———-
35 35 T

+
+

Now x~ = gPS(x) + gx and f(x) = %Pd(x) gPs(x)

+

40
and f(x) = %P4(x) + %Pa(x) ﬁPﬁ(x) +

22
Py(x) - ngom.

+
|
"o
»
—~
r
N
+

4
- %Pux) ¢ 2P

R. Show that (1-2xt+ t2)'z = Py(x) + Py(x) t + Py(x) 2 b eees + Py(x) tk RN

2.-% 2 1=% 1 2
Now (1-2xt+t") = [1-(22t -tH] = 1 4 E(th—t y o+

<1/2)2(3/2)(21t_t2)2+

1.3...(2k—5)(2n_t2)k-2 N 1.3...(2k—3)(21t_t2)k-1 R 1-3...k(2k—1)(2xt_t2)k+ ..... )

2572k —2)1 2"k ~ 1)1 2% ki

But (Q.xt_tz)k = (20) t = e ,

(th—tz)k_l = ()t - (k_l)(u)k'ztk+

k-—}tk-—l R (k-2 (k=-3)

Y (2x)k—ut —~ sesee  ete,

(2xt_t2)k’2 = (202 D (k-2 (20)

|

Hence, (l—2xt+t2) 2 = 1 + xt + (% X2 - é)tz b oeeeees e ool @R oD Rk

1e3eee (2 — - - «3ees - - - ~ -
- ___.‘i (2R .3.)(k_1)2k ka 2, 1.3..+(2k-5) (k-2)(k-3) 2k uxk Y. ]tk b eeeeerens
2

kot 2" 2k —2)1 21

= 1 4+ xt + (gxz_._l.)tz N
2 2

k(k -1) xk-2 N k(k~1)(k-2)(k-3) xk-u .
2(2k - 1) 2:4(2k —1)(2k -3)

[§]

Po(x) + Py(x)t + P, (x) t2 + seesse + Pk(x) tk b sesses

6. Show that Pp(l) =1, p=0,1,2,3,cc00ccens .

Put x =1 in the identity established in Problem 5. Then

(1~2t+t2)~2 = (1_t)"l = 1+t+t2+"'---+tp+ ......
= Po(l) + Py(l)t + Po(1) t2 4 woess + Py(1)t” ¢ +eee, identically.
Hence, Po(l) = Py(l)y = «+»-- = Pp(l) = eeees = 1,
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THE BESSEL EQUATION.

Y. Prove %JO(X) =~ Jy(x).
< 1 2
X
by = X D ——= &
n=0 (nl) “
1 +2
-1 - (%)2 1 2(:_;)4 ~ 1 - :éb N + D 1 ______3(;_;)% _______
(21) (3" [(n+ 1]
and
d 1 x3 1 x5 n+l 1 x 2n+l
— J, = (= - (= e e (2Y 4 wenes -1 — (YT 4 seeeaes
& o U TETAY TEAC A e ST
= -~ [i — ___1__ i 3 4 sesaces + (_]_)n ____1___ f n+l 4 seecsen )
2 11312 nt(n+1)! 2
< 1
- 2 (—l)ﬂ ______(f)Znﬂ = = Jy(x).
n=0 nl(n+1)! 2
More briefly,
d d d S
2n x 2n
N Z(l) S s Zs 2 )
dx dx ;7 (n,)z 2 dx na (m)z 2
d @ ®
x 2n+2 X 2n+l
= 201~ —— = _— (= = =Jy(x).
dx[ g (n+1)']2(2) % n'(n+1)'(2 1
d k b3 d -k -
8. Prove a) - 2 J(x) = x Jk_l(x), b) o Jy) = =37 J (),
where k& is a positive integer.
d & n 1 2k +2n
@) — x Jy(x) = — S — x
dx de 7y 2¥* 2" 01tk + n)
2 k 2k+2n-1
= 2 (_.1)"' _mgl._zi___ x "=
n=0 2 n! (k+ n)!
< 1 2k +2n-1
n n-
= 2 (D x
— 2P ki1
k o 1 k k
n x +27 -1
= -1 ———— (= = J .
* ,EO D e @ R
®
d -k d n 1 n
by —x “J) = — S ——— %
dx dx n=0 2k+2nn' (k+n)!
o d 1 d n 1 2n+2
ol et E (-1 x 3
dx 27 k! n=0 2k+2m2 n+1)! (k+n+1)!
< 1 k s 1
- 1 2n+l - n X k+2n+l -k
pINE T x - Y ey G - .

n=0 2 Rl (ktns1y! n=0 n!(ktn+t 2
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d 2k
9. Prove ay J, () = J, @ = 2£Jk(x), by J,_(x) + J, ) = —x—.]k(x),

kE+1 251

where k£ is a positive integer.

From Problem 8,

d k & d k- k
A) &;x-Jk(x) = x aJk(x) + kx le(x) = x Jy_ [ and
d - - - k- -k
B —x Fy = o2 éé Jyx) ~ kT @ = - ) U .
Then from A), d
1) ’d—x*]k(x) + —Jk(x) = Jk_l(x);
and from B), d
2) E‘]k(x) - —Jk(x) = _Jk+1(x)’

When 1) and 2) are added, we have a); when 2) is subtracted from 1), we have b),

Note that when b) is subtracted from a), we have

d 2k d k
2 = Jk(x) - = Jk(x) = -2 Jk+l(x) or I Jk(x) = = Jy, (x) - Jk+1(">'

Note also that b) is a recursion formula for Bessel functions.

L -
10. Show that e2*(* Ve Jy(x) + tJi(x) + eeeee 4 tF Jy(x) £ oeeeee —%-J_l(x) 4 oeene
1 + @
n
+ —);J-k(x) o receasas = z t Jn(x)'
t n=-0
F N _
ezx(t 1/t) - ezxt-e x/2t
2 .2 3.3 n.,.n 2
:[1+x_t_+xt+xt+....+xt+....][1___+_x__
2 22 21 2 3 2" nt 2t 9% g1 4P
3 n
- x 4+ eseee + (_1) + -]
25 31 ¢ 2" n1 "
In this product, the terms free of t are
x 2 1 xu 1 x6 1 x 2
1- G+ G - =G e D =" © = o,
(2 (3" (n!) ’
the coefficient of t° is
k k+1 k+2 2 k+3 3
x - x Eo x L2 - X X b oeesinas
2F k2P ket 20 282 ki 2% o 2R (ke 2P g
x k 1 X k+2 1 x_ Rty 1 x_k+6
= _(_) — r—— 4 o—— (= . (2 4 eeecene
k2 Mk+1)1 2 2A(kR+2) 2 31(k+3) 2

2
kr2n = Jk(x), and the coefficient of -% is

—_—
ne0 n!(k+n)! 2 t



For either choice, 'y, = F(1,2,4,x) = F(2,1,4,%)
x 3x2 x5 xu 3755
= 1+ = ¢ = P L L ..
2 10 5 7 28
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E k41 . xk+2 x2 xk+5 o
bl sz - k+1x 3 | Ei2 P T Tke3 ST reeed
2k 2T ket 2 2*TP ey 22 R ki 2P
= (-1 [_(J_()k_*l_~ fk+2+_1“ fkw‘_lﬁ £k+6+--]
kY2 Uk +1) 2 20k +2y! 2 31(k+3)! 2
k
= (-1 Jk(x) = J_)@(x)-
THE GAUSS EQUATION.
: . 2 3 1
11. Solve in series (x-x’)y" + - %yy! - 77 - O
Here a+f+1=2, v =3/2, aB = 1/4; thusa - 8 - 1/2, and Y = 3/2.
2 3
. 1 1 3 x 3x Sx
The = F ,/,, :F—!_l_l = 1 + = _— + — + eoeee
en  y; (@,5,7,%) Gr3r30® s " T
-
and Yo = T F@=y+1, Boy+l, 2%, x) = x TF(0,0,5.7) - W5,
and the complete solution is y = AF(%. 51, g,x) + B/v/x .
12. solve in series (x—xz)y” + 4(l-x)y’ - 2y = 0.
Here a+B8+1=4, v =4, afl =2 then a - 1, =2, %=4 or a=2 8= 1, v = 4,

Since y = 4, the fourth term in Y2 has zero for denominator. However, one of a-y+2 or

B-7y +2 in the third term is zero so that
- 3 = 573
Ye = x " F(-2,-1,-2,2) = x F(-1,-2,-2,2)

and the complete solution is

y = AF(1,2,4,%) + Bl_x-

x

13. show that a) F(a,B,8,x) = (l—x)-a, by xF(1,1,2,-x)

a) F(a/B/Bx) 1 + a_fx + Mzz

1.8 1288 +1)
-1+ oax a@+l) 2 | a@+1l)@+2)

2! 3!

by xF(1,1,2,-x) = x [1 + Ll(—x) + 1;2L.2(—-;vc)2 + 12-3

1.2 1.2-2-3 1-2-3

= x(1 ~ lx + 112 - Ex“ t oresened) =
2 3 4

+ eseaas

©1:2:3

= x-s(l—x)

= 1n(1+x).

(=x)
+2:3.4

In(1+ x),

x5 + esress

3

+

(1 —x)-a.
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14.

15.

16.

17.

18.

19.

20.

21.

22.
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SUPPLEMENTARY PROBLEMS

Compute a) P,(2) = 55.3750, b) Jo(1) = 0.7652, «¢) Jy(1) = 0.4401, d) F(1,1,10,-1)=0.9147

Verify each of the following by using the series expansion of P¢7 (x).
a) (xz_l)P;(x) = (D[P, 2P @] - plx P,y = Py (0],
b) PJyy(x) = xPy(x) + (p+ P, (). 1

c) (2p+1)Pp(x) = Pﬁ,+l(x) —Pﬁ'_l(x) = ;[([Hl)Pﬁu(x) + pPﬁ_l(x)],

If P,(2) = a and P,(2) = b, show that
a) P/(2)

7 7 ) 1 : 1
5(b..za), by P)(2) = §(2b-—a), c) P (2) = 5(306-7a), d) B/ (2) = 5(52b- 14a).

If Jo(2) = a and J,(2) = b, show that a) Jy(2) = b—a, b) Ji(2) = a-4b, ) Jo(2) = a.

Show that the change of independent variable x2 =t reduces the Legendre equation to a Gauss
equation,

a) Show that the change of dependent variable y = x%z transforms y”+y =0 into a Bessel equa-
tion.
b) Write the solution of the Bessel equation as y = Clx%\]%(x) + CQx%J_%(x) and show that

Jy (x) and J  (x) may be defined as ax-%sinx and bx-yzcosx respectively.

% Y%
c) Show that if the relations of Problem 8 are to hold for k = + %, then a = b.

Note, These functions are defined with a =v2/1.
. . _ 172 _ 2/3 " . .
Use the substitution y = x~'"z and then =x = (3t/2) to show that y"+xy = 0 is a special
case of the Bessel equation, and solve,

Hint: 2" + tz/ + (t2=1/9)z = 0.

XS x6 xg
Ax[l - + - + -.-.o-.]

223 21 223%7 312233 q.10
x5 x6 x9
+ B[l - 4+ - + esessas ....-]_

3.2 2132 2.5 313 2.5.8

Ans. y

Solve (x2— 3x+2)y” + 4xy’ + 2y = 0 after reducing it to a Gauss equation by a substitution
of the form x =&z + 7.

Hint: y =A4F(,2,-4,x-1) + B(x - 1)5F(6,7,6,x-1) is not a complete solution since the-sixth
term of F(1,2,-4,x~1) becomes infinite.

Ans. y = AF(1,2,8,2-x) + B(2-x)" F(~6,-5,-6,2-x)

Express each of the following as Gauss functions.

@) —— = F(1, 8,5, x) dy ¢ = 1lim F(a, 1,1, z/a)
- a-— ©
b) arc sin x =xF(l.l.§,x2) 2
2 2 2 . . 3 x
e) sinx = 1lim xF(@, B,5,- ).
1 3 2 a— 2 403
c) arc tan x = x F(l, =, =, =x") B—o®

2 2



CHAPTER 28

Partial Differential Equations

PARTIAL DIFFERENTIAL EQUATIONS are those which contain one or more partial deriv-
atives. They must, therefore, involve at least two independent variables. The
order of a partial differential equation is that of the derivative of highest
order in the equation. For example, considering z as dependent variable and
x, y as independent variables,

1) Xa—z+ y% = Z or 1') xp t yq = z
X )%

is of order one and

2 2 2
2) 9z, 392 2z or  2') r+3stt=0

7 X3y oyl
is of order two. In writing 1') and 2'), use has been made of the standard

2 2 2
notation: p = oz q=29, .3z (_23z ,_D2z,
BX B BXZ BxBy ay2

Partial differential equations may be derived by the elimination of arbi-
trary constants from a given relation between the variables and by the elim-
ination of arbitrary functions of the variables. They also may arise in con-
nection with geometrical and physical problems.

ELIMINATION OF ARBITRARY CONSTANTS. Consider z to be a function of two independent
variables x and y defined by

3) g(x,y,z,a,b) =0,

in which a and b are two arbitrary constants. By differentiating 3) partially
with respect to x and y, we obtain

08 38 9z 08 08
4 98 4 28 2% _ 98, p0% _
) 3x 3z 9x  ax T3z
and

dy dz 9y dy dz

In general, the arbitrary constants may be eliminated from 3), 4), 5) yielding
a partial differential equation of order one

6) f(x,y,z,p,q) = 0.

EXAMPLE 1. Eliminate the arbitrary constants a and b from z = ax2+ by24»ab.
Differentiating partially with respect to x and y, we have

% =p = 2ax and éf = g = 2by.
Ox dy

Solving for a and b from these equations and substituting in the given relation, we obtain

231
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2
e = ghtey §>72+ G5ad or pg + 2px’y + 2qxy° = 4xyz,

<

a partial differential equation of order one.

If 2 is a function of x and y defined by a relation involving but one ar-
bitrary constant, it is usually possible to obtain two distinct partial dif-
ferential equations of order one by eliminating the constant.

EXAMPLE 2. Eliminate a from z = a(x+y).

Differentiation with respect to x gives p=a, so that the partial differential equation
z = p(x +y) is obtained. Similarly, differentiation with respect to y gives ¢ = a and the
equation z =qg(x+y).

If the number of arbitrary constants to be eliminated exceeds the number
of independent variables, the resulting partial differential equation (or
equations) is usually of order higher than the first,

EXAMPLE 3. Eliminate a,b,c from z = ax+ by+cxy.
Differentiating partially with respect to x and y, we have
(1) p = a+cy and (il) g = b+ecx.
These, together with the given relation, are not sufficient for the elimination of three
constants., Differentiating (i) partially with respect to x, we have
2, . 2z

2. = r = 0,
axp A ?

a partial differential equation of order two. Differentiating (ii) partially with respect
to y, we have

2
.a_q = Z =t = 0, of order two.
oy 8y2
Differentiating (i) partially with respect to y or (ii) with respect to x, we obtain
ip = _a_q = 322 = 8§ = ¢
Jy o dx dy '

From (i), p = a+sy and a = p-sy; from (ii), b = g-sx.
Substituting for a,b,c in the given relation, we obtain
2 = (p-sy)x + (g—-sx)y + sxy = px + qy - sxy,
of order two,

Thus, we have three partial differential equations r=0, t=0, z=px+qy-sxy of the
al ini d iated with the gi tion, '
same (minimum) order associated with the given relation See also Problems 1-4.

FLIMINATION OF ARBITRARY FUNCTIONS. Let uvu=u(x,y,z) and v=v(x,y,z) be independent
functions of the variables x,y,z, and let
) ¢(u,v) =0

be an arbitrary relation between them. Regarding z as the dependent variable
and differentiating partially with respect to x and y, we obtain

o¢,du du I, v ov
8 2{(— + p— + (= —) =
) oox TP3) F RGP T 0 and
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?.d?(a*u + a_u) + a_qb(a_v +

2 Jdu 3y qu 9v 9y

Jdv
q—) = 0.
qaz)

Eliminating g—d“ and 2—¢ from 8) and 9), we have
u v

i du ou  3v p Jv
dx dz Ox dz

= (e pB &y g2y L (U 528 2V, 2,
du du dv . dv ox dz By oz By dz Ox dz
5‘;*'(78—2 g (Jg;
_ dudv Budv, Budv_ dudv , dudv udv _
9x 9y dy ox dz dy dy oz dx 9z 9z Ox
Writing ap = 94 9V _ du v, AQ = 24 OV _ ou dv, WR = SY 9v _ du dv.
dy 9z d9z dy dz 3x ox Jz ox dy dy 3x
this takes the form
Pp + Qg = R,

a partial differential equation linear in p and g and free of the arbitrary
function @é(u,v).

EXAMPLE 4. Find the differential equation arising from qS(z/x5, y/x) = 0, where ¢ is
an arbitrary function of the arguments,

We write the functional relation in the form ¢(u,v) =0 with u:z/x5 and v=y/x, Dif-
ferentiating partially with respect to x and Yy, we have

opp _ 3z by obea,, %1
PL 22y, @Yy, Ly + 2y =,
Bu(x3 x“) ' au( x2) Bu(x5) ' Bv(x)

The elimination of 3_15 and a—d) yields
u v

p/x> - 3z/x" —y/x%

5 = p/xt - 3z/x0 + qy/x> = 0 or px + qy = 3z,
q/x 1/x

The arbitra}*y functional relation may also be given by Z - f(%) or z = x3f(%), where

3
X
f is an arbitrary function of its argument. Using v = y/x and differentiating 2z = xif(v)
with respect to x and y yields

d .
p o= 3Rl + O YU wlfy + S Gy-2y - 32 f(w) - xyfi(v),
dv 9x dv 22
3df v _ 3 df 1 2 4
4 v . Lyey = .
q x v 3 x(dv ) x fl(w)
When f/(v) is eliminated from these, we have
px + qy = 3x5f(v) = 3z

as before, See also Problems 5-8.
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SOLVED PROBLEMS

"':1. Eliminate a and b from =z = (x2+ a)(y2 ~b).

Differentiating partially with respect to x and y, p = 2x(y2+ Ly and g = 2y(x2+ a), Then
2 P 2 q 2 L2 q.. P
b=y xS +a=2, and z = (x"+a)(y +b) = (=)(=) or pg = 4xyz.
Y % 2y Y 2y 2 Pq Y

We could also eliminate e and b as follows: pg = 4xy(y2+b)(x2+a) = dxyz.

_12. Find the differential equation of the family of spheres of radius 5 with centers on the plang
x=y.
2 2 2
The equation of the family of spheres is 1) (x-a) +(y-a) + (z-b) =25, a andb being
arbitrary constants., Differentiating partially with respect to x and y, and dividing by 2, we
have
ave (x-a) + (z=-b)yp =0 and (y-a) + (z=-byqg = 0.
Let z—b = -m; then x-a=pm and y~-a =gm., Making these replacements in 1), we get
n’(p?+q? +1) = 25,

2
, m2(p2+q2+1) = -(x_—y)z(p2+q2+1) = 25, and the

-9

x-y
P-9

Now x-y = (p-q)m. Then m =

required differential equation is (x —-y)2 (p2 + q2 +1) = 25(p —q)2 .

3. Show that the partial differential equation obtained by eliminating the arbitrary constants
a,c from z = ax + h(a) y + c, where h(a) is an arbitrary function of a, is free of the vari-
ables x,y,z.

Differentiating z = ax+h(a)y+c partially with respect to x and y, we obtain p = a and
g = h(a). The differential equation resulting from the elimination of a is g =h(p) or f(p,q)
= 0, where f is an arbitrary function of its arguments. This equation contains p and g but
none of the variables x,y,z.

v 4. Show that the partial differential equation obtained by eliminating the arbitrary constants a
and b from

z

ax + by + f(a,b),
the extended Clairaut equation, is

z = px + gy + f(p,q).

Differentiating z = ax+by +f(a,b) with respect to x and y yields p=a and g =b, and the
required differential equation follows immediately.

: B. Pind the differential equation arising from ¢ (x+y+z, x2+y2—z2) = 0.

Let u==x+y+z, v=x+y?~22 so that the given relation is p(u,v) = 0.

Differentiation with respect to x and y yields

B_cé(1+p) + Z-35é(2.ac—2zp) =0 and %(1+q) + %(Zy—hq) = 0. Eliminating o and B_g_S’ we have
du Jv du dv Ju

v

1+p 2x-2zp
= 2(y-x) + 2p(y+z) - 2q(z+x) =0 or (y+z)p - (x+2)q = x = ¥.
1+q 2y-2zq
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6. Eliminate the arbitrary function P(x+y) from z=¢d(x+y).

Let x+y=u so that the given relation is z = ¢(u).

d
Differentiating with respect to x and y yields p = E%) = ¢'(u) and g = @' (u).

Thus, p = ¢ is the resulting differential equation.

+ [. The equation of any cone with vertex at Py (%0, Y5, 20) is of the form <ﬁ(§il§9, %—:%9) = 0.
-2 e

Find the differential equation,

X —Xg _ Y —Yo

ul
z-2p z -25

Let = y  so that the given relation is ¢ (u,v) = 0.

Differentiating with respect to x and y, we have

3 - _
.fl_lz S pEEreny . R, Xokoy Lo
u ° (2 -20) Vo (z2-12)
S.i)(—q_u?) + g_?(zil -q y—y02) =0,
Y (z2-20) v ° (z -20)
Eliminating 2? and éf » we obtain p(x-x0) * q{y-yo) = z ~2g.
u v

V' 8. Eliminate the arbitrary functions f(x) and g(y) from z = yf(x) + xg(y).

Differentiating partially with respect to x and y, we have

1 p=yfiUx) + gy and 2y q= f(x)+ xgiy.

Since it is not possible to eliminate f,g,f’, g’ from these relations and the given one, we
find the second partial derivatives

3y r=yfx), s = fl(x) + g'(y), t=xg"(y).

From 1) and 2) we find f'(x) = ;[p-—g(y)] and g'(y) = %[q-—f(x)]. Hence,

1 1
s = i@ el = Slh-sml i Zle-fo).

Thus, =xys = x[p-g()] + ylg-f)] = px + gy - [y f(x) + xg(»] = px+qy-z  is the
resulting partial differential equation,

Note that the differential equation is of order two although, in general, a higher order is
expected. However, since one of the relations 3) involves only the first derivatives of f and
g, it is possible to eliminate f, g,f’, g’ between this relation, 1), 2), and the given relation.

/ Q. Find the differential equation of all surfaces cutting the family of cones x2+-y2— a?:? - 0

orthogonally.

Let z = f(x,y) be the equation of the required surfaces. At a point P(x,y,z) on the surface,
a set of direction numbers of the normal to the surface is [p,q,-1]. Likewise, at P a set of
direction numbers of the normal to the cone through P is [x,y,—azz]. Since these directions
are orthogonal,
px + qy + azz = 0.

The elimination of a® between this and the given equation yields the required differential

equation
d z(px+ qy) + x?+ y2 = 0.
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10.

11.

12.

PARTIAL DIFFERENTIAL EQUATIONS

A surface which is the envelope of a one-parameter family of planes is called a developable
surface, (Such a surface can be deformed (developed) into a plane without stretching or tear-
ing.) Obtain the differential equation of developable surfaces.

Let z = f(x,y) be the equation of a developable surface,
The tangent plane at a point (xp, yo,20) Of the surface has equation
Iy F= (x-x0)p + (y~¥0)9 - (z-20) = 0.
Now when p and ¢ satisfy a relation ¢(p,q) = 0, 1) is a one-parameter family of planes
having z = f(x,y) as envelope., Thus ¢(p,q) = 0 or g¢q = A(p) is the required differential
equation,

x % satisfies ¢(p,q)

The cone of Problem 9 is a developable surface since p = - 9=
a z a

N

= az(p24-q2) -1 =0.

Eliminate the arbitrary functions ¢, and ¢, from

2 7 Py rmx) + Py max) = Py (u) + Py (v)

in which my # m, are fixed constants.

Differentiating partially, we obtain

2 2 2 2 2, 2
_m2d¢’1+m2d¢2' s:md¢1+ d¢2) t:d¢1+d¢2_
1 2 1 Z
du® dv? du® T dv? du?  dv?
2 2
d2 d2 ”Ll ”l2 r
o g 2
Eliminating —4£3, P we have |my my, s| = (m,-m)r - (mi_.mi)s + (m1m2"”1m§)t =0
du?  dv? _
t

or, since m, # my, r—(mg+my)s + mym,t = 0.

Show that (a) z = ax’ + by5 and (b) z = ax’+ bxzy +cxy2+-dyq/x give rise to the same dif-
ferential equation.
a) Differentiating z = dx3+—by5 partially with respect to x and y, we have

p = 3ax? and q = 3by2.

Thus, px+gqy = 3(ax5+-by5) = 3z 1is the resulting differential equation.

b) Differentiating 2z = ax5+—bx2y-+cxy2+—dyu/x partially with respect to x and y, we have
p = 3ax? + 2bxy + cy? - a’y“/x2 and g = b’ + 2cxy + 4dy3/x.
Thus, px+gy = 3(ax’ + bx?y +ny2+,dy”/x) = 3z as before.

The fact that these two equations, one with two arbitrary constants and the other with four,
give rise to the same differential equation will indicate the subordinate role which the ar-
bitrary constant will play here, In its place we will have arbitrary functions. Since (a) may
be written as

z o= ax? s byd = wPasby/n)] = 2degiy/n),

while (b) may be written as

z = latbiy/n) foy/n’ +diy/n)] = xhy/x),

each is a particular case of 2z = x5'f(y/x) considered in Example 4.
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SUPPLEMENTARY PROBLEMS

Eliminate the arbitrary constants a,b,c from each of the following equations.

13.

14.

15.

16.

17.

18.

z = (x—a)2 + (y-b)z Ans. 4z = p2 + q2

2z =axy + b xp —yqg =0

ax + by + cz = 1 r=0, s=0, or t=20

z:axey+%a2e2y+b q:xp+p2 /
z:xy+ym+b pg = xp + yq

xz/a2 + yz/b2 + 12/02 =1 xzr+xp2—zp = 0, yzt+yq2—zq =0, or 2s+pg=20

Eliminate the arbtirary constants a,b and the arbitrary functions ¢, f.g.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

z = x2¢(x-y) or t/f(z/'xz, x-y) =0 Ans., 2z = xp + xq

xyz = @x+y +2) x(y=2z)p + y(z=%)q = z2(x-Y)
z:(x+y)<,‘b(x2—y2) yp + xq = 2

z:f(x)+eyg(x) t—-q =0

x = f(2) + gy ps ~gqr =0

2= fay) + gy Ans. x(y-x)r - (F =2")s 4y -mt + p-@(x+y) = 0
z = flx+z) +glx+y) Ans. gr — (1+p+q@)s + (1+p)t =0

z = ax’ +g(y) p-xr =0 or s =0
z:%(a2+2)x2+axy+bx+¢(y+ax) r—2t+rt-s2=2

Find the differential equation of all spheres of radius 2 having their centers in the xOy

plane, Hint: Eliminate a and & from (x-—a)2 + (y—b)z 22 4, Ans. 22(p2 + q2 +1)

1
S

Find the differential equation of planes having equal x- and y-intercepts. Ans, p-q =0

Find the differential equation of all surfaces of revolution having the z-axis as axis of

rotation, Hint: Eliminate ¢ from :z = <1>(¢x2+y2) = ¢/(x2+y2). Ans. yp-2x9 = 0



CHAPTER 29

Linear Partial Differential Equations of Order One

THE PARTIAL DIFFERENTIAL EQUATIONS of order one

1,) px + qv = 3z and L) px* +qy =2

are called /linear to indicate that they are of the first degree in p and q.
Note that, unlike linear ordinary differential equations, there is no restric-
tion on the degree of the dependent variable z.

All partial differential equations of order one which are not linear, as
2,) p?+qf=1 and 2,) p+lng = 227,

are called non-linear.

LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF ORDER ONE. Equation 1,) was obtained in
Chapter 28, Example 4, from the arbitrary functional relation

3) H(z/x3, y/x) = 0

or its equivalent z/x5::f(y/x). This solution, involving an arbitrary func-
tion, is called the general solution of 1,).

The differential equation was also obtained (Chapter 28, Problem 12) by
eliminating the arbitrary constants from

4,) z = ax’ + by’
and from
4,) z = ax’ + bx’y + cxy? + dy'/x.

A study of the problems of that chapter indicates that relations involving two
arbitrary constants usually yield non-linear partial differential equations
of order one, while those involving more than two arbitrary constants yield
equations of order higher than one. However, as was pointed out in Chapter 28,
Problem 12, both of these relations are particular cases of the arbitrary
functional relation 3). Itis clear then that the general solution of 1) yields
a much greater variety of solutions than that obtained (in the case of ordi-
nary differential equations) through the appearance of arbitrary constants;
for example,

z/x> = A sin(y/x)? + B cos(y/x) + C In(y/x) + De”* + E(y/x)*?

is included in the general solution 3).

THE GENERAL SOLUTION. A linear partial differential equation of order one, involv-
ing a dependent variable z and two independent variables x and y, is of the

form
5) Pp + Qg =R
where P,Q,R are functions of x,y,z.
If P=0 or 9=0, 5) may be solved easily. Thus, the equation %E = 2x + 3y
X

has as solution =z = x2+-3xy+-¢(y), where ¢ is an arbitrary function.

238
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Lagrange reduced the problem of finding the general solution of 5) to that
of solving an auxiliary system (called the Lagrange system) of ordinary dif-
ferential equations

6) gf _dy dz

by showing (see Problem 7) that

) P(u,v) =0, (¢, arbitrary)
is the general solution of 5) provided u=u(x,y,z)=a and v=v(x,y,z)=b are
two independent solutions of €). Here, a and b are arbitrary constants and at
least one of u,v must contain z.

L WV TUSL contall z

~» EXAMPLE 1. Find the general solution of

1) px + qy = 3z.
The auxiliary system is éx_ = ﬂ = d_f .
X y 3z
dx d
From d-i = %, we obtain u = z/Jc5 = a; and from — = Y, we obtain v = y/x = b,
x z x Yy

Thus, the general solution is ¢(z/x°, y/x) = 0, where ¢ is arbitrary.

Of course, from (_iz = ;E, we obtain z/y5 = ¢, and we may write
y z
L//(z/x3, z/yi) =0 or )\(z/y5,y/x) =0,

where  and A are arbitrary. However, these are all equivalent and we shall call any one
of them the general solution,

The above procedure may be extended readily to solve linear first order
differential equations involving more than two independent variables.

EXAMPLE 2. Find the general solution of

9z oz Jz
x — + = +

Yy t — = xyt,
dx Ay
z being the dependent variable,
The auxiliary system is d_x = gl = ‘ﬁ = _d_l
X

We obtain readily u = x/y =a, v =t/y = b.
A third independent solution may be found by using the multipliers yt, xt, xy, -3. Since

X(yt) + y(xt) + t(xy) + (xyt)(~3) = 0,
ytde + xtdy + xydt —3dz =0
and xyt - 3z = c.

Thus, the general solution is (x/y, t/y, xyt—-3z) = O.
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COMPLETE SOLUTIONS. If u=a and v=»b are two independent solutions of 6) and if
a,B are arbitrary constants,

8) u=av+p

is called a complete solution of 5)., Thus, for the equation of Example 1,
z/x’ = a(y/x) + B

is a complete solution.

A complete solution 8) representsa two-parameter family of surfaces which
does not have an envelope, since the arbitrary constants enter linearly. It
is possible, however, to select one-parameter families of surfaces from among
8) which have envelopes. As shown in Problem 8, these envelopes (surfaces)
are merely particular surfaces of the general solution.

SOLVED PROBLEMS

“ ) 1. Find the general solution of 2p + 3q = 1,
The auxiliary system is é = éZ = d—l .
2 3 1
From 51-25 = de. we have x -2z = a; and from % = %, we have 3x -2y = b, Thus, the gen-
eral solution is ¢(x -2z, 3x ~2y) = 0.

The complete solution x -2z = a(3x-2y)+ 8 1is a two-parameter family of planes. The one-
parameter family determined by taking 8 = a? has equation

A) x -2z = a(3x =2y) + a2.
Differentiating A) with respect to o yields 0 = 3x -2y+2a or a = - %(31 -2Y).

Substituting for a in A), we obtain the envelope, a parabolic cylinder, x -2z = - 'ﬁ(3" —Zy)2 .
This cylinder is clearly a part of the general solution.

* 2. Find the general solution of y’zp - x°zq = x°y.

The auxiliary equations are & dy | dz
yzz =22 xzy
F‘rom—d—z-= dy or zdz+ydy=0, we have y2+z =a; fromix-z dy , we have x5+y5=b.
xy -x%2 yzz —xzz

Thus, the general solution is ¢(y2+zz, x2+y’) = 0.

+ 3. Find the general solution of (y-2)p + (x~-y)q = z ~ x.

i . dx d dz e ey L Mpdyadsy
The auxiliary system is - 2. - T re
y-—l X—y z-x Y ooy oy ¢

Since (y-2)+(x-y)+(z-x) =0, dx+dy+dz =0 and x+y+z = a,
Since x(y-z)+z(x-y)+y(z-x) =0, xdx+ zdy +ydz =0 and x?+2yz = b,

Thus, the general solution is d)(x2+ 2yz, x+y+z) = 0.

The complete solution x4 2yz = a(x +y+z) + B represents a family of hyperboloids,
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4
v 4. Find the general solution of (x®-y2-2%)p + 2xyq = 2xz.

The auxiliary system is _L = i‘l = _(iz_
x2_y2_22 ny oxz

From dy . _d_z, we obtain y/z = a.
2xy  2xz

From dz xde +ydy +zdz _xdx+ydy+zdz or g_z_:2(xdx+ydy+zdz)’
22 x(xz—y2—22)+y(2xy)+z(2xz) x(x2+y2+22) z xZ2+y% 4+ 22

iyt
we obtain Y tZ -y,

z

Thus, the general solution is

The complete solution x?2 +y2 +22 = ay+[Bz consists of the spheres throughthe origin with
centers on the plane yOz,

/. Solve a + bg + cz =0,
/ D

The auxiliary system is é = _‘?Z = ﬂ From d—f = (-i-z. we obtain ay-bx = A,
a b -cz a b
dz dx . c -cx/a .
If a # 0, - = - yields Inz = - P +1nB or z=Be , and the general solution
- - b
may be written as z = e cx/a qS(ay-—bx). If b # 0, (izz = % yields z = Ce e/ , and the
. . -cy/b

general solution may be written as z = e Y (ay - bx).

6. Solve 1) 2p+q+z=0, 2) p-3g+22=0, 3) 2p+3q+52=0, 4) g+2z=0.

1) Comparing with Problem 5 above, a=2, b=1, ¢ =1,

The general solution is 2z = e_x/2¢(2y-x) or z=e¢  Y(2y-x).

-2
2) Here, a=1, b==3, ¢ =2, The general solution is z = e x¢(y+3x) or z = e2y/3¢(y+3x).
3) The general solution is :z = e-ﬁx/2q5(2y—3x) or z = e"”/5 Y(2y - 3x).
4) Thé general solution is 2z = e-2y¢(—x) = e—zy\//(x).
¥. show that if u=u(x,y,z) =a and v=v(x,y,z)=>b are two independent solutions of ix—:‘é—yzii
P

where P,Q,R are functions of x,y,z, then ¢(u,v) = 0, with ¢ arbitrary, is the general solu-
tion of Pp+Qq = R.

Taking the differentials of u=a and v =5, we have

%dx+%dy+%dz=0, B—de+§2dy+—(2dz=0.
o Ay oz ox dy 9z

Since u and v are independent functions, we may solve for the ratios

dx i dy:dz = (il%—%@):(%%—ai%):(%i—%%) = P:Q:R.

dy 9z 9z dy 9z 3x  Ox 9z Ox 9y Jy ox

But these are the relations (see Chapter 28) defining P,Q,R in the equation Pp+ Qg =R whose
general solution is d&(u,v) = 0,
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8. Let u=av+B be a complete solution of Pp+ Qg = R. From this two-parameter family of sur-
faces, select a one-parameter family by setting [ =h(a), where h is a given function of «,
and obtain the envelope.

The envelope of the family
H u=av+ h(a)
is obtained by eliminating a between 1) and
2) 0=v+ hi(a).
Solving 2) for a = w(v) and substituting in 1), we have
3) u = vep(v) + hfuw)] = Aw).

Now 3) is a part of the general solution ¢(u,v) = 0. Thus, unlike the case of ordinary dif-
ferential equations, the envelope is not a new locus.

If h(a) is taken as an arbitrary function of a, A(v) is an arbitrary function of v, and 3)
ts the general solution. Thus, the general solution of a linear partial differential equation
of order one is the totality of envelopes of all one-parameter families 1) obtained from a com-
plete solution. It is to be noted that when h(a) is arbitrary, the elimination of a between
1) and 2) is not possible; thus, the general solution cannot be obtained from the complete
solution.

9. Show that the conditions for exactness of the ordinary differential equation
ulx,y) M(x,y)dx + u(x,y) N(x,y)dy = 0

is a linear partial differential equation of order one, Thus, show how to find an integrating
factor of Mdx+Ndy=0. (See Chapter 4.)

if uMde + uNdy = 0
is exact, then 3(,uM) = i(pLN) or Ma—“ - Na—M = ;,L(.él—v—?ﬂ)o
dy dx dy 3 3 dy
This is a linear partial differential equation of order one for which the auxiliary system is
dx dy du
1 —_— 7 T e—_—
NN o
dx 9y

Any solution, involving u, of this system is an integrating factor of Mdx + Ndy =0,

Writing 1) in the form

W_Ww o
9x 9 9 9
9y E Mg o E__Mg oo W it is evident that if
-N M
W W N oM
a"—NE’l = f(x), then u = eff(x)dx is an integrating factor; or if % dy . g(Y), M = efg(y)dy
- M
is an integrating factor, Moreover, if the equation is linear (that is, y'+Py = Q), then M
=Py~-Q, N=1 and 2) becomes Pdx = Is—%dy:dlf and = edex is an integrating factor.
Y- p

"
o
.

10. Find an integrating factor for (20y-y®)ydx — (2" +xy)dy (See Problem 9 above.)

Here M = 2x3y—y2, N = —(2x“+xy), B_M = 2x5-2y, B_]\ = —(815+y).
Ay ox
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d, d
We seek a solution involving u of & = Y = K .

2" + xy 23y ~y? iy -102)

From du - -2y dx - 3x dy — - -2y dx - 3x dy or dit . Yy dx — 3x dy
X
M(y—10x5) —Zy(qu+xy)_3x(‘2.x3y—y Yy oxy(y - 10x5§ H Y
we obtain In u = -21nx -31Iny. Thus, u= x'zy'5 is an integrating factor,
T 2 2 2
11. Find the integral surface of x p+y°g+2z°=0 which passes through the hyperbola
xy=x+y, z=1
The auxiliary system is éx_ = Q = d_l .
X2 y2 22
From % = ﬂ we obtain u = rre . a, and from E{Z = -il- we obtain v = Yrz . b.
%2 52 xz y2 _,2 yz
+1
We first eliminate x5,¥0,zo between x,¥o =xo +Yp, 2o =1 and u = TotZo _Zot’ .,
X020 X0
and =YotZ _Yotl. b. Solving the latter for x5 = —1 Yo = 1 and substituting
Yozo Yo a-1 b-1
in  xpys = x0 + yo, We obtain .t .1 - or a+b =3 as the relation which

(@a-1(b-1) a-1 b-1

must exist between a and b. Then the equation of the required surface is

a+b = urv = = + = 3 or 2xy + z(x+Yy) = 3xyz.

SUPPLEMENTARY PROBLEMS

find the general solution of each of the following equations.

12. p+q=: Ans. 2z = eyqb(x—y)

13. 3p +4qg =2 3y—4x = f(32-2x) or ¢(3y-4x, 3z-2x) = 0
14. yg - xp =12 P(xy, xz) = O

15. =xzp + yzq = xy y = x¢(xy~22)

16 x°p + y%q = 2° x -y = xyP(l/x - 1/z)

17. yp—xq+x2—y2=0 qb(x2+y2, xy-z) =0

18 yzp — x2q9 = xy ¢J(12+y2, y2 +Z2) =0

19 zp + yg = x X +z = y¢(x2—22)

20 x(y-2)p + y(z-x)q = 2(x ~Y) P(xyz, x+y+z) = 0

21 x(yz-lz)P + y(lz_xz)q = Z(252*.}’2) Plxyz, x2+y2+22) =0

22. Find the equation of all the surfaces whose tangent planes pass through the point (0,0,1).
Hint: Solve xp+yq = z-1. Ans. z =1+ xd(y/x)

23. Find the equation of the surface satisfying 4yzp+q+2y = 0 and passing through y2+z2 =1,
x+z =2, Ans. yZ+22+x+2z =3



CHAPTER 30

Non-linear Partial Differential Equations of Order One

COMPLETE AND SINGULAR SOLUTIONS. Let the non-linear partial differential equation
of order one

1) f(x,y,z,p,q) =0
be derived from
2) g(x,y,z,a,b) =0

by eliminating the arbitrary constants a and b. Then 2) is called a (or the)
complete solution of 1).

This complete solution represents a two-parameter family of surfaces which
may or may not have an envelope. To find the envelope (if one exists) we elim-
inate a and b from

If the eliminant

3) NMx,y,2z) =0

satisfies 1), it is called the singular solution of 1); if
ANx,y,2z) = E(xy z)-n(X,¥,2)

and if £ = 0 satisfies 1) while n = 0 does not, £ = 0 is the singular solu-
tion. As in the case of ordinary differential equations (Chapter 10), the sin-
gular solution may be obtained from the partial differential equation by elim-
inating p and g from

EXAMPLE 1. It is readily verified that =z = ax+ by-—-(a2+ bz) is a complete solution
of 2z = px+qy—(p2+ g%?). Eliminating « and b from

g=z-ax-by+a2+bz=0, §§=—x+2a=0, ?—:—y+2b=0,
a b
12 2 VL2020 02,2 . s s . . .
we have z = 5x° + 3y ~ g(x"+y") = g(x"+y"). This satisfies the differential equation
and is the singular solution, The complete solution represents a two-parameter family of

planes which envelope the paraboloid =x?+y% = 4z.

GENERAL SOLUTION. If, in the complete solution 2), one of the constants, say b, is
replaced by a known function of the other, say b = ¢(a), then

g(x,y,z,a,qﬁ(a)) = 0
is a one-parameter family of the surfaces of 1). If this family has an envel-
ope, its equation may be found as usual by eliminating a from

9

8(x,y,z,a,¢(a)) =0 and
da

g(x,y,z,a,p(ay) =0

and determining that part of the result which satisfies 1).

244
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EXAMPLE 2. Set b = ¢b(a) = a in the complete solution of Example 1. The result of
. 1 2
eliminating a from g = z—a(x+y)+2a2 = 0 and %é = ~(x+y)+4a =0 is 2z = -8—(x+y)
a
which can be readily shown to satisfy the differential equation of Example 1. This is a pa-

rabolic cylinder with its elements parallel to the xOy plane.

The totality of solutions obtained by varying ¢(a) is called the general
solution of the differential equation. Thus, from Example 2, 8z = (x +y)? is
included in the general solution of the differential equation of Example 1.

When b = ¢(a), ¢ arbitrary, is used, the elimination of a between
g =20 and %8 =
da

is not possible; hence, we are unable to express the general solution as a
single equation, involving an arbitrary function, as we were in the case of
the linear equation. T

€

SOLUTIONS. Before considering a general method for obtaining a complete solution
of 1), we give special procedures for handling four types of equations.

TYPE I: f(p,q) = 0. Example: pZ-q®=1. .

From Problem 3, Chapter 28, it follows that a complete solution is
4) z = ax + h(a)y + c,
where f(a,h(ay) = 0, and a and c are arbitrary constants.

The equations for determining the singuiar solution are

z = ax + h(a)y + c, 0 =x + hi(a)y, 0 =1.

Thus, there is no singular solution,

The general solution is obtained by putting c¢ = ¢(a), ¢ arbitrary, and elim-
inating a between
5) z = ax + h(a)y + ¢(a) and 0 = x + h'(a)y + ¢'(a).

The first equation of 5) for a stipulated function ¢(a) represents a one-param-
eter family of planes and its envelope (a part of the general solution) is a
developable surface. (See Problem 10, Chapter 28.)

EXAMPLE 3. sSolve p?~g?=1.

Y

Here f(p.q) = p2-q°-1=0, f(ah(a)) = a®-[h(@)])*~1 and  h(a) = (a®-1)"

¥

A complete solution is z = ax + (a2— l)zy + C.

I
(=)

A neater form is obtained by putting o =sec o; then h(a) = tan ¢ and we have
z =xsecq +y tana + c.
If we set ¢ = ¢p(a) = 0, the result of eliminating a from

z =x8secq + y tana, 0=xtang + y secg or 0 =xsing + y
is 22 - x? - y2.
This developable surface (cone) is a part of the general solution of the given differential
equation.
Note that we might have taken h(a) = -(a2— 1)]/2
%

1
z=ax - (@ -1y + c.

and obtained as a complete solution

See also Problems 1-2.
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TYPE II: = Example: 2z = px-qu-erqul“.

z = px +qy + f(p,q).

it follows that a complete solution is
ax + by + f(a,b).

From Problem 4, Chapter 28,

6)

This is known as the extended Clairaut type, for obvious reasons. This com-
plete solution consists of a two-parameter family of planes. The singular so-
lution (if one exists) is a surface having the complete solution as its tan-

gent planes.

z

EXAMPLE 4. Solve z = px + qy + 3p~ 2 ¢">.
A complete solution is z = ax + by + 3al/5 bl/s.
-2 1 1/3 ,-2
The derivatives with respect to a and b are =x+a /3 b /3 =0 and y+a /5b /3 = 0.

0a}/3 /3. RIS

Then ax + by = -

and, substituting in the complete s_olution, we obtain the singular solution
. - al/i bl/i

= 1/xy or xyz = L.
See also Problems 3-4.
TYPE III: f(z,p,q) = 0. Example: z = p? + qZ.
Assume z = F(x +ay) = F(u), where a is the arbitrary constant. Then
oz dz du dz dz Jdu dz
p = — = — = = - and = e — = g —
9x du 9x du du dy du

When these are substituted in the given differential equation, we obtain
an ordinary differential equation of order one

dz dz
—_, a—
du du

whose solution is the required complete solution.

f(z, ) =10

EXAMPLE 5. Solve 1z = p2 + qz.

Put z = F(x+ay) = F(u). Then p = dz/du, g = adz/du, and the given equation may be

reduced to z = (d—z)2 + az((-i—l-)z.
du du
Solving iif = a or -(E = ! du, we obtain 2vz = ! u+k = 1 (u+b).
u Vi+ a? vz 1+ a? 1+a® 1+a?
Thus, a complete solution is 4(1+ az)z = (x+ay+b)2, a family of parabolic cylinaers.

Taking the derivatives with respect to a and b, we have

8az x+ay +b=0.

2(x +ay+b)y = 0,

The singular solution is z 0.

See also Problems 5-7.

TYPE IV:  fi(x,p) = f,(y,9). Example: p-x? = g+y?.

Set f,(x,p)=a, qg) = a, where a is anarbitrary constant, and solve to

obtain

[2 (Y1
and

p = Fy(x,a)

Since z is a function of x and y,
Thus,

q = FQ(Yla)'
dz = pdx +qdy = Fy(x,a)dx + F,(y,a)dy.
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7 z = fFi(x,a)dx + fFQ(y,a) dy + b,

containing two arbitrary constants, is the required complete solution.

EXAMPLE 6. Solve p-q = x2+y? or p~x% = q+y2.
Setting p—xzza, q+y2:a, we obtain p:a+x2, q:a—yz.
Integrating dz = pdx + gdy = (a+x2)dx + (a—y2)dy, the required complete solution is

z = ax + x3/3 +ay - y3/3 + b, There is no singular solution,
See also Problems 8-9.

TRANSFORMATIONS. As in the case of ordinary differential equations, it is possible
at times to find a transformation of the variables which will reduce a given
equation to one of the above four types.

The combination px, for example, suggests the transformation X =1n x, since

then
3% JX dx x 9X oX
2 a_z dz 2

dz
becomes — =

Thus, q = px + p*x
Ay oX

+ (=), of Type I.
X

Similarly, the combination gy suggests the transformation Y =lny.

The appearance of gﬂ g in an equation suggests the transformation Z =1nz,
since then p = 9z EE L _ z L and £ = Eé’; similarly, q- EZ_
ox dZ 9x ox z ox z Jy
¥4 3Z.2
Thus, 2 - &% pecomes oZ = (=), of Type I.
p (Z> S (Bx) yDp

See also Problems 10-14.

COMPLETE SOLUTION. CHARPIT’S METHOD. Consider the non-linear partial differential
equation

D f(x,y,z,p,q) = 0.
Since z ig a function of x and y, it follows that
8) dz = pdx + qdy.

Let us assume p = u(x,y,z,a), where a is an arbitrary constant, substitute in
1) and solve to obtain g = v(x,y, z,a). For these values of p and q, 8) becomes

84) dz = udx + vdy.
Now if 8,) can be integrated, yielding
9) g(x,y,z,a,b) =0,

this is a complete solution of 1).

EXAMPLE 7. Solve pg + gx = y.
Take p = a-x, substitute in pg+gx=y, and solve for q = y/a.
Substituting in dz = pdx + gdy, we have dz = (a-x)dx + (y/a)dy, an integrable equa-

tion, with solution

2

2
2= ax - 2%+ Ly%/a vk or 20z = 2a%x - ax? + y¥ + b,
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Since the success of the above procedure depends upon our making a fortu-
nate choice for p, it cannot be suggested as a standard procedure. We turn
now to a general method for solving 1). This consists in finding an equation

10) F(x,y,z,p,q) =0

such that 1) and 10) may be solved for p=P(x,y,z) and g=0(x,y,z), (that is,
such that

of  of
3p 3
11) A = # 0, identically),
O OF
3p  oq

and such that for these value of p and g the total differential equation

8) dz = pdx + gdy = P(x,y,z)dx + Q(x,y,z)dy
is integrable, that is, Q _ ()@f - §£ + [ §3 - §B = 0.
z 9?9z 9y  ox dx oy
Differentiating 1) and 10) partially with respect to x and y, we find
12 of , LB L o, H _ g
d¥x 3z + 9Jp 9x dg Ox
13) of q of , o of 3g _ 0,
dy 9z 3p Ay 9q oy
" 3, O , Fdp , Fd _ g
ox oz Op Ox dq 9x
15) a_F + q a_F + a_F a_p + a_F @ﬂ = 0.
Ay oz 9p oy dq oy
Multiplying 12) by 2£, 13) by 2, 14 by = 2£, 15) by - 2, and addine,
op dq op
we obtain (noting that <& = 9
y  Ox
3f of JF Jf 3f OF of oF af OF of Jf, oF
(— + p—)=— g —= - = = - = _ - + =)—="'= 0.
> P35 T S 9% T pax a9

This is a linear partial differential equation in F, considered as a function
of the independent variables x,y,z,p,q. The auxiliary system is

16) dp _ dq _ o ax  _ dy - dz _dF
of >f of of of of of . 0
— + p — —_— + —_— - — - — - — + —_—
= P3z 932 3 3q PS5 " 93

Thus, we may take for 10) any solution of this system which involves p or gq,
or both, which contains an arbitrary constant, and for which 11) holds.
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EXAMPLE 8. Solve q = —xp+ p°.
o f
Here f = p2-—xp-q so that EI = —p, o . 0, of 0, o . 2p—x, éf = -1, and
x Jy cz op q
3 of of af 3
4‘-‘1).1:_.1), _l;.q_“_:()’ _(p_lfq_f‘\,:—zlu +Xp+q
dz Ay 0z p dq
The auxiliary system (16) is ﬂﬁ = ﬂﬂ d ﬂZ = dz
-P 0 -2px 1 —217? +xpt+ g
From dp EZ » we have Inp=-y+ Ina or p = ae””
_l\)
Using the given differential equation, g - —x[)+[ﬁ = —axe Vs ot
Then dz = pdx + gdy becomes dz = ae  dr + (—axeuv+—a2e_2))dy. Integrating,
z = axe ” - %azeuz‘v + b,
There is no singular solution, See also Problem 15.

SOLVED PROBLEMS

(In these solutions, the equations leading to the general solution will not be given.)

TYPE 1I:

1. Solve

A complete solution is

f(p,q) = 0.

2
p

+q2

z = ax + by +

where o + b% - 9.

C,

The equations for determining the singular solution are

zZ = ax

2. Solve

+\/9—a2y+c, 0=x - ¢
9-a?
pg +p+q=0.
A complete solution is z = ax+by+c

There is no singular solution,

TYPE II:
3. Solve

A complete solution is

z =px + qy + f(p,q).
z=px+qy+p’+pg+ gl

pA

Y, 0 = 1. Thus, there is no singular solution.

or

, where ab+a+b =0,

ax + by + a® + ab + b2,

Differentiating the complete solution with respect to a and b, we have

Solving to obtain a
the singular solution is

4. Solve

A complete solution is

0 X + 2a +

(y - 2x)/3,

2 2
z=px+qgy+pgq.

z = ax + by +

b= (x-2y)/3
3z = xy - 22 - y2.

b, 0 =y+a+ 2b.

and substituting in the complete solution,

a?b?, The equations obtained by differentiating with
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32 iz
respect to a and b are 0 = x + 2ab2 and 0 = y + 2a2b. Then a = - Y, b=- il
2x 2y
5 2 5 2 3 2 2 3
and the singular solution is z = - x ,y_ - / oy ,x__y_ = - § V4 12/5)'2/5-
2x 2y 16 4

TYPE III: f(z,p,7) = 0.

5. Solve 4(1‘;3) = 92“pq.

Assume : = F(x+ay) = F(u). Then p = éf, qg = a d_z, and the given equation becomes
du du
Va 22
4(1+z3) = Qazu(g)2 or 3va z dz = 2du.
du 1+2

Integrating, /a(1+15) = u+b, and a complete solution is a(1+25) = (x+ay +b)2.

Using the results of differentiating this with respect to a and b,

1+z3

the singular solution is 25 + 1 =0.

= 2x +ay+ by and 0 = 2(x+ay+b),

f. Solve p(l—qz) = g(l-2).

Assume :z = F(x+ay) = F(u). Then p = ZE, g = a jl , and the given equation becomes
u u

dz 2 dz 2 dz dz 2 dz 2

—) {1~ — = a—(1- r —) |1~ - —_— = 0.

(du>[ @ () ) s a(i-n) 0 <du>[ a+az-a (=) ]
Then az . 0 and z = ¢; or 1—a+az—a2(d-—z)2 =0, ——9—51—2———-— = du and

du du Vi-a+az
2¥1-a+az =u+b = x+ay+b or 4(1—a+az):(x+ay+b)2.

Each of z = ¢ and 4(l-a+az) = (x+ay+b)2 is a solution; the latter is a complete so-

lution. Using it, the equations for obtaining the singular solution are

£ = 4(l-a+az) - (x+ay+b)2 =0, %5 = 4(-1+2) - 2y(x+ay+b) =0, % = _2x+ay+b) =0;
a

there is no singular solution.

(« Solve 1+ p2 = qz.

d .
Assume z = F(x+ay) = F(u)., Then p = g—z. g =a d—z, and the given equation becomes
u u

(d—z)z—azd—z-+1=0 or ——dl————z'gdu.
ot dut az - a?2% - 4

Rationalizing the left member of the latter equation, we obtain (az + \/a222-4)dz = 2du.

whose solution is ‘5(112 + l[(12—Z Va?2? -4 -2 1n(az + W22 -] = 2w+ b).
a

A complete solution is then a?2? + azve?®z?-4 - 41n(az + Va?22 -4y = da(x+ay+b).
Note that o222 - az v/a?2%-4 + 4 In(az + Va?22 4y = da@x+ay+ b), obtained from
dz

az + \/azz2 -4

= $du, is also a complete solution,
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TYPE IV: f,(x,p) = f,(¥,q).

8. Solve vp-vg +3x=0 or vp+ 3x=vg.

Set /E +3x = a and /5 = a, Then p = (a--3x)2 and gq = a?, A complete solution is
1
z :fp& + [qdy + b = ﬂa-&fdr+aﬂﬂy+b or z = —§m—wf+»fy+h

There is no singular solution.

9. solve gq = ~-px + pz.
Set p?—px =a and g -a. Then p = L+ va?ida).

é—f(x+x/x2+4a)dx + afdy+b

A complete solution is z

1]

or z = ﬁ(xz +x x2+r4a) + aln(x + V§é+»4a) +ay + b,

Another complete solution is obtained by the method of Charpit in Example 8.
There is no singular solution.

USE OF TRANSFORMATIONS.

10. solve pg = xmynzﬂ or Pz ) g9z =1,

The transformation

z-i Ly Dy YT e a1 wazdy 1

1-1 ° m+1 n+l 33X 3xdX L"?Y  dydY v
reduces the given differential equation to éé- ég =
X Y

. 1
This equation is of Type I and its solution is Z = aX + EY + C.

1-1 mel n+1l
x

= qa + —— 4+ .
1-1 m+1 a(n+1)

A complete solution of the given equation is

There is no singular solution.

1. solve x%p% + y%?% = 2.
1) The transformation

1 -1
X=1nx, Y=1ny, Z-=2:7 oL Lk pxz * 9 _oZdy |

, o= = s gy

WU dxdy )3y Jyay
reduces the given equation to z(-a-g)2 + Z(§£>2 =z or (ég)2 + (ég)2 =1, of Type I.
X ?Y X ?Y

A complete solution is Z=aX+ bY + ¢ or 4z = (alnx+ bln y+»c){ where a2+b2 =1,
The singular solution is z = Q.

2) The transformation X = In «x, Y=1Iny, p = §£ = §£ éﬁ = E éf, qg = l éf
ox oX dx x X Yy oY
reduces the given differential equation to (Ef)2 + (§£)2 =z, of Type III,
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Jz iz G dz dz dz
We set z = F(X+al¥) = Fu). Then 8 = (f—- —il — — a s and
24X fu X i o7 du
(g)2 + a?(ﬁ)2 =z or /.‘x P a” <ol did,
du du -
Integrating, 2/1+ a? 2 = u+b = X+a¥+b = lnax +ain y + b,
A complete solution is 4(1+ u?)z = (Inx -« lny @ ’{ The singuiar solution is 2 = 0.
12. Solve 4xyz = pq + 2px2y & 2qu2.
5 5 A BY: ZX < fj/. 82 (~Y 4"
Let x = X° y=7Y". Then p 22 . 2 v 22 et g - 5 s 2y :a_z .
Ax oA dx 3y dy JY
2z 3z 3z Sz .
Substituting in the given equation, we have 2o A — | — of Type II.
321 5Y 2X oY
A complete solution is z = ak + bY + ab or oz - oax’ by2 + ab.
Eliminating a and b from this and 0 - x? o+ b, 0= y2 +a, obtained by differentiating it
with respect to a and b, the singular solution is found o ue 2 o« x23«7 = 0.
18. solve p2x2 = 2(z -qy).
. Dz 1
The transformation Y = Iny, X - 1n % I = 3_ . g = - ?f
i x 0X y ?Y
. . dz 2 G2
reduces the given equation to Ay (=) = 2(2 o~ =)
X ot
We set z = F(X+aY) = F(u). Then i dj :3—3 a ii'-iy and AY becomes (2)2 = 22 - azdl
3 du Y au du du
d / d 2 , 2 /
Then f :é—z(ya2¢4—a), 2; = v 4 - wydu, and In z ( (12+4-a)(u+b).
du Z
A complete solution is In 2% = (v’a2$ 4 - ad(Inx + a lny + b).
There is no singular solution.
14. solve pz + q2 = zz(x L) or (E)2 4 (2)2 =Xt Y.
) ) . a7 Y4 . .
The transformation Z =1n z, p o= Zols Qo= Z—— reduces the given equation to
dx Ay
37 2 o7 2 .z B
(Y + (D = x +y or (Z) —-x:y—-(:i/)z, of Type IV.
ox Ay ox 3y
07 2 7 7 L 7 L
Set (=)' -x = a = y-(—/)z. Then oz . (a +x)° and %z (y —a)*.
ox Ay dx dy
. il i
A complete solution is Z = [ta+x2dx + [(y-aY¥dy + b
or 1lnz = g((“ A g(y—a)y2 + b,
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CHARPIT'S METHOD.

15. solve 16pz® + 9227 + 422 ~ 4 = 0.

Let f(x,y,z,p,q) = 16p222 + 9q222 + a4z 4,

Then XL -0=%, P 502 1 150% 452, L3222 _gl - 18922, and the aux-

ox 3y oz op q
d d dx d dz )
iliary system P = - 4 = = Y - is
g + pﬁ( ,a_j. +q g — a_f . ?l —(P ?*][ +q ?I)
Ox dz Ay 3z dp 3q dp g
dp - dg - dx - dy - dz
32p5z + 18pq22 + 8pz 32p2qz + lsqiz + 89z —32pz2 —18qz2 —32p222— 18q222

Using the multipliers 4z, 0,1, 0, 4p, we find
4z(32p52 + 18pq2z + 8pz) + 1(—32p22) + 4p(—32p222 ~ 18q212) =0
and so dx + 4pdz + 4zdp = 0,

X —-a

Then x +4pz =a and p = - « Substituting for p in the given differential equa-

42

2
tion, we find (x-a)° + 9¢%2% + 42 ~ 4 = 0.  Using the root q = == a0t

Lex —
dz = pdv+ qdy = ~ 2% dx 4 2 /1-12_—,_';(x—a)2 dy or dy - 3[z dz + (x - a)dx]
4z 3z zm

2 2
Then y-b = —%Vl—zz-'ﬁ(x—a)z or Zz9® (y -5 + 22 =1 is a complete

4 9/4

solution. This is a family of ellipsoids with centers on the xOy plane. The semi-axes of the
ellipsoids are 2 units parallel to the x-axis, 3/2 units parallel to the y-axis, and 1 unit
parallel to the z-axis. The singular solution consists of the parallel planes z = +1.

Another complete solution may be found by noting that the equation is of Type III. Using

. d
F(x +ay) = F(u) 4nd setting p = d_z and ¢ = a Z—Z, the given equation-becomes
u u

2 dz.2 2 2dz2 z dz 2
du.

1627 (—) + 9a"2°(=)" + 42" -4 =0 or = Then
du du /1 2 AS + 942

~/1-22 = _i__(l“.b) = ——-2____(x+ay+b).

v 16 + 9a2 V16 + 9a2

This complete solution (16+ 9a2)(1 —12) = 4(x+ay+ b)2 represents a family of elliptic cyl-
inders with elements parallel to the xOy plane, The major axis of a cross section lies in
the xOy plane and the minor axis is 2 units parallel to the z-axis.
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SUPPLEMENTARY PROBLEMS

Find a complete solution and the singular solution (if any).

16. p = qz Ans. z = b'x + by + ¢
17. p2+p=q2 z = ax +by+c where b2=a2+a
18. pg=p +gq (b-1yz =bx + bb-1)y + ¢
19. z =px + qy + pq z =ax + by + ab; s.s., z = -xy
20. pz+q2 = 4z z(1+a2) = (x+ay+b)2; $.8., z = 0
21, pz = 1+q2 zz—z\/zz..éla2 + 4a% 1n(z + 2% - 4d%) = 4(x+ay+b)
22. 22(p2+q2+1) =1 (1+a2)(1—12) = (x+ay+b)2; S.S., z2—1 =0
23. p2+pq=4z (1+a)z:(x+ay+b)2; $.8., 2 =0
24. p2 -x = q2 -y 3(z-b) = 2(x+a)3/2 + 2(y+a)5/2
25. yp - xzq2 = x2y 4((1—1)y5 = (32-—ax5—b)2
26. (l—yz)xq2 + yzp =0 (2z—axz+b)2 = 4a(y2—1)
27. xupz—yzq—zzzo xlnz=a+(a2—1)x1ny+bx
Hint: Use X=1/x, Y=1ny, Z = 1n z.
28. xl‘p2 + yzzq -2 =0 xy In z = ay + (a2-2)x + bxy
Hint: Use X=1/x, Y=1/y, Z=1nz,
29. xqu + yzq =90 xz(z,y+a+by)2 + ay2 =0
30. 2py2 - qzz =0 2= dkx s ay2 +5b
3l. g =2xp + p2 z = Zaxe” + 2%e¢? + b
32. ZPZ - y2P + yzq =0 y22 = 2(axy+ay2+ a’+ by)
Hint: }i‘jg::g;;; pz=a andq=;(1—%).

3B. pg+ 2x(y+p +y(y+2)9 -2(y+1)z =0

Ans. z = ax + b(y2+ 2y+a); S.8., z + x(y2+2y) =0



CHAPTER 31

Homogeneous Partial Differential Equations of Higher Order

with Constant Coefficients

AN EQUATION SUCH AS

3 3 5 2 2
1) (x2+y2)-a—£+2xaz +a——z—-—-a———g+5xy——az+x5—a-—z+x?—z+yz:ex+y

3xd ox Byz By3 ax? X3y ox dy

which is linear in the dependent variable z and its partial derivatives is
called a linear partial differential equation. The order of 1) is three, be-
ing the order of the highest ordered derivative.

A linear partial differential equation such as

2) X" — + xy
x> x2 3y ax 3y’ 2

in which the derivatives involved are all of the same order, will be called

homogeneous, although there is no agreement among authors in the use of this
term.

HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS. Consider

2z dz
3 A== + B= = 0,
) ox oy
2 2 2
4) 422, 2% 22y,
Ix 2 dx Jy By2
2 2 2
5) 497 ., p oz +‘C2:x+2y,
Ix2 dx oy By2

in which the numbers A, B, C are real constants.

It will be seen as we proceed that the methods for solving equations 3)-5)
parallel those used in solving the linear ordinary differential equation
d

f(D)y = Q(x) where D= —_.
dx

We shall employ two operators, D, = éi and Dy = éi, so that equations
X y
3)-5) may be written as

3" f(D;, D)z = (AD, + BD,)z = 0,
4"y f(Dy,Dy)z = (AD; + BDD, + CDi)z = 0,
5 f(D;,D,)z = (AD; + BD,D, + CD})z = x + 2y.

255
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HOMOGENEOUS PARTIAL EQUATIONS, CONSTANT COEFFICIENTS

Equation 3') is of order one and the general solution (Chapter 29) is

z = ¢y - gx), ¢ arbitrary.

Suppose now that =z = ¢(y +mx) = ¢(u), ¢ arbitrary, is a solution of 4');
then substituting

D _ 9z _ dp du do oz d¢ du do
XZ = — = e — = M— Dy
x du 3x du dy du oy du

in 4') we obtain
d?¢

anz (Am2+Bm+C) = 0.

Since ¢ is arbitrary, d?¢/du? is not zero identically; hence, m is one of the
roots m=my,m, of Am® + Bm+C =0, If m #m,, z=¢,(y+mx) and z = P (y+myx)
are distinct solution of 4'). Clearly,

z = ¢,(y+mx) + by (¥ + myXx)

is also a solution; it contains two arbitrary functions and is the general
solution,

More generally, if

6) f(Dy, D)z = (D = myDy) (D =mpDy)eevee s (Dyy ~muDy)z = 0
and if my # my £ covenes 4 my, then
) z = Py (yrmx) + P (yEmyx) + e t Pp(y + myX)

is the general solution of f(D,,D,)z = 0.

EXAMPLE 1. Solve (D - DD, - 6D5)z = (D + 2Dy (D, = 3Dz = 0.
Here, my = ~2, m, = 3, and the general solution is y = by (y - 2x) + bo (y + 3x).
See also Problems 1-2.
If mi =m, = +vovs =m, # My 4y £ oo # m,, so that 6) becomes
k
6") f(DX,Dy)z = (D,=mD)) (D ~my, D ye-ee- (Dx—mnDy)z = 0,
the part of the general solution given by the corresponding k equal factors is
b (¥ +myx) + xb, (¥ + myx) + X2¢3(y+m1x) toreees + Xk-l¢k(y+mix)r

and the general solution of 6') is

ke
z = Py (yEmx) + xP, (¥ tmx) + eeeen + x lqbk(y+m1x) + qbkﬂ(y +tmy, .X)
Toeeeen + dn(y +myx),
where ¢,,P,, » v ¢, are arbitrary functions.
2 2 2
EXAMPLE 2.  Solve (D) - DD, - 8D,D) + 12D3)z = (D, - 2D,) (D +3Dy)z = 0.

Here, my=m, =2, mg=-3 and the general solution is z = Py (y +2x) + xP,(y +2x) + Pa(y - 32).

See also Problems 3-4.
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If one of the numbers, say m,, of 6) is imaginary then another, say m,, is
the conjugate of m;. Let my=a+bi and m,=a-bi so that 6) becomes
6"y f(D.,Dy))z = (D~ (a+bhi)D,] (D, — (a=bi)D, ] (D, —mDy) -+ - (D, - m,D,)z = 0.
The part of the general solution given by the first two factors is
DL (y +ax +1bx) + ¢, (y tax —ibx) + i[d,(y +ax +ibx) - P, (y +ax - ibx)],
(¢, ¢, arbitrary, real functions), and the general solution of 6'!') is
z = @, (y +ax +ibx) + ¢, (y +ax —ibx) + i[d,(y +ax + ibx) ~ ¢, (v + ax — ibx) ]
t P (Y A mgX) Hoeeeen t bn(y +mpx).
EXAMPLE 3. Solve (' - I)D, + 210D - 50D} + 3D)z
= 0, - DY (D, + 5+ iVIDDID, + 51 - 1VIDD,)z = 0.
Here, my=my =1, my=~5(1+ 1vI1), my=-4(l-1v/11), and the general solution is
2= by rx) + xPu(y+0) ¢ Ply 5+ VIDx] + Byly - 51 - VD]
+ o[y - 31+ 0 VIDx} = Pa{y ~ 51 - ivIDx}].
See also Problem 5.
The general solution of
51 £(D,,D,)z = (AD: + BD.D), + CD)z = x + 2y
consists of the general solution of the reduced equation
4') f(D,,D,)z = (AD? + BD,D, + CD )z = 0

plus any particular integral of 5'). We shall speak of the general solution
of 4'y as the complementary function of 5.

In setting up procedures for obtaining a particular integral of

8) £(D,,D))z = (D, =mD,)(D ~mD)er++ (D, ~mD)yz = F(x,y),
we define the operator ————L——— by the identity

£(D,,D,)

FD D) — e F(x,y) = F(x, 7).

Ty f(DX,D,))

The particular integral, denoted by

z = .t F(x,y) = - 1 F(x,y),
£(D,,Dy) (D= myD)) (D= m,Dy)e e (D~ mnD.)

may be found, as in Chapter 13, by solving n equations of the first order

1 1 1

9) u, = ———— F(x,y), Uy = Uy, e, Z T Uy T o Uy,

D, - my D, D, -—-m,_,D, D, - mlDy

it
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Note that each of the equations of 9) is of the form
10) p~-mq = 8(x,y)

and that we need only a solution, the simpler the better. In Problem 6 below,
the following rule is established for obtaining one such solution of 10):
Evaluate z = [g(x,a-mx)dx, omitting the arbitrary constant of integration,
and then replace a by y+mx.

EXAMPLE 4. Solve (Di - Dny - 6Dy2)z = (D, + 2D"y)(Dx - BDy)z = x ty.

From Example 1, the complementary function is 2z = d)l(y—zx) + ¢Q(y +3x).

To obtain the particular integral denoted by 2z = ! { ! (x+y)]:

D+ 2Dy b - BDy

a) Set u = 5--—13—1)—(;5 +y) and obtain a particular integral of (D, - 3Dy)u = x +y.

., )y
Using the procedure of Problem 6, we have u = f(x +a-3x)dx = ax—x2 and, replacing a

by y+3x, u = xy+2x2.

by Set z = ———u = —-—-1——(xy + 2x2) and obtain a particular integral of
D, + 2D D, + 2D,

(D, + 2Dy)z = xy + 2x2.

Then 2 = f[x(a+2x)+2x2]dx = %axz + §x3 and, replacing a by y-2x, 2z =

1
Thus the general solution is z = ¢y (y =2x) + Po(y +3x) + 51'2)’ + %x5.

See also Problems 8-9.

The method of undetermined coefficients may be used if F(x,y) involves
sin(ax +by) or cos(ax +by).

EXAMPLE 5.  Solve
2 2 .
D, + 5DXD} + sbyn = [D, - $(-5+ @)Dy][Dx - 5(~5 ~ \/5)Dy]z = x sin(3x ~2y).
The complementary function is z = ¢y + 2(=5 + vB)x] + Py + (=5 - VB)x].
Take as a particular integral

z = Ax sin(3x -2y) + Bx cos(3x-2y) + C sin(3x - 2y) + D cos(3x ~2y). Then
D,z = (6A-9D)cos(3x - 2y) - (6B+9C)sin(3x - 2y) - 94x sin(3x - 2y) - 9Bx cos(3x—2y);
Dnyz = (=24 +6D)cos(3x - 2y) + (2B+6C)sin(3x —2y) + 6Ax sin(3x~2y) + 6Bx cos(3x ~2y),
Df‘z = ~4D cos(3x - 2y) ~ 4C sin(3x -~ 2y) - 4Ax sin(3x~2y) - 4Bx cos(3x - 2y),

and (D,? + SDny + 5D§)z = Ax sin(3x -2y) + Bx cos(3x—2y) + (C + 4B) sin(3x-2y)
+ (D - 4A) cos(3x-2y) = x sin(3x -2y).

Then A =1, B=C =0, D=4 and the particular integral is
z = x sin(3x-2y) + 4 cos(3x -2y). The general solution is

2 = Puly + 5(-5 + VB)x] + o[y + (-5 - VB)x] + x sin(3x-2y) + 4 cos(3x-2y).
See also Problem 10.
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Short methods for obtaining particular integrals, analogous to those of
Chapter 16, may be used.

a) b gevsry 1 axedy , provided f(a,b) # 0.
£(D,,D,) f(a, b

If f(a,b) = 0, write f(DX,Dy) = (D, - l—‘sz)r g(Dx,Dy), where g(a,b) # 0; then

1 1 eux’+b;¢ _ 1 1 eax+by - 1 )_<_rewx+by.
(0, -~ 2p " &(B,, D) g(a, b) (D, - ny)" g(a, by r!
b b
1 ) B 1 i )
b) —_— sin(ax + by) = sin(ax + by) and
£(D}, DD, D) f(=a’, —ab, -b%)
1 . _ 1
cos(ax + by) = cos(ax + by) ,

£(D?, D

x

D, D}y f(—a®, ~ab, —b?)

provided f(—a®,—ab,-b%) # 0.

2 2 _ _ 2x+3y x+yL .
EXAMPLE 6. Solve (Dx—BDny +2Dy)z = (DX—D:V)(DX—2Dy)z = e +e sin(x -2y).

The complementary function is 2z = ¢1(y +x) + d)Q(y +2x),

Now -2——-1-—-—2 e 2——-—-—1-———— e2x+5y = ie””y is one term of the
2
DX—3Dny+2Dy 27 -342:3+2-3
particular integral. Since ¢, (y +x) includes ex+y' we write
_5_1___3 ex+y - 1 ( 1 ex+y) - “1(h1~ex+y) .- 1 ex+y: _xex+y
Dx"3Dny*2Dy D?(_Dy Dx_ZDy D’)C_Dy 1-2-1 Dx'Dy
1 . 1 . 1 .
Also, - sin(x -2y) = > sin(x - 2y) = - — sin(x ~2y).
D; -3D,D, + 2D} ~1-3(2) +2(~1) (~2) 15

1
QT L XYY

Thus, the general solution is z = ¢y(y+x) + poly +2x) + i - l—lgsin(x—-Zy).

¢) If F(x,y) is a polynomial, that is, F(x,y) = Zpijxiyj, where i,j are posi-
tive integers or zero and p;; are constants, the procedure illustrated below
may be used.

EXAMPLE 7. Solve (Di—Dny—GD;)z = x+y. (Example 4.)

For a particular integral, write

1 D
p 2(x+y> = —%———L————z-(x+y) = —12{[1+_2.+...](x+y)}=i2(x+y+-—1—)
D, - DD, ~ 6D, Dy by Dy D; D, D Dy
D, ch
1
= —(x+y+x) = i(2::4»}') = lx5 + lxzy. Note that D, (x+y) = 1 and 1 =fdx.
2 D2 3 2 Y Dy
X x

See also Problems 11-13.
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SOLVED PROBLEMS

3 o2 2 3 . _
1. Solve (D, +~2D.D, ~ DD ~2DHz = (D, = D) Dy + D)y d, +2D)Hz = 0.
Here m, = 1, m, = -1, my = -2 and the general sclution is

2 = yly rx) o+ Doy -x) + ¢3(y—21).

. 30 22 2 5. _ -
2. solve (D] ~5D,b, = 50D, + 3Dz = (D, =3D)[D -1+ vHD D, - (1 - V2D ]z = 0.

Here my = 3, my = 1+v3, ms = 1-v2 and the general solution is

: = iy 300+ boly + (1+v2)x] + daly + (1-vV2)x).

3. sotve (0}~ aD’D, - 4llyz = (D, - DD + 2Dz = 0.
Since m, =1, my = my = =2, the general solution is
2.7 Py +a) + Poly —2x) + x Pgly - 2x). Another form of the
general solution is 2 = iy +x) + Poly —2x) + ¥ Paly —2x).
4. solve (0 = 20202 + DDz = (D - DT + DYz = 0.
Here my = m, = 1, my = my = -1 and the general solution is

= By +x) + x Py x) + Paly ~x) + x Paly —x).

2 2 . . _
B. solve (D, -2D.D, +5D)z = (D, - 1 +20)D, ][, ~ (1-20)D, ]z = o.

Since my = 1+2i, my = 1-21, the general solution is
2 o=y +x +21x) + Py +x=2ix) + 1[Po(y vx +2ix) - b, (y +x - 2ix)],

where ¢,, ¢, are real functions.

If we take ¢, u) = cosu and Pp(u) = e, then since

ei'bx = cos bx + 1 sin bx, sin bx = %(etbx - e-tbx),
1
“H% - Gos bx - i sin bx, cos bx = %(esz ibay
by(y +x +2ix) = cos(y +x) cos(2ix) - sin(y +x) sin(2ix)
= cos(y +x) cosh 2x - 1 sin(y +x) sinh 2x,

i

by (y +x = 21ix) cos(y +x) cos(2ix) + sin(y+x) sin(2ix)

cos(y +x) cosh 2x + 1 sin(y +x) sinh 2x,

. . i -21 i =24 . .

Doy +x +21x) - ¢2(y +x ~21x) = ey+x+2wc - eyMC o ey+x(e21'x - e m) = 21ey+x sin 2x,
Thus, we obtain as a particular integral

z = {cos(y+x) cosh 2x - i sin(y+x) sinh 2¢] + [cos(y+x)cosh2x + t sin(y+x) sinh 2x ]

+ L’(21eym sin 2x) = 2 cos(y+x) cosh 2x - 2¢”"* sin 2x.

Note that z is a real function of x and y.
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6. Show that a particular integralof p-mg = g(x,y) may be found by integrating dz = g(x,a-mx)dx,
omitting the arbitrary constant of integration, and then replacing a by y +mx.

The auxiliary system is iix— = ﬂ = —i—- . Integrating the equation formed with the
1 —-m g(x,y)
first two terms, we have y+mx = a. Using this relation, the equation
dx dz dx dz
- = becomes _ T —_——
1 g(x,y) 1 g(x,a-mx)

Then 2z = fg(x,a-mx)dx and, in order that no arbitrary constants be involved, we replace
a by y+mx in the solution.

(» Using the procedure of Problem 6, find particular integrals of

a) p+3g = cos(2x +y), by p~2q = (y+1)e5x.

a) Here m = -3 and g(x,y) = cos{2x +y).
Then z

fg(x,a—m.x)d.x = fcos(2x+a+3x)dx = ésin(5x+a) and, replacing a by y-3x, the

required particular integral is z = -sin(2x +y).

U

by z = fg(x,a-mx)dx = f(a—2x+1)e5xdx = %(a+1)e3x—§xe3x+-§-eax.

Replacing a by y +2x, we have z = -;—(y+2x +1)e5x - gxek + geix = %(y + %)eix‘

9
8. solve (DZ +2DD, - 8DD)z = (D, - 2D (D, + 4Dz = VZE+3y.

The complementary function is z = ¢y (y +2x) + Pu(y —4x).

1
(D= 2Dy) (D + 4Dy)

To obtain the particular integral denoted by

v2x + 3y, we obtain from
(D +4Dy)u = VZx + 3y the solution u = [[2x+3@-m)?de = [[2x+3@+ 0] da
1/2 1 3/2 1 3/2
= 14x + 3 dx = —(14x +3 = —(2x + 3
J14x + 30) 5y (14 + 3a) 572+ 3
1 3/2 -
and from (Dy-2Dy)z = u = 5{(2x+3y) , the solution
1 3/2 1 5/2 1 5/2
z = —J[(2x+3(a-2x dx = - —(3a-4 = - —(2x+3 .
21f ( )] 210 ) 210 "

The general solution is z = ¢y(y +2x) + Pu(y —4x) - ﬁ(ZxHSy)WZ .

9. Solve Dy - ZDJ,,)"7 D, + 3Dy)z = 82x+y.

The complementary function is z = ®g(y+2x) + xDy(y +2x) + Ps(y - 3x).

1 24y
D, —ZDy)(Dx - 2Dy) D+ 3Dy)

To obtain the particular integral denoted by , we obtain

from (D, +3D,)u = ¢ '” the solution u = Jorrtlassly, o pxre g o Lpxea 1 2xey,

5 5 ’
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- 1 2

from (DX—2Dy)v =u = %e2x+y the solution v = %fezx*(a 2x)cbc = lJcea = =xe +y;
1 2x+y . 1 a 1 2a 1 2 2¢+y
and from (D, -2Dy)z = v = sxe the solution z = gfxe dx = IB" e = l—ox e .

1
The general solution is z = ¢y(y+2x) + x Pu(y+2x) + Py —3x) + 1—0x2e2x+y.
2 2 2
10. solve (DE + Dny - Dny - D;)z = (D, + Dy) @D, - Dy)z = ¢" cos 2y.
The complementary function is z = Py(y -x) + xPo(y —x) + Pa(y+x).

Take as a particular integral z = A" cos 2y + Be™ sin Zy. Then

3 x x . 2 X x .
Dz = Ae” cos 2y + Be” sin 2y, Dnyz = —4Ae” cos 2y - 4Be sin 2y,
D;Dyz = —24¢”" sin 2y + 2Be”™ cos 2y, D;z = gAe” sin 2y - 8Be”™ cos 2y.

Substituting in the given differential equation, we have

(54 + 10B)e” cos 2y + (5B - 104)e” sin 2y = e’ cos 2y, so that A =1/25 and B = 2/25,

The particular integral is 2z = —2}5 e’ cos 2y + -235 e’ sin 2y, and the general solution

1
is  z = P(y-x) + xPo(y—-x) + Paly+x) + %ex cos 2y + 52—5-ex sin 2y.

11. Solve (D,? - 2D D)z = D (D - 2Dz = e xiy.

The complementary function is z = ¢1(y) + ¢2(y+2x).
. . . . 1 2x 1 3 . .
A particular integral is given by T—-————-e + —2—————x Y. The first term yields
D, - ZDXDy D, - 2Dny
1
—2—1——e2X = _6295. Writing the second term
(2)% - 2(2)(0) 4
1 1 D 1 2 1 1
~ Sy = Lare2aeody = L3y 20 - Lidys 2dY,
p? D, D2 D, p? Dy p? 2
X 19 = x x x
x
x5y 2 1 2% x5y xb
we obtain —£ + — . The general solution is = + +2x) + —e 4+ —= + — .
T g z = P1(y) + Paly+ 2%) 1 50 * &
12. solve (D} - DD - 6D))z = (D, + DD, +2D)(D, - 3Dz = sin(x+2y) + ",

The complementary function is z = @,(y~x) + Po(y —2x) + Py(y +3x). A particular in-

tegral is given by 1 sin(x + 2y) + ! eixw.

(Dy + Dy) (DZ = DDy - 6D3) (Dy ~3Dy) (D5 + 3DDy +2D3)

(Note. The separation in the first term is one of convenience, i.e., we could have written
1

(D, +2D,,) (D% - 2D, Dy ~3D})

sin(x + 2y). The separation in the second term is necessary, how-

3x+y

ever, since e is part of the term ¢>3(y+31) of the complementary function,)
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1
For the first term: 21 sin(x +2y) = ! sin(x + 2y)
Dy +Dy) Dy - DDy ~6D,) De+Dy, ~1+2+24
1 Dc-D, 1 , 1
= = si +2 = — ~D,) sin(x +2 = - — cos(x +2y).
55 2 Sin(x+2y) 25(3)@ y) sin(x +2y) 7= COS(x +2y)
Dy =D,
3x+y
For the second term: 21 5 e5x+y = ! ¢
(Dy - 3Dy) (D +3D,Dy +2D}) D;-3D, 9+9+2
- L1 wey 1 ey
20 D,-3D, 20
. . 1 1 3x+y
The general solution is 2z = @(y-x) + Py ~2x) + Pa(y +3x) ~ %Cos(x+2y) +gre .
13. sSolve (D?C —7DXD§ - 603)2 = cos(x-y) +x +xy + v,

The reduced equation is that of Problem 12, A particular integral is given by

1 cos(x -y) + —-——1———(x2+xy2+y5).

(D, + D) (D~ DD, - 6D2) D}- 0,0}~ 6D)

(Note that cos(x -y) is part of the complementary function; hence, the corresponding fac-
tor (D +D,) must be treated separately,)

For the first term: 21 2 cos(x-y) = % 1 cos(x —y). We must
(D + D) (D, - DD, ~ 6D;) Dy + D,
1 . 1 1
solve (Dx+Dy)u = Zcos(x—y), obtaining u = chos[x—(a +x)]dx = chos(—a) dx
= 1xcos(—a) = 1:ccos(:c )
2 1 a
. 1 2 2 3 1 2 2 3
For the second term: ——m7m ——0———  _(x“1+2y"+y’) = (" +xy +y°)
D} -7, D - 6D 2 p
* o Da-12 -6
x Vi DS
x x
b, D
1
- —a+12 46206 vy = Lt ey s Lmeey + L))
I 0> D’ 2 D’
x x x X x x
1
= —(I2+xy2+y5) + 1(2x+6y) + 3. ix6 + ix5(1+21y) + L quz + lx5y3.
3 5 6 72 60 24 6
DX Dx Dx

The general solution is

N

_s.xb + 61—0x5(1+21y)

= Py(y—x) + Doy —2x) + g(y +3x) + éx cos(x —y) + =



264

HOMOGENEOUS PARTIAL EQUATIONS, CONSTANT COEFFICIENTS

SUPPLEMENTARY PROBLEMS

Solve each of the following equations.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

(% - 80D, + 15Dy2)z = 0. Ans. z =, (y +3x) + P,y +5%)

(Df - 2Dny - D;)z = 0. Ans. z = ¢1[y+x(1+1/§)] + oy +x(1-v2))
(Dj— 40D, + 4D;)z = 0. Ans. z = P (y +2x) + x P, (y +2x)

o] + 202D, - DD - 2Dz = o, Ans. z = bi(y+x) + By(y—x) + Poly =2x)

03D + DDz = 0. Ans. z = Pp(y) + xby(y) + Bo(x) + ¥Pa(x) + Pe(y -7
(Dj + SDXDy + GD;)Z = "7, Ans., 2z = Py (y-2x) + Py (y-3x) + %ex—y

(D)? + Dj)z = x2y2.

. . . . . 1
Ans. z =y (y+ix) + Dy (y —ix) + i[Pa(y +1x) - Po(y ~1x)] + 1—80(1514)’—16)

2 y+2x

ey+2x. Ans, z = ¢1(y-x) + ¢2(y+2x) + x¢3(y+2x) + éx e

(D - 3DID, + 4D))z =
3 2 2 3 x x
(D; + 20D, - DD, - 2D)z = (y+2)e . Ans, z = Py +x) + Dy(y—~2x) + Pg(y~2x) + ye

(D} - 3D?D, - 4D,D5 + 12D))z = sin(y +2v) .

Ans. z =Py (y=2x) + Doy +2x) + Pa(y+3x) + ixsin(y+2x)
3 2 3 — 8 7/2
o, - 3[)ny + 2Dy)z = Vx + 2y. Ans, 2z = Pp(y+x) + xby(y +x) + Py —2x) + 5—23(x+2y)

(D} + DID, - 6Dz = x° + y7.

2 1 4 1 2
Ans. z =¢1(y) + ¢2(y+2x) + <f>3(y—3x) + -igx5 - 1—2x y + Exiy

3 2 2 3 _ y+x y-2x y+2x
(DX - 4Dny + SDXDy — 2Dy)z = e + e + e .

Ans. z = Py +x) + x by (y+x) + Pg(y +2x) - %xzeyHC - 3_léey-2x vzt
3 2 _ 2x 2
(DX - 2Dny)z = 27 + 3x'y.

1 2x 1 5 1 ¢
Ans. = 2 - R —_
ns. z = dy(y) + xPpy) + Pa(y+ 2x) + rkd 5%t 5

(st - 3Dny2 - 2Dy5)z = cos(x +2y) - ey(3 +2x),

Ans, z =iy —x) + xPy(y—x) + Pg(y +2x) + % sin(x + 2y) + xe”



CHAPTER 32

Non-homogenous Linear Equations with Constant Coefficients

A NON-HOMOGENEOUS LINEAR partial differential equation with constant coefficients
such as

2 2 . _ _ .2
f(D,X;,Dy)Z = (D}J—-D},#‘3DX+DJ‘ +z = (Dx+Dy +1)(Dx-—Dy +2)z = x“ + xy

is called reducible, since the left member can be resolved into factors each
of which is of the first degree in D.,D,, while

: _ 3 _ 2y _
H%,%)z—(D#%+2%)z—l%u&+2%)z—coMx—Zm,

which cannot be so resolved, is called irreducible.

REDUCIBLE NON-HOMOGENEOUS EQUATIONS. Consider the reducible non-homogeneous equa-
tion
1) f(D,Dy)z = (ayD, + by D, +cy)(a,D, + byDy + cy)ereees (apD, + bpD, + cn)z = 0,
where the a;,b;,c; are constants. Any solution of

2) (ali+biDy+Ci)Z =0

is a solution of 1). From Problem 5, Chapter 29, the general solution of 2) is

’
——cix/ai

3) zZ = e qb(aty—btx) , ai # 0,
or
31 Z:e%wwiwaﬂ_bﬁ)’ b, # 0,

with ¢ and ¢ arbitrary functions of their argument. Thus, if no two factors
of 1) are linearly dependent (that is, if no factor is amere multiple of another),
the general solution of 1) consists of the sum of n arbitrary functions of the
types 3) and 3'").

EXAMPLE 1. Solve (20 + D, + DD -3Dy +2)z = 0.

The general solution is z = e ¢, (2y-x) + e = db,(y+3x). Note that the first term

on the right may be replaced by e-'(/2¢1(2y—x) and the second by ezy/3 Yo (y + 3x).

EXAMPLE 2.  Solve (2D, + 3Dy - 5) (D, +2D,) (D, -2)Dy +2)z = 0.

The general solution is z = e5x/2¢1(2y—3x) + Py —-22) + e Pa(y) + e b (x).

See also Problems 1-2.
If

k
4) f(D.,Dy)z = (ayD + by Dy+cy) (ay,,, D, +bk+1Dy *Cpi )@y Dy + By Dy + cpyz = 0,

where no two of the n factors are linearly dependent except as indicated, the
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part of the general solution corresponding to the k repeated factors is

e—clx/a1 [y (a1y = byx) + xPy(azy—byx) + oo + xk_l¢k(a1y—b1x)].

EXAMPLE 3.  Solve (2D, +D, +5)(D -2D, + 1)’z = 0.
The general solution is 2z = e-5y¢1(2y—-x) + e_x[cﬁz(y +2x) + x Py(y +20)].
See also Problem 3.
THE GENERAL SOLUTION OF
5) £(D,,D,)z = (a,D, + biDy tcy)(aD, + bQDy tcy)er e (anD, + b.,,Dy +tcp)z = F(x,y)

is the sum of the general solution of 1), (now called the complementary func-
tion of 5)), and a particular integral of 5),

1
6 = —— F(x,y).
) ey (x,%)

The general procedure for evaluating 6) as well as short methods applica-
ble to particular forms of F(x,y) are those of the previous chapter.

2 2
EXAMPLE 4. Solve f(D,,D))z = (D, - DDy - 2Dy + 2D, ~ 4Dy)z
x -y
= (D —2Dy)(Dx+Dy+2)z = ye + 3xe ~,
The complementary function is =z = ¢1(y+2x) “+ e-?xd)?(y—x).
1 x 1 x x
To evaluate ————ye = ye, we first solve (D + Dy + 2)u =ye
f(Dx,Dy) (DX—ZDy)(Dx +Dy +2)
whose auxiliary system is -di = d—Z = —ﬂl— +  We obtain y = x+a readily and the equa-
1 1 yex— 2u
tion du = éx— or d—u + 2u = yex = (x+a)e”, This linear equation has ezx as integrating
x 1 dx
ye -2u
1
factor; hence, uezx =f(x+a)esxdx = lJceM— leSx + laeax = lxeﬁx_ _eax + l(y -x)esx
3 3 3 9 3
1 x 1 x
and u = —ye - —e .
3 9
We then solve (D, - 2Dy)z =u = %yex ~ éex obtaining the required particular in-
tegral (see Problem 6, Chapter 31)
z = f[l(a-2x)ex - —1-ex]dx = laex - gxex + zex - lex
3 9 3 3 3 9
2
= %(y+2x)ex - é-xex + %ex = %(y + %)ex.
To evaluate 1 (Bxe_y), we solve (Dx+Dy +2u = 3xe ° whose auxil-
(DX—ZDy)(D)C +Dy +2)
iary system is %x— = dl_y = ___qf;z___ Then y = x + a, and from _.dyu__ = C—ilz or

- 2u 3xe ~ ~2u
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%+ u = 3xe 7 = 3(y-a)e‘y, uezy = 3f(y—a)eydy = 3(y—1—a)ey = 3(x—-1)ey and
u = 3(x—-1)e-y. Solving in turn (Dx-ZDy)z = u = 3(x-—1)e_y, the required particular
integral is z = 3j]x-1)e_a+2xdx = %(xe-a+2x - %e_a+2x) = %(x - %)e-y.

The general solution is 2z = P (y+2x) + e-2x¢5(y-—x) + %(y + 2ye” 4 %(x - §)e—y.

(D2 = DDy - 2D} + 6D, - 9D, + 5)2

2x+ X+
e ¥ + € y

EXAMPLE 5. Solve  f(D,D,)z

i

Dy + Dy + 5) (D, - 2Dy + 1)z =

The complementary function is z = e Py(y ~x) + € Pyly +2x).
For the particular integral corresponding to the first term of F(x,y), we use

1 ax+by 1 ax+by
e = e

— , fla,b) £ 0,
fDy, Dy fla,b)

1 Q2XHY _ 1 24y 1

2x +y
2 2 = e = e f
D; - DDy - 2D, + 6D, - 9D, + 5

and obtain

4-2-2+12-9+5 8

xX+y

+y
e , Wwe note that f(1,1)

In evaluating

0. This means that ex is a part

f@. D)

¥2x
e?

of the complementary function. (To see this, take ¢,(y+2z) = + Yo(y +2x); then

- 21
R x[ey+ x y4+x

e ba(y+ ) = oy +20)] = @M €Y, (y +20).)  We write

1
RAE T 1 1 2

f([&'lb ) Dx-—2L® +1D, +[@ +5

1 Sy lxe’Hy.
[&-—ZDy-+1

=3 =

- - 1 2 1
The general solution -is z = e 5x¢a(y-—x) + e x¢@(y +2x) + ge Y e,

See also Problems 4-5.

The use of the formula

7 1 yeaxtry _ ax+bdy ______1______‘,, V= Vix,y),
£(D,,D,) (D +a,D,+b)

is illustrated below.

EXAMPLE 6. Solve (1)2 + BD;Dy - 2D,f)z = D,?(DX £ 3D, - 2)z = (x2+2y)e2x+y.

The complementary function is z = @, (y) + xD,(y) + e ¢4 (y-3x). A particular in-

tegral is z = -———1-——(;52+2y)32x*

y o e2x+y 1
2
Dy (D, +3Dy - 2) (D, +2)° (D, + 3D, +3)

(x2 +2y).

Setting (D, + SDy + u = x2<+2y, the auxiliary system is %? = L =
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dx
Then y = 3x+a, and from _____éf____ = — Or d-u + 30 = x2 + 2y, we have
dx
x +2y-3u
x c 1 1 2 1 2 16 2
ueax = f(xz+ 6x +2n)e§z dxe = eix(gxzrr -g(éx— —%—g + §a) and u = §x2 - 51 - bY + §y.

. 2 .
Next, setting (I, + 2)v = u and making use of the integrating factor e X, y being re-

2x ~2x 1 2 2 16 2 12 5 17 1 2x
arded as a constant, v = e mxT = Zx = i~ + =¥)dx = (=X = —X = —— + —Y)€
garded as a constan ve Je 7% gx 27+3y) (Gx i3 108 3“)
12 5 17 1
and v T =X e X m e b=y,
6 18 108 3

Finally, setting (I} + 2)w = v, we have

2x 2x 1 2 5 17 1 2 7 2x
= - _ dx = I - = + =
e Je G ig° 108 37 % " 5* "6 T8
1 2 2 7 1
and w T ——x —=x + — t =Y.
12 9 216 6

2x+y
e

Then 2z =w and the general solution is

2x 1 2 2 1 2x+y
- s ox, 3y - P R S .
z Py (y) + xPu(y) + e Pa(By-x) + (5% 5" *o1e t gVe

See also Problems 6-7.

IRREDUCIBLE EQUATIONS WITH CONSTANT COEFFICIENTS. Consider the linear equation
with constant coefficients

8) £(D,, D))z = 0.

ax + by ax +by
N b

Since D;Di(ce ) = ca be , where a, b,c are constants, the result of

substituting

9) 4 = Ceax+by

ax +by

in 8) is «c¢f(a, b)e = 0. Thus, 9) is a solution of 8) provided

10) f(a,b) = 0,

with ¢ arbitrary. Now for any chosen value of a (or b) one or more values of
L (or a) are obtained by means of 10). Thus, there exist infinitely many pairs
of numbers (a;, b;) satisfying 10). Moreover, '

w

11) P z c, ea‘;x+b¢}’, where f(a, b)) = 0,
1=1

is a solution of 8).

If f(D;, D)z = (D +hD, + k) &(D,, D)z,

then any pair (a,b) for which a +hb+k =0 satisfies 10). Consider all such
pairs (a;, b;) = (=hb-k,b;). By 11),

Q o 0]

2 cie—(hb“k)“ biy _ e—kx 3 ciebi(y_hx)

=1 =1
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is a solution of 8) corresponding to the linear factor (D, + hDy +k) of f(D,, D).

This is, of course, e'kx¢(y-hxy ¢ arbitrary, used above. Thus, if f(D,,Dy)
has no linear factor, 11) will be called the solution of 8); however, if
f(Dg,Dy) has m<n linear factors, we shall write part of the solution involv-
ing arbitrary functions (corresponding to the linear factors) and the re-
mainder involving arbitrary constants.

EXAMPLE 7. Solve f(D, D)z = (D} +D,+D)z = 0.

The equation is irreducible, Here f(a,b) = ?rarh = 0 so that for any a = a;, b; =
-a;(a; +1). Thus the solution is
a;x+ by 5 a:x=-a:(a:+1)y
) . = (G +
z = z c,e VY = 2 c;e V7 R with ¢; and e, arbitrary constants.

i=1 i=1

2
EXAMPLE 8. Solve (D, +2D)) (D, -2D, +1) D, -D)z = 0.

Corresponding to the linear factors we have ¢,(y -2x) and e “,(y + 2x) respectively.

2
For the irreducible factor Dx—Dy we have a~b? = 0 or a-= bz.

The required solution is
2 Boxa b
- X 4+ b .
2 T Py -2x) + e Pu(y +2x) + z c;e’” ‘y, with ¢, and b, arbitrary constants.
=1

In obtaining a particular integral of f(Qr,Dy)z = F(x,y), all procedures
used heretofore are available.

2 243y
EXAMPLE 9. Solve f(Dx,Dy)z = (DX—Dy)z = e .
w
. . bix 4 by
From Example 8, the complementary function is z = 2 c;e .
i=1
2 1 2%
For the particular integral: ———L— eu+3y = ——E—— e SRR e *3y
D, - D? 2-(3)° 7
x Ty -3
& b.x+ by 1
The required solution is z = 2 c;e” v = eFt3Y
i=1

See also Problems 8-11.

THE CAUCHY (ORDINARY) DIFFERENTIAL EQUATION f(xD)y = F(x) is transformed into a
linear equation with constant coefficients by means of the substitution x=e”
(see Chapter 17). The analogue in partial differential equations is an equa-
tion of the form

f(xDx,yDy)z = EcrsxrysD;Dysz = F(x,y), ¢, . = constant,
s

which is reduced to a linear partial differential equation with constant co-
efficients by the substitution
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EXAMPLE 10. Solve (:°D} + 2xyD Dy, - xD)z = 2/’

The substitution x = e”, y = e’ xDcz = Dyz, yDyz = Dyz, xZD;z =D, D, -z,

xnyDy =DD z, yszzz =D, D, -z transforms the given equation into
_ B 3u-2V
[Du(Du—l) +2DD, - Du]z = D D, + 2D -2z = e
whose solution is z = ¢y (v) + e?* (v -2u) - %e5u-2v.

Thus, the general solution (expressed in the original variables) is
3 3
x . 2y, Ly _ LE
7 or z = \/‘1(}’) + X ‘1[’2 (xz) 3 2

N i o

z = ¢ (In y) + 12¢2(1n Lz) -
x

<
<

See also Problems 12-13.

SOLVED PROBLEMS
REDUCIBLE EQUATIONS.
1. solve (@) = D} +3D, -3D)z = (D = D)HD, + Dy + Bz = 0.

The general solution is z = ¢1(y+x) + e-5x¢2(y -x).

2. solve D.(2D, - Dy + (D, + 2Dy - Dz = 0.

The general solution is z = by (y) + ey bo(2y +x) + e’ by (y = 2x).

9. Solve (2D, + 3D, - 1)2 (D, - 3Dy + 3)32 = 0. The general solution is

2 o= e [¢y(2y-31) + xd(2y—-3x)] + & [Pa(y+30) + yPa(y+3%) + ¥ bs(y + 301,

2
4. Solve (2D.D, + Dy -3Dy)z = Dy2D,+Dy-3)z = 3 cos(3x - 2y).
The complementary function is 2z = by (x) + esy q52(2y—-x). A particular integral is
1 3 3
— " 3 cos(3x-2y) = _—T cos(3x ~2y) = n cos(3x - 2y)
2(6)-4-3 8-3
2D, D, + D, ~3D, (6) y y
- 3(8+3Dy) cos(3x-2y) = —3—(8+3D ) cos(3x~2y) = 3 [4 cos(3x—-2y) + 3 sin(3x-2y)].
100 Y 50
64 - 9Dy

The general solution is z = ¢y (x) + e3yd>2(2y—x) + 535 [4 cos(3x-2y) + 3 sin(3x - 2y)].

5. Solve D, D+ Dy ~1)(D, +3Dy-2)z = x2—4xy+2y2.

The complementary function is z = dy(y) + & oty -x) + e Pa(y - 3x).

A particular integral is denoted by z = ! (xz— dxy + 2y2).
D, (D, + Dy- nHD, + 3Dy— 2)
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To evaluate it, consider —-———1———(x2— 4xy + 2y2) = 5 ——————1—-———(22 —4xy + 2y2)
b, +3Dy -2 -1+ %(Dx+3Dy)

= 3(-1 - 5D +3Dy) = £D, +3D,)Y — +o ]2 - dxy +2y7)
= s[-(xPdxy 29ty = (<Br+dy) - /2] = - b(x* - dxy £ 2 ~5x+ 4y +7/2).
y

- L
Consider next —————3——(762—- 4xy + 2y2— Sx+4y+T/2) = % ————1———(x2—4xy + 2y2 ~-5x+4y+7/2)
Dy +Dy -1 1-(Dy+ Dy)

= '5[1+(Dx+Dy)+(Dx+Dy)2 + ---](x2—4xy+2y2—5x+4y+7/2) = 5(12—4xy+2y2—7x+4y+%).

1
Finally, 2z = —2-—(x2—4xy+2y2—7x+4y+§'-) = 5—(x3/3-—2x2y+2xy2—7x2/2+4xy+x/2).
D)C

The general solution is

2= B + e By-x) + e Pa(y-3x) + 1—12(213-—12x2y+12xy2—21x2+24xy+3x).

TYPE: —L &% yixyy,

£(D,,D,)

6. Solve (Dx+Dy—1)(Dx+Dy—3)(Dx+Dy)z = St cos(2x ~y).

The complementary function is 2z = e @y (y-x) + " Poly -x) + Paly~x).

1 ex+y+2
(Dx+Dy—1)(Dx+Dy—3)(Dx+Dy)

For the particular integral, cos(2x - y)

= e’Hy ! e2 cos(2x —-y)

(D,C+Dy+1)(D,c +Dy—1)(Dx+Dy+2)

A 1 cos(2x-y) = - %e’”“z _ cos (2x ~y)

(D% + 2D, Dy + DI = 1) (D, + Dy + 2) D +D, +2

D +D,~2
- %e’“”z 5 x 5 cos(2x ~y) —1— ex+y+2 (Dx+Dy—2) cos(2x - y)
D, +2Dny +Dy— 4

10

1
_ 1 ex+y+2
10

[sin(2x—y) + 2 cos(2x-y)]. The general solution is

x+y+2

1
z = & by (y—x) + e by —2) + Py -x) - T ¢ [sin(2x—y) + 2cos(2x -y)].

x+2
AR

(« Solve D (D, -2D,)(D + D))z = (x2+4y2).

The complementary function is z = @y(y) + Po(y+2x) + Pa(y-x).
For the particular integral

1 2 2 1
ex+ Y - ex+ Y

(x2+4y2) (xz+ 4y2), we first
b, (D -2D,) (D, + D) Dy + 1) (D = 2Dy = 3) D + Dy + 3)
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find u = ————L——-(x2+4y2) = %————1-—'——(962*4}’2)

D, +Dy+3 1+ é(Dx+Dy)

[1- %(le)y) + é(DX+Dy)2 b @ v ayh

Lt

1.2 2 2 10 1 2 2
= = 4y° — S(x+4y) + =] = ==(9x +36y —6x-24y+10),
3[X+y CRRD) 9] 57 (9% y - 6x — 24y + 10)

then v = I ot u = - l[1—- £(2D -D) + l(2D -D )2 — «e]u
D —2D. -3 3. 1 3 3Ty T gy
x "y 1+§(20y—Dx)
1 2 2
=~ —(9x + 36y -T2y +58),
81
. 1 2 1 2 2
and finally, z = ———v = (1=D +Dy+-e)v = — —(9x +36y" —18x — T2y + 76).
D, +1 81
The general solution is
1 2 2 2
2= Gy ¢ baly 20+ daly-x) = (9% 436y - 18- T2y 16y 7.
TYPE: IRREDUCIBLE EQUATIONS.
2. rv+y
8. solve  f(Dy,Dyyz = (D=Dyyz = e .
2 b2{x+ by
The complementary function is 2z = z c.e ’ from Example 9.
i=1
The short method for evaluating the particular integral —— - ex+y cannot be used, since
f DDy
f{a,b) = f(1,1) = 0. We shall use the method of undetermined coefficients, assuming the par-
ticular integral to be of the form z = Axe” T 4 Byex+y.
_ x+y 2 _ xX+y 2 _ X4y _ xX+y,
Now D, z (A +Ax + By)e s Dyz = (Ax +2B +By)e and (Dx—Dy)z = (A-2B)e = e ;
hence A —2B = 1. Taking 4 =1, B=0, we have as particular integral z = xex+y; taking A =0,
B=-~4%, we have z = ~ —;-ye“y; and so on. Choosing the first, the required solution is
2
[¢o]
bix+ b,y
R i 1 x4y
Z = z Cie + xé€ .
i=1
2 2 2
9. solve (2D, -D, + D)z = % -y,
® a.x+b.y 2 2
The complementary function is 2z = E c.e , 2ai“bi+ a; = 0.
i=1
. . 1 2 1 1
The particular integral -—2————2—(9: -y = - (x"-y)
2D, -Dy +D, Dy B Dy + 2Dy
2
D}‘
1 Dy +2D2 | (De+2D2) 2 1,2 2 + 4 2
= - o1 o+ = Xy 22X X T T Y U PV
D2 D2 Y D’ p2 D
Y Y v v ¥ y
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-

1 2 2 2 1 1 &
= - = (x —y+xy +2y +y“/12) = - =xy + =y - ==xy - =y - ===y .
1)2 2 6 12

v

. 1 1 1 6
The required solution is 2z = Z € - _éxz 2, ._yS- ——x A lyu. J y

87 "1 T8 7 360

. . R 2 2 :
10. Find a particular integral of D+ D) (D =D, ~Dyz = sin2x +y).

A particular integral is given by

p ! 5 sin(2x+y) = 5 1; D sin(2x +y)
-4 - +1
(Dx+Dy)(Dx—l)y—Dy) (-4 + y)( = Uy + 1)
1 . 1 .
= 3 - sin(2x+ y) = ——————— sin(2x +¥)
DD, -D;-4D, +5D, -4 5D, -4D, ~ 5
5Dy—4D¢+5 sin2x+y) = - 512 [5 sin(2x +y) ~ 3 cos(2x +y)].

2 2
25D, ~ 40D, D, + 16D, - 25

The method of undetermined coefficients with z = A sin(2x+y) + B cos(2x +y) may also be
used here.

11. Find a particular integral of (DX—ZDy+5)(D§+I)y+3)z P sin(x - 2y).

A particular integral is ! 5 esx“} sin(x ~ 2y)
(Dx—2Dy + 5)(Dx+1)y+3)
= 85x+uy 3 ! sin(x =2y) = eix“‘y L —— Sin(x ~2y)
D, - 2Dy>(Dx +6D, + Dy +16) D, - 2Dy) (6D, + l)y +15)
65x+l+y 5 12 sin(x ~2y) = % eixﬂw ————l—_w sin(x -~ 2y)
- - - o 3D, -6D, -4
GDX 111)ny 2Dy +15Dx 30Dy 5. y
- é LINHYY n 3D - 6Dy + 42 sin(x-2y) = - _1_2_163 XYY (3D, - 6D, + 4) sin(x - 2y)
9D, -360D,D, + 36D, ~ 16
= o Y5 cos(x—2y) + 4 sin(x-2y)]
1205 4 AN

TYPE: f(xDx,yDy)z = 0.

12. solve  (xDiDF - yDID)z =0  or ¥ DIDI - x*Y’DID})z = 0.

The substitution z = e, y =e', XyDDiz = DD, -1)D, -~ 2D, - Dz,
2
x )}D;D;z = D, (B, -1)D, (D, -1)(D,~-2)z transforms the given equation into

DD, D, -1YD, ~1y(Dy =Dz = 0. The required solution is

™~
1

Prv) + Ppm) + e Pyv) + e ba(u) + bs (v + 1) or, in the original variables,

z = ddny) + d(lnx) + xda(In y) + yb,(1n x) + P (In xy)
= U v @)+ xda) oy )+ Yelay).



274 NON-HOMOGENEOUS LINEAR. CONSTANT COEFFICIENTS

13. soive (xzD,? - Llysz2 -4yD, - 1)z = xzy5 Iny.

The substitution x =eu, y:ev transforms the given equation into

2 2 2u+ 3V
(D, D, -1) - 4D, (D, -1) ~ 4D, -1]z = (D, - 4D, - D, - D)z = ve .
. . - s . . 1 2u+3V
A particular integral of this equation is given by ———r——-ve
2 2
D,~4D, -D, -1
2Uu+3V 1 2u+3V 1
€ 2 v o€ 2 2 v
(D, +2)% - 4D, +3)° - (D, +2) - 1 D2 - 4D% + 3D, - 24D, ~ 35
. . . 2 2 . 1 24
By inspection, a solution of (D,-4D, +3D,-24D,~-35w =v 1s found to be w = ~ ——v + ——-
) . 35 (35)
Hence, the particular integral is z = - ———zemﬂ') (35v - 24).
(35)
The required solution of the given differential equation is
& a:u+bv
z = 2 c.e’ ol —1— e2u+5v (35v - 24) or, in the original variables,
i-1 v 1225
ls¢} y .
a; Op 2 3 2 2
2 = Eci"tyi—ﬁgxy(%lny—%). a; ~ 4b; —~a;, = 1=0.
i=1

SUPPLEMENTARY PROBLEMS

Solve each of the following equations.

4. (D +D, +1)(D,-2D, - 1)z = 0. Ans. z = e by (y~x) + € Pyly +2x)

15. (D, +2D,-3)(D +D, - 1)z = 0. Ans. 2 = & by (y-22) + € by(y-x)

16. (2D, +D, +1)(D; +3D,D, ~3D,)z = 0. Ans. z = dy(y) + e b2y —x) + €Py(y~3x)
17. (DD, +D})(D, ~D, -2)z = 0. Ans. 2 = y(x) by =x) + e bs(y+n)

2
18. (Dx+2Dy)<Dx +2Dy + 1)(Dx+2Dy +2)z =0,

Ans. z = y(y-22) + e oy -2x) + e [Poly ~2x) + yPaly ~2x)]

18. .+ Dy)(Dx+ Dy—2)z = sin(x + 2y).
Ans. z = (y-x) + e,y -x) + 1—15 [6 cos(x+2y) - 9 sin(x+ 2y)]

e}x“&y

20. Dy+Dy-1)Y(De +2Dy +2)z = + y(1-~2x).

Ans. z = €D (y—x) + e dby(y-2x) + xy + 3, L W
4 AT

21. (D;+Dny+Dy -z =€+, Ans. z = e by (y) + € Py —x) + éxex - -21-xe_x



24.

25.

26.

217.

28.

30.

31.

32.
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(Dg—DxDj—sz+Dny)z = (x+2)/x3. Ans. z = Py(y) + Doly +x) + ex¢3(y-x) + In x

!
(3Dny-2Dy2—Dy)z = cos(3y +2x). Ans. z = Py(x) + e2” P (3y +2x) —- % sin(3y + 2x)

2 2 _ 2x-3y _ Gx+by 1 -3y 2 2 _
(DX+D Dy-Dy+DX—Dy)z = e ., Ans, z = 2‘3«;9 - Ze s ai*aibi"bi*ai‘bi'o

x

(3D5—2D5+Dx—1)z = 3e* " sin(x +y).
Ans., z = 2 cieaix+biy - ex+y cos(x +y), 3a‘?—26i2+a1; -1=0
(D; +2D)CD§~2Dy +3)z = et cos(x +2y).
Ans, z = zcieapm»b‘;y _ i%g’ﬂy cos(x+ 2y), ai2+ 2aibi" 2bi+ 3 =0

(Dj +[)X1)y +D+ Dy + 1)z = e-2x(x2 + 2y2).

a;x $b:y - 2
Ans, z = 2 el 4 % e % (9x% + 18y° + 18x + 12y +16), a§+aibi+a,;+bi+1: 0

2 2 _ 2y x .
(Dny +Dy ~2)z = e cos 3x + e sin 2y,
a;x +by 2
Ans, z = Eciet Yoo Tléew cos 3x — 516 e“(cos 2y + 3 sin 2y), ;b + bf-z =0
2.2 3
(xyD,D, -y D, =3xD, + 2yD,)z = 0. Ans. z =&, (In xy) + y5¢2(1n x) = Yi(xy) +y Yo(x)

(xzD;-2xnyDy —3y2Dy2+ xD, -3yDy) = x2y sin(ln xz).

1 x2y[4 cos(ln x2) + 7T sin(ln x3)]

Ans, z = <251(x5y) + Poly/x) - &5

2.2 2 2
(x D, +xnyDy - ZyZDy2 -xDx—SyDy)z = 0. Ans. z = Py(y/x ) + 1" D, (xy)

(D —xyD,Dy - 2y°DZ +xD, - 2yDy)z = In(y/x) - 1/2.

Ans, z = ¢1(x2y) + Py(y/x) + $(1ln x)2 Iny + #Inx lny
X +y5
xy

2 .2 2. .2 2.2 2.2
(x nyDy - xy Dny -x D +y Dy Y2 =

3
)

xa-—y
xy

Ans. z = xPy(y) + yPo(x) + Palxy) ~ %(



CHAPTER 33

Partial Differential Equations of Order Two

with Variable Coefficients

THE MOST GENFRAL LINEAR PARTIAL DIFFERENTIAL EQUATION of order two in two indepen-
dent variables has the form

1) Rr + Ss + Tt + Pp + Qq + Zz = F

wheve K,S,T,P,0,Z,F are functions of x and y only and not all R,S,T are zero.

Betore considering the general equation, a number of special types will be
treated.

TYPE I.
822

2a) ro= — = F/R = F, (x,¥)
ox
Bzz

2b) s o= 5 T F/S = F(x,y)
X Jy
¥z

20 t = — = KT = F&vy).
Ay

These are reducible equations with constant coefficients (Chapter 32), but a
- direct method of solving will be used here.

EXAMPLE 1. Solve s = x —y.

o2 :

Integrating s = : - x—y with respecttoy, p = éf = xy — —’2—y2 + Y(x), ¢ arbitrary.
I QY o

Integrating this relation with respect to x, z = 'ixzy - %xyz oy (x) + DoY)

{
where il—\',fvl(x) = (x) and ¢,(y) are arbitrary functions.
X

TYFE II.

o _ op _

3 Rr + Pp = R=+Pp = F
ox

ot op -

3b) Ss + Pp = S +Pp = F
)%

3¢) Ss +0g - $¥9 409 = F
Ox

. 9q _

3y Tt +Q0q = T =2+ Qg = F.

dy

These are essentially linear ordinary differential equations of order one in
wliich p (or ) is the dependent variable.

|8
-1
=2
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42

EXAMPLE 2. Solve xr+2p - (9x+6)e’

Considering p as the dependent variable, x as the independent variable,

and y as con-

stant, the equation is x%ﬁ +2p = (Ox ¢ G)e5 2y for which x is an integrating factor,
X
Integrating x? g-p + 2xp = (9x2 + 6x)85“(2y, we have
X
p, D
p - Lox? i 6yl Y - E 0 W S SR )
. 3 3 9
x B *x 1
=3l L gy or p= a3 Sy
ox 2
3% 42y 1 . ) .
Then z - e -3 Dy) + DoY) is the required solution.
TYPE III.
3
4a) Rr +Ss + Pp = F or RE 4 s%P - F_pp
DX dy
a
4b) Ss + Tt +0q = F or s% . 1% - F_oq.
ox e3%

These are linear partial differential equations of
as dependent variable and x,y as independent variables.

EXAMPLE 3. Solve 2xr—ys+2p = 4xy? or 2x ‘éﬁ -y B_p = 4xy2—2p.
Ox Ay
Using the method of Lagrange (Chapter 29), the auxiliary system is . ﬁ%l = ,_@___
2x -y 4xy2-2p
From the first two ratios, we obtain readily xy2 = a.
By inspection, 2y“("2x) + 2py(-y) - y2(4xy2—2p) = 0. Thus,
4 2 2dp - opyd
2y dx + 2pydy —y"dp = 0 or 2dx - z_p__;_p_y__z = 0, and _pg - 2x = b,
Y b
The general solution is  p/y? - 2x = Y(xy?).,  Then
dz 2 2 2 ) 2 2 2
p - 3 - 2xy2 + ¥y yxy”) and z = x2y + (bl(xyz) + ¢y (y), where ~ Paxy”) =y Y(xyT).
x x
TYPE 1IV.
2
5a) Rr + Pp + Zz = F or Ra—z— +P§E + Zz = F
2 ox
ox
3%z 9z
5b) Tt + Qg + Zz = F or T — + Q0= + Zz = F.
32 oy

order one with p (or q)

These are essentially linear ordinary differential equations of order two with

x as independent variable in 5a) and y as independent variable in 5b).
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2
EXAMPLE 4. Solve t - 2xq + Xz = (x —2)€5X+ 7,

2- 2 2 +2
The equation may be written as (Dy - ZIDV +x )z = (Dy-x) z = (x—Z)esx y.

The complementary function is 2z = exyqb1 (x) + xexyd;Q(x) and a particular integral is

1 342y x=2 X +2Yy e5x+2y
—~2(x -2)e = — e = -
(D, =) (2-x) ¥-2
Ix+2y
The required solution is z = e " dy(x) + xe dp(x) + < -
x —

See also Problems 1-8.

LAPLACE’S TRANSFORMATION. This transformation on

1) Rr + §s + 7t + Pp + Qg + 2z = G{e, v)
consists of changing from the independent variables x,y to anew set u,v, where
6) u=u(x,y), v = v(x,y)

are to be chosen so that the resulting equation is simpler than 1). By means
of 6), we obtain

p_BZ_BzBu 3z v su sz q'az_zu+zv
= — - —_ + - = 1] = - - »
£ dudx v om v v dy vy vy
. %
r = 5; = Zu . 4+ (zlmujC + Zuv”x)”x + Ty, t (Zuv”x + zwvx)vx
2 2
=z, (U 4 ZZuquvar Zyy (V) 4 2yl + 20,
_ o
s = 5; = zuuxy + (zuuuy + zwvy)ux + zuvxy + (zuvuy + zwvy)vx
= zuuuxuy + zuu(ux”y + uyvx) + zwvxvy + zuuxy + zyvxy ,
99 _ 2 2
t = g, = zuu(uy) + 2Zuuuy”y + zw(vy) + zuuyy + Zvvyy‘
Let
1 I 14 ! I ' _
1) Rzuu+SzuU+Tzvv+qu+QzU+Zz_F

be obtained by making the above replacements in 1) and rearranging. We shall
need only the coefficients

R' = R(u)® + Suwu, + T(u)® and T'= R(v,)’ + Sv v, + T(v, ).

¥ y

We note that both are of the form

) RGN + Sg,6, + T, = (a +bg)) (e£, + fg,).

1) Suppose b/a # f/e; then, if for u we take any solution of ag, + bgy =0 and
for v any solution of ef + ffy =0, 1)is transformed into 1') with R'=7'=0.
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EXAMPLE 5. Solve a) x°(y-1r —x(y’=1)s + y(y=Dt + xyp - q = 0,
by y(x+y)(r-s) -xp-yg~z=0.

a) Here 7) is x2<y_1)(§x)2 - x(y2_1)§x§y + y(y—l)(fy)2 = 0
or x2(§x)2 - x(y+1)§X§y + y(gy)2 = (x§x-y§y)(x»§x_§y) = 0.

Now x£, -y£ =0 is satisfied by £=u=xy and x£ -& =0 is satisfied by &= v=xe.

Moreover, it is easily shown that these solutions also satisfy the given differential equa-
tion, Hence, the required solution is

z = Pylxy) + ¢2(X€y)-

b) Here 17) is y(x+y)[(§x)2-§x§y] =0 or (§,-£)% = O

Now §x-§y =0 is satisfied by £=x+y and §x= 0 by £=y. However, neither of these
solutions will satisfy the given differential equation.

We take u=x+y and v=y, Then p=2, gqg=2z,+2,, r=2z,, S =2,+2,, and the
given differential equation becomes

~y(x+y)z,, - xz, —yz, —~ ¥z, -z =0 or uvz,, 4+ uz, + vz, + z = 0.

This may be written as

1 1 1 _ 9.0z 1 1 3z 1 _ 9 1 o2 1 -
Zup *oTE Y Gt gyt T G + ZZ) + a(a + ;z) = (B-u + E)(é;;_ + ;7.) = 0.
Let §—Z- + lz = w; then _a-w- + —l-w =0 and wu = Y(v). Now
v v Su u
dz 1 1 1 1 1
5 toz =W s atﬁ(u), v = ;A(v) + ¢y(u), and .z = ;¢1(V) + ;qbg(u),

- $1(¥) + Po(x+y) .
x Yy y

where (—j—}\(v) = ve(v) and ¢y (v) = é,\(v). The required solution is z
v

EXAMPLE 6. Solve x°r - y2t + px - qy = X2,

) 2., 2 2 2
Here 1) is  x(§. ) - ¥ (fy) = (xfx'ﬁ)'fy)(xfx*ygy) = 0.
Now xgx—yfy =0 is satisfied by £=xy and x£ +y§y =0 by £==x/y. It is found read-

ily that these solutions satisfy the reduced equation xzr—y2t+px—qy=0; hence, the com-
plementary function is z = ¢y(x/y) + ¢Po(xy). However, this complementary function may be
obtained along with the particular integral as follows. Take u=xy and v=x/y; then

_ 1 _ x 2 1 2 z 12
p_yzu+;zv, q__xzu__22v’ r=y zuu+22uu+—2»lvv, t=x Zuu—2—2-2uv+-—ulvv+—-3‘lvy
b y Yy Y b
and the given equation becomes 4x22w =1’ or Zy, = T .
Integrating first with respect to u, 2, = ) + U,
and then with respect to v, 2= By(v) + Do) + huv = Bya/y) + Bolay) + i,

where —d-¢1(v) = Y(v),
dv See Problems 9-10.
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ii) Suppose bja = f/e; then R(g,{)2 + S§X§M + T(gy)2 = m(a§x+~b§y)2. This

P

case is treated in Problem 11.

NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF ORDER TWO. One possible method for
solving a given non-linear partial differential equation of order two

8) F(x,y,z,p,q,r,5,t) =0

is suggested by severaldaf the examples of linear equations above. In each of
Examples 1-3, the first step consisted in finding a relation of the form

9) u=Y(v), ¥ arbitrary,

where u = u(x,y,z,p,q) and v = v(X,¥,2,P,q), from which the given differen-
tial equation could be derived by eliminating the arbitrary function. Such a
relation 9) is called an intermediate integral of 8). For example, p—xy + 5y?

= Y(x) is an intermediate integral of s = x-vy, (Example 1).
It can be shown that the most general partial differential equation having

u = y(v), ¢ arbitrary,

where u = u(x,y,z,p,q) and v = v(X,¥,2,P:,q), as intermediate integral has
the form
10) Rr + Ss + Tt + U(rt—s?) =V,

where R,S,T,U,V are functions of x,y,z,p,q. However, it is evident from the
definitions of R,S,--+,V that not every equation of the form 10) has an in-
termediate integral. The discussion below concerns Monge’s method for deter-
mining an intermediate integral of 10), assuming that one exists.

TYPE: Rr + Ss + Tt = V. Consider the equation
11) Rr + Ss + Tt =V,

that is, 10) with U identically zero. Since we seek z as a function of x and
y, we have always

oz dz

12)) dz = 2Zdx + Z£dy = pdx + qdy,
ox oy
122) dp = '8_13dx+3_})dy___ rdx + sdy,
dx Qy
125) dg = zqu+§gdy: sdx + tdy.
9x oy
Solving the latter two for r = dp-sdy . _ dg - s dx and substituting
dx dy
in 11), we obtain R dp-sdy | Ss + T dg-sdx _y or
dx dy

13) s[R(dy)? — Sdxdy + T(dx)’] = Rdydp + Tdxdg ~ Vdxdy.
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The equations
L2 ~ . ., 2
14,) R{cdy)® — Sdxdy + T{dxy =0

14,) Rdydp + Tdxdg — Vdxdy = 0

are called Jonge’s enuations.
Suppose R(dy)z —- S dxcy +T(()x)2 = (Ady + Br}x‘)2 = 0. 1t now
u=ulx,y,z,p,q) = a, v=v(x,y,z,p,7) = b satisty the system
{ Ady + Bdx = 0
[ E dydp + T dxdy — Vdxdy = 0,
then u = Y(v)

is an intermediatc integral of 11) since u=a, v=»hb sutisfy 13) and, hence,
11).

suppose  R(dy)2 — S dxdy + T(dx)’ = (Aydy +Bydx)(A,dy +B,dx) = 0,
where A4,B,-A,B, # 0 identically. We now have two systems

Aydy + Bydx 0 A,dy + Bydx =0
and

Rdydp + Tdxdog — Vdxdy =0 Rdydp + Tdxdq — Vdxdy = 0.

i

If either system is integrable, we are led to anintermediate integral of 11);
if both are integrable, we have two intermediate integrals at our disposal.
Procedures for finding a solution of a given equation for which intermediate
integrals have been obtained will be discussed in the examples and solved
problems.

EXAMPLE 7. Solve gq(yg+z)r — p(2yg+z)s + prt + ;:2q = 0.

Here R = q(yg+z2), S = -pQRyg+z), T = ypz, V= - pzq; Monge’s equations are
2 2
R{dy)y - Sdxdy ~ T(dz)2 = g(yq +z)(¢1'y)2 + p(2yq + 2)dx dy + yp2 (dx)
= (gdy + pdo)[(yg+2)dy + ypdx] = 0

i

and Bdydp + Tdedy — Vidxdy g(yg + z)dydp + ypzdx dg + p2q dxdy = 0.

gdy + pdx =0
We seek first a solution of the system 2 2
g(yq+2)dydp + yp“dx dg + p g dxdy = 0.

Combining the first equation and 12:), we have dz =0 and z = a, Substituting in the second
equation dy = —pdx/q, obtained from the first, we obtain

(yg +2)dp ~ p(y dg + g dy) = 0.
We add -~pdz =0 to this, obtaining

(g s 2)dp - pydgrqdy+dzy -0 or % ydargdyrdz

p yq+z
. . Yq+ 2 . . . .
with solution 5 = b, Then yg+z = p+f(z) is an intermediate integral, The Lagrange
system for this first order equation is dx = gl = di - From éZ = ﬂf we obtain yz = a,

fey -y oz -y oz
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and from L dz we obtain x = ff(z)éf = ¢b,(z) + b, Thus, the required solution is
2

fay =
x = Py(z) + Dy (y2)s

(yg+2z)dy + ypdx = 0
Consider next the second system 2 2
q(yg+2)dydp + yp dxdg + pgdxdy = 0.

From the first equation, pdx + g¢dy = —zdy/y; then dz = -z dy/y and yz =a. Substituting
from the first equation, the second becomes

gydp - pydq — pgdy = 0 or X _2_2 =0

with solution gy/p = b, Then gy = p.-g(yz) is an intermediate integral. The Lagrange sys-

tem is d'x— = fd—)—, v dz = 0. Then z = a and the first equation = gl has solution
glyz) =y g(yay ~Yy
x = - fg(ya)fil = ¢y(ya) + b. We thus obtain x = $4(2) + b,(yz) as before.
y

The solution may also be obtained by using the two intermediate integrals simultaneously.

: o282

Upon solving them for p = — s q
f(z) - gy2) ylf(z) - gy)]

and substituting in pdx + gdy = dz, we have yzdx + zg(yz)dy = yf(z)dz - yg(yz)dz.
wWriting f(z) = zfy(2) and g(yz) = —yzg1(yz), this equation becomes
dx = fy(z)dz + gy (y2)lz dy + y dz]
and, integrating, x = Py(2) + Pa(y2).
See also Problems 12-16.

TYPE: Rr + Ss + Tt + U(rt—s®) = V. Consider equation 10) with U # 0. By

substituting r = —Z———% , ¢t =99 759 49 in the preceding type, we obtain

S[R(dy)2 - S (1xdy+T(dx)2 +U(dx dp +dydq)] = Rdydp+Tdxdqg+U dpdq -V dx dy.
The equations

15,) R(dy)? — Sdxdy + T(dx)’ + U(dx dp +dy dg) =0

13,) Rdydp + Tdxdgq + Udpdq — Vdxdy = 0

are called Honge's equations. Note that when U = 0, these equations are 14,)
and 14,). However, unlike 14)) and 14,), neither can be factored.

We shall attempt to choose A = A(x,y,z,p,q) S0 as to obtain a factorable
combination
16) )\[R(dy)z——dedy%»T(dX)anU(dx dp +dydg)] + Rdydp+T dxdg+U dpdg -V dxdy
= (ady +bdx + cdp)(a dy + Bdx + 7y dq)
= aa(dy)? + (a8 + ba)ydx dy + b3(dx)’ + cBdxdp +aydydq +ca dydp
+ bydxdg +cydpdg = 0.
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Comparing coefficients, we have
aa=RXA, al8+ba=-SA-V, b3=Tr, cB8=Urx=ay, ca=R, by=T, cy=U.

The first relation will be satisfied by taking a=X and a=R; this choice de-
termines b=T/U, B8=AU, c¢c=1, y=U. The remaining relation afS+ba = -SA=V

2
takes the form Uh + 7{; = —SA -V or
2.2
17) UN + SUN+ TR + UV = 0.

In general 17) will have two distinct roots A = X
factored as

18,) (NUdy + Tdx + Udp)(Rdy + A Udx + Udg)
18,) (NUdy + Tdx + Udp)(Rdy + A,Udx + Udag)

A = A,, thus, 16) can be

17

0 and
0.

There are four systems to be considered. The system A,Udy+Tdx+Udp = 0,
AUdy +Tdx +Udp = 0 implies (M- A,)Udy = 0 and, hence, unless X, =Xx,, Udy=0
identically. Similarly, the system Rdy+ A, Udx+Udg =0, Rdy+ A,Udx+Udqg = 0
implies Udx = 0 identically. We therefore shall use only the systems

1l

0
0.

H

19)

|
i1

{ AUdy+Tdx +Udp = 0 . [ A Udy + Tdx+ Udp
an
Rdy + \,Udx+Udg = 0 Rdy + X\ Udx+Udqg

Each system, if integrable, yields an intermediate integral of 10).

EXAMPLE 8. Solve 3s — 2(rt-s2) = 2.

Here, R=0, $=3, T=0, U==2, V=2, Then U°N + SUW+ TR+ UV = aX - 6\ -4 = 0,
A= ~% and A =2, We seek solutions of the systems

AUdy + Tdx + Udp = dy - 2dp = 0 4 AUdy + Tdx + Udp = —4dy = 2dp = 0
and
Rdy + A Udx + Udg = —4dx — 2dg = 0 Rdy + Ayludx + Udg = dx ~ 2dg = 0.

From the first system, y~2p=a and 2x+qg=05; then (i) y-2p = f(2x+¢) is an intermedi-
ate integral. From the second system, 2y +p=a and x-2g =5; then (ii) 2y+ p = g(x-2q)
is an intermediate integral. Since q appears in the argument of both f and g, it is no
longer possible to obtain a solution of the given equation involving two arbitrary functions
by solving for p and g and substituting in dz = p dx + g dy.

We shall attempt to find a solution involving arbitrary constants from the intermediate
integral y-2p = f(2x+gq). To obtain an integrable equation, take f(2x+q) = a(2x+q) + 3,
where a and [ are arbitrary constants. The Lagrange system for

Y-2p=a(2x+q) + 3 or 2p+aq =y - 2ax~ 03
is dx _ dy _ dz
2 a y - 2ax - 3

From the first two members, ax = 2y + £. Substituting for ax, the last two members become

dy _ dz
a -8y -2 -8
or adz = (- 3y -2¢ ~[S)ydy and az=—gy2— 2y -By + 7.
Thus, az = -i—yz - (2ax + B)y + ¢y(ax - 2y) is a sclution of the given equation involving

one arbitrary function and two arbitrary constants,
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Treating the second intermediate integral similarly, we take 2y+p = ¥(x-2q) + > or
p+2yYg = yx - 2y + &, where v and S are arbitrary constants. The corresponding Lagrange
system is é)—c = g{ = -————(iz———- From the first two members, y:2yx+§. Now the first
1 2y Yx - 2y + 8
. dx  _ dz 3. 2 Y
and third members become -— = ————-  —  and z = - 29x° - 26x + dx + 7, Thus,
1 ~3yx - 2& + & 2
z = 27"2 - (2y-8)x + d,(y-2yx) 1is also a solution involving one arbitrary function and
two arbitrary constants,
A solution involving two arbitrary functions of parameters A and u will next be found.
Set 2x+g = A and x-29 = u so that x = (2A+p)/5. Then (i) and (ii) become y=-2p =
f( and 2y+p = gy, and y = [f(A) + 2g)]/5. Now
(iii) p o= sly-fol = -2y +gw and
(iv) g = A-2x = F(x - .
Substituting the second value of p and the first value of ¢ in dz = p dx + qdy, we have
dz = [-2y + g(wldx + (A - 20)dy
1 1
= = yde+xdy) + gg(#)[z dA+dul + -5->\[f’()\)d>\+2g’(p)dp]
2 ; ) 1 o 1 1
= - 2(ydxtxdy) + gD\g (Wydp+ g (dN] + g[>\f N+ f]dN - SfOdN + cgGdu
2 1
and z = - 2xy + EM(M) + g?\f()\) ~ 1N + Pa(p)
= =20y + AY = (A + Do)
This solution may have been obtained by using the first value of p in (iii) and the sec-
ond value of ¢ in (iv).
See also Problems 17-18.
SOLVED PROBLEMS
82
1. solve r =x%e”? or 22 - X%,
2
ox
: . ) . dz - -y .
One integration with respect to x yields p = o Y e ~ + ¢y(y), and the second inte-
% .

4

gration with respect to x yields 2z = % e+ Xhy(y) + Pa(y).

2. Solve xy’s = 1 - ax’y.

2

Integrating 9z . xy™% _ 4xy™* with respect to y, %z . 7y - dx lny + P(x).
ox 0y 9x
Integrating this with respect to x, z = - 5,1- Inx - 227 Iny + $y(x) + ba(y),

where %qﬁl(x) = Y(x).
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2
3. Solve xys — px = ¥y .

op
Yy é_ - p 2
. Y . p_y %z y
Integrating — = = with respect to y, we get ; = o + n}:(x) or —— = —x— + yLJJ(x).
X
Y

d
Integrating with respect to x, we get 2z = y2 Inx + ydy(x) + ¢bo(y), where &x-qbl(x) = Y(x).

4. Solve t -xq = —siny - x CoSy.
Integrating B—q ~xq = —(sin y + x cos y), using the integrating factor e—xy, we obtain
Y
—x PR - D )
e g = ~Je (siny + x cosy)dy = e Ycosy + Y(x) or gq = éf = cosy + e W),
Y
A second integration, with respect to y, yields =z = siny + e Dy (x) + Dolx),
where ¢q(x) = Y(x)/x.
H. Solve sy — 2xr — 2p = 6xy.
d d,
The auxiliary system for the equation ij;E - y?-e = -bxy - 2p is iif S AN A
o dy 2x -y —6xy - 2p

From the first and second ratios, we find xy2 = a, By inspection,
3 2 2
2y (2x) — (2yp+2xy )(=y) + ¥ (- 6xy-2p) = 0
3 2 2
so that 2y'dx - (2yp+2xy )dy + y dp = 0,
2
¥y (dp + 2xdy + 2ydx) ~ 2y(p + 2xy)dy 0 and p +2xy _ b

y N 2
Y y

or

Thus, we obtain as solution p + 2xy = y2 t,ZJ(xyz). Then

g—z = -2xy + y2 L//(xyz) and z = —x2y + ¢1(xy2) + ¢,(y), where §¢1(xy2) = y2 ¢(xy2).
X X

6. Solve xs + yt + g = 10x5y.

d d
The auxiliary system for the equation xé‘l + yéﬂ = 10x5y -q s f = e S
dx Ay x Y

From the first two ratios, x/y = a, By inspection,
(q—8x5y)x - 2xu(y) + x(leay—q) =0
so that (q-8x5y)dx - 2x4dy +xdg =0, or xdg + gdx = axsyd,x + 2quy,
Yy
and gx = 2x y + b,

The general solution is gx = 2xuy + Y(y/x).  Thus,

% _ 3 1.y 3.2 y 3 Ly, _ 1.y
2—3; = 2’y +;¢J(;) and z = x'y" + qbl(;) + Po(x), where é;¢1(;> = ;L/J(;).
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(. Solve t q x(;

- 1)z = xy2 - x2y2 + 2x5y - 2x5.
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xy2 - x2y2 + 213}/ - 20,

24 - B - (i2 -;)C - o2,
x

ey/x¢1(x) . ey-y/xcﬁ2

xy2 - x2y2 + 2x3y - 2x5,

2
(x) - £y,

1
The equation may be written as [D2 -D - —(l -z =
Yy y X x
The complementary function is z = e by (x) + e’ T Py (x).
For a particular integral we try 2z = Ayz+By+C, where A,B,C are functions of x or con-
1
stants. Then [1)2 - D, - l(l 1]z = 24-24y-B - (—1— - =) (A}’2+B}’+C)
Y Y X X xz X
identically. Equating coefficients of the several powers of y, we have
1 1 1 1. .3
—(—-E—;)A x(1 - x), —2A—-(—2—;)B—21.
pa X
Then A = —xS, B=(C =0 and the required solution is z =
8 Solve ys +p-yg—2z = (1L -x)(1+ Iny).

This equation is solved readily by noting that it may be put in the form

2

9z 1 9z oz z 9 o2 1 dz 1 1-x
— d o= = = = = = (b =2) - (22 0+ Z2) = ——(1+ 1ny).
dx Dy Y ox Ay y % dy 7Y Jy Y Y
Setting w = 93 + lz, the equation becomes B_w -w = 1—x(l + In y) for which e~ is an
Jdy ox Y
integrating factor. Then
- X - - 1
e T = E_iylf_yj ( Y oxe Mydx = 1j%(xe Yy 1y and v o= x 1+lny + exl,ll(y).
) . oz 1 l1+1ny x ) . . .
In turn, integrating = + yz = x=——< 4 ¢"(y), using the integrating factor y, we find
Y
y x rY x
yz = x [(1+Inydy « € [ypy)dy = xylny + e ¢u(y) + $a(2).
LAPLACE’S TRANSFORMATION.
9. solve t-s +p=-g(l+ 1/x) +z/x =0,
Setting (gy )z_gyéy = 0 and solving, we have & = x and £ = x +y.
For the choice u=x and v=x+y, p=Ez,tz, 9=z § 5 2,0+ Z and t=2z,. Sub-
stituting in the given equation, we have -z o+ l(z z) = E—(——ai -z) + 1(9}_ -z) = 0,
wv “ o oox v du v X v
Let % _ z = w; then ov + 2 -0 and uw = u(g—z— - 2) = Y.
v du u v
. 21 -v 1 e’ v
Integrating —= -z = ;¢(v), we have e 'z = = Py(v) + Ppu)y or z = T P (V) + e ).



PARTIAL OF ORDER TWO. VARIABLE COEFFICIENTS

287

xty
1
In the original variables, z = ex Py (x+y) + €x+y¢(x) =z flx+y) + e’ g(x),
where f(x+y) = ex+y¢1(x +y) and g(x) = & d(x).
2 2
10. solve xys ~x'r —px—gqy +z = - 2x y.
2 2 .
From xyg%gy - x (§K) = xé%(yé} - xé}) = (0, we obtain &£ =y and £ = xy.
Using u =xy, v=y, p=yz,, q =xz,+2, yzzuu, s =z, +xyz, +yz, , the given
differential equation becomes
1 1 1 2u 9 oz 1 1 02 1 2u
2, - =z - =2 -—z = - — or —(—— - —=2Z) = —(— - =2) = = —.
e v U u'v uv v du dv v u 3y v 12
3 a 2u w 2u 2u’
Let —f——z:w, then 2% -2 =_2%, and — =2+ Yy or w = - + uyw).
v v u u v u 2 2
2 2
Integrating w = o _ L, o @ + uy(v), we have Loty Yy (v) + dyu)  or
v v v2 v 22
2 2

z =

lj—} +ouv Yav)y + v Pyu) =

In the original variables,

11. Solve

- 2xys + y2t ~ xp + 3yq = 8y/x.

EU_ +ou A ) + v Puu).

2= oxy M) 4y ba(xy) + 20y = xby(y) + yPa(xy) + xoy.

Here ’”2(§x Vo 2xy'fx§y + y2(§y 2= (x&, - yfy = 0, and since the factors are not dis-

tinct we obtain only & = xy.

We set u-xy and take v=y;

2
t - x 2

then p=yz ,

v 2x2 vz and the given differential

N v

8y/x or

2
Yz, + 3yzv
an equation of the Cauchy type. However,

3

1
= by (xy) + —;ll’(xy) +

viz o+ Wl - 8v5/u and
Ly v
_ 2v 1 v
Then 2z, = o —gcﬁ(u) and z = -
v

2

2 Y
or 2z = $y(xy) + x dylxy) + = where Y(xy)

q:

2
Xzt 2y, TEY Zy STz, txyr, o +yz.o,

equation becomes

2 2
vz, o+ 3vz, = 8v /u,

it is seen that v is an integrating factor; hence

vazv = 2vl‘/u + ).

1

— - =) + Py

202

1
+ =)+ Py(u)
v2
y
X
y

= x2y2 Palxy).
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HONGE’S NETHOD.

12, Solve gs - pt = q .

2
The Monge equations are gdxdy * p(dxy =0 and podxdg + q5 dxdy = 0.

From the first ecquation, gdy v+ pdx = 0; then dz = pdr+ gdy =0 and z = a.
i 2 .
Substituting qdy = —pdx in the second eguation yields dg-q dx = 0; thus 1/g + x =b
and l.q + x = [f(z) or [x—f(z)]q = -1 1is an intermediate integral,

The required solution is obtained by solving this first order equation; thus

xz - ff(z)dz = -y + Po(x)  or y +xz = pi(2) + ¢y(x),  where qbl’(z) = f(2).

13. solve qzr - 2pys + pzl = pqz.
The Monge equations are (g dy + pd.x)2 =0 and q2 dydp + p2 dxdg ~ pq2 dedy = 0.
From the first equation, qdy + pdx = 0; then dz =pde +gdy =0 and z = a,

Substituting qdy = - pdx in the second yields -gdp+pdq+pgdx=0 or - fd_pg+(§+dx =0

and e'\'q/p = b, Thus eyq ~pf(z) = 0 is an intermediate integral. The Lagrange system

for this equation is —gx—— .Y, dz = 0.
()  _ ¥
From the second equation, 2z = ¢. Then the first becomes - = _dy_ with solution
fey L~
e':/f(c) +y = d, As required solution, we find
Yy o= =€ /f@) ¢ dyz) = € py(z) + Py(z), wWhere py(z) = - 1/f(z).
, 2 3
14. Solve x(r+2xs+x't) =p + 2x°,
The Monge equations are (dy)2 - 2xdxdy + x2(dx)2 = (dy - xdx)2 =0

and x dydp + x5dxdq - (p+2x5)dx dy = 0.

We seek a solution of the system dy —=xdx =0, xdydp + X dxdgq - (p +2x3)dx dy = 0.
From the first equation, x° -2y = a. Substituting dy =x dx in the second, we get
xdp + xqu - (p+ 2x5)dx = 0.
Using the integrating factor l/xz, we obtain the intermediate integral p +=xq = X +xf(x2— 2y).

The Lagrange system is de = g;y_ — dz

2
The first two members yield x ~2y=c¢

* x5+xf(x2-2y)
and then the first and third become i.{ﬁ = — dz — Solving,
x5+xf(c)
2
z = ‘qu + 'Exzf(c) + P(c) or z = ‘qu + %xzf(xz-2y) + dx - 2y).

Solve gq(l+q)r - (1+2g)(1+p)s + (1+p)2t = 0.

15

The Monge equations are
q(1+ @) (dy) + (1+29)(1+pydxdy + (1+ p)’dn)? = [gdy + (1+ pydx) [(1+q)dy + (1+p)dx]) = 0
and q(l+q)dydp + (1+p)2dx dq = 0.
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Consider first the system
gdy + (1+p)dx = 0

g(l+q)dydp + (1+p)2dx dg = 0.

From the first equation, pdx + qdy = ~dx; then dz = ~dx and x+z=a. The substitution of
gdy = —(1+p)dx in the second yields

~(l+q)dp + (1L + pydg = 0

from which we obtain lj—P = b, Thus, 1—+—B = f(x+2z) 1is an intermediate integral.
1+g 1+g

Consider next the system
(1+q)dy + (L+p)de = 0
q(l+q)dydp + (1+p)2dxdq = 0.

From the first, pdx+qdy = ~(dx+dy) so that dz = ~(dx+dy) and x+y +z=a. The substi-
tution of (1+q)dy = —(1+p)dx in the second gives —qgdp+ (1+p)dg = 0 which is satisfied

by 1_;_8 = b. Thus, %ﬁ = g(x+y+2z) 1is an intermediate integral.

g+f-g - f

Solving the two intermediate integrals for p = —— y g = and substituting
- g-f g-f
in the relation pdx + gdy = dz, we have
(fg+f-g)de + fdy = (g-f)dz, fgdx = ~f(dx+dy+dz) + g(dx+dz),
de = _dx+dy+dz . dx+dz' and Xy (xry ) by (x2).

gx+y+2) fx+2)

Solve  (x ~2z) [xqzr—q(x +Z+2px)s + (24 px+ pz +p2x)t] = (1 +p)q2(x+ z).

Monge's equations are
xq2(dy) + q(x+ 2+ 2pxydx dy + (1+p)(z+ px)(de). = [gdy+ (1+p)dx][xgdy + (z+ px)dx] = 0
and (x=2) (xqg°dy dp + (1+p)(z+ px)dx dg] - (1+p)q2(x+z)dx dy = 0.
Consider first the system
gdy + (L+p)dx = 0
(x ~2)xq°dy dp + (1+p)(z+ px) (x —2)dx dg = (1+ p)g" (x + 2)dx dy = 0.

From the first equation, pdx + gdy = —dx; then dz = —dx and x+2z = a. Substituting qdy =
—(1+p)dx, z=a-x 1in the second, we have

i) -(2x-a)xgdp + (2x-a)(a—x+px)dg + (L+p)qadx = 0.
To solve this equation, consider x as a constant so that dx =0, Then 1) becomes

~(2x~-a)xqgdp + (2x—a)(a—-x +px)dg = 0 or x(qdp-pdq) ~ (a-x)dg = 0

and xp+;—_x = t//(x). To determine Y (x), we take the differential of this relation,

gxdp+pde~dx) - (xp+a~-x)dg = qzdnp
and obtain xqdp - xpdg = qzdx};—-pqu +gdx + adg ~ xdg.

(2x —a)(a-x)dg + (1 +p)gadx (a-x)dg + (1+ p)qa_ix_;

2x —a 2x - a

From i), xqdp - xpdgq =
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then q2d¢;—pqu+ gdx + adg - xdg = (a-x)dg + il—%p—)gg—di»
X~ a
dp - 2PEEAmD o M g ana LA
g(2x —a) 2x~a 2x - a
xpra-x _ xp+z

Thus, = f(x+2z) 1is an intermediate integral.

g(2x—a) g(x—-12)

Consider next the system
xgdy + (z+px)dx = 0

(x-z)xqzdy dp + (L+p)(z+px)(x—2z)dx dg - (1+p)q2(x+ 2)dx dy = 0.
From the first equation, pdx + gqdy = —zdx/x; then.dz = -~ zdx/x and xz=a. Substituting
xqdy = — (2 +px)dx, z = a/x in the second, we have

ii) ) —-xq(xz-—a)dp + x(1 +p)(x2—a)dq + (1+p)q(x2+a)d.x = 0.

Considering x as a constant, this becomes ¢dp ~ (1+p)dg = 0 and we have 1—2—8 = Y(x). From

2
this relation we find gqdp - (1+p)dq = qzdl/J, while from ii) gqdp-(l+p)dqg = Siip—)—q—(f—f—?—)dx.

x(x =-a)

2 2
Then dy = (1+p)gtx +a)dx = x +a)dx = (—?— + zz dx)kﬁ, 1n¢:—1nx+1n(x2—a)+ in b,

qzx(xz_a) x(xz—a) x —-a
2
and = bx -~ _1+p, Thus, P g(xz) 1is an intermediate integral.
x q g(x~1)
) ) . . . f-2g 1
Solving the two intermediate integrals, we find p = ———? and q = ; then
xg - xg -

dz = pdx + gdy = f_ngx + ! dy or f(x+z)(dx +dz) + dy = zg(xz)dx + xg(xz)dz,
xg-f xg~f

Thus, y + @y(x +2) = Py(xz) 1is the required solution.

17. Solve B3r+s+t+ (rt—s’) = -9,

Here, R=3, S=T=U=1, V=-9; then
X2 4 SUN+TR+ UV = X2 4 A=6=0 and Ay =2, Ap=-3.
We seek solutions of the systems (see equations 19))
ANUdy + Tdx + Udp = 2dy+de+dp = 0, Rdy + AJUde + Udg = 3dy = 3dx + dg
and AUdy + Tdx + Udp = =3dy +dx + dp = 0, Rdy + MqUdx + Udg = 3dy + 2dx + dg

0

1}
W

0.

From the first system, we have 2y+x+p=a, 3y-3x+q=5b; thus, p+2y+x = f(g+3y-3x) is-
an intermediate integral, From the second system, we have —3y+x+p = ¢, 3y+2x+q = d;
thus, p-3y+x = g(g+3y+2x) is an intermediate integral. Since q appears in the argument
of both f and g, it will not be possible to solve for p and g as before, and it will not be
possible to find a solution involving two arbitrary functions. We give two solutions involv-
ing arbitrary constants,

Replacing the arbitrary function f of the first intermediate integral by a(g+3y-3x)+5,
we obtain

p+2y+x =a(g+3y-3x) + 3 or p-0ag = (3a~-2)y - Ba+1)x + 3
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for which the Lagrange system is ﬁ = d_y = dz «  From idf = _y’ we find
1 —«a @Ba-2)y-@a+Dx+fS 1 -
y +ax = & ; then C—b—c = dz = 5 dz and
1 (Ba=2)y-@Ba+x+f -Ba +a+lx +3af -2£+ 8
z = - '5(30L2+<L+1)x2 + Baf-24+Byx +m = - 5(3a2+a+1)x2 + (3ay+3a2x-2y-2<u+ﬂ)x+77.
Thus, 2z = %(3a2_5a—1)x'2 + (3a-~2)xy + Bx + ¢, (y+ax) is a solution involving one arbi-

trary function and two arbitrary constants,

Replacing the arbitrary function g(g + 3y + 2x) of the second intermediate integral by the
linear function 7(q+3y+2x)+8, we obtain

p=3y+x = Y(g+3y+2x)+3d or pP~7Yqg = 3(Y+Dy + 2y-x + &

for which the Lagrange system is é = ﬂ = dz . From % = ﬂ we get
1 =y 3(y+Ly+@y-1Dx+8 Y
y +yx = £; then ﬂ = dz N dz and
! 3y + Dy + @y=-Da + 8 _@3yPiy i 1)x +3yE + 38 + 8
z = - %(372+’y+1)x2 + BYE+3£+8)x + 1.

Thus, 2z = '5(372+ 5y-1)x2 + 3(y+1Daxy + 8x + ¢do(y+yx) 1is also a solution,

Solve xqr + (p+q)s + ypt + (xy—l)(rt—-s2) + pg = 0.
Here, R=xq, S=p+gq, T=yp, U=xy-1, V=-pq; then

L"2>\2+SU>\+TR+UV=(xy—l)z}\z+(p+q)(xy—1)>\+pq:0 and A, = ——P, A, =9 .
xy -1 xy —-1

-pdy + ypdx + (xy ~1)dp = 0
Consider first the system . The system is not inte-
xqdy — gdx + (xy ~1)dg =0

grable since neither equation is integrable,

Consider next the system -gqgdy + ypdx + (xy-1)dp =0, =xgdy- pdx + (xy-1)dg = 0.

We multiply the second equation by y, add the first, and divide by xy -1 to obtain
gdy+dp +ydg = 0 and thus p+yq = a, Again, we multiply the first equation by x, add
the second, and divide by xy-1 to obtain pdx+xdp+dg = 0 and thus xp+gq = b, How-
ever, the form of the resulting intermediate integral =xp+gq=f(yg+p) Or yq+p=g(xp+q)
does not permit a solution involving two arbitrary functions.

To obtain a solution, involving one arbitrary function and two arbitrary constants, we
replace f(yg+p) by the linear function a(yg+p)+fS3 in the first form of the intermedi-
ate integral above and have

(x-a)p + (1-ay)g = 8.

. d d .
The corresponding Lagrange system is -flf— L A From the first two members we

x-a l-ay

obtain aln(x-a) + Iln(l-ay) = In& or (x-wa)a(l-—ay) = &, and from the first and third
members we get z = Sln(x-a) + 1. Thus, the solution is

2 = Blnx-a) + ¢lx-a) (1-ay)].
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SUPPLEMENTARY PROBLEMS

Solve,
19. r = xy Ans.
20. s =+ y2
2 .

21. t = - x" sin(xy)
22. xr —p =0

2
23. axr +p=1/x

2
24. yt -g =2x"y
25. ys -p = xy2 sin(xy)
26 t+4q = xe™”

2
27. r +s = 3y

28.

29.

30.

xyr + xs - yp = e’

2yt —xs + 29 = x2y

2 2
xr +ys +p = 8xy + 9x

LAPLACE’S TRANSFORMATION.

31.

32.

33.

35.

36.

37.

(3

™

H

H

"

[

1
x by (¥) + Paly) + gxay

by (x) + Paly) + %<x5y+ xy)
Yy P1(x) + Py (x) + sin(xy)
2 b () + ()

b1(y) Inx + Pa(y) + 1/x

Yo b (x) + ppx) + 2y Iny
y $1(x) + Pp(y) - sin(xy)
e by(x) + o(x) - xye”
b (xmy) + boly) + 2Y
bi(x®~y%) + Puy) + haTe”
ba(x2y) + by(x) + hxTy

Brx/y) + baly) + Y+ X

6r — s ~t = 18y - 4x Ans. z = qSl(x—By) + Po(x+ 2y) + y(2x2+y2)

xGy-1r — (Y2 <Ds + yy-1t + (x=Up + (y=q =0 Ans. z = dy(xe’) + dolye)
2 2

x(y~x)r = (y -x)s +yy-0t + yrx)(p-q) = 2(x+ry+ 1)

Hint: Let x+y=u, xy=v. Ans. z = $y(x+y) * Pulxy) + x =y + lnx

(y-1Dr - ’~1s +yy-Dt +p-q-= 2y€2x<1—y)5

2 2 2 2
Xyr—(x -y )s~xyt+py—-qx = 2(x ~Yy )

r-2s+t+p-q = ex(2y—3) - ¢

Hint: Let x+y=u, y=v.

2 2
Y (r—2s+t) —y(p-q) ~z =Y

MONGE’S METHOD.

38.

(ex—l)(qr—ps) = pqex I.1.: p = y(z).

Ans.

Ans.

Ans,

Ans.

2= by ¢ bty + (ke y)yes”

z

G.S.:

®r

¢1<x2+ Yo+ daly/x) - xy

rxry) + e balxty) +xe’ + ye

1 1 2
Yy ha(x+y) + ;¢2<x+y) t3Y

= by(z) +pa(y) e

X
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r-3s-10t = -3 LI: p+29 = Yy (y+5x), p-5q = Yo(y - 2x)
G.S.i z = Ppg(y+5x) + bo(y—2x) + xy

q%r —2pgs + p°t = 0 LI: p=gqy). GS.: xPi(2) +y = de(2).

gr—(l+p+g)s +(1l+p)t = 0 LL: p-qg=ys(x+2), p+1=qiplx+y)
G.S.: z = f(x+2z) + g(x+y)

—

-

2
(1-¢q) r—2(2—p—-2q+pq)s+(2—p)2t =0 I.1.: = Yy +2x-2)

[\
o

G.S.: x + ¥y Pi(y+2x~2) = Poly+2x-12)

5r—10s + 4t~ (rt-s’) = - 1
I.I.: 3y+4x~p = f(Bby+Tx—-q), Ty+dx-p = g(by+3x-q)
Sol.: z = 2%+ 3xy + gy2—2ax2—ﬁx+ ¢1(y tax) or z = 2x2+7xy+gy2+2yx2— Sx + oy + yx)

2r—6s+2t+(rt—sz) =4
LI.: 2y+2x+p = f(2y+4x+q), 4y+2x+p = g2y + 2x + q)
Sol.: z :ax2+,8x—(x+y)2+¢1(y+ax) or z :—’yx2+8x—x2—4xy—y2+¢>2(y+yx)

3r—63+4t—(rt—32) =3

I.I.: 3y+4x-p = f(3y+3x-q). Sol.: z = 2x’+ 3xy + gy2+ﬁx+d>(y+ax).
2
yr—-ps+t+y(rt-s ) = -1
I.I.: yp+x = f(g+y). Sol.: 6x’z = 2y5—3a2y2+ 6axy + 60y + qb(ax+‘§y2),

xqr —(x +y)s + ypt +xy(l"t—82) = 1-pg
II.: xp+y = f(yg+x). Sol.: z =ax + y/a +[31nx+¢(xay).
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L.agrange system, 239
Laplace's transformation,
Legendre equation, 220
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Legendre polynomial, 221
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Taylor, 187
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complete, 79, 240, 244
general, 17, 238
in series, 197
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