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Preface

While scientists and engineers can already choose from a number of books on
integral equations, this new book encompasses recent developments including
some preliminary backgrounds of formulations of integral equations governing the
physical situation of the problems. It also contains elegant analytical and numerical
methods, and an important topic of the variational principles. This book is primarily
intended for the senior undergraduate students and beginning graduate students
of engineering and science courses. The students in mathematical and physical
sciences will find many sections of divert relevance. The book contains eight
chapters. The chapters in the book are pedagogically organized. This book is
specially designed for those who wish to understand integral equations without
having extensive mathematical background. Some knowledge of integral calculus,
ordinary differential equations, partial differential equations, Laplace transforms,
Fourier transforms, Hilbert transforms, analytic functions of complex variables and
contour integrations are expected on the part of the reader.

The book deals with linear integral equations, that is, equations involving an
unknown function which appears under an integral sign. Such equations occur
widely in diverse areas of applied mathematics and physics. They offer a powerful
technique for solving a variety of practical problems. One obvious reason for using
the integral equation rather than differential equations is that all of the conditions
specifying the initial value problems or boundary value problems for a differential
equation can often be condensed into a single integral equation. In the case of
partial differential equations, the dimension of the problem is reduced in this process
so that, for example, a boundary value problem for a partial differential equation in
two independent variables transform into an integral equation involving an unknown
function of only one variable. This reduction of what may represent a complicated
mathematical model of a physical situation into a single equation is itself a significant
step, but there are other advantages to be gained by replacing differentiation with
integration. Some of these advantages arise because integration is a smooth process,
a feature which has significant implications when approximate solutions are sought.
Whether one is looking for an exact solution to a given problem or having to settle
for an approximation to it, an integral equation formulation can often provide a
useful way forward. For this reason integral equations have attracted attention for



most of the last century and their theory is well-developed.
While I was a graduate student at the Imperial College’s mathematics department

during 1966-1969, I was fascinated with the integral equations course given by
Professor Rosenblatt. His deep knowledge about the subject impressed me and
gave me a love for integral equations. One of the aims of the course given by
Professor Rosenblatt was to bring together students from pure mathematics and
applied mathematics, often regarded by the students as totally unconnected. This
book contains some theoretical development for the pure mathematician but these
theories are illustrated by practical examples so that an applied mathematician can
easily understand and appreciate the book.

This book is meant for the senior undergraduate and the first year postgraduate
student. I assume that the reader is familiar with classical real analysis, basic linear
algebra and the rudiments of ordinary differential equation theory. In addition, some
acquaintance with functional analysis and Hilbert spaces is necessary, roughly at
the level of a first year course in the subject, although I have found that a limited
familiarity with these topics is easily considered as a bi-product of using them in the
setting of integral equations. Because of the scope of the text and emphasis on
practical issues, I hope that the book will prove useful to those working in application
areas who find that they need to know about integral equations.

I felt for many years that integral equations should be treated in the fashion of
this book and I derived much benefit from reading many integral equation books
available in the literature. Others influence in some cases by acting more in spirit,
making me aware of the sort of results we might seek, papers by many prominent
authors. Most of the material in the book has been known for many years, although
not necessarily in the form in which I have presented it, but the later chapters do
contain some results I believe to be new.

Digital computers have greatly changed the philosophy of mathematics as applied
to engineering. Many applied problems that cannot be solved explicitly by analytical
methods can be easily solved by digital computers. However, in this book I have
attempted the classical analytical procedure. There is too often a gap between the
approaches of a pure and an applied mathematician to the same problem, to the
extent that they may have little in common. I consider this book a middle road where
I develop, the general structures associated with problems which arise in applications
and also pay attention to the recovery of information of practical interest. I did not
avoid substantial matters of calculations where these are necessary to adapt the
general methods to cope with classes of integral equations which arise in the
applications. I try to avoid the rigorous analysis from the pure mathematical view
point, and I hope that the pure mathematician will also be satisfied with the dealing
of the applied problems.

The book contains eight chapters, each being divided into several sections. In
this text, we were mainly concerned with linear integral equations, mostly of second-
kind. Chapter 1 introduces the classifications of integral equations and necessary
techniques to convert differential equations to integral equations or vice versa.
Chapter 2 deals with the linear Volterra integral equations and the relevant solution
techniques. Chapter 3 is concerned with the linear Fredholme integral equations



and also solution techniques. Nonlinear integral equations are investigated in
Chapter 4. Adomian decomposition method is used heavily to determine the solution
in addition to other classical solution methods. Chapter 5 deals with singular integral
equations along with the variational principles. The transform calculus plays an
important role in this chapter. Chapter 6 introduces the integro-differential equations.
The Volterra and Fredholm type integro-differential equations are successfully
manifested in this chapter. Chapter 7 contains the orthogonal systems of functions.
Green’s functions as the kernel of the integral equations are introduced using simple
practical problems. Some practical problems are solved in this chapter. Chapter 8
deals with the applied problems of advanced nature such as arising in ocean waves,
seismic response, transverse oscillations and flows of heat. The book concludes
with four appendices.

In this computer age, classical mathematics may sometimes appear irrelevant.
However, use of computer solutions without real understanding of the underlying
mathematics may easily lead to gross errors. A solid understanding of the relevant
mathematics is absolutely necessary. The central topic of this book is integral
equations and the calculus of variations to physical problems. The solution
techniques of integral equations by analytical procedures are highlighted with many
practical examples.

For many years the subject of functional equations has held a prominent place in
the attention of mathematicians. In more recent years this attention has been directed
to a particular kind of functional equation, an integral equation, wherein the unknown
function occurs under the integral sign. The study of this kind of equation is
sometimes referred to as the inversion of a definite integral.

In the present book I have tried to present in readable and systematic manner the
general theory of linear integral equations with some of its applications. The
applications given are to differential equations, calculus of variations, and some
problems which lead to differential equations with boundary conditions. The
applications of mathematical physics herein given are to Neumann’s problem and
certain vibration problems which lead to differential equations with boundary
conditions. An attempt has been made to present the subject matter in such a way
as to make the book suitable as a text on this subject in universities.

The aim of the book is to present a clear and well-organized treatment of the
concept behind the development of mathematics and solution techniques. The text
material of this book is presented in a highly readable, mathematically solid format.
Many practical problems are illustrated displaying a wide variety of solution
techniques.

There are more than 100 solved problems in this book and special attention is
paid to the derivation of most of the results in detail, in order to reduce possible
frustrations to those who are still acquiring the requisite skills. The book contains
approximately 150 exercises. Many of these involve extension of the topics presented
in the text. Hints are given in many of these exercises and answers to some selected
exercises are provided in Appendix C. The prerequisites to understand the material
contained in this book are advanced calculus, vector analysis and techniques of
solving elementary differential equations. Any senior undergraduate student who



has spent three years in university, will be able to follow the material contained in
this book. At the end of most of the chapters there are many exercises of practical
interest demanding varying levels of effort.

While it has been a joy to write this book over a number of years, the fruits of this
labor will hopefully be in learning of the enjoyment and benefits realized by the
reader. Thus the author welcomes any suggestions for the improvement of the text.

M. Rahman
2007
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1 Introduction

1.1 Preliminary concept of the integral equation

An integral equation is defined as an equation in which the unknown function u(x)
to be determined appear under the integral sign. The subject of integral equations is
one of the most useful mathematical tools in both pure and applied mathematics. It
has enormous applications in many physical problems. Many initial and boundary
value problems associated with ordinary differential equation (ODE) and partial
differential equation (PDE) can be transformed into problems of solving some
approximate integral equations (Refs. [2], [3] and [6]).

The development of science has led to the formation of many physical laws,
which, when restated in mathematical form, often appear as differential equations.
Engineering problems can be mathematically described by differential equations,
and thus differential equations play very important roles in the solution of prac-
tical problems. For example, Newton’s law, stating that the rate of change of the
momentum of a particle is equal to the force acting on it, can be translated into
mathematical language as a differential equation. Similarly, problems arising in
electric circuits, chemical kinetics, and transfer of heat in a medium can all be
represented mathematically as differential equations.

A typical form of an integral equation in u(x) is of the form

u(x) = f (x) + λ

∫ β(x)

α(x)
K(x, t)u(t)dt (1.1)

where K(x, t) is called the kernel of the integral equation (1.1), and α(x) and β(x) are
the limits of integration. It can be easily observed that the unknown function u(x)
appears under the integral sign. It is to be noted here that both the kernel K(x, t)
and the function f (x) in equation (1.1) are given functions; and λ is a constant
parameter. The prime objective of this text is to determine the unknown function
u(x) that will satisfy equation (1.1) using a number of solution techniques. We
shall devote considerable efforts in exploring these methods to find solutions of the
unknown function.

1
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2 Integral Equations and their Applications

1.2 Historical background of the integral equation

In 1825 Abel, an Italian mathematician, first produced an integral equation in con-
nection with the famous tautochrone problem (see Refs. [1], [4] and [5]). The
problem is connected with the determination of a curve along which a heavy par-
ticle, sliding without friction, descends to its lowest position, or more generally,
such that the time of descent is a given function of its initial position. To be more
specific, let us consider a smooth curve situated in a vertical plane. A heavy particle
starts from rest at any position P (see Figure 1.1).

Let us find, under the action of gravity, the time T of descent to the lowest
position O. Choosing O as the origin of the coordinates, the x-axis vertically upward,
and the y-axis horizontal. Let the coordinates of P be (x, y), of Q be (ξ, η), and s
the arc OQ.

At any instant, the particle will attain the potential energy and kinetic energy at
Q such that the sum of which is constant, and mathematically it can be stated as

K .E. + P.E. = constant
1
2 mv2 + mgξ = constant

or 1
2 v2 + gξ = C (1.2)

where m is the mass of the particle, v(t) the speed of the particle at Q, g the
acceleration due to gravity, and ξ the vertical coordinate of the particle at Q. Ini-
tially, v(0) = 0 at P, the vertical coordinate is x, and hence the constant C can be
determined as C = gx.

Thus, we have

1
2 v2 + gξ = gx

v2 = 2g(x − ξ)

v = ±√
2g(x − ξ) (1.3)

yO

s

P(x, y)

Q(ξ, η)

x

Figure 1.1: Schematic diagram of a smooth curve.
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But v = ds
dt = speed along the curve s. Therefore,

ds

dt
= ±√

2g(x − ξ).

Considering the negative value of ds
dt and integrating from P to Q by separating the

variables, we obtain

∫ Q

P
dt = −

∫ Q

P

ds√
2g(x − ξ)

t = −
∫ Q

P

ds√
2g(x − ξ)

The total time of descent is, then,

∫ O

P
dt = −

∫ O

P

ds√
2g(x − ξ)

T =
∫ P

O

ds√
2g(x − ξ)

(1.4)

If the shape of the curve is given, then s can be expressed in terms of ξ and hence ds
can be expressed in terms of ξ. Let ds = u(ξ)dξ, the equation (1.4) takes the form

T =
∫ x

0

u(ξ)dξ√
2g(x − ξ)

Abel set himself the problem of finding the curve for which the time T of descent is
a given function of x, say f (x). Our problem, then, is to find the unknown function
u(x) from the equation

f (x) =
∫ x

0

u(ξ)dξ√
2g(x − ξ)

=
∫ x

0
K(x, ξ)u(ξ)dξ. (1.5)

This is a linear integral equation of the first kind for the determination of u(x).
Here, K(x, ξ) = 1√

2g(x − ξ)
is the kernel of the integral equation. Abel solved this

problem already in 1825, and in essentially the same manner which we shall use;
however, he did not realize the general importance of such types of functional
equations.
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4 Integral Equations and their Applications

1.3 An illustration from mechanics

The differential equation which governs the mass-spring system is given by (see
Figure 1.2)

m
d2u

dt2 + ku = f (t) (0 ≤ t < ∞)

with the initial conditions, u(0) = u0, and du
dt = u̇0, where k is the stiffness of the

string, f (t) the prescribed applied force, u0 the initial displacement, and u̇0 the
initial value. This problem can be easily solved by using the Laplace transform. We
transform this ODE problem into an equivalent integral equation as follows:

Integrating the ODE with respect to t from 0 to t yields

m
du

dt
− mu̇0 + k

∫ t

0
u(τ)dτ =

∫ t

0
f (τ)dτ.

Integrating again gives

mu(t) − mu0 − mu0t + k
∫ t

0

∫ t

0
u(τ)dτdτ =

∫ t

0

∫ t

0
f (τ)dτdτ. (1.6)

We know that if y(t) = ∫ t
0

∫ t
0 u(τ)dτdτ, then L{y(t)} = L{∫ t

0

∫ t
0 f (τ)dτdτ} =

1
s2 L{u(t)}. Therefore, by using the convolution theorem, the Laplace inverse is

obtained as y(t) = ∫ t
0 (t − τ)u(τ)dτ, which is known as the convolution integral.

Hence using the convolution property, equation (1.6) can be written as

u(t) = u0 + u̇0t + 1

m

∫ t

0
(t − τ)f (τ)dτ − k

m

∫ t

0
(t − τ)u(τ)dτ, (1.7)

which is an integral equation. Unfortunately, this is not the solution of the original
problem, because the presence of the unknown function u(t) under the integral
sign. Rather, it is an example of an integral equation because of the presence of
the unknown function within the integral. Beginning with the integral equation, it
is possible to reverse our steps with the help of the Leibnitz rule, and recover the
original system, so that they are equivalent. In the present illustration, the physics
(namely, Newton’s second law ) gave us the differential equation of motion, and it

k

m f(t)

u(t)

Figure 1.2: Mass spring system.
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was only by manipulation, we obtained the integral equation. In the Abel’s problem,
the physics gave us the integral equation directly. In any event, observe that we
can solve the integral equation by application of the Laplace Transform. Integral
equations of the convolution type can easily be solved by the Laplace transform .

1.4 Classification of integral equations

An integral equation can be classified as a linear or nonlinear integral equation as we
have seen in the ordinary and partial differential equations. In the previous section,
we have noticed that the differential equation can be equivalently represented by
the integral equation. Therefore, there is a good relationship between these two
equations.

The most frequently used integral equations fall under two major classes, namely
Volterra and Fredholm integral equations. Of course, we have to classify them as
homogeneous or nonhomogeneous; and also linear or nonlinear. In some practical
problems, we come across singular equations also.

In this text, we shall distinguish four major types of integral equations – the
two main classes and two related types of integral equations. In particular, the four
types are given below:

• Volterra integral equations
• Fredholm integral equations
• Integro-differential equations
• Singular integral equations

We shall outline these equations using basic definitions and properties of each type.

1.4.1 Volterra integral equations

The most standard form of Volterra linear integral equations is of the form

φ(x)u(x) = f (x) + λ

∫ x

a
K(x, t)u(t)dt (1.8)

where the limits of integration are function of x and the unknown function u(x)
appears linearly under the integral sign. If the function φ(x) = 1, then equation
(1.8) simply becomes

u(x) = f (x) + λ

∫ x

a
K(x, t)u(t)dt (1.9)

and this equation is known as the Volterra integral equation of the second kind;
whereas if φ(x) = 0, then equation (1.8) becomes

f (x) + λ

∫ x

a
K(x, t)u(t)dt = 0 (1.10)

which is known as the Volterra equation of the first kind.
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1.4.2 Fredholm integral equations

The most standard form of Fredholm linear integral equations is given by the form

φ(x)u(x) = f (x) + λ

∫ b

a
K(x, t)u(t)dt (1.11)

where the limits of integration a and b are constants and the unknown function
u(x) appears linearly under the integral sign. If the function φ(x) = 1, then (1.11)
becomes simply

u(x) = f (x) + λ

∫ b

a
K(x, t)u(t)dt (1.12)

and this equation is called Fredholm integral equation of second kind; whereas if
φ(x) = 0, then (1.11) yields

f (x) + λ

∫ b

a
K(x, t)u(t)dt = 0 (1.13)

which is called Fredholm integral equation of the first kind.

Remark

It is important to note that integral equations arise in engineering, physics, chem-
istry, and biological problems. Many initial and boundary value problems associated
with the ordinary and partial differential equations can be cast into the integral
equations of Volterra and Fredholm types, respectively.

If the unknown function u(x) appearing under the integral sign is given in
the functional form F(u(x)) such as the power of u(x) is no longer unity, e.g.
F(u(x)) = un(x), n �= 1, or sin u(x) etc., then theVolterra and Fredholm integral equa-
tions are classified as nonlinear integral equations. As for examples, the following
integral equations are nonlinear integral equations:

u(x) = f (x) + λ

∫ x

a
K(x, t) u2 (t) dt

u(x) = f (x) + λ

∫ x

a
K(x, t) sin (u(t)) dt

u(x) = f (x) + λ

∫ x

a
K(x, t) ln (u(t)) dt

Next, if we set f (x) = 0, in Volterra or Fredholm integral equations, then the result-
ing equation is called a homogeneous integral equation, otherwise it is called
nonhomogeneous integral equation.
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1.4.3 Singular integral equations

A singular integral equation is defined as an integral with the infinite limits or when
the kernel of the integral becomes unbounded at a certain point in the interval. As
for examples,

u(x) = f (x) + λ

∫ ∞

−∞
u(t)dt

f (x) =
∫ x

0

1

(x − t)α
u(t)dt, 0 < α < 1 (1.14)

are classified as the singular integral equations.

1.4.4 Integro-differential equations

In the early 1900, Vito Volterra studied the phenomenon of population growth, and
new types of equations have been developed and termed as the integro-differential
equations. In this type of equations, the unknown function u(x) appears as the
combination of the ordinary derivative and under the integral sign. In the electrical
engineering problem, the current I (t) flowing in a closed circuit can be obtained in
the form of the following integro-differential equation,

L
dI

dt
+ RI + 1

C

∫ t

0
I (τ)dτ = f (t), I (0) = I0 (1.15)

where L is the inductance, R the resistance, C the capacitance, and f (t) the applied
voltage. Similar examples can be cited as follows:

u′′(x) = f (x) + λ

∫ x

0
(x − t)u(t)dt, u(0) = 0, u′(0) = 1, (1.16)

u′(x) = f (x) + λ

∫ 1

0
(xt)u(t)dt, u(0) = 1. (1.17)

Equations (1.15) and (1.16) are of Volterra type integro-differential equations,
whereas equation (1.17) Fredholm type integro-differential equations. These
terminologies were concluded because of the presence of indefinite and definite
integrals.

1.5 Converting Volterra equation to ODE

In this section, we shall present the technique that converts Volterra integral equa-
tions of second kind to equivalent ordinary differential equations. This may be
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achieved by using the Leibnitz rule of differentiating the integral
∫ b(x)

a(x) F(x, t)dt
with respect to x, we obtain

d

dx

∫ b(x)

a(x)
F(x, t)dt =

∫ b(x)

a(x)

∂F(x, t)

∂x
dt + db(x)

dx
F(x, b(x))

−da(x)

dx
F(x, a(x)), (1.18)

where F(x, t) and ∂F
∂x (x, t) are continuous functions of x and t in the domain

α ≤ x ≤ β and t0 ≤ t ≤ t1; and the limits of integration a(x) and b(x) are defined
functions having continuous derivatives for α ≤ x ≤ β. For more information the
reader should consult the standard calculus book including Rahman (2000). A
simple illustration is presented below:

d

dx

∫ x

0
sin(x − t)u(t)dt =

∫ x

0
cos(x − t)u(t)dt +

(
dx

dx

)
(sin(x − x)u(x))

−
(

d0

dx

)
(sin(x − 0)u(0))

=
∫ x

0
cos(x − t)u(t)dt.

1.6 Converting IVP to Volterra equations

We demonstrate in this section how an initial value problem (IVP) can be trans-
formed to an equivalent Volterra integral equation. Let us consider the integral
equation

y(t) =
∫ t

0
f (t)dt (1.19)

The Laplace transform of f (t) is defined as L{f (t)} = ∫ ∞
0 e−st f (t)dt = F(s). Using

this definition, equation (1.19) can be transformed to

L{y(t)} = 1

s
L{f (t)}.

In a similar manner, if y(t) = ∫ t
0

∫ t
0 f (t)dtdt, then

L{y(t)} = 1

s2 L{f (t)}.

This can be inverted by using the convolution theorem to yield

y(t) =
∫ t

0
(t − τ)f (τ)dτ.
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If

y(t) =
∫ t

0

∫ t

0
· · ·

∫ t

0
f (t)dtdt · · · dt︸ ︷︷ ︸

n-fold integrals

then L{y(t)} = 1
sn L{f (t)}. Using the convolution theorem, we get the Laplace

inverse as

y(t) =
∫ t

0

(t − τ)n−1

(n − 1)! f (τ)dτ.

Thus the n-fold integrals can be expressed as a single integral in the following
manner: ∫ t

0

∫ t

0
· · ·

∫ t

0
f (t)dtdt · · · dt︸ ︷︷ ︸

n-fold integrals

=
∫ t

0

(t − τ)n−1

(n − 1)! f (τ)dτ. (1.20)

This is an essential and useful formula that has enormous applications in the
integral equation problems.

1.7 Converting BVP to Fredholm integral equations

In the last section we have demonstrated how an IVP can be transformed to an
equivalent Volterra integral equation. We present in this section how a boundary
value problem (BVP) can be converted to an equivalent Fredholm integral equation.
The method is similar to that discussed in the previous section with some exceptions
that are related to the boundary conditions. It is to be noted here that the method
of reducing a BVP to a Fredholm integral equation is complicated and rarely used.
We demonstrate this method with an illustration.

Example 1.1

Let us consider the following second-order ordinary differential with the given
boundary conditions.

y′′(x) + P(x)y′(x) + Q(x)y(x) = f (x) (1.21)

with the boundary conditions

x = a : y(a) = α

y = b : y(b) = β (1.22)

where α and β are given constants. Let us make transformation

y′′(x) = u(x) (1.23)
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Integrating both sides of equation (1.23) from a to x yields

y′(x) = y′(a) +
∫ x

a
u(t)dt (1.24)

Note that y′(a) is not prescribed yet. Integrating both sides of equation (1.24) with
respect to x from a to x and applying the given boundary condition at x = a, we find

y(x) = y(a) + (x − a)y′(a) +
∫ x

a

∫ x

a
u(t)dtdt

= α + (x − a)y′(a) +
∫ x

a

∫ x

a
u(t)dtdt (1.25)

and using the boundary condition at x = b yields

y(b) = β = α + (b − a)y′(a) +
∫ b

a

∫ b

a
u(t)dtdt,

and the unknown constant y′(a) is determined as

y′(a) = β − α

b − a
− 1

b − a

∫ b

a

∫ b

a
u(t)dtdt. (1.26)

Hence the solution (1.25) can be rewritten as

y(x) = α + (x − a)

{
β − α

b − a
− 1

b − a

∫ b

a

∫ b

a
u(t)dtdt

}

+
∫ x

a

∫ x

a
u(t)dtdt (1.27)

Therefore, equation (1.21) can be written in terms of u(x) as

u(x) = f (x) − P(x)
{

y′(a) +
∫ x

a
u(t)dt

}

−Q(x)
{
α + (x − a)y′(a) +

∫ x

a

∫ x

a
u(t)dtdt

}
(1.28)

where u(x) = y′′(x) and so y(x) can be determined, in principle, from equation (1.27).
This is a complicated procedure to determine the solution of a BVP by equivalent
Fredholm integral equation.
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A special case

If a = 0 and b = 1, i.e. 0 ≤ x ≤ 1, then

y(x) = α + xy′(0) +
∫ x

0

∫ x

0
u(t)dtdt

= α + xy′(a) +
∫ x

0
(x − t)u(t)dt

And hence the unknown constant y′(0) can be determined as

y′(0) = (β − α) −
∫ 1

0
(1 − t)u(t)dt

= (β − α) −
∫ x

0
(1 − t)u(t)dt −

∫ 1

x
(1 − t)u(t)dt

And thus we have

u(x) = f (x) − P(x)
{

y′(0) +
∫ x

0
u(t)dt

}

−Q(x)
{
α + xy′(0) +

∫ x

0
(x − t)u(t)dt

}

u(x) = f (x) − (β − α)(P(x) + xQ(x)) − αQ(x) +
∫ 1

0
K(x, t)u(t)dt

(1.29)

where the kernel K(x, t) is given by

K(x, t) =
{

(P(x) + tQ(x))(1 − x) 0 ≤ t ≤ x

(P(x) + xQ(x))(1 − t) x ≤ t ≤ 1
(1.30)

It can be easily verified that K(x, t) = K(t, x) confirming that the kernel is symmetric.
The Fredholm integral equation is given by (1.29).

Example 1.2

Let us consider the following boundary value problem.

y′′(x) = f (x, y(x)), 0 ≤ x ≤ 1

y(0) = y0, y(1) = y1 (1.31)

Integrating equation (1.31) with respect to x from 0 to x two times yields

y(x) = y(0) + xy′(0) +
∫ x

0

∫ x

0
f (t, y(t))dtdt

= y0 + xy′(0) +
∫ x

0
(x − t)f (t, y(t))dt (1.32)
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To determine the unknown constant y′(0), we use the condition at x = 1, i.e.
y(1) = y1. Hence equation (1.32) becomes

y(1) = y1 = y0 + y′(0) +
∫ 1

0
(1 − t)f (t, y(t))dt,

and the value of y′(0) is obtained as

y′(0) = (y1 − y0) −
∫ 1

0
(1 − t)f (t, y(t))dt.

Thus, equation (1.32) can be written as

y(x) = y0 + x(y1 − y0) −
∫ 1

0
K(x, t)f (t, y(t))dt, 0 ≤ x ≤ 1 (1.33)

in which the kernel is given by

K(x, t) =
{

t(1 − t) 0 ≤ t ≤ x

x(1 − t) x ≤ t ≤ 1.
(1.34)

Once again we can reverse the process and deduce that the function y which satisfies
the integral equation also satisfies the BVP. If we now specialize equation (1.31)
to the simple linear BVP y′′(x) = −λy(x), 0 < x < 1 with the boundary conditions
y(0) = y0, y(1) = y1, then equation (1.33) reduces to the second kind Fredholm
integral equation

y(x) = F(x) + λ

∫ 1

0
K(x, t)y(t)dt, 0 ≤ x ≤ 1

where F(x) = y0 + x(y1 − y0). It can be easily verified that K(x, t) = K(t, x) con-
firming that the kernel is symmetric.

Example 1.3

As the third example, consider the following boundary value problem

y′′(x) + y(x) = x, 0 < x < π/2

y(0) = 1, y(π/2) = π (1.35)

The analytical solution of the above problem is simply y(x) = cos x +
π
2 sin x + x. We want to reduce it into Fredholm integral equation.
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Integrating the differential equation with respect to x from 0 to x twice and using
the boundary conditions, we obtain

y(x) = xy′(0) + x3

6
−

∫ x

0

∫ x

0
y(t)dtdt

= xy′(0) + x3

6
−

∫ x

0
(x − t)y(t)dt

Using the boundary condition at x = π
2 , the unknown constant y′(0) can be

obtained as

y′(0) = 2 − π2

24
+ 2

π

∫ π/2

0
(π/2 − t)y(t)dt.

With this information the equation for y(x) can be put in the form of Fredholm
integral equation

y(x) = f (x) +
∫ π/2

0
K(x, t)y(t)dt,

where f (x) = 2x − π2

24 x + x3

6 and the kernel is given by

K(x, t) =
{

2t
π

(π/2 − t) 0 ≤ t ≤ x
2x
π

(π/2 − x) x ≤ t ≤ π/2,
(1.36)

which can be easily shown that the kernel is symmetric as before.

1.8 Types of solution techniques

There are a host of solution techniques that are available to solve the integral
equations. Two important traditional methods are the method of successive approxi-
mations and the method of successive substitutions. In addition, the series method
and the direct computational method are also suitable for some problems. The
recently developed methods, namely the Adomian decomposition method (ADM)
and the modified decomposition method, are gaining popularity among scientists
and engineers for solving highly nonlinear integral equations. Singular integral
equations encountered by Abel can easily be solved by using the Laplace transform
method. Volterra integral equations of convolution type can be solved using the
Laplace transform method. Finally, for nonlinear problems, numerical techniques
will be of extremely useful to solve the highly complicated problems.

This textbook will contain two chapters dealing with the integral equations
applied to classical problems and the modern advanced problems of physical
interest.
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1.9 Exercises

1. Classify each of the following integral equations asVolterra or Fredholm integral
equation, linear or nonlinear, and homogeneous or nonhomogeneous:

(a) u(x) = x +
∫ 1

0
(x − t)2u(t)dt

(b) u(x) = ex +
∫ x

0
t2u2(t)dt

(c) u(x) = cos x +
∫ π/2

0
cos xu(t)dt

(d) u(x) = 1 + x

4

∫ 1

0

1

x + t

1

u(t)
dt

2. Classify each of the following integro-differential equations as Volterra integro-
differential equations or Fredholm integro-differential equations. Also deter-
mine whether the equation is linear or nonlinear.

(a) u′(x) = 1 +
∫ x

0
e−2tu3(t)dt, u(0) = 1

(b) u′′(x) = x2

2
−

∫ x

0
(x − t)u2(t)dt, u(0) = 1, u′(0) = 0

(c) u′′′(x) = sin x − x +
∫ π/2

0
xtu′(t)dt

u(0) = 1, u′(0) = 0, u′′(0) = −1

3. Integrate both sides of each of the following differential equations once from 0
to x, and use the given initial conditions to convert to a corresponding integral
equations or integro-differential equations.

(a) u′(x) = u2(x), u(0) = 4

(b) u′′(x) = 4xu2(x), u(0) = 2, u′(0) = 1

(c) u′′(x) = 2xu(x), u(0) = 0, u′(0) = 1.

4. Verify that the given function is a solution of the corresponding integral
equations or integro-differential equations:

(a) u(x) = x −
∫ x

0
(x − t)u(t)dt, u(x) = sin x

(b)
∫ x

0
(x − t)2u(t)dt = x3, u(x) = 3

(c)
∫ x

0

√
(x − t)u(t)dt = x3/2, u(x) = 3/2.
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5. Reduce each of the Volterra integral equations to an equivalent initial value
problem:

(a) u(x) = x − cos x +
∫ x

0
(x − t)u(t)dt

(b) u(x) = x4 + x2 + 2
∫ x

0
(x − t)2u(t)dt

(c) u(x) = x2 + 1

6

∫ x

0
(x − t)3u(t)dt.

6. Derive an equivalent Volterra integral equation to each of the following initial
value problems:

(a) y′′ + 5y′ + 6y = 0, y(0) = 1, y′(0) = 1

(b) y′′ + y = sin x, y(0) = 0, y′(0) = 0

(c) y′′′ + 4y′ = x, y(0) = 0, y′(0) = 0, y′′(0) = 1

(d)
d4y

dx4 + d2y

dx2 = 2ex, y(0) = 2, y′(0) = 2, y′′(0) = 1, y′′′(0) = 1.

7. Derive the equivalent Fredholm integral equation for each of the following
boundary value problems:

(a) y′′ + 4y = sin x, 0 < x < 1, y(0) = 0, y(1) = 0

(b) y′′ + 2xy = 1, 0 < x < 1, y(0) = 0, y(1) = 0

(c) y′′ + y = x, 0 < x < 1, y(0) = 1, y(1) = 0

(d) y′′ + y = x, 0 < x < 1, y(0) = 1, y′(1) = 0.
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2 Volterra integral equations

2.1 Introduction

In the previous chapter, we have clearly defined the integral equations with some
useful illustrations. This chapter deals with the Volterra integral equations and their
solution techniques. The principal investigators of the theory of integral equations
areVitoVolterra (1860–1940) and Ivar Fredholm (1866–1927), together with David
Hilbert (1862–1943) and Erhard Schmidt (1876–1959). Volterra was the first to
recognize the importance of the theory and study it systematically.

In this chapter, we shall be concerned with the nonhomogeneous Volterra
integral equation of the second kind of the form

u(x) = f (x) + λ

∫ x

0
K(x, t)u(t)dt (2.1)

where K(x, t) is the kernel of the integral equation, f (x) a continuous function
of x, and λ a parameter. Here, f (x) and K(x, t) are the given functions but u(x)
is an unknown function that needs to be determined. The limits of integral for
the Volterra integral equations are functions of x. The nonhomogeneous Volterra
integral equation of the first kind is defined as∫ x

0
K(x, t)u(t)dt = f (x) (2.2)

We shall begin our study with this relatively simple, important class of integral
equations in which many features of the general theory already appeared in the
literatures. There are a host of solution techniques to deal with the Volterra integral
equations. The Volterra integral equations of the second kind can be readily solved
by using the Picard’s process of successive approximations.

2.2 The method of successive approximations

In this method, we replace the unknown function u(x) under the integral sign of
the Volterra equation (2.1) by any selective real-valued continuous function u0(x),

17
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called the zeroth approximation. This substitution will give the first approximation
u1(x) by

u1(x) = f (x) + λ

∫ x

0
K(x, t)u0(t)dt (2.3)

It is obvious that u1(x) is continuous if f (x), K(x, t), and u0(x) are continuous.
The second approximation u2(x) can be obtained similarly by replacing u0(x) in
equation (2.3) by u1(x) obtained above. And we find

u2(x) = f (x) + λ

∫ x

0
K(x, t)u1(t)dt (2.4)

Continuing in this manner, we obtain an infinite sequence of functions

u0(x), u1(x), u2(x), . . . , un(x), . . .

that satisfies the recurrence relation

un(x) = f (x) + λ

∫ x

0
K(x, t)un−1(t)dt (2.5)

for n = 1, 2, 3, . . . and u0(x) is equivalent to any selected real-valued function. The
most commonly selected function for u0(x) are 0, 1, and x. Thus, at the limit, the
solution u(x) of the equation (2.1) is obtained as

u(x) = lim
n→∞ un(x), (2.6)

so that the resulting solution u(x) is independent of the choice of the zeroth approx-
imation u0(x). This process of approximation is extremely simple. However, if we
follow the Picard’s successive approximation method, we need to set u0(x) = f (x),
and determine u1(x) and other successive approximation as follows:

u1(x) = f (x) + λ

∫ x

0
K(x, t)f (t)dt

u2(x) = f (x) + λ

∫ x

0
K(x, t)u1(t)dt

· · · · · · · · ·
un−1(x) = f (x) + λ

∫ x

0
K(x, t)un−2(t)dt

un(x) = f (x) + λ

∫ x

0
K(x, t)un−1(t)dt (2.7)
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The last equation is the recurrence relation. Consider

u2(x) − u1(x) = λ

∫ x

0
K(x, t)[ f (t) + λ

∫ t

0
K(t, τ)f (τ)dτ]dt

− λ

∫ x

0
K(x, t)f (t)dt

= λ2
∫ x

0
K(x, t)

∫ t

0
K(t, τ)f (τ)dτdt

= λ2ψ2(x) (2.8)

where

ψ2(x) =
∫ x

0
K(x, t)dt

∫ t

0
K(t, τ)f (τ)dτ (2.9)

Thus, it can be easily observed from equation (2.8) that

un(x) =
n∑

m=0

λmψm(x) (2.10)

if ψ0(x) = f (x), and further that

ψm(x) =
∫ x

0
K(x, t)ψm−1(t)dt, (2.11)

where m = 1, 2, 3, . . . and hence ψ1(x) = ∫ x
0 K(x, t)f (t)dt.

The repeated integrals in equation (2.9) may be considered as a double integral
over the triangular region indicated in Figure 2.1; thus interchanging the order of

Figure 2.1: Double integration over the triangular region (shaded area).
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integration, we obtain

ψ2(x) =
∫ x

0
f (τ)dτ

∫ x

τ

K(x, t)K(t, τ)dt

=
∫ x

0
K2(x, τ)f (τ)dτ

where K2(x, τ) = ∫ x
τ

K(x, t)K(t, τ)dt. Similarly, we find in general

ψm(x) =
∫ x

0
Km(x, τ)f (τ)dτ, m = 1, 2, 3, . . . (2.12)

where the iterative kernels K1(x, t) ≡ K(x, t), K2(x, t), K3(x, t), . . . are defined by
the recurrence formula

Km+1(x, t) =
∫ x

t
K(x, τ)Km(τ, t)dτ, m = 1, 2, 3, . . . (2.13)

Thus, the solution for un(x) can be written as

un(x) = f (x) +
n∑

m=1

λmψm(x) (2.14)

It is also plausible that we should be led to the solution of equation (2.1) by means
of the sum if it exists, of the infinite series defined by equation (2.10). Thus, we
have using equation (2.12)

un(x) = f (x) +
n∑

m=1

λm
∫ x

0
Km(x, τ) f (τ)dτ

= f (x) +
∫ x

0

{
n∑

m=1

λmKm(x, τ)

}
f (τ)dτ; (2.15)

hence it is also plausible that the solution of equation (2.1) will be given by
as n → ∞

lim
n→∞ un(x) = u(x)

= f (x) +
∫ x

0

{
n∑

m=1

λmKm(x, τ)

}
f (τ)dτ

= f (x) + λ

∫ x

0
H (x, τ; λ)f (τ)dτ (2.16)
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where

H (x, τ; λ) =
n∑

m=1

λmKm(x, τ) (2.17)

is known as the resolvent kernel.

2.3 The method of Laplace transform

Volterra integral equations of convolution type such as

u(x) = f (x) + λ

∫ x

0
K(x − t)u(t)dt (2.18)

where the kernel K(x − t) is of convolution type, can very easily be solved using
the Laplace transform method [1]. To begin the solution process, we first define the
Laplace transform of u(x)

L{u(x)} =
∫ ∞

0
e−sxu(x)dx. (2.19)

Using the Laplace transform of the convolution integral, we have

L
{∫ x

0
K(x − t)u(t)dt

}
= L{K(x)}L{u(x)} (2.20)

Thus, taking the Laplace transform of equation (2.18), we obtain

L{u(x)} = L{f (x)} + λL{K(x)}L{u(x)}

and the solution for L{u(x)} is given by

L{u(x)} = L{f (x)}
1 − λL{K(x)} ,

and inverting this transform, we obtain

u(x) =
∫ x

0
ψ(x − t)f (t)dt (2.21)

where it is assumed that L−1
{

1
1 − λL{K(x)}

}
= ψ(x). The expression (2.21) is the

solution of the second kind Volterra integral equation of convolution type.
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Example 2.1

Solve the following Volterra integral equation of the second kind of the convolution
type using (a) the Laplace transform method and (b) successive approximation
method

u(x) = f (x) + λ

∫ x

0
e x−tu(t)dt (2.22)

Solution

(a) Solution by Laplace transform method
Taking the Laplace transform of equation (2.22) and we obtain

L{u(x)} = L{f (x)} + λL{ex}L{u(x)},

and solving for L{u(x)} yields

L{u(x)} =
(

1 + λ

s − 1 − λ

)
L{f (x)}.

The Laplace inverse of the above can be written immediately as

u(x) =
∫ x

0
{δ(x − t) + λe(1+λ)(x−t)} f (t)dt

= f (x) + λ

∫ x

0
e(1+λ)(x−t)f (t)dt (2.23)

where δ(x) is the Dirac delta function and we have used the integral property [7] to
evaluate the integral. Because of the convolution type kernel, the result is amazingly
simple.

(b) Solution by successive approximation
Let us assume that the zeroth approximation is

u0(x) = 0 (2.24)

Then the first approximation can be obtained as

u1(x) = f (x) (2.25)

Using this information in equation (2.22), the second approximation is given by

u2(x) = f (x) + λ

∫ x

0
ex−t f (t)dt (2.26)
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Proceeding in this manner, the third approximation can be obtained as

u3(x) = f (x) + λ

∫ x

0
ex−tu2(t)dt

= f (x) + λ

∫ x

0
ex−t

{
f (t) + λ

∫ t

0
et−τ f (τ)dτ

}
dt

= f (x) + λ

∫ x

0
ex−t f (t)dt + λ2

∫ x

0

∫ t

0
ex−τ f (τ)dτdt

= f (x) + λ

∫ x

0
ex−t f (t)dt + λ2

∫ x

0
(x − t)ex−t f (t)dt

In the double integration the order of integration is changed to obtain the final result.
In a similar manner, the fourth approximation u4(x) can be at once written as

u4(x) = f (x) + λ

∫ x

0
ex−t f (t)dt + λ2

∫ x

0
(x − t)ex−t f (t)dt

+ λ3
∫ x

0

(x − t)2

2! ex−t f (t)dt.

Thus, continuing in this manner, we obtain as n → ∞

u(x) = lim
n→∞ un(x)

= f (x) + λ

{∫ x

0
ex−t

(
1 + λ(x − t) + 1

2!λ
2(x − t)2 + · · ·

)
f (t)dt

}

= f (x) + λ

∫ x

0
e(x−t).eλ(x−t)f (t)dt

= f (x) + λ

∫ x

0
e(1+λ)(x−t)f (t)dt (2.27)

which is the same as equation (2.23). Here, the resolvent kernel is H (x, t; λ) =
e(1+λ)(x−t).

(c) Another method to determine the solution by the resolvent kernel
The procedure to determine the resolvent kernel is the following: Given that

u(x) = f (x) + λ

∫ x

0
ex−tu(t)dt.

Here, the kernel is K(x, t) = ex−t . The solution by the successive approximation is

u(x) = f (x) + λ

∫ x

0
H (x, t; λ)f (t)dt
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where the resolvent kernel is given by

H (x, t; λ) =
∑
n=0

λnKn+1(x, t)

in which

Kn+1(x, t) =
∫ x

t
K(x, τ)Kn(τ)dτ, n = 1, 2, 3, . . .

It is to be noted that K1(x, t) = K(x, t).
Thus, we obtain

K2(x, t) =
∫ x

t
ex−τeτ−tdτ

= ex−t
∫ x

t
dτ

= (x − t)ex−t

Similarly, proceeding in this manner, we obtain

K3(x, t) =
∫ x

t
(ex−τ)(eτ−t(τ − t))dτ

= ex−t (x − t)2

2!

K4(x, t) = ex−t (x − t)3

3!
· · · · · · · · · · · · · · · · · ·
Kn+1(x, t) = ex−t (x − t)n

n!
Hence the resolvent kernel is

H (x, t; λ) =
∑
n=0

λnKn+1(x, t)

= ex−t
∞∑
0

(λ(x − t))n

n!
= e(1+λ)(x−t)

Once the resolvent kernel is known the solution is obvious.
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Example 2.2

Solve the following linear Volterra integral equation

u(x) = x +
∫ x

0
(t − x)u(t)dt. (2.28)

Solution

(a) Solution by Laplace transform method
The Laplace transform of equation (2.28) yields

L{u(x)} = L{x} − L{x}L{u(x)}
= 1

s2 − 1

s2 L{u(x)}

which reduces to L{u(x)} = 1
1 + s2 and its inverse solution is u(x) = sin x. This is

required solution.

(b) Solution by successive approximation
Let us set u0(x) = x, then the first approximation is

u1(x, t) = x +
∫ x

0
(t − x)tdt

= x − x3

3!
The second approximation can be calculated in the similar way that gives
u2(x) = x − x3

3! + x5

5! . Proceeding in this way, we can obtain without much difficulty

un(x) = x − x3

3! + x5

5! − · · · + (−1)n x2n+1

(2n + 1)! . The final solution is

u(x) = lim
n→∞

=
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
= sin x

This is the same as before.

2.4 The method of successive substitutions

The Volterra integral equation of the second kind is rewritten here for ready
reference,

u(x) = f (x) + λ

∫ x

0
K(x, t)u(t)dt (2.29)
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In this method, we substitute successively for u(x) its value as given by equa-
tion (2.29). We find that

u(x) = f (x) + λ

∫ x

0
K(x, t)

{
f (t)λ

∫ t

0
K(t, t1)u(t1)dt1

}
dt

= f (x) + λ

∫ x

0
K(x, t)f (t)dt + λ2

∫ x

0
K(x, t)

∫ t

0
K(t, t1)u(t1)dt1dt

= f (x) + λ

∫ x

0
K(x, t)f (t)dt + λ2

∫ x

0
K(x, t)

∫ t

0
K(t, t1)f (t1)dt1dt

+ · · ·
+ λn

∫ x

0
K(x, t)

∫ t

0
K(t, t1) · · ·

×
∫ tn−2

0
K(tn−2, tn−1)f (tn−1)dtn−1 · · · dt1dt + Rn+1(x)

where

Rn+1 = λn+1
∫ x

0
K(x, t)

∫ t

0
K(t, t1) · · ·

∫ tn−1

0
K(tn−1, tn)u(tn)dtn · · · dt1dt

is the remainder after n terms. It can be easily shown that (see Ref. [8]) that
limn→∞ Rn+1 = 0. Accordingly, the general series for u(x) can be written as

u(x) = f (x) + λ

∫ x

0
K(x, t)f (t)dt

+ λ2
∫ x

0

∫ t

0
K(x, t)K(t, t1)f (t1)dt1dt

+ λ3
∫ x

0

∫ t

0

∫ t1

0
K(x, t)K(t, t1)K(t1, t2)f (t2)dt2dt1dt

+ · · · (2.30)

It is to be noted here that in this method the unknown function u(x) is substituted
by the given function f (x) that makes the evaluation of the multiple integrals easily
computable.

Theorem 2.1

If

(a) u(x) = f (x) + λ
∫ x

a K(x, t)u(t)dt, a is a constant.
(b) K(x, t) is real and continuous in the rectangle R, for which a ≤ x ≤ b, a ≤ t ≤ b,

|K(x, t)| ≤ M in R, K(x, t) �= 0.
(c) f (x) �= 0, is real and continuous in I : a ≤ x ≤ b.
(d) λ, a constant.
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then the equation (2.29) has one and only one continuous solution u(x) in I , and
this solution is given by the absolutely and uniformly convergent series (2.30).

The results of this theorem hold without change for the equation

u(x) = f (x) +
∫ x

0
K(x, t)u(t)dt, for λ = 1.

Example 2.3

Solve the following linear Volterra equation

u(x) = cos x − x − 2 +
∫ x

0
(t − x)u(t)dt. (2.31)

Solution

(a) The Laplace transform method
Take the Laplace transform of equation (2.31), and we obtain

L{u(x)} = L{cos x} − L{x} − 2L{1} + L{
∫ x

0
(t − x)u(t)dt}

= s

1 + s2 − 1

s2 − 2

s
− 1

s2 L{u(x)}

Simplification of the above equation yields

L{u(x)} = s3

(1 + s2)2 − 1

1 + s2 − 2s

1 + s2

The Laplace inverse of s3

(1 + s2)2 needs the knowledge of partial fraction and the
convolution integral. The result can be computed as

L−1
{

s3

(1 + s2)2

}
= cos x − x

2
sin x

and hence the solution is

u(x) = −cos x − sin x − x

2
sin x.

This result can be verified easily by putting the solution in the integral
equation (2.31). The problem in here is to calculate

∫ x
0 (t − x)(−cos x − sin x −

t/2 sin x)dt which is equal to x − 2 cos x − sin x − x/2 sin x + 2 , and simply add to
cos x − x − 2. This reduces to the desired result.
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Example 2.4

Solve the integral u(x) = 1 + ∫ x
0 u(t)dt.

Solution

(a) By the Laplace transform method, we have L{u(x)} = 1
s − 1 . The inverse is

simply u(x) = ex which is the required solution.
(b) By the method of successive substitution, we obtain

u(x) = 1
∫ x

0
dt +

∫ x

0

∫ x

0
dt2 +

∫ x

0

∫ x

0

∫ x

0
dt3 + · · ·

= 1 + x + x2

2! + x3

3! + · · ·

= ex.

These two solutions are identical. Hence it is the solution.

2.5 The Adomian decomposition method

The Adomian decomposition method appears to work for linear and nonlinear dif-
ferential equations, integral equations, integro-differential equations. The method
was introduced by Adomian in early 1990 in his books [1] and [2] and other related
research papers [3] and [4]. The method essentially is a power series method similar
to the perturbation technique. We shall demonstrate the method by expressing u(x)
in the form of a series:

u(x) =
∞∑

n=0

un(x) (2.32)

with u0(x) as the term outside the integral sign.
The integral equation is

u(x) = f (x) + λ

∫ x

0
K(x, t)u(t)dt (2.33)

and hence

u0(x) = f (x) (2.34)

Substituting equation (2.32) into equation (2.33) yields

∞∑
n=0

un(x) = f (x) + λ

∫ x

0
K(x, t)

{ ∞∑
n=0

un(t)

}
dt (2.35)
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The components u0(x), u1(x), u2(x), . . . un(x) . . . of the unknown function u(x)
can be completely determined in a recurrence manner if we set

u0(x) = f (x)

u1(x) = λ

∫ x

0
K(x, t)u0(t)dt

u2(x) = λ

∫ x

0
K(x, t)u1(t)dt

· · · · · · = · · · · · ·
un(x) = λ

∫ x

0
K(x, t)un−1(t)dt (2.36)

and so on. This set of equations (2.36) can be written in compact recurrence
scheme as

u0(x) = f (x)

un+1(x) = λ

∫ x

0
K(x, t)un(t)dt, n ≥ 0 (2.37)

It is worth noting here that it may not be possible to integrate the kernel for many
components. In that case, we truncate the series at a certain point to approximate
the function u(x). There is another point that needs to be addressed; that is the
convergence of the solution of the infinite series. This problem was addressed by
many previous workers in this area (see Refs. [5] and [6]). So, it will not be repeated
here. We shall demonstrate the technique with some examples.

Example 2.5

Solve the Volterra integral equation u(x) = x + ∫ x
0 (t − x)u(t)dt by the decomposi-

tion method.

Solution

Consider the solution in the series form u(x) = ∑∞
n=0 un(x). Then substituting this

series into the given equation, we have

∞∑
n=0

un(x) = x +
∫ x

0
(t − x)

∞∑
n=0

un(t)dt.

Now decomposing the different terms in the following manner, we get a set of
solutions

u0(x) = x

u1(x) =
∫ x

0
(t − x)u0(t)dt
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=
∫ x

0
(t − x)tdt

= −x3

3!
u2(x) =

∫ x

0
(t − x)u1(t)dt

=
∫ x

0
(t − x)(− t3

3! )dt

= x5

5!
Continuing in this way we obtain a series

u(x) = x − x3

3! + x5

5! − · · · = sin x

which is the closed-form solution of the given integral equation. By the ratio test
where un(x) = (−1)n x2n+1

(2n + 1)! , it can be easily shown that |x| < ∞ that means the
series is convergent for all values of x in a finite domain. By taking the Laplace
transform of the integral equation, it is easy to see that L{u(x)} = 1

s2 + 1 and so
u(x) = sin x.

Example 2.6

Solve the integral equation u(x) = f (x) + λ
∫ x

0 ex−tu(t)dt by the decomposition
method.

Solution

Let us consider u(x) = ∑∞
n=0 un(x) is the solution of the equation. Hence substitut-

ing into the equation we have

∞∑
n=0

un(x) = f (x) + λ

∫ x

0
ex−t

∞∑
n=0

un(t)dt.

Hence equating the like terms we have

u0(x) = f (x)

u1(x) = λ

∫ x

0
ex−t f (t)dt

u2(x) = λ

∫ x

0
ex−tu1(t)dt
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= λ

∫ x

0
ex−t

{
λ

∫ t

0
et−t1 f (t1)dt1

}
dt

= λ2
∫ x

0
f (t1)dt1

∫ x

t1
ex−tet−t1 dt

= λ2
∫ x

0
ex−t1 (x − t1)f (t1)dt1

= λ2
∫ x

0
(x − t)ex−t f (t)dt.

Note here that u2(x) = λ2
∫ x

0

∫ x
0 ex−t f (t)dtdt = λ2

∫ x
0 (x − t)ex−t f (t)dt.

Similarly, we have

u3(x) = λ

∫ x

0
ex−tu2(t)dt

= λ3
∫ x

0

(x − t)2

2! ex−t f (t)dt.

Thus, the decomposition series becomes

u0(x) + u1(x) + u2(x) + u3(x) + · · ·

= f (x) + λ

∫ x

0

{
1 + λ(x − t) + λ2 (x − t)2

2! + · · ·
}

ex−t f (t)dt

= f (x) + λ

∫ x

0
eλ(x−t)ex−t f (t)dt

= f (x) + λ

∫ x

0
e(1+λ)(x−t)f (t)dt.

2.6 The series solution method

We shall introduce a practical method to handle the Volterra integral equation

u(x) = f (x) + λ

∫ x

0
K(x, t)u(t)dt.

In the series solution method we shall follow a parallel approach known as
the Frobenius series solution usually applied in solving the ordinary differential
equation around an ordinary point (see Ref. [9]). The method is applicable provided
that u(x) is an analytic function, i.e. u(x) has a Taylor’s expansion around x = 0.
Accordingly, u(x) can be expressed by a series expansion given by

u(x) =
∞∑

n=0

anxn (2.38)
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where the coefficients a and x are constants that are required to be determined.
Substitution of equation (2.38) into the above Volterra equation yields

∞∑
n=0

anxn = f (x) + λ

∫ x

0
K(x, t)

∞∑
n=0

antndt (2.39)

so that using a few terms of the expansion in both sides, we find

a0 + a1x + a2x2 + a3x3 + · · · + anxn + · · ·

= f (x) + λ

∫ x

0
K(x, t)a0dt + λ

∫ x

0
K(x, t)a1tdt

+ λ

∫ x

0
K(x, t)a2t2dt + · · · + λ

∫ x

0
K(x, t)antndt + · · · (2.40)

In view of equation (2.40), the integral equation will be reduced to several tradi-
tional integrals, with defined integrals having terms of the form tn, n ≥ 0 only. We
then write the Taylor’s expansions for f (x) and evaluate the first few integrals in
equation (2.40). Having performed the integration, we equate the coefficients of like
powers of x in both sides of equation (2.40). This will lead to a complete determi-
nation of the unknown coefficients a0, a1, a2, . . . an . . .. Consequently, substituting
these coefficients an, n ≥ 0, which are determined in equation (2.40), produces
the solution in a series form. We will illustrate the series solution method by a
simple example.

Example 2.7

Obtain the solution of the Volterra equation u(x) = 1 + 2 sin x − ∫ x
0 u(t)dt using the

series method.

Solution

We assume the solution in the series form u(x) = ∑∞
n=0 anxn. Hence substituting

the series into the equation and the Taylor’s series of sin x, we have

∞∑
n=0

anxn = 1 + 2
∞∑

n=0

(−1)n x2n+1

(2n + 1)! −
∫ x

0

∞∑
n=0

antndt

= 1 + 2
∞∑

n=0

(−1)n x2n+1

(2n + 1)! −
∞∑

n=0

an
xn+1

(n + 1)!
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Comparing the coefficients of the same power of x gives the following set of values:

a0 = 1

a1 = 2 − a0

a2 = −a1

2

a3 = − 2

3! − a2

3

a4 = −a3

4!
and so on. Thus, the values of the coefficients can be computed to be a0 = 1,
a1 = 1, a2 = − 1

2 , a3 = − 1
3! , a4 = 1

4! , . . . . Hence the solution is given by

u(x) =
(

1 − x2

2! + x4

4! − · · ·
)

+
(

x − x3

3! + x5

5! − · · ·
)

= cos x + sin x

By the Laplace transform method it can be easily verified that

L{u(x)} = 1

s
+ 2

s2 + 1
− 1

s2 L{u(x)}

and hence simplifying we get

L{u(x)} = s + 1

s2 + 1

the inverse of which simply is u(x) = cos x + sin x. These two solutions are iden-
tical confirming that this is the required solution.

2.7 Volterra equation of the first kind

The relation between Volterra integral equations of the first and the second kind can
be established in the following manner. The first kind Volterra equation is usually
written as ∫ x

0
K(x, t)u(t)dt = f (x) (2.41)

If the derivatives df
dx = f ′(x), ∂K

∂x = Kx(x, t), and ∂K
∂t = Kt(x, t) exist and are continu-

ous, the equation can be reduced to one of the second kind in two ways. The first
and the simple way is to differentiate both sides of equation (2.41) with respect
to x and we obtain the equation by using the Leibnitz rule

K(x, x)u(x) +
∫ x

0
kx(x, t)u(t)dt = f ′(x) (2.42)
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If K(x, x) �= 0, then dividing throughout by this we obtain

K(x, x)u(x) +
∫ x

0
kx(x, t)u(t)dt = f ′(x) (2.43)

u(x) +
∫ x

0

kx(x, t)

K(x, x)
u(t)dt = f ′(x)

K(x, x)
(2.44)

and the reduction is accomplished. Thus, we can use the method already given
above.

The second way to obtain the second kind Volterra integral equation from the
first kind is by using integration by parts, if we set∫ x

0
u(t)dt = φ(x)

or equivalently,
∫ t

0
u(ξ)dξ = φ(t) (2.45)

We obtain the equation by integration by parts,[
K(x, t)

∫ t

0
u(ξ)dξ

]x

t=0
−

∫ x

0
Kt(x, t)

(∫ t

0
u(ξ)dξ

)
dt = f (x)

which reduces to

[K(x, t)φ(t)]x
t=0 −

∫ x

0
Kt(x, t)φ(t)dt = f (x)

and finally we get

K(x, x)φ(x) − K(x, 0)φ(0) −
∫ x

0
Kt(x, t)φ(t)dt = f (x) (2.46)

It is obvious that φ(0) = 0, and dividing out by K(x, x) we have

φ(x) =
{

f (x)

K(x, x)

}
+

∫ x

0

{
Kt(x, t)

K(x, x)

}
φ(t)dt

= F(x) +
∫ x

0
G(x, t)φ(t)dt (2.47)

where F(x) = f (x)
K(x, x) and G(x, t) = Kt (x,t)

K(x, x) .
For this second process it is apparently not necessary for f (x) to be differentiable.

However, the function u(x) must finally be calculated by differentiating the function
φ(x) given by the formula

φ(x) =
{

f (x)

K(x, x)

}
+

∫ x

0
H (x, t; 1)

{
f (t)

K(t, t)

}
dt (2.48)
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where H (x, t : 1) is the resolvent kernel corresponding to Kt (x,t)
K(x, x) . To do this f (x)

must be differentiable.

Remark

If K(x, x) vanishes at some point of the basic interval (0 ≤ x ≤ b), for instance at
x = 0, then the equations (2.44) and (2.47) will have a peculiar character, essentially
different from that of equation of the second kind. These equations are called by
Picard the equation of the third kind. However, if K(x, x) vanishes identically,
it is sometimes possible to obtain an equation of the second kind by previous
transformations.

A special case of Volterra integral equation

In the second kind Volterra equation if the kernel K(x, t) is assumed to be
K(x, t) = A(x)

A(t) such that the equation takes the form

u(x) = f (x) + λ

∫ x

0

A(x)

A(t)
u(t)dt (2.49)

and upon dividing throughout by A(x) yields

{
u(x)

A(x)

}
=

{
f (x)

A(x)

}
+ λ

∫ x

0

{
u(t)

A(t)

}
dt (2.50)

Now define u(x)
A(x) = u1(x) and f (x)

A(x) = f1(x) and equation (2.50) can be written as

u1(x) = f1(x) + λ

∫ x

0
u1(t)dt (2.51)

Assuming that u2(x) = ∫ x
0 u1(t)dt, equation (2.51) can be reduced to an ordinary

differential equation

du2

dx
− λu2 = f1(x) (2.52)

the general solution of which can be obtained as

u2(x) =
∫ x

0
eλ(x−t)f1(t)dt + C1 (2.53)

Using the initial condition u2(0) = 0 at x = 0, the equation (2.53) reduces to

u2(x) =
∫ x

0
eλ(x−t)f1(t)dt.



MM-165 CH002.tex 3/5/2007 10: 36 Page 36

36 Integral Equations and their Applications

But u1(x) = du2
dx and so the above equation can be reduced to an integral equation

in terms of u1 by differentiating according to the Leibnitz rule to yield

u1(x) = λ

∫ x

0
eλ(x−t)f1(t)dt + f1(x) (2.54)

Hence the solution to the original problem can be obtained multiplying throughout
by A(x)

u(x) = f (x) + λ

∫ x

0
eλ(x−t)f (t)dt (2.55)

Obviously, this formula can also be obtained by the previous method of successive
approximation.

2.8 Integral equations of the Faltung type

In this section, we shall be concerned with another type of Volterra integral equation
of the second kind. If the kernel K(x, t) ≡ K(x − t) then the second kind and the
first kind will take the following forms, respectively,

u(x) = f (x) + λ

∫ x

0
K(x − t)u(t)dt (2.56)

f (x) =
∫ x

0
K(x − t)u(t)dt (2.57)

Equations (2.56) and (2.57) are very important special classes of Volterra integral
equations, which Volterra called the equations of the closed cycle because the
operator

Vx{u(x)} =
∫ x

−∞
K(x, t)u(t)dt

carries any periodic function u(t) with arbitrary period T into another periodic
function with the same period T , if and only if K(x, t) = K(x − t). Today, they are
usually called equations of the Faltung type because the operation

u ∗ v =
∫ x

0
u(x − t)v(t)dt

=
∫ x

0
u(t)v(x − t)dt (2.58)

is generally called Faltung (convolution) of the two functions u and v. In fact, setting
x − t = τ such that dt = −dτ, we obtain

u ∗ v =
∫ x

0
u(τ)v(x − τ)dτ = v ∗ u
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Finally, we notice that it is often convenient to set u∗u = u∗2; u∗u∗2 = u∗3 and so
on. Using the Faltung sign, the integral equations (2.56) and (2.57) can be written,
respectively, as

u(x) = f (x) + λK(x) ∗ u(x) (2.59)

f (x) = K(x) ∗ u(x) (2.60)

The main device in dealing with such equations is the Laplace transformation

L{u(x)} =
∫ ∞

0
e−sxu(x)dx (2.61)

because, under some restrictions, this operator transforms the convolution into an
ordinary product

L{K(x) ∗ u(x)} = L{K(x)}L{u(x)}. (2.62)

In this way, the integral equation can be transformed into an algebraic equation, and
then solving L{u(x)}, and inverting the transform we obtain the desired solution.

Example 2.8

Solve the convolution type Volterra integral equation

u(x) = x
∫ x

0
(t − x)u(t)dt.

Solution

By taking the Laplace transform of the given equation, we have

L{u(x)} = L{x} − L{x}L{u(x)}
which reduces to

L{u(x)} = 1

s2 + 1
.

The inverse is given by

u(x) = sin x

which is the required solution.

Example 2.9

Solve the following Abel’s problem of the Faltung type

πx

2
=

∫ x

0

1√
x − t

u(t)dt.
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Solution

Taking the Laplace transform of the given equation yields

L
{πx

2

}
= L

{∫ x

0

1√
x − t

u(t)dt

}
,

which simply reduces to

L{u(x)} =
√

π

2

1

s3/2 .

Therefore, the inverse transform simply gives

u(x) = √
x.

It is to be noted here that the recurrence relation of Gamma function is
	(x + 1) = x	(x) and 	( 1

2 ) = √
π.

Example 2.10

Solve the Abel’s problem

f (x) =
∫ x

0

1√
x − t

u(t)dt.

Solution

Taking the Laplace transform of the given equation yields

L{f (x)} = L
{

1√
x
L{u(x)}

}
.

This transformed equation reduces to

L{u(x)} =
√

s

π
L{f (x)}.

Inversion of this problem is performed as follows:

u(x) = 1√
π

L−1
{

sL{f (x)}√
s

}

= 1√
π

d

dx
L−1

{L{f (x)}√
s

}

= 1

π

d

dx

∫ x

0

f (t)dt√
x − t

which is the desired solution of the Abel equation.
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Remark

It is clear that the Leibnitz rule is not applicable to the above solution because the
integrand is discontinuous at the interval of integration. To determine the solution
in another form, we first integrate because the integrand is the known function. Put
x − t = τ2, and with this substitution, it is obvious that∫ x

0

f (t)√
x − t

= 2
∫ √

x

0
f (x − τ2)dτ.

Thus, we obtain

u(x) = 2

π

d

dx

∫ √
x

0
f (x − τ2)dτ.

Thus, using this information, the solution for u(x) can be written as

u(x) = f (0)√
x

+
∫ x

0

f ′(t)√
x − t

dt.

Example 2.11

Find the solution of the integral equation of Faltung type

u(x) = 2x2 +
∫ x

0
sin 4tu(x − t)dt.

Solution

Taking the Laplace transform of both sides,

L{u(x)} = 2L{sin 4t}L{u(x)},
after reduction, we obtain

L{u(x)} = 4(s2 + 16)

s3(s2 + 12)
.

The inverse Laplace transform is obtained by partial fraction

u(x) = L−1
{

4(s2 + 16)

s3(s2 + 12)

}

= L−1
{
− 1

9s
+ 16

3s3 + s

9(s2 + 12)

}

= −1

9
+ 8x2

3
+ 1

9
cos (2

√
3x)

which is the desired solution.



MM-165 CH002.tex 3/5/2007 10: 36 Page 40

40 Integral Equations and their Applications

2.9 Volterra integral equation and linear differential equations

There is a fundamental relationship between Volterra integral equations and ordi-
nary differential equations. In fact, the solution of any differential equation of
the type

dny

dxn
+ a1(x)

dn−1y

dxn−1 + · · · + an(x)y = F(x) (2.63)

with continuous coefficients, together with the initial conditions

y(0) = c0, y′(0) = c1, y′′(0) = c2, . . . , y(n−1)(0) = cn−1 (2.64)

can be reduced to the solution of a certain Volterra integral equation of the
second kind

u(x) +
∫ x

0
K(x, t)u(t)dt = f (x) (2.65)

In order to achieve this, let us make the transformation

dny

dxn
= u(x) (2.66)

Hence integrating with respect to x from 0 to x

dn−1y

dxn−1 =
∫ x

0
u(t)dt + cn−1

Thus, the successive integrals are

dn−2y

dxn−2 =
∫ x

0

∫ x

0
u(t)dtdt + cn−1x + cn−2

dn−3y

dxn−3 =
∫ x

0

∫ x

0

∫ x

0
u(t)dtdtdt + cn−1

x2

2! + cn−2x + cn−3

· · · · · · = · · · · · ·
Proceeding in this manner we obtain

y(x) =
∫ x

0

∫ x

0

∫ x

0
· · ·

∫ x

0︸ ︷︷ ︸
n-fold integration

u(t)dtdtdt · · · dt

+ cn−1
xn−1

(n − 1)! + cn−2
xn−2

(n − 2)! + · · · + c1x + c0

=
∫ x

0

(x − t)n−1

(n − 1)! u(t)dt + cn−1
xn−1

(n − 1)! + cn−2
xn−2

(n − 2)! + · · · + c1x + c0

(2.67)
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Returning to the differential equation (2.63), we see that it can be written as

u(x) +
∫ x

0

{
a1(x) + a2(x)(x − t) + a3(x)

(x − t)2

2! + · · · + an(x)
(x − t)n−1

(n − 1)!
}

u(t)dt

= F(x) − cn−1a1(x) − (cn−1 + cn−2)a2(x) − · · ·

− (cn−1
xn−1

(n − 1)! + · · · + c1x + c0)an(x)

and this reduces to

u(x) +
∫ x

0
K(x, t)u(t)dt = f (x)

where

K(x, t) =
n∑

ν=1

aν(x)
(x − t)ν−1

(ν − 1)! (2.68)

and

f (x) = F(x) − cn−1a1(x) − (cn−1 + cn−2)a2(x) − · · ·

−
(

cn−1
xn−1

(n − 1)! + · · · + c1x + c0

)
an(x). (2.69)

Conversely, the solution, i.e. equation (2.65) with K and f given by equations (2.68)
and (2.69) and substituting values for u(x) in the last equation of equation (2.67), we
obtain the (unique) solution of equation (2.63) which satisfies the initial conditions
(equation (2.64)). If the leading coefficient in equation (2.63) is not unity but a0(x),
equation (2.65) becomes

a0(x)u(x) +
∫ x

0
K(x, t)u(t)dt = f (x) (2.70)

where K and f are still given by equations (2.68) and (2.69), respectively.

Remark

If a0(x) �= 0 in the interval considered, nothing is changed; however, if a0(x) vanishes
at some point, we see that an equation of the type (2.70) is equivalent to a singular
differential equation, at least, when K(x, t) is a polynomial in t.

Example 2.12

Reduce the initial value problem

y′′(x) + 4y(x) = sin x; at x = 0, y(0) = 0, y′(0) = 0

to Volterra integral equation of the second kind and then find its solution,
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Solution

Volterra equation can be obtained in the following manner:
Let us consider

y′′(x) = u(x)

y′(x) =
∫ x

0
u(t)dt

y(x) =
∫ x

0

∫ x

0
u(t)dt2

=
∫ x

0
(x − t)u(t)dt

Then the given ODE becomes

u(x) + 4
∫ x

0
(x − t)u(t)dt = sin x

which is the Volterra integral equation. The solution can be obtained using the
Laplace transform method and we obtain

L{u(x)} + 4L{x}L{u(x)} = 1

s2 + 1

which reduces to

L{u(x)} = s2

(s2 + 1)(s2 + 4)
.

By partial fraction, the inverse is obtained as

u(x) = −1

3
sin x + 2

3
sin 2x.

Therefore, the solution for y results in

y(x) =
∫ x

0
(x − t)u(t)dt

=
∫ x

0
(x − t)

{
−1

3
sin t + 2

3
sin 2t

}
dt

= 1

3

{
sin x − 1

2
sin 2x

}

Note that this solution agrees with that obtained from the differential equation.
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2.10 Exercises

1. Solve the following Volterra integral equations by using decomposition method
or modified decomposition method:

(a) u(x) = 1 + x − x2 +
∫ x

0
u(t)dt

(b) u(x) = 1 + x +
∫ x

0
(x − t)u(t)dt

(c) u(x) = 1 + x2

2! −
∫ x

0
(x − t)u(t)dt

(d) u(x) = sec2 x + (1 − etan x)x + x
∫ x

0
etan tu(t)dt, x < π/2

(e) u(x) = x3 − x5 + 5
∫ x

0
tu(t)dt.

2. Solve the following Volterra integral equations by using series solution method:

(a) u(x) = 2x + 2x2 − x3 +
∫ x

0
u(t)dt

(b) u(x) = −1 −
∫ x

0
u(t)dt

(c) u(x) = 1 − x −
∫ x

0
(x − t)u(t)dt

(d) u(x) = x cos x +
∫ x

0
tu(t)dt.

3. Solve the following Volterra integral equations of the first kind:

(a) xe−x =
∫ x

0
et−xu(t)dt

(b) 5x2 + x3 =
∫ x

0
(5 + 3x − 3t)u(t)dt

(c) 2 cosh x − sinh x − (2 − x) =
∫ x

0
(2 − x + t)u(t)dt

(d) tan x − ln ( cos x) =
∫ x

0
(1 + x − t)u(t)dt, x < π/2.

4. Solve the linear integral equation u(x) = 1 + ∫ x
0 (t − x)u(t)dt.

5. Solve the linear integral equation u(x) = 9 + 6x + ∫ x
0 (6x − 6t + 5)u(t)dt.
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6. Solve the linear integral equation u(x) = cos x − x − 2 + ∫ x
0 (t − x)u(t)dt.

7. Using the method of successive approximations find five successive approxima-
tions in the solution of exercises 1, 2, 3 after choosing u0(x) = 0.

8. Show that

u(x) = a + bx +
∫ x

0
{c + d(x − t)}u(t)dt

where a, b, c, d are arbitrary constants, has for solution

u(x) = αeλx + βeνx,

where α, β, λ, ν depend upon a, b, c, d.

9. Solve the linear integral equation u(x) = 3ex

2 − xex

2 − 1
2 + 1

2

∫ x
0 tu(t)dt.

10. The mathematical model of an electric circuit that contains the elements L, R,
and C with an applied e.m.f. E0 sin ωt is given by the differential equation

L
d2Q

dt2 + R
dQ

dt
+ Q

C
= E0 sin ωt,

where Q is the charge and I = dQ
dt is the current flowing through the circuit. Given

that L = 0.5, R = 6, C = 0.02, E0 = 24 and ω = 10 with the initial conditions
Q(0) = 0 and I (0) = 0 at t = 0, find the charge Q(t) for t = 0 to 10 s with a step
size h = 1 s. Compare the numerical result with that of the analytical solution.
(Hint: Express the given equation as a pair of first-order equations and then use
the fourth-order Runge−Kutta method.)

11. The motion of a compound spring system is given by the solution of the pair of
simultaneous equations

m1
d2y1

dt2 = −k1y1 − k2(y1 − y2)

m2
d2y2

dt2 = k2(y1 − y2)

where y1 and y2 are the displacements of the two masses from their equilibrium
positions. The initial conditions are

y1(0) = α, y′
1(0) = β, y2(0) = γ , y′

2(0) = δ.

Express as a set of first-order equations and then determine the numerical solu-
tions using the fourth-order Runge–Kutta method.
(Hint: Use some suitable values of the parameters to calculate the
displacements.)
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12. For a resonant spring system with a periodic forcing function, the differential
equation is

d2y

dt2 + 9y = 4 cos 3t, y(0) = y′(0) = 0.

Determine the displacement at t = 0.1 through t = 0.8 with h = 0.1 by using the
Runge–Kutta method. Compare to the analytical solution 2

3 t sin 3t.

13. In Exercise 1, if the applied voltage is 15 volts and the circuit elements are
R = 5 ohms, C = 1000 microfarads, h = 50 millihenries, determine how the
current varies with time between 0 and 0.2 s with �t = 0.005 s. Compare this
computation with the analytical solution.

14. In the theory of beams it is shown that the radius of curvature at any point is
proportional to the bending moment

EI = y′′

[1 + (y′)2]3/2 = M (x)

where y is the deflection from the neutral axis. For the cantilever beam for
which y(0) = y′(0) = 0, express the equation as a pair of simultaneous first-
order equations. Then with suitable numerical values of E, I , and M , determine
the numerical solution for the deflection of the beam extending from x = 0 to
x = 5 feet.
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3 Fredholm integral equations

3.1 Introduction

In this chapter, we shall be concerned with the Fredholm integral equations. We
have already discussed in previous chapters the evolution of integral equations that
have enormous applications in the physical problems. Many initial and boundary
value problems can be transformed into integral equations. Problems in the math-
ematical physics are usually governed by the integral equations. There are quite a
few categories of the integral equations. Singular integral equations are very use-
ful in many physical problems such as elasticity, fluid mechanics, electromagnetic
theory, and so on.

In 1825 Abel first encountered a singular integral equation in connection with
the famous tautochrone problem, namely the determination of the shape of the curve
with given end points along which a particle slides under the action of gravity in a
given interval of time. An equation of an unknown function u(x), of a single variable
x in the domain a ≤ x ≤ b is said to be an integral equation for u(x), if u(x) appears
under the integral sign and the integral exists in some sense. For examples,

u(x) = f (x) + λ

∫ b

a
K(x, t)u(t)dt, a ≤ x ≤ b (3.1)

f (x) =
∫ b

a
K(x, t)u(t)dt, a ≤ x ≤ b (3.2)

u(x) = f (x) + λ

∫ b

a
K(x, t){u(t)}2dt, a ≤ x ≤ b (3.3)

are all Fredholm integral equations. Equation (3.1) is defined as the nonhomo-
geneous Fredholm linear integral equation of the second kind; equation (3.2) is
the Fredholm linear integral equation of the first kind; and equation (3.3) is the
Fredholm nonlinear integral equation of the second kind. In all these examples,
K(x, t) and f (x) are known functions. K(x, t) is called the kernel of the integral
equation defined in the rectangle R, for which a ≤ x ≤ b and a ≤ t ≤ b and f (x) is

47
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called the forcing term defined in a ≤ x ≤ b. If f (x) = 0, then the equations are
homogeneous. The functions u, f , K may be complex-valued functions. The linear
and nonlinear integral equations are defined when the unknown function appears
linearly or nonlinearly under the integral sign. The parameter λ is a known quantity.

3.2 Various types of Fredholm integral equations

Associated with the integral equation (3.1), the following meaning of various forms
are used:

• If the kernel K(x, t) is such that

∫ b

a

∫ b

a
|K(x, t)|2dxdt < ∞

has a finite value, then we call the kernel a regular kernel and the corresponding
integral is called a regular integral equation.

• If the kernel K(x, t) is of the form

K(x, t) = H (x, t)

|x − t|α

where H (x, t) is bounded in R, a ≤ x ≤ b and a ≤ t ≤ b with H (x, t) �= 0, and α is
a constant such that 0 ≤ α ≤ 1, then the integral equation is said to be a weakly
singular integral equation.

• If the kernel K(x, t) is of the form

K(x, t) = H (x, t)

x − t

where H (x, t) is a differentiable function of (x, t) with H (x, t) �= 0, then the
integral equation is said to be a singular equation with Cauchy kernel where
the integral

∫ b
a

H (x,t)
x−t u(t)dt is understood in the sense of Cauchy Principal Value

(CPV) and the notation P.V .
∫ b

a is usually used to denote this. Thus

P.V .

∫ b

a

u(t)

x − t
dt = lim

ε→0

{∫ x−ε

a

u(t)

x − t
dt +

∫ b

x+ε

u(t)

x − t
dt

}

• If the kernel K(x, t) is of the form

K(x, t) = H (x, t)

(x − t)2
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where H (x, t) is a differentiable function of (x, t) with H (x, t) �= 0, then the
integral equation is said to be a hyper-singular integral equation when the integral

∫ b

a

H (x, t)

(x − t)2 u(t)dt

is to be understood as a hyper-singular integral and the notation
∮ b

a is usually
used to denote this. Thus,∮ b

a

u(t)

(x − t)2 dt

≈ lim
ε→0

{∫ x−ε

a

u(t)

(x − t)2 dt +
∫ b

x+ε

u(t)

(x − t)2 dt − u(x + ε) + u(x − ε)

2ε

}

• If the limits of the integral, a and b are constants, then it is a Fredholm integral
equation. Otherwise, if a or b is a variable x, then the integral equation is called
Volterra integral equation.

In the following section we shall discuss the various methods of solutions of the
Fredholm integral equation.

3.3 The method of successive approximations: Neumann’s
series

The successive approximation method, which was successfully applied to Volterra
integral equations of the second kind, can be applied even more easily to the basic
Fredholm integral equations of the second kind:

u(x) = f (x) + λ

∫ b

a
K(x, t)u(t)dt (3.4)

We set u0(x) = f (x). Note that the zeroth approximation can be any selected real-
valued function u0(x), a ≤ x ≤ b. Accordingly, the first approximation u1(x) of the
solution of u(x) is defined by

u1(x) = f (x) + λ

∫ b

a
K(x, t)u0(t)dt (3.5)

The second approximation u2(x) of the solution u(x) can be obtained by replac-
ing u0(x) in equation (3.5) by the previously obtained u1(x); hence we find

u2(x) = f (x) + λ

∫ b

a
K(x, t)u1(t)dt. (3.6)
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This process can be continued in the same manner to obtain the nth approxima-
tion. In other words, the various approximations can be put in a recursive scheme
given by

u0(x) = any selective real valued function

un(x) = f (x) + λ

∫ b

a
K(x, t)un−1dt, n ≥ 1. (3.7)

Even though we can select any real-valued function for the zeroth approximation
u0(x), the most commonly selected functions for u0(x) are u0(x) = 0, 1, or x. We
have noticed that with the selection of u0(x) = 0, the first approximation u1(x) =
f (x). The final solution u(x) is obtained by

u(x) = lim
n→∞ un(x) (3.8)

so that the resulting solution u(x) is independent of the choice of u0(x). This is
known as Picard’s method.

The Neumann series is obtained if we set u0(x) = f (x) such that

u1(x) = f (x) + λ

∫ b

a
K(x, t)u0(t)dt

= f (x) + λ

∫ b

a
K(x, t)f (t)dt

= f (x) + λψ1(x) (3.9)

where

ψ1(x) =
∫ b

a
K(x, t)f (t)dt (3.10)

The second approximation u2(x) can be obtained as

u2(x) = f (x) + λ

∫ b

a
K(x, t)u1(t)dt

= f (x)λ
∫ b

a
K(x, t) { f (t) + λψ1(t)} dt

= f (x) + λψ1(x) + λ2ψ2(x) (3.11)

where

ψ2(x) =
∫ b

a
K(x, t)ψ1(t)dt (3.12)
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Proceeding in this manner, the final solution u(x) can be obtained

u(x) = f (x) + λψ1(x) + λ2ψ2(x) + · · · + λnψn(x) + · · ·

= f (x) +
∞∑

n=1

λnψn(x), (3.13)

where

ψn(x) =
∫ b

a
K(x, t)ψn−1dt n ≥ 1 (3.14)

Series (3.13) is usually known as Neumann series. This infinite series can be
shown to be absolutely and uniformly convergent but in this text we do not want to
pursue this matter; rather the interested reader is referred to the standard textbook
available in the literature.

Remark

It can be later seen that the Neumann series is identical with the Adomian decom-
position method for the linear Fredholm integral equation. And the successive
approximation is identical with the Picard’s method. For ready reference we cite
below:

Picard’s method:

u(x) = lim
n→∞ un(x) (3.15)

Neumann’s series method:

u(x) = f (x) + lim
n→∞

n∑
k=1

λkψk (x). (3.16)

Example 3.1

Solve the Fredholm integral equation

u(x) = 1 +
∫ 1

0
xu(t)dt

by using the successive approximation method.
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Solution

Let us consider the zeroth approximation is u0(x) = 1, and then the first approxi-
mation can be computed as

u1(x) = 1 +
∫ 1

0
xu0(t)dt

= 1 +
∫ 1

0
xdt

= 1 + x

Proceeding in this manner, we find

u2(x) = 1 +
∫ 1

0
xu1(t)dt

= 1 +
∫ 1

0
x(1 + t)dt

= 1 + x

(
1 + 1

2

)

Similarly, the third approximation is

u3(x) = 1 + x
∫ 1

0

(
1 + 3t

2

)
dt

= 1 + x

(
1 + 1

2
+ 1

4

)

Thus, we get

un(x) = 1 + x

{
1 + 1

2
+ 1

22 + 1

23 + · · · + 1

2n−1

}
and hence

u(x) = lim
n→∞ un(x)

= 1 + lim
n→∞ x

n∑
k=0

1

2k

= 1 + x

(
1 − 1

2

)−1

= 1 + 2x

This is the desired solution.
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Example 3.2

Use the successive approximation to solve the following Fredholm integral equation

u(x) = sin x +
∫ π/2

0
sin x cos tu(t)dt.

Solution

Let us set u0(x) = 1. Then the first approximation is

u1(x) = sin x + sin x
∫ π/2

0
cos t dt

= 2 sin x

The second approximation is

u2(x) = sin x + sin x
∫ π/2

0
2 sin t cos tdt

= 2 sin x

Proceeding in this way, it can be easily recognized that the sequence of solutions
can be written without formal computation as

u3(x) = 2 sin x, u4(x) = 2 sin x . . . , un(x) = 2 sin x.

Hence the final solution is

u(x) = lim
n→∞ un(x) = 2 sin x.

This is the desired solution. We shall see later that this solution can be obtained
very easily by the direct computational method.

3.4 The method of successive substitutions

This method is almost analogous to the successive approximation method except
that it concerns with the solution of the integral equation in a series form through
evaluating single and multiple integrals. The solution by the numerical procedure
in this method is huge compared to other techniques.

We assume that

u(x) = f (x) + λ

∫ b

a
K(x, t)u(t)dt (3.17)



MM-165 CH003.tex 26/4/2007 13: 52 Page 54

54 Integral Equations and their Applications

In equation (3.17), as usual K(x, t) �= 0, is real and continuous in the rectangle
R, for which a ≤ x ≤ b and a ≤ t ≤ b; f (x) �= 0 is real and continuous in the interval
I , for which a ≤ x ≤ b; and λ, a constant parameter.

Substituting in the second member of equation (3.17), in place of u(t), its value
as given by the equation itself, yields

u(x) = f (x) + λ

∫ b

a
K(x, t)f (t)dt + λ2

∫ b

a
K(x, t)

∫ b

a
K(t, t1)u(t1)dt1dt (3.18)

Here, again we substitute for u(t1) its value as given in equation (3.17). Thus, we get

u(x) = f (x) + λ

∫ b

a
K(x, t)f (t)dt

+ λ2
∫ b

a
K(x, t)

∫ b

a
K(t, t1)f (t1)dt1dt

+ λ3
∫ b

a
K(x, t)

∫ b

a
K(t, t1)

∫ b

a
K(t1, t2)u(t2)dt2dt1dt (3.19)

Proceeding in this manner we obtain

u(x) = f (x) + λ

∫ b

a
K(x, t)f (t)dt

+ λ2
∫ b

a
K(x, t)

∫ b

a
K(t, t1)f (t1)dt1dt

+ λ3
∫ b

a
K(x, t)

∫ b

a
K(t, t1)

∫ b

a
K(t1, t2)f (t2)dt2dt1dt

+ · · · (3.20)

We note that the series solution given in equation (3.20) converges uniformly in
the interval [a, b] if λM (b − a) < 1 where |K(x, t)| ≤ M . The proof is very simple
and can be found in Lovitt [7]. From equation (3.20), it is absolutely clear that
in this method unknown function u(x) is replaced by the given function f (x) that
makes the evaluation of the multiple integrals simple and possible. The technique
will be illustrated below with an example.

Example 3.3

Using the successive substitutions solve the Fredholm integral equation

u(x) = cos x + 1

2

∫ π/2

0
sin xu(t)dt.
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Solution

Here, λ = 1
2 , f (x) = cos x, and K(x, t) = sin x and substituting these values in

equation (3.20), yields

u(x) = cos x + 1

2

∫ π/2

0
sin x cos tdt + 1

4

∫ π/2

0
sin x

∫ π/2

0
sin t cos t1dt1dt

+ 1

8

∫ π/2

0
sin x

∫ π/2

0
sin t

∫ π/2

0
sin t1 cos t2dt2dt1dt + · · ·

= cos x + 1

2
sin x + 1

4
sin x + 1

8
sin x + · · ·

= cos x + sin x

This result can be easily verified by the direct computational method to be considered
in the later section.

3.5 The Adomian decomposition method

The decomposition method was recently introduced by Adomian [1] in a book
written by him. The method has much similarity with the Neumann series as has
been discussed in the previous section. The decomposition method has been proved
to be reliable and efficient for a wide class of differential and integral equations of
linear and nonlinear models. Like Neumann series method, the method provides
the solution in a series form and the method can be applied to ordinary and partial
differential equations and recently its use to the integral equations was found in
the literature (see Ref. [9]). The concept of uniform convergence of the infinite
series was addressed by Adomian ([2], [3]) and Adomian and Rach [4] for linear
problems and extended to nonlinear problems by Cherruault et al [5] and Cherruault
and Adomian [6]. In this book, we do not want to repeat the convergence problems.

In the decomposition method, we usually express the solution of the linear
integral equation

u(x) = f (x) + λ

∫ b

a
K(x, t)u(t)dt (3.21)

in a series form like regular perturbation series (see Van Dyke [8]) defined by

u(x) =
∞∑

n=0

un(x) (3.22)
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Substituting the decomposition equation (3.22) into both sides of equation (3.21)
gives

∞∑
n=0

un(x) = f (x) + λ

∫ b

a
K(x, t)

{ ∞∑
n=0

un(t)

}
dt (3.23)

The components u0(x), u1(x), u2(x), u3(x) . . . of the unknown function u(x) are
completely determined in a recurrence manner if we set

u0(x) = f (x)

u1(x) = λ

∫ b

a
K(x, t)u0(t)dt

u2(x) = λ

∫ b

a
K(x, t)u1(t)dt

u3(x) = λ

∫ b

a
K(x, t)u2(t)dt

· · · · · · = · · · · · ·
un(x) = λ

∫ b

a
K(x, t)un−1(t)dt, (3.24)

and so on. The main idea here like perturbation technique is to determine the
zeroth decomposition u0(x) by the known function f (x). Once u0(x) is known, then
successively determine u1(x), u2(x), u3(x), . . . , and so on.

A compact recurrence scheme is then given by

u0(x) = f (x) (3.25)

un+1(x) = λ

∫ b

a
K(x, t)un(t)dt, n ≥ 1 (3.26)

In view of equations (3.25) and (3.26), the components u0(x), u1(x), u2(x),
u3(x) . . . follow immediately. Once these components are determined, the solution
u(x) can be obtained using the series (3.22). It may be noted that for some problems,
the series gives the closed-form solution; however, for other problems, we have to
determine a few terms in the series such as u(x) = ∑k

n=0 un(x) by truncating the
series at certain term. Because of the uniformly convergence property of the infinite
series a few terms will attain the maximum accuracy.
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Remark

Sometimes it may be useful to decompose the f (x) term into f (x) = f1(x) + f2(x)
such that

u0(x) = f1(x)

u1(x) = f2(x) + λ

∫ b

a
K(x, t)u0(t)dt

u2(x) = λ

∫ b

a
K(x, t)u1(t)dt,

and so on. This decomposition is called modified decomposition method. We
illustrate them by examples.

Example 3.4

Solve the Fredholm integral equation

u(x) = ex − 1 +
∫ 1

0
tu(t)dt

by the decomposition method.

Solution

The decomposition method is used here. We have

u0(x) = ex − 1

u1(x) =
∫ 1

0
tu0(t)dt =

∫ 1

0
t(et − 1)dt = 1

2

u2(x) =
∫ 1

0
tu1(t)dt =

∫ 1

0

t

2
dt = 1

4

u3(x) =
∫ 1

0
tu2(t)dt =

∫ 1

0

t

4
dt = 1

8
,

and so on. Hence the solution can be written at once

u(x) = ex − 1 + 1

2
+ 1

4
+ 1

8
+ · · · = ex.
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By the modified decomposition method, we set that u0(x) = ex and

u1(x) = −1 +
∫ 1

0
tu0(t)dt = −1 +

∫ 1

0
tetdt = 0

u2(x) =
∫ 1

0
tu1(t)dt = 0

un(x) = 0

The solution is u(x) = ex. By direct computation, we obtain u(x) = ex − 1 + α,
where α = ∫ 1

0 tu(t)dt. Using the value of u(x) under the integral sign yields,

α = ∫ 1
0 t(et − 1 + α)dt = 1

2 (1 + α). Hence the value of α = 1. Thus, the solution
is u(x) = ex which is identical with the decomposition method.

3.6 The direct computational method

There exists an efficient method to solve certain type of Fredholm integral equations
and this method is usually known as the direct computational method. In this
method, the kernel K(x, t) must be separable in the product form such that it can
be expressed as

K(x, t) = g(x)h(t) (3.27)

Accordingly, the Fredholm equation can be expressed as

u(x) = f (x) + λ

∫ b

a
K(x, t)u(t)dt

= f (x) + λg(x)
∫ b

a
h(t)u(t)dt (3.28)

The integral equation (3.28) is a definite integral and we set

α =
∫ b

a
h(t)u(t)dt (3.29)

where α is an unknown constant that needs to be determined. It follows that equa-
tion (3.28) can be written as

u(x) = f (x) + λαg(x) (3.30)

It is thus obvious that the solution u(x) is completely determined provided α is
known from equation (3.29).

Remark

It is to be noted here that the direct computational method determines the exact
solution in a closed form, rather than a series form provided the constant α has
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been determined. The evaluation is completely dependent upon the structure of the
kernel K(x, t), and sometimes it may happen that the value of α may contain more
than one. The computational difficulties may arise in determining the constant α if
the resulting algebraic equation is of third order or higher. This kind of difficulty
may arise in the nonlinear integral equation.

Example 3.5

Solve the linear Fredholm integral equation

u(x) = ex − e

2
+ 1

2
+ 1

2

∫ 1

0
u(t)dt.

Solution

Let us set α = ∫ 1
0 u(t)dt. Then we have

u(x) = ex − e

2
+ 1

2
+ α

2

Replacing the value of u(x) in the above integral yields

α =
∫ 1

0

(
et − e

2
+ 1

2
+ α

2

)
dt

= (e − 1) +
(

1

2
− e

2

)
+ α

2

and this reduces to α
2 = e

2 − 1
2 . Therefore, the solution is u(x) = ex. This solution

can be verified easily.

3.7 Homogeneous Fredholm equations

This section deals with the study of the homogeneous Fredholm integral equation
with separable kernel given by

u(x) = λ

∫ b

0
K(x, t)u(t)dt (3.31)

This equation is obtained from the second kind Fredholm equation

u(x) = f (x) + λ

∫ b

a
K(x, t)u(t)dt,

setting f (x) = 0.
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It is easily seen that u(x) = 0 is a solution which is known as the trivial solution.
We look forward to a nontrivial solution of equation (3.31). Generally speaking, the
homogeneous Fredholm integral equation with separable kernel may have nontrivial
solutions. We shall use the direct computational method to obtain the solution in
this case.

Without loss of generality, we assume that

K(x, t) = g(x)h(t) (3.32)

so that equation (3.31) becomes

u(x) = λg(x)
∫ b

a
h(t)u(t)dt (3.33)

Let us set

α =
∫ b

a
h(t)u(t)dt (3.34)

such that equation (3.33) becomes

u(x) = λαg(x) (3.35)

We note that α = 0 gives the trivial solution u(x) = 0, which is not our aim in this
study. However, to determine the nontrivial solution of equation (3.31), we need to
determine the value of the parameter λ by considering α �= 0. This can be achieved
by substituting equation (3.35) into equation (3.34) to obtain

α = λα

∫ b

a
h(t)g(t)dt (3.36)

or equivalently,

1 = λ

∫ b

a
h(t)g(t)dt (3.37)

which gives a numerical value for λ �= 0 by evaluating the definite integral in equa-
tion (3.37). However, determining λ, the nontrivial solution given by equation (3.35)
is obtained.

Remark

The particular nonzero values of λ that result from solving the algebraic system
of equations are called the eigenvalues of the kernel. And corresponding to each
eigenvalue we shall have solutions that are called eigen solutions or eigenfunctions.
These solutions are nonzero solutions within a finite interval (a, b).
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Example 3.6

Find the nontrivial solutions of the following Fredholm integral equation

u(x) = λ

∫ π/2

0
cos x sin tu(t)dt.

Solution

The equation is rewritten as

u(x) = λ cos x
∫ π/2

0
sin tu(t)dt

Let us set

α =
∫ π/2

0
sin tu(t)dt.

Then

u(x) = λα cos x.

Hence the value of λ can be obtained putting the expression of u(x) into the
α integral which reduces to give for α �= 0, λ = 1. Thus, with this value of λ the
solution is obtained as u(x) = α cos x known as the eigen function where α is an
arbitrary constant.

Example 3.7

Find the nontrivial solution of the following homogeneous Fredholm integral
equation

u(x) = λ

∫ π/4

0
sec2 xu(t)dt.

Solution

If we set α = ∫ π/4
0 u(t)dt in the given equation, we have u(x) = λα sec2 x and there-

fore, α = λα
∫ π/4

0 sec2 tdt = λα. If α �= 0, then λ = 1, and hence, the solution of the
homogeneous Fredholm equation is simply u(x) = α sec2 x and α is an arbitrary
constant.

Example 3.8

Find the nontrivial solution of the Fredholm homogeneous integral equation

u(x) = 2

π
λ

∫ π

0
cos (x − t)u(t)dt.
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Solution

Given that

u(x) = 2

π
λ

∫ π

0
cos (x − t)u(t)dt

= 2

π
λ

∫ π

0
{cos x cos t + sin x sin t}u(t)dt

= 2

π
λα cos x + 2

π
λβ sin x

where α = ∫ π

0 cos tu(t)dt and β = ∫ π

0 sin tu(t)dt. Hence using the value of u(x)
under the integral signs of α and β, we obtain a simultaneous algebraic equation
given by

α = 2λ

π

{∫ π

0
cos t(α cos t + β sin t)dt

}

β = 2λ

π

{∫ π

0
sin t(α cos t + β sin t)dt

}

After performing the integrations and reduction, the values of α and β are found
to be α = λα and β = λβ. If α �= 0 and β �= 0, then λ = 1. Therefore, the desired
solution is

u(x) = 2

π
(α cos x + β sin x),

where α and β are arbitrary constants.

3.8 Exercises

Solve the following linear Fredholm integral equations:

1. u(x) = 5x
6 + 1

2

∫ 1
0 xtu(t)dt.

2. u(x) = sec2 x + λ
∫ 1

0 u(t)dt.

3. u(x) = sec2 x tan x − λ
∫ 1

0 u(t)dt.

4. u(x) = cos x + λ
∫ π

0 xtu(t)dt.

5. u(x) = ex + λ
∫ 1

0 2exetu(t)dt.

Solve the following homogeneous integral equations:

6. u(x) = ∫ 1
0 u(t)dt.

7. u(x) = ∫ 1
0 (−1)u(t)dt.
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8. u(x) = 1
2

∫ π

0 sin xu(t)dt.

9. u(x) = 3
1000

∫ 10
0 xtu(t)dt.

10. u(x) = 1
ex−1

∫ 1
0 2exetu(t)dt.

Solve the following integral equations:

11. u(x) = x + λ
∫ 1

0 (1 + x + t)u(t)dt.

12. u(x) = x + λ
∫ 1

0 (x − t)u(t)dt.

13. u(x) = x + λ
∫ 1

0 (x − t)2u(t)dt.

14. u(x) = x + λ
∫ π

0 (1 + sin x sin t)u(t)dt.

Solve the following Fredholm equations by the decomposition method:

15. u(x) = x + sin x − x
∫ π/2

0 u(t)dt.

16. u(x) = 1 + sec2 x − ∫ π/4
0 u(t)dt.

17. u(x) = 1
1 + x2 + 2x sinh (π/4) − x

∫ 1
−1 etan−1 tu(t)dt.

Find the nontrivial solutions for the following homogeneous Fredholm integral
equations by using the eigenvalues and eigenfunctions concepts:

18. u(x) = λ
∫ 1

0 xetu(t)dt.

19. u(x) = λ
∫ 1

0 2tu(t)dt.

20. u(x) = λ
∫ π/3

0 sec x tan tu(t)dt.

21. u(x) = λ
∫ π/4

0 sec x tan tu(t)dt.

22. u(x) = λ
∫ 1

0 sin−1 xu(t)dt.

23. u(x) = λ
∫ π/2

0 cos x sin tu(t)dt.

24. u(x) = 2
π
λ

∫ π

0 sin (x − t)u(t)dt.
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4 Nonlinear integral equations

4.1 Introduction

In the previous chapters, we have devoted considerable time and effort in study-
ing the solution techniques of different kinds of linear integral equations. In this
chapter, we shall investigate the solution techniques for the nonlinear integral
equations. We have already mentioned that nonlinear integral equations yield a
considerable amount of difficulties. However, due to recent development of novel
techniques it is now possible to find solutions of some types of nonlinear integral
equations if not all. In general, the solution of the nonlinear integral equation is
not unique. However, the existence of a unique solution of nonlinear integral equa-
tions with specific conditions is possible. As we know there is a close relationship
between the differential equation and the integral equation. We shall see in the
next section some classical development of these two systems and the methods of
solutions.

We first define a nonlinear integral equation in general, and then cite some
particular types of nonlinear integral equations. In general, a nonlinear integral
equation is defined as given in the following equation:

u(x) = f (x) + λ

∫ x

0
K(x, t)F(u(t))dt (4.1)

and

u(x) = f (x) + λ

∫ b

a
K(x, t)F(u(t))dt (4.2)

Equations (4.1) and (4.2) are called nonlinear Volterra integral equations and
nonlinear Fredholm integral equations, respectively. The function F(u(x)) is non-
linear except F = a constant or F(u(x)) = u(x) in which case F is linear. If

65
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F(u(x)) = un(x), for n ≥ 2, then the F function is nonlinear. To clarify this point
we cite a few examples below:

u(x) = x + λ

∫ x

0
(x − t)u2(t)dt (4.3)

u(x) = x + λ

∫ 1

0
cos xu3(t)dt (4.4)

Equations (4.3) and (4.4) are nonlinear Volterra and Fredholm integral equations,
respectively.

4.2 The method of successive approximations

We have observed that solutions in finite closed form only apply to certain special
types of differential equations. This is true for the integral equations also. If an
equation does not belong to one of these categories, in which case analytical solu-
tions are not possible to obtain, we need to use approximate methods. The phase
plane method, with graphical depiction of Chapter 4 ofApplied NumericalAnalysis
by Rahman [8], gives a good general idea of the nature of the solution, but it cannot
be relied upon for numerical values.

In this chapter, we shall consider three approximate methods: the first one is the
Picard’s method to obtain successive algebraic approximations. (E. T. Picard, Pro-
fessor at the University of Paris, one of the most distinguished mathematicians
of his time. He is well known for his researches on the Theory of Functions,
and his Traite d’ analysis is a standard textbook). By putting numbers in these,
we generally get excellent numerical results. Unfortunately, the method can only
be applied to a limited class of equations, in which the successive integrations be
easily performed.

The second method is the Adomian decomposition method. Adomian [1]
recently developed the so-called Adomian decomposition or simply the decomposi-
tion method. The method was well introduced and well presented by Adomian in his
recent books (Refs. [2], [3] and [4]). The method proved to be reliable and effective
for a wider class of linear and nonlinear equations. This method provides the solu-
tion in a series form. The method was applied to ordinary and partial differential
equations, and was rarely used for integral equations. The concept of convergence of
the solution obtained by this method was addressed by Adomian in two books [1,3]
and extensively by Cherruault et al (Ref. [5]) and Cherruault and Adomian [6] for
nonlinear problems. With much confidence, however, the decomposition method
can be successfully applied towards linear and nonlinear integral equations.

The third method, which is extreme numerical and of much more general appli-
cations, is due to Runge. (C. Runge, Professor at the University of Gottingen,
was an authority on graphical method.) With proper precautions it gives good
results in most cases, although occasionally it may involve a very large amount of
arithmetical calculation. We shall treat several examples by these methods to enable
their merits to be compared.
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4.3 Picard’s method of successive approximations

Consider the initial value problem given by the first-order nonlinear differential
equation du

dx = f (x, u(x)) with the initial condition u(a) = b at x = a.This initial value
problem can be transformed to the nonlinear integral equation and is written as

u(x) = b +
∫ x

a
f (x, u(x))dx.

For a first approximation, we replace the u(x) in f (x, u(x)) by b, for a second approx-
imation, we replace it by the first approximation, for the third by the second, and
so on. We demonstrate this method by examples.

Example 4.1

Consider the first-order nonlinear differential equation du
dx = x + u2, where u(0) = 0

when x = 0. Determine the approximate analytical solution by Picard’s method.

Solution

The given differential equation can be written in integral equation form as

u(x) =
∫ x

0
(x + u2(x))dx.

Zeroth approximation is u(x) = 0.

First approximation: Put u(x) = 0 in x + u2(x), yielding

u(x) =
∫ x

0
xdx = 1

2
x2.

Second approximation: Put u(x) = x2

2 in x + u2, yielding

u(x) =
∫ x

0

(
x + x2

4

)
dx = x2

2
+ x5

20
.

Third approximation: Put u = x2

2 + x5

20 in x + u2, giving

u(x) =
∫ x

0

{
x +

(
x2

2
+ x5

20

)2
}

dx

=
∫ x

0

(
x + x4

4
+ x7

20
+ x10

400

)
dx

= x2

2
+ x5

20
+ x8

160
+ x11

4400
.
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Proceeding in this manner, Fourth approximation can be written after a rigorous
algebraic manipulation as

Fourth approximation:

u(x) = x2

2
+ x5

20
+ x8

160
+ 7x11

8800
+ 3x14

49280
+ 87x17

23936000

+ x20

7040000
+ x23

445280000
,

and so on. This is the solution of the problem in series form, and it seems from its
appearance the series is convergent.

Example 4.2

Find the solution of the coupled first-order nonlinear differential equations by
converting them to nonlinear integral equations

du

dx
= v;

dv

dx
= x3(u + v)

subject to the initial conditions u(0) = 1, and v(0) = 1
2 when x = 0.

Solution

The coupled differential equations can be written in the form of coupled integral
equations as follows:

u(x) = 1 +
∫ x

0
vdx

v(x) = 1

2
+

∫ x

0
x3(u + v)dx

Performing the integrations as demonstrated in the above example, we obtain
First approximation:

u(x) = 1 + x

2

v(x) = 1

2
+ 3x4

8

Second approximation:

u(x) = 1 + x

2
+ 3x5

40

v(x) = 1

2
+ 3x4

8
+ x5

10
+ 3x8

64
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Third approximation:

u(x) = 1 + x

2
+ 3x5

40
+ x6

60
+ x9

192

v(x) = 1

2
+ 3x4

8
+ x5

10
+ 3x8

64
+ 7x9

360
+ x12

256
,

and so on. Thus, the solution is given by the above expressions up to third order.

Example 4.3

Find the solution of the nonlinear second-order ordinary differential equation

u(x)u′′(x) = (u′(x))2

with the initial conditions u(0) = 1 and u′(0) = 1 at x = 0 by converting it to the
integral equation.

Solution

The given equation can be transformed into a couple of first-order differential
equations

u′(x) = v(x); v′(x) = v2

u
with the initial conditions: u(0) = 1 and v(0) = 1 at x = 0. The integral equations
are the following:

u(x) = 1 +
∫ x

0
v(x)dx

v(x) = 1 +
∫ x

0

v2

u
dx

By Picard’s successive approximation method we obtain
First approximation:

u(x) = 1 +
∫ x

0
dx = 1 + x

v(x) = 1 +
∫ x

0
dx = 1 + x

Second approximation:

u(x) = 1 +
∫ x

0
(1 + x)dx = 1 + x + x2

2!

v(x) = 1 +
∫ x

0
(1 + x)dx = 1 + x + x2

2!
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Third approximation:

u(x) = 1 +
∫ x

0

(
1 + x + x2

2!
)

dx = 1 + x + x2

2! + x3

3!

v(x) = 1 +
∫ x

0

(
1 + x + x2

2!
)

dx = 1 + x + x2

2! + x3

3!
So continuing in this way indefinitely we see that

u(x) = 1 + x + x2

2! + x3

3! + x4

4! + · · ·
= ex

which is the desired solution of the given nonlinear initial value problem.

Remark

It is worth mentioning here that it can be easily seen that the general solution of
this second-order nonlinear ODE has the solution u(x) = emx where −∞ < m < ∞.
For any real number of m, emx is a solution which means that it has infinitely many
solutions of exponential type. Therefore, the solution is not unique. On the other
hand, if we consider two particular solutions, namely e−x and e2x for m = −1 and
m = 2, although they individually satisfy the differential equation, but the general
solution formed by the linear combination u(x) = c1e−x + c2e2x where c1 and c2 are
arbitrary constants will never satisfy the differential equation. This phenomena is
observed in the nonlinear problem. However, it is not the case when the problem is
linear. This can be easily verified by considering the linear second-order ODE given
by u′′ − u′ − 2u = 0 that has two particular solutions e−x and e2x as cited above and
the linear combination is a solution also. (see Ref. [7]).

4.4 Existence theorem of Picard’s method

In the previous section, we have studied the successive approximations of Picard’s
method. Mathematicians always hope that they would discover a method for
expressing the solution of any differential equations in terms of a finite number
of known functions, or their integrals. When it is realized that this is not possible,
the question arises as to whether a differential equation in general has a solution at
all, and, if it has, of what kind.

There are two distinct methods of discussing this question, but here we will
discuss only one. The first method due to Picard has already been illustrated by
examples in the previous section. We obtain successive approximations, which
apparently tend to a limit. We shall now prove that these approximations really do
tend to a limit and that this limit gives the solution. Thus, we prove the existence of
a solution of a differential equation of a fairly general type. A theorem of this kind
is called an Existence theorem. Picard’s method is not difficult, so we will proceed
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with it at once before saying anything about the second method. Our aim is now to
prove that the assumptions made in obtaining these solutions were correct, and to
state exactly the conditions that are sufficient to ensure correctness in equations.

Picard’s method of successive approximations

If du
dx = f (x, u) and u = b and x = a, the successive approximations for the values of

u as a function of x are

u1 = b +
∫ x

a
f (x, b)dx

u2 = b +
∫ x

a
f (x, u1)dx

u3 = b +
∫ x

a
f (x, u2)dx

· · · · · · = · · · · · ·
un+1 = b +

∫ x

a
f (x, un)dx,

and so on. We have already explained the applications of this method in the
examples of the previous section. We reproduce the solution of the example where
f (x, u) = x + u2: with b = a = 0, and find,

u1 = x2

2

u2 = x2

2
+ x5

20

u3 = x2

2
+ x5

20
+ x8

160
+ x11

4400

u4 = x2

2
+ x5

20
+ x8

160
+ 7x11

8800
+ 3x14

49280

+ 87x17

23936000
+ x20

7040000
+ x23

445280000
.

These functions appear to be tending to a limit, at any rate for sufficiently small
values of x. It is the purpose of the present article to prove that this is the case, not
merely in this particular example, but whenever f (x, u) obeys certain conditions to
be specified. These conditions are that, after suitable choice of the positive number
h and k , we can assert that, for all values of x between a−h and a+h, and for all val-
ues of u between b − k and b + k , we can find positive numbers M and A so that (i)
|f (x, u)| < M , and (ii) |f (x, u) − f (x, u′)| < A|u − u′|, u and u′ being any two values
of u in the range considered. In our example f (x, u) = x + u2, condition (i) is obvi-
ously satisfied, taking for M any positive number greater than |a| + h + (|b| + k)2.
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Also, |(x + u2) − (x + u′2)| = |u2 − u′2| = |u + u′||u − u′| ≤ 2(|b| + k)|u − u′|. So,
condition (ii) is also satisfied, taking A = 2(|b| + k).

Now returning to the general case, we consider the difference between the
successive approximations. We know that u1 − b = ∫ x

a f (x, b)dx, by definition;
but |f (x, b)| < M by condition (i), so |u1 − b| ≤ | ∫ x

a f (x, b)dx| < | ∫ x
a Mdx| ≤

M |x − a| < Mh.
Also in a similar manner, it is easy to show that

u2 − u1 =
∫ x

a
{ f (x, u1) − f (x, b)} dx

but we have

|f (x, u1) − f (x, b)| < A|u1 − b| < AM |x − a| by conditions (i) and (ii).

And so we obtain

|u2 − u1| < |
∫ x

a
AM (x − a)dx|

<
1

2
AM (x − a)2

<
1

2
AMh2

Proceeding in this way, we can write

|un − un−1| <
1

n!MAn−1hn.

Thus, the infinite series

b + Mh + 1

2
MAh2 + · · · + 1

n!MAn−1hn + · · ·

= b + M

A

{
Ah + 1

2
(Ah)2 + · · · + 1

n! (Ah)n + · · ·
}

= b + M

A
[eAh − 1]

is convergent for all values of h, A, and M .
Therefore, the infinite series

b + (u1 − b) = (u2 − u1) + (u3 − u2) + · · · + (un − un−1) + · · ·

each term of which is equal or less in absolute value than the corresponding term
of the preceding, is still more convergent.
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That is to say the sequence

u1 = b + (u1 − b)

u2 = b + (u1 − b) + (u2 − u1),

and so on, tends to a definite limit, say U (x) which is what we wanted to prove.
We must now prove that U (x) satisfies the differential equation. At first

sight, this seems obvious, but it is not so really, for we must not assume without
proof that

lim
n→∞

∫ x

a
f (x, un−1)dx =

∫ x

a
f (x, lim

n→∞ un−1)dx.

The student who understands the idea of uniform convergence will notice that the
inequalities associated with this proof that we have used to prove the convergence
of our series really proves its uniform convergence also. If, f (x, u) is continuous,
u1, u2, . . . etc., are continuous also, and U is uniformly convergent series of con-
tinuous functions; that is, U is itself continuous, and U − un−1 tends uniformly to
zero as n increases.

Hence, condition (ii), f (x, U ) − f (x, un−1) tends uniformly to zero. From this
we deduce that ∫ x

a
{ f (x, U ) − f (x, un−1)} dx

tends to zero. Thus, the limits of the relation

un = b +
∫ x

a
f (x, un−1)dx

is

U = b +
∫ x

a
f (x, U )dx;

therefore,

dU

dx
= f (x, U ),

and U = b when x = a. This completes the proof.

4.5 The Adomian decomposition method

The decomposition method is similar to the Picard’s successive approximation
method. In the decomposition method, we usually express the solution u(x) of the
integral equation

u(x) = b +
∫ x

a
f (x, u)dx (4.5)
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in a series form defined by

u(x) =
∞∑

n=0

un(x) (4.6)

Substituting the decomposition equation (4.6) into both sides of equation (4.5)
yields

∞∑
n=0

un(x) = b +
∫ x

a
f

(
x,

∞∑
n=0

un(x)

)
dx

The components u0(x), u1(x), u2(x), . . . of the unknown function u(x) are completely
determined in a recurrence manner if we set

u0(x) = b

u1(x) =
∫ x

a
f (x, u0)dx

u2(x) =
∫ x

a
f (x, u1)dx

u3(x) =
∫ x

a
f (x, u2)dx,

and so on. The above decomposition scheme for determination of the components
u0(x), u1(x), u2(x), . . . of the solution u(x) of equation (4.5) can be written in a
recurrence form by

u0(x) = b

un+1(x) =
∫ x

a
f (x, un)dx

Once these components are known, the solution u(x) of equation (4.1) is readily
determined in series form using the decomposition equation (4.2). It is important to
note that the series obtained for u(x) frequently provides the exact solution in closed
form. However, for certain problems, where equation (4.2) cannot be evaluated, a
truncated series

∑k
n=0 un(x) is usually used to approximate the solution u(x) if

numerical solution is desired. This is exactly what we have described in Picard’s
method. However, with this type of decomposition, we have found some drawbacks.
Hence we propose in the following a simple decomposition method not exactly like
the Picard method.

In this new decomposition process, we expand the solution function in a
straightforward infinite series

u(x) = u0(x) + u1(x) + u2(x) + · · · + un(x) + · · ·

=
∞∑

n=0

un(x) (4.7)

assuming that the series converges to a finite limit as n → ∞.
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Next we expand the function f (x, u) which contains the solution function u(x)
by Taylor’s expansion about u0(x) keeping x as it is such that

f (x, u) = f (x, u0) + (u − u0)fu(x, u0) + (u − u0)2

2! fuu(x, u0)

= (u − u0)3

3! fuuu(x, u0) + (u − u0)4

4! fuuuu(x, u0) + · · · (4.8)

We know that Taylor’s expansion is absolutely and uniformly convergent in a
given domain. Now using equation (4.7) into equation (4.8), yields

f (x, u) = f (x, u0) +
∞∑

n=1

un(x) fu(x, u0)

+ 1

2!

{ ∞∑
n=1

un(x)

}2

fuu(x, u0)

+ 1

3!

{ ∞∑
n=1

un(x)

}3

fuuu(x, u0)

+ 1

4!

{ ∞∑
n=1

un(x)

}4

fuuuu(x, u0) + · · · (4.9)

which can subsequently be written as

f (x, u) = A0(x) + A1(x) + A2(x) + A3(x) + · · · + An(x) + · · ·

=
∞∑

n=0

An(x) (4.10)

We define the different terms in An(x, u) as follows:

A0 = f (x, u0)

A1 = u1 fu(x, u0)

A2 = u2 fu(x, u0) + 1
2 u2

1 fuu(x, u0)

A3 = u3 fu(x, u0) + 1
2 (2u1u2)fuu(x, u0) + 1

6 u3
1 fuuu(x, u0)

A4 = u4 fu(x, u0) + 1
2 (2u1u3 + u2

2)fuu(x, u0)

+ 1
6 (3u2

1u2) fuuu(x, u0) + 1
24 u4

1 fuuuu(x, u0). (4.11)

Substituting equation (4.10) and equation (4.6) into the integral equation

u(x) = b +
∫ x

a
f (x, u)dx (4.12)
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we obtain

∞∑
n=0

un(x) = b +
∫ x

a

∞∑
n=0

An(x)dx

or simply

u0(x) + u1(x) + u2(x) + · · · = b +
∫ x

a
[A0(x) + A1(x) + A2(x) + · · · ]dx.

The components u0(x), u1(x), u2(x), . . . are completely determined by using the
recurrence scheme

u0(x) = b

u1(x) =
∫ x

a
A0(x)dx =

∫ x

a
A0(t)dt

u2(x) =
∫ x

a
A1(x)dx =

∫ x

a
A1(t)dt

u3(x) =
∫ x

a
A2(x)dx =

∫ x

a
A2(t)dt

u4(x) =
∫ x

a
A3(x)dx =

∫ x

a
A3(t)dt

· · · · · · = · · · · · ·
un+1(x) =

∫ x

a
An(x)dx =

∫ x

a
An(t)dt, n ≥ 1. (4.13)

Consequently, the solution of equation (4.11) in a series form is immediately
determined by using equation (4.6). As indicated earlier the series may yield the
exact solution in a closed form, or a truncated series

∑k
n=1 un(x) may be used if a

numerical approximation is desired. In the following example, we will illustrate the
decomposition method as established earlier by Picard’s successive approximation
method.

Example 4.4

Solve the integral equation

u(x) =
∫ x

0
(x + u2)dx = x2

2
+

∫ x

0
u2(t)dt

by the decomposition method.
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Solution

With the decomposition method, we can write the equation in series form

u(x) =
∞∑

n=0

un(x) = x2

2
+

∫ x

0

∞∑
n=0

An(t)dt

in which we can decompose our solution set as

u0(x) = x2

2

u1(x) =
∫ x

0
A0(t)dt

u2(x) =
∫ x

0
A1(t)dt

· · · · · · = · · · · · ·
un(x) =

∫ x

0
An−1(t)dt (4.14)

We know f (u) = u2, and so f ′(u) = 2u and f ′′(u) = 2. All the higher-order
derivatives will be zero. Thus, we obtain

f (u0) = u2
0 = x4

4

f ′(u0) = 2u0 = x2

f ′′(u0) = 2

Thus, with these information, we obtain

A0(x) = x4

4

A1(x) = u1x2

A2(x) = u2x2 + u2
1

A3(x) = u3x2 + 2u1u2.

Hence the different components of the series can be obtained as

u0(x) = x2

2
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u1(x) =
∫ x

0
A0(t)dt =

∫ x

0

t4

4
dt = x5

20

u2(x) =
∫ x

0
A1(t)dt =

∫ x

0
u1(t)dt =

∫ x

0
u1(t)t2dt

=
∫ x

0

(
t5

2

)
t2dt = x8

160

u3(x) =
∫ x

0
A2(t)dt =

∫ x

0

{
u2(t)t2 + u2

1(t)
}

dt

=
∫ x

0

{(
t8

160

)
t2 + t10

400

}
dt = 7x11

8800

Thus, the solution up to the third order is given by

u(x) = u0(x) + u1(x) + u2(x) + u3(x) + · · ·

= x2

2
+ x5

20
+ x8

160
+ 7x11

8800
+ · · · . (4.15)

Example 4.5

Obtain a solution of the following initial value problem by the Picard method and
verify your result by the method of decomposition:

du

dx
= x + u

with u(0) = 0.

Solution

(a) Picard’s method:
Given that du

dx = x + u, and integrating with respect to x and using the initial
condition we obtain

u(x) =
∫ x

0
(x + u)dx.

The first approximation is

u1(x) =
∫ x

0
xdx = x2

2
.

The second approximation is

u2(x) =
∫ x

0
(x + u1)dx =

∫ x

0

(
x + x2

2

)
dx = x2

2! + x3

3! .
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Proceeding in this manner, the nth approximation can be written at once

un(x) = x2

2
+ x3

3! + · · · + xn+1

(n + 1)! ,

and so on. Thus, the desired solution is

u(x) = x2

2
+ x3

3! + · · · + xn+1

(n + 1)! + · · ·
= ex − (1 + x). (4.16)

(b) The decomposition method
The given integral equation can be written as

u(x) =
∫ x

0
(x + u)dx = x2

2
+

∫ x

0
u(t)dt.

Let u(x) be decomposed into a series as

u(x) = u0(x) + u1(x) + u2(x) + · · · + un(x) + · · · =
∞∑

n=0

un(x).

Substituting this series into the above integral equation,

∞∑
n=0

un(x) = x2

2
+

∫ x

0

∞∑
n=0

un(t)dt.

Now equating term by term, yields

u0(x) = x2

2

u1(x) =
∫ x

0
u0(t)dt =

∫ x

0

t2

2
dt = x3

3!

u2(x) =
∫ x

0
u1(t)dt =

∫ x

0

t3

3!dt = x4

4! ,

· · · · · · = · · · · · ·
and so on. Thus, the solution is

u(x) = x2

2! + x3

3! + · · · + xn

n! + · · · = ex − (1 + x). (4.17)

Hence we get the identical results from these two methods. The analytical solution
of this initial value problem is u(x) = ex − (1 + x).
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Example 4.6

Find the solution of the initial value problem by (a) Picard’s method, (b) the
decomposition method, du

dx = xu, u(0) = 1.

Solution

(a) Picard’s method
The initial value problem can be put in the integral equation form

u(x) = 1 +
∫ x

0
tu(t)dt.

The first approximation is

u1(x) = 1 +
∫ x

0
t(1)dt = 1 + x2

2
.

The second approximation is

u2(x) = 1 +
∫ x

0
t

(
1 + t2

2!
)

dt = 1 + x2

2
+ 1

2!
(

x2

2

)2

.

Proceeding in this manner, we can derive the nth approximation as
The nth approximation is

un(x) = 1 + x2

2
+ 1

2!
(

x2

2

)2

+ · · · + 1

n!
(

x2

2

)n

.

Thus, when n → ∞

u(x) = lim
n→∞ un(x) = ex2/2. (4.18)

(b) The decomposition method
We decompose the solution in a series as u(x) = ∑∞

n=0 un(x). Substituting this
series into the integral equation, we obtain

∞∑
n=0

un(x) = 1 +
∫ x

0

{
t

∞∑
n=0

un(t)

}
dt.
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Equating the different order of terms of this series, we construct a set of integral
equations

u0(x) = 1

u1(x) =
∫ x

0
tu0(t)dt =

∫ x

0
t(1)dt = x2

2

u2(x) =
∫ x

0
tu1(t)dt =

∫ x

0
t

(
t2

2

)
dt = x4

4.2
= 1

2!
(

x2

2

)2

· · · · · · = · · · · · ·
un(x) = 1

n!
(

x2

2

)n

.

Thus, the solution is

u(x) =
∞∑

n=0

un(x) = 1 + x2

2
+ 1

2!
(

x2

2

)2

+ · · · = ex2/2. (4.19)

Solutions, i.e. equations (4.18) and (4.19) are identical and agree with the
analytical solution u(x) = ex2/2.

Remark

It is worth noting that the decomposition method encounters computational diffi-
culties if the nonhomogeneous term f (x) is not a polynomial in terms of x. When
the f (x) is not polynomial we use the modified decomposition method to mini-
mize the calculations. In the following example, we shall illustrate the modified
decomposition method for handling the Volterra type integral equation.

Example 4.7

Obtain the solution of the following nonlinear nonhomogeneous integral equation
of Volterra type,

u(x) = x + x5

5
−

∫ x

0
tu3(t)dt.

Solution

By inspection, it can be observed that u(x) = x is a solution of this integral equa-
tion. Because

∫ x
0 t(t3)dt = x5

5 , and hence u(x) = x + x5

5 − x5

5 = x.
By the modified decomposition method, this is easily accomplished. In this

method, the solution is expressed in a series which is given by u(x) = ∑∞
n=0 un(x),

and f (u) = u3 such that f ′(u) = 3u2, f ′′(u) = 6u, and f ′′′(u) = 6, and all the higher-
order derivatives greater than the third order are zero.
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By Taylor’s expansion about u = u0, f (u) can be expressed as

f (u) = f (u0) + (u1 + u2 + u3 + · · · ) f ′(u0)

+ 1

2! (u1 + u2 + u3 + · · · )2f ′′(u0)

+ 1

3! (u1 + u2 + u3 + · · · )3f ′′′(u0)

+ · · · · · ·

where we define the decomposition coefficients as

A0 = f (u0) = u3
0

A1 = u1f ′(u0) = 3u2
0u1

A2 = u2f ′(u0) + 1

2
u2

1 f ′′(u0) = u2(3u2
0) + u2

1(3u0)

A3 = u3f ′(u0) + u1u2 f ′′(u0) + 1

3
u3

1 f ′′(u0)

= u3(3u2
0) + u1u2(6u0) + u3

1

· · · = · · ·

Let us consider u0(x) = x. Then the subsequent terms of the series can be
obtained as follows:

u0(x) = x

u1(x) = x5

5
−

∫ x

0
tA0(t)dt

= x5

5
−

∫ x

0
t(t3)dt = x5

5
− x5

5
= 0

u2(x) = −
∫ x

0
tA1(t)dt = 0 because u1(x) = 0.

Similarly, un(x) = 0, for n ≥ 2. And hence the solution is u(x) = x.
But with the usual procedure, if we set the zeroth component u0(x) = x + x5

5 ,
then the first component is

u1(x) = −
∫ x

0
tA0(t)dt = −

∫ x

0
t

(
t + t5

5

)3

dt

= −x5

5
− x9

15
− 3x13

325
− x17

2125
.
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The second component is given by

u2(x) = −
∫ x

0
tA1(t)dt

=
∫ x

0
3t

(
t + t5

5

)2 (
x5

5
+ x9

15
+ 3x13

325
+ x17

2125

)
dt.

It can be easily observed that cancelling the noise term x5

5 and − x5

5 between
u0(x) and u1(x), and justifying that the remaining term of u0(x) satisfies the equation,
leads to the exact solution u(x) = x.

Example 4.8

Use the decomposition method or the modified decomposition method to solve the
following nonlinear Volterra integral equation by finding the exact solution or a few
terms of the series solution, u(x) = sin x + 1

8 sin (2x) − x
4 + 1

2

∫ x
0 u2(t)dt.

Solution

By inspection it can be easily seen that u(x) = sin x is an exact solution. Let us
confirm the result by the modified decomposition method. For this reason we split
f (x) = sin x + 1

8 sin (2x) − x
4 between the two components u0(x) and u1(x), and here

we set u0(x) = sin x. Consequently, the first decomposition component is defined by

u1(x) = 1

8
sin (2x) − x

4
+ 1

2

∫ x

0
A0(t)dt.

Here, A0(x) = u2
0 = sin2 x. Thus, we obtain

u1(x) = 1

8
sin (2x) − x

4
+ 1

2

∫ x

0
sin2 tdt

= 1

8
sin (2x) − x

4
+

(
x

4
− 1

8
sin (2x)

)
= 0

This defines the other components by uk (x) = 0, for k ≥ 1. The exact solution
u(x) = sin x follows immediately.

Example 4.9

Use the decomposition method or the modified decomposition method to solve the
following nonlinear Volterra integral equation by finding the exact solution or a few
terms of the series solution

u(x) = tan x − 1

4
sin 2x − x

2
+

∫ x

0

dt

1 + u2(t)
.
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Solution

By inspection it can be easily seen that u(x) = tan x is an exact solution. Let us
show this result by the modified decomposition method. To accomplish this we
split f (x) = tan x − 1

4 sin 2x − x
2 between the two components u0(x) and u1(x), and

we set u0(x) = tan x. Consequently, the first component is defined by

u1(x) = −1

4
sin 2x − x

2
+

∫ x

0
A0(t)dt

= −1

4
sin 2x − x

2
+

∫ x

0

1

1 + tan2 t
dt

= −1

4
sin 2x − x

2
+

∫ x

0
cos2 tdt

= −1

4
sin 2x − x

2
+ 1

4
sin 2x + x

2
= 0.

This defines that the other components by uk (x) = 0, for k ≥ 1. Hence the exact
solution u(x) = tan x follows immediately.

In the following example we shall deal with Fredholm type nonlinear integral
equation by using the direct computational method.

Example 4.10

Use the direct computational method to solve the given nonlinear Fredholm integral
equation and verify with the method of decomposition

u(x) = 7

8
x + 1

2

∫ 1

0
xtu2(t)dt. (4.20)

Solution

(a) Direct computational method
Setting

α =
∫ 1

0
tu2(t)dt (4.21)

where α is a constant, the given integral equation can be written as

u(x) = 7
8 x + 1

2 xα. (4.22)

But α = ∫ 1
0 t

( 7
8 + α

2

)2
t2dt = 1

4

( 7
8 + α

2

)2
.
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Now solving this quadratic equation in α, we obtain α = 1
4 , 49

4 . Accordingly,
we get two real solutions of the given integral equation

u(x) = 7x

8
+ x

8
= x;

and

u(x) = 7x

8
+ x

2

49

4
= 7x.

(b) The decomposition method
In this method the Adomian polynomials for the nonlinear term f (u) = u2 are

expressed as

A0(x) = u2
0

A1(x) = 2u0u1

A2(x) = 2u0u2 + u2
1

A3(x) = 2u0u3 + 2u1u2

· · · · · · = · · · · · ·
where the different components are calculated from f (u) = u2, f ′(u) = 2u,
f ′′(u) = 2, f ′′′(u) = 0. Under the recursive algorithm, we have

u0(x) = 7

8
x

u1(x) = x

2

∫ 1

0
tA0(t)dt = 49

512
x

u2(x) = x

2

∫ 1

0
tA1(t)dt = 343

16384
x

and so on. The solution in the series form is given by

u(x) = 7

8
x + 49

512
x + 343

16384
x + · · ·

≈ x.

This is an example where the exact solution is not obtainable; hence we use a few
terms of the series to approximate the solution. We remark that the two solutions
u(x) = x and u(x) = 7x were obtained in (a) by the direct computational method.
Thus, the given integral equation does not have a unique solution.

Remark

It is useful to note that the direct computational method produces multiple solutions
for nonlinear integral equation. By using Adomian decomposition method, multi-
ple solutions of nonlinear integral equation, if exist, cannot be determined which
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appears to be the drawback of this method. However, the decomposition method is
easier to use.

Example 4.11

By using the decomposition method, find the solution of the initial value problem
u′′(x) + 2u′(x) + 2 sin u = 0 subject to the initial conditions u(0) = 1, u′(0) = 0. This
is a practical problem governed by the oscillation of a pendulum.

Solution

The given initial value problem can be put into Volterra integral equation

u(x) = 1 + 2x − 2
∫ x

0
u(t)dt − 2

∫ x

0
(x − t) sin u(t)dt.

Let us consider the solution in a series form as u(x) = ∑∞
n=0 un(x), and f (u) = sin u.

Expanding f (u) = sin u by Taylor’s expansion about u = u0, yields

f (u) = sin u0 +
∞∑

n=1

un(x) cos u0

−1

2

( ∞∑
n=1

un(x)

)2

sin u0 − 1

6

( ∞∑
n=1

un(x)

)3

cos u0 + · · ·

= A0 + A1 + A2 + A3 + · · ·
where

A0(x) = sin u0

A1(x) = u1(x) cos u0

A2(x) = u2(x) cos u0 − 1

2
u2

1(x) sin u0

A3(x) = u3(x) cos u0 − u1(x)u2(x) sin u0 − 1

6
u3

1(x) cos u0

· · · · · · = · · · · · ·
Let us consider u0(x) = 1. Then the subsequent terms of the series can be

obtained as follows:

u0(x) = 1

u1(x) = 2x − 2
∫ x

0
u0(t)dt − 2

∫ x

0
(x − t)A0(t)dt

= 2x − 2
∫ x

0
(1)dt − 2

∫ x

0
(x − t) sin 1dt
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= 2x − 2x − x2 sin 1

= −x2( sin 1)

u2(x) = −2
∫ x

0
u1(t)dt − 2

∫ x

0
(x − t)A1(t)dt

= 2 sin 1
∫ x

0
t2dt + 2 sin 1 cos 1

∫ x

0
(x − t)t2dt

= 2

3
( sin 1)x3 + ( sin 2)

∫ x

0
(x − t)t2dt

= 2

3
( sin 1)x3 + 1

12
( sin 2)x4.

Thus, up to the second-order decomposition, the solution is

u(x) = u0(x) + u1(x) + u2(x)

= 1 − ( sin 1)x2 + 2
3 ( sin 1)x3 + 1

12 ( sin 2)x4.

Remark

By using the differential equation with its initial conditions, we can solve this
problem using the decomposition method as follows: Equating the different order
of decomposition yields

u′′
0 + 2u′

0 = 0

u′′
1 + 2u′

1 = −2A0

u′′
2 + 2u′

2 = −2A1

u′′
3 + 2u′

3 = −2A2

· · · · · · = · · · · · ·
u′′

n + 2u′
n = −2An−1

with the initial conditions

u0(0) = 1, u′
0 = 0

u1(0) = 0, u′
1 = 0

u2(0) = 0, u′
2 = 0

u3(0) = 0, u′
3 = 0

· · · · · · = · · · · · ·
un(0) = 0, u′

n = 0
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The solutions of this set of initial value problems can be obtained as follows:

u0(x) = 1

u1(x) = sin 1

2
(1 − 2x − e−2x)

u2(x) = sin 2

8

{
3 − 4x + 2x2 − (3 + 2x)e−2x}

Thus, the solution up to second-order decomposition term is given by

u(x) = u0(x) + u1(x) + u2(x)

= 1 +
(

sin 1

2

)
(1 − 2x − e−2x)

+ sin 2

8

{
3 − 4x + 2x2 − (3 + 2x)e−2x}

It can be easily verified that the solutions obtained from the integral equation
are identical with those obtained from the differential equation up to the order x4.

Example 4.12

Find the solution of the Klein–Gordon partial differential equation of the following
form with the given initial conditions

utt − uxx − 2u = −2 sin x sin t

u(x, 0) = 0,

ut(x, 0) = sin x (4.23)

Solution

The term 2 sin x sin t will be shown to be a noise term. To solve this problem we
first define the linear operators

Lt(u) = ∂2u

∂t2

Lx(u) = ∂2u

∂x2 (4.24)

Integrating the equation (4.23) with respect to t partially two times from 0 to t
and using the initial conditions we obtain

u(x, t) = t sin x + L−1
t (Lx(u) + 2u) + L−1

t (−2 sin x sin t) (4.25)
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If u(x, t) = ∑∞
n=0 un(x, t), then the various iterates can be determined as

u0(x, t) = t sin x + L−1
t (−2 sin x sin t)

= t sin x +
∫ t

0

∫ t

0
(−2 sin x sin t)dtdt

= 2 sin x sin t − t sin x

= sin x (2 sin t − t) (4.26)

The u1(x, t) term can be obtained from the following

u1(x, t) = Lt {Lx(u0) + 2u0}

=
∫ t

0

∫ t

0
{Lx(u0) + 2u0} dtdt

=
∫ t

0

∫ t

0
{2 sin x sin t − t sin x} dtdt

= −2 sin t sin x + 2t sin x − t3

3! sin x

= sin x

(
−2 sin t + 2t − t3

3!
)

(4.27)

In a like manner, we find

u2(x, t) = Lt {Lx(u1) + 2u1}

=
∫ t

0

∫ t

0
{Lx(u1) + 2u1} dtdt

= 2 sin x sin t − 2t sin x + t3

3! sin x − t5

5! sin x

= sin x

(
2 sin t − 2t + t3

3! − t5

5!
)

(4.28)

and

u2(x, t) = Lt {Lx(u2) + 2u2}

=
∫ t

0

∫ t

0
{Lx(u2) + 2u2} dtdt

= −2 sin x sin t + 2t sin x − t3

3! sin x + 2t5

5! sin x − t7

7! sin x

= sin x

(
−2 sin t + 2t − t3

3! + 2t5

5! − t7

7!
)

(4.29)
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Upon summing the iterates, we observe that

φ4(x, t) =
3∑

i=0

ui(x, t) = sin x

(
t − t3

3! + t5

5! − t7

7!
)

(4.30)

This explains the phenomena that 2 sin x sin t is the self-cancelling noise term.
Further cancelling the noise term we obtain inductively the exact solution to
equation (4.23) given by

u(x, t) = sin x sin t. (4.31)

Example 4.13

Consider the following nonlinear pendulum like ordinary differential equation

d2u

dt2 = sin u (4.32)

with the following initial conditions:

u(0) = π,
du

dt
(0) = −2. (4.33)

Solution

We shall show, using decomposition method, how to obtain solutions that coincide
with implicit solution of equations (4.32)–(4.33) given by

sin
u

2
= sech t.

Here, the nonlinear function is N (u) = sin u. If we set Lt(u) = d2u
dt2 , then equation

(4.32) can be expressed in operator form after integrating two times with respect to
time t from 0 to t

u(t) = π − 2t + L−1
t N (u) = π − 2t +

∫ t

0

∫ t

0
N (u(t))dtdt (4.34)

Thus, writing

u(t) =
∞∑

n=0

un(t)

N (u) = sin u =
∞∑

n=0

An(t),
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the various iterates are given by

un+1(t) =
∫ t

0

∫ t

0
An(t)dtdt, n ≥ 0 (4.35)

with

u0(t) = π − 2t (4.36)

For N (u) = sin u, we have the following formulas

A0 = sin u0

A1 = u1 cos u0

A2 = u2 cos u0 − u2
1

2! sin u0

A3 = u3 cos u0 − u1u2 sin u0 − u3
1

3! cos u0

· · · · · · = · · · · · · (4.37)

Therefore, since u0 is known, equations (4.35)–(4.36) provide the series solution∑∞
n=0 un, where

u0 = π − 2t

u1 =
∫ t

0

∫ t

0
A0dtdt

u2 =
∫ t

0

∫ t

0
A1dtdt

u3 =
∫ t

0

∫ t

0
A2dtdt

· · · · · · = · · · · · ·
un+1 =

∫ t

0

∫ t

0
Andtdt (4.38)

Using equation (4.38) the various iterates are given as

u1 = t
2 − 1

4 sin 2t

u2 = 5
32 t − 1

8 sin 2t + 1
8 t cos 2t − 1

64 sin 2t cos 2t, (4.39)

and so on, where the identities cos (π − 2t) = −cos 2t and sin (π − 2t) = sin 2t are
used. Higher iterates can be determined similarly. Upon combining the first six
iterates and expanding in Taylor’s series around t = 0, we obtain

u = π − 2t + 2

3! t3 − 10

5! t5 + 61

7! t7 − 2770

9! t9 + 103058

11! t11 + · · · (4.40)
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which coincides with Taylor expansion of sin u
2 = sech t. We observe that each time

an iterate is added, the Taylor expansion coincides to the next higher term.

Example 4.14

Solve the D’Alembert’s wave equation with the given initial conditions by the
decomposition method

utt = c2uxx

u(x, 0) = φ(x)

ut(x, 0) = ψ(x)

Solution

The D’Alembert’s wave equation can be transformed into the integral equation by
using the given initial conditions as follows:

ut(x, t) = ψ(x) + c2
∫ t

0
uxxdt

u(x, t) = φ(x) + tψ(x) + c2
∫ t

0

∫ t

0
uxxdtdt (4.41)

Consider the infinite series

u(x, t) =
∞∑

n=0

un(x, t) (4.42)

which is known as the decomposition series. Using this series solution into the
equation (4.41) we have

∞∑
n=0

un(x, t) = φ(x) + tψ(x) + c2
∫ t

0

∫ t

0

∞∑
n=0

(un)xxdtdt (4.43)

Now the various iterates are obtained as

u0(x, t) = φ(x) + tψ(x)

u1(x, t) = c2
∫ t

0

∫ t

0
(u0)xxdtdt

u2(x, t) = c2
∫ t

0

∫ t

0
(u1)xxdtdt

u3(x, t) = c2
∫ t

0

∫ t

0
(u2)xxdtdt
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u4(x, t) = c2
∫ t

0

∫ t

0
(u3)xxdtdt

· · · · · · = · · · · · ·
un(x, t) = c2

∫ t

0

∫ t

0
(un−1)xxdtdt

· · · · · · = · · · · · ·

Performing the indicated integrations, we can write the solutions of each iterate
as follows:

u1(x, t) = c2
{

t2

2!φ
′′(x) + t3

3!ψ
′′(x)

}

u2(x, t) = (c2)2
{

t4

4!φ
(4)(x) + t5

5!ψ
(4)(x)

}

u3(x, t) = (c2)3
{

t6

6!φ
(6)(x) + t7

7!ψ
(6)(x)

}
· · · · · · = · · · · · ·

un(x, t) = (c2)n
{

t2n

2n!φ
(2n)(x) + t2n+1

(2n + 1)
ψ(2n)(x)

}
· · · · · · = · · · · · ·

Hence the solution can be written as

u(x, t) = u0 + u1 + u2 + · · · + un = · · ·

=
{ ∞∑

n=0

(ct)2n

(2n)! φ(2n)(x)

}
+

{ ∞∑
n=0

(ct)2n+1

c(2n + 1)!ψ
(2n)(x)

}

= 1

2
[φ(x + ct) + φ(x − ct)] + 1

2c

∫ x+ct

x−ct
ψ(s)ds. (4.44)

The compact form of the D’Alembert’s wave solution, i.e. equation (4.44) can
be very easily verified by using Taylor’s expansion of φ(x ± ct) and ψ(x ± ct) about
ct with little manipulation.

Remark

The reader is referred to the work of Rahman ([7], [8]) for further information about
D’Alembert’s wave solution by the Characteristic method and also by the Fourier
transform method.
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4.6 Exercises

1. Use the decomposition method or otherwise to solve the following nonlinear
Volterra integral equations:

(a) u(x) = x2 + 1

5
x5 −

∫ x

0
u2(t)dt.

(b) u(x) = tan x − 1

4
sin (2x) − x

2
+

∫ x

0

1

1 + u2(t)
dt, x <

π

2
.

(c) u(x) = ex − 1

3
xe3x + 1

3
x +

∫ x

0
xu3(t)dt.

2. Use the direct computation method to solve the following nonlinear Fredholm
integral equations:

(a) u(x) = 1 + λ

∫ 1

0
tu2(t)dt.

(b) u(x) = 1 + λ

∫ 1

0
t3u2(t)dt.

(c) u(x) = sin x − π

8
+ 1

2

∫ π
2

0
u2(t)dt.

(d) u(x) = x − 5

6
+

∫ 1

0
(u(t) + u2(t))dt.

3. Use the decomposition method or otherwise to solve the following Fredholm
nonlinear equations:

(a) u(x) = 1 − x

3
+

∫ 1

0
xt2u3(t)dt.

(b) u(x) = 1 + λ

∫ 1

0
t3u2(t)dt, λ ≤ 1.

(c) u(x) = sinh x − 1 +
∫ 1

0
(cosh2 (t) − u2(t))dt.

(d) u(x) = sec x − x +
∫ 1

0
x(u2(t) − tan2 (t))dt.

4. The Klein–Gordon nonlinear hyperbolic partial differential equation with the
initial conditions is given by

utt + αuxx + βu + γu2 = 0; a < x < b, t > t0

u(x, 0) = B tan (kx)

ut(x, 0) = Bc sec2 (kx),
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where c, α, β, γ are constant, and B =
√

β
γ

, k =
√ −β

2(α + c2) . Show by decomposi-

tion method that a closed-form solution is

u(x, t) = B tan (k(x + ct)).

5. Consider the Klein–Gordon partial differential equation in the form

utt − uxx + π2

4
u = x2 sin2

(
πt

2

)
u(x, 0) = 0

ut(x, 0) = πx

2

Show by decomposition method that the exact solution is

u(x, t) = x sin
(

πt

2

)
.

6. Consider the hyperbolic equation

utt − γ2uxx + c2u − ε2σu3 = 0,

where γ , c, σ are appropriate physical constants, with the initial conditions

u(x, 0) = cos kx, ut(x, 0) = 0, −∞ < x < ∞.

Show by decomposition method that the solution exists in the following manner
for (0 < ε � 1)

u(x, t) = cos ωt cos kx + ε2
{

9σ

32ω
t sin ωt + 3σ

128ω2 ( cos ωt − cos 3ωt)
}

cos kx

+ ε2
{

3σ

128γ2k2 ( cos ωt − cos λt) + σ

128c2 ( cos λt − cos 3ωt)
}

cos 3kx

+ O(ε3),

where λ2 = 9γ2k2 + c2.

7. Using the solution of the D’Alembert’s wave equation with the given initial
conditions

utt = c2uxx

u(x, 0) = φ(x)

ut(x, 0) = ψ(x),

determine the wave solution if φ(x) = 1
1 + x2 and ψ(x) = sec2x.
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5 The singular integral equation

5.1 Introduction

This chapter is concerned with the singular integral equation that has enormous
applications in applied problems including fluid mechanics, bio-mechanics, and
electromagnetic theory. An integral equation is called a singular integral equation
if one or both limits of integration becomes infinite, or if the kernel K(x, t), of the
equation becomes infinite at one or more points in the interval of integration. To be
specific, the integral equation of the first kind

f (x) = λ

∫ β(x)

α(x)
K(x, t)u(t)dt, (5.1)

or the integral equation of the second kind

u(x) = f (x) + λ

∫ β(x)

α(x)
K(x, t)u(t)dt, (5.2)

is called singular if α(x), or β(x), or both limits of integration are infinite. Moreover,
the equation (5.1) or (5.2) is also called a singular equation if the kernel K(x, t)
becomes infinite at one or more points in the domain of integration. Examples of
the first type of singular integral equations are given below.

u(x) = ex +
∫ ∞

0
K(x, t)u(t)dt (5.3)

F{u(x)} =
∫ ∞

−∞
e−iωxu(x)dx (5.4)

L{u(x)} =
∫ ∞

0
e−sxu(x)dx (5.5)

97
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The integral equations (5.4) and (5.5) are Fourier transform and Laplace transform
of the function u(x), respectively. In fact these two equations are Fredholm equ-
ations of the first kind with the kernel given by K(x, ω) = e−iωx and K(x, s) = e−sx,
respectively. The reader is familiar with the use of Fourier and Laplace transforms
in solving the ordinary and partial differential equations with constant coefficients.
Equations (5.3)–(5.5) can be defined also as the improper integrals because of the
limits of integration are infinite.

Examples of the second type of singular integral equations are given by the
following:

f (x) =
∫ x

0

1√
x − t

u(t)dt (5.6)

f (x) =
∫ x

0

1

(x − t)α
u(t)dt (5.7)

u(x) = f (x) + λ

∫ x

0

1√
x − t

u(t)dt (5.8)

where the singular behaviour in these examples is attributed to the kernel K(x, t)
becoming infinite as x → ∞.

Remark

It is important to note that the integral equations (5.6) and (5.7) are called Abel’s
problems and generalized Abel’s integral equations, respectively, after the name
of the Norwegian mathematician Niels Abel who invented them in 1823 in his
research of mathematical physics. Singular equation (5.8) is usually called the
weakly-singular second kind Volterra integral equation.

In this chapter, we shall investigate the Abel’s type singular integral equation,
namely where the kernel K(x, t) becomes infinite at one or more points of singu-
larities in its domain of definition. We propose to investigate the following three
types:

• Abel’s problem,
• Generalized Abel’s integral equations,
• The weakly-singular second kind Volterra-type integral equations.

5.2 Abel’s problem

We have already established the integral equation of Abel’s problem. The integral
equation is given by equation (5.6), and we here reproducing it for clarity.

∫ x

0

u(t)√
x − t

dt = f (x)
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The solution of this equation is attributed by using the Laplace transform method.
Taking the Laplace transform of both sides of the above equation yields

L
{∫ x

0

u(t)√
x − t

dt

}
= L{f (x)}.

Using the convolution theorem and after a little reduction, the transformed equation
can be written in a simple form

L{u(x)} =
√

s√
π

L{f (x)}.

Here, we have used the result of �( 1
2 ) = √

π. The above transform cannot be
inverted as it stands now. We rewrite the equation as follows:

L{u(x)} = s√
π

[
1√
s
L{f (x)}

]
.

Using the convolution theorem, it can be at once inverted to yield

u(x) = 1√
π

L−1
{

s

[
1√
s
L{f (x)}

]}

= 1√
π

d

dx

∫ x

0

1√
π

1√
x − t

f (t)dt

= 1

π

d

dx

∫ x

0

f (t)√
x − t

dt

Note that the Leibnitz rule of differentiation cannot be used in the above integral.
So, integrate the integral first and then take the derivative with respect to x. Then
this gives

u(x) = 1

π

d

dx

{
−2(

√
x − t)f (t)|x0 + 2

∫ x

0

√
x − t f ′(t)dt

}

= 1

π

{
f (0)√

x
+
∫ x

0

f ′(t)√
x − t

dt

}
.

This is the desired solution of Abel’s problem.

5.3 The generalized Abel’s integral equation of the first kind

The integral equation is given by∫ x

0

u(t)dt

(x − t)α
= f (x), 0 < α < 1 (5.9)
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Taking the Laplace transform of both sides with the help of convolution theorem,
we obtain

L{x−α}L{u(x)} = L{f (x)}
or

�(1 − α)

s1−α
L{u(x)} = L{f (x)} (5.10)

Thus, rearranging the terms we have

L{u(x)} = 1

�(1 − α)
s

{
1

sα
L{f (x)}

}
(5.11)

Using the convolution theorem of Laplace transform the equation (5.11) can be
obtained as

u(x) = 1

�(α)�(1 − α)

d

dx

{∫ x

0
(x − t)αf (t)dt

}

= sin (πα)

π

d

dx

{
(x − t)α

−α
f (t)|x0 + 1

α

∫ x

0
(x − t)αf ′(t)dt

}

= sin (πα)

π

d

dx

{
(x)α

α
f (0) + 1

α

∫ x

0
(x − t)αf ′(t)dt

}

= sin (πα)

π

{
f (0)

x1−α
+
∫ x

0

f ′(t)dt

(x − t)1−α

}
(5.12)

This is the desired solution of the integral equation. Here, it is to be
noted that �(α)�(1 − α) = sin (πα)

π
. The definition of Gamma function is �(n) =∫∞

0 e−xxn−1dx.

5.4 Abel’s problem of the second kind integral equation

The second kind Volterra equation in terms of Abel’s integral equation is written as

u(x) = f (x) +
∫ x

0
K(x, t)u(t)dt

= f (x) +
∫ x

0

u(t)dt√
x − t

(5.13)

The solution of this integral is attributed by the convolution theorem of Laplace
transform. Taking the Laplace transform of both sides of the equation yields

L{u(x)} = L{f (x)} + L
{

1√
x

}
L{u(x)}

= L{f (x)} +
√

π√
s
L{u(x)}
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and after reduction this can be expressed as

L{u(x)} =
{ √

s√
s − √

π

}
L{f (x)}

= L{f (x)} +
{ √

π√
s − √

π

}
L{f (x)} (5.14)

The inversion of equation (5.14) is given by

u(x) = f (x) +
∫ x

0
g(t)f (x − t)dt (5.15)

where g(x) = L−1
{ √

π√
s − √

π

}
.

With reference to Rahman [1], the Laplace inverse of
{ √

π√
s − √

π

}
can be obtained

from the formula

L−1
{

1√
s − a − b

}
= eax

{
1√
πx

+ beb2xer fc(−b
√

x)
}

.

In our problem, a = 0, b = √
π and so

L−1
{ √

π√
s − √

π

}
= √

π

{
1√
πx

+ √
πeπxer fc(−√

πx)
}

.

Here, it is noted that er fc(−√
πx) = er fc(

√
πx). And hence

g(x) = L−1
{ √

π√
s − √

π

}
= √

π

{
1√
πx

+ √
πeπxer fc(

√
πx)
}

.

Thus, the solution of the problem is given by equation (5.15).

5.5 The weakly-singular Volterra equation

The weakly-singular Volterra-type integral equations of the second kind, given by

u(x) = f (x) +
∫ x

0

λ√
x − t

u(t)dt (5.16)

appears frequently in many mathematical physics and chemistry applications such
as heat conduction, crystal growth, and electrochemistry (see Riele [3]). It is to
be noted that λ is a constant parameter. It is assumed that the function f (x) is
sufficiently smooth so that a unique solution to equation (5.16) is guaranteed. The
kernel K(x, t) = 1√

x − t
is a singular kernel.
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We have already seen the use of convolution theorem of the Laplace transform
method in the previous section. In this section, we shall use the decomposition
method to evaluate this integral equation. To determine the solution we usually
adopt the decomposition in the series form

u(x) =
∞∑
0

un(x), (5.17)

into both sides of equation (5.16) to obtain

∞∑
0

un(x) = f (x)
∫ x

0

λ√
x − t

( ∞∑
0

un(t)

)
dt (5.18)

The components u0, u1, u2, . . . are immediately determined upon applying the
following recurrence relations

u0(x) = f (x),

u1(x) =
∫ x

0

λ√
x − t

u0(t)dt,

u2(x) =
∫ x

0

λ√
x − t

u1(t)dt,

· · · · · · = · · · · · ·
un(x) =

∫ x

0

λ√
x − t

un−1(t)dt (5.19)

Having determined the components u0(x), u1(x), u2(x), . . . , the solution u(x) of
equation (5.16) will be easily obtained in the form of a rapid convergence power
series by substituting the derived components in equation (5.17).

It is important to note that the phenomena of the self-cancelling noise terms,
where like terms with opposite signs appears in specific problems, should be
observed here between the components u0(x) and u1(x). The appearance of these
terms usually speeds the convergence of the solution and normally minimizes the
size of the computational work. It is sometimes convenient to use the modified
decomposition method.

Example 5.1

Determine the solution of the weakly-singular Volterra integral equation of second
kind

u(x) = √
x + πx

2
−
∫ x

0

1√
x − t

u(t)dt. (5.20)
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Solution

Using the recurrent algorithm, we set

u0(x) = √
x + πx

2
(5.21)

which gives

u1(x) = −
∫ x

0

√
t + πt

2√
x − t

dt (5.22)

The transformation t = x sin2 θ carries equation (5.22) into

u1(x) = −
∫ π/2

0
(2x sin2 θ + πx3/2 sin3 θ)dθ

= −πx

2
− 2

3
πx3/2. (5.23)

Observing the appearance of the terms πx
2 and −πx

2 between the components
u0(x) and u1(x), and verifying that the non-cancelling term in u0(x) justifies the
equation (5.20) yields

u(x) = √
x (5.24)

the exact solution of the given integral equation.
This result can be verified by the Laplace transform method. By taking the

Laplace transform of equation (5.20) yields

L{u(x)} = L{f (x)} + π

2
L{x} − L

{
1√
x

}
L{u(x)}

= �(3/2)

s3/2 + π

2s2 − �(1/2)√
s

L{u(x)}

and after simplification we have

L{u(x)} =
√

π

2s(
√

s + √
π)

+ π

2s3/2(
√

s + √
π)

=
√

π

2s3/2

[√
s + √

π√
s + √

π

]

=
√

π

2s3/2 .

The inversion is simply

u(x) = L−1
[ √

π

2s3/2

]
= √

x. (5.25)

These two results are identical confirming the desired correct solution.
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Example 5.2

Solve the Abel’s problem

4
√

x =
∫ x

0

1√
x − t

u(t)dt.

Solution

Taking the Laplace transform of both sides of the equation yields

4L{√x} = L
{

1√
x

}
L{u(x)},

which reduces to

4
�(3/2)

s3/2 = �(1/2)

s1/2 L{u(x)}.

After simplifying it becomes

L{u(x)} = 2/s,

the inversion of which yields u(x) = 2. This is the desired result.

5.6 Equations with Cauchy’s principal value of an integral
and Hilbert’s transformation

We have seen in the previous section that a Volterra or Fredholm integral equation
with a kernel of the type

K(x, t) = F(x, t)

|x − t|α , (0 < α < 1)

where F is bounded, can be transformed into a similar one with a bounded kernel.
For this, the hypothesis that α < 1 is essential. However, in the important case, α = 1
in which the integral of the equation must be considered as a Cauchy principal value
integral; the integral equation differs radically from the equations considered in the
previous sections. It is important to define the Cauchy principal value integral at
the beginning of this section.

The Cauchy principal value integral of a function f (x) which becomes infinite
at an interior point x = x0 of the interval of integration (a, b) is the limit

∫ b

a
f (x)dx = lim

ε→0

(∫ x0−ε

a
+
∫ b

x0+ε

)
f (x)dx,

where 0 < ε ≤ min(x0 − a, b − x0). If f (x) = g(x)
x − x0

, where g(x) is any integrable
function (in the sense of Lebesgue), then the above limit exists and is finite for
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Figure 5.1: The actual path of a moving particle and possible variation of the path.

almost every x0 in (a, b); and if g(x) belongs to the class Lp with p > 1, the principal
integral also belongs to Lp. (See, for example, Titchmarsh [4]).

One of the oldest results in this field consists of two reciprocity formulas which
D. Hilbert deduced from the Poisson integral. He showed the following analysis to
arrive at these formulas. We know that the Cauchy’s integral formula in complex
variables round a closed contour C is given by (see Rahman [1, 2])

	(z) = 1

2πi

∮
C

	(t)

t − z
dt

Here, the function 	(t) is analytic in the given domain and t = z is a simple pole.
Now, if we consider a semi-circular contour of infinite radius (see Figure 5.1) then
we can evaluate the integral around this contour by using the residue calculus as
follows:∫

CR

	(t)

t − z
dt +

∫ x−ε

−R

	(t)

t − z
dt +

∫
Cε

	(t)

t − z
dt +

∫ R

x+ε

	(t)

t − z
dt = 0. (5.26)

If we let R → ∞ and ε → 0, then∣∣∣∣
∫

CR

	(t)

t − z
dt

∣∣∣∣→ 0

and ∫
Cε

	(t)

t − z
dt = −πi	(z),

and equation (5.26) reduces to the Cauchy’s principal value (CPV)

	(z) = 1

πi
P.V .

∫ ∞

−∞
	(t)

t − z
dt (5.27)
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where 	(z) = u(x, y) + iv(x, y). If the pole z = x + i0, then

	(x + i0) = 1

πi
P.V.
∫ ∞

−∞
u(t) + iv(t)

t − x
dt

which implies that

u(x) + iv(x) = 1

πi
P.V.
∫ ∞

−∞
u(t) + iv(t)

t − x
dt

Now, equating the real and imaginary parts we obtain (we drop P.V. as we
understand that the integrals are in the sense of Cauchy’s principal value)

u(x) = 1

π

∫ ∞

−∞
v(t)

t − x
dt (5.28)

v(x) = − 1

π

∫ ∞

−∞
u(t)

t − x
dt (5.29)

These two formulas are defined as the Hilbert transform pairs, and usually
denoted by

u(x) = H{v(t)} = 1

π

∫ ∞

−∞
v(t)

t − x
dt (5.30)

v(x) = −H{u(t)} = − 1

π

∫ ∞

−∞
u(t)

t − x
dt (5.31)

Remark

It is worth noting here that

u(x) = Re{	(x + i0)} = H{Im(	(x + i0))} = 1

π

∫ ∞

−∞
v(t)

t − x
dt

v(x) = Im{	(x + i0)} = −H{Re(	(x + i0))} = − 1

π

∫ ∞

−∞
u(t)

t − x
dt

Next, we shall discuss four important theorems concerning the Hilbert trans-
formations.

Theorem 5.1: (Reciprocity theorem)

If the function φ(x) belongs to the class Lp(p > 1) in the basic interval (−∞, ∞),
then formula (5.30) defines almost everywhere a function f (x), which also belongs
to Lp, whose Hilbert transform H[ f ] coincides almost everywhere with −φ(x).

That is, for any Lp function

H(H[φ]) = −φ. (5.32)
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Theorem 5.2: (Generalized Parseval’s formula)

Let the functions φ1(x) and φ2(x) belong to the classes Lp1 and Lp2 , respectively.
Then if

1

p1
+ 1

p2
= 1,

we have ∫ ∞

−∞
φ1(x)φ2(x)dx =

∫ ∞

−∞
H[φ1(t)]H[φ2(t)]dx.

Proof

The functions φ1(x) and φ2(x) belong to Lp1 and Lp2 class, respectively, which
means that ∫ ∞

−∞
|φ1(x)|p1 dx < K1

and ∫ ∞

−∞
|φ2(x)|p2 dx < K2,

where K1 and K2 are finite real constants.
To prove this theorem, we consider

φ1(x) = v1(x)

φ2(x) = v2(x)

H{φ1(t)} = u1(x)

H{φ2(t)} = u2(x)

Cauchy’s integral formula gives us

u1(x) + iv1(x) = 1

πi
P.V.
∫ ∞

−∞
u1(t) + iv1(t)

t − x
dt

u2(x) + iv2(x) = 1

πi
P.V.
∫ ∞

−∞
u2(t) + iv2(t)

t − x
dt

Equating the real and imaginary parts we obtain

u1(x) = 1

π
P.V.
∫ ∞

−∞
v1(t)

t − x
dt = Hx[v1(t)]

u2(x) = 1

π
P.V.
∫ ∞

−∞
v2(t)

t − x
dt = Hx[v2(t)]
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v1(x) = − 1

π
P.V.
∫ ∞

−∞
u1(t)

t − x
dt = −Hx[u1(t)]

v2(x) = − 1

π
P.V.
∫ ∞

−∞
u2(t)

t − x
dt = −Hx[u2(t)]

We know that

φ1(x) = v1(x) = − 1

π
P.V.
∫ ∞

−∞
u1(t)

t − x
dt

∫ ∞

−∞
φ1(x)φ2(x)dx = − 1

π
P.V.
∫ ∞

−∞

∫ ∞

−∞
φ2(x)

[
u1(t)

t − x
dt

]
dx

= 1

π
P.V.
∫ ∞

−∞
u1(t)

∫ ∞

−∞

[
φ2(x)

x − t
dx

]
dt

=
∫ ∞

−∞
u1(t)u2(t)dt

=
∫ ∞

−∞
Hx[φ1(t)]Hx[φ2(t)]dx

Hence Parseval’s theorem∫ ∞

−∞
φ1(x)φ2(x)dx =

∫ ∞

−∞
H[φ1(t)]H[φ2(t)]dx

is proved.

Theorem 5.3

Let 	(x + iy) be an analytic function, regular for y > 0, which, for all values of y,
satisfies the condition

∫ ∞

−∞
|	(x + iy)|pdx < K(p > 1),

where K is a positive constant. Then as y → +0, 	(x + iy) converges for almost all
x to a limit function:

	(x + i0) = u(x) + iv(x)

whose real and imaginary parts u(x) and v(x) are two Lp-functions connected by
the reciprocity formulas in equations (5.28) and (5.29).

Hence, in particular, we have almost everywhere

Re{|	(ξ + i0)} = Hξ[Im{	(ξ + i0)}].
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Conversely, given any real function v(x) of the class Lp, if we put

u(x) = Hx[v(t)],

then the analytic function 	(z) corresponding to the pair (u, v) can be calculated
by means of the formula

	(z) = 1

2πi

∫ ∞

−∞
u(t) + iv(t)

t − z
dt (Im(z) > 0),

and it satisfies the condition given in Theorem 5.3.
To these theorems we add another, which plays an important role similar to that

of the convolution theorem in the theory of Laplace transformations.

Theorem 5.4

Let the functions φ1(x) and φ2(x) belong to the classes Lp1 and Lp2 , respectively.
Then if

1

p1
+ 1

p2
< 1,

i.e. if p1 + p2 < p1p2, we have

H {φ1H[φ2] + φ2H[φ2]} = H[φ1]H[φ2] − φ1φ2

almost everywhere.

Proof

To prove this theorem, we define the following analytic functions. Let

	(x + i0) = u(x) + iv(x)

	1(x + i0) = u1(x) + iv1(x)

	2(x + i0) = u2(x) + iv2(x)

Define

�(x + i0) = 	1(x + i0)	2(x + i0)

= (u1(x) + iv1(x))(u2(x) + iv2(x))

= (u1u2 − v1v2) + i(u1v2 + u2v1)

Hence we have

Re[�(x + i0)] = u1u2 − v1v2

Im[�(x + i0)] = u1v2 + u2v1
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Therefore, by definition of Hilbert transform we have

H[Im(�(x + i0))] = Re[�(x + i0)]

or H[u1v2 + u2v1] = u1u2 − v1v2

Let us set

v1 = φ1(x)

v2 = φ2(x)

u1 = H[φ1]

u2 = H[φ2]

Hence we obtain

H[φ1H{φ2} + φ2H{φ1}] = H{φ1}H{φ2} − φ1φ2 (5.33)

which is the required proof.
Note that by definition

u1(x) = H[v1(t)] = 1

π
P.V.
∫ ∞

−∞
v1(t)

t − x
dt

v1(t) = H−1[u1(x)] = − 1

π
P.V.
∫ ∞

−∞
u1(x)

x − t
dx

u2(x) = H[v2(t)] = 1

π
P.V.
∫ ∞

−∞
v2(t)

t − x
dt

v2(t) = H−1[u2(x)] = − 1

π
P.V.
∫ ∞

−∞
u2(x)

x − t
dx.

Hence it is obvious that

HH[v(t) = H[u(x)] = −v(t).

Theorem 5.5

The Hilbert transform of the derivative of a function is equivalent to the derivative
of the Hilbert transform of the function, that is

H
[

du

dt

]
= d

dx
H[u(t)].

Proof

By the definition of Hilbert transform we have

H[u(t)] = 1

π
P.V.
∫ ∞

−∞
u(t)

t − x
dt.
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If we substitute s = t − x such that ds = dt, then the right-hand side becomes

H[u(t)] = 1

π
P.V.
∫ ∞

−∞
u(s + x)

s
ds,

and then apply the derivative to both sides

d

dx
H[u(t)] = 1

π
P.V.
∫ ∞

−∞
u′(s + x)

s
ds

= 1

π
P.V.
∫ ∞

−∞
u′(t)
t − x

dt

= H
[

du

dt

]
.

This is the required proof.

Theorem 5.6

If we assume that f (t) and H[f (t)] belong to L1 class, then the Hilbert transform
of (t f (t)) is given by

H[t f (t)] = 1

π

∫ ∞

−∞
f (t)dt + xH[f (t)].

Proof

Consider the Hilbert transform of (t f (t))

H[t f (t)] = 1

π
P.V.
∫ ∞

−∞
t f (t)

t − x
dt

= 1

π
P.V.
∫ ∞

−∞
(t − x + x) f (t)

t − x
dt,

= 1

π

∫ ∞

−∞
f (t)dt + x

1

π
P.V.
∫ ∞

−∞
f (t)

t − x
dt

= 1

π

∫ ∞

−∞
f (t)dt + xH[ f (t)].

This is the required proof.

Example 5.3

Show that

(a) H[ sin t] = cos x,
(b) H[ cos t] = −sin x.
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Solution

Both (a) and (b) can be proved if we consider the analytic function 	(x + i0) =
eix = cos x + i sin x. Re[	(x + i0)] = cos x, and Im[	(x + i0) = sin x. Hence
according to the definition of Hilbert transform, we have

cos x + i sin x = 1

πi

∫ ∞

−∞
cos t + i sin t

t − x
dt

Now, equating the real and imaginary parts yields

cos x = H[sin t] = 1

π

∫ ∞

−∞
sin t

t − x
dt

sin x = −H[cos t] = − 1

π

∫ ∞

−∞
cos t

t − x
dt

Hence the proof follows.
The same problem can be directly solved by the semi-circular contour with the

radius infinity. We consider the integral
∫∞
−∞

eit

t−x dt. Here, the integration is done
around the closed semi-circular contour. By using the Cauchy’s integral formula
we have ∫ ∞

−∞
eit

t − x
dt = πi(residue at the pole t = x)

= πieix

= πi( cos x + i sin x)

Equating the real and imaginary parts we obtain

1

π

∫ ∞

−∞
cos t

t − x
dt = −sin x

1

π

∫ ∞

−∞
sin t

t − x
dt = cos x

Hence the results follow.

Example 5.4

Find the Hilbert transform of δ(t).

Solution

H{δ(t)} = 1

π

∫ ∞

−∞
δ(t)

t − x
dt

= 1

π

(
−1

x

)
= − 1

πx
.
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Example 5.5

Find the Hilbert transform of the function sin t
t .

Solution

We consider the function as eix

t and integrate this function around the infinite semi-

circular contour and use the residue calculus. The integral is
∫∞
−∞

eit

t(t−x) dt. Note that
there are two poles, one at t = 0 and the other at t = x. Both the poles are on the real
axis (the path of integration). So, we will get two residues R0 and R1 corresponding
to the two poles, respectively.

∫ ∞

−∞
eit

t(t − x)
dt = πi(R0 + R1)

= πi

(−1

x
+ eix

x

)

Equating the real and imaginary parts we obtain

1

π

∫ ∞

−∞
( cos t/t)

t − x
dt = − sin x

x

1

π

∫ ∞

−∞
( sin t/t)

t − x
dt = cos x − 1

x

Thus,

H
{

cos t

t

}
= − sin x

x
,

and

H
{

sin t

t

}
= cos x − 1

x
.

Example 5.6

Determine the Hilbert transform of 1
1 + t2 .

Solution

The integral to be considered is
∫∞
−∞

dt
(1 + t2)(t − x) . We consider the infinite semi-

circular contour again. The poles are at t = x on the real axis, i.e. on the path of
integration, and the other pole is at t = i inside the contour. The residue at t = x is
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R0 = 1
1 + x2 ; and the residue at t = i is R1 = 1

2i(i − x) . Thus,

∫ ∞

−∞
dt

(1 + t2)(t − x)
= πiR0 + 2πiR1

= πi

(
1

1 + x2

)
+ 2πi

(
1

2i(i − x)

)

Equating the real part we obtain

1

π

∫ ∞

−∞
dt

(1 + t2)(t − x)
= − x

1 + x2 .

Hence the

H
{

1

1 + t2

}
= −x

1 + x2 .

5.7 Use of Hilbert transforms in signal processing

Signal processing is a fast growing field in this cutting edge technology. The effec-
tiveness in utilization of bandwidth and energy makes the process even faster. Signal
processors are frequently used in equipment for radio, transportation, medicine,
and production. Hilbert transform is a very useful technique in signal processing.
In 1743, a famous Swiss mathematician named Leonard Euler (1707–1783) devel-
oped the formula eix = cos x + i sin x. One hundred and fifty years later the physicist
Erthur E. Kennelly and the scientist Charles P. Steinmetz used this formula to intro-
duce the complex notation of harmonic wave form in electrical engineering, that is
eiωt = cos (ωt) + i sin (ωt). In the beginning of the twentieth century, the German
scientist David Hilbert (1862–1943) finally showed that the function sin (ωt) is the
Hilbert transform of cos (ωt). This gives us the ±π/2 phase-shift operator which is
the basic property of the Hilbert transform.

A real function f (t) and its Hilbert transform H{f (τ)} = f̂ (t) are related to each
other in such a way that they together create a so-called strong analytic signal.
The strong analytic signal can be expressed with an amplitude and a phase where
the derivative of the phase can be identified as the instantaneous frequency. The
Fourier transform of the strong analytic signal gives us a one-sided spectrum in the
frequency domain. It can be easily seen that a function and its Hilbert transform
are orthogonal. This orthogonality is not always realized in applications because of
truncations in numerical calculations. However, a function and its Hilbert transform
have the same energy and the energy can be used to measure the calculation accuracy
of the approximated Hilbert transform.

The Hilbert transform defined in the time domain is a convolution between the
Hilbert transformer 1

πt and a function f (t).
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Definition 5.1

Mathematically, the Hilbert transform f̂ (t) of a function f (t) is defined for all t by

f̂ (t) = 1

π
P.V.
∫ ∞

−∞
f (τ)

t − τ
dτ,

where P.V. stands for the Cauchy’s principal value. It is normally not possible to
evaluate the Hilbert transform as an ordinary improper integral because of the pole
τ = t. However, the P.V. in front of the integral defines the Cauchy principal value
and it expands the class of functions for which the Definition 5.1 exist.

The above definition of Hilbert transform can be obtained by using the Cauchy’s
integral formula using a semi-circular contour of infinite radius R and the real x-axis.
If f (z) is a function that is analytic in an open region that contains the upper-half
plane and tends to zero at infinity at such a rate that contribution from the semi-circle
vanishes as R → ∞, then we have

P.V.
∫ ∞

−∞
f (ξ)

ξ − x
dξ = πi f (x) (5.34)

This result can be attributed to the residue calculus in which the residue at the pole
ξ = x is nothing but f (x). If we express f (x) as

f (x) = g(x) + ih(x),

on both sides of equation (5.34) with arguments on the real x-axis and equating real
and imaginary parts, then we obtain for the real part

g(x) = − 1

π
P.V.
∫ ∞

−∞
h(ξ)

x − ξ
dξ = −H{h(x)},

and for the imaginary part

h(x) = 1

π
P.V.
∫ ∞

−∞
g(ξ)

x − ξ
dξ = H{g(x)}. (5.35)

From Definition 5.1, we have that h(x) in equation (5.35) is the Hilbert transform of
g(x). We also note that g(x) = H−1{h(x)} with H−1 as the inverse Hilbert transform
operator. We see that HRe f (x) = Im f (x). Here, it is worth noting that the usual
definition of Hilbert transform using the concept of the Cauchy’s integral formula,
i.e. equation (5.34) is HIm f (x) = Re f (x). It is hoped that the reader will not be
confused with these two terminologies.

Definition 5.2

A complex signal f (x) that fulfills the condition of the Cauchy’s principal value
is called a strong analytic signal. For a strong analytic signal f (x) we have that
HRe f (x) = Im f (x).
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5.8 The Fourier transform

The Fourier transform is important in the theory of signal processing. When a func-
tion f (t) is real, we only have to look on the positive frequency axis because it
contains the complete information about the waveform in the time domain. There-
fore, we do not need the negative frequency axis and the Hilbert transform can be
used to remove it. This is explained below.

Let us define the Fourier transform F(ω) of a signal f (t) by

F(ω) =
∫ ∞

−∞
f (t)e−iωtdt (5.36)

This definition makes sense if
∫∞
−∞ |f (t)|dt exists. It is important to be able

to recover the signal from its Fourier transform. To do that we define the inverse
Fourier transform as

f̂ (t) = 1

2π

∫ ∞

−∞
F(ω)eiωtdω. (5.37)

If both f and F are integrable in the sense that
∫∞
−∞ |f (t)|dt < K1 and∫∞

−∞ |F(ω)|dω < K2 exist where K1 and K2 are two finite constants, then f (t) is

continuous and bounded for all real t and we have f̂ (t) = f (t), that is

f (t) = 1

2π

∫ ∞

−∞
F(ω)eiωtdω. (5.38)

Equation (5.38) is known as the inverse Fourier transform. The discrete form of
the inversion formula is that if f belongs to L1(�), f is of bounded variation in the
neighbourhood of t and f is continuous at t, then

f (t) = lim
T→∞

1

2π

∫ T

−T
F(ω)eiωtdω.

This means that equation (5.38) is to be interpreted as a type of Cauchy principal
value. There is also a discrete formula for the Fourier transform when f belongs to
L2(�), and in this case we define the Fourier transform as

F(ω) = lim
N→∞

∫ N

−N
f (t)e−iωtdt.

Theorem 5.7

If f, g, and G belong to L1(�) or if f and g belong to L2(�) then∫ ∞

−∞
f (t)g∗(t)dt = 1

2π

∫ ∞

−∞
F(ω)G∗(ω)dω.
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Proof

We know

f (t) = 1

2π

∫ ∞

−∞
F(ω)eiωtdω

g(t) = 1

2π

∫ ∞

−∞
G(ω)eiωtdω

Then multiplying f by g∗ and integrating both sides with respect to t from −∞
to ∞, we obtain

∫ ∞

−∞
f (t)g∗(t)dt = 1

2π

∫ ∞

−∞
F(ω)

∫ ∞

−∞
[g∗(t)eiωtdt]dω

= 1

2π

∫ ∞

−∞
F(ω)G∗(ω)dω

This is the required proof.
Note: If f (t) is a real function then f ∗(t) = f (t) and hence

f (t) = 1

2π

∫ ∞

−∞
F(ω)eiωtdω

= 1

2π

∫ ∞

−∞
F( − ω)e−iωtdω

f ∗(t) = 1

2π

∫ ∞

−∞
F∗(ω)e−iωtdω

= 1

2π

∫ ∞

−∞
F∗( − ω)eiωtdω

Therefore, it is obvious that F(ω) = F∗(−ω) or F(−ω) = F∗(ω) in the frequency
domain and we see that F for negative frequencies can be expressed by F∗ for
positive one.

Theorem 5.8

If f(t) is a real function then

f (t) = 1

2π

∫ ∞

0
[F∗(ω)e−iωt + F(ω)eiωt]dω.
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Proof

The inverse Fourier transform of a real function f (t) is given by

f (t) = 1

2π

∫ ∞

−∞
F(ω)eiωtdω

= 1

2π

∫ 0

−∞
F(ω)eiωtdω + 1

2π

∫ ∞

0
F(ω)eiωtdω

= 1

2π

∫ ∞

0
F(−ω)e−iωtdω + 1

2π

∫ ∞

0
F(ω)eiωtdω

= 1

2π

∫ ∞

0
[F∗(ω)e−iωt + F(ω)eiωt]dω

Hence the theorem is proved. This result implies that the positive frequency
spectrum is sufficient to represent a real signal.

5.9 The Hilbert transform via Fourier transform

Let us define a function Sf (ω) which is zero for all negative frequency and 2F(ω)
for all positive frequencies

Sf (ω) = F(ω) + sgn(ω)F(ω) (5.39)

where the function sgn(ω) is defined as

sgn(ω) =

⎧⎪⎨
⎪⎩

1 for ω > 0

0 for ω = 0

−1 for ω < 0

and F(ω) is the Fourier transform of the real function f (t). It can be easily visu-
alized that the spectrum Sf (ω) is twice the measure of the spectrum F(ω), that is
Sf (ω) = 2F(ω). The inverse transform of Sf (ω) is therefore given by

sf (t) = 1

2π

∫ ∞

−∞
Sf (ω)eiωtdω = 1

π

∫ ∞

0
F(ω)eiωtdω, (5.40)

where sf (t) is a complex function of t in the form

sf (t) = f (t) + ig(t) (5.41)

From equations (5.39) and (5.41) we have that

f (t) + ig(t) = 1

2π

∫ ∞

−∞
[F(ω) + sgn(ω) F(ω)]eiωtdω

= 1

2π

∫ ∞

−∞
F(ω)eiωtdω + i

1

2π

∫ ∞

−∞
(−isgn(ω))F(ω)eiωtdω

(5.42)
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from which it is absolutely clear that as F{ f (t)} = F(ω), the Fourier transform of
g(t) must be (−isgn(ω))F(ω). That means

g(t) = 1

2π

∫ ∞

−∞
(−isgn(ω))F(ω)eiωtdω.

It is a standard result that the inverse Fourier transform of (−isgn(ω)) = 1
πt . Thus,

using the convolution integral with this information we have

g(t) = F−1
{
F
{

1

πt

}
F{f (t)}

}

= f (t) ∗ 1

πt

= 1

π
P.V.
∫ ∞

−∞
f (τ)

t − τ
dτ

= H{f (t)} = f̂ (t) (5.43)

and we see that g(t) can be written as f̂ (t) which is known as the Hilbert transform
of f (t) . Further more g(t) is real.

5.10 The Hilbert transform via the ±π/2 phase shift

The Hilbert transform can be defined by the convolution of two functions f (t) and
h(t) where f is a regular continuous function and h is the response of an impulse
function, and usually represented by the formula

y(t) = f (t) ∗ h(t) =
∫ ∞

−∞
f (t − τ)h(τ)dτ.

By the Fourier transform property, we see that

F{y(t)} = F{f (t)}F{h(t)}.
Thus, this impulsive response function h(t) plays a very important role in producing
the Hilbert transform. We shall illustrate below the ways to obtain this important
function.

Let us consider a spectrum in the frequency domain defined by

H (ω) = −isgn(ω) =

⎧⎪⎨
⎪⎩

−i = e−iπ/2 for ω > 0

0 for ω = 0

i = eiπ/2 for ω < 0

The pmπ/2 phase shift is interpreted in the frequency domain as a multiplication
with the imaginary value ±i as defined above. h(ω) is unfortunately not a property
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of Fourier transform but the problem can be solved by expressing H (ω) as a limit
of a bounded function G(ω), that is

G(ω) =
{

−ie−aω for ω > 0

ieaω for ω < 0

where

lim
a→0

G(ω) = H (ω). (5.44)

It is now possible to use the inverse Fourier transform on G(ω), thus

g(t) = F−1G(ω)

= 1

2π

∫ 0

−∞
ieaωeiωtdω + 1

2π

∫ ∞

0
−ie−aωeiωtdω

= i

2π

∫ ∞

0

{
e−(a+it)ω − e−(a−it)ω

}
dω

= i

2π

(
−e−(a+it)ω

a + it
+ e−(a−it)ω

a − it

)∞

0

= t

π(a2 + t2)

where g(t) → h(t) when a → 0 and the inverse Fourier transform of the impulse
response of H (ω) is

h(t) = lim
a→0

g(t) = lim
a→0

t

π(a2 + t2)
= 1

πt
.

A convolution between f (t) and the impulse response h(t) gives us

y(t) = f̂ (t) = 1

π

∫ ∞

−∞
f (τ)

t − τ
dτ,

where f̂ (t) is known as the Hilbert transform. It is worth noting that this integral
shall be considered as a principal value integral, a limit that corresponds to the limit
in equation (5.44). To make a rigorous presentation of this problem we should apply
the distribution theory but we shall not pursue this approach in this text. Thus, we
can clearly define the Hilbert transform of f (t) with the kernel K(t, τ) = 1

π(t−τ) as

H{f (τ)} = f̂ (t) = 1

π
P.V.
∫ ∞

−∞
f (τ)

t − τ
dτ,

where P.V. stands for the Cauchy’s principal value as defined before.
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5.11 Properties of the Hilbert transform

Some important properties of the Hilbert transform are discussed in this section. We
assume that F(ω) does not contain any impulses at ω = 0 and f (t) is a real-valued
function. Some of the properties are to be interpreted in a distributional sense.

5.11.1 Linearity

The Hilbert transform that is a Cauchy principal value function is expressed in the
following form

H{f (t)} = 1

π
P.V.
∫ ∞

−∞
f (τ)

t − τ
dτ.

This definition is in accordance with the convolution integral of Fourier transform,
and the notation for the Hilbert transform is used in a simple and understandable
manner. Later we shall use another notation f̂ (t) = H{ f (t)}. We write the function
f (t) = c1 f1(t) + c2 f2(t), where c1 and c2 are two arbitrary constants. It is assumed
that the Hilbert transform of f1(t) and f2(t) exists and therefore,

H{f (t)} = H{c1f1(t) + c2f2(t)}

= 1

π
P.V.
∫ ∞

−∞
c1f1(τ) + c2f2(τ)

t − τ
dτ

= c1
1

π
P.V.
∫ ∞

−∞
f1(τ)

t − τ
dτ + c2

1

π
P.V.
∫ ∞

−∞
f2(τ)

t − τ
dτ

= c1H{ f1(t)} + c2H{ f2(t)}
This is the linearity property of the Hilbert transform.

5.11.2 Multiple Hilbert transforms and their inverses

In this section, we shall show that if we take the Hilbert transform twice on a real
function it yields the same function it with a negative sign. Let us consider the
Cauchy’s integral formula

f (t) + ig(t) = 1

πi
P.V.
∫ ∞

−∞
f (τ) + ig(τ)

τ − t
dτ Cauchy’s sense

= − 1

πi
P.V.
∫ ∞

−∞
f (τ) + ig(τ)

t − τ
dτ Fourier’s sense

= i

π
P.V.
∫ ∞

−∞
f (τ) + ig(τ)

t − τ
dτ

= 1

π
P.V.
∫ ∞

−∞
if (τ) − g(τ)

t − τ
dτ
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Equating the real and imaginary parts we obtain

f (t) = − 1

π
P.V.
∫ ∞

−∞
g(τ)

t − τ
dτ = −H{g(t)}

g(t) = 1

π
P.V.
∫ ∞

−∞
f (τ)

t − τ
dτ = H{ f (t)}

These definition of Hilbert transform are due to Fourier.
Hence it is obvious that

−f (t) = H{g(t)} = HH{ f (t)}.

Thus, we see that the Hilbert transform used twice on a real function gives us the
same real function but with altered sign.

HH = I ,

with I as an identity operator. The Hilbert transform used four times on the same
real function gives us the original function back

H2H2 = H4 = I (5.45)

A more interesting property of multiple Hilbert transforms arises if we use the
Hilbert transform three times, it yields

H3H = I

which implies that

H3 = H−1.

This tells us that it is possible to use the multiple Hilbert transform to calculate the
inverse Hilbert transform.

As we have seen before the Hilbert transform can be applied in the time domain
by using the definition of Hilbert transform. In the frequency domain, we simply
multiply the Hilbert transform operator −isgn(ω) to the function F(ω). By multi-
plying the Hilbert transform operator by itself we get an easy method to do multiple
Hilbert transforms, that is

Hn{ f (t)} = (−isgn(ω))nF(ω), (5.46)

where n is the number of Hilbert transforms.
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5.11.3 Derivatives of the Hilbert transform

Theorem 5.9

The Hilbert transform of the derivative of a function is equal to the derivative of
the Hilbert transform, that

Hf ′(t) = d

dt
f̂ (t).

Proof

Consider the definition of the Hilbert transform

f̂ (t) = 1

π
P.V.
∫ ∞

−∞
f (τ)

t − τ
dτ

= 1

π
P.V.
∫ ∞

−∞
f (t − τ)

τ
dτ

Now, differentiating with respect to t both sides we have

d

dt
f̂ (t) = 1

π
P.V.
∫ ∞

−∞
f ′(t − τ)

τ
dτ

= 1

π
P.V.
∫ ∞

−∞
f ′(τ)

t − τ
dτ

= Hf ′(t).

Hence the theorem is proved.

5.11.4 Orthogonality properties

Definition 5.3

A complex function is called Hermitian if its real part is even and its imaginary
part is odd. From this definition, we infer that the Fourier transform F(ω) of a real
function f (t) is Hermitian.

Theorem 5.10

A real function f (t) and its Hilbert transform f̂ (t) are orthogonal if f , f̂ , and F
belong to L1(�) or if f and f̂ belong to L2(�).
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Proof

By using the Parseval’s identity we have that

∫ ∞

−∞
f (t) f̂ (t)dt = 1

2π

∫ ∞

−∞
F(ω)(−isgn(ω)F(ω))∗dω

= i

2π

∫ ∞

−∞
sgn(ω)F(ω)F∗(ω)dω

= i

2π

∫ ∞

−∞
sgn(ω)|F(ω)|2dω

where sgn(ω) is an odd function and the fact that F(ω) is Hermitian gives us that
|F(ω)|2 is an even function. We conclude that

∫ ∞

−∞
f (t)f̂ (t)dt = 0,

and therefore a real function and its Hilbert transform are orthogonal.

5.11.5 Energy aspects of the Hilbert transform

The energy of a function f (t) is closely related to the energy of its Fourier transform
F(ω). Theorem 5.7 which is known as the Parseval’s theorem is called the Rayleigh
theorem provided g(t) = f (t). It will help us to define the energy of f (t) and F(ω)
as given below

Ef =
∫ ∞

−∞
| f (t)|2dt = 1

2π

∫ ∞

−∞
|F(ω)|2dω. (5.47)

Here, it is usual to assume that f belongs toL2(�) which means that Ef is finite.
The same theorem can be used to define the energy of the Hilbert transform of f (t)
and F(ω), that is

Ef̂ =
∫ ∞

−∞

∣∣∣ f̂ (t)
∣∣∣2 dt = 1

2π

∫ ∞

−∞

∣∣∣−isgn(ω)F(ω)
∣∣∣2 dω, (5.48)

where |− isgn(ω)|2 = 1 except for ω = 0. But, since F(ω) does not contain any
impulses at the origin we get Ef̂ = Ef .

A consequence of equation (5.48) is that f in the space L2(�) indicates that
f̂ belongs to L2(�). The accuracy of the approximated Hilbert transform operator
can be measured by comparing the energy in equation (5.47). However, a minor
difference in energy always exists in real applications due to unavoidable truncation
error.
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5.12 Analytic signal in time domain

The Hilbert transform can be used to create an analytic signal from a real signal.
Instead of studying the signal in the frequency domain it is possible to look at a
rotating vector with an instantaneous phase θ(t) and an instantaneous amplitude
A(t) in the time domain, that is

z(t) = f (t) + if̂ (t) = A(t)eiθ(t).

This notation is usually called the polar notation where A(t) =
√

f 2(t) + f̂ 2(t) and

θ(t) = arctan
{

f̂ (t)
f (t)

}
. If we express the phase by Taylor’s expansion then

θ(t) = θ(t0) + (t − t0)θ′(t0) + R,

where R is small when t is close to t0. The analytic signal becomes

z(t) = A(t)eiθ(t) = A(t)ei(θ(t0)−t0θ′(t0))eitθ′(t0)eiR,

and we see that θ′(t0) has the role of frequency if R is neglected. This makes it
natural to introduce the notion of instantaneous angular frequency, that is

ω(t) = dθ(t)

dt
.

The amplitude is simply

B(t) = A(t)ei(θ(t0)−t0θ′(t0)).

As for example if z(t) = f (t) + if̂ (t) = cos ω0t + i sin ω0t = A(t)eiω0t such that

A(t) =
√

cos2 (ω0t) + sin2 (ω0t) = 1 and the frequency is ω(t) = ωo. In this par-
ticular case, we see that the instantaneous frequency is the same as the real
frequency.

5.13 Hermitian polynomials

The numerical integration works fine on smooth functions that decrease rapidly at
infinity. But it is efficient when a function decreases at a slow rate at infinity. In this
section, we describe Hermite polynomials to calculate the Hilbert transform. First
we need to take a look at the definition of the Hermite polynomials.

The successive differentiation of the Gaussian pulse e−t2
generates the nth order

Hermite polynomial which is defined by Rodrigues’ formula as

Hn(t) = (−1)net2 dn

dtn
e−t2

.
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It is also possible to calculate the Hermite polynomials by the recursion formula

Hn(t) = 2tHn−1(t) − 2(n − 1)Hn−2(t), (5.49)

with n = 1, 2, 3, . . . and the start condition H0(t) = 1.

Let us define the weighted Hermite polynomials that is weighted by the
generating function e−t2

such that

gn(t) = Hn(t)e−t2 = (−1)n dn

dtn
e−t2

.

The weighted Hermite polynomials gn(t) do not represent an orthogonal set in L2
since the scalar product∫ ∞

−∞
gn(t)gm(t)dt =

∫ ∞

−∞
Hn(t)Hm(t)e−2t2

dt,

is in general different from zero when n �= m. The solution is to replace the weighted
function e−t2

with e−t2/2, that is

∫ ∞

−∞
Hn(t)Hm(t)e−t2

dt =
{

0 for n �= m

2nn!√π for n = m.

By that the weighted Hermitian polynomials fulfil the condition of orthogonality.
The weighted polynomial e−t2/2Hn(t) divided by their norm

√
2nn!√π yields a set

of orthonormal functions in L2 and is called the Hermite function

ϕn(t) = e−t2/2Hn(t)√
2nn!√π

. (5.50)

If we combine equations (5.48) and (5.49), we get the recurrence algorithm

ϕn(t) =
√

2(n − 1)!
n! tϕn−1(t) − (n − 1)

√
(n − 2)!

n! ϕn−2(t), (5.51)

which can be used to derive the Hilbert transform of the Hermite functions by
applying the multiplication by t theorem.

Theorem 5.11

If we assume that f (t) and f̂ (t) belong to L1 then the Hilbert transform of t f (t) is
given by the equation

H{t f (t)} = t f̂ (t) − 1

π

∫ ∞

−∞
f (τ)dτ.



MM-165 CH005.tex 30/4/2007 10: 46 Page 127

The Singular Integral Equation 127

The second term on the right-hand side with integral is a constant defined by the
function f (t). For odd functions this constant equal to zero.

Proof

Consider the Hilbert transform of t f (t)

H{t f (t)} = 1

π
P.V.
∫ ∞

−∞
τ f (τ)

t − τ
dτ

= 1

π
P.V.
∫ ∞

−∞
(t − τ) f (t − τ)

τ
dτ

= 1

π
P.V.
∫ ∞

−∞
t f (t − τ)

τ
dτ − 1

π

∫ ∞

−∞
f (t − τ)dτ

= tH{ f (t)} − 1

π

∫ ∞

−∞
f (t − τ)dτ,

and the theorem is proved. From Theorem 5.11 and equation (5.51) we have that

H{ϕn(t)} = ϕ̂(t)

=
√

2(n − 1)!
n!

{
tϕ̂(t) − 1

π

∫ ∞

−∞
ϕn−1(η)dη

}

− (n − 1)

√
(n − 2)!

n! ϕ̂n−2(t), (5.52)

where n = 1, 2, 3, . . . . The first term ϕ0(t) can be obtained by using the Fourier
transform on the equation

ϕ0(t) = π− 1
4 e−t2/2.

Thus, the Fourier transform of ϕ0(t) = √
2π

1
4 e−ω2/2.

In the frequency domain, we multiply the Hermite function ϕ0(t) by the Hilbert
transform −isgn(ω) and finally we use the inverse Fourier transform to get the
Hilbert transform of the Hermite function, that is

H{ϕ0(t)} = ϕ̂0(t) = √
2π

1
4

∫ ∞

−∞
e−ω2/2(−isgn(ω))eiωtdω.

Since sgn(ω)e− ω2
2 is odd we have

ϕ̂0(t) = 2
√

2π
1
4

∫ ∞

0
e− ω2

2 sin (ωt)dω, (5.53)

which can be used in equation (5.52) to derive the rest of the Hilbert transforms.
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Example 5.7

Determine the Hilbert transform of the Gaussian pulse e−t2
by using Hermite

polynomial.

Solution

To determine the Hilbert transform of the Gaussian pulse we need to first get the
Fourier transform and then multiply this transform by (−isgn(ω)) and obtain the
inverse Fourier transform which will result in the Hilbert transform. Let us do it.

F{e−t2} =
∫ ∞

−∞
e−t2

e−iωtdt

=
∫ ∞

−∞
e−(t2+iωt)dt

= e− ω2
4

∫ ∞

−∞
e−(t+ iω

2

)2
dt

= e− ω2
4

∫ ∞

−∞
e−η2

dη

= √
πe− ω2

4

Now, we determine the Hilbert transform

H{e−t2} = 1

2π

∫ ∞

−∞
(−isgn(ω))(

√
πe− ω2

4 )eiωtdω

= 1

2
√

π

∫ ∞

−∞
sgn(ω)e− ω2

4 [ sin (ωt) − i cos (ωt)]dω

= 1√
π

∫ ∞

0
e− ω2

4 sin (ωt)dω

It is worth noting that sgn(ω) is an odd function and hence sgn(ω) sin ωt is an
even function, and sgn(ω) cos ωt is an odd function. Hence the sine function will
survive.

Remark

Another method to calculate the Hilbert transform of the Hermite function
(Gaussian pulse) π− 1

4 e−t2/2 is to multiply the Hilbert transformer (−isgn(ω)) by
the spectrum of the Hermite function and use the inverse Fourier transform. No
infinite integral is needed in the calculations of the Hermite functions. Therefore,
the error does not propagate.

A little note, as we have already seen before, that the Hilbert transform of the
delta pulse δ(t) gives us the Hilbert transformer 1

πt and the Fourier transform of the
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Hilbert transformer gives us the sign shift function (signum) (−isgn(ω)), that is

H{δ(t)} = 1

π

∫ ∞

−∞
P.V.

δ(τ)

t − τ
dτ = 1

πt

F
{

1

πt

}
= (−isgn(ω)).

This information is very important in our study of the Hilbert transform and the
related Fourier transform. We next turn our attention to the study of finite Hilbert
transform.

5.14 The finite Hilbert transform

We shall now study equations with Cauchy’s principal integrals over a finite interval.
These equations have important applications, for example, in aerodynamics.

Of fundamental importance in this study is the finite Hilbert transform

f (x) = 1

π
P.V.
∫ 1

−1

φ(t)

t − x
dt, (5.54)

where we assume the basic interval ( − 1, 1). Until recently this transformation, in
contrast to the infinite one, has received little attention. A few of its properties can
be deduced from the corresponding properties of the infinite transformations, by
supposing that the function φ vanishes identically outside the interval (−1, 1).

For instance, from Parseval’s theorem 5.2, we obtain∫ 1

−1
{φ1(x)Hx{φ2(t)} + φ2(x)Hx{φ1(t)}} dx = 0, (5.55)

provided that the functions φ1(x) and φ2(x) belong to the classes Lp1 and Lp2 ,
respectively, in the basic interval (−1, 1), and that

1

p1
+ 1

p2
≤ 1. (5.56)

Similarly, if 1
p1

+ 1
p2

< 1, we obtain from Theorem 5.4

H[φ1H{φ2} + φ2H{φ1}] = H{φ1}H{φ2} − φ1φ2. (5.57)

In other case, however, the transformation H requires special treatment. For
inversion formula, in Lp space

φ(x) = − 1

π
P.V.
∫ ∞

−∞
f (t)

t − x
dt, (5.58)

which can be immediately deduced from Theorem 5.1, is not satisfactory because
its use requires knowledge of the function f (x) outside of the basic interval
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( − 1, 1), where it generally does not vanish. One difficulty in the study of the
finite Hilbert transform is that there exists no simple reciprocity theorem like
Theorem 5.1; in fact, the transformation has no unique inverse in the Lp-space
(p > 1). For more information the reader is referred to Tricomi [5].

For instance, the finite Hilbert transform of the function (1 − x2)− 1
2 , which

belongs to the class 2-0, vanishes identically in the basic interval (−1, 1); for if we

put y = (1−t2)
(1+t2) , we find

Hx[(1 − y2)−
1
2 ] = 1

π
P.V.
∫ 1

−1

1√
1 − y2

dy

y − x

= 2

π
P.V.
∫ ∞

0

dt

(1 − x) − (1 + x)t2

= 1

π
√

1 − x2

[
ln

∣∣∣∣∣
√

1 − x + √
1 + xt√

1 − x − √
1 + xt

∣∣∣∣∣
]∞

0

= 0. (5.59)

However, outside of the interval (−1, 1), we have

Hx[(1 − y2)−
1
2 ] = 1

π

∫ 1

−1

1√
1 − y2

dy

y − x

= − 2

π

∫ ∞

0

dt

(x − 1) + (x + 1)t2

= − 2

π
√

x2 − 1

[
tan−1 (

√
x + 1t√
x − 1

)

]∞

0

= − 1√
x2 − 1

. (5.60)

Note that as a consequence of equation (5.59), we obtain

Hx[(1 − y2)
1
2 ] = 1

π
P.V.
∫ 1

−1

1 − y2√
1 − y2

dy

y − x

= − 1

π
P.V.
∫ 1

−1

y2√
1 − y2

dy

y − x

= − 1

π
P.V.
∫ 1

−1

y2 − x2 + x2√
1 − y2

dy

y − x

= − 1

π
P.V.
∫ 1

−1

y + x√
1 − y2

dy

= − x

π
P.V.
∫ 1

−1

dy√
1 − y2

= −x. (5.61)
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The main problem for the finite Hilbert transform is to find its inversion formula
in the Lp-space (p > 1), that is to solve the airfoil equation (5.54) by means of
Lp-function (p > 1). It must, of course, be assumed that the given function f (x)
itself belongs to the class Lp.

5.14.1 Inversion formula for the finite Hilbert transform

To find an inversion formula we can use the convolution Theorem 5.4, which can
be applied to the function pair

φ1(x) ≡ φ(x), φ2(x) ≡ (1 − x2)
1
2 ,

because the second function, being obtained, belongs to any class, even for very
large p2. We thus obtain the equality

Hx[−yφ(y) +
√

1 − y2f (y)] = −xf (x) −
√

1 − x2φ(x). (5.62)

On the other hand, we have

Hx[yφ(y)] = 1

π
P.V.
∫ 1

−1

y − x + x

y − x
φ(y)dy = 1

π

∫ 1

−1
φ(y)dy + xf (x).

Hence from equation (5.62) it follows that necessarily

− 1

π

∫ 1

−1
φ(y)dy + Hx

[√
1 − y2f (y)

]
= −

√
1 − x2φ(x),

that is √
1 − x2φ(x) = −Hx

[√
1 − y2f (y)

]
+ C, (5.63)

or, more explicitly,

φ(x) = − 1

π
P.V.
∫ 1

−1

√(
1 − y2

1 − x2

)
f (y)

y − x
dy + C√

1 − x2
. (5.64)

Here, in view of equation (5.59) the constant

C = 1

π

∫ 1

−1
φ(y)dy (5.65)

has the character of an arbitrary constant.
The significance of the previous result is the following: if the given equation

(5.54) has any solution at all of class Lp (p > 1), then this solution must have the
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form as in equation (5.64). Consequently, the only nontrivial solutions of the class
Lp (p > 1) of the homogeneous equation

1

π
P.V.
∫ 1

−1

φ(y)

y − x
dy = 0 (5.66)

are C(1 − x2)− 1
2 .

In view of the identities√(
1 − y2

1 − x2

)
=
√(

1 + x

1 − x

)√(
1 − y

1 + y

)(
1 + y − x

1 + x

)

=
√(

1 − x

1 + x

)√(
1 + y

1 − y

)(
1 − y − x

1 − x

)

solution (5.64) can be put into the two further alternative forms

φ(x) = − 1

π

√(
1 + x

1 − x

)
P.V.
∫ 1

−1

√(
1 − y

1 + y

)
f (y)

y − x
dy + C1√

1 − x2

φ(x) = − 1

π

√(
1 − x

1 + x

)
P.V.
∫ 1

−1

√(
1 + y

1 − y

)
f (y)

y − x
dy + C2√

1 − x2
(5.67)

5.14.2 Trigonometric series form

Some authors use trigonometric series form to solve the airfoil equation. This
method is theoretically less satisfying than the present one; however, it may be
useful in practice.

Using the finite Hilbert transform we can prove the following identities:

P.V.
∫ π

0

cos (nη)

cos η − cos ξ
dη = π

sin (nξ)

sin ξ
(n = 0, 1, 2, 3, . . . ) (5.68)

P.V.
∫ π

0

sin ((n + 1)η) sin η

cos η − cos ξ
dη = −π cos (n + 1)ξ, (5.69)

These pair of results show that the finite Hilbert transform operates in a particularly
simple manner on the Tchebichef polynomials

Tn( cos ξ) = cos (nξ), Un( cos ξ) = sin (n + 1)ξ

sin ξ
.

To be precise, we have the finite Hilbert transform

H{(1 − t2)−
1
2 Tn(t)} = Un−1(x) (n = 1, 2, 3, . . . ) (5.70)
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Hence, by expanding f (x) in a series of polynomials Un(x), we can immediately
deduce (at least formally) a corresponding expansion of φ(x) in series of poly-
nomials Tn(t), if we neglect the factor (1 − t2)− 1

2 . Formula (5.70), as well as the
similar one

Hx[(1 − t2)
1
2 Un−1(t)] = −Tn(x), (5.71)

can be readily proved with the help of Theorem 5.3, by starting with the analytic
functions

	(z) = −(1 − z)−
1
2

[
z −

√
(1 − z2)

]n

and

	(z) =
[

z −
√

(1 − z2)i
]n

,

respectively.

5.14.3 An important formula

Using the same method we can also prove the important formula

Hx

[(
1 − t

1 + t

)α]
= cot g(απ)

(
1 − x

1 + x

)α

− 1

sin (απ)
, (0 < |α| < 1). (5.72)

We start with the analytic function

	(z) =
(

z − 1

z + 1

)α

− 1, (5.73)

which satisfies the condition
∫∞
−∞ |	(x + iy)|pdx < K for (p > 1), where K is a

positive constant. Because of |z + 1| > 2 we have

	(z) = −α
2

z + 1
+
(

α

2

)(
2

z + 1

)2

−
(

α

3

)(
2

z + 1

)3

+ · · · .

Equation (5.72) is then an immediate consequence of Theorem 5.3, because on
the real axis the function, i.e. equation (5.73) reduces to a function 	(x + i0) which
is real outside of (−1, 1), and for −1 < x < 1 we have

	(x + i0) =
(

1 − x

1 + x

)α

eiαπ − 1

=
(

1 − x

1 + x

)α

cos(πα) − 1 + i

(
1 − x

1 + x

)α

sin(πα). (5.74)

Furthermore, equation (5.72) is interesting because it shows that in some cases
a function φ(y) which becomes infinite like A(1 − y)−α or A(1 + y)−α 0 < α < 1
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as y → ±1 is carried by the finite Hilbert transform into a function with similar
behaviour, if we neglect the fact that A is replaced by ± A cot g(πα). That this
behaviour is common and shown by Tricomi [5] using asymptotic theorem.

Remark

Some explanation with regard to the result (5.72) is given below.

Re	(x + i0) =
(

1 − x

1 + x

)α

cos(πα) − 1

Im	(x + i0) =
(

1 − x

1 + x

)α

sin(πα)

Hx[Im	(x + i0)] = Re	(x + i0)

1

π

∫ 1

−1

(
1 − y

1 + y

)α sin (πα)

y − x
dy =

(
1 − x

1 + x

)α

cos(πα) − 1

1

π

∫ 1

−1

(
1 − y

1 + y

)α dy

y − x
=
(

1 − x

1 + x

)α

cot(πα) − 1

sin(πα)

Hence the result (5.72) follows.

5.15 Sturm–Liouville problems

Variational methods can be used to study the solution procedures of differential
equations. We have in the meantime observed that the problem of extremizing an
integral leads to one or more differential equations. Let us turn our attention to
study the boundary value problems by using the variational calculus. Although this
cannot always be done, it is possible to investigate in some very important cases.
By way of illustrating, we obtain with the general second-order Sturm–Liouville
equation

[r(x)y′]′ + [q(x) + λp(x)] y = 0, (5.75)

where the functions r, p, and q are continuous, r(x) �= 0 and p(x) > 0 on a fundamen-
tal interval [a, b]. Multiplying equation (5.75) by y throughout, and then integrating
from a to b, and subsequently solving for λ algebraically we have

λ = − ∫ b
a {q(x)y2 + y[r(x)y′]}dx∫ b

a p(x)y2dx
= I

J
. (5.76)

Now, if y is a solution of equation (5.75), cy is a solution also, where c is an
arbitrary constant. In fact, since p(x) > 0 on [a, b], every solution of equation (5.75)
is expressed in terms of solutions that satisfy the normalized condition.

J =
∫ b

a
p(x)y2dx = 1. (5.77)
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Imposing this constraint, the last equation in equation (5.76) becomes

−
∫ b

a
{q(x)y2 + y[r(x)y′]′ }dx = I ,

or, integrating y[r(x)y′]′ by parts,

I =
∫ b

a
(r(x)y′2 − q(x)y2)dx + r(a)y(a)y′(a) − r(b)y(b)y′(b). (5.78)

For a Sturm–Liouville problem consisting of equation (5.75) and a pair of fixed
end-point conditions

y(a) = 0

y(b) = 0

}
. (5.79)

The last two terms in equation (5.78) vanish leaving

I =
∫ b

a
(r(x)y′2(x) − q(x)y2)dx. (5.80)

The problem of reducing this integral stationary, subject to the constraint in
equation (5.77), and relative to functions that vanish at x = a and x = b, is clearly
an isoperimetric problem, Its corresponding Euler−Lagrange equation is

∂f ∗

∂y
− d

dx

(
∂f ∗

∂y′

)
= 0,

where f ∗ = r(x)(y′)2 − q(x)y2 − λp(x)y2. It is easily verified that these relations
yield equation (5.75).

[
∂f ∗

∂y
= −2q(x)y − 2λp(x)y

∂f ∗

∂y′ = 2y(x)y′ and
d

dx

(
∂f ∗

∂y′

)
= 2(r(x)y′)′

and so (r(x)y′)′ + (q(x) + λp(x)y)y = 0
]

.

Thus, the functions that solve our isoperimetric problem must be normalized
solutions of the Sturm−Liouville problem consisting of equations (5.75) and (5.79),
the normalized being with respect to p(x). Of course, these solutions are just the
normalized characteristic functions y1, y2 . . . yn that correspond to the characteristic
rules of the Sturm−Liouville problem. With the characteristic values λ1, λ2 . . . λk
arranging in increasing order, it is possible to show that λk is the minimum of
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the integral equation (5.80) relative to the suitable differentiable functions y that
satisfies equations (5.79), (5.77), and the k − 1 orthogonality relations∫ b

a
p(x)yiydx = 0 i = 1, 2, . . . k − 1.

The I of equation (5.80) that takes on the values of λk when y is replaced by yk
can be established as follows. First, replace y by yk in the integral of I . Then integrate
the term r(x)(y′

k )2 by parts, observing that yk (a) = yb(a) = 0. The result of all this is

I =
∫ b

a
[r(x){y′

k}2 − q(x)y2
k ]dx

= [r(x)y′(x)
∫

y′
k dx]b

a −
∫ b

a
yk{r(x)y′

k}
′
dx −

∫ b

a
q(x)y2

k dx

= [r(x)y′
k (x)yk (x)]b

a −
∫ b

a
[ yk{r(x)y′

k (x)}′ + q(x)y2
k ]dx

= −
∫ b

a
yk{{r(x)y′

k}
′ + q(x)yk}dx.

Since [r(x)y′
k ]′ + q(x)yk (x)] = −λk p(x)yk and

∫ b
a p(x)y2

k dx = 1, we have

I =
∫ b

a
λk y2

k p(x)dx = λk .

Summary of Sturm–Liouville problems

A Sturm−Liouville problem consisting of equation (5.75) and two free end-point
conditions

a1r(a)y′(a) + a2 y(a) = 0

b1r(b)y′(b) + b2 y(b) = 0

}
(5.81)

can also be related to an isoperimetric problem. In this case, we may set h = a2/a1
and k = b2/b1 and utilize equation (5.81) to write equation (5.78) as

I =
∫ b

a
[r(x)(y′)2 − q(x)y2]dx + ky2(b) − hy2(a). (5.82)

The last two terms of this equation can be incorporated into the integral by intro-
ducing any continuously differentiable function g(x) on [a, b] for which g(a) = h
and g(b) = k . Indeed, this enables us to express equation (5.82) as

I =
∫ b

a

[
r(x)(y′)2 − q(x)y2 + d

dx
(gy2)

]
dx. (5.83)
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The isoperimetric problem requires that this integral be rendered stationary, sub-
ject to equation (5.77), and relative to continuously differentiable function defined
on [a, b]. Also it has equation (5.75) as its Euler−Lagrange equation because
d
dx (gy2) is an exact derivative. This can, of course, be verified directly. Hence
the choice of g has no effect on the stationary values of I . Since no conditions
have been imposed on the comparison functions at the end-points of the specified
interval [a, b], a natural boundary condition

∂f ∗

∂y′ = 0

where

f ∗ =
[

r(x)(y′)2 − q(x)y2 + d

dx
(gy2)

]
− λp(x)y2,

must hold at x = a and at x = b. Differentiating f ∗ partially with respect to y′,
we find

∂f ∗

∂y′ = ∂

∂y′

[
r(x)y′2 − q(x)y2 + d

dx
(gy2)

]
= 2r(x)y′ + 2gy

and so the condition r(x)y′ + gy = 0 must hold at each end of [a, b]. Substituting
x = a and x = b, in turn, into this equation we get equation (5.81). The choice of g
is again of no consequence so long as g(a) = a2/a1 and g(b) = b2/b1.

Example 5.8: A practical application

In many practical applications, a variational formulation of the problem being inves-
tigated is easy to derive. To illustrate, we shall find an isoperimetric problem that
when solved yields the natural frequency of a string of weight w(x) stretched under
tension T between x = 0 and x = l and vibrating transversely about a horizontal
x-axis in the xy plane. If the change in length of the string during its motion is
so small that T can be assumed constant, the potential energy stored in the string
by virtue of the work done against T is equal to T times the change of length in
the string:

P.E. = T
∫ l

0

[√
1 + y′2 − 1

]
dx.

Here, ds =√dx2 + dy2 =√1 + y′2dx and ds − dx is the change of the elemen-
tary length. If, furthermore, the variation is such that |y′| 
 1, then by expanding√

1 + y′2 by the binomial expansion and retaining only the dominant term in the
integrand, we have



MM-165 CH005.tex 30/4/2007 10: 46 Page 138

138 Integral Equations and their Applications

Some mathematical formulas

By binomial expansion,

(1 + y′2)
1
2 = 1 + 1

2
y′2 +

1
2

( 1
2 − 1

)
(y′2)

1
2 −1

2! + · · ·
(1 + x)m = 1 + Cm

1 x + Cm
2 x2 + · · ·

(1 + x)
1
2 = 1 + C

1
2
1 x + C

1
2
2 x2 + · · ·

= 1 + x

2
− 1

8
x2 + · · ·

(1 + x)−
1
2 = 1 − x

2
+ 3

8
x2 − 5

16
x3 + · · ·

The potential energy stored in the string by virtue of its elongation can be
expressed as

T

2

∫ l

0
(y′)2dx.

If the string is also subjected to a disturbed force of magnitude per unit length
in the x direction |f (x)y| acting vertically [for example, an elastic restoring force
(−ky)], then the string has additional potential energy given by

−
∫ l

0

∫ y

0
f (x)sdsdx = −

∫ l

0

1

2
f (x)y2dx,

which is the work required due to the disturbed force, to change the deflection curve
of the string from the segment [0, l] of the x-axis into the curve determined by y.
Thus, the total potential energy of the string is

1

2

∫ l

0
[T (y′)2 − f (x)y2]dx.

Similarly, the total instantaneous kinetic energy of the string is

1

2

∫ l

0

w(x)

g
ẏ2dx.

The displacement y that we have been considering is actually a function of x and t
of the form y = X (x) cos ωt. Hence, substituting into the two energy expressions,
and applying the principle that during free vibrations the maximum value of the
kinetic energy is equal to the maximum value of the potential energy, we obtain

(K .E.)max = (P.E.)max
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1

2

∫ l

0

w(x)

g
(X 2( − ω)2 sin2 ωt)dx = 1

2

∫ l

0
[T (X ′ cos ωt)2 − f (x)X 2 cos2 ωt]dx

ω2 =
∫ l

0 [T (X ′)2 − f (x)X 2]dx∫ l
0

(
w(x)

g

)
X 2dx

,

where | cos2 ωt| = 1 and | sin2 ωt| = 1. This equation is satisfied by a nontrivial
function X if and only if it is satisfied by cX , where c is a nonzero parameter. Thus,
we need consider only function X that is normal with respect to w(x)

g . The problem
of extremizing the integral

I =
∫ l

0
[T (X ′)2 − f (x)X 2]dx,

subject to the constraint

J =
∫ l

0

(
w(x)

g

)
X 2dx = 1,

and relative to the appropriate comparison functions, is obviously an example of
an isoperimetric problem like those just discussed. With

f ∗ = [T (X ′)2 − f (x)X 2] − ω2
[

w(x)

g

]
X 2

we find, in the usual way, that the corresponding Euler–Lagrange equation is

[TX ′]′ +
[

f (x) + ω2
{

w(x)

g

}]
X = 0 (5.84)

d

dx

[
df ∗

dX ′

]
− ∂f ∗

∂X
= 0

[T (2X ′)]′ + 2f (x)X + ω2
(

w(x)

g

)
(2X ) = 0.

Therefore, after some reduction we obtain (TX ′)′ + [f (x) + ω2( w(x)
g )]X = 0.

This is precisely the equation for the space factor X that results when the par-
tial differential equation governing the vibration of a nonuniform string is solved
by the method of separation of variables. If both ends of the string are fixed on the
x-axis, so that

y(0, t) = y(l, t) = 0 for all t,



MM-165 CH005.tex 30/4/2007 10: 46 Page 140

140 Integral Equations and their Applications

then all comparison functions of the isoperimetric problem, and in particular, the
solutions of equation (5.84) must satisfy the fixed-end conditions X (0) = X (l) = 0.
On the other hand, if at both ends of the string the displacement y is unspecified,
then all comparison functions, and in particular the solutions of equation (5.84),
must satisfy natural boundary conditions of the form

∂f ∗

∂X ′ = 2TX ′ = 0 at x = 0 and at x = l,

given 2T �= 0, these reduce to the free-end conditions

X ′(0) = 0 and x′(l) = 0.

More general free-end conditions of the type

TX ′(0) + hX (0) = 0 and

TX ′(l) + hX (l) = 0

}
(5.85)

might also apply. Such conditions, arise, for instance, when each end of the string
is restrained by a nonzero restoring force φ proportional to the displacement, say
φ(0) = ay0 and φ(l) = byl . The potential energy stored in the system by virtue of
the work done against these forces is

1
2 ay2

0 + 1
2 by2

l ,

and hence the total potential energy of the system is now

1

2

∫ l

0
[T (y′)2 − f (x)y2]dx + 1

2
ay2

0 + 1

2
by2

l .

To incorporate the last two terms into the integral, let g(x) be an arbitrary
differentiable function of x such that

g(0) = −a and g(l) = b. Then

∫ l
0

d

dx
[g(x)y2]dx = g(x)y2|l0

= g(l)y2
l − g(0)y2

0

= by2
l + ay2

0.

Hence the expression for the instantaneous potential energy of the string can be
rewritten in the form

1

2

∫ l

0

{
T (y′)2 − f (x)y2 + d

dx
(g(x)y2)

}
dx.
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Again setting y = X (x) cos ωt and equating the maximum values of the potential
energy and the kinetic energy, we are led to an isoperimetric problem in which

I =
∫ l

0

{
T (X ′)2 − f (x)X 2 + d

dx
(g(x)X 2)

}
dx,

while J is unchanged. With

f ∗ = {T (X ′)2 − f (x)X 2 + g′(x)X 2 + 2g(x)XX ′} − ω2[w(x)/g]X 2

we find the natural boundary conditions

∂f ∗

∂x′ = 0 giving

TX ′ + gX = 0,

which, when evaluated at x = 0 and at x = l, yields conditions on x of general-form
solution in equation (5.84).

Example 5.9

Let us finally consider a general nonhomogeneous second-order linear differ-
ential equation

a0(x)y′′ + a1(x)y′ + a2(x)y = φ(x),

which is normal on an interval [a, b]. We know all such equations can be written in
the form

[r(x)y′]′ + q(x)y = W (x). (5.86)

This equation will be the Euler−Lagrange equation for an integral of the type

I =
∫ b

a
f (x, y, y′)dx,

if ∂f
∂dy′ = r(x)y′ and ∂f

∂dy = W (x) − q(x)y. From the last two relations we get

f = 1
2 r(x)(y′)2 + u(x, y) and

f = W (x)y − 1
2 q(x)y2 + v(x, y′).

Sufficient conditions for these two representations of f to be identical are that

u(x, y) = W (x)y − 1
2 q(x)y2 and

v(x, y′) = 1
2 r(x)(y′)2,
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in which case I becomes the variational integral

I =
∫ b

a

[
1

2
r(x)(y′)2 − 1

2
q(x)y2 + W (x)y

]
dx. (5.87)

It is a simple matter to verify that equation (5.86) is the Euler−Lagrange equa-
tion for this integral. In fact, if an exact derivative d

dx [g(x, y)] is added to the integral
of equation (5.87), equation (5.86) is still the corresponding Euler−Lagrange equa-
tion. By defining f ∗ as usual, with −λ/2 as the Lagrange multiplier, it is easy to
show that the isoperimetric problem involving the integral equation (5.87) and an
integral constraint

J =
∫ b

a
p(x)y2dx, J a constant, (5.88)

and p(x) �= 0 on [a, b] has as its Euler–Lagrange equation,

[ry′]′ + [q(x) + λp(x)] y = W (x). (5.89)

Of course, equations (5.86) and (5.89)will be accompanied by prescribed or
natural boundary conditions, describing on how comparison functions of the related
variational problems behave at the end points of [a, b].

5.16 Principles of variations

A real-valued function f whose domain is a set of real functions {y} is sometimes
called a functional or, more specifically, a functional of a single independent
variable. Functionals of several independent variables are also of interest. With
ordinary functions, the values of independent variables are numbers. However,
with functional variables, the values of the independent variables are functionals.
In general, the value of a function changes when the values of its independent
variables change. So, we need to estimate the value of changes of a functional. To
see how this could be done, let us consider a function F(x, y, y′) that, when x is held
fixed, becomes a functional defined on a set of functions {y}, and let us develop an
estimate for the change in F corresponding to an assigned change in the value of
y(x) of a function y in {y} for a fixed value of x. If y(x) is changed into

y(x) + εη(x),

where ε is independent of x we call the change εη(x), the variation of y(x) and
denote it by

δy = εη(x). (5.90)

Moreover, from the changed value of y we define that the changed value of
y′(x) is

y′(x) + εη(x).
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Hence we have the comparison formula

δy′(x) = εη′(x) (5.91)

for the variation of y′(x). Corresponding to these changes we have the change

�F = F(x, y + εη, y′ + εη′) − F(x, y, y′).

If we expand the first term on the right in a MacLaurin’s expression in powers
of ε, we have

�F = F(x, y, y′) +
(

∂F

∂y
η + ∂F

∂y′ η
′
)

ε +
(

∂2F

∂y2 η2 + 2
∂2F

∂y∂y′ η
′ + ∂2F

∂y′2 η′2
)

ε2

2!
+ · · · −F(x, y, y′)

or, neglecting powers of ε higher than the first,

�F
.= ∂F

∂y
(εη) + ∂F

∂y′ (εη
′)

�F = ∂F

∂y
δy + ∂F

∂y′ δy′.

By analogy with the differential of a function, we define the last expression to
be the variation of the functional F and denote it by δF .

δF = ∂F

∂y
δy + ∂F

∂y′ δy′. (5.92)

Remark

By strict analogy with the differential of a function of three variables, we must have
expressed the definition δF = ∂F

∂x δx + ∂F
∂y δy + ∂F

∂y′ δy′ if x is a variable parameter. It
is worth noting that in its simplest form the differential of a function is a first-order
approximation to the change in the function as x varies along a particular curve,
whereas the variation of a functional is a first-order approximation to the change
in the functional at a particular value of x as we move from curve to curve. It is
interesting and important to note that variations can be calculated by the same rules
that apply to differentials. Specifically

δ(F1 ± F2) = δF1 ± δF2 (5.93)

δ(F1F2) = F1δF2 + F2δF1 (5.94)

δ

(
F1

F2

)
= F2δF1 − F1δF2

F2
2

(5.95)
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δ(Fn) = nFn−1δF . (5.96)

These relations are easy to prove by means of equation (5.92). For example, with
F replaced by F1F2, equation (5.92) yields

δ(F1F2) = ∂

∂y
(F1F2)δy + ∂

∂y′ (F1F2)δy′

=
[

F1

(
∂F2

∂y

)
+ F2

(
∂F1

∂y

)]
δy +

[
F1

(
∂F2

∂y′

)
+ F2

(
∂F1

∂y′

)]
δy′

= F1

[
∂F2

∂y
δy + ∂F2

∂y′ δy′
]

+ F2

[
∂F1

∂y
δy + ∂F1

∂y′ δy′
]

= F1δF2 + F2δF1,

as asserted by equation (5.94). Proofs of equations (5.93), (5.95), and (5.96) can
be performed following the above steps. From the definite relations, i.e. equations
(5.90) and (5.16), and with D = d

dx , we have

δDy = δy′ = εη′ = εDη = D(εη) = D(δy),

and hence δ and D commute; that is, taking the variation of a function y(x), and
differentiating it with respect to its independent variables are commutative oper-
ations. We can, of course, consider functionals of more than one function, and
the variations of such functionals are defined by expressions analogous to equation
(5.92). For instance, for the functional F(x, u, v, u′, v′) we have

δF = ∂F

∂u
δu + ∂F

∂v
δv + ∂F

∂u′ δu′ + ∂F

∂v′ δv′.

Similarly, we can consider variations of functionals that depend on functions of
more than one variable. The functional F(x, y, u, ux, uy), for example, whose value
depends, for fixed x and y, on the function u(x, y), we have

δF = ∂F

∂u
δu + ∂F

∂ux
δux + ∂F

∂uy
δuy. (5.97)

For a functional expressed as a definite integral, say the integral

I (y) =
∫ b

a
f (x, y, y′)dx,

of the kind we discussed already, we have, first

�I = I (y + εη) − I (y).
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If the limits of I do not depend on y, we have furthermore,

�I =
∫ b

a
f (x, y + εη, y′ + εη′)dx −

∫ b

a
f (x, y, y′)dx

=
∫ b

a
[ f (x, y + εη, y′ + εη′) − f (x, y, y′)]dx

=
∫ b

a
�f (x, y, y′)dx.

The variation of I is now defined as the expression resulting when �f in the
last integral is replaced by the first-order approximation δf ; that is

δI =
∫ b

a
δf (x, y, y′)dx. (5.98)

Writing equation (5.98) as

δ

∫ b

a
f (x, y, y′)dx =

∫ b

a
δf (x, y, y′)dx,

we see that integrating a functional f (x, y, y′) over an interval [a, b] and taking the
variation of f (x, y, y′) are commutative operators, i.e. the operator symbolized by

∫ b

a
(.)dx and δ commute.

From calculus we recall that a necessary condition for a function to have an
extremum is that its differential vanishes. We can now show, similarly, that a neces-
sary condition for a functional I to have an extremum is that its variations vanish.
In fact, using the results of the preceding discussion, we write

δI =
∫ b

a
δf (x, y, y′)dx

=
∫ b

a
(fyδy + fy′δy′)dx

=
∫ b

a

[
fyδy + fy′

d

dx
(δy)
]

dx.

Now, integrating the last term by parts, we obtain

∫ b

a

(
fy′

d

dx
(δy)
)

dx = fy′ (δy)|ba −
∫ b

a

d

dx
(fy′ )δydx,
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when we assume that at x = a and at x = b either the variation δy = εη(x) is zero
because η(x) is, or a natural boundary condition holds so that Fy′ vanishes, it follows
that the integral portion of the last equation is equal to zero. Hence we have

δI =
∫ b

a

[
fy − d

dx
(fy′ )
]

δydx,

since we have already seen that fy − d
dx (fy′ ) = 0 is a necessary condition for an

extremum of I , it follows that δI is also zero at any extremum of I . Conversely,
since δy is an arbitrary variation in y, the condition δI = 0 implies that

fy − d

dx
[fy′ ] = 0,

which is the Euler–Lagrange equation.

5.17 Hamilton’s principles

Although Newton’s law of motion forms the basic foundation for the investigation
of mechanical phenomena still over the years there have been refinements and
extensions of his law that often provide more effective methods to study the applied
problems. In this section, we will take a brief look at two of these,

(a) Hamilton’s principle and
(b) Lagrange’s equations

(a) Hamilton’s principle

Let us consider a mass particle moving in a force field F. Let r(t) be the position
vector from the origin to the instantaneous position of the particle. Then, according
to Newton’s second law in vector form, the actual path of the particle is described
by the equation

m
d2r
dt2 = F. (5.99)

Now, consider any other path joining the points where the particle is located
at t = t1 and at t = t2. Such a path is, of course, described by the vector function
r + δr, where δr|t1 = δr|t2 = 0.

If we form the scalar product of the vector δr and the terms of equation (5.99),
and integrate from t1 to t2, we obtain

∫ t2

t1
(mr̈ · δr − F · δr)dt = 0. (5.100)
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Applying integration by parts to the first term in equation (5.100), we obtain

mṙ · δr|t2t1 − m
∫ t2

t1
ṙ · δṙdt.

The integrated term vanishes because of the properties of δṙ. Moreover,

mṙ · δr =
(m

2

)
(ṙ · ṙ)dt

= δ
(m

2
v2
)

= δT ,

where T is the kinetic energy of the moving particle of speed v. Hence equation
(5.100) can be rewritten ∫ t2

t1
(δT + F · δr)dt = 0. (5.101)

This is Hamilton’s principle in its general form, as applied to the motion of a
single mass particle in a force field that can be either conservative or nonconserva-
tive. If F is conservative, Hamilton’s principle assumes an even simpler form. Force
F is conservative, then there exists a scalar function φ(x, y, z) such that F · δr = dφ

or equivalently, F = ∇φ. The function φ is called the potential function, and −φ

is (to within an additive constant) the potential energy of the particle in the field.
[Note: F is conservative meaning ∇ × F = 0 that implies that F = ∇φ, because
curlgradeφ = 0 automatically and φ is called the potential function.] Now,

F = ∇φ

= ∂φ

∂x
i + ∂φ

∂y
j + ∂φ

∂z
k.

We know that δr = δxi + δyj + δzk, and hence the dot product of two vectors

F · δr = ∂φ

∂x
δx + ∂φ

∂y
δy + ∂φ

∂z
δz

= δφ,

and therefore, the equation ∫ t2

t1
(δT + F · δr)dt = 0

can be rewritten
∫ t2

t1
δ(T + φ)dt = 0, or δ

∫ t2
t1

(T + φ)dt = 0. And finally, since
φ = −V , where V is the potential energy of the system,

δ

∫ t2

t1
(T − V )dt = 0. (5.102)
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This is Hamilton’s principle for a single mass particle in a conservative
field. The principle can, of course, be extended to a system of discrete particles by
summation and to continuous systems by integration.

Remark

In many elementary problems, a dynamical system is described in terms of coor-
dinates that are distances. Such a choice of coordinates is not always the best one;
however, sometimes, problems involving another can be showed more conveniently
by choosing other quantities as coordinates, for instance, angles or even areas. In
the particular case of a system of P discrete particles, the effect of geometric con-
straints, assumed to be constant in time, is to reduce the numbers of variables
required to specify completely the state of the system at any given instant. To see
that a set of constraints actually has such an effect, observe that these rectangular
coordinates suffice to determine the position vector (xj , yj , zj) of each mass parti-
cle mj , j = 1, 2, . . . p. If the constraints can be described by k(<3p) constraint and
independent equations

gi(x1, y1, z1, . . . xp, yp, zp) = 0 i = 1, 2, 3, . . . k (5.103)

these k equations may be used, at least theoretically, to eliminate k of the position
variables thus leaving only 3p−k independent coordinates. As has been mentioned,
the variables employed in a particular problem need not be rectangular coordinates.
They may be any 3p − k = n variables q1, q2, . . . qn that are independent of one
another, which are well suited to a mathematical investigation of the problem at
hand, and in terms of which the position of the p particles can be expressed by
means of 3p equations

xj = xj(q1, q2, . . . qn)

yj = yj(q1, q2, . . . qn)

zj = zj(q1, q2, . . . qn)

⎫⎪⎪⎬
⎪⎪⎭ j = 1, 2, 3, . . . p. (5.104)

These 3p equations in effect ensure that the constraints in equation (5.98) are
all compiled with.

Variables q1, q2, . . . qn of the kind just described are called generalized coor-
dinates. A set of generalized coordinates for any particular mechanical system is
by no means unique; however, each such set must contain the same number of
variables.

(b) Lagrangian equations

Let us investigate the behaviour of a system of p particles a little further. By
differentiating equation (5.104) with respect to t, and substituting the results
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we obtain

ẋj =
∑n

i=1

∂xj

∂qi
q̇i

ẏj =
∑n

i=1

∂yj

∂qi
q̇i

żj =
∑n

i=1

∂zj

∂qi
q̇i

(5.105)

into the expression

T = 1

2

p∑
j=1

mj
(
ẋj

2 + ẏj
2 + żj

2) , (5.106)

we find that the kinetic energy T of the system can be written as a quadratic form

T = q̇T Aq̇, (5.107)

where q̇T = [q̇1, q̇2, . . . q̇n] and the symmetric matrix A is expressed solely in terms
of q1, q2, . . . qn. Of course, this implies that T is a homogeneous function of
degree 2 in generalized velocity components q̇1, q̇2, . . . q̇n. Now in a conservative
system, by definition, the potential energy V depends only on the position of the
particles. Hence V = V (q1, q2, . . . qn) must be a function of the generalized coor-
dinates alone. The function L = T − V is usually referred to as the Lagrangian or
the kinetic potential. Hamilton’s principle, when extended to a conservative system
of the particles, may be stated as follows:

During an arbitrary interval [t1, t2], the actual motion of a conservative system of
particles whose Lagrangian is T − V = L(q1, q2, . . . qn, q̇1, q̇2, . . . q̇n) is such that
Hamilton’s integral ∫ t2

t1
(T − V )dt =

∫ t2

t1
Ldt (5.108)

is rendered stationary relative to continuously twice-differentiable functions
q1, q2, . . . qn that take on prescribed values at t1 and t2.

From this principle discussed previously, we obtain

I =
∫ t2

t1
f (t, x1, x2, xn, . . . , ẋ1, ẋ2, . . . ẋn)dt

∂f

∂xi
− d

dt

(
∂f

∂ẋi

)
= 0

⎫⎪⎪⎬
⎪⎪⎭ i = 1, 2, 3, . . . , n.

It follows that if q1, q2, . . . qn are generalized coordinates of a conservative system
of particles they must satisfy the system of Euler–Lagrange equations

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0 i = 1, 2, . . . n. (5.109)
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These equations are known as Lagrange’s equations of motion or simply as
Lagrange’s equations. Since the Lagrangian L of a conservative system does not
explicitly involve t, a first integral of system (5.109) is

n∑
i=1

q̇i
∂L

∂q̇i
− L = E, (5.110)

where E is a constant. Recalling that V is not a function of the generalized velocity
components, we have ∂L

∂q̇i
= ∂

∂q̇i
(T − V ) = ∂T

∂q̇i
. The series in equation (5.110) thus

becomes
∑n

i=1 q̇i
∂T
∂q̇i

. Using the fact that T is a homogeneous function of degree 2
in q̇1, q̇2, . . . q̇n and applying Euler’s homogeneous function theorem, we find
that the sum of the preceding series is 2T . We may, therefore, write equation
(5.110) as

2T − (T − V ) = T + V = E. (5.111)

This result shows that a conservative particle system, when in motion, must move
in such a way that the sum of its kinetic and potential energies remains constant.
The total energy E of the system is determined when the initial values of all the qi

and q̇i are assigned. As our earlier expression F · δr = δφ for the potential energy
of a single particle indicates, in a conservative system of discrete particles, in work
done by the various forces when the generalized coordinates {qi} of the system
under small changes {δqi} is

δφ = −δV

= −
[

∂V

∂q1
δq1 + ∂V

∂q2
δq2 + · · · + ∂V

∂qn
δqn

]
= Q1δq1 + Q2δq2 + · · · + Qnδqn,

where we have introduced the conventional symbol Qi for − ∂V
∂qi

. The typical term
in this expression, Qiδqi is the work done in a displacement in which δqi is different
from zero but all other δq′s are equal to zero, since qi is not necessarily a distance,
Qi is not necessarily a force. Nonetheless, the Q′s are referred to as generalized
forces. Using the relation L = T − V , ∂V

∂q̇i
= 0, and ∂V

∂qi
= −Qi, we find that system

(5.104) can be written

d

dt

(
∂V

∂q̇i

)
− ∂V

∂qi
= −Qi i = 1, 2, . . . , n. (5.112)

In a nonconservative system, V as well as T may involve the generalized coor-
dinates, in which case, the relation ∂V

∂q̇i
= 0, and no loss occurs. Nonetheless,
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equation (5.112) is still correct, although we shall not prove the fact, the only
difference being that in a nonconservative system the generalized forces cannot be
derived from a potential function.

5.18 Hamilton’s equations

A particle of mass moving freely with velocity V has momentum mV and kinetic
energy T = 1

2 mV · V. In three dimensions, each rectangular component of the
momentum equals the derivative of the kinetic energy

T = 1

2
m(ẋ2 + ẏ2 + ż2),

with respect to the corresponding velocity components, i.e.

∂T

∂ẋ
= mẋ

∂T

∂ẏ
= mẏ

∂T

∂ż
= mż

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

For a system of particles having generalized coordinates qi, 1 ≤ i ≤ n, and kinetic
energy

T (q1, q2, . . . , qn, q̇1, q̇2, . . . q̇n), the variables
∂T

∂q̇i
= pi 1 ≤ i ≤ n,

(5.113)

are by analogy, referred to as generalized moments or generalized momentum
coordinates, although those quantities may or may not have the dimensions of
momentum. The kinetic energy T of the system is a quadratic form

T = q̇T Aq̇ A = AT , (5.114)

in the generalized velocity components q̇i thus, Euler’s homogeneous function
theorem, in conjunction with equation (5.109), yields

n∑
i=1

q̇i
∂T

∂q̇i
=

n∑
i=1

piq̇i = 2T , (5.115)
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which shows that each product piq̇i has the dimensions of energy regardless of the
nature of the generalized coordinates.

T =
[

q̇1, q̇2, . . . , q̇n

]⎡⎢⎣a11 . . . 0

0 a22 . . . 0

. . . .. ann

⎤
⎥⎦
⎡
⎢⎢⎢⎢⎣

q̇1

q̇2
...

q̇n

⎤
⎥⎥⎥⎥⎦

=
[

q̇1, q̇2, . . . q̇n

]
⎡
⎢⎢⎢⎢⎣

a11 q̇1

a22 q̇2
...

...

ann q̇n

⎤
⎥⎥⎥⎥⎦ ,

and thus we obtain

T = q̇1a11q̇1 + q̇2a22q̇2 + · · · + q̇nannq̇n]

q̇i
∂T

∂q̇i
= 2q̇iaiiq̇i

n∑
i=1

q̇i
∂T

∂q̇i
= 2

∑
q̇iaiiq̇i = 2T .

Differentiating equation (5.115) with respect to q̇i and noting that aij = aji,
we get

∂T

∂q̇i
= pi

= ∂

∂q̇i
(q̇T )Aq̇ + q̇T A

∂

∂q̇i
(q̇)

=
[

a11 a12 . . . a1n

]
q̇ + q̇T

[
a11 a12 . . . a1n

]T

= 2
[

a11q̇1 a12q̇2 . . . a1nq̇n

]
1 ≤ i ≤ n. (5.116)

In matrix form, these n equations read

p = 2Aq̇. (5.117)

Both equations (5.116) and (5.117) determine each pi as a linear homogeneous
function of q̇1, q̇2, . . . , q̇n. Solving equation (5.117) for q̇,

q̇ = 1
2 A−1p. (5.118)
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Let us denote these functions by

q̇i = fi(q1, q2, q3, . . . , qn, p1, p2, p3, . . . , pn). (5.119)

For a conservative system of particles having total energy E, potential energy
V , and Lagrangian L,

E = T + V = 2T − (T − V ) = 2T − L, (5.120)

or substituting from equation (5.115) for 2T ,

E =
n∑

i=1

piq̇i − L. (5.121)

When each q̇i in the right-hand member of this equation is replaced by the
corresponding function fi of equation (5.119), the total energy E is transformed
into a function H of the variables q1, q2, q3, . . . , qn, p1, p2, p3, . . . , pn called the
Hamiltonian particle system. Thus,

H (q1, q2, q3, . . . , qn, p1, p2, p3, . . . , pn)

=
n∑

i=1

piq̇i − L(q1, q2, q3, . . . , qn, q̇1, q̇2, q̇3, . . . , q̇n), (5.122)

where in the right-hand member of the equation, each qi stands for the correspond-
ing function fi(q1, q2, q3, . . . , qn, p1, p2, p3, . . . , pn) of equation (5.119). Moreover,
from the first of equation (5.120)

H (q1, q2, . . . , qn, p1, p2, . . . , pn)

= T (q1, q2, . . . , qn, f1, f2, . . . , fn) + V (q1, q2, . . . , qn), (5.123)

that is to say, the Hamiltonian of a conservative system is the sum of the kinetic
and potential energies when the kinetic energy is expressed in terms of qi and pi

instead of the qi and q̇i. Differentiating the Hamiltonian equation (5.117) partially
with respect to pi, we have

∂H

∂pi
= q̇i +∑n

j=1 pj
∂q̇j

∂pi
−∑n

j=1
∂L

∂q̇j

∂q̇j

∂pi

= q̇i +∑n
j=1

[
pj − ∂L

∂q̇j

]
∂q̇j

∂pi
.

(5.124)

Since no q̇j in an argument of V ,

∂L

∂q̇j
= ∂T

∂q̇j
= pj , i.e. pj − ∂L

∂q̇j
= 0 1 ≤ j ≤ n.
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Hence, equation (5.124) reduces to

∂H

∂pi
= qi 1 ≤ i ≤ n. (5.125)

The n equations show that the partial derivatives of the Hamiltonian with respect
to pi in the ith component fi of vector function q̇ set from equation (5.118) as a
solution of equation (5.116) or equation (5.117). However, until the Hamiltonian is
known, the components of q̇, as given by equation (5.125), remain indeterminate.
The most convenient way of forming the Hamiltonian of a given system is

• Express the potential energy V in terms of qi and the kinetic energy T in terms
of qi and q̇i.

• Form and solve the n equations, i.e. equation (5.117) of the q̇i in terms of the qi

and pi.
• Substitute for the q̇i in T to obtain

H = T + V in terms of q1, q2 . . . qn, p1, p2 . . . pn.

Using equation (5.122) to express the Lagrangian in terms of the Hamiltonian,
we get

L =
n∑

i=1

piq̇i − H ,

the related Hamilton integral is

∫ t2

t1

{
n∑

i=1

piq̇i − H

}
dt. (5.126)

According to Hamilton’s principle, this integral is rendered stationary by the
2n continuously differentiable functions q1, q2 . . . qn, p1, p2 . . . pn that characterize
the actual motion of the system of particles and satisfy the constraints provided by
equation (5.125), namely

q̇i − ∂H

∂pi
= 0 1 ≤ i ≤ n.

To derive the differential equations of motions satisfied by the qi and pi, we
form the modified Lagrangian

L∗ =
n∑

i=1

piq̇i − H +
n∑

i=1

µi(t)
(

q̇i − ∂H

∂pi

)
,
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where µ1, µ2, . . . , µn are undetermined functions. For 1 ≤ i ≤ n, we have
∂L∗/∂ṗi = 0. Thus, the two sets of Lagrangian equations

∂L∗

∂qi
− d

dt

(
∂L∗

∂q̇i

)
= 0 1 ≤ i ≤ n (5.127)

∂L∗

∂pi
− d

dt

(
∂L∗

∂ṗi

)
= 0 1 ≤ i ≤ n, (5.128)

yield, in turn,

−∂H

∂qi
−

n∑
j=1

µj(t)
∂2H

∂qi.∂pj
− d

dt

[
pi + µi(t)

] = 0 1 ≤ i ≤ n, (5.129)

and

q̇i − ∂H

∂pi
−

n∑
j=1

µj(t)
∂2H

∂pi.∂pj
= 0 1 ≤ i ≤ n. (5.130)

Because of the constraint, equation (5.130) reduced to

n∑
j=1

∂2H

∂pi.∂pj
µj(t) = 0 1 ≤ i ≤ n. (5.131)

The coefficients matrix

B =
[

∂2H

∂pi.∂pj

]
1 ≤ i ≤ n (5.132)

of this system of linear equations in µ1, µ2, . . . , µn is the matrix 1
2 A−1 of equation

(5.118) and is therefore nonsingular. Hence, for 1 ≤ i ≤ n, µi(t) = 0 and equation
(5.129) becomes

−∂H

∂qi
− pi = 0.

These n equations, together with equation (5.125), form a system of 2n first-
order differential equations

q̇i = ∂H

∂pi
1 ≤ i ≤ n (5.133)

ṗi = −∂H

∂qi
1 ≤ i ≤ n, (5.134)
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known as Hamilton’s equations, or the canonical form of the equations of motion.
As we noted earlier, equation (5.133) of Hamilton equations is automatically given
by the solution of equation (5.116) for q̇i in terms of qi and pi. Once H is known,
these n equations may be checked by computing the partial derivatives of H with
respect to the pi. The other n Hamilton’s equations (5.134) require that H be found
before their determination. Collectively, Hamilton’s equations provide a basis for
more sophisticated mathematical techniques applicable to advanced problems of
dynamics, celestial mechanics, and atomic structure.

5.19 Some practical problems

In this section, we shall demonstrate the usefulness of the calculus of variations to
a number of practical problems in its simplest form.

Example 5.10

Find the shortest distance between two given points in the x–y plane.

Solution

Let us consider the two end-points as P(x1, y1) and Q(x2, y2). Suppose PRQ is any
curve between these two fixed points such that s is the arc length PRQ. Thus, the
problem is to determine the curve for which the functional

I (y) =
∫ Q

P
ds (5.135)

is a minimum.
Since ds/dx =√1 + (y′)2, then the above integral equation becomes

I (y) =
∫ x2

x1

√
1 + (y′)2dx. (5.136)

In this case, the functional is f =√1 + (y′)2, which depends only on y′ and so
∂f /∂y = 0. Hence the Euler−Lagrange equation is

d

dx

(
∂f

∂y′

)
= 0, (5.137)

which yields after reduction y′′ = 0, and the solution of which is the straight line
y = mx + c. This is a two-parameter family of straight lines. Hence the shortest
distance between the two given points is a straight line.
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Example 5.11

Determine the Laplace equation from the functional

I (u) =
∫ ∫

S
{u2

x + u2
y}dxdy, (5.138)

with a boundary condition u = f (x, y) on S.

Solution

The variational principle gives

δI = δ

∫ ∫
S
{u2

x + u2
y}dxdy = 0. (5.139)

This leads to the Euler–Lagrange equation

uxx + uyy = 0 in S. (5.140)

Similarly, the functional I {u(x, y, z)} = ∫ ∫ ∫
S (u2

x + u2
y + u2

z )dxdydz will lead
to the three-dimensional Laplace equation.

Example 5.12

Derive the equation of motion for the free vibration of an elastic string of length �.

Solution

The potential energy V of the string is

V = 1

2
τ

∫ �

0
u2

xdx, (5.141)

where u = u(x, t) is the displacement of the string from its equilibrium position and
τ is the constant tension of the string.

The kinetic energy T is

T = 1

2

∫ �

0
ρu2

t dx, (5.142)

where ρ is the constant line-density of the string.
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According to the Hamiltonian principle

δI = δ

∫ t2

t1
(T − V )dt

= δ

∫ t2

t1

∫ �

0

1

2
(ρu2

t − τu2
x)dxdt

= 0, (5.143)

which has the form δ
∫ t2

t1

∫ �

0 L(ut , ux)dxdt in which L = 1
2 (ρu2

t − τu2
x).

The Euler−Lagrange equation is

∂L

∂u
− ∂

∂t

(
∂L

∂ut

)
− ∂

∂x

(
∂L

∂ux

)
= 0, (5.144)

which yields

∂

∂t
(ρut) − ∂

∂x
(τux) = 0. (5.145)

or

utt − c2uxx = 0, (5.146)

where c = √
τ/ρ is the speed of the string-wave. This is the equation of motion of

the elastic string.

Remark

The variational methods can be further extended for a functional depending on
functions of more than one independent variable in the form

I [u(x, y)] =
∫ ∫

D
f (x, y, u, ux, uy)dxdy, (5.147)

where the values of the function u(x, y) are prescribed on the boundary C of a finite
domain D in the x–y plane. We consider the functional f is differentiable and the
surface u = u(x, y) yielding an extremum is also twice-differentiable.

The first variation δI of I is defined by

δI (u, ε) = I (u + ε) − I (u), (5.148)

which is by Taylor’s expansion theorem

δI (u, ε) =
∫ ∫

D
{εfu + εxfp + εyfq}dxdy, (5.149)

where ε = ε(x, y) is small and p = ux and q = uy.
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According to the variational principle, δI = 0 for all admissible values of ε. The
partial integration of the above equation together with ε = 0 yields

0 = δI =
∫ ∫

D

{
fu − ∂

∂x
fp − ∂

∂y
fq

}
εdxdy. (5.150)

This is true for all arbitrary ε, and hence the integrand must vanish, that is

∂f

∂u
− ∂

∂x
(fp) − ∂

∂y
(fq) = 0. (5.151)

This is the Euler−Lagrange equation, that is the second-order PDE to be satisfied
by the extremizing function u(x, y).

We have used this information in our previous example.
If the functional f = f (t, x, y, z, u, ut , ux, uy, uz) where the dependent variable

u = u(t, x, y, z) in which t, x, y, and z are the independent variables, then the
Euler−Lagrange equation can be written at once as follows:

∂f

∂u
= ∂

∂t
(fut ) + ∂

∂x
(fux ) + ∂

∂y
(fuy ) + ∂

∂z
(fuz ). (5.152)

Example 5.13

In an optically homogeneous isotropic medium, light travels from one point to
another point along a path for which the travel time is minimum. This is known as
the Fermat principle in optics. Determine its solution.

Solution

The velocity of light v is the same at all points of the medium, and hence the
minimum time is equivalent to the minimum path length. For simplicity, consider
a path joining the two points A and B in the x–y plane. The time of travel an arc
length ds is ds/v. Thus, the variational problem is to find the path for which

I =
∫ B

A

ds

v

=
∫ x2

x1

√
1 + (y′)2

v(y)
dx

=
∫ x2

x1

f (y, y′)dx (5.153)

is a minimum, where y′ = dy
dx , and v = v(y). When f is a function of y and y′, then

the Euler–Lagrange equation is

d

dx
(f − y′fy′ ) = 0. (5.154)
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This follows from the result

d

dx
(f − y′fy′ ) = d

dx
f (y, y′) − y′′fy′ − y′ d

dx
(f ′

y )

= y′fy + y′′fy′ − y′′fy′ − y
d

dx
(fy′ )

= y′
[

fy − d

dx
(fy′ )
]

= 0.

Hence integrating, we obtain

f − y′fy′ = constant√
1 + (y′)2

v
− y′2

v
√

1 + (y′)2
= constant.

After a reduction, the solution becomes 1
v
√

1+(y′)2
= constant. In order to

give the simple physical interpretation, we rewrite this equation in terms of the
angle φ made by the tangent to the minimum path with vertical y-axis so that
sin φ = 1√

1+(y′)2
. Hence, 1

v sin φ = constant for all points on the minimum curve.

For a ray of light, 1/v must be directly proportional to the refractive index n of the
medium through which the light is travelling. This equation is called the Snell law
of refraction of light. Often, this law can be stated as n sin φ = constant.

Example 5.14

Derive Newton’s second law of motion from Hamilton’s principle.

Solution

Let us consider a particle of mass m at a position r = xi + yj + zk that is mov-
ing under the action of an external force F. The kinetic energy of the particle is
T = 1

2 mṙ2, and the variation of work done is δW = F · δr and δV = −δW . Then
Hamilton’s principle for this system is

0 = δ

∫ t2

t1
(T − V )dt

=
∫ t2

t1
(δT − δV )dt

=
∫ t2

t1
(mṙ · δr + F · δr)dt.
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Using the integration by parts, this result yields∫ t2

t1
(mr̈ − F) · δrdt = 0. (5.155)

This is true for every virtual displacement δr, and hence the integrand must
vanish, that is,

mr̈ = F. (5.156)

This is Newton’s second law of motion.

5.20 Exercises

1. Solve the following Abel’s integral equations:

(a) π(x + 1) =
∫ x

0

1√
x − t

u(t)dt.

(b) x + x3 =
∫ x

0

1√
x − t

u(t)dt.

(c) sin x =
∫ x

0

1√
x − t

u(t)dt.

(d) x4 =
∫ x

0

1√
x − t

u(t)dt.

2. Using the method of Laplace transforms or otherwise, solve the following second
kind Volterra integral equations:

(a) u(x) = √
x − πx + 2

∫ x

0

1√
x − t

u(t)dt.

(b) u(x) = 1

2
− √

x +
∫ x

0

1√
x − t

u(t)dt.

(c) u(x) = 2
√

x −
∫ x

0

1√
x − t

u(t)dt.

(d) u(x) = x + 4

3
x

3
2 −

∫ x

0

1√
x − t

u(t)dt.

(e) u(x) = 1 + 2
√

x −
∫ x

0

1√
x − t

u(t)dt.

3. Show that the solution of the integral equation

∫ 1

0
ln

∣∣∣∣∣
√

x + √
t√

x − √
t

∣∣∣∣∣ u(t)dt = f (x), (0 ≤ x ≤ 1)
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is

u(x) = − 1

π2

d

dx

∫ 1

x

dτ√
(τ − x)

d

dτ

∫ τ

0

f (t)dt√
(τ − t)

.

4. Show that the solution of the integral equation∫ 1

0

u(t)dt

|x − t|ν = 1, (0 ≤ x ≤ 1)

where 0 < ν < 1 is

u(x) = 1

π
cos
(πν

2

) {
x(1 − x)(ν−1)/2

}
.

5. Show that the solution of the integral equation∫ 1

0

∣∣x − t
∣∣ 1

2 u(t)dt = 1, (0 ≤ x ≤ 1)

is

u(x) = x− 3
4 (1 − x)−

3
4 /(π

√
2), (0 < x < 1.)

6. Show that the solution of the following integral equation

µu(x) = x +
∫ 1

0

u(t)dt

t − x
, (0 < x < 1)

where µ = −π cot (πν) in which (0 < ν < 1
2 ) is

u(x) = sin (πν)

π
xν(1 − x)−ν(ν − x), (0 < x < 1).

7. Show that the solution of the following integral equation

µu(x) = x +
∫ 1

0

u(t)dt

t − x
, (0 < x < 1)

where µ = −π cot (πν) in which (0 < ν < 1
2 ) is

u(x) = sin (πν)

π
x−ν(1 − x)ν(ν + x), (0 < x < 1).

8. Show that the minimization of the variational integral

I =
∫ ∫

S

[
QT 2 − α

{(
∂T

∂x

)2

+
(

∂T

∂y

)2
}]

dS

=
∫ ∫

S
f (T , Tx, Ty)dS,
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where T (x, y) is the temperature distribution on the surface S, α is the thermal
diffusivity, and Q is a constant rate of heat generation, is equivalent to solving
the differential equation

∂

∂x

(
α

∂T

∂x

)
+ ∂

∂y

(
α

∂T

∂y

)
+ QT = 0,

with the same boundary conditions. [Hint: Use Euler–Lagrange equation to
obtain this heat conduction equation.]

9. Show that the maximum and minimum values of the function f (x, y, z) = xyz on
the unit sphere x2 + y2 + z2 = 1 are 1

3
√

3
and − 1

3
√

3
.

10. When a thermonuclear reactor is built in the form of a right circular cylinder,
neutron diffusion theory requires its radius and height to satisfy the equation(

2.4048

r

)2

+
(π

h

)2 = k ,

where k is a constant. Show by Lagrange’s principle of extremizing a functional
that the values of r and h in terms of k , if the reactor is to occupy as small a
volume as possible, are r = 2.4048

√
3/(2k) and h = π

√
3/k .

11. Find the maximum value of f (x, y, z) = xy+x2

z2+1 subject to the constraint

x2(4 − x2) = y2.

12. Derive the Poisson equation ∇2u = F(x, y) from the variational principle with
the functional

I (u) =
∫ ∫

D
{u2

x + u2
y + 2uF(x, y)}dxdy,

where u = u(x, y) is given on the boundary C of D.

13. Show that the Euler–Lagrange equation of the variational principle

δI (u(x, y)) = δ

∫ ∫
D

f (x, y, u, ux, uy, uxx, uxy, uyy)dxdy = 0

is

fu − ∂

∂x
(fux ) − ∂

∂y
(fuy ) + ∂2

∂x2 (fuxx ) + ∂2

∂x∂y
(fuxy ) + ∂2

∂y2 (fuyy ) = 0.

14. Derive the Boussinesq equation for water waves

utt − c2uxx − µuxxtt = 1
2 (u2)xx

from the variational principle δ
∫ ∫

Ldxdt = 0,
where

L = 1
2φ2

t − 1
2 c2φ2

x + 1
2µφ2

xt − 1
6φ3

x

and φ is the velocity potential defined by u = φx.
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15. Determine the function representing a curve that makes each of the following
equations maximum:

(a) I (y(x)) =
∫ 1

0
(y′2 + 12xy)dx, y(0) = 0, y(1) = 1.

(b) I (y(x)) =
∫ π/2

0
(y′2 − y2)dx, y(0) = 0, y(π/2) = 1.

16. From the variational principle δ
∫ ∫

D Ldxdt = 0 with

L = −ρ

∫ η

−h

{
φt + 1

2
(∇φ)2 + gz

}
dz

derive the basic equations of water waves

∇2φ = 0, −h(x, y) < z < η(x, y), t > 0

ηt + ∇φ · ∇η − φz = 0, on z = η

φt + 1
2 (∇φ)2 + gz = 0, on z = η

φz = 0, on z = −h,

where φ(x, y, z, t) is the velocity potential and η(x, y, t) is the free surface
displacement function in a fluid of depth h.

17. A mass m under the influence of gravity executes small oscillations about
the origin on a frictionless paraboloid Ax2 + 2Bxy + Cy2 = 2z, where A > 0
and B2 < AC, and the positive direction of z-axis is upward. Show that
the equation whose solution gives the natural frequencies of the motion is
ω4 − g(A + C)ω2 + g2(AC − B2) = 0. There are two values of ω2 unless A = C
and B = 0. [Hint: Use x and y as the generalized coordinates and take ż2 = 0.]
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6 Integro-differential equations

6.1 Introduction

This chapter deals with one of the most applied problems in the engineering sci-
ences. It is concerned with the integro-differential equations where both differential
and integral operators will appear in the same equation. This type of equations
was introduced by Volterra for the first time in the early 1900. Volterra inves-
tigated the population growth, focussing his study on the hereditary influences,
where through his research work the topic of integro-differential equations was
established (see Abramowitz and Stegun [1]).

Scientists and engineers come across the integro-differential equations through
their research work in heat and mass diffusion processes, electric circuit problems,
neutron diffusion, and biological species coexisting together with increasing and
decreasing rates of generating. Applications of the integro-differential equations in
electromagnetic theory and dispersive waves and ocean circulations are enormous.
More details about the sources where these equations arise can be found in physics,
biology, and engineering applications as well as in advanced integral equations
literatures. In the electrical LRC circuit, one encounters an integro-differential
equation to determine the instantaneous current flowing through the circuit with
a given voltage E(t), and it is written as L dI

dt + RI + 1
C

∫ t
0 I (τ)dτ = E(t), with the

initial condition I (0) = I0 at t = 0. To solve this problem we need to know the
appropriate technique (see Rahman [3]).

It s important to note that in the integro-differential equations, the unknown
function u(x) and one or more of its derivatives such as u′(x), u′′(x), . . . appear
out and under the integral sign as well. One quick source of integro-differential
equations can be clearly seen when we convert the differential equation to an integral
equation by using Leibnitz rule. The integro-differential equation can be viewed
in this case as an intermediate stage when finding an equivalent Volterra integral
equation to the given differential equation.

The following are the examples of linear integro-differential equations:

u′(x) = f (x) −
∫ x

0
(x − t)u(t)dt, u(0) = 0 (6.1)

165
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u′′(x) = g(x) +
∫ x

0
(x − t)u(t)dt, u(0) = 0, u′(0) = −1 (6.2)

u′(x) = ex − x +
∫ 1

0
xtu(t)dt, u(0) = 0, (6.3)

u′′(x) = h(x) +
∫ x

0
tu′(t)dt, u(0) = 0, u′(0) = 1. (6.4)

It is clear from the above examples that the unknown function u(x) or
one of its derivatives appear under the integral sign, and the other derivatives
appear out the integral sign as well. These examples can be classified as the
Volterra and Fredholm integro-differential equations. Equations (6.1) and (6.2)
are the Volterra type whereas equations (6.3) and (6.4) are of Fredholm type
integro-differential equations. It is to be noted that these equations are linear
integro-differential equations. However, nonlinear integro-differential equations
also arise in many scientific and engineering problems. Our concern in this chap-
ter will be linear integro-differential equations and we will be concerned with
the different solution techniques. To obtain a solution of the integro-differential
equation, we need to specify the initial conditions to determine the unknown
constants.

6.2 Volterra integro-differential equations

In this section, we shall present some sophisticated mathematical methods to
obtain the solution of the Volterra integro-differential equations. We shall focus
our attention to study the integral equation that involves separable kernel of
the form

K(x, t) =
n∑

k=1

gk (x)hk (t) (6.5)

We shall first study the case when K(x, t) consists of one product of the functions
g(x) and h(t) such that K(x, t) = g(x)h(t) only where other cases can be generalized
in the same manner. The nonseparable kernel can be reduced to the separable kernel
by using theTaylor’s expansion for the kernel involved. We will illustrate the method
first and then use the technique to some examples.

6.2.1 The series solution method

Let us consider a standard form of Volterra integro-differential equation of nth
order as given below:

u(n)(x) = f (x) + g(x)
∫ x

0
h(t)u(t)dt, u(n) = bk , 0 ≤ k ≤ (n − 1). (6.6)
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We shall follow the Frobenius method of series solution used to solve ordinary
differential equations around an ordinary point. To achieve this goal, we first assume
that the solution u(x) of equation (6.6) is an analytic function and hence can be
represented by a series expansion about the ordinary point x = 0 given by

u(x) =
∞∑

k=0

ak xk , (6.7)

where the coefficients ak are the unknown constants and must be determined. It
is to be noted that the first few coefficients ak can be determined by using the
initial conditions so that a0 = u(0), a1 = u′(0), a2 = 1

2!u
′′(0), and so on depending

on the number of the initial conditions, whereas the remaining coefficients ak will
be determined from applying the technique as will be discussed later. Substituting
equation (6.7) into both sides of equation (6.6) yields

( ∞∑
k=0

ak xk

)(n)

= f (x) + g(x)
∫ x

0

( ∞∑
k=0

ak tk

)
dt. (6.8)

In view of equation (6.8), equation (6.6) will be reduced to calculable integrals
in the right-hand side of equation (6.8) that can be easily evaluated where we
have to integrate terms of the form tn, n ≥ 0 only. The next step is to write the
Taylor’s expansion for f (x), evaluate the resulting traditional integrals, i.e. equation
(6.8), and then equating the coefficients of like powers of x in both sides of the
equation. This will lead to a complete determination of the coefficients a0, a1, a2, . . .
of the series in equation (6.7). Consequently, substituting the obtained coefficients
ak , k ≥ 0 in equation (6.7) produces the solution in the series form. This may give
a solution in closed-form, if the expansion obtained is a Taylor’s expansion to a
well-known elementary function, or we may use the series form solution if a closed
form is not attainable.

To give a clear overview of the method just described and how it should be
implemented for Volterra integro-differential equations, the series solution method
will be illustrated by considering the following example.

Example 6.1

Solve the following Volterra integro-differential equation

u′′(x) = x cosh x −
∫ x

0
tu(t)dt, u(0) = 0, u′(0) = 1, (6.9)

by using the series solution method.
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Solution

Substitute u(x) by the series

u(x) =
∞∑

n=0

anxn, (6.10)

into both sides of the equation (6.9) and using the Taylor’s expansion of cosh x, we
obtain

∞∑
n=2

n(n − 1)anxn−2 = x

( ∞∑
k=0

x2k

(2k!)

)
−

∫ x

0
t

( ∞∑
n=0

antn

)
dt. (6.11)

Using the initial conditions, we have a0 = 0, and a1 = 1. Evaluating the integrals
that involves terms of the form tn, n ≥ 0, and using few terms from both sides yield

2a2 + 6a3x + 12a4x2 + 20a5x3 + · · · = x

(
1 + x2

2! + x4

4! + · · ·
)

−
(

x3

3
+ 1

4
a2x4 + · · ·

)
.

(6.12)

Equating the coefficients of like powers of x in both sides we find a2 = 0,
a3 = 1

3! , a4 = 0, and in general a2n = 0, for n ≥ 0 and a2n+1 = 1
(2n + 1)! , for n≥0.

Thus, using the values of these coefficients, the solution for u(x) from equation
(6.10) can be written in series form as

u(x) = x + x3

3! + x5

5! + · · · , (6.13)

and in a closed-form

u(x) = sinh x, (6.14)

is the exact solution of equation (6.9).

Example 6.2

Solve the following Volterra integro-differential equation

u′′(x) = cosh x+1

4
−1

4
cosh 2x+

∫ x

0
sinh tu(t)dt, u(0) = 1, u′(0) = 0. (6.15)

Solution

Using the same procedure, we obtain the first few terms of the expression u(x) as

u(x) = 1 + a2x2 + a3x3 + a4x4 + a5x5 + · · · . (6.16)
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Substituting equation (6.16) into both sides of equation (6.15) yields

2a2 + 6a3x + 12a4x2 + 20a5x3 + · · ·

=
(

1 + x2

2! + x4

4! + · · ·
)

+ 1

4

− 1

4

(
1 + (2x)2

2! + (2x)4

4! + · · ·
)

+
∫ x

0

(
t + t3

3! + t5

5! + · · ·
)

(1 + a2t2 + a3t3 + · · · )dt. (6.17)

Integrating the right-hand side and equating the coefficients of like powers
of x we find a0 = 1, a1 = 0, a2 = 1

2! , a3 = 0, a4 = 1
4! , a5 = 0, and so on, where the

constants a0 and a1 are defined by the initial conditions. Consequently, the solution
in the series method is given by

u(x) = 1 + x2

2! + x4

4! + x6

6! + · · · , (6.18)

which give u(x) = cosh x, as the exact solution in a closed-form.

6.2.2 The decomposition method

In this section, we shall introduce the decomposition method and the modified
decomposition method to solve the Volterra integro-differential equations. This
method appears to be reliable and effective.

Without loss of generality, we may assume a standard form to Volterra integro-
differential equation defined by the standard form

u(n) = f (x) +
∫ x

0
K(x, t)u(t)dt, u(k)(0) = bk , 0 ≤ k ≤ (n − 1) (6.19)

where u(n) is the nth order derivative of u(x) with respect to x and bk are constants
that defines the initial conditions. It is natural to seek an expression for u(x) that
will be derived from equation (6.19). This can be done by integrating both sides of
equation (6.19) from 0 to x as many times as the order of the derivative involved.
Consequently, we obtain

u(x) =
n−1∑
k=0

1

k!bk xk + L−1(f (x)) + L−1
(∫ x

0
K(x, t)u(t)dt

)
, (6.20)

where
∑n−1

k=0
1
k!bk xk is obtained by using the initial conditions, and L−1 is an n-fold

integration operator. Now, we are in a position to apply the decomposition method
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by defining the solution u(x) of equation (6.20) on a decomposed series

u(x) =
∞∑

n=0

un(x). (6.21)

Substitution of equation (6.21) into both sides of equation (6.20) we get

∞∑
n=0

un(x) =
n−1∑
k=0

1

k!bk xk + L−1(f (x))

+ L−1

(∫ x

0
K(x, t)

( ∞∑
n=0

un(t)

)
dt

)
(6.22)

This equation can be explicitly written as

u0(x) + u1(x) + u2(x) + · · · =
n−1∑
k=0

1

k!bk xk + L−1(f (x))

+ L−1
(∫ x

0
K(x, t)u0(t)dt

)

+ L−1
(∫ x

0
K(x, t)u1(t)dt

)

+ L−1
(∫ x

0
K(x, t)u2(t)dt

)

+ L−1
(∫ x

0
K(x, t)u3(t)dt

)
+ · · · (6.23)

The components u0(x), u1(x), u2(x), u3(x), . . . of the unknown function u(x) are
determined in a recursive manner, if we set

u0(x) =
n−1∑
k=0

1

k!bk xk + L−1(f (x)),

u1(x) = L−1
(∫ x

0
K(x, t)u0(t)dt

)
,

u2(x) = L−1
(∫ x

0
K(x, t)u1(t)dt

)
,

u3(x) = L−1
(∫ x

0
K(x, t)u2(t)dt

)
,

u4(x) = L−1
(∫ x

0
K(x, t)u3(t)dt

)
,
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and so on. The above equations can be written in a recursive manner as

u0(x) =
n−1∑
k=0

1

k!bk xk + L−1(f (x)) (6.24)

un+1(x) = L−1
(∫ x

0
K(x, t)un(t)dt

)
, n ≥ 0 (6.25)

In view of equations (6.24) and (6.25), the components u0(x), u1(x), u2(x), . . .
are immediately determined. Once these components are determined, the solution
u(x) of equation (6.19) is then obtained as a series form using equation (6.21). The
series solution may be put into an exact closed-form solution which can be clarified
by some illustration as follows. It is to be noted here that the phenomena of self-
cancelling noise terms that was introduced before may be applied here if the noise
terms appear in u0(x) and u1(x). The following example will explain how we can
use the decomposition method.

Example 6.3

Solve the following Volterra integro-differential equation

u′′(x) = x +
∫ x

0
(x − t)u(t)dt, u(0) = 0, u′(0) = 1, (6.26)

by using the decomposition method. Verify the result by the Laplace transform
method.

Solution

Applying the two-fold integration operator L−1

L−1(.) =
∫ x

0

∫ x

0
(.)dx dx, (6.27)

to both sides of equation (6.26), i.e. integrating both sides of equation (6.26) twice
from 0 to x, and using the given linear conditions yield

u(x) = x + x3

3! + L−1
(∫ x

0
(x − t)u(t)dt

)
. (6.28)
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Following the decomposition scheme, i.e. equations (6.24) and (6.25), we find

u0(x) = x + x3

3!
u1(x) = L−1

(∫ x

0
(x − t)u0(t)dt

)

= x5

5! + x7

7!
u2(x) = L−1

(∫ x

0
(x − t)u1(t)dt

)

= x9

9! + x11

11! .

With this information the final solution can be written as

u(x) = x + x3

3! + x5

5! + x7

7! + x9

9! + x11

11! + · · · (6.29)

and this leads to u(x) = sinh x, the exact solution in closed-form.
By using the Laplace transform method with the concept of convolution and

using the initial conditions the given equation can be very easily simplified to

L{u(x)} = 1

s2 − 1

and taking the inverse transform, we obtain u(x) = sinh x which is identical to the
previous result.

Example 6.4

Solve the following Volterra integro-differential equation

u′′(x) = 1 +
∫ x

0
(x − t)u(t)dt, u(0) = 1, u′(0) = 0, (6.30)

by using the decomposition method, then verify it by the Laplace transform method.

Solution

Integrating both sides of equation (6.30) from 0 to x and using the given initial
conditions yield

u(x) = 1 + x2

2! + L−1
(∫ x

0
(x − t)u(t)dt

)
, (6.31)
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where L−1 is a two-fold integration operator. Following the decomposition method,
we obtain

u0(x) = 1 + x2

2!

u1(x) = L−1
(∫ x

0
(x − t)u0(t)dt

)

= x4

4! + x6

6!

u2(x) = L−1
(∫ x

0
(x − t)u1(t)dt

)

= x8

8! + x10

10!

Using this information the solution u(x) can be written as

u(x) = 1 + x2

2! + x4

4! + x6

6! + x8

8! + x10

10! + · · · (6.32)

and this gives u(x) cosh x the exact solution.
By using the Laplace transform method with the concept of convolution and

using the initial conditions, we obtain

L{u(x)} = s

s2 − 1

and its inversion is simply u(x) = cosh x. These two results are identical.

6.2.3 Converting to Volterra integral equations

This section is concerned with converting toVolterra integral equations. We can eas-
ily convert the Volterra integro-differential equation to equivalent Volterra integral
equation, provided the kernel is a difference kernel defined by K(x, t) = K(x − t).
This can be easily done by integrating both sides of the equation and using the
initial conditions. To perform the conversion to a regular Volterra integral equation,
we should use the well-known formula described in Chapter 1 that converts multi-
ple integrals into a single integral. We illustrate for the benefit of the reader three
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specific formulas:

∫ x

0

∫ x

0
u(t)dt =

∫ x

0
(x − t)u(t)dt,

∫ x

0

∫ x

0

∫ x

0
u(t)dt = 1

2!
∫ x

0
(x − t)2u(t)dt,

∫ x

0

∫ x

0
· · ·

∫ x

0
u(t)dt︸ ︷︷ ︸

n-fold integration

= 1

(n − 1)!
∫ x

0
(x − t)n−1u(t)dt

Having established the transformation to a standard Volterra integral equation,
we may proceed using any of the alternative methods discussed before in previ-
ous chapters. To give a clear overview of this method we illustrate the following
example.

Example 6.5

Solve the following Volterra integro-differential equation

u′(x) = 2 − x2

4
+ 1

4

∫ x

0
u(t)dt, u(0) = 0. (6.33)

by converting to a standard Volterra integral equation.

Solution

Integrating both sides from 0 to x and using the initial condition and also converting
the double integral to the single integral, we obtain

u(x) = 2x − x3

12
+ 1

4

∫ x

0

∫ x

0
u(t)dt dt

= 2x − x3

12
+ 1

4

∫ x

0
(x − t)u(t)dt

It is clearly seen that the above equation is a standard Volterra integral equation. It
will be solved by the decomposition method. Following that technique we set

u0(x) = 2x − x3

12
, (6.34)
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which gives

u1(x) = 1

4

∫ x

0
(x − t)

(
2t − t3

12

)
dt,

= x3

12
− x5

240
. (6.35)

We can easily observed that x3

12 appears with opposite signs in the components
u0(x) and u1(x), and by cancelling this noise term from u0(x) and justifying that
u(x) = 2x, is the exact solution of equation (6.33). This result can be easily verified
by taking the Laplace transform of equation (6.33) and using the initial condition
which simply reduces to L{u(x)} = 2

s2 and its inversion is u(x) = 2x.

6.2.4 Converting to initial value problems

In this section, we shall investigate how to reduce the Volterra integro-differential
equation to an equivalent initial value problem. In this study, we shall mainly
focus our attention to the case where the kernel is a difference kernel of the form
K(x, t) = K(x − t). This can be easily achieved by differentiating both sides of the
integro-differential equation as many times as needed to remove the integral sign.
In differentiating the integral involved we shall use the Leibnitz rule to achieve
our goal. The Leibnitz rule has already been introduced in Chapter 1. For ready
reference, the rule is

Let y(x) =
∫ t=b(x)

t=a(x)
f (x, t)dt

then
dy

dx
=

∫ t=b(x)

t=a(x)

∂

∂x
f (x, t)dt + db(x)

dx
f (b(x), x) − da(x)

dx
f (a(x), x).

Having converted the Volterra integro-differential equation to an initial value
problem, the various methods that are used in any ordinary differential equation can
be used to determine the solution. The concept is easy to implement but requires
more calculations in comparison to the integral equation technique. To give a clear
overview of this method we illustrate the following example.

Example 6.6

Solve the following Volterra integro-differential equation

u′(t) = 1 +
∫ x

0
u(t)dt, u(0) = 0, (6.36)

by converting it to an initial value problem.
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Solution

Differentiating both sides of equation (6.36) with respect to x and using the Leibnitz
rule to differentiate the integral at the right-hand side we obtain

u′′(x) = u(x), with the initial conditions u(0) = 0, u′(0) = 1, (6.37)

where the derivative condition is obtained by substituting x = 0 in both sides of the
equation (6.36). The solution of equation (6.37) is simply

u(x) = A cosh x + B sinh x,

where A and B are arbitrary constants and using the initial conditions, we have
A = 0 and B = 1 and thus the solution becomes

u(x) = sinh x.

This solution can be verified by the Laplace transform method. By taking the
Laplace to equation (6.36) and using the initial condition, we have after reduction

L{u(x)} = 1

s2 − 1

and its inversion gives us u(x) = sinh x which is identical to the above result.

Example 6.7

Solve the following Volterra integro-differential equation

u′(x) = 2 − x2

4
+ 1

4

∫ x

0
u(t)dt, u(0) = 0. (6.38)

by reducing the equation to an initial value problem.

Solution

By differentiating the above equation with respect to x it can be reduced to the
following initial value problem

u′′(x) − 1
4 u(x) = − x

2 , u(0) = 0, u′(0) = 2, (6.39)

The general solution is obvious and can be written down at once

u(x) = A cosh (x/2) + B sinh (x/2) + 2x.

Using the initial conditions yields A = B = 0 and the solution reduces to u(x) = 2x.
This result can also be obtained by using the Laplace transform method.
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6.3 Fredholm integro-differential equations

In this section, we will discuss the reliable methods used to solve Fredholm integro-
differential equations. We remark here that we will focus our attention on the
equations that involve separable kernels where the kernel K(x, t) can be expressed
as the finite sum of the form

K(x, t) =
n∑

k=1

gk (x)hk (t). (6.40)

Without loss of generality, we will make our analysis on a one-term kernel K(x, t)
of the form K(x, t) = g(x)h(t), and this can be generalized for other cases. The non-
separable kernel can be reduced to separable kernel by using the Taylor expansion
of the kernel involved. We point out that the methods to be discussed are introduced
before, but we shall focus on how these methods can be implemented in this type
of equations. We shall start with the most practical method.

6.3.1 The direct computation method

Without loss of generality, we assume a standard form to the Fredholm integro-
differential equation given by

u(n)(x) = f (x) +
∫ 1

0
K(x, t)u(t)dt, u(k) = bk (0), 0 ≤ k ≤ (n − 1), (6.41)

where u(n)(x) is the nth derivative of u(x) with respect to x and bk are constants that
define the initial conditions. Substituting K(x, t) = g(x)h(t) into equation (6.41)
yields

u(n)(x) = f (x) + g(x)
∫ 1

0
h(t)u(t)dt, u(k) = bk , 0 ≤ k ≤ (n − 1). (6.42)

We can easily see from equation (6.42) that the definite integral on the right-hand
side is a constant α, i.e. we set

α =
∫ 1

0
h(t)u(t)dt, (6.43)

and so equation (6.42) can be written as

u(n)(x) = f (x) + αg(x). (6.44)

It remains to determine the constant α to evaluate the exact solution u(x). To
find α, we should derive a form for u(x) by using equation (6.44), followed
by substituting the form in equation (6.43). To achieve this we integrate both
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sides of equation (6.44) n times from 0 to x, and by using the given initial
conditions u(k) = bk , 0 ≤ k ≤ (n − 1) and we obtain an expression for u(x) in the
following form

u(x) = p(x; α), (6.45)

where p(x; α) is the result derived from integrating equation (6.44) and also by
using the given initial conditions. Substituting equation (6.45) into the right-hand
side of equation (6.43), integrating and solving the resulting algebraic equation
to determine α. The exact solution of equation (6.42) follows immediately upon
substituting the value of α into equation (6.45). We consider here to demonstrate
the technique with an example.

Example 6.8

Solve the following Fredholm integro-differential equation

u′′′(x) = sin x − x −
∫ π/2

0
xtu′(t)dt, (6.46)

subject to the initial conditions u(0) = 1, u′(0) = 0, u′′(0) = −1.

Solution

This equation can be written in the form

u′′′(x) = sin x − (1 + α)x, u(0) = 1, u′(0) = 0, u′′(0) = −1, (6.47)

where

α =
∫ π/2

0
tu′(t)dt. (6.48)

To determine α, we should find an expression for u′(x) in terms of x and α to be
used in equation (6.47). This can be done by integrating equation (6.47) three times
from 0 to x and using the initial conditions; hence, we find

u′′(x) = − cos x − 1 + α

2! x2

u′(x) = − sin x − 1 + α

3! x3

u(x) = cos x − 1 + α

4! x4
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Substituting the expression for u′(x) into equation (6.48), we obtain

α =
∫ π/2

0

(
−t sin t − 1 + α

3! t4
)

dt

= −1. (6.49)

Substituting α = −1 into u(x) = cos x − 1 + α
4! x4 simply yields u(x) = cos x which

is the required solution of the problem.

6.3.2 The decomposition method

In the previous chapters, the Adomian decomposition method has been extensively
introduced for solving Fredholm integral equations. In this section, we shall study
how this powerful method can be implemented to determine a series solution to the
Fredholm integro-differential equations. We shall assume a standard form to the
Fredholm integro-differential equation as given below

u(n)(x) = f (x) +
∫ 1

0
K(x, t)u(t)dt, u(k) = bk (0), 0 ≤ k ≤ (n − 1), (6.50)

Substituting K(x, t) = g(x)h(t) into equation (6.50) yields

u(n)(x) = f (x) + g(x)
∫ 1

0
h(t)u(t)dt. (6.51)

Equation (6.51) can be written in the operator form as

Lu(x) = f (x) + g(x)
∫ 1

0
h(t)u(t)dt, (6.52)

where the differential operator is given by L = dn

dxn . It is clear that L is an invertible
operator; therefore, the integral operator L−1 is an n-fold integration operator and
may be considered as definite integrals from 0 to x for each integral. Applying L−1

to both sides of equation (6.52) yields

u(x) = b0 + b1x + 1

2!b2x2 + · · · + 1

(n − 1)
bn−1xn−1

+ L−1(f (x)) +
(∫ 1

0
h(t)u(t)dt

)
L−1(g(x)). (6.53)

In other words, we integrate equation (6.51) n times from 0 to x and we use the
initial conditions at every step of integration. It is important to note that the equa-
tion obtained in equation (6.53) is a standard Fredholm integral equation. This
information will be used in the later sections.
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In the decomposition method, we usually define the solution u(x) of equation
(6.50) in a series form given by

u(x) =
∞∑

n=0

un(x). (6.54)

Substituting equation (6.54) into both sides of equation (6.53) we get

∞∑
n=0

un(x) =
n−1∑
k=0

1

k!bk xk + L−1(f (x))

+
(∫ 1

0
h(t)u(t)dt

)
L−1(g(x)), (6.55)

This can be written explicitly as follows:

u0(x) + u1(x) + u2(x) + · · · =
n−1∑
k=0

1

k!bk xk + L−1(f (x))

+
(∫ 1

0
h(t)u0(t)dt

)
L−1(g(x))

+
(∫ 1

0
h(t)u1(t)dt

)
L−1(g(x))

+
(∫ 1

0
h(t)u2(t)dt

)
L−1(g(x))

+ · · · . (6.56)

The components u0(x), u1(x), u2(x), . . . of the unknown function u(x) are deter-
mined in a recurrent manner, in a similar fashion as discussed before, if we
set

u0(x) =
n−1∑
k=0

1

k!bk xk + L−1(f (x))

u1(x) =
(∫ 1

0
h(t)u0(t)dt

)
L−1(g(x))

u2(x) =
(∫ 1

0
h(t)u1(t)dt

)
L−1(g(x))

u3(x) =
(∫ 1

0
h(t)u2(t)dt

)
L−1(g(x))

· · · · · · = · · · · · · . (6.57)
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The above scheme can be written in compact form as follows:

u0(x) =
n−1∑
k=0

1

k!bk xk + L−1(f (x))

un+1(x) =
(∫ 1

0
h(t)un(t)dt

)
L−1(g(x)), n ≥ 0. (6.58)

In view of equation (6.58), the components of u(x) are immediately determined
and consequently the solution u(x) is determined. The series solution is proven
to be convergent. Sometimes the series gives an exact expression for u(x). The
decomposition method avoids massive computational work and difficulties that
arise from other methods. The computational work can be minimized, sometimes,
by observing the so-called self-cancelling noise terms phenomena.

Remark

The noise terms phenomena
The phenomena of the self-cancelling noise terms was introduced by Adomian and
Rach [2] and it was proved that the exact solution of any integral or integro-
differential equation, for some cases, may be obtained by considering the first
two components u0 and u1 only. Instead of evaluating several components, it is use-
ful to examine the first two components. If we observe the appearance of like terms
in both the components with opposite signs, then by cancelling these terms, the
remaining noncancelled terms of u0 may in some cases provide the exact solution.
This can be justified through substitution. The self-cancelling terms between the
components u0 and u1 are called the noise terms. However, if the exact solution is
not attainable by using this phenomena, then we should continue determining other
components of u(x) to get a closed-form solution or an approximate solution. We
shall now consider to demonstrate this method by an example.

Example 6.9

Solve the following Fredholm integro-differential equation

u′′′(x) = sin x − x −
∫ π/2

0
xtu′(t)dt, u(0) = 1, u′(0) = 0, u′′(0) = −1, (6.59)

by using the decomposition method.

Solution

Integrating both sides of equation (6.59) from 0 to x three times and using the initial
conditions we obtain

u(x) = cos x − x4

4! − x4

4!
∫ π/2

0
tu′(t)dt. (6.60)
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We use the series solution given by

u(x) =
∞∑

n=0

un(x). (6.61)

Substituting equation (6.61) into both sides of equation (6.60) yields

∞∑
n=0

un(x) = cos x − x4

4! − x4

4!
∫ π/2

0
t

( ∞∑
n=0

u′
n(t)

)
dt. (6.62)

This can be explicitly written as

u0(x) + u1(x) + u2(x) + · · · = cos x − x4

4! − x4

4!
(∫ π/2

0
tu′

0(t)dt

)

− x4

4!
(∫ π/2

0
tu′

1(t)dt

)
− x4

4!
(∫ π/2

0
tu′

2(t)dt

)
+ · · · . (6.63)

Let us set

u0(x) = cos x − x4

4! , (6.64)

u1(x) = −x4

4!
∫ π/2

0
t

(
− sin t − t3

3!
)

dt

= x4

4! + π5

(5!)(3!)(32)
x4. (6.65)

Considering the first two components u0(x) and u1(x) in equations (6.64) and (6.65),
we observe that the term x4

4! appears in both components with opposite signs. Thus,
according to the noise phenomena the exact solution is u(x) = cos x. And this can
be easily verified to be true.

6.3.3 Converting to Fredholm integral equations

This section is concerned about a technique that will reduce Fredholm integro-
differential equation to an equivalent Fredholm integral equation. This can be easily
done by integrating both sides of the integro-differential equation as many times as
the order of the derivative involved in the equation from 0 to x for every time we
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integrate, and using the given initial conditions. It is worth noting that this method is
applicable only if the Fredholm integro-differential equation involves the unknown
function u(x) only, and not any of its derivatives, under the integral sign.

Having established the transformation to a standard Fredholm integral equation,
we may proceed using any of the alternative method, namely the decomposition
method, direct composition method, the successive approximation method, or the
method of successive substitutions. We illustrate an example below.

Example 6.10

Solve the following Fredholm integro-differential equation

u′′(x) = ex − x + x
∫ 1

0
tu(t)dt, u(0) = 1, u′(0) = 1, (6.66)

by reducing it to a Fredholm integral equation.

Solution

Integrating both sides of equation (6.66) twice from 0 to x and using the initial
conditions we obtain

u(x) = ex − x3

3! + x3

3!
∫ 1

0
tu(t)dt, (6.67)

a typical Fredholm integral equation. By the direct computational method, this
equation can be written as

u(x) = ex − x3

3! + α
x3

3! , (6.68)

where the constant α is determined by

α =
∫ 1

0
tu(t)dt, (6.69)

Substituting equation (6.68) into equation (6.69) we obtain

α =
∫ 1

0
t

(
et − t3

3! + α
t3

3!
)

dt,

which reduces to yield α = 1. Thus, the solution can be written as u(x) = ex.

Remark

It is worth noting that the main ideas we applied are the direct computation method
and the decomposition method, where the noise term phenomena was introduced.
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The direct computation method provides the solution in a closed-form, but the
decomposition method provides the solution in a rapidly convergent series.

6.4 The Laplace transform method

To solve the linear integro-differential equation with initial conditions, the method
of Laplace transform plays a very important role in many engineering problems
specially in electrical engineering circuit. We shall discuss a fundamental first order
integro-differential equation arising in the LRC circuit theory. We shall demonstrate
its solution taking a very general circuit problem.

The current flowing through a LRC electric circuit with voltage E(t) is given by
the following integro-differential equation

L
dI

dt
+ RI + 1

C

∫ t

0
I (τ)dτ = E(t), I (0) = I0 (6.70)

where I (t) is the current, E(t) the voltage, L the inductance, R the resistance, and
C the capacitance of the circuit. Here, L, R, C are all constants. And I (0) = I0 is the
initial condition with I0 a constant current.

Now to determine the instantaneous current flowing through this circuit, we
shall use the method of Laplace transform in conjunction with the convolution
integral. We define the Laplace transform as L{I (t)} = ∫ ∞

0 e−st I (t)dt. Thus, taking
the Laplace transform to both sides of the equation (6.70) and using the Laplace
transform property that L{ dI

dt } = sL{I (t)} − I0, we obtain

LsL{I (t)} − LI0 + RL{I (t)} + 1
CsL{I (t)} = L{E(t)}. (6.71)

Solving for L{I (t)}, we obtain

L{I (t)} = s

Ls2 + Rs + 1
C

{E(t)} + (LI0)
s

Ls2 + Rs + 1
C

(6.72)

To invert the Laplace transform of s
Ls2 + Rs + 1

C
we need special attention. In the

following we show the steps to be considered in this inverse process.

s

Ls2 + Rs + 1
C

= 1

L

{
s

s2 + R
L s + 1

LC

}

= 1

L

{
s

(s + R
2L )2 + ( 1

LC − R2

4L2 )

}
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To find the Laplace inverse of the above transform we need to consider three
important cases.

(a) R = 2

√
L

C

(b) R < 2

√
L

C

(c) R > 2

√
L

C
.

The Laplace inverse in case (a) R = 2
√

L
C is obtained as

1

L
L−1 s

(s + R
2L )2

= 1

L
e− Rt

2L L−1

(
s − R

2L

s2

)

= 1

L
e− Rt

2L

(
1 − Rt

2L

)
(6.73)

The Laplace inverse in case (b) R < 2
√

L
C is the following:

Let ω =
√

1
LC − R2

4L2 , then we obtain

1

L
L−1

{
s

(s + R
2L )2 + ω2

}
= 1

L
e− Rt

2L L−1

(
s − R

2L

s2 + ω2

)

= 1

L
e− Rt

2L

(
cos ωt − R

2Lω
sin ωt

)

The Laplace inverse in case (c) R > 2
√

L
C is the following:

Let λ =
√

R2

4L2 − 1
LC , then we obtain

1

L
L−1

{
s

(s + R
2L )2 − λ2

}
= 1

L
e− Rt

2L L−1

(
s − R

2L

s2 − λ2

)

= 1

L
e− Rt

2L

(
cosh λt − R

2Lλ
sinh λt

)
.

Hence the solution to the linear integro-differential equation for the circuit
problem can be written immediately as follows:

The solution in case (a) is

I (t) =
(

1

L

) ∫ t

0
e− Rτ

2L

(
1 − Rτ

2L

)
E(t − τ)dτ + I0e− Rt

2L

(
1 − Rt

2L

)
(6.74)
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The solution in case (b) is

I (t) =
(

1

L

) ∫ t

0
e− Rτ

2L

(
cos ωτ − R

2Lω
sin ωτ

)
E(t − τ)dτ

+ I0e− Rt
2L

(
cos ωt − R

2Lω
sin ωt

)
(6.75)

The solution in case (c) is

I (t) =
(

1

L

) ∫ t

0
e− Rτ

2L

(
cosh λτ − R

2Lλ
sinh λτ

)
E(t − τ)dτ

+ I0e− Rt
2L

(
cosh λt − R

2Lω
sinh λt

)
(6.76)

Some special cases

If E(t) = E0 a constant, then the solutions for the cases (a), (b), and (c) are given by

(a) I (t) =
(

E0t

L
+ I0

(
1 − Rt

2L

))
e− Rt

2L

(b) I (t) =
(

E0

Lω

)
e− Rt

2L sin ωt + I0e− Rt
2L

(
cos ωt − R

2Lω
sin ωt

)

(c) I (t) =
(

E0

Lλ

)
e− Rt

2L sinh λt + I0e− Rt
2L

(
cosh ωt − R

2Lλ
sinh λt

)

If E(t) = E0δ(t), then the solutions for the cases (a), (b), and (c) are, respectively,
given by

(a) I (t) =
(

E0

L
+ I0

)
e− Rt

2L

(
1 − Rt

2L

)

(b) I (t) =
(

E0

L
+ I0

)
e− Rt

2L

(
cos ωt − R

2Lω
sin ωt

)

(c) I (t) =
(

E0

L
+ I0

)
e− Rt

2L

(
cosh λt − R

2Lλ
sinh λt

)

These solutions are, respectively, called (a) the critically damped, (b) the
damped oscillatory, and (c) the over damped.
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6.5 Exercises

Solve the following Fredholm integro-differential equations by using the direct
computation method:

1. u′(x) = x
2 − ∫ 1

0 xtu(t)dt, u(0) = 1
6 .

2. u′′(x) = − sin x + x − ∫ π/2
0 xtu(t)dt, u(0) = 0, u′(0) = 1.

3. u′(x) = 2 sec2 x tan x − x+ ∫ π/4
0 xtu(t)dt, u(0) = 1.

Solve the following Fredholm integro-differential equations by using the
decomposition method:

4. u′(x) = xex + ex − x + ∫ 1
0 xu(t)dt, u(0) = 0.

5. u′′(x) = − sin x + x − ∫ π/2
0 xtu(t)dt, u(0) = 0, u′(0) = 1.

6. u′′′(x) = − cos x + x + ∫ π/2
0 xu′′(t)dt, u(0) = 0, u′(0) = 1, u′′(0) = 0.

Solve the following integro-differential equations:

7. u′(x) = 1 − 2x sin x + ∫ x
0 u(t)dt, u(0) = 0.

8. u′′(x) = 1 − x( cos x + sin x) − ∫ x
0 tu(t)dt, u(0) = −1, u′(0) = 1.

9. u′′(x) = x2

2 − x cosh x − ∫ x
0 tu(t)dt, u(0) = 1, u′(0) = −1.

Solve the following Volterra integro-differential equations by converting
problem to an initial value problem:

10. u′(x) = ex − ∫ x
0 u(t)dt, u(0) = 1.

11. u′′(x) = −x − x2

2! + ∫ x
0 (x − t)u(t)dt, u(0) = 1, u′(0) = 1.

12. u′(x) = 1 + sin x + ∫ x
0 u(t)dt, u(0) = −1.
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7 Symmetric kernels and orthogonal systems
of functions

7.1 Development of Green’s function in one-dimension

Green’s functions serve as mathematical characterizations of important physical
concepts. These functions are of fundamental importance in many practical prob-
lems, and in understanding of the theory of differential equations. In the following
we illustrate a simple practical problem from mechanics whose solution can be
composed of a Green’s function, named for the English mathematical physicist
George Green (1793–1841).

7.1.1 A distributed load of the string

We consider a perfectly flexible elastic string stretched to a length l under tension
T . Let the string bear a distributed load per unit length ω(x) including the weight
of the string. Also assume that the static deflections produced by this load are all
perpendicular to the original, undeflected position of the strings.

Consider an elementary length �x of the string as shown in Figure 7.1. Since
the deflected string is in equilibrium, the net horizontal and vertical forces must
both be zero. Thus,

F1 cos α1 = F2 cos α2 = T (7.1)

F2 sin α2 = F1 sin α1 − ω(x)�x (7.2)

Here, the positive direction of ω(x) has been chosen upward. We consider the
deflection to be so small that the forms F1, F2 will not differ much from the tension
of string T , i.e. T = F1 = F2. So, we obtain approximately

T sin α2 = T sin α1 − ω(x)�x

189
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Figure 7.1: A stretched string deflected by a distributed load.

which is

tan α2 = tan α1 − ω(x)�x

T
(7.3)

(Using sin α � tan α if α is small.) But we know

tan α2 = dy

dx
|x+�x

tan α1 = dy

dx
|x

Hence rewriting equation (7.3), and letting �x → 0, we obtain

lim
�x→0

dy
dx |x+�x − dy

dx |x
�x

= −ω(x)

T

or, T
d2y

dx2 = −ω(x) (7.4)

which is the differential equation satisfied by the deflection curve of the string. This
equation is obtained using the distributed load of the string.

7.1.2 A concentrated load of the strings

We now consider the deflection of the string under the influence of a concentrated
load rather than a distributed load. A concentrated load is, of course, a mathematical
fiction which cannot be realized physically. Any nonzero load concentrated at a
single point implies an infinite pressure which may break the string. The use of
concentrated load in the investigation of physical systems is both common and
fruitful.

It can be easily noticed from equation (7.4) that if there is no distributed load
(ω(x) = 0) then y′′ = 0 at all points of the string. This implies that y is a linear
function which follows that the deflection curve of the string under the influence of
a single concentrated load R consists of two linear segments as shown in Figure 7.2.
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Figure 7.2: A stretched string deflected by a concentrated load.

Resolving the forces acting on the string can be given as

F2 cos α2 = F1 cos α1

F1 sin α1 + F2 sin α2 = −R (7.5)

When the deflection is small we can assume that F2 cos α2 = F1 cos α1 = T , or
simply F1 = F2 = T and

sin α1 � tan α1

sin α2 � tan α2

Then equation (7.5) becomes

tan α1 + tan α2 = − R
T

−β
η

+ −β
l−η

= − R
T

and

β = R(l − η)η

Tl
where β is the transverse deflection of the string at x = η.

With the deflection β known, it is a simple matter to use the similar triangles to
find the deflection of the string at any point x. The results are

y(x)
x = β

η
0 ≤ x ≤ η

so,

y(x) = R(l − η)x

Tl
0 ≤ x ≤ η
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also
y(x)

l − x
= β

l − η

so,

y(x) = R(l − x)η

Tl
η ≤ x ≤ l

Thus, the results are

y(x, η) =

⎧⎪⎪⎨
⎪⎪⎩

R(l − η)x

Tl
0 ≤ x ≤ η

R(l − x)η

Tl
η ≤ x ≤ l

(7.6)

It is worth mentioning that y(x, η) is used rather than y(x) to indicate that the
deflection of y depends on the point η where the concentrated load is applied and
the point x where the deflection is observed. These two points are, respectively,
called the ‘source point’ and the ‘field point’.

It can be easily observed from equation (7.6) that the deflection of a string
at a point x due to a concentrated load R applied at a point η is the same as the
deflection produced at the point η by an equal load applied at the point x. When
R is a unit load it is customary to use the notation G(x, η) known as the Green’s
function corresponding to the function y(x, η). Many authors call Green’s function
an influence function. It is observed that this Green’s function is symmetric in the
two variables x and η such that

G(x, η) = G(η, x) (7.7)

Thus, for this problem, in terms of unit positive load, Green’s function is given by

G(x, η) =

⎧⎪⎪⎨
⎪⎪⎩

(l − η)x

Tl
0 ≤ x ≤ η

(l − x)η

Tl
η ≤ x ≤ l

(7.8)

The symmetry of G(x, η) is an important illustration discovered by Maxwell and
Rayleigh known as Maxwell–Rayleigh reciprocity law which holds in many physical
systems including mechanical and electrical. James Clerk Maxwell (1831–1879)
was a Scottish mathematical physicist. Lord Rayleigh (1842–1919) was an English
mathematical physicist.

Remark

It is interesting and important to note that with Green’s function G(x, η) an expres-
sion of deflection of a string under an arbitrary distributed load can be found without
solving equation (7.4). To see this point clearly, we divide the interval 0 ≤ x ≤ l into
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n subintervals by the points η0 = 0, η1, η2, . . . , ηn = l such that �ηi = ηi − ηi−1.
Let ξi be an arbitrary point in the subinterval �ηi. Let us also consider that the
position of the distributed load acting on the subinterval �ηi, namely ω(ξi)�ηi, is
concentrated at the point η = ξi. The deflection produced at the point x by this load
is the product of the load and the deflection produced at x by a unit load at the point
η = ξi, which is

(ω(ξi)�ηi)G(x, ξi)

Thus, if we add up all the deflections produced at the point x by the various con-
centrated forces which together approximate the actual distributed load, we obtain
the sum

n∑
i=1

ω(ξi)G(x, ξi)�ηi

This sum becomes an integral when in the limit �ηi → 0, and the deflection y(x)
at an arbitrary point x is given by

y(x) =
∫ l

0
ω(η)G(x, η)dη (7.9)

Hence, once the function G(x, η) is known, the deflection of the string under any
piecewise continuous distributed load can be determined at once by the integral
equation (7.9). Mathematically, it is clear that equation (7.9) is a solution of the
ordinary differential equation

Ty′′ = −ω(x)

because

y′′ = ∂2

∂x2

∫ l

0
ω(η)G(x, η)dη

=
∫ l

0
ω(η)

∂2G

∂x2 (x, η)dη

and so ∫ l

0
ω(η)

(
T

∂2G

∂x2 (x, η)
)

dx = −ω(x)

This is only true provided

T
∂2G

∂x2 (x, η) = −δ(x − η)

such that ∫ l

0
ω(η)( − δ(x − η))dη = −ω(x)

where δ(x − η) is a Dirac delta function.
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7.1.3 Properties of Green’s function

This generalized function δ(x − η) has the following important properties (see
Lighthill’s [9] Fourier Analysis and Generalized Function, 1959, and Rahman
[12]):

I. δ(x − η) =
{

0 x �= η

∞ x = η

II.
∫ ∞

−∞
δ(x − η)dx = 1

III. If f (x) is a piecewise continuous function in −∞ < x < ∞, then

∫ ∞

−∞
f (x)δ(x − η)dx = f (η)

Thus, integrating TGxx = −δ(x − η) between x = η + 0 and x = η − 0 we obtain,

T
∫ η+0

η−0
Gxxdx = −

∫ η+0

η−0
δ(x − η)dx

T

[
∂G

∂x

∣∣∣∣
η+0

− ∂G

∂x

∣∣∣∣
η−0

]
= −1

Hence the jump at x = η for this problem is

∂G

∂x

∣∣∣∣
η+0

− ∂G

∂x

∣∣∣∣
η−0

= −
(

1

T

)
,

which is the downward jump. Thus, when the tension T = 1, this downward jump
is −1 at x = η.

Definition 7.1

A function f (x) has a jump λ at x = η if, and only if, the respective right- and
left-hand limits f (η + 0) and f (η − 0) of f (x) exists as x tends to η, and

f (η + 0) − f (η − 0) = λ

This jump λ is said to be upward or downward depending on whether λ is positive
or negative. At a point x = η when f (x) is continuous, the jump λ is, of course, zero.
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With this definition of jump, it is an easy matter to show that ∂G
∂x has a downward

jump of − 1
T at x = η because we observe from equation (7.8) that

lim
x→η+0

∂G

∂x
= lim

x→η+0

−η

lT
= − η

lT

lim
x→η−0

∂G

∂x
= lim

x→η−0

l − η

lT
= l − η

lT

It is obvious that these limiting values are not equal and their difference is

− η

lT
− l − η

lT
= − 1

T

which is a downward jump as asserted. As we have seen G(x, η) consists of two
linear expressions, it satisfies the linear homogeneous differential equation Ty′′ = 0
at all points of the interval 0 ≤ x ≤ l except at x = η. In fact the second derivative
∂2G
∂x2 (x, η) does not exist because ∂G

∂x (x, η) is discontinuous at that point.
The properties of the function G(x, η) which we have just observed are not

accidental characteristics for just a particular problem. Instead, they are an important
class of functions associated with linear differential equations with constants as
well as variable coefficients. We define this class of functions with its properties as
follows:

Definition 7.2

Consider the second-order homogeneous differential equation

y′′ + P(x)y′ + Q(x)y = 0 (7.10)

with the homogeneous boundary conditions

x = a : α1y(a) + α2y′(a) = 0

x = b : β1y(b) + β2y′(b) = 0

⎫⎬
⎭ (7.11)

where α1 and α2 both are not zero, and β1 and β2 both are not zero.
Consider a function G(x, η) which satisfies the differential equation (7.10)

such that

Gxx + P(x)Gx + Q(x)G = −δ(x − η) (7.12)

with the following property

x = a : α1G(a, η) + α2Gx(a, η) = 0 (7.13)

x = b : β1G(b, η) + β2Gx(b, η) = 0 (7.14)

x = η G(x, η) is continuous in a ≤ x ≤ b (7.15)
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and

lim
x→η+0

∂G

∂x
− lim

x→η−0

∂G

∂x
= −1 (7.16)

has a jump −1 at x = η.
Then this function G(x, η) is called the Green’s function of the problem defined

by the given differential equation and its boundary conditions.
In the following, we shall demonstrate how to construct a Green’s function

involving a few given boundary value problems.

Example 7.1

Construct a Green’s function for the equation y′′ + y = 0 with the boundary
conditions y(0) = y( π

2 ) = 0.

Solution

Since G(x, η) satisfies the given differential equation such that

Gxx + G = −δ(x − η)

therefore a solution exists in the following form

G(x, η) =
{

A cos x + B sin x 0 ≤ x ≤ η

C cos x + D sin x η ≤ x ≤ π
2

The boundary conditions at x = 0 and x = π
2 must be satisfied which yields

G(0, η) = A = 0 and G( π
2 , η) = D = 0. Hence we have

G(x, η) =
{

B sin x 0 ≤ x ≤ η

C cos x η ≤ x ≤ π
2

From the continuity condition at x = η, we have B sin η = C cos η such that
B

cos η
= C

sin η
= α. Thus, B = α cos η and C = α sin η where α is an arbitrary constant.

The Green’s function reduces to

G(x, η) =
⎧⎨
⎩α cos η sin x 0 ≤ x ≤ η

α sin η cos x η ≤ x ≤ π
2

Finally to determine α, we use the jump condition at x = η which gives

∂G

∂x

∣∣∣∣
η+0

− ∂G

∂x

∣∣∣∣
η−0

= −1

α[ sin2 η + cos2 η] = 1
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and, therefore α = 1. With α known, the Green’s function is completely determined,
and we have

G(x, η) =
{

cos η sin x 0 ≤ x ≤ η

cos x sin η η ≤ x ≤ π
2

Example 7.2

Construct the Green’s function for the equation y′′ + ν2y = 0 with the boundary
conditions y(0) = y(l) = 0.

Solution

Since G(x, η) satisfies the given differential equation such that

Gxx + ν2G = −δ(x − η),

therefore a solution can be formed as

G(x, η) =
{

A cos νx + B sin νx 0 ≤ x ≤ η

C cos νx + D sin νx η ≤ x ≤ 1

The boundary conditions at x = 0 and at x = 1 must be satisfied which yields
G(0, η) = A = 0 and G(1, η) = C cos ν + D sin ν = 0 such that C

sin ν
= −D

cos ν
= α

which gives C = α sin ν and D = −α cos ν. Substituting these values, G(x, η) is
obtained as :

G(x, η) =
{

B sin νx 0 ≤ x ≤ η

α sin ν(1 − x) η ≤ x ≤ 1

where α is an arbitrary constant. To determine the values of B and α we use the
continuity condition at x = η. From the continuity at x = η, we have

B sin νη = α sin ν(1 − η)

such that
B

sin ν(1 − η)
= α

sin νη
= γ

which yields

α = γ sin νη

β = γ sin ν(1 − η)

where γ is an arbitrary constant. Thus, the Green’s function reduces to

G(x, η) =
{

γ sin ν(1 − η) sin νx 0 ≤ x ≤ η

γ sin νη sin ν(1 − x) η ≤ x ≤ 1
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Finally to determine γ , we use the jump condition at x = η which is

∂G

∂x

∣∣∣∣
η+0

− ∂G

∂x

∣∣∣∣
η−0

= −1

From this condition, we can obtain

γ = 1

ν sin ν
.

With γ known, the Green’s function is completely determined, and we have

G(x, η) =

⎧⎪⎪⎨
⎪⎪⎩

sin νx sin ν(1 − η)

ν sin ν
0 ≤ x ≤ η

sin νη sin ν(1 − x)

ν sin ν
η ≤ x ≤ 1

This is true provided ν �= nπ, n = 0, 1, 2, . . . . It can be easily seen that
G(x, η) = G(η, x) which is known as the symmetry property of any Green’s func-
tion. This property is inherent with this function. However, it should be noted that
for some physical problems this Green’s function may not be symmetric.

Example 7.3

Find the Green’s function for the following boundary value problem:

y′′ + ν2y = 0; y(0) = y(1); y′(0) = y′(1)

Solution

As before the Green’s function is given by

G(x, η) =
⎧⎨
⎩A cos νx + B sin νx 0 ≤ x ≤ η

C cos νx + D sin νx η ≤ x ≤ 1

The boundary conditions at x = 0 and x = 1 must be satisfied which yields,
respectively,

A = C cos ν + D sin ν

νB = −Cν sin ν + Dν cos ν ν �= 0
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Solving for C and D in terms of A and B, we obtain

C =

∣∣∣∣∣A sin ν

B cos ν

∣∣∣∣∣∣∣∣∣∣ cos ν sin ν

−sin ν cos ν

∣∣∣∣∣
= A cos ν − B sin ν

D =

∣∣∣∣∣ cos ν A

−sin ν B

∣∣∣∣∣∣∣∣∣∣ cos ν sin ν

−sin ν cos ν

∣∣∣∣∣
= A sin ν + B cos ν

After a little reduction, the Green’s function can be written as

G(x, η) =
{

A cos νx − B sin νx 0 ≤ x ≤ η

A cos ν(1 − x) − B sin ν(1 − x) η ≤ x ≤ 1

Now using the continuity condition at x = η, the constants A and B are determined as

A = α( sin νη + sin ν(1 − η))

B = α(− cos νη + cos ν(1 − η))

where α is an arbitrary constant.
Hence the Green’s function is given by

G(x, η) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α[( sin νη + sin ν(1 − η)) cos νx

+ ( cos ν(1 − η) − cos νη) sin νx], 0 ≤ x ≤ η

α[( sin νη + sin ν(1 − η)) cos ν(1 − x)

− ( cos ν(1 − η) − cos νη) sin ν(1 − x)], η ≤ x ≤ 1

Now to determine the value of α, we use the jump condition at x = η

∂G

∂x

∣∣∣∣
η+0

− ∂G

∂x

∣∣∣∣
η−0

= −1

And after considerable reduction, we obtain 2αν(1 − cos ν) = −1 such that
α = −1

2ν(1 − cos ν)
With α known, the Green’s function is completely determined, and we have

G(x, η) =
{

α{sin ν(η − x) + sin ν(1 − η + x)} 0 ≤ x ≤ η

α{sin ν(x − η) + sin ν(1 + η − x)} η ≤ x ≤ 1

where α = −1
2ν(1 − cos ν) .
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7.2 Green’s function using the variation of parameters

In this section, we shall explore the results of the method of variation of parameters
to obtain the Green’s function. Let us consider the linear nonhomogeneous second-
order differential equation:

y′′ + P(x)y′ + Q(x)y = f (x) a ≤ x ≤ b (7.17)

with the homogeneous boundary conditions

x = a : α1y(a) + α2y′(a) = 0 (7.18)

x = b : β1y(b) + β2y′(b) = 0 (7.19)

where constants α1 and α2, and likewise β1 and β2, both are not zero. We shall
assume that f (x), P(x), and Q(x) are continuous in a ≤ x ≤ b. The homogeneous
part of equation (7.17) is

y′′ + P(x)y′ + Q(x)y = 0 (7.20)

Let y1(x) and y2(x) be two linearly independent solutions of equation (7.20). Then
the complementary function is given by

yc = Ay1(x) + By2(x) (7.21)

where A and B are two arbitrary constants. To obtain the complete general solution
we vary the parameters A and B such that

y = A(x)y1(x) + B(x)y2(x) (7.22)

which is now a complete solution of equation (7.17). Using the method of variation
of parameters (see Rahman [14]), we have the following two equations:

A′y1 + B′y2 = 0

A′y′
1 + B′y′

2 = f (x)

}
(7.23)

solving for A′ and B′, we have

A′ = −y2 f

W
and B′ = y1 f

W
(7.24)

where

W =
∣∣∣∣∣ y1 y2

y′
1 y′

2

∣∣∣∣∣ = Wronskian
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Let us now solve for A and B by integrating their derivatives between a and x and
x and b, respectively.

The integration of these results yields, using η as dummy variable

A = −
∫ x

a

y2(η) f (η)

W (η)
dη

B =
∫ x

b

y1(η) f (η)

W (η)
dη

= −
∫ b

x

y1(η) f (η)

W (η)
dη (7.25)

Thus, a particular solution can be obtained as

y = −y1(x)
∫ x

a

y2(η) f (η)

W (η)
dη − y2(x)

∫ b

x

y1(η) f (η)

W (η)
dη (7.26)

Now moving y1(x) and y2(x) into the respective integrals, we have

y = −
[∫ x

a

y1(x)y2(η)

W (η)
f (η)dη +

∫ b

x

y2(x)y1(η)

W (η)
f (η)dη

]
(7.27)

which is of the form

y = −
∫ b

a
G(x, η)f (η)dη (7.28)

where

G(x, η) =

⎧⎪⎪⎨
⎪⎪⎩

y1(x)y2(η)

W (η)
a ≤ η ≤ x, i.e. η ≤ x ≤ b

y2(x)y1(η)

W (η)
x ≤ η ≤ b, i.e. a ≤ x ≤ η.

(7.29)

From the way in which y1(x) and y2(x) were selected, it is clear that G(x, η)
satisfies the boundary conditions of the problem. It is also evident that G(x, η) is a
continuous function and at x = η : G(η + 0, η) = G(η − 0, η). Furthermore, except
at x = η, G(x, η) satisfies the homogeneous form of the given differential equation
since y1(x) and y2(x) are solutions of this equation. This can be seen as follows:
Equation (7.28) must satisfy the equation (7.17) which means

−
∫ b

a
{Gxx + P(x)Gx + Q(x)G} f (η)dη = f (x)

The quantity under the bracket must be zero except at x = η and thus it follows that

Gxx + P(x)Gx + Q(x)G = −δ(η − x) (7.30)

where δ(η − x) is a Dirac delta function.
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Finally, for ∂G
∂x (x, η) we have

Gx(x, η) =

⎧⎪⎪⎨
⎪⎪⎩

y′
1(x)y2(η)

W (η)
η ≤ x ≤ b

y′
2(x)y1(η)

W (η)
a ≤ x ≤ η

Hence,

∂G

∂x

∣∣∣∣
η+0

− ∂G

∂x

∣∣∣∣
η−0

= y′
1(η)y2(η) − y′

2(η)y1(η)

W (η)
= −1

which shows that ∂G
∂x (x, η) has a jump of the amount −1 at x = η. This result can be

shown to be true from the relation (7.30) by integrating from η + 0 to η − 0,

∫ η+0

η−0
Gxxdx +

∫ η+0

η−0
(P(x)Gx + Q(x)G)dx = −

∫ η+0

η−0
δ(x − η)dx

∂G

∂x

∣∣∣∣
η+0

− ∂G

∂x

∣∣∣∣
η−0

= −1

Because

∫ η+0

η−0
P(x)

∂G

∂x
dx = P(x)

∫ η+0

η−0

∂G

∂x
dx = P(x)[G(η+, η) − G(η−, η)] = 0

and
∫ η+0

η−0
Q(x)Gdx = Q(η)

∫ η+0

η−0
Gdx = 0,

since G(x, η) is a continuous function in η − 0 ≤ x ≤ η + 0.

Definition 7.3

Consider, the second-order nonhomogeneous differential equation.

y′′ + p(x)y′ + Q′(x)y = f (x) (7.31)

with the homogeneous boundary conditions

x = a : α1y(a) + α2y′(a) = 0

x = b : β1y(b) + β2y′(b) = 0

⎫⎬
⎭ (7.32)

where α1 and α2 both are not zero, and β1 and β2 both are not zero.
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Consider a particular solution which satisfies the differential equation (7.31) in
the following form

y = −
∫ b

a
G(x, η) f (η)dη (7.33)

where G(x, η) satisfies the differential equation (7.31) such that

Gxx + P(x)Gx + Q(x)G = −δ(η − x) (7.34)

with the following properties:

(I) Boundary conditions:

x = a : α1G(a, η) + α2Gx(a, η) = 0

x = b : β1G(b, η) + β2Gx(b, η) = 0

⎫⎬
⎭ (7.35)

(II) Continuity condition:

x = η, G(η + 0, η) = G(η − 0, η), (7.36)

i.e. G(x, η) is continuous at x = η on a ≤ x ≤ b.

(III) Jump discontinuity of the gradient of G(x, η) at x = η that means,

∂G

∂x

∣∣∣∣
x=η+0

− ∂G

∂x

∣∣∣∣
x=η−0

= −1.

Then a particular solution of the given boundary value problem, i.e. equations
(7.31) and (7.32) can be obtained as

y = −
∫ b

a
G(x, η) f (η)dη

where G(x, η) is the Green’s function for the boundary value problem.

Remark

It is worth mentioning here that the Green’s function obtained through this pro-
cedure may or may not be symmetric, which means there is no guarantee that
G(x, η) = G(η, x).
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Example 7.4

Find the Green’s function of the homogeneous boundary value problem y′′ + y = 0,
y(0) = 0 and y′(π) = 0. Then solve the nonhomogeneous system

y′′ + y = −3 sin 2x

y(0) = 0

y′(π) = 0

Solution

The Green’s function is given by

G(x, η) =
{

A cos x + B sin x 0 ≤ x ≤ η

C cos x + D sin x η ≤ x ≤ π

Using the boundary conditions, we have

x = 0 : 0 = A

x = π : 0 = D

Thus, we obtain

G(x, η) =
{

B sin x 0 ≤ x ≤ η

C cos x η ≤ x ≤ π

G(x, η) is a continuous function at x = η. Therefore, B sin η = C cos η from which
we have B = α cos η and C = α sin η, where α is an arbitrary constant.

The Green’s function is then given by

G(x, η) =
{

α cos η sin x 0 ≤ x ≤ η

α sin η cos x η ≤ x ≤ π

This arbitrary constant α can be evaluated by the jump condition

∂G

∂x

∣∣∣∣
η+0

− ∂G

∂x

∣∣∣∣
η−0

= −1

or, α[−sin2 η − cos2 η] = −1

and hence α = 1. Therefore, the required Green’s function is

G(x, η) =
{

cos η sin x 0 ≤ x ≤ η

sin η cos x η ≤ x ≤ π
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Hence the solution of the nonhomogeneous boundary value problem is

y = −
∫ π

0
G(x, η) f (x)dη

= −
[∫ x

0
G(x, η) f (x)dη +

∫ π

x
G(x, η) f (x)dη

]

= −
[∫ x

0
sin η cos x(−3 sin 2η)dη +

∫ π

x
sin x cos η(−3 sin 2η)dη

]

= 3
[

cos x
∫ x

0
sin η sin 2ηdη + sin x

∫ π

x
cos η sin 2ηdη

]

Performing the indicated integration, we obtain

y = 3
[ 2

3

]
[ cos x sin3 x + sin x(1 + cos3 x)]

= 2 sin x + sin 2x

Using the elementary operator method, the solution of the nonhomogeneous ODE
is given by

y = A cos x + B sin x + sin 2x

With the given boundary conditions, we obtain A = 0 and B = 0, and hence the
solution is

y = 2 sin x + sin 2x

which is identical to the Green’s function method.

Example 7.5

Find a particular solution of the following boundary value problem by using the
Green’s function method:

y′′ = −x; y(0) = 0, y(1) = 0

Solution

The Green’s function is obtained from the homogeneous part of the differential
equation and is given by,

G(x, η) =
{

Ax + B 0 ≤ x ≤ η

αx + β η ≤ x ≤ 1
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Using the boundary conditions, we obtain
0 = B and α = −β and hence

G(x, η) =
{

Ax 0 ≤ x ≤ η

β(1 − x) η ≤ x ≤ 1

Now continuity condition yields Aη = β(1 − η) which can be written as
A

1 − η
= β

η
= γ such that A = γ(1 − η), where γ is the arbitrary constant. Hence

we have

G(x, η) =
{

γ(1 − η)x 0 ≤ x ≤ η

γ(1 − x)η η ≤ x ≤ 1

From the jump condition at x = η, we obtain

∂G

∂x

∣∣∣∣
η+0

− ∂G

∂x

∣∣∣∣
η−0

= −1

or, γ[−η − (1 − η)] = −1

such that γ = 1.
Hence the Green’s function is determined as

G(x, η) =
{

(1 − η)x 0 ≤ x ≤ η

(1 − x)η η ≤ x ≤ 1

Changing the roles of x and η, we have

G(x, η) = G(η, x) =
{

(1 − x)η 0 ≤ η ≤ x

(1 − η)x x ≤ η ≤ 1

Thus, a particular solution of this boundary problem is obtained as:

y(x) = −
∫ 1

0
G(x, η) f (η)

= −
[∫ x

0
G(x, η) f (η)dη +

∫ 1

x
G(x, η) f (η)dη

]

= −
[∫ x

0
(1 − x)η(−η)dη +

∫ 1

x
(1 − η)x(−η)dη

]

=
[

(1 − x)

∣∣∣∣η3

3

∣∣∣∣x
0
+ x

∣∣∣∣η2

2
− η3

3

∣∣∣∣1
x

]

= x3

3 + x
6 − x3

2 = x
6 (1 − x2)
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7.3 Green’s function in two-dimensions

We already saw the application of Green’s function in one-dimension to boundary
value problems in ordinary differential equations in the previous section. In this
section, we illustrate the use of Green’s function in two-dimensions to the boundary
value problems in partial differential equations arising in a wide class of problems
in engineering and mathematical physics.

As Green’s function is always associated with the Dirac delta function, it is
therefore useful to formally define this function. We define the Dirac delta function
δ(x − ξ, y − η, z − ζ) in two-dimensions by

I. δ(x − ξ, y − η, z − ζ) =
{

∞, x = ξ, y = η

0 otherwise
(7.37)

II.
∫∫

Rε

δ(x − ξ, y − η)dxdy = 1, Rε : (x − ξ)2 + (y − η)2 < ε2 (7.38)

III.
∫∫

R
f (x, y)δ(x − ξ, y − η)dxdy = f (ξ, η) (7.39)

for arbitrary continuous function f (x, y) in the region R.

Remark

The Dirac delta function is not a regular function but it is a generalized function as
defined by Lighthill [9] in his book “Fourier Analysis and Generalized Function”,
Cambridge University Press, 1959. This function is also called an impulse function
which is defined as the limit for a sequence of regular well-behaved functions having
the required property that the area remains a constant (unity) as the width is reduced.
The limit of this sequence is taken to define the impulse function as the width is
reduced toward zero. For more information and an elegant treatment of the delta
function as a generalized function, interested readers are referred to “Theory of
Distribution” by L. Schwartz (1843–1921).

If δ(x − ξ) and δ(y − η) are one-dimensional delta functions, then we have∫∫
R

f (x, y)δ(x − ξ)δ(y − η)dxdy = f (ξ, η) (7.40)

Since equations (7.39) and (7.40) hold for an arbitrary continuous function f , we
conclude that

δ(x − ξ, y − η) = δ(x − ξ)δ(y − η) (7.41)

which simply implies that the two-dimensional delta function is the product of one-
dimensional delta functions. Higher dimensional delta functions can be defined in
a similar manner.
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7.3.1 Two-dimensional Green’s function

The application of Green’s function in two-dimension can best be described by
considering the solution of the Dirichlet problem.

∇2u = h(x, y) in the two-dimensional region R (7.42)

u = f (x, y) on the boundary C (7.43)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 . Before attempting to solve this boundary value problem
heuristically, we first define the Green’s function for the Laplace operator. Then,
the Green’s function for the Dirichlet problem involving the Helmholtz operator
may be defined in a similar manner.

The Green’s function denoted by G(x, y; ξ, η) for the Dirichlet problem involv-
ing the Laplace operator is defined as the function which satisfies the following
properties:

(i) ∇2G = δ(x − ξ, y − η) in R (7.44)

G = 0 on C (7.45)

(ii) G is symmetric, that is,

G(x, y; ξ, η) = G(ξ, η; x, y) (7.46)

(iii) G is continuous in x, y; ξ, η but ∂G
∂n the normal derivative has a discontinuity

at the point (ξ, η) which is specified by the equation

lim
ε→0

∫
Cε

∂G

∂n
ds = 1 (7.47)

where n is the outward normal to the circle

Cε : (x − ξ)2 + (y − η)2 = ε2

Remark

The Green’s function G may be interpreted as the response of the system at a
field point (x, y) due to a delta function δ(x, y) input at the source point (ξ, η). G
is continuous everywhere in the region R, and its first and second derivatives are
continuous in R except at (ξ, η). Thus, the property (i) essentially states that ∇2G = 0
everywhere except at the source point (ξ, η).

Properties (ii) and (iii) pertaining to the Green’s function G can be established
directly by using the Green’s second identity of vector calculus [1]. This formula
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states that if φ and ψ are two functions having continuous second partial derivatives
in a region R bounded by a curve C, then∫∫

R
(φ∇2ψ − ψ∇2φ)dS =

∫
C

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
ds (7.48)

where dS is the elementary area and ds the elementary length.
Now, let us consider that φ = G(x, y; ξ; η) and ψ = G(x, y; ξ∗η∗) then from

equation (7.48)∫∫
R
{G(x, y; ξ, η)∇2G(x, y; ξ∗η∗) − G(x, y; ξ∗, η∗)∇2G(x, y; ξ, η)}dS

=
∫

C

{
G(x, y; ξ, η)

∂G

∂n
(x, y; ξ∗, η∗) − G(x, y; ξ∗, η∗)

∂G

∂n
(x, y; ξ, η)

}
ds

(7.49)

Since G(x, y; ξ, η) = 0 on C

and G(x, y; ξ∗, η∗) = 0 on C

also ∇2G(x, y; ξ∗, η∗) = δ(x − ξ, y − η) in R

and ∇2G(x, y; ξ∗, η∗) = δ(x − ξ∗, y − η∗) in R

Hence we obtain from equation (7.49)∫∫
R

G(x, y; ξ, η)δ(x − ξ∗, y − η∗)dxdy =
∫∫

R
G(x, y; ξ∗, η∗)δ(x, ξ; y − η)dxdy

which reduces to

G(ξ∗, η∗; ξ, η) = G(ξ, η; ξ∗, η∗)

Thus, the Green’s function is symmetric.
To prove property (iii) of Green’s function, we simply integrate both sides of

equation (7.44) which yields∫∫
Rε

∇2GdS =
∫∫

Rε

δ(x − ξ, y − η)dxdy = 1

where Rε is the region bounded by the circle Cε.
Thus, it follows that

lim
ε→0

∫∫
Rε

∇2GdS = 1

and using the Divergence theorem [1],

lim
ε→0

∫
Cε

∂G

∂n
ds = 1.
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Theorem 7.1

Prove that the solution of the Dirichlet problem

∇2u = h(x, y) in R (7.50)

subject to the boundary conditions

u = f (x, y) on C (7.51)

is given by

u(x, y) =
∫∫

R
G(x, y; ξ, η)h(ξ, η)dξdη +

∫
C

f
∂G

∂n
ds (7.52)

where G is the Green’s function and n denotes the outward normal to the boundary
C of the region R. It can be easily seen that the solution of the problem is determined
if the Green’s function is known.

Proof

In equation (7.48), let us consider that

φ(ξ, η) = G(ξ, η; x, y) and ψ(ξ, η) = u(ξ, η),

and we obtain ∫∫
R

[G(ξ, η; x, y)∇2u − u(ξ, η)∇2G]dξdη

=
∫

C

[
G(ξ, η; x, y)

∂u

∂n
− u(ξ, η)

∂G

∂n

]
ds (7.53)

Here, ∇2u = h(ξ, η) and ∇2G = δ(ξ − x, η − y) in the region R.
Thus, we obtain from equation (7.53)∫∫

R
{G(ξ, η; x, y)h(ξ, η) − u(ξ, η)δ(ξ − x, η − y)}dξdη

=
∫

C

{
G(ξ, η; x, y)

∂u

∂n
− u(ξ, η)

∂G

∂n

}
ds (7.54)

Since G = 0 and u = f on C, and noting that G is symmetric, it follows that

u(x, y) =
∫∫

R
G(x, y; ξ, η)h(ξ, η)dξdη +

∫
C

f
∂G

∂n
ds

which is the required proof as asserted.
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7.3.2 Method of Green’s function

It is often convenient to seek G as the sum of a particular integral of the non-
homogeneous differential equation and the solution of the associated homogeneous
differential equation. That is, G may assume the form

G(ξ, η; x, y) = gh(ξ, η; x, y) + gp(ξ, η; x, y) (7.55)

where gh, known as the free-space Green’s function, satisfies

∇2gh = 0 in R (7.56)

and gp satisfies

∇2gp = δ(ξ − x, η − y) in R (7.57)

so that by superposition G = gh + gp satisfies

∇2G = δ(ξ − x, η − y) (7.58)

Note that (x, y) will denote the source point and (ξ, η) denotes the field point. Also
G = 0 on the boundary requires that

gh = −gp (7.59)

and that gp need not satisfy the boundary condition.
In the following, we will demonstrate the method to find gp for the Laplace and

Helmholtz operators.

7.3.3 The Laplace operator

In this case, gp must satisfy

∇2gp = δ(ξ − x, η − y) in R

Then for r =√(ξ − x)2 + (η − y)2 > 0, that is, for ξ �= x, and η �= y, we have by
taking (x, y) as the centre (assume that gp is independent of θ)

∇2gp = 0, or,
1

r

∂

∂r

(
r
∂gp

∂r

)
= 0.

The solution of which is given by

gp = α + β ln r
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Now, apply the condition

lim
ε→0

∫
Cε

∂gp

∂n
ds = lim

ε→0

∫ 2π

0

(
β

r

)
rdθ = 1

Thus, β = 1
2π

and α is arbitrary. For simplicity, we choose α = 0. Then gp takes the
form

gp = 1
2π

ln r (7.60)

This is known as the fundamental solution of the Laplace’s equation in
two-dimension.

7.3.4 The Helmholtz operator

Here, gp satisfies the following equation

(∇2 + λ2)gp = δ(ξ − x, η − y) (7.61)

Again for r > 0, we find

1

r

∂

∂r

(
r
∂gp

∂r

)
+ λ2gp = 0

or r2(gp)rr + r(gp)r + λ2r2gp = 0 (7.62)

This is the Bessel equation of order zero, the solution of which is

gp = αJ0(λr) + βY0(λr) (7.63)

Since the behaviour of J0 at r = 0 is not singular, we set α = 0. Thus, we have

gp = βY0(λr)

But for very small r, Y0 ≈ 2
π

ln r.

Applying the condition, limε→0
∫

Cε

∂gp

∂n ds = 1, we obtain

lim
ε→0

∫
Cε

β
∂Y0

∂r
ds = 1

lim
ε→0

∫ 2π

0
β

(
2

π

)(
1

r

)
rdθ = 1

2β
π

(2π) = 1

β = 1
4
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Thus,

gp = 1
4 Y0(λr) (7.64)

Since (∇2 + λ2) → ∇2 as λ → 0, it follows that 1
4 Y0(λr) → 1

2π
ln r as λ → 0.

Theorem 7.2: (Solution of Dirichlet problem using the Laplace operator)

Show that the method of Green’s function can be used to obtain the solution of the
Dirichlet problem described by the Laplace operator:

∇2u = h in R (7.65)

u = f on C (7.66)

and the solution is given by

u(x, y) =
∫∫

R
G(x, y; ξ, η)h(ξ, η)dξdη +

∫
C

f
∂G

∂n
ds (7.67)

where R is a circular region with boundary C.

Proof

Applying Green’s second formula

∫∫
R

(φ∇2ψ − ψ∇2φ)dS =
∫

C

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
ds (7.68)

to the functions φ(ξ, η) = G(ξ, η; x, y) and ψ(ξ, η) = u(ξ, η), we obtain

∫∫
R

(G∇2u − u∇2G)dS =
∫

C

(
G

∂u

∂n
− u

∂G

∂n

)
ds

But ∇2u = h(ξ, η)

and ∇2G = δ(ξ − x, η − y) in R

Thus, we have ∫∫
R
{G(ξ, η; x, y)h(ξ, η) − u(ξ, η)δ(ξ − x, η − y)}dS

=
∫

C

{
G(ξ, η; x, y)

∂u

∂n
− u(ξ, η)

∂G

∂n

}
ds (7.69)
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Because G = 0 and u = f on the boundary C, and G is symmetric, it follows that

u(x, y) =
∫∫

R
G(x, y; ξ, η)h(ξ, η)dξdη +

∫
C

f
∂G

∂n
ds,

which is the required proof as asserted.

Example 7.6

Consider the Dirichlet problem for the unit circle given by

∇2u = 0 in R (7.70)

u = f (θ) on C (7.71)

Find the solution by using the Green’s function method.

Solution

We introduce the polar coordinates by means of the equations

x = ρ cos θ ξ = σ cos β

y = ρ sin θ η = σ sin β

so that

r2 = (x − ξ)2 + (y − η)2 = σ2 + ρ2 − 2ρσ cos (β − θ).

To find the Green’s function, let us consider G(x, y) is the solution of the sum of
two solutions, one regular and the other one singular. We know G satisfies

∇2G = δ(ξ − x, η − y)

and if G = gh + gp,

then ∇2gp = δ(ξ − x, η − y)

and ∇2gh = 0.

These equations in polar coordinates (see Figure 7.3) can be written as

1

ρ

∂

∂ρ

(
ρ

∂gp

∂ρ

)
+ 1

ρ2

∂2gp

∂θ2 = δ(σ − ρ, β − θ) (7.72)

and
1

σ

∂

∂σ

(
σ

∂gh

∂σ

)
+ 1

σ2

∂2gh

∂β2 = 0 (7.73)
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Figure 7.3: A unit circle without an image point.

By the method of separation of variables, the solution of equation (7.73) can be
written as (see Rahman [13, 15])

gh = a0

2
+

∞∑
n=1

σn(an cos nβ + bn sin nβ) (7.74)

A singular solution for equation (7.72) is given by

gp = 1
4π

lnr2 = 1
4π

ln [σ2 + ρ2 − 2ρσ cos (β − θ)]

Thus, when σ = 1 on the boundary C,

gh = −gp = − 1
4π

ln[1 + ρ2 − 2ρ cos (β − θ)]

The relation

ln [1 + ρ2 − 2ρ cos (β − θ)] = −2
∞∑

n=1

ρn cos n(β − θ)

n
(7.75)

can be established as follows:

ln[1 + ρ2 − ρ(ei(β−θ) + e−i(β−θ))] = ln{(1 − ρei(β−θ))(1 − ρe−i(β−θ))}
= ln (1 − ρei(β−θ)) + ln (1 − ρe−i(β−θ))

= −[ρei(β−θ) + ρ2

2 e2i(β−θ) + · · ·]+
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− [ρe−i(β−θ) − ρ2

2 e−2i(β−θ) + · · ·]

= −2
∞∑

n=1

ρn cos n(β − θ)

n

When σ = 1 at the circumference of the unit circle, we obtain

1

2π

∞∑
n=1

ρn cos n(β − θ)

n
=

∞∑
n=1

an cos nβ + bn sin nβ

Now equating the coefficients of cos nβ and sin nβ to determine an and bn, we find

an = ρn

2πn
cos nθ

bn = ρn

2πn
sin nθ

It therefore follows that equation (7.74) becomes

gh(ρ, θ; σ, β) = 1

2π

∞∑
n=1

(ρσ)n

n
cos n(β − θ)

= − 1
4π

ln [1 + (ρa)2 − 2(ρσ) cos (β − θ)]

Hence the Green’s function for this problem is

G(ρ, θ; σ, β) = gp + gh

= 1
4π

ln[σ2 + ρ2 − 2σρ cos (β − θ)

− 1
4π

ln[1 + (ρσ)2 − 2(ρσ) cos (β − θ)] (7.76)

from which we find

∂G

∂n

∣∣∣∣
on C

=
(

∂G

∂σ

)
σ=1

= 1

2π

[
1 − ρ2

1 + ρ2 − 2ρ cos (β − θ)

]

If h = 0, the solution of the problem reduces to

u(ρ, θ) = 1

2π

∫ 2π

0

1 − ρ2

1 + ρ2 − 2ρ cos (β − θ)
f (β)dβ

which is the Poisson’s Integral Formula.
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Theorem 7.3: (Solution of Dirichlet problem using the Helmholtz operator)

Show that the Green’s function method can be used to solve the Dirichlet problem
for the Helmholtz operator:

∇2u + λ2u = h in R (7.77)

u = f on C (7.78)

where R is a circular region of unit radius with boundary C.

Proof

The Green’s function must satisfy the Helmholtz equation in the following form

∇2G + λ2G = δ(ξ − x, η − y) in R

G = 0 on R (7.79)

We seek the solution in the following form

G(ξ, η; x, y) = gh(ξ, η; x, y) + gp(ξ, η; x, y)

such that (∇2 + λ2)gh = 0 (7.80)

and (∇2 + λ2)gp = δ(ξ − x, η − y) (7.81)

The solution of equation (7.81) yields equation (7.63)

gp = 1

4
Y0(λr) (7.82)

where

r = [(ξ − x)2 + (η − y)2]
1
2

The solution for equation (7.80) can be determined by the method of separation of
variables. Thus, the solution in polar coordinates as given below

x = ρ cos θ ξ = σ cos β

y = ρ sin θ η = σ sin β

may be written in the form

gh(ρ, θ; σ, β) =
∞∑

n=0

Jn(λσ)[an cos nβ + bn sin nβ] (7.83)
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But on the boundary C,

gh + gp = 0

Therefore,

gh = −gp = − 1
4 Y0(λr)

where r = [ρ2 + σ2 − 2ρσ cos (β − θ)]
1
2

and at σ = 1, r = [1 + ρ2 − 2ρ cos (β − θ)]
1
2

Thus, on the boundary (σ = 1), these two solutions yield

−1

4
Y0(λr) =

∞∑
n=0

Jn(λ)[an cos nβ + bn sin nβ]

which is a Fourier expansion. The Fourier coefficients are obtained as

a0 = − 1

8πJ0(λ)

∫ π

−π

Y0

[
λ

√
1 + ρ2 − 2ρ cos (β − θ)

]
dβ

an = − 1

4πJ0(λ)

∫ π

−π

Y0

[
λ

√
1 + ρ2 − 2ρ cos (β − θ)

]
cos nβdβ

bn = − 1

4πJ0(λ)

∫ π

−π

Y0

[
λ

√
1 + ρ2 − 2ρ cos (β − θ)

]
sin nβdβ

n = 1, 2, 3, . . .

From the Green’s theorem, we have∫∫
R
{G(∇2 + λ2)u − u(∇2 + λ2)G}dS =

∫
C

{
G

(
∂u

∂n

)
− u

(
∂G

∂n

)}
ds

But we know (∇2 + λ2)G = δ(ξ − x, η − y), and G = 0 on C, and (∇2 + λ2)u = h.
Therefore,

u(x, y) =
∫∫

R
h(ξ, η)G(ξ, η; x, y)dξdη +

∫
C

f (ξ, η)
∂G

∂n
ds

where G is given by

G(ξ, η; x, y) = gp + gh

= 1

4
Y0(λr) +

∞∑
n=0

Jn(λσ){an cos nβ + bn sin nβ}
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7.3.5 To obtain Green’s function by the method of images

The Green’s function can be obtained by using the method of images. This method
is based essentially on the construction of Green’s function for a finite domain.
This method is restricted in the sense that it can be applied only to certain class of
problems with simple boundary geometry.

Let us consider the Dirichlet problem to illustrate this method.
Let P(ξ, η) be the field point in the circle R, and let Q(x, y) be the source point

also in R. The distance between P and Q is r =√σ2 + ρ2 − 2ρσ cos (β − θ). Let Q′
be the image which lies outside of R on the same ray from the origin opposite to
the source point Q as shown in Figure 7.4 such that

(OQ)(OQ′) = σ2

where σ is the radius of the circle through the point P centered at the origin.
Since the two triangles OPQ and OPQ′ are similar by virtue of the hypothesis

(OQ)(OQ′) = σ2 and by possessing the common angle at O, we have

r

r′ = σ

ρ
(7.84)

where r′ = PQ′ and ρ = OQ. If σ = 1, then equation (7.84) becomes

r

r′
1

ρ
= 1.

Then taking the logarithm of both sides with a multiple of 1
2π

, we obtain

1
2π

ln
(

r
r′ρ

)
= 0

Figure 7.4: A unit circle with an image point.
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or 1
2π

ln r − 1
2π

ln r′ + 1
2π

ln 1
ρ

= 0 (7.85)

This equation signifies that 1
2π

ln ( r′
rρ ) is harmonic in R except at Q and satisfies the

Laplace’s equation

∇2G = δ(ξ − x, η − y) (7.86)

Note that ln r′ is harmonic everywhere except at Q′, which is outside the domain
R. This suggests that we can choose the Green’s function as

G = 1
2π

ln r − 1
2π

ln r′ + 1
2π

ln 1
ρ

(7.87)

Given that Q′ is at ( 1
ρ

, θ), G in polar coordinates takes the form

G(ρ, θ; σ, β) = 1
4π

ln (σ2 + ρ2 − 2ρσ cos (β − θ))

− 1
4π

ln
(

1
σ2 + ρ2 − 2ρ

σ
cos (β − θ)

)
+ 1

2π
ln 1

σ
(7.88)

which is the same as before.

Remark

Note that in the Green’s function expression in equation (7.87) or equation (7.88),
the first term represents the potential due to a unit line charge at the source point,
whereas the second term represents the potential due to negative unit charge at the
image point and the third term represents a uniform potential. The sum of these
potentials makes up the potential field.

Example 7.7

Find the solution of the following boundary value problem by the method of images:

∇2u = h in η > 0

u = f on η = 0

Solution

The image point should be obvious by inspection. Thus, if we construct

G = 1
4π

ln[(ξ − x)2 + (η − y)2] − 1
4π

ln[(ξ − x)2 + (η + y)2] (7.89)

the condition that G = 0 on η = 0 is clearly satisfied. Also G satisfies

∇2G = δ(ξ − x, η − y)
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and with ∂G
∂n |C = [− ∂G

∂η
]η=0, the solution is given by

u(x, y) =
∫∫

R
G(x, y; ξ, η)h(ξ, η)dξdη +

∫
C

f
∂G

∂n
ds

= y

π

∫ ∞

−∞
f (ξ)dξ

(ξ − x)2 + y2 + 1

4π

∫ ∞

0

∫ ∞

−∞
ln
{

(ξ − x)2 + (η − y)2

(ξ − x)2 + (η + y)2

}
× h(ξ, η)dξdη

7.3.6 Method of eigenfunctions

Green’s function can also be obtained by applying the method of eigenfunctions.
We consider the boundary value problem

∇2u = h in R

u = f on C (7.90)

The Green’s function must satisfy

∇2G = δ(ξ − x, η − y) in R

G = 0 on C (7.91)

and hence the associated eigenvalue problem is

∇2φ + λφ = 0 in R

φ = 0 on C (7.92)

Let φmn be the eigenfunctions and λmn be the corresponding eigenvalues. We then
expand G and δ in terms of the eigenfunctions φmn

G(ξ, η; x, y) =
∑

m

∑
n

amn(x, y)φ(ξ, η) (7.93)

δ(ξ, η; x, y) =
∑

m

∑
n

bmn(x, y)φmn(ξ, η) (7.94)

where

bmn = 1

||φmn||2
∫∫

R
δ(ξ, η; x, y)φmn(ξ, η)dξdη

= φmn(x, y)

||φmn||2 (7.95)
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in which ||φmn||2 = ∫∫R φ2
mndξdη. Now, substituting equations (7.93) and (7.94)

into equation (7.91) and using the relation from equation (7.92),

∇2φmn + λmnφmn = 0

we obtain

−
∑

m

∑
n

λmnamn(x, y)φmn(ξ, η) =
∑

m

∑
n

φmn(x, y)φmn(ξ, η)

||φmn||2

Therefore, we have

amn(x, y) = −φmn(x, y)

λmn||φmn||2 (7.96)

Thus, the Green’s function is given by

G(ξ, η; x, y) = −
∑

m

∑
n

φmn(x, y)φmn(ξ, η)

λmn||φmn||2 (7.97)

We shall demonstrate this method by the following example.

Example 7.8

Find the Green’s function for the following boundary value problem

∇2u = h in R

u = 0 on C

Solution

The eigenfunction can be obtained explicitly by the method of separation of
variables.

We assume a solution in the form

φ(ξ, η) = X (ξ)Y (η)

Substitution of this into ∇2φ + λφ = 0 in R and φ = 0 on C, yields

X ′′ + α2X = 0

Y ′′ + (λ − α2)Y = 0

where α2 is a separation constant. With the homogeneous boundary conditions
X (0) = X (a) = 0 and Y (0) = Y (b) = 0, X and Y are found to be

Xm(ξ) = Am sin mπξ
a and Yn(η) = Bn sin nπη

b



MM-165 CH007.tex 30/4/2007 10: 46 Page 223

Symmetric Kernels and Orthogonal Systems of Functions 223

We then have

λmn = π2
(

m2

a2 + n2

b2

)
with α = mπ

a

Thus, the eigenfunctions are given by

φmn(ξ, η) = sin mπξ
a sin nπη

b

Hence

||φmn||2 =
∫ a

0

∫ b

0
sin2 mπξ

a
sin2 nπη

b
dξdη

= ab
4

so that the Green’s function can be obtained as

G(ξ, η; x, y) = −4ab

π2

∞∑
m=1

∞∑
n=1

sin mπx
a sin nπy

b sin mπξ
a sin nπη

b

(m2b2 + a2n2)

7.4 Green’s function in three-dimensions

Since most of the problems encountered in the physical sciences are in three-
dimension, we can extend the Green’s function to three or more dimensions. Let us
extend our definition of Green’s function in three-dimensions.

Consider the Dirichlet problem involving Laplace operator. The Green’s func-
tion satisfies the following:

(i) ∇2G = δ(x − ξ, y − η, z − ζ) in R

G = 0 on S.

}
(7.98)

(ii) G(x, y, z; ξ, η, ζ) = G(ξ, η, ζ; x, y, z) (7.99)

(iii) lim
ε→0

∫∫
Sε

∂g

∂n
ds = 1 (7.100)

where n is the outward normal to the surface
Sε : (x − ξ)2 + (y − η)2 + (z − ζ)2 = ε2

Proceeding as in the two-dimensional case, the solution of Dirichlet problem

∇2φ = h in R

φ = f on S

⎫⎬
⎭ (7.101)
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is u(x, y, z) =
∫∫∫

R
GhdR +

∫∫
S

fGndS (7.102)

To obtain the Green’s function, we let the Green’s function to have two parts as

G(ξ, η, ζ; x, y, z) = gh(ξ, η, ζ; x, y, z) + gp(ξ, η, ζ; x, y, z)

where ∇2gh = δ(x − ξ, y − η, z − ζ) in R

and ∇2gp = 0 on S

G = 0, i.e. gp = −gh on S

Example 7.9

Obtain the Green’s function for the Laplace’s equation in the spherical domain.

Solution

Within the spherical domain with radius a, we consider

∇2G = δ(ξ − x, η − y, ζ − z)

which means

∇2gh = δ(ξ − x, η − y, ζ − z)

and

∇2gp = 0

For

r = [(ξ − x)2 + (η − y)2 + (ζ − z)2]
1
2 > 0

with (x, y, z) as the origin, we have

∇2gh = 1

r2

d

dr

(
r2 dgh

dr

)
= 0

Integration then yields

gh = A + B
r for r > 0

Applying the condition (iii), we obtain

lim
ε→0

∫∫
Sε

GndS = lim
ε→0

∫∫
Sε

(gh)rdS = 1
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from which we obtain B = − 1
4π

and A is arbitrary. If we set A = 0 for convenience
(this is the boundedness condition at infinity), we have

gh = − 1
4πr

To obtain the complete Green’s functions, we need to find the solution for gp. If we
draw a three-dimensional diagram analogous to the two-dimensional as depicted in
the last section, we will have a similar relation

r′ = ar
ρ

(7.103)

where r′ and ρ are measured in three-dimensional space.
Thus, we have

gp = ( a
ρ

)

4πr′
and hence

G = −1

4πr
+

a
ρ

4πr′ (7.104)

which is harmonic everywhere in r except at the source point, and is zero on the
surface S. In terms of spherical coordinates:

ξ = τ cos ψ sin α x = ρ cos φ sin θ

η = τ sin ψ sin α y = ρ sin φ sin θ

ζ = τ cos α z = ρ cos θ

G can be written in the form

G = −1

4π(τ2 + ρ2 − 2ρτ cos γ)
1
2

+ 1

4π( τ2ρ2

a2 + a2 − 2τρ cos γ)
1
2

(7.105)

where γ is the angle between r and r′.
Now differentiating G, we have[

∂G

∂τ

]
τ=a

= a2 + ρ2

4πa(a2 + ρ2 − 2aρ cos γ)
1
2

Thus, the Dirichlet problem for h = 0 is

u(x, y, z) = α(a2 − ρ2)

4π

∫ 2π

ψ=0

∫ π

α=0

f (α, ψ) sin αdαdψ

(a2 + ρ2 − 2aρ cos γ)
1
2

(7.106)

where cos γ = cos α cos θ + sin α sin θ cos (ψ − φ). This integral is called the
three-dimensional Poisson integral formula.
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7.4.1 Green’s function in 3D for physical problems

It is known, concerning the distribution of singularities in a flow field, that it is
possible for certain bodies to be represented by combinations of sources and sinks
and doublets. The combination of these singularities on the surrounding fluid may
be used to represent complex body structures. We may think of a particular body as
being composed of a continuous distribution of singularities: such singularities on
the body surface will enable us to evaluate the velocity potential φ on that surface.

To deduce the appropriate formula, we consider two solutions of Laplace’s
equation in a volume V of fluid bounded by a closed surface S. Consider two
potentials φ and ψ such that φ and ψ satisfy Laplace’s equation in the following
manner:

∇2φ = 0 (7.107)

and

∇2ψ = δ(
r − 
r0) = δ(x − ξ, y − η, z − ζ), (7.108)

where φ(x, y, z) is a regular potential of the problem and ψ(x, y, z; ξ, η, ζ) is the
source potential which has a singularity at 
r = 
r0. Here, δ is a Dirac delta function
defined as

δ(
r − 
r0) =
{

0 when 
r �= 
r0

∞ when 
r = 
r0

The source point 
r0 ≡ (ξ, η, ζ) is situated at the body surface or inside the body.
The point 
r = (x, y, z) can be regarded as the field point. There are three cases to
investigate.

Case I

The field point (x, y, z) lies outside the body of surface area S and volume V
(see Figure 7.5 ).

Figure 7.5: An arbitrary body surface.
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By applying Green’s theorem,∫∫
S

[
φ

∂ψ

∂n
− ψ

∂φ

∂n

]
dS =

∫∫∫
V


∇(φ 
∇ψ) − ψ 
∇φ)dV

=
∫∫∫

V
[φ∇2ψ + ( 
∇φ)( 
∇ψ) − ψ∇2φ − ( 
∇ψ)( 
∇φ)]dV

= 0 (7.109)

Case II

The field point(x, y, z) lies inside the body of surface area S and volume V (see
Figure 7.6). In this case∫∫

S

[
φ

∂ψ

∂n
− ψ

∂η

∂n

]
dS =

∫∫∫
V

[φ∇2ψ − ψ∇2φ]dV

=
∫∫∫

V
(φ∇2ψ)dV

=
∫∫

V
(φ(x, y, z)δ(x − ξ, y − η, z − ζ))dV

= φ(ξ, η, ζ) (7.110)

Now, changing the roles of (x, y, z) and (ξ, η, ζ), we obtain from equation (7.110)

φ(x, y, z) =
∫∫

S

[
φ(ξ, η, ζ)

∂ψ

∂n
(x, y, z; ξ, η, ζ)

− ψ(x, y, z; ξ, η, ζ)
∂φ

∂n
(ξ, η, ζ)

]
ds (7.111)

Referring to Figure 7.7 note that in (a) the point is interior to S, surrounded by
a small spherical surface Sε; (b) the field point is on the boundary surface S and Sε

is a hemisphere.

Figure 7.6: Surface integration for Green’s theorem.
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Figure 7.7: Singular points of surface integration for Green’s theorem (inside and on the
boundary).

Case III

The field point (x, y, z) lies on the body surface S within the volume V.
Referring to the work of Newman [11] on this subject, we may write:

∫∫
S

[
φ

∂ψ

∂n
− ψ

∂φ

∂n

]
dS =

∫∫∫
V

φ(x, y, z)δ(x − ξ, y − η, z − ζ)dV = 1

2
φ(ξ, η, ζ).

Changing the roles of (x, y, z) and (ξ, η, ζ), we obtain

φ(x, y, z) = 2
∫∫

S
[φ(ξ, η, ζ)

∂ψ

∂n
(x, y, z; ξ, β, ζ) − ψ(x, y, z; ξ, η, ζ)

∂φ

∂n
(ξ, η, ζ)]dS

(7.112)

Alternative method of deducing cases II and III

Consider the source potential

ψ = 1
4πr = 1

4π
[(x − ξ)2 + (y − η)2 + (z − ζ)2]−

1
2

where the field point (x, y, z) is well inside the body S. Then with reference to
Figure 7.7, Green’s divergence theorem yields

∫∫
S+Sε

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
dS = 0,

where Sε is a sphere of radius r. It follows that

∫∫
S

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
dS = −

∫
Sε

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
dS

1

4π

∫∫
S

(
φ

∂

∂n

1

r
− 1

r

∂φ

∂n

)
dS = − 1

4π

∫∫
Sε

[
φ

∂

∂n

1

r
− 1

r

∂φ

∂n

]
dS
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Now using the concept of an outward normal, n, from the fluid,

∂

∂n

1

r
= − ∂

∂r

1

r
= 1

r2

The right-hand side integral becomes

1

4π

∫∫
Sε

{
φ

∂

∂n

(
1

r

)
− 1

r

∂φ

∂n

}
dS = 1

4π

∫∫
Sε

φ

r2 dS − 1

4π

∫∫
Sε

1

r

(
∂φ

∂n

)
dS

= 1

4π
· φ(x, y, z)

r2 ·
∫∫

Sε

dS

− 1

4π
· 1

r

(
∂φ

∂n

)
Sε

∫∫
Sε

dS

= 1

4π

φ(x, y, z)

r2 (4πr2) − 1

4π

1

r

(
∂φ

∂n

)
Sε

(4πr2)

= φ(x, y, z) −
(

∂φ

∂n

)
Sε

r.

Thus, when r → 0,
(

∂φ
∂n

)
Sε

r → 0.

Combining these results, we have

φ(x, y, z) = − 1

4π

∫∫
S

[
φ

∂

∂n

1

r
− 1

r

∂φ

∂n
φ

]
dS.

This is valid when the field point (x, y, z) is inside S. The velocity potential φ(x, y, z)
at a point inside a boundary surface S, can be written as (see Figure 7.8)

φ(x, y, z) = 1

4π

∫∫
S

1

r

(
∂φ

∂n

)
dS − 1

4π

∫∫
S
φ

∂

∂n

(
1

r

)
dS

We know that the velocity potential due to a distribution of sources of strength
m over a surface S is ∫∫

S

m

r
dS,

and of a distribution of doublets of moments µ, the axes of which point inward
along the normals to S, is ∫∫

S
µ

∂

∂n

(
1

r

)
dS.
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Figure 7.8: Singular point inside the surface integration.

Figure 7.9: Singular point on the boundary of the surface.

Thus, the velocity potential φ at a point (x, y, z), as given above, is the same as if
the motion in the region bounded by the surface S due to a distribution over S of
simple sources, of density ( 1

4π
)( ∂φ

∂n ) per unit area, together with a distribution of
doublets, with axes pointing inwards along the normals to the surfaces, of density
( φ

4π
) per unit area. When the field point (x, y, z) is on S, as shown in Figure 7.9, the

surface Sε is a hemisphere of surface area 2πr2.
When ε → 0,

∫∫
Sε

φ

r2 dS = 2πφ(x, y, z), then

φ(x, y, z) = − 1

2π

∫∫ [
φ

∂

∂n

1

r
− 1

r

∂

∂n
φ

]
ds

Summary

Thus, summarizing all these results, we obtain
(i) When the point (x, y, z) lies outside S, then∫∫

S

(
φ

∂

∂n

1

r
− 1

r

∂φ

∂n

)
dS = 0.

(ii) When the point (x, y, z) lies inside S, then

φ(x, y, z) = − 1

4π

∫∫
S

(
φ

∂

∂n

1

r
− 1

r

∂φ

∂n

)
dS.
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(iii) When the point (x, y, z) lies on the boundary S, then

φ(x, y, z) = − 1

2π

∫∫
S

(
φ

∂

∂n

1

r
− 1

r

∂φ

∂n

)
dS,

where φ is known as the velocity potential of the problem.
Note that the last equation is frequently used for obtaining the velocity potential

due to the motion of a ship’s hull. The normal velocity, ∂φ
∂n , is known on the body, so

that the last equation is an integral equation for determining the unknown potential;
this may be done by numerical integration.

In many practical problems, however, the body may move in a fluid bounded
by other boundaries, such as the free surface, the fluid bottom, or possibly lateral
boundaries such as canal walls.

In this context, we use Green’s function

G(x, y, z; ξ, η, ζ) = 1
r + H (x, y, z; ξ, η, ζ), (7.113)

where

∇2H = δ(x − ξ, y − η, z − ζ) (7.114)

Green’s function, defined above, can be stated as

∫∫
S

(
φ

∂G

∂n
− G

∂φ

∂n

)
dS =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0

−2πφ(x, y, z)

−4πφ(x, y, z)

(7.115)

for (x, y, z) outside, on, or inside the closed surface S, respectively.
If a function H can be found with the property that ∂φ

∂n = 0 on the boundary
surfaces of the fluid, then equation (7.106) may be rewritten as

∫∫
S

G(x, y, z; ξ, η, ζ)
∂φ

∂n
(ξ, η, ζ)dS =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0

2πφ(x, y, z)

4πφ(x, y, z)

(7.116)

for (x, y, z) outside, on, or inside the closed surface S, respectively. Here,
∂φ
∂n (ξ, η, ζ) = Q(ξ, η, ζ) is defined to be the unknown source density (strength) and
has to be evaluated by numerical methods from the above integral. Once the source
density is known, the field potential φ(x, y, z) can be easily obtained.

7.4.2 Application: hydrodynamic pressure forces

One of the main purposes for studying the fluid motion past a body is to predict the
wave forces and moments acting on the body due to the hydrodynamic pressure of
the fluid.
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The wave forces and moments can be calculated using the following formulae:


F =
∫∫

SB

(P
ndS) (7.117)


M =
∫∫

SB

P(
rX 
n)dS, (7.118)

where SB is the body of the structure and 
n is the unit normal vector, which is
positive when pointing out of the fluid volume.

From Bernoulli’s equation, we know that

P = −ρ

[
∂φ

∂t
+ 1

2
(∇φ)2 + gz

]
, (7.119)

where ∂φ
∂t is the transient pressure, 1

2 (∇φ)2 the dynamic pressure, and gz the static
pressure. Then using equation (7.110) with equations (7.108) and (7.109), we obtain


F = −ρ

∫∫
SB

[
∂φ

∂t
+ 1

2
(∇φ)2 + gz

]

ndS (7.120)


M = −ρ

∫∫
SB

[
∂φ

∂t
+ 1

2
(∇φ)2 + gz

]
(
rX 
n)dS (7.121)

In the following section, we shall deduce Green’s function which is needed
in the evaluation of the velocity potential from the integral equation (7.107). The
solution is mainly due to Wehausen and Laitone [17].

7.4.3 Derivation of Green’s function

We will obtain Green’s function solution (singular solution) for the cases of infinite
depth and of finite depth. Mathematical solutions will be first obtained for the
infinite depth case, and then extended to the case of finite depth.

Case I: Infinite depth

Consider Green’s function of the form

G(x, y, z; ξ, η, ζ, t) = Re{
g(x, y, z; ξ, η, ζ)e−iσt}, (7.122)

where Re stands for the real part of the complex function, and 
g is a complex
function which can be defined as


g(x, y, z; ξ, η, ζ) = g1(x, y, z; ξ, η, ζ) + ig2(x, y, z; ξ, η, ζ) (7.123)

Here, g1 and g2 are real functions. Thus,

G(x, y, z; ξ, η, ζ, t) = g1 cos σt + g2 sin σt (7.124)
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G satisfies Laplace’s equation except at the point (ξ, η, ζ), where

∇2G = ∂2G

∂x2 + ∂2G

∂y2 + ∂2G

∂z2 = δ(x, y, z; ξ, η, ζ) (7.125)

From the above, the equations and conditions to be satisfied by g1 and g2 are as
follows:

∇2g1 = δ(x, y, z; ξ, η, ζ), ∇2g2 = δ(x, y, z; ξ, η, ζ) (7.126)

The linear surface boundary condition given by

∂2G

∂t2 + g
∂G

∂z
= 0, for z ≤ 0, (7.127)

yields to

∂g1

∂z
− σ2

g
g1 = 0,

∂g2

∂z
− σ2

g
g2 = 0 at z = 0 (7.128)

The bottom boundary conditions for the infinite depth case are

lim
z→−∞


∇g1 = 0, lim
z→−∞


∇g2 = 0. (7.129)

The radiation condition can be stated as

lim
R→∞

√
R

(
∂
g
∂R

− ik
g
)

= 0, (7.130)

which yields

lim
R→∞

√
R

(
∂g1

∂R
+ kg2

)
= 0, lim

R→∞
√

R

(
∂g2

∂R
− kg1

)
= 0. (7.131)

Here, k is the wavenumber and R is the radial distance in the x−y-plane and is given
by R2 = (x − ξ)2 + (y − η)2.

We shall now assume a solution of G, as given in equation (7.115) to be in the
following form:

G = ( 1
r + g0

)
cos σt + g2 sin σt

= 1
r cos σt + g0 cos σt + g2 sin σt, (7.132)

where r2 = (x − ξ)2 + (y − η)2 + (z − ζ)2, and g1 = 1
r + g − 0.
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Denoting the double Fourier transform in x and y of 
g by g∗ as


g(x, y, z; ξ, η, ζ) = 1

2π

∫ ∞

0

∫ π

−π

g∗(k , θ, z; ξ, η, ζ)eik(x cos θ+y sin θ)dθdk , (7.133)

we then can write

g0(x, y, z; ξ, η, ζ) = 1

2π

∫ ∞

0

∫ π

−π

g∗
0 (k , θ, z; ξ, η, ζ)eik(x cos θ+y sin θ)dθdk , (7.134)

and

g2(x, y, z; ξ, η, ζ) = 1

2π

∫ ∞

0

∫ π

−π

g∗
2 (k , θ, z; ξ, η, ζ)eik(x cos θ+y sin θ)dθdk. (7.135)

Note that functions g0 and g2 happen to be regular functions of x, y, z, and
satisfy Laplace’s equation.

Applying the double Fourier transform in x and y of g0 yields

1

2π

∫ ∞

0

∫ π

−π

(
∂2g∗

0

∂z2 − k2g∗
0

)
eik(x cos θ+y sin θ)dθdk = 0,

and consequently, we obtain

∂2g∗
0

∂z2 − k2g∗
0 = 0. (7.136)

Solving equation (7.127) we get

g∗
0 = A(k , θ)ekz + B(k , θ)e−kz. (7.137)

Since g∗
0 must be bounded as z → −∞, then B = 0, and the solution becomes

g∗
0 = A(k , θ)ekz (7.138)

We know that

1√
x2 + y2 + z2

= 1

2π

∫ ∞

0

∫ π

−π

e−k|z|eik(x cos θ+y sin θ)dθdk. (7.139)
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Extending this result, we obtain

1

r
= 1√

(x − ξ)2 + (y − η)2 + (z − ζ)2

= 1

2π

∫ ∞

0

∫ π

−π

e−k|z−ζ|eik((x−ξ) cos θ+(y−η) sin θ)dθdk

= 1

2π

∫ ∞

0

∫ π

−π

e−k|z−ζ|e−ik(ξ cos φ+η sin θ)

× eik(x cos θ+y sin θ)dθdk

= 1

2π

∫ ∞

0

∫ π

−π

(
1

r

)∗
eik(x cos θ+y sin θ)dθdk , (7.140)

where ( 1
r

)∗ = e−k|z−ζ|e−ik(ξ cos θ+η sin θ). (7.141)

Taking the double Fourier transform of the surface boundary condition, equation
(7.119) yields

{
∂g∗

0

∂z
− k

(
1

r

)∗}
− σ2

g

(
g∗

0 +
(

1

r

)∗)
= 0 at z = 0 (7.142)

Rearranging the terms yields

∂g∗
0

∂z
− σ2

g
g∗

0 =
(

k + σ2

g

)(
1

r

)∗
at z = 0 (7.143)

From equation (7.134) and the boundary condition, i.e. equation (7.129), we have

A(k , θ) = k + σ2/g

k − σ2/g
ekζe−ik(ξ cos θ+η sin θ) (7.144)

Therefore,

g∗
0 = k + σ2/g

k − σ2/g
ek(z+ζ)e−ik(ξ cos θ+η sin θ) (7.145)

Inverting this function gives

g0 = 1

2π

∫ ∞

0

∫ π

−π

k + σ2/g

k − σ2/g
ek(z+ζ)eik((x−ξ) cos θ+(y−η) sin θ)dθdk. (7.146)
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If we define σ2

g = υ, then the potential g1 may be written as

g1(x, y, z) = 1
r + g0(x, y, z)

= 1

r
+ 1

2π
P.V.
∫ ∞

0

∫ π

−π

k + υ

k − υ
ek(z+ζ)

× eik((x−ξ) cos θ+(y−η) sin θ)dθdk (7.147)

This may be written as

g1(x, y, z) = 1

r
+ 1

r1
+ υ

π
P.V.
∫ ∞

0

∫ π

−π

ek(z+ζ)

k − υ
eik((x−ξ) cos θ+(y−η) sin θ)dθdk.

(7.148)
where

r1 =
√

(x − ξ)2 + (y − η)2 + (z + ζ)2

Here, P.V. stands for the Cauchy principal value. Note that g1 satisfies all the given
boundary conditions except the radiation condition. To satisfy the radiation condi-
tion, we need the asymptotic expansion of g1. The solution, i.e. equation (7.148)
may be written in the form

g1(x, y, z) = 1

r
+ 1

r1
+ 4υ

π
P.V.
∫ ∞

0

∫ π
2

0

ek(z+ζ)

k − υ
cos (kR cos θ)dθdk , (7.149)

where R =√(x − ξ)2 + (y − η)2. But cos θ = λ and − sin θdθ = dλ, which on
substitution into equation (7.149) yields

g1(x, y, z) = 1

r
+ 1

r1
+ 4υ

π
P.V.
∫ ∞

0

∫ 1

0

ek(z+ζ)

k − υ

cos (kRλ)√
1 − λ2

dλdk. (7.150)

We know that

2

π

∫ 1

0

cos (kRλ)√
1 − λ2

dλ = J0(kR),

and hence

g1(x, y, z) = 1

r
+ 1

r1
+ 2λP.V.

∫ ∞

0

ek(z+ζ)

k − υ
J0(kR)dk

= 1

r
+ P.V.

∫ ∞

0

k + υ

k − υ
ek(z+ζ)J0(kR)dk. (7.151)
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To determine the asymptotic form of g1, when R goes to infinity, we will use
the following Fourier integrals:∫ ∞

a
f (x)

sin R(x − x0)

x − x0
dx = πf (x0) + O

(
1

R

)

P.V.
∫ ∞

a
f (x)

cos R(x − x0)

x − x0
dx = O

(
1

R

)
⎫⎪⎪⎬
⎪⎪⎭ (7.152)

for a ≤ x0 ≤ ∞. We know that when R → ∞
1

r
= O

(
1

R

)
,

1

r1
= O

(
1

R

)

and

g1(x, y, z) = 4υ

π
P.V.
∫ ∞

0

∫ 1

0

1√
1 − λ2

.
ek(z+ζ)

k − υ
.

[ cos (Rλυ) cos Rλ(k − υ) − sin (Rλυ) sin Rλ(k − υ)]dλdk + O
( 1

R

)
.

Using the formulas (7.152), this equation can be reduced to

g1(x, y, z) = −4λeυ(z+ζ)
∫ 1

0

sin (rλυ)√
1 − λ2

dλ + O

(
1

R

)
,

which subsequently (see Rahman [13]) can be reduced to the following:

g1(x, y, z) = −2πυeυ(z+ζ)

√
2

πRυ
sin
(

Rυ − π

4

)
+ O

(
1

R

)
. (7.153)

From the radiation conditions, we can at once predict the asymptotic form of
g2(x, y, z), which is

g2(x, y, z) = 2πυeυ(z+ζ)

√
2

πRυ
cos
(

Rυ − π

4

)
+ O

(
1

R

)
. (7.154)

Thus, the asymptotic form of G = g1 cos σt + g2 sin σt is

−2πυeυ(z+ζ)

√
2

πRυ
sin
(

Rυ − σt − π

4

)
+ O

(
1

R

)
. (7.155)

It can be easily verified that g1 has the same asymptotic behaviour as

−2πυe(z+ζ)Y0(Rυ),

and therefore the function g2(x, y, z) will be

g2 = 2πυeυ(z+ζ)J0(Rυ) (7.156)
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which satisfies all the required conditions. Here, J0(Rυ) and Y0(Rυ) are the Bessel
functions of the first and second kind, respectively.

Combining all these results, the final real solution form of G is

G(x, y, z; ξ, η, ζ, t) =
[

1

r
+ P.V.

∫ ∞

0

k + υ

k − υ
ek(z+ζ)J0(kR)dk

]
cos σt

+ 2πυeυ(z+ζ)J0(υR) sin σt. (7.157)

The complex form is


g = g1 + ig2

=
[

1

r
+ P.V.

∫ ∞

0

k + υ

k − υ
ek(z+ζ)J0(kR)dk

]

+ i2πυeυ(z+ζ)J0(υr) (7.158)

Case II: Finite depth case

Consider Green’s function of the form

G = Re{
ge−iσt} = g1 cos σt + g2 sin σt, (7.159)

where

g1 = 1
r + 1

r2
+ g0(x, y, z)

and

r2
2 = (x − ξ)2 + (y − η)2 + (z + 2h + ζ)2

The function g1 satisfies Laplace’s equation

∇2g1 = 0,

and therefore

∇2
(

1
r + 1

r2
+ g0

)
= 0

We can easily verify that

∇2 ( 1
r

) = 0 and ∇2
(

1
r2

)
= 0
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Therefore,

∇2g0 = 0 (7.160)

Applying the double Fourier transform

g0(x, y, z) = 1

2π

∫ ∞

0

∫ π

−π

g∗
0 (k , θ, z)eik(x cos θ+y sin θ)dθdk

to Laplace’s equation (7.160), we obtain

∂2g∗
0

∂z2 − kg∗
0 = 0, (7.161)

the solution of which can be written as

g∗
0 = Aekz + Be−kz. (7.162)

The constants A and B must be evaluated using the bottom boundary conditions
and the free surface boundary condition.

The bottom boundary condition is given by

∂g1

∂z
(x, y, z = −h) = 0 (7.163)

Thus,

∂

∂z

(
1

r
+ 1

r2

)
+
(

∂g0

∂z

)
= 0 at z = −h.

It can be easily verified that

∂

∂z

(
1

r
+ 1

r2

)
= 0 at z = −h,

if we choose

r2
2 = (x − ξ)2 + (y − η)2 + (z + 2h + ζ)2

Thus, the bottom boundary condition to be satisfied by g0 is

∂g0

∂z
= 0 at z = −h (7.164)

The double Fourier transform of equation (7.164) yields

∂g∗
0

∂z
= 0 at z = −h (7.165)
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Using this condition in the solution (7.162), we obtain B = Ae−2kh and hence

g∗
0 = Ae−kh[ek(z+h) + e−k(z+h)] = C cosh k(z + h) (7.166)

where C = 2Ae−kh a redefined constant. To evaluate C, we have to satisfy the free
surface condition

∂g1

∂z
− υg1 = 0 at z = 0,

that is

∂

∂z

(
1

r
+ 1

r2
+ g0

)
− υ

(
1

r
+ 1

r2
+ g0

)
= 0 at z = 0. (7.167)

Taking the double Fourier transform of equation (7.167), we obtain

∂g∗
0

∂z
− υg∗

0 = (k + υ)
(

1

r
+ 1

r2

)∗
at z = 0. (7.168)

Using this condition in equation (7.166), we obtain

C = k + υ

k sinh kh − υ cosh kh

(
1

r
+ 1

r2

)∗
z = 0. (7.169)

We know that ( 1
r

)∗ = e−k|z−ζ|e−ik(ξ cos θ+η sin θ)

and (
1
r2

)∗ = e−k|z+2h+ζ|e−ik(ξ cos θ+η sin θ)

Hence, at z = 0 ( 1
r

)∗ = ekξe−ik(ξ cos θ+η sin θ)

and (
1
r2

)∗ = e−kζe−2khe−ik(ξ cos θ η sin θ).

Therefore,

( 1
r

)∗ +
(

1
r2

)∗ = e−kh(ek(h+ζ) + e−k(h+ζ))e−ik(ξ cos θ+η sin θ)

= 2e−kh cosh k(h + ζ)e−ik(ξ cos θ+η sin θ).
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Substituting this into equation (7.166) yields

C = 2e−kh(k + υ) cosh k(h + ζ)

k sinh kh − υ cosh kh
e−ik(ξ cos θ+η sin θ), (7.170)

and consequently

g∗
0 = 2(k + υ)e−kh cosh k(h + ζ) cosh k(z + h)

k sinh kh − υ cosh kh
e−ik(ξ cos θ+η sin θ) (7.171)

Inverting this expression, we can write the g1 solution as

g1 = 1

r
+ 1

r2
+ 1

2π

∫ ∞

0

∫ π

−π

2(k + υ)e−kh cosh k(h + ζ)

k sinh kh − υ cosh kh

× cosh k(z + h)e−ik((x−ξ) cos θ+( y−η) sin θ)dθdk (7.172)

which can subsequently be written as

g1 = 1

r
+ 1

r2
+
∫ ∞

0

2(k + υ)e−kh cosh k(h + ζ) cosh k(z + ζ)

k sinh kh − υ cosh kh
J0(kR)dk

To satisfy the radiation condition we must first obtain the asymptotic expansion
(R → ∞) for g1.

Consider the integral

g0 = 1

2π

∫ ∞

0

∫ π

−π

2(k + υ)e−kh cosh k(h + ζ) cosh k(z + h)

k sinh kh − υ cosh kh

× eik((x−ξ) cos θ+(y−η) sin θ)dθdk

Since x − ξ = R cos δ and y − η = R sin δ, then

R = (x − ξ) cos δ + (y − η) sin δ

=
√

(x − ξ)2 + (y − η)2.

Also

eik(x−ξ) cos θ+(y−η) sin θ) = eikR cos (θ−δ)

and hence
∫ π

−π

eikR cos (θ−δ)dθ = 4
∫ π

2

0
cos (kR cos θ)dθ

= 4
∫ 1

0

cos (krλ)√
1 − λ2

dλ

= 2πJ0(kR),
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where

J0(kR) = 2

π

∫ 1

0

cos (kRλ)√
1 − λ2

dλ

Thus,

g0 = 2

π

∫ 1

0

[∫ ∞

0

2(k + υ)e−kh cosh k(z + ζ) cosh k(h + ζ)
(k sinh kh−υ cosh kh)

k−m0

× 1√
1 − λ2

(
cosh (kRλ)

k − m0

)
dk

]
dλ,

where

cos (kRλ) = cos (λRm0) cos λR(k − m0) − sin (λRm0) sin λR(k − m0).

Using the Fourier integrals in the form, i.e. equation (7.152) gives

g0 = −4(m0 + υ)e−m0h cosh m0(z + ζ) cosh m0(h + ζ)

limR→m0
(k sinh kh−υ cosh kh)

k−m0

×
∫ 1

0

sin (Rλm0)√
1 − λ2

dλ + O

(
1

R

)
,

where m0 is a root of m0h tanh m0h = υh. Now,

lim
k→m0

k sinh kh − υ cosh kh

k − m0

= lim
k→m0

[kh cosh kh + sinh kh − υh sinh kh]

= m0h cosh m0h + sinh m0h − υh sinh m0h

= υh cosh2 m0h + sinh2 m0h − υh sinh2 m0h

sinh m0h

= υh + sinh2 m0h

sinh m0h

Therefore, the asymptotic behaviour of g0(x, y, z) as R → ∞ is

g0 = −4(m0 + υ) cosh m0(z + ζ) cosh m0(h + ζ) sinh m0h

υh + sinh2 m0h

×
∫ 1

0

sin (Rλm0)√
1 − λ2

dλ + O

(
1

R

)
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However, the asymptotic behaviour of the integral term is given by

∫ 1

0

sinh (λRm0)√
1 − λ2

dλ = π

2

√
2

πRm0
sin
(

Rm0 − π

4

)
+ O

(
1

R

)
(7.173)

Thus,

g0 = −2π(m0 + υ)e−m0h sinh m0h cosh m0(z + ζ) cosh m0(h + ζ)

υh + sinh2 m0h

×
√

2

πm0R
sin
(

Rm0 − π

4

)
+ O

(
1

R

)
(7.174)

Now, using the radiation condition

√
R

[
∂g0

∂R
+ m0g2

]
= 0, as R → ∞, (7.175)

we obtain

g2 = 2π(m0 + υ)e−m0h sinh m0h cosh m0(z + ζ) cosh m0(h + ζ)

υh + sinh2 m0h

×
√

1

πm0R
cos
(

Rm0 − π

4

)
+ O

(
1

R

)
.

It can be easily verified that the function

g2 = 2π(m0h)e−m0h sinh m0h cosh m0(z + ζ) cosh m0(h + ζ)

υh + sinh2 m0h
J0(m0R) (7.176)

will satisfy all the required boundary conditions including Laplace’s equation.
Thus, combining these results, the final form of the velocity potential G may be

expressed as

G(x, y, z; ξ, η, ζ, t) =
[

1

r
+ 1

r2
+ P.V.

∫ ∞

0

2(k + υ)e−kh cosh k(h + ζ)

k sinh kh − υ cosh kh

× cosh k(z + h) J0(kR)dk] cos σt

+ 2π(m0 + υ)e−m0h sinh m0h cosh m0(h + ζ)

υh + sinh2 m0h

× cosh m0(z + h) J0(m0R) sin σt, (7.177)

where

m0 tanh m0h = υ = σ2

g
.
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The above results are due to Wehausen and Laitone [17]. John [7] has derived
the following Green’s function in terms of the infinite series:

G(x, y, z; ξ, η, ζ, t) = 2π
υ2 − m2

0

hm2
0 − hυ2 + υ

cosh m0(z + h)

× cosh m0(h + ζ)[Y0(m0R) cos σt − J0(m0R) sin σt]

+ 4
∞∑

k=1

m2
k + υ2

hm2
k + hυ2 − υ

cos mk (z + h) cosh mk (h + ζ)

× K0(mk R) cos σt, (7.178)

where mk , k > 0 are the positive real roots of m tan mh + υ = 0, and K0(mk R) is the
modified Bessel function of second kind of zeroth-order.

7.5 Numerical formulation

Green’s function provides an elegant mathematical tool to obtain the wave loadings
on arbitrarily shaped structures. We know that the total complex velocity potential
φ(x, y, z, t), in diffraction theory, may be expressed as the sum of an incident wave
potential φI and a scattered potential φS in the following manner:

�(x, y, z, t) = Re{φ(x, y, z)e−iσt}, (7.179)

where � is the real velocity potential, φ(x, y, z) the complex potential, and σ the
oscillatory frequency of the harmonic motion of the structure. Thus,

φ = φI + φS (7.180)

The complex potentials should satisfy the following conditions:

∇2φ = 0 in the fluid interior
∂φ

∂z
− υφ = 0 on the free surface

∂φI

∂n
= −∂φS

∂n
on the fixed structures

∂φI

∂n
= ∂φS

∂n
= 0 on the sea bottom

limR→∞
√

R

(
∂φS

∂R
− ikφS

)
= 0 at far field

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.181)

R is the horizontal polar radius.
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Hydrodynamic pressure from the linearized Bernoulli equation is

P = −ρ

(
∂φ

∂t

)
= ρRe[iσφ] = ρRe[iσ(φI + φS )] (7.182)

The force and moment acting on the body may be calculated from the formulae


F = −
∫ ∫

S
P
ndS (7.183)


M = −
∫ ∫

S
P(
rX 
n)dS (7.184)

In evaluating the wave loading on the submerged structures, we first need to find
the scattered potentials, φS , which may be represented as being due to a continuous
distribution of point wave sources over the immersed body surface. As indicated
earlier, a solution for φS at the point (x, y, z) may be expressed as:

φS (x, y, z) = 1

4π

∫ ∫
S

Q(ξ, η, ζ)G(x, y, z; ξ, η, ζ)dS (7.185)

The integral is over all points (ξ, η, ζ) lying on the surface of the structure, Q(ξ, η, ζ)
is the source strength distribution function, and dS is the differential area on the
immersed body surface. Here, G(x, y, z; ξ, η, ζ) is a complex Green’s function of a
wave source of unit strength located at the point (ξ, η, ζ).

Such a Green’s function, originally developed by John [7] and subsequently
extended by Wehausen and Laitone [17], was illustrated in the previous section.

The complex form of G may be expressed either in integral form or in infinite
series form.

The integral form of G is as follows:

G(x, y, z; ξ, η, ζ) = 1

r
+ 1

r2

+ P.V.
∫ ∞

0

2(k + υ)e−kh cosh (k(ζ + h)) cosh (k(z + h))

k sinh kh − υ cosh kh
J0(kR)dk − 2πi

× (m0 + υ)e−m0h sinh m0h cosh m0(h + ζ) cosh m0(z + h)

υh + sinh2 m0h
J0(m0R) (7.186)

Since

e−m0h sinh m0h

υh + sinh2 m0h
= m0 − υ

(m2
0 − υ2)h + υ

, (7.187)
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then equation (7.186) may be expressed as

G(x, y, z; ξ, η, ζ) = 1

r
+ 1

r2

+ P.V.
∫ ∞

0

2(k + υ)e−kh cosh (k(ζ + h)) cosh (k(z + h))

k sinh kh − υ cosh kh
J0(kR)dk

− 2πi
m2

0 − υ2

(m2
0 − υ2)h + υ

cosh m0(ζ + h) cosh m0(z + h)J0(m0R). (7.188)

The second form of Green’s function involves a series representation

G(x, y, z; ξ, η, ζ) = 2π
υ2 − m2

0

(m2
0 − υ2)h + υ

cosh m0(z + h)

× cosh m0(h + ζ)[Y0(m0R) − iJ0(m0R)] + 4
∞∑

k=1

(m2
k + υ2)

(m2
k + υ2)h − υ

× cos mk (z + h) cos mk (h + ζ)K0(mk R), (7.189)

for which mk , k > 0 are the positive real roots of

m tan mh + υ = 0 (7.190)

We must find Q(ξ, η, ζ), the source density distribution function. This function
must satisfy the third condition of equation (7.181), which applies at the body
surface. The component of fluid velocity normal to the body surface must be equal
to that of the structure itself, and may be expressed in terms of φS . Thus, following
the treatment illustrated by Kellog [8], the normal derivative of the potential φS in
equation (7.185) assumes the following form:

−2πQ(x, y, z) +
∫ ∫

S
Q(ξ, η, ζ)

∂G

∂n
(x, y, z; ξ, η, ζ)dS = −∂φI

∂n
(x, y, z) × 4π

(7.191)

This equation is known as Fredholm’s integral equation of the second kind, which
applies to the body surface S and must be solved for Q(ξ, η, ζ).

A suitable way of solving equation (7.191) for unknown source density Q is the
matrix method. In this method, the surface of the body is discretized into a large
number of panels, as shown in Figure 7.10. For each panel the source density is
assumed to be constant. This replaces equation (7.191) by a set of linear algebraic
equations with Q on each being an unknown.

These equations may be written as

N∑
j=1

AijQj = ai for i = 1, 2, . . . , N (7.192)

where N is the number of panels.
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Figure 7.10: Boundary condition at panel i due to source density over panel j.

The coefficients ai and Aij are given, respectively, by

ai = −2
∂φI

∂n
(xi, yi, zi) (7.193)

Aij = −δij + 1

2π

∫ ∫
�Sj

∂G

∂n
(xi, yi, zi; ξj , ηj , ζj)dS (7.194)

where δij is the Kronecker delta, (δij = 0 for i �= j, δii = 1), the point (xi, yi, zi) is the
centroid of the ith panel of area �Si, and n is measured normal to the surface at
that point. Assuming the value of ∂G

∂n is constant over the panel and equal to the
value at the centroid, the expression for Aij can be approximated as

Aij = −δij + �Sj

2π

∂G

∂n
(xi, yi, zi; ξj , ηj , ζj)

= −δij + �Sj

2π

[
∂G

∂x
nx + ∂G

∂y
ny + ∂G

∂z
nz

]
, (7.195)

in which nx, ny, and nz are the unit normal vectors defining the panel orientation.
Note that when i = j, δii = 1 and the last term in equation (7.195) is equal to

zero, and therefore may be omitted.
The column vector ai in equation (7.193) may be evaluated as

ai = −2
[
∂φI

∂x
nx + ∂φI

∂z
nz

]
, (7.196)

where

φI = gA

σ
cosh k(z + h)cosh kheikx
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Thus,

ai = −2
(

gAk

σ

)
eikx
[

i
cosh k(z + h)

cosh kh
nx + sinh k(z + h)

cosh kh
nz

]
(7.197)

Once Aij and ai are known, the source distribution Qj may be obtained by a
complex matrix inversion procedure.

We then obtain the potential φS around the body surface by using a discrete
version of equation (7.185) which is

φS (xi, yi, zi) =
∞∑

j=1

BijQj , (7.198)

where

Bij = 1

4π

∫ ∫
�Sj

G(xi, yi, zi; ξj , ηj , ζj)dS

= �Sj

4π
G(xi, yi, zi; ξj , ηj , ζj). (7.199)

But when i = j, there exists a singularity in Green’s function; however, we can still
evaluate Bij if we retain the dominant term in Green’s function as follows:

Bij = 1

4π

∫ ∫
�Si

dS

r
. (7.200)

This may be integrated for a given panel.
Once the potentials, φS and φI , have been determined, we can obtain the pressure

force P, surface elevation, η , forces, 
F , and moments, 
M , in a sequence.
The matrix equation (7.198) may be solved using a standard complex matrix

inversion subroutine, such as that available in the IMSL library. The numerical pre-
diction can then be compared with available experimental measurements. Hogben
et al [6] have published a number of comparisons between computer predictions
and experimental results. Figure 7.11 shows the comparisons of computed and
measured forces and moments for both circular and square cylinders reported by
Hogben and Standing [5]. More comprehensive published results dealing with off-
shore structures of arbitrary shapes can be found in the works of Van Oortmerssen
[16], Faltinsen and Michelsen [1], Garrison and Rao [3], Garrison and Chow [4],
and Mogridge and Jamieson [10].

Fenton [2] has applied Green’s function to obtain the scattered wave field and
forces on a body which is axisymmetric about a vertical axis. Starting with John’s
[7] equations, he expressed them as a Fourier series in terms of an azimuthal angle
about the vertical axis of symmetry. He obtained a one-dimensional integral equa-
tion which was integrated analytically. Fenton [2] then applied his theory to a right
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Figure 7.11: Comparison of computer prediction with experimental data of Hogben and
Standing [5] for horizontal wave forces on circular and square columns.
(a) circular, h′/h = 0.7, (b) square, h′/h = 0.7, (c) circular, surface-piercing,
(d) square, surface-piercing. Here, h′ is the height of the cylinder.

circular cylinder fixed to the ocean bed, in water of depth h; the cylinder was
0.7h and had a diameter of 0.4h. He compared his theoretical computations with
the experimental results of Hogben and Standing [5], and his results are repro-
duced in Figure 7.12. Fenton recorded that convergence of the Fourier series for
Green’s function was extremely rapid, and he was able to achieve an accuracy
of 0.0001.

7.6 Remarks on symmetric kernel and a process
of orthogonalization

For a symmetric kernel, that is, for a kernel for which

K(x, t) = K(t, x) (7.201)
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Figure 7.12: Variation of (a) dimensionless drag force and (b) dimensionless vertical force
with wavenumber for a truncated circular cylinder of height h′ = 0.7h and
diameter D = 0.4h, where h is the water depth. Experimental results from
Hogben and Standing [5] are with dots, and Fenton’s [2] computer predictions
are with bold line.

the associated eigenfunctions ψh coincide with the proper eigenfunctions φh. It
follows from the orthogonality property that any pair φh(x), φk (x) of eigenfunctions
of a symmetric kernel, corresponding to two different eigenvalues, λh, λk , satisfy
a similar orthogonality condition

(φh, φk ) ≡
∫ b

a
φh(x)φk (x)dx = 0 (h �= k) (7.202)

in the basic interval (a, b). Because of this connection between symmetric kernels
and orthogonal systems of functions, namely

{φh} ≡ φ1(x), φ2(x), φ3(x) . . . (7.203)

which satisfies equation (7.202), it is suitable to begin our study of the symmetric
Fredholm integral equation with a brief survey of orthogonal functions.
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We shall assume throughout that every function φh of our orthogonal systems
is an L2-function which does not vanish almost everywhere, i.e.

||φh||2 =
∫ b

a
φ2

h(x)dx > 0. (7.204)

Thus, we can suppose that our functions are not only orthogonalized but also
normalized, i.e.

(φh, φk ) =
{

0 (h �= k),

1 (h = k).

}
(7.205)

Such a system will be called orthonormal system. The functions of any orthonormal
system are linearly independent; for, if there exist constants c1, c2, c3, . . . cn which
are not all zero and are such that

c1φ1(x) + c2φ2(x) + · · · + cnφn ≡ 0, (7.206)

almost everywhere in the basic interval (a, b), then multiplying by φh(x)(h =
1, 2, 3 . . . , n) and integrating over (a, b), we have

ch

∫ b

a
φ2

h(x)dx = 0,

which, by equation (7.204), implies that ch = 0, i.e. c1 = c2 = · · · = c − n = 0. It is
amazing that linear independence is not only necessary for orthogonality, but, in a
certain sense, also sufficient. This is clear because we can always use the following
procedure.

7.7 Process of orthogonalization

Given any finite or denumerable system of linearly independent L2-functions
ψ1(x), ψ2(x), ψ3(x), . . . , it is always possible to find constants hrs such that the
functions

φ1(x) = ψ1(x),

φ2(x) = h21ψ1(x) + ψ2(x),

φ3(x) = h31ψ1(x) + h32ψ2(x) + ψ3(x),

· · · · · · · · · = · · · · · · · · · · · · · · ·
φn(x) = hn1ψ1(x) + hn2ψ2(x) + · · · + hnn−1ψn−1(x) + ψn(x),

· · · · · · · · · = · · · · · · · · · · · · (7.207)
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are orthogonal in the basic interval (a, b). We prove this by mathematical induction.
Observe first that the system (7.207) can be readily resolved with respect to the
functions ψ1, ψ2, . . ., i.e. it can be put to the equivalent form

φ1(x) = ψ1(x),

φ2(x) = k21φ1(x) + ψ2(x),

φ3(x) = k31φ1(x) + k32φ2(x) + ψ3(x),

· · · · · · · · · = · · · · · · · · · · · · · · ·
φn(x) = kn1φ1(x) + kn2φ2(x) + · · · + knn−1φn−1(x) + ψn(x),

· · · · · · · · · = · · · · · · · · · · · · (7.208)

We shall suppose that for n − 1 functions the coefficients krs have already been
determined i.e. we know krs for 1 ≤ s < r ≤ n − 1. We shall now show that the
coefficients for the nth function krs (s = 1, 2, 3, . . . , n − 1) can be readily calculated.
In fact, from the n − 1 conditions

0 = (φn, φs)

= kn1(φ1, φs) + kn2(φ2, φs) + · · · + knn−1(φn−1, φs) + (ψn, φs)

= kns(φs, φs) + (ψn, φs) (s = 1, 2, . . . , n − 1)

and we get

kns = − (ψn, φs)

(φs, φs)
. (7.209)

These coefficients are well defined; (φs, φs) �= 0 because φs is a linear combination
of the linearly independent functions ψ1, ψ2, . . . , ψn and hence cannot be equal to
zero almost everywhere. We illustrate the theory by an example below.

Example 7.10

Determine the orthogonal set of functions {φn} given that ψ1(x) = 1, ψ2(x) = x,
ψ3(x) = x2, ψ4(x) = x3 . . . , ψn(x) = xn−1 defined on the interval (0, 1).

Solution

The orthogonal set of functions is defined by equation (7.208) and its coefficients can
be obtained by using equation (7.209). And hence we obtain using φ1(x) = ψ1(x) = 1
the coefficient

k21 = − (ψ2, φ1)

(φ1, φ1)
= −1

2
.
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Thus, φ2(x) = x − 1
2 . With this value of φ2(x) we are in a position to determine the

coefficients k31 and k32. They are given by

k31 = − (ψ3, φ1)

(φ1, φ1)
= −1

3

k32 = − (ψ3, φ2)

(φ2, φ2)
= −1

Thus, the expression for φ3(x) can be obtained as φ3(x) = x2 − x + 1
6 . The process

of orthogonalization can be continued in this manner. It can be easily verified that
the set of functions φ1(x), φ2(x), and φ3(x) are orthogonal over the interval (0, 1).

Example 7.11

Show that the boundary value problem y′′(x) + λy(x) = 0 with the boundary
conditions y(0) = 0, y(1) = 0 has the eigenfunction {yn(x)} = Bn sinn2π2x for
n = 1, 2, 3, . . . and this set of functions are orthogonal over the interval (0, 1). Verify
that the kernel associated with this boundary value problem are symmetric.

Solution

The general solution of this differential equation for λ > 0 is simply y(x) =
A cos (

√
λx) + B sin (

√
λx). Using the boundary conditions its solution can be writ-

ten as the eigenfunction { yn(x)} = Bn sin (nπx) for n = 1, 2, 3 . . . , where the eigen-
values are given by λn = n2π2 for n = 1, 2, 3, . . .. These solutions are orthogonal set
of functions over the interval (0, 1).

The given differential equation with its boundary conditions can be transformed
into an Fredholm integral equation. This can be accomplished by integrating two
times with respect to x from 0 to x and using the condition at x = 0 yields

y(x) + λ

∫ x

0

∫ x

0
y(t)dtdt = xy′(0).

This can be reduced to the following after using the condition at x = 1 and replacing
the double integrals by a single integral

y(x) + λ

∫ x

0
(x − t)y(t)dt = λx

∫ 1

0
(1 − t)y(t)dt

which can be very simply written in the integral form

y(x) = λ

∫ 1

0
K(x, t)y(t)dt,

where K(x, t) is called the kernel of the equation and is given by

K(x, t) =
{

(1 − x)t 0 ≤ t ≤ x ≤ 1

(1 − t)x 0 ≤ x ≤ t ≤ 1.
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It can be easily verified that K(x, t) = K(t, x) indicating that the kernel associated
with this integral equation is symmetric.

7.8 The problem of vibrating string: wave equation

The partial differential equation that governs the vibration of an elastic string is
given by

ηtt = C2ηxx (7.210)

The boundary and initial conditions associated with this problem are

η(0, t) = 0,

η(1, t) = 0; (7.211)

η(x, 0) = f (x),

ηt(x, 0) = g(x) (7.212)

where

f (0) = 0, f (1) = 0

g(0) = 0, g(1) = 0.

C is the real positive constant and physically it is the speed of the wavefront.
For general case, C can be a function of (x, t) also. In that case the string is not
homogeneous.

Using the separation of variables method, we try for a solution of the form
η(x, t) = u(x)φ(t). Substitution of this expression for η in equation (7.210) gives

u(x)φ′′(t) = C2u′′(x)φ(t)

which can be separated as

φ′′(t)
C2φ(t)

= u′′(x)

u(x)
.

But the left-hand side is a function of t alone, the right-hand side member is a
function of x alone; they are equal, hence equal to the same constant, say −λ. We
are thus led to two ordinary differential equations:

u′′(x) + λu(x) = 0 (7.213)

with the boundary conditions

u(0) = 0, u(1) = 0, (7.214)
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and

φ′′(t) + C2λφ(t) = 0 (7.215)

with the initial conditions

η(x, 0) = u(x)φ(0) = f (x), ηt(x, 0) = u(x)φt(0) = g(x) (7.216)

For the boundary value problem, i.e. in equations (7.213) and (7.214), all of the
characteristic constants are positive. Green’s function K(x, t) of this problem can
be written at once

K(x, t) =
{

(1 − x)t 0 ≤ t ≤ x ≤ 1

(1 − t)x 0 ≤ x ≤ t ≤ 1.

The boundary value problem, i.e. equations (7.213) and (7.214) is equivalent to

u(x) = λ

∫ 1

0
K(x, t)u(t)dt.

In this integral the kernel is symmetric. This boundary value problem has an
infinitude of real positive characteristic constants, forming an increasing sequence:

0 < λ1 < λ2 < · · ·

with corresponding normalized fundamental functions

un(x) = √
2 sin(nπx),

for n = 1, 2, 3, . . ..
We return now to equation (7.216) with λ = λn:

φ′′(t) + C2λnφ(t) = 0. (7.217)

Since λn > 0, the general solution of equation (7.217) is

φ(t) = An cos(C
√

λnt) + Bn sin(C
√

λnt).

Therefore, a solution of equation (7.210) which satisfies equation (7.211) is

η(x, t) =
∞∑

n=1

(An cos(C
√

λnt) + Bn sin(C
√

λnt)) un(x)

=
∞∑

n=1

(An cos(nπCt) + Bn sin(nπCt))
√

2 sin(nπx). (7.218)
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Now using the initial conditions at t = 0, we obtain

f (x) =
∞∑

n=1

√
2An sin(nπx)

g(x) =
∞∑

n=1

√
2nπCBn sin(nπx)

These are sine series for f (x) and g(x). For the development of an arbitrary function
in trigonometric series we need to know only that the function is continuous and
has a finite number of maxima and minima. These conditions are not so strong as
those obtained by means of the theory of integral equations which were demanded
for the development in series of fundamental functions. The coefficients An and Bn

can be obtained as

An =
∫ 1

0
f (x)(

√
2 sin(nπx))dx;

Bn = 1

nπC

∫ 1

0
g(x)(

√
2 sin(nπx))dx.

The time period T1 = 2
C is the fundamental period of vibration of the string. The

general period Tn = 2
nC = T1

n , and the amplitude is
√

A2
n + B2

n. Upon the intensity of
the different harmonics depends the quality of the tone. The tone of period T

n is called
the nth harmonic overtone, or simply the nth harmonic. For the nonhomogeneous
string the period is 2π√

λ
.

7.9 Vibrations of a heavy hanging cable

Let us consider a heavy rope of length, AB = 1 (see Figure 7.13) suspended at one
end A. It is given a small initial displacement in a vertical plane through AB′ and
then each particle is given an initial velocity. The rope is suspended to vibrate in a
given vertical plane and the displacement is so small that each particle is supposed
to move horizontally; the cross-section is constant; the density is constant; the
cross-section is infinitesimal compared to the length.

Figure 7.13: Vibrations of a heavy hanging cable.



MM-165 CH007.tex 30/4/2007 10: 46 Page 257

Symmetric Kernels and Orthogonal Systems of Functions 257

Let AB′ be the position for the rope at time t and P any point on AB′. Draw PM
horizontal and put MP = η, BM = x.

Then the differential equation of the motion is given by

∂2η

∂t2 = C2 ∂

∂x

(
x
∂η

∂x

)
(7.219)

where C2 is a constant, with the boundary conditions

η(1, t) = 0, η(0, t) is finite (7.220)

η(x, 0) = f (x), ηt(x, 0) = g(x). (7.221)

By the separation of variables method, we try for a solution of the form

η(x, t) = u(x)φ(t).

Substituting this expression for η in equation (7.219), we obtain

u(x)φ′′(t) = C2φ(t)
d

dx

(
x

du

dx

)
.

This can be separated as

φ′′(t)
C2φ(t)

=
d
dx

(
x du

dx

)
u(x)

= −λ, constant.

That is

φ′′(t) + C2λφ(t) = 0,

and

d

dx

(
x

du

dx

)
+ λu = 0 (7.222)

and the boundary conditions derived from equation (7.220);

u(0) finite u(1) = 0. (7.223)

The differential equation (7.222) can be solved using the transformation x = z2

4λ
and

the equation reduces to the well-known Bessel equation

d2u

dz2 + 1

z

du

dz
+ u = 0. (7.224)

The general solution of this equation is

u(x) = C1J0(2
√

λx) + C2Y0(2
√

λx), (7.225)
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where C1 and C2 are two arbitrary constants. Here, J0 and Y0 are the zeroth-order
Bessel functions of first and second kind, respectively. Since the solution must be
finite at x = 0, the second solution Y0 can be discarded because it becomes infinite
at x = 0. Therefore, we have

u(x) = C1J0(2
√

λx)

is the most general solution of equation (7.222), which satisfies the first initial
condition. We have the further condition u(1) = 0, hence

J0(2
√

λ) = 0.

The solution of the equation gives us the eigenvalues. We know corresponding to
each eigenvalue, there is an eigenfunction and the set of eigenfunctions are

un(x) = CnJ0(2
√

λnx)

for n = 1, 2, 3, . . .. There are infinitely many eigenfunctions as there are infinitely
many eigenvalues. These eigenfunctions are defined over the interval (0, 1) and they
are orthogonal.

We next construct the Green’s function K(x, t) for the boundary value problem,
i.e. equations (7.222) and (7.223) satisfying the following conditions:

(a) K is continuous on (0,1).

(b) K satisfies the differential equation d
dx

(
x dK

dx

)
= δ(x − t) on (0,1).

(c) K(0, t) finite, K(1, t) = 0.

(d) K ′(t + 0) − K ′(t − 0) = 1
t .

Integrating the differential equation in (b), we obtain

K(x, t) =
{

α0 ln x + β0, (0, t)

α1 ln x + β1, (t, 1)

But K(0, t) is finite, therefore α0 = 0, and K(1, t) = 0, therefore β1 = 0. Hence
we have

K(x, t) =
{

K0(x, t) = β0, (0, t)

K1(x, t) = α1 ln x, (t, 1)

From condition (a) β0 = α1 ln t. Also from the condition (d), since K ′(t − 0) = 0
and K ′(t + 0) = α1

t , we obtain α1 = 1. Therefore,

K(x, t) =
{

K0(x, t) = ln t, (0, t)

K1(x, t) = ln x, (t, 1)
(7.226)

We observe that K(x, t) is symmetric.
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Equivalence with a homogeneous integral equation

We now form the integral equation that will be equivalent to the differential equation
(7.222)

d

dx

(
x

du

dx

)
+ λu = 0 (7.227)

In differential operator symbol L we can write the above equation with the kernel
equation as

L(u) = −λu

L(K) = 0

Multiplying first of these by −K and the second by u and adding we have

uL(K) − KL(u) = λuK .

This equation can be explicitly written as

d

dx
{x(uK ′ − u′K)} = λKu.

Integrate both members of this expression from x = 0 to x = t − 0 and from x = t + 0
to x = 1 with respect to x.

x(u(x)K ′(x, t) − u′(x)K(x, t))|x=t−0
x=0 = λ

∫ x=t−0

x=0
K(x, t)u(x)dx

x(u(x)K ′(x, t) − u′(x)K(x, t))|x=1
x=t+0 = λ

∫ x=1

x=t+0
K(x, t)u(x)dx

Adding these two equations yields

[
x(uK ′ − u′K)

]x=t−0
x=t+0 + [x(uK ′ − u′K)

]x=1
x=0 = λ

∫ 1

0
K(x, t)u(x)dx (7.228)

The second term of the first expression of equation (7.228) on the left-hand side
is zero because of the continuity of K . That means K(t − 0) = K(t + 0) = K(t). But
the first term yields

[
x(uK ′)

]x=t−0
x=t+0 = (t − 0)u(t − 0)K ′(t − 0) − (t + 0)u(t + 0)K ′(t + 0)

= tu(t)[K ′(t − 0) − K ′(t + 0)]

= tu(t)
−1

t
= −u(t)
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The second term on the left-hand side of equation (7.228) is zero because
u(0) = 0, u(1) = 0; and K(0) = 0, K(1) = 0.

Therefore the integral equation can be written as

u(t) = −λ

∫ 1

0
K(x, t)u(x)dx (7.229)

Hence, changing the role of x and t, and that the kernel is symmetric, we can write
the above equation as

u(x) = −λ

∫ 1

0
K(x, t)u(t)dt (7.230)

This is the Fredholm integral equation which is equivalent to the ordinary differential
equation (7.227).

Now coming back to the original problem, the eigenvalues will be given by the
roots of J0(2

√
λ) = 0, and these roots can be defined from kn = 2

√
λn. The first four

values of kn are

k1 = 2.405, k2 = 5.520, k3 = 8.654, k4 = 11.792,

and generally
(
n − 1

2

)
π < kn < nπ. Therefore,

un(x) = C1J0(2
√

λnx) = C1J0(kn
√

x).

These fundamental functions un(x) will become orthogonalized if we choose

C1 = 1√∫ 1
0 J 2

0 (kn
√

x)dx
.

But
∫ 1

0 J 2
0 (kn

√
x)dx = 1

[J ′
0(kn)]2 . Therefore,

un(x) = J0(kn
√

x)

J ′
0(kn)

η(x, t) =
∞∑

n=1

(
An cos

Cknt

2
+ Bn sin

Cknt

2

)
un(x).

This expression for η(x, t) satisfies equations (7.219) and (7.220). We now determine
An and Bn, if possible, in order that equation (7.221) may be satisfied. This gives
us the two equations

∞∑
n=1

Anun(x) = f (x)

∞∑
n=1

Ckn

2
Bnun(x) = g(x)
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Because the series on the left-hand side is composed of the set of orthogonal
functions, we can evaluate the coefficients An and Bn as follows:

An =
∫ 1

0
f (x)un(x)dx =

∫ 1

0
f (x)

J0(kn
√

x)

J ′
0(kn)

dx,

Bn = 2

Ckn

∫ 1

0
g(x)un(x)dx = 2

Ckn

∫ 1

0
g(x)

J0(kn
√

x)

J ′
0(kn)

dx.

Once these coefficients are determined the problem is completely solved.

7.10 The motion of a rotating cable

With reference to Figure 7.14, let FG be an axis around which a plane is rotating with
constant velocity; a cable AB is attached at a point A of the axis and constrained
to remain in the rotating plane. The velocity of the rotation is so large that the
weight of the cable can be neglected. Then the straight line AB perpendicular to
FG is a relative position of equilibrium for the cable. Displace the cable slightly
from this position AB, then let it go after imparting to its particles initial velocities
perpendicular to AB. The cable will then describe small vibrations around the
position of equilibrium.

Let APB′ be the position of the cable at the time t, P one of its points, PM is
perpendicular to AB. Put AM = x, MP = η, and suppose AB = 1. Then the function
η(x, t) must satisfy the partial differential equation

∂2η

∂t2 = C2 ∂

∂x

[
(1 − x2)

∂η

∂x

]
, (7.231)

where C is a constant. The boundary conditions are

η(0, t) = 0

η(1, t) = finite. (7.232)

The initial conditions are

η(x, 0) = f (x)

ηt(x, 0) = g(x). (7.233)

Figure 7.14: The motion of a rotating cable.



MM-165 CH007.tex 30/4/2007 10: 46 Page 262

262 Integral Equations and their Applications

Putting η(x, t) = u(x)φ(t), we obtain two ordinary differential equations

d

dx

[
(1 − x2)

du

dx

]
+ λu = 0 (7.234)

with boundary conditions u(0) = 0, u(1) = finite. The φ(t) satisfies

d2φ

dt2 + λC2φ = 0. (7.235)

The general solution of the equation (7.234) can be written at once if the eigenvalues
λn = n(n + 1) for n = 0, 1, 2, 3, . . . as the Legendre’s polynomials Pn(x) and Qn(x)

u(x) = APn(x) + BQn(x) (7.236)

where A and B are two arbitrary constants. Here, the second solution is obtained
from the Abel’s identity

Qn(x) = Pn(x)
∫

dx

(1 − x2)P2
n(x)

. (7.237)

We can at once indicate some of the eigenvalues and the corresponding fundamental
eigenfunctions from the theory of Legendre’s polynomials:

Pn(x) = 1

2nn!
dn

dxn
{(x2 − 1)n}.

Using this formula, we can evaluate the different components of the Legendre’s
polynomials

P0(x) = 1

P1(x) = x

P2(x) = 1
2 (3x2 − 1)

P3(x) = 1
2 (5x3 − 3x)

P4(x) = 1
8 (35x4 − 30x2 + 3)

P5(x) = 1
8 (63x5 − 70x3 + 15x)

· · · · · · = · · · · · ·

We see that Pn(1) = 1, and Pn(−1) = (−1)n for all values of n. The Legendre
polynomial Pn(x) is finite in the closed interval −1 ≤ x ≤ 1.
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Hence Q0(x) and Q1(x) can be very easily calculated as

Q0(x) =
∫

dx

1 − x2 = 1

2
ln

1 + x

1 − x

Q1(x) = x
∫

dx

(1 − x2)x2 = −1 + x ln
1 + x

1 − x
.

Thus, it is easy to see that Qn(x) is a singular solution at x = ±1, and hence B = 0.
The solution, i.e. equation (7.236) takes the form

u(x) = APn(x). (7.238)

Pn(x) is a rational integral function of degree n, satisfying the differential equation

d

dx

[
(1 − x2)

du

dx

]
+ n(n + 1)u = 0.

Furthermore, P2n is an even function and P2n(0) �= 0; however, P2n−1(x) is
an odd function and P2n−1(0) = 0. Therefore, λn = 2n(2n − 1) is an eigenvalue
and P2n−1(x) a corresponding fundamental eigenfunction. Therefore, only the odd
Legendre’s polynomials will satisfy the given boundary condition of the present
problem. It is worth noting that the Legendre polynomials form an orthogonal set
of functions defined in the closed interval −1 ≤ x ≤ 1. Therefore, the orthogonality
property is satisfied, that means∫ 1

−1
P2n−1(x)P2m−1(x)dx = 0,

for m �= n. Or more explicitly, this orthogonality property is valid even for the
interval 0 ≤ x ≤ 1 such that∫ 1

0
P2n−1(x)P2m−1(x)dx = 0,

for m �= n. Thus, the orthonormal set of functions can be constructed as

ϕn(x) = P2n−1(x)√∫ 1
0 P2

2n−1(x)dx
,

for n = 1, 2, 3 . . .. But ∫ 1

0
P2

2n−1(x)dx = 1

4n − 1
,

as shown in the theory of Legendre’s polynomials. Therefore,

ϕn(x) = √
4n − 1P2n−1(x),

is the orthonormal set of Legendre’s polynomials.
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Equivalence with integral equation

We construct the Green’s function as before and obtain

K(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
ln

1 + x

1 − x
, 0 ≤ x ≤ t

1

2
ln

1 + x

1 − x
, t ≤ x ≤ 1.

K(x, T ) is symmetric, but has one point of discontinuity and that is for x = t = 1.

Proceeding as in the previous problem, we find that the boundary value problem is
equivalent to the integral equation:

u(x) = λ

∫ 1

0
K(x, t)u(t)dt.

Now, the final solution of this rotating cable problem can be obtained using
the initial conditions and then evaluating the unknown constants. The final general
solution is

η(x, t) =
∞∑

n=1

[An cos (C
√

λnt) + Bn sin (C
√

λnt)]P2n−1(x). (7.239)

Using the initial conditions, we obtain

f (x) =
∞∑

n=1

AnP2n−1(x)

g(x) =
∞∑

n=1

(C
√

λn)BnP2n−1(x)

where the coefficients An and Bn are obtained

An = (4n − 1)
∫ 1

0
f (x)P2n−1(x)dx

Bn = (4n − 1)

C
√

λn

∫ 1

0
g(x)P2n−1(x)dx.

Thus, the problem is completely solved.

7.11 Exercises

1. Show that the solution of

y′′ = f (x), y(0) = y(1) = 0 is

y =
∫ 1

0
G(x, η)f (η)dη



MM-165 CH007.tex 30/4/2007 10: 46 Page 265

Symmetric Kernels and Orthogonal Systems of Functions 265

where

G(x, η) =
{

η(x − 1) 0 ≤ η ≤ x

x(η − 1) x ≤ η ≤ 1.

2. Discuss how you might obtain G(x, η) if it were not given.
[Hint: One possibility is to write

y =
∫ x

0
G(x, η)f (η)dη +

∫ 1

x
G(x, η)f (η)dη

and substitute into the given equation and boundary conditions to find suitable
conditions on G in the two regions 0 ≤ η ≤ x, x ≤ η ≤ 1.]

3. Apply your method in Exercise 2 to solve

y′′ + y = f (x), y(0) = y(1) = 0.

4. Find the deflection curve of a string of length � bearing a load per unit length
W (x) = −x, first by solving the differential equation Ty′′ = −x with the boundary
conditions y(0) = y(�) = 0 and then by using the Green’s function for the string.

5. Construct the Green’s function for the equation y′′ + 2y′ + 2y = 0 with the
boundary conditions y(0) = 0, y( π

2 ) = 0. Is this Green’s function symmetric?
What is the Green’s function if the differential equation is

e2xy′′ + 2e2xy′ + 2e2xy = 0?

Is this Green’s function symmetric?

Find the Green’s function for each of the following boundary value problems:

6. y′′ + y = 0; y(0) = 0, y′(π) = 0.

7. y′′ + y′ = 0; y(0) = 0, y′(π) = 0.

8. y′′ = 0; y(0) = 0, y(1) = 0.

9. y′′ = 0; y(0) = 0, y′(1) = 0.

10. y′′ + λ2y = 0; λ �= 0, y(0) = y(1), y′(0) = y′(1).

11. y′′ + λ2y = 0; λ �= 0, if the boundary conditions are

(a) y(0) = y′(b) = 0,

(b) y′(0) = y(b) = 0,

(c) y′(a) = y′(b) = 0,

(d) y(a) = y′(a), y(b) = 0
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12. Find all Green’s functions corresponding to the equation x2y′′ − 2xy′ + 2y = 0
with the boundary conditions y(0) = y(1). Why does this differential sys-
tem have infinitely many Green’s functions? [Hint: Where is the differential
equation normal?]

13. Find the Green’s functions for the following problems:

(a) (1 − x2)y′′ − 2xy′ = 0; y(0) = 0, y′(1) = 0.

(b) y′′ + λ2y = 0; y(0) = 0, y(1) = 0

14. Show that the Green’s function G(t, η) for the forced harmonic oscillation
described by the initial value problem

ÿ + λ2y = A sin ωt; y(0) = 0, ẏ(0) = 0

is G(t, η) = 1
λ

sin λ(t − η).

Here, A is a given constant. Hence the particular solution can be determined as

y = A

λ

∫ t

0
sin λ(t − η) sin ωηdη

15. Determine the Green’s function for the boundary value problem

y′′ = −f (x); y(−1) = y(1), y′(−1) = y′(1)

16. Determine the Green’s function for the boundary value problem

xy′′ + y′ = −f (x)

y(1) = 0, lim
x→0

|y(x)| < ∞.

17. By using the Green’s function method solve the boundary value problem
y′′ + y = −1; y(0) = y

(
π
2

) = 0. Verify your result by the elementary technique.
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8 Applications

8.1 Introduction

The development of science has led to the formation of many physical laws, which,
when restated in mathematical form, often appear as differential equations. Engi-
neering problems can be mathematically described by differential equations, and
thus differential equations play very important roles in the solution of practical prob-
lems. For example, Newton’s law, stating that the rate of change of the momentum
of a particle is equal to the force acting on it, can be translated into mathematical
language as a differential equation. Similarly, problems arising in electric circuits,
chemical kinetics, and transfer of heat in a medium can all be represented mathe-
matically as differential equations. These differential equations can be transformed
to the equivalent integral equations of Volterra and Fredholm types. There are many
physical problems that are governed by the integral equations and these equations
can be easily transformed to the differential equations. This chapter will examine a
few physical problems that lead to the integral equations. Analytical and numerical
methods will be illustrated in this chapter.

8.2 Ocean waves

A remarkable property of wave trains is the weakness of their mutual interactions.
From the dynamic point of view, the interaction of waves causes the energy trans-
fer among different wave components. To determine the approximate solution of
a nonlinear transfer action function we consider a set of four progressive waves
travelling with different wave numbers and frequencies and this set, which is called
a quadruple, could exchange energy if they interact nonlinearly. Three analytical
methods due to Picard, and Adomian, and one numerical integration method using
a fourth-order Runge−Kutta scheme are used to compute the nonlinear transfer
action function. Initial conditions are used from the JONSWAP (Joint North Sea
Wave Project) spectrum. The results obtained from these four methods are compared
in graphical forms and we have found excellent agreement among them.

269
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8.2.1 Introduction

The wave−wave interactions of four progressive waves travelling with four different
wave numbers and frequencies has been studied extensively by many previous
researchers including Webb [22], Phillips [14], and Hasselmann [5]. This set of
four waves, called a quadruple, could exchange energy if they interact nonlinearly
such that resonant conditions are satisfied.

In the present work, we shall proceed with the approximate solution of non-
linear transfer action functions that satisfy a set of first-order ordinary differential
equations using the JONSWAP spectrum as initial conditions. For this situation, we
consider the energy balance equation by Phillips [2] to show the various physical
processes that cause the change of energy of a propagating wave group. For the input
energy due to wind, we take the parameterizations proposed by Hasselmann et al
in the WAM model (see Refs. [6], [9], and [10]). The empirical formulation of the
change of energy due to wave interaction with ice floes has been described by
Isaacson [8], Masson and LeBlond [12] within MIZ (marginal ice zone). For
nonlinear transfer between the spectral components, we take the parameteriza-
tions proposed by Hasselmann et al [6] where the energy spectrum is actually
proportional to the action spectrum and the proportionality constant is given by
the radian frequency ω. Four simple methods are demonstrated in this section to
compare the nonlinear transfer action function. Three of them are analytic due to
Picard, Bernoulli, and Adomian, one is numerical integration using a fourth-order
Runge−Kutta scheme and the results are compared in graphical form.

8.2.2 Mathematical formulation

As suggested by Masson and LeBlond [8], the two-dimensional ocean wave spec-
trum E(f , θ; x, t) which is a function of frequency f (cycles/s, Hz) and θ, the
direction of propagation of wave, time t, and position x satisfies the energy balance
equation within MIZ, i.e.

(
∂

∂t
+ Cg · ∇

)
E(f , θ) = (Sin + Sds)(1 − fi) + Snl + Sice, (8.1)

where Cg is the group velocity and ∇ the gradient operator. The right-hand side of
the above equation is a net source function describing the change of energy of a
propagating wave group. Here, Sin is the input energy due to wind, Sds is the energy
dissipation due to white capping, Snl is the nonlinear transfer between spectral
components due to wave−wave interactions, Sice is the change in energy due to
wave interactions with ice floes and fi is the fraction of area of the ocean covered
by ice. Equation (8.1) can be written as

dE(f , θ)

dt
= (Sin + Sds)(1 − fi) + Snl + Sice (8.2)
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where d
dt denotes the total differentiation when travelling with group velocity. The

wind input source function Sin should be represented by

Sin = βE(f , θ), (8.3)

as parameterized in the WAM model of Hasselmann et al [6] and Komen et al
[9] where

β = max
{

0, 0.25 ρa
ρw

(
28 U∗

C cos (θ) − 1
)}

ω, (8.4)

and ω = 2πf angular frequency. ρa
ρw

is the ratio of densities of air and water. θ is
the angle between the wind vector and wave propagation direction. Many authors,
including Komen et al. [10], have modified the formulation of β to simulate the
coupling feedback between waves and wind. The dissipation source function used
in WAM model is of the form (see Komen et al [9])

Sds = −Cds

(
α̂

α̂PM

)2 (ω

ω

)2
ωE(f , θ) (8.5)

wheret α̂ = m0ω
4/g2, and m0 is the zeroth moment of the variance spectrum and ω

is the mean radian frequency,

ω =
∫ ∫

E(ω, θ)dωdθ

Etotal
, (8.6)

in which

Etotal = E( f , θ)df dθ (8.7)

is the total spectral energy. Tuning is achieved by a filtering parameter, Cds and
α̂/α̂pm is the overall measure of steepness in the wave field. The empirical formu-
lation for the change in energy due to wave interaction with ice floes, Sice, has been
described by Isaacson [8], Masson and LeBlond [12]. With the MIZ, the ice term
Sice is expressed in terms of a transformation tensor T ij

fl

S(fl , θi)ice = E( fe, θj)T
ij
fl (8.8)

where the space x and time t coordinates are important, and summation is over all
j angle bands of discretization. The transformation tensor T ij

fl is expressed as

T ij
fl = A2[β|D(θij)|2�θ + δ(θij)(1 + |αcD(0)|2) + δ(π − θij)|αcD(π)|2], (8.9)
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where δ is the Dirac delta function and �θ is the angular increment in θ and
θij = |θi − θj|. Other parameters arising in this formulation have been described by
Masson and LeBlond [12], and will not be repeated here. The formulation of the non-
linear transfer between spectral components due to wave−wave interactions, Snl,
is rather complicated. It was demonstrated by Hasselmann et al [6] that the energy
spectrum E(f , θ) is actually proportional to the action spectrum N (f , θ) such that
E(f , θ) = ωN (f , θ), where the proportionality constant is the radian frequency ω.
Hence, equation (8.2) can be written in two ways:

For energy:

dE

dt
= (Snl + Sds)e(1 − fi) + (Snl)e + (Sice)e. (8.10)

For action:
dN

dt
= (Snl + Sds)(1 − fi) + Snl + Sice. (8.11)

Equation (8.11) is most basic because Snl is expressed in terms of action. We
shall proceed with the evaluation of the nonlinear wave−wave interaction Snl with
the use of the following approximate nonlinear simultaneous differential equations.
Hasselmann et al [6] constructed a nonlinear interaction operator by considering
only a small number of neighbouring and finite distance interactions. It was found
that, in fact, the exact nonlinear transfer could be well simulated by just one mirror-
image pair of intermediate-range interaction configurations. In each configuration,
two wave numbers were taken as identical k1 = k2 = k. The wave numbers k3 and k4
are of different magnitude and lie at an angle to the wave number k, as required
by resonance conditions. The second configuration is obtained from the first by
reflecting the wave numbers k3 and k4 with respect to the k axis (see Ref. [9],
p. 226). The scale and direction of the reference wave number are allowed to vary
continuously in wave number space. For configurations

ω1 = ω2 = ω

ω3 = ω(1 + λ) = ω+
ω4 = ω(1 − λ) = ω−, (8.12)

where λ = 0.25, a constant parameter, satisfactory agreement with exact computa-
tion was found. From the resonance conditions, the angles θ3 and θ4 of the wave
numbers k3(k+) and k4(k−) relative to k are found to be θ3 = 11.5◦, θ4 = −33.6◦.

The discrete interaction approximation has its simplest form for deep ocean for
the rate of change in time of action density in wave number space. The balance
equation can be written as

d

dt

⎧⎪⎨
⎪⎩

N

N+
N−

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

−2

1

1

⎫⎪⎬
⎪⎭Cg−8f 19[N 2(N+ + N−) − 2NN+N−]�k, (8.13)
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where dN
dt , dN+

dt , and dN−
dt , are the rate of change in action at wave numbers k, k+, and

k−, respectively, due to the discrete interactions within the infinitesimal interaction
phase-space element �k and C is the numerical constant. The net source function
Snl can be obtained by summing equation (8.12) over all wave numbers, directions,
and interaction configurations. Equation (8.12) is only valid for deep-water ocean.
Numerical computations by Hasselmann and Hasselmann of the full Boltzmann
integral for water of an arbitrary depth have shown that there is an approximate
relationship between the transfer rate for deep-water and water of finite depth. For
a frequency direction-spectrum, the transfer for a finite depth ocean is identical to
the transfer of infinite depth, except for the scaling factor R:

Snl(finite depth) = R(kh)Snl(infinite depth), (8.14)

where k is the mean wave number. This scaling relation holds in the range kh > 1,
where the scaling factor can be expressed as

R(x) = 1 + 5.5
x

(
1 − 5x

6

)
exp

(−5x
4

)
, (8.15)

with x = 3
4 kh. The WAM model uses this approximation.

8.3 Nonlinear wave–wave interactions

This section will be devoted to the solution technique of the nonlinear wave–wave
interactions. To determine the nonlinear wave–wave interaction Snl, we can rewrite
the equation (8.12) explicitly with their initial conditions in the following form

dN

dt
= α1[N 2(N+ + N−) − 2NN+N−] (8.16)

dN+
dt

= α2[N 2(N+ + N−) − 2NN+N−] (8.17)

dN−
dt

= α3[N 2(N+ + N−) − 2NN+N−], (8.18)

where

α1 = −2Cg−8f 19�k

α2 = Cg−8f 19�k+

α3 = Cg−8f 19�k−. (8.19)
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The initial conditions are

N (0, f ) = N0( f )

at t = 0 : N+(0, f ) = N+0( f+)

N−(0, f ) = N−0( f−). (8.20)

The specific algebraic forms of these initial values will be stated later.

8.4 Picard’s method of successive approximations

It can be easily observed that equations (8.16), (8.17), and (8.18) are related to each
other as follows

dN+
dt

=
(

α2

α1

)
dN

dt
(8.21)

dN−
dt

=
(

α3

α1

)
dN

dt
. (8.22)

Thus, if we can determine the solution for N (t, f ), then solution for N+(t, f ) and
N−(t, f ) can be easily determined by interaction from the equations (8.21) and
(8.22). However, we shall integrate equations (8.16), (8.17), and (8.18) using
Picard’s successive approximation method.

8.4.1 First approximation

Since the equation is highly nonlinear, it is not an easy matter to integrate it at one
time. In the first approximation, we shall replace the source terms on the right-hand
side of the equation by their initial values, which will be integrated at once. For
instance equation (8.16) can be written as

dN

dt
= α1[N 2

0 (N+0 + N−0) − 2N0N+0N−0]. (8.23)

The right-hand side of equation (8.23) is a constant and can be integrated
immediately, with respect to time from t = 0 to t = t:

N (t, f ) = N0(f ) + α10t, (8.24)

where

α10 = α1[N 2
0 (N+0 + N−0) − 2N0N+0N−0]. (8.25)
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Similarly, the solutions for equations (8.17) and (8.18) give

N+(t, f ) = N+0(f+) + α20t (8.26)

N−(t, f ) = N−0(f−) + α30t, (8.27)

where

α20 = α2[N 2
0 (N+0 + N−0) − 2N0N+0N−0] (8.28)

α30 = α3[N 2
0 (N+0 + N−0) − 2N0N+0N−0]. (8.29)

Equations (8.24), (8.26), and (8.27) are the first approximate solution.

8.4.2 Second approximation

To determine the second approximate solutions we have to update the source func-
tions by the first approximate solutions and then integrate. For this we need to
calculate the expression {N 2(N+ + N−) − 2N+N−}, and this gives

N 2(N+ + N−) − 2NN+N− = [N 2
0 (N+0 + N−0) − 2N0N+0N−0]

+ [N 2
0 (α20 + α30) + 2α10N0(N+0 + N−0)

− 2{N0(α30N+0 + α20N−0) + α10N+0N−0}]t
+ [2α10(α20 + α30)N0 + α2

10(N+0 + N−0)

−2{α20α30N0 + α10(α30N+0 + α20N−0)}]t2

+ [α2
10(α20 + α30) − 2α10α20α30]t3. (8.30)

Hence, the differential equation (8.16) can be written as

dN

dt
= α1[N 2(N+ + N−) − 2NN+N−]

= a0 + a1t + a2t2 + a3t3, (8.31)

where

a0 = α1[N 2
0 (N+0 + N−0) − 2N0N+0N−0] = α10

a1 = α1[N 2
0 (α20 + α30) + 2α10N0(N+0 + N−0)

− 2{N0(α30N+0 + α20N−0) + α10N+0N−0}] (8.32)

a2 = α1[2α10(α20 + α30)N0 + α2
10(N+0 + N−0)

− 2{α20α30N0 + α10(α30N+0 + α20N−0)}]
a3 = α1[α2

10(α20 + α30) − 2α10α20α30].
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Integrating equation (8.31) with respect to t from t = 0 to t = t, we obtain

N (t, f ) = N0(f ) + a0t + a1
t2

2 + a2
t3

3 + a3
t4

4 . (8.33)

It is worth noting that at t = 0, N (0, f ) = N0(f ) and

dN

dt

∣∣∣∣
t=0

= a0 = α1[N 2
0 (N+0 + N−0) − 2N0N+0N−0] = α10. (8.34)

The integrals for N+(t, f ) and N−(t, f ) are simply

N+(t, f ) = N+0(f+) +
(

α2
α1

) [
a0t + a1

t2

2 + a2
t3

3 + a3
t4

4

]
(8.35)

N−(t, f ) = N−0(f−) +
(

α3
α1

) [
a0t + a1

t2

2 + a2
t3

3 + a3
t4

4

]
. (8.36)

Equations (8.33), (8.34), and (8.35) are the second approximate solutions. These
are nonlinear.

8.4.3 Third approximation

In this approximation, we shall update the differential equations (8.16), (8.17), and
(8.18) by new values of N, N+, and N− obtained in equations (8.33), (8.35), and
(8.36). The differential equation (8.37) becomes

dN

dt
= α1[N 2(N+ + N−) − 2NN+N−]

= α1

[
{N 2

0 (N+0 + N−0) − 2N0N+0N−0}

+
{

N 2
0 (α2 + α3)

α1
+ 2N0(N+0 + N−0)

− 2
(

N+0N−0 +
(

N0

α1

)
(α3N+0 + α2N−0)

)}
A

+
{

2N0(α2 + α3)

α1
+ (N+0 + N−0)

− 2

(
N0α2α3

α2
1

+ N+0α3 + N−0α2

α1

)}
A2

+
{

α2 + α3

α1
− 2α2α3

α2
1

}
A3

]
,
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or we can write the above equation as

dN

dt
= α1[β0 + β1A + β2A2 + β3A3], (8.37)

where

β0 = N 2
0 (N+0 + N−0) − 2N0N+0N−0

β1 = 2N0(N+0 + N−0) + N 2
0 (α2 + α3)

− 2
{

N+0N−0 +
(

N0
α1

)
(α3N+0 + α2N−0)

}
β2 = (N+0 + N−0) + 2N0(α2 + α3)

α1

− 2

{
N0α2α3

α2
1

+ α3N+0 + α2N−0

α1

}

β3 = α2 + α3

α1
− 2α2α3

α2
1

A = a0t + a1
t2

2 + a2
t3

3 + a3
t4

4 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.38)

Integrating equation (8.37) with respect to time t, from t = 0 to t = t, we get

N (t, f ) = N0(f ) + α1

[
β0t + β1

∫ t

0
Adt + β2

∫ t

0
A2dt + β3

∫ t

0
A3dt

]
, (8.39)

we show the calculation as follows∫ t

0
Adt =

∫ t

0

(
a0t + a1

t2

2
+ a2

t3

3
+ a3

t4

4

)
dt

= a0
t2

2
+ a1

t3

6
+ a2

t4

12
+ a3

t5

20

∫ t

0
A2dt =

∫ t

0

(
a0t + a1

t2

2
+ a2

t3

3
+ a3

t4

4

)2

dt

= a2
0t3

3
+ a0a1t4

4
+
(

a2
1

20
+ 2a0a2

15

)
t5

+
(a0a3

12
+ a1a2

18

)
t6 +

(
a1a3

28
+ a2

2

63

)
t7

× a2a3t8

48
+ a2

3t9

144
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∫ t

0
A3dt =

∫ t

0

(
a0t + a1

t2

2
+ a2

t3

3
+ a3

t4

4

)3

dt

= a3
0

t4

4
+ 3a2

0a1t5

10
+
(

a0a2
1

8
+ a2

0a2

6

)
t6

+
(

a3
1

56
+ 3a2

0a3

28
+ a0a1a2

7

)
t7

+
(

3a0a1a3

32
+ a2

1a2

32
+ a0a2

2

24

)
t8 (8.40)

+
(

a0a2a3

18
+ a1a2

2

54
+ a2

1a3

48

)
t9

+
(

3a0a2
3

160
+ a1a2a3

40
+ a3

2

270

)
t10

+
(

3a1a2
3

352
+ a2

2a3

132

)
t11 + a2a2

3

192
t12

+ a3
3

832
t13.

Similarly, we can write the integrals for N+(t, f ) and N−(t, f ) in the
following form

N+(t, f ) = N+0(f+)+α1

[
β0t + β1

∫ t

0
Adt + β2

∫ t

0
A2dt + β3

∫ t

0
A3dt

]
(8.41)

N−(t, f ) = N−0(f−)+α1

[
β0t + β1

∫ t

0
Adt + β2

∫ t

0
A2dt + β3

∫ t

0
A3dt

]
. (8.42)

Equations (8.39), (8.41), and (8.42) are the third approximate solutions and
are highly nonlinear in t, a polynomial of degree thirteen. The parameters defined
above are functions of N0, N+0, and N−0, i.e. they are a function of frequency f .

8.5 Adomian decomposition method

We have the following relationship from equations (8.16), (8.17), and (8.18) as

dN+
dt

=
(

α2

α1

)
dN

dt
(8.43)

dN−
dt

=
(

α3

α1

)
dN

dt
. (8.44)
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To determine the solution for N , integrating equations (8.43) and (8.44) with respect
to time from t = 0 to t = t, i.e.

∫ t

0

dN+
dt

dt =
(

α2

α1

)∫ t

0

dN

dt
dt (8.45)

∫ t

0

dN−
dt

dt =
(

α3

α1

)∫ t

0

dN

dt
dt, (8.46)

we obtain

N+ = α2

α1
N − C1 (8.47)

N− = α3

α1
N − C2 (8.48)

where

C1 = α2

α1
N0 − N+0 (8.49)

C2 = α3

α1
N0 − N−0. (8.50)

Substituting equations (8.47) and (8.48) into equation (8.16), we get

dN

dt
= AN 3(t, f ) + BN 2(t, f ) + CN (t, f ), (8.51)

where

A = (α2 + α3) − 2α2α3

α1
(8.52)

B = 2α3C1 + 2α2C2 − α1C3, C3 = C1 + C2 (8.53)

C = −2α1C1C2. (8.54)

Integrating equation (8.51) with respect to time from t = 0 to t = t, i.e.

∫ t

0

dN

dt
dt = A

∫ t

0
N 3(t, f )dt + B

∫ t

0
N 2(t, f )dt + C

∫ t

0
N (t, f )dt (8.55)

⇒ N (t, f ) − N (0, f ) = A
∫ t

0
N 3(t, f )dt + B

∫ t

0
N 2(t, f )dt + C

∫ t

0
N (t, f )dt

⇒ N (t, f ) = N (0, f )

+ A
∫ t

0
N 3(t, f )dt + B

∫ t

0
N 2(t, f )dt + C

∫ t

0
N (t, f )dt. (8.56)
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The above equation is in canonical form, where N (0, f ) is known.
Let us expand the N (t, f ) in the following manner

N (t, f ) =
∞∑

n=0

Nn = N0 + N1 + N2 + N3 + · · · . (8.57)

Substituting equation (8.57) into equation (8.56) we get

N0 + N1 + N2 + N3 + · · · = N (0, f )

+
[

A
∫ t

0
(N0 + N1 + N2 + N3 + · · · )3dt

+ B
∫ t

0
(N0 + N1 + N2 + N3 + · · · )2dt

+ C
∫ t

0
(N0 + N1 + N2 + N3 + · · · )dt

]
= N (0, f ) + A

[∫ t

0
N 3

0 dt +
∫ t

0
(3N 2

0 N1 + 3N 2
1 N0

+ N 3
1 )dt +

∫ t

0
(3N 2

0 N2 + 3N 2
2 N0 + 6N0N1N2

+ 3N 2
1 N2 + 3N 2

2 N1 + N 3
2 )dt +

∫ t

0
(3N 2

0 N3

+ 6N0N1N3 + 6N0N2N3 + 3N0N 2
3 + 3N 2

1 N3

+ 6N1N2N3 + 3N1N 2
3 + 3N 2

2 N3 + 3N2N 2
3

+ N 3
3 )dt + · · ·

]
+ B

[∫ t

0
N 2

0 dt

+
∫ t

0
(2N0N1 + N 2

1 )dt +
∫ t

0
(2N0N2 + 2N1N2

+ N 2
2 )dt +

∫ t

0
(2N0N3 + 2N1N3 + 2N2N3

+ N 2
3 )dt + · · ·

]
+ C

[∫ t

0
N0dt +

∫ t

0
N1dt

+
∫ t

0
N2dt +

∫ t

0
N3dt + · · ·

]
.

(8.58)

Comparing the terms of the left- and right-hand series sequentially, we have

N0 = N (0, f ) = α0. (8.59)

From the above known term we can find N1 as

N1 = A
∫ t

0
N 3

0 dt + B
∫ t

0
N 2

0 dt + C
∫ t

0
N0dt

= (AN 3
0 + BN 2

0 + CN0)t

= α1t where α1 = AN 3
0 + BN 2

0 + CN0. (8.60)
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Similarly,

N2 = A
∫ t

0
(3N 2

0 N1 + 3N 2
1 N0 + N 3

1 )dt

+ B
∫ t

0
(2N0N1 + N 2

1 )dt + C
∫ t

0
N1dt

= A
∫ t

0
(3α2

0α1t + 3α2
1α0t2 + α3

1t3)dt

+ B
∫ t

0
(2α0α1t + α2

1t2)dt + C
∫ t

0
α1tdt

= A

[
3

2
α2

0α1t2 + α2
1α0t3 + 1

4
α3

1t4
]

+ B

[
α0α1t2 + 1

3
α2

1t3
]

+ C

[
1

2
α1t2

]
=
[

1

4
Aα3

1

]
t4 +

[
Aα2

1α0 + 1

3
Bα2

1

]
t3

+
[

3

2
Aα2

0α1 + Bα0α1 + 1

2
Cα1

]
t2

= ξ1t4 + ξ2t3 + ξ3t2

(8.61)

ξ1 = 1

4
Aα3

1

ξ2 = Aα2
1α0 + 1

3
Bα2

1

ξ3 = 3

2
Aα2

0α1 + Bα0α1 + 1

2
Cα1

N3 = A
∫ t

0
(3N 2

0 N2 + 3N 2
2 N0 + 6N0N1N2

+ 3N 2
1 N2 + 3N 2

2 N1 + N 3
2 )dt + B

∫ t

0
(2N0N2

+ 2N1N2 + N 2
2 )dt + C

∫ t

0
N2dt

= A
∫ t

0

{
3α2

0(ξ1t4 + ξ2t3 + ξ3t2) + 3α0(ξ1t4 + ξ2t3 + ξ3t2)2

× 6α0α1t(ξ1t4 + ξ2t3 + ξ3t2) + 3α2
1t2(ξ1t4 + ξ2t3 + ξ3t2)

+ 3α1t(ξ1t4 + ξ2t3 + ξ3t2)2 + (ξ1t4 + ξ2t3 + ξ3t2)3
}

+ B
∫ t

0

{
2α0(ξ1t4 + ξ2t3 + ξ3t2) + 2α1t(ξ1t4 + ξ2t3 + ξ3t2)

+ (ξ1t4 + ξ2t3 + ξ3t2)2
}

dt + C
∫ t

0
(ξ1t4 + ξ2t3 + ξ3t2)dt.

(8.62)
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Expanding all the terms and arranging like terms we get

N3 = 1
13 Aξ3

1 t13 + 1
4 Aξ2

1ξ2t12 + 3
11 A(ξ1ξ

2
2 + ξ2

1ξ3)t11

+ { 3
10 Aα1ξ

2
1 + 1

10 A(6ξ1ξ2ξ3 + ξ3
2)
}

t10

+ { 1
3 Aα0ξ

2
1 + 2

3 Aα1ξ1ξ2 + 1
3 A(ξ1ξ

2
3 + ξ2

2ξ3)

+ 1
9 Bξ2

1

}
t9 + { 3

4 Aα0ξ1ξ2 + 3
8 Aα1(2ξ1ξ3 + ξ2

2)

+ 3
8 Aξ2ξ

2
3 + 1

4 Bξ1ξ2
}

t8 + { 3
7 Aα0(2ξ1ξ3 + ξ2

2)

+ 3
7 Aα2

1ξ1 + 6
7 Aα1ξ2ξ3 + 1

7 Aξ3
3

+ 1
7 B(2ξ1ξ3 + ξ2

2)
}

t7 + {
Aα0ξ2ξ3 + Aα0α1ξ1

+ 1
2 A(α2

1ξ2 + α1ξ
2
3) + 1

3 B(α1ξ1 + ξ2ξ3)
}

t6

+ { 3
5 A(α2

0ξ1 + α0ξ
2
3 + α2

1ξ3) + 6
5 Aα0α1ξ2

+ 2
5 B(α0ξ1 + α1ξ2) + 1

5 (Bξ2
3 + Cξ1)

}
t5

+ { 3
4 Aα2

0ξ2 + 3
2 Aα0α1ξ3 + 1

2 B(α0ξ2

+ α1ξ3) + C
4 ξ2

}
t4 + {

Aα2
0ξ3 + 2

3 Bα0ξ3 + 1
3 Cξ3

}
t3.

(8.63)

Thus, the approximate solution for N will be the sum of the above four terms
and is highly nonlinear in t

N = N0 + N1 + N2 + N3. (8.64)

8.6 Fourth-order Runge−Kutta method

In this section, we shall try to determine the solutions of equations (8.16), (8.17),
and (8.18) with their initial conditions [equation (8.20)]. The numerical scheme
that is required to solve the initial value problem will be discussed very briefly.
For a given set of initial conditions, we will try to solve these highly nonlinear
first-order ordinary differential equations. The scheme is as follows: Rewriting
equations (8.16), (8.17), and (8.18) in the functional form, we have

dN

dt
= f (t, N , N+, N−) (8.65)
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dN+
dt

= g(t, N , N+, N−) (8.66)

dN−
dt

= h(t, N , N+, N−), (8.67)

where

f = α1[N 2(N+ + N−) − 2NN+N−] (8.68)

g = α2[N 2(N+ + N−) − 2NN+N−] (8.69)

h = α3[N 2(N+ + N−) − 2NN+N−]. (8.70)

The fourth-order Runge−Kutta integration scheme implies the solution of the
(j + 1)th time step as

N j+1 = N j + 1
6 (k1 + 2k2 + 2k3 + k4) (8.71)

N j+1
+ = N j + 1

6 (l1 + 2l2 + 2l3 + l4) (8.72)

N j+1
− = N j + 1

6 (m1 + 2m2 + 2m3 + m4), (8.73)

where

k1 = (�t)f (t, N , N+, N−)

l1 = (�t)g(t, N , N+, N−)

m1 = (�t)h(t, N , N+, N−)

⎫⎪⎪⎬
⎪⎪⎭ (8.74)

k2 = (�t)f
(

t + �t
2 , N + k1

2 , N+ + l1
2 , N− + m1

2

)
l2 = (�t)g

(
t + �t

2 , N + k1
2 , N+ + l1

2 , N− + m1
2

)
m2 = (�t)h

(
t + �t

2 , N + k1
2 , N+ + l1

2 , N− + m1
2

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(8.75)

k3 = (�t)f
(

t + �t
2 , N + k2

2 , N+ + l2
2 , N− + m2

2

)
l3 = (�t)g

(
t + �t

2 , N + k2
2 , N+ + l2

2 , N− + m2
2

)
m3 = (�t)h

(
t + �t

2 , N + k2
2 , N+ + l2

2 , N− + m2
2

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(8.76)



MM-165 CH008.tex 2/5/2007 17: 14 Page 284

284 Integral Equations and their Applications

k4 = (�t)f (t + �t, N + k3, N+ + l3, N− + m3)

l4 = (�t)f (t + �t, N + k3, N+ + l3, N− + m3)

m4 = (�t)f (t + �t, N + k3, N+ + l3, N− + m3)

⎫⎪⎬
⎪⎭ . (8.77)

Equations (8.71) to (8.73) specify the action transfer in the air−sea momentum
exchange. Once the values of N , N+ and N− at the (j + 1)th time step have been
determined, the time derivative ( dN

dt ) can be obtained from the equation

(
dN

dt

)j+1

= α1[N 2(N+ + N−) − 2NN+N−] j+1. (8.78)

We shall carry out this numerical integration for the range from t = 0 to
t = 2000 s.

8.7 Results and discussion

We shall discuss our results in graphical form and compare the graphs obtained from
the numerical method with the analytical one. The initial conditions used in these
calculations are as follows: At t = 0, we use the JONSWAP spectrum as the initial
condition. The expression for this spectrum is given below (see Rahman [15, 17])

N (f ) = αg2 f −5

(2π)4 exp

{
−5

4

(
f

fp

)−4
}

γ
exp

{
− (f −fp)2

2τ2 f 2
p

}
, (8.79)

where α = 0.01, γ = 3.3, τ = 0.08, and fp = 0.3. Here, fp is called the peak fre-
quency of the JONSWAP spectrum. Similarly, the initial conditions for N+ N− are
the following:

N+(f+) = N ((1 + λ)f ) (8.80)

N−(f−) = N ((1 − λ)f ). (8.81)

The corresponding spreading of the directional spectrum (f , θ) was found to depend
primarily on f

fp

N ( f , θ) = β
2 N ( f )sech2β(θ − θ( f )), (8.82)

where θ is the mean direction

β =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2.61
(

f

fp

)1.3

for 0.56 <
f

fp
< 0.95

2.28
(

f

fp

)−1.3

for 0.95 <
f

fp
< 1.6

1.24 otherwise.

(8.83)
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The parameters involved in this problem for the one-dimensional deep ocean case
are given by

α1 = −2Cg−8f 19�k

α2 = Cg−8f 19�k+
α3 = Cg−8f 19�k−
C = 3 × 107

g = 9.8 m/s2,

in which

�k = 8π2f �f

g

�k+ = 8π2f (1 + λ)2�f

g

�k− = 8π2f (1 − λ)2�f

g
.

The frequency range is taken as f = 0.0 Hz to f = 2 Hz with step size of
�f = 0.001. The graphical results of the four methods by taking all the param-
eters stated above are presented in Figure 8.1. Figures 8.2 and 8.3 show the
plots between γ = 2 and γ = 4, respectively, keeping other parameters constant.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N

Frequency (Hz)

Picard
Bernoulli
Adomian
R-Kutta

Figure 8.1: Nonlinear transfer action function N ( f ) versus the frequency f using all the
parameters stated above.
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Figure 8.2: Nonlinear transfer action function N ( f ) versus the frequency f using γ = 2
keeping other parameters constant.
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Figure 8.3: Nonlinear transfer action function N ( f ) versus the frequency f using γ = 4
keeping other parameters constant.
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Figure 8.4: Nonlinear transfer action function N ( f ) versus the frequency f using
C = 3 × 102 keeping other parameters constant.

The plots in Figure 8.4 are obtained at C = 3 × 102, where for each case time is
taken as 2000 s. All the results show excellent agreement. To determine the net total
action transfer, Ntotal, we use the following formula:

Ntotal =
∫ 2π

θ=0

∫ ∞

f =0
N (f , θ) df dθ. (8.84)

But in a practical situation, the limit of the infinite integral takes the finite
values

Ntotal =
∫ 2π

θ=0

∫ 2

f =0
N (f , θ) df dθ. (8.85)

The upper limit of the f -integral is assumed to be 2 Hz, which seems to be a realistic
cutoff frequency instead of infinity, with the understanding that the contribution to
the integral from 2 to infinity is insignificant. The N (f ) at a certain time for different
frequencies is highly nonlinear. Thus, to plot Ntotal in the time scale, we first obtain
the values at different time scale and then graph these values against time. From the
analytical solution for N (f ) we can find the values for Ntotal using either Gaussian
quadrature or the 3

8 Simpson’s rule of integration. This analysis is valid only for
deep-water ocean.
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8.8 Green’s function method for waves

The application of Green’s function in calculation of flow characteristics around a
submerged sphere in regular waves is presented in this section. We assume that the
fluid is homogeneous, inviscid, and incompressible, and the fluid motion is irro-
tational and small. Two methods based on the boundary integral equation method
(BIEM) are applied to solve the associated problems. The first is the flat panel
method (FPM) using triangular flat patches to model the body and the second is
using the modified form of the Green’s function in order to make it nonsingular and
amenable to apply directly the Gaussian quadrature formulas.

8.8.1 Introduction

A combination of two independent classical problems should be considered in
order to find the hydrodynamic characteristics of motion of a body in time har-
monic waves. One is the radiation problem where the body undergoes prescribed
oscillatory motions in otherwise calm fluid, and the other is the diffraction problem
where the body is held fixed in the incident wave field and determines the influence
of it over the incident wave. These boundary value problems can be formulated
as two different types of integral equations. The so-called direct boundary integral
formulation function as a superposition of a single-layer and double-layer poten-
tials. Another is referred to as the indirect boundary integral formulation, which
represents an unknown function with the aid of a source distribution of Green’s
function with fictitious singularities of adjustable strength, Yang [25].

One of the most widely used BIEM is that of Hess and Smith [7], in which
the indirect method is used to solve the problem of potential flow without the
free surface effect. Hess and Smith [7] subdivided the body surface into n quadri-
lateral flat panels over which the source strength distribution was assumed to be
uniform. Webster [23] developed a method that can be regarded as an extension
of Hess and Smith’s method by using triangular patches over which the source
strength distribution is chosen to vary linearly across the patch and the panels are
submerged somewhat below the actual surface of the body. A modification of the
Hess and Smith [7] method that is devised by Landweber and Macagno [11]. The
method mainly differs in the treatment of the singularity of the kernel of the integral
equations and applying the Gaussian quadrature to obtain numerical solutions.

The application of Green’s function in calculating the flow characteristics around
a submerged sphere in regular waves is presented in this section. It is assumed that
the fluid is homogeneous, inviscid, and incompressible and the flow is irrotational.
Such a boundary value problem can be recast as integral equations via Green’s the-
orem. Therefore, the associated problems with the motion of submerged or floating
bodies in regular waves can be solved with BIEM. There are two approaches in
solving such a problem with BIEM: the Green function method (GFM) and the
Rankine source method (RSM). In the RSM, the fundamental solution is applied
and the whole flow boundaries (the body surface, the free surface, and the bottom
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Figure 8.5: Sketch of the problem geometry and coordinates definition.

surface) are discretized and the boundary conditions are imposed to find the solu-
tion. It has the advantages of: the influence matrix can be evaluated easily and it
can be extended to a nonlinear free surface conditions. In the GFM, a function is
found by considering all the boundary conditions except the body surface boundary
condition and then by imposing the body boundary condition to the discretize body
surface, the associated integral equations are solved numerically to find the velocity
potentials and the flow characteristics. The advantages of GFM in comparison with
the RSM are that the integral equations should only be solved around the surface
of the body and no restriction applied to the free surface to implement the radiation
condition.

The direct boundary integral formulation along with the GFM is applied to find
the hydrodynamic characteristics of the motion of a sphere in time harmonic waves
by two different methods. In the first method, the original form of the free-surface
Green’s function is used to find the solutions by modelling the body as a faceted
form of triangular patches. In the second method, the nonsingular form of the free
surface Green’s function along with the Gauss–Legendre quadrature formula are
applied to find the solutions for the associated problems.

8.8.2 Mathematical formulation

Two sets of coordinate systems were considered (see Figure 8.5). One is a right-
handed coordinate system fixed in the fluid with oz opposing the direction of gravity
and oxy lying in the undisturbed free surface. The other set is the spherical coordinate
system (r, θ, ψ) with the origin at the centre of sphere. The total velocity potential
may be written as

�(x, y, z, t) = �[φ(x, y, z)e−iωt], (8.86)
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where φ is the time-independent velocity potential. It can be decomposed in the
general case as

φ(x, y, z) =
6∑

j=1

ηjφj(x, y, z) + A(φI + φD), (8.87)

where ηj is the amplitude for each of the six degrees of freedom of the body
and φj is the time-independent velocity potential corresponding to each mode of
oscillation of the body of unit amplitude. Due to the geometrical symmetry of
the sphere, there are only three modes of oscillations responding to disturbance
from any given direction. These three modes of motion are surge, heave, and pitch
( j = 1, 3, 5) considering the incident wave propagates along the x-axis. φI is the
spatial incoming wave velocity potential with unit amplitude and φD is the spatial
wave diffraction velocity potential of unit amplitude. Based on the assumption of
linearized theory, the complex spatial part of the velocity potentials, φ, must satisfy

∇2φ = 0 for r ≥ r1, z ≤ 0 (8.88)

Kφ − ∂φ

∂z
= 0 at z = 0, (8.89)

∂φ/∂z = 0 for z → −∞ (8.90)

√
R

{
∂

∂R
− iK

}
φ = 0 for R → ∞ (8.91)

∂φj

∂n
= −iωnj j = 1, 3, 5 (8.92)

(
∂

∂n

)
(φI + φD) = 0, (8.93)

where K = ω2/g is called the wavenumber, R =√
x2 + y2, n the outward unit nor-

mal vector of the body surface to the fluid , n1 = sin θ cos ψ, n3 = cos θ, and
n5 = 0. Equations (8.92) and (8.93) are the kinematic boundary conditions on the
body surface of the sphere for the radiation and diffraction problems, respectively.

The other boundary conditions on the body are the equations of motion of the
body. It is supposed that the sphere is hydrostatically stable. This means that the
centre of mass of the sphere should be under its centre of volume. The forces and
moments acting on the body are the gravity force and the reaction of the fluid. The
forces and moments of the fluid on the body can be determined from the following
formulas: {

F

M

}
=
∫ ∫

S
P

{
n

r × n

}
dS. (8.94)
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The dynamic pressure P can be determined by applying the linearized Bernoulli’s
equation. It may be written as

P(x, y, z, t) = �[p(x, y, z)e−iωt] = −ρ
∂�

∂t
, (8.95)

where ρ is the fluid density and the spatial pressure, p, can be related to the spatial
velocity potential with p = iρωφ. We can express the equation of motion of a body
in waves by using indicial notations as

mijäj = −cijaj − ρ

∫ ∫
S
�tni dS, (8.96)

where mij are the mass matrix coefficients, aj the linear or angular displacements of
the body, aj = �[ηj(x, y, z)e−iωt], and cij the restoring force coefficient. Considering
equation (8.87), the �t may be written as:

�t(x, y, z, t) = �
⎧⎨
⎩−iω

⎡
⎣ 6∑

j=1

ηjφj(x, y, z) + A(φI + φD)

⎤
⎦ e−iωt

⎫⎬
⎭ . (8.97)

Taking into account equation (8.92), the integral in equation (8.96) for a
component of radiation velocity potential �j becomes

Iij = ρ

∫ ∫
S
�jt nidS = ρ�

[
ηje

−iωt
∫ ∫

S
φj

∂φi

∂n
dS

]
. (8.98)

The component of force and moments for radiation problem can be written in the
form of

Fi = �
⎧⎨
⎩

6∑
j=1

ηje
−iωt fij

⎫⎬
⎭ , (8.99)

where fij is a complex force coefficient,

fkj = ω2αkj − iωβkj = −iωρ

∫ ∫
S0

φj
∂φi

∂n
dS. (8.100)

αkj is the added mass coefficient and βkj the damping coefficient. For the sphere,
all the complex force coefficients are vanished due to the geometrical symmetry
except for the surge and heave motions.

The exciting forces and moments on a body can be obtained by integration of
the hydrodynamic pressure associated with the incident and diffraction velocity
potentials over its surface. If we consider �ID = �I + �D, and substitute it in the
last term of equation (8.96), the exciting forces and moments are obtained,{

Fei

Mei

}
= �

[
−iωρ

∫ ∫
S

(φI + φD)|S
{

ni

r × ni

}
dS

]
e−iωt . (8.101)
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Considering that Fei = �[feie−iωt] and equation (8.92), the complex exciting force
fei can be calculated by

fei = ρ

∫ ∫
S
φID|S ∂φi

∂n
dS. (8.102)

Taking into account equations (8.96), (8.99), and (8.101), the equations of motion
for a submerged sphere in a time harmonic wave are

⎧⎪⎨
⎪⎩

−ω2(M + α11)η1 − iωβ11η1 − ω2MZgη5 = fex for surge motion

−ω2(M + α33)η3 + iωβ33η3 = fez for heave motion

−ω2MZgη1 − ω2Mk2η5 + MgZgη5 = 0 for pitch motion ,

(8.103)

where η1, η3, and η5 are the surge, heave, and pitch amplitudes, M is the mass
of the sphere, Zg is the position of the centre of gravity with respect to the centre
of the sphere, α11 and α33 are added mass coefficients for surge and heave, β11
and β33 are the damping coefficients, fex and fez are the complex exciting forces
and k is the radius of gyration. The linear motions along the x direction (surge) and
rotational motion about y-axis (pitch) are coupled with each other but they are not
coupled with the linear motion along z-axis (heave) of the sphere.

8.8.3 Integral equations

The radiation and diffraction problems are subjected to the Laplace equation in
the fluid domain, linearized free-surface boundary condition, bottom condition
indicates that there is no flux through the bottom of the fluid, radiation condition at
infinity, and the Neumann condition at the mean position of the body. The potential
for a unit source at q(ξ, η, ζ) defines the Green function G. The Green function with
its first and second derivatives is continuous everywhere except at the point q. It
can be interpreted as the response of a system at a field point p(x, y, z) due to a delta
function input at the source point q(ξ, η, ζ). This solution can be applied with the
Green second theorem to derive the integral equation for the velocity potentials on
the surface of the body,

2πφ(p) +
∫ ∫

SB

φ(q)
∂G(p, q)

∂n(q)
dS =

∫ ∫
SB

G(p, q)
∂φ(q)

∂n(q)
dS. (8.104)

The free surface Green function that satisfies all boundary conditions except the
body boundary conditions is defined, Wehausen and Laitone [24], as

G = 1

r
+ 1

r′ + 2K P.V .

∫ ∞

0

1

k − K
ek(z+ξ)J0(kR)dk

− 2πikeK(z+ξ)J0(KR), (8.105)
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where

r =
√

(x − ξ)2 + (y − η)2 + (z − ζ)2

r′ =
√

(x − ξ)2 + (y − η)2 + (z + ζ)2

R =
√

(x − ξ)2 + (y − η)2. (8.106)

In the radiation problem, the velocity potential for each mode of motion of the body
can be obtained by solving the integral, equation (8.104) and imposing the body
surface boundary condition, i.e. equation (8.92).

In the diffraction problem, the scattering velocity potential, φD, can be cal-
culated with the integral equation (8.104), and then adding the incident velocity
potential to find the diffraction velocity potential, φID. The integral equation for φD

can be written

2πφD(p) +
∫ ∫

SB

φD(q)
∂G(p, q)

∂n(q)
dS =

∫ ∫
SB

G(p, q)
∂φD(q)

∂n(q)
dS. (8.107)

If the second Green’s theorem applied to the φI on the interior of the surface SB,
the integral equation is in the form of

−2πφI (p) +
∫ ∫

SB

φI (q)
∂G(p, q)

∂n(q)
dS =

∫ ∫
SB

G(p, q)
∂φI (q)

∂n(q)
dS. (8.108)

Combining equations (8.107) and (8.108) and considering the body surface
condition for the diffraction problem, equation (8.93), it follows that

4πφID(p) +
∫ ∫

SB

φ(q)
∂G(p, q)

∂n(q)
dS = 4πφI (p). (8.109)

Flat panel method

The integral equations (8.104) and (8.109) are discretized by subdividing the surface
of the sphere, SB, into N triangular panels, Sb. It is assumed that the distribution of
the velocity potential and its normal derivative are constant on each panel and equal
to their values at the panel centroid. The discretized formula for each component
of the radiation velocity potentials is

2πφi +
N∑

j=1

φj

∫ ∫
Sb

∂G

∂nq
dSb =

N∑
j=1

∂φj

∂nq

∫ ∫
Sb

G dSb, (8.110)
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and for the diffraction velocity potential is

4πφIDi +
N∑

j=1

φIDj

∫ ∫
Sb

∂G

∂nq
dsb = 4πφIi . (8.111)

The results are systems of N complex linear algebraic equations with N unknowns.
It is necessary to deal with a global coordinate system O1 − x1y1z1 fixed in the
body and a set of local coordinate systems, O − xyz for each triangular patch. It is
convenient to assume that the triangular panel lies in the x, y coordinate plane. The
system of linear algebraic equations may be presented in matrix form as

[A]{x} = {B}, (8.112)

where [A] is the coefficient matrix formed by the integration of the derivative
of Green’s function along the surface of each panel. {B} is a vector formed by
multiplication of the integration of the Green’s function along the surface of each
panel and the body surface boundary condition for the radiation problem. For the
diffraction problem its elements are Bi = 4πφIi . {x} is the unknown vector of velocity
potentials around the body. The main tasks are

a) finding the elements [A] and {B},
b) solving the system of complex linear algebraic equations.

The Green’s function consists of Rankine singularities, its image, and wave parts
due to the free surface condition and the radiation condition. The parts of Aij and
Bij concerned with the Rankine singularity and its image may be computed by
transferring the surface integral to the line integral using Green’s lemma. These
parts of the Aij and Bij due to the wave are calculated for the centroid of the panel
and assumed to be constant on each panel. For the accurate evaluation of the wave
part of the Green’s function and its gradient, see Refs. [3], [13], [15] and [21].

Nonsingular method

The Green’s function may be written in the form of G(p, q) = 1
r + H (p, q), where the

term 1
r is the singular part and H (p, q) is the harmonic part of it. The type of singu-

larity of the 1
r and its derivative are of the weak singularity. This type of singularity

can be removed by adding and subtracting a proper function from the integrand
so that the kernel becomes nonsingular. The method proposed by Landweber and
Macagno [11] for the calculation of the potential flow about ship forms are pre-
sented as such an idea. The treatment of singularity in such a way will result in a
regularized formulation of BIEM. These nonsingular forms of integral equations
can be solved numerically by applying the standard quadrature formulas directly
without the conventional boundary element approximation. It can be written by
introducing the Gauss’s flux theorem that∫ ∫

SB

∂

∂nq

(
1

r

)
dSq = −2π, (8.113)
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and defined such a source distribution, σ(q), that make the body equipotential of
potential φe. ∫

SB

σ(q)
1

r
dSq = φe. (8.114)

Considering equations (8.113) and (8.114), the integral equations yield the
form of

4πφj(p) +
∫ ∫

SB

[φj(q) − φj(p)]
∂

∂nq

(
1

r

)
dSq +

∫ ∫
SB

φj(q)
∂H (p, q)

∂nq
dSq

=
∫ ∫

SB

[
∂φj(q)

∂nq
− ∂φj(p)

∂np

σ(q)

σ(p)

]
1

r
dSq

+
∫ ∫

SB

H (p, q)
∂φj(q)

∂nq
dSq − φe

σ(p)

∂φj(p)

∂np
(8.115)

4πφID(p) +
∫ ∫

SB

[φID(q) − φID(p)]
∂

∂nq

(
1

r

)
dSq

+
∫ ∫

SB

φID(q)
∂H (p, q)

∂nq
dSq = 4πφI (p). (8.116)

The source distribution, σ(q) can be calculated through the iterative formula

σk+1
p = σk

p +
∫ ∫

SB

(
σk

q
∂

∂np

(
1

r

)
− σk

q
∂

∂nq

(
1

r

))
dSq, (8.117)

and since φe is constant in the interior of an equipotential surface, its value may
conveniently be computed by locating point p at the origin. For more explanation
of the method, see Ref. [9],

φe =
∫ ∫

SB

σq

(x2 + y2 + z2)1/2 dSq (8.118)

The solution of the radiation and the diffraction velocity potentials with this method
are obtained by discretizing the integral equations (8.115) and (8.116) and the
relations (8.117) and (8.118) by applying the Gaussian quadrature. The source
distribution, σ(q), to make the body equipotential and φe may be calculated through
the discretized formulas

σ
(k+1)
i = σ

(k)
i − 1

2π

N∑
j=1, j �=i

(
σ

(k)
j

rij.ni

r3
ij

+ σ
(k)
i

rij.nj

r3
ij

)
�sjωj

φe =
N∑

j=1

σj(x2
j + y2

j + z2
j )−

1
2 �sjωj , (8.119)
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where �sj is a scale factor with respect to the integration parameters, ωj the
weighting function for the Gauss–Legendre formula, and N the number of Gaus-
sian quadrature points. The discretized equations for the radiation and diffraction
problems are linear systems with N unknowns of velocity potentials. They can be
represented in the matrix form as equation (8.112). The coefficient matrix and also
the body surface boundary conditions are dependent on the geometry of the body.
If the exact expression for the geometry can be used in the numerical computation
the accuracy of the results will be highly improved. This is one of the most import-
ant features, using the exact geometry, of the nonsingular method in treating the
integral equations. The elements of the coefficient matrix, [A], are

Aii = 4π +
N∑

j=1, j �=i

rij · nj

r3
ij

�sjωj + ∂Hii

∂ni
�siωi

Aij =
(

−rij.nj

r3
ij

+ ∂Hij

∂nj

)
�sjωj. (8.120)

The elements of {B} for the diffraction problem are Bi = 4πφIi . For the radiation
problem,

{B} = [C]
{

∂φ

∂n

}
, (8.121)

where the elements of the matrix [C] are

Cii = Hii�siωi − φe

σi
−

N∑
j=1, j �=i

σj

σi

1

rij
�sjωj

Cij =
(

1

rij
+ Hij

)
�sjωj. (8.122)

8.8.4 Results and discussion

The results of calculation for nondimensional added mass, µij = αij
( 4

3ρπr3
1

)−1
,

and nondimensional damping coefficient, λij = αij
( 4

3ρωπr3
1

)−1
, for the surge and

heave motions of a sphere are shown in Figures 8.6 to 8.9 as a function of Kr1
for h

r1
= 1.5. The solid lines are the analytical solutions derived by the method of

multipole expansion by Rahman [17].
The calculations by FPM were performed by subdividing the surface of the

sphere into 512, 1024, and 3200 triangular panels. The figures show that it is nec-
essary to have a large number of elements to find accurate solutions. This is a
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Figure 8.6: Surge added mass calculated with different methods in h/r1 = 1.5.
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Figure 8.7: Heave added mass calculated with different methods in h/r1 = 1.5.

drawback of the FPM. The solutions with the nonsingular method were computed
by distributing of 16 × 32 Gauss–Legendre quadrature points at the surface of the
sphere. The comparison of the results with this method and with the analytical
results obtained by Rahman [16] show that the differences between them are at the
fourth decimal point. This shows that the nonsingular method with much less dis-
cretization gives better results that the FPM. This is due to using the exact geometry
in the calculation of the hydrodynamic characteristics of the flow.
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Figure 8.8: Surge damping coefficients calculated with different methods in h/r1 = 1.5.
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Figure 8.9: Heave damping coefficients calculated with different methods in h/r1 = 1.5.

The relative error for the added mass in surge and heave motion are calculated
and shown in Figures 8.10 and 8.11. The relative error is defined as

Relative error = |numerical result − analytical result|
analytical result

(8.123)

These figures also demonstrate the accuracy of the nonsingular method.
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Figure 8.10: Relative error for surge added mass in h/r1 = 1.5.
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Figure 8.11: Relative error for heave added mass in h/r1 = 1.5.

8.9 Seismic response of dams

In this section, we investigate an analytical solution of the seismic response of
dams in one-dimension. In a real-life situation, the seismic problem is of three-
dimensional nature. However, for an idealized situation, we can approximate the
problem to study in one-dimension. The results obtained in this section should be
treated as preliminary to obtain the prior information of the real problem.

8.9.1 Introduction

In order to analyze the safety and stability of an earth dam during an earthquake,
we need to know the response of the dam to earthquake ground motion so that the
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inertia forces that will be generated in the dam by the earthquake can be derived.
Once the inertia forces are known, the safety and the stability of the structure can
be determined. A geometrical configuration of a dam is sketched in Figure 8.12.

The inertia forces generated during an earthquake will depend on

i) The geometry of the dam
ii) The material properties

iii) The earthquake time history

The reality of the problem is that an earth dam is a three-dimensional structure,
usually multizoned with variable properties in each zone. The material properties are
nonlinear inelastic and the earthquake time history is a time-varying phenomenon.
The problem is, therefore, very complex and a proper solution requires the use of a
finite element program, which can deal with nonlinear inelastic material properties.
The earthquake is the travelling-wave phenomenon, which arrives at the base of the
dam through the foundation rock. Since the foundation is not rigid, part of the
energy, which vibrates the dam, is lost through the foundation causing radiation
damping. The analytical solution to such a problem is not at all possible. However, it
is often necessary to have approximate solutions that can be used to understand the
behaviour of the dam during earthquakes. In order to make the problem amenable to
analytical solution, some approximations are made to create a mathematical model.
Such a model in this case is known as the shear beam model (SB) of earth dams.
There are several such solutions that differ in their approximations to the problem.

8.9.2 Mathematical formulation

The first set of approximations refers to the geometry of the dam.

Assumptions:

• The length of the dam is large compared to height. In this case, the presence of
the abutments will not be felt except near the ends (L > 4H ). This removes the
third dimension and deals with the dam cross-section only.

• Slopes of the dam are fairly flat and the section is symmetrical about the z-axis.
• Amount of oscillations due to bending is small. The shear strain and shear stress

along a horizontal line is the same everywhere and is equal to the average at
the corresponding level. Therefore, subjected to horizontal loading in shear, the
response is assumed to be in shear only.

• The wedge is rigidly connected to the base. The rigidity of the foundation material
is much greater than that of the dam.

• The base is acted upon by an arbitrary disturbance given by the displacement
function a(t) in the horizontal direction only. With the above assumptions, only
the z dimension and the shear stress is pertinent. Therefore, it is called one-
dimension shear-beam analysis.



MM-165 CH008.tex 2/5/2007 17: 14 Page 301

Applications 301

• As regards the material properties, the material in the wedge is assumed to be
viscoelastic.

For homogeneous material properties with constant shear modulus, the solution
is readily available, see Refs. [1], [2], [19], and [20]. For nonhomogeneous shear
modulus for the material, when the modulus varies with the level, an analytical
solution is given by Dakoulas and Gazetas [4]. However, the solution as given in
the paper appears to have some drawbacks. The error may simply be in printing the
equation in the paper or it may be a genuine error. The solution for the radiation
damping is not clearly explained in their paper. Our aim in this section is to solve
the equations using a different technique from that used by Dakoulas and Gazetas
and check their solution.

Dakoulas and Gazetas used the nonhomogeneous model for material properties
in which the shear modulus is a function of the level z. This gives:

G(z) = Gb(z/H )m, (8.124)

where

Gb = shear modulus at the base of the dam, and

m = a parameter of the model.

It is generally assumed that m = 0.5 but experimental data suggests that m can vary
considerably. It is to be noted that in a dam the depth of material at a given level
varies and the above equation generally relates to a constant overburden pressure
corresponding to the level z as in a soil layer. Dakoulas and Gazetas provide a
detailed examination and verification of the model.

In a viscoelastic material, the shear stress τ relates to the shear strain and the
strain rate by the following:

τ = G(z)
[
∂u

∂z
+ η

∂u̇

∂z

]
. (8.125)

In this expression, the displacement u(z, t) is measured relative to the base at z = H .
Therefore, referring to Figure 8.12, the shear force Q at the depth z is

Q = 2Bzτ.

Hence, considering an elemental slice of width dz, the net force acting on the
element is dQ and therefore the net force must equal the inertia force on the element.
Thus, considering the equilibrium of the element

2Bzdzρ(ü + ä) =
{

2Bz
∂

∂z

[
G(z)

(
∂u

∂z
+ η

∂u̇

∂z

)]
+ 2B

[
G(z)

(
∂u

∂z
+ η

∂u̇

∂z

)]}
dz

or ρ(ü + ä) = ∂

∂z

[
G(z)

(
∂u

∂z
+ η

∂u̇

∂z

)]
+ 1

z

[
G(z)

(
∂u

∂z
+ η

∂u̇

∂z

)]
. (8.126)
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Figure 8.12: Dam cross-section and distribution of shear modulus with depth.

In the above equation, ü + ä represents the absolute acceleration, where ä is the
base acceleration. In earthquake engineering, the acceleration is the basic data and
not the displacements. Using equation (8.126) and noting that Gb/ρ = C2

b where
Cb is the shear wave velocity at the base level, we obtain

(ü + ä) = C2
b

( z

H

)m
[(

∂2u

∂z2 + η
∂2u̇

∂z2

)
+
(

m + 1

z

)(
∂u

∂z
+ η

∂u̇

∂z

)]
. (8.127)

The boundary conditions are u = 0 at z = H , the dam is rigidly connected
to the base, and τ = 0 at z = h, the top surface is stress free. This condition is
derived from the shear beam model of the dam. The initial conditions are at rest,
i.e. u = u̇ = 0 at t = 0 for all h ≤ z ≤ H .

8.9.3 Solution

This initial boundary value problem can easily be solved by using the Laplace trans-
form method. The definition of the Laplace transform is available in any standard
engineering textbook. And here we cite the definition for ready reference only (see
Rahman [18])

L{u(z, t)} =
∫ ∞

0
u(z, t)e−stdt = u(z, s),

and its inverse is given by

u(z, t) = 1

2πi

∫ γ+i∞

γ−i∞
u(z, s)estds.

Applying the Laplace transform to equation (8.127), we obtain

s2u + a = C2
b (1 + ηs)

( z

H

)m
[
∂2u

∂z2 +
(

m + 1

z

)
∂u

∂z

]
(8.128)
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where s is the Laplace parameter and

u = L(u) and a = L(ä), (8.129)

in which L() represents Laplace operation on ().
Changing the dependent variable u to U where

U = zm/2u (8.130)

and k = sH m/2

Cb
√

1 + ηs
, (8.131)

leads to

zm/2−2
[

z2 ∂2U

∂z2 + z
dU

dz
−
(

m2

4
+ k2z2−m

)
U

]
= ak2

s2 . (8.132)

The complementary function is obtained from the solution of

z2 ∂2U

∂z2 + z
dU

dz
−
(

m2

4
+ k2z2−m

)
U = 0. (8.133)

Changing the independent variable z to µ where

µ = 2k/(2 − m)z1−m/2 (8.134)

leads to

µ2 ∂2U

∂µ2 + µ
dU

dµ
− (µ2 + q2)U = 0, (8.135)

where

q = m/(2 − m), (8.136)

and therefore

µ = k(1 + q)z1−m/2. (8.137)

The solution is, therefore,

U = AIq(µ) + BKq(µ). (8.138)

The particular integral is

u = − a

s2 , (8.139)

and therefore the complete solution is

u = z−m/2[AIq(µ) + BKq(µ)] − a

s2 (8.140)
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τ = C2
b (1 + ηs)ρ

∂u

∂z

= C2
b (1 + ηs)ρ{[z−m(AI ′

q(µ) + BK ′
q(µ))]k(1 + q)(1 − m/2)

− m

2
z−1−m/2(AIq(µ) + BKq(µ))}. (8.141)

Note that:

I ′
q(µ) = Iq+1(µ) + q

µq
(µ) and K ′

q(µ) = −Kq+1(µ) + q
µ

Kq(µ). (8.142)

Applying the two boundary conditions, i.e. at z = h, τ = 0 gives

AIq+1(µh) − BKq+1(µh) = 0 (8.143)

and at z = H , u = 0 gives

H−m/2(AIq(µH ) + BKq(µH )) = a

s2 . (8.144)

Therefore, solving for A and B from equations (8.143) and (8.144) and replacing
in equation (8.140), the solution becomes

u = a

s2

[( z

H

)−m/2 [Kq+1(µh)Iq(µ) + Iq+1(µh)Kq(µ)]

[Kq+1(µh)Iq(µH ) + Iq+1(µh)Kq(µH )]
− 1

]
, (8.145)

where µh = k(1 + q)h1−m/2 and µH = k(1 + q)H 1−m/2. The solution u will be
obtained from the Laplace inversion of equation (8.145). Equation (8.145) can be
written as

u = aF(z, s). (8.146)

From equation (8.129),

L−1(a) = ä(t).

If

L−1(F) = f (z, t), (8.147)

then using the convolution integral,

u =
∫ t

0
ä(τ) f {(t − τ), z}dτ. (8.148)
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The problem is to solve equation (8.147) to obtain f (z, t).

F = 1

s2

[( z

H

)−m/2 [Kq+1(µh)Iq(µ) + Iq+1(µh)Kq(µ)]

[Kq+1(µh)Iq(µH ) + Iq+1(µh)Kq(µH )]
− 1

]
. (8.149)

The inverse of the transform can be obtained by using the residue calculus

f (z, t) = L−1{F(z, s)}

= 1

2πi

∫ γ+i∞

γ−i∞
F(z, s)estds

=
∑

Residues at the poles of F(z, s)est .

It can be easily noted that s = 0 is a double pole. The other poles can be determined
from the roots of the following equation

Kq+1(µh)Iq(µH ) + Iq+1(µh)Kq(µH ) = 0. (8.150)

First, we determined the residue at the double pole s = 0, which is found to be
R0 = t. Next the residues corresponding to the single poles

Rn = Q(ωn)

ωnP(ωn)
(ieiωnt)

and R∗
n = Q(ωn)

ωnP(ωn)
(ie−iωnt). (8.151)

Therefore, the total residues are

Rn + R∗
n = Q(ωn)

ωnP(ωn)
[i(eiωnt − e−iωnt]

= −2
Q(ωn)

P(ωn)

(
sin ωnt

ωnt

)
. (8.152)

Detailed calculations of the residues can be found in the work of Rahman [22].
The solution for f (z, t) can be written as

f (z, t) = −2{z/H }−m/2
∞∑

n=1

Q(ωn) sin (ωnt)

P(ωn)ωn
, (8.153)

where

Q(ωn) = Jq(aξ1−m/2)Yq+1(aλ1−m/2) − Yq(aξ1−m/2)Jq+1(aλ1−m/2)

P(ωn) = aλ1−m/2{Jq(aλ1−m/2)Yq(a) − Yq(aλ1−m/2)Jq(a)}
−a{Jq+1(a)Yq+1(aλ1−m/2) − Yq+1(a)Jq+1(aλ1−m/2)}, (8.154)
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and the characteristic equation is

Jq+1(aλ1−m/2)Yq(a) − Jq(a)Yq+1(aλ1−m/2) = 0, (8.155)

in which ξ = z/H , a = ωnH
Cb

(1 + q), and λ = h/H . Once we know the time history
of the earthquake, we can obtain the complete solution by the convolution integral
equation (8.148).

8.10 Transverse oscillations of a bar

The transverse oscillations in a bar is a technically important problem. This prob-
lem can be studied under very general conditions by considering the influence
function G(x, t). This influence function is usually called the Green’s function.
Mathematically, we define it as a kernel of the problem.

Let us suppose that, in its state of rest, the axis of the bar coincides with
the segment (0, �) of the x-axis and that the deflection parallel to the z-axis of a
point of x at time t is z(x, t) (see Figure 8.13). This is governed by the following
integro-differential equation

z(x, t) =
∫ �

0
G(x, η)

[
p(η) − µ(η)

∂2z

∂t2

]
dη, (0 ≤ x ≤ �), (8.156)

where p(η)dη is the load acting on the portion (η, η + dη) of the bar in the direction
of Oz, and µ(η)dη the mass of the portion.

In particular, in the important case of harmonic vibrations

z(x, t) = Z(x)eiωt (8.157)

of an unloaded bar (p(η) = 0), we obtain

Z(x) = ω2
∫ �

0
G(x, η)µ(η)Z(η)dη, (8.158)

which is the homogeneous integral equation. Equation (8.158) shows that our vibra-
tion problem belongs properly to the theory of Fredholm integral equations. In some
cases it is possible to obtain quite precise results, even by means of the more ele-
mentary theory of Volterra integral equations. For instance, this happens in the

Figure 8.13: Transverse oscillations of a bar.
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case of uniform bar µ(x) = µ = constant clamped at the end x = 0 and free at the
end x = �. Its transverse oscillations are governed by the partial differential equation

∂4z

∂x4 + µ

j

∂2z

∂t2 = 0 (8.159)

where j = EI is the constant bending rigidity of the bar, together with

z(0, t) = ∂z

∂x
(0, t) = 0

∂2z

∂x2 (�, t) = ∂3z

∂x3 (�, t) = 0 (8.160)

as conditions on the ends. If use is made of the previous statement, i.e. equation
(8.157), we obtain for the transverse harmonic vibrations of frequency

ν = ω

2π
(8.161)

the ordinary differential equation

d4Z

dx4 − k4Z = 0 with k4 = 4π2ν2 µ

j
(8.162)

together with the end conditions

Z(0) = Z ′(0) = 0

Z ′′(�) = Z ′′′(�) = 0. (8.163)

Neglecting momentarily the second condition of equation (8.163) at x = �, equation
(8.162) together with the condition of equation (8.163) at x = 0, can be transformed
into a Volterra integral equation of the second kind by integrating successively. In
this way, if we put Z ′′(0) = c2, Z ′′′(0) = c3 we obtain the equation

φ(x) = k4
∫ x

0

(x − t)3

3! φ(t)dt + k4
(

c2
x2

2! + c3
x3

3!
)

(8.164)

Hence we obtain an equation with special kernel. Now to evaluate the function
φ(x), we use the Laplace transform method. Thus, taking the Laplace transform of
both side of equation (8.164) and after a little reduction yields

L{φ(x)} = k4
{

c2

(
s

s4 − k4

)
+ c3

(
1

s4 − k4

)}

= k4
{

c2s

2k2

[
1

s2 − k2 − 1

s2 + k2

]
+ c3

2k2

[
1

s2 − k2 − 1

s2 + k2

]}



MM-165 CH008.tex 2/5/2007 17: 14 Page 308

308 Integral Equations and their Applications

The Laplace inverse of the above transform yields

φ(x) = c2k2

2
(cosh kx − cos kx) + c3k

2
(sinh kx − sin kx)

= α (cosh kx − cos kx) + β (sinh kx − sin kx) (8.165)

where α and β are the two redefined constants. It is interesting to note that solving the
fourth-order differential equation (8.162) we obtain the same solution, i.e. equation
(8.165). Now satisfying the other two conditions at x = �, we obtain two equations
to determine the constants α and β. And they are

α (cosh k� + cos k�) + β (sinh k� + sin k�) = 0

α (sinh k� − sin k�) + β (cosh k� + cos k�) = 0

Thus, if the determinant of the coefficients is different from zero, the unique solution
of this system is α = β = 0, and the corresponding solution of the given equation is
the trivial one

φ(x) = Z(x) = 0;

but if the determinant vanishes, then there are also nontrivial solutions to our
problem. This shows that the only possible harmonic vibrations of our bar are those
which correspond to the positive roots of the transcendental equation

sinh2 (k�) − sin2 (k�) = [ cosh (k�) + cos (k�)]2,

that is, after a little reduction,

cosh ξ cos ξ + 1 = 0 (8.166)

where

ξ = k� (8.167)

This transcendental equation can be solved graphically (see Figure 8.14) by means
of the intersection of the two curves

η = cos ξ and η = − 1

cosh ξ
.

From the graphical solution, we find explicitly the successive positive roots
ξ1, ξ2 . . . of equation (8.166) as

ξ1 = 1.875106, ξ2 = 4.6941, . . . .
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Figure 8.14: Graphical solution of equation (8.166).

By means of equation (8.167) and the second equation of equation (8.162), we
obtain the corresponding natural frequencies of our bar

νn = 1

2π

√(
j

µ

)
ξ2

n

�2 (n = 1, 2, 3, . . . ) (8.168)

Contrary to what happens in the case of a vibrating string, these frequencies are not
successive multiples of the first and are inversely proportional to the square of �,
instead of � itself. In spite of the thoroughness of the previous results, its interest
from the point of view of the theory of integral equations is not great because the
key formula, i.e. equation (8.165) for φ(x) (or the equivalent one for Z(x)) can
also be obtained directly (and more rapidly) from the linear equation with constant
coefficients, i.e. equation (8.162).

From the point of view of the theory of integral equations, it is more interesting
that from the integral equation (8.164) itself we can deduce a good approximation
for the first eigenvalue

k4
1 =

(
ξ1

�

)4

= 12.362

�4 ,

because the same device can be used even if the integral equation is not explicitly
solvable.

8.11 Flow of heat in a metal bar

In this section, we shall consider a classical problem of heat flow in a bar to
demonstrate the application of integral equations. The unsteady flow of heat in
one-dimensional medium is well-known. The governing partial differential equation
with its boundary and initial conditions are given below.

∂T

∂t
= α

∂2T

∂x2 − qT , (8.169)
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the boundary conditions are

T (0, t) = T (�, t)

∂T

∂x
(0, t) = ∂T

∂x
(�, t) (8.170)

and the initial condition is

T (x, 0) = f (x). (8.171)

where T (x, t) is the temperature at any time and at any position of the bar, α

the thermal diffusivity, q the heat loss through the bar, x = 0 the left-hand side
of the bar and x = � the right-hand side of the bar, and � the length of the bar. t is
the time.

This problem can be solved by using the separation of variable method. There
are two ways to select the separation constant, and this constant will later on turn
out to be the eigenvalue of the problem with the eigenfunction as the solution. Our
aim is to find a kernel of the ordinary differential equation which will represent the
Green’s function or simply the influence function of the problem.

Solution of the problem

Let us consider the product solution in the following manner (see Rahman [15, 16])

T (x, t) = u(x)φ(t) (8.172)

Using this product solution into the equations, we obtain from equation (8.169)

φ′(t)
αφ(t)

= u′′(x)

u(x)
− h2 = −λ (8.173)

where q
α

= h2, and λ is a separation constant. The two ordinary differential equations
can be written as

d2u

dx2 + (λ − h2)u = 0 (8.174)

dφ

dt
+ αλφ = 0 (8.175)

The separation constant (λ > 0) is assumed to be positive to obtain an exponentially
decaying time solution for φ(t). The boundary conditions are

u(0) = u(�); u′(0) = u′(�) (8.176)
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There are three cases to investigate:

Case I

Let us consider λ − h2 = ν2 = 0, that means λ = h2. Here, ν is a real number. Thus,
ν2 is a positive real number.

The general solutions of equations (8.174) and (8.175) are given by

u(x) = A + Bx

φ(t) = Ce−αh2t (8.177)

The boundary conditions, i.e. equation (8.176) yields that

u(x) = A (8.178)

Thus, the temperature solution is

T0(x) = ACe−αh2t = A0e−αh2t . (8.179)

where A0 is a redefined constant.

Case II

Let us consider λ − h2 = ν2 > 0. The general solutions of equation (8.174) and
(8.175) are given by

u(x) = A cos νx + B sin νx

φ(t) = Ce−αλt (8.180)

The boundary conditions, i.e. equation (8.176) give the following two equations for
the determination of A and B.

A(1 − cos ν�) − B sin ν� = 0

A sin ν� + B(1 − cos ν�) = 0 (8.181)

These two equations are compatible for values of A, B both not zero, if and only if∣∣∣∣∣ 1 − cos ν� − sin ν�

sin ν� 1 − cos ν�

∣∣∣∣∣ = 0.

That is, if 2(1 − cos ν�) = 0, which implies that

ν = 2nπ

�
.
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For these values of ν, equation (8.180) is satisfied by all values of A and B. For
other values of ν, the only solution is the trivial one u(x) = 0. The eigenvalues are
then

λn = h2 + 4n2π2

�2 , n = 1, 2, 3, . . . .

Hence eigenfunction solutions are

un(x) = An cos
2nπx

�
+ Bn sin

2nπx

�
.

The φ(t) solution is

φ(t) = Ce−α(h2+ 4n2π2

�2 )t
.

Hence the temperature solution is

Tn(x, t) =
[

An cos
2nπx

�
+ Bn sin

2nπx

�

] [
Ce−α(h2+ 4n2π2

�2 )t
]

, (n = 1, 2, . . . )

=
[

An cos
2nπx

�
+ Bn sin

2nπx

�

] [
e−α(h2+ 4n2π2

�2 )t
]

, (n = 1, 2, . . . ).

(8.182)

Here, the constant C is merged with An and Bn. The complete solution up to this
point can be written as

T (x, t) =
∞∑

n=0

Tn(x, t)

=
∞∑

n=0

[
An cos

2nπx

�
+ Bn sin

2nπx

�

] [
e−α(h2+ 4n2π2

�2 )t
]

, (n = 1, 2, . . . ).

(8.183)

Case III

Let us consider λ − h2 = −ν2 < 0. The general solutions of equations (8.174) and
(8.175) are given by

u(x) = A cosh νx + B sinh νx

φ(t) = Ce−αλt (8.184)

The boundary conditions, i.e. equation (8.176) give the following two equations for
the determination of A and B.

A(1 − cosh ν�) + B sinh ν� = 0

−A sinh ν� + B(1 − cosh ν�) = 0 (8.185)
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These two equations are compatible for values of A, B both not zero, if and only if∣∣∣∣∣ 1 − cosh ν� sinh ν�

− sinh ν� 1 − cosh ν�

∣∣∣∣∣ = 0.

That is, if cosh ν�(1 − cosh ν�) = 0, which implies that either cosh ν� = 0 or
cosh ν� = 1. For real ν the first condition cannot be satisfied, and the second con-
dition can be satisfied only when ν = 0. However, ν = 0 is considered already in
case (I). Thus, only possibility is that both A and B must vanish implying that
the solution is a trivial one u(x) = 0. The eigenvalues of the problem are then
λn = h2 + 4n2π2

�2 , n = 0, 1, 2, . . . with normalized eigenfunctions

1√
�

,

√
2

�
cos

2nπx

�
,

√
2

�
sin

2nπx

�
, · · · ,

and since
∫ �

0 cos 2nπx
�

sin 2nπx
�

dx = 0, the complete normalized orthogonal
system is

1√
�

,

√
2

�
cos

2nπx

�
,

√
2

�
sin

2nπx

�
, · · · ,

with the eigenvalues λn = h2 + 4n2π2

�2 , n = 0, 1, 2, . . . .
Thus, the complete solution of the problem is to satisfy the initial condition

T (x, 0) = f (x). Therefore, using this condition, we obtain

f (x) =
∞∑

n=0

(
An cos

2nπx

�
+ Bn sin

2nπx

�

)
(8.186)

which is a Fourier series with Fourier coefficients An and Bn. These coefficients are
determined as follows:

An = 2

�

∫ �

0
f (x) cos

2nπx

�
dx

Bn = 2

�

∫ �

0
f (x) sin

2nπx

�
dx

A0 = 1

�

∫ �

0
f (x)dx.

Equivalence with the integral equation

The ordinary differential equation is

u′′(x) + (λ − h2)u = 0
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and so the Green’s function must satisfy the equation

Kxx − h2K = −δ(x − η).

The boundary conditions for the Green’s function are

K(0) = K(�);

Kx(0) = Kx(�);

K(η − 0) = K(η + 0);

Kx(η − 0) − Kx(η + 0) = 1.

The solution is written as

K(x, η) =
{

A cosh (hx) + B sinh (hx), 0 ≤ x ≤ η

C cosh (hx) + D sinh (hx), η ≤ x ≤ �
(8.187)

Applying the first two boundary conditions we obtain

K(x, η) =
{

C cosh (hx + �h) + D sinh (hx + �h), 0 ≤ x ≤ η

C cosh (hx) + D sinh (hx), η ≤ x ≤ �
(8.188)

Using the continuity condition at x = η (the third boundary condition), the
constants C and D can be determined as

C = γ (sinh (ηh) − sinh (ηh + �h))

D = γ (cosh (ηh + �h) − cosh (ηh))

Substituting the values of C and D in equation (8.188) and after simplifications we
obtain the Green’s function as

K(x, η) =
{

γ (sinh (ηh − hx − �h) − sinh (ηh − hx)), 0 ≤ x ≤ η

γ (sinh (xh − ηh − �h) − sinh (xh − ηh)), η ≤ x ≤ �

Next using the jump discontinuity condition (the fourth boundary condition) we
find that the value of γ is simply

γ = 1

2h(1 − cosh (�h))
.

Hence inserting the value of γ in the above equation and after some reduction, we
can construct the Green’s function as follows:

K(x, η) =

⎧⎪⎨
⎪⎩

cosh h(η−x− �
2 )

2h sinh h�
2

, 0 ≤ x ≤ η

cosh h(x−η− �
2 )

2h sinh h�
2

, η ≤ x ≤ �
(8.189)
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and the boundary value problem is equivalent to the integral equation

u(x) = λ

∫ �

0
K(x, η)u(η)dη. (8.190)

It is worth mentioning here that this integral equation (8.190) will be very hard
to solve. It is advisable, therefore, that the boundary value problem in differential
equation form will be much easier to obtain the solution of this complicated heat
transfer problem.

8.12 Exercises

1. Find the function u(x) such that, for x ≥ 0

u(x) = sin x −
∫ x

0
u(x − t)t cos tdt.

2. Solve the integro-differential equation

du

dx
= 3

∫ x

0
u(x − t) cosh tdt

for x ≥ 0, given that u(0) = 1.

3. Find the two solutions of the equation∫ x

0
f (x − t)f (t)dt = x3

and show that they hold for x < 0 as well as x ≥ 0.

4. Let f (x) have a continuous differentiable coefficients when −π ≤ x ≤ π. Then
the equation

f (x) = 2

π

∫ π/2

0
u(x sin θ)dθ

has one solution with a continuous differential coefficient when −π ≤ x ≤ π,
namely

u(x) = f (0) +
∫ π/2

0
f ′(x sin θ)dθ.

5. Show that, if f (x) is continuous, the solution of(
1 − 1

4
λ2π

)
u(x) = f (x) + λ

∫ ∞

0
f (t) cos (2xt)dt,

assuming the legitimacy of a certain change of order of integration.
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6. Show that even periodic solutions (with period 2π) of the differential equation

d2u

dx2 + (λ2 + k2 cos2 x)u(x) = 0

satisfy the integral equation

u(x) = λ

∫ π

−π

e(k cos x cos t)u(t)dt.

7. Show that the Weber–Hermite functions

Wn(x) = ( − 1)ne
1
4 x2 dn

dxn

(
e− 1

2 x2
)

satisfy

u(x) = λ

∫ ∞

−∞
e

1
2 ixtu(t)dt

for the characteristic value of λ.

8. Show that, if |h| < 1, the characteristic functions of the equation

u(x) = λ

2π

∫ π

−π

1 − h2

1 − 2h cos (t − x) + h2 u(t)dt

are 1, cos mπ, sin mπ, the corresponding numbers being 1, 1
hm , 1

hm , where m takes
all positive integral values.

9. Show that the characteristic functions of

u(x) = λ

∫ π

−π

{
1

4π
(x − t)2 − 1

2
|x − t|

}
u(t)dt

are

u(x) = cos mx, sin mx,

where λ = m2 and m is any integer.

10. Show that

u(x) =
∫ x

0
tx−tu(t)dt

has the discontinuous solution u(x) = kxx−1.

11. Show that a solution of the integral equation with a symmetric kernel

f (x) =
∫ b

a
K(x, t)u(t)dt
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is

u(x) =
∞∑

n=1

anλ
nun(x)

provided that this series converges uniformly, where λn, un(x) are the eigenvalues
and eigenfunctions of K(x, t) and

∑∞
n=1 anun(x) is the expansion of f (x).
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Some Fourier series

Let f (x) = ln 2(1 − cos x) a periodic function defined in 0 < x < 2π such that
f (x + 2π) = f (x). Then f (x) can be expanded in terms of cos and sin functions
as a Fourier series given by

f (x) = 1

2
a0 +

∞∑
n=1

{an cos (nx) + bn sin (nx)}, (0 < x < 2π).

The Fourier coefficients an and bn can be obtained as

an = 1

π

∫ 2π

0
f (x) cos (nx)dx

bn = 1

π

∫ 2π

0
f (x) sin (nx)dx

It can be easily verified that bn = 1
π

∫ 2π

0 f (x) sin (nx)dx = 0 since f (2π − x) = f (x)
in (0 < x < 2π). The coefficient an can be calculated as follows:

an = 1

π

∫ 2π

0
f (x) cos (nx)dx

= 1

π

∫ 2π

0
ln 2(1 − cos x) cos (nx)dx

= 2

π

∫ 2π

0
ln

(
2 sin

x

2

)
cos (nx)dx

= 4

π

∫ π

0
ln (2 sin x) cos (2nx)dx

= − 2

nπ

∫ π

0

cos x sin (2nx)

sin x
dx (A.1)

319
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The last result is obtained using integration by parts.
Now let

Cn =
∫ π

0

sin (2n − 1)x

sin x
dx,

then it can be easily noted that

Cn+1 − Cn = 2
∫ π

0
cos (2nx)dx = 0.

Since C1 = π, we therefore have Cn = π and from equation (A.1)

an = − (Cn+1 + Cn)

nπ
= −2

n
.

We also require

a0 = 1

π

∫ 2π

0
ln 2(1 − cos x)dx = 4

π

∫ π

0
ln (2 sin x)dx. (A.2)

Therefore,

a0 = 8

π

∫ π/2

0
ln (2 sin x)dx

= 8

π

∫ π/2

0
ln (2 cos x)dx

Adding these two expressions we have

2a0 = 8

π

∫ π/2

0
ln (2 sin 2x)dx

= 4

π

∫ π

0
ln (2 sin x)dx

and reference to equation (A.2) now show that a0 = 0.
We have proved that

−1

2
ln 2(1 − cos x) =

∞∑
n=1

cos (nx)

n
, (0 < x < 2π).

It follows that

ln
{

2 sin
1

2
(x + t)

}
= −

∞∑
n=1

cos{n(x + t)}
n

(0 ≤ x, t ≤ π, x + t �= 0, x + t �= 2π) (A.3)
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and that

ln
{

2 sin
1

2
(x − t)

}
= −

∞∑
n=1

cos{n(x − t)}
n

, (0 ≤ t ≤ x ≤ π) (A.4)

Adding equations (A.3) and (A.4), we find that

ln{2( cos t − cos x)} = −
∞∑

n=1

(
2

n

)
cos (nx) cos (nt), (0 ≤ t < x ≤ π)

and, by symmetry,

ln{2| cos x − cos t|} = −
∞∑

n=1

(
2

n

)
cos (nx) cos (nt), (0 ≤ x < t ≤ π).

Subtraction of equation (A.4) from equation (A.3) similarly gives

ln

∣∣∣∣∣ sin 1
2 (x + t)

sin 1
2 (x − t)

∣∣∣∣∣ =
∞∑

n=1

(
2

n

)
sin (nx) sin (nt), (0 ≤ t < x ≤ π).

It is worth noting that ln{2| cos x + cos t|} = − ∑∞
n=1

( 2
n

)
(−1)n cos (nx)

cos (nt), (0 ≤ x, t ≤ π, x + t �= π) and hence that

ln

∣∣∣∣cos x + cos t

cos x − cos t

∣∣∣∣ =
∞∑

n=1

4

2n − 1
cos{(2n − 1)x} cos{(2n − 1)t}

(0 ≤ x, t ≤ π, x �= t, x + t �= π).

A further Fourier series is easily established. First note that

ln (1 − aeix) = −
∞∑

n=1

1

n
aneinx, (0 < a < 1, 0 ≤ x ≤ 2π)

and take real parts to give

ln (1 − 2a cos x + a2) = −
∞∑

n=1

(
2

n

)
an cos (nx) (0 < a < 1, 0 ≤ x ≤ 2π).

The gamma and beta functions

The gamma function is defined by

�(x) =
∫ ∞

0
e−t tx−1dt (x > 0)
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and the beta function is defined by

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt (x > 0, y > 0).

It is easily shown that �(1) = 1 and an integration by parts gives the recurrence
relation

�(x + 1) = x�(x) (x > 0),

from which it follows that

�(n + 1) = n!.
The gamma and beta functions are connected by the relationship

B(x, y) = B(y, x) = �(x)�(y)

�(x + y)
(x > 0, y > 0). (A.5)

This formula, and others following, are derived in many texts on analysis or calculus.
The reflection formula for gamma functions is

�(x)�(1 − x) = πcosec(πx) (0 < x < 1) (A.6)

and from equation (A.5) we see that

B(x, 1 − x) = πcosec(πx) (0 < x < 1).

The relationship

�(2x) = 1√
π

22x−1�(x)�
(

x + 1

2

)
(x > 0)

is called the duplication formula. From this and also from equation (A.5),
we see that �

( 1
2

) = √
π. Other values of � are �

( 1
4

) = 3.6256 . . . and
�

( 3
4

) = √
2π/�

( 1
4

) = 1.2254 . . ..
A further function which is sometimes useful in evaluating integrals is ψ

(digamma) function:

ψ(x) = d

dx
ln �(x) = �′(x)

�(x)
(x > 0) (A.7)

The other definition is

ψ(x) =
∫ ∞

0

{
e−t

t
− e−xt

1 − e−t

}
dt (x > 0). (A.8)
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A Cauchy principal value integral

Let

Cγ =
∫ ∞

0

uγ−1

1 − u
du (0 < γ < 1)

where the integral is to be interpreted as a Cauchy principal value. Now setting
u = es we have

Cγ =
∫ ∞

−∞
eγs

1 − es
ds

= lim
ε→0

{∫ −ε

−∞
eγs

1 − es
ds +

∫ ∞

ε

eγs

1 − es
ds

}

= lim
ε→0

∫ ∞

ε

{
e−γs

1 − e−s
+ eγs

1 − es

}
ds

Therefore, the integrals can be simplified as

Cγ =
∫ ∞

0

sinh
{( 1

2 − γ
)

s
}

sinh
( s

2

) ds (A.9)

and in particular

C 1
2

=
∫ ∞

0

u− 1
2 du

1 − u
= 0.

Note from equations (A.6) and (A.7) that for 0 < x < 1, psi(1 − x) − ψ(x) =
− d

dx ln{�(x)�(1 − x)} = π cot (πx) and therefore, using equation (A.8)

π cot (πx) =
∫ ∞

0

(e−xt − e−(1−x)t)

1 − e−t
dt

=
∫ ∞

0

sinh
{( 1

2 − x
)

t
}

sinh
( t

2

) dt (0 < x < 1).

We conclude that Cγ = π cot (πγ).
The integral in equation (A.9) can be evaluated in other ways, using contour

integration, for example.

Some important integrals

1.
∫

1√
a2 − x2

dx = arc sin
x

a
+ C, x2 ≤ a2

2.
∫

1√
x2 − a2

dx = arc cosh
x

a
+ C = ln |x +

√
x2 − a2| + C, a2 ≤ x2



MM-165 APP-A.tex 30/5/2007 17: 3 Page 324

324 Integral Equations and their Applications

3.
∫

1

a2 − x2 dx = arc sinh
x

a
+ C = ln |x +

√
a2 − x2| + C

4.
∫

1

x2 − a2 dx = 1

2a
ln

∣∣∣∣x − a

x + a

∣∣∣∣ + C = −1

a
arc tanh

x

a
+ C, a2 ≥ x2

5.
∫

1

x2 − a2 dx = 1

2a
ln

∣∣∣∣x − a

x + a

∣∣∣∣ + C = −1

a
arc tanh

x

a
+ C, a2 ≤ x2

6.
∫

x(a + bx)n dx = (a + bx)n+1

b2

[
a + bx

n + 2
− a

n + 1

]
+ C, n �= −1, −2

7.
∫

1

x
√

a + bx
dx =

⎧⎨
⎩

1√
a

ln
∣∣∣√

a + bx − √
a√

a + bx + √
a

∣∣∣ + C if a > 0

2√−a
arc tan

√
a + bx
−a + C if a < 0

8.
∫

1

xn
√

a + bx
dx = −

√
a + bx

a(n − 1)xn−1 − b(2n − 3)

2a(n − 1)

∫
1

xn−1
√

a + bx
dx

9.
∫

xn

√
a + bx

dx = 2xn
√

a + bx

b(2n + 1)
− 2an

b(2n + 1)

∫
xn−1

√
a + bx

dx

10.
∫ √

a + bx

xn
dx = − (a + bx)3/2

a(n − 1)xn−1 − b(2n − 5)

2a(n − 1)

∫ √
a + bx

xn−1 dx

11.
∫ √

a2 + x2 dx = x

2

√
a2 + x2 + a2

2
arc sinh

x

a
+ C

12.
∫

x2
√

a2 + x2 dx = x

8
(a2 + 2x2)

√
a2 + x2 − a4

8
arc sinh

x

a
+ C

13.
∫ √

a2 − x2 dx = x

2

√
a2 − x2 + a2

2
arc sin

x

a
+ C, x2 ≤ a2

14.
∫

1

x
√

x2 − a2
dx = 1

a
arc sec

∣∣∣ x

a

∣∣∣ + C = 1

a
arc cos

∣∣∣a

x

∣∣∣ + C, a2 ≤ x2

15.
∫

1

(a2 + x2)2 dx = x

2a2(a2 + x2)
+ 1

2a3 arc tan
x

a
+ C

16.

∫ π/2

0
sinn x dx

=
∫ π/2

0
cosn x dx

=
1.3.5···(n−1)

2.4.6···n · π
2 , if n is an even integer ≥ 2

2.4.6···(n−1)
3.5.7···n , if n is an odd integer ≥ 3
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17.

∫
sinn ax cosm ax dx

= sinn+1 ax cosm−1 ax

a(m + n)
+ m − 1

m + n

∫
sinn ax cosm−2 ax dx, m �= −n

− sinn−1 ax cosm+1 (ax)

a(m + n)
+ n − 1

m + n

∫
sinn−2 ax cosn ax dx, n �= −m

18.
∫

eax sin bx dx = eax

a2 + b2 (a sin bx − b cos bx) + C

19.
∫

eax cos bx dx = eax

a2 + b2 (a cos bx + b sin bx) + C

20.
∫

dx

b + c sin ax
= −2

a
√

b2 − c2
arc tan

[√
b − c

b + c
tan

(π

4
− ax

2

)]
+ C, b2 > c2

21.
∫

dx

b + c sin ax
= −1

a
√

c2 − b2
ln

∣∣∣∣∣c + b sin ax + √
c2 − b2 cos ax

b + c sin ax

∣∣∣∣∣ + C, b2 < c2

22.
∫

dx

b + c cos ax
= 2

a
√

b2 − c2
arc tan

[√
b − c

b + c
tan

ax

2

]
+ C, b2 > c2

23.
∫

dx

b + c cos ax
= 1

a
√

c2 − b2
ln

∣∣∣∣∣c + b cos ax + √
c2 − b2 sin ax

b + c cos ax

∣∣∣∣∣ + C, b2 < c2

24.
∫

secn ax dx = secn−2 ax tan ax

a(n − 1)
+ n − 2

n − 1

∫
secn−2 ax dx, n �= 1

25.
∫

cscnax dx = cscn−2ax cot ax

a(n − 2)
+ n − 2

n − 1

∫
cscn−2ax dx, n �= 1

26.
∫

cotn ax dx = −cotn−1 ax

a(n − 1)
−

∫
cotn−2 ax dx, n �= 1

27.
∫

secn ax tan ax dx = secn ax

na
+ C, n �= 0

28.
∫

cscnax cot ax dx = −cscnax

na
+ C, n �= 0

29.
∫

baxdx = 1

a

bax

ln b
+ C, b > 0, b �= 1

30.
∫

xnbaxdx = xnbax

a ln b
− n

a ln b

∫
xn−1baxdx, b > 0, b �= 1
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31.
∫

ln ax dx = x ln ax − x + C

32.
∫

xn ln ax dx = xn + 1

n + 1
ln ax − xn+1

(n + 1)2 + C, n �= 1

33.
∫

ln ax

x
dx = 1

2
( ln ax)2 + C

34.
∫

1

x ln ax
dx = ln |ln ax| + C

35.
∫

sinhn ax dx = sinhn−1 ax cosh ax

na
− n − 1

n

∫
sinhn−2 ax dx, n �= 0

36.
∫

xn sinh ax dx = xn

a
cosh ax − n

a

∫
xn−1 cosh ax dx

37.
∫

coshn ax dx = coshn−1 ax sinh ax

na
+ n − 1

n

∫
coshn−2 ax dx, n �= 0

38.
∫

eax sinh bx dx = eax

2

[
ebx

a + b
− e−bx

a − b

]
+ C, a2 �= b2

39.
∫

eax cosh bx dx = eax

2

[
ebx

a + b
+ e−bx

a − b

]
+ C, a2 �= b2

40.
∫

tanhn ax dx = − tanhn−1 ax

(n − 1)a
+

∫
tanhn−2 ax dx, n �= 1

41.
∫

cothn ax dx = −cothn−1 ax

(n − 1)a
+

∫
cothn−2 ax dx, n �= 1

Walli’s formula

∫ π/2

0
sinm θ cosn θ dθ = [(m − 1)(m − 3) · · · 2 or 1][(n − 1)(n − 3) · · · 2 or 1]

(m + n)(m + n − 2) · · · 2 or 1
α

where α =
{

π
2 , if m and n are both even

1, otherwise.
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Laplace transforms F(s) = Lf (t) = ∫ ∞
0 e−st f (t)dt

Table B.1: General properties of Laplace transforms.

F(s) f (t)

1. aF1(s) + bF2(s) af1(t) + bf2(t)

2. F(as)(a > 0) 1
a f (t/a)

3. F(s/a) af (at)

4. F(s − a) eat f (t)

5. F(s + a) e−at f (t)

6. F(as − b) 1
a ebt/af (t/a)

7. 1
2i [F(s − ia) − F(s + ia)] f (t) sin at

8. 1
2 [F(s − ia) + F(s + ia)] f (t) cos at

9. 1
2 [F(s − a) − F(s + a)] f (t) sinh at

10. 1
2 [F(s − a) + F(s + a)] f (t) cosh at

11. e−asF(s)
{

f (t − a) t > a
0 t < a

12. 1
2 e−bs/aF

( s

a

)
(a, b > 0)

{
f (at − b) t > b/a
0 t < b/a

13. sF(s) − f (0) f ′(t)

(Continued)

327
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Table B.1: (Continued)

F(s) f (t)

14. s2F(s) − sf (0) − f ′(0) f ′′(t)
15. snf (s) − sn−1f (0) f (n)(t)

− sn−2f ′(0) · · · f (n−1)(0)

16. F ′(s) −t f (t)

17. F ′′(s) (−t)2f (t)

18. F (n)(s) (−t)nf (t)

19.
F(s)

s

∫ t

0
f (τ)dτ

20.
F(s)

sn

∫ t

0
· · ·

∫ t

0
f (τ)dτn

=
∫ t

0

(t − τ)n−1

(n − 1)! f (τ)dτ

21. F(s)G(s)
∫ t

0 f (τ)g(t − τ)dτ = f ∗g

22.
∫ ∞

s F(σ)dσ
f (t)

t

23.
∫ ∞

s · · · ∫ ∞
s F(σ)dσn f (t)

tn

24.
1

2πi

∫ x+i∞

x−i∞
F1(σ)F2(s − σ)dσ f1(t) · f2(t)

25.

∫ k
0 e−sτ f (τ)dτ

1 − e−ks
f (t) = f (t + k)

26.
F(

√
s)

s

1√
πt

∫ ∞

0
e−τ2/4t f (τ)dτ

27. 1
s F

( 1
s

) ∫ ∞
0 J0(2

√
τt)f (τ)dτ

28. 1
sn+1 F

( 1
s

)
tn/2

∫ ∞
0 τ−n/2Jn(2

√
τt)f (τ)dτ

29.
F(s + 1/s)

s2 + 1

∫ t
0 J0(2

√
τ(t − τ) )f (τ)dτ

30.
1

2
√

π

∫ ∞

0
τ−3/2e−s2/4τ f (τ)dτ f (t2)

31.
F(ln s)

sln s

∫ ∞

0

tτ f (τ)

�(τ + 1)
dτ

32.
P(s)

Q(s)
∗ ∑n

k=1 (P(ak)/Q′(ak))eak t

∗ P(s) = polynomial of degree less than n,
Q(s) = (s − a1)(s − a2) . . . (s − an), a1, a2, . . . , an are all distinct.
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Table B.2: Special Laplace transforms.

F(s) f (t)

33. 1 δ(t)

34.
1

s
1, u(t)

35.
1

s2 t

36.
1

sn
, n = 1, 2, 3, . . .

tn−1

(n − 1)! , 0! = 1

37.
1

sn
, n > 0

tn−1

�(n)

38.
1

s − a
eat

39.
1

1 + as

1

a
e−t/a

40.
1

(s − a)n
, n = 1, 2, 3, . . .

tn−1

(n − 1)!eat , 0! = 1

41.
1

(s − a)n

tn−1

�(n)
eat

42.
a

s2 + a2 sin at

43.
s

s2 + a2 cos at

44.
a

(s − b)2 + a2 ebt sin at

45.
s − b

(s − b)2 + a2 ebt cos at

46.
a

s2 − a2 sinh at

47.
s

s2 − a2 cosh at

48.
a

(s − b)2 − a2 ebt sinh at

49.
s − b

(s − b)2 − a2 ebt cosh at

50.
1

s(s − a)

1

a
(eat − 1)

51.
1

s(1 + as)
1 − e−t/a

52.
1

(s − a)(s − b)
, a �= b

eat − ebt

a − b

(Continued)
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Table B.2: (Continued)

F(s) f (t)

53.
1

(1 + as)(1 + bs)
, a �= b

e−t/a − e−t/b

a − b

54.
1

s2 + 2bs + (b2 + ω2)

1

ω
e−bt sin ωt

55.
s

(s − a)(s − b)

bebt − aeat

b − a

56.
1

(s2 + a2)2

sin at − at cos at

2a3

57.
s

(s2 + a2)2

t sin at

2a

58.
s2

(s2 + a2)2

sin at + at cos at

2a

59.
s3

(s2 + a2)2 cos at − at

2
sin at

60.
s2 − a2

(s2 + a2)2 t cos at

61.
1

(s2 − a2)2

at cosh at − sinh at

2a3

62.
s

(s2 − a2)2

t sinh at

2a

63.
s2

(s2 − a2)2

sinh at + at cosh at

2a

64.
s3

(s2 − a2)2 cosh at + at

2
sinh at

65.
s2 + a2

(s2 + a2)2 t cosh at

66.
1

(s2 + a2)3

(3 − a2t2) sin at − 3at cos at

8a5

67.
s

(s2 + a2)3

t sin at − at2 cos at

8a3

68.
s2

(s2 + a2)3

(1 + a2t2) sin at − at cos at

8a3

69.
s3

(s2 + a2)3

3t sin at + at2 cos at

8a

70.
s4

(s2 + a2)3

(3 − a2t2) sin at + 5at cos at

8a

(Continued)
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Table B.2: (Continued)

F(s) f (t)

71.
s5

(s2 + a2)3

(8 − a2t2) cos at − 7at sin at

8

72.
3s2 − a2

(s2 + a2)3

t2 sin at

2a

73.
s3 − 3a2s

(s2 + a2)3

1

2
t2 cos at

74.
s3 − a2s

(s2 + a2)4

t3 sin at

24a

75.
1

(s2 − a2)3

(3 + a2t2) sinh at − 3at cosh at

8a5

76.
s

(s2 − a2)3

at2 cosh at − t sinh at

8a3

77.
s2

(s2 − a2)3

at cosh at + (a2t2 − 1) sinh at

8a3

78.
s3

(s2 − a2)3

3t sinh at + at2 cosh at

8a

79.
s4

(s2 − a2)3

(3 + a2t2) sinh at + 5at cosh at

8a

80.
s5

(s2 − a2)3

(8 + a2t2) cosh at + 7at sinh at

8

81.
3s2 + a2

(s2 − a2)3

t2 sinh at

2a

82.
s2 + 2a2

s(s2 + 4a2)
cos2 at

83.
s2 − 2a2

s(s2 − 4a2)
cosh2 at

84.
2a2

s(s2 + 4a2)
sin2 at

85.
2a2

s(s2 − 4a2)
sinh2 at

86.
1

s3 + a3

eat/2

3a2

{
3 sin

√
3at

2
− cos

√
3at

2
+ e−3at/2

}

87.
s

s3 + a3

eat/2

3a

{
cos

√
3at

2
+ √

3 sin

√
3at

2
− e−3at/2

}

(Continued)
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Table B.2: (Continued)

F(s) f (t)

88.
s2

s3 + a3

1

3

{
e−at + 2eat/2 cos

√
3at

2

}

89.
1

s3 − a3

e−at/2

3a2

{
e3at/2 − cos

√
3at

2
− √

3 sin

√
3

2
at

}

90.
s

s3 − a3

e−at/2

3a

{√
3 sin

√
3at

2
− cos

√
3at

2
+ e3at/2

}

91.
s2

s3 − a3

1

3

{
eat + 2e−at/2 cos

√
3at

2

}

92.
1

s4 + 4a4

1

4a3 ( sin at cosh at − cos at sinh at)

93.
s

s4 + 4a4

sin at sinh at

2a2

94.
s2

s4 + 4a4

1

2a
( sin at cosh at + cos at sinh at)

95.
s3

s4 + 4a4 cos at cosh at

96.
1

s4 − a4

1

2a3 ( sinh at − sin at)

97.
s

s4 − a4

1

2a2 ( cosh at − cos at)

98.
s2

s4 − a4

1

2a
( sinh at + sin at)

99.
s3

s4 − a4

1

2
( cosh at + cos at)

100.
1√
s

1√
πt

101.
1

s
√

s
2
√

t/π

102.
s + a

s
√

s

1 + 2at√
πt

103.
1√

s + a

e−at

√
πt

104.
√

s − a − √
s − b

ebt − eat

2t
√

πt

(Continued)
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Table B.2: (Continued)

F(s) f (t)

105.
1√

s + a + √
s + b

e−bt − e−at

2(b − a)
√

πt3

106.
1

s
√

s + a

er f
√

at√
a

107.
1√

s(s − a)

eater f
√

at√
a

108.
1√

s − a + b
eat

{
1√
πt

− beb2ter{ fc(b
√

t)}

109.
1√

s2 + a2
J0(at)

110.
1√

s2 − a2
I0(at)

111.
(
√

s2 + a2 − s)n

√
s2 + a2

, n > −1 anJn(at)

112.
(s − √

s2 − a2)n

√
s2 − a2

, n > −1 anIn(at)

113.
eb(s − √

s2 + a2)

√
s2 + a2

J0(a
√

t(t + 2b))

114.
e−b

√
s2 + a2

√
s2 + a2

{
J0(a

√
t2 − b2), t > b

0, t < b

115.
1

sn
√

s

4nn!
(2n)!√π

tn−1/2

116.
1

(s2 + a2)3/2

t J1(at)

a

117.
s

(s2 + a2)3/2 t J0(at)

118.
s2

(s2 + a2)3/2 J0(at) − at J1(at)

119.
1

(s2 − a2)3/2

t I1(at)

a

120.
s

(s2 − a2)3/2 t I0(at)

121.
s2

(s2 − a2)3/2 I0(at) + at I1(at)

(Continued)
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Table B.2: (Continued)

F(s) f (t)

122.
ln s

s
−(ln t + γ), γ = Euler′s constant,

= 0.5772156

123. − (γ + ln s)

s
ln t

124. −
√

π

s
(ln 4s + γ)

ln t√
t

125.
(ln s)2

s
(ln t + γ)2 − π2

b

126.
1

ln s

∫ ∞

0

tτ−1

�(τ)
dτ

127.
π2

6s
+ γ + ln (s)2

s
ln2 t

128.
�′(n + 1) − �(n + 1) ln s

sn+1 , n > −1 tn ln t

129. ln
(

s − a

s

)
1 − eat

t

130. ln
(

s − a

s − b

)
ebt − eat

t

131.
ln [(s2 + a2)/a2]

2s
Ci(at) =

∫ ∞

at

cos τ

τ
dτ

132.
ln [(s + a)/a]

s
Ei(at) =

∫ ∞

at

e−τ

τ
dτ

133. ln
s2 + a2

s2 + b2

2(cos at − cos bt)

t

134. e−as δ(t − a)

135.
e−as

s
u(t − a)

136.
e−a2/4s

s
J0(a

√
t)

137. tan−1
(a

s

) sin at

t

138.
tan−1 (a/s)

s
Si(at) =

∫ at

0

sin τ

τ
dτ

(Continued)
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Table B.2: (Continued)

F(s) f (t)

139.
ea/s

√
s

er fc(
√

a/s)
e−2

√
at

√
πt

140. es2/4a2
er fc(s/2a)

2a√
π

e−a2t2

141.
es2/4a2

er fc(s/2a)

s
er f (at)

142.
easer fc

√
as√

s

1√
π(t + a)

143. easEi(as)
1

t + a

144.
1√
πs

e−a2/4s cos a
√

t

π
√

t

145.
a

2
√

πs3/2
e−a2/4s sin a

√
t

π

146.
e1/s

√
s

cosh 2
√

t√
t

147.
e1/s

s
√

s

sinh 2
√

t√
π

148. e−a
√

s a

2
√

πt3/2
e−a2/4t

149.
1 − e−a

√
s

s
er f

(
a

2
√

t

)

149a.
e−a

√
s

s
er fc

(
a

2
√

t

)

150.
e−a

√
s

√
s

1√
πt

e−a2/4t

151.
e−a

√
s

√
s(

√
s + b)

eb(bt+a)er fc

(
b
√

t + a

2
√

t

)

152.
e−a

√
s

s(b + √
s)

1

b
er fc

(
a

2
√

t

)
− 1

b
eb2t + aber fc

(
b
√

t + a

2
√

t

)

152a.
e−a

√
s

s
√

s

2
√

t√
π

e−a2/4t − aer fc

(
a

2
√

t

)
(Continued)
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Table B.2: (Continued)

F(s) f (t)

153.
e−x

√
as2 + bs + c

− e−(bx/2
√

a)e−√
axs

⎧⎨
⎩

0 0 ≤ t ≤ √
ax√

b2 − 4ca

4a
x e−(b/2a)t

I1

(√
b2 − 4ca

2a

√
t2 − ax2

)
√

t2 − ax2
, t ≥ √

ax

154.
1√
s

sin
a

s

sinh
√

2at sin
√

2at√
πt

155.
1

s
√

s
sin

a

s

cosh
√

2at sin
√

2at√
aπ

156.
1

s
√

s
cos

a

s

cosh
√

2at cos
√

2at√
πt

157.
1

s
√

s
cos

a

s

sinh
√

2at cos
√

2at√
aπ

158. tan−1 s2 − as − b

ab

eat − 1

t
sin bt

159. tan−1 2as

s2 − a2 + b2

2

t
sin at cos bt

160.

√
π

2
e(s/2)2

er fc
( s

2

)
e−t2

161.
sinh sx

s sinh sa

x

a
+ 2

π

∑∞
n=1

(−1)n

n
sin

nπx

a
cos

nπt

a

162.
sinh sx

s cosh sa

4

π

∑∞
n=1

(−1)n

2n − 1
sin

(2n − 1)πx

2a
sin

(2n − 1)πt

2a

163.
cosh sx

s sinh sa

t

a
+ 2

π

∑∞
n=1

(−1)n

n
cos

nπx

a
sin

nπt

a

164.
cosh sx

s cosh sa
1 + 4

π

∑∞
n=1

(−1)n

2n − 1
cos

(2n − 1)πx

2a
cos

(2n − 1)πt

2a

165.
sinh sx

s2 sinh sa

xt

a
+ 2a

π2

∑∞
n=1

(−1)n

n2 sin
nπx

a
sin

nπt

a

166.
sinh sx

s2 cosh sa
x + 8a

π2

∑∞
n=1

(−1)n

(2n−1)2 sin
(2n−1)πx

2a
cos

(2n−1)πt

2a

(Continued)
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Table B.2: (Continued)

F(s) f (t)

167.
cosh sx

s2 sinh sa

t2

2a
+ 2a

π2

∑∞
n=1

(−1)n

n2 cos
nπx

a

(
1 − cos

nπt

a

)

168.
cosh sx

s2 cosh sa
t + 8a

π2

∑∞
n=1

(−1)n

(2n−1)2 cos
(2n−1)πx

2a
sin

(2n−1)πt

2a

169.
cosh sx

s3 cosh sa

1

2
(t2 + x2 − a2) − 16a2

π3

∑∞
n=1

(−1)n

(2n − 1)3

× cos
(2n − 1)πx

2a
cos

(2n − 1)πt

2a

170.
sinh x

√
s

sinh a
√

s

2π

a2

∑∞
n=1 (−1)nne−n2π2t/a2

sin
nπx

a

171.
cosh x

√
s

cosh a
√

s

π

a2

∑∞
n=1 (−1)n−1(2n − 1)e−(2n−1)2π2t/4a2

× cos
(2n − 1)πx

2a

172.
sinh x

√
s√

s cosh a
√

s

2

a

∑∞
n=1 (−1)n−1e−(2n−1)2π2t/4a2

sin
(2n − 1)πx

2a

173.
cosh x

√
s√

s sinh a
√

s

1

a
+ 2

a

∑∞
n=1 (−1)ne−n2π2t/a2

cos
nπx

a

174.
sinh x

√
s

s sinh a
√

s

x

a
+ 2

π

∑∞
n=1

(−1)n

n
e−n2π2t/a2

sin
nπx

a

175.
cosh x

√
s

s cosh a
√

s
1 + 4

π

∑∞
n=1

(−1)n

2n − 1
e−(2n−1)2π2t/4a2

cos
(2n − 1)πx

2a

176.
sinh x

√
s

s2 sinh a
√

s

xt

a
+ 2a2

π3

∑∞
n=1

(−1)n

n3 (1 − e−n2π2t/a2
) sin

nπx

a

177.
cosh x

√
s

s2 cosh a
√

s

1

2
(x2 − a2) + t − 16a2

π3

∑∞
n=1

× (−1)n

(2n − 1)3 e−(2n−1)2π2t/4a2
cos

(2n − 1)πx

2a

178.
1

as2 tanh
(as

2

)
Triangular wave function

179.
1

s
tanh

(as

2

)
Square wave function

180.
πa

a2s2 + π2 coth
(as

2

)
Rectified sine wave function

181.
πa

(a2s2+π2)(1−e−as)
Half-rectified sine wave function

(Continued)
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Table B.2: (Continued)

F(s) f (t)

182.
1

as2 − 1

s(1 − eas)
Saw tooth wave function

183.
e−as

s
Heaviside’s unit function u(t − a)

184.
e−as(1 − e−εs)

s
Pulse function

185.
1

s(1 − e−as)
Step function

186.
e−s + e−2s

s(1 − e−s)2 f (t) = n2, n ≤ t < n + 1, n = 0, 1, 2, . . .

187.
1 − e−s

s(1 − re−s)
f (t) = rn, n ≤ t < n + 1, n = 0, 1, 2, . . .

188.
a(1 + e−as)

a2s2 + π2 f (t) =
{

sin (πt/a) 0 ≤ t ≤ a

0 t > a

Table B.3: Special functions.

189. Gamma function �(n) = ∫ ∞
0 un−1e−udu, n > 0

190. Beta function B(m, n) = ∫ 1
0 um−1(1 − u)n−1du = �(m)�(n)

�(m + n)
, m, n > 0

191. Bessel function
Jn(x) = xn

2n�(n + 1)

{
1 − x2

2(2n + 2)

+ x4

2.4(2n + 2)(2n + 4)
− · · ·

}

192. Modified Bessel In(x) = i−nJn(ix) = xn

2n�(n + 1)

{
1 + x2

2(2n + 2)
+ · · ·

}
function

193. Error function er f (t) = 2√
π

∫ t

0
e−u2

du

194. Complementary er fc(t) = 1 − er f (t) = 2√
π

∫ ∞

t
e−u2

du
error function

(Continued)
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Table B.3: (Continued)

195. Exponential integral Ei(t) =
∫ ∞

t

e−u

u
du

196. Sine integral Si(t) =
∫ t

0

sin u

u
du

197. Cosine integral Ci(t) =
∫ ∞

t

cos u

u
du

198. Fresnel sine integral S(t) =
∫ t

0
sin u2du

199. Fresnel cosine integral C(t) =
∫ t

0
cos u2du

200. Laguerre polynomials Ln(t) = et

n!
dn

dtn
(tne−t), n = 0, 1, 2, . . .
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Appendix C Specialized Laplace inverses

Laplace transforms F(s) = Lf (t) = ∫ ∞
0 e−st f (t)dt

Note that we write q = √
s/α, α and x are always real and positive, k and h

are unrestricted.

Table C.1: Advanced Laplace transforms.

F(s) f (t)

1. e−qx x

2
√

(παt3)
e−x2/4αt

2.
e−qx

q

√( α

πt

)
e−x2/4αt

3.
e−qx

s
er fc

x

2
√

(αt)

4.
e−qx

sq
2

√(
αt

π

)
e−x2/4αt − xer fc

x

2
√

(αt)

5.
e−qx

s2

{
t + x2

2α

}
er fc

x

2
√

(αt)
− x

(
t

πα

) 1
2

e−x2/4αt

6. e−qx, s1+ 1
2 n, (4t)

1
2 niner fc

x

2
√

αtn = 0, 1, 2, . . .

7.
e−qx

q + h

√( α

πt

)
e−x2/4αt − hαehx+αh2t × er fc

{
x

2
√

αt
+ h

√
(αt)

}

8.
e−qx

q(q + h)
αehx+αth2

er fc

{
x

2
√

(αt)
+ h

√
(αt)

}

(Continued)

341
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Table C.1: (Continued)

F(s) f (t)

9.
e−qx

s(q + h)

1

h
er fc

x

2
√

(αt)
− 1

h
ehx+αth2 × er fc

{
x

2
√

(αt)
+ h

√
(αt)

}

10.
e−qx

sq(q + h)

2

h

√(
αt

π

)
e−x2/4αt − (1 + hx)

h2 er fc
x

2
√

(αt)

+ 1

h2 ehx+αth2
er fc

{
x

2
√

(αt)
+ h

√
(αt)

}

11.
e−qx

qn+1(q + h)

α

(−h)n
ehx+αth2

er fc

{
x

2
√

(αt)
+ √

(αt)

}

− α

(−h)n

∑n−1
r=0

[
−2h

√
(αt)

]r
irer fc

x

2
√

(αt)

12.
e−qx

(q + h)2 −2h

√(
α3t

π

)
e−x2/4αt + α(1 + hx + 2h2αt)ehx+αth2

× er fc

{
x

2
√

(αt)
+ h

√
(αt)

}

13.
e−qx

s(q + h)2

1

h2 er fc
x

2
√

(αt)
− 2

h

√(
αt

π

)
e−x2/4αt

− 1

h2 {1 − hx − 2h2αt}ehx+αth2

× er fc

{
x

2
√

(αt)
+ h

√
(αt)

}

14.
e−qx

s − α

1

2
ekt

{
e−x

√
(k/α)er fc

[
x

2
√

(αt)
− √

kt

]

+ ex
√

(k/α)er fc

[
x

2
√

(αt)
+ √

kt

]

15.
1

s
3
4

e−qx 1

π

√(
x

2t
√

α

)
e−x2/8αtK 1

4

(
x2

8αt

)

16.
1

s
1
2

K2v(qx)
1

2
√

πt
e−x2/8αtKv

(
x2

8αt

)

(Continued)
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Table C.1: (Continued)

F(s) f (t)

17. Iv(qx′)Kv(qx),
1

2t
e−(x2 + x′2)/4αt Iv

(
xx′

2αt

)
, v ≥ 0

x > x′

Iv(qx)Kv(qx′),
x < x′

18. K0(qx)
1

2t
e−x2/4αt

19.
1

s
e x/s I0[2

√
(xt)]

20.
e−qx

(s − α)2

1

2
ekt

{(
t − x

2
√

(kα)

)

× e−x
√

(k/α)er fc

[
x

2
√

(αt)
− √

(kt)

]

+
(

t + x

2
√

(kα)

)
ex

√
(k/α)er fc

[
x

2
√

(αt)
+ √

(kt)

]

21.
e−qx

q(s − k)

1

2
ekt

√(α

k

) {
e−x

√
(k/α)er fc

[
x

2
√

(αt)
− √

(kt)

]

− ex
√

(k/α)er fc

[
x

2
√

(αt)
+ √

(kt)

]}

22.
e−qx

(s − k)(q + h)
,

1

2
ekt

{
α

1
2

hα
1
2 + k

1
2

e−x
√

(k/α)er fc

[
x

2
√

(αt)
− √

(kt)

]
k �= αh2

+ α
1
2

hα
1
2 − k

1
2

ex
√

(k/α)er fc

[
x

2
√

(αt)
+ √

(kt)

]

− hα

h2α − k
ehx+h2αter fc

[
x

2
√

(αt)
+ h

√
(αt)

]

23. 1
s ln s −ln(Ct), ln C = γ = 0.5772 . . .

24. s
1
2 vKv(x

√
s)

xv

(2t)v+1 e−x2/4t
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Answers to some selected exercises

Chapter 1

1(a). Nonhomogeneous linear Fredholm integral equation.

1(b). Nonhomogeneous nonlinear Volterra integral equation.

1(c). Nonhomogeneous linear Fredholm integral equation.

1(d). Nonhomogeneous nonlinear Volterra integral equation.

2(a). Nonlinear Volterra integro-differential equation.

2(b). Nonlinear Volterra integro-differential equation.

2(c). Linear Fredholm integro-differential equation.

3(a). u(x) = 4 + ∫ x
0 u2(t)dt.

3(b). u′(x) = 1 + 4
∫ x

0 tu2(t)dt, u(0) = 2.

3(c). u′(x) = 1 + 2
∫ x

0 tu2(t)dt, u(0) = 0.

5(a). u′′(x) − u(x) = cos x, u(0) = −1, u′(0) = 1.

5(b). u′′′(x) − 4u(x) = 24x, u(0) = 0, u′(0) = 0, u′′(0) = 2.

5(c). uiv(x) − u(x) = 0, u(0) = u′(0) = 0, u′′(0) = 2, u′′′(0) = 0.

6(a). u(x) = −11 − 6x − ∫ x
0 (5 + 6(x − t))u(t)dt.

6(b). u(x) = sin x − ∫ x
0 (x − t)u(t)dt.

6(c). u(x) = −3x − 4
∫ x

0 (x − t)u(t)dt.

6(d). u(x) = 2ex − 1 − x − ∫ x
0 (x − t)u(t)dt.

7(a). u(x) = sin x + ∫ 1
0 K(x, t)u(t)dt, where the kernel K(x, t) is defined by

K(x, t) =
{

4t(1 − x) 0 ≤ t ≤ x

4x(1 − t) x ≤ t ≤ 1.

345
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7(b). u(x) = 1 + ∫ 1
0 K(x, t)u(t)dt, where the kernel K(x, t) is defined by

K(x, t) =
{

2xt(1 − x) 0 ≤ t ≤ x

2x2(1 − t) x ≤ t ≤ 1.

7(c). u(x) = (2x − 1) + ∫ 1
0 K(x, t)u(t)dt, where the kernel K(x, t) is defined by

K(x, t) =
{

t(1 − x) 0 ≤ t ≤ x

x(1 − t) x ≤ t ≤ 1.

7(d). u(x) = (x − 1) + ∫ 1
0 K(x, t)u(t)dt, where the kernel K(x, t) is defined by

K(x, t) =
{

t 0 ≤ t ≤ x

x x ≤ t ≤ 1.

Chapter 2

1(a). u(x) = 1 + 2x.

1(b). u(x) = ex.

1(c). u(x) = 2 cosh x − 1.

1(d). u(x) = sec2 x.

1(e). u(x) = x3.

2(a). u(x) = 2x + 3x2.

2(b). u(x) = e−x.

2(c). u(x) = cos x − sin x.

2(d). u(x) = sin x.

3(a). u(x) = e−x.

3(b). u(x) = 2x.

3(c). u(x) = sinh x.

3(d). u(x) = sec2 x.

4. u(x) = cos x.

5. u(x) = 60
7 e6x + 3

7 e−x.

6. u(x) = − 1
2 x sin x − cos x − sin x.
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8. Hints: Take the Laplace transform of both sides and determine the inversion
of the resulting transform. Here, the constants are related to: λ + ν = c;

λν = −d; α = aλ + b

λ − ν
; β = aν + b

ν − λ
.

9. u(x) = ex.

Chapter 3

1. u(x) = x.

2. u(x) = sec2 x + λ

1 − λ
tan 1.

3. u(x) = sec2 x tan x − λ

2(1 + λ)
tan2 1.

4. u(x) = cos x + x
2 (λ2π2 − 4λ).

5. u(x) = ex + λx

(
e2 − 1

2(1 − 2λ)

)
.

6. u(x) = A, a constant.

7. u(x) = 0.

8. u(x) = A
sin x

2
, where A is an arbitrary constant.

9. u(x) = A
3x

1000
, where A is a constant.

10. u(x) does not have a solution.

11. u(x) = x + λ(10 + (6 + λ)x)

12 − 24λ − λ2 .

12. u(x) = x + λ(x(6 − λ) − 4)

12 + λ2 .

14. u(x) = x + λπ

2

{
2π − λπ2 + 8λ

2 − 3λπ + λ2π2

}
+

{
2λπ sin x

2 − 3λπ + λ2π2

}
.

15. u(x) = sin x.

16. u(x) = sec2 x.
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17. u(x) = 1

1 + x2 .

18. u(x) = Cx, where C is an arbitrary constant.

19. u(x) = C, where C is an arbitrary constant.

20. u(x) = C sec x, where C is an arbitrary constant.

21. u(x) = C sec x, where C is an arbitrary constant.

22. u(x) = 2
π − 2 C sin−1 x, where C is an arbitrary constant.

23. u(x) = C cos x, where C is an arbitrary constant.

24. u1(x) = 2
π

C( sin x + cos x), and u2(x) = 2
π

C( sin x − cos x), where C is an
arbitrary constant.

Chapter 4

1(a). u(x) = x2.

1(b). u(x) = tan x.

1(c). u(x) = ex.

2(a). u(x) = 1 ± √
1 − 2λ

λ
, λ ≤ 1

2
. Here, λ = 0 is a singular point, and λ = 1

2
is a

bifurcation point and at this point u(x) = 2.

2(b). u(x) = 2 ± 2
√

1 − λ

λ
, λ ≤ 1. Here, λ = 0 is a singular point, and λ = 1 is a

bifurcation point and this point u(x) = 2.

2(c). u(x) = sin x.

2(d). u(x) = x, x − 1.

3(a). u(x) = 1.

3(b). u(x) = 1 + λ

4
+ λ2

8
+ · · · .

3(c). u(x) = sinh x.

3(d). u(x) = sec x.

7. D’Alembert’s wave solution is given by

u(x, t) = 1

2

[
1

1 + (x − ct)2 + 1

1 + (x + ct)2

]
+ 1

2c
[ tan (x + ct) − tan (x − ct)].
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Chapter 5

1(a). u(x) = 2
√

x + 1√
x

.

1(b). u(x) = 2
√

x

π

(
1 + 8

5
x2

)
.

1(c). u(x) = 2
√

x

π
.

1(d). u(x) = 128

35π
x

7
2 .

2(a). u(x) = √
x.

2(b). u(x) = 1

2
.

2(c). u(x) = 1√
π

(
1 − eπxer fc(

√
πx)

)
.

2(d). u(x) = x.

2(e). u(x) = 1.

Chapter 6

1. u(x) = 4
27 x2 + 1

6 .

2. u(x) = sin x.

3. u(x) = sec2 x.

4. u(x) = xex.

5. u(x) = sin x.

6. u(x) = sin x.

7. u(x) = x cos x.

8. u(x) = sin x − cos x.

9. u(x) = 1 − sinh x.

10. u(x) = 1
2 ( cos x + sin x + ex).

11. u(x) = 1 + sin x.

12. u(x) = 1
4 (ex − 3e−x − 2 cos x).
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Chapter 7

3. G(x, η) =

⎧⎪⎪⎨
⎪⎪⎩

sin (η − 1) sin x

sin (1)
0 ≤ x ≤ η

sin η sin (x − 1)

sin (1)
η ≤ x ≤ 1

The solution will be
y(x) = ∫ 1

0 G(x, η)f (η) dη where G(x, η) is given above.

4. Given that Ty′′(x) = −f (x), where f (x) = x. The boundary conditions are
y(0) = y(�) = 0. Using Green’s function method, the solution of this boundary
value problem can be obtained as y(x) = ∫ �

0 G(x, η)f (η)dη provided G(x, η)
satisfies the following differential equation with its four boundary conditions:

TGxx = −δ(x − η)

G(0, η) = 0

G(�, η) = 0

G(η+, η) = G(η−, η)

T (Gx|η+ − Gx|η−) = −1.

The solution of the given ODE satisfying the boundary conditions is simply
y(x) = 1/6Tx(�2 − x2). The Green function is obtained as

G(x, η) = 1

T�

{
x(� − η), 0 ≤ x ≤ η ≡ x ≤ η ≤ �

η(� − x), η ≤ x ≤ � ≡ 0 ≤ η ≤ x.

Thus, the solution by Green’s function method is

y(x) =
∫ �

0
G(x, η)f (η)dη

= 1

T�

{∫ x

0
η(� − x)(η)dη +

∫ �

x
x(� − η)(η)dη

}

= 1
6T x(�2 − x2).

It is obvious these two solutions are identical.

5. (i) G(x, η) =
{

−eη−x cos η sin x 0 ≤ x ≤ η

−eη−x sin η cos x η ≤ x ≤ π
2
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Not symmetric.

(ii) G(x, η) =
{

−e−η−x cos η sin x 0 ≤ x ≤ η

−e−η−x sin η cos x η ≤ x ≤ π
2

Green’s function now symmetric.

6. G(x, η) =
{

cos η sin x 0 ≤ x ≤ η

sin η cos x η ≤ x ≤ π.

7. G(x, η) =
{

eη(1 − e−x) 0 ≤ x ≤ η

eη(1 − e−η) η ≤ x ≤ π.

8. G(x, η) =
{

(1 − η)x 0 ≤ x ≤ η

(1 − x)η η ≤ x ≤ 1.

9. G(x, η) =
{

x x ≤ η

η x > η.

10. G(x, η) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−cos λ(η − x − 1
2 )

2λ sin λ
2

0 ≤ x ≤ η

−cos λ(x − η − 1
2 )

2λ sin λ
2

η ≤ x ≤ 1.

11. (a) G(x, η) =

⎧⎪⎨
⎪⎩

sin λx cos λ(b − η)

λ cos λb
0 ≤ x ≤ η

sin λη cos λ(b − x)

λ cos λb
η ≤ x ≤ b

where λ �= (2n − 1)π

b
.

(b) G(x, η) =

⎧⎪⎪⎨
⎪⎪⎩

cos λx sin λ(b − η)

λ cos λb
0 ≤ x ≤ η

cos λη sin λ(b − x)

λ cos λb
η ≤ x ≤ b

where λ �= (2n − 1)π

b
.

(c) G(x, η) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−cos λ(a − x) cos λ(b − η)

λ sin λ(a − b)
a ≤ x ≤ η

−cos λ(a − η) cos λ(b − x)

λ sin λ(a − b)
η ≤ x ≤ b.
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(d) G(x, η) =

⎧⎪⎪⎨
⎪⎪⎩

−{λ cos λ(a − x) − sin λ(a − x)} sin λ(b − η)

λ[ sin λ(b − a) − λ cos λ(b − a)]
a ≤ x ≤ η

−{λ cos λ(a − η) − sin λ(a − η)} sin λ(b − x)

λ[ sin λ(b − a) − λ cos λ(b − a)]
η ≤ x ≤ b.

13. (a) G(x, η) =

⎧⎪⎪⎨
⎪⎪⎩

−1

2
ln

(
1 + x

1 − x

)
0 ≤ x ≤ η

−1

2
ln

(
1 + η

1 − η

)
η ≤ x ≤ 1.

(b) G(x, η) =

⎧⎪⎪⎨
⎪⎪⎩

sin λ(η − 1) sin λx

λ sin λ
0 ≤ x ≤ η

sin λη sin λ(x − 1)

λ sin λ
η ≤ x ≤ 1.

15. G(x, η) =
{

Ax + B

−Ax + B

Note: Cannot determine the constants with the given conditions.

16. G(x, ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x3 ξ

2
+ x

ξ3

2
− 9x

ξ

5
+ x 0 ≤ x ≤ ξ

x3 ξ

2
+ x

ξ3

2
− 9x

ξ

5
+ ξ ξ ≤ x ≤ 1

17. Green’s function is

G(x, ξ) =
{

sin x cos ξ x ≤ ξ

cos x sin ξ x ≥ ξ

So that the solution becomes

y(x) =
∫ x

0
G(x, ξ)f (ξ)dξ +

∫ π/2

x
G(x, ξ)f (ξ)dξ

=
∫ x

0
cos x sin ξ dξ +

∫ π/2

x
sin x cos ξ dξ

y(x) = −1 + sin x + cos x
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Chapter 8

1. u(x) = 1
3

(
x + 2√

3
sin (

√
3x

)
.

2. u(x) = 1
4 + 3

4 cosh 2x.

3. f (x) =
{ √

6x, x ≥ 0

−√
6x, x < 0.

4. Given that f (x) = 2
π

∫ π/2
0 u(x sin θ)dθ. It can be easily seen that f (0) = u(0).

In addition we see that f ′(x) = 2
π

∫ π/2
0 sin θu′(x sin θ)dθ. Then we have

f ′(0) = 2
π

u′(0). Hence rewriting in a systematic way

f ′(x) = 2

π

∫ π/2

0
u′(x sin θ) sin θdθ

u(0) = f (0)

u′(0) = π

2
f ′(0).

Let us write x sin η for x, and we have on multiplying by x and integrating

x
∫ π/2

0
f ′(x sin η)dη

= 2x

π

∫ π/2

η=0

{∫ π/2

θ=0
u′(x sin η sin θ) sin θdθ

}
dη.

Change the order of integration in the repeated integrals on the right-hand side
and take new variable φ in place of η, defined by the equation

sin φ = sin θ sin η.

Then the above integral equation takes the following form:

x
∫ π/2

0
f ′(x sin η)dη

= 2x

π

∫ π/2

θ=0

{∫ θ

φ=0

u′(x sin φ) cos φdφ

cos η

}
dθ

= 2x

π

∫ π/2

θ=0

{∫ θ

φ=0

u′(x sin φ) sin θ cos φdφ√
sin2 θ − sin2 φ

}
dθ.
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Changing the order of integration again, we obtain with the special observation
that 0 ≤ θ ≤ π/2; 0 ≤ φ ≤ θ ≤ π/2,

x
∫ π/2

0
f ′(x sin η)dη

= 2x

π

∫ π/2

φ=0

{∫ π/2

θ=φ

u′(x sin φ) sin θ cos φdθ√
sin2 θ − sin2 φ

}
dφ.

Now it is easy to see that

∫ π/2

θ=φ

sin θdθ√
cos2 φ − cos2 θ

= − sin−1
(

cos θ

cos φ

) ∣∣∣π/2

φ
= π

2
.

Hence our solution reduces to

x
∫ π/2

0
f ′(x sin η)dη = x

∫ π/2

0
u′(x sin φ) cos φdφ

= x
∫ π/2

0
u′(x sin φ)d(sin φ)

= u(x sin φ)|π/2
0

= u(x) − u(0) = u(x) − f (0).

Thus, we must have

u(x) = f (0) + x
∫ π/2

0
f ′(x sin θ)dθ;

and it can be verified by substituting that this function is actually a solution.
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indirect method, 288
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initial value problem, 8, 175
integral equation, 1, 259, 292, 313, 315
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Formula, 225
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unique, 70
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Volterra integral equation, 5, 86, 165, 307

Walli’s formula, 326
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wave–wave interaction, 273
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