
Introduction
Fractional calculus is a generalization of differentiation and integration to the arbitrary
(noninteger) order fundamental operatorDαa+, where α, a, ∈ ℝ. The concept of fractional
differential and integral equations has a long history. One may wonder what meaning
may be ascribed to the derivative of a fractional order, that is, d

ny
dxn , where n is a fraction.

In fact, the French mathematician l’Hôpital himself considered this very possibility
in a correspondence with Leibniz. In 1695, in a letter to l‘Hôpital, Leibniz raised the
following question: Can the meaning of derivatives with integer order be generalized to
derivatives with noninteger orders? l‘Hôpital was somewhat curious about that question
and replied with another question to Leibniz: “What if the order is 1

2?” In a letter dated
September 30, Leibniz replied: “d 1

2 x would be equal to x√dx : x. This is an apparent
paradox from which, one day, useful consequences will be drawn.” Thus, September 30,
1695, marks the exact date of birth of the fractional calculus! Therefore, the fractional
calculus has its origin in the works of Leibniz, l‘Hôpital (1695), Bernoulli (1697), Euler
(1730), and Lagrange (1772). Some years later, Laplace (1812), Fourier (1822), Abel (1823),
Liouville (1832), Riemann (1847), Grünwald (1867), Letnikov (1868), Nekrasov (1888),
Hadamard (1892), Heaviside (1892), Hardy (1915), Weyl (1917), Riesz (1922), P. Levy
(1923), Davis (1924), Kober (1940), Zygmund (1945), Kuttner (1953), J. L. Lions (1959),
Liverman (1964), and others developed the basic concept of fractional calculus.

Several approaches to fractional derivatives exist, for example, Riemann–Liouville
(RL), Hadamard, Grunwald–Letnikov (GL), Weyl, and Caputo. The Caputo fractional
derivative is well suited to the physical interpretation of initial conditions and boundary
conditions. We refer readers, for example, to the books [35, 63, 78, 137, 181, 187, 200,
209, 210, 219, 239], the articles [46, 43, 47, 73, 72, 85, 91, 89, 94, 97, 101, 102, 103, 104,
180, 241], and references therein.

In 1783, Leonhard Euler made his first comments on fractional order derivatives. He
worked on progressions of numbers and introduced for the first time the generalization
of factorials to the gamma function. A little more than 50 years after the death of Leibniz,
Lagrange, in 1772, indirectly contributed to the development of exponent laws for
differential operators of integer order, which can be transferred to arbitrary order under
certain conditions. In 1812, Laplace provided the first detailed definition of a fractional
derivative. Laplace states that a fractional derivative can be defined for functions with
representation by an integral; in modern notation it can be written as ∫ y(t)t−xdt. A few
years later, Lacroix worked on generalizing the integer order derivative of the function
y(t) = tm to fractional order, where m is some natural number. In modern notation, the
integer order nth derivative derived by Lacroix can be given as

dny
dtn
=

m!
(m − n)! t

m−n =
Γ(m + 1)

Γ(m − n + 1) t
m−n , m > n ,
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where Γ is Euler’s gamma function defined by

Γ(ς) =
∞

∫
0

tς−1e−tdt, ς > 0 .

Thus, replacing n with 1
2 and letting m = 1, one obtains the derivative of order

1
2 of the

function y:
d 1

2 y
dt 12
=
Γ(2)
Γ (32)

t
1
2 =

2
√π
√t .

Euler’s gamma function (or Euler’s integral of the second kind) has the same importance
in fractional order calculus, and it is basically given by the integral

Γ(z) =
∞

∫
0

tz−1e−tdt .

The exponential provides the convergence of this integral at∞. The convergence at zero
obviously occurs for all complex z from the right half of the complex plane (Re(z) > 0).

This function is a generalization of a factorial in the following form:

Γ(n) = (n − 1)! .

Other generalizations for values in the left half of the complex plane can be obtained in
the following way. If we replace e−t by the well-known limit

e−t = lim
n→∞
(1 − tn)

n

and then use n-times integration by parts, we obtain the following limit definition of
the gamma function:

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n) .

Therefore, historically the first discussion of a derivative of fractional order appeared in
a calculus written by Lacroix in 1819.

It was Liouville who engaged in the first major study of fractional calculus. Li-
ouville’s first definition of a derivative of arbitrary order ν involved an infinite series.
Here, the series must be convergent for some ν. Liouville’s second definition succeeded
in giving a fractional derivative of x−a whenever both x and a are positive. Based on
the definite integral related to Euler’s gamma integral, the integral formula can be
calculated for x−a. Note that in the integral

∞

∫
0

ua−1e−xudu ,
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if we make change the variables t = xu, then

∞

∫
0

ua−1e−xudu =
∞

∫
0

(
t
x)

a−1
e−t 1

x
dt = 1

xa

∞

∫
0

ta−1e−tdt .

Thus,
∞

∫
0

ua−1e−xudu = 1
xa

∞

∫
0

ta−1e−tdt .

Through the gamma function we obtain the integral formula

x−a = 1
Γ(a)

∞

∫
0

ua−1e−xudu .

Consequently, by assuming that dν
dxν e

ax = aνeax, for any ν > 0,

dν

dxν
x−a = Γ(a + ν)

Γ(a)
x−a−ν = (−1)ν Γ(a + ν)

Γ(a)
x−a−ν .

In 1884, Laurent published what is now recognized as the definitive paper on the
foundations of fractional calculus. Using Cauchy’s integral formula for complex valued
analytical functions, and a simple change of notation to employ a positive ν rather than
a negative ν, will now yield Laurent’s definition of integration of arbitrary order

x0Dαxh(x) =
1
Γ(ν)

x

∫
x0

(x − t)ν−1h(t)dt .

The Riemann–Liouville differential operator of fractional calculus of order α is defined
as

(Dαa+f)(t) :=

{{{{{
{{{{{
{

1
Γ(n − α) (

d
dt)

n t

∫
a

(t − s)n−α−1f(s)ds, if n − 1 < α < n ,

(
d
dt)

n
f(t), if α = n ,

where α, a, t ∈ ℝ, t > a, n = [α] + 1, [α] denotes the integer part of the real number α,
and Γ is the gamma function.

The Grünwald–Letnikov differential operator of fractional calculus of order α is
defined as

(Dαa+f)(t) := limh→0
h−α
[ t−ah ]

∑
j=0
(−1)j(αj )f(t − jh) .

Binomial coefficients with alternating signs for positive values of n are defined as

(
n
j)
=
n(n − 1)(n − 2) . . . (n − j + 1)

j! =
n!

j!(n − j)! .
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For binomial coefficient calculations, we can use the relation between Euler’s gamma
function and factorials given by

(
α
j)
=

α!
j!(α − j)!

=
Γ(α)

Γ(j + 1)Γ(α − j + 1)
.

The Grünwald–Letnikov definition of differintegral starts from classical definitions
of derivatives and integrals based on infinitesimal division and limit. The disadvantages
of this approach are its technical difficulty in computations and in proofs and with the
large restrictions on functions (see [262]).

The Caputo (1967) differential operator of fractional calculus of order α is defined as

(cDαa+f)(t) :=

{{{{{
{{{{{
{

1
Γ(n − α)

t

∫
a

(t − s)n−α−1f (n)(s)ds, if n − 1 < α < n ,

(
d
dt)

n
f(t), if α = n ,

where α, a, t ∈ ℝ, t > a, and n = [α] + 1. This operator was introduced in 1967 by the
Italian mathematician Caputo.

This consideration is based on the fact that for a wide class of functions, the three
best known definitions (GL, RL, and Caputo) are equivalent under some conditions
(see ([160]). Unfortunately, fractional calculus still lacks a geometric interpretation of
integration or differentiation of arbitrary order. We refer readers, for example, to books
such as [23, 36, 35, 78, 161, 181, 187, 200, 209, 219, 239], the articles [46, 43, 47, 73, 72,
85, 89, 94, 97, 101, 102, 103, 180, 241], and the references therein.

In June 1974, Ross organized the “First Conference on Fractional Calculus and
Its Applications” at the University of New Haven and edited its proceedings [227].
Subsequently, in 1974, Spanier published the first monograph devoted to Fractional
Calculus [209]. Integrals and derivatives of noninteger order and fractional integrod-
ifferential equations have found many applications in recent studies in theoretical
physics, mechanics, and applied mathematics. There is a remarkably comprehensive
encyclopedic-type monograph by Samko, Kilbas, and Marichev that was published in
Russian in 1987 and in English in 1993 [239] (for more details see [197]). Works devoted
largely to fractional differential and integral equations include the book by Miller and
Ross (1993) [200], Podlubny (1999) [219], Kilbas et al. (2006) [181], Diethelm (2010) [137],
Mainardi (2010) [198], Ortigueira (2011) [210], Abbas et al. (2012, 2015) [23, 36, 35],
Baleanu et al. (2012) [78], Zhou (2014, 2016) [263, 264], Almeida et al. (2015) [59],
Sabatier et al. (2015) [237], Povstenko (2015) [222, 221], Umarov (2015) [246], Cattani et al.
(2016) [122], Goodrich and Peterson (2016) [144], and Uchaikin and Sibatov (2016) [243].

Since the second half of the twentieth century, the study of fractional differential
and integral equations has made great strides (Oldham and Spanier 1974, Samko et al.
1993, Miller and Ross 1993, Kiryakova 1994, Gorenflo and Mainardi 1997, Podlubny 1999,
Kilbas et al. 2006). Thanks to these advances, fractional differentiation has been applied
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in many areas: Electrical engineering (modeling of motors, modeling of transformers,
skin effect), electronics, telecommunications (phase locking loops), electromagnetism
(modeling of complex dielectric materials), electrochemistry (modeling of batteries,
fuel cells, and ultracapacitors), thermal engineering (modeling and identification
of thermal systems), mechanics, mechatronics (vibration insulation, suspension),
rheology (behavior identification of materials, viscoelastic properties), automatic
control (fractional order PID, robust control, system identification, observation and
control of fractional systems), robotics (modeling, path tracking, pathplanning, obstacle
avoidance), signal processing (filtering, restoration, reconstruction, analysis of fractal
noise), image processing (fractal environment modeling, pattern recognition, edge
detection), biology, biophysics (electrical conductance of biological systems, fractional
modeling of neurons,musclemodeling, lungmodeling), physics (analysis andmodeling
of diffusion phenomenon), and economics (analysis of stock exchange signals). In
these applications, fractional differentiation is often used to model phenomena that
exhibit nonstandard dynamical behaviors with long memory or with hereditary effects.
We will now present a brief survey of applications of fractional calculus in science and
engineering.

The Tautochrone Problem. This example was studied for the first time by Abel in the
early nineteenth century. It was one of the basic problems where the framework of the
fractional calculus was used, although it is not essentially necessary.

Signal and Image Processing. In the last decade, the use of fractional calculus in signal
processing has increased tremendously. In signal processing, the fractional operators are
used in the design of differentiators and integrators of fractional order, fractional order
differentiator FIR (finite impulse response), infinite impulse response (IIR)-type digital
fractional order differentiator, a new IIR-type digital fractional order differentiator
(DFOD), and for modeling speech signals. The fractional calculus allows for edge
detection, enhances the quality of images, and has interesting possibilities in various
image enhancement applications such as image restoration, image denoising, and
texture enhancement. It is used, in particular, in satellite image classification and
astronomical image processing.

Electromagnetic Theory. The use of fractional calculus in electromagnetic theory has
emerged in the last two decades. In 1998, Engheta [139] introduced the concept of
fractional curl operators, and this concept was extended by Naqvi and Abbas [205].
Engheta’s work gave birth to a new field of research in electromagnetics, namely,
fractional paradigms in electromagnetic theory. Nowadays fractional calculus is widely
used in electromagnetics to explore new results; for example, Faryad and Naqvi [141]
have used fractional calculus for the analysis of a rectangular waveguide.

Control Engineering. In industrial environments, robots must execute their tasks quickly
and precisely, minimizing production time, and the robustness of control systems
is becoming imperative these days. This requires flexible robots working in large
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workspaces, which means that they are influenced by nonlinear and fractional order
dynamic effects.

Biological Population Models. The problems of the diffusion of biological populations
occur nonlinearly, and fractional order differential equations are appearing more and
more frequently in various research areas.

Reaction–Diffusion Equations. Fractional equations can be used to describe some
physical phenomena more accurately than classical integer order differential equa-
tions. Reaction–diffusion equations play an important role in dynamical systems in
mathematics, physics, chemistry, bioinformatics, finance, and other research areas.
There has been a wide variety of analytical and numerical methods proposed for frac-
tional equations [196, 258], for example, finite difference methods [127], finite element
methods, the Adomian decomposition method [226], and spectral techniques [194].
Interest in fractional reaction–diffusion equations has increased.

In recent years, there has been a significant development in the theory of fractional
differential and integral equations. It was brought about by its applications in the
modeling of many phenomena in various fields of science and engineering, such as
acoustics, control theory, chaos and fractals, signal processing, porous media, electro-
chemistry, viscoelasticity, rheology, polymer physics, optics, economics, astrophysics,
chaotic dynamics, statistical physics, thermodynamics, proteins, biosciences, and
bioengineering. Fractional derivatives provide an excellent instrument for the descrip-
tion of memory and hereditary properties of various materials and processes. See, for
example, [24, 25, 45, 55, 88, 98, 79, 80, 125, 159, 161, 197, 216, 238, 242, 248].

Fractional differential equations with nonlocal conditions have been discussed
in [44, 50, 138, 152, 126, 206, 207] and the references therein. Nonlocal conditions were
initiated by Byszewski [118] when he proved the existence and uniqueness of mild
and classical solutions of nonlocal Cauchy problems (C.P. for short). As remarked by
Byszewski [116, 117], nonlocal conditions can be more useful than the standard initial
conditions to describe some physical phenomena.

Two measures are most important. The Kuratowski measure of noncompactness
α(B) of a bounded set B in a metric space is defined as the infimum of numbers r > 0
such that B can be covered with a finite number of sets of diameter smaller than r.
The Hausdorff measure of noncompactness χ(B) is defined as the infimum of numbers
r > 0 such that B can be covered with a finite number of balls of radii smaller than r.
Several authors have studied measures of noncompactness in Banach spaces. See, for
example, books such as [58, 81, 71], the articles [62, 83, 84, 93, 103, 105, 163, 202], and
the references therein.

Recently, considerable attention has been paid to the existence of solutions of boundary
value problems (BVPs) and boundary conditions for implicit fractional differential
equations and integral equations with Caputo fractional derivatives. See, for exam-
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ple, [47, 51, 57, 56, 74, 94, 95, 97, 103, 164, 177, 188, 190, 191, 189, 241, 260] and the
references therein.

Functional implicit differential and integral equations involving Caputo fractional
derivatives were analyzed recently by many authors; see, for instance, [20, 17, 15, 14,
26, 34, 43, 90, 91, 92, 102, 104, 107, 108] and the references therein.

Ordinary and partial fractional differential and integral equations are one of the
usefulmathematical tools in both pure and applied analysis. There has been a significant
development in ordinary and partial fractional integral equations in recent years; see
the monographs of Abbas et al. [23, 36, 35], Appell et al. [67], Banaś and Mursaleen [82],
Miller and Ross [200], Podlubny [219], and the papers by Abbas et al.[8, 7, 5], Banaś et
al. [81, 83], and the references therein.

During the last 10 years, impulsive differential equations and impulsive differ-
ential inclusions with different conditions have been intensely studied by many
mathematicians. The concept of differential equations with impulses were intro-
duced by Milman and Myshkis in 1960 [201]. This subject was, thereafter, extensively
investigated. Impulsive differential equations have become more important in re-
cent years in some mathematical models of real-world phenomena, especially in
biological or medical domains and in control theory; see, for example, the mono-
graph of Graef et al. [148], Lakshmikantham et al. [186], Perestyuk et al. [215], and
Samoilenko and Perestyuk [240]; several articles have also been published, for exam-
ple, see [48, 57, 76, 90, 87, 86, 100, 105, 106, 157, 251, 252, 250, 254] and the references
therein.

In the theory of functional differential and integral equations, there is a special kind
of data dependency: Ulam, Hyers, Aoki, and Rassias [234]. The stability of functional
equations was originally raised by Ulam in 1940 in a talk given at the University of
Wisconsin. The problem posed by Ulam was the following: Under what conditions does
there exist an additive mapping near an approximately additive mapping? (For more
details see [244, 245]). The first answer to Ulam’s question was given by Hyers in 1941 in
the case of Banach spaces in [166]. Thereafter, this type of stability has been known as
the Ulam–Hyers stability. The Hyers theorem was generalized by Aoki [65] for additive
mappings and by Rassias [224] for linear mappings by considering an unbounded
Cauchy difference. In 1978, Rassias [224] provided a remarkable generalization of
the Ulam–Hyers stability of mappings by considering variables. A generalization of
the Rassias theorem was obtained by Gavruta [142]. The concept of stability for a
functional equation arises when we replace the functional equation by an inequality
that acts as a perturbation of the equation. Thus, the stability question of functional
equations is how the solutions of the inequality differ from those of the given functional
equation. Considerable attention has been devoted to the study of the Ulam–Hyers and
Ulam–Hyers–Rassias stability of all kinds of functional equations; one may consult
the monographs [167, 172]. Bota–Boriceanu and Petrusel [112], Petru et al. [217], and
Rus [234] discussed the Ulam–Hyers stability for operator equations and inclusions.
Ulam stability for fractional differential equations with Caputo derivatives are proposed
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byWang et al. [253]. More details fromahistorical point of view and recent developments
of such stabilities are reported in the monographs [128, 167, 172, 174, 223, 225] and the
papers [6, 24, 61, 92, 168, 170, 171, 173, 176, 182, 234, 252, 253, 254].

In this book we are interested in the existence and stability of solutions to initial
and BVPs for functional differential and integral equations and inclusions that involve
Caputo’s fractional derivative and Hadamard’s fractional integral. The book is arranged
and organized as follows.

In Chapter 1, we introduce notations, definitions, and some preliminary notions. In
Section 1.1, we give some concepts from the theory of Banach spaces; in Section 1.2 we
recall some basic definitions and facts on the theory of fractional calculus. Section 1.3
recalls some properties of set-valued maps. In Section 1.4, we give some properties
of the measure of noncompactness. Section 1.5 presents definitions and examples
concerning the phase space. Section 1.6 is devoted to fixed point theory; here we give
the main theorems that will be used in the following chapters. In Section 1.7, we give
other auxiliary lemmas.

In Chapter 2, we will be concerned with the existence and stability of solutions
for some classes of nonlinear implicit fractional differential equations (NIFDEs). In
Section 2.2, we prove some results concerning the existence and stability of solutions
for a system of NIFDEs, and Section 2.3 is concerned with the existence and stability
results for NIFDE with nonlocal conditions. In Section 2.4, we present other existence
results for NIFDE in Banach spaces. Section 2.5 is devoted to the existence and stability
results for perturbed NIFDEs with finite delay. In Section 2.6, we establish a sufficient
condition for the existence and stability of solutions of a system of neutral NIFDEs with
finite delay.

In Chapter 3, we will be concerned with the existence and stability of solutions
for some classes of impulsive NIFDEs. In Section 3.2, we establish some existence and
stability results for impulsive NIFDE with finite delay. Section 3.3 is devoted to the
existence and stability results for impulsive NIFDEs with finite delay in Banach space.
In Section 3.4, we prove existence and stability results for perturbed impulsive NIFDEs
with finite delay. The last section is devoted to proving other existence and stability
results for neutral impulsive NIFDEs with finite delay.

In Chapter 4, we prove sufficient conditions for the existence and stability of
solutions for some classes of BVPs for NIFDEs. In Section 4.2, we establish some
existence and stability results for BVP for NIFDEs with 0 < α ≤ 1. In Section 4.3, we
prove results for BVPs for NIFDEs with 1 < α ≤ 2. In Section 4.4, we give some stability
results for BVPs for NIFDEs. Section 4.5 is devoted to other stability results for BVPs for
NIFDEs in Banach spaces. In the last section, we prove the existence of L1-solutions of
BVPs for NIFDEs with local and nonlocal conditions.

In Chapter 5, we prove some existence and stability results for some classes of BVPs
for impulsive NIFDEs. In Section 5.2, we give some existence and stability results for
impulsive NIFDEs. Section 5.3 is devoted to other existence results for impulsive NIFDEs
in Banach spaces.
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In Chapter 6, we shall give results about the integrable solutions for implicit
fractional differential equations. In Section 6.2, we give some existence results for
integrable solutions of NIFDEs. Section 6.3 is devoted to L1-solutions of NIFDEs with
nonlocal conditions. In Section 6.4, we give some existence results for integrable
solutions for NIFDEs with infinite delay. Section 6.4 is devoted to other existence results
for integrable solutions for NIFDEs.

In Chapter 7, we shall prove some existence results for some classes of partial
Hadamard fractional integral equations and inclusions. In Section 7.2, we give some
existence results for a class of functional partial Hadamard fractional integral equations.
Section 7.3 is devoted to existence results for Fredholm-typeHadamard fractional integral
equations. In Section 7.4, we use the upper and lower solutions method for partial
Hadamard fractional integral equations and inclusions.

In Chapter 8, we shall present results on the stability of solutions for partial
Hadamard fractional integral equations and inclusions. In Section 8.2, we give some
Ulam stability results for partial Hadamard fractional integral equations. Section 8.3 is
devoted to some global stability results for Volterra-type partial Hadamard fractional
integral equations. In Section 8.4, we prove some Ulam stability results for Hadamard
fractional integral equations in Frèchet spaces. In Section 8.5 we present some Ulam
stability results for Hadamard partial fractional integral inclusions via Picard operators.

In Chapter 9, we present results on the stability of solutions for Hadamard–Stieltjes
fractional integral equations. In Section 9.2, we prove results on the stability of solutions
for Hadamard–Stieltjes fractional integral equations. Section 9.3 is devoted to global
stability results for Volterra-type fractional Hadamard–Stieltjes partial integral equa-
tions. In Section 9.4, we prove some Ulam stability results for a class of Volterra-type
nonlinear multidelay Hadamard–Stieltjes fractional integral equations.

In Chapter 10, we prove some results on the Ulam stability for random Hadamard
fractional integral equations. In Section 10.2, we present results on the stability of
solutions for partial Hadamard fractional integral equations with random effects.
Section 10.3 is devoted to global stability results for Volterra–Hadamard random partial
fractional integral equations. In Section 10.4, we prove the existence and Ulam stability
for multidelay Hadamard fractional integral equations in Frèchet spaces with random
effects.

Keywords and phrases: Differential and integral equations, implicit differential equa-
tion, fractional order, left-sided mixed Riemann–Liouville integral, Riemann–Liouville
and Caputo fractional order derivatives, Hadamard fractional integral, solution, up-
per and lower solutions, boundary value problem, initial value problem, nonlocal
conditions, contraction, existence, uniqueness, Banach space, ARéchet space, phase
space, impulse, finite delay, infinite delay, fixed point, attractivity, Ulam–Hyers–Rassias
stability.
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