10 Ulam Stabilities for Random Hadamard Fractional
Integral Equations

10.1 Introduction

Let Bg be the g-algebra of Borel subsets of E. A mapping v: Q — E is said to be
measurable if for any B € i one has

vIB)={weQ:v(w)eB}cA.

To define integrals of sample paths of a random process, it is necessary to define a
jointly measurable map.

Definition 10.1. A mapping T: Q x E — E is called jointly measurable if for any B € B
one has
T(B) = {(w,v) e @ xE: T(w,v) € B} c A x g,

where A x S is the direct product of the o-algebras A and g defined in Q and E,
respectively.

Lemma 10.2 ([136]). Let T: Q x E — E be a mapping such that T(., v) is measurable
forallv € E, and T(w, .) is continuous for all w € Q. Then the map (w, v) — T(w, V) is
jointly measurable.

Definition 10.3 ([156]). A function f: J x E x Q — E is called random Carathéodory if
the following conditions hold.

(i) The map (x,y, w) — f(x, y, u, w) is jointly measurable for all u € E.

(ii) The map u — f(x, y, u, w) is continuous for almost all (x, y) € Jand w € Q.

Let T: Q x E — E be a mapping. Then T is called a random operator if T(w, u) is
measurable in w for all u € E and it is expressed as T(w)u = T(w, u). In this case we
also say that T(w) is a random operator on E. A random operator T(w) on E is called
continuous (resp. compact, totally bounded, and completely continuous) if T(w, u) is
continuous (resp. compact, totally bounded, and completely continuous) in u for all
w € Q. The details of completely continuous random operators in Banach spaces and
their properties appear in Itoh [169].

Definition 10.4 ([140]). Let P(Y) be the family of all nonempty subsets of Y and C a
mapping from Q to P(Y). A mapping T: {(w,y): w € Q,y € C(w)} — Y is called
a random operator with stochastic domain C if C is measurable (i.e., for all closed
AcY, {weQ,Cw)nA + 0}is measurable) and forallopen D c Yandally € Y, {w €
Q:y e C(w), T(w, y) € D}is measurable. T will be called continuous if every T(w)
is continuous. For a random operator T, a mapping y: Q — Y is called a random
(stochastic) fixed point of T if for P-almost all w € Q, y(w) € C(w) and T(w)y(w) = y(w)
and for allopen D c Y, {w € Q: y(w) € D} is measurable.

https://doi.org/10.1515/9783110553819-010

Brought to you by | UCL - University College London
Authenticated
Download Date | 2/10/18 4:00 PM



10.2 PHFIEs with Random Effects =——— 299

Let® + A c BC,let G: A — A, and consider the solutions of the random equation
Gwu(t,x) =u(t,x,w); weQ. (10.1)

Inspired by the definition of the attractivity of solutions of integral equations (e.g., [36]),
we introduce the following concept of attractivity of solutions for random equation
(10.1).

Definition 10.5. Solutions of random equation (10.1) are locally attractive if there exists
a ball B(ug, 1) in the space BC such that, for arbitrary random solutions v = v(¢, x, w)
and z = z(t, x, w) of equations (10.1) belonging to B(ug, n) N A, we have that, for each
x €[0,b]andw € Q,

tlir(r)lo(v(t, x,w)—z(t,x,w))=0. (10.2)

When the limit (10.2) is uniform with respect to B(ug, 1) N A, solutions of equation

(10.1) are said to be uniformly locally attractive (or, equivalently, that solutions of (10.1)
are locally asymptotically stable).

Definition 10.6. The solution v = v(t, x, w) of random equation (10.1) is said to be
globally attractive if (10.2) holds for each solution z = z(t, x, w) of (10.1). If condition
(10.2) is satisfied uniformly with respect to the set A, solutions of equation (10.1) are
said to be globally asymptotically stable (or uniformly globally attractive).

In the sequel, we employ the following random fixed point theorem.

Theorem 10.7 (Itoh [169]). Let X be a nonempty, closed, convex, bounded subset of a
Banach space E, and let N: Q x X — X be a compact and continuous random operator.
Then the random equation N(w)u = u has a random solution.

10.2 Partial Hadamard Fractional Integral Equations with Random
Effects

10.2.1 Introduction

This section deals with some existence results and Ulam stabilities for a class of random
partial functional partial integral equations via Hadamard’s fractional integral by
applying random fixed point theorem with a stochastic domain.

This section deals with the existence of the Ulam stability of solutions to the
Hadamard partial fractional integral equation of the form

u(x,y,w) = u(x,y, w)

XYy
r(rl)r(rz) J J log §

ifx,y) e ,weQ,

dtds ;

-1
1ogX) =1 f(s, t, u(s, t, w), w)
t st

(10.3)
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300 —— 10 Ulam Stabilities for Random Hadamard Fractional Integral Equations

where J := [1,a] x [1,b]l,a,b > 1,r;,72 > 0,(Q, A) is a measurable space, and
U:Jx0Q - Randf:]xRxQ — Rare given continuous functions.

10.2.2 Existence and Ulam Stabilities Results

In this section, we discuss the existence of solutions, and we present conditions for the
Ulam stability for the Hadamard integral equation (10.3).

Lemma 10.8 ([113]). If Y is a bounded subset of Banach space X, then for each € > 0
thereis a sequence {yx};>, € Y such that

a(Y) < 2a(fyr}i2,) + €.

Lemma 10.9 ([202, 261]). O If {ux}2, € LY(J) is uniformly integrable, then a({uklie,) is
measurable and for each (x,y) € ]

Xy o xy
o u(s, t)dtds]» > <2 a({uk(s, 2, )dtds .
({f Jmf”)<2]]

Lemma 10.10 ([195]). Let F be a closed and convex subset of a real Banach space, and
let G: F — F be a continuous operator and G(F) be bounded. If there exists a constant
k € [0, 1) such that for each bounded subset B C F,

a(G(B)) < ka(B) ,
then G has a fixed point in F.

The following conditions will be used in the sequel.

(10.4.1) The function w — u(x, y, w) is measurable and bounded for a.e. (x, y) € J.

(10.4.2) The function f is random Carathéodory on J x R x Q.

(10.4.3) There exist functions p1, p>: J x Q — [0, o) with pj(w) € CJ,R,); i=1,2
such that for each w € Q

D2(x,y, w)

mlu(x, ¥, Wl

ooy, u, w) <pi(x,y, w) +

forallu e Rand a.e. (x,y) €.
(10.4.4) There exists a function g: J x Q — [0, co) with g(w) € L*®(J, [0, co)) for each
w € Q such that for any bounded B ¢ R

a(f(x,y, B,w)) < q(x,y,w)a(B), fora.e.(x,y)e].

(10.4.5) There exists a random function R: Q — (0, co) such that

(pi (W) + p5(w))(log a)™ (log b)"

Rw) > p*(w) + T+ 1) +12) ’
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10.2 PHFIEs with Random Effects =—— 301

where

u(w)= sup |u(x,y,w)l, pj(w)=supesspi(x,y,w); i=1,2.
(x,y)eJ x,y)e]

(10.4.6) There exist q1, g»: JxQ — [0, 00), with g;(., w) € L*°(J, [0, 0)),i =1, 2, such
that for each w € Q and a.e. (x, y) € ] we have

pi(x,y, w) < qi(x,y, w, w)D(x, y, w) .

(10.4.7) @(w) € L1(J, [0, c0)) for all w € Q, and there exists Ap > O such that for each
(x,y) € ] we have
HLLD)(x, y, w) < Ao ®@(x, y, W),

q* = supess q(x,y,w).
x,y,w)e]xQ

Theorem 10.11. Assume (10.4.1)-(10.4.5). If

4q*(log a)* (log b)"™
F(1+T1)F(1+T2) ’

l:=

then integral equation (10.3) has a random solution defined on J. Furthermore, if conditions
(10.4.6) and (10.4.7) hold, then the random equation (10.3) is generalized Ulam—Hyers—
Rassias stable.

Proof. From conditions (10.4.2) and (10.4.3), for each w € Q and almost all (x, y) € J, we
have that f(x, y, u(x, y, w), w) is in L1. Since the function f is continuous, the indefinite
integral is continuous for all w € Q and almost all (x, y) € J. Again, as the map y is
continuous for all w € Q and the indefinite integral is continuous on J, N(w) defines a
mapping N: Q x C — C. Hence, u is a solution for integral equation (10.3) if and only if
u = (N(w))u.

We will show that the operator N satisfies all conditions of Lemma 10.10. The proof
will be given in several steps.

Step 1: N(w) is a random operator with a stochastic domain on C. Since f(x, y, u, w) is
random Carathéodory, the map w — f(x, y, u, w) is measurable. Similarly, the product
(log )"~ (log ¥)r2~1 w of a continuous and measurable function is again
measurable. Further, the integral is a limit of a finite sum of measurable functions;
therefore, the map

Xy
Y\t f(s, t, u(s, t,w), w)
Y, 1 1 -)
W ulx, y, w) + II og og ST () dtd
00
is measurable. As a result, N is a random operator on Q x C to C.
Let W: Q — P(C) be defined by

Ww) ={u € C: |lullc < Rw)},
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302 —— 10 Ulam Stabilities for Random Hadamard Fractional Integral Equations

with W(w) bounded, closed, convex, and solid for all w € Q. Then W is measurable by
Lemma [[140], Lemma 17]. Let w € Q be fixed; then from (10.4.4), for any u € w(w), we
get

I((N(w)u)(x, y)l

y|2 L If(s, t, u(s, t, w), w)|

T StTrOl(,) s

< ulx, y, wl +

X r1—1
1 -’ ll
' og S og

vyt Ipa(s, t, w) + pa(s, t, w)|

log 7 T(r)I(r2)

-1 l

< |ux, y, w)| + llog )s_( dtds

Ol O
Cm— g O <

(p1(w) + p5(w))(log a)’* (log b)™
ITA+r)I(1+ry)

< pt(w) +

< R(w).

Therefore, N is a random operator with stochastic domain W and N(w): W(w) — N(w).
Furthermore, N(w) maps bounded sets to bounded sets in C.

Step 2: N(w) is continuous. Let {u,} be a sequence such that u,, — u in C. Then, for
each (x,y) € Jand w € Q, we have

2—-1

Xy
ri—-1
(N, ) - Nyl < [ | flog 2
00

log =
fos

% If(s’ t’ un(sa t’ W)’ W) _f(s’ t’ u(S’ t9 W)’ W)I
I(r1)I(r2)
Using the Lebesgue dominated convergence theorem, we get

dtds .

INW)up, - Nww)ujlc - 0 as n - oo.

As a consequence of Steps 1 and 2, we can conclude that N(w): W(w) — N(w)isa
continuous random operator with stochastic domain W, and N(w)(W(w)) is bounded.

Step 3: For each bounded subset B of W(w) we have a(N(w)B) < €a(B).Let w € Q be
fixed. From Lemmas 10.8 and 10.9, for any B ¢ W and any € > O there exists a sequence
{un}p2o € B, such that for all (x, y) € ] we have

a((N(w)B)(x,y))

Xy
_ YN s, tuls, tw),w)
_a<<|y(x,y)+ljlj log log;) St L) dtds; u eB})
XYy o]
X Y\ fls, t, un(s, t, w), w)
a<{1ji[ logs) og;) St rOI() dtds} >+e
n=1

F ri—-1 -1 o
X Y\ fGs, tus, t,w), w) } )
<4 J J a({ log <log t) ST () dtds . dtds + €
11
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10.2 PHFIEs with Random Effects =—— 303

X ri—-1 y -1 1 .
IOg—) (10g ?) ma({f(sy t, un(s, t,w), w) nzl)dtds+€

_ 4q"(loga)" (log b)"
I'A+r)IA+ry)
=fa(B) +€.

a(B) + €

Since € > 0 is arbitrary,
a(N(B)) < €a(B) .

Hence, from Lemma 10.10 it follows that for each w € Q, N has at least one fixed
point in W. Since [, intW(w) # 0, the measurable selector of intW exists. From
Lemma 10.10, the operator N has a stochastic fixed point, i.e., integral equation (10.3)
has at least one random solution on C.

Step 4: Generalized Ulam—Hyers—Rassias stability. Set

q; = supess qi(x,y,w); i=1,2.
x,y,w)ejxQ

Let u: Q — C be a solution of inequality (9.8). By Theorem 10.11, there exists v, which
is a solution of random equation (10.3). Hence,

v(x,y, w) = u(x,y, w)

xy
r—1

+JJ log log = > fs, &, vis, &, w), W)dtds; x,y)e], we Q.

11

StI(ry)I(r2)
From conditions (10.4.6) and (10.4.7), for each (x, y) € J and w € Q, we have
[u(x, y, w) = v(x, y, w)| < |ux, y, w) - N(w)()| + [N(w)(u) = N(w)(v)|

y| L If(s, t, u(s, t, w)) - f(s, t, v(s, t, wl

T(r)I(r) dids

r-1
s oty | [ oo 2] s

11

Xy
S D03+ s J J oe 3|

. Gluls,t,w)  g;lvis, t, W)l) D(s, t, w)
2 dtd
X( Eh! 1+ |ul " 1+ v st

t

r—1

ri-1
y

log =
lOgt
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304 —— 10 Ulam Stabilities for Random Hadamard Fractional Integral Equations

< D(x,y, w) +2(q5 + q3) "I, D) (x, y, w)
< [1+2(q7 + @)A1 P (x, y, w)

= CN,o DX, Yy, W) .

Hence, random equation (10.3) is generalized Ulam—Hyers—Rassias stable. O

10.2.3 An Example

Let E = R, Q = (—00, 0) be equipped with the usual g-algebra consisting of Lebesgue
measurable subsets of (—co, 0). Given a measurable function u: Q — C([1, e] x [1, e]),
consider the partial random Hadamard integral equation

u(x,y, w) = u(x, y, w)

Xy
x\r-t Y\ f(s, t,u(s, t, w), w)
+ J J <10g E) <log ) dtds (10.4)
11

t stl(r1)I(r2)

for (x,y) € [1,e] x [1, e], w € Q, where
ri,712>0, ux,y,w =xsinw+y2 cosw; (x,y)e[l,e]lx[1,el],

and
w2xy?
1+ w2 +ux,y, w))exty+3’

fx,y,ulx,y) = (x,y)ell,elx[1,e], we Q.

The function w — u(x,y, w) = xsinw + y? cos w is measurable and bounded, with
G, y,w)l <e+e’;

hence, condition (10.4.1) is satisfied.

The map (x, y, w) — f(x,y, u, w) is jointly continuous for all u € R, so jointly
measurable for all u € R. Also, the map u — f(x, y, u, w) is continuous for all (x, y) €
[1,e] x [1, e] and w € Q. So the function f is Carathéodory on [1, e] x [1, e] x R x Q.

Foreachu € R, (x,y) € [1, e] x [1, e] and w € Q we have

1
F0c, v, Wl < whxy? (14 —ul)

Hence, condition (10.4.3) is satisfied by p] = e3andpy(x,y, w) = p5 = 1. The condition
¢ <1holdswitha=b =eand g* = ei} Indeed, for each r1, r, > 0 we get

_ 4q”(log a) (log b)"
T T +r)Q+717)
< 4

T e3r(1+r)r+rp)
<1.

Brought to you by | UCL - University College London
Authenticated
Download Date | 2/10/18 4:00 PM
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Condition (10.4.6) is satisfied by

D(x,y, w) = w?w?xy?, and Agp = m
Indeed, for each (x, y) € [1, e] x [1, e] we get

wle3
Ir(A+r)Il(1+ry)
= Ao @(x,y, W) .

A D) (x,y, w) <

Finally, we can see that condition (10.4.7) is satisfied by g1 (x, y, w) = 1and g2 (x, y, w) =
e%. Consequently, Theorem 10.11 implies that the Hadamard integral equation (10.4)
has a solution defined on [1, e] x [1, e], and (10.4) is generalized Ulam-Hyers—Rassias
stable.

10.3 Global Stability Results for Volterra—Hadamard Random
Partial Fractional Integral Equations

10.3.1 Introduction

This section deals with the existence and stability of random solutions of a class of
functional partial integral equations of Hadamard fractional order with random effects
in Banach spaces.

The initial value problems of ordinary random differential equations have been
studied in the literature on bounded as well as unbounded intervals. See, for example,
Burton and Furumochi [114], Zielinski et al. [265], and the references therein.

In [8, 32], Abbas et al. studied existence and stability results for some classes of
nonlinear differential and integral equations of fractional order. This section deals
with the existence and the asymptotic behavior of random solutions to the nonlinear
quadratic Volterra random partial integral equation of Hadamard fractional order

u(t, %, w) = flt X, ult, x, w), W) + pepes F(rl)F(rz) ﬁ(logé)rll (1°g§>r2_1
11

déds

o (t,x)eJ:=[1,00) x[1,b], we Q,

x g(t, x,s, & u(s, & w), w)———
(10.5)

where b > 1,11, 1 € (0,00), &, B, y: [1, 00) — [1, 00), (Q, A) is a measurable space,
f:JxRxQ — Rand g: J; x Rx Q — R are given continuous functions, and
J1 ={(t,x,s,8€:1<s5<t1<¢&<s < bl Our existence results are based on Itoh’s
random fixed point theorem. Also, we obtain some results about the global asymptotic
stability of random solutions of the integral equation in question. Finally, we present
an example illustrating the applicability of the imposed conditions.
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306 —— 10 Ulam Stabilities for Random Hadamard Fractional Integral Equations

10.3.2 Existence of Random Solutions and Global Stability Results

In this section, we are concerned with the existence and the asymptotic stability of

random solutions for the Hadamard partial integral equation (10.5). The following

conditions will be used in the sequel:

(10.5.1) The functions f and g are random Carathéeodory.

(10.5.2) There exist a constant M, L > 0 with M < L and a nondecreasing function
Y1: [0, 00) — (0, co) such that

Mlu -v|

f(t, x, u, w) = f(t, x, v, )| < A +t)(L+u-v)

and
If(t1, x1, u, w) — flta, X2, u, w)| < (It1 — t2 + [x1 — x21)p1(lul)

for each (t, x), (t1, x1), (t2,x2) € J,u,v e Rand w € Q.
(10.5.3) The function t — f(t, x, 0, 0, w) is bounded on J x Q with

f*= sup f(t,x,0,0,w)
(t,x,w)ejxQ

and
tlim If(t, x,0,0,w)|=0; xe[l,b], weQ.

(10.5.4) There exist continuous measurable functions ¢: J x Q - Ry, p: J1 x Q —» R,
and a nondecreasing function i : [0, c0) — (0, co) such that

lg(t1, x1,5, &, u, w)—g(t2, X2, 8, & u, w)| < @(s, & w)(Ix1 - x2| + ly1 = y2D 2 (lul)

and
p(t, x,s,&w)
1+¢t+ul

for each (t, x), (s, t), (t1, x1), (t2, Xx2) € J, u € R, and w € Q. Moreover, assume that

t x
lim j”log
(o]
11

Theorem 10.12. Assume (10.5.1)—(10.5.4), then integral equation (10.5) has at least one
random solution in the space BC. Moreover, the random solutions of (10.5) are globally
asymptotically stable.

lg(t, x,s, &, u, w)| <

?'2—1
log%, p(ts X, S, 6’ W)dé’dS:O; X € [1’b] :

Proof. Setd” := sup , wexa d(t, X, w), where

72—1

a(t, x,w) = log)—( p(t,x,s, & w)déds .

§

t x
I(r)I(r2) I"(rz) Jljllog
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10.3 Global Stability Results for Volterra—Hadamard Random PFIEs =—— 307

From condition (10.5.4) we infer that d* is finite. Define a mapping N: Q x BC — BC
such that

t x -1
X
Nmmmm:mmmmmeM+nmnmjjl% O%E>

déds
s

The maps f and g are continuous for all w € Q. Again, as the indefinite integral is
continuous on J, N(w) defines a mapping N: Q x BC — BC. Then u is a solution for
integral equation (10.5) if and only if u = N(w)u.

Next we show that the function N(w)u € BC for any u € BC and each w € Q. By
considering the conditions of this theorem, for each (¢, x) € J and w € Q we have

x g(t, x, s, & u(s, & w), w) , tx)e],weQ. (10.6)

[(Nw)u(t, x)| < If(t, x, u(t, x, w), w) — f(t, x, 0, w)| + |f(¢, x, 0, w)|

r—1

logé—,

déds
s&

+1f(t, x,0, w)|

t x
r(rl)r(rz) J J ’bg

x |g(t, x, s, & u(s, & w), w)|——

- Mlu(t, x, w)|
T (X + O+ |ult, x, w)])
log —

t x
+mﬁ|1°g; 3

p(txs{) déds
“ T al) + uGs, ) + [u(y(s), )| s&
<M+f"+d*.

r-1 r-1

X

Hence, N(w)u € BC, and N(w) transforms the ball B, := B(0, n) into itself, where
n=M+f*+d*. Wewill show that N: @ x B, — By satisfies the assumptions of
Theorem 10.7. The proof will be given in several steps.

Step 1: N(w) is a random operator on Q x By, into By. Since f{(t, x, u, w) is random
Carathéodory, the map w — f{(t, x, u, w) is measurable in view of Lemma 10.2. Simi-
larly, the product (log £)"~(log ’—é)’rlg(t, X, s, & u(s, &, w), w) of a continuous and a
measurable function is again measurable. Further, the integral is a limit of a finite sum
of measurable functions; therefore, the map

w = N(w)u(t, x, w)

is measurable. As a result, N(w) is a random operator on Q x By, into By,.
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308 —— 10 Ulam Stabilities for Random Hadamard Fractional Integral Equations

Step 2: N(w) is continuous. Let {u,}nen be a sequence such that u, — uin B;,. Then,
for each (t, x) € J and w € Q we have

INW)un(t, x) - Nw)u(t, x)| < If(£, x, un(t, x, w), w) - f(t, x, u(t, x, w), w)|

t x
r(rl)r(rz) J J ’log s

X(Slgpjlg(t,x,s, & un(s, &, w), w) —g(t, x, s, &, u(s, §, w), W)Id(fglS

r-1 r-1

log —
§

M
< —||un - ullsc

£x rl—l X r—-1
J”log log —
F(r1)F(rz) ] ¢
X"g(t’x’ ""un(""w), W)_g(t’x""! u(""w)’ W)”Bcd{ds' (10'7)

Case1.If (t,x) € [1, T] x [1, b], T > 1, then, since u, — uasn — oo and f, g are
continuous, (10.7) gives

INW)u, — N(w)u|gc > 0 as n — co.

Case 2. If (t,x) € (T,00) x [1,b], T > 1, then from (10.5.4) and (10.7) for each
(t, x) € ] we have

INW)uy(t, x) — Nw)u(t, x)| < M||un - ullsc

t x
ﬁ( " 1 pt,x,s, 8
l — — 2 dé&d
r(rl)r(rz) J J ‘ 8% g 4ol
< Wltn ~ulse + 20,0 .
Thus, we get
INOWn(t, )~ NOWu(t, 01 < 2~ e + 26,5, w) (10.8)

Since u, — uasn — coand t — oo, (10.8) gives
INW)u, — N\w)u|lpgc - 0 as n — co.

Step 3: N(w)(By) is uniformly bounded. This is clear since N(w)(By) ¢ By; w € Q
and B, is bounded.

Step 4: N(By) is equicontinuous on every compact subset [1, a] x [1, b] of J,a > 1.
Letw € Q, (t1, x1), (2, x2) € [1, a] x [1, b], t1 < t,X1 < X2, and let u € By. Then we
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10.3 Global Stability Results for Volterra—Hadamard Random PFIEs = 309

have

INW)u(tz, x2) - N(wju(ty, x1)|
< |f(t2) X2, u(tZs X2, W), W) _f(tZJ X2, u(t17 X1, W)) W)l

+ |f(t21 X2, u(tly X1, W)y W) _f(tl,X1, u(t1) X1, W)’ W)l

1 t le tz -1 1 X r-1
o og = og =
HnﬂvﬂJJlgs 8%

X |g(t2’ X2, S, {9 u(S’ é" W)) W) _g(tlr X1, S, g: u(s) {9 W)9 W)ld‘fds

t) x - -1
rm;mﬁmoﬁg)lo%%>

11
X g(tl, X1, S, {; u(s9 {9 W)9 W)dé’ds

ty xq -1 ra-1
o | [ (es5) (2%

11
Xg(tl’ X1, S, {y u(s’ {, W), W)d{dsl

ty xq r-1 ra-1
*rarta ) 1[0 ) (o)

11

ty ri-1 X1 r-1
_(1 _) log XL
<Og s <Og <*>

Thus, we obtain

+

|g(t1’ X1, S, 5’ u(s, {, W), W)|d§dS .

IN(W)u(tz, x2) - N(w)u(ty, x1)|
M
< f(lu(tz, X2, W) — u(ty, x1, w)| + |u(tz, x2, w) — u(ty, x1, w)l)

+ ([t = ta| + 1x2 = x1 )1 (lullac)

t) Xy
1 jj’ tz 1’1—1 X2 Tz—l
_— log = log —=
Trorr) 1 1%%s 5%

X @t %, 5, & W)(It2 - 1] + X2 — xe )2 (lullzc)déds
[2X2
1 ty
_ log = log —=
+nmnmJJ’gs £%

X |g(t1, X1, S, & U(S, {; W): W)ldgds

ri—-1 -1

X2
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310 —— 10 Ulam Stabilities for Random Hadamard Fractional Integral Equations

ri— -1

t) xo
v |l el s

x |g(t1, X1, s, & u(s, & w), w)|déds

log

ri— -1

1 TR
o log -2 x|
r(rl)r(rz)tj J l s f

X |g(t1’ X1, S, £) u(S’ 67 W)5 W)|dfds

t X1 - -1
ot ) (%)

() (a2

Hence, we get

log

X1, S, ‘f’ u(sy {, W), W)ldn{ds .

INW)u(tz, x2) = N(w)u(ty, x1)|

M
< f(|u(t2,X2, w) —u(ty, x1, w)| + |u(ta, x2, w) — u(ty, x1, w)|)

+ (It = t1] + Ix2 = x1 1)1 (1)

(It2 = t1l + Ix2 = x11)2(n)
I'(r))I'(r2)

t) X3 t
log 2
<[ [ s
11
B(t2) x,
+ 1 J J 1
I(r)I(r2)
B(t1) 1

to
log =
gs

r—1

@(s, §déds

ri—-1 X2
log —
§

r-1 -1

X
221 plt, x1, s, )|déds

§

og

log

B(t2)
s

ri—-1 -1

10gx—2 p(t1, x1, 8, §)|déds

§

o
F(r1)F(T2) J J

ri—-1 -1

log% p(t1, x1, 8, §)|déds

t) X2
r(rl)r(rz) J J log

t1 x1

r-1 r-1
+mjj (log%> <logx—;>
(i) )

From the continuity of ¢, p and as t; — t; and x; — x», the right-hand side of the
preceding inequality tends to zero.

p(t1, x1, s, & w)ldéds .
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10.3 Global Stability Results for Volterra—Hadamard Random PFIEs = 311

Step 5: N(w)(By) is equiconvergent. Let (¢, x) € J, w € Q and u € By. Then we have

IN(w)u(t, x)| < If(t, x, u(t, x, w), w) — f(t, x, 0, w) + f(t, x, 0, w)|

t x - Yo
F(rl)l"(rz) J J <1°g£) 1 (1°g§> 1

x g(t, X, s, &, u(s, &, w),w)dé'gs
Mlu(t, x, w)| + If(t, x, 0, )|

T (A + O + fult, x, w)|)

t x ri-1 ra—1
* o | [ (es) (s )

p(t,x,s,&w)
1+t+u(s, & w)

déds

M
1_ + |f(ta X, 0) W)l

t x e e
F(H)F(Tz)(l +1) J J <1°g @) 1 <10g %) 1p(t, X, s, &, wydéds

*

IN

M
< — +|f(t, x, 0, w)| + .
1+t A ) 1+t

Thus, for each x € [1, b] we get
IN(w)u(t, x)| - 0, as t » +oo.

Hence,
IN(w)u(t, x) - N(w)u(+oo, x)| > 0, as t - +oo.

As a consequence of Steps 1-5, together with Lemma 1.57, we can conclude that N: Q x
By, — By is continuous and compact. From an application of Theorem 10.7 we deduce
that the operator equation N(w)u = u has a random solution. This further implies that
random integral equation (10.5) has a random solution.

Step 6: The uniform global attractivity. Let us assume that ug is a solution of integral
equation (7.1) with the conditions of this theorem. Consider the ball B(uo, n*) with

n* = M where

t x
. 1 Jrj 1 r1 <1 )rz—l
M := su 0 o)
DI (omgren | ) g 8%
x |g(t, x, s, &, u(s, &, w), w)

- g(t,x,s, & uo(s, & w), w)|déds; u € BC } .
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312 — 10 Ulam Stabilities for Random Hadamard Fractional Integral Equations

Taking w € Q and u € B(ug, 1*), we have

IN(w)u(t, x) — uo(t, x, w)| = IN(w)u(t, x) - N(w)uo(t, x)|
< |f(t, x, u(t, x, w), w) = f(E, x, uo(t, x, w), w)|

t x e e
) J J (105 ;) 1(1°g§) 1

déd
X180t X, 5, &, uls, & w), W) — g(6 %, 5, & uols, & w), w)] 129

s§

< fllu—uolch+M*
M
< f”* +M* =n"

Thus, we observe that N(w) is a continuous function such that N(w)(B(ug, n*)) ¢
B(ug, n*). Moreover, if u is a solution of integral equation (10.5), then

lu(t, x, w) — uo(t, x, w)| = IN(w)u(t, x) — N(w)ug(t, x)|
< |f(t, x, u(t, x, w), w) = f(t, x, uo(t, x, w), w)|

t x - ra—
o) | Gesd) " (en)”

X |g(t’ X, S, {9 u(S, ‘f, W)a W) - g(ty X, S, ‘f, UO(S, ‘{’ W)’ W)|d{d5 .
Thus,

M
lu(t, x, w) — uo(t, x, w)| < flu(t, X, w) — uo(t, x, w)|

t x
-1 X -1
F(rl)F(rz) J J (log —) <10g E> p(t, x, s, & w)déds . (10.9)
Using (10.9), we get
f i
lim |u(t, x, w) — ug(t, x, w)| < hm log <log—)
t—oo 00 F(Tl)r(l’z) L M) 19 f

x p(t, x, s, &, w)déds =

Consequently, all random solutions of integral equation (7.1) are globally asymptotically
stable. O

10.3.3 An Example

Let Q = (-00, 0) be equipped with the usual g-algebra consisting of Lebesgue mea-
surable subsets of (-0o, 0). Given a measurable function u: Q — AC([1, o0) x [1, e]),
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10.3 Global Stability Results for Volterra—Hadamard Random PFIEs =— 313

consider the partial Hadamard random fractional integral equation

tx
10(1 + ¢+ t2 + 63 + tw? + w?)

t x
X\ In(1 + 2x(s&) " Luls, &))) .
lj J 1og (log 3) (1 +t+u(s, HD2(1 +x2 + t4)d$ds ;

u(t, x, w) = (1 + sin(u(t, x, w)))

Fz(q)

(t,x) e[1,00)x[1,e], we Q
(10.10)

wherery =1, =q > 0,

tx(1 + sin(u))

fit, xu, w) = 10(1 + (1 + w2 + 2)

for (t,x) e Jwe Qand u € Rand

In(1 + x(s&)~|ul)
(L4 t+ uD?2(1 +x2 + t4)

glt,x,s,&,u,w) =

for (t,x,s,é) e Jiwe Qandu € R.

We can easily check that the assumptions of Theorem 10.12 are satisfied. In fact,
clearly, the maps (¢, x, w) — f(t, x, u, w) and (¢, x, w) — g(t, x, s, &, u, w) are jointly
continuous for all u € R and, thus, jointly measurable for all u € R. Also, the maps
u— f(t,x,u,w)and u — g(t, x, s, &, u, w) are continuous for all (¢, x) € Jand w € Q.
Thus, the functions f and g are Carathéodory; then condition (10.5.1) is satisfied. The
function f is contmuous and satisfies (10.5.2), where M = 10 , L = 1. Also, f satisfies
(10.5.3), with f* = -&. Next, let us note that the function g satisfies (10.5.4), where

p(t,x,s,&) = 1"+X2+t4 Also

x|?21
logg p(t, x, s, §)déds

t
[1im p(t, x) J |log
1

[ ——

x|%°t déds
s&

t x
ql
- lim ”llo
t—>ool+x2+t4 &5
11
9x(log t)?
— lim 229557
t—»oo1+x2+t4

é’

0.

Hence, by Theorem 10.12, integral equation (10.10) has a random solution defined
on [1, 0o) x [1, e], and the random solutions of this integral equation are globally
asymptotically stable.
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314 —— 10 Ulam Stabilities for Random Hadamard Fractional Integral Equations

10.4 Multidelay Hadamard Fractional Integral Equations in
Fréchet Spaces with Random Effects

10.4.1 Introduction

In this section, we present some results concerning the existence and Ulam stabilities
of random solutions for some functional integral equations of Hadamard fractional
order and random effects in Fréchet spaces.

Recently, some interesting results on the existence and Ulam stabilities of the
solutions of some classes of differential equations were obtained by Abbas et al. [5, 24,
25, 28]. This section deals with the existence and Ulam stabilities of random solutions
of the problem of Hadamard fractional integral equations

u(t, x, w) = u(t, x, w) + f(t, x, (HI’u)(t, x, w), u(t, x, w), w)

£ x X rz—l
1 log =
r(rl)r(rz)lj J Og (Og y)

Xg(ts X, S, ys u(s - T17y_ 61) W), ey u(S - Tm,y— £ma W), W) diljs ’
if (¢, x) e J:=[1,+00) x [1,b], we Q, (10.11)

u(t’ X, W) = (D(t9 X, W) s if (t’ X) € j = [_T, OO) X [_{’ b]\(l, 00) X (1’ b], weQ s
(10.12)

whereb > 1,0 = (1 1),r=(r1,12), 11,12 € (0, oo),HI{7 is the Hadamard integral of
orderr, 7i,§; > -1; i = 1...,m, T = maxj=1.. m{7i}, § = maxi=1..,mi{éi}, (2, A)isa
measurablespace,y. ]xQ SR, f:JxRxRxQ - R,g:J' x Rx Q — Rare given
continuous functions, and J' = {(t, x,s,y): 1<s<t, 1<y <x< b}

Our investigations are conducted in Fréchet spaces with the application of a
stochastic fixed point theorem of Goudarzi for the existence of solutions of prob-
lem(10.11)-(10.12), and we prove that all solutions are generalized Ulam-Hyers—Rassias
stable.

10.4.2 Existence of Random Solutions and Ulam stabilities results

Let us start by defining what we mean by a random solution of problem (10.11)—(10.12).

Definition 10.13. A function u € C is said to be a random solution of (10.11)-(10.12) if u
satisfies equation (10.11) on J and (10.12) in J.

Now we are concerned with the existence and uniform global attractivity of random
solutions for problem (10.11)—(10.12). Set

]p = [1,p]><[1,b], ]II,={(t,X,S,Y)1 1SSStSP’1§)’SX3b}§ pEN\{O’l}-
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10.4 Multidelay HFIEs in Fréchet Spaces with Random Effects = 315

The following conditions will be used in the sequel:

(10.7.1) The functions w — u(t,x,w) and w — @(t, x, w) are measurable for a.e.
(t,x)e]Jp or (t,x) € J, respectively, and the functions f and g are random
Carathéeodory.

(10.7.2) There exist continuous measurable functions [, k: J, x Q — R, such that

If(t, x, u1, vi, w) = f(t, x, up, vo, w)| < l(t, x, w)|ug — uz| + k(¢, x, w)|v1 — v

for each (t,x) € Jp, u1,uz, vy, vy € R, and w € Q. Moreover, assume that the
function (u, v) — f(t, x, u, v, w) satisfies

flt, x, Au, Av, w) = Af(t, x,u,v,w); forde(0,1),(t,x)eJp,andwe Q.

(10.7.3) There exist continuous measurable functions P;: ];j xQ—->R,,i=1,...,m,
such that

m
|g(t1 Xy S, Y, ULy oo s Um, W)l < zpl(t’ X, S, Y, W)lui|
i=1

for (t,x,s,y) € Ji,u; € R, and w € Q. Moreover, assume that the function
(Ugy ... um) — glt, x,ug, ..., Un, w) satisfies

gt,x, Aug, ..., Aum, w) =Ag(t,x,uy, ..., um,w); forde(0,1),(t x)<Jp,

andwe Q.

(10.74) There exist Q;i: J, x 2 — [0,00),i =1, ..., m, with Q;(., w) € L®°(J,, [0, c0)),
i=1,...,m,suchthat foreach w € Qand a.e. (t, x) € J, we have

Pi(t,x,s,y, w) < @(t, x, w)Qi(s,y,w), i=1...,m.

For any p € IN\{0, 1} set

@* = sup |D(t,x,w)|, up= sup |u(t,x,w),

(t,x,w)efxQ (t,x,W)€JpxQ
fp = Sup |f(t’X’ 0’ Oa W)| ’
(t,x,w)e],xQ
kp=sup k(t,x,w), l,= sup It x,w),
(t,x,w)€]pxQ (t,x,w)e]pxQ

- X

1=l pit, x, s
Og— l( ’X’ ’y,W)

m
dyds, P,=) Pj,.
Tl p= 2Py

i=1

t x

Py, = sup J”log
(t,x,w)€e],xQ 11

Theorem 10.14. Assume (10.7.1)-(10.7.3). If

lp(lng)rl (log b)

b= Pp+ky F(1+r1)1"(1+r2)

(10.13)

then problem (10.11)—(10.12) has at least one random solution in space C. Furthermore,
if condition (10.7.4) holds, then problem (10.11)—-(10.12) is generalized Ulam—Hyers—
Rassias stable.
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316 —— 10 Ulam Stabilities for Random Hadamard Fractional Integral Equations

Proof. Let N: Q x C — C be the mapping defined by

(@(t, x, ), (t,x)eJ,
u(t, x, w) + f(t, x, ELLu)(t, x, w), u(t, x, w), w)

t x

1 t ri—1 X r-1
Moot = 1 | [ (o8) (1085) wed. a0

11

xglt,x,s,y,u(s -1,y - &1, w), ...,
dyds

_u(S—Tm,y—Em,W),W) sy (t,x)e].

The maps @, y, f, and g are continuous for all w € Q. Again, as the indefinite integral is
continuous on J, N(w) defines a mapping N: Q x C — C. Then u is a random solution
of problem (10.11)-(10.12) if and only if u = N(w)u.

For each p € N\{0, 1} and any w € Q we can show that N(w) transforms the ball
By :={u € C: |ullp < np} into itself, where 17, := max{®~, n},}, with

Indeed, forany w € Q and each u € C and (¢, x) € J we have
IN(w)u(t, x)| < |D(t, x, w)| < @*,
and for any w € Q and each u € C and (¢, x) € J, we have

IN(wW)u(t, x)| < |u(t, x, w)l + Ift, x, ELu)(t, x, w), u(t, x, w), w)]

t x
ooy | 118

11
x|g(t,x,s,y,u(s — 11,y — &1, W), ..., u(S — T, ¥ — &m, W), w)|dyds
< |u(t, x, w)| + (£, x, 0,0, w)|

+1(t, x, WIELu)(t, x, w)l + k(t, x, w)lu(t, x, w)]

71—1 X 72—1

log —
y

r—1

X
log -
y

t x
R J J pos 5[

x Y Pi(t, X, s, y)lu(s - 7, y - &)|dyds

i=1
< u(t, x, w)| + If(t, x, 0,0, w)| + n;,l(t, x, WA 1| + n;,k(t, X, W)

=

ri—-1 -1

Pi(t,x, s, y)dyds

X
log —
gy

F("1)F(V2) z

i=1

Brought to you by | UCL - University College London
Authenticated
Download Date | 2/10/18 4:00 PM
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Mylp(log p)" (log b)™ P&
Syp+fp+ F(1+r1)F(1+r2) +r1pkp+rlpi:z;PlP
I,(log p)* (log b)" >
F(1+r1)F(1+r2)

syp+fp+n;,<Pp+kp+

=up+fp +’7£€p
<Ny -

Thus,
INWIp < np -

Hence, N(w) transforms the ball By, into itself. We will show that N: Q x B, — By
satisfies the assumptions of [147, Theorem 3.1]. The proof will be given in three steps.

Step 1. N(w) is a random operator on Q x By, into By. Since f(t, X, u, v, w) is random
Carathéodory, the map w — f{(t, x, u, v, w) is measurable in view of Lemma 10.2.
Similarly, the product (log £)"*~*(log %)’2‘1 g(t,x, uq,...,un,w) of a continuous and
a measurable function is again measurable. Further, the integral is a limit of a finite
sum of measurable functions; therefore, the map

w = N(w)u(t, x, w)

is measurable. As a result, N(w) is a random operator on Q x By, into By,.
Step 2. N(w) is continuous. Let {u,} be a sequence such that u, — u in B;. Then for
each (x,y) € J, and w € Q we have

[(N(W)un)(x, y) = (N(W)u)(x, y)|
< Iftt, x, EIu)(t, x, w), un(t, x, w), w) - f(t, x, L), x, w), u(t, x, w), w)|

t x X r-1
J’J'|log log—
F(Tl)F(fz) y
11
X|g(t’X,3,y, un(S_ley—flyw),---,un(S—Tm,y—fm, W)

dyds
-8, x, 8, u(s—11,y = &1, W), .. ., U(S =T, ¥ — &y W), W) yy

< U(t, x, WHT [un(t, x, w) — u(t, x, w)| + k(t, x, w)|un(t, x, w) - u(t, x, w)|

t x
+mjj|logg

x|gt, X, 8, Y, un(S =711,y = &1, W), .. ., Un(S =T, ¥ — &y W), W)

-g(t,x,8,y,u(s =71,y = &1, W), ..., U(S = Ty, ¥ — &, W), W)|dyds .

ri—1 r—-1

bs
log —
y

From the continuity of g and 7T/, and using the Lebesgue dominated convergence
theorem, we get
INw)up, - Nw)ulp, - 0 as n — oo.
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318 = 10 Ulam Stabilities for Random Hadamard Fractional Integral Equations

Step 3. N(w) is affine. For each u, v € By, (t, x) € Iy andany A € (0,1)and w € Q
we have

Nw)(Au + (1 - )v) = u(t, x, w) + Af(t, x, FLu)(E, x, w), u(t, x, w), w)

t x .
" oD J J CHE (1085 ) r2-1

xg(t, X, S, Y, u(s =11,y = &1, W), ..., u(s =T, y — ém, w), w)dyds
+ (1= Dfit, x, Lu) (e, x, w), u(t, x, w), w)

F(rl)F(rZ) J J <10g ;é) r;-1

1
xg(t, X, 8, Y, u(s — 11,y — &1, W), ..., u(S — T, ¥ — &m, W), w)dyds
= AN(W)(W) + (1 = HONw)(v) .

Hence, N(w) is affine.
As a consequence of Steps 1-3, together with [147, Theorem 3.1], we deduce that N
has a fixed point v that is a random solution of problem (10.11)—(10.12).

Step 4. Generalized Ulam—Hyers—Rassias stability. Set

Qip = supess Qi(s,y,w), Qp= Zle

(s,y,w)€e]pxQ
Let u: Q — By, be a solution of the inequality
lu(t, x, w) — (NWu)(t, )l < @(t, x,w), forae.(t,x)e];, weQ, (10.15)

and v a random solution of problem (10.11)-(10.12). Then |lull, < n, vl < 1, and

(@(t, x, w), t,x)ej,
u(t, x, w) + fit, x, TILv)(t, x, w), v(t, X, W), w)
t x
1 t\11 x\?1
V(& X W) = 1 T I(r) J J (1og5) " (1os) wed,
xg(t, X, S, ¥, V(S —T1, Yy — &1, W), ...,
V(S —Tm,y —ém, W), w) yds (t,x)e].

For each (¢, x) € J and any w € Q we have

[u(t, x, w) = v(x, y, w)| < |u(t, x, w) - N(w)(u(t, x, w))|
+ IN(w)(u(t, x, w)) = N(w)(v(t, x, w))|
<ox,y,w).
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Next, from condition (10.7.4), for each (¢, x) € J, and any w € Q we have

[u(t, x, w) = v(x, y, w)| < |u(t, x, w) — N(w)(u(t, x, w))|
+ |N(w)(u(t, x, w)) — N(w)(v(t, x, w))|
< @(x, y, w) + Ifit, x, ELu)(t, x, w), u(t, x, w)) - f(t, x, L), x, w), v(t, x, w))|

t x
1 JJ’|1 tT1—1 1 X 72—1
+ = 0g — 0g —
Iror) ) J %8sl 8y
X|g(t,x’5,y, U(S_ley—fl,w),---yu(S—Tm,y—'fm’W),W)

dyds
-8t x, 8, Y, v(s—T1, ¥y &1, W), ..., V(S =T, ¥ — Em, W), W) Zy

< o0, y, w) + I(t, x, )T Lu)(t, x, w) — HIv)(t, x, w)|
+ k(t, x, w)|u(t, x, w) — v(t, x, w)|

T2—1

log o(t, x,w)

X
10 -
gy

t x
F(r1)F(rz) ”|

11
X (Z Qi(s, M(lu(s -1, y = &, W)l + [v(s = Ti, ¥y = &, W)I)> dyds

i=1

< QX y, w) + €plult, x, w) — v(t, x, w)|

+—2n<p(t, X, W) thx|lo L X a iQ- dyds
] ®5 y i-1 v

I(r1)I(r2)
< @(t, x, w) + €plu(t, x, w) — v(t, x, w)|

71—1

log

-1

2nQue(t, x, w)
i A kR4 J J dyds .

I(ri)I'(r2)

X
log -
y

1

Thus, for each (¢, x) € J, and any w € Q we obtain

t x
2 ri—-1
lu(t, x, w) — v(x, y, w)| < pltx, w) < Q% JHIOg— 1 log
11

1-¢, T T (r)

X -1
- dyds
y Y )

1 <1 . 2nQp(log p)" (log b)™
_1—€p F(1+r1)1"(1+r2)

1= Cy @t X, W)

)go(t, X, W)

Hence, for each (¢, x) € ];; and any w € Q we get
[u(t, x, w) = v(x, ¥, W)l < cn,p (X, ¥, W),

where cy,y := max{1, cjv, q,}. Consequently, random problem (10.11)-(10.12) is general-
ized Ulam-Hyers—Rassias stable. O
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320 —— 10 Ulam Stabilities for Random Hadamard Fractional Integral Equations

10.4.3 An Example

Let Q = (-00, 0) be equipped with the usual o-algebra consisting of Lebesgue measur-
able subsets of (-0, 0). Given a measurable function u: Q — C([-1, o) x [-2, €]),
consider the problem of Hadamard fractional order integral equations

xe3-2t xcpe 2 2p 1 Hr .
u(t, x, w) = Trw)ditiad)  1rw? (eI Tzu)(t, x, w)l + e”lu(t, x, w)l)
JEjS 1 <l X>?’z—1
o og —
r(rl)r(rz) > 5y
11
1
xg(t,x,s,y,u(s—=1,y -2, w), u(s - E,y— 3 w), w)
1
X gdyds , if(t,x)eJ:=[1,+00)x[1,e], we Q, (10.16)
2 -
s X, = , if(t, , Q, 10.1
u(t, x, w) w2 B2 if(t,x)e], we (10.17)
where

] = [_1’ OO) X [_2) e]\(]-’ OO) X (1’ e] ’ r= (rly r2) € (O’ OO) X (O’ OO) ’

e—2
Cp =

= e TR p € N\{0, 1},
pre+te T+ F(1+71)F(1+r2)
xcps_T}(Iull + |uz|) sin VEsins

(1+w2)(1+x2+12) ’

g(tyxys’y’ul’uZyW): if(tyxysyy)ejl’

and ui,u> € R,

and
J'={t,x,s,y):1<s<tand 1<x<y<e}.
Set
xe3-2t
t) I’ = ’
Kt x, w) (1+w2)(1+t+x32)
xcpe 2
fit, x,u, v, w) = —F——(e*|ul + eF|v]); p e N\{0,1}.
1+ w?

We have yp = e2. The function f is continuous and satisfies (10.7.2), with

—t-2+2p —t-2+4p
XCpe > XCpe

I(t,x,w) = 1+w”, k(t,x,w) =

lp — Cp€_2+2p,
Also, the function g is continuous and satisfies (10.7.3), with

3 . .
xcps™ sin Vtsins

Pq(t, x,s,y,w) =Py(t,x,s,y,w) = ;
1 ¥ w) = Pa W) (1+w?2)(1+x2+t2)

t,x,s,y) €],

-3
Py,=cyp7e
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10.5 Notes and Remarks = 321

Condition (10.7.4) is satisfied by
cps7 sins xsin vt
Ql(S’y’ W)=QZ(S’y’ W):TVVZ’ and ¢(t’x’ W)=m-

Condition (10.13) holds, with b = e. Indeed, for each p € N\{0, 1} we get

Py +ky+

Ip(log p)" (log b)" 3 o e *+2Ppn -
_ - 1.
TA+r)I(d+ry)  P\P e*e Y TFa i ra+n) <

Hence, by Theorem 10.14, problem (10.16)—(10.17) has a random solution defined on
[-1, +00) x [-2, e] and is generalized Ulam-Hyers—Rassias stable.

10.5 Notes and Remarks

The results of Chapter 10 are taken from Abbas et al. [8, 7, 6, 27]. Other results may be
found in [5, 7, 21, 36, 40].
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