
8 Stability Results for Partial Hadamard Fractional
Integral Equations and Inclusions

8.1 Introduction

This chapter deals with some existence and Ulam stability results for several classes of
partial integral equations via Hadamard’s fractional integral by applying some fixed
point theorems.

8.2 Ulam Stabilities for Partial Hadamard Fractional Integral
Equations

8.2.1 Introduction

This section deals with the existence the Ulam stability of solutions to the Hadamard
partial fractional integral equation

u(x, y) = μ(x, y)

+
1

Γ(r1)Γ(r2)

x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t, u(s, t))
st

dtds ; if (x, y) ∈ J ,

(8.1)

where J := [1, a] × [1, b], a, b > 1, r1, r2 > 0, μ : J → ℝ, f : J × ℝ → ℝ are given
continuous functions.

We present two results for integral equation (8.1). The first one is based on Banach’s
contraction principle and the second one on the nonlinear alternative of the Leray–
Schauder type.

8.2.2 Existence and Ulam Stabilities Results

In this section, we discuss the existence of solutions and present conditions for the
Ulam stability for the Hadamard integral equation (8.1).

The following conditions will be used in the sequel.
(8.1.1) There exist functions p1, p2 ∈ C(J,ℝ+) such that for any u ∈ ℝ and (x, y) ∈ J,

|f(x, y, u)| ≤ p1(x, y) +
p2(x, y)

1 + |u(x, y)| |u(x, y)| ,

with
p∗i = sup
(x,y)∈J

pi(x, y) ; i = 1, 2 .
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242 | 8 Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions

(8.1.2) There exists λΦ > 0 such that for each (x, y) ∈ J we have

(H IrσΦ)(x, y) ≤ λΦΦ(x, y) .

Theorem 8.1. Assume (8.1.1). If

(log a)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

p∗2 < 1 , (8.2)

then integral equation (8.1) has a solution defined on J.

Proof. Let ρ > 0 be a constant such that

ρ >
‖μ‖∞ + (log a)

r1 (log b)r2
Γ(1+r1)Γ(1+r2) p

∗
1

1 − (log a)
r1 (log b)r2

Γ(1+r1)Γ(1+r2) p
∗
2

.

We use Schauder’s fixed point theorem [149] to prove that the operator N : C → C
defined by

(Nu)(x, y) = μ(x, y) + 1
Γ(r1)Γ(r2)

x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t, u(s, t))
st

dtds

(8.3)
has a fixed point. The proof will be given in four steps.

Step 1: N transforms the ball Bρ := {u ∈ C : ‖u‖C ≤ ρ} into itself. For any u ∈ Bρ and
each (x, y) ∈ J we have

|(Nu)(x, y)| ≤ |μ(x, y)| + 1
Γ(r1)Γ(r2)

x

∫
1

y

∫
1


log x

s


r1−1 
log y

t


r2−1

×
p1(s, t) + p2(s, t)‖u‖C

st
dtds

≤ ‖μ‖∞ +
(log a)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

(p∗1 + p
∗
2ρ) .

Thus, by (8.2) and the definition of ρ we get ‖(Nu)‖C ≤ ρ. This implies that N transforms
the ball Bρ into itself.

Step 2: N : Bρ → Bρ is continuous.
Let {un}n∈ℕ be a sequence such that un → u in Bρ. Then

|(Nun)(x, y) − (Nu)(x, y)| ≤
1

Γ(r1)Γ(r2)

x

∫
1

y

∫
1


log x

s


r1−1 
log y

t


r2−1

×
|f(s, t, un(s, t)) − f(s, t, u(s, t))|

st
dtds
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≤
1

Γ(r1)Γ(r2)

x

∫
1

y

∫
1


log x

s


r1−1 
log y

t


r2−1

×
sup(s,t)∈J |f(s, t, un(s, t)) − f(s, t, u(s, t))|

st
dtds

≤
(log a)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

‖f(⋅, ⋅, un(⋅, ⋅)) − f(⋅, ⋅, u(⋅, ⋅))‖C .

From Lebesgue’s dominated convergence theorem and the continuity of the function f
we get

|(Nun)(x, y) − (Nu)(x, y)|→ 0 as n →∞ .

Step 3: N(Bρ) is bounded. This is clear since N(Bρ) ⊂ Bρ and Bρ is bounded.
Step 4: N(Bρ) is equicontinuous.

Let (x1, y1), (x2, y2) ∈ J, x1 < x2, y1 < y2. Then

|(Nu)(x2, y2) − (Nu)(x1, y1)| ≤ |μ(x1, y1) − μ(x2, y2)|

+
1

Γ(r1)Γ(r2)

x1

∫
1

y1

∫
1

[

log x2

s


r1−1 
log y2

t


r2−1
−

log x1

s


r1−1 
log y1

t


r2−1
]

×
|f(s, t, u(s, t))|

st
dtds

+
1

Γ(r1)Γ(r2)

x2

∫
x1

y2

∫
y1


log x2

s


r1−1 
log y2

t


r2−1 |f(s, t, u(s, t))|
st

dtds

+
1

Γ(r1)Γ(r2)

x1

∫
1

y2

∫
y1


log x2

s


r1−1 
log y2

t


r2−1 |f(s, t, u(s, t))|
st

dtds

+
1

Γ(r1)Γ(r2)

x2

∫
x1

y1

∫
1


log x2

s


r1−1 
log y2

t


r2−1 |f(s, t, u(s, t))|
st

dtds .

Thus,

|(Nu)(x2, y2) − (Nu)(x1, y1)| ≤ |μ(x1, y1) − μ(x2, y2)|

+
1

Γ(r1)Γ(r2)

x1

∫
1

y1

∫
1

[

log x2

s


r1−1 
log y2

t


r2−1
−

log x1

s


r1−1 
log y1

t


r2−1
]

×
p∗1 + p

∗
2ρ

st
dtds

+
1

Γ(r1)Γ(r2)

x2

∫
x1

y2

∫
y1


log x2

s


r1−1 
log y2

t


r2−1 p∗1 + p
∗
2ρ

st
dtds

+
1

Γ(r1)Γ(r2)

x1

∫
1

y2

∫
y1


log x2

s


r1−1 
log y2

t


r2−1 p∗1 + p
∗
2ρ

st
dtds
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+
1

Γ(r1)Γ(r2)

x2

∫
x1

y1

∫
1


log x2

s


r1−1 
log y2

t


r2−1 p∗1 + p
∗
2ρ

st
dtds

≤
p∗1 + p

∗
2ρ

Γ(1 + r1)Γ(1 + r2)
× [2(log y2)r2 (log x2 − log x1)r1 + 2(log x2)r1 (log y2 − log y1)r2

+ (log x1)r1 (log y1)r2 − (log x2)r1 (log y2)r2 − 2(log x2 − log x1)r1 (log y2 − log y1)r2 ] .

As x1 → x2 and y1 → y2, the right-hand side of the preceding inequality tends to zero.
As a consequence of Steps 1–4, together with the Ascoli–Arzelà theorem, we

can conclude that N is continuous and compact. From an application of Schauder’s
theorem [149], we deduce that N has a fixed point u that is a solution of integral equation
(8.1).

Now we are concerned with the stability of solutions for integral equation (8.1).
Recall N : C → C as defined in 8.3. Let ϵ > 0, and letΦ : J → [0,∞) be a continuous

function. We consider the inequalities

|u(x, y) − (Nu)(x, y)| ≤ ϵ ; (x, y) ∈ J , (8.4)
|u(x, y) − (Nu)(x, y)| ≤ Φ(x, y) ; (x, y) ∈ J , (8.5)
|u(x, y) − (Nu)(x, y)| ≤ ϵΦ(x, y) ; (x, y) ∈ J . (8.6)

Definition 8.2 ([35, 233]). Equation (8.1) is Ulam–Hyers stable if there exists a real
number cN > 0 such that for each ϵ > 0 and for each solution u ∈ C of inequality (8.4)
there exists a solution v ∈ C of equation (8.1) with

|u(x, y) − v(x, y)| ≤ ϵcN ; (x, y) ∈ J .

Definition 8.3 ([35, 233]). Equation (8.1) is generalized Ulam–Hyers stable if there
exists cN : C([0,∞), [0,∞)), with cN(0) = 0, such that for each ϵ > 0 and for each
solution u ∈ C of (8.4) there exists a solution v ∈ C of equation (8.1) with

|u(x, y) − v(x, y)| ≤ cN(ϵ) ; (x, y) ∈ J .

Definition 8.4 ([35, 233]). Equation (8.1) is Ulam–Hyers–Rassias stable with respect to
Φ if there exists a real number cN,Φ > 0 such that for each ϵ > 0 and for each solution
u ∈ C of (8.6) there exists a solution v ∈ C of equation (8.1) with

|u(x, y) − v(x, y)| ≤ ϵcN,ΦΦ(x, y) ; (x, y) ∈ J .

Definition 8.5 ([35, 233]). Equation (8.1) is generalized Ulam–Hyers–Rassias stable
with respect to Φ if there exists a real number cN,Φ > 0 such that for each solution
u ∈ C of (8.5) there exists a solution v ∈ C of equation (8.1) with |u(x, y) − v(x, y)| ≤
cN,ΦΦ(x, y); (x, y) ∈ J.
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Remark 8.6. It is clear that (i) Definition 8.2 implies Definition 8.3, (ii) Definition 8.4
implies Definition 8.5, and (iii) Definition 8.4 for Φ(., .) = 1 implies Definition 8.2.

One could make similar remarks for inequalities (8.4) and (8.6).

Theorem 8.7. Assume (8.1.1), (8.1.2), and (8.2) hold. Furthermore, suppose that there
exist qi ∈ C(J,ℝ+), i = 1, 2, such that for each (x, y) ∈ J we have

pi(x, y) ≤ qi(x, y)Φ(x, y) .

Then integral equation (8.1) is generalized Ulam–Hyers–Rassias stable.

Proof. Let u be a solution of inequality (8.5). By Theorem 8.1 there exists v that is a
solution of integral equation (8.1). Hence,

v(x, y) = μ(x, y) +
x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t, v(s, t))
stΓ(r1)Γ(r2)

dtds .

By inequality (8.5), for each (x, y) ∈ J we have


u(x, y) − μ(x, y) −

x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t, u(s, t))
stΓ(r1)Γ(r2)

dtds

≤ Φ(x, y) .

Set
q∗i = sup
(x,y)∈J

qi(x, y) ; i = 1, 2 .

For each (x, y) ∈ J we have

|u(x, y) − v(x, y)| ≤

u(x, y) − μ(x, y) −

x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t, u(s, t))
stΓ(r1)Γ(r2)

dtds


+
x

∫
1

y

∫
1


log x

s


r1−1 
log y

t


r2−1 |f(s, t, u(s, t)) − f(s, t, v(s, t))|
stΓ(r1)Γ(r2)

dtds

≤ Φ(x, y) + 1
Γ(r1)Γ(r2)

x

∫
1

y

∫
1


log x

s


r1−1 
log y

t


r2−1

× (2q∗1 +
q∗2 |u(s, t)|
1 + |u| +

q∗2 |v(s, t)|
1 + |v| )

Φ(s, t)
st

dtds

≤ Φ(x, y) + 2(q∗1 + q
∗
2)(

H IrσΦ)(x, y)
≤ [1 + 2(q∗1 + q

∗
2)λϕ]Φ(x, y)

:= cN,ΦΦ(x, y) .

Hence, integral equation (8.1) is generalized Ulam–Hyers–Rassias stable.
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8.2.3 An Example

As an application of our results we consider the partial Hadamard integral equation

u(x, y) = μ(x, y)

+
x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t, u(s, t))
stΓ(r1)Γ(r2)

dtds , (x, y) ∈ [1, e] × [1, e] ,

(8.7)

where
r1, r2 > 0 , μ(x, y) = x + y2 , (x, y) ∈ [1, e] × [1, e] ,

and
f(x, y, u(x, y)) = cxy2 (e−4 + u(x, y)

ex+y+5
) , (x, y) ∈ [1, e] × [1, e] ,

with
c := e

4

2 Γ(1 + r1)Γ(1 + r2) .

For each u ∈ ℝ and (x, y) ∈ [1, e] × [1, e] we have

|f(x, y, u(x, y))| ≤ ce−4(1 + |u|) .

Hence, condition (8.1.1) is satisfied by p∗1 = p
∗
2 = ce−4. Condition (8.2) holds with

a = b = e. Indeed,

(log a)r1 (log b)r2p∗2
Γ(1 + r1)Γ(1 + r2)

=
c

e4Γ(1 + r1)Γ(1 + r2)
=
1
2 < 1 .

Consequently, Theorem 8.1 implies that Hadamard integral equation (8.7) has a solution
defined on [1, e] × [1, e]. Also, condition (8.1.2) is satisfied by

Φ(x, y) = e3, and λΦ =
1

Γ(1 + r1)Γ(1 + r2)
.

Indeed, for each (x, y) ∈ [1, e] × [1, e] we get

(H IrσΦ)(x, y) ≤
e3

Γ(1 + r1)Γ(1 + r2)
= λΦΦ(x, y) .

Consequently, Theorem 8.7 implies that equation (8.7) is generalized Ulam–Hyers–
Rassias stable.
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8.3 Global Stability Results for Volterra-Type Partial Hadamard
Fractional Integral Equations

8.3.1 Introduction

In [47], Abbas et al. studied some existence and stability results for the nonlinear
quadratic Volterra integral equation of Riemann–Liouville fractional order

u(t, x) = f(t, x, u(t, x), u(α(t), x)) + 1
Γ(r)

β(t)

∫
0

(β(t) − s)r−1

× g(t, x, s, u(s, x), u(γ(s), x))ds , (t, x) ∈ ℝ+ × [0, b] , (8.8)

where b > 0,ℝ+ = [0,∞), r ∈ (0,∞), α, β, γ : ℝ+ → ℝ+, and f : ℝ+×[0, b]×ℝ×ℝ→ ℝ
and g : ℝ+ × [0, b] ×ℝ+ ×ℝ ×ℝ→ ℝ are given continuous functions.

This section deals with the global existence and stability of solutions to the nonlin-
ear quadratic Volterra partial integral equation of Hadamard fractional order

u(t, x) = f(t, x, u(t, x), u(α(t), x)) + 1
Γ(r1)Γ(r2)

β(t)

∫
1

x

∫
1

(log β(t)s )
r1−1
(log xξ )

r2−1

× g(t, x, s, ξ, u(s, ξ), u(γ(s), ξ))dξds
sξ

, (t, x) ∈ J := [1,∞) × [1, b] , (8.9)

where b > 1, r1, r2 ∈ (0,∞), α, β, γ : [1,∞) → [1,∞), and f : J × ℝ × ℝ → ℝ and
g : J × J ×ℝ ×ℝ→ ℝ are given continuous functions. Our existence results are based
upon Schauder’s fixed point theorem. Also, we obtain some results about the local
asymptotic stability of solutions of the equation in question. Finally, we present an
example illustrating the applicability of the imposed conditions.

8.3.2 Existence and Global Stability Results

In this section, we are concerned with the existence and the asymptotic stability of
solutions for Hadamard partial integral equation (8.9).

In the sequel, we will use the following conditions.
(8.3.1) The function α : [1,∞)→ [1,∞) satisfies limt→∞ α(t) =∞.
(8.3.2) There exist constants M, L > 0 and a nondecreasing function ψ1 : [0,∞) →
(0,∞) such that M < L2 ,

|f(t, x, u1, v1) − f(t, x, u2, v2)| ≤
M(|u1 − u2| + |v1 − v2|)

(1 + α(t))(L + |u1 − u2| + |v1 − v2|)
,

and

|f(t1, x1, u, v) − f(t2, x2, u, v)| ≤ (|t1 − t2| + |x1 − x2|)ψ1(|u| + |v|)

for each (t, x), (t1, x1), (t2, x2) ∈ J and u, v, u1, v1, u2, v2 ∈ ℝ.

Brought to you by | UCL - University College London
Authenticated

Download Date | 2/10/18 4:05 PM



248 | 8 Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions

(8.3.3) The function t → f(t, x, 0, 0) is bounded on J with

f∗ = sup
(t,x)∈[1,∞)×[1,b]

f(t, x, 0, 0)

and
lim
t→∞
|f(t, x, 0, 0)| = 0 ; x ∈ [1, b] .

(8.3.4) There exist continuous functions p, q, φ : J → ℝ+ and a nondecreasing function
ψ2 : [0,∞)→ (0,∞) such that

|g(t1, x1, s, ξ, u, v) − g(t2, x2, s, ξ, u, v)| ≤ φ(s, ξ)(|t1 − t2| + |x1 − x2|)ψ2(|u| + |v|)

and
|g(t, x, s, ξ, u, v)| ≤ p(t, x)q(s, ξ)

1 + α(t) + |u| + |v|
for each (t, x), (s, ξ), (t1, x1), (t2, x2) ∈ J and u, v ∈ ℝ. Moreover, assume that

lim
t→∞

p(t, x)
β(t)

∫
1

x

∫
1


log β(t)

s



r1−1 
log x

ξ



r2−1
q(s, ξ)dξds = 0 .

Theorem 8.8. Assume (8.3.1)–(8.3.4). Then integral equation (7.1) has at least one solution
in the space BC. Moreover, solutions of equation (7.1) are globally asymptotically stable.

Proof. Set d∗ := sup(t,x)∈J d(t, x), where

d(t, x) = p(t, x)
Γ(r1)Γ(r2)

β(t)

∫
1

x

∫
1


log β(t)

s



r1−1 
log x

ξ



r2−1
q(s, ξ)dξds .

From condition (8.3.4) we infer that d∗ is finite. Let us define the operator N such that,
for any u ∈ BC,

(Nu)(t, x) = f(t, x, u(t, x), u(α(t), x)) + 1
Γ(r1)Γ(r2)

β(t)

∫
1

x

∫
1

(log β(t)s )
r1−1
(log xξ )

r2−1

× g(t, x, s, ξ, u(s, ξ), u(γ(s), ξ))dξds
sξ

, (t, x) ∈ J .

(8.10)

By considering the conditions of this theorem, we infer that N(u) is continuous on J.
Now we prove that N(u) ∈ BC for any u ∈ BC. For arbitrarily fixed (t, x) ∈ J we have

|(Nu)(t, x)| ≤ |f(t, x, u(t, x), u(α(t), x)) − f(t, x, 0, 0)| + |f(t, x, 0, 0)|

+
1

Γ(r1)Γ(r2)

β(t)

∫
1

x

∫
1


log β(t)

s



r1−1 
log x

ξ



r2−1

× |g(t, x, s, ξ, u(s, ξ), u(γ(s), ξ))|dξds
sξ
|
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≤
M(|u(t, x)| + |u(α(t), x)|)

(1 + α(t))(L + |u(t, x)| + |u(α(t), x)|)
+ |f(t, x, 0, 0)|

+
p(t, x)

Γ(r1)Γ(r2)

β(t)

∫
1

x

∫
1


log β(t)

s



r1−1 
log x

ξ



r2−1

×
q(s, ξ)

1 + α(t) + |u(s, ξ))| + |u(γ(s), ξ))|
dξds
sξ

≤
M(|u(t, x)| + |u(α(t), x)|)
|u(t, x)| + |u(α(t), x)|

+ f∗ + d∗ .

Thus,
‖N(u)‖BC ≤ M + f∗ + d∗ . (8.11)

Hence, N(u) ∈ BC. Equation (8.11) yields that N transforms the ball Bη := B(0, η) into
itself, where η = M + f∗ + d∗. We will show that N : Bη → Bη satisfies the assumptions
of Schauder’s fixed point theorem [149]. The proof will be given in several steps and
cases.

Step 1: N is continuous. Let {un}n∈ℕ be a sequence such that un → u in Bη. Then for
each (t, x) ∈ J we have

|(Nun)(t, x) − (Nu)(t, x)| ≤ |f(t, x, un(t, x), un(α(t), x)) − f(t, x, u(t, x), u(α(t), x))|

+
1

Γ(r1)Γ(r2)

β(t)

∫
1

x

∫
1


log β(t)

s



r1−1 
log x

ξ



r2−1

× sup
(s,ξ)∈J
|g(t, x, s, ξ, un(s, ξ), un(γ(s), ξ))

− g(t, x, s, ξ, u(s, ξ), u(γ(s), ξ))|dξds
sξ

≤
2M
L
‖un − u‖BC

+
1

Γ(r1)Γ(r2)

β(t)

∫
1

x

∫
1


log β(t)

s



r1−1 
log x

ξ



r2−1

× ‖g(t, x, ., ., un(., .), un(γ(.), .))
− g(t, x, ., ., u(., .), u(γ(.), .))‖BCdξds .

(8.12)

Case 1. If (t, x) ∈ [1, T] × [1, b], T > 1, then, since un → u as n →∞ and g, γ are
continuous, then (8.12) gives

‖N(un) − N(u)‖BC → 0 as n →∞ .

Brought to you by | UCL - University College London
Authenticated

Download Date | 2/10/18 4:05 PM



250 | 8 Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions

Case 2. If (t, x) ∈ (T,∞) × [1, b], T > 1, then from (8.3.4) and (8.12), for each
(t, x) ∈ J, we have

|(Nun)(t, x) − (Nu)(t, x)| ≤
2M
L
‖un − u‖BC

+
2p(t, x)
Γ(r1)Γ(r2)

β(t)

∫
1

x

∫
1


log β(t)

s



r1−1 
log x

ξ



r2−1 q(s, ξ)
sξ

dξds

≤
2M
L
‖un − u‖BC + d(t, x) .

Thus, we get

|(Nun)(t, x) − (Nu)(t, x)| ≤
2M
L
‖un − u‖BC + d(t, x) . (8.13)

Since un → u as n →∞ and t →∞, then (8.13) gives

‖N(un) − N(u)‖BC → 0 as n →∞ .

Step 2: N(Bη) is uniformly bounded. This is clear since N(Bη) ⊂ Bη and Bη is
bounded.

Step 3: N(Bη) is equicontinuous on every compact subset [1, a] × [1, b] of J, a > 0.
Let (t1, x1), (t2, x2) ∈ [1, a] × [1, b], t1 < t2, x1 < x2, and let u ∈ Bη. Also, without loss
of generality, suppose that β(t1) ≤ β(t2). Then we have

|(Nu)(t2, x2) − (Nu)(t1, x1)|
≤ |f(t2, x2, u(t2, x2), u(α(t2), x2)) − f(t2, x2, u(t1, x1), u(α(t1), x1))|
+ |f(t2, x2, u(t1, x1), u(α(t1), x1)) − f(t1, x1, u(t1, x1), u(α(t1), x1))|

+
1

Γ(r1)Γ(r2)

β(t2)

∫
1

x2

∫
1


log β(t2)

s



r1−1 
log x2

ξ



r2−1

× |g(t2, x2, s, ξ, u(s, ξ), u(γ(s), ξ)) − g(t1, x1, s, ξ, u(s, ξ), u(γ(s), ξ))|dξds

+



1
Γ(r1)Γ(r2)

β(t2)

∫
1

x2

∫
1

(log β(t2)s )
r1−1
(log x2ξ )

r2−1

× g(t1, x1, s, ξ, u(s, ξ), u(γ(s), ξ))dξds

−
1

Γ(r1)Γ(r2)

β(t1)

∫
1

x1

∫
1

(log β(t2)s )
r1−1
(log x2ξ )

r2−1

×g(t1, x1, s, ξ, u(s, ξ), u(γ(s), ξ))dξds

+
1

Γ(r1)Γ(r2)

β(t1)

∫
1

x1

∫
1


(log β(t2)s )

r1−1
(log x2ξ )

r2−1

−(log β(t1)s )
r1−1
(log x1ξ )

r2−1
|g(t1, x1, s, ξ, u(s, ξ), u(γ(s), ξ))|dξds .
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Thus, we obtain

|(Nu)(t2, x2) − (Nu)(t1, x1)|

≤
M
L
(|u(t2, x2) − u(t1, x1)| + |u(α(t2), x2) − u(α(t1), x1)|)

+ (|t2 − t1| + |x2 − x1|)ψ1(2‖u‖BC)

+
1

Γ(r1)Γ(r2)

β(t2)

∫
1

x2

∫
1


log β(t2)

s



r1−1 
log x2

ξ



r2−1

× φ(s, ξ)(|t2 − t1| + |x2 − x1|)ψ2(2‖u‖BC)dξds

+
1

Γ(r1)Γ(r2)

β(t2)

∫
β(t1)

x2

∫
1


log β(t2)

s



r1−1 
log x2

ξ



r2−1

× |g(t1, x1, s, ξ, u(s, ξ), u(γ(s), ξ))|dξds

+
1

Γ(r1)Γ(r2)

β(t2)

∫
1

x2

∫
x1


log β(t2)

s



r1−1 
log x2

ξ



r2−1

× |g(t1, x1, s, ξ, u(s, ξ), u(γ(s), ξ))|dξds

+
1

Γ(r1)Γ(r2)

β(t2)

∫
β(t1)

x2

∫
x1


log β(t2)

s



r1−1 
log x2

ξ



r2−1

× |g(t1, x1, s, ξ, u(s, ξ), u(γ(s), ξ))|dξds

+
1

Γ(r1)Γ(r2)

β(t1)

∫
1

x1

∫
1


(log β(t2)s )

r1−1
(log x2ξ )

r2−1

−(log β(t1)s )
r1−1
(log x1ξ )

r2−1
|g(t1, x1, s, ξ, u(s, ξ), u(γ(s), ξ))|dξds .

Hence, we get

|(Nu)(t2, x2) − (Nu)(t1, x1)|

≤
M
L
(|u(t2, x2) − u(t1, x1)| + |u(α(t2), x2) − u(α(t1), x1)|)

+ (|t2 − t1| + |x2 − x1|)ψ1(2η)

+
(|t2 − t1| + |x2 − x1|)ψ2(2η)

Γ(r1)Γ(r2)

×
β(t2)

∫
1

x2

∫
1


log β(t2)

s



r1−1 
log x2

ξ



r2−1
φ(s, ξ)dξds

+
p(t1, x1)
Γ(r1)Γ(r2)

β(t2)

∫
β(t1)

x2

∫
1


log β(t2)

s



r1−1 
log x2

ξ



r2−1
q(s, ξ)|dξds
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+
p(t1, x1)
Γ(r1)Γ(r2)

β(t2)

∫
1

x2

∫
x1


log β(t2)

s



r1−1 
log x2

ξ



r2−1
q(s, ξ)|dξds

+
p(t1, x1)
Γ(r1)Γ(r2)

β(t2)

∫
β(t1)

x2

∫
x1


log β(t2)

s



r1−1 
log x2

ξ



r2−1
q(s, ξ)|dξds

+
p(t1, x1)
Γ(r1)Γ(r2)

β(t1)

∫
1

x1

∫
1


(log β(t2)s )

r1−1
(log x2ξ )

r2−1

−(log β(t1)s )
r1−1
(log x1ξ )

r2−1
q(s, ξ)|dξds .

From the continuity of α, β, f, g and as t1 → t2 and x1 → x2, the right-hand side of the
preceding inequality tends to zero.

Step 4: N(Bη) is equiconvergent. Let (t, x) ∈ J and u ∈ Bη; then we have

|u(t, x)| ≤ |f(t, x, u(t, x), u(α(t), x)) − f(t, x, 0, 0) + f(t, x, 0, 0)|

+



1
Γ(r1)Γ(r2)

β(t)

∫
1

x

∫
1

(log β(t)s )
r1−1
(log xξ )

r2−1

× g(t, x, s, ξ, u(s, ξ), u(γ(s), ξ))dξds
sξ



≤
M(|u(t, x)| + |u(α(t), x)|)

(1 + α(t))(L + |u(t, x)| + |u(α(t), x)|) + |f(t, x, 0, 0)|

+
p(t, x)

Γ(r1)Γ(r2)

β(t)

∫
1

x

∫
1

(log β(t)s )
r1−1
(log xξ )

r2−1

×
q(s, ξ)

1 + α(t) + |u(s, ξ)| + |u(γ(s), ξ)|dξds

≤
M

1 + α(t) + |f(t, x, 0, 0)|

+
p(t, x)

Γ(r1)Γ(r2)(1 + α(t))

β(t)

∫
1

x

∫
1

(log β(t)s )
r1−1
(log xξ )

r2−1
q(s, ξ)dξds

≤
M

1 + α(t) + |f(t, x, 0, 0)| +
d∗

1 + α(t) .

Thus, for each x ∈ [1, b] we get

|u(t, x)|→ 0, as t → +∞ .

Hence,
|u(t, x) − u(+∞, x)|→ 0, as t → +∞ .
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As a consequence of Steps 1–4, together with Lemma 1.57, we can conclude that
N : Bη → Bη is continuous and compact. From an application of Schauder’s fixed point
theorem [149] we deduce that N has a fixed point u that is a solution of Hadamard
integral equation (8.9).

Step 5: the uniform global attractivity. Let us assume that u0 is a solution of integral
equation (8.9) with the conditions of this theorem. Consider the ball B(u0, η) with
η∗ = LM∗

L−2M , where

M∗ := 1
Γ(r1)Γ(r2)

sup
(t,x)∈J

{{
{{
{

β(t)

∫
1

x

∫
1

(log β(t)s )
r1−1
(log xξ )

r2−1

× |g(t, x, s, ξ, u(s, ξ), u(γ(s), ξ))

− g(t, x, s, ξ, u0(s, ξ), u0(γ(s), ξ))|dξds; u ∈ BC
}}
}}
}

.

Taking u ∈ B(u0, η∗), we then have

|(Nu)(t, x) − u0(t, x)| = |(Nu)(t, x) − (Nu0)(t, x)|
≤ |f(t, x, u(t, x), u(α(t), x)) − f(t, x, u0(t, x), u0(α(t), x))|

+
1

Γ(r1)Γ(r2)

β(t)

∫
1

x

∫
1

(log β(t)s )
r1−1
(log xξ )

r2−1

× |g(t, x, s, ξ, u(s, ξ), u(γ(s), ξ))

− g(t, x, s, ξ, u0(s, ξ), u0(γ(s), ξ))|
dξds
sξ

≤
2M
L‖
‖u − u0‖BC +M∗

≤
2M
L
η∗ +M∗ = η∗ .

Thus, we observe that N is a continuous function such that N(B(u0, η∗)) ⊂ B(u0, η∗).
Moreover, if u is a solution of equation (8.9), then

|u(t, x) − u0(t, x)| = |(Nu)(t, x) − (Nu0)(t, x)|
≤ |f(t, x, u(t, x), u(α(t), x)) − f(t, x, u0(t, x), u0(α(t), x))|

+
1

Γ(r1)Γ(r2)

β(t)

∫
1

x

∫
1

(log β(t)s )
r1−1
(log xξ )

r2−1

× |g(t, x, s, ξ, u(s, ξ), u(γ(s), ξ))
− g(t, x, s, ξ, u0(s, ξ), u0(γ(s), ξ))|dξds .
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Thus,

|u(t, x) − u0(t, x)| ≤
M
L
(|u(t, x) − u0(t, x)| + |u(α(t), x) − u0(α(t), x)|)

+
p(t, x)

Γ(r1)Γ(r2)

β(t)

∫
1

x

∫
1

(log β(t)s )
r1−1
(log xξ )

r2−1
q(s, ξ)dξds .

(8.14)

By using (8.14) and the fact that α(t)→∞ as t →∞, we get

lim
t→∞
|u(t, x) − u0(t, x)| ≤ limt→∞

L.p(t, x)
Γ(r1)Γ(r2)(L − 2M)

β(t)

∫
1

x

∫
1

(log β(t)s )
r1−1
(log xξ )

r2−1

× q(s, ξ)dξds = 0 .

Consequently, all solutions of integral equation (7.1) are globally asymptotically stable.

8.3.3 An Example

As an application of our results we consider the partial Hadamard integral equation of
fractional order

u(t, x) = tx
10(1 + t + t2 + t3)

(1 + 2 sin(u(t, x))) + 1
Γ2 (13)

t

∫
1

x

∫
1

(log ts)
−2
3
(log xξ )

−2
3

×
ln (1 + 2x(sξ)−1|u(s, ξ)|)
(1 + t + 2|u(s, ξ)|)2(1 + x2 + t4)

dξds ; (t, x) ∈ [1,∞) × [1, e] ,

(8.15)

where r1 = r2 = 1
3 , α(t) = β(t) = γ(t) = t,

f(t, x, u, v) = tx(1 + sin(u) + sin(v))
10(1 + t)(1 + t2)

,

and
g(t, x, s, ξ, u, v) = ln(1 + x(sξ)−1(|u| + |v|))

(1 + t + |u| + |v|)2(1 + x2 + t4)
for (t, x), (s, ξ) ∈ [1,∞) × [1, e], and u, v ∈ ℝ.

We can easily check that the conditions of Theorem 8.8 are satisfied. In fact, we
have that the function f is continuous and satisfies (8.3.2), where M = 1

10 , L = 1. Also,
f satisfies (8.3.3), with f∗ = e

10 . Next, let us note that the function g satisfies (8.3.4),
where p(t, x) = 1

1+x2+t4 and q(s, ξ) = (sξ)
−1.
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Additionally,

lim
t→∞

p(t, x)
t

∫
1

x

∫
1


log t

s


−2
3 
log x

ξ



−2
3
q(s, ξ)dξds

= lim
t→∞

x
1 + x2 + t4

t

∫
1

x

∫
1


log t

s


−2
3 
log x

ξ



−2
3 dξds

sξ

= lim
t→∞

9x(log t) 13
1 + x2 + t4

= 0 .

Hence by Theorem 8.8, equation (8.15) has a solution defined on [1,∞) × [1, e], and
solutions of this equation are globally asymptotically stable.

8.4 Ulam Stabilities for Hadamard Fractional Integral Equations in
Fréchet Spaces

8.4.1 Introduction

In this section, we present some results concerning the existence and Ulam stabilities
of solutions for some functional integral equations of Hadamard fractional order. We
use an extension of the Burton–Kirk fixed point theorem in Fréchet spaces.

Recently some interesting results on the existence and Ulam stabilities of the
solutions of some classes of differential equations were obtained by Abbas et al. [5, 24,
25, 28]. This section deals with the existence and Ulam stabilities of solutions of the
following Hadamard fractional integral equations:

u(t, x) = μ(t, x) + f(t, x, (H Irσu)(t, x), u(t, x))

+
1

Γ(r1)Γ(r2)

t

∫
1

x

∫
1

(log ts)
r1−1
(log xy)

r2−1

× g(t, x, s, y, u(s, y))dyds
sy

, (t, x) ∈ J := [1, +∞) × [1, b] , (8.16)

where b > 1, σ = (1, 1), r = (r1, r2), r1, r2 ∈ (0,∞), μ : J → ℝ, f : J × ℝ × ℝ→ ℝ and
g : J ×ℝ→ ℝ are given continuous functions, and J = {(t, x, s, y) ∈ J2 : s ≤ t, y ≤ x}.
Our investigations are conducted in Fréchet spaces with an application of the fixed
point theorem of Burton–Kirk to the existence of solutions of integral equation (8.16),
and we prove that all solutions are generalized Ulam–Hyers–Rassias stable.
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8.4.2 Existence and Ulam Stabilities Results

Here we are concerned with the existence and the Ulam stability of solutions for integral
equation (8.16). Set

Jp = {(t, x, s, y) : 1 ≤ s ≤ t ≤ p, 1 ≤ y ≤ x ≤ b} ; p ∈ ℕ\{0, 1} .

The following conditions will be used in the sequel:
(8.4.1) There exist continuous functions l, k : Jp → ℝ+ such that

|f(t, x, u1, v1) − f(t, x, u2, v2)| ≤
l(t, x)|u1 − u2| + k(t, x)|v1 − v2|

1 + |u1 − u2| + |v1 − v2|

for each (t, x) ∈ Jp and each u1, u2, v1, v2 ∈ ℝ.
(8.4.2) There exist continuous functions P, Q, φ : Jp → ℝ+ and anondecreasing function

ψ : [0,∞)→ (0,∞) such that

|g(t, x, s, y, u)| ≤ P(t, x, s, y) + Q(t, x, s, y)|u|1 + |u|

for (t, x, s, y) ∈ J, u ∈ ℝ, and

|g(t1, x1, s, y, u) − g(t2, x2, s, y, u)| ≤ φ(s, y)(|t1 − t2| + |x1 − x2|)
× ψ(|u|) ; (t1, x1, s, y), (t2, x2, s, y) ∈ Jp , u ∈ ℝ .

(8.4.3) There exist continuous functions P1, Q1 : Jp → [0,∞) such that for each
(t, s), (t, x) ∈ Jp we have

P(t, x, s, y, w) ≤ ϕ(t, x)P1(s, y), and Q(t, x, s, y, w) ≤ ϕ(t, x)Q1(s, y) .

Theorem 8.9. Assume (8.4.1) and (8.4.2). If

ℓ := kp +
lp(log p)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

< 1 , (8.17)

where
kp = sup
(t,x)∈Jp

k(t, x), lp = sup
(t,x)∈Jp

l(t, x); p ∈ ℕ\{0, 1} ,

then Hadamard integral equation (8.16) has at least one solution in the space C. Further-
more, if condition (8.4.3) holds, then equation (8.16) is generalized Ulam–Hyers–Rassias
stable.

Proof. Let us define the operators A, B : C → C defined by

(Au)(t, x) =
t

∫
1

x

∫
1

(log ts)
r1−1
(log xy)

r2−1 g(t, x, s, y, u(s, y))
syΓ(r1)Γ(r2)

dyds ; (t, x) ∈ J ,

(8.18)

(Bu)(t, x) = μ(t, x) + f(t, x, (H Irσu)(t, x), u(t, x)) ; (t, x) ∈ J . (8.19)
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We will show that operators A and B satisfy all the conditions of Theorem 1.43. The
proof will be given in several steps.

Step 1. A is compact. To this end, we must prove that A is continuous and it
transforms every bounded set into a relatively compact set. Let M ⊂ C be a bounded set
of C. The proof will be given in several claims.

Claim 1. A is continuous. Let {un}n∈ℕ\{0,1} be a sequence in M such that un → u in
M. Then, for each (t, x) ∈ Jp; p ∈ ℕ\{0, 1}, we have

|(Aun)(t, x) − (Au)(t, x)|

≤
1

Γ(r1)Γ(r2)

t

∫
1

x

∫
1


log t

s


r1−1 
log x

y



r2−1

× |g(t, x, s, y, un(s, y)) − g(t, x, s, y, u(s, y))|dyds

≤
1

Γ(r1)Γ(r2)

t

∫
1

x

∫
1


log t

s


r1−1 
log x

y



r2−1

× |g(t, x, s, y, un(s, y)) − g(t, x, s, y, u(s, y))|dyds . (8.20)

Since un → u as n →∞ and g is continuous, (8.20) gives

‖A(un) − A(u)‖p → 0 as n →∞ .

Claim 2. A maps bounded sets to bounded sets in C. For arbitrarily fixed (t, x) ∈ Jp
and u ∈ M, we have

|(Au)(t, x)| ≤ 1
Γ(r1)Γ(r2)

t

∫
1

x

∫
1


log t

s


r1−1 
log x

y



r2−1

× |g(t, x, s, y, u(s, y))|dyds

≤
1

Γ(r1)Γ(r2)

t

∫
1

x

∫
1


log t

s


r1−1 
log x

y



r2−1

×
P(t, x, s, y) + Q(t, x, s, y)|u(s, y)|

1 + |u(s, y)| dyds

≤
1

Γ(r1)Γ(r2)

t

∫
1

x

∫
1


log t

s


r1−1 
log x

y



r2−1

× (P(t, x, s, y) + Q(t, x, s, y))dyds
≤ Pp + Qp ,

where

Pp = sup
(t,x)∈Jp

t

∫
1

x

∫
1


log t

s


r1−1 
log x

y



r2−1 P(t, x, s, y)
Γ(r1)Γ(r2)

dyds
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and

Qp = sup
(t,x)∈Jp

t

∫
1

x

∫
1


log t

s


r1−1 
log x

y



r2−1 Q(t, x, s, y)
Γ(r1)Γ(r2)

dyds .

Thus,
‖A(u)‖p ≤ Pp + Qp := ℓp .

Claim 3. A maps bounded sets to equicontinuous sets in C. Let (t1, x1), (t2, x2) ∈ Jp,
t1 < t2, x1 < x2, and let u ∈ M; thus, we have

|(Au)(t2, x2) − (Au)(t1, x1)|

≤
1

Γ(r1)Γ(r2)



t2

∫
1

x2

∫
1


log t2

s


r1−1 
log x2

y



r2−1

×[g(t2, x2, s, y, u(s, y)) − g(t1, x1, s, y, u(s, y))]dyds|

+
1

Γ(r1)Γ(r2)



t2

∫
1

x2

∫
1


log t2

s


r1−1 
log x2

y



r2−1
g(t1, x1, s, y, u(s, y))dyds

−
t2

∫
1

x2

∫
1


log t1

s


r1−1 
log x1

y



r2−1
g(t1, x1, s, y, u(s, y))dyds



+
1

Γ(r1)Γ(r2)



t2

∫
1

x2

∫
1


log t1

s


r1−1 
log x1

y



r2−1
g(t1, x1, s, y, u(s, y))dyds

−
t1

∫
1

x1

∫
1


log t1

s


r1−1 
log x1

y



r2−1
g(t1, x1, s, y, u(s, y))dyds


.

Thus,

|(Au)(t2, x2) − (Au)(t1, x1)|

≤
1

Γ(r1)Γ(r2)

t2

∫
1

x2

∫
1


log t2

s


r1−1 
log x2

y



r2−1

× |g(t2, x2, s, y, u(s, y)) − g(t1, x1, s, y, u(s, y))| dyds

+
1

Γ(r1)Γ(r2)

t1

∫
1

x1

∫
1


(log t2s )

r1−1
(log x2y )

r2−1
− (log t1s )

r1−1
(log x1y )

r2−1

× |g(t1, x1, s, y, u(s, y))| dyds

+
1

Γ(r1)Γ(r2)

t1

∫
1

x2

∫
x1


log t2

s


r1−1 
log x2

y



r2−1
|g(t1, x1, s, y, u(s, y))|dyds
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+
1

Γ(r1)Γ(r2)

t2

∫
t1

x1

∫
1


log t2

s


r1−1 
log x2

y



r2−1
|g(t1, x1, s, y, u(s, y))|dyds

+
1

Γ(r1)Γ(r2)

t2

∫
t1

x2

∫
x1


log t2

s


r1−1 
log x2

y



r2−1
|g(t1, x1, s, y, u(s, y))|dyds .

Hence,

|(Au)(t2, x2) − (Au)(t1, x1)|

≤
1

Γ(r1)Γ(r2)

t2

∫
1

x2

∫
1


log t2

s


r1−1 
log x2

y



r2−1

× φ(s, y)(|t1 − t2| + |x1 − x2|)ψ(ℓp)dyds

+
1

Γ(r1)Γ(r2)

t1

∫
1

x1

∫
1


(log t2s )

r1−1
(log x2y )

r2−1
− (log t1s )

r1−1
(log x1y )

r2−1

× (P(t1, x1, s, y) + Q(t1, x1, s, y))dyds

+
1

Γ(r1)Γ(r2)

t2

∫
t2

x2

∫
1


log t2

s


r1−1 
log x2

y



r2−1
(P(t1, x1, s, y) + Q(t1, x1, s, y))dyds

+
1

Γ(r1)Γ(r2)

t1

∫
1

x2

∫
x1


log t2

s


r1−1 
log x2

y



r2−1
(P(t1, x1, s, y) + Q(t1, x1, s, y))dyds

+
1

Γ(r1)Γ(r2)

t2

∫
t1

x2

∫
x1


log t2

s


r1−1 
log x2

y



r2−1
(P(t1, x1, s, y) + Q(t1, x1, s, y))dyds .

From the continuity of functions P, Q, φ and as t1 → t2 and x1 → x2, the right-hand
side of the preceding inequality tends to zero. As a consequence of Claims 1–3 and from
the Ascoli–Arzelà theorem, we can conclude that A is continuous and compact.

Step 2. B is a contraction. Consider v, w ∈ C. Then, by (8.4.1), for any p ∈ ℕ\{0, 1}
and each (t, x) ∈ JP, we have

|(Bv)(t, x) − (Bw)(t, x)| ≤ l(t, x)|H Irσ(v − w)(t, x)| + k(t, x)|(v − w)(t, x)|

≤ (k(t, x) + l(t, x)(log p)
r1 (log b)r2

Γ(1 + r1)Γ(1 + r2)
) |v − w| .

Thus,
‖(B(v) − B(w)‖p ≤ (kp +

lp(log p)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

) ‖v − w‖p .

By (8.17) we conclude that B is a contraction.
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Step 3. The set E := {u ∈ C(J) : u = λA(u) + λB( uλ ), λ ∈ (0, 1)} is bounded. Let u ∈ C
such that u = λA(u) + λB( uλ ) for some λ ∈ (0, 1). Then for any p ∈ ℕ\{0, 1} and each
(t, x) ∈ Jp we have

|u(t, x)| ≤ λ|A(u)| + λ|B (uλ ) |

≤ |μ(t, x)| + |f(t, x, 0, 0)| + k(t, x) + l(t, x)

+
1

Γ(r1)Γ(r2)

t

∫
1

x

∫
1


log t

s


r1−1 
log x

y



r2−1

×
P(t, x, s, y) + Q(t, x, s, y)

sy
dyds

≤ μp + fp + kp + lp + Pp + Qp ,

where

μp = sup
(t,x)∈[1,p]×[1,b]

μ(t, x) , fp = sup
(t,x)∈[1,p]×[1,b]

|f(t, x, 0, 0)|; p ∈ ℕ\{0, 1} .

Thus,
‖u‖p ≤ μp + fp + kp + lp + Pp + Qp =: ℓ∗p .

Hence, the set E is bounded.
As a consequence of Steps 1–3 and from an application of Theorem 1.43, we deduce

that N has a fixed point u that is a solution of integral equation (8.16).
Step 4. The generalized Ulam–Hyers–Rassias stability. Set

P1p = sup
(s,y)∈Jp

P1(s, y), and Q1p = sup
(s,y)∈Jp

Q1(s, y) .

Let u be a solution of inequality (8.18) and v be a solution of equation (8.16). Then

v(t, x) = μ(t, x) + f(t, x, H Irσv(t, x), v(t, x))

+
1

Γ(r1)Γ(r2)

t

∫
1

x

∫
1

(log ts)
r1−1
(log xy)

r2−1

× g(t, x, s, y, v(s, y))dyds
sy

, (t, x) ∈ J := [1, +∞) × [1, b] .
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From inequality (8.18) and condition (8.4.3), for each (t, x) ∈ Jp, we have

|u(t, x) − v(x, y)| ≤ |u(t, x) − (Nu)(t, x)| + |(Nu)(t, x) − (Nv)(t, x)|
≤ ϕ(x, y) + |f(t, x, (H Irσu)(t, x, ), u(t, x)) − f(t, x, H Irσv(t, x), v(t, x))|

+
1

Γ(r1)Γ(r2)

t

∫
1

x

∫
1


log t

s


r1−1 
log x

y



r2−1

× |g(t, x, s, y, u(s, y)) − g(t, x, s, y, v(s, y))|dyds
sy

≤ ϕ(x, y) + l(t, x)|(H Irσu)(t, x) − H Irσv(t, x)| + k(t, x)|u(t, x) − v(t, x)|

+
2ϕ(t, x)
Γ(r1)Γ(r2)

t

∫
1

x

∫
1


log t

s


r1−1 
log x

y



r2−1
ϕ(t, x)

× (P1(s, y) + Q1(s, t))dyds
≤ ϕ(x, y) + ℓp|u(t, x) − v(t, x)|

+
2ϕ(t, x)
Γ(r1)Γ(r2)

t

∫
1

x

∫
1


log t

s


r1−1 
log x

y



r2−1
(P1p + Q1p)dyds

≤ ϕ(t, x) + ℓp|u(t, x) − v(t, x)|

+
2(P1p + Q1p)ϕ(t, x)

Γ(r1)Γ(r2)

t

∫
1

x

∫
1


log t

s


r1−1 
log x

y



r2−1
dyds .

Thus, for each (t, x) ∈ Jp we obtain

|u(t, x) − v(x, y)| ≤ ϕ(t, x)1 − ℓp
(1 +

2(P1p + Q1p)
Γ(r1)Γ(r2)

t

∫
1

x

∫
1


log t

s


r1−1 
log x

y



r2−1
dyds)

≤
1

1 − ℓp
(1 +

2(P1p + Q1p)(log p)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

)ϕ(t, x)

:= cN,ϕϕ(t, x) .

Hence, for each (t, x) ∈ Jp we get

|u(t, x) − v(x, y)| ≤ cN,ϕϕ(x, y) .

Consequently, equation (8.16) is generalized Ulam–Hyers–Rassias stable.
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8.4.3 An Example

Consider the Hadamard fractional order integral equation

u(t, x) = xe3−2t

1 + t + x2
+

xe−t−2

cp(1 + e−2p|(H Irσu)(t, x)| + e−p|u(t, x)|)

+
t

∫
1

x

∫
1

(log ts)
r1−1
(log xy)

r2−1 g(t, x, s, y, u(s, y))
Γ(r1)Γ(r2)

dyds ,

(t, x) ∈ [1, +∞) × [1, e] , (8.21)

where cp = e−p + e−2ppr1
Γ(1+r1)Γ(1+r2) ; p ∈ ℕ\{0, 1}, r = (r1, r2) ∈ (0,∞) × (0,∞),

g(t, x, s, y, u) = xs
−3
4 (1 + |u|) sin√t sin s
(1 + x2 + t2)(1 + |u|)

if (t, x, s, y) ∈ J and u ∈ ℝ ,

and
J = {(t, x, s, y) : 1 ≤ s ≤ t and 1 ≤ x ≤ y ≤ e} .

Set

μ(t, x) = xe3−2t

1 + t + x2
, f(t, x, u, v) = xe−t−2

cp(1 + e−2p|u| + e−p|v|)
; p ∈ ℕ\{0, 1} .

The function f is continuous and satisfies (8.4.1), with k(t, x) = xe−t−2−pcp , l(t, x) = xe−t−2−2pcp ,
kp = e−2−p

cp , and lp = e−2−2p
cp . Additionally, the function g is continuous and satisfies

(8.4.2), with

P(t, x, s, y) = Q(t, x, s, y) = xs
−3
4 sin√t sin s
1 + x2 + t2

; (t, x, s, y) ∈ J .

Further, the function g is continuous and satisfies (8.4.3), with

P1(s, y) = Q(s, y) = s
−3
4 sin s , P1p = Q1p = p

−3
4

and
ϕ(t, x) = x sin√t

1 + x2 + t2
.

Finally, we will show that condition (8.17) holds with b = e. Indeed, for each
p ∈ ℕ\{0, 1} we get

kp +
lp(log p)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

=
1
cp
(e−2−p + e−2−2ppr1

Γ(1 + r1)Γ(1 + r2)
) = e−2 < 1 .

Hence, by Theorem 8.9, equation (8.21) has a solution defined on [1, +∞) × [1, e] and
(8.21) is generalized Ulam–Hyers–Rassias stable.
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8.5 Ulam Stability Results for Hadamard Partial Fractional
Integral Inclusions via Picard Operators

8.5.1 Introduction

In this section, using weakly Picard operators theory, we investigate some existence
results and Ulam-type stability concepts of fixed point inclusions due to Rus for a class
of partial Hadamard fractional integral inclusions.

In [47, 37, 39], Abbas et al. studied some Ulam stabilities for functional fractional
partial differential and integral inclusions via Picard operators. In this section, we
discuss the Ulam–Hyers and the Ulam–Hyers–Rassias stability for the new class of
fractional partial integral inclusions

u(x, y) − μ(x, y) ∈ (H IrσF)(x, y, u(x, y)) ; (x, y) ∈ J := [1, a] × [1, b] , (8.22)

where a, b > 1, σ = (1, 1), F : J × E → P(E) is a set-valued function with nonempty
values in a (real or complex) separable Banach space E,P(E) is the family of all
nonempty subsets of E, and μ : J → E is a given continuous function.

8.5.2 Picard Operators Theory

In what follows we will give some basic definitions and results on Picard operators [228,
229]. Let (X, d) be a metric space and A : X → X an operator. We denote by FA the set of
the fixed points of A. We denote by A0 := 1X , A1 := A, . . . , An+1 := An ∘ A; n ∈ ℕ the
iterate operators of the operator A.

Definition 8.10. The operator A : X → X is a Picard operator (PO) if there exists x∗ ∈ X
such that
(i) FA = {x∗},
(ii) The sequence (An(x0))n∈ℕ converges to x∗ for all x0 ∈ X.

Definition 8.11. The operator A : X → X is a weakly Picard operator (WPO) if the
sequence (An(x))n∈ℕ converges for all x ∈ X and its limit (which may depend on x) is a
fixed point of A.

Definition 8.12. If A is a WPO, then we consider the operator A∞ defined by

A∞ : X → X ; A∞(x) = lim
n→∞

An(x) .

Remark 8.13. It is clear that A∞(X) = FA.

Definition 8.14. Let A be aWPO and c > 0. The operator A is a c-weakly Picard operator
if

d(x, A∞(x)) ≤ c d(x, A(x)) ; x ∈ X .
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In the multivalued case we have the following concepts (see [218, 235]).

Definition 8.15. Let (X, d) be a metric space and F : X → Pcl(X) a multivalued operator.
By definition, F is a multivalued weakly Picard operator (MWPO) if for each u ∈ X and
each v ∈ F(x) there exists a sequence (un)n∈ℕ such that
(i) u0 = u, u1 = v,
(ii) un+1 ∈ F(un) for each n ∈ ℕ,
(iii) the sequence (un)n∈ℕ is convergent and its limit is a fixed point of F.

Remark 8.16. A sequence (un)n∈ℕ satisfying conditions (i) and (ii) in the preceding
definition is called a sequence of successive approximations of F starting from (x, y) ∈
Graph(F).

If F : X → Pcl(X) is a MWPO, then we define F1 : Graph(F)→ P(Fix(F)) by the formula
F1(x, y) := {u ∈ Fix(F): there exists a sequence of successive approximations of F
starting from (x, y) that converges to u}.

Definition 8.17. Let (X, d) be a metric space, and let Ψ : [0,∞) → [0,∞) be an in-
creasing function that is continuous at 0 and Ψ(0) = 0. Then F : X → Pcl(X) is said to
be a multivalued Ψ-weakly Picard operator (Ψ-MWPO) if it is a MWPO and there exists
a selection A∞ : Graph(F)→ Fix(F) of F∞ such that

d(u, A∞(u, v)) ≤ Ψ(d(u, v)) ; for all (u, v) ∈ Graph(F) .

If there exists c > 0 such thatΨ(t) = ct for each t ∈ [0,∞), then F is called amultivalued
c-weakly Picard operator (c-MWPO).

Let us recall the notion of comparison.

Definition 8.18. A function φ : [0,∞)→ [0,∞) is said to be a comparison function
(see [228]) if it is increasing and φn → 0 as n →∞.

As a consequence, we have φ(t) < t for each t > 0, φ(0) = 0, and φ is continuous at 0.

Definition 8.19. A function φ : [0,∞) → [0,∞) is said to be a strict comparison
function (see [228]) if it is strictly increasing and∑∞n=1 φn(t) <∞ for each t > 0.

Example 8.20. The mappings φ1, φ2 : [0,∞)→ [0,∞) given by φ1(t) = ct, c ∈ [0, 1),
and φ2(t) = t

1+t , t ∈ [0,∞), are strict comparison functions.

Definition 8.21. A multivalued operator N : X → Pcl(X) is called
(a) γ-Lipschitz if and only if there exists γ ≥ 0 such that

Hd(N(u), N(v)) ≤ γd(u, v) for each u, v ∈ X ,

(b) a multivalued γ-contraction if and only if it is γ-Lipschitz with γ ∈ [0, 1),
(c) a multivalued φ-contraction if and only if there exists a strict comparison function

φ : [0,∞)→ [0,∞) such that

Hd(N(u), N(v)) ≤ φ(d(u, v)) for each u, v ∈ X .
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The following result, a generalization of the Covitz–Nadler fixed point principle
(see [130]), is known in the literature as Wȩgrzyk’s fixed point theorem.

Lemma 8.22 ([255]). Let (X, d) be a complete metric space. If A : X → Pcl(X) is a φ-
contraction, then Fix(A) is nonempty, and for any u0 ∈ X there exists a sequence of
successive approximations of A starting from u0, which converges to a fixed point of A.

The next result is known as Wȩgrzyk’s theorem.

Lemma 8.23 ([255]). Let (X, d) be a Banach space. If an operator A : X → Pcl(X) is a
φ-contraction, then A is a MWPO.

Now we present an important characterization lemma from the point of view of Ulam–
Hyers stability.

Lemma 8.24 ([217]). Let (X, d) be a metric space. If A : X → Pcp(X) is a Ψ-MWPO, then
the fixed point inclusion u ∈ A(u) is generalized Ulam–Hyers stable. In particular, if A is
c-MWPO, then the fixed point inclusion u ∈ A(u) is Ulam–Hyers stable.

Another Ulam–Hyers stability result, more efficient for applications, was proved in [193].

Theorem 8.25 ([193]). Let (X, d) be a complete metric space and A : X → Pcp(X) a
multivalued φ-contraction. Then:
(i) Existence of fixed point: A is a MWPO;
(ii) Ulam–Hyers stability for fixed point inclusion: If additionally φ(ct) ≤ cφ(t) for

every t ∈ [0,∞) (where c > 1) and t = 0 is a point of uniform convergence for
the series ∑∞n=1 φn(t), then A is a Ψ-MWPO, with Ψ(t) := t + ∑∞n=1 φn(t), for each
t ∈ [0,∞);

(iii) Data dependence of fixed point set: Let S : X → Pcl(X) be a multivalued φ-
contraction and η > 0 be such that Hd(S(x), A(x)) ≤ η for each x ∈ X. Suppose that
φ(ct) ≤ cφ(t) for every t ∈ [0,∞) (where c > 1) and t = 0 is a point of uniform
convergence for the series∑∞n=1 φn(t). Then Hd(Fix(S), Fix(F)) ≤ Ψ(η).

8.5.3 Existence and Ulam Stability Results

In this section, we present conditions for the existence and Ulam stability of Hadamard
integral inclusion (8.22).

Theorem 8.26. Make the following assumptions:
(8.21.1) (x, y) → F(x, y, u) is jointly measurable for each u ∈ E.
(8.21.2) u → F(x, y, u) is lower semicontinuous for almost all (x, y) ∈ J.
(8.21.3) There exist p ∈ L∞(J, [0,∞)) and a strict comparison function φ : [0,∞) →
[0,∞) such that for each (x, y) ∈ J and each u, v ∈ E we have

Hd(F(x, y, u), F(x, y, u)) ≤ p(x, y)φ(‖u − u‖E) (8.23)
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and
(log a)r1 (log b)r2‖p‖L∞
Γ(1 + r1)Γ(1 + r2)

≤ 1 . (8.24)

(8.21.4) There exists an integrable function q : [1, b] → [0,∞) such that for each
x ∈ [1, a] and u ∈ E we have F(x, y, u) ⊂ q(y)B(0, 1), a.e. y ∈ [1, b], where
B(0, 1) = {u ∈ E : ‖u‖E < 1}.

Then we have that:
(a) The integral inclusion (7.1) has at least one solution and N is a MWPO.
(b) If additionally φ(ct) ≤ cφ(t) for every t ∈ [0,∞) (where c > 1) and t = 0 is a

point of uniform convergence for the series∑∞n=1 φn(t), then integral inclusion (7.1) is
generalized Ulam–Hyers stable, and N is a Ψ-MWPO, with the function Ψ defined
by Ψ(t) := t +∑∞n=1 φn(t), for each t ∈ [0,∞). Moreover, in this case the continuous
data dependence of the solution set of integral inclusion (8.23) holds.

Remark 8.27. For each u ∈ C, the set SF∘u is nonempty since, by (8.21.1), F has a
measurable selection (see [121] Theorem III.6).

Proof. The proof will be given in two steps.
Step 1. N(u) ∈ Pcp(C) for each u ∈ C. From the continuity of μ and Theorem 2 in

Rybiński [236] we have that for each u ∈ C there exists f ∈ SF∘u, for all (x, y) ∈ J, such
that f(x, y) is integrable with respect to y and continuous with respect to x. Then the
function v(x, y) = μ(x, y) + H Irσ f(x, y) has the property v ∈ N(u). Moreover, from (8.21.1)
and (8.21.4), via Theorem 8.6.3. in Aubin and Frankowska [69], we get that N(u) is a
compact set for each u ∈ C.

Step 2. Hd(N(u), N(u)) ≤ φ(‖u − u‖∞) for each u, u ∈ C. Let u, u ∈ C and h ∈ N(u).
Then there exists f(x, y) ∈ F(x, y, u(x, y)) such that for each (x, y) ∈ J we have

h(x, y) = μ(x, y) + H Irσ f(x, y) .

From (8.21.3) it follows that

Hd(F(x, y, u(x, y)), F(x, y, u(x, y))) ≤ p(x, y)φ(‖u(x, y) − u(x, y)‖E) .

Hence, there exists w(x, y) ∈ F(x, y, u(x, y) such that

‖f(x, y) − w(x, y)‖E ≤ p(x, y)φ(‖u(x, y) − u(x, y)‖E) ; (x, y) ∈ J .

Consider U : J → P(E) given by

U(x, y) = {w ∈ E : ‖f(x, y) − w(x, y)‖E ≤ p(x, y)φ(‖u(x, y) − u(x, y)‖E)} .

Since the multivalued operator u(x, y) = U(x, y) ∩ F(x, y, u(x, y)) is measurable (see
Proposition III.4 in [121]), there exists a function f (x, y) that is a measurable selection
for u. Thus, f (x, y) ∈ F(x, y, u(x, y)), and for each (x, y) ∈ J,

‖f(x, y) − f (x, y)‖E ≤ p(x, y)φ(‖u(x, y) − u(x, y)‖E) .
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Let us define for each (x, y) ∈ J

h(x, y) = μ(x, y) + H Irσ f (x, y) .

Then for each (x, y) ∈ J we have

‖h(x, y) − h(x, y)‖E ≤ H Irσ‖f(x, y) − f (x, y)‖E
≤ H Irσ(p(x, y)φ(‖u(x, y) − u(x, y)‖E))

≤ ‖p‖L∞φ(‖u − u‖∞)(
x

∫
1

y

∫
1

log
x
s

r1−1 log

y
t

r2−1

stΓ(r1)Γ(r2)
dtds)

≤
(log a)r1 (log b)r2‖p‖L∞
Γ(1 + r1)Γ(1 + r2)

φ(‖u − u‖∞) .

Thus, by (10.2), we get
‖h − h‖∞ ≤ φ(‖u − u‖∞) .

By an analogous relation, obtained by interchanging the roles of u and u, it follows that

Hd(N(u), N(u)) ≤ φ(‖u − u‖∞) .

Hence, N is a φ-contraction.
(a) By Lemma 8.22, N has a fixed point that is a solution of inclusion (7.1) on J, and by

[Theorem 8.25 (i)], N is a MWPO.
(b) We will prove that the fixed point inclusion problem (7.1) is generalized Ulam–Hyers

stable. Indeed, let ϵ > 0 and v ∈ C for which there exists u ∈ C such that

u(x, y) ∈ μ(x, y) + (H IrσF)(x, y, v(x, y)) , if (x, y) ∈ J ,

and
‖u − v‖∞ ≤ ϵ .

Then Hd(v, N(v)) ≤ ϵ. Moreover, by the preceding proof we have that N is a mul-
tivalued φ-contraction, and using [Theorem 8.25 (i)-(ii)], we obtain that N is a
Ψ-MWPO. Then, by Lemma 8.24, we obtain that the fixed point problem u ∈ N(u)
is generalized Ulam–Hyers stable. Thus, integral inclusion (8.22) is generalized
Ulam–Hyers stable.

Concerning the conclusion of the theorem, we apply [Theorem 8.25 (iii)].

8.5.4 An Example

Let

E = l1 = {w = (w1, w2, . . . , wn , . . . ) :
∞
∑
n=1
|wn| <∞}
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be a Banach space with norm

‖w‖E =
∞
∑
n=1
|wn| ,

and consider the partial functional fractional order integral inclusion of the form

u(x, y) ∈ μ(x, y) + (H IrσF)(x, y, u(x, y)) , a.e. (x, y) ∈ [1, e] × [1, e] , (8.25)

where r = (r1, r2), r1, r2 ∈ (0,∞),

u = (u1, u2, . . . , un , . . . ) , μ(x, y) = (x + e−y , 0, . . . , 0, . . . ) ,

and

F(x, y, u(x, y))
= {v ∈ C([1, e] × [1, e],ℝ) : ‖f1(x, y, u(x, y))‖E ≤ ‖v‖E ≤ ‖f2(x, y, u(x, y))‖E} ,

(x, y) ∈ [1, e] × [1, e], where f1, f2 : [1, e] × [1, e] × E → E,

fk = (fk,1, fk,2, . . . , fk,n , . . . ) ; k ∈ {1, 2}, n ∈ ℕ ,

f1,n(x, y, un(x, y)) =
xy2un

(1 + ‖un‖E)e10+x+y
, n ∈ ℕ ,

and
f2,n(x, y, un(x, y)) =

xy2un
e10+x+y

; n ∈ ℕ .

We assume that F is closed and convex valued. We can see that the solutions of the
inclusion (7.4) are solutions of the fixed point inclusion u ∈ A(u), where A : C([1, e] ×
[1, e],ℝ)→ P(C([1, e] × [1, e],ℝ)) is the multifunction operator defined by

(Au)(x, y) = {μ(x, y) + (H Irσ f)(x, y); f ∈ SF∘u} ; (x, y) ∈ [1, e] × [1, e] .

For each (x, y) ∈ [1, e] × [1, e] and all z1, z2 ∈ E we have

‖f2(x, y, z2) − f1(x, y, z1)‖E ≤ xy2e−10−x−y‖z2 − z1‖E .

Thus, conditions (8.21.1)–(8.21.3) are satisfied by p(x, y) = xy2e−10−x−y. Condition (10.2)
holdswith a = b = e. Indeed, ‖p‖L∞ = e−9, Γ(1+ri) > 1

2 ; i = 1, 2. A simple computation
shows that

ζ := (log a)
r1 (log b)r2‖p‖L∞

Γ(1 + r1)Γ(1 + r2)
< 4e−9 < 1 .

Condition (8.21.4) is satisfied by q(y) = y
2e−10−y
‖F‖P ; y ∈ [1, e], where

‖F‖P = sup{‖f‖C : f ∈ SF∘u} ; for all u ∈ C .

Consequently, by Theorem 8.26, we draw the following conclusions:
(a) Integral inclusion (8.25) has least one solution and A is a (MWPO).
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(b) The function φ : [0,∞) → [0,∞) defined by φ(t) = ζt satisfies φ(ζt) ≤ ζφ(t)
for every t ∈ [0,∞) and t = 0 is a point of uniform convergence for the series
∑∞n=1(ζt)n. Then the integral inclusion (7.4) is generalized Ulam–Hyers stable, and
A is a Ψ-MWPO, with the function Ψ defined by Ψ(t) := t + (1 − ζt)−1 for each
t ∈ [0, ζ−1). Moreover, the continuous data dependence of the solution set of
integral inclusion (8.23) holds.

8.6 Notes and Remarks

The results of Chapter 8 are taken from Abbas et al. [2, 10, 9, 11]. Other results may be
found in [24, 25, 22, 31, 153].
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