8 Stability Results for Partial Hadamard Fractional
Integral Equations and Inclusions

8.1 Introduction

This chapter deals with some existence and Ulam stability results for several classes of
partial integral equations via Hadamard’s fractional integral by applying some fixed
point theorems.

8.2 Ulam Stabilities for Partial Hadamard Fractional Integral
Equations

8.2.1 Introduction

This section deals with the existence the Ulam stability of solutions to the Hadamard
partial fractional integral equation

u(x,y) = u(x,y)

([ -1 f(s, t, u(s, t)) )
F(rl)F(rz ” 1°g 10% ) T dtds; if (xy) e,

st
8.1

where J := [1,a] x [1,b],a,b > 1,r1,72 > O, u:J — R,f: ] x R - R are given
continuous functions.

We present two results for integral equation (8.1). The first one is based on Banach’s
contraction principle and the second one on the nonlinear alternative of the Leray—
Schauder type.

8.2.2 Existence and Ulam Stabilities Results

In this section, we discuss the existence of solutions and present conditions for the
Ulam stability for the Hadamard integral equation (8.1).

The following conditions will be used in the sequel.
(8.1.1) There exist functions p1, p> € C(J, R;) such that for any u € R and (x, y) € J,

pZ(Xa )/)

T |u(x,yﬂlu(x,y)l,

Gy, wl <pix,y) +

with

p{ = sup pi(x,y); i=1,2.
x,y)el
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242 — 38 Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions

(8.1.2) There exists Ap > 0 such that for each (x, y) € ] we have

HLD)(x, y) < Ao D(x, y) .

Theorem 8.1. Assume (8.1.1). If

(loga)(logb)
TA+mIiasrmPz <t (8.2)

then integral equation (8.1) has a solution defined on J.
Proof. Let p > 0 be a constant such that

(loga)1(logb)"2 __«
IMlleo + “Fisrmrctery) P1

1- (loga)1(logb)"2 __«
T(1+r)I(1+ry) £2

We use Schauder’s fixed point theorem [149] to prove that the operator N: C — C
defined by

xy
Y\ f(s, t, us, t))
Nu)(x,y) = u(x, 1 _) s, L, uts, )
(Nw)(x, y) = p(X V) + e )F(r ) ” og ogt <t dtd
11
(8.3)
has a fixed point. The proof will be given in four steps.
Step 1: N transforms the ball B, := {u € C: |lul¢ < p} into itself. For any u € B, and
each (x, y) € ] we have

r—-1

|(NU)(x, Y)] < (6, y)] + m j j log 2| flog 2

o pi(s, t) +1;tz(s, t)IIullcdtds

(log a)*(log b)"

T sty 1t PP

< lullo +

Thus, by (8.2) and the definition of p we get ||(Nu)|¢ < p. This implies that N transforms
the ball B, into itself.

Step 2: N: B, — B, is continuous.
Let {un}new be a sequence such that u, — uin B,. Then

-1

-1
y

log Z

logt

xy
[(Nup)(x, y) — (Nu)(x, y)| < Tl 1)F(r2) J”log
11

~ |f(s5 t) un(S, t)) _f(s) t) u(37 t))ldtd

st
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8.2 Ulam Stabilities for PHFIEs =——— 243

-1

)’

Xy
F(rl)F(rz Jlﬂlog

x Sup(S,t)E] |f(s, t, un(s) t)) _f(s, t, u(S’ t))l

dtds
st

_ (loga)" (log by

S LA SR (CRLICR

From Lebesgue’s dominated convergence theorem and the continuity of the function f
we get

[(Nup)(x,y) - (Nu)(x,y)| = 0 as n —» 00

Step 3: N(B,) is bounded. This is clear since N(B,) ¢ B, and B, is bounded.
Step 4: N(B,) is equicontinuous.
Let (x1,y1), (x2,¥2) € ], X1 < Xx2,y1 <y2. Then

[(Nu)(x2,y2) - (Nu)(xl,yl)l < |uxy, y1) = ulxz, y2)l

« If(s, t,u(S,l‘))Idtd

-1
Y1

log 2%
|Ogt

)‘2—1]

st
1T i1 R |fs, t, u(s, D)
X2 |"t™ Y2 |2 S, L, u(s,
+r(r1)r<r2)J log-=|  Jlog % st dd
X1 Y1
1T -1 R If(s, t, u(s, £)|
X2 |"™ YZ 2= S, [, u(s,
— = [ hogX2|" fog¥2|* WS LU, DN,y
+F(T1)F(TZ)J %875 8% st tds
1)1
1T i1 R |f(s, £, u(s, D)
X2 1= y2 2= b ’u I’
b [ hog 2| og 22| UiS: L uls, O
+F(7’1)F(r2)j J %85 87 st
X1 1
Thus,
[(Nu)(x2,y2) — (Nu)(x1, Yyl < [u(x1, y1) — u(x2, y2)I
1 X1 Y1 el , 1
X2 | V2 X1 |~ Y|~
* L) J J “l"g S| s |1°g ll"g : ]
detds
st
1 y2|271 pl +p3p
—2 ([ho |1 Ya|*™" P17 PoP
F(rl)F(rz) I” iy 8% st dtds
X1 1
X ri-1 r-1 p* *
X2 "t y2|27 Py +Dop
F(T1)F(r2)J J ‘log f] T osr dtds
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244 — 8 Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions

X2 Y1

ooy ) | o5 s

X1 1
pi+DP5p
STA+r)I(1+712)
x [2(log y2)"(log x5 — log x1)™ + 2(log x2)" (logy> — logy1)"™
+ (log x1)" (logy1)™ - (log x2)"* (log y2)" — 2(log x> —log x1)" (log y, — log y1)"] .

ol py +pyp
st

dtds

71—1|

Y2
log 22
ogt

As x; — x3 and y; — Y-, the right-hand side of the preceding inequality tends to zero.

As a consequence of Steps 1-4, together with the Ascoli—Arzela theorem, we
can conclude that N is continuous and compact. From an application of Schauder’s
theorem [149], we deduce that N has a fixed point u that is a solution of integral equation
(8.1). O

Now we are concerned with the stability of solutions for integral equation (8.1).
RecallN: C — Casdefinedin8.3.Lete > 0,andlet @: ] — [0, co) be a continuous
function. We consider the inequalities

lu(x,y) -(Nwx,y)l<e; (x,y)e], (8.4)
lu(x,y) - (Nw)x, )l < Px,y); X, y) €], (8.5)
lu(x,y) - (Nu)(x, y)| < €D(x,y); X, y)e]. (8.6)

Definition 8.2 ([35, 233]). Equation (8.1) is Ulam—-Hyers stable if there exists a real
number cy > 0 such that for each € > 0 and for each solution u € C of inequality (8.4)
there exists a solution v € C of equation (8.1) with

lu(x,y) -vix,y)l <ecn; (x,y)e].

Definition 8.3 ([35, 233]). Equation (8.1) is generalized Ulam-Hyers stable if there
exists cy: C([0, ), [0, 00)), with cy(0) = 0, such that for each € > 0 and for each
solution u € C of (8.4) there exists a solution v € C of equation (8.1) with

lu(x,y) v, y)l <cn(e); (x,y)e].

Definition 8.4 ([35, 233]). Equation (8.1) is Ulam-Hyers—Rassias stable with respect to
@ if there exists a real number cy,¢ > 0 such that for each € > 0 and for each solution
u € C of (8.6) there exists a solution v € C of equation (8.1) with

[ux,y) - vix,y)| < ecn,o@(x,y); (X, y) €] .

Definition 8.5 ([35, 233]). Equation (8.1) is generalized Ulam-Hyers—Rassias stable
with respect to @ if there exists a real number cy,¢ > 0 such that for each solution
u € C of (8.5) there exists a solution v € € of equation (8.1) with |u(x, y) — v(x, y)| <
CN,o@(x,¥); (X, ¥) €].
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8.2 Ulam Stabilities for PHFIEs = 245

Remark 8.6. It is clear that (i) Definition 8.2 implies Definition 8.3, (ii) Definition 8.4
implies Definition 8.5, and (iii) Definition 8.4 for @(., .) = 1 implies Definition 8.2.

One could make similar remarks for inequalities (8.4) and (8.6).

Theorem 8.7. Assume (8.1.1), (8.1.2), and (8.2) hold. Furthermore, suppose that there
exist g; € C(J, Ry), i = 1, 2, such that for each (x, y) € ] we have

pix,y) < qi(x, y)D(x, y) .
Then integral equation (8.1) is generalized Ulam-Hyers—Rassias stable.
Proof. Let u be a solution of inequality (8.5). By Theorem 8.1 there exists v that is a

solution of integral equation (8.1). Hence,

-1
10g ) w dtds

XYy
v(x,y) = p(x, y) + J J log stI(ry)I(r,)
11

By inequality (8.5), for each (x, y) € ] we have

Xy
21 f(s, t, u(s, t))
u(X, y) - }I(X, y) - i[ IJ lOg lOg > mdtds < (D(X, y) .
Set
q; = sup qi(x,y); i=1,2.
(el
For each (x, y) € ] we have
[u(x, y) = vix, y)l < ulx,y) - p(x )—ﬁ lo 1 )rz 1jwdtds
Y »Y)I = » V) — U, Y g og — SIT(rOI(r)
11
([ rLIf(s, £, u(s, 6) - £(s, t, (s, D)
y 2= S’ ’uS’ - Sa ,VS,
dtd
" J J llog 8% stl(r1)I(r>) s
11
Xy
DX, YY)+ ———— I”logx ' |10g o
< . — A
YT 1>r( ) ) s f
<2 - q5lu(s, t)| qZIV(s, t)l) O
1+ |ul 1+|v|
< D(x,y) +2(q5 + ¢3) T, D)(x, y)
< [1+2(q7 + q5)A]1P(x, y)
= CcN,oP(x, y) .
Hence, integral equation (8.1) is generalized Ulam—-Hyers—Rassias stable. O
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246 —— 8 Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions

8.2.3 An Example

As an application of our results we consider the partial Hadamard integral equation

u(x, y) = u(x, y)

i n-1 -1 f(s, t, u(s, t))
+JJ-(10g§) (logZ) Ldtds, (6, y)ell,e]x[1,e],
11

t stl'(r1)I'(ry)
(8.7)
where
r,r2>0, uxy)=x+y*, xy) ell,elx[1,¢e],
and
fix, y, u(x, ) = exy? (e“‘ + %) , Gy ellelx(1,el,
with

e
C:= ?F(l + r1)F(1 + Tz) .

Foreachu € Rand (x, y) € [1, e] x [1, e] we have

06, v, u(x, )| < ce™ (1 + Jul) .

Hence, condition (8.1.1) is satisfied by p; = p3 = ce™. Condition (8.2) holds with
a=>b =e.Indeed,
(log a)"*(log b)"p3 c 1

= = — 1 .
TA+r)f(1+r)  eTA+rId+r) 2.

Consequently, Theorem 8.1 implies that Hadamard integral equation (8.7) has a solution
defined on [1, e] x [1, e]. Also, condition (8.1.2) is satisfied by

1

_ 53 _ _
Py) =€’ and Ao = pa—— R

Indeed, for each (x, y) € [1, e] x [1, e] we get

3

Hr
CL®)OY) < s SFaT )

= Ao @(x,y) .

Consequently, Theorem 8.7 implies that equation (8.7) is generalized Ulam-Hyers—
Rassias stable.
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8.3 Global Stability Results for Volterra-Type Partial Hadamard
Fractional Integral Equations

8.3.1 Introduction

In [47], Abbas et al. studied some existence and stability results for the nonlinear
quadratic Volterra integral equation of Riemann-Liouville fractional order
1 B
u(t, ) = it x,ut, 0, u(@(®, ) + 7 [ B0 =971
0

x g(t, x, s, u(s, x), u(y(s), x))ds, (t,x)eR;x][O0,b], (8.8)

whereb > 0, R, = [0,00),7 € (0,00),a,B,y: Ry - Ry,andf: R, x[0, b]xRxR — R
and g: R; x [0, b] x Ry x R x R — R are given continuous functions.

This section deals with the global existence and stability of solutions to the nonlin-
ear quadratic Volterra partial integral equation of Hadamard fractional order

B(t) x
~ 1 B(t) ri—-1 X r—1
u(l’,X) —f(t,X, u(l’,X), u(a(t), X))+m i[ i|’<10g T) (10g E)

déds

s&
where b > 1,7r1,1 € (0,00),a,8, y: [1,00) — [1,00),and f: ] x Rx R — R and
g: ] xJ xR xR — R are given continuous functions. Our existence results are based
upon Schauder’s fixed point theorem. Also, we obtain some results about the local
asymptotic stability of solutions of the equation in question. Finally, we present an
example illustrating the applicability of the imposed conditions.

x g(t, x, s, & u(s, &), u(y(s), &) (t,x)eJ:=[1,00)x[1,b], (89)

8.3.2 Existence and Global Stability Results

In this section, we are concerned with the existence and the asymptotic stability of
solutions for Hadamard partial integral equation (8.9).
In the sequel, we will use the following conditions.
(8.3.1) The function a: [1, c0) — [1, co) satisfies lim;_,o, a(t) = co.
(8.3.2) There exist constants M, L > 0 and a nondecreasing function ¥ : [0, co) —
(0, c0) such that M < £,

M(luy = uz| + [v1 = val)

|f(t’ X, U1, Vl) _f(t’ X, uz,V2)| < (1 T a(t))(L T |u1 — u2| T |V1 — V2|) >

and
If(t, x1, u, v) = fltz, X2, u, v)| < (It1 = t2 + 1x1 = x2)P1 (Jul + |v])

for each (¢, x), (t1, x1), (t2,x2) € Jand u, v, uq, vi, Uz, vo € R.
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248 — 8 Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions

(8.3.3) The function t — f(t, x, 0, 0) is bounded on J with
fr= sup f(t, x,0,0)
(t,x)€[1,00)x[1,b]
and
tlim Ift, x,0,0)|=0; xe€l1,b].

(8.3.4) There exist continuous functions p, q, ¢ : J] — R, and a nondecreasing function
P, : [0, 00) — (0, 0o) such that

Ig(tli X1, S, ‘f’ u, V) _g(tZs X2, S, fi u, V)l < ¢(S’ '{)('tl - t2| + |X1 _X2|)l)b2(|u| + |V|)

and
p(t, x)q(s, &)
1+a(t)+|ul +|v|

for each (t, x), (s, &), (t1, x1), (t2, x2) € J and u, v € R. Moreover, assume that

lg(t, x,s,& u,v)| <

B(t) x
tlim p(t, x) J J
11

Theorem 8.8. Assume (8.3.1)—(8.3.4). Then integral equation (7.1) has at least one solution
in the space BC. Moreover, solutions of equation (7.1) are globally asymptotically stable.

r- 72—1

ﬁ( ) q(s,é€déds =0

log —= log

§

Proof. Setd* :=supy ) d(t, x), where

ri— r—-1

PO q(s, &)déds .

p(t, x)

dt, x) = Fnr) |

[ st

X
log <
§

From condition (8.3.4) we infer that d* is finite. Let us define the operator N such that,
for any u € BC,

B(t) x rr-1
X
(Nu)(t, x) = f(t, x, u(t, x), u(a(t), X)) + =——=— log -
F(r1)T(rz) J J( ) < f)
déd
x g(t, x, s, & u(s, &), u(y(s), &) iys (t,x)e].

(8.10)

By considering the conditions of this theorem, we infer that N(u) is continuous on J.
Now we prove that N(u) € BC for any u € BC. For arbitrarily fixed (¢, x) € J we have

[(Nu)(t, x)| < If(t, x, u(t, x), u(a(t), x)) - f(t, x, 0, 0)| + |f(t, x, 0, O)|

1 B(t) x ﬁ( = -t
- log P2 1 X
* T I J l o8 8%
déd
< Ig(t, %, 5, & u(s, &), u(y(s), )| is
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8.3 Global Stability Results for Volterra-Type PHFIEs = 249

M(lu(t, x)| + lu(a(t), x)])
T @A+ a®)(L + u(t, )|+ lua(t), X))
B(t)

pt,x) [ (| B®
T(r)I(r) J J Ilog s

+1f(t, x, 0, 0)

ri-1 X r—1
log -

3
y q(s, {) d.fds
1+ a(t) + lu(s, &) + luly(s), &) s&

M(u(t, )| + lu(a(t), X)) .. .
S TG0l o, 0 e

Thus,
INWlpc < M+ f* +d* . (8.11)

Hence, N(u) € BC. Equation (8.11) yields that N transforms the ball B, := B(0, i) into
itself, where n = M + f* + d*. We will show that N: B, — B, satisfies the assumptions
of Schauder’s fixed point theorem [149]. The proof will be given in several steps and
cases.

Step 1: N is continuous. Let {u,}en be a sequence such that u, — u in By. Then for
each (t, x) € J we have

|(Nun)(t, x) = (Nu)(t, X)| < If(t, X, un(t, x), un(a(t), x)) - f(t, x, u(t, x), u(a(t), x))|

1 B(t) x ﬁ(t) ri—-1 % -1
* T J ﬂ“’gT R
X (Slé'l)p] |g(t’ Xy S) {, un(s’ a’ un()’(s), ‘f))
dé&d
—g(t,x, s, & u(s, &), u(y(s), )| i(s
< Tllun —ullac
Bt) x
1 BOI x|t
" Tror) J lﬂl"gT R

X "g(t, X, RIS} un(-, *)’ un(Y(-), '))
- g(t’ Xy oy ey u(-’ -)’ U(Y(-), '))”Bcd{ds .
(8.12)

Case1.1f (t,x) € [1, T] x [1, b], T > 1, then, since u, —» uasn — ocoand g, y are
continuous, then (8.12) gives

IN(un) — N(u)lpc > 0 as n — oo .
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250 —— 8 Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions

Case 2. If (t,x) € (T,00) x [1,b], T > 1, then from (8.3.4) and (8.12), for each
(t, x) € J, we have

2M
[(Nun)(t, x) = (Nu)(t, x)| < T”un - ullac

w0 LT RO x| s, O

" log —= log = > 22 déds
T J J ‘ 8 8% e %

2M

< T”un —ullpc +d(t, x) .
Thus, we get
2M
|(Nun)(t, 0 = (N0 201 < 22 oty — il + it ) (813)

Since u, — uasn — coand t — oo, then (8.13) gives
[N(un) - N(w)|lpc = 0 as n — co.

Step 2: N(By) is uniformly bounded. This is clear since N(B;) ¢ By and By is
bounded.

Step 3: N(By)) is equicontinuous on every compact subset [1, a] x [1, b] of J,a > 0.
Let (t1, x1), (2, x2) € [1, al x [1, b], t1 < t2, X1 < X2, and let u € By. Also, without loss
of generality, suppose that (¢1) < B(t,). Then we have

[(Nu)(t2, x2) — (Nu)(t1, x1)|

< |f(t2, X2, u(tZy XZ)’ u(a(t2)9 XZ)) _f(t29 X2, u(tl’ X1)9 u(a(t1)9 Xl))l

+ |f(t2, x2, u(ty, x1), u(a(ts), x1)) — f(t1, x1, u(ty, x1), u(a(ts), x1))!
B(t2) x,
X2

1 B(t2)
" TrI(r) J J IlogT 3

x |g(t2, x2, 8, &, u(s, &), u(y(s), &) — g(t1, x1, s, & u(s, &), u(y(s), &))ldéds
B(t2) x,

1 ﬁ(tz) -1 Xa r—1
T(r)I(r) J J <1°g s ) (k’g?)

x g(t1, x1, s, &, u(s, &), u(y(s), &)déds

ri—-1 -1

log

+

t1) xq

1 B ﬂ(t ) ri—1 X -1
2 2
“ TGO J J (logT> <l°g?>

xg(t1, x1, S, & u(s, &), u(y(s), §)déds|
B(t1) x,

1 ﬂ(tz) -1 Xa r—1
* TGOl J JI(log s ) (lOg?>

(22) o)
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Thus, we obtain
[(Nu)(t2, x2) = (Nu)(t1, x1)|
< %(Iu(tz, x2) = u(ty, x1)| + lu(a(tz), x2) — u(a(ty), x1)l)
+ (It = tal + Ix2 = x1 )1 (2llullsc)

B(t2) x, 1
-
X
log 22

1 B(t2)
* TGroT(r) J J ‘log s Z
x (s, )|tz — t1] + [x2 — x1 )2 (2|lullpc)déds
1 B(t2) x, ﬁ(t )
2
*roores | e
B(t1) 1

ty

Yz—l

r-1 r—1

X2

§

X |g(t1’ X1, S, fp u(s, '{)9 u(y(s)y {))ld'{ds

fit)
S

log

r-1 X5 r,—1
log —=

X |g(t1’ X1, S, é’, u(s, ‘f), u()’(s), {))ld%’ds

1 B(t2) x, B(t)
2
+T(T1)F(7’2)ﬁj J RAE

(t1)

r-1 -1

xy |2

§

X |g(t1’ X1, S, 5’ u(S, ‘f)’ u()’(s)’ {))ldé’ds
B(t1) x

1 B M)Hl( X_2>r21
* TaI(r) J H(lc’g s los

,B(tl) ri—-1 X1 r—1
(1) (“’g?)

Hence, we get

log

X1, S, ‘f’ u(s, 5)’ U(Y(S)’ f))|d§d$ .

[(Nu)(t2, x2) — (Nu)(t1, x1)|
M
< f(lu(tz, X2) = u(ty, x)| + lua(tz), x2) — u(a(ty), x1))

+ (|62 = t1] + Ix2 = x1 1)1 (21)
(It2 = t1l + Ix2 = x11)2(27)

F(r1)F(T2)
ri— -1
ri-1 r-1
p(ti, x1) J J ‘log l@ log X?Z q(s, §)ldéds

I'(r)I'(r2)
B

ty
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252 —— 8 Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions

B(t2) x,

p(t1,x1) B(t2)
TrI(rs) J J log =

ri-1 r—1

log X2|" (s, H)ldéds

§

B(t2) x5
p(t,x1) B(t2)
Tre) J J log

ri-1 X2 r—-1
log? q(s, §)ldéds

Blt) X

B(t1) x;

+ % J i[ <log @)rl_l <1Og%>r2_l

(b))

From the continuity of a, f, f, g and as t; — t; and x; — X, the right-hand side of the
preceding inequality tends to zero.

Step 4: N(By)) is equiconvergent. Let (t, x) € J and u € By; then we have

q(s, &)|déds .

|u(ta X)l < |f(t’ X, u(t’ X)’ u(a(t), X)) _f(ts X, 0; 0) +f(t’ X, Os 0)'

1 B(t) x B®) - -l
T J j<l g_) (ng)

11
x g(t, x, s, & u(s, &), u(y(s), a)d{?s
M(Iu(t, X)| + |u(a(t)’ X)') + |f(t x.0 O)l

T (A +a®)(L+ u(t, )|+ [u(a(t), X))

S
Frortry ) J U 5%

q(s §)
1+a(t)+|u(s Ol + lu(y(s), &I

+|f(t, x, 0, 0)|

déds

S J
1+a(t)
B(t)

’ F(Tl)rz(zt)’(il a(t)) J J < a >'1 (log )_§(>'2‘1 q(s, &)déds

*

< Ta(t_)+|f(t,x,0,0)|+ra(t).

Thus, for each x € [1, b] we get
lu(t,x)| - 0, as t - +o0o.

Hence,
|u(t, x) — u(+oco0, x)) - 0, as t — +o0o0.
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8.3 Global Stability Results for Volterra-Type PHFIEs = 253

As a consequence of Steps 1-4, together with Lemma 1.57, we can conclude that
N: B, — By is continuous and compact. From an application of Schauder’s fixed point
theorem [149] we deduce that N has a fixed point u that is a solution of Hadamard
integral equation (8.9).

Step 5: the uniform global attractivity. Let us assume that ug is a solution of integral
equation (8.9) with the conditions of this theorem. Consider the ball B(ug, ) with

* LM*
ri—-1 r—1
CEONCH

n* = 1=, Where
B(t)
x |g(t, x, s, &, u(s, &), u(y(s), &)

F(rl)l"(i’z) (t x)ef J

* o=

e

-g(t, x,s, & uo(s, &), uo(y(s), &)ldéds; u € BC

Taking u € B(uo, n*), we then have

[(Nu)(t, x) — uo(t, x)| = [(Nu)(t, x) - (Nuo)(t, x)|
< |f(t, X, u(ty X)’ u(a(t)’ X)) _f(t’ X, uO(t’ X)9 uO(a(t), X))l

1 P oy xyt
*m“(bgﬂ (l"gE)

11

x |g(t, x, s, &, u(s, &), u(y(s), &)

— g(t, x5, £ o(s, O, uo(y(s), ) T2

s§

2
< —|lu - uollpc + M*
L||

2M
< 2 px M* —_n*
ST n+ n
Thus, we observe that N is a continuous function such that N(B(ug, %)) c B(ug, n*).

Moreover, if u is a solution of equation (8.9), then

lu(t, x) — uo(t, x)| = [(Nu)(t, x) — (Nug)(t, x)|
< |f(t, x, u(t, x), u(a(t), x)) - f(t, x, uo(t, x), up(a(t), x))|

1 B x B(t) ri-1 X r-1
* TGI(n) J J <1°gT) <l°g2’>

x |g(t, x, s, §, u(s, &), u(y(s), &)
- g(t’ X, S, 5’ uO(S7 {)’ uO(Y(S)’ {))ldé‘ds .
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254 — 8 Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions

Thus,

lu(t, x) — up(t, x)| < %(Iu(t, X) = up(t, x)| + [u(a(t), x) — ug(a(t), x)|)

B(t) x
p(t, x) ﬁ(t))r1—1< £>r2—1
" TroI(ry) 1J J(k’g 5 logg ) als, Hddds.

(8.14)

By using (8.14) and the fact that a(t) — co as t — oo, we get

B(t)

X r- r—1
tlim lu(t, x) — ug(t, x)| < hm L.p(t, %) J J( ﬁ(ﬂ) <log E)
1

t—oo I'(r1)I'(r2)(L - 2M) §
x q(s, §)déds =
Consequently, all solutions of integral equation (7.1) are globally asymptotically stable.

O

8.3.3 An Example

As an application of our results we consider the partial Hadamard integral equation of
fractional order

=2

t x ,2
tx . xX\3
(.20 = o (L 2sin(u 0) + — % ” tog ;) (1o )

In (1 + 2x(s&) L u(s, &)
(1 +t+2luls, D21 +x2 + t4)

déds; (t,x)e[1l,00)x[1,e],
(8.15)
wherer; =1, = %, a(t) = () = y(t) = t,

tx(1 + sin(u) + sin(v))
10(1 + t)(1 + t2)

fltt,x,u,v) =

>

and
In(1 + x(s&)~1(|ul + |v]))

(L +t+ ul +|v)2(1 +x2 + t4)
for (t, x), (s, &) € [1,00) x [1,e],and u, v € R.

We can easily check that the conditions of Theorem 8.8 are satisﬁed In fact, we
have that the function f is continuous and satisfies (8.3.2), where M = 10 ,L =1. Also,
f satisfies (8.3.3), with f* = . Next, let us note that the function g satisfies (8.3.4),
where p(t, X) = 1=+ and ¢(s, §) = (s&) ™.

gt,x,s,&,u,v)=
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8.4 Ulam Stabilities for HFIEs in Fréchet Spaces = 255
Additionally,

t x -2 =2
lim p(t, x) J J |log E| ’ log f‘ ’ q(s, é)déds
t—oo S f

11

el déds
s§

lo—

SF

t x
o
t—>ool+x2+t4 s
11

9x(log t) 3
=lim ——=~"_ =0
t>o0 1+ x2 + t4
Hence by Theorem 8.8, equation (8.15) has a solution defined on [1, 0o) x [1, e], and

solutions of this equation are globally asymptotically stable.

8.4 Ulam Stabilities for Hadamard Fractional Integral Equations in
Fréchet Spaces

8.4.1 Introduction

In this section, we present some results concerning the existence and Ulam stabilities
of solutions for some functional integral equations of Hadamard fractional order. We
use an extension of the Burton—Kirk fixed point theorem in Fréchet spaces.

Recently some interesting results on the existence and Ulam stabilities of the
solutions of some classes of differential equations were obtained by Abbas et al. [5, 24,
25, 28]. This section deals with the existence and Ulam stabilities of solutions of the
following Hadamard fractional integral equations:

u(t, x) = u(t, x) + f(t, x, Eru)t, x), u(t, x))

F(rl)r(m J J <1°g 5)1

1

x g(t, x,s,y, u(s, y)) sd (t,x) e ] :=[1,+00) x [1, b], (8.16)
where b > 1,0=(1,1),r=(r1,7r2), 71,72 € (0,00), u: J > R, f: Jx Rx R —» Rand
g:J' xR — Rare given continuous functions, and J' = {(t, x,s,y) € J>?: s < t,y < x}.
Our investigations are conducted in Fréchet spaces with an application of the fixed
point theorem of Burton—Kirk to the existence of solutions of integral equation (8.16),
and we prove that all solutions are generalized Ulam—Hyers—-Rassias stable.
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256 —— 8 Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions

8.4.2 Existence and Ulam Stabilities Results
Here we are concerned with the existence and the Ulam stability of solutions for integral
equation (8.16). Set

];,z{(t,x,s,y): 1<s<t<p,1<y<x<b}; peN\{0,1}.

The following conditions will be used in the sequel:
(8.4.1) There exist continuous functions [, k: J, — R, such that

I(t, X)luy — uz| + k(t, x)|lv1 — vl
1+ |ug —up| + vy = vyl

|f(t’ X, Uy, Vl) _f(ty X, Uz, V2)| <

for each (t, x) € J, and each uy, u, vi,v2 € R.
(8.4.2) There exist continuous functions P, Q, ¢ : Jj, — R, and anondecreasing function
Y: [0, 00) — (0, 0o) such that

P(t,x,s,y)+ Q(t, x, s, y)|ul
1+ |ul

lg(t, x,s,y,u)| <

for (¢t,x,s,y) € J',u e R,and
Ig(tla X1,S,Y,s u) _g(tZa X2,S,Y, u)| < (P(S; )/)(|t1 - t2| + |X1 _XZI)
xP(lul) s  (t1,x1,8,¥), (t2,X2,8,¥) € J,u e R.

(8.4.3) There exist continuous functions P1, Q1: J, — [0, co) such that for each
(t,s), (t, x) € J, we have

P(t’ X, S, Y, W) < ¢(ts X)Pl(S’ )/), and Q(ta X, S, Y, W) < ¢(t’ X)Ql(S’ Y) .

Theorem 8.9. Assume (8.4.1) and (8.4.2). If

. Ip(log p)" (log b)™ <
P A +r)I(1+71,)

£ := (8.17)
where
ky, = sup k(t,x), I, = sup I(t,x); p € N\{O, 1},
(t,x)€]p (t,x)€]p
then Hadamard integral equation (8.16) has at least one solution in the space C. Further-
more, if condition (8.4.3) holds, then equation (8.16) is generalized Ulam—-Hyers—Rassias
stable.

Proof. Let us define the operators A, B: C — C defined by

t x
_ ' g(t,x, s,y u(s, y)) )
(Au)(t, x) = J J log <log y> syTrOT(r) dyds; (t,x)e],
(8.18)
(Bu)(t, x) = u(t, ) + f(t, x, Lu)(t, x), ut, x);  (t,x) €] . (8.19)
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8.4 Ulam Stabilities for HFIEs in Fréchet Spaces = 257

We will show that operators A and B satisfy all the conditions of Theorem 1.43. The
proof will be given in several steps.

Step 1. A is compact. To this end, we must prove that A is continuous and it
transforms every bounded set into a relatively compact set. Let M ¢ C be a bounded set
of C. The proof will be given in several claims.

Claim 1. A is continuous. Let {un}nen\(o,1; be a sequence in M such that u, — uin
M. Then, for each (t, x) € Jp; p € N\{0, 1}, we have

|(Aun)(t, x) - (Au)(t, X)|

rz—l

= —

x
log — log —
| y

¢
F(Yl)r(rz)lj

x |g(t, x, s, y, un(s,y)) — g(t, x, s, y, u(s, y))|dyds

t x
Smjlﬂlogé

x |g(t, x, S, ¥, un(s, y)) - g(t, x, s, y, u(s, y))|dyds . (8.20)

-1 r—1

X
log —
y

Since u, — uas n — oo and g is continuous, (8.20) gives
A(un) - AWl - 0 as n > oo.

Claim 2. A maps bounded sets to bounded sets in C. For arbitrarily fixed (¢, x) € Jp
and u € M, we have

r—1

t x
(AUt S s )r(rz) 1Jlﬂlog

X
log -
y

x |g(t, x, s, y, u(s, y)ldyds

t x
e L J J |log -
T I(r)I(r2) ] s
“ P(t, x,s,y) + Q(t, x, s, y)u(s, y)I
1+ u(s, y)l
t x

< ooy | 1108

11

ri—1 r-1

X
log —
y

dyds

ri—-1 r-1

X
log —
y

x (P(t,x,s,y) + Q(t, x, s,y))dyds
<P, +Qyp,

where

ri-

-1 p(t, x, s,y)

X
ML) %

t x
Py = sup J”log
(t,x)€)p 11
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258 —— 8 Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions

and

x| Q(t, x, 5, y)

Tl %

(t,X)€)p Y

t x
Qp = sup J J |log
11
Thus,
lAW)lp < Pp + Qp := t’l’o .

Claim 3. A maps bounded sets to equicontinuous sets in C. Let (t1, x1), (£2, x2) € Jp,
t1 < t2, X1 < X, and let u € M; thus, we have

[(Au)(t2, x2) — (Au)(t1, x1)|

[2X2 t

log 2
J [ fes’s
11

x[g(t2, X2, S, ¥, u(s, y)) — g(t1, x1, S, ¥, u(s, y))ldyds|

t) X3

1 t2 ri-1
e || | g

11

ri—-1 r-1

1
[
I'(r)I(r2)

X2
log —=
y

r—1

g(tI’ X1,S,Y, u(s9 Y))dyds

X2
log —=
y

b t1 ri—-1 X1 r—-1
—J’ J.|10g? 10g7 g(t1,X1, S, Y, U(S,J’))d)’ds

1 t x t1 ri-1 X1 -1
+ log — log — t1, x1, S, Y, u(s, y))dyds
CANEA) ” 8~ g y 8(t1, x1, S, y, u(s, y))dy
t1 x1
r1—1 rz—].
_IHIOg% log% g(t1, x1,s,y, u(s, y))dyds| .
Thus,
[(Au)(t2, x2) — (Au)(t1, x1)|
1 ri-1 Xa r-1
—_— lo log —=
r(rl)r(rz)j J | &5 5y

X |g(t2’ X2,S,Y, u(s’ )’)) _g(tI: X1,S,Y, U(S, J/))| dyds

t1 x1
1 ty ri-1 X2 )l’zl ( ty )r1—1 < X1 >r2
* m 1J J (log ?) (lOg 7 — | log 5 log 7

X |g(t1’ X1,S,Y, u(sa Y))| dyds

t1 X2

1 ty
WH s

-1

ri—1 r-1

|g(t1,X1, S, Y, u(s’ ,V))|dyd5

X2
log —=
y
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[2 X1
1 tZ ri—-1 X2 r-1
+ TGOl J J llOg 5 log 3 |g(t1, x1, S, y, u(s, y)ldyds
t1
1 tZ ri—-1 X2 r-1
_ log = log —= .
* T j I I 08 08 lg(t1, x1, 8, y, u(s, y))ldyds
tl X1
Hence,
[(Au)(t2, x2) — (Au)(t1, x1)|
1 tr) X 1 tz -1 1 X ra—1
< = og — og —
T(r)I(ry) J J 1 s &y

11
x (s, y)(It1 — t2] + [x1 — x2)p(€p)dyds

t1 x

1 1 | fz r-1 | X -1 ) tl r-1 ) X1 -1
+ = og — og — —(log = og —
r(rl)r(rz)H<gs) <gy> (gs> (gy)

11

X (P(tl, X1, S, J’) + Q(tl’ X1, S, J’))dyds

t Xy

1 1 ty ri-1 ) X5 ra—1 (P( ) Q( ))d )
" 085 08— t » X1 S, + t » X1, S, S
F(Tl)r(rz)tjlj s s % 1,X1,5,Y 1, X1, S, y))dy

2

t1 X2

1 1 tr r-1 i X5 ra—-1 (P( ) Q( ))d .
i 085 08— t »X15 S, + t s X1, S, S
I(r1)I(r2) Jx[ s s y 1, X1, S,y 1,X1,S,Y))dy

t; Xy

+ = 1 _t2r111 —rZIP +Q dyd
o) o) t1, X1, S, t1,Xx1,S, S.
1(’1)“’2)1[ g g y (P(t1,X1,S8,Y) (t1,x1,5,y))dy

t1 X1

From the continuity of functions P, Q, ¢ and as t; — t; and x; — x;, the right-hand
side of the preceding inequality tends to zero. As a consequence of Claims 1-3 and from
the Ascoli—-Arzela theorem, we can conclude that A is continuous and compact.

Step 2. B is a contraction. Consider v, w € C. Then, by (8.4.1), for any p € N\{0, 1}
and each (¢, x) € Jp, we have

|(B)(t, x) = Bw)(t, x)| < I(t, )| T5(v = w)(t, )| + k(t, 0)I(v = w)(¢, x)]

I(t, x)(log p)"* (log b)"
< (k(t’ Nt v+ ) v—wl.

Thus,
l,(log p)* (log b)" > v - wl
T(1+r)I(1+r17) p-

By (8.17) we conclude that B is a contraction.

I(B() = Bl < (kp .
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260 —— 8 Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions

Step 3. Theset & :={u e C(J): u =AA(u) +AB(%),A € (0, 1)} is bounded. Letu € C
such that u = 1A(u) + AB(%) for some A € (0, 1). Then for any p € N\{0, 1} and each
(t, x) € Jp we have

lu(t, x)| < AA@)| + A|B (%)|

< |u(t, x)| + |f(t, x, 0, 0)] + k(t, x) + I(t, x)

t x r1—1 -1
lo log —
F(rl)l“(rz) J 1I ’ s 5y
P
o (t,x,s,y)+Q(t, x,s,y) dyds
sy
Sup+fp+kp+lp+Pp+Qp,
where
Up = sup H(t, X) s fp = sup |f(t’ x, 0, 0)|; be N\{O’ 1} .
(t,x)€[1,p]x[1,b] (t,x)€[1,p]x[1,b]
Thus,

lullp < pp +fp+kp+1p+Pp+Qp=:¢,.

Hence, the set € is bounded.

As a consequence of Steps 1-3 and from an application of Theorem 1.43, we deduce
that N has a fixed point u that is a solution of integral equation (8.16).

Step 4. The generalized Ulam—Hyers—Rassias stability. Set

Pip = sup Pi(s,y), and Qip = sup Qi(s,y).
(s;y)€lp (s:y)€lp

Let u be a solution of inequality (8.18) and v be a solution of equation (8.16). Then

v(t, x) = u(t, x) + f(t, x, i v(t, x), v(t, X))

tx r1 1 X r-1
lo (lo —)
r(rl)r(rz) J IJ g &y

x g(t, x,S,, v(s,y))s—j , (t,x)e]:=[1,+00)x[1,b].
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From inequality (8.18) and condition (8.4.3), for each (¢, x) € J,, we have
[u(t, x) = v(x, y)| < |u(t, x) = (Nu)(t, x)| + [(Nu)(t, x) - (Nv)(t, x)|
< pO6y) + I x, PLu)(E, x, ), ut, x) - (&, x, T Iv(t, x), v(E, X))

rz—l

log

bs
log -
y

t x
F("1)F("z)i[i[|
yds

x |g(t, x, s, y, u(s,y)) - g(t, x, s, y, v(s, )|

< p(x, y) + 1t Ol AT, x) - v (e, x)| + k¢, x)|u(t, x) - v(t, x)|

t x
+%Jl|log£

ri—-1 r-1

o(t, x)

X
log —
y

x (P1(s,y) + Q1(s, t))dyds
< p(x,y) + Eplu(t, x) — v(t, x)|

t x

ri—-1 -1

(Plp + le)dyds

X
log —
y

< @(t, x) + Eplu(t, x) — v(t, x)|

rz—l

dyds .

log —
y

t x
2(P1p + Qup)P(t, x) [T
YT )T J J o

Thus, for each (¢, x) € J, we obtain

t x
¢(t, x) 2(P1p + Qup) JH x|t
u(t,x)-vix,y)l s ——[ 1+ lo lo— dyds
u(e 0 - vey)l < 5| 1 B J | fos g, @
r r
< 1 (1 2(P1p + Q1p)(log p)" (log b)"™ ) (b, )
1—€p F(1+I’1)F(1+T2)
= CN,¢¢(1‘, X).
Hence, for each (¢, x) € J, we get
lu(t, x) = v(x, y)| < cn,p (X, y) -
Consequently, equation (8.16) is generalized Ulam—Hyers—Rassias stable. O
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8.4.3 An Example

Consider the Hadamard fractional order integral equation

xe3-2t xe-t-2
u(t, x) = +
1+t+x2  cp(1+e?P|(HIZu)(t, x)| + e7Plu(t, x)|)
t x
x\"* "t g(t, x,s,y,u(s, y))
+ 10 <lo—> 22 T P dyds
J J ¢ 5y M) Y
(t,x) € [1,+00) x [1, €], (8.21)
e 2Pp"

where ¢y = e + pristas P € N0, 1}, 7 = (11, 12) € (0, 00) x (0, 00),

xs7 (1 + |ul) sin VEsin s
(1 +x2+t2)(1 + |u])

g(t,x,s,y,u) = if (t,x,s,y)eJ and ueR,
and
J'={t,x,s,y):1<s<tand 1<x<y<e}.

Set

3-2t —t-2

xe
— — bl
cp(1+e2Plu| +e7Plv|)

H(t,X)Z f(t,X, u,V)= pEN\{O) 1}-

1+t+x2’

t2p tZZp

At x) = Fy
. Additionally, the function g is contlnuous and satisfies

The function f is continuous and satisfies (8.4.1), with k(t, x) =
kp =
(8.4.2), w1th

ZZp

=3 . .
Xxs7 sin Vtsins

T p b Gxsyel.

P(t,x,s,y)=Q(t,x,s,y) =
Further, the function g is continuous and satisfies (8.4.3), with
Pi(s,y) = Qs,y) =s7 sins, Pip=Qip=p7
and in Vi
xsin
0= e

Finally, we will show that condition (8.17) holds with b = e. Indeed, for each
p € N\{0, 1} we get

.y logpyidoghys 1 5, e 2 %pn e
ITA+r))I(1+r) ¢ ITA+r)I(+ry)

Hence, by Theorem 8.9, equation (8.21) has a solution defined on [1, +oc0) x [1, e] and
(8.21) is generalized Ulam-Hyers—Rassias stable.
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8.5 Ulam Stability Results for Hadamard Partial Fractional
Integral Inclusions via Picard Operators

8.5.1 Introduction

In this section, using weakly Picard operators theory, we investigate some existence
results and Ulam-type stability concepts of fixed point inclusions due to Rus for a class
of partial Hadamard fractional integral inclusions.

In [47, 37, 39], Abbas et al. studied some Ulam stabilities for functional fractional
partial differential and integral inclusions via Picard operators. In this section, we
discuss the Ulam—-Hyers and the Ulam—-Hyers—Rassias stability for the new class of
fractional partial integral inclusions

ux,y) - uix,y) e PR (x, y, u(x,y); (x,y) eJ:=[1,alx[1,b], (8.22)

wherea, b > 1,0 = (1,1), F: ] x E - P(E) is a set-valued function with nonempty
values in a (real or complex) separable Banach space E, P(E) is the family of all
nonempty subsets of E, and u: J — E is a given continuous function.

8.5.2 Picard Operators Theory

In what follows we will give some basic definitions and results on Picard operators [228,
229]. Let (X, d) be a metric space and A: X — X an operator. We denote by F4 the set of
the fixed points of A. We denote by A := 1y, A1 := A, ..., A™!l := A" A; n € Nthe
iterate operators of the operator A.

Definition 8.10. The operator A: X — X is a Picard operator (PO) if there exists x* € X
such that

(i) Fa={x*},

(ii) The sequence (A™(xg))nen converges to x* for all xg € X.

Definition 8.11. The operator A: X — X is a weakly Picard operator (WPO) if the

sequence (A" (x))nen converges for all x € X and its limit (which may depend on x) is a
fixed point of A.

Definition 8.12. If A is a WPO, then we consider the operator A* defined by
A®: X > X; A%®(x) = lim A"(x).
n—.oo
Remark 8.13. It is clear that A®(X) = Fy,.

Definition 8.14. Let A bea WPO and ¢ > 0. The operator A is a c-weakly Picard operator
if
dx,A®(x))<cdx,Ax)); xeX.
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In the multivalued case we have the following concepts (see [218, 235]).

Definition 8.15. Let (X, d) be a metric space and F: X — P.;(X) a multivalued operator.
By definition, F is a multivalued weakly Picard operator (MWPO) if for each u € X and
each v € F(x) there exists a sequence (uy)nen Such that

D) uo=u,us=v,

(ii) ups1 € F(uy) foreachn € N,

(iii) the sequence (uy)new is convergent and its limit is a fixed point of F.

Remark 8.16. A sequence (up)nen Satisfying conditions (i) and (ii) in the preceding
definition is called a sequence of successive approximations of F starting from (x, y) €
Graph(F).

IfF: X — Pq(X) is a MWPO, then we define F; : Graph(F) — P(Fix(F)) by the formula
F1(x,y) := {u € Fix(F): there exists a sequence of successive approximations of F
starting from (x, y) that converges to u}.

Definition 8.17. Let (X, d) be a metric space, and let ¥: [0, co) — [0, co) be an in-
creasing function that is continuous at 0 and ¥(0) = 0. Then F: X — P(X) is said to
be a multivalued ¥-weakly Picard operator (¥-MWPO) if it is a MWPO and there exists
a selection A® : Graph(F) — Fix(F) of F*® such that

d(u, A®(u,v)) < ¥Y(d(u,v)); forall(u,v)e Graph(F).

If there exists ¢ > O such that ¥(t) = ctforeacht € [0, c0), then F is called a multivalued
c-weakly Picard operator (c-MWPO).

Let us recall the notion of comparison.

Definition 8.18. A function ¢: [0, co) — [0, co) is said to be a comparison function
(see [228]) if it is increasing and ¢™ — O as n — co.

As a consequence, we have ¢(t) < t for each ¢t > 0, ¢(0) = 0, and ¢ is continuous at 0.

Definition 8.19. A function ¢: [0, 00) — [0, co) is said to be a strict comparison
function (see [228]) if it is strictly increasing and Y2, ¢"(t) < co for each ¢t > 0.

Example 8.20. The mappings ¢1, @»: [0, 00) — [0, c0) given by ¢1(t) = ct, c € [0, 1),
and @, (t) = ﬁ, t € [0, 00), are strict comparison functions.

Definition 8.21. A multivalued operator N: X — P(X) is called
(a) y-Lipschitz if and only if there exists y > 0 such that
Hi(N(u), N(v)) < yd(u,v) foreachu,velX,

(b) a multivalued y-contraction if and only if it is y-Lipschitz with y € [0, 1),
(c) amultivalued ¢-contraction if and only if there exists a strict comparison function
¢: [0, 00) — [0, co) such that

Hy(N(u), N(v)) < ¢(d(u,v)) foreachu,veX.
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The following result, a generalization of the Covitz—Nadler fixed point principle
(see [130]), is known in the literature as WegrzyK’s fixed point theorem.

Lemma 8.22 ([255]). Let (X, d) be a complete metric space. If A: X — Pq(X) is a ¢-
contraction, then Fix(A) is nonempty, and for any ugy € X there exists a sequence of
successive approximations of A starting from ug, which converges to a fixed point of A.

The next result is known as Wegrzyk’s theorem.

Lemma 8.23 ([255]). Let (X, d) be a Banach space. If an operator A: X — P(X) is a
@-contraction, then A is a MWPO.

Now we present an important characterization lemma from the point of view of Ulam—
Hyers stability.

Lemma 8.24 ([217]). Let (X, d) be a metric space. If A: X — Pcp(X) is a ¥-MWPO, then
the fixed point inclusion u € A(u) is generalized Ulam—Hyers stable. In particular, if A is
c-MWPO, then the fixed point inclusion u € A(u) is Ulam—-Hyers stable.

Another Ulam-Hyers stability result, more efficient for applications, was proved in [193].

Theorem 8.25 ([193]). Let (X, d) be a complete metric space and A: X — Pp(X) a

multivalued ¢-contraction. Then:

(i) Existence of fixed point: A is a MWPO;

(ii) Ulam-Hyers stability for fixed point inclusion: If additionally p(ct) < co(t) for
every t € [0,00) (Where c > 1) and t = 0 is a point of uniform convergence for
the series Y72, @"(t), then A is a ¥-MWPO, with ¥(t) := t + Y oo, @™(t), for each
t € [0,00);

(iii) Data dependence of fixed point set: Let S: X — P(X) be a multivalued ¢-
contraction and 1 > 0 be such that H;(S(x), A(x)) < n for each x € X. Suppose that
@p(ct) < cp(t) forevery t € [0, 00) (Where ¢ > 1) and t = 0 is a point of uniform
convergence for the series ¥ ;21 @"(t). Then Hy(Fix(S), Fix(F)) < ¥(n).

8.5.3 Existence and Ulam Stability Results

In this section, we present conditions for the existence and Ulam stability of Hadamard
integral inclusion (8.22).

Theorem 8.26. Make the following assumptions:

(8.21.1) (x, y) — F(x, y, u) is jointly measurable for each u € E.

(8.21.2) u > F(x, y, u) is lower semicontinuous for almost all (x, y) € J.

(8.21.3) There exist p € L*(J, [0, 0o)) and a strict comparison function ¢: [0, c0) —
[0, 00) such that for each (x, y) € ] and each u, v € E we have

Hq(F(x,y,u), F(x,y,u)) < p(x, y)o(lu - ullg) (8.23)
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and
(log a)" (log b)"||p|| e
I'1+r)IfA+ry)

(8.21.4) There exists an integrable function q: [1,b] — [0, co) such that for each
x€[1,a]l and u € E we have F(x,y,u) c q(y)B(0,1), a.e. y € [1,b], where
B(0,1)={u € E: ullg < 1}.

Then we have that:

(a) The integral inclusion (7.1) has at least one solution and N is a MWPO.

(b) If additionally p(ct) < ce(t) for every t € [0, 00) (Wherec > 1) andt = Oisa
point of uniform convergence for the series ¥ ;> @"(t), then integral inclusion (7.1) is
generalized Ulam—Hyers stable, and N is a ¥-MWPO, with the function ¥ defined
by P(t) :=t+ Yoy @"(2), for each t € [0, 00). Moreover, in this case the continuous
data dependence of the solution set of integral inclusion (8.23) holds.

(8.24)

Remark 8.27. For each u € G, the set Sg., is nonempty since, by (8.21.1), F has a
measurable selection (see [121] Theorem IIL.6).

Proof. The proof will be given in two steps.

Step 1. N(u) € Pcp(C) for each u € C. From the continuity of y and Theorem 2 in
Rybinski [236] we have that for each u € € there exists f € Sg.y, for all (x, y) € J, such
that f(x, y) is integrable with respect to y and continuous with respect to x. Then the
function v(x, y) = u(x, y) + H I" f(x, y) has the property v € N(u). Moreover, from (8.21.1)
and (8.21.4), via Theorem 8.6.3. in Aubin and Frankowska [69], we get that N(u) is a
compact set for each u € C.

Step 2. Hg(N(u), N(u)) < @(|lu — ulloo) foreach u,u € C. Let u, u € Cand h € N(u).
Then there exists f(x, y) € F(x, y, u(x, y)) such that for each (x, y) € ] we have

h(x,y) = u(x, y) + 1o f(x, y) .
From (8.21.3) it follows that
Ha(F(x, y, u(x, y)), F(x, y, u(x, y))) < p(x, y)p(lu(x, y) - u(x, y)llg) -
Hence, there exists w(x, y) € F(x, y, u(x, y) such that
IfCx, ) = wx, Ve < pOG y)elulx, y) —ulo vlie) s (oy) €.
Consider U: ] — P(E) given by
Ux,y) ={w € E: [If(x, y) = w(x, »)lle < p(, Y)p(lu(x, y) = u(x, y)lE)} -

Since the multivalued operator u(x, y) = U(x, y) n F(x, y, u(x, y)) is measurable (see
Proposition II1.4 in [121]), there exists a function f(x, y) that is a measurable selection
for u. Thus, f(x, y) € F(x, y, u(x, y)), and for each (x, y) € J,

Ifx, ¥) = FO6 Ve < pOG y)@lulx, y) - ulx, Yle) -
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Let us define for each (x, y) € J
h(x,y) = uy) + 7 ILf(x, y) .
Then for each (x, y) € ] we have

Ih(x, y) — h(x, YIE < TG y) - FOG Y)lE
<"1 (p(x, y)o(lux, y) - u(x, y)lg)

Xy ri—1 -1
_ |log 5" [log %
s||p||Loo<p(||u—u||oo><” St —atds
log a)" (log b)™ o _
_ oga) og b Iplse o0

IA+r)I(A+ry)
Thus, by (10.2), we get
Ih = hlleo < @(lu - Ullco) -

By an analogous relation, obtained by interchanging the roles of u and u, it follows that
Ha(N(u), NWw)) < ¢(llu - ulleo) -

Hence, N is a ¢-contraction.

(a) By Lemma 8.22, N has a fixed point that is a solution of inclusion (7.1) on J, and by
[Theorem 8.25 (i)], N is a MWPO.

(b) We will prove that the fixed point inclusion problem (7.1) is generalized Ulam-Hyers
stable. Indeed, let € > 0 and v € C for which there exists u € € such that

ux,y) e u,y) + OLLR)x, y, vix, y) ,  if (xy) €],

and
lu-vio <e€.

Then Hy4(v, N(v)) < €. Moreover, by the preceding proof we have that N is a mul-
tivalued ¢-contraction, and using [Theorem 8.25 (i)-(ii)], we obtain that N is a
¥Y-MWPO. Then, by Lemma 8.24, we obtain that the fixed point problem u € N(u)
is generalized Ulam—-Hyers stable. Thus, integral inclusion (8.22) is generalized
Ulam-Hyers stable.

Concerning the conclusion of the theorem, we apply [Theorem 8.25 (iii)]. O

8.5.4 An Example

Let
o0
E=11={w:(wl,wz,...,wn,...): len|<00}
n=1
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be a Banach space with norm

Iwle =) wal,
n=1
and consider the partial functional fractional order integral inclusion of the form
u(x,y) € u(x, y) + "ILR)(x, y, u(x,y)),  ae. (x,y) € [1,e]lx[1,¢€], (8.25)
where r = (r1, r2), 1, 2 € (0, 00),
U= U1, Uy, Uny.n.), MHOGY)=(K+e?,0,...,0,...),
and

F(x,y, u(x,y))
={veC([1,e] x[1,e],R): If1(x,y, ux, )l < IVlg < If2(x, y, ulx, Y))Ig}

(Xay) € [1’ e] X [1s e]’WhereflafZ: [1’ e] X [1’ e] XE_)Ea

fk:(fk,l;fk,z"-~’fk,n:-'-); k€{192}1 nEN,
xy?up

X, ¥, Un(x,y)) = , nelN,
f1,n(X, ¥, un(x,y)) A+ [ lp)elo
and 5
xy‘u
fan(x,y, un(x,y)) = ﬁ ; neN.

We assume that F is closed and convex valued. We can see that the solutions of the
inclusion (7.4) are solutions of the fixed point inclusion u € A(u), where A: C([1, e] x
[1,e], R) — P(C([1, e] x [1, e], R)) is the multifunction operator defined by

Aw)(x, y) = {uex, y) + LA Y); f e Srul s (Gy) e[, el x[1,€].
For each (x,y) € [1,e] x [1, e] and all z1, z» € E we have
If2(%, v, 22) = f1(x, y, z0)llE < xy* e 107V |z — 24 ||

Thus, conditions (8.21.1)—(8.21.3) are satisfied by p(x, y) = xy*>e~197*¥, Condition (10.2)
holdswitha = b = e.Indeed, |pllL~ = 2, I'(1+r;) > %; i=1,2.Asimplecomputation

shows that
_ (loga)(log b)|pllL

._ -9
= TTa+rlern) 7t <1

Condition (8.21.4) is satisfied by g(y) = %, y € [1, e], where

IFllp = sup{ifle: f € Spu}; forallueC.

Consequently, by Theorem 8.26, we draw the following conclusions:
(a) Integral inclusion (8.25) has least one solution and A is a (MWPO).
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(b) The function ¢: [0, 00) — [0, co) defined by ¢(t) = (t satisfies @({t) < (p(t)

for every t € [0, 00) and t = 0 is a point of uniform convergence for the series

o2 1(¢H". Then the integral inclusion (7.4) is generalized Ulam-Hyers stable, and

A is a ¥-MWPO, with the function ¥ defined by ¥(¢) := t + (1 — {t)~! for each

t € [0, {"1). Moreover, the continuous data dependence of the solution set of
integral inclusion (8.23) holds.

8.6 Notes and Remarks

The results of Chapter 8 are taken from Abbas et al. [2, 10, 9, 11]. Other results may be
found in [24, 25, 22, 31, 153].
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