
7 Partial Hadamard Fractional Integral Equations
and Inclusions

7.1 Introduction

The fractional calculus represents a powerful tool in applied mathematics for studying
many problems in various fields of science and engineering, with many breakthrough
results found inmathematical physics, finance, hydrology, biophysics, thermodynamics,
control theory, statistical mechanics, astrophysics, cosmology, and bioengineering [242].
There have been significant developments in ordinary and partial fractional differential
and integral equations in recent years; see the monographs of Abbas et al. [35, 35],
Kilbas et al. [181], and Miller and Ross [200], the papers of Abbas et al. [24, 25, 43],
Vityuk et al. [247], and the references therein.

In [119], Butzer et al. investigated the properties of the Hadamard fractional integral
and derivative. In [120], they obtained the Mellin transform of the Hadamard fractional
integral and differential operators, and in [220], Pooseh et al. obtained expansion
formulas of the Hadamard operators in terms of integer order derivatives. Many other
interesting properties of those operators and others are summarized in [239] and the
references therein.

This chapter deals with the existence and uniqueness of solutions to several classes
of Hadamard partial fractional integral equations. We present results based on Banach’s
contraction principle and others on the nonlinear alternative of Leray–Schauder type.
This chapter initiates the study of Hadamard integral equations of two independent
variables.

7.2 Functional Partial Hadamard Fractional Integral Equations

7.2.1 Introduction

This section deals with the existence and uniqueness of solutions to the Hadamard
partial fractional integral equation of the form

u(x, y) = μ(x, y)

+
1

Γ(r1)Γ(r2)

x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t, u(s, t))
st

dtds ; if (x, y) ∈ J ,

(7.1)

where J := [1, a] × [1, b], a, b > 1, r1, r2 > 0, μ : J → ℝ, f : J × ℝ → ℝ are given
continuous functions.
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216 | 7 Partial Hadamard Fractional Integral Equations and Inclusions

We present two results for integral equation (7.1). The first one is based on Banach’s
contraction principle and the second one on the nonlinear alternative of Leray–Schauder
type. This section initiates the study of Hadamard integral equations of two independent
variables.

7.2.2 Main Results

Definition 7.1. A function u ∈ C is said to be a solution of (7.1) if u satisfies equation (7.1)
on J.

Further, we present conditions for the existence and uniqueness of a solution to
equation (7.1).

Theorem 7.2. Make the following assumption:
(7.2.1) For any u, v ∈ C and (x, y) ∈ J, there exists k > 0 such that

|f(x, y, u) − f(x, y, v)| ≤ k‖u − v‖C .

If
L := k(log a)

r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

< 1 , (7.2)

then there exists a unique solution of equation (7.1) on J.

Proof. Transform integral equation (7.1) into a fixed point equation. Consider the
operator N : C → C defined by

(Nu)(x, y) = μ(x, y)

+
1

Γ(r1)Γ(r2)

x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t, u(s, t))
st

dtds . (7.3)

Let v, w ∈ C. Then for (x, y) ∈ J we have

|(Nv)(x, y) − (Nw)(x, y)| ≤ 1
Γ(r1)Γ(r2)

x

∫
1

y

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1

×
|f(s, t, u(s, t)) − f(s, t, v(s, t))|

st
dtds

≤
1

Γ(r1)Γ(r2)

x

∫
1

y

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1

×
k‖u − v‖C

st
dtds

≤
k(log a)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

‖v − w‖C .
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7.2 Functional Partial Hadamard Fractional Integral Equations | 217

Consequently,
‖N(v) − N(w)‖C ≤ L‖v − w‖C .

From (7.2), N is a contraction, so N has a unique fixed point by Banach’s contraction
principle.

Theorem 7.3. Make the following assumption:
(7.3.1) There exist functions p1, p2 ∈ C(J,ℝ+) such that

|f(x, y, u)| ≤ p1(x, y) + p2(x, y)|u(x, y)| for any u ∈ ℝ and (x, y) ∈ J .

Then integral equation (7.1) has at least one solution defined on J.

Proof. Consider the operator N defined in (7.3). We will show that the operator N is
continuous and completely continuous.

Step 1. N is continuous. Let {un} be a sequence such that un → u in C. Let η > 0 be
such that ‖un‖C ≤ η. Then

|(Nun)(x, y) − (Nu)(x, y)| ≤
1

Γ(r1)Γ(r2)

x

∫
1

y

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1

×
|f(s, t, un(s, t)) − f(s, t, u(s, t))|

st
dtds

≤
1

Γ(r1)Γ(r2)

x

∫
1

y

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1

×
sup(s,t)∈J |f(s, t, un(s, t)) − f(s, t, u(s, t))|

st
dtds

≤
(log a)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

‖f(., ., un(., .)) − f(., ., u(., .))‖C .

From Lebesgue’s dominated convergence theorem and the continuity of the function f
we get

|(Nun)(x, y) − (Nu)(x, y)| → 0 as n →∞ .

Step 2. N maps bounded sets to bounded sets in C. Indeed, it is enough to show
that for any η∗ > 0 there exists a positive constant

∼
ℓ such that, for each u ∈ Bη∗ = {u ∈

C : ‖u‖C ≤ η∗}, we have ‖N(u)‖C ≤
∼
ℓ. Set

p∗i = sup
(x,y)∈J

pi(x, y) ; i = 1, 2 .
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218 | 7 Partial Hadamard Fractional Integral Equations and Inclusions

From (7.3.1), for each (x, y) ∈ J we have

|(Nu)(x, y)| ≤ |μ(x, y)| + 1
Γ(r1)Γ(r2)

x

∫
1

y

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1

×
p1(s, t) + p2(s, t)‖u‖C

st
dtds

≤ ‖μ‖∞ +
(log a)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

(p∗1 + p
∗
2η
∗)

:=
∼
ℓ .

Hence,
‖N(u)‖C ≤

∼
ℓ .

Step 3: N maps bounded sets to equicontinuous sets in C. Let (x1, y1), (x2, y2) ∈
(1, a] × (1, b], x1 < x2, y1 < y2, Bη∗ be a bounded set of C as in Step 2, and let u ∈ Bη∗ .
Then

|(Nu)(x2, y2) − (Nu)(x1, y1)| ≤ |μ(x1, y1) − μ(x2, y2)|

+
1

Γ(r1)Γ(r2)

x1

∫
1

y1

∫
1

[
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1
−
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x1

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y1

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1
]

×
|f(s, t, u(s, t))|

st
dtds

+
1

Γ(r1)Γ(r2)

x2

∫
x1

y2

∫
y1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 |f(s, t, u(s, t))|
st

dtds

+
1

Γ(r1)Γ(r2)

x1

∫
1

y2

∫
y1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 |f(s, t, u(s, t))|
st

dtds

+
1

Γ(r1)Γ(r2)

x2

∫
x1

y1

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 |f(s, t, u(s, t))|
st

dtds .

Thus,

|(Nu)(x2, y2) − (Nu)(x1, y1)| ≤ |μ(x1, y1) − μ(x2, y2)|

+
1

Γ(r1)Γ(r2)

x1

∫
1

y1

∫
1

[
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1
−
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x1

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y1

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1
]

×
p∗1 + p

∗
2η∗

st
dtds

+
1

Γ(r1)Γ(r2)

x2

∫
x1

y2

∫
y1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 p∗1 + p
∗
2η∗

st
dtds
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7.2 Functional Partial Hadamard Fractional Integral Equations | 219

+
1

Γ(r1)Γ(r2)

x1

∫
1

y2

∫
y1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 p∗1 + p
∗
2η∗

st
dtds

+
1

Γ(r1)Γ(r2)

x2

∫
x1

y1

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 p∗1 + p
∗
2η∗

st
dtds

≤
p∗1 + p

∗
2η∗

Γ(1 + r1)Γ(1 + r2)
× [2(log y2)r2 (log x2 − log x1)r1 + 2(log x2)r1 (log y2 − log y1)r2

+ (log x1)r1 (log y1)r2 − (log x2)r1 (log y2)r2

− 2(log x2 − log x1)r1 (log y2 − log y1)r2 ] .

As x1 → x2 and y1 → y2, the right-hand side of the preceding inequality tends to zero.
As a consequence of Steps 1–3, together with the Ascoli–Arzelà theorem, we can

conclude that N is continuous and completely continuous.
Step 4. A priori bounds.We now show that there exists an open set U ⊆ C with

u ̸= λN(u) for λ ∈ (0, 1) and u ∈ ∂U. Let u ∈ C be such that u = λN(u) for some
0 < λ < 1. Thus, for each (x, y) ∈ J,

u(x, y) = λμ(x, y) + λ
Γ(r1)Γ(r2)

x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t, u(s, t))
st

dtds .

This implies that for each (x, y) ∈ J we have

|u(x, y)| ≤ |μ(x, y)| + 1
Γ(r1)Γ(r2)

x

∫
1

y

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1

×
p1(s, t) + p2(s, t)|u(s, t)|

st
dtds

≤ ‖μ‖∞ +
p∗1(log a)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

+
p∗2

Γ(r1)Γ(r2)

x

∫
1

y

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 |u(s, t)|
st

dtds .

Thus, for each (x, y) ∈ J we get

|u(x, y)| ≤ ‖μ‖∞ +
p∗1(log a)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

+
p∗2

Γ(r1)Γ(r2)

x

∫
1

y

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 |u(s, t)|
st

dtds

≤ c +
x

∫
1

y

∫
1

q(x, y, s, t)|u(s, t)| ,
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220 | 7 Partial Hadamard Fractional Integral Equations and Inclusions

where
c := ‖μ‖∞ +

p∗1(log a)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

and
q(x, y, s, t) :=

p∗2
stΓ(r1)Γ(r2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1
.

From Lemma 1.56 we obtain

|u(x, y)| ≤ c exp(
x

∫
1

y

∫
1

B(s, t)dtds) ,

where

B(x, y) = q(x, y, x, y) +
x

∫
1

D1q(x, y, s, y)ds

+
y

∫
1

D2q(x, y, x, t)dt +
x

∫
1

y

∫
1

D1D2q(x, y, s, t)dtds

≤
p∗2

xyΓ(r1)Γ(r2)
(log x)r1−1(log y)r2−1 .

Hence,

|u(x, y)| ≤ c exp(
x

∫
1

y

∫
1

p∗2
stΓ(r1)Γ(r2)

(log s)r1−1(log t)r2−1dtds)

≤ c exp(
p∗2(log a)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

)

:= R .

Set
U = {u ∈ C : ‖u‖∞ < R + 1} .

By our choice of U, there is no u ∈ ∂U such that u = λN(u) for λ ∈ (0, 1). As a
consequence of the nonlinear alternative of the Leray–Schauder type [149], we deduce
that N has a fixed point u in U that is a solution of our equation (7.1).

7.2.3 An Example

Consider a partial Hadamard integral equation of the form

u(x, y) = μ(x, y)

+
x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t, u(s, t))
stΓ(r1)Γ(r2)

dtds ; (x, y) ∈ [1, e] × [1, e] ,

(7.4)
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7.3 Fredholm-Type Hadamard Fractional Integral Equations | 221

where
r1, r2 > 0 , μ(x, y) = x + y2; (x, y) ∈ [1, e] × [1, e]

and
f(x, y, u(x, y)) = cu(x, y)

ex+y+2
; (x, y) ∈ [1, e] × [1, e] ,

with
c := e

4

2
Γ(1 + r1)Γ(1 + r2) .

For each u, u ∈ ℝ and (x, y) ∈ [1, e] × [1, e] we have

|f(x, y, u(x, y)) − f(x, y, u(x, y))| ≤ c
e4
‖u − u‖C .

Hence, condition (7.2.1) is satisfied by k = c
e4 . Condition (7.2) holds with a = b = e.

Indeed,
k(log a)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

=
c

e4Γ(1 + r1)Γ(1 + r2)
=
1
2 < 1 .

Consequently, Theorem 7.2 implies that integral equation (7.4) has a unique solution
defined on [1, e] × [1, e].

7.3 Fredholm-Type Hadamard Fractional Integral Equations

7.3.1 Introduction

The qualitative properties and structure of the set of solutions of the Darboux problem
for hyperbolic partial integer order differential equations have been studied by many
authors, for instance, [43, 123, 146]. In [110], Bica et al. initiated the study of the Fredholm
integral equation

x(t) = f(t) +
a

∫
0

g(t, s, x(s), x󸀠(s))ds (7.5)

in a Banach space setting. In [213], Pachpatte studied the qualitative behavior of
solutions of equation (7.5) and its further generalization. Inspired by the results in [110,
212, 213], Pachpatte in [214] studied the Fredholm-type integral equation

u(x, y) = f(x, y) +
a

∫
0

b

∫
0

g(x, y, s, t, u(s, t), D1u(s, t), D2u(s, t))dtds , (7.6)

where u is an unknown function. Recently, in [24], Abbas and Benchohra studied some
uniqueness results for the Fredholm-type Riemann–Liouville integral equation

u(x, y) = μ(x, y) + 1
Γ(r1)Γ(r2)

a

∫
0

b

∫
0

(a − s)r1−1(b − t)r2−1

× f(x, y, s, t, u(s, t), (cDrθu)(s, t))dtds ; if (x, y) ∈ J := [0, a] × [0, b] ,
(7.7)
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222 | 7 Partial Hadamard Fractional Integral Equations and Inclusions

where a, b ∈ (0,∞), θ = (0, 0), cDrθ is the standard Caputo’s fractional derivative of
order r = (r1, r2) ∈ (0, 1] × (0, 1], μ : J → ℝn, and f : J × J × ℝn × ℝn → ℝn are given
continuous functions.

This section deals with the existence and uniqueness of solutions to the Fredholm-
type Hadamard partial integral equation

u(x, y) = μ(x, y) + 1
Γ(r1)Γ(r2)

a

∫
1

b

∫
1

(ln as )
r1−1
(ln bt )

r2−1

×
f(x, y, s, t, u(s, t), (HDrσu)(s, t))

st
dtds ; if (x, y) ∈ J := [1, a] × [1, b] ,

(7.8)

where a, b ∈ (1,∞), σ = (1, 1), HDrθ is the standard Hadamard fractional derivative of
order r = (r1, r2) ∈ (0, 1] × (0, 1], μ : J → ℝn, and f : J × J × ℝn × ℝn → ℝn are given
continuous functions.

7.3.2 Main Results

Define the space E = E(J,ℝn) by

E := {w ∈ C(J) : HDrσw exists and HDrσw ∈ C(J)} .

For w ∈ E, use the notation

‖w(x, y)‖1 = ‖w(x, y)‖ + ‖HDrσw(x, y)‖ .

In the space E we define the norm

‖w‖E = sup
(x,y)∈J
‖w(x, y)‖1 .

Lemma 7.4. (E, ‖ ⋅ ‖E) is a Banach space.

Proof. Let {un}∞n=0 be a Cauchy sequence in the space (E, ‖ ⋅ ‖E). Then

∀ϵ > 0, ∃N > 0 such that for all n,m > N we have ‖un − um‖E < ϵ .

Thus, {un(x, y)}∞n=0 and {(HDrσun)(x, y)}∞n=0 are Cauchy sequences in ℝn. Then
{un(x, y)}∞n=0 converges to some u(x, y) inℝn, and {HDrσun}∞n=0 converges uniformly to
some v(x, y) ∈ E. Next, we need to prove that u ∈ E and v = HDrσu. According to the
uniform convergence of {(HDrσun)(x, y)}∞n=0 and the dominated convergence theorem,
we obtain

v(x, y) = lim
n→∞
(HDrσun)(x, y) .

Thus, {HDrσun}∞n=0 converges uniformly to HDrσu in E. Hence, u ∈ E and

v(x, y) = (HDrσu)(x, y) .
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Definition 7.5. By a solution to equation (7.8), we mean every function w ∈ E such that
w satisfies (7.8) on J.

Next we present conditions for the existence of solutions of integral equation (7.8).

Theorem 7.6. Make the following assumptions:
(7.6.1) There exist 0 < r3 < min{r1, r2}, functions ρ1 : J × J → ℝ+, φ : J → ℝ+, with

ρ1(x, y, ⋅, ⋅), φ ∈ L
1
r3 (J), and a nondecreasing function ψ : [0,∞) → (0,∞) such

that
‖f(x, y, s, t, u, v)‖ ≤ ρ1(x, y, s, t)(‖u‖ + ‖v‖) (7.9)

and

‖f(x1, y1, s, t, u, v) − f(x2, y2, s, t, u, v)‖
≤ φ(s, t)(|x1 − x2| + |y1 − y2|)ψ(‖u‖ + ‖v‖)
for each (x, y), (s, t), (x1, y1), (x2, y2) ∈ J and u, v ∈ ℝn . (7.10)

(7.6.2) There exist nonnegative constants α, β1, β2 such that for (x, y) ∈ J we have

{{{{
{{{{
{

‖μ(x, y)‖1 ≤ α ,

∫a1 ∫
b
1 ρ

1
r3
1 (x, y, s, t)dtds ≤ β

1
r3
1 ,

∫a1 ∫
b
1 ρ

1
r3
2 (x, y, s, t)dtds ≤ β

1
r3
2 ,

(7.11)

where
ρ2(x, y, ⋅, ⋅) ∈ L

1
r3 (J) and ρ2(x, y, s, t) = (HDrσρ1)(x, y, s, t) .

If

ℓ := (β1 + β2)(ln a)
(ω1+1)(1−r3)(ln b)(ω2+1)(1−r3)

(ω1 + 1)(1−r3)(ω2 + 1)(1−r3)Γ(r1)Γ(r2)
< 1 , (7.12)

where ω1 = r1−11−r3 , ω2 = r2−11−r3 , then the Fredholm–Hadamard integral equation (7.8) has at
least one solution on J.

Remark 7.7. It is clear that condition (7.9) implies

‖(HDrσ f )(x, y, s, t, u, v)‖ ≤ ρ2(x, y, s, t)(‖u‖ + ‖v‖) . (7.13)

Proof. Let u ∈ E, and define the operator N : E → E by

(Nu)(x, y) =μ(x, y) + 1
Γ(r1)Γ(r2)

a

∫
1

b

∫
1

(ln as )
r1−1
(ln bt )

r2−1

×
f(x, y, s, t, u(s, t), (HDrσu)(s, t))

st
dtds . (7.14)
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Differentiating both sides of (7.14) by applying the Hadamard fractional derivative, we
get

HDrσ(Nu)(x, y) =HDrσμ(x, y) +
1

Γ(r1)Γ(r2)

a

∫
1

b

∫
1

(ln as )
r1−1
(ln bt )

r2−1

×
HDrσ f (x, y, s, t, u(s, t), (HDrσu)(s, t))

st
dtds . (7.15)

Set
M = α

1 − ℓ and D = {u ∈ E : ‖u‖E ≤ M} .

Clearly, D is a closed convex subset of E. Nowwe show that N maps D to itself. Evidently,
N(u), HDrθ(Nu) are continuous on J. From (7.11) and using (7.6.1) and (7.6.2), for each
(x, y) ∈ J we have

‖(Nu)(x, y)‖1 ≤ ‖μ(x, y)‖1

+
1

Γ(r1)Γ(r2)

a

∫
1

b

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln a
s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln b
t

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1

×
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

f(x, y, s, t, u(s, t), (HDrσu)(s, t))
st

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
dtds

+
1

Γ(r1)Γ(r2)

a

∫
1

b

∫
1

(ln as )
r1−1
(ln bt )

r2−1

×
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

HDrσ f (x, y, s, t, u(s, t), (HDrσu)(s, t))
st

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
dtds

≤ ‖μ(x, y)‖1

+
1

Γ(r1)Γ(r2)
(

a

∫
1

b

∫
1

1
st
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln a
s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1
1−r3
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln b
t

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1
1−r3

dtds)

1−r3

× (
a

∫
1

b

∫
1

‖f(x, y, s, t, u(s, t), (HDrσu)(s, t))‖
1
r3 dtds)

r3

+
1

Γ(r1)Γ(r2)
(

a

∫
1

b

∫
1

1
st
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln a
s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1
1−r3
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln b
t

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1
1−r3

dtds)

1−r3

× (
a

∫
1

b

∫
1

‖HDrσ f(x, y, s, t, u(s, t), (HDrσu)(s, t))‖
1
r3 dtds)

r3

.
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Then for each (x, y) ∈ J we obtain

‖(Nu)(x, y)‖1 ≤ ‖μ(x, y)‖1 +
(ln a)(ω1+1)(1−r3)(ln b)(ω2+1)(1−r3)

(ω1 + 1)(1−r3)(ω2 + 1)(1−r3)Γ(r1)Γ(r2)

× [[

[

(
a

∫
1

b

∫
1

ρ
1
r3
1 (x, y, s, t)‖u(s, t)‖

1
r3
1 dtds)

r3

+ (
a

∫
1

b

∫
1

ρ
1
r3
2 (x, y, s, t)‖u(s, t)‖

1
r3
1 dtds)

r3
]]

]

≤ α + (ln a)
(ω1+1)(1−r3)(ln b)(ω2+1)(1−r3)

(ω1 + 1)(1−r3)(ω2 + 1)(1−r3)Γ(r1)Γ(r2)

× [[

[

‖u‖E(
a

∫
1

b

∫
1

ρ
1
r3
1 (x, y, s, t)dtds)

r3

+ ‖u|E(
a

∫
0

b

∫
0

ρ
1
r3
2 (x, y, s, t)dtds)

r3
]]

]

≤ α + (Mβ1 +Mβ2)(ln a)
(ω1+1)(1−r3)(ln b)(ω2+1)(1−r3)

(ω1 + 1)(1−r3)(ω2 + 1)(1−r3)Γ(r1)Γ(r2)
= α +Mℓ .

From (7.12) and the definition of M we get

‖N(u)‖E ≤ M .

Hence, N(u) ∈ D. This proves that the operator N maps D to itself. Next we verify that
the operator N satisfies the assumptions of Schauder’s fixed point theorem. The proof
will be given in several steps.

Step 1. N is continuous. Let {un} be a sequence such that un → u in D. Then

‖(Nun)(x, y) − (Nu)(x, y)‖1 ≤
1

Γ(r1)Γ(r2)

a

∫
1

b

∫
1

1
st
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln a
s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln b
t

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1

× ‖f(x, y, s, t, un(s, t), (HDrσun)(s, t))
− f(x, y, s, t, u(s, t), (HDrσu)(s, t))‖dtds

+
1

Γ(r1)Γ(r2)

a

∫
1

b

∫
1

1
st
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln a
s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln b
t

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1

× ‖HDrσ f (x, y, s, t, un(s, t), (HDrσun)(s, t))
− HDrσ f (x, y, s, t, u(s, t), (HDrσu)(s, t))‖dtds .
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Thus,

‖(Nun)(x, y) − (Nu)(x, y)‖1 ≤
1

Γ(r1)Γ(r2)

a

∫
1

b

∫
1

1
st
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln a
s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln b
t

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1

× sup
(s,t)∈J
‖f (x, y, s, t, un(s, t), (HDrσun)(s, t))

− f (x, y, s, t, u(s, t), (HDrσu)(s, t)) ‖dtds

+
1

Γ(r1)Γ(r2)

a

∫
1

b

∫
1

1
st
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln a
s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln b
t

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1

× sup
(s,t)∈J
‖HDrσ f (x, y, s, t, un(s, t), (HDrσun)(s, t))

− HDrσ f (x, y, s, t, u(s, t), (HDrσu)(s, t)) ‖dtds

≤
(ln a)r1 (ln b)r2
Γ(1 + r1)Γ(1 + r2)

(‖f (x, y, ⋅, ⋅, un(⋅, ⋅), (HDrσun)(⋅, ⋅))

− f (x, y, ⋅, ⋅, u(⋅, ⋅), (HDrσu)(⋅, ⋅)) ‖

+ ‖HDrσ f (x, y, ⋅, ⋅, un(⋅, ⋅), (HDrσun)(⋅, ⋅))

−HDrσ f (x, y, ⋅, ⋅, u(⋅, ⋅), (HDrσu)(⋅, ⋅)) ‖)

≤
(ln a)r1 (ln b)r2
Γ(1 + r1)Γ(1 + r2)

‖f (x, y, ⋅, ⋅, un(⋅, ⋅), (HDrσun)(⋅, ⋅))

− f (x, y, ⋅, ⋅, u(⋅, ⋅), (HDrσu)(⋅, ⋅)) ‖1 .

Hence, from Lebesgue’s dominated convergence theorem and the continuity of the
function f we get

‖(N(un) − N(u)‖E → 0 as n →∞ .

Step 2. N(D) is bounded. This is clear since N(D) ⊂ D and D is bounded.
Step 3. N(D) is equicontinuous. Let (x1, y1), (x2, y2) ∈ (1, a] × (1, b], x1 < x2,

y1 < y2, and let u ∈ D. Then

‖(Nu)(x2, y2) − (Nu)(x1, y1)‖1 ≤ ‖μ(x1, y1) − μ(x2, y2)‖1

+
1

Γ(r1)Γ(r2)

a

∫
1

b

∫
1

1
st
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln a
s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln b
t

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1

× ‖f(x2, y2, s, t, u(s, t), (HDrσu)(s, t))
− f(x1, y1, s, t, u(s, t), (HDrσu)(s, t))‖dtds ,

+
1

Γ(r1)Γ(r2)

a

∫
1

b

∫
1

1
st
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln a
s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln b
t

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1

× ‖HDrσ f (x2, y2, s, t, u(s, t), (HDrσu)(s, t))
− HDrσ f (x1, y1, s, t, u(s, t), (HDrσu)(s, t))‖dtds .
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Thus,

‖(Nu)(x2, y2) − (Nu)(x1, y1)‖1 ≤ ‖μ(x1, y1) − μ(x2, y2)‖1

+
(ln a)(ω1+1)(1−r3)(ln b)(ω2+1)(1−r3)

(ω1 + 1)(1−r3)(ω2 + 1)(1−r3)Γ(r1)Γ(r2)

× [[

[

(
a

∫
1

b

∫
1

‖f(x2, y2, s, t, u(s, t), (HDrσu)(s, t))

−f(x1, y1, s, t, u(s, t), (HDrσu)(s, t))‖
1
r3 dtds)

r3

+ (
a

∫
1

b

∫
1

‖HDrσ f (x2, y2, s, t, u(s, t), (HDrσu)(s, t))

−HDrσ f (x1, y1, s, t, u(s, t), (HDrσu)(s, t))‖
1
r3 dtds)

r3
]]

]

.

Hence,

‖(Nu)(x2, y2) − (Nu)(x1, y1)‖1 ≤ ‖μ(x1, y1) − μ(x2, y2)‖1

+
(ln a)(ω1+1)(1−r3)(ln b)(ω2+1)(1−r3)

(ω1 + 1)(1−r3)(ω2 + 1)(1−r3)Γ(r1)Γ(r2)
× (|x1 − x2| + |y1 − y2|)ψ(‖u‖1)

× [[

[

(
a

∫
1

b

∫
1

‖φ(s, t)‖
1
r3 dtds)

r3

+(
a

∫
1

b

∫
1

‖(HDrσφ)(s, t)‖
1
r3 dtds)

r3
]]

]
≤ ‖μ(x1, y1) − μ(x2, y2)‖1

+
(ln a)(ω1+1)(1−r3)(ln b)(ω2+1)(1−r3)

(ω1 + 1)(1−r3)(ω2 + 1)(1−r3)Γ(r1)Γ(r2)

× [(‖φ‖
L

1
r3
)r3 + (‖HDrσφ‖L 1

r3
)
r3
]ψ(M)

× (|x1 − x2| + |y1 − y2|) .

As x1 → x2 and y1 → y2, the right-hand side of the preceding inequality tends to zero.
As a consequence of Steps 1–3, together with the Ascoli–Arzelà theorem, we can

conclude that N is continuous and completely continuous. From an application of
Schauder’s theorem [149], we deduce that N has a fixed point u that is a solution of
integral equation (7.8).
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Now we define the Banach space

X := {w ∈ C(J) : HDr11,xw,
HDr21,yw exist and HDr11,xw,

HDr21,yw ∈ C(J)} ,

with the norm
‖w‖X = sup

(x,y)∈J
‖w(x, y)‖1 ,

where
‖w(x, y)‖1 = ‖w(x, y)‖ + ‖HDr11,xw(x, y)‖ + ‖

HDr21,yw(x, y)‖ .

Corollary 7.8. Consider the Fredholm-type Hadamard integral equation

u(x, y) = μ(x, y) + 1
Γ(r1)Γ(r2)

a

∫
1

b

∫
1

(ln xs )
r1−1
(ln yt )

r2−1

× f(x, y, s, t, u(s, t), (HDr11,su)(s, t), (
HDr21,tu)(s, t))dtds ; (7.16)

if (x, y) ∈ J := [1, a] × [1, b] .

Make the following assumptions:
(7.8.1) There exist 0 < r3 < min{r1, r2}, functions ρ1 : J × J → ℝ+, φ : J → ℝ+, with

ρ1(x, y, ⋅, ⋅), φ ∈ L
1
r3 (J), and a nondecreasing function ψ : [0,∞) → (0,∞) such

that
‖f(x, y, s, t, u, v, w)‖ ≤ ρ1(x, y, s, t)(‖u‖ + ‖v‖ + ‖w‖) (7.17)

and

‖f(x1, y1, s, t, u, v, w) − f(x2, y2, s, t, u, v, w)‖
≤ φ(s, t)(|x1 − x2| + |y1 − y2|)ψ(‖u‖ + ‖v‖ + ‖w‖) (7.18)

for each (x, y), (s, t), (x1, y1), (x2, y2) ∈ J and u, v, w ∈ ℝn .

(7.8.2) There exist nonnegative constants α, β1, β2, β3 such that for (x, y) ∈ J we have

{{{{{{{{
{{{{{{{{
{

‖μ(x, y)‖1 ≤ α ,

∫a1 ∫
b
1 ρ

1
r3
1 (x, y, s, t)dtds ≤ β

1
r3
1 ,

∫a1 ∫
b
1 ρ

1
r3
2 (x, y, s, t)dtds ≤ β

1
r3
2 ,

∫a1 ∫
b
1 ρ

1
r3
3 (x, y, s, t)dtds ≤ β

1
r3
3 ,

(7.19)

where

ρ2(x, y, s, t) = (HDr1,xρ1)(x, y, s, t), and ρ3(x, y, s, t) = (
HDr1,yρ1)(x, y, s, t) .

If
(β1 + β2 + β3)a(ω1+1)(1−r3)b(ω2+1)(1−r3)

(ω1 + 1)(1−r3)(ω2 + 1)(1−r3)Γ(r1)Γ(r2)
< 1 , (7.20)

where ω1 = r1−11−r3 , ω2 = r2−11−r3 , then equation (7.16) has at least one solution on J in X.
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7.3.3 An Example

As an application of our results we consider the Fredholm partial Hadamard integral
equation

u(x, y) = μ(x, y) +
e

∫
1

e

∫
1

(1 − ln s)r1−1(1 − ln t)r2−1 f(x, y, s, t, u(s, t),
H(Drσu)(s, t))

stΓ(r1)Γ(r2)
dtds

(7.21)

for (x, y) ∈ [1, e] × [1, e], where r1, r2 > 0, μ(x, y) = x + y2; (x, y) ∈ [1, e] × [1, e], and

f(x, y, s, t, u(x, y), v(x, y)) = c(x + y)st2 u(x, y) + v(x, y)
ex+y+5

, (x, y) ∈ [1, e] × [1, e] ,

with
c := (ω1 + 1)(1−r3)(ω2 + 1)(1−r3)Γ(r1)Γ(r2)

2e−3
(Γ(1+r1))r3 (Γ(1+r2))r3 (1 +

1
Γ(1−r1)Γ(1−r2))

,

0 < r3 < min{r1, r2} , ω1 =
r1 − 1
1 − r3

, and ω2 =
r2 − 1
1 − r3

.

For each u, v ∈ ℝ and (x, y) ∈ [1, e] × [1, e] we have

|f(x, y, u, v)| ≤ 2ce−3(|u| + |v|) ,

and for each (x, y), (s, t), (x1, y1), (x2, y2) ∈ [1, e] × [1, e], and u, v ∈ ℝ we have

|f(x1, y1, s, t, u, v) − f(x2, y2, s, t, u, v)| ≤ 2ce−3(|x1 − x2| + |y1 − y2|)(|u| + |v|) .

Hence, condition (7.6.1) is satisfied by

ρ1 = ce−3 , ρ2 =
ce−3

Γ(1 − r1)Γ(1 − r2)
, φ(s, t) = 2ce−3 , ψ(x) = 1 .

Also, (7.6.2) is satisfied by

α = (e + e2) (1 + 1
Γ(1 − r1)Γ(1 − r2)

) , β1 = c
e−3

(Γ(1 + r1))r3 (Γ(1 + r2))r3
,

and
β2 = c

e−3

Γ(1 − r1)Γ(1 − r2)Γ(1 + r1))r3 (Γ(1 + r2))r3
.

Condition (7.12) holds with a = b = e. Indeed,

ℓ =
(β1 + β2)(ln a)(ω1+1)(1−r3)(ln b)(ω2+1)(1−r3)

(ω1 + 1)(1−r3)(ω2 + 1)(1−r3)Γ(r1)Γ(r2)

=
c e−3
(Γ(1+r1))r3 (Γ(1+r2))r3 (1 +

1
Γ(1−r1)Γ(1−r2))

(ω1 + 1)(1−r3)(ω2 + 1)(1−r3)Γ(r1)Γ(r2)

=
1
2 < 1 .

Consequently, Theorem 7.6 implies the Fredholm–Hadamard integral equation (7.21)
has at least one solution on [1, e] × [1, e].
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7.4 Upper and Lower Solutions Method for Partial Hadamard
Fractional Integral Equations and Inclusions

7.4.1 Introduction

In this section, we use the upper and lower solutions method combined with Schauder’s
fixed point theorem and a fixed point theorem for condensing multivalued maps to
Martelli to investigate the existence of solutions for some classes of partial Hadamard
fractional integral equations and inclusions.

Themethod of upper and lower solutions has been successfully applied to study the
existence of solutions for ordinary and partial differential equations and inclusions. See
the monographs by Benchohra et al. [101], the papers of Abbas et al. [25, 20, 17, 15, 29],
Pachpatte [211], and the references therein.

In this section, we use the method of upper and lower solutions for the existence of
solutions to the Hadamard partial fractional integral equation

u(x, y) = μ(x, y)

+
1

Γ(r1)Γ(r2)

x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t, u(s, t))
st

dtds ; if (x, y) ∈ J ,

(7.22)

where J := [1, a] × [1, b], a, b > 1, r1, r2 > 0, μ : J → ℝ, f : J × ℝ → ℝ are given
continuous functions. Next we discuss the existence of solutions to the Hadamard
partial fractional integral inclusion

u(x, y) − μ(x, y) ∈ (H IrσF)(x, y, u(x, y)); (x, y) ∈ J , (7.23)

where σ = (1, 1), F : J × ℝ → P(ℝ) is a compact-valued multivalued map, H IrσF is
the definite Hadamard integral for the set-valued function F of order r = (r1, r2) ∈
(0,∞) × (0,∞), and μ : J → ℝ is a given continuous function; additionally, P(ℝ) is the
family of all nonempty subsets ofℝ.

This section initiates the application of the upper and lower solutions method to
these new classes of problems.

7.4.2 Existence Results for Partial Hadamard Fractional Integral Equations

Let us start by defining what we mean by a solution of integral equation (7.1).

Definition 7.9. A function u ∈ C is said to be a solution of (7.1) if u satisfies equation (7.1)
on J.
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Definition 7.10. A function z ∈ C is said to be a lower solution of integral equation (7.1)
if z satisfies

u(x, y) ≤ μ(x, y) +
x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t, u(s, t))
stΓ(r1)Γ(r2)

dtds ; (x, y) ∈ J .

The function z is said to be an upper solution of (7.22) if the reverse inequality holds.

Further, we present our main result for equation (7.1).

Theorem 7.11. Assume
(7.11.1) There exist v and w ∈ C, lower and upper solutions to equation (7.1) such that

v ≤ w.
Then integral equation (7.22) has at least one solution u such that

v(x, y) ≤ u(x, y) ≤ w(x, y) for all (x, y) ∈ J .

Proof. Consider the modified integral equation

u(x, y) = μ(x, y) + 1
Γ(r1)Γ(r2)

x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 g(s, t, u(s, t))
st

dtds , (7.24)

where
g(x, y, u(x, y)) = f(x, y, h(x, y, u(x, y))) ,
h(x, y, u(x, y)) = max{v(x, y), min{u(x, y), w(x, y)}}

for each (x, y) ∈ J.
A solution of (7.24) is a fixed point of the operator N : C → C defined by

(Nu)(x, y) = μ(x, y) + 1
Γ(r1)Γ(r2)

x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 g(s, t, u(s, t))
st

dtds .

Notice that g is a continuous function, and from (7.11.1) there exists M > 0 such that

|g(x, y, u)| ≤ M , for each (x, y) ∈ J, and u ∈ ℝ . (7.25)

Set
η = ‖μ‖C +

M(log a)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

and
D = {u ∈ C : ‖u‖C ≤ η} .

Clearly, D is a closed convex subset of C and N maps D to itself. We will show that N
satisfies the assumptions of Theorem 1.42. The proof will be given in several steps.
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Step 1. N is continuous. Let {un} be a sequence such that un → u in D. Then

|(Nun)(x, y) − (Nu)(x, y)| ≤
1

Γ(r1)Γ(r2)

x

∫
1

y

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1

×
|g(s, t, un(s, t)) − g(s, t, u(s, t))|

st
dtds

≤
1

Γ(r1)Γ(r2)

x

∫
1

y

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1

×
sup(s,t)∈J |g(s, t, un(s, t)) − g(s, t, u(s, t))|

st
dtds

≤
(log a)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

‖g(⋅, ⋅, un(⋅, ⋅)) − g(⋅, ⋅, u(⋅, ⋅))‖C .

From Lebesgue’s dominated convergence theorem and the continuity of the function g
we get

|(Nun)(x, y) − (Nu)(x, y)| → 0 as n →∞ .

Step 2. N(D) is bounded. This is clear since N(D) ⊂ D and D is bounded.
Step 3. N(D) is equicontinuous. Let (x1, y1), (x2, y2) ∈ (1, a] × (1, b], x1 < x2,

y1 < y2, and let u ∈ D. Then

|(Nu)(x2, y2) − (Nu)(x1, y1)| ≤ |μ(x1, y1) − μ(x2, y2)|

+
x1

∫
1

y1

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(log x2s )

r1−1
(log y2t )

r2−1
− (log x1s )

r1−1
(log y1t )

r2−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

×
|g(s, t, u(s, t))|
stΓ(r1)Γ(r2)

dtds

+
1

Γ(r1)Γ(r2)

x2

∫
x1

y2

∫
y1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 |g(s, t, u(s, t))|
st

dtds

+
1

Γ(r1)Γ(r2)

x1

∫
1

y2

∫
y1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 |g(s, t, u(s, t))|
st

dtds

+
1

Γ(r1)Γ(r2)

x2

∫
x1

y1

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 |g(s, t, u(s, t))|
st

dtds .

Thus,

|(Nu)(x2, y2) − (Nu)(x1, y1)| ≤ |μ(x1, y1) − μ(x2, y2)|

+
x1

∫
1

y1

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(log x2s )

r1−1
(log y2t )

r2−1
− (log x1s )

r1−1
(log y1t )

r2−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

×
M

stΓ(r1)Γ(r2)
dtds
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+
1

Γ(r1)Γ(r2)

x2

∫
x1

y2

∫
y1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 M
st
dtds

+
1

Γ(r1)Γ(r2)

x1

∫
1

y2

∫
y1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 M
st
dtds

+
1

Γ(r1)Γ(r2)

x2

∫
x1

y1

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 M
st
dtds

≤ |μ(x1, y1) − μ(x2, y2)|

+
M

Γ(1 + r1)Γ(1 + r2)
× [2(log y2)r2 (log x2 − log x1)r1 + 2(log x2)r1 (log y2 − log y1)r2

+ (log x1)r1 (log y1)r2 − (log x2)r1 (log y2)r2

− 2(log x2 − log x1)r1 (log y2 − log y1)r2 ] .

As x1 → x2 and y1 → y2, the right-hand side of the preceding inequality tends to zero.
As a consequence of Steps 1–3, together with the Ascoli–Arzelà theorem, we can

conclude that N is continuous and completely continuous. From an application of
Theorem 1.42 we deduce that N has a fixed point u that is a solution of equation (8.11).

Step 4. The solution u of (7.24) satisfies

v(x, y) ≤ u(x, y) ≤ w(x, y) for all (x, y) ∈ J .

Let u be the preceding solution of (7.24). We prove that

u(x, y) ≤ w(x, y) for all (x, y) ∈ J .

Assume that u − w attains a positive maximum on J at (x, y) ∈ J; then

(u − w)(x, y) = max{u(x, y) − w(x, y) : (x, y) ∈ J} > 0 .

We distinguish the following cases.
Case 1. If (x, y) ∈ (1, a) × [1, b], then there exists (x∗, y∗) ∈ (1, a) × [1, b] such that

[u(x, y∗) − w(x, y∗)] + [u(x∗, y) − w(x∗, y)] − [u(x∗, y∗) − w(x∗, y∗)] ≤ 0 ;
for all (x, y) ∈ ([x∗, x] × {y∗}) ∪ ({x∗} × [y∗, b]) , (7.26)

and
u(x, y) − w(x, y) > 0; for all (x, y) ∈ (x∗, x] × (y∗, b] . (7.27)

By the definition of h we have

u(x, y) = μ(x, y) + 1
Γ(r1)Γ(r2)

x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 g(s, t, u(s, t))
st

dtds (7.28)
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for all (x, y) ∈ [x∗, x] × [y∗, b], where

g(x, y, u(x, y)) = f(x, y, w(x, y)) , (x, y) ∈ [x∗, x] × [y∗, b] .

Thus equation (7.28) gives

u(x, y) + u(x∗, y∗) − u(x, y∗) − u(x∗, y)

=
x

∫
x∗

y

∫
y∗
(log xs )

r1−1
(log yt )

r2−1 g(s, t, u(s, t))
stΓ(r1)Γ(r2)

dtds .

Using the fact that w is an upper solution of (7.1) we get

u(x, y) + u(x∗, y∗) − u(x, y∗) − u(x∗, y) ≤ w(x, y) + w(x∗, y∗) − w(x, y∗) − w(x∗, y) .

Then

[u(x, y)−w(x, y)] ≤ [u(x, y∗)−w(x, y∗)]+[u(x∗, y)−w(x∗, y)]−[u(x∗, y∗)−w(x∗, y∗)] .
(7.29)

Thus, from (7.26), (7.27), and (7.29) we obtain the contradiction

0 < [u(x, y) − w(x, y)] ≤ [u(x, y∗) − w(x, y∗)]
+ [u(x∗, y) − w(x∗, y)] − [u(x∗, y∗) − w(x∗, y∗)] ≤ 0 for all (x, y) ∈ [x∗, x] × [y∗, b] .

Case 2. If x = 1, then
w(1, y) < u(1, y) ≤ w(1, y) ,

which is a contradiction. Thus,

u(x, y) ≤ w(x, y) for all (x, y) ∈ J .

Analogously, we can prove that

u(x, y) ≥ v(x, y) , for all (x, y) ∈ J .

This shows that integral equation (7.24) has a solution u that satisfies v ≤ u ≤ w, which
is a solution of (7.22).

7.4.3 Existence Results for Partial Hadamard Fractional Integral Inclusions

Definition 7.12. A function z ∈ C is said to be a lower solution of (7.23) if there exists a
function f ∈ SF∘z such that z satisfies

z(x, y) ≤ μ(x, y) +
x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t)
stΓ(r1)Γ(r2)

dtds ; (x, y) ∈ J .

The function z is said to be an upper solution of (7.23) if the reverse inequality holds.
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Theorem 7.13. Make the following assumptions:
(7.13.1) The multifunction F : J × ℝ 󳨀→ Pcp,cv(ℝ) is L1-Carathéodory.
(7.13.2) There exist v and w ∈ C, lower and upper solutions for the integral inclusion (7.23),

such that v ≤ w.
Then the Hadamard integral inclusion (7.23) has at least one solution u such that

v(x, y) ≤ u(x, y) ≤ w(x, y) for all (x, y) ∈ J .

Remark 7.14. Solutions of inclusion (7.23) are solutions of the Hadamard integral
inclusion

u(x, y) ∈ {μ(x, y) + (H Irσ f)(x, y) : f ∈ SF∘u} ; (x, y) ∈ J .

Proof. Consider the modified integral inclusion

u(x, y) − μ(x, y) ∈ (H IrσF)(x, y, (gu)(x, y)) ; (x, y) ∈ J , (7.30)

where g : C 󳨀→ C is the truncation operator defined by

(gu)(x, y) =
{{{
{{{
{

v(x, y); u(x, y) < v(x, y),
u(x, y); v(x, y) ≤ u(x, y) ≤ w(x, y),
w(x, y); w(x, y) < u(x, y).

A solution of (7.30) is a fixed point of the operator N : C → P(C) defined by

(Nu)(x, y) =
{{
{{
{

h ∈ C :
{{
{{
{

h(x, y) = μ(x, y)

+ ∫x1 ∫
y
1 (log

x
s )
r1−1 (log y

t )
r2−1 f(s,t)

stΓ(r1)Γ(r2)dtds; (x, y) ∈ J ,

}}
}}
}

where

f ∈ S̃1F∘g(u) = {f ∈ S
1
F∘g(u) : f(x, y) ≥ f1(x, y) on A1 and f(x, y) ≤ f2(x, y) on A2} ,

A1 = {(x, y) ∈ J : u(x, y) < v(x, y) ≤ w(x, y)} ,
A2 = {(x, y) ∈ J : u(x, y) ≤ w(x, y) < u(x, y)} ,

and
S1F∘g(u) = {f ∈ L

1(J) : f(x, y) ∈ F(t, x, (gu)(x, y)); for (x, y) ∈ J} .

Remark 7.15. (A) For each u ∈ C the set S̃F∘g(u) is nonempty. In fact, (7.13.1) implies the
existence of f3 ∈ SF∘g(u), so we set

f = f1χA1 + f2χA2 + f3χA3 ,

where χAi is a characteristic function of Ai; i = 1, 2, 3 and

A3 = {(x, y) ∈ J : v(x, y) ≤ u(x, y) ≤ w(x, y)} .

Then, by decomposability, f ∈ S̃F∘g(u).
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(B) By the definition of g, it is clear that F(., ., (gu)(., .)) is an L1-Carathéodory mul-
tivalued map with compact convex values, and there exists ϕ ∈ C(J,ℝ+) such
that

‖F(t, x, (gu)(x, y))‖P ≤ ϕ(x, y) ; for each u ∈ ℝ and (x, y) ∈ J .

Set
ϕ∗ := sup

(x,y)∈J
ϕ(x, y) .

From Remark 7.14 and the fact that g(u) = u for all v ≤ u ≤ w, the problem of finding the
solutions of integral inclusion (7.23) is reduced to finding the solutions of the operator
inclusion u ∈ N(u). We will show that N is a completely continuous multivalued map,
u.s.c. with convex closed values. The proof will be given in several steps.

Step 1: N(u) is convex for each u ∈ C. Indeed, if h1, h2 belong to N(u), then there
exist f1, f2 ∈ S̃1F∘g(u) such that for each (x, y) ∈ J we have

hi(x, y) = μ(x, y)

+
x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 fi(s, t)
stΓ(r1)Γ(r2)

dtds ; i = 1, 2 .

Let 0 ≤ ξ ≤ 1. Then for each (x, y) ∈ J we have

(ξh1 + (1 − ξ)h2)(x, y) = μ(x, y)

+
x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 ((ξf1 + (1 − ξ)f2))(s, t)
stΓ(r1)Γ(r2)

dtds .

Since S̃1F∘g(u) is convex (because F has convex values), we have

ξh1 + (1 − ξ)h2 ∈ N(u) .

Step 2: N sends bounded sets of C to bounded sets. Indeed, we can prove that N(C)
is bounded. It is enough to show that there exists a positive constant ℓ such that for
each h ∈ N(u), u ∈ C one has ‖h‖C ≤ ℓ.
If h ∈ N(u), then there exists f ∈ S̃1F∘g(u) such that for each (x, y) ∈ J we have

h(x, y) = μ(x, y)

+
x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t)
stΓ(r1)Γ(r2)

dtds .

Then we get

|h(x, y)| ≤ |μ(x, y)|

+
x

∫
1

y

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 ϕ(s, t)
stΓ(r1)Γ(r2)

dtds .
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Thus, we obtain

|h(x, y)| ≤ ‖μ‖C

+
x

∫
ϕ∗

y

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 ϕ∗

stΓ(r1)Γ(r2)
dtds

≤ ‖μ‖C +
(log a)r1 (log b)r2ϕ∗

Γ(1 + r1)Γ(1 + r2)
:= ℓ .

Hence,
‖h‖C ≤ ℓ .

Step 3: N sends bounded sets of C to equicontinuous sets. Let (x1, y1), (x2, y2) ∈ J,
x1 < x2, y1 < y2 and Bρ = {u ∈ C : ‖u‖C ≤ ρ} be a bounded set of C. For each u ∈ Bρ
and h ∈ N(u) there exists f ∈ S̃1F∘g(u) such that for each (x, y) ∈ J we get

|h(x2, y2) − h(x1, y1)| ≤ |μ(x1, y1) − μ(x2, y2)|

+
x1

∫
1

y1

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(log x2s )

r1−1
(log y2t )

r2−1
− (log x1s )

r1−1
(log y1t )

r2−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

×
|f(s, t)|

stΓ(r1)Γ(r2)
dtds

+
1

Γ(r1)Γ(r2)

x2

∫
x1

y2

∫
y1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 |f(s, t)|
st

dtds

+
1

Γ(r1)Γ(r2)

x1

∫
1

y2

∫
y1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 |f(s, t)|
st

dtds

+
1

Γ(r1)Γ(r2)

x2

∫
x1

y1

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log x2

s
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r1−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
log y2

t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

r2−1 |f(s, t)|
st

dtds .

Hence,

|h(x2, y2) − h(x1, y1)| ≤ |μ(x1, y1) − μ(x2, y2)|

+
ϕ∗

Γ(1 + r1)Γ(1 + r2)
× [2(log y2)r2 (log x2 − log x1)r1 + 2(log x2)r1 (log y2 − log y1)r2

+ (log x1)r1 (log y1)r2 − (log x2)r1 (log y2)r2

−2(log x2 − log x1)r1 (log y2 − log y1)r2] .

As x1 → x2 and y1 → y2, the right-hand side of the preceding inequality tends to zero.
As a consequence of Steps 1–3, together with the Ascoli–Arzelà theorem, we can

conclude that N is completely continuous and, therefore, a condensing multivalued
map.
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Step 4: N has a closed graph. Let un → u∗, hn ∈ N(un), and hn → h∗. We need to
show that h∗ ∈ N(u∗).
hn ∈ N(un)means that there exists fn ∈ S̃1F∘g(un) such that for each (x, y) ∈ J we have

hn(x, y) = μ(x, y)

+
x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 fn(s, t)
stΓ(r1)Γ(r2)

dtds .

We must show that there exists f∗ ∈ S̃1F∘g(u∗) such that, for each (x, y) ∈ J,

h∗(x, y) = μ(x, y)

+
x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f∗(s, t)
stΓ(r1)Γ(r2)

dtds .

Now we consider the linear continuous operator

Λ : L1(J) 󳨀→ C(J) ,
f 󳨃󳨀→ Λf

defined by

(Λf)(x, y) = μ(x, y) +
x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t)
stΓ(r1)Γ(r2)

dtds .

Remark 7.16. Remark 7.15 (B) implies that the operator Λ is well defined.

From Lemma 1.25 it follows that Λ ∘ S̃1F is a closed graph operator. Clearly we have

|hn(x, y) − h∗(x, y)| = μ(x, y)

+
x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 |fn(s, t) − f∗(s, t)|
stΓ(r1)Γ(r2)

dtds → 0

as n →∞ .

Moreover, from the definition of Λ we have

|hn(x, y) − h∗(x, y)| ∈ Λ(S̃1F∘g(un)) ; if (x, y) ∈ J .

Since un → u∗, it follows from Lemma 1.25 that for some f∗ ∈ Λ(S̃1F∘g(u∗)) we have

h∗(x, y) = μ(x, y) +
x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f∗(s, t)
stΓ(r1)Γ(r2)

dtds .

From Lemma 1.24 we can conclude that N is u.s.c.
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Step 5: The set Ω = {u ∈ C : λu ∈ N(u) for some λ > 1} is bounded. Let u ∈ Ω. Then
there exists f ∈ Λ(S̃1F∘g(u)) such that

λu(x, y) = μ(x, y)

+
x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t)
stΓ(r1)Γ(r2)

dtds .

As in Step 2, this implies that for each (x, y) ∈ J we have

‖u‖C ≤
ℓ
λ
< ℓ .

This shows that Ω is bounded. As a consequence of Theorem 1.48, we deduce that N
has a fixed point that is a solution of (7.30) on J.

Step 6: The solution u of (7.30) satisfies

v(x, y) ≤ u(x, y) ≤ w(x, y) ; for all (x, y) ∈ J .

First we prove that
u(x, y) ≤ w(x, y) ; for all (x, y) ∈ J .

Assume that u − w attains a positive maximum on J at (x, y) ∈ J; then

(u − w)(x, y) = max{u(x, y) − w(x, y); (x, y) ∈ J} > 0 .

We distinguish the following cases.
Case 1. If (x, y) ∈ (1, a) × [1, b], then there exists (x∗, y∗) ∈ (1, a) × [1, b] such that

[u(x, y∗) − w(x, y∗)] + [u(x∗, y) − w(x∗, y)]
− [u(x∗, y∗) − w(x∗, y∗)] ≤ 0; for all (x, y) ∈ ([x∗, x] × {y∗}) ∪ ({x∗} × [y∗, b])

(7.31)

and
u(x, y) − w(x, y) > 0 ; for all (x, y) ∈ (x∗, x] × (y∗, b] . (7.32)

For all (x, y) ∈ [x∗, x] × [y∗, b] we have

u(x, y) = μ(x, y) + 1
Γ(r1)Γ(r2)

x

∫
1

y

∫
1

(log xs )
r1−1
(log yt )

r2−1 f(s, t)
st

dtds , (7.33)

where f ∈ SF∘u. Thus, equation (7.33) gives

u(x, y) + u(x∗, y∗) − u(x, y∗) − u(x∗, y)

=
x

∫
x∗

y

∫
y∗
(log xs )

r1−1
(log yt )

r2−1 f(s, t)
stΓ(r1)Γ(r2)

dtds . (7.34)

Brought to you by | UCL - University College London
Authenticated

Download Date | 2/10/18 4:07 PM



240 | 7 Partial Hadamard Fractional Integral Equations and Inclusions

From (7.34) and using the fact that w is an upper solution of (7.23) we get

u(x, y) + u(x∗, y∗) − u(x, y∗) − u(x∗, y) ≤ w(x, y) + w(x∗, y∗) − w(x, y∗) − w(x∗, y) .

Then

[u(x, y)−w(x, y)] ≤ [u(x, y∗)−w(x, y∗)]+[u(x∗, y)−w(x∗, y)]−[u(x∗, y∗)−w(x∗, y∗)] .
(7.35)

Thus, from (7.31), (7.32), and (7.35) we obtain the contradiction

0 < [u(x, y) − w(x, y)] ≤ [u(x, y∗) − w(x, y∗)]
+ [u(x∗, y) − w(x∗, y)] − [u(x∗, y∗) − w(x∗, y∗)] ≤ 0; for all (x, y) ∈ [x∗, x] × [y∗, b] .

Case 2. If x = 1, then

w(1, y) < u(1, y) ≤ w(1, y) ,

which is a contradiction. Thus,

u(x, y) ≤ w(x, y); for all (x, y) ∈ J .

Analogously, we can prove that

u(x, y) ≥ v(x, y) for all (x, y) ∈ J .

This shows that problem (7.30) has a solution u that satisfies v ≤ u ≤ w, which is a
solution of integral inclusion (7.23).

7.5 Notes and Remarks

The results of Chapter 7 are taken from Abbas et al. [1, 12, 32]. Other results may be
found in [29, 42, 119, 120].
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