
4 Boundary Value Problems for Nonlinear Implicit
Fractional Differential Equations

4.1 Introduction

In this chapter, we establish the existence anduniqueness of solutions to someboundary
value problem (BVPs) for implicit fractional differential equations with 0 < α ≤ 1 and
1 < α ≤ 2. Then we consider the stability of solutions of other classes of BVP of implicit
fractional differential equations with local and nonlocal conditions in Banach spaces.

4.2 BVP for NIFDE with 0 < α ≤ 1
4.2.1 Introduction and Motivations

The purpose of this section is to establish existence and uniqueness results of solutions
for a class of boundary value problem (BVP) for the implicit fractional order differential
equation

cDαy(t) = f(t, y(t),c Dαy(t)) , for each t ∈ J = [0, T], T > 0, 0 < α ≤ 1 , (4.1)
ay(0) + by(T) = c , (4.2)

where f : J × ℝ × ℝ → ℝ is a given function and a, b, and c are real constants, with
a + b ̸= 0.

We present three results for problem (4.1)–(4.2). The first one is based on the Banach
contraction principle, the second one on Schauder’s fixed point theorem, and the last
one on the nonlinear alternative of Leray–Schauder type.

4.2.2 Existence of Solutions

Let us define what we mean by a solution of problem (4.1)–(4.2).

Definition 4.1. A function u ∈ C(J) is said to be a solution of problem (4.1)–(4.2) if u
satisfies equation (4.1) and conditions (4.2) on J.

For the existence of solutions to problem (4.1)–(4.2), we need the following auxiliary
lemma.

Lemma 4.2 ([95]). Let 0 < α ≤ 1 and g : J → ℝ be continuous. A function y is a solution
of the implicit fractional boundary value problem

cDαy(t) = g(t) , for each t ∈ J, 0 < α ≤ 1 ,
ay(0) + b(T) = c ,
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118 | 4 Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations

where a, b, and c are real constants with a + b ̸= 0, if and only if y is a solution of the
fractional integral equation

y(t) = c
a + b
+

1
Γ(α)

t

∫
0

(t − s)α−1g(s)ds

−
b

(a + b)Γ(α)

T

∫
0

(T − s)α−1g(s)ds .

Theorem 4.3. Make the following assumptions:
(4.3.1) The function f : J ×ℝ ×ℝ→ ℝ is continuous.
(4.3.2) There exist constants K > 0 and 0 < L < 1 such that

|f(t, u, v) − f(t, ū, v̄)| ≤ K|u − ū| + L|v − v̄|

for any u, v, ū, v̄ ∈ ℝ and t ∈ J.
If

KTα

(1 − L)Γ(α + 1) (
1 + |b|
|a + b|)

< 1 , (4.3)

then there exists a unique solution for BVP (4.1)–(4.2) on J.

Proof. Define the operator N : C(J,ℝ)→ C(J,ℝ) by

N(y)(t) = c
a + b
+

1
Γ(α)

t

∫
0

(t − s)α−1g(s)ds

−
b

(a + b)Γ(α)

T

∫
0

(T − s)α−1g(s)ds , (4.4)

where g ∈ C(J,ℝ) satisfies the functional equation

g(t) = f(t, y(t), g(t)) .

Clearly, the fixed points of the operator N are solutions of problem (4.1)–(4.2). Let
u, w ∈ C(J,ℝ). Then for t ∈ J we have

(Nu)(t) − (Nw)(t) = 1
Γ(α)

t

∫
0

(t − s)α−1(g(s) − h(s))ds

−
b

(a + b)Γ(α)

T

∫
0

(T − s)α−1(g(s) − h(s))ds ,

where g, h ∈ C(J,ℝ) is such that

g(t) = f(t, u(t), g(t)) ,
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4.2 BVP for NIFDE with 0 < α ≤ 1 | 119

and
h(t) = f(t, w(t), h(t)) .

Then, for t ∈ J,

|(Nu)(t) − (Nw)(t)| ≤ 1
Γ(α)

t

∫
0

(t − s)α−1|g(s) − h(s)|ds

+
|b|

|a + b|Γ(α)

T

∫
0

(T − s)α−1|g(s) − h(s)|ds . (4.5)

By (4.3.2) we have

|g(t) − h(t)| = |f(t, u(t), g(t)) − f(t, w(t), h(t))|
≤ K|u(t) − w(t)| + L|g(t) − h(t)| .

Thus,
|g(t) − h(t)| ≤ K

1 − L |u(t) − w(t)| .

By (4.5), for t ∈ J we have

|(Nu)(t) − (Nw)(t)| ≤ K
(1 − L)Γ(α)

t

∫
0

(t − s)α−1|u(s) − w(s)|ds

+
|b|K

|a + b|(1 − L)Γ(α)

T

∫
0

(T − s)α−1|u(s) − w(s)|ds

≤
KTα

(1 − L)Γ(α + 1) (1 +
|b|
|a + b|)

‖u − w‖∞ .

Then
‖Nu − Nw‖∞ ≤

KTα

(1 − L)Γ(α + 1) (
1 + |b|
|a + b|)

‖u − w‖∞ .

By (4.3), the operator N is a contraction. Hence, by Banach’s contraction principle, N
has a unique fixed point that is the unique solution of problem (4.1)–(4.2).

Our next existence result is based on Schauder’s fixed point theorem.

Theorem 4.4. Assume (4.3.1) and (4.3.2) hold and
(4.4.1) There exist p, q, r ∈ C(J,ℝ+) with r∗ = supt∈J r(t) < 1 such that

|f(t, u, w)| ≤ p(t) + q(t)|u| + r(t)|w| for t ∈ J, and u, w ∈ ℝ .

If
q∗M (1 + |b|

|a + b|)
< 1 , (4.6)

where q∗ = supt∈J q(t), and M = Tα
(1−r∗)Γ(α+1) , then BVP (4.1)–(4.2) has at least one

solution.
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120 | 4 Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations

Proof. We will show that the operator N defined in (4.4) satisfies the assumptions of
Schauder’s fixed point theorem. The proof will be given in several steps.

Claim 1: N is continuous. Let {un} be a sequence such that un → u in C(J,ℝ). Then
for each t ∈ J

|N(un)(t) − N(u)(t)| ≤
1
Γ(α)

t

∫
0

(t − s)α−1|gn(s) − g(s)|ds

+
|b|

|a + b|Γ(α)

T

∫
0

(T − s)α−1|gn(s) − g(s)|ds ,
(4.7)

where gn , g ∈ C(J,ℝ) such that

gn(t) = f(t, un(t), gn(t))

and
g(t) = f(t, u(t), g(t)) .

By (4.3.2) we have

|gn(t) − g(t)| = |f(t, un(t), gn(t)) − f(t, u(t), g(t))|
≤ K|un(t) − u(t)| + L|gn(t) − g(t)| .

Then
|gn(t) − g(t)| ≤

K
1 − L |un(t) − u(t)| .

Since un → u, we get gn(t)→ g(t) as n →∞ for each t ∈ J. Let η > 0 be such that, for
each t ∈ J, we have |gn(t)| ≤ η and |g(t)| ≤ η; then we have

(t − s)α−1|gn(s) − g(s)| ≤ (t − s)α−1[|gn(s)| + |g(s)|]
≤ 2η(t − s)α−1 .

For each t ∈ J, the function s → 2η(t − s)α−1 is integrable on [0, t]; then the Lebesgue
dominated convergence theorem and (4.7) imply that

|N(un)(t) − N(u)(t)|→ 0 as n →∞ .

Hence,
‖N(un) − N(u)‖∞ → 0 as n →∞ .

Consequently, N is continuous.
Let p∗ = supt∈J p(t) and

R ≥
|c|
|a+b| + (1 +

|b|
|a+b|) p

∗M

1 − (1 + |b||a+b|) q∗M
,
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4.2 BVP for NIFDE with 0 < α ≤ 1 | 121

and define
DR = {u ∈ C(J,ℝ) : ‖u‖∞ ≤ R} .

It is clear that DR is a bounded, closed, and convex subset of C(J,ℝ).
Claim 2: N(DR) ⊂ DR. Let u ∈ DR; we show that Nu ∈ DR. For each t ∈ J we have

|Nu(t)| ≤ |c|
|a + b|
+

1
Γ(α)

t

∫
0

(t − s)α−1|g(s)|ds

+
|b|

|a + b|Γ(α)

T

∫
0

(T − s)α−1|g(s)|ds .
(4.8)

By (4.4.1), for each t ∈ J we have

|g(t)| = |f(t, u(t), g(t))|
≤ p(t) + q(t)|u(t)| + r(t)|g(t)|
≤ p(t) + q(t)R + r(t)|g(t)|
≤ p∗ + q∗R + r∗|g(t)| .

Then
|g(t)| ≤ p

∗ + q∗R
1 − r∗ := M1 .

Thus, (4.8) implies that

|Nu(t)| ≤ |c|
|a + b|
+
(p∗ + q∗R)Tα

(1 − r∗)Γ(α + 1) +
|b|(p∗ + q∗R)Tα

|a + b|(1 − r∗)Γ(α + 1)

≤
|c|
|a + b|
+ (p∗ + q∗R)M + |b|(p

∗ + q∗R)M
|a + b|

≤
|c|
|a + b|
+ p∗M (1 + |b|

|a + b|)
+ q∗M (1 + |b|

|a + b|)
R

≤ R .

Then N(DR) ⊂ DR.
Claim 3: N(DR) is relatively compact. Let t1, t2 ∈ J, t1 < t2, and let u ∈ DR. Then

|N(u)(t2) − N(u)(t1)| =


1
Γ(α)

t1

∫
0

[(t2 − s)α−1 − (t1 − s)α−1]g(s)ds

+
1
Γ(α)

t2

∫
t1

[(t2 − s)α−1g(s)ds


≤
M1

Γ(α + 1) (t
α
2 − t

α
1 + 2(t2 − t1)

α) .

As t1 → t2, the right-hand side of the preceding inequality tends to zero.
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122 | 4 Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations

As a consequence of Claims 1–3, together with the Ascoli–Arzelà theorem, we
conclude that N : C(J,ℝ) → C(J,ℝ) is continuous and compact. As a consequence
of Schauder’s fixed point theorem [149], we deduce that N has a fixed point that is a
solution of problem (4.1)–(4.2).

Our next existence result is based on a nonlinear alternative of the Leray–Schauder
type.

Theorem 4.5. Assume (4.3.1), (4.3.2), (4.4.1), and (4.6) hold. Then BVP (4.1)–(4.2) has at
least one solution.

Proof. Consider the operator N defined in (4.4). We will show that N satisfies the
assumptions of the Leray–Schauder fixed point theorem. The proof will be given in
several claims.

Claim 1: Clearly N is continuous.
Claim 2: N maps bounded sets to bounded sets in C(J,ℝ). Indeed, it is enough

to show that for any ρ > 0 there exist a positive constant ℓ such that for each
u ∈ Bρ = {u ∈ C(J,ℝ) : ‖u‖∞ ≤ ρ} we have ‖N(u)‖∞ ≤ ℓ.

For u ∈ Bρ, we have, for each t ∈ J,

|(Nu)(t)| ≤ |c|
|a + b|
+

1
Γ(α)

t

∫
0

(t − s)α−1|g(s)|ds

+
|b|

|a + b|Γ(α)

T

∫
0

(T − s)α−1|g(s)|ds .
(4.9)

By (4.4.1), for each t ∈ J we have

|g(t)| = |f(t, u(t), g(t))|
≤ p(t) + q(t)|u(t)| + r(t)|g(t)|
≤ p(t) + q(t)ρ + r(t)|g(t)|
≤ p∗ + q∗ρ + r∗|g(t)| .

Then
|g(t)| ≤ p

∗ + q∗ρ
1 − r∗ := M∗ .

Thus, (4.9) implies that

|(Nu)(t)| ≤ |c|
|a + b|
+

M∗Tα

Γ(α + 1) +
|b|M∗Tα

|a + b|Γ(α + 1) .

Consequently,

‖N(u)‖∞ ≤
|c|
|a + b|
+

M∗Tα

Γ(α + 1) +
|b|M∗Tα

|a + b|Γ(α + 1) := l .
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4.2 BVP for NIFDE with 0 < α ≤ 1 | 123

Claim 3: Clearly, N maps bounded sets to equicontinuous sets of C(J,ℝ).
We conclude that N : C(J,ℝ) → C(J,ℝ) is continuous and completely continuous.
Claim 4: A priori bounds. We now show that there exists an open set U ⊆ C(J,ℝ),

with u ̸= λN(u), for λ ∈ (0, 1) and u ∈ ∂U. Let u ∈ C(J,ℝ) and u = λN(u) for some
0 < λ < 1. Thus, for each t ∈ J we have

u(t) = λ c
a + b
+

λ
Γ(α)

t

∫
0

(t − s)α−1g(s)ds + λb
(a + b)Γ(α)

T

∫
0

(T − s)α−1|g(s)|ds .

This implies by (4.3.2) that for each t ∈ J we have

|u(t)| ≤ |c|
|a + b|
+

1
Γ(α)

t

∫
0

(t − s)α−1g(s)ds

+
|b|

|a + b|Γ(α)

T

∫
0

(T − s)α−1|g(s)|ds .
(4.10)

Additionally, by (4.4.1), for each t ∈ J we have

|g(t)| = |f(t, u(t), g(t))|
≤ p(t) + q(t)|u(t)| + r(t)|g(t)|
≤ p∗ + q∗|u(t)| + r∗|g(t)| .

Thus,
|g(t)| ≤ 1

1 − r∗ (p
∗ + q∗|u(t)|) .

Hence,

|u(t)| ≤ |c|
|a + b|
+

p∗Tα

(1 − r∗)Γ(α + 1) (1 +
|b|
|a + b|)

+
q∗

(1 − r∗)Γ(α)

t

∫
0

(t − s)α−1|u(s)|ds

+
|b|q∗

(1 − r∗)|a + b|Γ(α)

T

∫
0

(T − s)α−1|u(s)|ds

≤
|c|
|a + b|
+

p∗Tα

(1 − r∗)Γ(α + 1) (1 +
|b|
|a + b|)

+
q∗‖u‖∞
(1 − r∗)Γ(α)

t

∫
0

(t − s)α−1ds

+
|b|q∗‖u‖∞

(1 − r∗)|a + b|Γ(α)

T

∫
0

(T − s)α−1ds
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124 | 4 Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations

≤
|c|
|a + b|
+

p∗Tα

(1 − r∗)Γ(α + 1) (1 +
|b|
|a + b|)

+
q∗Tα

(1 − r∗)Γ(α + 1) (
1 + |b|
|a + b|)

‖u‖∞ .

Then for each t ∈ J we have

‖u‖∞ ≤
|c|
|a + b|
+

p∗Tα

(1 − r∗)Γ(α + 1) (1 +
|b|
|a + b|)

+
q∗Tα

(1 − r∗)Γ(α + 1) (1 +
|b|
|a + b|)

‖u‖∞ .

Thus, for each t ∈ J,

‖u‖∞ [1 − (1 +
|b|
|a + b|)

q∗M] ≤ |c|
|a + b|
+ (1 + |b|
|a + b|)

p∗M .

Consequently,

‖u‖∞ ≤
|c|
|a+b| + (1 +

|b|
|a+b|) p

∗M

1 − (1 + |b||a+b|) q∗M
:= M . (4.11)

Let
U = {u ∈ C(J,ℝ) : ‖u‖∞ < M + 1} .

By our choice of U, there is no u ∈ ∂U such that u = λN(u) for λ ∈ (0, 1). As a
consequence of Leray–Schauder’s theorem ([149]), we deduce that N has a fixed point
u in U that is a solution of problem (4.1)–(4.2).

4.2.3 Examples

Example 1. Consider the BVP

cD
1
2 y(t) = 1

10et+2 (1 + |y(t)| + |cD 1
2 y(t)|)

, for each t ∈ [0, 1] , (4.12)

y(0) + y(1) = 0 . (4.13)

Set
f(t, u, v) = 1

10et+2(1 + |u| + |v|)
, t ∈ [0, 1], u, v ∈ ℝ .

Clearly, the function f is jointly continuous.
For any u, v, ū, v̄ ∈ ℝ and t ∈ [0, 1],

|f(t, u, v) − f(t, ū, v̄)| ≤ 1
10e2
(|u − ū| + |v − v̄|) .

Hence condition (4.3.2) is satisfied by K = L = 1
10e2 . Thus, the condition

KTα

(1 − L)Γ(α + 1) (1 +
|b|
|a + b|)

=
3

2(10e2 − 1)Γ (32)
=

3
(10e2 − 1)√π

< 1
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4.3 BVP for NIFDE with 1 < α ≤ 2 | 125

is satisfied by a = b = T = 1, c = 0, and α = 1
2 . It follows from Theorem 4.3 that problem

(4.12)–(4.13) as a unique solution on J.
Example 2. Consider the BVP

cD
1
2 y(t) =

(2 + |y(t)| + |cD 1
2 y(t)|)

12et+9 (1 + |y(t)| + |cD 1
2 y(t)|)

, for each t ∈ [0, 1] , (4.14)

1
2
y(0) + 1

2
y(1) = 1 . (4.15)

Set
f(t, u, v) = (2 + |u| + |v|)

12et+9(1 + |u| + |v|)
, t ∈ [0, 1], u, v ∈ ℝ .

Clearly, the function f is jointly continuous. For any u, v, ū, v̄ ∈ ℝ and t ∈ [0, 1]

|f(t, u, v) − f(t, ū, v̄)| ≤ 1
12e9
(|u − ū| + |v − v̄|) .

Hence, condition (4.3.2) is satisfied by K = L = 1
12e9 . Also, we have

|f(t, u, v)| ≤ 1
12et+9
(2 + |u| + |v|) .

Thus, condition (4.34.1) is satisfied by p(t) = 1
6et+9 and q(t) = r(t) =

1
12et+9 . The condition

q∗M (1 + |b|
|a + b|)

=
3

2(12e9 − 1)Γ (32)
=

3
(12e9 − 1)√π

< 1

is satisfied by a = b = 1
2 , c = T = 1, α =

1
2 , and q

∗ = r∗ = 1
12e9 .

It follows from Theorem 4.4 that problem (4.14)–(4.15) has at least one solution
on J.

4.3 BVP for NIFDE with 1 < α ≤ 2
4.3.1 Introduction and Motivations

The purpose of this section is to establish existence and uniqueness results to the
following implicit fractional order differential equation:

cDαy(t) = f(t, y(t),c Dαy(t)) , for each t ∈ J = [0, T], T > 0, 1 < α ≤ 2 , (4.16)
y(0) = y0 , y(T) = y1 , (4.17)

where f : J ×ℝ ×ℝ→ ℝ is a given function and y0, y1 ∈ ℝ.
We present three results for problem (4.16)–(4.17). The first one is based on the

Banach contraction principle, the second one on Schauder’s fixed point theorem, and
the last one on the nonlinear alternative of the Leray–Schauder type.
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126 | 4 Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations

4.3.2 Existence of Solutions

Let us define what we mean by a solution of problem (4.16)–(4.17).

Definition 4.6. A function u ∈ C1(J) is said to be a solution of problem (4.16)–(4.17) if
u satisfies equation (4.16) on J and conditions (4.17).

4.3.2.1 Preparatory Lemmas
For the existence of solutions of problem (4.16)–(4.17), we need the following auxiliary
lemma.

Lemma 4.7. Let 1 < α ≤ 2 and g : J → ℝ be continuous. A function y is a solution of the
fractional BVP

cDαy(t) = f(t, y(t),c Dαy(t)) , for each, t ∈ J, 1 < α ≤ 2 ,
y(0) = y0 , y(T) = y1 ,

if and only if y is a solution of the fractional integral equation

y(t) = l(t) +
T

∫
0

G(t, s)f (s, l(s) +
T

∫
0

G(t, τ)g(τ)dτ, g(s)) ds , (4.18)

where

l(t) = (1 − tT ) y0 +
t
T
y1 = y0 +

(y1 − y0)
T

t , (4.19)
cDαy(t) = g(t) ,

and

G(t, s) = 1
Γ(α)
{
{
{

(t − s)α−1 − t
T (T − s)

α−1 if 0 ≤ s ≤ t ,
− tT (T − s)

α−1 if t ≤ s ≤ T .
(4.20)

Proof. By Lemma 1.9 we reduce (4.16)–(4.17) to the equation

y(t) = Iαg(t) + c0 + c1t =
1
Γ(α)

t

∫
0

(t − s)α−1g(s)ds + c0 + c1t

for some constants c0, and c1 ∈ ℝ. Conditions (4.17) give

c0 = y0 , c1 =
1
T
yT −

1
T
y0 −

1
TΓ(α)

T

∫
0

(T − s)α−1g(s)ds .
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Then the solution of (4.16)–(4.17) is given by

y(t) = 1
Γ(α)

t

∫
0

(t − s)α−1g(s)ds − t
TΓ(α)

T

∫
0

(T − s)α−1g(s)ds

+ (1 − tT ) y0 +
t
T
y1

=
1
Γ(α)[

t

∫
0

[(t − s)α−1 − t
T
(T − s)α−1]g(s)ds

−
t
T

T

∫
t

(T − s)α−1g(s)ds] + (1 − tT ) y0 +
t
T
y1 .

Hence, we get (4.18). Inversely, if y satisfies (4.18), then equations (4.16)–(4.17) hold.

Remark 4.8. From the expression of G(t, s), it is obvious that G(t, s) is continuous on
[0, T] × [0, T]. Use the notation

G∗ := sup{|G(t, s)|, (t, s) ∈ J × J} .

We are now in a position to state and prove our existence result for problem (4.16)–(4.17)
based on Banach’s fixed point.

Theorem 4.9. Make the following assumptions:
(4.9.1) The function f : J ×ℝ ×ℝ→ ℝ is continuous.
(4.9.2) There exist constants K > 0 and 0 < L < 1 such that

|f(t, u, v) − f(t, ū, v̄)| ≤ K|u − ū| + L|v − v̄|

for any u, v, ū, v̄ ∈ ℝ and t ∈ J.
If

KTG∗

1 − L < 1 , (4.21)

then there exists a unique solution for BVP (4.16)–(4.17).

Proof. The proof will be given in several steps. Transform problem (4.16)–(4.17) into a
fixed point problem. Define the operator N : C(J,ℝ)→ C(J,ℝ) by

N(y)(t) = l(t) +
T

∫
0

G(t, s)k(s)ds , (4.22)

where k ∈ C(J) satisfies the implicit functional equation

k(t) = f(t, y(t), k(t)) ,

and l and G are the functions defined by (4.19) and (4.20), respectively.
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Clearly, the fixed points of the operator N are solutions of problem (4.16)–(4.17).
Let u, w ∈ C(J). Then for t ∈ J we have

(Nu)(t) − (Nw)(t) =
T

∫
0

G(t, s)(g(s) − h(s))ds ,

where g, h ∈ C(J) are such that

g(t) = f(t, u(t), g(t))

and
h(t) = f(t, w(t), h(t)) .

Then, for t ∈ J,

|(Nu)(t) − (Nw)(t)| ≤
T

∫
0

|G(t, s)‖g(s) − h(s)|ds . (4.23)

By (4.9.2) we have

|g(t) − h(t)| = |f(t, u(t), g(t)) − f(t, w(t), h(t))|
≤ K|u(t) − w(t)| + L|g(t) − h(t)| .

Thus,
|g(t) − h(t)| ≤ K

1 − L |u(t) − w(t)| .

By (4.23) we have

|(Nu)(t) − (Nw)(t)| ≤ K
(1 − L)

T

∫
0

|G(t, s)‖u(s) − w(s)|ds

≤
KTG∗

1 − L ‖u − w‖∞ .

Then
‖Nu − Nw‖∞ ≤

KTG∗

1 − L
‖u − w‖∞ .

By (4.21), the operator N is a contraction. Hence, by Banach’s contraction principle, N
has a unique fixed point that is the unique solution of problem (4.16)–(4.17).

Our next existence result is based on Schauder’s fixed point theorem.

Theorem 4.10. Assume (4.9.1) and (4.9.2) hold and
(4.10.1) There exist p, q, r ∈ C(J,ℝ+) with r∗ = supt∈J r(t) < 1 such that

|f(t, u, w)| ≤ p(t) + q(t)|u| + r(t)|w| for t ∈ J, and u, w ∈ ℝ .
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If
q∗TG∗

1 − r∗ < 1 , (4.24)

where q∗ = supt∈J q(t), then BVP (4.16)–(4.17) has at least one solution.

Proof. Consider the operator N defined in (4.22). We will show that N satisfies the
assumptions of Schauder’s fixed point theorem. The proof will be given in several steps.

Claim 1: N is continuous. Let {un} be a sequence such that un → u in C(J). Then for
each t ∈ J

|N(un)(t) − N(u)(t)| ≤
T

∫
0

|G(t, s)‖gn(s) − g(s)|ds , (4.25)

where gn , g ∈ C(J) such that

gn(t) = f(t, un(t), gn(t))

and
g(t) = f(t, u(t), g(t)) .

By (4.9.2), we have

|gn(t) − g(t)| = |f(t, un(t), gn(t)) − f(t, u(t), g(t))|
≤ K|un(t) − u(t)| + L|gn(t) − g(t)| .

Then
|gn(t) − g(t)| ≤

K
1 − L |un(t) − u(t)| .

Since un → u, we get gn(t)→ g(t) as n →∞ for each t ∈ J. Let η > 0 be such that, for
each t ∈ J, we have |gn(t)| ≤ η and |g(t)| ≤ η. Then we have

|G(t, s)‖gn(s) − g(s)| ≤ |G(t, s)|[|gn(s)| + |g(s)|]
≤ 2η|G(t, s)| .

For each t ∈ J the function s → 2η|G(t, s)| is integrable on J. Then the Lebesgue
dominated convergence theorem and (4.25) imply that

|N(un)(t) − N(u)(t)|→ 0 as n →∞ .

Hence,
‖N(un) − N(u)‖∞ → 0 as n →∞ .

Consequently, N is continuous.
Let

R ≥ (2|y0| + |y1|)(1 − r
∗) + G∗Tp∗

M
,

where M := 1 − r∗ − G∗Tq∗ and p∗ = supt∈J p(t). Define

DR = {u ∈ C(J) : ‖u‖∞ ≤ R} .
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It is clear that DR is a bounded, closed, and convex subset of C(J).
Claim 2: N(DR) ⊂ DR. Let u ∈ DR; we show that Nu ∈ DR. For each t ∈ J we have

|Nu(t)| ≤ |l(t)| +
T

∫
0

|G(t, s)‖g(s)|ds

≤ |y0| + |y1 − y0| + G∗
T

∫
0

|g(s)|ds

≤ 2|y0| + |y1| + G∗
T

∫
0

|g(s)|ds , (4.26)

where g(t) = f(t, u(t), g(t)).
From (4.10.1), for each t ∈ J we have

|g(t)| = |f(t, u(t), g(t))|
≤ p(t) + q(t)|u(t)| + r(t)|g(t)|
≤ p(t) + q(t)R + r(t)|g(t)|
≤ p∗ + q∗R + r∗|g(t)| .

Then
|g(t)| ≤ p

∗ + q∗R
1 − r∗ .

Thus, (4.26) implies that, for each t ∈ J,

|Nu(t)| ≤ 2|y0| + |y1| +
p∗ + q∗R
1 − r∗ G∗T

≤ R .

Then N(DR) ⊂ DR.
Claim 3: N(DR) is relatively compact. Let t1, t2 ∈ J, t1 < t2, and let u ∈ DR. Then

|N(u)(t2) − N(u)(t1)| =


l(t2) − l(t1) +

T

∫
0

[G(t2, s) − G(t1, s)]g(s)ds



=



(y1 − y0)
T
(t2 − t1) +

T

∫
0

[G(t2, s) − G(t1, s)]g(s)ds



≤

(y1 − y0)

T
(t2 − t1)


+
p∗ + q∗R
1 − r∗



T

∫
0

[G(t2, s) − G(t1, s)]ds


.

As t1 → t2, the right-hand side of the preceding inequality tends to zero.
As a consequence of Claims 1–3, together with the Ascoli–Arzelà theorem, we con-

clude that N : C(J)→ C(J) is continuous and compact. As a consequence of Schauder’s
fixed point theorem, we deduce that N has a fixed point that is a solution of problem
(4.16)–(4.17).
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Our next existence result is based on a nonlinear alternative of the Leray–Schauder
type.

Theorem 4.11. Assume (4.9.1), (4.9.2), (4.10.1), and (4.24) hold. Then the initial value
problem (IVP) (4.16)–(4.17) has at least one solution.

Proof. Consider the operator N defined in (4.22). We will show that N satisfies the
assumptions of the Leray–Schauder fixed point theorem. The proof will be given in
several claims.

Claim 1: Clearly N is continuous.
Claim 2: N maps bounded sets to bounded sets in C(J). Indeed, it is enough to show

that for any ρ > 0 there exist a positive constant ℓ such that for each u ∈ Bρ = {u ∈
C(J,ℝ) : ‖u‖∞ ≤ ρ} we have ‖N(u)‖∞ ≤ ℓ.

For u ∈ Bρ we have, for each t ∈ J,

|Nu(t)| ≤ |l(t)| +
T

∫
0

|G(t, s)‖g(s)|ds

≤ |y0| + |y1 − y0| + G∗
T

∫
0

|g(s)|ds .

Then

|Nu(t)| ≤ 2|y0| + |y1| + G∗
T

∫
0

|g(t)|ds . (4.27)

By (4.10.1), for each t ∈ J we have

|g(t)| = |f(t, u(t), g(t))|
≤ p(t) + q(t)|u(t)| + r(t)|g(t)|
≤ p(t) + q(t)ρ + r(t)|g(t)|
≤ p∗ + q∗ρ + r∗|g(t)| .

Then
|g(t)| ≤ p

∗ + q∗ρ
1 − r∗

:= M∗ .

Thus, (4.27) implies that

|Nu(t)| ≤ 2|y0| + |y1| + G∗M∗T .

Thus,
‖Nu‖∞ ≤ 2|y0| + |y1| + G∗M∗T := l .

Claim 3: Clearly, N maps bounded sets to equicontinuous sets of C(J).
We conclude that N : C(J) → C(J) is continuous and completely continuous.
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Claim 4: A priori bounds. We now show there exists an open set U ⊆ C(J) with
u ̸= λN(u) for λ ∈ (0, 1) and u ∈ ∂U. Let u ∈ C(J) and u = λN(u) for some 0 < λ < 1.
Thus, for each t ∈ J we have

u(t) = λl(t) + λ
T

∫
0

G(t, s)g(s)ds .

This implies by (3.9.2) that, for each t ∈ J, we have

|u(t)| ≤ 2|y0| + |y1| +
T

∫
0

|G(t, s)‖g(s)|ds . (4.28)

By (4.10.1), for each t ∈ J, we have

|g(t)| = |f(t, u(t), g(t))|
≤ p(t) + q(t)|u(t)| + r(t)|g(t)|
≤ p∗ + q∗|u(t)| + r∗|g(t)| .

Thus,
|g(t)| ≤ 1

1 − r∗ (p
∗ + q∗|u(t)|) .

Hence,

|u(t)| ≤ (2|y0| + |y1| +
p∗TG∗

1 − r∗ ) +
q∗G∗

1 − r∗

T

∫
0

|u(s)|ds

≤ (2|y0| + |y1| +
p∗TG∗

1 − r∗ )
+
q∗TG∗

1 − r∗ ‖u‖∞ .

Then
‖u‖∞ ≤ (2|y0| + |y1| +

p∗TG∗

1 − r∗ )
+
q∗TG∗

1 − r∗
‖u‖∞ .

Thus,
‖u‖∞ ≤

M1

1 − q
∗TG∗

1 − r∗

:= M ,

where M1 = 2|y0| + |y1| +
p∗TG∗

1 − r∗ .
Let

U = {u ∈ C(J) : ‖u‖∞ < M + 1} .

By our choice of U, there is no u ∈ ∂U such that u = λN(u) for λ ∈ (0, 1). As a
consequence of Leray–Schauder’s theorem, we deduce that N has a fixed point u in U
that is a solution of (4.16)–(4.17).
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4.3.3 Examples

Example 1. Consider the BVP

cD
3
2 y(t) = 1

3et+2 (1 + |y(t)| + |cD 3
2 y(t)|)

, for each t ∈ [0, 1] , (4.29)

y(0) = 1 , y(1) = 2 . (4.30)

Set
f(t, u, v) = 1

3et+2(1 + |u| + |v|)
, t ∈ [0, 1], u, v ∈ ℝ .

Clearly, the function f is jointly continuous.
For any u, v, ū, v̄ ∈ ℝ and t ∈ [0, 1]

|f(t, u, v) − f(t, ū, v̄)| ≤ 1
3e2
(|u − ū| + |v − v̄|) .

Hence, condition (4.9.2) is satisfied by K = 1
3e2 and L =

1
3e2 < 1.

From (4.20) the function G is given by

G(t, s) = 1
Γ (32)
{
{
{

(t − s) 12 − t(1 − s) 12 if 0 ≤ s ≤ t
−t(1 − s) 12 if t ≤ s ≤ 1 .

Clearly, G∗ < 2
Γ( 32 )

. Thus, condition

KTG∗

1 − L < 1

is satisfied by T = 1 and α = 3
2 . It follows from Theorem 4.9 that problem (4.29)–(4.30)

has a unique solution on J.
Example 2. Consider the BVP

cD
3
2 y(t) =

(6 + |y(t)| + |cD 3
2 y(t)|)

10et+1 (1 + |y(t)| + |cD 3
2 y(t)|)

, for each t ∈ [0, 1] , (4.31)

y(0) = 1 , y(1) = 2 . (4.32)

Set
f(t, u, v) = 6 + |u| + |v|

10et+1(1 + |u| + |v|)
, t ∈ [0, 1], u, v ∈ ℝ .

Clearly, the function f is jointly continuous.
For each u, v, ū, v̄ ∈ ℝ and t ∈ [0, 1],

|f(t, u, v) − f(t, ū, v̄)| ≤ 1
2e (|u − ū| + |v − v̄|) .

Hence, condition (4.9.2) is satisfied by K = L = 1
2e . Also, for each u, v, ∈ ℝ and t ∈ [0, 1]

we have
|f(t, u, v)| ≤ 1

10et+1
(6 + |u| + |v|) .
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Thus, condition (4.10.1) is satisfied by p(t) = 3
5et+1 and q(t) = r(t) =

1
10et+1 . Clearly,

p∗ = 3
5e , q
∗ = 1

10e , and r
∗ = 1

10e < 1.
From (4.20) the function G is given by

G(t, s) = 1
Γ (32)
{
{
{

(t − s) 12 − t(1 − s) 12 if 0 ≤ s ≤ t
−t(1 − s) 12 if t ≤ s ≤ 1 .

Clearly, G∗ < 2
Γ( 32 )

. Thus, condition

q∗TG∗

1 − r∗ < 1

is satisfied by T = 1 and α = 3
2 . It follows from Theorems 4.10 and 4.11 that problem

(4.31)–(4.32) has at least one solution on J.

4.4 Stability Results for BVP for NIFDE

4.4.1 Introduction and Motivations

In this section, we establish some existence, uniqueness, and stability results for the
implicit fractional order differential equations

cDαy(t) = f(t, y(t),c Dαy(t)) for each t ∈ J = [0, T], T > 0, 0 < α ≤ 1 , (4.33)
ay(0) + by(T) = c , (4.34)

where f : J ×ℝ ×ℝ → ℝ is a continuous function, and a, b, c are real constants, with
a + b ̸= 0 and

cDαy(t) = f(t, y(t),c Dαy(t)) , for each t ∈ J = [0, T], T > 0, 0 < α ≤ 1 , (4.35)
y(0) + g(y) = y0 , (4.36)

where f : J ×ℝ ×ℝ→ ℝ is a given function, g : C(J,ℝ)→ ℝ is a continuous function,
and y0 ∈ ℝ.

4.4.2 Existence of solutions

Let us define what we mean by a solution of problem (4.33)–(4.34) and (4.35)–(4.36).

Definition 4.12. A function u ∈ C1(J,ℝ) is said to be a solution of problem (4.33)–(4.34)
if u satisfies equation (4.33) and conditions (4.34) on J, and a function y ∈ C1(J,ℝ) is
called a solution of problem (4.35)–(4.36) if y satisfies equation (4.35) and conditions
(4.36) on J.
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For the existence of solutions to problems (4.33)–(4.34) and (4.35)–(4.36), we need the
following auxiliary lemma.

Lemma 4.13. Let 0 < α ≤ 1, and let h : [0, T] → ℝ be a continuous function. The linear
problem

cDαy(t) = h(t) , t ∈ J , (4.37)
ay(0) + by(T) = c (4.38)

has a unique solution given by

y(t) = 1
Γ(α)

t

∫
0

(t − s)α−1h(s)ds

−
1

a + b
[

[

b
Γ(α)

T

∫
0

(T − s)α−1h(s)ds − c]
]

. (4.39)

Proof. By the integration of formula (4.37) we obtain

y(t) = y0 +
1
Γ(α)

t

∫
0

(t − s)α−1h(s)ds . (4.40)

We use condition (4.38) to compute the constant y0, so we have

ay(0) = ay0 and by y(T) = by0 +
b

Γ (α)

T

∫
0

(T − s)α−1h(s)ds ;

then ay(0) + by(T) = c. Since

y0 =
−1
(a + b)

[

[

b
Γ (α)

T

∫
0

(T − s)α−1h(s)ds − c]
]

,

we can use this in (4.40) to obtain (4.39).

Lemma 4.14. Let f(t, u, v) : J × ℝ × ℝ → ℝ be a continuous function; then problem
(4.33)–(4.34) is equivalent to the problem

y(t) = Ã + Iαg(t) , (4.41)

where g ∈ C(J,ℝ) satisfies the functional equation

g(t) = f(t, Ã + Iαg(t), g(t))

and

Ã = 1
a + b
[

[
c − b

Γ(α)

T

∫
0

(T − s)α−1g(s)ds]
]

.
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Proof. Let y be a solution of (4.41). We will show that y is a solution of (4.33)–(4.34).
We have

y(t) = Ã + Iαg(t) .

Thus, y(0) = Ã and y(T) = Ã + 1
Γ(α)

T

∫
0

(T − s)α−1g(s)ds, so

ay(0) + by(T) = −ab
(a + b)Γ(α)

T

∫
0

(T − s)α−1g(s)ds

+
ac
a + b
−

b2

(a + b)Γ(α)

T

∫
0

(T − s)α−1g(s)ds

+
bc
a + b
+

b
Γ(α)

T

∫
0

(T − s)α−1g(s)ds .

= c .

Then
ay(0) + by(T) = c .

On the other hand, we have

cDαy(t) = cDα(Ã + Iαg(t)) = g(t)
= f(t, y(t),c Dαy(t)) .

Thus, y is a solution of problem (4.33)–(4.34).

Lemma 4.15. Let 0 < α ≤ 1, and let h : [0, T] → ℝ be a continuous function. The linear
problem

cDαy(t) = h(t) , t ∈ J
y(0) + g(y) = y0

has a unique solution given by

y(t) = y0 − g(y) +
1
Γ(α)

t

∫
0

(t − s)α−1h(s)ds .

Lemma 4.16. Let f : J×ℝ×ℝ → ℝ be a continuous function; then problem (4.35)–(4.36)
is equivalent to the problem

y(t) = y0 − g(y) + IαKy(t) ,

where Ky(t) = f(t, y(t), Ky(t)).
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Theorem 4.17. Make the following assumption:
(4.17.1) There exist two constants K > 0 and 0 < L < 1 such that

‖f(t, u, v) − f(t, u, v)‖ ≤ K‖u − u‖ + L‖v − v‖ for each t ∈ J and u, u, v, v ∈ ℝ .

If
KTα

(1 − L)Γ(α + 1) (1 +
‖b‖
‖a + b‖)

< 1 , (4.42)

then problem (4.33)–(4.34) has a unique solution.

Proof. Let N be the operator defined by

N : C(J,ℝ) → C(J,ℝ)

Ny(t) = Ãy +
1
Γ(α)

t

∫
0

(t − s)α−1gy(s)ds ,

where
gy(t) = f(t, ̃Ay + Iαgy(t), gy(t))

and

̃Ay =
1

a + b
[

[
c − b

Γ(α)

T

∫
0

(T − s)α−1gy(s)ds]
]

.

By Lemma 4.14, it is clear that the fixed points of N are solutions of (4.33)–(4.34). Let
y1, y2 ∈ C(J,ℝ) and t ∈ J; then we have

‖Ny1(t) − Ny2(t)‖ ≤
1
Γ(α)

t

∫
0

(t − s)α−1‖gy1 (s) − gy2 (s)‖ds

+
‖b‖

‖a + b‖Γ(α)

T

∫
0

(T − s)α−1‖gy1 (s) − gy2 (s)‖ds (4.43)

and

‖gy1 (t) − gy2 (t)‖ = ‖f(t, y1(t), cDαy1(t)) − f(t, y2(t), cDαy2(t))‖
≤ K‖y1(t) − y2(t)‖ + L‖gy1 (t) − gy2 (t)‖ .

Then
‖gy1 (t) − gy2 (t)‖ ≤

K
1 − L ‖y1(t) − y2(t)‖ . (4.44)
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By replacing (4.44) in inequality (4.43), we obtain

‖Ny1(t) − Ny2(t)‖ ≤
K

(1 − L)Γ(α)

t

∫
0

(t − s)α−1‖y1(s) − y2(s)‖ds

+
‖b‖K

(1 − L)‖a + b‖Γ(α)

T

∫
0

(T − s)α−1‖y1(s) − y2(s)‖ds

≤
KTα

(1 − L)Γ(α + 1) ‖y1 − y2‖∞

+
‖b‖KTα

(1 − L)‖a + b‖Γ(α + 1) ‖y1 − y2‖∞ .

Then
‖Ny1 − Ny2‖∞ ≤ [

KTα

(1 − L)Γ(α + 1) (1 +
‖b‖
‖a + b‖)] ‖

y1 − y2‖∞ .

From (4.42), the operator N has a unique fixed point that is the unique solution.

Theorem 4.18. Make the following assumption:
(4.18.1) There exist K > 0, 0 < K < 1, and 0 < L < 1 such that

‖f(t, u, v) − f(t, u, v)‖ ≤ K‖u − u‖ + K‖v − v‖ for any u, u, v, v ∈ ℝ

and
‖g(y) − g(y)‖ ≤ L‖y − y‖ for any y, y ∈ C(J,ℝ) .

If
L + KTα

(1 − K)Γ (α + 1)
< 1 , (4.45)

then BVP (4.35)–(4.36) has a unique solution on J.

Proof. Let

N : C(J,ℝ)→ C(J,ℝ)

Ny(t) = y0 − g(y) +
1
Γ(α)

t

∫
0

(t − s)α−1Ky(s)ds ,

where
Ky(t) = f(t, y(t), Ky(t)) .

By Lemma 4.16, it is easy to see that the fixed points of N are the solutions of problem
(4.35)–(4.36). Let y1, y2 ∈ C(J,ℝ); for any t ∈ J we have

‖Ny1(t) − Ny2(t)‖ ≤ ‖g(y1) − g(y2)‖ +
1
Γ(α)

t

∫
0

(t − s)α−1‖Ky1 (s) − Ky2 (s).‖ds .

Brought to you by | UCL - University College London
Authenticated

Download Date | 2/10/18 4:14 PM



4.4 Stability Results for BVP for NIFDE | 139

Then

‖Ny1(t) − Ny2(t)‖ ≤ L‖y1(t) − y2(t)‖

+
1
Γ(α)

t

∫
0

(t − s)α−1‖Ky1 (s) − Ky2 (s)‖ds . (4.46)

On the other hand, for every t ∈ J we have

‖Ky1 (t) − Ky2 (t)‖ = ‖f(t, y1(t), Ky1 (t)) − f(t, y2(t), Ky2 (t))‖
≤ K‖y1(t) − y2(t)‖ + K‖Ky1 (t) − Ky2 (t)‖ .

Thus,
‖Ky1 (t) − Ky2 (t)‖ ≤

K
1 − K
‖y1(t) − y2(t)‖ . (4.47)

Replacing (4.47) in inequality (4.46), we obtain

‖Ny1(t) − Ny2(t)‖ ≤ L‖y1(t) − y2(t)‖

+
K

(1 − K) Γ(α)

t

∫
0

(t − s)α−1‖y1(s) − y2(s)‖

≤ [L + KTα

(1 − K) Γ(α + 1)
] ‖y1 − y2‖∞ .

Then

‖Ny1 − Ny2‖∞ ≤ [L +
KTα

(1 − K) Γ(α + 1)
] ‖y1 − y2‖∞ .

Thus, N is a contraction. Hence, the operator N has a unique fixed point that is the
unique solution of problem (4.35)–(4.36).

4.4.3 Ulam–Hyers–Rassias stability

Definition 4.19. A solution of the implicit differential inequality

‖cDαz(t) − f(t, z(t), cDαz(t))‖ ≤ ϵ , t ∈ J ,

with fractional order is called a fractional ϵ-solution of the implicit fractional differential
equation (4.33).

Theorem 4.20. Assume (4.17.1) and (4.42) hold; then problem (4.33)–(4.34) is Ulam–
Hyers stable.
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Proof. Let ϵ > 0 and z ∈ C1(J,ℝ) be a function that satisfies the inequality

‖cDαz(t) − f(t, z(t), cDαz(t))‖ ≤ ϵ for any t ∈ J , (4.48)

and let y ∈ C(J,ℝ) be the unique solution of the Cauchy problem

{
{
{

cDαy(t) = f(t, y(t), cDαy(t)); t ∈ J; 0 < α ≤ 1
y(0) = z(0) , y(T) = z(T) .

Using Lemma 4.14, we obtain

y(t) = Ãy +
1
Γ(α)

t

∫
0

(t − s)α−1gy(s)ds .

On the other hand, if y(T) = z(T) and y(0) = z(0), then Ãy = Ãz. Indeed,

‖Ãy − Ãz‖ ≤
‖b‖

‖a + b‖Γ(α)

T

∫
0

(T − s)α−1‖gy(s) − gz(s)‖ds ,

and by inequality (4.44) we find

‖Ãy − Ãz‖ ≤
‖b‖K

(1 − L)‖a + b‖Γ(α)

T

∫
0

(T − s)α−1‖y(s) − z(s)‖ds

=
‖b‖K

(1 − L)‖a + b‖ I
α‖y(T) − z(T)‖ = 0 .

Thus,
Ãy = Ãz .

Hence, we have

y(t) = Ãz +
1
Γ(α)

t

∫
0

(t − s)α−1gy(s)ds .

By integration of inequality (4.48), we obtain

‖z(t) − Ãz −
1
Γ(α)

t

∫
0

(t − s)α−1gz(s)ds‖ ≤
ϵtα

Γ (α + 1)
≤

ϵTα

Γ(α + 1) ,

with
gz(t) = f(t, Ãz + Iαgz(t), gz(t)) .
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We have for any t ∈ J

‖z(t) − y(t)‖ =

z(t) − Ãz −

1
Γ(α)

t

∫
0

(t − s)α−1gz(s)ds

+
1
Γ(α)

t

∫
0

(t − s)α−1 (gz(s) − gy(s)) ds


≤ ‖z(t) − Ãz −
1

Γ (α)

t

∫
0

(t − s)α−1gz(s)ds‖

+
1
Γ(α)

t

∫
0

(t − s)α−1‖gz(s) − gy(s)‖ds .

Using (4.44), we obtain

‖z(t) − y(t)‖ ≤ ϵTα

Γ(α + 1) +
K

(1 − L)Γ (α)

t

∫
0

(t − s)α−1‖z(s) − y(s)‖ds ,

and by Gronwall’s lemma we get

‖z(t) − y(t)‖ ≤ ϵTα

Γ(α + 1) [1 +
γKTα

(1 − L)Γ(α + 1)] := cϵ ,

where γ = γ(α) is a constant. Moreover, if we set ψ(ϵ) = cϵ, ψ(0) = 0, then problem
(4.33)–(4.34) is generalized Ulam–Hyers stable.

Theorem 4.21. Assume (4.17.1) and (4.42) hold and
(4.27.1) there exists an increasing function φ ∈ C(J,ℝ+), and there exists λφ > 0 such that

for any t ∈ J,
Iαφ(t) ≤ λφφ(t) .

Then problem (4.33)–(4.34) is Ulam–Hyers–Rassias stable.

Proof. Let z ∈ C1(J,ℝ) be a solution of the inequality

‖cDαz(t) − f(t, z(t), cDαz(t))‖ ≤ ϵφ(t) , t ∈ J, ϵ > 0 , (4.49)

and let y ∈ C(J,ℝ) be the unique solution of the Cauchy problem

{
{
{

cDαy(t) = f(t, y(t), cDαy(t)); t ∈ J; 0 < α ≤ 1
y(0) = z(0) , y(T) = z(T) .

It follows from the proof of the previous theorem that

y(t) = Ãz +
1
Γ(α)

t

∫
0

(t − s)α−1gy(s)ds .
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By integration of (4.49), we obtain

‖z(t) − Ãz −
1
Γ(α)

t

∫
0

(t − s)α−1gz(s)ds‖ ≤
ϵ
Γ(α)

t

∫
0

(t − s)α−1φ(s)ds

≤ ϵλφφ(t) .

On the other hand, we have

‖z(t) − y(t)‖ =

z(t) − Ãz −

1
Γ(α)

t

∫
0

(t − s)α−1gz(s)ds

+
1
Γ(α)

t

∫
0

(t − s)α−1 (gz(s) − gy(s)) ds


≤ ‖z(t) − Ãz −
1

Γ (α)

t

∫
0

(t − s)α−1gz(s)ds‖

+
1
Γ(α)

t

∫
0

(t − s)α−1‖gz(s) − gy(s)‖ds .

Using (4.44), we have

‖z(t) − y(t)‖ ≤ ϵλφφ(t) +
K

(1 − L)Γ(α)

t

∫
0

(t − s)α−1‖z(s) − y(s)‖ds .

By applying Gronwall’s lemma, we get that for any t ∈ J :

‖z(t) − y(t)‖ ≤ ϵλφφ(t) +
γ1ϵKλφ
(1 − L)Γ(α)

t

∫
0

(t − s)α−1φ(s)ds ,

where γ1 = γ1(α) is constant, and by (2.27.2) we have

‖z(t) − y(t)‖ ≤ ϵλφφ(t) +
γ1ϵKλ2φφ(t)
(1 − L) = (1 +

γ1Kλφ
(1 − L)) ϵλφφ(t) .

Then for any t ∈ J

‖z(t) − y(t)‖ ≤ [(1 +
γ1Kλφ
1 − L ) λφ] ϵφ(t) = cϵφ(t) .

Theorem 4.22. Assume (4.27.1) and (4.45) hold; then problem (4.35)–(4.36) is Ulam–
Hyers stable.

Proof. Let ϵ > 0, and let z ∈ C1(J,ℝ), satisfying the inequality

‖cDαz(t) − f (t, z(t), cDαz(t)) ‖ ≤ ϵ for every t ∈ J , (4.50)
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and let y ∈ C(J,ℝ) be the unique solution of the Cauchy problem

{
{
{

cDαy(t) = f (t, y(t), cDαy(t)) , t ∈ J, 0 < α ≤ 1
z(0) + g(y) = y0 .

Thus,

y(t) = y0 − g(y) +
1
Γ(α)

t

∫
0

(t − s)α−1Ky(s)ds ,

where Ky(t) = f(t, y(t), Ky(t)). By integration of inequality (4.50), we find

‖z(t) − y0 + g(z) −
1
Γ(α)

t

∫
0

(t − s)α−1Kz(s)ds‖ ≤
ϵTα

Γ(α + 1) ,

where Kz(t) = f(t, z(t), Kz(t)). For every t ∈ J we have

‖z(t) − y(t)‖ ≤ ‖z(t) − y0 + g(z) −
1
Γ(α)

t

∫
0

(t − s)α−1Kz(s)ds‖

+ ‖g(y) − g(z) + 1
Γ(α)

t

∫
0

(t − s)α−1 (Kz(s) − Ky(s)) ds‖

≤
ϵTα

Γ(α + 1) + ‖g(z) − g(y)‖ +
1
Γ(α)

t

∫
0

(t − s)α−1‖Kz(s) − Ky(s)‖ds .

Using (4.47), we obtain

‖z(t) − y(t)‖ ≤ ϵTα

Γ(α + 1) + L‖z(t) − y(t)‖ +
K

(1 − K) Γ(α)

t

∫
0

(t − s)α−1‖z(s) − y(s)‖ds .

Thus,

‖z(t) − y(t)‖ ≤ ϵTα

(1 − L)Γ(α + 1) +
K

(1 − L) (1 − K) Γ(α)

t

∫
0

(t − s)α−1‖z(s) − y(s)‖ds .

Using Gronwall’s lemma, for every t ∈ J we obtain

‖z(t) − y(t)‖ ≤ ϵTα

(1 − L)Γ(α + 1) [
1 + γKTα

(1 − L) (1 − K) Γ (α + 1)
] := cϵ ,

where γ = γ(α) is a constant, so problem (4.35)–(4.36) is Ulam–Hyers stable. If we set
ψ(ϵ) = cϵ; ψ(0) = 0, then problem (4.35)–(4.36) is generalized Ulam–Hyers stable .

Theorem 4.23. Assume that (4.27.1) and inequality (4.45) and
(4.23.1) there exists an increasing function φ ∈ C(J,ℝ+), and there exists λφ > 0 such

that for any t ∈ J
Iαφ(t) ≤ λφφ(t)

are satisfied;
then problem (4.35)–(4.36) is Ulam–Hyers–Rassias stable.
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4.4.4 Examples

Example 1. Consider the BVP

cD
1
2 y(t) = 1

10et+2 (1 + |y(t)| + |cD 1
2 y(t)|)

for each t ∈ [0, 1] , (4.51)

y(0) + y(1) = 0 . (4.52)

Set
f(t, u, v) = 1

10et+2(1 + |u| + |v|)
, t ∈ [0, 1], u, v ∈ ℝ .

Clearly, the function f is jointly continuous.
For any u, v, ū, v̄ ∈ ℝ and t ∈ [0, 1]

|f(t, u, v) − f(t, ū, v̄)| ≤ 1
10e2
(|u − ū| + |v − v̄|) .

Hence, condition (4.27.1) is satisfied by K = L = 1
10e2 .

Thus, condition

KTα

(1 − L)Γ(α + 1) (
1 + |b|
|a + b|)

=
3

2(10e2 − 1)Γ (32)
=

3
(10e2 − 1)√π

< 1

is satisfied by a = b = T = 1, c = 0, and α = 1
2 . From Theorem 4.17, problem (4.51)–(4.52)

has a unique solution on J, and Theorem 4.20 implies that problem (4.51)–(4.52) is
Ulam–Hyers stable.
Example 2. Consider the BVP

cD
1
2 y(t) = e−t

(9 + et)
[
‖y(t)‖

1 + ‖y(t)‖ −
‖cD 1

2 y(t)‖
1 + ‖cD 1

2 y(t)‖
] , t ∈ J = [0, 1] , (4.53)

y(0) +
n
∑
i=1
ciy(ti) = 1 , (4.54)

where 0 < t1 < t2 < ⋅ ⋅ ⋅ < tn < 1 and ci = 1, . . . , n are positive constants, with
n
∑
i=1
ci <

1
3 .

Set
f(t, u, v) = e−t

(9 + et)
[

u
1 + u −

v
1 + v ] , t ∈ [0, 1], u, v ∈ [0, +∞) .

Clearly, the function f is continuous. For each u, ū, v, v̄ ∈ ℝ and t ∈ [0, 1]

‖f(t, u, v) − f(t, ū, v̄)‖ ≤ e−t

(9 + et)
(‖u − ū‖ + ‖v − v̄‖)

≤
1
10 ‖u − ū‖ +

1
10 ‖v − v̄‖ .
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On the other hand, we have

‖g(u) − g(ū)‖ = ‖
n
∑
i=1
ciu −

n
∑
i=1
ci ū‖

≤
n
∑
i=1
ci‖u − ū‖

<
1
3
‖u − ū‖ .

Hence, condition (4.27.1) is satisfied by K = K = 1
10 and L =

1
3 . We have

L + KTα

(1 − K) Γ(α + 1)
=
1
3 +

1

9Γ (32)
=
9√π + 6
27√π

< 1 .

From Theorem 4.18, problem (4.53)–(4.54) has a unique solution on J, and Theorem 4.22
implies that problem (4.53)–(4.54) is Ulam–Hyers stable.

4.5 BVP for NIFDE in Banach Space

4.5.1 Introduction and Motivations

Recently, fractional differential equations have been studied by Abbas et al. [35, 43],
Baleanu et al. [78, 80], Diethelm [137], Kilbas and Marzan [180], Srivastava et al. [181],
Lakshmikantham et al. [187], and Samko et al. [239]. More recently, some mathemati-
cians have considered BVPs and boundary conditions for implicit fractional differential
equations.

In [164], Hu and Wang investigated the existence of a solutions to a nonlinear
fractional differential equation with an integral boundary condition:

Dαu(t) = f(t, u(t), Dβu(t)) , t ∈ (0, 1), 1 < α ≤ 2, 0 < β < 1 ,

u(0) = u0 , u(1) =
1

∫
0

g(s)u(s)ds ,

where f : [0, 1] ×ℝ ×ℝ→ ℝ is a continuous function and g is an integrable function.
In [241], by means of Schauder’s fixed point theorem, Su and Liu studied the existence
of nonlinear fractional BVPs involving Caputo’s derivative:

cDαu(t) = f(t, u(t), cDβu(t)) , for each t ∈ (0, 1), 1 < α ≤ 2, 0 < β ≤ 1 ,
u(0) = u(1) = 0, or u(1) = u(1) = 0, or u(0) = u(1) = 0 ,

where f : [0, 1] ×ℝ ×ℝ→ ℝ is a continuous function.
Many techniques have been developed for studying the existence and uniqueness

of solutions of initial and BVPs for fractional differential equations. Several authors
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tried to develop a technique that depends on the Darbo or the Mönch fixed point
theorem with the Hausdorff or Kuratowski measure of noncompactness. The notion of
the measure of noncompactness was defined in many ways. In 1930, Kuratowski [185]
defined the measure of noncompactness, α(A), of a bounded subset A of a metric space
(X, d), and in 1955 Darbo [132] introduced a new type of fixed point theorem for set
contractions.

The purpose of this section is to establish existence and uniqueness results for
problems of implicit fractional differential equations in Banach space:

cDνy(t) = f(t, y(t), cDνy(t)), for each, t ∈ J := [0, T], T > 0, 0 < ν ≤ 1 ,
ay(0) + by(T) = c ,

where (E, ‖ ⋅ ‖) is a real Banach space, f : J × E × E → E is a given function, and a, b are
real, with a + b ̸= 0, c ∈ E, and

cDνy(t) = f(t, y(t), cDνy(t)), for every t ∈ J := [0, T], T > 0, 0 < ν ≤ 1 ,
y(0) + g(y) = y0 ,

where f : J ×E×E → E is a given function, g : C(J, E)→ E is a continuous function, and
y0 ∈ E. The results of this section are based on Darbo’s fixed point theorem combined
with the technique of measures of noncompactness and onMönch’s fixed point theorem.

4.5.2 Existence Results for BVPs in Banach Space

The purpose of this section is to establish sufficient conditions for the existence of
solutions to the problem of implicit fractional differential equations with a Caputo
fractional derivative:

cDνy(t) = f(t, y(t), cDνy(t)), for each, t ∈ J := [0, T], T > 0, 0 < ν ≤ 1 , (4.55)
ay(0) + by(T) = c , (4.56)

where f : J × E × E → E is a given function and a, b are real, with a + b ̸= 0 and c ∈ E.
For a given set V of functions v : J → E let us use the notation

V(t) = {v(t), v ∈ V} , t ∈ J

and
V(J) = {v(t) : v ∈ V, t ∈ J} .

Let us define what we mean by a solution of problem (4.55)–(4.56).

Definition 4.24. A function y ∈ C1(J, E) is said to be a solution of problem (4.55)–(4.56)
if y satisfies equation (4.55) on J and conditions (4.56).

For the existence of solutions of problem (4.55)–(4.56), we need the following auxiliary
lemma.
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Lemma 4.25 ([79]). Let 0 < ν ≤ 1, and let h : [0, T] → E be a continuous function. The
linear problem

cDνy(t) = h(t) , t ∈ J ,
ay(0) + by(T) = c ,

has a unique solution given by

y(t) = 1
Γ(ν)

t

∫
0

(t − s)ν−1h(s)ds

−
1

a + b
[

[

b
Γ(ν)

T

∫
0

(T − s)ν−1h(s)ds − c]
]

.

Lemma 4.26. Let f(t, u, v) : J × E × E → E be a continuous function; then problem
(4.55)–(4.56) is equivalent to the problem

y(t) = Ã + Iνg(t) , (4.57)

where g ∈ C(J, E) satisfies the functional equation

g(t) = f(t, Ã + Iνg(t), g(t))

and

Ã = 1
a + b
[

[
c − b

Γ(ν)

T

∫
0

(T − s)ν−1g(s)ds]
]

.

Proof. Let y be a solution of (4.57). We will show that y is a solution of (4.55)−(4.56).
We have

y(t) = Ã + Iνg(t) .

Thus, y(0) = Ã and y(T) = Ã + 1
Γ(ν)

T

∫
0

(T − s)ν−1g(s)ds, so

ay(0) + by(T) = −ab
(a + b)Γ(ν)

T

∫
0

(T − s)α−1g(s)ds

+
ac
a + b
−

b2

(a + b)Γ(ν)

T

∫
0

(T − s)ν−1g(s)ds

+
bc
a + b
+

b
Γ(ν)

T

∫
0

(T − s)ν−1g(s)ds .

= c .
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Then
ay(0) + by(T) = c .

On the other hand, we have

cDνy(t) = cDν(Ã + Iνg(t)) = g(t)
= f(t, y(t), cDνy(t)) .

Thus, y is a solution of problem (4.55)–(4.56).

Let us list the conditions:
(4.33.1) The function f : J × E × E → E is continuous.
(4.33.2) There exist constants K > 0 and 0 < L < 1 such that

‖f(t, u, v) − f(t, ū, v̄)‖ ≤ K‖u − ū‖ + L‖v − v̄‖

for any u, v, ū, v̄ ∈ E, and t ∈ J.

We are now in a position to state and prove our existence result for problem (4.55)–(4.56)
based on the concept of measures of noncompactness and Darbo’s fixed point theorem.

Remark 4.27 ([66]). Condition (4.33.2) is equivalent to the inequality

α (f(t, B1, B2)) ≤ Kα(B1) + Lα(B2)

for any bounded sets B1, B2 ⊆ E and for each t ∈ J.

Theorem 4.28. Assume that (4.33.1) and (4.33.2) hold. If

(|b| + |a + b|)TνK
|a + b|Γ(ν + 1)(1 − L) < 1 , (4.58)

and
KTν

(1 − L)Γ(ν + 1) < 1 , (4.59)

then IVP (4.55)–(4.56) has at least one solution on J.

Proof. Transform problem (4.55)–(4.56) into a fixed point problem. Define the operator
N : C(J, E)→ C(J, E) by

N(y)(t) = Ã + Iνg(t) , (4.60)

where g ∈ C(J, E) satisfies the functional equation

g(t) = f(t, y(t), g(t))

and

Ã = 1
a + b
[

[
c − b

Γ(ν)

T

∫
0

(T − s)ν−1g(s)ds]
]

.
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Clearly, the fixed points of the operator N are solutions of problem (4.55)–(4.56). We
will show that N satisfies the assumptions of Darbo’s fixed point theorem. The proof
will be given in several claims.

Claim 1: N is continuous. Let {un} be a sequence such that un → u in C(J, E). Then
for each t ∈ J

‖N(un)(t) − N(u)(t)‖ ≤
|b|

|a + b|Γ(ν)

T

∫
0

(T − s)ν−1‖gn(s) − g(s)‖ds

+
1
Γ(ν)

t

∫
0

(t − s)ν−1‖gn(s) − g(s)‖ds , (4.61)

where gn , g ∈ C(J, E) such that

gn(t) = f(t, un(t), gn(t))

and
g(t) = f(t, u(t), g(t)) .

By (4.33.2), for each t ∈ J we have

‖gn(t) − g(t)‖ = ‖f(t, un(t), gn(t)) − f(t, u(t), g(t))‖
≤ K‖un(t) − u(t)‖ + L‖gn(t) − g(t)‖ .

Then
‖gn(t) − g(t)‖ ≤

K
1 − L ‖un(t) − u(t)‖ .

Since un → u, we get gn(t)→ g(t), as n →∞ for each t ∈ J.
Let η > 0 be such that, for each t ∈ J, we have ‖gn(t)‖ ≤ η and ‖g(t)‖ ≤ η. Then we

have

(t − s)ν−1‖gn(s) − g(s)‖ ≤ (t − s)ν−1[‖gn(s)‖ + ‖g(s)‖]
≤ 2η(t − s)ν−1 .

For each t ∈ J, the function s → 2η(t − s)ν−1 is integrable on [0, t]; then the Lebesgue
dominated convergence theorem and (4.61) imply that

‖N(un)(t) − N(u)(t)‖→ 0 as n →∞ .

Thus,
‖N(un) − N(u)‖∞ → 0 as n →∞ .

Hence, N is continuous.
Let R be a constant such that

R ≥ ‖c‖Γ(ν + 1)(1 − L) + (|b| + |a + b|)T
ν f∗

|a + b|Γ(ν + 1)(1 − L) − (|b| + |a + b|)TνK , where f∗ = sup
t∈J
‖f(t, 0, 0)‖ . (4.62)

Brought to you by | UCL - University College London
Authenticated

Download Date | 2/10/18 4:14 PM



150 | 4 Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations

Define
DR = {u ∈ C(J, E) : ‖u‖∞ ≤ R} .

It is clear that DR is a bounded, closed, and convex subset of C(J, E).
Claim 2: N(DR) ⊂ DR. Let u ∈ DR; we show that Nu ∈ DR. For each t ∈ J we have

‖Nu(t)‖ ≤ ‖c‖
|a + b|
+
|b|

|a + b|Γ(ν)

T

∫
0

(T − s)ν−1‖g(s)‖ds

+
1
Γ(ν)

t

∫
0

(t − s)ν−1‖g(s)‖ds . (4.63)

By (4.33.2), for each t ∈ J we have

‖g(t)‖ = ‖f(t, u(t), g(t)) − f(t, 0, 0) + f(t, 0, 0)‖
≤ ‖f(t, u(t), g(t)) − f(t, 0, 0)‖ + ‖f(t, 0, 0)‖
≤ K‖u(t)‖ + L‖g(t)‖ + f∗

≤ KR + L‖g(t)‖ + f∗ .

Then
‖g(t)‖ ≤ f

∗ + KR
1 − L := M .

Thus, (4.62) and (4.63) imply that

‖Nu(t)‖ ≤ ‖c‖
|a + b|
+ [
|b|
|a + b|
+ 1] Tν

Γ(ν + 1) (
f∗ + KR
1 − L )

≤
‖c‖
|a + b|
+
(|b| + |a + b|)Tν f∗

|a + b|Γ(ν + 1)(1 − L)

+
(|b| + |a + b|)TνKR
|a + b|Γ(ν + 1)(1 − L)

≤ R .

Consequently,
N(DR) ⊂ DR .

Claim 3: N(DR) is bounded and equicontinuous. By Claim 2 we have N(DR) =
{N(u) : u ∈ DR} ⊂ DR. Thus, for each u ∈ DR we have ‖N(u)‖∞ ≤ R. Thus, N(DR)
is bounded. Let t1, t2 ∈ J, t1 < t2, and let u ∈ DR. Then

‖N(u)(t2) − N(u)(t1)‖ =


1
Γ(ν)

t1

∫
0

[(t2 − s)ν−1 − (t1 − s)ν−1]g(s)ds

+
1
Γ(ν)

t2

∫
t1

(t2 − s)ν−1g(s)ds


≤
M

Γ(ν + 1) (t
ν
2 − t

ν
1 + 2(t2 − t1)

ν) .
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4.5 BVP for NIFDE in Banach Space | 151

As t1 → t2, the right-hand side of the preceding inequality tends to zero.
Claim 4: The operator N : DR → DR is a strict set contraction. Let V ⊂ DR and t ∈ J;

then we have

α(N(V)(t)) = α((Ny)(t), y ∈ V)

≤
1
Γ(ν)
{
{
{

t

∫
0

(t − s)ν−1α(g(s))ds, y ∈ V
}
}
}

.

Then Remark 4.27 implies that, for each s ∈ J,

α({g(s), y ∈ V}) = α({f(s, y(s), g(s)), y ∈ V})
≤ Kα({y(s), y ∈ V}) + Lα({g(s), y ∈ V}) .

Thus,

α ({g(s), y ∈ V}) ≤
K

1 − L α{y(s), y ∈ V} .

Then

α(N(V)(t)) ≤ K
(1 − L)Γ(ν)

{
{
{

t

∫
0

(t − s)ν−1{α(y(s))}ds, y ∈ V
}
}
}

≤
Kαc(V)
(1 − L)Γ(ν)

t

∫
0

(t − s)ν−1ds

≤
KTν

(1 − L)Γ(ν + 1)αc(V) .

Therefore,
αc(NV) ≤

KTν

(1 − L)Γ(ν + 1)
αc(V) .

So, by (4.59), the operator N is a set contraction. As a consequence of Theorem 1.45, we
deduce that N has a fixed point that is a solution of problem (4.55)–(4.56).

Our next existence result for problem (4.55)–(4.56) is based on the concept of measures
of noncompactness and Mönch’s fixed point theorem.

Theorem 4.29. Assume (4.33.1), (4.33.2), and (4.58) hold. Then IVP (4.55)–(4.56) has at
least one solution.

Proof. Consider the operator N defined in (4.60). We will show that N satisfies the
assumptions of Mönch’s fixed point theorem. We know that N : DR → DR is bounded
and continuous, and we need to prove that the implication

[V = convN(V) or V = N(V) ∪ {0}] implies α(V) = 0
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152 | 4 Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations

holds for every subset V of DR. Now let V be a subset of DR such that V ⊂ conv(N(V) ∪
{0}). V is bounded and equicontinuous, and therefore the function t → v(t) = α(V(t))
is continuous on J. By Remark 4.27, Lemma 1.33, and the properties of the measure α we
have for each t ∈ J

v(t) ≤ α(N(V)(t) ∪ {0})
≤ α(N(V)(t))
≤ α{(Ny)(t), y ∈ V}

≤
K

(1 − L)Γ(ν)

t

∫
0

(t − s)ν−1{α(y(s))ds, y ∈ V}

≤
K

(1 − L)Γ(ν)

t

∫
0

(t − s)ν−1v(s)ds .

Lemma 1.52 implies that v(t) = 0 for each t ∈ J, V(t) is relatively compact in E. In view of
the Ascoli–Arzelà theorem, V is relatively compact in DR. Applying now Theorem 1.46,
we conclude that N has a fixed point y ∈ DR. Hence, N has a fixed point that is a solution
of problem (4.55)–(4.56).

4.5.3 Existence Results for Nonlocal BVP in Banach Space

The purpose of this section is to establish sufficient conditions for the existence of
solutions to the BVP for implicit fractional differential equationswith a Caputo fractional
derivative:

cDνy(t) = f(t, y(t), cDνy(t)) , for every t ∈ J := [0, T], T > 0, 0 < ν ≤ 1 , (4.64)
y(0) + g(y) = y0 , (4.65)

where f : J × E × E → E is a given function, g : C(J, E)→ E is a continuous function,
and y0 ∈ E. Finally, an example is given to demonstrate the application of our main
results.

Let (E; ‖ ⋅ ‖) be a Banach space, and t ∈ J. We denote by C(J, E) the space of E valued
continuous functions on J with the usual supremum norm

‖y‖∞ = sup{‖y(t)‖ : t ∈ J}

for any y ∈ C(J, E).

Definition 4.30. A function y ∈ C1(J, E) is called a solution of problem (4.64)–(4.65) if
it satisfies equation (4.64) on J and condition (4.65).
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4.5 BVP for NIFDE in Banach Space | 153

Lemma 4.31. Let 0 < ν ≤ 1, and let h : [0, T] → E be a continuous function. The linear
problem

cDνy(t) = h(t) , t ∈ J ,
y(0) + g(y) = y0

has a unique solution given by

y(t) = y0 − g(y) +
1
Γ(ν)

t

∫
0

(t − s)ν−1h(s)ds .

Lemma 4.32. Let f : J×E×E → E be a continuous function; then problem (4.64)–(4.65)
is equivalent to the problem

y(t) = y0 − g(y) + IνH(t)

where H(t) = f(t, y(t), H(t)).

Introduce the following condition:
(4.39.1) There exists 0 < K such that

‖g(u) − g(u)‖ ≤ K‖u − u‖ for any u, u ∈ C(J, E) .

Remark 4.33 ([66]). Condition (4.39.1) is equivalent to the inequality

α(g(B)) ≤ Kα(B)

for any bounded sets B ⊆ E.

Theorem 4.34. Assume (4.33.11), (4.33.2), and (4.39.1). If

K + KTν

(1 − L)Γ(ν + 1) < 1 , (4.66)

then IVP (4.64)–(4.65) has at least one solution on J.

Theorem 4.35. Assume (4.33.11), (4.33.2), (4.39.1), and (4.66) hold. If K < 1, then IVP
(4.64)–(4.65) has at least one solution.

4.5.4 Examples

Example 1. Consider the infinite system

cD
1
2 yn(t) =

(3 + ‖yn(t)‖ + ‖cD
1
2 yn(t)‖)

3et+2 (1 + ‖yn(t)‖ + ‖cD
1
2 yn(t)‖)

for each t ∈ [0, 1] , (4.67)

yn(0) + yn(1) = 0 . (4.68)
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154 | 4 Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations

Set
E = l1 = {y = (y1, y2, . . . , yn , . . . ),

∞
∑
n=1
|yn| <∞} ,

and
f(t, u, v) = (3 + ‖u‖ + ‖v‖)

3et+2(1 + ‖u‖ + ‖v‖)
, t ∈ [0, 1], u, v ∈ E .

E is a Banach space with the norm ‖y‖ = ∑∞n=1 |yn|.
Clearly, the function f is jointly continuous. For any u, v, ū, v̄ ∈ E and t ∈ [0, 1]

‖f(t, u, v) − f(t, ū, v̄)‖ ≤ 1
3e2
(‖u − ū‖ + ‖v − v̄‖) .

Hence, condition (4.33.2) is satisfied by K = L = 1
3e2 . The conditions

(|b| + |a + b|)TνK
|a + b|Γ(ν + 1)(1 − L) =

1
√π (e2 − 1

3)
< 1

and
KTν

(1 − L)Γ(ν + 1) =
2

(3e2 − 1)√π
< 1

are satisfied by a = b = T = 1, c = 0, and ν = 1
2 . From Theorem 4.28, problem

(4.67)–(4.68) has at least one solution on J.
Example 2. Consider the BVP

cD
1
2 yn(t) =

e−t

(9 + et)
[1 + ‖yn(t)‖1 + ‖yn(t)‖

−
‖cD 1

2 yn(t)‖
1 + ‖cD 1

2 yn(t)‖
] , t ∈ J = [0, 1] , (4.69)

yn(0) +
m
∑
i=1
ciyn(ti) = 1 , (4.70)

where 0 < t1 < t2 < ⋅ ⋅ ⋅ < tm < 1 and ci = 1, . . . ,m are positive constants, with
m
∑
i=1
ci <

1
3 .

Set
E = l1 = {y = (y1, y2, . . . , yn , . . . ) ,

∞
∑
n=1
|yn| <∞} ,

and
f(t, u, v) = e−t

(9 + et)
[1 + ‖u‖1 + ‖u‖ −

‖v‖
1 + ‖v‖] , t ∈ [0, 1], u, v ∈ E .

E is a Banach space with the norm ‖y‖ = ∑∞n=1 |yn|.
Clearly, the function f is continuous. For each u, ū, v, v̄ ∈ E and t ∈ [0, 1]

‖f(t, u, v) − f(t, ū, v̄)‖ ≤ e−t

9 + et
(‖u − ū‖ + ‖v − v̄‖)

≤
1
10 ‖u − ū‖ +

1
10 ‖v − v̄‖ .
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4.6 L1-Solutions of BVP for NIFDE | 155

Hence, condition (4.33.2) is satisfied by K = L = 1
10 .

On the other hand, we have for any u, ū ∈ E

‖g(u) − g(ū)‖ ≤ 1
3
‖u − ū‖ .

Hence, condition (4.39.1) is satisfied by K = 1
3
. Also, the condition

K + KTν

(1 − L)Γ(ν + 1) =
9√π + 6
27√π

< 1

is satisfied by T = 1 and ν = 1
2 . It follows from Theorem 4.35 that problem (4.69)–(4.70)

has at least one solution on J.

4.6 L1-Solutions of BVP for NIFDE

4.6.1 Introduction and Motivations

More recently, considerable attention has been paid to the existence of solutions of
BVPs and boundary conditions for implicit fractional differential equations and integral
equations with a Caputo fractional derivative. See, for example, [47, 53, 94, 164, 260]
and references therein.

In [203], Murad and Hadid, by means of Schauder’s fixed-point theorem and the
Banach contraction principle, considered the BVP for the fractional differential equation

Dαy(t) = f(t, y(t), Dβy(t)) , t ∈ J := (0, 1), 1 < α ≤ 2, 0 < β < 1, 0 < γ ≤ 1 ,
y(0) = 0 , y(1) = Iγ0y(s) ,

where f : [0, 1]×ℝ×ℝ→ ℝ is a continuous function, and Dα is the Riemann–Liouville
fractional derivative.

In [150], Guezane-Lakoud and Khaldi studied the BVP of the fractional integral
boundary conditions

cDqy(t) = f(t, y(t),c Dpy(t)) , t ∈ J := (0, 1), 1 < q ≤ 2, 0 < p < 1 ,
y(0) = 0 , y(1) = αIp0y(1) ,

where f : [0, 1] ×ℝ ×ℝ→ ℝ is a continuous function, and Dα is the Caputo fractional
derivative.

In [241], by means of Schauder’s fixed-point theorem, Su and Liu studied the
existence of nonlinear fractional BVPs involving Caputo’s derivative:

cDαu(t) = f(t, u(t),c Dβu(t)) , t ∈ J := (0, 1), 1 < α ≤ 2, 0 < β < 1 ,
u(0) = 0 = u(1) = 0 or u(1) = u(1) = 0 or u(0) = u(1) = 0 ,

where f : [0, 1] ×ℝ ×ℝ→ ℝ is a continuous function.
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156 | 4 Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations

In [103], Benchohra and Lazreg studied the existence of continuous solutions of
problem (4.71)–(4.72) and the implicit fractional order differential equation

cDαy(t) = f(t, y(t), cDαy(t)) , t ∈ J := [0, T], 0 < α ≤ 1 ,

with boundary condition
ay(0) = y0 + By(T) = c ,

where f : J × ℝ × ℝ → ℝ is a given function, cDα is the Caputo fractional derivative,
and a, b, c are real constants, with a + b ̸= 0.

The purpose of this section is to establish existence and uniqueness of integrable
solutions to BVPs for the fractional order implicit differential equation

cDαy(t) = f(t, y(t), cDαy(t)) , t ∈ J := [0, T], 1 < α ≤ 2 , (4.71)
y(0) = y0 , y(T) = yT , (4.72)

where f : J ×ℝ ×ℝ→ ℝ is a given function, y0, yT ∈ ℝ.

4.6.2 Existence of solutions

Definition 4.36. A function y ∈ L1(J,ℝ) is said to be a solution of BVP (4.71)–(4.72) if y
satisfies (4.71) and (4.72).

For the existence of solutions to problem (4.71)–(4.72), we need the following auxiliary
lemma.

Lemma 4.37. Let 1 < α ≤ 2 and let x ∈ L1(J,ℝ). The BVP (4.71)–(4.72) is equivalent to
the integral equation

y(t) = 1
Γ(α)

T

∫
0

G(t, s)x(s)ds + y0 +
(yT − y0)t

T
, (4.73)

where x is the solution of the functional integral equation

x(t) = f (t, 1
Γ(α)

T

∫
0

G(t, s)x(s)ds + y0 +
(yT − y0)t

T
, x(t)) , (4.74)

and G(t, s) is the Green’s function defined by

G(t, s) :=
{
{
{

(t − s)α−1 − t(T−s)
α−1

T , 0 ≤ s ≤ t ≤ T ,
−t(T−s)α−1

T , 0 ≤ t ≤ s ≤ T .
(4.75)

Proof. Let cDαy(t) = x(t) in equation (4.71); then

x(t) = f(t, y(t), x(t)) , (4.76)
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and Lemma 1.9 implies that

y(t) = c0 + c1t +
1
Γ(α)

t

∫
0

(t − s)α−1x(s)ds .

From (4.72), a simple calculation gives

c0 = y0

and

c1 = −
1

TΓ(α)

T

∫
0

(T − s)α−1x(s)ds + (yT − y0)
T

.

Hence, we get equation (4.73).
Inversely, we prove that equation (4.73) satisfies BVP (4.71)–(4.72). Differentiat-

ing (4.73), we get
cDαy(t) = x(t) = f(t, y(t), cDαy(t)) .

By (4.73) and (4.75) we have

y(t) = 1
Γ(α)

t

∫
0

(t − s)α−1x(s)ds − t
TΓ(α)

T

∫
0

(T − s)α−1x(s)ds + y0 +
(yT − y0)t

T
. (4.77)

A simple calculation gives y(0) = y0 and y(T) = yT .

Let us introduce the following conditions:
(4.44.1) f : [0, T] × ℝ2 → ℝ is measurable in t ∈ [0, T], for any (u1, u2) ∈ ℝ2 and

continuous in (u1, u2) ∈ ℝ2 for almost all t ∈ [0, T].
(4.44.2) There exist a positive function a ∈ L1[0, T] and constants bi > 0, i = 1, 2,

such that

|f(t, u1, u2)| ≤ |a(t)| + b1|u1| + b2|u2|, ∀(t, u1, u2) ∈ [0, T] ×ℝ2 .

Our first result is based on Schauder’s fixed point theorem.

Theorem 4.38. Assume (4.44.1) and (4.44.2) hold. If

b1G0T
Γ(α)
+ b2 < 1 , (4.78)

then BVP (4.71)–(4.72) has at least one solution y ∈ L1(J,ℝ).

Proof. Transformproblem (4.71)–(4.72) into a fixedpoint problem. Consider the operator

H : L1(J,ℝ) → L1(J,ℝ)
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158 | 4 Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations

defined by

(Hx)(t) = f (t, 1
Γ(α)

T

∫
0

G(t, s)x(s)ds + y0 +
(yT − y0)t

T
, x(t)) , (4.79)

where G is given by 4.75. Let

G0 := max[|G(t, s)|, (t, s) ∈ J × J]

and
r =

b1(|y0| + |yT |)T + ‖a‖L1
1 − ( b1G0T

Γ(α) + b2)
.

Consider the set
Br = {x ∈ L1([0, T],ℝ) : ‖x‖L1 ≤ r} .

Clearly, Br is nonempty, bounded, convex, and closed.
We will now show that HBr ⊂ Br; indeed, for each x ∈ Br, from conditions (4.44.2)

and (4.78) we get

‖Hx‖L1 =
T

∫
0

|Hx(t)|dt

=
T

∫
0


f (t, 1

Γ(α)

T

∫
0

G(t, s)x(s)ds + y0 +
(yT − y0)t

T
, x(t))


dt

≤
T

∫
0

[

[
|a(t)| + b1



1
Γ(α)

T

∫
0

G(t, s)x(s)ds − ( tT − 1) y0 +
t
T
yT


+ b2|x(t)|]

]
dt

≤ ‖a‖L1 +
b1G0T
Γ(α)
‖x‖L1 + b1(|y0| + |yT |)T + b2‖x‖L1

≤ b1(|y0| + |yT |)T + ‖a‖L1 + (
b1G0T
Γ(α)
+ b2) r

≤ r .

Then HBr ⊂ Br. Assumption (4.44.1) implies that H is continuous. We will now show
that H is compact, that is, HBr is relatively compact. Clearly, HBr is bounded in L1(J,ℝ),
i.e., condition (i) of Kolmogorov’s compactness criterion is satisfied. It remains to show
that (Hx)h → (Hx) in L1(J,ℝ) for each x ∈ Br.
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Let x ∈ Br; then we have

‖(Hx)h − (Hx)‖L1

=
T

∫
0

|(Hx)h(t) − (Hx)(t)|dt

=
T

∫
0



1
h

t+h

∫
t

(Hx)(s)ds − (Hx)(t)


dt

≤
T

∫
0

(
1
h

t+h

∫
t

|(Hx)(s) − (Hx)(t)|ds) dt

≤
T

∫
0

(
1
h

t+h

∫
t


f (s, 1

Γ(α)

T

∫
0

G(s, τ)x(τ)dτ + y0 +
(yT − y0)s

T
, x(s))

−f (t, 1
Γ(α)

T

∫
0

G(t, s)x(s)ds + y0 +
(yT − y0)t

T
, x(t))


ds) dt .

Since x ∈ Br ⊂ L1(J,ℝ), condition (4.44.2) implies that f ∈ L1(J,ℝ). Thus, we have

1
h

t+h

∫
t


f (s, 1

Γ(α)

T

∫
0

G(s, τ)x(τ)dτ + y0 +
(yT − y0)s

T
, x(s))

−f (t, 1
Γ(α)

T

∫
0

G(t, s)x(s)ds + y0 +
(yT − y0)t

T
, x(t))


ds → 0 , as h → 0, t ∈ J .

Hence,
(Hx)h → (Hx) uniformly as h → 0 .

Then by Kolmogorov’s compactness criterion, HBr is relatively compact. As a conse-
quence of Schauder’s fixed point theorem, BVP (4.71)–(4.72) has at least one solution in
Br.

The next result is based on the Banach contraction principle.

Theorem 4.39. Assume (4.44.1) holds and
(4.46.1) There exist constants k1, k2 > 0 such that

|f(t, x1, y1)− f(t, x2, y2)| ≤ k1|x1−x2|+k2|y1−y2| , t ∈ [0, T], x1, x2, y1, y2 ∈ ℝ .

If
k1TG0
Γ(α)
+ k2 < 1 , (4.80)

then BVP (4.71)–(4.72) has a unique solution y ∈ L1([0, T],ℝ).
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160 | 4 Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations

Proof. We will use the Banach contraction principle to prove that H defined by (4.79)
has a fixed point. Let x, y ∈ L1(J,ℝ), and t ∈ J. Then we have

|(Hx)(t) − (Hy)(t)| =


f (t, 1

Γ(α)

T

∫
0

G(t, s)x(s)ds + y0 +
(yT − y0)t

T
, x(t))

−f (t, 1
Γ(α)

T

∫
0

G(t, s)y(s)ds + y0 +
(yT − y0)t

T
, y(t))


.

≤
k1
Γ(α)

T

∫
0

|G(t, s)(x(s) − y(s))|ds + k2|x(t) − y(t)|

≤
k1G0
Γ(α)

T

∫
0

|x(s) − y(s)|ds + k2|x(t) − y(t)| .

Thus,

‖(Hx) − (Hy)‖L1 ≤
k1TG0
Γ(α)
‖x − y‖L1 + k2

T

∫
0

|x(t) − y(t)|dt

≤
k1TG0
Γ(α)
‖x − y‖L1 + k2‖x − y‖L1

≤ (
k1TG0
Γ(α)
+ k2) ‖x − y‖L1 .

Consequently, by (4.80), H is a contraction. As a consequence of the Banach contraction
principle, the operatorH has a fixed point that is a solution of problem (4.71)–(4.72).

4.6.3 Nonlocal problem

This section is devoted to some existence and uniqueness results for the class of the
nonlocal problem

cDαy(t) = f(t, y(t), cDαy(t)) , t ∈ J := [0, T], 1 < α ≤ 2 , (4.81)
y(0) = g(y) , y(T) = yT , (4.82)

where g : L1(J,ℝ)→ ℝ a continuous function. The nonlocal condition can be applied
in physics with better effect than the classical initial condition y(0) = y0. For example,
g(y)may be given by

g(y) =
p
∑
i=1
ciy(ti) ,

where ci , i = 1, 2, . . . , p are given constants and 0 < ⋅ ⋅ ⋅ < tp < T. Nonlocal conditions
were initiated by Byszewski [117] when he proved the existence and uniqueness of mild
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and classical solutions of nonlocal Cauchy problems. As remarked by Byszewski [117,
118], the nonlocal condition can be more useful than the standard initial condition to
describe some physical phenomena.

Let us introduce the following set of conditions on the function g.
(4.46.2) There exists a constant k̃ > 0 such that

|g(y) − g(ỹ| ≤ k̃|y − ỹ| for each y, ỹ ∈ L1(J,ℝ) .

Theorem 4.40. Assume (4.44.1), (4.46.1), and (4.46.2) hold. If
2k1Tα

Γ(α + 1) + k1
k̃ + k2 < 1 , (4.83)

then BVP (4.81)–(4.82) has a unique solution y ∈ L1(J,ℝ).

Transform problem (4.81)–(4.82) into a fixed point problem. Consider the operator

H̃ : L1(J,ℝ) → L1(J,ℝ)

defined by

(H̃x)(t)

= f (t, 1
Γ(α)

t

∫
0

(t − s)α−1x(s)ds − t
TΓ(α)

T

∫
0

(T − s)α−1x(s)ds

− (
t
T
− 1) g(y) + tT yT , x(t)) . (4.84)

Proof. We will use the Banach contraction principle to prove that H̃ defined by (4.84)
has a fixed point. Let x, y ∈ L1(J,ℝ), and t ∈ J. Then we have

|(H̃x)(t) − (H̃y)(t)|

=


f (t, 1

Γ(α)

t

∫
0

(t − s)α−1x(s)ds − t
TΓ(α)

T

∫
0

(T − s)α−1x(s)ds

− (
t
T
− 1) g(x) + tT yT , x(t))

− f (t, 1
Γ(α)

t

∫
0

(t − s)α−1y(s)ds − t
TΓ(α)

T

∫
0

(T − s)α−1y(s)ds

− (
t
T
− 1) g(y) + tT yT , y(t))



≤
k1
Γ(α)

t

∫
0

(t − s)α−1|(x(s) − y(s))|ds + k1
Γ(α)

T

∫
0

(T − s)α−1|(x(s) − y(s))|ds

+ k1|g(x) − g(y)| + k2|x(t) − y(t)| .
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Thus,

‖(H̃x) − (H̃y)‖L1 ≤
k1‖x − y‖L1

Γ(α)

t

∫
0

(t − s)α−1ds +
k1‖x − y‖L1

Γ(α)

T

∫
0

(T − s)α−1ds

+ k1 k̃‖x − y‖L1 + k2‖x − y‖L1

≤
2k1Tα

Γ(α + 1)
‖x − y‖L1 + k1 k̃‖x − y‖L1 + k2‖x − y‖L1

≤ (
2k1Tα

Γ(α + 1) + k1
k̃ + k2) ‖x − y‖L1 .

Consequently, by (4.83), H̃ is a contraction. As a consequence of the Banach contraction
principle, we deduce that H̃ has a fixed point that is a solution of problem (4.81)–
(4.82).

4.6.4 Examples

Example 1. Let us consider the BVP

cDαy(t) = e−t

(et + 6)(1 + |y(t)| + |cDαy(t)|)
, t ∈ J := [0, 1], 1 < α ≤ 2 , (4.85)

y(0) = 1 , y(1) = 2 . (4.86)

Set
f(t, y, z) = e−t

(et + 6)(1 + y + z)
, (t, y, z) ∈ J × [0, +∞) × [0, +∞) .

Let y, z ∈ [0, +∞) and t ∈ J. Then we have

|f(t, y1, z1) − f(t, y2, z2)| =


e−t

et + 6
(

1
1 + y1 + z1

−
1

1 + y2 + z2
)


≤
e−t(|y1 − y2| + |z1 − z2|)

(et + 6)(1 + y1 + z1)(1 + y2 + z2)

≤
e−t

(et + 6)
(|y1 − y2| + |z1 − z2|)

≤
1
7
|y1 − y2| +

1
7
|z1 − z2| .

Hence, condition (4.46.1) holds, with k1 = k2 = 1
7 . Condition (4.80) is satisfied by T = 1.

Indeed,
k1TG0
Γ(α)
+ k2 =

G0
7Γ(α) +

1
7 < 1 . (4.87)

Then, by Theorem 4.39, problem (4.85)–(4.86) has a unique integrable solution on
[0, 1] for values of α satisfying condition (4.87).
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Example 2. Let us consider the nonlocal BVP

cDαy(t) = e−t

(et + 9)(1 + |y(t)| + |cDαy(t)|)
, t ∈ J := [0, 1], 1 < α ≤ 2 , (4.88)

y(0) =
n
∑
i=1
ciy(ti) , y(1) = 0 , (4.89)

where 0 < ⋅ ⋅ ⋅ < tn < 1, ci , i = 1, 2, . . . , n, are given positive constants with∑ni=1 ci < 4
5 .

Set
f(t, y, z) = e−t

(et + 9)(1 + y + z)
, (t, y, z) ∈ J × [0, +∞) × [0, +∞) ,

and

g(y) =
n
∑
i=1
ciy(ti) .

Let y, z ∈ [0, +∞) and t ∈ J. Then we have

|f(t, y1, z1) − f(t, y2, z2)| =


e−t

et + 9
(

1
1 + y1 + z1

−
1

1 + y2 + z2
)


≤
e−t(|y1 − y2| + |z1 − z2|)

(et + 9)(1 + y1 + z1)(1 + y2 + z2)

≤
e−t

(et + 9)
(|y1 − y2| + |z1 − z2|)

≤
1
10 |y1 − y2| +

1
10 |z1 − z2| .

Hence, condition (4.46.1) holds, with k1 = k2 = 1
10 . Also, we have

|g(x) − g(y)| ≤
n
∑
i=1
ci|x − y| .

Hence, (4.46.2) is satisfied by k̃ = ∑ni=1 ci. Condition (4.83) is satisfied by T = 1. Indeed,

2k1Tα

Γ(α + 1) + k1 k̃ + k2 =
1

5Γ(α + 1) +
1
10

n
∑
i=1
ci +

1
10 < 1⇐⇒ Γ(α + 1) > 1041 . (4.90)

Then by Theorem 4.40, problem (4.88)–(4.89) has a unique integrable solution on [0, 1]
for values of α satisfying condition (4.90).

4.7 Notes and Remarks

The results of Chapter 4 are taken from Benchohra et al. [91, 103, 109]. Other results
may be found in [95, 97, 202].
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