
2 Nonlinear Implicit Fractional Differential Equations

2.1 Introduction

Many techniques have been developed for studying the existence and uniqueness of
solutions of initial value problems (IVPs) for fractional differential equations. Several
authors have tried to develop techniques that depend on the Darbo or Mönch fixed
point theorem with the Hausdorff or Kuratowski measure of noncompactness. The
notion of the measure of noncompactness has been defined in many ways. In 1930,
Kuratowski [185] defined the measure of noncompactness, α(A), of a bounded subset A
of a metric space (X, d), and in 1955, Darbo [132] introduced a new type of fixed point
theorem for noncompactness maps.

Recently, fractional differential equations have been studied by Abbas et al. [35,
43], Baleanu et al. [78, 80], Diethelm [137], Kilbas and Marzan [180], Srivastava et
al. [181], Lakshmikantham et al. [187], and Samko et al. [239]. The purpose of this
chapter is to establish existence and uniqueness results for some classes of implicit
fractional differential equations by using fixed point theory (Banach contraction
principle, Schauder’s fixed point theorem, the nonlinear alternative of a Leray–Schauder
type). Two other results are discussed; the first is based on Darbo’s fixed point theorem
combined with the technique of measures of noncompactness, the second is based on
Mönch’s fixed point theorem. Some examples are included to show the applicability of
our results.

2.2 Existence and Stability Results for NIFDE

2.2.1 Introduction and Motivations

Recently, some mathematicians have considered boundary value problems (BVPs)
for fractional differential equations depending on the fractional derivative. In [89],
Benchohra et al. studied the problem involving Caputo’s derivative

cDαu(t) = f(t, u(t), cDα−1u(t)) , for each t ∈ J := [0,∞), 1 < α ≤ 2 ,
u(0) = u0, u is bounded on J .

In [203], Murad and Hadid, by means of Schauder fixed point theorem and the Banach
contraction principle, considered the BVP for the fractional differential equation

Dαy(t) = f(t, y(t), Dβy(t)) , t ∈ (0, 1), 1 < α ≤ 2, 0 < β < 1, 0 < γ ≤ 1 ,
y(0) = 0, y(1) = Iγ0y(s) ,

where Dα is the Riemann–Liouville fractional derivative and f : [0, 1] ×ℝ ×ℝ→ ℝ is a
continuous function.
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16 | 2 Nonlinear Implicit Fractional Differential Equations

In [150], Lakoud and Khaldi studied the following BVP for fractional integral boundary
conditions:

cDqy(t) = f(t, y(t), cDpy(t)) , t ∈ (0, 1), 1 < q ≤ 2, 0 < p < 1 ,
y(0) = 0, y(1) = αIp0y(1) ,

where cDα is the Caputo fractional derivative and f : [0, 1]×ℝ×ℝ→ ℝ is a continuous
function.
The purpose of this section is to establish existence and uniqueness results for the
implicit fractional order differential equation

cDαy(t) = f(t, y(t), cDαy(t)) , for each t ∈ J = [0, T], T > 0, 0 < α ≤ 1 , (2.1)
y(0) = y0 , (2.2)

where cDα is the Caputo fractional derivative, f : J × ℝ × ℝ → ℝ is a given function,
and y0 ∈ ℝ.

2.2.2 Existence of Solutions

Let us define what we mean by a solution of problem (2.1)–(2.2).

Definition 2.1. A function u ∈ C1(J,ℝ) is said to be a solution of problem (2.1)–(2.2) if
u satisfies equation (2.1) and conditions (2.2) on J.

For the existence of solutions for problem (2.1)–(2.2), we need the following auxiliary
lemma.

Lemma 2.2. Let a function f(t, u, v) : J ×ℝ ×ℝ→ ℝ be continuous. Then the problem
(2.1)–(2.2) is equivalent to the problem

y(t) = y0 + Iαg(t) , (2.3)

where g ∈ C(J,ℝ) satisfies the functional equation

g(t) = f(t, y0 + Iαg(t), g(t)) .

Proof. If cDαy(t) = g(t), then Iα cDαy(t) = Iαg(t). Thus,we obtain y(t) = y0+Iαg(t).

We are now in a position to state and prove our existence result for problem (2.1)–(2.2)
based on Banach’s fixed point theorem.

Theorem 2.3. Make the following assumptions:
(2.3.1) The function f : J ×ℝ ×ℝ→ ℝ is continuous.
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2.2 Existence and Stability Results for NIFDE | 17

(2.3.2) There exist constants K > 0 and 0 < L < 1 such that

|f(t, u, v) − f(t, ū, v̄)| ≤ K|u − ū| + L|v − v̄|

for any u, v, ū, v̄ ∈ ℝ and t ∈ J.
If

L + KTα

Γ(α + 1)
< 1 , (2.4)

then there exists a unique solution for IVP (2.1)–(2.2) on J.

Proof. The proof will be given in several steps. Transform problem (2.1)–(2.2) into a
fixed point problem. Define the operator N : C(J,ℝ)→ C(J,ℝ) by

(Ny)(t) = y0 + Iαg(t) , (2.5)

where g ∈ C(J,ℝ) satisfies the functional equation

g(t) = f(t, y(t), g(t)) .

Clearly, the fixed points of operator N are solutions of problem (2.1)–(2.2). Let u, w ∈
C(J,ℝ). Then for t ∈ J we have

(Nu)(t) − (Nw)(t) = 1
Γ(α)

t

∫
0

(t − s)α−1(g(s) − h(s))ds ,

where g, h ∈ C(J,ℝ) are given by

g(t) = f(t, u(t), g(t)) ,
h(t) = f(t, w(t), h(t)) .

Then for t ∈ J

|(Nu)(t) − (Nw)(t)| ≤ 1
Γ(α)

t

∫
0

(t − s)α−1|g(s) − h(s)|ds . (2.6)

By (2.3.2) we have

|g(t) − h(t)| = |f(t, u(t), g(t)) − f(t, w(t), h(t))|
≤ K|u(t) − w(t)| + L|g(t) − h(t)| .

Thus,
|g(t) − h(t)| ≤ K

1 − L |u(t) − w(t)| .

By (2.6) we have

|(Nu)(t) − (Nw)(t)| ≤ K
(1 − L)Γ(α)

t

∫
0

(t − s)α−1|u(s) − w(s)|ds

≤
KTα

(1 − L)Γ(α + 1) ‖u − w‖∞ .
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18 | 2 Nonlinear Implicit Fractional Differential Equations

Then
‖Nu − Nw‖∞ ≤

KTα

(1 − L)Γ(α + 1)
‖u − w‖∞ .

By (2.4), operator N is a contraction. Hence, by Banach’s contraction principle, N has a
unique fixed point that is the unique solution of problem (2.1)–(2.2).

Our next existence result is based on Schauder’s fixed point theorem.

Theorem 2.4. Assume (2.3.1) and (2.3.2) hold and
(2.4.1) There exist p, q, r ∈ C(J,ℝ+) with r∗ = supt∈J r(t) < 1 such that

|f(t, u, w)| ≤ p(t) + q(t)|u| + r(t)|w| for t ∈ J, and u, w ∈ ℝ .

If
q∗Tα

(1 − r∗)Γ(α + 1) < 1 , (2.7)

where p∗ = supt∈J p(t), and q∗ = supt∈J q(t), then the IVP (2.1)–(2.2) has at least one
solution.

Proof. Consider operator N defined in (2.5). We will show that N satisfies the assump-
tions of Schauder’s fixed point theorem. The proof will be given in several steps.

Claim 1: N is continuous. Let {un} be a sequence such that un → u in C(J,ℝ). Then
for each t ∈ J

|N(un)(t) − N(u)(t)| ≤
1
Γ(α)

t

∫
0

(t − s)α−1|gn(s) − g(s)|ds , (2.8)

where gn , g ∈ C(J,ℝ) satisfy

gn(t) = f(t, un(t), gn(t))

and
g(t) = f(t, u(t), g(t)) .

By (2.3.2) we have

|gn(t) − g(t)| = |f(t, un(t), gn(t)) − f(t, u(t), g(t))|
≤ K|un(t) − u(t)| + L|gn(t) − g(t)| .

Then
|gn(t) − g(t)| ≤

K
1 − L |un(t) − u(t)| .

Since un → u, we have gn(t) → g(t) as n →∞ for each t ∈ J. Let η > 0 be such that,
for each t ∈ J, we have |gn(t)| ≤ η and |g(t)| ≤ η. Then

(t − s)α−1|gn(s) − g(s)| ≤ (t − s)α−1[|gn(s)| + |g(s)|]
≤ 2η(t − s)α−1 .
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2.2 Existence and Stability Results for NIFDE | 19

For each t ∈ J the function s → 2η(t − s)α−1 is integrable on [0, t]. By the Lebesgue
dominated convergence theorem and (2.8),

|N(un)(t) − N(u)(t)|→ 0 as n →∞ .

Hence,
‖N(un) − N(u)‖∞ → 0 as n →∞ .

Consequently, N is continuous.
Let

R ≥ M|y0| + p
∗Tα

M − q∗Tα
,

where M := (1 − r∗)Γ(α + 1), and define

DR = {u ∈ C(J,ℝ) : ‖u‖∞ ≤ R} .

It is clear that DR is a bounded, closed, and convex subset of C(J,ℝ).
Claim 2: N(DR) ⊂ DR. Let u ∈ DR; we will show that Nu ∈ DR. For each t ∈ J we

have

|Nu(t)| ≤ |y0| +
1
Γ(α)

t

∫
0

(t − s)α−1|g(s)|ds . (2.9)

By (2.4.1) we have for each t ∈ J

|g(t)| = |f(t, u(t), g(t))|
≤ p(t) + q(t)|u(t)| + r(t)|g(t)|
≤ p(t) + q(t)R + r(t)|g(t)|
≤ p∗ + q∗R + r∗|g(t)| .

Then
|g(t)| ≤ p

∗ + q∗R
1 − r∗ := M .

Thus, (2.9) implies that

|Nu(t)| ≤ |y0| +
p∗Tα

(1 − r∗)Γ(α + 1) +
q∗RTα

M

≤ |y0| +
p∗Tα

M
+
q∗RTα

M
≤ R .

Hence, N(DR) ⊂ DR.
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20 | 2 Nonlinear Implicit Fractional Differential Equations

Claim 3: N(DR) is relatively compact. Let t1, t2 ∈ J, t1 < t2, and let u ∈ DR. Then

|N(u)(t2) − N(u)(t1)| =


1
Γ(α)

t1

∫
0

[(t2 − s)α−1 − (t1 − s)α−1]g(s)ds

+
1
Γ(α)

t2

∫
t1

[(t2 − s)α−1g(s)ds


≤
M

Γ(α + 1) (t
α
2 − t

α
1 + 2(t2 − t1)

α) .

As t1 → t2, the right-hand side of the preceding inequality tends to zero.
As a consequence of Claims 1–3, together with the Ascoli–Arzelà theorem, we

conclude that N : C(J,ℝ)→ C(J,ℝ) is continuous and compact. As a consequence of
Schauder’s fixed point theorem [149], we deduce that N has a fixed point that is a
solution of problem (2.1)–(2.2).

Our next existence result is based on the nonlinear alternative of the Leray–Schauder
type.

Theorem 2.5. Assume (2.3.1), (2.3.2), and (2.4.1) hold. Then IVP (2.1)–(2.2) has at least
one solution.

Proof. Consider operator N defined in (2.5). We will show that N satisfies the assump-
tions of the Leray–Schauder fixed point theorem. The proof will be given in several
claims.

Claim 1: Clearly N is continuous.
Claim 2: N maps bounded sets to bounded sets in C(J,ℝ). Indeed, it is enough

to show that for any ρ > 0 there exist a positive constant ℓ such that for each
u ∈ Bρ = {u ∈ C(J,ℝ) : ‖u‖∞ ≤ ρ} we have ‖N(u)‖∞ ≤ ℓ.

For u ∈ Bρ we have, for each t ∈ J,

|Nu(t)| ≤ |y0| +
1
Γ(α)

t

∫
0

(t − s)α−1|g(t)|ds . (2.10)

By (2.4.1), for each t ∈ J, we have

|g(t)| = |f(t, u(t), g(t))|
≤ p(t) + q(t)|u(t)| + r(t)|g(t)|
≤ p(t) + q(t)ρ + r(t)|g(t)|
≤ p∗ + q∗ρ + r∗|g(t)| .

Then
|g(t)| ≤ p

∗ + q∗ρ
1 − r∗ := M∗ .
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2.2 Existence and Stability Results for NIFDE | 21

Thus, (2.10) implies that
|Nu(t)| ≤ |y0| +

M∗Tα

Γ(α + 1)
.

Hence,
‖Nu‖∞ ≤ |y0| +

M∗Tα

Γ(α + 1)
:= l .

Claim 3: Clearly, N maps bounded sets to equicontinuous sets of C(J,ℝ). We conclude
that N : C(J,ℝ) → C(J,ℝ) is continuous and completely continuous.

Claim 4: A priori bounds. We now show there exists an open set U ⊆ C(J,ℝ), with
u ̸= λN(u), for λ ∈ (0, 1) and u ∈ ∂U. Let u ∈ C(J,ℝ) and u = λN(u) for some 0 < λ < 1.
Thus, for each t ∈ J we have

u(t) = λy0 +
λ
Γ(α)

t

∫
0

(t − s)α−1g(s)ds .

This implies by (2.3.2) that for each t ∈ J we have

|u(t)| ≤ |y0| +
1
Γ(α)

t

∫
0

(t − s)α−1|g(s)|ds . (2.11)

From (2.4.1) we have for each t ∈ J

|g(t)| = |f(t, u(t), g(t))|
≤ p(t) + q(t)|u(t)| + r(t)|g(t)|
≤ p∗ + q∗|u(t)| + r∗|g(t)| .

Thus,
|g(t)| ≤ 1

1 − r∗ (p
∗ + q∗|u(t)|) .

Hence,

|u(t)| ≤ |y0| +
p∗Tα

(1 − r∗)Γ(α + 1) +
q∗

(1 − r∗)Γ(α)

t

∫
0

(t − s)α−1|u(s)|ds .

Then Lemma 1.52 implies that for each t ∈ J

|u(t)| ≤ (|y0| +
p∗Tα

(1 − r∗)Γ(α + 1))(1 +
Kq∗Tα

(1 − r∗)Γ(α + 1)) .

Thus,
‖u‖∞ ≤ (|y0| +

p∗Tα

(1 − r∗)Γ(α + 1))(1 +
Kq∗Tα

(1 − r∗)Γ(α + 1)) := M . (2.12)

Let
U = {u ∈ C(J,ℝ) : ‖u‖∞ < M + 1} .

By our choice of U, there is no u ∈ ∂U such that u = λN(u) for λ ∈ (0, 1). As a
consequence from Leray–Schauder’s theorem we deduce that N has a fixed point u in
U that is a solution of problem (2.1)–(2.2).
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22 | 2 Nonlinear Implicit Fractional Differential Equations

2.2.3 Examples

Example 1. Consider the Cauchy problem

cD
1
2 y(t) = 1

2et+1 (1 + |y(t)| + |cD
1
2 y(t)|)

, for each t ∈ [0, 1] , (2.13)

y(0) = 1 . (2.14)

Set
f(t, u, v) = 1

2et+1(1 + |u| + |v|)
, t ∈ [0, 1], u, v ∈ ℝ .

Clearly, the function f is jointly continuous.
For any u, v, ū, v̄ ∈ ℝ and t ∈ [0, 1]

|f(t, u, v) − f(t, ū, v̄)| ≤ 1
2e (|u − ū| + |v − v̄|) .

Hence, condition (2.3.2) is satisfied by K = L = 1
2e .

It remains to show that condition (2.4) is satisfied. Indeed, we have
KTα

(1 − L)Γ(α + 1) =
1

(2e − 1)Γ (32)
< 1 .

It follows from Theorem 2.3 that problem (2.13)–(2.14) has a unique solution.
Example 2. Consider the Cauchy problem

cD
1
2 y(t) =

(2 + |y(t)| + |cD
1
2 y(t)|)

2et+1 (1 + |y(t)| + |cD
1
2 y(t)|)

, for each t ∈ [0, 1] , (2.15)

y(0) = 1 . (2.16)

Set
f(t, u, v) = (2 + |u| + |v|)

2et+1(1 + |u| + |v|)
, t ∈ [0, 1], u, v ∈ ℝ .

Clearly, function f is jointly continuous.
For any u, v, ū, v̄ ∈ ℝ and t ∈ [0, 1]

|f(t, u, v) − f(t, ū, v̄)| ≤ 1
2e (|u − ū| + |v − v̄|) .

Hence, condition (2.3.2) is satisfied by K = L = 1
2e . Also, we have

|f(t, u, v)| ≤ 1
2et+1
(2 + |u| + |v|) .

Thus, condition (2.4.1) is satisfied by p(t) = 1
et+1 and q(t) = r(t) =

1
2et+1 .

Also,
q∗Tα

(1 − r∗)Γ(α + 1) =
1

(2e − 1)Γ (32)
< 1

holds with T = 1, α = 1
2 , and q

∗ = r∗ = 1
2e . It follows from Theorem 2.4 that problem

(2.15)–(2.16) has at least one solution.
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2.3 NIFDE with Nonlocal Conditions | 23

2.3 NIFDE with Nonlocal Conditions

2.3.1 Introduction and Motivations

The purpose of this section is to establish the existence, uniqueness, and uniform
stability of solutions of the implicit fractional-order differential equation with nonlocal
condition:

cDαy(t) = f(t, y(t), cDαy(t)) , for each t ∈ J = [0, T], T > 0, 0 < α ≤ 1 , (2.17)
y(0) + φ(y) = y0 , (2.18)

where cDα is the Caputo fractional derivative, f : J × ℝ × ℝ → ℝ is a given function,
φ : C(J,ℝ)→ ℝ is a continuous function, and y0 ∈ ℝ.

2.3.2 Existence of Solutions

Let us define what we mean by a solution of problem (2.17)–(2.18).

Definition 2.6. A function u ∈ C1(J,ℝ) is said to be a solution of problem (2.17)–(2.18)
if u satisfies equation (2.17) on J and conditions (2.18).

For the existence of solutions for problem (2.17)–(2.18), we need the following auxiliary
lemma.

Lemma 2.7. Let f : J ×ℝ ×ℝ→ ℝ be a continuous function. Then problem (2.17)–(2.18)
is equivalent to the problem

y(t) = y0 − φ(y) + Iαg(t) , (2.19)

where g ∈ C(J,ℝ) satisfies the functional equation

g(t) = f(t, y0 − φ(y) + Iαg(t), g(t)) .

Proof. If cDαy(t) = g(t), then Iα cDαy(t) = Iαg(t). Thus, we obtain y(t) = y0 − φ(y) +
Iαg(t).

We are now in a position to state and prove our existence result for problem (2.17)–(2.18)
based on Banach’s fixed point theorem.

Theorem 2.8. Make the following assumptions:
(2.8.1)The function f : J ×ℝ ×ℝ→ ℝ is continuous.
(2.8.2)There exist constants K > 0 and 0 < L < 1 such that

|f(t, u, v) − f(t, ū, v̄)| ≤ K|u − ū| + L|v − v̄| for any u, v, ū, v̄ ∈ ℝ, t ∈ J .

(2.8.3)There exists a constant 0 < γ < 1 such that

|φ(u) − φ(ū)| ≤ γ|u − ū| for any u, ū ∈ C(J,ℝ) .
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24 | 2 Nonlinear Implicit Fractional Differential Equations

If
C := γ + KTα

(1 − L)Γ(α + 1) < 1 , (2.20)

then there exists a unique solution for problem (2.17)–(2.18) on J.

Proof. The proof will be given in several steps. Transform problem (2.17)–(2.18) into a
fixed point problem. Define the operator N : C(J,ℝ)→ C(J,ℝ) by

N(y)(t) = y0 − φ(y) + Iαg(t) , (2.21)

where g ∈ C(J,ℝ) satisfies the functional equation

g(t) = f(t, y(t), g(t)) .

Clearly, the fixed points of operator N are solutions of problem (2.17)–(2.18). Let u, w ∈
C(J,ℝ). Then for t ∈ J we have

(Nu)(t) − (Nw)(t) = φ(w) − φ(u)

+
1
Γ(α)

t

∫
0

(t − s)α−1(g(s) − h(s))ds ,

where g, h ∈ C(J,ℝ) are given by

g(t) = f(t, u(t), g(t)) ,
h(t) = f(t, w(t), h(t)) .

Then, for t ∈ J,

|(Nu)(t) − (Nw)(t)| ≤ |φ(u) − φ(w)|

+
1
Γ(α)

t

∫
0

(t − s)α−1|g(s) − h(s)|ds . (2.22)

By (2.8.2) we have

|g(t) − h(t)| = |f(t, u(t), g(t)) − f(t, w(t), h(t))|
≤ K|u(t) − w(t)| + L|g(t) − h(t)| .

Thus,
|g(t) − h(t)| ≤ K

1 − L |u(t) − w(t)| .
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2.3 NIFDE with Nonlocal Conditions | 25

From (2.22) and (2.8.3) we have

|(Nu)(t) − (Nw)(t)| ≤ γ|u(t) − w(t)|

+
K

(1 − L)Γ(α)

t

∫
0

(t − s)α−1|u(s) − w(s)|ds

≤ γ‖u − w‖∞

+ sup
0≤t≤T
|u(t) − w(t)| K

(1 − L)Γ(α)

t

∫
0

(t − s)α−1ds

≤ γ‖u − w‖∞ +
KTα

(1 − L)Γ(α + 1) ‖u − w‖∞ .

Then
‖Nu − Nw‖∞ ≤ [γ +

KTα

(1 − L)Γ(α + 1)] ‖u − w‖∞ .

By (2.20), operator N is a contraction. Hence, by Banach’s contraction principle, N has
a unique fixed point that is the unique solution of problem (2.17)–(2.18).

The second result is based on Krasnosel’skii’s fixed point theorem.
Let M̃ := Tα

(1−L)Γ(α+1) , a := |φ(0)|, and f
∗ := sup0≤t≤T |f(t, 0, 0)|.

Theorem 2.9. Assume that (2.8.1)–(2.8.3) hold. If

γ + M̃K < 1 , (2.23)

then problem (2.17)–(2.18) has at least one solution.

Proof. Consider operator N to be defined as in (2.21). We have

N(y)(t) = y0 − φ(y) +
1
Γ(α)

t

∫
0

(t − s)α−1g(s)ds ,

where g ∈ C(J,ℝ) satisfies the functional equation

g(t) = f(t, y(t), g(t)) .

Let

R ≥ |y0| + a + M̃f
∗

1 − γ − M̃K
,

and define
DR = {u ∈ C(J,ℝ) : ‖u‖∞ ≤ R} .

It is clear that DR is a bounded, closed, and convex subset of C(J,ℝ). Define on DR
operators P and Q by

P(u)(t) = 1
Γ(α)

t

∫
0

(t − s)α−1g(s)ds , (2.24)
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26 | 2 Nonlinear Implicit Fractional Differential Equations

where g ∈ C(J,ℝ) satisfies the functional equation

g(t) = f(t, u(t), g(t))

and
Q(v)(t) = y0 − φ(v) . (2.25)

Claim 1: For any u, v ∈ DR, Pu + Qv ∈ DR. For any u, v ∈ DR and t ∈ J we have

|P(u)(t) + Q(v)(t)| ≤ |y0| + |φ(v)| +
1
Γ(α)

t

∫
0

(t − s)α−1|g(s)|ds . (2.26)

By (2.8.2) we have for each t ∈ J

|g(t)| = |f(t, u(t), g(t))|
≤ |f(t, u(t), g(t)) − f(t, 0, 0)| + |f(t, 0, 0)|)
≤ K|u(t)| + L|g(t)| + sup

0≤t≤T
|f(t, 0, 0)|

≤ KR + L|g(t)| + f∗ .

Then
(1 − L)|g(t)| ≤ KR + f∗ .

Thus,
|g(t)| ≤ KR + f

∗

1 − L . (2.27)

From (2.8.3) we have

|φ(v)| ≤ |φ(v) − φ(0)| + |φ(0)|
≤ γ|v| + a
≤ γR + a .

Then, by (2.26), we get

|P(u)(t) + Q(v)(t)| ≤ |y0| + (γR + a) +
KR + f∗

(1 − L)Γ(α)

t

∫
0

(t − s)α−1ds

≤ |y0| + (γR + a) +
(KR + f∗)Tα

(1 − L)Γ(α + 1)
= |y0| + γR + a + M̃(KR + f∗)
≤ R .

Thus, Pu + Qv ∈ DR.
Claim 2: Q is a contraction mapping on DR. For any v1, v2 ∈ DR, by (2.8.3) we have

|Q(v2) − Q(v1)| ≤ |φ(v2) − φ(v1)|
≤ γ|v2 − v1| .
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2.3 NIFDE with Nonlocal Conditions | 27

Thus,
‖Q(v2) − Q(v1)‖∞ ≤ γ‖v2 − v1‖∞ ,

and so Q is a contraction mapping.
Claim 3: P is continuous. Let {un} be a sequence such that un → u in C(J,ℝ). Then

for each t ∈ J

|P(un)(t) − P(u)(t)| ≤
1
Γ(α)

t

∫
0

(t − s)α−1|gn(s) − g(s)|ds , (2.28)

where gn , g ∈ C(J,ℝ) satisfy

gn(t) = f(t, un(t), gn(t))

and
g(t) = f(t, u(t), g(t)) .

By (2.8.2) we have

|gn(t) − g(t)| = |f(t, un(t), gn(t)) − f(t, u(t), g(t))|
≤ K|un(t) − u(t)| + L|gn(t) − g(t)| ,

so
|gn(t) − g(t)| ≤

K
1 − L |un(t) − u(t)| .

Since un → u, we get gn(t)→ g(t) as n →∞ for each t ∈ J. Let η > 0 be such that, for
each t ∈ J, we have |gn(t)| ≤ η and |g(t)| ≤ η; then we have

(t − s)α−1|gn(s) − g(s)| ≤ (t − s)α−1[|gn(s)| + |g(s)|]
≤ 2η(t − s)α−1 .

For each t ∈ J the function s → 2η(t − s)α−1 is integrable on [0, t]; then the Lebesgue
dominated convergence theorem and (2.28) imply that

|(Pun)(t) − (Pu)(t)|→ 0 as n →∞ .

Hence,
‖P(un) − P(u)‖∞ → 0 as n →∞ .

Consequently, P is continuous.
Claim 4: P is compact. Let {un} be a sequence on DR. Then, for each t ∈ J, we have

|P(un)(t)| ≤
1
Γ(α)

t

∫
0

(t − s)α−1|gn(s)|ds , (2.29)

where gn ∈ C(J,ℝ) is given by

gn(t) = f(t, un(t), gn(t)) .
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28 | 2 Nonlinear Implicit Fractional Differential Equations

By (2.8.2) we have for each t ∈ J

|gn(t)| = |f(t, un(t), g(t))|
≤ |f(t, un(t), gn(t)) − f(t, 0, 0)| + |f(t, 0, 0)|)
≤ K|un(t)| + L|gn(t)| + sup

0≤t≤T
|f(t, 0, 0)|

≤ KR + L|gn(t)| + f∗ .

Then
(1 − L)|gn(t)| ≤ KR + f∗ ,

and so
|gn(t)| ≤

KR + f∗

1 − L . (2.30)

Thus, (2.29) implies

|P(un)(t)| ≤
KR + f∗

(1 − L)Γ(α)

t

∫
0

(t − s)α−1ds

≤
(KR + f∗)Tα

(1 − L)Γ(α + 1)
≤ M̃(KR + f∗) ,

and we see that {un} is uniformly bounded.
Now we prove that {P(un)} is equicontinuous. Let t1, t2 ∈ J, t1 < t2, and let u ∈ DR.

Then

|(Pu)(t2) − (Pu)(t1)| =


1
Γ(α)

t1

∫
0

[(t2 − s)α−1 − (t1 − s)α−1]g(s)ds

+
1
Γ(α)

t2

∫
t1

(t2 − s)α−1g(s)ds


≤
1
Γ(α)

t1

∫
0

|[(t2 − s)α−1 − (t1 − s)α−1]||g(s)|ds

+
1
Γ(α)

t2

∫
t1

(t2 − s)α−1|g(s)|ds

≤
KR + f∗

(1 − L)Γ(α + 1) (t
α
2 − t

α
1 + 2(t2 − t1)

α) .

As t1 → t2, the right-hand side of the preceding inequality tends to zero. As a con-
sequence of Claims 1–4, together with the Ascoli–Arzelà theorem, we conclude that
N : C(J,ℝ)→ C(J,ℝ) is continuous and compact. As a consequence of Krasnosel’skii’s
fixed point theorem, we deduce that N has a fixed point that is a solution of prob-
lem (2.17)–(2.18).

Brought to you by | UCL - University College London
Authenticated

Download Date | 2/10/18 4:19 PM



2.3 NIFDE with Nonlocal Conditions | 29

2.3.3 Stability Results

Here we consider the uniform stability of the solutions of problem (2.17)–(2.18) and
adopt the definitions in [138].

Definition 2.10. The solution of equation (2.17) is uniformly stable if for any ϵ > 0
there exists δ(ϵ) > 0 such that for any two solutions y(t) and ỹ(t) corresponding to the
initial conditions (2.18) and ỹ(0) = ỹ0 − φ(ỹ), respectively, with |y0 − ỹ0| ≤ δ, one has
‖y − ỹ‖∞ ≤ ϵ.

Theorem 2.11. Assume (2.8.1)–(2.8.3) and (2.20) hold. Then the solutions of the Cauchy
problem (2.17)–(2.18) are uniformly stable.

Proof. Let y be a solution of

y(t) = y0 − φ(y) +
1
Γ(α)

t

∫
0

(t − s)α−1g(s)ds , (2.31)

where g ∈ C(J,ℝ) satisfies the functional equation

g(t) = f(t, y(t), g(t)) ,

and let ỹ be a solution of equation (2.31) such that

ỹ(0) = ỹ0 − φ(ỹ) .

Then we have

ỹ(t) = ỹ0 − φ(ỹ) +
1
Γ(α)

t

∫
0

(t − s)α−1h(s)ds , (2.32)

where h ∈ C(J,ℝ) satisfies the functional equation

h(t) = f(t, ỹ(t), h(t)) .

By (2.31) and (2.32) we have

|y(t) − ỹ(t)| ≤ |y0 − ỹ0| + |φ(y) − φ(ỹ)|

+
1
Γ(α)

t

∫
0

(t − s)α−1|g(s) − h(s)|ds , (2.33)

and by (2.8.2) we have

|g(t) − h(t)| = |f(t, y(t), g(t)) − f(t, ỹ(t), h(t))|
≤ K|y(t) − ỹ(t)| + L|g(t) − h(t)| ,

so
|g(t) − h(t)| ≤ K

1 − L |y(t) − ỹ(t)| .
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30 | 2 Nonlinear Implicit Fractional Differential Equations

Thus, (2.33) and (2.8.3) imply that

|y(t) − ỹ(t)| ≤ |y0 − ỹ0| + γ|y(t) − ỹ(t)|

+
K

(1 − L)Γ(α)

t

∫
0

(t − s)α−1|y(s) − ỹ(s)|ds

≤ |y0 − ỹ0| + γ‖y − ỹ‖∞

+ sup
0≤t≤T
|y(t) − ỹ(t)| K

(1 − L)Γ(α)

t

∫
0

(t − s)α−1ds

≤ |y0 − ỹ0| + γ‖y − ỹ‖∞

+ ‖y − ỹ‖∞
KTα

(1 − L)Γ(α + 1) .

Then
[1 − γ − KTα

(1 − L)Γ(α + 1)]
‖y − ỹ‖∞ ≤ |y0 − ỹ0| .

This implies that
‖y − ỹ‖∞ ≤ (1 − C)−1|y0 − ỹ0| . (2.34)

For ϵ > 0 it suffices to make (1 − C)−1|y0 − ỹ0| ≤ ϵ. This suggests that we choose
δ = (1 − C)ϵ. Therefore, if |y0 − ỹ0| ≤ δ(ϵ), then ‖y − ỹ‖∞ ≤ ϵ. This implies that the
solution y is uniformly stable.

2.3.4 An Example

Consider the problem with nonlocal conditions

cD
1
2 y(t) = 1

2et+1 (1 + |y(t)| + |cD
1
2 y(t)|)

, for each t ∈ [0, 1] , (2.35)

y(0) + φ(y) = 1 , (2.36)

where
φ(y) = |y|10 + |y| . (2.37)

Set
f(t, u, v) = 1

2et+1(1 + |u| + |v|)
, t ∈ [0, 1], u, v ∈ ℝ .

Clearly, the function f is jointly continuous. For any u, v, ū, v̄ ∈ ℝ and t ∈ [0, 1]

|f(t, u, v) − f(t, ū, v̄)| ≤ 1
2e (|u − ū| + |v − v̄|) .
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2.4 Existence Results for NIFDE in Banach Space | 31

Hence, condition (2.8.2) is satisfied by K = L = 1
2e . Let

φ(u) = u
10 + u

, u ∈ [0,∞) ,

and take u, v ∈ [0,∞). Then we have

|φ(u) − φ(v)| = 
u

10 + u −
v

10 + v
 =

10|u − v|
(10 + u)(10 + v)

≤
1
10 |u − v| .

Thus the condition
C = γ + KTα

(1 − L)Γ(α + 1) < 1

is satisfied by T = 1, γ = 1
10 , and α =

1
2 . It follows from Theorems 2.9 and 2.11 that

problem (2.35)–(2.37) is a unique uniformly stable solution on J.

2.4 Existence Results for NIFDE in Banach Space

2.4.1 Introduction and Motivations

Recently, fractional differential equations have been studied by Abbas et al. [35, 43],
Baleanu et al. [78, 80], Diethelm [137], Kilbas and Marzan [180], Srivastava et al. [181],
Lakshmikantham et al. [187], and Samko et al. [239]. More recently, some mathemati-
cians have considered BVPs and boundary conditions for implicit fractional differential
equations.

In [164], Hu andWang investigated the existence of solutions of nonlinear fractional
differential equations with integral boundary conditions

Dαu(t) = f(t, u(t), Dβu(t)) , t ∈ (0, 1), 1 < α ≤ 2, 0 < β < 1 ,

u(0) = u0, u(1) =
1

∫
0

g(s)u(s)ds ,

where Dα is the Riemann–Liouville fractional derivative, f : [0, 1] × ℝ × ℝ → ℝ is a
continuous function, and g is an integrable function.

In [241], by means of Schauder’s fixed point theorem, Su and Liu studied the
existence of solutions of nonlinear fractional BVPs involving Caputo’s derivative

cDαu(t) = f(t, u(t), cDβu(t)) , for each t ∈ (0, 1), 1 < α ≤ 2, 0 < β ≤ 1 ,
u(0) = u(1) = 0, or u(1) = u(1) = 0, or u(0) = u(1) = 0 ,

where f : [0, 1] ×ℝ ×ℝ→ ℝ is a given continuous function.
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32 | 2 Nonlinear Implicit Fractional Differential Equations

The purpose of this section is to establish existence and uniqueness results for the
implicit fractional differential equation

cDνy(t) = f(t, y(t), cDνy(t)) , for each t ∈ J := [0, T], T > 0, 0 < ν ≤ 1 , (2.38)

with the initial condition
y(0) = y0 , (2.39)

where cDν is the Caputo fractional derivative, (E, ‖ ⋅ ‖) is a real Banach space,
f : J × E × E → E is a continuous function, and y0 ∈ E.

2.4.2 Existence of Solutions

Let (E; ‖ ⋅ ‖) be a Banach space and t ∈ J. For a given set V of functions v : J → E, let us
use the notation

V(t) = {v(t), v ∈ V} , t ∈ J

and
V(J) = {v(t) : v ∈ V, t ∈ J} .

Next we define what we mean by a solution of problem (2.38)–(2.39).

Definition 2.12. A function u ∈ C1(J, E) is said to be a solution of problem (2.38)–(2.39)
if u satisfies equation (2.38) and condition (2.39) on J.

For the existence of solutions of problem (2.38)–(2.39), we need the following auxiliary
lemma.

Lemma 2.13. Suppose that the function f(t, u, v) : J × E × E → E is continuous; then
problem (2.38)–(2.39) is equivalent to the problem

y(t) = y0 + Iνg(t) , (2.40)

where g ∈ C(J, E) satisfies the functional equation

g(t) = f(t, y0 + Iνg(t), g(t)) .

Proof. If cDνy(t) = g(t), then Iν cDνy(t) = Iνg(t). Thus, we obtain y(t) = y0+ Iνg(t).

We list the following conditions:
(2.13.1) The function f : J × E × E → E is continuous.
(2.13.2) There exist constants K > 0 and 0 < L < 1, such that

‖f(t, u, v) − f(t, ū, v̄)‖ ≤ K‖u − ū‖ + L‖v − v̄‖

for any u, v, ū, v̄ ∈ E and t ∈ J.
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2.4 Existence Results for NIFDE in Banach Space | 33

(2.13.3) There exist p, q, r ∈ C(J,ℝ+), with r∗ = supt∈J r(t) < 1, such that

‖f(t, u, w)‖ ≤ p(t) + q(t)|u| + r(t)|w| for t ∈ J and u, w ∈ ℝ .

Remark 2.14 ([66]). If

‖f(t, u, v) − f(t, ū, v̄)‖ ≤ K‖u − ū‖ + L‖v − v̄‖

for any u, v, ū, v̄ ∈ E and t ∈ J, then
(2.14.1)

α(f(t, B1, B2)) ≤ Kα(B1) + Lα(B2)

for each t ∈ J and bounded sets B1, B2 ⊆ E.

We are now in a position to state and prove our existence result for problem (2.38)–(2.39)
based on the concept of measures of noncompactness and Darbo’s fixed point theorem.

Theorem 2.15. Assume (2.13.1)–(2.13.3). If

KTν

(1 − L)Γ(ν + 1) < 1 , (2.41)

then IVP (2.38)–(2.39) has at least one solution on J.

Proof. Transform problem (2.38)–(2.39) into a fixed point problem. Define the operator
N : C(J, E)→ C(J, E) by

(Ny)(t) = y0 + Iνg(t) , (2.42)

where g ∈ C(J, E) satisfies the functional equation

g(t) = f(t, y(t), g(t)) .

Clearly, the fixed points of operator N are solutions of problem (2.38)–(2.39). We will
show that N satisfies the assumptions of Darbo’s fixed point theorem. The proof will be
given in several steps.

Claim 1: N is continuous. Let u, w ∈ C(J, E), and let {un} be a sequence such that
un → u in C(J, E). Then for each t ∈ J

‖N(un)(t) − N(u)(t)‖ ≤
1
Γ(ν)

t

∫
0

(t − s)ν−1‖gn(s) − g(s)‖ds , (2.43)

where gn , g ∈ C(J, E) such that

gn(t) = f(t, un(t), gn(t))

and
g(t) = f(t, u(t), g(t)) .

Brought to you by | UCL - University College London
Authenticated

Download Date | 2/10/18 4:19 PM



34 | 2 Nonlinear Implicit Fractional Differential Equations

By (2.13.2), for each t ∈ J, we have

‖gn(t) − g(t)‖ = ‖f(t, un(t), gn(t)) − f(t, u(t), g(t))‖
≤ K‖un(t) − u(t)‖ + L‖gn(t) − g(t)‖ .

Then
‖gn(t) − g(t)‖ ≤

K
1 − L
‖un(t) − u(t)‖ .

Since un → u, we get gn(t)→ g(t) as n →∞ for each t ∈ J.
Let a positive constant η > 0 be such that, for each t ∈ J, we have ‖gn(t)‖ ≤ η and

‖g(t)‖ ≤ η. Then we have

(t − s)ν−1‖gn(s) − g(s)‖ ≤ (t − s)ν−1[‖gn(s)‖ + ‖g(s)‖]
≤ 2η(t − s)ν−1 .

For each t ∈ J, the function s → 2η(t − s)ν−1 is integrable on [0, t], so by the Lebesgue
dominated convergence theorem and (7.2),

‖N(un)(t) − N(u)(t)‖→ 0 as n →∞ .

Then
‖N(un) − N(u)‖∞ → 0 as n →∞ .

Consequently, N is continuous.
Let

R ≥ M|y0| + p
∗Tα

M − q∗Tα
, (2.44)

where M := (1 − r∗)Γ(α + 1), p∗ = supt∈J p(t), and q∗ = supt∈J q(t).
Define

DR = {u ∈ C(J, E) : ‖u‖∞ ≤ R} .

It is clear that DR is a bounded, closed, and convex subset of C(J, E).
Claim 2: N(DR) ⊂ DR. Let u ∈ DR. We will show that Nu ∈ DR. We have for each

t ∈ J

‖Nu(t)‖ ≤ ‖y0‖ +
1
Γ(ν)

t

∫
0

(t − s)ν−1‖g(t)‖ds . (2.45)

By (2.13.3) we have

‖g(t)‖ = ‖f(t, u(t), g(t))‖
≤ p(t) + q(t)‖u(t)‖ + r(t)‖g(t)‖
≤ p(t) + q(t)R + r(t)|g(t)|
≤ p∗ + q∗R + r∗‖g(t)‖ .
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Then for each t ∈ J
‖g(t)‖ ≤ p

∗ + q∗R
1 − r∗ .

Thus, (2.44) and (2.45) imply that

‖Nu(t)‖ ≤ ‖y0‖ +
p∗Tν

(1 − r∗)Γ(ν + 1)
+

q∗RTν

(1 − r∗)Γ(ν + 1)

≤ ‖y0‖ +
p∗Tν

M
+
q∗RTν

M
≤ R .

Consequently,
N(DR) ⊂ DR .

Claim 3: N(DR) is bounded and equicontinuous. By Claim 2 we have N(DR) =
{N(u) : u ∈ DR} ⊂ DR. Then for each u ∈ DR we have ‖N(u)‖∞ ≤ R. Thus, N(DR)
is bounded. Let t1, t2 ∈ J, t1 < t2, and let u ∈ DR. Then

|(Nu)(t2) − (Nu)(t1)| =


1
Γ(ν)

t1

∫
0

[(t2 − s)ν−1 − (t1 − s)ν−1]g(s)ds

+
1
Γ(ν)

t2

∫
t1

[(t2 − s)ν−1g(s)ds


≤
M

Γ(ν + 1) (t
ν
2 − t

ν
1 + 2(t2 − t1)

ν) .

As t1 → t2, the right-hand side of the preceding inequality tends to zero, so N(DR) is
equicontinuous.

Claim 4: The operator N : BR → BR is a strict set contraction. Let V ⊂ BR and t ∈ J;
then we have

α(N(V)(t)) = α({(Ny)(t), y ∈ V})

≤
1
Γ(ν)
{
{
{

t

∫
0

(t − s)ν−1α(g(s))ds : y ∈ V
}
}
}

.

By (2.14.1), Remark 2.14, and Lemma 1.32, for each s ∈ J,

α({g(s) : y ∈ V}) = α({f(s, y(s), g(s)) : y ∈ V})
≤ Kα({y(s), y ∈ V}) + Lα({g(s) : y ∈ V}) .

Thus,
α ({g(s) : y ∈ V}) ≤

K
1 − L α{y(s) : y ∈ V} .
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36 | 2 Nonlinear Implicit Fractional Differential Equations

Then

α(N(V)(t)) ≤ K
(1 − L)Γ(ν)

t

∫
0

(t − s)ν−1{α(y(s))ds : y ∈ V}

≤
Kαc(V)
(1 − L)Γ(ν)

t

∫
0

(t − s)ν−1ds

≤
KTν

(1 − L)Γ(ν + 1)αc(V) .

Therefore,
αc(NV) ≤

KTν

(1 − L)Γ(ν + 1)αc(V) .

So, by (2.41), operator N is a set contraction. As a consequence of Theorem 1.45, we
deduce that N has a fixed point that is a solution of problem (2.38)–(2.39).

Our next existence result for problem (2.38)–(2.39) is based on the concept of measures
of noncompactness and Mönch’s fixed point theorem.

Theorem 2.16. Assume (2.13.1)–(2.13.3). Then IVP (2.38)–(2.39) has at least one solution.

Proof. Consider operator N defined in (2.42). We will show that N satisfies the assump-
tions of Mönch’s fixed point theorem. We know that N : BR → BR is bounded and
continuous; we need to prove that the implication

[V = convN(V) or V = N(V) ∪ {0}]⇒ α(V) = 0

holds for every subset V of BR.
Now let V be a subset of BR such that V ⊂ conv(N(V) ∪ {0}); now V is bounded

and equicontinuous, and therefore the function t → v(t) = α(V(t)) is continuous on J.
By (2.14.1), Lemma 1.33, and the properties of the measure α, we have for each t ∈ J

v(t) ≤ α(N(V)(t) ∪ {0})
≤ α(N(V)(t))
≤ α{(Ny)(t) : y ∈ V}

≤
K

(1 − L)Γ(ν)

t

∫
0

(t − s)ν−1α ({(y(s) : y ∈ V}) ds

≤
K

(1 − L)Γ(ν)

t

∫
0

(t − s)ν−1v(s)ds .

Lemma 1.52 implies that v(t) = 0 for each t ∈ J, and so V(t) is relatively compact in E. In
view of the Ascoli–Arzelà theorem, V is relatively compact in BR. Applying Theorem 1.46
we conclude that N has a fixed point y ∈ BR. Hence, N has a fixed point that is a solution
of the problem (2.38)–(2.39).
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2.4.3 An Example

Consider the infinite system

cD
1
2 yn(t) =

(3 + ‖yn(t)‖ + ‖cD
1
2 yn(t)‖)

3et+2(1 + ‖yn(t)‖ + ‖cD
1
2 yn(t)‖)

for each t ∈ [0, 1] , (2.46)

yn(0) = 1 . (2.47)

Set
E = l1 = {y = (y1, y2, . . . , yn , . . . ),

∞
∑
n=1
|yn| <∞}

and
f(t, u, v) = (3 + ‖u‖ + ‖v‖)

3et+2(1 + ‖u‖ + ‖v‖)
, t ∈ [0, 1], u, v ∈ E ,

where E is a Banach space with the norm ‖y‖ =
∞
∑
n=1
|yn|. Clearly, the function f is jointly

continuous. For any u, v, ū, v̄ ∈ E and t ∈ [0, 1]

‖f(t, u, v) − f(t, ū, v̄)‖ ≤ 2
3e2
(‖u − ū‖ + ‖v − v̄‖) .

Hence condition (2.13.2) is satisfied by K = L = 2
3e2 . Also,

‖f(t, u, v)‖ ≤ 1
3et+2
(3 + ‖u‖ + ‖v‖) .

Thus, conditions (2.13.3) and (2.14.1) are satisfied by p(t) = 1
et+2 , and q(t) = r(t) =

1
3et+2 .

Theorem 2.16 implies that problem (2.46)–(2.47) has at least one solution on J.

2.5 Existence and Stability Results for Perturbed NIFDE with Finite
Delay

2.5.1 Introduction

In this section,we establish existence, uniqueness, and stability results for the perturbed
functional differential equations of fractional order with finite delay

cDαy(t) = f(t, yt , cDαy(t)) + g(t, yt) , t ∈ J = [0, T], T > 0, 0 < α ≤ 1 , (2.48)
y(t) = φ(t) , t ∈ [−r, 0], r > 0 , (2.49)

where f : J ×C([−r, 0],ℝ)×ℝ→ ℝ and g : J ×C([−r, 0],ℝ)→ ℝ are two given functions
and φ ∈ C([−r, 0],ℝ). The arguments are based upon the Banach contraction principle
and a fixed point theorem of Burton and Kirk.
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38 | 2 Nonlinear Implicit Fractional Differential Equations

2.5.2 Existence of Solutions

Set

Q = {y : [−r, T]→ ℝ : y|[−r,0] ∈ C([−r, 0],ℝ) and y|[0,T] ∈ C([0, T],ℝ)} ;

then Q is a Banach space with the norm

‖y‖Q = sup
t∈[−r,T]
|y(t)| .

Definition 2.17. A function y ∈ Q is called a solution of problem (2.48)–(2.49) if it
satisfies equation (2.48) on J and condition (2.49) on [−r, 0].

Lemma 2.18. Let 0 < α ≤ 1 and h : [0, T] → ℝ be a continuous function. The linear
problem

cDαy(t) = h(t) , t ∈ J ,
y(t) = φ(t) , t ∈ [−r, 0] ,

has a unique solution given by

y(t) =
{{{{
{{{{
{

φ(0) + 1
Γ(α)

t

∫
0

(t − s)α−1h(s)ds, t ∈ J

φ(t), t ∈ [−r, 0] .

Lemma 2.19. Let f(t, u, v) : J × C([−r, 0],ℝ) ×ℝ→ ℝ be a continuous function. Prob-
lem (2.48)–(2.49) is equivalent to the problem

y(t) =
{
{
{

φ(0) + IαKy(t), t ∈ J ,
φ(t), t ∈ [−r, 0] ,

(2.50)

where Ky ∈ C(J,ℝ) satisfies the functional equation

Ky(t) = f(t, yt , Ky(t)) + g(t, yt) .

Proof. Let y be a solution of problem (2.50); we want to show that y is a solution of
(2.48)–(2.49). We have

y(t) =
{
{
{

φ(0) + IαKy(t), t ∈ J
φ(t), t ∈ [−r, 0]

for t ∈ [−r, 0], so y(t) = φ(t), and we see that condition (2.49) is satisfied.
On the other hand, for t ∈ J we have

cDαy(t) = Ky(t) = f(t, yt , Ky(t)) + g(t, yt) ,

so
cDαy(t) = f(t, yt , cDαy(t)) + g(t, yt) .

Then y is a solution of problem (2.48)–(2.49).
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2.5 Results for Perturbed NIFDE with Finite Delay | 39

Lemma 2.20. Assume
(2.20.1)f : J × C([−r, 0],ℝ) ×ℝ→ ℝ is a continuous function.
(2.20.2)There exist K > 0 and 0 < K < 1 such that

|f(t, u, v) − f(t, ū, v̄)| ≤ K ‖u − ū‖C + K|v − v̄|

for any u, ū ∈ C([−r, 0],ℝ), v, v̄ ∈ ℝ and t ∈ J.
(2.20.3)There exists L > 0 such that

|g(t, u) − g(t, v)| ≤ L‖u − v‖C

for any u, v ∈ C([−r, 0],ℝ) and t ∈ J.
If

(K + L)Tα

(1 − K) Γ(α + 1)
< 1 , (2.51)

then problem (2.48)–(2.49) has a unique solution.

Proof. Consider that the operator N : Q → Q is defined by

(Ny)(t) =
{
{
{

φ(0) + IαKy(t), t ∈ J
φ(t), t ∈ [−r, 0] .

(2.52)

From Lemma 2.19 it is clear that the fixed points of N are the solutions of problem
(2.48)–(2.49). Let y, ỹ ∈ Q. If t ∈ [−r, 0], then

‖Ny(t) − Nỹ(t)‖ = 0 ,

and for t ∈ J

‖Ny(t) − Nỹ(t)‖ = ‖IαKy(t) − IαKỹ(t)‖ ≤ Iα‖Ky(t) − Kỹ(t)‖ . (2.53)

For any t ∈ J we have

‖Ky(t) − Kỹ(t)‖ ≤ ‖f(t, yt , Ky(t)) − f(t, ỹt , Kỹ(t))‖
+ ‖g(t, yt) − g(t, ỹt)‖
≤ K ‖yt − ỹt‖C + K‖Ky(t) − Kỹ(t)‖
+ L ‖yt − ỹt‖C .

Thus,
‖Ky(t) − Kỹ(t)‖ ≤

K + L
1 − K
‖yt − ỹt‖C . (2.54)

From (2.54) and (2.53) we find that

‖Ny(t) − Nỹ(t)‖ ≤ K + L
(1 − K) Γ(α)

t

∫
0

(t − s)α−1 ‖ys − ỹs‖C ds

≤
(K + L)Tα

(1 − K) Γ(α + 1)
‖y − ỹ‖Q .
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40 | 2 Nonlinear Implicit Fractional Differential Equations

Thus,
‖Ny − Nỹ‖Q ≤

(K + L)Tα

(1 − K) Γ(α + 1)
‖y − ỹ‖Q .

From (2.51) it follows that N has a unique fixed point that is the unique solution of
problem (2.48)–(2.49).

Our next existence result is based on the fixed point theorem of Burton and Kirk.

Lemma 2.21. We consider the operators F, G : Q → Q defined by

F(y)(t) =
{{{{
{{{{
{

φ(0) + 1
Γ(α)

t

∫
0

(t − s)α−1f(s, ys , Ky(s))ds, t ∈ J ,

φ(t), t ∈ [−r, 0] ,

G(y)(t) =
{{{{
{{{{
{

1
Γ(α)

t

∫
0

(t − s)α−1g(s, ys)ds, t ∈ J ,

0, t ∈ [−r, 0] ,

where Ky ∈ C(J,ℝ) satisfies the functional equation

Ky(t) = f(t, yt , Ky(t)) + g(t, yt) .

To find solutions of (2.48)–(2.49), we must find solutions of the equation

y(t) = F(y)(t) + G(y)(t) , for each t ∈ [−r, T] .

Remark 2.22. If y is a fixed point of the operator F + G, then y is a solution of problem
(2.48)–(2.49).

Theorem 2.23. Assume (2.20.1) and (2.20.3) hold and
(2.23.1)There exist p, q, r ∈ C(J,ℝ+) with r∗ = supt∈J r(t) < 1 such that

|f(t, u, w)| ≤ p(t) + q(t)‖u‖C + r(t)|w|

for t ∈ J, w ∈ ℝ, and u ∈ C([−r, 0],ℝ).
If

LTα

Γ(α + 1) < 1 , (2.55)

then IVP (2.48)–(2.49) has at least one solution.

Proof. Wemust show that operators F and G satisfy all conditions of Theorem 1.43.
By (2.20.1), (2.20.3), (2.23.1), and the choices of F and G, we show that F is completely
continuous and G is a contraction. The proof will be given in several claims.

Claim 1: F is continuous. Let {yn}n≥0 be a sequence such that yn → y in Q; then

‖F(yn)(t) − F(y)(t)‖Q ≤
Tα

Γ(α + 1)
f(., yn. , Kyn (.)) − f(., y. , Ky(.))

Q →n→∞
0
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2.5 Results for Perturbed NIFDE with Finite Delay | 41

because f is continuous.
Claim 2: Fmaps bounded sets to bounded sets in Q. Let γ∗ > 0, Bγ∗ = {y ∈ Q : ‖y‖Q ≤

γ∗}; we need to show that for each γ∗ > 0 there exists l > 0 such that for y ∈ Bγ∗ ,
‖Fy‖Q ≤ l. By (2.23.1) we have for any t ∈ J

‖F(y)(t)‖ ≤ |φ(0)| + 1
Γ(α)

t

∫
0

(t − s)α−1‖f(s, ys , Ky(s))‖ds

≤ |φ(0)| + T
α(p∗ + q∗γ∗)
Γ(α + 1) +

r∗

Γ(α)

t

∫
0

(t − s)α−1‖Ky(s)‖ds , (2.56)

where p∗ = supt∈J p(t), and q∗ = supt∈J q(t). On the other hand, we have for any t ∈ J

‖Ky(t)‖ ≤ ‖f(t, yt , Ky(t))‖ + ‖g(t, yt) − g(t, 0)‖ + ‖g(t, 0)‖
≤ p∗ + q∗γ∗ + r∗‖Ky(t)‖ + Lγ∗ + g∗ ,

where g∗ = sups∈J ‖g(s, 0)‖. Thus,

‖Ky(t)‖ ≤
1

1 − r∗ (p
∗ + q∗γ∗ + Lγ∗ + g∗) := M . (2.57)

Combining (2.57) and (2.56), we find that

‖F(y)(t)‖ ≤ |φ(0)| + T
α(p∗ + q∗γ∗)
Γ(α + 1) +

r∗Tα

Γ(α + 1)M := d .

If t ∈ [−r, 0], then
‖F(y)(t)‖ ≤ φ

C ,

so
‖Fy‖Q ≤ max{φ

C , d} = l .

Claim 3: F maps bounded sets to equicontinuous sets of Q. Let t1, t2 ∈ (0, T], t1 < t2,
Bγ∗ be a bounded set of Q, which is as defined previously (Claim 2), and let y ∈ Bγ∗ .
Then

‖F(y)(t2) − F(y)(t1)‖ ≤ ‖
1
Γ(α)

t1

∫
0

[(t2 − s)α−1 − (t1 − s)α−1] f(s, ys , Ky(s))ds‖

+ ‖
1
Γ(α)

t2

∫
t1

(t2 − s)α−1f(s, ys , Ky(s))ds‖

≤
(p∗ + q∗γ∗ + r∗M)

Γ(α)

t1

∫
0

[(t1 − s)α−1 − (t2 − s)α−1] ds

+
(p∗ + q∗γ∗ + r∗M)

Γ(α)

t2

∫
t1

(t2 − s)α−1ds
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42 | 2 Nonlinear Implicit Fractional Differential Equations

≤
(p∗ + q∗γ∗ + r∗M)

Γ (α + 1)
[2(t2 − t1)α − tα1 − t

α
2]

≤
2 (p∗ + q∗γ∗ + r∗M)

Γ (α + 1)
(t2 − t1)α .

As t1 → t2, the right-hand side of the preceding inequality tends to zero. Consequently,
Theorem 1.54 allows us to conclude that the operator F : Q → Q is relatively compact.
Hence, operator F is completely continuous.

Claim 4: G is a contraction. Let y, ỹ ∈ Q; then for every t ∈ J

‖G(y)(t) − G(ỹ)(t)‖ ≤ 1
Γ(α)

t

∫
0

(t − s)α−1‖g(s, ys) − g(s, ỹs)‖ds

≤
L
Γ(α)

t

∫
0

(t − s)α−1 ‖ys − ̃ys‖C ds

≤
TαL

Γ(α + 1) ‖y − ỹ‖∞ .

Thus,
‖G(y) − G(ỹ)‖Q ≤

TαL
Γ(α + 1) ‖y − ỹ‖Q .

By (2.55) G is a contraction.
Claim 5: A priori bounds.We will show that the set

Ω = {y ∈ Q : y = λF(y) + λG ( yλ) for λ ∈ (0, 1)}

is bounded. In fact, let y ∈ Ω; then y = λF(y) + λG( yλ ) for some 0 < λ < 1. Then for each
t ∈ J we have

y(t) = λ[
[
|φ(0)| + 1

Γ(α)

t

∫
0

(t − s)α−1f(s, ys , Ky(s))ds +
1
Γ(α)

t

∫
0

(t − s)α−1g (s, ysλ ) ds
]

]
.

By (2.20.3) and (2.23.1), for every t ∈ J we have

‖y(t)‖ ≤ |φ(0)| + q∗

Γ(α)

t

∫
0

(t − s)α−1 ‖ys‖C ds +
Tα(p∗ + r∗M)
Γ(α + 1)

+
λ
Γ(α)

t

∫
0

(t − s)α−1‖g (s, ysλ ) − g(s, 0)‖ds

+
λ
Γ(α)

t

∫
0

(t − s)α−1‖g(s, 0)‖ds

≤ |φ(0)| + Tα

Γ(α + 1) (p
∗ + r∗M + g∗) + (q

∗ + L)
Γ(α)

t

∫
0

(t − s)α−1 ‖ys‖C ds .
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We consider the function γ defined by

γ(t) = sup {‖y(s)‖ : − r ≤ s ≤ t} , 0 ≤ t ≤ T .

There exists t∗ ∈ [−r, T] such that γ(t) = ‖y(t∗)‖.
If t∗ ∈ [0, T], then, by the previous inequality, for t ∈ J we have

γ(t) ≤ |φ(0)| + Tα

Γ(α + 1) (p
∗ + r∗M + g∗) + (q

∗ + L)
Γ(α)

t

∫
0

(t − s)α−1γ(s)ds .

Applying Lemma 1.52, we obtain

γ(t) ≤ [|φ(0)| + Tα

Γ(α + 1) (p
∗ + r∗M + g∗)] [1 + δ(q

∗ + L)Tα

Γ(α + 1) ] := R ,

where δ = δ(α) is a constant. Thus for any t ∈ J, ‖y‖∞ ≤ γ(t) ≤ R. If t∗ ∈ [−r, 0], then
γ(t) = ‖φ‖C. Therefore,

‖y‖Q ≤ max {‖φ‖C , R} := A .

Thus, the set Ω is bounded. Therefore, problem (2.48)–(2.49) has at least one solution.

2.5.3 Ulam–Hyers Stability Results

For the implicit fractional order differential equation (2.48), we adopt the definition in
Rus [224] for Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–
Rassias stability, and generalized Ulam–Hyers–Rassias stability.

Definition 2.24. Equation (2.48) is Ulam–Hyers stable if there exists a real number
cf > 0 such that for each ϵ > 0 and for each solution z ∈ C1(J,ℝ) of the inequality

‖cDαz(t) − f(t, zt , cDαz(t)) − g(t, zt)‖ ≤ ϵ , t ∈ J ,

there exists a solution y ∈ C1(J,ℝ) of equation (2.48), with

‖z(t) − y(t)‖ ≤ cf ϵ , t ∈ J .

Definition 2.25. Equation (2.48) is generalized Ulam–Hyers stable if there exists ψf ∈
C(ℝ+,ℝ+), ψf (0) = 0, such that for each solution z ∈ C1(J,ℝ) of the inequality

‖cDαz(t) − f(t, zt , cDαz(t)) − g(t, zt)‖ ≤ ϵ , t ∈ J ,

there exists a solution y ∈ C1(J,ℝ) of equation (2.48), with

‖z(t) − y(t)‖ ≤ ψf (ϵ) , t ∈ J .
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44 | 2 Nonlinear Implicit Fractional Differential Equations

Definition 2.26. Equation (2.48) is Ulam–Hyers–Rassias stable with respect to ϕ ∈
C(J,ℝ+) if there exists a real number cf > 0 such that for each ϵ > 0 and for each
solution z ∈ C1(J,ℝ) of the inequality

‖cDαz(t) − f(t, zt , cDαz(t)) − g(t, zt)‖ ≤ ϵϕ(t) , t ∈ J ,

there exists a solution y ∈ C1(J,ℝ) of equation (2.48), with

‖z(t) − y(t)‖ ≤ cf ϵϕ(t), t ∈ J .

Definition 2.27. Equation (2.48) is generalizedUlam–Hyers–Rassias stablewith respect
to ϕ ∈ C(J,ℝ+) if there exists a real number cf,ϕ > 0 such that for each solution
z ∈ C1(J,ℝ) of the inequality

‖cDαz(t) − f(t, zt , cDαz(t)) − g(t, zt)‖ ≤ ϕ(t) , t ∈ J ,

there exists a solution y ∈ C1(J,ℝ) of equation (2.48), with

‖z(t) − y(t)‖ ≤ cf,ϕϕ(t), t ∈ J .

Remark 2.28. A function z ∈ C1(J,ℝ) is a solution of the inequality

‖cDαz(t) − f(t, zt , cDαz(t)) − g(t, zt)‖ ≤ ϵ , t ∈ J ,

if and only if there exists a function h ∈ C(J,ℝ) (which depends on y) such that
(i) ‖h(t)‖ ≤ ϵ, t ∈ J,
(ii) cDαz(t) = f(t, zt , cDαz(t)) + g(t, zt) + h(t), t ∈ J.

Remark 2.29. Clearly:
(i) Definition 2.24⇒ Definition 2.25.
(ii) Definition 2.26⇒ Definition 2.27.

Remark 2.30. A solution of the implicit differential equation

‖cDαz(t) − f(t, zt , cDαz(t)) − g(t, zt)‖ ≤ ϵ , t ∈ J ,

with fractional order is called a fractional ϵ-solution of the implicit fractional differential
equation (2.48).

Theorem 2.31. Assume (2.20.1)–(2.20.3) and (2.51) hold. Then problem (2.48)–(2.49) is
Ulam–Hyers stable.

Proof. Let ϵ > 0 and z ∈ Q be a function such that

‖cDαz(t) − f(t, zt , cDαz(t)) − g(t, zt)‖ ≤ ϵ for each t ∈ J .

This inequality is equivalent to

‖cDαz(t) − Kz(t)‖ ≤ ϵ . (2.58)
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Let y ∈ Q be the unique solution of the problem

{
{
{

cDαy(t) = f(t, yt , cDαy(t)) + g(t, yt), t ∈ J ,
z(t) = y(t) = φ(t), t ∈ [−r, 0] .

Integrating inequality (2.58), we obtain

‖z(t) − IαKz(t)‖ ≤
ϵTα

Γ(α + 1)
.

We consider the function γ2 defined by

γ2(t) = sup {‖z(s) − y(s)‖ : − r ≤ s ≤ t} , 0 ≤ t ≤ T .

Then there exists t∗ ∈ [−r, T] such that γ2(t) = ‖z(t∗) − y(t∗)‖. If t∗ ∈ [−r, 0], then
γ2(t) = 0. If t∗ ∈ [0, T], then

γ2(t) ≤ ‖z(t) − IαKz(t)‖ + Iα‖Kz(t) − Ky(t)‖

≤
ϵTα

Γ(α + 1) + I
α‖Kz(t) − Ky(t)‖ . (2.59)

On the other hand, we have

‖Kz(t) − Ky(t)‖ ≤ ‖f(t, zt , Kz(t)) − f(t, yt , Ky(t)‖
+ ‖g(t, zt) − g(t, yt)‖
≤ (K + L)γ2(t) + K‖Kz(t) − Ky(t)‖ ,

so
‖Kz(t) − Ky(t)‖ ≤

K + L
1 − K

γ2(t) . (2.60)

Substituting (2.60) in inequality (2.59), we get

γ2(t) ≤
ϵTα

Γ (α + 1)
+

K + L
(1 − K) Γ (α)

t

∫
0

(t − s)α−1γ2(s)ds ,

and by Gronwall’s lemma

γ2(t) ≤
ϵTα

Γ(α + 1) [
1 + (K + L)T

ασ1
(1 − K)Γ (α + 1)

] := cϵ ,

where σ1 = σ1(α) is a constant.

If we set ψ(ϵ) = cψ;ψ(0) = 0, then problem (2.48)–(2.49) is generalized Ulam–Hyers
stable.
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46 | 2 Nonlinear Implicit Fractional Differential Equations

Theorem 2.32. Assume (2.20.1)–(2.20.3) and (2.51) hold and (2.32.1) there exists an
increasing function ϕ ∈ C(J,ℝ+) and there exists λϕ > 0 such that for any t ∈ J

Iαϕ(t) ≤ λϕϕ(t) .

Then problem (2.48)–(2.49) is Ulam–Hyers–Rassias stable.

Proof. Let z ∈ Q be a solution of the inequality

‖cDαz(t) − f(t, zt , cDαz(t)) − g(t, zt)‖ ≤ ϵϕ(t) , t ∈ J, ϵ > 0 .

This inequality is equivalent to

‖cDαz(t) − Kz(t)‖ ≤ ϵϕ(t) . (2.61)

Let y ∈ Q be the unique solution of the Cauchy problem

{
{
{

cDαy(t) = f(t, yt , cDαy(t)) + g(t, yt), t ∈ J ,
z(t) = y(t) = φ(t), t ∈ [−r, 0] .

Integrating (2.61), we obtain for any t ∈ J

‖z(t) − IαKz(t)‖ ≤ ϵIαϕ(t) ≤ ϵλϕϕ(t) .

Using the function γ2 defined in the proof of Theorem 2.31, we see that if t∗ ∈ [−r, 0],
then γ2(t) = 0, and if t∗ ∈ [0, T], then we have

γ2(t) ≤ ‖z(t) − IαKz(t)‖ + Iα‖Kz(t) − Ky(t)‖
≤ ϵλϕϕ(t) + Iα‖Kz(t) − Ky(t)‖ . (2.62)

It follows that
‖Kz(t) − Ky(t)‖ ≤

K + L
1 − K

γ2(t) . (2.63)

Substituting into (2.63) in the inequality (2.62), we obtain

γ2(t) ≤ ϵλϕϕ(t) +
K + L
(1 − K) Γ(α)

t

∫
0

(t − s)α−1γ2(s)ds ,

and by Gronwall’s lemma we get

γ2(t) ≤ ϵλϕϕ(t)[1 +
(K + L)Tασ2
(1 − K)Γ(α + 1)

]

≤ [λϕ (1 +
(K + L)Tασ2
(1 − K)Γ(α + 1)

)] ϵϕ(t) = cϵϕ(t) ,

where σ2 = σ2(α) is a constant. Thus problem (2.48)–(2.49) is Ulam–Hyers–Rassias
stable.
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2.5.4 An Example

Consider the problem of the perturbed differential equation of fractional order

cD
1
2 y(t) = 2 + ‖yt‖C + ‖cD

1
2 y(t)‖

12et+9 (1 + ‖yt‖C + ‖cD
1
2 y(t)‖)

+
e−t‖yt‖C

3 (1 + ‖yt‖C)
, t ∈ [0, 1] , (2.64)

y(t) = φ(t) , t ∈ [−r, 0] , (2.65)

where φ ∈ C([−r, 0],ℝ). Set

f(t, u, v) = 2 + u + v
12et+9(1 + u + v)

, t ∈ [0, 1], u, v ∈ [0, +∞) × [0, +∞) .

It is clear that f is jointly continuous.
For each u ∈ C([−r, 0],ℝ), v ∈ ℝ, and t ∈ [0, 1],

f(t, u, v) ≤ 1
12et+9
(2 + ‖u‖C + ‖v‖) .

Hence, condition (2.23.1) is satisfied by p(t) = 1
6et+9 , r(t) = q(t) = 1

12et+9 , and
r∗ = 1

12e9 < 1. Set

g(t, w) = e−tw
3(1 + w) , t ∈ [0, 1] , w ∈ [0, +∞) .

It is clear that g is continuous; moreover, we have for any u, v ∈ C([−r, 0],ℝ) and t ∈ J

‖g(t, u) − g(t, v)‖ ≤ 13 ‖u − v‖C .

Thus, (2.20.3) is satisfied, and we have

TαL
Γ(α + 1) =

(1) 12 × 1
3

Γ (32)
=

1
3Γ (32)

=
1

3 × 1
2 Γ (

1
2)
=

2
3√π
< 1 .

Hence, (2.20.1), (2.20.3), (2.23.1), and (2.55) are satisfied, so by Theorem 2.23, problem
(2.64)–(2.65) has at least one solution.

2.6 Existence and Stability Results for Neutral NIFDE with Finite
Delay

2.6.1 Introduction

In this section,we establish existence, uniqueness, and stability results for the nonlinear
implicit neutral fractional differential equation with finite delay

cDα [y(t) − g(t, yt)] = f(t, yt , cDαy(t)) , t ∈ J = [0, T], T > 0, 0 < α ≤ 1 , (2.66)
y(t) = φ(t), t ∈ [−r, 0], r > 0 , (2.67)

Brought to you by | UCL - University College London
Authenticated

Download Date | 2/10/18 4:19 PM



48 | 2 Nonlinear Implicit Fractional Differential Equations

where f : J × C([−r, 0],ℝ) × ℝ → ℝ and g : J × C([−r, 0],ℝ) are given functions such
that g(0, φ) = 0 and φ ∈ C([−r, 0],ℝ).

Two examples are given to show the applicability of our results.

2.6.2 Existence of Solutions

Set

Ω = {y : [−r, T]→ ℝ : y|[−r,0] ∈ C([−r, 0],ℝ) and y|[0,T] ∈ C([0, T],ℝ)} .

Note that Ω is a Banach space with the norm

‖y‖Ω = sup
t∈[−r,T]
|y(t)| .

Definition 2.33. A function y ∈ Ω is called a solution of problem (2.66)–(2.67) if it
satisfies equation (2.66) on J and condition (2.67) on [−r, 0].

Lemma 2.34. Let 0 < α ≤ 1 and h : [0, T]→ ℝ be a continuous function. Then the linear
problem

cDα [y(t) − g(t, yt)] = h(t) , t ∈ J ,
y(t) = φ(t) , t ∈ [−r, 0] ,

has a unique solution given by

y(t) =
{{{{
{{{{
{

φ(0) + g(t, yt) +
1
Γ(α)

t

∫
0

(t − s)α−1h(s)ds, t ∈ J ,

φ(t), t ∈ [−r, 0] .

Lemma 2.35. Let f(t, u, v) : J × C([−r, 0],ℝ) × ℝ → ℝ be a continuous function. Then
problem (2.66)–(2.67) is equivalent to the problem

y(t) =
{
{
{

φ(0) + IαKy(t), t ∈ J ,
φ(t), t ∈ [−r, 0] ,

(2.68)

where Ky ∈ C(J,ℝ) satisfies the functional equation

Ky(t) = f(t, yt , Ky(t)) + cDαg(t, yt) .

Proof. Let y be a solution of problem (2.68); we need to show that y is a solution of
(2.66)–(2.67). We have

y(t) =
{
{
{

φ(0) + IαKy(t), t ∈ J ,
φ(t), t ∈ [−r, 0] .
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For t ∈ [−r, 0] we have y(t) = φ(t), so condition (2.67) is satisfied.
On the other hand, for t ∈ J we have

cDαy(t) = Ky(t) = f(t, yt , Ky(t)) + cDαg(t, yt) .

So
cDα [y(t) − g(t, yt)] = f(t, yt , cDαy(t)) .

Then y is a solution of problem (2.66)–(2.67).

Lemma 2.36. Assume
(2.36.1) f : J × C([−r, 0],ℝ) ×ℝ→ ℝ is a continuous function.
(2.36.2) There exist K > 0 and 0 < K < 1 such that

|f(t, u, v) − f(t, ū, v̄)| ≤ K ‖u − ū‖C + K|v − v̄|

for any u, ū ∈ C([−r, 0],ℝ), v, v̄ ∈ ℝ and t ∈ J.
(2.36.3) There exists L > 0 such that

|g(t, u) − g(t, v)| ≤ L‖u − v‖C

for any u, v ∈ C([−r, 0],ℝ) and t ∈ J. If

KTα

(1 − K) Γ(α + 1)
+

L
(1 − K)

< 1 , (2.69)

then problem (2.66)–(2.67) has a unique solution.

Proof. Consider the operator N : Ω → Ω defined by

(Ny)(t) =
{
{
{

φ(0) + IαKy(t), t ∈ J
φ(t), t ∈ [−r, 0] .

(2.70)

By Lemma 2.35, it is clear that the fixed points of N are the solutions of problem
(2.66)–(2.67).

Let y, ỹ ∈ Ω. If t ∈ [−r, 0], then

‖(Ny)(t) − (Nỹ)(t)‖ = 0 .

For t ∈ J we have

‖(Ny)(t) − (Nỹ)(t)‖ = ‖IαKy(t) − IαKỹ(t)‖ ≤ Iα‖Ky(t) − Kỹ(t)‖ . (2.71)

For any t ∈ J

‖Ky(t) − Kỹ(t)‖ ≤ ‖f(t, yt , Ky(t)) − f(t, ỹt , Kỹ(t))‖
+ cDα‖g(t, yt) − g(t, ỹt)‖
≤ K ‖yt − ỹt‖C + K‖Ky(t) − Kỹ(t)‖
+ cDα‖g(t, yt) − g(t, ỹt)‖ .
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50 | 2 Nonlinear Implicit Fractional Differential Equations

Thus,

‖Ky(t) − Kỹ(t)‖ ≤
K

1 − K
‖yt − ỹt‖C + (

1
1 − K
) cDα‖g(t, yt) − g(t, ỹt)‖ . (2.72)

Substituting into (2.72) in the inequality (2.71) we have

‖Ny(t) − Nỹ(t)‖ ≤ K
(1 − K) Γ(α)

t

∫
0

(t − s)α−1 ‖ys − ỹs‖C ds

+
1

1 − K
Iα cDα‖g(t, yt) − g(t, ỹt)‖

≤
KTα

(1 − K) Γ (α + 1)
‖y − ỹ‖Ω

+
1

1 − K
(‖g(t, yt) − g(t, ỹt)‖ + ‖g(0, y0) − g (0, ỹ0) ‖)

≤
KTα

(1 − K) Γ (α + 1)
‖y − ỹ‖Ω +

L
1 − K
‖yt − ỹt‖C

≤ [
KTα

(1 − K) Γ(α + 1)
+

L
1 − K
] ‖y − ỹ‖Ω .

Thus,

‖Ny − Nỹ‖Ω ≤ [
KTα

(1 − K) Γ(α + 1)
+

L
(1 − K)

] ‖y − ỹ‖Ω .

From (2.69) it follows that N has a unique fixed point that is the unique solution of
problem (2.66)–(2.67).

2.6.3 Ulam–Hyers Stability Results

A solution of the implicit differential equation

‖cDαz(t) − f(t, zt , cDαz(t)) − cDαg(t, zt)‖ ≤ ϵ , t ∈ J ,

with fractional order is called a fractional ϵ-solution of implicit fractional differential
equation (2.66).

Theorem 2.37. Assume (2.36.1)–(2.36.3) and (2.69) hold. If

K + L < 1 , (2.73)

then problem (2.66)–(2.67) is Ulam–Hyers stable.

Proof. Let ϵ > 0 and z ∈ Ω be a function such that

‖cDαz(t) − f(t, zt , cDαz(t)) − cDαg(t, zt)‖ ≤ ϵ for each t ∈ J .
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This inequality is equivalent to

‖cDαz(t) − Kz(t)‖ ≤ ϵ . (2.74)

Let y ∈ Ω be the unique solution of the problem

{
{
{

cDα [y(t) − g(t, yt)] = f(t, yt , cDαy(t)), t ∈ J
z(t) = y(t) = φ(t), t ∈ [−r, 0] .

Integrating the inequality (2.74), we obtain

‖z(t) − IαKz(t)‖ ≤
ϵTα

Γ(α + 1) .

We consider the function γ1 defined by

γ1(t) = sup {‖z(s) − y(s)‖ : − r ≤ s ≤ t} , 0 ≤ t ≤ T .

Then there exists t∗ ∈ [−r, T] such that γ1(t) = ‖z(t∗) − y(t∗)‖. If t∗ ∈ [−r, 0], then
γ1(t) = 0. If t∗ ∈ [0, T], then

γ1(t) ≤ ‖z(t) − IαKz(t)‖ + Iα‖Kz(t) − Ky(t)‖

≤
ϵTα

Γ(α + 1) + I
α‖Kz(t) − Ky(t)‖ . (2.75)

On the other hand, we have

‖Kz(t) − Ky(t)‖ ≤ ‖f(t, zt , Kz(t)) − f(t, yt , Ky(t)‖
+ cDα‖g(t, zt) − g(t, yt)‖
≤ Kγ1(t) + K‖Kz(t) − Ky(t)‖
+ cDα‖g(t, zt) − g(t, yt)‖ ,

so
‖Kz(t) − Ky(t)‖ ≤

K
1 − K

γ1(t) +
1

1 − K
cDα‖g(t, zt) − g(t, yt)‖ . (2.76)

From (2.76) and (2.75) we obtain

γ1(t) ≤
ϵTα

Γ (α + 1)
+

K
(1 − K) Γ (α)

t

∫
0

(t − s)α−1γ1(s)ds

+
1

1 − K
‖g(t, zt) − g(t, yt)‖

≤
ϵTα

Γ(α + 1) +
K

(1 − K) Γ(α)

t

∫
0

(t − s)α−1γ1(s)ds

+
L

1 − K
γ1(t) .
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52 | 2 Nonlinear Implicit Fractional Differential Equations

Then

γ1(t) ≤
ϵTα (1 − K)

[1 − (K + L)] Γ(α + 1)
+

K
[1 − (K + L)] Γ(α)

t

∫
0

(t − s)α−1γ1(s)ds .

By Gronwall’s lemma

γ1(t) ≤
ϵTα (1 − K)

[1 − (K + L)] Γ(α + 1)
[1 + KTασ1
[1 − (K1 + L)] Γ (α + 1)

] := cϵ ,

where σ1 = σ1(α) is a constant. This completes the proof of the theorem. Moreover,
if we set ψ(ϵ) = cψ;ψ(0) = 0, then problem (2.66)–(2.67) is generalized Ulam–Hyers
stable.

Theorem 2.38. Assume (2.36.1)–(2.36.3), (2.69), and (2.73) hold and
(2.45.1) there exists an increasing function ϕ ∈ C(J,ℝ+), and there exists λϕ > 0 such

that for any t ∈ J
Iαϕ(t) ≤ λϕϕ(t) .

Then problem (2.66)–(2.67) is Ulam–Hyers–Rassias stable.

Proof. Let z ∈ Ω be a solution of the inequality

‖cDαz(t) − f(t, zt , cDαz(t)) − cDαg(t, zt)‖ ≤ ϵϕ(t) , t ∈ J, ϵ > 0 .

This inequality is equivalent to

‖cDαz(t) − Kz(t)‖ ≤ ϵϕ(t) . (2.77)

Let y ∈ Ω be the unique solution of the Cauchy problem

{
{
{

cDα [y(t) − g(t, yt)] = f(t, yt , cDαy(t)), t ∈ J ,
z(t) = y(t) = φ(t), t ∈ [−r, 0] .

Integrating (2.77), we obtain for any t ∈ J

‖z(t) − IαKz(t)‖ ≤ ϵIαϕ(t) ≤ ϵλϕϕ(t) .

Using the function γ1 defined in the proof of Theorem 2.37, we have that if t∗ ∈ [−r, 0],
then γ1(t) = 0. If t∗ ∈ [0, T], then we have

γ1(t) ≤ ‖z(t) − IαKz(t)‖ + Iα‖Kz(t) − Ky(t)‖
≤ ϵλϕϕ(t) + Iα‖Kz(t) − Ky(t)‖ . (2.78)

Thus,
‖Kz(t) − Ky(t)‖ ≤

K
1 − K

γ1(t) +
1

1 − K
cDα‖g(t, zt) − g(t, yt)‖ . (2.79)
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Substituting into (2.79) in (2.78), we obtain

γ1(t) ≤ ϵλϕϕ(t) +
K

(1 − K) Γ(α)

t

∫
0

(t − s)α−1γ1(s)ds

+
1

1 − K
‖g(t, zt) − g(t, yt)‖

≤ ϵλϕϕ(t) +
K

(1 − K) Γ(α)

t

∫
0

(t − s)α−1γ1(s)ds +
L

1 − K
γ1(t) ,

so

γ1(t) ≤
(1 − K) ϵλϕϕ(t)

1 − (K + L)
+

K
[1 − (K + L)] Γ (α)

t

∫
0

(t − s)α−1γ1(s)ds .

By Gronwall’s lemma we get

γ1(t) ≤
(1 − K) ϵλϕϕ(t)

1 − (K + L)
[1 + KTασ2
[1 − (K + L)] Γ(α + 1)

]

≤ [
(1 − K) λϕ
1 − (K + L)

(1 + KTασ2
[1 − (K + L)] Γ(α + 1)

)] ϵϕ(t) = cϵϕ(t) ,

where σ2 = σ2(α) is a constant. Then problem (2.66)–(2.67) is Ulam–Hyers–Rassias
stable.

2.6.4 Examples

Example 1. Consider the neutral fractional differential equation

cD
1
2 [y(t) − te−t‖yt‖C

(9 + et) (1 + ‖yt‖C)
] =

2 + ‖yt‖C + |cD
1
2 y(t)|

12et+9 (1 + ‖yt‖C + |cD
1
2 y(t)|)

, t ∈ [0, 1] ,

(2.80)

y(t) = φ(t); t ∈ [−r, 0] , r > 0 , (2.81)

where φ ∈ C([−r, 0],ℝ). Set

g(t, w) = te−tw
(9 + et)(1 + w)

, (t, w) ∈ [0, 1] × [0, +∞)

and

f(t, u, v) = 2 + u + v
12et+9(1 + u + v)

, (t, u, v) ∈ [0, 1] × [0, +∞) × [0, +∞) .
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Observe that g(0, w) = 0 for any w ∈ [0, +∞). Clearly, the function f is continuous.
Hence, (2.36.1) is satisfied. We have

|f(t, u, v) − f(t, ū, v̄)| ≤ 1
12e9
(‖u − ū‖C + ‖v − v̄‖)

|g(t, u) − g(t, ū)| ≤ 1
10 ‖

u − ū‖C

for any u, ū ∈ C([−r, 0],ℝ), v, v̄ ∈ ℝ and t ∈ [0, 1]. Hence, conditions (2.36.2) and
(2.36.3) are satisfied by K = K = 1

12e9 and L =
1
10 .

The condition
KTα

(1 + K)Γ(α + 1)
+

L
(1 − K)

=
20 + 12e9√π

10√π(12e9 − 1)
< 1

is satisfied by T = 1, α = 1
2 .

By Lemma 2.36, problem (2.80)–(2.81) admits a unique solution.
Since

K + L = 10 + 12e
9

120e9
< 1 ,

by Theorem 2.37, problem (2.80)–(2.81) is Ulam–Hyers stable.
Example 2. Consider the neutral fractional differential equation

cD
1
2 [y(t) − t

5et+2 (1 + ‖yt‖C)
] =

e−t

7 + et
[
‖yt‖C

1 + ‖yt‖C
−
|cD

1
2 y(t)|

1 + |cD
1
2 y(t)|
] , t ∈ [0, 1] ,

(2.82)

y(t) = φ(t) , t ∈ [−r, 0] , r > 0 , (2.83)

where φ ∈ C([−r, 0],ℝ).
Set

g(t, w) = t
5et+2(1 + w)

, (t, w) ∈ [0, 1] × [0, +∞) ,

and

f(t, u, v) = e−t

(7 + et)
(

u
1 + u −

v
1 + v) , (t, u, v) ∈ [0, 1] × [0, +∞) × [0, +∞) .

Observe that g(0, w) = 0 for any w ∈ [0, +∞). Clearly, the function f is continuous, so
(2.36.1) is satisfied.

|f(t, u, v) − f(t, ū, v̄)| ≤ 18 ‖u − ū‖C +
1
8 ‖v − v̄‖

|g(t, u) − g(t, ū)| ≤ 1
5e2
‖u − ū‖C

for any u, ū ∈ C([−r, 0],ℝ), v, v̄ ∈ ℝ and t ∈ [0, 1].
Hence, conditions (2.36.2) and (2.36.3) are satisfied by K = K = 1

8 and L =
1
5e2 .

We have
KTα

(1 + K)Γ(α + 1)
+

L
(1 − K)

=
10e2 + 8√π
35e2√π

< 1 ,
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so by Lemma 2.36, problem (2.82)–(2.83) admits a unique solution.
Since

K + L = 5e
2 + 8

40e2
< 1 ,

by Theorem 2.37, problem (2.82)–(2.83) is Ulam–Hyers stable.

2.7 Notes and Remarks

The results of Chapter 2 are taken from Benchohra et al. [91, 102, 104]. Other results
may be found in [20, 15, 26, 34, 43, 94, 248, 253].
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