2 Nonlinear Implicit Fractional Differential Equations

2.1 Introduction

Many techniques have been developed for studying the existence and uniqueness of
solutions of initial value problems (IVPs) for fractional differential equations. Several
authors have tried to develop techniques that depend on the Darbo or Monch fixed
point theorem with the Hausdorff or Kuratowski measure of noncompactness. The
notion of the measure of noncompactness has been defined in many ways. In 1930,
Kuratowski [185] defined the measure of noncompactness, a(A), of a bounded subset A
of a metric space (X, d), and in 1955, Darbo [132] introduced a new type of fixed point
theorem for noncompactness maps.

Recently, fractional differential equations have been studied by Abbas et al. [35,
43], Baleanu et al. [78, 80], Diethelm [137], Kilbas and Marzan [180], Srivastava et
al. [181], Lakshmikantham et al. [187], and Samko et al. [239]. The purpose of this
chapter is to establish existence and uniqueness results for some classes of implicit
fractional differential equations by using fixed point theory (Banach contraction
principle, Schauder’s fixed point theorem, the nonlinear alternative of a Leray-Schauder
type). Two other results are discussed; the first is based on Darbo’s fixed point theorem
combined with the technique of measures of noncompactness, the second is based on
Monch’s fixed point theorem. Some examples are included to show the applicability of
our results.

2.2 Existence and Stability Results for NIFDE

2.2.1 Introduction and Motivations

Recently, some mathematicians have considered boundary value problems (BVPs)
for fractional differential equations depending on the fractional derivative. In [89],
Benchohra et al. studied the problem involving Caputo’s derivative

°Du(t) = f(t, u(t), ‘D *u(t)), foreachte]:=[0,00), 1<a<2,
u(0) = ug, uisboundedonj.

In [203], Murad and Hadid, by means of Schauder fixed point theorem and the Banach
contraction principle, considered the BVP for the fractional differential equation

D%(t) = fit, y(t), DPy(t)), te(0,1),1<a<2,0<B<1,0<y<1,
y(0) =0, y(1) = Iy(s) ,

where D? is the Riemann-Liouville fractional derivative and f: [0, 1] x Rx R — Risa
continuous function.
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16 —— 2 Nonlinear Implicit Fractional Differential Equations

In [150], Lakoud and Khaldi studied the following BVP for fractional integral boundary
conditions:

‘Dly(t) = ft, y(t), “DPy(t)), te(0,1),1<g<2,0<p<1,
y(0)=0, y'(1) = alhy(1),

where €D is the Caputo fractional derivative and f: [0, 1] x Rx R — R is a continuous
function.

The purpose of this section is to establish existence and uniqueness results for the
implicit fractional order differential equation

°D(t) = f(t, y(t), °D*y(t)), foreachte]=[0,T], T>0,0<a<1, (21
y(0)=yo, (2.2)

where ¢D? is the Caputo fractional derivative, f: ] x R x R — R is a given function,
and yo € R.

2.2.2 Existence of Solutions

Let us define what we mean by a solution of problem (2.1)-(2.2).

Definition 2.1. A function u € C!(J, R) is said to be a solution of problem (2.1)—(2.2) if
u satisfies equation (2.1) and conditions (2.2) on J.

For the existence of solutions for problem (2.1)-(2.2), we need the following auxiliary
lemma.

Lemma 2.2. Let a function f(t, u,v): ] x R x R — R be continuous. Then the problem
(2.1)-(2.2) is equivalent to the problem

y(t) =yo +I%g(t), (2.3)

where g € C(J, R) satisfies the functional equation

g(t) = fit, yo + I"g(t), g(1)) .
Proof. If€D%y(t) = g(t), then I* D%y (t) = I*g(t). Thus, we obtain y(t) = yo+I%g(t). O

We are now in a position to state and prove our existence result for problem (2.1)-(2.2)
based on Banach’s fixed point theorem.

Theorem 2.3. Make the following assumptions:
(2.3.1) The function f : ] x R x R — R is continuous.
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2.2 Existence and Stability Results for NIFDE = 17

(2.3.2) There exist constants K > 0 and 0 < L < 1 such that
|f(t7 u, V) _f(ts as V)l < I<|u - ﬂ' + le - ]_/l

foranyu,v,ii,ve Randt € ].

If
KT®

L+ —«<1,
T+ ©
then there exists a unique solution for IVP (2.1)-(2.2) on J.

(2.4)

Proof. The proof will be given in several steps. Transform problem (2.1)—(2.2) into a
fixed point problem. Define the operator N: C(J, R) —» C(J, R) by

(Ny)(t) = yo +I"g(t), (2.5)
where g € C(J, R) satisfies the functional equation

g(0) = f(t, y(t), g(1)) .

Clearly, the fixed points of operator N are solutions of problem (2.1)-(2.2). Let u, w €
C(J, R). Then for t € ] we have

t
(NW)() - (Nw)(8) = ﬁ j(t _ )% (g(s) - h(s))ds ,
0

where g, h € C(J, R) are given by

g(t) = f(t, u(t), (1)) ,
h(t) = f(t, w(t), h(t)) .
Thenfort e J

t

1
|(Nu)(t) - (Nw)(8)] < @ J(l‘ - 5)*tig(s) - h(s)lds . (2.6)
0

By (2.3.2) we have
1g(t) = h(B)] = If(¢, u(t), g(t)) - f(t, w(t), h(t))|
< Klu(t) = w(t)| + L|g(t) - h(t)| .

Thus,
K

1-L

lg(t) — h(D)] < lu(t) - w(t)] .

By (2.6) we have
t

K a-1
|(Nu)(t) - (Nw)(8)] < m!(t—S) lu(s) - w(s)lds
KT®

Sa-Draen
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18 —— 2 Nonlinear Implicit Fractional Differential Equations

Then KTe
Nu-N < —-——|lu- .
[Nu — Nwlloo A DI+ 1) lu = Wlleo
By (2.4), operator N is a contraction. Hence, by Banach’s contraction principle, N has a

unique fixed point that is the unique solution of problem (2.1)-(2.2). O
Our next existence result is based on Schauder’s fixed point theorem.

Theorem 2.4. Assume (2.3.1) and (2.3.2) hold and
(2.4.1) There exist p, q, r € C(J, Ry) with r* = sup,¢; r(t) < 1 such that

Iftt, u, w)| < p(t) + q(t)|u] + r(t)lw| forte], andu,w e R.
If
q*Tﬂ
A-ra+1) 1’

where p* = sup,; p(t), and q* = sup,¢; q(t), then the IVP (2.1)-(2.2) has at least one
solution.

(2.7)

Proof. Consider operator N defined in (2.5). We will show that N satisfies the assump-
tions of Schauder’s fixed point theorem. The proof will be given in several steps.

Claim 1: N is continuous. Let {uy,} be a sequence such that u, — u in C(J, R). Then
foreacht e]

t
1
[N(un)(t) = N(u)(t)] < @ J(t - 8)"gn(s) - g(s)lds , (2.8)

where g,, g € C(J, R) satisfy

gn(t) = f(t, un(t), gn(t)

and
g(t) = f(t, u(t), g(b)) .
By (2.3.2) we have
1gn(t) — (O = If(t, un(t), gn(t)) - f(£, u(t), g(H)|
< Kluy (t) —u(t)| + L|gn(t) - g(t)] .
Then K
lgn(t) — g(t)| < 1 Llun(l‘) —u(t).

Since u, — u, we have g,(t) — g(t)asn — oo foreach t € J. Let n > 0 be such that,
for each t € J, we have |g,(t)] < n and |g(¢t)| < 1. Then

(t=5)"t1gn(s) - g(s)| < (t = $)* HIgn(s)] + 1g(s)I]
<2n(t-s)*1t.
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2.2 Existence and Stability Results for NIFDE == 19

For each t € J the function s — 25(t — s)*"! is integrable on [0, t]. By the Lebesgue
dominated convergence theorem and (2.8),

IN(un)(t) - N(w)(t)] = 0 asn — oo.

Hence,
IN(up) - N(u)leo =0 asn—oo.

Consequently, N is continuous.

Let
_ Mlyol +p*T*

R
= M- q* Ta ’
where M := (1 - r*)I'(a + 1), and define

Dr={ueC(U,R): |ulloo <R} .

It is clear that Dy is a bounded, closed, and convex subset of C(J, R).
Claim 2: N(DR) c Dg. Let u € Dg; we will show that Nu € Dg. Foreach t € ] we

have
t

1
INU(OI < 1yol + s J(t ~8)% Lg(s)lds . (29)

By (2.4.1) we have for each t € J

18O = If(t, u(t), g())l
< p(t) + g@Ou(®)] + r(6)|g()]
< p(t) + q(OR + r(0)1g (o)l
<p*+q*R+r*|g(t).

Then R
H<— =M.
18Ol < ——
Thus, (2.9) implies that
p*Ttx q*RTa
Nu(t)| <
INu(®)| < lyol + A miasD " M
‘T  g*RT®
< |y0| + I’T + q M
<R.

Hence, N(Dg) ¢ Dg.
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20 —— 2 Nonlinear Implicit Fractional Differential Equations

Claim 3: N(Dg) is relatively compact. Let t1, t; € J, t; < to, and let u € Dg. Then
ty

IN@)(E2) - N ()] = F()j[az—s)“—(tl 9" Jg(s)ds

t

_ c)a-1
*a )j[(tz 5)*Lg(s)ds

M
I'la+1)

As t; — t, the right-hand side of the preceding inequality tends to zero.

As a consequence of Claims 1-3, together with the Ascoli—Arzela theorem, we
conclude that N: C(J, R) — C(J, R) is continuous and compact. As a consequence of
Schauder’s fixed point theorem [149], we deduce that N has a fixed point that is a
solution of problem (2.1)-(2.2). O

(l’;Y - t(f + 2([’2 - tl)a) .

Our next existence result is based on the nonlinear alternative of the Leray-Schauder
type.

Theorem 2.5. Assume (2.3.1), (2.3.2), and (2.4.1) hold. Then IVP (2.1)-(2.2) has at least
one solution.

Proof. Consider operator N defined in (2.5). We will show that N satisfies the assump-
tions of the Leray—Schauder fixed point theorem. The proof will be given in several
claims.

Claim 1: Clearly N is continuous.

Claim 2: N maps bounded sets to bounded sets in C(J, R). Indeed, it is enough
to show that for any p > O there exist a positive constant ¢ such that for each
ueB,={ueccCy,R): |ulw < p} we have [Nl < £.

For u € B, we have, foreach t € J,

t
1 a-1
[Nu(t)] < Iyo|+—r( )J(t s)* M g(®)lds . (2.10)

By (2.4.1), for each t € J, we have

lg()] = If(t, u(t), g(6)l
< p() + q@Olu@®)] + r(0)1g®)
<p)+q)p +r®)Ig@)|
<pP+qp+riig®l.

Then

l8(t)] < p*—‘r”’ = M* .
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2.2 Existence and Stability Results for NIFDE = 21

Thus, (2.10) implies that

* A
N _.
INUO < ol + o3y
Hence,
M*T*
[Nulleo < lyol + m =1

Claim 3: Clearly, N maps bounded sets to equicontinuous sets of C(J, R). We conclude
that N: C(J, R) — C(J, R) is continuous and completely continuous.
Claim 4: A priori bounds. We now show there exists an open set U ¢ C(J, R), with
u+ AN(u), forA € (0,1)and u € oU.Letu € C(J, R) and u = AN(u) forsome 0 < A < 1.
Thus, for each t € ] we have
t

A
u(t) = Ayo + @ j(t —5)%1g(s)ds .
0

This implies by (2.3.2) that for each t € ] we have

t
()] < Iyol + j(t ~ )% ig(s)lds . (2.11)

0

1
I(a)
From (2.4.1) we have foreach t € J

lg(®)] = 1f(t, u(t), g(®)l
< p() + q(Ou(®)| + r(t)|g(D)]
<p*+q*lu®)l+r*|g()] .
Thus,
gD <

1
P g ).

Hence,
t

p*T[X q* a-1
A-ra+1)  1-r)@) J(f - 5)" u(s)lds .

lu(®)l < lyol +

Then Lemma 1.52 implies that for each t € J

p*T Kq*T®
[u(®)l < <|yo| + m) (1 + m) :

p*T* Kq*T® =
Iiteo < ('y"' TA-ma+) ) (1 T A ar 1)) =M. QD)

Thus,

Let
U={ueCy,R): |ulleo < M+1}.

By our choice of U, there is no u € oU such that u = AN(u) for A € (0,1). As a
consequence from Leray-Schauder’s theorem we deduce that N has a fixed point u in
U that is a solution of problem (2.1)-(2.2). O
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22 — 2 Nonlinear Implicit Fractional Differential Equations

2.2.3 Examples

Example 1. Consider the Cauchy problem

1 1
CD%)’(t) = - , foreachte[0,1],
2et1 (1 +Iy(0)] + <Dy (0)])
y(0)=1.
Set 1
flt,u,v) = tel0,1], u,veR.

2et i1+ ul+|v])’
Clearly, the function f is jointly continuous.
Forany u, v, 1,7V € Rand ¢ € [0, 1]

IfEs 0, ) = fit, 0, ) < 5 (=l + v =7

Hence, condition (2.3.2) is satisfied by K = L = Zle
It remains to show that condition (2.4) is satisfied. Indeed, we have
KT® ~ 1 .1
(1-Dla+1)  (2e-1)r(3)

It follows from Theorem 2.3 that problem (2.13)-(2.14) has a unique solution.
Example 2. Consider the Cauchy problem

(2+ Iy +1°D7y(0)])
2et1 (14 |y(0)] + 1DEy(0)])
y(0)=1.

CD%)/(t) = , foreachte[0,1],

Set
(2 + [ul +[v])

t,u,v) = ,

ft ) 2e1(1 + ul + |v|)

Clearly, function f is jointly continuous.
Foranyu,v,ii,v e Rand t € [0, 1]

te[0,1], u,veR.

_ 1 _ _
If(t, u, v) - f(t, u, v)| < z—e(lu —ul+|v-v).
Hence, condition (2.3.2) is satisfied by K = L = zie Also, we have
1
Iftt, u,v)| < W(Z +lul +[v]).

Thus, condition (2.4.1) is satisfied by p(t) = SA; and q(¢) = r(t) = 52

2ettl
Also,
q*T® 1

A-rI@+1D)  2e-Dr(3) | !

(213)

(2.14)

(2.15)

(2.16)

holds with T = 1, a = 1, and ¢* = r* = . It follows from Theorem 2.4 that problem

(2.15)-(2.16) has at least one solution.
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2.3 NIFDE with Nonlocal Conditions = 23

2.3 NIFDE with Nonlocal Conditions

2.3.1 Introduction and Motivations

The purpose of this section is to establish the existence, uniqueness, and uniform
stability of solutions of the implicit fractional-order differential equation with nonlocal
condition:

Dy (b = f(t, y(t), °D*y(t)), foreachteJ=[0,T], T>0,0<a<1, (217)
y(0)+ o) =yo, (2.18)

where ¢D% is the Caputo fractional derivative, f: ] x R x R — R is a given function,
¢: C(J, R) — Ris a continuous function, and y, € R.

2.3.2 Existence of Solutions

Let us define what we mean by a solution of problem (2.17)—(2.18).

Definition 2.6. A function u € C1(J, R) is said to be a solution of problem (2.17)-(2.18)
if u satisfies equation (2.17) on J and conditions (2.18).

For the existence of solutions for problem (2.17)-(2.18), we need the following auxiliary
lemma.

Lemma 2.7. Let f: ] x R x R — R be a continuous function. Then problem (2.17)—(2.18)
is equivalent to the problem

y() =yo - @) +1°g(0) , (219)
where g € C(J, R) satisfies the functional equation
g() =f(t,yo - p(y) + I"g(0), (1)) -

Proof. If €D*y(t) = g(t), then I* <D*y(t) = I%g(t). Thus, we obtain y(t) = yo — @(y) +
I%g(t). O

We are now in a position to state and prove our existence result for problem (2.17)—(2.18)
based on Banach’s fixed point theorem.

Theorem 2.8. Make the following assumptions:
(2.8.1)The function f: ] x R x R — R is continuous.
(2.8.2)There exist constants K > 0 and O < L < 1 such that

Iftt, u,v) - f(t, i, V)| < Klu-u|+Llv-7v| foranyu,v,ii,veR,te].
(2.8.3)There exists a constant O < y < 1 such that

low) — @) <ylu-u| foranyu,u e C(J,R).
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24 —— 2 Nonlinear Implicit Fractional Differential Equations

If
KT®

C=Y* A D+ U

then there exists a unique solution for problem (2.17)-(2.18) on J.

(2.20)

Proof. The proof will be given in several steps. Transform problem (2.17)—(2.18) into a

fixed point problem. Define the operator N: C(J, R) — C(J, R) by

N(y)(t) = yo - @(y) + I°g(t) ,

where g € C(J, R) satisfies the functional equation

g(0) = f(t, y(t), g(1)) .

(2.21)

Clearly, the fixed points of operator N are solutions of problem (2.17)—(2.18). Let u, w €

C(J, R). Then for t € ] we have

(Nu)(£) = (Nw)(t) = o(w) — @(u)

t
S PR _
* J(t )% (g(s) - h(s))ds ,

where g, h € C(J, R) are given by

g(t) = f(t, u(®), g(t)) ,
h(t) = f(t, w(t), h(t)) .

Then, for ¢t € J,

|(Nu)(t) — (Nw)(0)] < [@(u) - (W)
t

1 _ o)a-1 _
T J(t $)%|g(s) - h(s)|ds . 2.22)
By (2.8.2) we have
1g(t) = h(®)] = If(t, u(t), g(t) - f(t, w(t), h(t))]
< Klu(t) - w(t)| + L|g(t) - h(t)] .
Thus,
K
Ig(t) = h(B) < 11 [u(t) = w(t)| .
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2.3 NIFDE with Nonlocal Conditions == 25

From (2.22) and (2.8.3) we have

|(Nu)(t) — (Nw)(O)] < ylu(t) — w(D)]
t

J(t ~ )% u(s) - w(s)lds

(0]

K
T A<D

<ylu - wleo

t
K a-1
* gup W0 WOl gy | -9 s

{4

< Yt - Wloo + —— - wl
=Y T A DIa+1) o -

Then
KT®

TA-DIa+1)
By (2.20), operator N is a contraction. Hence, by Banach’s contraction principle, N has
a unique fixed point that is the unique solution of problem (2.17)-(2.18). O

[Nu-Nw|e < |y ] lu-wlw .

The second result is based on Krasnosel’skii’s fixed point theorem.
Let M := ey > @ := |9(0)], and f* := supocr If(t, 0, 0).

Theorem 2.9. Assume that (2.8.1)-(2.8.3) hold. If
y+MK<1, (2.23)
then problem (2.17)—(2.18) has at least one solution.

Proof. Consider operator N to be defined as in (2.21). We have

t
1
NOXO = Yo - 90 + s J(t ~ )% 1g(s)ds

where g € C(J, R) satisfies the functional equation

g(t) = fit, y(t), g(0) .

Let —
R> Iyo|+a+j/1f*
1-y-MK
and define
Dr={ueC(U,R): |ulleo <R}.

It is clear that Dy is a bounded, closed, and convex subset of C(J, R). Define on Dy
operators P and Q by

t
P(u)(t) = ﬁ J(t - 5)*1g(s)ds, (2.24)
0
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26 —— 2 Nonlinear Implicit Fractional Differential Equations

where g € C(J, R) satisfies the functional equation

g(t) = f(t, u(t), g())

and
QW)(®) = yo - p(v) . (2.25)
Claim 1: For any u,v € Dg, Pu + Qv € Dg. Forany u, v € Dg and t € ] we have
t
1 a-1
[P(u)(t) + Qv)(D)] < lyol + (V)] + @ J(t -$)" " g(s)lds . (2.26)

By (2.8.2) we have foreach t € J

lg(O)] = If(t, u(®), g())l
< If(e, u(v), g(0)) - fit, 0, 0)| + If(¢, 0, 0)])
< Kju(t)| + L|g(t)] + Sup If(t, 0, 0)I

<KR+Ligt)| +f*.

Then
(1-L)|gt)| < KR+f".
Thus,
KR +f*
gl < == - 27)

From (2.8.3) we have

W)l < lep(v) — p(0)] + [@(0)]
<ylvl+a

<YR+a.

Then, by (2.26), we get

KR +f*

[Pu)(t) + QV)(O)] < lyol + (YR + a) + A-Dl@

t
J(t—s)“‘lds
0

(KR +f*)T*
1-L)I(a+1)
=|yol + YR + a + M(KR + f*)

<R.

<lyol+ (yR+a) +

Thus, Pu + Qv € Dg.
Claim 2: Q is a contraction mapping on Dg. For any vy, v, € Dg, by (2.8.3) we have
[Q(v2) - Qv1)| < l@(v2) — @(v1)l

<ylva —vql.
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2.3 NIFDE with Nonlocal Conditions = 27

Thus,
1Q(v2) = Q(vi)lloo < ¥YIIV2 = Villoo »

and so Q is a contraction mapping.
Claim 3: P is continuous. Let {u,} be a sequence such that u, — u in C(J, R). Then
foreacht e ]

t
1
IPun)() = PO £ s J(t ~ )% gu(s) - g(s)lds , (2.28)

where gy, g € C(J, R) satisfy

gn(t) = f(t, un(t), gn(1)

and
g(t) = f(t, u(t), g(0)) .
By (2.8.2) we have
1gn(t) — g(®)] = If(t, un(t), gn(t)) — f(t, u(t), g(t)
< Klun(t) — u(t)| + Lign(t) - g0l ,
S0 K
Ign(t) —g(B)] < 1 _Llun(t) —u(t)| .

Since u, — u, we get g,(t) — g(t) asn — oo foreach t € J. Let n > 0 be such that, for
each t € ], we have |g,(¢)| < n and |g(t)| < n; then we have

(t =) 1gn(s) — g(s)I < (t— )% Ign(s)] + Ig(s)I]
<2n(t-s)*1t.

For each ¢ € J the function s — 21(t — s)* ! is integrable on [0, t]; then the Lebesgue
dominated convergence theorem and (2.28) imply that

[(Pun)(t) - (Pu)(t)) =0 asn —oo.

Hence,
IP(un) - P(u)|loo = O asn — oo.

Consequently, P is continuous.

Claim 4: P is compact. Let {u,} be a sequence on Dg. Then, for each t € J, we have

1

t
|P(un)(6)] < @ J(t - 5)*tign(s)lds , (2.29)
0

where g, € C(J, R) is given by

gn(t) = ft, un(t), gn(0)) .
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28 —— 2 Nonlinear Implicit Fractional Differential Equations

By (2.8.2) we have foreach t € J

Ign (O] = If(t, un(t), g(H)I
< |f(t, un(t), gn(t)) — f(t, 0, 0)| + If(¢, 0, 0)])
< Klup(8)| + Lign(H)] + sup |f(t, 0, 0)|

o<t<T

< KR+ Lign(t)| +f*.

Then
(1-L)gn(t) <KR+f*,
and so KR + f*
+
Ign(O < ——7— - (2.30)
Thus, (2.29) implies
_KR+f"

t
a-1
Pun)(O1 < s j (t - 5)%1ds
(KR +f*)T”‘
T A-LI(a+1)

< M(KR +f*)

and we see that {u,} is uniformly bounded.

Now we prove that {P(u,)} is equicontinuous. Let t1, t, € ], t; < t, and let u € Dg.
Then
t1

|(Pu)(t2) - (Pu)(t1)| = J[(tz -8)* = (t1 —5)* Mg(s)ds

1
I(a)
ty

_ o)a-1
F()J(tz $)%1g(s)ds

t

j 1€z — )1 = (¢1 - )™ |lg(s)lds
0

1
< —
I(a)
ty

1 a-1
‘ )j(tz—s) 8(s)lds

- KR +f*

T (1-LI(a+1)
As t; — t;, the right-hand side of the preceding inequality tends to zero. As a con-
sequence of Claims 1-4, together with the Ascoli—-Arzela theorem, we conclude that
N: C(J, R) — C(J, R) is continuous and compact. As a consequence of Krasnosel’skii’s
fixed point theorem, we deduce that N has a fixed point that is a solution of prob-
lem (2.17)-(2.18). O

(l’g - t? + 2(1’2 - tl)a) .
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2.3 NIFDE with Nonlocal Conditions =— 29

2.3.3 Stability Results

Here we consider the uniform stability of the solutions of problem (2.17)-(2.18) and

adopt the definitions in [138].

Definition 2.10. The solution of equation (2.17) is uniformly stable if for any € > 0
there exists 6(€) > 0 such that for any two solutions y(t) and y(t) corresponding to the
initial conditions (2.18) and y(0) = yo — @ (¥), respectively, with |yg — ¥o| < 8, one has

1y - ¥l < €.

Theorem 2.11. Assume (2.8.1)-(2.8.3) and (2.20) hold. Then the solutions of the Cauchy

problem (2.17)-(2.18) are uniformly stable.
Proof. Let y be a solution of

t
1
y(t) =yo-@y) + @ J(t -s)*1g(s)ds,
0

where g € C(J, R) satisfies the functional equation

g(t) = f(t, y(1), g(0) ,
and let ¥ be a solution of equation (2.31) such that
y0)=Yo- o).
Then we have .
SR T o 1 _ a1
Y0 =To - 9 + a5 (€= 9 Mhs)ds,
0

where h € C(J, R) satisfies the functional equation

h(t) = f(t, y(1), h(D)) .
By (2.31) and (2.32) we have

ly(6) = y(Ol < lyo = Yol + l@(y) - @(¥)]

t
1 a-1
T J(t -5)"1Ig(s) - h(s)lds

and by (2.8.2) we have

l8(t) = h(OI = If(t, y(0), g(1)) - f(t, ¥(O), h(D))]
< Kly(t) -yl + LIg(t) - h(®)l,

SO
K

180~ h(0) < 7=

ly(t) - y(O)I .

(2.31)

(2.32)

(2.33)
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30 —— 2 Nonlinear Implicit Fractional Differential Equations

Thus, (2.33) and (2.8.3) imply that

ly() = ¥(O)l < lyo = Yol + yly(t) - y(0)l
t

j(t ~ )% Ly(s) - §(s)lds

0
< yo=Yol +YlIly - ¥loo

K
T A-DI(

t

I(t - 5)*1ds

(0]

_ K
+ Sup VO =Yl T i

< yo=Yol +ylly = ¥loo
KT®

+"y_)/||oom.
Then
e Xy Sl < Iyo ol
This implies that

ly = Vllo < (1 =€) yo - Yol -

(2.34)

For € > 0 it suffices to make (1 — C)"|yg — Vol < €. This suggests that we choose
6 = (1 — C)e. Therefore, if |yo — ¥o| < 6(€), then ||y — ¥|loo < €. This implies that the

solution y is uniformly stable.

2.3.4 An Example

Consider the problem with nonlocal conditions

CD%Y(t) = ! - , foreachte[0,1],
2et1 (1 +Iy(0)] + <Dy (0)])
y(0)+o(y) =1,
where )
_
o) = R
Set
1

flt,u,v) =

, te[0,1], u,veR.
2et1(1 + u| + |v]) [0, 1]

Clearly, the function f is jointly continuous. For any u, v, it, v €« Rand t € [0, 1]

IfEs 0, )~ fit, 0, ) < 5 (=l + v =7
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Hence, condition (2.8.2) is satisfied by K = L = zle Let

o) = oru’ U“€ [0, 00),

and take u, v € [0, c0). Then we have

_ 1% _ 10|u —v|

lp@) - )1 = 10+u 10+ v| T (10 +u)(10 + V)

<1 lu-v|

=10 .
Thus the condition

KT®

C=Y* T Dra+D °

is satisfied by T = 1, y = 75, and a = 1. It follows from Theorems 2.9 and 2.1 that

problem (2.35)—(2.37) is a unique uniformly stable solution on J.

2.4 Existence Results for NIFDE in Banach Space
2.4.1 Introduction and Motivations

Recently, fractional differential equations have been studied by Abbas et al. [35, 43],
Baleanu et al. [78, 80], Diethelm [137], Kilbas and Marzan [180], Srivastava et al. [181],
Lakshmikantham et al. [187], and Samko et al. [239]. More recently, some mathemati-
cians have considered BVPs and boundary conditions for implicit fractional differential
equations.

In [164], Hu and Wang investigated the existence of solutions of nonlinear fractional
differential equations with integral boundary conditions

D%u(t) = f(t, u(t), DPu(t)), te(0,1), 1<a<2,0<f<1,

1
u(0) = up, u(1) = jg(S)u(S)ds,
0

where D% is the Riemann-Liouville fractional derivative, f: [0, 1] x Rx R — Risa
continuous function, and g is an integrable function.

In [241], by means of Schauder’s fixed point theorem, Su and Liu studied the
existence of solutions of nonlinear fractional BVPs involving Caputo’s derivative

D*u(t) = f(t, u(t), ‘DPu(t)), foreachte (0,1), 1<a<2, 0<B<1,
u(0)=u'(1)=0, oru’(1) =u(1) =0, oru(0) =u(1)=0,

where f: [0, 1] x R x R — R is a given continuous function.
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32 —— 2 Nonlinear Implicit Fractional Differential Equations

The purpose of this section is to establish existence and uniqueness results for the
implicit fractional differential equation

°Dy(t) = f(t, y(t), *D"y(t)), foreachte]:=[0,T], T>0,0<v<1, (2.38)

with the initial condition
y(0)=yo, (2.39)

where °D" is the Caputo fractional derivative, (E, | - ||) is a real Banach space,
f:Jx ExE — Eis a continuous function, and yq € E.

2.4.2 Existence of Solutions

Let (E; | - ||) be a Banach space and t € J. For a given set V of functions v: | — E, let us
use the notation

Vi) ={v(t),velV}, te]

and
Vi) ={v():veV,te]}.

Next we define what we mean by a solution of problem (2.38)—(2.39).

Definition 2.12. A function u € C1(J, E) is said to be a solution of problem (2.38)-(2.39)
if u satisfies equation (2.38) and condition (2.39) on J.

For the existence of solutions of problem (2.38)—(2.39), we need the following auxiliary
lemma.

Lemma 2.13. Suppose that the function f(t,u,v): ] x E x E — E is continuous; then
problem (2.38)-(2.39) is equivalent to the problem

y(t)=yo+1"g(t), (2.40)
where g € C(J, E) satisfies the functional equation
g(t) = f(t,yo + I'g(t), g(1)) .

Proof. If¢D"y(t) = g(t), then I" D'y(t) = I"g(t). Thus, we obtain y(t) = yo+1"g(t). O

We list the following conditions:
(2.13.1) The function f: ] x E x E — E is continuous.
(2.13.2) There exist constants K > 0 and O < L < 1, such that

IfCt, u, v) = f(t, w, V)|l < Kllu - all + Llv - V|

foranyu,v,ui,ve Eand t €].
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2.4 Existence Results for NIFDE in Banach Space =— 33

(2.13.3) There exist p, q, r € C(J, R;), with r* = sup,; r(t) < 1, such that

If(t, u, w)|l < p(t) + q(O)|u| + r(t)lw| forteJandu,w e R.

Remark 2.14 ([66]). If
If(t, u, v) - f(t, &, V)| < Kllu - ul| + L|v - 7|

forany u, v, 1,V € Eand t € ], then
(2.14.1)
a(f(t, B1, B2)) < Ka(B1) + La(By)

for each t € J and bounded sets B1, B, € E.

We are now in a position to state and prove our existence result for problem (2.38)-(2.39)
based on the concept of measures of noncompactness and Darbo’s fixed point theorem.

Theorem 2.15. Assume (2.13.1)-(2.13.3). If

KT

m <1 s (2.41)

then IVP (2.38)—(2.39) has at least one solution on J.

Proof. Transform problem (2.38)-(2.39) into a fixed point problem. Define the operator
N: C(,E) — C(, E) by
(Ny)(t) = yo +I"8(t) , (2.42)

where g € C(J, E) satisfies the functional equation

Clearly, the fixed points of operator N are solutions of problem (2.38)—(2.39). We will
show that N satisfies the assumptions of Darbo’s fixed point theorem. The proof will be
given in several steps.
Claim 1: N is continuous. Let u, w € C(J, E), and let {u,} be a sequence such that
U, — uin C(J, E). Then foreach t € J
1 t
INGan)(6) = N (O < o [ (6= lgn(s) - g()lds 243)

I'(v)
0

where g,,, g € C(J, E) such that
gn(t) = f(t, un(t), gn(t))

and

g(t) = f(t, u(®), g(1)) .
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34 —— 2 Nonlinear Implicit Fractional Differential Equations

By (2.13.2), for each t € J, we have

lgn(t) — gl = If(t, un(t), gn(6)) - f(t, u(®), gO)I
< Kllun(t) - u(®)ll + Llign(t) - g()] -

Then

K
-1 lun(t) = u(l -
Since u, — u, we get g,(t) — g(t) asn — oo foreach t € J.
Let a positive constant n > 0 be such that, for each ¢ € J, we have ||g,(¢)|| < n and

lg(®l < n.Then we have

lgn(t) - g(B)] <

(t=5)""gn(s) - g®)N < (¢ = $)" lgn(S)]l + llg(s)I]
<2n(t-s)t.

For each t € J, the function s — 27(t - s)V~! is integrable on [0, t], so by the Lebesgue
dominated convergence theorem and (7.2),

IN(up)(t) = N(u)(t)|| - 0asn — oco.

Then
IN(un) - N(u)lleo = Oasn — oco.

Consequently, N is continuous.

Let Iy . a
R> [yol +p

= M- q* Ta ’
where M := (1 - r*)[(a + 1), p* = sups; p(t), and g* = sup;¢; q(t).
Define

(.44)

Dr={ueCU,E): |uleo < R}.

It is clear that Dy is a bounded, closed, and convex subset of C(J, E).
Claim 2: N(Dg) c Dg. Let u € Dg. We will show that Nu € Dg. We have for each
te]

1
INu)Il < llyoll + ™ J(t -5)" " Hg(t)lds . (2.45)
0

By (2.13.3) we have

g1 = 1f(¢, u(t), g
< p(®) + q@Ou@ll + r@lg@)l
< p(t) + q(OR + r(H)1g(0)l
<p*+q"'R+rlg@ll.
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2.4 Existence Results for NIFDE in Banach Space =—— 35

Then foreach t € |

p* + q*R
D < —.
gl < -
Thus, (2.44) and (2.45) imply that
p*TY q*RTY

INu(®)] < llyoll +

A-rIwv+1)  (A-rIw+1)
p* TV . q*RTV
M M

< lyol +
<R.
Consequently,
N(DR) C DR .

Claim 3: N(Dg) is bounded and equicontinuous. By Claim 2 we have N(Dg) =
{N(u): u € Dg} c Dg. Then for each u € D we have |N(u)| < R. Thus, N(Dg)
isbounded. Let t1, t; € J, t; < t2, and let u € Dg. Then

t

|(Nu)(t2) - (Nu)(t1)| = J[(tz —5)"" = (t1 - )" Mg(s)ds

W
1 ¢
_ o1
) j[(tz 5)*1g(s)ds
t1
M
< m(t; — t‘ll +2(th -t1)Y).

As t; — t,, the right-hand side of the preceding inequality tends to zero, so N(Dg) is
equicontinuous.

Claim 4: The operator N: Bg — By is a strict set contraction.Let V c Bgand t € J;
then we have

a(N(V)(1)) = a({(Ny)(t),y € V})

t
1 v-1 .
< F( ) <|!(t )" a(g(s))ds: y € V} .

By (2.14.1), Remark 2.14, and Lemma 1.32, for each s € J,

a({g(s): y e V}) = a({f(s, y(s), g(s)): y € V})
< Ka({y(s),y € V}) + La({g(s): y € V}) .

Thus,

K
a({gls):y e Vh) < s—aly(s): y € V}.
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36 —— 2 Nonlinear Implicit Fractional Differential Equations

Then
t
v-1 .
aN(VO) < 55 L) T j — )" Ha(y(s))ds: y € V}
t
Ka (V) el
< —(1 “DI) J(t s)V"'ds
KT
S@-prosn*-
Therefore,

K v
NV ———
«WNV) < =P+ D
So, by (2.41), operator N is a set contraction. As a consequence of Theorem 1.45, we
deduce that N has a fixed point that is a solution of problem (2.38)-(2.39). O

ac(V).

Our next existence result for problem (2.38)-(2.39) is based on the concept of measures
of noncompactness and Monch’s fixed point theorem.

Theorem 2.16. Assume (2.13.1)-(2.13.3). Then IVP (2.38)—(2.39) has at least one solution.

Proof. Consider operator N defined in (2.42). We will show that N satisfies the assump-
tions of Monch’s fixed point theorem. We know that N: Bg — Bp is bounded and
continuous; we need to prove that the implication

[V=convN(V)or V=N{V)u{0}] = a(V)=0

holds for every subset V of Bg.

Now let V be a subset of Bg such that V ¢ conv(N(V) U {0}); now V is bounded
and equicontinuous, and therefore the function t — v(t) = a(V(t)) is continuous on J.
By (2.14.1), Lemma 1.33, and the properties of the measure a, we have for each t € J

v(t) < a(N(V)(t) u {0})
< a(N(V)(1))
<a{(Ny)(t): y e V}

t
_ o1 .
= @-Drm L)r< ) I (t=s)""aly(s): y € V] ds

t

j(t —s)"Iy(s)ds .

0

K
< -
- (1-D)I(v)

Lemma 1.52 implies that v(t) = O for each t € J, and so V(t) is relatively compact in E. In
view of the Ascoli-Arzela theorem, V is relatively compact in Bg. Applying Theorem 1.46
we conclude that N has a fixed point y € Bg. Hence, N has a fixed point that is a solution
of the problem (2.38)—(2.39). O
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2.5 Results for Perturbed NIFDE with Finite Delay =—— 37

2.4.3 An Example

Consider the infinite system

G + Iyl + 1Dy, (t)])

CD%yn(t) = . foreacht € [0, 1], (2.46)
3et*2(1 + [lyn ()]l + [€DZyn(t))
yn(0)=1. (2.47)
Set
o0
E=T'={y=/1,Y2,+-s¥n>-++)s ). lynl < 00}
n=1
and

G+ flull + (vl
3et*2(1 + Jlull + vll)

ft,u,v) = tel0,1], u,vekE,

(o]

where E is a Banach space with the norm |y| = Z |Vnl. Clearly, the function f is jointly
n=1

continuous. For any u, v, i1,V € Eand t € [0, 1]

o 2 _ _
If(t, u, v) - f(t, i, V)| < @(llu =ul+lv-vl).
Hence condition (2.13.2) is satisfied by K = L = % Also,

1
IfCt, u, V)l < WB +[lull + vl .

Thus, conditions (2.13.3) and (2.14.1) are satisfied by p(t) = e‘%’ and q(t) = r(t) = 39%
Theorem 2.16 implies that problem (2.46)—(2.47) has at least one solution on J.

2.5 Existence and Stability Results for Perturbed NIFDE with Finite
Delay

2.5.1 Introduction

In this section, we establish existence, uniqueness, and stability results for the perturbed
functional differential equations of fractional order with finite delay

CDaJ’(t)=f(t,Yt’CDa)’(t))+g(t,)’t), tE]Z[O, T]a T>Oa O<aS1) (2'48)
yit)=@(t), te[-1,0],7r>0, (2.49)

where f: Jx C([-1,0], R) xR —» Rand g: Jx C([-r, 0], R) — R are two given functions
and ¢ € C([-1, 0], R). The arguments are based upon the Banach contraction principle
and a fixed point theorem of Burton and Kirk.
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38 —— 2 Nonlinear Implicit Fractional Differential Equations

2.5.2 Existence of Solutions

Set
Q = {Y- [_r, T] - R: y|[—7,0] € C([_r’ 0]’ IR) and )’|[0,T] € C([O’ T]’ ]R)} 5
then Q is a Banach space with the norm

lylq = sup |y(®)I.
te[-r,T]

Definition 2.17. A function y € Q is called a solution of problem (2.48)-(2.49) if it
satisfies equation (2.48) on J and condition (2.49) on [-r, 0].

Lemma 2.18. Let 0 < a« < 1 and h: [0, T] — R be a continuous function. The linear
problem
‘Dy(t)=h(t), te],

Y(t) = (P(t) ’ t € [_r’ O] ’
has a unique solution given by

t
i _ o)a-1
YO = @(0) + @ J(t $)* “h(s)ds, te]

o(t), te[-r0].

Lemma 2.19. Let f(t, u,v): J x C([-r, 0], R) x R — R be a continuous function. Prob-
lem (2.48)—(2.49) is equivalent to the problem

(2.50)

o - {40(0) PR, te),
@(0), tel-r,0],

where Ky € C(J, R) satisfies the functional equation

Ky(t) = flt, ye, Ky (D) + 8(t, yo) -

Proof. Let y be a solution of problem (2.50); we want to show that y is a solution of
(2.48)—(2.49). We have

Yo - {(p(0)+1 Ky(6), te]
(P(t)) te [_r’ O]

for t € [-1, 0], so y(t) = (t), and we see that condition (2.49) is satisfied.
On the other hand, for t € ] we have

Dy(t) = Ky(t) = ft, ye, Ky () + 8(t, ye)
S0
Dy (t) = f(t, ye, “Dy(0) + g(t, yo) -
Then y is a solution of problem (2.48)—(2.49). O
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Lemma 2.20. Assume
(2.20.1)f: J x C([-1, 0], R) x R — R is a continuous function.
(2.20.2)There exist K > 0 and O < K < 1 such that

If(t, u, v) - f(t, i, V)| < K |lu - tllc + Klv - 7|

foranyu, i € C([-1,0],R),v, Ve Rand t € ].
(2.20.3)There exists L > O such that

lg(t, u) — g(t, v)| < Lllu-vlc
foranyu,v e C([-r,0],R)and t € ].

If
a

KA DT? 2.51)

(1-K)I(a+1)
then problem (2.48)—(2.49) has a unique solution.
Proof. Consider that the operator N: Q — Q is defined by

(0) + I*K, (t), te]
=47 Y (2.52)
o(1), te[-r0].

From Lemma 2.19 it is clear that the fixed points of N are the solutions of problem
(2.48)-(2.49). Lety,y € Q. If t € [-r, 0], then

INy(t) - Ny(6)l = 0,
andforte ]
INy(t) = Ny (&)l = IT"Ky(¢) - I“Kz (O] < I*[IKy (6) = Ky (O]l - (2.53)
For any t € J we have
IKy (6) = Ky (Ol < If(, ye, Ky (0)) = f(t, e, Ky (D)

+lg(t, ye) - g(t, 7o)l
< Klye - Vellc + KIKy (8) - Ky(0)l

+L|ye-yelc -

Thus,
K+L

1-K

1Ky (6) - Ky(O)]l < lye = yelc - (2.54)

From (2.54) and (2.53) we find that

K+L Jt
(1-K)I(
< (K+L)T*
" (1-K)Ira+1)

INy(t) - Ny(Oll < (t=35)""lys - sllc ds

0

Iy -¥lq -
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40 —— 2 Nonlinear Implicit Fractional Differential Equations

Thus,
(K+L)T*

Ny - Njllg < ——onr 22
INY =Nyl (1-K)I(a+1)

ly-¥lq -
From (2.51) it follows that N has a unique fixed point that is the unique solution of
problem (2.48)-(2.49). O
Our next existence result is based on the fixed point theorem of Burton and Kirk.
Lemma 2.21. We consider the operators F, G: Q — Q defined by
L t
0 +—It $)* (s, ys, Ky(s)ds, te],
Foyo - 19O T | €9 sy K6
_Qv(t), te [_ry 0] ’

t
a-1 d
Gy)(t) =1 I'a )J(t s)* " g(s,ys)ds, te],

0, te[-r0],

where Ky € C(J, R) satisfies the functional equation
Ky (t) = f(t, ye, Ky(0) + 8(t, ye) -
To find solutions of (2.48)—(2.49), we must find solutions of the equation
y(t) = F(y)(t) + G(y)(t), foreachte [-r,T].

Remark 2.22. Ify is a fixed point of the operator F + G, then y is a solution of problem
(2.48)-(2.49).

Theorem 2.23. Assume (2.20.1) and (2.20.3) hold and
(2.23.1)There exist p, q, r € C(J, R;) withr* = sup,; r(t) < 1 such that

Ifte, u, w)l < p(6) + g(®)llullc + r(®)lw]

forte],weR,and u € C([-r, 0], R).

If
LT®

Ta+1) <1
then IVP (2.48)-(2.49) has at least one solution.

(2.55)

Proof. We must show that operators F and G satisfy all conditions of Theorem 1.43.
By (2.20.1), (2.20.3), (2.23.1), and the choices of F and G, we show that F is completely
continuous and G is a contraction. The proof will be given in several claims.

Claim 1: F is continuous. Let {y,}n>0 be a sequence such that y, — y in Q; then

a

IF(yn)() = F(y)(Dllq < ||f( Yno Ky, () = flo v KyO)lg == O

I(a+1)
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2.5 Results for Perturbed NIFDE with Finite Delay =—— 41

because f is continuous.

Claim 2: F maps bounded sets to bounded setsin Q.Lety* > 0, By~ ={y € Q: |ylq <
y*}; we need to show that for each y* > 0 there exists [ > 0 such that for y € By,
|Fylq < l. By (2.23.1) we have forany t € J

t
IFGOI < [9(0)] + —— j(t— ) I, ys. Ky (s) s

I'(a) )
t
' +qy) a-1
< Ip(O)+ —F 2 o !(t—s) K, @56)

where p* = sup,; p(t), and g* = sup¢; q(t). On the other hand, we have forany t € J

1Ky (O < If(E, ye, Ky(O)N + llg(t, ye) — g(£, 0)]l + llg(¢, O)
<pr+qy + KOl + Ly +g",

where g* = sup,; lIg(s, O)|. Thus,

1Ky (O <

TP ray Lyt g = M. (2.57)

Combining (2.57) and (2.56), we find that

Ta(p* +q*.y*) N r*T“

Ta+1) TarpM=4:

IFG(O)] < 19(0)] +

If t € [-1, 0], then
IF» O < ol »

SO
IFyllq < max{|p|.,d} =1.

Claim 3: F maps bounded sets to equicontinuous sets of Q. Let t1, t; € (0, T], t; < t3,
By be a bounded set of Q, which is as defined previously (Claim 2), and let y € B,-.
Then

ty

IFG)(62) - Fo)(t)l < ||ﬁ j [(t2 = 9% = (b1 - 9% f(s, ys, Ky (5))dis
0

ty

1
+ ||m J(tz - 8)* (s, ys, Ky(s))ds|l
t

ty

B (p* +q*y* +T*M) J [(tl _S)a—l _ (tZ _S)a—l] ds
0

- I'(a)

ty

I(tz -s)*1ds

ty

P*+q*y* +r'M)
I(a)
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42 —— 2 Nonlinear Implicit Fractional Differential Equations
p*+q*y*+r'M) @ .a .a

< 2(t; - t1)" -t - t
T(a+1) 26 - 6)" - - 3]

2(p*+q*y* +r*M)
I'a+1)

(t2 —t)*.

As t; — t;, the right-hand side of the preceding inequality tends to zero. Consequently,
Theorem 1.54 allows us to conclude that the operator F: Q — Q is relatively compact.
Hence, operator F is completely continuous.

Claim 4: G is a contraction. Let y, y € Q; then for every t € |

t
1
IG)(6) - GO < @ J(t -8)*tlg(s, ys) - 8(s, ys)llds

I'(a)

a

< —— —
T Ia+1)

t
L _ -
< j(t—s)“ Ulys - il ds
0

1y =¥loo -
Thus,
- T*L -
1G(y) - G(Plqg < Ta+ D ly-vlg -
By (2.55) G is a contraction.
Claim 5: A priori bounds. We will show that the set

0- {ye Q: y:AF(y)+/\G(%) for A € (0, 1)}

is bounded. In fact, let y € Q; theny = AF(y) + AG(%) for some 0 < A < 1. Then for each
t € ] we have

t

t
a-1 a-1 )’s
y(t) = [|<p(0)|+r( )[u 9"s, Yo, Ky(S)ds + 1o )j(t-s) g(s,T)ds] :

By (2.20.3) and (2.23.1), for every t € ] we have

T“(p* + r*M)

t
q a-1
V(O] < lp(O) + ()j(t—8> sl ds + a5,

t
A a-1 Vs
+ J(r -7 g (5, %2) - g, 0)1s

t
A a-1
+ 5 OJ (t - 5)*lg(s, 0)lds

a * )

T - . L ~
s P Mg+ S (st cds.

< le0)] + T@)
0
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2.5 Results for Perturbed NIFDE with Finite Delay =—— 43

We consider the function y defined by
y(@t) =sup{lly(s)ll: —-r<s<t}, O0<t<T.
There exists t* € [-r, T] such that y(¢) = [ly(t*)].
If t* € [0, T], then, by the previous inequality, for t € ] we have

t
T* *+L
(p*+r*M+g*)+ (qF(;) ) J(t -5)*ly(s)ds .
0

y(t) < 1@(0)] + m

Applying Lemma 1.52, we obtain

a

YO < [lpO) + o

(a+1)

(p* +r*M+g*)] [1+ CEE)

where 6 = E(a) is a constant. Thus forany ¢ € J, [[ylloo < y(t) < R.If t* € [-1, 0], then
y(t) = l@lc. Therefore,

lyllo < max {lellc, R} :=A.

Thus, the set Q is bounded. Therefore, problem (2.48)—(2.49) has at least one solution.
O

2.5.3 Ulam-Hyers Stability Results

For the implicit fractional order differential equation (2.48), we adopt the definition in
Rus [224] for Ulam—Hyers stability, generalized Ulam—-Hyers stability, Ulam—-Hyers—
Rassias stability, and generalized Ulam-Hyers—Rassias stability.

Definition 2.24. Equation (2.48) is Ulam—Hyers stable if there exists a real number
¢y > 0 such that for each € > 0 and for each solution z € C L(J, R) of the inequality

1°D2(t) - f(t, z¢, ‘D"z(t)) - g(t, zp)| <€, te],
there exists a solution y € C1(J, R) of equation (2.48), with
lz(t) -yl < cre, te].

Definition 2.25. Equation (2.48) is generalized Ulam-Hyers stable if there exists )y €
C(R+, Ry), Y£(0) = 0, such that for each solution z € C L(J, R) of the inequality

1€D%z(t) - f(t, z¢, “Dz(t)) - g(t, z) < €, te],
there exists a solution y € C1(J, R) of equation (2.48), with

lz(t) - y(Ol < Prle), te].
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44 — 2 Nonlinear Implicit Fractional Differential Equations

Definition 2.26. Equation (2.48) is Ulam-Hyers—Rassias stable with respect to ¢ ¢
C(J, R,) if there exists a real number ¢; > 0 such that for each € > 0 and for each
solution z € C1(J, R) of the inequality

I1°D%2(t) - fit, z¢, “D°z(t)) - g(t, zo)| < ep(t), te],
there exists a solution y € C1(J, R) of equation (2.48), with
lz(t) - y(Ol < crep(t), te].

Definition 2.27. Equation (2.48) is generalized Ulam-Hyers—Rassias stable with respect
to ¢ e C(, R,) if there exists a real number cs > 0 such that for each solution
z € C1(J, R) of the inequality

I1°D%2(t) - fit, z¢, ‘D z(0)) - g(t, z0)| < P(t), te],
there exists a solution y € C1(J, R) of equation (2.48), with
Iz(6) =y (Ol < crpp(t), te].
Remark 2.28. A function z € C1(J, R) is a solution of the inequality
I1°D%z(t) - fit, z¢, “D“2(t)) - g(t, z))| < €, te],

if and only if there exists a function h € C(J, R) (which depends on y) such that
@@ Ih®l<e, te],
(ii) °D”z(t) = f(t, z, °D*z(t)) + g(t, z¢) + h(t), t € ].

Remark 2.29. Clearly:
(i) Definition 2.24 = Definition 2.25.
(ii) Definition 2.26 = Definition 2.27.

Remark 2.30. A solution of the implicit differential equation
I1°D%2(t) - fit, z¢, “D“2(t)) - g(t, z0)| <€, te],

with fractional order is called a fractional e-solution of the implicit fractional differential
equation (2.48).

Theorem 2.31. Assume (2.20.1)—(2.20.3) and (2.51) hold. Then problem (2.48)—(2.49) is
Ulam-—Hyers stable.

Proof. Let € > 0 and z € Q be a function such that
1€D%z(t) — f(t, z¢, CD%2(t)) — g(t, z¢) < € foreachte].
This inequality is equivalent to

I1°D%2(t) - Kz (t)l < € . (2.58)
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2.5 Results for Perturbed NIFDE with Finite Delay =—— 45

Let y € Q be the unique solution of the problem

D%y(t) = fit, ye, “DYy(t)) + g(t, ye), te],
z(t) = y(t) = (1), tel[-r0].

Integrating inequality (2.58), we obtain
«Q

lz(t) - I“K,(t)] < Ta+1) "

We consider the function y, defined by
y2(t) =sup{llz(s) —y(s)|: —r<s<t}, O0<t<T.

Then there exists t* € [-r, T] such that y,(t) = |z(t*) — y(¢t*)|. If t* € [-r, 0], then
y2(t) = 0. If t* € [0, T], then
y2(t) < llz(t) - I*Ko(8)]| + TN K, (t) — Ky ()]l

eT“

< Ta+D + I7|| K (t) — Ky (D) - (2.59)

On the other hand, we have

1K= (t) = Ky (Ol < lIf(t, z¢, KL(8) = f(t, ye, Ky ()]l
+1g(t, z¢) — g(t, yo)l
< (K + L)y2(8) + KIK(t) - Ky (D],

SO

IKL(0) - Ky (0] < & +%Yz(t) . (2.60)

1 _
Substituting (2.60) in inequality (2.59), we get

yay s o, K+l
Fla+1) (1-K)I'(a)

t
j(t )%y (s)ds ,
0

and by Gronwall’s lemma

T [ (K+L)T%04 ]
= ce,

y2(t) < F(e + —
a+1) 1-KT(a+1)

where 01 = 01(a) is a constant. O

If we set Y(€) = c; P(0) = 0, then problem (2.48)—(2.49) is generalized Ulam—-Hyers
stable.
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46 —— 2 Nonlinear Implicit Fractional Differential Equations

Theorem 2.32. Assume (2.20.1)—(2.20.3) and (2.51) hold and (2.32.1) there exists an
increasing function ¢ € C(J, R,) and there exists Ay > O such that for any t € |

I“p(t) < App(t) .
Then problem (2.48)—(2.49) is Ulam—Hyers—Rassias stable.
Proof. Let z € Q be a solution of the inequality
1€D%z(t) - f(t, z¢, “Dz(t)) — g(t, ze)| < ep(t), te], €>0.
This inequality is equivalent to
1°D%z(t) — KL (t)]| < ep(t) . (2.61)

Let y € Q be the unique solution of the Cauchy problem

CDa)’(t)=f(t,)’t,CDaY(t))+g(t’Yt)’ tG],
z(t) = y(t) = p(t), tel-r,0].

Integrating (2.61), we obtain for any ¢ € J

l2(6) - K= (0)] < eI(¢) < eAg (D) -

Using the function y, defined in the proof of Theorem 2.31, we see that if t* € [-r, 0],
then y,(t) = 0, and if t* € [0, T], then we have

y2() < llz(8) - Kz (6)ll + I*IK=(0) - Ky (O]
< eApp(t) + I*IK(6) - Ky (D) - (2.62)

It follows that

K+L
1-K
Substituting into (2.63) in the inequality (2.62), we obtain

IK-(8) - Ky (Ol < y2(t) . (2.63)

K+L

t
(1-K) @ J-ortpaos,

0

y2(t) < edpp(t) +

and by Gronwall’s lemma we get

(K + L)T%0>
t) < edpp() |1+ ——2 "2
Yz()<€¢¢()[ +(1—K)1"(a+1)]

< [)l¢ (1 + —(K iL)TaOZ
1-KI(a+1)

< )] ep(t) = cedp(t),
where 0, = 02(a) is a constant. Thus problem (2.48)-(2.49) is Ulam—Hyers—Rassias
stable. O

Brought to you by | UCL - University College London
Authenticated
Download Date | 2/10/18 4:19 PM



2.6 Results for Neutral NIFDE with Finite Delay =—— 47

2.5.4 An Example

Consider the problem of the perturbed differential equation of fractional order

iy - 2l IDIOL  eMyde 0 e
1249 (1 + llyellc + I<D7y(o)]) - 3 1+ Iyelle)
yt) =), tel-r0], (2.65)

where ¢ € C([-1, 0], R). Set

2+Uu+v
121 +u+v)’

flt,u,v) =

te[0,1], u,v € [0, +oo) x [0, +00) .

It is clear that f is jointly continuous.
Foreachu € C([-r,0],R),ve R,and t € [0, 1],
1
fituv) < o (24 ulle + V) -
Hence, condition (2.23.1) is satisfied by p(t) = i, r(t) = q(t) = =5, and

r*=#<l.set

e w
g(tiw): myte [01 1], w e [0’+OO)'

It is clear that g is continuous; moreover, we have for any u, v € C([-r,0], R)and t € J
1
lig(t, u) — g(t, V)|l < gllu -Vlc.
Thus, (2.20.3) is satisfied, and we have
L _WExy o112
MerD () ar() axdr(l) v
Hence, (2.20.1), (2.20.3), (2.23.1), and (2.55) are satisfied, so by Theorem 2.23, problem
(2.64)—(2.65) has at least one solution.

2.6 Existence and Stability Results for Neutral NIFDE with Finite
Delay

2.6.1 Introduction

In this section, we establish existence, uniqueness, and stability results for the nonlinear
implicit neutral fractional differential equation with finite delay
‘D [y(t) - g(t,yo)] = flt,y, °D°y(t), te]=[0,T], T>0,0<a<1l, (266)
y(t) = o(t), te[-1,0], r>0, (2.67)
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48 =—— 2 Nonlinear Implicit Fractional Differential Equations

where f: J x C([-r,0], R) x R - Rand g: J x C([-r, 0], R) are given functions such
that g(0, ¢) = 0 and ¢ € C([-r, 0], R).
Two examples are given to show the applicability of our results.

2.6.2 Existence of Solutions

Set
Q={y: [-r,T] > R: yl[—,0) € C([-1,0], R) and yljo,1} € C([0, T], R)} .
Note that Q is a Banach space with the norm

lyla = sup ly(Ol .

te[-r,T

Definition 2.33. A function y € Q is called a solution of problem (2.66)—(2.67) if it
satisfies equation (2.66) on J and condition (2.67) on [-r, O].

Lemma 2.34. LetO< a < 1andh: [0, T] — R be a continuous function. Then the linear

problem
‘D*[y(H) -g(t,y)l =h(t), te],

y(t) = §0(t) ] te [_r’ 0] ’
has a unique solution given by
t

(0) + g(t, yo) + j(t S h(s)ds, te],

y(t) = I(a)
o(t), tel-r0].

Lemma 2.35. Let f(t, u,v): J x C([-r, 0], R) x R — R be a continuous function. Then
problem (2.66)—(2.67) is equivalent to the problem

"o - {(p(O)+I“Ky(t), teJ, 068

(p(t)’ te [_r9 0] ’
where Ky € C(J, R) satisfies the functional equation
Ky(t) = f(t, ye, Ky (£)) + °D°g(t, y¢) .

Proof. Let y be a solution of problem (2.68); we need to show that y is a solution of
(2.66)—(2.67). We have

Yo - {go(om Ky(0, tel,
(P(t), te [_ra 0] .
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2.6 Results for Neutral NIFDE with Finite Delay —— 49

For t € [-r, 0] we have y(t) = ¢(t), so condition (2.67) is satisfied.
On the other hand, for ¢t € J we have

D%(t) = Ky(t) = f(t, ye, Ky(£)) + D°g(t, y¢) .

So
D* [y(t) - g(t, yo)l = f(t, ye, Dy(t)) .
Then y is a solution of problem (2.66)—(2.67). O

Lemma 2.36. Assume
(2.36.1) f: Jx C([-1,0], R) x R — R is a continuous function.
(2.36.2) Thereexist K > 0 and O < K < 1 such that

Iftt, u, v) - fit, @, )| < K |Ju - itllc + Klv - |
foranyu,ut € C([-1,0], R),v,V e Randt € ].
(2.36.3) There exists L > 0 such that
lg(t, u) —g(t,v)| < Llu-vlc
foranyu,v e C([-r,0],R)and t € J. If
KT? L
— + —
(1-K)ra+1) (1-K)

<1, (2.69)

then problem (2.66)—(2.67) has a unique solution.

Proof. Consider the operator N: Q — Q defined by

@(0) + I°K, (1), te]

(Ny)(t) = { (2.70)
QD(t), te [_r’ 0] .

By Lemma 2.35, it is clear that the fixed points of N are the solutions of problem
(2.66)-(2.67).
Lety,y € Q.If t € [-1, 0], then
I(Ny)(t) = (Ny)(©OI = 0.

For t € ] we have
I(Ny)(£) = (NP = UKy (£) - I“K ()] < T*1Ky (£) - Kz()]] . (2.71)
Foranyte]
1Ky (t) = Ky (O]l < If(t, ye, Ky(8) — f(t, Ve, Ky ()]
+D%\g(t, ye) - g(t, ¥
< Kllye - ¥ellc + KIKy(t) - Ky(t)ll
+D%g(t, yr) - g(t, 7o .
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50 —— 2 Nonlinear Implicit Fractional Differential Equations

Thus,

1 a -
1Ky (8) - Ky (O] < lye = yelc + < 1 T() ‘Dlg(t, ye) - g(&, 7ol - (2.72)

1-K
Substituting into (2.72) in the inequality (2.71) we have

t
INy(£) - Ny(O)] < j(t — 9% ys - sllc ds

(1-K)I() )

1
+ ——I*°D%g(t, y;:) — g(t, ¥
% lg(t, ye) — g(t, yo)l

KT

< m ly -yl

. (Ig(t, ye) — g(t, yo)ll + 1g(0, yo) — 8 (0, yo) I)

1-K
< K Sl —E e
“(1-K)r@+1) ety _gote
< K" L -
“l(1-K)r@+1) 1-K o
Thus,
KT% L
INY - Njlg < | —— P VI
yo [(1—K)F(a+1) (1—1<)] Yl

From (2.69) it follows that N has a unique fixed point that is the unique solution of
problem (2.66)-(2.67). O

2.6.3 Ulam-Hyers Stability Results

A solution of the implicit differential equation
I1°D“2(t) - fit, zt, “D*z(t)) - Dg(t, z0)l <€, te],

with fractional order is called a fractional e-solution of implicit fractional differential
equation (2.66).

Theorem 2.37. Assume (2.36.1)-(2.36.3) and (2.69) hold. If

K+L<1, (2.73)
then problem (2.66)—(2.67) is Ulam—Hyers stable.
Proof. Let € > 0and z € Q be a function such that

I€D%z(¢t) - f(t, z:, °D%z(t)) - *D%g(t, z;)| < € foreachte].
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2.6 Results for Neutral NIFDE with Finite Delay = 51

This inequality is equivalent to
1€D%z(t) - K, (t)] < € . (2.74)

Let y € Q be the unique solution of the problem

D [y(t) - g(t, yo)l = fit, ys, “Dy(t)), te]
z(t) = y(t) = (1), tel[-r0].

Integrating the inequality (2.74), we obtain

a eT”
lz(t) - I*K,(t)| < Ta+1)

We consider the function y; defined by
yi(t) =sup{llz(s) —y(s)|: —r<s<t}, O0<t<T.

Then there exists t* € [-r, T] such that y1(t) = |z(t*) — y(t*)|. If t* € [-r, 0], then
y1(t) = 0. If t* € [0, T], then
y1(t) < llz(t) - P KL ()] + TN K(t) - Ky (0]l

eT“

< T+ D + YK (t) - Ky (O] - (2.75)

On the other hand, we have

IK=() - Ky (0]l < If(t, z¢, K=(t) - fit, ye, Ky (O]
+D%\g(t, z) - g(t, yo)l
< Ky1(t) + KIK(t) - Ky (0)]
+°D%|g(t, z¢) - 8(t, yoll,

) IK:(0 - Ky (Ol s —=ni(0+ —= Dlg(t.z0 -g(t.yol . (276)
From (2.76) and (2.75) we obtain
nOs o ¢ _%F(a) j(t— " (s)ds
+ —=lg(t,2) - 5(6,y0)
= r(ZTl) e —% I(a) j (t=9)"ya(5)ds
==
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52 —— 2 Nonlinear Implicit Fractional Differential Equations

Then

(t-9)*tyi(s)ds .

eT“(l—E) K Jt

Vo) < [1-(K+L)]I(a+1) ’ [1-(K+L)] (@

0

By Gronwall’s lemma

E‘Ta(l —K) KT%, :| _

yi(t) < [1-(K+L)] Ia+1) [“ [1-(Ki+L)]T(@+1)

where 0, = 01(a) is a constant. This completes the proof of the theorem. Moreover,
if we set (€) = cy; P(0) = 0, then problem (2.66)—(2.67) is generalized Ulam—Hyers
stable. O

Theorem 2.38. Assume (2.36.1)—(2.36.3), (2.69), and (2.73) hold and
(2.45.1) there exists an increasing function ¢ € C(J, R,), and there exists Ay > 0 such
that forany t € J

I“p(t) < Agp(t) .
Then problem (2.66)—(2.67) is Ulam—Hyers—Rassias stable.
Proof. Let z € Q be a solution of the inequality
1°D%z(t) - f(t, z¢, “Dz(t)) - “D"g(t, ze)| < €p(t), te], €>0.
This inequality is equivalent to
1°D%2(8) - K (D) < ep(0) - @2.77)

Let y € Q be the unique solution of the Cauchy problem

DY [y(t) - g(t, yo)] = f(t, ye, Dy(t)), te],
z(t) = y(t) = (1), te[-r0].
Integrating (2.77), we obtain forany ¢ € J
lz(t) - I“K ()]l < eI“p(t) < €Ay p(t) .

Using the function y; defined in the proof of Theorem 2.37, we have that if t* € [-r, 0],
then y1(t) = 0. If t* € [0, T], then we have

y1(t) < llz(t) - PK (0] + I|K(t) - Ky (6]l
< edpp(t) + I%|K,(t) - Ky ()] - (2.78)
Thus,
1 a
i ‘D%g(t, z¢) — g(t, yol . (2.79)

K
1K= (8) - Ky (O] < 1

—y1(t) +
YT
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2.6 Results for Neutral NIFDE with Finite Delay =—— 53
Substituting into (2.79) in (2.78), we obtain

t
y1(0) < egp(0) + Je-s s

(1 —f) I(a) ]
= fiugm 20 - g(t, ol
t
< €/1¢¢(l‘) + m J(t - S)a—lyl(s)ds + T E)/1(t) s
SO _ ¢
1-K)edp(t)
ya(t) < ( )_e ? 9 + — K J(t— $)% 1y (s)ds .
1-(K+L) [1-(K+L)|]F @]
By Gronwall’s lemma we get
s R0l ko]
1-(K+L) [1-(K+L)|I(a+1)
(1-K)Ag KT%0, )] ~
[y (4w i) 20w

where 0, = 0,(a) is a constant. Then problem (2.66)—(2.67) is Ulam—Hyers—Rassias
stable. O

2.6.4 Examples

Example 1. Consider the neutral fractional differential equation

1
pt [y - e e ]z 2+ lydle  FDTYOL o, 1,
O+eN@+1yelc) | 12¢09 (1 + lyellc + D3 y(0))
(2.80)
y()=o(t); tel-r,0], r>0, (2.81)

where ¢ € C([-1, 0], R). Set

te tw
gt,w) = m , (t,w)€[0,1]x [0, +00)
and
ftu,v) = — 2T UEY (t, u, v) € [0, 1] x [0, +00) x [0, +00) .

121 +u+v)’
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54 =—— 2 Nonlinear Implicit Fractional Differential Equations

Observe that g(0, w) = 0 for any w € [0, +00). Clearly, the function f is continuous.
Hence, (2.36.1) is satisfied. We have

|f(t, u, V) _f(ts as V)l <

o (=Tl + v = 71)

_ 1 _
g6, w) - g(t, )l < 5 lu—tllc

for any u, it € C([-1,0],R), v,v € Rand t € [0, 1]. Hence, conditions (2.36.2) and
(2.36.3) are satisfied by K = K = L5 and L = .
The condition
KT* Lo L 20+ 12e° V@ .
1+KIa+1) (1-K) 10vm(12e°-1)

is satisfied by T = 1, a = 3.
By Lemma 2.36, problem (2.80)—(2.81) admits a unique solution.

Since
10 + 12¢€°

120¢€°
by Theorem 2.37, problem (2.80)—(2.81) is Ulam-Hyers stable.
Example 2. Consider the neutral fractional differential equation

K+L=

s

s t et [ e 1D y(0)]
cp: t) — ] — - N te O, 1],
YO Szt iylo) " Trel [1 e " 11 1Dly0) (0.1]
(2.82)
yt)=@(t), te[-r,0], r>0, (2.83)
where ¢ € C([-1, 0], R).
Set
g(t,w) = m , (t,w)e[0,1] %[0, +00),
and
et u v
fit,u) = o (1+u - 1+V) . (tu,v) € [0, 1] x [0, +00) X [0, +00) .

Observe that g(0, w) = 0 for any w € [0, +00). Clearly, the function f is continuous, so
(2.36.1) is satisfied.

__ 1 _ 1 _
|f(t’ u, V) _f(ta u, V)I < g ”u - u”C + g"v_ V”

_ 1 _
I8(t, u) - (6, Wl <~ u - Ul

forany u, @t € C([-1,0],R), v,V e Rand t € [0, 1].
Hence, conditions (2.36.2) and (2.36.3) are satisfied by K = K = g and L = z1;.
We have

KT® L 10e? + 871
— + — = <1,
1+KI(a+1) (1-K) 35e2\m

Brought to you by | UCL - University College London
Authenticated
Download Date | 2/10/18 4:19 PM



2.7 Notes and Remarks = 55

so by Lemma 2.36, problem (2.82)—(2.83) admits a unique solution.

Since
5e2+8

40e2
by Theorem 2.37, problem (2.82)—(2.83) is Ulam—Hyers stable.

K+L-=

<1,

2.7 Notes and Remarks

The results of Chapter 2 are taken from Benchohra et al. [91, 102, 104]. Other results
may be found in [20, 15, 26, 34, 43, 94, 248, 253].
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