
1 Preliminary Background
In this chapter, we introduce notations, definitions, and preliminary facts that will
be used in the remainder of the book. Some notations and definitions from fractional
calculus, definitions and properties of measures of noncompactness, and fixed point
theorems are presented.

1.1 Notations and Definitions

Let C(J,ℝ) be the Banach space of all continuous functions from J := [0, T]; T > 0 toℝ
with the usual norm

‖y‖ = sup
t∈J
|y(t)| ,

and let L1(J,ℝ) denote the Banach space of functions : J → ℝ that are Lebesgue
integrable with the norm

‖y‖L1 =
T

∫
0

|y(t)|dt .

Definition 1.1 ([131]). A map f : J × ℝ × ℝ 󳨀→ ℝ is said to be L1-Carathéodory if
(i) the map t 󳨃󳨀→ f(t, x, y) is measurable for each (x, y) ∈ ℝ × ℝ,
(ii) the map (x, y) 󳨃󳨀→ f(t, x, y) is continuous for almost all t ∈ J,
(iii) for each q > 0 there exists φq ∈ L1(J,ℝ) such that

|f(t, x, y)| ≤ φq(t)

for all |x| ≤ q, |y| ≤ q and for a.e. t ∈ J.
The map f is said to be of Carathéodory if it satisfies just (i) and (ii).

Definition 1.2. An operator T : E 󳨀→ E is called compact if the image of each bounded
set B ⊂ E is relatively compact, i.e., T(B) is compact. T is called a completely continuous
operator if it is continuous and compact.

Theorem 1.3 (Kolmogorov compactness criterion [133]).
Let Ω ⊆ Lp(J,ℝ) and 1 ≤ p ≤ ∞. If
(i) Ω is bounded in Lp(J,ℝ) and
(ii) uh 󳨀→ u as h 󳨀→ 0 uniformly with respect to u ∈ Ω,
then Ω is relatively compact in Lp(J,ℝ), where

uh(t) =
1
h

t+h

∫
t

u(s)ds .
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2 | 1 Preliminary Background

1.2 Fractional Calculus

Definition 1.4 ([35, 181, 219]). The Riemann–Liouville fractional (arbitrary) order inte-
gral of the function h ∈ L1([a, b],ℝ+) of order α ∈ ℝ+ is defined by

Iαah(t) =
1
Γ(α)

t

∫
a

(t − s)α−1h(s)ds ,

where Γ(.) is the Euler gamma function. If a = 0, we write Iαh(t) = h(t) ∗ φα(t), where
φα(t) = tα−1

Γ(α) for t > 0, φα(t) = r for t ≤ 0, and φα → δ(t) as α → 0, where δ is the
delta function.

Definition 1.5 ([35, 181, 219]). The Riemann–Liouville fractional derivative of order
α > 0 of function h ∈ L1([a, b],ℝ+) is given by

(Dαa+h)(t) =
1

Γ(n − α) (
d
dt)

n t

∫
a

(t − s)n−α−1h(s)ds .

Here n = [α] + 1 and [α] denotes the integer part of α. If α ∈ (0, T], then

(Dαa+h)(t) =
d
dt
I1−αa+ h(t) =

1
Γ(1 − α)

d
ds

t

∫
a

(t − s)−αh(s)ds .

Definition 1.6 ([35, 181]). The Caputo fractional derivative of order α > 0 of a function
h ∈ L1([a, b],ℝ+) is given by

(cDαa+h)(t) =
1

Γ(n − α)

t

∫
a

(t − s)n−α−1h(n)(s)ds ,

where n = [α] + 1. If α ∈ (0, 1], then

(cDαa+h)(t) = I1−αa+
d
dt
h(t) =

t

∫
a

(t − s)−α

Γ(1 − α)
d
ds
h(s)ds .

The following properties are some of the main ones of fractional derivatives and
integrals.

Lemma 1.7 ([200]). Let α > 0 and n = [α] + 1. Then

Iα(cDα f(t)) = f(t) −
n−1
∑
k=0

f k(0)
k! tk .

Lemma 1.8 ([181]). Let α > 0; then the differential equation
cDαh(t) = 0

has the solution

h(t) = c0 + c1t + c2t2 + ⋅ ⋅ ⋅ + cn−1tn−1, ci ∈ ℝ, i = 0, 1, 2, . . . , n − 1, n = [α] + 1 .
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1.2 Fractional Calculus | 3

Lemma 1.9 ([181]). Let α > 0; then

IαcDαh(t) = h(t) + c0 + c1t + c2t2 + ⋅ ⋅ ⋅ + cn−1tn−1 ,

for arbitrary ci ∈ ℝ, i = 0, 1, 2, . . . , n − 1, n = [α] + 1.

Proposition 1.10 ([181]). Let α, β > 0. Then we have
(1) Iα : L1(J,ℝ) → L1(J,ℝ), and if f ∈ L1(J,ℝ), then

Iα Iβ f(t) = Iβ Iα f(t) = Iα+β f(t) .

(2) If f ∈ Lp(J,ℝ), 1 ≤ p ≤ +∞, then ‖Iα f‖Lp ≤ Tα
Γ(α+1) ‖f‖Lp .

(3) The fractional integration operator Iα is linear.
(4) The fractional order integral operator Iα maps L1(J,ℝ) to itself continuously.
(5) If α = n ∈ ℕ, then Iα0 is the n-fold integration.
(6) The Caputo and Riemann–Liouville fractional derivatives are linear.
(7) The Caputo fractional derivative of a constant is equal to zero.

Now we recall some definitions and properties of Hadamard fractional integration and
differentiation. We refer to [153, 181] for a more detailed analysis.

Definition 1.11 ([153, 181]). The Hadamard fractional integral of order q > 0 for a func-
tion g ∈ L1([1, a],ℝ) is defined as

(H Ir1g)(x) =
1
Γ(q)

x

∫
1

(ln xs )
q−1 g(s)

s
ds

provided the integral exists.
Analogous to the Riemann–Liouville fractional calculus, the Hadamard fractional

derivative is defined in terms of the Hadamard fractional integral in the following way.
Set

δ = x d
dx

, q > 0, n = [q] + 1 ,

where [q] is the integer part of q, and

ACnδ := {u : [1, a] → ℝ : δ
n−1[u(x)] ∈ AC[1, a]} .

Definition 1.12 ([153, 181]). The Hadamard fractional derivative of order q applied to
the function w ∈ ACnδ is defined as

(HDq1w)(x) = δ
n(H In−q1 w)(x) .

It has been proved (e.g., Kilbas [[178], Theorem 4.8]) that in the space L1([1, a],ℝ), the
Hadamard fractional derivative is the left-inverse operator to the Hadamard fractional
integral, i.e.,

(HDq1)(
H Iq1w)(x) = w(x) .
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4 | 1 Preliminary Background

Analogously to the Caputo partial fractional integral and derivative [36, 35], we can
define the Hadamard partial fractional integral and derivative. Also, the Hadamard
partial fractional derivative is defined in terms of the Hadamard partial fractional
integral.

Definition 1.13. Let r1, r2 ≥ 0, σ = (1, 1), and r = (r1, r2). For w ∈ L1(J,ℝ), define the
Hadamard partial fractional integral of order r by the expression

(H Irσw)(x, y) =
1

Γ(r1)Γ(r2)

x

∫
1

y

∫
1

(ln xs )
r1−1
(ln yt )

r2−1 w(s, t)
st

dtds .

By 1 − r we mean (1 − r1, 1 − r2) ∈ (0, 1] × (0, 1]. Denote by D2
xy := ∂2

∂x∂y the mixed
second-order partial derivative.

Definition 1.14. Let r = (r1, r2) ∈ (0, 1] × (0, 1] and u ∈ L1(J). Define the Hadamard
fractional order derivative of order r of u by the expression

HDrσu(x, y) = D2
xy[xyD2

xy(
H I1−rσ u)](x, y) .

Definition 1.15. Let α ∈ (0,∞) and u ∈ L1(J). The partial Hadamard integral of order α
of u(x, y) with respect to x is defined by

H Iα1,xu(x, y) =
1
Γ(α)

x

∫
1

(ln xs )
α−1 u(s, y)

s
ds for almost all x ∈ [1, a] and all y ∈ [1, b].

Analogously, we define the integral

H Iα1,yu(x, y) =
1
Γ(α)

y

∫
1

(ln ys )
α−1 u(x, s)

s
ds for all x ∈ [1, a] and almost all y ∈ [1, b].

Definition 1.16. Let α ∈ (0, 1] and u ∈ L1(J). The Hadamard fractional derivative of
order α of u(x, y) with respect to x is defined by

HDα1,xu(x, y) =
∂
∂x [

x ∂
∂x
(H I1−α1,x u)] (x, y) for almost all x ∈ [1, a] and all y ∈ [1, b] .

Analogously, we define the derivative of order α of u(x, y) with respect to y by

HDα1,yu(x, y) =
∂
∂y [

y ∂
∂y
(H I1−α1,y u)] (x, y) for all x ∈ [1, a] and almost all y ∈ [1, b] .
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1.3 Multivalued Analysis | 5

1.3 Multivalued Analysis

Let (X, ‖ ⋅ ‖) be a Banach space and K be a subset of X. We use the notation

P(X) = {K ⊂ X : K ̸= 0} ,
Pcl(X) = {K ⊂ P(X) : K is closed} ,
Pb(X) = {K ⊂ P(X) : K is bounded} ,
Pcv(X) = {K ⊂ P(X) : K is convex} ,
Pcp(X) = {K ⊂ P(X) : K is compact} ,

Pcv,cp(X) = Pcv(X) ∩ Pcp(X) .

Let A, B ∈ P(X). Consider Hd : P(X)×P(X) → ℝ+ ∪{∞} the Hausdorff distance between
A and B given by

Hd(A, B) = max{sup
a∈A

d(a, B), sup
b∈B

d(A, b)} ,

where d(A, b) = infa∈A d(a, b) and d(a, B) = infb∈B d(a, b). As usual, d(x, 0) = +∞.
Then (Pb,cl(X), Hd) is a metric space and (Pcl(X), Hd) is a generalized (complete)

metric space [184].

Definition 1.17. A multivalued operator N : X → Pcl(X) is called:
(a) γ-Lipschitz if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for all x, y ∈ X ;

(b) a contraction if it is γ-Lipschitz with γ < 1.

Definition 1.18. A multivalued map F : J → Pcl(X) is said to be measurable if, for each
y ∈ X, the function

t 󳨃󳨀→ d(y, F(t)) = inf{d(x, z) : z ∈ F(t)}

is measurable.

Definition 1.19. The selection set of a multivalued map G : J → P(X) is defined by

SG = {u ∈ L1(J) : u(t) ∈ G(t), a.e. t ∈ J} .

For each u ∈ C, the set SF∘u known as the set of selectors from F is defined by

SF∘u = {v ∈ L1(J) : v(t) ∈ F(t, u(t)), a.e. t ∈ J} .

Definition 1.20. Let X and Y be metric spaces. A set-valued map F from X to Y is
characterized by its graph Gr(F), the subset of the product space X × Y defined by

Gr(F) := {(x, y) ∈ X × Y : y ∈ F(x)} .

Brought to you by | UCL - University College London
Authenticated

Download Date | 2/10/18 4:21 PM



6 | 1 Preliminary Background

Definition 1.21. Let (X, ‖ ⋅ ‖) be a Banach space. A multivalued map F : X → P(X) is
convex (closed) if F(X) is convex (closed) for all x ∈ X.

The map F is bounded on bounded sets if F(B) = ∪x∈BF(x) is bounded in X for all
B ∈ Pb(X), i.e., supx∈B{sup{|y| : y ∈ F(x)}} < ∞.

Definition 1.22. Amultivalued map F is called upper semicontinuous (u.s.c.) on X if
for each x0 ∈ X the set F(x0) is a nonempty, closed subset of X and for each open set U
of X containing F(x0) there exists an open neighborhood V of x0 such that F(V) ⊂ U.
A set-valued map F is said to be u.s.c. if it is so at every point x0 ∈ X. F is said to be
completely continuous if F(B) is relatively compact for everyB ∈ Pb(X).

If the multivalued map F is completely continuous with nonempty compact values,
then F is u.s.c. if and only if F has closed graph (i.e., xn → x∗, yn → y∗, yn ∈ G(xn)
imply y∗ ∈ F(x∗)).
The map F has a fixed point if there exists x ∈ X such that x ∈ Gx. The set of fixed points
of the multivalued operator G will be denoted by FixG.

Definition 1.23. A measurable multivalued function F : J → Pb,cl(X) is said to be
integrably bounded if there exists a function g ∈ L1(ℝ+) such that |f| ≤ g(t) for almost
all t ∈ J for all f ∈ F(t).

Lemma 1.24 ([165]). Let G be a completely continuous multivalued map with nonempty
compact values. Then G is u.s.c. if and only if G has a closed graph (i.e., un → u, wn → w,
wn ∈ G(un) imply w ∈ G(u)).

Lemma 1.25 ([192]). Let X be a Banach space. Let F : J × X 󳨀→ Pcp,cv(X) be an L1-
Carathéodory multivalued map, and let Λ be a linear continuous mapping from L1(J, X)
to C(J, X). Then the operator

Λ ∘ SF∘u : C(J, X) 󳨀→ Pcp,cv(C(J, X)) ,
w 󳨃󳨀→ (Λ ∘ SF∘u)(w) := (ΛSF∘u)(w)

is a closed graph operator in C(J, X) × C(J, X).

Proposition 1.26 ([165]). Let F : X → Y be an u.s.c. map with closed values. Then Gr(F)
is closed.

Definition 1.27. Amultivalued map F : J ×ℝ×ℝ → P(ℝ) is said to be L1-Carathéodory
if
(i) t → F(t, x, y) is measurable for each x, y ∈ ℝ;
(ii) x → F(t, x, y) is u.s.c. for almost all t ∈ J;
(iii) for each q > 0 there exists φq ∈ L1(J,ℝ+) such that

‖F(t, x, y)‖P = sup{|f| : f ∈ F(t, x, y)} ≤ φq(t)
for all |x| ≤ q, |y| ≤ q and for a.e. t ∈ J .

The multivalued map F is said to be Carathéodory if it satisfies (i) and (ii).
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1.4 Measure of Noncompactness | 7

Lemma 1.28 ([145]). Let X be a separable metric space. Then every measurable multival-
ued map F : X → Pcl(X) has a measurable selection.

For more details on multivalued maps and the proof of the known results cited in this
section, we refer interested reader to the books of Aubin and Cellina [68], Deimling [134],
Gorniewicz [145], and Hu and Papageorgiou [165].

1.4 Measure of Noncompactness

We will define the Kuratowski (1896–1980) and Hausdorff (1868–1942) measures of
noncompactness (MNC for short) and give their basic properties. Let us recall some
fundamental facts of the notion of measure of noncompactness in a Banach space.

Let (X, d) be a complete metric space and Pbd(X) be the family of all bounded
subsets of X. Analogously denote by Prcp(X) the family of all relatively compact and
nonempty subsets of X. Recall that B ⊂ X is said to be bounded if B is contained in
some ball. If B ⊂ Pbd(X) is not relatively compact, (precompact) then there exists an
ϵ > 0 such that B cannot be covered by a finite number of ϵ-baIls, and it is then also
impossible to cover B by finitely many sets of diameter < ϵ. Recall that the diameter of
B is given by

diam(B) :=
{{
{{
{

sup
(x,y)∈B2

d(x, y), if B ̸= ϕ ,

0, if B = ϕ .

Definition 1.29 ([183]). Let (X, d) be a complete metric space and Pbd(X) be the family
of bounded subsets of X. For every B ∈ Pbd(X), we define the Kuratowski measure of
noncompactness α(B) of the set B as the infimum of the numbers d such that B admits
a finite covering by sets of diameter smaller than d.

Remark 1.30. It is clear that 0 ≤ α(B) ≤ diam(B) < +∞ for each nonempty bounded
subset B of X and that diam(B) = 0 if and only if B is an empty set or consists of exactly
one point.

Definition 1.31 ([81]). Let X be a Banach space and Pbd(X) be the family of bounded
subsets of X. For every B ∈ Pbd(X), the Kuratowski measure of noncompactness is the
map α : Pbd(X) → [0, +∞] defined by

α(B) = inf{r > 0: B ⊆ ∪ni=1Bi anddiam(Bi) < r} .

The Kuratowski measure of noncompactness satisfies the following properties:

Proposition 1.32 ([81, 83, 183]). Let X be a Banach space. Then for all bounded subsets
A, B of X the following assertions hold:
1. α(B) = 0 implies B is compact (B is relatively compact), where B denotes the closure

of B.
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8 | 1 Preliminary Background

2. α(ϕ) = 0.
3. α(B) = α(B) = α(conv B), where conv B is the convex hull of B.
4. monotonicity: A ⊂ B implies α(A) ≤ α(B).
5. algebraic semi-additivity: α(A+B) ≤ α(A)+α(B), where A+B = {x+y : x ∈ A; y ∈ B}.
6. semihomogeneity: α(λB) = |λ|α(B), λ ∈ ℝ, where λ(B) = {λx : x ∈ B}.
7. semi-additivity: α(A ∪ B) = max{α(A), α(B)}.
8. semi-additivity: α(A ∩ B) = min{α(A), α(B)}.
9. invariance under translations: α(B + x0) = α(B) for any x0 ∈ X.

Lemma 1.33 ([151]). If V ⊂ C(J, E) is a bounded and equicontinuous set, then
(i) the function t → α(V(t)) is continuous on J and

αc(V) = sup
0≤t≤T

α(V(t)) ;

(ii) α(
T

∫
0

x(s)ds : x ∈ V) ≤
T

∫
0

α(V(s))ds,

where
V(s) = {x(s) : x ∈ V}, s ∈ J .

The following definition of measure of noncompactness appeared in Banaś and
Goebel [81].

Definition 1.34. A function μ : Pbd(X) 󳨀→ [0,∞) will be called a measure of noncom-
pactness if it satisfies the following conditions:
1. Ker μ(A) = {A ∈ Pbd(X) : μ(A) = 0} is nonempty and Ker μ(A) ⊂ Prcp(X).
2. A ⊂ B implies μ(A) ≤ μ(B).
3. μ(A) = μ(A).
4. μ(conv A) = μ(A).
5. μ(λA + (1 − λ)B) ≤ λμ(A) + (1 − λ)μ(B) for λ ∈ [0, 1].
6. If (An)n∈≥1 is a sequence of closed sets in Pbd(X) such that

Xn+1 ⊂ An (n = 1, 2, . . . )

and
lim
n→+∞

μ(An) = 0 ,

then the intersection set A∞ = ⋂∞n=1 An is nonempty.

Remark 1.35. The family Ker μ described in 1 is said to be the kernel of the measure
of noncompactness μ. Observe that the intersection set A∞ in 6 is a member of the
family Ker μ. Since μ(A∞) ≤ μ(An) for any n, we infer that μ(A∞) = 0. This yields that
μ(A∞) ∈ Ker μ. This simple observation will be essential in our further investigations.

Moreover, we introduce the notion of a measure of noncompactness in L1(J). We let
Pbd(J) be the family of all bounded subsets of L1(J). Analogously, denote by Prcp(J)
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1.5 Phase Spaces | 9

the family of all relatively compact and nonempty subsets of L1(J). In particular, the
measure of noncompactness in L1(J) is defined as follows. Let X be a fixed nonempty
and bounded subset of L1(J). For x ∈ X, set

μ(X) = lim
δ→0

{
{
{
sup
{
{
{
sup(

T

∫
0

|x(t + h) − x(t)|dt) , |h| ≤ δ
}
}
}
, x ∈ X

}
}
}

. (1.1)

It can be easily shown that μ is a measure of noncompactness in L1(J) [81]. For more
details on the measure of noncompactness and the proof of the known results cited in
this section, we refer the reader to Akhmerov et al. [58] and Banaś et al. [81, 83].

1.5 Phase Spaces

In this section, we assume that the state space (B, ‖ ⋅ ‖B) is a seminormed linear space
of functions mapping (−∞, 0] toℝ and satisfying the following fundamental axioms
introduced by Hale and Kato in [154].
(A1) If y : (−∞, b] → ℝ and y0 ∈ B, then for every t ∈ J the following conditions hold:

(i) yt ∈ B.
(ii) ‖yt‖B ≤ K(t) ∫

t
0 |y(s)|ds +M(t)‖y0‖B.

(iii) |y(t)| ≤ H‖yt‖B, where H ≥ 0 is a constant, K : J → [0,∞) is continuous,
M : [0,∞) → [0,∞) is locally bounded, and H, K,M are independent of y(⋅).

(A2) For the function y(⋅) in (A1), yt is aB-valued continuous function on J.
(A3) The spaceB is complete.

Use the notation Kb = sup{K(t) : t ∈ J} and Mb = sup{M(t) : t ∈ J}.

Remark 1.36. 1. (A1)(ii) is equivalent to |ϕ(0)| ≤ H‖ϕ‖B for every ϕ ∈ B.
2. Since ‖ ⋅ ‖B is a seminorm, two elements ϕ, ψ ∈ B can satisfy ‖ϕ −ψ‖B = 0 without

necessarily ϕ(θ) = ψ(θ) for all θ ≤ 0.
3. From the equivalence in the first remark, we can see that for all ϕ, ψ ∈ B such that
‖ϕ − ψ‖B = 0. We necessarily have that ϕ(0) = ψ(0).

We now present some examples of phase spaces. For other details see, for instance, the
book by Hino et al. [162].

1.5.1 Examples of Phase Spaces

Example 1.37. Let us define the following spaces:
BC the space of bounded and continuous functions defined from (−∞, 0] → E;
BUC the space of bounded and uniformly continuous functions defined from (−∞, 0] → E;
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10 | 1 Preliminary Background

C∞ := {ϕ ∈ BC : limθ→−∞ ϕ(θ) exist in E};
C0 := {ϕ ∈ BC : limθ→−∞ ϕ(θ) = 0}, endowed with the uniform norm

‖ϕ‖ = sup{|ϕ(θ)| : θ ≤ 0} .

We have that the spaces BUC, C∞ and C0 satisfy conditions (A1)–(A3). However, BC
satisfies (A1) and (A3), but (A2) is not satisfied.

Example 1.38. Let g be a positive continuous function on (−∞, 0]. We define:
Cg := {ϕ ∈ C((−∞, 0]), E) : ϕ(θ)

g(θ) is bounded on (−∞, 0]},
C0g := {ϕ ∈ Cg : limθ→−∞

ϕ(θ)
g(θ) = 0} endowed with the uniform norm

‖ϕ‖ = sup{|ϕ(θ)|g(θ)
: θ ≤ 0} .

Then we have that the spaces Cg and C0g satisfy condition (A3). We consider the following
condition on the function g:
(g1) For all a > 0, sup0≤t≤a sup{

ϕ(t+θ)
g(θ) : −∞ < θ ≤ −t}.

Then Cg and C0g satisfy conditions (A1) and (A2) if (g1) holds.

Example 1.39. The space Cγ for any real positive constant γ is defined by

Cγ := {ϕ ∈ C((−∞, 0]), E) : lim
θ→−∞

eγθϕ(θ) exist in E

endowed with the norm
‖ϕ‖ = sup{eγθ|ϕ(θ)| : θ ≤ 0} .

Then in the space Cγ axioms (A1)–(A3) are satisfied.

1.6 Some Fixed Point Theorems

In this section, we give the main fixed point theorems that will be used in subsequent
chapters.

Definition 1.40 ([60]). Let (M, d) be a metric space. The map T : M 󳨀→ M is said to be
Lipschitzian if there exists a constant k > 0 (called a Lipschitz constant) such that

d(T(x), T(y)) ≤ kd(x, y) for all x, y ∈ M .

A Lipschitzian mapping with a Lipschitz constant k < 1 is called a contraction.

Theorem 1.41 (Banach’s fixed point theorem [149]). Let C be a nonempty closed subset
of a Banach space X. Then any contraction mapping T of C to itself has a unique fixed
point.

Theorem 1.42 (Schauder fixed point theorem [149]). Let E be a Banach space, Q a con-
vex subset of E, and T : Q 󳨀→ Q a compact and continuous map. Then T has at least one
fixed point in Q.
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1.6 Some Fixed Point Theorems | 11

Theorem 1.43 (Burton and Kirk fixed point theorem [115]). Let X be a Banach space
and A, B : X → X two operators satisfying
(i) A is a contraction,
(ii) B is completely continuous.
Then either
– The operator equation y = A(y) + B(y) admits a solution or
– the set Ω = {u ∈ X : u = λA( uλ ) + λB(u)} is unbounded for λ ∈ [0, 1].

In the next definition, we will consider a special class of continuous and bounded
operators.

Definition 1.44. Let T : M ⊂ E 󳨀→ E be a bounded operator from a Banach space E to
itself. The operator T is called a k-set contraction if there is a number k ≥ 0 such that

μ(T(A)) ≤ kμ(A)

for all bounded sets A in M. The bounded operator T is called condensing if
μ(T(A)) < μ(A) for all bounded sets A in M with μ(M) > 0.

Obviously, every k-set contraction for 0 ≤ k < 1 is condensing. Every compact map T is
a k-set contraction with k = 0.

Theorem 1.45 (Darbo fixed point theorem [81]). Let M be a nonempty, bounded, convex,
and closed subset of a Banach space E and T : M 󳨀→ M a continuous operator satisfying
μ(TA) ≤ kμ(A) for any nonempty subset A of M and for some constant k ∈ [0, 1). Then T
has at least one fixed point in M.

Theorem 1.46 (Mönch’s fixed point theorem [49, 202]). Let D be a bounded, closed,
and convex subset of a Banach space such that 0 ∈ D, α the Kuratowski measure of
noncompactness, and N a continuous mapping of D to itself. If the implication [V =
convN(V) or V = N(V) ∪ {0}] implies α(V) = 0 holds for every subset V of D, then N
has a fixed point.

For more details, see [49, 64, 145, 149, 183, 257].

Theorem 1.47 (Nonlinear alternative to Leray–Schauder type [149]). Let X beaBanach
space and C a nonempty convex subset of X. Let U be a nonempty open subset of C, with
0 ∈ U and T : U → C a continuous and compact operator.
Then, either
(a) T has fixed points or
(b) there exist u ∈ ∂U and λ ∈ (0, 1) with u = λT(u).

Theorem 1.48 (Martelli’s fixed point theorem [199]). Let X be a Banach space and
N : X → Pcl,cv(X) an u.s.c. and condensing map. If the set Ω := {u ∈ X : λu ∈ N(u)
for some λ > 1} is bounded, then N has a fixed point.
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Theorem 1.49 ([70]). Let (X, ‖ ⋅ ‖n) be a Fréchet space, and let A, B : X → X be two
operators such that
(a) A is a compact operator;
(b) B is a contraction operator with respect to a family of seminorms {‖ ⋅ ‖n};
(c) the set {x ∈ X : x = λA(x) + λB( xλ ), λ ∈ (0, 1)} is bounded.
Then the operator equation A(u) + B(u) = u has a solution in X.

Next, we state two multivalued fixed point theorems.

Lemma 1.50 (Bohnenblust–Karlin 1950 [111]). Let X be a Banach space and K ∈
Pcl,cv(X), and suppose that the operator G : K → Pcl,cv(K) is u.s.c. and the set G(K) is
relatively compact in X. Then G has a fixed point in K.

Lemma 1.51 (Covitz–Nadler [130]). Let (X, d) be a complete metric space. If N : X →
Pcl(X) is a contraction, then FixN ̸= ϕ.

1.7 Auxiliary Lemmas

We state the following generalization of Gronwall’s lemma for a singular kernel.

Lemma 1.52 ([256]). Let v : [0, T] → [0, +∞) be a real function and w(⋅) a nonnegative,
locally integrable function on [0, T]. Assume that there exist constants a > 0 and
0 < α < 1 such that

v(t) ≤ w(t) + a
t

∫
0

(t − s)−αv(s)ds .

Then there exists a constant K = K(α) such that

v(t) ≤ w(t) + Ka
t

∫
0

(t − s)−αw(s)ds for every t ∈ [0, T] .

Bainov and Hristova [75] introduced the following integral inequality of the Gronwall
type for piecewise continuous functions that can be used in the sequel.

Lemma 1.53. Let, for t ≥ t0 ≥ 0, the following inequality hold:

x(t) ≤ a(t) +
t

∫
t0

g(t, s)x(s)ds + ∑
t0<tk<t

βk(t)x(tk) ,

where βk(t)(k ∈ ℕ) are nondecreasing functions for t ≥ t0, a ∈ PC([t0,∞),ℝ+), a
is nondecreasing, and g(t, s) is a continuous nonnegative function for t, s ≥ t0 and
nondecreasing with respect to t for any fixed s ≥ t0. Then, for t ≥ t0,

x(t) ≤ a(t) ∏
t0<tk<t
(1 + βk(t)) exp(

t

∫
t0

g(t, s)ds) .
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Lemma 1.54 (Ascoli–Arzelà, [155]). Let A ⊂ C(J,ℝ); A is relatively compact (i.e., A is
compact) if
1. A is uniformly bounded, i.e., there exists M > 0 such that

‖f(x)‖ < M for every f ∈ A and x ∈ J ;

2. A is equicontinuous, i.e., for every ϵ > 0 there exists δ > 0 such that for each x, x ∈ J,
‖x − x‖ ≤ δ implies ‖f(x) − f(x)‖ ≤ ϵ for every f ∈ A.

Set J0 := {(x, y, s) : 0 ≤ s ≤ x ≤ a, y ∈ [0, b]}, J1 := {(x, y, s, t) : 0 ≤ s ≤ x ≤ a,
0 ≤ t ≤ y ≤ b}, D1 := ∂

∂x , D2 := ∂
∂y , and D1D2 := ∂2

∂x∂y .
In the sequel we will make use of the following variant of the inequality for two

independent variables due to Pachpatte.

Lemma 1.55 ([211]). Let w ∈ C(J,ℝ+), p, D1p ∈ C(J0,ℝ+), q, D1q, D2q, D1D2q ∈
C(J1,ℝ+), and c > 0 a constant. If

w(x, y) ≤ c +
x

∫
0

p(x, y, s)w(s, y)ds +
x

∫
0

y

∫
0

q(x, y, s, t)w(s, t)dtds

for (x, y) ∈ [0, a] × [0, b], then

w(x, y) ≤ cA(x, y) exp(
x

∫
0

y

∫
0

B(s, t)dtds) ,

where
A(x, y) = exp(Q(x, y)) ,

Q(x, y) =
x

∫
0

[

[
p(s, y, s) +

s

∫
0

D1p(s, y, ξ)dξ]
]
ds ,

and

B(x, y) = q(x, y, x, y)A(x, y) +
x

∫
0

D1q(x, y, s, y)A(s, y)ds

+
y

∫
0

D2q(x, y, x, t)A(x, t)dt +
x

∫
0

y

∫
0

D1D2q(x, y, s, t)A(s, t)dtds .

From the preceding lemma and with p ≡ 0, we get the following lemma.

Lemma 1.56. Let w ∈ C(J,ℝ+), q, D1q, D2q, D1D2q ∈ C(J1,ℝ+), and let c > 0 be a
constant. If

aw(x, y) ≤ c +
x

∫
1

y

∫
1

q(x, y, s, t)w(s, t)dtds
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for (x, y) ∈ J, then

w(x, y) ≤ c exp(
x

∫
1

y

∫
1

B(s, t)dtds) ,

where

B(x, y) = q(x, y, x, y) +
x

∫
1

D1q(x, y, s, y)ds

+
y

∫
1

D2q(x, y, x, t)dt +
x

∫
1

y

∫
1

D1D2q(x, y, s, t)dtds .

Lemma 1.57 ([129]). Let D ⊂ BC. Then D is relatively compact in BC if the following
conditions hold:
(a) D is uniformly bounded in BC,
(b) The functions belonging to D are almost equicontinuous on [1,∞) × [1, b], i.e.,

equicontinuous on every compact of J.
(c) The functions from D are equiconvergent, that is, given ϵ > 0 and x ∈ [1, b], there is a

corresponding T(ϵ, x) > 0 such that |u(t, x) − limt→∞ u(t, x)| < ϵ for any t ≥ T(ϵ, x)
and u ∈ D.
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