3 Impulsive Nonlinear Implicit Fractional Differential
Equations

3.1 Introduction

Impulsive fractional differential equations are a very important class of fractional
differential equations because many phenomena from physics, chemistry, engineering,
and biology, for example, can be represented by impulsive fractional differential
equations.

Impulsive differential equations describes processes subject to abrupt changes in
their states. They have received much attention in the literature and we refer the reader
to the books [23, 35, 76, 77, 100, 148, 186, 215, 240], the papers [17, 24, 39, 96, 106, 124,
157, 158, 251], and the references therein.

In this chapter, we establish uniqueness and some Ulam stability and results for several
classes of nonlinear implicit fractional differential equations (NIFDEs) with finite delay
and fixed time impulses.

3.2 Existence and Stability Results for Impulsive NIFDEs with
Finite Delay

3.2.1 Introduction

In this section, we consider the problem of nonlinear implicit fractional differential
equations with finite delay and impulses,

Dy y(t) = f(t,yr,* DEy(t)), foreach, t € (ty, tys1], k=0,...,m, 0<a<1,

(3.1
AY|tk:Ik(yt;)’ k:17---,my (3.2)
yit)=¢(), te[-r0],r>0, (3.3)

where CD?k is the Caputo fractional derivative, f: J x PC([-r, 0], R) x R — R s a given
function, Iy: PC([-1,0],R) —» R, and ¢ € PC([-1,0],R),0 =ty < t; < - - <ty <
tm+1 = T. For each function y; defined on [-r, T] and for any ¢ € ], we denote by y; the
element of PC([-r, 0], R) defined by

ve@@) =yt+6), 0¢el[-10]. (3.4)

The arguments are based on the Banach contraction principle and Schaefer’s fixed
point theorem; here we also present two examples to show the applicability of our
results.

https://doi.org/10.1515/9783110553819-003

Brought to you by | UCL - University College London
Authenticated
Download Date | 2/10/18 4:17 PM



3.2 Results for Impulsive NIFDEs with Finite Delay =——— 57

3.2.2 Existence of Solutions

Let Jo = [to, t1] and Jx = (t, txs1], k =1, ..., m. Consider the set of functions

PC([_r9 0]) ]R) = {y: [_r) 0] - ]R: y € C((Tk’ Tk+1]) ]R)) k = O’ cee,m,
and there exist y(7;) and y(1}), k=1,...,m, with y(t}) = y(t¥)} .

PC([-r, 0], R) is a Banach space with the norm

lyllpc = sup ly(®l.

te[-r,0
Let
PC([0, T], R) = {y: [0, T] — Ry € C((tk, txs1], R), k=1,...,m,
and there exist y(t,) and y(tZ), k=1,...,m, withy(t;) = y(t)} .

PC([0, T], R) is a Banach space with the norm

llyllc = sup ly(®)] .

te(o,

Notice that
Q ={y: [-r, T] = R: y|[-,0) € PC([-1, 0], R) and ylo,1] € PC([O, T], R)}
is a Banach space with the norm

lylo = sup Iy(t)l

te[-r,T

Definition 3.1. A function y € Q whose a-derivative exists on Ji is said to be a solution
of (3.1)-(3.3) if y satisfies the equation “Df, y(t) = f(t, y, “D{, y(t)) on J and satisfies
the conditions

Ayli=t, = Ik(yt;) , k=1,...,m,

y() =), te[-10].
To prove the existence of solutions to (3.1)-(3.3), we need the following auxiliary lemma.

Lemma3.2. LetO < a < 1,andlet 6: ] — R be continuous. A function y is a solution of
the fractional integral equation

t
(0) + (1)]<t— ) La(s)ds, ifte[0, 6],
0
t;
0 I i —5)g(s)d
y(t) = 4 4 )+Z Ve * Tay )Zi(t Ve (3.5)
t
a-1 .
‘i )ju— 9 Lo(s)ds, it € (b tinl
k(P(t)’ tE [_ry O] )
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58 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

wherek =1, ..., m,if and only if y is a solution of the fractional problem

‘D'y(t)=oa(t), tek, (3.6)
Ayltztk :Ik(yt;)! k:1"-'am, (3-7)
yt) =), tel[-10]. (3.8)

Proof. Assume that y satisfies (3.6)-(3.8). If t € [0, t1], then
cD(t) = o(t) .

Lemma 1.9 implies

t

y(t) = 9(0) + I*a(t) = p(0) + —— J(t -5)%1g(s)ds .

1
I'(a)
If t € (t1, t;], then Lemma 1.9 implies

t
+ 1 _ o)a-1
YO =y + s )[a )% o(s)ds

t
= AY|e=t, +y(t]) + == J(t—s)“’la(s)ds

I'(a)
ty
=L(ye) + l{”(o) ) J(tl —S)a10(s)ds:|

t
a-1
F( )J(t s)* to(s)ds .

t

=@0) +L(ye)+ j(tl - 5)*La(s)ds

I'(a)

t
a-1
F( )J(t s)* “o(s)ds .
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3.2 Results for Impulsive NIFDEs with Finite Delay =—— 59

If t € (t5, t3], then from Lemma 1.9 we get

t
+ 1 _ gl
Y0 =y + o )j(t )% Lo(s)ds

= Ayle=t, +y(5) + ——

t
_q)a-1
@ J(t s)* to(s)ds

ty

1
=DL(yg) + |:(P(0)+11()’t )+ = @ J(H -s)* lo(s)ds

ty T

t
_g)a-1 L a1
F( ) J(tz $)* o(s)ds | + F(a)tj(t s)* o(s)ds.

- t1

1
= 9(0)+ [Lye) + L(y)] + ﬁajm—w*%@m
1 ty '_ t
i Jktz-—s)“ Lo(s)ds | + s j(t-— 9" 1o(s)ds

Repeating the process in this way, the solution y(t) for t € (tx, tx+1], wherek =1, ..., m,
can be written

ti

k
y(t) = 9(0) + ¥ Iiye) + H)Zjafw“%wﬁ
i=1 1,7
L ¢
+ — | (t-s)*To(s)ds .
n)ﬁ 1o (s)
tk
Conversely, assume that y satisfies the impulsive fractional integral equation (3.5). If
t € [0, t1], then y(0) = ¢(0). Using the fact that °D* is the left inverse of I*, we obtain

‘D (t) = o(t), foreachte0,t;].

Ift € (tk, tis1], k=1, ..., m, using the fact that °D*C = 0, where C is a constant, we
have
D (t) = o(t), foreacht e (tx, trs1].

Also, we can easily show that

AYle=t, = Iy, k=1,...,m. 0
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60 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

We are now in a position to state and prove our existence result for problem (3.1)-(3.3)
based on Banach’s fixed point.

Theorem 3.3. Make the following assumptions:
(3.3.1) The function f : ] x PC([-r1, 0], R) x R — R is continuous.
(3.3.2) There exist constants K > 0 and O < L < 1 such that

If(t, u, v) = f(t, a1, V)| < Klu - atlpc + Llv - V|
forany u, i € PC([-1,0],R), v,V e Rand t € ].
(3.3.3) There exists a constant | > O such that
Iew) - I @)] < Tu - ullpe

foreachu,u € PC([-r,0],R)andk=1,...,m

If
~ (m+ 1)KT*

Mt T D@+ 1)
then there exists a unique solution for problem (3.1)-(3.3) on J.

(3.9

Proof. Transform problem (3.1)—(3.3) into a fixed point problem. Consider the operator
N: Q — Q defined by

®(0) + Ii(ye) + (tk —s)* tg(s)ds

o2 D g >Z j ‘

Ny)®O=1 1 ¢ e tor (3.10)
+mJ( s)* "o(s)ds, €[0,T],
fp(t)a tG [—T, 0] s

where g € C(J, R) is such that

g(t) = ft, ye, 8(1) .

Clearly, the fixed points of operator N are solutions of problem (3.1)-(3.3).
Letu,w e Q.If t € [-r1,0], then

|(Nu)(t) — (Nw)()] = O

For t € ] we have
t
NGO - Nn©1 < 7 ¥ [ (6= 97 11gls) - his)lds
( )O<t"<ttk_1
t

i _c)a-1
+n)yt” 18(9) — h(s)lds

+ Z |Ik(ut;)—1k(wt;)|,

O<tr<t
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3.2 Results for Impulsive NIFDEs with Finite Delay

where g, h € C(J, R) are given by

g(t) :f(t’ U, g(t)) ’

and
h(t) = f(t, w, h(?)) .
By (3.3.2) we have
18(8) = h(D)] = If(t, ue, g(1)) — f(t, we, h())]
< Kllu¢ - wellpc + LIg(t) = h(t)] .
Hence,

K
|8(6) = (O] < T lue = wellpc -

Therefore, foreach t € J

a-1
IN@)(©) = NOOI £ G —5pe Lma)z j(tk—s> lus - wsllpcds

t

K a-1 _
o (€9 - vl

m
+ ) T, = we:llpc -
k_

[m7+ mKT®
A-Dla+1)
KT®
A-Dl@+1) ] lu=wlo -

Thus,
(m+ 1)KT*

IN(u) - N(w)llq < [m’ TA-DIia+1)

] lu—-wla .

By (3.9), operator N is a contraction. Hence, by Banach’s contraction principle, N has a

unique fixed point that is the unique solution of problem (3.1)-(3.3).
Our second result is based on Schaefer’s fixed point theorem.

Theorem 3.4. In addition to (3.3.1), (3.3.2) assumes that:
(3.4.1) There exist p, q, r € C(J, R,) with r* = sup,¢; r(t) < 1 such that

O

If(t, u, w)| < p(t) + q(O)llullpc + r(O)lw| forte], u e PC([-r,0], R)andw € R..

(3.4.2) The functions Iy : PC([-r, 0], R) — R are continuous, and there exist constants

M*,N* > 0, with mM* < 1, such that

[Ix(u)] < M*|ullpc + N* foreachu € PC([-1,0],R), k=1

e, M.
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62 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

Then problem (3.1)-(3.3) has at least one solution.

Proof. Let operator N be defined as in (3.10). We will use Schaefer’s fixed point theorem
to prove that N has a fixed point. The proof will be given in several steps.
Step 1: N is continuous. Let {u,} be a sequence such that u, — uin Q.If t € [-r, 0],
then
|(Nup)(t) - (Nu)(®)| = 0.
For t € ] we have

193

(Nun)(O - MO < 7o T [ (=9 lgnts) - g(5)lds

F(a) 0<tk<tlk,1

t

1 a-1
+ mtj(t_ $)%L|gn(s) - g(s)lds

+ > Miung) ~ Iug)l
O<ty<t (3.11)

where g, g € C(J, R) are given by

gn(t) = f(t, unt, gn(t))
and
g() = f(t, us, g(1)) .
From (3.3.2) we have
Ign(6) — 8(O)] = If(t, unt, gn(t)) — f(t, ur, 8())
< Kllunt — uellpc + LIgn(t) — g(0)] .
Then

K
lgn(6) = 8(0] < = lunt el -

Since u, — u, gn(t) — g(t)asn — oo foreach t € J. Let n > 0 be such that for each
t € J we have |gn(t)| < nand |g(t)| < n. Then
(t—9)"tgn(s) - g(s)] < (t =) HIgn(s)] + Ig(s)]]
<2n(t-s)*?!
and
(tk =) tIgn(s) — 8(S)| < (tk — $)* [Ign(s)] + 18(s)I]
<2n(ty—s)*t.

For each t € J the functions s — 25(t - s)* ! and s — 2n(tx — s)*~! are integrable on
[0, t], so by the Lebesgue dominated convergence theorem and (3.11),

[(Nup)(t) - (Nu)(t)] > 0 as n — co.
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3.2 Results for Impulsive NIFDEs with Finite Delay = 63

Hence,
[[(Nuy) — (Nu)|lg —» 0Oasn — oco.

Consequently, N is continuous.

Step 2: F maps bounded sets to bounded sets in Q. It is enough to show that for any
n* > 0 there exists a positive constant £ such that foreach u € By: = {u € Q: |lulg < n*}
we have |[N(u)|q < €. For each t € J we have

tx

> J (tx —5)* 'g(s)ds

O<tk<ttk,1

1
(Nu)(t) = p(0) + )

t
1 a-1
+ m J(t -8)"g(s)ds + Ogdlk(ut;) s (3.12)

where g € C(J, R) is given by
g(t) = f(t’ U, g(t)) .
By (3.4.1), for each t € ] we have

Ig(O)] = If(t, ue, g(0))
< p(t) + q(Olluellpc + r(t)lg()]
< p(t) + q(Olulla + r(t)|g(D)
<p(®) +qtn* +r@®)Ig®)]
<pt+qtnt+rrigdl,

where p* = sup,; p(t) and g* = sup;; q(t).

Then i -
g0l < 22
Thus, (3.12) implies
NGO < 19(0) + ot + HELes + m(M e + )
<t + DI vt o + N
<|ep(0)| + % +mM*n*+N*):=R.

If t € [-1, 0], then
INw)(®)| < llelpc,

SO
IN@W)llo < max {R, |@lpc}:=€.
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64 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

Step 3: F maps bounded sets to equicontinuous sets of Q. Let t1,t, € (0, T], t1 < t3,
By« be a bounded set of 2 as in Step 2, and let u € By+. Then

IN(u)(t2) — N(u)(t1)]
t
1 a-1 a-1
< m!“tz—s) —(t1 = 5)* g(s)|ds
t

1 w
* i | M= Nsds + Y k)

t O<ty<ty—t,
< L[Z(tz =)+ (85 = tD] + (t2 = t)(M* lug-llpc + N*)
T I(a+1) 21 k
M a a aQ * *
S T2t -t + (6 - )]+ (&2 - )M ullg + N7)

M
< F(tx—+1)[2(t2 - tl)a + (tg — t?)] + (t2 _ f1)(M*11* " N*) )

As t; — t,, the right-hand side of the preceding inequality tends to zero. As a conse-
quence of Steps 1-3, together with the Ascoli—Arzela theorem, we can conclude that
N: Q — Q is completely continuous.

Step 4: A priori bounds. Now it remains to show that the set

E={ueQ:u=AN(u)forsome 0 < A< 1}

is bounded. Let u € E; then u = AN(u) for some O < A < 1. Thus, for each t € ] we have

tk

_ A a-1
u(0) = 1p(0) + 7 O;th (t - )% 1g(s)ds

t
J(t—s)“‘lg(s)ds+/\ Y ILug), (3.13)

LA
F(a) t O<ty<t

and by (3.4.1), for each t € J we have

1g(O = If(t, ug, g(6))]
< p(t) + q(O)lluellpc + r(t)|g(8)]
<p* +q lluellpc +r*1g(t)l .
Thus,

Ig(6)] < (" +q" luellpe) -

1-r*
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3.2 Results for Impulsive NIFDEs with Finite Delay =—— 65

Now (3.13) and (3.4.2) imply that for each t € ] we have

ty

Y [ =910 + a'lusleods

0<t"<ttk,1

1
[u(®)] < 10| + A-rmi@

1

t
a—1,,,* *
A J(t =) (p" + q" luslpc)ds

tx
+m(M*lugllpc + N¥) .

Consider the function { defined by
{(t) =sup{lu(s)]: -r<s<t},0<t<T.

Then there exists t* € [-r, T] such that {(¢) = |u(t*)|. If t € [0, T], then, by the previous
inequality, for t € ] we have

tx

Y [0 rqgsnas

O<t’<<ttk,1

1
{(t) < lp(0)] + A=

t
j(t — )" (p* + g7 {(s))ds
t

+mM*{(t) + mN* .

1
T a-mIa

Thus, fort € J

te

Y [ e gsnas

0<tk<ttk,1

[@(0)] + mN* 1
T-mM* | 1-mM)(1-ra)

{(t) <

t

[e-91w7 + g gonds
t

L eI +mN* (m+1)p*T“

- 1-mM* A-mM*)Q -r*)[(a+1)

t

J(t—s)“’l((s)ds.

0

1
T A —mMY 1 =) a)

(m+1)g*
T A -mMHA - rH)Ia)

Applying Lemma 1.52, we get

lp(0)] + mN* (m+1)p* T
((t)s[ 1-mM~ +(1—mM*)(1—r*)F(“+1)]
8(m+1)g*T*

A-mM*A -r)[(a+1)

x[1+ |4,
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66 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

where 6 = §(a) is a constant. If t* € [-7, 0], then {(t) = |[¢|pc. Thus, for any ¢ € J and
lullg < {(t) we have
lulle < max{ll@lpc, A} .

This shows that the set E is bounded. As a consequence of Schaefer’s fixed point
theorem, we deduce that N has a fixed point that is a solution of problem (3.1)-(3.3). O

3.2.3 Ulam-Hyers—Rassias stability

Here we adopt the concepts in Wang et al. [252] and introduce Ulam’s type stability
concepts for problem (3.1)-(3.2).

Letz € Q,e >0,y >0, and w € PC(J, R;) be nondecreasing. We consider the set
of inequalities

1°D%z(t) - f(t, z¢, ‘D°z(t))| < €, te (tx,traal, k=1,...,m, G
1Ayle, — Ir(ye)l < €, k=1,...,m; ’
the set of inequalities
1°D%z(t) - f(t, z¢, ‘D*z(t)| < w(t), te (ti,traa), k=1,...,m, (3.15)
1Ayle, = Ikye)l < 9, k=1,...,m; '
and the set of inequalities
[°D%z(t) - f(t, z¢, “D*2(t))| < ew(t), te (tx, traal, k=1,...,m, (3.16)
1Ayle, = Ik(ye )l < €, k=1,...,m. '

Definition 3.5. Problem (3.1)—(3.2) is Ulam-Hyers stable if there exists a real number
¢r,m > 0 such that for each € > 0 and for each solution z € Q of inequality (3.14) there
exists a solution y € Q of problem (3.1)-(3.2), with

|z(t) =yl < crme, te].

Definition 3.6. Problem (3.1)-(3.2) is generalized Ulam-Hyers stable if there exists
0rm € C(Rs, Ry) with 6f,,(0) = 0 such that for each solution z € Q of inequality (3.14)
there exists a solution y € Q of problem (3.1)-(3.2), with

1z(6) = y(O) < Orm(e), te].

Definition 3.7. Problem (3.1)-(3.2) is Ulam-Hyers—Rassias stable with respect to (w, 1)
if there exists ¢fm,» > O such that for each € > 0 and for each solution z € Q of
inequality (3.16) there exists a solution y € Q of problem (3.1)-(3.2), with

|z(t) = y(O] < crmuwelw(®) +), te].
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3.2 Results for Impulsive NIFDEs with Finite Delay =—— 67

Definition 3.8. Problem (3.1)-(3.2) is generalized Ulam-Hyers—Rassias stable with
respect to (w, ) if there exists cf,m,» > 0 such that for each solution z € Q of inequality
(3.15) there exists a solution y € Q of problem (3.1)-(3.2), with

lz(6) - y(O] < crmow(@®) +¥), te].

Remark 3.9. It is clear that (i) Definition 3.5 implies Definition 3.6, (ii) Definition 3.7
implies Definition 3.8, and (iii) Definition 3.7 for w(t) = ¥ = 1 implies Definition 3.5.

Remark 3.10. A function z € Q is a solution of inequality (3.16) if and only if there is
0 € PC(J, R) and a sequence 0, k = 1, ..., m (which depend on z) such that
@) o) < ew(t), t € (tystis1], k=1,...,mand |ox| <ep,k=1,...,m;
(i) °D%z(t) = f(t, z, *Dz(t)) + 0(t), t € (tx, tira ), k=1, ..., m;
(iii) Azl = Ii(z¢) + ok, k=1,...,m.
Similar remarks hold for inequalities 3.15 and 3.14.
Now we state the following Ulam—-Hyers—Rassias stable result.

Theorem 3.11. Assume (3.3.1)-(3.3.3) and (3.9) hold and
(3.11.1) there exists a nondecreasing function w € PC(J, R,), and there exists A, > 0 such
that, forany t € J,
I“w(t) < Ayw(t) .

Then problem (3.1)-(3.2) is Ulam—-Hyers—Rassias stable with respect to (w, ).
Proof. Let z € Q be a solution of inequality (3.16). Denote by y the unique solution of
the problem
DY y(t) = f(t,ye, ‘DEy(D), te (ti, tiral, k=1,...,m,
AY|t:tk:Ik(yt;), k:1,...,m,
y(t) = z(t) = (1), te[-r0].
Using Lemma 3.2, we obtain for each t € (tx, tis1]

t;

k 1 k
=@0 Li(ys+ —_— i— a-1 d
Y0 = 9O+ 3 1) + W)izzltj(t 9" 1g(s)ds

i-1

t
1 a-1
+ m I(t -s)* " g(s)ds,

tx

where g € C(J, R) is given by
g(t) :f(tr )/t,g(t)) .

Since z is a solution of inequality (3.16), by Remark 3.10 we have

{CD?kzu) = f(t, 2, DEZ(B) + 0(), € (b il k=1,...,m, 1)

Az|t=t, =Ik(zt;)+0k, k=1,...,m.
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68 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

Clearly, the solution of (3.17) is given by

k k 1k b )
z(t) = @0)+ ) Li(zp) + ) Oi+ —— (ti —s)* " h(s)ds
2z o g 2 |

i-1
ti

t
_g)a-1 _ aa-1
F(a) Z [ =51 totsras + o )J(t $)*h(s)ds

tl—l

t
1 a-1
+mj(t_5) o(s)ds, te (titinl,

where h € C(J, R) is given by
h(t) = f(t, z¢, h(t)) .

Hence, for each ¢t € (tx, ti+1], it follows that

k k
|2(6) - y(t)l < Y loil + Y i(ze) = Ti(ye)l
i=1 i=1
tl

T(a) Z [ =9 1ns) - gio)ias

t—l

t;
1 k

> J (ti - )" |o(s)|ds

B PR T
* j( $)*1|n(s) - g(s)lds

tx
1 t
a-1
*r(a)J“‘ )% a(s)].
Thus,

k
|2(t) - y(t)] < me + (m + Dedyw(t) + Y llzi- - ye-lIpc
i=1
ti
F(a) Z J(t, - )% Yh(s) - g(s)lds

llle

t
1 a-1
+ mj(t—s) |h(s) — g(s)|ds .

te
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3.2 Results for Impulsive NIFDEs with Finite Delay =—— 69

By (33.3.2) we have
[h(t) - g(t)] = If(t, z¢, k(D)) = f(t, yt, g(O)
< Klz¢ - yellpc + LIg(t) - h(B)] .

Then

[h(t) - g(0)] < lze = yellpc -

K
1-L
Therefore, foreach t € J

k —~
|2(t) - y()] < mey + (m + Dedyw(t) + Y llze e lpc

i=1
ti

K S a-1

* (1-D)I(a) i=1tljl (ti = )" llzs — yslpcds
K ¢

D | 9 s = yalocds.

t
Thus,

l2(t) -yl < Y Tlze = yellpc + €@ + @(@®)(m + (m + 1)A,)

O<ti<t

Kim+1)

t
a-1
* m J(t =) lzs — ysllpcds .

0

We consider the function {; defined by
(1(t) =sup{llz(s) —y(s)ll: —r<s<t},0<t<T;

then there exists t* € [-r, T] such that {3(¢) = ||z(t*) — y(t*)|. If t* € [-r, O], then
¢1(t) = 0. If t* € [0, T], then by the previous inequality we have

a < Y 16t + e + w®)(m + (m+ 1)A,)

O<ti<t

Kim+1)

t
a-1
+m[(t—s) (1(5)(15.

0

Applying Lemma 1.53, we get
Gi() < e + w(®)(m + (M + 1)Ay)

t
X [ []a +7)exp<l %(t—s)“‘%s)}

O<t;<t 0

< cpe+w(d),
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70 =—— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

where

UL - K(m+1)T®
cwz(m+(m+1)/1w)[ (1+1)exp —)]
11:! ((1—L)F(a+1)

B - Km+1)T* >]m
=(m+(m+1)Ay) [(1 +1) exp<(1 “Dla+l)
Thus, problem (3.1)-(3.2) is Ulam—Hyers—Rassias stable with respect to (w, ¥). O
Next, we present the following Ulam—-Hyers stability result.

Theorem 3.12. Assume (3.3.1)-(3.3.3) and (3.9) hold. Then problem (3.1)-(3.2) is Ulam-
Hyers stable.

Proof. Let z € Q be a solution of inequality (3.14). Denote by y the unique solution of
the problem

CD?ky(t) :f(ty Yts CD?k)’(t)), te(ty, tisal, k=1,...,m;
A)’|t:tk=1k()’t;), k=1,...,m;
y(0) = z(t) = @(1), te[-r0].

From the proof of Theorem 3.11 we get the inequality

~ T%(m + 1)
(1([’) < 0<§<t l(l(tl ) + me + W
t
Kim+1) a1
+ —(1 " DI J(t -5)*1(s)ds .

0

An application of Lemma 1.53 gives

ml(a+1)+T%(m+1)

G < €< Ta+1) )
t
- Kim+1) a1
X (1+Dexp ———(t-5)"""ds
v e -or )|
< cye€,
where
_(mI(a+1)+T%m+1)\ [ ~ Km+1)T?®
o= (" Farp )[H(“”e"p<(1—L)r<a+1)>]

_<mF(a+1)+T‘)‘(m+1))[(1_‘_7)’3X < Kim+1)T* )]m
- Ta+1) P\ad-Dra+n)] -

Moreover, if we set y(€) = cy€, y(0) = 0, then problem (3.1)-(3.2) is generalized Ulam—
Hyers stable. O
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3.2 Results for Impulsive NIFDEs with Finite Delay

3.2.4 Examples

Example 1. Consider the impulsive problem
1 -t CD% t
Diy(t) = tll”f - fk{() ] forteJouli,  (318)
(11 +eY) b4 1+CDt2ky(t)
-
y =
Aylis = (3 Z , (3.19)
2 10+y(7)
yit)=9t), te[-r0],r>0, (3.20)
where ¢ € PC([-1,0],R), Jo = [0, 31, J1 = (3, 1], to = 0,and t; = 3.
Set
ftt,u,v) = - [ u Y te[0,1], ue PC([-1,0],R) andv € R
T T Al+ey l1+u 1+v]? TP T ’

Clearly, the function f is jointly continuous.

For each u, it € PC([-1,0],R), v,V e R,and t € [0, 1]:
—t
(lu = @llpc + v - vl)

ty ) - t) _, % S

IfCt, u, v) - ft, @, V)| I1+eh
< Lju-alpc+ =lv-7l
=12 PCT 12 '

Hence condition (3.3.2) is satisfied by K = L = 5. Let

u
L= —"% PC(I-
1(u) 10+u, ue C([ r’O]’IR)’

and let u, v € PC([-r, 0], R). Then we have
& L
10+u 10+v'~ 10 pC-

1w - L) = |

Thus the condition
T+ (m+1DKT* | 1 . 5
1-L)(a+1) 10 (1_%)1‘(%)

1

4
=——+-—=<
114/m 10

is satisfiedby T = 1,m = 1, and 1 = 11—0. It follows from Theorem 3.3 that problem

(2.35)-(2.37) has a unique solution on J.
Forany ¢ € [0, 1], take w(t) = tand ¢ = 1.

t
! j(t—s)%‘lsds < % ,

N7

Since
I"w(t) =
r(3);
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72 =— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

condition (3.11.1) is satisfied with A, = % It follows that problem (3.18)—(3.19) is
Ulam-Hyers—Rassias stable with respect to (w, ).
Example 2. Consider the impulsive problem

1
241y +I°DZy (1)l

1
D7 y(t) = . , foreach, tejouJi, (3.21)
108¢ (1 + lyel + D3 y(0) )
ly(3)1
Wl - (;1) , (3.22)
6+1y(37)]
y) = o(t), tel-10],1>0, 3.23)

where ¢ € PC([-1,0],R) Jo = [0, 1],/1 = (3, 1], to =0, and t; = 3. Set

2+ |ul +1|v|

t,u,v) = ,
ft ) 108et+3(1 + |ul + |v|)

te[0,1], ue PC([-1,0],R),veR.

Clearly, the function f is jointly continuous. For any u, it € PC([-1, 0], R), v, ¥ € R and
te[0,1]

1 _ -
u-tlpc+|v-v.
10863 (I lpc +1 D

Hence condition (3.3.2) is satisfied by K = L =

|f(ty u, V) _f(t) a’ V)l <

o8- Foreach ¢ € [0, 1] we have

1
[t w, V)l < ez 2+ lullpe + VD) -

Thus condition (3.4.1) is satisfied by p(t) = 2= and q(t) = r(t) = 15asr- Let

u|

Ii(u) = m ,

uce PC([_r’ 0]’IR) .
For each u € PC([-r, 0], R) we have
1
[I1(w)] < gllullpc +1.

Thus, condition (3.4.2) is satisfied by M* = % and N* = 1. It follows from Theorem 3.4
that problem (3.21)-(3.23) has at least one solution on J.
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3.3 Impulsive NIFDE with Finite Delay in Banach Space =— 73

3.3 Existence Results for Impulsive NIFDE with Finite Delay in
Banach Space

3.3.1 Introduction

The purpose of this section is to establish existence and uniqueness results for implicit
fractional differential equations with finite delay and impulses

‘DY y(t) = f(t,ye,“ D} y(t)), foreach,t e (tk, txs1], k=0,...,m, 0<v<1,

(3.24)
Ay|t=tk :Ik()/t;)’ k: 1,'-"ma (3.25)
yt)=9(t), te[-r0],r>0, (3.26)

where ¢ Dyk is the Caputo fractional derivative, (E, | - ||) is a real Banach space, f: J x
PC([-1,0], E) x E — Eis a given function, I;: PC([-1,0], E) — E, ¢ € PC([-1,0], E),
and 0 =ty < t; <--- <ty < tms1 = T. For each function y; defined on [-r, T] and for
any t € ] we denote by y; the element of PC([-r, 0], E) defined by

ye@) =yt+0), 0¢cl[-10]. (3.27)

Here, y¢(.) represents the history of the state from time ¢ — r up to time t. We have
Ayl = y(ty) - (&), where y(ty) = limp—o+ y(tx + h) and y(t;) = limp_o- y(tx + h)
represent the right and left limits of y; at t = tx, respectively.

In this section, two results are discussed: the first is based on Darbo’s fixed point
theorem combined with the technique of measures of noncompactness; the second uses
Monch’s fixed point theorem. Two examples are given to demonstrate the application of
our main results.

3.3.2 Existence of Solutions

Consider the set of functions
PC([_r! O]’ E) = {J’- [_r’ 0] - E: Y € C((TIO Tk+1]’ E)’ k = 1’ cee,m,
and there exist y(7;) and y(TZ), k=1,...,mwithy(t}) = y(t4)} .

Let PC([-r1, 0], E) be the Banach space with the norm

Iyllpc = sup [yl .

te[-r,0]
Also, we take

PC([O’ T]’E) = {Y' [O’ T] - E: y € C((tk’ tk+1]’E)’ k= 1’ N (B
and there exist y(t) and y(tZ), k=1,...,mwith y(t) = y(ti)}
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74 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

and PC([0, T], E) to be the Banach space with the norm
Iyllc = sup Iyl .
te[0,T]
Let
= {y: [_rs T] g E: )/|[—r,0] € PC([_r’ O]’E) and Y|[0,T] € PC([O’ T]’E)} ’
and note that Q is a Banach space with the norm

Iyle = sup |yl .
te[-r,T]

Let us define what we mean by a solution of problem (3.24)-(3.26).

Definition 3.13. A function y € Q whose v-derivative exists on Jj is said to be a solution
of (3.24)-(3.26) if y satisfies the equation Cka y(t) = f(t, y¢, CD‘[k y(t)) on Ji and satisfies
the conditions

AYlt=t, = Ik(yt;) , k=1,...,m,

yO) =), te[-r0].

To prove the existence of solutions to (3.24)—(3.26), we need the following auxiliary
lemma.

Lemma 3.14. LetO <v < 1,andleto: ] — E be continuous. A function y is a solution of
the fractional integral equation

t
v-1 :
00+ 7 )ju—s) o(s)ds, ifeelo ul,
ki
I i— v-1 d
Y6 = (0)+Z 0+ 1y )Zi(t §)""o(s)ds (328)

! t(t ) lo(s)d it € (ten tio]
+m£|- -8 O'(S S, yte Lk, tk+1] s
(P(t): tG [_r) 0] )

wherek =1, ..., m, if and only if y is a solution of the fractional problem

D'y(t) = o(t), teJk,
Aylt:tk =Ik(ytl:), k=1,...,m,
y(t) = (1), te[-r0].
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3.3 Impulsive NIFDE with Finite Delay in Banach Space =—— 75

Let us introduce the following conditions:
(3.14.1) The function f: J x PC([-r, 0], E) x E — E is continuous.
(3.14.2) There exist constants K > 0 and O < L < 1 such that

IfCt, u, v) - f(t, w, V) < Kllu - @llpc + Lllv - VI

forany u, it € PC([-1,0],E),v,v € Eand t € J.
(3.14.3) There exists a constant > 0 such that
k() - L@l < Tlu - @lpe
foreachu,u € PC([-r,0],E)andk=1,...,m.
We are now in a position to state and prove our existence result for problem (3.24)-(3.26)
based on the concept of measures of noncompactness and Dafixth’s fixed point theorem.

Remark 3.15 ([66]). Conditions (3.14.2) and (3.14.3) are respectively equivalent to the
inequalities
a (f(t, B1, B2)) < Ka(B1) + La(B>)

and
a(Ix(B1)) < la(By)

for any bounded sets B; < PC([-1,0],E),B, c E,foreacht e Jandk=1,...,m.
Theorem 3.16. Assume (3.14.1)-(3.14.3). If

- (m+1)KTY
M T Drvsn <& G29)
then IVP (3.24)—(3.26) has at least one solution on J.

Proof. Transform problem (3.24)—(3.26) into a fixed point problem. Consider the opera-
tor N: Q — Q defined by

) &
1
®(0) + L(ye) + =—— (t—s)" 'g(s)ds
0<tzk<t ‘ f F(V) 0<tzk<ttk‘!‘1 ‘
(N =1 1 tt igerg ot (3.30)
+mtj( -5)""g(s)ds, €[0,T],
(P(t), t € [_r: O] >

where g € C(J, E) is such that

8(t) = f(t, y:, 8(0) .

Clearly, the fixed points of operator N are solutions of problem (3.24)-(3.26).
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76 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

We will show that N satisfies the assumptions of Darbo’s fixed point theorem. The
proof will be given in several claims.

Claim 1: N is continuous. Let {u,} be a sequence such that u, — uin Q.Ift € [-r, 0],
then

IN(un)(t) - Nu)(®)ll = 0

For t € ] we have

IN(un)(t) - Nw)(O)]l < F( ) D J(tk—s)v’lllgn(s)—g(S)IIdS

0<tk<l’
t
F()j(t 9" gn(s) - g(s)lds

+ ) Miung) = Ikl
o<ty<t (3'31)

where g, g € C(J, E) are given by

gn(t) = f(t, unt, gn(1))

and
8(t) = f(t, ue, (1)) .
By (3.14.2) we have
gn() — 8(ON = If(t, une, gn(t)) — (¢, ur, g(O)
< Kllunt — uellpc + LIgn(t) — (O -
Then

K
lgn(6) = 8(ON < T lune — ucllpc -

Since u, — u, we get g (t) — g(t)asn — oo for each t € J. Let n > 0 be such that for
each t € J we have ||g, ()| < nand ||g(¢)| < n. Then we have

(t=95)"gn(s) — g(s)l < (t = 5)" lgn(s)Il + Ig(s)II]
<2n(t-s)?!
and
(tic=$)" M lgn(s) — gl < (tk = 8) llgn ()l + g ()]
<2n(ty-s)' .

For each t ¢ J the functions s — 2n(t - s)""! and s — 2n(tx — s)""! are integrable on
[0, t]. The Lebesgue dominated convergence theorem and (3.31) imply

[IN(un)(t) = Nw)(®)]| - 0 as n — oo
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3.3 Impulsive NIFDE with Finite Delay in Banach Space =— 77

Hence,
[N(un) - N(u)lg — 0 as n - co.

Consequently, N is continuous.
Let R be a constant such that

R > max

{ (lpO)ll + me1) T(v +1)(1 = L) + (m + 1) T'f* ’ ||<p||pc]> e

Fv+1)(1-L)-[(m+1)T'K + mil(v + 1)(1 - L)]

where
¢y = max {sup{|Ix(V)Il, v € PC([-r, 0], E)}}
1<ksm
and
f* =suplfit,0,0)] .
te]
Define

Dr={ueQ:|ulg<R}.

It is clear that Dy is a bounded, closed, and convex subset of Q.
Claim 2: N(DR) c Dg. Let u € Dg; we show that Nu € Dg.If t € [-r, 0], then

IN@)®I < llolpc <R .

If t € J, then we have

ti

INGO < Te©1 + 1 Y | (69" Igts)lds

F(V) O<ty<t tis

t
j(t ~) Hg©)lds + Y Miue)l - (3.33)

!
v )

By (3.14.2), for each t € J we have

gl < If(t, ue, g(t)) - f(t, 0, 0)|| + (¢, 0, 0)|
< Kluellpc + LIg®ll + f*
< Kllullo + Llig®l + f*
<KR+L|gt)|+f*.
Then

f*+KR
1-L

gl < =M.
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78 = 3 Impulsive Nonlinear Implicit Fractional Differential Equations

Thus, (3.32), (3.33), and (3.14.3) imply that

INUON < 1O + T + kil k() ~ IO} + kil 1)
<191+ SR il e + e,
< lp)+ T s mllula + mey
< lleO)| + % +miR + mcy

<R.

Thus, for each t € [-r, T] we have |[Nu(t)| < R. This implies that |Nu|o < R. Conse-
quently,
N(DR) C DR .

Claim 3: N(DR) is bounded and equicontinuous. By Claim 2 we have N(Dg) =
{N(w): u € Dg} c Dg. Thus, for each u € Dr we have |[N(u)|qo < R. Hence, N(Dg)
is bounded. Let t1, t> € (0, T], t; < t», and let u € Dg. Then

INQW(t2) - Nt
t
! v-1 v-1
Smjl(tz_s) ~ (t1 - )" Mllg(s)lds
ty

b [ -5 ig@lds + Y M) -1+ Y kO]

F(V) t 0<tk<t2—f1 0<tk<t2—t1

M _~
< m[Z(tz = t)" + (& = D] + (&2 = t)Ullug e + ¢1)

S Twrp 2 -t + (G -]+ (- t)(@lullg + c1)

M -
12t =t vV _ gV _ R .
< Tws 1)[ (t2—t1)" + (&5 = tD] + (&2 - t1)(IR + ¢1)
As t; — t, the right-hand side of the preceding inequality tends to zero.
Claim 4: The operator N: D — Dy is a strict set contraction. Let V. c Dg. If
t € [-r, 0], then

a(N(V)(1)) = a(N(y)(t),y € V)
=a(p(t),yeV)
=0.
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3.3 Impulsive NIFDE with Finite Delay in Banach Space = 79

If t € J, then we have

a(N(V)(®)) = a((Ny)(t),y € V)
ti

< ¥ fatrenye v ¥4 [ -9 tatesnds y e v

O<ty<t F(V) O<ty<t
1 t
- _ -1
+ o) <|j(t ) “a(g(s))ds,y € V} .
tx
Then Remark 3.15 and Lemma 1.32 imply that for each s € J

a({g(s),y € V}) = a({f(s, y(s), g(s)),y € V})
< Ka({y(s),y € V}) + La({g(s),y € V}) .

Thus,
a(lgls),y € Vi) < T2 aly(s), y € V).
On the other hand, foreach t € Jand k = 1, ..., m we have
Y a({e),y € V) < mlay(),y € V).
O<tr<t
Then

t
~ K
a(N(V)(®) < mlaiy(t),y € V) + Gy “(t— 5)" Maly(s)}ds, y € V}

t
K {j(t—s)”{a(y(s))}ds,y ¢ V}

_ mKTY KTY
< mlac(V) + [(1 “DIv+ 1) A-DIw+ 1)] acv)
[ (m+ 1)KTY
= [ml+ m] aC(V) .

Therefore,
(m+ 1)KTY

1-L)Iv+1)
Thus, by (3.29), operator N is a set contraction. As a consequence of Theorem 1.45, we
deduce that N has a fixed point that is a solution of problem (3.24)-(3.26). O

ac(NV) < [m7+ ]aC(V).
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80 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

Our next existence result for problem (3.24)-(3.26) is based on the concept of measures
of noncompactness and Monch’s fixed point theorem.

Theorem 3.17. Assume (3.14.1)-(3.14.4) and (3.29) hold. If
ml<1,

then IVP (3.24)—(3.26) has at least one solution.

Proof. Consider the operator N defined in (3.30). We will show that N satisfies the
assumptions of Monch’s fixed point theorem. We know that N: Dp — Dp is bounded
and continuous, and we need to prove that the implication

[V =convN(V) or V = N(V) u {0}] implies a(V) =0

holds for every subset V of Dg. Now let V be a subset of Dg such that V' ¢ conv(N(V) u
{0}); Vis bounded and equicontinuous, and therefore the function t — v(t) = a(V(t))
is continuous on [-1, T]. By Remark 3.15, Lemma 1.33, and the properties of the measure
a, for each t € J we have

v(t) < a(N(V)(t) U {0})
< a(N(V)(1)
< a{(Ny)(t),y € V}

t

~ DK

< mlaiy(®.y € V) + e {j(t—s)v-l{my(s»}ds, ye v}
0

(m+ 1K

t
_ -1
- DIw) I(t s)' " v(s)ds .

(0]

= mTv(t) +

Then

t
vy < — MK J(t — )" Ly(s)ds .
(1-mD(1- L) )

Lemma 1.52 implies that v(t) = O foreach t € J.

For t € [-r, 0] we have v(t) = a(@(t)) = 0, so V(t) is relatively compact in E. In view
of the Ascoli—Arzela theorem, V is relatively compact in Dg. Applying Theorem 1.46, we
conclude that N has a fixed point y € Dg. Hence, N has a fixed point that is a solution
of problem (3.24)—(3.26). O
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3.3 Impulsive NIFDE with Finite Delay in Banach Space =— 81

3.3.3 Examples

Example 1. Consider the infinite system

1 -t CD% t

‘D yn(t) = 11e 51 y"(t)t - tk{n( ) , foreach, teJouJi, (3.34)

( +e) +Yn() 1+CD(2kyn(t)
-

y =

AYn|t=% = Lz_ s (3.35)

10+yn(3")
,Vn(t) = (P(t) ’ te [_r, O]y r> 0 s (3-36)

Where‘/’ € PC([_rs 0]’E)7]0 = [0) %]’]1 = (%,1]5 tO = 05 and tl = %
Set -
E:ll:{y:()/h)’z,---,Yn,---), Z |Yn| <OO}’
n=1
and

-t u v

A1+e)l1+u 1+v

flt,u,v) = ] , te[0,1], ue PC([-r,0],E), andveE.

Clearly, the function f is jointly continuous; now E is a Banach space with the norm
o0

lyl =) lyal. Forany u, & € PC([-1,0],E),v,7 € Eand t € [0, 1]
n=1

1
IfCt, u, v) = f(t, u, V)| < E(Ilu —ullpc +lv-vl).

1
Hence, condition (3.14.2) is satisfied by K = L = o
Let
Li(u) =

10+u, uEPC([_rsO],E)

and take u, v € PC([-r, 0], E). Then we have

u v

1) ~hWl = 55— -~ 7o

1
| < E"u -Vlpc .

~ 1
Hence, condition (3.14.3) is satisfied by [ = 10
The conditions

i, (MrDKTY [ 1 .
1-L)I(v+1) 10 (1_ﬁ)r(%)
= 4 + 1 <1
11ym 10

1
are satisfiedby T = m = 1andv = 5 It follows from Theorem 3.16 that problem
(3.34)-(3.36) has a at least one solution on J.
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82 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

Example 2. Consider the impulsive problem
foreach, teJou]J;,

1 2+ ol + CD% t
D} yalt) = lyn(ON + 1l tkyn(;)” ’
108et+3 (1 + Iyl + ||CDt2k,Vn(t)">
(3.37)
.
Ayl lya(37)1 (3.38)
nlg=1 = _ ) .
5 e+ lya (1)1

te[-r,0], r>0, (3.39)

ya(t) = @(0),
where ¢ € PC([-1,0], E), Jo = [0, 51, J1 = (3, 1], to = 0, and t; = 3. Set

Ezll={y:()’1,)’2,---,Yn,---),Z|)’n|<00}y
n=1

te[0,1], u e PC([-1,0],E), veE.

and
2+ flull + v

t,u,v) = s
1 ) 108e3(1 + flull + Ivl)
Clearly, the function f is jointly continuous. Now E is a Banach space with the norm

[oe]
[yl = z |Vnl. For any u, t € PC([-1,0],E),v,v € E,and t € [0, 1],

_ 1 _ _
WIS —=u-ulpc+Ilv-vl).

n=1
t) ) - t9 U
IfCt, u, v) - f(t, u 10863
Hence, condition (3.14.2) is satisfied by K = L = @.
bl "y ¢ peqr, 01, B ,

Let
L) = ,
1) =

aIld take u’ S 1 C( ]’ O]’E)' IIleIl Wella\‘e
" < sllu l”PC .

u
11 (w) - (VI = ||6 % 61v

Hence, condition (3.14.3) is satisfied by I = 1.

7, (m+DKT 1 5
(1-4)r(@3)
1

The condition
mt DD

1

is satisfiedby T=m=1andv = 5 We also have
—-<1.

ml:6

It follows from Theorem 3.17 that problem (3.37)-(3.39) has at least one solution on J
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3.4 Results for Perturbed Impulsive NIFDE with Finite Delay =—— 83

3.4 Existence and Stability Results for Perturbed Impulsive NIFDE
with Finite Delay

3.4.1 Introduction

In this section, we establish existence, uniqueness, and stability results for the nonlinear
implicit perturbed fractional differential equation with finite delay and impulses

Dy y(t) = f(t,ye, ‘D y(0) + P(t,ye), fort e (ti, tyra], k=0,...,m, 0<a<1,

(3.40)

AJ’|tk=Ik()’t;), k:1)"'9m, (3-41)

yit) =), te[-r0],r>0, (3.42)

where Jo = [to, t1], Jk = (tk, trsr]; k=1,...,m, CDf'k is the Caputo fractional deriva-

tive, f: J x PC([-1,0], R) x R — Rand ¢: J x PC([-r, 0], R) — R are given functions,

Ix: PC([-1,0], R) > R, ¢ € PC([-1,0], R),and O =ty <ty <--- <ty < tmy1 =T.
The arguments are based on Banach’s contraction principle and Schaefer’s fixed

point theorem. Finally, we present two examples to show the applicability of our results.

3.4.2 Existence of Solutions

Consider the Banach space

PC([-1,0],R) ={y: [-1,0] - R: y € C((Tk, Tk+1], R), k=1,...,m,and there exist
y(rp)and y(ty), k=1,...,mwithy(t}) = y(ti)},

with the norm
lyllpc = sup |y(6I;
¢

€[-r,0]
PC([0, T, R) = {y: [0, T] = R: y € C((t, tx+1], R), k=1,...,m,
and there exist y(t,) and y(t;), k=1,..., mwithy(t,) = y(tx)},
with the norm
Iyllc = sup ly(®)l;
t[0,T]
and

Q={y: [-r,T] = R: yl—r,0; € PC([-1, 0], R) and yljo,1) € PC([0, T], R)},

with the norm

lylo = sup [y(®)]l.
te[-n,T]
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84 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

Definition 3.18. A function y € Q whose a-derivative exists on J is said to be a solution
of (3.40)-(3.42) if y satisfies the equation D¢, y(t) = f(t, y¢, “Dg y(t)) + ¢(t, y¢) on Ji
and satisfies the conditions
Ay|[=tk = Ik(yt;)’k = 1’ BRI (39
y(t) = (p(t) ’ te [—T, 0] .

To prove the existence of solutions to (3.40)—(3.42), we need the following auxiliary
lemma.

Lemma 3.19. Let O < a < 1, and let 0: ] — R be continuous. A function y is a solution
of the fractional integral equation

9(0) + : ) jt(t - s)* a(s)ds, iftel0,t],
0
ti
y(b) = 1 O ZI’(y Dt T F( ) £ Z [(t’ -9 als)ds, (3.43)
t
F( ) J(t—s)“ Lo(s)ds, ift e (t, tiwa]

[ ¢ (D), te[-r0],

wherek =1, ..., m,if and only if y is a solution of the fractional problem
‘Dy(t)=o(t), te]k, (3.44)
Aylit, =Ik(yt;), k=1,...,m, (3.45)
yit)=e(t), tel[-r0]. (3.46)

Proof. Assume that y satisfies (3.44)-(3.46). If t € [0, t1], then
cDy(t) = o(t) .

Lemma 1.9 implies

t
y() = (0) + I%(t) = (0) + —— j(—s)“-la(sms.

I(a)
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3.4 Results for Perturbed Impulsive NIFDE with Finite Delay =——— 85
If t € (t1, t;], then Lemma 1.9 implies

t
+ 1 _aa-1
YO =y + )J(t )" Lo(s)ds

t

J(t - 5)*1g(s)ds

t

=AYle=t, +y(t]) + = @

ty
1
=NLyg) + l#’(o) T J(H —S)“_lo(s)ds]

t
1 _o)a-1
+mtj(t s)*o(s)ds.
ty

= 9O+ 1) + s [t -9 ots)ds
0

t
a-1
F( )J(t s)* to(s)ds .

ty

If t € (t,, t3], then from Lemma 1.9 we get

t
o L[ gyt
y(O) = y(£5) + F()j(t )% Lo(s)ds

t
= Ayleet, +Y(65) + —— j (t - 5)Lo(s)ds

I(a)
1 ¢
_ o)a-1
T )J(h $)* " o(s)ds
1 ¢ ]
_ a1
F( )j(tz s)* "o(s)ds

t .

=L(ys) + |:<p(0) +1i(ye) +

t

1 a1
F( )j(t s)* "o(s)ds .
_ ¢

= 9(0) + [ye) + Loy + j(tl - 5)*o(s)ds

1
I(a)

t h

¢
F( ) J(tz - ) g(s)ds | + F(l ) J(t - ) 1g(s)ds .
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86 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

Repeating the process in this way, the solution y(t) for t € (tx, tx+1], wherek =1, ..., m,
can be written

k 1k 4 "
O =90+ X+ s > [ -9 ats)ds

t
1 a-1
+mj(t—s) U(S)ds.

tx
Conversely, assume that y satisfies the impulsive fractional integral equation (3.43). If
t € [0, t1], then y(0) = ¢(0). Using the fact that ¢D* is the left inverse of I*, we get
‘D (t) = o(t), foreachte[0,t,].

If t € (tk, trea], k=1, ..., mand using the fact that °D*C = 0, where C is a constant,
we get
‘D*(t) = o(t), foreacht e (ty, trs1l.

Also, we can easily show that
Ay|t=tk:Ik(yt;)y k=1,...,m. D

We are now in a position to state and prove our existence result for problem (3.40)-(3.42)
based on Banach’s fixed point.

Theorem 3.20. Make the following assumptions:

(3.20.1) The functions f: ] x PC([-1,0], R) x R — Rand ¢: J x PC([-1,0], R) — Rare
continuous.

(3.20.2) There exist constants K > 0, K > 0 and O < L < 1 such that

Iftt, u,v) - f(t, i, V)| < Kllu - ttllpc + Llv - V|
and
lp(t, u) — (¢, W)| < Klu - itllpc
foranyu,ui € PC([-1,0],R), v, veR,andt € ].
(3.20.3) There exists a constant | > O such that

I(u) - L@)| < Tlu - ullpc

foreachu,u € PC([-1,0],R)andk=1,...,m.
If
s (m+ 1)K +K)T* .
1-LI(a+1) ’

then there exists a unique solution for problem (3.40)—(3.42) on .

(3.47)
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3.4 Results for Perturbed Impulsive NIFDE with Finite Delay =— 87

Proof. Transform problem (3.40)-(3.42) into a fixed point problem. Consider the opera-
tor N: Q — Q defined by

r tr
PO)+ Y Iilye )+r( ) > j(tk—S)“’lg(S)ds
O<ty<t 0<tk<ttk,1
Ny)O=1 1 ¢ ) (348)
‘i )j(t—s)“ g(s)ds, telo,T],
tx
(P(t), t € [_r’ O] )

where g € C(J, R) is given by

g(t) =f(ts Vi, g(t)) + ¢(tr )’t) .

Clearly, the fixed points of operator N are solutions of problem (3.40)-(3.42).
Letu,w e Q.If t € [-r, 0], then

|(Nu)() - (Nw)(8)| = O

For t € ] we have

tk

MO - (w01 < s 3 [ (=9 1g(o) - hio)lds

0<tk<ttk,1
t

a-1 _
‘T )j(t 9% lg(s) - h(s)lds

+ ) Miug) - Iwi)l

O<ty<t

where g, h € C(J, R) are given by

g(t) = f(t’ Ug, g(t)) + ¢(t’ ut) s

and
h(t) = f(t, we, h(1)) + P(t, we) .
By (3.20.2) we have
lg(t) = h(O)] < If(¢, ue, g(1)) — f(t, we, R(O)| + |P(E, ue) — P(t, we)l
< Kllus - wellpe + LIg(t) = h(®)] + Kllug - wellpc -
Then

K+K
lg(t) — h(t)| < T lus — wellpc -
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88 =—— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

Therefore, foreach t € J

K+K m
(Nw)(®) ~ (Nw)(O) < 7= L*)F( )Z I ( — 5)" s — wellpcds
K+K -
mj“ 5%t - wollrcds

m
Z llue, - wellpc -

7 m(K + K)T*
(1-L)(a+1)
(K+K)T*

TA-DIa+1) ] I =wla-

Thus, _
(m+1)(K+K)T?*

[(Nu) - (Nw)llg < [ml A DI+ 1)

] lu-wla .

By (3.47), operator N is a contraction. Hence, by Banach’s contraction principle, N has
a unique fixed point that is the unique solution of (3.40)-(3.42). O
Our second result is based on Schaefer’s fixed point theorem.

Theorem 3.21. Assume (3.20.1) and (3.20.2) hold and
(3.21.1) There exist p, q, r € C(J, R;) with r* = sup,; r(t) < 1 such that

If(t, u, w)| < p(t) + q(O)llullpc + r(O)lw| forte], ue PC([-1,0], R)andw e R..

(3.21.2) The functions Iy : PC([-r, 0], R) — R are continuous and there exist constants
M*,N* > 0, with mM* < 1, such that

[Ix(u)| < M*|ullpc + N* foreachu € PC([-1,0],R), k=1,...,m

Then problem (3.40)—(3.42) has at least one solution.

Proof. Consider operator N defined in (3.48). We will use Schaefer’s fixed point theorem
to prove that N has a fixed point. The proof will be given in several steps.

Step 1: N is continuous. Let {u,} be a sequence such that u, — uin Q.If t € [-r, 0],
then
|(Nun)(£) = (Nu)(t)| =0
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3.4 Results for Perturbed Impulsive NIFDE with Finite Delay =——— 89

For t € ] we have

ti

1 a
|(Nup)(t) - (Nu)(0)] < @ Mqutj (tk = )% tgn(s) - g(s)lds

t

1 a-1
i j(t ~ )% Lgu(s) - g(s)\ds

ti

Y I (un () - e (u (£)]
O<ty<t (3.49)

where gy, g € C(J, R) are given by

gn(t) = f(t, unt, gn(6)) + P(t, une)

and
8(t) = fit, ue, () + P(t, ur) .
By (3.21.1) we have
18n () — 8O < If(E, unt, 8n(0)) — f(t, ur, (O] + 1P (L, une) — P(t, u)l
< Kllune - uellpc + Lign(t) - g(t)] + Kllune - uelpc -

Then _

K+K

lgn(6) = 8(0) < = lune — uelec

Since u, — u, we get g,(t) — g(t) asn — oo foreach t € J. Let n > 0 be such that for
each t € J we have |g,(t)| < nand |g(¢t)| < 1. Then

(t=9)"1gn(s) — g(s)I < (t— )% Ign(s)] + Ig(s)I]
<2n(t-s)*?!
and

(ti = $)*gn(s) = 8(S)| < (tk = $)* M {Ign(s)] + I8(s)I]
<2n(ty—s)*t.

For each t € J the functions s — 25(t - s)* ! and s — 2n(tx — s)*"! are integrable on
[0, t]; the Lebesgue dominated convergence theorem and (3.49) imply that

[(Nup)(t) — (Nu)(t)] - 0 as n — oo

Hence
(Nuyn) - (Nu)lg — 0 as n — oo,

and so N is continuous.
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90 — 3 Impulsive Nonlinear Implicit Fractional Differential Equations

Step 2: N maps bounded sets to bounded sets in Q. Indeed, it is enough to show
that for any n* > O there exists a positive constant € such that for each u € By~ = {u ¢
Q: |lulg < n*} we have |[N(u)| g < €. For each t € ] we have

t

ooy gt
M) = 9(0) + 7o Odzk(ttj(tk 9" 1g(s)ds

t
1
+ @ J(t - 5)* 1g(s)ds + 0<%:qlk(ut;) , (3.50)

where g € C(J, R) is given by

g(t) = f(ty Ug, g(t)) + ¢(t9 )’t) .
By (3.21.2), for each t € J we have

18] < If(t, ue, () + (L, yo)l
< p(t) + g(Olluellpc + r(O)lg()] + (L, yt) — P(t, 0)| + |d(t, 0)]
< p(t) + q(Olluellpe + r()1g()] + Klluellpc + 1(t, 0)]
< p(t) + q()llullq + r(t)lg®) + Klula + 1¢(t, 0)|
<p(t)+ (@) + K)n* + r(DIg(®)] + (¢, 0)]
<p*+(g" +Km* + 1180 + 9",
where p* = sup; p(0), 4" = sup,; q(t), and ¢* = sup; I8(¢, 0)].
Then .
p @+ KN+ ¢

M.
1-r*

lg(®)] <

Thus, (3.50) implies

(N0 < Ip(O)] + s +
(m+1)MT*
Ia+1)
(m+1)MT*
I'a+1)

+m(M* ||ut;||PC +N")

<lp0)] + +m(M*ulla + N%)

< (0| + +mM*n* +N*):=R.
If t € [-r, 0], then
[(Nu)(®)] < llellpc,

SO
INWlo < max {R, l¢lpc} := €.

Step 3: N maps bounded sets to equicontinuous sets of Q.
Letti,t; € (0, T], t; < t, let By be a bounded set of Q as in Step 2, and let u € By:.
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3.4 Results for Perturbed Impulsive NIFDE with Finite Delay =—— 91

Then

|(Nu)(t2) — (Nu)(t1)l

ty

1 a-1 a-1
Smlmz—s) ~(t1 - 5) Y g(s)Ids

ty

_ o)a-1 B
+ mtj I(t2 = )" llg(s)lds + 0<,k;2,t1 ()|
< M 2(t t @ ta ta t t M* N*
—m[ (t2 = t1)" + (65 = D] + (2 = t))(M™ |ug llpc + N¥)
M
< Tar G~ + (G = )] + (=~ )M Julg + N*)

M
< F(a 1)[ (t2 - tl)‘x+(tg—t‘f)]-f_(tz_tl)(M*rl*+N*).

As t; — t,, the right-hand side of the preceding inequality tends to zero. As a conse-
quence of Steps 1-3, together with the Ascoli-Arzela theorem, we can conclude that
N: Q — Qis completely continuous.

Step 4: A priori bounds. Now it remains to show that the set

={ueQ: u=ANu) forsomeO <A< 1}

is bounded. Let u € E; then u = AN(u) for some O < A < 1. Thus, for each t € ] we have

u(t) = Ap(0) + o~ ¥ j (t - 5)*1g(s)ds

0<tk<t

F()

t
[e-9tg@ds 42 ¥ nawg). (351)

LA
F(a) t O<ty<t

And, by (3.21.1), for each t € J we have

18] < If(t, ue, (O] + 19(t, yo)l
<p() + g®lucllpc + r(O18O] + 19(t, yo) - P(t, 0)] + |$(t, 0)]
< p(t) + q(®)lluclpc + r(t)lg(®)] + Klluclpc + (¢, 0)]
<p*+(q* + K)luclpe + r*igO)] + ¢* .
Thus,
lg(O] <

1 * 72 *
T @7+ (@ + K)luclpe + ¢7) -
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92 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

This implies, by (3.51) and (3.21.2), that for each t € ] we have

tx

Y [t-9m 107 19" + @ + Bllusleods

O<t’<<ttk,1

1
Ol < 1O+ 7—5r

1

t
a-1,.,% * * | T
+ o | €9 0T 8 + @ + Blusliods

tx
+m(M*|lutllpc + N*) .

Consider the function v defined by
v(t) = sup{lu(s)|: —r<s<t}, 0<t<T;

there exists t* € [-r, T] such that v(¢t) = |u(t*)|. If t € [0, T], then by the previous
inequality, for t € ] we have

ti

Y J (te =) (p* + " +(g* + K)v(s))ds

O<tk<ttk,1

1
v(t) < |@(0)] + i@

t

j(t— 9 Lp* + ¢ + (q" + K)v(s))ds
tx

+mM*v(t) + mN* .

1
A -

Thus,
1 (
a-1/,* * * | I
v(t) < 1= mM) (1 =@ O;k“(ttj (tx=9)" (" + @™ +(q" + K)v(s))ds
[p(0)| + mN* 1 y

j(t— 9% (p* + ¢* +(q" + K)v(s))ds

tx

1-mM* | A-mM)(1-r)Ta)

< lp(0)| + mN* N (m+1)(p* +¢*)T¢

T 1-mM* 1-mM*A -r*)['(a+1)
¢

J(t —5)*ly(s)ds .

0

(m+1)(g* +K)
1-mM*)1-r)I(a)

Applying Lemma 1.52, we get
* * * o
Wb < [pr(O)I+mN L (m+D)p +¢1)T ]
1 - mM* A-mM5A -r)[(a+1)

Sm+1)(q*+K)T* ]
8 [1 T A - mMY)1 - )+ 1)] =4
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3.4 Results for Perturbed Impulsive NIFDE with Finite Delay =— 93

where § = §(a) is a constant. If t* € [-r, 0], then v(t) = |@|pc; thus, for any ¢ € J,
lulq < v(t), and we have
lule < max{llglpc, A} .

This shows that the set E is bounded. As a consequence of Schaefer’s fixed point theorem,
we deduce that N has a fixed point that is a solution of problem (3.40)-(3.42). O

3.4.3 Ulam-Hyers Stability Results

Letz € PC(J,R),e > 0, > 0, and w € PC(J, R;) is nondecreasing. We consider the
sets of inequalities

°D*z(t) - f(¢, z¢, “Dz(t)) - p(t, z)| < €, L€ by t], k=1,...,m,
1Az|e, - Ik(z¢))] < €, k=1,...,m,

(3.52)

°D*z(t) - f(t, z¢, “Dz(1) = Pp(t, z)l < w(8),  t € (ts tira), k=1,...,m,
1Azl - I(ze)) < 9, k=1,...,m,
(3.53)

and

|CDaZ(t) _f(t’ Zt, CDaZ(t)) - ¢(t’ Zt)' < €w(t)s te (tka tk+1]’ k = 13 cee, My,
Azl — Ii(ze)| < €9, k=1,...,m.
(3.54)
Definition 3.22. Problem (3.40)-(3.41) is Ulam—Hyers stable if there exists a real num-
ber cfm > 0 such that, for each € > 0 and for each solution z € PC(J, R) of inequality
(3.52), there exists a solution y € Q of problem (3.40)—(3.41), with
|z(6) —y(Ol < crme, te].

Definition 3.23. Problem (3.40)—(3.41) is generalized Ulam—Hyers stable if there exists
0rm € C(R+, Ry), 0r,m(0) = 0 such that, for each solution z € PC(J, R) of inequality
(3.52), there exists a solution y € Q of problem (3.40)-(3.41), with

12(6) =y () < Orm(e), te].

Definition 3.24. Problem (3.40)—(3.41) is Ulam—Hyers—Rassias stable with respect to
(w, ) if there exists cfm,o > 0 such that, for each € > 0 and for each solution z €
PC(J, R) of inequality (3.54), there exists a solution y € Q of problem (3.40)-(3.41), with

lz(t) - y(O)] < crmuwelw®) +), te].

Definition 3.25. Problem (3.40)-(3.41) is generalized Ulam-Hyers—Rassias stable with
respect to (w, ) if there exists cf,m,» > O such that, for each solution z € PC(J, R) of
inequality (3.53), there exists a solution y € Q of problem (3.40)-(3.41), with

lz(t) - y(Ol < Crmo(w(®O+), te].
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94 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

Remark 3.26. Itis clear that (i) Definition 3.22 implies Definition 3.23, (i) Definition 3.24
implies Definition 3.25, and (iii) Definition 3.24 for w(t) = ¢ = 1 implies Definition 3.22.

Remark 3.27. A function z € PC(J, R) is a solution of inequality (3.54) if and only if

thereis 0 € PC(J, R) and a sequence oy, k = 1, ..., m (which depend on z) such that
) lo®)| <ew(t), t € (tk, txe1l, k=1,...,mand |ox| < e, k=1,...,m;

(ii) °Dz(t) = f(t, z¢, D%z(1)) + P(t, z¢) + 0(t), t € (tk, tirr], k=1,...,m;

(iii) Azl = I(z¢) + O, k=1,...,m.

One can have similar remarks for inequalities 3.53 and 3.52.
Now we state the following Ulam—Hyers—Rassias stability results.

Theorem 3.28. Assume (3.20.1)-(3.20.3) and (3.47) hold and
(3.28.1) there exists a nondecreasing function w € PC(J, R,) and there exists A, > O such
that forany t € J:
I“w(t) < Ayw(t) .

Then problem (3.40)—(3.41) is Ulam—Hyers—Rassias stable with respect to (w, ).
Proof. Let z € Q be a solution of inequality (3.54). Denote by y the unique solution of

the problem

Dy y(t) = fit,ye, Dy y(t)) + P(t,ye), te (te,tinl,k=1,...,m,
AYle=t, = Ii(ye), k=1,...,m,
y(t) = z(t) = o(1), tel-r0].

Using Lemma 3.19, we obtain for each t € (tx, tis1]

t;

k 1 k
y(t) = @0) + Y Li(ys) + =—— (ti—s)* 'g(s)ds
l.:zl 77 Ma) ,:zl I

ti-1

t
1 a-1
+ WJ“_S) g(s)ds, te(ty, trel,

where g € C(J, R) is such that

g(t) :f(t’ Vi, g(t)) + (l)(t’ )’t) .

Since z is a solution of inequality (3.54), by Remark 3.27 we have

{CD?kz(t) = it 20 D) + 9t 20+ 00, €€ (bt k= Toooms

Az|t=q, = Ix(2¢) + O, k=1,...,m.
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3.4 Results for Perturbed Impulsive NIFDE with Finite Delay =—— 95

Clearly, the solution of (3.55) is given by

t;

k
> J (ti — ) Th(s)ds

k k 1
z(t) = @0)+ ) Ii(ze) + ) Oi+ ——
i; ’ 1:21 ey 5 )
1 k ti 1 t
. _oya-1 1 et
+ @ ]_thj (ti —s)* " a(s)ds + ey J(t s)*1h(s)ds

t
1 a-1
+mtj(t_5) o(s)ds, te(titinl,

where h € C(J, R) is given by
h(t) = f(t, z¢, h(t)) + P(t, z¢) .

Hence, for each t € (tx, ty+1] it follows that

k k
26 =yl < Y loil + 3, iCze)) = Tty
i=1 i=1
1k .
" T ZJ (ti — $)* '|h(s) - g(s)|ds
ti

LS [ - 51 o(s)ld
+mi;j i—S a(s)|ds

ti-1

t — )™ h(s) - g(s)lds

t
1
i |
1 t
- _ )21
+F(a)J(t $)%1[a(s)| .
Thus,

k
l2(t) - y(O)] < mey + (m + Dedow(®) + Y Tz - yi- e
i-1
t;

1 S t; tX—lh d
+m; J(z—S) lh(s) - g(s)Ids

ti-1

t
1 _ o)a-1 _
+ @ J(t $)* *|h(s) — g(s)|ds .
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96 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

By (3.20.2) we have
[h(t) — g < If(t, z¢, h(D)) — f(t, ye, 8O + (L, z¢) — P(L, yo)l
< Kliz¢ - yellpe + LIg(t) - h(®)] + Klz¢ - yellpc -
Then

K+K
|h(t) - g(B)] < 11 lz¢ = yilec -

Therefore, foreach t € J

k
|2(t) - y(O)] < mey + (m + DeAyw(t) + ZTHZt; - Ve llpc
i=1

K+K &

a- L+)r<a) Z J (ti = )" llzs - ysllpcds
K+K

(1+)F() J(t $)Hlizs - yslpcds .

Thus,

2(t) -yl < Y Tlze = yellpc + € + @(®)(m + (m + 1D)Ay)

O<ti<t
- t
(K+K)Y(m+1) a1y,
m!(t_s) lzs = yslpcds

We consider the function v; defined by
vi(t) =sup{llz(s) —y(S)ll: —r<s<t}, 0<t<T.

Then there exists t* € [-r, T] such that vi(t) = |z(t*) — y(t*)|. If t* € [-r, 0], then
vi(t) = 0. If t* € [0, T], then, by the previous inequality, we have

vil) < Y vi(t)) + e + w(t))(m + (m + 1)A)

O<ti<t
_ t
(K+K)Y(m+1) a1
—(1 DI J(t— $)* " vi(s)ds .
Applying Lemma 1.53, we get
vi(t) < e + w()(m+ (m+ 1)Ay)

t —
- (K+K)Y(m+1) ai
X[ || (1+1)eXp<!m(t—s) d5>:|

O<ti<t

< cwe(¥ + w(t)),
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3.4 Results for Perturbed Impulsive NIFDE with Finite Delay =——— 97

where

Co = (m+(m+ 1DAy) [H(l +1)exp

i=1

(K+K)(m+1)T®
(1-L)I(a+1)

(K+K)(m+1)T® )]"’

=(m+(m+ 1)A,) [(1 +T)exp< 1-DI(a+1)

Thus, problem (3.40)—(3.41) is Ulam-Hyers—Rassias stable with respect to (w, ). O
Next we present the following Ulam—Hyers stability result.

Theorem 3.29. Assume (3.20.1)—(3.20.3) and (3.47) hold. Then problem (3.40)—(3.41) is
Ulam-Hyers stable.

Proof. Let z € Q be a solution of inequality (3.52). Denote by y the unique solution of
the problem

CD‘txky(t) :f(t’ yt’ CD;xky(t)) + ¢(t, yt)! t € (tk’ tk+1]5 k = 17 ey m ’
AYle=t, = Ik(ye)s k=1,...,m,
y(t) = z(t) = p(b), te[-r0].

From the proof of Theorem 3.28 we get the inequality

T*c¢(m+1)

vi(t) < Z 7v1(tl.‘) + me + W

O<ti<t
t

K+X)(m+1) -9 tvids.
0

(1-L)I(a)
Applying Lemma 1.53, we obtain

mF(a+1)+T"‘(m+1)>
I'la+1)

t —
- K+Bm+1) . oy
X[ | | (1+l)eXp<Jm(t—s) dS)]

O<ti<t

vi(t) < e(

< CyE,

where

Cw:(mF(a+1)+T“(m+1)>[m ((K+R)(m+1)Ta>]

Ta+1) g(l *hexp| e D

mI(a +1) + T%(m + 1) - K +K)(m+1)T\]"
:< T(a+1) )[(l”)e"p( (1-L)(a+1) )] '

Moreover, if we set y(€) = cye€; y(0) = 0, then problem (3.40)-(3.41) is generalized
Ulam-Hyers stable. O
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98 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

3.4.4 Examples

Example 1. Consider the impulsive problem

1
1 -t D2 y(t

‘Dpy(t) = 11e 51 el _ | tk}z( ) 3 1'”' , foreach, teJouJ,

( +e) +|yt| 1+|5Dt§ky(t)| ( +|yt|)
(3.56)

ly(3 )l
V-1 = (;2_ : (357)
10+1y(37)I

yit)=¢t), te[-r0],r>0, (3.58)

where ¢ € PC([-1,0],R), Jo = [0, 31,J1 = (3, 1], to = 0, and ¢ = 3. Set

~t

B ul W4
M) = Gren | Tom ~ T+
and ul
u
¢(t1 u) = 6(1 n |Ll|)

forany ¢t € [0, 1], u € PC([-1, 0], R), and v € R. Clearly, the functions f, ¢ are jointly
continuous. For each u, 1 € PC([-r,0],R), v,V € R,and ¢ € [0, 1],

et

If(t, u, v) - f(t, @i, V)| < i+eh

(lu—alpc +1lv-vl)

< L ju-alpc+ =lv-7
12 PCT 12

and 1
lp(t, u) - (¢, )| < gllu ~tllpc -

1 —- 1
Hence, condition (3.20.2) is satisfied by K = L = EBL K= ra
Let |
u
1 = — PC([-r,0], R
1(u) 0+’ uePC([-r,0],R),

and u, v € PC([-r, 0], R). Then we have

[ul [v|

Ih(w) - L)l = 10 + |u| 10+ |v|

< -y
=10 pC-

Thus,
- m+D)E+KT* 1 3
M T  Das 1) 10 (1) (3)
(1-L)Ia+ (1-%)r(3)
S 2 1y
~11ym 10 :
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3.4 Results for Perturbed Impulsive NIFDE with Finite Delay =—— 99

It follows from Theorem 3.20 that problem (3.56)—(3.58) has a unique solution on J.
Set, forany t € [0, 1], w(t) = t, Y = 1. Since

I% w(t) =

t

1 J' 14 2t

(t-s)27"sds < —,

(3] vﬁ

condition (3.28.1) is satisfied by A, = \/iﬁ It follows that problem (3.56)—(3.57) is Ulam-

Hyers—Rassias stable with respect to (w, ).
Example 2. Consider the impulsive problem

1
1 2+ |yel + D2 y(t -t
Dy y(0) = yd+ TPy il *3 et li“' foreach tejouJ;,
108et+3 (14 lyil + lspgyco)) - G+

(3.59)

ly(3)!
Wiy = (3_1)— , (3.60)

6+|)/(§ )|
yt)=9t), tel[-r,0],r>0, (.61)

where ¢ € PC([-1,0],R) Jo = [0, $],J1 = (§,1], to = 0, and ¢; = 1. Set

2+ ul + v
t,u,v) =
fl ) 108et3(1 + |u| + |v|)
and .
e tu
Pit,u) = i

B +eH)1 +ul)
forany t € [0,1], u € PC([-1,0],R), v € R. Clearly, the functions f, ¢ are jointly
continuous.

Forany u, t € PC([-1,0],R), v,V € R,and t € [0, 1],

|f(t’ u, V) _f(ta a: V)l <

1 _ -
< ——=(lu-u +|\V—-V
Toge3 lpc +1v—7I)

and 1
lp(t, u) - (¢, )| < leu ~tlpc .

Hence, condition (3.20.2) is satisfied by K = L = -1, K = ;.
For each t € [0, 1] we have

If(t, u,v)| <

1
W(Z +lullpc + Iv]) .

Thus, condition (3.21.1) is satisfied by p(t) = 54e++3 and q(t) = r(t) = Let

1 __
108et+3 *

hw= 2

m, uEPC([—r,O],]R) .
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100 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

For each u € PC([-r, 0], R) we have
1
11 ()] < gllullpc +1.

Since mM* < 1, condition (3.21.2) is satisfied. It follows from Theorem 3.21 that problem
(3.59)—(3.61) has at least one solution on J.

3.5 Existence and Stability Results for Neutral Impulsive NIFDE
with Finite Delay

3.5.1 Introduction

The purpose of this section is to establish some existence, uniqueness, and stability
results for the following implicit neutral differential equations of fractional order with
finite delay and impulses:

‘D ly() = ¢(t, yol = flt, ye,“ DL y(0)) foreach ¢ e (tx, tis1l, (3.62)
k=0,...,m,0<a<1,

Ayle, = I(ye) k=1,...,m, (3.63)

y(t) = @(t), te[-r0],r>0, (3.64)

where f: J x PC([-1,0], R) x R — Rand ¢: ] x PC([-r, 0], R) — R are given func-
tions with ¢(0, ¢) = 0, Ix: PC([-1,0], R) —» Rand ¢ € PC([-1,0],R), 0 = ¢y <
t] < -+ <ty < tmyr = T, and PC([-1, 0], R) is a space to be specified later. Here,
Ayl = y(t]) - y(ty), where y(t}) = limp_o+ y(tx + h) and y(t;) = limp_o- y(tx + h)
represent the right and left limits of y; at t = ti, respectively.

The arguments are based upon the Banach contraction principle and Schaefer’s
fixed point theorem. An example is included to show the applicability of our results.

3.5.2 Existence of Solutions

Consider the Banach space
PC([-1,0], R) = {y: [-1,0] — R: y € C((Tk, Tk+1], R), k=1,...,1,
and there exist y(7;) and y(7}), k=1,...,Iwithy(t;)=y(t1)},

with the norm

lylpc = sup [|y(8)].
te[-1,0]

Take
PC([O’ T]’IR) = {)’1 [0’ T] - R: )’ € C((tk’ tk+l]’ ]R)’ k = 1’ N (B
and there exist y(t) and y(tZ), k=1,...,mwith y(t) = y(ti)}
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3.5 Results for Neutral Impulsive NIFDE with Finite Delay = 101

to be our Banach space with the norm

lylc = sup ly(®l.
te[0,T]

Also,
Q={y: [-r,T] = R: y|-r,0; € PC([-1,0], R) and y|j0,11 € PC([0, T], R)}
is a Banach space with the norm

lyle = sup |y(6)].
te[-r,T]
Definition 3.30. A functiony € Q whose a-derivative exists on Jj is said to be a solution
of (3.62)-(3.64) if y satisfies the equation “Df, (y(t) - ¢(t, y¢)) = f(t, y¢, “Dg y(t)) on Ji
and satisfies the conditions

AYle=te = Ikye), k=1,...,m,
yit)=¢@(), tel-r0].

To prove the existence of solutions to (3.62)—(3.64), we need the following auxiliary
lemma.

Lemma3.31. LetO < a < 1, andlet o: ] — R be continuous. A function y is a solution
of the fractional integral equation

t
0(0) + B(t, yo) + ﬁ j(t _s)lo(s)ds, ifte[0,t],
0
ti

k 1 k “
PO+ ¢ty + X1+ i 3 [ €ti-9ots)ds

y(t) = 1 o (3.65)
1 t
= _ o)1 .
+F(a) J(t S) O'(S)dS, lft € (tk, tk+1] s
tx
o(t), tel[-r,0],
wherek =1, ..., m,if and only if y is a solution of the following fractional problem:
‘DU(y(t) - (t,y)) = a(t), tek, (3.66)
Ay't:[k:Ik(yt;)’ k:].,...,m, (3.67)
y() =), te[-r0]. (3.68)

Proof. Assume that y satisfies (3.66)—-(3.68). If t € [0, t1], then

D (y(t) - P(t, yr) = o(t) .
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102 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

Lemma 1.9 implies

t
V(O — B(t, ye) = @(0) + I%(t) = p(0) + % j(t 5)*1o(s)ds .

If t € (t1, t;], then Lemma 1.9 implies

t
_ + 1 _ e)a-1
YO = Bty = V(1) = (t1,y) + s )ja )™ 1o(s)ds

t

J(t - 5)*1g(s)ds

ty

= AYle=e, +y(t]) - P(t1, ye,) + = @

t
1
=N(yg) + I:(P(O) T J(tl —S)ala(s)ds]

t
1 _ o)a-1
+mtj(t s)* o(s)ds .
ty

- 9O+ 1) + s (-9 ato)ds
0

t
1 a-1
+ T )J’(t s)* "o(s)ds .

t

If t € (t,, t3], then from Lemma 1.9 we get

t
+ 1 a-1
YO = Blt,y) = Y(65) - (L2, ye) + )J(H) o(s)ds

t
= Ayle=t, +y(t5) — P(t2, ¥1,) + = J(t -s)*1a(s)ds

I'(a)
ty

=DL(yg) + lfp(o) +Ii(yg) + 7= @ J( 1-5)""o(s)ds

ty t
i _g)a-1 _ a1
+F(a) J(tz s) o(s)ds] + — @ J(t s)* “o(s)ds

ty
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3.5 Results for Neutral Impulsive NIFDE with Finite Delay =—— 103

ty

J(t1 - 5)*1g(s)ds
0

= 9(0) + L) + Lye)] + [ o

t

ty
e j(tz -5 1a(s>ds] * j(t- 9% la(s)ds

Repeating the process in this way, the solution y(t) for t € (t, tx+1], k=1,..., mcan
be written

ti

y(®) = 9(0) + b(t, yo) + Zl(yt )+ T )Z [ -9 1atsrds

_1t1 1

t
_ )21
F( ) J(t s)* "o(s)ds .

Conversely, assume that y satisfies impulsive fractional integral equation (3.65). If
t € [0, t1], then y(0) = ¢(0). Using the fact that ¢D* is the left inverse of I*, we get

‘DA(y(t) - p(t,y;)) = a(t), foreachte[O0,t;].

If t € (tk, tgea], k=1, ..., m, and using the fact that °D*C = 0, where C is a constant,
we get
DU(y(t) - p(t,ye) = o(t) foreacht € (tx, ty1] .

Also, we can easily show that
Wle=t, = Ikye), k=1,...,m. 0

We are now in a position to state and prove our existence result for problem (3.62)-(3.64)
based on Banach’s fixed point.

Theorem 3.32. Make the following assumptions:
(3.32.1) The function f : ] x PC([-1, 0], R) x R — R is continuous.
(3.32.2) There exist constants K > 0,L > 0 and 0 < L < 1 such that

If(t, u,v) - ft, u, V)| < Kllu - ullpc + Llv - |

and
|p(t, u) — ¢p(t, )| < Lllu - iillpc
forany u, i € PC([-1,0],R), v,V € R,and t € ].
(3.32.3) There exists a constant 1 > 0 such that

[L(w) - @) < Tllu - ullpc

foreachu,u € PC([-1,0],R)andk=1,...,m
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104 =— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

If
~ —  (m+1)KT®
ml +L + m (3.69)
then there exists a unique solution to problem (3.62)—(3.64) on J.
Proof. Consider the operator N: Q — Q defined by
- tr
PO +¢ty)+ ¥ L)+ Y [ -9 gts)ds
O<ty<t (a) 0<tk<ttk_1
Ny®O=1 1 ¢ g ot (3.70)
+ﬁaja s)* " g(s)ds, tel0,T7,
ti
(P(t)» te [_r’ 0] ’

where g € C(J, R) is such that

g(t) :f(ts Vi, g(t)) .

Clearly, the fixed points of operator N are solutions of problem (3.62)-(3.64). Let u, w €
Q.1f t € [-r, 0], then
|(Nu)(t) = (Nw)()| = O
For t € ] we have
tx

(Nw)(®) - Nw) (O] < —— ¥ j(tk—s)“-1|g(s)—h(s>|ds

F( ) 0<tk<ttk_1
t

1 a-1
* o )ja $)1g(s) - h(s)Ids + (¢, ) - (e, W)

+ ) Mug) - I(wi)l

O<ti<t
where g, h € C(J, R) are given by

g(t) :f(ts Ug, g(t))

and
= f(t, we, h(1)) .
By (3.32.2) we have
18(t) — h(O)] = If(¢, ut, 8(6)) - f(t, we, h(D))]
< Kllue - wellpe + LIg(8) - h(0)] .
Then

1g(6) — h(t)| <

K e -wal
—7 e —wellpc .
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3.5 Results for Neutral Impulsive NIFDE with Finite Delay = 105

Therefore, foreach t € J

a-1
(NW)(E) = (NW)(O! < s L)F( )2 j(tk—s) lus - wsllpcds

t

K o
+ o | €9 s = wlbcds
ti

m
Z lue = wellpe + Lliue = wellpe

~ = mKT®
S[ b+ L+ S DRas D
K ]u ||
A Da+1) ™ Wa-

Thus,
(m+ 1)KT*

1-L)(a+1)
By (3.69), operator N is a contraction. Hence, by Banach’s contraction principle, N has
a unique fixed point that is the unique solution of problem (3.62)-(3.64). O

ING@) = Nwllg < [m7+f+ ]uu—wng.

Our second result is based on Schaefer’s fixed point theorem.

Theorem 3.33. Assume (3.32.1) and (3.32.2) hold and
(3.33.1) There exist p, q, r € C(J, R;) with r* = supyey r(t) < 1 such that
If(t, u, w)| < p(6) + gOllullpc + r()lw| fort e ], u e PC([-1,0],R)and w € R ;
(3.33.2) The functions I : PC([-r, 0], R) — R are continuous and there exist constants
M*, N* > 0 such that

[I(w)| < M*|lullpc + N* foreachu € PC([-1,0],R), k=1,...,m

(3.33.3) The function ¢ is completely continuous, and for each bounded set By- in Q
the set {t — ¢(t,y¢): y € By} is equicontinuous in PC(J, R) and there exist two
constants di > 0, d> > 0 with mM* + d; < 1 such that

lp(t, Wl < dillullpc +d2, te], uePC(-1,0],R).
Then problem (3.62)—(3.64) has at least one solution.

Proof. We consider the operator N1 : Q — Q defined by

t

Y J (t = 9)'g(s)ds

®(0) + Z Ii(ye) + =—

O<ty<t F( ) O<t"<ttk_1
N1y(t) = - {
v e )J(t s)* ' g(s)ds, telo,T],
Lp(D), tel-r0].
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106 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

Operator N defined in (3.70) can be written

(Ny)(t) = ¢(t, y¢) + Nyy(t), foreachte].

We will use Schaefer’s fixed point theorem to prove that N has a fixed point. So we must

show that N is completely continuous. Since ¢ is completely continuous by (3.33.3), we

will show that N; is completely continuous. The proof will be given in several steps.
Step 1: Ny is continuous. Let {u,} be a sequence such that u, —» uin Q.If t € [-r, 0],

then
IN1(un)(t) = N1 (u)(t)| = 0.

For t € ] we have

t
1
IN1(un)(t) — N1 (u)(8)] < @ O;kdtj (tx = )" Ign(s) - g(s)ds

t
1 a-1
+ mtj(t - 5)" " gn(s) — g(s)lds
+ ) Miung) = Tug)|

O<ty<t
1 -

*T@ ) J(tk_s)a_1|gn(5)—g(8)|ds
(a) O<tk<ttk,1

t

1 a-1
T j(t ~ )% gu(s) - g(s)\ds

tx

+ Z l||um; — U lec

O<ty<t
and so
193
1 o
IN1(un)(t) - N1 (w)(8)] < @ o«zk«tj (ti = 5)* tgn(s) - g(s)lds

t
1 a-1
+ mtj(t—S) lgn(s) — g(s)lds

+mlluy, —ullg,

where gy, g € C(J, R) are given by

gn(t) =f(t’ Unt, gn(t)) ’

and
g(t) :f(t’ Ut, g(t)) .
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By (3.32.2) we have

8n(t) — (O] = If(t, unt, gn(t)) - f(t, us, (1))
< Kllunt - utllpc + Lign(t) - g(6)] .

Then

K
18n(6) = 8O < T lune — uellpc -

Since u, — u, we get g,(t) — g(t) asn — oo foreach t € J. Let n > 0 be such that for
each t € J we have |g,(t)| < nand |g(t)| < 1. Then we have

(t=9)"1gn(s) — g(s)I < (t— )% Ign(s)] + Ig(s)I]
<2n(t-s)*?!

and

(tk = $)*tgn(s) - 8(S)| < (tk = $)* M {Ign(s)| + I(s)I]
<2n(ty—s)*t.

For each ¢ € J the functions s — 25(t — s)* ! and s — 2n(tx — s)*"! are integrable on
[0, t], then the Lebesgue dominated convergence theorem and (3.71) imply that

|N1(un)(t) = Ny (u)(t)] = 0 asn — oo.

Hence,
[N1(un) -N1(u)lo =0 asn—oco.

Consequently, N; is continuous.

Step 2: N1 maps bounded sets to bounded sets in Q. Indeed, it is enough to show
that for any n* > O there exists a positive constant € such that for each u € B+ = {u ¢
Q: |lullg < n*} we have |N1(u)|q < €. For each t € J we have

ti

Y j (tx - )" 'g(s)ds

O<ty <t

N1 @)(®) = 9(0) + F(l)

1 t
a-1

+ )ja s)*Lg(s)ds ,

tk

+ ) L(ug), (3.72)

O<ty<t

where g € C(J, R) is such that

8(t) = f(t, u, g(1)) .
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108 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

By (3.33.1), for each t € J we have

1g(®)] = 1f(t, ue, g())]
< p(t) + q(Olluellpc + r(t)lg(®)l
<p) +q(Olullq + r(t)|g(D)
<p®+qn* +r@)Ig®)l
<p+q'nt +riigdl,

where p* = sup;; p(t), and g* = sup; q(t).

Then R
b +qn
— =M.
lg(®)] < T
Thus, (3.72) implies
mMT?* MT?* &
N M* _ N*
INL@O1 < 0O+ T+ Far D) +k;( lug, lpc + N*)
(m+ 1)MT“ . .
<le(0)] + T+l +m (M ||ut;||0 +N )
(m+ 1)MT“ .k o
< |<P(0)I+—F(a+1) +m(M*n*+N*):=R.

If t € [-1, 0], then
IN1(w)(O)] < llelpc

SO
[N1(w)llo < max {R, |@llpc} := €.

Step 3: N1 maps bounded sets to equicontinuous sets of Q. Let 71,1, € (0, T],
Ty < T2, By be abounded set of Q as in Step 2, and let u € By+. Then

Ny (u)(T2) - N1 (u)(T1)|
j I(t2 - )% = (11 - )™ g(s)lds

0
T2

1
+ i | Im2 -9 Ngds + T et

O<ty<1o-T1

<
" I'(a)

T1

M
< —F(a +1) [2(12 - Tl)a + (Tg - T‘f)] +(12 - T1) (M*"ut; lo + N*)

M
< m[Z(‘rz 1)+ (TS T+ (12 —T1) (M** + N¥) .
As 11 — T,, the right-hand side of the preceding inequality tends to zero. As a conse-
quence of Steps 1-3, together with the Ascoli—Arzela theorem, we can conclude that
N;: Q — Qis completely continuous.
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3.5 Results for Neutral Impulsive NIFDE with Finite Delay =— 109

Step 4: A priori bounds. Now it remains to show that the set
E={ueQ:u=AN(u) forsomeO < A < 1}

is bounded. Let u € E. Then u = AN(u) for some O < A < 1. Thus, for each t € J we have

tx

A N
u(D) = A(0) + AL,y + s MZMJ (t - ) 1g(s)ds

t
A .
+ i -9 e e2 ¥ Iug). (373)

i O<ty<t
From (3.33.1), for each t € J we have
1g(O)] = If(¢t, ue, (1)
< p(®) + g®O)luellpc + r(t)|g(0)|
<p* +q lluellpc +r*1g(0)] .
Thus,
8] < —
g T 1

This implies, by (3.73), (3.33.2), and (3.33.3), that for each t € ] we have

" +q " lluelpc) -

[u@®)! < 1p0)| + d1llutllpc + d>
tx

Y [ -9 0" + a7 luslrods

0<tk<ttk71

1
T A - M)

t
I(t - )" (p* + q*luslpc)ds

tx
* *
+m (M*ugllpc + N*) .

1
A=)

Consider the function v defined by
v(t) = sup{lu(s)|: —r<s<t}, 0<t<T.
Then there exists t* € [-r, T] such that v(t) = |u(t*)|. If t € [0, T], then, by the previous

inequality, for t € ] we have

tk

Y [t v qvisns

0<tk<ttk71

1
v(t) < lp(0)] + A i@

t

j(t ) (p* + g*v(s))ds
193

+ (mM* +d)v(t) + (mN* +dy) .

1
A - @)
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110 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

Thus,

tk

Y [ -9+ g visds

0<tk<ttk71

1
- (mM* +dq)(1 - r*)I'(a)

v(t) < a

[@(0)] + mN* + d;
1-(mM* +dy)

t
I(t -5)“Yp* + q*v(s))ds
tk
_ o) +mN* +d; . (m+1)p* T«

1 - (mM* +dq) (1-(mM* +d))A-r*)[(a+1)

1
T A= mM + dy)d - r)I(@)

(m+1)g*
T A= (mM* +dy)d - r)I(@)

t
j(t - 5)*y(s)ds .

0
Applying Lemma 1.52, we get

[@(0)] + mN* + d; (m+1)p*T?®
1-(mM* +dy) (1-(mM* +dq)A-r")(a+1)
d(m+1)g*T* _
(1-(mM* +d)Q-r(a+1)]

v(t) < [

x[1+ A,

where § = §(a) is a constant. If t* € [-r,0], then v(t) = |@|pc; thus, for any
t €], lullq < v(t) we have
lulo < max{llglpc, A}

This shows that set E is bounded. As a consequence of Schaefer’s fixed point theorem,
we deduce that N has a fixed point that is a solution of the problem (3.62)-(3.64). [

3.5.3 Ulam-Hyers Stability Results

Here we adopt the concepts in Wang et al. [252] and introduce Ulam’s type stability
concepts for problem (3.62)—(3.63).

Letz € PC(J, R), € > 0,3 > 0, and let w € PC(J, R;) be nondecreasing. We consider
the sets of inequalities

{cha(Z(t)_¢(t,Z[))—f(t,Zt, CDaZ(t))l <€, te (tka tk+1]9k: 1""9m’ (3.74)

1Az] =t — I(z¢ )l < €, k=1,...,m,

1°D%(z(t) - P(t, z0)) — fit, z¢, ‘D z(t)| < w(b), t€ (t, tisal, k=1,...,m,
1Az]e=¢, — I(ze )| < 3, k=1,...,m,
(3.75)
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3.5 Results for Neutral Impulsive NIFDE with Finite Delay =— 111

and

|CDa(Z(t) - ¢(t’ Zt)) _f(t’ Zt, CDaZ(t))l < €(U(t), te (tk’ tk+1]’ k = 11 cee, My,
Az e=¢, — Ik(z¢ )| < €9, k=1,...,m.
(3.76)

Remark 3.34. A function z € PC(J, R) is a solution of inequality (3.76) if and only if
thereis 0 € PC(J, R) and a sequence ok, k = 1, ..., m (which depend on z) such that
() |ot)| < ew(t), t € (tk, tis1], k=1,...,mand |ox| < eP,k=1,...,m;

(i) “D(z(t) - P(t, z¢)) = f(t, z¢, “Dz(t)) + 0(t), t € (ty, tizal, k=1,...,m;

(iii) Azl = Ik(zt;) +0K, k=1,...,m.

One can provide remarks for inequalities 3.75 and 3.74.

Theorem 3.35. Assume (3.32.1)-(3.32.3) and (3.69) hold and
(3.35.1) there exists a nondecreasing function w € PC(J, R,), and there exists A, > O such
that forany t € |
I“w(t) < Ayw(t) .

IfL < 1, then problem (3.62)-(3.63) is Ulam-Hyers—-Rassias stable with respect to (w, V).

Proof. Let z € Q be a solution of inequality (3.76). Denote by y the unique solution of
the problem

CDtak[y(t) - ¢(t! )’t)] :f(t’ Ve, CDg{y(t))) te (tka tk+1]a k = 1, B (3
Ayle=t, = I(ye)s k=1,...,m,
y(t) = z(t) = p(b), tel[-r0].

Using Lemma 3.31, for each t € (tx, tx+1] we obtain

ti

k 1 k
= (0 , Y Liye)+ = > | (ti—s)*"g(s)d
y(t) = ¢(0) + ¢(t )’t)+i:1 V) + 7 i:J (ti =) g(s)ds

i-1
t

j(t -5)*1g(s)ds, te(ty, tis1l,
ti

1
" T@)

where g € C(J, R) is given by
g(t) :f(ty Yt,g(t)) .

Since z is a solution of inequality (3.76), by Remark 3.34 we have

Dy [2(t) = P(t, z¢)] = f(t, zt, “Di 2(t)) + 0(t), t € (ty, tinal, k=1,...,m,
Azlt=q = I(2¢) + O, k=1,...,m.
3.77)
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112 — 3 Impulsive Nonlinear Implicit Fractional Differential Equations

Clearly, the solution of (3.77) is given by
k k 1k
dﬂ=ﬂ®+¢“£ﬁ+2h@ﬂ+§}n+ﬁ5§:Jm—ﬁwwwms

i=1 i=1 =1,

1 & 1|

+— t-—s“‘lasds+—Jt—s“‘1hsds
F<a)izzlj(’ 1 o(s)ds + o | (6= 9 h(S)
ti-1 tk
t

1 a-1
*@J“‘S) o(s)ds, te (i tinl,

tx
where h € C(J, R) is given by
h(t) = f(t, z¢, h(t)) .

Hence, for each ¢t € (tx, ti+1] it follows that

k k
l2(t) - y(O) < Y |0l + |9(t, 20) = pt, yo)l + Y ilze) = Li(ye)l
i=1 i=1
1 & .
— ti—s)* d
* T ;tij-l( ) a(s)lds
ti

1 & (t; a-1ip d
+mzlj i — )1 h(s) - g(s)\ds

ti-1

t — )™ |h(s) - g(s)lds

t
1
i |
1 t
- _ a1
+F(a)J(t $)%1|a(s)| .
Thus,

k
|2(t) - y(B)] < me + (m + 1)edyw(t) + Lize - yellpe + Y Uz - ye-llpc
i=1
t;

LIRS PP d
+mz1 j(l—s> Ih(s) - g(s)lds

ti-1

t
1 _ o)a-1 _
+ @ J(t $)**|h(s) — g(s)|ds .
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3.5 Results for Neutral Impulsive NIFDE with Finite Delay = 113

By (3.32.2) we have
|h(t) — g(®)] = If(t, z¢, h(D)) = f(t, ye, g(O)]
< Kzt - yellpc + LIg(t) — h(D)] .
Then

Ih(®) - g(0)] < 5

Zi - )
L"t ytllpc

Therefore, foreach t € J

k
|2(t) - y(t)] < mew + (m + 1)edyw(t) + Lize — yelpe + Y Uz -y llpc
i=1

a 1
m z J (ti - lzs = ysllpcds

t
K a-1

¥ (1-L)[(a) j(t = 5)" " lzs - ysllpcds

te

Thus,
l2(t) =yl < Y llze: = yellpc + €@ + @(@®)(m + (m + DA,)
O<ti<t
- K 1
# Tz yilec + 5 op0 [ (59 iz - ylcds
0

We consider the function v; defined by
vi(t) =sup{llz(s) —y(S)ll: —r<s<t}, O0<t<T.

Then there exists t* € [-r, T] such that v,(t) = |z(t*) — y(t*)|. If t* € [-r, 0], then
vi(t) = 0. If t* € [0, T], then, by the previous inequality, we have

Vl(t) < Z —Vl(ti_) + €(l/) + w(t))(m ";(m + 1)/1“))
o<tict 1= 1-1

t
I_((m +1) J(t - 5)* 1y (s)ds .
(1-L)1 - LI (e ]

Applying Lemma 1.53, we get

e +w)(m+(m+1)A,)
1-1

~ t
] K(m+1) a1
X 1+ — | exp — (t-s)*"ds
[ol:«[q< 1—L) <J(1—L)(1—L)F(Ol) )]

< cwe(® + w(t),

vi(t) <
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114 = 3 Impulsive Nonlinear Implicit Fractional Differential Equations

where

Cm:(m+(m+_1)/1w)[lﬂ[<1+ 1_>exp< Km+ )T )]
1-1 i\ 1-I (1-L)1-L)I(a+1)

(m+ (m+ 1)Ay) [( 1 ) ( K(m+1)T® )}’"
= — 1+ — | exp — .
1-1 1-1 (1-L)1-L)(a+1)

Thus, problem (3.62)—(3.63) is Ulam—-Hyers—Rassias stable with respect to (w, ). O

Next we present the following Ulam—Hyers stability result.

Theorem 3.36. Assume (3.32.1)—(3.32.3) and (3.69) hold. If L < 1, then problem (3.62)-
(3.63) is Ulam—Hyers stable.

Proof. Let z € Q be a solution of inequality (3.74). Denote by y the unique solution of
the problem

CD?k[y(t) - ¢(t’ yt)] :f(t’ Yt, CDa)’(t)), t € (tk’ tk+1]’ k = 1, sy m )
A)’|t:tk:Ik(Yt;), k=1,...,m,
y(t) = z(t) = p(b), te[-r0].

From the proof of Theorem 3.35 we get the inequality

o
Vi(t) < Z l_vl(tl.‘)+ me Ti(m+1)
o<ti<t 1 =L 1-L (1-L)I(a+1)

t
+ I_((m +1) j(t —5)* 1ty (s)ds .
1-L)1-L)I(a) 5

Applying Lemma 1.53, we get

vl(t)ge(mF(a+1)+T“(m+1)>

1-DI(a+1)

t
l Km+1) a1
X 1+ — | exp — (t-s)*"ds
qu< 1—L) <J(1—L>(1—L>F<a> )}

<ce,

where

mIl(a+1) + T%m + 1) m Km+1)T*
( (1-DIa+1) [Hl( - p((l—f)(l—L)r(au))]
(mF(a+1)+T“(m+1)>[(1+ ) ( K(m +1)T® )]m
1-L)I(a+1) 1-L)Y1-L)I(a+1)
Moreover, if we set y(€) = (0) = 0, then problem (3.62)—(3.63) is generalized
Ulam-Hyers stable. O
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3.5 Results for Neutral Impulsive NIFDE with Finite Delay =— 115

3.5.4 An Example

Consider the impulsive problem, for each t € Jo U J1,

! te~!lyl et lyel 1D y(0)
D |y(t) - = - o4 ,  (3.78)
¢ O+eHX+lyd)] (Al+ef) | 1+1yl 1+ 1D y(0)
ly(3 )l
Yy = (;2_ : (379)
10+1y(57)!
yit)=p(), te[-r0],r>0, (3.80)

Where (P € PC([_r’ 0]’1R)’ ]0 = [Oa %]’ ]1 = (%, 1]’ tO = 0’ and tl = %'
Fort € [0,1],u € PC([-1,0], R),and v € R, set

et |ul vl

A1+e) [1+ul 1+

ftt,u,v) =

and
te~tu|

W = o en T D

Notice that ¢(0, ¢) = 0 for any ¢ € PC([-1, 0], R). Clearly, the function f is jointly
continuous. For each u, t € PC([-r,0],R), v,V € Rand ¢t € [0, 1], and we have
et

||f(t) u, V) _f(ty ﬂ, ]7)" < m

(lu — e + Iv - 7I)
< Llu-alec+ =lv-l
12 12
and 1
166, - (6, W1 < 75~ Tl

Hence, condition (3.32.2) is satisfied by K = L = 75, L= 5
Let
ul
10 + |ul’
For each u, v € PC([-r, 0], R) we have

u 1
L) - L) = | Vi

I)(u) = uePC(-r,0],R).

M |<
10+ |ul 10+|v|| 1

Thus condition

-~ —  (m+1)KT® 2 :
m+L+ ——————— = — + ———————
(1-DI@+1) 10" (1-L)r(3)
-4 +—x<1
C11ym 10
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116 —— 3 Impulsive Nonlinear Implicit Fractional Differential Equations

is satisfied. From Theorem 3.32, problem (3.78)—(3.80) has a unique solution on J.
Set, forany t € [0, 1], w(t) = t and ¥ = 1. Since

t

I’ w(t) = J(t )™ sds<?

.

l
2 0

(3.35.1) is satisfied by A, = % Since L < 1, it follows that problem (3.78)—-(3.79) is
Ulam-Hyers—Rassias stable with respect to (w, ).

3.6 Notes and Remarks

The results of Chapter 3 are taken from Benchohra et al. [90, 92]. Other results may be
found in [17, 14, 41, 53, 57, 106, 124, 158].
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