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Abstract

In this paper, the fractional Hardy-type operator of variable order β(x) is shown

to be bounded from the Herz-Morrey spaces MK̇α,λ
p1 ,q1(·)

(Rn) with variable exponent

q1(x) into the weighted space MK̇α,λ
p2 ,q2(·)

(Rn, ω), where ω = (1+ |x|)−γ(x) with some

γ(x) > 0 and 1/q1(x)− 1/q2(x) = β(x)/n when q1(x) is not necessarily constant at

infinity. It is assumed that the exponent q1(x) satisfies the logarithmic continuity

condition both locally and at infinity that 1 < q1(∞) ≤ q1(x) ≤ (q1)+ < ∞ (x ∈

R
n).

1 Introduction

Let f be a locally integrable function on R
n. The n-dimensional Hardy operator is

defined by

H (f)(x) :=
1

|x|n

∫

|t|<|x|

f(t)dt, x ∈ R
n \ {0}.

In 1995, Christ and Grafakos
[1]

obtained the result for the boundedness of H on

Lp(Rn) (1 < p < ∞) spaces, and they also found the exact operator norms of H on

this space. In 2007, Fu et al
[2]

gave the central BMO estimates for commutators of n-

dimensional fractional and Hardy operators. And recently, author
[3–8]

also considers the

boundedness for Hardy operator and its commutator in (variable exponent) Herz-Morrey

spaces.

AMS (2010) Mathematics Subject Classification: Primary 42B20; Secondary 47B38.

Key words and phrases : Herz-Morrey space; Hardy operator; Riesz potential; variable exponent;

weighted estimate
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The theory of variable exponent Lebesgue spaces is started by Orlicz (see [9], 1931)

and Nakano (see [10,11], 1950 and 1951). In particular, the definition of Musielak-Orlicz

spaces is clearly stated in [10]. However, the variable exponent function space, due to the

failure of translation invariance and related properties, is very difficult to analyze.

Nowadays there is an evident increase of investigations related to both the theory of

the spaces Lq(·)(Ω) themselves and the operator theory in these spaces. This is caused by

possible applications to models with non-standard local growth (in elasticity theory, fluid

mechanics, differential equations, see for example [12], [13] and references therein) and is

based on recent breakthrough result on boundedness of the Hardy-Littlewood maximal

operator in these spaces. By virtue of the fine works
[14–24]

, some important conditions

on variable exponent, for example, the log-Hölder conditions and the Muckenhoupt type

condition, have been obtained.

Now, we define the n-dimensional fractional Hardy-type operators of variable order

β(x) as follows.

Definition 1.1 Let f be a locally integrable function on R
n, 0 ≤ β(x) < n. The

n-dimensional fractional Hardy-type operators of variable order β(x) are defined by

Hβ(·)(f)(x) :=
1

|x|n−β(x)

∫

|t|<|x|

f(t)dt, (1.0a)

H
∗
β(·)(f)(x) :=

∫

|t|≥|x|

f(t)

|t|n−β(x)
dt, (1.0b)

where x ∈ R
n \ {0}.

Obviously, when β(x) = 0, Hβ(·) is just H , and denote by H ∗ := H ∗
β(·) = H ∗

0 . And

when β(x) is constant, Hβ(·) and H ∗
β(·) will become Hβ and H ∗

β

[2]
respectively.

The Riesz-type potential operator of variable order β(x) is defined by

Iβ(·)(f)(x) =

∫

Rn

f(y)

|x− y|n−β(x)
dy, 0 < β(x) < n. (1.1)

The boundedness of the operator Iβ(·) from the space Lp(·)(Rn) with the variable exponent

p(x) into the space Lq(·)(Rn) with the limiting Sobolev exponent

1

q(x)
=

1

p(x)
−

β(x)

n

was an open problem for a long time. It was solved in the case of bounded domains.

First, in [25], in the case of bounded domains Ω, there was proved a conditional result:

the Sobolev theorem is valid for the potential operator Iβ(·) within the framework of the

spaces Lp(·)(Ω) with the variable exponent p(x) satisfying the logarithmic Dini condition,

2



if the maximal operator is bounded in the space Lp(·)(Ω). In 2004, Diening
[19]

proved the

boundedness of the maximal operator.

In 2004, Diening
[26]

proved Sobolev’s theorem for the potential Iβ on the whole space

R
n assuming that p(x) is constant at infinity (p(x) is always constant outside some large

ball) and satisfies the same logarithmic condition as in [25]. Another progress for un-

bounded domains is the result of Cruz-Uribe et al
[17]

on the boundedness of the maximal

operator in unbounded domains for exponents p(x) satisfying the logarithmic smoothness

condition both locally and at infinity.

In [27], Kokilashvili and Samko prove Sobolev-type theorem for the potential Iβ(·)

from the space Lp(·)(Rn) into the weighted space L
q(·)
ω (Rn) with the power weight ω fixed

to infinity, under the logarithmic condition for p(x) satisfied locally and at infinity, not

supposing that p(x) is constant at infinity but assuming that p(x) takes its minimal value

at infinity.

Motivated by the above results, we are to investigate mapping properties of the frac-

tional Hardy-type operators Hβ(·) and H ∗
β(·) within the framework of the Herz-Morrey

spaces with variable exponent.

Throughout this paper, we will denote by |S| the Lebesgue measure and by χ
S
the

characteristic function for a measurable set S ⊂ R
n; B(x, r) is the ball cenetered at x and

of radius r;B0 = B(0, 1). C denotes a constant that is independent of the main parameters

involved but whose value may differ from line to line. For any index 1 < q(x) < ∞, we

denote by q′(x) its conjugate index, namely, q′(x) = q(x)
q(x)−1

. For A ∼ D, we mean that

there is a constant C > 0 such thatC−1D ≤ A ≤ CD.

2 Preliminaries

In this section, we give the definition of Lebesgue and Herz-Morrey spaces with variable

exponent, and give basic properties and useful lemmas.

2.1 Function spaces with variable exponent

Let Ω be a measurable set in R
n with |Ω| > 0. We first define Lebesgue spaces with

variable exponent.

Definition 2.1 Let q(·) : Ω → [1,∞) be a measurable function.

I). The Lebesgue spaces with variable exponent Lq(·)(Ω) is defined by

Lq(·)(Ω) = {f is measurable function : Fq(f/η) < ∞ for some constant η > 0},
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where Fq(f) :=
∫

Ω
|f(x)|q(x)dx. The Lebesgue space Lq(·)(Ω) is a Banach function

space with respect to the norm

‖f‖Lq(·)(Ω) = inf
{

η > 0 : Fq(f/η) =

∫

Ω

( |f(x)|

η

)q(x)

dx ≤ 1
}

.

II). The space L
q(·)
loc (Ω) is defined by

L
q(·)
loc (Ω) = {f is measurable : f ∈ Lq(·)(Ω0) for all compact subsets Ω0 ⊂ Ω}.

III) The weighted Lebesgue space L
q(·)
ω (Ω) is defined by as the set of all measurable

functions for which

‖f‖
L
q(·)
ω (Ω)

= ‖ωf‖Lq(·)(Ω) < ∞.

Next we define some classes of variable exponent functions. Given a function f ∈

L1
loc(R

n), the Hardy-Littlewood maximal operator M is defined by

Mf(x) = sup
r>0

r−n

∫

B(x,r)

|f(y)|dy,

where B(x, r) = {y ∈ R
n : |x− y| < r}.

Definition 2.2 Given a measurable function q(·) defined on R
n, we write

q− := ess inf
x∈Rn

q(x), q+ := ess sup
x∈Rn

q(x).

(I) q′− = ess inf
x∈Rn

q′(x) = q+
q+−1

, q′+ = ess sup
x∈Rn

q′(x) = q−
q−−1

.

(II) Denote by P(Rn) the set of all measurable functions q(·) : Rn → (1,∞) such

that

1 < q− ≤ q(x) ≤ q+ < ∞, x ∈ R
n.

(III) The set B(Rn) consists of all measurable functions q(·) ∈ P(Rn) satisfying

that the Hardy-Littlewood maximal operator M is bounded on Lq(·)(Rn).

(IV) The set C
log
0 (Rn) consists of all locally log-Hölder continuous functions q(·) :

R
n → (0,∞) satisfies the condition

|q(x)− q(y)| ≤
−C

ln(|x− y|)
, |x− y| ≤ 1/2, x, y ∈ R

n. (2.1)
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(V) The set C log
∞ (Rn) consists of all log-Hölder continuous at infinity functions q(·) :

R
n → (0,∞) satisfies the condition

|q(x)− q(∞)| ≤
C∞

ln(e + |x|)
, x ∈ R

n, (2.2)

where q(∞) = lim|x|→∞ q(x).

(VI) Denote by C log(Rn) := C
log
0 (Rn) ∩ C log

∞ (Rn) the set of all globally log-Hölder

continuous functions q(·) : Rn → (0,∞).

Remark 1 The C log
∞ (Rn) condition is equivalent to the uniform continuity condition

|q(x)− q(y)| ≤
C

ln(e+ |x|)
, |y| ≥ |x|, x, y ∈ R

n. (2.3)

The C
log
∞ (Rn) condition was originally defined in this form in [17].

Next we define the Herz-Morrey spaces with variable exponent. Let Bk = B(0, 2k) =

{x ∈ R
n : |x| ≤ 2k}, Ak = Bk \Bk−1 and χ

k
= χ

Ak
for k ∈ Z.

Definition 2.3 Suppose that α ∈ R, 0 ≤ λ < ∞, 0 < p < ∞, q(·) ∈ P(Rn). The

Herz-Morrey space with variable exponent MK̇α,λ
p,q(·)(R

n) is definded by

MK̇α,λ
p,q(·)(R

n) =
{

f ∈ L
q(·)
loc (R

n\{0}) : ‖f‖MK̇α,λ

p,q(·)
(Rn) < ∞

}

,

where

‖f‖MK̇α,λ

p,q(·)
(Rn) = sup

k0∈Z
2−k0λ

(

k0
∑

k=−∞

2kαp‖fχ
k
‖p
L
q(·)

(Rn)

)
1
p

.

Compare the variable Herz-Morrey space MK̇α,λ
p,q(·)(R

n) with the variable Herz space

K̇α,p
q(·)(R

n), where

K̇α,p
q(·)(R

n) =
{

f ∈ L
q(·)
loc (R

n\{0}) :

∞
∑

k=−∞

2kαp‖fχ
k
‖p
Lq(·)(Rn)

< ∞
}

,

Obviously, MK̇α,0
p,q(·)(R

n) = K̇α,p
q(·)(R

n).

In 2012, Almeida and Drihem
[28]

discuss the boundedness of a wide class of sublinear

operators on Herz spaces K
α(·),p
q(·) (Rn) and K̇

α(·),p
q(·) (Rn) with variable exponent α(·) and q(·).

In this paper, the author only considers Herz-Morrey space MK̇
α(·),λ
p,q(·) (R

n) with variable

exponent q(·) but fixed α ∈ R and p ∈ (0,∞). However, for the case of the exponent α(·)

is variable as well, which can be found in the furthermore work for the author.
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2.2 Auxiliary propositions and lemmas

In this part we state some auxiliary propositions and lemmas which will be needed for

proving our main theorems. And we only describe partial results we need.

Proposition 2.1 Let q(·) ∈ P(Rn).

(I) If q(·) ∈ C log(Rn), then we have q(·) ∈ B(Rn).

(II) q(·) ∈ B(Rn) if and only if q′(·) ∈ B(Rn).

The first part in Proposition 2.1 is independently due to Cruz-Uribe et al
[17]

and

to Nekvinda
[23]

respectively. The second of Proposition 2.1 belongs to Diening
[18]

(see

Theorem 8.1 or Theorem 1.2 in [16]).

Remark 2 Since

|q′(x)− q′(y)| ≤
|q(x)− q(y)|

(q− − 1)2
,

it follows at once that if q(·) ∈ C log(Rn), then so does q′(·)—i.e., if the condition hold,

then M is bounded on Lq(·)(Rn) and Lq′(·)(Rn). Furthermore, Diening has proved general

results on Musielak-Orlicz spaces.

The order β(x) of the fractional Hardy-type operators in Definition 1.1 is not assumed

to be continuous. We assume that it is a measurable function on R
n satisfying the following

assumptions

β0 := ess inf
x∈Rn

β(x) > 0

ess sup
x∈Rn

p(x)β(x) < n

ess sup
x∈Rn

p(∞)β(x) < n























. (2.4)

In order to prove our main results, we need the Sobolev type theorem for the space

R
n which was proved in ref. [27] for the exponents p(x) not necessarily constant in a

neigbourhood of infinity, but with some extra power weight fixed to infinity and under

the assumption that p(x) takes its minimal value at infinity.

Proposition 2.2 Suppose that p(·) ∈ C log(Rn) ∩ P(Rn). Let

1 < p(∞) ≤ p(x) ≤ p+ < ∞, (2.5)

and β(x) meet condition (2.4). Then the following weighted Sobolev-type estimate is

valid for the operator Iβ(·):

∥

∥

∥
(1 + |x|)−γ(x)Iβ(·)(f)

∥

∥

∥

Lq(·)(Rn)
≤ C‖f‖Lp(·)(Rn),
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where
1

q(x)
=

1

p(x)
−

β(x)

n

is the Sobolev exponent and

γ(x) = C∞β(x)
(

1−
β(x)

n

)

≤
n

4
C∞, (2.6)

C∞ being the Dini-Lipschitz constant from (2.2) which q(·) is replaced by p(·).

Remark 3 (i) If β(x) satisfies the condition of type (2.2): |β(x)− β(∞)| ≤ C∞

ln(e+|x|)

(x ∈ R
n), then the weight (1 + |x|)−γ(x) is equivalent to the weight (1 + |x|)−γ(∞).

(ii) One can also treat operator (1.1) with β(x) replaced by β(y). In the case of

potentials over bounded domains Ω such potentials differ unessentially, if the function

β(x) satisfies the smoothness logarithmic condition as (2.1), since

C1|x− y|n−β(y) ≤ |x− y|n−β(x) ≤ C2|x− y|n−β(y)

in this case ( see [25], p. 277).

(iii) Under the assumptions of Proposition 2.2, similar conclusion is also valid for the

fractional maximal operator

Mβ(·)(f)(x) = sup
r>0

1

|B(x, r)|n−β(x)

∫

B(x,r)

|f(y)|dy.

(iv) When p(·) ∈ P(Rn), the assumption that p(·) ∈ C log(Rn) is equivalent to

assuming 1/p(·) ∈ C log(Rn), since

∣

∣

∣

p(x)− p(y)

(p+)2

∣

∣

∣
≤

∣

∣

∣

1

p(x)
−

1

p(y)

∣

∣

∣
=

∣

∣

∣

p(x)− p(y)

p(x)p(y)

∣

∣

∣
≤

∣

∣

∣

p(x)− p(y)

(p−)2

∣

∣

∣
.

And further, 1/p(·) ∈ C log(Rn) implies that 1/q(·) ∈ C log(Rn) as well.

The next lemma known as the generalized Hölder’s inequality on Lebesgue spaces with

variable exponent, and the proof can be found in [14].

Lemma 2.1 (generalized Hölder’s inequality) Suppose that q(·) ∈ P(Rn), then for

any f ∈ Lq(·)(Rn) and any g ∈ Lq′(·)(Rn), we have

∫

Rn

|f(x)g(x)|dx ≤ Cq‖f‖Lq(·)(Rn)‖g‖Lq′(·)(Rn),

where Cq = 1 + 1/q− − 1/q+.

The following lemma can be found in [29].
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Lemma 2.2 Let q(·) ∈ B(Rn).

(I) Then there exist positive constants δ ∈ (0, 1) and C > 0 such that

‖χS‖Lq(·)(Rn)

‖χB‖Lq(·)(Rn)

≤ C

(

|S|

|B|

)δ

for all balls B in R
n and all measurable subsets S ⊂ B.

(II) Then there exists a positive constant C > 0 such that

C−1 ≤
1

|B|
‖χB‖Lq(·)(Rn)‖χB‖Lq′(·)(Rn) ≤ C

for all balls B in R
n.

Remark 4 (i) If q1(·), q2(·) ∈ C
log(Rn) ∩ P(Rn), then we see that q′

1
(·), q2(·) ∈

B(Rn). Hence we can take positive constants 0 < δ1 < 1/(q′
1
)+, 0 < δ2 < 1/(q2)+ such

that
‖χS‖Lq′

1
(·)(Rn)

‖χB‖Lq′
1
(·)(Rn)

≤ C

(

|S|

|B|

)δ1

,
‖χS‖Lq2(·)(Rn)

‖χB‖Lq2(·)(Rn)

≤ C

(

|S|

|B|

)δ2

(2.7)

hold for all balls B in R
n and all measurable subsets S ⊂ B ( see [6, 29]).

(ii) On the other hand, Kopaliani
[21]

has proved the conclusion: If the exponent

q(·) ∈ P(Rn) equals to a constant outside some large ball, then q(·) ∈ B(Rn) if and only

if q(·) satisfies the Muckenhoupt type condition

sup
Q:cube

1

|Q|
‖χ

Q
‖Lq(·)(Rn)‖χQ

‖Lq′(·)(Rn) < ∞.

3 Main results and their proofs

Our main result can be stated as follows.

Theorem 3.1 Suppose that q1(·) ∈ C
log(Rn) ∩ P(Rn) satisfies condition (2.5), and

β(x) meet condition (2.4) which p(·) is replaced by q1(·). Define the variable exponent

q
2
(·) by

1

q2(x)
=

1

q1(x)
−

β(x)

n
.

Let 0 < p1 ≤ p2 < ∞, λ ≥ 0, α < λ + nδ1, where δ1 ∈ (0, 1/(q′1)+) is the constant

appearing in (2.7). Then
∥

∥

∥
(1 + |x|)−γ(x)

Hβ(·)(f)
∥

∥

∥

MK̇α,λ

p2 ,q2 (·)
(Rn)

≤ C‖f‖MK̇α,λ

p1 ,q1 (·)
(Rn),

where γ(x) is defined as in (2.6), and C∞ is the Dini-Lipschitz constant from (2.2) which

q1(·) instead of q(·).
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Proof For any f ∈ MK̇α,λ
p,q(·)(R

n), if we denote fj := f · χj = f · χAj
for each j ∈ Z,

then we can write

f(x) =

∞
∑

j=−∞

f(x) · χj(x) =

∞
∑

j=−∞

fj(x).

By (1.0a) and Lemma 2.1, we have

|Hβ(·)(f)(x) · χk
(x)| ≤

1

|x|n−β(x)

∫

|t|<|x|

|f(t)|dt · χ
k
(x) ≤

1

|x|n−β(x)

∫

Bk

|f(t)|dt · χ
k
(x)

≤ C2
−kn

|x|β(x)
(

k
∑

j=−∞

∫

Aj

|f(t)|dt
)

· χ
k
(x) (3.1)

≤ C2
−kn

k
∑

j=−∞

‖fj‖
L
q1 (·)

(Rn)
‖χ

j
‖
L
q′
1
(·)

(Rn)
· |x|β(x)χ

k
(x).

For Proposition 2.2, we note that

Iβ(·)(χBk
)(x) ≥ Iβ(·)(χBk

)(x) · χ
Bk
(x) =

∫

Bk

1

|x− y|n−β(x)
dy · χ

Bk
(x)

≥ C|x|β(x) · χ
Bk
(x) ≥ C|x|β(x) · χ

k
(x).

(3.2)

Using Proposition 2.2, Lemma 2.2, (2.7), (3.1) and (3.2), we have

∥

∥

∥
(1 + |x|)−γ(x)

Hβ(·)(f) · χk
(·)

∥

∥

∥

L
q2 (·)

(Rn)

≤ C2
−kn

k
∑

j=−∞

‖fj‖
L
q1(·)

(Rn)
‖χ

j
‖
L
q′
1
(·)

(Rn)

∥

∥

∥
(1 + |x|)−γ(x)| · |β(x) · χ

k
(·)

∥

∥

∥

L
q2 (·)

(Rn)

≤ C2
−kn

k
∑

j=−∞

‖fj‖
L
q1(·)

(Rn)
‖χ

j
‖
L
q′
1
(·)

(Rn)

∥

∥

∥
(1 + |x|)−γ(x)Iβ(·)(χBk

)
∥

∥

∥

L
q2 (·)

(Rn)

≤ C2
−kn

k
∑

j=−∞

‖fj‖
L
q1(·)

(Rn)
‖χ

j
‖
L
q′
1
(·)

(Rn)
‖χ

Bk
‖
L
q1 (·)

(Rn)

≤ C2
−kn

‖χ
Bk
‖
L
q1 (·)

(Rn)

k
∑

j=−∞

‖fj‖
L
q1 (·)

(Rn)
‖χ

Bj
‖
L
q′
1
(·)

(Rn)

≤ C

k
∑

j=−∞

‖fj‖
L
q1 (·)

(Rn)

‖χ
Bj
‖
L
q′
1
(·)

(Rn)

‖χ
Bk
‖
L
q′
1
(·)

(Rn)

≤ C

k
∑

j=−∞

2(j−k)nδ1‖fj‖
L
q1 (·)

(Rn)
.

(3.3)

Because of 0 < p1/p2 ≤ 1, then we apply inequality

( ∞
∑

i=−∞

|ai|

)p1/p2

≤

∞
∑

i=−∞

|ai|
p1/p2 , (3.4)
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and obtain
∥

∥

∥
(1 + |x|)−γ(x)

Hβ(·)(f)
∥

∥

∥

p1

MK̇α,λ

p2 ,q2 (·)
(Rn)

= sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kαp2
∥

∥

∥
(1 + |x|)−γ(x)

Hβ(·)(f) · χk
(·)

∥

∥

∥

p2

Lq2 (·)(Rn)

)p1/p2

≤ sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kαp1
∥

∥

∥
(1 + |x|)−γ(x)

Hβ(·)(f) · χk
(·)

∥

∥

∥

p1

Lq2 (·)(Rn)

)

.

On the other hand, note the following fact

‖fj‖
L
q1 (·)

(Rn)
= 2−jα

(

2jαp1‖fj‖
p1

L
q1 (·)

(Rn)

)1/p1

≤ 2−jα

( j
∑

i=−∞

2iαp1‖fi‖
p1

L
q1 (·)

(Rn)

)1/p1

= 2j(λ−α)

(

2−jλ
(

j
∑

i=−∞

2iαp1‖fi‖
p1

L
q1 (·)

(Rn)

)1/p1
)

≤ C2j(λ−α)‖f‖MK̇α,λ

p1 ,q1 (·)
(Rn).

(3.5)

Thus, combining (3.3) and (3.5), and using α < λ+ nδ1, it follows that
∥

∥

∥
(1 + |x|)−γ(x)

Hβ(·)(f)
∥

∥

∥

p1

MK̇α,λ

p2 ,q2 (·)
(Rn)

≤ C sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kαp1
(

k
∑

j=−∞

2(j−k)nδ1‖fj‖
L
q1 (·)

(Rn)

)p1
)

≤ C‖f‖p1
MK̇α,λ

p1 ,q1 (·)
(Rn)

sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kαp1
(

k
∑

j=−∞

2(j−k)nδ12j(λ−α)
)p1

)

≤ C‖f‖p1
MK̇α,λ

p1 ,q1 (·)
(Rn)

sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kλp1
(

k
∑

j=−∞

2(j−k)(nδ1+λ−α)
)p1

)

≤ C‖f‖p1
MK̇α,λ

p1 ,q1 (·)
(Rn)

sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kλp1
)

≤ C‖f‖p1
MK̇α,λ

p1 ,q1 (·)
(Rn)

.

Consequently, the proof of Theorem 3.1 is completed. �

Theorem 3.2 Suppose that q1(·) ∈ C log(Rn) ∩ P(Rn) satisfies condition (2.5), and

β(x) meet condition (2.4) which q1(·) instead of p(·). Define the variable exponent q2(·)

by
1

q2(x)
=

1

q1(x)
−

β(x)

n
.
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Let 0 < p1 ≤ p2 < ∞, λ ≥ 0, α > λ − nδ2, where δ2 ∈ (0, 1/(q2)+) is the constant

appearing in (2.7). Then
∥

∥

∥
(1 + |x|)−γ(x)

H
∗
β(·)(f)

∥

∥

∥

MK̇α,λ

p2 ,q2 (·)
(Rn)

≤ C‖f‖MK̇α,λ

p1 ,q1 (·)
(Rn),

where γ(x) is defined as in (2.6), and the Dini-Lipschitz constant from condition (2.2)

which q(·) is replaced by q1(·).

Proof For simplicity, for any f ∈ MK̇α,λ
p,q(·)(R

n), we write

f(x) =

∞
∑

j=−∞

f(x) · χj(x) =

∞
∑

j=−∞

fj(x).

By (1.0b) and Lemma 2.1, we have
∣

∣

∣
(1 + |x|)−γ(x)

H
∗
β(·)(f)(x) · χk

(x)
∣

∣

∣
≤

∫

|t|≥|x|

|f(t)|

|t|n−β(x)
dt · (1 + |x|)−γ(x)χ

k
(x)

≤ C

∫

Rn\Bk

|f(t)||x|β(x)−ndt · (1 + |x|)−γ(x)χ
k
(x)

≤ C

∞
∑

j=k+1

∫

Aj

|f(t)||x|β(x)−n(1 + |x|)−γ(x)dt · χ
k
(x)

≤ C
∞
∑

j=k+1

‖fj‖
L
q1 (·)

(Rn)

∥

∥

∥
(1 + |x|)−γ(x)| · |β(x)−nχ

j
(·)

∥

∥

∥

L
q′
1
(·)

(Rn)
· χ

k
(x).

(3.6)

Similar to (3.2), we give

Iβ(·)(χBj
)(x) ≥ Iβ(·)(χBj

)(x) · χ
Bj
(x) =

∫

Bj

1

|x− y|n−β(x)
dy · χ

Bj
(x)

≥ C|x|β(x) · χ
Bj
(x) ≥ C|x|β(x) · χ

j
(x).

(3.7)

Since q1(·) ∈ C log(Rn)∩P(Rn) and β(x) satisfy condition (2.4) and (2.5) which q1(·)

instead of p(·). So, applying Proposition 2.2, Lemma 2.2, (2.7), (3.6) and (3.7), we obtain
∥

∥

∥
(1 + |x|)−γ(x)

H
∗
β(·)(f) · χk

(·)
∥

∥

∥

L
q2 (·)

(Rn)

≤ C

∞
∑

j=k+1

‖fj‖
L
q1 (·)

(Rn)
‖χ

k
‖
L
q2 (·)

(Rn)

∥

∥

∥
(1 + |x|)−γ(x)| · |β(x)−nχ

j
(·)

∥

∥

∥

L
q′
1
(·)

(Rn)

≤ C

∞
∑

j=k+1

‖fj‖
L
q1 (·)

(Rn)
‖χ

k
‖
L
q2 (·)

(Rn)
· 2

−jn
∥

∥

∥
(1 + |x|)−γ(x)Iβ(·)(χBj

)
∥

∥

∥

L
q′
1
(·)

(Rn)

≤ C
∞
∑

j=k+1

‖fj‖
L
q1 (·)

(Rn)
‖χ

Bk
‖
L
q2 (·)

(Rn)
· 2

−jn

‖χ
Bj
‖
L
q′
2
(·)

(Rn)

≤ C

∞
∑

j=k+1

‖fj‖
L
q1 (·)

(Rn)

‖χ
Bk
‖
L
q2 (·)

(Rn)

‖χ
Bj
‖
L
q2 (·)

(Rn)

≤ C

∞
∑

j=k+1

2(k−j)nδ2‖fj‖
L
q1 (·)

(Rn)
.

(3.8)
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Because of 0 < p1/p2 ≤ 1, therefore, applying (3.4), and combining (3.5) and (3.8),

and using α > λ− nδ2, it follows that

∥

∥

∥
(1 + |x|)−γ(x)

H
∗
β(·)(f)

∥

∥

∥

p1

MK̇α,λ

p2 ,q2 (·)
(Rn)

≤ C sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kαp1
(

∞
∑

j=k+1

2(k−j)nδ2‖fj‖
L
q1 (·)

(Rn)

)p1
)

≤ C‖f‖p1
MK̇α,λ

p1 ,q1 (·)
(Rn)

sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kαp1
(

∞
∑

j=k+1

2(k−j)nδ22j(λ−α)
)p1

)

≤ C‖f‖p1
MK̇α,λ

p1 ,q1 (·)
(Rn)

sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kλp1
(

∞
∑

j=k+1

2(k−j)(nδ2+α−λ)
)p1

)

≤ C‖f‖p1
MK̇α,λ

p1 ,q1 (·)
(Rn)

sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kλp1
)

≤ C‖f‖p1
MK̇α,λ

p1 ,q1 (·)
(Rn)

.

Consequently, the proof of Theorem 3.2 is completed. �

In particular, when γ(x) = 0 and β(·) is constant exponent, the main results above

are proved by Zhang and Wu in [8].
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