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CHAPTER 3 - EVOLUTION EQUATION AND SEMIGROUP

In this chapter we make the link between the existence theory for evolution PDEs we have presented
in the two first chapters and the theory of continuous semigroup of linear and bounded operators.
In that unified framework we may establish the Duhamel formula and the extension of the existence
theory by perturbation argument. We also briefly present the Hille-Yosida-Lumer-Phillips existence
theory for m-dissipative operators.
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1. FROM LINEAR EVOLUTION EQUATION TO SEMIGROUP

1.1. Semigroup. We state the definition of a continuous semigroup of linear and bounded oper-
ators.

Definition 1.1. We say that (Si)i>0 s a continuous semigroup of linear and bounded operators
on X, or we just say that Sy is Cy-semigroup (or a semigroup) on X, we also write S(t) = Sy, if
the following conditions are fulfilled:

(i) one parameter family of operators: ¥t > 0, f +— Sif is linear and continuous on X ;
(1) continuity of trajectories: Vf € X, t — S, f € C([0,00), X);

(iii) semigroup property: So =1; Vs, t>0, Spys =5 Ss;

(iv) growth estimate: 3b € R, IM > 1,

(1.1) 1Sellzx)y < Me® Vit >o0.

We then define the growth bound w(S) by

w(S) := limsup % log ||S(t)|| = inf{b € R; (1.1) holds}.
t—o0
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We say that (St) is a semigroup of contractions if (1.1) holds with b=0 and M = 1.

Remark 1.2. The two continuity properties (i) and (ii) can be understood both in the same sense of

- the strong topology of X, and we will say that St is a strongly continuous semigroup;

- the weak * topology o(X,Y) with X =Y', Y a (separable) Banach space, and we will say that St is a weakly *
continuous semigroup.

In the sequel, the semigroups we consider are strongly continuous except when we specify it. Anyway, many of the
results are also true for weakly x continuous semigroups.

Remark 1.3. It is worth mentioning (and we refer to the sections 7.1 & 77 for more details) that
- For a given one parameter family (St), the growth property () is automatically satisfied when (i), (i) and (i)
hold.
- The continuity property (ii) can be replaced by the following (right) continuity assumption in t = 0:

(') S(t)f — f when t \ O, for any f € X.
- When the continuity properties (i) & (i1) hold for the weak topology (X, X') then they also hold for the strong
topology in X : we do not need to make any difference between strongly and weakly continuous semigroups.
- There do exist weakly = continuous semigroups which are not strongly continuous because the continuity property
(i) for the weak * topology o(X,Y) does not implies the analogous strong continuity. Classical examples are the
heat semigroup and the translation semigroup

@

lz|?
Sif =mxf, w=@rt) Ve, and (Sif)(@) = flz 1)
in the Lebesgue space L™= (R) and in the space M (R) := (Co(R))’" of bounded Radon measures.

- For a given semigroup (St) on X, one may define the new semigroup (T3) and the new norm || - || on X by
(1.2) T(t):=e @' 'S(t)  and  ||fll = sup|T(t) fl,

t>0
and then show that || - || s equivalent to || - || and T(t) is a semigroup of contractions for that new norm.

Exercise 1.4. (1) Prove that (i), (i) and (i) imply (iv). (Hint. Use a contradiction argument and the Banach-
Steinhaus Theorem or see Proposition 7.1).

(2) Prove that (i)-(id’ )-(1ii) implies (i)-(i)-(iii). (Hint. Use (1) or see Proposition 7.2).

(8) Prove that in Remark 1.3, the two norms are equivalent and that T(t) is a semigroup of contractions for the
new norm. (Hint. See Proposition 7.3).

(4) Prove that if St satisfies (113) as well as the continuity properties (i) & (ii) in the sense of the weak topology
o(X,X'), then St is a strongly continuous semigroup. (Hint. See Theorem 7.4).

1.2. From well-posedness to semigroup. Given a linear operator A acting on a Banach space
X (or on a subspace of X) and a initial datum gy belonging to X (or to a subspace of X), we
consider the (abstract) linear evolution equation

d . .
(1.3) 9= Ag in (0,00) x X, ¢(0)=go in X.
We explain how we may associate a Cy-semigroup to the evolution equation as a mere consequence

of the linearity of the equation and of the existence and uniqueness result.

Definition 1.5. Consider three Banach spaces X,Y, Z such that Z C X CY', with continuous and
dense embedding, and a linear and bounded operator A : Z — Y'. We denote A* : Y CcY" — 7'
the adjoint operator. We say that a function

g=g(t) e &r:=C([0,T); Xe)NL"(0,T;2), 1 <r<oo,
with Xe = X or Xe = X —0(X,Y), is a weak solution to the evolution equation (1.3) associated

to the initial datum gy € X if
T

T
(1.4) [<97‘P>X,Y]0T—/O <g,8t<p>x,ydt=/0 (9, N*p) 7,2+ dt,

for any test function o € % := C*([0,T];Ys). In the case Xo = X we can take Yo =Y — o (Y, X),
while in the case Xo = X — o (X,Y) we must take Yo =Y. We do insist on that ¢ € C([0,T); X —
o(X,Y)), with X CY orY C Y, means that the mapping t — (Y(t), ) x.y is continuous for any
p €Y. We note

goo = {g : R+ — X, 9)[0,T) S gT, VT > O}
We give two examples. For a variational solution to an abstract parabolic equation, we take
X=X,=H,Z =Y =V and r = 2, with the notation of Chapter 1. For a weak (and thus

renormalized) solution to a transport equation, we take X = Xo =Z =L, 1 <p<o0,Y = wir'
and r = o0.
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Definition 1.6. We say that the evolution equation (1.3) is well-posed in the sense of Definition 1.5
of weak solutions, if for any go € X there exists a unique function g € &y which satisfies (1.4),
and for any Ry, T > 0 there exists Ry := C(T, Ro) > 0 such that

(1.5) lgollx < Ro implies [Sup] lg(®)llx < Rr.
0,7

Proposition 1.7. To an evolution equation (1.3) which is well-posed in the sense of Definition 1.6,
we may associate a continuous semigroup of linear and bounded operators (St) in the following way.
For any go € X and any t > 0, we set S(t)go := g(t), where g € & is the unique weak solution to
the evolution equation (1.3) with initial datum go.

Corollary 1.8. To the time autonomous parabolic equation considered in Chaper 1 and to the time
autonomous transport equation considered in Chapter 2, we can associate a strongly continuous
semigroup of linear and bounded operators.

Proof of Proposition 1.7.  We just check that S as defined in the statement of the Proposition
fulfilled the conditions (i), (ii) and (iii) in Definition 1.1.

e S satisfies (i). By linearity of the equation and uniqueness of the solution, we clearly have

Si(go + Afo) = g(t) + Af(t) = Stgo + ASifo
for any go, fo € X, A € R and ¢ > 0. Thanks to estimate (1.5) we also have ||S:gol| < C(¢,1) ||go||
for any go € X and t > 0. As a consequence, S; € #(X) for any t > 0.
e S satisfies (ii) since by definition ¢ — Sigo € C(R4; X,) for any go € X.
e S satisfies (iii). For go € X and t1,t2 > 0 denote g(t) = Stgo and §(t) := g(t + t1). Making the
difference of the two equations (1.4) written for ¢t = ¢; and t = ¢; + t5, we see that § satisfies

(g(t2), o(t2)) (g(t1 +ta2), o(t1 +t2))

ti+t2
= (9(t2),(t1)) +/ {(Ag(s), ¢(s)) + (¢'(5), 9(s)) } ds

t1
ta

= (9(0), 9(0)) + ; {(Ag(s),8(5)) + (&'(5),9(s)) } ds,
for any ¢ € %;, 44, with the notation ¢(t) := p(t + t1) € %;,. We thus obtain
StlthQgO = g(tl + t2) = g(tQ) = Stzg(o) = Stzg(tl) = StQStlgO7

where for the third equality we have used that the equation on the functions § and ¢ is nothing
but the weak formulation associated to the equation (1.3) for the initial datum §(0). O

2. SEMIGROUP AND GENERATOR

On the other way round, we explain how we can associate a generator and then a solution to a
differential linear equation to a given semigroup.

Definition 2.1. An unbounded operator A on X is a linear mapping defined on a linear submanifold

called the domain of A and denoted by D(A) or dom(A) C X; A: D(A) — X. The graph of A is
G(A) = graph(A) == {(f,A f); f€ D(A)} C X x X.

We say that A is closed if the graph G(A) is a closed set in X x X: for any sequence (fi) such
that f, € D(A),VE >0, fr = f in X and A fy — g in X then f € D(A) and g = A f. We denote
€ (X) the set of unbounded operators with closed graph and €p(X) the set of unbounded operators
which domain is dense and graph is closed.

Definition 2.2. For a given semigroup (S;) on X, we define

DA) = {feX; }1\1})% exists in X},
Af = limM for any f € D(A).

t\0 t
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Clearly D(A) is a linear submanifold and A is linear: A is an unbounded operator on X. We
call A : D(A) — X the (infinitesimal) generator of the semigroup (St), and we sometimes write
St = SA(t). We denote 4(X) the set of operators which are the generator of a semigroup.

We present some fundamental properties of a semigroup S and its generator A that one can obtain
by simple differential calculus arguments from the very definitions of S and A.

Proposition 2.3. (Differentiability property of a semigroup). Let f € D(A).

(i) S@t)f € D(A) and AS(t)f = S(t)Asf for any t > 0, so that the mapping t — S(t) f is
C([0,00); D(A)).

d
(ii) The mapping t — S(t)f is C(]0,0); X), aS(t)f = AS(t)f for any t > 0, and then

S(t)f—S(S)f=/tS(T)AdeZ/tAS(T)de, Vis s>

Sketch of the proof of Proposition 2.3. Let f € D(A).
Proof of (i). We fix t > 0 and we compute

LSS0 S0
s—0t S s—0t

which implies S(¢)f € D(A) and AS(t)f = S(t)Af.
Proof of (ii). We fix ¢ > 0 and we compute (now) the left differential

Sll%li{S(t+s)£—S(t)f s -
= Sli%{{sows)(%ﬁ —Af)+ (St +s)Af - SAf) =0,

using that the two terms within parenthesis converge to 0 and that || S(t + s)|| < M e** for any
s < 0. Together with step 1, we deduce that ¢ — S(t)f is differentiable for any ¢ > 0, with
derivative AS(t)f. We conclude to the C! regularity by observing that t + S(t)Af is continue.
Last, we have

t t t
S(t)f—S(s)f:/ %[S(T)f]de/ S(T)Ade:/ AS(T)fdr,
for any t > s > 0. g

Definition 2.4. Consider a Banach space X and an (unbounded) operator A on X. We say
that g € C([0,00); X) is a “classical” (or Hille-Yosida) solution to the evolution equation (1.3) if
g € C((0,00); D(A)) N CY((0,00); X) so that (1.3) holds pointwise.

In it worth emphasizing that Proposition 2.3 provides a “classical” solution to the evolution equa-
tion (1.3) for any initial datum fo € D(A) by the mean of ¢ — Si () fo.

Lemma 2.5. For any f € X andt > 0, there hold

_ o q gtk
(1) lim — S(s) fds=S(t)f,

h—0 h t

and
(i) /OtS<s>fdseD<A>7 (i) A(/OtS(s)fds>=S(t)f—f-

Sketch of the proof of Lemma 2.5. The first point is just a consequence of the fact that s — S(s)f
is a continuous function. We then deduce

;L{S(h)/otS(s)fds—/OtS(s)fds> —;{/htJrhS(s)fds—/OtS(s)fds}

1 [t+h h
~ [ seras= [ seras) swr -1,
which implies the two last points. O

In the next result we prove that 4(X) C ép(X).
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Definition 2.6. We say that C C X is a core for the generator A of a semigroup S if
Cc D(A), CisdenseinX and S(t)CCC, Vt>D0.

Proposition 2.7. (Properties of the generator) Let A € 4(X).
(i) The domain D(A) is dense in X. In particular, D(A) is a core.
(ii) A is a closed operator.

(iii) The mapping which associates to a semigroup its generator is injective. More precisely, if Sy
and Sy are two semigroups with generators A1 and Ao and there exists a core C C D(A1) N D(As)
such that Ayc = Agjc, then Sy = Ss. In other words, Sy # So implies Ay # As.

Sketch of the proof of Proposition 2.7. For any f € X and t > 0, we define f* :=t"1 fot S(s)fds.
Thanks to Lemma 2.5-(i) & (ii), we see that f* € D(A) and f* — f as t — 0. In other words,
D(A) is dense in X.

We prove (ii). Consider a sequence (fx) of D(A) such that fr — f and Afy — g in X. For ¢t > 0,
we write

S(t)fk - fk = /0 S(S)Afk dS,

and passing to the limit £ — oo, we get

t
CUS@r - =t [ Sts)gds.
0
We may now pass to the limit ¢ — 0 in the RHS term, and we obtain
SO - ) > g
That proves f € D(A) and Af = g.

We prove (iii). We observe that the mapping t — S;(f)f, i = 1,2, are C! for any f € C, thanks to
Proposition 2.3, and

%Sl(S)SQ(t_S)f = %S(S)Sz(t—s)f-fngl(s)%f

= S1(8) Ay Sa(t — ) f+ S1(s) Ay Sa(t —s) f =0,
That implies Sy(t)f = 51(0)S2(t — 0)f = S1(t)S2(t —#)f = Si(t) f for any f € C, and then
So = 51. "

Exercise 2.8. We define recursively
D(A™) :={f € D(A™™), Af € D(A"™ 1)},
forn > 2. Prove that D(A™) is a core.

3. DUHAMEL FORMULA AND MILD SOLUTION

Consider the evolution equation

d
(3.1) @g:Ag+G on (0,7), ¢(0) = go,

for an unbounded operator A on X, an initial datum gy € X and a source term G : (0,T) — X,
T € (0,00). For G € C((0,T); X), a classical solution g is a function

(32) g € Xr = C([0,7); X) N C'((0,7); X) N C((0,T); D(A))
which satisfies (3.1) pointwise. For U € LY(0,T;%(X1, X)) and V € LY(0,T; B(Xo, X3)), we
define the time convolution V x U € L*(0,T; %8(X1, X3)) by setting

(V*U)(t) ::/0 V(t—s)U(s)ds:/O V(s)U(t—s)ds, forae.te(0,T).
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Lemma 3.1 (Variation of parameters formula). Consider the generator A of a semigroup Sa on
X. For Ge C((0,T); X)NLY0,T;X), VT > 0, there exists at most one classical solution g € Xt
to (3.1) and this one is given by

(3.3) g = Spgo + Sp *G.

Proof of Lemma 3.1.  Assume that g € X satisfies (3.1). For any fiexd ¢ > 0, we define
s> u(s) := Sa(t —s)g(s) € C((0,t); X) N C([0,t]; X). On the one hand, we have

9(t) — Sa(t)go = u(t) — u(0) = /Ot u'(s) ds.
On the other hand, we compute
u'(s) = —ASA(t — 8)g(s) + Sa(t — 5)g'(s) = Sa(t — 8)G(s),

for any s € (0,t). We conclude by putting together the two identities. O
When G € C((0,T); X) N LY(0,T; D(A)) and go € D(A), we observe that g := Sxgo + Sa x G
belongs to X7 and

d _

%g
so that g is a classical solution to the evolution equation (3.1).
When G € L*(0,T; X) and go € X, we observe that g € C([0,7]; X), g(0) = go and it is the limit

of classical solutions by a density argument. We say that g is a mild solution to the evolution
equation (3.1).

() = ASa(t)go + A(Sa * G)() + Sa(0)G(H) = Ag(t) + G(1),

Lemma 3.2 (Duhamel formula). Consider two semigroups Sa and Sp on the same Banach space
X, assume that D(A) = D(B) and define A := A — B. If ASg,SgA € L'(0,T;%8(X)) for any
T € (0,00), then
Sp =S+ Sax ASgp=Sg+ SpA xSy in B(X).
Proof of Lemma 3.1. Take f € D(A) = D(B), t > 0, and define s — u(s) := Sa(s)Sg(t — s)f €
C1([0,t]; X) N C([0,t]; D(A)). We observe that
uw'(s) = Sa(s)ASp(t—s)f — Sa(s)BSs(t — s)f
= Sa(t —s)ASp(s)/f,

for any s € (0,¢), from which we deduce

S0 = Se(0)f = [ w(s)ds = [ Salt—s)ASu(5)f ds

By density and continuity, we deduce that the same holds for any f € X, and that establishes the
first version of the Duhamel formula. The second version follows by reversing the role of Sy and
Sg. O

From the above second version of Duhamel formula, we observe that for any go € D(A), the
function g(t) := Sa(t)go € X1 is a classical solution to the evolution equation (3.1) and satisfies
the following functional equation

(3.4) g =SBgo+ SpAxg.
On the other way round, we observe that if g € X is a solution to the functional equation (3.4),
then
g'(t) = BSs(t)go+ B(SpAx*g)(t) + Sp(0)Ag(t)
= Bg(t) + Ag(t) = Ag(t),
so that ¢ is a classical solution to the evolution equation (3.1). More generally, when SgA €

LY(0,T; #(X)), we say that g € C([0,T]; X) is a mild solution to the evolution equation (3.1) if
g(0) = 0 and g is a solution to the functional equation (3.4).
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4. DUAL SEMIGROUP AND WEAK SOLUTION

Consider a Banach space X and an operator A € €p(X), with X endowed with the topology norm,
and we denote Y = X’ in that case, or with X = Y’ endowed with the weak * topology o(X,Y)
for a separable Banach space Y. We define the subspace

D(A") :={peY; 3C 20,V fe DA, [{p,Af)] < C|fllx}
and next the adjoint operator A* on Y by
(A%, ) = (9, Af), Ve D(AY), feDA).

Because D(A) C X is dense, the operator A* is well and uniquely defined and it is obviously linear.
Because A has a closed graph, the operator A* has also a closed graph. When A is a bounded
operator then A* is also a bounded operator.

Consider now a semigroup S with generator A and fo € D(A). Multiplying by ¢ € C([0,T); D(A*))
the equation (1.3) satisfied by g(t) := S(¢) fo and integrating in time, we get

(fo,9(0))x,x/ +/O (S(t) fo, Drp(t) + A* (1)) x x+ dt = 0.

Because the mapping fo — S(t)fo is continuous in X and the inclusion D(A) C X is dense from
Proposition 2.7, we see that the above formula is also true for any fy € X. In other words, the
semigroup S(t) provides a weak solution (in the above sense) to the evolution equation (1.3) for
any fo € X.

We aim to show now that the semigroup theory provides an answer to the well-posedness issue
of weak solutions to that equation for any generator A. More precisely, given a semigroup, we
introduce its dual semigroup and we then establish that the initial semigroup provides the unique
weak solution to the associated homogeneous and inhomogeneous evolution equations.

Proposition 4.1. Consider a strongly continuous semigroup S = Sx on a Banach space X with
generator A and the dual semigroup S* as the one-parameter family S*(t) := S(t)* for any t > 0.
Then the following hold:

(1) S* is a weakly * continuous semigroup on X' with same growth bound as S.

(2) The generator of S* is A*. In other words, (Sp)* = Sax.

(3) The mapping t — S*(t)¢ is C([0,00); X') (for the strong topology) for any ¢ € D(A*). Simi-
larly, t — S*(t)p is C1([0,00); X') N C([0,00); D(A*)) for any ¢ € D(A*?).

Proof of Proposition 4.1. (1) We just write

("), f) =@, S(O)f) = Ty(t,p) Vt20, fEX, pe X/,

and we see that (¢,¢) — T (t, ) is continuous for any f € X.
(2) Denoting by D(L) and L the domain and generator of S* as defined as in section 2, for any
p € D(L) and f € D(A) we have

(Lo ) = lim({(50)°0—¢).f)

t—0
= tim{p 1 (5007~ ) = (2. AS),

from which we immediately deduce that D(L) = D(A*) and L = A*.
(3) From Proposition 2.3, we have

t
I5°@he - 5" @l = | [ S*nvedr] | < dree - agl

for any t > s > 0 and ¢ € D(A*), so that t — S*(¢)¢ is Lipschitz continuous from [0, c0) into X’
endowed with the strong topology. g

Proposition 4.2. Consider a weakly * continuous semigroup T = Sy on a Banach space X =Y’
with generator L, and the dual semigroup T* as the one-parameter family T*(t) := T(t)* of bounded
operator on Y for any t > 0. Then the following hold:

(1) S =T* is a strongly continuous semigroup on Y with same growth bound as T

(2) The generator A of S satisfies L = A*.
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Proof of Proposition 4.2. Just as in the proof of Proposition 4.1, we have (¢, ) — (@, S(t)f) is
continuous for any ¢ € X’. That means that S(¢) is a weakly o(X, X’) continuous semigroup in X
and therefore a strongly continuous semigroup in X thanks to Theorem 7.4. The rest of the proof
is unchanged with respect to the proof of Proposition 4.1. O

For any go € X and G € LY(0,T; X), we say that g € C([0,T]; X) is a weak solution to the
inhomogeneous initial value problem (3.1) if

(4.1) (@ (T), g(T)) — (9(0), go) = / ¢+ No.g) + (0, G} dt,
for any ¢ € C1([0,T]; X") N C([0, T]; D(A*)).

Proposition 4.3. Assume that A generates a semigroup S on X. For any g0 € X and G €
LY(0,T; X), there exists a unique weak solution to equation (3.1), which is nothing but the mild
solution

(4.2) g = Srgo + Sa x G.
Proof of Proposition 4.3. We define

a(t) = g = S(t)go + / S(t - $)G(s) ds € C([0,T]; X).

For any ¢ = ¢, € C*([0,T); X') N C([0, T]; D(A*)), we have

t
(00,38 = (S5 e, go) + / (¢ o1, G} ds € CY([0,T))
0

and then

d

t
Gleng) = (SiWer+ o)+ [ (SI W+ ¢) G ds + (Gri)
0

= <A*@t+§0;7gt> + <§0taGt>a

from which we deduce that g is a weak solution to the inhomogeneous initial value problem (3.1) in
the weak sense of equation (4.1). Now, if g is another weak solution, the function f := g—g is then
a weak solution to the homogeneous initial value problem with vanishing initial datum, namely

T
<<P(T),f(T)>=/O (' + A%, fdt, Vo e CH[0,T); X') NC([0,T]; D(AY)).

A first way to conclude is to define

o(s) = / §*(r — 5) () dr,

for any given v € C1((0,T); D(A*)), and to observe that ¢ € C1([0,7]; X") N C([0,T]; D(A*)) is a
(backward) solution to the dual problem
—¢'=No+1 on (0,T), »(T)=0.

For that choice of test function, we get

0:/ (W, f)dt, Wi e CL((0,T); D(A")),
0

and thus g = g.
An alternative way to get the uniqueness result is to define ¢(t) := S*(T—t)1) for a given ¢ € D(A*).
Observing that ¢ is a (backward) solution to the dual problem

(4.3) —¢' =Ny, oT)=1,
that choice of test function leads to
(W, f(T))y =0 Vi € D(A*), VT > 0,
and thus again g = g. O
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Exercise 4.4. Consider a Banach space X and an unbounded operator A on X. We assume
that X =Y’ for a Banach space Y and that the dual opeartor A* generates a strongly continuous
semigroup T on Y.

(1) Prove that S :=T* is a (at least) weakly * 0(X,Y) continuous semigroup on X with generator
A and that it provides the unique weak solution to the associated evolution equation.

(2) Prove that for any smooth functions a = a(x) and ¢ = c¢(z), one can define a weakly continuous
semigroup S = Sy on L = L™ (Rd) associated to the transport operator

(Af)(@) := —a(z) - V[f(z) - c(z) f(2),
as the dual semigroup associated to the dual operator A* defined on L*(R?).
(3) Prove similarly that one can define a weakly continuous semigroup on M'(R?) := (Co(R%)Y’,
the space of Radon measures, associated to the transport operator A.

5. COMING BACK TO THE WELL-POSEDNESS ISSUE FOR EVOLUTION EQUATIONS

Using mainly the Duhamel formula and duality arguments, we present several ways for proving the
well-posedness of evolution equation and building the associated semigroup.

5.1. A perturbation trick. We give a very efficient result for proving the existence of a semigroup
associated to a generator which is a mild perturbation of the generator of a semigroup.

Theorem 5.5. Consider Sg a semigroup satisfying the growth estimate ||Sp(t)||zx) < M e and
A a bounded operator. Then, A := A+ B is the generator of a semigroup which satisfies the growth
estimate ||Sx (1) z(x) < M et with b = b+ M| A.
Proof of Theorem 5.5. Step 1. Existence. We define
&= C([0,T]; B(X))
the space of family of operators (U(t))¢cjo, 7] such that U(t) € Z(X) for any ¢t € [0,T], U(0) = 1
and t — U(t)g € C([0,T]; X) for any g € X. For any U € &, we define
V(t) = eU(t) := Sp(t) + (SpA*U)(t),
so that V € &. More precisely, defining
Ho={Ue& |U|s<eT M},
we observe that ® : JZ — J# because

T
Vlle < 1155lls +/ 1S5(5) All z(x) ds|U]| s < 2" M,
0

for T' > 0 small enough. Moreover, for U;,Us € ', we write U := Us — U; and we have
V(t) :=Vs(t) = V1i(t) = (SgAxU) (),
and then )
12(the) — 26 < SlUz = U6

From the Banach contraction Theorem, there exists a fixed point U € J# to the mapping @, so

that
t

Ut) = Sp(t) + (S = AU)(t) = Sp(t) +/0 Sp(t— s)AU(s)ds, Yt e[0,T].

We extend the function U to [0, 00) by iterating the construction. We may be a bit more accurate
in the estimate of U(t). By writing
t

U@, < MM + M [ Allix, / U (3) o dis

and then applying the Gronwall lemma to the function u(t) := ||U(t)||#(x) e ", we indeed obtain

the announced growth rate. The very same kind of arguments tells us that there exists a unique
solution g € C(R4; X) to the functional equation

(5.4) g(t) = Sg(t)go + (S x Ag)(t) in X, Vt>0,
and g(t) = U(t)go.
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Step 2. Weak solution. We claim that
t
U'(t) = BSp(t) + B/ Sp(t — s)AU(s) ds + Sp(0)AU(t) = (B+ A)U(t),
0

on a weak sense, what we obtain by repeating the computation we have performed just after
the proof of Lemma 3.2 about the Duhamel formula. More precisely, we fix g9 € X, ¢ = ¢; €
CHRy; X)NC(Ry; D(B*)), and denoting g; := Uygo, Sf := Sg(t)*, we define

t
A(t) = (@t, 9t) = (S7et, 90) +/0 (S;_gpt, Ags) ds.

We clearly have A € C'(R,) and

t
N(t) = (SiB*ou+ Sidl go) + (oo Age) + / (S7_ B 1+ 7 o5, Ags) ds.
0

= <B*$0t + &4, (Ss(t) + /Ot St_sAUs)go> + (A% ¢, gt)

= <A*s0t + @1, g¢)-

We conclude by writing

(e 9) — (0, 00) = / X(s) ds,

and observing that this nothing but the weak formulation of the evolution equation associated
to A. We use here that D(A) = D(B) because A : D(B) — X is a bounded operator and thus
D(A*) = D(B*).
Step 3. Semigroup property. We claim that Ugy € Yy = C1([0,T]; X) for any go € D(A) and
T > 0. The proof follows by adapting the construction we have made in Step 1. For f € Yr and
go € D(A), we denote

gt := prlgo, ] = Sp(t)go + (Ss * Af)(?),

and we observe that

1

1 1 t+h
R =) = S5+ R~ Ss(Oanl 4 [ Su(hAfien-ds

1 t
b | Se Al erns — fiilds
0
¢
—  Sp(t)Bgo + Sp(t)Ago + SB(S).AftI_S ds =: g;,
0
as h — 0, where the limit term belongs to C'([0,T]; X). We introduce the norms
1fllyz = S {Ifellx +11£0x} Ngolipeay = llgollx + [Agollx
€10,

on Yr and D(A). From the computations made in Step 1 and the one made just above, we see that
lgllve < Me{lgollx + IAITIIflle} + Me* {[|Agollx + AT f]le }
Me"(llgoll peay + AN TN fllv)
and for two images g; :== ®U) f;, fi € Xr, i = 1,2, that
gz = g1llvz < AN MTe | fo = fullyr-

We straightforwadly adapt the proof presented in Step 1 and we obtain the existence of a fix
point g = ¢[go, g] € Yr. This one satisfies the functional equation (5.4) and that proves the claim
Ugy = g € Yr. Also observing that

IN A

1 1 1 [t
E(SB(h)gt —9t) = T(gt4n—gt) — */ Sp(s)Afiyn—sds
t

h h
- g; — Si(t)Ago,
as h — 0, we have Ugy € C([0,T); D(B)). Performing the same analyse for the dual operator,
we get that for any ¢ € D(A*), there exists a solution ¢ € C([0,T]; X’) N C([0,T]; D(A*)) to
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the (backward) dual problem (4.3). Arguing as in the proof of Proposition 4.3, we deduce that
g:=Ugy € C(R;;X), go € X, is the unique solution to the weak equation

t
<¢tvgt> - <800790> = / <A*SDS + QDIS,gS>dS,
0

for any ¢ € C1(R,, X’) N C(Ry, D(A*)). We conclude that U satisfies the semigroup property by
using Proposition 1.7. 0

5.2. Semilinear evolution equation. With very similar arguments as in the previous section,
we present a possible extension of the existence theory for semilinear evolution equation.

We consider the generator A of a semigroup of contractions S and a function @ : X — X which
is Lipschitz continuous on bounded sets: for any R > 0 there exists C' such that

(5.1) Vf,9€B(0,R) [Q(f) - QI <CIf -4l
We define C(R) := inf{C > 0,such that (5.1) holds}. The mapping R — C(R) is increasing.
We consider the semilinear equation
d
(5.2) gl =AFQf), fF(0)=fo

in classical form with f € C([0,T]; D(A)) N C([0,T]; X) and fo € D(A), as well as the associated
mild formulation

(5.3) F(8) = Sa(t)fo + / Sa(t — $)Q(f(s)) ds

with f € C([0,T); X) and fo € X.

Proposition 5.1 (uniqueness). If f,g € C([0,T]; X) are two solutions of (5.3) associated to the
same initial datum fy € X, then f = g.

Proof of Proposition 5.1. For any given T > 0, we define
= t ¢
R 0]fgfg(TmaX(llf( JINIGINE

and we get that h := f — g satisfies ||h(t)]| < e€UDT||h(0)| thanks to the Gronwall lemma. O

Proposition 5.2 (local existence). For R > 0, we define
M—-R
1Q(0)[ + MC (M)
For any fo € B(0, R), there exists a unique function f € C([0,Tg]; X) solution to (5.3).

M :=2R+[|Q(0)], Tr:=

Proof of Proposition 5.2. We define
& :={f e C([0,Tr; X); [[f@)|| < M, Vt € [0,Tr]}.
For any f € &, we define

O(f) := Safo+Sa*Q(f),
so that ® : & — &. Indeed, we observe that

(@l < R+/||Q Dl dr
< RA+Tr[Q(O0)| +C(M)M] < M,

for any ¢t < Tg. On the other hand, for any f,g € & and any

M-—-R 1
PR o)+ e < ey

we have

N

[(@(f) = 29O < /O 1Q(f(7)) = Q(g(m))ll dr
TrC(M) max || f — g
[0,Tr]

IN



12 CHAPTER 3 - EVOLUTION EQUATION AND SEMIGROUP

Thanks to the Banach fixed point theorem for contractions, we conclude to the existence of a unique
fixed point for the function @, and that provides a solution to the semilinear equation (5.3). O

We set
Tinaz(fo) :=sup{T > 0; 3f € C([0,T]; X) solution to (5.3)}.
Theorem 5.3 (maximal solution). For any given fy € X, there exists a unique mazimal solution
f€C(0, Trmaxz(f0)); X) to (5.3), for which the following alternative holds:
(1) Trnaz(fo) = +00, we say that f is a global solution;
(1) Trnaz(fo) < 00 and ||f(t)]] = 00 as t = Tiax(fo), we say that f blows up in finite time.

Proof of Theorem 5.3. The result is a straightforward consequence of the estimate

LA !
o+ i) (L+eleOl+2150D) 2 7——

that we prove now. We may assume Tynq.(fo) < 00, and we assume by contradiction that there
exists tg € [0, Tynaz(fo)) such that

£ (to)
(1 1200)] + Hf(to)||> (1+ Qo) + 217 t)lh) <

(5.4) (1 + YVt € [0, Trnaz(fo)),

-
Tmax(fo) - tO .

We define
R:=|f(to)ll, M :=|Q(0)] +2R,

so that the above assumption writes

M—-R
Trax —to < ———— -
(fo) = to V(LT COD)
On the other hand, we have
M—-R M—-R
T = > .
1QMO0)[ +MC(M) ~ M(1+C(M))
Thanks to Proposition 5.2, there exists a unique g € C([0,Tr]; X) which satisfies

o(t) = Sa(t)f(to) + / Salt = 1)Q(g(r) dr.
We then set
h(t) := f(t), Vt €[0,t0], h(t):=g(t—to), YVt € [to,to + Tr],

and we observe that h is a solution to (5.3) on the interval [0, ¢y + Tr], with to + Tr > Tmaz(fo),
what is not possible. O

A straightforward application of Theorem 5.3 is the following global existence result.
Proposition 5.4 (global existence). Any solution is global when Q is globally Lipschitz.

Exercise 5.5. Extend all the above results to the case when Sy is a general (not necessarily of
contractions) Co-semigroup.

5.3. Dissipativity and extension trick. For f € X, we define its dual set

F(f)={fex’, (0 =flx =%}
That set is never empty thanks to the Hahn-Banach theorem (Exercise). Observe that when X is

an Hilbert space F(f) = {f} and when X = L?, 1 < p < oo, F(f) = {f|f[*~2||f||3,"}. For a
general Banach space, one can show that F(f) # () thanks to the Hahn-Banach Theorem.

We say that an (unbounded) operator A is dissipative if

VfeDA), 3f e F(f), (f5Af) <0
When X is an Hilbert space the dissipativity condition writes
(5.5) VfeD), (fAf)<0,

and we also say that A is coercive.
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We say that a Banach space X is “regular” if F(f) is a singleton {f*}, f* € X', for any f € X,
the mapping ¢ : X = R, f > o(f) := | f||?/2 is differentiable and

Do(f)-h={(f"h), VfhelX.
Examples of regular spaces are the Hilbert spaces and the Lebesgues spaces LP, 1 < p < oco.

Theorem 5.6. Consider a Banach space X and an unbounded opeartor L on X. We assume that

(i) X is a regular space and L is dissipative;
(i) there exists a dense Banach space X C X and an operator L on X such that L = Lix and
L is the generator of a semigroup Sy on X.

Then L is the generator of a semigroup (of contractions) Sg on X such that Spjx = St

Proof of Theorem 5.6. For any fo € D(L), the mapping t — f; := Sr(t)fo is C* on X, so that also
is the mapping t — || f;||%. By the chain rule and the dissipativity property, we find

1d d .
§$||ft||gc = Dy(f1) - ﬁft = (ff,Lf:) <0.
Thanks to the Gronwall lemma, we deduce
1SL@) follx < I follx, VE=>0.

We conclude by a extension argument using the above uniform continuity estimate and the density
property D(L) C X. O

We often just say that £ is a dissipative operator in a (complex) Hilbert space H when there exists
a real number b € R such that

(5.6) VfeD(L), 3f €F(f),  Re(fs.Lf) <blf]*
For any f € D(L) and denoting f; := S f, we have from (5.6)

d d =

TN = e o = 2Rl £1) < UL

Thanks to the Gronwall lemma, we deduce

(5.7) I1Sefll < €™ Ifll v > o0.
It is then classical to show that the “dissipative growth rate” wq(L) satisfies
(5.8) wq(L) :=1inf{b € R; (5.7) holds} = inf{b € R; (5.6) holds}.

6. SEMIGROUP HILLE-Y OSIDA-LUMER-PHILLIPS’ EXISTENCE THEORY

We say that an (unbounded) operator A is maximal if there exists 2y > 0 such that
(6.9) R(zo— A) = X.
We say that A is m-dissipative if A is dissipative and maximal.

We present now the Lumer-Phillips’ version of the Hille-Yosida Theorem which establishes the link
between semigroup of contractions and dissipative operator.

Theorem 6.7 (Hille-Yosida, Lumer-Phillips). Consider A € €p(X). The two following assertions
are equivalent:

(a) A is the generator of a semigroup of contractions;

(b) A is dissipative and mazimal.

For the sake of brevity and simplicity, we only present the proof of the implication (b) = (a) in
the case of an Hilbert framework. The reverse implication is let as an exercise.

Exercise 6.8. Consider an (unbounded) operator A on a Hilbert space X which is dissipative and
mazimal. Prove that A € €p(X). Prove the same result in the case when X is reflexive.

Exercise 6.9. Consider a semigroup S = Sp on an regular Banach space X (as defined in sec-
tion 5.8). Prove that the generator A is dissipative iff S is a semigroup of contractions.
(Hint. Argue similarly as in the proof of Theorem 5.6).
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Exercise 6.10. Consider a semigroup S = Sy on a Banach space X which satisfies the growth
bound (1.1). Prove that A — z is invertible for any z € Ay := {z € C; Rez > b}.
(Hint. Prove that the operator

U(z) = 7/00 Sa(t)e*t dt
is well defined in #(X) for any z € A, and tha(t)
U(=) (A - 2) = Ipgy, (A= 2)U() = Ix).
Exercise 6.11. Prove (a) = (b) in Theorem 6.7. (Hint. Use Excercise 6.9 and Excercise 6.10).

Lemma 6.12. Under condition (b), the operator A satisfies

(6.10) Ve>0, R(I—-€eA)=X.
Moreover, for any e > 0, I — e\ is invertible from D(A) into X, and
(6.11) \\(1*51\)71\@()() <1

Finally, D(A™) is dense in D(A™™Y) for any n > 1.

Proof of Lemma 6.12. Step 1. We know that (6.10) holds with ¢ = gg := 1/x9 and we prove that
it also holds for any ¢ > ¢¢/2. First, we observe that for any g € X there exists f € D(A) such
that

f—eAf =g
That solution f € D(A) is unique because for any other solution h € D(A), the difference u :=
h — f € D(A) satisfies

u —eglAu =0,
so that

[ull* < (u”, u) — eo{u”, Au) =0,

and u = 0. In other words, I — ggA is invertible. Moreover, we also have

IFIZ < (5 f) = eolf*, AF) = (590 < IF 1 gl

so that [|f|| < [lg]l. In other words, (I —goA)~' € B(X) and ||(I — eoA)||5x) < 1, which is
nothing but (6.11) for € = 9. Next, for a given ¢ > 0 and a given g € X, we want to solve the
equation

feD@), f—-eAf=yg.
We write that equation as
J-eAf=(0-T)f+ 2y
and then
f=0(f) = —eh)7" [(1- ) f+ 2.

Finally, when |1 —go/e| < 1, which means € > £¢/2, we deduce from the Banach contraction fixed
point Theorem that there exists a unique f € X such that f = ®(f) € D(A). That concludes the
proof of (6.10) for any € > £¢/2. Repeating the argument, we then get (6.10) and (6.11).

Step 2. We already know (it is one of our assumptions) that D(A) is dense in X. We define
V.= (1—¢eA)7! and for f € X, we define f. = V.f. We claim that

(6.12) fe—=fin X, as e€—0.
First, we observe that
Ve—I=V.(I—-(I—¢l))=cV.A.
For any f € X, we may introduce a sequence f™ — f in X such that f™ € D(A). We then have
fe=f=Vef =V "+ Vef" ="+ "= f,

and

W= FI < IVef = Vel + e Ve ASP I+ 1157 = £
2|f" = fll + el A",
from what (6.12) immedediately follows.

<
<
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Consider f € D(A) and f. :=V.f € D(A). From (I +eA)f. = f, we deduce that
eAfe = f— f- € D(A),
which means that f. € D(A?). Moreover, we have f. — f in X as well as
fe—=f and Af.=V.Af = Af

in X as ¢ — 0 thanks to (6.12). We have proved that D(A?) is dense in D(A). We prove that
D(A™) is dense in D(A"™1) for any n > 2 in a similar way. O

Proof of (b) = (a) in Theorem 6.7. Step 1. For fixed ¢ > 0, we may build by induction and
thanks to Lemma 6.12, the sequence (gi)x>1 in D(A) defined by the family of equations

(6.13) Vi >0 @ = A gyt

Observe that from the identity
(9k+15 Gr+1) — € (AGk+1, Grt1) = (ks Gt 1),

we deduce
lgll < llgoll V& >0.
We fix T' > 0, n € N* and we define

e:=T/n, tp=ke, ¢°(t):=gron [ty tki1).

and
ge(t) = tng_ ! gr + t_gtk Gk+1 0N [tg, thyr).
The previous estimate writes then
(6.14) sup [lg°|| < [[goll,  sup [lgel < llgoll-
(0,77 (0,77

)

Step 2. We next establish that g is equi-uniformly continuous in C([0,T); X) when gy € D(A).
With the above notation, we write

ge=(1—eN) g1 =VFgy, Vei=(1-eA)"h.

Observing that

>
|
—

VE—T=(V.—=D)> V! V.—I=V.eA,
0

o~
I

Ve commutes with A and ||V;|| < 1, we get

k—1
lgx = goll <D IVEI“ (Ve = Dgoll < ke [|Agol-
£=0

We see then that ||g-(t) — gol| < ¢||Ago|l for any t,e > 0, and by construction, we also have
llge () — g=(s)|| < (t — s) || Ago| for any ¢t > s > 0 and € > 0.

Step 3. We finally improve the bound (6.14) by showing that g. is a Cauchy sequence in
C([0,T); X) for any T > 0, when ¢ := 27" and go € D(A?). We fix t € (0,7) dyadic, that
means t2" € N for some n; € N*| and for any n > n;, we write

hiy = gon(t) = ViZ gy, Vo= (1—27"A)7"

and
hnt1 = ga-nt1(t) = Uﬁntgo, Uy :=(1—2"""1A)72
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Now, we observe that
27t—1
Ut =V = (Un=Va) > UV
¢=0
2mt—1

= Uud-2 A2 -2V YD U

— 922 Zil U5”75+1V7f+1 A2,
=0
so that
[An+1 — hnll < 27" 2 ||A290H~
As a consequence, for any m > n > n;, we have
[Am — Bl < 27" HAngH,

and (h,,) is a Cauchy sequence in X. Thanks to Step 2, we conclude that g, is a Cauchy sequence
in C([0,T); X) for any T > 0.

Step 4. Consider now a test function ¢ € C([0,T); D(A*)) and define @) = ¢(tx), so that
vn = p(T) = 0. Multiplying the equation (6.13) by ¢ and summing up from k& = 0 to k = n, we
get

n n
—(20,90) = > _{k — Pr-1,9K) = Y _ & (Agy1, Pr)-
k=1 k=0

Introducing the two functions %, ¢, : [0,7) — X defined by

t -1 t—1t
©°(t) :=pr—1 and (1) := kﬂg or+ . LT for t€ [ty,try1),
in such a way that
pe(t) = 7@k+15_ o for t€ (tktrt1),
the above equation also writes
T T
(6.15) ~ (00— [ (ehgdt= [ (A
€ 0

On the one hand, from Step 3, we know that there exists g € C([0,T]; X), for any T > 0, such that
g — g in C([0,T]; X) and we then deduce ¢° — g in L>°(0,T; X). On the other hand, from the
above construction, we have ¢, — ¢’ and ¢. — ¢ both strongly in L*°(0,7; X’). We may then
pass to the limit as € — 0 in (6.15) and we get that

(6.16) {90, (0)) +/O (' (s) + A"p(s), 9(8)) x+,x ds = 0.

Step 5. All together, for go € D(A?), we have proved that there exists a function g € C([0, 00); X)
which satisfies the evolution equation in the weak form (6.16) and ||g(t)]|x < [lgollx for any
t > 0. Repeating the same argument as in steps 1, 2 and 3, we find Ag € C([0,00); X) and
IAg(t)]x < ||Agollx, at least when gy € D(A3). By a density argument and using the two above
contraction estimates, we get that the same holds for any go € D(A). From (6.16) and that
regularity estimate, we get g € C1(]0,00); X) and thus g is a classical solution to the evolution
equation (1.3).

In a Hilbert space, we have the uniquness of solution in such a class of functions by proving that
go = 0 implies ¢ = 0 thanks to a standard Gronwall argument. Indeed, if g € C1([0,00); X) N
C([0,00); D(A)) satisfies (6.16) for go and thus (1.3), we compute

d
%Hg(?f)ll2 =2(Ag,9) <0, [lg(0)]* =0,

so that ¢ = 0.
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In a general Banach space, we have the same existence theory for the backward dual problem for
any o7 € D(A*). As a consequence, if ¢ is such a backward solution associated to ¢, we have

ra@) = [ L ol).0() ds + (6(0).9(0)
T

/'WVM@ﬂG»+OVﬂ$J@»MS=Q

0

and we conclude again that g(T') = 0 because @ is arbitrary and D(A*) is dense (for the weak
topology) into X’. We conclude thanks to Proposition 1.7. d

7. COMPLEMENTS

7.1. Continuity. For the sake of completeness and in order to make the chapter as self-contained
as possible, we establish the results we let as exercises in Excercise 1.4.

Proposition 7.1. Let (S;) satisfy (i), (i) and (i) in Definition 1.1 and Remark 1.3. Then (St)
also satisfies the growth estimate (iv) in Definition 1.1.

Proof of Proposition 7.1. We first claim that

36 >0, 3C > 1, such that [|S(t)|| < C Vt € 0,6].
On the contrary, there exists a sequence (¢ ) such that ¢, \, 0 and [|S(¢n)|| — co. On the other hand, we know that
S(tn)f — f for any f € X which implies sup ||S(tn)f|| < oo for any f € X (that is a consequence of the Banach-
Steinhaus Theorem for a weak * continuous semigroup). Using the Banach-Steinhaus Theorem (again) that implies

sup ||S(tn)|| < oo and a contradiction. We then obtain the growth estimate (1.1) with M := C and b := (logC) /¢

thanks to an euclidian division argument. g

Proposition 7.2. Let (S;) satisfy (i), (i) and (iii) in Definition 1.1 and Remark 1.3. Then (S)
also satisfies the continuity of trajectories condition (ii) in Definition 1.1.
Proof of Proposition 7.2. For t > 0, we write
S(t +h) — S(t) = St)(S(h) — I)
when h > 0,
S(t+h)—S)=SEt+h)I—S(=h))

when h < 0. We conclude using the condition (ii’) together with the growth estimate (iv) established in Proposi-
tion 7.1. |

Proposition 7.3. For a given semigroup (Si) on X, the new norm ||-|| defined in (1.2) is equivalent
to the initial norm and the new semigroup (T}) defined in (1.2) is a semigroup of contractions for
that new norm.

Proof of Proposition 7.3. The two norms are equivalent because

AT =ITOI < A1l = sup lle=<* (1) fIl < M| f]I.

Moreover, for any t > 0,

7@l = suplT(s) T@)SI
s>0
= suple IS+ 5)f]
s>0
< sup [[em*T S F = (I,
T2>0
which proves that T'(¢t) is a semigroup of contractions for that norm. d

Theorem 7.4. Let (S;) be a semigroup in the sense of Definition 1.1 in which conditions (i) and
(i1) are understood in the sense of the weak topology (X, X’). Then (St) is a strongly continuous
semigroup.
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Proof of Theorem 7.4. For any fixed f € X, we define

1 €
(7.1) 1= 7/ St fdt.
e Jo
Using the growth estimate, we then compute
1 € €
Isns= =1 = swp 2| [sunsiarar— [C(sisat
llelli<t €'Jo 0
£

= sup —
llell<1 €

N sraa- [Mssal

h
< ZIfl2mellEE o,

as h — 0. We define now

X:={f€X; S¢f — finnorm as t — 0}.
It is a norm closed linear subspace so that it is weakly closed. Because f¢ — f and f¢ € X for any f € X, it is also
weakly dense. That proves that X = X. d

7.2. Nonautonomous semigroup. We briefly present a possible extension of the semigroup the-
ory to the nautonomous evolution equation framework.

Definition 7.5. Let fix T € (0,00). We say that a two parameters family (Ups)r>t>s>0 1S @
continuous nonautonomous semigroup of linear and bounded operators on X (or we just say a
nonautonomous semigroup on X ), if the following conditions are fulfilled:

(i) family of operators: Vs, t >0, f v+ U sf is linear and continuous on X;

(1) continuity of trajectories: Vf € X, {(t,s); 0 <s <t} > (¢t,s) — Ups f is continuous;
(iii) semigroup property: ¥Vt >1r>s>0,Uss =1 and Uy o U, s = Up s;

(iv) growth estimate: 3b € R, IM > 1,

(7.2) Ul ) < M et vi>s>0.

To a nonautonomous semigroup, we may associate a one parameter family (A(t))o<i<r of (un-
bounded) operators on X and the forward nonautonomous evolution equation

(73) SI=AWF on (0.T), f(0)= .
in the following way.

Theorem 7.6. Consider a nonautonomous semigroup (Uys)r>1>s>0 0on a Banach space X. For
any given t € [0,T), we define the (linear unbounded) operator A(t) by

D(A(t) = {feX; %%%H exists in X },
A)f o= }%Ut*”TH for any f € D(A(t)).

Assume that there exists X1 C X dense such that U s is a nonautonomous semigroup on X; and
X1 C D(A(t)) for any t € [0,T). Then

(74) %Ut75f:A(t)Ut7sf \V/fEXl, 0<s<t<T,
(75) %Ut,sf: —Ut,SA(S)f VfGXl, 0<s<t<T.

In particular, for any fo € X1, the function t — f(t) := Uy ofo provides a solution to the evolution
equation (7.3).

Proof of Theorem 7.6. We (at least formally) compute

0 .1 .1
aUt,s = ]llg%) 7 (Ut+h,s - Ut,s) = }lllg%) 7 (Ut+h,t — I)Ut,s = A(t) Ups,
0 o1 . 1
—aUt,s Alg%) 7 (Ut,s - Ut,s+h) = }ILIL% Ut,erhE (Us+h,s - I) =U; s A(t),

and we observe that these limits can be easily rigorously justify in the space %(X1, X). Finally,
defining f(t) := Uy o fo for any fo € Xi, we obserse that (7.3) immediatley follows from (7.4). O
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Corollary 7.7. Under the asumptions of Theorem 7.6 and for any G € C([0,T); X), any solution
to the non homogeneous equation

CE=ADFHC on (0T), 10)= o,

satisfies

f@)="Uto fo +/0 Uis G(s)ds.

In the other way round, by the mean of the J.-L. Lions theory or the characteristics method one
can show that we can associate a nonautonomous semigroup U; , which provides solutions to the
forward nonautonomous evolution equation. That is let as an exercise and we refer to chapters
1 and 2 for details. We also present a result (without proof) which is more in the spirit of the
Hille-Yosida semigroup theory.

Theorem 7.8. Consider a one parameter family (A(T))o<-<r of (unbounded) operators on a
Banach space X. We assume

(1) A(7) generates a semigroup Sy on X for any T € [0, T] with growth bound independent of T.
(2) A(T) generates a semigroup on another Banach space X1 C X for any 7 € [0,T], with growth
bound independent of T € [0,T].

(8) The mapping [0,T] = B(X1,X), 7 — A(7), is continuous and X7 C X is dense.

Then there exists a unique nonautonomous semigroup (U s)r>i>s>0 in X with infinitesimal gen-
erators A(t)o<i<r.

Exercise 7.9. FEstablish Theorem 7.8 by first assuming that A(T) is a piecewise constant family
and next approzimating a general family A(T) by a sequence of piecewise constant families.

Theorem 7.10. Consider a one parameter family (A(7))o<-<7 of (unbounded) operators on X =
Y" for a Banach space Y. We assume that there exists Y1 C Y dense and U a nonautonomous
semagroup on Y such that

d

aUt*,s = UtfsA(zf)*7 on {t > s} x ZM,Y),
d

£Ut*,s = —A(s)"Uf,, on{t>s} xB(Y1,Y).

Then U, s is a nonautonomous semigroup on X which satisfies (7.4) and (7.5) in the weak sense.
It provides the unique weak solution to the equation to the evolution equation (7.3) for any f € X.

Proof of Theorem 7.10. For f € X and ¢ € Y7, we write
<8tUt,Sf7 QO> = <fa atUt*,sSD> = <f7 Ut*,sA(t)*(p>

and
<aSUt,sf7 90> = <fa asU;sSD> = _<f7 A(S)*Ut*,s@%

in which we recognize a weak formulation of equations (7.4) and (7.5). For fy € X, we define
f(t) := Ui ofo, and more precisely, we define by duality

<f(t)790> = <f07U:090>7 VQOEY
From the first above identity, we have

O(f(t),0) = (fo, UL oA(t) @) = (f(t),A(t)"¢) on (0,T),
for any ¢ € Y7, which is a weak formulation of the evolution equation (7.3).
On the other hand, in order to prove the uniqueness of the solution, we consider a weak solution
f(t) to the evolution equation (7.3) associated to the initial datum fo = 0. For any 7 € (0,7) and
¢r €Y1, we define ¢(s) := U ;¢ on [0, 7], so that
Osp(s) = OsUS sor = —A(s) U jor = —A(s)"¢(s) on (0,7)

and ¢(7) = ¢,. We then compute

Lirwet) =

4 £, (0) + (D), o)
-

)f (), (1)) + (f(8), =A(t) ¢ (t)) = 0.

Z &l
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As a consequence

(f(m),07) = (fo,0) =0
for any ¢, € Y7 and that implies f(7) =0 for any 7 € (0,7). O

7.3. Transport equation in measures and L>° frameworks. We consider the transport equa-
tion

(7.6) Of =Af=—a(t,z) - Vaof —c(t,2)f,

with smooth cofficients a and c¢. Denoting by ®,  the characterics of the associated ODE, namely
for any x5 € RY, x(t) := ®; sz, is the solution to

d

prie a(t,z), x(s)=xs,

we observe that any smooth solution f to (7.6) satisfies
d ¢
(. 2) els elm@rs@)dr] — g,

As a consequence, for any smooth function f,, the function

F(t@) = fu(@ 1) e o rpailendr
is the unique solution to the equation (7.6) corresponding to the initial condition f(s,z) = fs(z).
We now consider the dual equation
(7.7) Op=ANyp:=a -Vypo+ (diva —c)p.
That last equation generates a strongly continuous nonautonmous semigroup V;  in Cy (R4) and
in L'(R) that one can build by the above characteristics method in C}(R) and next by a density
and continuity argument in LP(R%), p = oo, 1.
Finally, by setting U; s := V;’; and using Theorem 7.10, we build a weakly * continuous nonau-

tonmous semigroup in M*(R?%) and in L°°(R?) which is associated to the initial transport equa-
tion (7.6).

8. DISCUSSION

8.1. Several way to build solutions. In the previous chapters, we have seen two ways to build a solution
to an evolution equation associated to an abstract or a PDE operator. More precisely, we have built

(1) variational solutions for coercive operator,
(2) weak (and in fact renormalized) solutions for transport operator.
(3) There exist other classical ways to build solutions in some particular situations. On the one hand, we
may use some explicit representation formula exactly as we did to solve the transport equation thanks to
the characteristics method. The most famous example concerns the Laplacian operator and the associated
heat equation which can be solved in the all space by introducing the heat kernel. More precisly, one may
observe that
X 1 T 1 2

St) fo =y fo, m(z)= W7($>’ v(x) = W exp(—|z|”/2),
which is meaningfull for fo € L*(R?) + L°°(R%), defines a semigroup (for instance in X = LP(R%), 1 < p <
00, or X = Cy(R?)) and a solution to the heat equation

Ouf = 5Af in (0,00) x BY, f(0,7) = fo in B

That is immediate from the explicit formulas

d/2 |2
(91:%(2’) = T ’yt(z) + ﬁ’}/t(z)
and
z d 2|2
Veve(z) = 3 1(2), Aem(z) = 3 7e(2) + R Y(2)-

On the other hand, in some situation, we may build (a bit less explicit) representation formula by intro-
ducing convenient basis. To give an example, we consider the operator A = A in the space X = C([0, 2x]).
We observe that ¢i(z) :==e¢

kT i3 an eigenfunction associated to the eigenvalues problem

Apr =~k e = Xipr,  9i(0) = pi(2n).
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We then define the semigroup S(t) : Cper ([0, 27]) = Cper ([0, 27]) which to any function

f@) =" cror(2)

keZ

associate the function

(Sef) (@) = cre™ pu(x),

keZ

and we easily verify that S:f gives a solution to the heat equation in [0,27] (with periodic boundary
conditions). The same spectral decomposition method can be generalized to the case where A = A (or
even A is a general parabolic operator) is posed in a (smooth) bounded open domain with Dirichlet,
Neumann or Robin conditions at the boundary. Similarly, when

(Af)() = / by, =) () dy

with b € L?(2 x Q), then A is an Hilbert-Schmidt operator in L?(£2). That means that the exists a Hilbert
basis (¢x) of L*(Q) made of eigenfunctions of A. As in the first example, in order to solve the evolution
equation associated to A, one just has to write the Hilbert expansion series of the initial datum on the
basis (¢r) and to solve (straightforwardly) the evolution equation for each coordinate.

(4) In this chapter 3, we have presented several simple but powerful tricks, as extension arguments and
duality arguments, in order to build a semigroup from one other.

(5) Finally, we have briefly presented the Hille-Yosida theory (or more precisely its Lumer-Phillips’ version)
which provides a clear link between the semigroup theory and its abstract evolution equation counterpart.

8.2. From Hille-Yosida theory to variational solutions. The Hille-Yosida-Lumer-Phillips Theo-
rem 6.7 can be seen as a generalisation of the J.-L. Lions theorem presented in chapter 1, in the sense
we explain now. We consider a Hilbert space H and an operator A : D(A) C H — H such that the
Hille-Yosida theory applies: for any go € D(A), there exists g € C([0,00); D(A)) N C([0, 00); H) such that
% =Ag in H.

We moreover assume that there exists a Hilbert space V such D(A) C V C H and realizes the hypothesizes
(i) and (ii) of Theorem 1.3.2. We claim that for any go € H, the semigroup solution g(t) := e’ g,
given by the Hille-Yosida theory (and thus obtained by a uniform continuity principle from the solutions
corresponding to initial data in D(A)), is a variational solution (in the sense that it satifies the evolution
equation in the variational sense).

We first consider go € D(A). The Hille-Yosida solution g(t) satisfies

%lg(t)lir =2(Ag(t),g(t)) < —2a||g(®)II¥ + 2b|g(t)|7,
so that

t
9% + 20 / g3 ds < ¢ |gol?:.
(0]

We also have g € H(0,T; V'), what comes from hypothesis (i) and the bound

T
gl = Mgz =  sup / (Ag, ) dt
0

lell L2 vy <1

M 2bT 2
sup M |lgllz vy llellz vy < 20 € lgo |-
”W”LZ(V)_l a

IN

Now, for go € H, we may introduce a sequence of initial data go,o € D(A) such that go,a — go in H. Next,
considering the associated sequence of Hille-Yoside solutions g (t), writting the variational formulation

T T
Kga’@H,H]g —/ (@, ga)vr v dt =/ (Aga, @)y, v dt,
0 0

and passing to the limit @ — 0, we get that g = g, is indeed a variational solution.
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8.3. Very weak solution.

Definition 8.1. Let X,Y,Z be three Banach spaces such that Z C X C Y’ with continuous and dense
embeddings. Assume furthermore that'Y is seprable for its norm topology. Let A : Z — Y’ be a linear and
bounded opeartor and A* : Y CY" — Z' be its adjoint operator. A function

g=g(t) € &r == L(0,T; X) N C([0,T); Yu) N L'(0,T; Z)
is said to be a (very) weak solution to the evolution equation
d
Lo=A -
g9 =N+ G 9(0)=go

associated to the initial datum go € X and the source term G € L'(0,T;Y") if, for any test function
¢ € CY([0,T);Y), there holds

(8.1) g, @)y ] — / (9 0hp)yry dt = / (g, A" @) 200 + Gy ) .

Let us emphasize that we only assume ¢ € Y, and not ¢ € Y” D Y, and that the continuity property
C([0,T);Y,,) simply means thet the mapping ¢ — {(g(t), »)x,y is continuous for any ¢ € Y. The main
difference with respect to Definition 1.5 is that last continuity property which is weaken here.

Proposition 8.2. Under the assumptions of Definition 8.1, a function g € &r is a (very) weak solution
(in the sense of Definition 8.1) if, and only if,

d

9@y =(Ag+ Gy y, VoY, and g(0)=go.

Sketch of the proof of Proposition 8.2. The direct sense is clear and the reciprocity sense is a good
exercice using the separation hypothesis made on Y and a density argument. We claim that for any
© € C2((0,T); X) and & > 0, we can find a function ¢. € C2((0,T); X) such that

(8.2)

(8.3) e®) = S0 s llp = ellwre <c,
k=1

for a finite familly 61, ...,6, € C2((0,T);R) and #1,...,1)n € Y. As a consequence, summing up the n
corresponding equations (8.1), we get

T T
—/ (g, Ovpe)yry dt = / {9, N 0c) 2,20 + (G, pe)yr vy }dt.
0 0

Passing to the limit ¢ — 0, we obtain the same equation with ¢ € C((0,T); X). Now, for ¢ € C2([0,T); X),
we define . := px. € CL(0,T); X) with

= [ p)ds pee)=eToes), 0<peci@), [ pes=

We compute

T T T
—/ Xe (9, Orp) vy y di —/ pe (g )y ydt = —/ (9, Orpe)yry dt
0 0 0

T
/ (9. A0 0+ (Grp)yry Y.
(0]

Passing to the limit ¢ — 0, we immediately get (8.1). a
Exercise 8.3. Prove (8.3). Hint. Consider ¢ € C+((0,T); X). Prove that for any ¢ > 0 we can find
n € N* such that

sup o' @) — &' (te)llx <e/(TV1), Vk=2,..,n—2, ¢ =0on]0,t1]U[tn1,tn],

tE€[tg—2,tk42]

where tj, := ké, 6 := T/n and ¢'(to) = ¢(t1) = ¢(tn—1). Introduce then the scalar functions
n—1

0(s) == (1= [s]/(20)+,  On(s):=0(s —te), Ou(t) :=O(t)/(D_ O (1))

k=1
and . defined by
Xe(s) =s/0 on [0,6], xc(1) =1on[§,T — 6], xe(s) = (T —s)/6 on [T —4,T).
Show that the function

pelt) = xlt) [ Cpu(s)ds, 6(t) = 3 u(D) (1)

is a convenient choice.
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We give now an existence result of (very) weak solutions.

Theorem 8.4. Let X,Y be two Banach spaces such that X C Y’ with continuous and dense embeddings.
Assume furthermore that Y is separable and X is reflerive and regular. Let A., € > 0, be a family of
unbounded operators on X such that for some positive constants M and b:

(i) Ac is the generator of a semigroup for any e > 0;
(i) (A-f, ) < bIfI% for any f € D(AZ), € > 0;
(iii) [(Aef, o) < M || fllx llelly for any f € X, ¢ € Y and any € > 0, or equivalently (Ac) is bounded
in B(Y,X'"), and furthermore (A.g, ) — (Ag, ) ase — 0 for any g € X and ¢ € Y, where we
denote A := Ag.

Then, for any go € X, G € L*(0,T; X), there exists a function
g=g(t) € C([0,T]; Xu)
solution to (8.1) for the spaces X = Z and Y .

Proof of Theorem 8.4. We only consider the case G = 0 and let the general case as an exercise. By
assumption (i), for any € > 0, there exists a unique (Hille-Yosida, weak) solution g. € C([0,7T]; X) to the
evolution equation

d
-, 9 :Ae e
dtg g

and using assumption (ii) we get the uniform estimate

sup [lg:lx < e lgollx-
0,T]

For any ¢ € Y, we have

(8.9 L 49:(1), ) = (Aege(t), ),

where the left hand side term is bound thanks to assumption (iii). As a consequence, up to the extraction
of a subsequence, there exists g € C([0,T]; X, ) such that g. — g in C([0,T]; X.). We conclude by passing
to the limit € — 0 in (8.4). O

Example 8.5. (Viscosity method). For a € L=®(R%), diva € L= (R?), we define in X = L*(R?) the
operators
Af:=a-Vf, Af:=eAf+a-V].

We set Y := C2(R?) and we check that the assumptions of Theorem 8.4 are fulfiled. On the one hand, we
clearly have

(At ) < BISIR = lfln, b= 5 l(diva)s]lzee,

for any f € H'(R?) D> D(A.), € > 0, so that assumption (i) is fullfiled. We then may apply J.-L. Lions’s
existence Theorem 1.3.2 and we deduce that Ac is the generator of a semigroup for any € > 0. Assumption
(#i) is obtained by performing one integration by parts. As a consequence of Theorem 8.4 and for any
go € L?, we deduce the existence of a weak solution g € C([0,T]; L2) to the transport equation associated
to a. Without additional assumption on the force field a, we cannot be sure that the solution is unique and
thus that the transport equation generates a semigroup.

Example 8.6. (Regularization trick). For a € L®(R?), diva € L™®(R?), we define in X := LP(R%),
1 < p < oo, the operators

Af:=a-Vf, A:f:=ac.-Vf,
with az = a * pe, for a smooth mollifer (p:), so that 0 < p. € CLH(RY), ||pe|lz1 =1 and p. — do as e — 0.
Again, we aim to apply Theorem 8.4 with the choice X := LP, Y := W', Because a. € W, we may
use the characteristics method of Chapter 2 and we obtain the existence of a solution g. € C([0,T]; LP)
and of a semigroup associated to the transport operator A.. From

(9% Aeg) < 5\|(dwas)+\|m°||9|\%v < I;HdwaHLmHgHim
we deduce that assumption (i) holds. We also have
oreg)l = | [ g i) < (lal= + ldivall i) gl il

which is nothing but assumption (iii). We conclude again to the existence of a solution g € C([0,T]; L%,)
to the transport equation associated to the vector field a for any initial datum go € LP.
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Exercise 8.7. (1) Prove a similar result in X = L.

(2) Prove a similar result in X = M" when furthermore a, diva € C(R?).

(3) Prove a similar result in X = L* when furtheremore go > 0 and go(log go)+ + go|z|* € L*. (Hint. Use
the Dunford-Pettis Theorem).

(4) Prove a similar result in X = L' without any further assumption. (Hint. Use also the De La Vallée
Poussin Theorem).

Exercise 8.8 (Miyadera-Voigt perturbation theorem). Given a generator B on X, we say that A € €p(X)
is B-bounded if

[AfI < A+ IBSID VY f e D(B)
for some constant C € (0,00). In particular, D(B) C D(A) C X.
Consider Sg a semigroup satisfying the growth estimate ||Sg(t)||m(x) < M € and A a B-bounded operator
such that

T
1
(8.5) 3T >0, / 1550 Allacx) dt < 5, sup [IS5(t)Allzxx ) < oo,
0 t€[0,T]
or
T 1
(8.6) 37 >0, / I ASE ()|l z(x) dt < =, sup | ASs(t)||lzx,x_,) < o0,
0 27 efo,1]

where the abstract Sobolev space X_1 = X5, is defined as the closure of X for the norm

Ifllx_y = 11(B=b=1)7"flx.
Prove that A := A+ B is the generator of a semigroup which satisfies the growth estimate ||Sa(t)||z(x) <
M’ et with M’ = 2e"T M and b = (log 2¢"” M)/T. (Hint. Repeat the proof of Theorem 5.5).

Exercise 8.9. Apply the Hille- Yosida-Lumer-Phillips Theorem 6.7 on the heat, the wave, the Scrédinger
and the Stokes equations.

9. BIBLIOGRAPHIC DISCUSSION
Most of the material presented in this chapter can be found in

e [1] ENGEL, K.-J. AND NAGEL, R. One-parameter semigroups for linear evolution equations. Grad-
uate Texts in Mathematics, Vol 194. Springer-Verlag, New York, 2000.

e [2] Pazy, A. Semigroups of linear operators and applications to partial differential equations.
Applied Mathematical Sciences. Vol. 4. Springer-Verlag, New York, 1983.

Section 5.2 is adapted from the Master course notes of O. Kavian (personal communication) and the proof
of Theorem 6.7 has been suggested to me by O. Kavian.

The definition of “regular” space in Section 5.3 is maybe original. It is motivated by the fact that it enables
to establish a priori estimates in a very simple way, just using ordinary differential inequality and Gronwall
lemma.
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