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PREFACE

This book is an attempt to give a systematic presentation of results and meth-
ods which concern the fixed point theory of multivalued mappings and some of
its applications. In selecting the material we have restricted ourselves to study-
ing topological methods in the fixed point theory of multivalued mappings and
applications, mainly to differential inclusions.

Thus in Chapter III the approximation (on the graph) method in fixed point
theory of multivalued mappings is presented. Chapter IV is devoted to the homo-
logical methods and contains more general results, e.g. the Lefschetz Fixed Point
Theorem, the fixed point index and the topological degree theory. In Chapter V
applications to some special problems in fixed point theory are formulated. Then
in the last chapter a direct applications to differential inclusions are presented.
Note that Chapters I and II have an auxiliary character, and only results con-
nected with the Banach Contraction Principle (see Chapter II) are strictly related
to topological methods in the fixed point theory. In the last section of our book
(see Section 75) we give a bibliographical guide and also signal some further results
which are not contained in our monograph.

The author thanks several colleagues and my wife Maria who read and com-
mented on the manuscript. These include J. Andres, A. Buraczewski, G. Gabor,
A. Górka, M. Górniewicz, S. Park and A. Wieczorek.

The author wish to express his gratitude to P. Konstanty for preparing the
electronic version of this monograph.

Lech Górniewicz

Toruń, June 1998



PREFACE TO THE SECOND EDITION

During the last decade a rapid development of multivalued methods can be
observed in many branches of mathematics such as:

• topological and metric fixed point theory,
• multivalued nonlinear analysis,
• ordinary and patrial (deterministic and stochastic) differential inclusions,
• convex analysis,
• game theory,
• mathematical economics

(comp. [AnGo-M], [Au-M], [BFGJ-M], [BGM-M], [Bot1-M], [Bot2-M], [CV-M],
[Cwi-M], [De1-M], [DMNZ-M], [Fry-M], [KOZ-M], [Kr2-M], [Mik2-M], [HuPa-M],
[Me-M], [PeM-M], [Ski-M]).

Our monograph mainly concetrates on the topological fixed point theory of
multivalued mappings. The second edition differs from the first one. Firstly,
a completely new Chapter VII (Sections 76–85) is added. In this chapter new
results obtained mainly in the last six years are presented. Chapters I–VI are in
principal the same as in the first edition, but many changes and improvements are
made. Moreover, in the references, there are added all new positions connected
with topological fixed point theory for multivalued mappings, which appeared
during last six years.

We believe that the second edition of our monograph is adequate to the current
scientific status of the topological fixed point theory of multivalued mappings.

I am indebted to my young colleague R. Skiba who read the first edition and
suggested many important improvements.

The author also wishes to express his gratitude to J. Szelatyńska and M. Czer-
niak who prepared the electronic version of the text.

Lech Górniewicz

Toruń, December 2005



CHAPTER I

BACKGROUND IN TOPOLOGY

In this chapter, we present a concise review of the requisite mathematical back-
ground. First we recall fundamental facts from geometric topology, later we discuss
the part of homology theory related to the Vietoris mapping theorem and, finally,
necessary information about the Lefschetz number.

Our main references for these topics are: [Bo-M], [Go1-M], [DG-M], [HW-M],
[ES-M], [SP-M].

All topological spaces are assumed to be metric and all mappings are assumed
to be continuous; Rn stands for the n-dimensional Euclidean space; by a Banach
(normed) space we shall always understand a real Banach (normed) space and all
mappings are assumed to be continuous.

1. Extension and embedding properties

We start this section with the following.

(1.1) Definition. We shall say that a space X possesses an extension property
(written X ∈ ES) provided that for every space Y , every closed B ⊂ Y , and every
map f : B → X, there exists an extension f̃ : Y → X of f onto Y, i.e. f̃(x) = f(x),
for each x ∈ B; similarly, X possesses a neighbourhood extension property (written
X ∈ NES) provided that for every space Y every closed B ⊂ Y and every f : B → X

there exists an open neighbourhood U of B in Y and an extension f̃ : U → X of f

onto U .

Of course, every ES-space is NES. Before we formulate more properties of these
spaces we need the notion of a retract. Recall that a subset A ⊂ X is called the
retract of X if there exists a retraction r: X → A, i.e. r(x) = x, for every x ∈ A.
Observe that A is a retract of X if and only if the identity map idA over A possesses
a continuous extension onto X. It is also easy to see that if A is a retract of X

then A is a closed subset of X. Similarly, we shall say that A is a neighbourhood
retract of X if there exists an open subset U ⊂ X such that A ⊂ U and A is
a retract of U .

Below we collect some simple but important properties of ES and NES-spaces.
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(1.2) Properties.

(1.2.1) If X is homeomorphic to Z and X ∈ ES (X ∈ NES), then Z ∈ ES
(Z ∈ NES);

(1.2.2) If X ∈ ES (X ∈ NES) and A is a retract of X, then A ∈ ES (A ∈ NES);
(1.2.3) If X ∈ NES and V is an open subset of X, then V ∈ NES;
(1.2.4) If X1, . . . , Xn ∈ ES (X1, . . . , Xn ∈ NES), then the Cartesian product

X = X1 × · · · ×Xk of X1, . . . , Xk is an ES-space (NES-space).

The proof of (1.2) is self-evident and therefore, is left to the reader. Note,
that property (1.2.4) for ES-spaces can be formulated for arbitrarily many (even
infinitely many) X1, . . . , Xk provided its Cartesian product is defined (we are
considering metric spaces only!).

In a normed space E we shall understand by the convex hull, conv(A), of
a subset A ⊂ E the set of all points y ∈ E of the form:

y =
n∑

i=1

tiai,

where ai are in A, and the coefficients ti are greater or equal to zero (ti ≥ 0) and
their sum is equal to 1, i = 1, . . . , n. It is easy to see that conv(A) is equal to the
intersection of all the convex subsets of E which contain A.

It is well known that the theorem of Tietze asserts that each real continuous
function defined on a closed subset of a metric space X can be extended onto X.
The generalization of this theorem proved by J. Dugundji (cf. [DG-M]) shows that
for the range space we can take any normed space (in fact, even locally convex
space) as well. More precisely, we have the following:

(1.3) Theorem (Dugundji Extension Theorem). If E is a normed space, then
E ∈ ES. Moreover, for every closed subset B of a metric space Y and for every
map f : B → E there exists a continuous extension f̃ : Y → E such that:

(1.3.1) f̃(Y ) ⊂ conv(f(B)).

Proof. Let d: Y × Y → R+ = [0, +∞) be a metric for Y . Cover Y \B by the
balls {

B

(
x,

1
2

dist(x, B)
) ∣∣∣∣ x ∈ Y \B

}
,

where

dist(A, B) = inf{d(x, y) | x ∈ A and y ∈ B},
B(x, r) = {y ∈ Y | d(x, y) < r}.
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By using the theorem of Stone, this cover has a locally finite refinement {Vλ |
λ ∈ Λ}. For each Vλ choose a B(vλ, (1/2) dist(vλ, B)) ⊃ Vλ, then choose bλ ∈ B

such that d(vλ, bλ) ≤ 2 dist(vλ, B). Then we have

dist(vλ, B) ≤ d(vλ, v) + dist(v, B) ≤ 1
2

dist(vλ, B) + dist(v, B),

so we get:

(i) dist(vλ, B) ≤ 2 dist (v, B), for each v ∈ Vλ.

Moreover, we have:

d(b, bλ) ≤ d(b, v) + d(v, vλ) + d(vλ, bλ)

≤ d(b, v) +
1
2

dist (vλ, B) + 2 dist (vλ, B)

≤ d(b, v) + dist (v, B) + 4 dist (v, B).

Therefore we obtain:

(ii) d(b, bλ) ≤ 6d(b, v) for every b ∈ B and v ∈ Vλ.

Now, we consider a partition of unity (1) {κλ}λ∈Λ subordinated to the cover
{Vλ}λ∈Λ and using points bλ we are able to define the extension: f̃ : Y → E

by letting:

f̃(y) =


f(y) if y ∈ B,∑
λ∈Λ

κλ(y)f(bλ) if y ∈ Y \B.

The function f̃ is evidently continuous in every point y ∈ Y \ B, so only its
continuity at the points of B needs to be proved. Let b ∈ B, and we let f(b) ∈W

be an open set. Since E is normed and f is continuous on B, there is a convex C and
δ > 0 such that f(B∩B(b, δ)) ⊂ C ⊂W . We are going to show that f̃(B(b, δ/6)) ⊂
C ⊂ W which will prove the continuity of f̃ at b ∈ B. Let y be any point of
B(b, δ/6)\B; it belongs to only finitely many sets Vλ1 , . . . , Vλn . Then d(y, b) < δ/6
so, since y ∈ Vλi , we have d(b, bλi) < δ by (ii). Therefore all the bλi ∈ B ∩B(a, δ),
consequently all f(bλi ) ∈ C and because f̃(y) =

∑n
i=1 κλi(y) · f(bλi ) is a convex

combination of points in C, we conclude that f̃(y) ∈ C. Thus f̃(B(a, δ/6)) ⊂ W

and f̃ is continuous at b. The fact that f̃(X) ⊂ conv(f(B)) is evident, the proof
is complete. �

As an immediate consequence of the above theorem we get:

(1) For example we can take:

κλ(y) =
dist (y, Y \ Vλ)∑

µ∈Λ dist (y, Y \ Vµ)
, y ∈ Y.
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(1.4) Corollary. Let C be a convex subset of a normed space E. Then C ∈
ES.

For the proof of (1.4) we use (1.3.1).
From (1.2) and (1.4) it follows that the class of ES-spaces is quite large. Now,

we obtain the following corollary from (1.3).

(1.5) Corollary. Let Sn = {x ∈ Rn+1 | ‖x‖ = 1} be the unit sphere in Rn+1.
Then Sn ∈ NES.

Proof. Let B be an arbitrary closed subset of a space Y and let f : B → Sn

be a continuous mapping. Denote by i: Sn → Rn+1, i(x) = x, the inclusion map.
We let:

f : B → Rn+1, f = i ◦ f.

Since Rn+1 ∈ ES, there exists an extension f1: Y → Rn+1 of f onto Y . We define:

U = f−1
1 (Rn+1 \ {0}).

Then U is an open subset of Y containing B. Finally, we define a map f̃ : U →
Sn+1, by putting

f̃(y) =
f1(y)
‖f1(y)‖ , for y ∈ U.

Then f̃ is a continuous extension of f : B → Sn over U and the proof is completed.�

Now, we are going to express extension spaces (neighbourhood extension spaces)
in terms of absolute retracts (absolute neighbourhood retracts).

Before we do it we shall prove an important embedding theorem.

(1.6) Theorem (Arens–Eells Embedding Theorem). Let X be a space. Then
there exists a normed space E and an isometry Θ: X → E on X into E such that
Θ(X) is a closed subset of E.

Proof. Denote by d the metric in X. Let Σ be the set of all finite subsets
of X. Taking Σ with the discrete topology, let C(Σ) be the Banach space of all
bounded (of course continuous) real-valued functions on Σ equipped with the sup
norm. We first embed X isometrically into C(Σ).

Choose a point p ∈ X and for x ∈ X let fx: Σ→ R be the function

fx(ξ) = dist(x, ξ)− dist(p, ξ).

Then fx ∈ C(Σ) because |fx(ξ)| = | dist(x, ξ) − dist(p, ξ)| ≤ d(x, p) shows it is
bounded.
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The map Θ: X → C(Σ) given by Θ(x) = fx is an isometric embedding because

‖fx − fz‖ = sup
ξ
| dist(x, ξ)− dist(z, ξ)| ≤ d(x, z)

and the sup is attained at ξ = {z} ∈ Σ.
Thus ‖Θ(x)−Θ(z)‖ = d(x, z) and Θ is isometry. Now, we observe:

(i) fp(ξ) = 0 for every ξ ∈ Σ,
(ii) for each x ∈ X, we have fx(ξ) = 0 whenever ξ ⊃ {x, p}.

In particular Θ(X) contains the origin of C(Σ).
Let E be the linear span of Θ(X) in C(Σ); clearly E is a normed space which

need not to be closed in C(Σ); but Θ(Y ) ⊂ E and we shall now show that Θ(Y )
is closed in E.

Let g ∈ E \Θ(X). Then g =
∑n

i=1 αifxi for suitable real αi and xi ∈ X for i =
1, . . . , n. To show that Θ(X) is closed in E, it is sufficient to get B(g, δ)∩Θ(X) = ∅
for some δ > 0. Let δ > 0 be smaller than

min
{

1
2
‖g‖, 1

2
‖g − fx1‖, . . . ,

1
2
‖g − fxn‖

}
and assume ‖g − fx‖ < δ for some fx ∈ Θ(X).

Then for this fx we would have ‖fx − fxi‖ ≥ δ and ‖fx‖ = ‖fx − fp‖ ≥ δ;
therefore, because Θ is an isometry, d(x, xi) ≥ δ and d(x, p) ≥ δ. But ‖g − fx‖ ≥
|g(ξ) − fx(ξ)| for every ξ ∈ Σ. In particular for ξ = {x1, . . . , xn, p} we have
g(ξ) = 0 by (ii). So

‖g − fx‖ ≥ |fx(ξ)| = dist(x; {x1, . . . , xn, p})

contradicting the assumption that ‖g−fx‖ < δ. Thus B(g, δ)∩Θ(X) = ∅ and the
proof is complete. �

Now, following K. Borsuk ([Bo-M]) we introduce the notion of absolute retracts
(AR-spaces) and the notion of absolute neighbourhood retracts (ANR-spaces).

It is useful to use the notion of an r-map. A mapping r: Z → T is called an
r-map provided there exists a map s: T → Z such that r◦s = idT , i.e. (r◦s)(t) = t

for every t ∈ T .
We shall also use the notion of an embedding. Namely, by an embedding of

a space X into Y we shall understand any homeomorphism h: X → Y from X

to Y such that h(X) is a closed subset of Y .
Now, we are able to formulate the following:

(1.7) Definition. We shall say that X ∈ AR (X ∈ ANR) if and only if for
any space Y and for any embedding h: X → Y the set h(X) is a retract of Y (h(X)
a neighbourhood retract of Y ).

In view of (1.6), we obtain:
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(1.8) Proposition.

(1.8.1) X ∈ AR if and only if X is an r-image of some normed space E;
(1.8.2) X ∈ ANR if and only if X is an r-image of some open subset U of

a normed space E.

Proof. For the proof of (1.8.1) it is sufficient to show that, if there exists
an r-map r: E → X from a normed space onto X, then X ∈ AR. Let Y be an
arbitrary space and h: X → Y be an embedding. We have to prove that h(X) is
a retract of Y . Let us denote h(X) by B. So B is a closed subset of Y . We define
f : h(X)→ E by putting:

f = s ◦ h−1 where r ◦ s = idX .

Since E ∈ ES we have the extension f̃ : Y → E of f onto Y . Then the map
�: Y → h(X) given by � = r ◦ f̃ is the needed retraction and the proof of (1.8.1)
is complete. The proof of (1.8.2) is strictly analogous and therefore we leave it to
the reader. �

Now, we shall prove the main result of this section.

(1.9) Theorem.

X ∈ ES⇔ X ∈ AR,(1.9.1)

X ∈ NES⇔ X ∈ ANR.(1.9.2)

Proof. Since the proof of (1.9.2) is analogous to the proof of (1.9.1), we will
restrict our considerations to the proof of (1.9.1) only.

First, assume that X ∈ ES. To prove that X ∈ AR let h: X → Y be an
embedding. We let B = h(X). Then B is a closed subset of Y . We consider
the map f : B → X defined by f = h−1. Since X ∈ ES there exists an extension
f̃ : Y → X of f onto Y . Then the map r: Y → h(X) defined as: r = h ◦ f̃ is
a retraction from Y onto h(X) what proves that X ∈ AR.

Now, assume that X ∈ AR. We would like to prove that X ∈ ES. Let B be
a closed subset of Y and let f : B → X be a mapping. For the proof it is sufficient
to define the extension f̃ : B → X of f onto Y .

Since X ∈ AR, in view of (1.8.1) there exists a normed space E and an r-map
r: E → X (i.e. there exists s: X → E such that r ◦ s = idX). We define f1: B → E

by the formula: f1 = s ◦ f

Since E ∈ ES we obtain an extension f̃1: Y → E of f1 onto Y . Then the map
f̃ : Y → X given by f̃ = r ◦ f1 is an extension of f onto Y and the proof of (1.8.1)
is complete. �
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We suggest the reader prove (1.8.2).
In view of (1.9) we see that all properties of ES and NES spaces remain valid

for AR and ANR spaces respectively. In particular, r-image of AR-space (ANR-
space) is AR space (ANR-space) again.

The following theorem gives a relation between the AR and ANR properties of
two sets, of their union and of their common part.

(1.10) Theorem. Suppose that the space X is the union of two closed subsets
X1 and X2 and let X0 = X1 ∩X2. Then:

(1.10.1) If X0, X1, X2 ∈ AR, then X ∈ AR,
(1.10.2) If X0, X1, X2 ∈ ANR, then X ∈ ANR,
(1.10.3) If X, X0 ∈ AR, then X1, X2 ∈ AR,
(1.10.4) If X, X0 ∈ ANR, then X1, X2 ∈ ANR.

Proof. In order to prove (1.10.1) it is sufficient to show that if X is a closed
subset of a space Z and X0, X1, X2 ∈ AR, then X is a retract of Z. Let us set

Z0 = {z ∈ Z | dist(z, X1) = dist(z, X2)},
Z1 = {z ∈ Z | dist(z, X1) < dist(z, X2)},
Z2 = {z ∈ Z | dist(z, X1) > dist(z, X2)}.

It is evident that Z = Z0∪Z1∪Z2, the set X0 ⊂ Z0 is closed in Z0 and Xi∩Z0 = X0

for i = 1, 2. Hence there exists a retraction r0: Z0 → X0. Moreover, the set Xi∪Z0

is closed in Zi∪Z0 for i = 1, 2 and we infer from (1.9) that the map ri: Xi∪Z0 → Xi,
i = 1, 2, given by the formula:

ri(z) =

{
z for every z ∈ Xi,

r0(z) for every z ∈ Z0,

has a continuous extension fi: Zi ∪ Z0 → Xi over Zi ∪ Z0. It is sufficient to set
r(z) = fi(z) for z ∈ Zi ∪Z0, i = 1, 2, to obtain a retraction r: Z → X.

Passing to (1.10.2), we need to show that if X is a closed subset of space Z and
if X0, X1, X2 ∈ ANR, then there exists in Z an open neighbourhood U of the set
X such that X is a retract of U . Consider the sets Z0, Z1, Z2 defined in the proof
of (1.10.1). Then X0 is a closed subset of Z0 and hence there is a neighbourhood
W0 of X0 in Z0 and a retraction r0: W0 → X0. Setting

ri(z) =

{
r0(z) for every z ∈W0,

z for every z ∈ Xi,

we obtain a retraction ri of the set Xi ∪W0 (which is closed in Zi ∪ Z0) onto the
set Xi, i = 1, 2. Since Xi ∈ ANR, we infer by (1.9) that there exists a continuous
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extension r′
i of ri onto a neighbourhood Vi of Xi ∪W0 in Z0 ∪ Zi with ri having

values in Xi.
It is clear that Vi contains a closed neighbourhood Ui of Xi in the space Z0∪Zi

such that Ui ∩ Z0 ⊂W0. Then the formula:

r(z) = r′
i(z) for z ∈ Ui, i = 1, 2

defines a retraction r of the set U = U1 ∪ U2, which is an open neighbourhood
of X in Z, onto the set X. Thus the proof of (1.10.2) is complete.

In order to prove (1.10.3) let us observe that the condition X0 ∈ AR implies
that there exists a retraction ri: Xi → X0, i = 1, 2. If we set

r(x) =

{
x for x ∈ X1,

r2(x) for x ∈ X2,

then we obtain a retraction r: X → X1. Since X ∈ AR we have from (1.9) and
(1.2.2) that X1 ∈ AR. Similar reasoning shows that X2 ∈ AR.

In order to prove (1.10.4) let us observe that X0 ∈ ANR implies that there
exists an open neighbourhood U0 of X0 in X such that, for i = 1, 2 there exists
a retraction ri: Xi ∩ U0 → X0. Setting

r(x) =

{
x for x ∈ X1,

r2(x) for x ∈ X2 ∩ U0,

we obtain a retraction r: U0 ∪X1 → X1. Since U0 ∪X1 is an open neighbourhood
of X1 in X, and X ∈ ANR it follows by (1.9) and (1.2.1) that X1 ∈ ANR. A similar
argument shows that X2 ∈ ANR and the proof of theorem (1.10) is complete. �

Let us remark that an important application of (1.10) is to show that every
polyhedron is an absolute neighbourhood retract.

First, we are going to recall the notion of a polyhedron.
A Hilbert space l2 consists of all (real) sequences x = {xk} for which the series∑∞
k=1 x2

k converges. Then xk is called the k-th coordinate of x = {xk}. The
space l2 becomes a metric space, if we define the distance d(x, y) between points
x = {xk}, y = {yk} of l2 by the formula

d(x, y) =

√√√√ ∞∑
k=1

(xk − yk)2.

The subset of l2 consisting of all points x = {xk} with 0 ≤ xk ≤ 1/k, for k =
1, 2, . . . is denoted by Kω and is called the Hilbert cube. Let us recall that Kω is
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a compact subset of l2. Of course l2 possess also the linear structure over the field
of real numbers R. Namely, if x = {xk}, y = {yk} ∈ l2 and t, s ∈ R then we have:

t · x + s · y = {txk + syk}.

moreover, l2 is a Banach space with the norm defined as follows:

‖x‖ =

√√√√ ∞∑
k=1

x2
k, for x = {xk} ∈ l2.

Since {xk} ∈ Kω and {yk} ∈ Kω implies that {txk + (1 − t)yk} ∈ Kω , i.e. the
Hilbert cube Kω is a convex subset of l2 too.

Euclidean n-dimensional space Rn consists of all points {xk} of l2 such that
xk = 0, for each k > n. It follows, in particular, that Rn ⊂ Rm for every n < m.

A system xi = {xi
k}, i = 0, . . . , m of points of l2 is said to be affine independent

provided that the linear combination

t0x0 + t1x1 + . . . + tmxm where t0 + . . . + tm = 1

is equal to 0 only if all coefficients ti vanish. Then the set σm = (x0, . . . , xm)
consisting of all points x of l2 of the form

x = s0x0 + . . . + smxm, where si ≥ 0 and s0 + . . . + sm = 1

is called an m-dimensional geometric simplex.
In what follows we shall denote by ∆m the m-dimensional standard simplex,

we let:

∆m = (e0, . . . , em),

where e0 = (0, 0, 0 . . .), e1 = (1, 0, . . .), . . . , em = (0, . . . , 0, 1︸︷︷︸
m-th

, 0 . . .).

We leave to the reader to prove that:

∆m = conv({e0, . . . , em}).

In view of the Dugundji extension theorem, we see that ∆m ∈ AR, m = 0, 1, . . .

A subset A ⊂ l2 is a geometric polyhedron if it is the union of a finite number of
geometric simplexes. A metric space X is called a polyhedron if there exists a
geometric polyhedron A such that X is homeomorphic to A. We have:
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(1.11) Corollary.

(1.11.1) Kω ∈ AR,

(1.11.2) If X is a polyhedron, then X ∈ ANR.

Proof. Observe that (1.11.1) follows from the fact that Kω is a convex set
(cf. (1.4) and (1.9)). For the proof of (1.11.2) assume that X is homeomorphic
to A ⊂ l2, where A is a geometric polyhedron. In view of (1.9) and (1.2.1) it is
sufficient to show that A ∈ ANR.

We can assume that A =
⋃
{σi, i = 1, . . . , l}, where σi are geometric simplexes.

If l = 1 or l = 2 then our corollary follows immediately from (1.10) because
σi ∈ AR. So by using (1.10) we can prove (1.11.2) by induction. �

It is well known that every compact metric space can be embedded into Kω .
The above result was proved by Urysohn (see [DG1-M]). We shall end this section
by stating the characterisation of compact AR and ANR-spaces.

Namely, if we take Urysohn Theorem in the place of the Arens–Eells Embedding
Theorem then analogously to the proof of (1.8) we can prove the following.

(1.12) Theorem. Compact AR-spaces are precisely the r-images of the Hilbert
cube Kω . Compact ANR-spaces coincide with r-images of open subsets of the
Hilbert cube Kω .

We shall also make use of the following. Let E be a normed space and K, U ⊂ E

be such that K is compact, U is open in E and K ⊂ U .

(1.13) Proposition ([Gi]). There exists a compact ANR-space A such that

K ⊂ A ⊂ U.

Note that for E to be a Banach space Proposition (1.13) one can get directly
from (1.10) and Mazur’s convexification theorem saying that the closed convex
ball of a compact set in a Banach space is compact, too. In the general case when
E is an arbitrary normed space the proof was given by J. Girolo ([Gi]). Note that
a version of (1.13) we shall prove in Section 3 (cf. Lemma (3.5)).

2. Homotopical properties of spaces

The notion of homotopy plays an important role in geometric topology. In what
follows by [0, 1] we shall denote the closed unit interval in R.

(2.1) Definition. Consider two maps f, g: X → Y . We shall say that f is
homotopic to g (written f ∼ g), if there exists a mapping h: X × [0, 1] → Y such
that:

h(x, 0) = f(x) and h(x, 1) = g(x) for every x ∈ X.
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In what follows the mapping h is called the homotopy joining f and g.
The notion of homotopy can be reinterpreted in terms of the extension property.

Namely, let us consider a closed subset (X × {0}) ∪ (X × {1}) of X × [0, 1] and
a map f : X × {0} ∪X × {1} → Y defined as follows:

f(x, t) =

{
f(x) for t = 0,

g(x) for t = 1.

One can say that f ∼ g if and only if f possesses an extension f̃ over X × [0, 1].

Then, of course, f̃ is a homotopy joining f and g. From (1.10) we infer:

(2.2) Proposition. If Y ∈ AR, then any two mappings f, g: X → Y are
homotopic.

For given X and Y we shall denote by C(X, Y ) the set of all (continuous)
mappings from X to Y . We have:

(2.3) Proposition. The relation “∼” is an equivalence relation in C(X, Y ).

Proof. In order to prove that for every f : X → Y we have f ∼ f , it is sufficient
to consider the homotopy h: X × [0, 1]→ Y defined by the formula:

h(x, t) = f(x) for every x ∈ X and t ∈ [0, 1].

Assume that f ∼ g. We want to prove that g ∼ f . Let h be a homotopy joining
f and g, then the map h̃: X × [0, 1]→ Y given by:

h̃(x, t) = h(x, 1− t) for every x ∈ X and t ∈ [0, 1]

is a homotopy joining g and f .
Finally, assume that f ∼ g and g ∼ g1. We have to prove that f ∼ g1.
In order to do that assume that h1 is a homotopy joining f and g and h2 is

a homotopy joining g and g1. We let h: X × [0, 1]→ Y by putting:

h(x, t) =

{
h1(x, 2t) for x ∈ X and 0 ≤ t ≤ 1/2,

h2(x, 2t− 1) for x ∈ X and 1/2 < t ≤ 1.

It is easy to see that h is a homotopy joining f with g1 and the proof of Proposi-
tion (2.3) is completed. �

We define:
[X, Y ] = C(X, Y )|∼.

Then [X, Y ] is called the set of all homotopy classes under the homotopical equiv-
alence.
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(2.4) Corollary. If Y ∈ AR, then [X, Y ] is a singleton.

Corollary (2.4) immediately follows from (2.2).

(2.5) Definition. Two spaces X and Y are said to be homotopically equivalent
(written X ∼ Y ) provided. There are two maps f : X → Y and g: Y → X such
that:

g ◦ f ∼ idX ,(2.5.1)

f ◦ g ∼ idY .(2.5.2)

Of course, if two spaces X and Y are homeomorphic then they are homotopically
equivalent.

The following notion is especially important in our considerations.

(2.6) Definition. A space X is called contractible provided it is equivalent to
the one-point space {p}, i.e. X ∼ {p}.

One can easily see that the space X is contractible if and only if there exists
a point x0 ∈ X such that:

idX ∼ g,

where g: X → X is defined by g(x) = x0 for every x ∈ X. Moreover, the above
consideration does not depend on the choice of the point x0 ∈ X because every
two one-point spaces are homeomorphic and hence homotopically equivalent.

From this we deduce:

(2.7) Proposition. If X ∈ AR, then X is a contractible space.

Note, that the converse to (2.7) is not true. Namely, consider so called the comb
space C ⊂ R2, i.e.

C =
{

(x, y) ∈ R2

∣∣∣∣∣
(

x = 0,
1
2

,
1
3

,
1
4

, . . . , and 0 ≤ y ≤ 1
)

or (x ∈ [0, 1] and y = 0)
}

.

Evidently, C is a contractible space but idC can not be extended over R2, so C is
not an AR-space, the respective homotopy can defined as follows:

h((x, y), t) =

{
(x, (1− t)y) for y �= 0,

((1 − t)x, 0) for y = 0.

As we already know ANR-spaces need not be contractible (compare Sn or a non
contractible polyhedron). We are going to explain what type of contractibility
possess ANR-spaces.
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A space X is said to be locally contractible at a point x0 ∈ X provided for each
ε > 0, there exists δ > 0 (δ < ε) and a homotopy h: [0, 1]× B(x0, δ) → B(x0, ε)
such that:

h(x, 0) = x0 and h(x, 1) = x, for every x ∈ B(x0, δ);

in other words the ball B(x0, δ) is contractible in B(x0, ε).
It is evident that the local contractibility at a point x0 implies local arcwise

connectivity at this point. A space X is said to be locally contractible if it is
locally contractible at each of its points. For the sake of brevity we shall write
X ∈ LC if X is a locally contractible space. We see that every open subset of
a locally contractible space is itself locally contractible.

Now, let us observe that open subsets of normed spaces are locally contractible
because the open balls are convex. On the other hand it is easy to see that every
r-image of a locally contractible space is locally contractible. Summing up the
above we obtain:

(2.8) Proposition. If X ∈ ANR, then X ∈ LC.

Observe that the comb space C ⊂ R2 is not locally contractible, so C �∈ ANR.
The example of an LC-space which is not an ANR-space is not trivial. We recom-
mend Chapter V, Sections 10 and 11 in [Bo-M] for details.

In the case of compact metric spaces it is useful to consider uniformly locally
contractible spaces (ULC-spaces). Namely, a compact metric space (A, d) is said
to be a ULC-space provided for every ε > 0 there is δ > 0 and a map

g: [0, 1]× {(a, b) ∈ A× A | d(a, b) < δ} → A

such that
g(0, a, b) = a, g(1, a, b) = b, g(t, a, a) = a

and
diam{g(a, b, t) | t ∈ [0, 1]}< ε,

where

diam{g(a, b, t) | t ∈ [0, 1]}
= sup{d(c, d) | c = g(a, b, t1), d = g(a, b, t2), t1, t2 ∈ [0, 1]}.

A compact space (A, d) is called k-ULC, k ≥ 1, provided for every ε > 0 there
exists δ > 0 such that any map g: Sk → A, with diam(f(Sk )) < δ, is homotopic to
a constant map by a homotopy h: Sk×[0, 1]→ A such that diam(h(Sk×[0, 1])) < ε.

Of course every ULC-space is a LC-space. In view of (2.8) and compactness of
A we conclude:
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(2.9) Proposition. If A is a compact ANR-space, then A is a ULC-space.

Proof. In view of (1.12) we can assume that A is a neighbourhood retract
of the Hilbert cube Kω. Let U be an open subset of Kω containing A and let
r: U → A be a retraction. Let η > 0 denote the distance from A to Kω \V , where
V is an open neighbourhood of A in Kω such that the closure V of V in Kω is
contained in U and

η = dist(A, Kω \ V ) = inf{‖x− y‖ | x ∈ A and y ∈ Kω \ V }.

By uniform continuity of r on V there exists δ > 0, δ < η, such that y, z ∈ V and
‖z − y‖ < δ then ‖r(y) − r(z)‖ < ε. For x, x′ ∈ A with ‖x− x′‖ < δ define:

g(x, x′, t) = r((1− t)x + tx′)

and the Proposition (2.9) is proved. �

In fact, it is possible to show the following result:

(2.10) Theorem. Every compact ANR-space A is homotopically equivalent to
some polyhedron.

Theorem (2.10) was proved by West (see [Bo-M]). The proof is quite difficult
and we are not able to present it here.

It is known that every compact metric space can be represented as an intersec-
tion of a decreasing sequence of compact ANRs. Below we shall characterize the
compact metric spaces which can be written as the intersection of a decreasing
sequence of compact ARs.

(2.11) Definition. A compact nonempty space is called an Rδ set provided
there exists a decreasing sequence {An} of compact absolute retracts such that:

A =
⋂
n≥1

An.

Note that any intersection of a decreasing sequence of Rδ-sets is Rδ. Observe
that A is not AR-space and even ANR-space in general. More, A need not be
contractible in general.

(2.12) Example. We shall construct an Rδ-space which is not contractible.
Let f : (0, (1/π)]→ R be a function defined as follows:

f(x) = sin
1
x

.

Let B = {(x, y) ∈ R2 | y = f(x), x ∈ (0, (1/π)}, C = {(x, y) ∈ R2 | x =
0 and − 1 ≤ y ≤ 1}, and A = B ∪ C. We have:
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Of course A is not contractible space (in fact it is not locally contractible!).
We let:

An =
[
0,

1
nπ

]
× [−1, 1]∪Bn,

where

Bn =
{

(x, y) ∈ R2

∣∣∣∣∣ 1
nπ
≤ x ≤ 1

π
and y = f(x)

}
, i.e.

then A =
⋂

n≥1 An. The fact that An is an AR-space for every n follows, for
example, from (1.10.1).

Let A be a compact subset of X. We will say that A is∞-proximally connected
subset of X if for every ε > 0 there exists ε > δ > 0 such that for every n = 0, 1, . . .

and for every map g: ∂∆n+1 → Oδ(A) there is a map g̃: ∆n+1 → Oε(A) such that
g(x) = g̃(x) for every x ∈ ∂∆n+1, where ∂∆n+1 stands for the boundary of ∆n+1

and Oε(A) = {y ∈ X | dist(y, A) < ε} is an ε-hull of A in X.
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It is easy to see that we can replace in the above definition ∆n+1 by the unit
ball Kn+1 in Rn+1 and ∂∆n+1 by the unit sphere Sn.

First we shall formulate the following characterization theorem proved by D. M.
Hyman in 1969 (see [Hy]).

(2.13) Theorem. Let X ∈ ANR and A ⊂ X be a compact nonempty subset.
Then the following statements are equivalent:

(2.13.1) A is an Rδ-set,
(2.13.2) A is an intersection of a decreasing sequence {An} of compact contractible

spaces,
(2.13.3) A is ∞-proximally connected,
(2.13.4) for every ε>0 the set A is contractible in Oε(A)={x∈X | dist(x, A)<ε}.

First observe that as an immediate consequence of (2.13.2) we obtain.

(2.14) Corollary. An intersection of a decreasing sequence of Rδ-sets is
again an Rδ-set.

We shall make use from the following:

(2.15) Proposition (cf. [BrGu]). Let {An} be a sequence of compact ARs
contained in X, and let A be a subset of X such that the following conditions hold:

(2.15.1) A ⊂ An for every n;
(2.15.2) A is the set-theoretic limit of the sequence {An};
(2.15.3) for each open neighbourhood U of A in X there is a subsequence {Ani}

of {An} such that Ani ⊂ U for every ni.

Then A is an Rδ.

Finally, we shall come back to the Proposition (2.9). Namely, we would like
to point out properties of mappings into compact ANR-spaces which are very
important in the theory of fixed points.

Let f, g: Y → X be two mappings and let d be a metric in X. We shall say that
f and g are ε-close (written f ∼ε q) provided for every y ∈ Y we have:

d(f(y), g(y)) < ε.

We shall prove the following

(2.16) Theorem. Let X be a compact ANR-space. Then there exists σ0 > 0
such that for every 0 < σ < σ0 and for every two mappings f, g: Y → X, if f ∼σ g,
then f ∼ g (f is homotopic to g).

Proof. In fact, it is sufficient to put in (2.9) ε = 1 and then the obtained σ0

(for ε = 1) is a needed number. It is convenient to consider also the non-compact
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case. Of course the notion of contractability has a sense for arbitrary space X not
necessary compact (see Definition (2.6)). The same is true in the case of locally
contractible sets. �

Because an intersection of an decreasing sequence of non-compact sets can be
empty, we see that this is no longer true for Rδ sets. Below we shall formulate
a non-compact version of ∞-proximally connected sets.

(2.17) Definition. Let X be a space and K ⊂ X be a closed (not necessary
compact) subset of X. The set K is ∞-proximally connected in X (written K ∈
PC∞

X ) provided for every open neighbourhood U of K in X there exists an open
neighbourhood V ⊂ U of K in X such that for every n = 0, 1, . . . and for every
map g: ∂∆n+1 → V there exists a mapping g̃: ∆n+1 → U such that g̃(x) = g(x)
for every x ∈ ∂∆.

Since for any open neighbourhood W of compact K ⊂ X there is ε > 0 such that
Oε(K) ⊂ W , we see that Definition (2.17) is equivalent with formulated above.
Therefore we shall use the notation K ∈ mPC∞

X if U and V will be replaced by
Oε(K) and Oδ(K).

Of course, we have:

(2.18) If K is compact, then K ∈ mPC∞
X if and only if K ∈ PC∞

X .

Generally, PC∞
X �⊂ mPC∞

X and mPC∞
X �⊂ PC∞

X .

(2.19) Example. Consider the set K ⊂ R2 defined as follows:

K = {(x, y) ∈ R2 | y = 0 and x ≥ 1} ∪ {(x, y) ∈ R2 | x = 1 and 0 ≤ y ≤ 1}

∪
{

(x, y) ∈ R2

∣∣∣∣∣ x ≥ 1 and y =
1
x

}
.

Then the set K is homeomorphic to R, hence K ⊂ PC∞
R2 . Moreover, K �∈ mPC∞

R2

since for every ε > 0 the set Oε(K) is homotopically equivalent to S1.

(2.20) Example. Consider K ⊂ R2 defined as follows:

K = {(x, y) ∈ R2 | x = 0 and y ≥ 1} ∪
{

(x, y) ∈ R2
∣∣∣∣ x > 0 and y =

1
x

}
.

Then for every ε > 0 the set Oε(K) is contractible and hence K ∈ mPC∞
R2 . Since

there is an open neighbourhood U of K in R2 such that U = U1∪U2 and U1∩U2 = ∅
we conclude that K �∈ PC∞

R2 .

Observe that Theorem (2.13) is not true for non-compact K, but still we are
able to prove the following:
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(2.21) Theorem. Let K be a closed contractible subset of X and X ∈ ANR.
Then X ∈ PC∞

X .

Theorem (2.21) is a consequence of the following homotopy extension property.

(2.22) Property (Homotopy Extension Property). Let Y ∈ ANR, X be an
arbitrary space and K ⊂ X be a closed subset. Assume that f, g: X → Y are such
that there is a homotopy h: K × [0, 1] → Y with h(x, 0) = f(x), h(x, 1) = g(x)
for every x ∈ K. Then there exists a homotopy H: X × [0, 1] → Y such that
H(x, 0) = f(x), for x ∈ X and H(x, t) = h(x, t), for x ∈ K and t ∈ [0, 1].

Proof. Let Z = X ×{0} ∪K × [0, 1] and Z′ = X × [0, 1]. First we claim that
for any open neighbourhood V of Z in Z′ there is a map η: Z′ → V such that
η(z) = z for every z ∈ Z.

To prove our claim let us assign to every x ∈ K the segment Lx = {x} × [0, 1].
Since Lx is compact and V is an open neighbourhood of Z, then there exists an
open neighbourhood Ux of X in K such that Ux × [0, 1]⊂ V . Then the set

U =
⋃

x∈K

Ux

is an open neighbourhood of K in X and hence U × [0, 1] is open in Z′. Now
we consider the Urysohn function α: X → [0, 1] which takes the value 0 on X \ U

and 1 on K. If we set

η(x, t) = (x, α(x)t) for (x, t) ∈ Z′

then we obtain the desired map.
Now, consider the map f : Z → Y defined by the conditions:

f(x, 0) = f(x) for x ∈ X and f(x, t) = h(x, t) for x ∈ K and t ∈ [0, 1].

Since Y ∈ ANR and Z is closed in Z′, there exists a continuous extension f̃ of
f to a neighbourhood V of Z in Z′ which has values in Y . Finally we define
H: Z′ = X × [0, 1]→ Y by putting

H(x, t) = f̃(η(x, t)) for (x, 1) ∈ X × [0, 1]

and we obtain the required homotopy. �

In what follows we shall need the following special version of (2.10).

(2.23) Proposition ([Br1-M]). Let X be a compact ANR and ε > 0. Then
there exists a compact polyhedron Pε and two maps rε: Pε → X, sε: X → Pε

and a homotopy hε: X × [0, 1] → X such that hε(x, 0) = rε(sε(x)), hε(x, 1) = x

and diam(h({x} × [0, 1]) < ε for every x ∈ X. In such a case we say that Pε

ε-dominates X.
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3. Approximative and proximative retracts

First we generalize the notion of compact ANRs onto the case of compact ap-
proximate ANRs (written AANR). It is important to remember that for AANRs
the global fixed point theorems, like Schauder or more generally the Lefschetz fixed
point theorem still hold true. Since AANRs are not locally contractible the fixed
point index for maps of AANRs is not possible.

Let A be a subset of X and let d be a metric in X. A mapping rε: X → A is
said to be an ε-retraction, ε > 0, if for every x ∈ A we have d(x, rε(x)) < ε.

Note that the retraction r: X → A is an ε-retraction for every ε > 0.
A subset A ⊂ X is called an approximative retract of X provided for every ε > 0

there exists an ε-retraction rε: X → A; A is called an approximative neighbourhood
retract of X provided there exists an open neighbourhood U of A in X such that
A is an approximative retract of U .

(3.1) Definition. A compact space X is called an absolute approximative
retract (written X ∈ AAR) provided that for every embedding h: X → Y the
set h(X) is approximative retract of Y ; X is called an absolute approximative
neighbourhood retract (written X ∈ AANR) provided that for every embedding
h: X → Y the set h(X) is approximative neighbourhood retract of Y .

(3.2) Proposition. For compact spaces we have:

AR ⊂ AAR,(3.2.1)

ANR ⊂ AANR.(3.2.2)

We prove the following:

(3.4) Theorem. Assume that X ∈ AANR. Then there exists a compact ANR-
space Y such that X is homeomorphic to an approximative retract of Y .

For the proof of (3.4) we need the following lemma:

(3.5) Lemma. Let A be a compact subset of the Hilbert cube Kω and let U be
an open neighbourhood of A in Kω . Then there exists a compact ANR-space K

such that:
A ⊂ K ⊂ U ⊂ Kω.

Proof. First observe that because Kω is a convex subset of the space l2 so
every open ball in Kω is convex. We cover A by a finite number of open balls
B(x1, r1), . . . , B(xk, rk) in Kω such that

B(x1, r1) ∪ . . . ∪B(xk, rk) ⊂ U ⊂ Kω.
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Since every ball B(xi, ri) is a compact convex set in AR-space, from theorem (1.10)
we deduce that the set K = B(x1, r1)∪. . .∪B(xk, rk) is the needed compact ANR-
space and the proof of (3.5) is completed. �

Proof of Theorem (3.4). Without loss of generality we can assume that
X ⊂ Kω. By definition we can find an open neighbourhood U of X in Kω such
that X is an approximative retract of U . So by applying Lemma (3.5) we obtain
the needed compact ANR-space Y , and the proof is completed. �

(3.6) Remark. By using the Mazur theorem, which says that the convex closed
hull of a compact subset of a Banach space is again compact, one can show very
easily, that Lemma (3.5) remains true for subsets of Banach spaces.

Instead of the notion of approximative retracts we shall need also the notion of
proximative retracts.

Let A be a closed subset of the euclidean space Rn and let U be an open
neighbourhood of A in Rn. A mapping r: U → A is called a proximative retraction
(or metric projection) provided the following condition holds true:

(3.7) ‖r(x)− x‖ = dist(x, A) for every x ∈ U.

Evidently every proximative retraction is a retraction map but not conversely.

(3.8) Definition. A compact subset A ⊂ Rn is called a proximative neighbour-
hood retract (written A ∈ PANR) provided there exists an open neighbourhood U

of A in Rn and a proximative retraction r: U → A.

Of course we have:

(3.9) Proposition. For compact spaces we have PANR ⊂ ANR.

Let us remark that any compact convex subset A ⊂ Rn is a PANR-space; then
as U we can take Rn. Below we shall list important properties of PANR-spaces.

(3.10) Proposition. Let A ∈ PANR. Then there exists an ε > 0 such that
Oε(A) ∈ PANR.

Proof. Because A ⊂ Rn is a proximative absolute neighbourhood retract there
exists an open neighbourhood U of A in Rn and a proximative retraction r: U → A.
Since A is compact, there exists an ε > 0 such that O2ε(A) ⊂ U .

Now, for the proof we define a proximative retraction: s: O2ε(A) → Oε(A) by
putting:

s(x) =


x if x ∈ Oε(A),

r(x) + ε · x− r(x)
‖x− r(x)‖ if x ∈ O2ε(A) \Oε(A).
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Observe that if x ∈ ∂( Oε(A) ), then:

s(x) = r(x) + ε · x− r(x)
‖x− r(x)‖ = r(x) + x− r(x) = x,

where ∂( Oε(A) ) denotes the boundary of Oε(A) in Rn.
On the other hand, if x ∈ O2ε(A) \Oε(A), then we have:

‖x− s(x)‖ =
∥∥∥∥x− r(x)− ε

x− r(x)
‖x− r(x)‖

∥∥∥∥ = ‖x− r(x)‖ − ε

= dist(x, A)− ε ≤ dist(x, Oε(A) ).

So s is a continuous map and hence it is a proximative retraction. �

Now observe, that the definition of PANRs can be reformulated as follows:

(3.11) Proposition. A ∈ PANR if and only if there exists an open neighbour-
hood of A in Rn such that the following condition is satisfied:

(3.11.1) for every y ∈ U there exists exactly one point x = x(y) ∈ A such that:

‖y − x‖ = dist(y, A).

(3.12) Proposition. If A is a compact C2-manifold with or without the bound-
ary, then A ∈ PANR.

If A is a compact C2-manifold without boundary then taking a tubular neigh-
bourhood of A in Rn we are able to obtain that A ∈ PANR. If the boundary
∂M of M is not empty the situation is more difficult because we have two tubular
neighbourhoods (for M and ∂M) but still we can obtain that A ∈ PANR. For
details we recommend [BiGP].

Now, we shall show an example of a compact C1-manifold A such that A �∈
PANR.

(3.13) Example. Consider the function f : [0, 1]→ Rn given by

f(x) =

{
|x|−(1/2) · sin(1/x) for x �= 0,

0 for x = 0.

An elementary calculation shows that the function h: [0, 1]→ R given by

h(x) =


∫ x

0
f(t) dt for x �= 0,

0 for x = 0,



22 CHAPTER I. BACKGROUND IN TOPOLOGY

is differentiable on (0, 1) and h′(x) = f(x) for every x ∈ (0, 1).

Finally, we set

g(x) =
∫ x

0
h(t) dt.

Obviously, we have g′′(x) = f(x), for every x ∈ (0, 1).
We let

A = Γg = {(x, g(x)) | x ∈ [0, 1]} ⊂ R2.

Then A is a C1-manifold but A �∈ PANR. Indeed, let

r(x) = ‖g′′(x)‖−1(1 + g′(x))3/2

be the radius of curvature of A at (x, g(x)). We have:

lim inf
x→0

r(x) = 0.

Thus one can show that A �∈ PANR.

4. Hyperspaces of metric spaces

Let (X, d) be a metric space. Let B(X) and C(X) denote the family of all
nonempty closed bounded and nonempty compact, respectively, subsets of X.
Evidently, we have C(X) ⊂ B(X). Given A, B ∈ B(X) let:

(4.1) dH(A, B) = inf{ε > 0 | A ⊂ Oε(B) and B ⊂ Oε(A)}.

Observe that

(4.2) dH(A, B) = max
{

sup
a∈A

dist(a, B), sup
b∈B

dist(A, b)
}

.

Note that (4.2) can be rewritten as follows:

(4.2.1) dH(A, B) = inf{ε > 0 | A ⊂ Oε(B) and B ⊂ Oε(A)}.

Formula (4.2.1) is more geometrical than (4.2).

(4.3) Proposition. The function dH : B(X) × B(X) → R+ = [0, +∞) is
a metric on B(X).

Proof. It is clear that dH(A, B)≥ 0 and dH(A, B) = 0 if and only if A = B.
Furthermore, for every A, B ∈ B(X) we have dH(A, B) = dH(B, A). Let A, B, C ∈
B(X) be fixed. For every x ∈ A and y ∈ B one has

dist(x, C) ≤ d(x, y) + dist(y, C) ≤ d(x, y) + dH(B, C).
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Hence it follows that dist(x, C) ≤ dH(A, B)+dH(B, C) for every x ∈ A. Therefore

sup
x∈A

dist(x, C) ≤ dH(A, B) + dH(B, C).

In a similar way we obtain

sup
z∈C

dist(z, A) ≤ dH(A, B) + dH(B, C).

Consequently we obtain dH(A, C) ≤ dH(A, B) + dH(B, C) and the proof is com-
pleted. �

The metric dH defined on B(X) is called the Hausdorff distance or Hausdorff
metric in B(X).

We have the following theorem:

(4.4) Theorem. (B(X), dH ) is a complete metric space whenever (X, d) is
complete.

Proof. Let {An} be a Cauchy sequence in B(X). We shall prove first that
the set A defined as follows:

A =
∞⋂

n=1

cl
( ∞⋃

m=n

Am

)

is nonempty, bounded and limn An = A.
Let ε > 0 and N be the set of all natural numbers. For each k ∈ N there

exists nk such that n, m ≥ nk implies dH(An, Am) < 2−k ·ε. Let {nk} be a strictly
increasing sequence of elements of N chosen for k = 0, 1, . . . Let x0 ∈ An0 . Suppose
we have chosen x0, . . . , xk with properties xi ∈ Ani , d(xi, xi+1) < 2−iε, for i =
0, . . . , k − 1. Then xk+1 is chosen in Ank+1 so as to satisfy d(xk, xk+1) < 2−k · ε.
Observe that such xk+1 exists because dist(xk, Ank+1) ≤ dH(Ank , Ank+1) < 2−k ·ε.
It is easy to see that {xk} is a Cauchy sequence in X. Then there exists x ∈ X

such that
lim

k
xk = x.

We have, of course x ∈ A and, furthermore, d(x0, x) ≤ 2ε. Therefore, for every
ñ0 ≥ n0 and x0 ∈ Añ0 , there exists a point x ∈ A such that d(x0, x) ≤ 2ε. Hence

sup
x∈Añ0

dist(x, A) ≤ 2ε, for ñ0 ≥ n0.

Now, we will show that supx∈A dist(x, A)→ 0, as n→∞ which together with the
above will prove that dH(An, A) → 0 as n → ∞. Let ñ be such that m, n ≥ ñ
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implies dH(An, Am) ≤ ε. Let x ∈ A. Then x ∈ cl (
⋃∞

m=n Am). Therefore there
exists n0 ≥ ñ and y ∈ An0 such that d(x, y) ≤ ε. For each m ≥ ñ we have

dist(x, Am) ≤ dist(x, An0) + sup
y∈An0

dist(y, A) ≤ 2ε.

Hence supy∈A dist(y, Am) ≤ 2ε and the proof is completed. �

Note that the topology in C(X) derived from the Hausdorff distance dH is not
determined by the metric topology of (X, d). Two topologically equivalent metrics
d and d′ may lead to very different topologies on C(X) by the Hausdorff distance
procedure. It follows from the example given below.

(4.5) Example. Let X = R+ = [0, +∞), d(x, y) = |x/(1 + x)− y/(1 + y)| and
d′(x, y) = min{1, |x− y|}. The metrics d and d′ define the same topology on R+

but the topologies of the Hausdorff distance on C(R+) are different, i.e. the set N

of natural numbers belongs to the closure of the set of all finite subsets of N in
the first space but not in the second.

The example (4.5) shows us that C(X) is not a closed subset of (B(X), dH) in
general. However the following result holds true.

(4.6) Proposition. If (X, d) is a complete space, then C(X) is a closed subset
of the metric space (B(X), dH).

Proof. Assume that {An} ⊂ C(X) and limn An = A, where A ∈ B(X).
We have to prove that A ∈ C(X). Let {xn} be a sequence of points in A. Let
εn = dH(An, A). Then limn εn = 0. It implies that for every j there exists a point
xn,j ∈ An such that d(xj, xn,j) ≤ εn. We can assume, without loss of generality,
that limj xn,j = un ∈ An.

Now, we claim that {un} is a Cauchy sequence, because d(xl,m, xs,m) ≤ εl + εs

so we obtain d(ul, us) ≤ εl + εs. Since (X, d) is a complete space we can assume
that limn un = u.

Now, it suffices to prove that the sequence {xn} contains a subsequence {xnj}
such that lim xnj = u.

Assume to the contrary that there exists δ > 0 such that d(xn, u) ≥ δ for ev-
ery n. But limn un = u, so we have d(um, u) < δ/3 for sufficiently large m. Because
limm xl,m = ul there then exists ni as large as needed such that d(xi,ni, ui) < δ/3.
Then we obtain d(xni, u) < δ but this is a contradiction and the proof is com-
pleted. �

Now, we would like to point out that more appropriate than dH metric in C(X)
is the metric dC , called the (Borsuk) metric of continuity. We let:

(4.7) dC(A, B) = inf{ε > 0 | exists f : A→ B and g: B → A such that

d(x, f(x)) ≤ ε and d(y, g(y)) ≤ ε for every x ∈ A and y ∈ B},
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where A, B ∈ C(X) and f, g stand for continuous functions. Evidently, we have:

dH(A, B) ≤ dC(A, B) for every A, B ∈ C(X).

For a given Banach space E we shall consider the familyB(E) defined as follows:

(4.8) B(E) = {A ⊂ E | A is a bounded subset of E}.

Of course we have C(E) ⊂ B(E) ⊂ B(E).
Note that the Hausdorff distance dH can be extended onto B(E) but it is no

longer a metric. In fact, it is easy to see that dH(A, cl A) = 0.
We shall define the measure of noncompactness on B(E). We shall say that

a subset A ⊂ E is relatively compact provided the set cl A is compact.

(4.9) Definition. Let E be a Banach space and B(E) the family of all bounded
subsets of E. Then the function: α:B(E)→ R+ defined by:

α(A) = inf{ε > 0 | A admits a finite cover by sets of diameter ≤ ε}

is called the (Kuratowski) measure of noncompactness, the α-MNC for short.
Another function β:B(E)→ R+ defined by:

β(A) = inf{r > 0 | A can be covered by finitely many balls of radius r}

is called the (Hausdorff) measure of noncompactness.

Definition (4.9) is very useful since α and β have interesting properties, some
of which are listed in the following

(4.10) Proposition. Let E be a Banach space with dim E = +∞ and γ:B(E)
→ R+ be either α or β. Then:

(4.10.1) γ(A) = 0 if and only if A is relatively compact,
(4.10.2) γ(λA) = |λ|γ(A) and γ(A1 + A2) ≤ γ(A1) + γ(A2), for every λ ∈ R and

A, A1, A2 ∈ B(E),
(4.10.3) A1 ⊂ A2 implies γ(A1) ≤ γ(A2),
(4.10.4) γ(A1 ∪A2) = max{γ(A1), γ(A2)},
(4.10.5) γ(A) = γ(conv(A)),

(4.10.6) the function γ:B(E) → R+ is continuous (with respect to the metric dH

on B(E)).

Proof. You will have no difficulty in checking (4.10.1)–(4.10.4) and (4.10.6)
by means of Definition (4.9).
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Concerning (4.10.5), we only have to show that γ(conv(A)) ≤ γ(A), since A ⊂
conv(A) and therefore γ(A) ≤ γ(conv(A)). Let µ > γ(A) and A ⊂

⋃m
i=1 Mi with

δ(Mi) ≤ µ if γ = α and Mi = B(xi, µ) if γ = β. Since δ(conv(µi)) ≤ µ and
B(xi, µ) are convex, we may assume that the Mi are convex. Since

conv(A) ⊂ conv
[
M1 ∪ conv

( m⋃
i=2

Mi

)]

⊂ conv
[
M1 ∪ conv

[
M2 ∪ conv

( m⋃
i=3

Mi

)]]
⊂ . . . ,

it suffices to show that

γ(conv(C1 ∪ C2)) ≤ max{γ(C1), γ(C2)} for convex C1 and C2.

Now, we have

conv(C1 ∪C2) ⊂
⋃

0≤λ≤1

[λC1 + (1− λ)C2],

and since C1 − C2 is bounded there exists an r > 0 such that ‖x‖ ≤ r for all
x ∈ (C1 −C2).

Finally, given ε > 0, we find λ1, . . . , λp such that

[0, 1] ⊂
p⋃

i=1

(
λi −

ε

r
, λi +

ε

r

)

and therefore

conv(C1 ∪ C2) ⊂
p⋃

i=1

[λiC1 + (1− λi)C2 + cl B(0, ε)].

Hence, (4.10.2)–(4.10.4) and the obvious estimate γ(cl B(0, ε)) ≤ 2ε imply

γ(conv(C1 ∪ C2)) ≤ max{γ(C1), γ(C2)}+ 2ε,

for every ε > 0. Consequently the proof is completed. �

Now, let us state the following obvious observation.

(4.11) Remark. For every A ∈ B(E) we have β(A) ≤ α(A) ≤ 2β(A).

We shall end this section by considering two examples and by formulating a gen-
eralization of the Cantor theorem.



5. THE ČECH HOMOLOGY (COHOMOLOGY) FUNCTOR 27

(4.12) Example. Assume that dim E = +∞. Now, let us complete the mea-
sures of a ball B(x0, r) = {x0}+ r ·B(0, 1). Evidently,

γ(B(x0, r)) = rγ(cl B(0, 1)) = rγ(S),

where S = δB(0, 1) = {x ∈ E | ‖x‖ = 1}.
Furthermore, α(S) ≤ 2 and β(S) ≤ 1. Suppose α(S) < 2. Then S =

⋃n
i=1 Mi

with the closed sets Mi and δ(Mi) < 2. Let En be an n-dimensional subspace
of E. Then

S ∩ En =
n⋃

i=1

Mi ∩ En

and in view of the Lusternik–Schnirelman–Borsuk theorem (see [De3-M, p. 22] or
[DG-M, p. 43]) there exists i such that the set Mi∩En contains a pair of antipodal
points, x and −x. Hence δ(Mi) ≥ 2 for this i, a contradiction. Thus α(S) = 2 and

1 =
α(S)

2
≤ β(S) ≤ 1,

i.e. we have α(B(x0, r)) = 2r and β(B(x0, r)) = r provided dim E = +∞.

(4.13) Example. Let r: E → cl B(0, 1) be the retraction map defined as fol-
lows:

r(x) =

{
x if ‖x‖ ≤ 1,
x

‖x‖ if ‖x‖ > 1.

Let A ∈ B(E). Since r(A) ⊂ conv(A ∪ {0}), we obtain γ(r(A)) ≤ γ(A). In other
words we can say that r is a nonexpansive map with respect to the Kuratowski or
Hausdorff measure of noncompactness.

Finally, note that the following version of the Cantor theorem holds true.

(4.14) Theorem. If γ = α or γ = β and {An} is a decreasing sequence of
closed nonempty subsets in B(E) such that limn γ(An) = 0. Then A =

⋂∞
n=1 An

is a nonempty and compact subset of E.

5. The Čech homology (cohomology) functor

By a pair of spaces (X, X0) we understand a pair consisting of a metric space X

and of its subset X0. A pair of the form (X, ∅) will be identified with the space X.
Let (X, X0), (Y, Y0) be two pairs; if X ⊂ Y and X0 ⊂ Y0 then the pair (X, X0)
is a subpair of (Y, Y0) and we indicate this by writing (X, X0) ⊂ (Y, Y0). A pair
(X, X0) is called compact provided X is a compact space and X0 is a closed subset
of X. By a map f : (X, X0)→ (Y, Y0) we understand a continuous map f : X → Y

satisfying the condition f(X0) ⊂ Y0.
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The category of all pairs and maps will be denoted by E . By Ẽ will be denoted
the subcategory of E consisting of all compact pairs and maps of such pairs. For
maps of pairs we can consider also the notion of homotopy. Namely, two maps
f, g: (X, X0) → (Y, Y0) are said to be homotopic (written f ∼ g) provided that
there is a map h: (X × [0, 1], X0 × [0, 1]) → (Y, Y0) such that h(x, 0) = f(x) and
h(x, 1) = g(x) for every x ∈ X. Let us observe that if (X, X0) is a pair in Ẽ, then
(X × [0, 1], X0× [0, 1]) is in Ẽ too.

Below we recall some basic facts concerning the Čech homology (cohomology)
functor.

For details we recommend [Do-M], [ES-M], [Sp-M].
By H∗ (H∗) we denote the Čech homology (cohomology) functor with the coef-

ficients in the field of rational numbers Q (or in a group G if necessary) from the
category Ẽ (E) to the category A of graded vector spaces over Q and linear maps
of degree zero.

Thus, for a pair (X, X0),

H∗(X, X0) = {Hq(X, X0)}, (H∗(X, X0) = {Hq(X, X0)}),

is a graded vector space and, for f : (X, X0) → (Y, Y0) we have H∗(f) (H∗(f)) to
be the induced linear map:

H∗(f) = f∗ = {f∗q}: H∗(X, X0)→ H∗(Y, Y0),

(H∗(f) = f∗ = {f∗q}: H∗(Y, Y0)→ H∗(X, X0)),

where f∗q: Hq(X, X0)→ Hq(Y, Y0) (f∗q : Hq(Y, Y0)→ Hq(X, X0)).
We have assumed as well known that the functor H∗ (H∗) satisfies all of the

Eilenberg–Steenrod axioms for homology (cohomology). Recall (cf. [ES-M]) that
the Čech homology functor can be defined also on the category E but then it
satisfies all of the Eilenberg–Steenrod axioms except that of exactness. Note that
in Section 7 we shall define on E the Čech homology functor with compact carrieres
which is more useful for our considerations.

By HomQ:A → A we denote the contravariant functor which to a graded vector
space E = {Eq} assigns the conjugate graded space HomQ(E) = {Hom(Eq, Q)}
and to a linear map L: E1 → E2 between graded spaces assigns the conjugate map
HomQ(L): HomQ(E2)→ HomQ(E1) given by the formula:

HomQ(L)(u) = u ◦ L for every u ∈ HomQ(E2).

Moreover, by ⊗:A × A → A we shall denote the tensor product functor of two
variables which assigns to two graded vector spaces E = {Eq} and F = {Fq} the
graded vector space G = {Gq}, where G = E ⊗ F = {Gq} and

Gq =
⊕

i+j=q

Ei ⊗Ej
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is the direct sum of the respective tensor products.
For two linear maps L: E1 → E2, T : F1 → F2 the tensor product L⊗ T : E1 ⊗

F1 → E2 ⊗ F2 is defined in the natural way (see [Sp-M]).
We now formulate the Duality Theorem between the Čech homology and coho-

mology (for the proof see [HW-M]).

(5.1) Theorem. On the category Ẽ the functors H∗ and HomQ ◦H∗ are natu-
rally isomorphic; in other words there are linear isomorphisms

ηX : H∗(X, X0)→ HomQ(H∗(X, X0))

for every pair (X, X0) in Ẽ such that, for every map f : (X, X0) → (Y, Y0) in Ẽ,
the following diagram is commutative

H∗(X, X0)
ηX

∼ ��

f∗
��

HomQ(H∗(X, X0))

HomQ(f∗)
��

H∗(Y, Y0)
ηY

∼ �� HomQ(H∗(Y, Y0))

A graded vector space E = {Eq} in A is said to be of finite type provided:

(i) dim Eq <∞, for all q and
(ii) Eq = 0, for almost all q.

The following fact is well known from the first course of linear algebra.

(5.2) Proposition. If E is a graded vector space of finite type, then the graded
vector space HomQ(E) is isomorphic to E; in particular it is also of finite type.

We need the following:

(5.3) Definition. A pair (X, X0) in Ẽ is of finite type with respect to H∗
(H∗) provided the graded vector space H∗(X, X0) (H∗(X, X0)) is of finite type.

From (5.1) and (5.2) immediately follows:

(5.4) Proposition. A pair (X, X0) in Ẽ is of finite type with respect to H∗ if
and only if it is of finite type with respect to H∗.

For two pairs (X, X0), (Y, Y0) in E we define the Cartesian product (X, X0) ×
(Y, Y0) as a pair of the following form:

(X, X0)× (Y, Y0) = (X × Y, X × Y0 ∪X0 × Y ),

where the product metric in X × Y is considered.
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Given two maps f : (X, X0)→ (Y, Y0) and g: (X′, X′
0)→ (Y ′, Y ′

0) we can define
the product map f × g: (X, X0) × (X′, X′

0)→ (Y, Y0)× (Y ′, Y ′
0) by letting:

(f × g)(x, x′) = (f(x), g(x′)),

for every x ∈ X and x′ ∈ X′. It is easy to see that f × g is a map of pairs.
Note that for metric spaces the Čech cohomology functor and the Alexander–

Spanier cohomology functor are naturally equivalent. So we can formulate the
following version of the Künneth theorem for Čech cohomology functor (see [Sp-M],
p. 405).

(5.5) Theorem (Künneth Theorem). For every two pairs (X, X0), (X′, X′
0)

in Ẽ, there is a linear isomorphism

L: H∗((X, X0)× (X′, X′
0)) ∼ �� H∗(X, X0)⊗H∗(X′, X′

0)

such that if f : (X, X0) → (Y, Y0) and g: (X′, X′
0) → (Y ′, Y ′

0) are two maps in Ẽ,
then the following diagram commutes:

H∗((X, X0)× (X′, X′
0))

L

��

H∗((Y, Y0) × (Y ′, Y ′
0))

(f×g)∗
��

L

��

H∗(X, X0) ⊗H∗(X′, X′
0) H∗(Y, Y0) ⊗H∗(Y ′, Y ′

0).
f∗⊗g∗

��

Now, from the Duality Theorem and the commutativity of functors ⊗ and
HomQ for graded vector spaces of finite type we obtain:

(5.6) Theorem. For every two pairs of finite type (X, X0) and (Y, Y0) in Ẽ,
there is a linear isomorphism

L: H∗((X, X0) × (X′, X′
0)) ∼ �� H∗(X, X0) ⊗H∗(X′, X′

0)

such that, if f : (X, X0)→ (Y, Y0) and g: (X′, X′
0)→ (Y ′, Y ′

0) are two maps of pairs
of finite type in Ẽ, then the following diagram commutes:

H∗((X, X0) × (X′, X′
0))

(f×g)∗
��

L
��

H((Y, Y0)× (Y ′, Y ′
0))

L
��

H∗(X, X0)⊗H∗(X′, X′
0)

f∗⊗g∗
�� H∗(Y, Y0)⊗H∗(Y ′, Y ′

0)

Let us recall the universal coefficients formula (see [Sp-M]):
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(5.7) Theorem (on Universal Coefficients). For any space X the following
sequence is exact:

0→ Hn(X, Z) ⊗Q→ Hn(X, Q)→ Tor(Hn−1(X, Z), Q)→ 0,

for every n ≥ 1, where Tor(G, H) denotes the torsion product.

In Chapter IV we shall need also the Mayer–Vietoris theorem (see [Sp-M]).

(5.8) Definition. Let X be a space and A, B two subsets of X. Let

i: (A, A ∩B) → (X, B) and j: (B, A ∩B)→ (X, A)

denote the respective inclusions. A triple (X, A, B) is called a k-triad, k ≥ 0, if
provided:

X = A ∪B,(5.8.1)

j∗l : H l(X, B)→ H l(B, A ∩B), i∗l: H l(X, B)→ H l(A, A ∩B)(5.8.2)

are isomorphisms for every l ≥ k + 1; a 0-triad (X, A, B) is called simply triad.

(5.9) Theorem (Mayer–Vietoris Theorem). Let (X, A, B) be a k-triad. Then
the sequence is exact

Hk(A ∩B) δ−→ Hk+1(X) α−→ Hk+1(A) ⊕Hk+1(B)
β−→ Hk+1(A ∩B) −→ · · ·

in which δ, α, β are so called Mayer–Vietoris homomorphisms.

We shall end this section by expressing the Čech homology functor in terms of
coverings simplicial and chain complexes.

Let X be a compact space. By Covf (X) we denote the family of all open finite
coverings of X. Let A ⊂ X. The star of A with respect to a covering α is defined
by

St(A, α) :=
⋃
{U ∈ α | U ∩A �= ∅}.

The k-th star is defined inductively:

Stk(A, α) := St(Stk−1(A, α), α).

One associates with a given covering α an abstract simplicial complex N(α) called
the nerve of α. The vertices of N(α) are the sets A ∈ α. The sets A0, . . . , An

form a simplex in N(α) provided A0 ∩ . . .∩An �= ∅.
If σ = {A0, . . . , An} is an n-simplex in N(α) then the support of σ is the set

sup σ :=
⋃n

i=0 Ai. Let C∗(N(α)) be the complex of oriented chains. Then we define
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the support of a chain c ∈ C∗(N(α)) by supp c :=
⋃

i supp σi, where c =
∑

kiσi is
a nondegenerate representation of c (i.e. ki �= 0 for each i).

Let α, β ∈ Covf(X) and assume that β is a refinement of α. Then there
is a simplical map iβ

α: N(β) → N(α) defined on vertices as follows: because β

refines α, for each vertex w0 of N(β) we can find a vertex v0 of N(α) such that
supp w0 ⊂ supp v0; we fix for any vertex w of N(β) such a vertex v of N(α) and
put iβ

α(w) := v. Of course, iβ
α is not unique, but all such maps are continuous and

therefore they induce the same homomorphism of homology groups.
The set Cov X is directed with the quasi-order relation:

α ≥ β if and only if α refines β.

The Čech homology groups of X are defined as the inverse limit

Ȟq(X) := lim←−
Covf (X)

Hq(N(α)).

If A is closed subset of X then every covering α̃ ∈ Cov A can be obtained from
a covering α ∈ Cov X satisfying Ũi = A ∩ Ui, where Ui ∈ α. It is known that

Ȟq(A) = lim←−
α̃

Hq(N(α̃)).

Now, we would like to describe Ȟq(A) using coverings in Covf(X) only. If B is
a subset of X then by N(α)|B we denote the subcomplex of N(α) which consists
of all simplexes σ with supp σ ⊂ B. We shall prove the following

(5.10) Proposition.

Ȟq(A) = lim←−
Cov X

Hq(N(α)|St(A,α).

Before the proof of (5.10) we need:

(5.11) Lemma. Let α = {U1, . . . , Uk} be an open covering of X and let A be
a closed subset of X. Then there exists a finite refinement β = {Vj}n

j=1 of α which
has the following property for each p = 1, . . . , n:

(5.11.1) If V1, . . . , Vp ∈ β are such that Vi ∩ A �= ∅ for each i and
⋂p

i=1 Vi �= ∅
then

⋂p
i=1 Vi ∩A �= ∅.

Proof. We will adjust the given covering α in a number of steps.
Step 1. p = 2. Let U1 ∩ A �= ∅, U2 ∩A �= ∅, U1 ∩ U2 �= ∅ and U1 ∩ U2 ∩A = ∅.

If U1 ∩ U2 ∩ ∂A = ∅ then we define

U2
1 := U1, U1

2 := U2 − U1 ∩ U2
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(U denotes the closure of U and ∂U its boundary). If U1 ∩ U2 ∩ ∂A �= ∅ then we
consider the sets

Cj :=
{

x

∣∣∣∣ x ∈ ∂A ∩ Uj and x �∈
k⋃

i=3

Ui

}
, j = 1, 2.

Let W1 be an open neighbourhood of C1 in X such that W1 ⊂ U1, W 1∩U2∩A = ∅.
Define then

U2
1 := (U1 ∩ Int A) ∪W1.

Let W2 be an open neighbourhood of C2 such that W2 ⊂ U2 and W 2 ∩ U
2
1 = ∅.

We put

U1
2 := (U2 ∩ Int A) ∪W2.

Now, define

V1 :=
⋂
i 
=1

U i
1, . . . , Vk :=

⋂
i 
=k

U i
k,

Vk+1 := U1 ∩ (X − A), . . . , Vk+k := Uk ∩ (X −A).

The covering α1 = {V1, . . . , V2k} is a refinement of α and satisfies (5.11.1) for
p = 2.

Step 2. p = 3. Assume that V1∩V2 ∩V3 �= ∅, Vi = α1, Vi∩A �= ∅ for i = 1, 2, 3,
and V1 ∩V2 ∩V3 ∩A = ∅. We can repeat the same trick as in the first step for sets
U1 = V1 ∩ V2 and U2 = V3. If U1 ∩ U2 ∩ ∂A = ∅ then we put V ′

1 := V1, V ′
2 := V2

and V ′
3 := V3 − V1 ∩ V2 ∩ V3. If U1 ∩ U2 ∩ ∂A �= ∅ then V ′

1 := (V1 ∩ Int A) ∪W1,
V ′

2 := (V2 ∩ Int A) ∪ W1 and V ′
3 := (V3 ∩ IntA) ∪ W2. The same correction

is done for every triple of sets Vi, Vj , Vl (1 ≤ i < j < l ≤ k). Taking the
intersections of such V ′

i , one obtains a covering α2 = {V ′′
1 , . . . , V ′′

k+1, . . . , V ′′
2k}

which is a refinement of α1 and satisfies (5.11.1) for p ≤ 3. After (k−1) such steps
we obtain the desired covering β. �

Proof of Proposition (5.10). Let Γ denote the family of all coverings which
satisfy (5.11.1). Lemma (5.9) states that Γ is a cofinal subfamily in Cov X. If α ∈ Γ
and if we consider the induced covering α̃ ∈ Cov(A) then (5.11.1) ensures that the
simplical complexes N(α̃) and N(α)|St(A,α) are simplically isomorphic. Therefore
H∗(N(α̃)) = H∗(N(α)|St(A,α)). Hence

Ȟ∗(A) = lim←−
Γ

H∗(N(α̃)) = lim←−
Γ

H∗(N(α)|St(A,α)) = lim←−
Cov X

H∗(N(α)|St(A,α))

and the proof is finished.
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In the above the coefficient group was inessential. From now on we assume that
the coefficient group is a field F . A compact set A is acyclic provided

Ȟq(A) =

{
0 for q > 0,

F for q = 0.

Denote by Ȟ(X) the reduced homology vector space of X (see [ES-M] or [Sp-M]).

(5.12) Proposition. Let A be a closed acyclic subset of X. Then for every
covering α ∈ Cov X there exists a refinement β ∈ Cov X of α such that the
homomorphism

iβ
α∗: H̃∗(N(β)|St2(A,β))→ H̃∗(N(α)|St(A,α))

is a trivial homomorphism of vector spicas.

Proof. We recall that the coefficients are in a field F . Hence H∗(N(α)) are
finite-dimensional graded vector spaces. Since H̃∗(A) = 0, by (5.10) we can find
a covering γ ∈ Cov X such that the homomorphism

iγ
α∗: H̃∗(N(γ)|St(A,γ))→ H̃∗(N(α)|St(A,α))

is trivial. Let β be a star-refinement of γ (i.e. for each B ∈ β there is U ∈ γ such
that St(B, β) ⊂ U). Then

St2(A, β) ⊂ St(A, γ), iβ
γ (N(β)|St2(A,β)) ⊂ N(γ)|St(A,γ).

Therefore, equation iβ
α∗ = iγ

α∗ ◦ iβ
γ∗ is trivial on H̃∗(N(β)|St2(A,β)) and the proof is

completed. �

We shall need also some information about chain complexes as considered in
(see also: [ES-M], [SeS] or [Dz1-M]).

Let (K, τ) be a finite polyhedron with a fixed triangulation τ . Its n-th barycen-
tric subdivision is denoted by τn. A subset U ⊂ K is called polyhedral provided
there is an integer l such that τ l induces a triangulation of the closure cl U = U

of U in K.
We denote by C∗(K, τ) the oriented chain with coefficients in Q. The carrier

of c ∈ C∗(K, τ) (carr c) is the smallest polyhedral subset X ⊂ K such that c ∈
C∗(X, τ). By b: C∗(K, τ)→ C∗(K, τ l) we denote the baricentric subdivision map
which maps each chain onto its l-th barycentric subdivision. By c∗: C∗(K, τ l) →
C∗(K, τ) we denote any chain map induced by a simplical approximation of the
map idK .
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6. Maps of spaces of finite type

In this section we shall formulate homological version of Theorem (2.16). Note
that the result obtained below is very useful in the fixed point theory.

The aim of this section is to prove the following:

(6.1) Theorem. Let (X, d) be a compact metric space of a finite type. Then
there exists ε > 0 such that for every compact space Y and for every two maps
f, g: Y → X if f ∼ε g, (i.e. d(f(y), g(y)) < ε, for every y ∈ Y ), then f∗ = g∗.

(6.2) Remark. In view of the duality theorem, (6.1) can be formulated in
terms of homology or cohomology. We prefer to prove (6.1) for cohomology, i.e.
we shall prove that f∗ = g∗.

Before the proof of (6.1) we shall formulate a lemma.

(6.3) Lemma. Let β = {U1, . . . , Un} ∈ Covf (X) of a metric space X. Then
there exists α = {V1, . . . , Vn} ∈ Covf (X) such that α ≥ β and V i ⊂ Ui, for every
i = 1, . . . , n, where V i = cl Vi.

Proof. For given i we consider

Fi = X \ Ui and F ′
i = X \

m⋃
j �=i
j=1

Uj.

Since Fi ∩ F ′
i = ∅ we can find two open sets U and Vi such that:

Fi ⊂ U, F ′
i ⊂ Vi and U ∩ Vi = ∅.

Now, it is easy to see that V i ⊂ Ui and the family {U1, . . . , Ui−1, Vi, Ui+1, . . . , Un}
is a covering of X. If we repeat the above construction for i = 1, . . . , n successively
we get the needed covering α. �

Now, we are able to prove Theorem (6.1).

Proof of Theorem (6.1). Let [uα1], . . ., [uαk] be a basis of H∗(X), where
uαi∈H∗(N(αi)) for each i = 1, . . . , k. We choose a covering α = {U1, . . . , Un} of X

such that α ≥ αi for all i = 1, . . . , k. Consider simplicial maps iααi : N(α)→ N(αi)
for each i = 1, . . . , k. Then

vi
α = i∗

ααi
(uαi) ∈ [uαi] for each i.

Applying Lemma (6.3) to the covering α, we obtain a covering β = {V1, . . . , Vn}
such that V i ⊂ Ui for each i = 1, . . . , n. Let iβα: N(β) → N(α) be a simplicial
map given by the vertex transformation iβα(Vi) = Ui for each i. Then

wi
β = i∗

βα(vi
α) ∈ [uαi] for each i = 1, . . . , k.
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Let ε = mini dist(V i, X \ Ui). We may assume without loss of generality that
Ui �= X for each i. Since V i ∩X \Ui = ∅ and V i, X \Ui are compact, non-empty
sets, we deduce that ε is a positive real number.

Let Y be a compact space and let f, g: Y→X be two maps such that d(f(y), g(y))
< ε for each y ∈ Y . We assert that f∗ = g∗. Consider the coverings γ = f−1(α)
and δ = g−1(β). It is easy to see that

g−1(Vi) ⊂ f−1(Ui) for each i = 1, . . . , n and δ ≥ γ.

Let iδγ : N(δ) → N(γ) be a simplicial map given by the vertex transformation
iδγ(g−1(Vi)) = f−1(Ui) for each i = 1, . . . , n. We have the following commutative
diagram:

N(γ)
fα �� N(α)

N(δ)

iδγ

��

gβ

�� N(β)

iβα

��

This implies that i∗
δγf∗

α(vi
α) = g∗

β(wi
β) for each i = 1, . . . , k and hence we obtain

[f∗
α(vi

α)] = [g∗
β(wi

β)]. Since g∗([uαi]) = [g∗
β(wi

β)] and f∗([uαi]) = [f∗
α(vi

α)], we find
that the maps f∗, g∗ are equal by properties of H∗(X). Finally, from this we
deduce that f∗ = g∗ and the proof of (6.1) is completed. �

Finally, observe that if X is a compact ANR-space (6.1) follows from (2.16).
Later, A. Gmurczyk proved Theorem (6.1) for X ∈ AANR (cf. [Bo-M]). The above
formulation of Theorem (6.1) is taken from [Go1-M].

In particular, note that any compact AANR-space is of a finite type.

7. The Čech homology functor with compact carriers

Let (X, X0) be an arbitrary pair in E . We shall denote by M = {(Aα, A0α)}
the directed set of all compact pairs such that (Aα, A0α) ⊂ (X, X0) for each α,
with the natural quasi-order relation defined by the inclusion ≤ defined by the
condition

(Aα, A0α) ≤ (Aβ , A0β) if and only if (Aα, A0α) ⊂ (Aβ , A0β).

If (Aα, A0α) ≤ (Aβ , A0β), then we shall denote by iαβ: (Aα, A0α) → (Aβ, A0β)
the inclusion map. For each pair (Aα, A0α) consider the graded vector space
H∗(Aα, A0α), together with the linear map iαβ∗ given for (Aα, A0α) ≤ (Aβ , A0β).
Then the family {H∗(Aα, A0α), iαβ∗} is a direct system in the category A overM.
We define a graded vector space

H(X, X0) = lim−→{H∗(Aα, A0α), iαβ∗}.
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It is easy to see that H(X, X0) = {Hq(X, X0)}, where

Hq(X, X0) = lim−→{Hq(Aα, A0α), iαβ∗}, for each q.

Let f : (X, X0) → (Y, Y0) be a map. Consider the directed sets M = {(Aα, A0α)}
and N = {(Bγ , B0γ)} for (X, X0) and (Y, Y0) respectively. We define F :M→ N
by the formula

F ((Aα, A0α)) = (f(Aα), f(A0α)) for each (Aα, A0α) ∈M.

We observe that if (Aα, A0α) ≤ (Aβ , A0β) then

F ((Aα, A0α)) ≤ F ((Aβ, A0β)).

For each α, by fα: (Aα, A0α) → (f(Aα), f(A0α)) we denote a map given by
fα(x) = f(x) for each x ∈ A. Then the map F and the family {fα∗} is a map
of directed systems {H∗(Aα, A0α), iαβ∗} and {H∗(Bγ , B0γ), iδγ∗}. We define the
induced linear map H(f) for f , by putting

H(f) = f∗ = lim−→{f∗α}.

Then we have f∗q = lim−→{fα∗q} for every q.

From the functoriality of lim−→ we deduce that H: E → A is a covariant functor.

The functor H is said to be the Čech homology functor with compact carriers.
We note that if (X, X0) is a compact pair, then the family consisting of the

single pair (X, X0) is a cofinal subset of M = {(Aα, A0α)} for (X, X0), and hence
we obtain H∗(X, X0) = H(X, X0). Similarly, if f : (X, X0) → (Y, Y0) is a map of
compact pairs, then H∗(f) = H(f).

The following properties of H clearly follow from the Eilenberg–Steenrod axioms
for H∗ and some simple properties of lim−→ .

(7.1) Property. If f, g: (X, X0) → (Y, Y0) are homotopic maps, then the in-
duced linear maps are equal, that is, f∗ = g∗.

(7.2) Property. Let (X, X0) be a pair in E and let i: X0 → X, j: X → (X, X0)
be inclusions. Then there exists a linear map

∂q: Hq(X, X0)→ Hq−1(X0) for each q,

so that

· · · �� Hq(X0)
i∗q

�� Hq(X)
j∗q

�� Hq(X, X0)
∂q

�� Hq−1(X0) �� · · ·

is exact.

The linear map ∂q has the additional property of being natural in the following
sense:
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(7.3) Property. Given a map f : (X, X0)→ (Y, Y0) in E , the diagram

Hq(X, X0)

f∗q

��

δq
�� Hq−1(X0)

(fX0 )∗q−1

��

Hq(Y, Y0)
δq

�� Hq−1(Y0)

commutes for all q, where fX0 : X0 → Y0 is given by the formula fX0 (x) = f(x)
for each x ∈ X0.

We prove the following generalization of (6.1).

(7.4) Theorem. Let (X, d) be a compact metric space of finite type. Then
there exists an ε > 0 such that, for every two maps f, g: Y → X, where Y is
a metric space, the condition d(f(y), g(y)) < ε for each y ∈ Y implies f∗ = g∗.

Proof. Let ε be as in (6.1). Consider two maps f , g from a metric space
Y to X. Let A be a compact subset of Y and let fA, gA: A → X be given by
fA(y) = f(y), gA(y) = g(y) for each y ∈ A. We observe that fA, gA satisfy the
assumptions of (6.1). So, we have (fA)∗ = (gA)∗. Since

f∗ = lim−→
A

{(fA)∗} and g∗ = lim−→
A

{(gA)∗},

we infer that f∗ = g∗ and the proof of (7.4) is completed. �

8. Vietoris maps

Let X, Y be two spaces and let f : Y → X be a continuous map; f is called
closed provided for every closed set A ⊂ Y the set f(A) is closed in X; f is called
proper provided for every compact K ⊂ X the set f−1(K) is compact. We have:

(8.1) Proposition. If f : Y → Y is a proper map, then f is closed.

Proof. Let A ⊂ Y be a closed subset of Y . We have to prove that f(A) is
closed in X. Consider the sequence {xn} ⊂ f(A) such that limn xn = x. It is
sufficient to prove that x ∈ f(A).

In order to show it let us consider the set K = {xn}∪{x}. Then K is a compact
subset of X and consequently the set f−1(K) is compact. For every n we choose
yn ∈ A such that f(yn) = xn. Then {yn} ⊂ f−1(K) and hence we can assume,
without loss of generality, that limn yn = y. Since A is closed we have y ∈ A but
f is continuous so f(y) = x ∈ f(A) and the proof is completed.

If we consider, for example, a map f : R→ R, f(x) = 3 for every x ∈ R, then f

is closed but not proper, so the converse to (8.1) is not true.
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As we already known a space X is closed acyclic provided:

(i) Hq(X) = 0 for all q ≥ 1, and
(ii) H0(X) ≈ Q.

In other words a space X is acyclic if its homology are exactly the same as the
homology of a one point space {p}. An equivalent definition of acyclic spaces is the
following: a space X is acyclic if and only if the map j: {p} → X, j(p) = x0 ∈ X,
induces an isomorphism j∗: H∗({p})→ H∗(X).

Now from the homotopy axiom for the Čech homology functor we get:

(8.2) Proposition. If X is a contractible space, then X is acyclic.

From (8.2) we get:

(8.3) Corollary. If X is one of the following:

(8.3.1) X is a convex subset of some normed space E,
(8.3.2) X ∈ AR,

then X is acyclic.

Since the Čech homology functor is continuous on Ẽ (see [ES-M]) we get:

(8.4) Proposition. If X is an Rδ-space, then X is acyclic.

So, the notion of acyclicity is more general than earlier notions of contractibility,
ARs and Rδ-sets.

Now, we shall introduce the main notion of this section.

(8.5) Definition. A map p: (X, X0)→ (Y, Y0) of pairs is said to be a Vietoris
map provided the following conditions are satisfied:

(8.5.1) p: X → Y is proper,
(8.5.2) p−1(Y0) = X0,
(8.5.3) the set p−1(y) is acyclic, for every y ∈ Y .

In what follows we shall reserve the symbol p: (X, X0) ⇒ (Y, Y0) for Vietoris
maps. First, note the following evident proposition:

(8.6) Proposition. Let p: (X, X0) ⇒ (Y, Y0) and (B, B0) ⊂ (Y, Y0), then the
map p̃: (p−1(B), p−1(B0))→ (B, B0), p̃(x) = p(x), for every x ∈ p−1(B), is a Vi-
etoris map too.

In 1927, L. Vietoris proved the following result:

(8.7) Theorem. Let X and Y be compact spaces and p: X ⇒ Y be a Vietoris
map, then p∗: H∗(X) ∼−→ H∗(Y ) is an isomorphism.

By applying to (8.7) the exactness axiom for the Čech homology (with coeffi-
cients in Q) and the Five Lemma we obtain:
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(8.8) Theorem. Let (X, X0), (Y, Y0) be compact pairs and p: (X, X0)⇒ (Y, Y0)
be a Vietoris map. Then

p∗: H∗(X, X0) ∼−→ H∗(Y, Y0)

is an isomorphism.

Now, the importance of the Čech homology functor with compact carriers is
evident in the following Vietoris Mapping Theorem.

(8.9) Theorem (Vietoris Mapping Theorem). If p: (X, X0)⇒ (Y, Y0) is a Vi-
etoris map, then p∗: H∗(X, X0) ∼−→ H∗(Y, Y0) is an isomorphism.

Proof. Consider M = {(Aα, A0α)} and N = {(Bγ , B0γ)} for (X, X0) and
(Y, Y0), respectively. Let M0 = {(f−1(Bγ), f−1(B0γ)) | (Bγ , B0γ) ∈ N }. Since f

is a proper map, we have M0 ⊂ M. It is easy to see that M0 is a cofinal subset
of M. Therefore we may assume without loss of generality that

H(X, X0) = lim−→
α∈M0

{H∗(Aα, A0α), iαβ∗}.

Then for each γ ∈ N the map fγ : (f−1(Bγ), f−1(B0γ)) → (Bγ , B0γ) is a Vietoris
map of compact pairs. Using (8.7) we infer that

fγ∗: H∗(f−1(Bγ), f−1(B0γ)) ∼−→ H∗(Bγ , B0γ)

is a linear isomorphism. Consequently, the linear map f∗ = lim−→ γ∈N {fγ∗} is an

isomorphism. The proof of (8.9) is completed. �

Vietoris mappings have some nice properties. Namely, first we prove:

(8.10) Proposition. If p1: X ⇒ Y and p2: Y ⇒ Z are two Vietoris maps,
then so is the composition p2 ◦ p1: X ⇒ Z.

Proof. Evidently, the composition is a proper and onto. So for the proof it
is sufficient to show that for every z ∈ Z the set (p2 ◦ p1)−1(z) is acyclic. Since
p2 is a Vietoris map we know that p−1

2 (z) is an acyclic set. Now, let us observe
that the map p: p−1

1 (p−1
2 (z))→ p−1

2 (z), p(x) = p1(x) for every x ∈ p−1
1 (p−1

2 (z)), is
a Vietoris map. Consequently by applying Theorem (8.7) we deduce that the set
p−1

1 (p−1
2 (z)) is acyclic and the proof of (8.10) is completed. �

We shall need the following auxiliary notions. Consider a diagram:

(∗) X1
q−→ Y

p←− X2
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The fibre product of this diagram is a map f : X1 �Y X2 → Y , where X1 �Y X2 =
{(x1, x2) ∈ X1 × X2 | q(x1) = p(x2)} and f(x1, x2) = q(x1) (= p(x2)). By the
pull-back of (∗) we mean the following diagram:

(∗∗) X1
p←− X1 �Y X2

q−→ X2

where p(x1, x2) = x1, q(x1, x2) = x2 for (x1, x2) ∈ X1 �Y X2. The following
proposition is self-evident:

(8.11) Proposition. If in the diagram (∗) the map p is a Vietoris map, then
the map p in (∗∗) is a Vietoris map too.

We will end this section by noting that for cohomology the Vietoris Mapping
Theorem can be formulated in a more general form.

Let (X, d) be a metric space and C be a subset of X. We define the relative
dimension reldimX C of C with respect to X by putting:

(8.12) reldimX C = sup{dim A | A ⊂ C and A is a closed subset of X}.

We let also reldimX ∅ = −∞.

Let p: X → Y be a continuous map from X onto Y . We let:

Mk(p) = {y ∈ Y | Hk(p−1(y)) �= 0} for k > 0,

Mk(p) = {y ∈ Y | Hk(p−1(y)) �= Q} for k = 0.

Moreover, we put:

mn(p) = 1 + max
0≤k≤n−1

{reldimX(Mk(p)) + k}.

The following generalization of the Vietoris Mapping Theorem is owed to E. Sklja-
renko [Sk1].

(8.13) Theorem. Let p: X → Y be a continuous, closed and onto map. If
there exists an integer n such that mn(p) < n, then the induced linear map:

p∗k: Hk(Y )→ Hk(X)

is an epimorphism for k = mn(p), an isomorphism for mn(p) < k < n and
a monomorphism for k = n.

From (8.13) we infer:
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(8.14) Theorem. Let p: X → Y be a continuous, closed onto map such that
p−1(y) is acyclic (with respect to the functor H∗), for every y ∈ Y then the induced
linear map:

p∗: H(Y ) ∼−→ H(X)

is an isomorphism.

Assume that dim X < +∞ and Y ∈ ANR is a space such that πn(Y ) is finitely
generated for every n ≥ 1, where as usually πn(Y ) denote n-th homotopy group
of Y . Assume further that p: Γ⇒ X is a Vietoris map. If X and Y are, addition-
ally, compact spaces then we have:

(8.15) p#: [X, Y ] ∼−→ [Γ, Y ]

is a bijection, where for f : X → Y we let p#([f ]) = [f ◦ p]. In the other words
Vietoris mappings give us a classification of homotopy classes (cf. [Kr2-M]).

9. Homology of open subsets of Euclidean spaces

Consider the subcategory E1 ⊂ E consisting of all pairs (U, V ) such that U

and V are open subsets in the Euclidean space Rn for some n, or U is a finite
polyhedron and V is an open subset of U , and all maps of such pairs.

Since the family of all pairs of finite polyhedra {(K, K0)} is cofinal in the family
of all compact pairs {(A, A0)} contained in (U, V ), we obtain the following:

(9.1) Property. On the category E1 the functors H and H are naturally iso-
morphic (H denotes the singular homology functor with coefficients in Q).

Let A ⊂ U ⊂ Rn, where A is compact and U is open in Rn. We identify the
n-sphere Sn = {x ∈ Rn+1 | ‖x‖ = 1} and Rn ∪ {∞}. Then from the excision
axiom for singular homology and (9.1) we deduce:

(9.2) Property. The inclusion j: (U, U \ A) → (Sn, Sn \ A) induces an iso-
morphism

j∗: H(U, U \A) ∼−→ H(Sn, Sn \A).

Let K be a finite polyhedron and U an open subset of Rn where K ⊂ U .
Consider a Vietoris map p: Y ⇒ U and a map q: Y → K from a Hausdorff space
Y to K. We prove the following:

(9.3) Property. There are isomorphisms α1, α2, α3 such that the following
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diagram commutes:

H((U, U \K)× U) ∼
α1

�� H(U, U \K) ⊗H(U)

H((U, U \K) × Y ) ∼
α3

��

(id×p)∗

��

(id×q)∗
��

H(U, U \K)⊗H(Y )

id⊗p∗

��

id⊗q∗
��

H((U, U \K) ×K) ∼
α2

�� H(U, U \K) ⊗H(K)

Proof. It is easy to see that the families

{(M, M0) × L}, {(M, M0)× p−1(L)}, {(M, M0)×K},

where M , M0, L are finite polyhedra, are cofinal in families of all compact pairs
contained in (U, U \K)×U , (U, U \K)× Y and (U, U \K)×K, respectively. We
observe that for every L the space p−1(L) is of finite type (p is a Vietoris map),
so we may apply (5.6) and have the commutative diagram

H∗((M, M0) × L) ∼ �� H∗(M, M0)⊗H∗(L)

H∗((M, M0)× p−1(L) ∼ ��

(id×pL)∗

��

(id×qp−1(L))∗
��

H∗(M, M0)⊗H∗(p−1(L))

id⊗(pL)∗

��

id⊗(qp−1(L))∗
��

H∗((M, M0) ×K) ∼ �� H∗(M, M0) ⊗H∗(K).

From the commutativity of the above diagram and the commutativity of lim−→
and ⊗ we simply deduce (9.3).

Consider the diagram

U
p←− Y

q−→ K

where p and q are as in (9.3). With the above diagram we associate the following:

(U, U \K)
p←− (Y, Y \ p−1(K))

q−→ (Rn, Rn \ {0})

where p(y) = p(y) and q(y) = p(y) − q(y) for each y ∈ Y . We observe that p is
a Vietoris map. Let ∆: (U, U\K)→ (U, U\K)×U be a map given by ∆(x) = (x, x)
and let d: (U, U \K)×K → (Rn, Rn \ {0}) be given by d(x, x′) = x− x′, for each
x ∈ U and x′ ∈ K. �
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(9.4) Lemma. The following diagram commutes

H(U, U \K)
∆∗ ��

q∗p−1
∗ �����

����
����

����
H(U, U \K)⊗H(U)

id⊗q∗p−1
∗ �� H(U, U \K)⊗H(K)

d∗������
����

����
����

�

H(Rn, Rn \ {0})

Proof. Consider the diagram

(U, U \K)× U (U, U \K) × Y
id×p
��

id×q
�� (U, U \K)×K

d

��

(U, U \K)

∆

��

(Y, Y \ p−1(K))
p

��

f

��

q
�� (Rn, Rn \ {0})

where the map f is given by f(y) = (p(y), y) for each y ∈ Y . From the commuta-
tivity of the above diagram and (9.3) we obtain (9.4).

Let us fix for each n an orientation 1 ∈ Hn(Sn) ≈ Q of the n-sphere Sn =
Rn ∪ {∞}. Consider the diagram

Sn i−→ (Sn, Sn \A)
j←− (U, U \A)

in which A is a compact subset of U and U is open in Rn; i, j are inclusions.
From (9.2) we infer that j∗ is an isomorphism. We define the fundamental class
OA of the pair (U, A) by the equality OA = j−1∗n i∗n(1). �

Lemma (9.5). Let A ⊂ A1 ⊂ V ⊂ U ⊂ Rn, where A, A1 are compact, U , V

are open subsets of Rn and let k: (V, V \ A1) → (U, U \ A) be the inclusion map.
Then we have k∗n(OA1) = OA.

Proof. Consider the commutative diagram

Sn i ��

i1 ����
���

���
���

(Sn, Sn \A) (U, U \A)
j

��

(Sn, Sn \A1)

k1

��

(V, V \A1)
j1

��

k

��

in which j1, i1, k1 are inclusion maps. Applying Hn to the above diagram, we
obtain (9.5). �

Now, we formulate Dold’s Lemma in terms of Čech homology with compact
carriers. Let K ⊂ U ⊂ Rn, where K is a finite polyhedron and U an open subset
of Rn. We define the following maps:

t: U ×K → K × U, t(x, x′) = (x′, x), for each x ∈ U and x′ ∈ K,

O×
K : H(K)→ H(U, U \K)⊗H(K), O×

K(u) = OK ⊗ u, for each u ∈ H(K),

×: Q⊗H(U)→ H(U), ×(q ⊗ u) = q · u, for each u ∈ H(U), q ∈ Q.
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(9.6) Lemma. The composite

l = l(K, U): H(K)
O×

k−−−−−→ H(U, U \K)⊗H(K)
∆∗⊗id−−−−−→ H(U, U \K)⊗H(U)⊗H(K)
id⊗t∗−−−−−→ H(U, U \K)⊗H(K)⊗H(U)
d∗⊗id−−−−−→ Q⊗H(U) ×−→ H(U)

coincides with the linear map i∗: H(K)→ H(U).

(9.7) Remark. Dold’s Lemma was given in terms of singular homology in
[Do-M] (cf. also [Do2]). Lemma (9.6), in view of (9.1), clearly follows from the
original statement of Dold’s Lemma.

We recall the Alexander duality theorem (cf. [Do-M], [ES-M], [HW-M], [Sp-M]):

(9.8) Theorem. If A is a compact subset of the Euclidean space Rn+1 then for
every k ≥ 0 the vector spaces H0

n−k(Rn \ A) and Hk(A) are linearly isomorphic,
where H0

n−k denotes the (n− k)-reduced singular homology functor and Hk (as in
Section 6) is the k-th Čech cohomology functor.

(9.9) Definition. A compact nonempty subset A ⊂ Sn is called strongly
acyclic provided the complement Sn \A of A is infinitely connected, i.e. it is path
connected and for every k = 1, 2, . . . any map f : Sk → Sn \ A is homotopic to
a constant map.

Another words a compact nonempty set A ⊂ Sn is called strongly acyclic if the
set Sn \A is path connected and for every k ≥ 1 the k-homotopy group πk(Sn \A)
of Sn \A is equal to zero. In what follows such A set is called infinitely connected.

As a direct application of the Hurewicz isomorphism theorem (cf. [Sp-M]) we
get:

(9.10) Proposition. If the set A ⊂ Sn is strongly acyclic, then A is acyclic.

Let us observe that the converse to (9.9) is false, for example there exists an
embedding A of the unit interval [0, 1] into S3 such that S3 \A is not 1-connected,
i.e. π1(S3, A) �= 0.

We shall make use from the following two propositions (see [Bi2]).

(9.11) Proposition. Let K be a compact subset of Rn with dim K ≤ n − 3
and such that Rn \K is 1-ULC. Then for every compact subset C of K the set
Rn \ C is also 1-ULC.
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(9.12) Proposition. Let K and C be two compact subsets of Rn, n ≥ 6, such
that Rn \ C and Rn \ K are 1-ULC. Let h: K → C be a homeomorphism and
assume that 2 dim K + 2 ≤ n. Then there is a homeomorphism F : Rn → Rn such
that F (x) = h(x) for every x ∈ K.

(9.13) Theorem (Lefschetz Duality Theorem, [Sp-M]). Let X be a compact
orientable n-dimensional manifold with boundary ∂X and let j: X \ ∂X → X be
a inclusion. Then for any q ≥ 0 we have the following isomorphisms:

Hq(X, ∂X)
ρ

∼ �� Hn−q(X \ ∂X) Hn−q(X)
j∗n

∼��

where ρ is induced by the orientation of X.

We finish this section by recalling the Van Kampen theorem ([Sp-M]).

(9.14) Theorem. Let X1, X2 be two open subsets of X such that X = X1∪X2

and X1, X2, X0 = X1 ∩X2 are path-connected. Let x0 ∈ X0 and G = π1(X, x0),
Gi = π1(Xi, x0), i = 0, 1, 2. Assume that the following diagram is commutative:

G0

θ1

����
��
��
�� θ2

		�
��

��
��

�

w0

��

G1

w1
		�

��
��

��
� G2

w2
����
��
��
��

G

where θ1, θ2, w0, w1, w2 are induced by the respective inclusions. Assume more
that wi(Gi), i = 0, 1, 2 generate G. If H is an arbitrary group and ψi: Gi → H,
i = 0, 1, 2 are homomorphisms such that ψ0 = ψ1θ1 = ψ2θ2 then there exists an
unique homomorphism λ: G→ H such that ψi = λwi, i = 0, 1, 2.

10. The (ordinary) Lefschetz number

In what follows all the vector spaces are taken over Q. Let f : E → E be an
endomorphism of a finite-dimensional vector space E. If v1, . . . , vn is a basis for E,
then we can write

f(vi) =
n∑

j=1

aijvj, for all i = 1, . . . , n.

The matrix [aij] is called the matrix of f (with respect to the basis v1, . . . , vn).
Let A = [aij] be an (n × n)-matrix; then the trace of A is defined as

∑n
i=1 aii.

If f : E → E is an endomorphism of a finite-dimensional vector space E, then the
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trace of f , written tr(f), is the trace of the matrix of f with respect to some basis
for E. If E is a trivial vector space then, by definition, tr(f) = 0. It is a standard
result that the definition of the trace of an endomorphism is independent of the
choice of the basis for E.

We recall the following two basic properties of the trace:

(10.1) Property. Assume that in the category of finite-dimensional vector
spaces the following diagram commutes

E′ f
�� E′′

E′

f′

��

f
�� E′′

g



�������������
f ′′

��

Then tr(f ′) = tr(f ′′); in other words tr(gf) = tr(fg).

(10.2) Property. Given a commutative diagram of finite-dimensional vector
spaces with exact rows

0 �� E′ ��

f ′

��

E ��

f

��

E′′ ��

f ′′

��

0

0 �� E′ �� E �� E′′ �� 0

we have tr(f) = tr(f ′) + tr(f ′′).

Let E = {Eq} be a graded vector space in A of finite type. If f = {fq} is an
endomorphism of degree zero of such a graded vector space, then the (ordinary)
Lefschetz number λ(f) of f is defined by

λ(f) =
∑

q

(−1)q tr(fq).

Let E be a finite-dimensional vector space and v1, . . . , vn a basis for E. We define
a basis v1, . . . , vn for HomQ(E) by putting

vi(vj) =

{
1 for i = j,

0 for i �= j.

The basis v1, . . . , vn is called the conjugate basis to v1, . . . , vn. For a vector space
E and any integer q, define a linear map Θq : HomQ(E) ⊗ E → Hom(E, E) by
letting

Θq(u⊗ v)(v′) = (−1)qu(v′) · v for u ∈ HomQ(E), v, v′ ∈ E,

and extend Θq to all HomQ(E)⊗ E.
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(10.3) Lemma. If the vector space E is finite-dimensional, then Θq is an iso-
morphism.

Proof. Let v1, . . . , vn be a basis for vector space E and v1, . . . , vn the conju-
gate basis to v1, . . . , vn. Then every element a in HomQ(E)⊗E has the following
form:

a =
n∑

i,j=1

aijvi ⊗ vj.

If Θq(a) = 0 then

Θq(a)(vk) = (−1)q
n∑

j=1

akjvk(vk) · vj = (−1)q
n∑

j=1

akj · vj = 0

so, akj = 0 for all k, j, which implies that a = 0. To prove Θq is onto, let
f ∈ Hom(E, E). Then we can write

f(vj ) = aj1v1 + . . . + ajnvn for j = 1, . . . , n.

Let a = (−1)q
∑n

m,k=1 amkvm ⊗ vk. For each j = 1, . . . , n we see that

Θq(a)(vj) = (−1)2q
n∑

k=1

ajk · vk = f(vj).

So, f and Θq(a) agree on the basis for E, which implies that Θq is onto. The proof
of (10.3) is completed. �

Define e: HomQ(E)⊗ E → Q as the evaluation map

e(u ⊗ v) = u(v) for u ∈ HomQ(E), v ∈ E.

(10.4) Lemma. If E is a finite-dimensional vector space and f : E → E is
a linear map then

e(Θ−1
q (f)) = (−1)q tr(f).

Proof. Take a basis v1, . . . , vn for E and write

f(vj ) =
n∑

k=1

ajkvk for j = 1, . . . , n.

From the proof of (10.3) we know that

Θ−1
q (f) = (−1)q

n∑
m,k=1

amk(vm ⊗ vk),
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so

e(Θ−1
q (f)) = (−1)q

n∑
k,m=1

amk · vm(vk) = (−1)q
∑

k

akk = (−1)q tr(f)

and the proof of (10.4) is completed. �
Let E = {Eq} be a graded vector space of finite type. Define the following

graded vector spaces:

(1) E∗ = {E∗
q}, where E∗

q = HomQ(E−q),
(2) Hom(E, E) = {(Hom(E, E))k},

where (Hom(E, E))k =
⊕

−q+i=k Hom(Eq, Ei),
(3) E∗ ⊗ E = {(E∗ ⊗ E)k}, where (E∗ ⊗E)k =

⊕
q+i=k E∗

q ⊗ Ei.

Define Θ: (E∗ ⊗E)0 → (Hom(E, E))0 by letting

Θ(uq ⊗ vi) = ΘQ(uq ⊗ vi) for uq ∈ HomQ(Eq), vi ∈ Ei, q = i

and extend Θq to all (E∗ ⊗E)0; and e: (E∗ ⊗ E)0 → Q by letting

e(uq ⊗ vi) = uq(vi) for uq ∈ HomQ(Eq), vi ∈ Ei, q = i

and extend e to all (E∗ ⊗ E)0. It is immediate from Lemma (10.4) that

(10.5) Theorem. If f : E → E is a linear map of degree zero on a graded
vector space of finite type E then e(Θ−1(f)) = λ(f).

11. The generalized Lefschetz number

Let f : E → E be an endomorphism of an arbitrary vector space E. Denote by
f(n): E → E the n-th iterate of f and observe that the kernels

Ker f ⊂ Ker f(2) ⊂ . . . ⊂ Ker f(n) ⊂ . . .

form an increasing sequence of subspaces of E. Let us now put

N(f) =
⋃
n

Ker f(n) and Ẽ = E/N(f).

Clearly, f maps N(f) into itself and therefore induces the endomorphism f̃ : Ẽ → Ẽ

on the factor space Ẽ = E/N(f).

(11.1) Property. We have f−1(N(f)) = N(f); consequently, the kernel of
the induced map f̃ : Ẽ → Ẽ is trivial, i.e. f̃ is a monomorphism.

Proof. If v ∈ f−1(N(f)), then f(v) ∈ N(f). This implies that for some n

we have f(n)(f(v)) = 0 = f(n+1)(v) and v ∈ N(f). Conversely, if v ∈ N(f),
then f(n)(v) = 0 for some n; then f(n)(f(v)) = 0 and hence f(v) ∈ N(f), i.e.
v ∈ f−1(N(f)). �

Let f : E → E be an endomorphism of a vector space E. Assume that dim Ẽ <

+∞; in this case we define the generalized trace Tr(f) of f by putting Tr(f) =
tr(f̃).
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(11.2) Property. Let f : E → E be an endomorphism. If dim E < +∞ then
Tr(f) = tr(f).

Proof. We have the commutative diagram with exact rows

0 �� N(f) ��

f

��

E ��

f

��

E/N(f) ��

f̃
��

0

0 �� N(f) �� E �� E/N(f) �� 0

in which f̃ is induced by f . Applying (11.2), to the above diagram, we obtain

(11.2.1) tr(f) = tr(f) + tr(f̃) where tr(f̃) = Tr(f).

We prove that tr(f) = 0. Since dim E < +∞, we may assume that N(f) =
Ker f(n) for some n ≥ 1. Now consider the commutative diagram

Ker(f) ��

0=f1

��

Ker(f(2)) ��

f 2

����			
			

			
	

· · · �� Ker(f(n−1)) ��

f n−1

��

Ker(f(n))

f n=f

����
















Ker(f) �� Ker(f(2)) �� · · · �� Ker(f(n−1)) �� Ker(f(n))

where the maps f i, fi, i = 1, . . . , n are given by f (observe that if v ∈ Ker(f(i)),
then f(v) ∈ Ker(f(i−1)), for every i > 1). Then from (11.1) we infer

tr(f) = tr(fn−1) = . . . = tr(f2) = tr(f1) = 0.

Finally, from (11.2.1) we obtain Tr(f) = tr(f̃) = tr(f) and the proof of (11.2) is
completed. �

Let f = {fq} be an endomorphism of degree zero of a graded vector space
E = {Eq}. We say that f is a Leray endomorphism provided that the graded
vector space Ẽ = {Ẽq} is of finite type. For such an f we define the (generalized)
Lefschetz number Λ(f) of f by putting

Λ(f) =
∑

q

(−1)q Tr(fq).

It is immediate from (11.2) that

(11.3) Property. Let f : E → E be an endomorphism of degree zero. If E is
a graded vector space of finite type then Λ(f) = λ(f).

The following property of the Leray endomorphism is of importance:
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(11.4) Property. Assume that in the category A the following diagram com-
mutes:

E′ f
�� E′′

E′

f′

��

f
�� E′′

f′′

��
g



�������������

Then if either f ′ or f ′′ is a Leray endomorphism, then the other is a Leray endo-
morphism, and in that case Λ(f ′) = Λ(f ′′).

Proof. By assumption we have, for each q, the following commutative diagram
in the category of vector spaces:

E′
q

fq
�� E′′

q

E′
q

fq

��

f ′
q

��

E′′
q

f ′′
q

��
gq

�������������

For the proof it is sufficient to show that if either Tr(f ′
q) or Tr(f ′′

q ) is defined,
then so is the other trace, and in that case Tr(f ′

q) = Tr(f ′′
q ). We observe that the

commutativity of the above diagram implies that the following diagram commutes:

E′
q/N(f ′

q)
f̃q

�� E′′
q /N(f ′′

q )

E′
q/N(f ′

q)

f̃ ′
q

��

f̃q

�� E′′
q /N(f ′′

q )

g̃q

����������������
f̃ ′′

q

��

Since f̃q and g̃q are monomorphisms, the commutativity of the above diagram
implies that dim(E′

q/N(f ′
q)) <∞ if and only if dim(E′′

q /N(f ′′
q )) < +∞, and hence

we conclude that Tr(f ′
q) is defined if and only if Tr(f ′′

q ) is defined. Moreover, from
(10.1) we deduce that Tr(f ′

q) = Tr(f ′′
q ), if Tr(f ′′

q ) is defined. The proof of (11.4) is
completed. �

Assume that the following diagram

E′ f

∼ �� E′′

E′

f′

��

f

∼ �� E′′

f′′

��
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is commutative. Then we obtain the following commutative diagram:

E′ f
�� E′′

E′

f′

��

f
�� E′′

f′′

��

f ′◦f−1�����



�����

Therefore, from (11.4) we obtain:

(11.4.1) Assume that in the category A the following diagram is commutative:

E′ f

∼ �� E′′

E′

f′

��

f

∼ �� E′′

f′′

��

and f is an isomorphism, then the conclusion of (11.4) holds true.

(11.5) Property. Let

· · · �� E′
q

��

f ′
q

��

Eq
��

fq

��

E′′
q

��

f ′′
q

��

E′
q−1

��

f ′
q−1

��

· · ·

· · · �� E′
q

�� Eq �� E′′
q

�� E′
q−1

�� · · ·

be a commutative diagram of vector spaces in which the rows are exact. If two
of the following endomorphisms f = {fq}, f ′ = {f ′

q}, f ′′ = {f ′′
q } are the Leray

endomorphisms then so is the third, and, moreover, in that case we have:

Λ(f ′′) + Λ(f ′) = Λ(f).

Proof. This immediately follows from (9.2). �
Among the above properties of the Leray endomorphisms we note also some

information about weakly nilpotent endomorphisms.

(11.6) Definition. A linear map f : E → E of a vector space E into itself
is called weakly nilpotent provided for every x ∈ E there exists nx such that
fnx (x) = 0

Observe that if f : E → E is weakly nilpotent then N(f) = E, so, we have:

(11.7) Property. If f : E → E is weakly nilpotent then Tr(f) is well defined
and Tr(f) = 0.

Assume that E = {Eq} is a graded vector space and f = {fq}: E → E is
an endomorphism. We say that f is weakly nilpotent if and only if fq is weakly
nilpotent for every q.

From (11.7) we deduce:
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(11.8) Property. Any weakly nilpotent endomorphism f : E → E is a Leray
endomorphism and Λ(f) = 0.

12. The coincidence problem

A natural generalization of the well known fixed point problem is the coincidence
problem. Assume we have two metric spaces (X, d), (Y, d1) and two continuous
mappings p, q: Y → X.

We shall say that p and q have a coincidence provided there exists a point x ∈ X

such that p(x) = q(x). In the case when X = Y and p = idX is the identity map
the coincidence problem for p and q reduces to the fixed point problem of q.

Observe that for arbitrary p and q usually we do not have a coincidence. There-
fore in what follows we can assume that p is a Vietoris map and q: Y → X is
a compact map, i.e. q(Y ) is a compact subset of X.

We assume first that X = U is an open subset of Rn.

(12.1) Lemma. Consider the diagram

U
p⇐= Y

q−→ U

in which p is Vietoris and q is compact. Then the set χp,q = {x ∈ U | x ∈
q(p−1(x))} is compact.

Proof. Consider a sequence {xn} ⊂ U such that xn ∈ q(p−1(xn)) for every n.
For every n we choose yn ∈ p−1(xn) such that q(yn) = xn. It means that

{xn} ⊂ q(Y ), and hence {xn} contains a convergent subsequence and the proof is
completed.

We shall now apply the Čech homology with compact carriers to the theory of
Lefschetz number and establish a general coincidence theorem, which contains the
classical Lefschetz Fixed Point theorem (cf. [Br1-M]) as a special case.

Let U by an open subset of the n-dimensional euclidean space Rn. Consider
the diagram:

(12.2) U
p⇐= Y

q−→ U

in which p is a Vietoris map and q is a compact map. With the above diagram we
associate the diagram:

(12.3) (U, U \ χp,q)
p⇐= (Y, Y \ p−1(χp,q))

q−→ (Rn, Rn \ {0}),

where p(y) = p(y) and q(y) = p(y) − q(y) for every y ∈ Y .
Now we define the index of coincidence I(p, q) of the pair (p, q) by putting (cf.

Section 9):

(12.4) I(p, q) = q∗(p∗)−1(Oχp,q) ∈ Hn(Rn, Rn \ {0}) ≈ Q.
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(12.5) Proposition. If I(p, q) �= 0, then there is a y ∈ Y such that p(y) =
q(y).

Proof. Indeed, if p(y) �= q(y) for each y ∈ Y , then χp,q = ∅ an hence we have:

I(p, q) = q∗(p∗)−1(Oχp,q) = q∗(p∗)−1(O) = 0,

observe that then we have Hn(U, U) = 0. �

From (9.5) clearly follows:

(12.6) Proposition. If A is a compact set such that χp,q ⊂ A ⊂ U , then
I(p, q) = q̃∗(p̃∗)−1(OA), where p̃, q̃ are defined by the same formulae as p and q

in (11.3).

Now we prove the following:

(12.7) Proposition. Let K be a finite polyhedron such that q(Y ) ⊂ K ⊂ U .
Then there exists an element a ∈ (H(K))∗ ⊗H(K) such that I(p, q) = e(a).

Proof. Consider the diagram

Hu(U, U/K)
∆∗ ��

q̃∗p̃−1
∗

��


















(H(U, U/K) ⊗H(U))u

id⊗q1∗ p−1
∗ �� (H(U, U/K) ⊗H(K))0

d∗

�����
���

���
���

���
���

���
���

���

d̂⊗id

��

(I) (II)

Q ≈ Hu(Rn, Rn{0} ((H(K)∗ ⊗H(K))0e
��

in which q1: Y → K is the contraction of q to the pair (Y, K) and d̂: H(U, U \K)→
(H(K))∗ is a linear map of degree (−n) given by:

d̂(u)(v) = d∗(u ⊗ v) for u ∈ H(U, U \K) and v ∈ H(U \K)

and the notations are the same as in Section 9. The subdiagram (I) commutes
(cf. (9.4)).

The commutativity of (II) follows by an easy computation. We let:

a = (d̂⊗ id) ◦ (id⊗ q1∗p−1
∗ )(∆∗(OK)).

Then from the commutativity of the above diagram we get I(p, q) = e(a) and the
proof is completed. �

Now, we are able to prove the following
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(12.8) Theorem (First Coincidence Theorem). If we have diagram (12.2),
then q∗p−1∗ is a Leray endomorphism and Λ(q∗p−1∗ ) �= 0 implies that p and q have
a coincidence.

Proof. Since q is a compact map, there exists a finite polyhedron K such that
q(Y ) ⊂ K ⊂ U . We have the commutative diagram

H(K)
i∗ �� H(U)

H(p−1(K))

q′
∗

��

j∗
�� H(Y )

q1∗
������������

id �� H(Y )

q∗

��

H(K)

(p′
∗)−1

��

i∗
�� H(U)

p−1
∗

�����������
p−1

∗

��

in which i∗, j∗ are linear maps induced by inclusions i: K → U and j: p−1(K)→ Y ,
respectively, and q′

∗, q1∗, p′
∗ are linear maps induced by the contractions of q and

p, respectively. The commutativity of the above diagram and (10.3) imply

Λ(q∗p−1
∗ ) = λ(q′

∗(p′
∗)−1),

and hence q∗p−1
∗ is a Leray endomorphism.

Assume that Λ(q∗p−1
∗ ) �= 0. For the proof it is sufficient to show that

(12.8.1) λ(q′
∗(p′

∗)−1) = I(p, q)

(cf. also Section 9).
Consider the following diagram:

H(U, U \K) ⊗H(U)⊗H(K)

id⊗t∗
��

d̂⊗q1∗p−1
∗ ⊗id

�� (H(K))∗ ⊗H(K) ⊗H(K)

id⊗t∗
��

H(U, U \K) ⊗H(K) ⊗H(U)

d∗⊗id
��

d̂⊗id⊗q1∗p−1
∗ �� (H(K))∗ ⊗H(K) ⊗H(K)

e⊗id
��

H(U) ≈ Q⊗H(U)
q1∗p−1

∗

�� Q⊗H(K) ≈ H(K)

The commutativity of the above diagram is obtained by simple calculation. Let

a = (d̂⊗ id)(id⊗ q1∗p−1
∗ )Λ∗(OK) ∈ HomQ(H(K)) ⊗H(K).
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Since e(a) = I(p, q) (see (9.4)), for the proof of (12.8.1) it is sufficient to show that

(12.8.2) Θ(a) = q′
∗(p′

∗)−1

(cf. Section 9).
If we follow ∆∗(OK)⊗u ∈ H(U, U \K)⊗H(U)⊗H(K) along→↓↓, we obtain

(Θ(a))(u). If we follow it along ↓↓, by Dold’s Lemma (9.6) we obtain i∗(u).
Therefore, for the proof of (12.8.2) it is sufficient to show that

(12.8.3) q1∗p−1
∗ i∗ = q′

∗(p′
∗)−1.

Consider the following commutative diagram:

U Y
p

��
q1 �� K

K

i

��

p−1(K)
p′

��

j

��

q′

�����������

Applying to the above diagram the functor H, we obtain (12.8.3) and the proof
of the First Coincidence Theorem is completed. �

To generalize (12.8) we need the Schauder Approximation Theorem.

(12.9) Theorem (Schauder Approximation Theorem). Let U be an open sub-
set of a normed space E and let f : X → U be a compact map. Then for every
ε > 0 there exists a finite dimensional subspace En(ε) of E and a compact map
fε: X → U such that:

(12.9.1) ‖f(x) − fε(x)‖ < ε, for every x ∈ X,
(12.9.2) fε(X) ⊂ En(ε),
(12.9.3) the maps fε, f : X → U are homotopic.

Proof. Given ε > 0 (we can assume to be sufficiently small) f(X) is contained
in the union of open balls B(yi, ε) with B(yi, 2ε) ⊂ U , i = 1, . . . , k.

For every i = 1, . . . , k we define λi: X → R+, λi(x) = max{0, ε− ‖f(x) − yi‖}
and

µi: X → [0, 1], µi(x) =
λi(x)∑k

j=1 λj(x)
.

Now, we define fε: X → U by putting

fε(x) =
k∑

i=1

µi(x) · yi.
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Let En(ε) be a subspace of E spanned by vectors y1, . . . , yn, i.e.

En(ε) = span{y1, . . . , yk}.

Then fε(X) ⊂ conv{y1, . . . , yn} so fε is a compact map. We have:

‖f(x) − fε(x)‖ ≤
k∑

i=1

µi(x)‖f(x) − yi‖ < ε.

Moreover, the map h: X × [0, 1]→ U ,

h(x, t) = tf(x) + (1− t)fε(x)

is a good homotopy joining f and fε and the proof is completed. �

Now, we prove the following:

(12.10) Theorem (Second Coincidence Theorem). Assume that we have a di-
agram:

U
p⇐= Y

q−→ U,

in which U is an open subset of a normed space E, p is Vietoris and q compact.
Then q∗p−1∗ is a Leray endomorphism and Λ(q∗p−1∗ ) �= 0 implies that p and q have
a coincidence.

Proof. Since q: Y → U is compact, in view of the Schauder Approximation
Theorem for every n we get a finite dimensional subspace En ⊂ E and a compact
map qn: Y → U such that:

(12.10.1) ‖q(y) − qn(y)‖ < 1/n,
(12.10.2) qn(Y ) ⊂ En, and
(12.10.3) q ∼ qn.

We let Un = U ∩En.
Now, for every n, we consider the following commutative diagram:

Un
in �� U

Yn

q′
n

��

jn

��

pn

��

Y

qn

����������
idY ��

p

��
��

��
��

�

��
��

��
� Y

qn

��

p

��
Un in

�� U

where q′
n(y) = qn(y), qn(y) = q(y), pn(y) = p(y), in(x) = x, jn(y) = y for

respective y and x.



58 CHAPTER I. BACKGROUND IN TOPOLOGY

Consequently, its image under H is also a commutative diagram:

H(Un)
in∗ �� H(U)

H(Un)

q′
n∗◦p−1

n∗

��

in∗
�� H(U)

qn∗◦p−1
∗

�����������
qn∗◦p−1

∗

��

Now, it follows from the First Coincidence Theorem that q′
n∗ ◦ p−1

n∗ is a Leray en-
domorphism. So, by the commutativity property q1∗p−1∗ is a Leray endomorphism
and because qn∗ = q∗ (cf. (iii)) we obtain:

(12.10.4) Λ(q′
n∗p−1

n∗ ) = Λ(qn∗p−1
∗ ) = Λ(q∗p−1

∗ ).

Now, let us assume that Λ(q∗p−1∗ ) �= 0. Then, in view of (12.10.4), by the First
Coincidence Theorem we deduce that

p(yn) = qn(yn) for every n.

Let xn = p(yn) = qn(yn) for every n. We put q(yn) = xn, n = 1, 2, . . . Since q is
compact, we may assume without loss of generality that limn xn = x ∈ U .

We have ‖xn − xn‖ = ‖qn(yn) − q(yn)‖ < 1/n for every n (cf. (12.10.1)) and
hence limn xn = x. Then x ∈ q(p−1(x)) and consequently there exists y ∈ p−1(x)
such that p(y) = q(y) = x; the proof is completed.

(12.11) Theorem (Coincidence Theorem for arbitrary ANRs). Consider a dia-
gram:

X
p⇐= Y

q−→ X,

in which X ∈ ANR, p is Vietoris and q is compact. Then q∗ ◦ p−1∗ is a Leray
endomorphism and Λ(q∗ ◦ p−1

∗ ) �= 0 implies that p and q have a coincidence.

Proof. Since X ∈ ANR by using the characterization theorem (see (1.8.2))
we can assume that there exists an open subset U of a normed space E such that
X ⊂ U is a retract of U . Let r: U → X be the retraction map and i: X → U the
inclusion. Of course the following diagram is commutative:

H(U)
r∗ �� H(X)

H(U)

i∗q∗p−1
∗ r∗

��

r∗
�� H(X)

i∗q∗p−1
∗

��������������
q∗p−1

∗

��

By applying (12.10) the Second Coincidence Theorem we would like to deduce
that i∗q∗p−1∗ r∗ is a Leray endomorphism.
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Now, by considering the fibre product and pull-back construction we obtain the
following commutative diagram.

U

r

��

X U �X Y

p

�����������

���������
f

��

r
����
��
��
��
�

q≡i◦q◦r

����
��
��
��
��
��
��
��
��
��
��

Y

p

��

q

��

X

i

��

U

where p(u, y) = u, r(u, y) = y, f(u, y) = r(u) = p(y). Then i∗q∗p−1∗ r∗ = q∗ ◦ p−1
∗

and moreover there is a coincidence point for p and q if and only if it is for p and
q. Consequently our result follows from the commutativity property of the Leray
endomorphisms and the Second Coincidence Theorem, the proof is completed. �

There are many consequences of Theorem (12.11). Before we state them we
need a simple observation.

(12.12) Property. Assume we have a diagram

X
p⇐= Y

q−→ X,

in which X is acyclic, p Vietoris and q compact. Then q∗ ◦ p−1∗ is a Leray endo-
morphism and Λ(q∗ ◦ p−1∗ ) = 1.

Proof. In fact, from the acyclicity of X we deduce that q∗ ◦p−1
∗ = idH(X) but

Hn(X) =

{
0 for n > 0,

Q for n = 0,

so, our claim follows. �

From (12.11) and (12.12) we obtain:

(12.13) Corollary. If we have the diagram:

X
p⇐= Y

q−→ X,

in which X ∈ AR, p is Vietoris and q compact, then there exists a point y ∈ Y

such that p(y) = q(y).

Now, if we let Y = X and p = idX then from (12.11) we deduce the generalized
Lefschetz fixed point theorem, proved by A. Granas in 1967 (see [Gr3]):
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(12.14) Corollary. If X ∈ AR and f : X → X is a compact map then
f∗: H(X) → H(X) is a Leray endomorphism and Λ(f∗) �= 0 implies that f has
a fixed point.

Finally, from (12.14) we deduce the following generalized version of the Schauder
fixed point theorem:

(12.15) Corollary. If X ∈ AR and f : X → X is a compact map then f has
a fixed point.

Note that the coincidence theorem can be proved in terms of AANRs too. Then
theorem (7.4) is needed. We will do it in Chapter III in terms of multivalued maps.



CHAPTER II

MULTIVALUED MAPPINGS

We gather in this chapter the properties of multivalued maps (called also set-
valued or multiple-valued maps) which are needed for the study of the fixed point
theory and applications to nonlinear analysis. The first three sections deal with the
concept of continuity. Then we consider the selection problem and the continuity of
multivalued mappings with respect to the Borsuk and Hausdorff metric. Finally,
we shall prove a general characterisation theorem of the set of fixed points of
multivalued contractions.

13. General properties

Let X and Y be two spaces and assume that for every point x ∈ X a nonempty
closed (some time we will assume only that ϕ(x) �= ∅) subset ϕ(x) of Y is given;
in this case, we say that ϕ is a multivalued mapping from X to Y and we write
ϕ: X � Y . More precisely a multivalued map ϕ: X � Y can be defined as a subset
ϕ ⊂ X × Y such that the following condition is satisfied:

for all X ∈ X there exists y ∈ Y such that (x, y) ∈ ϕ.

In what follows the symbol ϕ: X → Y is reserved for single valued mappings, i.e.
ϕ(x) is a point of Y .

Let ϕ: X � Y be a multivalued map. We associate with ϕ the graph Γϕ of ϕ

by putting:
Γϕ = {(x, y) ∈ X × Y | y ∈ ϕ(x)}

and two natural projections pϕ: Γϕ → X, qϕ: Γϕ → Y defined as follows: pϕ(x, y) =
x and qϕ(x, y) = y, for every (x, y) ∈ Γϕ.

The point-to-set mapping ϕ: X � Y extends to a set-to-set mapping by putting:

ϕ(A) =
⋃

x∈A

ϕ(x) for A ⊂ X,

then ϕ(A) is called the image of A under ϕ. If ϕ: X � Y and ψ: Y � Z are two
maps, then the composition ψ ◦ ϕ: X � Z of ϕ and ψ is defined by:

(ψ ◦ ϕ)(x) =
⋃
{ψ(y) | y ∈ ϕ(x)} for every x ∈ X.
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If X ⊂ Y and ϕ: X � Y , then a point x ∈ X is called a fixed point of ϕ provided
x ∈ ϕ(x). We let:

Fix(ϕ) = {x ∈ X | x ∈ ϕ(x)}.

For ϕ: X � Y and any subset B ⊂ Y we define the small counter image ϕ−1(B)
and the large counter image ϕ−1

+ (B) of B under ϕ as follows:

ϕ−1(B) = {x ∈ X | ϕ(x) ⊂ B}, ϕ−1
+ (B) = {x ∈ X | ϕ(x) ∩B �= ∅}.

If ϕ: X � Y and A ⊂ X then by ϕ|A: A � Y we will denote the restriction of
ϕ to A if, moreover, ϕ(A) ⊂ B, then the map ϕ̃: A � B, ϕ̃(x) = ϕ(x) for every
x ∈ A is the contraction of ϕ to the pair (A, B).

Below, we will summarize properties of image and counterimage.

(13.1) Proposition. Let ϕ: X � Y be a multivalued map, A ⊂ X and B ⊂ Y ,
Bj ⊂ Y , j ∈ J , then we have:

ϕ−1(ϕ(A)
)
⊃ A,(13.1.1)

ϕ
(
ϕ−1(B)

)
⊂ B,(13.1.2)

X \ ϕ−1(B) ⊃ ϕ−1(Y \B),(13.1.3)

ϕ−1
( ⋃

j∈J

Bj

)
⊃

⋃
j∈J

ϕ−1(Bj),(13.1.4)

ϕ−1
( ⋂

j∈J

Bj

)
=

⋂
j∈J

ϕ−1(Bj),(13.1.5)

ϕ−1
+

(
ϕ(A)

)
⊃ A,(13.1.6)

ϕ
(
ϕ−1

+ (B)
)
⊃ B ∩ ϕ(X),(13.1.7)

X \ ϕ−1
+ (B) = ϕ−1(Y \B),(13.1.8)

ϕ−1
+

( ⋃
j∈J

Bj

)
=

⋃
j∈J

ϕ−1
+ (Bj),(13.1.9)

ϕ−1
+

( ⋂
j∈J

Bj

)
⊂

⋂
j∈J

ϕ−1
+ (Bj).(13.1.10)

The proof of (13.1) is straightforward and we leave it to the reader.
For given two maps ϕ, ψ: X � Y we let ϕ ∪ ψ: X � Y and ϕ ∩ ψ: X � Y as

follows:

(ϕ ∪ ψ)(x) = ϕ(x) ∪ ψ(x) and (ϕ ∩ ψ)(x) = ϕ(x) ∩ ψ(x),

for every x ∈ X. Of course the map ϕ∩ψ is defined provided that ϕ(x)∩ψ(x) �= ∅,
for every x ∈ X.

As an easy observation we obtain:
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(13.2) Proposition. Let ϕ, ψ: X � Y be such that ϕ ∩ ψ is defined and let
B ⊂ Y then we have:

(ϕ ∪ ψ)−1(B) = ϕ−1(B) ∩ ψ−1(B),(13.2.1)

(ϕ ∩ ψ)−1(B) ⊃ ϕ−1(B) ∪ ψ−1(B),(13.2.2)

(ϕ ∪ ψ)−1
+ (B) = ϕ−1

+ (B) ∪ ψ−1
+ (B),(13.2.3)

(ϕ ∩ ψ)−1
+ (B) ⊂ ϕ−1

+ (B) ∩ ψ−1
+ (B).(13.2.4)

If we have two maps ϕ: X � Y and ψ: Y � Z, then for any B ⊂ Z we obtain:

(13.3) Proposition.

(ψ ◦ ϕ)−1(B) = ϕ−1(ψ−1(B)
)
,(13.3.1)

(ψ ◦ ϕ)−1
+ (B) = ϕ−1

+

(
ψ−1

+ (B)
)
.(13.3.2)

Finally, let us consider two maps ϕ: X � Y and ψ: X � Z. Then we define
the Cartesian product ϕ × ψ: X � Y × Z of ϕ and ψ by putting:

(ϕ× ψ)(x) = ϕ(x)× ψ(x) for every x ∈ X.

As an easy observation we obtain:

(13.4) Proposition. Let B ⊂ Y and D ⊂ Z then we have:

(ϕ × ψ)−1(B ×D) = ϕ−1(B) ∩ ψ−1(D),(13.4.1)

(ϕ × ψ)−1
+ (B ×D) = ϕ−1

+ (B) ∩ ψ−1
+ (D).(13.4.2)

To make the notion of multivalued map more natural below we shall present
a number of examples.

(13.5) Examples.

(13.5.1) Let ϕ: [0, 1] � [0, 1] be the map defined as follows:

ϕ(x) =


1 for x < 1/2,

{0, 1} for x = 1/2,

0 for x > 1/2.

(13.5.2) Let ϕ: [0, 1] � [0, 1] be given:

ϕ(x) =


1 for x < 1/2,

[0, 1] for x = 1/2,

0 for x > 1/2.
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(13.5.3) Let ϕ: [0, 1] � [0, 1] be defined as ϕ(x) = [x, 1].

(13.5.4) We let ϕ: [0, 1] � [0, 1] as follows:

ϕ(x) =

{
[0, 1/2] for x �= 1/2,

[0, 1] for x = 1/2.

(13.5.5) Let ϕ: [0, 1] � [0, 1] be given:

ϕ(x) =

{
[0, 1] for x �= 1/2,

[0, 1/2] for x = 1/2.

(13.5.6) Let ϕ: [0, π] � R be defined:

ϕ(x) =

{
[tgx, 1 + tgx] for x �= π/2,

{0} for x = π/2.

(13.5.7) Let ϕ: R+ = [0, +∞) � R be defined: ϕ(x) = [e−x, 1].

(13.5.8) Let ϕ: R2 � R2 be defined:

ϕ(x, y) = {(x + z1, y + z2) ∈ R2 | z1, z2 > 0 and z1 · z2 = 1}.

(13.5.9) Let K2 = {(x, y) ∈ R2 | ‖(x, y)‖ ≤ 1}, S1 = {(x, y) ∈ R2 | ‖(x, y)‖ = 1}.
We define a map ϕ: K2 → K2 by putting:

ϕ(x, y) = {(x, y) ∈ K2 | ‖(x, y)‖ = ρ(x, y)} ∪ {(x, y) ∈ S1 | ‖(x, y)‖ ≥ ρ(x, y)},

where ρ(x, y) = 1− ‖(x, y)‖+ ‖(x, y)‖2.

Let us make the geometrical illustrations for the above mappings.

Figure 1. Graph (13.5.1) Figure 2. Graph (13.5.2)
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Figure 3. Graph (13.5.3) Figure 4. Graph (13.5.4)

Figure 5. Graph (13.5.5) Figure 6. Graph (13.5.6)

Figure 7. Graph (13.5.7)
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Figure 8. Map (13.5.7); no graph!

For every (x, y) ∈ K2 the set ϕ(x, y) is homeomorphic to S1.

Figure 9. Map (13.5.9); no graph!

Let us present more general examples which give motivation for consideration
of multivalued maps.

(13.6) Example (Inverse functions). Let f : X → Y be a (singlevalued) con-
tinuous map from X onto Y . Then its inverse we can consider as a multivalued
map ϕf : Y � X defined by:

ϕf (y) = f−1(y) for y ∈ Y.
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(13.7) Example (Implicit functions). Let f : X × Y → Z and g: X → Z be
two continuous maps such that for every x ∈ X there exists y ∈ Y such that
f(x, y) = g(x).

The implicit function (defined by f and g) is a multivalued map ϕ: X � Y

defined as follows:

ϕ(x) = {y ∈ Y | f(x, y) = g(x)}.

(13.8) Example. Let f : X ×Y → R be a continuous map. Assume that there
is r > 0 such that for every x ∈ X there exists y ∈ Y such that f(x, y) ≤ r. Then
we let ϕr: X � Y , ϕr(x) = {y ∈ Y | f(x, y) ≤ r}.

(13.9) Example (Multivalued dynamical systems). Dynamical systems deter-
mined by ordinary differential equations without uniques property are multivalued
maps. We will come back to this example in last chapter.

(13.10) Example (Metric projection). Let A be a compact subset of a metric
space (X, d). Then for every x ∈ X there exists a ∈ A such that

d(a, x) = dist(x, A).

We define the metric projections P : X � A by putting:

P (x) = {a ∈ A | d(a, x) = dist(x, A)}, x ∈ X.

Note that metric retraction considered in Chapter I is a special case of metric
projection.

(13.11) Example (Control problems). Assume we have to solve the following
control problem:

(13.11.1)

{
x′(t) = f(t, x(t), u(t)),

x(0) = x0,

controlled by parameters u(t) (the controls), where f : [0, a]×Rn × Rm → Rn.
In order to solve (13.11.1) we define a multivalued map F : [0, a]×Rn � Rn as

follows:

F (t, x) = {f(t, x, u)}u∈U .

Then solutions of (13.11.1) are solutions of the following differential inclusions:

(13.11.2)

{
x′(t) ∈ F (t, x(t)),

x(0) = x0,
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so any control problem (13.11.1) can be translated, in view of multivalued maps,
onto problem (13.11.2).

Note that many other examples are provided by game theory, mathematical
economies, convex analysis and nonlinear analysis.

Let ϕ: X � Y be a multivalued map and f : X → Y be a singlevalued map. We
shall say that f is a selection of ϕ (written f ⊂ ϕ) provided f(x) ∈ ϕ(x), for every
x ∈ X.

The problem of existence of good selections for multivalued mappings is very
important in the fixed point theory.

14. Upper semicontinuous mappings

The concept of upper semicontinuity is related to the notion of the small counter
image of open sets. Consequently the concept of lower semicontinuity is related to
the large counter image of open sets. Note that the concept of lower semicontinuity
we will study in Section 15.

(14.1) Definition. A multivalued map ϕ: X � Y is called upper semicontin-
uous (u.s.c.) provided for every open U ⊂ Y the set ϕ−1(U) is open in X.

In terms of closed sets we can formulate (14.1) as follows:

(14.2) Proposition. A multivalued map ϕ: X � Y is u.s.c. if and only if for
every closed set A ⊂ Y the set ϕ−1

+ (A) is a closed subset of X.

The proof of (14.2) is an immediate consequence of (13.1.3) and (13.1.8).

(14.3) Example. Observe that multivalued mappings considered in examples
(13.5.1)–(13.5.4), (13.5.7) and (13.5.9) are u.s.c. among all examples considered in
(13.5).

(14.4) Proposition. If ϕ: X � Y is u.s.c. then the graph Γϕ is a closed
subset of X × Y .

Proof. We have to prove that X × Y \ Γϕ, is open i.e. y �∈ ϕ(x). Now, we
choose an open neighbourhood Vy of y in Y and Vϕ(x) of ϕ(x) in Y such that
Vy ∩ Vϕ(x) = ∅ (we consider metric spaces!).

Let Ux = ϕ−1(Vϕ(x)). Then Ux is an open neighbourhood of x in X. Conse-
quently, the set Ux× Vy is an open neighbourhood of (x, y) in X × Y . We observe
that Ux × Vy ∩ Γϕ = ∅. In fact, if (x′, y′) ∈ Ux × Vy then ϕ(x′) ⊂ Vϕ(x) but
Vϕ(x) ∩ Vy = ∅, hence y′ �∈ Vϕ(x) and (x′, y′) �∈ Γϕ.

The proof of (14.4) is completed. �
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Observe that for example the map f : R→ R defined as follows:

f(x) =

{
1/x for x �= 0,

0 for x = 0,

has a closed graph but it is not u.s.c. i.e. continuous.
In general if f : X → Y is a continuous map from X onto Y , then the inverse

map ϕf : Y � X considered in (13.6) has a closed graph but is not necessarily
u.s.c. However, we have:

(14.5) Proposition. Assume ϕ: X � Y is a multivalued map such that
ϕ(X) ⊂ K and the graph Γϕ of ϕ is closed, where K is a compact set. Then
ϕ is u.s.c.

Proof. Assume to the contrary that ϕ is not u.s.c. Then there exists an open
neighbourhood Vϕ(x) of ϕ(x) in Y such that for every open neighbourhood Ux of
x in X we have ϕ(Ux) �⊂ Vϕ(x).

We take Ux = B(x, 1/n), n = 1, 2, . . . Then for every n we get a point xn ∈
B(x, 1/n) such that ϕ(xn) �⊂ Vϕ(x). Let yn be a point in Y such that yn ∈ ϕ(xn)
and yn �∈ Vϕ(x). Then we have limn xn = x and {yn} ⊂ K. Since K is compact
we can assume without loss of generality that limn yn = y ∈ K. We see that
y �∈ Vϕ(x). There for every n we have (xn, yn) ∈ Γϕ and {(xn, yn)} → (x, y). So
(x, y) ∈ Γϕ because Γϕ is a closed subset of X × Y but it contradicts y �∈ Vϕ(x)

and the proof is completed. �

Regarding the inverse map we mentioned above we have the following.

(14.6) Proposition. If f : X → Y is a closed continuous map from X onto Y ,
then the inverse map ϕf : Y � X (defined in (13.6)) is u.s.c. In fact, we have:

(ϕf)−1
+ (A) = f(A)

for every closed subset A ⊂ X.

The proof of (14.6) is an immediate consequence of (13.2.1).

(14.7) Proposition. Assume that ϕ, ψ: X � Y are two u.s.c. mappings.
Then:

(14.7.1) the map ϕ ∪ ψ: X � Y is u.s.c.
(14.7.2) the map ϕ ∩ ψ: X � Y is u.s.c.

provided it is well defined.

Proof of (14.7.2). Let x ∈ X and V be an open neighbourhood of ϕ(x)∩ψ(x)
in Y . Then ϕ(x) \ V and ψ(x) \ V are closed subsets of Y such that (ϕ(x) \ V ) ∩
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(ψ(x)\V ) = ∅. Let W1 and W2 be open neighbourhood of (ϕ(x)\V ) and (ψ(x)\V ),
respectively, such that W1 ∩W2 = ∅ (metric spaces are normal!) since ϕ is u.s.c.
we choose an open neighbourhood U1 of x in X such that ϕ(U1) ⊂ V ∪W1 and
an open neighourhood U2 of x in X such that ψ(U2) ⊂ U ∪W2. Let U = U1 ∩U2.
Then (ϕ ∩ ψ)(U) ⊂ V and the proof is completed. �

(14.8) Proposition. Let ϕ: X � Y and ψ: X � Z be two u.s.c. mappings.
Then the map ϕ × ψ: X � Y × Z is u.s.c.

Note, that (14.8) follows immediately from (13.4.1).
Until the end of this section we will restrict our considerations to multivalued

maps with compact values.

(14.9) Proposition. Let ϕ: X � Y be an u.s.c. map with compact values and
let A be a compact subset of X. Then ϕ(A) is compact.

Proof. Let {Vt} be an open covering of ϕ(A). Since ϕ(x) is compact for every
x ∈ X, we infer that there exist a finite number of sets Vt such that ϕ(x) ⊂ Wx,
where Wx is the union of the sets Vt, for every x ∈ A. This implies that the family
{Wx}x∈A is an open covering of ϕ(A). Let Ux = ϕ−1(Wx) for each x ∈ A. Then
{Ux}x∈A is an open covering of A in X. Since A is compact there exists a finite
subcovering Ux1 , . . . , Uxn of this covering. Consequently the sets Wx1 , . . . , Wxn

cover ϕ(A), and since every Wxi is a finite union of sets in {Vt} we obtain a finite
subcovering Vt1 , . . . , Vtk of the covering {Vt} and the proof is completed. �

Now, from (14.9) and (13.3.1) we obtain:

(14.10) Proposition. If ϕ : X � Y and ψ: Y � Z are two u.s.c. mappings
with compact values then the composition ψ ◦ ϕ : X � Z of ϕ and X is an u.s.c.
map with compact values.

Finally, let us observe that the upper semicontinuity for mappings with compact
values (on metric spaces) can be reformulated in the Cauchy sense as follows:

(14.11) Proposition. Let ϕ: X � Y be a multivalued map with compact val-
ues. Then ϕ is u.s.c. if and only if

(14.11.1) for all x ∈ X and all ε > 0 there exists δ > 0

such that ϕ(B(x, δ)) ⊂ Oε(ϕ(x)).

It is easy to see that if ϕ is u.s.c. then (14.11.1) holds true. Conversely, if U is
an open neighbourhood of ϕ(x) in Y then, in view of compactness of ϕ(x), we can
choose an ε > 0 such that Oε(ϕ(x)) ⊂ U and our assertion follows from (14.11.1).
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Let E be a Banach space and let ϕ: X � E be an u.s.c. map with compact
values. We define a map conv ϕ: X � E by putting:

conv ϕ(x) = conv(ϕ(x)),

where conv(ϕ(x)) denotes the closed convex hull of ϕ(x) in E. Since ϕ(x) is com-
pact, in view of Mazur’s Theorem (cf. Remark (3.6) or [De3-M]) the set conv(ϕ(x))
is compact too. Recall that conv(ϕ(x)) is the intersection of all convex closed sub-
sets of E containing ϕ(x).

We prove the following:

(14.12) Proposition. If ϕ: X � E is an u.s.c. map with compact values,
then conv ϕ : X � E is also u.s.c. with compact values.

Proof. In the proof we shall use (14.11). Let ε > 0 and let 0 < ε1 < ε.
Assume that x0 ∈ X. Since ϕ is u.s.c. there exists δ > 0 such that ϕ(B(x0, δ)) ⊂
Oε1(ϕ(x0)).

Consequently, ϕ(B(x0, δ)) ⊂ Oε1(conv ϕ(x0)). Since Oε1(conv ϕ(x0)) is convex
we deduce that

conv ϕ(B(x0, δ)) ⊂ Oε1(conv ϕ(x0))

and hence

conv ϕ(B(x0, δ)) ⊂ cl (Oε1(conv ϕ(x0))) ⊂ Oε(conv ϕ(x0)),

where conv ϕ(x) = conv(ϕ(x)) is the convex hull of ϕ(x). Therefore, we have
proved (14.12). �

15. Lower semicontinuous mappings

By using the large counter image in the place of small counter image we get:

(15.1) Definition. Let ϕ: X � Y be a multivalued map. If for every open
U ⊂ Y the set ϕ−1

+ (U) is open in X then ϕ is called a lower semicontinuous (l.s.c.)
map.

Note that for ϕ = f : X → Y upper semicontinuity coincide with lower semicon-
tinuity and it means nothing more than continuity of f .

In what follows we say also that a multivalued map ϕ: X � Y is continuous
provided it is both u.s.c. and l.s.c.

(15.2) Remark. Note that the maps presented in: (13.5.3), (13.5.5), (13.5.7),
(13.5.8) and (13.5.9) are l.s.c. The maps (13.5.3), (13.5.7) and (13.5.9) are contin-
uous. The maps (13.5.1), (13.5.2) and (13.5.4) are u.s.c. but not l.s.c. Finally, the
maps (13.5.5) and (13.5.8) are l.s.c. but not u.s.c.

In terms of the small counter image we can define the lower semicontinuity as
follows.



72 CHAPTER II. MULTIVALUED MAPPINGS

(15.3) Proposition. A map ϕ: X � Y is l.s.c. if and only if for every closed
A ⊂ Y the set ϕ−1(A) is a closed subset of X.

Proposition (15.3) is an immediate consequence of (13.1.8) and (15.1).
The following two propositions are straightforward (see (13.2.3) and (13.3.2)).

(15.4) Proposition.

(15.4.1) If ϕ, ψ: X � Y are two l.s.c. mappings, then ϕ∪ψ: X � Y is l.s.c. too.
(15.4.2) If ϕ: X � Y and ψ: Y � Z are two l.s.c. maps, then the composition

ψ ◦ ϕ: X � Z of ϕ and ψ is l.s.c. too, provided for every x ∈ X the set
ψ(ϕ(x)) is closed.

We would like to stress that the intersection of two l.s.c. mappings does not
have to be l.s.c.

(15.5) Example. Consider two multivalued mappings ϕ, ψ: [0, π] � R2 de-
fined as follows:

ϕ(t) = {(x, y) ∈ R2 | y ≥ 0 and x2 + y2 ≤ 1}, for every t ∈ [0, π];

ψ(t) = {(x, y) ∈ R2 | x = λ cos t, y = λ sin t, λ ∈ [−1, 1]}.

Then ϕ is a constant map and hence even continuous, ψ is l.s.c. map but ϕ∩ ψ is
no longer l.s.c. (to see it consider t = 0 or t = π).

One can prove the following:

(15.6) Proposition. Let ϕ: X � Y be an l.s.c. map f : X → Y and λ: X →
(0,∞) be continuous mappings. Assume further that for every x ∈ X we have:

ϕ(x) ∩B(f(x), λ(x)) �= ∅.

Then the map ψ: X � Y defined by

ψ(x) = cl(ϕ(x) ∩B(f(x), λ(x))

is a l.s.c. map.

Proof. Let x0 ∈ X and V be an open set of Y such that V ∩ ψ(x0) �= ∅. Let
y0 ∈ V ∩ (ϕ(x0) ∩ B(f(x0), λ(x0))) and let Vy0 be an open neighbourhood of y0

in Y such that Vy0 ⊂ V ∩B(f(x0), λ(x0)).
Now, continuity of f and λ implies that there is an open neighbourhood Ux0 of

x0 in X such that Vy0 ⊂ B(f(x), λ(x)) for every x ∈ Ux0 .
Consequently, since ϕ is l.s.c. we choose an open neighbourhood Wx0 of x0 in

X such that ϕ(x) ∩ Vy �= ∅, for every x ∈ Wx0 . Let U = Ux0 ∩Wx0 . Then we get
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that (ϕ(x)∩B(f(x), λ(x)))∩Vy0 �= ∅ implies cl(ϕ(x)∩B(f(x), λ(x)))∩V �= ∅, for
every x ∈ U and the proof is completed. �

For another formulations of (15.6) we recommend [BrGMO1-M] (see also refer-
ences in [BrGMO2-M] and [BrGMO3-M]).

We shall end this section by considering important examples of multivalued
maps to be tangent and normed cones.

Let M be a closed nonempty subset of a Banach space. By TM (x) we shall
denote the tangent Bouligand cone at x to M and by NM (x) the normal cone at
x to M , where x ∈ M . We let:

TM (x) = {y ∈ E | lim inf[t−1 dist(x + ty, M) t→ 0+] = 0},
NM (x) = {y ∈ E | there exists α > 0 such that dist(x + αy, M) = α‖y‖}.

Observe that if M is convex or approximate retract contained in Rn, then both
TM (x) and NM (x) are nonempty.

Starting from now we shall assume that M ⊂ Rn is a proximate retract. We
shall fix U to be an open neighbourhood of M in Rn and the metric retraction
r: U → M i.e. ‖y − r(y)‖ = dist(y, M) (see (3.11)).

(15.7) Proposition. Suppose that r: (M + εB) → M is a metric retraction.
Then r(x + y) = x for any x ∈ M and y ∈ (NM (x) ∩ εB), where B is the unit
open ball in Rn.

Proof. Let x ∈ M . Suppose that there exists y ∈ (NM (x) ∩ εB) such that
r(x + y) �= x. Let α0 = sup{α > 0 | r(x + αy) = x}. If the inequality α0 > 1 held,
there would be α > 1 such that r(x + αy) = x. So cl (B(x + αy, α|y|) ∩M = {x}.
As cl (B(x + y, |y|) ⊂ cl (B(x + αy, α|y|)), we would get a contradiction to the
assumption r(x + y) �= x. So α0 ≤ 1. Let z0 be given by z0 = x + α0y. Since r is
continuous, r(z0) = x. Let R = 2−1 min{α0|y|, ε−α0|y|}. The radial retraction of
Rn \ B(z0, R) onto S(z0, R) will be denoted by p (2). Let f : S(z0, R) → S(z0, R)
be the antipodal map. As B(z0, R)∩M = ∅, the function q from cl (B(z0, R)) into
S(z0, R) given by q(a) = f(p(r(a))) is well defined. According to Brouwer’s fixed
point theorem there must be z ∈ S(z0, R) with q(z) = z. Since p(r(z)) = f(z), the
point z0 must belong to the interval with ends z and r(z). Then r(z0) = r(z). As
r(z) = x we have z = f(p(x)). Since f(p(x)) = x + (1 + R/(α0|y|))α0y, it follows
that r(x + (1 + R/(α0|y|))α0y) = x which is the desired contradiction. �

(15.8) Property. The normal cone map NM : M � Rn, x � NM (x), has
a closed graph in M ×Rn.

(2) p(z0 + b) = z0 + R · b
|b| .



74 CHAPTER II. MULTIVALUED MAPPINGS

Proof. Suppose that sequences {xn} ⊂ M and yn ∈ NM (xn) satisfy the
following conditions: lim xn = x, limyn = y. By (15.7), we can choose a sequence
{αn} that converges to α > 0 and satisfies r(xn + αnyn) = xn for every n. Since
r is continuous, it follows that r(x + αy) = x which completes the proof. �

Let T be a cone in a normed space E. Let E∗ denote the dual to E. For p ∈ E∗

and x ∈ E we let:
〈p, x〉 = p(x).

When T ⊂ Rn, then R∗ � Rn and 〈p, x〉 is nothing more than the scalar product
in Rn.

Now, the polar cone T ⊥ to T is defined as follows:

T ⊥ = {p ∈ E∗ | 〈p, x〉 ≤ 0 for every x ∈ T}.

We prove:

(15.9) Lemma. Let M ⊂ Rn be a proximate retract, then TM (x) = NM (x)⊥

for any x ∈M .

Proof. First we show that TM (x) ⊂ NM (x)⊥. Let y �∈ NM (x)⊥ Then there
exists z ∈ NM (x) such that 〈y, z〉 > 0. We can that suppose that B(x+z, |z|)∩M =
∅. It is easy to check that

lim[t−1d(x + ty, Rn \B(x + z, |z|)) | t→ 0+] > 0.

From this, we conclude that y �∈ TM (x).
It remains to prove that NM (x)⊥ ⊂ TM (x). Let z �∈ TM (x). Then there exist

R > 0 and c ∈ (2−1
√

2, 1) such that

(5.9.1) {x + y | 0 < |y| < R and 〈z, y〉 ≥ c|z| |y|} ∩M = ∅.

We let

C = {x + y | |y| = 3−1R and 〈z, y〉 =
√

(1− c2) |y| |z|}; D = conv C;

P = {x + w | 〈w, z〉 = 0};
p: Rn → P is the orthogonal projection;

q is the inverse function of p|D, where p|D denotes the restriction of the function
p to the set D.

Suppose that y, v ∈ Rn satisfy the following conditions:

|y − v| ≤ |y|, 〈y, z〉 =
√

(1− c2) |z| |y|
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and there exists α > 0 such that p(x + v) − x = −α(p(x + y) − x). Then by an
easy calculation we obtain that 〈v, z〉 ≥ c|z| |v|.

Suppose that there exists a ∈ p(C) and α > 0 such that p(r(q(a))) − x =
−α(a− x). Since

〈q(a)− x, z〉 =
√

(1− c2) |q(a)− x| |z| and |q(a)− r(q(a))| ≤ |q(a)− x|,

the point r(q(a)) must belong to the set {x + y | 0 < |y| < R and 〈z, y〉 ≥ c|z| |y|},
contradicting (5.9.1). By the Birkhoff–Kellogg theorem there exists a ∈ p(D)
such that p(r(q(a))) = x. So, there exists β ∈ R such that r(q(a)) = x + βz. As
〈q(a) − x, z〉 > 0 and |q(a) − r(q(a))| ≤ |q(a) − x| we have β ≥ 0. By (5.9.1), we
obtain β ≤ 0. Then (q(a)−x) ∈ NM (x). As 〈z, q(a)−x〉 > 0 we have z �∈ NM (x)⊥,
which completes the proof.

Now, let us observe that if N : M � Rn is a convex cone valued map with closed
graph ΓN , then the map T : M � Rn given by T (x) = N(x)⊥ is l.s.c. (the proof
is straighforward).

So from (15.9) and (15.8) we deduce:

(15.10) Proposition. The map TM : M � Rn, x � TM (x), is l.s.c. with
closed convex values.

16. Michael’s selection theorem

The most famous continuous selection theorem is the following result proved by
Michael (see [Mi1]–[Mi3] for details).

(16.1) Theorem. Let X be a metric space, E a Banach space and ϕ: X � E

an l.s.c. map with closed convex values. Then there exists f : X → E, a continuous
selection of ϕ (f ⊂ ϕ).

Proof. Step 1. Let us begin by proving the following claim: given any convex
(not necessarily closed) valued l.s.c. map Φ: X � E and every ε > 0, there exists
a continuous g: X → E such that dist(g(x), Φ(x)) ≤ ε, i.e. g(x) ∈ Oε(Φ(x)), for
every x ∈ X.

In fact, for every x ∈ X, let yx ∈ Φ(x) and let δx > 0 be such that B(yx, ε) ∩
Φ(x′) �= ∅, for x′ in B(x, δx). Since X is metric, it is paracompact. Hence there
exists a locally finite refinement {Ux}x∈X of {B(x, δx)}x∈X . Let {Lx}x∈X be
a partition of unity subordinate to it. The mapping g: X → E defined as follows:

g(u) =
∑
x∈X

Lx(u) · yx
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is continuous since it is locally a finite sum of continuous functions. Fix n ∈ X.
Whenever Lx(u) > 0, n ∈ B(x, δx), hence yx ∈ Oε(Φ(u)). Since this latter set is
convex, any convex combination of such y’s belongs to it.

Step 2. Next we claim that we can define a sequence {fn} of continuous map-
pings from X to E with the following properties

dist(fn(u), ϕ(u)) ≤ 1
2n

, n = 1, 2, . . . , u ∈ X,(16.1.1)

‖fn(u) − fn−1(u)‖ ≤ 1
2n−2 , n = 2, 3, . . . , u ∈ X.(16.1.2)

For n = 1 it is enough to take in the Step 1, Φ = ϕ and ε = 1/2.
Assume we have defined mappings fn satisfying (1.16.1) up to n = k. We shall

define fk+1 satisfying (1.16.1) and (1.16.2) as follows.
Consider the set Φ(u) = B(fk(u), 1/2k)∩ϕ(u). By (1.16.1) it is not empty, and

it is a convex set. By (15.6) the map Φ is l.s.c. so by the claim in Step 1 there
exists a continuous g such that

dist(g(x), Φ(x)) <
1

2n+1 .

Set fk+1(u) = g(u). A portion dist(fk+1(u), ϕ(u)) < 1/2k+1, proving (a). Also

fk+1(u) ∈ O1/2k+1(Φ(u)) ⊂ B

(
fk(u),

1
2k

+
1

2k+1

)
,

i.e.
‖fk+1(u)− fn(u)‖ ≤ 1

2k−1

proving (1.16.2).
Step 3. Since the series

∑
(1/2n) converges, {fn} is a Cauchy sequence, uni-

formly converging to a continuous f . Since the values of ϕ are closed, by (1.16.1),
f is a selection from F . The proof is completed. �

Some applications of the Michael selection theorem to differential inclusions
we will show in the last chapter. Now, we explain the connection between the
continuous selection property and extension property. Namely, we would like to
show from (16.1) the following version of the Dugundji extension theorem.

(16.2) Corollary. If E is a Banach space, then E ∈ ES.

Proof. Let A be a closed subset of X and let f : A→ E be a continuous map.
We define ϕ: X � E as follows:

ϕ(x) =

{
f(x) x ∈ A,

conv(f(A)) x �∈ A.
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Then ϕ is l.s.c. with convex, closed values. So it has a selection f̃ ⊂ ϕ. It is
evident that f̃ is an extension of f .

We would like to stress that there are other Michael-type results concerning the
existence of continuous singlevalued selections. Below we formulate a result of this
type owed to McLendon and Bielawski (see [Bi-2], [Mcc2]).

Since for the proof of this result an apparatus concerning the Serre fibration
theory is needed we shall sketch the proof only.

(16.3) Theorem. Let U be an open subset of Sn and let A be a closed subset
of U . Assume further that ϕ: U � Sn has open finitely connected values and
the graph Γϕ of ϕ is an open subset of U × Sn. Then any continuous selection
g: A→ Sn for ϕ (i.e. g(x) ∈ ϕ(x) for every x ∈ A) can be extended to a continuous
selection f : U → Sn. Furthermore, any two such extensions are homotopic by
a homotopy h: U × [0, 1] → Sn such that h( · , t) is a selection of ϕ for every
t ∈ [0, 1].

Sketch of Proof. Assuming that the projection pϕ: Γϕ → U is a Serre fi-
bration (see [Sp-M, Chapter 7]) consider a diagram:

A

i
���

��
��

��
�

g′
�� Γϕ

qϕ
����
��
��
��

Sn

where g′(x) = (x, g(x)), i(x) = x for every x ∈ A. Since pϕ: Γϕ → X is a sur-
jective Serre fibration with fibers ϕ(x) which are infinitely connected, so standard
obstruction theory (see [Sp-M, p. 404, Theorem 22; p. 416, Theorem 9]) gives an
extension f ′: U → Γϕ of g′ over U , and two such extensions are homotopic. Let
f = qϕ ◦ f ′. Then f is the extension of g required in theorem and if f1 and f2 are
two such extensions and h is a homotopy joining f ′

1 with f ′
2 then h = qϕ ◦h is the

needed homotopy between f1 and f2.
We are left with the problem of proving that pϕ: Γϕ → U is a Serre fibration as

a specific problem from algebraic topology. �

We will use Theorem (16.3) in Section 33. Note, that in fact Theorem (16.3)
can be formulated in the following very general form (cf. [Bi-2]):

(16.4) Theorem. Let A be a closed subset of X such that dim(X \A) ≤ n +1.
Let Y be a locally n-connected space. Let ϕ0, . . . , ϕn: X � Y be mappings with
open infinitely connected values and open graphs. Then every continuous partial
selection g: A → Y for ϕ0|A can be extended to a continuous selection f : X → Y

of ϕn.
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If in (16.4) we put Y = Sn, X = U ⊂ Sn and ϕ = ϕ0 = . . . = ϕn then we
obtain (16.3). Observe that for A to be a singleton we can always find a partial se-
lection. So from (16.3) (resp. (16.4)) follows the existence of a continuous selection
for ϕ (resp. for ϕn).

17. σ-Selectionable mappings

The Michel selection theorem is not true for u.s.c. mappings (cf. (13.5.1) and
(13.5.2)) but under some natural assumptions u.s.c. mappings are σ-selectionable.

(17.1) Definition. We say that a map ϕ: X � Y is σ-selectionable, if there
exists a decreasing sequence of compact valued u.s.c. maps ϕn: X � Y satisfying:

(17.1.1) ϕn has a continuous selection, for all n ≥ 0,
(17.1.2) ϕ(x) =

⋂
n ϕn(x), for all x ∈ X.

We prove the following:

(17.2) Theorem. Let ϕ: X � E be an u.s.c. map with compact convex values
from a metric space X to a Banach space E.

If cl (ϕ(X)) is a compact set, then ϕ is σ-selectionable. Actually, there exists
a sequence of u.s.c. mappings ϕn from X to co(ϕ(X)), which approximate ϕ in
the sense that for all x ∈ X we have:

(17.2.1)


ϕ(x) ⊂ . . . ⊂ ϕn+1(x) ⊂ ϕn(x) ⊂ . . . ⊂ ϕ0(x) for all n ≥ 0,

for all ε > 0 there exists n0 = n0(ε, x)

such that ϕn(x) ⊂ 0ε(ϕ(x)) for all n ≤ n0,

and moreover, the maps ϕn can be written in the following form:

(17.2.2) ϕn(x) =
∑

i∈I(n)

L
(n)
i (x) ·C(n)

i for all x ∈ X,

where the subsets C
(n)
i are compact and convex and where the functions L

(n)
i form

a locally Lipschitzian locally finite partition of unity.

(17.3) Remark. Note, that (17.2.1) imply that

ϕ(x) =
⋂

n≥0

ϕm(x).

If X is compact then the sets I(n), which appear in formula (17.2.2), are finite.

Proof of (17.2). Let K = conv ϕ(X). Then K is a compact convex subset
of E. We fix � > 0. Let us cover X with the open balls {B(x, �)}x∈X . Let
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{Ω(0)
i }i∈I(0) be a locally finite refinement of {B(x, �)}x∈X . For any i ∈ I(0)

exists x
(0)
i ∈ X with Ω(0)

i ⊂ B(x(0)
i , �). We then define for any i ∈ I(0) the set

C
(0)
i = conv ϕ(B(x(0)

i , 2�)) which is a nonempty closed convex subset of K.
Now, we can associate a locally Lipschitzian partition of unity {L(0)

i }i∈I(0) to

open covering {Ω(0)
i }i∈I(0) (see Theorem 0.1.2 in [AuC-M]).

We define the map ϕ0: X � E by putting:

ϕ0(x) =
∑

i∈I(0)

L
(0)
i (x)C(0)

i .

Then the map f0: X → E given by:

f0(x) =
∑

i∈I(0)

L
(0)
i (x) · y(0)

i

is a locally Lipschitzian selection of ϕ0, where y
(0)
i ∈ C

(0)
i is fixed for every i ∈

I(0). In order to define ϕ1 we do the some as before with the open covering
{B(x, �/3)}x∈X . Thus we consider its locally finite refinement {Ω(1)

i }i∈I(1) and

associated locally Lipschitzian partition of unity {L(1)
i }i∈I(1).

As before we set, for all i ∈ I(1),

C
(1)
i = conv ϕ

(
B

(
x

(1)
i ,

2�

3

))
⊂ K

and define ϕ1: X � E by putting:

ϕ1(x) =
∑

i∈I(1)

L
(1)
i (x) · C(1)

i .

The map ϕ1 enjoys the some properties as ϕ0.
We shall now prove that ϕ1(x) ⊂ ϕ0(x) for every x ∈ X. Let us fix x ∈ X.

Then we define:

Ix
(0) = {i ∈ I(0) | x ∈ B(x(0)

i , �)}, Ix
(1) =

{
i ∈ I(1)

∣∣∣∣x ∈ B

(
x

(1)
i ,

�

3

)}
.

Let i(0) ∈ Ix
(0) and i(1) ∈ Ix

(1) be given. Then, if y ∈ B(x(1)
i(1), 2�/3) we obtain:

d(y, x
(1)
i(1)) <

2�

3
with d

(
x, x

(0)
i(0)

)
< � and d

(
x, x

(1)
i(1)

)
<

�

3
.

Thus we have:
d(y, x

(0)
i(0)) ≤

2�

3
+

�

3
+ � = 2�.
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Then B(x(1)
i(1), 2�/3) ⊂ B(x(0)

i(0), 2�) for all i(0) ∈ Ix
(0) and all i(1) ∈ Ix

(1). This leads

to C
(1)
i(1) ⊂ C

(0)
i(0) for such indexes. Then for all i(1) ∈ Ix

(1) we have:

C
(1)
i(1) ⊂

∑
i∈Ix

(0)

L
(0)
i (x)C(0)

i =
∑

i∈I(0)

L
(0)
i C

(0)
i = ϕ0(x).

This being true by convexity arguments, and since {L(0)
i }i∈I(0) is a locally finite

partition of unity associated with {Ω(0)
i }i∈I(0), and thus also with {B(x(0)

i , �)}i∈I(0)

in particular, says that L
(0)
i (x) = 0, if i ∈ Ix

(0).
Consequently, for the same reasons we get:

ϕ1(x) =
∑

i∈I(1)

L
(1)
i (x) ·C(1)

i =
∑

i∈Ix
(1)

L
(1)
i (x)C(1)

i ⊂ ϕ0(x).

Moreover, it is easy to see that ϕ(x) ⊂ ϕ1(x) for every x ∈ X.
Now, let us define �n = (1/3) · � for any n = 1, 2, . . . . Then we can build by

induction a sequence of multivalued maps ϕn: X � E each of them being u.s.c.
nonempty convex compact valued and satisfying the first part of (17.2.1) (as ϕ0

for �0 = � and ϕ1 for �1 = �/3).
So to end the proof we have to show that for every ε > 0 there exists n0 =

n0(ε, x) such that ϕn(x) ⊂ Oε(ϕ(x)).
Let x ∈ X be given. Since ϕ is u.s.c. for any ε > 0 there exists η = η(ε, x)

such that cl (y, x) ≤ η implies ϕ(y) ⊂ Oε(ϕ(x)). Then there obviously exists
n0 = n0(ε, x) such that for n ≥ n0 we have �n ≤ η/3.

Let us define as before Ix
(n) = {i ∈ I(n) | x ∈ B(x(n)

i , �n)}. For the same reasons
as for ϕ0 and ϕ1 we can write:

ϕn(x) =
∑

i∈Ix
(n)

L
(n)
i (x) · C(n)

i ,

where C
(n)
i = conv ϕ(B(x(n)

i , 2�) ⊂ K. Then for all y ∈ B(x(n)
i , 2�) with i ∈ Ix

(n)

we have:

d(y, x) ≤ d(y, x
(n)
i ) + d(x(n)

i , x) ≤ 2�n + �n = 3�n < η, if we take n > n0.

Thus for all n ≤ n0 we have ϕ(y) ⊂ Oε(ϕ(x)) for all y ∈ B(x(n)
i , 2�n) with i ∈ Ix

(n).

But since Oε(ϕ(x)) is closed and convex we obtain: C
(n)
i ⊂ Oε(ϕ(x)) and by

convexity we infer ϕn(x) ⊂ Oε(ϕ(x)) for all n ≥ n0. Therefore the proof of (17.2)
is completed. �
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(17.4) Remarks.

(17.4.1) Note that originally Theorem (17.2) was proved in [CR-M] (cf. also [HL]).
(17.4.2) If X is a compact space then ϕ is automatically compact (cf. (14.9)).
(17.4.3) If E = Rn then any bounded u.s.c. map with convex compact values

satisfies assumptions of (17.2).

(17.5) Remark. Instead of σ-selectionable mappings we can define for exam-
ple, Lipschitz σ-selectionable mappings (L-σ-selectionable) or locally Lipschitz σ-
selectionable mappings (LL-σ-selectionable) if in (17.1.1) we ask ϕn has Lipschitz
selection (locally Lipschitz selection) for every n ≥ 0.

As we will see in Section 22 the following result, owed to A. Lasota and J. Yorke,
(see [Go2-M]) is useful in showing that a map is LL-σ-selectionable.

(17.6) Theorem (Lasota–Yorke Approximation Theorem). Let E be a normed
space and f : X → E be a continuous singlevalued map. Then, for each ε > 0 there
is a locally Lipschitz (singlevalued) map fε: X → E such that:

‖f(x) − fε(x)‖ < ε for every x ∈ X.

Proof. Let Vε(x) = {y ∈ X | ‖f(y) − f(x)‖ < (ε/2)}. Then α = {Vε(x)}x∈X

is an open covering of the metric space X. Since X is paracompact there exists
a locally finite subcovering β = {Wλ}λ∈Λ of α. For every λ ∈ Λ we obtain
µλ: X → R by putting

µλ(x) =

{
0 for x �∈Wλ,

inf{d(x, y) | y ∈ ∂Wλ} for x ∈Wλ.

Then µλ is a Lipschitz map with constant 1. Since β is locally finite we deduce
that for every λ ∈ Λ the map ηλ: X → [0, 1] defined as follows

ηλ(x) =
µλ(x)∑

�∈Λ µ�(x)

is a locally Lipschitz map.
We let fε: X → E by putting

fε(x) =
∑
λ∈Λ

ηλ(x) · f(aλ),

where aλ ∈Wλ is an arbitrary but fixed element. Then we have:

‖fε(x)− f(x)‖ =
∥∥∥∥∑

λ∈Λ

ηλ(x) · f(aλ)−
∑
λ∈Λ

ηλ(x) · f(x)
∥∥∥∥

≤
∑
λ∈Λ

ηλ(x)‖f(aλ)− f(x)‖ < 1 · ε = ε

and the proof is completed. �
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18. Directionally continuous selections

Michael selection theorem is no true for l.s.c. mappings with arbitrary compact
values. For example see (13.5.9). In 1988, A. Bressan ([Bre1], [Bre2]) observed
there exists a directionally continuous selection.

In the following, a set Γ ⊆ Rm will be called a cone if Γ is a nonempty closed
convex subset of Rm such that

if x ∈ Γ, λ ≥ 0 then λx ∈ Γ,(18.1.1)

Γ ∩ (−Γ) = {0}.(18.1.2)

We now introduce the basic concept discussed in this section.

(18.2) Definition. Let Γ be a cone in Rm and let Y be a metric space. A
map f : Rm → Y is Γ-continuous at a point x ∈ Rm if and only if for every ε > 0
there exists δ > 0 such that d(f(x), f(x)) < ε for all x ∈ B(x, δ)∩ (x+ Γ). We say
that f is Γ-continuous on A if it is Γ-continuous at every point x ∈ A.

In the above setting some preliminary results concerning directional continuity
are now listed.

(18.3) Proposition.

(18.3.1) f is Γ-continuous at x if and only if limn→∞ f(xn) = f(x) for every
sequence xn tending to x such that (xn − x) ∈ Γ for all n ≥ 1.

(18.3.2) If f is Γ-continuous at x then f is also Γ′-continuous at x for every cone
Γ′ ⊆ Γ.

(18.3.3) If (fn)n≥1 is a sequence of Γ-continuous functions which converges uni-
formly to f then f is Γ-continuous.

All proofs are straightforward. Particularly interesting is the case where Γ = Rm
+

is the cone of all points in Rm with non-negative coordinates (with respect to
the canonical basis). Indeed, a large class of Rm

+ -continuous functions can be
constructed. For every integer k define the partition Pk of Rm into half-open
cubes with side length 2−k:

(18.4.1) Pk = {Qk
η | η = (η1, . . . , ηm) ∈ Zm},

(18.4.2) Qk
η = {x = (x1, . . . , xm) | 2−k(ηi − 1) ≤ xi < 2−kηi, i = 1, . . . , m}.

In this setting, we have:

(18.5) Proposition.

(18.5.1) Let k be any integer. If the restriction of f to each cube Qk
η ∈ Pk is

Rm
+ -continuous, then f is Rm

+ -continuous on Rm.
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(18.5.2) If, for some k, f is constant on every cube Qk
η ∈ Pk then f is Rm

+ -
continuous.

Proof. Let T + be the topology on Rm generated by the sets

Ax,ε = {y ∈ Rm | (y − x) ∈ Rm
+ , ‖y − x‖ < ε},

with x ∈ Rm, ε > 0. Saying that a map f is Rm
+ -continuous simply means that f

is continuous with respect to the topology T +. Since all cubes Qk
η are closed-open

sets in T +, assertions (18.5.1) and (18.5.2) follow. �

The next result provides a useful tool for reducing a problem concerning an
arbitrary cone Γ to the special case where Γ = Rm

+ .

(18.6) Proposition.

(18.6.1) Let Γ be a cone in Rm, Y a metric space. Let L be an invertible linear
operator on Rm. Then a map f : Rm → Y is Γ-continuous at a point x

if and only if the composite map f ◦ L−1 is L(Γ)-continuous at L(x).
(18.6.2) For every cone Γ ⊆ Rm, there exists an invertible linear operator ψ on

Rm such that ψ(Γ) ⊆ Rm
+ .

Proof. To prove (18.6.1) assume that f◦L−1 is L(Γ)-continuous at L(x). Take
any sequence xn → x such that (xn − x) ∈ Γ for all n ≥ 1. Then L(xn) → L(x)
and (L(xn) − L(x)) ∈ L(Γ). Hence

d(f(xn), f(x)) = d(f ◦ L−1(L(xn)), f ◦ L−1(L(x)))→ 0,

showing that f is Γ-continuous at x. The converse is obtained by replacing L

with L−1.
To prove (18.6.2), let Γ be given and consider the positive dual cone

Γ+ = {y ∈ Rm | 〈y, x〉 ≥ 0, for all x ∈ Γ}.

Since Γ+ has nonempty interior (see [De4-M]), there exists a unit vector w1 ∈
int(Γ+) and some ε > 0 such that

(18.6.3) 〈w1, x〉 ≥ ε ‖x‖ for all x ∈ Γ.

Choose m− 1 unit vectors w2, . . . , wm such that {w1, . . . , wm} is an orthonormal
basis for Rm and let {e1, . . . , em} be the canonical basis. Define the invertible
operators L1, L2 on Rm by setting:

L1(w1) = w1 + ε−1(w2 + . . . + wm),

L1(wi) = wi i = 2, . . . , m,

L2(wj) = ej j = 1, . . . , m.
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The transformation L = L2 ◦ L1 then satisfies our requirement. Indeed, if u =∑m
j=1 λjwj ∈ Γ, (18.4.1) implies

(18.6.4) λ1 ≥ ε

( m∑
j=1

λ2
j

)1/2

≥ ε‖λi‖

for all i = 1, . . . , m. Let L1(u) =
∑m

i=1 µiwi. Then µ1 = λ1 ≥ 0 and µi =
λi + ε−1λi ≥ 0 for 2 ≤ i ≤ m, because of (18.6.4). Therefore,

L(u) =
m∑

i=1

µiei ∈ Rm
+ . �

Now, we are able to prove the main result of this section:

(18.7) Theorem. Let ϕ: Rm � Y be a l.s.c. map with nonempty closed values
and Y be a complete (metric) space. Then for every cone Γ ⊂ Rm the mapping ϕ

admits a Γ-continuous selection.

Proof. The proof will first be given in the special case Γ = Rm
+ then extended

to an arbitrary cone Γ. We begin by constructing a sequence of approximate
selections (fn)n≥1 on the half-open unit cube Q = {(x1, . . . , xm) ∈ Rm | 0 ≤ xi <

1, i = 1, . . . , m}. Each fn will have the following properties:

(i)n There exists an integer h = h(n) such that fn is constant on every cube
Q

h(n)
η ⊆ Q of the partition Ph(n), defined at (18.2.1); say, f(x) = yn

η ∈ Y

for all x ∈ Q
h(n)
η ,

(ii)n d(yn
η , ϕ(x)) < 2−n for all x ∈ Q

h(n)
η ,

(iii)n d(fn(x), fn−1(x)) < 2−n+1 for all x ∈ Q(n ≥ 2).

To define f1, choose a finite set of points a1, . . . , ak ∈ Q, elements yi ∈ F (ai)
and open neighbourhoods V1, . . . , Vk such that

ai ∈ Vi,(18.7.1)
k⋃

i=1

Vi ⊇ Q,(18.7.2)

d(yi, ϕ(x)) < 2−1 for all x ∈ Vi.(18.7.3)

All this can be done because ϕ is lower semicontinuous on the compact set Q. Let
λ be a Lebesgue number for the covering {Vi} of Q and choose an integer h = h(1)
so large that the closure of every cube Qh

η ⊆ Q is entirely contained in some Vi.
This is certainly the case if

√
m · 2−h < λ. For each Qh

η ⊆ Q, choose a Vi such

that Qh
η ⊆ Vi and define f1(x) = yi for all x ∈ Qh

η . Clearly (i)1 and (ii)1 hold.
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Let now fn be defined and satisfy (i)n–(iii)n. We shall construct fn+1 separately
on each cube of the partition Ph(n). Fix σ ∈ Zm such that Q

h(n)
σ ⊆ Q. By (i)n,

fn(x) = yn
σ is constant on Q

h(n)
σ . Choose a finite set of points a1, . . . , ak ∈ Q

h(n)
σ

elements yi ∈ F (ai) and open neighbourhoods V1, . . . , Vk such that

ai ∈ Vi,(18.7.4)
k⋃

i=1

Vi ⊇ Q
h(n)
σ ,(18.7.5)

d(yi, F (x)) < 2−n−1, for all x ∈ Vi,(18.7.6)

d(yi, yn
σ) < 2−n.(18.7.7)

Notice that all this can be done because ϕ is lower semicontinuous, Q
h(n)
σ is com-

pact and (ii)n holds. Choose an integer h(σ) so large that every closed cube

Q
h(n)
η ⊆ Q

h(n)
σ is entirely contained in some Vi. For every Q

h(σ)
η , select a Vi for

which Q
h(σ)
η ⊆ Vi and define fn+1(x) = yi, for all x ∈ Q

h(σ)
η . Repeating this

construction on every cube Q
h(n)
σ ⊆ Q, we obtain an approximate selection fn+1

defined on the whole cube Q. Setting h(n +1) = max{h(σ) | σ ∈ Zm, Q
h(n)
σ ⊆ Q},

conditions (i)n+1 – (iii)n+1 are all satisfied.
By induction, we can now assume that a sequence (fn)n≥1 satisfying (i)–(iii)

has been constructed. By (iii) and the completeness of Y , the sequence (fn) has
a uniform limit f : Q→ Y . Property (i) together with (18.5.2) and (18.3.1) imply
that f is Rm

+ -continuous. Moreover, f(x) ∈ F (x) for all x ∈ Q, because of (ii)
and of the closure of ϕ(x). Therefore, f is an Rm

+ -continuous selection of ϕ on Q.
Repeating the same construction on every cube Q0

η, η ∈ Zm, and recalling (18.5.1)
we obtain an Rm

+ -continuous selection of ϕ defined on the whole space Rm.
Consider now the case where Γ ⊆ Rm is an arbitrary cone. Using (18.6.2), let L

be an invertible linear operator such that L(Γ) ⊆ Rm
+ . Construct a Rm

+ -continuous
selection g of the lower semicontinuous map ϕ◦L−1 and set f = g ◦L. This yields

f(x) = g(L(x)) ∈ ϕ ◦ L−1(L(x)) = ϕ(x)

for every x ∈ Rm, hence f is a selection of ϕ. Since L(Γ) ⊆ Rm
+ , (18.3.2) and

(18.6.1) imply that g is L(Γ)-continuous and f is Γ-continuous. The proof of
(18.7) is completed. �

Theorem (18.7) has important applications to the existence results for differen-
tial inclusions with l.s.c. right hand sides.

Therefore, we shall come back to this theorem in the last chapter of our book.
Note that Theorem (18.7) is not a generalization of the Michael selection the-

orem. There exists the second additional result connected with Michael selection
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theorem. Namely, in 1983 A. Fryszkowski [Fry-1] (comp. also [FryR], [Fry-5])
proved the selection theorem for l.s.c. mappings with closed decomposable values.
A generalization of Fryszkowski’s theorem for separable spaces is proved by Bres-
san and Colombo in 1988. We do not present Fryszkowski’s result because we will
not apply it to differential inclusions. Moreover, let us remark that Fryszkowski’s
result is formulated more in terms of the measure theory rather than in topological
terms.

Finally, we would like to point out that in the next section we will present
Kuratowski–Ryll–Nardzewski selection theorem used in the theory of differential
inclusions.

19. Measurable selections

Apart from semicontinuous multivalued mappings, multivalued measurable map-
pings will be great importance in the sequel. In this section we assume throughout
that Y is a separable metric space, and (Ω, U , µ) is a measurable space, i.e. a set
Ω equipped with σ-algebra U of subsets and a countably additive measure µ on U .
A typical example is when Ω is a bounded domain in the Euclidean space Rk,
equipped with the Lebesgue measure.

(19.1) Definition. A multivalued map ϕ: Ω � Y with closed values is called
measurable, if ϕ−1(V ) ∈ U for each open V ⊂ Y .

(19.2) Definition. A multivalued map ϕ: Ω � Y with closed values is called
weakly measurable, if ϕ−1(A) ∈ U for each closed A ⊂ Y .

Another way of defining measurability is by requiring the measurability of the
graph Γϕ of ϕ in the product Ω×Y , equipped with the minimal σ-algebra U ⊗B(Y )
generated by the sets A× B with A ∈ U and B ∈ B(Y ), where B(Y ) denotes the
family of all Borel subsets of Y .

For further reference, we collect some relations between these definitions in the
following

(19.3) Proposition. Assume that ϕ, ψ: Ω � Y are two multivalued mappings.
Then the following hold true

(19.3.1) ϕ is measurable if and only if ϕ−1
+ (A) ∈ U for each closed A ⊂ Y ,

(19.3.2) ϕ is weakly measurable if and only if ϕ−1
+ (V ) ∈ U for each open V ⊂ Y ,

(19.3.3) if ϕ is measurable then ϕ is also weakly measurable,
(19.3.4) if ϕ has compact values, measurability and weak measurability of ϕ are

equivalent,
(19.3.5) ϕ is weakly measurable if and only if the distance function fy: Ω → R,

fy(x) = dist(y, ϕ(x)) is measurable for all y ∈ Y ,



19. MEASURABLE SELECTIONS 87

(19.3.6) if ϕ is weakly measurable then the graph Γϕ of ϕ is product measurable,
(19.3.7) if ϕ and ψ are measurable then so is ϕ ∪ ψ,
(19.3.8) if ϕ and ψ are measurable then so is ϕ ∩ ψ,
(19.3.9) if ϕ and ψ are measurable then so is ϕ× ψ.

The proof of (19.3) is straightfoward and therefore we left it to the reader.
Of course, the composition of two measurable multivalued mappings need not

be measurable.

(19.4) Example. Let Ω = [0, 1] be equipped with the Lebesgue measure and
let f : Ω→ R be a strictly increasing Cantor function which of course is measurable.
It is well known that one may find a measurable set D ⊂ R such that f−1(D) is
not measurable. If we define ϕ: Ω � R and ψ: R � R by

ϕ(t) = {f(t)} for t ∈ Ω, ψ(u) =

{
{1} if u ∈ D,

{0} if u �∈ D,

then both ϕ and ψ are measurable, but ψ ◦ ϕ is not.

For further reference, we collect the results and counterexamples given so far
on the conservation of semicontinuity or measurability properties in the following
table:

ϕ, ψ u.s.c. l.s.c. measurable

ϕ ∪ ψ yes yes yes

ϕ ∩ ψ yes no yes

ϕ× ψ yes∗ yes∗ yes

ϕ ◦ ψ yes yes no

∗ if ϕ and ψ have compact values

A famous relation between measurability and continuity of singlevalued func-
tions is established by Luzin’s theorem, which states, roughly speaking, that
f : Ω → Y is measurable if and only if f is continuous up on to subsets of Ω of
arbitrarily small measure. It is not surprising that this result has an analogue for
multivalued mappings (for details see [APNZ-M], [Fis-M]). Below we shall sketch
Luzin’s-type of multivalued results.

(19.5) Definition. We will say that a multivalued map ϕ: Ω � Y with closed
values has the Luzin property if, given δ > 0, one may find a closed subset Ωδ ⊂ Ω
such that µ(Ω\Ωδ) ≤ δ and the restriction ϕ|Ωδ of ϕ to Ωδ is continuous (of course
we have assumed that Ω is a metric space).

We have:
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(19.6) Theorem. A multivalued map ϕ: Ω � Y is measurable if and only if ϕ

has the Luzin property.

In what follows we shall use the following Kuratowski–Ryll–Nardzewski selec-
tion theorem (see [AF-M], [AuC-M], [Ki-M], [Sr-M]).

(19.7) Theorem. Let Y be a separable complete space. Then every measurable
ϕ: Ω � Y has a (singlevalued) selection.

Proof. Without loss of generality we can change the metric of Y into an
equivalent metric, preserving completeness and separability, so that Y becomes
a bounded (say, with diameter M) complete metric space. Now, let us divide the
proof into two steps.

Step 1. Let C be a countable dense subset of Y . Set ε0 = M , εi = M/2i. We
claim that we can define a sequence of mappings sm: Ω→ C such that:

(19.7.1) sm is measurable,
(19.7.2) sm(x) ∈ Oεm(ϕ(x)),
(19.7.3) sm(x) ∈ B(sm−1(x), εm−1), m > 0.

In fact, arrange the points of C into a sequence {cj}j=0,1,... and define s0 by
putting:

s0(x) = c0, for every x ∈ Ω.

Then (19.7.1) and (19.7.2) are clearly satisfied.
Assume we have defined functions sm satisfying (19.7.1) and (19.7.2) up to

m = p− 1, and define sp, satisfying (19.7.1)–(19.7.3) as follows. Set

Aj = ϕ−1
+ (B(cj , εp)) ∩ s−1

p−1(B(cj , εp−1)),

E0 = A0, Ej = Aj \ (E0 ∪ . . . ∪ Ej−1).

We claim that

Ω =
∞⋃

j=0

Ej.

Of course Ej, j = 0, 1, . . . is measurable (comp. (19.3)). In fact, let x ∈ Ω and
consider sp−1(x) and ϕ(x). By (19.7.2) sp−1(x) ∈ Oεp−1(ϕ(x)); by the density of
C there is a cj such that at once sp−1(x) ∈ B(cj , εp−1) and ϕ(x)∩B(cj , εp−1) �= ∅,
i.e. x ∈ Aj. Finally, either x ∈ E, or it is in some Ei, i < j. In either case
x ∈

⋃∞
j=0 Ej. We define sp: Ω→ C by putting:

sp(x) = cj whenever x ∈ Ej.

Then sp satisfies (19.7.1)–(19.7.3). Condition (19.7.3) implies that {sm(x)} is
a Cauchy sequence for every x ∈ Ω.
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We let s: Ω→ Y as follows:

s(x) = lim
m→∞ sm(x), x ∈ Ω.

Since ϕ has closed values by (ii) we deduce that s(x) ∈ ϕ(x) for every x ∈ Ω.
It remains to show that s is measurable. This is equivalent to show that counter

images of closed sets are measurable. Let K be a closed subset of Y . Then
each set s−1

m (Oεm(K)) is measurable. We shall complete the proof showing that
s−1(K) =

⋂
s−1

m (Oεm(K)). In fact on the one hand, when x ∈ s−1(K), s(x) ∈ K

and since d(sm(x), s(x)) < εm, sm ∈ Oεm(K) for every m. On the other hand,
when x ∈ s−1

m (Oεm(K)) for all m, sm(x) ∈ Oεm(K) and since {sm(x)} converges to
s(x) and K is closed we get s(x) ∈ K. The proof of Theorem (19.7) is completed.�

Now, we shall be concerned with multivalued mappings which are defined on
the topological product of some measurable set with the Euclidean space Rn. We
are particularly interested in Carathéodory multivalued mappings and Scorza–
Dragoni multivalued mappings. Apart from their fundamental importance in all
fields of multivalued analysis, such multivalued mappings are useful in differential
inclusions.

Let Ω = [0, a] be equipped with the Lebesgue measure and Y = Rn.

(19.8) Definition. A map ϕ: [0, a]×Rn � Rn with nonempty compact values
is called u-Carathéodory (resp. l-Carathéodory; resp. Carathéodory) if satisfies:

(19.8.1) t � ϕ(t, x) is measurable for every x ∈ Rn,
(19.8.2) x � ϕ(t, x) is u.s.c. (resp. l.s.c.; resp. continuous) for almost all t ∈ [0, a],
(19.8.3) ‖y‖ ≤ µ(t)(1 + ‖x‖), for every (t, x) ∈ [0, a] × Rn, y ∈ ϕ(t, x), where

µ: [0, a]→ [0, +∞) is an integrable function.

As before, by U ⊗ B(Rn) we denote the minimal σ-algebra generated by the
Lebesgue measurable sets A ∈ U and the Borel subsets of Rn, and then the term
“product-measurable” means measurability with respect to U ⊗ B(Rn).

(19.9) Proposition. Let ϕ: [0, a]× Rn � Rm be a Carathéodory multivalued
map. Then ϕ is product-measurable.

Proof. Consider the countable dense subset Qn ⊂ Rn of rationals. For closed
A ⊂ Rn, a ∈ Qn and k, the set

Gk(A, a) = {t ∈ [0, a] | ϕ(t, a) ∩O1/k(A) �= ∅} ×B(a, 1/k)

belongs to U ⊗ B(Rn). Since ϕ is l.s.c. in the second variable we have:

ϕ−1
+ (A) ⊂

∞⋂
k=1

⋃
a∈Qn

Gk(A, a),



90 CHAPTER II. MULTIVALUED MAPPINGS

while the u.s.c. of ϕ implies the reverse inclusion. The proof is completed. �

The following example shows that an l-Carathéodory multivalued map needs
not to be product measurable.

(19.11) Example. Let ϕ: [0, 1]× R � R be defined as follows:

ϕ(t, u) =

{
{0} if u = 0,

[0, 1] otherwise.

Then ϕ is l-Carathéodory but not u-Carathéodory.

An analogous example can be constructed for u-Carathéodory mappings.
Let ϕ: [0, a]× Rn � Rn be a fixed multivalued map. We are interested in the

existence of Carathéodory selections, i.e. Carathéodory functions f : [0, a]×Rn →
Rn such that f(t, u) ∈ ϕ(t, u) for almost all t ∈ [0, a] and all n ∈ Rn. It is
evident that, in the case when ϕ is u-Carathéodory, this selection problem does
not have a selection in general (the reason is exactly the same as in Michael’s
relation principle). For l-Carathéodory multivalued maps ϕ, however, this is an
interesting problem.

We are now going to study this problem. We shall use the following notation:

C(Rn, Rn) = {f : Rn → Rn | f is continuous}.

We shall understand that C(Rn, Rn) is equipped with the topology on uniform
convergence on compact subsets of Rn. In fact this topology is metrizable (see
[AFG] for example). Moreover, as usually by L1([0, a], Rn) we shall denote the
Banach space of Lebesgue integrable functions (see [DG1-M]).

There are two ways, essentially, to deal with the above selection problem. Let
ϕ: [0, a]×Rn � Rn be a l-Carathéodory mapping. On the one hand, we may show
that the multivalued map

Φ: [0, a] � C(Rn, Rn),

Φ(t) = {u: Rn → Rn | u(x) ∈ ϕ(t, u(x)) and u is continuous}

is measurable.
Then, if we assume that ϕ has convex values, in view of Michael selection

theorem we obtain that Φ(t) �= ∅ for every t. Moreover, let us observe that every
measurable selection of Φ will then give rise to a Carathéodory selection of ϕ.

On the other hand, we may show that the multivalued map:

Ψ: Rn � L1([a, 1], Rn),

Ψ(x) = {u: [a, 1]→ Rn | u(t) ∈ ϕ(t, u(t)), for almost all t ∈ [0, a]}
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is a l.s.c. mapping.
Consequently, continuous selections of Ψ will then give rise to a Carathéodory

selections of ϕ. Hence, our problem can be solved by using Michael and Kuratow-
ski–Ryll–Nardzewski selection theorems. Let us formulate, only for informative
purposes, the following result owed to A. Cellina ([Ce1]).

(19.11) Theorem. Let ϕ: [0, a]×Rn � Rn be a multivalued map with compact
convex values. If ϕ( · , x) is u.s.c. for all x ∈ Rn and ϕ(t, · ) is l.s.c. for all t ∈ [0, a]
then ϕ has a Carathéodory selection.

We shall end this section by introducing mappings having Scorza–Dragoni prop-
erty.

(19.12) Definition. We say that a multivalued map ϕ: [0, a]×Rn � Rn with
closed values has the u-Scorza–Dragoni property (resp. l-Scorza–Dragoni property;
resp. Scorza–Dragoni property) if, given δ > 0, one may find a closed subset
Aδ ⊂ [0, a] such that the measure µ([0, a] \ Aδ) ≤ δ and the restriction ϕ̃ of ϕ to
Aδ × Rn is u.s.c. (resp. l.s.c.; resp. continuous).

Let us observe that the Scorza–Dragoni property plays the same role for multi-
valued mappings of two variables as the Luzin property for multivalued mappings
of one variable.

There is a close connection between Carathéodory multivalued mappings and
multivalued mapping having the Scorza–Dragoni property.

(19.13) Proposition. Let ϕ: [0, a] × Rm � Rn be a multivalued map with
compact values. Then we have:

(19.13.1) ϕ is Carathéodory if and only if ϕ has the Scorza–Dragoni property,
(19.13.2) if ϕ has the u-Scorza–Dragoni property then ϕ is u-Carathéodory,
(19.13.3) if ϕ has the l-Scorza–Dragoni property then ϕ is l-Carathéodory,
(19.13.4) if ϕ is product-measurable l-Carathéodory then ϕ has the l-Scorza–Dra-

goni property.

Assume further that ϕ satisfies the Filippov condition, i.e. for every open U , V ⊂
Rn the set {t ∈ [0, a] | ϕ(t, U) ⊂ V } is Lebesgue measurable then:

(19.13.5) ϕ is u-Carathéodory multivalued map if and only if ϕ has the u-Scorza–
Dragoni property.

Proposition (19.13) is taken from [APNZ-M]. All proofs are rather technical
and need sometimes long calculations.

Therefore we shall present below only two examples showing that l-Carathéodo-
ry (u-Carathéodory) map need not have the l-Scorza–Dragoni (u-Scorza–Dragoni)
property.
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(19.14) Example. Let ϕ: [0, 1]× R � R be a the map defined as follows:

ϕ(t, u) =


{0} if u = t and t ∈ [0, 1] \A,

{1} if u = t and t ∈ A,

[0, 1] otherwise,

where A is a nonmeasurable subset of [0, 1]. Then obviously ϕ is l-Carathéo-
dory but does not have l-Scorza–Dragoni property. Moreover, ϕ is not product
measurable.

(19.15) Example. Let ϕ: [0, 1]× R � R be defined as follows:

ϕ(t, u) =

{
[0, 1] if t = u and t ∈ A,

{0} otherwise,

where A is a nonmeasurable subset of [0, 1]. It is not hard to see that ϕ is u-
Carathéodory but does not have u-Scorza–Dragoni property.

In Section 31 we will need some additional information about product measur-
able functions. Until the end of this section X is a metric separable space and
Ω a complete measure space. We let also that ϕ: Ω × X � X is assumed to be
a product-measureable multivalued mapping with compact values.

First we shall prove:

(19.16) Proposition. If ϕ: Ω×X � X is product-measurable then the func-
tion f : Ω×X → [0, +∞) defined by the formula:

f(ω, x) = dist(x, ϕ(ω, x))

is also product measurable.

Proof. We have:

{(ω, x) ∈ Ω ×X | f(ω, x) < r} = {(ω, x) ∈ Ω×X | ϕ(ω, x) ∩Or({x}) �= ∅}.

Therefore, our assertion follows from the assumption that ϕ is measurable. �

(19.17) Theorem (Aumann). If ϕ: Ω � X is a multivalued map with compact
values such that the graph Γϕ of ϕ is measurable then ϕ possesses a measurable
selector.

The proof of (19.17) is not in the scope of our book. Therefore, for the proof
we recommend [Hi2] (comp. also [CV-M], [Ki-M], [Ox-M]).

The following Scorza–Dragoni type result describes possible regularizations of
Carathéodory maps.
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(19.18) Theorem. Let X be a compact subset of Rn and ϕ: [0, a]×X � Rn

a nonempty compact convex valued Carathéodory map. Then there exists an u-
Scorza–Dragoni ψ: [0, a] × X � Rn with nonempty compact convex values such
that:

(19.18.1) ψ(t, x) ⊂ ϕ(t, x) for every (t, x) ∈ [0, a]×X,
(19.18.2) if ∆ ⊂ [0, a] is measurable, u: ∆ → Rn and v: ∆ → X are measurable

maps and u(t) ∈ ϕ(t, v(t)) for almost all t ∈ ∆ then u(t) ∈ ψ(t, v(t)) for
almost all t ∈ ∆.

Now, we prove:

(19.19) Theorem. Let E, E1 be two separable Banach spaces and ϕ: [a, b]×
E � E1 an u-Scorza–Dragoni map with compact convex values then ϕ is σ-Ca-
selectionable. The maps ϕk: [a, b]× E � E1 (see Remark (17.5)) are u-Scorza–
Dragoni and we have

ϕk(t, e) ⊂
( ⋃

x∈E

ϕ(t, x)
)

.

Moreover, if ϕ is integrably bounded then ϕ is σ-mLL-selectionable.

Proof. Consider the family {B(y, rk)}y∈E , where rk = (1/3)k, k = 1, 2, . . .

Using Stone’s theorem for every k = 1, 2, . . . , we get locally finite subcovering
{Uk

i }i∈Ik of {B(y, rk)}y∈E . For every i ∈ Ik, k = 1, 2, . . . , we fix the center
yk

i ∈ E such that Uk
i ⊂ B(yk

i , rk). Now, let ηk
i : E → [0, 1] be a locally Lipschitz

partition of unity subordinated to {Uk
i }i∈Ik .

Define ψk
i : [0, a] � E and fk

i : [0, a]→ E as follows:

ψk
i (t) = conv

( ⋃
y∈B(yk

i
,2rk)

ϕ(t, y)
)

,

and let fk
i be a measurable selection of ψk

i which exists in view of the Kuratowski–
Ryll–Nardzewski theorem.

Finally, we define ϕk: [a, b]× E � E1 and fk: [a, b]×E → E1 as follows:

ϕk(t, z) =
∑
i∈Ik

ηk
i (z) · ψk

i (t), fk(t, z) =
∑
i∈Ik

ηk
i (z) · fk

i (t).

Then fk ⊂ ϕk. Fix t ∈ [a, b]. If ϕ(t, · ) is u.s.c. then ϕ(t, z) =
⋂∞

k=1 ϕk(t, z) and
ϕk+1(t, z) ⊂ ϕk(t, z), for every z ∈ E. By the assumptions on ϕ the map ϕ(t, · )
is u.s.c. for almost all t ∈ [0, a], and the first part of (19.19). The second claim is
an immediate consequence of the first one and theorem is proved. �

A map ϕ: [a, b]× Rn � Rn is said to be integrably bounded if there exists an
integrable function µ ∈ L1([a, b]) such that ‖y‖ ≤ µ(t) for every x ∈ Rn, t ∈ [a, b]
and y ∈ ϕ(t, x).
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We say that ϕ has linear growth if there exists an integrable function µ ∈
L1([a, b]) such that

‖y‖ ≤ µ(t)(1 + ‖x‖)

for every x ∈ Rn, t ∈ [a, b] and y ∈ ϕ(t, x).

20. Borsuk and Hausdorff continuity of multivalued mappings

According to Section 4 for a metric space (Y, d) we shall denote by B(Y ) (C(Y ))
the family of all nonempty closed bounded (compact) subset of Y . We shall
consider B(Y ) as a metric space with the Hausdorff metric dH defined in Section 4
and in C(Y ) we shall consider moreover, the Borsuk metric of continuity defined
also in Section 4. In what follows we will consider mappings of the type

F : X → B(Y ) or F : X → C(Y ).

Any such a map can be reinterpreted as a multivalued map ϕ: X � Y with closed
bounded and nonempty values or respectively with compact nonempty values de-
fined as follows:

ϕ(x) = F (x) for every x ∈ X.

For simplicity we shall use only one notion F in the place of ϕ. We hope it will
not cause any confusion.

Observe that for F : X → B(Y ) we have notion of continuity with respect to
the metric given in X and dH in B(Y ) but for F : X → C(Y ) we can speak also
about the continuity of F with respect to the metric given in X and dC in C(Y ).

As a first observation we get the following.

(20.1) Proposition. If F : X → C(Y ) is continuous with respect to dC then
F is continuous with respect to dH.

In fact our claim follows from the following inequality:

dC(F (x), F (y)) ≥ dH(F (x), F (y)),

for every x, y ∈ X, which we obtained already in Section 4.

(20.2) Remark. Note that continuity with respect to dH does not imply con-
tinuity with respect to dC .

For example the mapping ϕ considered in (13.5.1) is dH-continuous but not dC

continuous.
In what follows we shall say also that dH -continuous maps are Hausdorff con-

tinuous and dC-continuous maps are Borsuk continuous. We prove the following:
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(20.3) Theorem. A mapping F : X → C(Y ) is Hausdorff continuous if and
only if it is both u.s.c. and l.s.c.

Proof. Assume that F is dH continuous and let U be an open subset of Y .
First we shall prove that the set F −1(U) = {x ∈ X | F (x) ⊂ U} is open.

Let x0 ∈ F −1(U). Then F (x0) ⊂ U . Since F (x0) is compact there exists ε > 0
such that Oε(F (x0)) ⊂ U . Since F is dH-continuous we can find δ > 0 such that
for every x ∈ B(x0, δ) we have dH(F (x0), F (x)) < ε. It implies that

F (x) ⊂ Oε(F (x0)) ⊂ U

so, B(x0, δ) ⊂ F −1(U) and F −1(U) is open.
Now we would like to show that the set F −1

+ (U) = {x ∈ U | F (x) ∩ U �= ∅} is
open. Let x0 ∈ F −1

+ (U). So F (x0) ∩ U �= 0. Let y0 ∈ F (x0) ∩ U . We take ε > 0
such that B(y0, ε) ⊂ U . Now we find δ > 0 such that for every x ∈ B(x0, δ) we
have:

dH(F (x0), F (x)) < ε/2.

We claim that F (x)∩B(y0, ε) �= ∅. Assume to the contrary that F (x)∩B(y0, ε) =
∅. On the other hand we have F (x0) ⊂ Oε/2(F (x)). Therefore, y0 ∈ Oε/2(F (x))
and there exists z0 ∈ F (x) such that d(y0, z0) < ε/2. It implies z0 ∈ B(y0, ε) and
we obtained a contradiction.

Now assume that F is both u.s.c. and l.s.c. and let ε > 0, x0 ∈ X. We
let U = Oε(F (x0)). Then the sets F −1(U) and F −1

+ (U) are open and x0 ∈
F −1(U)∩F −1

+ (U). Let V = F −1(U)∩F −1
+ (U). Then V is an open neighbourhood

of x0 such that F (x) ⊂ Oε(F (x0)) for every x ∈ V . We are looking for δ > 0 such
that B(x0, δ) ⊂ V and F (x0) ⊂ Oε(F (x)) for every x ∈ B(x0, δ). To find that
we cover the compact set by n open balls B(yi, ε), i = 1, . . . , n. Then F (x0) =⋃n

i=1 B(yi, ε) ⊂ Oε/2(F (x0)) since F is l.s.c. there are open balls B(x0, δi) ⊂ V

such that
F (x) ∩B(yi, ε/2) �= ∅ for every x ∈ B(x0, δi).

Let δ = min{δ1, . . . , δn}. Then B(x0, δ) ⊂ V and any y ∈ F (x0) belongs to
B(yi, ε/2), for some i. Furthermore, we know that for any x ∈ B(x0, δ), F (x) ∩
B(yi, ε/2) �= ∅ for every i = 1, . . . , n. Thus for every x ∈ B(x0, δ) and y ∈ F (x0)
there exists i = 1, . . . , n such that:

dist(y, F (x)) ≤ d(y, yi) + dist(yi, F (xi)) <
ε

2
+

ε

2
= ε.

Therefore, for every x ∈ B(x0, δ) we obtain F (x0) ⊂ Oε(F (x)) and the proof is
completed. �

Note that if F is only u.s.c. or l.s.c. then F is not Hausdorff continuous in
general. For example the mappings defined in (13.5.1) or (13.5.2) are u.s.c. but not
dH-continuous. Below we present an example of l.s.c. which is not dH-continuous.
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(20.4) Example. Let X = Y = [0, 1]. Let F : [0, 1] → C([0, 1]) be defined as
follows:

F (x) =

{
[0, 1] if x �= 0,

{0} if x = 0.

Then F is l.s.c. with compact values but dH(F (0), F (x)) = 1 for every x �= 0, so
F is not Hausdorff continuous.

We obtain:

(20.5) Theorem. Let F : X → B(X) be Hausdorff continuous, then F is l.s.c.

The proof of (20.5) is strictly analogous to the respective part of the proof
of (20.3). Note that, under assumptions of (20.5), the map F has not to be u.s.c.

(20.6) Example. Let X = R be the Euclidean space of real numbers and let
Y = R2 be equipped with the bounded metric d defined as follows:

d(x, y) =
‖x− y‖

1 + ‖x− y‖ .

We consider the mapping F : R→ B(R2) = 2R
2 \ {∅} defined as follows:

F (t) = {(t, y) | y ∈ R} for every t ∈ R.

Then we have dH(F (t), F (t′)) ≤ 2|t− t′| so F is Hausdorff continuous.
Let U = {(x, y) ∈ R2 | |y| < 1/x or x = 0}. Then U is an open subset of R2

but F −1(U) = {0} is not open in R. Consequently F is not u.s.c.

21. Banach contraction principle for multivalued maps

A multivalued map F : X → B(X) is called contraction provided, there exists
k ∈ [0, 1) such that:

dH(F (x), F (y)) ≤ k · d(x, y) for every x, y ∈ X.

We have the following result proved by H. Covitz and S. B. Nadler, Jr. ([Ki-M]).

(21.1) Theorem. Let (X, d) be a complete metric space and F : X → B(X)
a contraction map. Then there exists x ∈ X such that x ∈ F (x).

Proof. Assume that dH(F (x), F (y)) ≤ k · d(x, y) for every x, y ∈ X, where
k ∈ [0, 1). Let x ∈ X. We let:

D(x, dist(x, F (x))) = {y ∈ X | d(x, y) ≤ dist(x, F (x)}.
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Then we have:
D(x, dist(x, F (x)))∩ F (x) �= ∅,

so we can select x1 ∈ F (x) such that: d(x, x1) ≤ dist(x, F (x)). Then for such x1 ∈
X select x2 ∈ F (x1) such that d(x1, x2) ≤ λ dist(x1, F (x1)). Continuing this pro-
cedure we can find a sequence {xn} ⊂ X such that d(xn, xn+1) ≤ dist(xn, F (xn)).
Hence it follows:

d(xn, xn+1) ≤ dist(xn, F (xn)) ≤ dH(F (xn−1), F (xn))

≤ k d(xn−1, xn) ≤ knd(x, x1) ≤ kn dist(x, F (x)).

So, it is easy to verify that {xn} is a Cauchy sequence. We let u = limn xn. Then
we have {xn} → u and xn+1 ∈ F (xn) for every n = 1, 2, . . . Since F is u.s.c. we
deduce that the graph ΓF of F is closed and consequently we obtain u ∈ F (u).
The proof of (21.1) is completed. �

There are many generalizations of theorem (21.1). We recommend [Ki-M] and
[We-M] for details. Below we shall concentrate our considerations on the topo-
logical structure of the set of fixed points of contraction mappings. First, observe
that multivalued contraction can possess not necessarily a unique fixed point.

(21.2) Example. Let F : R→ B(R) be a map defined as follows:

F (x) = [0, 1] for every x ∈ R.

Then F as a constant map is a contraction. Of course we have:

Fix(F ) = {x ∈ R | x ∈ F (x)} = [0, 1].

Observe that for A ∈ B(R) we can construct a multivalued contraction such that
Fix(F ) = A.

Since, contrary to the singlevalued case, Fix(F ) of a contraction F may have
many elements, it is interesting to look for topological properties of it. In this
framework, the following two results are well known:

(21.3) Theorem ([Ri1]). Let E be a Banach space and let X be a nonempty
convex closed subset of E. Suppose F : X → B(X) is a contraction with convex
values. Then the set Fix(F ) is an absolute retract.

(21.4) Theorem ([BCF]). If X = L1(T ) for some measure space T and
F : X → B(X) is a contraction with decomposable values then Fix(F ) is an ab-
solute retract.

Below we establish a result (see [GMS] or [GM]) which unifies and extends to
a larger class of multivalued contractions defined on arbitrary complete absolute
retracts both Theorems (21.3) and (21.4).
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Let (T,F , µ) be a finite, positive, nonatomic measure space and let (E, ‖ · ‖)
be a Banach space. As before we denote by L1(T, E) the Banach space of all
(equivalence classes) µ-measurable functions u: T → E such that the function
t→ ‖u(t)‖ is µ-integrable, equipped with the norm

‖u‖L1(T,E) =
∫

T

‖u(t)‖ dµ.

We always assume that the space L1(T, E) is separable. Now, we set

(21.5) Definition. A nonempty set K ⊂ L1(T, E) is said to be decomposable,
if for every u1, u2 ∈ K and every µ-measurable subset A of T , one has

(χA · u1 + (1− χA) · u2) ∈ K,

where χA denotes the characteristic function of A ⊂ T .

Some basic facts about decomposable sets in L1(T, E) are collected in the fol-
lowing:

(21.6) Remarks.

(21.6.1) It is easily seen that every decomposable subset of L1(T, E) is con-
tractible and, consequently, infinitely connected.

(21.6.2) Any closed decomposable subset of L1(T, E) is an absolute retract.
(21.6.3) A simple calculation shows that the open (or closed) ball unit ball of

L1(T, E) is not decomposable.
For more details concerning the notion of decomposability we recommend [Fry2],

[Fry3] and [Ol3].
In the proof of our main result the following proposition will play an important

role.

(21.7) Proposition. Let (X, d) be a metric space and let Φ: X → 2X be a Lip-
schitzian multifunction. Set f(x) = d(x, Φ(x)) for every x ∈ X. Then the function
f : X → [0, +∞[ is Lipschitzian.

Proof. Let L ≥ 0 be such that dH(Φ(x′), Φ(x′′)) ≤ Ld(x′, x′′) for all x′, x′′ ∈
X. Pick x′, x′′ ∈ X and choose ε > 0. Owing to the definition of f there exists
z′ ∈ Φ(x′) satisfy

−f(x′) < −d(x′, z′) + ε.

By using the inequality d(z′, Φ(x′′)) ≤ Ld(x′, x′′) we can find z′′ ∈ Φ(x′′) such
that

d(z′, z′′) < Ld(x′, x′′) + ε.
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Therefore,

f(x′′)− f(x′) < d(x′′, Φ(x′′))− d(x′, z′) + ε

≤ d(x′′, z′′)− d(x′, z′) + ε < (L + 1)d(x′, x′′) + 2ε.

Since ε is arbitrary, we actually have

f(x′′) − f(x′) ≤ (L + 1)d(x′, x′′)

and, interchanging x′ with x′′,

f(x′)− f(x′′) ≤ (L + 1)d(x′, x′′).

This completes the proof. �

We now recall the notion of Michael family of subsets of a metric space ([GMS]
Definition 1.4). In what follows, byM we will denote the class of all metric spaces.

(21.8) Definition. Let X ∈ M and let M(X) be a family of closed subsets
of X, satisfying the following conditions:

(21.8.1) X ∈ M(X), {x} ∈ M(X) for all x ∈ X and if {Ai}i∈I is any subfamily
of M(X) then

⋂
i∈I Ai ∈M(X).

(21.8.2) For every k ∈ N and every x1, . . . , xk ∈ X, the set

A(x1, x2, . . . , xk) =
⋃
{A | A ∈M(X), x1, x2, . . . , xk ∈ A}

is infinitely connected.
(21.8.3) To each ε < 0 there corresponds δ > 0 such that for any A ∈M(X), any

k ∈ N, and any x1, . . . , xk ∈ Oδ(A), one has A(x1, . . . , xk) ⊆ Oε(A).
(21.8.4) A ∩B(x, r) ∈M(X) for all A ∈M(X), x ∈ X, and r > 0.

Then we say that M(X) is a Michael family of subsets of X.

It is an easy remark (cf. [Bie-1], [GMS]) that in the Michael selection theorem
the notion of convexity can be replaced by a Michael family. Namely, we obtain:

(21.9) Proposition. Let X, Y ∈ M and let Φ: X → 2Y be a lower semicon-
tinuous multifunction. If Y is complete and there exists a Michael family M(Y )
of subsets of Y such that Φ(x) ∈ M(Y ) for each x ∈ X then, for any nonempty
closed set X0 ⊆ X, every continuous selection f0 from Φ|X0 admits a continuous
extension f over X such that f(x) ∈ Φ(x) for all x ∈ X.

The preceding result gains in interest if we realize that significant classes of sets
are examples of Michael families.
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(21.10) Examples.

(21.10.1) Let X be a convex subset of a normed space and let M(X) be the
class of all sets A ⊂ X such that A = ∅ or A is closed and convex in X. Then
M(X) is a Michael family of subsets of X.

(21.10.2) Let X ∈ M and let M(X) be the family of all simplicially convex
closed subsets of X (in the sense of [Bie1]) or closed convex sets with respect to an
abstract convex structure (see [Wie-M]) then M(X) is a Michael family of subsets
of X.

In (21.10.2) we only signalized some non-typical examples of Michael’s families.
The following definition is crucial in what follows

(21.11) Definition. Let X ∈ M, let Φ: X → 2X be a lower semicontinuous
multifunction, and let D ⊂ M. We say that Φ has the selection property with
respect to D, when for any Y ∈ D, any pair of continuous functions f : Y → X and
h: Y → ]0, +∞[ such that

Ψ(y) = Φ(f(y)) ∩B(f(y), h(y)) �= ∅, y ∈ Y,

and for any nonempty closed set Y0 ⊆ Y , every continuous selection g0 from Ψ|Y0

admits a continuous extension g over Y fulfilling g(y) ∈ Ψ(y) for all y ∈ Y . If
D =M, then we say that Φ has the selection property (in symbols, Φ ∈ SP(X)).

The above notion has some meaningful features, as below is pointed out.

(21.12) Example. Let X ∈ M and let Φ: X → 2X be a l.s.c. mapping. If
X is complete and there exists a Michael family M(X) of subsets of such that
Φ(x) ∈M(X) for all x ∈ X, then Φ ∈ SP(X) (see (21.9)).

The above notion has some meaningful features, as below point out.
Now, we establish the following result:

(21.13) Theorem. Let X be a nonempty closed subset of L1(T, E) and let
ϕ: X � X be a lower semicontinuous map, with decomposable values. Then ϕ has
the selection property with respect to the family D of all separable metric spaces.

Proof. Throughout this proof, we write 0 to denote the zero vector of L1(T, E)
with ‖ · ‖L1(T,E). Pick Y ∈ D and a pair of continuous functions f : Y → X,
h: Y → ]0, +∞[ such that ψ(y) = cl (ϕ(f(y)) ∩B(f(y), h(y))) �= ∅ for all y ∈ Y . If
Y0 is a nonempty closed subset of Y and g0 denotes a continuous selection from
ψ|Y0 then the function k0: Y0 → L1(T, E) defined by

k0(y) = h(y)−1[g0(y) − f(y)], for y ∈ Y0,
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is a continuous selection of η|Y0, where

η(y) = cl (h(y)−1[ϕ(f(y)) − f(y)] ∩B(0, 1)), for y ∈ Y.

Evidently, the proof will be completed as soon as we show that k0 admits a con-
tinuous extension k over Y , with the property k(y) ∈ η(y) for every y ∈ Y . We
first define

ξ(y) =

{
{k0(y)} if y ∈ Y0,

h(y)−1[ϕ(f(y)) − f(y)] if y ∈ Y \ Y0.

It is a simple matter to see that the multivalued map: ξ: Y → L1(T, E) is lower
semicontinuous and with decomposable values. Hence, by Theorem 3 of [BC1],
for any y ∈ Y and any u ∈ ξ(y) ∩ B(0, 1), there exists a continuous selection
ky,u: Y → L1(T, E) from ξ such that ky,u(y) = u. Let

Vy,u = {z ∈ Y | ‖ky,u(z)‖1 < 2−1(1 + ‖u‖1)}.

The family of sets {Vy,u | y ∈ Y , u ∈ ξ(y) ∩ B(0, 1)} is an open covering of the
separable metric space Y , so it has a countable neighbourhood finite refinement
{Vn | n ∈ N}. For each n ∈ N, choose yn ∈ Y and un ∈ ξ(yn) ∩ B(0, 1) such
that Vn ⊆ Vyn,un , and define kn = kyn,un . Let {pn} be a continuous partition
of unity subordinated to the covering {Vn} and let {hn} be a sequence of contin-
uous functions from Y into [0, 1], fulfilling the conditions hn(y) = 1 on supp pn,
supp hn ⊆ Vn, n ∈ N. We now set, for any y ∈ Y ,

ϕn(y)(t) = ‖kn(y)(t)‖, for t ∈ [0, a] and n ∈ N,

l(y) =
1
2

[
1−

∞∑
n=0

1 + ‖un‖1

2
pn(y)

]−1 ∞∑
n=1

hn(y).

Since un ∈ B(0, 1) and the above summations are locally finite, the function l

is well defined, positive, and continuous. Therefore, there exists a continuous
function r: Y → ]0, +∞[ and a family {Ar,λ | r > 0, λ ∈ [0, 1]} of measurable
subsets of T satisfying (comp. Lemma 2 in [BC1]):

(21.13.1) Ar,λ1 ⊆ Ar,λ2 if λ1 ≤ λ2,
(21.13.2) µ(Ar1,λ1∆Ar2,λ2) ≤ |λ1 − λ2|+ 2|r1 − r2| and µ(Ar,λ) = λµ(T ),
(21.13.3) for each y ∈ Y , λ ∈ [0, 1], and n ∈ N, if hn(y) = 1 then∣∣∣∣ ∫

Ar(y),λ

ϕn(y)(t) dµ − λ

∫
T

ϕn(y)(t) dµ

∣∣∣∣ <
1

4l(y)
.

Finally, let us define, for y ∈ Y and n ∈ N, λ0(y) = 0, λn(y) =
∑

m≤n pm(y),
χy,n = χAr(y),λn(y)\Ar(y),λn−1(y)

,

k(y) =
∞∑

n=1

χy,n · kn(y).
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Bearing in mind condition (b), it is a simple matter to see that the function
k: Y → L1(T, E) is continuous. Furthermore, for any y ∈ Y one has k(y) ∈ ξ(y),
because ξ(y) is decomposable. Thus, to complete the proof, we only need to show
that |k(y)‖1 < 1 at all points of Y . Fix(y) ∈ Y and observe that if I(y) = {n ∈
N | pn(y) > 0} then 1 ≤ �I(y) ≤

∑∞
n=1 hn(y). From (21.13.1)–(21.13.3) we deduce∫

T

‖k(y)(t)‖dµ ≤
∑

n∈I(y)

∫
Ar(y),λn(y)\Ar (y),λn−1(y)

ϕn(y)(t) dµ

=
∑

n∈I(y)

[∫
Ar(y),λn(y)

ϕn(y)(t) dµ − λn(y)
∫

T

ϕn(y)(t) dµ

−
∫

Ar(y),λn−1(y)

ϕn(y)(t) dµ + λn−1(y)
∫

T

ϕn(y)(t) dµ + pn(y)
∫

T

ϕn(y)(t) dµ

]

<
�I(y)
2l(y)

+
∞∑

n=1

1 + ‖un‖1

2
pn(y) ≤ 1

2l(y)

∞∑
n=1

hn(y) +
∞∑

n=1

1 + ‖un‖1

2
pn(y).

Hence, by the definition of l, ‖k(y)‖1 < 1 as required. �

We are in a position now to prove our main result.

(21.14) Theorem. Let X be a complete absolute retract and Φ: X → 2X be
a multivalued contraction such that Φ ∈ SP(X). Then Fix(Φ) is a complete AR-
space.

Proof. Since Fix(Φ) is nonempty and closed in X, we only have to show that if
Y ∈M, Y ∗ is a nonempty closed subset of Y , and f∗: Y ∗ → Fix(Φ) is a continuous
function then there exists a continuous extension f : Y → Fix(Φ) of f∗ over Y .

Let d be the metric of X, let L ∈ ]0, 1[ be such that dH(Φ(x′), Φ(x′′)) ≤
Ld(x′, x′′) for all x′, x′′ ∈ X, and let M ∈ ]1, L−1[. The assumption X ∈ AR

yields a continuous function f0: Y → X fulfilling f0(y) = f∗(y) in Y ∗. We claim
that there is a sequence {fn} of continuous functions from Y into X, with the
following properties:

(21.14.1) fn|Y ∗ = f∗ for every n ∈ N,
(21.14.2) fn(y) ∈ Φ(fn−1(y)) for all y ∈ Y , n ∈ N,
(21.14.3) d(fn(y), fn−1(y)) ≤ Ln−1d(f1(y), f0(y))+M1−n for every y ∈ Y , n ∈ N.

To see this we proceed by induction on n. From Proposition (21.7) it follows
that the function h0: Y → ]0, +∞[ defined by

h0(y) = dist(f0(y), Φ(f0(y))) + 1 for y ∈ Y,

is continuous; moreover, one clearly has Φ(f0(y))∩B(f0 (y), h0(y)) �=∅ for all y ∈ Y .
Bearing in mind that Φ ∈ SP(X) we obtain a continuous function f1: Y → X
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satisfying f1(y) = f∗(y) in Y ∗ and f1(y) ∈ Φ(f0(y)) in Y . Hence, conditions
(21.14.1)–(21.14.3) are true for f1. Suppose now we have constructed p continuous
functions f1, . . . , fp from Y into X in such a way that (21.14.1)–(21.14.3) hold
whenever n = 1, . . . , p. Since Φ is Lipschitzian with constant L, (21.14.2) and
(2.14.3) apply if n = p, and LM < 1, for every y ∈ Y we achieve

dist(fp(y), Φ(fp(y))) ≤ dH(Φ(fp−1(y)), Φ(fp(y))) ≤ Ld(fp−1(y), fp(y))

≤ Lpd(f1(y), f0(y)) + LM1−p < Lpd(f1(y), f0(y)) + M−p,

so that
Φ(fp(y)) ∩B(fp(y), Lp d(f1(y), f0(y)) + M−p) �= ∅.

Because of the assumption Φ ∈ SP(X), this procedure yields a continuous function
fp+1: Y → X with the properties:

fp+1|Y ∗ = f∗, fp+1(y) ∈ Φ(fp(y)) for every y ∈ Y,

dist(fp+1(y), fp(y)) ≤ Lpd(f1(y), f0(y)) + M−p for all y ∈ Y.

Thus, the existence of the sequence {fn} is established.
We next define, for any a > 0, Ya = {y ∈ Y | d(f1(y), f0(y)) < a}. Obviously,

the family of sets {Ya | a > 0} is an open covering of Y . Moreover, due to
(21.14.3) and the completeness of X, the sequence {fn} converges uniformly on
each Ya. Let f : Y → X be the pointwise limit of {fn}. It is easy to seen that the
function f is continuous. Further, due to (21.14.1) one has f |Y ∗ = f∗. Finally, the
range of f is a subset of Fix(Φ) since, by (21.14.2), f(y) ∈ Φ(f(y)) for all y ∈ Y .
This completes the proof. �

The same arguments used to prove Theorem (21.14) actually produce the fol-
lowing more general result.

(21.15) Theorem. Let D ⊆ M, let X be a complete absolute retract, and let
Φ: X → 2X be a multivalued contraction having the selection property with respect
to D. Then, for any Y ∈ D and any nonempty closed set Y0 ⊆ Y , every continuous
function f0: Y0 → Fix(Φ) admits a continuous extension over Y .

Finally, note that (21.3) and (21.4) are special cases of (21.15).



CHAPTER III

APPROXIMATION METHODS IN FIXED POINT THEORY

OF MULTIVALUED MAPPINGS

There are two significant sets of methods in the fixed point theory of multivalued
mappings. The first are the so called homological methods, started in 1946 by
S. Eilenberg and D. Montgomery ([EM]), and depend on using algebraic topology
tools, e.g. homology theory, homotopy theory, etc. The second, started in 1935 by
J. Von Neumann ([Neu]), are called the approximation methods.

Note that we will study homological methods in Chapter IV. In the present
chapter we shall concentrate on approximation methods, which are simpler than
homological methods, but they are sufficient for applications to nonlinear analysis
and some other branches of mathematics.

The main idea of approximation methods is simple: one approximate on the
graph a given multivalued map by a singlevalued map and, then, applying a limit-
ing process, investigates to what extent properties of singlevalued approximations
are inherited by the original map.

We recommend [Go2-M], [Kr2-M], [LR-M], [ACZ1]–[ACZ3], [Bee1]–[Bee4],
[Cl1], [GGK1]–[GGK3], [MC] as bibliography for this chapter.

22. Graph-approximation

We start with two preliminary facts.
Firstly, for two metric spaces (X, d1), (Y, d2) in the Cartesian product X × Y

we shall consider the max-metric d, i.e.

d((x, y), (u, v)) = max{d1(x, u), d2(y, v)} for x, y ∈ X and u, v ∈ Y .

Secondly, we shall use the following.

(22.1) Proposition. Let K be a compact subset of X and let f : X → Y be
a continuous map. Then for each ε > 0 there exists η > 0 such that d2(f(x), f(u))
< ε, provided d1(u, x) < η and x, u ∈ Oη(K).

Proof. Assume to the contrary. Then there exists ε > 0 such that for
every n = 1, 2, . . . there are xn, un ∈ O1/n(K) such that d1(xn, un) < 1/n,
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d2(f(xn), f(un)) ≥ ε for every n = 1, 2, . . . Since xn, un ∈ O1/n(K) we can find
x̃n, ũn ∈ K such that:

(22.1.1) d1(xn, x̃n) <
1
n

and d1(un, ũn) <
1
n

.

Then we deduce that

(22.1.2) d1(x̃n, ũn) <
3
n

, n = 1, 2, . . .

Now, since K is compact we can assume that sequences {x̃n} and {ũn} are con-
vergent. So, in view of (22.1.2), we have:

(22.1.3) lim
n

x̃n = lim
n

ũn = x.

Consequently, from (22.1.1) we get limn xn = limn un = x. Then limn f(un) =
limn f(xn) = f(x) and this contradicts the fact that:

d2(f(un), f(xn)) ≥ ε for every n.

The proof of (22.1) is completed. �

Assumption. Starting from now in this chapter until Section 27 all multivalued
mappings are assumed to have compact values.

(22.2) Definition. Let ϕ: X � Y be a multivalued map, Z ⊂ X and let
ε > 0. A mapping f : Z → Y is an ε-approximation (on the graph) of ϕ if and only
if Γf ⊂ Oε(Γϕ).

If Z = X and f is an approximation (on the graph of ϕ), then we write f ∈
a(ϕ, ε).

Some important properties are summarized in the following.

(22.3) Proposition.

(22.3.1) A mapping f : Z → Y is an ε-approximation of a multivalued map ϕ: X �
Y if and only if f(x) ∈ Oε(ϕ(Oε(x))) for each x ∈ Z, where Z ⊂ X.

(22.3.2) Let P be a compact space, r: P → X a continuous map and let ϕ: X � Y

be u.s.c. Then, for each � > 0 there exists ε0 > 0 such that for any ε

(0 < ε < ε0) and ε-approximation f : X → Y of ϕ, the map f ◦ r: P → Y

is a �-approximation of ϕ ◦ r.
(22.3.3) Let C be a compact subset of X and ϕ: X � X is an u.s.c. mapping

such that C ∩ Fix(ϕ) = ∅. Then there exists ε > 0 such that, for every
f ∈ a(ϕ, ε), we have Fixf ∩ C = ∅.
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(22.3.4) Let C be a compact subset of X. Then, for every ε > 0 there is δ > 0 such
that the restriction f |C of f to C is an ε-approximation of the restriction
ϕ|C of ϕ: X � Y to C, whenever f ∈ a (ϕ, δ).

(22.3.5) Let X be compact and χ: X × [0, 1] � Y be a multivalued map. Then,
for every t ∈ [0, 1] and for every ε > 0 there exists δ > 0 such that
ht ∈ a (χt, ε), whenever h ∈ a (χ, δ), where ht: X → Y and χt: X � Y

are defined as follows:

χt(x) = χ(x, t), ht(x) = h(x, t) for every x ∈ X and t ∈ [0, 1].

(22.3.6) Let ϕ: X � Y and g: Y → Z be two mappings (with ϕ u.s.c. and g

continuous). Then, for every ε > 0 there exists δ > 0 such that g ◦ f ∈
a (g ◦ ϕ, ε), whenever f ∈ a (ϕ, δ).

(22.3.7) Let ϕ: X � Y and ψ: Z � T be two multivalued mappings. Then, for
every ε > 0 there exists δ > 0 such that, if f ∈ a (ϕ, δ) and g ∈ a (ψ, δ),
then f×g: X×Z → Y ×T is an ε-approximation of ϕ×ψ: X×Z � Y ×T .

Proof. (22.3.1) Observe that f ∈ a (ϕ, ε) if and only if Γf ⊂ Oε(Γϕ). It is
equivalent that for every x ∈ Z there is (x̃, ỹ) ∈ Γϕ such that x ∈ Oε(x̃) and
f(x) ∈ Oε(ỹ). Consequently we have f(x) ∈ Oε(ϕ(Oε(x))) and (22.3.1) is proved.

(22.3.2) We shall prove it by contradiction. Assume that there is � > 0 such
that for every ε > 0 we have fε ∈ a(ϕ, ε) and fε ◦ r �∈ a(ϕ ◦ r, �). We let
ε = 1, 1/2, . . . , 1/n, . . . Let fn ∈ a(ϕ, (1/n)). Then for every n we choose un ∈ P

such that:

(22.3.8) fn(r(un)) �∈ O�(ϕ(r(O�(un)))), n = 1, 2, . . .

Now, we can assume that limn un = u. By assumption we have fn(r(un)) ∈
O(1/n)(ϕ(O(1/n)r(un))). So, in view of (22.3.1) we have

(r(un), fn(r(un))) ∈ O(1/n)(Γϕ).

So we can choose xn ∈ X and yn ∈ ϕ(xn) such that

d1(xn, r(un)) <
1
n

and d2(yn, fn(r(un)) <
1
n

.

Therefore, limn xn = limn r(un) = r(u) and limn yn = limn fn(r(un)) = y. So,
(r(u), y) ∈ Γϕ but it contradicts (22.3.8) and the proof is completed.

(22.3.3) Assume, to the contrary, that for every ε > 0 there is fε ∈ a(ϕ, ε) such
that Fix(fε) ∩ C �= ∅. We let ε = 1/n, n = 1, 2, . . . Let fn ∈ a(ϕ, (1/n)) be such
that Fixfn ∩ C �= ∅. For every n = 1, 2, . . . we choose a point xn ∈ Fixfn ∩ C.
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Since C is compact we can assume that limn xn = x. Then x ∈ C and we can
choose (un, vn) ∈ Γϕ such that:

d1(xn, un) <
1
n

and d1(xn, vn) <
1
n

, n = 1, 2, . . . .

Thus limn xn = limn un = limn vn = x and since ϕ is u.s.c. the graph Γϕ is
closed in X × X. Consequently x ∈ ϕ(x) and we obtain Fixϕ ∩ C �= ∅ which is
a contradiction.

(22.3.4) It is enough to apply (22.3.2) to the inclusion map i: C → X.
(22.3.5) It follows again from (22.3.2). We take r = it: X → X × [0, 1] defined

by it(x) = (x, t).
(22.3.6) It is easy to prove by contradiction analogously to the proof of (22.3.2).

Note that, in fact, (22.3.6) is a generalization of (22.3.2).
(22.3.7) Follows directly from the observation that for every ε > 0 there exists

δ > 0 such that Oδ(x)× Oδ(y) ⊂ Oε((x, y)). �

For given two spaces X, Y we let:

A0(X, Y ) = {ϕ: X � Y | ϕ is u.s.c. and for every ε > 0 there is f ∈ a(ϕ, ε)}.

The class A0 is adequate for obtaining global fixed point theorems, but it is not
sufficient to construct the topological degree. Fortunately, we will be able to define
a quite large class of multivalued maps appropriate to the topological degree theory.
We will do it in the sections which follow. Now, we shall describe properties of A0.

(22.4) Theorem. Let these be a map ϕ ∈ A0(X, X) and X be a compact
AR-space, then Fix(ϕ) �= ∅.

Proof. Let ε = 1/n, n = 1, 2, . . . and let fn ∈ a(ϕ, 1/n). Then from Schauder
Fixed Point Theorem (see Corollary (12.15)) we get that fn(xn) = xn, for some
xn ∈ X. Without loss of generality we can assume that limn fn(xn) = limn xn = x.

Then we can choose a sequence (un, vn) ∈ Γϕ such that:

d1(xn, un) <
1
n

and d1(xn, vn) <
1
n

, n = 1, 2, . . .

and hence we obtain:

x = lim
n

xn = lim
n

(fn(xn)) = lim
n

un = lim
n

vn.

Now because ϕ is u.s.c. the graf Γϕ of ϕ is closed in X × X and consequently
x ∈ ϕ(x) what completes the proof. �
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(22.5) Theorem. Let ϕ ∈ A0(X, Rn) and g: Rn → Rm be a continuous map.
Then the map ψ = g ◦ϕ: X � Rm is σ-selectionable.

Proof. Let a mapping ϕk: X � Rn be given by the formula:

ϕk(x) = cl (O1/k(ϕ(O1/k(x)))), x ∈ X.

Then, using the Lasota–Yorke Approximation Theorem (see (17.16)), we may find
a locally Lipschitz map gk: Rn → Rm such that:

‖g(z)− gk(z)‖ <
1

(2k)2 , z ∈ Rn.

Next define ψk: X � Rm by the formula:

ψk(x) = cl (O1/k(gk(ϕk(x)))), x ∈ X.

Then ψk+1(x) ⊂ ψk(x) and

ψ(x) =
⋂
k≥1

ψk(x), for every x ∈ X.

Since ϕ ∈ A0(X, Rn) we find a (1/3k)-approximation hk of ϕ.
Once again, by the Lasota–Yorke Approximation Theorem, take a mapping fk

which is locally Lipschitzian and:

‖fk(x)− hk(x)‖ <
1

3k
, x ∈ X, k = 1, 2, . . .

By (22.3.1) fk is a selection of ϕk. Consequently wk = gk ◦fk is a locally Lipschitz
selection of ψk and the proof is completed. �

(22.6) Remark. In fact we have proved that ψ = g ◦ ϕ is LL-σ-selectionable.

We shall end this section by proving one more approximation-type result.

(22.7) Proposition. Let E be a normed space and let ϕ, ψ: X � E be two
multivalued mappings such that:

(22.7.1) ψ is l.s.c. with convex (not necessarily closed) values,
(22.7.2) ϕ is u.s.c. map with closed convex values.

Assume further that ϕ(x) ∩ ψ(x) �= ∅ for every x ∈ X. Then for any δ > 0 there
exists a δ-approximation (on the graph) f : X → E of ϕ such that:

(22.7.3) B(fδ(t), δ)∩ ψ(x) �= ∅, where B(fδ(x), δ) is the open ball with the center
in fδ(x) and radius δ.
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Proof. Let us put U(x) = B(x, δ/2)∩{x′ ∈ X | ϕ(x′) ⊂ Oδ/2(ϕ(x))} for every
x ∈ X. Let α = {Vi}i∈J be an open star-refinement of the open cover {U(x)}x∈X

of X, i.e. for any i ∈ J there exists x = x(i) ∈ X such that st(Vi, α) ⊂ U(x), where
st(Vi, α) =

⋂
{V | V ∈ α and V ∩ Vαi �= ∅}.

For any x ∈ X, choose zx ∈ ϕ(x) ∩ ψ(x) and consider the open cover T =
{TV (x)}x∈V of X, where

TV (x) = {x′ ∈ V | ϕ(x′) ∩B(zx, δ/2) �= ∅}.

Let {λs}s∈S be a locally finite partition of unity subordinated to T . Hence, for
each s ∈ S there are Vs ∈ α, xs ∈ Vs with λs(x′) = 0 for x′ �∈ TVs(xs).

The map f : X → E defined by

f(x) =
∑
s∈S

λs(x)zs, x ∈ X, where zs = zxs

is clearly continuous. Moreover, for each x ∈ X and each index s in the finite set
S(x) = {s ∈ S | λs(x) �= 0}, there exists z′

s ∈ ψ(x) such that ‖z′
s−zs‖ < δ because

x ∈ TVs(xs). Thus by the convexity of ψ(x) we obtain:( ∑
s∈S(x)

λs(x)z′
s

)
∈ ψ(x)

and ∥∥∥∥ ∑
s∈S(x)

λs(x)z′
s − f(x)

∥∥∥∥ ≤ ∑
s∈S(x)

‖z′
s − zs‖ < δ.

In other words, B(f(x), δ) ∩ ψ(x) �= ∅ for every x ∈ X. On the other hand, given
x ∈ X, s ∈ S(x), it follows that x ∈ TVs(xs) ⊂ Vs, where xs ∈ Vs. Since α is a star-
refinement of {U(x)}x∈X , there exits x ∈ X such that x, xs ∈ U(x). Therefore
zs ∈ ϕ(xs) ⊂ Oδ(ϕ(x)) and ‖x − x‖ < δ. The set B(ϕ(x), δ) being convex, we
infer that f(x) ∈ Oδ(ϕ(x)) and the proof is competed. �

The above lemma guarantees the existence of a so-called δ-approximate selection
of ψ which is also a δ-approximation of ϕ. As in Michael’s selection theorem,
assuming in a addition that the values of ψ are closed and E is a Banach space
we conclude:

(22.8) Corollary. Assume that E is a Banach space and ϕ, ψ: X � E are
two multivalued mappings such that:

(22.8.1) ψ is l.s.c. with closed convex values,
(22.8.2) ϕ is u.s.c. with closed convex values, and
(22.8.3) ϕ(x) ∩ ψ(x) �= ∅ for every x ∈ X.
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Then for any δ > 0 there exists a countinuous map f : X → E such that:

(22.8.4) f ⊂ ψ, and
(22.8.5) f is an δ-approximation (on the graph) of ϕ.

We will show in Chapter VI that Corollary (22.8) is useful for applications.

23. Existence of approximations

As we mention in last section to construct the topological degree theory (i.e.
the local fixed point theory) more assumptions have to be made on the class
of multivalued maps under consideration. Therefore, we shall define a subclass
A(X, Y ) of the class A0(X, Y ).

(23.1) Definition. We let ϕ ∈ A(X, Y ) provided ϕ ∈ A0(X, Y ) and for each
δ > 0 there is an ε0 > 0 such that for every ε (0 < ε < ε0), if f, g: X → Y are
ε-approximations of ϕ, then there exists a homotopy h: X × [0, 1]→ Y joining f

and g such that ht ∈ a(ϕ, δ) for every t ∈ [0, 1].

First, we would like to explain how large the class A(X, Y ) is. In order to do
this we shall say that an u.s.c. map ϕ: X � Y is a J-mapping (write ϕ ∈ J(X, Y ))
provided the set ϕ(x) is ∞-proximally connected for every x ∈ X (cf. Section 2).

Observe, that the definition of ∞-proximally connected sets can be formulated
in terms of J-maps as follows:

(23.2) Proposition. If ϕ ∈ J(X, Y ), then for each x ∈ X, ε > 0, there is an
η = η(x, ε), 0 < η < ε such that for any positive integer n and a continuous map
f : ∂∆n → Oη(ϕ(x)) there exists a continuous map g: ∆n → Oε(ϕ(x)) such that
g(z) = f(z) for every z ∈ ∂∆n.

(23.3) Remark. Note that if ϕ ∈ J(X, Y ) and r: Z → X is a continuous map,
then ϕ ◦ r ∈ J(Z, Y ).

The following lemma is crucial in what follows.

(23.4) Lemma. If X, Y are spaces, X is compact and ϕ: X � Y is a J-
mapping, then for each ε > 0, there exists a δ = δ(ε), 0 < δ < ε, such that for
each x ∈ X and a positive integer n, if g: ∂∆n → Oδ(ϕ(Oδ(x))) is continuous,
then there is a continuous map g̃: ∆n → Oε(ϕ(Oε(x))) such that g̃(v) = g(v) for
v ∈ ∂∆n.

Proof. Let ε > 0. By the upper semicontinuity of ϕ, for any y ∈ X there
is a µ = µ(y), 0 < µ < η(y, ε)/4 (see Proposition (23.2)), such that ϕ(Oµ(y)) ⊂
Oη/2(ϕ(y)). Let λ be the Lebesgue coefficient of the covering {Oµ(y)}y∈X of X.
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We put δ = δ(ε) = λ/2. For an arbitrary x ∈ X, there is y ∈ X such that
Oδ(x) ⊂ Oµ(y). Obviously,

Oδ(ϕ(Oδ(x))) ⊂ Oδ(ϕ(Oµ(y))) ⊂ Oδ(Oη/2(ϕ(y))) ⊂ Oη(ϕ(y))

because δ ≤ 2µ < η/2. Let n ≥ 1 be an arbitrary integer and let g: ∂∆n →
Oδ(ϕ(Oδ(x))) be continuous. By definition of ∞-proximally connected sets, there
is a g̃: ∆n → Oε(ϕ(y)) such that g̃(v) = g(v) for v ∈ ∂∆n. Since d(x, y) < µ(y), we
have that y ∈ Oε(x), so Oε(ϕ(y)) ⊂ Oε(ϕ(Oε(x))) which completes the proof. �

(23.5) Theorem. Let P be a finite polyhedron and P0 a subpolyhedron of P .
Let Y be a space and ϕ: P � Y a J-mapping. For any ε > 0 there is δ > 0
such that, if f0: P0 → Y is a continuous δ-approximation of ϕ, then there exists
a continuous f : P → Y which is an ε-approximation of ϕ such that f |P0 = f0.

Proof. Let us fix ε > 0 and let dim P = N ≥ N0 = dim P0. Let εN : = ε

and assume that we have defined εk+1, 0 ≤ k ≤ N − 1. Now, we define a num-
ber εk < εk+1 such that, for any x ∈ P , any positive integer n and any con-
tinuous map g: ∂∆n → Oεk(ϕ(Oεk(x))), there is a continuous map g̃: ∆n →
Oεk+1/4(ϕ(Oεk+1/4(x))) such that g̃(v) = g(v) for v ∈ ∂∆n. The existence of
such an εk follows from Lemma (23.4). Let δ = ε0/2 and let f0: P0 → Y be a δ-
approximation of ϕ. Suppose that (T, T0) is a triangulation of (P, P0) finer than
the covering {Oε0/4(x)}x∈P of P , i.e. |T | = P , |T0| = P0 and T0 is a subcomplex
of T . By T k, 0 ≤ k ≤ N , we denote the k-dimensional skeleton of T and let
P k = |T k|. Similarly, T k

0 , 0 ≤ k ≤ N0, denotes the k-dimensional skeleton of T0,
and let P k

0 = |T k
0 |. It is obvious that, for k ≤ N0, T k

0 is a subcomplex of T k.
Moreover, P N = P , P N0

0 = P0.

We shall define a sequence {fk: P k → Y }N
k=0 of continuous mappings such that

(23.5.1) for any k, 0 ≤ k ≤ N , fk: P k → Y is an (εk/2)-approximation of ϕ;

(23.5.2) for any k, 0 ≤ k ≤ N0, fk|P k
0

= f0|P k
0

and

(23.5.3) for any k, 0 ≤ k ≤ N − 1, fk+1|P k = fk.

Then the mapping f := fN will satisfy the assertion of Theorem (23.5). Indeed,
fN |P N0 = fN0 and fN |P 0 = (fN |P N0 )|P0 = f0. Let P 0 = {x1, . . . , xr} and let the
vertices be ordered in such a manner that x1, . . . , xq ∈ P 0

0 , (q ≤ r), xq+1, . . . , xr �∈
P 0

0 . For i, 1 ≤ i ≤ q, we put f0(xi) = f0(xi) and, for i, q + 1 ≤ i ≤ r, we put
f0(xi) ∈ ϕ(xi). Obviously f0 satisfies (23.5.1)–(23.5.3) above.

Assume that, for k = 0, . . . , N−1, we have defined fk on P k satisfying (23.5.1)–
(23.5.3). Now, it suffices to define fk+1 on an arbitrary (k+1)-dimensional simplex
S from T k+1. There exists x ∈ P such that S ⊂ Oε0/4(x).
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For x′ ∈ ∂S, we have

fk(x′) ∈ Oεk/2(ϕ(Oεk/2(x′))) ⊂ Oεk(ϕ(Oεk/2(S)))

⊂ Oεk(ϕ(Oεk/2+ε0/4(x))) ⊂ Oεk(ϕ(Oεk(x))).

Thus fk(∂S) ⊂ Oεk(ϕ(Oεk(x))).

(23.5.4) If k + 1 ≤ N0 and S ∈ T k+1
0 , then we put fk+1|S = f0|S .

(23.5.5) If k + 1 > N0 or S �∈ T k+1
0 , then, by the definition of εk, there exists

fk+1: S → Oεk+1/4(ϕ(Oεk+1/4(x))).

Let y ∈ S. If (23.5.4) holds, then

fk+1(y) = f0(y) ∈ Oε0/2(ϕ(Oε0/2(ϕ(Oε0/2(y))))) ⊂ Oεk+1/2(ϕ(Oεk+1/2(y))).

If (23.5.5) holds, then y ∈ Oε0/4(x). Hence x ∈ Oε0/4(y), and therefore

Oεk+1/4(x) ⊂ Oεk+1/4+ε0/4(y) ⊂ Oεk+1/2(y).

Now, fk+1(y) ∈ Oεk+1/4(ϕ(Oεk+1/4(x))) ⊂ Oεk+1/2(ϕ(Oεk+1/2(y))). This proves
that fk+1 satisfies (23.5.1)–(23.5.3). �

From the above theorem we immediately obtain:

(23.6) Corollary. Let P be a finite polyhedron, Y a space and let ϕ ∈
J(P, Y ). Then for any ε > 0 there exists a continuous ε-approximation f : P → Y

of ϕ.

Proof. Let T be a triangulation of P and T0 its 0-dimensional skeleton. If
P0 = |T0| = {x1, . . . , xr}, then we define f0: P0 → Y by putting f0(xi) ∈ ϕ(xi)
for i = 1, . . . , r. By Theorem (23.5), for any ε > 0, there is a continuous map
f : P → Y which is an ε-approximation of ϕ and an extension of f0, since f0 is
a selection of ϕ|P0 and, in particular, as such is a δ-approximation of ϕ for any
δ > 0. �

(23.7) Corollary. Let P be a finite polyhedron, Y a space, and let ϕ: P � Y

be a J-mapping. For any ε > 0, there exists a δ > 0 such that if f, g: P → Y are
δ-approximations of ϕ then there is a continuous mapping h: P × [0, 1]→ Y such
that h( · , 0) = f, h( · , 1) = g and, for each t ∈ [0, 1], h( · , t) is an ε-approximation
of ϕ.

Proof. Let P ′ = P × [0, 1] be a polyhedron with the canonical triangulation
T ′. (The triangulation T ′ is constructed in the following manner; to any simplex of
the triangulation T of P , with vertices {x0, . . . , xr}, we join the family of simplices
spanned by the points x0 × {0}, . . . , xi × {0}, xi × {1}, . . .xr × {1}, i = 0, . . . , r,
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together with their faces). We put P ′
0 = P × {0} ∪ P × {1}. Of course, P ′

0 is
a subpolyhedron of P ′.

Assume that ϕ′: P ′ → Y is given by the formula: ϕ′(x, t) = ϕ(x) for x ∈ P and
t ∈ [0, 1]. Let us fix ε > 0. By Theorem (23.5), since ϕ′ is J-map in view of Lemma
(23.3), there exists δ > 0 such that if h0: P ′

0 → Y is a δ-approximation of ϕ′, then
there is a continuous mapping h: P ′ → Y which is an ε-approximation of ϕ′ and
such that h|P ′

0
= h0. Now, take f, g: P → Y as continuous δ-approximations of

ϕ and define h0: P ′
0 → Y by putting h0|P × {0} = f , h0|P × {1} = g. Obviously,

h0 is a δ-approximation of ϕ′. Then the existing map h: P ′ → Y satisfies our
assertion. �

Now, we shall show that the above results may be carried over to a larger class
of domains.

(23.8) Theorem. Let X be a compact ANR-space, Y a space. For any ε > 0
and any J-mapping ϕ: X � Y , there exists a continuous ε-approximation f : X →
Y of ϕ.

Proof. Using the Arens–Eells Theorem (1.6), we may assume that X ⊂ U ⊂
E, where (E, ‖ · ‖) is a normed space, U is an open subset of E and there is
a retraction r: U → X. Take ε > 0. By Proposition (22.1), there is γ, 0 <

γ < ε, such that Oγ(X) ⊂ U and for x, z ∈ Oγ(X) with ‖x − z‖ < γ we have
dX(r(x), r(z)) < ε. Take �, 0 < 2� < γ. Then O2�(X) ⊂ U . Let x1, . . . , xk ∈ X

be such that

X ⊂
k⋃

i=1

O�(xi) = V.

Thus

X ⊂ V ⊂
k⋃

i=1

O2�(xi) ⊂ U.

For x ∈ V , i = 1, . . . , k, we put

µi(x) = max{0, �− ‖x− xi‖} and λi(x) =
µi(x)∑k

i=1 µj(x)
.

Then, for x ∈ V ,
k∑

i=1

λi(x) = 1 and λi(x) �= 0

if and only if x ∈ O�(xi).
We define π: V → span{x1, . . . , xk} by the formula

π(x) =
k∑

i=1

λi(x)xi.
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Hence ‖π(v)−v‖ < � for any v ∈ V . It is also easy to see that there exists a (finite)
polyhedron P such that π(V ) ⊂ P ⊂ O2�(X) ⊂ U . Let ψ = ϕ ◦ r: U → Y . By
Lemma (23.3), ψ is a J-mapping. By Theorem (23.5), there exists a continuous
map g: P → Y being a �-approximation of ψ|P : P → Y . Let f̃ : V → Y be defined
by the formula: f̃(v) := g(π(v)) for v ∈ V .

We claim that f̃ is a γ-approximation of ψ. To the end of proof let v ∈ V . Then
f̃(v) = g(π(v)) ∈ O�(ψ(O�(π(v)))). So, there are z ∈ O�(π(v)) ∩ P and y ∈ ψ(z)
such that dY (f̃(v), y) < �. But

‖z − v‖ ≤ ‖z − π(v)‖ + ‖π(v) − v‖ < 2� < γ.

Hence z ∈ Oγ(v) ∩ U , so f̃(v) ∈ Oγ(ψ(Oγ(v))).
Now, let f = f̃ |X : X → Y . We can see that f is an ε-approximation of ϕ.

Indeed, take x ∈ X. Since f(x) = f̃(x) ∈ Oγ(ψ(Oγ(x))), we have z ∈ Oγ(x) and
y ∈ ψ(z) such that dY (f(x), y) < γ < ε. Since x, z ∈ Oγ(X) and ‖x − z‖ < γ,
therefore dX(r(x), r(z)) < ε. So r(z) ∈ Oε(x)∩X. Moreover, y ∈ ψ(z) = ϕ(r(z)).
Hence f(x) ∈ Oε(ϕ(Oε(x))). The proof is complete. �

Finally, we prove the following:

(23.9) Theorem. Let X be a compact ANR-space, Y a space and let ϕ ∈
J(X, Y ). For any δ > 0 there exists an ε0 > 0 such that for ε, 0 < ε ≤ ε0, and for
arbitrary ε-approximations f, g: X → Y of ϕ, there is a continuous map h: X ×
[0, 1]→ Y such that h( · , 0) = f, h( · , 1) = g, and h( · , t) is a δ-approximation of
ϕ for all t ∈ [0, 1].

Proof. Again, we assume that X ⊂ U ⊂ E, where (E, ‖ ·‖) is a normed space,
U is open in E, and there is a retraction r: U → X. Let us fix δ > 0. Since the
proof is constructive, it will be carried out in several steps.

(23.9.1) By Proposition (23.1) we can choose γ, 0 < γ < δ such that Oγ(X) ⊂ U

and for z, z′ ∈ Oγ(X), if ‖z − z′‖ < γ then dX(r(z), r(z′)) < δ.
(23.9.2) Take η, 0 < η < γ/4, such that for z, z′ ∈ Oη(X), if ‖z − z′‖ < η

then dX(r(z), r(z′)) < γ/4. Hence Oη(X) ⊂ U and, as it is easily seen, for any
z ∈ Oη(X), ‖z − r(z)‖ < γ/2.

(23.9.3) Now, take �, 0 < 2� < η. Hence O2�(X) ⊂ U . Let x1, . . . , xk ∈ X be
such that X ⊂ V =

⋃k
i=1 O�(xi). As in the proof of Theorem (23.2) we construct

π: V → span{x1, . . . , xk} for which there exists a (finite) polyhedron P such that
π(X) ⊂ π(V ) ⊂ P ⊂ O2�(X) ⊂ U . Moreover, ‖π(v) − v‖ < � for any v ∈ V .

(23.9.4) By Corollary (23.7), there is a �0 > 0 such that if F, G: P → Y are
�0-approximations of ψ|P : P → Y , where ψ = ϕ◦r. Then there exists a continuous
map H: P × [0, 1]→ Y such that H( · , 1) = G and H( · , t) is a �-approximation of
ψ|P for any t ∈ [0, 1].
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(23.9.5) By (23.2.2), there exists an ε0, 0 < ε0 < γ/4, such that for any ε,
0 < ε ≤ ε0, and f : X → Y , we have F = f ◦ (r|P ): P → Y is a �0-approximation
of ψ|P provided that f is an ε-approximation of ϕ.

(23.9.6) Take ε, 0 < ε ≤ ε0, and f, g: X → Y to be continuous ε-approximations
of ϕ. By (23.9.5), F = f ◦ r|P , G = g ◦ r|P are �0-approximations of ψ|P . By
(23.9.4), there is a continuous map H: P × [0, 1] → Y such that H( · , 0) = F ,
H( · , 1) = G and H( · , t) is a �-approximation of ψ|P for any t ∈ [0, 1].

(23.9.7) Consider a map k: X × [0, 1] → Y given by the formula k(x, t) =
H(π(x), t) for x ∈ X and t ∈ [0, 1]. We claim that k( · , t) is an η-approximation
of ψ for any t ∈ [0, 1]. Indeed, let t ∈ [0, 1] and take x ∈ X. We have

k(x, t) = H(π(x), t) ∈ O�(ψ(O�(π(x)) ∩ P )).

Hence, there exists z ∈ O�(π(x)) ∩ P and y ∈ ψ(z) such that dY (k(x, t), y) < �.
Since

‖z − x‖ ≤ ‖z − π(x)‖+ ‖π(x)− x‖ < 2� < η,

we infer that z ∈ Oη(x) ⊂ U , and that k(x, t) ∈ Oη(ψ(Oη(x) ∩ U)). Moreover,
observe that k(x, 0) = F (π(x)), k(x, 1) = G(π(x)) for each x ∈ X.

(23.9.8) Let us define k′, k′′: X × [0, 1]→ Y by the formulas

k′(x, t) = f(r((1 − t)x + tπ(x))), k′′(x, t) = g(r((1− t)π(x) + tx))

for x ∈ X, t ∈ [0, 1]. This definition is correct since

(1 − t)x + tπ(x) = x + t(π(x)− x) ∈ O�(x) ⊂ U and (1 − t)π(x) + tx ∈ U

for each x ∈ X, t ∈ [0, 1]. Next, we define h: X × [0, 1]→ Y by

h(x, t) =


k′(x, 3t) for t ∈ [0, 1/3],

k(x, 3t− 1) for t ∈ [1/3, 2/3],

k′′(x, 3t− 2) for t ∈ [2/3, 1],

for x ∈ X. Then h is continuous and h( · , 0) = f , h( · , 1) = g.
(23.9.9) We shall show that h( · , t): X → Y is a γ-approximation of ψ for any

t ∈ [0, 1].
(a) Let t ∈ [1/3, 2/3]. By (23.9.7), h( · , t) = k( · , 3t− 1) is an η-approximation

of ψ. Since η < γ, h( · , t) is a γ-approximation of ψ.
(b) Let t ∈ [0, 1/3]. Take x ∈ X. By the definition,

h(x, t) = k′(x, 3t) = f(r((1 − 3t)x + 3tπ(x))) ∈ f ◦ r(O�(x)).
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Hence there exists z ∈ O�(x) ⊂ Oη(x) such that h(x, t) = f(r(z)). We shall show
now that h(x, t) ∈ Oγ(ϕ(Oγ(x))). Since f is an ε-approximation of ϕ, we infer
that f(r(z)) ∈ Oε(ϕ(Oε(r(z)))). So, there are x̃ ∈ Oε(r(z)) and y ∈ ϕ(x̃) such
that dY (f(r(z)), y) < ε. Since z ∈ Oη(X), therefore, ‖z−r(z))‖ < γ/2 by (23.9.2).
Hence

‖z − x̃‖ ≤ dX(x̃, r(z)) + ‖r(z)− z‖ < ε + γ/2 < 3γ/4

because ε ≤ ε0 < γ/4. Moreover, ‖x− z‖ < � < η/2 < γ/8; thus

dX(x, x̃) ≤ ‖x̃− z|+ ‖z − x‖ < γ.

So finally, x̃ ∈ Oγ(x), y ∈ ϕ(x̃) and h(x, t) = f(r(z)) ∈ Oγ(ϕ(Oγ(x))).
(c) Let t ∈ [2/3, 1]. By an analogous reasoning to the above we show that

h(x, t) ∈ Oγ(ϕ(Oγ(x))) for x ∈ X.
(23.9.10) By (23.9.1), proceeding in exactly the same way as in the last part

of the proof of Theorem (23.8), we now show that, for any t ∈ [0, 1], h( · , t) is
a δ-approximation of ϕ.

This completes the proof of Theorem (23.9) �

From Theorems (23.8) and (23.9), we immediately have:

(23.10) Corollary. Let X be a compact ANR-space and Y a space. If ϕ ∈
J(X, Y ) then ϕ ∈ A(X, Y ).

So, for X a compact ANR-space and Y an arbitrary space we obtain:

(23.11) Proposition. J(X, Y ) ⊂ A(X, Y ) ⊂ A0(X, Y ).

24. Homotopy

In fixed point theory an appropriate notion of homotopy is needed. In what
follows we let:

A(X) = A(X, X) and AC(X) = {ϕ ∈ A(X) | Fix(ϕ) ∩ C = ∅},

where C is a closed subset of X.
Now we shall give the definition of homotopy in AC(X).

(24.1) Definition. Two maps ϕ, ψ ∈ AC(X) are called homotopic (in AC(X))
if there exists a mapping χ ∈ A0(X× [0, 1], X) such that χ(x, 0) = ϕ(x), χ(x, 1) =
ψ(x) for each x ∈ X and χ(x, t) �� x for each x ∈ C, t ∈ [0, 1]. If ϕ and ψ are
homotopic then we write ϕ ∼C ψ.

Obviously, the relation∼C is reflexive and symmetric. To see that it a transitive,
we need the following lemma.



118 CHAPTER III. APPROXIMATION METHODS

(24.2) Lemma. If χ ∈ A0(X×[0, 1], Y ) where X is compact then for each ε > 0
and t ∈ [0, 1], there is � > 0 such that if h: X × [0, 1] → Y is a �-approximation
of χ, then ht( · , t) is an ε-approximation of χt = χ( · , t).

Proof. Fixε > 0 and t ∈ [0, 1]. Since χ is u.s.c. for any x ∈ X, there is
δ = δ(x) (0 < δ < ε) such that χ(Oδ(x, t)) ⊂ Oε/2(χ(x, t)).

Let η(x) = δ(x)/2. Obviously, X×{t} ⊂
⋃
{Oη(x)(x, t) | x ∈ X}. Since X×{t}

is compact, there exists x1, . . . , xk ∈ X such that X × {t} ⊂
⋃
{Oη(xi)(xi, t) | i =

1, . . . , k}.
We put η = min{η(xi) | i = 1, . . . , k}. We claim that, for any x ∈ X there exists

i, 1 ≤ i ≤ k, such that Oη(x, t) ⊂ Oδ(xi)(xi, t). Indeed, let x ∈ X. Then there
is i, 1 ≤ i ≤ k, such that d(x, xi) < η(xi). If (x′, t′) ∈ Oη(x, t) then d(x′, xi) ≤
d(x′, x) + d(x, xi) < η + η(xi) ≤ 2η(xi) = δ(xi). Moreover, |t− t′| < η(xi) < δ(xi).
So, we obtain (x′, t′) ∈ Oδ(xi)(xi, t).

Let � = min{η, ε/2}. Consider a �-approximation h: X × [0, 1]→ Y of χ. Take
x ∈ X. By (22.3.1) we have ht(x) = h(x, t) ∈ O�(χ(O�(x, t))). Consequently,
there exists (x′, t′) ∈ O�(x, t) and y′ ∈ χ(x′, t′) such that dY (ht(x), y′) < �.

Choose xi, such that O�(x, t) ⊂ O�(xi)(xi, t). Then y′ ∈ χ(x′, t′) ⊂ χ(O�(x, t))
⊂ χ(Oδ(xi)(xi, t)) ⊂ Oε/2(χ(xi, t)). We find y ∈ χ(xi, t) such that dY (y, y′) < ε/2.
Next, d(x, xi) ≤ δ(xi) < ε. So x ∈ Oε(x), y ∈ χ(xi, t) and dY (ht(x), y) ≤
dY (ht(x), y′) + dY (y, y′) < � + ε/2 ≤ ε; hence ht(x) ∈ Oε(χt(Oε(x))) and this
completes the proof. �

(24.3) Proposition. If C is a closed subset of a compact space X then the
relation ∼C is an equivalence.

Proof. Obviously ∼C is reflexive and symmetric. Let ϕi ∈ A(X), i = 1, 2, 3
and ϕ1 ∼C ϕ2, ϕ2 ∼C ϕ3. There are χi ∈ A0(X × [0, 1], X), i = 1, 3 such that
χ1( · , 0) = ϕ1, χ1( · , 1) = ϕ2 = χ3( · , 0), and χ3( · , 1) = ϕ3. Moreover, for any
t ∈ [0, 1], x ∈ C, we have χi(x, t) �= x (i = 1, 3). Let χ: X × [0, 1]→ X be given
by the formula

χ(x, t) =


χ1(x, 3t) for t ∈ [0, 1/3],

ϕ2(x) for t ∈ (1/3, 2/3],

χ3(x, 3t− 2) for t ∈ (2/3, 1].

Obviously, for any t ∈ [0, 1] and x ∈ C, x �∈ χ(x, t).
Take any δ > 0. By Definition (24.1), since ϕ2 ∈ AC(X), there is ε0 > 0 such

that for ε, 0 < ε ≤ ε0, any two approximations of ϕ2 are homotopic to each other;
moreover, the homotopy joining them is a δ-approximation of ϕ2. By (24.2), there
is �, 0 < � < δ, such that if hi: X× [0, 1]→ X is a �-approximation of χi (i = 1, 3)
then h1( · , 1), h3( · , 0) are ε0-approximations of ϕ.
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Let h2: X × [0, 1] → X be a homotopy joining h1( · , 1) and h3( · , 0) such that
h2( · , t) is a δ-approximation of ϕ2. We define h: X × [0, 1]→ X by the formula

h(x, t) =


h1(x, 3t) for t ∈ [0, 1/3],

h2(x, 3t− 1) for t ∈ (1/3, 2/3],

h3(x, 3t− 2) for t ∈ (2/3, 1].

It is easy to verify that h is a δ-approximation of χ, thus χ ∈ A0(X × [0, 1], X)
and joins ϕ1 with ϕ3 in the sense of the relation ∼C ; the proof is complete. �

We denote the homotopy class of ϕ ∈ AC (X) by [ϕ]C and the set of all homotopy
classes by [AC(X)]. Let SC(X) denote the class of all continuous (singlevalued)
mappings f : X → X such that Fix(f) ∩ C = ∅.

We say that two maps in SC(X) are homotopic if there exists a singlevalued,
continuous and fixed point free (on C) homotopy joining these maps. We denote
the homotopy class of f ∈ SC (X) by [f ]C and the set of all homotopy classes by
[SC(X)].

Now, we are in a position to prove our first fundamental result of this section.

(24.4) Theorem. If C is a closed subset of a compact ANR-space X then there
is a bijection F : [AC(X)] → [SC(X)].

Proof. Let ω = [ϕ] ∈ [AC(X)]. By (22.3.3), we have δ(ϕ) > 0 such that any
δ(ϕ)-approximation of ϕ is fixed point free on C. By definition, we find ε0(ϕ),
0 < ε0(ϕ) < δ(ϕ), such that for ε, 0 < ε ≤ ε0(ϕ), any two ε-approximations of ϕ

are joined by a homotopy being a δ(ϕ)-approximation of ϕ. We put

F (ω) = [f ]C ,

where f : X → X is an arbitrary ε0(ϕ)-approximation of ϕ. We shall show that
the definition of F is correct. Obviously f ∈ SC(X). It is easily seen (from the
construction), what F (ω) does not depend on the choice of f . Now, let ψ ∈ ω.
Thus ϕ and ψ are joined in AC(X) by a homotopy χ ∈ A0(X × [0, 1], X) (see
Definition (24.1)).

By (22.3.3), there is δ(χ) > 0 such that for any δ(χ)-approximation h: X ×
[0, 1] → X of χ we have h(x, t) �= x for x ∈ C, t ∈ [0, 1]. By (24.2), there is
� < δ(χ) such that for any �-approximation h: X × [0, 1]→ X of χ, h( · , 0) is an
ε0(ϕ)-approximation of ϕ and h( · , 1) is an ε0(ψ)-approximation of ψ. According
to our definition we assigned to [ϕ]C the element [h( · , 0)]C and to [ψ]C the element
[h( · , 1)]C; thus our definition is correct.

Observe that since X is a compact ANR-space we have that SC (X) ⊂ AC(X)
and hence, F is surjective. To prove the injectivity of F it is enough to show that
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having ϕ ∈ AC(X) there is ε > 0 such that for any ε-approximation f : X → X of
ϕ, one has f ∈ [ϕ]C. Applying (22.3.3), we gather that there is δ > 0 such that
for each x ∈ C we have x �∈ Oδ(ϕ(Oδ(x))). Take ε, ε < δ (given in (24.1) for ϕ

and δ) and let f be an ε-approximation of ϕ. We put

χ(x, t) =


ϕ(x) for t ∈ [0, 1/3],

cl Oδ(ϕ(Oδ(x))) for t ∈ (1/3, 2/3],

f(x) for t ∈ (2/3, 1].

It is easy to see that χ is an u.s.c. map. We shall show that χ ∈ A0(X ×
[0, 1], X). Let η > 0 (we may assume without loss of generality that η < ε)
and let g: X → X be an η-approximation of ϕ. By the construction there is
a mapping k: X × [1/3, 2/3] → X such that k( · , 1/3) = g, k( · , 2/3) = f and
k( · , t) is a δ-approximation of ϕ for each t ∈ [1/3, 2/3]. Define h: X × [0, 1]→ X

by the formula

h(x, t) =


g(x) for t ∈ [0, 1/3],

k(x, t) for t ∈ (1/3, 2/3],

f(x) for t ∈ (2/3, 1].

We can see that h is an η-approximation of χ. It is also obvious that x �∈ χ(x, t)
for x ∈ C, t ∈ [0, 1]; the proof is complete. �

(24.5) Remark. Let us note that F may be defined for an arbitrary compact
space and its closed subsets.

The above theorem enables one to provide a construction of the fixed point index
and the Lefschetz number for maps from A(X), where X is a compact ANR-space.

We will show it in the next section.

25. The fixed point index in A(X)

It is well known that in order to define a fixed point index for a class of multi-
valued mappings, some important facts from homology theory are, so far, indis-
pensable (cf. [Br1-M], [Do-M]). Here we present a new approach to the fixed point
index theory of multivalued maps, much simpler than those considered earlier.
Note that for this purpose we use the approximation technique only, thus for our
considerations, homology theory is superfluous. We believe that readers will find
our approach more natural, convenient, and interesting from the point of view of
applications in nonlinear analysis. Our presentations is connected with those pre-
sented in [CL1], [GGK1]–[GGK3] in the context of the topological degree theory.

Let U be an open subset of a compact ANR-space X and let ϕ ∈ AM (X).
By (24.4), we obtain a map f ∈ S∂U (X) such that [f ]∂U = F ([ϕ]∂U). We put

(25.1) ind (X, ϕ, U) := ind (X, f, U),
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where ind (X, f, U) denotes the fixed point index for singlevalued f as defined in
[Br1-M] or [Do-M].

The number ind (X, ϕ, U) is called the fixed point index of ϕ: X � X (from the
class A(X)) with respect to U . In view of (24.4) this definition is correct. We
define also the Lefschetz number λ(ϕ) of ϕ ∈ A(X, X) by putting

(25.2) λ(ϕ) = λ(f),

where f : X → X is a singlevalued map homotopic to ϕ. Once again, in view
of (24.4) our definition is correct.

Below there are the most important properties of the fixed point index.

(25.3) Theorem. Let X be a compact ANR-space and let U be an open subset
of X. Let ϕ, ψ ∈ A∂U(X).

(25.3.1) (Existence) If ind (X, ϕ, U) �= 0 then Fix(ϕ) �= ∅.
(25.3.2) (Excision) If Fix(ϕ) ⊂ V ⊂ U , where V is open in X then ind (X, ϕ, U) =

ind (X, ϕ, V ).
(25.3.3) (Additivity) Let U1, U2 be open in X and such that U1 ∩ U2 = ∅ and

Fix(ϕ) ∩ cl U \ (U1 ∪ U2) = ∅; then ind (X, ϕ, U) = ind (X, ϕ, U1) +
ind (X, ϕ, U2).

(25.3.4) (Homotopy) If χ ∈ A0(X × [0, 1], X) joins ϕ and ψ in A∂U(X) then
ind (X, ϕ, U) = ind (X, ψ, U).

(25.3.5) (Normalization) If U = X then ind (X, ϕ, X) = λ(ϕ).
(25.3.6) (Contraction) Let Y be a compact ANR-space such that Y ⊂ X. If

ϕ(X)⊂Y and ϕ|Y ∈A∂(U∩Y )(Y ) then ind (X, ϕ, U)=ind (Y, ϕ|Y , U ∩Y ).

Proof. (25.3.1) Assume that ind (X, ϕ, U) = m �= 0. For any sufficiently
large n, if f : X → X is an n−1 approximation of ϕ, then

ind (X, ϕ, U) = ind (X, f, U) = m.

By the existence property for singlevalued maps, we infer that there is xn ∈ X

such that f(xn) = xn. Hence xn ∈ O1/n(ϕ(O1/n(xn))). Since X is compact and
ϕ is u.s.c., we obtain x0 such that x0 ∈ ϕ(x0).

(25.3.2) follows immediately from the excision property of the classical index.
(25.3.3) is equivalent to (25.3.2).
(25.3.4) is a direct consequence of definition (25.1). (25.3.5) is obvious.
(25.3.6) Take an arbitrary � > 0. By (22.1), there is δ, 0 < δ < 2−1�, for which

there exists a retraction r: Oδ(Y ) → Y such that d(r(z), z) < 2−1�. Let ε > 0
and ε < δ. By the upper semi-continuity of ϕ, for any ε > 0, y ∈ Y , there is
η = η(y, ε), 0 < η < 4−1ε such that ϕ(Oη(y)) ⊂ Oε/2(ϕ(y)).
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Let 2λ be the Lebesgue coefficient of the covering {X \ Y, {Oη(y)}y∈Y } of X.
Take any y ∈ Y . There is y∼ ∈ Y such that Oλ(y) ⊂ Oη(y∼)(y∼). Then y∼ ∈
Oε(y). Let f : X → X be a λ-approximation of ϕ.

By (22.3.1), f(y) ∈ Oλ(ϕ(Oλ(y))) ⊂ Oλ(ϕ(Oη(y∼)(y∼))) ⊂ Oλ+ε/2(ϕ(y∼)).
Since λ < 2η(y∼), we obtain that λ + ε/2 < ε. Thus, f(y) ∈ Oε(ϕ(Oε(y))) and
f(y) ∈ Oδ(Y ). Hence, r ◦ f |Y : Y → Y is a �-approximation of ϕ|Y .

If � (and, consequently, λ) is sufficiently small, then ind (X, ϕ, U)=ind(X, f, U)
and ind (Y, ϕ|Y , U ∩ Y ) = ind (Y, r ◦ f |Y , U ∩ Y ). By the contraction property of
the ordinary index ind (Y, r ◦ f |Y , U ∩ Y ) = ind (X, r ◦ f, U). Since X is uniformly
locally connected (ULC-space, see Section 2) then, for sufficiently small � the maps
r ◦ f and f are homotopic. So, ind (X, r ◦ f, U) = ind (X, f, U) which completes
the proof. �

(25.4) Remark. Observe that we have proved that ϕ|Y ∈ A0(Y ) provided that
ϕ ∈ A0(X). Moreover, it is not clear whether ϕ|Y ∈ A∂(U∩Y )(Y ) if ϕ ∈ A∂U (X).
That is why the condition: ϕ|Y ∈ A∂(U∩Y )(Y ) seems to be indispensable as an
assumption (23.5.6).

Note, that from the existence and normalization properties we get:

(25.5) Theorem (Lefschetz Fixed Point Theorem). Let X be a compact ANR-
space and ϕ ∈ A(X). If the Lefschetz number λ(ϕ) of ϕ is different from zero,
then Fix(ϕ) �= ∅.

Since any mapping ϕ ∈ A(X) has the Lefschetz number λ(ϕ) equal to 1 provided
X ∈ AR (see Section 12) we obtain

(25.6) Corollary. If X is a compact AR-space then for any ϕ ∈ A(X) we
have Fix(ϕ) �= ∅.

Let us note that a version of the Lefschetz fixed point theorem can be formulated
also for mappings in A0(X, X).

Let X be a compact ANR and let ϕ ∈ A0(X). For each ε > 0 there exists
a continuous (singlevalued) mapping f ∈ a(ϕ, ε).

We let:

λλε(ϕ) = {λ(f) | f ∈ a(ϕ, ε)}.

We define the Lefschetz set λλ(ϕ) of ϕ ∈ A0(X, X) by:

λλ(ϕ) =
⋂
{λλε(ϕ) | ε > 0}.

The following fact is obvious (see Section 12).
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(25.7) Proposition. If X a compact AR-space, then the set λλ(ϕ) = {1} is
a singleton for each ϕ ∈ A0(X).

By using the Lefschetz fixed point theorem for singlevalued mappings of com-
pact ANRs analogously to the proof of (22.4) one can obtain:

(25.8) Theorem. Let X be a compact ANR-space and let ϕ ∈ A0(X). If the
Lefschetz set λλ(ϕ) of ϕ contains a non-zero integer then Fix(ϕ) �= ∅.

Now, from (25.7) and (25.8) we get (22.4) as a corollary.

(25.9) Corollary. If X is a compact AR and ϕ ∈ A0(X) then Fix(ϕ) �= ∅.

26. Topological degree in Rn

The fixed point index defined in the last section is unfortunately not sufficient
for applications in the theory of differential inclusions, which we will consider
in Chapter VI. In the next two sections therefore we will define the topological
degree theory which will be adequate for the mentioned applications, and so in
Chapter IV we will present a more general theory then the presented here. The
aim of such approach is to give a reader who is not interested in algebraic topology
or more precisely in homological methods a chance to go directly from Chapter III
to Chapter VI.

In what follows we will use the following notations. Throughout this section
a closed ball in Rn with center x and radius r ≥ 0 is denoted by Kn(x, r). Fur-
thermore, we are putting:

Kn(r) = Kn(0, r), Sn−1(r) = ∂Kn(r), P n = Rn \ {0},

where ∂Kn(r) stands for the boundary of Kn(r) in Rn.
For any ANR-space X we set

J(Kn(r), X) = {F : Kn(r) � X | F is u.s.c. which Rδ-values}.

In view of (2.13) the above definition coincides with the one given in Section 23.
Moreover, for any continuous f : X → Rn, when X ∈ ANR, we put

Jf (Kn(r), Rn) = {ϕ : Kn(r) � Rn | ϕ = f ◦ F

for some F ∈ J(Kn(r), X) and ϕ(Sn−1(r)) ⊂ P n}.

Finally, we define

CJ(Kn(r), Rn) =
⋃
{Jf(Kn(r), Rn) | f : X → Rn

is continuous, with X ∈ ANR}.
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Note that from results obtained in Sections 22 and 23 immediately follows that:

CJ(Kn(r), Rn) ⊂ A(Kn(r), Rn).

We are going to show that on CJ(Kn(r), Rn) it is possible to define topological
degree. To do so we need an appropriate notion of homotopy in CJ(Kn(r), Rn).

(26.1) Definition. Let ϕ1, ϕ2 ∈ CJ(Kn(r), Rn) be two maps of the form

ϕ1 = f1 ◦ F1, Kn(r)
F1−� X

f1−→ Rn,

ϕ2 = f2 ◦ F2, Kn(r)
F2−� X

f2−→ Rn.

We will say that ϕ1 and ϕ2 are homotopic in CJ(Kn(r), Rn) if there exist an
u.s.c. Rδ-valued homotopy χ: Kn(r) × [0, 1] � X and a continuous homotopy
h: X × [0, 1]→ Rn satisfying:

(26.1.1) χ(u, 0) = F1(u), χ(u, 1) = F2(u) for every u ∈ Kn(r),
(26.1.2) h(x, 0) = f1(x), h(x, 1) = f2(x) for every x ∈ X,
(26.1.3) for every (u, λ) ∈ Sn−1(r)× [0, 1] and x ∈ χ(u, λ) we have h(x, λ) �= 0,

then the map H: Kn(r) × [0, 1] � Rn given by

H(u, λ) = h(χ(u, λ), λ) for every (u, λ) ∈ Kn(r) × [0, 1]

is called homotopy in CJ(Kn(r), Rn) between ϕ1 and ϕ2.

Now we are able to prove the following.

(26.2) Theorem. There exists a map Deg: CJ(Kn(r), R)→ Z, called the topo-
logical degree function, satisfying the following properties:

(26.2.1) If ϕ ∈ CJ(Kn(r), Rn) is of the form ϕ = f ◦F with F single valued and
continuous then Deg(ϕ) = deg(ϕ), where deg(ϕ) stands for the ordinary
Brouwer degree of the single valued continuous map ϕ: Kn(r)→ Rn.

(26.2.2) If Deg(ϕ) �= 0, where ϕ ∈ CJ(Kn(r), Rn), then there exists u ∈ Kn(r)
such that 0 ∈ ϕ(u).

(26.2.3) If ϕ ∈ CJ(Kn(r), Rn) and {u ∈ Kn(r) | 0 ∈ ϕ(u)} ⊂ Int Kn(r̃) for some
0 < r̃ < r, then the restriction ϕ̃ of ϕ to Kn(r̃) is in CJ(Kn(r), Rn) and
Deg(ϕ̃) = Deg(ϕ).

(26.2.4) Let ϕ1, ϕ2 ∈ CJ(Kn(r), Rn) be two maps of the form

ϕ1 = f1 ◦ F1, Kn(r)
F1−� X

f1−→ Rn,

ϕ2 = f2 ◦ F2, Kn(r)
F2−� Y

f2−→ Rn,
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where X, Y ∈ ANR. If there exists a continuous map h: X → Y such
that the diagram

X

h

��

f1

���
��

��
��

�

Kn(r)

F1

◦��������

F2
◦�

��
��

��
��

Rn

Y

f2

����������

is commutative, that is F2 = h ◦ F1 and f1 = f2 ◦ h, then Deg(ϕ1) =
Deg(ϕ2).

(26.2.5) If ϕ1, ϕ2 are homotopic in CJ(Kn(r), Rn) then Deg(ϕ1) = Deg(ϕ2).

Proof. Let ϕ = f ◦ F ∈ CJ(Kn(r), Rn) be a map of the form

Kn(r)
F
−� X

f−→ Rn, where X ∈ ANR.

Analogously to the the proof of (22.3.3) we can find ε0 > 0 such that no element
of a(ϕ; ε0) has zero value on Sn−1(r). By (22.3.6), there is a ρ0 > 0 such that
f ◦ g ∈ a(ϕ, ε0) for g ∈ a(F, ρ0). At last, by (23.9) there is a δ0 > 0 such that for
g1, g2 ∈ a(F, δ0) the maps f ◦ g1, f ◦ g2 are homotopic and the joining homotopy
has no zero value on Sn−1(r).

By the homotopy property of the Brouwer degree (cf. [Br1-M], [Br2M-M], [Do-
M], [Ro-M]) we have

deg(f ◦ g1) = deg(f ◦ g2).

So, we can put:

(26.2.6) Deg(ϕ) = deg(f ◦ g), where g ∈ a(F, δ0).

The topological degree Deg(ϕ) of ϕ is well defined since it does not depend on the
choice of g.

Then properties (26.2.1)–(26.2.5) follow directly from (26.2.6), (22.3), (24.2)
and the properties of the Brouwer degree for singlevalued mappings. �

(26.3) Remark. Note that our definition in formula (26.2.6) depends not only
on ϕ ∈ CJ(Kn(r), Rn) but also on the decompositions F and f of ϕ. In fact, to
be precise we should use the following notation

Deg(ϕ; f, F ), where ϕ = f ◦ F.

For better understanding of the above remark let us present the following ex-
ample.



126 CHAPTER III. APPROXIMATION METHODS

(26.4) Example. We let K2 = K2(1) and S1 = S1(1). Moreover, we shall
identify R2 with the field of complex numbers. For given z ∈ R2 by |z| we will
denote its modulus (also called “absolute value”). We shall write z in trigonometric
from:

z = |z|(cos s + i sin s).

Let ϕ: K2 � K2 be the mapping defined as follows:

ϕ(z) = {|z| · x | x ∈ S1} for x ∈ K2.

We shall also consider F : K2 � K2 defined by

F (|z|(cos s + i sin s)) = {|z|(cos(s + t) + i sin(s + t)), t ∈ [0, 3π/4]}

and

f1, f2: K2 → K2, f1(z) = z2, f2(z) = z3.

Of course F ∈ J(K2, K2) and ϕ = f1 ◦ F or ϕ = f2 ◦ F . Since f1 ⊂ ϕ and f2 ⊂ ϕ

we deduce that f1, f2 ∈ a(ϕ, ε) for every ε > 0. Therefore,

Deg(ϕ; f1 ◦ F ) = deg(f1) = 2 and Deg(ϕ; f2 ◦ F ) = deg(f2) = 3.

The topological degree Deg(ϕ) of ϕ depends on its decomposition. Therefore, in
what follows, the notation Deg(ϕ) we will denote the degree of ϕ with respect to
the fixed decomposition ϕ = f ◦ F .

The following proposition is useful in applications.

(26.5) Proposition. Let ϕ1, ϕ2 ∈ CJ(Kn(r), Rn) be two maps of the form

ϕ1 = f1 ◦ F1, Kn(r)
F1−� X

f1−→ Rn,

ϕ2 = f2 ◦ F2, Kn(r)
F2−� Y

f2−→ Rn,

where X, Y ∈ ANR, such that

(26.5.1) 0 �∈ λϕ1(u) + (1− λ)ϕ2(u) for every (u, λ) ∈ Sn−1(r)× [0, 1].

Then Deg(ϕ1) = Deg(ϕ2).

Proof. Consider the following two diagrams:

Kn(r)
G
−� X × Y

gi−→ Rn, i = 1, 2,
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where for every u ∈ Kn(r) and (x, y) ∈ X × Y ,

G(u) = F1(u)× F2(u), g1(x, y) = f1(x), g2(x, y) = f2(y).

Clearly, the maps ψ1 = g1 ◦ G and ψ2 = g2 ◦ G are in CJ(Kn(r), Rn). In order
to verify that ψ1 and ψ2 are homotopic in CJ(Kn(r), Rn), consider the maps
χ: Kn(r)× [0, 1] � X × Y and h: X × Y → Rn given, respectively, by

χ(u, λ) = G(u), h(x, y, λ) = (1 − λ)g1(x, y) + λg2(x, y).

Observe that χ is an u.s.c. Rδ-valued homotopy, and h is a continuous homotopy
satisfying conditions (26.1.1) and (26.1.2) of Definition 26.1 ((26.1.1) with F1 =
F2 = G). To check (26.1.3), let (u, λ) ∈ Sn−1(r) × [0, 1] and (x, y) ∈ χ(u, λ) be
arbitrary. Then we have:

h(x, y, λ) = (1− λ)f1(x) + λf2(y) ∈ (1− λ)ϕ1(u) + λϕ2(u).

Hence, in view of (26.5.1), it follows that h(x, y, λ) �= 0, proving (26.1.3). Thus ψ1

and ψ2 are homotopic in CJ(Kn(r), Rn) and, by (26.2.5), Deg(ψ1) = Deg(ψ2).
On the other hand, the following two diagrams

X × Y

π1

��

g1

��
��

��
��

��

Kn(r)

G
◦��������

F1 ◦�
��

��
��

� Rn

X

f1

����������

and

X × Y

π2

��

g2

��
��

��
��

��

Kn(r)

G
◦��������

F2
◦�

��
��

��
� Rn

Y

f2

����������

where π1(x, y) = x and π2(x, y) = y, are commutative. By (26.2.4), it follows that
Deg(ψ1) = Deg(ϕ1) and Deg(ψ2) = Deg(ϕ2), thus Deg(ϕ1) = Deg(ϕ2), completing
the proof. �

From Theorem (26.2) we shall deduce some fixed point results. More details
will be presented in the next chapter by using homological methods as a tool.

First we shall recall the following well known property of the Brouwer topolog-
ical degree.

(26.6) Proposition (see [Br2-M], [Do-M], [Ro-M]). Let i: Kn(r)→ Rn be the
inclusion map:

i(x) = x for every x ∈ Kn(r).
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Then the Brouwer degree deg(i) of i is equal to 1.

Moreover, for given subsets A ⊂ Rn and B ⊂ Rm CJ0(A, B) will denote the
following class of mappings:

CJ0(A, B) = {ϕ: A � B | ϕ = f ◦ F, F : A � X, F is u.s.c.

with Rδ-values and f : X → B is continuous},

where X ∈ ANR. We prove the following:

(26.7) Theorem (Brouwer Fixed Point Theorem). If ϕ ∈ CJ0(Kn(r), Kn(r)),
then Fix(ϕ) �= ∅.

Proof. Let ϕ = f ◦ F where F : Kn(r) � X and f : X → Kn(r). We can
assume, without loss of generality, that Fix(ϕ) ∩ Sn−1(r) = ∅. Then we will
consider the mappings:

G:Kn(r) � X ×Kn(r), G(x) = {(y, x) | y ∈ G(x)} for every x ∈ Kn(r),

g:X ×Kn(r)→ Rn, g(y, x) = x− f(y) for every y ∈ X

and x ∈ Kn(r).

Note, that in view of (1.2.4) and (1.9) we have (X ×Kn(r)) ∈ ANR.
Consequently, we get ψ = g ◦G ∈ CJ(Kn(r), Rn). We define the homotopy

h: X ×Kn(r)× [0, 1]→ Rn, h(y, x) = x− t f(y).

Then for x ∈ S1 we have x �= t f(y) for every t ∈ [0, 1] and y ∈ F (x) because
Fix(ϕ) ∩ Sn−1 = ∅ and ϕ(Kn) ⊂ Kn. Therefore, we see that ψ is homotopic
to the inclusion i: Kn(r) → Rn. Consequently, Deg(ψ) = deg(i) = 1. So, from
(26.2.2) we infer that 0 ∈ ψ(x0) for some x0 ∈ Kn(r) and what means x0 ∈ Fix(ϕ).
The proof is completed. �

Let us make a simple observation that the Brouwer Fixed Point Theorem re-
mains true when we replace Kn(r) by a space A such that:

A is homeomorphic to Kn(r) or A is a retract of Kn(r).

(26.8) Theorem (Nonlinear Alternative). Assume that ϕ ∈ CJ0(Kn(r), Rn).
Then ϕ has at least one of the following properties:

(26.8.1) Fix(ϕ) �= ∅,
(26.8.2) there is an x ∈ Sn−1(r) with x ∈ λϕ(x) for some 0 < λ < 1.
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Proof. Proceeding as in the proof of Theorem (26.7) we obtain the homotopy

h: X ×Kn(r)× [0, 1]→ Rn, h(y, x) = x− t f(y).

If the homotopy h has no zero on Sn−1(r) then, as we known, Fix(ϕ) �= ∅. If for
some x ∈ Sn−1(r), x− t f(y) = 0, then x ∈ t ϕ(x) for some t ∈ (0, 1) (because for
t = 1 we have assumed that Fix(ϕ) ∩ Sn−1(r) = ∅) and the proof is completed. �

In fact we are able to prove the following:

(26.9) Corollary. Theorems (26.7) and (26.8) are equivalent.

For the proof it is sufficient to see that if ϕ ∈ CJ0(Kn(r)) then the possibility
(26.8.2) cannot occur.

Finally, we shall show, using approximation arguments, the famous Borsuk–
Ulam Theorem.

(26.10) Theorem. Let ϕ ∈ A0(Sn(r), Rn). Then there is a point x0 ∈ Sn(r)
such that

ϕ(x0) ∩ ϕ(−x0) �= ∅.

Proof. For every k = 1, 2, . . . we take fn ∈ a(ϕ, 1/k). Then in view of the
classical Borsuk–Ulam Theorem (see [DG-M]) we have:

fk(xk) = fk(−xk) for some xk ∈ Sn, k = 1, 2, . . .

Since fk ∈ a(ϕ, 1/k) there are zk ∈ O1/k(xk), z′
k ∈ O1/k(−xk), yk ∈ ϕ(zk) and

y′
k ∈ ϕ(z′

k) such that:

‖yk − fk(xk)‖ <
1
k

and ‖y′
k − fk(−xk)‖ <

1
k

.

Since Sn is compact we can assume that:

lim
k

xk = x = lim
k

zk.

Let m be a natural number and let km ≥ 4m be such that

ϕ(zkm ) ⊂ O1/4m(ϕ(x)) and ϕ(z′
km

) ⊂ O1/4m(ϕ(−x)).

Then there are ukm ∈ ϕ(x) and u′
km
∈ ϕ(−x) such that:

‖ykm − ukm‖ <
1

4m
and ‖y′

km
− u′

km
‖ <

1
4m

.
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It implies that

‖fkm (xkm)− ukm‖ <
1

2m
and ‖fkm(−xkm )− u′

km
‖ <

1
2m

.

Finally, we obtain

‖ukm − u′
km
‖ < ‖fkm (xkm)− ukm‖+ ‖fkm (−xkm) − u′

km
‖

+ ‖fkm (xkm)− fkm(−xkm )‖ <
1

2m
+

1
2m

+ 0 <
1
m

for every m = 1, 2, . . . Hence limm ukm = limm u′
km

(ϕ(x) is compact) and the
proof is completed. �

(26.11) Remark. Observe that if ϕ(x) is a closed subset of Rn we are getting
(from the above proof) only that dist(ϕ(x), ϕ(−x)) = 0.

27. Topological degree for mappings with non-compact values in Rn

Since we would like to consider mappings with closed nonempty, but not nec-
essarily compact, values we need the appropriate notion of approximation. As we
observed in Section 14 the notion of PC∞

X subsets of X differs from ∞-proximally
connected sets (cf. (2.17)–(2.20)). Roughly speaking in the case of arbitrary closed
sets we have to replace ε-approximation by α-approximation or W -approximation,
where α is an open covering and W is an open neighbourhood of the graph Γϕ for
given multivalued map ϕ.

Let X, Y be spaces, A ⊂ X, ϕ: X � Y a set-valued map and let W ⊂ X × Y

be an open neighbourhood of Γϕ. A map f : A → Y is a W -approximation (on
the graph) of ϕ, if Γf ⊂ W . By admissible open covering of Γϕ we mean the
family α = {Uα

x ×W α
x | x ∈ Uα

x and ϕ(x) ⊂ W α
x , x ∈ X}, where Uα

X and W α
x

are open in X and Y , respectively. We write α ∈ U (ϕ). One can see that the set
|α| =

⋃
x∈X(Uα

x ×W α
x ) is an open neighbourhood of Γϕ in X×Y . Let α, β ∈ U (ϕ).

We will say that β is a refinement of α (β ⊆ α) if Uβ
x ⊂ Uα

x and W β
x ⊂ W α

x for
every x ∈ X. We say that f : A → Y is an α-approximation of ϕ if Γf ⊂ |α| or,
equivalently

for all x ∈ A exists y ∈ X such that (x, f(x)) ∈ Uα
y ×W α

y

(we denote it by the symbol f ∈ a(A, ϕ, α) or f ∈ a(ϕ, α) if A = X).
Define a diameter of α ∈ U (ϕ) as

δ(α) = max
{

sup
x∈X

δ(Uα
x ), sup

x∈X
inf{r > 0 | W α

x ⊂ Nr(ϕ(x))}
}

.

The following example shows that there are maps which have α-approximations
for every α ∈ U (ϕ) but do not have W -approximations for some open W ⊃ Γϕ.
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(27.1) Example. Let ϕ: [−1, 1] � R be defined by the formula

ϕ(x) =


{

1
x

}
if x �= 0,

R if x = 0.

Let

W1 =
{

(x, y)

∣∣∣∣ x ∈ [−1, 0) and y ∈
(

2
x

,
1

2x

)}
,

W2 =
{

(x, y)
∣∣∣∣ x ∈ (0, 1] and y ∈

(
1

2x
,

2
x

)}
,

W3 =
{

(x, y)
∣∣∣∣ x ∈

(
− 1

2
, 0
)

and y >
1

3x

}
∪
{

(x, y)
∣∣∣∣ x ∈

(
0,

1
2

)
and y <

1
3x

}
∪ ({0} ×R)

and W = W1 ∪W2 ∪W3. Then Γϕ ⊂ W and there is no W -approximation of ϕ

because W1, W2 and W3 are pairwise disjoint. However, for each α ∈ U (ϕ) there
exists f ∈ a(ϕ, α).

Note that the compactness of values of ϕ implies an equivalence of W -approxi-
mation and α-approximation in the following sense: ϕ has a W -approximation for
every W ⊃ Γϕ if and only if ϕ has an α-approximation for every α ∈ U (ϕ). In
fact, |α| is obviously an open neighbourhood of the graph of ϕ, where |α| =

⋃
{U |

U ∈ α}. Thus it is sufficient to show that ϕ has a W -approximation for every
W ⊃ Γϕ whenever ϕ has an α-approximation for every α ∈ U (ϕ).

Let W ⊃ Γϕ and x ∈ X. The set {x} × ϕ(x) ⊂ W is compact, thus there is
ε > 0 such that Nε(x) × Nε(ϕ(x)) = Nε({x} × ϕ(x)) ⊂ W . Let Uα

x = Nε(x),
W α

x = Nε(ϕ(x)) and α = {Uα
x ×W α

x | x ∈ X}. Now, every α-approximation of ϕ

is also W -approximation of ϕ.
Some important facts are summarized in the following proposition (cf. (22.3)).

(27.2) Proposition.

(27.2.1) Let X, Y be spaces, ϕ: X � Y an u.s.c. map, P be a compact space and
let r: P → X be a map. Then for each α ∈ U (ϕ ◦ r) there is β ∈ U (ϕ)
such that f ◦ r ∈ a(ϕ ◦ r, α) whenever f ∈ a(ϕ, β).

(27.2.2) Let X, Y be spaces, C a compact subset of X, y ∈ Y and ϕ: X � Y ,
be an u.s.c. multivalued map. If ϕ−1

+ (y) ∩ C = ∅ then there exists ε > 0
such that for every α ∈ U (ϕ), δ(α) ≤ ε and for every f ∈ a (ϕ, α) we
have f−1(y) ∩ C = ∅.

(27.2.3) Let X, Y be spaces, C a compact subset of X and ϕ: X � Y be an u.s.c.
multivalued map. Then for every α ∈ U (ϕ|C) there exists β ∈ U (ϕ) such
that g = f |C ∈ a(ϕ|C) whenever f ∈ a(ϕ, β).
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(27.2.4) Let X, Y be spaces, X compact, and χ: X × [0, 1] � Y an u.s.c. map.
Then for every t ∈ [0, 1] and for every α ∈ U (χt) there exists β ∈ U (χ)
such that ht ∈ a(χt, α) whenever h ∈ a (χ, β), where χt, ht: X → Y

are defined in the following way: χt(x) = χ(x, t) and ht(x) = h(x, t) for
every x ∈ X.

Proof. To prove (27.2.1). Let α = {Uα
p ×W α

p | p ∈ P}. For every p ∈ P there
is ε(p) > 0 such that Nε(p)(p) ⊂ Uα

p .
Let x ∈ r(P ). For p ∈ P such that x = r(p) we have ϕ(x) ⊂ W α

p thus there is
η(x, p) > 0 such that ϕ(Nη(x,p)(x)) ⊂W α

p . By the continuity of r we have:

for all p ∈ P there exists θ(p), 0 < θ(p) < ε(p),

r(Nθ(p)(p)) ⊂ N(1/2)η(r(p),p)(r(p)).

By the compactness of P , P =
⋃n

i=1 Nθ(pi)(pi). Let δ := min{(1/2)η(r(pi), pi)}.
For x ∈ r(P ) we define W β

x :=
⋂
{W α

pi
| ϕ(x) ⊂ W α

pi
} and Uβ

x := Nδ(x).
For x �∈ r(P ) we have: If there is i, 1 ≤ i ≤ n such that ϕ(x) ⊂ W α

pi
, then

W β
x :=

⋂
{W α

pi
| ϕ(x) ⊂W α

pi
}. If ϕ(x) �⊂W α

pi
, 1 ≤ i ≤ n, then W β

x is an arbitrary
open neighbourhood of ϕ(x). For x �∈ r(P ) we define Uβ

x := Nδ(x).
Now, let β = {Uβ

x ×W β
x | x ∈ X} and let f ∈ a(ϕ, β). Take p ∈ P . There

exists x ∈ X such that (r(p), f(r(p))) ∈ Uβ
x ×W β

x . Moreover, there is i, 1 ≤ i ≤ n,
such that p ∈ Nθ(pi)(pi). Therefore, r(p) ∈ N(1/2)η(r(pi),pi)(r(pi)) and p ∈ Uα

pi

since θ(pi) < ε(pi). But by the definition of β we have d(r(p), x) < δ, thus
x ∈ Nη(r(pi),pi)(r(pi)). This implies ϕ(x) ⊂ W α

pi
. Hence, W β

x ⊂ W α
pi

. Finally,
(p, f ◦ r(p)) ∈ Uα

pi
×W α

pi
and the proof is completed.

To prove (27.2.2). Suppose that

for all ε > 0 there exists α ∈ U (ϕ), δ(α) ≤ ε

and there exists f ∈ a(ϕ, α) such that f−1(y) ∩ C �= ∅.

Consider the sequence {εn}, 0 < εn < 1/n. Now,

for any n ≥ 1 there exists αn ∈ U (ϕ), δ(αn) ≤ 1/n,

there exists fn ∈ a(ϕ, αn), and there exists xn ∈ C such that fn(xn) = y.

Let αn = {Un
x ×W n

z | z ∈ X}. Then, for any n ≥ 1 there is zn ∈ X such that
xn ∈ Un

zn
and y = fn(xn) ∈ W n

zn
. But d(xn, zn) < 1/n and y ∈ N1/n(ϕ(zn)),

therefore there exists tn ∈ ϕ(zn) such that d(y, tn) < 1/n.
We may assume without loss of generality (since C is compact), that xn → x ∈

C. Then zn → x and ϕ(zn) � tn → y. This implies that y ∈ ϕ(x) since Γϕ is
closed. We have a contradiction which completes the proof of (27.2.2).
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To prove (27.2.3) and (27.2.4). These are easy consequences of (27.2.1). It is
sufficient to take r := i: C → X, i(x) = x, in (27.2.3) and r := it: X → X × [0, 1],
it(x) = (x, t) in (27.2.4). The proof of (27.2) is completed. �

(27.3) Definition. Let X, Y be spaces, C ⊂ X be a compact subset and
y ∈ Y .

(27.3.1) Ã0(X, Y ) (resp. Ã0(X)) is a class of all u.s.c. maps ϕ: X � Y (resp.
ϕ: X � X) such that for every α ∈ U (ϕ) there is f ∈ a(ϕ, α).

(27.3.2) Ã(X, Y ) (resp. Ã(X)) is a class of all u.s.c. maps ϕ: X � Y (resp.
ϕ: X � X) such that ϕ ∈ Ã0(X, Y ) (resp. ϕ ∈ Ã0(X)) and for each
α ∈ U (ϕ) there is β ∈ U (ϕ) such that, if f, g ∈ a(ϕ, β) then there exists
a continuous mapping h: X×[0, 1]→ Y (resp. h: X×[0, 1]→ X) such that
h(x, 0) = f(x), h(x, 1) = g(x) for each x ∈ X and ht = h( · , t) ∈ a(ϕ, α)
for every t ∈ [0, 1].

(27.3.3) ÃC(X, Y ; y) is a class of all maps ϕ ∈ Ã(X, Y ) such that ϕ−1
+ (y)∩C = ∅.

Now we shall define a notion of homotopy in ÃC(X, Y ; y).

(27.4) Definition. Two maps ψ and ϕ in ÃC (X, Y ; y) are homotopic (in
ÃC(X, Y ; y)) if there exists χ ∈ A0(X × [0, 1], Y ) such that χ(x, 0) = ϕ(x),
χ(x, 1) = ψ(x) for each x ∈ X and y �∈ χ(x, t) for each x ∈ C, t ∈ [0, 1]. If
ϕ and ψ are homotopic then we write ϕ ∼C ψ.

(27.5) Proposition. If C is a closed subset of a compact space X then the
relation ∼C is an equivalence.

Proof. Obviously, the relation ∼C is reflexive and symmetric. Let ϕ1 ∼C ϕ2

and ϕ2 ∼C ϕ3, that is, there are two homotopies χ1 and χ3 joining respectively
ϕ1 with ϕ2 and ϕ2 with ϕ3. We define χ: X × [0, 1]→ Y ,

χ(x, t) =


χ1(x, 3t) for t ∈ [0, 1/3],

ϕ2(x) for t ∈ (1/3, 2/3],

χ3(x, 3t− 2) for t ∈ (2/3, 1].

We can see that χ(x, t) �� y for every (x, t) ∈ C × [0, 1]. We show that χ ∈
Ã0(X × [0, 1], Y ).

Let α ∈ U (χ), α = {Uα
z,t×W α

z,t | (z, t) ∈ X × [0, 1]}. Denote X1 = X × [0, 1/3],
X2 = X × [1/3, 2/3] and X3 = X × [2/3, 1]. Then X × [0, 1] = X1 ∪X2 ∪X3.

Let χi = χ|Xi. We define αi ∈ U (χi), αi = {(Xi ∩ Uα
(z,t) ×W α

(z,t) ×W α
(z,t) |

(z, t) ∈ Zi}, i = 1, 2, 3. We find for every (z, t) ∈ X2 a number η(z, t) > 0 such
that Nη(z,t)((z, t)) ⊂ Uα

(z,t) and χ(Nη(z,t)((z, t))) ⊂W α
(z,t).

We have Nη(z,t)((z, t)) = Nη(z,t)(t) and X2 ∩ Nη(z,t)((z, t)) = Nη(z,t)(z) ×
(Nη(z,t)(t) ∩ [1/3, 2/3]). By the compactness of X2, X2 =

⋃n
j=1 U ′

(zj ,tj), where
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U ′
(zj,tj) = N(1/2)η(zj,tj)(zj) × (N(1/2)η(zj,tj)(tj) ∩ [1/3, 2/3]). Let λ > 0 be the

Lebesgue number of this covering.
Define β = {Uβ

z ×W β
z | z ∈ X} ∈ U (ϕ2) in the following way:

Uβ
z := Nλ/2(z), W β

z :=
⋂
{W α

(zj,tj) | ϕ2(z) ⊂W α
(zj ,tj)}.

Take h0: X2 → Y such that h0( · , 3t− 1) ∈ a(ϕ2, β) for each t ∈ [1/3, 2/3]. Then
for every (x, t) ∈ X2 there is z ∈ X such that x ∈ Uβ

z and h0(x, 3t − 1) ∈ W β
z .

For (x, t) ∈ X2 we find (zj , tj) such that (x, t) ∈ U ′
(zj,tj). Then d (x, z) < λ/2

and d(x, zj) < (1/2)η(zj, tj), thus z ∈ Nη(zj,tj)(zj). Hence, (z, tj) ∈ U ′
(zj ,tj) ⊂

Uα
(zj,tj) ∩ X2 and ϕ2(z) = χ(z, tj) ⊂ W α

(zj ,tj). This implies W β
z ⊂ W α

(zj tj) and
h0 ∈ a(χ2, α2).

Let β2 ∈ U (ϕ2) be such that β2 ⊆ β and for any f, g ∈ a (ϕ2, β2) there is
h2: X × [0, 1] → Y such that h2( · , 1) = g and h2( · , t) ∈ a (ϕ2, β) for every
t ∈ [0, 1].

By Proposition (27.2.4), there are βi ∈ U (χi), i = 1, 3 such that βi ⊆ αi and
h1( · , 1) ∈ a(ϕ2, β2), h3( · , 0) ∈ a(ϕ2, β2) whenever hi ∈ a(χi, βi).

Let h2: X × [0, 1]→ Y joins h1( · , 1) and h3( · , 0) as above. Define

h(x, t) =


h1(x, 3t) for t ∈ [0, 1/3),

h2(x, 3t− 1) for t ∈ (1/3, 2/3],

h3(x, 3t− 2) for t ∈ (2/3, 1].

Now, h ∈ a(χ, α) and this ends the proof. �

Now, let [ÃC(X, Y ; y)] denote the set of all homotopy classes [ϕ]C of the relation
∼C , SC (X, Y ; y) a class of all continuous mappings f : X → Y such that f(x) �= y

for each x ∈ C and [SC(X, Y ; y)] the set of all homotopy classes [f ]1C of ordinary
singlevalued homotopy without y as a value on C.

The following theorem is crucial in the sequel:

(27.6) Theorem. If C is a closed subset of a compact space X and Y is a space
with the property:

(27.6.1) for every space Z and for every ε > 0 there exists δ > 0 such that each
two continuous δ-near mappings f, g: Z → Y are ε-homotopic,

then one can construct a bijection F : [ÃC(X, Y ; y)] → [SC(X, Y ; y)].

Proof. Let ϕ ∈ ÃC (X, Y ; y). By Proposition (27.2.2), there exists ε > 0 such
that for every α0 ∈ U (ϕ), δ(α0) ≤ ε and for every f ∈ a(ϕ, α0), f−1(y) ∩ C = ∅.
Let α0 ∈ U (ϕ) be such that δ(α0) ≤ ε.

By the definition of a class Ã(X, Y ) there is α ∈ U (ϕ), α ⊆ α0 such that
each f, g ∈ a(ϕ, α) can be joined by a homotopy h: X × [0, 1] → Y such that
h( · , t) ∈ a(ϕ, α0) for every t ∈ [0, 1].
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Let f ∈ a(ϕ, α). Define F : [ÃC(X, Y ; y)] → [SC(X, Y ; y)],

F ([ϕ]C) = [f ]1C .

We shall check the correctness of the above definition. It is easy to see that this
definition does not depend on the choice of α0. Let ϕ ∼C ψ. We show that
F ([ϕ]C) = F ([ψ]C). Let χ ∈ A0(X × [0, 1], Y ) be the homotopy joining ϕ and ψ

in AC (X, Y ; y) (see Definition (27.4)). By Proposition (27.2.2), there is τ ∈ U (χ)
such that for any h ∈ a(χ, τ), h(x, t) �= y for every x ∈ C, t ∈ [0, 1]. By Proposition
(27.2.4), there exists τ ′, τ ′ ⊆ τ , such that, for any h ∈ a(χ, τ ′), h0 ∈ a(ϕ, α(ϕ)) and
h1 ∈ a(ψ, α(ψ)) where α(ϕ), α(ψ) are such that F ([ϕ]C) = [h0]1C and F ([ψ]C) =
[h1]1C. Let h ∈ a(χ, τ ′). Thus we have F ([ϕ]C) = [h0]1C = [h1]1C = F ([ψ]C) and
hence the definition is correct.

For the proof of surjectivity of F it is sufficient to show that SC(X, Y ; y) ⊂
ÃC(X, Y ; y). Let f ∈ SC (X, Y ; y) and let α ∈ U (f), α = {Uα

z ×W α
z | z ∈ X}. For

every z ∈ X there is η(z) > 0 such that Nη(z)(z) × Nη(z)(f(z)) ⊂ Uα
z ×W α

z . By
the continuity of f , for every z ∈ X there exists γ(z), 0 < γ(z) < η(z) such that
f(Nγ(z)(z)) ⊂ N(1/2)η(z)(f(z)). By the compactness of X, X =

⋃n
i=1 Nγ(zi)(zi).

For every x ∈ C we have f(x) �= y hence r = minx∈C{d(f(x), y)} > 0.
Let ε = min{r, (1/2)η(z1), . . . , (1/2)η(zn)}. By the property of the space Y

there exists δ, 0 < δ < ε such that any two δ-near mappings are ε-homotopic.
By the compactness of X there is η, 0 < η < min{η(z1), . . . , η(zn)} such that
d(f(x), f(z)) < δ/2 whenever d(x, z) < η.

Consider β ∈ U (f), β = {(Nη(z)∩Uα
z )× (Nδ/2(f(z))∩W α

z ) | z ∈ X}. One can
see that β ⊆ α and if g ∈ a(f, β) then for every x ∈ X there exists z ∈ X such that
(x, g(x)) ∈ Nη(z)×Nδ/2(f(z)). Hence d(x, z) < η what implies d(f(x), f(z)) < δ/2
and d(g(x), f(z)) < δ/2. Thus d(f(x), g(x)) < δ what means that f and g are δ-
near.

Let g, g′ ∈ a(f, β). From the above discussion one can see that g and g′ are
homotopic in SC(X, Y ; y). Let h: X × [0, 1] → Y be that homotopy joining g

and g′. For every t ∈ [0, 1] and for every x ∈ X we have d(h(x, t), f(x)) < ε.
Let t ∈ [0, 1] and x ∈ X. There is i, 1 ≤ i ≤ n such that x ∈ Nγ(zi)(zi) ⊂ Uα

zi
.

Then f(x) ∈ N(1/2)η(zi)(f(zi)). This implies H(x, t) ∈ Nη(zi)(f(zi)) ⊂W α
zi

. Thus
h( · , t) ∈ a(f, α) for every t ∈ [0, 1] what proves that f ∈ AC(X, Y ; y).

Now, we shall prove that F is injective. It is sufficient to show that for any
ϕ ∈ ÃC(X, Y ; y) there is β ∈ U (ϕ) such that each f ∈ a(ϕ, β) is in [ϕ]C. In
fact, suppose that it is true. Let ϕ, ψ ∈ ÃC(X, Y ; y) and suppose that F ([ϕ]C) =
F ([ψ]C) = [f ]1C , where f is such that f ∈ a(ϕ, α′), f ∈ a(ψ, α′′), α′ ⊆ β(ϕ), α′ ⊆
α(ϕ), α′′ ⊆ β(ψ), α′′ ⊆ α(ψ). β(ϕ), β(ψ) are chosen by the assumption mentioned
above and α(ϕ), α(ψ) are chosen by the definition of F . Then f ∈ [ϕ]C ∩ [ψ]C and
thus [ϕ]C = [ψ]C.
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Let ϕ ∈ ÃC(X, Y ; y). By the compactness of C and since Γϕ is closed, there is
α ∈ U (ϕ), α = {Uα

z ×W α
z | z ∈ X} such that y �∈ W α

z for every z ∈ C.
Take, for every z ∈ X, the set Uz ⊂ Uα

z such that ϕ(Uz) ⊂ W α
z . By the

compactness of C and X \ C

X =
m⋃

i=1

{Uxi | xi ∈ C} ∪
k⋃

i=m+1

{Uxi | xi ∈ X \ C}

and C ⊂ U :=
⋃m

i=1{Uxi | xi ∈ C}.
Let 0 < γ := min{dist(y, W α

xi
) | i = 1, . . . , m}. There is θ > 0 such that

Nθ(C) ⊂ U .
Define α′ ∈ U (ϕ), α′ = {Uα′

z ×W α′
z | z ∈ X} in the following way:

Uα′
z := Uz ∩Nθ(z), W α′

z =
⋂
{W α

xi
| ϕ(z) ⊂W α

xi
}.

There exists β ∈ U (ϕ), β ⊆ α′ such that for every f ∈ a(ϕ, β), f−1(y) ∩ C = ∅
and β is the same as in Definition (27.3.2) for ϕ and α′. Let f ∈ a(ϕ, β). Define
χ: X × [0, 1]→ Y by the formula

χ(x, t) =


ϕ(x) for t ∈

[
0, 1/3),

cl (
⋃
{W α′

z | d(z, x) ≤ θ/2}) for t ∈ [1/3, 2/3],

f(x) for t ∈
(
2/3, 1].

We see that χ has closed values. It is easy to check that χ is a u.s.c. map.
Now, we show that χ(x, t) �� y for every (x, t) ∈ C× [0, 1]. Let (x, t) ∈ C× [0, 1].

If t ∈ [0, 1/3), then χ(x, t) = ϕ(x) �� y. If t ∈ (2/3, 1], then χ(x, t) = f(x) �= y.
Let t ∈ [1/3, 2/3]. Then χ(x, t) = cl (

⋃
{W α′

z | d(z, x) ≤ θ/2}). Let z ∈ X be
such that d(z, x) ≤ θ/2. Then z ∈ Nθ(x) and, hence, z ∈ U , thus there is xi ∈ C

such that z ∈ Uxi . This implies ϕ(z) ⊂ W α
xi

and hence W α′
z ⊂ W α

xi
. Therefore,

y �∈ W α′
z and dist(y, W α′

z ) ≥ γ. We conclude that dist(y, χ(x, t)) ≥ γ and, finally,
y �∈ χ(x, t).

Now, we shall show that χ ∈ Ã0(X × [0, 1], Y ). Let σ ∈ U (χ), σ = {Uσ
(z,t) ×

W σ
(z,t) | (z, t) ∈ X × [0, 1]}. We show that there is h ∈ a(χ, σ).
Take, for every (z, t) ∈ X × [0, 1], the set U(z,t) := Nη(z,t)((z, t)) = Nη(z,t)(z) ×

Nη(z,t)(t) ⊂ Uσ
(z,t) such that χ(U(z,t)) ⊂ W σ

(z,t). By compactness, X × [0, 1/3] ⊂⋃p
i=1 U ′

(zi,yi), where U ′
(zi,ti) = N(1/2)η(zi,ti)(zi) × N(1/2)η(zi,ti)(ti) and (zi, ti) ∈

X × [0, 1/3] for every i = 1, . . . , p. Let λ = min{η(zi, ti) | i = 1, . . . , p}.
Define σ′ ∈ U (ϕ), σ′ = {Uσ′

z ×W σ′
z | z ∈ X} as follows:

Uσ′
z := Uβ

z ∩Nλ/2(z), W σ′
z :=

⋂
{W σ

(zi,ti) | z ∈ Nη(zi,ti)(Zi)} ∩W β
z .
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Let g ∈ a(ϕ, σ′). Then g ∈ a(ϕ, β) and there is k: X × [1/3, 2/3]→ Y such that
k( · , 1/3) = g, k( · , 2/3) = f and k( · , t) ∈ a(ϕ, α′) for every t ∈ [1/3, 2/3].

Define h: X × [0, 1]→ Y by the formula

h(x, t) =


g(x) for t ∈ [0, 1/3),

k(x, t) for t ∈ [1/3, 2/3],

f(x) for t ∈ (2/3, 1].

It is sufficient to show that h ∈ a(χ, σ). Let (x, t) ∈ X × [0, 1].
If t ∈ [0, 1/3), then there is (zi, ti) such that (x, t) ∈ U ′

(zi,ti) ⊂ Uσ
(zi,ti). There

exists z ∈ X such that z ∈ Uσ′
z and h(x, t) = g(x) ∈ W σ′

z . Thus d(x, z) < λ/2 and
d(x, zi) < (1/2)η(zi, ti). Hence z ∈ Nη(zi,ti)(zi). This implies W σ′

z ⊂W σ
(zi,ti).

If t ∈ [1/3, 2/3], then h(x, t) = k(x, t) and there is z = z(x, t) such that x ∈ Uα′
z

and k(x, t) ∈ W α′
z ⊂ χ(x, t). If t ∈ (2/3, 1], then h(x, t) = f(x) = χ(x, t).

Finally, h ∈ a(χ, σ) and a proof of Theorem (27.6) is completed. �

(27.7) Definition (cf. (2.16)). For spaces X, Y , let C ⊂ X be a compact
subset and y ∈ Y we define the following classes of J-maps:

J̃(X, Y ) = {ϕ : X � Y u.s.c. | ϕ(x) ∈ P C∞
Y for all x ∈ X},(27.7.1)

(27.7.2) J̃C(X, Y ; y) = {ϕ ∈ J(X, Y ) | ϕ−1
+ (y) ∩ C = ∅}.

(27.8) Remark. It is easy to check that ϕ ∈ J̃(X, Y ) if and only if ϕ is u.s.c.
and for each x ∈ X, and for each open set Wx ⊂ Y such that ϕ(x) ⊂ Wx and
for n ≥ 1 there exists an open set Vx ⊂ Wx, ϕ(x) ⊂ Vx such that, for any k,
0 ≤ k ≤ n and a continuous map g: ∂∆k → Vx, there exists a continuous extension
g: ∆k →Wx of g.

Let ∆k denote the standard k-dimensional simplex in Rk. The following fact is
obvious.

(27.9) Lemma. Let X, Y , Z be spaces, r: Z → X be continuous and ϕ ∈
J̃(X, Y ). Then ϕ ◦ r ∈ J̃(X, Y ).

The following Lemma will be needed in the proof of the main result of this
section.

(27.10) Lemma. Let X, Y be spaces, X be compact and ϕ ∈ J̃(X, Y ). Then
for each n ≥ 1 and α ∈ U (ϕ) there exists β ∈ U (ϕ), β ⊆ α such that, for each
z ∈ X and k, 0 ≤ k ≤ n, if g: ∂∆k →W β

x is continuous, then there is a continuous
extension g: ∆k →W α

x of g.

Proof. Let α ∈ U (ϕ), α = {Uα
z ×W α

z | z ∈ X}. Then for any z ∈ X there
exists W β

z ⊂ W α
z such that (27.8) holds for z, W α

z and W β
z . Let Uβ

z � z be such
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that Uβ
z ⊂ Uα

z and ϕ(Uβ
z ) ⊂ W β

z , by u.s.c. Then β = {Uβ
z ×W β

z | z ∈ X} is
a good covering of Γϕ. �

Now, we prove the following crucial theorem:

(27.11) Theorem (cf. (23.5)). Let P be a finite polyhedron, P0 its subpolyhe-
dron, Y be a space and ϕ ∈ J(P, Y ). For any α ∈ U (ϕ) there is β ∈ U (ϕ) such
that, for any f0 ∈ a(P0, ϕ, β) there exists an extension f : P → Y of f0 being an
α-approximation of ϕ.

Proof. The idea of the proof is similar to that in (23.5). Let α ∈ U (ϕ) and
let N = dim P ≥ N0 = dim P0. For every z ∈ P there is ηN (z) > 0 such that
NηN (z)(z) ⊂ Uα

z and ϕ(NηN (z)(z)) ⊂W α
z .

Consider the P =
⋃

z∈P NηN (z)/4(z) =
⋃r(N)

i=1 NηN (zN
i

)/4(zN
i ), by the compact-

ness of P . Let θN > 0 be the Lebesgue number of this covering and ηN =
min{ηN(zN

i )}. Define for every z ∈ P .

W αN
z =

{
W αN

zi
if z = zN

i ,⋂
{W αN

zi
| z ∈ NηN (zN

i )} ∩W α
z if z �= zN

i for every 1 ≤ i ≤ r(N),

UαN
z = NηN /4(z) ∩NηN (z)(z) and αN := {NηN /4(z) ×W αN

z | z ∈ P}.

Suppose that αk+1 is constructed for same k = 0, . . . , N−1. There is αk ∈ U (ϕ)
such that, for any z ∈ P , Uαk

z ⊂ U
αk+1
z , W αk

z ⊂W
αk+1
z and every g: ∂∆n →W αk

z

may be extended to g: ∆n →W
αk+1
z for any 1 ≤ n ≤ N .

Take for any z ∈ P a positive number ηk(z) < ηk+1 such that Nηk(z)(z) ⊂ Uαk
z

and ϕ(Nηk(z)(z)) ⊂W αk
z . By the compactness of P

P =
⋃

z∈P

N(1/4)ηk(z)(z) =
r(k)⋃
i=1

N(1/4)ηk(zk
i )(z

k
i ).

Let θk > 0 be the Lebesgue number of this covering and ηk = min{ηk(zk
i ) | i =

1, . . . , r(k)}. Define for every z ∈ P .

W αk
z =

{
W αk

zk
i

if z = zk
i ,⋂

{W αk

zk
i

| z ∈ Nηk(zk
i )(z

k
i )} ∩W α

z if z �= zk
i for every 1 ≤ i ≤ r(k),

Uαk
z = Nηk/4(z) ∩Nηk(z)(z) and αk := {Nηk/4(z)×W αk

z | z ∈ P}.

Now, we have defined α0 := {Uα0
z ×W α0

z | z ∈ P}. Let β := α0 and f0: P0 → Y

be a β-approximation of ϕ.
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Let (T, T0) be a triangulation of (P, P0) such that δ(T ) < min{θN , . . . , θ0}. It
implies that for every simplex S ∈ T and for every k, 0 ≤ k ≤ N there exists zk

i

such that S ⊂ Nηk(zk
i

)/4(zk
i ).

By T k, 0 ≤ k ≤ N (T k
0 , 0 ≤ k ≤ N0), we denote a k-dimensional skeleton

of T and T0, respectively. Denote P k = |T k| and P k
0 = |T k

0 |. Note that T k
0 is

a subcomplex of T k for every k ≤ N0 and P N = P , P N0
0 = P0.

Now, we shall construct a sequence of maps {fk: P k → Y } such that

fk|P k
0

= f0|P k
0

for any k, 0 ≤ k ≤ N0,(27.11.1)

fk+1|P k = fk for any k, 0 ≤ k ≤ N,(27.11.2)

fk is a βk-approximation of ϕ for any k, 0 ≤ k ≤ N,(27.11.3)

where βk = {Uβk
z ×W βk

z | z ∈ P} is such that Uβk
z = Nηk/2(z) ∩ Nηk(z)(z) and

W βk
z = W αk

z .

Let P 0 = {x1, . . . , xq, xq+1, . . .xr}, where xi ∈ P 0
0 for 0 ≤ i ≤ q and xi �∈ P 0

0

for q + 1 ≤ i ≤ r. If 0 ≤ i ≤ q then we put f0(xi) := f0(xi). For q + 1 ≤ i ≤ r we
put f0(xi) ∈ ϕ(xi). One can see that f0 satisfies (27.11.1)–(27.11.3).

Let k ≤ N − 1. Suppose that we have defined fj satisfying (27.11.1)–(27.11.3)
for all 0 ≤ j ≤ k. We shall define fk+1.

Let S be an arbitrary (k + 1)-dimensional simplex in T . There is zk
i ∈ P

such that S ⊂ Nηk(zk
i

)/4(zk
i ). Let x ∈ ∂S. By assumption, there exists z ∈ P

such that (x, fk(x)) ∈ Uβk
z ×W βk

z . Then d(x, z) < ηk/2, what implies d(z, zk
i ) <

(1/4)ηk(zk
i ) + (1/2)ηk(zk

i ) < ηk(zk
i ). Hence W βk

z = W αk
z ⊂ W αk

zk
i

which gives

fk(x) ∈ W αk

zk
i

. Thus (x, fk(x)) ∈ Nηk(zk
i )/4(zk

i )×W αk

zk
i

.

(27.11.4) If k + 1 ≤ N0 and S ∈ T k+1
0 then we put fk+1|S = f0|S .

(27.11.5) If k + 1 > N0 or S �∈ T k+1
0 then there is fk+1: S → W

αk+1

zk
i

such that

fk+1|∂S.

We shall show that fk+1 is a βk+1-approximation of ϕ. Let x ∈ S.

If (27.11.4) holds, then (x, fk+1(x)) = (x, f0(x)) ∈ Uα0
z ×W α0

z for some z ∈ P .
There exists zk

j ∈ P such that z ∈ Nηk(zk
j

)/4(zk
j ). Thus d(x, z) < η0/4 ≤ ηk(zk

j )/4

and d(z, zk
j ) < ηk(zk

j )/4. It follows that x ∈ Nηk(zk
j

)/2(zk
j ) ⊂ Nηk+1/2(zk

j ) and

x ∈ Nηk+1(zk
j

)(z
k
j ). Hence, x ∈ U

βk+1

zk
j

.

Moreover, there exists z0
i(0) ∈ P such that d(z, z0

i(0)) < η0(z0
i(0))/4 < (η1)/4),

what implies W α0
z ⊂ W α0

z0
i(0)

. There exists z1
i(1) ∈ P such that d(z, z1

i(1)) <

η1(z1
i(1))/4. Therefore, d(z0

i(0), z1
i(1)) < η1(z1

i(1))/2 and W α1
z0

i(0)
⊂ W α1

z1
i(1)

. Since

W α0
z0

i(0)
⊂W α1

z0
i(0)

, W α0
z ⊂W α1

z1
i(1)

.
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It is easy to check, by induction, that W α0
z ⊂W αk

zk+1
j

⊂W
αk+1

zk
j

= W
βk+1

zk
j

. Hence

(x, fk+1(x)) ∈ U
βk+1

zk
j

×W
βk+1

zk
j

.

If (27.11.5) holds, then (x, fk+1(x)) ∈ Nηk(zk
i

)/4(zk
i ) × W

αk+1

zk
i

. Hence x ∈
Nηk+1/2(zk

i ) ∩Nηk+1(zk
i )(z

k
i ) and (x, fk+1(x)) ∈ U

βk+1

zk
i

×W
βk+1

zk
i

.

Now, we conclude that fk+1 is a βk+1-approximation of ϕ. This completes the
proof. �

As an immediate consequence of the above theorem we obtain:

(27.12) Corollary. If P is a finite polyhedron, Y is an arbitrary metric space
and ϕ ∈ J̃(P, Y ), then for every α ∈ U (ϕ) there exists f ∈ a(ϕ, α).

(27.13) Theorem. If P is a finite polyhedron, Y is an arbitrary metric space
and ϕ ∈ J(P, Y ) then for every α ∈ U (ϕ) there exists β ∈ U (ϕ) such that for
any two maps f, g ∈ a(ϕ, β) one can find a homotopy h: P × [0, 1]→ Y such that
h0 = f, h1 = g and ht ∈ a (ϕ, α) for every t ∈ [0, 1].

Proof. Consider the polyhedron P ′ = P × [0, 1] (with the canonical triangu-
lation). Let P ′

0 = (P ×{0})∪ (P ×{1}). Define ϕ′: P × [0, 1]→ Y , ϕ′(x, t) := ϕ(x)
for each (x, t) ∈ P × [0, 1].

Let α ∈ U (ϕ), α = {Uα
z ×W α

z | z ∈ P}. For any t ∈ [0, 1] and z ∈ P define:

Uα′
(z,t) := Uα

z × [0, 1], W α′
(z,t) := W α

z .

Let α′ = {W α′
(z,t) ×W α′

(z,t) | (z, t) ∈ P ′}. By Theorem (27.11), there is β′ ∈ U (ϕ′)
such that for any h0 ∈ a (P ′

0, ϕ′, β′) there exists an extension h: P ′ → Y of h0

which is an α′-approximation of ϕ′.
Notice that for any z ∈ P there exists γ(z) > 0 such that Nγ(z)((z, 0)) ⊂ Uβ′

(z,0)

and Nγ(z)((z, 1)) ⊂ Uβ′

(z,1). Define for every z ∈ P :

Uβ
z := Nγ(z)(z), W β′

z := W β′

(z,0) ∩W β′

(z,1)

and β := {Uβ
z ×W β

z | z ∈ P}. Let f, g ∈ a (ϕ, β). Define h0: P ′
0 → Y ,

h0(x, t) =

{
f(x) for t = 0,

g(x) for t = 1.

For any (x, t) ∈ P × [0, 1]

((x, t), h0(x, t)) =

{
((x, 0), f(x)) for t = 0,

((x, 1), g(x)) for t = 1.
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There is z ∈ P such that (x, f(x)) ∈ Uβ
z ×W β

z , thus (x, 0) ∈ Nγ(z)((z, 0)) ⊂ Uβ′

(z,0)

and f(x) ∈ W β′

(z,0). Analogously, one can find p ∈ P such that ((x, 1), g(x)) ∈
Uβ′

(p,1) ×W β′

(p,1). This implies that h0 is a β′-approximation of ϕ′.
Let h: P ′ → Y be an extension of h0 and let (x, t) ∈ P ′. There exists a

(z, s) ∈ P ′ such that ((x, t), h(x, t)) ∈ Uα′
(z,s) ×W α′

(z,s). By the definition of α′ we
have x ∈ Uα

z and ht(x) = h(x, t) ∈ W α
z . We conclude that ht ∈ a(ϕ, α) for every

t ∈ [0, 1]. The proof is completed. �

The facts (27.12) and (27.13) imply J̃(P, Y ) ⊂ Ã(P, Y ).
Using the above results we will construct the topological degree for maps with

proximally∞-connected values. Note that the values do not have to be compact
(cf. Section 26).

Let U be an open, bounded subset of a space Rn and ϕ ∈ J̃∂U(U, R; y). Since Γϕ

is closed, the set F = ϕ−1
+ (y) is closed in U and there is V ⊂ V ⊂ U such that F ⊂

V and V is a finite polyhedron. The fact that V ⊂ U is an open neighbourhood of
the set F with V being a polyhedron will be denoted by the symbol V ∈ Np(F , U).
We see that ϕV := ϕ|V : V → Rn is an element of J̃∂V (V , Rn; y). By (27.14)
and Theorem (27.6), there is f : V → Rn an αV -approximation of ϕV such that
F ([ϕ]∂V ) = [f ]1∂V . Define

Deg(U, ϕ, y) := Deg(V , ϕV , y) := deg(V , f, y),

where deg(V , f, y) stands for the Brouwer degree (cf. [Ro-M]).
By Theorem (27.6) and the properties of a topological degree for singlevalued

maps, we can see that this definition is correct. We shall show that it does not de-
pend on the choice of V . In fact, suppose that we have two sets V, W ∈ Np(F , U).
Let O ∈ Np(F , U) be such that O ⊂ V ∩W . Let ϕO = ϕ|O and αO be the same
as in definition of Deg(O, ϕO, y). There exist αV ∈ U (ϕV ) and αW ∈ U (ϕW )
such that, if f ∈ a(ϕV , αV ), g ∈ a(ϕW , αW ) then f |O, g|O ∈ a(ϕO, αO) and
Deg(V , ϕV , y) = deg(V , f, y), deg(W, ϕW , y) = deg(W, g, y). Let f ∈ a(ϕV , αV )
and g ∈ a(ϕW , αW ). Then, applying the excision property of the Brouwer degree,

Deg(V , ϕV , y) = deg(V , f, y) = deg(O, f |O, y) = Deg(O, ϕO, y)

= deg(O, g |O, y) = deg(W, g, y) = Deg(W, ϕW , y).

In the following proposition we collect some properties of Deg:

(27.14) Proposition. Let U be an open and bounded subset of a space Rn and
ϕ, ψ ∈ J̃∂U(U, Rn; y).

(27.14.1) (Additivity) Let U1, U2 ⊂ Rn be open, U1 ∪ U2 ⊂ U, U1 ∩ U2 = ∅ and
ϕ−1

+ (y) ∩ (U \ (U1 ∪ U2)) = ∅. Then Deg(U, ϕ, y) = Deg(U1, ϕU1 , y) +
Deg(U2, ϕU2, y).
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(27.14.2) (Existence) If Deg(U, ϕ, y) �= 0, then ϕ−1
+ (y) ∩ U �= ∅.

(27.14.3) (Excision) Let V ⊂ U be open and such that (U \V )∩ϕ−1
+ (y) = ∅. Then

Deg(U, ϕ, y) = Deg(V , ϕV , y).
(27.14.4) (Homotopy) If χ ∈ A0(U × [0, 1], Rn) joins ϕ and ψ in A∂U (U, Rn; y),

then Deg(U, ϕ, y) = Deg(U, ψ, y).

Proof. (27.14.1) Let V1 ⊂ U1, αV1 ∈ U (ϕV1), V2 ⊂ U2 and αV2 ∈ U (ϕV2)
be the same as in definition of Deg(U1, ϕU1, y) and Deg(U2, ϕU2 , y). Define V =
V1 ∪ V2. Then V is an appropriate set for defining Deg(U, ϕ, y). Let α(V ) be
such that for any f ∈ a(ϕV , α(V )) we have deg(V , ϕV , y) = deg(V , f, y) and
f |Vi ∈ a(ϕVi , αVi) for i = 1, 2. Now, take f ∈ a(ϕV , α(V )). Then

Deg(U, ϕ, y) = Deg(V , ϕV , y) = deg(V , f, y)

= deg(V1, f |V1 , y) + deg(V2, f |V2 , y)

= Deg(U1, ϕU1, y) + Deg(U2, ϕU2 , y).

(27.14.2) The proof is a consequence of compactness of U , u.s.c. of ϕ and the
existence property for singlevalued maps. We omit details.

(27.14.3) Use (27.14.1) for U1 = V , U2 = U \ V and (27.14.2) for U2.
(27.14.4) Suppose that χ ∈ A0(U × [0, 1], Rn) joins ϕ and ψ in A∂U(U, Rn; y).

Let V ∈ Np(F , U) be such that χ(x, t) �= y for any x ∈ U \ V , t ∈ [0, 1].
Then both deg(V , ϕV , y), deg(V , ψV , y) are well defined and χV := χ|V ×[0,1] ∈
A0(V × [0, 1], Rn) joins ϕV and ψV in A∂V (V , Rn; y). By Proposition (27.2.4),
we can find h: V × [0, 1]→ Rn such that h(x, t) �= y for every (x, t) ∈ ∂V × [0, 1]
and deg(V , h0, y) = Deg(V , ϕV , y) and deg(V , h1, y) = Deg(V , ψV , y). So by the
homotopy property of the Brouwer degree we have

Deg(V , ϕV , y) = Deg(V , ψV , y)

and the proof is completed. �

We shall end this section by giving some applications of the above results. The
first observation is negative.

(27.15) Example. (The nonlinear alternative is not true for mappings in space
J̃(K2, R2)). Consider ϕ: K2 � R2 defined as follows:

ϕ(x, y) =

{
Γf if x = 0,

(‖x‖, f(‖x‖)) if x �= 0,

where f : (0, 1] → R, f(t) = 1 + 1/t. Obviously, x �∈ ϕ(x) for each x ∈ K2. It is
easy to see that x �∈ λϕ(x) for every x ∈ S1 and λ ∈ (0, 1) but ϕ ∈ J̃(K2, R2).

Observe that by the same arguments as in the proof of (26.7) or (26.8) we can
obtain the following weaker version of the nonlinear alternative.
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(27.16) Theorem. If ϕ ∈ J̃(Kn(r), Rn) then ϕ has at least one of the following
properties:

(27.16.1) Fix(ϕ) �= ∅,
(27.16.2) there is x0 ∈ Sn−1 such that dist({x0}, A) = 0, where A = {t · ϕ(x0) |

t ∈ (0, 1)}.

We can also get the following version of the Borsuk–Ulam Theorem (cf. (26.10)
and (26.11):

(27.17) Theorem. If ϕ ∈ Ã0(Sn(r), Rn) then there exists x0 ∈ Sn(r) such
that:

dist(ϕ(x0), ϕ(−x0)) = 0.

(27.18) Remark. We would like to point out that the problem of extending
the topological degree onto the class C̃J(Kn(r), Rn) is open.

28. Topological degree in normed spaces

In this section by E we shall denote a real normed space. We let

K(r) = {x ∈ E | ‖x‖ ≤ r}, S(r) = {x ∈ E | ‖x‖ = r}, P = E \ {0}.

Moreover, we shall use the notations of earlier sections. First we define:

CJC(K(r), E) = {Φ = f ◦ F | where Φ ∈ J(K(r), X), f : X → E,

X ∈ ANR, Fixφ ∩ S(r) = ∅ and cl Φ(K(r)) is compact}.

In what follows, with given Φ ∈ CJ(K(r), E) we shall associate ϕ: K(r) � E,
ϕ = j −Φ given as follows:

ϕ(x) = j(x) −Φ(x) = x− φ(x)

for every x ∈ K(r), where j: K(r)→ E, j(x) = x is the inclusion map. Note that
if Φ ∈ CJC(K(r), E) then ϕ(S(r)) ⊂ P . We claim more:

(28.1) Proposition. If Φ ∈ CJC(K(r), E) then ϕ ∈ CJ(K(r), E).

Proof. In fact assume that Φ = f ◦ F : Kn(r)
F
−� X

f−→ E. Then we let:

Kn(r)
F̃
−� Kn(r) ×X

f̃−→ E,

where F̃ (x) = {(x, y) | y ∈ F (x)} and f̃(x, y) = x − f(y). Since (Kn(r) × X) ∈
ANR (cf. (1.2.4)) and ϕ = f̃ ◦ F̃ we infer that ϕ ∈ CJ(K(r), E) and the proof is
completed. �
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In what follows ϕ is called a compact vector field associated with Φ. Proposi-
tion (28.1) allows us to define:

CJCV (K(r), E) = {ϕ ∈ CJ(K(r), E) | ϕ is a compact vector field

associated with some Φ ∈ CJC(B(r), E)}.

We shall use also the following general property.

(28.2) Theorem. Assume that Ψ: X � E is an u.s.c. and compact map, i.e.
cl Ψ(x) is compact. Let ψ: X � E be a compact vector field associated with Ψ,
where X ⊂ E. Then ψ is a closed map, i.e. for every closed A ⊂ X the set ψ(A)
is closed.

Proof. Let A be a closed subset of X. Since Ψ is compact then there exists
a compact subset K ⊂ E such that Ψ(X) ⊂ K. Let {yn} ⊂ ψ(A) and limn yn = y.
For the proof it is sufficient to show that y ∈ ψ(A). We can assume that

yn = xn − zn, n = 1, 2, . . . ,

where xn ∈ A and zn ∈ Ψ(xn) for every n. Since {zn} ⊂ K and K is compact we
can assume that:

lim
n

zn = z.

Consequently, we deduce that limn xn = x and x ∈ A because A is closed. Since
Ψ is u.s.c. we deduce that z ∈ Ψ(x) but limn yn = y = limn(xn − zn) = x− z and
hence y ∈ ψ(A). The proof is completed. �

Now, we are going to define a topological degree on CJCV (K(r), E). Let ϕ ∈
CJCV (K(r), E). Then from (28.2) we deduce that:

ϕ(S(r)) ⊂ P

and ϕ(S(r)) is a closed subset of E. Hence δ = dist(ϕ(S(r)), 0) > 0. Let ϕ = j−Φ
and let K = dΦ(K(r)). Then K is a compact subset of E. We have a compact
inclusion i: K → E, i(x) = x.

Let ε > 0 be such that ε < δ/2. By using Schauder Approximation Theorem
(see (12.9)) to the map i we get a finite dimensional subspace En(ε) of E and
a compact map iε: K → E such that:

‖x− iε(x)‖ < ε for every x ∈ K,(28.2.1)

iε(K) ⊂ En(ε),(28.2.2)

the maps i and iε are homotopic.(28.2.3)
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Assume that Φ = f ◦ F : Kn(r)
F
−� X

f̃−→ K
i−→ E (we know that f(X) ⊂ K).

Now we can consider the map

Φε = fε ◦ F : Kn(r)
F
−� X

fε−→ E,

where fε = iε ◦ f̃ . It follows from (28.2.1) that Φε ∈ JCC(Kn(r), E). In view of
(28.2.2) fε(X) ⊂ En(ε). So we can define the map Φn(ε) ∈ CJC(Kn(ε)(r), En(ε))
by putting.

Φn(ε) = f̃ε ◦ F, where f̃ε: X → En(ε)

is defined by the formula: f̃ε(x) = fε(x).

(28.3) Remark. Let us observe that ϕn(ε) ∈ CJ(Kn(ε)(r), En(ε)), where ϕn(ε)

is a compact vector field associated with Φn(ε).

Therefore we can define:

(28.4) Definition. Let ϕ ∈ CJCV (K(r), E). We define the topological degree
Deg(ϕ) of ϕ as follows:

Deg(ϕ) = Deg(ϕn(ε)),

where ϕn(ε) is obtained by the above procedure and Deg(ϕn(ε)) is defined in (26.2).

In view of (28.2.3) any two approximations iε and iε′ of i are homotopic so by
the homotopy property (26.2.5) it follows that Definition (28.4) is correct.

By standard arguments we deduce from (26.2):

(28.5) Theorem. The topological degree Deg: CJCV (K(r), E) → Z defined
in (28.4) satisfies the following properties.

(28.5.1) If ϕ ∈ CJCV (K(r), E) is of the form ϕ = f ◦F and F is singlevalued then
Deg(ϕ) = deg(ϕ), where deg(ϕ) stands for Leray–Schauder topological
degree (cf. [Gr1-M], [Gr2-M], [Gr3-M] or [Ro-M]).

(28.5.2) If Deg(ϕ) �= 0 then there exists x ∈ K(r) such that 0 ∈ ϕ(x).
(28.5.3) If ϕ ∈ CJCV (K(r), E) and {u ∈ K(r) | 0 ∈ ϕ(u)} ⊂ Int K(r̃), 0 < r̃ < r,

then the restriction ϕ̃ of ϕ to K(r̃) is in CJCV (K(r̃), E) and Deg(ϕ) =
Deg(ϕ̃).

(28.5.4) If ϕ1, ϕ2 are homotopic in CJCV (K(r), E) then Deg(ϕ1) = Deg(ϕ2),
where homotopy in CJCV (K(r), E) means that joining homotopy is a
compact vector field (cf. (26.1)).

(28.5.5) Let Φ1, Φ2 ∈ JCC(K(r), E) and assume that:

x �∈ {λΦ1(u) + (1 − λ)Φ2(u) | for every (u, λ) ∈ S(r) × [0, 1]}

then Deg(ϕ1) = Deg(ϕ2).
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The proof of (28.5) is left to the reader. Now we will sketch possible conse-
quences of (28.5).

Note, that there are standard topological facts which follow from a topological
degree theory (cf. [Br2-M], [Do-M], [Gr1-M], [L1-M], [LR-M], [Ro-M] [Sp-M] and
[Wa-M]).

The inclusion j: K(r)→ E is a compact vector field because Φ(x) = 0 for every
x ∈ K(r) a compact map and j = j − Φ. Now by the construction of topological
degree we have:

jn(ε): Kn(ε)(r)→ En(ε), jn(ε)(x) = x

for every x ∈ Kn(ε)(r). So, in view of (26.6), we obtain

(28.6) Deg(j) = deg(j) = deg(jn(ε)) = 1.

Below we give examples of mappings with degree different from zero.

(28.7) Example. Let Φ: E � E be of the from Φ = f ◦ F : E
F
−� X

f−→ E,
x ∈ ANR, where F has Rδ-values and Φ is u.s.c. and compact. Let r > 0 be such
that cl Φ(E) ⊂ Int K(r). If ϕ: K(r) � E is a compact vector field associated with
ϕ then Deg(ϕ) = 1. In fact, consider the homotopy χ: K(r)× [0, 1] � E given as
follows:

χ(x, t) = x− t ·Φ(x).

Then χ(S(r) × [0, 1]) ⊂ P and for every t ∈ [0, 1] the map χ( · , t) is a compact
vector field. Consequently from (28.5.5) we deduce that

Deg(ϕ) = Deg(j) = 1.

(28.8) Remark. From (28.7) and (28.5.2) we deduce that Fix(Φ) �= ∅ provided
Φ is the same as in (28.7).

Now we are able to prove:

(28.9) Proposition. Let X ∈ AR and Φ: X � X be a compact u.s.c. map of
the form:

X
F
−� Y

f−→ X,

where F is u.s.c. with Rδ-values, Y ∈ ANR and f is continuous. Then Fix(Φ) �= ∅.

Proof. In view of the Arens–Eells embedding Theorem (1.6) we can assume
that X is a closed subset of a normed space E. Consequently, it follows from
(1.8.1) that there exists a retraction r: E → X. We have diagram:

E
r−→ X

F
−� Y

f−→ X
j−→ E,

where j is the inclusion map.



29. TOPOLOGICAL DEGREE OF VECTOR FIELDS 147

We let F1 = F ◦r and f1 = j ◦f . Then we get a map Ψ = f1 ◦F1 which satisfies
assumptions of (28.8) and hence Fix(ψ) �= ∅. Now by using standard arguments
we deduce that Fix(Φ) �= ∅ and the proof is completed. �

(28.10) Example. Let ϕ ∈ CJCV (K(r), E) be such that (−λx) �∈ ϕ(x) for all
x ∈ S(r) and λ > 0. Then Deg(ϕ) = 1.

In fact assume that ϕ is associated with Φ ∈ CJC(K(r), E). We consider the
homotopy χ: K(r)× [0, 1] � E defined by:

χ(x, 1) = x− tφ(x).

Assume that for some x ∈ S(r) and t > 0 we have 0 ∈ χ(x, t). It implies that

0 = x− ty for every y ∈ φ(x).

Consequently x ∈ f · Φ(x) and hence (1 − 1/t) · x ∈ ϕ(x) but it contradicts our
assumption. Therefore χ(S(r) × [0, 1]) ⊂ P and Deg(ϕ) = deg(1) = 1.

29. Topological degree of vector fields
with non-compact values in Banach spaces

In this section all metric spaces are assumed to be complete. We would like
to point out that the problem of defining topological degree on J̃(K(r), E) for
arbitrary normed space E is still open (cf. [Ga-1], [Da1-M], [BM-7]). In this section
we will restrict our considerations to the case of closed convex and bounded subsets
of a Banach space E.

First, following Section 4 for a complete metric space X by B(X) we shall
denote the complete metric space of closed bounded and nonempty subsets of X

with the Hausdorff metric dH . If X = E is a Banach space then we will consider
CB(E) to be a subspace of B(E) defined as follows:

CB(E) = {A ∈ B(E) | A is convex}.

We start with the following theorem:

(29.1) Theorem. Let ϕ: Y → B(X) be a continuous and compact map where
Y is a metric space. Then there exists a compact subset K ⊂ X such that:

(29.1.2) ϕ(y) ∩K �= ∅ for every y ∈ Y.

For the proof of (29.1) we need the following lemma.



148 CHAPTER III. APPROXIMATION METHODS

(29.2) Lemma. Let F : Y → B(X) be a continuous compact map and A be
a compact subset of X such that:

(29.2.1) dH(A, F (y)) < ε for some ε > 0 and every y ∈ Y .

Then for every α > 0 there exists a compact set B ⊂ X such that:

(29.2.2) A ⊂ B ⊂ Oε(A),
(29.2.3) the set B \A is finite,
(29.2.4) dH(B, F (y)) < α for every y ∈ Y .

Proof. Let ε > 0 be a given positive real number. Since F is compact the set
F (Y ) ∈ B(X) is a relatively compact subset of a complete space B(X). Therefore
for given ε > 0 we can find a finite ε-net F (y1), . . . , F (yk) of F (Y ), i.e. for every
y ∈ Y there is i = 1, . . . , k such that dH(F (yi), F (y)) < ε, so in particular F (yi) ⊂
Oε(F (y)).

Now, for every i = 1, . . . , k we choose a point xi ∈ F (yi) such that dist({xi}, A)
< ε. It is possible, owing to (29.2.1) and the compactness of A. Let B = A ⊂
{x1, . . . , xk}. Now, it is evident that B satisfies (29.2.2)–(29.2.4). �

Proof of Theorem (29.1). First, we let ε = 1 and choose a finite 1-set of
ϕ(Y ) in B(X). Let ϕ(y1), . . . , ϕ(yl) be the above set. We choose xi ∈ ϕ(yi),
i = 1, . . . , k.

Let A0 ={x1, . . . , xl}. Then A0 is compact and dH(A0, ϕ(y))<1 for every y∈Y .
So A0 satisfies all assumptions of Lemma (29.2). By applying Lemma (29.2) to A0

and ε = 1/2 we get a compact (finite) set A1 such that: A0 ⊂ A1 ⊂ Oε(ϕ(A0))
and (29.2.3) and (29.2.4) are satisfied.

Consequently, by induction we can construct a sequence {An} of finite subsets
of X such that:

An ⊂ An+1 ⊂ O1/2n+1(An),(29.2.5)

dH(An, ϕ(y)) <
1

2n
for every y ∈ Y and n = 1, 2, . . .(29.2.6)

We let

B = cl
( ∞⋃

n=0

(An)
)

.

Now, from (29.2.5), we deduce that for every ε > 0 B possesses a finite ε-net. In
fact, we choose k ∈ N such that

∞∑
n=k

1
2k

< ε,

then Ak is the needed ε-set of B and since X is complete we obtain that B is
compact. Moreover, from (29.2.6) we infer dH(B, ϕ(y)) = 0 for every y ∈ Y .
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Consequently compactness of B implies that B ∩ ϕ(y) �= ∅ for every y ∈ Y and
the proof is completed. �

(29.3) Corollary. Let F : Y → B(E) be a continuous compact map such that
for every y ∈ Y we have F (y) ∈ CB(E), where E is a Banach space. Then there
exists an u.s.c. compact map ϕ: X � E with convex values such that:

(29.3.1) ϕ(y) ⊂ F (y) for every y ∈ Y.

Proof. By applying theorem (29.1) to the map F we get a compact set K ⊂ E

such that:
F (y) ∩K �= ∅ for every y ∈ Y.

We let:
ϕ̃: Y � E, ϕ̃(y) = F (y) ∩K.

Then from (14.7) we deduce that ϕ̃ is u.s.c. As we already remarked (see (3.6))
by the Mazur Theorem the closed convex ball of a compact subset in a Banach
space is again a compact set. So we are allowed to define:

ϕ: Y � E, ϕ(y) = conv(ϕ̃(y)) for every y ∈ Y.

Then from (14.12) we deduce that ϕ is u.s.c. and by applying again the Mazur
Theorem we deduce that ϕ is compact. The proof of (29.3) is completed. �

Now we are able to define the topological degree for vector fields with convex
closed bounded values in Banach spaces.

First, let us introduce some notations. We let:

J̃C(K(r), E) = {F : K(r)→ B(E) | F continuous, compact,

F (x) ∈ CB(E) and x �∈ F (x) for every x ∈ S(r)}.

We have of course:
F̃C(K(r), E) ⊂ J(K(r), E).

As before by J̃CV (K(r), E) we shall define the set of all associated vector fields,
i.e. a map f : K(r) → B(E) belongs to JCV (K(r), E) if and only if there is F ∈
J̃C(K(r), E) such that:

f(x) = {x− y | y ∈ F (x)}.

Note that for f ∈ JCV (K(r), E) we have 0 �∈ f(x) for every x ∈ S(r).
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(29.4) Definition. Two compact vector fields f, g ∈ J̃CV (K(r), E) are homo-
topic provided there exists a compact vector field h ∈ J̃CV (K(r), ×[0, 1], E) such
that:

h(x, 0) = f(x),(29.4.1)

h(x, 1) = g(x),(29.4.2)

where h(x, t) = {x − y | y ∈ H(x, t)} and H: K(r) × [0, 1] → B(E) is continuous
compact with closed convex values and x �∈ H(x, t) for every x ∈ S(r) and t ∈ [0, 1].

We prove:

(29.5) Theorem. There is a function Deg: J̃CV (K(r), E)→ Z which satisfies
the following conditions:

(29.5.1) If Deg(f) �= 0, then there is x ∈ K(r) such that 0 ∈ f(x).
(29.5.2) If {x ∈ K(r) | 0 ∈ f(x)} ⊂ K(r̃) for some 0 < r̃ < r and f ∈

F̃CV (K(r), E), then f̃ = f |
B(̃r) ∈ J̃CV (K(r̃), E) and Deg(f) = Deg(f̃).

(29.5.3) If f, g ∈ J̃CV (K(r̃), E) are homotopic, then Deg(f) = Deg(g).
(29.5.4) If f : K(r)→ E is a singlevalued compact vector field then

Deg(f) = deg(f),

where deg(f) stands for the Leray–Schauder degree (cf. [Br2-M], [Gr4-M],
[L1-M], [Ni-M] or [Ro-M]).

Proof. Let f ∈ J̃CV (K(r), E) be of the form:

f(x) = {x− y | y ∈ F (x)},

where F ∈ J̃C(K(r), E). By applying Corollary (29.3) to F , we get a compact
map Φ: K(r) � E with convex values such that Φ(x) ⊂ F (x) for every x ∈ K(r).
Note that, if Ψ: K(r) � E is a second map satisfying Lemma (29.3) then for any
fixed t ∈ [0, 1] the map χt: K(r) � E defined by

χt(x) = t ·Φ(x) + (1− t)Ψ(x)

is again an u.s.c. compact map with convex values such that:

χt(x) ⊂ F (x) for every x ∈ K(r),

and moreover, x �∈ χt(x) for every x ∈ S(r). It means that the topological degree
Deg(j − Φ) and Deg(j −Ψ) is well defined (cf. the preceding section) and

Deg(j −Φ) = Deg(j −Ψ).
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Therefore, the following definition:

(29.5.5) Deg(f) = Deg(j −Φ)

is correct. �

Now, properties (29.5.1)–(29.5.4) are easy consequences of the previous section
and (29.3).

Applying Theorem (29.5), by standard arguments (cf. Sections 27, 28) we ob-
tain:

(29.6) Theorem. Let F : K(r) → B(E) be a continuous compact map such
that F (x) ⊂ K(r) and F (x) ∈ CB(E) for every x ∈ K(r). Then Fix(F ) �= ∅.

Theorem (29.6) is an interesting generalization of the Kakutani–Brouwer fixed
point theorem (cf. [Ma-M]). Note that F. S. De Blasi and J. Myjak in [BM-7]
proved Theorem (29.5) but without property (29.5.1). Finally, we would like to
add that the topological degree for multivalued mappings with non-compact values
were studied in [Da1-M] and [Ga-1].

(29.7) Remark. Let us remark that in all considerations of this section it
is sufficient to assume that F : K(r) → B(E) be u.s.c. considered as the map
F : K(r) � E instead of continuity of F (of course we keep that F be compact).

30. Topological essentiality

In this section we will be looking at a more general construction than topological
degree — the essentiality, also called topological transversality. Topological essen-
tiality can be defined on a larger class of mappings than topological degree but
yields less information. So, one can consider topological essentiality as a weaker
from of the topological degree theory.

First the concept of topological essentiality was systematicaly studied in [Gr4-
M] (cf. also [Gr2-M], [DG1-M]).

Let E, E1 be two Banach spaces and let K(r) ⊂ E. We will consider:

J̃CU (K(r), E1) = {F : K(r)→ B(E1) | ϕ is compact with convex values and F

considered as a multivalued map from K(r) to E1 is u.s.c.},
J̃0

CU (K(r), E1) = {F ∈ J̃C0(K(r), E1) | F (x) = {0} for all x ∈ S(r)},
J̃0(K(r), E1) = {F : K(r)→ CB(E1) | 0 �∈ F (x) for every x ∈ S(r)

and F is u.s.c. as a map from K(r) to E1}.

We can now define:
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(30.1) Definition. A map F ∈ J̃0(K(r), E1) is called essential (with respect
to J̃0

CU (K(r), E1)) if for every G ∈ J̃0
CU (K(r), E1) there exists a point x ∈ K(r)

such that:
F (x) ∩G(x) �= ∅.

Let us enumerate several properties of the above defined essentiality.

(30.2) Property (Existence). If F ∈ J̃0(K(r), E1) is essential, then there
exists x ∈ Int K(r) such that 0 ∈ F (x). In fact, we take G(x) = {0} for every
x ∈ K(r). Then G ∈ J̃0

CU (K(r), E1) and our claim follows from (30.1).

(30.3) Property (Compact perturbation). If F ∈ J̃0(K(r), E1) is essential
and G ∈ J̃0

CU(K(r), E1), then (F + G) ∈ J̃0(K(r), E1) and (F + G) is essential.

Property (30.3) is self-evident.

(30.4) Property (Coincidence). Assume that F ∈ J̃0(K(r), E1) is essential
and H ∈ J̃CU (K(r), E1). Let A = {x ∈ K(r) | F (x) ∩ (tH)(x) �= ∅, for some t ∈
[0, 1]}. If A ⊂ Int(K(r), then F and H have a coincidence.

Proof. First observe that the essentiality of F implies that A is nonempty.
Moreover, A is closed and such that A ∩ S(r) = ∅.

Let s: K(r) → [0, 1] be an Urysohn function such that s(x) = 1 for x ∈ A and
s(x) = 0 for x ∈ S(r). We define the map G: K(r) � E1 as follows:

G(x) = s(x) ·H(x) for every x ∈ K(r).

Then G ∈ J̃0
CU (B(r), E1) and since F is essential, we get

F (x0) ∩G(x0) �= ∅ for some x0 ∈ K(r).

This implies that x0 ∈ A and hence S(x0) = 1. Finally, we get F (x0)∩H(x0) �= ∅
and the proof is completed. �

(30.5) Property (Normalization). The inclusion map i: B(r) → E is essen-
tial.

Proof. Let G ∈ J̃0
CU (K(r), E). We let:

A = {x ∈ K(r) | x ∈ (t ·G)(x), for some t ∈ [0, 1]}.

Then A is a closed nonempty subset of K(r) such that 0 ∈ A and A ⊂ Int K(r).
We consider an Urysohn function s: E → [0, 1] such that s(x) = 1 for x ∈ A and
s(x) = for x �∈ Int K(r). We consider H: K(r) � K(r) defined as:

H(x) = s(x) ·G(ρ(x)),
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where ρ: E → K(r) is the retraction map defined as follows:

ρ(x) =

{
r(x/‖x‖) for x �∈ K(r),

x for x ∈ K(r).

It follows from (29.6) that Fix(H) �= ∅. If x �∈ Int K(r), then s(x) = 0 and x = 0
but 0 ∈ B(r) so we get a contradiction. Therefore, we deduce that x ∈ Int K(r).
So, x = i(x) ∈ G(x) and the proof is completed. �

(30.6) Property (Localization). Assume that F ∈ J̃0(K(r), E1) is an essen-
tial map such that the set

A = {x ∈ K(r) | 0 ∈ F (x)} ⊂ Int K(r̃) for some 0 < r̃ < r.

Then the restriction F̃ of F to K(r̃) is an essential map in J̃0(K(r̃), E1).

Proof. We know that A �= ∅. We let:

B = {x ∈ K(r̃) | x ∈ (F (x) ∩ (tG)(x)) �= ∅, for some t ∈ [0, 1]},

where G ∈ J̃0
CU(K(r̃), E1). Then A ⊂ B. Again let s: K(r)→ [0, 1] be an Urysohn

function such that s(x) = 1 for some x ∈ A and s(x) = 0 for x �∈ Int K(r̃).
Moreover, we consider ρ: K(r)→ K(r̃) defined as follows:

ρ(x) =

{
x for x ∈ K(r̃),

r̃ · (x/‖x‖) for x �∈ K(r̃).

We define the map H: K(r̃) � E1 by the formula:

H(x) = s(x) ·G(ρ(x))

for every x ∈ K(r). Obviously H ∈ J0
CU (K(r), E1). Since F is essential there is

a point x ∈ K(r) such that F (x)∩H(x) �= ∅. It is easy to see that x ∈ K(r̃) and
this ends the proof. �

(30.7) Property (Homotopy). Let F ∈ J̃0(K(r), E1) be an essential map.
Let H: B(r)→ B ⊂ (E1) be compact u.s.c. map such that:

(30.7.1) H(x, 0) = {0} for every x ∈ S(r),
(30.7.2) {x ∈ K(r) | F (x) ∩H(x, t) �= ∅ for some t ∈ [0, 1]} ⊂ Int K(r).

Then the map F1(x) = {u−v | u ∈ F (x) and v ∈ H(x, 1)} belongs to J̃0(K(r), E1)
and is essential.

Proof. Let G ∈ J̃0
CU (K(r), E1). We let:

A = {x ∈ K(r) | F (x)} ∩ {u + v | u ∈ G(x) and v ∈ H(x, t), for some t ∈ [0, 1]}.
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Since (G + H( · , 0)) ∈ J̃0
CU and F is essential we obtain that A �= ∅. Evidently

A is closed. Let s: K(r) → [0, 1] be an Urysohn function such that s(x) = 1, for
x ∈ A and s(x) = 0 for x ∈ S(r). We define the map G1 by putting:

G1(x) = ψ(x) + χ(x, s(x)) = {u + v | u ∈ ψ(x) and v ∈ χ(x, s(x))}.

Then G1 ∈ J̃0
CU (K(r), E1) and our assertion follows from essentiality of F . �

(30.8) Property (Continuation). Let F ∈ J̃0(K(r), E1) be an essential map-
ping. Assume that F is proper, i.e. {x ∈ K(r) | F (x) ∩ K �= ∅} is compact for
every compact K ⊂ E1. Assume further that H: K(r) × [−1, 1] � CB(E1) is
a compact u.s.c. map such that H(x, 0) = {0} for every x ∈ S(r). Then there
exists ε > 0 such that the mapping (F −H)( · , t)), (F −H)( · , t))(x) = {u − v |
u ∈ F (x) and v ∈ H(x, t)} belongs to J̃0(K(r), E1) and is essential for every
t ∈ (−ε, ε).

Proof. According to the homotopy property it is sufficient to show that there
exists ε > 0 such that F (x) ∩H(x, t) = ∅ for every x ∈ S(r) and t ∈ (−ε, ε). �

But this condition is easy to verify by contradiction.

(30.9) Remark. Observe that in the proofs of all the properties here we were
using essentially the following facts:

(30.9.1) for any two maps F and G from JCU (K(r), E1) and J̃0(K(r), E1) the
mappings F + G, F −G, sF belong to the respective classes; and

(30.9.2) the Brouwer Fixed Point Theorem holds for these maps (with respect to
essentiality).

Therefore, it is possible to repeat all results of this section for arbitrary classes
of multivalued mappings satisfying the above properties.

(30.10) Remark. Observe that the technique of essential mappings allows us
to obtain the same type topological results as by using the topological degree
theory. Below we will prove only the nonlinear alternative but, for example, the
Leray–Schauder alternative, the Birkhoff–Kellogg theorem and Borsuk’s theorem
on antipodes are also possible. A systematic approach to these applications of the
topological degree theory we will present in Section 33.

(30.11) Theorem. Let F ∈ J̃CU(K(r), E1) be essential and G∈ J̃CU(K(r), E1).
If F (x)∩G(x) = ∅ for every x ∈ S(r) then at least one of the following conditions
holds:

(30.11.1) there exists x ∈ K(r) such that F (x)∩G(x) �= ∅,
(30.11.2) there exists λ ∈ (0, 1) and x ∈ S(r) such that F (x) ∩ (λG(x)) �= ∅.
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To prove (30.11) it is sufficient to apply the homotopy property for F and H,
where H(x, t) = t ·G(x) for x ∈ K(r), t ∈ [0, 1].

Now, if E = E1 then from (30.11) and the normalization property immediately
follows:

(30.12) Property (Nonlinear alternative). Let G ∈ J̃CU (K(r), E). Then at
least one of the following conditions is satisfied:

(30.12.1) Fix(G) �= ∅,
(30.12.2) there exists x ∈ S(r) and λ ∈ (0, 1) such that x ∈ (λG(x)).

31. Random fixed points

A systematic study of Random Operators was initiated in the 1950s in the
Praque school of probabilists. Today the research in random operators includes
such areas as operator valued random variables and functions and their properties,
random equations, random dynamical systems, measure-theoretic problems and
obviously random fixed point theorems.

In this section we would like to give a short presentation of the random topo-
logical degree theory. We assume X to be a separable metric space and Ω be
a complete measure space (cf. Section 19).

(31.1) Definition. Let A be a closed subset of X and ϕ: Ω × A � X be
a multivalued map with compact values. We will say that ϕ is a random operator
provided the following two conditions are satisfied.

(31.1.1) ϕ is product-measurable,
(31.1.2) ϕ(ω, · ) is u.s.c. for every ω ∈ Ω.

(31.2) Definition. Assume that ϕ: Ω × A � X is a random operator. A
measurable map: ξ: Ω � A is called a random fixed point for ϕ provided we have:

ξ(ω) ∈ ϕ(ω, ξ(ω)) for every ω ∈ Ω.

We prove the following:

(31.3) Proposition. Let ϕ: Ω × A � X be a random operator such that for
every ω ∈ Ω the set of fixed points of ϕ(ω, · ) is nonempty (Fix(ϕ(ω, · )) �= ∅).
Then ϕ has a random fixed point.

Proof. For the proof we define the multivalued map F : Ω � A defined by:

F (ω) = Fix(ϕ(ω, · )) for every ω ∈ Ω.

To deduce that the graph ΓF of F is measurable we consider f : Ω×A→ [0, +∞)
defined as follows:

f(ω, x) = dist(x, ϕ(ω, x)) for every (ω, x) ∈ Ω× A.
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In view of (19.16), f is measurable. But ΓF = f−1({0}). So, ΓF is measurable
and hence, in view of (19.17), F possesses a measurable selector ξ: Ω → A i.e.
ξ(ω) ∈ F (ω) for every ω ∈ Ω. Observe that ξ is the needed random fixed point
of ϕ. The proof is completed. �

Note, that having (31.3) one can formulate in a natural way the random version
of the Banach fixed point theorem, the Brouwer fixed point theorem, and the
Schauder fixed point theorem for both single and multivalued random operators.

From (31.3) it follows that the deterministic fixed theorem implies the respective
random fixed point theorem. Roughly speaking the same is true in the case of the
topological degree theory. We will sketch it below.

We denote by M(Ω × Kn(r), Rn) a family of random operators such that the
following two conditions are satisfied:

(31.4) for every ϕ ∈M(Ω×Kn(r), Rn) we have 0 �∈ ϕ(Ω× Sn−1(r));
(31.5) for every ω ∈ Ω for the map ϕ(ω, · ): Kn(r) � Rn the topological degree

Deg(ϕ(ω, · )) is defined (cf. earlier sections of this chapter).

By homotopy in M(Ω × Kn(r), Rn) we will understand a random homotopy,
i.e.

χ: Ω×Kn(r) × [0, 1] � Rn,

which is product-measurable u.s.c. with respect to the last variable, such that:

0 �∈ χ(Ω× Sn−1(r)× [0, 1]),

χ( · , · , t) ∈M(Ω×Kn(r), Rn) for every t ∈ [0, 1].

Let ϕ ∈M(Ω×Bn(r), Rn). We define the random degree Degra(ϕ) of ϕ as follows:

(31.6) Degra(ϕ) = {Deg(ϕ(ω, · ) | ω ∈ Ω}.

Then we have:

(31.7) Property (Existence). If 0 �∈ Degra(ϕ) then there exists a measurable
map ξ: Ω→ Bn(r) such that:

0 ∈ ϕ(ω, ξ(ω)) for ω ∈ Ω.

The proof is strictly analogous to the proof of (31.3).

(31.8) Property (Localization). If ϕ ∈M(Ω×Kn(r), Rn) and {x ∈ Kn(r) |
exists ω ∈ Ω 0 ∈ ϕ(ω, x)} ⊂ Int K(r̃) for some 0 < r̃ < r. Then the restriction ϕ̃

of ϕ to Ω ×Kn(r̃) belongs to M(Ω×Kn(r̃), Rn) and

Degra(ϕ) = Degra(ϕ̃).
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(31.9) Property (Homotopy). If ϕ and ψ are homotopic in M(Ω×Kn(r), Rn)
then

Degra(ϕ) = Degra(ψ).

Proofs of (31.8) and (31.9) are strictly analogous to the proofs of respective
properties in deterministic case.

Finally, note that we can do exactly the same as above if we replace Rn by an
arbitrary separable Banach space E.



CHAPTER IV

HOMOLOGICAL METHODS IN FIXED POINT THEORY

OF MULTIVALUED MAPPINGS

In this chapter we would like to present a systematic study of the fixed point
theory for multivalued maps by using homological methods. Homological methods
were initiated in 1946 by S. Eilenberg and D. Montgomery in their celebrated
paper [EM]. Using methods of homology we can obtain stronger results than those
obtained by means of the approximation methods as used in Chapter III. Hence in
this chapter the results will be formulated in a more general form than previously.

32. Acyclic mappings

In this section we would like to study general properties of acyclic mappings in-
cluding the Lefschetz fixed point theorem. Note that the class of acyclic mappings
was introduced by S. Eilenberg and D. Montgomery in the paper [EM].

(32.1) Definition. An u.s.c. map ϕ: X � Y with compact values is called
acyclic provided for every x ∈ X the set ϕ(x) is acyclic (cf. Section 8).

Denote by AC(X, Y ) the class of all acyclic mappings. Let us remark that in
particular we have:

J(X, Y ) ⊂ AC(X, Y ),

i.e. u.s.c. mappings with Rδ-values are acyclic mappings. Unfortunately the class
of acyclic maps is not closed with respect to the composition law.

(32.2) Example. Let ϕ: S1 → S1 be the map given by the formula:

ϕ(x) = {y ∈ S1 | ‖x− y‖ ≤ 3/2}.

Then ϕ is acyclic but the composition ψ = ϕ ◦ ϕ: S1 → S1 is no longer acyclic
because ψ(x) = S1 for every x ∈ S1.

We have the following:
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(32.3) Proposition. If ϕ: X � Y is an acyclic map then the natural projec-
tion pϕ: Γϕ → X, pϕ(x, y) = x, is a Vietoris map.

Proof. Since p−1
ϕ (x) is homeomorphic to ϕ(x) for every x ∈ X we get that

p−1
ϕ (x) is acyclic. Now, let A ⊂ X be a compact set. Then

p−1(A) ⊂ A× ϕ(A).

Since p−1(A) is closed and in view of (14.10), ϕ(A) is compact, so p−1(A) is
compact as a closed subset of the compact set A × ϕ(A). Therefore p is proper
and the proof is completed. �

Let ϕ: X � Y be an acyclic map. In view of (32.3) we can associate with ϕ

the diagram:

X
pϕ⇐= Γϕ

qϕ−→ Y

in which pϕ is a Vietoris map. By applying to the above diagram the Čech homol-
ogy functor with compact carriers we obtain the following diagram:

Hn(X) Hn(Γϕ)
(pϕ)∗n

∼�� (qϕ)∗
�� Hn(Y )

for every n = 1, 2, 3 . . . , in which (pϕ)∗n is an isomorphism. Therefore, we can
define the induced by ϕ linear ϕ∗ : H∗(X) → H∗(Y ) by putting:

ϕ∗ = {ϕ∗n},

where ϕ∗n = (qϕ)∗ ◦ (pϕ)−1∗n , n = 1, 2, . . . It is easy to see that if ϕ = f is
a singlevalued map then ϕ∗ is equal to the induced linear map f∗ defined in
Section 7.

(32.4) Definition. Assume that ϕ: X � X is an acyclic map.

(32.4.1) If the graded linear space H∗(X) is of finite type then we define the
(ordinary) Lefschetz number λ(ϕ) of ϕ by letting:

λ(ϕ) = λ(ϕ∗).

(32.4.2) If ϕ∗: H∗(X) → H∗(X) is a Leray endomorphism then we define the
(generalized) Lefschetz number Λ(ϕ) of ϕ by:

Λ(ϕ) = Λ(ϕ∗).
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(32.5) Definition. Two acyclic maps ϕ, ψ: X � Y are called homotopic (writ-
ten ϕ ∼ ψ) provided there exists an acyclic map χ: X × [0, 1] � Y such that:

(32.5.1) χ(x, 0) = ϕ(x) for every x ∈ X,
(32.5.2) χ(x, 1) = ψ(1) for every x ∈ X.

We prove:

(32.6) Proposition. If two acyclic mappings ϕ, ψ: X � Y are homotopic
then ϕ∗ = ψ∗.

Proof. Let χ: X × [0, 1] � Y be joining homotopy such that χ(x, 0) = ϕ(x)
and χ(x, 1) = ψ(x) for every x ∈ X. Consider the commutative diagram:

X

i0

��

Γϕ
pϕ��

j0

��

qϕ

��
��

��
��

��

X × [0, 1] Γχpχ

�� qχ
�� Y

X

i1

��

Γψpψ

��

j1

��

qψ

����������

in which i0(x) = (x, 0), i1(x) = (x, 1), j0(x, y) = (x, 0, y), j1(x, y) = (x, 1, y).
Since (i0)∗ = (i1)∗ (i0 ∼ i1!), by applying to the above diagram the functor H we
obtain our assertion and the proof is completed. �

From (32.6) immediately follows:

(32.7) Corollary. If two acyclic mappings ϕ, ψ are homotopic then

(32.7.1) λ(ϕ) = λ(ψ) provided H∗(X) is of a finite type,
(32.7.2) Λ(ϕ) = Λ(ψ) provided ϕ∗ or ψ∗ is a Leray endomorphism.

We shall prove the following theorem:

(32.9) Theorem (The Lefschetz Fixed Point Theorem for acyclic mappings).
If X ∈ ANR and ϕ: X � X is an acyclic compact map, i.e. cl ϕ(X) is a compact
subset of X, then ϕ∗ is a Leray endomorphism and Λ(ϕ) �= 0 implies that

Fix(ϕ) �= ∅.

Proof. We have the diagram:

X
pϕ⇐= Γϕ

q−→ X

in which pϕ is a Vietoris map and q is compact because ϕ is compact. By definition,
ϕ∗ = (qϕ)∗ ◦ (pϕ)−1∗ , so from (12.11) it follows that ϕ∗ is a Leray endomorphism.
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Assume that Λ(ϕ) = Λ(ϕ∗) = Λ((qϕ)∗ ◦ (pϕ)−1∗ ) �= 0. Then, in view of (12.11),
there is a point (x, y) ∈ Γϕ such that p(x, y) = q(x, y). It implies that x = p(x, y) =
q(x, y) = y. So, (x, x) ∈ Γϕ and therefore x ∈ ϕ(x). The proof is completed. �

Since any X ∈ AR is acyclic we obtain:

(32.10) Corollary. If X ∈ AR and ϕ: X � X is an acyclic compact map,
then Fix(ϕ) �= ∅.

In fact, from (2.12) we know that Λ(ϕ) = 1. Note that Theorem (32.9) for
compact ANRs was proved in 1946 by S. Eilenberg and D. Montgomery ([EM]).

Theorem (32.9) can be proved also for compact AANR spaces.

(32.11) Theorem. Let X ∈ AANR and ϕ: X � X be an acyclic map. Then
X is a space of a finite type and λ(ϕ) �= 0 implies that Fix(ϕ) �= ∅.

Proof. Let X ∈ AANR. By using Theorem (3.4) we obtain a compact ANR-
space Y such that X is an approximative retract of Y . Therefore, for every ε > 0
we have a ε-retraction rε: Y → X.

Let i: X → Y , i(x) = x, be the inclusion map. Of course, in view of (2.10) we
infer that Y is of a finite type.

We have two maps i ◦ rε, idY : Y → Y which are ε-close. So, from (6.1) we
obtain that

(idY )∗ = i∗ ◦ (rε)∗

and hence i∗: H∗(X) → H∗(Y ) is an epimorphism. But Y is of a finite type so,
X must also be of a finite type and the proof of the first part of our theorem is
completed.

Now assume that λ(ϕ) �= 0. Then by taking Y ∈ ANR as above we have the
diagram:

H∗(X)
i∗ �� H∗(Y )

H∗(X)

(qϕ)∗◦(pϕ)−1
∗

��

i∗
�� H∗(Y )

(qϕ)∗◦(pϕ)−1
∗ ◦(rε)∗����

������
i∗◦(qϕ)∗◦(pϕ)−1

∗ ◦(rε)∗

��

By applying (6.1) again, we infer that for sufficiently small ε the above diagram is
commutative. Then:

Λ(ϕ) = Λ(ϕε) �= 0,

where ϕε = i◦ϕ◦ rε: Y � Y is an acyclic map (cf. (10.1)). Therefore, from (32.9)
for every ε > 0 (sufficiently small) Fix(ϕε) �= ∅.

So we can construct a sequence {yn} of points in Y such that yn ∈ ϕεn(yn)
and {εn} ↓ 0. Let xn = rεn(yn). We can assume, without loss of generality, that
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limn yn = y and limn xn = x. Then we have yn ∈ ϕ(rεn (yn)) = ϕ(xn). Since the
graph Γϕ of ϕ is closed we obtain y ∈ ϕ(x).

But ϕεn (Y ) ⊂ X so yn ∈ X for every n and therefore d(yn, rεn(xn)) < εn.
Hence y = limn yn = limn rε(xn) = x. Finally, we obtain x ∈ ϕ(x) and the proof
is completed. �

(32.12) Corollary. If X is an acyclic AANR, then any acyclic map ϕ: X �
X has a fixed point.

It is interesting to establish connections between acyclic maps and its continuous
selections. Namely, we shall prove:

(32.13) Proposition. Assume that ϕ: X � X is an acyclic map and f : X →
X is its selection, i.e. f(x) ∈ ϕ(x) for every x ∈ X. Then:

(32.13.1) f∗ = ϕ∗,
(32.13.2) f∗ is a Leray endomorphism if and only if ϕ∗ is a Leray endomorphism,
(32.13.3) Λ(f∗) = Λ(ϕ∗) provided ϕ∗ or f∗ is a Leray endomorphism.

Proof. It is evident that (32.13.2) follows from (32.13.1) and that (32.13.3)
follows from (32.13.2). So, for the proof it is sufficient to prove (32.13.1). Consider
the following commutative diagram:

Γϕ

pϕ

�� ��
��
��
�

��
��
��
�

qϕ

���
��

��
��

X X

X

idX

����������

f̃

��

f

����������

in which f̃(x) = (x, f(x)). By applying to the above diagram the homology functor
H, we obtain: ϕ∗ = qϕ∗ ◦ p−1

ϕ∗ = f∗ ◦ (idX)−1
∗ = f∗ ◦ idX∗ = f∗ and the proof is

completed. �

(32.14) Remark. Observe that (32.13.1) remains true for an arbitrary acyclic
maps ϕ, ψ: X � Y such that ψ ⊂ ϕ i.e. ψ(x) ⊂ ϕ(x) for every x ∈ X.

33. Strongly acyclic maps

Recall that the notion of strongly acyclic sets was introduced in the last part
of Section 9.

(33.1) Definition. An u.s.c. multivalued map ϕ: X � Sn is called strongly
acyclic (shortly ϕ ∈ SAC(X)) if ϕ(x) is a strongly acyclic subset of Sn.
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From (9.10) we obtain:

(33.2) SAC(X) ⊂ AC(X, Sn).

Observe, that if the map ϕ: X � Sn is strongly acyclic, then the map ϕ̃: X � Sn,
ϕ̃(x) = Sn \ ϕ(x) has open graph and values to be infinitely connected.

In what follows, a continuous selection f : X → Sn of ϕ̃ is called co-selection
for ϕ. We have:

(33.3) Proposition. Let X be a finite dimensional space and let ϕ: X � Sn

be a strongly acyclic map. If f : X → Sn is a co-selection of ϕ then there exists
a strongly acyclic homotopy χ: X × [0, 1] � Sn joining ϕ with α ◦ f such that
f(x) �∈ χ(x, t) for every (x, t) ∈ X× [0, 1] and χ(x, t) is homeomorphic to ϕ(x) for
every x ∈ X and t �= 1, where α: Sn → Sn, α(x) = −x, is the antipodal map.

Proof. Fix a point p ∈ Sn. Let ep: Sn \ {p} → Rn denote the stereographic
projection of Sn \ {p} onto Rn. We consider hp: (Sn \ {p})× [0, 1] → Sn defined
as follows:

hp(u, t) = e−1
p (t · ep(−p) + (1− t)ep(u))

for every u ∈ Sn \ {p} and t ∈ [0, 1].
Then the homotopy χ: X × [0, 1] � Sn given by:

χ(x, t) = {hf(x)(u, t) | u ∈ ϕ(x)}

satisfies (33.3) and the proof is completed. �

Now we define a fixed point index for strongly acyclic maps. By K SA we denote
the class of all triples (Sn, U, ϕ), where U is an open subset of Sn and ϕ ∈ SAC(U)
is such that Fix(ϕ) is compact; n = 1, 2, . . .

If (Sn, U, ϕ1) and (Sn, U, ϕ2) are two triples in K SA, then by homotopy joining
ϕ1 and ϕ2 we shall understand a strongly acyclic map χ: U × [0, 1] � Sn such
that χ( · , 0) = ϕ1, χ( · , 1) = ϕ2 and the set

⋃
t∈[0,1] Fix(χ( · , t)) is compact. Such

a homotopy χ is called an SAC-homotopy joining ϕ1 and ϕ2.
The following fact allows us to define a fixed point index for strongly acyclic

mappings.

(33.4) Proposition. Let (Sn, U, ϕ) ∈ K SA. Then:

(33.4.1) there is a SAC-homotopy χ: U × [0, 1] � Sn such that χ( · , 0) = ϕ and
χ( · , 1) is singlevalued,

(33.4.2) if f, g: U → Sn are singlevalued and SAC-homotopic to ϕ, then there is
a singlevalued homotopy h: U × [0, 1] → Sn joining f and g such that h

is an SAC-homotopy, i.e. the set
⋃

t∈[0,1] Fix(h( · , t)) is compact.
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Proof. Since Fix(ϕ) is compact, there is an open set V such that Fix(ϕ) ⊂
V ⊂ cl V ⊂ U . Therefore, the inclusion map i: U \ V → Sn, i(x) = x, is a co-
selection for ϕ on U \ V . By Theorem (16.3), we can extend the map i to a co-
selection g: U → Sn for ϕ. By Proposition (33.3), there is an SAC-homotopy
χ joining ϕ and α ◦ g such that g(x) �∈ χ(x, t) for every t ∈ [0, 1] and x ∈ U ,
therefore,

⋃
t∈[0,1] Fix(χ( · , t)) ⊂ V ⊂ V and hence it is compact. Thus we have

proved (33.4.1).
Now, let χ1, χ2 be two homotopies joining ϕ with f and ϕ with g respectively.

Define an SAC-homotopy χ joining f and g by putting:

χ(x, t) =

{
χ1(x, 1− 2t) for t ≤ 1/2,

χ2(x, 2t− 1) for t ≥ 1/2.

By the assumption, there is an open set V ⊂ cl V ⊂ U such that⋃
t∈[0,1]

Fix(χ( · , t)) ⊂ V.

Therefore, the projection p0: (U \ V ) × [0, 1] → Sn, p(x, t) = x is a co-selection
for the restriction χ |(U\V )×[0,1] of χ to (U \ V ) × [0, 1]. Again, by (16.3) we can
extend p0 to a co-selection p: U × [0, 1]→ Sn for χ. Let ψ: U × [0, 1]× [0, 1] � Sn

denote an SAC-homotopy joining χ and α ◦ p with properties such as in (33.3).
Let q = ψ( · , 0, · ) and r = ψ( · , 1, · ) Since ψ(x, t, s) is homeomorphic to χ(x, t)
for s �= 1 and χ( · , 0) = f , χ( · , 1) = g we conclude that q and r are singlevalued.
Define h: U × [0, 1]→ Sn by

h(x, t) =


q(x, 3t) for t ≤ 1/3,

(α ◦ p)(x, 3t− 1) for 1/3 ≤ t ≤ 2/3,

r(x, 3− 3t) for t ≥ 2/3.

Then h is continuous and⋃
t∈[0,1]

Fix(h( · , t)) ⊂ V ⊂ cl V ⊂ U

hence
⋃

t∈[0,1] Fix(h( · , t)) is compact. The proof of (33.4.2) is completed. �

(33.5) Definition. The fixed point index JSA(Sn, U, ϕ) of a triple (Sn, U, ϕ) ∈
K SA is equal to the usual fixed point index i(f) of a singlevalued map f : U → Sn,
which is SAC-homotopic to ϕ (for the definition of i(f) see, for example, [Do-M]).

Observe that from (16.3) and (33.4) it follows that such a map f exists and that
JSA(Sn, U, ϕ) does not depend on the choice of f . So Definition (33.5) is correct.

(33.6) Remark. Since we consider homology with rational coefficients Q, the
index JSA(Sn, U, ϕ) of the triple (Sn, U, ϕ) is formally a rational number.

In the following theorem, we list some properties of the index JSA.
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(33.7) Theorem. The fixed point index JSA: K SA → Q has the following pro-
perties:

(33.7.1) (Normalization) If (Sn, Sn, ϕ) ∈ K SA then JSA(Sn, Sn, ϕ) = λ(ϕ),
(33.7.2) (Fixed Points) If JSA(Sn, U, ϕ) �= 0 then Fix(ϕ) �= ∅,
(33.7.3) (Homotopy) If χ: U × [0, 1] � Sn is an SA-homotopy, then

JSA(Sn, U, χ( · , 0)) = JSA(Sn, U, χ( · , 1)),

(33.7.4) (Additivity) If (Sn, U, ϕ) ∈ K SA and Fix(ϕ) ⊂
⋃k

i=1 Ui, where Ui are
open disjoint subsets of U then (Sn, Ui, ϕi) ∈ K SA and

JSA(Sn, U, ϕ) =
k∑

i=1

JSA(Sn, Ui, ϕi),

where ϕi is the restriction of ϕ to Ui.
(33.7.5) (Contraction and Topological Invariance) If (Sn, U, ϕ) ∈ K SA and i: Sm

→ Sn is a homeomorphic embedding such that ϕ(u) ⊂ i(Sm) and i−1 ◦
ϕ: U � Sm is a strongly acyclic map then

JSA(Sn, U, ϕ) = JSA(Sm, i−1(U), i−1 ◦ ϕ ◦ i).

The proof of (33.7) is quite easy and follows from the respective properties of
the usual fixed point index for singlevalued mappings (cf. [Br1-M], [Do-M], [Sp-
M] for example) and from Definition (33.5). Concerning (33.7.2) observe that
if Fix(ϕ) = ∅ then the inclusion i: U → Sn, i(x) = x, is a co-selection of ϕ. We
recommend to the reader to deduce Theorem (33.7) from (33.5) and the respective
theorem for fixed point index of singlevalued mappings.

Finally, let us add another simple theorem on the uniqueness of the fixed point
index for strongly acyclic mappings.

(33.8) Proposition. Let ind: K SA → Q be a function satisfying the axiom of
homotopy (33.7.3) and let the restriction of ind to singlevalued maps be equal to
the usual fixed point index. Then ind = JSA.

Proof. Let (Sn, U, ϕ) ∈ K SA. By (33.4.1), ϕ is admissibly homotopic to a sin-
glevalued map f : U → Sn. Therefore, ind (Sn, U, ϕ) = i(Sn, U, f) = JSA(Sn, U, ϕ)
and the proof is completed. �

34. The fixed point index for acyclic maps
of Euclidean neighbourhood retracts

In this section the fixed point index defined in Section 33 for strongly acyclic
mappings will be taken up on the class of all acyclic mappings. First, we shall
explain precisely connections between the classes SAC(X) and AC(X, Sn).
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(34.1) Proposition. ϕ ∈ SAC(X) if and only if ϕ ∈ AC(X, Sn) and the
set Sn \ ϕ(x) is simply connected, i.e. the first homotopy group π1(Sn \ ϕ(x)) of
Sn \ ϕ(x) is trivial for every x ∈ X.

Proof. The assertion that ϕ ∈ SAC(X) implies that ϕ ∈ AC(X, Sn) and
π1(Sn \ ϕ(x)) = 0 for every x ∈ X follows automatically from the definition.

Now let x ∈ X and ϕ(x) be acyclic such that Sn \ ϕ(x) is simply connected.
Then using the exactness of the cohomology sequence of the pair (Sn, ϕ(x)) and
the Lefschetz Duality Theorem (see Section 9), we gather that

Hq(Sn \ ϕ(x)) = Hn−q(Sn, ϕ(x)) =

{
Q for q = 0,

0 for q > 0.

This shows that Sn \ϕ(x) is path connected and, in particular π1(Sn \ϕ(x), u) =
0, u ∈ Sn \ (x), for every u ∈ Sn \ ϕ(x). The Hurewicz theorem asserts that
πm(Sn \ ϕ(x), u) = 0 for m ≥ 2 and the proof is completed. �

(34.2) Remark. Observe that if n = 1, 2 then the notions of acyclicity and
strong acyclicity coincide, i.e. SAC(X) = AC(X, Sn), n = 1, 2. For n = 1 it
is evident since arcs of a circumference are the only acyclic subsets of S1. Now
suppose that A is compact acyclic subset of S2. We shall show that any loop
f : S1 → S2 \ A is homotopic to a constant map. There is ε > 0 such that
f(S1) ∩Oε(A) = ∅. As above, we see that S2 \A is path connected and therefore
connected. Then there is a topological disc h: D2 → D such that A ⊂ D ⊂ Oε(A)
(see [Bo-M, p. 132]).

Now by applying (9.12) there is a homeomorphism h̃: S2 → S2 such that
h̃(x) = h(x) for every x ∈ D2. Evidently, h̃−1(f(S1)) ⊂ S2 \ D2, hence f(S1)
is contractible to a point in S2 \D and therefore, π1(S2 \A) = 0.

As we mentioned in Section 9, the situation is getting complicated for n = 3
onwards. It is not difficult to construct a set A ⊂ S3 (so called Antoine arc)
homeomorphic to the unit interval, thus acyclic, such that the set S3 \ A is not
simply connected.

(34.3) Proposition. Let ϕ: X � Rn be a multivalued map and let in: Rn →
Sn, in(x) = x. Then the map in ◦ ϕ: X → Sn is strongly acyclic if and only if
ϕ ∈ AC(X, Rn) and the set Rn \ ϕ(x) is simply connected.

Proof. Observe that in view of (34.2) the situation is clear if n = 1, 2. More-
over, the sufficiency of the second condition is self evident. Necessity: Suppose that
in(ϕ(x)) is strongly acyclic; hence ϕ(x) is acyclic. Let U1(x) = Sn \ (in(ϕ(x) ∪
{∞}). The set U1(x) is homeomorphic with Rn \ ϕ(x). The Alexander Dual-
ity Theorem shows that U1(x) is path connected. Let U2 be any sufficiently
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small, simply connected neighbourhood of ∞ in Sn. The sets U1(x), U2 and
U1(x) ∩ U2 = U2 \ {∞} are path connected and U1(x) ∪ U2 = Sn \ in(ϕ(x)). By
the Van Kampen Theorem, the homeomorphism τ : π1(U1(x)) → π1(U1(x) ∪ U2)
induced by the embedding U1(x)→ U1(x)∪U2 is an epimorphism with the kernel
being the minimal normal subgroup of π1(U1(x)) containing η(π1(U1(x) ∪ U2)),
where η is induced by the embedding U1(x) ∩U2 → U1. Since n ≥ 3 one can take
U2 such that U1(x) ∩ U2 is simply connected. Hence π1(U1(x)) = 0 and the proof
is completed. �

In the same spirit we have the following proposition.

(34.4) Proposition. Let ϕ: X � Sn be an acyclic map and let jn: Sn → Sn+1

be the embedding jn(u1, . . . , un+1) = (u1, . . . , un+1, 0). Then the map jn ◦ϕ: X �
Sn+1 is strongly acyclic.

Proof. Let x ∈ X an B(x) = jn(ϕ(x)). Denote by e+ (resp. e−) the north
(resp. the south) pole of Sn+1. For u ∈ Sn+1, u �= e± denote by r(u) the common
point of the great circle joining e+ with e− passing true u and jn(Sn). By [u, r(u)]
we denote the arc of the great circle joining u with r(u). Let U1(x) = {u ∈ Sn+1 |
u �= e±, r(u) �∈ B(x)}. The set U1(x) is open and path-connected. Indeed, if
a1, a2 ∈ U1(x) and bi = j−1

n (ai), i = 1, 2, then in view of the Lefschetz Duality
Theorem, Sn \ ϕ(x) is path-connected, there is a path l in Sn \ ϕ(x) joining b1

with b2. Hence, the arc [a1, r(a1)] ∪ l ∪ [a2, r(a2)] joins a1 with a2 in U1(x). The
acyclicity of ϕ(x) implies that A �= Sn i.e. there is a point y ∈ Sn \ϕ(x) and ε > 0
such that Oε(y) ∩ ϕ(x) = ∅.

Let U2 = {u ∈ Sn+1 | u ∈ Sn+1 \ jn(Sn) or ‖u − jn(y)‖ < ε}. The set
U2 is open contractible, hence simply connected. Moreover, U1(x) ∩ U2 is path
connected and nonempty. If τ1: π1(U1(x)) → π1(U1(x) ∪ U2) and τ2: π1(U2) →
π1(U1(x) ∪U2) are homomorphisms induced by the embeddings U1(x)→ U1(x)∪
U2, U2(x)→ U1(x)∪U2, respectively, then by the Van Kampen theorem π1(Sn+1 \
jn(ϕ(x))) = π1(U1(x)∪U2) is generated by τ1(π1(U1(x))) and τ2(π1(U2)) = 0. To
see that π1(U1(x)) = 0 it is enough to show that any loop f : S1 → U1(x) may be
homotopically deformed in Sn+1 \jn(ϕ(x)) to a constant one. Let e: Sn+1\{e+} →
Rn+1 be a stereographic projection such that e ◦ jn(Sn) = Sn and e(e−) = 0. It
is easy to see that e(ϕ1(x)) = {λz | λ > 0, z ∈ e(jn(ϕ(x)))}. Let K = e(f(S1)) ⊂
e(U1(x)). Since K is compact, then there is α > 0 such that α · K ⊂ Bn+1(r),
where r < 1. Therefore, K may be deformed to a point in Bn+1(r) ∪ e(U1(x)) ⊂
Rn+1 \ e(jn(ϕ(x))). At last, jn(ϕ(x)) being acyclic is strongly acyclic in view of
Proposition (34.1) and the proof is completed. �

Now, we are ready to construct the fixed point index for acyclic mappings.
The following stand the base of our definition of the fixed point index for acyclic
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mappings. We let:

K = {(X, U, ϕ) | X ∈ ANR and X is locally compact finite dimensional,

ϕ: U � X is acyclic with Fix(ϕ) compact and U is open in X}.

By homotopy in K we shall understand an acyclic map χ: U × [0, 1] � X such
that the set

⋃
t∈[0,1] Fix(χ( · , t)) is compact.

(34.5) Theorem. Let (X, U, ϕ) ∈ K and assume that X is compact. Then
there exist a homeomorphic embedding i: X → Sn, an open subset V of Sn and
a continuous map r: V → U such that (r ◦ i)|U = idU , i−1(V ) = U and the
multivalued map i ◦ϕ ◦ r: V � Sn is strongly acyclic with (Sn, V, i ◦ϕ ◦ r) ∈ K SA.
Moreover, the fixed point index JSA(i ◦ ϕ ◦ r) does not depend on the choice of i,
V , or r.

Proof. Since X is a compact metric and finite dimensional space by using
the Menger–Nöbeling embedding theorem (see [DG-M]) there exists m > 0 and
a homeomorphic embedding j: X → Rm.

We consider natural embedding k: Rm → Rm×R2, k(x) = (x, 0) and k′: Rm+2 →
Sm+2 = Rm+2 ∪ {∞}, k′(u) = u. We let n = m + 2 and i = k′ ◦ k ◦ j. Then
i: X → Sn is the needed embedding. In view of (34.4) the map i ◦ϕ: U � Sn+2 is
strongly acyclic.

Now let i(U) = i(X) ∩W for some open subset W of Sn. Then i(U) is closed
in W and since U ∈ ANR there is an open subset V of W and a retraction
p: V → i(U). Put r = i−1 ◦ p. Then (r ◦ i)|U = idU and, of course, i ◦ ϕ ◦ r is
strongly acyclic.

Now assume that we have the second embedding i′: X → Sn′
, open set V ′ in

Sn′
and the map r′: V ′ → U such that (r′ ◦ i′)|U = idU , (i′)−1(V ′) = U and

i′ ◦ ϕ ◦ r′: V ′ � Sn′
is strongly acyclic.

Observe that the sets Fix(i ◦ ϕ ◦ r) and Fix(i′ ◦ ϕ ◦ r′) are homeomorphic to
Fix(ϕ) so (Sn, V, i ◦ ϕ ◦ r) ∈ K SA and (Sn′

, V ′, i′ ◦ϕ ◦ r′) ∈ K SA. We can assume,
without loss of generality, that n ≤ n′ and consequently there is a homeomorphic
embedding l: Sn → Sn′

. Let k = max{6, n′+3, 2 dimX+2} and consider a natural
embedding j0: Sn′ → Rk. Let j = j0 ◦ l◦i and j′ = j0 ◦i′. From (9.10) and (9.12) it
follows that there is a homeomorphism f : Rn → Rk such that f |j′(X) = j ◦ (j′)−1.
Let to e: Rk → Sk = Rk ∪ {∞} be the natural embedding and let e = e ◦ j,
e′ = e ◦ j′. Putting f(∞) = ∞ we get a homeomorphism F : Sk → Sk such
that F |e′(X) = e ◦ (e′)−1. There are two open subsets W, W ′ of Sk and two
continuous maps p: W → V and p′: W ′ → V ′ such that e−1(W ) = e′−1(W ′),
p◦e0 ◦ j0 ◦ l|V = idV , p′ ◦e0 ◦ j0|V ′ = idV ′ . From (33.7.5) (the proof of the previous
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part of this theorem shows that e ◦ ϕ: U � Sk and e′ ◦ ϕ: U � Sk are strongly
acyclic maps) we obtain:

JSA(Sn, V, i ◦ ϕ ◦ r) = JSA(Sk, W, e ◦ ϕ ◦ r ◦ p),(34.5.1)

JSA(Sm, V ′, i′ ◦ ϕ ◦ r′) = JSA(Sk, W ′, e′ ◦ ϕ ◦ r′ ◦ p′).

Moreover, from (33.7.5) we can also obtain:

(34.5.2) JSA(Sk, W ′, e′ ◦ ϕ ◦ r′ ◦ p′) = JSA(Sk , F (W ′), F ◦ e′ ◦ ϕ ◦ r′ ◦ p′ ◦ F −1)

= JSA(Sk , F (W ′), e ◦ ϕ ◦ r′ ◦ p′ ◦ F −1).

Let M = W ∩ F (W ′), P = r ◦ p|M , P ′ = r′ ◦ p′ ◦ F −1|M . Then P ◦ e|U = idU and
p′ ◦ e|U = idU . Consider Sk as a subset of Rk+1. For every x ∈ U there is a δ > 0
such that 2/‖z‖ ∈ M for every z ∈ κ(e(x), δ) = {z ∈ Rk+1 | ‖z − e(x)‖ < δ}. Let
M ′ =

⋃
{Zx | x ∈ U}. Then M ′ is an open subset of M containing e(U).

Therefore, we obtain from (33.7.4):

JSA(Sk, W, e ◦ ϕ ◦ r ◦ p) = JSA(Sk, M ′, e ◦ ϕ ◦ P |M ′),(34.5.3)

JSA(Sk , F (W ′), e ◦ ϕ ◦ r′ ◦ p′ ◦ F −1) = JSA(Sk, M ′, e ◦ ϕ ◦ P ′|M ′).

Now observe that the multivalued map χ: M ′ × [0, 1] � Sk given by:

χ(z, t) = e ◦ ϕ ◦ P (te ◦ P (z) + (1− t)e ◦ P ′(z))‖te ◦ P (z) + (1− t)e′ ◦ P ′(z)‖−1

is a strongly acyclic homotopy joining e◦ϕ◦P and e◦ϕ◦P ′ such that
⋃
{Fixχ( · , t) |

t ∈ [0, 1]} is homeomorphic to Fix(ϕ). Therefore, we obtain from (33.5.3):

(34.5.4) JSA(Sk, M ′, e ◦ ϕ ◦ P |M ′) = JSA(Sk , M ′, e ◦ ϕ ◦ P ′|M ′).

Combining equalities (33.5.1)–(33.5.4) we obtain the desired result and the proof
is completed. �

Theorem (34.4) allows us to define the fixed point index in the compact case,
but we would like to do it for Euclidean neighbourhood retracts.

We need the following fact, whose easy proof follows directly from (33.5) and,
therefore, is left to the reader.

(34.6) Proposition. Let (X, U, ϕ) ∈ K . Then there exists a compact subset
X′ of X and an open subset U ′ of U such that Fix(ϕ) ⊂ U ′ ⊂ X′ and ϕ(U ′) ⊂ X′.
Moreover, if i: X′ → Sn is an embedding, V is an open subset of Sn, r: V → U ′

is such that r ◦ i|U ′ = idU ′ , i−1(V ) = U ′ and i ◦ ϕ ◦ r is strongly acyclic then
(Sn, V, i ◦ ϕ ◦ r) ∈ K SA and the index JSA(Sn, V, i ◦ ϕ ◦ r) does not depend on the
choice of X′, U ′, i, V , r.

Now, we are in a position to define the fixed point index on K .



34. THE FIXED POINT INDEX FOR ACYCLIC MAPS 171

(34.7) Definition. Let (X, U, ϕ) ∈ K , and U ′ and X′ be chosen as in (34.6).
Let i: X′ → Sn, V ⊂ Sn and r: V → U ′ be defined as in (34.5), i.e. i is a homeo-
morphic embedding, V is open is Sn, r is continuous, r ◦ i|U ′ = idU ′ , i−1(V ) = U ′

and i ◦ ϕ ◦ r is strongly acyclic. The fixed point index I(X, U, ϕ) of (X, U, ϕ) is
defined as follows:

I(X, U, ϕ) = JSA(Sn, V, i ◦ ϕ ◦ r).

Let us observe that by Proposition (34.6) the above definition is correct.
Now we prove that the fixed point index on locally compact finite-dimensional

ANRs is uniquely determined by usual properties (cf. [Br1-M], [Do-M]).

(34.8) Theorem. Let K ′ denote the subclass of K consisted of all (X, U, ϕ) ∈
K , for which X is a locally compact ANR. Let J : K ′ → Q be a function satisfying
the following properties:

(34.8.1) If (X, U, ϕ) ∈ K ′ and ϕ(x) = x0 is a constant map, then

J(X, U, ϕ) =

{
1 provided x0 ∈ U,

0 provided x0 �∈ U.

(34.8.2) (Homotopy) If χ: U × [0, 1] is a homotopy in K ′, then

J(X, U ; χ( · , 0)) = J(X, U ; χ( · , 1)).

(34.8.3) (Additivity) If (X, U, ϕ) ∈ K ′ and Fix(ϕ) ⊂
⋃
{Ui | i = 1, . . . , k}, where

Ui are open and disjoint subsets of U then:

J(X, U, ϕ) =
k∑

i=1

J(X, Ui, ϕi),

where ϕi = ϕ|Ui .
(34.8.4) (Topological Invariance) If (X, U, ϕ) ∈ K ′ and h: X → Y is a homeomor-

phism, then

J(X, U, ϕ) = J(Y, h(U), h ◦ ϕ ◦ h−1).

(34.8.5) (Contraction) If (X, U, ϕ) ∈ K ′, ϕ(U) ⊂ Y and Y is a locally compact
ANR then J(X, U, ϕ) = J(Y, U ∩ Y, ϕ|U∩Y ).

Then J = I.

Proof. Let (X, U, ϕ) ∈ K . By Proposition (34.6) there are an open subset U ′

of U and a compact subset X′ of X such that Fix(ϕ) ⊂ U ′ ⊂ X′, ϕ(U ′) ⊂ X′.
Since X is locally compact, then there is a compact subset Z of X such that
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X′ ⊂ Int Z. By Theorem (34.5) there are an embedding i: Z → Sn, an open
subset V of Sn and a continuous mapping r: V → U ′ such that i−1(V ) = U ′,
r ◦ i|U ′ = idU ′ and i ◦ ϕ ◦ r is strongly acyclic. From (34.8.3)–(34.8.5) it follows
that

J(X, U, ϕ) = J(Int Z, U ′, ϕ|U ′) = J(Sn, V, i ◦ ϕ ◦ r).

Observe that properties (34.8.3)–(34.8.5) uniquely determine a fixed point index
for singlevalued maps on polyhedra (see [Br1-M], when one can easily see that it is
sufficient to use a contraction and a topological invariance instead of a commuta-
tivity). Therefore, by Proposition (33.8), J |KSA = JSA. Hence J(Sn, V, i ◦ϕ ◦ r) =
JSA(Sn, V, i ◦ϕ ◦ r). From (34.7) it follows that I(X, U, ϕ) = JSA(Sn, V, i ◦ϕ ◦ r),
which completes the proof. �

(34.9) Remark. In the last three sections we considered acyclic sets with
respect to the Čech homology with coefficients in the field of rational numbers Q.
But as we have already observed in the category C1 of open subsets in Euclidean
spaces (see (9.1)) the Čech and singular homology functor are equivalent.

Consequently in the case of strong acyclic maps we can consider Z-acyclicity
with respect to the singular homology functor with integer coefficients Z. Hence,
the fixed point index JSA can be defined as a function

JSA: K SA → Z

(cf. (33.8)). Therefore, in view of (34.7) and (34.9) we can consider the fixed point
index I on K as a function:

I: K → Z.

Now, we can formulate the following theorem:

(34.10) Theorem. The fixed point index I: K → Z has the following proper-
ties:

(34.10.1) (Normalization) If (X, X, ϕ) ∈ K and ϕ is compact, i.e. cl ϕ(X) is
a compact set, then: I(X, X, ϕ) = Λ(ϕ).

(34.10.2) (Fixed Points) If I(X, U, ϕ) �= 0 then Fix(ϕ) �= ∅.
(34.10.3) (Homotopy) If χ: U × [0, 1] � X is a homotopy in K then:

I(X, U, χ( · , 0)) = I(X, U, χ( · , 1)).

(34.10.4) (Additivity) If (X, U, ϕ) ∈ K and Fix(ϕ) ⊂
⋃
{Ui | i = 1, . . . , k}, where

Ui are open disjoint subsets of U then:

I(X, U, ϕ) =
k∑

i=1

I(X, Ui, ϕi), where ϕi = ϕ|Ui.
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(34.10.5) (Commutativity) Let ϕi: Ui � X be two Z-acyclic maps, where Ui is
an open subset of a finite-dimensional space Xi, i, j = 1, 2 and i �= j.
Assume that Ii is a locally compact ANR and ϕj◦ϕi|ϕ−1

i
(Uj ) is Z-acyclic,

i, j = 1, 2, i �= j. Assume also that:

y ∈ ϕ1(x) and x ∈ ϕ2(y) and (x ∈ ϕ−1
1 (U2) or y ∈ ϕ−1

2 (U1))

⇒ x ∈ ϕ−1
1 (U2) and y ∈ ϕ−1

2 (U1).

Then Fix(ϕ1 ◦ϕ2|ϕ−1
2 (U2)) is compact if and only if Fix(ϕ2 ◦ϕ1|ϕ−1

2 (U2))
is compact, and if so, then:

I(X1, ϕ−1
1 (U2), ϕ2 ◦ ϕ1) = I(X2, ϕ−1

2 (U1), ϕ1 ◦ ϕ2).

(34.10.6) (Mod-p) Let ϕ: U � X be Z-acyclic, where U is an open subset of
a finite-dimensional space X. Let V be an open subset of ϕ−p+1(U),
where p is a prime number. Assume that U is a locally compact ANR,
(ϕ|V )p is acyclic and: if y ∈ ϕi(x) and x ∈ ϕp−i(y), 0 < i < p and
x ∈ V then y ∈ V . When Fix((ϕ|V )p) is compact, then so is Fix ϕ|V
and

I(X, V, ϕ|V ) ≡ I(X, V, (ϕ|V )p) mod p.

The proof of (34.10) is straightforward, in view of (33.7) and (34.8), (34.7). We
also recommend [Bi-2], [FV], [SeS].

Above we have defined the fixed point index for acyclic (resp. Z-acyclic) map-
pings on Euclidean Neighbourhood Retracts. The definition presented here is
elementary if we compare with [SeS] or [Cal1]. The question to define the fixed
point index for arbitrary ANRs remains open. We will come back to this question
later.

35. The Nielsen number

The aim of this section is to present the basic notions of the Nielsen fixed
point theory (cf. [Br1-M]) for a class of acyclic maps of Euclidean neighbourhood
retracts (cf. previous section).

First we shall define the Reidemeister relation.

(35.1) Definition. Let A ⊂ X. We will say that A has a property (∗) in X

if and only if it is nonempty connected and there exists an open neighbourhood
U of A in X such that each loop in U is homotopic (with fixed ends) in X to the
constant loop.

Observe that we can demand U to be path-connected provided X is locally
path-connected.
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Recall that the space X̃ is called a covering of a locally path connected space X

provided there exists a continuous map α: X̃ → X such that for every x ∈ X there
exists an open neighbourhood Ux of x in X such that

α−1(Ux) =
⋃
i=1

{Vt | t ∈ T},

where Vt is open in X̃, Vt ∩ Vs = ∅, t �= s, and α|Vt: Vt → Ux is a homeomorphism
for every i = 1, . . . , k.

In what follows we will consider a covering of X as a pair (X̃, α), where X̃ and
α are defined above.

Let (X̃1, α1) and (X̃2, α2) be two covering spaces for X. A continuous map
γ: X̃1 → X̃2 is called a homomorphism of covering spaces provided the following
diagram is commutative:

X̃1
γ

��

α1
���

��
��

��
X̃2

α2
����
��
��
�

X

Now, a covering (X̃, α) of X is called universal if for any covering (Y, β) of X there
exists homeomorphism γ: X̃ → Y . In fact it is not difficult to show that (X̃, γ) is
a covering space for Y .

It is well known that any ANR-space X admits a universal covering space (X̃, α)
(see [Br2-M], [Ji-M], [Sp-M]).

(35.2) Definition. A multivalued map ϕ: Y � X will be called m-map pro-
vided it is u.s.c. with compact values and ϕ(x) has property (∗) in X.

(35.3) Remark. In what follows we assume that X admits a universal covering
space. Let us fix a universal covering α: X̃ → X of X.

(35.4) Definition. A m-map ϕ̃: Y � X̃ such that the diagram:

X̃

α

��

Y

ϕ̃
◦�������

ϕ
◦X

commutes will be called a lift of the m-map ϕ.

Note that for every y ∈ Y the sets ϕ(y) and ϕ̃(y) are homeomorphic, i.e.
α|

ϕ̃(y): ϕ̃(y) → ϕ(y) is a homeomorphism.
First, we prove the following:
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(35.5) Theorem. If Y is path-connected and simply connected then for any
m-map ϕ: Y � X and points y0 ∈ Y , x̃0 ∈ X̃ such that p(x̃0) ∈ ϕ(y0) there exists
a unique lift ϕ̃: Y � X̃ satisfying x̃0 ∈ ϕ̃(y0).

Proof. Case 1. First, assume that Y = [0, 1], y0 = 0. Let t ∈ [0, 1] and let
Ut denote the set from (35.1) (for the set ϕ(t)) which we assume to be connected.
Since ϕ is upper semicontinuous so there exists an open subset At ⊂ [0, 1] con-
taining t for which ϕ(At) ⊂ Ut. The family {At}t∈[0,1] forms an open covering of
the interval [0, 1]. Let λ > 0 be its Lebesgue number and suppose that λ < 1/n.
Consider the interval [0, 1/n]. There is a set At containing this interval such that
ϕ(At1) ⊂ Ut1 . Each loop from Ut1 is trivial in X, hence α−1(Ut1) splits into the
sum of disjoint connected components each of them mapped homeomorphically by
α onto Ut1 . Let s1: Ut1 → α−1(Ut1 ) denote the inverse map onto the component
containing x̃0. We define for t ∈ [0, 1/n], ϕ̃(t) = s1ϕ(t). Then we choose an ar-
bitrary point x̃1 ∈ ϕ̃(1/n) and extend ϕ̃ the same way onto the interval [0, 2/n].
Following this procedure we obtain the desired lift.

Case 2. Y = [0, 1]2, y0 = (0, 0). The proof is similar.

Case 3. The general case. Choose an arbitrary point y ∈ Y . Let ω be a path
in Y joining y0 with y. We apply (a) to the map ϕω : [0, 1]→ X, ϕω = ϕ ◦ ω, and
get a lift (ϕ̃ω): [0, 1]→ X such that (ϕ̃ω) � x̃0. We define ϕ̃(y) = (ϕ̃ω)(1).

This definition is correct: if ω′ is another path joining y0 with y, then they are
fixed end homotopic and by Case 2 (ϕ̃ω)(1) = (ϕ̃ω′)(1). �

(35.6) Corollary. Let ϕ: X � X be an m-map and let x̃1, x̃2 ∈ X̃ be such
points that α(x̃2) ∈ ϕα(x̃1). Then there exists a unique m-map ϕ̃: X̃ � X̃ for
which the diagram

X̃
ϕ̃

◦   

α

��

X̃

α

��

X ϕ
◦   X

commutes and x̃2 ∈ ϕ̃(x̃1).

Proof. We apply (35.1) to the diagram

X̃

α

��

X̃ ϕ
◦   X
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Let us denote by lift(ϕ) the set of all m-maps ϕ: X � X for which the diagram

X̃
ϕ̃

◦   

α

��

X̃

α

��

X ϕ
◦   X

commutes.
We will call the elements of lift(ϕ) the lifts of m-map ϕ. Let us recall that the

set of all (singlevalued) maps β: X̃ → X̃ such that the diagram commutes

X̃
β

��       

α
��
��

��
��

� X̃

α
��!!
!!
!!
!

X

forms a group (isomorphic to the fundamental group of the space X). We will
denote this group by ϑ. �

(35.7) Corollary. Let us fix one element ϕ̃ ∈ lift(ϕ). Then each lift of ϕ is
of the form β ◦ ϕ̃, where β ∈ ϑ and βϕ̃ = γϕ̃ if and only if β = γ.

Now we define an equivalence relation R on the set lift(ϕ):

(35.8) ϕ̃Rϕ̃′ if and only if ϕ̃′ = γϕ̃γ−1 for some γ = ϑ.

Following the singlevalued case (see [Ji-M]) we will call it the Reidemeister relation
and denote the quotient set by:

 (ϕ) = lift(ϕ)/R.

The elements of  (ϕ) are called Reidemeister classes of the m-map ϕ.

(35.9) Remark. The above definition of  (ϕ) depends on the choice of the
universal covering. Nevertheless, one can prove that the sets of Reidemeister
classes got from different universal coverings are in natural one to one correspon-
dence.

The number of elements of the set  (ϕ) will be called the Reidemeister number
of the m-map ϕ. Now we are going to check that it is a homotopy invariant.

(35.10) Definition. Two m-maps ϕ, ψ: Y � X are called m-homotopic if
and only if there exists a m-map χ: Y × I � X such that χ(y, 0) = ϕ(y) and
χ(y, 1) = ψ(y).
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(35.11) Corollary. Let ϕ, ψ: X � X be two m-maps and let χ: X × I � X

be a m-homotopy joining them. Then for any ϕ̃ ∈ lift(ϕ) there exists a unique
m-map χ̃: X̃ × I � X̃ such that the diagram

X̃ × I
χ̃

◦

α×id

��

X̃

α

��

X × I χ
◦X

commutes and χ̃(x̃, 0) = ϕ̃(x̃).

Thus, χ̃( · , 1) ∈ lift(ψ) and this way the homotopy χ determines a bijection
between the sets lift(ϕ) and lift(ψ). This bijection preserves the Reidemeister
relation and induces a one to one correspondence between the sets  (ϕ) and
 (ψ).

(35.12) Theorem. The Reidemeister numbers of the m-homotopic m-maps
are equal.

Now we are going to define the so called Nielsen relation. In order to do this
we shall study the fixed point set Fix(ϕ) of the m-map ϕ: X � X.

(35.13) Definition. Let x, x′ ∈ Fix(ϕ). We will say that x and x′ are Nielsen
equivalent x ≈ |

Ñ
x′ if and only if there exists a lift ϕ̃ ∈ lift(ϕ) such that x, x′ ∈

α(Fix(ϕ̃)) and the quotient set Fix(ϕ)/N will be denoted by ∆(ϕ).

Observe that for singlevalued ϕ = f the above definition coincide with the
classical Nielsen relation (cf. [Ji-M]).

(35.14) Lemma. If x ∈ Fix(ϕ) then there exists an open subset Vx containing
x such that y ∈ Vx ∩ Fix(ϕ) implies x∼

N
y.

Proof. Let x ∈ Fix(ϕ) and let Ux be the corresponding neighbourhood of
ϕ(x) ⊂ X from (35.1). Since ϕ is upper semi-continuous, there exists an open
subset Vx containing x such that ϕ(Vx) ⊂ Ux. We may assume that Vx is path-
connected and that Vx ⊂ Ux. Let y ∈ Vx ∩ Fix(ϕ). We will show that x∼

N
y. Let

α: X̃ → X denote again a universal covering and let us fix a point x̃ ∈ α−1(x).
From (35.6) we obtain a lift ϕ: X̃ → X̃ such that x̃ ∈ ϕ̃(x). Consider the restriction
of ϕ̃

ϕ̃: α−1(Vx)→ α−1(Ux).

The two above sets are disjoint sums of connected components, each of them
mapped homeomorphically by α onto Vx and Ux, respectively. Denote by Ṽx̃, Ũx̃
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the components containing x̃. We obtain a commutative diagram

Ṽ
x̃

ϕ̃ ◦

α

��

Ũ
x̃

α

��

Vx ϕ
◦Ux

where the vertical lines are homeomorphisms and Ṽx̃ ⊂ Ũx̃. Now it is obvious
that if y ∈ Fix(ϕ) ∩ Vx and ỹ ∈ Ṽx satisfy α(ỹ) = y then ỹ ∈ ϕ̃(ỹ). Thus
x, y ∈ α(Fix(ϕ̃)), so x∼

N
y. �

(35.15) Lemma. Let ϕ: X � X be a m-map. Then

(35.15.1) Fix(ϕ) =
⋃
{α(Fix(ϕ̃)) | ϕ̃ ∈ lift(ϕ)},

(35.15.2) for any two lifts ϕ̃, ϕ̃′ of ϕ the sets α(Fix(ϕ̃)), α(Fix(ϕ̃′)) are either equal
or disjoint,

(35.12.3) α(Fix(ϕ̃)) = α(Fix(ϕ̃′)) �= ∅ implies ϕ̃∼
R

ϕ̃′.

Proof. Similar to the singlevalued case [BoJ]. Let x ∈ Fix(ϕ). Let us consider
Lx = {ϕ̃ ∈ lift(ϕ) | x ∈ α(Fix(ϕ̃))}. Then (35.15.1) implies that Lx is nonempty
and it follows from (35.15.2) and (35.15.3) that Lx is exactly one Reidemeister
class. On the other hand (b) and (35.15.3) imply that Lx = Ly if and only if
x∼

N
y. Thus we obtain the injective map v: ∆(ϕ) →  (ϕ) given by the formula

v[x] = Lx. �

There are two equivalent definitions of the Nielsen relation for singlevalued
maps (see [Ji-M] or [Br2-M]). The first using universal coverings we have already
generalized onto the case of m-maps. Let us recall the second one (more popular
for singlevalued maps).

(35.16) Definition. Let f : X → X denote a singlevalued self-map of a topo-
logical space X. Then two points x, x′ ∈ Fix(f) are called equivalent if and only
if there is a path ω: I → X joining them such that ω and f ◦ ω are fixed end
homotopic.

The last approach can not be simply applied to multivalued case since the
composition ϕ ◦ ω is generally no longer a path. Nevertheless we will show how
to generalize this definition onto the case of m-maps. This approach seems to be
more convenient in calculations.

Let us recall:
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(35.17) Definition. Let X be a metric space. The category which objects
are points of X and morphisms from x to x′ are the fixed end homotopy classes
of paths joining these points is called the fundamental groupoid of the space X.

We denote the set of morphisms between the points x and x′ by Π(X; x, x′) and
the whole fundamental groupoid by Π(X).

(35.18) Remark. Any continuous singlevalued map f : X → Y induces a func-
tor Π(f): Π(X) → Π(Y ) given by Π(f)(x) = f(x), Π(f)[ω] = [fω].

Using these notations we may formulate the obvious:

(35.19) Lemma. Let f : X → X be a continuous singlevalued self-map. Two
points x, x′ ∈ Fix(f) are equivalent in the sense of (35.16) if and only if the map

Π(f): Π(X; x, x′)→ Π(X; x, x′)

has a fixed point.

Our aim is to generalize the notion of fundamental groupoid to extend the
definition (35.16) onto the case of m-maps. Then we will check that this extension
coincides with (35.13).

Let X denote again a connected, locally path-connected, semi-locally simply-
connected space and let A0, A1 be two subsets of X satisfying the property (∗)
of (35.1). Then the sets Π(X; a0, a1) for (a0, a1) ∈ A0 × A1 may be identified as
follows: let Ui be a path-connected neighbourhood of Ai from (35.1), let ai, a′

i ∈ Ai

and let ωi be a path in Ui joining the points ai and a′
i (i = 0, 1). Then we identify

Π(X; a0, a1) � [α] with [ω−1
0 ∗ α ∗ ω1] ∈ Π(X; a′

0, a′
1) and define the quotient set

(35.20) Π̂(X; A0, A1) =
⋃

a0∈A0
a1∈A1

Π(X; a0, a1)/ ∼ .

Let (a0, a1) ∈ A0 ×A1 and denote by

ia0,a1 : Π(X; a0, a1)→ Π̃(X; A0, A1)

the natural bijection.

(35.21) Remark. When A0 and A1 are single points then (35.20) agrees
with (35.17).

(35.22) Definition. The generalized fundamental groupoid of the space X is
the category which objects are subsets of X satisfying property (∗) of (35.1) and
Π̂(X; A0, A1) is the set of morphisms between the objects A0 and A1. We will
denote this category by Π̂(X).

(35.23) Remark. Π(X) may be regarded as a subcategory of Π̂(X).
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(35.24) Lemma. Let X be a connected space admitting a universal covering
and let Y be an arbitrary topological space. Then each m-map ϕ: Y � X induces
a functor

Π̂(ϕ): Π(Y )→ Π̂(X)

which coincides with Π(ϕ): Π(Y )→ Π(X) when ϕ is singlevalued map.

Proof. We define Π̂(ϕ)(y) = ϕ(y) for each y ∈ Y . Let [ω] ∈ Π(Y ; y0, y1).
Let us fix a universal covering α: X̃ → X and points x0 ∈ ϕ(y0), x1 ∈ ϕ(y1),
x̃0 ∈ α−1(x0). Then by (35.5) the diagram

X̃

α

��

[0, 1] ω ��   Y
ϕ

�� X

admits a unique lift ϕ̃ω such that x̃0 ∈ ϕ̃ω(0). Let {x̃1} = ϕ̃ω(1)∩α−1(x1) and let
τ be a path in X̃ joining x̃0 with x̃1. We define

(35.25) Π̂(ϕ)[ω] = i(x0,x1)[ατ ] ∈ Π̂(X; ϕ(y0), ϕ(y1)).

One can check that the above definition does not depend on the choice of the cov-
ering X̃ , the points x0, x1, x̃0 and the path τ . Thus we get the desired functor Π̂(ϕ)
and proof is completed. �

Now, we are able to modify (35.16) (cf. (35.11)).

(35.26) Definition. Two fixed points x, x′ of the m-map ϕ: X � X are in
∼
N′

relation if and only if the maps

Π̂(ϕ), i(x,x′): Π(X; x, x′)→ Π̂(X; ϕ(x), ϕ(x′))

have a coincidence point.

(35.27) Theorem. The relations ∼
N

, ∼
N′

are equal.

Proof. Let x∼
N

x′. Then there exists a lift ϕ̃

X̃
ϕ̃

◦

α

��

X̃

α

��

X ϕ
◦X
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such that x, x′ ∈ α(Fix(ϕ̃)). Let us choose two points x̃, x̃′ ∈ X such that α(x̃) = x,
α(x̃′) = x′, and x̃, x̃′ ∈ Fix ϕ̃. Let ω̃ denote the path in X̃ joining the points x̃

and x̃′. Then the commutative diagram

X̃

α

��

[0, 1]

ϕ̃
αω̃

◦""""""""""""""

αω̃

�� X ϕ
◦X

gives us Π̂(ϕ)[αω̃] hence x ∼
N′

x′.

Assume now that x ∼
N′ x′. Then there exists a path ω joining x and x′ in X such

that

(35.28) Π̂(ϕ)[ω] = i(x,x′)[ω] ∈ Π̂(X, ϕ(x), ϕ(x′)).

Let us fix a point x̃ ∈ α−1(x) and suppose that the lifts

X̃

α

��

[0, 1]

ω̃

�������������������

ω
�� X

X̃

[0, 1]

ϕ̃ω

◦##################
ω

�� X ϕ
◦X

α

��

satisfy ω(0) = ω̃(ϕ̃)(0). Then by (35.28) and (35.26) ω̃(1) ∈ ϕ̃ω(1). Take the lift ϕ̃

such that x̃ ∈ Fix ϕ̃. Then x̃ ∈ ϕ̃(x̃) = ϕ̃ ◦ ω̃(0) and we get two lifts ϕ̃ω, ϕ̃ ◦ ω̃

of the map ϕω such that ϕ̃ω(0) ∩ ϕ̃ ◦ ω̃(0) �= ∅ hence ϕ̃ω = ϕ̃ ◦ ω̃. In particular
ω̃(1) ∈ ϕ̃ω(1) = ϕ̃ ◦ ω̃(1) so ω̃(1) ∈ Fix ϕ̃. The equality αω̃(1) = ω(1) = x′ implies
x, x′ ∈ α(Fix ϕ̃) so x∼

N
x′. �

(35.29) Corollary. Let ϕ: X � X denote a m-map and let x, x′ ∈ Fix ϕ.
Suppose that there exists a path joining them such that the composition ϕ ◦ω: I �
X admits a continuous singlevalued selector τ satisfying: τ(0) = x, τ(1) = x′ and
the paths ω, τ are fixed end homotopic. Then x∼

N
x′.

Proof. It follows from the definition of the induced map (35.24) that Π̂(ϕ)[ω]
= i(x,x′)[τ ] ∈ Π̂(X, ϕ(x), ϕ(x′)) hence x ∼

N′
x′ and the theorem (35.27) gives us

x∼
N

x′. The proof is completed. �

In what follows we shall assume that X is a finite dimensional Euclidean neigh-
bourhood retract and ϕ: X � X is an acyclic compact m-map. Then for any open
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U ⊂ X such that Fix(ϕ) ∩ ∂U = ∅ we have (X, U, ϕ) ∈ K and therefore the fixed
point index I(X, U, ϕ) is well defined.

Now let A ⊂ Fix(ϕ) be one of the Nielsen classes of Fix(ϕ). Let us choose an
open U ⊂ X such that U ∩ Fix(ϕ) = A.

(35.30) Definition. The class A is called essential if and only if I(X, U, ϕ) �=
0, where U is chosen above.

(35.31) Definition. The number of essential classes of ϕ is called Nielsen
number N(ϕ) of ϕ.

We prove:

(35.32) Theorem. Let χ: X × [0, 1] � X be an acyclic compact homotopy
which is a m-map. Then N(χ( · , 0)) = N(χ( · , 1)).

Proof. For a subset Z ⊂ X × [0, 1] and t ∈ [0, 1] we denote Zt = {x ∈ X |
(x, t) ∈ Z}. Let χ: X × [0, 1] � X × [0, 1] be the “fat” homotopy defined by
χ(x, t) = (χ(x, t), t). Then χ is also a m-map and for A ∈ ∆(χ) either At ∈ ∆(χt)
or At = ∅. Moreover, for B ∈ ∆(χt) there exists exactly one class A ∈ ∆(χ) such
that At = B.

Now, we are going to prove that if A ∈ ∆(χ) and U is an open subset of X×[0, 1]
such that U ∩ Fix(χ) = A, then

I(X, U0, χ0) = I(X, U1, χ1).

It is enough to show that the number I(X, Ut, χt) is a locally constant function of
t ∈ [0, 1].

Let us fix t0 ∈ [0, 1]. The compactness of A gives us open neighbourhoods V, W

such that t0 ∈ U ⊂ [0, 1], A1 ⊂W ⊂ Ut0 and A∩ (X×V ) ⊂W ×V ⊂ U . We may
assume V to be connected. Then for arbitrary t ∈ V from the fixed point index
properties we infer:

I(X, Ut, χt) = I(X, W, χt) = I(X, Ut0 , χt0).

Let B ∈ ∆(χ0) be an essential class and let A ∈ ∆(χ) be the only class satisfying
B = A0. Then A1 ∈ ∇(χ) is also essential and it proves N(χ0) ≤ N(χ1).

By the same arguments we can prove the opposite inequality and the proof is
completed. �

Note that from the definition of the Nielsen number we obtain:

(35.33) Corollary. The map ϕ has at least N(ϕ) fixed points.

Now let f : X → X be a (singlevalued) selection of ϕ. Then, of course, Fix(f) ⊂
Fix(ϕ). Let x, y ∈ Fix(f) be such that x∼

N
y with respect to f . Observe, that

x∼
N

y with respect to f if and only if x∼
N

y with respect to ϕ. Since the fixed point

index I(X, U, ϕ) is equal to I(X, U, f) we obtain:
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(35.34) Proposition. If f ⊂ ϕ and ϕ is a m-map for which the Nielsen
number is defined, then N(f) = N(ϕ).

(35.35) Proposition. Let X ∈ ANR and ϕ: X � X be a compact u.s.c. map
such that ϕ(x) ∈ AR for every x ∈ X. Then ϕ is a m-map.

Proof. Let A = ϕ(x). For the proof it is sufficient to show that A has the
property (∗) in X.

Since X ∈ ANR, we can assume without loss of generality (see (1.8)) that there
is an open U in a normed space such that X ⊂ U and r: U → X is a retraction.
On the other hand, since A ∈ AR, there is a retraction r1: X → A. Let us denote

U1 = {x ∈ U | [x, r1(x)] ⊂ U},

where [a, b] denotes the closed interval in E joining a and b, a, b ∈ E. Then U1 is
open and A ⊂ U1. Let us put V1 = X ∩ U1. Then the formula:

h(x, t) = r((1 − t)x + tr1(x))

gives a homotopy between the inclusion i: V1 → X and the retraction r1: V1 → A.
Hence each loop in V1 may be deformed in X into A, and since A is contractible
(A ∈ AR) we proved our claim. The proof of (35.35) is completed. �

(35.36) Remark. We recommend [AGJ] for some generalizations of the Niel-
sen theory presented in this section.

36. n-Acyclic mappings

The notion of acyclic maps can be generalized to the so called n-acyclic (acyclic
in dimension n) maps.

For acyclic mappings we have the induced linear map on Čech homology with
compact carriers in all dimensions k ≥ 0, meanwhile, for n-acyclic mappings we
have the induced linear map only in dimension k = n.

In what follows by acyclic set we shall understand a compact nonempty space
A with trivial Čech cohomology with integer coefficients Z, i.e. H0(A) = Z and
Hi(A) = 0 for i > 0. By a Vietoris map p: Y ⇒ X we mean (as in Section 8)
a proper mapping such that p−1(x) is acyclic in the above sense. Observe that if
p is a proper map, then p is closed.

(36.1) Definition. A map p: Y → X is called a n-Vietoris map, n ≥ 1 if the
following two conditions are satisfied:

(36.1.1) p is proper and surjective,
(36.1.2) rd XM i(p) ≤ n−2−i for i = 0, 1, . . . , where M i(p) is defined in Section 8.
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(36.2) Remark. If rd XM i(p) < 0, then we let M i(p) = ∅.
Assume that p: Y → X is a n-Vietoris map. Then we have:

mn(p) = 1 + max
0≤i≤n−1

(rd XM i(p) + i) ≤ 1 + max
0≤i≤n−1

[(n− 2− i) + i] = n− 1.

Therefore, from (8.14) we obtain:

(36.3) Theorem. If p: Y → X is a n-Vietoris map, then

p∗k: Hk(X) ∼−→ Hk(Y )

is an isomorphism for every k ≥ n.

Now we are in position to define the class of n-acyclic maps.

(36.4) Definition. An u.s.c. map ϕ: X � Y with compact values is called
a n-acyclic, n ≥ 1 map (written ϕ ∈ ACn(X, Y )) provided:

(36.4.1) rd XM i(ϕ) ≤ n−2−i, i = 1, 2, . . ., where M i(ϕ) = {x ∈ X | Hi(ϕ(x)) �=
0} for i > 0 and M0(ϕ) = {x ∈ X | H0(ϕ(x)) �= Z}.

(36.5) Remark. If ϕ ∈ ACn(X, Y ), then the natural projection pϕ: Γϕ → X

is a n-Vietoris map.

(36.6) Definition. Let ϕ ∈ ACn(X, Y ). Then we define the induced homo-
morphisms ϕ∗k: Hk(Y )→ Hk(X), k ≥ n, by putting:

ϕ∗k = (p∗k
ϕ )−1 ◦ q∗k

ϕ .

Observe, that AC1(X, Y ) = AC(X, Y ) if we consider acyclic maps with respect
to H∗ with coefficients in Z. Moreover, we have the following diagram:

(36.7) AC1(X, Y ) ⊂ AC2(X, Y ) ⊂ AC3(X, Y ) ⊂ . . . ⊂ ACn(X, Y ) ⊂ . . .

(36.8) Remark. It follows from Theorem (5.1) that acyclic mappings consid-
ered in last three sections coincide with acyclic mappings considered with respect
to Čech cohomology functor with rational coefficients Q.

(36.9) Definition. Two mappings ϕ, ψ ∈ ACn(X, Y ) are called homotopic
(written ϕ ∼ ψ) provided there exists a map χ ∈ ACn(X × [0, 1], Y ) such that:

χ(x, 0) = ϕ(x) and χ(x, 1) = ψ(x) for every x ∈ X;

then χ is called a homotopy joining ϕ and ψ.

The proof of the following proposition is strictly analogous to the proof of (32.6).
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(36.10) Proposition. If ϕ ∼ ψ, then ϕ∗k = ψ∗k for every k ≥ n.

As an easy consequence of the universal coefficients formula (see (5.7)) we ob-
tain:

(36.11) Proposition. If ϕ: X � Y is acyclic with respect to H∗( · , Q) then
ϕ is acyclic with respect to H∗( · , Z).

Proposition (36.11) explains the reason why we consider acyclicity in the above
sense.

Now we shall show that the topological degree theory can be developed for
n-acyclic mappings.

(36.12) Definition. A space A is called a n-cohomological sphere, n ≥ 1,
provided H∗(A) is isomorphic to the Čech cohomology (with integer coefficients)
of n-dimensional sphere Sn ⊂ Rn+1.

For example, P n+1 = Rn+1 \ {0} is a n-cohomological sphere. Of course, any
A homeomorphic to Sn or P n+1 is a n-cohomological sphere, too.

In what follows, for any n-cohomological sphere A we identify Hn(A) with the
ring of integers, i.e. Hn(A) ≈ Z.

(36.13) Definition. Let A and B be two n-cohomological spheres and let
ϕ ∈ ACn(A, B). We define the topological degree Deg(ϕ) of ϕ as an integer
defined as follows:

Deg(ϕ) = ϕ∗n(1).

From (36.10) directly follows:

(36.14) Property (Homotopy Property). If A, B are n-cohomological spheres
and ϕ, ψ ∈ ACn(A, B) are homotopic, then Deg(ϕ) = Deg(ψ).

According to Section 29, by Kn+1(r) we denote the closed ball in Rn+1 with
radius r and the center at zero point of Rn+1. Moreover, Sn(r) = ∂Kn+1(r) is the
n-dimensional sphere.

We let:

ACn[(Kn+1(r), Sn(r)), (Rn+1, P n+1)]

= {ϕ ∈ ACn(Kn+1(r), Rn+1) | ϕ(Sn(r)) ⊂ P n+1}.

If ϕ, ψ ∈ ACn[(Kn+1(r), Sn(r)), (Rn+1, P n+1)] then we will say that ϕ is homo-
topic to ψ (written ϕ ∼ ψ) provided there exists χ ∈ ACn[(Kn+1(r)×[0, 1], Sn(r)×
[0, 1]), (Rn+1, P n+1)] such that:

χ(x, 0) = ϕ(x) and χ(x, 1) = ψ(x) for every x ∈ Kn+1(r).
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Let ϕ ∈ ACn[(Kn+1(r), Sn(r)), (Rn+1, P n+1)]. We define a restriction of ϕ as the
map ϕ̂: Sn(r) � P n+1 defined as follows:

ϕ̂(x) = ϕ(x) for every x ∈ Sn(r).

Since Sn(r) is closed in Kn+1(r) we obtain:

(36.15) Proposition. If map ϕ ∈ ACn[(Kn+1(r), Sn(r)), (Rn+1, P n+1)] then
ϕ̂ ∈ ACn(Sn(r), P n+1).

Proposition (36.15) allows us to define:

(36.16) Definition. Let ϕ ∈ ACn[(Kn+1(r), Sn(r)), (Rn+1, P n+1)]. Then we
define the topological degree Deg(ϕ) of ϕ by letting:

Deg(ϕ) = Deg(ϕ̂).

Then we get the following homotopy property:

(36.17) Proposition. If ϕ, ψ ∈ ACn[(Kn+1(r), Sn(r)), (Rn+1, P n+1)] are ho-
motopic then:

Deg(ϕ) = Deg(ψ).

Moreover, similarly as we have proved in (32.13), one can show the following

(36.18) Proposition. Assume that two maps ψ, ϕ ∈ ACn(A, B) (resp. ψ, ϕ ∈
ACn((Kn+1(r), Sn(r)), (Rn+1, P n+1))). If ψ ⊂ ϕ, i.e. ψ(x) ⊂ ϕ(x) for every x,
then

Deg(ϕ) = Deg(ψ).

Now, we shall show fixed point theory consequences following from the above
topological degree.

(36.19) Existence property. Let ϕ ∈ ACn((Kn+1(r), Sn), (Rn+1, P n+1)).
If Deg(ϕ) �= 0 then there exists x ∈ Kn+1(r) such that 0 ∈ ϕ(x).

Proof. Assume to the contrary that ϕ(Kn+1(r)) ⊂ P n+1. Then we have the
following commutative diagram:

Kn+1(r) Γϕ
pϕ

��

qϕ

���
��

��
��

�

P n+1

Sn(r)

j

��

Γϕ̂pϕ̂

��

i

��

qϕ̂

  ��������
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in which i, j are the respective inclusions. Applying to the above diagram the
functor Hn we obtain:

(p∗n
ϕ̂ )−1 ◦ q∗n

ϕ̂ = j∗n(p∗n
ϕ )−1q∗n

ϕ ,

but j∗n = 0 because Hn(Kn+1(r)) = 0 and hence Deg(ϕ) = 0, so we obtain
a contradiction; the proof is completed. �

(36.20) Theorem. Let ϕ ∈ ACn(Kn+1(r), Rn+1) be a multivalued map such
that ϕ(Sn(r)) ⊂ Kn+1(r). Then Fix(ϕ) �= ∅.

Proof. Assume to the contrary that Fix(ϕ) = ∅. Consider the diagram:

Kn+1(r)
pϕ←− Γϕ

qϕ−→ Rn+1

and let f : Γϕ → P n+1 be defined as follows:

f(x, y) = x− y for every (x, y) ∈ Γϕ.

We define the multivalued map ψ: Kn+1(r) � Rn+1 by putting:

ψ(x) = f(p−1
ϕ (x)).

Since for every x ∈ Kn+1(r), the set ψ(x) = {x− y | y ∈ ϕ(x)} is homeomorphic
to ϕ(x), we infer ψ ∈ ACn((Kn+1(r), Sn(r)), (Rn+1, P n+1)). To obtain a contra-
diction it is enough to show that: Deg(ψ) �= 0. In order to do this we define
a homotopy

χ: Kn+1(r)× [0, 1] � Rn+1

by the formula:
χ(x, t) = {x− ty | y ∈ ϕ(x)}.

Observe again that for every (x, t), the set χ(x, t) is homeomorphic to ϕ(x) and
hence

χ ∈ ACn(Kn+1(r), Rn+1).

Moreover, let us assume that x − ty = 0 for some x ∈ Sn(r), y ∈ ϕ(x) and
0 < t < 1. Then 1 = ‖x‖ = t‖y‖ ≤ t < 1. Consequently, χ(Sn(r)) ⊂ P n+1.
Therefore, Deg(χ( · , 0)) = Deg(χ( · , 1)) = Deg(ψ). On the other hand χ(x, 0) = x

for every x ∈ Kn+1 and consequently

χ( · , 0)∗n = i∗n: Hn(P n+1) ∼−→ Hn(Sn)

is an isomorphism. Finally, we obtain Deg(ψ) �= 0 which is a contradiction; the
proof is completed. �

As an immediate consequence of (36.20) we obtain the following generalization
of the classical Brouwer fixed point theorem.

(36.21) Corollary. If ϕ ∈ ACn(Kn+1(r), Kn+1(r)) then Fix(ϕ) �= ∅.
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37. Theorem on antipodes for n-acyclic mappings

In this section we discuss the classical Borsuk theorem on antipodes for n-acyclic
and acyclic mappings.

The following theorem is an extension of the Borsuk’s theorem on antipodes for
singlevalued mappings.

(37.1) Theorem. Let ϕ: Sn � P n+1 be an n-admissible map. If for every
x ∈ Sn there exists an n-hyperplane through 0 strictly separating ϕ(x) and ϕ(−x),
then Deg(ϕ) �= 0.

Proof. Let y ∈ Sn. Then we define the set Uy by putting

Uy = {x ∈ Sn | 〈y, z〉 > 0 for each z ∈ ϕ(x) and 〈y, z〉 < 0 for each z ∈ ϕ(−x)},

where 〈y, z〉 denotes the inner product in Rn+1.
Since ϕ is compact, U is open. From the assumption we have that: for every

x ∈ Sn there is y ∈ Sn such that 〈y, z〉 > 0 for z ∈ ϕ(x) and 〈y, z〉 < 0 for z ∈
ϕ(−x). This implies that Sn =

⋃
y∈Sn Uy. Since Sn is compact, there exists a finite

subcover {Uyi}i=1,... ,m. Let {gt}i=1,... ,m be a subordinated partition of unity.
Consider g: Sn → P n+1 defined by g(x) =

∑
i(gi(x)− gi(−x))yi. The map g is

odd, thus deg(g) �= 0. For the proof it suffices to show that g and ϕ are homotopic
(in ACn(Sn, P n+1)). For this we define a map χ: Sn × I � P n+1 by putting

χ(x, t) = {t ◦ g(x) + (1− t)z | z ∈ ϕ(x)}.

If χ(x, t) contains 0 for some t ∈ [0, 1] and x ∈ Sn, then there is z ∈ ϕ(x), with

(37.1.1) −(1− t)z =
∑

i

(gi(x) − gi(−x))yi.

Observe that:

(37.1.2)

(i) 〈yi, z〉 > 0 for some i = 1, . . . , m,

(ii) 〈yi, z〉 < 0 implies gi(x) = 0,

(iii) 〈yi, z〉 > 0 implies gi(−x) = 0.

Taking the inner product of both sides of (37.1.1) with z and applying (37.1.2)
we obtain −(1 − t)〈z, z〉 > 0, a contradiction. For every k ≥ 0 we have Mk(χ) ⊂
Mk(ϕ) × I and hence we deduce

rd Sn×IMk(χ) ≤ (n− 1− 2− k) + 1 = n− 2− k.

This implies that χ is an n-acyclic homotopy joining g with ϕ; the proof is com-
pleted. �

Using (4.4) and (6.1) we deduce the following
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(37.2) Corollary. Suppose ϕ: Kn+1 � Rn+1 is an n-admissible and for x ∈
Sn there is an n-hyperplane through 0 strictly separating ϕ(x) and ϕ(−x). If
ϕ̃ = ϕ|Sn is (n− 1)-acyclic then ϕ vanishes in some interior point of Kn+1.

For acyclic mappings Theorem (37.2) can be formulated in a more general form.
Let M be a compact n-cohomological sphere. An acyclic map Φ: M � M is

called an involution, if the condition (x, y) ∈ ΓΦ implies that (y, x) ∈ ΓΦ, i.e. the
graph ΓΦ of Φ is symmetric.

We recall the well known fact for singlevalued maps (see [Go1-M] and references
therein).

(37.3) Proposition. Let g: M → M be a singlevalued involution and let
f : M → Sn be such that f(x) �= f(g(x)) for every x ∈ M . Then the induced
homomorphism f∗n: Hn(Sn)→ Hn(M) is non trivial, i.e. f∗n �= 0.

Now we are able to prove:

(37.4) Theorem. Let Φ: M � M be an acyclic involution and let ϕ: M �
P n+1 be an acyclic map such that the following condition is satisfied:

(37.4.1) every radius with origin at the zero point of Rn+1 has an empty intersec-
tion with the set ϕ(x) or ϕ(Φ(x)) for every x ∈M .

Then Deg(ϕ) �= 0.

Proof. Consider the diagram:

M
pϕ⇐= Γϕ

qϕ−→ P n+1.

Define the set X by putting:

X = {(x, x′, y, y′) | x ∈M, x′ ∈ Φ(x), y ∈ ϕ(x), y′ ∈ ϕ(x′)}.

Of course, X is a compact set. Consider the diagram:

X
f

��

π

!!
$$
$$
$$
$$
$$
$$
$$
$

s

��

Sn

P n+1

r

""%%%%%%%%

M Γϕpϕ

��

r◦qϕ

��

qϕ

  ��������

in which

s(x, x′, y, y′) = x, f(x, x′, y, y′) =
qϕ(y)
‖qϕ(y)‖ ,

π(x, x′, y, y′) = (x, y), r(z) =
z

‖z‖ .
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It is easy to see that the above diagram commutes. Observe that the map s has
the following decomposition:

(x, x′, y, y′)→ (x, x′, y)→ (x, x′)→ x.

Since the maps given in the above decomposition of s are determined by Vietoris
mappings pϕ and pΦ, in view of (8.10), we conclude that s is a Vietoris map.
Therefore, X is a n-cohomological sphere.

Now we define the singlevalued involution g: X → X as follows:

g(x, x′y, y′) = (x′, x, y′, y).

We prove that f(x, x′, y, y′) �= f(g(x, x′, y, y′)). Indeed, we have:

f(x, x′, y, y′) =
qϕ(y)
‖qϕ(y)‖ and f(g(x, x′, y, y′)) =

qϕ(y′)
‖qϕ(y′)‖ .

So, our claim follows from (37.4.1). Therefore, from (37.3) we obtain that f∗n �= 0.
Consequently, from the commutativity of the above diagram we obtain:

(p∗n
ϕ )−1 ◦ (q∗n) = (s∗n)−1f∗n(r∗n)−1 �= 0

and hence Deg(ϕ) �= 0; the proof is completed. �

Now we shall formulate some consequences of (37.4).

(37.5) Corollary. Let Φ: M � M be an involution and let ϕ: M � Sn be
an acyclic map such that the following condition is satisfied:

(37.5.1) ϕ(x) ∩ ϕ(y) = ∅ for every x ∈ M and y ∈ Φ(x).

Then Deg(ϕ) �= 0.

For the proof of (37.5) observe that (37.5.1) implies (37.4.1).
Now we prove the following:

(37.6) Corollary. Let Φ: M � M and ϕ: M � Sn be as in (37.5). Then
ϕ(M) = Sn.

Proof. Assume to the contrary that there exists a point u0 ∈ Sn \ ϕ(M).
Consider the following diagram:

M

i0

��

Γϕ
pϕ��

qϕ

##�
��

��
��

��
�

j0

��

M × [0, 1] Γϕ × [0, 1]
pϕ×id[0,1]�� h �� Sn

M

i1

��

Γϕpϕ

��

j1

��

f

$$&&&&&&&&&&
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in which i0, i1, j0, j1 are the respective inclusions, f(x, y) = u0 for every (x, y) ∈
Γϕ. Let

h(x, y, t) =
ty + (t− 1)u0

‖ty + (t− 1)u0‖
for every x, y, t.

Since qϕ(x, y) = y �= u0 for every y ∈ Y the map h is well defined. Since f is
a constant map we get f∗n = 0. So from the commutativity of the above diagram
we obtain:

(p∗n
ϕ )−1q∗n

ϕ = (p∗n
ϕ )−1f∗n = 0,

and Deg(ϕ) = 0; a contradiction. �

From (37.6) immediately follows:

(37.7) Corollary. Let Φ: M � M be an involution and let ϕ: M � Rn be
acyclic. Then there exists a point (x, y) ∈ ΓΦ such that ϕ(x) ∩ ϕ(y) �= ∅.

Assuming M = Sn and Φ = −idSn from (37.7) we obtain:

(37.8) Corollary. If ϕ: Sn � Rn is an acyclic map then there exists a point
x ∈ Sn such that ϕ(x) ∩ ϕ(−x) �= ∅.

Note that (37.8) is a multivalued generalization of the well known Borsuk–Ulam
theorem.

Now we shall discuss the multivalued version of the Bourgin–Yang theorem. To
do it we need the notion of genus.

Let X be a space and α: X → X be a fixed point free (singlevalued) involution,
i.e. α(x) �= x and α2(x) = α(α(x)) = x. In what follows by (X, α) we will denote
a space X with a fixed point free involution α.

Let (X, α) and (Y, β) be two spaces with fixed point free involutions. A map
f : X → Y is called equivariant if the following diagram is commutative:

X
f

��

α

��

Y

β

��

X
f

�� Y

(37.9) Definition. The genus γ(X, α) of a pair (X, α) is the minimal nonneg-
ative integer k such that there exists an equivariant map f : X → Sk, where in Sk

the involution β is the antipodal map β: Sk → Sk, β(x) = −x, for every x ∈ Sk ;
we let γ(X, α) =∞ if no such k exists.

It is well known that:
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(37.10) Proposition. If X is a compact space with a fixed point free involution
α then

γ(X, α) ≤ dim X.

The proof of (37.10) can be found in [CF]. We omit it here because it requires
some developed methods of equivariant topology. Recall that if V is a linear
subspace of Rn then the codimension codim V of V in Rn is defined by:

codim V = n− dim V.

In what follows if X ⊂ Rn+1 \ {0} is a nonempty symmetric set then the genus
γ(X, β) of X with respect to the antipodal map β will be denoted shortly by γ(X).

(37.11) Proposition. Let X ⊂ Rn+1 \ {0} be a nonempty and symmetric set
and let k = γ(X). If V is a linear subspace of Rn then γ(X ∩ V ) ≥ k − codim V .

Proof. Suppose, on the contrary, that γ(X ∩ V ) = q < k − p, where p =
codim V . That means, according to the definition of γ, that there exists an add
map f0: X ∩ V → Sq . Extend f0 to a continuous map f̃ : X → Rq+1 and let
f(x) = (1/2)(f̃(x) − f̃(−x)); f : X → Rq+1 be an odd continuous extension of f0.

Let V ⊥ denote the orthogonal complement of V in Rn and P : Rn → V ⊥ be
the orthogonal projection. Let A: V ⊥ → Rp be a linear isomorphism. Define
g0: X → Rp+q+1 \ {0} by q0(x) = (A ◦ P (x), f(x)) (note that we identify Rp ×
Rq+1 with Rp+q+1) and let q(x) = g0(x)/‖g0(x)‖. Clearly, g: X → Sp+q is odd
and continuous; therefore, γ(X) ≤ p + q < p + k − p = k. We have obtained
a contradiction which completes the proof. �

From (37.11) by induction we deduce:

(37.12) Proposition. Let X ⊂ Rn+k \ {0}, k ≥ 1, be a nonempty and sym-
metric set. If γ(X) ≥ k then there are at least (k + 1)-mutually orthogonal points
in X.

Now we are able to prove the Bourgin–Yang theorem for multivalued mappings.

(37.13) Theorem (Bourgin–Yang). If ϕ: Sn+k � Rn is an acyclic map, then
γ(A(ϕ)) ≥ k, where A(ϕ) = {x ∈ Sn+k | ϕ(x) ∩ ϕ(−x) �= ∅}.

Proof. First observe that A(ϕ), in view of (37.8), is nonempty. Moreover, it
is evidently symmetric and compact subset of Sn+k.

We shall proceed by contradiction. So, let us assume to the contrary that
γ(A(ϕ)) < k. Of course we can assume that k ≥ 1. We let γ(A(ϕ)) = p < k. Then
from (37.9) we obtain an add continuous map f : A(ϕ)→ Sp. Let f̃ : Sn+k → Rp+1

be a continuous (not necessarily odd) extension of f . Consider:

ϕ̃: Sn+k � Rn ×Rp+1 = Rn+p+1 ⊂ Rn+k
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defined by:
ϕ̃(x) = {(y, f̃(x)) | y ∈ ϕ(x)}.

Since the set ϕ̃(x) is homeomorphic to ϕ(x) we deduce that ϕ̃ is acyclic. By
applying the Borsuk-Ulam theorem to ϕ̃ (see (37.8)) we obtain a point x̃ ∈ Sn+k

such that
ϕ̃(x̃) ∩ ϕ̃(−x̃) �= ∅.

It means that ϕ(x̃) ∩ ϕ(−x̃) �= ∅ i.e. x̃ ∈ A(ϕ) and f(x̃) = f(−x̃). Hence, f̃(x̃) =
f(x̃) = −f(−x̃) = −f̃(−x̃) ∈ Sp. Consequently, f̃(x̃) �= f̃(−x̃) and we have
obtained a contradiction with f̃(x̃) = f̃(−x̃); the proof is completed. �

(37.14) Remark. By letting k = 0 from (37.13) we deduce (37.8). In fact the
above proof shows that (37.8) implies (37.13). So the Borsuk–Ulam theorem and
the Bourgin–Yang theorem are equivalent.

Now, from (37.13) and (37.10) we obtain:

(37.15) Corollary. If ϕ: Sn+k � Rn is an acyclic map then dim A(ϕ) ≥ k.

From (37.13) and (37.12) we deduce:

(37.16) Corollary. If ϕ: Sn+k � Rn, k ≥ 1 is an acyclic map, then there
exist (k + 1)-mutually orthogonal points in A(ϕ).

Finally, note that (37.13) can be expressed in terms of a cohomological index
(see [GG-1]).

38. Theorem on invariance of domain

In this section we shall show that the Brouwer Invariance of Domain Theorem
may be generalized to acyclic maps. As usual, for a subset A ⊂ Rn+1 by Int A

we denote its interior in Rn+1 moreover, as before, for a0 ∈ Rn+1 and r > 0 by
B(a0, r) we denote the open ball in Rn+1 with the center a0 and radius r.

We start with the following cohomological characterization of an interior point
(see [ES-M, p. 394]).

(38.1) Proposition. Let A be a compact subset, a0 ∈ A and j: A\B0(a0, r)→
A be the inclusion map. The point a0 ∈ Int A if and only if there exists a positive
number r0 such that for every 0 < r < r0 the homomorphism

j∗n: Hn(H)→ Hn(A \B(a0, r))

is not an epimorphism.

Now we will prove the following two lemmas.



194 CHAPTER IV. HOMOLOGICAL METHODS IN FIXED POINT THEORY

(38.2) Lemma. Let A be a compact subset of Rn+1, a0 ∈ A. The point a0 ∈
Int A if and only if there exists an acyclic map ϕ: Kn+1 � A such that:

ϕ(Sn) ⊂ A \ {a0},(38.2.1)

Deg(ϕ) �= 0.(38.2.2)

Proof. First, let us observe that if a0 ∈ Int A then we can find even a single-
valued map with the properties (38.2.1) and (38.2.2).

Conversely, assume that there exists an acyclic map ϕ: Kn+1 → A satisfying
(38.2.1) and (38.2.2). We prove that a0 ∈ Int A. Consider the diagram:

Kn+1 pϕ⇐= Γϕ
qϕ−→ A,

in what follows for simplicity we will write p = pϕ and q = qϕ.
Define a map p1: p−1(Sn)→ Sn and q1: p−1(Sn)→ A\{a0} by putting p1(y) =

p(y), q1(y) = q(y) for every y ∈ p−1(Sn). The set q1(p−1(Sn)) is compact. Let
r0 = dist(a0, q1(p−1(Sn))). Then r0 > 0. Consider the open ball B(a0, r), 0 <

r < r0 and the inclusion map j: A \ B(a0, r) → A. We claim that j∗n is not an
epimorphism.

Indeed, we have the commutative diagram

Kn+1 Γϕ
p�� q

�� A

Sn

i1

��

P −1(Sn)
q1 ��

p1��

i2

��

id
��

A \B(a0, r)

j

��

i3

��

P −1(Sn)

p1

�� 



q̃1

�� Rn+1 \ {a0}

in which i1, i2, i3 are inclusions, q̃1, q1 are given by q1(y) = q̃1(y) = q1(y) for each
y ∈ p−1(Sn). From the assumption we have (p∗n

1 )−1q̃∗n
1 �= 0.

This implies that (p∗n
1 )−1q∗n

1 i∗n
3 �= 0 and hence q∗n

1 �= 0. Assume that j∗n is an
epimorphism. Then we obtain

i∗n
1 (p∗n)−1q∗n = (p∗n

1 )−1q∗n
1 j∗n �= 0,

which is a contradiction. Since j∗n is not an epimorphism, from (38.1) we obtain
a0 ∈ Int A, and the proof of (38.2) is completed. �

An acyclic map ϕ: X � Z is called an ε-map if the condition ϕ(x) ∩ ϕ(x′) �= ∅
implies d(x, x′) < ε for each x, x′ ∈ X.
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(38.3) Lemma. Let ϕ: Kn+1 � Rn+1 be a 1-map. Then

ϕ(Sn) ⊂ Rn+1 \ {z0} for each z0 ∈ ϕ(0),(38.3.1)

Deg(ϕ) �= 0.(38.3.2)

Proof. Let z0 ∈ ϕ(0). We prove that z0 �∈ ϕ(Sn). Assume that z0 ∈ ϕ(x) for
some x ∈ Sn. Then we have ϕ(0) ∩ ϕ(x) �= ∅ and from the assumption we deduce
that ‖x‖ < 1, which is a contradiction.

Now we prove (38.3.2). We have the diagram:

Kn+1 p⇐= Γϕ
q−→ Rn+1, in which p = pϕ, q = qϕ.

Let y0 ∈ p−1(0) be a point such that q(y0) = z. Define the maps p1: p−1(Sn) →
Sn, q1: p−1(Sn) → Rn+1 \ {z0} by putting p1(y) = p(y), q1(y) = q(y) for each
y ∈ p−1(Sn). For the proof it is sufficient to show that deg(p1, q1) �= 0, where
deg(p1, q1) = [(p∗n

1 )−1 ◦ q∗n
1 ](1) and 1 ∈ Hn(Rn \ {z0}) = Z is a fixed generator.

Define the following sets:

X = {(x, x′) ∈ Kn+1 ×Kn+1 | ‖x− x′‖ = 1},
M = {(x, x′, y, y′) | (x, x′) ∈ X, y ∈ p−1(x), y′ ∈ p−1(x′)},
Z = {(x, x′, y, y′) | (x, x′, y, y′) ∈M, x′ = 0}.

It is easy to see that X, M , Z are compact sets. Consider the diagram:

Sn p−1(Sn)
p1�� q1 ��

i

��

Rn+1 \ {z0} l �� P n+1

Z

h

������������ j
��

s

%%'''''''''''''' M

f

��

t

��

X

in which

i(y) = (p1(y), 0, y, y0), h(x, 0, y, y′) = x,

j(x, 0, y, y′) = (x, 0, y, y′), t(x, x′, y, y′) = (x, x′),

s(x, 0, y, y′) = (x, 0), t(z) = z − z0,

f(x, x′, y, y′) = q(y) − q(y′).

Since ϕ is an 1-map, we have f(x, x′, y, y′) �= 0. It is evident that the above
diagram commutes.
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As in the proof of theorem on antipodes (Section 37), we deduce that h∗, s∗, t∗

are isomorphisms. Hence the commutativity of the above diagram implies that j∗

and i∗ are isomorphisms. This implies that M has the cohomology of Sn.
Define the involution g: M → M by putting g(x, x′, y, y′) = (x′, x, y′, y). Then

f(g(x, x′, y, y′)) �= f(x, x′, y, y′). Applying the Theorem On Antipodes to the maps
f, g, we obtain f∗n �= 0. From the commutativity of the above diagram we have
q∗n

1 l∗n �= 0. Finally, we obtain q∗n
1 �= 0, and this implies that Deg(ϕ) �= 0. The

proof of (38.3) is completed. �

(38.4) Remark. It is evident that Lemma (38.2) remains true for any closed
ball in Rn+1 with radius ε and for any ε-map, where ε is a positive real number.

We will prove now two theorems of the Brouwer Invariance of Domain Theorem
type for acyclic maps.

(38.5) Theorem. Let ε > 0 be a positive real number. If ϕ: Rn+1 � Rn+1 is
an ε-map then ϕ(Rn+1) is an open subset of Rn+1.

Proof. Let y ∈ ϕ(Rn+1). We prove that y ∈ Int ϕ(Rn+1). Assume that
y ∈ ϕ(x) for some x ∈ Rn+1. Let Kn+1

ε be a closed ball in Rn+1 with the center
at x and radius ε.

Since ϕ is an acyclic map, we deduce that ϕ(Kn+1
ε ) is a compact set. We have

y ∈ ϕ(Kn+1
ε ). Let ψ be the restriction of ϕ to the ball Kn+1. Then ψ is an ε-map

and hence we have ψ(Sn
ε ) ⊂ Rn+1 \ {y}, where Sn

ε denotes the boundary of Kn+1
ε .

Therefore, Lemma (38.2) (cf. Remark (38.4)) implies that 0 �∈ Deg(ψ, y) and from
(38.2) we obtain y ∈ Int ϕ(Rn+1). The proof of (38.5) is completed. �

(38.6) Theorem. Let U be an open subset of Rn+1 and ϕ: U � Rn+1 an
acyclic map. Assume further that for any two points x1, x2 ∈ U the condition
x1 �= x2 implies ϕ(x1) ∩ ϕ(x2) = ∅. Then ϕ(U) is an open subset of Rn+1.

Proof. From the assumption we infer that ϕ is an ε-map for each ε > 0. Let
y ∈ ϕ(U). We prove that y ∈ Int ϕ(U). Assume that y ∈ ϕ(x) for some x ∈ U .
Since U is open, there exists an ε > 0 such that the set Kn+1

ε is contained in U ,
where Kn+1

ε is a closed ball with center at x and radius ε. Let ψ be the restriction
of ϕ to the set Kn+1

ε . Since ψ is an ε-map, we have y �∈ ψ(Sn
ε ), where Sn

ε is the
boundary of Kn+1

ε . Applying lemmas (38.3) and (38.2), as in the proof of (38.5),
we obtain y ∈ Int ϕ(U). The proof of (38.6) is completed. �

Note that for n-acyclic mappings the above theorem is not true in general.

39. n-Acyclic compact vector fields in normed spaces

In this section E will denote a (real) normed space with dim E = +∞. Let
Ek+1 ⊂ Ek+2 be two subspaces of E such that dim Ek+1 = k + 1 and dim Ek+2 =
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k + 2. Denote by Ek+2
+ , Ek+2

− two closed half-spaces of Ek+2 such that Ek+1 =
Ek+2

+ ∩ Ek+2
− and the respective unit half-spheres Sk+1

+ = Ek+2
+ ∩ S, Sk+1

− =
Ek+2

− ∩ S, where S is the unit sphere in E.
Clearly, Sk = S ∩ Ek+1 = Sk+1

+ ∩ Sk+1
− . Then (Sk+1, Sk+1

+ , Sk+1
− ) is a triad

and consequently the Mayer–Vietoris homomorphism ∆: Hk(Sk) ∼−→ Hk+1(Sk+1)
is an isomorphism (see Chapter I).

In what follows we shall make use of the following:

(39.1) Lemma. Let p, q: Y → Sk+1 be two mappings such that:

(39.1.1) p is a n-Vietoris map, n ≤ k,
(39.1.2) q(p−1(Sk+1)) ⊂ Sk+1

− ,

Then the following diagram commutes:

Hk(Sk)
∆ ��

q∗k(p∗k)−1

��

Hk+1(Sk+1)

q∗k+1(p∗k+1)−1

��

Hk(Sk)
∆

�� Hk+1(Sk+1)

where q, p: p−1(Sk)→ Sk are the respective restrictions of p and q.

Proof. Let Y+ = p−1(Sk+1
+ ) and Y− = p−1(Sk+1

− ). Since p is a n-Vietoris map,
n ≤ k, we infer that (Y, Y+, Y−) is a k-triad. Observe that Y+∩Y− = p−1(Sk). By
assumptions (39.1.1) and (39.1.2), p, q are maps between triads (Y, Y+, Y−) and
(Sk+1, Sk+1

+ , Sk+1
− ). Consequently our lemma follows from the Mayer–Vietoris

theorem (see Chapter I). �

Let X be a subset of E and let Φ: X � E be a u.s.c. multivalued map. We
define a multivalued vector field ϕ: X → E associated with Φ by putting ϕ = i−Φ,
where (i−Φ)(x) = {x−y | y ∈ Φ(x)} for every x ∈ X. We say that ϕ is a compact
vector field provided Φ is compact.

(39.2) Proposition. If ϕ: X → E is a compact vector field associated with Φ
then ϕ(X) is a closed subset of E.

Proof. Let {un} ⊂ ϕ(X) and limn un = u. We have to prove that u ∈ ϕ(X).
Since ϕ = i− Φ we have the following expression:

un = xn − yn, where xn ∈ X and yn ∈ Φ(xn).

Observe that {yn} ⊂ Φ(X) ⊂ Φ(X) and Φ(X) is compact. Therefore, we can
assume that limn yn = y. Consequently, we deduce that limn xn = x ∈ X and
hence u = (x− y) ∈ ϕ(x) ⊂ ϕ(X). The proof of (39.2) is completed. �
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(39.3) Definition. A multivalued vector field ϕ: X � E associated with Φ is
called n-acyclic (acyclic) provided Φ is a n-acyclic (acyclic).

We will say that x0 ∈ X is a singular point of the compact vector field ϕ: X � E

provided 0 ∈ ϕ(x0). We let

AVn(S, P ) = {ϕ: S � P | ϕ is a compact n-acyclic vector field

associated with Φ: S � E},

where S = E \ {0}. Let ϕ1 = i − Φ1 and ϕ2 = i − Φ2 be two compact n-acyclic
vector fields in AVn(S, P ). We will say that ϕ1 and ϕ2 are homotopic in AVn(S, P )
provided there exists a compact n-acyclic vector field η = (i − χ): S × [0, 1] � P

such that χ(x, 0) = Φ1(x) and χ(x, 1) = Φ2(x).
Now we are going to define the topological degree Deg on the class AVn(S, P ).

Let ϕ = (i− Φ) ∈ AVn(S, P ). We consider the following diagram:

S
pΦ⇐= ΓΦ

qΦ−→ E,

in which pΦ is a n-Vietoris map. In what follows we let for simplicity Y = ΓΦ,
p = pΦ and q = qΦ. We let:

q̃: Y → P, q̃(y) = p(y) − q(y),

where
y = (x, u) ∈ ΓΦ, p(y) = x and q(y) = u.

In view of Proposition (39.2) we obtain dist(0, ϕ(S)) = δ > 0.
Let 0 < ε < δ. By applying the Schauder Approximation Theorem (12.9) to

q and ε > 0 we get a map qε: Y → Ek+1 such that ‖q(y) − qε(y)‖ < ε for every
y ∈ Y . Consider the diagram:

Sk pk⇐= Yk
qk−→ Ek+1 and Sk pk⇐= Yk

q̃k−→ P k+1 = Ek+1 \ {0},

where Yk = p−1(Sk), pk is the respective restriction of p, qk is the respective
restriction of qε and q̃k(y) = pk(y) − qk(y). Observe that q̃k is well defined.
Indeed, since ‖x− q(y)‖ ≥ δ and y ∈ p−1(x), we have:

‖q̃k(y)‖ = ‖pk(y) − q(y)‖ = ‖x− qε(y)‖
≥ ‖x− q(y)‖ − ‖q(y) − qε(y)‖ ≥ δ − ε > 0.

Therefore, we can consider the following diagram

Sk pk⇐= Yk
q̃k−→ P k+1.
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Since n < k we have:

Z ≈ Hk(P k+1)
(q̃k)∗k

�� Hk(Yk)
[(pk)∗k ]−1

∼ �� Hk(Sk) ≈ Z

We let:

(39.4) Deg(ϕ) = [(pk)∗k]−1[(qk)∗k(1)].

To prove that definition (39.4) is correct, we shall prove the following two lemmas.

(39.5) Lemma. Let ϕ = i−Φ: S � P be an n-acyclic compact vector field and
p = pϕ: ΓΦ → S and q = qϕ: ΓΦ → E be two natural projections. Assume further
that qε, q′

ε: ΓΦ → Ek+1 are two ε-approximations of q, where ε < dist(0, ϕ(S)) =
δ > 0. Then (q̃k)∗k = (q̃ ′

k)∗k, where q̃k, q̃ ′
k: Yk = p−1(Sk) → P k+1 are defined as

above.

Proof. Consider a homotopy h: Yk × [0, 1]→ Ek+1 defined as follows:

h(u, t) = t · q̃k(u) + (1− t)q̃ ′
k(u).

It is sufficient to show that h(Yk × [0, 1])⊂ P k+1. In fact, we have:

‖tq̃k(u)+ (1− t)q̃ ′
k(u)‖

= ‖t(pk(u)− qk(u)) + (1− t)(pk(u) − q′
k(u))‖

= ‖pk(u) − tqε(u) + (1− t)q′
ε(u)‖

= ‖p(u)− q(u)− [t(qε(u)− q(u)) + (1− t)(q′
ε(u) − q(u))]‖ ≥ δ − ε > 0;

the proof is completed. �

(39.6) Lemma. Let ϕ = i− Φ and p, q be the same as in (5.1). Assume that
Ek+1, Ek+2 are two subspaces of E such that Ek+1 ⊂ Ek+2. Let qε: ΓΦ → Ek+1

be an ε-approximation of q with ε < dist(0, ϕ(S)) = δ and let q′
ε : ΓΦ → Ek+2 be

defined as follows, q′
ε(u) = qε(u) for every u. Then:

[(pk)∗k]−1(q̃k)∗k(1) = [p∗k+1
k+1 ]−1(q̃k+1)∗k+1(1).

Proof. We define r: P k+2 → Sk+1, r(z) = z/‖z‖. Applying Lemma (39.1) to
the pair (pk+1, rqk+1) we obtain our claim; the proof is completed. �

Note that from (39.5) and (39.6) it immediately follows that definition (39.4)
is correct.

The following two properties are self-evident:
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(39.7) Proposition. Let ϕ, ψ: S � P be two n-acyclic compact vector fields.
Then:

(39.7.1) ϕ ∼ ψ implies that Deg(ϕ) = Deg(ψ);
(39.7.2) ϕ ⊂ ψ, i.e. ϕ(x) ⊂ ψ(x) for every x ∈ S, implies that Deg(ϕ) = Deg(ψ).

Let us remark that the above topological degree theory will be generalized to
mappings called n-admissible compact vector fields in one of the following sections
that. We will also present topological consequences of our degree theory then.

40. Admissible mappings

The class of acyclic and hence n-acyclic mappings is not closed with respect
to the composition law (see Example (32.2)). Therefore, we are going to extend
the class of acyclic mappings to the class of, so called, admissible mappings (see
[Go1-M]), which is closed with respect to the composition law.

(40.1) Definition ([Go1-M]). A multivalued map ϕ: X � Y is called ad-
missible (strongly admissible) provided there exists a (metric) space Γ and two
mappings p: Γ =⇒ X, q: Γ→ Y such that:

(40.1.1) p is a Vietoris map,
(40.1.2) q(p−1(x)) ⊂ ϕ(x) (q(p−1(x)) = ϕ(x)) for every x ∈ X.

(40.2) Remark. By the term Vietoris map we understand Vietoris with re-
spect to the Čech homology functor with compact carriers and coefficients Q (cf.
Chapter I). But, of course, we can consider Vietoris mappings with respect to the
Čech cohomology functor if necessary.

First, note that any acyclic map ϕ: X � Y is strongly admissible. In fact, it is
enough to take Γ = Γϕ and p = pϕ, q = qϕ.

In what follows, a pair of mappings (p, q) satisfying (40.1) is called a selected
pair of ϕ (written (p, q) ⊂ ϕ or (p, q) = ϕ, when ϕ is strongly admissible).

(40.3) Remarks.

(40.3.1) Observe that the map ψ: S1 � S1, ψ(z) = S1, for every z ∈ S1 is
admissible. Let f : S1 → S1 be an arbitrary (continuous) map. Then (idS1 , f) ⊂ ϕ.
We will see later that ψ is even strongly admissible as a composition of strongly
admissible maps.

(40.3.2) Observe that if ϕ: X � Y is strongly admissible then ϕ(x) is compact
connected for every x ∈ X. So the map ϕ: [0, 1] � [0, 1] given by

ϕ(t) =

{
{t} for t �= 0,

{0, 1} for t = 0.

is admissible but not strongly admissible.
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(40.4) Proposition. If ϕ: X � Y is acyclic and (p, q) ⊂ ϕ, then ϕ∗ = q∗p−1∗ .

Proof. We have the following commutative diagram:

Γϕ

pϕ

�� ��
��
��
�

��
��
��
�

qϕ

���
��

��
��

X Y

Γ

p

���������

������� q

����������

f

��

in which f(z) = (p(z), q(z)). Now, by applying the functor H to the above diagram
we obtain our claim. �

(40.5) Theorem. Let ϕ: X � X1 and ψ: X1 � X2 be two admissible maps.
Then the composition ψ ◦ϕ: X � X2 is an admissible map and for every selected
pairs (p1, q1) ⊂ ϕ and (p2, q2) ⊂ ψ there exists a selected pair (p, q) of ψ ◦ ϕ such
that

q2∗ ◦ (p2∗)−1 ◦ q1∗ ◦ (p1∗)−1 = q∗ ◦ p−1
∗ .

Proof. Let (p1, q1) ⊂ ϕ and (p2, q2) ⊂ ψ. Consider the commutative diagram

X Γ1
p1�� q1 �� X1 Γ2

p2�� q2 �� X2

Γ

p

�� ���������������

���������������

f1

		�������

�������
g

��
f2

&&��������
q

''(((((((((((((((

in which, for each (z1, z2) ∈ Γ,

Γ = {(z1, z2) ∈ Γ1 × Γ2 | q1(z1) = p2(z2)}, p(z1, z2) = p1(z1),

q(z1, z2) = q2(z2), f1(z1, z2) = z1, f2(z1, z2) = z2, g(z1, z2) = q1(z1).

Since f−1
1 (z1) is homeomorphic to p−1

2 (q1(z1)) and p2 is a Vietoris map we
deduce that f1 is a Vietoris map. Hence p, as the composition p1 ◦ f1, is a Vietoris
map. Moreover, we have q(p−1(x)) ⊂ ψ(ϕ(x)) for each x ∈ X. Applying to the
above diagram the functor H, we obtain

q2∗(p2∗)−1 ◦ q1∗(p1∗)−1 = q∗p−1
∗

and the proof (40.5) is completed. �
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(40.6) Theorem. If ϕ: X � X1 and ψ: X1 � X2 are two s-admissible maps
then the composition ψ◦ϕ: X � X2 is an s-admissible map and for every (p1, q1) =
ϕ and (p2, q2) = ψ there exists a (p, q) = ψ ◦ ϕ such that

q2∗(p2∗)−1 ◦ q1∗(p1∗)−1 = q∗p−1
∗ .

The proof of (40.6) is strictly analogous to (40.5). Note that from (40.6) it
follows that the composition of two acyclic maps is strongly admissible.

Let ϕ: X � Y be an admissible map. We will define the set {ϕ}∗ of induced
by ϕ linear mappings on homology of X into homology of Y . We let:

{ϕ}∗ = {q∗p−1
∗ | (p, q) ⊂ ϕ} and {ϕ}∗ = {q∗p−1

∗ | (p, q) = ϕ}

in the case of a strongly admissible map.

(40.7) Example. Let ψ: Sn � Sn be the map defined as follows:

ψ(z) = Sn for every z ∈ Sn.

Since (idSn , f) ⊂ ψ for any f : Sn → Sn we see that {ψ}∗ is an infinite set.
On the other hand, ψ is also strongly admissible. Observe that the set:

{ψ}∗ = {q∗p−1
∗ | (p, q) = ψ}

is not a singleton. In fact, let ϕ1: Sn → Sn, ϕ1(z) = {y ∈ Sn | ‖y− z‖ ≤ 3/2} (cf.
Example (32.2)). Since idSn ⊂ ϕ1 it follows that ϕ1∗ = idH(Sn) (see (40.5)).

Let ϕ2(x) = ϕ1(−x). Then (−idSn) ⊂ ϕ2, so again in view of (40.5) we have
(−idSn)∗ = ϕ2∗. By applying Theorem (40.7), there are two selected pairs (p, q) =
ϕ1 ◦ ϕ1, (p′, q′) = ϕ1 ◦ ϕ2 such that q∗p−1∗ = ϕ1∗ ◦ ϕ1∗ and q′∗(p′∗)−1 = ϕ2∗ϕ1∗.
Finally, if n = 2k we obtain that q∗p−1∗ �= q′∗(p′∗)−1. Since ψ = ϕ1 ◦ ϕ1 = ϕ2 ◦ ϕ1

we conclude that the set {ψ}∗ consists of at least two elements when ψ is regarded
as a strongly admissible map.

We will prove:

(40.8) Proposition. Let ϕ, ψ: X � Y be two admissible maps. If ϕ ⊂ ψ,
then {ϕ}∗ ⊂ {ψ}∗.

For the proof of (40.8) it is sufficient to see that if (p, q) ⊂ ϕ then (p, q) ⊂ ψ.
Now from (40.8) and (40.4) we obtain:

(40.9) Corollary. Let ψ: X � Y be an acyclic map and ϕ: X � Y an
admissible map. If ϕ ⊂ ψ then the set {ϕ}∗ is a singleton and {ϕ}∗ = {ψ∗}.
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(40.10) Definition. Two admissible maps ϕ, ψ: X � Y are called homotopic
(written ϕ ∼ ψ) provided there exists an admissible map χ: X× I � Y , I = [0, 1],
such that:

χ(x, 0) ⊂ ϕ(x) and χ(x, 1) ⊂ ψ(x) for every x ∈ X.

(40.11) Theorem. Let ϕ, ψ: X � Y be two admissible maps. Then ϕ ∼ ψ

implies that there exist selected pairs (p, q) ⊂ ϕ and (p, q) ⊂ ψ such that:

q∗ ◦ p−1
∗ = q∗ ◦ p−1

1∗ .

Proof. Let (p̃, q̃) ⊂ χ. Consider the commutative diagram

X

i0

��

p̃−1(i0(X))
p��

j0

��

q̃·j0=q

##�
���

��
���

�

X × I Z
p̃�� q̃

�� Y

X

i1

��

p̃−1(i1(X))
p

��

j1

��

q̃·j1=q

$$&&&&&&&&&&

where i0(x) = (x, 0), i1(x) = (x, 1) for each x ∈ X, j0, j1 are inclusions and p, p are
given as the first coordinates of p(z) for every z ∈ p̃−1(i0(X)) and z ∈ p̃−1(i1(X))
respectively. Then p, p are Vietoris maps and we have (p, q) ⊂ ϕ, (p, q) ⊂ ψ.
Observe that i0∗ = i1∗ is a linear isomorphism. This and the commutativity of
the above diagram imply q∗ ◦ p−1∗ = q∗ ◦ p−1

∗ . This proves Theorem (40.11). �

(40.12) Corollary. Let ϕ, ψ: X � Y be two admissible maps. Then ϕ ∼ ψ

implies {ϕ}∗ ∩ {ψ}∗ �= ∅.

(40.13) Corollary. Let ϕ, ψ: X → Y be two acyclic maps. Then ϕ ∼ ψ

implies ϕ∗ = ψ∗.

(40.14) Example. Let ϕ1, ψ: Sn � Sn be the same as in Example (40.7).
Consider the homotopy χ: Sn × I � Sn defined by:

χ(x, t) = ϕ1(x) for every x ∈ Sn.

Then χ is a homotopy joining ϕ1 with ψ but {ϕ1}∗ is an infinite set.



204 CHAPTER IV. HOMOLOGICAL METHODS IN FIXED POINT THEORY

(40.15) Definition. An admissible map ϕ: X � X is called a Lefschetz map
provided the linear map q∗ ◦ p−1∗ : H(X) → H(X) is a Leray endomorphism for
every selected pair (p, q) ⊂ ϕ (see Section 11).

For a Lefschetz map ϕ: X � X we define the Lefschetz set ΛΛ(ϕ) of ϕ by putting:

ΛΛ(ϕ) = {Λ(q∗p−1
∗ ) | (p, q) ⊂ ϕ},

where Λ(q∗p−1∗ ) denotes the generalized Lefschetz number of q∗ ◦ p−1∗ (see again
Section 11).

Note that if ϕ is an acyclic Lefschetz map then ΛΛ(ϕ) = {Λ(ϕ)} = {Λ(q∗p−1∗ )}
is a singleton.

We have the following simple properties:

(40.16) Proposition. Let ϕ, ψ: X � X be two Lefschetz maps.

(40.16.1) If ϕ ⊂ ψ, then ΛΛ(ϕ) ⊂ ΛΛ(ψ);
(40.16.2) If ϕ and ψ are acyclic and ϕ ⊂ ψ or ϕ ∼ ψ, then ϕ is a Lefschetz map

if and only if ψ is a Lefschetz map and in this case Λ(ϕ) = Λ(ψ).

(40.17) Example. Let X be a space which is not of a finite type. Let f : X →
X, f(x) = x0 for every x ∈ X and ϕ(x) = X for every x ∈ X. We have f ⊂ ϕ and
idX ⊂ ϕ but f∗ is a Leray endomorphism and idH(X) is not a Leray endomorphism.

41. The Lefschetz fixed point theorem for admissible mappings

The aim of this section is to formulate the Lefschetz fixed point theorem for
admissible mappings of AANR-spaces.

The notion of an AANR-space was introduced in (3.1). Now we need some
special properties of AANR-spaces related directly to the Lefschetz fixed point
theorem.

(41.1) Definition. An AANR-space X is said to be admissible provided there
exists a homeomorphism h: X → E mapping X onto a closed subset h(X) of
a normed space E and an open neighbourhood U of h(X) in E such that the
following two conditions are satisfied:

(41.1.1) h(X) is an approximative retract of U ,
(41.1.2) the inclusion i: h(X) → U induces a monomorphism i∗: H(h(X)) →

H(U).

(41.2) Proposition. Every ANR is an admissible AANR.

Proof. Let X ∈ ANR. Using the Arens–Eells embedding theorem, we obtain
a homeomorphism h mapping X into a normed space E such that
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(41.2.1) h(X) is closed in E,

(4.1.2.2) there exists a retraction r: U → h(X), where U is an open neighbourhood
of h(X) in E.

Then the inclusion i: h(X) → U is the right inverse of r and we have ri = idh(X).
We infer that r∗i∗ = idH(h(X)) and this implies that i∗ is a monomorphism. �

(41.3) Proposition. Every compact AANR is an admissible AANR.

Proof. Using the Arens–Eells embedding theorem we may assume without
loss of generality that X is an approximative retract of some open neighbourhood
U of X in a normed space E. Since X is of finite type (see (6.1)), we deduce that
there exists an ε0 > 0 such that for every two maps f, g: X → X, the condition
‖f(x) − g(x)‖ < ε0 implies f∗ = g∗.

Choose an ε > 0 such that ε < ε0 and consider the two maps id, rε ◦ i: X → X,
where r : U → X is an ε-retraction and i: X → U an inclusion map. By Theorem
(6.1), we infer that idH(X) = (rε)∗ · i∗ and this implies that i∗: H(X) → H(U) is
a monomorphism. �

(41.4) Proposition. Every acyclic AANR is an admissible AANR.

For the proof (41.4) observe that if X is an acyclic space and X ⊂ Y then the
inclusion i: X → Y induces a monomorphism i∗: H(X)→ H(Y ).

The following lemma is of importance:

(41.5) Lemma. Let X be an AANR. Assume that X is an approximative re-
tract of an open subset U in a space E and i: X → U induces a monomorphism
i∗: H(X) → H(U). Then for every compact subset K ⊂ X there exists a pos-
itive real number ε(K) such that for every ε < ε(K) and for every ε-retraction
rε: U → X we have:

(rε)∗i∗j∗ = j∗, where j: K → X is the inclusion map.

Proof. Let ε(K) > 0 be a number smaller than the distance dist(K, ∂U) from
the compact set K to the boundary ∂U of U in E. From the definition of ε(K)
we infer that for each x ∈ X and ε < ε(K) the interval t · irεij(x) + (1− t) · ij(x),
where 0 ≤ t ≤ 1, is entirely contained in U . This implies that irεij and ij are
homotopic for every ε < ε(K). Since i∗ is a monomorphism, we get (rε)∗i∗j∗ = j∗
for each ε < ε(K) and the proof is completed. �

Before starting the main result of this section in full generality, we shall first
consider the following special case:
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(41.6) Lemma. Let U be an open subset of a normed space and let ϕ: U � U

be an admissible compact map. Then:

(41.6.1) ϕ is a Lefschetz map, and
(41.6.2) ΛΛ(ϕ) �= {0} implies that Fix(ϕ) �= ∅.

Proof. Let (p, q) ⊂ ϕ be a selected pair. Since ϕ is compact, so q is compact,
too. By (12.10) q∗p−1∗ is a Leray endomorphism and hence ϕ is a Lefschetz map.
Assume that ΛΛ(ϕ) �= {0}. Therefore, there is (p, q) ⊂ ϕ such that Λ(q∗p−1∗ ) �= 0.
Consequently p and q have a coincidence point u, i.e. p(u) = q(u) (see again
(12.10)). Thus x = p(u) is a fixed point for ϕ and the proof of (41.6) is completed.�

We are able now to prove the principal result of this section.

(41.7) Theorem. Let X be an admissible AANR-space and ϕ: X � X be
a compact admissible map. Then:

(41.7.1) ϕ is a Lefschetz map, and
(41.7.2) ΛΛ(ϕ) �= {0}, implies that Fix(ϕ) �= ∅.

Proof. Since X is an admissible AANR, we may assume that there exists
an open subset of a normed space E such that the following two conditions are
satisfied:

(41.7.3) X is an approximative retract of U ,
(41.7.4) the inclusion i: X → U induces a monomorphism i∗: H(X)→ H(U).

Let rn: U → X be (1/n)-retraction. We have

(41.7.5) ‖rn(x)− x‖ < 1/n for each x ∈ X and for every n.

Let p, q: Y → X be a pair of maps such that (p, q) ⊂ ϕ. Consider for each n an
admissible compact map ψn: U � U given by ψn = iqϕrn. Using (40.6) we choose
a selected pair (pn, qn) ⊂ ψn such that

(41.7.6) qn∗p−1
n∗ = i∗q∗p−1∗ rn∗, for each n.

Since q is a compact map, we infer that the set A = q(Y ) is compact.
Consider for each n the diagram

H(U)
rn∗ �� H(X)

H(U)

i∗q∗p−1
∗ rn∗

��

rn∗
�� H(X)

q∗p−1
∗

��
i∗j∗q′

∗p−1
∗

��������������

where q′: Y → A is given by q′(y) = q(y) for each y ∈ Y and j: A → X is an
inclusion. From Lemma (41.5) we obtain rn∗i∗j∗ = j∗ for all n > n0. Since
j∗q′∗ = (j ◦ q′)∗ = q∗, we deduce that the above diagram commutes for each
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n > n0. Consequently, from (11.4) and (41.7.6) we conclude that q∗p−1∗ is a Leray
endomorphism. Thus the assertion (41.7.1) is proved.

To prove (41.7.2) assume that ΛΛ(ϕ) �= {0}. Then there exists a selected pair
(p, q) ⊂ ϕ such that Λ(q∗p−1

∗ ) �= 0. Let (pn, qn) ⊂ ψn, where pn, qn and ψn are
obtained as in the first part of the proof. Then from (11.4) and (41.7.6) we have

Λ(qn∗p−1
n∗ ) = Λ(i∗q∗p−1

∗ rn∗) = Λ(q∗p−1
∗ ) �= 0, for each n > n0.

This, in view of (41.6), implies that ψn has a fixed point for each n > n0. We find
a sequence {xn} in the compact set A such that:

(41.7.7) xn ∈ ψn(xn) for each n > n0.

Let {xnk} be a subsequence of {xn} such that

(41.7.8) limk xnk = x.

Then from (41.7.5) we obtain

(41.7.9) limk rnk(xnk) = x.

Conditions (41.7.7)–(41.7.9) give

(41.7.10) {rnk(xnk)} → x, xnk ∈ qϕprnk(xnk) and {xnk} → x, where ϕp = p−1.

Finally, then by u.s.c. of ψ = q ◦ ϕp in view of (41.7.10) x ∈ ψ(x) = q ◦ ϕp(x) =
qp−1(x) ⊂ ϕ(x) and the proof of Theorem (41.7) is completed. �

We now draw a few immediate consequences of Theorem (41.7)

(41.8) Corollary. Let X be an ANR or a compact AANR and let ϕ: X → X

be an admissible compact map. Then

(41.8.1) ϕ is a Lefschetz map, and
(41.8.2) ΛΛ(ϕ) �= {0}
implies that ϕ has a fixed point.

For acyclic maps we obtain the following:

(41.9) Corollary. Let X be an admissible AANR or, in particular, either of
the following:

(41.9.1) an ANR,
(41.9.2) a compact AANR.

If ϕ: X � X is a compact acyclic map then

(41.9.3) ϕ is Lefschetz map, and
(41.9.4) Λ(ϕ) �= 0

implies that ϕ has a fixed point.

From (41.9) and (40.17) we deduce:
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(41.10) Corollary. Let X be an admissible AANR and let ϕ, ψ: X � X be
two compact acyclic maps which satisfy one of the following conditions:

(41.10.1) ϕ is a selector of ψ,

(41.10.2) ϕ is homotopic to ψ.

Then both ϕ and ψ are Lefschetz maps, Λ(ϕ) = Λ(ψ), and Λ(ψ) �= 0 implies that
ϕ has a fixed point.

(41.11) Corollary. Let X be an admissible AANR and ϕ: X � X an ad-
missible compact map. Assume further that ϕ(X) is contained in an acyclic subset
X0 of X. Then ΛΛ(ϕ) = {1} and ϕ has a fixed point.

Proof. Let p, q: Y → X be a pair of maps such that (p, q) ⊂ ϕ. Write the
diagram

X0
i �� X

p−1(X0)

q

��

j
��

p

��

Y

q1

��)))))))))

p
��
**

**
**

*

**
**

**
*

id �� Y

q

��

p

��
X0

i
�� X

in which p, q, q1 are restrictions of p and q respectively, and i, j are inclusions.
Then its image under H also commutes. Since Λ(q∗p−1∗ ) = 1 from (11.4), we have
Λ(q∗p−1∗ ) = 1 for every (p, q) ⊂ ϕ, and from Theorem (41.7) we obtain (41.11). �

A space X has the fixed point property within the class of admissible compact
maps provided any admissible compact map ϕ: X � X has a fixed point.

(41.12) Corollary. Let X be an acyclic AANR or, in particular, any of the
following:

(41.12.1) an acyclic ANR,

(41.12.2) a contractible open set in a normed space.

Then X has the fixed point property within the class of admissible compact maps.

This simply follows from (41.12) and (6.1). Similarly, from (41.12) and (6.1),
we have

(41.13) Corollary (The Schauder Fixed Point Theorem). Let X be a convex
subset of a normed space. Then X has the fixed point property within the class of
admissible compact maps.
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42. The Lefschetz fixed point theorem
for non-compact admissible mappings

The aim of this section is to extend the Lefschetz fixed point theorem onto
a class of non-compact mappings: the class of compact absorbing contractions.
We define:

(42.1) Definition. A multivalued map ϕ: X → X is called a compact absorb-
ing contraction, if there exists an open set U ∈ X such that cl ϕ(U) is a compact
subset of U and X ⊂

⋃∞
i=0 ϕ−i(U).

Evidently, any compact map ϕ: X � X is a compact absorbing contraction;
then we can take U = X.

In what follows we will use the following notion: ϕ ∈ CAC(X) if and only if
ϕ: X � X is admissible and a compact absorbing contraction.

(42.2) Proposition. If ϕ ∈ CAC(X) then for every selected pair (p, q) ⊂ ϕ

the homomorphism:
q̃∗ ◦ p̃−1

∗ : H(X, U)→ H(X, U)

is weakly nilpotent, where for p, q: Γ → X we define p̃, q̃: (Γ, p−1(U)) → (X, U),
p̃(u) = p(u) and q̃(u) = q(u) for every u ∈ Γ.

Proof. For any compact K ⊂ X one can find n such that (qp−1)n(K) ⊂ U .
Since we consider the Čech homology functor with compact carriers then our claim
holds true. �

Now, we shall prove the following:

(42.3) Theorem. Let X ∈ ANR and ϕ ∈ CAC(X). Then ϕ is a Lefschetz
map and ΛΛ(ϕ) �= {0} implies that Fix(ϕ) �= ∅.

Proof. Let ϕ: X � X be an admissible compact absorbing contraction map.
Since ϕ(U) ⊂ cl ϕ(U) ⊂ U , consider ϕ′: U � U , ϕ′(x) = ϕ(x). Let (p, q) ⊂ ϕ be
a selected pair of ϕ. Then q(p−1(U)) ⊂ ϕ(U). Let p, q: Y → X. Then we define
q′, p′: p−1(U) → U , p′(u) = p(u), q′(u) = q(u). Observe that (p′, q′) ⊂ ϕ′. Since
ϕ′ is compact, in view of (41.8), q′

∗(p′
∗)−1 is a Leray endomorphism. Consider the

maps p′′, q′′: (Y, p−1(U)) → (X, U); p′′ is a Vietoris map and, in view of (42.2)
q′′∗ ◦ (p′′∗)−1 is weakly nilpotent. Consequently, from (11.5), (11.8) and (41.8) we
deduce that Λ(q∗p−1∗ ) = Λ(q′∗(p′∗)−1). So, ϕ is a Lefschetz map.

Now, if we assume that Λ(q∗p−1
∗ ) �= 0 for some (p, q) ⊂ ϕ, then Λ(q′

∗(p′
∗)−1) �= 0

and by using once again (41.8) we get Fix(ϕ′) �= ∅ but it implies that Fix(ϕ) �= ∅
and the proof is completed. �

Now, we would like to show how large the class CAC(X) is.
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(42.4) Definition. An u.s.c. multivalued map ϕ: X � Y is called locally
compact provided that, for each x ∈ X, there exists a subset V of X such that
x ∈ V , and the restriction ϕ|V is compact.

(42.5) Definition. A multivalued locally compact map ϕ: X � X is called
eventually compact if there exists an iterate ϕn: X � X of ϕ such that ϕn is
compact.

(42.6) Definition. A multivalued locally compact map ϕ: X � X is called
a compact attraction if there exists a compact K of X such that for each open
neighbourhood V of K we have X ⊂

⋃∞
i=0 ϕ−i(V ) and ϕn(x) ⊂ V implies that

ϕm(x) ⊂ V for every m ≥ n and every x ∈ X, the compact K is then called an
attractor for ϕ.

(42.7) Definition. A multivalued locally compact map ϕ: X � X is called
asymptotically compact if the set Cϕ =

⋂∞
n=0 ϕn(X) is a nonempty, relatively

compact subset of X. The set Cϕ is called the center of ϕ.

Note that any multivalued eventually compact map is a compact attraction and
asymptotically compact map.

(42.8) Lemma. Any eventually compact map is a compact absorbing contrac-
tion map.

Proof. Let ϕ: X � X be an eventually compact map such that K′ = ϕn(X)
is compact. Define K =

⋃n−1
i=0 ϕi(K′), we have

ϕ(K) ⊂
n⋃

i=1

ϕi(K′) ⊂ K ∪ ϕn(X) ⊂ K ∪K′ ⊂ K.

Since ϕ is locally compact, there exists an open neighbourhood V0 of K such that
L = ϕ(V0) is compact, where ϕ(V0) = cl ϕ(V0).

There exists a sequence {V1, . . . , Vn} of open subsets of X such that L∩ϕ(Vi) ⊂
Vi−1 and K ∪ ϕn−i(L) ⊂ Vi for all i = 1, . . . , n. In fact, if K ∪ ϕn−i(L) ⊂ V , and
0 ≤ i < n, since K ∪ ϕn−i(L) and CVi ∩ L are disjoint compact sets of X, there
exists an open subset W of X such that

K ∪ ϕn−i(L) ⊂W ⊂W ⊂ Vi ∪ CL.

Define Vi+1 = ϕ−1(W ); since ϕ(K)∪ϕ(ϕn−(i+1)(L)) ⊂ K∪ϕn−i(L) ⊂W , we have
K ∪ ϕn−(i+1)(L) ⊂ Vi+1, and ϕ(Vi+1) ⊂ W ⊂ Vi ∪ CL implies L ∩ ϕ(Vi+1) ⊂ Vi.
Beginning with K ∪ϕn(L) ⊂ K ⊂ V0, we define, by induction V1, . . . , Vn with the
desired properties.
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Putting U = V0 ∩ V1 ∩ . . . ∩ Vn, we have K′ ⊂ K ⊂ U and

ϕ(U) ⊂ ϕ(V0) ∩ ϕ(V1) ∩ . . .∩ ϕ(Vn) ⊂ L ∩ ϕ(V1) ∩ . . . ∩ ϕ(Vn),

hence

ϕ(U) ⊂ (L ∩ ϕ(V1)) ∩ . . . ∩ (L ∩ ϕ(Vn)) ∩ L ⊂ V0 ∩ . . . ∩ Vn−1 ∩ Vn = U,

but ϕ(U) is compact since ϕ(U) ⊂ L. Moreover,

X =
n⋃

i=1

ϕ−i(K′) ⊂
∞⋃

i=0

ϕ−i(U). �

(42.9) Proposition. Any compact attraction map is a compact absorbing con-
traction map.

Proof. Let ϕ: X � X be a compact attraction map, K, a compact attractor
for ϕ and W , an open set of X such that K ⊂W and L = ϕ(W ) is compact. We
have L ⊂ X ⊂

⋃∞
i=0 ϕ−i(W ) hence, since L is compact, there exists n ∈ N such

that L ⊂
⋃n

i=0 ϕ−i(W ). Define V =
⋃n

i=0 ϕ−i(W ). Then

X ⊂
∞⋃

i=0

ϕ−i(W ) ⊂
∞⋃

i=0

ϕ−i(V ),

ϕ(V ) ⊂
n⋃

i=0

ϕ−i+1(W ) ⊂ ϕ(W ) ∪ V ⊂ L ∪ V ⊂ V

and

ϕn+1(V ) ⊂
n⋃

i=0

ϕn−i+1(W ) =
n⋃

j=0

ϕj+1(W ) ⊂
n⋃

j=0

ϕj(L),

which is compact and included in V , since L ⊂ V and ϕ(V ) ⊂ V implies that
ϕj(L) ⊂ V for all j ∈ N . Consider the restriction ϕ′: V → V of ϕ. ϕ′: V → V is
an eventually compact map, since V is an open set. By Lemma (42.8), there exists
an open subset U of V , hence of X, such that cl ϕ′(U) = cl ϕ(U) is a compact
subset of U and V ⊂

⋃∞
n=0 ϕ

′−n(U) ⊂
⋃∞

n=0 ϕ−n(U). Hence

X ⊂
∞⋃

n=0

ϕ−n(W ) ⊂
∞⋃

n=0

ϕ−n(V ) ⊂
∞⋃

n=0

ϕ−n(U). �

From Theorem (42.3) and Proposition (42.9) we deduce:
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(42.10) Corollary. Let X ∈ ANR and ϕ: X � X be an admissible com-
pact attraction map. Then ϕ is a Lefschetz map and ΛΛ(ϕ) �= {0} implies that
Fix(ϕ) �= ∅.

(42.11) Lemma. Let ϕ: X � X be an u.s.c. multivalued map, Cϕ =
⋂∞

i=0 ϕi(X)
and let V be an open subset of X such that Cϕ ⊂ V . Then, for each compact K

of X, there exists n ∈ N such that
⋂∞

i=0 ϕi(K) ⊂ V .

Proof. The family
{⋂n

i=0 ϕi(K) ∩ CV
}

n∈N
of closed subsets of the compact

K, has an empty intersection, hence there exists a finite empty intersection. �

(42.12) Lemma. Let ϕ: X � X be an u.s.c. multivalued map,

Cϕ =
∞⋂

i=0

ϕi(X), Uϕ =
{

x ∈ X

∣∣∣∣ ∞⋃
i=0

ϕi(X) is compact
}

and V , an open subset of X such that Cϕ ⊂ V . Then Uϕ ⊂
⋃∞

i=0 ϕ−i(V ).

Proof. Let x ∈ Uϕ, K =
⋃∞

n=0 ϕn(X) is compact. By Lemma (42.11), there
exists n ∈ N such that ϕn(x) ⊂

⋂∞
i=0 ϕi(K) ⊂ V . �

(42.13) Definition. A multivalued map ϕ: X � X is called a map with
compact orbits if

⋃∞
n=0 ϕn(x) is relatively compact for every x ∈ X.

(42.14) Proposition. Any asymptotically compact map with compact orbits,
is a compact attraction map.

Proof. Let ϕ: X � X be an asymptotically compact map with compact or-
bits, then Uϕ = X so Cϕ is a compact attractor for ϕ and ϕ is a compact attraction
map. �

(42.15) Lemma. Let X be a space and ϕ: X � X an asymptotically compact
map with the center Cϕ. Then there exists an open subset V of X such that
Cϕ ⊂ V , ϕ(V ) ⊂ V and ϕ(V ) is compact.

Proof. Let U be an open subset of X such that Cϕ ⊂ U and K = ϕ(U)
is compact. By Lemma (42.11), there exists n ∈ N such that

⋂n
i=0 ϕi(K) ⊂ U .

Define V =
⋂n

i=0 ϕ−i(U). Since ϕ(Cϕ) ⊂ Cϕ, we have that Cϕ ⊂ V . Moreover,

ϕ(V ) ⊂
n⋂

i=0

ϕ−i(ϕ(U)) ⊂
n⋂

i=0

ϕ−i(K)

=
n⋂

i=0

ϕi−n(K) ⊂ ϕi−n

( n⋂
i=0

ϕ(K)
)
⊂ ϕi−n(U),

hence ϕ(V ) ⊂
⋂n−1

i=0 ϕ−i(U) ∩ ϕ−n(U) = V . Since ϕ(V ) ⊂ ϕi(U) ⊂ K, ϕ(V ) is
compact. �
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43. n-Admissible mappings

As we have observed, admissible mappings stand as a natural generalization
of acyclic mappings. In the same spirit we can generalize n-acyclic mappings to
n-admissible mappings.

(43.1) Definition. A multivalued map ϕ: X � Z is called n-admissible,
provided there exists a pair p: Y → X and q: Y → Z of maps such that: p is
a n-Vietoris map and q(p−1(x)) ⊂ ϕ(x) for every x ∈ X; in that case we write
(p, q) ⊂ ϕ.

Since any Vietoris map is n-Vietoris for every n ≥ 1 so any admissible map is
n-admissible. For a n-admissible map ϕ: X � Z and for every k ≥ n we define
the set of induced homomorphisms {ϕ}∗k on cohomology by putting:

{ϕ}∗k = {(p∗k)−1q∗k | (p, q) ⊂ ϕ}

(compare (8.13)).

(43.2) Definition. Two compact n-admissible mappings ϕ, ψ: X � Z are
called homotopic provided there exists a compact n-admissible map χ: X×[0, 1] �
Z such that χ(x, 0) ⊂ ϕ(x) and χ(x, 1) ⊂ ψ(x) for every x ∈ X; we write ϕ ∼ ψ.

Strictly analogously to the case of admissible mappings, one can prove:

(43.3) Proposition. If ϕ ∼ ψ then, for every k ≥ n, we have {ϕ}∗k ∩
{ψ}∗k �= ∅.

(43.4) Remark. In fact, (43.3) can be formulated in a more precise form,
namely, one can prove that if ϕ ∼ ψ, then there exist (p, q) ⊂ ϕ and (p, q) ⊂ ψ

such that for every k ≥ n we have:

(p∗k)−1q∗k = (p∗k)−1q∗k.

Now, we shall show that for n-admissible mappings of subsets of Euclidean
spaces, the topological degree will be defined as for n-acyclic or acyclic maps (see
Section 40). We will sketch it here, but later we would like to present in details
the topological degree theory for n-admissible mappings in normed spaces.

Let ϕ: Sn
1 � Sn

2 be an n-admissible map, where Sn
i (i = 1, 2) are two n-

cohomological spheres. We fix generators βi ∈ Hn(Sn
i ), i = 1, 2. For a pair

(p, q) ⊂ ϕ we let:

(p∗n)−1(q∗n(β2)) = deg(p, q) · β1.

Consequently, let us define {Deg(ϕ)} = {deg(p, q) | (p, q) ⊂ ϕ}. We have
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(43.5) Proposition.

(43.5.1) If ϕ ∼ ψ then {Deg(ϕ)} ∩ {Deg(ψ)} �= ∅,
(43.5.2) If ϕ ⊂ ψ then {Deg(ϕ)} ⊂ {Deg(ψ)},
(43.5.3) If ϕ is acyclic then {Deg(ϕ)} is a singleton and for two acyclic maps

such that ϕ ∼ ψ we have {Deg(ϕ)} = {Deg(ψ)}.

Now, all results contained in Section 40 can be generalized to the case of n-
admissible (resp. admissible) maps. Since all proofs are strictly analogous to those
presented in Section 40, we will list all mentioned results only.

(43.6) Theorem. Let ϕ: Kn+1 � Rn+1 be a n-admissible map such that
ϕ(Sn) ⊂ Kn+1. Then Fix(ϕ) �= ∅.

(43.7) Theorem. Let ϕ: Sn � Sn be an n-admissible map such that {Deg(ϕ)}
�= {0} then ϕ(Sn) = Sn.

(43.8) Theorem (On antipodes for n-admissible maps). Let ϕ: Sn � P n+1

be an n-admissible map. If for every x ∈ Sn there exists a n-dimensional subspace
En ⊂ Rn+1 strictly separating ϕ(x) and ϕ(−x) then 0 �∈ {Deg(ϕ)}.

(43.9) Theorem (On antipodes for admissible maps). Let ϕ: Sn � P n+1 be
an admissible map such that the following condition is satisfied:

(43.9.1) every radius with origin of the zero point of Rn+1 has an empty intersec-
tion with the set ϕ(x) or ϕ(−x) for every x ∈ Sn.

Then 0 �∈ {Deg(ϕ)}.

(43.10) Theorem (Borsuk–Ulam). If ϕ: Sn � Rn is an admissible map then
there exists x ∈ Sn such that ϕ(x) ∩ ϕ(−x) �= ∅.

(43.11) Theorem (Bourgin–Yang). If ϕ: Sn+k � Rn is an admissible then
the genus γ(A(ϕ)) ≥ k, where A(ϕ) = {x ∈ Sn+k | ϕ(x) ∩ ϕ(−x) �= ∅}.

(43.12) Theorem (On invariance of domain). Let U be an open subset of
Rn+1 and ϕ: U � Rn+1 be a strongly admissible map such that x1 �= x2 implies
ϕ(x1) ∩ ϕ(x2) = ∅ for x1, x2 ∈ U . Then ϕ(U) is an open subset of Rn+1.

Now, let E be a normed space and X a subset of E. Assume further that
Φ: X � E is a multivalued map. We define a multivalued vector field ϕ: X � E

associated with Φ by putting:

ϕ = I −Φ, i.e. ϕ(x) = {x− y | y ∈ Φ(x)} for every x ∈ X.
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(43.13) Definition. A map ϕ: X � Y ⊂ E is called an n-admissible (s-
admissible) compact vector field if and only if there exists an n-admissible (s-
admissible) compact map Φ: X � E such that ϕ = I − Φ.

If Φ is an admissible compact map then ϕ = I − Φ is called an admissible
compact vector field.

A point x0 ∈ X is called a singular point of the vector field ϕ: X � Y if image
ϕ(x0) contains the origin 0 of E. If there are no singular points, we say that ϕ is
singularity free (written ϕ: X � P ).

(43.14) Definition. Two n-admissible (s-admissible) compact vector fields
ϕ1 = I −Φ1, ϕ2 = I −Φ2 (ϕ1, ϕ2: X � Y ⊂ E) are said to be homotopic, written
ϕ1 ∼ ϕ2, provided there exists a map χ: X × J → Y , where J is a unit interval,
which can be represented in the form χ(x, t) = x− χχ(x, t), where χχ: X × J � E

is an n-admissible (s-admissible) compact homotopy between ϕ1 and ϕ2.

The following evident remark is of importance (cf. (39.2)).

(43.15) Remark. Let A be a closed subset of E and let ϕ: A � E be an
n-admissible compact vector field. Then the image ϕ(A) is a closed subset of E.

(43.16) Remark. Consider two maps of the form X
p←− Y

q−→ E such that
X is a subset of E and p is a Vietoris n-map. Define a map q̃: Y → E by putting
q̃(y) = p(y) − q(y). Then I − ϕp,q = ϕ

p,q̃
, and hence

(43.16.1) if q is a compact map, then I − ϕp,q is an n-admissible compact vector
field,

(43.16.2) every n-admissible compact field is an n-admissible map,

where ϕp,q(x) = q(p−1(x)).

Let E be a Banach space and let ϕ: S � P be an n-admissible compact vector
field from the unit sphere S to P = E \ {0}.

Consider an arbitrary but fixed selected pair (p, q) ⊂ Φ of the from S
p←− Y

q−→
E. First, for such a pair (p, q) ⊂ Φ we define an integer deg(p, q) which is called the
degree of (p, q). Then we obtain a positive number δ such that dist(0, ϕ(S)) = δ.
We observe that dist(0, (I − ϕp,q)(S)) ≥ δ. Let ε be a positive number such that
ε < δ. Since Φ is a compact map we infer that q is also compact. Applying
the approximation theorem to the map q and the number ε, we obtain a map
qε: Y → Ek+1 such that ‖q(y) − qε(y)‖ < ε for every y ∈ Y . We may assume
without loss of generality that k + 1 ≥ 2 and k + 1 ≥ n.

Let Yk = p−1(Sk), where Sk = S ∩ Ek+1. Consider the diagram

Sk pk←− Yk
qk−→ Ek+1,
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in which pk and qk are restrictions of p and q, respectively. So, we obtain a pair
(pk, qk) and a diagram:

Sk pk←− Yk
q̃k−→ P k+1,

in which q̃k(y) = pk(y) − qk(y). We observe that q̃k(y) �= 0 for every y ∈ Yk.
Indeed, since ‖x− q(y)‖ ≥ δ for every x ∈ S and y ∈ p−1(x), we have

‖qk(y)‖ = ‖pk(y) − qk(y)‖ = ‖x− q(y)‖ = ‖(x− qk(y)) − (qk(y) − q(y))‖
≥ ‖x− q(y)‖ − ‖q(y) − qk(y)‖ ≥ δ − ε > 0.

We define deg(p, q) of the pair (p, q) ⊂ Φ by putting deg(p, q) = deg(pk, q̃k) where
deg(pk, q̃k) is given in (43.5).

(43.17) Lemma. Let ϕ = I − Φ: S � P be an n-admissible compact vector
field and let (p, q) be a selected pair of Φ of the from S

p←− Y
q−→ E. Assume

further that qε, q′
ε: Y → Ek+1 are two ε-approximations of q. Then deg(pk, q̃k) =

deg(pk, q̃′
k).

Proof. Define the map h: Yk × [0, 1]→ Ek+1 by putting

h(y, t) = tq̃k(y) + (1− t)q̃ ′
k(y).

Then h is a homotopy between q̃k and q̃′
k. We will prove that h(y, t) �= 0 for each

y ∈ Yk and t ∈ [0, 1]:

‖tq̃k(y) + (1 − t)q̃ ′
k(y)‖

= ‖t(pk(y) − qk(y)) + (1− t)(pk(y) − q′
k(y))‖

= ‖pk(y) − tqε(y) + (1− t)q′
ε(y)‖

= ‖p(y) − q(y) − [t(qε(y) − q(y)) + (1− t)(q′
ε(y) − q(y))]‖ ≥ δ − ε > 0.

Therefore we have q̃
′∗
k = q̃∗

k and the proof is completed. �
(43.18) Lemma. Let ϕ = I−Φ and (p, q) ⊂ Φ be as in (43.17). Assume further

that Ek+1, Ek+2 are two subspaces of E such that Ek+1 ⊂ Ek+2. If qε: Y → Ek+1

is an ε-approximation of q and q′
ε: Y → Ek+2 is the map given by qε(y) = q′

ε(y)
for every y ∈ Y then deg(pk, q̃k) = deg(pk+1, q̃′

k+1).

Proof. Define a map r: P k+2 → Sk+1 by putting r(z) = z/‖z‖. We orient
Sk+1 and P k+2 so that deg(pk+1, q̃′

k+1) = deg(pk+1, rq̃′
k+1). Applying (43.5) to

the pair (pk+1, rqk+1), we obtain (43.18). �
Finally, from (43.17) and (43.18) we deduce that deg(p, q) of the pair (p, q) is

well defined.
Now, we define Deg(I − Φ) of an n-admissible compact vector field ϕ = I −

Φ: S � P by putting

(43.19) {Deg(I −Φ)} = {deg(p, q) | (p, q) ⊂ Φ}.
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(43.20) Proposition. Let ϕ, ψ: S � P be two n-admissible compact vector
fields. Then

(43.20.1) ϕ ∼ ψ implies {Deg(ϕ)} ∩ {Deg(ψ)} �= ∅,
(43.20.2) ϕ ⊂ ψ implies {Deg(ϕ)} ⊂ {Deg(ψ)}.

Proof. Let χ = I − χχ be a homotopy between ϕ and ψ and let (p, q) be
a selected pair of χ. The set χ(S× [0, 1]) is closed and does not contain the origin.
Then from the above construction of the degree for the selected pairs we obtain
(43.20.1). The proof of (43.20.2) is evident. �

(43.21) Proposition. Let ϕ = I−Φ: S � P be an admissible compact vector
field. If Φ is an acyclic map then the set Deg(ϕ) is a singleton.

Proof. Let (p, q) ⊂ Φ be a selected pair of Φ of the form S
p←− Y

q−→ E.
Consider the commutative diagram

S ΓΦ
pΦ��

qΦ �� E

Y

p

����������
f

��

q

����������

in which f(y) = (p(y), q(y)) for each y ∈ Y . Let (qΦ)ε: ΓΦ → Ek+1 be an ε-
approximation of qΦ. For the proof we take an ε-approximation of q such that
qε(y) = (qΦ)ε(f(y)) for each y ∈ Y . Denote by Γk the graph of Φ|Sk (Sk =
S ∩ Ek+1). Let

(pΦ)k: Γk → Sk and (qΦ)k: Γk → Ek+1

be restrictions of pΦ and (qΦ)ε, respectively. Finally, we obtain (cf. the definition
of deg(p, q) in this section) the commutative diagram

Sk Γk

(pΦ)k
��

(q̃Φ)k
�� P k+1

p−1(Sk)

pk

��)))))))))
f

��

q̃k

$$&&&&&&&&&

in which pk and f are restrictions of p and f , respectively, and the map (q̃Φ)k: Γk →
P k+1 is given by (q̃Φ)k(x, y) = (pΦ)k(x, y)− (qΦ)k(x, y) for each (x, y) ∈ Γk. The
map q̃k: p−1(Sk) → P k+1 is given by q̃k(y) = pk(y) − qε(y) for each y ∈ p−1(Sk).
Now, the proof of (43.21) is evident. �

(43.22) Example. Let E be a Banach space and y0 ∈ E be a point such that
‖y0‖ > 1. Consider the map Φ: S � E given by Φ(x) = {0, y0} for each x ∈ S.



218 CHAPTER IV. HOMOLOGICAL METHODS IN FIXED POINT THEORY

Clearly, Φ is an admissible and compact map. We have the following selected pairs
of Φ:

(43.22.1) (idS , f) ⊂ Φ, where f : S → E is given by f(x) = 0 for y ∈ S,
(43.22.2) (idS , g), where g: S → E is given by g(x) = y0 for each x.

Moreover, we infer that deg(idS , f) �= 0 and deg(idS , g) = 0 and hence Deg(I−Φ)
is not a singleton.

Now, we prove the following:

(43.23) Theorem. Let ϕ: S � P be an n-admissible compact vector field such
that {Deg(ϕ)} �= {0}. Then for every x ∈ S there is a positive real number λ > 0
such that λx ∈ ϕ(S).

Proof. Suppose that there exists an x0 ∈ S such that

Lx0 = {λx0 | λ ≥ 0} ∩ ϕ(S) = ∅.

Let ε = (1/2) min(dist(ϕ(S), Lx0 ), d(0, ϕ(S))). We observe that dist(ϕ(S), Lx0 ) >

0, and by assumption we have ε > 0. Let (p, q) ⊂ Φ be a selected pair of the form
S

p←− Y
q−→ E such that deg(p, q) �= 0. We take an ε-approximation qε: Y →

Ek+1 such that x0 ∈ Ek+1.
Consider the diagram

Sk pk←− Yk
q̃k−→ P k+1

(cf. the definition of deg(p, q) in this section). Since qε is an ε-approximation of q,
we obtain

q̃k(p−1
k (Sk)) ⊂ Oε(ϕ(S)),

where Oε(ϕ(S)) as usual is an ε-neighbourhood of ϕ(S) in E, hence

(43.23.1) Lx0 ∩ q̃k(p−1
k (Sk)) = ∅.

Consider the map ψk: Sk → P k+1 given by ψk(x) = q̃k(p−1
k (x)) for each x ∈ Sk .

Then (pk, q̃k) ⊂ ψk is a selected pair of ψk and hence ψk is an n-admissible map.
Moreover, deg(pk, q̃k) = deg(p, q) �= 0.

Let r: P k+1 → S be a retraction (r(x) = x/‖x‖). Then Deg(rψk) �= {0} and
from (43.23.1) we have x0 �∈ (rψk)(Sk), but this contradicts (43.7). The proof of
(43.23) is completed. �

Let ϕ = I−Φ: K � E be an n-admissible compact vector field such that ϕ(S) ⊂
P , where S, as usually, is the boundary of the closed ball K. By ϕ|S : S � P we
denote the restriction of ϕ to the pair (S, P ). We infer that ϕ|S is a n-admissible
compact vector field on S. In this case with every selected pair (p, q) ⊂ Φ we
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associate a pair (p1, q1) ⊂ Φ|S as follows: let p: Y → K, q: Y → E be two maps
such that (p, q) ⊂ Φ; then p1: p−1(S) → S, q1: p−1(S)→ E are given as restrictions
of p and q, respectively. Evidently (p1, q1) ⊂ Φ|S. We define degree Deg(ϕ; 0) of
ϕ by putting

(43.24) {Deg(ϕ; 0)} = {deg(p1, q1) | (p, q) ⊂ Φ}.

Clearly, {Deg(ϕ; 0)} ⊂ {Deg(ϕ|S)}. Let ϕ: K � E be an n-admissible compact
vector field such that ϕ(S) ⊂ E \ {z0}. By (ϕ − z0): K � E we denote the
n-admissible compact vector field given by

(ϕ − z0)(x) = {y − z0 | y ∈ ϕ(x)}

for each x ∈ K. Observe that (ϕ− z0)(S) ⊂ P . We define Deg(ϕ; z0) by putting

(43.25) Deg(ϕ; z0) = Deg(ϕ − z0; 0).

The following lemma is of importance:

(43.26) Lemma. Let ϕ: K � E be an n-admissible compact vector field such
that ϕ(S) ⊂ P . If {Deg(ϕ; 0)} �= {0}, then there exists a point x0 ∈ K such that
0 ∈ ϕ(x0).

Proof. Let ϕ = I − Φ, where Φ: K � E is an n-admissible compact map.
Assume that 0 �∈ ϕ(x) for all x ∈ K. First, we obtain a positive number δ such
that dist(0, ϕ(K)) = δ. Let ε be a positive number such that ε < δ. Let (p, q) be
a selected pair of Φ of the form K

p←− Y
q−→ E. Let qε be a ε-approximation of q.

Then, as in the definition of the degree deg(p, q), we obtain the following diagram:

Kk+1 pk←− Yk
q̃k−→ P k+1.

Consider the map ψ: Kk+1 � P k+1 given by ψ(x) = qk(p−1
k (x)) for each x ∈

Kk+1. Then we have Deg(ψ; 0) = {0}. Consequently, deg(p1, q1) = 0, where
(p1, q1) is a pair associated with (p, q). Since (p, q) is an arbitrary selected pair of
Φ, we obtain Deg(ϕ; 0) = {0} and the proof is completed. �

The following theorem is an extension of the well known Rothe theorem to the
case of n-admissible maps (see [Gr1-M]).

(43.27) Theorem. If Φ: K � E is an n-admissible compact map such that
Φ(S) ⊂ K then Φ has a fixed point.

Proof. Let ϕ: K � E be an n-admissible compact vector field given by ϕ =
I − Φ. We may assume without loss of generality that ϕ(S) ⊂ P and by Lemma
(43.26) it suffices to prove that Deg(ϕ; 0) �= {0}. For this purpose let

ψ(x, t) = x− tΦ(x) for an arbitrary x ∈ S, 0 ≤ t ≤ 1.
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It follows from our assumption that for an arbitrary z ∈ ψ(x, t) we have

‖z‖ = ‖x− ty‖ ≥ ‖x‖ − t‖y‖ > 0 for 0 ≤ t < 1

and thus ψ: S×[0, 1] � P . It is evident that ψ(S×[0, 1]) is a closed subset of E and
hence dist(0, ψ(S × [0, 1])) = δ > 0. Let (p, q) ⊂ Φ be a selected pair of the form
K

p←− Y
q−→ E and let S

p1←− p−1(S)
q1−→ E be the pair associated with (p, q) (cf.

the definition of Deg(ϕ; 0)). Let qε: p−1(S) → Ek+1 be an ε-approximation of q1,
where 0 < ε < δ. We put Sk = S ∩ Ek+1 and Yk = p−1(Sk).

We have the diagram
Sk pk←− Yk

qk−→ Ek+1,

in which pk, qk are restrictions of p1 and q1, respectively. Define the map q̃k: Yk →
P k+1 by putting q̃k(y) = pk(y)−qk(y) for each y ∈ Yk. We claim that deg(p1, q1) =
deg(pk, q̃k) �= 0. In this order, consider the map f : Yk → P k+1 given by f(y) =
pk(y) and a homotopy h: Yk × [0, 1] → P k+1 given by h(y, t) = pk(y) − tqk(y).
Since ϕ(S) ⊂ P and qε is an ε-approximation of q1, 0 < ε < δ, we deduce that
h(Yk× [0, 1]) ⊂ P k+1. Then the maps f and q̃k are homotopic and hence f∗ = g̃∗

k.
Finally, we obtain

deg(p1, q1) = deg(pk, q̃k) = deg(pk, f) �= 0,

and the proof is completed. �

In fact, from the above proof we infer that {Deg(ϕ; 0)} is a singleton and 0 �=
Deg(ϕ; 0).

(43.28) Theorem. Let ϕ = I − Φ: S � P be an n-admissible compact vector
field. Suppose that there exists a real positive number η such that for each x ∈ S

there exists a subspace Ex of E, of codimension equal to 1, strictly separating
Oη(ϕ(x)) and Oη(ϕ(−x)). Then 0 �∈ Deg(ϕ).

Proof. Consider a selected pair (p, q) ⊂ Φ of the form S
p←− Y

q−→ E.
Let ε0 = min(η, dist(0, ϕ(S))). By the assumption, ε0 > 0. We take an ε-
approximation qε: Y → Ek+1 of q, with 0 < ε < ε0 (k ≥ n). Consider the
diagram

Sk pk←− p−1(Sk)
q̃k−→ P k+1,

where pk is the restriction of p to the pair (Sk , p−1(Sk)) and q̃k(y) = pk(y)− qk(y)
for each y ∈ p−1(Sk). Then we have an n-admissible map ψ: Sk � P k+1 given as
the composition ψ = q̃kp−1

k .
Let Ek

x = Ek
x∩Ek+1. Observe that dim Ek

x = k. Since qε is an ε-approximation
of q, ε < η, by the assumption we have ψ(x) ⊂ Oη(ϕ(x)) for each x ∈ Sk . This



43. n-ADMISSIBLE MAPPINGS 221

implies that Ek
x strictly separates ψ(x) and ψ(−x) for each x ∈ Sk. Applying

Theorem (43.9) to ψ, we obtain 0 �∈ Deg(ψ) and hence 0 �= deg(p, q). Since (p, q)
is an arbitrary selected pair of Φ, we have 0 �∈ Deg(ϕ) and the proof of theorem is
completed. �

From (43.26) and (43.28) we obtain

(43.29) Corollary. Let ϕ: K � E be an n-admissible compact vector field
such that ϕ|S satisfies all the assumptions of (43.21). Then there is a point x0 ∈
K \ S such that 0 ∈ ϕ(x0).

Now, for admissible compact vector fields we prove a stronger version of Theo-
rem (43.28)

(43.30) Theorem. Let ϕ: S � P be an admissible compact vector field. Sup-
pose that there exists η > 0 such that the following condition is satisfied:

(43.30.1) every half-ray Ly = {z ∈ E | z = ty for some t ≥ 0} has an empty
intersection with the set Oη(ϕ(x)) or Oη(ϕ(−x)) for each x ∈ S.

Then 0 �∈ Deg(ϕ).

Outline of the Proof. Consider the admissible map ψ given in the same
way as in the proof of (43.28). Applying Theorem (43.8) to the map ψ, we deduce
(43.30). �

From (43.26) and (43.30) we infer

(43.31) Corollary. Let ϕ: K � E be an admissible compact vector field such
that ϕ|S satisfies all the assumptions of (43.30). Then there is a point x0 ∈ K \ S

such that 0 ∈ ϕ(x0).

Now we would like to present the infinite-dimensional version of the Bourgin–
Yang theorem. Let L, N be two linear closed subspaces of E. If for any x ∈ E there
exists a unique decomposition x = y +z, where y ∈ L and z ∈ N then we say that
E is a direct sum of L and N ; in this case we write E = L⊕N . Note that if L is
a finite-dimensional (respectively finite codimensional and closed) linear subspace
of E then there exists a closed linear subspace N ⊂ E such that E = L⊕N and
codim N = dim L (respectively dim N = codim L).

Throughout the rest of the section, let Ek, k = 1, 2, . . ., denote an arbitrary
but fixed closed, k-codimensional subspace of E. In what follows we assume that
for each k we are given a direct sum decomposition E = Ek ⊕ Lk. We also let

S = SE = {x ∈ E | ‖x‖ = 1}.

The following two lemmas play a crucial role in our considerations:
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(43.32) Lemma. Suppose ϕ: S � Ek is an admissible compact vector field and
ε > 0. Then there exists a finite dimensional subspace V ⊂ Ek and an admissible
map ϕ̃: S ∩ (V ⊕ Lk) � V such that ϕ̃(x) ⊂ Oε(ϕ(x)), for each x ∈ S ∩ (V ⊕ Lk).

Proof. Let Φ denote the compact part of ϕ. Then we have a diagram

S
p←− Γ

q−→ E

in which p is a Vietoris map, q is compact and q(p−1(x)) ⊂ Φ(x), for each x ∈ S.
Denote by π1: E → Ek, π2: E → Lk the linear projections determined by the direct
sum decomposition E = Ek ⊕ Lk. Note, that π1, π2 are continuous and for each
x ∈ E there is a unique decomposition x = π1(x)+π2(x), π1(x) ∈ Ek, π2(x) ∈ Lk.
Define q1: Γ→ Ek, q2: Γ→ Lk by qi = πi ◦q, i = 1, 2. Clearly q1, q2 are continuous
compact maps. For a given ε > 0 the Schauder Approximation Theorem implies
the existence of a finite dimensional subspace V ⊂ Ek and a continuous map
q3: Γ→ V such that:

(43.32.1) ‖q3(y) − q1(y)‖ < ε, for every y ∈ Γ.

Since ϕ(x) ⊂ Ek, for all x ∈ S, y ∈ Γ implies π2(p(y) − q(y)) = 0. Thus for y ∈ Γ
we have

π1(p(y) − q3(y) − q1(y)) = π2(p(y) − q(y)) + π2(q2(y) − q3(y)) = 0.

Therefore,

(43.32.2) (p(y) − q3(y) − q2(y)) ∈ Ek, for y ∈ Γ.

Let Σ = S ∩ (V ⊕ Lk), Γ̃ = p−1(Σ) and define the multivalued map ϕ̃: Σ � V

by ϕ̃(x) = {p(y) − q3(y) − q2(y) | x = p(y)}. From (43.32.2) it follows that the
above definition is correct, i.e. ϕ̃(x) ⊂ V , for x ∈ Σ. If we let p̃: Γ̃→ Σ to be the
restriction of p and q̃(y) = p(y) − q3(y) − q2(y), then we obtain a diagram

Σ
p̃←− Γ̃

q̃−→ V,

in which p̃ is a Vietoris map and q̃ is continuous. Since ϕ̃(x) = q̃(p̃−1(x)) for each
x ∈ Σ, ϕ̃ is admissible. Finally, (43.32.1) implies that ϕ̃(x) ⊂ Oε(ϕ(x)) and the
proof is completed. �
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(43.33) Lemma. Assume that X is a closed, bounded and symmetric (i.e. x ∈
X implies (−x) ∈ X) subset of E. Assume further that ϕ: X � Ek is an s-
admissible compact vector field such that ϕ(x)∩ϕ(−x) = ∅, for each x ∈ X. Then
there exists ε > 0 such that Oε(ϕ(x)) ∩Oε(ϕ(−x)) = ∅, for each x ∈ X.

Proof. Assume, to the contrary, that the conclusion is false. Then, taking
ε = 1/n, n = 1, 2, . . . , we obtain sequences {xn}, {yn}, {zn}, xn ∈ X, yn ∈ ϕ(xn),
zn ∈ ϕ(−xn) such that:

(43.33.1) ‖yn − zn‖ <
1
n

, for each n.

Let Φ denote the compact part of ϕ. There exist un ∈ Φ(xn), vn ∈ Φ(−xn) such
that:

(43.33.2) yn = xn − un, zn = −xn − vn.

Using (43.33.1) we obtain

(43.33.3) ‖xn − un + xn + vn‖ ≤
2
n

.

Since Φ is compact, we may assume without loss of generality, that

(43.33.4) lim
n

un = u0, lim
n

vn = v0.

Thus, in view of (43.33.3), there exists x0 = limn xn = (1/2)(u0 − v0). Moreover,
since X is closed, x0 ∈ X. By (43.33.2) the sequences {yn}, {zn} are convergent
and

y0 = lim
n

yn = x0 − u0 = −1
2

(u0 + v0) = −x0 − v0 = lim
n

zn = z0. �

(43.34) Theorem (Borsuk–Ulam). If ϕ: S � E1 is an s-admissible compact
vector field then there exists a point x ∈ S such that: ϕ(x) ∩ ϕ(−x) �= ∅.

Proof. Assume to the contrary, that ϕ(x) ∩ ϕ(−x) = ∅, for each x ∈ S.
Applying Lemma (43.33) we obtain ε > 0 such that:

(43.34.1) Oε(ϕ(x)) ∩Oε(ϕ(−x)) = ∅, for each x ∈ S.

From Lemma (43.32) it follows that there exist a finite dimensional subspace V ⊂
E, and a s-admissible map ϕ̃: S ∩ (V ⊕ L1) � V such that ϕ̃(x) ⊂ Oε(ϕ(x)),
for x ∈ S ∩ (V ⊕ L1). Therefore, in view of (43.34.1), ϕ̃(x) ∩ ϕ̃(−x) = ∅, for
x ∈ S ∩ (V ⊕ L1), which contradicts Theorem (43.10) and the proof of (43.34) is
completed. �

We consider an admissible compact vector field ϕ: S � Ek, k ≥ 1. We let

A(ϕ) = {x ∈ S | ϕ(x) ∩ ϕ(−x) �= ∅}.
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(43.35) Lemma. If ϕ: S � Ek is an admissible compact vector field then A(ϕ)
is nonempty, symmetric and compact.

It is evident that A(ϕ) is symmetric and, by (43.34) nonempty. The proof of
a compactness of A(ϕ) is strictly analogous to the proof of Lemma (43.33) and
therefore it is omitted here.

We will prove the genus version of the Bourgin–Yang theorem.

(43.36) Theorem. If ϕ: S � Ek is an admissible compact vector field then
γ(A(ϕ)) ≥ k − 1.

Proof. Since for k = 1 our assertion follows from Theorem (43.34), we may
assume k ≥ 2. Assume, to the contrary, that γ(A(ϕ)) = p < k − 1. Choose
a (p + 1)-dimensional subspace V ⊂ Lk. There exists an odd continuous map
f : S(ϕ) → SV = {x ∈ V | ‖x‖ = 1}. Let f̃ : S → V be a continuous compact
(not necessarily odd) extension of f . Define an admissible compact vector field
ϕ̃: S � Ek ⊕ V by

ϕ̃(x) = {x− y | y = z + f̃(x), z ∈ Φ(x)},

where Φ denotes the compact part of ϕ. Applying Theorem (43.34) we get a point
x0 ∈ S such that ϕ̃(x0)∩ϕ̃(−x0) �= ∅. This implies x0 ∈ A(ϕ) and f̃(x0) = f̃(−x0).
Since x0 ∈ A(ϕ), we get a contradiction and the proof is completed. �

Now, we denote by K a closed ball in a Banach space E with the center 0 and
radius ε, and by S, the boundary of K in E. Let A be a subset of E.

A compact admissible field ϕ: A � E is called an ε-field provided the condition:

if ϕ(x1) ∩ ϕ(x2) �= ∅ then ‖x1 − x2‖ < ε

is satisfied for any x1, x2 ∈ A. A compact admissible field ϕ: A � E is called an
ε-field in the narrow sense if for some constant η > 0 the condition:

if Oη(ϕ(x1)) ∩Oη(ϕ(x2)) �= ∅ then ‖x1 − x2‖ < ε

is satisfied for every x1, x2 ∈ A.
The proof of the theorem on the invariance of domain for ε-fields in the narrow

sense is based on the following lemmas.

(43.37) Lemma. Let ϕ: K � E be an ε-field in the narrow sense. Then:

(43.37.1) ϕ(S) ⊂ E \ {y0} for each y0 ∈ ϕ(0), and
(43.37.2) 0 �∈ Deg(ϕ, y0).

Proof. For the proof of (43.37.1) we observe that if ϕ(0) ∩ ϕ(x) �= ∅ for some
x ∈ K then Oη(ϕ(0)) ∩ Oη(ϕ(x)) �= ∅ and this implies that ‖x‖ < ε; hence
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ϕ(S) ⊂ E \ {y0} for each y0 ∈ ϕ(0). Let Φ: K → E be a compact part of ϕ, i.e.
ϕ = I − Φ. Consider a selected pair (p, q) ⊂ Φ of the form K

p←− Y
q−→ E and

a point y0 ∈ E such that y0 ∈ ϕ(0). Let δ = min(η, dist(y0, ϕ(S))), where ϕ is an
ε-field in the narrow sense with the constant η. It is evident that δ is a positive
real number. We take a δ-approximation qδ: Y → Ek+1 of the compact map q

such that y0 ∈ Ek+1. Let Kk+1 = K ∩ Ek+1 and Yk = p−1(Kk+1). We have the
diagram

Kk+1 pk←− Yk
q̃k−→ Ek+1,

in which pk is the restriction of p to the pair (Yk, Kk+1) and q̃k is given by q̃k(y) =
pk(y) − qδ(y) for each y ∈ Yk.

Let ϕk: Kk+1 � Ek+1 be a multivalued map given by ϕk(x) = q̃k(p−1
k (x))

for each x ∈ Kk+1. Then ϕk is an admissible map. We assert that ϕk is an
ε-map. Indeed, because 0 < δ ≤ η, we have ϕk(x) ⊂ Oδ(ϕ(x)) ⊂ Oη(ϕ(x)) for
each x ∈ Kk+1 and hence the condition ϕk(x1) ∩ ϕk(x2) �= ∅ implies Oη(ϕ(x1)) ∩
Oη(ϕ(x2)) �= ∅. Then, by assumption, we obtain ‖x1 − x2‖ < ε and ϕk is an
ε-map.

Applying Lemma (43.9) to the map ϕk, we obtain 0 �∈ Deg(ϕk; y0) and hence
deg(p, q) �= 0. Since (p, q) is an arbitrary selected pair of Φ, we obtain (43.37.2)
and the proof is completed. �

(43.38) Lemma. If ϕ: K � E is an admissible compact vector field and y0 �∈
ϕ(S) then for every y1 ∈ E such that ‖y0 − y1‖ < dist(y0, ϕ(S)) we have

Deg(ϕ; y0)} ∩ {Deg(ϕ; y1)} �= ∅.

Proof. Consider the map χ: K × [0, 1] � E given by χ(x, t) = x − χχ(x, t),
where χ(x, t) = Φ(x) + (ty1 + (1− t)y0). It is evident that χ(S × [0, 1]) ⊂ E \ {0}
and χ(S × [0, 1]) is a closed subset of E. Therefore, χ is a homotopy between
ϕ − y0 and ϕ − y1 and our assertion follows from the homotopy property of the
topological degree. �

(43.39) Remark. It is possible to prove that Deg(ϕ; y0) = Deg(ϕ; y1) for ϕ as
in (43.37) but we only need (43.37).

We now prove the main result of this section.

(43.40) Theorem. If ϕ: E � E is an ε-field in the narrow sense then ϕ(E)
is an open subset of E.

Proof. Let y0 ∈ ϕ(x0) be a point in ϕ(E). Consider the closed ball Kε =
K(y0, ε) and let ψ = ϕ|Kε be the restriction of ϕ to Kε. Then ψ: Kε � E is an ε-
field in the narrow sense. Applying Lemma (43.37) to ψ we obtain 0 �∈ Deg(ψ, y0).



226 CHAPTER IV. HOMOLOGICAL METHODS IN FIXED POINT THEORY

Let y1 ∈ E be a point such that ‖y0 − y1‖ < dist(y0, ψ(Sε)). Then from (43.38)
and (43.37) we infer Deg(ψ; y1) �= {0} and, in view of (5.10), we have y1 ∈ ψ(Kε).
This implies that B(y0, δ) ⊂ ψ(Kε) ⊂ ϕ(E), where B(y0, δ) is the open ball in E

with center y0 and radius δ = dist(y0, ψ(Sε)). The proof of (43.40) is completed.�

Because E is a connected space, from Theorem (43.40) we deduce:

(43.41) Corollary. If ϕ: E → E is an ε-field in the narrow sense, then
ϕ(E) = E.

44. Category of morphisms

Given two spaces X and Y let D(X, Y ) be the set of all diagrams of the form:

X
p⇐= Γ

q−→ Y,

in which p is a Vietoris map and q is a continuous map. Every such a diagram
will be denoted briefly by (p, q). Given two diagrams (p, q), (p′, q′) ∈ D(X, Y ) we
will write (p, q) � (p′, q′) if there exists a homeomorphism h: Γ→ Γ′ such that the
following diagram is commutative:

Γ
p

�� ��
��
��
�

��
��
��
�

h

��

q

���
��

��
��

�

X Y

Γ′
p′

���������

������� q′

��!!!!!!!

i.e. p′ ◦ h = p and q′ ◦ h = q. Clearly, “�” is an equivalence relation in D(X, Y ).

(44.1) Definition. The equivalence class of a diagram (p, q) ∈ D(X, Y ) with
respect to � is denoted by

ϕ = {X p⇐= Γ
q−→ Y }: X → Y

and is called a morphism from X to Y .

In what follows by M(X, Y ) we will denote the set of all such morphisms. We
will denote morphisms by Greek letters ϕ, ψ, χ, . . . , and the singlevalued maps by
Latin letters f, g, h, p, q, . . .; we will identify a map f : X → Y with the morphism:

f = {X idX⇐= X
f−→ Y }: X → Y.
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Note that for a map f : X → Y the following two diagrams are equivalent:

(44.1.1)

X
idX

�� ��
��
��
�

��
��
��
�

h

��

f

���
��

��
��

�

X Y

Γf

pf

���������

������� qf

��!!!!!!!

where the homeomorphism h: X → Γf is defined as follows: h(x) = (x, f(x)).
To compose two morphisms we shall use the fibre product construction (see

(8.11)). Let

ϕ = {X p⇐= Γ
q−→ Y }: X → Y and ψ = {Y p′

⇐= Γ′ q′
−→ Z}: Y → Z

be two morphisms. Then we have the following commutative diagram:

X Γ
p�� q

�� Y Γ′p′
�� q′

�� Z

Γ � Γ′
p



��������

�������� q

��+++++++++

in which Γ � Γ′ is the fibre product of q and p′ and p′ and q are the respective
pull-backs.

Since the composition of two Vietoris maps is a Vietoris map, too (see (8.10))
we are allowed to define:

(44.2) Definition. For two morphisms ϕ: X → Y and ψ: Y → Z given as
above, we define the composition ψ ◦ ϕ of ψ and ϕ by letting:

ψ ◦ ϕ = { X Γ � Γ′p◦p′
�� q◦q′

�� Z }: X → Z

(44.3) Proposition. Definition (44.2) does not depend on the choice of dia-
grams (p, q) and (p′, q′) for ϕ and ψ, respectively.

Proof. Assume that (p, q) � (p̃, q̃) and (p′, q′) � (p̃′, q̃′). We have to prove
that (p ◦ p′, q′ ◦ q) � (p̃ ◦ p̃′, q̃′ ◦ q̃). In this order we consider the following two
commutative diagrams:

Γ
p

�� !!
!!
!!
!

!!
!!
!!
!

h

��

q

���
��

��
��

X Y

Γ̃

p̃

��*******

******* q̃

����������

Γ′
p′

�� !!
!!
!!
!

!!
!!
!!
!

h′

��

q′

��
��

��
��

�

Y Z

Γ̃′
p̃′

���������

������� q̃′

���������
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where h and h′ are the respective homeomorphisms.
Now let us consider the following diagram:

Γ � Γ′
p◦p′

 ++
++
++
++

++
++
++
++ q′◦q

��%
%%

%%
%%

%%

h�h′

��

X Z

Γ̃ � Γ̃′
p̃◦p̃

′



%%%%%%%%

%%%%%%%% q̃′◦q̃

  ��������

in which (h�h′)(u, v) = (h(u), h′(v)). Then h�h′ is a well defined homeomorphism
and it is easy to see that the above diagram is commutative. Hence the proof is
completed. �

Observe that metric spaces as objects and morphisms form a category. The
homology functor H∗ extends over this category. Namely, for a morphism ϕ =
{X p⇐= Γ

q−→ Y }: X → Y we define the induced linear map

H∗(ϕ) = ϕ∗: H∗(X) → H∗(Y )

by putting:

(44.4) ϕ∗ = q∗ ◦ p−1
∗ .

(44.5) Proposition. The induced map ϕ∗ does not depend on the choice of
the diagram (p, q).

Proof. Assume that the following diagram is commutative:

Γ
p

�� ��
��
��
�

��
��
��
�

q

���
��

��
��

�

h

��

X Y

Γ′
p′

���������

������� q′

��!!!!!!!

where h is a homeomorphism. By applying functor H∗ to the above diagram we
obtain:

H∗(Γ)

∼
p∗

��,,
,,
,,
,,
,

q∗

##�
��

��
��

��

h∗∼

��

H∗(X) H∗(Y )

H∗(Γ′)
p′

∗

∼
�� q′

∗

$$&&&&&&&&&
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Since p∗, p′∗ and h∗ are isomorphisms, from the commutativity of the above dia-
gram we infer:

q∗ ◦ p−1
∗ = q′

∗ ◦ (p′
∗)−1

and the proof is completed. �

(44.6) Proposition. If ϕ: X → Y and ψ: Y → Z are two morphisms then we
obtain:

(ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

Proof. In fact, we have the commutative diagram:

X Γ
p�� q

�� Y Γ′p′
�� q′

�� Z

Γ � Γ′
p′



��������

�������� q

��+++++++++

By applying functor H∗ to the above diagram we obtain:

(ψ ◦ ϕ)∗ = q′
∗ ◦ q∗ ◦ (p′∗)−1 ◦ p−1

∗ = (q′
∗ ◦ (p′

∗)−1) ◦ (q∗ ◦ p−1
∗ ) = ψ∗ ◦ ϕ∗

and the proof is completed. �

Note that the above definition does not depend on the choice of the represen-
tative (p, q). Now, having a morphism ϕ, we have defined a multivalued map
ψ: X � Y determined by morphism ψ which assigns to every x ∈ X the com-
pact set ϕ(x) = q(p−1(x)), where (p, q) is a representative of ϕ. Sometimes, for
simplicity, we will use the same notation for a morphism and a multivalued map
determined by this morphism.

Since any Vietoris map is proper, we conclude that a multivalued map deter-
mined by a morphism is u.s.c. with compact values.

We will say also that a morphism ϕ is compact if the multivalued map ψ,
determined by ϕ, is a compact map.

(44.7) Proposition. Any acyclic map is determined by a morphism. More-
over, any strongly admissible map is determined by a morphism, too.

Proof. Let ψ: X � Y be an acyclic map. Then we have a diagram:

X
pψ⇐= Γψ

qψ−→ Y.

It is evident that ψ is determined by the morphism

ϕ = {X pψ⇐= Γψ
qψ−→ Y }: X → Y.
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If ψ: X � Y is strongly admissible, then according to the definition there is
a diagram:

X
p⇐= Γ

q−→ Y

such that ψ(x) = q(p−1(x)). Hence ψ is determined by the morphism:

ϕ = {X p⇐= Γ
q−→ Y }: X → Y

and the proof is completed. �

(44.8) Remarks.

(44.8.1) The pair (pψ, qψ) representing the morphism determined by an acyclic
map ψ will be called the generic pair. In spite of the fact an acyclic map may be
determined by different morphisms but the following relation holds. Assume that
a morphism represented by a pair (p, q) determines an acyclic map ψ. Then the
diagram:

Γ
p

�� ��
��
��
�

��
��
��
�

q

���
��

��
��

�

f

��

X Y

Γψ

pψ

���������

������� qψ

��!!!!!!!!

is commutative, where f(u) = (p(u), q(u)) for every u ∈ Γ.
(44.8.2) We have seen already that any (singlevalued) map is determined by

exactly one morphism (cf. (44.8.1)).

(44.9) Example. Let ψ: {p}� [0, 1] be an acyclic map defined as follows:

ψ(p) = [0, 1].

Let Γ = [0, 1]× [0, 1] and p: Γ → {p}, p(t, s) = p and q: Γ → [0, 1], q(t, s) = s for
every (t, s) ∈ Γ. Then ψ(p) = q(p−1(p)) but the pair (p, q) is not equivalent to the
pair (pψ, qψ). So ψ is determined by two different morphisms. Observe that Γψ is
homeomorphic to [0, 1] but Γ is not homeomorphic to [0, 1].

Let ϕ = {X p⇐= Γ
q−→ Y }: X → Y be a morphism and B be a subset of X.

In such a case one can define the restriction of ϕ to the set B as the morphism:

ϕ|B = {B p̃⇐= p−1(B)
q̃−→ Y }: B → Y,

where p̃(u) = p(u) and q̃(u) = q(u) for every u ∈ p−1(B).
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(44.10) Proposition. Let ϕj ∈M(X, Yj), j = 1, 2. Then there exists a mor-
phism ϕ ∈ M(X, Y1 × Y2) (denoted by (ϕ1, ϕ2)) such that

ϕ(x) = ϕ1(x)× ϕ2(x) for every x ∈ X.

Proof. Indeed let (pj, qj), j = 1, 2 be the representative pairs for ϕ1 and ϕ2,
respectively. We have the diagram:

Γ1

p1

 ��
��
��
��
�

��
��
��
��
�

q1 �� Y1

X Γ1 � Γ2
p�� q

�� Y1 × Y2

Γ2

p2

��)))))))))

)))))))))
q2 �� Y2

in which Γ1 � Γ2 is the fibre product of p1 and p2 and q(u, v) = (q1(u), q2(v)),
p(u, v) = p1(u) = p2(v). Then we let:

(ϕ1, ϕ2) = {X p⇐= Γ1 � Γ2
q−→ Y1 × Y2}: X → Y1 × Y2.

It left to the reader to verify that the above definition is correct. The proof
of (44.10) is completed. �

(44.11) Proposition. Let ϕj ∈M(Xj , Yj), j = 1, 2. Then there exists a mor-
phism ϕ (denoted by (ϕ1×ϕ2)) such that (ϕ1×ϕ2) ∈M(X1×X2, Y1×Y2), which
determines the map (x1, x2)→ ϕ1(x1)× ϕ2(x2) for every (x1, x2) ∈ X1 ×X2.

Proof. Having representative pairs (pj, qj), j = 1, 2 for ϕj, j = 1, 2 respec-
tively, we let ϕ = ϕ1×ϕ2 to be the equivalence class of the pair (p1,×p2, q1× q2),
and the proof is completed. �

Let E be a real normed space. Consider two morphisms:

ϕ = {X p0⇐= Γ
q0−→ E}: X → E and ψ = {X p1⇐= Γ

q1−→ E}: X → E

and a continuous map f : X → R.
We would like to define two new morphisms:

(ϕ + ψ) ∈M(X, E) and (f · ϕ) ∈M(X, E).

Let
⊕: E × E → E and ": E → R

be the algebraic operations in linear space E. In view of (44.11) we have:

(ϕ, ψ): X → E × E and (f, ϕ): X → R×E.

Consequently, we are allowed to define:
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(44.12) Definition. We let

ϕ + ψ = ⊕(ϕ, ψ), f · ϕ = "(α, ϕ).

It follows from the composition law for morphisms and (44.11) that the Defini-
tion (44.12) is correct.

(44.13) Remark. The notion of morphism was introduced in [GGr-2], where
a weaker equivalence relation between diagrams was considered. Note that that in
this section, for simplicity’s sake, we have considered only Vietoris mappings with
respect to the Čech homology functor with compact carriers, but all formulations
and results would be exactly the same if we considered the notion of Vietoris maps
with respect to the Čech cohomology functor.

We will end this section by introducing the notion of a homotopy of morphisms.

(44.14) Definition. Two morphisms ϕ, ψ ∈ M(X, Y ) are called homotopic
(written ϕ ∼ ψ), provided there exists a morphism χ ∈M(X× [0, 1], Y ) such that:

χ(x, 0) = ϕ(x) and χ(x, 1) = ψ(x)

for every x ∈ X, i.e.
ϕ = χ ◦ i0 and ψ = χ ◦ i1,

where i0, i1: X → X × [0, 1] are defined i0(x) = (x, 0), i1(x) = (x, 1).

Since homology (cohomology) functor satisfies the composition law in the case
of morphisms we conclude:

(44.15) Proposition. If ϕ ∼ ψ then ϕ∗ = ψ∗(ϕ∗ = ψ∗).

We will go back to the homotopy properties of morphisms in Section 46.

45. The Lefschetz fixed point theorem for morphisms

A morphism ϕ: X → X is called a Lefschetz morphism provided ϕ∗: H(X) →
H(X) is a Leray endomorphism; for such ϕ we define the generalized Lefschetz
number by putting

Λ(ϕ) = Λ(ϕ∗).

Immediately from (11.4) one can deduce:

(45.1) Proposition. If the following diagram of metric spaces and morphisms
is commutative:

X
ϕ

�� Y

X

ϕ1

��

ϕ
�� Y

ψ
���������

ϕ2

��
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then if one of the vertical arrows is a Lefschetz morphism, then so is the other and
in that case Λ(ϕ1) = Λ(ϕ2).

Let ϕ = {X p⇐= Γ
q−→ X}: X → X be a morphism. Recall that the coinci-

dence set κp,q of (p, q) (see Section 12) is defined as follows:

κp,q = {y ∈ Γ | p(y) = q(y)}.

(45.2) Definition. We say that the morphism ϕ = {X p⇐= Γ
q−→ X}: X →

X has a coincidence provided the set κ(ϕ) = p(κp,q) is non-empty.

Note that the above definition does not depend on the choice of a representative
(p, q). Moreover, κ(ϕ) �= ∅ if and only if κp,q �= ∅ for some representative (p, q)
of ϕ.

Let ϕ = {X p⇐= Γ
q−→ X}: X → X by a morphism and ψ: X � X, ψ(x) =

q(p−1(x)) be a multivalued map determined by ϕ. Then we have:

(45.3) Proposition. κ(ϕ) �= ∅ if and only if Fix(ψ) �= ∅.

Proof of (45.3) is self-evident.

Let us observe that from our definitions and provided properties it follows that
all results of the Section 43, about n-admissible maps, can be taken up on the
class of the newly defined morphisms.

46. Homotopical classification theorems for morphisms

In this section we will study the homotopy properties of morphisms. We prove
some generalizations of the classical Hopf classification theorems. The notion of
homotopy for morphisms was introduced already in Section 44 (see (44.14)).

(46.1) Remark. Throughout this book we have assumed that all considered
topological spaces are metrizable. In this section we will not keep this assumption
however. We shall assume instead, that all considered spaces are paracompact.
First note (see [Sp-M]) that theorem (8.14) is true for paracompact spaces. Since
not every proper map is closed in paracompact spaces, in such a case, by Vietoris
map p: W =⇒ X we shall understand a closed map such that for every x ∈ X

the set p−1(x) is nonempty, compact and acyclic (so p is a perfect surjection with
acyclic fibres). This assumption implies that the multivalued map ψ: X � Y ,
determined by a morphism

ϕ = {X p⇐= W
q−→ Y }: X → Y,

is u.s.c. where p is a perfect surjection with acyclic fibres.



234 CHAPTER IV. HOMOLOGICAL METHODS IN FIXED POINT THEORY

Concluding, in this section (only!) we will consider morphisms of the following
type

ϕ = {X p⇐= W
q−→ Y }: X → Y,

where X, Y are metric spaces, W is a paracompact space and p is a perfect sur-
jection with acyclic fibres with respect to the Čech cohomology functor (cf. Re-
mark (44.13)).

The reason for the above changes is very simple. Namely, for a continuous map
f : X → Y we will consider three new spaces:

X ⊕ Y, X ∪f Y and Zf

which are not metric in general (even if X and Y are metric).

Recall the definitions of X ⊕ Y , X ∪f Y and Zf (see [Sp-M] for details): By
X ⊕ Y we shall understand the disjoint union of X and Y . The space X ∪f Y

is the space obtained by attaching X to Y by means of f : A → Y, A ⊂ X, i.e.
the quotient space obtained from X ⊕ Y by identifying each point x ∈ A with
f(x) ∈ Y . By the cylinder Zf of f : X → Y we mean the space X × [0, 1] ∪q Y ,
where q: X × {1} → Y , q(x, 1) = f(x).

(46.2) Proposition. The homotopy relation ‘∼’ is an equivalence relation in
M(X, Y ).

For the proof of (46.2) we need the following lemma:

(46.3) Lemma. Assume that Xi = X × [(1/2)i, (1/2)(i + 1)], i = 0, 1 and
let ji: X0 ∩ X1 → Xi, ri: Xi → X × [0, 1] be inclusions. If ϕi ∈ M(Xi, Y ) and
ϕ0j0 = ϕ1j1, then there is ϕ ∈ M(X × I, Y ) such that ϕ ◦ ri = ϕi, i = 0, 1 and
I = [0, 1].

Proof. Let Xi
pi⇐= Wi

qi−→ Y represent ϕi, i = 0, 1. We have a diagram:

X0 ∩X1
p⇐= W

q−→ Y

and mappings fi: W → p−1
i (X0 ∩ X1) ⊂ Wi such that p = pi ◦ fi, q = qi ◦ fi,

i = 0, 1. Let WI = W × I, define g: W × {0, 1} → W0 ⊕W1 by g(w, i) = fi(w),
w ∈ W , i = 0, 1 and put W = WI ∪g W0 ⊕ W1. Moreover, let hi: Wi → W ,
i = 0, 1, and h: Wi →W be the respective quotient maps. We shall define a cotriad

X×I
p←−W

q−→ Y ∈ Dm and Vietoris maps f i: W i →Wi, where W i = p−1(Xi),
such that pif i = p|W i

and qif i = q|W i
for i = 0, 1.

To this end consider a map p : W → X × I given by the formulae:

p(hi(wi)) = pi(wi), for wi ∈Wi, i = 0, 1,

p(h(w, t)) = p(w), for w ∈W, t ∈ I.
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One can easily see that p is well-defined and p is a continuous surjection. For any
closed subset C ⊂W ,

p(C) = p0(h−1
0 (C)) ∪ pπ(h−1(C)) ∪ p−1

1 (C)),

where π: WI →W is the projection. For any x ∈ X we have:

p−1(x) =

{
hi(p−1

i (x)) for x ∈ Xi \ (X0 ∩X1), i = 0, 1,

h(p−1(x)× I) for x ∈ X0 ∩X1.

Observe that

h−1(w) =

{
(w, t) for t ∈ (0, 1),

f−1
i (fi(w))× {i} for t = i = 0, 1;

hence h: p−1(x) × I → p−1(x) is a Vietoris map. Consequently, we infer that p is
a Vietoris map.

Define q : W → Y similarly as p above.

Since W i = p−1(Xi) = hi(Wi) ∪ h(WI), we define f i: W i →Wi by the formula

f i(hi(wi)) = wi, wi ∈Wi,

f i(h(w, t)) = fi(w), w ∈W, t ∈ I, i = 0, 1.

Analogously, we can check that f i are Vietoris maps and pi ◦ f i = pi|Wi , qi ◦ f i =
q|Wi , i = 0, 1. At last, it is enough to represent ϕ ∈ M(X × I, Y ) by (p, q) and
the proof is completed. �

We are in a position to prove (46.2).

Proof of (46.2). It is easy to see that the relation ∼ is symmetric and, by
Lemma (46.3) above, transitive. However, for a morphism ϕ ∈ M(X, Y ) we can
build its self-homotopy. Namely, if X

p⇐= W
q−→ Y represents ϕ, then we have

a diagram:

X × I W × I
p×id�� q×id

�� Y, q(x, t) = q(x)

which gives a needed homotopy. The proof of (46.2) is completed. �

We let M[X, Y ] =M(X, Y )/∼.

Now we would like to study the problem what are the conditions under which
a given morphism ϕ ∈ M(X, Y ) is homotopic to a map f : X → Y .
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(46.4) Proposition. Let ϕ = {X p⇐= W
q−→ Y }: X → Y and assume there

exists f : X → Y such that the following diagram:

W

p

��

q
�� Y

X

f

����������

is homotopically commutative, i.e. f ◦ p ∼ q (as singlevalued mappings). Then
ϕ ∼ f.

Proof. Let Z = Zp be the cylinder of p. Define p: Z → X × I and q: Z → Y

by:

p(w, t) = (p(w), t), q(w, t) = f(p(w)) for w ∈W, t ∈ J,

p(x) = (x, 1), q̃(x) = f(x) for x ∈ X.

Since the inclusion i: W → Z is a cofibration, there is h: Z × J → Y such that
h(z, 0) = q(z) and h|W×I = h, where h is a homotopy joining f ◦ p and q.

Let q: Z → Y be defined as q = h( · , 1). Then (p, q) represents a morphism
χ: X× I → Y which is a homotopy joining ϕ with f and the proof is completed.�

For given two spaces X, Y , by [X, Y ] we shall denote the set of all homotopy
classes of continuous mappings from X to Y , i.e. [X, Y ] = C(X, Y )/∼, where
C(X, Y ) is the set of all continuous mappings from X to Y and ‘∼’ stands for the
homotopy relation.

The most general classification theorem is the following (see [Kr2-M], or [Kr1]).

(46.5) Theorem. Let X and Y be two spaces such that

(46.5.1) dim X < +∞,
(46.5.2) Y ∈ ANR and πn(Y ) is finitely generated for every n ≥ 1,
(46.5.3) X or Y is compact.

Then there exists a one to one correspondence T :M[X, Y ]→ [X, Y ].

The proof of (46.5) is quite complicated and needs several topological construc-
tions including the obstruction theory, Eilenberg–MacLane complexes and some
other facts and, therefore, is beyond the scope of this monograph (we recommend
[Kr2-M] or [Kr1] for details).

(46.6) Remark. Note that if (46.5) is considered in the relative version, i.e.
for ϕ: (X, X′)→ (Y, Y ′) we have to assume also that Y ′ ∈ ANR (see again [Kr2-M]
or [Kr1]).

We will see in the next section that (46.5) is useful in the fixed point index
theory for morphisms.
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47. The fixed point index for morphisms

We shall define the fixed point index for morphisms in two steps. At first, for
morphisms in normed spaces, and then for morphisms of arbitrary ANRs. Let E

be a normed space and assume that A, X are closed subsets of E such that A ⊂ X.
ByMA(X, E) we shall denote the set of all compact morphisms from X to E such
that

Fix(ψϕ) ∩A = ∅,

where ψϕ is a multivalued mapping determined by ϕ. Note, that in this section
by a Vietoris map we mean ‘Vietoris with respect to the Čech cohomology functor
H∗’. Similarly, let CA(X, E) denote the set of all compact maps from X to E.
Within the class of MA(X, E) we consider the following notion of a homotopy.
If ϕj ∈ MA(X, E), j = 0, 1 then we say that ϕ0 and ϕ1 are homotopic (written
ϕ0 � ϕ1) whenever, there exists a compact morphism χ ∈ M(X × [0, 1], E) such
that

ψχ( · ,t) ∩A = ∅ for every t ∈ [0, 1].

(47.1) Assumption. In this section we shall assume finite-dimensionality of
the fibres p−1(x) for every considered Vietoris mapping p.

First we shall prove the following lemma:

(47.2) Lemma. Let ϕ = {X p⇐= W
q−→ E}: X → E be a morphism such that

Fix(ψϕ) ∩ A = ∅. Then there is a unique (up to homotopy in CA(X, E)) map
F ∈ CA(X, E) such that there is a compact homotopy H: W × [0, 1]→ E joining
F ◦ p with q and p(w) �= H(w, t) for w ∈W , t ∈ [0, 1].

Proof. For any ε > 0 there is a finite-dimensional linear subspace Eε of E such
that A∩Eε �= ∅ and a Schauder projection πε: K → Eε such that ‖πε(x)− x‖ < ε

for x ∈ K (if dim E <∞ then, e.g. Eε = E and πε is the inclusion K → E).
(1) By standard arguments one shows the existence of ε > 0 such that {w ∈

W | ‖p(w) − πq(w)‖ < 2ε} ∩W = ∅, where we put π := πε. Let L := Eε and
assume, without loss of generality, that dim L > m + 1. In order to facilitate the
notion, we let

XL := X ∩ L, AL := A ∩ L,

WL := p−1(XL), W L := p−1(AL),

pL := p|WL: WL → XL, qL := πq|WL: WL → L.

Clearly the spaces WL and W L are compact.
(2) Evidently pL − qL: (WL, WL) → (L, L \ 0). By (8.15) there is a unique

(up to homotopy) map fL: (XL, AL) → (L, L \ 0) such that hL: fLpL � pL −
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qL: (WL, WL) → (L, L \ 0). Let F : X → L ⊂ E be a compact extension of the
map XL � x → x − fL(x) ∈ L. Clearly, Fix(F ) ∩ A = ∅, hence F ∈ CA(X, E).
Let H1: W × I → L ⊂ E be a compact extension of the map

W × {0, 1} ∪WL × I � (w, t)→


fp(w) for w ∈W, t = 0,

πq(w) for w ∈W, t = 1,

pL(w) − hL(w, t) for w ∈WL, t ∈ I.

It is easy to see that, for w ∈ W , t ∈ I, p(w) �= H1(w, t). Now, H1( · , 0) = F p,
H1( · , 1) = πq � q through the linear homotopy H2(w, t) = (1−t)πq(w)+tq(w) for
w ∈W , t ∈ I. Altogether, taking into account the choice of ε, we have established
the existence part of the assertion.

(3) To show the uniqueness of [F ], suppose that G ∈ CA(X, E) and there is
a compact homotopy H: Gp � q: W → E and H(w, t) �= p(w) for w ∈ W , t ∈ I.
In view of the choice of ε, we can assume that H: Gp � πq.

First, let us suppose that H is a finite-dimensional map, i.e. H(W × I) ⊂ N

(in particular G(X) ⊂ N), where N is a linear subspace of E, dim N < ∞, and
L ⊂ N .

(i) If N = L then defining g: XL → L by g(x) = x−G(x), x ∈ XL, we see that
gpL � pL− qL and, by the uniqueness of [fL], g � fL. Hence F � G in CA(X, E).

(ii) Suppose that L ⊂ N . Replacing in (47.2.1) L by N , we define XN , AN , WN

and W N and maps pN : WN → XN , qN := πq|WN : WN → L ⊂ N . Moreover,
let gN(x) = x − G(x) for x ∈ XN . Therefore, gN pN � pN − qN : (WN , W N) →
(N, N \ 0). Take any subspace N ′, L ⊂ N ′ ⊂ N such that N = N ′ ⊕ Y (direct
sum), where dim Y = 1.

We claim that there are F ′: X → N ′, F ′ � G in CA(X, E) and a compact
homotopy H ′: F ′p � πq: W → E such that H ′(W × I) ⊂ N ′ and p(w) �= H ′(w, t)
for w ∈W, t ∈ I.

Let X′ := X ∩ N ′, A′ := A ∩ N ′, W ′ := p−1(X′), W
′

:= p−1(A′) and p′ :=
p|W ′ : W ′ → X′, q′ := πq|W ′ : W ′ → L ⊂ N ′. Evidently, (p′ − q′)(W

′
) ⊂ N ′ \ 0;

hence, again by (8.15), there is a map f ′: (X′, A′)→ (N ′, N ′\0) such that h′: f ′p′ �
p′ − q′: (W ′, W

′
)→ (N ′, N ′ \ 0). Assume that f ′ is defined on N ′ (if not, take an

arbitrary compact extension of f ′ onto N ′ with values in N ′) and define a map
fN : XN → N by the formula fN (x) = f ′(x′) + y, x ∈ X and x = x′ + y is the
unique representation: x′ ∈ N ′, y ∈ Y . Obviously, fNpN (W N) ⊂ N \ 0. Consider
the map d: WN × {0, 1} ∪W ′ × I → N given by

d(w, t) =


fN pN(w) for w ∈WN , t = 0,

pN (w)− qN(w) for w ∈WN , t = 1,

h′(w, t) for w ∈W ′, t ∈ I.
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Since fN pN |W ′ = f ′p′ and (pN−qN)|W ′ = p′−q′, we see that d is well-defined and
compact. Now let N± be the open half spaces of N determined by N ′ and Y and
let W ±

N = p−1(X∩N±). Hence WN = W +
N ∪W ′∪W −

N and, for w ∈ W ±
N , fN pN(w),

pN(w)− qN(w) ∈ N±. Thus there is a compact extension h of d over WN × I such
that h(W ±

N ×I) ⊂ N± showing that h: fN pN � pN −qN : (WN , W N)→ (N, N \0).
By the uniqueness of [gN ], fN � gN : (XN , AN)→ (N, N \ 0). Define F ′: X → N ′

as a compact extension of the map XN � x → x − fN(x) (observing that, if
x = x′ + y ∈ XN , x′ ∈ N ′, y ∈ Y then x − fN (x) = x′ − f ′(x′) ∈ N ′). Clearly,
G � F ′ in CA(X, E). Let H ′: W × I → N ′ be a compact extension of the map

W × {0, 1} ∪W ′ × I � (w, t)→


F ′p(w) for w ∈W, t = 0,

πq(w) for w ∈W, t = 1,

p′(w) − h′(w, t) for w ∈W ′, t ∈ I.

One easily sees that, for w ∈W , t ∈ I, p(w) �= H ′(w, t).
(iii) After at most codimN L steps we get a map F ′ � G (in CA(X, E)) and

H ′: F ′ � πq: W → L with H ′(w, t) �= p(w) for w ∈ W , t ∈ I. In view of (i),
F ′ � F hence F � G in CA(X, E).

If the original H is not finite-dimensional, then take ε′ > 0, ε′ < ε, such that
{w ∈ W | ‖π′H(w, t) − p(w)‖ < ε′ for some t ∈ I} ∩W = ∅, where π: cl H(W ×
I) → N ⊃ L, dim N < ∞, is a Schauder projection with ‖π′(x) − x‖ < ε′ for
x ∈ cl H(W × I).

Now π′H: π′Gp � π′πq � πq and, for w ∈ W , t ∈ I, p(w) �= π′H(w, t). By
(i)–(iii) above, G � π′G � F in CA(X, E). This completes the proof of Lemma
(47.2). �

Now, we prove the following:

(47.3) Theorem. Under the above assumptions there is a bijection:

D:MA[X, E] ∼−→ CA[X, E],

where MA[X, E] and CA[X, E] denote the sets of the respective homotopy classes
of MA(X, E) and CA(X, E).

Observe that in comparison to (46.5), where the finite dimensionality of the
domain and the compactness of either the domain or the range were crucial, in the
case above (dim E =∞) we have replaced these conditions by the compactness of
the respective maps.

Proof of (47.3). If dim E < +∞ then the assertion follows almost immedi-
ately from (46.5). So we shall restrict our considerations to the case dim E =∞.
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Let α ∈MA[X, E], take an arbitrary ϕ ∈ α and put K = cl ψϕ(X). Of course,
the sets K and Fix(ψϕ) are compact.

Suppose X
p⇐= W

q−→ E is a representative of ϕ. Moreover, put W = p−1(A).
Now, we proceed by using (47.2). Take F ∈ CA(X, E) in (47.2) and put

D(α) = [F ].

The verification that D is well defined (i.e. does not depend on the choice of ϕ ∈ α

and (p, q) ⊂ ϕ) is strictly technical and, therefore, we left it to the reader. The
proof of (47.3) is completed. �

Now, we would like to give a definition of the fixed point index for morphisms as
presented in ([Kr2]; cf. also [Kr1-M], [Kr2-M]). Note that the mentioned definition
is obtained in spirit of [Go1-M], [Bry], [BG-1], [Ku1] and [Ku2].

Let A denote the class of all triples (E, U, ϕ) where: E is a normed space, U is
open and bounded in E, ϕ: U → E is a compact morphism such that Fix(ψϕ) is
a compact subset of U .

We say that triples (Ej, Uj, ϕj), j = 0, 1, are homotopic, if Ej = E, Uj = U ⊂
E, j = 0, 1 and there is a compact morphism χ: U×[0, 1]→ E which is a homotopy
between ϕ0 and ϕ1 and cl (

⋃
t∈[0,1] Fix(ψϕ(t, · ))) is a compact subset of U .

Consider a triple (E, U, ϕ) with dim E = n. Let ϕ = {U p⇐= W
q−→ E}: U →

E. There exists an open set V ⊂ E such that:

Fix(ψϕ) ⊂ V ⊂ cl V ⊂ U.

We let X = cl V , A = ∂V . Then we can consider the following diagram (cf.
Section 12).

(E, P )
p−q←− (W̃ , W )

p
=⇒ (X, A)

where W̃ = p−1(X), W = p−1(A), p = E \ {0} and we keep the notation of p, q

for the respective restrictions.
Consequently, we obtain the diagram:

(47.4) (L, P )
p−q←− (W̃ , W)

p
=⇒ (X, A) i1−→ (L, L \ V ) i2←− (L, L \B) i3−→ (L, P ),

in which B is an open ball in L such that V ⊂ B, L = E. Since Hn(E, P ) ≈
Hn(Sn) ≈ Z, we can choose a generator κ ∈ Hn(E, P ). Similarly, as in Section 12
we define the fixed point index ind (E, U, ϕ) of (E, U, ϕ) as the number d ∈ Z given
by the equality

(47.5) (i∗n
3 )−1 ◦ i∗n

2 ◦ (i∗n
1 )−1 ◦ (p∗n)−1 ◦ (p− q)∗n(κ) = d · κ.
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From the functionality of H∗ it follows immediately that this definition is correct.
If (E, U, ϕ) is an arbitrary triple in A, then again we choose V such that

Fix(ψϕ) ⊂ V ⊂ cl V ⊂ U

and we put X = cl V , A = ∂V . Then, clearly ϕ|X ∈ MA(X, E). Using the
notation from the proof of (47.3) (where we replace ϕ by ϕ|X) and from the proof
of (47.2) (see (47.2.1)) we can get again the diagram (47.4) in which L is a finite
dimensional subspace an q is a composition of the given q with πε.

So, our index ind (E, U, ϕ) defined in (47.5) is correct for arbitrary (E, U, ϕ) ∈ A,
i.e. it does not depend on choice of V , ε, π, L and B. Let us collect some properties
of the index ind .

(47.6) Proposition. Let (E, U, ϕ) ∈ A.

(47.6.1) If ϕ determines a singlevalued map F , then ind (E, U, ϕ) = i(F, U), where
i(F, U) is the ordinary fixed point index (for singlevalued maps).

(47.6.2) (Units) If, for each x ∈ U , ϕ(x) = {x0} then:

ind (E, U, ϕ) =

{
1 if x0 ∈ U,

0 if x0 �∈ U.

(47.6.3) (Existence) If ind (E, U, ϕ) �= 0 then κ(ϕ) �= ∅.
(47.6.4) (Additivity) If Fix(ψϕ) ⊂

⋃r
i=1 Ui, where Ui are open disjoint subsets of

U then (E, Ui, ϕ|Ui) ∈ A for i = 1, . . . , r, and

ind (E, U, ϕ) =
r∑

i=1

ind (E, Ui, ϕ|Ui).

(47.6.5) (Homotopy) If (E′, U ′, ϕ′) and (E, U, ϕ) are homotopic then

ind (E, U, ϕ) = ind (E′, U ′, ϕ′).

(47.6.6) (Contraction) If ϕ′ ∈M(U, E′) where E′ is a linear subspace of E, j: E′

→ E is the inclusion and j ◦ ϕ′ = ϕ then (E, U ∩ E′, ϕ′|U∩E′) ∈ A and

ind (E′, U ∩ E′, ϕ′|U∩E′) = ind (E, U, ϕ).

(47.6.7) (Strong Units) If, for each x ∈ U , ϕ(x) = K ⊂ E then

ind (E, U, ϕ) =

{
1 if K ∩ U �= ∅,
0 if K ∩ U = ∅.
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(47.6.8) (Multiplicativity) Let E′ be a normed space and U ′ a bounded open subset
of E′. If (E′, U ′, ϕ′) ∈ A then (E × E′, U × U ′, ϕ× ϕ′) ∈ A and

ind (E ×E′, U × U ′, ϕ× ϕ′) = ind (E, U, ϕ) · ind (E′, U ′, ϕ′).

The proof of (47.6) depends on the application of the definition and the Čech
cohomology functor and it is straightforward (strictly analogous as for singlevalued
maps see [Do-M] or also Section 12).

(47.7) Remark. Note, similarly as for acyclic mappings, that if an index func-
tion satisfies property (47.6.1), Units, Additivity and Homology properties then it
is equal to ind defined in (47.5).

Now, we are going to define the fixed point index for morphisms of arbitrary
ANRs. Let B denote the class of all triples (X, U, ϕ), where X ∈ ANR, U is an open
subset of X and ϕ: U → X is a compact morphism such that Fix(ψϕ) is a compact
subset of U . Similarly, two triples (Xj , Uj, ϕj) ∈ B, j = 0, 1 are homotopic if
Xj = X, Uj = U , j = 0, 1 and there is a compact morphism χ: U × [0, 1] → X

such that χ ◦ ij = ϕj , j = 0, 1, ij : U → U × [0, 1], ij(x) = (x, j), j = 0, 1 and
cl
⋃

t∈[0,1] Fix(ψϕ(t, · )) is a compact subset of U .
Let (X, U, ϕ) ∈ B. In view of the Arens–Eells embedding theorem, there is an

embedding i: X → i(X) ⊂ E of X onto a closed subset i(X) of a normed space E.
There is an open set V ⊂ E and a map r: V → U such that r ◦ i|U = idU and
i−1(V ) = U (indeed, since i(X) is a neighbourhood retract of E). Observe that
(E, U, i ◦ ϕ ◦ r) ∈ A. Therefore, we are allowed to let:

(47.7.1) ind (X, U, ϕ) = ind (E, V, i ◦ ϕ ◦ r).

(47.8) Theorem. Let (X, U, ϕ) ∈ B.

(47.8.1) The above definition (47.7.1) is correct i.e. it does not depend on the
choice of i, E, V , r.

(47.8.2) (Contraction) If ϕ(U) ∈ Y , where Y ⊂ X is an ANR then (Y, Y ∩
U, ϕ|Y ∩U ) ∈ B and ind (X, U, ϕ) = ind (Y, Y ∩ U, ϕ|Y ∩U ).

(47.8.3) (Topological Invariance) If Y ∈ ANR and h: X → Y is a homeomor-
phism then (Y, h(U), h ◦ ϕ ◦ h−1) ∈ B, and

(47.8.4) The defined index ind :B → Z satisfies the properties of Existence, Ad-
ditivity, Homotopy, Multiplicativity, Strong Unity and the restriction of
ind to singlevalued maps is equal to the ordinary index (as formulated
in (47.6)).

Proof. Let i|C: X → Ek be an embedding of X onto a closed set Ak = ik(X)
in a normed space Ek, Vk ⊂ Ek be an open set such that i−1

k (Vk) = U and
rk: Vk → U be a map such that rkik = idEk , k = 1, 2.
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We are to show that ind (E1, V1, η1) = ind (E2, V2, η2), where ηk = ikϕrk, k =
1, 2. Observe that h′ = i2i−1

1 : A1 → A2 is a homeomorphism. Let E = E1 × E2

and jk: Ek → E, πk: E → Ek be given as follows:

j1(x) = (x, 0), π1(x, y) = x, j2(x) = (0, x), π2(x, y) = y,

for y, x ∈ Ek, k = 1, 2. Clearly, πkjk = idEk . We claim that there is a homeo-
morphism h: E → E such that hj1|A1 = j2h′. Indeed, by the Dugundji extension
theorem, there are maps h′

1: E1 → E2 and h′
2: E2 → E1 such that h1|H1 = h′ and

h′
2|A2 = h

′−1. Define hk: E → Ek, k = 1, 2 by the formula

h1(x, y) = (x, h′
1(x) + y), h2(x, y) = (x− h′

2(y), y)

and put h = h2 ◦ h1, then h is needed homeomorphism.
(1) Now, let us introduce some notation. For k = 1, 2, we put Wk = π−1

k (Vk),
sk = jkik: X → E. Then s−1

k (Wk) = U and s2 = hs1. Let W = W2 ∩
h(W1) (observe that W is open and nonempty since s2(U) ⊂ W ) and let f1 =
r1π1h−1|W : W → U , f2 = r2π2|W : W → U . Then f2s2|U , f1s2|U = 1U .

(2) In view of (47.6.6) and (47.6.4)

ind (E1, V1, η1) = ind (E, W1, j1η1π1) = ind (E, W1, s1ϕr1π1)

= ind (E, h(W1), s2ϕr1π1h−1) = ind (E, W, s2ϕf1)

and
ind (E2, V2, η2) = ind (E2, W2, j2ϕ2π2) = ind (E, W, s2ϕf2)

since, as one easily checks,

Fix(s2ϕr1π1(h−1|h(W1))) ⊂W and Fix(s2ϕr2(π2 |W2)) ⊂W.

(3) For any number η > 0, let Nη = {x ∈ X | inf{dX(x, z) | z ∈ Fix(ϕ)} < η}.
Choose an α > 0 such that cl N4α ⊂ U and ϕ | cl N4α determines a compact map
and put U ′ = N3α. There is an ε ∈ (0, α) such that, for x ∈ cl N4α, if y ∈ ϕ(x)
and dX(y, x) < ε then x ∈ Nα.

(4) For any x ∈ U ′, by the continuity of f2 and since s2(x) ∈W there is a δx > 0
such that Bx = {z ∈ E | ‖z − s2(x)‖E < δx} ⊂ W and dX(f2(z), x) < ε/2 for
z ∈ Bx (recall that f2s2(x) = x). For x ∈ U ′, let Wx = f−1

1 s−1
2 (Bx)∩ f−1

2 s−1
2 (Bx)

and put W ′ =
⋃
{Wx | x ∈ U ′}. Clearly s2(U ′) ⊂ W ′. One easily checks, using

(1), that Fix(s2ϕf1), Fix(s2ϕf2) ⊂W ′. Therefore, by (2) and (47.6.4){
ind (E1, V1, η1) = ind (E, W ′, s2ϕf1),

ind (E2, V2, η2) = ind (E, W ′, s2ϕf2).
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Consider the map l: W ′ × I → E given by l(z, t) = ts2f2(z) t ∈ I, then there is
x ∈ U ′ such that z ∈ Wx; hence s2f2(z), s2f1(z) ∈ Bx and l(z, t) ∈ Bx, as well.
Now, define a morphism χ by the formula χ = s2ϕf2l. Evidently χ determines
a locally compact map. Moreover, it is a matter of a more or less straightforward
calculation, based on the choice of ε (see (3) and the choice of δx), to show that
the set {z ∈ W ′ | z ∈ Ψ(z, t) for some t ∈ I} is contained in s2(cl ϕ(U ′) ∩ cl N2α)
and thus, is compact. Now since χ, as a homotopy, joins s2ϕf1|W ′ with s2ϕf2 by
(47.6.5) we infer

ind (E1, V1, η1) = ind (E2, V2, η2).

The other properties are self-evident and follow from the respective properties
in (47.6). Hence the proof is completed. �

Now, by using the same arguments as in Section 12 we obtain:

(47.9) Property (Normalization Property). If (X, X, ϕ) ∈ B then ϕ is a Lef-
schetz morphism and ind (X, X, ϕ) = ΛΛ(ϕ).

Note that (47.9) connects this section with Section 45.

48. Noncompact morphisms

A morphism ϕ: X → Y is called locally compact provided the determined mul-
tivalued map ψϕ: X � Y is locally compact, i.e. for every x ∈ X there exists an
open neighbourhood Ux of x in X such that the restriction ψϕ|Ux of ψϕ to Ux is
a compact map.

(48.1) Remark. In what follows we shall use the same notation ϕ for a mor-
phism ϕ: X → Y and the associated map ψϕ: X � Y . So ϕ: X → Y is a morphism
and ϕ = ψϕ: X � Y is the multivalued map determined by ϕ.

(48.2) Lemma. Assume that ϕ: U → X is a locally compact morphism with
Fix(ϕ) compact, where U is a subset of X. Then there exists an open subset V of
U such that Fix(ϕ) ⊂ V and ϕ|V is compact, where Fix(ϕ) = Fix(ψϕ) = κ(ϕ).

Proof. Consider ϕ: U � X. We choose an open neighbourhood Ux ⊂ U of
x ∈ U such that ϕ|Ux : Ux � X is compact. Then {Ux}x∈Fix(ϕ) is a covering of
Fix(ϕ). Let {Ux1 , . . . , Uxk} be a finite sub-covering. We let V = Ux1 ∪ . . . ∪ Uxk

and the proof is completed. �

Let Bl be the family of all triples (X, U, ϕ) such that X ∈ ANR, U is open in X,
ϕ: U → X is a locally compact morphism such that Fix(ϕ) is compact. Of course,
B ⊂ Bl.
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Below we would like to show that the fixed point index ind :B → Z can be
extended onto Bl. Assume that (X, U, ϕ) ∈ Bl. By using (47.2.1)?, we can choose
V ⊂ U such that Fix(ϕ) ⊂ U and (X, V, ϕ|V ) ∈ B. We let:

(48.3) ind (X, U, ϕ) = ind (X, V, ϕ|V ).

From Theorem (47.8) it follows that the above definition is correct. Moreover,
we obtain that this index has all properties as formulated in (47.8). The most
interesting problem is to show for which triples in Bl the normalization property
(47.9) holds true.

The rest of this section is devoted to this problem.

(48.4) Remark. In what follows all considered morphisms are locally compact.
Note, that if X ⊂ E and dim E < +∞ then every morphism ϕ: A→ X, A ⊂ X is
locally compact. Moreover, for a subset A ⊂ X by A we shall denote cl (A) in X.

(48.5) Definition. A morphism ϕ: X → X is called eventually compact pro-
vided there exists n ∈ N such that:

ϕn = ϕ ◦ . . . ◦ ϕ︸ ︷︷ ︸
n

is compact.

(48.6) Definition. A morphism ϕ: X → X is called a compact attraction if
there exists a compact K ⊂ X such that, for each open neighbourhood V of K in
X we have X ⊂

⋃∞
i=0 ϕ−1(V ) and if ϕn(x) ⊂ V , then for every m ≥ n, ϕm(x) ⊂ V

for every x ∈ X.

(48.7) Definition. A morphism ϕ: X → X is called asymptotically compact if
the set Cϕ =

⋂
n≥0 ϕn(X) is nonempty and relatively compact, i.e.

⋂
n≥0 ϕn(X) is

compact (then Vϕ is called the center or core of ϕ) and for every x ∈ X the orbit⋃
n≥0 ϕn(x) is relatively compact.

(48.8) Definition. A morphism ϕ: X → X is called a compact absorbing
contraction provided there exists an open U ⊂ X such that:

(48.8.1) ϕ(U) ⊂ U ,
(48.8.2) the restriction ϕ|U : U → U of ϕ to U is compact,
(48.8.3) for every x ∈ X there is n = nx such that ϕnx (x) ⊂ U .

We would like to point out that every compact morphism is eventually compact
and, also, a compact absorbing contraction.

Now, we shall explain connections between the above classes of morphisms. Our
considerations will be strictly analogous to those presented in Section 42.
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(48.9) Proposition. Any eventually compact morphism ϕ: X → X is a com-
pact absorbing contraction morphism.

Proof. Let ϕ: X → X be an eventually compact morphism such that K′ =
ϕn(X) is compact. Define

K =
n−1⋃
i=0

ϕi(K′),

we have

ϕ(K) ⊂
n⋃

i=1

ϕi(K′) ⊂ K ∪ ϕn(X) ⊂ K ∪K′ ⊂ K.

Since ϕ is locally compact, there exists an open neighbourhood V0 of K such that
L = ϕ(V0) is compact. There exists a sequence {V1, . . . , Vn} of open subsets of X

such that L ∩ ϕ(Vi) ⊂ Vi−1 and K ∪ ϕn−i(L) ⊂ Vi for all i = 1, . . . , n. In fact,
if K ∪ ϕn−i(L) ⊂ V , and 0 ≤ i < n, since K ∪ ϕn−i(L) and CVi ∩ L are disjoint
compact sets of X, there exists an open subset W of X such that

K ∪ ϕn−i(L) ⊂W ⊂W ⊂ Vi ∪ CL.

Define Vi+1 = ϕ−1(W ); since ϕ(K)∪ϕ(ϕn−(i+1)(L)) ⊂ K∪ϕn−i(L) ⊂W , we have
K ∪ ϕn−(i+1)(L) ⊂ Vi+1 and ϕ(Vi+1) ⊂ W ⊂ Vi ∪ CL implies L ∩ ϕ(Vi+1) ⊂ Vi.
Beginning with K ∪ϕn(L) ⊂ K ⊂ V0, we define, by induction V1, . . . , Vn with the
desired properties.

Putting U = V0 ∩ V1 ∩ . . . ∩ Vn, we have K′ ⊂ K ⊂ U and

ϕ(U) ⊂ ϕ(V0) ∩ ϕ(V1) ∩ . . .∩ ϕ(Vn) ⊂ L ∩ ϕ(V1) ∩ . . . ∩ ϕ(Vn),

hence

ϕ(U) ⊂ (L ∩ ϕ(V1)) ∩ . . . ∩ (L ∩ ϕ(Vn)) ∩ L ⊂ V0 ∩ . . . ∩ Vn−1 ∩ Vn = U,

but ϕ(U) is compact since ϕ(U) ⊂ L. Moreover,

X ⊂
n⋃

i=1

ϕ−i(K′) ⊂
∞⋃

i=0

ϕ−i(U)

and the proof is completed. �

(48.10) Proposition. Any compact attraction morphism is a compact absorb-
ing contraction.

Proof. Let ϕ: X → X be a compact attraction morphism, K a compact at-
tractor for ϕ and W , an open set of X such that K ⊂ W and L = ϕ(W ) is
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compact. We have L ⊂ X ⊂
⋃∞

i=0 ϕ−i(W ) hence, since L is compact, there exists
n ∈ N such that L ⊂

⋃n
i=0 ϕ−i(W ). Define V =

⋃n
i=0 ϕ−i(W ); then

X ⊂
∞⋃

i=0

ϕ−i(W ) ⊂
∞⋃

i=0

ϕ−i(V ),

ϕ(V ) ⊂
n⋃

i=0

ϕ−i+1(W ) ⊂ ϕ(W ) ∪ V ⊂ L ∪ V ⊂ V

and

ϕn+1(V ) ⊂
n⋃

i=0

ϕn−i+1(W ) =
n⋃

j=0

ϕj+1(W ) ⊂
n⋃

j=0

ϕj(L),

which is compact and included in V , since L ⊂ V and ϕ(V ) ⊂ V implies that
ϕi(L) ⊂ V for all j ∈ N . Consider the restriction ϕ′: V → V of ϕ; ϕ′: V → V

is an eventually compact map, since V is an open set. By (47.9), there exists an
open set U of V , hence of X such that ϕ′(U) = ϕ(U) is a compact subset of U

and V ⊂
⋃∞

n=0 ϕ
′−n(U) ⊂

⋃∞
n=0 ϕ−n(U); hence

X ⊂
∞⋃

i=0

ϕ−i(W ) ⊂
∞⋃

i=0

ϕ−i(V ) ⊂
∞⋃

n=0

ϕ−n(U),

and the proof is completed. �

(48.11) Proposition. Any asymptotically compact morphism is a compact
absorbing contraction.

Proof. Observe that Cϕ =
⋂

n≥0 ϕn(X) is a compact attractor. So, ϕ is
a compact attraction morphism and in view of (48.10) our Proposition (48.11) is
proved. �

It follows from the above that the class of compact absorbing contraction mor-
phisms is a big one. Consequently, the following theorem is interesting:

(48.12) Theorem. If X ∈ ANR and ϕ: X → X is a compact absorbing con-
traction morphism then ϕ is a Lefschetz morphism and Λ(ϕ) �= 0 implies that
Fix(ϕ) �= ∅.

Proof. We choose U according to the definition of compact absorbing con-
traction morphisms. Let

ϕ̃: U → U, ϕ̃(x) = ϕ(x) for every x ∈ U,

ϕ: (X, U)→ (X, U), ϕ(x) = ϕ(x) for every x ∈ X.

Consider ϕ∗: H(X, U)→ H(X, U). Then ϕ∗ is weakly nilpotent, because for every
x ∈ X there is n = nx such that ϕnx(x) ⊂ U . Hence Λ(ϕ∗) = 0.
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Consequently, from (48.9) we infer that ϕ̃ is a Lefschetz map. So, by applying
(11.5) we deduce that ϕ is a Lefschetz morphism and Λ(ϕ) = Λ(ϕ̃) + Λ(ϕ).

Assume that Λ(ϕ) �= 0. Then Λ(ϕ̃) �= 0 and by using the existence property ϕ̃

has a fixed point, so Fix(ϕ) �= ∅ and the proof is completed. �
Many consequences of (48.12) can be obtained. We just mention the following:

(48.13) Corollary. If X ∈ AR and ϕ: X → X is a compact absorbing con-
traction morphism, then Fix(ϕ) �= ∅.

49. n-Morphisms

The notion of a morphism is based on Vietoris maps. But instead of Vietoris
maps we can dispose Vietoris n-maps. So similarly to n-acyclic maps we can
consider also n-morphisms. Consider two diagrams

Γ
p

����
��
��
�� q

���
��

��
��

�

X Y

Γ1

p1

��������� q1

��!!!!!!!

in which p and p1 are n-Vietoris maps. We will say that (p, q) is equivalent to
(p1, q1) provided there is a homeomorphism such that the diagram is commutative:

Γ
p

����
��
��
�� q

��
��

��
��

��

h

��

X Y

Γ1

p1

��������� q1

��!!!!!!!

Clearly, the relation (p, q) ∼ (p1, q1) defined above is an equivalence relation. The
equivalence class for a diagram:

X
p←− Γ

q−→ Y

in which p is a n-Vietoris map is denoted by

ϕ = {X p←− Γ
q−→ Y }: X → Y

and is called a n-morphism from X to Y . In what follows by Mn(X, Y ) we shall
denote the set of all n-morphisms from X to Y . Unfortunately a composition
of two n-morphisms is not a n-morphism but all the results obtained before for
n-acyclic maps can be generalized for n-morphisms. We left for the reader the
respective formulations and proofs.
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50. Multivalued maps with nonconnected values

Following B. O’Neill we would like to consider multivalued mappings with values
consisting of 1 or n acyclic components (see [Ne1], [Ne2], [Dz1-M]). First we shall
recall one example owed to J. Jezierski (see [Je]). A multivalued map ϕ: X � Y

is called finitely-valued provided for every x ∈ X the set ϕ(x) is finite.
Let C = R2 denote the plane of complex numbers. Then ϕ: C → C, ϕ(z) = n

√
z,

is a finitely-valued map. Moreover, ϕ(z) consists of one or n acyclic components.
The following proposition shows us that multivalued mappings having one, two or
three values are not useful in the fixed point theory.

(50.1) Proposition. One dimensional sphere S1 ⊂ C is (1–2–3)-contractible,
i.e. there exists a homotopy χ: S1 × [0, 1] � S1 such that:

(50.1.1) χ(x, 0) = x and χ(x, 1) = x0 for every x ∈ S1,
(50.1.2) χ(x, t) has one or two or three values.

Proof. We shall treat S1 as a quotient space of R with respect to Z, i.e.
S1 = R/Z = [0, 1]/0∼1. We define a sequence of singlevalued homotopies:

A1, A2, B1, B2, B3, C1, C2: S1 × [0, 1]→ S1

as follows:

A1(x, t) = max(0, (2x− t) · (2− t)−1),

A2(x, t) = max(1, 2x(2− t)−1),

B1(x, t) =

{
t(2−1 − |2x− 2−1|) if x ≤ 2−1,

t(2−1 − |2x− 3 · 2−1|) if x ≥ 2−1,

B2(x, t) = 1− B1(x, t),

B3(x, t) = 2x,

C1(x, t) = B1(x, 1− t),

C2(x, t) = B2(x, 1− t).

We let A = A1 ∪A2, B = B1 ∪B2 ∪B3, C = C1 ∪C2. Then A ◦B ◦C is a desired
(1–2–3) contraction of S1 which we can illustrate as follows:

�

As an easy consequence of (50.1) we obtain:
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(50.2) Corollary. Two dimensional closed ball K2 ⊂ C fails (1–2–3) fixed
point property, i.e. there is ϕ: K2 � K2 such that ϕ is u.s.c. and ϕ(x) consists of
1, 2 or 3 points.

Proof. Let χ: S1× [0, 1] � S1 be (1-2-3) contraction of S1 to a point x0 ∈ S1

(as defined in (50.1)). We define Φ: K2 � S1 by putting

Φ(x) =

{
χ(‖x‖−1 · x, ‖x‖) if x �= 0,

x0 if x = 0.

Then ϕ is (1–2–3) retraction of the ball K2 onto S1. Consequently, the map
ψ: K2 � K2 define by Ψ(x) = −Φ(x) is a desired fixed point free map and the
proof is completed. �

(50.3) Remark. Observe that all multivalued mappings considered in (50.1)
and (50.2) are not only u.s.c. but also l.s.c. and consequently continuous.

According to (50.1) and (50.2) in what follows we shall consider multivalued
mappings for which there is a fixed natural number n such that the values of these
mappings consist of one or n acyclic components (like: Φ(z) = n

√
z).

As initiated in 1957 by B. O’Neill (see [Ne1]) we shall see that multivalued
mappings of this type are convenient in the fixed point theory. Recall that an
u.s.c. map Φ: X � Y is said to be acyclic provided the set Φ(x) is acyclic for
every x ∈ X. We will denote the class of acyclic maps from X to Y by A0(X, Y )
instead of AC(X, Y ) used earlier, i.e. AC(X, Y ) = A0(X, Y ).

Let m be a positive integer.

(50.4) Definition. A multivalued map Φ: X � Y is in the class Am(X, Y )
provided

(50.4.1) Φ is continuous,

(50.4.2) For each x ∈ X the set Φ(x) consists of one or m acyclic components.

Note that A1(X, Y ) ⊂ A0(X, Y ).

(50.5) Examples.

(50.5.1) Let C be the complex plane. Define a map Φ: C � C by Φ(x) := {z |
zm = x}. It is clear that Φ ∈ Am(C, C).

(50.5.2) Let p: X → B be a finite covering with B connected. Define the
inverse map Ψ: B � X, Ψ(b) := p−1(b). Since p is a local homeomorphism,
Ψ is a continuous map and thus Ψ ∈ An(B, X), where n is the number of elements
in p−1(b).
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(50.5.3) Consider the map Φ: [−1, 1] � [−1, 1] defined by

Φ(x) :=


{1, x + 1} for x ∈ [−1, 0),

{1,−1} for x = 0,

{−1, x− 1} for x ∈ (0, 1].

Then Φ is u.s.c. and 2-point-valued but not l.s.c. and hence Φ �∈ A2([−1, 1], [−1, 1]).
Observe that Φ has no fixed points.

It is evident that the classes Am are not closed under the composition law.

(50.6) Definition. A decomposition (Φ1, . . . , Φn) of a multivalued map Φ: X

� Y is a sequence of maps

X = X0
Φ1−� X1

Φ2−� X2
Φ3−� · · ·

Φn−1

−� Xn−1
Φn−� Xn = Y,

such that Φi ∈ Ami (Xi−1, Xi), Φ = Φn ◦ . . .◦Φ1. We say the map Φ is determined
by the decomposition (Φ1, . . . , Φn). The number n is said to be the length of
the decomposition (Φ1, . . . , Φn). We will denote the class of decompositions by
DA(X, Y ).

(50.7) Remark. The two decompositions

X0
Φ1−� X1

Φ2−� · · ·
Φn−� Xn, X0

Φ1−� Φ1(X0)
Φ2−� Φ2(Φ1(X0)) −� · · ·

Φn−� Xn,

will be considered identical because they determine the same map Φ. But we will
not identify a decomposition with the multivalued map it determines, as one map
Φ may be determined by different decompositions.

(50.8) Example. Let f : X → Y be a singlevalued continuous map. It admits
the following decomposition:

Φ1: X � X × {0, 1}, Φ1(x) := {(x, 0), (x, 1)},
Φ2: X × {0, 1} → X, Φ2(x, t) := f(x).

Here Φ1 ∈ A2(X, X × {0, 1}) and Φ2 ∈ A1(X × {0, 1}, X).

(50.9) Remark. Elements of the class Ai(X, Y ) can be identified with decom-
positions of length one. Therefore, Ai(X, Y ) ⊂ DA(X, Y ).

The restriction of (Φ1, . . . , Φn) ∈ DA(X, Y ) to a subset A ⊂ X and the com-
position of (Φ1, . . . , Φn) ∈ DA(X, Y ) and (Ψ1, . . . , Ψn) ∈ DA(Y, Z) are defined in
the obvious way. Now we introduce the notion of a homotopy in DA(X, Y ).
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(50.10) Definition. Decompositions (Φ1, . . . , Φn), (Ψ1, . . . , Ψn)∈DA(X, Y )
are homotopic if there exists (Θ1, . . . , Θn) ∈ DA(X × [0, 1], Y ) such that

(Θ1, . . . , Θn)|X×{0} = (Φ1, . . . , Φn) and (Θ1, . . . , Θn)|X×{1} = (Ψ1, . . . , Ψn).

(50.11) Proposition. If Φi is homotopic to Ψi in Ami (Xi−1, Xi) for each i =
1, . . . , n then the decompositions (Φ1, . . . , Φn) and (Ψ1, . . . , Ψn) are homotopic.

Proof. Let Hi: Xi−1 × [0, 1] � Xi ∈ Ami (Xi−1 × [0, 1], Xi) be a homotopy
joining Φi and Ψi. Define a map χχ

i: Xi−1 × [0, 1] � Xi × [0, 1] by the for-
mula χχ

i(x, t) := (Hi(x, t), t). Then (χχ1, . . . , χχ
n−1, Hn) is a homotopy joining

(Φ1, . . . , Φn) and (Ψ1, . . . , Ψn) (cf. (50.7)). �

Let X, Y be two spaces.

(50.12) Definition. An u.s.c. map Φ: X � Y is permissible provided it ad-
mits a selector Ψ: X � Y which is determined by a decomposition (Ψ1, . . . , Ψn) ∈
DA(X, Y ). If Φ itself is determined by a decomposition (Φ1, . . . , Φn) then it is
strongly permissible (s-permissible).

We will denote the class of permissible maps from X into Y by P(X, Y ) and
the class of s-permissible maps by s-P(X, Y ).

(50.13) Examples.

(50.13.1) The map Φ: [−1, 1] � [−1, 1] defined in (50.5.3) is an u.s.c. map which
is not permissible.

(50.13.2) Consider the map Ψ: [−1, 1] � [−1, 1] defined by Ψ(x) := Φ(x)∪{x},
where Φ is the map from (50.5.3). Then Ψ is permissible because it admits the
identity map as a selector. But it is not strongly permissible.

(50.13.3) Let S1 := {z ∈ C | |z| = 1}. The map Φ: S1 � S1 defined by
Φ(z) := {w | w2 = z}, is s-permissible (it is in the class A2(S1, S1)), but not
admissible.

(50.14) Proposition.

(50.14.1) The composition of two permissible maps Φ: X � Y and Ψ: Y � Z is
permissible.

(50.14.2) The product of permissible maps is permissible.

Proof. The first part is evident. We prove (50.14.2). Observe that if Φ ∈
Am(X, Y ) then Φ× id ∈ Am(X × I, Y × I). Let the decomposition

X0
Φ1−� X1

Φ2−� · · ·
Φn−� Xn
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determine a selector Φ̃ of Φ: X0 � Xn and the decomposition

Y0
Ψ1−� Y1

Ψ2−� · · ·
Ψm−� Ym

determine a selector Ψ̃ of Ψ: Y0 � Ym. Then the decomposition

X0 × Y0
Φ1−� X1 × Y0

Φ2−� · · ·
Φn−� Xn × Y0

Ψ1−� Xn × Y1
Ψ2−� · · ·

Ψm−� Xn × Ym,

where Φi(x, y) := Φi(x) × {y}, Ψj(x, y) := {x} ×Ψj(y), determines a selector of
Φ×Ψ. �

(50.15) Definition. Two permissible maps Φ, Ψ: X � Y are homotopic if
there exists a permissible map Θ: X × [0, 1] � Y such that Θ(x, 0) ⊂ Φ(x) and
Θ(x, 1) ⊂ Ψ(x) for x ∈ X.

(50.16) Proposition. If two permissible maps Φ, Ψ: X � Y are homotopic
then they have selectors Ψ̃, Φ̃ which are determined by homotopic decompositions.

Proof. Let Θ: X × [0, 1] � Y be a homotopy. Assume that there is a selec-
tor Θ̃ ⊂ Θ determined by a decomposition (Θ1, . . . , Θn). Then the restrictions
(Θ1, . . . , Θn)|X×{0} and (Θ1, . . . , Θn)|X×{1} are homotopic and determine the de-
sired selectors Ψ̃ and Φ̃ and the proof is completed. �

Now we shall define an approximation system for multivalued maps and then
the index for such systems. We will keep notations and notions presented at the
end of Section 5. Let (K, τ) and (L, µ) be two finite simplicial complexes with
triangulations τ and µ, respectively. Let Φ: (K, τ) � (L, µ) be an u.s.c. map.

(50.17) Definition. Let k and l be two natural numbers. A chain mapping
ϕ: C∗(K, τ l) → C∗(L, µk) is called an (n, k)-approximation of Φ provided the fol-
lowing condition holds: for each simplex σ ∈ τ l there exists a point y(σ) ∈ K such
that

σ ⊂ Stn(y(σ), τ l), carr ϕσ ⊂ Stn(Φ(y(σ)), µk).

(50.18) Definition. A graded set A(Φ) = {A(Φ)j}j∈N , where A(Φ)j ⊂
hom(C∗(K, τ ′), C∗(L, µ′)), is called an approximation system (A-system) for Φ
provided there is an integer n = n(A) such that:

(50.18.1) If ϕ ∈ A(Φ)j then ϕ = ϕ1 ◦ b, where ϕ1 is an (n, j)-approximation of Φ,
(50.18.2) For every j ∈ N there exists j1 ∈ N such that for m ≥ j1 and for all

ϕ = ϕ1 ◦ b ∈ A(Φ)l and ψ = ψ1 ◦ b ∈ A(Φ)m the diagram

C∗(K, τ l1)
ϕ1 �� C∗(L, µl)

C∗(K, τm1)
ψ1

��

χ

��

C∗(L, µm)

χ

��
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with m1 ≥ l1 is homotopy commutative with a chain homotopy D sat-
isfying the following smallness condition:

(50.18.3) For any simplex σ ∈ τm1 there exists a point z(σ) ∈ K such that

σ ⊂ Stn(z(σ), τ j), carr Dσ ⊂ Stn(Φ(z(σ)), µj).

(50.19) Definition. Let Φ1, Φ2: K � L be u.s.c. maps and let H: K×[0, 1] �
L be an u.s.c. homotopy joining Φ1 and Φ2. Let A(Φ1) and A(Φ1) be A-systems
for Φ1 and Φ2, respectively. They are H-homotopic provided there is an integer
m ∈ N such that the following condition holds:

(50.19.1) For every j ∈ N there is j1 ∈ N such that for any l ≥ j1 there are ϕ =
ϕ1 ◦ b ∈ A(Φ1)l and ψ = ψ2 ◦ b ∈ A(Φ2)l such that ψ1, ϕ1: C∗(K, τ l1)→
C∗(L, µl) are chain homotopic with an H-small homotopy D, i.e.

(50.19.2) For σ ∈ τ l1 there is a point d(σ) ∈ K such that

σ ⊂ Stm(d(σ), τ j), carr Dσ ⊂ Stm(H(d(σ) × I), µj).

(50.20) Proposition. Let Φ1: K � L, Φ2: L � M be u.s.c. maps and let
A(Φ1), A(Φ2) be A-systems for Φ1, Φ2, respectively. Then the graded set A =
{Aj}, where

Aj = A(Φ2)j ◦A(Φ1)j := {ϕ = ϕ2 ◦ ϕ1 | ϕ2 ∈ A(Φ2)j , ϕ1 ∈ A(Φ1)j}

is an A-system for the composition Φ2 ◦ Φ1.

A simple example of an A-system is the family of all chain mappings induced
by simplical approximations of a given singlevalued continuous map (see [SeS]).
Let U ⊂ K be open and polyhedral and let Φ: U � K be an u.s.c. map such
that x �∈ Φ(x) for x ∈ ∂U . Let A(Φ) be an A-system for Φ. Then the index
IA(K, Φ, U) ∈ F is defined as follows:

Let denote by pU : C∗(K, τk) → C∗(U, τk) the natural linear projection. Let
ϕ ∈ A(Φ)k. Then the “local Lefschetz number”

λ(pU ◦ ϕ) :=
dim K∑

i=0

(−1)i tr(pU ◦ ϕ)i

is defined, here we consider homology with coefficients in an arbitrary ring F , for
example F = Q or F = Z. It has been proved in [SeS] that for sufficiently large
k0 the above element of F is independent of the choice of ϕ ∈ A(Φ)k (k ≥ k0),
because all the approximations are small homotopic (see (50.5.2)).
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(50.21) Definition. IA(K, Φ, U) := λ(pU ◦ ϕ) for ϕ ∈ A(Φ)k, k ≥ k0.

(50.22) Proposition (Additivity). Let U1, U2 be open, disjoint and polyhedral
subsets of U and Φ: U � K an u.s.c. mapping such that Fix Φ ⊂ U1 ∪U2. If A(Φ)
is an A-system for Φ then

IA(K, Φ, U) = IA(K, Φ, U1) + IA(K, Φ, U2).

(50.23) Corollary (Excision). Let U1 ⊂ U be an open and polyhedral subset
of K and Fix Φ ⊂ U1. Then

IA(K, Φ, U) = IA(K, Φ, U1).

(50.24) Proposition (Homotopy Invariance). Let H: U × [0, 1] � K be an
u.s.c. homotopy such that x �∈ H(x, t) for x ∈ ∂U and t ∈ [0, 1]. Let A0, A1 be
H-homotopic A-systems for H0 = H( · , 0), H1 = H( · , 1), respectively. Then

IA0(K, H0, U) = IA1(K, H1, U).

(50.25) Remark. Because of (50.22) one can define IA(K, Φ, V ), where V is
open and not polyhedral, if Φ: L � K, V ⊂ L ⊂ K, and L is a subpolyhedron
of K. Then one puts IA(K, Φ, V ) := IA(K, Φ, U) where U ⊂ V is polyhedral and
Fix Φ|V ⊂ U .

(50.26) Proposition (Commutativity). Let W ⊂ K be open and let Φ1: K �
L, Φ2: L � K be u.s.c. maps. Assume that x �∈ Φ2 ◦ Φ1(x) for x ∈ ∂W and
y �∈ Φ1◦Φ2(y) for y ∈ ∂(Φ−1

2 (W )). Assume further that if y ∈ Fix Φ1◦Φ2−Φ−1
2 (W )

then Φ2(y)∩Fix Φ2◦Φ1|W = ∅. Then for any A-systems A1 = A(Φ1), A2 = A(Φ1)

IA1◦A2(L, Φ1 ◦ Φ2, Φ−1
2 (W )) = IA2◦A1(K, Φ2 ◦ Φ1, W ).

(50.27) Proposition (Mod-p Property). Let F = Zp, p prime. Let W ⊂ K

be open and Φ: K � K an u.s.c. map such that x �∈ Φp(x) for x ∈ ∂W . Assume
that if y ∈ Fix Φp −W then Φk(y) ∩ Fix Φp|W = ∅ for k < p. Then

IA(K, Φ, W ) = IAp(K, Φp, W ).

The detailed proofs of the above properties are given in [SeS]. Now we shall
use nerves of coverings for constructing chain approximations of decompositions
of multivalued maps. We will use here the notation introduced in Chapter I,
Section 5. The symbol iα

β will stand for the simplicial map N(α)→ N(β) defined
there. It was also defined for the induced map of chain complexes.

First we will prove the following technical lemma:
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(50.28) Lemma. Let Φ ∈ Am(X, Y ), α0 ∈ Cov X, β0 ∈ Cov Y , n ∈ N . There
exist sequences of coverings αi ∈ Cov X, βi ∈ Cov Y ,

αn+1 ≥ αn ≥ . . . ≥ α0, βn+1 ≥ βn ≥ . . . ≥ β0,

such that for each simplex s ∈ N(αi) there are a point a (s) ∈ X and a covering
βi−1(s) ∈ Cov Y (βi ≥ βi−1(s) ≥ βi−1) with the following properties:

(50.28.1) supp s ⊂ St(a(s), αi−1);
(50.28.2) Φ(St(supp s, αi)) ⊂ St(Φ(s(s)), βi−1(s));

(50.28.3) If Cj(a(s)) are the components of Φ(a(s)) then sets St2(Cj(a(s)), βi−1(s))
are pairwise disjoint;

(50.28.4) For y ∈ St(supp s, αi) and j = 1, . . . , m

Φ(y) ∩ St(Cj(a(s)), βi−1(s)) �= ∅,

(50.28.5) (iβi−1(s)
βi−1

)∗: H̃∗(N(βi−1(s))|St2(Cj (a(s)),βi−1(s)))

→ H̃∗(N(βi−1)|St(Φ(a(s)),βi−1)) is a zero homomorphism.

Proof. Let n = 0 and x ∈ X. Since every component Cj of Φ(x) is acyclic,
by (5.12) there is β = β0(x) ∈ Cov Y such that the sets St2(Cj, β) are pairwise
disjoint and the homomorphisms

(iβ
β0

)∗: H̃∗(N(β)|St2(Cj,β))→ H̃∗(N(β0)|St(Φ(x),β0))

are trivial. By the continuity of Φ there is a neighbourhood Ox of x such that:

(i) Φ(Ox) ⊂ St(Φ(x), β),
(ii) for each y ∈ Ox, Φ(y) ∩ St(Cj, β) �= ∅,

(iii) the covering {Ox}x∈X is a refinement of α0.

We choose a finite subcovering {Oxi}k
i=1. Let α1 be a star-refinement of {Oxi}.

For a simplex s ∈ N(α1) we define α(s) := xi if supp s ⊂ Oxi and β0(s) :=
β0(xi). Let β1 be a common refinement of all β0(xi). The above procedure can be
continued inductively. �

Such sequences (αi, βi) of coverings as in Lemma (50.28) will be called squeezing
sequences for (Φ, α0, β0).

Recall that the Kronecker index of a 0-chain c =
∑

ciσi is the sum
∑

ci (see
(SE-M]). Let us denote by N (n)(α) the n-skeleton of the simplicial complex N(α).
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(50.29) Definition. Let α, α ∈ Covf (X), β, β ∈ Covf(Y ) and Φ ∈ Am(X, Y ).
A chain map ϕ: C∗(N (n)(α)) → C∗(N (n)(β)) is called an (α, β)-approximation of
Φ provided

(50.29.1) ϕ multiplies the Kronecker index by m.
(50.29.2) For each simplex s ∈ N (n)(α) there is a point p(s) ∈ X such that

supp s ⊂ St(p(s), α), supp ϕs ⊂ St(Φ(p(s)), β).

(50.29.3) If dim s = 0 then for every component Cj = Cj(p(s)) of Φ(p(s)),

supp ϕs ⊂ St(Cj, β) �= ∅.

(50.30) Theorem. Let Φ ∈ Am(X, Y ), α ∈ Cov X, β ∈ Cov Y . For every n ∈
N there exist a refinement α of α and an (α, β)-approximation ϕ: C∗(N (n)(α))→
C∗(N (n)(β)) of Φ.

Proof. From (50.28) we obtain a squeezing sequence (αi, βi) with α0 = α and
β0 = β. Define α := αn+1. We will construct the desired chain map ϕ inductively.

k = 0. Let s0 be a vertex of N(α). By (50.28), we obtain a point a(s0) ∈ X. If
the set Φ(a(s0)) is connected then we define ϕ0s0 := ma, where a is an arbitrary
vertex of N(βn+1) with supp a ⊂ St(Φ(a(s0)), βn(s0)). If Φ(a(s0)) consists of m

components then ϕ0s0 := a1 + . . . + am, where ai are vertices of N(βn+1) such
that supp ai ⊂ St(Ci(a(s0)), βn(s0)). So, we have defined ϕ0: C0(N(αn+1)) →
C0(N(βn+1)). We would like to extend it to 1-chains. Let s be a 1-simplex in
N(α). Then ∂s = s1 − s0. Since a (s0) and a (s1) belong to St(supp s, αn),

Φ(a(s0)) ∪Φ(a(s1)) ⊂ St(Φ(a(s)), βn−1(s)).

Let ϕ0∂s =
∑

ai −
∑

bi with ai, bi ∈ C0(N(βn+1)). If Φ(a(s)) is connected then
by (50.28.5)

i
βn+1
βn−1

(∑
(ai − bi)

)
=
∑

∂ci, where ci ∈ C1(N(βn−1)).

If Φ(a(s)) =
⋃n

i=1 Ci(a(s)) then for each pair ai, bi

supp(ai − bi) ⊂ St(Ci(a(s)), (βn−1(s)).

Thus by (50.28.5), we obtain

i
βn+1

βn−1
(ai − bi) = ∂ci
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for some ci ∈ C1(N(βn−1)) such that supp ci ⊂ St(Ci(a(s)), βn−1). Let us define
ϕ1s :=

∑
ci. Hence we have obtained the following commutative diagram:

C0(N(αn+1))
ϕ0 �� C0(N(βn+1))

iβn+1

βn−1
�� C0(N(βn−1))

C1(N(αn+1))

∂

��

ϕ1
�� C1(N(βn−1)

∂

��

Therefore, a chain map ϕ1: C∗(N (1)(αn+1)) → C∗(N (1)(βn−1)) is defined (on 0-
chains ϕ1c := iϕ0c). Now, assume that

ϕk−1: C∗(N (k−1)(αn+1))→ C∗(N (k−1)(βn−k+1))

is defined and satisfies conditions (50.29) with α = αn+1 and β = βn−k)). As in the
step 0 ⇒ 1, we will define ϕk: Ck(N(αn+1)) → Ck(N(βn−k)). Let s ∈ N(αn+1)
be a k-simplex and s := i

αn+k
αn−k+1 (s). From (50.28) we obtain a point a (s) and

a covering βn−k(s). Let ∂s =
∑

si. dim si = k − 1. By our inductive assumption
we have p(si) such that

supp si ⊂ St(p(si), αn−k+1), supp ϕk−1si ⊂ St(Φ(p(si)), βn−k+1).

But we also have the following inclusion:

Φ(p(si)) ⊂ St(Φ(a(s)), βn−k(s)).

Therefore,
supp ϕk−1∂s ⊂ St2(Φ(a(s)), βn−k(s)).

Because of our assumption, ϕk−1∂s ∈ Ck−1(N(βn−k+1)) is a cycle. Hence by
(50.27.5) there is a chain c ∈ Ck(N(βn−k)|St(Φ(a(s)),βn−k)) such that

i
βn−k+1
βn−k

ϕk−1∂s = ∂c.

Let us define ϕks := c and p(s) := a (s). For chains of lower dimension we put
ϕk := i ◦ ϕk−1. Then ϕn is the desired approximation ϕ. �

(50.31) Definition. A chain homotopy D: C∗(N(α))→C∗(N(β)) is (Φ, α, β)-
small provided for each simplex s ∈ N(α) there exists a point c(s) ∈ X such that

supp s ⊂ St(c(s), α), supp Ds ⊂ St(Φ(c(d)), β).

Let Φ ∈ Am(X, Y ). We will prove the following:
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(50.32) Proposition. For every two n-close (α, β)-approximations i
βn+1
β ◦ϕ,

and i
βn+1
β ◦ ψ of Φ with the same squeezing sequences (αi, βi)n+1

i=0 the diagram

C∗(N (n)(α̃))
ϕ

��

iα̃
α

��

C∗(N (n)(βn+1))
i

βn+1
β

((��
���

���
���

�

C∗(N (n)(β))

C∗(N (n)(α))
ψ

�� C∗(N (n)(βn+1))
i

βn+1
β

''((((((((((((

is homotopy commutative with a (Φ, α, β)-small homotopy D.

Proof. Let s0 be a vertex in N(α̃) and let s0 := iα̃
ᾱ(s0), s̃0 = πα̃

αn+1
(s0).

According to (50.23) we choose points p(s0), p(s0), respectively for s0 and s0.
From (50.28) we obtain a point a(s̃0). Since supp s0 ⊂ supp s0 ⊂ supp s̃0, it
follows that p(s0), p(s0) ∈ St(supp s̃0, αn+1). Therefore,

Φ(p(s0) ∪ p(s0)) ⊂ St(Φ(a(s̃0)), βn(s̃0)).

Since ϕ and ψ are approximations of Φ,

supp ϕs0 ⊂ St(Φ(p(s0)), βn+1), supp ψs0 ⊂ St(Φ(p(s0)), βn+1).

Therefore,
supp ϕs0 ∪ supp ψs0 ⊂ St2(Φ(a(s̃0)), βn(s̃0)).

Moreover, conditions (50.28.3) and (50.28.4) ensure that if ϕs0 =
∑m

i=1 ai and
ψs0 =

∑m
i=1 bi then there are m cycles of the form ai − bi with

supp(ai − bi) ⊂ St2(Ci(a(s̃0)), βn(s̃0)).

Because of (50.28.5) there is a chain c ∈ C1(N(βn)) such that

supp c ⊂ St(Φ(a(s̃0)), βn), ∂c =
m∑

i=1

(ai − bi) = ϕs0 − ψs0.

We define D0s0 := c and c(s0) := a (s̃0). The construction of the chain homo-
topy follows inductively: Assume that Di: Ci(N (n)(α̃))→ Ci+1(N (n)(βn−k+1)) are
defined for i < k and satisfy the conditions:
(50.32.1) i

βn+1
βn−k+1

ϕc− i
βn+1
βn−k+1

ψiα̃
α c = ∂Dic + Di−1∂c,
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(50.32.1) For each simplex s ∈ N(α̃), dim s = i, there is a point c(s) ∈ X such
that

supp s ⊂ St(c(s), αn−i), supp Dis ⊂ St(Φ(c(s)), βn−i).

Let s ∈ N(α̃) be a k-simplex. We consider the simplex s := iα̃
αs and s̃ :=

iα̃
αn−k+1

s. From (50.28) we obtain points p(s) and p(s). From (50.27) we have
a (s̃). They satisfy

p(s), p(s) ∈ St(supp s̃, αn−k+1), Φ(p(s) ∪ p(s)) ⊂ St(Φ(a(s̃)), βn−k(s̃)).

Therefore,

supp i
βn+1

βn−k+1
ϕs⊂St2(Φ(a(s̃)), βn−k(s̃)), supp i

βn+1

βn−k+1
ψs⊂St2(Φ(a(s̃)), βn−k(s̃)).

Let ∂s =
∑

sj and dim sj = k − 1. By the inductive assumption we obtain
that supp sj ⊂ St(c(sj), αn−k+1). Hence c(sj) ∈ St(supp s̃, αn−k+1) and thus
Φ(c(sj)) ⊂ St(Φ(a(s̃)), βn−k(s̃)). Therefore,

supp Dk−1sj ⊂ St(Φ(c(sj )), βn−k+1) ⊂ St2(Φ(a(s̃)), βn−k(s̃)).

Let us consider the chain c := i
βn+1
βn−k+1

ϕs − i
βn+1
βn−k+1

ψs − Dk−1∂s. We deduce

from the above that supp c ⊂ St2(Φ(a(s̃)), βn−k(s̃)).
On the other hand we have

∂c = ∂iϕs− ∂iψs − ∂Dk−1∂s = i∂ϕs− i∂ψis − ∂Dk−1∂s

= iϕ∂s− iψi∂s − ∂Dk−1∂s = ∂Dk−1∂s + Dk−2∂∂s− ∂Dk−1∂s = 0.

Therefore, by (50.30.5), there exists a chain c ∈ Ck+1(N(βn−k)) such that ∂c = c

and supp c ⊂ St(Φ(a(s̃)), βn−k). We define Dks := c and c(s) := a(s̃). For
i < k we compose Di with i

βn−k+1
βn−k

. Since i can only enlarge supports, the Di

satisfy (50.32.1), (50.32.2). In the n-th step one obtains a desired (Φ, α, β)-small
homotopy D. �

(50.33) Proposition. For arbitrary two n-close (α, β)-approximations

ϕ: C∗(N (n)(α)→ C∗(N (n)(β)) and ψ: C∗(N (n)(α̃))→ C∗(N (n)(β))

of Φ there exists α′ ∈ Cov(X) such that ϕ ◦ iα′
ᾱ and ψ ◦ iα′

α̃
are (Φ, α, β)-small

homotopic.

Proof. Let ϕ = i
βn+1

β ◦ϕ1 and ψ = i
βn+1

β ◦ψ1. There exist common refinements:

α of α, α̃, αn+1, αn+1, and β of βn+1, βn+1. We construct an (α, β)-approximation
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�: C∗(N (n)(α′)) → C∗(N (n)(β)) of Φ using (50.29). From (50.32) we deduce that

ϕ◦ iα′
ᾱ is small homotopic to iβ

β ◦� with a homotopy D1, ψ ◦ iα′

α̃
is small homotopic

to iβ
β ◦ � with a homotopy D2. Therefore, D1 + D2 is a small homotopy joining

ϕ ◦ iα′
ᾱ and ψ ◦ iα′

α̃
. �

(50.34) Remark. Note that the only place where the continuity of the map Φ
is important is the proof (50.27.3) and (50.27.4). If Φ is an acyclic map then we
can assume it to be u.s.c. only.

(50.35) Lemma. Let Φ1: X1 � X2, Φ2: X2 � X3 be u.s.c. maps, X1, X2, X3

compact spaces and α ∈ Cov(X1), γ ∈ Cov(X3). There exists β ∈ Cov(X2) such
that for each y ∈ X1 there is a point u(y) ∈ X1 such that

y ∈ St(u(y), α), Φ2(St2(Φ1(y), β)) ⊂ St(Φ2 ◦ Φ1(u(y)), γ).

Proof. The set St(Φ2 ◦ Φ1(y), γ) is a neighbourhood of the compact set Φ2 ◦
Φ1(y) in X3. Thus for every x ∈ Φ1(y) there exists a covering β(x) ∈ Cov(X2)
such that Φ2(St(x, β(x))) ⊂ St(Φ2 ◦Φ1(y), γ). So, the set U :=

⋃
{St(x, β(x)): x ∈

Φ1(y)} is a neighbourhood of Φ1(y) such that Φ2(U) ⊂ St(Φ2 ◦ Φ1(y), γ). Since
Φ1(y) is a compact set, there is β(y) ∈ Cov(X2) such that St3(Φ1(y), β(y)) ⊂ U .
Hence,

Φ2(St3(Φ1(y), β(y))) ⊂ St(Φ2 ◦ Φ1(y), γ).

Now, it is sufficient to show that there is β ∈ Cov(X2) such that for every x ∈ X1

there is u(y) ∈ X1 such that

y ∈ St(u(y), α), St2(Φ1(y), β) ⊂ St3(Φ1(u(y)), β(u(y))).

Suppose on the contrary that for every β ∈ Cov(X2) there is yβ ∈ X1 such that
for each z ∈ St(yβ , α)

(50.35.1) St2(Φ1(yβ), β) �⊂ St3(Φ1(z), β(z)).

We can assume that the net {yβ} converges to y0, because X1 is compact. The
set St(Φ1(y0), β(y0)) is a neighbourhood of Φ1(y0) in X2. Since Φ1 is u.s.c. there
is a covering α0 ≥ α such that Φ1(St(y0, α0)) ⊂ St(Φ1(y0), β(y0)). There exists
β1 ∈ Cov(X2) such that, for every β̃ ≥ β1, y

β̃
∈ St(y0, α0), and consequently

Φ1(y
β̃
) ⊂ St(Φ1(y0), β(y0)).

Hence, St2(Φ1(y
β̃
), β̃) ⊂ St3(Φ1(y0), β(y0)) and y0 ∈ St(y

β̃
, α0) ⊂ St(y

β̃
, α). A

contradiction with (50.35.1). �
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(50.36) Definition. Let (Φ1, . . . , Φk) ∈ DA(X0, Xk), Φi ∈ Ami (Xi−1, Xi).
Let α, α ∈ Cov(X0), β, β ∈ Cov(Xk). A chain map ϕ: C∗(N (n)(α))→ C∗(N (n)(β))
is an (α, β)-approximation of (Φ1, . . . , Φk) provided that:

(50.36.1) ϕ multiplies the Kronecker index by m = m1 . . .mk;
(50.36.2) For each simplex s ∈ N(α) there is a point p(s) ∈ X0 and r ∈ N such

that

supp s ⊂ Str(p(s), α), supp ϕs ⊂ Str(Φ(p(s)), β),

where Φ is a map determined by (Φ1, . . . , Φk).

(50.37) Proposition. Let Φ1 ∈ DA(X1, X2), Φ2 ∈ DA(X2, X3). Let the
coverings α ∈ Cov(X1) and γ ∈ Cov(X3) be given. There is a covering β ∈
Cov(X2) such that if ϕ: C∗(N (n)(α̃)) → C∗(N (n)(β̃)) is an (α, β)-approximation
of Φ1 and ψ: C∗(N (n)(β̃)) → C∗(N (n)(γ)) is a (β, γ)-approximation of Φ2 then
ψ ◦ ϕ is an (α, γ)-approximation of Φ2 ◦ Φ1 ∈ DA(X1, X3).

Proof. (50.36.1) is evident. We prove (50.36.2). For simplicity we assume
that r1 = r2 = 1. Let β ∈ Cov(X2) be obtained from (50.35). If ϕ is an (α, β)-
approximation of Φ1, then for each simplex s ∈ N(α̃) there is a point p(s) ∈ X1

such that

supp s ⊂ St(p(s), α), supp ϕs ⊂ St(Φ1(p(s)), β).

From (50.35) we obtain a point u = u(p(s)) ∈ X1 such that

p(s) ∈ St(u, α), Φ2(St2(Φ1(p(s)), β)) ⊂ St(Φ2 ◦ Φ1(u), γ).

Therefore, supp s ⊂ St2(u, α).
Let ϕs =

∑
aisi. For every si there is p(si) ∈ X2 such that

supp si ⊂ St(p(si), β), supp ψsi ⊂ St(Φ2(p(si)), γ).

Hence, p(si) ∈ St2(Φ1(p(s)), β) and

supp ψsi ⊂ St(Φ2(St2(p(s), β)), γ) ⊂ St2(Φ2 ◦ Φ1(u), γ).

Since ψϕs =
∑

aiψsi, we obtain

supp s ⊂ St2(u, α), supp ψϕs ⊂ St2(Φ2 ◦ Φ1(u), γ).

The proof is finished. �
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(50.38) Corollary. Let (Φ1, . . . , Φk) ∈ DA(X0, Xk). Let α ∈ Cov(X0), β ∈
Cov(Xk), n ∈ N . Then there exists an (α, β)-approximation ϕ: C∗(N (n)(α)) →
C∗(N (n)(β)) of (Φ1, . . . , Φk) which is a composition of chain approximations of
the Φi.

Proof. The proof proceeds by induction on the length k. For k = 1 the
assertion follows from (50.29) and (50.37) is used in the inductive step. �

(50.39) Proposition. Compositions of small homotopic and sufficiently fine
chain approximations are also small homotopic.

Proof. Let Φ1 ∈ DA(X1, X2), Φ2 ∈ DA(X2, X3) and let α, α ∈ Cov(X1),
β, β ∈ Cov(X2), γ ∈ Cov(X3). Assume that the following diagram is given:

C∗(N (n)(α))
ϕ1

��

id

��

C∗(N (n)(β))
ϕ2

��

id

��

C∗(N (n)(γ))

id

��

(I) (II)

C∗(N (n)(α))
ψ1

�� C∗(N (n)(β))
ψ2

�� C∗(N (n)(γ))

where (I) is a homotopy commutative with a (Φ1, α, β)-small homotopy D1 and (II)
is a homotopy commutative with a (Φ2, β, γ)-small homotopy D2 (cf. 50.35). Let
the covering β be fine enough to satisfy (50.35). We prove that D := ψ2D1 +D2ϕ1

is a chain homotopy joining ϕ2ϕ1 and ψ2 ◦ ψ1 that it is (Φ, α, γ)-small, where
Φ = Φ2 ◦ Φ1. Let s ∈ N (n)(α) be a simplex. Then

ψ2ψ1s− ϕ2ϕ1s = ψ2ψ1s− ψ2ϕ1s + ψ2ϕ1s− ϕ2ϕ1s

= ψ2(∂D1s + D1∂s) + ∂D2ϕ1s + D2∂ϕ1s

= ∂(ψ2D1s + D2ϕ1s) + (ψ2D1 + D2ϕ1)∂s.

Therefore, D is a chain homotopy. Now, we check the smallness condition. From
(50.31) we obtain a point c(s) ∈ X1 such that

supp s ⊂ St(c(s), α), supp D1s ⊂ St(Ψ1(c(s)), β).

By (50.35), we find a point u = u(c(s)) ∈ X1 such that

c(s) ∈ St(u, α), Φ2(St2(Φ1(c(s)), β)) ⊂ St(Φ2 ◦ Φ1(u), γ).

Thus supp s ⊂ St2(u, α). We show that supp Ds ⊂ St2(Φ2 ◦ Φ1(u), γ). But
supp Ds = supp ψ2D1s ∪ supp D2ϕ1s. Let D1s =

∑
aisi. For each si there is

p(si) ∈ X2 such that

supp si ⊂ St(p(si), β), supp ψ2si ⊂ St(Φ2(p(si), γ).
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Hence p(si) ∈ St2(Φ1(c(s)), β) and

supp ψ2si ⊂ St(Φ2 St2(Φ1(c(s)), β), γ) ⊂ St2(Φ2 ◦ Φ1(u), γ).

Therefore,
supp ψ2D1s =

⋃
i

supp ψ2si ⊂ St2(Φ2 ◦ Φ1(u), γ).

Note that supp ϕs ⊂ D1s. Let ϕ1s =
∑

bjsj . By (50.31), for each sj ∈ N (n)(β)
there is a point c(sj) ∈ X2 such that

supp sj ⊂ St(c(sj), β), sup D2sj ⊂ St(Φ2(c(sj )), γ).

But we note that c(sj ) ∈ St2(Ψ1(c(s)), β) and consequently

supp D2sj ⊂ St2(Φ2 ◦ Φ1(u), γ).

Therefore,
supp D2ϕ1s =

⋃
j

supp D2sj ⊂ St2(Φ2 ◦ Φ1(u), γ)

and our proof is finished. �

51. A fixed point index of decompositions for finite polyhedra

In this section we shall use the previous results to construct a fixed point index
theory on compact polyhedra.

Let X and Y be two compact spaces. Let (Φ1, . . . , Φk) ∈ DA(X, Y ). Then
each chain approximation ϕ: C∗(N (n)(α))→ C∗(N (n)(β)) of (Φ1, . . . , Φk) induces
a homomorphism

ϕ∗: H∗(N (n)(α))→ H∗(N (n)(β)).

Assume that the chain approximations considered are compositions of n-close ap-
proximations of the Φi. From (50.33) and (50.39) we deduce that for sufficiently
fine coverings α, β the diagram

H∗(N (n)(α))
ϕ∗

�� H∗(N (n)(β))

H∗(N (n)(α̃))
ψ∗

��

iα̃
ᾱ∗

��

H∗(N (n)(β̃))

iβ̃

β̄∗

��

commutes, where α̃ ≥ α ≥ α, β̃ ≥ β ≥ β and ϕ, ψ are (α, β)-approximations of
(Φ1, . . . , Φk). Therefore, one can define the induced homomorphism

(Φ1, . . . , Φk)∗: Ȟ∗(X)→ Ȟ∗(Y )
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by the formula

(51.1) (Φ1, . . . , Φk)q := lim←−{ϕ∗q: Hq(N (n)(α))→ Hq(N (n)(β))}

for q < n. This homomorphism is nontrivial in the sense of O’Neill (see [Ne1]),
i.e. it is a nonzero homomorphism of the 0-th homology vector spaces.

Let (X, A) and (Y, B) be compact pairs and let Φ be a map determined by
(Φ1, . . . , Φk) ∈ DA(X, Y ) such that Φ(A) ⊂ B. Let α ∈ Cov X and β ∈ Cov Y be
such that Φ(St2(A, α)) ⊂ St(B, β). Let β̃ ∈ Cov Y be a star-refinement of β. Con-
sider a chain map ϕ: C∗(N (n)(α))→ C∗(N (n)(β)) which is an (α, β̃)-approximation
of (Φ1, . . . , Φk).

If a chain c ∈ C∗(N (n)(α)) is such that supp c ⊂ St(A, α) then supp ϕc ⊂
St2(B, β̃) ⊂ St(B, β). This follows from (50.36.2) (without loss of generality we

can assume that ϕ satisfies (50.36.2) with r = 1). Therefore, ϕ = iβ
β ◦ϕ is a chain

map of the relative chain complexes:

ϕ: C∗(N (n)(α), N (n)(α)|St(A,α̃))→ C∗(N (n)(β), N (n)(β)|St(B,β)).

Now, a formula similar to (51.1) gives a definition of the relative induced homo-
morphism ([ES-M]):

(51.2) (Φ1, . . . , Φk)∗: Ȟ∗(X, A)→ Ȟ∗(Y, B).

Let (X, A) and (Y, B) be two arbitrary pairs. If Φ is determined by (Φ1, . . . , Φk) ∈
DA(X, Y ) then by (14.9), the image Φ(C) of any compact set C ⊂ X is a compact
subset of Y . Assume that Φ(A) ⊂ B. Then the procedure given in Section 5
of Chapter I can be applied. Therefore, we obtain the induced homology homo-
morphism (Φ1, . . . , Φk)∗: H∗(X, A) → H∗(Y, B), where H is the Čech homology
functor with compact carriers and coefficients in the field Q.

Let (K, τ) be a polyhedron with a fixed triangulation τ . The covering associated
with the triangulation τ is α(τ) := {st(vi, τ) := Int St(vi, τ)}, where vi are vertices
of τ . There are simplicial maps θ: (K, τ) → N(α(τ)) and λ: N(α(τ)) → (K, τ)
defined on vertices by θ(v) := st(v, τ) and λ(st(v, τ)) := v. These maps define
the canonical simplicial isomorphism between the complexes (K, τ) and N(α(τ)).
Moreover, carr s ⊂ supp θs and supp σ ⊂ St(carr λσ, α(τ)).

Let (Φ1, . . . , Φk) ∈ DA(K, L). Let τ be a triangulation of K and µ a triangu-
lation of L. We define Aj(Φ1, . . . , Φk) to be the set of chain maps ϕ: C∗(K, τ j)→
C∗(L, µj), which are of the form ϕ = λ◦ϕk ◦ . . .◦ϕ1 ◦ θ ◦ b, where b is the standard
subdivision map, λ and θ are induced by the above-named isomorphism for µj ,
τ j, respectively, and ϕi are n-close chain approximations of Φi; n = dim K.
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(51.3) Proposition. The graded set {Aj(Φ1, . . . , Φk)}j is an A-system for
the map Φ determined by (Φ1, . . . , Φk).

Proof. From (50.30) and (50.38) we deduce that the sets Aj(Φ1, . . . , Φk) are
nonempty for arbitrarily large j. Condition (50.18.2) follows from Propositions
(50.33) and (50.39). �

(51.4) Definition. The above A-system is said to be an induced A-system of
the decomposition (Φ1, . . . , Φk). We denote it by A∗(Φ1, . . . , Φk).

Since every element ϕ of Aj(Φ1, . . . , Φk) induces a homology homomorphism,
using (50.18.2) we obtain the induced homomorphism

(A∗(Φ1, . . . , Φk))∗: H∗(K)→ H∗(L).

A straightforward consequence of the definitions is given by

(51.5) Proposition. If X and Y are compact polyhedra and (Φ1, . . . , Φk) ∈
DA(X, Y ) then

(Φ1, . . . , Φk)∗ = (A∗(Φ1, . . . , Φk))∗.

Let X be a compact polyhedron and let Φ be a map determined by a decom-
position (Φ1, . . . , Φk) ∈ DA(X, X). Let U be an open subset of X such that
x �∈ Φ(x) for x ∈ ∂U .

(51.6) Definition. We define a fixed point index i(X, (Φ1, . . . , Φk), U) of a de-
composition (Φ1, . . . , Φk) with respect to U by

i(X, (Φ1, . . . , Φk), U) := IA∗(Φ1,... ,Φk)(X, Φ, U).

(51.7) Proposition. Definition (51.6) does not depend on the triangulation τ

of X.

Proof. Let A∗(Φ1, . . . , Φk) and A∗(Φ1, . . . , Φk) be constructed for triangu-
lations τ and τ0, respectively. Given j ∈ N there is an integer j1 such that
α(τ j1

0 ) ≥ α(τ j). Let ψ: C∗(N (n)(α(τ j1
0 ))) → C∗(N (n)(α(τ j1

0 ))) be an approxima-
tion of Φ such that

λ ◦ ψ ◦ θ ◦ b ∈ Aj1(Φ1, . . . , Φk).

Let l be an integer such that α(τ l) ≥ α(τ l1
0 ).

We define a chain map ϕ: C∗(N (n)(α(τ l)))→ C∗(N (n)(α(τ j))) by the formula

ϕ := i
α(τ

j1
0 )

α(τj ) ◦ ψ ◦ i
α(τl)

α(τ
l1
0 )

.

It is also an approximation of Φ and λ ◦ϕ ◦ θ ◦ b ∈ Aj(Φ1, . . . , Φk). Note that the
only difference between ϕ and ψ is in the natural maps i. Therefore, one easily
verifies that A∗ and A∗ have the same index. �
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(51.8) Lemma. Let H: X× I → Y ∈ Am(X× I, Y ) be a homotopy (I = [0, 1]).
Then for every pair α ∈ Cov X and β ∈ Cov Y there are (α, β)-approximations ϕ0

of H0 and ϕ1 of H1 which are chain homotopic with an (H, α, β)-small homotopy D

(see (50.18.2)).

Proof. For every x ∈ X there is a neighbourhood Ox ⊂ X of x such that
H(Ox × I) ⊂ St(H({x}) × I), β). We can assume that the covering {O}x∈X is
a refinement of α. Let {Oxi}k

i=1 be a finite subcovering of {Ox}. Let α be a star-
refinement of {Oxi}. Now, we consider a covering γ of X×I, γ := {U×I | U ∈ α}.
There exists a (γ, β)-approximation of H, ψ: C∗(N (n+1)(γ̃))→ C∗(N (n+1)(β)). We
can assume that γ̃ consists of set of the form U × V , where U ⊂ X and V ⊂ I.
Then N(γ̃) = N(α̃)×N(η), where α̃ = {U}, η = {V } and γ̃ = {U × V }. We can
also assume that the complex N(η) is 1-dimensional. Let us define, for i = 0, 1,
ϕi := ψ|

N(α̃)×{Vi}, where Vi are such that i ∈ Vi. Obviously N(α̃)× {Vi} ≈ N(α̃)
and one easily verifies that the ϕi are (α, β)-approximations of Hi, i = 0, 1.

Let s ∈ N(α̃) be a simplex and consider the chain s × I =
∑

sj , where sj are
simplex of N(γ̃). We define Ds := ψ(s × I). Since ψ is an approximation of H,
for each sj there is a point p(sj) ∈ X × I such that

supp sj ⊂ St(p(sj), γ), supp ψsj ⊂ St(H(p(sj )), β).

Since α̃ ≥ α, there is a set Oxi such that St(supp s, α) ⊂ Oxi . Therefore,

H(St(supp s, α)× I) ⊂ St(H({xi} × I), β).

Let p(sj) = (pj, tj). Then pj ∈ St(supp sα) and hence

supp ψsj ⊂ St(H({xi} × I), β).

We put d(s) := xi (see (50.18.2)) and the proof is complete. �

(51.9) Proposition. Let X and Y be compact polyhedra and let (Φ1, . . . , Φk),
(Ψ1, . . . , Ψk) ∈ DA(X, Y ) be homotopic. If H: X × I → Y is the map deter-
mined by the joining homotopy then the induced A-systems A∗(Φ1, . . . , Φk) and
A∗(Ψ1, . . . , Ψk) are H-homotopic (see (50.18)).

Proof. Without loss of generality we can assume that Φ2 = Ψ2, . . . , Φk = Ψk

and Φ1 is homotopic to Ψ1 in Am1 (X, X1). By (51.8), there are arbitrarily fine ap-
proximations of Φ1 and Ψ1 which are h1-small homotopic (where H is determined
by (h1, . . . , hk)). We obtain the desired H-small homotopic approximations of
(Φ1, . . . , Φk) and (Ψ1, . . . , Ψk) by composing those from (51.8) with the approxi-
mations of the maps h2, . . . , hk. �
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(51.10) Theorem. The fixed point index satisfies the following properties:

(51.10.1) (Additivity) Let Φ be determined by the decomposition (Φ1, . . . , Φk) ∈
DA(X, X), where X is a compact polyhedron. Assume that U1 and U2

are open disjoint subsets of an open set U ⊂ X and Fix Φ|U ⊂ U1 ∪U2.
Then

i(X, (Φ1, . . . , Φk), U) = i(X, (Φ1, . . . , Φk), U1) + i(X, (Φ1, . . . , Φk), U2).

(51.10.2) (Homotopy Invariance) Let (Φ1, . . . , Φk) and (Ψ1, . . . , Ψk) be homotopic
and let the map H: X × [0, 1]→ Y determined by the homotopy satisfy
x �∈ H(x, t) for x ∈ ∂U and t ∈ [0, 1]. Then

i(X, (Φ1, . . . , Φk), U) = i(X, (Ψ1, . . . , Ψk), U).

(51.10.3) (Normalization) If (Φ1, . . . , Φk) ∈ DA(X, X) and

λ(Φ1, . . . , Φk)∗ =
∑

(−1)j tr(Φ1, . . . , Φk)∗)j

then i(X, (Φ1, . . . , Φk), X) = λ(Φ1, . . . , Φk)∗.

(51.10.4) (Commutativity) Let X, Y be compact polyhedra and Φ ∈ DA(X, Y ),
Ψ ∈ DA(Y, X). Denote by the same letters the maps determined by
Φ and Ψ. Let W be an open subset of X such that x �∈ Ψ ◦ Φ(x) for
x ∈ ∂W , y �∈ Φ ◦Ψ(y) for y ∈ ∂(Ψ−1(W )) and

Ψ(Fix Φ ◦Ψ−Ψ−1(W )) ∩ Fix Ψ ◦ Φ|W = ∅.

Then i(X, Ψ ◦ Φ, W ) = i(Y, Φ ◦Ψ, Ψ−1(W )).

(51.10.5) (Mod-p Property) Let F = Zp, p prime. Let Φ ∈ DA(X, X) and denote
by same letter the map determined by Φ. Let W ⊂ X be open and
assume that x �∈ Φp(x) for x ∈ ∂W and

Φk(Fix Φp −W ) ∩ Fix Φp|W = ∅ for k < p.

Then i(X, Φ, W ) = i(X, Φp, W ).

Proof. (51.10.1) is an immediate consequence of (50.21) (see (50.24)). The
homotopy invariance follows from (50.23) and (51.9). The normalization property
is a consequence of (51.5) and the Hopf trace theorem (see [Sp-M]). The last two
properties follow from (50.25) and (50.26), respectively. �
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52. Fixed point index of decompositions for compact ANRs

In this section we extend the fixed point index theory to the case of compact
ANRs. We need five lemmas which are strictly analogous to (22.2) but for the
clarity of this section we shall present the respective formulations.

(52.1) Lemma. Let A be a closed subset of a compact space X. Let Φ: X � X

be an u.s.c. map such that Fix(Φ)∩A = ∅. Then there exists δ = δ(Φ, A) > 0 such
that: if dist(x, A) < δ then dist(x, Φ(x)) > δ.

(52.2) Lemma. Let U be an open subset of a compact ANR-space X and let
Φ: X � X be an u.s.c. map such that Fix(Φ)∩∂U = ∅. If ε < δ (Φ, ∂U) and Pε ε-
dominates X with rε: P → X and sε: X → P then the map Ψ = sε ◦Φ◦ rε: P � P

is fixed point free on ∂(r−1
ε (U)).

(52.3) Lemma. Let X1, X2, X3 be compact metric spaces, Φ1: X1 � X2 and
Φ2: X2 � X3 u.s.c. maps, and ε0 > 0. There exists ε > 0 such that for every
point y ∈ X1 there is a point u(y) ∈ X1 such that

y ∈ Oε0(u(y)), Φ2(O2ε(Φ1(y))) ⊂ Oε0(Φ2 ◦ Φ1(u(y))).

(52.4) Lemma. Let X1, X2 be two compact metric spaces and let Φ1: X1 � X2

and Φ2: X2 � X1 be u.s.c. maps. Then for each ε > 0 there is ε0 > 0 such that
for η ∈ (0, ε0) and u.s.c. maps Φ1η: X1 � X2, Φ2η: X2 � X1 with Φiη(x) ⊂
Oη(Φi(x)) we have

Fix Φ2η ◦ Φ1η ⊂ Oε(Fix Φ2 ◦ Φ1).

(52.5) Lemma. Let U be an open subset of a metric space Z and let C ⊂ Z be
such that C∩U = ∅. For δ < d(C, U) and a continuous singlevalued map f : Z → Z

such that d(x, f(x)) < δ we have f−1(U) ∩ C = ∅.

In this section we will denote by the same letter a decomposition Φ ∈ DA(X, X)
and the map Φ: X � X, which determines the decomposition. Usually, the as-
sumptions that are made for the map. The index is defined for decompositions.

Let X be a compact metric ANR and Φ ∈ DA(X, X). Let U be an open subset
of X such that Fix Φ ∩ ∂U = ∅.

(52.6) Definition. Let ε < (1/4)δ(Φ, ∂U). Let P be a finite polyhedron ε-
dominating X with maps r: P → X and s: X → P . We define the fixed point index
of the decomposition Φ with respect to U by

i(X, Φ, U) := i(P, Ψ, r−1(U)), where Ψ = s ◦ Φ ◦ r.



270 CHAPTER IV. HOMOLOGICAL METHODS IN FIXED POINT THEORY

(52.7) Proposition. Definition (52.6) does not depend on the choice of an
ε-domination.

Proof. Let ε1, ε2 < (1/4)δ(Φ, ∂U) and let ri: Pi → X, si: X → Pi be such
that ri ◦ si is εi-homotopic to idX , i = 1, 2. We shall prove that

i(P1, s1 ◦ Φ ◦ r1, r−1
1 (U)) = i(P2, s2 ◦ Φ ◦ r2, r−1

2 (U))

in four steps.

(52.7.1) i(P2, s2 ◦ Φ ◦ r2, r−1
2 (U)) = i(P2, T, r−1

2 (U)),

where T := s2 ◦ r1 ◦ s1 ◦ Φ ◦ r1 ◦ s1 ◦ r2. Let H: X × I → X be an ε1-homotopy
with H(x, 0) = x and H(x, 1) = r1 ◦ s1(x). Consider the composition

P2 × I
r′

2−→ X × I
H′
−→ X × I → Φ′

· · · → X × I
H−→ X

s2−→ P2,

where r′
2 = (r2, id), H ′ = (H, id), Φ′ = (Φ, id). In order to apply the homotopy

property (51.10.2) we have to show that for each t ∈ [0, 1] the map

Ψ := s2 ◦Ht ◦ Φ ◦Ht ◦ r2: P2 → P2

has no fixed points in the set ∂(r−1
2 (U)). Note that ∂(r−1

2 (U)) ⊂ r−1
2 (∂U). Actu-

ally, we will prove that y �∈ Ψ(y) for y ∈ X such that d(r2(y), ∂U) < (1/4)δ(Φ, ∂U).
First, note that if x ∈ ∂U is such that d(r2(y), ∂U) = d(r2(y), x) then

d(Ht ◦ r2(y), ∂U) ≤ d(Ht ◦ r2(y), x) ≤ d(Ht ◦ r2(y), r2(y)) + d(r2(y), x)

< ε1 +
1
4

δ(Φ, ∂U) <
1
2

δ(Φ, ∂U).

From (52.1) we obtain d(Φ ◦ Ht ◦ r2(y), r2(y)) > (3/4)δ(Φ, ∂U). For every z ∈
Φ ◦Ht ◦ r2(y) we have

d(Ht(z), z) < ε1 <
1
4

δ(Φ, ∂U)

and therefore,

(52.7.2) d(Ht(z), r2(y)) >
1
2

δ(Φ, ∂U).

Now, suppose that for some y such that d(r2(y), ∂U) < (1/4)δ(Φ, ∂U) we have
y ∈ Ψ(y). Then r2(y) ∈ r2 ◦Ψ(y). But for each z ∈ Φ ◦Ht ◦ r2(y) we have

(72.7.3) d(r2 ◦ s2 ◦Ht(z), Ht(z)) < ε2 <
1
4

δ(Φ, ∂U).
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Now, (52.7.3) together with (52.7.2) imply that

d(r2 ◦ s2 ◦Ht(z), r2(y)) >
1
4

δ(Φ, ∂U) > 0.

Therefore, d(r2 ◦ Ψ(y), r2(y)) > 0 which is impossible because r2(y) ∈ r2 ◦ Ψ(y).
So, the homotopy property (51.10.2) gives (52.7.1).

(52.7.4) i(P2, T, r−1
2 (U)) = i(P2, T, S−1(U)),

where T := s2 ◦ r1 ◦ s1 ◦ Φ ◦ r1 ◦ s1 ◦ r2, S := r1 ◦ s1 ◦ r2.
For the proof of (52.7.4) we apply the additivity (51.10.1). First, we show

that the map T : P2 → P2 has no fixed points in the set A := r−1
2 (U) \ S−1(U).

Let y ∈ A. Then r2(y) ∈ U but S(y) �∈ U . Consider the map c: [0, 1] → X,
c(t) := H(r2(y), t). The path c([0, 1]) meets U at c(0) and X \U at c(1). So, there
is t0 ∈ [0, 1] such that c(t0) ∈ ∂U . But

d(r2(y), H(r2(y), t0)) < ε1 <
1
4

δ(Φ, ∂U),

hence d(r2(y), ∂U) < (1/4)δ(Φ, ∂U). The argument from the first step implies
that y �∈ T (y). By the additivity property (51.10.1) one obtains

i(P2, T, r−1
2 (U)) = i(P2, T, r−1

2 (U) ∩ S−1(U)).

The same argument used for set B := S−1(U) \ r−1
2 (U) implies that

i(P2, T, S−1(U)) = i(P2, T, r−1
2 (U) ∩ S−1(U)).

The last two equalities imply (52.7.4)

(52.7.5) i(P2, T, S−1(U)) = i(P1, R, r−1
1 (U)),

where R := s1 ◦ r2 ◦ s2 ◦ r1 ◦ s1 ◦ Φ ◦ r1.
For the proof of (52.7.5) we apply the commutativity (51.10.4). Let K: X ×

[0, 1] � X be an ε2-homotopy such that K(x, 0) = x and K(x, 1) = r2 ◦ s2(x).
We wish to show that the map

Rt := s1 ◦Kt ◦Ht ◦ Φ ◦ r1: P1 → P1

has no fixed points in the set ∂(r−1
1 (U)) for t ∈ [0, 1]. Let y ∈ P1 be such that

r1(y) ∈ ∂U . Then d(r1(y), Φ ◦ r1(y)) > δ(Φ, ∂U). For each z ∈ Φ ◦ r1(y) we have

d(Kt ◦Ht(z), z) ≤ d(Kt ◦Ht(z), Ht(z)) + d(Ht(z), z) < ε2 + ε1 <
1
2

δ(Φ, ∂U).



272 CHAPTER IV. HOMOLOGICAL METHODS IN FIXED POINT THEORY

Since δ(Φ, ∂U) < d(r1(y), z) ≤ d(z, Kt ◦Ht(z)) + d(r1(y), Kt ◦Ht(z)), we have

(52.7.6) d(r1(y), Kt ◦Ht ◦ Φ ◦ r1(y)) >
1
2

δ(Φ, ∂U).

Suppose, that for some y ∈ r−1
1 (∂U) we have y ∈ Rt(y). Then r1(y) ∈ r1 ◦Rt(y).

But for each z ∈ Φ ◦ r1(y) we have

d(r1 ◦ s1 ◦Kt ◦Ht(z), Kt ◦Ht(z)) < ε1 <
1
4

δ(Φ, ∂U).

Combining this with (52.7.6) we obtain

d(r1 ◦Rt(y), r1(y)) >
1
4

δ(Φ, ∂U) > 0,

which establishes the contradiction with our assumption. In particular, taking
t = 1, we have shown that the map R = R1 has no fixed points in the set
∂(r−1

1 (U)).
Let us consider the compositions h := s2 ◦ r1 ◦ s1 ◦ Φ ◦ r1, k := s1 ◦ r2. We

have just shown that k ◦ h has no fixed points in the set ∂(r−1
1 (U)). Now, we

check the last two assumptions for the commutativity property (51.10.4). Denote
W := r−1

1 (U). Let y ∈ ∂(k−1(W )) = k−1(∂W ). If y ∈ h ◦ k(y) = T (y) then
k(y) ∈ s1 ◦ r2 ◦ T (y) = k ◦ h ◦ s1 ◦ r2(y) and s1 ◦ r2(y) ∈ ∂(r−1

1 (U)), which
is impossible.

Let y ∈ Fix h◦k−k−1(W ). We have to prove that k(y) ∈ Fix k ◦h|W . But this
follows from Fix k ◦ h|W ⊂ k−1(W ). Therefore, (51.10.4) implies (52.7.5).

(52.7.7) i(P1, R, r−1
1 (U)) = i(P1, s1 ◦ Φ ◦ r1, r−1

1 (U)).

We take the homotopy

L: P1 × I
r′

1−→ X × I
Φ
−� · · ·

Φ
−� X × I

H′
−� X × I

K
−� X

s1−→ P1,

where r′
1 = (r1, id), Φ′ = (Φ, id), H ′ = (H, id). We have already proved in the

third step that y �∈ L(y, t) for y ∈ ∂(r−1
1 (U)) and t ∈ I. By the homotopy property

(51.10.2) we obtain (52.7.7) and this completes the proof of (52.7). �

Now we verify the properties of the index.

(52.8) Proposition. Let U be an open subset of a compact ANR X. Let Φ ∈
DA(X, X) and let U1, U2 ⊂ U be open, disjoint and such that Fix Φ|U ⊂ U1 ∪ U2.
Then

i(X, Φ, U) = i(X, Φ, U1) + i(X, Φ, U2).
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Proof. Applying (52.1) to the map Φ and A := (U \U1)∪U2 we find δ which
is smaller than δ(Φ, ∂U) and δ(Φ, ∂Ui). Let ε < (1/4)δ and let P be a compact
polyhedron which ε-dominates X with maps r: P → X and s: X → P . Then

i(X, Φ, U) = i(P, Ψ, r−1(U)), i(X, Φ, Uj) = i(P, Ψ, r−1(Uj)),

where Ψ = s◦Φ◦r, j = 1, 2. We have to show that Ψ has no fixed points in the set
r−1(U) \ r−1(U1 ∪U2) = r−1(U −U1 ∪U2). Suppose y ∈ Ψ(y) and let z ∈ Φ(r(y))
be such that r(y) = (r ◦ s)(z). Therefore,

d(r(y), Φ(r(y))) ≤ d(r(y), z) = d((r ◦ s)(z), z) < ε <
δ

4
,

and we have arrived at a contradiction with (52.1). Hence the additivity (51.10.1)
implies our assertion. �

(52.9) Proposition. Let H ∈ DA(X × I, X). If U is an open subset of the
compact ANR, X such that the maps Ht: X � X have no fixed points on ∂U for
t ∈ I then

i(X, H0, U) = i(X, H1, U).

Proof. Let χχ = (H, id): X × I � X × I. If x ∈ ∂U then χχ(x, t) = (x, t)
means that H(x, t) = Ht(x) = x contrary to the assumption, and so χχ has no
fixed points in the set ∂U × I. Apply (52.1) to the map χχ and A = ∂U × I, with
the natural Cartesian metric d′ in X × I. We find δ such that

d′((x, t), ∂U × I) < δ implies d′((x, t),H(x, t)) > δ.

But

d′((x, t), ∂U × I) = d(x, ∂U), d′((x, t), χχ(x, t)) = d(x, H(x, t)) = d(x, Ht(x)).

Therefore, we may assume that δ(Ht, ∂U) is the same for all t ∈ I. Denote it by δ.
For ε < δ/4 we have a polyhedron P ε-dominating X with maps s: X → P and
r: P → X. By definition, i(X, Ht, U) = i(P, s ◦ Ht ◦ r, r−1(U)). By (52.2), the
family s ◦Ht ◦ r satisfies the assumption of the homotopy property (51.10.2). �

(52.10) Proposition. Let X be a compact ANR and Φ ∈ DA(X, X). Then

i(X, Φ, X) = λ(Φ∗).

Proof. The assertion follows from (51.10.3) and from the fact that r∗◦s∗ = id∗
(see (6.1)). �
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(52.11) Proposition. Let X, X′ be compact ANRs and Φ ∈ DA(X, X′), Ψ ∈
DA(X′, X). Let U be an open subset of X such that x �∈ Ψ ◦ Φ(x) for x ∈ ∂U ,
y �∈ Φ ◦Ψ(y) for y ∈ ∂(Ψ−1(U)) and

Ψ(Fix Φ ◦Ψ \Ψ−1(U)) ∩ Fix Ψ ◦ Φ|U = ∅.

Then i(X′, Φ ◦Ψ, Ψ−1(U)) = i(X, Ψ ◦ Φ, U).

Proof. From (52.1) we obtain δ(Ψ ◦ Φ, ∂U) and δ(Φ ◦ Ψ, ∂(Ψ−1(U))). Let δ

be the smaller of these two. Next, we find ε for ε0 = δ/4 from (52.3) (ε < ε0) with
Φ1 = Φ and Φ2 = Ψ. Again from (52.3) we find ε′ for ε0 = ε and Φ1 = Ψ and
Φ2 = Φ. Let P be a polyhedron ε-dominating X with maps r1: P → X, s1: X → P .
Let P ′ be a polyhedron ε′-dominating X with r2: P ′ → X, s2: X → P ′. Since
ε < δ/4 < δ(Ψ ◦ Φ, ∂U),

i(X, Ψ ◦ Φ, U) = i(P, s1 ◦Ψ ◦ Φ ◦ r1, r−1
1 (U)).

Since ε′ < (1/4)δ(Φ ◦Ψ, ∂(Ψ−1(U))),

i(X′, Φ ◦Ψ, Ψ−1(U)) = i(P ′, s2 ◦ Φ ◦Ψ ◦ r2, (Ψ ◦ r2)−1(U)).

We have to prove that the right sides of the above equalities are equal. We will
do it in four steps:

(52.11.1) i(P, s1 ◦Ψ ◦ Φ ◦ r1, r−1
1 (U)) = i(P, Ψ1 ◦ Φ1, r−1

1 (U)),

where Ψ1 = s1 ◦Ψ ◦ r2, Φ1 = s2 ◦ Φ ◦ r1,

i(P, Ψ1 ◦ Φ1, r−1
1 (U)) = i(P ′, Φ1 ◦Ψ1, (r1 ◦Ψ1)−1(U)),(52.11.2)

(52.11.3) i(P ′, Φ1 ◦Ψ1, (r1 ◦Ψ1)−1(U)) = i(P ′, Φ1 ◦Ψ1, (Ψ ◦ r2)−1(U)),

(52.11.4) i(P ′, Φ1 ◦Ψ1, (Ψ ◦ r2)−1(U)) = i(P ′, s2 ◦ Φ ◦Ψ ◦ r2, (Ψ ◦ r2)−1(U)).

Proof of (52.11.1). We apply the homotopy property (51.10.2). Let H ′: X ×
I → X be an ε′-homotopy such that H ′(x, 0) = x, H ′(x, t) = r2 ◦ s2(x) and
H ′

t(x) := H ′(x, t). We have to prove that Θt := s1 ◦ Ψ ◦ Ht ◦ Φ ◦ r1 has no
fixed points in the set r−1

1 (∂U). Let y ∈ r−1
1 (∂U) be such that y ∈ Θt(y). Then

r1(y) ∈ r1 ◦Θt(y) and therefore,

r1(y) ∈ r1 ◦ s1 ◦Ψ(Oε′(Φ ◦ r1(y))).

By the definition of ε′, there is a point u = u(r1(y)) such that

r1(y) ∈ (r1 ◦ s1)(Oδ/4(Ψ ◦ Φ(u))) ⊂ Oδ/2(Ψ ◦ Φ(u)).
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Therefore, u ∈ O3δ/4((Ψ ◦ Φ)(u)) and d(u, ∂U) < δ which contradicts the choice
of δ.

Proof of (52.11.2). We verify the assumptions of the commutativity property
of Theorem (51.10). First, note that the map Ψ1 ◦ Φ1 has no fixed points in
∂(r−1

1 (U)), as has been proved above (t = 1). We let B1 = Fix(Ψ ◦ Φ|U ), B2 =
Fix(Φ ◦ Ψ|Ψ−1(U)), B3 = Fix(Φ ◦ Ψ) \ Ψ−1(U), Since Bi, i = 1, 2, 3 are compact,
there exists ε1 such that

d(Oε1(B1), X \ U) = δ1 > 0, d(Oε1(B2), X′ \Ψ−1(U)) = δ2 > 0,

d(Oε1(B3), Ψ−1(U)) = δ3 > 0, d(Ψ(Oε1(B3)), U) = δ4 > 0,

d(Ψ(Oε1(B2)), X \ U) = δ5 > 0.

Let ε2 ≤ (1/2) min{ε1, δ1, δ2, δ3, δ4, δ5}. Let ε3 < ε2 satisfy (52.3) for ε0 = ε2.
Without loss of generality we can assume that ε′ is smaller than ε3. Suppose
y ∈ Φ1 ◦Ψ1(y). Then r2(y) ∈ Fix r2 ◦ Φ1 ◦ s1 and therefore,

r2(y) ∈ Oε2(Fix Φ ◦Ψ) = Oε2(B3).

Let C := Ψ(Oε2(B3)). We have ε < ε2 < (1/2)d(C, U) and from (52.8) we obtain
(r1 ◦ s1)−1(U) ∩C = ∅. Hence, d(Oε1(B3), V ) > 0.

Let D := Ψ(Oε1(B2)). Since ε < (1/2)d(D, X \ U), by (52.8) we obtain (r1 ◦
s1)−1(X \ U) ∩ D = ∅ and thus D ⊂ (r1 ◦ s1)−1(U). Therefore, Oε1(B2) ⊂ V .
Hence, we deduce that r2(y) �∈ ∂V and therefore v �∈ ∂(r−1

2 (V )). It remains to
prove the following implication:

(52.11.5) y ∈ Fix Φ1 ◦Ψ1 \ r−1
2 (V )⇒ Ψ1(y) ∩ Fix Ψ1 ◦ Φ1|r−1

1 (U) = ∅.

Actually we prove a stronger one:

(52.11.5)⇒ Ψ1(y) ∩ r−1
1 (U) = ∅.

Suppose y satisfies (52.11.5). Then r2(y) ∈ Fix r2 ◦Φ1 ◦ s1 \V . Therefore, r2(y) ∈
Oε2(B3) ⊃ Oε1(B3). But Ψ(Oε1(B3)) ∩ U = ∅ and by the choice of ε′ < δ4 we
obtain (r1 ◦s1 ◦Ψ)(Oε1(B3))∩U = ∅. Therefore, Φ1(y)∩r−1

1 (U) = ∅ and applying
(5.10.4) we finish the proof of (52.11.2).

Proof of (52.11.3). Note that we have just proved above that the map Φ1 ◦Ψ1

has no fixed points in the sets A1 := r−1
2 (V ) \ (Ψ ◦ r2)−1(U) and A2 := (Ψ ◦

r2)−1(U) \ r−1
2 (V ).

So, applying twice the additivity property (51.10.1) one obtains (52.11.3).
Proof of (52.11.4). We apply again the homotopy property. We only have

to show that the map Θ′
t := s2 ◦ Φ ◦ Ht ◦ Ψ ◦ r2 has no fixed points in the set

r−1
2 (∂(Ψ−1(U))). Let y ∈ Θ′

t(y). Then r2(y) ∈ (r2 ◦ Θ′
t)(y) and therefore, by

(52.4), r2(y) ∈ Oε2(Fix Φ ◦ Ψ). The considerations in the proof (52.11.3) imply
that r2(y) �∈ ∂(Ψ−1(U)). This finishes the proof of (52.11). �
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(52.12) Proposition. Let F = Zp, p a prime number. Let Φ = DA(X, X)
and let U be an open subset of X such that Fix Φp ∩ ∂U = ∅ and

Φk(Fix Φp \ U) ∩ Fix Φp|U = ∅ for k < p.

Then i(X, Φp, U) ≡ i(X, Φ, U) (mod p).

Proof. As in the proof of (52.11) we choose ε such small that for the polyhe-
dron P ε-dominating X with maps r: P → X and s: X → P , the map s ◦ Φ ◦ r

satisfies the assumptions of (51.10.1). We omit the details. �

53. Fixed point index of decompositions for arbitrary ANRs

In this section we extend results from Section 52 to arbitrary ANRs. Let X ∈
ANR and let Φ ∈ DA(X, X) determine a compact map Φ: X � X. Assume
further that U is an open subset of X such that Fix(Φ)∩∂U = ∅. We can assume,
without loss of generality, that X is a closed subset of a normed space E (see
(1.6)). Let V be an open neighbourhood of X in E and r: V → X a retraction
map. We let

Ψ: V � V, Ψ = i ◦ Φ ◦ r,

where i: X → V is the inclusion map. Then Ψ ∈ DA(V, V ) determine a compact
map and Fix(Ψ) ∩ r−1(U) = ∅ (cf. (52.2)). By using (1.13), we get a compact
ANR-space K such that

cl Ψ(V ) ⊂ K ⊂ V.

We let also W = K ∩ r−1(U). Then i(K, Ψ|K , W ) is well defined. We let:

(53.1) i(X, Φ, U) = i(K, Ψ|K, W ).

It is an easy exercise to see that the above definition does not depend on the
possible choices. Moreover, we obtain:

(53.2) Proposition. The index defined in (53.1) satisfies the following prop-
erties:

(53.2.1) If U1, U2 ⊂ U are open disjoint and if Fix(Φ|U ) ⊂ U1 ∪ U2 then:

i(X, Φ, U) = (X, Φ, U1) + i(X, Φ, U2).

(53.2.2) Let χ ∈ DA(X× [0, 1], X) determine a compact homotopy χ: X× [0, 1] �
X such that x �∈ χ(x, t) for all x ∈ ∂U and t ∈ [0, 1]. Then i(X, χ0, U) =
i(X, χ1, U).
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(53.2.3) Let W ⊂ X be an open set and let Φ ∈ DA(X, Y ), Ψ ∈ DA(Y, X)
determine compact maps. Assume that x �∈ Ψ(Φ(x)) for x ∈ ∂W , y �∈
Φ(Ψ(y)) for y ∈ ∂(Ψ−1(W )) and

ψ(Fix(Φ ◦Ψ \Ψ−1(W )) ∩ Fix(Ψ ◦ Φ|W ) = ∅.

Then i(X, Ψ ◦ Φ, W ) = i(Y, Φ ◦Ψ, Ψ−1(W )).
(53.2.4) Let W ⊂ X be an open subset such that

Φk(Fix(Φp) \W ) ∩ Fix(Φp|W )) = ∅,

for k < p, p is a prime number and Fix(Φp) ∩ ∂W = ∅. Then

i(X, Φ, W ) ≡ i(X, Φp, W ) (mod p).

(53.2.5) If Φ ∈ DA(X, X) determines a compact map Φ: X � X then Φ∗ is
a Leray endomorphism and i(X, Φ, X) = Λ(Φ∗).

Proofs of properties (53.2.1)–(53.2.4) are straightforward consequences of (53.1)
and the respective properties for compact ANRs. To deduce (53.2.5) it is enough
to use, additionally, the commutativity property of the Leray endomorphisms (see
Property (11.4)).

(53.3) Remark. We would like to point out that definition (53.1) can be ex-
tended to compositions in DA(X, X) which determine compact absorbing con-
tractions, where X ∈ ANR. In fact assume Φ ∈ DA(X, X) determines com-
pact absorbing contraction Φ: X � X and V is an open set in X such that
Fix(Φ) ∩ ∂V = ∅.

According to the definition of compact absorbing contraction maps we can find
an open set U ⊂ X such that:

(i) Φ(U) is a compact subset of U , and
(ii) for every x ∈ X there is nx such that Φnx(x) ⊂ U .

So Φ1: U � U , Φ1(x) = Φ(x) is a compact map and, in view of (ii), Fix(Φ) =
Fix(Φ1) ∩W = ∅, where W = U ∩ V . Therefore, we can let:

(53.3.1) i(X, Φ, V ) = i(U, Φ1, W ).

Then, it is easy to verify that definition (53.3.1) is correct and (53.2) holds fine in
that case.

We shall end this section by applying the above method to the, defined earlier,
permissible maps. Let X ∈ ANR and let Φ: X � X be a permissible map of
compact absorbing contraction. Thus there exists a decomposition (Φ1, . . . , Φk) ∈
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DA(X, X) which determines a selector of Φ. So, similarly to admissible maps, we
can define the fixed point index set ii(X, Φ, U) of Φ and the Lefschetz set ΛΛ(Φ) of
Φ by putting:

ii(X, Φ, U) = {i(X, (Φ1, . . . , Φk), U) | Φk ◦ . . . ◦ Φ1 ⊂ Φ},
ΛΛ(Φ) = {Λ((Φ1, . . . , Φk)∗) | Φk ◦ . . . ◦ Φ1 ⊂ Φ}.

It is an easy exercise for the reader to formulate properties of the above sets (see
[Dz1-M]). We restrict our considerations to the following two facts which are simple
consequences of obtained earlier results.

(53.4) Theorem (The Lefschetz Fixed Point Theorem). If X ∈ ANR and
Φ ∈ P(X, X) is a compact absorbing contraction map then the Lefschetz set ΛΛ(Φ)
of Φ is not empty and ΛΛ(Φ) �= {0} implies that Fix(Φ) �= ∅.

(53.5) Corollary (The Schauder Fixed Point Theorem). Let X ∈ AR and
Φ ∈ P(X, X) be a compact absorbing contraction map then Fix(Φ) �= ∅.

54. Spheric mappings

Let A be a compact subset of the Euclidean space Rn+1, then the set Rn+1 \A

consists of two different parts, namely:

(54.1) the unbounded component DA of A, and
(54.2) the bounded part BA of A to be the union of all bounded components of

Rn+1 \A.

Of course DA ∩BA = ∅, DA �= ∅, DA is connected and we have:

Rn+1 = BA ∪A ∪ DA.

Moreover, we let Ã = BA ∪A = Rn+1 \ DA.

The following property is an immediate consequence of the above notations:

(54.3) Let A be a compact subset of X, and X be a compact subset of Rn+1.
If Rn+1 \X is connected, then Ã ⊂ X.

(54.4) Definition. A compact subset A ⊂ Rn+1 is called spheric provided
the set Ã is acyclic (with respect to the Čech cohomology functor).

By using the Alexander duality theorem (see Chapter I) we can obtain the
following examples of spheric sets.

(54.5) Examples.

(54.5.1) Any acyclic set A is spheric.
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(54.5.2) Any compact connected subset of R2 is spheric.
(54.5.3) If A has the same Čech cohomology as Sn then A is spheric.

It follows from (54.5.2) that the multivalued map ϕ: K2 � K2 considered in
Chapter II (see (13.5.9)) is continuous and has spheric values but we see that
Fix(ϕ) = ∅.

So, the Brouwer fixed point theorem is not true for u.s.c. mappings with spher-
ical values. In order to understand the reasons for this we let:

δ(ϕ) = {x ∈ K2 | x ∈ Bϕ(x)}.

Note that for ϕ as in (13.5.9) we have δ(ϕ) = {0}.
In what follows we have assumed that all multivalued mappings are u.s.c. with

compact values. Let X be a compact of Rn. Therefore, X ∈ AR.

(54.6) Definition. Let ϕ: X � X be a multivalued map. We will say that
ϕ ∈ δ(X) if and only if the set δ(ϕ) = {x ∈ X | x ∈ Bϕ(x)} is an open subset of X.

Observe that ϕ considered in (13.5.9) is not an element of δ(K2). Note, that
if ϕ: X � X is acyclic or there is m such that ϕ(x) consists of one or m-acyclic
components then ϕ ∈ δ(X).

Now, with a map ϕ: X � Rn+1 we shall associate the map ϕ̃: X � Rn+1 by
putting

ϕ̃(x) = Bϕ(x) ∪ ϕ(x) = Rn \ Dϕ(x) for every x ∈ X.

(54.7) Remark. Since X ∈ AR we obtain: if ϕ: X � X is a multivalued map
then ϕ̃(x) ⊂ X, for every x ∈ X, i.e. ϕ̃ can be considered as a map from X to X.

We will prove the following:

(54.8) Proposition. If ϕ: X � Rn+1 then ϕ̃: X � Rn+1 is u.s.c., in partic-
ular if ϕ is a map from X to X then ϕ̃ is an u.s.c. map from X to X.

Proof. Let x0 ∈ X and ε > 0 be given. Let Oε(ϕ̃(x0)) = {y ∈ Rn |
there exists z ∈ ϕ̃(x0) � ‖y − z‖ < ε} be the open ε-neighbourhood of ϕ̃(x0) in
Rn+1. Since ϕ̃(x0) is compact we can choose r > 0 such that Oε(ϕ̃(x0)) ⊂ B(0, r),
where B(0, r) denotes the open ball in Rn+1 with center 0 and the radius r. Let
us consider the compact set

K = (Rn+1 \Oε(ϕ̃(x0))) \ (Rn+1 \B(0, r)).

We can cover K by a finite number of open balls B(ai, ε/2) in Rn+1, i = 1, . . . , k.
Consequently B(a1, ε/2), . . . , B(ak, ε/2), Rn+1 \ B(0, r) is a covering of the set
Rn+1 \Oε(ϕ̃(x0)).
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We choose an arbitrary point a ∈ Rn+1 \B(0, r). By joining it with all points
a1, . . . , ak we get a continuum C such that.

C ∪ (Rn+1 \Oε(ϕ̃(x0)) ⊂ Rn+1 \ ϕ̃(x0).

We let δ = min{ε/2, dist(C, ϕ̃(x0))} = inf{‖u − v‖, u ∈ C ∧ v ∈ ϕ̃(x0)}. Since
ϕ is u.s.c. there exists an open neighbourhood Ux0 of x0 in X such that ϕ(x) ⊂
Oδ(ϕ(x0)) for every x ∈ Ux0 .

Then we have Rn+1 \Oε(ϕ̃(x0)) ⊂ Rn+1 \Oδ(ϕ̃(x0)). But Rn+1 \Oδ(ϕ̃(x0)) ⊂
Rn+1 \ ϕ(x) for every x ∈ Ux0 . Consequently we obtain:

ϕ̃(x) = Rn+1 \Dϕ(x) ⊂ Oδ(ϕ̃(x0))

and the proof is completed. �

We let F(X) = {ϕ: X � X | ϕ is u.s.c. with compact values and Fix(ϕ) �= ∅}.
We have seen in the last two chapters, that the class F(X) is quite rich.

(54.9) Proposition. A multivalued map ϕ: X � X is called spherical (written
ϕ ∈ S(X)) provided ϕ̃ ∈ F(X).

(54.10) Theorem. S(X) ⊂ F(X).

Proof. There are two possible cases:

(i) the boundary ∂X of X in Rn+1 is equal to X,
(ii) ∂X �= X.

In the case (ii) we have ϕ̃ = ϕ so our claim holds true because ϕ̃ ∈ F(X).
Now, let assume on the contrary that Fix ϕ = ∅. It means that the set δ(ϕ) =

{x ∈ X | x ∈ Bϕ(x)} �= ∅ and hence δ(ϕ) is open because ϕ ∈ δ(X). On the
other hand δ(ϕ) = Fix ϕ̃ so it is also a closed subset of X. To obtain contradiction
it is sufficient to observe that X \ δ(ϕ) �= ∅. Indeed, we have ∂X �= ∅ (X is
compact!) but if x ∈ ∂X, then x �∈ Bϕ(x) and consequently x �∈ δ(ϕ). The proof
is completed. �

Now we will look carefully at the class δ(X) of multivalued mappings.
We shall show that the set δ(ϕ) = {x ∈ X | x ∈ Bϕ(x)} is open in terms of the

Borsuk continuity of the map ϕ (see Section 20).

(54.11) Theorem. If ϕ: X � X is Borsuk continuous then ϕ ∈ δ(X).

Proof. For the proof we consider the multivalued map Bϕ: X � X defined
as (Bϕ)(x) = B(ϕ(x)). It is sufficient to show that, if ϕ is Borsuk continuous then
the graph ΓBϕ = {(x, a) ∈ X ×X | a ∈ Bϕ(x)} is an open subset of X ×X.
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Let (x, a) ∈ ΓBϕ. We take two real numbers α, β > 0 such that α + β =
dist(a, ϕ(x)). Evidently,

(54.11.1) B(a, α) ∩Oβ(ϕ(x)) = ∅.

Since ϕ is Borsuk continuous there is an open neighbourhood V of x in X such
that dC(ϕ(x), ϕ(y)) < β for every y ∈ V . Therefore,

(54.11.2) ϕ(y) ⊂ Oδ(ϕ(x)) for every y ∈ V.

We will prove that V ×B(a, α) is an open neighbourhood of (x, a) in ΓBϕ. Assume
to the contrary that there exist z ∈ V and b ∈ B(a, α) such that b ∈ Bϕ(z).

From (54.11.1) and (54.11.2) we infer that b �∈ ϕ(z) and hence b ∈ Dϕ(z).
Obviously, b ∈ Bϕ(x). It follows that

dC(ϕ(x), ϕ(y)) ≥ inf{|f | | f ∈ C(ϕ(x), ϕ(y))} ≥ B,

which is a contradiction. �

From (54.11), (54.10) and (54.5.3) we infer:

(54.12) Theorem. Let X ⊂ R2 and ϕ: X � X be an u.s.c. map with compact
connected values. If ϕ is Borsuk continuous then Fix(ϕ) �= ∅.

To finish this section we would like to add that some topological invariants, e.g.
the topological degree, the Lefschetz number, the fixed point index etc, can be
defined for spherical type of mappings (see [Da-M]).

Note, that in Definition (54.6) instead of assuming that δ(ϕ) is open we can
assume that the graph ΓBϕ of the map Bϕ: X � X is open in X ×X (cf. [Da-
M]). Throughout this paper we have assumed that X ∈ AR. Let us remark that
most of the results hold true for acyclic approximative neighbourhood retracts (see
Chapter I).

Finally, let us formulate two open problems:

(54.13) Open Problem. Does the Brouwer fixed point theorem hold true for
compositions of spheric mappings?

(54.14) Open Problem. Does Theorem (54.12) hold true for X ⊂ Rn+1,
n > 2?

To re-formulate all the results of this section for an arbitrary Banach space E,
would constitute another problem.

It may be done but some essential changes are necessary, namely:

(54.15) compact sets have to be replaced by closed and bounded subsets of E;
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(54.16) mostly acyclic sets have to be replaced by convex sets;
(54.17) instead of the Čech cohomology functor we have to consider the so called

Gęba–Granas cohomology functor H∞−n (see [Da-M]).
(54.18) in the definition of the Borsuk metric of continuity one has to consider

compact vector fields instead of continuous functions.

For more information on the infinite dimensional case see [Da-M]. More about
spheric mappings we shall present in Section 81.



CHAPTER V

CONSEQUENCES AND APPLICATIONS

Results obtained in Chapter III and Chapter IV have many applications in fixed
point theory, nonlinear analysis, games theory, mathematical economics, and other
fields.

Applications to nonlinear analysis (or more precisely to differential inclusions)
will be presented in Chapter VI. This chapter is devoted to applications in the
others of the aforementioned fields. In Chapters III and IV we considered several
different classes of multivalued mappings; it is possible to generalize the results
for all of those classes of mappings.

In this section we shall deal with the so called class of admissible mappings
or, simply, mappings determined by morphisms. Formulations of the respective
results for other classes of mappings will be left to the reader.

55. Birkhoff–Kellogg, Rothe and Poincaré theorems

We shall keep notations used in previous chapters. First we will formulate the
finite dimensional version of the Birkhoff–Kellogg theorem.

(55.1) Theorem. If ϕ: S2n � P 2n+1 is a compact, (2n)-admissible map, then
there exists x0 ∈ S2n and a real number λ0 �= 0, such that λ0x0 ∈ ϕ(x0).

Proof. Assume to the contrary: for each x ∈ S2n and for each λ �= 0, λx �∈
ϕ(x). Let (p, q) ⊂ ϕ. We have the diagram

S2n p←− Γ
q−→ P 2n+1

and by assumption λx �∈ (qϕp)(x) for each x ∈ S2n and λ �= 0. Let p = i · p, where
i: S2n → P 2n+1 is the inclusion mapping. Define a homotopy h: Γ× [0, 1]→ P 2n+1

by putting:
h(y, t) = t · q(y) + (1− t)p(y).

From assumptions immediately follows that h(Γ× [0, 1]) ⊂ P 2n+1, so q∗2n = p ∗2n,
and consequently

(55.1.1) (p∗2n)−1q∗2n = (p∗2n)−1p∗2ni∗2n = i∗2n.
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Let p̃ = j ◦ p, where j: S2n → P 2n+1 is a map given as follows j(x) = −x, for each
x ∈ S2n. Let f : Γ× [0, 1]→ P 2n+1 be a homotopy defined by

f(y, t) = tq(y) + (1− t)p̃(y).

It is easy to see that f(Γ × [0, 1]) ⊂ P 2n+1, so q∗2n = p̃ ∗2n and consequently

(55.1.2) (p∗2n)−1q∗2n = (p∗2n)−1p∗2nj∗2n = j∗2n.

From (55.1.1) and (55.1.2) we have i∗2n = j∗2n. On the other hand j∗2n =
(−1)2n+1i∗2n and i∗2n is an isomorphism. Therefore, j∗2n �= i∗2n and we ob-
tain a contradiction and the proof is completed. �

Now we are able to formulate the general version of the Birkhoff–Kellogg theo-
rem.

(55.2) Theorem (Birkhoff–Kellogg). Let E be an infinite dimensional normed
space. If ϕ: S � P is a compact, n-admissible map (for some n), then there exists
x0 �∈ S and a real number λ0 �= 0, such that λ0x0 ∈ ϕ(x0).

Proof. By assumption ϕ(S) is a compact subset of P , so the distance

dist(0, ϕ(S)) = inf
x∈ϕ(S)

‖x‖ = δ > 0.

We choose a natural number m0 such that 1/m < δ/2, for each m ≥ m0. Let
(p, q) ⊂ ϕ, where p: Γ→ S and q: Γ→ P . Applying the Schauder Approximation
Theorem to the compact map q and for ε = 1/m, m ≥ m0, we obtain a map
qm: Γ→ P such that:

(55.2.1) ‖qm(y) − q(y)‖ < 1/m, for all y ∈ Γ, and
(55.2.2) qm(Γ) ⊂ P k(m) ⊂ E, P k(m) = Ek(m) \ {0}.

The condition (55.2.2) follows automatically from the inequality: 1/m < δ/2.
We can assume that k(m) ≥ n and k(m) is odd for each m ≥ m0. Now, for each
m ≥ m0 we define a map ϕm: Sk(m)−1 � P k(m) by putting

ϕm(x) = qm(ϕp(x)), for each x ∈ Sk(m)−1.

Because qm is compact, so ϕm is compact, too. Moreover, the pair

Sk(m)−1 p←− p−1(Sk(m)−1)
qm−→ P k(m),

is a selected pair for ϕm, so ϕm is an n-admissible map. Applying Theorem (55.1)
to ϕm we obtain a point xm ∈ S and a real number λm �= 0 such that

λmxm ∈ ϕm(xm), for every m ≥ m0.
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Let ym be a point in Γ such that

qm(ym) = λmxm and p(ym) = xm, for every m ≥ m0.

Let zm = q(ym). Then the sequence {zm} is contained in the compact set ϕ(S).
Therefore, we can assume, without loss of generality, that limzm = z0. Conse-
quently from the inequality

‖qm(ym)− q(ym)‖ <
1
m

it follows that lim qm(ym) = z0. Because ‖xm‖ = 1, the sequence {λm} is bounded.
Therefore we can assume without loss of generality, that limλm = λ0 and from
δ/2 ≥ ‖λmxm‖ = |λm| we deduce that λ0 �= 0. It implies that limxm = x0 and
x0 ∈ S. Now we have:

(55.2.3) zm ∈ (qϕp)(xm), and
(55.2.4) limzm = z0, lim xm = x0,

so, from (2.1)–(2.3) it follows that z0 ∈ (q ◦ ϕp)(x0) ⊂ ϕ(x0). Because z0 = λ0x0

we found a point x0 ∈ S and a real number λ0 �= 0 such that λ0x0 ∈ ϕ(x0). The
proof of Theorem (55.2) is completed. �

(55.3) Remark. In fact, we have shown that for any two maps p: Y → S and
q: Y → P such that:

(55.3.1) p is a Vietoris n-map,
(55.3.2) q is a compact map,

there exists y0 ∈ Y and λ0 �= 0 such that λ0p(y0) = q(y0). The same remark is
true in the finite dimensional case (cf. (55.1)).

(55.4) Remark. Moreover, let us observe that the formulation of the Birkhoff–
Kellogg theorem in terms of n-admissible maps is equivalent to the formulation
in terms of such pairs of maps p, q for which the above conditions (55.3.1) and
(55.3.2) are satisfied.

Let us formulate a generalization of the Rothe fixed point theorem. Let K be
the unit ball in a normed space E and S = ∂K be the unit sphere in E.

(55.5) Theorem (Rothe). Let Φ: K � E be an n-admissible compact map
such that Φ(S) ⊂ K. Then Fix(Φ) �= ∅.

Proof. Let ϕ: K � E be an n-admissible compact vector field given by ϕ =
I − Φ. We may assume without loss of generality, that ϕ(S) ⊂ P . It suffices to
prove that Deg(ϕ; 0) �= {0}. For this purpose let

ψ(x, t) = x− tΦ(x) for an arbitrary x ∈ S, 0 ≤ t ≤ 1.
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It follows from our assumption that for an arbitrary z ∈ ψ(x, t) we have

‖z‖ = ‖x− ty‖ ≥ ‖x‖ − t‖y‖ > 0 for 0 ≤ t ≤ 1

and thus ψ: S × [0, 1] � P . It is evident that ψ(S × [0, 1]) is a closed subset of E

and hence d(0, ψ(S × [0, 1])) = δ > 0.
Let (p, q) ⊂ Φ be a selected pair of the form K

p←− Y
q−→ E and let the

pair (p1, q1) of the form S
p1←− p−1(S)

q1−→ E be associated with (p, q) (cf. the
definition of Deg(ϕ; 0)). Let qε: p−1(S) → Ek+1 be an ε-approximation of q1,
where 0 < ε < δ. We put Sk = S ∩Ek+1 and Yk = p−1(Sk). We have the diagram

Sk pk←− Yk
qk−→ Ek+1,

in which pk, qk are restrictions of p1 and qε, respectively.
Define the map q̃k: Yk → P k+1 by putting q̃k(y) = pk(y) − qk(y) for each

y ∈ Yk. We claim that deg(p1, q1) = deg(pk, q̃k) �= 0. In this order, consider the
map f : Yk → P k+1 given by f(y) = pk(y) and a homotopy h: Yk × [0, 1] → P k+1

given by h(y, t) = pk(y)− tqk(y). Since ϕ(S) ⊂ P and qε is an ε-approximation of
q1, 0 < ε < δ, we deduce that h(Yk × [0, 1])⊂ P k+1. Then the maps f and q̃k are
homotopic and hence f∗ = q̃ ∗

k . Finally, we obtain

deg(p1, q1) = deg(pk, q̃k) = deg(pk, f) �= 0,

and the proof is completed. �

Now we shall apply the Rothe result to obtain the Leray–Schauder alternative.
Let ϕ: E � E be an n-admissible map which is completely continuous, i.e. the
restriction ϕ|B of ϕ to any bounded set B ⊂ E is a compact map. We let:

L(ϕ) = {x ∈ E | x ∈ λ · ϕ(x) for some 0 < λ < 1}.

(55.6) Theorem (Leray–Schauder Alternative). Under the above assumptions
we have:

either L(ϕ) is unbounded or Fix(ϕ) �= ∅.

Proof. Assume that L(ϕ) is bounded and let K(0, r) be a closed ball in E

containing L(ϕ) in its interior. The ϕ̃ = ϕ|K(0,r): K(0, r) � E is a compact
admissible map such that ϕ(∂K(0, r)) ⊂ K(0, r). So (54.6) follows from (54.5). �

(55.7) Theorem (Poincaré type of Coincidence Theorem). Let ϕ: K � E be
an admissible compact vector field and Ψ: K � E be a compact admissible map.
Assume further that:

(55.7.1) 0 �∈ Deg(ϕ),
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(55.7.2) λ · ϕ(x) ∩ ψ(x) = ∅ for every λ > 1 and x ∈ S, where ψ is the field
associated with Ψ.

Then there exists x ∈ K such that ϕ(x) ∩ ψ(x) �= ∅.

Proof. We consider the map (ϕ − ψ): K � E given by (ϕ − ψ)(x) = ϕ(x) −
ψ(x) = {y − u | y ∈ ϕ(x), u ∈ ψ(x)}. We may assume, without loss of generality,
that 0 �∈ (ϕ− ψ)(x) for every x ∈ S. Of course (ϕ− ψ) is an admissible map. We
have to prove that 0 ∈ (ϕ− ψ)(K). In order to do that we consider:

χ: K × [0, 1] � E, χ(x, t) = x− (Φ(x) + tΨ(x)),

where Φ is a compact part of ϕ. We will prove that χ(S × [0, 1]) ⊂ P . For t = 0
and t = 1 it is evident. Assume that for some 0 < t0 < 1 there exists x0 ∈ S such
that 0 ∈ χ(x0, t0). Then we have (1/t0)ϕ(x0)∩ψ(x0) �= ∅ and, since 1/t0 > 1, from
(55.7.2) we get a contradiction. Consequently, in view of (55.7.1) and a homotopy
property of the topological degree we infer that Deg(χ( · , 1)) �= 0 so, our claim
holds true and the proof is completed. �

56. Fixed point property and families of multivalued mappings

For a space X we denote by Covf(X) the direct set of all finite open coverings
of X. Let ϕ: X � X be a multivalued map and α ∈ Covf (X). A point x ∈ X is
said to be an α-fixed point for ϕ provided that there exists a member U ∈ α such
that x ∈ U and ϕ(x) ∩ U �= ∅. Moreover, if α, β ∈ Cov(X) and α refines β, then
every α-fixed point for ϕ is also β-fixed point for ϕ.

Let X be a compact space. We will say that X has fixed point property with
respect to admissible maps provided that any admissible map ϕ: X � X has
a fixed point.

(56.1) Lemma. Let ϕ: X � X be an u.s.c. map. Assume that there exists
a cofinal family of coverings D ⊂ Cov(X) such that ϕ has an α-fixed point for
every α ∈ D. Then ϕ has a fixed point.

Proof. Suppose that ϕ has no fixed points. Then for each x ∈ X there
are open neighbourhoods Vx and Uϕ(x) of x and ϕ(x), respectively, such that
Vx ∩Uϕ(x) = ∅. From the u.s.c. of ϕ we deduce that the set V = ϕ−1(Uϕ(x)) is an
open neighbourhood of x in X. Let Wx = Vx ∩ V ; then we have

(56.1.1) ϕ(Wx) ⊂ Uϕ(x), and
(56.1.2) Wx ∩ Uϕ(x) = ∅.

Since X is a compact space, we infer that there exists a finite number of sets
Wx1 , . . . , Wxn such that X =

⋃n
i=1 Wxi . Putting β = {Wx1 , . . . , Wxn}, we get
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a covering of X such that ϕ has no β-fixed point. If α is a member of D that
refines β then ϕ has no α-fixed point, and thus we obtain a contradiction. �

Let {Xi}i∈I be a family of compact spaces indexed by an infinite set I and let
X = ×i∈IXi be their topological product. Denote by J = {J} the family of all
finite subsets of I; given J ∈ J , we put XJ = ×i∈JXi.

(56.2) Theorem. An infinite product X = ×i∈IXi of compact spaces has the
fixed point property within the class of admissible maps if and only if every finite
product XJ = ×i∈JXi (J ∈ J ) has the fixed point property within the class of
admissible maps.

Proof. Choose in each Xi a point x0
i and define X̃J ⊂ X as follows:

{xi} ∈ X̃J ⇔
{

xi ∈ Xi for i ∈ J,

xi = x0
i for i �∈ J.

Clearly, we may identify X̃J with XJ . Next we define a subset D = {α} ⊂ Cov(X)
as follows: α ∈ D provided α is a finite covering consisting of open sets of the form
UJ = ×i∈J Ui with Ui open in Xi and Ui = Xi for all i �∈ J . By the theorem
of Tychonoff and taking into account the definition of the product topology, we
conclude that D is cofinal in Cov(X). Let α ∈ D; it follows from the definition of
the set D that α determines a finite set of essential indices J(α). Take rα: X →
X̃J(α) to be the projection and sα: X̃J(α) → X the inclusion.

Assume that every finite product XJ = ×i∈JXi has the fixed point property
within the class of admissible maps. Let ϕ: X � X be an admissible map. We
prove that ϕ has a fixed point. Let p, q: Y → X be a selected pair of ϕ. Consider
the map ψ: X � X given by ψ = q ◦ ϕp. Then ψ is a u.s.c. admissible maps. For
each α ∈ D, consider the map ψα: X̃J(α) � X̃J(α) given by ψα = rαψsα. Then
ψα is a u.s.c., admissible map for each α ∈ D. By the assumption, there exists
a point xα ∈ X̃J(α) such that

(56.2.1) xα ∈ ψα(xα) = rαψsα(xα) = rαψ(xα), for each α ∈ D.

Let U be a member of α such that xα ∈ U . Then from (56.2.1) we deduce that
ψ(xα) ∩ U �= ∅. This implies that xα is an α-fixed point of ψ, and hence from
(56.1) we infer that ψ has a fixed point. Finally, since ψ(x) ⊂ ϕ(x) for each x ∈ X,
we conclude that ϕ has a fixed point.

Conversely, assume that X has the fixed point property within the class of
admissible maps and that there exists a finite set J ∈ J such that XJ has not
the fixed point property within the class of admissible maps. We may assume,
without loss of generality, that there is an admissible map ψ: X̃J � X̃J such that
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x �∈ ψ(x), for each x ∈ X̃J . Let rJ : X → X̃J be the projection and sJ : X̃J → X

the inclusion. Then we have the admissible map ϕ: X → X given by ϕ = sJ ψrJ .
By assumption there exists a point x ∈ X such that

x ∈ ϕ(x) = sJ ψrJ(x).

This implies that rJ(x) ∈ rJsJ ψ(rJ(x)) and thus we obtain a contradiction. The
proof of (56.2) is completed. �

As an immediate consequence we obtain the following two corollaries:

(56.3) Corollary. An arbitrary Tychonoff cube has the fixed point property
within the class of admissible maps.

(56.4) Corollary. Every retract of a Tychonoff cube has the fixed point prop-
erty within the class of admissible maps.

In what follows by K we will denote the compact approximative retract and by

χ(K) = λ(idK)

its Euler characteristic. A multivalued semi-flow on K is a strongly admissible
map ϕ: K × [0, +∞) � K such that:

(i) ϕ( · , 0): K � K is an acyclic map,
(ii) x ∈ ϕ(x, 0) for every x ∈ K,

(iii) ϕ(ϕ(x, t), τ) =
⋃

y∈ϕ(x,t) ϕ(y, τ) ⊂ ϕ(x, t + τ) for every x ∈ K, t, τ ∈ R+ =
[0, +∞).

A fixed point for the multivalued semi-flow is a point x ∈ K such that x ∈ ϕ(x, t)
for all t ∈ R+.

(56.5) Theorem. If χ(K) �= 0, then any multivalued semi-flow on K must
have a fixed point.

Proof. Let ϕt = ϕ( · , t). Consider the homotopy (x, ρ) → ϕ(x, (1 − ρ)t0).
Then we see that ϕ0 is homotopic to ϕt0 . Since, in view of (i), ϕ0 is acyclic we
obtain

λ(ϕ0) = χ(K) �= 0.

Moreover, since ϕ0 ∼ ϕt0 we infer λ(ϕ0) ∈ λλ(ϕt0 ) for every t0 ∈ R+.
Consequently λλ(ϕt0 ) �= {0}. Now, in view of the Lefschetz fixed point theorem,

we conclude: Fix(ϕt) �= ∅ for every t ∈ R+.
Let An = {x ∈ K | x ∈ ϕ(x, 2−n)}; each An is nonempty and compact.

Moreover, from (iii) we obtain:

ϕ

(
x,

1
2n

)
= ϕ

(
x,

1
2n+1 +

1
2n+1

)
⊃ ϕ

(
ϕ

(
x,

1
2n+1

)
,

1
2n+1

)
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so, it implies that An+1 ⊂ An. Therefore,
⋂

n An �= ∅. Let x0 ∈
⋂

n An. Since x0 ∈
ϕ(x0, 2−n) for every n = 1, 2, 3, . . . , it implies (cf. (iii)) that x0 ∈ ϕ(x0, m · 2−n)
for every n = 1, 2, . . . and m = 1, 2, . . . .

Because the set {n·2−n} of dyadic rationals is dense in R+, upper semicontinuity
of ϕ assures that x0 ∈ ϕ(x0, t) for every t ∈ R+ and the proof is completed. �

(56.6) Remark. Observe that if in the definition of multivalued semi-flow we
replace the condition (i) by the following:

(i′) 0 �∈ λλ(ϕ0),

then (56.5) holds true.

By Jn we will denote the n-th Cartesian product of [0, 1].

(56.7) Theorem. Let ϕ: K × Jn � K be a strongly admissible map and K ∈
ANR. Assume that 0 �∈ λλ(ϕ0), where ϕ0 = ϕ( · , (0, . . . , 0)). Then there exists
x ∈ K such that:

dim{t ∈ Jn | x ∈ ϕ(x, t)} ≥ n − k.

For the proof of (56.7) we need some additional notions and facts. Let Y, X be
two compact spaces and p: Y → X be a map; p is called universal, if for any map
g: Y → X there exists a coincidence point, i.e. there is y ∈ Y such that p(y) = q(y).

We have proved in (12.11) that if X is a compact AR-space then any Vietoris
map p: Y → X, for arbitrary compact Y , is universal.

Note the following well known fact (see [Go-4]):

(56.8) if p: Y → Jn is universal then dim Y ≥ n.

Proof of (56.7). Let A = {(x, t) ∈ K × Jn | x ∈ ϕ(x, t)}. Since 0 �∈ λλ(ϕ0),
in view of the Lefschetz fixed point theorem, the set A is nonempty. Moreover, A

is compact (ϕ is u.s.c.). Let g: A → Jn be defined as g(x, t) = t. We claim that
g is universal. Indeed, let h: A→ Jn be a map. By using the Dugundji extension
theorem let h̃: K×Jn → Jn be an extension of h. The map ψ: K×Jn � K× Jn

defined by putting:

ψ(x, t) = {(y, s) ∈ K × Jn | y ∈ ϕ(x, t), s = h̃(x, t)}

is clearly strongly admissible.
Now, by using the homotopy argument we deduce that λλ(ψ) �= {0}. Since

(K × Jn) ∈ ANR we obtain Fix(ψ) �= ∅.
If (x, t) ∈ ψ(x, t) then x ∈ ϕ(x, t) and t = h̃(x, t) = h(x, t) = g(x). So g is

universal and hence from (56.8) we obtain dimA ≥ n.
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Let f : K×Jn → K be defined as f(x, t) = x. Thus by the generalized Hurewicz
theorem (see [HW-M]) relating maps and dimension we obtain:

dim f−1(x) ≥ n− dim K for some x ∈ K.

Such a point x satisfies our hypothesis and the proof is completed. �

57. The Lefschetz fixed point theorem for pairs of spaces

In this section we will consider morphisms

ϕ = {(X, A)
p⇐= (Γ, Γ0)

q−→ (X, A)}: (X, A)→ (X, A)

and determined by them multivalued mappings. We shall use the same notation
ϕ for a morphism and its determined mapping.

In what follows we assume also that X, A ∈ ANR and ϕ determines a compact
map. Let

ϕ = {(X, A)
p⇐= (Γ, Γ0)

q−→ (X, A)}: (X, A)→ (X, A)

be such a morphism. We will denote by

ϕX = {X p̃⇐= Γ
q̃−→ X}: X → X and ϕA = {A p⇐= Γ0

q−→ A}: A→ A

the morphisms induced by ϕ.
In view of (11.5) and the normalization property of the fixed point index we

obtain:

(57.1) Proposition. The generalized Lefschetz number Λ(ϕ) = Λ(ϕ∗) of ϕ is
well defined and

Λ(ϕ) = Λ(ϕX)− Λ(ϕA).

Assume ϕ: (X, A) � (X, A) is a compact multivalued map determined by a mor-
phism ϕ such that Λ(ϕ) �= 0 (X, A ∈ ANR). We would like to get some information
about fixed points of ϕ in X \A.

We start with an example:

(57.2) Example. Let f : ([0, 1], {0, 1}) → ([0, 1], {0, 1}) be a map defined as
follows:

f(x) = x2, for every x ∈ [0, 1].

Let f1 = f |[0,1] and f2 = f |{0,1}. We have λ(f) = λ(f1)− λ(f2) = 1− 2 = −1 �= 0
but f has no fixed points in [0, 1] \ {0, 1}.

We prove the following:
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(57.3) Theorem. Let X, A ∈ ANR, A ⊂ X and let ϕ: (X, A) � (X, A) be
a compact multivalued map (i.e. ϕX and ϕA are compact) determined by a mor-
phism ϕ such that Λ(ϕ) �= 0. Then ϕ has a fixed point in cl (X \A).

Proof. Assume to the contrary that Fix(ϕ) ∩ cl (X \ A) = ∅. It implies that
Fix(ϕ) ⊂ IntX A. Let U = IntX A. Then U is an open set in X such that U ⊂ A

and Fix(ϕX) ⊂ U . Therefore, from the additivity and contraction properties of
the index we obtain:

(57.3.1) Ind(X, ϕX , U) = Ind(A, ϕA, U).

But from the normalization property of the index we obtain:

Λ(ϕX) = Ind(X, ϕX , U),(57.3.2)

Λ(ϕA) = Ind(A, ϕA, U).(57.3.3)

So, in view of (57.1) we obtain Λ(ϕ) = Λ(ϕX) − Λ(ϕA) = 0, a contradiction and
the proof is completed. �

As an application of (57.3) we obtain Krasnosiel’skĭı’s theorem. Let X be
a closed cone in a normed space. Given two real numbers r0, r such that 0 < r0 < r

we let:

Sr0 = {x ∈ X | ‖x‖ = r0}, K−
r0

= {x ∈ X | ‖x‖ ≤ r0},
Ar0,r = {x ∈ X | r0 ≤ ‖x‖ ≤ r}, K+

r = {x ∈ X | ‖x‖ ≥ r}.

We prove:

(57.4) Theorem (Krasnosiel’skĭı). Let ϕ: X � X be a compact mapping
determined by a morphism such that ϕ(Sr0 ) ⊂ K−

r0
and ϕ(Sr) ⊂ K+

r . Then
Fix(ϕ) �= ∅.

Proof. Let A = K−
r0
∪ K+

r . It follows from our assumptions that ϕ maps
A into itself. Denote by ϕ̃: (X, A) � (X, A) the respective map of pairs and let
ϕA: A � A be the restriction of ϕ to (A, A). Since X, A ∈ ANR we obtain:

Λ(ϕ̃) = Λ(ϕ)− Λ(ϕA).

But Λ(ϕ) = 1 (X is a convex subset of E) and Λ(ϕA) = 2 (A consists of two
contractible components) hence Λ(ϕ̃) = 1−2 = −1 and (57.4) follows from (57.3).�
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58. Repulsive and ejective fixed points

There are several classifications of fixed points for singlevalued mappings: es-
sential and inessential, repulsive and ejective or Sharkhowskĭı’s classification (see
[Bro4], [Bro5], [For], [Go1] and [Sh]). In the case of multivalued maps the situa-
tion is much more complicated. We are able to consider only repulsive and ejective
fixed points (see [BGK], [FP], [GP]).

Let X be a space and x ∈ X. By U (x) we will denote the family of all open
neighbourhoods of x in X. Let X be a compact space and ϕ: X � X be an u.s.c.
map.

(58.1) Definition. A fixed point α ∈ Fix(ϕ) is called repulsive relative to
U ∈ U (α) if, for any V ∈ U (α), there exists an integer n(V ) ≥ 1 such that
ϕn(X \V ) ⊂ X \U for all n ≥ n(V ). If there is U ∈ U (α) such that α is repulsive
relative to U then α is called repulsive. The set of all repulsive fixed points is
denoted by Fixr(ϕ).

(58.2) Definition. A fixed point α ∈ Fix(ϕ) is called ejective relative to
U ∈ U (α) if, for any x ∈ U \ {α}, there exists an integer n ≥ 1 such that
ϕn(x) ⊂ X \ U . If there is U ∈ U (α) such that α is ejective relative to U then α

is called ejective. The set of all ejective fixed points is denoted by Fixe(ϕ).

As an immediate consequence of the above definitions we obtain:

Fixr(ϕ) ⊂ Fixe(ϕ).

A simple example shows that the converse is not true even for singlevalued map-
pings.

(58.3) Example. Consider a function f : [0, 1]→ [0, 1] given by

f(x) = 2(−x2 + x)

and the open neighbourhood U = [0, 1/4) of the origin. It is easy to see that 0 is
ejective relative to U . However, this fixed point is not repulsive because f(1) = 0.

First we prove the following:

(58.4) Proposition. Let X be a compact space, ϕ: X � X be continuous and
α ∈ Fix(ϕ). The following statements are equivalent:

(58.4.1) α is repulsive,
(58.4.2) there exists U ∈ U (α) such that, for any x ∈ X \ {α}, there exists an

integer n(x) ≥ 1 such that ϕn(x) ⊂ X \ U for all n ≥ n(x).
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Proof. It is obvious that (58.4.1) implies (58.4.2). Suppose that (58.4.2) holds
We show that there exists M ≥ 1 such that X \ U ⊂

⋃M
i=1 ϕ−i(X \ U). But⋃∞

i=1 ϕ−i(X \ U) is an open covering of a compact set, hence we can find the
wanted number M . Thus, we have

U ⊃ X \
M⋃

i=1

ϕ−i(X \U) =
M⋂

i=1

(X \ ϕ−i(X \ U) =
M⋂

i=1

(ϕ−i
+ (U)) ⊃

M⋂
i=1

(ϕ−i
+ (U)).

Let N = U ∩
⋂M−1

i=1 (ϕ−i
+ (U)). By continuity of ϕ the set N is open, α ∈ N and

N ⊂ U .
We show that ϕ−1

+ (N) ⊂ N . In fact x ∈ ϕ−1
+ (N) if and only if ϕ(x)∩U �= ∅ and

for every i, 1 ≤ i ≤ M − 1, ϕ(x) ∩ ϕ−i
+ (U) �= ∅. It means that x ∈

⋂M
i=1(ϕ−i

+ (U)).
Thus x ∈ U and x ∈

⋂M−1
i=1 (ϕ−i

+ (U)). This implies that ϕ−n−1
+ (N) ⊂ N and

ϕ−n−1
+ (N) ⊂ ϕ−n

+ (N) for every n ≥ 0. Now,

α ∈
∞⋂

n=1

ϕ−n
+ (N) ⊂

∞⋂
n=1

ϕ−n
+ (N) ⊂

∞⋂
n=1

ϕ−n
+ (N) ⊂

∞⋂
n=1

ϕ−n
+ (U) = {α}.

Thus
⋂∞

n=1 ϕ−n
+ (N) = {α}. Let W ∈ U (α) be such that W ⊂ N . We assert that

α is a repulsive fixed point relative to W .

Let V ∈ U (α). We show that there exists n(V ) ≥ 1 such that ϕ
−n(V )
+ (N) ⊂ V .

Suppose that for every n ≥ 1 we have ϕ−n
+ (N) ∩ (X \ V ) �= ∅, i.e. for every n ≥ 1

there exists xn ∈ ϕ−n
+ (N) such that xn ∈ X \ V . By a compactness of X \ V

there is a subsequence xnk → x ∈ X \ V . But x ∈
⋂∞

k=1 ϕ−nk
+ (N) = {α}. This is

a contradiction.
Now, for every n ≥ n(V ) we have ϕ−n

+ (N) ⊂ V and thus
⋃∞

n=n(V ) ϕ−n
+ (N) ⊂ V .

Therefore,

X \ V ⊂
∞⋂

n=n(V )

(X \ ϕ−n
+ (N)) =

∞⋂
n=n(V )

ϕ−n
− (X \N).

This implies that for every n ≥ n(V ) we have ϕn(X \ V ) ⊂ X \N ⊂ X ⊂W ; the
proof is completed. �

(58.5) Proposition. Let X be a compact space, ϕ: X � X be continuous and
α ∈ Fix(ϕ). The following statements are equivalent:

(58.5.1) α is repulsive,
(58.5.2) α is ejective and α �∈ ϕ(X \ {α}) (α is strongly ejective).

Proof. If α is repulsive then, obviously, (58.5.2) is also true. Let α be ejective
relative to U ∈ U (α) and α �∈ ϕ(X \ {α}). For every point x ∈ X \ {α} we have
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dist(ϕ(x), α) ≥ 2γ(x) > 0 for some γ(x). For every x ∈ X \U there exists �(x) > 0
such that ϕ(y) ⊂ Nγ(x)(ϕ(x)) whenever y ∈ N�(x)(x). Then dist(ϕ(y), α) ≥ γ(x) >

0. By a compactness of X \U there are z1, . . . , zk and N1 = N�(z1)(z1), . . . , Nk =
N�(zk)(zk) such that X \ U ⊂

⋃k
i=1 Nk.

Define γ := min {γ(z1), . . . , γ(zk)}. Let V ∈ U (α) be such that V ⊂ U∩Nγ(α).
Then for every x ∈ X \ U there is i, 1 ≤ i ≤ k, such that x ∈ Ni, and then
dist(ϕ(x), α) ≥ γ(zi) ≥ γ. This implies ϕ(x) ⊂ X \ V and for every x ∈ X \ {α}
there is n(x) ≥ 1 such that ϕn(x)(x) ⊂ X \V . The set X \V is open and ϕ is u.s.c.
so, for every x ∈ X \{α} there exists N(x) ∈ U (x) such that ϕn(x)(N(x)) ⊂ X \V .
Let C = X \ V . This set is compact and α �∈ C. Choose for every x ∈ C the set
V (x) ∈ U (x) such that V (x) ⊂ N(x). Then C ⊂

⋃r
i=1 V (xi) for some r ≥ 1 and

for every i, 1 ≤ i ≤ r, ϕn(xi)(V (xi)) ⊂ X \ V ⊂ C.
Define K =

⋃r
i=1

⋃n(xi)−1
s=0 ϕs(V (xi)). This set is compact, α �∈ K and C ⊂

K. We show that ϕn(K) ⊂ K for every n ≥ 1. First, note that ϕn(K) ⊂⋃r
i=1

⋃n(xi)−1
s=0 ϕn+s(V (xi)). Now, if n + s < n(xi) then ϕn+s(V (xi)) ⊂ K. If

n+s ≥ n(xi) then ϕn+s(V (xi)) = ϕn+s−n(xi)(ϕn(xi)(V (xi))). But ϕn(xi)(V (xi)) ⊂
X \ V ⊂ C ⊂ K. Therefore, by induction, ϕn+s(V (xi)) ⊂ K.

Let x ∈ X \ {α}. There exists n(x) ≥ 1 such that ϕn(x)(x) ⊂ X \ V ⊂ K.
Hence, ϕn(x) ⊂ K for every n ≥ n(x). Now, if W ∈ U (α) < W ⊂ X \K then α

is repulsive relative to W ; the proof is completed. �

(58.6) Theorem. Let X be a compact ANR and ϕ: X � X a multivalued map
determined by a morphism. Suppose that there exists an open subset V ⊂ X such
that

(58.6.1) the inclusion i: V → X induces an isomorphism on homology,
(58.6.2) there exists a natural number n0 such that ϕn(X \V ) ⊂ X \V , for every

n ≥ n0.

Then i(X, ϕ, V ) = 0.

Proof. Observe that Fix(ϕn)∩ ∂V = ∅ for every n ∈ N . Indeed, if Fix(ϕn)∩
∂V �= ∅ for some n, then we choose k ∈ N such that k · n > n0. Then Fix(ϕn) ∩
∂V �= ∅ implies Fix(ϕkn) ∩ ∂V �= 0 in contradiction to ϕn(X \ V ) ⊂ X \ V (see
(58.6.2)). Therefore, the index ind (X, ϕn, V ) is well defined for every n. It follows
from the mod-p property of the fixed point index that, if

i(X, ϕn, V ) = 0 for every n ≥ n0,

then i(X, ϕ, V ) = 0. So, we shall prove that i(X, ϕn, V ) = 0 for every n ≥ n0.
First, from the additivity and normalization properties of the fixed point index we
obtain:

(58.6.3) i(X, ϕn, V ) + i(X, ϕn, X \ V ) = Λ(ϕn).
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We consider ψ1: X \ V � X \ V , ψ2: X \ V � X \ V , ψ3: X \ V � X \ V the
respective mappings defined by ϕn (cf. (58.6.2)). From (58.6.1) and (11.4.1) we
deduce:

(58.6.4) Λ(ϕn) = Λ(ψ2).

On the other hand we have the following commutative diagram:

X \ V
j

�� X \ V

X \ V

ψ1

◦

j
�� X \ V

ψ2

◦
ψ3

◦���������

in which j: X \ V → X \ V is the inclusion map. So, from (11.4) we deduce that:

(58.6.5) Λ(ψ2) = Λ(ψ1).

Since the open set X \ V of an ANR-space X is again ANR from the contraction
and normalization properties of the fixed point index we obtain:

(58.6.6) i(X, ϕn, X \ V ) = i(X \ V , ψ1, X \ V ) = Λ(ψ1).

Consequently, from (58.6.3)–(58.6.6) we infer: i(X, ϕn, V ) = 0, and the proof is
completed. �

As an immediate consequence of (58.6) we obtain:

(58.7) Corollary. Let X and ϕ be the same as in (58.6). Let α ∈ Fixr(ϕ)
be a repulsive point relative to U ∈ U (α). Assume that:

(58.7.1) there exists V ∈ U(α) such that V ⊂ V ⊂ U and i: X \ V → X induces
an isomorphism on homology.

Then i(X, ϕ, U) = 0.

Proof. Observe that α is the only fixed point in U (by definition). So,

i(X, ϕ, U) = i(X, ϕ, V )

and our claim holds by (58.6). �

Now from (58.7) and the additivity property of the fixed point index we obtain:

(58.8) Corollary. Let X and ϕ be as in Theorem (58.6). Assume that
Fixr(ϕ) = {α1, . . . , αk} and αi is repulsive relative to Ui ∈ U (αi), i = 1, . . . , k

and the assumption (58.7.1) holds true for every Ui, i = 1, . . . , k. If Λ(ϕ) �= 0
then there exists α ∈ Fix(ϕ) such that α �∈ Fixr(ϕ).

In particular, if in (58.8) we assume that X ∈ AR then we have:
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(58.9) Corollary. If X ∈ AR and ϕ: X � X is a multivalued map deter-
mined by a morphism then F ix(ϕ) \ Fixr(ϕ) �= ∅.

Proof. Since X is acyclic, so Λ(ϕ) = 1. If ϕ has no repulsive fixed point then,
there exists x ∈ Fix(ϕ) \ Fixr(ϕ). So, we can assume that Fixr(ϕ) �= ∅. If the set
Fixr(ϕ) is finite, then our claim follows from (58.8).

If it is not, then we choose a sequence {xn} ⊂ Fixr(ϕ) such that limn xn = x ∈
Fix(ϕ) (observe that by definition any repulsive fixed point is isolated). �

Since Fixr(ϕ) ⊂ Fixe(ϕ) it would be interesting to find sufficient conditions for
fixed points which are not belonging to Fixe(ϕ).

Recall that we have assumed X to be a compact ANR-space and ϕ: X � X to
be a multivalued map determined by a morphism. In what follows we shall keep
the above assumptions. We start with the following:

(58.10) Proposition. Let F ⊂ Fix(ϕ) be an open and closed in Fix(ϕ). As-
sume that ϕ(X \ F ) ⊂ X \ F and the restriction ϕ′: X \ F � X \ F is a compact
map. Denote by ϕ: (X, X \ F ) � (X, X \ F ) the map determined by ϕ. Then
i(X, ϕ, W ) = Λ(ϕ) = Λ(ϕ) − Λ(ϕ′), for any open neighbourhood W of F in X

such that W ∩ (Fix(ϕ) \ F ) = ∅.

Proposition (58.10) immediately follows from the Lefschetz fixed point theorem,
normalization and additivity properties of the fixed point index and (58.5).

(58.11) Proposition. Assume that ϕ(X\Fixe(ϕ)) ⊂ X\Fixe(ϕ), #Fixe(ϕ) <

+∞. Denote by ϕ′: X \Fixe(ϕ) � X \Fixe(ϕ) and ϕ: (X, X \Fixe(f)) � (X, X \
Fixe(ϕ)) the respective maps determined by ϕ. Then Λ(ϕ) = 0 and Λ(ϕ) �= 0
implies that Fix(ϕ) \ Fixe(ϕ) �= ∅.

Proof. From (58.10) we deduce that Λ(ϕ′) �= 0. So by the Lefschetz fixed
point theorem applied to ϕ′ we obtain Fix(ϕ′) = Fix(ϕ) \ Fixe(ϕ) �= ∅ and the
proof is completed. �

For the remaining part of this section we will keep, in addition to the previously
made assumptions, the assumptions of proposition (58.11).

(58.12) Corollaries.

(58.12.1) If ϕ is homotopic to a constant map, then Fix(ϕ) \ Fixe(ϕ) �= ∅.
(58.12.2) If X or X \ Fixe(ϕ) is acyclic, then Λ(ϕ) = 0 implies that Fix(ϕ) \

Fixe(ϕ) �= ∅.
(58.12.3) If X and X \ Fixe(ϕ) are acyclic then Fix(ϕ) \ Fixe(ϕ) �= ∅.
(58.12.4) Let B ⊂ Fixe(ϕ) and i: X \ Fixe(ϕ) → X \ B be the inclusion map.

If i∗: H∗(X \ Fixe(ϕ)) ∼−→ H∗(X \ B) is an isomorphism, then the set
Fixe(ϕ) in (3.2) can be replaced by B.
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(58.12.5) If the inclusion i: X \Fixe(ϕ)→ X induces an isomorphism on homolo-
gies and Λ(ϕ) �= 0, then Fix(ϕ) \ Fixe(ϕ) �= ∅.

(58.12.6) Assume that Y ⊂ X is a closed subset such that ϕ(X) ⊂ Y . If for
every x ∈ Fixe(ϕ) we have H∗(Y, Y \ {x}) = 0 and Λ(ϕ) �= 0, then
Fix(ϕ) \ Fixe(ϕ) �= ∅.

For some further results we recommend [FP], [GP], [Pei].

59. Condensing and k-set contraction mappings

To learn about condensing maps it is useful to start with the notion of k-set
contraction and condensing pairs of maps. As in Chapter IV, by a pair (p, q) we
mean the following diagram:

X
p⇐= Γ

q−→ Y

in which p is Vietoris and q continuous. Such a pair (p, q) is called compact
provided q is compact.

Let E be a Banach space. By γ:B(E) → R+ we will denote the measure of
non-compactness function, i.e. γ is a function satisfying all properties of (4.10).
In particular, we can let γ = α to be the Kuratowski measure of compactness or
γ = β to be the Hausdorff measure of non-compactness (see Section 4).

(59.1) Definition. Let A and C be two subsets of E. A pair A
p⇐= Γ

q−→ C

is called a k-set contraction pair, if there exists a real number k, 0 ≤ k < 1, such
that for every bounded B ⊂ A the following condition is satisfied:

(59.1.1) γ(q(p−1(B))) ≤ k · γ(B);

(p, q) is called a condensing pair, if for every bounded and no relatively compact
B ⊂ A we have

(59.1.2) γ(q(p−1(B))) < γ(B).

It is evident that any compact pair is k-set contraction with k = 0 and any
k-set contraction pair is condensing. Moreover, let us observe that if (p, q) is
a condensing pair then for any bounded B ⊂ A the set q(p−1(B)) is bounded.

(59.2) Proposition. Let A
p⇐= Γ

q−→ C be a condensing pair, where A is
a bounded and closed subset of E. Then Fix(p, q) is a compact set, where as before
Fix(p, q) = {x ∈ A | x ∈ q(p−1(x)}.

Proof. Indeed, we have Fix(p, q) ⊂ q(p−1(Fix(p, q))), hence

γ(Fix(p, q)) ≤ γ(q(p−1(Fix(p, q)))) < γ(Fix(p, q)).
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So, by (4.10) we deduce that Fix(p, q) is compact. Because Fix(p, q) = Fix(p, q)
the proof is completed. �

We will say that the pair (p, q) satisfies the Palais–Smale condition provided for
every sequence {un} ⊂ Γ, the property

lim
n

(p(un)− q(un)) = 0

implies that there exists a convergent subsequence of {un}.

(59.3) Proposition. Let (p, q) be the same as in (59.2). Then the pair (p, q)
satisfies the Palais–Smale condition.

Proof. Let limn(p − q)(yn) = 0. We put xn = p(yn) − q(yn), un = p(yn).
Then {xn} ⊂ E and {un} ⊂ A. By assumption γ({xn}) = 0. We will show that
γ({un}) = 0. Because q(yn) ∈ q(p−1(un)) we have

γ(q({yn})) ≤ γ(q(p−1({un}))) ≤ k · γ({un}).

On the other hand, un = xn + q(yn) so, in view of (4.10.2), we obtain

γ({un}) ≤ γ({xn}) + γ({q(yn)}) = γ(q({yn})).

The above two inequalities imply that γ({un}) = 0. Therefore the set p−1({un})
is compact (p is proper!), so from the sequence {yn} in p−1({un}) we can choose
a convergent subsequence and the proof is completed. �

Let A be a bounded closed subset of E and let C be a convex closed subset of
E. Consider a k-set contraction pair (p, q) from A to C. We will associate with
such a pair (p, q) a compact pair (p̃, q̃) such that Fix(p, q) = Fix(p̃, q̃). In order to
do it we define a decreasing sequence {Kn} of closed bounded and convex subsets
of C by putting

K1 = conv(q(p−1(A))), . . . , Kn = conv(q(p−1(A ∩Kn−1))), . . .

It is evident that q(p−1(Kn ∩A)) ⊂ Kn+1 and Fix(p, q) ⊂ Kn for every n. There
are two possibilities, namely,

Kn �= ∅, for each n,(59.4)

Ki �= ∅, for i = 1, . . . , m and Km+j = ∅, for each j.(59.5)

If (59.5) holds then we choose a point x0 ∈ Km and we define

(59.6) q̃ : Γ→ C by putting q(y) = x0 and p̃ = p.

Then (p̃, q̃) is a compact pair such that Fix(p, q) = Fix(p̃, q̃) = ∅.
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(59.7) Lemma. Assume that (59.5) holds and let x1 ∈ Km. Then there exists
a compact homotopy h: Γ× [0, 1]→ C joining q̃ with q̃1 such that

Fix(p, h) = {x ∈ A | x ∈ h(p−1((x)× {t})), for every t} = ∅,

where q̃1: Γ→ C is given by the formula q̃1(y) = x1.

For the proof of Lemma (59.7) it is sufficient to consider a homotopy h: Γ ×
[0, 1]→ C given as follows:

h(y, t) = (1− t)x0 + tx1.

(59.8) Remark. By comparing (59.6) and (59.7) we can say that, if (59.5)
holds, then the pair (p̃, q̃) is defined uniquely up to homotopy.

(59.9) Lemma. If (59.4) holds, then K∞ =
⋂∞

n=1 Kn is a compact convex and
nonempty set which contains Fix(p, q).

Proof. First, we claim that

(59.9.1) γ(Kn) ≤ kn · γ(A), for each n, where k is given for considered k-set
contraction pair (p, q).

We prove (59.9.1) by induction. Since

γ(K1) = γ(conv(q(p−1(A)))) = γ(q(p−1(A))) ≤ k · γ(A),

our assertion holds for n = 1. Now assume that (59.9.1) is true for every m < n.
Then we obtain:

γ(Kn) = γ(conv(q(p−1(A ∩Kn−1))))

= γ(q(p−1(A ∩Kn−1))) ≤ k · γ(A ∩Kn−1)

≤ k · γ(Kn−1) ≤ k · kn−1γ(A) = knγ(A)

and thus finish the proof of (59.9.1). Now, from (59.9.1) it follows that limn γ(Kn)
= 0. Therefore, our claim follows from (4.14). �

We associate with given k-set contraction pair (p, q):

A
p⇐= Γ

q−→ C

the pair (p̃, q̃):

(59.10) A ∩K∞
p̃⇐= p−1(A ∩K∞)

q̃−→ K∞

by putting p̃(u) = p(u) and q̃(u) = q(u). Since q̃ p̃−1(A ∩K∞) ⊂ K∞, in view of
(59.9) we get Fix(p, q) = Fix(p̃, q̃). Observe, that if A = C, then the condition
(59.5) cannot occur.

Since (p̃, q̃) is a compact pair, then from the Lefschetz fixed point theorem for
admissible (or determined by morphisms) maps we obtain:
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(59.11) Proposition. If C is a bounded closed and convex subset of E and
(p, q) is a k-set contraction pair from C to C, then Fix(p, q) �= ∅.

We prove:

(59.12) Theorem. If C is a bounded closed and convex subset of E and (p, q)
is a condensing pair from C to C, then Fix(p, q) �= ∅.

For the proof of (59.12) we need some additional facts. Let ε > 0. A point
u ∈ Γ is called an ε-coincidence for (p, q), if ‖p(u)− q(u)‖ < ε.

(59.13) Lemma. If (p, q) has an ε-coincidence for every ε > 0 and satisfies the
Palais–Smale condition, then Fix(p, q) �= ∅.

Proof. Let εn = 1/n and {un} ⊂ Γ be a sequence of εn-coincidence points
of (p, q), n = 1, 2, . . .. Then limn(p(un) − q(un)) = 0. So, from the Palais–Smale
condition we obtain that there exists a convergent subsequence {unk} of {un}.

Let u = limk unk . Then p(u) = q(u), so the set κ(p, q) of coincidence points is
nonempty and consequently Fix(p, q) �= ∅. �

Proof of (59.12). We can assume without loss of generality, that 0 ∈ C. For
each n = 1, 2, . . . we define a map qn: Γ→ C by putting:

qn(u) =
(

1− 1
n

)
· q(u).

Then (p, q) is an (1 − (1/n))-set contraction, n ≥ 2. So, from (59.11) for every
n ≥ 2 we obtain a point un ∈ Γ such that p(un) = q(un). On the other hand we
have:

‖p(un)− q(un)‖ ≤ ‖p(un) − qn(un)‖+ ‖q(un)− qn(un)‖

=
1
n
‖q(un)‖ ≤ 1

n
· diam(C),

where diam(C) denotes the diameter of C. It implies that (p, q) has ε-coincidence
for every ε > 0 and hence our theorem follows from (59.13) and (59.4); the proof
is completed. �

Let C be a convex closed subset of E and (p, q): U
p⇐= Γ

q−→ C be a k-set
contraction pair such that Fix(p, q)∩ ∂U = ∅, i.e. (p, q) has no fixed points on the
boundary ∂U of U in C, where U is an open subset of C.

Following (59.10) we obtain a compact pair

(p̃, q̃): U ∩K∞
p̃⇐= p−1(U ∩K′

∞)
q̃−→ C ∩K∞.
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For simplicity let us denote U1 = U ∩K∞ and C1 = C ∩K∞, Γ1 = p−1(U ∩K∞).
Then we have a compact pair

U1
p̃⇐= Γ1

q̃−→ C1,

where U1 is open in C1 and C1 is a convex nonempty compact subset of E.
Now, by using the Schauder Approximation Theorem, for given ε > 0 we can

find a n(ε)-dimensional subspace En(ε) of E and an ε-approximation qε: Γ1 →
En(ε) of q̃. We let V = U1∩En(ε) and Cε = C1∩En(ε). Then we obtain a diagram:

V
p1⇐= p̃ −1(V )

qε−→ Cε.

As we have seen in Chapter 3 for sufficiently small ε > 0 such that Fix(p1, qε) ∩
∂V = ∅ and qε is homotopic to qε′ for ε, ε′ ≤ ε0, for some ε > 0.

Let r: Rn → Cε be a retraction (Cε is convex and closed, so Cε ∈ AR). Then
r−1(V ) is an open subset of Rn and we have the following commutative diagram:

r−1(V )
r �� V p̃ −1(V )

p1�� qε �� Cε

i

��

Γε

pε



%%%%%%%%

%%%%%%%%
f

��

g

��+++++++++

qε=i◦qε◦g
�� En(ε)

in which Γε = {(x, y) ∈ r−1(V ) × p̃ −1(V ) | r(x) = p1(y)}, pε(x, y) = x, f(x, y) =
r(x), g(x, y) = y. Moreover, we obtain:

Fix(pε, qε) = Fix(p1, qε) ⊂ V.

But for the pair (pε, qε) the coincidence index I(pε, qε) is well defined (see (12.4)).
We let:

(59.14) I(p, q) = I(pε, qε).

Then I(p, q) is called the coincidence index for the k-set contraction pair (p, q).
Note that by a standard argument, used already several times, we can see that
definition (59.14) is correct for a given retraction r.

The following problem remains open (see [GK]).

(59.15) Does Definition (59.14) depend on the choice of a retraction map r?

Note that (59.15) is a slight reformulation of the definition of a topological
degree for n-admissible mappings.

We shall make use of the following two properties of the coincidence index
defined in (59.14).
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(59.16) Property (Existence). If I(p, q) �= 0, then Fix(p, q) �= ∅.

(59.17) Property (Homotopy). Let U be an open subset of C, where C is
a convex closed subset of a normed space E. Let p: Γ⇒ U be a Vietoris map and
let h: Γ× [0, 1]→ C be a continuous map. Assume further that the following two
conditions are satisfied:

(59.17.1) Fix(p, h)∩∂U = ∅, where Fix(p, h) = {x ∈ U | x ∈ h(p−1(x, t)) for some
t ∈ [0, 1]},

(59.17.2) γ(h(p−1(B × [0, 1]))) ≤ k · γ(B) for every B ⊂ U and some 0 ≤ k < 1.

Then I(p, h0) = I(p, h1), where hi(x) = h(x, i), i = 0, 1.

The standard proofs of (59.16) and (59.17) are left to the reader.
Now we will generalize the non-linear alternative and the Leray–Schauder al-

ternative from the case of k-set contraction singlevalued maps to the case of k-set
contraction pairs. Till the end of this section we will assume that C is a convex
and closed subset of E which contains the zero point 0 of E.

(59.18) Theorem (The Non-Linear Alternative). Let U be an open bounded
subset of C such that 0 ∈ U and let (p, q) be a k-set contraction pair from U to C.
Then at least one of the following properties holds:

(59.18.1) κ(p, q) �= ∅,
(59.18.2) there is an x ∈ ∂U such that x ∈ (λ · q(p−1(x))) for some λ > 1.

Proof. We can assume without loss of generality, that Fix(p, q)∩∂U = ∅. For
the proof consider a homotopy h: Γ× [0, 1]→ C defined by the formula h(y, t) =
t · q(y). Then h satisfies (59.17.2) and it is a homotopy joining q with the constant
map q1, q1(y) = 0. If Fix(p, h) ∩ ∂U = ∅, then from (59.17) and (59.16) we
deduce that Fix(p, q) �= ∅, so (59.18.1) holds. If Fix(p, h) ∩ ∂U �= ∅, then we
can take a point x0 ∈ ∂U such that x0 ∈ (t0 · q(p−1(x0))) for some 0 < t0 < 1.
Consequently, for λ = 1/t0 > 1 we have x0 ∈ λ · q(p−1(x0))) and the proof is
completed. �

(59.19) Corollary. Assume (p, q) is as in (59.18). Assume further that for
every x ∈ ∂U and for every u ∈ q(p−1(x)) one of the following conditions holds:

‖u‖ ≤ ‖x‖,(59.19.1)

‖u‖ ≤ ‖x− u‖,(59.19.2)

‖u‖2 ≤ ‖x‖2 + ‖x− u‖2.(59.19.3)

Then κ(p, q) �= ∅.

For the proof of (59.19) it is sufficient to note that each of conditions (59.19.1)–
(59.19.3) implies that the second property of the non-linear alternative cannot
occur.
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For a pair (p, q) from C to C and for a subset A ⊂ C, by (pA, qA) we will denote
a pair defined as follows:

pA: p−1(A)⇒ A, pA(y) = p(y),

qA: p−1(A)→ C, qA(y) = q(y).

(59.20) Theorem (The Leray–Schauder Alternative). Let (p, q) be a pair from
C to C such that for any open and bounded U ⊂ C the pair (pU , qU) is a k-set
contraction. Let G(p, q) = {x ∈ C | x ∈ (λ · q(p−1(x))), for some 0 < λ < 1}.
Then either G(p, q) is unbounded or κ(p, q) �= ∅.

Proof. Assume G(p, q) is bounded. We choose an open ball B(0, r) in E

containing G(p, q) in its interior. Let U = B(0, r) ∩ C. Then (pU , qU) ∈ C (U, C)
and no x ∈ ∂U can satisfy the second property of the non-linear alternative. By
using once again (59.18) to the pair (pU , qU) we have ∅ �= κ(pU , qU) ⊂ κ(p, q) and
the proof is completed. �

(59.21) Remark. Finally, let us remark that all results of this section can be
formulated for k-set contraction and condensing admissible maps or morphisms;
ϕ is a k-set contraction (condensing) admissible map if there exists a k-set con-
traction (condensing) pair (p, q) such that (p, q) ⊂ ϕ. In the definition of the k-set
contraction (condensing) morphism we consider the equivalence relation in family
of all k-set contraction (condensing) pairs (p, q).

(59.22) Remark. Note that in Section 60 we will continue the study of k-
set contraction and condensing maps in the framework of so called compacting
mappings.

60. Compacting mappings

The aim of this section is to show a way of generalizing some of the results
presented in Section 59. In this section we assume that all multivalued mappings
are determined by morphisms. We start with some notations and notions.

(60.1) Definition. A closed subset of X of a Banach space E is called a special
ANR provided there exists a family {Cj}j∈J of closed convex subsets of E such
that X =

⋃
j∈J Cj and this union is locally finite, i.e. for every x ∈ X there exists

a finite set Jx ⊂ J , such that x �∈ Cj for every j ∈ J \ Jx (written X ∈ s-ANR).

Note that a special ANR is an ANR-space. In fact it follows from the so called
Second Hanner Theorem, which states that any space locally ANR is an ANR-
space, and from (1.10.1).

If X ∈ s-ANR and X is a finite union X =
⋃n

j=1 Cj of closed convex subsets
in E, then we will write X ∈ sf-ANR.

We shall use the following lemma:



60. COMPACTING MAPPINGS 305

(60.2) Lemma. Let C ∈ sf-ANR be the union C =
⋃n

j=1 Cj of closed convex
subsets of E. Then there exists a polyhedron P such that P =

⋃m
i=1 Pi, where Pi =

conv{x1, . . . , xmi} for some x1, . . . , xmi ∈ C and a continuous map π: C → C

such that π(Ci) ⊂ Pi ⊂ Ci for all i ≤ n.

Lemma (60.2) is strictly technical so the proof is omitted here. For details
see [Nu].

(60.3) Definition. Let X ∈ s-ANR and U be an open subset of X. A multi-
valued map ϕ: U � X (determined by a morphism) is called compacting provided
there exists an open set W ⊂ U and a sequence {Kn} such that Kn ∈ sf-ANR for
every n and the following conditions are satisfied:

(60.3.1) Fix(ϕ) ⊂W ⊂W ⊂ U ,
(60.3.2) W ⊂ K1 ⊂ X,
(60.3.3) ϕ(W ∩Kn) ⊂ Kn+1 ⊂ Kn for any n ≥ 1,
(60.3.4) limn→∞ γ(Kn) = 0, where γ, as in Section 59, denotes the measure of

non-compactness.

We shall prove the following:

(60.4) Proposition. Suppose that X ∈ s-ANR, U is an open subset of X and
f : U → X is a continuous map such that S = {x ∈ U | f(x) = x} is compact.
Assume that there is an open neighbourhood W of S such that f |W is a k-set-
contraction with k < 1. Then f is compacting.

Proof. X has a locally finite covering {Cα | α ∈ A} by closed, convex hull
of B in the overlying Banach space. By the local finiteness of the covering and
the compactness of convf(W ), there exists a neighbourhood W1 of S, W 1 ⊂ W ,
such that (W1 ∪ convf(W1)) ∩ Cα is empty except for α in a finite index set A1.
Define K1 ∈ F0 by K1 =

⋃
α∈A1

Cα and for n ≥ 1 define {Kn} inductively by
Kn+1 = (convf(W1 ∩Kn)) ∩X. Since f is a k-set-contraction, k < 1, γ(Kn+1) ≤
knγ(W1) → 0. It is also not hard to see that Kn ⊃ Kn+1, f(W1 ∩Kn) ⊂ Kn+1

and W1 ⊂ K1. Thus f is compacting; the proof is completed. �

Now assume that ϕ: W � X is compacting with W and {Kn} satisfying the
conditions of (2.8). Since Ki ∈ sf-ANR there exists m(i) and Ci1, . . . , Cim(i) closed

convex such that Ki =
⋃m(i)

j=1 Cij and ∂(Cij) < γ(Ki) + i−1.
We may now choose n and by Lemma (60.2), πn: K1 → K1 such that πn(K1) ⊂

Pn ⊂ X, where Pn is a polyhedron such that

Pn =
m⋃

i=1

m(i)⋃
j=1

Pij and πn(Cij) ⊂ Pij ⊂ Cij.
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Thus πn(Ki) ⊂ Ki for any i ≤ n and if x ∈ Ki we have ‖πn(x)−x‖ ≤ γ(Ki)+ i−1.
Since the fixed point index for maps determined by morphisms on polyhedra is
defined, as we have already observed, we can let:

(60.5) i(X, ϕ, U) = lim
n→∞ i(Pn, πn ◦ ϕ, W ∩ Pn) = i(Pn, πn ◦ ϕ, W ∩ Pn)

if n is big enough. The proof of a correctness of the above definition is quite long
and technically complicated. We recommend [FV1].

We shall restrict our considerations to the case of the fixed point index defined
in (60.5) having the following properties:

• existence,
• excision,
• additivity,
• homotopy,
• commutativity,
• mod p.

To obtain the normalization property of the above fixed point index one more
assumption about ϕ is needed. We have to assume that ϕ is a compact absorbing
contraction and compacting mapping. We have proved in Chapter IV that for
compact absorbing contractions the Lefschetz fixed point theorem is true, so it is
sufficient to see that the respective Lefschetz number and the fixed point index
are equal.

There are still some open problems concerning compacting and compact ab-
sorbing contractions:

One of those is to find relations between:

• compacting, condensing, k-set contraction mappings on one hand;
• eventually compact mappings with compact attractors, compact absorbing

contractions, asymptotically compact — on the other hand.

61. Fixed points of differentiable multivalued maps

In this section we prove several fundamental fixed point principles for u.s.c.
maps with convex values which are k-set contractions, k < 1 and differentiable at
the origin or infinity. We will base on the works of G. Fournier and D. Violette
(cf. [FV1], [FV2]).

Let E, E′ be two Banach spaces. A multivalued map F : E � E′ is called
homogeneous, if F (tx) = t · F (x) for any x ∈ E and t ∈ R. We say that F is
semi-linear positive if F (

∑n
i=1 tixi) ≤

∑n
i=1 ti · F (xi) for every xi ∈ E, ti ≥ 0 and∑n

i=1 ti ≤ 1. In this case F (0) = 0 and F (conv A) ⊂ conv F (A). A real number λ

is an eigenvalue of F : E � E if there exists x ∈ E such that λx ∈ F (x); then x is
called an eigenvector corresponding to λ.
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Let U be an open subset of E.

(61.1) Definition. A multivalued map T : U � E′ is differentiable at the
point x ∈ U if there exists an u.s.c. multivalued map Sx: T (x)×E → E′ such that
the map Sx,z: E → E′ defined by Sx,z(h) = Sx(z, h) is u.s.c., homogeneous and
that if ‖h‖ < δ, then

dH

(
T (x + h),

⋃
z∈T (x)

(z + Sx(z, h))
)
≤ ε‖h‖,

where dH stand for the Hausdorff distance. The map Sx is called a differential
of T at x. If T is differentiable at every point of U , T is said to be differentiable
on U . We do not have the uniqueness of the differential at a point. Moreover, our
differential is not necessarily a map with convex values.

(61.2) Example. Let T : Rn � Rn be defined by

T (x) = conv(T1(x), . . . , Tn(x)), where Ti: Rn → Rn

is a singlevalued differentiable maps on an open subset U of Rn. Then the map T

is differentiable on U and the map Sx: T (x)×Rn → Rn defined by

Sx(z, h) =
{ n∑

i=1

aiDTi(x)(h)
∣∣∣∣ n∑

i=1

aiTi = z, ai ≥ 0 and
n∑

i=1

ai = 1
}

is a differential of T at x ∈ U .

The differentiable multivalued maps have the following properties:

(61.3) Proposition. Let T : U � E′ be a multivalued map differentiable at
x ∈ U . Then there exists δ > 0 and there exists k > 0 such that ‖Sx(z, h)‖ ≤ k‖h‖
for ‖h‖ < δ and for every z ∈ T (x).

(61.4) Proposition. If T : U � E′ is a multivalued map differentiable at the
point x ∈ U , then T is continuous at that point.

(61.5) Definition. Let T : U � E′ be a multivalued map such that T (x) is
compact for every x ∈ U , where U = {x ∈ E | ‖x‖ > M > 0}. T is differen-
tiable at infinity if for any ε > 0, there exists δ > 0 such that ‖h‖ > δ implies
dH(T (h), S(h)) ≤ ε‖h‖, where S: E � E′ is an u.s.c., homogeneous and semi-
linear positive map. The map S is called a differential of T at infinity.

(61.6) Definition. Let T : U � E′ be a differentiable map on U . We shall
say that T is continuously differentiable on U if there exists a map (x, z) → Sx,z

such that

(61.6.1) it is continuous on
⋃

x∈U{x× T (x)},
(61.6.2) Sx is a differential of T at x.
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(61.7) Proposition. Let U ⊂ E be an open set containing the point 0 ∈ E

and let F : U � E be a multivalued differentiable at 0 map such that F (0) = 0. If
S0 is a differential of F at 0 then the m-th iteration F m of F is differentiable at 0
and Sm

0 is a differential of F m at 0.

Proof. Since S0,0 is homogeneous, S0,0(0) = 0 and hence Sm
0,0(0) = 0.

Since F is differentiable at 0, for any ε > 0, there exists δ > 0 such that

(61.7.1) dH(F (h), S0,0(h)) ≤ ε‖h‖ for every h ∈ Nδ(0).

Since F i is u.s.c. at 0 and F (0) = 0, we can assume that F i(h) ⊂ Nδ(0) for all
i ≤m if h ∈ Nδ1 (0) where δ1 > 0. By (61.7.1) we have (3)

dH(F i(h), S0,0(F i−1(h))) ≤ ε‖F i−1(h)‖ for all i ≤ m.

In particular,
dH(F m(h), S0,0(F m−1(h))) ≤ ε‖F m−1(h)‖.

But dH(F m−1(h), S0,0(F m−2(h))) ≤ ε‖F m−2(h)‖ and S0,0 is semi-linear positive
so,

dH(F m(h), S2
0,0(F m−2(h))) ≤ ε‖F m−1(h)‖+ ε‖S0,0‖ ‖F m−2(h)‖.

We also have

dH(F m−2(h), S0,0(F m−3(h))) ≤ ε‖F m−3(h)‖
dH(F m(h), S3

0,0(F m−3(h))) ≤ ε‖F m−1(h)‖ + ε‖S0,0‖ ‖F m−2(h)‖
+ ε‖S0,0‖2‖F m−3(h)‖

and by the finite induction, we have

dH(F m(h), Sm
0,0(h)) ≤ ε

m−1∑
i=0

‖F m−i−1(h)‖ ‖S0,0‖i.

By the finite induction, we will show that

dH(F m(h), Sm
0,0(h)) ≤ εxm‖h‖,

where xm =
∑m−1

i=0 (ε + ‖S0,0‖)i‖S0,0‖m−1−i and x1 = 1.
The case m = 1 is (61.7.1). Suppose that it is true for k < m. Let us show this

for k + 1. By (61.7.1) with m = k + 1, we have

dH(F k+1(h), Sk+1
0,0 (h)) ≤ ε

k∑
i=0

‖F k−i(h)‖ ‖S0,0‖i.

(3) where ‖F j(h)‖ = dist(0, F j(h)).
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Let εxk+1‖h‖ = ε
∑k

i=0 ‖F k−i(h)‖ ‖S0,0‖i, then

εxk+1‖h‖ = ε‖F k(h)‖ε +
k∑

i=1

‖F k−i(h)‖ ‖S0,0‖i

= ε‖F k(h)‖+ ε

( k−1∑
j=0

‖F k−1−j(h)‖ ‖S0,0‖j

)
‖S0,0‖

writing down j = i− 1

= εxk‖h‖ ‖S0,0‖+ ε‖F k(h)‖
≤ εxk‖h‖ ‖S0,0‖+ ε(εxk‖h‖+ ‖S0,0‖k‖h‖)

by the induction hypothesis

= ε((ε + ‖S0,0‖)xk + ‖S0,0‖k)‖h‖ = εxk+1‖h‖

since

xk+1 =
k∑

i=0

(ε + ‖S0,0‖i)‖S0,0‖k−i = ‖S0,0‖+
k∑

j=1

(ε + ‖S0,0‖)i‖S0,0‖k−i

= ‖S0,0‖k + (ε + ‖S0,0‖)
k−1∑
i=0

(ε + ‖S0,0‖)j‖S0,0‖k−j−1

writing down j = i− 1

= ‖S0,0‖k + (ε + ‖S0,0‖)xk.

As a consequence dH(F k+1(h), Sk+1
0,0 (h)) ≤ εxk+1‖h‖. �

(61.8) Proposition. Let U ⊂ E be an open set containing 0. If F : U � E

is a multivalued map differentiable at 0 such that F (0) = 0 and F is a k-set
contraction, then S0,0 is a k-set contraction.

Proof. By Proposition (61.7), the m-th iteration F m of F is differentiable at
0 and Sm

0 is a differential of F m at 0. Also, F m(0) = 0 since F (0) = 0. Then
the fact that F m is a k-set contraction implies that its differential Sm

0 at 0 is also
one. �

(61.9) Proposition. Let U = {x ∈ E | ‖x‖ > M > 0} and F : U � E be
a multivalued map differentiable at infinity. If S is a differential of F at infinity
such that 0 �∈ S(h) for ‖h‖ = 1, then the m-th interaction F m of F is differentiable
at infinity and Sm is a differential of F m at infinity.

Proof. Since S is homogeneous, S(0) = 0 and Sm(0) = 0. Since F is differ-
entiable at infinity, then for any ε > 0, there exists δ > 0 such that

dH(F (h), S(h)) ≤ ε‖h‖ if ‖h‖ > δ.
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Since 0 �∈ S(h) for ‖h‖ = 1, there exists δ1 > 0 such that F i(h) ⊂ E \Nδ(0) for
every i ≤ m if ‖h‖ > δ1. We then have dH(F i(h), S(F i−1(h))) ≤ ε‖F i−1(h)‖ for
all i ≤ m.

By proceeding similarly as in the proof of (61.7), we obtain the conclusion. �

(61.10) Proposition. Let U = {x ∈ E | ‖x‖ > M > 0} and let F : U � E

be a multivalued map differentiable at infinity such that F is a k-set contraction,
k < 1. If S is a differential of F at infinity such that 0 �∈ S(h) for ‖h‖ = 1, then
S is a k-set contraction.

Proof. We use the proposition (61.8), and obtain the conclusion by proceeding
similarly as in (61.8) �

Now we will formulate and prove our main results of this paper.

(61.11) Theorem (Expansion at the origin). Let C ⊂ E be a cone and F : C �
C be a u.s.c. multivalued map with convex values such that F (0) = 0. Assume F

to be differentiable at 0 ∈ C and let S0 be a differential of F at 0. Assume,
furthermore, that there exists a positive integer m such that:

(61.11.1) F m is a k-set contraction,
(61.11.2) Sm

0,0(h) is convex for every h,
(61.11.3) dist(0, Sm

0,0(∂B(0, 1)) > γ(Sm
0,0),

(61.11.4) the eigenvalues of Sm
0,0 are strictly greater than 1.

Then i(C, F m, B(0, r)) = 0 if r is small enough.

For the proof of (61.11) we need some lemmas.

(61.12) Lemma. Let C be a cone in E. Then there exists y ∈ C such that
‖x + λy‖ ≥ ‖x‖ for every x ∈ C and for all λ ≥ 0.

Lemma (61.12) is a well known fact from functional analysis (see [Be4-M]).

(61.13) Lemma. Let C be a cone in E and S: C � C be a homogeneous map
such that S is a k-set contraction and all eigenvalues of S are different from 1.
Then there exists ε > 0 such that dist(X, S(x)) > ε · ‖x‖ for ‖x‖ �= 0.

Proof. Since S is homogeneous, it sufficient to show that there exists ε > 0
such that dist(X, S(x)) > ε. We proceed by contradiction and assume that there
exists a sequence {xn} ⊂ C, ‖xn‖ = 1 such that dist(xn, S(xn)) goes to 0 when
n → ∞. Let zn ∈ S(xn) be such that limn ‖xn − zn‖ = 0. Then γ({xn}) =
γ({zn})≤γ(S(xn))≤k · γ({xn}), where k <1. But this is true only if γ({xn})=0.
Let y ∈ {xn}. Then ‖y‖ = 1 and y ∈ S(y), a contradiction since 1 is not an
eigenvalue of S. �

Now, by using (61.13) contradiction argument we obtain:
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(61.14) Lemma. Let C be a cone in E and let F : C � C be a multivalued map
which is a k-set contraction and differentiable at 0 such that F (0) = 0. If S0 is
a differential of F at 0 and all eigenvalues of S0,0 are different from 1, then 0 is
an isolated fixed point of F .

Finally, note that from (61.13) it is easy to obtain the following:

(61.15) Lemma. Let C be a cone in E and F : C � C a k-set contraction map
differentiable at infinity. If S is a differential of F at infinity and all eigenvalues
of S are different from 1, then F has no fixed point if ‖x‖ is big enough.

Proof of (61.11). There are three important steps to show this result.
Step 1. We will show that F is homotopic to S0,0 on B(0, r) if r is small enough.
Let G be the homotopy given by:

G(h, t) = (Hh(F (h), t), t),

where Hh(y, t) = H(y, h, t) = (1−t)y+tρh(y), y ∈ F (h), h ∈ C, t ∈ [0, 1] and ρh is
the projection on the convex compact F (0)+S0,0(h) = S0,0(h), i.e. ρh is the set of
all elements of S0,0(h) which are the nearest to y. Then ρh is a multivalued u.s.c.
map with convex values. So, G is a homotopy in the class of mappings determined
by morphisms.

By Lemma (61.14), G has no fixed point on ∂B(0, r) if r is small enough and
G is compacting. By the homotopy property of the fixed point index we obtain:

i(C, F, B(0, r)) = i(C, ρ ◦ g, B(0, r)),

where g(h) = F (h)× {h} and ρ(y, h′) = ρ′
h(y) for all (y, h′) ∈ F (h)×C.

Now, we consider the homotopy G′ defined as follows:

G′(h, t) = (1− t)ρh(F (h)) + tS0,0(h) ⊂ S0,0(h)

and hence we deduce:

i(C, ρ ◦ g, Br(0)) = i(C, g, B(0, r)) = i(C, S0,0, B(0, 1)).

Step 2. We show now that S0,0 is homotopic to λS0,0, if r/‖S0,0(∂B(0, r))‖ <

λ < 1/γ(S0,0). By the choice of λ, the map λ · S0,0 is a k-set contraction. Now,
we consider the homotopy H ′ defined by:

H ′(h, s) = s · S0,0(h) for 1 ≤ s ≤ λ.

Then we obtain
i(C, S0,0, B(0, r)) = i(C, λ · S0,0, B(0, r)).
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Step 3. By (61.11), let y0 ∈ C be such that

dist(0, p · y0 + λS0,0(h)) ≥ λ dist(0, S0,0(h))

for all p ≥ 0. Choose p > (r+λ·‖S0,0(∂B(0, r))‖)/‖y0‖ and consider the homotopy
H ′′ defined by:

H ′′(h, t) = tpy0 + λ(S0,0(h)) for all t ∈ [0, 1].

Then we obtain i(C, λS0,0, B(0, r)) = i(C, py0 + λS0,0, B(0, r)) = 0 and the proof
is completed. �

(61.16) Theorem (Compression at the origin). Let C ⊂ E be a cone. Let
F : C � C be a k-set contraction map with convex values and differentiable at
0 ∈ C. Let S0 be a differential of F at 0 such that:

(61.16.1) S0,0(h) is convex for every h,
(61.16.2) the eigenvalues of S0,0 belong to the interval [0, 1).

Then i(C, F, B(0, r)) = 1 if r is small enough.

Proof. As in the Step 1 of the proof of (61.11) we can show that i(C, F, B(0, r))
= i(C, S0,0, B(0, r)) if r is small enough. The homotopy H ′ defined by

H ′(x, t) = t · S0,0(h), t ∈ [0, 1]

has no fixed points on ∂B(0, r). So, by the homotopy property of the index we
obtain:

i(C, S0,0, B(r, 0)) = i(C, f0, B(0, r)) = 1,

where f0: B(0, r)→ C is defined by f0(h) = 0 for every h ∈ B(0, r) and the proof
is completed. �

(61.17) Lemma. Under the same hypotheses of Theorem (61.16), the map G

defined in the proof of Theorem (61.11) (see, Step 1 ) is a k-set contraction.

Proof. We have G(h, t) ⊂ conv(F (h) ∪ S0,0(h)) and so

G(A× [0, 1]) ⊂ conv(F (A) ∪ S0,0(A))

for every bounded subset A of E. It follows that:

γ(G(A × [0, 1])) ≤ max(γ(F (A)), γ(S0,0(A)))

and thus G is a k-set contraction since F and S0,0 are. �

We will end this section by formulating next four results.
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(61.18) Theorem (Expansion at infinity). Let C⊂E be a cone. Let F : C�C

be an u.s.c. multivalued map with convex values such that F (0) = 0, F is a k-set
contraction and differentiable at the infinity. Let S be a differential of F at infinity
such that:

(61.18.1) S(h) is convex for all h,
(61.18.2) dist(0, S(∂B(0, r))) > γ(S), r > 0,
(61.18.3) the eigenvalues of S are strictly greater than 1.

Then i(C, F, B(0, r)) = 0 if r is big enough.

Proof. The proof is similar to the proof of (61.11) but we must substitute S0,0

by S and use Lemma (61.15) and Proposition (61.8). �

(61.19) Theorem (Compression at infinity). Let C ⊂ E be a cone. Let
F : C � C be an u.s.c. multivalued map with convex values such that F (0) = 0, F

is a k-set contraction and differentiable at infinity. Let S be a differential of F at
infinity such that:

(61.19.1) S(h) is convex for all h,
(61.19.2) the eigenvalues of S belong to the interval [0, 1).

Then i(C, F, B(0, r)) = 1 if r is big enough.

Proof. Similar to the proof (61.16). �

If we combine the previous theorems, we obtain the following two theorems.

(61.20) Theorem (Expansion at the origin and compression at infinity). Let
C ⊂ E be a cone and let F : C � C be an u.s.c. multivalued map with convex values
such that F (0) = 0, F is a k-set contraction and differentiable at the origin 0 and
infinity. Assume furthermore that conditions (61.11.1)–(61.11.4) are satisfied for
R1 > 0 and conditions (61.19.1)–(61.19.2) are satisfied for R2 > 0. Let U = {x ∈
C | R1 < ‖x‖ < R2}. Then i(C, F, U) = 1 and thus F has a non-trivial fixed point
in U .

(61.21) Theorem (Compression at the origin and expansion at infinity). Let
C ⊂ E be a cone and let F : C � C be an u.s.c. multivalued map with convex values
such that F (0) = 0, F is a k-set contraction and differentiable at the origin 0 and
infinity. Assume furthermore that conditions (61.16.1)–(61.16.2) are satisfied for
R1 > 0 and conditions (61.18.1)–(61.18.3) are satisfied for R2 > 0. Let U = {x ∈
C | R1 < ‖x‖ < R2}. Then i(U, F, C) = −1; and thus F has a non-trivial fixed
point in U .

Proof. By combining the previous theorems. �
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62. The generalized topological degree for acyclic mappings

In the bifurcation theory a generalized topological degree for mappings acting
between spheres of different dimensions is needed. First, we shall do it for strongly
acyclic mappings (see Section 33). To provide necessary constructions we shall
appeal to the homotopy groups of sphere. For the unit sphere Sn ⊂ Rn+1 we
let πm(Sn), m = 1, 2, . . . be the m-th homotopy group of Sn. According to
the Section 33 by SA(m, n) (resp. C(m, n)) m ≥ n, we denote the class of all
triples (ϕ, U, y) (resp. (f, U, y)), where U is an open subset of Sn, y ∈ Sn and
ϕ: (cl U, ∂U) � (Sn, Sn \ {y}) is an SA-map (resp. f : (cl U, ∂U) → (Sn, Sn \ {y})
is a continuous map), where a SA-map means a strongly acyclic map.

The next lemma plays a role in what follows.

(62.1) Lemma. Let U be an open subset of a finite-dimensional metric space
X and let y ∈ Sn. If ϕ: (cl U, ∂U) � (Sn, Sn \{y}) is an SA-map, then there is an
SA-map ϕ′: (X, X \U) � (Sn, Sn \{y}) such that ϕ′|U = ϕ|U . If ψ′: (X, X \U) �
(Sn, Sn \ {y}) is an SA-map such that ψ′|U = ϕ|U and f, g: X → Sn are co-
selections of ϕ′, ψ′, respectively, then the maps f, g are homotopic.

Proof. There is δ > 0 such that ϕ(x) ∩ B(y, δ) = ∅ for x ∈ ∂U . Define
Z = Sn \ B(y, (δ/2)). The set Z is strongly acyclic and a map ϕ′: X � Sn given
by the formula

ϕ′(x) =

{
Z for x ∈ X \ U,

ϕ(x) for x ∈ U,

satisfies our requirements. Indeed, it is upper semi-continuous since its graph is
closed and has strongly acyclic values. Now, consider an SA-map ψ′ as above
and a map f ′: X \ U → Sn given by f ′(x) = y for x ∈ X \ U . By Proposition
(33.4) there is a co-selection f ′′ of ϕ′ such that f ′′|X \ U = f ′. Evidently f , f ′′

are co-selections of ϕ′ and g, f ′′ are co-selections of ψ′. Therefore, once again by
Proposition (33.4) f and g are homotopic. �

We shall define a function

deg: SA(m, n)→ πm(Sn).

Let (ϕ, U, y) ∈ SA(m, n). By (62.1), there is an SA-map ϕ′: (Sm, Sm \ U) →
(Sn, Sn \{y}) such that ϕ′|U = ϕ|U . Let f ′ ∈ C(m, n) be an arbitrary co-selection
of ϕ′. We define the generalized topological degree deg(ϕ, U, y) of ϕ on U over y by
the formula:

deg(ϕ, U, y) = [α ◦ f ′] ∈ πm(Sn),

where α: Sn → Sn, α(x) = −x, is the antipodal map and [α ◦ f ′] is the homotopy
class of α ◦ f ′: Sm → Sn. It follows from (62.1) that the above definition does
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not depend on the choice of ϕ′ and f ′. So, our definition is correct. If ϕ = f is
a singlevalued map, then the above definition coincides with the generalized degree
defined for continuous mappings (see [Kr2-M]).

(62.2) Proposition. Under the above assumptions:

(62.2.1) (Existence) If deg(ϕ, U, y) �= 0 ∈ πm(Sn), then L ⊂ ϕ(U), where L is
a component of the set Sn \ ϕ(∂U) that contains y.

(62.2.2) (Localization) If V ⊂ U is open in Sm and y ∈ Sn \ϕ(x) for x ∈ U \ V ,
then (ϕ, V, y) ∈ SA(m, n) and deg(ϕ, U, y) = deg(ϕ, V, y).

Proof. If y �∈ ϕ(U), then as a choice of f ′ we can take a constant map f ′: Sm →
Sn, f ′(x) = y, in that case [α◦f ′] = 0. It is clear that deg(ϕ, U, y) does not depend
on a small perturbation of y. It follows that the assertion (62.2.1) holds. The proof
of (62.2.2) is self-evident. �

The localization property (62.2.2) can be generalized, however, under stronger
assumptions concerning the dimensions m, n.

(62.3) Proposition. Let n ≤ m < 2n− 1. If U1, U2 are open disjoint subsets
of U and ϕ: (cl U, cl U \ (U1 ∪U2)) � (Sn, Sn \ {y}) is strongly acyclic, then:

deg(ϕ, U, y) = deg(ϕ, U1, y) + deg(ϕ, U2, y).

The proof of (62.3) relies on the following lemma which is well known in alge-
braic topology (see [Sp-M]).

(62.4) Lemma. Let X and F : (X, {p})→ (Sn × Sn, {(y, y)}) be a continuous
map. Then there is a map G: (X, {p}) → (Sn ∨ Sn, {(y, y)}) homotopic to F

relative to the set F −1(Sn ∪ Sn), where Sn ∨ Sn = Sn × {y} ∪ {y} × Sn.

Proof. By Proposition (62.3) deg(ϕ, U, y) = deg(ϕ, U1 ∪ U2, y). Let Ai =
Sm \ Ui, i = 1, 2. Obviously, A1 ∪ A2 = Sm. Let fix p ∈ A1 ∩ A2. Without
any loss of generality we may assume that p = (1, 0, . . . , 0). For ϕi = ϕ|cl Ui , we
construct an SA-map ϕ′

i: (Sm, Ai) � (Sn, Sn \ {y}) such that ϕ′
i|Ui = ϕ|Ui and

a co-selection f ′
i : Sm → Sn of ϕ′

i (i = 1, 2). It is clear that we may assume that
f ′

i(x) = y for x ∈ Ai, i = 1, 2.
Consider a map f ′: (Sm, {p})→ (Sn×Sn, {(y, y)}) given by f ′(x)=(f ′

1(x), f ′
2(x))

for x ∈ Sm. Observe that, actually, f ′: Sm → Sn ∨Sn. Hence, if Ω: Sn ∨Sn → Sn

is defined via Ω(z, y) = z or Ω(y, z) = z, then the map Ω ◦ f ′: Sm → Sn is a well
defined co-selection of an arbitrary SA-map ϕ′: (Sm, A1 ∩ A2) � (Sn, Sn \ {y})
such that ϕ′|U1∪U2 = ϕ|U1∪U2 . Hence, deg(ϕ, U1 ∪ U2, y) = [α ◦ Ω ◦ f ′] and it is
sufficient to show that [f ′

1] + [f ′
2] = [Ω ◦ f ′]. To this end let us recall the definition

of the sum [f ′
1] + [f ′

2].
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Let θ±: (Sm, {p})× I → (Sm, {p}) be a deformation such that θ±(x, 1) = p for
any x ∈ Sm± , and let g±

i = f ′
1 ◦ θ±( · , 1), i = 1, 2. Obviously, g±

i (Sm± ) = {y}. If
g = (g+

1 , g−
2 ): Sm → Sn ∨ Sn then, by the definition,

[f ′
1] + [f ′

2] = [Ω ◦ g].

Therefore, we have to show that maps Ω ◦ g and Ω ◦ f ′ are homotopic. Since
f ′

1 and g+
1 are homotopic {rel p}, f ′

2 and g−
2 are homotopic {rel p}, then f ′ and

g are homotopic {rel p}, as well. Let F : (Sm, {p}) × I → (Sn × Sn, {(y, y)}) be
a homotopy joining f ′ with g, i.e. F ( · , 0) = f ′, F ( · , 1) = g. We see that Sm ×
{0}∪Sm×{1} ⊂ F −1(Sn∨Sn). In view of Lemma (62.4), since m+1 < 2n, there
is a map G: Sm × I → Sn ∨ Sn such that G|Sm×{0}∪Sm×{1} = F |Sm×{0}∪Sm×{1},
i.e. G( · , 0) = f ′, G( · , 1) = g. Hence Ω ◦ f ′ and Ω ◦ g are joined by the homotopy
Ω ◦G; the proof is completed. �

In order to prove the next property we shall need the following lemma.

(62.5) Lemma. Let X be a metric space with diam(X) < M , A be a closed
subset of X and f : A → Y be a continuous map. If Y is a topological n-disc,
h: Dn → Y is a homeomorphism and Z = h(Sn−1), then there is a continuous
map F ∗: X → Y such that f∗|A = f and f∗(X \A) ⊂ Y \ Z.

Proof. Let r: X → I be given by r(x) = 1−M−1 dist(x, A), x ∈ X. By the
Tietze theorem, there is f ′: X → Dn such that h ◦ f ′|A = f . Consider a map
f ′′: X → Dn given by f ′′(x) = r(x)f ′(x), x ∈ X. It is easy to verify that a map
f∗ = h ◦ f ′′ satisfies the assertion. �

Assume now that (ϕ, U, y) ∈ SA(m+1, n+1), where y belongs to the equatorial
sphere of Sn+1 identified with Sn, and let U0 = U ∩ Sm+1

+ ∩ Sm+1
− = U ∩ Sm.

(62.6) Proposition. Suppose that ϕ(cl U ∩ Sm+1
± ) ⊂ Sn+1

± and let B = cl U0,
where the closure is taken with respect to Sm. Then B ⊂ cl U and, for x ∈ B \U0,
y �∈ ϕ(x). If ϕ0: B � Sn is given by ϕ0(x) = ϕ(x), x ∈ B, then

deg(ϕ, U, y) =
∑

(deg(ϕ0, U0, y)),

where
∑

: πm(Sn)→ πm+1(Sn+1) is the suspension homomorphism.

Proof. Let Z = Sn+1 \ B(y, (δ/2), Z0 = Sn ∩ Z, where δ > 0 is such that
ϕ(x)∩B(y, δ) = ∅ for x ∈ bd U . Define SA-maps ϕ: Sm+1 � Sn+1, ϕ′

0: Sm � Sn

by the formula

ϕ′(x) =

{
Z for x �∈ U,

ϕ(x) for x ∈ U,
ϕ′

0(x) =

{
Z0 for x �∈ U0,

ϕ0(x) for x ∈ U0.
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Let f ′
0: Sm → Sn be a co-selection of ϕ′

0 such that f ′
0(x) = y for all x ∈ Sm \ U0.

By the definition, deg(ϕ0, U0, y) = [a ◦ f ′
0] ∈ πm(Sn). Define C± = Sm+1

± \ U and
continuous maps f±: C± ∪ Sm → Sn by the formula

f±(x) =

{
y for x ∈ C±,

f ′
0(x) for x ∈ Sm.

In view of Lemma (62.5), we construct maps f ′
±: Sm+1

± →Sn+1
± such that f ′

±|C±∪Sm

= f± and f ′
±(Sm+1

± ∪ C±) ⊂ Sn+1
± . Next, we define f ′: Sm+1 → Sn+1 by the

formula

f ′(x) =

{
f ′

+(x) for x ∈ Sm+1
+ ,

f ′−(x) for x ∈ Sm+1
− .

Evidently, f ′ is a co-selection of ϕ′, hence deg(ϕ, U, y) = [α ◦ f ′] ∈ πm+1(Sn+1).
On the other hand, observe that α ◦ f ′ is homotopic to the suspension S(α ◦ f ′

0).
This completes the proof since [α ◦ f ′] = [S(α ◦ f ′

0)] =
∑

([α ◦ f ′
0]). �

In particular, let (ϕ, U, y) ∈ SA(m, n) and put W = SU . We may treat W as
a subset of Sm+1. In view of Proposition (62.6) and (62.2.2), we have the following
corollary.

(62.7) Corollary (Suspension). For any open subset V ⊂ Sm+1 such that
V ⊂W , if y �∈ ϕ(x) for x ∈ cl U \ (V ∩ Sm), then

deg(Sϕ, V, y) =
∑

(deg(ϕ, U, y)).

The next proposition is self-evident.

(62.8) Proposition (Homotopy). If SA-maps ϕ0, ϕ1: (cl U, bd U) � (Sn,

Sn \ {y}) are SA-homotopic, the deg(ϕ0, U, y) = deg(ϕ1, U, y).

Now we shall prove a result concerning the uniqueness of the degree deg intro-
duced above.

(62.9) Theorem. If D: SA(m, n) → πm(Sn) is a function satisfying the ho-
motopy property and the restriction of D to triples (ϕ, U, y) ∈ SA(m, n), with ϕ

being singlevalued, is equal to the degree d, then D = deg.

Proof. Let (ϕ, U, y) ∈ SA(m, n) and let ϕ′: (Sm, Sm \ U) � (Sn, Sn \ {y})
be an SA-map such that ϕ′|U = ϕ|U . If f ′ is a co-selection of ϕ′ such that
f ′(x) = y for x ∈ Sm \ U , then we see that f ′′ = f ′|cl U is a co-selection of ϕ

and (α ◦ f ′′, U, y) ∈ SA(m, n). By Lemma (62.1), ϕ and α ◦ f ′′ are SA-homotopic,
hence

D(ϕ, U, y) = D(α ◦ f ′′, U, y) = d(α ◦ f ′′, U, y) = [α ◦ f ′] = deg(ϕ, U, y).
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On the other hand, if (f, U, y) ∈ C(m, n), then it is well known that by the
uniqueness of the topological degree one has deg(f, U, y) = degB(f, U, y), where
degB stands for the ordinary Brouwer degree. So the generalized degree deg intro-
duced above is the unique extension of the Brouwer degree for maps in SA(m, n)
with values in πm(Sn). �

We would like to extend now the generalized degree theory to the class of acyclic
maps. As above, let A(m, n), m ≥ n be the class of all triples (ϕ, U, y), where U

is open in Sm, y ∈ Sm and ϕ: (cl U, ∂U) � (Sn, Sn \ {y}) is an acyclic map.
A deformation retract of Sn \ {z}, has the form

Hn(Sn) = Z ∈ x→ c · x ∈ Z = Hn(Sn),

where c ∈ Z. This number c is called the degree of ϕ on U over y and denoted
by degy(ϕ, U). It is not difficult to show that degy has the suspension property
and is consistent with the Brouwer degree for singlevalued maps. Precisely, if
(f, U, y) ∈ C(n, n) ⊂ A(n, n), then degy(f, U) = degB(f, U, y).

Now, let (ϕ, U, y) ∈ A(m, n) and K = ϕ−1
+ (y). We identify Sm with the equa-

torial sphere of Sm+1 and let V be an open subset of Sm+1 such that K ⊂ C ⊂
cl V ⊂ SU . The map ψ = Sϕ|cl V : cl V � Sn+1 is, in view of Proposition (34.4),
strongly acyclic and y �∈ ψ(x) for x ∈ bd V . Therefore (ψ, V, y) ∈ SA(m+1, n +1)
and we are in a position to define

Deg(ϕ, U, y) = deg(ψ, U, y) ∈ πm+1(Sn+1).

One can easily see this definition is correct since, by (62.22.2), it does not depend
on the choice of V .

(62.10) Remark. Assume that (ϕ, U, y) ∈ SA(m, n) ⊂ A(m, n). By Corolla-
ry (62.7), Deg(ϕ, U, y) =

∑
(deg(ϕ, U, y)).

The degree Degdefined above has similar properties to those of degree deg.

(62.11) Theorem. Suppose that U , V , ϕ, K, y are as above.

(62.11.1) If Deg(ϕ, U, y) �= 0 ∈ πm+1(Sn+1) and L is a component of Sn \ϕ(∂U)
that contains y, then L ⊂ ϕ(U).

(62.11.2) If m < 2n, U = U1 ∪ . . . ∪ Uk and the sets Ki = K ∩ Ui, i = 1, 2, . . . , k

are pairwise disjoint, then

Deg(ϕ, U, y) =
k∑

i=1

Deg(ϕ, Ui, y).

(62.11.3) Deg(Sϕ, V, y) =
∑

(Deg(ϕ, U, y)).
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(62.11.4) If ϕ: (cl U, ∂U) × I � (Sn, Sn \ {y}) is acyclic, then Deg(ϕ0, U, y) =
Deg(ϕ1, U, y), where ϕi = ϕ( · , i), i = 0, 1.

We end this section with the following observation concerning the uniqueness
of the degree Deg.

(62.12) Proposition.

(62.12.1) If D: A(m, n) → πm+1(Sn+1) is a function satisfying the suspension
property (62.11.3) and D|SA(m, n) =

∑
◦ deg, then

∑
◦D =

∑
◦Deg.

(62.12.2) For any (ϕ, U, y) ∈ A(n, n), Deg(ϕ, U, y) = degy(ϕ, U).

Proof. Let (ϕ, U, y) ∈ A(m, n) and let V have the same meaning as above.
Then D(Sϕ, V, y) =

∑
(D(ϕ, U, y)). On the other hand,

D(Sϕ, V, y) =
∑

(deg(Sϕ, V, y)) =
∑

(Deg(ϕ, U, y)).

Since degy satisfies the suspension property, in view of Theorem (62.9), we have
degy(ϕ, U) = degy(Sϕ, V, y) = deg(Sϕ, V, y) = Deg(ϕ, U, y). �

63. The bifurcation index

When dealing with the phenomenon of a bifurcation on solutions of inclusions
(e.g. multivalued equations) with parameters some different homotopy invariants
are needed. In this section we will introduce an invariant available for acyclic maps
and inclusions involving this type of maps.

Let ϕ: U � Rn, where U is an open subset of Rm = Rk × Rn, i.e. m = n + k,
n, k ≥ 1, be an acyclic map. Define:

T = {λ ∈ Rn | (λ, 0) ∈ U},
U0 = U ∩ (Rk × {0}), i.e. U0 = T × {0},
S = {(λ, x) ∈ U \ U0 | 0 ∈ ϕ(λ, x)}.

We assume that 0 ∈ ϕ(λ, 0) for all λ ∈ T . Then the set B(ϕ) = {λ ∈ T | (λ, 0) ∈
cl S} is called the set of bifurcation points for ϕ. We will assume that B(ϕ) is
compact.

In order to define the bifurcation index BI(ϕ) of ϕ we shall need some auxiliary
objects. Let us consider a continuous function α: T → (0, +∞) such that:

0 < α(λ) < dist((λ, 0), ∂U ∪ cl S).

Next let

X = {(λ, x) ∈ Rm | λ ∈ T, ‖x‖ = α(λ)},
X+ = {(λ, x) ∈ Rm | λ ∈ T, ‖x‖ < α(λ)}.
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Observe that clX+ = X+ ∪X ⊂ U and put X− = U \ cl X+. It is easy to see that
S ⊂ X− and B(ϕ) × {0} ⊂ X.

Let f : U → R be a continuous function such that:
f(λ, x) < 0 for (λ, x) ∈ X−,

f(λ, x) = 0 for (λ, x) ∈ X,

f(λ, x) > 0 for (λ, x) ∈ X+.

We consider a multivalued map Φ = (ϕ, f): U � Rn+1, i.e. Φ(λ, x) × {f(λ, x)},
(λ, x) ∈ U . Evidently, Φ is an SA-map and it is easy to see that Φ−1

+ (0) =
B(ϕ) × {0}. Hence, Φ−1

+ (0) is compact in U and we may define

BI(ϕ) = deg(Φ, U, 0) ∈ πm(Sn+1).

This definition is correct, since by Proposition (62.8) it does not depend on the
choice of α and the complementing function f . The element BI(ϕ) of the group
πm(Sn+1) is called the bifurcation index of ϕ.

We shall now collect some properties of the bifurcation index.

(63.1) Theorem (Existence and structure of solutions). If BI(ϕ) �= 0, then
B(ϕ) �= ∅ and, moreover, there exists a connected subset C of S such that cl C ∩
U0 = cl C ∩ (B(ϕ)× {0}) �= ∅ and C is not contained in any compact subset of U .

Proof. Let A = Sm \ im(U) (recall that im: Rm → Sm = Rm ∪ {∞} is the
embedding). We shall prove that B = im(B(ϕ)×{0}) and A cannot be separated
in the compact space Z = B∪im(S)∪A. If so, then in virtue of [Al], Proposition 5,
there is a connected subset C ⊂ im(S) such that cl C ∩B �= ∅ and cl C ∩A �= ∅,
and this is what we actually require.

Suppose, to the contrary, that A and B can be separated in Z. Hence, there is
an open set W ⊂ U such that

B(ϕ) × {0} ⊂W, cl(im(W )) ∩A = ∅, im(S) ∩ bd(im(W )) = ∅.

Therefore, cl W ⊂ U , cl W is compact and S ∩ bd W = ∅.
Let W ′ = X+ ∪W and let X′ = bd W ′. It is easy to see that X′ = X− ∩ ∂W ∪

X ∩ (U \ cl W ) ∪X ∩ ∂W . We define a continuous function f ′: U → R such that

f ′(λ, x)


> 0 for (λ, x) ∈W ′,

= 0 for (λ, x) ∈ X′,

< 0 for (λ, x) ∈ U \ cl W ′,

and an SA-map Φ′ = (ϕ, f ′): U � Rn+1.
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First, observe that Φ
′−(0) = {y ∈ U | 0 ∈ Φ′(y)} = ∅. Indeed, if 0 ∈ Φ′(λ, x),

then (λ, x) ∈ X′ and 0 ∈ ϕ(λ, x); if (λ, x) ∈ X−∩∂W , then x �= 0, hence (λ, x) ∈ S;
if (λ, x) ∈ X ∩ (U \ cl W ) ∪X ∩ ∂W , then x = 0 and α(λ) = 0, i.e. λ ∈ B(ϕ). In
both cases we obtain a contradiction.

Let an SA-map χ: U × I � Rn+1 be given by the formula

χ(λ, x, t) = ϕ(λ, x)× {(1− t)f(λ, x) + tf ′(λ, x)}

for (λ, x) ∈ U and t ∈ I. We see that χ0 = Φ and χ1 = Φ′. One can easily show
that the set

{(λ, x) ∈ U | 0 ∈ χ(λ, x, t) for some t ∈ T}

is contained in cl X− ∩ cl W , hence it is compact.
Evidently deg(Φ′, U, 0) = deg(Φ, U, 0) = BI(ϕ) �= 0, i.e. Φ−1

+ (0) �= ∅ - a con-
tradiction. In other words, we have proved that if BI(ϕ) �= 0, then there exists
a connected branch C of nontrivial solutions such that cl C ∩B(ϕ)×{0} �= ∅, and
either C is unbounded or cl C ∩ ∂U �= ∅. �

(63.2) Corollary (Compactness). If the set cl S is compact in U , then

BI(ϕ) = 0.

(63.3) Proposition (Localization). If V ⊂ U is open and B(ϕ) × {0} ⊂ V ,
then BI(ϕ)=BI(ϕ|V ). Thus BI(ϕ) depends only on the behaviour of ϕ on a neigh-
bourhood of B(ϕ)×{0}. In particular, if ϕ is defined on a larger open set U ′ ⊃ U

such that (U ′ \ U) ∩ Rk × {0} = ∅ then BI(ϕ) = BI(ϕ|U ).

Proof. Follows from the localization and homotopy properties of deg. �

We are now in a position to state one of the main results of this section.
Assume that there is an acyclic map ψ: W � Rn, where W is open in Rm,

U ⊂ W such that ψ|U = ϕ and 0 ∈ ψ(λ, 0) for any (λ, 0) ∈ W0 = W ∩ Rk × {0},
(ϕ satisfies all the assumptions from the beginning of this section). Let

P = {(λ, x) ∈W \W0 | 0 ∈ ψ(λ, x)}.

(63.4) Corollary (Global Bifurcation). If BI(ϕ) = BI(ψ|U ) �= 0, then there
exists a connected branch C ⊂ P such that cl C ∩ B(ϕ) × {0} �= ∅ and at last one
of the following occurs:

(63.4.1) C is unbounded,
(63.4.2) cl C ∩ ∂W �= ∅,
(63.4.3) there is a point λ0 ∈ Rk\T (i.e. (λ0, 0) ∈W0\U0) such that (λ0, 0) ∈ cl C.
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Thus ψ has bifurcation points outside U connected to B(ϕ) × {0} in cl P .

Proof. Let A = Sm \ im(W ). If the sets A and B = im(B(ϕ) × {0}) cannot
be separated in a compact space Z = B ∪ im(P )∪A, then in view of [Al], (63.4.1)
or (63.4.2) holds.

If A and B can be separated in Z, then there is an open set V such that
B(ϕ) × {0} ⊂ V ⊂ cl V ⊂W , P ∩ ∂V = ∅ and cl V is compact. Therefore

P ′ = P ∩ cl V ⊂ V

and P ′ is compact.
If V0 = V ∩Rk ×{0} ⊂ U0, then in view of Proposition (63.3) BI(ψ|V ) = BI(ϕ)

and, by Corollary (63.2) BI(ψ|V ) = 0, which is a contradiction.
Hence D = cl V0 \U0 is compact nonempty. Consider a compact space Z′ = D∪

P ′∪B(ϕ)×{0}. If D and B(ϕ)×{0} can not be separated, then conclusion (63.4.3)
holds. Suppose to the contrary that D and B(ϕ) × {0} can be separated. Then
there are open disjoint sets U ′′, U ′ ⊂ W such that U ′′ ∪ U ′ ⊃ Z′, D ⊂ U ′′ and
B(ϕ) × {0} ⊂ U ′. Hence {(λ, x) ∈ U ′ | x �= 0, 0 ∈ ψ(λ, x)} is compact (in U ′).
Thus, by Proposition (63.3) BI(ϕ) = BI(ψ|U ′). But, in view of Corollary (63.2),
BI(ψ|U ′) = 0, which is a contradiction. �

Now we shall proceed with collecting some properties of the bifurcation index.
As before, by restricting dimensions we may generalize the property of localiza-

tion.

(63.5) Proposition (Additivity). Assume that k < n + 1.

(63.5.1) If U1, U2 are open disjoint, U = U1 ∪ U2, then

BI(ϕ) = BI(ϕ|U1) + BI(ϕ|U2).

(63.5.2) If U1, U2 are open subsets of U , B(ϕ)×{0} ⊂ U1 ∪U2 and B(ϕ)×{0}∩
∂(U1 ∩ U2) = ∅, then BI(ϕ|U1∩U2), BI(ϕ|U1) and BI(ϕ|U2) are defined,
and

BI(ϕ) = BI(ϕ|U1) + BI(ϕ|U2) −BI(ϕ|U1∩U2).

Proof. Part (63.5.1) follows easily from the additivity property of deg (observe
for this reason we needed n + k < 2(n + 1) − 1, i.e. k < n + 1). (63.5.2) is just
a restatement of (63.5.1). �

An important property of the bifurcation index is the homotopy invariance. We
will give two versions of this fact.
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(63.6) Proposition (Homotopy Invariance I). Let ϕ: U×I � Rn be an acyclic
map such that 0 ∈ ϕ(λ, 0, t) for all λ ∈ T , t ∈ I. If the set

⋃
t∈I B(ϕt) is compact

in T , then BI(ϕ0) = BI(ϕ1).

Proof. Is obvious. �

However, the above homotopy invariance is not sufficient since in general, one
cannot avoid the bifurcation points of ϕt escaping through the boundary of T dur-
ing the homotopy (i.e. when t runs through I). For instance, this is the case when
maps ϕ0, ϕ1 are singlevalued close together and one considers a linear homotopy
joining them.

Hence we have to formulate another homotopy invariance property.

(63.7) Theorem (Homotopy Invariance II). Let ϕ: U × I � Rn be an acyclic
map such that BI(ϕi) is defined for i = 0, 1. Suppose that there are open sets
V, W ⊂ T such that B(ϕ0) ∪ B(ϕ1) ⊂ V ⊂ cl V ⊂ W and cl V is compact. Let
G = W \ V . If there is ε > 0 such that G × Dn

ε ⊂ U and, for any t ∈ I,
(λ, x) ∈ G × Sn−1

ε , 0 �∈ ϕ(λ, x) and, for any λ ∈ G, 0 < |x| ≤ ε, i = 0, 1,
0 �∈ ϕ(λ, x, i), then BI(ϕ0) = BI(ϕ1).

Observe that Proposition (63.6) follows as a consequence from Theorem (63.5).
In fact, under the hypotheses of Proposition (63.6), B =

⋃
t∈I B(ϕt) is compact

in T ; hence taking any open sets V, W such that B ⊂ V ⊂ cl V ⊂ W ⊂ cl W ⊂ T

and as cl W is compact, we can put ε = (1/2) dist(cl W \ V, cl S ∪ ∂U), where
S = {(λ, x) ∈ U \ U0 | 0 ∈ ϕ(λ, x, t) for some t ∈ I}.

Proof of (63.7). Put U ′ = U ∩W × Rn. For i = 0, 1 let

Si = {(λ, x) ∈ U \ U0 | 0 ∈ ϕ(λ, x, i)},

αi(λ) = min
{

1,
1
2

dist((λ, 0), cl Si ∪ ∂U)
}

, for λ ∈ T,

Xi = {(λ, x) ∈ Rm | λ ∈ R, |x| = αi(λ)}

and fi: U → R continuous such that

fi(λ, x)


> 0 for |x| < αi(λ),

= 0 for (λ, x) ∈ Xi,

< 0 for λ �∈ T or |x| > αi(λ).

According to the definition and Proposition (63.3) BI(ϕi) = deg((ϕi, fi), U ′, 0),
i = 0, 1. Because of our assumption we can modify αi in such a manner that
αi(λ) = ε for λ ∈ G.
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Let α = min {α0, α1}, X = {(λ, x) ∈ Rm | λ ∈ W, |x| = α(λ)}. We see that
X ⊂ U ′. Define a continuous function f : U ′ → R such that

f(λ, x)


> 0 for |x| < α(λ),

= 0 for (λ, x) ∈ X,

< 0 for |x| > α(λ).

Using the homotopy property it is easy to see that BI(ϕi) = deg((ϕi, f), U ′, 0),
i = 0, 1.

Consider an SA-homotopy χ: U ′ × I � Rn+1 given by the formula

χ(λ, x, t) = ϕ(λ, x, t)× {f(λ, x)}, (λ, x) ∈ U ′, t ∈ I.

We easily see that, for (λ, x) ∈ U ′, t ∈ I, if λ ∈ G, then 0 �∈ ϕ(λ, x, t). Therefore,
the set {(λ, x) ∈ U ′ | 0 ∈ ϕ(λ, x, t) for some t ∈ I} is contained in X ∩ cl V × Rn

and is compact. Hence BI(ϕ0) = deg((ϕ0, f), U ′, 0) = deg((ϕ1, f), U ′, 0) = BI(ϕ1)
and the proof is completed. �

One can easily formulate a version of the suspension property for BI. We confine
ourselves to the statement of the following so called stability property.

(63.8) Proposition (Stability). Let id: R → R be the identity map. If ϕ ×
id: U ×R � Rn+1 is given by the formula (ϕ × id)(λ, x, y) = ϕ(λ, x)× {y}, then

BI(ϕ × id) =
∑

(BI(ϕ)),

where (as before)
∑

: πm(Sn+1)→ πm+1(Sn+2).

We leave the easy proof to the reader.

64. Multivalued dynamical systems

In this section we assume that (X, d) is a metric locally compact space. We
will consider only discrete multivalued flows. We will use the following notations
taken from [KaM] and [Mr1]. For A ⊂ X we let bd A = ∂A namely, the boundary
of A in X, Bε(A) = Oε(A) = {x ∈ X | dist(x, A) < ε}, ε > 0, diamA = δ(A) to
be the diameter of A. Moreover, we denote the sets of all integers, nonnegative
integers, and nonpositive integers by Z, Z+, Z−, respectively. By an interval I in Z
we understand the intersection [a, b] ∩ Z, for some [a, b] ⊂ R.

(64.1) Definition. An u.s.c. mapping F : X ×Z � X with compact values is
called a discrete multivalued dynamical system (dmds) if the following conditions
are satisfied:
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(64.1.1) For all x ∈ X, F (x, 0) = {x},
(64.1.2) For all n, m ∈ Z with n, m ≥ 0 and all x ∈ X,

F (F (x, n), m) = F (x, n + m),

(64.1.3) For all x, y ∈ X, y ∈ F (x,−1) if and only if x ∈ F (y, 1).

We use the notation F n(x) := F (x, n) and F (x) := F 1(x). Thus F n coincides
with a superposition of F : X → P (X) or its inverse F −1. In what follows, F is
a given dmds.

(64.2) Definition. Let I be an interval in Z with 0 ∈ I. A singlevalued
mapping σ: I → X is a solution for F through x ∈ X if σ(n + 1) ∈ F (σ(n)) for all
n, n + 1 ∈ I, and σ(0) = x.

Note that if σ: I → X is a solution for F then σ(n) ∈ F n(σ(0)) for all n ∈ I.
(The proof is straightforward by induction on m and k, where I = [−k, m], k, m ∈
Z+). The existence of a solution through x forces F n(x) to be nonempty for n ∈ I.

Given a subset N ⊂ X, we introduce the following notation:

inv+ N := {x ∈ N | there exists a solution σ : Z+ → N for F through x},
inv− N := {x ∈ N | there exists a solution σ : Z− → N for F through x},

inv N := {x ∈ N | there exists a solution σ : Z→ N for F through x}.

By (64.1) we have: inv N = inv+ N ∩ inv− N .

Let diamNF := sup{diamF (x) | x ∈ N} and dist(A, B) := min {d(x, y) | x ∈
A, y ∈ B}, A, B ⊂ X. We also put F −1

+ (A) := {x ∈ X | F (x) ∩ A �= ∅} (called
the weak inverse image of A), A ⊂ X.

(64.3) Definition. A compact subset N ⊂ X is called

(a) an isolating neighbourhood for F if

(64.3.1) BdiamN F (inv N) ⊂ Int N,

(b) an isolating block for F if

(64.3.2) BdiamN F (F −1(N) ∩N ∩ F (N)) ⊂ Int N.

A straightforward verification shows that (64.3.2) implies (64.3.1).
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(64.4) Definition. Let N be an isolating neighbourhood for F . A pair P =
(P1, P2) of compact subsets P2 ⊂ P1 ⊂ N is called an index pair it the following
conditions are satisfied:

(64.4.1) F (Pi) ∩N ⊂ Pi, i = 1, 2,
(64.4.2) F (P1 \ P2) ⊂ N ,
(64.4.3) inv N ⊂ Int(P1 \ P2).

Our first aim is to prove the following result:

(64.5) Theorem. Let N be an isolating neighbourhood for F and W be a neigh-
bourhood of inv N . Then there exists an index pair P for N with P1 \ P2⊂W .

The proof is based on several lemmas. First, given N ⊂ X, x ∈ N , and n ∈ Z+,
the following notation will be used:

FN,n(x) :={y ∈ N | there exists a solution σ: [0, n]→ N for F

such that σ(0) = x and σ(n) = y};
FN,−n(x) :={y ∈ N | there exists a solution σ: [−n, 0]→ N for F

such that σ(−n) = y and σ(0) = x};

F +
N (x) :=

⋃
n∈Z

FN,n(x), F −
N (x) :=

⋃
n∈Z

FN,−n(x).

(64.6) Proposition. If N ⊂ X is compact, then FN,n: N → 2N is u.s.c. for
any n ∈ Z.

Proof. It is enough to prove the assertion for n ∈ Z+ since the case for
a negative n is analogous. Suppose that FN,n is not u.s.c. Then there exists an
open subset U of N , a point x ∈ N with FN,n(x) ⊂ U and a convergent sequence
xk → x, {xk} ⊂ N with FN,n(xk) ∩ (N \ U) �= ∅. Consequently for each k, there
exists a solution σk: [0, n]→ N for F through xk such that σk(mk) ∈ N\U for some
mk ∈ [0, n]. By passing to a subsequence we may assume that mk ≡ m ∈ [0, n] for
all k. Since N \ U is compact, we may assume that σk(i) → yi ∈ N for i ∈ [0, n],
moreover, ym ∈ N \ U . We define σ(i) = yi, I ∈ [0, n]. By the closed graph
property of F , σ(i + 1) ∈ F (σ(i)), moreover, σ(0) = x and σ(m) ∈ N \ U . That
contradicts the hypothesis FN,n(x) ⊂ U . The proof is completed. �

(64.7) Lemma. Let N ⊂ X be compact and suppose that, for all n ∈ Z+,
D(F(N,n)) �= ∅. Then inv N �= ∅. Moreover, inv(±) N =

⋂
{D(FN,n) | n ∈ Z,

(respectively n ∈ Z+, n ∈ Z−)}.

Proof. It is easy to see that {D(FN,n)}n=0,1,... is a decreasing sequence of
compact sets, therefore its intersection K is nonempty.
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We prove that inv+ N = K. The proof for inv− N is analogous and the conclu-
sion for inv N follows from (64.3.1).

The inclusion inv+ N ⊂ K is obvious. Suppose that x ∈ K. Then, for each
n ∈ Z+ there exists a solution σn: [0, n] → N for F through x. We construct
a solution σ: Z+ → N for F through x by recurrence. Evidently, σ(0) := x.
Suppose that σ|[0,n] is constructed and there is a sequence {ki} with ki > n such
that σki → σ(n) as i → ∞. By the compactness of N and passing again to
a subsequence, we may assume that σki(n + 1) → yn+1 ∈ N as i → ∞. By the
closed graph property, yn+1 ∈ F (σ(n)), so, it remains to put σ(n + 1) := yn+1. �

(64.8) Lemma. Let N ⊂ X be compact. Then

(64.8.1) The sets inv+ N , inv− N and inv N are compact,
(64.8.2) If A is compact with inv− N ⊂ A ⊂ N then F +

N (A) is compact.

Proof. (64.8.1) Since N is compact and FN,n is u.s.c. the set D(FN,n) is
compact for any given n. The intersection of a family of compact sets is compact,
hence the conclusion.

(64.8.2) It is sufficient to show that F +
N (A) is closed. Let {yk} be a sequence of

points in N , σk: [0, nk] → N a solution for F with σ(0) ∈ A and σk(nk) = y + k,
for each k, and let yk → y ∈ N . We need to show that y ∈ F +

N (A).
Case 1. {nk} is bounded: Then, by passing to a subsequence if necessary, we

may assume that nk = n for all k. Since N and A are compact, we may assume
that σk(i) → yi ∈ N , i = 0, . . . , n, y0 ∈ A, and yn = y. By the closed graph
property, yi+1 ∈ F (yi), i, i + 1 ∈ [0, n], one may therefore, define σ(i) := yi,
i = 0, 1, . . . , n. It shows that y ∈ FN,n(A).

Case 2. {nk} is unbounded: Then, by passing to a subsequence, we may assume
that {mk} is increasing and, by restricting the interval [0, nk], that nk = k. Let
σ′

k(i) = σk(i + k), i ∈ [−k, 0] → N is a solution for F with σ′
k(−k) ∈ N and

σ′
k(0) = yk. Then yk ∈ D(FN,−k) and, by the same argument as in the proof of

Lemma (64.7), y ∈ inv− N ⊂ A, the proof is completed. �

(64.9) Lemma. Let K ⊂ N be compact subsets of X such that K ∩ inv+ N = ∅
(respectively, K ∩ inv− N = ∅). Then

(64.9.1) FN,n(K) = ∅ for all but finitely many n > 0 (respectively, n < 0),
(64.9.2) The mapping F +

N (respectively, F −
N ) is u.s.c. on K,

(64.9.3) F +
N (K) ∩ inv+ N = ∅ (respectively, F −

N (K) ∩ inv− N = ∅).

Proof. (64.9.1) Assume that K ∩ inv+ N = ∅. By Lemma (64.7), for each
x ∈ K there exists nx such that FN,nx(x) = ∅. Since FN,nx is u.s.c. there exists
Vx such that FN,nx(Vx) = ∅. Let {Vx1 , . . . , Vxk} be a finite covering of K. Now, if
m ≥ max{nxi | i = 1, . . . , k}, then FN,m(K) = ∅. The proof for F −

N is analogous.
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(64.9.2) Follows from (64.9.1) and Proposition (64.6) since the union of finitely
many u.s.c. maps is u.s.c.

(64.9.3) is straightforward. The proof is completed. �

(64.10) Lemma. Let N ⊂ X be compact. Then for any neighbourhood V of
inv− N there exists a compact neighbourhood A of inv− N such that F +

N (A) ⊂ V .

Proof. By Lemma (64.5), there exists m ∈ Z+ such that FN,−m(N \ V ) = ∅.
Since FN,m is u.s.c. one can find for every x ∈ inv− N a compact neighbourhood
Vx of x such that FN,m(Vx) ⊂ V . By the compactness of inv− N , one can se-
lect a finite covering {Vx1 , . . . , Vxk} of inv− N . Let A =

⋃k
i=1 Vxi . Then A is

a compact neighbourhood of inv− N such that FN,m(A) ⊂ V . It remains to show
that F +

N (A) ⊂ V . Indeed, let y ∈ F +
N (A). Then there exists n > 0 and y ∈ A

such that y ∈ FN,n(x). If n ≤ m, we are already done. If n > m, we note that
x ∈ FN,−n(y) ⊂ FN,−m(y) and (64.3) implies that y ∈ V ; the proof is completed.�

Proof of (64.5). Since inv N ⊂ Int N , we may assume that W ⊂ Int N . We
may also assume that F (W ) ⊂ Int N . Indeed, let

0 < ε < dist(inv N, bd N)− diam F

and let γ = ε + diamF . Then Bγ(inv N) ⊂ Int N and we may intersect W with
the open neighbourhood F −1(Bγ(inv− N)), respectively, such that U ∩ V ⊂ W ,
and let A be given for V by Lemma (64.10). We define

(64.10.1) P1 = F +
N (A), P2 = F +

N (P1 \ U).

Then P1 ⊂ V and P1 \ U ⊂ P2 which implies that P1 \ P2 ⊂ U . Therefore,
P1 \ P2 ⊂ U ∩ V ⊂ W . We verify that (P1, P2) is the index pair. P1 is compact
by Lemma (64.8) and P2 is compact by Lemma (64.9.2), since P1 \ U is compact.
Next, P2 ⊂ F +

N (P1) ⊂ P1. To verify (64.9.1), let x ∈ Pi and y ∈ F (x) ∩N . Then
there exists a solution σ: [0, n] → N with σ(n) = x and σ(0) ∈ A in the case
i = 1, σ(0) ∈ P1 \U in the case i = 2, so one may extend σ to [0, n + 1] by putting
σ(n+1) = y. Hence y ∈ Pi. Since P1\P2 ⊂W and W ⊂ Int N , (64.9.2) is verified.
In order to verify (64.9.3), observe that P1 is a neighbourhood of inv− N and, by
(64.9.3) N \ P2 is a neighbourhood of inv+ N . Therefore, P1 \ P2 = P1 ∩ (N \ P2)
is a neighbourhood of inv− N ∩ inv+ N = inv N ; the proof is completed. �

We shall now discuss several properties of index pairs which will be used in the
next section.

(64.11) Proposition.

(64.11.1) If P is an index pair for N , then (P1 ∪ F (P2)) \ (P2 ∪ F (P2)) = P1 \ P2.
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(64.11.2) If P and Q are index pairs for N , then so is P ∩Q.
(64.11.3) If P ⊆ Q are index pairs for N , then so are (P1, P1 ∩ Q2) and (P1 ∪

Q2, Q2).

Proof. (64.11.1) It is verified that (P1 ∪ F (P2)) \ (P2 ∪ F (P2)) = (P1 \ P2) \
F (P2) ⊂ P1 \ P2. For proving the inverse inclusion, let x ∈ P1 \ P2. Then
x ∈ N and if x ∈ F (P2), the property (64.9.1) of index pairs implies that x ∈ P2,
a contradiction.

(64.11.2) Verification of (64.9.1) and (64.9.2) is obvious. For (64.9.3), let us
note that

Int(P1 \P2)∩ Int(Q1 \Q2) ⊂ Int((P1∩Q1)\ (P2∪Q2)) ⊂ Int((P1∩Q1)\ (P2∩Q2)).

(64.11.3) is a routine verification; the proof is completed. �

(64.12) Lemma. Let P ⊂ Q be index pairs for N which differ by at most one
coordinate, i.e. P1 = Q1 or P2 = Q2. Define a pair of sets G(P, Q) by

Gi(P, Q) = Pi ∪ (F (Qi) ∩N), i = 1, 2.

Then

(64.12.1) If Pi = Qi then Gi(P, Q) = Pi = Qi, i = 1, 2,
(64.12.2) P ⊂ G(P, Q) ⊂ Q,
(64.12.3) G(P, Q) is an index pair,
(64.12.4) F (Qi) ∩N ⊂ Gi(P, Q), i = 1, 2.

Proof. (64.12.4) is obvious and (64.12.1) is immediate from the property
(64.9.1) of index pairs.

(64.12.2) The first inclusion is obvious and the second is an immediate conse-
quence of the first one and the property (64.9.1) satisfied by Q.

(64.12.3) For (64.9.1), let x ∈ Gi(P, Q) and y ∈ F (x) ∩ N . If x ∈ Pi then
obviously y ∈ Gi(P, Q). If x ∈ F (Qi) ∩ N then x ∈ Qi hence, y ∈ F (Qi) ∩ N ⊂
Gi(P, Q). For (64.9.2) let us note that

G1(P, Q) \G2(P, Q) ⊂ Q1 \G2(P, Q) ⊂ Q1 \ P2

and either Q1 \ P2 = Q1 \ Q2, or (F (Q1) \ P2) ⊂ N . For (64.9.3), let us note
that inv N ⊂ Int(P1 \ P2) ∩ Int(Q1 \ Q2) so, (64.9.3) will follow if we verify that
(P1 \ P2)∩ (Q1 \Q2) ⊂ G1(P, Q) \G2(P, Q). Indeed, let y ∈ (P1 \P2)∩ (Q1 \Q2).
Then y ∈ G1(P, Q) and it remains to show that y �∈ F (Q2) ∩ N . For, if y ∈
F (Q2) ∩N , then by (a) y ∈ Q2, a contradiction and the proof is completed. �
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(64.13) Lemma. Let P ⊆ Q be index pairs for N which differ by at most one
coordinate. Then there exists a sequence of pairs

P = Qn ⊂ Qn−1 ⊂ . . . ⊂ Q1 ⊂ Q0 = Q

with the following properties:

(64.13.1) If Pi = Qi then Qk
i = Pi = Qi for all k = 1, 2, . . . , n− 1, i = 1, 2.

(64.13.2) Qk is an index pair for all k = 1, . . . , n− 1.
(64.13.3) F (Qk

i ) ∩N ⊂ Qk+1
i , i = 1, 2, k = 0, . . . , n− 1.

Proof. Let Qk be given by the recurrence formula Q0 = Q, Qk+1 = G(P, Qk),
k = 0, 1, . . . . By Lemma (64.12) and an induction on k, {Qk} is a decreasing
sequence of pairs containing P and satisfying (64.13.1)–(64.13.3) for all k ∈ Z+.

It remains to show that An = P for some n. Indeed, suppose that the inclusion
P ⊂ Qk is strict for all k, i.e. if i ∈ {1, 2} is such Qi\Pi �= ∅ then Qk

i \Pi �= ∅. Let us
choose σ(k) ∈ Qk

i \Pi. Then σ(k) ∈ F (Qk−1
i )∩N , so there exists σ(k−1) ∈ Qk−1

i

with σ(k) ∈ F (σ(k − 1)). If σ(k − 1) ∈ Pi then, by property (a)? of index pair,
σ(k) ∈ Pi, a contradiction. Therefore, σ(k − 1) ∈ Qk−1

i \ Pi.
By the reverse recurrence, one may construct a solution σk: [0, k]→ Qi \ Int Pi

such that σ(j) ∈ Qi
i \ Pi, j = 0, . . . , k, k ∈ Z+. By Lemma (64.7), inv N ⊂

Int(P1 \P2) ⊂ Int P1. If i = 2, we get ∅ �= inv(Q2 \ Int P2) ⊂ inv Q2. On the other
hand inv Q2 ⊂ Q and inv Q2 ⊂ Int(Q1 \ Q2) ⊂ Q1 \ Q2 implies that inv Q2 = ∅,
a contradiction. �

We shall consider now, a dmds F : X×Z � X such that the map F = F 1: X �
X is determined by a morphism. If P is an index pair for an isolating neighbour-
hood N ⊂ X we let

S(P ) := (P1 ∪ F (P2), P2 ∪ F (P2)),

T (P ) := TN(P ) := (P1 ∪ (X \ Int N), P2 ∪ (X \ Int N)).

(64.14) Proposition. If P is an index pair for N then

(64.14.1) F (P ) ⊂ S(P ) ⊂ T (P ),
(64.14.2) The inclusions iP,S(P), iS(P),T (P) and, consequently, iP,T (P) induce iso-

morphisms in the Čech cohomology.

Proof. (64.14.1) If y ∈ F (Pi) then either y ∈ Pi or y ∈ N . In the second case
y ∈ F (P2) which proves the first inclusion. Since F (P2) ⊂ F (P1) and X \ N ⊂
X \ Int N , the second inclusion follows by the same argument.

(64.14.2) By Proposition (64.12.1), S1(P ) \ S2(P ) = P1 \ P2. We also have
T1(P ) \ T2(P ) = (P1 \ P2) ∩ Int N = P1 \ P2, hence (64.14.2) follows from the
strong excision property for cohomology (see [Sp-M]). �
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Now, let FP,T (P): P � T (P ) be the restriction of F to (P, T (P )) and let iP =
iP,T (P). The endomorphism IP = (FP,T (P))x0(iP )x−1 of H∗(P ) is called the index
map associated with the index pair P .

So, we have a pair (H∗(P ), IP ). Now, following Section 11 we can apply the

Leray construction to the above pair. Then we get H̃∗(P ) = H∗(P )|N(IP ) and

the isomorphism ĨP : H̃∗(P ) ∼−→ H̃∗(P ). Let L(H∗(P ), IP ) = (H̃∗(P ), ĨP ). Then
(LH∗(P ), IP ) is called the Leray reduction of the Čech cohomology for P .

(64.15) Remark. In Section 11 we have presented the Leray construction for
graded vector spaces only. Here we deal with graded Abelian groups, but the
respective construction is strictly similar (cf. [Mr2]).

A compact subset K of X is called an isolated invariant set if K = inv N for
an isolating neighbourhood N containing K. In such a case we say that N is an
isolating neighbourhood of K for F . The main result of this section is the following:

(64.16) Theorem. Let K be an isolated invariant set. Then setting C(K, F )
:= (H∗(P ), IP ) is independent of the choice of an isolating neighbourhood N of K

for F and of an index pair P for N .

The module C(K, F ) given by the above theorem (denoted shortly by C(K) if
F is clear from the context) is called the cohomological Conley index of K.

Proof of Theorem (64.16). We need to show that if M and N are two
isolating neighbourhoods of K, P an index pair for N and Q an index pair for M

then L(H∗(P ), IP ) = L(H∗(Q), IQ). The proof will be given in several steps.
Step 1. We consider the following special case

(64.16.1) M = N ,
(64.16.2) P ⊂ Q,
(64.16.3) F (Q) ⊂ TN (P ).

By (64.12.4) we may consider the map FQ,T (P): Q→ P (TN (P )), FQ,T (P)(x) =
F (x), and the induced homomorphism IQ,P := H∗(iP )−1. IQ,P := H∗(FQ,T (P)) ◦
H∗(iP )−1. We obtain the commutative diagram

H∗(P ) H∗(P )
IP��

H∗(Q)

H∗(j)

��

IQP

$$&&&&&&&&&
H∗Q

IQ

��

H∗(j)

��

where j: P → Q is the inclusion. Then LH∗(j): L(H∗(Q), IQ)→ L(H∗(P ), IP ) is
an isomorphism (cf. [Mr2]).
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Step 2. We lift the assumption (64.12.4). Let {Qk}k=0,... ,n−1 be such that the
pair of index pairs Qk+1 ⊆ Qk satisfies the assumptions (64.12.2)–(64.12.4), so
their corresponding Leray reductions are isomorphic. Since Q0 = Q and Qn = P ,
the conclusion follows.

Step 3. We lift the assumption (64.12.3). Put R1 := P1 ∪ Q2, R2 := P1 ∩ Q2.
By Proposition (64.11.3), (P1, R2) and (R1, Q2) are index pairs. We have the
commutative diagram of inclusions

(P1, R2)
j2 �� (R1, Q2)

i3

��

(P1, P2)

i1

��

j
�� (Q1, Q2)

It is clear that the pair of index pairs (P1, P2) ⊂ (Q1, Q2) satisfies the assumption
(64.12.3) and so, does (R1, Q2) ⊂ (Q1, Q2), so by Step 2, the inclusions i1 and i3

induce isomorphisms of the Leray reductions of the corresponding cohomologies.
Since P1 \ R2 = P1 \ Q2 = R1 \ Q2, the inclusion j2 induces an isomorphism
in cohomologies by the strong excision property for cohomology.

Step 4. Now, only (64.16.1) is assumed. By Proposition (64.12.1) P ∩Q is an
index pair, hence the conclusion of Step 3 can be applied for pairs P ∩Q ⊂ P and
P ∩Q ⊂ Q.

Step 5. If M �= N , one may always assume that M ⊂ N since otherwise M ∩N

can be considered which is also an isolating neighbourhood of K. By Step 4, it is
sufficient to show the existence of one index pair P for N and one index pair Q

for M such that L(H∗(P ), IP ) and L(H∗(Q), IQ) are isomorphic.
By Theorem (64.5), there exists an index pair P for N such that P1 \ P2 ⊂

Int M ∩ F −1(Int M). It is easily verified that Q := (M ∩ P1, M ∩ P2) is an index
pair for M . Since Q1 \ Q2 = M ∩ (P1 \ P2) = P1 \ P2, the inclusion Q ⊆ P

induces an isomorphism in cohomology, by the strong excision property; the proof
is completed. �

Let Λ ∈ R be a closed interval and F : Λ × X × Z � X an u.s.c. map with
compact nonempty values such that, for each λ ∈ Λ, Fλ: X × Z � X given by

Fλ(x, n) = F (λ, x, n)

is a discrete multivalued dynamical system. Given a compact subset N ⊂ X and
λ ∈ Λ, the sets inv(±) N with respect to Fλ are denoted by inv(±)(N, λ). We will
discuss the following homotopy property (called also continuation property) of the
Conley index:
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(64.17) Theorem. Let λ0 ∈ A and let N be an isolating neighbourhood for Fλ0.
Then:

(64.17.1) N is an isolating neighbourhood for Fλ for all λ sufficiently close to Fλ0.
(64.17.2) C(inv(N, λ)) does not depend on λ (provided λ is as in (64.17.1)).

We prove here the assertion (64.17.1) only as the proof of (64.17.2) is exactly
the same as in the singlevalued case.

(64.18) Lemma. Let N ⊂ X be compact. Then the mappings λ � inv+(N, λ),
λ � inv−(N, λ), and λ � inv(N, λ), λ ∈ Λ, are u.s.c.

Proof. We prove the assertion for the first mapping as the other two proofs
can be done by extending the same argument to negative integers.

Suppose that λ � inv+(N, λ) is not u.s.c. at λ0 ∈ Λ. Then there exists an
open U and a sequence λn → λ0 such that inv+(N, λ0) ⊆ U but inv+(N, λn) ⊆
N \ U . Let xn ∈ inv+(N, λn) since N \ U is compact, we may assume that
xn → x ∈ N \ U . In order to achieve a contradiction, we have to show that
x ∈ inv+(N, λN ). Indeed, let σn: Z+ → N be a solution for Fλn with σN(0) = xn.
Then σn(k) ⊂ inv+(N, λn) ⊆ N \ U for all k = 1, 2, . . .. We construct a solution
σ: Z+ → N \ U for Fλ by induction on k. Let σ(0) = limn σn(0) = x. Let σ(k)
be constructed for a given k, such that σ(k) = limi σni(k), where {σni(k)}i is a
subsequence of {σn(k)}n convergent in N \U . By again passing to a subsequence,
we may assume that {σni(k +1)}i is convergent and define σ(k +1) to be its limit.
Since σn(k + 1) ∈ F (λn(k)) for all n, the closed graph property of f implies that
σ(k + 1) ∈ F (λ, σ(k)), the proof is completed. �

Proof of Theorem (64.17). By the compactness of N , the condition (64.3.1)
implies that

BdiamN Fλ0 +3ε(inv(N, λ0)) ⊂ Int N

for some ε > 0. Since F is u.s.c. Fλ(x) ⊂ Bε(Fλ0(x)) for all λ close to λ0 and all
x ∈ N . Again by the compactness of N ,

diamNFλ < diamNFλ0 + 2ε

for all λ close to λ0. By Lemma (64.18), inv(N, λ) ⊂ Bε(inv(N, λ0)) for all λ close
to λ0, hence we obtain

BdiamN Fλ(inv(N,λ)) ⊂ BdiamN Fλ0 +2ε(Bε(inv(N, λ0))

= BdiamN Fλ0 +3ε(inv(N, λ0) ⊂ Int N. �

By the same arguments as for singlevalued mappings one proves the following
additivity property of the Conley index:
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(64.19) Theorem. Let K ⊂ X be an isolated invariant set for a dmds F : X×
Z → P (x), which is a disjoint sum of two other isolated invariant sets K1, K2.
Then C(K) = C(K1)× C(K2).

For details concerning singlevalued Conley index see [Co-M].

65. Minimax theorems for ANRs

There are several minimax theorems in the literature. In this section we shall
present a version related to ANRs and acyclic mappings. Note that minimax
theorems are useful in such areas as the game theory or the mathematical economy.

We first prove an intersection theorem. If S ⊂ X × Y then let S(x) = {y ∈ Y |
(x, y) ∈ S} and S−1(y) = {x ∈ X | (x, y) ∈ S}.

(65.1) Theorem. Suppose that X ∈ AR and Y is a compact finite-dimensional
ANR. Suppose S, T ⊂ X × Y satisfy:

(65.1.1) S is open in X × Y and S−1(y) is contractible and nonempty for all
y ∈ Y ,

(65.1.2) T is closed in X × Y and T (x) is acyclic for all x ∈ X.

Then S ∩ T �= ∅.

Proof. Define ϕ: Y � X by ϕ(y) = S−1(y). Then ϕ is a multivalued map
with open graph Γϕ and contractible values. Theorem (16.4) gives a continuous
selection g: Y → X, g ⊂ ϕ. Define ψ: X � X by ψ(x) = g(T (x)) for every x ∈ X.
Then ψ as a composition of two acyclic maps is an admissible and compact map
(Y is compact!). Since X ∈ AR we infer from the Lefschetz Fixed Point Theorem
for admissible maps that Fix(ψ) �= ∅. Let x ∈ ψ(x) = g(T (x)). Then x = g(y)
with y ∈ T (x). So x ∈ S−1(y), and thus (x, y) ∈ S ∩ T , proving the theorem. �

(65.2) Theorem. Let

α = sup
x∈X

min
y∈Y

f(x, y) and β = min
y∈Y

sup
x∈X

f(x, y).

Here X is an acyclic ANR, Y a compact finite dimensional ANR, and f : X×Y →
R a function satisfying the following conditions:

(65.2.1) f(x, · ) is lower semicontinuous, for all x in X,
(65.2.2) {(x, y) | f(x, y) > α} is open,
(65.2.3) {x ∈ X | f(x, y) > α} is contractible or empty, for all y in Y ,
(65.2.4) {y ∈ Y | f(x, y) ≤ α} is acyclic, for all x in X.

Then α = β.

Proof. Observe that α and β both exist (possibly infinite) and α ≤ β, so we
need only to prove α ≥ β.
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Define S(x) = {(x, y) | f(x, y) > α}. Then S is open (by (65.2.2)) and S−1(y)
is contractible or empty for all y (by (65.2.3)). Suppose, to the contrary, that
S−1(y) is not empty, for all y.

Define T (x) = {(x, y) | f(x, y) ≤ α}. Then T is closed by (65.2.2) and T (x) is
acyclic for all x in X by (65.2.4). It follows easily from definition of α that T (x)
is nonempty for all y in Y .

The hypotheses of the intersection theorem are satisfied so, S ∩ T must be
nonempty. But this is not true so, S−1(y) must be empty for some y, say y. Then
f(x, y) ≤ α, for all x, so supx∈X f(x, y) ≤ α, and β ≤ α, proving the theorem. �

Small modifications of the proof yield the following version.

(65.3) Theorem. Let

α = max
x∈X

inf
y∈Y

f(x, y) and β = inf
y∈Y

max
x∈X

f(x, y).

Here X is a compact finite dimensional ANR, Y an acyclic ANR, and f : X×Y →
R a function satisfying the following conditions:

(65.3.1) f( · , y) is upper semicontinuous, for all y in Y ,
(65.3.2) {(x, y) | f(x, y) < β} is open,
(65.3.3) {(y ∈ Y | f(x, y) < β} is contractible or empty, for all x in X,
(65.3.4) {(x ∈ X | f(x, y) ≥ β} is acyclic, for all y in Y .

Then α = β.

Now a result for a continuous f will be proved. First, recall that a function
h: X → R is quasiconcave if {x | h(x) > t} is convex for each t, and is quasiconvex
if {x | h(x) < t} is convex for each t. The next definition describes larger classes
of functions.

(65.4) Definition. h: X → R is

(65.4.1) t-upper acyclic if {x ∈ X | h(x) > t} is acyclic or empty,
(65.4.2) t-lower acyclic if {x ∈ X | h(x) < t} is acyclic or empty.

(65.5) Theorem. Let

α = max
x∈X

min
y∈Y

f(x, y) and β = min
y∈Y

max
x∈X

f(x, y).

Suppose X is a compact Hausdorff space, Y a compact acyclic ANR, and f : X ×
Y → R a continuous function satisfying:

(65.5.1) f( · , y) is t-upper acyclic, for all y in Y , all t near β,
(65.5.2) f(x, · ) is t-lower acyclic, for all x in X, all t near α.

Then α = β.
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Proof. Since α≤ β, we need to prove only α≥ β. Let ε > 0, S−1(y) = {x ∈
X | f(x, y) ≥ β − ε} and T (x) = {y ∈ Y | f(x, y) ≤ α + ε}. From the definition
of α and β, S−1 and T have nonempty values. From (65.5.1) and (65.5.2) follows,
that T and S−1 have acyclic values. Therefore, the map ϕε = T ◦ S−1: Y � Y

is admissible and compact. Since Y is a compact acyclic ANR, we obtain a fixed
point x0 ∈ ϕε(x0). So, there is y0 ∈ S−1(x0) such that x0 ∈ T (y0). Hence,
f(x0, y0) ≥ β − ε, f(x0, y0) ≥ α− ε and β ≤ α + 2ε for all small ε so, β ≤ α and
the proof is completed. �

(65.6) Remark. Note that in a natural way the intersection theorem (65.1)
can be generalized for n subsets S1, . . . , Sn ⊂ X1 × . . .×Xn.

Below we will consider some similar problem which arises from the game theory.
Let X1, . . . , Xn ∈ AR. We will use the following notations:

X = ×{Xi | i = 1, . . . , n}, x = (x1, . . . , xn) ∈ X,

X̂
i

= ×{Xj | i �= j}, x̂
i

= (x1, . . . , xi−1, xi+1, . . . , xn} ∈ X̂
i
.

Given K ⊂ X, Ki, K̂
i

denote the images of K by the projections of X onto Xi, X̂
i
,

respectively. For any y ∈ K̂
i

we define the cross-section of K at y as

Si(y) = {z ∈ Ki | there exists x ∈ K, xi = z and x̂
i

= y}.

We are concerned with the existence of a solution x ∈ K of the following system
of maximization problems:

(Pi) max{fi(x1, . . . , xi−1, z, xi+1, . . . , xn) | z ∈ Ŝ
i
(xi)} = Vi(x̂i

),

where f1, . . . , fn are real-valued functions on K; then x is called the social equi-
librium.

It is clear that, when the functions fi are continuous and K is compact the
maximum in (Pi) is attained for each i, but not necessarily at xi as in the example
presented below. In this example we will illustrate also that the quasi-concavity
of fi is necessary to get social equilibrium.

(65.7) Example. Consider

K = [0, 1]× [0, 1]⊂ R2, f1(x, y) = (y − x)2, and f2(x, y) = (x + y − 1)2.

Then

M1(y) =


{1} if 0 ≤ y < 1/2,

{0, 1} if y = 1/2,

{0} if 1/2 < y ≤ 1,

and M2(x) =


{0} if 0 ≤ x < 1/2,

{0, 1} if x = 1/2,

{1} if 1/2 < x ≤ 1.
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It is clear that neither f1( · , y) nor f2(x, · ) is quasi-concave, and that there exists
no (x, y) ∈ K satisfying x ∈M1(y) and y ∈M2(x).

We will need the following additional assumptions on K and fi. A subset
K ⊂ X is said to have the continuous cross-section property, if for i = 1, . . . , n

the multivalued map:
Si: K̂

i
� Ki, y � Si(y)

is continuous. Our result is presented in the following:

(65.8) Theorem. Let K be a compact retract of X with the continuous cross-
section property and f1, . . . , fn: K → R be continuous functions such that, for any
i = 1, . . . , n and x in K, the map

(65.8.1) z → fi(x1, . . . , xi−1, z, xi+1, . . . , xn)

defined on Si(x̂i
) is quasiconcave. Assume further that for every i = 1, . . . , n and

x̂
i
∈ K̂

i
the set Mi(x̂i

) = {z ∈ Si(x̂i
) | Vi(x̂i

) = fi(x1, . . . , xi−1, z, xi+1, . . . , xn)}
is acyclic. Then there exists a solution x ∈ K to the system of problems (Pi),
i = 1, . . . , n.

Proof. Consider the so-called marginal functions Vi: K̂
i
→ R and marginal

set-valued maps Mi: K̂
i
� Ki defined by

Vi(x̂i
) = max{fi(x1, . . . , xi−1, z, xi+1, . . . , xn) | z ∈ Si(x̂i

)},
Mi(x̂i

) = {z ∈ Si(x̂i
) | Vi(x̂i

) = fi(x1, . . . , xi−1, z, xi+1, . . . , xn)},

where i = 1, . . . , n. The maps Mi are upper semicontinuous. The compactness of
K yields that Mi(x̂i

) is nonempty and compact for all x in K. Since the function
defined in (65.8.1) is quasiconcave, Mi(x̂i

) is also convex. The set C = ×{Ki |
i = 1, . . . , n} is a compact AR-space. Moreover, the map F : C � C defined by

F (x) = {y ∈ C | yi ∈Mi(x̂i
) i = 1, . . . , n}

is upper semicontinuous. Indeed, F is the composition of the continuous map
x→ (x1̂, x2̂, . . . , x

n̂
) with the upper semicontinuous product map

M1 × . . .×Mn:×{K̂
i
| i = 1, . . . , n}� C;

hence, F is an acyclic map and consequently Fix(F ) �= ∅. Let x ∈ F (x). Then
by an easy observation we deduce that x is a social equilibrium and the proof is
completed. �

It seems that any compact convex set in R2 has the continuous cross-section
property, but this is not true in R3, as it is shown in the following example.
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(65.9) Example. Let K be the cone in R3 with vertex (1, 0, 1) and base
{(x, y, 0) | x2+y2 ≤ 1}. For any pair (x, y) �= (1, 0) with x2+y2 = 1, S3(x, y) is the
singleton {(x, y, 0)}, but S3(1, 0) is the line segment [(1, 0, 0), (1, 0, 1)]. Therefore,
S3 is discontinuous at (1, 0).

For more applications of multivalued maps to mathematical economy we rec-
ommend [Bor-M]. Finally, note that in Section 66 there are also some applications
to mathematical economics.

Note that the notion of equilibrium is used also in a more general situation.
Namely, equilibrium theorems provide sufficient conditions for the existence of an
equilibrium (or a zero) for a given multifunction Φ under certain constraints, that
is, a solution of the inclusion 0 ∈ Φ(x) is required to belong to a certain con-
straints set X. Many important problems in nonlinear analysis can be reduced to
equilibrium problems, for example the problem of existence of critical points for
smooth and non-smooth functions, the problem of existence of stationary solutions
to differential inclusions, etc.

The well known equilibrium result is the following theorem:

(65.10) Theorem. Let K be a compact convex subset of a normed space E. Let
Φ: K � E be an u.s.c. map with closed convex values. If Φ satisfies the tangency
condition

(65.10.1) Φ(x) ∩ TK(x) �= ∅ for all x ∈ K,

then Φ has an equilibrium.

The proof of (65.10) is omitted here as below we will prove a generalization of
this theorem. We will present new results on the existence of equilibrium (or zero)
of multivalued maps on compact ANR-s which are locally convex. First result of
this type was proved in [Pl1].

Recall that a multivalued map Φ: X � E, where E is a Banach space, is
called upper hemi-continuous if for every linear continuous functional µ: E → R,
the extended real function, x → sup{µ(y) | y ∈ Φ(x)} is upper semicontinu-
ous. Any u.s.c. map Φ: X � E, where E is supplied in weak topology is upper
hemi-continuous. Consequently, if dim E < +∞ then the notion of upper hemi-
continuity and upper semicontinuity coincide provided values of the considered
map are compact and convex.

In what follows we will always assume that K is a compact neighbourhood
retract of a Banach space E. So, we can assume without loss of generality that:

(A1) K is a compact locally convex subset of a Banach space with a given
retraction r: Oδ(K)→ K for a fixed δ > 0.
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Note that the class of sets satisfying (A1) is quite large. For instance, if K is
compact and convex, or if K is a locally convex proximate neighbourhood retract
(see Chapter 1), then K satisfies (65.10.1).

Let T ⊥
K (x) be the polar cone to TK(x). For a given Φ: K � E we impose the

following condition:

(65.10.2) inf
y∈Φ(x)

〈p, y〉 ≤ 0 for all x ∈ K and all p ∈ T ⊥
K (x).

Observe that the condition (65.10.1) is sufficient for (65.10.2) and is equivalent too,
whenever Φ has compact values. Assume K satisfies (A1), D is the unit closed
ball in E and D∗ its dual in E∗. For any ε > 0 we let:

Gε: K ×D∗ � K,

Gε(x, p) =
{

y ∈ K | ‖y − x‖ ≤ ε and sup
z∈K∩B(x,ε)

〈p, y− z〉 ≤ 0
}

.

Note that Gε is an u.s.c. map with compact values. We prove:

(65.11) Theorem. Assume K satisfies (A1) and the Euler characteristic χ(K)
= λ(idK) of the set K is different from zero. If Φ: K � E is upper hemi-
continuous with closed convex values and satisfies (65.10.2), then Φ has an equi-
librium.

Proof. Suppose that 0 �∈ Φ(x) for each x ∈ K. By the separation theorem,
for each x ∈ K there is px ∈ E∗ such that inf{〈px, y〉 | y ∈ Φ(x)} > 0, i.e.
supy∈Φ(x)〈−px, y〉 < 0. Since Φ is upper hemi-continuous, the set

U(x) :=
{

z ∈ K | sup
y∈Φ(z)

〈−px, y〉 < 0
}

is an open neighbourhood of x, and the collection U := {U(x)}x∈K constitutes an
open covering of K. Let {λx}x∈K be a locally finite partition of unity subordinated
to U . Let us define a continuous map f : K → E∗ by the formula

f(z) :=
∑
x∈K

λx(z)px, for z ∈ K.

Then, for any z ∈ K, we have supy∈Φ(z)〈−f(z), y〉 < 0; hence, f(z) �= 0. Indeed, let

{x1, . . . , xk} = {x ∈ K | z ∈ U(x)}. Then f(z) =
∑k

i=1 λi(z)pi, where λi = λxi ,
pi = pxi , i = 1, . . . , k. Since z ∈ U(xi), it follows that supy∈Φ(z)〈−pi, y〉 < 0, and
we are done.

We are going to prove the existence of an element x ∈ K such that f(x) ∈
T ⊥

K (x). This together with the condition (65.10.2) will lead to a contradiction.
Since K ⊂ E satisfies (A1) we obtain

(A2) there exists η > 0, η < δ/2 such that ‖x− r(x)‖ < η for all x ∈ Oη(K).
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Let n ∈ N be such that 0 < 1/n < η, where η is given by (A2). Consider the
map Ψn: K � 2K defined by

Ψn(x) := r

[
conv

{
G1/n

(
x,

f(x)
‖f(x)‖

)}]
, for x ∈ K.

Evidently, Ψn is admissible for every n. Moreover, for any x ∈ K, Ψn(x) ∈
B(x, 2η). Indeed, if y ∈ Ψn(x) then y ∈ r(z), z ∈ conv{G1/n(x, f(x))} ⊂
B(x, 1/n) ⊂ B(x, η). Therefore, in view of (A2), ‖y− r‖ ≤ ‖r(z)− z‖+ ‖z− x‖ ≤
2η < δ. Observe that Fix(Ψn) �= ∅ for every n. Let xn ∈ Ψn(xn). The compact-
ness of K allows us to assume limn xn = x ∈ K. Hence, limn f(xn) = f(x) and
f(x) ∈ T ⊥

K (x), a contradiction. The proof of (65.11) is completed. �

Since (65.10.1) implies (65.10.2) we have:

(65.12) Corollary. Suppose that K and Φ are as in (65.11) and the condition
(65.10.1) is satisfied, then Φ has an equilibrium.

(65.13) Remark. Note that if K is convex then Corollary (65.12) is equivalent
to (65.1).

The following example shows that the assumption in (A1) on K to be locally
convex is essential.

(65.14) Example. Let K = S1 ∪ S2, where

S1 = {(x, y) ∈ R2 | (x− 1)2 + y2 = 1},
S2 = {(x, y) ∈ R2 | (x + 1)2 + y2 = 1}.

Let f : K → R2 be given by the formula

f(x, y) =

{
(y, 1− x) if (x, y) ∈ S1,

(−y, 1 + x) if (x, y) ∈ S2.

Then for every (x, y) ∈ K we have f(x, y) ∈ TK(x, y), but f has no zeros.

For admissible mappings one can prove the following:

(65.15) Theorem. Let K ⊂ Rn satisfies (A1) and let Φ: K � Rn be an
admissible map such that the following condition is satisfied:

(65.15.1) for all x ∈ K, all y ∈ T ⊥
K (x) and all z ∈ Φ(x)

if (y, z) �= 0 then 〈y, z〉 < ‖y‖ ‖z‖.

Then Φ has an equilibrium provided χ(K) �= 0.

Proof. Consider the duality map J : Rn � Rn defined by:

J(x) = {y ∈ K0 | 〈y, x〉 = ‖x‖},
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where K0 denotes the unit closed ball in Rn. Of course J is an u.s.c. convex valued
mapping.

Consequently the map Ψ = J ◦ Φ is admissible and hence the map:

Ψε(x) = r(conv{Gε(x)×Ψ(x)})

is admissible.
By homotopy argument, we obtain that Fix(Ψε) �= ∅ for every ε > 0. Let

xε ∈ Ψε(xε). Then xε ∈ r(conv{Gε(xε, yε)}, i.e. yε ∈ TK (xε). We can assume
that for εn = 1/n we have

lim
n

(xεn , yεn) = (x, y).

Thus y = Ψ(x). Consequently ‖y‖ = 1 and there exists z ∈ Φ(x) with 〈y, z〉 = ‖z‖.
On the other hand since yε ∈ TK (xε), it follows that y ∈ T ⊥

K (x). This contradicts
(65.15.1) and the proof is completed. �

66. KKM-mappings

We begin with some notations and terminology as presented in [GrL1] and
[GrL2]. Given multivalued map ϕ: X � Y , its inverse ϕ−1: Y � X is given by
ϕ−1(y) = {x ∈ X, | y ∈ ϕ(x)} and its dual ϕ∗: Y � X is given by ϕ∗(y) =
X \ ϕ−1(y).

(66.1) Definition. Let E be a normed space and X ⊂ E be an arbitrary
subset. A map ϕ: X � E is called a Knaster–Kuratowski–Mazurkiewicz map (or
simply KKM-map) provided for each finite set {x1, . . . , xn} ⊂ X we have

conv{x1, . . . , xn} ⊂
n⋃

i=1

ϕ(xi).

(66.2) Proposition. If X ⊂ E is convex and ϕ: X � E satisfies the following
two conditions:

(66.2.1) x ∈ ϕ(x) for every x ∈ X,
(66.2.2) ϕ∗(y) is convex for every y ∈ E,

then ϕ is a KKM-map.

Proof. Let {x1, . . . , xn} ⊂ X and y ∈ conv{x1, . . . , xn}. We have to show

y ∈
n⋃

i=1

ϕ(xi).

Since y ∈ ϕ(y), we see that y �∈ ϕ∗(y) and therefore, conv{x1, . . . , xn} �⊂ ϕ∗(y).
Since ϕ∗(y) is convex, at least one point xi does not belong to ϕ∗(y), which implies
that y ∈ ϕ(xi) and hence the proof is completed. �

There are natural examples of KKM-maps.
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(66.3) Example. Let C be a convex subset of E and let f : C → R be a convex
function, i.e. f(

∑
tixi) ≤

∑
tif(xi) for any convex combination

∑
λixi in C. For

each x ∈ C we let:

ϕ(x) = {y ∈ C | f(y) ≤ f(x)}.

We show that ϕ: C � C is a KKM-map. For a contradiction let y =
∑n

i=1 tixi,
xi ∈ C and assume that y ∈

⋃n
i=1 ϕ(xi). Then f(xi) < f(y) for i = 1, . . . , n and

this means that each xi lies in {x | f(x) < f(y)}. Since this set is convex we have
a contradiction

f(y) = f

(∑
tixi

)
< f(y).

(66.4) Example. Let E = (E, ‖ ‖) be a normed linear space, C ⊂ E be
convex and f : C → E be a map. For each x ∈ C let

ϕ(x) = {y ∈ C | ‖f(y) − y‖ ≤ ‖f(y) − x‖}.

We show that ϕ: C � C is a KKM-map. Indeed, let y0 =
∑

λixi be a convex
combination in C. If y0 �∈

⋃n
i=1 ϕ(xi) we would have ‖f(y0) − y0‖ > ‖f(y0)− xi‖

for each i = 1, . . . , n, i.e. that each xi lies in the open ball {x ∈ E | ‖f(y0)− x‖ <

‖f(y0) − y0‖}. Since this ball is convex it contains y0 ∈ conv{x1, . . . , xn} and we
have a contradiction ‖f(y0) − y0‖ < ‖f(y0)− y0‖.

(66.5) Example. Let E = (H, 〈 · 〉) be a Hilbert space and C a convex subset
of H. Assume that f : C → H is a singlevalued map. We define ϕ: C � C by
putting:

ϕ(x) = {y ∈ C | 〈f(y), y − x〉 ≤ 0}.

It is easy to verify that ϕ is a KKM-map.

Before proving the general principle for KKM-maps we need two more notions.

A subset X ⊂ E is called finitely closed provided for any finite dimensional
subspace E0 of E the intersection X ∩ E0 is closed in E0.

Let {Ai}i∈J be a family of subsets of E. We will say that {Ai}i∈J has the finite
intersection property provided for every finite subset J0 ∈ J we have⋂

{Ai | i ∈ J0} �= ∅.

The following result represents a version of the well known Knaster–Kuratowski–
Mazurkiewicz theorem proved in 1929, which was used in their elementary proof
of the Brouwer’s fixed point theorem.
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(66.6) Theorem. Let X be an arbitrary subset of E and ϕ: X � E be a KKM-
map such that each ϕ(x) is finitely closed (and nonempty). Then the family {ϕ(x) |
x ∈ X} has the finite intersection property.

Proof. We argue by contradiction, so assume that
⋂n

i=1 ϕ(xi) = ∅. Work-
ing in the finite-dimensional subspace L spanned by {x1, . . . , xn}, let d be the
Euclidean metric in L and C = conv{x1, . . . , xn} ⊂ L. Note that because each
L∩ ϕ(xi) is closed in L, and since

⋂n
i=1 L∩ ϕ(xi) = ∅ by hypothesis, the function

g: C → R given by x →
∑n

i=1 dist(x, L ∩ ϕ(xi)) does not vanish. We now define
a continuous map f : C → C by setting

f(x) =
1

g(x)

n∑
i=1

dist(x, L∩ ϕ(xi)) · xi.

By Brouwer’s Fixed Point Theorem f would have a fixed point x0 ∈ C. Letting
I = {i | dist(x0, L ∩ ϕ(xi) �= 0}, the fixed point x0 cannot belong to

⋃
{ϕ(xi) |

i ∈ I}; however,

x0 = f(x0) ∈ conv{xi | i ∈ I} ⊂
⋃
{ϕ(xi) | i ∈ I}

and, with this contradiction, the proof is completed. �

There are many consequences and applications of (66.6). We restrict our con-
siderations only to the most important.

As an immediate corollary we obtain:

(66.7) Theorem. Let X ⊂ E be an arbitrary subset of E and ϕ: X � E

a KKM-map. If all sets ϕ(x) are closed in E and if one is compact, then
⋂
{ϕ(x) |

x ∈ X} �= ∅.

Theorem (66.7) was proved in 1961 by Ky Fan.
Now, by using (66.6) we prove the Mazur–Schauder theorem proved in 1936.

(66.8) Theorem. Let E be a reflexive Banach space, i.e. E∗ is isomorphic
to E, and C a closed convex subset of E. Let f : C → R be a convex and lower
semicontinuous map, (i.e. {x ∈ C | f(x) > λ} is open for each λ ∈ R) and coercive
(i.e. ‖f(x)‖ → ∞ as ‖x‖ → ∞). Then the function f attains its minimum.

Proof. Let d = inf f(x); because f is coercive, we can find a number ρ > 0
such that K = B(0, ρ) ∩ C �= ∅ and f(x) > d + 1 for all x ∈ C \ K. Since
d = inf f(x) it is enough now to show that there is a point x0 ∈ K such that
f(x0) ≤ f(x) for all x ∈ K. For each x ∈ K, let ϕ(x) = {y ∈ K | f(y) ≤ f(x)};
since d = inf f(x), the theorem will be proved by showing

⋂
ϕ(x) �= ∅. Since

ϕ: K � E is a KKM-map, the conclusion is obtained by observing that in the
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weak topology of E each ϕ(x) (being closed and convex) is compact. The proof is
completed. �

Now we prove the following:

(66.9) Theorem (Ky Fan, 1968). Let C be a compact convex subset of a nor-
med space E and let f : C → E be a continuous map such that for each x with
x �= f(x), the line segment [x, f(x)] contains at least two points of C. Then
Fix(f) �= ∅.

Proof. Assume f(x) �= x for all x ∈ C. Then we would have infy∈C ‖f(y) −
y‖ > 0. Define ϕ: C � C by ϕ(x) = {y ∈ C | ‖f(y) − y‖ ≤ ‖f(y) − x‖}. Since ϕ

is a compact valued KKM-map, we obtain a point y0 ∈ C such that

0 < ‖f(y0)− y0‖ ≤ ‖f(y0) − x‖.

Now, the same simple argument as in (66.6) gives a contradiction ‖f(y0)− y0‖ <

‖f(y0) − y0‖. The proof is completed. �

As an immediate application of (66.9) we derive a fixed point theorem for inward
and outward maps in the sense of B. Halpern. Let C be a convex subset of a normed
space E; for each x ∈ C, let

IC = {y ∈ C | there exists y0 ∈ C and λ > 0 such that y = x + λ(y0 − x)},
OC = {y ∈ C | there exists y0 ∈ C and λ > 0 such that y = x− λ(y0 − x)}.

A map f : C → E is said to be inward (resp. outward) if f(x) ∈ IC(x) (resp.
f(x) ∈ OC(x)).

(66.10) Theorem. Let C be a convex compact subset of a normed E. Then
every continuous inward (resp. every continuous outward) map f : C → E has
a fixed point.

Proof. The case of an inward map follows directly from (66.9); if f is outward
then g: C → E given by x→ 2x− f(x) is inward with the same set of fixed points
as f and the conclusion follows. �

We would like to point out that the minimax theorem in the case of X = Y = C

being convex, can be obtained from (66.6). In Section 65 we have proved a little
more general theorem (see (65.6)).

Now we will show applications of (66.6) to variational inequalities. Let (H, 〈 · 〉)
be a Hilbert space and C ⊂ H. We recall that a map f : C → H is called monotone
on C if 〈f(x) − f(y), x − y〉 ≥ 0 for all x, y ∈ C. We will say that f : C → H is
a one finitely continuous if f |H0∩C is continuous for each one-dimensional subspace
H0 ⊂ H.
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(66.11) Theorem. Let H be a Hilbert space, C a closed bounded convex subset
of H, and f : C → H monotone and hemi-continuous. Then there exists a y0 ∈ C

such that 〈f(y0), y0 − x〉 ≤ 0 for all x ∈ C.

Proof. For each x ∈ C, let ϕ(x) = {y ∈ C | 〈f(y), y − x〉 ≤ 0}; the theorem
will be proved showing

⋂
{ϕ(x) | x ∈ C} �= ∅.

We know that ϕ: C � H is a KKM-map. Consider now the map Ψ: C � H

given by

Ψ(x) = {x ∈ C | 〈f(x), y − x〉 ≤ 0};

we show that

Step 1. ϕ(x) ⊂ Ψ(x) for each x ∈ C.

For, let y ∈ ϕ(x), so that 0 ≥ 〈f(y), y − x〉. By the monotonicity of f : C → H,
we have 〈f(y)−f(x), y−x〉 ≥ 0, so 0 ≥ 〈f(y), y−x〉 ≥ 〈f(x), y−x〉 and y ∈ Ψ(x).

Step 2. Because of Step 1, it is enough to show
⋂
{ϕ(x) | x ∈ C} ⊂

⋂
{Ψ(x) |

x ∈ C}.
Assume y0 ∈

⋂
Ψ(x). Choose any x ∈ C and let zt = tx + (1 − t)y0 =

y0 − t(y0 − x). Because C is convex, we have zt ∈ C for each 0 ≤ t ≤ 1. Since
y0 ∈ Ψ(zt) for each t ∈ [0, 1], we find that 〈f(zt), y0 − zt〉 ≤ 0 for all t ∈ [0, 1].
This means that t〈f(zt), y0 − x〉 ≤ 0 for all t ∈ [0, 1] and, in particular, that
〈f(zt), y0 − x〉 ≤ 0 for 0 < t ≤ 1. Now let t → 0; the continuity of f on the ray
joining y0 and x gives f(zt)→ f(y0) and therefore, that 〈f(y0), y0−x〉 ≤ 0. Thus,
y0 ∈ ϕ(x) for each x ∈ C and

⋂
Ψ(x) =

⋂
ϕ(x).

Step 3. Now, we can equip H with the weak topology. Then each Ψ(x), being
the intersection of the closed half-space {y ∈ H | 〈f(x), y〉 ≤ 〈f(x), x〉} with C is
closed convex and bounded and therefore, weakly compact.

Thus, all the requirements in (66.8) are satisfied; therefore,
⋂
{ϕ(x) | x ∈ C} �=

∅ and, as we have observed, the proof is completed. �

(66.12) Corollary. Let C be a closed bounded convex subset of H and F :
C → C a non-expansive map i.e. ‖F x− F y‖ ≤ ‖x− y‖ for all x, y ∈ C. Then F

has a fixed point.

Proof. Putting f(x) = x − F (x) for x ∈ C, we verify by simple calculation
that f : C → H is a continuous monotone map; so, by Theorem (66.11), there
exists y0 ∈ C such that 〈y0 − F y0, y0 − x〉 = 〈fy0, y0 − x〉 ≤ 0 for all x ∈ C. By
taking in the above inequality x = F (y0) we obtain y0 = F y0, and the proof is
completed. �

(66.13) Corollary. Let C ⊂ H be a closed convex set. Then for each x0 ∈ H

there is a unique y0 ∈ C with ‖x0 − y0‖ = inf{‖x0 − x‖ | x ∈ C}.
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Proof. Uniqueness being evident, let f : C → H be given by y → y−x0; clearly
f is continuous and monotone. By (66.11), there is y0 ∈ C with 〈y0−x0, y0−x〉 ≤ 0
for all x ∈ C; this being equivalent to ‖x0 − y0‖ = infC ‖x0 − x‖, the assertion of
the theorem follows. �

67. Topological dimension of the set of fixed points

In Section 21 we have proved the Banach contraction principle and a topological
characterization of the set of fixed points. In this section, we would like to prove
some additional properties of the set of fixed points for multivalued contractions.

Again let E be a Banach space and X its closed convex nonempty subset. Let
F : X → B(X) be a contraction map. We are interested in the following problem:
when does dim F (x) ≥ n for every x ∈ X imply dim Fix(F ) ≥ n?

Before giving some particular answers we shall collected some important prop-
erties.

(67.1) Proposition. If F : X → C(X) is a contraction map, then the set
Fix(F ) is compact.

Proof. Assume Fix(F ) is not compact. Since it is complete, it cannot be
precompact. Thus, there exists some δ > 0 and some sequence {xi} in Fix(F )
such that d(xi, xj) ≥ δ for any two different i and j. Put

ρ = inf{r | there exists a ∈ X such that B(a, r) contains infinitely many xi’s}.

Since, for every a ∈ X, B(a, δ/2) contains at most one xi, one has ρ ≥ δ/2 > 0.
Let fix ε such that

0 < ε < ρ
1− q

1 + q
,

where q < 1 is a contraction constant and choose a ∈ X such that J = {i | xi ∈
B(a, ρ + ε)} is infinite. For each i ∈ J

d(xi, F (a)) ≤ dH(F (xi), F (a)) ≤ qd(xi, a) < q(ρ + ε),

and we can choose some yi ∈ F (a) such that d(xi, yi) < q(ρ + ε). By the com-
pactness of F (a), there is a b ∈ F (a) such that J ′ = {i ∈ J | d(yj , b) < ε} is finite.
Then for each i ∈ J ′:

d(xi, b) < q(ρ + ε) + ε = qρ + ε(1 + q) = r < qρ + ρ(1 − q) = ρ,

and this contradicts the definition of ρ since B(b, r) contains infinitely many xi’s.�
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(67.2) Proposition. If F : X → B(X) is a contraction, then there exists
a bounded convex and closed subset B ⊂ X such that Fix(F ) ⊂ B and B is
F -invariant, i.e. F (B) ⊂ B.

Proof. It follows from (21.1) that Fix(F ) �= ∅. Let x0 ∈ Fix(F ). Consider
a closed ball B(x0, r) = {y ∈ X | ‖y − x0‖ ≤ r}, where r is closed in such a way
that B(x0, r) is F -invariant. For every y ∈ B(x0, r) we have:

dH(F (x0), F (y)) ≤ k · ‖x0 − y‖ ≤ k · r,

where F is a contraction with the constant k, 0 ≤ k < 1. Thus, if r ≥ δ(F (x0))
and z ∈ F (y) we have:

‖z − x0‖ ≤ dH(F (y), F (x0)) + δ(F (x0)) ≤ kr + r.

So, B(x0, r) is F -invariant provided r ≥ (1 − k)−1 · δ(F (x0)), where δ(F (x0))
denotes the diameter of F . Therefore, we have to check only that Fix(F ) ⊂
B(x0, r). Let x1 ∈ Fix(F ). Then

‖x1 − x0‖ ≤ dist(x1, F (x0)) + δ(F (x0))

≤ dH(F (x1), F (x0)) + δ(F (x0)) ≤ k‖x1 − x0‖+ δ(F (x0))

and hence
‖x1 − x0‖ ≤ (1− k)−1δ(F (x0)),

so the proof is completed. �

The proof of the following proposition is a simple exercise:

(67.3) Proposition. Any contraction F : X → C(X) is a condensing map with
respect to the Hausdorff measure of noncompactness γ (see Section 4).

(67.4) Proposition. Let F : X → C(X) be a contraction. If f : X → X,
f ⊂ F , is a continuous selection of F , then Fix(f) �= ∅.

Proof. Since, in view of (67.3), F is condensing so, f ⊂ F is also condensing.
On the other hand, from (67.2) it follows that we can assume, without loss of
generality, that X is also bounded. Hence our claim follows from (59.12). �

We shall make use of the following:

(67.5) Lemma. Let T be a compact space and ϕ: T � E be a l.s.c. map with
closed convex values. Assume further that dim T < n, 0 ∈ ϕ(x) and dim ϕ(x) ≥ n

for every x ∈ T . Then there exists a continuous selection f ⊂ F such that f(x) �= 0
for each x ∈ T .

Our main result of this section is the following:
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(67.6) Theorem. Let F : X → C(X) be a contraction. If dim F (x) ≥ n for
each x ∈ X, then dim Fix(F ) ≥ n.

Proof. It follows from (67.1) that Fix(F ) is compact and from (21.1) that
Fix(F ) �= ∅. Consider a map (i−F ): Fix(F ) � E, (i−F )(x) = {x−y | y ∈ F (x)}.
Then (i − F ) satisfies the assumptions of (67.5) instead of dim Fix(F ) < n. So,
let us assume that dim Fix(F ) < n. By (67.5), there exists a continuous selection
f0 of F |Fix(F) without fixed points. Using Michael’s selection theorem we can
extend f0 to a map f : X → X without fixed points such that f ⊂ F and we have
a contradiction with (67.4). �

By a similar consideration we can obtain the following:

(67.7) Theorem. Let F : X → B(X) be a contraction with the constant k such
that 0 ≤ k < 1/2. Assume that Fix(F ) is compact and dim F (x) ≥ n for every
x ∈ X. Then dim Fix(F ) ≥ n.

68. On the basis problem in normed spaces

Let E be a normed space. A sequence {xn} of vectors of E is said to be a basis
(or Schauder basis) for E, provided that every x ∈ E has a unique representation
as the sum of the series

x =
∞∑

n=1

tnxn, tn ∈ R, n = 1, 2, . . .

It is well known that not every separable Banach space has a basis. Therefore,
following Day ([Day]) we introduce the notion of biorthogonal system in E. Let
B be the unit closed ball in E, E∗ be the conjugate space and B∗ the conjugate
unit ball.

A pair {{bn}, {βn}} of sequences {bn} ⊂ B and {βn} ⊂ B∗ is called a biorthog-
onal system for E provided:

(i) the sequence {bi} is a Schauder basis for the subspace

L = span{b1, b2, . . .} ⊂ E,

(ii) ‖bn‖ = ‖βn‖ = 1 for all n,
(iii) setting Pm =

∑
i≤m βi(x)bi(x), for each m, the linear operator Pm: L→ L

is a projection, i.e. P 2
m = idL and ‖Pm‖ ≤ 1 + (1/m).

By using the Borsuk theorem on antipodes for multivalued mappings one can prove
the following:
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(68.1) Theorem. Any normed space possesses a biorthogonal system.

Proof. Take b1 of norm 1 in B and choose β1, by the Hahn–Banach theorem,
such that ‖β1‖ = ‖b1‖ = β1(b1) = 1. If b1, . . . , bm and β1, . . . , βm, and, if nec-
essary, certain auxiliary γ1, . . . , γk in B∗ have bee chosen, the choice of bm+1 is
made to depend on the Borsuk–Ulam theorem in the following way.

Let Lm be the linear ball spanned on bi, i ≤ m, and let Sm = S ∩ Lm and
γ−1

j (K) ∩ Lm contains Sm and the intersection of these sets is a polyhedron Wm

in Lm. It may happen that Wm contains only points of norm ≤ 1 + (1/m); if
this is not case take enough elements of norm 1 in L∗

m, say α1, . . . , αn, that Wm

intersected with all the sets α−1
q (K) is a polyhedron in Lm which all lies within the

sphere of radius 1 + (1/m). Let γk+q be an element of B∗ of the norm 1 which is
an extension of αq, q = 1, . . . , n. Let Am be the (infinite-dimensional) intersection
of the hype planes β−1

i (0), i ≤ m and γ−1
j (0), j ≤ k + n.

In Am any (m+1)-dimensional subspace Λ′
m and in Λ′

m consider the unit sphere
S′

m = S ∩ Λ′
m.

Define a mapping ϕ: S′
m � Lm by putting:

ϕ(x) = {y ∈ Lm | ‖x + y‖ = ‖x + Lm‖},

where ‖x + Lm‖ = inf{‖x + z‖, z ∈ Lm}. Then ϕ is an u.s.c. map with compact
convex values and ϕ(x) = −ϕ(−x). Thus Deg(ϕ) �= 0 and hence there is x ∈ Λ′

m

such that 0 ∈ ϕ(x). Let bm+1 be any point of S′
m such that 0 ∈ ϕ(bm+1). Let

βm+1 in B∗ be chosen so that it is of norm 1 vanishes on the bi, i ≤ m and is 1 at
bm+1. This induction process defines sequences {bi} and {βi}. If L′ is the union
of all the Lm, then for each m the function Pm is defined in B and has in L′

m the
norm 1 + (1/m). The set of those x in L, for which limm Pm(x) = x includes all
of the bi and is closed in L, so it is all of L; the proof is completed. �



CHAPTER VI

FIXED POINT THEORY APPROACH

TO DIFFERENTIAL INCLUSIONS

The aim of this chapter is to give a systematic and unified account of topics in
fixed point theory methods of differential inclusions which lie on the border line
between topology and ordinary differential equations.

It is well known that the topological degree is a fundamental tool for proving the
existence of various kinds of solutions of nonlinear equations and for investigating
the structure of sets of such solutions. Since the original classical work of Leray
and Schauder many authors have made contributions to the problem of extending
the Leray–Schauder degree and applying it to problems in analysis. These gen-
eralizations include extensions of the Lefschetz fixed point theory and the fixed
point index theory on ANRs for singlevalued mappings to multivalued case. In
this chapter we shall concentrate our considerations on the topological degree the-
ory for multivalued mappings which are compositions of Rδ-valued mappings with
singlevalued mappings. This degree theory gives us a tool for investigating the
following types of questions about differential inclusions:

• existence problems;
• topological characterization of the set of solutions for Cauchy problems;
• periodic problems.

We shall study the above problems in the case when our multivalued right hand
side of the differential inclusion considered is defined on the whole space Rn or on
a certain compact subset A of Rn, the so called proximate retracts.

69. Aronszajn type of results

In this section we shall present results about the topological structure of the
set of solutions of the Cauchy problem for some nonlinear ordinary differential
equations as owed to N. Aronszajn in 1942.

First, we prove a result concerning the topological structure of the set of solu-
tions for some nonlinear equations.

(69.1) Theorem. Let X be a space, (E, ‖ · ‖) a Banach space and f : X → E

a proper map, i.e. f is continuous and for every compact K ⊂ E the set f−1(K)
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is compact. Assume further that for each ε > 0 a proper map fε: X → E is given
and the following two conditions are satisfied:

(69.1.1) ‖fε(x)− f(x)‖ < ε, for every x ∈ X;
(69.1.2) for any ε > 0 and u ∈ E such that ‖u‖ ≤ ε, the equation fε(x) = u has

exactly one solution.

Then the set S = f−1(0) is Rδ.

Proof. Let {εn} be a sequence of positive real numbers such that limn εn = 0.
Since S = f−1(0) and f is proper we infer that S is compact. To see that S �= ∅,
in view of (69.1.2) we choose xn ∈ X such that fn(xn) = 0 for every n, where fn

is short for fεn . Then we have:

‖f(xn)‖ = ‖f(xn)− fn(xn)‖ < εn.

Thus limn f(xn) = 0 and hence the set {f(xn)} ∪ {0} is compact. Therefore,
{xn} ⊂ f−1({(f(xn))} ∪ {0}), and we may assume without loss of generality
that limn xn = x. Then from the continuity of f we conclude that x ∈ S, and
consequently we have that S is a compact nonempty set.

Now, it follows from (69.1.1) that fn(S) ⊂ B(0, εn). Let Qn denote the convex
closure of the compact set fn(S) ⊂ E. Then Qn, as a compact convex set, is an
AR-space and hence contractible. Moreover, we have

Qn ⊂ B(0, εn) ⊂ B(0, ρ).

Let An = f−1
n (Qn). The mapping fn restricted to the pair (An, Qn) is a homeo-

morphism (this follows easily from our assumptions), so An is a compact AR-space
and in particular contractible. To conclude that S is a compact Rδ we shall show
that the sequence {An} satisfies the conditions (2.15.1)–(2.15.3).

Clearly, S is contained in An for every n, so S is contained in the inferior
set-theoretic limit of the sequence {An}. Now, let x be a point in the superior set-
theoretic limit of the sequence {An}, so that x ∈ Ani , for some subsequence {Ani}
of {An}. This implies that ‖fni(x)‖ < εni , for every ni. Hence, f(x) = 0, which
implies that x ∈ S. Thus the superior set-theoretic limit of {An} is contained
in S. Hence, S is the set-theoretic limit of {An}.

Now, to verify the condition (2.15.3) it suffices to show that each open neigh-
bourhood V of S in X contains at least one member of the sequence {An}, as
the set-theoretic limit remains unchanged if finitely many members of {An} are
omitted. Suppose now that V is an open neighbourhood of S in X such that An

is not contained in V for any n. So, there exists a sequence {xn} in X such that
xn ∈ An for every n, and xn �∈ V for any n. Then we have

‖fn(xn)‖ < εn, ‖fn(xn) − f(xn)‖ < εn,



69. ARONSZAJN TYPE OF RESULTS 353

and hence,
‖f(xn)‖ < 2εn for every n.

This implies that lim f(xn) = 0. Since f is proper we deduce that {xn} contains
a convergent subsequence {xni}. Let x = limxni . Then f(x) = 0. Thus x ∈ S and
xni �∈ V for every i, which is a contradiction. This proves that each neighbourhood
V of S contains at least one member of the sequence {An}. Hence the conditions
of Proposition (2.15) are verified. Thus S is an Rδ-set; the proof is completed. �

The following result is a slight reformulation of Lemma 1 in [Sz].

(69.2) Theorem. Let E = C([0, a], Rm) be the Banach space of continuous
maps with the usual max-norm. If F : E → E is a compact map and f : E → E

is a compact vector field associated with F , i.e. f(u) = u − F (u), such that the
following conditions are satisfied:

(69.2.1) there exists an x0 ∈ Rm such that F (u)(0) = x0, for every u ∈ K(0, r);
(69.2.2) for every ε ∈ [0, a] and for every u, v ∈ E if u(t) = v(t) for each t ∈ [0, ε],

then F (u)(t) = F (v)(t) for each t ∈ [0, ε];

then there exists a sequence fn: E → E of continuous proper mappings satisfying
the conditions (69.1.1) and (69.1.2) with respect to f.

Sketch of Proof. For the proof it is sufficient to define a sequence Fn: E →
E of compact maps such that:

(69.2.3) F (x) = lim
n→∞ Fn(x), uniformly in x ∈ E,

and

(69.2.4) fn: E → E, fn(x) = x − Fn(x), is a one-to-one map.

To do this we additionally define the mappings rn: [0, a] → [0, a] by putting:

rn(t) =

{
0 for t ∈ [0, a/n],

t − a/n for t ∈ (a/n, a].

Now, we are able to define the sequence {Fn} as follows:

(69.2.5) Fn(x)(t) = F (x)(rn(t)), for x ∈ E, n = 1, 2, . . . .

It is easily seen that Fn is a continuous and compact mapping, n = 1, 2, . . . . Since
[rn(t) − t] ≤ a/n we deduce from the compactness of F and (69.2.5) that

lim
n→∞ Fn(x) = F (x), uniformly in x ∈ E.
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Now, we shall prove that fn is a one-to-one map. Assume that for some x, y ∈ E

we have fn(x) = fn(y). This implies that x − y = Fn(x) − Fn(y). If t ∈ [0, a/n],
then we have

x(t) − y(t) = F (x)(rn(t)) − F (y)(rn(t)) = F (x)(0) − F (y)(0).

Thus, in view of (69.2.1), we obtain x(t) = y(t), for every t ∈ [0, a/n].
Finally, by successively repeating the above procedure n times we infer that

x(t) = y(t), for every t ∈ [0, a].

Therefore, fn is a one-to-one map and the proof is completed. �

Now, from Theorems (69.1) and (69.2) we obtain:

(69.3) Corollary. Assume that f and F are as in Theorem (69.2). Then
f−1(0) = Fix(F ) is an Rδ-set.

For a given map g: [0, a]×Rn → Rn and x0 ∈ Rn we shall consider the following
Cauchy problem:

(69.4)

{
x′(t) = g(t, x(t)),

x(0) = x0.

In our considerations g is a Carathéodory mapping. By a solution of (69.4) we shall
understand an absolutely continuous map x: [0, a] → Rn such that x′(t) = g(t, x(t))
for almost all t ∈ [0, a] and x(0) = x0. If the right hand side g is continuous, then
every solution x( · ) is C1 regular and satisfies x′(t) = g(t, x(t)) for every t ∈ [0, a].

We denote by S(g, 0, x0) the set of all solutions of the Cauchy problem (69.4).

(69.5) Theorem. Let g: [0, a] × Rn → Rn be an integrably bounded Carathéo-
dory mapping. Then S(g, 0, x0) is Rδ.

Proof. We define the integral operator F : C([0, a], Rn) → C([0, a], Rn) by
putting

(69.5.1) F (u)(t) = x0 +
∫ t

0
g(r, u(r)) dr for every u and t.

Then Fix(F ) = S(g, 0, x0). It is easy to see that F satisfies all the assumptions of
Theorem (69.2). Consequently we deduce Theorem (69.5) from Corollary (69.3)
and the proof is completed. �

Now, let g be a Carathéodory map with linear growth. Assume further that
u ∈ S(g, 0, x0). Then we have (cf. (69.5.1))

u(t) = F (u)(t) = x0 +
∫ t

0
g(r, u(r)) dr,
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and consequently

‖u(t)‖ ≤ ‖x0‖+
∫ t

0
µ(r) dr +

∫ t

0
µ(r)‖u(r)‖ dr.

Therefore, from the well known Gronwall inequality we obtain

‖u(t)‖ ≤ (‖x0‖+ γ) exp(γ) for every t,

where γ =
∫ a

0 µ(r) dr.
We define g0: [0, a]× Rn → Rn by putting

g0(t, x) =

{
g(t, x) if ‖x‖ ≤M and t ∈ [0, a],

g(t, Mx/‖x‖) if ‖x‖ ≥M and t ∈ [0, a],

where M = (‖x0‖+ γ) exp(γ).

(69.6) Proposition. If g is a Carathéodory map with linear growth, then:

(69.6.1) g0 is Carathéodory and integrably bounded; and
(69.6.2) S(g0, 0, x0) = S(g, 0, x0).

The proof of Proposition (69.6) is straightforward.
Now, from Theorem (69.5) and Proposition (69.6) we obtain immediately:

(69.7) Corollary. If g: [0, a] × Rn → Rn is a Carathéodory map and has
linear growth then S(g, 0, x0) is a Rδ-set.

Finally, let us recall the following classical result from the theory of ordinary
differential equations.

(69.8) Theorem. If f : [0, a] × Rn → Rn is an integrably bounded, locally-
measurable Lipschitz map, then the set S(f, 0, x0) is a singleton for every x0 ∈ Rn.

Later we shall make use of the following:

(69.9) Theorem. Let E be a normed space, X a metric space and F : E×X →
E a continuous (singlevalued) map such that for any compact subset A ⊂ X the
closure F (E ×A) of F (E × A) is a compact subset of E. Then the (multivalued)
map ϕ: X � E defined as follows:

ϕ(x) = Fix(F ( · , x))

is an u.s.c. mapping.

Proof. It follows from the Schauder Fixed Point Theorem that the set ϕ(x)
is compact and nonempty for every x ∈ X.
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Let x0 ∈ X and let U be an open neighbourhood of ϕ(x0) in E. It is enough to
prove that there exists r > 0 such that for every x ∈ B(x0, r) we have ϕ(x) ⊂ U .
Assume to the contrary that for every n = 1, 2, . . . there exists xn ∈ B(x0, 1/n)
and yn ∈ Fix(F ( · , xn)) such that yn �∈ U .

We let A = {xn}. So, A = {xn}∪ {x0}. Consequently, in view of our assertion,
we can assume that limn→∞ yn = y0. Then yn �∈ U and y0 ∈ Fix(F ( · , x0)) =
ϕ(x0) ⊂ U , so we obtain a contradiction. �

We shall conclude this section by introducing the following notion:

(69.10) Definition. A space X is called Rδ-contractible provided there exists
a multivalued homotopy χ: [0, 1]×X � X such that:

(69.10.1) x ∈ χ(1, x), for every x ∈ X;
(69.10.2) χ(0, x) = A, for every x ∈ X;
(69.10.3) χ(t, x) is an Rδ-set, for every t ∈ [0, 1] and x ∈ X;
(69.10.4) χ is a u.s.c. map,

where A is an Rδ-subset of X.

Let us remark that any Rδ-contractible space has the same homology as one-
point space {p} so, that it is acyclic and in particular connected.

70. Solution sets for differential inclusions

Let ϕ: [0, a]×Rn � Rn be a multivalued map. In the present section we consider
the differential inclusion

(70.1)

{
x′(t) ∈ ϕ(t, x(t)),

x(0) = x0.

An absolutely continuous map x: [0, a] → Rn is called a solution of (70.1), if
x′(t) ∈ ϕ(t, x(t)) almost everywhere in [0, a] (a.e. t ∈ [0, a]) and x(0) = x0.

Consider the differential inclusion

x′(t) ∈ ϕ(t, x(t)).

The connection between differential inclusions and control systems is well known.
If f : [0, a]× Rn × Rm → Rn is a continuous function and A a compact subset of
Rm, then the set of trajectories for the system:

x′(t) = f(t, x(t), u(t)), u(t) ∈ A,

coincides with the set of solutions to the above differential inclusion, where

ϕ(t, x) = {f(t, x, u) | u ∈ A}.
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Differential inclusions can thus provide a convenient abstract framework for the
study of certain control problems. Solutions of the above inclusion, or more pre-
cisely of (70.1), have been studied mainly under two separate kind of assumptions:

(B1) ϕ is u.s.c. with convex values;
(B2) ϕ is l.s.c. possibly with nonconvex values.

In this section we shall look at the case (B1). Then in Section 71 we shall deal
with the case (B2).

Let S(ϕ, 0, x0) denote the set of all solutions of (70.1). We are now going to
characterize the topological structure of S(ϕ, 0, x0). First, we prove the following:

(70.2) Theorem. If ϕ: [0, a]× Rn � Rn is integrably bounded and mLL-se-
lectionable, then S(ϕ, 0, x0) is contractible for every x0 ∈ Rn.

Proof. Let f ⊂ ϕ be measurable, locally Lipschitz. By Theorem (69.8), the
following Cauchy problem:

(70.2.1)

{
x′(t) = f(t, x(t)),

x(t0) = u0,

has exactly one solution for every t0 ∈ [0, a] and u0 ∈ Rn. For the proof it is
sufficient to define a homotopy h: S(ϕ, 0, x0)× [0, 1]→ S(ϕ, 0, x0) such that

h(x, s) =

{
x for s = 1 and x ∈ S(ϕ, 0, x0),

x̃ for s = 0,

where x̃ = S(f, 0, x0) is exactly one solution given for the Cauchy problem (70.2.1).
We put

h(x, s)(t) =

{
x(t) if 0 ≤ t ≤ sa,

S(f, sa, x(sa))(t) if sa ≤ t ≤ a.

Then h is a continuous homotopy contracting S(ϕ, 0, x0) to the point S(f, 0, x0).�

(70.3) Theorem. If ϕ: [0, a] × Rn → Rn is an integrably bounded, Ca-se-
lectionable or in particular C-selectionable map, then the set S(ϕ, 0, x0) is Rδ-
contractible.

Proof. The proof is strictly analogous to that of Theorem (70.2). We replace
the singlevalued homotopy h: S(ϕ, 0, x0) × [0, 1] → S(ϕ, 0, x0) by a multivalued
homotopy χ: [0, 1]× S(ϕ, 0, x0) � S(ϕ, 0, x0) as follows:

χ(s, x)(t) =

{
x(t) if 0 ≤ t ≤ sa,

S(f, sa, x(sa))(t) if sa < t ≤ a,

where f ⊂ ϕ and S(f, sa, x(sa)) is an Rδ-set according to Corollary (69.7). �
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Observe that if ϕ: [0, a]×Rn � Rn is an intersection of the decreasing sequence
ϕk: [0, a] × Rn � Rn, i.e. ϕ(t, x) =

⋂∞
k=1 ϕk(t, x) and ϕk+1(t, x) ⊂ ϕk(t, x) for

almost all t ∈ [0, a] and for all x ∈ Rn, then

(70.4) S(ϕ, 0, x0) =
∞⋂

k=1

S(ϕk , 0, x0).

From theorems (70.2) and (70.3) we obtain:

(70.5) Theorem. Let ϕ: [0, a]× Rn � Rn be a multivalued map.

(70.5.1) If ϕ is σ-mLL-selectionable, then the set S(ϕ, 0, x0) is an intersection of
a decreasing sequence of contractible sets;

(70.5.2) If ϕ is σ-Ca-selectionable, then the set S(ϕ, 0, x0) is an intersection of
a decreasing sequence of Rδ-contractible spaces.

We can now formulate the main result of this section.

(70.6) Theorem. If ϕ: [0, a]×Rn � Rn is an u-Carathéodory map with convex
compact values and having linear growth, then the set S(ϕ, 0, x0) is an Rδ-set for
every x0 ∈ Rn.

Proof. Using similar arguments as for (69.7) we can find r > 0 such that if
x( · ) is a solution of (70.1), then ‖x(t)‖ < r for every t ∈ [0, a]. We put

ϕr(t, x) =

{
ϕ(t, x) if ‖x‖ ≤ r and t ∈ [0, a],

ϕ(t, rx/‖x‖) if ‖x‖ ≥ r and t ∈ [0, a].

It is obvious that ϕr is an integrably bounded u-Carathéodory map and also
S(ϕr , 0, x0) = S(ϕ, 0, x0). Now, the proof is analogous to the proof of (70.3)
(comp. [Go2-M]). �

Finally, as a simple corollary from Theorem (70.6) we obtain:

(70.7) Corollary. If ϕ: [0, a]× Rn � Rn is a u.s.c. bounded mapping with
convex compact values, then S(ϕ, 0, x0) is an Rδ-set for every x0 ∈ Rn.

In the following we describe the dependence of the set of solutions on the initial
values and parameters. Let Λ be a compact space and ϕ: [0, a] × Λ → Rn be
a nonempty convex compact valued map such that:

(70.8.1) t→ ϕ(t, x, λ) is u.s.c. measurable for every (x, λ) ∈ Rn × Λ;
(70.8.2) (x, λ)→ ϕ(t, x, λ) is u.s.c. for almost all t ∈ [0, a];
(70.8.3) ϕ is integrably bounded.

For a given λ ∈ Λ we let:

ϕλ: [0, a]×Rn → Rn, ϕλ(t, x) = ϕ(t, x, λ) for every t, x.
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(70.9) Proposition. Suppose that ϕ: [0, a]×Rn×Λ � Rn satisfies the condi-
tions (70.8.1)–(70.8.3). Let P : Rn×Λ � C([0, a], Rn) be a map defined as follows

P (x, λ) = S(ϕλ, 0, x).

Then P is u.s.c. map with Rδ-values.

Proof. It follows from Theorem (70.6) that P has Rδ-values. To prove the
upper semicontinuity of P we shall consider the integral operator:

Φ: C([0, a], Rn) ×Rn ×Λ→ C([0, a], Rn)

defined by the formula:

Φ(u, x, λ) =
{

v

∣∣∣∣ v(t) = x +
∫ t

0
w(τ) dτ,

where w(τ) ∈ ϕ(τ, u(τ), λ) for every τ ∈ [0, a]
}

.

Note that w is a measurable selection of ϕ(t, u(t), λ)) which exists by the Kura-
towski–Ryll–Nardzewski Selection Theorem. Now, it follows from (70.8.3) that w

is integrable.
It is easy to see that S(ϕλ, 0, x) = FixΦ( · , x, λ).
On the other hand, it is easy to verify that Φ satisfies all the assumptions of

Theorem (69.9), and consequently our result follows from that theorem. �

Some other characterization results are possible to obtain by applying Theo-
rem (21.15). Namely, we shall give a topological characterization of the set of
solutions of some boundary value problems for differential inclusions of order k.

Let E be a separable Banach space and let ϕ: [0, a]×Ek � E be a multivalued
mapping, where Ek = E × . . . × E (k-times). We shall consider the following
problem:

(70.10)



x(k)(t) ∈ ϕ(t, x(t), x′(t), . . . , x(k−1)(t)),

x(0) = x0,

x′(0) = x1,

. . . . . . . . . . . . . . . .

x(k−1)(0) = xk−1,

where the solution x: [0, a]→ E is understood in the sense of t almost everywhere
(a.e. t ∈ [0, a]) and x0, . . . , xk−1 ∈ E.

Observe that for k = 1 problem (70.10) reduces to the well-known Cauchy prob-
lem for differential inclusions. In what follows we shall denote by S(φ, x0, . . ., xk−1)
the set of all solutions of (70.10).

Our first application of Theorem (21.15) is the following:
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(70.11) Theorem. Assume that ϕ is a mapping with compact values. Assume
further that the following conditions hold:

(70.11.1) ϕ is bounded, i.e. there is an M > 0 such that ‖y‖ ≤ M for every
t ∈ [0, a], x ∈ Ek and y ∈ ϕ(t, x);

(70.11.2) the map ϕ( · , x) is measurable for each x ∈ Ek;
(70.11.3) ϕ is a Lipschitz map with respect to the second variable, i.e. there exists

an L > 0 such that for every t ∈ [0, a] and for every z = (z1, . . . , zk), y =
(y1, . . . , yk) ∈ Ek we have:

dH(ϕ(t, z), ϕ(t, y)) ≤ L
k∑

i=1

‖zi − yi‖.

Then the set S(ϕ, x0, . . . , xk−1) of all solutions of the problem (70.10) is an AR-
space.

Proof. For the proof we define (singlevalued) mappings hj : M([0, a], E) →
ACj, j = 0, . . . , k− 1, by putting

(hj(z))(t) = x0 + tx1 + . . . +
tj

j!
xj +

∫ t

0

∫ s1

0
. . .

∫ sj

0
z(s) ds dsj . . . ds1,

where ACj = {u ∈ Cj([0, a], E) | u(j) is absolutely continuous} and for u ∈ ACj

we put:
‖u‖ = ‖u‖Cj + sup

t∈[0,a]
ess{‖u(j+1)(t)‖}.

Now, consider a multivalued mapping ψ: M([0, a], E) � M([0, a], E) defined as
follows:

ψ(x) = {z ∈M([0, a], E) | z(t) ∈ ϕ(t, hk−1(x)(t), . . . , h0(x)(t)), for t ∈ [0, a]}.

It follows from the Kuratowski–Ryll–Nardzewski Selection Theorem and (70.11.1)
that ψ is well defined (with closed decomposable values in M([0, a], E)). Moreover,
it is easy to see that hk−1(Fix(ψ)) = S(ϕ, x0, . . . , xk−1). Consequently, since hk−1

is a homeomorphism onto its image in view of Theorem (21.15), it is sufficient to
show that ψ is a contractive mapping. We shall do this by using the M([0, a], E)-
version of Bielecki’s method and the Kuratowski–Ryll–Nardzewski Theorem. In
fact it is enough to see that for every u, z ∈ M([0, a], E) and for every y ∈ ψ(u)
there is a v ∈ ψ(z) such that

(70.11.4) ‖y − v‖1 ≤ α‖u− z‖1,

where α ∈ [0, 1) and ‖w‖1 = sup esst∈[0,a]{e−Lakt‖w(t)‖} is the Bielecki norm
in M([0, a], E). Observe that using Theorem (19.7) for ψ and z, we get a mapping
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v ∈ ψ(z) and now (70.2.1) follows directly from (70.11.3). The proof of Theorem
(70.11) is complete. �

If we impose more conditions on ϕ, then we obtain even better information
about the set S(ϕ, x0, . . . , xk−1); namely we prove the following:

(70.12) Theorem. Let E be a separable Banach space and let ϕ: [0, a]×Ek �
E be a map with convex compact values satisfying (70.11.2) and the following
additional conditions:

(70.12.1) the mapping ϕ(t, · ) is completely continuous for every t ∈ [0, a], i.e.
u.s.c. and maps bounded sets into compact sets;

(70.12.2) the set ϕ(A) is compact, for every compact A ⊂ [0, a]× Ek;
(70.12.3) for every t ∈ [0, a], x ∈ Ek and y ∈ ϕ(t, x), we have

‖y‖ ≤ u(t) + v(t)‖x‖,

where u, v: [0, a]→ R are integrable functions.

Then S(ϕ, x0, . . . , xk−1) is an Rδ-set.

For the proof of Theorem (70.12) we need the following lemma.

(70.13) Lemma. Let ϕ satisfies all the assumptions of Theorem (70.12). Then
there exists a multivalued mapping ψ: [0, a] × Ek � E such that the following
conditions are satisfied:

(70.13.1) ψ is compact, i.e. ψ([0, a]× Ek) is contained in a compact subset of E;
(70.13.2) ψ( · , x) is measurable for every x ∈ Ek, and ψ(t, · ) is u.s.c. for every

t ∈ [0, a];
(70.13.3) S(ψ, x0, . . . , xk−1) = S(ϕ, x0, . . . , xk−1).

Since the proof of Lemma (70.13) contains many technical details we shall only
sketch it.

Sketch of Proof of Lemma (70.13). First observe that, in view of (70.12.3),
and by using the Gronwall inequality, there exists a constant D > 0 such that
‖x‖ ≤ D, for every x ∈ S(ϕ, x0, . . . , xk−1). Then we define: γ: [0, a]×Ek � E as
follows:

γ(t, z) =

{
ϕ(t, z) for every ‖z‖ ≤ D,

ϕ(t, Dz/‖z‖) for every ‖z‖ > D.

From (70.12.3) we deduce that γ is bounded from above by an integrable function
w: [0, a]→ R, i.e. ‖y‖ ≤ w(t) provided y ∈ ϕ(t, x).

Next, for every j = 0, . . . , k − 1 we define a map

γj : C([0, a], E)× . . .× C([0, a], E)→ C([0, a], E)
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by putting:

γj(u1, . . . , uk) = {y ∈ C([0, a], E) | y(t) = hk−1−j(z)(t)

and z(t) ∈ ϕ(t, u1(t), . . . , uk(t)), a.e. t ∈ [0, a]},

where each hj is the singlevalued mappings defined in the proof of (70.11) and
z ∈ M([0, a], E). In the next step we deduce that all mappings γj are bounded
by a common constant M . Let us denote by B the open ball in C([0, a], E) with
center at zero and radius M . Using separability of C([0, a], E) we infer that for
every j = 0, . . . , k− 1, the set

Aj = cl (conv(γj(B × . . .×B)([0, a])))

is a compact and convex subset of E. This allows us to consider the following
retractions:

rj: E → Aj , j = 0, . . . , k − 1.

Finally, we are ready to define the needed map ψ as follows:

ψ(t, z) = γ(t, r0(z1), . . . , rk−1(zk)),

for every t ∈ [0, a] and z = (z1, . . . , zk) ∈ Ek. We leave it to the reader to verify
that ψ satisfies (70.13.1)–(70.13.3). �

Proof of Theorem (70.12). For a given ϕ, we consider the map ψ given by
Lemma (70.13). In view of (70.13.3) it is sufficient to prove that S(ψ, x0, . . . , xk−1)
is an Rδ-set. We obtain it using the (modified) version of Theorem (70.11) and an
approximation method as presented in Chapter III. It is well known that ψ can
be approximated by a decreasing sequence ψn: [0, a]×Ek � E of compact locally
Lipschitz mappings satisfying the assumption of Theorem (70.11) and such that
S(ψn, x0, . . . , xk−1) is a compact AR-space (from Theorem (70.11) and Corollary
(2.14)), and

(70.14) S(ψ, x0, . . . , xk−1) =
⋂

n≥1

S(ψn, x0, . . . , xk−1)

Consequently (70.14) implies that S(ψ, x0, . . . , xk−1) is an Rδ-set and the proof is
completed. �

71. The lower semicontinuous case

In this section we shall consider the Cauchy problem:

(71.1)

{
x′(t) ∈ ψ(t, x(t)),

x(0) = x0,

for ψ to be l.s.c. or l-Carathéodory map.
Our first observation is evident:
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(71.2) Proposition. If ψ: [0, a]×Rn � Rn is l.s.c. with closed convex values
and with the linear growth, then S(ψ, x0) �= ∅.

Proof. In view of the Michael selection theorem, there is a continuous map
f : [0, a]× Rn → Rn such that f ⊂ ψ. Since f has linear growth we obtain that
S(f, x0) ⊂ S(ψ, x0). But from the Peano theorem S(f, x0) �= ∅ and hence we get
S(ψ, x0) �= ∅; the proof is completed. �

(71.3) Remark. In fact we have proved (cf. (70.3)) that S(ψ, x0) is an Rδ-
contractible set (not necessarily compact!).

Now, we prove the following:

(71.4) Theorem. Let ψ: [0, a]×Rn � Rn be a bounded l.s.c. map with compact
values. Then there exists an u.s.c. map ϕ: [0, a]× Rn � Rn with compact convex
values such that for every x0 ∈ Rn we have S(ϕ, x0) ⊂ S(ψ, x0).

For the proof of (71.4) we need some propositions. First, let us consider the
cone ΓM in Rn+1 defined as follows:

ΓM = {(t, x) ∈ R× Rn | ‖x‖ ≤ t ·M},

where M is an upper bound of ψ.
By applying Theorem (18.5) to ψ and Γ we get a Γ-continuous map f : [0, a]×

Rn → Rn such that f ⊂ Ψ. Evidently, we have:

(71.5) S(f, x0) ⊂ S(Ψ, x0).

Now, we shall consider the multivalued regularization of f called also the Kra-
ssovskĭı regularization of f . Namely, we define the multivalued map ϕ(f): [0, ε]×
Rn � Rn by putting:

(71.6) ϕ(f)(t, x) =
⋂
ε>0

conv{f(s, y) | (s, y) ∈ [0, a]×Rn,

|s− t| < ε, ‖y − x‖ < ε};

then ϕ(f) is called the Krassovskĭı regularization.
The following result is crucial in what follows:

(71.7) Theorem. Assume f is as above. Then we have:

(71.7.1) ϕ(f) is u.s.c. bounded with compact convex values;
(71.7.2) S(ϕ(f), x0) = S(f, x0).

For the proof of (71.7) we need:
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(71.8) Lemma. Let x( · ) be a solution of (70.1). Let J be the set of all times
t ∈ [0, a] such that:

(71.8.1) x′(t) ∈ Ψ(t, x(t)),
(71.8.2) there exists a decreasing to t sequence {tk} ⊂ [0, a], with {x′(tk)} → x′(t),

x′(tk) ∈ Ψ(tk, x(tk)) for all k.

Then the Lebesgue measure µ(J) of J is equal to a.

Proof. Let J1 be the set of all times t ∈ [0, a] where (i) holds. From the
definition of solution of (70.1) we obtain that µ(J1) = a . Fix any ε > 0. Since x

is an absolutely continuous map there exists a measurable u such that u(t) = x′(t)
for every t ∈ J2, where J2 ⊂ K1 and µ(J2) > a− ε. Clearly, (71.8.2) holds for all
points in J2 which are density points of J2 hence µ(J) ≥ µ(J2) > a − ε. Since ε

was arbitrary, the Lemma (71.8) is proved. �

Proof of (71.7). The proof of (71.7.1) is self-evident because ϕ(t) is an in-
tersection of u.s.c. bounded and compact convex valued maps. So we are going
to prove (71.7.2). Of course f ⊂ ϕ(f) so S(f, x0) ⊂ S(ϕ(f), x0). Therefore it
is sufficient to show that S(ϕ(f), x0) ⊂ S(f ; x0). In what follows we will denote
by ϕ the map ϕ(f) for simplicity. Let us assume that for every y ∈ ϕ(t, x) and
(t, x) ∈ [0, a]× Rn we have

‖y‖ ≤ L < M,

where M is chosen according to Ψ. Let x( · ) be a solution of (70.1) for ϕ = ϕ(f).
Define J ⊂ [a, b] to be the set of times t such that

(i) x′(t) ∈ F (t, x(t)), and
(ii) there exists a sequence of times tk, strictly decreasing to t, such that

x′(tk) ∈ ϕ(tk, x(tk)) and x′(t).

By Lemma (71.8), J has full measure in [a, b]. We claim that x′(t) = f(t, x(t)) for
every t ∈ J . Assume, to the contrary, that t ∈ J but

(71.8.1) ‖x′(t)− f(t, x(t))‖ = ε > 0.

Using the ΓM -continuity of f at the point (t, x(t)), choose δ > 0 such that

(71.8.2) ‖f(s, y) − f(t, x(t))‖ < ε/2,

whenever t ≤ s < t + δ, ‖y−x(t)‖ ≤M(s− t). Let tk → t be a sequence with the
properties stated in (ii). Then there exists k large enough so that

0 < tk − t < δ,(71.8.3)

‖x′(tk)− x′(t)‖ < ε/2,(71.8.4)
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for all k > k. The boundedness assumption ‖f(t, x)‖ < L implies that F (t, x) ⊆
B(0, L) for all t, x. Our solution x( · ) is therefore Lipschitz continuous with con-
stant L. In particular,

‖x(tk)− x(t)‖ ≤ L(tk − t) < M(tk − t).

Using (71.8.2) and (71.8.3) we conclude that

(71.8.5) F (tk, x(tk)) ⊆ B

(
f(t, x(t)),

ε

2

)
,

for all k > k, hence

(71.8.6) ‖x′(tk) − f(t, x(t))‖ ≤ ε

2
.

Comparing (71.8.1) with (71.8.4) and (71.8.6) we obtain a contradiction, proving
(71.7.2) �

Proof of (71.4). Let M > 0 be an upper bound of Ψ. We choose ΓM -
continuous selection f of Ψ and consider its Krassovskĭı regularization ϕ(f). In
view of (71.5) and (71.7) we have

S(Ψ; x0) ⊃ S(f, x0) = S(ϕ(f), x0) �= ∅

so our claim holds; the proof is completed. �

The method of proof of (71.4) suggests the following notion.

(71.9) Definition. A bounded multivalued map Ψ: [0, a] × Rn � Rn with
nonempty values is said to be regular if there is a map ϕ: [0, a]×Rn � Rn, called
regular quasi selection of Ψ, satisfying the properties:

(71.9.1) ϕ is u-Carathéodory bounded with compact convex values,
(71.9.2) ϕ(t, x) ∩Ψ(t, x) �= ∅, for every (t, x) ∈ [0, a]×Rn,
(71.9.3) each solution x: [0, a]→ Rn of the differential inclusion x′(t) ∈ ϕ(t, x(t))

is also a solution of x′(t) ∈ Ψ(t, x(t)).

The following result shows the significance of the class of regular maps.

(71.10) Proposition. Let Ψ: [0, a]×Rn � Rn be a bounded multivalued map
with compact values. Then Ψ is regular if:

(71.10.1) Ψ is u-Carathéodory,
(71.10.2) Ψ is l-Scorza Dragoni,
(71.10.3) Ψ is l-Carathéodory.
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For the proof of (71.10) a generalized version of the directionally continuous
selection is needed (cf. Section 18). Note that the mentioned proof of this general-
ized version is strictly analogous to the one presented in Section 18 and therefore
it is omitted here.

For any regular map Ψ: [0, a]×Rn � Rn, we set:

(71.11) U(Ψ) = {ϕ: [0, a]× Rn � Rn | ϕ is a regular quasi-selection of Ψ}.

We state below some immediate properties of regular maps, we shall use later.

(71.12) Proposition. Let Ψ: [0, a]× Rn � Rn be a regular map. Then, for
each ϕ ∈ U(Ψ), the solution set map Pϕ: Rn � C([0, a], Rn), Pϕ(x) = S(ϕ, x) is
u.s.c. with Rδ-values and

Pϕ(x) ⊂ PΨ(x),

where PΨ: Rn � C([0, a], Rn), PΨ(x) = S(Ψ, x).

Proposition (71.12) easily follows from (70.7) and (70.9).

(71.13) Proposition. Let Ψ: [0, a] × Rn � Rn be regular, and let ϕ1, ϕ2 ∈
U(Ψ). Then, for every t0 ∈ [0, a], the map χt0 ; [0, a]× Rn � Rn given by:

χt0(t, x) =


ϕ1(t, x) if 0 ≤ t < t0,

conv{ϕ1(t0, x) ∪ ϕ2(t0, x)} if t = t0,

ϕ2(t, x) if t0 < t ≤ a

is also in U(Ψ).

(71.14) Proposition. Let Ψ: [0, a] × Rn � Rn be regular, and let ϕ1, ϕ2 ∈
U(Ψ). Then the map χ: [0, a]× Rn × [0, 1] � Rn given by:

χ(t, x, λ) =


ϕ1(t, x) if 0 ≤ t < λa,

conv{ϕ1(λ a, x) ∪ ϕ2(λa, x)} if t = λa,

ϕ2(t, x) if λa < t ≤ a

satisfies the properties:

(71.14.1) χ( · , · , λ) ∈ U(Ψ) for every λ ∈ [0, 1],

(71.14.2) χ(t, x, 0) = ϕ2(t, x) for every (t, x) ∈ (0, a]×Rn,

(71.14.3) χ(t, x, 1) = ϕ1(t, x) for every (t, x) ∈ [0, a)×Rn.

Finally note the following:

(71.15) Remark. All the existence results presented in this section can be
also obtained by using the Fryszkowski selection theorem and the Schauder fixed
point theorem for singlevalued mappings.
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72. Periodic solutions for differential inclusions in Rn

In this section we consider the problem of existence of a solution x( · ) to the
following periodic problem:

(72.1)

{
x′(t) ∈ ϕ(t, x(t)),

x(0) = x(a),

where ϕ: [0, a]×Rn � Rn is a multivalued map. This problem plays a central role
in a qualitive theory of differential equations. Among the topological methods an
important role is played by the topological degree method applied to the Poincaré
(also called Poincaré–Andronov) translation operator. This method was developed
by M. A. Krasnosiel’skĭı (cf. [KZ-M]) in the singlevalued case, i.e. when we have a
unique solution for the Cauchy problem considered. In the case of nonuniqueness
(or, in particular, for differential inclusions) we need the multivalued Poincaré
operator (see [DyG], [Go2-M], [GP1]). Then we are able to find periodic solutions
using the topological degree theory for multivalued maps. Similarly as in [KZ-M]
we use the guiding function method adopted to differential inclusions to obtain
a sufficient condition.

In this section we shall assume that ϕ: [0, a] × Rn � Rn is u-Carathéodory
map and has nonempty compact convex values and linear growth. By Proposi-
tion (70.9), the map P : Rn � C([0, a], Rn) defined by P (x) = S(ϕ, 0, x) is u.s.c.
with Rδ-values. Consider also the evaluation maps:

et: C([0, a], Rn) → Rn, et(x) = x(t)− x(0),

e: C([0, a], Rn) × [0, a] → Rn, e(x, t) = x(t)− x(0).

So, we have the diagram:

Rn
P
−� C([0, a], Rn) ea−→ Rn;

the composition Pa = ea ◦ P is called the Poincaré translation operator.
Now, it is evident that problem (72.1) is equivalent to the problem of existence

of a point x ∈ Rn such that 0 ∈ Pa(x). Therefore, in terms of the topological
degree theory we can state the following theorem:

(72.2) Theorem. Assume that the topological degree deg(Pa, Kn
r ) with respect

to Kn
r is defined; i.e. x �∈ Pa(x) for every x such that ‖x‖ = r. If deg(Pa, Kn

r ) �= 0,
then problem (72.1) has a solution.

In fact, our theorem follows immediately from the existence property of the
topological degree.
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In view of Theorem (72.2) a sufficient condition for deg(Pa, Kn
r ) to be different

from zero is needed. We shall obtain such a condition by using the guiding function
method (also called potential function method). We will start by defining the
notion of a potential (guiding) mapping.

(72.3) Definition. A C1-function V : Rn → R is said to be a direct potential
if it satisfies the following condition:

(72.3.1) there exists an r0 > 0 such that grad V (x) �= 0 for any x ∈ Rn with
‖x‖ ≥ r0, where grad V = (∂V/∂x1, . . . , ∂V/∂xn) denotes the gradient
of the function V .

It follows from the additivity property of the Brouwer degree and (72.3.1) that
for any r ≥ r0 we have

deg(grad V, Kn
r ) = deg(grad V, Kn

r0
).

The above formula enables us to define the index, Ind V , of the direct potential V

by letting

(72.3.2) Ind V = deg(grad V, Kn
r ), where r ≥ r0.

It is important to have an example of a direct potential whose index is different
from zero. First of all it is well known that if a direct potential satisfies the
coercitivity condition:

(72.3.3) lim
‖x‖→∞

V (x) =∞,

then Ind V �= 0.
By an easy homotopy argument we obtain:

(72.4) Proposition. If U, V : Rn → R are direct potentials for which there
exists an r0 > 0 such that

〈grad V (x), grad U(x)〉 > −‖ grad V (x)‖ ‖ grad U(x)‖,

for any x ∈ Rn with ‖x‖ ≥ r0, then Ind V = Ind U .

(72.5) Example. Let V, U : R2 → R be two direct potentials defined as follows:

U(x, y) = 1− exp(−x2) + y2, V (x, y) = x2 + y2.

Then U does not satisfy the coercitivity condition but from Proposition (72.4) we
obtain that Ind U = Ind V �= 0. In fact, Ind U = Ind V = 1.

A relationship between the notion of potential and differential inclusions is
stated in the following definition:
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(72.6) Definition. Let ϕ: [0, a] × Rn � Rn be a set-valued map and let
V : Rn → R be a direct potential; V is called a guiding function for ϕ if the
following condition is satisfied:

(72.6.1) exists r0 > 0 for all ‖x‖ ≥ r0 for all t ∈ [0, a]

there exists y ∈ ϕ(t, x) such that 〈y, grad V (x)〉 ≥ 0;

where 〈 · , · 〉 denotes the inner product in Rn.

Now we are able to formulate the main result of this section.

(72.7) Theorem. If ϕ: [0, a]×Rn � Rn is a u-Carathéodory map with convex
compact values and linear growth, and if there exists a guiding function V : Rn → R
for the map ϕ such that Ind V �= 0, then the periodic problem{

x′(t) ∈ ϕ(t, x(t)),

x(0) = x(a)

has a solution.

For the proof of Theorem (72.7) we need some additional notation and two
lemmas.

For a given direct potential V we define the induced vector field WV : Rn → Rn

by the following formula:

WV (x) =


grad V (x) if ‖ grad V (x)‖ ≤ 1,

grad V (x)
‖ grad V (x)‖ if ‖ grad V (x)‖ > 1.

(72.8) Lemma. Let r0 > 0 be a constant chosen for the direct potential V (cf.
(72.3.2)). Then for every r > r0 + a there exists a tr ∈ [0, a] such that for any
solution x: [0, a]→ Rn of the differential equation

(72.8.1) x′(t) = WV (x(t))

which satisfies ‖x(0)‖ = r the following conditions hold:

〈x(t)− x(0), grad V (x(0))〉 > 0 for t ∈ (0, tr];(72.8.2)

x(t)− x(0) �= 0 for t ∈ (0, a].(72.8.3)

Proof. Since the field WV is continuous, there exists an εr > 0 such that
product 〈WV (z0), WV (z)〉 > 0 for every z, z0 ∈ Rn, ‖z0‖ = r, ‖z − z0‖ < εr .
Moreover, since WV is bounded there exists tr ∈ (0, a) such that ‖x(s)−x(0)‖ < εr
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for every solution x of (72.8.1) and every s ∈ (0, tr]. Now let x be a solution of
(72.8.1) such that ‖x(0)‖ = r. Then we have

〈x(s) − x(0), grad V (x(0))〉 =
∫ s

0
〈WV (x(τ)), grad V (x(0))〉 dτ > 0

for every s ∈ (0, tr], which completes the proof of (1). Further, we obtain

V (x(t))− V (x(0)) =
∫ t

0
〈grad V (x(τ)), x′(τ)〉 dτ

=
∫ t

0
〈grad V (x(τ)), WV (x(τ))〉 dτ > 0

and this completes the proof of the lemma. �

(72.9) Lemma. Suppose r0 > 0. If a solution x( · ) of the differential inclusion
x′(t) ∈ ϕ(t, x(t)) satisfies the condition

‖x(0)‖ >

(
x0 +

∫ a

0
µ(τ) dτ

)
exp

(∫ q

0
µ(τ) dτ

)
(= rµ),

then ‖x(t)‖ > r0 for every t ∈ [0, a].

Proof. Suppose that there exists a solution x and t0 ∈ [0, a] such that ‖x(0)‖ >

rµ and ‖x0(t0)‖ ≤ r0. For every t ∈ [0, t0] we let: y(t) = x(t0− t), ξ(t) = µ(t0− t),
ψ(t, x) = −ϕ(t0 − t, x). Obviously y′(t) ∈ ψ(t, y(t)). As for every z ∈ ψ(t, x)

‖z‖ ≤ ξ(t)(1 + ‖x‖),

then using the Gronwall inequality we obtain

‖y(t)‖ ≤
(
‖y(0)‖ +

∫ t

0
ξ(τ) dτ

)
exp

(∫ t

0
ξ(τ) dτ

)
≤ rµ,

for every t ∈ [0, t0]. Thus ‖x(0)‖ = ‖y(t0)‖ ≤ rµ, and we obtain a contradiction.�

Now we are able to prove Theorem (72.7).

Proof of Theorem (72.7). Choose r0 > 0 according to (72.3.1) and (72.6.1),
and define a map B: Rn → Rn by putting

B(x) = {y ∈ Rn: 〈y, α(x) grad V (x)〉 ≥ 0},

where α(x) = 0 for ‖x‖ ≤ r0 and α(x) = 1 for ‖x‖ > r0.
It is easy to check that the graph ΓB of the map B is closed. Next we define

a map ϕV : [0, a]× Rn � Rn by

ϕV (t, x) = ϕ(t, x) ∩B(x).
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It is easy to see that ϕV is a u-Carathéodory map. Now, by using Lemma (72.9),
we choose r ≥ r0 + a such that for every κ ∈ [0, 1], ‖x0‖ ≥ r, and for every
solution x: [0, a]→ Rn of the Cauchy problem{

x′(t) ∈ κWV (x(t)) + (1− κ)ϕV (t, x(t)),

x(0) = x0,

the following estimate holds:

‖x(t)‖ ≥ r0 for every t ∈ [0, a].

We choose tr according to Lemma (72.8) and define a decomposable homotopy
H1: Kn

r × [0, 1] � Rn by putting

H1(x0, λ) = (1− λ) grad V (x0) + λetr (SWV (x0))

Now, in view of the second version of the homotopy property (see (26.5)) and
Lemma (72.8), we obtain

(72.10) Deg(etr ◦ SWV , Kn
r ) = {Ind V }.

We define:

k(λ) =

{
1 for λ ∈ [0, 1/2),

2− 2λ for λ ∈ [1/2, 1],

h(λ) =

{
2(a− tr)λ + tr for λ ∈ [0, 1/2),

a for λ ∈ [1/2, 1].

The map G: [0, a]×Rn × [0, 1] � Rn given by:

G(t, x, λ) = k(λ)WV (x) + (1− k(λ))ϕV (t, x),

satisfies all the assumptions of Proposition (8.9). So, the map χ: Kn
r × [0, 1] �

C([0, a], Rn)× [0, a] given by:

χ(x0, λ) = SG( · , · ,λ)(x0)× {h(λ)},

is upper semicontinuous, and χ(x0, λ) is an Rδ-set for every (x0, λ) ∈ Rn × [0, 1].
Hence, the homotopy H: Kn

r × [0, 1]→ Rn given by H = e ◦ χ is decomposable.
Now, we show that 0 �∈ H(x0, λ), for ‖x0‖ = r and λ ∈ [0, 1].
If λ ∈ [0, 1/2], then there exists a solution x: [0, a]→ Rn of the Cauchy problem{

x′(t) = WV (x(t)),

x(0) = x0,
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such that z = x(h(λ))− x0, and by Lemma (72.8.2) we have z �= 0.
If λ ∈ [1/2, 1) and z ∈ H(x0, λ), then there exists a solution x: [0, a]→ Rn of

the Cauchy problem {
x′(t) ∈ G(t, x(t), λ),

x(0) = x0,

such that z = x(a)− x0. Consequently we have

〈k(λ)WV (x(t)) + (1− k(λ))y, grad V (x(t))〉 > 0

for every y ∈ ϕV (t, x(t)). This implies that 〈x′(t), grad V (x(t))〉 > 0 for almost all
t ∈ [0, a]. Therefore, we obtain

V (x(a))− V (x(0)) =
∫ a

0
〈x′(t), grad V (x(t))〉 dt > 0,

and hence 0 �∈ H(x, λ), for every ‖x‖ = r and λ ∈ [0, 1). If there is an x ∈ Sn−1
r

such that 0 ∈ H(x, 1), then the conclusion of the theorem holds true. If not, then
H is a homotopy in DSn−1

r
(Kn

r , Rn).
Finally, from (26.2.5) and (72.10) we deduce Ind V ∈ deg(H( · , 1), Kn

r ). Since
V is a guiding function for ϕ, we infer in view of (26.2.2) that 0 ∈ H(x, 1) for some
x ∈ Kn

r and this completes the proof. �

(72.11) Remark. If we change condition (72.6.1) in the definition of a guiding
function to the following one:

exists r0 > 0, for all ‖x‖ ≥ r0, for all t ∈ [0, a],

there exists y ∈ ϕ(t, x) such that 〈y, grad V (x)〉 ≤ 0,

then Theorem (72.7) holds true.
Indeed, by the substitution t→ (a− t), we reduce this case to the previous one.
Now, let ψ: [0, a]× Rn � Rn be a regular map. We shall consider the periodic

problem (72.1) for ψ. It follows from (71.12) that the Poincaré operator P ψ
a for ψ

has a selection P ϕ
a for every ϕ ∈ U(ψ) and, in addition, P ϕ

a ∈ CJ(Bn(r), Rn).

(72.12) Definition. A C1-function V : Rn → R is said to be a strong guiding
function for ψ if it is a direct potential and the following condition is satisfied:

there exists r0 > 0 for all ‖x‖ ≥ r0, for all t ∈ [0, a],

for all y ∈ ψ(t, x) such that 〈y, grad V (x)〉 ≥ 0.

We prove:
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(72.13) Theorem. Let ψ: [0, a]× Rn � Rn be a regular map having a strong
guiding function V with Ind(V ) �= 0. Then the periodic problem (72.1) for ψ has
a solution.

Proof. Let ϕ ∈ U(ψ). From the definition of U(ψ), we have:

(72.13.1) ϕ is u-Carathéodory, with nonempty compact convex values,
(73.13.2) ϕ(t, x) ∩ ψ(t, x) �= ∅ for every (t, x) ∈ [0, a]×Rn,
(73.13.3) P ϕ

a (x0) ⊂ P ψ
a (x0), for every x0 ∈ Rn.

In view of (73.13.3), it suffices to show that (70.1) for ϕ has a solution. Observe
that, in general, V is not a guiding function for ϕ, because ϕ is not necessarily
a selection of ψ. To overcome this difficulty we introduce an auxiliary map.

In fact, Fixr0 > 0 as in (72.8.1). Define ϕ̃: [0, a]× Rn � Rn by

ϕ̃(t, x) =

{
ϕ(t, x) if (t, x) ∈ [0, a]×Bn(r0),

ϕ(t, x) ∩H(x) if (t, x) ∈ [0, a]× (Rn \Bn(r0)),

where H(x) = {y ∈ Rn | 〈y, grad V (x)〉 ≥ 0}. It is simple to check that ϕ̃ is
u-Carathéodory, with nonempty compact convex values. Moreover, let (t, x) ∈
[0, a] × Rn, ‖x‖ > r0 be arbitrary. Take y ∈ ϕ(t, x) ∩ ψ(t, x) (a nonempty set
by (73.13.2)!). Since V is a C1 strong guiding function for ψ, we have that V is
a guiding function for ϕ̃ and hence from (72.7) the periodic problem for ϕ̃ has
a solution. Clearly, it gives a periodic solution for ϕ and consequently for ψ; the
proof is completed. �

73. Differential inclusions on proximate retracts

In the present section we survey the current results concerning the existence
problem, topological characterization of the set of solutions, and periodic solutions
of differential inclusions on subsets of Euclidean spaces. Specifically, we shall deal
with these problems on the compact subsets of Euclidean spaces called proximate
retracts (see Chapter II).

Let us remark that, in particular, convex sets and smooth manifolds with bound-
ary or without boundary are proximate retracts.

In what follows we shall assume that A ⊂ Rn is a compact proximate retract
and ϕ: [0, a]×A � Rn is an integrably bounded Carathéodory map with compact
convex values and the following Nagumo-type condition:

(73.1) ϕ(t, x)∩ TA(x) �= ∅ for all t ∈ [0, a] and all x ∈ A

where TA(x) is the Bouligand cone to A at x as defined in Chapter I.
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First we shall study the Cauchy problem for ϕ, i.e.

(73.2)

{
x′(t) ∈ ϕ(t, x(t)) a.e. for t ∈ [0, a],

x(0) = x0 for x0 ∈ A.

Let B ⊂ A. By a B-viable solution of (73.2) we understand an absolutely contin-
uous map x: [0, a] → B such that x′(t) ∈ ϕ(t, x(t)), a.e. t ∈ [0, a] and x(0) = x0.
By SB(ϕ, 0, x0) we denote the set of all B-viable solutions of (73.2).

We are going to prove that under the above assumptions SA(ϕ, 0, x0) in an
Rδ-set.

The following example shows us that if we remove that assumption the A is
a proximate retract, then the set SA(ϕ, 0, x0) may even be disconnected.

(73.3) Example. Let

S1 = {(x, y) ∈ R2 | (x− 1)2 + y2 = 1},
S2 = {(x, y) ∈ R2 | (x + 1)2 + y2 = 1},
A = S1 ∪ S2,

and define f : [0, 1]×A→ R2 by

f(t, (x, y)) =

{
(y, 1− x) for (x, y) ∈ S1,

(−y, 1 + x) for (x, y) ∈ S2.

It is easy to see that the set S(f, 0, (0, 0)) is disconnected and hence is not Rδ.

Note that if A ⊂ Rn is an arbitrary compact set, then SA(ϕ, 0, x0) �= ∅. We
shall prove the following:

(73.4) Theorem. If A ∈ PANR (see Definition (3.8)) and ϕ: [0, a]×A � Rn is
an integrably bounded Carathéodory map with compact convex values and satisfies
(73.1), then for every x0 ∈ A the set SA(ϕ, 0, x0) is Rδ.

To prove Theorem (73.4) we need some additional information. Since A ∈
PANR there exists an open neighbourhood U of A in Rn and a metric retraction
r: U → A (cf. Proposition (3.10)). We define ϕ̃: [0, a]×Rn � Rn to be an extension
of ϕ as follows:

ϕ̃(t, x) =

{
α(x) · ϕ(t, r(x)) for x ∈ U and t ∈ [0, a],

{0} for x �∈ U and t ∈ [0, a],

where α: Rn → [0, 1] is a Urysohn function such that α(x) = 1 for x ∈ A, and
α(x) = 0 for x �∈ U .
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(73.5) Lemma. Assume now that ϕ satisfies

(73.1′) ϕ(t, x) ⊂ TA(x) for all t ∈ [0, a] and for all x ∈ A.

If x: [0, a] → Rn is an absolutely continuous function such that x(0) ∈ A and
x′(t) ∈ ϕ̃(t, x(t)) a.e. t ∈ [0, a], then x(t) ∈ A for every t ∈ [0, a].

Proof. For the proof we define a map d: [0, a]→ R by letting

d(t) = dist(x(t), A), for t ∈ [0, a].

We would like to prove that d(t) = 0 for every t ∈ [0, a]. We have:

|d(t)− d(s)| = | dist(x(t), A)− dist(x(s), A)| ≤ ‖x(t)− x(s)‖,

so d is an absolutely continuous function. Let t0 ∈ [0, a] and x′(t0) ∈ ϕ̃(t0, x0(t0)).
If x0(t0) ∈ U , then x′(t0) ∈ TA(r(x(t0))) and hence

(73.5.1) lim inf
h→0+

dist(r(x(t0)) + hx′(t0), A)
h

= 0.

We have:

dist(x(t0 + h), A)− dist(x(t0), A) ≤ dist(r(x(t0)) + hx′(t0), A)

+ ‖x(t0 + h) − x(t0)− hx′(t0)‖

and from (73.5.1) we obtain

(73.5.2) lim inf
h→0+

d(t0 + h)− d(t0)
h

≤ 0.

If x(t0) �∈ U , then x′(t0) = 0 and

d(t0 + h) − d(t0) ≤ ‖x(t0 + h)− x(t0) − hx′(t0)‖.

Therefore, in this case (73.5.2) holds, too. Since, d is differentiable almost ev-
erywhere and its derivative d′(t) ≤ 0, a.e. t ∈ [0, a] so it is non-increasing, but
d(0) = 0 and hence d(t) = 0 for every t ∈ [0, a]. �

From the above lemma it follows that:

SA(ϕ, 0, x0) = SRn (ϕ̃, 0, x0) provided x0 ∈ A

and ϕ satisfies (73.1′).
Thus, from this and Theorem (70.4) we obtain:
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(73.6) Corollary. If ϕ satisfies (73.1′) and x0 ∈ A, then SA(ϕ, 0, x0) is an
Rδ-set.

Now we are able to prove Theorem (73.4).

Proof of Theorem (73.4). Let r: U → A be the metric retraction. According
to (3.10) we choose ε > 0 such that O2ε(A) ⊂ U and cl (Oε(A)) ∈ PANR.

Define a map T : cl (Oε(A))→ Rn by

T (x) = {y ∈ Rn: 〈y, x− r(x)〉 ≤ 0}.

It is easy to see that the graph ΓT of T is a closed subset in cl (Oε(A)) × Rn and
moreover, in view of Proposition (3.10), the multivalued mapping

ψε: [0, a]× cl (Oε(A)) � Rn

defined by
ψε(t, x) = ϕ(t, r(t)) ∩ T (x)

is Carathéodory integrably bounded and satisfies (73.1) (cf. (3.1) and (3.11)).
Therefore from Corollary (73.6) we obtain that Scl (Oε(A))(ψε, 0, x0) is Rδ provided
x0 ∈ A.

Finally, let us observe that for x0 ∈ A we have

SA(ϕ, 0, x0) =
∞⋂

n=1

Scl (O1/n(A))(ψ1/n, 0, x0).

So, our theorem follows from Corollary (73.6) and (2.14). �

Now, keeping the above assumptions on A and ϕ we shall consider the following
periodic problem:

(73.7)

{
x′(t) ∈ ϕ(t, x(t)) a.e. t ∈ [0, a],

x(0) = x(a) ∈ A.

To solve problem (73.7) we consider the following diagram:

A
P
−� C([0, a], Rn) ws−→ Rn,

where P (x) = SA(ϕ, 0, x) and ws(x) = x(s) for x ∈ C([0, a], Rn) and s ∈ [0, a].
Observe that for every u ∈ SA(ϕ, 0, x) and for every t ∈ [0, a] we have u(t) ∈ A,

so the composition Pa = wa ◦ P is a map from A to A.
Consider the multivalued homotopy χ: A× [0, 1] � A defined by

χ(x, λ) = wλa(SA(ϕ, 0, x)).

Then χ(x, 0) = x and χ(x, 1) = Pa(x) and our theorem follows from (69.10).
Therefore we have proved the following theorem
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(73.8) Theorem. Assume that A ∈ PANR is compact, and that ϕ: [0, a]×A �
Rn is an integrably bounded Carathéodory map with compact convex values and
satisfying (70.1). If χ(A) �= 0, then problem (73.7) has a solution.

Indeed, under our assumptions the Lefschetz number λ(Pa) �= 0, so Pa has
a fixed point which is a solution of (73.7).

Finally, for regular mappings Theorem (73.8) can be formulated as follows:

(73.9) Corollary. Assume that A ∈ PANR is compact, and that ψ: [0, a]×
A � Rn is a regular map satisfying (73.1’). If χ(A) �= 0, then (73.7) has a solution.

Proof. We take ϕ ∈ U(ψ). Then condition (73.1) for ϕ is satisfied and (73.9)
follows from (73.8). �

74. Implicit differential inclusions

The aim of this section is to show that, using the topological degree method
as a tool, many types of differential equations (inclusions) whose right hand sides
depend on the derivative can be reduced very easily to differential inclusions with
right hand sides not depending on the derivative. We apply this method only to
the following types of differential equations, but some other applications are also
feasible:

• ordinary differential equations of first or higher order (e.g. the satelite
equations);

• hyperbolic differential equations;
• elliptic differential equations.

We shall formulate all results in the simplest possible form. For more general
formulations see [BiG] or [BiGP].

In this section we will assume X to be the closed ball Kr ⊂ Rn or Rn. By the
dimension, dim A of a compact subset of X we shall mean the topological covering
dimension.

Following [BiG] we recall:

(74.1) Proposition. Let A be a compact subset of X such that dim A = 0.
Then for every x ∈ A and for every open neighbourhood U of x in X there exists
an open neighbourhood V ⊂ U of x in X such that the boundary ∂V of V in X

has empty intersection with A, i.e. ∂V ∩A = ∅.

The proof of (74.1) is quite easy by a contradiction argument.

In the Euclidean space Rn we can identify a notion of the Brouwer degree with
the fixed point index (cf. [Do-M]).
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Namely, let U be an open bounded subset of Rn and let g: U → Rn be a con-
tinuous singlevalued map such that Fix(g) ∩ ∂U = ∅. We let g̃: U → Rn;

g̃(x) = x− g(x), x ∈ U,

i(g, U) = deg(g̃, U),(74.2)

where deg(g̃, U) denotes the Brouwer degree of g̃ with respect to U ; then i(g, U)
is called a fixed point index of g with respect to U .

Now all the properties of the Brouwer degree can be reformulated in terms of
the fixed point index (cf. [Do-M]). So, in the case we are considering, it is exactly
the same to use the topological degree or the fixed point index.

We shall start with the following:

(74.3) Proposition. Let g: X → X be a compact map. Assume further that
the following two conditions are satisfied:

(74.3.1) dim Fix(g) = 0;
(74.3.2) there exists an open subset U ⊂ X such that

∂U ∩ Fix(g) = ∅ and i(g, U) �= 0.

Then there exists a point z ∈ Fix(g) for which we have:

(74.3.3) for every open neighbourhood Uz of z in X there exists an open neigh-
bourhood Vz of z in X such that

Vz ⊂ Uz , ∂Vz ∩ Fix(g) = ∅ and i(g, Vz) �= 0.

Proof. Let Γ be the family of all subsets A of Fix(g) ∩U which are compact,
nonempty, and such that for every open neighbourhood W of A in X there is an
open neighbourhood V of A in X which satisfies the following three conditions:

V ⊂W, ∂V ∩ Fix(g) = ∅ and i(g, V ) �= 0.

It follows from (74.3.2) that Γ is a nonempty family. Let Γ be partially ordered
by an inclusion. We are going to apply the famous Kuratowski–Zorn Lemma. Let
{Ai} be a chain in Γ and put A0 =

⋂
i∈I{Ai}. To prove that A0 ∈ Γ assume

that W is an open neighbourhood of A0 in X. We claim that there is an i ∈ I

such that Ai ⊂ W . Indeed, if we assume the contrary then we get a family
Bi = (X \W )∩Ai, i ∈ I, of compact nonempty sets which has nonempty compact
intersection B0. Then B0 ⊂ X \W and B0 ⊂ A0, so we obtain a contradiction
and hence A0 ∈ Γ. Consequently, in view of the Kuratowski–Zorn Lemma, Γ has
a minimal element A∗.
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We claim that A∗ is a singleton. Let z ∈ A∗. It is sufficient to prove that
{z} ∈ Γ. Since A∗ ∈ Γ we obtain an open neighbourhood U∗ of A∗ in X with the
following properties: U∗ ⊂ U , ∂U∗ ∩ Fix(g) = ∅ and i(g, U∗) �= 0. Let W be an
arbitrary open neighbourhood of z in X. Using Proposition (74.1) we can choose
an open neighbourhood Uz of z in U∗∩W such that Fix(g)∩∂Uz = ∅. Since A∗ is
a minimal element of Γ the compact set A∗ \Uz is not in Γ, and hence there exists
an open set V ⊂ U∗ such that (A∗ \ Uz) ⊂ V ⊂ U∗, Fix(g) ∩ ∂V = ∅, V ∩ Uz = ∅,
i(g, V ) = 0 and i(g, U∗) = i(g, V ∪ Uz). Now, from the additivity property of the
fixed point index we have

i(g, U∗) = i(g, Uz) + i(g, V ) �= 0

and consequently i(g, Uz) �= 0. This implies that {z} ∈ Γ and the proof of (74.3)
is completed. �

Now, we are going to consider a more general situation. Let Y be a locally
arcwise connected space and let f : Y × X → X be a compact map. In what
follows we shall assume that f satisfies the following condition:

(74.4) for all y ∈ Y exists Uy such that Uy is open in X and i(fy , Uy) �= 0,

where fy : X → X is given by the formula fy(x) = f(y, x) for every x ∈ X. Observe
that in particular, if X is an absolute retract, then (74.4) holds automatically. We
associate with a map f : Y ×X → X satisfying the above conditions the following
multivalued map:

ϕf : Y → X, ϕf(y) = Fix(fy).

Then from (74.4) it follows that ϕf is well defined. Moreover, we obtain:

(74.5) Proposition. Under all of the above assumptions the map ϕf : Y � X

is u.s.c.

Let us remark that, in general, ϕf is not an l.s.c. map. Below we would like to
formulate a sufficient condition which guarantees that ϕf has an l.s.c. selection.
To this end we shall add one more assumption. Namely, we assume that f satisfies
the following condition:

(74.6) dim Fix(fy) = 0 for all y ∈ Y.

Now, in view of (74.4) and (74.6), we are able to define the map ψf : Y � X by
putting ψf (y) = cl {z ∈ Fix(fy) | z satisfies condition (74.3.3)}, for every y ∈ Y .

We prove the following:
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(74.7) Theorem. Under all of the above assumptions we have:

(74.7.1) ψf is a selection of ϕf ;

(74.7.2) ψf is an l.s.c. map.

Proof. Since (74.7.1) follows immediately from the definition we shall prove
(74.7.2). To do this we let ηf : Y � X:

ηf(y) = {z ∈ Fix(fy) | z satisfies (74.3.3)}.

For the proof it is sufficient to show that ηf is l.s.c. Let U be an open subset
of X and let y0 ∈ Y be a point such that ηf (y0) ∩ U �= ∅. Assume further that
x0 ∈ ηf (y0) ∩ U . Then there exists an open neighbourhood V of x0 in X such
that V ⊂ U and i(fy0 , V ) �= 0. Since ϕf is a u.s.c. map and Y is locally arcwise
connected we can find an open arcwise connected W in Y such that y0 ∈ W and
for every y ∈ W we have:

(74.7.3) Fix(fy) ∩ ∂V = ∅.

Let y ∈ W and let δ: [0, 1] → W be an arc joining y0 with y, i.e. δ(0) = y0 and
δ(1) = y. We define a homotopy h: [0, 1]× V → X by putting h(t, x) = (δ(t), x).
Then it follows from (74.7.3) that h is a well defined homotopy joining fy0 with fy

and hence we obtain i(fy0 , V ) = i(fy, V ) �= 0; so Fix(fy)∩V �= ∅ and our assertion
follows from (74.2). �

Observe that the condition (74.6) is quite restrictive. Therefore, it is interesting
to characterize the topological structure of all mappings satisfying (74.6). We shall
do this in the case when Y = A is a closed subset of Rn and X = Rn.

By C(A×Rn, Rn) we shall denote the Banach space of all compact (singlevalued)
maps from A ×Rn into Rn with the usual supremum norm. Let

Q = {f ∈ C(A×Rn, Rn) | f satisfies (74.6)}.

Let us formulate the following well known result from functional analysis (see
[BiG]):

(74.8) Theorem. The set Q is dense in C(A×Rn, Rn).

Let us remark that all of the above results remain true for X being an arbitrary
ANR-space (see [BiG]).

Now, we shall apply the above results.
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(74.9) Ordinary differential equations of first order. According to the
above considerations we let Y = [0, 1] × Rn, X = Rn, and let f : Y × X → X

be a compact map. Then f satisfies condition (74.4) automatically so we shall
assume only (74.6). Let us consider the following equation:

(74.9.1) x′(t) = f(t, x(t), x′(t)),

where the solution is understood in the sense of almost everywhere, t ∈ [0, 1] (a.e.
t ∈ [0, 1]).

We shall associate with (74.9.1) the following two differential inclusions:

x′(t) ∈ ϕf(t, x(t)),(74.9.2)

x′(t) ∈ ψf(t, x(t)),(74.9.3)

where ϕf and ψf are defined as before, and by a solution of (74.9.2) or (74.9.3)
we mean an absolutely continuous function which satisfies (74.9.2) (resp. (74.9.3))
in the sense of a.e. t ∈ [0, 1].

Denote by S(f), S(ϕf ) and S(ψf ) the set of all solutions of (74.9.1)–(74.9.3),
respectively. Then we obtain S(ψf ) ⊂ S(f) = S(ϕf ). But the map ψf is l.s.c. so
we obtain S(ψf ) �= ∅. Thus we have proved: ∅ �= S(ψf ) ⊂ S(ϕf ) = S(f). Observe
that in (74.9.2) and (74.9.3) the right hand side does not depend on the derivative.

(74.10) Ordinary differential equations of higher order. Let Y = [0, 1]×
Rkn, X = Rn, and let f : Y ×X → X be a compact map. To study the existence
problem for the following equation:

x(k)(t) = f(t, x(t), . . . , x(k)(t))

we consider the following two differential inclusions

x(k)(t) ∈ ϕf (t, x(t), x′(t), . . . , x(k−1)(t)),

x(k)(t) ∈ ψf(t, x(t), x′(t), . . . , x(k−1)(t)).

(74.11) Hyperbolic equations. Now let Y = [0, 1]× [0, 1]× R3n, X = Rn,
and let f : Y × X → X be a compact map. Consider the following hyperbolic
equation:

(74.11.1) uts(t, s) = f(t, s, u(t, s), ut(t, s), us(t, s), uts(t, s)),

where the solution u: [0, 1]× [0, 1]→ Rn is understood in the sense of a.e. (t, s) ∈
[0, 1]× [0, 1].

As above, we associate with (74.11.1) the following two differential inclusions:

uts(t, s) ∈ ϕf (t, s, u(t, s), ut(t, s), us(t, s)),(74.11.2)

uts(t, s) ∈ ψf (t, s, u(t, s), ut(t, s), us(t, s)).(74.11.3)

Then it is evident that the set of all solutions of (74.11.1) is equal to the set of all
solutions of (74.11.2) and every solution of (74.11.3) is a solution of (74.11.2). So,
the inclusions (74.11.2) and (74.11.3) give us a full information about (74.11.1).
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(74.12) Elliptic differential equations. Let Kn
r denote the closed ball in Rn

with center at 0 and radius r. Now we put Y = Kn
r × R2n, X = Rn, and let

f : Y ×X → X be a compact map. Since (74.4) is satisfied we assume only (74.6).
We consider the following elliptic equation:

∆(u)(z) = f(z, u(z), D(u)(z), ∆(u)(z)), a.e. z ∈ Kn
r ,

where ∆ denotes the Laplace operator and D(u)(z) = uz1(z) + . . . + uzn(z), z =
(z1, . . . , zn). Then we consider the following two differential inclusions:

∆(u)(z) ∈ ϕf (z, u(z), D(u)(z)),(74.12.1)

∆(u)(z) ∈ ψf (z, u(z), D(u)(z)),(74.12.2)

and we have exactly the same situation as in (74.11) or (74.10).

We shall end our applications with the following remarks.

(74.13) Remark. Observe that all results of this section, except (74.12), re-
main true if we replace the Euclidean space Rn by an arbitrary Banach space.

(74.14) Remark. Let us observe that if we replace (74.9)–(74.12) by the re-
spective differential inclusions, then we obtain all results of this section without
any change.

(74.15) Remark. Finally, let us remark that some another method for implicit
differential equations was considered by B. Ricceri in [Ri3].

75. Concluding remarks and comments

Chapter I. For further studies connected with the material of this chapter see:
[BPe-M], [Bo-M], [Br1-M], [De4-M], [Do-M], [ES-M], [Go1-M], [Gr1-M], [Gr2-M],
[Gr3-M], [HW-M], [Sp-M].

Chapter II. This chapter contains some new results presented in Section 21.
The main result is Theorem (21.15) where a topological characterization of the set
of fixed points for some contraction mappings is presented. The mentioned result
was proved in [GMS] (see also [GM]) as a generalization of an earlier results proved
by B. Ricceri ([Ri1]) for mappings with convex values and, later, by A. Bressan,
A. Cellina and A. Fryszkowski ([BCF]) for mappings with decomposable values.

For more details concerning the material of this chapter we recommend: [APNZ-
M], [Au-C], [AuE-M], [Be-M], [BrGMO1-M], [CV-M], [Ki-M], [LR-M].

Chapter III. The approximation (on the graph) method for multivalued maps
were initiated by J. Von Neumann in 1933. Then this method was developed
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by many authors (see: [ACZ1], [ACZ2], [ACZ3], [ACZ4], [Bee1], [Bee4], [CL1],
[GGK1], [GGK2], [GGK3], [GL], [HC]).

Note, that recently W. Kryszewski obtained some important new results in this
direction. For details we recommend [Kr1-M] and [Kr2-M].

Chapter IV. Homological methods in the fixed point theory of multivalued
maps was initiated in 1946 by S. Eilenberg and D. Montgomery (cf. [EM]) where
the Lefschetz Fixed Point Theorem for acyclic mappings was proved. Later, the
Lefschetz Fixed Point Theorem, the Fixed Point Index, and the Topological Degree
Theory for several classes of multivalued mappings were studied by many authors.
Below we recommend more essential works in this area: [BgGMO-M], [Cu-M], [Da-
M], [Dz1-M], [Go1-M], [Go4-M], [LR-M], [Ma-M], [We-M], [Bi2], [Bou1], [Bou2],
[Bry], [BG-2], [Bg-3], [Cal1], [FG1], [Go2]–[Go12], [GGr1], [GGr2], [GR], [Ja1]–
[Ja4], [JP], [Kr1], [Kr2], [Ne1], [Pa], [Po1]–[Po3], [SS1].

There are some other classes of multivalued mappings for which the fixed point
theory was studied. Let us mention the so called multivalued mappings with
multiplicity, defined by S. Darbo in 1958 ([Da]).

Let ϕ: X � Y be a multivalued map with compact (nonempty) values. Two
points (x1, y1), (x2, y2) ∈ Γϕ are equivalent ((x1, y1) ∼ (x2, y2)) if and only if
x1 = x2 and y1, y2 are in the same connected component of ϕ(x1) = ϕ(x2). This
defines a new set Γ̃ϕ = Γϕ|∼ with elements denoted by (x, C(x)); C(x) denotes
also a connected component of ϕ(x) as a subset of Y .

In what follows, a map m: Γ̃ϕ → Q is called the multiplicity function for ϕ.
Note that in the above definition Q can be replaced by an arbitrary ring without
zero divisors.

Let ϕ: X � Y be a multivalued map with multiplicity-function m: Γ̃ϕ → Q; ϕ

is an m-map (map with multiplicity) if the following two conditions are satisfied:

(i) ϕ(x) consists of finitely many connected components for each x ∈ X;
(ii) for all x0 ∈ X with ϕ(x0) = C1(x0)∪ . . .∪Cs(x0), s = s(x0), and disjoint

open neighbourhoods Ui of Ci(x0) in Y there exists a neighbourhood U of
x0 such that:

ϕ(U) ⊂
s⋃

i=1

Ui

and, for all x ∈ U , i = 1, . . . , s,

m(x0, Ci(x0)) =
∑

C(x)⊂Ui

m(x, C(x)).

In [HaS] it is showed that using the chain approximation technique the fixed
point index theory for mappings with multiplicity is possible to develop. Note that
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mappings with multiplicity are defined using algebraic or combinatorial approach
instead of geometrical approach presented by us in Chapter IV. This is the reason
why we did not consider the class of mappings with multiplicity in Chapter IV.
We shall present details concerning the above notion in Chapter VII.

Finally, note that the class of small multivalued mappings was considered by
H. Schirmer (cf. [Sch1]–[Sch3]).

The last two chapters of our monograph are devoted to applications of the
material in the main two Chapters (III and IV).

Chapter V. In Chapter V we concentrate mainly on consequences of the Lef-
schetz Fixed Point Theorem and the fixed point index (Sections 55–60).

Some results concerning minimax theorem and consequently applications to
mathematical economy are presented in Sections 65–66 (for further results see:
[AuE-M], [BK1], [BK2], [Bor-M], [CV-M], [DG-M], [Wie-M], [GrL1], [GrL2], [GF],
[Mcc1], [Las]).

In Chapter V we discuss also the bifurcation problem for multivalued mappings
(see Section 63). A nontypical application of the Borsuk theorem on antipodes
for convex valued mappings is presented in Section 68, where the so called Day’s
result is presented.

Chapter VI. The last chapter is devoted to the topological approach to differ-
ential inclusions. We discuss the Cauchy problem both for differential inclusions
with u.s.c. and l.s.c. right hand sides. Then the Aronszajn type of results are
presented. We study also the periodic problem and implicit differential inclu-
sions. Chapter VI is based on [Go2-M] but we recommend also a very rich liter-
ature on this subject, namely: [Au-M], [AuC-M], [De1-M], [Fi1-M], [Fi2-M], [Fr-
M], [Go3-M], [Go4-M], [GGL-M], [Ki-M], [LR-M], [Pr-M], [To-M], [And1]–[And5],
[AGG], [AGJ], [AGL], [AZ1], [AZ2], [Au2], [BaP], [BaF], [BiGP], [Bl1], [Bl2],
[BM1]–[BM7], [BP1]–[BP7], [Bog1]–[Bog3], [Bre1]–[Bre7], [BCF], [BC1], [BC2],
[Ce2], [Ce3], [CC1], [CC2], [CCF], [COZ], [Dar], [De1], [DyG], [Fi1]–[Fi4], [Fry4],
[GaP2], [GN], [GNZ1], [Had1]–[Had3], [HP], [Hu], [KNOZ], [Ko], [KaPa], [La],
[LO2], [MNZ1]–[MNZ3], [Ma1]–[Ma3], [Ni], [NoZ1], [NoZ2], [Ob1]–[Ob3], [Pap1]–
[Pap7], [Pl1], [Pl2], [To1], [Za].



CHAPTER VII

RECENT RESULTS

During last five years several new important results in the topological fixed
point theory of multivalued mappings were obtained. The aim of this chapter is
to survey the above mentioned results together with their historical development
and motivation.

76. Periodic invariants; the Euler–Poincaré characteristic

Let L: E → E be a Leray endomorphism. Using notations of the Section 11, we
define the Euler–Poincaré characteristic χ(L) of L by putting:

(76.1) χ(L) =
∑

n

(−1)n dim(Ẽn).

We start with the following lemma:

(76.2) Lemma. Let L: E → E be an endomorphism and let

Lm = L ◦ . . . ◦ L︸ ︷︷ ︸
m-times

be its mth iterate, i.e. Lm = {Lm
n }n∈N, for every n ∈ N. Then L is a Leray

endomorphism if and only if Lm is a Leray endomorphism, for m = 1, 2, . . . and

χ(L) = χ(Lm), m ≥ 1.

Proof. It is sufficient to observe that for every m = 1, 2, . . . and for every
n ∈ N we have N(Ln) = N(Lm

n ). �

Starting from now until the end of this section we shall assume that K is the
field of complex numbers.

(76.3) Lemma. Let L: E → E be an endomorphism of a finite dimensional
space and let λj , 1 ≤ j ≤ dim E be roots of the characteristic polynomial of L.
Then

tr(Lm) =
∑

j

(−λj)m, m = 1, 2, . . .
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Proof. We can represent L as a triangular matrix with roots λ1, . . . , λs, s =
dim E, on the main diagonal. Then for the mth iteration Lm of L the matrix is
also triangular (keeping the same basis) and on the main diagonal, we get mth
powers (λ1)m, . . . , (λs)m of λ1, . . . , λs, respectively. It proves our lemma. �

Now, let L = {Ln}: E → E be a Leray endomorphism in GV . For such a L, we
are able to assign the power series S(L) in K by letting:

(76.4) S(L)(z) = Λ(L) +
∞∑

m=1

Λ(Lm) · zm =
∞∑

m=0

Λ(Lm) · zm, where L0 = idE .

(76.5) Theorem. Let L = {Ln}: E → E be a Leray endomorphism. Let Wn be
the characteristic polynomial of L̃n: Ẽn → Ẽn with roots λn,j �= 0, 1 ≤ j ≤ dim Ẽn,
let W (λ) =

∏
n(−1)nWn and T (λ) = (log W (λ))′ = W ′(λ)/W (λ). Then, for

0 < |z| < min |λn,j|−1 = r, we get

S(L)(z) =
∑
n,j

(−1)n

1− λn,j
=

1
z

T

(
1
z

)
.

Proof. By using (76.3), for |z| < r, we get

S(L)(z) =
∞∑

m=0

λ(L̃m) · zm =
∞∑

m=0

∑
i

(−1)itr(L̃m
i )

=
∞∑

m=0

∑
i,j

(−1)iλm
i,jzm =

∑
i,j

(−1)i

1− λi,jz
.

So taking the logarithmic derivative for λ > r − 1, we get

T (λ) =
∑
i,j

(−1)i (−1)i

z − λi,j

and consequently, we have∑
i,j

(−1)i

1− λi,jz
=
∑
i,j

1
z

(−1)i

z−1 − λi,j
=

1
z
· T

(
1
z

)
,

for 0 < |z| < r. The proof is completed. �
It implies that S(L) can be represented in a unique form as a factor of two

polynomials W1, W2, i.e. S(L) = W1/W2 such that:

(W1, W2) = 1, deg W1 < deg W2.

This allows us to define the natural number P (L) of L by putting

(76.6) P (L) =

{
deg W2 if S(f) �= 0,

0 if S(f) = 0.

Below we shall summarize the properties of the above considered invariants Λ,
χ, P , S.
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(76.7) Properties.

(76.7.1) There exists a natural number m such that Λ(Lm) �= 0 if and only if
P (L) �= 0.

(76.7.2) if χ(L) �= 0 then P (L) �= 0.

(76.7.3) If P (L) �= 0, then for every natural number l there is a natural number m

such that l ≤ m ≤ l + P (L) and Λ(Lm) �= 0.

(76.7.4) Let L: E → E and L′: E′ → E′ be two Leray endomorphisms. If there
exists a natural number l such that Λ(Lm) = Λ((L′)m), for every natural
number l ≤ m < l + P (L) + P (L′), then Λ(Lk) = Λ((L′)k), for all
natural k and χ(L) = χ(L′).

The proof of (76.7) is straightforward. For details concerning Sections 1–3 we
recommend [Bow1]–[Bow3] and [Gr1], [Gr2].

Now, we shall apply the above notions to multivalued mappings. It is possible
to do it in terms of admissible mappings or morphisms. It is more convenient to
consider the case of morphisms (see Sections 44–48).

Let ϕ: X → X be a CAC morphism. In spite of the Lefschetz number Λ(ϕ), we
can define:

Λ(ϕ) = Λ(ϕ∗), S(ϕ) = S(ϕ∗), P (ϕ) = P (ϕ∗).

Now, Lemma (76.2) can be formulated in the following form:

(76.8) Proposition. A morphism ϕ: X → X is a Lefschetz morphism if and
only if any iterate ϕn of ϕ is a Lefschetz morphism and in such a case we have
Λ(ϕ) = Λ(ϕn).

Recall that a morphism ϕ: X → X is called a Lefschetz morphism provided
ϕ∗: H(X)→ H(X) is a Leray endomorphism.

From (76.7) we infer:

(76.9) Proposition. Let ϕ: X → X be a morphism. We have:

(76.9.1) Λ(ϕ) �= 0 implies P (ϕ) �= 0,

(76.9.2) P (ϕ) �= 0 if and only if Λ(ϕn) �= 0 for some n ≥ 1,

(76.9.3) P (ϕ) = k �= 0, then for any natural m ≥ 0 at least one of the coefficients
Λ(ϕm+1), . . . , Λ(ϕm+k) of the series S(ϕ) must be different from zero,
m ≥ 0.

Let ϕ: X → X be a morphism. A point x ∈ X is called periodic for ϕ with
period n provided x ∈ ϕn(x), n ≥ 1. Observe that any fixed point of ϕ is periodic
with period n, for arbitrary n ≥ 1.
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(76.10) Theorem (Periodic Point Theorem). Let X ∈ ANR and ϕ: X → X

be a CAC-morphism. If λ(ϕ) �= 0 or P (ϕ) �= 0, then ϕ has a periodic point with
period n, where m+1 ≤ n ≤ m+P (ϕ) and m ≥ 0 is an arbitrary natural number.

Proof. It follows from Theorem (48.12) that ϕ is a Lefschetz morphism. In
view of Proposition (76.9.1) it is sufficient to assume that P (ϕ) �= 0. Applying
(76.9.3), for any m ≥ 0 we get n such that Λ(ϕn) �= 0, where m+1 ≤ n ≤ m+P (ϕ).
Since composition of CAC morphisms is CAC again, we deduce from Theorem
(48.12) that Fix(ϕn) �= ∅.

Of course, if x ∈ Fix(ϕn), then x is periodic point of ϕ with period n. Hence
the proof is complete. �

(76.11) Remark. It can be easily checked that Λ(ϕ) and P (ϕ) are homotopic
invariants.

77. The coincidence Nielsen number

In Section 35 we discussed the Nielsen number theory for multivalued mappings
so called m-mappings. In 2000–2005 years the problem of developing Nielsen
theory for multivalued mappings was taken up by several authors see: [AnGo-M],
[AGJ-1]–[AGJ-4]. Note that in [AnGo-M] nonmetric case is considered. In this
section we shall study the Nielsen theory for morphisms of ANR-s. As we observed
in Section 44 a morphism ϕ: X → X is an abstract class of a pair (p, q), where

X
p⇐= Γ

q−→ X.

In what follows by a multivalued map we shall understand a morphism represented
by a fixed pair (p, q) of the above form.

As first, we give an example which demonstrates that the multivalued setting
is not a direct extension of the singlevalued one.

As in the last two sections, by a multivalued map we shall understand an ad-
missible map represented by a fixed pair (p, q) of the form

X
p⇐= Γ

q−→ Y.

For the clarity of our explanation, we shall present below some necessary well-
known notions.

At first, we give an example which demonstrates that the multivalued setting
is not a direct extension of the single-valued one.

(77.1) Example. Let us consider the unit circle S1 = R/Z with the corre-
spondence

R/Z � [t]↔ e2πti ∈ S1,



77. THE COINCIDENCE NIELSEN NUMBER 389

define a family of maps pε: S1 → S1, 0 < ε ≤ 1/2,

pε[t] =


[t/2ε] for 0 ≤ t ≤ ε,

[1/2] for ε ≤ t ≤ 1− ε,

[(1− t)/2ε + 1] for 1− ε ≤ t ≤ 1,

and put q[t] = [kt], for a fixed k ∈ Z.
Let us note that p−1

ε [y] is one point, for [y] �= [1/2], while p−1
ε [1/2] = {[t] |

ε ≤ t ≤ 1 − ε} is an arc. Thus, any counter image is contractible. Let us fix
a number ε0 satisfying 0 < ε0 ≤ 1/2k. Then {(pε, q)}, where ε runs through the
interval [ε0, 1/2], is a homotopy between the multivalued maps (p1/2, q) and (pε, q).
But since we can observe that p1/2 = idS1 , (p1/2, q) corresponds to the single-
valued map q[t] = [kt]. It is known (see e.g. [KTs-M]) that the Nielsen number
N(q) = |k− 1|, by which we know that any single-valued map homotopic to q has
at least |k − 1| fixed points. On the other hand, we will show that [x] ∈ qp−1

ε0
[x]

only for [x] = [0] or [x] = [1/2]. (In fact, for 0 < x < 1/2, p−1
ε [x] = [2ε0x], so

qp−1
ε0

[x] = [2kε0x], but the assumption 0 < 2kε0 < 1 implies 0 < 2kε0x < x < 1/2
which gives [2kε0x] �= [x]). If 1/2 < x < 1, then

p−1
ε0

[x] = [1− 2ε0(1− x)],

so

qp−1
ε0

[x] = [k − 2kε0(1− x)] = [1− 2kε0(1 − x)].

It follows from the assumption 0 < 2kε0 < 1 that 0 < 1 − 2kε0(1 − x) < 1, and
subsequently [x] = [1 − 2kε0(1− x)] if and only if x = 1 − 2kε0(1 − x). The last
equality, however, yields 2kε0(1 − x) = 1 − x, i.e. 2kε0 = 1, after dividing by
x− 1 �= 0, which contradicts the assumption 0 < 2kε0 < 1.

Thus, a multivalued homotopy of a single-valued map with the Nielsen number
N(q) = |k − 1| gives the fixed point set

Fix(p, q) = {x ∈ X | x ∈ qp−1(x)}

consisting of only two elements!

The above example seems to suggest that the Nielsen fixed point theory fails
to be extended to the multivalued case. On the other hand, we can observe
that, in this example, the restriction q: p−1

ε0
[1/2] → S1 covers the point [1/2]k-

times. This observation encourages us to estimate the number of coincidences
C(p, q) = {z ∈ Γ | p(z) = q(z)} of the pair (p, q) rather than the number of fixed
points Fix(qp−1) of the map qp−1.
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Let X
p0⇐= Γ

q0−→ Y and X
p1⇐= Γ

q1−→ Y be two maps. We say that (p0, q0) is
homotopic to (p1, q1) (written (p0, q0) ∼ (p1, q1)) if there exists a multivalued map
X × I

p←− Γ
q−→ Y such that the following diagram is commutative:

X

ki

��

�� pi

Γ

fi

��

qi �� Y

X × I ��
p Γ

q

���
�

�
�

for ki(x) = (x, i), i = 0, 1, and for some fi: Γ → Γ, i = 0, 1, i.e. k0p0 = pf0,
q0 = qf0, k1p1 = pf1 and q1 = qf1.

If (p0, q0) ∼ (p1, q1) and h: Y → Z is a continuous map, then we write (p0, hq0) ∼
(p, hq). We say that a multivalued map X

p⇐= Γ
q−→ Y represents a single-valued

map ρ: X → Y if q = pρ. Now, we assume that X = Y and we are going
to estimate the cardinality of the coincidence set C(p, q). We begin by defining
a Nielsen-type relation on C(p, q). This definition requires the following conditions
on X

p⇐= Γ
q−→ Y :

(77.2) X and Y are metric connected and locally contractible spaces (observe that
then they admit universal coverings; moreover, connected ANRs satisfied
this assumption),

(77.3) p: Γ⇒ X is a Vietoris map,
(77.4) for any x ∈ X, the restriction q1 = q|p−1(x): p−1(x)→ Y admits a lift q̃1 to

the universal covering space (pY : Ỹ → Y ):

Ỹ

pY

��
p−1(x)

q̃1

  �
�

�
�

�

q1
�� Y

Consider a single-valued map ρ: X → Y between two spaces admitting universal
coverings pX : X̃ ⇒ X and pY : X̃ ⇒ Y . Let θX = {α: X̃ → X̃ | pXα = pX} be
the group of natural transformations of the covering pX . Then the map ρ admits
a lift ρ̃: X̃ → Ỹ . We can define a homomorphism ρ̃!: θX → θY by the equality

q̃(α · x̃) = q̃!(α)q̃(x̃) (α ∈ θX , x̃ ∈ X̃).

It is well-known (see for example [Sp-M]) that there is an isomorphism between
the fundamental group π1(X) and θX which may be described as follows. We
fix points x0 ∈ X, x̃ ∈ X̃ and a loop ω: I → X based at x0. Let ω̃ denote
the unique lift of ω starting from x̃0. We subordinate to [ω] ∈ π1(X, x0) the
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unique transformation from θX sending ω̃(0) to ω̃(1). Then the homomorphism
ρ̃!: θX → θY corresponds to the induced homomorphism between the fundamental
groups ρ#: π1(X, x0)→ π1(Y, ρ(x0)).

We will show that, under the assumptions (77.2)–(77.4), a multivalued map
(p, q) admits a lift to a multivalued map between the universal coverings. These
lifts will split the coincidence set C(p, q) into Nielsen classes. Besides that, we
will also show that the pair (p, q) induces a homomorphism θX → θY giving the
Reidemeister set in this situation.

We start with the following lemma.

(77.5) Lemma. Suppose we are given Y , a paracompact locally contractible
space, Γ a topological space, Γ0 ⊂ Γ a compact subspace, q: Γ → Y , q̃0: Γ0 → Y

continuous maps for which the diagram

Γ0

i

��

q̃0 �� Ỹ

pY

��

Γ q
�� Y

commutes (here, pY : Ỹ → Y denotes the universal covering). In other words, q̃0 is
a partial lift of q. Then q̃0 admits an extension to a lift onto an open neighbourhood
of Γ0 in Γ.

Proof. Let us fix a covering {Wi} of the space Y consisting of open connected
sets satisfying: if cl Wi∩ cl Ej �= ∅, then cl Wi∪ cl Wj is contained in a contractible
subset of Y .

Let {Wj} denote the covering consisting of connected components of the cov-
ering {p−1

Y W̃i}. We notice that the restriction of pY to any of sets W̃j is a home-
omorphism.

Let {Ui} be a finite covering of Γ0 such that {cl Ui} is subcovering of {q̃−1
0 W̃i}.

For any Ui, we fix an open subset Vi ⊂ Γ satisfying Vi ∩ Γ0 = Ui.
We can assume that cl Vi is disjoint with

⋃
{cl Uj | cl Uj∩cl Ui = ∅} (notice that

the sets cl Ui and Fi =
⋃
{cl Uj | cl Uj ∩ cl Ui = ∅} are disjoint and closed. Hence,

there exists an open subset S ⊂ Γ satisfying cl Ui ⊂ S ⊂ cl S ⊂ Γ \ Fi, and so we
can put Vi := Vi ∩ S).

Let V ′
i = Vi −

⋃
{cl Uj | cl Uj ∩ cl Ui = ∅}. Then

(77.5.1) V ′
i = Vi ∩ Γ0 = Ui,

(77.5.2) if V ′
i ∩ Vi �= ∅, then cl Ui ∩ cl Uj �= ∅.

For any V ′
i , we fix W̃α(i) satisfying q̃0(cl Ui) ⊂ W̃α(i) and we put V ′′

i = V ′
i ∩

q−1(W̃α(i)). The covering {V ′
i } also satisfies the above conditions (77.5.1) and
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(77.5.2). For any i, we denote by ϕi: W̃α(i) → W̃α the homomorphism inverse to
the projection PY .

Now, we can define an extension of the lift q̃0 onto the neighbourhood
⋃

V ′
i .

We define the map q̃i: V ′′
i → Ỹ by the formula q̃i = ϕq(x) ∈ W̃α(i) ⊂ Ỹ .

It remains to show that the maps q̃i and q̃j are consistent. Let V ′′
i ∩ V ′′

j �= ∅.
Then there is a point x ∈ cl Ui ∩ cl Uj which implies q̃0(x) ∈ W̃α(i) ∩ W̃α(j). Let
S ⊂ Y be a contractible set containing πY W̃α(i)∪W̃α(j) and let S̃ be the component

of p−1
Y (S) containing Q̃0(x). Then W̃α(i) ∪ W̃α(j) ⊂ S̃, and so the values of the

sections q̃i, q̃j are contained in S̃ which implies that they must be consistent. �

(77.6) Lemma. Suppose we are given a multivalued map X
p⇐= Γ

q−→ Y sat-
isfying (77.2), where X is simply-connected. Then there exists a map q̃: Γ → Ỹ

making the diagram

Ỹ

pY

��

Γ

q̃
���

�
�

�
q

�� Y

commutative.

Proof. Case 1. Let X = [0, 1]. Then Γ is compact. Let us fix t0 ∈ [0, 1].
By Lemma (77.5), there exists an open set U , Γt0 = p−1(t0) ⊂ U ⊂ Γ and a lift
q̃: U → Ṽ . Since Γ is compact, there exists ε ≥ 0 satisfying p−1[t0− ε, t0 + ε] ⊂ U .
Thus, for any to t0 ∈ [0, 1], any lift q̃: Γt0 → Ỹ extends onto p−1[t0 − ε, t0 + ε], for
an ε > 0. Now, if we fix a sufficiently fine division 0 = t0 < t1 < . . . < tn = 1,
then we can extend any lift from Γ0 onto p−1[t0, t1], and subsequently onto the
whole Γ = p−1[0, 1].

Case 2. X = [0, 1]. The proof is similar.

Case 3. X is an arbitrary simply-connected space satisfying (77.2). Fix a point
x0 ∈ X and a lift q̃x0: Γx0 → Ỹ . Let x1 ∈ X be another point. We choose a path
ω: I → X satisfying ω(i) = χi, for i = 0, 1. Now, we can apply Case 1 to the
induced fibering ω∗ = {(z, t) ∈ Γ× I | p(z) = ω(t)} and the obtained lift ω: Γ→ Ỹ

defines, for t = 1, a lift on Γx1 = ω∗
x1

= {(z, t) ∈ ω∗ | t = 1}. If we take another
path ω′ from x0 to x1, then there is a homotopy H: I × I → Y joining these two
paths, because Y is simply-connected. Now, (b) shows that both obtained lifts
coincide. �

Consider again a multivalued map X
p←− Γ

q−→ Y satisfying (77.2). Define

Γ̃ = {(x̃, z) ∈ X̃ × Γ | pX(x̃) = p(z)}
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(a pullback). This gives the diagram

X̃

pX

��

Γ̃
p̃

��

pΓ

��

q̃
��
Ỹ

pY

��

X Γp
��

q
�� Y

where p̃(x̃, z) = x̃ and pΓ(x̃, z) = z. Notice that the restrictions of p̃ are homeo-
morphic on fibres.

Now, we can apply Lemma (77.5) to the multivalued map X̃
p̃⇐= Γ̃

qpΓ−→ Y , and
so we get a lift q̃: Γ̃→ Ỹ such that the diagram

X̃

pX

��

�� p̃

Γ̃

pΓ

��

q̃
�� Ỹ

pY

��

X ��
p Γ q

�� Y

is commutative. Let us note that the lift p̃ is given by the above formula, but q̃ is
not precise. We fix such a q̃.

Observe that p: Γ ⇒ X and the lift p̃ induce a homomorphism p̃ !: θX → θΓ

by the formula p̃ !(α)(x̃, z) = (αx̃, z). It is easy to check that the homomorphism
p̃ ! is an isomorphism (any natural transformation of Γ̃ is of the form α · (x̃, z) =
(αx̃, z)) and that p̃ ! is inverse to p̃!. Recall that the lift q̃ defines a homomorphism
q̃!: θΓ → θY by the equality q̃(λ) = q̃!(λ)q̃.

In the sequel, we will consider the composition q̃!p̃
!: θX → θY .

(77.7) Lemma. Let a multivalued map (p, q) satisfying (77.2) represent a sin-
gle-valued map ρ, i.e. q = ρp. Let ρ̃ be the lift of ρ which satisfies q̃ = ρ̃p̃. Then
ρ̃!p̃

! = ρ!.

Proof. ρ̃!p̃
! = (ρ̃p̃)!p̃

! = ρ̃!p̃!p̃
! = ρ!. �

Now, we are in a position to define the Nielsen classes. Consider a multivalued
self-map X

p⇐= Γ
q−→ X satisfying (77.2). By the above consideration, we have

a commutative diagram

Γ̃

pΓ

��

p̃,q̃
�� X̃

pX

��

Γ p,q
�� X

Following the single-valued case (see [BJ-M]), we can prove
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(77.8) Lemma.

(77.8.1) C(p, q) =
⋃

α∈θX
pΓC(p̃, αq̃),

(77.8.2) if pΓC(p̃, αq̃) ∩ pΓC(p̃, βq̃) is not empty, then there exists a γ ∈ θX such
that β = γ ◦ α ◦ (q̃!p̃

!γ)−1,
(77.8.3) the sets pΓC(p̃, αq̃) are either disjoint or equal.

Proof. (77.8.1) Let p(z) = q(z) and z̃ ∈ p−1
Γ (z). Then p̃(z̃), q̃(̃(z))∈p−1

X (p(z)).
Thus, there exists α ∈ θX such that p̃(z̃) = αq̃(z̃), which implies z̃ ∈ C(p̃, αq̃).

(77.8.2) Let z ∈ pΓC(p̃, αq̃)∩pΓC(p̃, βq̃). Then there exist, x̃, x̃′ ∈ X̃ such that
(x̃, z) ∈ C(x̃, αq̃), (x̃′, z) ∈ C(x̃, βq̃) and x̃ = αq̃(x̃, z), x̃′ = βq̃(x̃′, z). On the other
hand, p̃X x̃′ = pz implies x̃′ = γx̃, for a γ ∈ θX . Thus,

γx̃ = x̃′ = βq̃(x̃′, z) = βq̃(γx̃, z) = β(q̃!p̃
!γ)q̃(x̃, z) = β(q̃!p

!γ)α−1(x̃),

which implies γ = β(q̃!p
!γ)α−1 and β = γα(q̃!p!γ)−1.

(77.8.3) It remains to prove that pΓC(p̃, αq̃) = pΓC(p̃, γα(q̃!p̃
!γ)−1 q̃). Let

(x̃, z) ∈ C(p̃, γα(q̃!p
!γ)−1q̃). Then x̃ = γαq̃!(p̃ !γ)−1)q̃(x̃, z), x̃ = γαq̃(γ−1x̃, z).

Hence, γ−1x̃ = αq̃(γ−1x̃, z) and p̃(γ−1x̃, z) = αq̃(γ−1x̃, z). Thus, p!(γ−1) · (x̃, z) =
(γ−1x̃, z) ∈ C(p̃, αq̃), which implies p̃Γ(x̃, z) = p̃Γ(p !(γ)(x̃, z)) ∈ pΓC(x̃, αq̃). �

Define an action of θX on itself by the formula γ ◦α = γα(q̃!p
!γ). The quotient

set will be called the set of Reidemeister classes and will be denoted by R(p, q).
The above lemma defines an injection

Set of Nielsen classes→ R(p, q),

given by A→ [α] ∈ R(p, q), where α ∈ θX satisfies A = pΓ(C(p̃, αq̃)).
Now, we are going to prove that our definition does not depend on q̃.
Let us recall that the homomorphism q̃!: θΓ → θY is defined by the relation

q̃α = q̃!(α)q̃, for α ∈ θΓ. If q̃′ = γq̃ is another lift of q (γ̃ ∈ θΓ), then the induced
homomorphism q̃′

! : θΓ → θY is defined by the relation q̃′α = q̃′
!(α)q̃′.

(77.9) Lemma. If q̃′ = γ · q̃ is another lift of q, then γ · q̃′
!(α) ·γ−1 = q̃′

!(α), for
all α ∈ θΓ.

Proof. The equalities q̃′ = γ · q̃ and q̃′(αũ) = q̃′
!(α)q̃′(ũ) imply γ · q̃(αũ) =

q̃′
!(α) · γ · q̃(ũ), by which γ · q̃!(α) · q̃(ũ) = q̃′

!(α) · γ · q̃′(ũ). Thus, γ · q̃!(α) = q̃′
!(α) · γ

and finally q̃′
!(α) · q̃(ũ) = γ · q̃!(α) · γ−1. �

(77.10) Theorem. Let us fix two lifts q̃ and q̃′. Let γ ∈ θX denote the unique
transformation satisfying q̃ = γ · q̃′. Then α, β ∈ θX are in the Reidemeister
relation with respect to q̃ if and only if so are α · γ−1, β · γ−1 with respect to q̃′.
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Proof. Suppose that β = δ ·α · q̃!p̃
!(δ−1). Then β ·γ−1 = δ ·α · q̃!p̃

!(δ−1)γ−1 =
δ ·α ·γ−1(γ · q̃!p̃

!(δ−1)γ−1) = δ(α ·γ−1)q̃!p̃
!(δ−1)γ−1)δ ·α ·γ−1 ·γ · q̃!p̃

!(δ−1). Then

δ · α · γ−1 · γ · q̃!p̃
!(δ−1) = δ(α · γ−1)q̃′

! p̃
!(δ−1). �

The above consideration shows that the Reidemeister sets obtained by different
lifts of q are canonically isomorphic. That is why we write R(p, q) omitting tildes.

(77.11) Theorem. If X × I p←− Γ
q−→ Y is a homotopy satisfying (77.2)–

(77.4), then the homomorphism q̃t!p̃t
!: θX → θY does not depend on t ∈ [0, 1],

where the lifts used in the definitions of these homomorphisms are restrictions
of some fixed lifts p, q of the given homotopy.

Proof. The commutative diagram of maps

X

iX,t

��

�� pt
Γt

iΓ,t

��

qt �� Y

id
��

X × I ��
p Γ q

�� Y

where iX,t(x) = (x, t), iΓ,t(x̃, z) = (x̃, t, z), induces the commutative diagram
of homomorphisms

θX

p!
t �� θΓt

qt! �� θY

θX×I

(iX,t)!

��

p!
�� θΓ

(iΓ,t)!

��

q!
�� θY

id

��

and it remains to notice that (ix,t) !: θX×I → θX is an isomorphism. �

(77.12) Remark. If (p, q) represents a single-valued map ρ: X → Y (q = ρp),
then q̃!p̃

! equals ρ̃! (here the chosen lifts satisfy q̃ = ρ̃p̃).
Indeed. Let us fix a point (x̃, z) ∈ Γ̃, and α ∈ θX . Then

q̃(αx̃, z) = ρ̃p̃(αx̃, z) = ρ̃(αx̃) = ρ̃!(α)ρ̃(x̃) = ρ̃!(α)ρ̃p̃(x̃, z) = ρ̃!(α)q̃(x̃, z).

On the other hand, q̃(αx̃, z) = q̃(p̃!(α)(x̃, z)) = q̃!p̃!(α) · q̃(x̃, z). Since the natural
transformations ρ̃!(α), q̃!p̃!(α) ∈ θY coincide at the point q̃(x̃, z) ∈ Ỹ , they are
equal.

Below we shall define the Nielsen relation modulo a subgroup.
Let us point out that the above theory can be modified onto the relative case.

Consider again a multivalued pair (p, q) satisfying (77.2)–(77.4). Let H ⊂ θX ,
H ′ ⊂ θY be normal subgroups. Then the action of H on X̃ gives the quotient
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space X̃H and the map pXH : X̃H → X is also a covering. Similarly, we get
pY H′ : Ỹ ′

H → Y . On the other hand, the action of H on Γ̃ given by h◦(x̃, z) = (hx̃, z)
determines the quotient space Γ̃H with the natural map p̃H : Γ̃H → X̃H induced
by p̃. Assume that q̃!p̃

!(H) ⊂ H ′. Observe that this condition does not depend on
the choice of the lifts p̃, q̃, because the subgroups H, H ′ are the normal divisors.
Thus, q̃: Γ̃→ Ỹ induces a map q̃H : Γ̃H → ỸH′ and the diagram

X̃H

pXH

��

�� p̃H

Γ̃H

pΓH

��

q̃H �� ỸH

pY H′

��

X ��
p Γ q

�� Y

commutes. Now, we can get the homomorphisms q̃H!p̃H
!: θXH → θY H′ , where

θXH , θY H′ denote the groups of natural transformations of X̃H and ỸH′ , respec-
tively.

Assuming X = Y and H = H ′. We can give

(77.13) Lemma.

(77.13.1) C(p, q) =
⋃

α∈θXH
pΓHC(p̃H , αq̃H),

(77.13.2) if pΓHC(p̃H , αq̃H)∩pΓHC(p̃H , βq̃H) is not empty, then there exists a γ ∈
θXH such that β = γ ◦ α ◦ (q̃H!p̃H

!γ)−1,
(77.13.3) the sets pΓHC(p̃H , αq̃H) are either disjoint or equal.

Hence, we get the splitting of C(p, q) into the H-Nielsen classes and the natural
injection from the set of H-Nielsen classes into the set of Reidemeister classes
modulo H, namely, RH(p, q).

Now, we would like to exhibit the classes which do not disappear under any
(admissible) homotopy. For this, we need however (besides (77.2)–(77.4)) the
following two assumptions on the pair X

p⇐= Γ
q−→ Y .

(77.14) Let X be a connected retract of an open set in a paracompact locally
convex space, p is a Vietoris map and cl(q(Γ)) ⊂ X is compact, i.e. q is
a compact map.

(77.15) There exists a normal subgroup H ⊂ θX of a finite index satisfying

q̃!p̃
!(H) ⊂ H.

(77.16) Definition. We call a pair (p, q) N -admissible if it satisfies (77.2)–
(77.4), (77.14) and (77.15).

(77.17) Remark. The pairs satisfying (77.14) are called admissible.
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Let us recall that, under the assumption (77.14), the Lefschetz number Λ(p, q) ∈
Q is defined. This is a homotopy invariant (with respect to the homotopies satis-
fying (77.14)) and Λ(p, q) �= 0 implies C(p, q) �= ∅ (comp. Section 6).

The assumption (77.15) gives rise to the commutative diagram

X̃H

pXH

��

�� p̃H

Γ̃H

pΓH

��

q̃H �� ỸH

pY H′

��

X ��
p Γ q

�� Y

where the coverings pXH , pΓH, pY H are finite, because the subgroup H ∈ θXH

has a finite index. Now, we can observe that the pair (p̃H , αq̃H), for any α ∈ θXH ,
also satisfies (77.14) (p̃−1(x̃) = p−1(x), cl(αq̃H(Γ̃H)) ⊂ p−1

XH(cl q(Γ)) and the last
set is compact, because the covering pXH is finite).

Let A = pΓHC(p̃, αq̃) be a Nielsen class of an N -admissible pair (p, q). We say
that (the N -Nielsen class) A is essential if Λ(p̃, αq̃) �= 0. The following lemma
explains that this definition it correct, i.e. does not depend on the choice of α.

(77.18) Lemma. If pΓHC(p̃, αq̃) = pΓHC(p̃, α′q̃) �= ∅, for some α, α′ ∈ θXH ,
then Λ(p̃, αq̃) = Λ(p̃, α′q̃).

Proof. Since α, α′ represent the same element in RH(p, q), there exists γ ∈
θXH such that α′ = γ ◦ α ◦ q̃!p̃

!(γ−1). Thus,

Λ(p̃, α′q̃) = Tr((p̃∗)−1(α′ · q̃)∗) = Tr((p̃∗)−1(γ ◦ α ◦ (q̃!p̃
!(γ−1)) ◦ q̃)∗)

= Tr((p̃∗)−1(γ ◦ α ◦ q̃!(p̃ !(γ−1)))∗)

= Tr((p̃∗)−1((p̃ !(γ−1)))∗ ◦ (αq̃)∗ ◦ γ∗)

= Tr((p̃∗p̃ !(γ))∗)−1 ◦ (αq̃)∗ ◦ γ∗) = Tr((γ̃∗)−1(p̃∗)−1 ◦ (αq̃)∗ ◦ γ∗)

= Tr((p̃∗)−1 ◦ (αq̃)∗) = Λ(p̃, αq̃). �

(77.19) Definition. Let (p, q) be an N -admissible multivalued map (for a sub-
group H ⊂ θX). We define the Nielsen number modulo H as the number of essen-
tial classes in θXH . We denote this number by NH(p, q).

(77.20) Remark. Observe that the above method allows us to define only
essential classes (and the Nielsen number) modulo a subgroup of a finite index in
θX = π1X. The problem how to get similar notions in an arbitrary case we leave
open.

The following theorem is an easy consequence of the homotopy invariance of
the Lefschetz number.
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(77.21) Theorem. NH(p, q) is a homotopy invariant (with respect to N -admis-
sible homotopies) X × [0, 1]

p⇐= Γ
q−→ X. Moreover, (p, q) has at least NH(p, q)

coincidences.

The following theorem shows that the above definition is consistent with the
classical Nielsen number for single-valued maps.

(77.22) Theorem. If an N -admissible map (p, q) is N -admissibly homotopic
to a pair (p′, q′), representing a single-valued map p (i.e. q′ = ρp′), then (p, q) has
at least NH(ρ) coincidences (here H denotes also the subgroup of π1X correspond-
ing to the given H ⊂ θX in (77.4)).

Proof. Consider a covering space p: X̃H → X, corresponding to H. So, ρ

admits a lift ρ̃: X̃H → X̃H and in the diagram

X̃H

pXH

��

Γ̃H

p̃′
��

pΓH

��

q̃′
�� ỸH

pY H′

��

X Γ
p′

��

q′
�� Y

we can put q̃′ = ρ̃p̃′. Thus, a homotopy between (p′, q′) and (p, q) lifts onto the
coverings and we get lifts (p̃, q̃). Since

q̃!p̃
! = (q̃′)!(p̃′) ! = (ρ̃p̃′)!p̃

′ ! = ρ̃,

there is a natural bijection between the Reidemeister sets R(ρ) and R(p, q). It
remains to show that the essential classes correspond to the essential classes in the
both Reidemeister sets. Consider a class [α] ∈ RH(ρ). This class is essential if and
only if the index of pH(Fix(αρ̃)) is non-zero. But ind (αρ̃) = Λ(αρ̃) is a non-zero
multiplicity of ind (pXH(Fix(αρ̃))), i.e. it is also non-zero. Thus,

0 �= Λ(αρ̃) = Λ(p̃′, αρ̃′p̃′) = Λ(p̃′, αq̃′) = Λ(p̃, αq̃),

and [α] ∈ RH(p, q) is also essential. �

Although in the general case the theory, presented in the previous sections,
requires special assumptions on the considered pair (p, q), we shall see that in
the case of multivalued self-maps on a torus it is enough to assume that this pair
satisfies only (77.9), i.e. it is admissible. We will do this by showing that in the case
of any pair satisfying (77.9), it is homotopic to a pair representing a single-valued
map.
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(77.23) Lemma. For any compact space X, if H̃1(X; Q) = 0, then

H̃1(X; Z) = 0.

Proof. Recall that H̃k(X; Q) = lim−→ Hk(N(α); Q), where N(α) denotes the

nerve of a covering α. Since X is compact, we can consider only finite coverings.
So, by the Universal Coefficient Formula (see [Sp-M, Theorem 5.5.10]), the natural
homomorphism

Hk(Xα; Z)⊗Q→ Hk(Xα; Q)

is an injection. Since H̃k(X; Q) = lim−→ Hk(N(α); Q) and the direct limit functor

is exact, the homomorphism H̃q(X; Z) ⊗ Q → H̃k(X; Q) is also mono. Thus,
H̃q(X; Z) ⊗Q = 0, which implies that any element in H̃q(X; Z) is a torsion. By
another Universal Coefficient Formula (see [Sp-M, Theorem 5.5.3]),

H1(Xα; Z) = Hom(H1(Xα; Z, Z)⊗ Ext(H0(Xα; Z), Z).

Since H0(Xα; Z) is free, Ext = 0. Now, H1(Xα; Z) = Hom(H1(Hα; Z), Z) is torsion
free and H̃1(X; Z), as the direct limit of torsion free groups, is also torsion free.
Therefore, H̃1(X; Z) must be zero. �

(77.24) Theorem. Any multivalued self-map (p, q) on the torus satisfying
(77.9) is admissible homotopic to a pair representing a single-valued map.

Proof. At first, we prove that (p, q) satisfies (77.4), i.e. that the restriction
q: p−1(x) → Tn admits a lift to the universal cover Rn → Tn (for any x ∈ Tn).
It is enough to show that any such restriction is contractible. On the other hand,
since any map into the n-torus Tn = S1 × . . . × S1 splits into n-maps into the
circle, it is enough to show that any map from p−1(x) to S1 is contractible. By
the well-known Hopf theorem (see e.g. [Sp-M]),

[p−1(x), S1] = H̃1(p−1(x); Z).

On the other hand, Lemma (77.23) implies that H̃1(p−1(x); Z) = 0. Thus, any
restriction q: p−1(x)→ S1 is contractible. �

Now, we prove that X
p⇐= Γ

q−→ Tn is homotopic to a pair representing
a single-valued map. By the above consideration, there is a commutative diagram

X̃

pX

��

�� p̃

Γ̃

pΓ

��

q̃
�� Rn

pT

��

X ��
p Γ q

�� Tn
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which gives rise to the induced homomorphism q̃!p̃
!: θX → θTn . Since the torus

is a K(π, 1) space and there is an isomorphism between the groups θX and π1X,
there exists a single-valued map ρ: X → Tn such that the induced homomorphism
ρ̃: θX → θTn coincides with q̃!p̃

!. We will show that (p, q) is homotopic to (p, ρp).
Define a homotopy q̃t: Γ̃→ Rn by putting

q̃t(x̃, z) = (1 − t)q̃(x̃, z) + tρ̃(x̃).

The equalities

q̃tp̃
!(γ)(x̃, z) = (1− t)q̃(x̃, z) + tρ̃(x̃) = (1− t)q̃(p !(γ)(x̃, z)) + tρ̃p̃(p̃ !(γ)(x̃, z))

= (1− t)q̃!p
!(γ)q̃(x̃, z) + tρ̃(p̃!(p̃ !(γ))p̃(x̃, z)

= (1− t)q̃!p
!(γ)q̃(x̃, z) + tρ̃(γ)p̃(x̃, z)

= ρ̃!(γ)[(1 − t)q̃(x̃, z) + tρ̃(x̃)] = ρ̃!(γ)q̃t(x̃, z)

verify that q̃tp̃
!(γ)(x̃, z) = ρ̃!(γ)q̃t(x̃, z).

Since any natural transformation on Γ̃ is of the form, p̃ !(γ) for some γ ∈ θX ,
q̃t(γ) induces a homotopy qt: Γ→ Tn for which the diagram

X̃

pX

��

�� p̃

Γ̃

pΓ

��

q̃t �� REn

pT

��

X ��
p Γ qt

�� Tn

commutes and the obtained homotopy satisfies (77.2) (p̃ does not vary). For t = 1,
we get q̃1(x̃, z) = ρ(x̃) = ρp̃(x̃, z) which implies q1(z) = ρp(z).

(77.25) Theorem. Let Tn p⇐= Γ
q−→ Tn be such that p is a Vietoris map.

Let ρ: Tn → Tn be a single-valued map representing a multivalued map homotopic
to (p, q) (according to Theorem (77.24), such a map always exists). Then (p, q)
has at least N(ρ) coincidences.

Proof. Let us recall (cf. [BBPT]) that N(ρ) = |Λ(ρ)| = |det(I −A)|, where A

is an integer (n × n)-matrix representing the induced homotopy homomorphism
ρ#: π1Tn → π1Tn. Moreover, if det(I − A) �= 0, then card(π1(Tn)/Im(ρ#)) =
|det(I −A)|.

The case N(ρ) = 0 is obvious. Assume that N(ρ) �= 0. By Theorem (77.24), it
is enough to find a subgroup (of a finite index) H ⊂ π1Tn = Zn satisfying

(77.24.1) ρ#(H) ⊂ H, and
(77.24.2) NH(ρ) = N(ρ).
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We define H = {z − ρ#(x) | x ∈ π1X}. Then (77.24.1) is clear.
Recall that, for any endomorphism of an abelian group ρ: G → G, the Reide-

meister set is the quotient group R(ρ) = G/(Im(id−ρ). In our case, H = Im(id−ρ)
and the natural map G → G/H induces the bijection between R(ρ) = G/H and
RH(ρ) = (G/H)/(H/H). Thus, we get the bijection RH(ρ) = R(ρ). Finally, we
notice that all the Nielsen classes of ρ have the same index (= sign(det(I − A)).
Thus, all involving classes in RH(ρ) in R(ρ) are essential, which proves NH(ρ) =
N(ρ). �

Now, we shall generalize the above construction from the compact case into the
case of CAC-morphism.

As in the single-valued case, the definition of a Nielsen number is done in two
stages: at first, C(p, q) is split into disjoint classes (Nielsen classes) and then we
define essential classes.

Fix a universal covering (4) pX : X̃ → X. We define Γ̃ = {(x̃, z) ∈ X̃ × Γ |
pX(x̃) ⊃ p(z)} (pullback) and the map p̃: Γ̃→ X̃ by p̃(x̃, z) = x̃.

Since in our case X is a connected ANR the following property is satisfied
automatically.

Property A. For any x ∈ X, the restriction q1 = q|p−1(x): p−1(x) → X

admits a lift q̃1, making the diagram

X̃

pX

��

p−1(x) q1
��

q̃1

  ���������
X

commutative.

(77.26) Remark. Note that a sufficient condition for guaranteeing Property A
is, for example, that p−1(x) is an ∞-proximally connected set, for every x ∈ X

(see [KM]). It is well-known (see (2.21)) that, on ANR-spaces, any ∞-proximally
connected compact (nonempty) subset is an Rδ-set and vice versa.

(77.27) Lemma. If (p, q) satisfies (CAC + A), then there is a lift q̃: Γ → X̃

making commutative the diagram

X̃

pX

��

Γ̃
q̃

��

pΓ

��

p̃
�� X̃

pX

��

X Γp
��

q
�� X

(4) In what follows, we shall assume that X̃ is a retract of an open set in a locally convex
space. For metric ANRs, this assumption is satisfied automatically (see the proof of Lemma 2.5

in [AGJ2]).
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Proof. Notice that the assumptions (10.2)–(10.4) in Section 10 are satisfied.
Let

θX = {α: X̃ → X̃ | pXα = pX}

denote the group of covering transformations of the covering X̃ . Similarly, we
define θΓ.

The lifts p̃, q̃ define homomorphisms:

p̃ !: θX → θΓ by the formula p !(α)(x̃, z) = (αx̃, z),

q̃!: θΓ → θX by the equality q̃ · α = q̃!(α) · q̃.

Let us recall that θX is isomorphic with π1(X) and if (p, q) represents a single-valu-
ed map (i.e. qp−1(x) = η(x), for a single-valued map η: X → X), then q̃!p̃

!: θX →
θX is equal to the homomorphism η̃!: θX → θX given by η̃ ·α = η̃!(α) · η̃, where η̃ is
given by the formula η̃(x̃) = q̃p̃−1(x). However, the homomorphism η̃! corresponds
to the induced map η#: π1(X) → π1(X).

Thus, the composition q̃!p̃
!: θX → θX can be considered as a generalization

of the induced homotopy homomorphism. �

Property B. There is a normal subgroup H ⊂ θX of a finite index (θX /H-
finite), invariant under the homomorphism q!p

! (q!p
!(H) ⊂ H).

(77.28) Remark. In particular, if X is a connected space such that the fun-
damental group π1(X) of X is abelian and finitely generated, then X satisfies
Property B (see [Sp-M]). Observe also that if (p, q) is admissibly homotopic to
a single-valued map f , then Property B holds true (see Section 10).

Let us note that (CAC + A + B) makes the diagram

X̃H

pXH

��

Γ̃H

q̃H��

pΓH

��

p̃H �� X̃H

pXH

��

X Γp
��

q
�� X

commutative, where pXH : X̃H → X is a covering corresponding to the normal
subgroup H∆θX ∼ π1X and Γ̃H is a pullback. As above, we can define homomor-
phisms p̃ !

H : θXH → θΓH , q̃H!: θΓH → θXH , where θXH = {α: X̃H → X̃H | pXHα =
pXH}.

(77.29) Lemma. We have:

(77.29.1) C(p, q) =
⋃

α∈θXH
pΓHC(p̃H , αq̃H),

(77.29.2) if pΓHC(p̃H , αq̃H)∩pΓHC(p̃H , βq̃H) is not empty, then there exists a γ ∈
θXH such that β = γ ◦ α ◦ (q̃H!p̃H

!γ)−1,
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(77.29.3) the sets pΓHC(p̃H , αq̃H) are either disjoint or equal.

Thus, C(p, q) splits into disjoint subsets pΓHC(p̃H , α ◦ q̃H) called Nielsen classes
modulo a subgroup H.

Now, we shall define essential classes. We consider the diagram

X̃H

pXH

��

Γ̃H

αq̃H��

pΓH

��

p̃H �� X̃H

pXH

��

X Γp
��

q
�� X

(77.30) Lemma. The multivalued map (p̃H , q̃H) is a CAC.

Proof. Since p̃ΓH is a homeomorphism between p̃−1
H (x) and p̃−1(px), p̃H is

Vietoris. If U ⊂ X satisfies the definition of the CAC for (p, q), then Ũ = p−1
XH(U)

satisfies the same for (p̃H , αq̃H). To see the last relation, we note that

cl ϕ̃(Ũ) ⊂ cl(p−1
XH(ϕ(U))) ⊂ cl(p−1

XH(cl(ϕ(U)))).

Since cl(ϕ(U)) is compact and covering pXH is finite, p−1
XH(cl(ϕ(U))) is also com-

pact. Thus, so is cl ϕ(Ũ ). �
(77.31) Definition. A Nielsen class mod H of the form pΓHC(p̃H , αq̃H) is

called essential if Λ(p̃H , αq̃H) �= 0.

By Lemma (77.18) this definition is correct, i.e.

if pΓHC(p̃H , αq̃H) = pΓHC(p̃H , βq̃H), then Λ(p̃H , αq̃H) = Λ(p̃H , βq̃H).

(77.32) Definition. The number of essential classes of (p, q) mod a sub-
group H is called the H-Nielsen number and is denoted by NH(p, q).

Now, we can give two main theorems of this section.

(77.33) Theorem. A multivalued map (p, q) satisfying (CAC + A + B) has at
least NH(p, q) coincidence points.

Proof. We show that each essential H-Nielsen class is nonempty. Consider
an essential class pΓHC(p̃H , αq̃H). Then Λ(p̃H , αq̃H) �= 0 implies a point z̃ ∈
C(p̃H , αq̃H), by which pΓHC(p̃H , αq̃H) is nonempty as required. �

(77.34) Theorem. NH(p, q) is a homotopy invariant (with respect to homo-
topies satisfying (CAC + A + B).

Proof. Let the map (pt, qt) be such a homotopy. It is enough to show that
the class pΓHC(p̃0H , αq̃0H) is essential if and only if the same is true for the class
pΓHC(p̃1H, αq̃1H). However, this is implied by the eguality of Lefschetz numbers

Λ(p̃0H , αq̃0H) = Λ(p̃1H , αq̃1H). �
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78. Fixed points of symmetric product mappings

In 1957 C. N. Maxwell [Max] proved the Lefschetz fixed point theorem for sym-
metric product mappings on compact polyhedra. Later this theorem was studied
by many authors, namely by: H. Schirmer, S. Masih, N. Rallis, D. Miklaszewski
and others. For the present state of this theory see for example: [Mik1-M], [Mik1],
[Mik2], [Mas1], [Mas2] and [Ral].

Note that any mapping into symmetric product can be treat as a finite valued
multivalued map.

In this section all considered spaces are compact metric. Let M = {1, . . . , m}
be a finite set and let G be the subgroup of the group of all permutations of M .
For a compact metric space X by Xm we shall denote its m-th cartesian product.
Then G acts on Xm by the formula:

(78.1) x · σ = (xσ(1), . . . , xσ(m)), for any x = (x1, . . . , xm) ∈ Xm and σ ∈ G.

(78.2) Definition. The orbit space SP m
G X of the action (78.1) is called m-th

symmetric product of X with respect to G.

The orbit Gx of a point x ∈ Xm is defined by Gx = {x · σ | σ ∈ G}. Of course
Gx is an element of SP m

G X. We let,

q: Xm → SP m
G X, q(x) = Gx.

If (X, d) is a metric space, then we define a metric d1 in SP m
G X by putting

d1(q(x), q(y)) = min{d(x, y · σ) | σ ∈ G}.

In what follows we shall use the same symbol d for the metric in X and in SP m
G X.

Any continuous function f : Y → SP m
G X will be called a mapping into the sym-

metric product of X.
A point c ∈ X is called a coordinate of the point a ∈ SP m

G X if and only if
there exists a point x ∈ Xm and j ∈ {1, . . . , m} such that pj(x) = c and q(x) = a,
where pj: Xm → X is defined by

pj(x1, . . . , xj, . . . xm) = xj, j = 1, . . . , m.

(78.3) Definition. Let f : Y → SP m
G X be a map and Y ⊂ X. A point x ∈ Y

is called a fixed point of f if and only if y is a coordinate of f(y).

We let Fix(f) = {y ∈ Y | y is a fixed point of f}.
We recall the following well-known result (see [Mik1-M]).
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(78.4) Theorem. If A is one from the following classes of spaces:

(78.4.1) finite polyhedra,
(78.4.2) ANRs,
(78.4.3) contractible spaces,

then so is (SP m
G X) ∈ A provided X ∈ A.

In what follows Ȟ is the Čech homology functor with coefficients in Q or Z
(comp. Chapter I).

(78.5) Theorem. Let A be a closed subset of X. We have:

(78.5.1) the homomorphism q∗: Ȟ(Xm, Am; Q) → Ȟ(SP m
G X, SP m

G A; Q) is an
epimorphism,

(78.5.2) there exists exactly one homomorphism

µ: Ȟ(SP m
G X, SP m

G X; Q)→ H(X, A; Q)

such that

µ ◦ q∗ =
m∑

i=1

pi∗ .

Proof. It is well known that there exists a homomorphism

τ : Ȟ(SP m
G X, SP m

G X; Q)→ Ȟ(Xm, Am; Q)

so called transfer homomorphism, with the following two properties:

(78.5.3) q∗ ◦ τ = #G · id,

(78.5.4) τ ◦ q∗ =
∑

σ∈G σ∗,

where #G is the number of elements in G.

Now, from (78.5.3) we deduce that q∗ is an epimorphism. To prove (78.5.2) it
is sufficient to show that ker q∗ ⊂ ker(

∑m
i=1 pi∗). It follows from (78.5.4). Indeed,

we have:( m∑
i=1

pi∗

)
◦ τ ◦ q∗ =

m∑
i=1

∑
σ∈G

pi∗ ◦ σ∗ =
∑
σ∈G

m∑
i=1

pσ(i)∗ = #G ·
m∑

j=1

pj∗

and the proof is completed. �

(78.6) Remark. In what follows homomorphism µ defined in (78.5.2) is called
the trace homomorphism.
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(78.7) Proposition. If G acts transitively on {0, . . . , m}, then the trace ho-
momorphism µ: Ȟk(SP m

G Sk)→ Ȟk(Sk) is an isomorphism.

Proof. Let us denote M = {1, . . . , m}, s0 ∈ Sk and i: Sk → SP M
G Sk be the

map defined as follows i(x) = q(x, s0, . . . , s0). Let ψc
j : (Sk)M → (Sk)M be defined

by the formula:

ψc
j (x) = y provided pi(y) = s0 for j �= i and pj(y) = pj(x), for i, j ∈ M.

then we have i ◦ pj = q ◦ψc
j . Consequently by a natural calculations one can show

that i∗ is an inverse to µ. In fact

µ ◦ i∗ = µ ◦ q∗(id) × s0 × ◦ × s0)∗ =
∑
j∈M

pj∗ ◦ (id)× s0 × ◦ × s0) = id

and
i∗ ◦ µ ◦ q∗ = i∗ ◦

∑
j∈M

pj∗ = q◦
∑
j∈M

ψc
j∗ = q∗

and the proof is completed. �

Now, we prove:

(78.8) Proposition. Let O(G) be the set of all orbits of the G-action on M .
Then

(pJ∗)J∈O(G): Hk(SP M
G Sk)→

⊕
J∈O(G)

Hk(SP J
G(J)S

k)

is an isomorphism.

Proof. Since the symmetric products of Sk are (k−1)-connected, one can use
the Hurewicz isomorphisms and behavior of homotopy groups with respect to the
cartesian products to write the assertion in the equivalent form:

((pJ∗)J∈O(G))∗: Hk(SP M
G Sk)→ Hk

( ∏
J∈O(G)

SP J
G(J)S

k

)

is an isomorphism. Let X = S, s0 ∈ X, c = (s0, . . . , s0) ∈ XM =
∏

I∈O(G) XI .
From (78.2) take ψc

J :
∏

I XI →
∏

I XI with cI = pI(c) and

ψb
J :
∏

I

SP I
G(I)X →

∏
I

SP I
G(I)X

with bI = qI ◦ pI(c) for I, J ∈ O(G). Let rJ :
∏

I SP I
G(I)X → SP J

G(J)X be the
projection and iJ : XJ → XM be the unique map such that

pI ◦ iJ =

{
pI(c) if I �= J ,

id if I = J ,



78. FIXED POINTS OF SYMMETRIC PRODUCT MAPPINGS 407

for I, J ∈ O(G). There is an induced map iJ : SP J
G(J)X → SP M

G X such that
iJ ◦ qJ = q ◦ iJ . A direct calculation shows that ψb

J = (pI ◦ iJ ◦ rJ)I∈O(G) and
ψc

J = iJ ◦ pJ . Thus

((pI)I∈O(G))∗ ◦
(∑

J

iJ∗ ◦ rJ∗

)
=
∑

J

ψb
J∗ = id

and(∑
J

iJ∗ ◦ rJ∗

)
◦ ((pI )I∈O(G))∗ ◦ q∗ =

∑
J

iJ∗ ◦ pJ∗ ◦ q∗ =
∑

J

iJ∗ ◦ qJ∗ ◦ pJ∗

=
∑

J

q∗ ◦ iJ∗ ◦ pJ∗ = q∗ ◦
∑

J

ψc
J∗ = q∗.

The proof is completed. �
Let O(G) be the set of all orbits of the G-action on M and ν be a generator

of Hk(Sk).
Let Z be set of integers. For d ∈ ZO(G) let d: Hk(Sk) →

⊕
J∈O(G) Hk(Sk) be

a homomorphism defined by the formula d(ν) = (d(J)ν)J∈O(G).

(78.9) Definition. The topological degree deg(f) of the symmetric product
map f : Sk → SP M

G Sk is defined to be a function d ∈ ZO(G) such that the homo-
morphism

Hk(Sk)
f∗−→ Hk(SP M

G Sk)
pJ∗−→

⊕
J∈O(G)

Hk(SP J
G(J)S

k)

⊕
νJ

−−−−→
⊕

J∈O(G)

Hk(Sk)

is equal with d.

We may now formulate the main result concerning topological degree.

(78.10) Theorem. Symmetric product maps of the same degree are homotopic.

Proof follows directly from (78.7), (78.8) and the Hurewicz isomorphism theo-
rem.

(78.11) Proposition. If G acts transitively on M , fi: Sk → Sk for i ∈ M

and f = qM
G ◦ (fi)i∈M , then deg(f) =

∑
i∈M deg(fi).

Proof of Proposition (78.11) follows immediately from (78.5).
C. N. Maxwell (see [Max]) defined a degree Deg for symmetric product maps

with respect to the n-th symmetric group. By definition Deg = n−1deg. Our
approach comes from D. Miklaszewski (see [Mik1-M]).

In fact for symmetric product mappings the fixed point index can be defined
by using homological apparatus. Below we shall formulate only most important
parts of this theory. In what follows by AG we shall denote a class of all triples
(X, f, U), where X is a compact ANR, U is an open subset of X and f : U → SP m

G X

is a continuous map such that Fix(f) ⊂ U .
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(78.12) Definition. A function Ind:AG → Q is called the fixed point index,
if the following axioms are satisfied:

(78.12.1) normalization,
(78.12.2) additivity,
(78.12.3) homotopy,
(78.12.4) commutativity,

(compare Sections 34, 47, 51–53).

We shall formulate (78.12.4) because the respective formulation is not standard.

(78.12.4) (Commutativity). Let X and Y be compact ANR-s, U be an open
subset of X, f : Y → X and g: U → SP m

G Y be two continuous functions. If
(X, f ◦ g, U) ∈ AG, then (Y, g ◦ f, f−1(U)) ∈ AG and Ind(X, f ◦ g, U) = Ind(Y, g ◦
f, f−1(U)), where f : SP m

G Y → SP m
G X is induced by f .

(78.13) Definition. If f : X → SP m
G X is a continuous map, then we define

the Lefschetz number Λ(f) of f by letting:

Λ(f) = Λ(µ ◦ f∗),

where µ is defined in (78.5).

The construction of the fixed point point index Ind:AG → Q is given in two
steps.

At first, we define it for X to be a finite polyhedron and then we use the fact
that any compact ANR-space is homotopically dominated by a finite polyhedron
(see (2.23)).

Note that the fixed point index for symmetric product mappings of polyhedra
was defined in 1979 by S. Masih ([Mas2]). For complete information we recommend
[Mik1-M].

Using the fixed point index we can prove the following:

(78.14) Theorem (Relative Lefschetz Fixed Point Theorem). Let X, A be two
compact ANRs and A ⊂ X. Assume further that

f : (X, A)→ (SP m
G X, SP m

G A)

is a continuous map. If Λ(f) �= 0, then Fix(f) ∩X \A �= ∅.

The proof of (78.14) is strictly analogous to the proof of (57.3).
Finally, we shall consider the case when G = Sm is the full permutation group

of the set {1, . . . , m}. For short, we shall use the following notations Xm =
SP m

Sm
X. Let f : X → Xm by a symmetric product map and x, y ∈ Fix(f). We
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shall say that x and y belongs to the same class F provided there exists a path
C: [0, 1]→ Xn such that p1(C(0)) = x, p1(C(1)) = y and f ◦ p1 ◦ C is homotopic
to q ◦ C rel {0, 1}.

A class F is called essential provided there exists an open neighbourhood U

of F in X such that for every open V of F in X, V ⊂ U we have Ind(X, f, V ) �= 0.
We define the Nielsen number N(f) of f to be the number of essential classes.
We prove the following:

(78.15) Proposition. If X is pathwise connected compact ANR-space and
f : X → Xn, n ≥ 2 is a continuous symmetric product map, then f has at most
one fixed point class.

Proof. Let x, y be fixed points of f . There are x, y ∈ Xn−1 such that f(x) =
q(x, x), f(y) = q(y, y). Let C1 be a path from x to y and D be a path from x to y.
The projection q: Xn → Xn induces an epimorphism of fundamental groups. Since
Xn is a pathwise connected space, this result does not depend on the choice of the
basepoint of the fundamental group of Xn, in particular there is a lop (E, E) based
in (x, x) such that (f ◦ C1) ∗ (q(C1, D))−1 ≡ q(E, E). Let (x′, x”) be coordinates
of x in X ×Xn−2 and (E′, E”) = E (if n = 2 then the second coordinate should
be omitted). Let F be a path from x to x′, G = F −1∗E ∗F , H = (G∗E′, x”∗E”).
Then q(G, E) ≡ q((G, x) ∗ (x′, E)) = q(x′, X) and f ◦C1 ≡ q((E, E) ∗ q(C1, D)) ≡
q(F, x) ∗ q(G, E) ∗ q(F −1, x) ∗ q(C1, D) ≡ q(C1, H ∗D), i.e. the points x, y are in
the same class and the proof is completed. �

As a simple consequence of (78.15) we get:

(78.16) Corollary. If X is a pathwide connected compact ANR and f : X →
Xn is a symmetric product map, then:

(78.15.1) Λ(f) = 0 implies that N(f) = 0,
(78.15.2) Λ(f) �= 0 implies that N(f) = 1.

In another words (78.16) says that the Nielsen theory for symmetric product
mappings is trivial because it is reduced to the Lefschetz number.

79. The category of weighted maps

The class of weighted mappings was introduced in 1958 by G. Darbo (see [Pej-
M], [Pej1]–[Pej3], [Pej-5], [Shi-M], [Ski1], [Ski2], [SeS]).

Let Ω be a commutative ring with unit. Usually, we shall consider Ω = Z to be
the ring of integers. Let X, Y be two (metric) spaces.

(79.1) Definition. A pair ψ = (νψ, ωψ) is called a weighted map (ω-map for
short) defined on X with values in Y provided:

νψ: X � Y and ωψ: X × Y → Ω
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are two mappings for which the following conditions are satisfied:

(79.1.1) νψ is an u.s.c. map with finite values, i.e. #νψ(x) <∞, for every x ∈ X,
(79.1.2) if y �∈ νψ(x), then ωψ(x, y) = 0,
(79.1.3) for any open U ⊂ Y and any x ∈ X, if νψ(x) ∩ δU = ∅, then there is an

open neighbourhood V of X such that∑
y∈U

ωψ(x, y) =
∑
y∈U

ωψ(x′, y),

for every x′ ∈ V , where δU stands for the boundary of U in Y .

In what follows νψ is called the support and ωψ the weight of ψ = (νψ, ωψ).

(79.2) Example. Let f : X → Y be a continuous mapping. We define ωf : X×
X → Z defined as follows:

ωf(x, y) =

{
0 if y �= f(x),

1 if y = f(x).

Evidently ψ = (f, ωf ) is a weighted map.

(79.3) Example. Let m be a given natural number and ψ: X � Y be a con-
tinuous multivalued map such that

#ϕ(x) = 1 or m, for very x ∈ X.

We define ωϕ: X × Y → Z by formula:

ωf (x, y) =


0 if y �= ϕ(x),

m if {y} = ϕ(x),

1 if #ϕ(x) = m and y ∈ ϕ(x).

It is not difficult to verify that ψ = (ϕ, ωϕ) is a ω-map.

(79.4) Example. Let C([a, b]) be the space of all continuous mappings for
[a, b] into R with the usual maximum norm. Assume further that 0 ∈ (a, b).

Let ϕ: C([a, b]) � R be defined as follows:

ϕ(x) =
{∫ 0

a

x(s) ds,

∫ b

0
x(s) ds

}
.

Then #ϕ(x) = 1 or 2. So (79.4) is a special case of (79.3).

In what follows we shall deal with some another ω-mappings.
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Assume that ψ = (νψ, ωψ): X � Y is a ω-map. It is easy to see that that the
map ωψ: X × Y → Ω given by the following formula:

ωψ(x, y) = 0 for every x ∈ X and y ∈ Y

satisfies all assumptions of (79.1), such a ωψ is called the trivial weight. Observe
that any multivalued map y: X � Y can be equipped in the trivial weight ωψ. So
the main problem is the possibility to equipped given multivalued map in nontrivial
weight.

Let SP M Y be a full symmetric product of Y , i.e. SP mY = SP m
G Y and G is

the group of all permutations of the set {1, . . . , m}.
Note that any continuous map f : X → SP mY can be regarded as a weighted

map. In fact, if we denote by p: SP mY � Y a map defined by

p([yσ(1)
1 , . . . , yσ(m)

m ]) = {y1, . . . , ys},

then νf : X � Y and ωf : X × Y → Z can be defined as follows:

νf(x) = p(f(x)),

ωf(x, y) =

{
σ(i) if y ∈ p(f(x)),

0 if y �∈ p(f(x)),

for every x ∈ X and y ∈ Y . Then (νf , ωf) is a weighted map indexed by f .
First, we shall prove the following:

(79.5) Proposition. Assume ψ = (νψ, ωψ): X � Y is a ω-map and X is
a connected space. Then for every x, x′ ∈ X and y ∈ Y we have:∑

y

ωψ(x, y) =
∑

y

ωψ(x′, y).

Proof. Assume to the contrary that for some x0, x′
0 ∈ X, we have∑

y

ωψ(x0, y) �=
∑

y

ωψ(x′
0, y).

We let:

U =
{

x ∈ X

∣∣∣∣ ∑
y∈Y

ωψ(x, y) =
∑
y∈Y

ωψ(x′
0, y)

}
,

W =
{

x ∈ X

∣∣∣∣ ∑
y∈Y

ωψ(x, y) �=
∑
y∈Y

ωψ(x′
0, y)

}
.

It follows from (79.1.4) that U and W are open subset of X. Evidently U ∩W =
∅ and U ∪ W = X. Since x0 ∈ W and x′

0 ∈ U and X is connected we get
a contradiction. �

Below, we shall show an example of the multivalued map ϕ with 1 or 2 values,
for which every weight ωϕ is trivial.
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(79.6) Example. Let ϕ: [0, 1] � [0, 1] be defined as follows:

ωϕ(x, y) =


{1} for 0 ≤ x < 1/2,

{0, 1} for x = 1/2,

{0} for 1/2 < x ≤ 1.

Evidently ϕ is an u.s.c. map without fixed points. Let ωϕ: [0, 1]× [0, 1] → Ω be
a given weight for ϕ. We shall show that ωϕ(x, y) = 0, for every x, y ∈ [0, 1].

To show it we need the following lemma:

(79.7) Lemma. If ϕ: X � Y is a ω-map and X is a connected space, then∑
y∈Y

ωϕ(x, y) =
∑
y∈Y

ωϕ(x′, y),

for every x, x′ ∈ X.

Proof. Assume to the contrary that there are two points x0, x′
0 ∈ X such

that: ∑
y∈Y

ωϕ(x0, y) �=
∑
y∈Y

ωϕ(x′
0, y).

Then, we define:

X1 =
{

x ∈ X

∣∣∣∣ ∑
y∈Y

ωϕ(x, y) =
∑
y∈Y

ωϕ(x0, y)
}

,

X2 =
{

x ∈ X

∣∣∣∣ ∑
y∈Y

ωϕ(x, y) =
∑
y∈Y

ωϕ(x′
0, y)

}
.

Then Y = X1 ∪X2 and X1, X2 are nonempty disjoint and closed subset of Y , so
we get a contradiction. �

Now, we come back to the Example (79.6).
Let x0 = 1/2 and U = (2/3, 1]. Then by using (79.1.4) we get an open neigh-

bourhood (x0 − ε, x0 + ε) of x0 such that∑
y∈(2/3,1]

ωϕ(x0, y) =
∑

y∈(2/3,1]

ωϕ(x′, y),

for every x′ ∈ (x0 − ε, x0 + ε). Moreover, we have∑
y∈(2/3,1]

ωϕ(x0, y) = ωϕ(x0, y)
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and ∑
y∈(2/3,1]

ωϕ(x0, y) =

{
ωϕ(x′, y), for x′ ∈ (x0 − ε, x0],

0, for x′ ∈ (x0, x0 + ε),

Hence, we get ωϕ(x0, 1) = 0. Similarly, we deduce that ωϕ(x0, 0) = 0. Since, we
have ∑

y∈[0,1]

ωϕ(x, y) =
∑

y∈ϕ(x)

ωϕ(x, y) = ωϕ(x, ϕ(x)), for x �= 1
2

.

Then in, view of (79.7) we deduce that

ωϕ(x, y) = 0, for every x, y ∈ [0, 1].

Now, we shall list most important properties of ω-maps.

(79.8) Properties.

(79.8.1) If ϕ = (νϕ, ωϕ), ψ = (νψ, ωψ): X � Y are two ω-maps, then

ϕ ∪ ψ = (νϕ∪ψ, ωϕ∪ψ): X � Y

is a ω-map too, where

νϕ∪ψ(x) = νϕ(x) ∪ νψ(x),

ωϕ∪ψ(x, y) = ωϕ(x, y) + ωψ(x, y),

for every x ∈ X, y ∈ Y .
(79.8.2) If ϕ = (νϕ, ωϕ): X � Y is a ω-map and λ ∈ Λ, then

λϕ = (νλϕ, ωλϕ): X → Y

is a ω-map too, where νλϕ(x) = νϕ(x) and ωλϕ(x, y) = λ · ωϕ(x, y), for
x ∈ X and y ∈ Y .

(79.8.3) Let ϕ = (νϕ, ωϕ): X � Y and ψ = (νψ, ωψ): Y � Z be two ω-maps, then
ϕ ◦ ψ = (νψ◦ϕ, ωψ◦ϕ): X � Z is a ω-map too, where

νψ◦ϕ(x) = (νψ ◦ νϕ)(x)

and
ωψ◦ϕ(x, z) =

∑
y∈Y

ωϕ(x, y) · ωψ(y, z),

for every x ∈ X, y ∈ Y and z ∈ Z.

Proof. The proof of (79.8.1) and (79.8.2) is straightforward. So we shall prove
only (79.8.3).
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Let U be an open subset of Z and let x0 ∈ X be a point such that:

(νψ ◦ νϕ)(x0) ∩ δU = ∅.

We have to show that there exists an open neighbourhood Wx0 of x0 in X such
that:

(79.8.4)
∑
z∈U

ωψ◦ϕ(x0, z) =
∑
z∈U

ωψ◦ϕ(x′, z), for x′ ∈Wx0 .

We have:∑
z∈U

ωψ◦ϕ(x0, z) =
∑
z∈U

(∑
y∈Y

ωϕ(x0, y) ◦ ωψ(y, z)
)

=
∑
y∈Y

(∑
z∈U

ωϕ(x0, y) ◦ ωψ(y, z)
)

=
∑
y∈Y

ωϕ(x0, y) ·
(∑

z∈U

ωψ(y, z)
)

We let:
νϕ(x0) = {y1

0, . . . , yk
0} and ay =

∑
z∈U

ωψ(y, z).

Then, we obtain∑
y∈Y

ωϕ(x0, y) ·
∑
z∈U

ωψ(y, z) =
∑
y∈Y

ωϕ(x0, y) · ay

=
∑

y∈νϕ(x0)

ωϕ(x0, y) · ay =
k∑

i=1

ωϕ(x0, yi
0) · ayi

0
.

Hence, we get

(79.8.5)
∑
z∈U

ωψ◦ϕ(x0, z) =
k∑

i=1

ωϕ(x0, yi
0) · ayi

0
.

So, for the proof it is sufficient to show that right hand sides of (79.8.4) and (79.8.5)
are equal for some open neighbourhood of x0 in X.

We consider open neighbourhoods Vyi
0

of yi
0 in Y , i = 1, . . . k such that

(79.8.6) Vyi
0
∪ Vyj

0
= ∅, for i �= j

and

(79.8.7) ayi
0

=
∑
z∈U

ωψ(yi
0, z) =

∑
z∈U

ωψ(y, z) = ay.
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Now, for every i = 1, . . . , k we choose open set Wi ⊂ X such that

ωϕ(x0, yi
)) =

∑
y∈V

yi
0

ωϕ(x′, y) =
∑

y∈ϕ(x′)∩V
yi

0

ωϕ(x′, y),

for x′ ∈ Wi. Since νϕ is u.s.c. we can choose an open neighbourhood Wx0 of x0 in
Y such that

(79.8.8) νϕ(Wx0 ) ⊂
k⋃

i=1

Vyi
0
.

Finally, we let W0 = Wx0 ∩W1 ∩ . . .Wk. Then for any x′ ∈W0 we obtain

∑
z∈U

ωψ◦ϕ(x′, z) =
∑
z∈U

(∑
y∈Y

ωϕ(x′, y) ◦ ωψ(y, z)
)

=
∑
y∈Y

∑
z∈U

ωϕ(x′, y) ◦ ωψ(y, z) =
∑
y∈Y

ωϕ(x′, y) ◦
∑
z∈U

ωψ(y, z)

=
∑
y∈Y

ωϕ(x′, y) ◦ ay =
∑

y∈νϕ(x′)

ωϕ(x′, y) · ay.

From the other hand form (79.8.9) we deduce∑
y∈νϕ(x′)

ωϕ(x′, y) ◦ ay =
∑

y∈νϕ(x′)∩
(⋃k

i=1
V

yi
0

)ωϕ(x′, y)

=
k∑

i=1

∑
y∈νϕ(x′)∩V

yi
0

ωϕ(x′, y) ◦ ay.

In view of (79.8.7) ay = ay0 , for every y ∈ Vyi
0
. Consequently (by using also

(79.8.8)) we get

k∑
i=1

∑
y∈νϕ(x′)∩V

yi
0

ωϕ(x′, y) ◦ ay =
k∑

i=1

∑
y∈νϕ(x′)∩V

yi
0

ωϕ(x′, y) ◦ ayi
0

=
k∑

i=1

ayi
0

( ∑
y∈νϕ(x′)∩V

yi
0

ωϕ(x′, y)
)

=
k∑

i=1

ayi
0
ωϕ(x′, y)

and the proof of (79.8.4) is completed. �

(79.9) Remark. If we shall consider metric spaces as objects, ω-maps as mor-
phisms and the composition law defined in (79.7.3), then we get a category EΩ so
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called the category of metric spaces and ω-maps. Of course E is a subcategory
of Eω (comp. Section 5).

For two metric spaces X and Y by W(X, Y ) we shall denote the set of all
ω-maps from X to Y (with the weight in a fixed ring Ω).

According to (79.8.1) and (79.8.2) we have two operators in W(X, Y ). If we
introduce in W(X, Y ) the following equivalence relation

ϕ = (νϕ, ωϕ) ∼ ψ = (νψ, ωψ)⇔ ωϕ = ωψ.

Then the factor set W(X, Y )/∼ = 〈X, Y 〉 possess an algebraic structure of Ω-
module.

(79.10) Proposition. Let ϕi) = (νϕi , ωϕi): Xi � Yi, i = 1, 2 be two weighted
mappings. Then ϕ1 × ϕ2 = (νϕ1×ϕ2 , ωϕ1×ϕ2) is a weighted map, where

νϕ1×ϕ2 : X1 ×X2 � Y1 × Y2

and
ωϕ1×ϕ2 : (X1 ×X2)× (Y1 × Y2)→ Ω

are defined as follows

νϕ1×ϕ2(x1, x2) = νϕ1(x1)× νϕ2(x2),

ωϕ1×ϕ2((x1, x2), (y1, y2)) = ωϕ1(x1, y1) · ωϕ2(x2, y2),

for every x1 ∈ X1, x2 ∈ X2, y1 ∈ Y1 and y2 ∈ Y2.

Proof. First, observe that νϕ1×ϕ2 is an u.s.c. map. Observe also that the
condition (79.1.1) is automaticaly satisfied. So we have to prove (79.1.2) and
(79.1.3).

Let (y1, y2) /∈ νϕ1×ϕ2(x1, x2). Then y1 /∈ νϕ1(x1) or y2 /∈ ν2(x2) but in any case
we have ωϕ1×ϕ2((x1, x2), (y1, y2)) = ωϕ1(x1, y1) · ωϕ2(x2, y2) = 0. Consequently
(79.1.2) holds true.

Now, we are going to prove (79.1.3). Let U ⊂ Y1 × Y2 be an open set and let
x0 = (x0

1, x0
2) ∈ X1 ×X2 be such that

νϕ1×ϕ2(x0
1, x0

2) = {y1, . . . , yn},

where yi = (yi
1, yi

2) ∈ Y1 × Y2, for i = 1, . . . , n.
It follows from (79.8.6) that there exists 1 ≤ m ≤ n such that:

{yi1 , . . . , yim} ⊂ U and νϕ1×ϕ2(x0) \ {yi1 , . . . , yim} ⊂ Y1 × Y2 \ U.
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We choose open sets U1, . . . , Un in Y1 × Y2 such that

yi = (yi
1, yi

2) ∈ Ui, i = 1, . . . , n,

Ui = U i
1 × U i

2 ⊂ U, i = 1, . . . , m,

Ui ⊂ Y1 × Y2 \ U, i = m + 1, . . . , n,

Ui ∩ Uj = ∅, i �= j.

Then we have∑
(y1,y2)∈U

ωϕ1×ϕ2((x0
1, x0

2), (y1, y2)) =
∑

(y1,y2)∈U

ωϕ1((x0
1, y1) · ωϕ2(x0

2, y2)

=
∑

(y1,y2)∈U∩(U1∪...∪Um)

ωϕ1((x0
1, y1) · ωϕ2(x0

2, y2)

=
m∑

j=1

∑
(y1,y2)∈Uj

ωϕ1((x0
1, y1) · ωϕ2(x0

2, y2)

=
m∑

j=1

∑
(y1,y2)∈U1

j ×U2
j

ωϕ1((x0
1, y1) · ωϕ2(x0

2, y2)

=
m∑

j=1

( ∑
y1∈Uj

1

ωϕ1((x0
1, y1)

)
·
( ∑

y2∈Uj
2

ωϕ2(x0
2, y2)

)
.

Since ϕ1 and ϕ2 are weighted mappings, we have:

νϕ1(x0
1) ∩ δU j

1 = ∅ and νϕ2(x0
2) ∩ δU j

2 = ∅.

Therefore, we can choose open neighbourhoods V j
x0

1
and V j

x0
2

of x0
1 and x0

2 such that∑
y1∈Uj

1

ωϕ1(x0
1, y1) =

∑
y1∈Uj

1

ωϕ1(x1, y1),

where x1 ∈ V j
x0

1
, j = 1, . . . , m. Moreover, we have:∑

y2∈Uj
2

ωϕ2(x0
2, y2) =

∑
y2∈Uj

2

ωϕ2(x2, y2),

for x2 ∈ V j
x0

2
, j = 1, . . . , m.

Now, since νϕ1×ϕ2 is u.s.c. we are able to find an open neighbourhood Vx0 of
x0 such that

V x0 = V x0
1
× V x0

2
and νϕ1×ϕ2(V x0) ⊂

n⋃
i=1

Ui.
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We let Vx0
1

and Vx0
2

as follows:

Vx0
1

= V 1
x0

1
∩ . . . ∩ V m

x0
1
∩ V n

x0
1

and Vx0
2

= V 1
x0

2
∩ . . . ∩ V m

x0
2
∩ V n

x0
2
.

Now, it is easy to see that for Vx0 = Vx0
1
×Vx0

2
(79.1.3) holds true and the proof

is completed �

As a special case of (79.9) we get:

(79.11) Corollary. Let ϕ = (νϕ, ωϕ): X � Y and ψ = (νψ, ωψ): X � Z be
two weighted mappings. Then the map ϕ×∆ ψ = (νψ×∆ νψ, ωϕ×∆ ωψ): X×X �
Y × Z is a weighted map, where

νϕ×∆ψ(x) = νϕ(x)× νψ(x) and ωϕ×∆ψ(x, (y, z)) = ωϕ(x, y) · ωψ(x, z),

for every x ∈ X, y ∈ Y and z ∈ Z.

(79.12) Definition. Let ϕ = (νϕ, ωϕ) and ψ = (νψ, ωψ) be two weighted
mappings from X into Y . We shall say that ϕ is ω-homotopic to ψ (written
ϕ ∼ω ψ) provided there exists a weighted map h = (νh, ωh): X × [0, 1] � Y such
that the following two conditions are satisfied:

ωh((x, 0), y) = ωψ(x, y) and ωh((x, 1), y) = ωϕ(x, 1),

for every x ∈ X and y ∈ Y .

(79.13) Remark. Observe that we are not assume that

h(x, 0) = νψ(x) and h(x, 1) = νϕ(x).

It is easy to see that “∼ω” is an equivalence relation in the class of all weighted
mappings from X to Y .

We shall end this section by considering index Iω(ϕ) of ω-map ϕ(νϕ, ωϕ).

(79.14) Definition. Let X be a connected space and let ϕ = (νϕ, ωϕ): X � Y

be a weighted map. Then we let:

Iω(ϕ) =
∑
y∈Y

ωϕ(x, y) for some x ∈ X.

(79.15) Remark. Observe that in (79.5) we have proved that Iω(ϕ) does not
depend on the choice of x ∈ X (comp. (79.7)).

In the following proposition we shall list some important properties of the above
defined index.
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(79.16) Proposition. We have:

(79.16.1) if ϕ = (νϕ, ωϕ), ψ = (νψ, ωψ): X � Y are ω-homotopic, then

Iω(ϕ) = Iω(ψ),

(79.16.2) if ϕ = (νϕ, ωϕ): X � Y and ψ = (νψ, ωψ): Y � Z are two weighted
mappings, then

Iω(ψ ◦ ϕ) = Iω(ψ) · Iω(ϕ).

(79.15.3) if ϕ = (νϕ, ωϕ): X1 � Y1 and ψ = (νψ, ωψ): X2 � Y2 are two weighted
mappings, then

Iω(ψ × ϕ) = Iω(ϕ) · Iω(ψ),

(79.16.4) if ϕ = f : X → Y is a continuous singlevalued mapping, then Iω(f) = 1.

Proof. (79.16.1) Let h = (νh, ωh): X × [0, 1] � Y be a ω-homotopy joining ϕ

and ψ. Then we have

Iω(h) =
∑
y∈Y

ωh((x0, 1), y) =
∑
y∈Y

ωϕ(x0, y) =
∑
y∈Y

ωh((x0, 0), y) =
∑
y∈Y

ωψ(x0, y).

Observe that X × [0, 1] is connected provided X is connected.
(79.16.2) Let x0 ∈ X. Then we have

Iω(ψ ◦ ϕ) =
∑
z∈Z

ωψ◦ϕ(x0, z) =
∑
z∈Z

(∑
y∈Y

ωϕ(x0, y) · ωψ(y, z)
)

=
∑
y∈Y

∑
z∈Z

ωϕ(x0, y) · ωψ(y, z) =
∑
y∈Y

ωϕ(x0, y) ·
∑
z∈Z

ωψ(y, z)

=
∑
y∈Y

ωϕ(x0, y) · Iω(ψ) = Iω(ψ) ·
∑
y∈Y

ωϕ(x0, y) = Iω(ψ) · Iω(ϕ).

(79.16.3) Let x1 ∈ X1 and x2 ∈ X2. We have

Iω(ψ × ϕ) =
∑

(y1,y2)∈Y1×Y2

ωψ×ϕ((x1, x2), (y1, y2))

=
∑

(y1,y2)∈Y1×Y2

ωϕ(x1, y1) · ωϕ(x2, y2)

=
∑

y1∈Y1

∑
y2∈Y2

ωϕ(x1, y1) · ωϕ(x2, y2)

=
∑

y1∈Y1

ωϕ(x1, y1) ·
∑

y2∈Y2

ωϕ(x2, y2) = Iω(ϕ) · Iω(ψ).
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(79.16.4) is self evident. �

Finally, let ϕ = (νϕ, ωϕ), ψ = (νψ, ωψ): X � Y be two weighted mappings and
assume that Y is a normed space (over R).

We define algebraic sum of ϕ and ψ by letting:

ϕ + ψ = (νϕ+ψ, ωϕ+ψ),

where, for every x ∈ X, y, z ∈ Y ,

νϕ+ψ(x) = {u + v | u ∈ ϕ(x) and v ∈ ψ(x)},

ωϕ+ψ(x, y) =
∑
z∈Y

ωϕ(x, y − z) · ωψ(x, z).

To show that ϕ + ψ = (νϕ+ψ, ωϕ+ψ) is a weighted map we consider two (con-
tinuous) singlevalued mappings:

∆: X → X ×X, ∆(x) = (x, x),

f : Y × Y → Y, f(x, y) = x + y.

Then we have

f ◦ (ϕ × ψ) ◦∆ = (νf◦(ϕ×ψ)◦∆, ωf◦(ϕ×ψ)◦∆) = (ϕ + ψ) = (νϕ+ψ, ωϕ+ψ)

and our claim follows from (79.8.3).
Now, let ϕ = (νϕ, ωϕ): X � Y be a weighted map and let s: X → R be

a continuous singlevalued map. We let s ◦ ϕ = (νs◦ϕ, ωs◦ϕ): X � Y where

νs◦ϕ(x) = {s(x) · u | u ∈ νϕ(x)},

ωs◦ϕ(x, y) =


ωϕ

(
x,

y

s(x)

)
if s(x) �= 0,∑

z∈Y

ωϕ(x, z) if s(x) = 0.

Then, we have

s ◦ ϕ = (νs◦ϕ, ωs◦ϕ) = f ◦ (s× ϕ) ◦∆ = (νf◦(s×ϕ)◦∆, ωf◦(s×ϕ)◦∆),

where f : R× Y → Y , f(k, y) = k · y.
Consequently, in view of (79.8.3) s ◦ ϕ is a weighted map. Moreover, we have:

Iω(ψ + ϕ) = Iω(f ◦ (ϕ× ψ) ◦∆)

= Iω(f) · Iω(ϕ × ψ) · Iω(∆) = Iω(ϕ) · Iω(ψ),

Iω(s · ϕ) = Iω(f ◦ (s× ψ) ◦∆)

= Iω(f) · Iω(s) · Iω(ϕ) · Iω(∆) = Iω(ϕ).
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80. Darbo homology functor
and its applications to fixed point problems

It is well known that homology theory has many direct applications to the fixed
point theory. The homology functor, so called Darbo homology, is very useful in
problems connected with the fixed point theory of weighted mappings. Note, that
S. Darbo constructed his functor in 1958. Roughly speaking Darbo extended the
singular homology functor from the category E of metric spaces and continuous
(single valued) maps onto the category EΩ of metric spaces and ω-mappings.

Below, we shall restrict our consideration only to the necessary result from the
point of view of our applications.

Let ∆n be the standard n-dimensional simplex with vertices

e0 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) in Rn+1

and let X be a metric space. We let Cn(X) = 〈∆n, X〉, where 〈∆n, X〉 is the set
of all ω-homotopy classes of ω-mappings from ∆n to X.

As we remarked in the proceeding section 〈∆n, X〉 is an Ω-module. Now, simi-
larly as for singular homology, we shall define the boundary homomorphism

δn: Cn(x)→ Cn−1(x).

To do it first we let:

di
n: ∆n−1 → ∆n, di

n(ej) =

{
ej if j < i,

ej+1 if j ≥ i,

where i = 0, . . . , n.
Secondly, we define a ω-map dn: ∆n−1 → ∆n by putting

dn =
n⋃

i=0

(−1)idi
n.

Finally, for every [ϕ] ∈ Cn(X), we let:

δn: Cn(X) → Cn−1(X), δn([ϕ]) = [ϕ ◦ dn].

Now, it is easy to see that (C(X), δ) is a chain complex. Consequently homology
of (C(x), δ) are called Darbo homology of X, i.e.

H(X) = {Hn(X)}n≥0,

where Hn(X) = Hn(C(X)), for every n ≥ 0. Moreover, for a pair (X, A) of spaces
in εΩ we let:

H(X, A) = H(C(x)/C(A)),
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i.e.
Hn(X, A) = Hn(C(X)/C(A)), n = 0, 1, . . .

Now, if ϕ = (νϕ, ωϕ): X � Y is weighted map, then we define the induced homo-
morphism ϕ∗: H(X)→ H(Y ) by letting:

ϕ∗ = (C(ϕ)∗),

where C(ϕ)∗ = {Cn(ϕ)∗} and Cn(ϕ)(σ) = ϕ ◦ σ, for every σ ∈ Cn(X).
Now, let us remark that the above defined homology functor satisfies all Eilen-

berg–Steenrod axioms and moreover it is a functor with compact carriers.
Now, let ϕ = (νϕ, ωϕ): X � X be a weighted map. We define the Lefschetz

number Λ(ϕ) of ϕ by putting

Λ(ϕ) = Λ(ϕ∗)

provided ϕ∗: H(X)→ H(X) is a Leray endomorphism; now for simplicity we take
Ω to be a field.

All properties of the Lefschetz number formulated in sections 10 and 11 are true
in the case of ω-mappings.

Using the Darbo homology functor, in the place of the Čech homology functor
with compact carriers, we can get for ω-mappings the same topological invariants
as for admissible mappings or for morphism (see Sections 41, 42, 52, 53) i.e. the
Lefschetz fixed point theorem, the fixed point index and the topological degree
theory. For details we recommend [Ski-M], [Pej5], [ScS], [Ski1] and [Ski2].

Finally, we would like point out that approximation methods are also possible
in the case of weighted mappings (comp. Chapter III). To see what types of ap-
proximation results are possible for weighted mappings we need some notions.

(80.1) Definition. Let ψ: X � Y be an u.s.c. mapping with compact values
and let V be an open subset of Y such that ψ(x)∩ δV = ∅, for some x ∈ X. Then
the triple (ψ, V, x) is called admissible.

Let AT be the set of all admissible triples and let Ω be a ring.

(80.2) Definition. A map Iloc: AT → Ω is called a local index provided the
following conditions are satisfied:

(80.2.1) if Iloc(ψ, V, x) �= 0, then ψ(x) ∩ V �= ∅,
(80.2.2) for every admissible triple (ψ, V, x), there exists an open neighbourhood

Ux of x in X such that Iloc(ψ, V, x) = Iloc(ψ, V, x′), for every x′ ∈ Ux,
(80.2.3) if ψ(x) ∩ V ⊂

⋃k
j=1 Vj ⊂ V , where Vj , j = 1, . . . , k is an open subset

of Y and Vi ∩ Vj = ∅, for i �= j, then

Iloc(ψ, V, x) =
k∑

j=1

Iloc(ψ, Vj, x).
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(80.3) Definition. An u.s.c. map ψ: X � Y with compact values is called
m-map provided for any admissible triple (ψ, V, x) the local index Iloc(ψ, V, x)
of (ψ, V, x) is well defined.

Observe that if ψ = (νψ, ωψ) is a ω-map, then ψ is a m-map, if we let:

Iloc(ψ, V, x) =
∑
y∈V

ωψ(x, y).

Several examples of m-maps can be given. Note that, in particular, any acyclic
map ϕ: X � Y is a m-map (for more examples see [Ski-M]).

Let X be a metric space and K ⊂ X be compact. We shall say that K ∈ ω-
P C∞

X (comp. (2.17)) provided for every open U in X such that K ⊂ U there exists
open neighbourhood V ⊂ U of K such that for every n = 0, 1, . . . and for every
ω-map ψ: δ∆n+1 → V there exists a ω-extension ψ̃: ∆n → U of ψ.

(80.4) Theorem. Let X be a compact ANR-space, A ∈ ANR be a closed subset
of X and Y be an arbitrary space. If ψ: X � Y be a m-map with ω-P C∞

Y values,
then for every ε > 0 there exists δ > 0 such that, if ϕ0: A � Y is a ω-map such that
Γνϕ0

⊂ Oδ(Γψ), then there exists a ω-map ψ: X � Y such that νϕ0(x) = νϕ(x),
for every x ∈ A and Γνϕ ⊂ Oε(Γψ).

For possible applications of (80.4) see Chapter III.

81. More about spheric mappings

The notion of spheric mappings was considered in Section 54. During last four
years important generalizations of all results presented in Section 54 were obtained.
Most important new results belongs to D. Miklaszewski (see [Mik1-M]).

Note, that in this section we would like to survey these results. In particular,
we shall present the full answer on the open problem (54.14). Unfortunately the
problem (54.13) is still open.

The notion of a Borsuk continuous map and a Hausdorff continuous map was
introduced in Section 20. Let us recall only that dC stands for the continuity
metric of Borsuk and dH stands for the Hausdorff metric. We shall use also the
homotopy metric dh defined by K. Borsuk.

Let Y be a metric space and let ANR(Y ) be the family of all compact ANRs
contained in Y . The Borsuk metric of homotopy dh is defined on ANR(Y ), i.e.

dh: ANR(Y )× ANR(Y )→ [0,∞).

To define dh let us fix t ≥ 0 and a locally contractible compact subset A ⊂ Y . We
define ϕA(t) to be the lower bound of the set, which is composed of 1 and s ≥ t
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such that every set T ⊂ A with the diameter diam T ≤ t is contractible in a set
S ⊂ A with diam S ≤ s.

We say, that sets from the class Θ ⊂ 2Y are equally locally contractible (e.l.c.),
if

for all ε > 0 there exists δ > 0 such that ϕA(δ) < ε for all A ∈ Θ.

Let Γsub(ϕA) = {(t, u) | u ≤ ϕA(t) and t ≥ 0} and λA(t) = sup{s | (t, s) ∈
conv(Γsub(ϕA))}. Then

(81.1) ρh(A, B) = ρc(A, B) + sup{|λA(t)− λB(t)| | t ≥ 0].

Let ϕ: X � Rn be a multivalued map with compact values. Denote by Bϕ(x)
the union of all bounded components of Rn \ ϕ(x). Then we let (see Section 54):

ϕ̃(x) = ϕ(x) ∪Bϕ(x).

A map ϕ: Kn � Kn with compact values is called spheric provided the following
conditions are satisfied:

(81.2.1) ϕ is u.s.c.
(81.2.2) the graph Γ(Bϕ) of the mapping Bϕ is an open subset of Kn × Rn,
(81.2.3) the mapping ϕ̃ has a fixed point, where Kn denotes the unit closed ball

in Rn.

Note that the above definition is slightly different as (54.9).
Recall that in Section 54 we have proved the following two theorems:

(81.3) Theorem.

(81.3.1) Every spheric map has a fixed point.
(81.3.2) Every dc-continuous mapping ϕ: K2 � K2 with compact connected val-

ues is a spheric map.

According to the open problem (54.14) we would like to present the following
four results (all proved by D. Miklaszewski) which gives us an answer on (54.14).

(81.4) Theorem (5. There is a fixed point free mapping ϕ: Kn � Kn with
compact connected values which is dc-continuous, for every n ≥ 4.

(81.5) Theorem. Every dh-continuous mapping ϕ: Kn � Kn has a continu-
ous selector and hence has a fixed point.

(5) Note, that for n = 2 any dc-continuous map with compact connected values has a fixed

point (see (54.12)). For n = 3 problem (54.14) is still open.
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(81.6) Theorem. Every dH-continuous mapping ϕ: Kn � Kn with eLCn−2

values, such that the mapping ϕ̃ has eLCn−1 values is spheric and has a fixed
point.

(81.7) Theorem. Every dc-continuous mapping ϕ: Kn � Kn, n �= 6, such
that for every x ∈ Kn the set ϕ(x) is homeomorphic either to a one point space
or to the (n− 2)-sphere Sn−2, has a fixed point.

In the proof of (81.4) we need an example of J. Jezierski ([Je]) of dH-continuous
homotopy χJ : S1 × [0, 1] � S1 joining the (singlevalued) identity map idS1 and
(singlevalued) constant map with values being finite sets.

This picture shows graphs of χJ
t for t = 0, 1/9, . . . , 8/9 (“as time goes by”) under

an obvious identification of S1 × S1 and J × J , where J = [0, 1].

Proof of (81.4). Let us recall that

dc(X, Y ) = max{d(X, Y ), d(Y, X)},
d(X, Y ) = inf{max{‖α(x)− x‖ | x ∈ X}},

where the infimum is taken over all continuous functions α: X → Y ; (X, Y ⊂ K4).
The disc K4 will be identified with K2 × K2. Set H = (χxJ)−1. This formula
yields a ρs-continuous homotopy H: S1 × I � S1 joining H(z, 0) = {z0} and
H(z, 1) = {z} such that H(z, t) is a finite subset of S1, which has at most 3
elements for every (z, t) ∈ S1 × I. The multivalued retraction r: K2 � S1 is the
standard one:

r(0) =


{z0}, for ‖x‖ ≤ 1

2
,

H

(
x

‖x‖ , 2‖x‖ − 1
)

, for ‖x‖ ∈
[

1
2

, 1
]
.

We define J : K2 � S1 by

J(0) =


−r(3x), for ‖x‖ ≤ 1

3
,{

x

‖x‖

}
, for ‖x‖ ∈

[
1
3

, 1
]
.
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Of course, J is ρs-continuous and has finite values. Since ρs = ρc on finite sets,
J is dc-continuous. The mapping J is fixed point free, moreover, x �∈ [1/2, 1]J(x)
for every x ∈ K2. This is easy to check that the join of sets A ⊂ S1 × {0} and
B ⊂ {0} × S1 in K2 ×K2 is well defined by

A ∗B = {(1− t)a + tb | t ∈ [0, 1], a ∈ A, b ∈ B}.

Let ϕ1, ϕ2, ϕ: K2 � K2 ×K2 be given by

ϕ1(x, y) = J(x)× {0}, ϕ2(x, y) = {0} × J(y), ϕ(p) = ϕ1(p) ∗ ϕ2(p).

We check now that ϕ is dc-continuous. Take an ε > 0. Since ϕi, is ρc-continuous,
there is a positive δ such that

if ‖p− q‖ < δ then ρc(ϕi(p), ϕi(q)) < ε, for i = 1, 2.

Fix p, q ∈ K2×K2 with ‖p− q‖ < δ. By the definition of ρc, there is a continuous
map αi: ϕi(p) → ϕi(q) such that ‖αi(v) − v‖ < ϕ, for every v ∈ ϕi(p). Let
α1∗α2: ϕ(p)→ ϕ(q) be the join of maps α1 and α2. Take x = (1−t)u1+tu2 ∈ f(p)
with ui ∈ ϕi(p). Thus ‖α1∗α2(x)−r‖ = ‖(1−t)α1(u1)+tα2(u2)−(1−t)u1−tu2‖ ≤
(1 − t)‖α1(u1) − u1‖ + t‖α2(u2) − u2‖ < ε. Hence dc(ϕ(p), ϕ(q)) < ε. Likewise
dc(ϕ(p), ϕ(q)) < ε.

The mapping ϕ is fixed point free. Otherwise, there is (x, y) ∈ K2 ×K2 such
that

(x, y) ∈ ϕ(x, y) = {((1− t)a, tb) | t ∈ [0, 1], a ∈ J(x), b ∈ J(y)}.
Thus x = (1 − t)a ∈ [1/2, 1]J(x), for t ∈ [0, 1/2] and y = tb ∈ [1/2, 1]J(y), for
t ∈ [1/2, 1], a contradiction.

The values of ϕ being joins of some finite sets are compact and connected (these
are graphs of 4 homotopy types: ·, ◦,&,⊕). �

Before proving (81.5) we need some additional notions and results.
As we already seen the homology theory will provide us here with the basic

tools of proving that some set-valued mappings have fixed points. In the other
words, we show that a homology property of graphs forces that the corresponding
mappings have fixed points. We call these mappings the Brouwer mappings.

Let Ȟ∗ denote the Čech homology functor, F be a field. For simplicity we
shall denote Kn = B, Sn−1 = S and Γ(ϕ|A) – the graph of the restriction ϕ|A
of ϕ: B � B to A. Moreover, as usually p: Γ(ϕ|A)→ A is projection p = pϕ|A

.

(81.8) Definition. The upper-semicontinuous compact-valued map ϕ: B �
B is called an F -Brouwer mapping if and only if

Ȟn(Γ(ϕ|B), Γ(ϕ|S); F ) i∗−→ Ȟn(B × B, S × B; F )

induced by inclusion is a non-zero homomorphism.

From now on we consider only upper-semicontinuous compact-valued mappings.
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(81.9) Lemma. The following conditions are equivalent:

(81.9.1) ϕ is an F -Brouwer mapping,
(81.9.2) i∗: Ȟn(Γ(ϕ|B), Γ(ϕ|S); F )→ Ȟn(B × B, S ×B; F ) is an epimorphism,
(81.9.3) p∗: Ȟn(Γ(ϕ|B), Γ(ϕ|S); F )→ Ȟn(B, S; F ) is non-zero,
(81.9.4) p∗ is an epimorphism.

Proof. The equivalence (81.9.3) to (81.9.4) follows from the fact, that

Ȟn(B, S; F ) = F

and F is a field. The homomorphism j∗: Ȟn(B, S; F ) → Ȟn(B × B, S × B; F )
which is induced by the homotopy equivalence j(x) = (x, 0), is an isomorphism.
Moreover, j ◦ p ∼ i, which proves the lemma. �

First, we prove

(81.10) Theorem. Every F -Brouwer mapping has a fixed point.

Proof. On the contrary, suppose that an F -Brouwer mapping ϕ has no fixed
point. Let ∆ = {(x, x) | x ∈ B}. The following diagram

Ȟn(Γ(ϕ|B), Γ(ϕ|B))
i∗ �� Hn(B ×B, S × B)

Ȟn(Γ(ϕ|B), Γ(ϕ|B)) �� Hn(B ×B \∆, S × B \∆)

��

with all arrows induced by inclusions, is commutative. (We omit ( ·̌ ) for some Čech
homology groups which are isomorphic to the singular ones). Since S × B \∆ is
the deformation retract of B ×B \∆, Hn(B × B \∆, S ×B \∆) = 0 and i∗ = 0,
a contradiction.

It remains to define a suitable deformation retraction. For x �= y ∈ B we
denote by s(x, y) the unique point s ∈ S such that s = y + λ(x− y) for a positive
number λ. Define r: (B × B \∆) × I → B × B \∆ by the formula r((x, y), t) =
((1 − t)x + ts(x, y), y). It follows that r: id ∼ r1 and r1 is a strong deformation
retraction from B × B \∆ onto S × B \∆. �

The mapping ψ: B � B is called a selector of ϕ if ψ(x) ⊂ ϕ(x) for every x ∈ B.
The inclusion (Γ(ψ|B), Γ(ψ|S)) ⊂ (Γ(ϕ|B, Γ|S) implies the following

(81.11) Lemma. Every map having an F -Brouwer selector is F -Brouwer map-
ping too.

Any compact neighbourhood U of Γ(ϕ|B) in B × B determines a set-valued
map ϕU : B � B such that ϕU (x) = {y ∈ B | (x, y) ∈ U}. We have

(Γ(ϕU |B), Γ(ϕU |S) = (U, U ∩ (S × B)).
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Recall that on the category of compact pairs functors Ȟ∗ and HomF ◦ Ȟ∗ are
naturally isomorphic. (see Chapter I and [Go1-M]). The above fact, the continuity
of the Čech cohomology functor vH∗ (see [EM-M]) and the formula Hom( · , F ) ◦
dir lim = inv lim◦Hom( · , F ) give

Ȟn(Γ(ϕ|B)), Γ(ϕ|S)) = inv lim{Ȟn(U, U ∩ (S ×B))}.

We say that the set-valued map ϕ: B � B is approximable by F -Brouwer map-
pings if for every compact neighborhood U of Γ(ϕ|B) in B × B the map ϕU has
an F -Brouwer selector. We have the following generalization of Lemma (81.11).

(81.12) Lemma. Every map approximable by F -Brouwer mappings is an F -
Brouwer mapping too.

The proof of (81.12) is strightforward.
The map having F -acyclic values is called an F -acyclic map.

(81.13) Lemma. The composition B
ϕ−→ B

ψ−→ B of an F -acyclic map ψ and
an F -Brouwer mapping ϕ is an F -Brouwer mapping.

Proof. Let C be B or S. Consider the following commutative diagram

Γ(ϕ|C)
q

�� B Γ(ϕ|B)
p

��

Γ(ϕ|C) ∗ Γ(ϕ|B)
p



----------- q

))...........

where q(x, y) = y, p(y1, z) = y1,

Γ(ϕ|C) ∗ Γ(ψ|B) = {(x, y, y, z) | (x, y) ∈ Γ(ϕ|C), (y, z) ∈ Γ(ψ|B)},

and p(x, y, y, z) = (x, y), q(x, y, y, z) = (y, z). Assumption that ψ is an F -
acyclic map implies that p, p are Vietoris maps and p∗: Ȟ∗(Γ(ϕ|C) ∗ Γ(ψ|B)) →
Ȟ∗(Γ(ϕ|C)) is an isomorphism in the following commutative diagram

Ȟn(Γϕ
B ∗ Γψ

B , Γϕ
S ∗ Γψ

B)
π∗ ��

p∗
��

Ȟn(Γψ◦ϕ
B ∗ Γψ◦ϕ

B )
i∗ �� Ȟn(B ×B, S × B)

Ȟn(Γϕ
B ∗ Γψ

B)

p∗
��

Ȟn(B, S) Ȟn(B, S)

j∗

��

where π(x, y, y, z) = (x, z), j(x) = (x, 0) and Γχ
C = Γ(χ|C). Since j∗p∗p∗ is an

epimorphism, i∗ is an epimorphism too. �
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(81.14) Definition. We call ϕ: B � B an 1-Sk-mapping if and only if is ρc-
continuous and for every x in B, ϕ(x) is homeomorphic to either a singleton or
the topological k-sphere.

The motivation for this definition comes from [Go9] and [Da-M]. Results of these
papers show that 1-S0-mappings and 1-Sn−1-mappings of Bn have fixed points,
though for different reasons. The 1-S0-mappings (called bimaps) are equipped
with the fixed point index, (see Chapter IV). These mappings can be considered
as the single-valued maps of Bn into its second symmetric product. The fixed
point theory for this case was developed in Chapter IV. The 1-Sn−1-mappings
are simplest spheric mappings which have been studied in [Da-M]. The main idea
was there to “fill” each value ϕ(x) ∼= Sn−1 with the bounded component Bϕ(x)
of Rn \ ϕ(x) and consider the mapping ϕ̃ with acyclic values ϕ̃(x)(x) = ϕ(x) ∪
Bϕ(x); (note, that ϕ̃(x) does not have to be a disc). Of course, both methods
mentioned above do not apply to 1-Sk-mappings with 0 < k < n− 1.

Now, we describe the method of the approximation of 1-Sk-mappings by the
mappings from the same class, but having the more regular set of all these points,
where the corresponding values are spheres.

(81.15) Definition. Let U be an open subset of B = Bn and ε > 0. We say
that an n − 1-dimensional piecewise linear manifold M ε-approximates bd U =
bdRnU in U , if there exists a compact n-dimensional p.l. manifold K such that
∂K = M and U ⊃ K ⊃ U \Oε(bdBU).

Let us observe that for every U and ε there is a p.l. manifold K such that ∂K

ε-approximates bd U in U : it suffices to take a simplicial decomposition of B with
mesh ≤ ε/2 and define K to be a small regular neighbourhood of the union of all
simplices intersecting U \Oε(bdBU).

Let ϕ, ψ: B � B be mappings. We say that ψ ε-approximates ϕ, if ψ(x) ⊂
Oεϕ(x) for every x ∈ B.

(81.16) Lemma. Let ϕ: B � B be an 1-Sk mapping and Uϕ = {x ∈ B |
ϕ(x) ∼= Sk}. Then for every ε > 0 there is an r > 0 such that for any compact p.l.
manifold K with ∂K r-approximating bdU in U there is an 1-Sk-mapping ψ with
Uψ = IntBK, which ε-approximates ϕ.

Proof. Fix an ε > 0. Take r > 0 such that diam ϕ(x) < ε for all x ∈
O2r(bdBU). Let K be a p.l. manifold with ∂K r-approximating bd U in U . Take
ρ < r. Then

U ⊃ K ⊃ K \Oρ(bd BK) ⊃ U \O2r(bdBU).

For every compact convex subset C of Rn we will denote by s(C) the Steiner point
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of C (see [Mi-M]). We have s(C) ∈ C and ‖s(C1) − s(C2)‖ < n · ρs(C1, C2). Let

λ(x) = ρ−1 ·min(ρ, dist(x, B \K)), b(x) = s(cl(conv(ϕ(x)))),

ϕ(x) = b(x) + λ(x) · (ϕ(x) − b(x)), for x ∈ B.(81.16.1)

Since ψ(x) ⊂ cl(conv (ϕ(x))) for every x and {x | ψ(x) �= ϕ(x)} ⊂ 02r(bdBU), ψ is
an ε-approximation of ϕ. One can check that ψ is a ρc-continuous mapping which
takes values homeomorphic to Sk on IntBK and which is single-valued elsewhere.�

(81.17) Theorem. Let ϕ: B � B be an 1-Sk-mapping with 0 < k �= 4 and
U = {x ∈ B | ϕ(x) ∼= Sk}. Assume that for every ε > 0 there exists a p.l. manifold
M , which ε-approximates bd U in U and satisfies the inequality

(81.17.1) dim Hk(Γ(ϕ|Mi); Z2) > dim Hk(Mi; Z2)

for all components Mi of M . Then ϕ is a Z2-Brouwer mapping.

Proof. Case 1. U ⊂ Int B.
Fix ε > 0. Take r > 0 from the Lemma (81.16). Choose K with M = ∂K, r-

approximating bd U in U and satisfying (81.17.1). Define ψ be the ε-approximation
of ϕ, which is the one we have described in the proof of Lemma (81.16).

By Lemma (81.12), it suffices to prove that ϕ is a Z2-Brouwer mapping. Con-
sider the following diagram

Hn(Γ(ψ|B), Γ(ψ|S))

p∗
��

�� Hn−1(Γ(ψ|S))
i∗ ��

∼=
��

Hn−1(Γ(ψ|B))

Hn(B, S) ∼=
�� Hn−1(S) Z2

with the first row exact; n = dim B. The right vertical arrow represents an
isomorphism because ϕ|S is singlevalued. Note that the condition on ϕ to be
a Z2-Brouwer mapping (p∗ �= 0) is equivalent to i∗ = 0. We shall define a Z2-cycle
which generates Hn−1Γ(ψ|S) and which is zero in Hn−1Γ(ψ|B).

There exists a simplicial decomposition T of B and a subcomplex K of T such
that K = |K |. Let us denote by Ki — components of K, by Mij — components
of ∂Ki, and by K i,Mij — corresponding subcomplexes of the simplicial decompo-
sition T of B. Let S ⊂ T be such that S = |S|. Fix a linear order in the set of all
vertices of T . Ordered and singular simplices determined by σ ∈ T will be denoted
by the same letter σ. If ϕ|σ is single-valued then a denotes the singular simplex
σ̃(x) = (σ(x), ϕ(σ(x))). We use the same notation for chains. All considered chain
complexes have Z2-coefficients. For every T ′ ⊂ T let

∑
T ′(p) denote the chain
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equal to the sum of all p-simplices of T ′. If 1S =
∑
S(n−1), 1ij =

∑
Mij(n−1),

c =
∑

(T \ K (n) then 1S = ∂c +
∑

i,j, 1ij, 1S = ∂c̃ +
∑

i,j 1ij and 1̃S is a generator

of Hn−1Γ(ψ|S). It suffices to prove that
∑

j 1̃ij = 0 in Hn−1Γ(ψ|Ki).
Without loss of generality we can assume that K is connected and we omit the

index i. There exists a neighbourhood N1 of ∂K in K (the collar of ∂K in K)
and a homeomorphism h1: N1 → ∂K × [0, 2] such that h1(x) = (x, 0), for x ∈ ∂K.
For simplicity of notation we write N1 = ∂K × [0, 2]. Let N = ∂K × [0, 1] ⊂ N1

and L = cl(K \N). We define a homeomorphism h: L→ K by formulae: h(y) = y

for y ∈ L \ ∂K × [1, 2], h(x, t) = (x, 2t− 2) for (x, t) ∈ ∂K × [1, 2]. In particular,
h(x, 1) = (x, 0), i.e. h(∂L) = ∂K.

Let M ′
j = h−1(Mj) and 1′

j = h−1lj . Of course M ′
j is a component of M ′ = ∂L

and the cycle 1′
j is a generator of Hn−1(M ′

j). We assume that ρ, (chosen in the
proof of Lemma (81.16) is small enough, i.e. that 0ρ(∂K) ⊂ N and consequently,
ψ = ϕ on M ′.

Consider the following commutative diagram

Hn−1(Γ(ψ|∂K))

(0,u)
��

Hn−1(Γ(ψ|∂K))

v

��

Hn−1(Γ(ψ|∂L))
(−β,α)

�� Hn−1(Γ(ψ|∂L)) ⊕Hn−1(Γ(ψ|∂N)) �� Hn−1(Γ(ψ|∂K))

where α, β, u, v are induced by inclusions and the second row is a segment of the
Mayer–Vietoris exact sequence. We are reduced to proving that v(

∑
j 1̃j) = 0,

which is equivalent to (0, u(
∑

j 1̃j)) ∈ im(−β, α). Rows of the next diagram are
segments of Gysin exact sequences:

Hn−k−1∂L

δ

��

γ
�� Hn−1(Γ(ψ|∂L))

β

��

p∗ �� Hn−1∂L

η

��

Hn−k−1L
ε

�� Hn−1(Γ(ψ|L))
π

�� Hn−1L

We first prove that (0,
∑

j, 1′
j) ∈ im(β, p∗). The first row of the above diagram is

the direct sum of following exact sequences:

Hn−k−1M ′
j

γj−→ Hn−1Γ(ψ|M ′
j)

pj∗−→ Hn−1M ′
j.

By the Poincaré duality,

dim Hn−1M ′
j = 1,

dim Hn−1Γ(ψ|M ′
j) = dim HkΓ(ψ|M ′

j),

dim Hn−k−1M ′
j = dim HkM ′

j .
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By (81.17.1) we can deduce, dim HkΓ(ψ|M ′
j) > dim HkM ′

j . Hence γj is not an
epimorphism, pj∗ �= 0, p∗ is onto, p∗ is an epimorphism. Another epimorphism
is δ. This follows from the Mayer–Vietoris exact sequence:

Hn−k−1∂L → Hn−k−1L⊕Hn−k−1cl(R3 \ L)→ Hn−k−1R3.

Since p∗ is onto, there exists z ∈ Hn−1Γ(ϕ|∂L) such that p∗z =
∑

j 1′
j. Of

course, η
∑

j 1′
j = 0. Hence 0 = ηp∗z = πβz, βz ∈ imε. Let y ∈ Hn−k−1L and

a ∈ Hn−k−1∂L be such that εy = βz and δa = y. Thus βz = εδa = βγa,
β(z − γa) = 0, (β, p∗)(z − γa) = (0, p∗z) = (0,

∑
j 1′

j). It remains to prove that

p∗x =
∑

j 1′
j implies that αx = u(

∑
j 1̃′

j) for x ∈ Hn−1Γ(ϕ|∂L), (here x = z−γa).
This is a corollary from the following diagram:

Hn−1Γ(ψ|∂L)

α

��

p∗ �� Hn−1∂L
p∗ �� Hn−1∂K

(id,ϕ)∗
��

Hn−1Γ(ψ|L) Hn−1Γ(ϕ|∂K)u
��

If p∗x =
∑

j 1′
j, then h∗

∑
j 1′

j =
∑

j 1j , (id, ϕ)∗
∑

j 1j =
∑

j 1̃j and finally αx =

u(
∑

j 1̃j). The only point remaining concerns the commutativity of the above
diagram. Let r: N → ∂K be the retraction r(x, s) = x and r: Γ(ϕ|N)→ Γ(ϕ|∂K)
be given by r(x, y) = (r(x), ϕ(r(x))). If r is a strong deformation retraction
then u = (r∗)−1 and reversing the lower arrow makes the corresponding diagram
of mappings commutative. We now prove that this is the case.

Define ρ: N × I → N by the formula ρ((x, s), t) = (x, (1 − t)s) for (x, s) ∈
∂K × [0, 1] = N . Of course ρ: idN ∼ r. By the Homotopy Lifting Property, there
exists ρ: Γ(ϕ|N)× I → Γ(ϕ|N) which makes the following diagram

Γ(ϕ|N)× {0}

��

�� Γ(ϕ|N)

p

��

Γ(ϕ|N)× I
p×id

�� N × I

ρ̂
$$&&&&&&&&&&

ρ
�� N

commutative. Recall that ϕ(x) = b(x) + λ(x)(ϕ(x) − b(x)), (see (81.16.1)). Let
h: Γ(ϕ|N \ ∂K)→ Γ(ϕ|N \ ∂K) be a homeomorphism defined by the formula

h(x, y) = (x, b(x) + λ(x)(y − b(x))).

One can check that ρ: Γ(ψ|N)× I → Γ(ψ|N) defined by

ρ((x, y), t) =

{
h(ρ̃(h−1(x, y), t)) for x ∈ N \ ∂K and t �= 1,

(ρ(x, 1), ϕ(ρ(x, 1))) for x ∈ ∂K or t = 1,
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is continuous and ρ̃: id ∼ r, which proves theorem.
Case 2. U ∩ ∂B �= ∅.
We replace ϕ by η: 2B � 2B,

ψ =


ϕ(x) if ‖x‖ ∈ [0, 1],

(2− ‖x‖)ϕ
(

x

‖x‖

)
if ‖x‖ ∈ [1, 2],

which is singlevalued on 2S and satisfies all assumptions which were made on ϕ.
Let us check the condition (81.17.1) for ψ. Let V = U ∩ ∂B. The new U is the set

U1 = U ∪ [1, 2) · V ∼= U × {0} ∪ V × [0, 1).

Take an ε > 0. We find the n − 1-manifold L ⊂ V such that ∂L ε-approximates
bd∂BV in V . Then we find the n-manifold K ⊂ U such that ∂K δ-approximates
bd U in U and satisfies (81.17.1). For simplicity of notation we may assume that
∂K is connected. If δ > 0 is sufficiently small, then L is contained in ∂K (even
with a collar). Then the set

K1 = K sup[1, 2− δ] · L ∼= K × {0} ∪L× I

is a p.l. manifold and ∂K1 well approximates bd U1 in U1. We have

∂K1 = (∂K \ L) × {0} sup(∂L) × I ∪ L× {1}.

Since (L, ∂L) is a Borsuk pair, the set (∂L)× I ∪L× {1} is a strong deformation
retract of L× I and consequently, ∂K1 is a strong deformation retract of the set
C = (∂K)×{0}∪L× I. Of course, also ∂K is a strong deformation retract of C.
Observe, that the conditions (81.17.1) for ∂K and for ∂K1 are equivalent. The
Case 1 now implies that ψ is a Z2-mapping.

It suffices to prove that if ψ is a Z2-Brouwer mapping, so is ϕ. Let P =
2B \ Int(B). Consider the following diagram

Ȟn(Γ(ϕ|B), Γ(ϕ|S))I

p∗
��

∼= �� Ȟn(Γ(ψ|2B), Γ(ψ|P ))

��

Ȟn(Γ(ψ|2B), Γ(φ|2S))
∼=��

pψ
∗

��

Ȟn(B, S) ∼=
�� Ȟn(2B, P ) Ȟn(2B, 2S)∼=

��

All horizontal arrows represent isomorphisms: left arrows are excisions, on the
right-hand side 2S and Γ(η|2S) are strong deformation retracts of P and Γ(η|P ).
Thus pψ

∗ �= 0 implies that p∗ �= 0. �

The next result is in author’s opinion the “crown” of this part.
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(81.18) Theorem. Every 1-Sn−2-mapping of Bn is a Z2-Brouwer mapping
and has a fixed point.

We will need the following lemma, which states that the raising to the n-th
power in the Z2-cohomology algebra of any closed n-manifold in Rn+1 is a trivial
operation.

(81.19) Lemma. Let M ⊂ Rn+1 be an n-dimensional compact connected topo-
logical manifold without boundary, n ≥ 2. Then xn = 0 for every x ∈ H1(M ; Z2).

The situation described in hypotheses of this lemma is known very well in
the literature. Let us gather some facts before the proof. First, M ⊂ Rn+1 ∪
{∞} ∼= Sn+1; Sn+1 \ M = U ∪ V , (U , V -connected). The closures A = U ,
B = V are ANRs. By the Alexander duality, Hn(A; Z2) = Hn(B; Z2) = 0. Let
i: M → A, j: M → B be inclusions. The Mayer–Vietoris exact sequence shows that
ϕ: Hs(A; Z2) ⊕Hs(B; Z2) → Hs(M ; Z2), ϕ(α, β) = i∗α + j∗β is an isomorphism
for 1 ≤ s < n. Moreover, (see [Sp-M]), we have:

(81.19.1) Sqn−1y = 0 for every y ∈ Hr(M ; Z2), 1 ≤ r < n;
(81.19.2) i∗Sq1a ∪ j∗b = i∗ sup j∗Sq1b for all a ∈ Hr(A; Z2), b ∈ Hn−1−r(B; Z2);
(81.19.3) Sqiuk =

(
k
i

)
uk+i if dim(u) = 1.

Proof of Lemma (81.19).

Case 1. Let n �= 2m − 1 for every natural m. Since 0 = Sqn−rxr =
(

r
n−r

)
, by

(81.19.1), (81.19.3), it suffices to find r such that
(

r
n−r

)
is odd and 1 ≤ n − r ≤

r < n. If n = 2t then r = t satisfies the above conditions. If n = 2t − 1 then
t �= 2m−1 − 1 for every m. Thus t = 2i−1 + j for some i ≥ 2 and 1 ≤ j ≤ 2i−1− 1.
It is easy to check that

(2i−1
k

)
is odd for every k = 0, 1, . . . , 2i − 1, (by induction

on i, (x + y)q mod 2 = xq + yq for q = 2i, so
(2i

k

)
is even for k = 1, . . . , 2i − 1),

and r = 2i − 1 satisfies 1 < n− r < r < n.
Case 2. Let n = 2m − 1. Then, by (81.19.2),

xn = (i∗α + j∗β)n

=
n∑

k=0

(
n

k

)
i∗αk ∪ j∗βn−k =

n−1∑
k=1

i∗αk ∪ j∗βn−k

=
(n−1)/2∑

p=1

(i∗α2p−1 ∪ j∗βn−2p+1 + i∗α2p ∪ j∗βn−2p)

=
(n−1)/2∑

p=1

(i∗α2p−1 ∪ j∗
(

n− 2p

1

)
βn−2p+1 + i∗

(
2p− 1

1

)
α2p ∪ j∗βn−2p)

=
(n−1)/2∑

p=1

(i∗α2p−1 ∪ j∗Sq1βn−2p + i∗Sq1α2p−1 ∪ j∗βn−2p) = 0. �
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Proof of Theorem (81.18). By Theorem (81.17) it suffices to check the
inequality (81.17.1). Let ϕ: Bn � Bn be a 1-Sn−2-mapping, M — a closed n− 1-
manifold in Bn, p: Γ(ϕ|M)→M — a projection. Observe that p is a locally trivial
bundle with the fibre S = Sn−2. Let us denote by wj the jth Stiefel–Whitney
class of p. Set Γ = Γ(ϕ|M). Consider the bundle p∆: Γ∆ → M and the map
g: Γ∆ → Rn; g((x, y), (x, z)) = y. Recall that c∆ denotes the 1st Stiefel–Whitney
class of the S0-bundle Γ∆ → Γ∆/Z2 with the Z2 action given by the transposition
T ((x, y), (x, z)) = ((x, z), (x, y)). We must have (c∆)n = 0, for otherwise, y = z for
a ((x, y), (x, z)) ∈ Γ∆, a contradiction. Therefore, applying twice Lemma (81.19),
we see that

0 = (c∆)n−1 ∪ c∆ =
n−1∑
j=1

(q∆)∗(w∆
j ) ∪ (c∆)n−1−j ∪ c∆

= (q∆)∗(w∆
1 ) ∪ (c∆)n−1 +

n−1∑
j=2

(q∆)∗(w∆
j ) ∪ (c∆)n−j

=
n−1∑
j=1

(q∆)∗(w∆
1 ∪ w∆

j ) ∪ (c∆)n−1−j +
n−2∑
j=1

(q∆)∗(w∆
j+1) ∪ (c∆)n−1−j

=
n−2∑
j=1

(q∆)∗(w∆
1 ∪ w∆

j + w∆
j+1) ∪ (c∆)n−1−j.

This gives w∆
j+1 = w∆

1 ∪w∆
j for j = 1, . . . , n−2, and wn−1 = w∆

n−1 = (w∆
1 )n−1 = 0.

This proves the theorem. �

For n = 3 Theorem (81.18) sounds especially visually:

(81.20) Theorem. Every ρC -continuous mapping of the closed 3-dimensional
disc, taking values which are points or knots, has a fixed point.

We give an alternative proof of this special case of Theorem (81.18), which is
based on the other lemma.

(81.21) Lemma. If Mg is a closed orientable surface of genus g then

K̃(Mg) = (Z2)2g+1.

For the proof of (81.21) see [Mik1-M].

Proof of Theorem (81.20). The structural group of the locally trivial bun-
dle with fibre S1 reduces to O(2), (see [Mik1-M]). For this reason we can rewrite
the proof of Theorem (81.18) omitting the triangles in all symbols ( · )∆. We now
change our last argument in that proof.
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Let −→p be the vector bundle with fibre R2, which corresponds to p. By Lemma
(81.19), −→p ⊕−→p represents zero in K̃(M). This gives −→p ⊕−→p ⊕−→θ =

−→
Θ for some

trivial vector bundles
−→
θ ,
−→
Θ . It follows that

1 = w(p⊕ p) = w(p) ∪ w(p) = (1 + w1 + w2)2 = 1 + [w1]2 + [w2]2 = 1 + [w1]2.

Therefore [w1]2 = 0, which finishes the proof. �

Finally, let us inform that just appeared a monograph by D. Miklaszewski (see
[Mik2-M]) which is devoted to spheric mappings.

82. A coincidence index involving Fredholm operators

In this section we shall present recent results obtained by D. Gabor and W. Kry-
szewski (see: [Kr2-M], [GaDKr1]–[GaDKr3]). To do it cohomotopy methods are
more suitable than homological ones. Therefore, we recall some results from the
cohomotopy theory.

For two pairs (X, A) and (Y, B) of (metric) spaces by [X, A; Y, B] we shall denote
the set of homotopy classes [f ] of (continuous) maps f : (X, A)→ (Y, B).

Any map p: (Γ, Γ′)→ (X, A) induces a transformation

p#: [X, A; Y, B]→ [Γ, Γ′; Y, B]

by the formula: p#([f ]) = [f ◦ p], for every [f ] ∈ [X, A; Y, B].
Simiraly, if q: (Y, B)→ (Y ′, B′), then we shall consider the transformation

q#: [X, A; Y, B]→ [X, A; Y, B]

defined by q#([f ]) = [q ◦ f ], for every [f ] ∈ [X, A; Y, B].
For convenience we recall some basic notions. Given a pair (X, A) of spaces

and n ≥ 0, in the set πn(X, A) := [X, A; Sn, s0] (6), where Sn stands for the
unit n-dimensional sphere and s0 = (1, 0, . . . , 0) ∈ Rn+1 is the base point, we
distinguish the element 0, i.e. the homotopy class of the constant map 0: x '→ s0.
In the set πn(X) we distinguish the element 1X being the homotopy class of the
map c: (X, ∅) → (S0, s0), defined by c(x) = s1 �= s0 for x ∈ X. If A �= ∅, then
contracting A to the point ∗, we get the pair (X/A, ∗) and the quotient projection
f : (X, A)→ πn(X/A, ∗); it is clear that f#: πn(X/A, ∗)→ πn(X, A) is a bijection
for all n > 0. If f : (X, A) → (Y, B) is the homotopy equivalence, then, for all
n �= 0, f#: πn(Y, B) → πn(X, A) is a bijection.

The following excision property is satisfied:

• if A, B are closed subsets of X and n ≥ 0, then the inclusion e: (A, A∩B)→
(A ∪B, B) induces a bijection e#: πn(A ∪B, B)→ πn(A, A ∩B).

(6) We also write πn(X) := πn(X,∅).
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For any n ≥ 0, there exists the so-called coboundary operator δ: πn(A) →
πn+1(X, A) which preserves the zero elements and is natural, i.e. if f : (X, A) →
(Y, B) and g := f |A: A → B, then δ ◦ g# = f# ◦ δ. In a similar manner one
defines the coboundary operator for a triple (X, A, B) (i.e. B ⊂ A ⊂ X are closed)
δ#: πn(A, B) → πn+1(X, A) putting δ# := δ ◦ k# where k: A → (A, B) is the
inclusion. In particular, given a triad (X; A, B) (i.e. A, B ⊂ X are closed), the
coboundary operators δ#: πn(A∪B, B)→ πn+1(X, A∪B) and δ#: πn(A, A∩B)→
πn+1(X, A∪B) are defined (the last one is defined via identification of πn(A∪B, B)
with πn(A, A ∩B) through the excision bijection πn(A ∪B, B)→ πn(A, A ∩B)).

It is well-known that πn(X, A) admits the structure of an abelian group pro-
vided the covering dimension dim X <∞ and the Čech cohomology (with integer
coefficients) Hq(X, A) = 0 for q ≥ 2n − 1 (see [Kr2-M]). If, additionally, B ⊂ A

is closed, Hq(A, B) = 0 for q ≥ 2n− 1, then δ#: πn(A, B) → πn+1(X, A) is a ho-
momorphism; if f : (X, A)→ (Y, B), dim Y <∞ and Hq(Y, B) = 0 for q ≥ 2n− 1,
then f#: πn(Y, B)→ πn(X, A) is a group homomorphism.

Given a triad (X; A, B), the cohomotopy and the modified cohomotopy se-
quences:

πn(X, A ∪B)
j#

−→ πn(X, B)
j#

−→ πn(A ∪B, B) δ#

−→ πn+1(X, A ∪B)
j#

−→ · · · ,

πn(X, A ∪B)
j#

−→ πn(X, B)
(i◦e)#

−→ πn(A, A ∩B) δ#

−→ πn+1(X, A ∪B)
j#

−→ · · · ,

where j: (X, B) → (X, A∪B), i: (A, B)→ (X, B) are the inclusions and e: (A, A∩
B) → (A ∪ B,−B) is the excision, are defined. It is well-known that Imj# ⊂
ker i#, Im i# ⊂ ker δ# (hence Im (i ◦ e)# ⊂ ker δ#, as well), Im δ# ⊂ ker j# and
Im j# ⊃ ker i# (where, Im stands for the image and, ker for the preimage of 0,
e.g. ker δ# := (δ#)−1(0)). If dim X < ∞ and, for q > 2n − 1, Hq(X, A ∪ B) =
Hq(A ∪ B, B) = 0, then the above sequences consist of homomorphisms and are
exact. These sequences reduce to the cohomotopy sequence of a triple (X, A, B)
if B ⊂ A.

Let ξ ∈ πn(X, A) and η ∈ πm(Y, B), n, m ≥ 0, be represented by u: (X, A) →
(Sn, s0) and v: (Y, B) → (Sm, s0), respectively. Then u × v: (X, A) × (Y, B) =
(X×Y, X×B∪A×Y )→ (Sn×Sm, Sn×{s0}∪{s0}×Sm) is given by (u×v)(x, y) =
(u(x), v(y)). The map f#: [X×Y, X×B∪A×Y ; Sn×Sm, Sn×{s0}∪{s0}×Sm]→
[X × Y, X × B ∪ A × Y ; Sn+m, s0] = πn+m(X × Y, X × B ∪ A × Y ), induced by
the quotient projection f : (Sn × Sm, Sn × {s0} ∪ {s0} × Sm) → (Sn+m, s0), is
a bijection. We define

(82.1) ξ ⊗ ν := f#[u× v] ∈ πn+m((X, A) × (Y, B)).

It is easy to see that the defined above external product

⊗: πn(X, A) × πm(Y, B)→ πn+m((X, A) × (Y, B))πn+m(X × Y, X ×N ∪A × Y )
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has the following properties:

(82.2) Properties.

(82.2.1) For any ξ ∈ πn(X, A), ν ∈ πm(Y, B) and η ∈ πp(Z, C),

(ξ ⊗ ν)⊗ η = ξ ⊗ (ν ⊗ η)

in πn+m+p(X × Y × Z, X × Y × C ∪X × B ×X sup A× Y × Z).
(82.2.2) If p: (X1, A1)→ (X, A), q: (Y1, B1)to(Y, B), then

(p× q)#(ξ ⊗ ν) = p#(ξ)⊗ q#(ν),

for any ξ ∈ πn(X, A) and ν ∈ πm(Y, B),
(82.2.3) For any ξ ∈ πn(X, A), ξ ⊗ 1Y = pr#(ξ) in πn(X × Y, A × Y , where

pr: (X × Y, A× Y )→ (X, A) is the projection.
(82.2.4) For any ξ ∈ πn(A), ν ∈ πm(Y, B),

δ#(ξ ⊗ ν) = δ(ξ)⊗ ν,

where δ: πn(A) → πn+1(X, A) is the coboundary operator of the pair
(X, A) and δ#: πn+m(A × Y, A × Y ∩ X × B) → πn+m+1(X × Y, A ×
Y ∪ X × B) is the coboundary operator from the modified cohomotopy
sequence of the triad (X × Y ; A× Y, X × B).

Let m ≥ 1; for any n ≥ 0, we make the following identifications

πn(Sm, s0) ≡ πn(Dm, Sm−1) ≡ πn(Rm, Rm \Bm(0, ρ)),

πn(Sm) ≡ πn(Rm+1 \Bm(0, ρ)),

where ρ > 0, justified by the existence of bijections between the respective sets (be-
ing group isomorphisms provided 2n−1 > m). If 2n−2 > m, then δ: πn−1(Sm−1)
→ πn(Dm, Sm−1) is an isomorphism.

The set πn(Sm, s0) and the homotopy group πm(Sn, s0) coincide as sets (if,
additionally 2n − 1 > m, then they also do as groups). Hence, if m < n, then
πn(Sm, s0) = 0. Recall that given k ≥ 0, if n ≥ k + 2, then the homotopy
groups πn+k(Sn, s0) and πn+1+k(Sn+1, s0) are canonically isomorphic (through the
Freudenthal suspension homomorphism E) with Πk: = π2k+2(Sk+2, s0). Moreover,
by the results of Serre, the stable homotopy groups of spheres Πk are abelian and
finite for any k > 0. Later on, if m < 2n − 1, then we identify πn(Sm, s0) with
Πm−n.

Given ξ ∈ Πi1 , ν ∈ Πi2 (i1, i2 ≥ 0), regarding Πi1 and Πi2 as πn(Sm, s0) and
πl(Sm, s0), where m− n = i1, 2n− 1 > m and k− l = i2, 2l− 1 > k, respectively,
we may consider an element

(82.3) ξ ⊗ ν ∈ πn+l(Sm+k , s0) = Πi1+i2 .

This definition is correct, i.e. does not depend on the choice of m, n, k and l, up
to the above mentioned identifications.
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(82.4) Definition. A compact space Y is called a cell-like set, if there exists
an ANR-space Z and an embedding i: Y → Z such that the set i(Y ) is contractible
in any of its neighbourhoods U ⊂ Z.

It is not difficult to see that given a cell-like space Y , an ANR-space Z and an
embedding i: Y → Z the set i(A) is contractible in an arbitrary neighbourhood in
Z; i.e. cell-likeness is an absolute property. The cartesian product of two cell-like
sets is cell-like. It is evident that any compact convex or contractible, or an Rδ-set
is cell-like. It is also easy to see that cell-like sets are acyclic (in the sense of the
Čech homology theory); however there are examples of acyclic sets which are not
cell-like.

(82.5) Definition. A proper surjection p: Γ → X is a cell-like map, if for
every x ∈ X the fibre p−1(x) is a cell like set.

Evidently, any cell-like map is a Vietoris map and there are examples of Vietoris
mappings which are not cell-like mappings.

We have proved in Chapter I that composition of Vietoris mappings is again
a Vietoris mapping. Note that this is no longer true for cell-like mappings.

Recall that a multivalued mappings ϕ: X � Y is called admissible if there
exists a diagram X

p⇐= Γ
q−→ Y in which p is a Vietoris map such that ϕ(x) =

q(p−1(x)), for every x ∈ X.

(82.6) Remark. In this section we shall consider only admissible mappings
for which there exists a diagram X

p⇐= Γ
q−→ Y in which p is a cell-like map such

that ϕ(x) = q(p−1(x)); such an admissible map ϕ: X � Y we shall call cell-like
admissible (for short c-l admissible).

We shall use the following result proved by W. Kryszewski (see [Kr2-M]).

(82.7) Theorem. Let (K, L) be a pairs of ANRs. If dim X <∞ and p: (Γ, Γ′)
⇒ (X, A), where Γ′ = p−1(A), is a cell-like map, then

p#: [X, A; K, L]→ [Γ, Γ′; K, L]

is a bijection.

As a simple corollary we get

(82.8) Corollary. If dim X < ∞ and p: (Γ, Γ′) ⇒ (X, A) is a cell-like map,
with Γ′ = p−1(A), then, for each n ≥ 0,

p#: πn(X, A)→ πn(Γ, Γ′)

is a bijection. In particular, if πq(X, A) = 0 for q ≥ 2n − 1, then p# is a group
isomorphism.
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Now, let X and X′ be two Banach spaces. A bounded linear map L: X → X′ is
a Fredholm operator, if the kernel Ker(L) and cokernel Coker(L) = X′|Im(L) are
finite dimensional Banach spaces.

The Fredholm index i(L) of L is given by:

i(L) = dim Ker(l) − dim Coker(L).

Observe that if L: Rn → Rm is a linear map, then L is a Fredholm operator and
i(L) = n−m.

Until end of this section we shall consider only Fredholm operators with non-
negative indices.

Assume L: X → X′ is a Fredholm operator, Ω ⊂ X is an open set and ϕ: Ω �
X′ is a c-l admissible map. The aim of this section is to study the following
coincidence problem:

(82.9) L(X) ∈ ϕ(x).

In this order we shall present a brief description the so called coincidence index,
i.e. a homotopy invariant responsible for the existence of solutions to (82.8).

The first assume that X = Rm, X′ = Rn, m, n ≤ 1. Let U ⊂ Rm be open and
bounded and let (p, q) be an c-l-admissible pair of maps determining ϕ such that
cl

p←− Γ
p−→ Rn and q(p−1(bd U)) ⊂ Rn \{0}. Then q(p−1(bd U)) ⊂ Rn \Bn(0, ρ)

for some ρ > 0. Consider the following sequence of maps

(82.10) (Rn, Rn \Bn(0, ρ))
q←− (p−1(cl U, p−1(bd U))

p−→ (cl U, bd U) i1−→
i1−→ (Rm, Rm \ U) i2←− (Rm, Rm \Bm(0, d))

where d > 0 is such that cl U ⊂ B(0, d), i1, i2 are inclusions, and the corresponding
sequence on the level of cohomotopy sets

(82.11) πn(Sn, s0) ≡ πn(Rn, Rn \Bn(0, ρ))
q#

−→ πn(p−1(cl U, p−1(bd U))
p#

←− πn(cl U, bd U)
i#

1←− πn(Rm, Rm \U)
i#

2−→ πn(Rm, Rm \Bm(0, d))

≡ πn(Sm, s0).

By (82.11), p# is a bijection; so does i#
1 by the excision property. Hence the

sequence (82.11) defines the transformation

K : πn(Sn, s0) ≡ πn(Rn, Rn \Bn(0, ρ))→ πn(Rm, Rm \Bm(0, d)) ≡ πn(Sm, s0),

K := i#
2 ◦ (i#

1 )−1 ◦ (p#)−1 ◦ q#.

The following definition is correct since it evidently does not depend on the choice
of p and d.
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(82.12) Definition. By the generalized degree of the pair (p, q) on the set U

in 0 we understand the element

deg((p, q), U, 0) := K (νn) ∈ πn(Rm, Rm \Bm(0, d)) ≡ πn(Sm, s0),

where νn corresponds to the homotopy class of the identity map id: Sn → Sn in
Z ≡ π(Sn, s0) ≡ πn(Rn, Rn \Bn(0, ρ)).

The degree defined above has all expected properties: existence, homotopy
invariance (the notion of an admissible homotopy will be described below) and
localization; the additivity property holds if m < 2n− 1.

If (p, q) is as above, but U is not bounded, then the degree deg((p, q), U, 0)
is still defined (as usual by means of the localization property) provided the set
{x ∈ cl U | 0 ∈ q(p−1(x))} is compact.

(82.13) Remarks.

(82.13.1) It is clear that if m = n, then deg((p, q), U, 0) agrees with the usual
topological degree defined in Chapter III. If m < n, then deg((p, q), U, 0) = 0.
Therefore it is natural to assume that m ≥ n.

(82.13.2) Suppose that m ≥ n. For k ≥ 1, by the kth suspension of (p, q) we
mean the pair (Skp, Skq) where Skp, Skq are the (unreduced) kth suspensions of p

and q, respectively. Additionally let S0p = p, S0q = q. It is clear that, for any
k ≥ 0, Skp is a cell-like map, deg((Skp, Skq), SkU, 0) ∈ πn+k(Sm+k , s0) is defined
and if m < 2n − 1, then it is equal (remember the identification πn(Sm, s0) ≡
πn+k(Sm+k , s0)) to deg((p, q), U, 0).

(82.13.3) The following procedure is performed in order to define the so-called
‘stable’ degree Deg. Suppose that m ≥ n, take k ≥ max{0, m − 2n + 2} (then
m + k < 2(n + k)− 1) and define

Deg((p, g), U, 0) := deg((Skp, Skq), SkU, 0) ∈ πn+k(Sm+k , s0) ≡ Πm−n.

The stable degree thus defined has also all the usual properties mentioned above
and Deg((p, q), U, 0) = deg((p, q), U, 0) (up to the suspension isomorphism) pro-
vided n ≤ m < 2n− 1.

(82.13.4) Let U = Bm and put p̃ := p|p−1(Sm−1): p−1(Sm−1) → Sm−1, q̃ :=
q|p−1(Sm−1): p−1(Sm−1)→ Rn \Bn(0, ρ). Consider a commutative diagram

Z ≡ πn(Sn, s0) ≡ πn(Rn, Rn \Bn(0, ρ))
(p#)−1◦q#

�� πn(Dm, Sm−1) ≡ πn(Sm, s0)

Z ≡ πn−1(Sn−1) ≡ πn−1(Rn \Bn(0, ρ))

∼= δ1

��

(p̃#)−1◦q̃#
�� πn−1(Sm−1)

δ

��



442 CHAPTER VII. RECENT RESULTS

where δ1, δ are the respective coboundary operators. It is clear that the upper
row defines the degree, i.e. ξ := deg((p, g), Bm, 0) = (p#)−1 ◦ g#(νn). If ξ0 :=
(p̃#)−1 ◦ q̃#(νn−1 (where νn−1 is the element in πn−1(Rn \Bn(0, ρ)) corresponding
to the homotopy class of id: Sn−1 → Sn−1), then δ(ξ0) = ξ. Observe that if
n ≤ m < 2n− 2, then δ is an isomorphism; hence one may identify ξ with ξ0 up
to this isomorphism.

(82.13.5) Suppose that Y , Y ′ are finite-dimensional Banach spaces, m := dim Y

≥ n := dim Y ′, and let U ⊂ Y be open. Suppose that an admissible pair
cl U

p←− Γ
q−→ Y ′ such that q(p−1bd U)) ⊂ Y ′ \ {0} is given (if U is not bounded,

then one assumes additionally that the set {x ∈ cl U | 0 ∈ q(p−1(x))} is compact).
Suppose further that η: Y → Rm and η′: Y ′ → Rn are isomorphisms determining
orientations in Y and Y ′, respectively. Then we put

deg((p, q), U, 0) := deg((η ◦ p, η′ ◦ q), η(U), 0).

This definition is correct since η ◦ p is a cell-like map. In a similar manner one
defines the ‘stable’ degree Deg.

These degrees heavily depend on the orientations η and η′: a change of any
of these orientations may effect a change of the ‘sign’ of the degree; in particular,
the nontriviality of the degree is not effected by such a change.

(82.13.6) The degree Deg is stable with respect to the suspension operator. It
is not the case with deg; it essentially depends on specific choice of numbers m

and n. On the other hand deg seems to be more precise. For example: if m = 9
and n = 5, then π9(S5) = Z2 and the suspension map E : π8(S4) → π9(S5) is an
epimorphism (see [Sp-M]). Moreover, π8(S4) = Z2 ⊕ Z2 and Π4 ∼= π10(S6) = 0;
therefore, for f : (D9, S8) → (D5, S4) such that E [f |S8] is a nontrivial element of
π9(S5), we get deg(f, B9, 0) �= 0 in π5(S9) whereas Deg(f, B9, 0) = 0 in π6(S10).

Now, let us get back to the general situation: let X, X′ be infinite dimensional
Banach spaces, L: X→X′ be a Fredholm operator with nonnegative index i(L)=k.
Since both Ker(L) and Im(L) are direct summands in X and X′, respectively,
there exist continuous linear projections P :× → X and Q: X′ → X′ such that
Ker(L) = Im(P ) and Ker(Q) = Im(L). Clearly X, X′ split into the (topological)
direct sums

Ker(P )⊕Ker(L) = X, Im(Q)⊕ Im(L) = X′.

Moreover, since Im(L) is a closed subspace of X′, the Banach theorem implies that
L|Ker(P): Ker(P ) → Im(L) is a linear homeomorphism. It also implies that L is
a proper map when restricted to any closed set A ⊂ X such that P (A) is bounded.

Let us fix orientations in Ker(L) and Coker(L). It is clear that the orientation
in Coker(L) induces the orientation on Im(Q) in a unique way. If Y ′ is a finite-
dimensional subspace of X′ of the form Y ′ = Im(Q)⊕ Ỹ ′, where Ỹ ′ ⊂ Im(L), and
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an orientation in Y ′ is given, then so is in Y ′. Let KP : Im(L) → Ker(P ) be the
(topological) isomorphism inverse to L|Ker(P). In the (finite-dimensional) space
L−1(Y ′) = KP (Ỹ ′) ⊕ Ker(L) we choose an orientation which agrees on KP (Y ′)
with that induced by KP from Ỹ ′ and on Ker(L) with the original one.

Let Ω ⊂ X with int Ω �= ∅ and consider c.l. admissible pair Ω
p←− Γ

q−→ X′

such that:

(i) q is a compact map;
(ii) the coincidence set κ(p, q) = {x ∈ Ω | L(x) ∈ q(p−1(x))} is compact and

contained in the interior int Ω.

Choose an open bounded set U ⊂ E, such that

κ(p, q) ⊂ U ⊂ cl U ⊂ int Ω.

Since L|cl U is proper, the map cl � × '→ L(x) − q(p−1)) is closed. Moreover, for
any x ∈ bd U , 0 �∈ L(x)− q(p−1)); therefore there is ε0 > 0 such that

inf{‖y‖ | y ∈ L(x)− q(p−1)), x ∈ bd U} > ε0.

Take 0 < ε ≤ ε0 and let πε: cl q(p−1(U)) → X′ be a Schauder projection of the
compact set cl q(p−1)) into a finite dimensional subspace κ(p, q) of X′, such that

‖πε(y) − y‖ < ε for y ∈ cl q(p−1)).

Denote by Ỹ ′ the finite dimensional subspace of Im(L) such that Z ⊂ Y ′ :=
Im(Q) ⊕ Ỹ ′ and fix an arbitrary orientation on Y ′. Put Y := L−1(Y ′) (according
to the above remarks Y and Y ′ are ‘canonically’ oriented; these orientations depend
on the orientations of Ker(L), Coker(L) and of Ỹ ′) and let UY = U ∩ Y . It is
clear that the closure cl UY (in Y ) is contained in cl U ∩ Y and its boundary
bd UY (relative to Y ) is contained in bd U ∩ Y . Further let pY = p|p−1(cl UY ),
qY = πε ◦ q|p−1(cl UY ) and LY = L|Y : Y → Y ′. Observe, that pY is a cell-like map
and LY is a Fredholm operator of index

i(LY ) = dim Y − dim Y ′ = k.

Enlarging Ỹ ′ if necessary we may assume that n := dim Y ′ ≥ k +2 (this is possible
since dim X′ =∞). Putting m := dim Y = n + k we arrive in a finite dimensional
situation described earlier in Remark (82.13.5).

(82.14) Definition. By the generalized coincidence L-index of a pair (p, q)
we understand the element

IndL((p, q), Ω) = deg((pY , LY ◦ pY − qY ), UY , 0) ∈ Πm−n = Πk.
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The above definition is correct, i.e. it does not depend on the choice of all auxil-
iary objects: P , Q, U , ε, πε, Ỹ ′ and the orientation on Ỹ ′; this was carefully proved
in [Kr2-M] and [GaDKr1]. As in the case discussed in Remark (82.13.5), a change
of orientation in either Ker(L) or Coker(L) does not destroy the nontriviality of the
index.

In order to enlist the most important properties of the introduced index IndL, let
us first introduce the notion of homotopy. c.l. admissible pairs Ω

pk←− Γk
qk−→ X′ (or

maps determined by them), k = 0, 1, are L-homotopic if there exist c.l. admissible

pair ω × [0, 1] R←− Γ S−→ X′ with a compact S such that the set {x ∈ Ω | L(x) ∈
S(R−1(x, t)) for some t ∈ [0, 1]} is compact and contained in int Ω, and maps
jk: Γk → Γ, k = 0, 1, such that the following diagram commutes

Ω

i0

��

Γ0
p0��

j0

��

q0

���
��

��
��

�

Ω× [0, 1] Γ
R�� S �� X′

Ω

i1

��

Γ1p1
��

j1

��

q1

����������

where ik(x) = (x, k) for k = 0, 1 and x ∈ Ω.

(82.15) Theorem (comp. [Kr2-M], [GaDKr1], [GaDKr2]). The index IndL has
the following properties:

(82.15.1) (Existence) If IndL((p, q), Ω) �= 0, then κ(p, q) �= ∅, i.e. there is x ∈ Ω
such that L(x) ∈ q(p−1(x)).

(82.15.2) (Localization) If Ω′⊂Ω, intΩ′ �=∅, κ(p, q)⊂ intΩ′, then IndL((p, q), Ω′)
is well defined and equal to IndL((p, q), Ω).

(82.15.3) (Homotopy Invariance) If (p0, q0), (p1, q1) are L-homotopic, then

IndL((p0, q0), Ω) = IndL((p1, q1), Ω).

(82.15.4) (Additivity) If sets Ω1, Ω2 ⊂ Ω are disjoint, have nonempty interiors
and κ(p, q) ⊂ intΩ1 ∪ intΩ2, then

IndL((p, q), Ω) = IndL((p, q), Ω1) + IndL((p, q), Ω2).

(82.15.5) (Restriction) If q(p−1(Ω)) ⊂ Y ′, where Y ′ is a closed subspace of X′,
then

IndL((p, q), Ω) = IndL′(p′, q′), Ω′),

where Ω′ = Ω∩X′, X′ := L−1(Y ′ +Im(Q)), p′ = p|p−1(Ω′), q′ = q|p−1(Ω′)

and L′ = L|X′ .

The restriction property immediately implies that
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(82.16) Corollary. If q(p−1(Ω)) ⊂ Y ′ := Im(Q) ⊕W , where W is a finite
dimensional subspace of Im L, then

IndL((p, q), Ω) = Deg((p1, L′ ◦ p1 − q1), Ω ∩ T, 0),

where X′ := L−1Im(Q) ⊕ W ), p1 = p|p−1(cl Ω∩X′): p−1(cl Ω ∩ X′) → X′, q1 =
q|p−1(cl Ω∩X′): p−1(cl Ω ∩X′)→ Y ′ and L′ = L|X′ : X′ → Y ′.

Now, we shall apply the above topological invariants to the problem of solv-
ing systems of nonconvex inclusions involving Fredholm operators of nonnegative
index.

Let X, Y , X′ and Y ′ be Banach spaces, D be an open subset of X and let Ω
be a subset of D × Y . We shall consider a system of set-valued equations of the
following form

(82.17)

{
L1(y) ∈ F (x, y),

L2(x) ∈ G(x, y),

where L1: Y → Y ′, L2: X → X′ are Fredholm operators and F : Ω � Y ′, G: Ω �
X′ are set-valued maps.

The operator L: X × Y → X′ × Y ′, given by L(x, y) := (L1(x), L2(y)) for
x ∈ X, y ∈ Y , is Fredholm with the index ind (L) = ind (L1) + ind (L2). If
the map Ω � (x, y) � Ψ(x, y) = G(x, y)× F (x, y) is admissible and compact, the
index IndL(Ψ, Ω) is defined and nontrivial, then solutions to problem (82.17) exist.
We shall look for (separated) conditions stated in terms of F and G implying the
existence of solutions to (82.7); (82.10); hence, we shall employ the alternative
method, which lets us to relax assumptions concerning the coincidence index.

Let pr: D× Y → D be the projection (i.e. pr(x, y) = x for x ∈ D, y ∈ Y ),

κ(F, L) = {(x, y) ∈ Ω | L1(y) ∈ F (x, y)} and DF := pr(κ(F, L)) ⊂ D.

It is clear that κ(F, L) is closed in Ω and coincides with the graph of the solution
map SF defined as follows

DF � x '→ SF (x) := {y ∈ Y | (x, y) ∈ κ(F, L)}.

Let prκ(F,L) := pr|κ(F,L): κ(F, L) → DF , let P1 denote a (fixed) bounded linear
projector of Y onto Ker(L1) and let P: X × Y → Y be given by P(x, y) = P1(y)
for x ∈ X, y ∈ Y . One gets easily the following

(82.18) Lemma. SF is a multivalued map (i.e. is u.s.c. with compact values) if
and only if prκ(F,L): κ(F, L)→ DF is a proper map. This holds e.g. if Ω is closed
in D× Y and one of the following conditions is satisfied:
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(82.18.1) Y = Rm, Y ′ = Rn with n ≤ m, Ω is locally bounded over X (7),
(82.18.2) Y , Y ′ are arbitrary Banach spaces, F is compact and P(Ω) is bounded.

Further on we assume that:

(A1) prκ(F,L): κ(F, L)→ DF is proper;
(A2) F is a compact admissible set-valued map;
(A3) κ(F, L) ⊂ intΩ;
(A4) for any a ∈ D, int Ωa �= ∅, where Ωa := {y ∈ Y | (a, y) ∈ Ω}.
Suppose that an admissible pair Ω

p←− Γ
q−→ Y ′ determines F , let a ∈ D,

Γa = {(y, γ) ∈ Ωa × Γ | p(γ) = (a, y)},

and define maps pa: Γa → Γa and qa: Γa → Y ′ by

pa(y, γ) = y, qa(y, γ) = q(γ), for (y, γ) ∈ Γa.

Note that (pa, qa) is a c-l-admissible pair and q(p−1(a, y)) = qa(p−1
a (y)) for y ∈

Ωa. Moreover, (pa, qa) determines a compact set-valued map Ωa � y '→ F (a, · );
in particular qa is compact.

Assume that the spaces Ker(L1) and Coker(L1) are oriented in an arbitrary
manner. In view of assumptions (A3), (A4), for each a ∈ D, the set {y ∈ Ωa |
L1(y) ∈ F (a, y)} = κ(F, L) ∩ pr−1(a) is compact and contained in int Ωa. Hence
the index

IndL1((p, q)(a, · ), Ωa) := IndL1((pa, qa), Ωa)

is well-defined.

(82.19) Proposition. If, for some a ∈ D, IndL1((p, g)(a, · ), Ωa) �= ∅ and D0

is a pathwise component of D containing a, then D0 ⊂ DF .

To prove this fact observe first that SF (a) �= ∅, i.e. a ∈ DF , in view of the
existence property of IndL1 and let us present a result which will be useful here
and in the sequel.

(82.20) Lemma. There are numbers ε, η > 0 and closed neighbourhoods W1,
W of SF (a) such that W1 ⊂ intW and

(DX(a, ε) × V ) ∩ κ(F, L) ⊂ DX(a, ε)×W1 ⊂ (DX(a, ε) × Y ) ∩ Oη)(κ(F, L))

⊂ (DX(a, ε) × Y ) ∩ clOη)(κ(F, L)) ⊂ DX(a, ε) ×W ⊂ intΩ.

(7) We say that Ω is locally bounded over X if, each x ∈ X has a neighourhood N in X such

that (N × Y ) ∩ Ω is bounded.
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Proof. By (A3) above, there is ρ > 0 such that DX(a, ρ) × clOρ)(SF (a)) ⊂
intΩ. The upper semicontinuity of SF implies that there is 0η ≤ ρ/2 such that

SF (DX(a, 2η)) ⊂ Oρ/2(SF (a)).

It is now easy to see that

(DX(a, η)× Y ) ∩ clOη)(κ(F, L)) ⊂ DX(a, ρ) × clOρ)(SF (a)).

Next, we choose ρ1 > 0 such that

DX(a, ρ1)× clOρ1 )(SF (a)) ⊂ (BX(a, η)× Y ) ∩Oη)(κ(F, L))

and, again using the upper semicontinuity of SF , a number 0 < ε ≤ ρ1 such that
SF (DX(a, ε)) ⊂ Oρ1 )(SF (a)). Then putting W1 := clOρ1)(SF (a)) and W :=
clOρ)(SF (a)) we get the desired assertion. �

Proof of Proposition (82.19). We shall prove that BX(a, ε) ⊂ DF . Let
b ∈ BX(a, ε), then W ⊂ intΩb. Let

Γ0 = Γa ∩ (W × Γ), Γ1 = Γb ∩ (W × Γ),

p0 = pa|Γ0: Γ0 → W, p1 = pb|Γ1: Γ1 → W,

q0 = qa|Γ0 , q1 = qb|Γ1 .

Observe that pairs (p0, q0) and (p1, q1) are admissible and determine compact
maps. Moreover, they are homotopic. Indeed, the following diagram

W

i0

��

Γ0
p0��

j0

��

q0

���
��

��
��

�

W × [0, 1] Γ
p�� q

�� Y ′

W

i1

��

Γ1p1
��

j1

��

q1

��!!!!!!!!

where

Γ = {(y, γ, t) ⊂W × Γ× [0, 1] | p(γ) = ((1− t)a + tb, y)},
p(y, γ, t) = (y, t), q(y, γ, t) = q(γ), for (y, γ, t) ∈ Γ,

jk(y, γ) = (y, γ, t), for (y, γ) ∈ Γk (k = 0, 1),
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is commutative. The pair (p, q) is admissible and determines a compact map. If,
for some y ∈W and t ∈ [0, 1], L1(y) ∈ q(p−1(y, t)), then

((1− t)a + tb, y) ∈ (DX(a, ε) × Y ) ∩ κ(F, L) ⊂ DX(a, ε)×W1;

i.e. y ⊂ int W . Therefore the set {y ∈ Y | L1(y) ∈ q(p−1(y, t)), for some t ∈ [0, 1]}
is a compact subset of W and does not intersect the boundary bd W . Hence, by
the localization and the homotopy invariance properties of IndL1 , we get that

o �= IndL1((p, q)(a, · ), Ωa) = IndL1((p0, q0), W )

= IndL1((p1, q1), W ) = IndL1((p, q)(b, · ), Ωb).

This implies that b ∈ DF . The connectedness argument ends the proof. �

(82.21) Remark. In particular we have proved that the map

a '→ IndL1(pa, qa), Ωa)

is constant on path components of the set D.
Now, we are in a position to present the main results of this section, i.e. theorems

concerning the existence of solutions to the system of the form (82.17). For the
rest of this section, if A ⊂ D, then

ZA := pr−1(A) ∩ κ(F, L) = (A × Y ) ∩ κ(F, L) and prA: = pr|ZA: ZA → A.

Observe that prA(ZA) = pr(ZA) = prκ(F,L)(ZA) = A ∩DF .
Assume that Y = Rm, Y ′ = Rn, X = Rk and X′ = Rl, where 1 ≤ n < m and

1 ≤ l ≤ k. This implies that ind (L1) = m− n, ind (L2) = k − l. Let m < 2n− 1.
As before, let D ⊂ Rk be open, Ω ⊂ D × Rm and let F : Ω � Rn, G: Ω � Rl

be c-l-admissible maps. We assume that hypotheses (A1)–(A4) are satisfied (note
that (A2) holds automatically since dim Y <∞). In order to simplify the notation
we transform the system (82.17) and get{

0 ∈ ϕ(x, y) := L1(y) − F (x, y),

0 ∈ ψ(x, y) := L2(y) −G(x, y),

where (x, y) ∈ Ω. It is evident that maps ϕ and ψ are admissible.
If Ω

p⇐= Γ
q−→ Rn determines ϕ, then

κ(F, L) = {(x, y) ∈ Ω | 0 ∈ q(p−1(x, y))}.

For any a ∈ D, the degree

deg((p, q)(a, · ), Ωa, 0) := deg((pa, qa), Ωa, 0) ∈ πn(Sm, s0) ≡ Πm−n
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(where pa and qa are defined as above) is well-defined and the function D � a '→
deg((p, q)(a, · ), Ωa, 0) is constant on path components of D.

We are now going to establish the first existence result. For the rest of this
section we assume that:

(B1) there is x0 ∈ D such that η0 := deg((p, q)(x0, · ), Ωx0, 0) �= 0 in πn(Sm, s0).
(B2) There are a number r > 0 and an admissible map Φ: Dk(x0, r) � Rl,

determined by an admissible pair (u′, v′), such that Dk(x0, r) ⊂ D and,
for (x, y) ∈ ZSk−1(x0,r), if µ · Φ(x) ∩ ψ(x, y) �= ∅, then µ ≥ 0.

(B3) 0 �∈ Φ(Sk−1(x0, r)), ξ := deg((u′, u′), Dk(x0, r), 0) �= 0 ∈ πl(Sk , s0) and
ξ ⊗ η0 �= 0 in πl+n(Sk × Sm, Sk × {s0} ∪ {s0} × Sm) ≡ πl+n(Sk+m, s0).

It is easy to see that assumptions (B2), (B3) constitute an a priori bounds
condition of sorts. To see this better, consider the following example.

(82.22) Example. Assume x0 = 0, η0 = deg((p, q)(0, · ), Ω0, 0) �= 0, let k = l

and suppose that ind (L2) = 0. In this case, one may build an appropriate map Φ
suitably complementing the operator L2 itself.

(82.22.1) Let L2 be an isomorphism. If we put Φ = L2 then (B3) is satisfied
since Φ is an isomorphism: in this case xi := deg((u′, v′), Dk(0, r), 0) �= O in
πk(Sk , s0) for any admissible pair determining Φ (in fact ξ = ±νk) and ξ ⊗ η �= 0
(comp. [Kr2-M]).

If, additionally, D = Rk and, e.g. the map G is bounded, i.e. there is R > 0
such that ‖G(x, y)‖ ≤< R for all (x, y) ∈ Ω, then we see that (B2) is satisfied
provided that r is large enough. The same holds if the set of all solutions of the
family of systems

(82.22.1)λ

{
0 ∈ ϕ(x, y),

L2(x) ∈ λG(x, y),

where λ ∈ (0, 1), is bounded.
Finally, if we suppose that, there is r > 0 such that, for any solution (x, y) with

‖x‖ = r of the system (82.22.1)λ for some λ, one has λ ≥ 1, then assumption (B2)
is satisfied again. The last condition holds e.g. if there is r > 0 such that, for any
(x, y) ∈ ZSk−1(0,R), one of the following of conditions (of the Rothe or Altman
type) is satisfied

sup
z∈G(x,y)

‖z‖ ≤ ‖L2(x)‖,

sup
z∈G(x,y)

‖z‖k ≤ inf
z∈G(x,y)

‖z − L2(x)‖k + ‖L2(x)‖k, where k > 1.

(82.22.2) If L2 is not an isomorphism, then let P2, Q2: Rk → Rk be linear
projections such that Ker(P2) ⊕Ker(L2) = Im(Q2) ⊕ Im(L2) = Rk. Additionally
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assume that Q2 is an orthogonal projection. Since ind (L2) = 0 (i.e. dim Ker(L2) =
dim Im(Q2)), there exists an isomorphism J : Ker(L2)→ Im(Q2). Define Φ: Rk →
Rk by the formula Φ(x) = J ◦ P2(x) + L2(x) and suppose that there exists r > 0
such that, for (x, y) ∈ ZSk(0,r),

sup
z∈G(x,y)

〈Φ(x), z〉 ≤ ‖L2(x)‖2.

where 〈 · , · 〉 stands for the inner product in Rk. Then again conditions (B2) and
(B3) are satisfied.

The general assumption k > l of the possible dimension defect requires to
introduce a nontrivial ‘reference’ mapping Φ in (B2); in the ordinary fixed point
theory usually the identity plays such a role.

(82.22) Theorem. Let 1 ≤ n ≤ m < 2n − 1, 1 ≤ l ≤ k < 2l − 2 and
l > m − n + 1. If assumptions (A1)–(A4) and (B1)–(B3) are satisfied, then the
system (82.22.1) has a solution.

Proof. In order to simplify the notation (and without loss of generality),
further on we assume that x0 = 0 and r = 1. Hence Dk(x0, r) = Dk and
bd Dk(x0, r) = Sk−1.

In view of the above mentioned identifications, we treat η0 as the element of
πn(Rm, Rm \ Bm) ≡ πn(Sm, s0). Assume that Dk u′

←− Λ′ v′
−→ Rl is an admissible

pair determining Φ. According to Remark (82.12.4), ξ = deg(u′, v′), Dk, 0) �= 0 in
πl(Dk, Sk−1). Hence

ξ ⊗ η0 �= 0 in πl+n((Dk, Sk−1) × (Rm, Rm \Bm)).

Again by Remark (82.12.4), ξ = δ(ξ0), where δ is the coboundary operator of the
pair (Dk , Sk−1) and ξ0 = (u#)−1 ◦ ov#(ν l−1 ∈ πl−1(Sk−1) (where, as above,
ν l−1 corresponds in πl−1(Rl \Bl(0, ρ)) to the homotopy class in πl−1(Sl−1) of the
identity Sl−1 → Sl−1), u := u′|u′−1(Sk−1) and v := v′|u′−1(Sk−1). Since k < 2l− 2,
δ is an isomorphism. Moreover, we deduce:

ξ ⊗ η0 = δ(ξ0) ⊗ η0 = δ#(ξ0 ⊗ η0)

where δ# is the coboundary operator in the modified cohomotopy sequence of the
triad (Dk ×Rm, Sk−1 × Rm, Dk × (Rm \Bm)), i.e.

δ# : πl−1+n(Sk−1 × (Rm, Rm \Bm))

= πl−1+n(Sk−1 × (Rm, Sk−1 ×Rm ∩Dk × (Rm \Bm))

→ πl−1+n(Dk × (Rm, Sk−1 ×Rm ∪Dk × (Rm \Bm))

= πl+n((Dk, Sk−1)× (Rm, Rm \Bm)).
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Since 2(l − 1 + n) − l > m + k and l − 1 + n > m, we gather that δ# is an
isomorphism. Therefore

ξ0 ⊗ η0 �= 0 in πl−1+n(Sk−1 × (Rm, Rm \Bm)).

We shall now make use of the following result (for details see [Kr2-M])

(82.23) Lemma. The following composition of maps

πl−1(Sk−1)
(prSk−1 )#

−−−−−−→ πl−1(ZSk−1 ) δ−→ πl(ZDk , ZSk−1 ),

where δ is the coboundary operator for the pair (ZDk , ZSk−1), maps ξ0 onto a non-
trivial element, i.e. δ ◦ pr#

Sk−1 (ξ0) �= 0 in πl(ZDk , ZSk−1). Moreover, the composi-
tion

πl−1(Sk−1) δ−→ πl(Dk, Sk−1)
(pr|

Dk )#

−−−−−−→ πl(ZDk , ZSk−1)

maps ξ0 onto a nontrivial element.

Now, we shall establish the existence of solutions of the map

Θ: DF → Rl, Θ(x) = ψ({x} × SF (x)), x ∈ DF .

It is clear that if there is x ∈ DF such that 0 ∈ Θ(x), then (82.22.1) has a solution.
The map ψ is admissible; let an admissible pair Ω

p′
←− Γ′ q′

−→ Rl determine ψ.
It is easy to see that Θ is then determined by the (no more admissible) pair

DF
pΘ←− ΓΘ

qΘ−→ Rl,

where ΓΘ := {(x, y, γ′) ∈ κ(F, L)× Γ′|(x, y) = p′(γ′)} and

pΘ(x, y, γ′) = x, qΘ(x, y, γ′) = q′(γ′)

for (x, y, γ′) ∈ ΓΘ, i.e. for x ∈ DF , Θ(x) = qΘ(p−1
Θ (x)). Maps pΘ, qΘ admit

factorizations

pΘ: ΓΘ
p̃←− κ(F, L)

prκ(F,L)←−−−−−− DF , qΘ: ΓΘ
q̃←− Γ′ q′

←− Rl,

where p̃(x, y, γ′) = (x, y), q̃(x, y, γ′) = γ′ for (x, y, γ′) ∈ ΓΘ. It is easy to see that
p̃ is a cell-like map.

To simplify the notation, let

A := Dk, ΓΘ,A : p̃−1(ZA), p̃A := p̃|ΓΘ,A,

B := Sk−1, ΓΘ,B : p̃−1(ZB), p̃B := p̃|ΓΘ,B .
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Clearly p̃A and p̃B are cell-like maps. Moreover, let

pΘ,A := prA ◦ p̃A: ΓΘ,A → A, pΘ,B := prB ◦ p̃B : ΓΘ,B → B

and
qΘ,B = qΘ|ΓΘ,B .

In view of Lemma (82.23), the composition

πl−1(B)
(prB)#

−−−−−−→ πl−1(ZB) δ−→ πl(ZA, ZB),

transforms ξ0 onto a nontrivial element. Since p̃#
A ◦ δ = δΘ ◦ p̃#

B (where δΘ denotes
the coboundary operator of the pair (ΓΘ,A, ΓΘ,B)) and p̃#

A , p̃#
B are bijections, we

see that the composition

πl−1(B)
(prB)#

−−−−−−→ πl−1(ZB)
(prB)#

−−−−−−→ πl−1(ΓΘ,B) δΘ−→ πl(ΓΘ,A, ΓΘ,B)

transforms ξ0 onto a nontrivial element in πl(ΓΘ,A, ΓΘ,B). This implies also that

(82.24) δΘ ◦ p#
Θ,B(ξ0) �= 0.

Observe that if 0 ∈ qΘ(ΓΘ,B), then there is (x, y) ∈ ZB such that 0 ∈ ψ(x, y), i.e.
(x, y) is a solution to (82.22.1) and we are done. Hence assume that, there is ρ > 0
such that qΘ(ΓΘ,B) ⊂ Rl \ Bl(0, ρ). Without loss of generality we may assume
that ρ is such that Φ(B) ⊂ Rl \Bl(0, ρ), i.e.

v(Λ) ⊂ Rl \Bl(0, ρ), where Λ := u′−1(B).

Assume for a while that the following diagram

(82.25)

πl−1(Rl \Bl(0, ρ))
(u#)−1◦v#

**"""
"""

"""
"""

q#
Θ,B

��

πl−1(B)
p#

Θ,B

�� πl−1(ΓΘ,B)
δΘ

�� πl(ΓΘ,A, ΓΘ,B)

is commutative. Therefore, in view of (82.24),

(82.26) 0 �= δΘ ◦ p#
Θ,B(ξ0) = δΘ ◦ p#

Θ,B(u#)−1 ◦ v#(ν l−1) = δΘ ◦ qΘ,B(ν l−1).

This means that 0 ∈ Θ(A). Indeed, assume to the contrary that 0 �∈ Θ(A);
therefore 0 /∈ qΘ(ΓΘ,A). Without loss of generality we may assume then that
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qΘ(ΓΘ,A) ⊂ Rl \Bl(0, ρ). Hence the diagram

(82.27)

πl−1(ΓΘ,A)

(i#)

��

πl−1(Rl \Bl(0, ρ))

q#
Θ,A

''(((((((((((((

q#
Θ,B ((��

���
���

���
��

πl−1(ΓΘ,B)
δΘ �� πl(ΓΘ,A, ΓΘ,B)

where i: ΓΘ,B → ΓΘ,A is the inclusion, is commutative. This, however, implies
that

δΘ ◦ pΘ,B = δΘ ◦ i# ◦ qΘ,A = 0

in view of the properties of the cohomotopy sequence of the pair ΓΘ,A, ΓΘ,B .
The obtained contradiction with (82.26) shows that 0 ∈ Θ(A) and that the sys-
tem (82.22.1) has a solution.

It now remains to show the commutativity of the diagram (82.25). To this end
let

Λ̃: = {(γ, λ) ∈ ΓΘ,B × Λ | u(λ) = pΘ(γ)}

and consider maps P : Λ̃× [0, 1]→ B × [0, 1] and Q: λ̃× [0, 1]→ Rl given by

P (γ, λ, t) = (pΘ(γ, t), Q(γ, λ, t) = (1− t)v(λ) + tqΘ(γ)

for (γ, λ) ∈ Λ̃ and t ∈ [0, 1]. It is clear that Q( · , · , 0) and Q( · , · , 1) have no zeros
on Λ̃. If Q(γ, λ, t) = 0, for some (γ, λ) ∈ Λ̃ and t ∈ (0, 1), then ((t − 1)/t)Φ(x) ∩
Θ(x) �= ∅, where x := pΘ(γ) ∈ B: contradiction with (B2). Hence we may assume,
without loss of generality, that Q(Λ̃× [0, 1]) ⊂ Rl \Bl(0, ρ). Consider a diagram

Λ
u

�����
���

���
���

�

v

��
**

**
**

**
**

**
**

**
**

B

i0

��

Λ̃
P0��

g

��

j0

��

Q0

++��
���

���
���

��

B × [0, 1] Λ̃× [0, 1]
P��

Q
�� Rl \Bl(0, ρ)

B

i1

��

Λ̃
P1��

j1

��

f

��

Q1

,,














Λ

pΘ

�������������

qΘ

��������������������
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where

Q0(γ, λ) = v(λ), Q1(γ, λ) = qΘ(λ), g(γ, λ) = λ, f(γ, λ) = γ,

jk(γ, λ) = (γ, λ, k) and Pk(γ, λ) = pΘ(λ) (where k = 0, 1)

for (γ, λ) ∈ Λ̃ and ik(x) = (x, k) for x ∈ B and k = 0, 1. It is easy to see that this
diagram is commutative; moreover, observe that f : Λ̃ → ΓΘ,B is and admissible
map; hence on the level of cohomotopy, u#, f#

0 , i#
0 , j#

0 and j#
1 are isomorphisms.

Therefore, after easy diagram chasing we infer that

q#
Θ = p#

Θ ◦ (u#)−1 ◦ v#.

This shows the commutativity of (82.25) and concludes the proof. �

Now, we come back to the infinite dimensional case.
Having Theorem (82.22) we are ready to provide the main result of this chapter.

As before we suppose that X, X′ and Y , Y ′ are arbitrary Banach spaces, L1: Y →
Y ′ and L2: X → X′ are Fredholm operators with nonnegative indices ind (L1) = i1,
ind (L2) = i2 such that:

(C1) dim X′ > max{i1 + 1, i2 + 2} and dim Y ′ > i1 + 1.

This condition is automatically satisfied if dim X′ = dim Y ′ =∞. Assume that
(the finite-dimensional spaces) Ker(L1), Ker(L2), Coker(L1) and Coker(L2) are
oriented in an arbitrary manner. Let Pi, and Qi be the projections related to Li,
i = 1, 2. We also suppose P(Ω) is bounded, conditions (A2)–(A4) hold (in view
of Lemma (82.18) ((A1) is also satisfied) and

(C2) there is x0 ∈ D and an admissible Ω
p←− Γ

q−→ Y ′ determining F such
that

η0 := IndL1((p, q)(x0; · ), Ωx0) �= 0 in Πi1 ,

(C3) there are a number r > 0 and a compact admissible map Ψ: DX(x0, r) �
X′ determined by an admissible pair (u, v) such that DX(x0, r) ⊂ D and,
for (x, y) ∈ ZSX (x0,r), if µ(L2(x) − Ψ(x)) ∩ (L2(x) − G(x, y)) �= ∅, then
µ ≥ 0,

(C4) for x ∈ SX (x0, r) L2(x) /∈ Ψ(x), ξ := IndL2 ((u, v), DX(x0, r)) �= 0 ∈ Πi2

and ξ ⊕ η0 �= O in Πi1+i2 .

(82.28) Remark. Similarly as above, note that condition (C3) plays a role
similar to that of an a priori bounds assumption frequently present in the ordinary
fixed-point theory. If L2 is an isomorphism, x0 = 0 and Ψ ≡ 0, then condition (C4)
is satisfied (see Example (82.22)). Condition (C3) may be checked directly (see
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e.g. applications below) or, if additionally D = X, then (C3) is satisfied provided
the set of all solutions to the parametrized, by λ ∈ (0, 1), system{

L1(y) ∈ F (x, y),

L2(x) ∈ λG(x, y)

is bounded: in this case (C3) holds immediately. Some other sufficient conditions
for (C3) may be stated in the same spirit as in Example (82.22).

(82.29) Theorem. Under the above assumptions, if G is compact, then the
system (82.22.1) has a solution.

Proof. In order to simplify the setting, without loss of generality we suppose
that x0 = 0 and r = 1. Hence DX(x0, r) = DX and SX(x0, r) = SX .

Sets cl F (Ω), cl G(Ω) and cl Ψ(DX ) are compact; therefore, for each integer n ≤
1, there are finite dimensional linear subspaces Ỹ ′

n ⊂ Im(L1), X̃′
n, X̃′′

n ⊂ Im(L2)and
Schauder projections fn: cl F (Ω) → Y ′

n := Ỹ ′
n ⊕ Im(Q1), gn: cl G(Ω) → X′

n :=
X̃′

n ⊕ Im(Q2) and hn: cl Ψ(DX) → X̃′
n ⊕ Im(Q2), such that ‖fn(y) − y‖ < n−1,

‖gn(x) − x‖ < n−1 and ‖hn(z) − z‖ < n−1 for y ∈ cl F (Ω), x ∈ cl G(Ω) and
z ∈ cl Ψ(DX ), respectively. It is clear that, without loss of generality, we may
assume that X̃′

n = X̃′′
n . For any n ≥ 1, let us put

Yn := L−1
1 (Y ′

n); Xn := L−1
2 (X′

n);

Ωn,m := Ω ∩ (Xn × Ym); Dn := DX ∩Xn; Sn := SX ∩Xn;

Fm := fm ◦ F ; Gn := gn ◦G; Ψn := hn ◦Ψ,

As in the definition of Ind, there is ε > 0 such that

(82.30) inf{‖z‖ | z ∈ L2(x) − v(u−1(x)), x ∈ SX} > ε.

Hence, there is N ≥ 1 such that L2(x) �∈ Ψn(x) for n ≥ N and x ∈ bd Dn.
Fix n0 ≥ N .

Claim. There is n ≥ n0 such that, for any m ≥ n, if x ∈ Sn, (x, y) ∈ Ωn,m,
L1(y) ∈ Fm(x, y) and µ(L2(x)−Ψn(x)) ∩ (L2(x) − gn ◦G(x, y)) �= ∅, then µ ≥ 0.

First observe that if, for some (x, y) ∈ ZSX , 0 ∈ L2(x)−G(x, y), then (x, y) is
a solution to (82.17). Hence, instead of (C3), we may suppose that:

(C3)’ if µ(L2(x) −Ψ(x, y)) ∩ (L2(x) −G(x, y)) �= ∅ for some (x, y) ∈ ZSX , then
µ > 0.

Suppose now to the contrary that the Claim is not true. Hence, for any n ≥ n0,
there is mn ≥ n, xn ∈ Sn, yn ∈ Ymn , zn ∈ X′ and µn < 0 such that L1(yn) ∈
Fmn(xn, yn) and zn ∈ µn(L2(xn)−Ψ(xn)) ∩ (L2(xn)−Gn(xn, yn)).
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Since, for all n ≥ n0, ‖xn‖ = 1 and zn ∈ L2(xn) − Gn(xn, yn) we see that
the sequence (zn) is bounded. On the other hand, zn ∈ µn(L2(xn) −Ψn(xn)); in
view of (82.30), we see that the sequence (µn) is also bounded. Hence, passing
to a subsequence, µn → µ0 ≤ 0 as n → ∞. Now, for all n ≥ n0, there are
z′

n ∈ G(xn, yn) and z′′
n ∈ Ψ(xn) such that Zn = L2(xn) − gn(z′

n) and zn =
µn(L2(xn) − hn(z′′

n)). Without loss of generality we may suppose that z′
n → z′

0

and z′′
n → z′′

0 as n → ∞. Hence L2(xn) − zn = gn(z′
n) → z′

0 and µnL2(xn) −
zn = µnhn(z′′

n) → µ0z′′
o . Therefore (µn − 1)zn → (z′′

0 − z′
0). This implies that

zn → z0 := µ0(µ0 − 1)−1(z′′
0 − z′

0). Hence L2(xn)→ z0 + z′
0 and, again passing to

a subsequence, xn → x0 ∈ B and L2(x0) = z0 + z′
0.

Moreover, for any n, there is y′
n ∈ F (xn, yn) such that ‖L1(yn) − y′

n‖ < m−1
n .

Passing to a subsequence if necessary, we may suppose that y′
n → y′

0 ∈ cl F (Ω ∩
pr−1(SX)), as n→∞. Obviously L1(yn)→ y′

0, too. According to our assumptions
(for almost all n ≥ 1), the sequence (P(xn, yn)) is bounded; hence, passing to
a subsequence, yn → y0.

Finally, by the upper semicontinuity of F , G and Ψ, L1(y0) ∈ F (x0, y0),
(x0, y0) ∈ ZSX and z0 ∈ µ0(L2(x0) − Ψ(x0)) ∩ (L2(x0) − G(x0, y0)): a contra-
diction with (C3)’ ends the proof of the claim.

Fix n ≥ n0 given in Claim. The map SF is upper semicontinuous, Dn is
compact; hence ZDn = {(x, y) ∈ Ω ∩ (Dn × Y ) | L1(y) ∈ F (x, y)} is compact and
contained in int Ω. Hence, there is δ > 0 such that the δ-neighbourhood Oδ(ZDn )
is contained in int Ω. Take m ≥ n such that m−1 < δ; then {(x, y) ∈ Ω∩(Dn×Y ) |
L1(y) ∈ Fm(x, y)} is contained in Oδ(ZDn ).

In this way we get finite-dimensional spaces Xn ⊂ X, X′
n ⊂ X′, Ym ⊂ Y and

Y ′
m ⊂ Y ′. Let Lm

1 := L1|Ym and Ln
2 := L2|Xn . It is clear that dim Xn−dim X′

n = i2

and dim Ym − dim Y ′
m = i1. According to (C1), and enlarging Ỹ ′

m and X̃′
n if

necessary, we get that

(82.31)

1 ≤ dim X′
n ≤ dim Xn < 2 dim X′

n − 2;

1 ≤ dim Y ′
m ≤ dim Yn < 2 dim Y ′

m − 1;

dim X′
n > dim Ym − dim Y ′

m + 1.

Further, let ϕ: Ωn,m → Y ′
m, ψ: Ωm,n � X′

n and Φ: Dn → X′
n be given by

ϕ(x, y) = Lm
1 (x) − Fm(x, y), ψ(x, y) = Ln

2 (x)−Gn(x, y) for(x, y) ∈ Ωm,n

Φ(x) = L2(x)−Ψn(x) textforx ∈ Dn.

It is easy to see that maps ϕ, ψ and Φ are admissible: they are determined by
pairs (pm, qm), (p′

n, q′
n) and (un, vn), respectively, where pm := p|p−1(Ωm,n), qm :=

Lm
1 ◦pm−(fm ◦q|p−1(Ωm,n)), p′

m := p′|p′−1(Ωm,n), q′
n := Ln

2 ◦p′
n−(gn◦q′|p′−1(Ωm,n)),
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un := u|u−1(Dn) and vn := Ln
2 ◦un−(hn ◦v|u−1(Dn)). According to the definition

of the generalized index

deg((pm, qm)(0, · ), (Ωm,n)0, 0) = IndL1((p, q)(0, · ), Ω0),

deg((un, vn), Dn, 0) = IndL2((u, v), DX).

By the definition of ⊗ in stable homotopy groups and taking into account the
dimension restrictions,

deg((pm, qm)(0, · ), (Ωm,n)0, 0)⊗ deg((un, vn), Dn, 0) = ξ ⊗ η0 �= 0.

Thus we see that all assumptions of Theorem (82.22) are satisfied.
Summing up, for any n0 ≥ N , there are m ≥ n ≥ n0 such that the system{

L1(y) ∈ Fm(x, y),

L2(x) ∈ Gn(x, y)

has a solution (xm, ym) ∈ Ω∩(Dn×Ym). Using the upper semicontinuity of F and
G, after passing to a subsequences, we get the solution (x0, y0) ∈ Ω ∩ (DX × Y )
of (82.17). �

Finally, following D. Gabor and W. Kryszewski ([GaDKr-1]), we shall establish
the existence of solutions to the following problem

(82.32)


x′(t) ∈ g(t, x(t), y(t)), for a.a. t ∈ I := [0, T ],

x(0) = x(T ),

y′(t) ∈ f(t, x(t), y(t)), for a.a. t ∈ I,

O ∈ l(x, y),

where T > 0, f : I × Rn × Rm � Rm, g: I × Rn × Rm � Rn are Carathéodory
multifunctions with convex compact values and l: C(I, Rn)×C(I, Rm) � Rk, 1 ≤
k ≤ m, is a set-valued map (C(I, P Rd) stands, as usual, for the space of continuous
maps endowed with the standard sup-norm ‖ · ‖). The map l may be viewed as the
system of nonlocal boundary value data. By a solution we mean a pair of absolutely
continuous functions x: I → Rn, y: I → Rm satisfying (82.32).

Recall that a multifunction h: I ×Rn ×Rm � Rd is Carathéodory if:

(i) for almost all (a.a) t ∈ I, h(t, · , · ): Rn ×Rm � Rm is u.s.c.,
(ii) for all (x, y) ∈ Rn ×Rm, h( · , x, y): I � Rm is measurable.

By the Nemytski operator generated by h we mean a multifunction assigning,
to each pair of measurable functions x: I → Rn, y: I → Rm, the set

Nh(x, y) := {z: I → Rd | z(t) ∈ h(t, x(t), y(t)) a.e. on I; z is measurable}.
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It is well-know that Nh is well-defined, i.e. Nh(x, y) �= ∅.
Assume that f , g are Carathéodory multifunctions such that

(f1) there is an integrable function α ∈ L1(I, R) such that, for any x ∈ Rn,
y ∈ Rm and a.a. teI, if z ∈ f(t, x, y), then ‖z‖ ≤ α(t)(1 + ‖x‖+ ‖y‖),

(g1) there is a function β ∈ L1(I, R) such that, for any x ∈ Rn, y ∈ Rm and
a.a. t ∈ I, if z ∈ g(t, x, y), then ‖z‖ ≤ β(t)(1 + ‖x‖+ ‖y‖).

Additionally we assume that there is a smooth C1-function V : Rn → R such
that:

(V1) there is r1 > 0 such that, for any x ∈ Rn, if ‖x‖ > r1, then 〈∇V (x), x〉 > 0,
(V2) there is r2 > 0 such that, for any x ∈ Rn, y ∈ Rm and t ∈ I, then there is

z ∈ g(t, x, y) such that 〈∇V (x), z〉 ≥ 0.

Further on assume also that l: C(I, Rn) × C(I, Rm) � Rk, where 1 ≤ k ≤ m,
is a set-valued map such that:

(l1) l is an admissible map and maps bounded sets onto bounded ones,
(l2) there is ρ > 0 such that, for any x ∈ C(I, Rn) and y ∈ C(I, Rm), if

0 ∈ l(x, y), then ‖y(tx)‖ ≤ ρ for some tx ∈ I.
(l3) there is R > 0 such that, for all y ∈ C(I, Rm), if ‖y(0)‖ ≥ R, then

0 /∈ l(0, y) and there is a an admissible pair (u, v) determining l such that

Deg((u, v)(0, · ), Bc(0, R), 0) �= 0 ∈ Πm−k,

where Bc(0, R) = {y ∈ Cc(I, Rm) | ‖y‖ ≤ R} and (u, v) is the restriction
of the pair (u, v) to C(I, Rn)× Cc(I, Rm).

(82.33) Remark.

(82.33.1) Observe that if e.g. V (x) = ‖x‖2 for x ∈ Rn, then condition (V1) is
satisfied automatically and (V2) means that, for all x ∈ Rn, y ∈ Rm and t ∈ I, if
‖x‖ > r2, then g(t, x, y) has a nonempty intersection with the half space {z ∈ Rn |
〈x, z〉 ≥ 0}.

(82.33.2) Let, for t ∈ I, x ∈ Rn and y ∈ Rm,

g(t, x, y) =

{
g(t, x, y) if ‖x‖ ≤ r2,

{z ∈ g(t, x, y) | 〈∇V (x), z〉 ≥ 0} if ‖x‖ > r2.

It is easy to see that g: I×Rn×Rm � Rn is a Carathéodory multifunction (with
nonempty compact convex values) having the sublinear growth and, for all x ∈ Rn,
y ∈ Rm and t ∈ I, if ‖x‖ ≥ r2 and z ∈ g(t, x, y), then 〈∇V (x), z〉 ≥ 0. Moreover,
if x′(t) ∈ g(t, x(t), y(t)), then x′(t) ∈ g(t, x(t), y(t)). Hence, in what follows,
replacing g by g if necessary, we assume that g satisfies the same properties as g

does.



82. A COINCIDENCE INDEX INVOLVING FREDHOLM OPERATORS 459

(82.33.3) Taking, if necessary, max{α(t), β(t), 1} we may assume that, in (f1)
and (g1), α(t) = β(t) ≥ 1 for all t ∈ I. Moreover, we may assume without loss
of generality that, in (V1) and (V2), r1 = r2.

(82.33.4) By (f1) and (g1), if functions x, y are continuous and, for a measurable
function z, z(t) ∈ f(t, x(t), y(t)) (resp. z(t) ∈ g(t, x(t), y(t))) for a.a. t ∈ I, then
z ∈ L1Rm) (resp. z ∈ L1(I, Rn)). Therefore Nf : C(I, Rn)×C(I, Rm) � L1(I, Rm)
(resp. Ng : C(I, Rn)× C(I, Rm) � L1(I, Rm)).

(82.34) Theorem. Under assumptions (l1)–(l3), (f1), (g1) and (V1)–(V2), the
system (82.32) has a solution.

Proof. Let a :=
∫ T

0 α(s) ds and

(82.34.1) r := (r1 + ρ + 1)e2a.

Step 1. Let X := C(I, Rn), X′ := X; Y := C(I, Rm), Y ′ := Y0 ⊕ Rk, where
Y0 := {y ∈ Y | y(0) = 0}, and let L1: Y → Y ′ be given, for y ∈ Y , by L1(y) = (y−
y(0), 0). It is evident that L is a linear continuous operator, Ker(L1) = Cc(I, Rm),
Im(L1) = Y0 ⊕ {0}, i.e. L1 is a Fredholm operator of index m− k.

Consider the multivalued transformation F which assigns to (x, y) ∈ X × Y

a subset of Y ′ given by

F (x, y) = {J(z) | z ∈ Nf (x, y)} × l(x, y),

where Nf : X × Y � L1(I, Rm) is the Nemytski operator generated by f and
J : L1(I, Rm)→ Y0 is given, for z ∈ L1(I, Rm), by

J(z)(t) =
∫ t

0
z(s) ds, t ∈ I.

It is clear that the problem

(82.34.2)

{
y′ ∈ f(t, x, y),

0 ∈ l(x, y)

is equivalent to

(82.34.3) L1(y) ∈ F (x, y)

with x ∈ X, y ∈ Y . The values of Nf is are weakly compact, closed and convex
(it is a consequence of the Dunford–Pettis Theorem). In view of the Ascoli–Arzela
theorem the values of J ◦ Nf are compact convex, J ◦ Nf : X × Y � Y0 is upper
semicontinuous and compact (when restricted to a bounded subset in X × Y ).
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Hence in view of (l1), F : X × Y � Y ′ is an admissible set-valued map being
compact when restricted to a bounded subset of X × Y .

Next define the multivalued transformation G which assigns to (x, y) ∈ X × Y

a subset of X given, for (x, y) ∈ X × Y , by

G(x, y) = {K(z − x) | z ∈ Ng(x, y)},

where Ng : X×Y � L1(I, Rn) is the Nemytski operator of g and K: L1(I, Rn)→ X

is given, for z ∈ L1(I, Rn), by

K(z)(t) = et eT

1− eT

∫ T

0
e−sz(s) ds + et

∫ T

0
e−sz(s) ds, t ∈ I.

Moreover, let L2 := IX : X → X be the identity operator. As above, it is easy to
see that G: X×Y � X is an admissible map (upper semicontinuous with, in fact,
compact convex values); moreover, G is compact when restricted to a bounded
set. Since, for each z ∈ L1(I, Rn), K(z) is a periodic function, we see that the
coincidence problem

(82.34.4) L2(x) ∈ G(x, y),

with X ∈ X, y ∈ Y , is equivalent to the inclusion

(82.34.5)

{
x′ ∈ g(t, x, y),

x(0) = x(T ).

Within the introduced setting problem (82.32) is equivalent to the following one

(82.34.6)

{
L1(y) ∈ F (x, y),

L2(x) ∈ G(x, y).

Step 2. We shall prove that the system (82.34.6) satisfies assumptions of The-
orem (82.29) (with D = BX(0, r + 1) where r was given in (82.34.1). To this end
let

Ω := {(x, y) ∈ D × Y | ‖y‖Y ≤M},

where
M := max{[ρ + (2 + r)a]ea, (R + a)ea}+ 1.

Clearly Ω, satisfies assumption (A4). Let

Z := {(x, y) ∈ Ω | L1(y) ∈ F (x, y)}.
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If (x, y) ∈ Z, then l(x, y) = 0. ‖x‖X ≤ r + 1 and y′ ∈ f(t, x, y). Hence, by (f1)
and (l2),

‖y(t)‖ ≤ ‖y(tx)‖+
∫ t

tx

α(s)(2 + r + ‖y(s)‖) ds.

Therefore, by the Gronwall inequality, ‖y‖Y ≤ [ρ + (2 + r)a]ea < M . This shows
that Z ⊂ int Ω and assumption (A3) is satisfied. Since F |Ω is compact and admis-
sible, Ω is bounded, we see that assumptions (A2) and (A1) are also satisfied (see
Lemma (82.18)).

Step 3. According to Remark (82.33) we put Ψ ≡ 0; since (C1) is obviously
satisfied, it now remains to check assumptions (C2) and (C3).

As concerns (C2), we have to show that there is an admissible pair (p, q) deter-
mining F such that IndL1((p, q)(0, · ), Ω0) �= 0 ∈ Πm−k.

Suppose that an admissible pair Ω r←− ∆ s−→ Y0, determines J ◦Nf |Ω and let
Ω u←− Σ v−→ Rk be an admissible pair determining l and such that, according to
(l3), Deg((u, v)(0, · ), BY (0, R) ∩ Cc(I, Rm), 0) �= 0 in Πm−k.

Observe that the map F is determined by the c-l-admissible pair Ω
p⇐= Γ

q−→Y ′

where Γ := {(τ, σ) ∈ ∆ × Σ | r(τ) = u(σ)}, p(τ, σ) := r(τ) and q(τ, σ) :=
(s(τ), v(σ)) for all (τ, σ) ∈ Γ.

The index IndL1((p, q)(0, · ), Ω0) is well-defined and

(82.34.7) IndL1((p, g)(0, · ), Ω0) := IndL1((p0, q0), Ω0),

where Ω
p0⇐= Γ0

q0−→ Y ′ Γ0 := {y, τ, σ) ∈ Ω0 ×Γ | p(τ, σ) = (0, y)}, p0(y, τ, σ) = y

and q0(y, τ, σ) = q(τ, σ) = (s(τ), v(σ)) for (y, τ, σ) ∈ Γ0.
Consider the following diagram

Ω0

i0

��

Γ0
p0��

j0

��

q0

##�
��

��
��

��
�

Ω0 × [0, 1] Γ0 × [0, 1]P�� Q
�� Y ′

Ω0

i1

��

Γ0p0
��

j1

��

q′
0

$$&&&&&&&&&&

where jk(y, τ, σ) = (y, τ, σ, k) (k = 0, 1), P (y, τ, σ, λ) = (y, λ), Q(y, τ, σ, λ) =
((1− λ)s(τ), v(σ)), q′

0 = (0, v(σ)) for all λ ∈ [0, 1] and (y, τ, σ) ∈ Γ0. It is easy to
see that this diagram is commutative.

Suppose that, for some λ ∈ [0, 1] and y ∈ Ω0, L1(y) ∈ Q(P −1(y, λ)). This
means that there is (τ, σ) ∈ Γ such that r(τ) = u(σ) = p(τ, σ) = (0, y) and
L1(y) = ((1− λ)s(τ), v(σ)) i.e. 0 ∈ l(0, y) and y − y(0) ∈ (1 − λ)J ◦ Nf(0, y), i.e.
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y′(t) ∈ (1 − λ)f(t, 0, y(t)) for a.a. t ∈ I. By (l3), the first inclusion implies that
‖y(0)‖ < R. Hence, for all t ∈ I,

‖y(t)‖ ≤ R +
∫ t

0
α(s)(1 + ‖y(s)‖) ds.

By the Gronwall inequality, ‖y‖Y ≤ (R + a)ea < M . The homotopy invariance
of the index IndL1 , we see that

(82.34.8) IndL1((p0, q0), Ω0) = IndL1((p0, q′
0), Ω0).

Now, let Σ0 := {(y, σ) ∈ Ω0 × Σ | u(σ) = (0, y)}. Consider a diagram:

Ω0

i0

��

Γ0
p0��

k0

��

q′
0

##�
��

��
��

��
�

Ω0 × [0, 1] Σ0 × [0, 1]R�� S �� Y ′

Ω0

i1

��

Σ0u0
��

k1

��

v0

$$&&&&&&&&&&

where k1(y, σ) = (y, σ, 1), R((y, σ, λ) = (y, λ), S(y, σ, λ) = (0, v(σ)) for all λ ∈
[0, 1], u0(y, σ) = y, v0(y, σ = (0, v(σ)), k0(y, τ, σ) = (y, σ, 0). As above this dia-
gram is commutative and, if for some λ ∈ [0, 1] and y ∈ Ω0, L1(y) ∈ S(R−1(y, λ)),
then there is σ ∈ Σ such that u(σ) = (0, y) and L1(y) = (0, v(σ)) i.e. 0 ∈ l(0, y)
and y ∈ Cc(I, Rm). Hence, by (l3), ‖y‖Y ≤ R < M . Once more, by the homotopy
invariance of the index IndL1 we get

(82.34.9) IndL1 ((p0, q′
0), Ω0) = IndL1((u0, v0), Ω0).

But observe, that in fact v0(u−1(Ω0)) ⊂ {0} ⊕ Rk = Coker(L1). Hence, by Corol-
lary (82.16),

(82.34.10) IndL1((u0, v0), Ω0) = Deg((u′
0,−v′

0), Ω0 ∩Ker(L1), 0)

= Deg((u′
0,−d ◦ v′

0), Ω0 ∩Ker(L1), 0),

where

u′
0 = u0|u−1

0 (Ω0∩Ker(L1)): u−1
0 (Ω0 ∩Ker(L1))→ Ω0 ∩Ker(L1),

v′
0 = v0|u−1

0 (Ω0∩Ker(L1)): u−1
0 (Ω0 ∩Ker(L1))→ {0} ⊕Rk

and d: {0} ⊕ Rk → Rk is a natural projection.
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Now one can easily check that by assumption (l3)

(82.34.11) Deg((u′
0,− d ◦ v′

0), Ω0 ∩Ker(L1), 0)

= Deg((u,−v)(0, · ), Ω0 ∩Ker(L1), 0)

= Deg((u,−v)(0, · ), B(0, R)∩ Cc(I, Rm)) �= 0.

In view of (82.34.7)–(82.34.11), we see that IndL1((p, q)(0, · ), Ω0) �= 0 in Πm−k.
This establishes condition (C2).

In order to show (C3) suppose that there is µ < 0 and (x, y) ∈ Z with ‖x‖X = r

such that µL2(x) ∈ L2(x) − G(x, y). This means that x(0) = x(T ), l(x, y) = 0
and, for a.a. t ∈ I, {

y′ ∈ f(t, x(t), y(t)),

x′(t) ∈ g(t, x(t), y(t)) + (1− λ)x(t),

where λ := (1− µ)−1 ∈ (0, 1). We shall see that this can not occur.
Claim. mint∈I ‖x(t)‖ > r1.
Suppose to the contrary that there is t1 ∈ I such that

(82.34.12) ‖x(t1)‖ ≤ r1.

Since y′(t) ∈ f(t, x(t), y(t)), there is an integrable function z ∈ Nf(x, y) such that
y′(f) = z1(t). Recalling (l2), y(t) = y(tx) +

∫ t

tx
z1(s) ds. By (f1), for any t ∈ I,

‖y(t)‖ ≤ y(tx)‖+
∫ t

tx

α(s)(1 + ‖x(s)‖+ ‖y(s)‖) ds.

Similarly, since x′(t) ∈ λg(t, x(t), y(t)) + (1 − λ)x(t), there is an integrable z2 ∈
Ng(x, y) such that x(t) = x(t1) +

∫ t

t1
λz2(s) + (1 − λ)x(s))ds. By (g1) and since

α(s) ≥ 1, for all t ∈ I,

‖x(t)‖ ≤ x(t1)‖ +
∫ t

t1

α(s)(1 + ‖x(s)‖+ ‖y(s)‖)ds.

Hence, by (82.34.12) and (l2), for all t ∈ I,

‖x(s)‖+ ‖y(s)‖ ≤ (r1 + ρ) +
∫ t

t1

α(s)(1 + ‖x(s)‖+ ‖y(s)‖) ds

+
∫ t

tx

α(s)(1 + ‖x(s)‖+ ‖y(s)‖) ds.

By Lemma (82.35) given below,

r ≤ max
t∈I

(‖x(t)‖+ ‖y(t)‖) ≤ (r1 + ρ + 1)e2a − 1 = r − 1.
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The contradiction establishes the claim.
Since x(0) = x(T ), ‖x(t)‖ > r1 on I and 0 < λ < 1, by (V1) and (V2), we have

0 = V (x(T ))− V (x(0)) =
∫ T

0
〈∇V (x(t)), x′(t)〉 dt

= λ

∫ T

0
〈∇V (x(t)), z2(t)〉 dt + (1− λ)

∫ T

0
〈∇V (x(t)), x(t)〉 dt > 0.

The obtained contradiction concludes the proof. �

(82.35) Lemma. Let p ∈ C(I, R), q ∈ L1(I, R), q ≥ 0, A ∈ R and a, b ∈ I. If,
for all t ∈ I,

p(t) ≤ A +
∫ t

a

(1 + p(s))q(s) ds +
∫ t

b

(1 + p(s))q(s) ds,

then, for all t ∈ I,

p(t) ≤ (A + 1) exp
(

2
∫ t

0
q(s) ds

)
− 1.

Proof. Let

h(t) = A + 1 +
∫ t

a

(1 + p(s))q(s) ds +
∫ t

b

(1 + p(s))q(s) ds, t ∈ I,

i.e. for t ∈ I, 1 + p(t) ≤ h(t). Then h′(t) = 2(1 + p(t))q(t) ≤ 2h(t)q(t). Hence, for
any t ∈ I,

d

dt

[
h(t) exp

(
−
∫ t

0
2q(s) ds

)]
= exp

(
−
∫ t

0
2q(s) ds

)
[h′(t)− 2q(t)h(t)] ≤ 0

and

h(t) exp
(
−
∫ t

0
2q(s) ds

)
≤ h(0) = A + 1. �

We recommend [Kr2-M], [GaDKr1], [GaDKr2] for further applications.

83. Fixed points of monotone-type multivalued operators

In the first part of this section we shall define a topological degree for monotone-
type multivalued operators in reflexive Banach spaces. Then in the second part
some abstract fixed point results for monotone operators in ordered spaces will be
formulated.

For a given reflexive Banach space E by E∗ we shall denote its dual space. In
what follows 〈 · , · 〉 stand for the pairing between E and E∗.

We recall the Browder–Ton Theorem (see [BT]):
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(83.1) Theorem. For any reflexive Banach space E there exists a separable
Hilbert space H and a linear completely continuous (8) injection h: H → E such
that h(H) is dense in E.

Assume that h: H → E is the same as in (83.1). We define the map h∗: E → H∗

by putting:

h∗(f)(v) = f(h(v)), for every f ∈ E∗ and v ∈ H.

Now, we define a map ĥ: E∗ → H by letting:

ĥ(f) = vf for every f ∈ E∗,

where vf is an unique element of H for which we have:

〈v, vf〉 = h∗(f)(v),

for every v ∈ H, where 〈v, vf〉 is the inner product of v and vf in H.
It is easy to see that (comp. [BM]):

(83.2) Corollary. The map ĥ: E∗ → H is a linear completely continuous
injection.

Let X be a metric space and g: X → E∗ be a map. We shall say that g is
demicontinuous provided for every {xn} ⊂ X if {xn} → x, then {g(xn)} ⇀ g(x)
i.e. the sequence {g(xn)} is weakly convergent to g(x); g is called bounded if it
maps bounded sets of X into bounded sets in E∗.

Let us consider an open bounded subset U of E, where E is a reflexive Banach
space and let U be the closure of U in E. We shall consider a pair of the following
type:

U
p⇐= Γ

q−→ E∗.

The pair (p, q): U → E∗ is called nonotone if for every x1, x2 ∈ U and for every
y1 ∈ q(p−1(x1)), y2 ∈ q(p−1(x2)) we have:

〈x1 − x2, y1 − y2〉 ≥ 0.

We shall associate to every pair U
p⇐= Γ

q−→ E∗ the pair

U Γ
h◦̂h◦q

��
p�� E

where h and ĥ are defined in (83.1) and (83.2).
From (83.1) we deduce:

(8) i.e. h is continuous and for any bounded A ⊂ H the set h(A) is relatively compact in E.
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(83.3) Proposition. If (p, q): U → E
∗

is d-admissible (i.e. q is semicontinu-
ous and bounded) and bounded, then (p, h ◦ ĥ ◦ q): U → E∗ is compact and admis-
sible.

The proof of (83.3) is straightforward.
Instead of the pair (p, h◦ĥ◦q) for every ε > 0, we can define a pair (p, ε·h◦ĥ◦q),

where (p, ε · h ◦ ĥ ◦ q)(y) = h(̂(q(y))/ε. Of course under assumptions of (83.3), we
have that (p, ε · h ◦ ĥ ◦ q) is compact and admissible.

We let

(83.4) ϕε: U → E to be defined as follows:

ϕε(x) =
{

x + y

∣∣∣∣ y ∈
(

1
ε
· h ◦ ĥ ◦ q

)
(p−1(x))

}
.

Below we shall introduce the class of (monotone-type) mappings for which we
shall able to define the topological degree.

(83.5) Definition. A multivalued map (p, q): U � E∗ is acceptable provided
the following conditions are satisfied:

(83.5.1) (p, q) is d-admissible and bounded,
(83.5.2) for every sequence {xn} ⊂ U such that {xn}εx if there exists a sequence

{yn} ⊂ E∗ with yn ∈ q(p−1(xn)) and such that 〈xn, yn〉 ≤ 0, for every
n = 1, 2, . . . , then {xn} → x.

We let:

Ac(U, E) = {(p, q): U � E∗ | (p, q) is acceptable},
Ac∂U(U, E) = {(p, q) ∈ A(U, E) | 0 /∈ q(p−1(∂U))}.

(83.6) Proposition. Assume that (p, q) ∈ Ac(U, E∗). Then:

(83.6.1) for every ε > 0 the map

ϕε: U → E, ϕε(x) =
{

x + y

∣∣∣∣ y ∈ 1
ε
· h(ĥ(q(p−1(x)))

}
is a compact admissible vector field of the type idE −(p̃, q̃), (comp. [GL]),

(83.6.2) if for {εn} → 0 there exists xn ∈ U such that 0 ∈ ϕε(xn), then there
exists x ∈ U , for which 0 ∈ q(p−1(x)).

Proof. Observe that (83.6.1) is a simple consequence of (83.3). Therefore, we
shall prove (83.6.2). Let us assume for the simplicity that ε = 1/n and ϕn = ϕεn .
Let 0 ∈ ϕn(xn), for every n = 1, 2, . . . and yn ∈ q(p−1(xn)) be such that 0 =
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xn +nh(ĥ(yn)). Since U is bounded and (p, q) is bounded, we can assume without
loss of generality that {xn}⇀ x and {yn}⇀ y. From:

0 = xn + n · (h(ĥ(yn))),

we get:

h(ĥ(yn)) = − 1
n

xn.

Therefore, we infer {h(ĥ(yn))} → 0 = h(ĥ(y)) and h ◦ ĥ is a linear injection, we
obtain y = 0.

According to definition of ĥ, we get:

〈yn, xn〉 = −n〈yk , h(ĥ(yk))〉 = −n‖ĥ(yn)‖2
H ≤ 0.

Now, by using (83.6.2), we get that {xn} → x and from demicontinuity of (p, q),
we get that 0 ∈ q(p−1(x)). �

Now, we shall define the topological degree for mappings in Ac∂U(U, E∗).

(83.7) Lemma. Assume that (p, q) ∈ A∂U(U, E∗). Then there exists ε0 > 0
such that for every 0 < ε < ε0, we have 0 /∈ ϕε(∂U), where ϕε is defined in
(83.6.1).

Proof. Assuming to the contrary, we get a contradiction with (83.6.2). �

We let:

Ac∂U (U, E) = {ϕ: U → E | ϕ is a compact admissible vector field,

0 /∈ ϕ(∂U and ϕ is determined by a pair (p, q)}.

In view of (83.7) and (83.6), we see that:

(83.8) Proposition. Assume (p, q) ∈ Ac∂U(U, E) and ε0 is chosen according
to (83.7). Then ϕε ∈ Ac∂U(U, E), for every 0 < ε < ε0. Moreover, if for every
0 < ε1, ε2 < ε, we have:

degLS(ϕε1) = degLS(ϕε2),

where degLS stands for the Leray–Schauder topological degree on A∂U (U, E) (see:
Chapter IV).

Proof. From Lemma (83.7), we get that ϕε ∈ Ac∂U(U, E), for every 0<ε<ε0.
Observe that if 0 < ε1, ε2 < ε0, then the formula:

t · ϕε1 + (1− t)ϕε2 = id +
(

t

ε1
+

1− t

ε2

)
hĥqp−1 = ϕεt ,
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where
1
εt

= t · 1
ε1

+ (1− t)
1
ε2

,

gives us the homotopy joining ϕε2 with ϕε2 and the hypothesis follows from the
homotopy property of the Leray–Schauder degree. �

We define the function:

(83.9) deg:Ac∂U(U, E∗)→ Z

by putting:

deg ((p, q)) = degLS(ϕε),

where 0 < ε < ε0 and ε0 is chosen fro (p, q) according to (83.7).

It follows from (83.8) that Definition (83.9) is correct.

Now, it is easy to see that the topological degree defined in (83.9) satisfies the
following standard properties:

(83.10.1) Existence property,

(83.10.2) Additivity property,

(83.10.3) Homotopy property.

We left to the reader to formulate (83.10.1)–(83.10.3) and also natural topolog-
ical consequences of the above notion (see [BM], Chapters III, IV).

Now, let us recall some notions and results connected with ordered spaces (for
details we recommend [DG-M], [He-Hu] and [JaJa].

A partially ordered set is a pair (P,≤), where P is a nonempty set and ≤ is
a relation in P which is reflexive (p ≤ p for all p ∈ P ), weakly antisymmetric (for
p, q ∈ P , p ≤ q and q ≤ p imply p = q) and transitive (for p, q, r ∈ P , p ≤ q

and q ≤ r imply p ≤ r). A nonempty subset C of P is said to be a chain if given
p, q ∈ C, either p ≤ q or q ≤ p. If every chain in (P,≤) has a supremum, then (P,≤)
is called chain-complete. A mapping F : P → P is said to be isotone or increasing
if it preserves ordering, i.e. given p, q ∈ P , p ≤ q implies that F (p) ≤ F (q).

We have:

(83.11) Theorem (Knaster–Tarski). Let (P,≤) be a partially ordered set in
which every chain has a supremum. Assume that F : P → P is isotone and there
is an element p0 ∈ P such that p0 ≤ F (p0). Then F has a fixed point.

By substituting an inverse ordering ≥ for ≤ in Theorem (83.11), we obtain the
following dual version.
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(83.12) Theorem. Let (P,≤) be a partially ordered set in which every chain
has an infimum. Assume that F : P → P is isotone and there is an element p0 ∈ P

such that F (p0) ≤ p0. Then F has a fixed point.

(83.13) Remark. In what follows a partially ordered space (P,≤) is called
also a poset.

By an ordered topological space we mean a poset P equipped with such a topol-
ogy of closed subset {Ca}a∈P defined as follows:

Ca = {x ∈ P | a ≤ x}

and closed subsets {Ca}a∈P given by:

Ca = {x ∈ P | x ≤ a}.

In particular each ordered interval [a, b] defined by

[a, b] = {x ∈ P | a ≤ x ≤ b}

is closed in ordered topological space P . If the topology of P is determined by
a metric, we say that P is an ordered metric space. In particular any reflexive
Banach space is a metric ordered space with cone ordering (see [JaJa] or [HeHu]).

Let P = (P,≤) be a poset and let F : P � P be a multivalued mapping with
nonempty values. We consider:

M(F ) = M = {x ∈ P | x ≤ y for some y ∈ F (x)}.

In what follows we shall consider only such multivalued mappings F : P � P for
which M(F ) �= ∅. If the set M+ = {x ∈ P | x < y for some y ∈ F (x)} is nonempty,
then we denote by f : M+ → P a choice function which satisfies x < f(x) ∈ F (x)
for each x ∈M+.

Now, we shall present some results contained in [HeHu].

(83.14) Lemma. Given a multifunction F : P � P assume there is a ∈ M such
that the transfinite sequence (xµ)µ∈Λ defined by

(83.14.1) x0 = a, and 0 < µ ∈ Λ if and only if xµ = f(sup{xν | ν < µ}) exists has
a supremum x in M .

Then x is a fixed point of F .

Proof. To see that (83.14.1) defines a transfinite sequence; denote by K the
class of all the transfinite sequences which satisfy

x0 = a, and if 0 < µ ∈ Λ then xµ = f(sup{xν | ν < µ}) exists.
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It is easy to see by transfinite induction that the sequences of K , are strictly
increasing (whence K is a set) and compatible, and that their union also belongs
to K . This union, being the longest sequence in K , is the one which satisfies
(83.14.1). If this sequence (xµ)µ∈Λ has the supremum x in M , then it must be
a fixed point of F , for otherwise we could extend (xµ)µ∈Λ by the term f(x). �

By a slight reinterpretation of (83.14.1) we obtain.

(83.15) Proposition. A multifunction F : P � P has a fixed point, if each
increasing transfinite sequence in F (P ) has an upper bound in M .

Proof. Obviously, M �= ∅. If a ∈ M is not a fixed point of F , consider ‘sup’
in the condition (83.14.1) as the least of the upper bounds in M+ with respect
to a well-ordering of M+. Any upper bound x ∈ M of the so obtained sequence
(xµ)µ∈Λ is a fixed point of F . Moreover, x �< y for each y ∈ F (x). �

In the case when M = P we have.

(83.16) Corollary. Assume that a multifunction F : P � P is such that for
each x ∈ P there is y ∈ F (x) for which x ≤ y. If each increasing transfinite
sequence in F (P ) has an upper bound, then F has a fixed point.

If P is an ordered topological space we obtain the following consequence of Lem-
ma (83.14).

(83.17) Theorem. A multifunction F : P � P has a fixed point, if its values
are compact subsets of P , and if it satisfies condition M(F ) �= ∅ and conditions

(83.17.1) x1 ≤ y1 ∈ F (x1) and x1 ≤ x2 imply y1 ≤ y2 for some y2 ∈ F (x2),
(83.17.2) each increasing transfinite sequence in

⋃
F (P ) has a cluster point in P .

Proof. Given a ∈ M , let (xµ)µ∈Λ be defined by (83.14.1). By Lemma (83.14)
it suffices to show that (xµ)µ∈Λ has the supremum in M . Condition (83.17.2)
implies by Lemma (83.14) that (xµ)µ∈Λ converges to its least upper bound x. If
a is the only term of (xµ)µ∈Λ, then x = a ∈ M . Otherwise, for 0 < µ ∈ Λ
there is by (83.14.1) ymu ∈ P such that yµ ≤ xµ ∈ F (yµ), whence yµ ≤ x.
This implies by condition (83.17.1) that, there corresponds zµ ∈ F (x) for which
xµ ≤ zµ. Moreover, [xν) ∩ F (x) ⊂ [xµ) ∩ F x whenever µ < v ∈ Λ, whence
{[xµ) ∩ F x | µ ∈ Λ} is a family of closed and nonempty subsets of F x having the
finite intersection property. Since F (x) is compact, then the intersection of this
family is nonempty. Thus, there is y ∈ F x such that xµ ≤ y for each µ ∈ Λ.
Since x is the least upper bound of (xµ)µ∈Λ then x ≤ y. This proves that x ∈M ,
whence x is by Lemma (83.14) a fixed point of F . �

As another special case of Lemma (83.14) we have:
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(83.18) Theorem. Let F : P � P be a multifunction whose values are closed
and directed sets, and which satisfies conditions M(F ) �=∅, (83.17.1) and (83.17.2).
If P satisfies the first axiom of countability, then F has a, fixed point.

An ordered metric space P is called regularly (resp. fully regularly) ordered,
if each monotone and order (resp. metrically) bounded ordinary sequence of P

converges. For instance, each closed subset of an ordered normed space with
(fully) regular order cone is (fully) regularly ordered metric space.

Below, we shall formulate next consequences of Lemma (83.14). For details we
recommend [HeHu].

Let P be an ordered metric space. We say that a multifunction F : P � P

is bounded above (resp. bounded) if
⋃

F (P ) is bounded above (resp. metrically
bounded) in P .

(83.19) Proposition. Let P be a regularly (resp. fully regularly) ordered met-
ric space. A multifunction F : P � has a fixed point, if it is bounded above (resp.
bounded) and satisfies the following conditions: M(F ) �= ∅, (83.17.1) and if F x is
closed and directed or compact for each x ∈ P .

From Proposition (83.19) it follows:

(83.20) Proposition. Let P be a closed subset of an ordered reflexive Banach
space E with normal order cone. A multifunction F : P � P has a fixed point, if
it is bounded and satisfies: M(F ) �= ∅, (83.17.1) and if its values are closed and
directed.

(83.21) Proposition. Let P be a weakly closed subset of an ordered reflexive
Banach space E, which is separable or its order cone is normal. A multifunction
F : P � P has a fixed point, if it is bounded and satisfies: M(F ) �= ∅, (83.17.1)
and if its values are weakly closed.

84. Multivalued Poincaré operators

In Section 72 we defined so called Poincaré multivalued operator associated with
the Cauchy problem for first order differential inclusions. Note that for the first
time, the above operator was considered in 1983 (see [DyG]).

In this section we would like to survey current results connected with the above
mentioned operators. Let us explain also that Poincaré idea of the translation
operator along the trajectories of differential systems comes back to the end of the
nineteenth century. Since it was effectively applied for investigating periodic orbits
by A.-A. Andronov (comp. [KZ-M]) in the late 20’s and by N. Levinson in 1944.

By Poincaré operators we mean the translation operator along the trajectories
of the associated differential system and the first return (or section) map defined
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on the cross section of the torus by means of the flow generated by the vector
field. The translation operator is sometimes also called as Poincaré–Andronov or
Levinson or, simply, T -operator.

In the classical theory (see [KZ-M] and the references therein), both these op-
erators are defined to be single-valued, when assuming, among other things, the
uniqueness of the initial value problems. At the absence of uniqueness one usually
approximates the right-hand sides of given systems by the locally lipschitzean ones
(implying already uniqueness), and then applies the standard limiting argument.
This might be, however, rather complicated and is impossible for discontinuous
right-hand sides.

On the other hand, set-valued analysis allows us to handle effectively also with
such classically troublesome situations. In particular, the class of admissible maps
in the sense of [Go1-M] has been shown to be very useful with this respect, because
generalized topological invariants like the Brouwer degree, the fixed point index
or the Lefschetz index with properties similar to those of their classical analogues
can be defined, and subsequently applied for them.

Hence, in our contribution we develop at first the Rothe-type generalization
of the Brouwer fixed-point theorem for admissible maps. Then we introduce some
conditions under which the Marchaud right-hand sides of differential inclusions
determine admissible Poincaré operators. Finally, we present simple applications
of the obtained results to the existence of forced nonlinear oscillations and, in the
single-valued case, to the multiplicity criterion for the target problem.

In this section we need the following formulation of the Rothe (or so called
Bohl) theorem (comp. (55.5)).

(84.1) Theorem. Let K be a compact convex subset of Rn, with nonempty
interior and let ϕ: K � Rn be an admissible map such that ϕ(∂K) ⊂ K, where
∂K denotes the boundary of K. Then Fix(ϕ) �= ∅.

The proof of (84.1) is strictly analogous to the proof of (55.5). Note also that
from the Lefschetz fixed point theorem for admissible mappings it follows (comp.
(41.12) and (41.13)).

(84.2) Theorem. If K is a compact convex nonempty subset of Rn and ϕ: K �
K is a admissible, then Fix(ϕ) �= ∅.

Now, consider the differential inclusion

(84.3) θ′ ∈ f(t, θ),

where θ = (θ1, . . . , θn), θ′ = (θ′
1, . . . , θ′

n) and f(t, θ) = (f1(t, θ), . . . , fn(t, θ)).
Assume that f : R × Rn � Rn is bounded in t, and linearly bounded in θ, up-
per semi-continuous with nonempty, compact, convex values. Then all solutions
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of (84.3) entirely exist in the sense of Carathéodory (i.e. are locally absolutely
continuous and satisfy (84.3)). Moreover, for any compact interval, the solution
set is Rδ (see Section 69).

If θ(t, X) := θ(t; 0, X) is a solution of (84.3) with θ(0, X) = X, then we can
define the Poincaré–Andronov map (translation operator at the time T ) along the
trajectories of (84.3) as follows:

(84.4)
ΦT : Rn � Rn,

ΦT (X) := {θ | θ( · , X) is a solution of (84.3) satisfying θ(0, X) = X}.

We recall the following important property (comp. Section 72).

(84.5) Lemma. ΦT given by (84.4) is an admissible map.

Proof. ΦT : Rn � Rn can be considered as the composition of two maps,
namely ΦT = ϕ ◦ ψ, or more precisely

Rn
ϕ
−� AC([0, T ], Rn)

ψ
−� Rn,

where ϕ: X � {θ | θ is a solution of (84.3) with θ(0, X) = X} is known to be
acyclic and ψ: y → y(T ), which is obviously continuous. Since every composition
of an acyclic and a continuous map is admissible as required (see Section 40), we
are done. �

Observe that no uniqueness restriction has been imposed on. Hence, assuming
furthermore that

(84.6) f(t + T, θ) ≡ f(t, θ),

where T is a positive constant, system (84.3) admits a T -periodic solution as far
as ΦT in (84.4) has a fixed point.

If, for example, ΦT (Sn−1) ⊂ Bn, where Sn−1 = ∂Bn, and Bn ⊂ Rn is a closed
ball centered at the origin, or any other set with the fixed-point property as indi-
cated in Theorem (84.1) or Corollary (84.2), then (84.3) admits, under the above
assumptions, including (84.6), a harmonic, i.e. a T -periodic solution. Similarly,
if for some k ∈ N, ΦkT (Sn−1) ⊂ Bn, then by the same reasoning (84.3) admits
a subharmonic, i.e. a kT -periodic solution. This is certainly also true because
of Deg(i − ΦT , Bn) �= {0}, where Deg denotes the generalized Brouwer degree
of an admissible map (see Section 51), where i: Bn → Rn, i(x) = x is the inclusion
map.

This can be expressed in terms of bounding functions or guiding functions as
follows.
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(84.7) Theorem. Let a continuous T -periodic in t and locally lipschitzean in θ

bounding function V exist such that

(84.7.1) V (t, 0) = 0 for ‖θ‖ = r, uniformly w.r.t. t ∈ [0, T ],
(84.7.2) V (t, 0) < 0 for ‖θ‖ < r, uniformly w.r.t. t ∈ [0, T ],
(84.7.3) lim suph→0+ [V (t + h, θ + hY ) − V (t, θ)]/h < 0 for each Y ∈ f(t, θ) and

‖θ‖ = r, uniformly w.r.t. t ∈ [0, T ],

where r is a suitable positive constant which may be large. Then system (84.3)
admits, under (84.6), a harmonic.

Proof. In the single-valued case this result is well-known, when using C1-
bounding functions. For the differential inclusions, a similar type of results has
also been developed in [DyG] (see also [BGP]), but using again only autonomous
bounding functions. Thus, our statement represents only a slight generalization
and can be proved quite analogously, when following the same geometrical ideas.�

(84.8) Remark. Replacing conditions (84.7.1)–(84.7.3) by

lim
‖θ‖→∞

V (t, θ) =∞, uniformly w.r.t. t ∈ [0, T ],

and
lim sup

h→0+

1
h

[V (t + h, θ + hY )− V (t, θ)] < 0 for each Y ∈ f(t, θ)

and ‖θ‖ ≥ r, uniformly w.r.t. t ∈ [0, T ], where r is a positive constant which may
be large, we obtain, under (84.6), a subharmonic of (84.3) (for the single-valued
case see e.g. [And3] and the references therein).

(84.9) Remark. In the single-valued case, the dissipativity in the sense of
N. Levinson, i.e. the uniform ultimate boundedness of all solutions of (84.3) (which
can be expressed quite equivalently in terms of guiding functions with the same
properties as in Remark (84.8), is sufficient for the existence of harmonics (see e.g.
[And3]). So, we can conjecture that the same is true in the set-valued case.

The situation is, however, much more interesting when, for example, (84.3) is
only partially dissipative, i.e. if only

lim sup
t→∞

‖(θ1(t), . . . , θj(t))‖ ≤ D, 1 ≤ j < n

holds w.r.t. some part of components of every solution θ(t) of (84.3), where D is
a positive constant common for all solutions of (84.3). It is clear that Theorem
(84.1) is this time insufficient for applications.

In [AGL], we have developed the appropriate abstract apparatus for considering
such a situation, mainly using the generalized fixed point index technique, which
can be expressed in terms of two bounding functions as follows (for more details,
in the single-valued case, see e.g. [KZ-M]).
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(84.10) Theorem. Let continuous T -periodic in t and locally lipschitzean in θ

bounding functions V and W exist such that

(84.10.1) V (t, θ) = 0 for ‖θj‖ = r, uniformly w.r.t. all θ̂j ∈ Rn−j and t ∈ [0, T ],
(84.10.2) V (t, θ) < 0 for ‖θj‖ < r, uniformly w.r.t. all θ̂j ∈ Rn−j and t ∈ [0, T ],
(84.10.3) lim suph→0+ [V (t + h, θ + hY ) − V (t, θ)]/h < 0 for each Y ∈ f(t, θ),

‖θj‖ = r, θ̂j ∈ Rn−j and t ∈ [0, T ],
(84.10.4) W (t, θ) = 0 for ‖θ̂j‖ = s, uniformly w.r.t. ‖θj‖ ≤ r and t ∈ [0, T ],
(84.10.5) W (t, θ) > 0 for ‖θ̃j‖ > s, uniformly w.r.t. ‖θj‖ ≤ r and t ∈ [0, T ],
(84.10.6) lim infh→0+ [W (t + h, θ + hY ) − W (t, θ)]/h > 0 for each Y ∈ f(t, θ),

‖θ̂j‖ = s, ‖θj‖ ≤ r and t ∈ [0, T ],

where θ = (θj ⊕ θ̂j), 1 ≤ j < n, i.e. θj := (θ1, . . . , θj), θ̂j := (θj+1, . . . , θn) and r,
s are suitable positive constants which may be large. Then system (84.3) admits,
under (84.6), a harmonic.

(84.11) Remark. The application of the Dini derivatives above is more ap-
propriate on the boundary of nonconvex bound sets (in the sense [GM-M]) G, H.
The approach developed in [AGL] allows us, certainly under a modification in the
spirit of e.g. [GM-M], to take for this goal the domains which are star-shaped.

(84.12) Remark. For the existence of subharmonics, the bounding functions
V , W satisfying (84.10.1)–(84.10.6) can be replaced by guiding functions like in
Remark (84.8) for j = n (see e.g. [AGG]). In the single-valued case, the existence
of suitable guiding functions can be shown to imply again the existence of harmon-
ics, when using the abstract results in [AGZ], provided f(t, θ) represents a periodic
perturbation of an autonomous function. So, we can again conjecture that the
same is true in the set-valued case.

Now, system (84.3) will be considered on the cylinder C n+1 = R+
0 ×Tn or, in the

autonomous case, on the torus Tn = Rn/ωZn, where ωZ denotes all the integer
multiples of a positive constant ω. Thus, the natural restriction imposed on the
right-hand side of (84.3), besides the boundedness in t ∈ R+

0 , reads

(84.13) f(t, . . . , θj + ω, . . . ) ≡ f(t, . . . , θj, . . . ) for j = 1, . . . , n.

Consider still the (n − 1)-dimensional subtorus Σ ⊂ Tn given by

n∑
j=1

θj = 0 (mod ω)

and assume, additionally, that

(84.14) inf
(t,θ)∈Cn+1

n∑
i=1

fi(t, θ) > 0 or sup
(t,θ)∈Cn+1

n∑
i=1

fi(t, θ) < 0.
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Then we can define the Poincaré (first-return) map Φ on the cross section Σ as
follows:

(84.15) Φ(p){τ(p)}: Σ � Σ, Φ(p){τ(p)} := {θ(τ(p), p)},

where Φ0(p) = p ∈ Σ and {τ(p)} denotes the least time for p to return back
to Σ, when taking into account each branch of θ(t, p). Indeed, (84.15) implies that∑n

i=1 θ′
i(t, p) �= 0 for every solution θ(t, p) of (84.3) and almost all t ≥ 0 by which

the map τ(p): σ � [ω/E, ω/ε] is well defined, where ε, E are positive constants
such that

0 < ε ≤ inf
(t,θ)∈Cn+1

∣∣∣∣ n∑
i=1

fi(t, θ)
∣∣∣∣ ≤ sup

(t,θ)∈Cn+1

∣∣∣∣ n∑
i=1

fi(t, θ)

∣∣∣∣∣ ≤ E.

Moreover, (84.14) geometrically means that the trajectories of (84.3), associated
to (84.15)), intersect σ in a transversal way, which will be essential into the future.

Let us note that {τ(p)} is, even without (84.14), lower semi-continuous.
Observe that Φ{τ(p)} may be, as in the foregoing section, the fixed T time map.

This appears if, for example,

n∑
i=1

fi(t, θ) ≡ {F (t)},

where F (t) is a T -periodic function such that |
∫ T

0 F (t) dt| = ω > 0, because then
τ(p) = T for all p ∈ Σ.

(84.17) Lemma. Φ{τ(p)} given by (84.16) is, under (84.14), admissible.

Proof. Φ{τ(p)} can be considered as the composition of two maps, namely
Φ{τ(p)} = ϕ ◦ ψ, or more precisely

Σ
ϕ
−� AC ∗

([
0,

ω

ε

]
, Rn

)
ψ
−� Σ,

where AC∗ means the space of all absolutely continuous functions with the prop-
erties (cf. (84.14))

E ≥
∣∣∣∣ n∑

i=1

y′
i(t, p)

∣∣∣∣ ≥ ε > 0, for almost all t ∈
[
0,

ω

ε

]
,(84.18)

εt ≤
∣∣∣∣ n∑

i=1

yi(t, p)
∣∣∣∣ ≤ Et, for t ∈

[
0,

ω

ε

]
,(84.19)
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Here, ϕ: p � {θ(t, p) | θ(t, p) is a solution of (84.3) with θ(0, p) = p} is known to
be acyclic (see e.g. [BGP, Theorem 5.7]) and ψ: y(t, p) → y(τ(y), p) ∈ Σ, which
will obviously be continuous as far as τ(y) is so.

Observe that, because of the “sterisque” properties (84.18), (84.19), τ(y) is
again well denned and, moreover,

(84.20)
n∑

i=1

yi(τ(y)) − yi(0) = ±ω.

Hence, applying to (84.20) a suitable implicit function theorem for maps without
continuous differentiability (see e.g. [AuE-M, Theorem 7.5.8]), the map y → τ(y)
can easily be verified, under (84.18), to be Lipschitz-continuous, as required.

Since the composition of acyclic and continuous maps is admissible, the proof
is complete. �

In the single-valued case, Lemma (84.17) has the following direct consequence.

(84.21) Lemma. If f is, additionally, continuous and locally lipschitzean in θ,
then Φ{τ(p)} associated to the equation θ′ = f(t, θ), is continuous.

Since no torus has a fixed-point property (neither in the classical nor in the
generalized sense), the analogue of Theorem (84.1) or (84.2) for Σ or Tn are im-
possible. Nevertheless, we can define there the generalized Lefschetz number Λ
for admissible maps and, moreover, Φ{τ(p)}(p) in (84.16) can be shown to be, un-
der (84.14), homotopic in the sense of admissible maps to the identity I. Thus,
if for example Λ(C−1(Φ{τ(p)}(p))) �= {0}, where C: Σ → Σ is a diffeomorphism,
and subsequently C−1(Φ{τ(p)}(p)): Σ � Σ is admissible, then C−1 ◦Φ has a fixed
point, i.e. the “target problem” C(p) ∈ Φ{τ(p)}(p) is solvable. Because of the in-
variance under admissible homotopy, the problem turns out to be equivalent to
the computation of Λ(C−1) �= 0. This can be however performed, under natural
restrictions, by means of a sum of the local indices, (see e.g. [Br1-M]).

Therefore, we can give the following statement concerning the target problem
for (84.3) on the torus Σ, expressed by means of the condition

(84.22) C(θ(0, p)) = θ(t∗, p), for some t∗ > 0,

for more details see [And3] and references therein.

(84.23) Theorem. Let all the above regularity assumptions be satisfied, jointly
with (84.14). Assume that C: Σ → Σ is a diffeomorphism having finitely many,
but at least one, simple fixed points, γ1, . . . , γr on Σ and

(84.24)
r∑

k=1

sgn det(I − dC−1
γk

) �= 0,
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where dC−1
γk

denotes the derivative of C−1 at γk ∈ Σ. Then problem (84.3)–(84.22)
admits a solution.

(84.25) Corollary. In the single-valued case, problem (84.3)–(84.22) admits,
under the assumptions of Theorem (84.23) at least r geometrically distinct solu-
tions.

In the single-valued case, it is namely well-known (see [Br2-M]) that N(C−1 ◦
Φ) = ‖Λ(C−1 ◦ Φ)‖ on Σ. Therefore, since the Nielsen index N(C−1 ◦ Φ) de-
termines the lower estimate of fixed points of C−1 ◦ Φ on Σ, the absolute value
of the nonzero number in (84.24) designates at the same time the lower estimate
of desired solutions. Although the Nielsen index has also been generalized for
admissible maps (see e.g. [KM] and the references therein), no definition seems
directly available here.

Taking, in particular, C := σ+,−: Tn → Tn, where the shifts σ+ or σ− are
denned by the rules σ+,−(θ1, . . . , θn) = ±(θ2, . . . , θn, θ1), respectively, we can
prove the following statement concerning the corresponding sort of nonlinear ro-
tations (periodic oscillations of the second kind); for more details see [And2].

(84.26) Theorem. Let an autonomous system (84.3) determine a σ+,− equi-
variant flow on Tn, i.e.

(84.26.1) fi(θ1, . . . , θn) = (±1)i+1fi((±1)i+1θi, . . . , (±1)i+1θn,

(±1)i+1θ1, . . . , (±1)i+1θi−1), for i = 1, . . . , n.

Let, furthermore, fi be ω-periodic in each variable θj , i, j = 1, . . . , n, (see (84.12))
and

(84.26.2)
n∑

i=1

(±1)ifi(θ) > 0 or
n∑

i=1

(±1)ifi(θ) < 0,

respectively. Then system (84.3) admits nontrivial splay-phase or anti-splay-phase
orbits θ(t), respectively, provided n is even in the latter case, i.e. θ′(t + T ) = θ′(t)
for almost all t ∈ (−∞,∞), where T is a suitable positive constant and

θ(t) =
(

ϕ(t),±ϕ

(
t +

1
n

T

)
, . . . , ϕ

(
t +

n− 2
n

T

)
,±ϕ

(
t +

n− 1
n

T

))
,

respectively.

(84.27) Corollary. The assertion of Theorem (84.26) remains valid for (not
necessarily autonomous) (T/n)-periodic in t system (84.3), provided the nonauto-
nomous analogue to (84.26.1) holds and, instead of (84.26.2)

n∑
i=1

(±1)ifi(t, θ) ≡ {F (t)},
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where F is a (T/n)-periodic function such that

∫ T /n

0
F (t) dt = ±ω,

respectively. For nonautonomous, (T/n)-periodic in t, systems (84.3), we obtain
in fact the whole one-parameter family (i.e. generically, infinitely many) of such
subharmonics of the second kind.

It is so, because the associated first return map becomes the translation (fixed
time) operator, Φ{τ(p)}(p) = ΦT /n(p) as already pointed out. In the nonau-
tonomous case, it has meaning to apply the admissible translation operator

Φt0+T /n(p) := {θ(t0 + T/n, t0, p)}, for each t0 ∈ [0, T/n],

where θ(t, t0, p) is this time a solution of (84.3) with θ(t0, t0, p) = p ∈ Σ. Thus,
Φt0+T /n(Σ) ⊂ Σ, and using the same approach, we obtain for each value of t0 ∈
[0, T/n] the desired solutions.

(84.28) Example. As the simplest application of Theorem (84.10), consider
the planar system under nonlinear, periodic in t, perturbation:

(θ′ + AθT ) ∈ g(t, Θ),

where θ = (θ1, θ2), A = diag(a1, a2) is a constant matrix and g = (g1, g2)T satisfies
all the above regularity assumptions. Suppose, furthermore, that a1 > 0, a2 < 0,

lim
|θ1|→∞

g1(t, θ)
|θ1|

= 0,

uniformly w.r.t. t ∈ [0, T ] and θ2 ∈ (−∞,∞);

lim
|θ2|→∞

g2(t, θ)
|θ2|

= 0,

uniformly w.r.t. t ∈ [0, T ] and |θ)1| ≤ r.
Defining the bounding functions V , W as

V (θ1) := ‖θ1‖ − r, W (θ2) = ‖θ2‖ − s,

where r, s are sufficiently big positive constants, one can readily check that The-
orem (84.10) applies. Consequently, we have a harmonic.
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(84.29) Example. As an application of Corollary (84.25), consider the system

θ′ = f(t, θ) for n = 2, satisfying (84.14),

where f is 2π-periodic in each variable θj , j = 1, 2 (n = 2), and define the
diffeomorphism C: Σ→ Σ by

C(θ) := (θ1 + c sin θ1, θ2 + c sin θ2), where c ∈ (0, 1).

One can easily check that C−1(θ) as well as C(θ) have two fixed points on Σ,
namely γ0 = (0, 0) and γπ = (π, π).

Since there are still (using the theorem about the derivative of the inverse
function)

dC−1
0 = diag

(
1

1 + c
,

1
1 + c

)
, dC−1

π = diag
(

1
1− c

,
1

1− c

)
,

i.e.

I − dC−1
0 = diag

(
1

1 + c
,

1
1 + c

)
, I − dC−1

π = diag
(

1
1− c

,
1

1− c

)
,

we obtain

det(I − dC−1
0 ) =

(
c

1 + c

)2

, and det(I − dC−1
π ) =

(
c

1− c

)2

.

So, we can conclude that the Nielsen index N(C−1) = 2, by which our system
admits, according to Corollary (84.25), at least two geometrically distinct solutions
θ(t) satisfying (84.22), i.e.

[θ1(0) + c sin θ1(0), θ2(0) + c sin θ2(0)] = [θ1(t∗), θ2(t∗)]

for some t∗ > 0.

Finally, we shall consider the following example.

(84.30) Example. As an application of Corollary (84.27), consider the system

θ′
i = (±1)i+1p(t)∓ nC sin θi + C

∑
j = 1n(±1)j+i+1 sin θj , i = 1, . . . , n,

where C is an arbitrary constant and p(t) is a continuous function such that
p(t + T/n) ≡ p(t),

∫ T /n

0 p(t) dt = ±2π, respectively. Since all the assumptions
of Corollary (84.27) are evidently satisfied, we have a one-parameter family of sub-
harmonics of the second kind with the components equally staggered in phase.
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85. Multivalued fractals

Multivalued fractals are usually considered as fixed points of certain induced
union operators, called the Hutchinson–Barnsley operators, in hyperspaces of com-
pact subsets of the original spaces endowed with the Hausdorff metric. In this sec-
tion we are going to present current results connected with multivalued fractals.
For details we recommend [AnGo-M], [AFGL], [AG].

It is well known that Hutchinson [Hut] and Barnsley [Bar-M] initiated the way to
define and construct fractals as compact invariant subsets of complete metric space
with respect to union of contractions. Consequently, they proved the following.

(85.1) Theorem (Hutchinson–Barnsley). Assume that (X, d) is a complete
metric space and

(85.1.1) {fi: X → X, i = 1, . . . , n; n ∈ N}

is a system of contractions, i.e.

(85.1.2) d(fi(x), fi(y)) ≤ Li d(x, y), for all x, y ∈ X, i = 1, . . . , n,

where Li ∈ [0, 1), i = 1, . . . , n. Then there exists exactly one compact invariant
subset A∗ ⊂ X of the Hutchinson–Barnsley map

F (x) :=
n⋃

i=1

fi(x), x ∈ X,

called the attractor (fractal) of (85.1.1) or, equivalently, exactly one fixed-point
A∗ ∈ K (X) := {A ⊂ X | A is nonempty and compact} of the induced Hutchinson–
Barnsley operator

F ∗(A) :=
⋃

x∈A

F (x)
(

=
⋃

x∈A

F (x)
)

, A ∈ K (X),

in the hyperspace (K (X), dH), where dH as before stands for the Hausdorff metric,
defined by

dH(A, B) := inf{ε > 0 | A ⊂ Oε(B) and B ⊂ Oε(A)},

where Oε(C) = {x ∈ X | d(x, C) < ε}, for any nonempty, bounded, closed set
C ⊂ X. Moreover,

(85.1.3) lim
m→∞ dH(F ∗m

(A), A∗) = 0, for every A ∈ K (X),
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and
dH(A, A∗) ≤ 1

1− L
dH(A, F ∗(A)),

where (1 >) L = maxi=1,... ,n Li.

The proof is apparently based on a simple application of the Banach contraction
principle and one usually speaks about fractals associated with an iterated function
system (IFS) (85.1.1). The same is true for a system of multivalued contractions
with compact values, provided the Hausdorff metric appears in (85.1.2). Hence,
one can speak analogously about an iterated multifunction system (IMS).

The further development consists mainly in replacing the Banach contraction
principle by

(i) other metric fixed-point theorems, e.g. for weakly contractive or nonexpan-
sive maps, then we speak about metric fractals,

(ii) topological (Schauder-type) fixed-point theorems, then we speak about to-
pological fractals,

(iii) order-theoretic (Knaster–Tarski or Tarski–Kantorovitch-type) fixed-point
theorems, where invariant sets are deduced, under extremely weak assump-
tions, from subinvariant sets and the related fixed-points in hyperspaces
are only deduced a posteriori, then we speak about Tarski’s fractals,

(iv) putting the accent on the constructive part (cf. (85.1.3)), where the fractals
can be expressed in terms of the Kuratowski limits of stable or semistable
maps, then one can distinguish between fractals and semifractals, respec-
tively.

Let {An} be a sequence of subsets of X. The (topological) lower Kuratowski
limit Li An, and the (topological) upper Kuratowski limit Ls An, are defined as
follows (see [Ku-M]):

• x ∈ Li An if, for every ε > 0, there is a positive integer n0 such that
An ∩B(x, ε) �= ∅, for n ≥ n0.

• x ∈ Ls An if, for every ε > 0, the condition An ∩ B(x, ε) �= ∅ is satisfied,
for infinitely many n.

• If Li An = Ls An, then this set is called the (topological) Kuratowski limit
LimAn.

Li An, Ls An and Lim An are always closed sets, and Li An = Li An, Ls An =
Ls An.

For a metric space (X, d), the hyperspace of compact sets of X endowed with
the induced Hausdorff metric dH will be denoted (K (X), dH).

(85.2) Definition. We say that a metric space (X, d) is a hyper absolute neigh-
bourhood retract (a hyper absolute retract) if (K , dH) is an absolute neighbourhood
retract (an absolute retract), written X ∈ HANR (X ∈ HAR).
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For our convenience we shall use the following notions.

(85.3) Definition. A map ϕ: X � X is called the (Nadler) multivalued con-
traction if there exists a nonnegative constant L < 1 such that

dH(ϕ(x), ϕ(y)) ≤ Ld(x, y) for all x, y ∈ X.

When referring to (the least) L, one often speaks about a Lipschitz constant or a
contraction rate.

(85.4) Definition. A multivalued map ϕ: X � X is said to be (Edelstein)
contractive if

dH(ϕ(x), ϕ(y)) < d(x, y) for all x �= y ∈ X.

Obviously, every Nadler contraction is Edelstein contractive, but not reversely.
Although the Edelstein contractive map is Hausdorff-continuous, it is well-known
that it need not admit a fixed-point. As an example, the mapping

R � x
f'−→ ln(1 + ex) ∈ R

is Edelstein contractive, but fixed-point free (for more details, see e.g. [GoeKi-M],
[KS-M]).

(85.5) Definition. A multivalued map ϕ: X � X is called to be a weak
contraction if a continuous and nondecreasing function ψ: [0,∞) → [0,∞) exists
such that

(85.5.1) 0 < ψ(t) < t, for t ∈ (0,∞), and ψ(0) = 0,
(85.5.2) limt→∞(t − ψ(t)) =∞,
(85.5.3) dH(ϕ(x), ϕ(y)) ≤ ψ(d(x, y)), for all x, y ∈ X.

The notion of an abstract (Hölderian) η-contraction reads as follows.

(85.6) Definition. Let η: (0,∞) → [0,∞) be an abstract comparison func-
tion. A multivalued function ϕ: X � X with (closed) bounded values is called an
η-contraction if

dHϕ(x), ϕ(y)) ≤ η(d(x, y)) for all x �= y.

To guarantee suitable properties of η-contractions, we need to impose on η

some additional restrictions. Below we quote typical requirements (holding for
positive t’s):

(a) η(t) < t,
(b) if t1 ≤ t2 then η(t1) ≤ η(t2),
(c) lim supr→t+ η(r) < t,
(d) lim supr→t η(r) < t,
(e) limr→∞(r − η(r)) =∞.
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Recall that

lim sup
r→t

η(r) = inf
δ>0

sup
0<|r−t|<δ

η(r), lim sup
r→t+

η(r) = inf
δ>0

sup
t<r<t+δ

η(r).

The behaviour of η in 0 is not significant for our discussion (cf. [Xu1]). Obviously,
(d) is stronger than (c). Let us also note that an upper semicontinuous function
with (a) satisfies (d) and a right continuous function with (a) satisfies (c).

(85.7) Lemma. If η satisfies (b) and (c), then it satisfies (a) and (d), too.

Proof. (b) ∧ (c) ⇒ (a). Suppose (a) is not satisfied. Then η(t) ≥ t, for some
t > 0. By (c), there exists r > t such that η(r) < t. Thanks to (b),

η(t) ≥ t > η(r) ≥ η(t),

a contradiction.
(b) ∧ (c) ⇒ (d). In view of the above property, we can use (a) and (b) to get

inf
δ>0

sup
r∈(t−δ,t)

η(r) ≤ η(t) < t.

This together with (c) yields (d). �

Let η satisfy (d). Denote η(t) := lim supr→tη(r), η̃(t) := sup{η(τ) | τ ≤ t}.
Obviously, η(t) < t, and η̃ is nondecreasing (i.e. fulfills (b)). The following ob-
servation (cf. [Mt]) allows us to reduce the case of a nonmonotone comparison
function to a monotone one.

(85.8) Lemma. If η satisfies (a) and (d), then its modification η̃ satisfies (b)
and (d).

Proof. We only need to check (d). By the hypothesis,

(85.8.1) there exists δ > 0 such that sup
r∈(t−δ,t+δ)

η(r) < t.

Now, let us make the following estimates

(85.8.2) sup
r∈(t−δ,t+δ)

η̃(r) = max{ sup
r∈(0,t−δ]

η(r), sup
r∈(t−δ,t+δ)

η(r)}

≤ max{t− δ, sup
r∈(t−δ,t+δ)

inf
ε>0

sup
s∈(r−ε,r+ε)

η(s)}

≤ max{t− δ, sup
r∈(t−δ,t+δ)

η(r)},

where the last inequality uses the fact that, for any δ > 0 and r ∈ (t − δ, t + δ),
there exists ε > 0 such that (r − ε, r + ε) ⊂ (t − δ, t + δ). The assertion follows
from (85.8.1) and (85.8.2). �
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(85.9) Lemma. Let ϕ: X � X be an η-contraction satisfying (b). Then

ϕ(B(x, r)) ⊂ Oη(r)+ε(ϕ(x)) for every x ∈ X, ε > 0, r > 0.

Proof. For x′ ∈ B(x, r), one has

dH(ϕ(x′), ϕ(x)) ≤ η(d(x′, x)) ≤ η(r) < η(r) + ε.

Thus, ϕ(x′) ⊂ Oη(r)+ε(ϕ(x)). �

Although there exist Edelstein contractive maps without any reasonable com-
parison function, the situation changes if we assume compactness of the metric
space X. Then any Edelstein contractive map is just a weak contraction as fol-
lows from the following lemma (for single-valued maps, cf. Proposition A.4.5, p. 141
in [Wi-M]).

(85.10) Lemma. Let ϕ: X � X be Edelstein contractive on a compact X.
Then ϕ is an η-contraction for η defined as

η(t) := sup{dH(ϕ(x), ϕ(y)) | d(x, y) ≤ t}.

This comparison function is continuous and satisfies all conditions (a)–(e).

Proof. At first, observe that, by the compactness assumption, (e) is trivial.
Condition (b) follows immediately from definition, too. Moreover, (b) and (c)
imply, according to Lemma (85.7), (a) and (d). Therefore, we only need to check
that ϕ is indeed an η-contraction with (c). We have

dH(ϕ(x0), ϕ(y0)) ≤ sup{dH(ϕ(x), ϕ(y)) | d(x, y) ≤ d(x0, y0)} = η(d(x0, y0))

which implies contractivity. To check (c), suppose the contrary. Then there exists
t ≤ rn → t such that η(rn) ≥ t. Since the supremum in the formula for η is
attained (dH(ϕ( · ), ϕ( · )) is continuous), we can find sequences {xn}∞

n=1, {yn}∞
n=1

with η(rn) = dH(ϕ(xn), ϕ(yn)) and d(xn, yn) ≤ rn. By compactness, we can
assume that xn → x, yn → y. Thus, t ≤ η(rn) → dH(ϕ(x), ϕ(y)) and d(x, y) =
limn→∞ d(xn, yn) ≤ t. Altogether, this leads to a contradiction, namely

t ≤ dH(ϕ(x), ϕ(y)) < d(x, y) ≤ t. �

Now, it will be convenient to define condensing maps w.r.t. a measure of non-
compactness (MNC).
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Let (X, d) be a metric space and B be the set of all bounded subsets of X. The
function α:B → [0,∞), where

α(B) := inf{δ > 0 | B admits a finite covering by the sets of diameter ≤ δ}

is called the Kuratowski measure of noncompactness and the function γ:B →
[0,∞), where

γ(B) := inf{ε > 0 | B has a finite ε-net} i.e. B ⊂
m⋃

i=1

B(xi, ε),

is called the Hausdorff measure of noncompactness. These MNC are related as
follows:

γ(B) ≤ α(B) ≤ 2γ(B)

Moreover, they satisfy the following properties (comp. Chapter I, Section 4):

(µ1) µ(B) = 0 if and only if B is compact,
(µ2) if B1 ⊂ B2 then µ(B1) ≤ µ(B2),
(µ3) µ(B) = µ(B),
(µ4) if {Bi}∞

i=1 is a decreasing sequence of nonempty closed sets Bi ∈ B with
limi→∞ µ(Bi) = 0, then

⋂∞
i=1 Bi �= ∅,

(µ5) µ(B1 ∪B2) = max{µ(B1), µ(B2)},
where µ denotes either α or γ.

(85.11) Definition. Letting µ := α or µ := γ, a bounded mapping F : X ⊃
U � X, i.e. F (B) ∈ B, for any B � B ⊂ U , is then said to be µ-condensing
(shortly, condensing) if µ(F (B)) < µ(B), whenever B � B ⊂ U and µ(B) > 0 or,
equivalently, if µ(F (B)) ≥ µ(B) implies µ(B) = 0, whenever B � B ⊂ U .

Analogously, a bounded mapping F : X ⊃ U � X is said to be a k-set contrac-
tion w.r.t. µ (shortly, a k-contraction or a set-contraction) if µ(F (B)) ≤ kµ(B),
for some k ∈ [0, 1), whenever B � B ⊂ U .

Obviously, any set-contraction is condensing. Furthermore, compact maps or
(Nadler) contractions with compact values (in vector spaces, also their sum) are
well-known to be set-contractions, and so condensing. For more details, see e.g.
[AKPRS-M].

The following statement allows us to deduce condensity from η-contraction for
maps with compact values satisfying the above conditions (b) and (c), i.e. in
particular, from weak contractions in the sense of Definition (85.6).

(85.12) Proposition. Let ϕ: X � X be an η-contraction with compact values,
and let the comparison function η satisfy (b) and (c). Then ϕ is µ-condensing,
where µ := α or µ := γ (see Definition (85.11)).
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Proof. Fix r > µ(A) > 0 and find a finite r-net {xi}i of A, i.e.
⋃

i B(xi, r) ⊃ A.
Thus, by Lemma (85.9),

ϕ(A) ⊂
⋃

i

ϕ(B(xi, r)) ⊂
⋃

i

Oη(r)+ε(ϕ(xi)).

Putting compact K =
⋃

i ϕ(xi), we have⋃
i

Oη(r)+ε(ϕ(xi)) ⊂ Oη(r)+ε(K) ⊂
⋃
j

B(zj , η(r) + 2ε),

where {zj}j is a finite ε-net for K. So, µ(ϕ(A)) ≤ η(r) + 2ε. Since ε and r were
arbitrary, we get

µ(ϕ(A)) ≤ η(r) < µ(A).

If µ(A) = 0, then µ(ϕ(A)) = 0, because ϕ maps compacta onto compacta. �

In order to derive the existence of fractals for weak contractions from analogous
theorems for bounded condensing maps (see Theorem (85.21) below), one needs
to localize a bounded fractal. More precisely, we must ensure the existence of
a closed bounded subinvariant set (which contains all closed bounded invariant
sets. In fact, by contractivity, there is only one such invariant set). The following
Proposition (85.13) demonstrates that this holds almost automatically.

(85.13) Proposition. Let ϕ: X �X be an η-contraction with (closed) bounded
values, and let the comparison function η satisfy (b), (c) and (e). Then, for any
x0 ∈ X, there exists r0 such that

ϕ(B(x0, r)) ⊂ B(x0, r), for all r ≥ r0.

Proof. Take σ such that ϕ(x0) ⊂ B(x0, σ). Fix ε > 0 and, in view of prop-
erty (e), find r0 such that r − η(r) > σ + 2ε, for all r ≥ r0. To r, we can assign
ρ > r such that η(ρ) < η(r) + ε, which gives

r − η(ρ) > r − (η(r) + ε) > σ + 2ε− ε = σ + ε.

Now, we have

ϕ(B(x0, r)) ⊂ ϕ(B(x0, ρ)) ⊂ Oη(ρ)+ε(ϕ(x0))

⊂ Oη(ρ)+ε(B(x0, σ)) ⊂ B(x0, η(ρ) + σ + ε) ⊂ B(x0, r),

when applying Lemma (85.9) to the second inclusion. �
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Our primer interest are metric multivalued fractals. More precisely, we are
interested in the existence and the topological structure of sets of fractals for
systems of maps approximated by multivalued contractions.

Let X be a complete AR-space. For k ≥ 1, let ϕi,k: X � X, i = 1, . . . , n, be
contractions with Lipschitz constants Li,k < 1. Consider the Hutchinson–Barnsley
operators

F ∗
k : K (X)→ K (X), F ∗

k (A) =
n⋃

i=1

ϕi,k(A).

Then each F ∗
k is a contraction with a Lipschitz constant Lk = maxi=1,... ,n{Li,k}.

Indeed, let dH(A, B) = D. Take any y ∈
⋃k

i=1 ϕi,k(A). Thus, for some i ∈
{1, . . . , n} and any δ > 0, there exist x ∈ A and z ∈ B such that y ∈ ϕi,k(x) and
d(x, z) < D + δ. This implies that

dist(y, ϕi,k(z)) ≤ Li,k(D + δ) ≤ Lk(D + δ),

and so y ∈ OLk(D+δ)(
⋃k

i=1 ϕi,k(B)). Similarly, we can prove that

k⋃
i=1

ϕi,k(B) ⊂ OLk(D+δ)

( k⋃
i=1

ϕi,k(A)
)

.

Since δ was arbitrary, we obtain that

dH(F ∗
k (A), F ∗

k (B)) ≤ LkdH(A, B).

Below we study the topological structure of the set of fractals (invariant sets
of the Hutchinson–Barnsley map F or fixed-points of the Hutchinson–Barnsley
operator F ∗) for maps being approximated by contractions. In particular, nonex-
pansive maps can be considered with this respect.

We need the following

(85.14) Definition. We say that a family of maps {ϕi: X � X}n
i=1 satisfies

the Palais–Smale condition (shortly PS-condition) if each ϕi maps compact sets
onto compact sets and, for the Hutchinson–Barnsley operator F ∗, one has:

(85.14.1) if {Ak} ⊂ K (X) is a sequence with dH(Ak, F ∗(Ak))→ 0, then {Ak} has
a subsequence convergent w.r.t. dH .

The following result is important because of possible applications. Moreover, it
relates to one of classes of maps satisfying the PS-condition.

(85.15) Proposition. Let X be a metric space and let {ϕi: X � X}n
i=1 be

a family of compact u.s.c. maps with compact values. Then the family {ϕi}n
i=1

satisfies the PS-condition.

Proof. Take any sequence {Ak} ⊂ K (X). Let K ⊂ X be a compact set such
that ϕi(X) ⊂ K, for every i ∈ {1, . . . , n}. Since K (K) ⊂ K (X) is a compact
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subspace and F ∗(Ak) ∈ K (K), for every k ≥ 1 (see e.g. [AnGo-M]), one can
choose a convergent subsequence F ∗(Akl ) → A ∈ K (K). Using our assumption,
one obtains Akl → A. �

Now, we are in a position to prove the main result of this subsection.

(85.16) Theorem. Let X be a complete absolute retract and let maps ϕi: X �
X, i = 1, . . . , n, be approximated by multivalued contractions ϕi,k: X � X, i =
1, . . . , n, k ≥ 1, in the following way:

dH(ϕi,k(x), ϕi(x)) ≤ min
{

1
k

, c(1− Lk)
}

for every i=1, . . . , n and k≥1, and some constant c (here Lk =maxi=1,... ,n{Li,k},
where Li,k is a contraction rate for ϕi,k). Let F ∗ be the Hutchinson–Barnsley
operator for {ϕ1, . . . , ϕn} and assume that {ϕ1, . . . , ϕn} satisfies the PS-condition.
Then Fix F ∗ is an Rδ-set, i.e. it is an intersection of compact contractible sets.

Proof. Since X is an AR-space, it is contractible. Therefore, there is a mul-
tivalued homotopy Hk: X × [0, 1] � X such that

Hk( · , 0) = idX and Hk( · , 1) =
n⋃

i=1

ϕi,k( · ).

This induces a homotopy in the hyperspace (K (X), dH), H∗
k : K (X)×[0, 1]→ K (X),

which joins idK(X) with F ∗
k .

Since (X, d) is complete, so is (K (X), dH). Thus, there is a unique fixed-point
A∗

k of F ∗
k , according to the Banach principle.

Consider the set

Ak = {A ∈ K (X) | dH(A, F ∗
k (A)) ≤ min

{
1
k

, c(1− Lk)
}

.

Since F ∗
k and the distance function dH are continuous, one has

Ak = (dH( · , F ∗
k ( · )))−1

([
0, min

{
1
k

, c(1− Lk)
}])

and so, the set Ak is closed. We show that it is also contractible. Observe that,
for every A ∈ Ak,

dH(A, A∗
k) ≤ dH(A, F ∗

k (A)) + dH(F ∗
k (A), F ∗

k (A∗
k)) + dH(F ∗

k (A∗
k), A∗

k)

≤ min
{

1
k

, c(1− Lk)
}

+ LkdH(A, A∗
k),
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and subsequently

dH(A, A∗
k) ≤ 1

1− Lk
min

{
1
k

, c(1− Lk)
}
≤ c.

Hence, Ak is bounded. Moreover, A∗
k ∈ Ak.

Let A ∈ Ak. Then

dH((F ∗
k )2(A), F ∗

k (A)) ≤ Lk dH(F ∗
k (A), A) ≤ min

{
1
k

, c(1− Lk)
}

,

where F ∗
k

2 denotes the second iterate of F ∗
k . Thus, F ∗

k
m(A) ∈ Ak, for any m ≥ 0.

We know that, by the Banach algorithm, A∗
k = limm→∞ F ∗

k
m(A), for every A ∈

K (X). This allows us to construct the homotopy χ: Ak × [0, 1]→ Ak,

χ(A, t) =


H∗

k(F ∗
k

m(A), (m + 1)(m + 2)t−m(m + 2))

whenever
m

m + 1
≤ t ≤ m + 1

m + 2
,

A∗
k for t = 1.

This homotopy deforms Ak onto A∗
k.

Notice that, if A = F ∗(A), then

dH(A, F ∗
k (A)) = dH(F ∗(A), F ∗

k (A)) ≤ min
{

1
k

, c(1− Lk)
}

,

for every k ≥ 1. So, A ∈ Ak and, consequently, Fix F ∗ ⊂ Ak.
We prove the nonemptiness of Fix F ∗. One has

(85.16.1) dH(A∗
k, F ∗(A∗

k)) = dH(F ∗
k (A∗

k), F ∗(A∗
k)) ≤ 1

k
.

In view of the PS-condition, there is a subsequence A∗
kl

convergent to A∗. Because
of continuity of F ∗, one obtains F ∗(A∗

kl
)→ F ∗(A∗). On the other hand, (85.16.1)

gives F ∗(A∗
kl

)→ A∗, so A∗ = F ∗(A∗).
It is also easy to prove that FixF ∗ is compact. To do this, take a sequence

{Ak} ⊂ Fix F ∗, i.e. dH(Ak, F ∗(Ak))(= 0) → 0, so by the PS-condition, there is a
convergent subsequence.

Now, we show that

• for every open neighbourhood U of Fix F ∗ in K (X), one can find k0 ≥ 1
such that Ak ⊂ U , for every k ≥ k0.

Indeed, otherwise, there is Akl ∈ Akl with Akl �∈ U , kl →∞. By the definition
of Akl ,

dH(Akl , F ∗(Akl))
(
≤ 2

kl

)
→ 0.
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Applying the PS-condition, one obtains (up to a subsequence)

Akl → A = F ∗(A) ∈ Fix F ∗.

But this is impossible, because K (X) \ U � Akl → A ∈ K (X) \ U .

Since Fix F ∗ ⊂ Ak, k ≥ 1, we have that Fix F ∗ = Lim Ak, where Lim Ak

denotes the topological limit of {Ak}. By the variant of the Browder–Gupta
lemma (cf. Chapter VI, Section 69 or [AnGo-M, Chapter II.1]), we conclude that
Fix F ∗ is an Rδ-set. �

(85.17) Remark. One can readily check that the mapping ϕ(x) = [0, x], x ∈
[0, 1], is nonexpansive, and satisfying the assumptions of Theorem (85.16), but not
a weak contraction in the sense of Definition (85.5). The domain [0, 1] is obviously
the maximal compact invariant set of ϕ. The whole family {[0, x] | x ∈ [0, 1]}
of compact invariant sets of ϕ, guaranteed by Theorem (85.16), is much richer,
namely an Rδ-set.

Let us start this subsection with a simple observation that although the gen-
eralized Lefschetz number Λ(ϕ) of a (single-valued, continuous) endomorphism
ϕ: A → A, homotopic to id |A on an annulus A (∈ ANR) equals zero, because
Λ(ϕ) = Λ(id A) = χ(A) = 0, for the one of the induced endomorphism ϕ∗: K (A)→
K (A), we have that Λ(ϕ∗) = Λ(id |K(A)) = χ(K (A)) = 1, because K (A) ∈ AR),
where χ( · ) stands for the Euler–Poincaré characteristic. Subsequently, although
ϕ need not admit a fixed-point (if, for instance, ϕ �= id A mod 2π is a rotation,
then ϕ is apparently fixed-point free), there must always be a fixed-point of ϕ∗ in
K (A).

Furthermore, if ϕ: X � X is a (multivalued) map and A ⊂ X is a nonempty
subset such that A ⊂ ϕ(A), then it follows on the basis of the Knaster–Tarski
fixed-point theorem (see Section 84) that there exists an invariant set A∗ ⊂ X

w.r.t. ϕ, i.e. A∗ = ϕ(A∗). On the other hand, in spite of the existence of a fixed-
point of an u.s.c. map with compact, convex values ϕ: R � R such that e.g.
[0, 1]⊂ ϕ([0, 1]) (see Lemma 9.9 from Chapter III.9 in [AnGo-M]), for n > 1, there
need not exist a fixed-point for a continuous (single-valued) function f : Rn → Rn

such that [0, 1]n ⊂ f([0, 1]n).

These simple examples demonstrate that fractals can also exist on sets without
fixed-points. On the other hand, we must prove

(i) either the existence of fixed-points in the given hyperspace (K (X), dH),
(ii) or the existence of compact invariant sets in the original space (X, d).

Here, we will concentrate on the second approach. A bit surprisingly, from the
point of view of the sole existence of fractals, this approach appears to be the most
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efficient of all. This is due to the application of the special case of the Knaster–
Tarski fixed-point theorem, which can be schematically expressed for quasi-compact
maps (i.e. F ∗: K (X)→ K (X)) as follows:

∃ subinvariant set
A∗ ∈ K (X)

w.r.t. F : X � X

(i.e. F (A∗) ⊂ A∗)

�� ��

∃ invariant set
A∗ ∈ K (X)

w.r.t. F : X � X

(i.e. F (A∗) = A∗)
��

��

��

��

∃A∗ ∈ K (X):
A∗ =

⋃∞
m=0 F m(A∗)

�� ��
∃ fixed-point A∗ ∈ K (X)

of F ∗: K (X)→ K (X)
(i.e. F ∗(A∗) = A∗)

(85.18) Remark. Observe that, besides satisfying the assumption F (A∗) ⊂
A∗ ∈ K (X), the quasi-compact mapping F : � X can be quite arbitrary, be-
cause the induced map F ∗: K (X) → K (X), as any other map, always fulfils the
monotonicity (isotonicity) condition: if A1 ≤ A2 then F ∗(A1) ≤ F ∗(A2), for all
A1, A2 ∈ K (X), provided (as in our case) A1 ≤ A2 in K (X) if and only if A1 ⊂ A2

in X. The general version of the Knaster–Tarski theorem (cf. [DG-M, p. 25])
namely holds for monotone (isotone) maps on partially ordered sets whose chains
have an infimum (again trivially satisfied here). Moreover, the implied invariant
set A∗ ∈ K (X) is minimal, i.e. if B∗ ⊂ A∗ then B∗ = A∗, for every invariant set
B∗ ∈ K (X) w.r.t. F : X � X. Actually, one can easily check that there are no
other minimal subinvariant sets, but minimal invariant sets.

(85.19) Remark. As a nontrivial example of quasi-compact maps, we can
mention the class of u.s.c. maps with compact values (see e.g. [AnGo-M]). If, in
particular, F : X � X is a compact u.s.c. map, then its center (core)

⋂∞
m=1 F m(X)

can be verified to be a nonempty, compact (see [Go1-M, p. 25]), subinvariant subset
of X w.r.t. F , because

F

( ∞⋂
m=1

F m(X)
)
⊂

∞⋂
m=1

F (F m(X)) =
∞⋂

m=1

F m+1(X) =
∞⋂

m=1

F m(X).

Thus, taking

K (X) � A∗ :=
∞⋂

m=1

F m(X) =
∞⋂

m=1

⋃
x∈X

F m(x),
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where {ϕi: X � X, i = 1, . . . , n} is a system of compact u.s.c. maps, and sub-
sequently so is F (x):

⋃n
i=1 ϕi(x), x ∈ X, the Knaster–Tarski theorem implies the

existence of a minimal fractal for the system {ϕi: X � X, i = 1, . . . , n}.
Hence, for the application of the above scheme, it is enough to prove the ex-

istence of a compact subinvariant set A∗ ⊂ X of the quasi-compact Hutchinson–
Barnsley map F : X � X, F (x) :=

⋃n
i=1 ϕi(x), x ∈ X. We will do it for a rather

general system of condensing multivalued functions. For the definition, based on
the notion of measure of noncompactness (MNC) with the important properties
(µ1)–(µ5).

One can readily check that if F : X � X is condensing, then F is quasi-compact.
Hence, considering the Hutchinson–Barnsley map

F (x) :=
n⋃

i=1

ϕi(x), x ∈ X,

where {ϕi: X � X, i = 1, . . . , n} is a system of condensing maps, and the induced
Hutchinson–Barnsley operator

F ∗(A) :=
⋃

x∈A

F (x), A ∈ K (X),

F becomes quasi-compact, as required, because (cf. (µ5))

0 = µ(A) ≥ max
i=1,... ,n

{µ(ϕi(A))} = µ

( n⋃
i=1

ϕi(A)
)

= µ(F (A)), for A ∈ K (X),

and subsequently (cf. (µ1)) F ∗(A) = F (A) ∈ K (X).
The following lemma is a slight (multivalued) modification of Lemma 1.6.11

in [AKPRS-M].

(85.20) Lemma. Let (X, d) be a complete metric space, F : X � X be a con-
densing map such that F (X) is bounded, and F ∗:B → B be the corresponding
Hutchinson–Barnsley operator on the family of bounded sets B, i.e. F ∗(B) = F (B),
for B ∈ B. Then

lim
m→∞ µ(F ∗ m(X)) = 0.

Proof. We will prove this lemma only for µ := γ, because for µ := α the proof
will follow from the relation γ(B) ≤ α(B) ≤ 2γ(B).

Hence, denoting the bounded set (by the hypothesis) Q := F (X) = F ∗(X) and
Rm := F ∗ m(Q), we have Rm ⊂ Q. Defining

Σ :=
{

A =
∞⋃

m=1

Am

∣∣∣∣ Am is a finite subset of Rm

}
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and applying Lemma 1.6.10 in [AKPRS-M], there exists As ∈ Σ such that γ(As) =
supA∈Σ γ(A), i.e. As =

⋃∞
m=1 Am,s.

Furthermore, denoting R0 := Q, we can associate, with each x ∈ Am,s ⊂ Rm =
F ∗(Rm−1), yx ∈ F ∗ m−1(Q) = Rm−1 such that x ∈ F ∗({yx}). Taking

Bm−1 := {yx | x ∈ Am,s}, B :=
∞⋃

m=1

Bm ∈ Σ,

we obtain γ(B) ≤ γ(As). Moreover,

F ∗(B) = F ∗
( ∞⋃

m=1

Bm

)
⊃

∞⋃
m=1

F ∗(Bm) ⊃
∞⋃

m=1

Am+1,s =
∞⋃

m=2

Am,s,

thanks to the inclusion

F ∗(Bm) ⊃
⋃

x∈Am+s,s

F ∗({yx}) ⊃ Am+1,s,

and subsequently

γ(F ∗(B)) ≥ γ

( ∞⋃
m=2

Am,s

)
= γ(As) ≥ γ(B).

In view of γ-condensity of F , we arrive at γ(As) = γ(B) = 0, because B is
bounded, and since X is complete, B is compact. After all, µ(A) = 0, for all
A ∈ Σ.

The limit
lim

m→∞ γ(F ∗ m(Q)) = lim
m→∞ γ(F ∗ m(X))

exists, because it is related to a nonincreasing sequence bounded from below.
Assume, on the contrary, that it is positive. Then there exists ε0 > 0 such that

γ(F ∗ m(Q)) > ε0. Choose x1 ∈ F ∗(Q) and select x2 ∈ F ∗ 2(Q) with d(x1, x2) ≥ ε0.
Proceeding inductively, we get an infinite sequence {xm}∞

m=1, xm ∈ F ∗ m(Q), such
that d(xk, xl) ≥ ε0, for k �= l.

Having namely {xk | k = 1, . . . , m}, we can find xm+1 ∈ F ∗ m+1(Q) with
dist(xn+1, {x1, x2, . . . , xm}) ≥ ε0; otherwise, {xk | k = 1, . . . , m} would determine
a finite ε0-net for F ∗ m+1(Q).

On the other hand, the set A := {xm | m = 1, 2, . . .} belongs to Σ, and
so γ({xm | m = 1, 2, . . .}) = 0. Thus, {xm}∞

m=1 must contain a convergent
subsequence. By the separation property of this sequence, due to its construction,
it is impossible which completes the proof. �

We are ready to give the main existence result of this part.
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(85.21) Theorem. Let (X, d) be a complete metric space and let {ϕi: X � X,

i = 1, . . . , n} be a system of condensing maps such that ϕi(X) is bounded, for
every i = 1, . . . , n. Then there exists a minimal, nonempty, compact, invariant
set A∗ ⊂ X w.r.t. the Hutchinson–Barnsley map

F (x) :=
n⋃

i=1

ϕi(x), x ∈ X,

i.e. a minimal fractal A∗ ∈ K (X) with F ∗(A∗) = A∗, where

F ∗(A) :=
⋃

x∈A

F (x), A ∈ K (X),

is the Hutchinson–Barnsley operator.

Proof. Because of (µ5), F : X � X is condensing and since F ∗(A) = F (A),
for every A ∈ K (X), it is also quasi-compact, i.e. F ∗: K (X) → K (X), as pointed
out above. Thus, the particular form (see the above scheme) of the Knaster–Tarski
theorem can be applied here. For this, we need a subinvariant A∗ ∈ K (X) w.r.t. F .

Since, for
A := F (X) ∈ B, {F ◦ . . . ◦ F (A)︸ ︷︷ ︸

m-times

}∞
m=1

becomes a decreasing sequence of nonempty, closed sets with (see Lemma (85.20))

lim
m→∞ µ(F ◦ . . . ◦ F (A)︸ ︷︷ ︸

m-times

) = 0,

we get (cf. (µ4)) that

A∗ :=
∞⋂

m=1

F ◦ . . . ◦ F (A)︸ ︷︷ ︸
m-times

�= ∅.

The nonempty center (core) A∗ can be verified to be compact by means of the
well-known Kuratowski theorem. It also satisfies the inclusion

(85.21.1) F (A∗) = F

( ∞⋂
m=1

F ◦ . . . ◦ F (A)︸ ︷︷ ︸
m-times

)
⊂

∞⋂
m=1

F

(
F ◦ . . . ◦ F (A)︸ ︷︷ ︸

m-times

)

=
∞⋂

m=1

F ◦ . . . ◦ F (A)︸ ︷︷ ︸
(m+1)-times

=
∞⋂

m=1

F ◦ . . . ◦ F (A)︸ ︷︷ ︸
m-times

= A∗.

Thus, applying the Knaster–Tarski theorem (see the above scheme), there exists
a minimal fixed-point A∗ ∈ K (X) of the Hutchinson–Barnsley operator F ∗: K (X)
→ K (X). �
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A more transparent proof of Lemma (85.20) can be done for a system of set-
contractions in a complete metric space X.

Hence, consider a system {ϕi: X � X, i = 1, . . . , n} of ki-set contractions ϕi,
i.e.

µ(ϕi(B)) ≤ kiµ(B), for all B ∈ B,

where ki ∈ [0, 1), i = 1, . . . , n, and assume that ϕi(X) is bounded, for every
i = 1, . . . , n. For the associated Hutchinson–Barnsley map F : X � X, we get
immediately that F (X) ⊂ X, F (X) ∈ B, and (cf. (µ1), (µ5)),

µ(F (B)) = µ(F (B)) ≤ kµ(B) = kµ(B), for all B ∈ B,

where 1 > k = max{k1, . . . , kn}, and subsequently

µ(F ◦ . . . ◦ F (B)︸ ︷︷ ︸
m-times

) ≤ kmµ(B) = kmµ(B), for all B ∈ B.

Therefore,
0 ≤ lim

m→∞ µ(F ◦ . . . ◦ F (B)︸ ︷︷ ︸
m-times

) ≤ µ(B) lim
m→∞ km = 0.

(85.22) Corollary. Let X be a complete metric space and {ϕi: X � X, i =
1, . . . , n} be a system of set-contractions such that ϕi(X) is bounded, for every
i = 1, . . . , n. Then there exists a minimal fractal A∗ ∈ K (X) with F ∗(A∗) = A∗

or, equivalently, with F (A∗) = A∗.

(85.23) Remark. One can readily check that since ∅ �= A∗ ∈ K (X) is evidently
a minimal subinvariant set, it must be an invariant set w.r.t. F (see Remark (85.8)),
i.e. A∗ := A∗ = F (A∗). In other words,

F

( ∞⋂
m=1

F ◦ . . . ◦ F (X)︸ ︷︷ ︸
(m+1)-times

)
=

∞⋂
m=1

F ◦ . . . ◦ F (A)︸ ︷︷ ︸
(m+2)-times

holds in (85.21.1), and subsequently the minimal fractal in Theorem (85.21) or
Corollary (85.22) takes the form

(85.23.1) A∗ :=
∞⋂

m=1

F ◦ . . . ◦ F (A)︸ ︷︷ ︸
m-times

.

The assumption in Theorem (85.21) that ϕi(X) is, for every i = 1, . . . , n,
bounded might be sometimes rather restrictive (cf. Theorem (85.1) or Theo-
rem (85.16)). Therefore, one can alternatively assume e.g. that ϕi are l.s.c. and
such that the related Hutchinson–Barnsley map F has a compact attractor for
related orbits starting at some point x0 ∈ X.
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(85.24) Corollary. Let {ϕi: X � X, i = 1, . . . , n} be a system of l.s.c.
maps and suppose that there exists a compact set K ⊂ X of a complete space X

attracting, for some x0 ∈ X, the orbit {F m(x0)}∞
m=1 of the related Hutchinson–

Barnsley map F (x) =
⋃n

i=1 ϕi(x), i.e.

for all ε > 0 there exists l such that F m(x0) ⊂ B(K, ε) for all m ≥ l

or equivalently, e(F m(x0), K) → 0, when m → ∞. Then the omega-limit set
ω(x0) =

⋂
m

⋃
k≥m F k(x0) is a nonempty, compact subinvariant set. Moreover,

there exists a minimal compact invariant set of the Hutchinson–Barnsley map F .

Proof. For the subinvariance of ω(x0) observe that

F

(⋂
m

⋃
k≥m

F k(x0)
)
⊂
⋂
m

F

( ⋃
k≥m

F k(x0)
)

⊂
⋂
m

F

( ⋃
k≥m

F k(x0)
)
⊂
(⋂

m

⋃
k≥m+1

F k(x0)
)

,

and realize that F becomes l.s.c. too. The middle inclusion above is due to the
fact that a multifunction F is l.s.c. if and only if F (A) ⊂ F (A), for all A ⊂ X.

Since ω(x0) = Ls F k(x0) (the upper Kuratowski topological limit), we have that
ω(x0) ⊂ K is nonempty and compact. Thus, F (ω(x0)) must be compact, too. It
follows immediately from the Knaster–Tarski theorem that F admits a minimal
compact invariant set. �

Another possibility is to assume e.g. that ϕi are u.s.c. locally compact maps
such that the related Hutchinson–Barnsley map has a compact attractor.

(85.25) Corollary. Let {ϕi: X � X, i = 1, . . . , n} be a system of lo-
cally compact u.s.c. maps such that the related Hutchinson–Barnsley map F (x) =⋃n

i=1 ϕi(x) has a compact attractor K ⊂ X, i.e.

for all ε > 0 and all x ∈ X there exists l = lx such that

F m(x) ⊂ B(K, ε) for all m ≥ l.

Then there exists a minimal compact invariant set of the Hutchinson–Barnsley
map F .

Proof. It can be proved exactly as in Lemma 5.11 in [AnGo-M, Chapter 1.5,
pp. 75–76] that a subset U ⊂ X w.r.t. F exists such that F (U) ⊂ U , where F (U) is
compact. Therefore, applying the Knaster–Tarski theorem, there exists a minimal
compact invariant set of F . �
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(85.26) Corollary. Let X be complete and {ϕi: X � X, i = 1, . . . , n} be
a system of weak contractions with compact values. Then there exists a unique
compact invariant set of the Hutchinson–Barnsley map F . If X is still compact,
then, for the same conclusion, the system can consist of Edelstein contractive maps.

We finish this subsection by two examples illustrating the disadvantage of using
only condensing maps.

(85.27) Example (Noncondensing Nadler contraction). Let X be an infi-
nite dimensional Banach space. Define multivalued constant map ϕ: X � X

as ϕ(x) = D(0, 1), i.e. a closed unit ball. Then ϕ is a multivalued contraction with
closed bounded values (and an arbitrarily small Lipschitz constant), but it is not
condensing (it sends a singleton onto the noncompact set). The unique invariant
set is A∗ = D(0, 1) (there are no unbounded invariant sets).

(85.28) Example (Noncondensing Edelstein contractivity). Let e1, e2, e3, . . .

be an orthonormal base in �2 and X = D(0, 1) be the unit closed ball at 0. The
(single-valued) function f : X → X is defined for x =

∑∞
i=1 λi ei by

f(x) =
∞∑

i=1

(
1− 1

i + 1

)
· λiei.

This is bounded and shrinks distances:

(85.28.1)
∥∥∥∥∑

i

(
1− 1

i + 1

)
λiei −

∑
i

(
1− 1

i + 1

)
λi

′ei

∥∥∥∥
=
∥∥∥∥∑

i

(
1− 1

i + 1

)2

(λi − λi
′) · ei

∥∥∥∥
=

√√√√∑
i 
=i0

(
1− 1

i + 1

)2

(λi − λi
′)2 +

(
1− 1

i0 + 1

)2

(λi0 − λi0
′)2

<

√∑
i 
=i0

(λi − λi
′)2 + (λi0 − λi0

′)2 =
∥∥∥∥∑

i

λiei −
∑

i

λi
′ei

∥∥∥∥,

for x �= x′, x =
∑

i λiei, x′ =
∑

i λi
′ei. The inequality (85.28.1) holds because if

x �= x′, then λi0−λi0
′ �= 0, for some i0. The unique invariant set is A∗ = {0} (there

is no uniform attractor in the sense of definition given in [Les]). The function f

is neither condensing nor an η-contraction (for any “reasonable” η), because the
sphere is attracted arbitrarily “slowly”: ‖f(en)−f(0)‖ = 1−1/(n + 1)→ 1, when
n→∞.

As we shall see, it is not difficult to formulate a continuation principle for frac-
tals. It might allow us to employ some properties (like localization or additivity)
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of the related indices. On the other hand, there are some obstructions in its
nontrivial application.

Let X ∈ HANR and let

Fλ(x) :=
n⋃

i=1

ϕi(x, λ), x ∈ X, λ ∈ [0, 1],

be a one-parameter family of Hutchinson–Barnsley maps, where ϕi: X×[0, 1] � X,
i = 1, . . . , n, are Hausdorff-continuous compact maps. Then we have the induced
Hutchinson–Barnsley operators F ∗

λ : K (X)→ K (X),

F ∗
λ (A) :=

⋃
x∈A

Fλ(x), A ∈ K (X), λ ∈ [0, 1],

and F ∗
λ becomes a compact (continuous) homotopy.

Thus, we can associate with F ∗
λ the generalized Lefschetz number Λ(F ∗

λ) ∈ Z
as well as the fixed-point index ind (F ∗

λ , U) ∈ Z, for every open set U ⊂ K (X)
such that Fix(F ∗

λ) ∩ ∂U = ∅ (for more details, see e.g. [Br1-M] or [DG-M]). If
Λ(F ∗

λ) �= 0, for some λ ∈ [0, 1], we get a fixed-point A∗ of F ∗
λ (i.e. F ∗

λ (A∗) = A∗),
for such a λ ∈ [0, 1]. Below, we analyze the properties of fixed-points.

At first, using the fixed-point index and the Nielsen equivalence relation in
Fix(F ∗

λ ), we can distinguish between essential and inessential classes of fixed-points
of F ∗

λ ; i.e. the class C ⊂ Fix(F ∗
λ ) (which can be checked to be isolated and compact)

is essential if ind (F ∗
λ , U) �= 0, for an open set U ⊂ K (X) with U ∩ Fix(F ∗

λ) = C.
Note that if Λ(F ∗

λ ) �= 0, then at least one of the Nielsen classes is essential.

(85.29) Definition. We call a multivalued fractal A∗ of the multifunction
system {ϕi(x, λ), i = 1, . . . , n}, for a given λ ∈ [0, 1], homotopically essential if A∗

belongs to some essential Nielsen class for F ∗
λ .

Because of the invariance under homotopy of the generalized Lefschetz number
Λ(F ∗

λ) (see [Br1-M]), we are in a position to formulate the following first continu-
ation principle for (multivalued) fractals.

(85.30) Theorem. Let X ∈ HANR and {ϕi: X × [0, 1] � X, i = 1, . . . , n} be
a system of Hausdorff-continuous compact maps. Then an essential fractal exists
for the system {ϕi( · , 0): X � X, i = 1, . . . , n} if and only if the same is true for
{ϕi( · , 1): X � X, i = 1, . . . , n}.

(85.31) Remark. Because of

(85.31.1) K (X) ∈ ANR,
(85.31.2) the well-defined Λ(F ∗

λ ),
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and the fixed-point set Fix(F ∗
λ) being compact, we can even associate another

invariant under homotopy, namely the Nielsen number N(F ∗
λ ), allowing us to

make a lower estimate of the number of fractals for the system {ϕi: X × [0, 1] �
X, i = 1, . . . , n}.

An interesting information can be obtained if we use the following notion of es-
sentiality introduced by M. K. Fort in [For].

(85.32) Definition. We say that a multivalued fractal A∗ = F ∗
λ(A∗), for

a given λ, is topologically essential if, for every ε > 0, there exists δ > 0 such
that G∗: K (X) → K (X) has a fixed-point B∗ with dH(A∗, B∗) < ε, for any G∗

satisfying ρ(F ∗
λ , G∗) < δ.

Here, ρ(F ∗
λ , G∗) := sup{dH(F ∗

λ (A), G∗(A) | A ∈ K (X)}.
Following the Granas characterization of essentiality (see [DG-M]) by the fixed-

point index, we obtain

(85.33) Proposition. Let X ∈ HANR and {ϕi: X× [0, 1] � X, i = 1, . . . , n}
be a system of Hausdorff-continuous locally compact maps. Assume that A∗ is an
isolated multivalued fractal, for some F ∗

λ0
, λ0 ∈ [0, 1], and ind (F ∗

λ0
, A∗) �= 0, where

we define
ind (F ∗

λ0
, A∗) := lim

δ→0
ind (F ∗

λ0
, B(A∗, δ)),

using the localization property of the fixed-point index. Then A∗ is topologically
essential. In particular, for every ε > 0, there is an open neighbourhood J ⊂ [0, 1]
of λ0 such that each F ∗

λ , λ ∈ J , has a fixed-point in B(A∗, ε) ⊂ K (X).

Proof. Since the maps ϕi are locally compact and A∗ is compact, the index
ind (F ∗

λ0
, A∗) is well-defined. By the Granas characterization, it follows that A∗

is topologically essential. Let ε > 0 be arbitrary. The Hausdorff-continuity of ϕi

implies that ρ(F ∗
λ0

, F ∗
λ) is sufficiently small (as in the definition of topological

essentiality with the given ε), for each λ close to λ0. This completes the proof. �

Obviously, if X ∈ HAR, then X ∈ HANR. The nontrivial example of X to be
an HANR is that X is a locally connected metric space and to be an HAR is that
X is a connected and locally connected metric space.

Thus, in order to have X ∈ HANR, but XN �∈ HAR, rather strong restrictions
seem to be imposed on X like local connectedness, but disconnectedness of X.

Since, for any continuum X, K (X) is contractible (see [AFGL] and references
therein) w.r.t. any ANR-space, if K (X) is not contractible (in itself), then K (X)
cannot be an ANR-space.

(85.34) Example. A simple example of a continuum X such that K (X) is not
locally contractible looks as in Figure below:
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Figure 10. Continuum X such that K (X) is noncontractible

Since K (X) is not locally contractible, it cannot be an ANR-space.

Hence, for a continuum X, in order to have X ∈ HANR, we must ask K (X)
to be contractible. However, according to the Borsuk Theorem 9.1 in [Bo-M,
p. 96], contractible ANR-spaces are exactly the same as AR-spaces. Therefore, for
continua X, it has no meaning to ask X ∈ HANR, but X �∈ HAR.

Let us emphasize that this is also related to nonlocally connected continua; for
locally connected continua (i.e. for Peano’s continua) X, we have always, according
to the Arens–Eells embedding theorem that X ∈ HAR.

As a consequence, we have only one possibility for a compact X such that
X ∈ HANR, but X �∈ HAR, namely to be disconnected. It is a question whether
or not the same is true for a noncompact X.

From the point of view of applications, it is important to have at least simple
examples of such a situation.

For this, we need two following lemmas

(85.35) Lemma. Let X be a (metric) ANR-space. Then the hyperspaces K k(X)
:= {A ∈ K (X) | cardA ≤ k} of all nonempty, compact subsets of X consisting of at
most k points, where k ∈ N∪{∞} (for k =∞, we define K ∞(X) =

⋃
k∈N
K k(X)),

are also ANR-spaces. In particular, if X ∈ AR, then K k(X) ∈ AR, for every
k ∈ N ∪ {∞}.

(85.36) Example. As a trivial example of such a space, we have X = {xi ∈
R | i = 1, 2} ∈ HANR, because K (X) = K 2(X) = {{x1}, {x2}, X}. Thus, if
F (x) := {f1(x)} ∪ {f2(x)}, x ∈ X, where f1(x1) = x2, f1(x2) = x1, and f2(x1) =
x1, f2(x2) = x2, then F ∗({x1}) = {f1(x1)} ∪ {f2(x1)} = X, F ∗(x2) = {f1(x2)} ∪
{f2(x2)} = X, F ∗(X) = f1({x1, x2})∪f2({x1, x2}) = X. Therefore, X is a fractal
of the system {f1(x), f2(x)}.
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(85.37) Lemma. If X is a locally continuum-connected, i.e. every point has
a basis of neighbourhoods such that every two points of each can be joined by
a continuum inside, (a connected and locally continuum-connected) metric space,
then K (X) ∈ ANR (K (X) ∈ AR).

(85.38) Example. Let this time X be a union of two disjoint compact in-
tervals, i.e. X = I1 ∪ I2, I1 ⊂ R ⊃ I2, I1 ∪ I2 = ∅. Obviously, we have that
X ∈ ANR and K k(X) � K (X), for every k ∈ N ∪ {∞}. Thus, Lemma (85.35)
implies that K k(X) ∈ ANR and Lemma (85.37) implies that X ∈ HANR. Taking
Fλ(x) := ϕ1(x, λ) ∪ ϕ2(x, λ), x ∈ X, where ϕ1 and ϕ2 are Hausdorff-continuous
(⇒ compact) maps such that ϕ1(I1 × [0, 1]) ⊂ I2, ϕ1(I2 × [0, 1]) ⊂ I1, and
ϕ2(I1 × [0, 1]) ⊂ I1, ϕ2(I2 × [0, 1]) ⊂ I2, we get (see [AF1]) that F ∗

λ defined
by F ∗

λ(A) =
⋃

x∈A Fλ(x), A ∈ K (X), λ ∈ [0, 1], is a compact (continuous) self-
map, i.e. F ∗

λ : K (X)× [0, 1]→ K (X). Therefore, the generalized Lefschetz number
Λ(F ∗

λ) is well-defined (see e.g. [Br1-M]), for every λ ∈ [0, 1], and if Λ(F ∗
0 ) �= 0 (for

λ = 0), then according to Theorem (85.30) there exists a homotopically essential
(multivalued) fractal for the system {ϕi: ( · , 1): X � X, i = 1, 2}. If, in particu-
lar, ϕ1( · , 0)(I1) = {x2} ⊂ I2, ϕ1( · , 0)(I2) = {x1} ⊂ I1, ϕ2(·, 0)(I1) = {x1} ⊂ I1,
ϕ2( · , 0)(I2) = {x2} ⊂ I2, then F0(X) = {x1, x2} and, as in Example (85.36),
we can see that F ∗

0 ({x1, x2}) = {x1, x2}, i.e. {x1, x2} is a fractal of the system
{ϕ1(x, 0), ϕ2(x, 0)}. Moreover, since F ∗

0 (A) = {x1, x2}, for every A ∈ K (X),
i.e. F ∗

0 is constant in K (X), we have that Λ(F ∗
0 ) = 1 (see e.g. [Br1-M]), as re-

quired. Taking ϕi(x, λ), λ ∈ [0, 1], i = 1, 2, as above, where ϕ1(I1 × {0}) = {x2},
ϕ1(I2 × {0}) = {x1}, ϕ2(I1 × {0}) = {x1}, ϕ2(I2 × {0}) = {x2}, there exists
a (multivalued) fractal of the system {ϕ1(x, 1), ϕ2(x, 1)}.

The computation of the generalized Lefschetz number or (when we restrict our-
selves only to open subsets of K (X) ∈ ANR) of the fixed-point index in hyperspaces
is a very delicate problem. Some possibilities are indicated in the paper [RPS].
Before we show them, several notions which are typical in the frame of the Conley
index theory, must be recalled.

Hence, defining the (semi)invariant parts of N ⊂ U , where U is locally compact,
w.r.t. F : X ⊃ U � X as

Inv+(N, F ) := {x ∈ N | σ(i + 1) ∈ F (σ(i)), for all i ∈ N ∪ {0},
where σ: N ∪ {0} → N is a single-valued map with σ(0) = x},

Inv−(N, F ) := {x ∈ N | σ(i + 1) ∈ F (σ(i)), for all i ∈ Z \ N,

where σ: Z \ N→ N is a single-valued map with σ(0) = x},
Inv(N, F ) := Inv+(N, F ) ∩ Inv−(N, F ),

we say that a compact invariant set K ⊂ U (i.e. F (K) = K) is isolated w.r.t. F if
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there exists a compact neighbourhood N of K such that

OdiamN F (Inv(N, F )) ⊂ int K,

where
diamNF := sup

x∈N
{diam F (x)},

or, equivalently,
dist(Inv(N, F ), ∂N) > diamNF,

where ∂N stands for the boundary of N . The neighbourhood N is then called an
isolating neighbourhood of K.

Let F : X ⊃ U � X be a (locally defined) compact Hausdorff-continuous map
with compact values. A compact isolated invariant set K ⊂ U is said to be an
attractor if there exists an open neighbourhood U0 ⊂ U of K such that

(i) F m(U0) = F ◦ . . . ◦ F︸ ︷︷ ︸
m-times

(U0) ⊂ U , for every m ∈ N,

(ii) for every open neighbourhood V of K, there is m(V ) ∈ Z such that
F n(U0) ⊂ V , for all n ≥ m(V ).

We have proved in [AGFL] that F : X ⊃ U � X induces in a natural way the
compact (continuous) single-valued map F ∗ in the hyperspace (K (X), dH), i.e.
F ∗|K(U): K (U) → K (X). Hence, let K ⊂ U be a compact isolated invariant set
and N be an isolating neighbourhood of K. Considering an open set W such that
K ⊂ W ⊂ N , we have defined a locally compact (continuous) single-valued map
F ∗|K(W): K (W ) → K (X). Since Fix(F ∗|K(W)) ⊂ K (K), the set of fixed-points
of F ∗|K(W) is a compact subset of K (K). Moreover, if X ∈ HANR (e.g. a locally
continuum-connected metric space, see Lemma (85.37)), then K (W ) is obviously
an open subset of the ANR-space K (X)), and so the fixed-point index

ind (F ∗|K(W), K (W )) ∈ Z

of F ∗|K(W): K (W )→ K (X) in K (W ) is well-defined (see e.g. [Br1-M]).
Following [RPS], we can also define the Conley-type (integer-valued) index

IX(K, F ) of the pair (K, F ) just by identifying

IX(K, F ) := ind (F ∗|K(W), K (W )).

(85.39) Remark. Because of the definition, the Conley-type index has all
usual properties like a standard fixed-point index, namely the existence (Ważew-
ski’s property), homotopy, additivity, localization (excision), contraction (restric-
tion), multiplicity and normalization properties. In particular, the additivity prop-
erty reads as follows (see [RPS]):

IX(K, F ) = IX(K1, F ) + IX(K2, F ) + IX(K1, F ) · IX(K2, F ),
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where K is a compact isolated invariant set which is a disjoint union of two compact
isolated invariant sets K1 and K2, i.e. K = K1 ∪K2, K1 ∩K2 = ∅. Moreover, it
follows from the excision property of the related fixed-point index that IX(K, F )
depends neither on the choice of the isolating neighbourhood N of K, nor on the
open set W .

Theorem (85.30) can be therefore improved in terms of the Conley-type indices
as follows.

(85.40) Theorem. Let X ∈ HANR (e.g. X be a locally continuum-connected
metric space (see Lemma (85.37))) and {ϕi: X × [0, 1] ⊃ U × [0, 1] � X, i =
1, . . . , n} be a system of Hausdorff-continuous compact maps. Assume that N ⊂
U , where U ⊂ X is locally compact, is an isolating neighbourhood which is common
for all the Hutchinson–Barnsley maps

(85.40.1) Fλ(x) :=
n⋃

i=1

ϕi(x, λ), for x ∈ U, λ ∈ [0, 1].

Then an essential fractal K0 ⊂ N (i.e. IX(K0, F0) �= 0) exists for the system
{ϕi( · , 0): X ⊃ U � X, i = 1, . . . , n} if and only if an essential fractal K1 ⊂ N

(i.e. IX(K1, F1) �= 0) exists for the system {ϕi( · , 1): X ⊃ U � X, i = 1, . . . , n}.
Moreover, IX(K0, F0) = IX(Inv(N, F0), F0) = IX(K1, F1) = IX(Inv(N, F1), F1).

Let us formulate the following lemma (see [AFGL]):

(85.41) Lemma. Let X be a locally continuum-connected metric space (see
Lemma (85.37)) and let F : U � X, where U ⊂ X is locally compact, be a Haus-
dorff-continuous compact map. Let K be a compact isolated invariant set w.r.t. F

which is a disjoint union of p ∈ N connected attractors. Then IX(K, F ) = 2p−1.

Applying Lemma (85.41) to Theorem (85.40), we immediately obtain

(85.42) Corollary. Let X be a locally continuum-connected metric space and
{ϕi: X× [0, 1] ⊃ U× [0, 1]→ X, i = 1, . . . , n} be a system of Hausdorff-continuous
locally compact maps. Assume that N ⊂ U , where U ⊂ X is locally compact, is an
isolating neighbourhood which is common for all the Hutchinson–Barnsley maps
(85.40.1), i.e. for every λ ∈ [0, 1]. Let K0 be a compact isolated invariant set
w.r.t. F0(x) :=

⋃n
i=1 ϕi(x, 0), x ∈ U , which is a disjoint union of p ∈ N connected

attractors. Then, for the system {ϕi : ( · , 1): X ⊃ U � X, i = 1, . . . , n}, there
exists an (essential) fractal K1 ⊂ N such that IX(K1, F1) = 2p−1, where F1(x) :=⋃n

i=1 ϕi(x, 1), x ∈ U .

It was shown that we can sometimes obtain more information about the set
of (multivalued) fractals, namely that we can recognize its topological structure.
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The employed method there has been based on the Browder–Gupta type result
(comp. Chapter VI). Now, we propose the second technique which uses inverse
systems and multivalued inverse systems.

Here, we start with suitable definitions and preliminary results (comp. Chap-
ter I).

Let Σ be a set ordered by the relation ≤, and, for every α ∈ Σ, let Xα be
a metric space (or, more generally, a Hausdorff space).

Assume that, for each α, β ∈ Σ, α ≤ β, there is a multivalued u.s.c. map
πβ

α: Xβ � Xα with nonempty, compact values such that

(85.42.1) πα
α = idXα , for every α ∈ Σ;

(85.42.2) πβ
απγ

β = πγ
α, for every α, β, γ ∈ Σ, α ≤ β ≤ γ.

Then the family

(85.42.3) S = {Xα, πβ
α, Σ}

is called a multivalued inverse system (cf. [Eng-M], for the corresponding notion
of a (single-valued) inverse system).

(85.43) Example. Every inverse system {Xα, πβ
α, Σ} is obviously a multival-

ued inverse system, because each πβ
α is continuous, and so u.s.c. with compact

values.

We define, in the product
∏

α∈Σ Xα, the following subset:

Lim←−−S :=
{

(xα) ∈
∏
α∈Σ

Xα

∣∣∣∣ xα ∈ πβ
α(xβ) for all α ≤ β

}
,

and call it the limit of a multivalued inverse system S.
Let us observe that the projections

πα = pα|Lim←−S : Lim←−−S → Xα, πα((xα)) = xα

satisfy the following condition:

πα((xα)) ∈ πβ
α(πβ((xα))), for any α ≤ β.

We can prove the following preliminary result.

(85.44) Proposition. The set Lim←−−S is closed in
∏

Xα.

In the proof, we shall use
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(85.45) Lemma. Let ϕ be an u.s.c. multivalued map from X to a (Hausdorff )
space Y with compact values and f : X → Y be continuous. Then {x ∈ X | f(x) ∈
ϕ(x)} is closed.

Proof. We show that {x ∈ X | f(x) �∈ ϕ(x)} is open. Let x be such that
f(x) �∈ ϕ(x). Then there are open sets U � f(x) and V ⊃ ϕ(x) such that
U ∩ V = ∅. Take f−1(U) ∩ ϕ−1(V ) =: W , where ϕ−1(V ) := {x ∈ X | ϕ(x) ⊂ V }.
By the continuity of f and upper semicontinuity of ϕ, we know that W is an open
neighbourhood of x with f(z) �∈ ϕ(z), for any z ∈ W . �

Proof of Proposition (85.44). Letting

Mγδ :=
{

(xα) ∈
∏

Xα

∣∣∣∣ xγ ∈ πδ
γ(xδ)

}
, for γ ≤ δ,

then

Mγδ =
{

x = (xα) ∈
∏

Xα

∣∣∣∣ πγ(x) ∈ πδ
γπδ(x)

}
.

Since projections πα are continuous and maps πβ
α are u.s.c. with compact values,

we can apply Lemma (85.45) to obtain that each set Mγδ is closed.
Obviously, Lim←−−S =

⋂
γ≤σ Mγσ , so the limit is closed, too. �

One immediately obtains

(85.46) Proposition.

(85.46.1) If Xα is compact, for every α ∈ Σ, then Lim←−−S is compact.

(85.46.2) If Xα is compact and nonempty, for every α ∈ Σ, then so is Lim←−−S.

(85.46.3) If S = {Xn, πp
n, N}, the bonding maps πp

n are single-valued and all Xn

are compact Rδ-spaces, then Lim←−−S is Rδ.

Proof. Property (85.46.1) follows from the Tikhonov theorem which implies
that

∏
α∈Σ Xα is compact.

To prove (85.46.2), consider Mσ =
⋂

γ≤σ Mγσ (see the previous proof) which is
nonempty. Indeed, for every xσ, we can take a fiber{

xγ ∈ πσ
γ (xσ) for γ ≤ σ,

xγ — an arbitrary point in Xγ for σ ≤ γ, σ �= γ.

Since the family {Mσ} is centered and
∏

Xα is compact, it follows by means of the
Tikhonov theorem that

⋂
σ∈Σ Mσ �= ∅.

Since Lim←−−S =
⋂

σ∈Σ Mσ , the proof of (85.46.2) is complete.

For (85.46.3), it is sufficient to notice that Mp =
⋂

n≤p Mnp is homeomorphic to
the Rδ-set

∏∞
i=p Xi, consequently, it follows that Lim←−−S is an Rδ-set as well (comp.

[AnGo-M]). �
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Note that acyclicity is also inherited by the limit of an inverse system (see
[Eng-M]). For more properties and details concerning multivalued inverse systems,
see [AnGo-M].

Consider two multivalued inverse systems

S = {Xα, πβ
α, Σ} and S′ = {Yα′ , πβ′

α′, Σ′}.

By a multivalued map of S to S′, we mean a family {σ, ϕσ(α′)} consisting of a mono-
tone function σ: Σ′ → Σ (i.e. σ(α′) ≤ σ(β′), for any α′ ≤ β′) and multivalued maps
ϕσ(α′): Xσ(α′) � Yα′ , with the property

πβ′
α′ϕσ(β′) = ϕσ(α′)π

σ(β′)
σ(α′) for any α′ ≤ β′.

It means that the following diagram commutes

Xσ(α′)
◦

ϕσ(α′)

◦
π

σ(β′)
σ(α′)

Xσ(β′)
◦

ϕσ(β′)

Yα′ ◦
πβ′

α′

Yβ′

Now, let us concentrate on countable inverse systems, i.e. Σ = N. For a given
map {id, ϕn}: S � S′, we define a limit map ϕ: Lim←−−S � Lim←−−S′ as follows:

ϕ(x) =
∞∏

n=1

ϕn(xn) ∩ Lim←−−S′ for every x = (xn) ∈ Lim←−−S.

This multivalued map has nonempty values. Indeed, let y1 ∈ ϕ1(x1). Then
y1 ∈ ϕ1π2

1(x2) = π2
1ϕ2(x2), so there is y2 ∈ ϕ2(x2) such that y1 ∈ π2

1(y2). We
proceed inductively and obtain a fiber in ϕ(x).

Moreover, values of ϕ are compact, because each ϕn is compact valued.
Assume that S = {Xn, πp

n, N} and S′ = {Yn, ρp
n, N} are two multivalued inverse

systems. We define

πp
n: K (Xp)→ K (Xn), πp

n(A) := πp
n(A), for every A ⊂ Xp,

ρp
n: K (Yp)→ K (Yn), ρp

n(A) := ρp
n(A), for every A ⊂ Yp.

It is easy to see that πp
n ◦ πm

p = πm
n , ρp

n ◦ ρm
p = ρm

n , and πn
n = idK(Xn), ρn

n =
idK(Yn). It means that S and S′ induce (single-valued) inverse systems K (S) :=
{K (Xn), πp

n, N} and K (S′) := {K (Yn), ρp
n, N}.
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Analogously, for a map {id, ϕn}: S � S′, we can define a map {id, ϕn}: K (S)→
K (S′), where ϕn: K (Xn) → K (Yn) is defined as ϕ(A) := ϕ(A), for every A ∈
K (Xn). We have ρp

n ◦ ϕp = ϕn ◦ πp
n which implies that {id, ϕn} is indeed a map

of inverse systems.
Now, {id, ϕn} induces the limit map

ϕ: Lim←−− K (S)→ Lim←−− K (S′), ϕ((An)) := (ϕn(An)).

In order the above ideas to be connected with multivalued fractals, let us ob-
serve that, for any finite family of maps {id, ϕi

n}: S � S′, i = 1, . . . , k, we have
a sequence of multivalued maps Fn: Xn � Yn,

Fn(x) :=
k⋃

i=1

ϕi
n(x).

It is easy to check that ρp
n ◦ Fp = Fn ◦ πp

n which implies that {id, Fn}: S �
S′ is a (multivalued) map of inverse systems. Therefore, it induces the map
{id, F ∗

n}: K (S) → K (S′), consisting of the Hutchinson–Barnsley operators and
a limit map F ∗: Lim←−− K (S)→ Lim←−− K (S′).

For studying the topological structure of the fixed-point set of the limit map
F ∗, we apply the following important observation.

(85.46) Proposition (cf. [AnGo-M]). Let S = {Xn, πp
n, N} be a (multivalued)

inverse system, and ϕ: Lim←−−S � Lim←−−S be a limit map induced by a map {id, ϕn}.
Then {Fix(ϕn), πp

n |Fix(ϕn), N} forms a (multivalued) inverse system.

Now, we are in a position to formulate a general principle for the topological
structure of the sets of multivalued fractals. We keep the notation above.

(85.47) Theorem. Let S = {Xn, πp
n, N} be a multivalued inverse system, and

let {id, ϕi
n}: S � S, i = 1, . . . , k, be a finite family of maps. If the sets of multival-

ued fractals, considered as compact invariant sets of Fn: Xn � Xn or, equivalently,
as fixed-points of F ∗

n: K (S)→ K (S), are compact acyclic (Rδ, nonempty), then the
set of multivalued fractals of the limit map F : Lim←−−S � Lim←−−S induced by {id, Fn},
considered again as compact invariant sets of F : Lim←−−S � Lim←−−S or, equivalently,

as fixed-points of F ∗: Lim←−− K (S) → Lim←−− K (S), is also compact acyclic (resp. Rδ,

nonempty).

The proof is a consequence of Propositions (85.46) and (85.47).
Finally, let us note that, by Proposition (85.47), if the sets Fix(F ∗

n) are sin-
gletons, then the set of multivalued fractals of the limit map is also a singleton.
It can bring an important information in differential problems on the half-line.
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It is known that the Fréchet space of continuous maps C := C([0,∞), Rn) can
be treated as a limit of an inverse system of Banach spaces Cm := C([0, m], Rn),
m ∈ N, with the bonding maps πp

m(x) := x|[0,m], for x ∈ Cp. It is easy to find an
example of a family of contractions (even single-valued) ϕm: Cm → Cm with the
same Lipschitz constant L ∈ (0, 1) such that the induced limit map ϕ on C is not
a contraction. Then the map F ∗ induced by {id, ϕm} is also not a contraction,
but, by Theorem (85.48), the fixed-point set of F ∗ is a singleton.

In this section we presented most important, in our opinion, results obtained
in [AFGL]. For further results we recommend again [AFGL]. Finally, let us de-
scribe that the theory of fractals is a modern topic which is actually very strong
developing in many different directions.
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häuser Verlag, Basel, 1994.

[HuPa-M] Sh. Hu and N. Papgeorgiou, Handbook of Multivalued Analysis, Volumes I and II,
Kluwer, Dordrecht, Boston, London, 1997.

[HW-M] W. Hurewicz and H. Wallman, Dimension Theory, Princeton, 1941.

[JN-M] S. Jodko-Narkiewicz,Topological Degree of Multivalued Weighted Mappings, Ph.D.

Thesis, Nicolaus Copernicus University, Toruń, 1989. (in Polish)
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points, Proc. Uniw. Gdański, Inst. Mat. 74 (1990), 1–18. (in Russian)



524 BIBLIOGRAPHY

[Ge5] , On the structure of the set of solutions for inclusions with multivalued
operators, Lecture Notes in Math. 1334 (1987), Springer, Berlin, 60–78.

[Ge6] , Topological properties of fixed point sets of multivalued maps, Mat. Sb.
188 (1997), 33–56. (in Russian)

[Ge7] , On topological dimension of a set of solutions of functional inclusions,
Differential Inclusions and Optimal Control (J. Andres. L. Górniewicz and P.

Nistri, eds.), vol. 2, Lecture Notes Nonlinear Anal., 1998, pp. 163–178.
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[GS] L. Górniewicz and M. Ślosarski, Topological essentiality and differential inclu-

sions, Bull. Austral. Math. Soc. 45 (1992), 177–193.

[Gra] S. Graf, Selected results on measurable selections, Rend. Circ. Mat. Palermo 31
(1982), no. 2 suppl., 87–122.

[Gr1] A. Granas, Theorem on antipodes and fixed points for a certain class of multival-
ued maps in Banach spaces, Bull. Polish Acad. Sci. Math. 7 (1959), 271–275.

[Gr2] , Fixed point theorems for approximative ANRs, Bull. Polish Acad. Sci.

Math. 16 (1968), 15–19.
[Gr3] , Generalizing the Hopf–Lefschetz fixed point theorem for non-compact
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(Φ, α, β)-small, 258
ε-field in the narrow sense, 224
H-homotopic maps, 254
H-small homotopy maps, 254
n-acyclic map, 184
n-acyclic vector filed, 198
n-admissible compact vector field, 215
n-cohomological sphere, 185
Rδ-contractible, 356
t-lower acyclic function, 335
t-upper acyclic function, 335
(n, k)-approximation, 253
α-approximation, 130
∞-proximally connected, 15
σ-selectionable, 78
ε-field, 224
A-system, 253
B-viable solution, 374
k-set contraction pair, 298
k-th star, 31
k-triad, 31
m-map, 383
m-dimensional geometric simplex, 9
m-homotopic maps, 176
m-map, 174
n-morphism, 248
N -admissible map, 396
n-Vietoris map, 183
r-map, 5
Rδ set, 14

s-admissible compact vector field, 215
s-permissible, 252

absolute approximative neighbour-
hood retract, 19

absolute approximative retract, 19
acyclic map, 159
acyclic set, 34
acyclic space, 39
acyclic vector filed, 198
additivity property, 333
admissible compact vector field, 215
admissible map, 200
admissible open covering, 130
affine independent, 9
approximation on the graph, 106
approximation system, 253
approximative neighbourhood retract,

19
approximative retract, 19
asymptotically compact, 245
asymptotically compact map, 210
attaching space, 234
attractor, 210

basis sequence, 348
bifurcation index, 320
bifurcation points, 319
biorthogonal system, 348

carrier, 34
center, 245
center of a map, 210
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closed map, 38
cohomology functor, 28
coincidence, 301
compact absorbing contraction, 209,

245
compact attraction, 245
compact attraction map, 210
compact morphism, 229
compact pair, 27
compact vector field, 144
compacting map, 305
compactness, 305
composition, 61, 251
condensing pair, 298
conjugate basis, 47
continuation property, 332
continuous cross-section property, 337
continuous of map, 71
continuously differentiable map, 307
contractible space, 12
contraction map, 96
core, 245
covering associated with the triangu-

lation, 265
covering space, 174
Čech homology functor, 28

decomposable set, 98
decomposition of a map, 251
degree, 215
diameter, 130
differentiable at infinity, 307
differentiable map at the point, 307
differentiable on set, 307
differential map, 307
direct potential function, 368
direct sum, 221
discrete multivalued dynamical sys-

tem, 324

ejective, 293
ejective relative, 293
equivalent points, 178
equivariant map, 191
essential class, 182, 397, 403
essential map, 152
eventually compact, 245
eventually compact map, 210

fibre product, 41
finitely closed subset, 342
finitely continuous map, 344
fixed point, 62
fixed point index, 121, 165, 266, 269,

378
fixed point property, 287
fundamental groupoid, 179

generalized Lefschetz number, 50
generalized topological degree, 314
generic pair, 230
geometric polyhedron, 9
graph, 61
guiding function, 369

Hausdorff distance, 23
Hausdorff-measure of noncompact-

ness, 25
Hilbert cube, 8
homogeneous map, 306
homomorphism of covering spaces, 174
homotopic, 117, 124
homotopic maps, 28, 133, 161, 184,

203, 215
homotopic of n-admissible mappings,

213
homotopic of decompositions, 252
homotopic of permissible maps, 253
homotopic of vector fields, 150
homotopic to, 10
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homotopically equivalent, 12
homotopy, 124, 390
homotopy joining map, 184
homotopy property, 332

image, 61
index, 253, 254
index map, 331
index of coincidence, 53
index pair, 326
induced A-system, 266
induced homomorphism, 264
integrably bounded map, 93
involution map, 189
inward map, 344
isolated invariant set, 331
isolating block for map, 325
isolating neighbourhood for map, 325
isolating neighbourhood of set for

map, 331

KKM-map, 341
Knaster–Kuratowski–Mazurkiewicz map,

341
Kronecker index, 256
Kuratowski-measure of noncompact-

ness, 25

Lefschetz map, 204
Lefschetz morphism, 232
Lefschetz number, 47, 50, 397
Lefschetz set, 122
length of the decomposition, 251
Leray endomorphism, 50
lift of the m-map, 174
linear growth, 94
local Lefschetz number, 254
locally compact, 244
locally compact map, 210
locally contractible at a point, 13

Luzin property, 87

map coincidence, 53
map determined by the decomposi-

tion, 251
map with compact orbits, 212
map with multiplicity, 383
measurable map, 86
measure of noncompactness, 25
monotone map, 344
morphism, 226
multivalued mapping, 61

neighbourhood retract, 1
nerve, 31
Nielsen equivalent, 177
Nielsen number, 182, 389, 397

ordinary Lefschetz number, 47
outward map, 344

pair of spaces, 27
permissible map, 252
Poincaré translation operator, 367
polyhedral, 34
polyhedron, 9
posses an extension property, 1
possess a neighbourhood extension

property, 1
proper map, 38
proximative neighbourhood retract,

20
pull-back, 41

quasiconcave function, 335
quasiconvex function, 335

random fixed point, 155
random operator, 155
refinement, 130
regular map, 365



538 INDEX

Reidemeister number, 176
repulsive, 293
repulsive relative, 293
restriction, 230, 251
retract of set, 1

SAC, 163
selected pair, 200
selection property, 100
singular point, 198
singular point of the vector field, 215
singularity free map, 215
smallness condition, 254, 263
solution for map through set, 325
solution of differential inclusion, 356
special subset of a Banach space, 304
spheric set, 278
squeezing sequences, 256
star, 31
strong guiding function, 372

strongly acyclic, 163
strongly acyclic set, 45
strongly admissible map, 200
strongly permissible, 252
support chain, 32
support set, 31

trace, 47
triad, 31

u.s.c., 68
universal, 174
upper hemi-continuous, 338
upper semicontinuous, 68

Vietoris map, 39

weak inverse image of set, 325
weakly measurable map, 86
weakly nilpotent, 52
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