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Preface

The book is based on the lecture course “Function spaces”, which the author
gave for more than 10 years in the People’s Friendship University of Russia
(Moscow). The idea to write this book was proposed by Professors H. Triebel
and H.-J. Schmeifler in May-June 1993, when the author gave a short lecture
course for post-graduate students in the Friedrich-Schiller University Jena.

The initial plan to write a short book for post-graduate students was trans-
formed to wider aims after the work on the book had started. Finally, the book
is intended both for graduate and post-graduate students and for researchers,
who are interested in applying the theory of Sobolev spaces. Moreover, the
methods used in the book allow us to include, in a natural way, some recent
results, which have been published only in journals.

Nowadays there exist numerous variants and generalizations of Sobolev
spaces and it is clear that this variety is inevitable since different problems
in real analysis and partial differential equations give rise to different spaces of
Sobolev type. However, it is more or less clear that an attempt to develop a
theory, which includes all these spaces, would not be effective. On the other
hand, the basic ideas of the investigation of such spaces have very much in
common.

For all these reasons we restrict ourselves to the study of Sobolev spaces
themselves. However, we aim to discuss the main ideas in detail, and in such a
way that, we hope, it will be clear how to apply them to other types of Sobolev
spaces.

We shall discuss the following main topics: approximation by smooth
functions, integral representations, embedding and compactness theorems, the
problem of traces and extension theorems. The basic tools of investigation will
be mollifiers with a variable step and integral representations.

Mollifiers with variable step are used both for approximation by smooth
functions and for extension of functions (from open sets in R™ in Chapter 6
and from manifolds of lower dimensions in Chapter 5). All approximation
and extension operators constructed in these chapters are the best possible in
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the sense that the derivatives of higher orders of approximating and extending
functions have the minimal possible growth on approaching the boundary.

Sobolev’s integral representation is discussed in detail in Chaper 3. It is
used in the proofs of the embedding theorems (Chapter 4) and some essen-
tial estimates in Chapter 6. An alternative proof of the embedding theorems,
without application of Sobolev’s integral representation, is also given.

The direct trace theorems (Chapter 5) are proved on the basis of some
elementary identities for the differences of higher orders and the definition of
Nikol’skii-Besov spaces in terms of differences only.

The author pays particular attention to all possible “limiting” cases, includ-
ing the cases p = oo in approximation theorems, p = 1 in embedding theorems
and p = 1, o0 in extension theorems.

There are no references to the literature in the main text (Chapters 1-6):
all relevant references are to be found in Chapter 7, which consists of brief
notes and comments on the results presented in the earlier chapters.

The proofs of all statements in the book consist of two parts: the idea
of the proof and the proof itself. In some simple or less important cases the
proofs are omitted. On the other hand, the proofs of the main results are
given in full detail and sometimes alternative proofs are also given or at least
discussed. The one-dimensional case is often discussed separately to provide
a better understanding of the origin of multi-dimensional statements. Also
sharper results for this case are presented.

It is expected that the reader has a sound basic knowledge of functional
analysis, the theory of Lebesgue integration and the main properties of the
spaces L,(€2). It is desirable, in particular, that he/she is accustomed to ap-
plying Hélder’s and Minkowski’s inequalities for sums and integrals. The book
is otherwise self-contained: all necessary references are given in the text or
footnotes. Each chapter has its own numeration of theorems, corollaries, lem-
mas, etc. If you are reading, say, Chapter 4 and Theorem 2 is mentioned, then
Theorem 2 of Chapter 4 is meant. If we refer to a theorem in another chapter,
we give the number of that chapter, say, Theorem 2 of Chapter 3.

For more than 30 years the author participated in the famous seminar “The
theory of differentiable functions of several variables and applications” in the
Steklov Institute of Mathematics (Moscow) headed at different times by Pro-
fessors S.L. Sobolev, V.I. Kondrashov, S.M. Nikol’skii, L.D. Kudryavtsev and
0.V. Besov. He was much influenced by ideas discussed during its work and,
in particular, by his personal talks with Professors S.M. Nikol’skii and S.L.
Sobolev.

It is a pleasure for the author to express his deepest gratitude to the partic-
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ipants of that seminar, to his friends and co-authors, with whom he discussed
the general plan and different parts of the book.

I am grateful to my colleagues in the University of Wales Cardiff: Professor
W.D. Evans, with whom I have had many discussions, and Mr. D.J. Harris,
who has thoroughly read the manuscript of the book.

I would also like to mention Dr. A.V. Kulakov who has actively helped in
typing the book in TEX.

Finally, I express my deepest love, respect and gratitude to my wife Dr.
T.V. Tararykova who not only typed in TEX a considerable part of the book
but also encouraged me in all possible ways.

Moscow /Cardiff, November 1997 V.I. Burenkov
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Notation and basic inequalities

We shall use the following standard notation for sets:
N - the set of all natural numbers,
Ny— the set of all nonnegative integers,
7, — the set of all integers,
R — the set of all real numbers,
C — the set of all complex numbers,
Nj =Np x --- x Ny — the set of multi-indices (n is the natural number

which will be used exclusively to denote the dimension),

R"=Rx--- xR,
————

B(x,r) — the open ball of radius r > 0 centered at the point z € R",
‘Q (2 CR™) — the complement of  in R™,
Q (Q C R") - the closure of Q,
Q (2 C R™) — the interior of 2,
Q° (Q CR",6 > 0) — the d-neighborhood of Q (Q° =, B(z,9)),
Qs ={x € Q:dist (z,00) > 5} (2 CR",§>0) (for each Q@ C R"
Qs = {z € Q: dist (z,00) > d}).
For o € N, a # 0, we shall write:
Def =2

o goan — the (ordinary) derivative of the function f of order
T, 0Ty

and

R L
(see section 1.2).
For an arbitrary nonempty set {2 C R™ we shall denote by:
C(2) - the space of functions continuous on €2,
Cy(€2) — the Banach space of functions f continuous and bounded on €
with the norm

Def = (M) — the weak derivative of the function f of order «
w

[ fllew) = sup | f(2)],
€

11



12 NOTATION

C(2) — the Banach space of functions uniformly continuous and bounded
on {2 with the same norm.
For a measurable nonempty set {2 C R™ we shall denote by:
L,(2) (1 < p < o0) — the Banach space ! of functions f measurable ? on
(2 such that the norm

sy = ([ V)" < o,
Q

L (€2) — the Banach space of functions f measurable on 2 such that the
norm

1 llzooiy = ess sup [f(z)| = inf sup |f(z)] < oo
S

w: measw =0 TEN\wW

(in the case in which meas Q > 03 ; if meas Q = 0, then we set
1l = 0)- *
For an open nonempty set {2 C R™ we shall denote by:

Lle(Q) (1 < p < o00) — the set of functions defined on € such that for
each compact K CQ f € L,(K),

C'(Q) (I € N) — the space of functions f defined on €2 such that Vo € N§
where |a] = ay + -+ 4+ o, = [ and Vo € Q the derivatives
(D*f)(x) exist and D*f € C(Q),

CL(©) (I € N) — the Banach space of functions f € Cy(f2) such that
Va € N where |a| =1 and Vo € €2 the derivatives (D*f)(z) exist
and D*f € Cy(€2), with the norm

1l = Ifllew@ + D 1D Fllew),

|af=l

L As usual when saying a “Banach space” we ignore here the fact that the condition
I fllz, @ = 0 is equivalent to the condition f ~ 0 on 2 (i.e., f is equivalent to 0 on Q <=
meas {x € Q: f(z) # 0} = 0) and not to the condition f = 0 on . To be strict we ought to
call it a “semi-Banach space” (and it will be necessary to keep this fact in mind in Section
4.1) or consider classes of equivalent functions instead of functions. The same applies to the
spaces Loo(Q2) and W)(Q) below.

2 “Measurable” means “measurable with respect to Lebesgue measure.” All the integrals
thoughout the book are Lebesgue integrals.

3 We need to do so because otherwise if meas Q0 = 0, then by the convention sup @ = —oo
we have ess sup | f(z)| = —oo.

€n

4 If Q C R™ is an open set, then for f € C(Q) ||fllcw) =1l
P fr — [ in LI¢(Q) as k — 0o means that for each compact K C Q fi — f in L,(K).
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61(9) (I € N) - the Banach space of functions f € C(Q) such that

Va € Nj where |af =1 and Vz € 2 the derivatives (D f)(x)
exist and D*f € C(2), with the same norm,

C>=(Q2) = N CYQ) — the space of infinitely continuously differentiable
1=0

functions on €2,
C° () — the space of functions in C*°(£2) compactly supported in €2,
Wzﬂ(Q) (l € N,1 < p < o0) — Sobolev space, which is the Banach space
of functions f € L,(£2) such that Va € Njj where |o| = [ the weak
derivatives DS f exist on 2 and DS f € L,(€2), with the norm

£ lweey = 1o + D 1D%F L@

|af=l

(see Section 1.3),

wh(Q) (1 € N,1 < p < o0) — the semi-normed Sobolev space, which is the
semi-Banach space of functions f € L{P¢(Q) such that Vo € Ng
where |a| = [ the weak derivatives D f exist on 2 and
D¢ f € L,(S2), with the semi-norm

1wty = > 108 FllL,@)
|a|=1
(see Section 1.3),
Wl(Q) (1 € N,1 <p < 00) — the Banach space of functions f € L,(€)
such that Vo € Nj where |a| <[ the weak derivatives DS f exist
on  and DS f € L,(€), with the norm

1wy = 3 105 e

o<l

(see Sections 2.3 and 4.4).
(W))o(€) (I € N,1 < p < 00) — the space of functions in W}(Q) compact-
ly supported in 2
and, finally,
Wé(Q) (1 €N,1 < p < o00) - the closure of C§°(2) in WL(Q). ©

Further notation will be introduced in the text.

6 In general, if Z(Q) is a space of functions defined on an open set Q C R", then Zy(Q)

will denote the space of all functions in Z(2) compactly supported in  and Z(Q) — the
closure of C§°(2) in the topology of Z () (if C§°(Q) C Z(£2)).
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Let 2 C R™ be a measurable set and 1 < p < oo.
Holder’s inequality. Suppose that & + % =1,ie,p = p%l for 1 < p < o0,
pP=occforp=1landp =1forp=o0. If fe L,(Q) and g € Ly(Q2), then

fg € L1(Q) and
1f 9llza) < N fllzy@ llgllL, @)

Minkowski’s inequality. If f, g € L,(Q2), then f 4+ ¢ € L,(£2) and

If+ 9l < Il + l19llL,@)-

Minkowski’s inequality for integrals. In addition, let A C R™ be a mea-
surable set. Suppose that f is measurable on A x  and f(-,y) € L,(Q2) for
almost all y € A. Then

| [ e,
A

if the right-hand side is finite.

< ) d d
P A/ 1£Co3) dylz @ dy

Similar inequalities hold for finite and infinite sums. Let a;, b, € C. Then
S labil < (3larl?)” ()"
k=1 k=1 k=1
and ) ) ) ) ) )
(Y terur)” < (k) + (3 1n)"
k=1 k=1 k=1

1

Here s € N or s = co. (If p = 00, one should replace (> |ax|?)? by sup |a|.)
k k

Throughout the book we shall often use these basic inequalities (without
additional comments).



Chapter 1

Preliminaries

1.1 Mollifiers

Let w be a kernel of mollification, i.e.,

w e CF(RM), supp w C B(0,1), /wdx = 1. (1.1)

R

For § > 0 and Vz € R™ we set ws(z) = srw(%).

Definition 1 Let Q) C R"™ be a measurable set and 6 > 0. For a function f
defined on 0 and such that f € L1(2 N B) for each ball B, the operator As =
As o (a mollifier with step (or radius) 8) is defined by the equality *: Vo € R"

(As)(w) = s f)o) = 5 [o(550) fdy = [ fole = 62)we)az
0 B(0,1) 12)

We recall that for each function f under consideration Asf € C°(R™),
Vo € Nj
D*Asf = 6711(Dw)s * fo (1.3)

on R™ and
supp Asf C (supp f)°. (1.4)

! Here and in the sequel fo denotes the extension of f by zero outside Q: fo(x) = f(x)
for x € Q@ and fo(x) =0 for z € Q.

15
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We note also that on €2

(Asf) (@) = (w5 * f)(x) = / fo— 62) wlz) d,

and Vo € Nj
D*Asf = 61D w)s * f.
If Q C R" is an open set and f € Li*°(2), then A;f € C*(;s) and
Asf — f a.e? on Q (1.5)

as § — 0+ (if f € C(R), then the convergence holds everywhere on ). For
1 <p<ooandVf e L,()

1As fllz, @y < cllfllz,@)- (1.6)

Moreover, for each measurable set G C R”

145 fllz,) < cllfllL,@nes)- (1.7)
Here ¢ = |lw||, ) (¢ = 1 for a nonnegative kernel w; if, in addition, the
function f is nonnegative, then ||Asf||z, @y = || fllz.)-
Furthermore, 3
[Asf = fllz,@ < cw( @, (1.8)
where

w(0, fry@) = sup [fo(x +h) = f (@)L,

is the modulus of continuity of the function f in L,(€2).
From (1.8) it follows that for 1 < p < oo and Vf € L,(£2)

Asf — fin L(Q) (1.9)

as 6 — 0+. For p = oo for any kernel of mollification this relation in general
does not hold.
From (1.9) it follows that for 1 < p < oo

1As fllz, — IIfllz, @ (1.10)

2 a.e.= almost everywhere.

3 See also Lemma 12 of Chapter 5.
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as 0 — 04. We note that for nonnegative kernels w this relation holds also for
p = oo. (If the kernel w changes its sign, this relation in general does not hold.
For example, if n = 1,w(z) < 0 on (—1,0) and w(z) > 0 on (0.1), then V6 > 0
we have [[As(sgn )|l = l|lwllo,@ > 1.)

If O C R”, then the function * n = A% Xo3 constructed with the help of a
nonnegative kernel is a function of “cap-shaped” type, i.e.,

neC®R"), 0<n<1, n=1onQ, suppnyC Q’, (1.11)

and
(D) ()| < cad™ !,

where ¢, depends only on n and «.

If the function f satisfies the Lipschitz condition on R", i.e., if for some
M >0 and Vx,y € R”

|f(z) = f(y)l < Mz —y], (1.12)

then V§ > 0 and Vz,y € R”

[(Asf) (@) = (As )(y)] < e Mz —yl. (1.13)

Thus for nonnegative kernels, in which case ¢ = 1, the mollifier As completely
preserves the Lipschitz condition. If (1.12) holds for all z,y € €2, where Q C R™
is an open set, then (1.13) holds on €s.

The mollifier A} defined by (1.2) with the kernel of mollification w*(z) =
w(—) replacing w(x) is the conjugate of the mollifier As in Ly(Q2). In particular,
if the kernel w is real-valued and even, then the mollifier As is a self-adjoint
operator on Ly(€2).

Finally, we note that for a measurable set (2 C R" and for any function f

such that f € L;(©2N B) for each ball B
AgA,yf = AWAEf on Q(H-W'

In particular,

AsA, = A, A5 on L°(R").

4 Here and in the sequel xg denotes the characteristic function of a set G.
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1.2 Weak derivatives

We shall start with the following observation for the one-dimensional case and
for an open interval (a,b), —oo < a < b < 400. According to well-known
theorems in analysis, the differentiation operator

4. CYa,b) C Cla,b) = C(a,b) ®

is a closed operator in C(a,b), i.e., if fi, € C'(a,b),k €N, f,g € C(a,b) and
fr — f, df—’“ﬁg in C’(a,b)

dz

as k — oo, 9 then f € C'(a,b) and L = g on (a, b).
Suppose now 1 < p < oo. The following simple example shows that the
differentiation operator

4 Ca,b) C LY(a,b) — LY(a,b) (1.14)

is not closed in LY (a, b).
Example 1 Let (a,b) = (—1,1) and Vz € (—1,1) set f(x)

(22 + $)V%, k € N. Then f; — |z|, f, — sgnz even in L,(—1,
C'(—1,1) (and |z|" does not exist on the whole interval (—1,1)).

2], fulw) =
1), but [z] ¢

Idea of the proof. This follows easily by direct calculation. O

For this reason it is natural to study the closure of the operator (1.14) in
L]lgoc(a,b). This is one approach leading to a generalization of the notion of
differentiation.

On the other hand if f € C'(a,b) and ¢ € Ci(a,b), then

b b
/fgo’dx:—/f’god:v.

This equality can also be naturally used to generalize the notion of differentia-
tion, since for some functions (e.g., f(x) = |z|) the ordinary derivative does not

5 Here and in the sequel we shall write for brevity C(a,b), C(a,b), Ly(a,b), LL(a,b) etc
instead of C((a,b)),C((a,b)), Ly((a,b)), L*((a,b)) ete.

5By fr — f in C(a,b) we mean that || fr, — fllcia,p — 0 as k — oo for each closed interval
[a, 8] C (a,b). This definition is similar to that of convergence in L*(a,b) (see footnote 5
on page 12).
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exist on (a,b), but a function g € L(a,b) exists (in Example 1 g(x) = sgnx)

such that Vo € C}(a,b)
b b
/fcp’dx = - /g(pdac.

These approaches lead to strong, weak respectively, extensions of the dif-
ferentiation operator.

We give now the corresponding definitions for the multidimensional case
and for differentiation of arbitrary order.

Definition 2 Let Q C R™ be an open set, « € N2 o # 0 and f,g € L'*°(9Q).
The function g is a weak derivative of the function f of order a on Q0 (briefly

g=Dyf) if

Vo € C5°(2) /fDO‘god:L‘ = (1)l /ggpdx. (1.15)

Q

Lemma 1 Let Q2 C R" be an open set, a € Nj,a # 0. Moreover, let f be a
function defined on Q, which Yx € Q has an (ordinary) derivative (D f)(z)
and D*f € C(Q). Then D*f = DS f.

Idea of the proof. By integrating by parts a; times with respect to the variables

xj, j = 1,...,n, show that

Vo € C5° () fD%dz = (—1)l°l [ D*fepdz. (1.16)
/ /

(One may assume without loss of generality that € is bounded and consider
instead of f the extended function fy on a cube (—a,a)” D Q.) O

Remark 1 The assumption about the continuity of D®f in Lemma 1 is es-
sential. For example, the ordinary derivative of the function f(x) = z?sin m%
(x # 0; f(0) = 0), which exists everywhere on R, is not a weak derivative of f

on R because it is not locally integrable on R. (See also Example 4.)

From Definition 2 it follows that if ¢ = D, f and the function & is equivalent
to g on €2, then h = D¢ f also. Thus the weak derivative is not uniquely defined.
The following lemma shows that it is the only way in which uniqueness fails.
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Lemma 2 Let Q C R™ be an open set, « € Ny, o # 0, f,g,h € L'(Q) and
g=D2f , h=D3f on Q. Then g~ h on Q.

Idea of the proof. Use the main lemma of the calculus of variations. O

Remark 2 Because of this nonuniqueness, the notation g = D¢ f in Definition
2 (which is not to be interpreped as equality of the functions g and DS f) needs
some explanation. To be strict, the binary relation = D2 on L' is introduced:
“g = D¢ f” means “g is a weak derivative of the function f of order a on 2”.
We also use D{ f for any weak derivative of the function f of order o on (2.
Thus, for example, the assertion “the function f has a weak derivative D{ f”
means “the function, denoted by D¢ f, is a weak derivative of the function f of
order a on 2”. From this point of view the relation D2 f;+ D2 fo = D2(f1+ f2)
means the following: if each of D2 fx, k = 1,2, is a weak derivative (i.e., any
of the weak derivatives) of the function fi, then the function D¢ f; + DS f is
a weak derivative of the function f; + f,. Finally, we assume that DS f = g¢
means g = D¢ f . This will allow us to rewrite the above relation in the more
usual form D (fi1 + fo) = DS f1 + DS fo.

Remark 3 Note that if a function f € L!°(Q) has a weak derivative D2 f on
Q), then automatically D2 f € LY¢(Q).

Example 2 (n=1,Q2=R) |z|,, = sgnz.
Idea of the proof. This was discussed above. O

Example 3 Let n =1 and f € LI°(R), then, as is known from the theory of

Lebesgue integral, the function [ f(y)dy is locally absolutely continuous 7 on

R and ([ f(y)dy) = f(x) for almost all z € R. There can, of course, exist an

a
x € R, for which either the derivative does not exist or exists but is different

from f(z). On the other hand, Vf € Li*(R) we have ([ f(y)dy),, = f(x) on
R. ’

"We recall that the function g is absolutely continuous on the closed interval [a.f] if
Ve > 0 there exists 6 > 0 such that for each finite Collection of disjoint intervals (o, 8;) C

(o, B),j =1,..., s, satisfying Z (B; —aj) < 6 one has Z |f(8;) — f(e)| < e. The function g

is locally absolutely contlnuoub on the open set 2 C ]R 1f it is absolutely continuous on each
closed interval [«, 8] C Q.
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Idea of the proof. Integrate by parts. This is possible since [ f(y)dy is locally

absolutely continuous on R. O

Example 4 Suppose that n > 2, [ € N, the function f € C/(R"\ {0}), « € N?
and |a] = [. Then the weak derivative D f exists on R” if, and only if, the
(ordinary) derivative D f lies in L;(B(0,1)\{0}). If n = 1, then this statement
holds for f € CY{(R™\ {0}) N C'~Y(R).

In particular, for n > 1, p € R and Va € Nj,a # 0, the weak derivative
D& (|z|*) exists on R™ if, and only if, either u > [ —n, or p is a nonegative even
integer <[ —n.

Idea of the proof. For n > 2 integrate by parts, excluding the origin. For n =1
use Definition 4 below and the properties of absolutely continuous functions. O

Example 5 (n =1,Q = R) The weak derivative (sgnz),, does not exist on R.

Idea of the proof. Suppose that g € L*(R) is a weak derivative. By integrating
by parts show that Vi € C°(R) [ gpdz = 2¢(0). Taking ¢(x) = x1)(x) with
R

arbitrary ¢ € Cg°(R), prove that [zg(z)y(x)dx = 0. Thus g ~ 0, which leads
R

to a contradiction. O

Remark 4 For each f € L!°°(Q) the derivative Df exists in the sense of the
theory of distributions, i.e., as a functional in D'():

Vo € C(Q) (Df,p) = (=1)FI(f, D) = (—1)'a/fD“<pdx-

In Example 5 (sgnz)’ = 20(x), where ¢ is the Dirac d-function. From the point
of view of the theory of distributions the weak derivative D¢ f of a function
f € L¢(Q) exists if, and only if, the distributional derivative Df is a regular
distribution, i.e., a functional represented by a function g € L¢(Q):

Vo € C°(Q) (Df,p) = /gsodx.
Q

This function g (defined up to equivalence on () is a weak derivative of the
function f of order a on €.
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Definition 3 Let Q C R"™ be an open set, o € N2 o # 0 and f,g € L'*(Q).
The function g is a weak derivative of the function f of order a on Q (briefly
g = DS f) if there exist Yy, € C°(Q), k € N, such that

Up — f, DY —g in LY(Q) (1.17)
as k — oo.
Theorem 1 Definitions 2 and 3 are equivalent.

Idea of the proof. 2 = 3. In (1.15) write ¢, for f and pass to the limit as
k — oo. 3 = 2. For k € N let x; be the characteristic function of the
set {x € Q: |z] <k, dist(z,00) > 2}. Functions ¢, € C=(Q) (and even
Uy, € C§°(R2)) are constructed in the following way: ¢, = A 1 (fxk), where As
is a mollifier as in Section 1.1. O

Definition 4 LetQ C R be an open set, | € N and f,g € L'*°(Q). The function
g is a weak derivative of the function f of orderl on Q (briefly g = D\, f = qu,l))
if there is a function h equivalent to f on S, which has a locally absolutely con-
tinuous (I—1)-th ordinary derivative R~ and such that its ordinary derivative
R is equivalent to g. (Recall that h) exists almost everywhere on (.)

Theorem 2 In the one-dimensional case Definitions 2, 3 and 4 are equivalent.

Idea of the proof. It is enough to consider the case in which Q = (a,b).
4 = 2. Since A=Y is locally absolutely continuous on (a,b), it is possible
Vo € C§°(R2) to integrate by parts [ times:

b b b

b
/fcp(l)dx = /hgo(l)dw— (—1)l/h(l)¢d$ = (_1)l/g¢dx'

a a a

3 = 4. Let [ = 1. Since ¢ — f in L(a,b) as k — oo there exists
a subsequence ks and a set G C (a,b) such that meas[(a,b) \ G] = 0 and
Ui, () — f(z) as s — oo for each # € G. Choose z € G and pass to the limit in

the equality ¥y, () = i, (2)+ | ¥4 (y)dy. Then f(z) = f(2)+ | g(v)dy = h(z)

for each z € (. By the properties of absolutely continuous functions the
function h (which is defined on (a,b) and equivalent to h) is locally absolutely
continuous on (a,b) and g ~ h'.
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If [ > 1, then apply the averaged Taylor’s formula (3.15) with a < o < z <
[ < b to the functions 1, . Write it in the form

xT

B Y
@) = [y + =57 [@=0 ([ )i way

Jé] 8
iy [ = ([ wtman) iy

and argue as above. (Here p € C([a,b] X [a,b]), Yy € [a,b] p(-,y) is a polyno-
mial of order less than or equal to [ — 1 and w € C§°(a, 3).) O

The notion of a weak derivative, as the notion of an ordinary derivative,
is a local notion in the following sense. If the function g € LP(Q) is a weak
derivative of the function f € LP(Q) of order o € NI, o # 0, on  locally, i.e.,
Vz € () there exists a neighbourhood U, of x such that g is a weak derivative
of f of order o on U,, then ® g is a weak derivative of f of order v on €.

For an open set 2 C R" and o € N, # 0, let us denote by G,(2) the
domain of the operator D, i.e., the subset of L“’C(Q) consisiting of all functions
[ € Ll¢(Q), for which the Weak derivatives D f exist on (). We note that the
weak differentiation operator

D2 . Go(Q) — Ll¢(Q)

w

is closed, i.e., if the functions fi, € G,(Q) and the functions f,g € LY¢(2) are
such that

fo— f in L¥(Q), Dgfi—g in LY(Q),

8 Indeed, consider for an arbitrary ¢ € C§°(£2) a finite open covering {Uy, }i_, of supp ¢
and the correspondlng partition of unity {¢};_,, i.e., a family of fuctions ¢, € C§° ( Us),

which are such that Z ¥ =1 on supp ¢. (See Lemma 3 of Section 2.2.) Then ¢ = Z oY
k=1

on 2 and

[pods=3" [ D)o =00 Y [ gpunde= (1) [gpdn
5 k=17, k=1,

Q
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then f € G, () and D2 f = g. The operator D2 considered as operator
Dy - Ga(2) N Lp(Q2) — Ly(92),

where 1 < p < 00, is also closed. In order to prove these statements it is enough
to write fi for f in (1.15) and let k — oo.

Lemma 3 (Weak differentiation under the integral sign) Let Q@ C R™ be an
open set, A C R™ a measurable set and let o € Nj, o« # 0. Suppose that the
function f is defined on Q x A, for almost every y € A f(-,y) € LP¢(Q)
and there exists a weak derivative DS f(-,y) on Q. Moreover, suppose that
f,Def € Li(K x A) for each compact K C Q. Then on Q

03 ( [ sewiy) = [ (00 )y (118)

A

Remark 5 According to Remark 2 formula (1.18) means the following: if for
a function denoted by D2 f and defined on 2 x A for almost every y € A the
function (D2 f)(-,y) is a weak derivative of order a of f(-,y) on €2, then the

function [(D2f)(-,y)dy is a weak derivative of order « of [ f(-,y)dy on Q.
A A

Idea of the proof. Use Definition 2 and Fubini’s theorem. O
Proof. For all ¢ € C§°(Q2) the functions f(z,y)(D%p)(x) and (DS f)(x,y)e(x)
belong to Ly (2 x A), because, for example,

/ () (D) ()| dxdy < M / fldedy < oo,

QxA Supp e xA

where M = ma§>2(|(Dagp)(a:)|. Therefore, starting from Definition 2, we can
re

use Fubini’s theorem twice to change the order of integration and deduce that

Vo € C§°(R2)

/ ( / (Dgf)<x,y)dy)sa(x)da: = / ( / (D f)(a:,y)gp(;g)dx>dy

=0 [([ Hen o de)dy = 07 [ ( [ fdy) (D)@
and (1.18)Af011(z)ws. O s
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Lemma 4 (Commutativity of weak differentiation and the mollifiers) Let 2 C
R™ be an open set, « € N& a # 0, f € L(Q) and suppose that there exists a
weak derivative DS f on Q. Then VYo > 0

D%(Asf) = As(Dgf) on . (1.19)

Idea of the proof. Use Lemma 3. O
Proof. Recall that A;(Dg f) € C*(£2;) (see Section 1.1). Moreover, Vo € €25

U@ = [ 1o = 2)u(a)d

B(0,1)

Furthermore, Dg(f(- — dz)) = (D3 f)(- — dz), on Qs, which follows from Defi-
nition 2.

For (z,z) € Qs x B(0,1), let F(z,2) = f(z — 02)w(z) and G(z,z) =
(Dgf)(x — 62)w(z). Then for each compact K C s the functions F,G be-
long to L (K x B(0,1)), because they are measurable on Q5 x B(0,1) ? and,
for example,

/ /!fw—sz 2)\dz x<M/ /]fw—dz]dz)

K B(0,1) K B(0,1)

= ([ 1 |dydx<M/ /|f dy)d

K  B(z,)

= MmeasK/ |f(y)|dy < oo.

Here M = max w(z)| and K% C Q (because K C Q). Now (1.19) follows from
z€R™ -
Lemmas 1 and 3: Vz € Q

D ((Asf)(x DO‘ /fx—éz /Da (z — 62))w(z)dz

B(0,1)

_ / (D f) (@ — 62)w(2)dz = (As(D2f))(x). O

B(0,1)

9 We use the following fact from the theory of measurable functions: if a function g is
measurable on a measurable set E C R™, then the function G, defined by G(z,y) = g(x —y)
is measurable on the measurable set {(x,y) € R*" : x —y € B} C R?".
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Corollary 1 For Q =R"
Do As = AsDg,. (1.20)

Corollary 2 If v € NI and v > «,' then
DY(Asf) = 671*(D7*w)s+ D2 f on Q. (1.21)

Idea of the proof. Use Lemma 4. O
Proof. Using the properties of mollifiers (Section 1.1), we can write

DY(Asf) = D7 (D*(Asf)) = D7 (As(Dy.f))

= 5|a\—h\(Dw—aw>6 « D f
on 5 (we note that D% f € L¢(Q)). O

Example 6 If @ C R™ is an open set, {2 # R", then (1.20) does not hold on
2, because, for f =1 on Q, As(D*f) =0 on Q and D2(Asf) 7 0 on 2\ Q.

In Definition 2 the weak derivative is defined directly (not by induction as
the ordinary derivative). Therefore the question arises as to whether a weak
derivative DB f, where 3 < «, # a, exists, when a weak derivative D2 f
exists. In general the answer is negative as the following example shows.

Example 7 Set V(zy,79) € R? f(z1,72) = sgn x; + sgn z5. Then derivatives

(g—fl)w and (g_zé)w do not exist (see Example 2, while ( angxg)w =0 on R?

Idea of the proof. Direct calculation starting with Definition 2. O

Nevertheless, in some important cases we can infer the existence of deriva-
tives of lower order.

Lemma 5 Let Q C R™ be an open set, | € N, | > 2, f € L'*(Q) and suppose

that for some j = 1,n a weak derivative (%)w exists on §). Then Ym € N
j
satisfying m < | a weak derivative (g:—r,{)w also exists on 2.
J

10 Here and in the sequel v > « means that ; > a; for j = 1,n. We note also that
j=1,nmeans j € {1,....n}.
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Idea of the proof. Apply the inequality

|71,
oz

<

o=+ |55, )

where f € CYQ), Q is any open cube with faces parallel to the coordinate
planes, which is such that Q C Q and ¢; > 0 is independent of f. (See footnote
3 in Section 3.1.) O

Proof. For sufficiently large k£ € N the functions f, = A1 f € C*(Q). By (1.5)

and Lemma 4 f, — fin L;(Q) and % = A%(%) — 8—f in L;(Q). Moreover,
alfk alfs >
8@- L@/

H o™ [ amfs

<||fk fsllz@ +H

)

Consequently,

Hamfk Om fs

lim
k,s—00

Ll(Q)

Because of the completeness of L(Q) there exists a function gg € L1(Q) such
that 2 fn’“ — go in L1(Q) as k — oo. Since f — f in L1(Q) as well, by

Deﬁmtl(])n 3 it follows that g¢ is a weak derivative of order [ with respect to x;
on Q.

We note that if (); and ()2 are any intersecting admissible cubes then go, =
9o, almost everywhere on ()1 () Q)2 , since both go, and gg, are weak derivatives
of f on Q1) Q2. Consequently, there exists a function g € LP¢(2) such that
g = gg almost everywhere on each admissible cube () and g is a weak derivative
of f on ). Hence, by Section 1.2 g is a weak derivative of f of order [ with
respect to x; on 2. O

Lemma 6 Letn > 2, Q C R™ be an open set, | € N, | > 2, f € L¥(Q) and
suppose that Yo € Ny satisfying |o| = | a weak derivative DS f exists on ).
Then V3 € NI satisfying 0 < || < | a weak derivative DP f also exists on 2.

Idea of the proof. Apply the inequality

1D fllra) < e <HfHL1(Q) +> IID“fHLl(Q)>,

|ar|=l

where f € C'(Q), Q is any cube considered in the case of Lemma 5, ¢ > 0 is
independent of f, and the proof of Lemma 5. O
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Proof. The above inequality, by induction, follows from the inequality consid-
ered in the proof of Lemma 5. For, if @ = (a,b)", then

110 = |- [z G |
L1(Q) 8%?1 81‘52 .. axg" L1(a,b) Li(a,b)
ca (| B O )
- Oxy - Oy @ N =gl g @

<< (Iflne+ X 1D ).
la|=l
The rest is the same as in the proof of Lemma 5.
By writing f;, for f in this inequality and taking limits we see that it is
possible to replace here the ordinary derivatives DPf, D®f by the weak ones
DB f, D2 f respectively. 1! O

Lemma 7 Letn > 2, Q C R" be an open set, | € N, | > 2, f € L*(Q)

and suppose that ¥j € {1,....n} a weak derivative (%)w exists on ). Then
J

V3 € N2 satisfying 0 < |8] < | a weak derivative DP f also exists on Q. For

18| = 1 in general a weak derivative DZf does mot exist, but if, in addition,

for some p > 1 (%)w eLl*(Q), then a weak deriative D f does exist for
J
6] = 1.

Idea of the proof. This statement is a corollary of Theorem 9 of Chapter 4. O

1.3 Sobolev spaces (basic properties)

Definition 5 Let Q0 C R™ be an open set, | € N, 1 < p < co. The function
[ belongs to the Sobolev space W(Q) if f € L,y(Q), if it has weak derivatives

1 Moreover, starting by the appropriate inequality in footnote 3 of Chapter 3, by the same
argument it follows that

1D2flz,@ < M (I @+ Y 1P5Fl,@);

lel=1

where 1 < p < oo and M is independent of f. This inequality holds also for 2 = R™. This
follows by replacing Q by Qo +k, where Qo ={z € R":0<z; <1,j=1,...,n} and k € Z",
raising these inequalities to the power p, applying to the right-hand side Holder’s inequality

for sums, adding all of them and raising to the power %. For more general open sets such

inequalities will be proved in Section 4.4.
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D& f on Q for all « € N§ satisfying |o| =1 and

1wy = I1flzp) + D 1D8 Flln, ) < oo (1.22)

la|=l

Remark 6 In the one-dimensional case this definition is by Definition 4 equiv-
alent to the following. The function f is equivalent to a function A on €2, for
which the (ordinary) derivative A=) is locally absolutely continuous on € and

1wy = 1Ly + 1 @) = Nhllz,@) + 1)Ly < oo

Moreover, if 2 = (a, b) is a finite interval, the limits lim h(z) and lim h(z)

T—a+ z—b—

exist and one may define h on [a,b] by setting h(a) and h(b) to be equal to
those limits. Then h®*), s = 1,...,1 —1, exist and A=Y is absolutely continuous
on [a, b]. This follows from the Taylor expansion

xT

l—s—1
h(s—i—k)(x ) 1
(s) _ [ S A O k., - o\ =s=11. ()
R (z) = ; (@ =) +<l_8_1)!/(x w)! = O (w) du,
— 4
where z,79 € (a,b) and s = 1,..,l — 1. Since h® € L,(a,b), hence
) ¢ Li(a,b), the limits hm+ h(z) and liril h(z) exist. Consequently, the

right derivatives h(*)(a) and the left derivatives h(®)(b) exist and h*)(a) =
limh(z), O (b) = lim h(z). Finally, since RUD(z) = K=Y (xg) +

[ hD(u)du for all x,xy € [a,b] and Y € Ly(a,b), it follows that A=Y is
Zo
absolutely continuous on |a, b].

Remark 7 By Lemma 6 DS f exists also for || < [. Moreover, D2 f €
Ll¢(Q), but in general Dg f & L,(Q) (see Section 4.4).

Theorem 3 Let Q C R™ be an open set, | € N, 1 < p < oo. Then Wé(ﬂ) is a
Banach space. 2

Idea of the proof. Obviously Wlﬁ(Q) is a normed space. To prove complete-
ness, starting with the Cauchy sequence { fi }ren in W]ﬁ(Q) , deduce using the
completeness of L,(Q2) that there exist f € L,(Q) and f, € L,(€2), where
a € Nj, |a| =1, such that fi, — f and D fr — fo in L,(£2). From the closed-
ness of the weak differentiation it follows that f, = D& f. Hence f, — f in
Wi(). O

12 See footnote 1 on page 12. The same refers to the spaces Lé,(Q) in Remark 9 below.
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Remark 8 Norm (1.22) is equivalent to

118k = ([ (1574 3 105 ) )’

Q ‘Oé|:l

for 1 < p < oo and to
1 «@
1w e = mas{ 1l zecie, max D5 i}

for p =00, ie., Vf € WI(Q)

1
s 1 ey < 1 Iwar < callf 1o

where c3,cy > 0 are independent of f. This follows, with c3, ¢4 depending only
on n,p and [, from Holder’s and Jenssen’s inequalities for finite sums. If p = 2,
then W(Q) is a Hilbert space with the inner product

9wy = [ (s9+ Y DisDig) da

Q o=l

and HfHS/)é(Q) is a Hilbert norm, i.e. ||fHWl(Q) (f, f)W,(Q)
Let us consider the weak gradient of order [

--------

vt = 3 () [ = X v

U] yeeny =1 al=l

Then

and norm (1.22) is equivalent to

112k = ([ (17419057 az)’

Q
We also note that for even I Vf € C5°(Q)

/|v f|2d:v—/|A 12 de,

where A is the Laplacian. Hence, for such f,

1125 = ([ (157 + 18557 )

Q
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We shall also need the following variant of Sobolev spaces.

Definition 6 Let 2 C R™ be an open set, | € N, 1 < p < oco. The function f
belongs to the semi-normed Sobolev space wh(Q) if f € L(2), if it has weak
derivatives D2 f on Q for all a € N} satisfying | o |=1 and

£l oy = D D5 fllz, (@) < oo (1.23)
|| =l

The space w!

,(€2) is also a complete space (the proof is similar to the proof
of Theorem 3). Thus w}(Q) is a semi-Banach space, because the condition
[/l @) = 0 is equivalent to the following one: on each connected component
of an open set () f is equivalent to a polynomial of degree less than or equal

to l — 1 (in general different polynomials for different components).

Remark 9 Let © C R" be a bounded domain and B be a ball such that
BCQ 1leN, 1<p< oo Wedenote by LL(Q) the Banach space, which is
the set w]lp(Q), equipped with the norm

1z = 1z + 1 )

(It is a norm, because if || f[|zi () = 0, then from || f[[u @) = 0 it follows that
f is equivalent to a polynomial of degree less than or equal to [ — 1, and from
| fllz,3y = 0 it follows that f ~ 0 on 2.) For different balls with closure
in  these norms are equivalent. (This will follow from Section 4.4). One
can replace || f||z,8) by ||f||L,(8) and the corresponding norms will again be
equivalent. Note that by definition L!(€2) = w(€2) *2.

Remark 10 Clearly W}(€2) C wi(€2). In general W}(€2) # w!(€2), but locally
they coincide, i.e., for each open set G with compact closure in @ W}(Q)|¢ =
w!(Q)|q. This will follow from the estimates in Section 4.4. In that section the
conditions on § also will also be given ensuring that W(Q) = w! ().

Remark 11 The semi-norm || -[|,,4 gn)(in contrast to the norm || ||y zn)) pose-
sses the following homogenity property: Vf € w)(R") and Ve > 0

1 (e2) g ey = €211 F (2) )

13Here and in the sequel for function spaces Z;(Q2), Z2(f2) the notation Z;(Q) =
Z5(2), Z1(Q) C Z3(R2) means equality, inclusion respectively, of these spaces considered
only as sets of functions (see also Section 4.1).
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Moreover, Vf € W}(R")

1 o) llwgqeny ~ €I ()2, )

as ¢ — 0+ and
1f () lwagny ~ €711 F () | ey

as € — +o00.

The number | —n/p, which is called the differential dimension of the spaces
W;(Q) and w]l)(Q), plays an important role in the formulation of the properties
of these spaces (see Chapters 4,5) 4. Tt will also appear in the next statement.

Example 8 Let n,l € N, p,v € R, 1 < p < 0o. Denote by Ny, the set of
all nonnegative even integers. Then |z|*[log|z||* € W}(B(0,1/2)) if, and only
if, |z|*|log|z||* € w}(B(0,1/2)) and if, and only if, the following conditions on
the parameters are satisfied. If 1 < p < oo, then in the case p ¢ Ny : p >
l—n/p,veRorpu=1—n/p, v < —1/pand in the case p € No. : v =0 or
u>l—n/p,veRorpu=1>l—n/p, v<1—1/p.If p= oo, then in the case
pe Noe:pp>1, veRorpu=1 v<0andin the case p € Nyg. : v =0 or
uw>1l veRorpu=1 v <1. In particular, for 1 < p < oo

1) |z|* € WL(B(0,1/2)) if, and only if, either y ¢ Ny and > 1 —n/p, or
ne NO,e;

2) |log|a||” € Wi(B(0,1/2)) where | = n/p if, and only if, v < 1 —1/p.

14 Let Z(R™) be a semi-normed space of functions defined on R™. One may define the
differential dimension of the space Z(R") as a real number p posessing the following property:
Vf € Zo(R™) there exist eg, ¢5,c6 > 0 such that Ve > ¢

cse || f(@) | zwny < | f(€@)]l zmn) < coc” || f ()| zmn).-

If the semi-norm || - ||z®») is homogenuous, i.e., for some v € R Vf € Z(R") and Ve >0
|l f(ex)|| zrmy = €”[|f(2)]| z(mn), then the differential dimension of Z(R™) is equal to v. The
differential dimension of L,(R™) is equal to —n/p, the differential dimensions of both W} (R™)
and w},(R™) are equal to [ —n/p (which follows from the above relations).

This notion may be usefull when obtaining the conditions on the parameters necessary for
validity of the inequality

11z, ®ny < ez 1 £l zy@nys

where ¢7 > 0 does not depend on f. From this inequality it follows that the differential
dimension of Z;(R™) is less than or equal to the differential dimension of Z3(R™). If, in
addition, both of the semi-norms || - |z, &~y and || - || z,(r») are homogenuous, then their
differential dimensions must coincide.



1.3. SOBOLEV SPACES (BASIC PROPERTIES) 33

Idea of the proof. Apply Example 4. Let M = Ny for n = 1 and M = Ny, for
n > 1. Prove by induction that Vo € Njj, ae # 0, and Vo € R", x # 0,

||
e v —|a T v—
D (|l floglz||") = |« Py, (ﬂ) logla]|**,
k=0

where Py, are polynomials of degree less than or equal to |a|, P,, # 0 and
o=0forp¢gMorpueM, |of| <p;o0=1fr peM, |af >p, v+#0 (the
case in which p € M, |o| > p, v = 0 is trivial: D*(|z|*[log|z||") = 0). Deduce
that Vo € R,z #£ 0,

| D (|2 loglz||")| < es |«[*~* loglx[|"~7,

where cg > 0 does not depend on x. Moreover, if n > 2, then for some £ € R",
where [(|=1,e>0and Ve €e K ={x e R" : 2 # 0, ’%_§’<5}

| D(|z|floglz|")| > ¢ |x[*~1* log|[|"~7,

where cg > 0 does not depend on z. Finally, use that for some c¢ig, 17 > 0

1/2 1/2
| otlahis =co [ gl do. [ gllads = eu [ atoodp. o
B(0,1/2) 0 B(0,1/2)NK 0

Example 9 Let 1 < p < oo. Under the suppositions of Example 8
|z|*(log|z])” € W}(°B(0,2)) if, and only if, p < —n/p, v € Ror p = —n/p, v <
—1/p. On the other hand, |z|*(log|z|)” € w}(°B(0,2)) and if, and only if, in
the case p ¢ No. : p <l —n/p, veRor p=1—n/p, v < —1/p and in the
case p € No,:v=0orpu<l—n/p, veRorpu=10—n/p, v<1—1/p. For
p = oo the changes are similar to Example 8.

Let F'f denote the Fourier transform of the function f : for f € L;(R")
and V¢ € R”

(FF)€) = (@m) % / e £ (2)da (1.24)
for f € LQ(Rn)
Ff = lm F(fxe), (1.25)

where xj is the characteristic function of a ball B(0, k) and the limit is taken
in Ly(R™). Tt exists for each f € Ly(R™) and

1 fll o eny = N[ Fllzon) (1.26)

(Parseval’s equality).
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Lemma 8 For alll € N and f € W}(R™)

IV Loy = I EN(EF)E Lo eny (1.27)
and )
A1) gy = 11+ )R (FDE) llzaan (1.28)

Idea of the proof. For f € Li(R™) N W(R") starting with Definition 4 prove
that F(DSf)(€) = (i§)*(Ff)(&) on R*. To obtain (1.27) and (1.28) apply
(1.26) and the identity

DS =) €)@ =g o

|a|=l |a|=l

Lemma 9 Let Q2 C R"™ be an open set, M > 0 and suppose that Vx,y € Q)

| f@)—fy)ISM]z—y]. (1.29)
Then f € w! (Q), the gradient (7 f)(x) exists for almost every x € Q and
| 7f(x) |<M ae on Q. (1.30)

If, in addition, Q2 is a convex set, then the condition (1.29) is equivalent to the

following: f € C(Q) Nwl (Q) and (1.30) holds.

Idea of the proof. Let j € {1,...,n}, x= (x(J z;), a9 = (1, .. 7 1,750,
Tn), QU= Pry,—o2 C R"™ 1 and Yz € QU) Q(j)(w(j)) = Pro,, QN1 C
R, where [, is a straight line parallel to the axis Ox; and passing through
the point (z1),0). Deduce from (1.29) that for almost every z; € Q) (z\)

there exists Tf]( x) = af( ) ;) and ’%(m)) < M. Integrating by parts

(which is possible because V:C(J ) € QU) the function f(x"), ) is locally absolutely

continuous on €(;)(z))) show that the ordinary derivative % (existing thus
J

almost everywhere on 1) is a weak derivative ( g Ly, on Q.

If 2 is convex, then to obtain the converse result use Lemma 4 and (1.7) to
prove that Vz,y € Q and 0 < § < dist ([z,y],0Q) the following inequalities for
the mollifier A5 with a nonnegative kernel are satisfied 1°

[(As /) () = (AsH W) < | 7 Asflleesnlz — vl

5 When writing || v ¢ ||c(e) we mean that

B " dg 2\1/2
1 gllo@ = 1179l o) = H(;l% ) o,

(I V 9l (c) is understood in a similar way).
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=145 Vo flle@@anlz =yl < | Vo fllze@yslz =yl
< Vo fleeolr =yl =11V fllee@le =yl < Mz -y
(note also that for f € C(2) Nwl () the gradient v/ f exists a.e. on  and

V) = Vwf on Q). Now it is enough to pass, applying (1.5), to the limit as
06— 0+. O

Corollary 3 If Q C R" is a convex open set, then g € wl (Q) if, and only if,
it is equivalent to a function [ satisfying (1.29) with some M > 0. (Given a
function g, the function f is defined uniquely.)

Moreover, denote by M* the minimal possible value of M in (1.29). Then
|V 9l = M* and, hence,

M* < (lgllun o) < nM*.

Idea of the proof. The first statement is just a reformulation of Lemma 9 for
the case of convex open sets. The second one follows from the definitions of

19/l @) and Vwg. O

Lemma 10 (Minkowski’s inequality for Sobolev spaces) Let Q@ C R™ be an
open set and A C R™ a measurable set, | € N, 1 < p < 0o. Moreover, suppose
that f is a function measurable on Q x A and that f(-,y) € WL(Q) for almost

everyy € A. Then

| [ 1.

(the norm || f(z, y)|lwiq) s calculated with respect to x).

v = [ 1@l (131)
' A

Idea of the proof. Use Lemma 3 and Minkowski’s inequality for L,(£2). O
Proof. Let the right-hand side of (1.31) be finite, then by Hélder’s inequality
for each compact K C ()

/(/’f(x,y)\dx)dy<oo and /</|D$f(x,y)lda:>dy<oo

A A

Va € Nj where |a] = [. Hence by Fubini’s theorem the function f, being
measurable on K x A, belongs to L;(K x A). Now the inequality (1.31) follows
from Lemma 3 and Minkowski’s inequality for L,(£2):

HA/f(x,y)dy] i = HA/f(x,y)dy LP(Q)—F';lHDg!f(x,y)dy

Lp()
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< 1@ lody+ 3 [ 10 @ Doy = [ 1760wy O
A A

‘O(lilA
Lemma 11 (Multiplication by Cg°-functions) Let Q@ C R"™ be an open set,
leN,1<p<oco. ThenVp e C(Q) there exists ¢, > 0 such thatVf € W(Q)

lefllwie) < coll fllwi- (1.32)

Idea of the proof. Use Lemma 6, Leibnitz’ formula and the L,-estimates of the
derivatives of lower order. O

Proof. Let a € Ny satisfy |a| = [. By Lemma 6 V3 € Nj where | 8 |< [ there
exist DP f, therefore on Q) Leibnitz’ formula ' holds:

« & a—
Diten = 3 (5)0tenir (1.33)
0<B<a
Let Q; C Q,5 = 1,...,s, be open cubes with faces parallel to the coordinate
planes such that supp ¢ C |J @;. Then, applying twice the inequality in foot-
=1

J
note 11, we get

D5 ()| L0y < 2 max D¢l csuppy) Y I1DL ]|, supp )

IvI<i Bl
<2 (3D I0%llc@)) (D D 1Dl @))
ly|<t j=1 181<t j=1

< M lellciay 1w

where M depends only on [, and supp . (See also Lemma 15 of Chapter
4) 0

Lemma 12 Let Q2 C R" be an open set, l € N, 1 < p < oco. Then Vo € C* ()
and Vf € wh(Q) of € wl(Q).

Idea of the proof. Since locally w!(Q) and W}(Q2) coincide (see Remark 9) and
@ is compactly supported in €2, it is enough to apply Lemma 11. The estimate
(1.32) does not hold if W!(Q) is replaced by w}(€). (Take any nontrivial
polynomial of degree less than or equal to | — 1 as f to verify this.) O

n o
16 Here (g) = Wiﬂ)l,a! = aq!...a;,!; note that 0<%:< (5) = H1 BZO (g;) = 2lal,
SPxo J=L1p;=
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Lemma 13 Letl € N, 1 <p < oo, n€ C§°(R") be a function of “cap-shaped”
type such that n =1 on B(0,1) and Vs € N, Vz € R" 1n,(z) =n(%). Then
Vf e WiR")

nof — f in WLR") (1.34)

as s — OQ.

Idea of the proof. Use the definition of the norm in W}(R") and Leibnitz’
formula. O
Proof. First of all Vg € L,(R") where 1 < p < o0

(s — Vgl @) <9z, ¢Bo.s) — 0

as s — 0o. From (1.33) it follows that Va € Nj where | o |=1

| D5 (s f — )l zy@n)

« a a—
<0~ 00l + 3 (510" D e
0<B<a,B#0

< |nDof = D flliyem +2 > (DL fll, @),
0<B<a,B#0

where M does not depend on f and s. By footnote 11 D8 f € L,(R™), conse-
quently we have (1.34). O

Remark 12 For p = oo Lemma 13 does not hold, because, for instance, for
f=1onR" Vs € N |nf — flloown) = 1. However, n,f — f ae. in
R™ and [|n, f[lwe @n)y — || fllwz @n) as s — oo, which sometimes is enough for
applications.

It is well-known that if 2 C R™ is a measurable set and 1 < p < oo, then
each function f € L,(Q) is continuous with respect to translation (= continuous
in the mean), i.e.,

lim | fo(e + ) = £(2) |1z, @=0. (1.35)

The analogous result is valid for Sobolev spaces. We recall that for an open
set  C R" the space (W})o(€) is the set of all functions f € W/(Q) compactly
supported in 2.
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Lemma 14 (Continuity with respect to translation for Sobolev spaces) Let
Q CR™ be an open set, €N, 1 < p < oo. Then Vf € W;(Q)

By |12 +1) = £(2) g0y = O (1.36)
where h € R, Qpy ={r € Q:x+h € Q}, andVf € (Wzi)O(Q)

lim | foe + )~ £(2) lwye="0. (1.37)

Idea of the proof. Use the definition of the norm in W}(R") and (1.35). O
Proof. (1.36) follows from (1.35) because

|| f(x + h) - f(x) HW})(Q{h})

=[ f(x +h) = F@) ly0p, + D 1 (Daf)@+h) = (D)) @)

|ar|=l
< fola + 1) = (@) @ + Y, | (Dgfol +h) = (De£)(@) L@
|a|=l

If f € (W})o(Q), then Vo € Ni satisfying |oo| = I we have (DS f)o = Dg(fo) on
R", which easily follows from Definition 2, and thus f, € W;(R"). Therefore

I fo(z +h) = f(2) [lwye<Il folz +h) = folz) llwn
and (1.38) follows from (1.37). O

Remark 13 In contrast to the situation in L,(£2)-spaces the relation (1.37) is
not valid for all functions in Wé(Q) For example, if n =1, Q@ = (0,1), f =1,
then on (0,1) we have fo(z + h) — f(x) = —x@-nn(x) ¢ W)(0,1) for every
h € (0,1). Moreover, Lemma 14 does not hold for p = co. For example, if
n=1,1=1,Q=(-1,1), f(x) = |z|, then

| f(z+h) = f(@) lwe@un=ll fol@+h) = fu () lra-11-m=1

for every h € (0,1).



Chapter 2

Approximation by infinitely
differentiable functions

2.1 Approximation by Cg°-functions on R"

Let As be a mollifier with the kernel w defined in Section 1.1. We start by
studying the properties of As in the case of Sobolev spaces.

Lemma 1 Letl € N. Then Vf € Wé(R”) for1<p<oo

| Asf lwi@ny< el f llwiny

where ¢ =|| w |1, (®n)-
Moreover, for 1 < p < oo

Asf — f in WL(R™) (2.1)

as 0 — 0+. Forp = oo (2.1) is valid Vf € UZ(R”). If f € WL(R"), then
in general Asf —» f in WL (R™), but in the case of nonnegative kernels of
mollification

Asf — f in WIURY),  [|Asfllwewny — I lwe g (2.2)

as ' § — 0+.

! By footnote 11 of Chapter 1 it follows that Asf — f in W/"(R"), where m =0, ..., 1 if
1<p<oxand m=0,..1l—1if p=cc.

39
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Idea of the proof. Apply (1.6), (1.8), (1.9), (1.10) and (1.20). O
Proof. Using the above properties we find that for 1 < p < oo

I Asf llwen =l Asf lL,@m + Y I AsDef Il )

laf=l

(I f lepeny + D I Dif llzpem) = eIl f llwin) -

laf=l

If1 <p< oo, then

I Asf = f llwen= Asf = Fll,em + > | As(D5f) = Dof Il @n— 0

|af=l

as 0 — 0+. ,

If p = oo, then the same argument works Vf € C' (R™). It follows from
(1.8), because w(d, f)r..wn — 0 as § — 0+ for these f. If f € WL (R™), then
by (1.8)

145 = Fllwicrny = 1Asf = fllow@n + Y 14D f = D fll oo eny

la=1—1

((5fLooRn)+Z (0, Dy f) Lo (mm))-

la|=l-1

By Corollary 7 of Section 3.3

W(0, f)rw@ny = [[f (2 + D) = f(@) ]| oc@m) = O [ fllur @r):

Similarly for |a] =1—1

W(0, Dy f)pse@ry < 0 || Fllug, -

Consequently, w(d, Dg f)r. @ny — 0 for [a| =1 —1as § — 0+ . It also follows
that w(d, f)r. @) — 0, since by footnote 11 of Chapter 1

1 o, ey < M llwe, ey »

where M is indepent of f.
The second statement of (2.2) follows from (1.10) with p = oo and (1.20).
Finally by Remark 2 below it follows that for f € W! (R") in general
As —» fin WL (R"). O
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Remark 1 If 2 is a proper open subset of R", 1 < p < oo and [ € Wé(Q),
then we can prove only that Ve > 0

Asf — f in W) (2.3)

as 0 — 04. We next aim to construct more sophisticated mollifiers, which will
allow us to prove the analogous assertion for € itself.

Lemma 2 Letl € N, 1 <p < oo. Then C3°(R") is dense > in W}(R™).

Idea of the proof. Let f € Wé(R") and 7,, s € N, have the same meaning as in
Lemma 9 of Chapter 1. Set @5 = A1(nsf). Then s € CP(R™) and ps — f in

Wi(R™) as s — co. O
Proof. By (2.1), (2.2) and (1.34)

I As(sf) = [ llwyen I AL = fllwyeny + | AL(nsf) = Asf llwyen)

<[l Agf —f ||W},(R") +ellnf—f HWIQ(R")_) 0

as 6 — 0+. O

Remark 2 For p = co Lemma 2 is not valid. The counter-example is simple:
f = 1 on R™. Moreover, C*(R") also is not dense in W! (R"). In order to
prove this fact, for example, for n = 1 and [ = 1, it is enough to consider
the function f(z) = |z|n(z), where 7 is the same function as in Lemma 13 of
Chapter 1. Then Vyp € C*(R)

I f=ellwee =1 fio = ¢ o= senz — ¢ [|po-11) > 3

However, by Lemmas 1-2 it follows that C5°(R") is dense in W (R") in a
weaker sense, namely, Vf € W! (R") functions ¢, € C*°(R"), s € N, exist such
that

ps = f in WIIRY), llesllwe @ — 1 lwe @

as § — OQ.

? Thus W) (R™) = W}(R™), where W}(R") is the closure of C§°(R™) in W}(R™).
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2.2 Nonlinear mollifiers with variable step

We start by presenting four variants of smooth partitions of unity, which will
be constructed by mollifying discontinuous ones.

Lemma 3 Let K C R" be a compact set, s € N, Q, C R", k=1,..,s, be
open sets and

K c | (2.4)
k=1

Then functions ¥y € C3°(), k=1,...;s, exist such that 0 <y <1 and

Z Yr=1 on K. (2.5)

k=1

Idea of the proof. Without loss of generality we may assume that the 0 are
bounded. There exists 6 > 0 such that K C G = |J ()s. Set G = ()5 \
k=1

k—1 s
U (©2,)s and consider the discontinuous partition of unity: > xq, = x¢ on
m=1 k=1

R™. Mollifying it establishes the equality >  Asxg, = Asxe on R™, which
k=1 2 2

implies (2.5), where ¢, = A% Xa,- (Here A(; is a mollifier with a nonnegative
kernel.) O

Lemma 4 Let 2 C R™ be an open set and 0, C R™, k € N, be bounded open
sets such that

QU C Ui, kN, | u=0 (2.6)
k=1
Then functions iy, € C3°(),k € N, exist such that
G C suppthy, C G UGL U Gy, (2.7)

where Gy, = Qg \ Qe_1 (for k=0 we set QU =), 0 < Y <1 and

Z =1 on (L (2.8)

k=1
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Idea of the proof. Starting again with the discontinuous partition of unity
oo

> X, =1 on Q, choose
k=1

Ok = % dist (Gk, 8(Gk,1 U Gk U Gk+1))
= L min{dist (Qx_1, 00, dist (Q, O11)} (2.9)

1
(if Q # R™, then g — 0 as k — oo) and set

— A9k71 XaG, on (Qk)gk,l ,
b= { Age Xay on Q\ (Q)%, (2.10)

where As is a mollifier with a nonnegative kernel w.

So the characteristic function x¢, is mollified with the step g1 “in the
direction of the set G,_; 7 and with the step g, “in the direction of the set
Gry1”. Let Gy = G;C U G/]é U G%’, where

Gl = (Q-1) 1\ D1, G = (U)o \ (1)1, G = e\ () -

Then ), = 1 on G}, supp ¢, C G} 1 UGy UG}, therefore, 1, = 0 on G},
where m # k — 1,k, k 4+ 1. Moreover, on G}/ U G,

Z Ym = Y+ Y1 = AQk<XGk + XG'k+1) =1. 0
m=1

Lemma 5 Let (2 C R" be an open set , () # R,
Gy = {z € Q: dist (z,00) > 277}
and for k € N, k> 1, let
Gr={z€Q:27%" < dist (z,00) < 27%}

(for k <0 Gy = @) Then functions Y, € C*(Q), k€ Z, exist (for k <0 we
set Y, = 0) such that 0 < i <1,

Gy C supp iy C {x €0: %2_"3_1 < dist (z,00) < %2_’“}

C Gi—1 UGE U Gy,

> =Y =1 on Q (2.11)
k=1

k=—o00

and Vo € Nij there exists ¢, > 0 such that Vo € R" and Vk € Z
| D%y ()] < a2, (2.12)
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Idea of the proof. The same as in Lemma 4. Now the €, are defined via the
k

Ge: U= U G, and gp = 27573, Estimate (2.12) follows from the equality

D>y, = lelal(Dank) * Xa, on €\ (2_1)% and the analogous equality on

(Qk)gk—l‘ O

Remark 3 Sometimes it is more convenient to suppose that the functions
in Lemmas 4 and 5 are defined on R™ and supp ¢, C 2. (We shall use the same
notation ¢, € C§°(§2) in this case also). Then equality (2.8) can be written in

the following form: > ), = xq (the same refers to equality (2.11)).
k=1

Remark 4 There may exist an integer ko = ko(€2) > 1 such that G, = @ for
k < ko (in this case we assume that ¢, = 0) and (2.11) takes the form

Z Y = Z Yp=1 on Q. (2.13)
k=—00 k=ko

For €2 = R™ we shall apply the following analogue of Lemma 5.

Lemma 6 For nonpositive k € 7 let
Go={zeR":|2| <1}, Gp={zeR": 27" <|z|<27%}, k<.

Then functions ¥, € C(R™), k € Z, exist (Y, = 0 for k > 0) such that the
properties (2.7) and Vo € Ny (2.12) are satisfied, 0 < ¢y, < 1 and

[e's) 0
Y p=> =1 on R" (2.14)
k=—oc0 k=—o00

Idea of the proof. The same as in Lemma 5. O
Remark 5 Note that in Lemmas 4 — 6
(Supp ¢k)9k C (Gk,1 UG, U Gk+1>gk- (215)

Moreover, in the case of Lemma 4 for any arbitrarily small v, > 0,k € N|
one can construct functions vy, k € N, satisfying the requirements of Lemma 4
such that

supp ¢, C (Gi)™,  p =1 on (G),- (2.16)
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To do this it is enough to replace py defined by (2.9) by
Pk = min{i dist (Gk, Q(Gk_l U Gk U Gk‘-i—l))a 'Vk}-

In the case of Lemmas 5 and 6 for any fixed v > 0 one can construct
functions v, satisfying the requirements of those lemmas, such that

supp ¥, C (Gi)? ", ¥ =1 on (Gg)yor. (2.17)

Remark 6 From (2.15) it follows, in particular, that the multiplicity of the
covering {supp ¥, } in Lemmas 4—-6 is equal to 2, i.e., Vo € Q there are at
most 2 sets supp ¥ containing x and there exists x € () such that there
are exactly 2 sets supp ¢ containing z. (From (2.7) it follows only that the
multiplicity of this covering does not exceed 3.) Of course 2 is the minimal
possible value (if supp ¥ O G and the multiplicity of covering is equal to
1, then ¥y = x¢,). Moreover, from (2.15) it follows that for § € (O, é} the
multiplicity of the covering {(supp wk)‘n_k} is also equal to 2

In Chapter 6 we shall need a variant of Lemma 5 for Q) = {x € R" : z,, >
¢(1, ..., xn_1)}, where p is a function of class Lip 1 on R"™! — that variant
will be formulated there.

Let 2 C R™ be an open set and €2, C Q, k£ € N, be bounded open sets,
possessing the properties (2.6), G = Qi \ Qx_1. Suppose that gy is defined by
(2.9) and {tx }ren is the partition of unity in Lemma 4 defined by (2.10).

Definition 1 Let § = {0} }ren, where
0 <ok < o (2.18)
and f € L¢(Q). Then Vz € Q
Z As (P f))( :Z / Ur(x—0p2) f(x—bpz)w(2) dz, (2.19)
k=1 F=1p(1)

where w is a kernel of mollification defined by (1.1).

Remark 7 The functions ¢y f € Li(§2), therefore, As, (¢rf) € C(R™). We
note that we assume that 1, (y) f(y) = 0 for all y & supp ¥y even if y ¢ Q and
f(y) is not defined (for this reason in contrast to (1.2) in (2.19) ¢g(x—0x2) f (x—
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dxz) is written instead of (¢ )o(x — 0x2) fo(x —0x2)). By (1.4), (2.18) and (2.15)
it follows that

supp As, (Vrf) C (supp ¥y)% C (Gr-1 U Gy U Gipa )5, (2.20)

therefore,
As (i f) € Cg2 () (2.:21)
and the sum in (2.19) is finite. For, let Vo €  a number s = s(x) be chosen
such that = € G,. Then for k # s —1,s,s+ 1 we have x €supp As, (¥1.f) and ?

s(z)+1
Z / Ur(x — 0p2) f(z — dpz)w(z)dz. (2.22)

For the same reason Vm € N

m+1

> A (Wnf) on G (2.23)

k=m—1

Moreover, by Remark 5, for any given v, € (0, px], k¥ € N, a partition of unity
{tk }ren can be chosen in such a way that for all sufficiently small &, k € N,
we have Vf € LP(Q) and ¥m € N

Bsf = As,.f on (Gm)y,- (2.24)
Lemma 7 Let Q C R™ be an open set and f € LY(Q)). Then for each § =
{0k }ren satisfying (2.18) Bsf € C*(Q2) and Yo € Ny

*(Bsf) = ZD"‘ As (Urf)) on Q. (2.25)

Idea of the proof. Apply (2.21) and (2.23).0
Proof. From (2.21) and (2.23) it follows that ¥m € N and Va € Ny

m+1

D*(Bsf) = Y D*(As,(vnf)) ZD“ As, (i f))

k=m—1

on Gp,. Hence Bsf € C*°(2) and (2.25) holds on 2. O

3Moreover, from (2.20) it follows that Vo €  in the sum (2.16) no more than 2 summands
are not equal to 0.
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When applying the mollifiers Bsf we shall choose d; satisfying (2.18)
depending on f. For this reason we call them nonlinear mollifiers with variable
step (though, of course, Bs is a linear operator for fixed 0). The variable-
ness of the step follows from (2.19): Vz € 2 the mollification is carried out
with the steps ds_1, ds, 0511 depending on z (and these steps tend to 0 as
x approaches the boundary 02). We can also say that Bj is, in some sense,
a mollifier with piecewise constant step, because by (2.23) the same constant
steps Om_1, Om, Omy1 are used for the whole “strip” G,,. Moreover, by (2.24)
only one step J,, is used for the whole “substrip” (G, ),

Remark 8 In a number of cases it is more suitable to apply the mollifiers C5,
which are similar to the mollifiers B; and are defined by the equality: Vx € 2

(C5) (@) =Y _ (@) (A5, f)(x) = Y () / f(x = dpz)w(z)dz. (2.2

For instance, in contrast to the mollifiers By, for f = 1 on {2 and arbitrary
dx € (0, o] we have C5 = 1 on Q. On the other hand, for C5f the equalities
analogous to (2.22), (2.23) and (2.24) are valid and C5f € C*>(Q).

Furthermore, if the kernel of mollification w is real-valued and even, then
the operator Cfy is the adjoint of By in Ly(€2), because Vf, g € Lo(2)

(Bsf.9) =Y (A5, (¥nf),9) = D _(Unf, As.g) = (f,Zkaakg> = (f,Cs9)
k=1 k=1 k=1

(note that for these kernels w the operator As is self-adjoint in Lo(£2) — see
Section 1.2).

2.3 Approximation by (C*°-functions on open
sets

In this section our main aim is to prove the following statement.

Theorem 1 Let Q C R be an open set, | € N. Then C(Q)NW]}(Q) is dense
in WH(Q) where 1 < p < 0o and C*(Q) ﬂal(Q) is dense in UI(Q)
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Moreover, Vf € WHQ) if 1 <p < 0o and Vf € 6l(Q) if p = oo there exist
functions ¢, € C™(Q) NWH(Q) such that *

o — [ in WMQ), m=0,1,.,L

The set C°°(Q) N WL (Q) is not dense in W' (). However, Vf € WL (Q)
there exist functions o € C®(Q)NWL (Q),k € N, such that

o — [ In W£(9>7 m=0,1,...,1—1, ”SOkHWéO(Q) - ||f“W§o(Q)

as k — 00.

Later, in Section 2.6, we shall see that Vf € W/(2) (or Ul(Q)) functions

ps € C™(Q) NWL(Q), ¢s € C™(Q) ﬂ@l(Q) respectively, exist, which depend
linearly on f, do not depend on p and are such that for 1 < p < oo

@s — [ in W), (2.27)

in ﬁl(Q) respectively. Moreover, the functions ¢ may possess additional useful
properties.

We shall deduce the statement of this theorem, in the case in which
1 < p < oo, from a much more general result, which holds for a wide class
of semi-normed linear spaces Z(2) of functions defined on €2 with semi-norms
| lz() such that C§°(Q) C Z(2) C LP*(Q). Let Zo(€2) denote the subspace of
Z(Q) that consists of all functions f € Z(€2), which are compactly supported in
Q. Moreover, let Z¢(Q) denote the space of all functions f € LY(Q), which
are such that Yo € C§°(2) we have of € Z(Q). From these definitions it
follows, in particular, that

Coo () C Zo(2) C (L1)o($2)
and

C=(Q) © Z1(Q) © LI*(Q).

4Under additional assumptions on  (see Theorem 6 of Chapter 4), ||f |\W;q,(g) <
M ||f||Wé(Q), m =1,..,1 — 1, where M is independent of f, and this statement follows from
the density of C°°(€2) N W,(2) in W/(€2). However, for arbitrary opens sets it is not so (see
Examples 89 of Chapter 4), and this statement needs a separate proof. We also note that
it is possible that f ¢ W;"(2). In that case also ¢ ¢ W () but f — ¢ € W*(Q2) and
f =k —0in W(Q) as k — oo.
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Remark 9 For any | € Ny we have (C')¢(Q) = (CHPe(Q) = CY(2). More-
over, for 1 < p < oo the following equivalent definition of the space (Wé)loc(Q)
can be given: (W))°(Q) = {f € L{*(€): for each open set G compactly
embedded into Q f € WH(G)}.

Theorem 2 Let ) C R™ be an open set and suppose that the semi-Banach
space Z(Q2) satisfies the following conditions:

1) CF(Q) € Z(Q) C L(Q),

2) (Minkowski’s inequality) if A C R™ is a measurable set and f is a
function measurable on 2 X A, then

H/f(:c,y)dyHZm) S/Hf(x,y)“z(mdy’
A A

3) if p € CP() and f € Z(Q2), then pf € Z(N2),

4) all functions f € Zy(Q2) are continuous with respect to translation, i.e.,
lim | ol + 1) — F(2)]| ) = 0. (2.28)

Then C°°(Q) is dense in Z'°°(Q) (and, hence, C=°(Q) N Z(Q) is dense in
Z(Q)), i.e., Vf € Z'°¢(Q) functions p, € C=(Q) N Z"¢(Q), s € N, emist such
that

0s — [ in Z(Q) (2.29)

as s — OQ.

Idea of the proof. Apply Minkowski’s inequality to the right-hand side of the
equality

(Bsf)(a Z [ =6 - @) ulzdz. (230)

=1B(0,1)

where f = ¢ f and the mollifier By is constructed with the help of a nonneg-
ative kernel of mollification, and prove the inequality

| Bsf — f llz@)< ZW(5k,fk)Z(Q)- (2.31)
h=1
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Here

w(0, [z = sup [l fo(z +h) — f(z)] 2@
|h|<é

is the modulus of continuity of the function f in Z(Q2). (Compare with (1.8).)
Using condition 4) choose ), in such a way that w(dg, fr) < €27%. Then
1Bsf = fllz@ <e B

Proof. 1. From 4) it follows that Vf € Zy(€2) there exists v = v(f) > 0
such that Vh € R™ satisfying |h| < ~ the function fo(- + h) — f(-) € Z(Q).
Let us suppose, in addition, that v < dist (suppf,0€2), then suppfo(- + h) C
(suppf)I* € Q and fo(- + h) € Zy(2). For, first of all fo(- + h) € Z°¢(Q).
Consider, furthermore, a function of “cap-shaped” type n € C§°(Q2) such that
n =1 on suppfo(-+h) (see Section 1.1), then by definition of Z¢(Q) fo(-+h) =
nfo(- +h) € Zy(€2).

Let A(h) = || fo(x+h) — f(2)| 2@ for h € B(0,7v). Condition 4) means that
the function \ is continuous at the point 0. Moreover, A € C(B(0,7)). Indeed,
let w € B(0,7). Then, by the continuity of the semi-norm, in order to prove
that A(h) — A(u) as h — w it is enough to prove that fo(z + h) — f(x) —
folx +u) — f(z) or folx+h)— folr+u) =go(r+h—u)—g(x) = 0ash —u
where g(z) = fo(z + w). And this is valid because g € Zy(€2).

2. Let us consider the mollifiers By, which are constructed with the help

of any nonnegative kernel. Since " 1, =1 on Q and [ wdr =1 we have

k=1 B(0,1)
Vo € Q)
(Bsf)(z Z (As, (Vrf)) — r(z) f())
=1

k:l

0,1)

where fi, = Y f and Fi(z) = [ (fi(x — 0k2) — fr(2)) w(z)dz.

B(0,1)
By 3) and (2.15) we have that fy, Fi, € Zo(Q2) and supp f, supp Fy C
Gr—1 U Gk U Giyq. Applying Minkowski’s inequality for infinite sums (which
holds besause of the completeness of the space Z(2)) we have

IBsf = fllzey <D I Fell 2o
k=1
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Now suppose that, in addition to (2.18),

o < 57(fu), (2.32)

then the function || fi(z — 0x2) — fi(2)| z() is continuous on B(0, 1) and

[ fsle = 82) = i)z w(a) s < o
B(0,1)
Moreover, the function [f(z — 0r2) — fr(z)]w(2) is measurable on Q x B(0, 1)

(see footnote 9 of Chapter 1). Therefore, we can apply Minkowski’s inequality
in condition 2) and establish that

Fellze < [ 1o = 82) = @z () dz
B(0,1)
< s e+ ) = felo)lam) = ol f) o

Thus, (2.31) follows.
3. Now Ve > 0 by 4) choose d; such that, in addition to (2.18) and (2.32),

w(5k, fk)Z(Q) <e27k (2.33)

(we note that (fi)o = fi). With this choice of § = d(¢, f) (depending on € and
f) we have Bsf € C*°(Q2) and

|1B5f — fllz@) <e. (2.34)

Thus, Theorem 2 is proved (in (2.29) one can take ¢, = Bj_ f, where 6, =
5 (L, f)). 0

Remark 10 The functions ¢, in the given proof are constructed in such a way
that they depend on f, in general, nonlinearly. Moreover, they may depend,
of course, on the space Z(£2). For example, in the case of Z(2) = W}(Q) they
may depend on n, [, p, ) and f.

Idea of the proof of Theorem 1. The density of C>(Q) N W}(Q) in W(Q)
where 1 < p < oo and of C*(Q) ﬂ@l(Q) in ﬁl(Q) follows directly by applying
Theorem 2 to Z(Q) = W}(Q), UI(Q) respectively. In order to prove the second
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P

. N l
statement of the theorem take Z(Q) = WJ}(Q), where W)(Q) = () W;"(Q),
m=0

l
hence [|f|lwiqy = 22 [[fllwp). Note that by Corollary 14 of Chapter 4
P m=0 P

(Wé)loc(ﬁ) D W)(€). The case of the spaces él(Q) is similar.

In the case of the spaces W' () take open sets 0, C Q, k € N, which
are such that measdQ, = 0. Consider any v € (0,pr),k,s € N, such
that lim 74s = 0. Choose a partition of unity {¢y}reny in such a way that

§—00

for any sufficiently small d

Bs, f = Aspef on (Gim)ys

where 0, = {5k8}k€N. This is possible by Remark 7. Moreover, assume that the
kernel of mollification w is nonegative. O

Proof of Theorem 1. By Lemmas 10, 11 and 14 of Chapter 1 the conditions
of Theorem 2 are satisfied for Z(2) = W/(Q) where 1 < p < oo and for

Z(Q) = C (9). Hence the first two statements of Theorem 1 follow from
Theorem 2.

However, if p = oo, then condition 4) of Theorem 2 is not satisfied, and
Theorem 2 is not applicable. In this case we need a more sophisticated argu-
ment. Let f € W' (Q) and m < [ — 1. Then for any mollifier B;, which is
constructed with the help of a nonnegative kernel, and m = 0,1,....1 — 1 we
have

1Bsf — fllwg @ Z (Ok, fr)wm (o) < Z (Ok, Vi fo) wm @n)
p

k=1
By Lemma 11 of Chapter 1 . fy € W. (R") and as in the proof of Lemma 1,
applying, in addition, footnote 11 of Chapter 1, we establish that
W (O, Y fo)wam®ny < Midk ||t follyz+i gy »

where M; is independent of f and k.
Consequently, Ve > 0 there exist 0'( > 0,k € N, such that V§, € (0, 0(1))
we have w(0k, Yx fo)wmmn) < €27%, m =0,...,1 — 1, and hence

|Bsf — f||ng(Q) <e, m=0,.,01—1

Furthermore, for Va € Nj satisfying |a| = [ by (2.25), Lemma 4 of Chapter
1 and Leibnitz’ formula we have

pmn =3 (5) g;A&k(D% Dif).

0<f<a
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where (g) = ﬁ!(of‘iﬁ)! = H ,(az 3 i If 8 # a, then Z D Py, = 0 on Q and
by (1.8)

|3 s (D DI, o = HZ As(D* Py DL )= D4 D )|
k=1

) Lo (£2)

< A5 (D> Py DY F) =D D fll i) < Y w(Bk, Dby DY f) 10
k=1 k=1

<> w(0k, D"y DL fo) Lo
h—1

Since by Lemma 11 of Chapter 1 D~ P4y, DB f, € Wéo_W'(R”) as in the proof of
Lemma 1 we establish that

W (6, D* PPy DB fo) 1o my < Mol || D> Papy, Dﬁfollwgm(w) ;

where M; is independent of f and k.
Consequently, there exist J,(f) € (0, U,(Cl)), k € N, such that Vo € (0, 0,(62)) we
have
(0, D"y D) fo) Loy < £27F7"(1+ > 1)

laf=l

and, hence,
HZAak (D" DY )iy < 22771+ Y 17"
la|=l

If 8 = «, then since ¢x, k € N, and the kernel of mollification is nonnegative
we have

1> A (DNl < 1Y 1 A5 (Do) i
k=1 k=1
< 1> As Wl D5 f Do) < 1) Al @I D5 Fll e
k=1 k=1

<1+ (A5t — )@ I Do fll o)

k=1
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<1+ 1 Aste = Yrll @) DG fll Lo
k=1

oo

<1+ w0 tr) L @) DG F | i)

k=1

Since ¥y, € C3°(Q2), as in the proof of Lemma 1 we have

WOk, Vr) Lo () < W0k, Vi) Loo®n)) < Ok || Ukl ()

and it follows as above that there exist 0,(63) € (0, cr,(f)), k € N, such that Vo, €
(0.0,”)

| ZAak(WDfo)HLOO(Q) <A+ Dafllrwie:
=1

(This inequality also holds for ae = 0.)
Thus, if §;, € (O,G,(f)), then

I Bsfllwe ) <&+ (1 +a)llfllwe ()

(We have applied the equality > (g) =2")
0<B<a

In particular, if 05 € (0, U,(CS)), k,s € N, then

1 Bs, fllwi ) <&+ 1+l fllwe -

On the other hand by construction of the mollifier 6, and by Lemma 4 of
Chapter 1

1B, f

lwi ) = 1B5. f w6y = 1As fllwe (Gony)

Lo (@) + D 1450 DG Fll (G-
|ar|=l
By relation (1.9) for p = oo there exist 0,534) € (O,U,(CB)),IC € N, such that for
(4)
5ks - (070k )
1Bs, f

lwi@) = 1 fllwe (@i = 5

and, hence,

| Bs, f

> su - <= — <.
|Wgo(sz) = keg ||f||WCl,o((Gk)7ks) B Hf”vvgo( 8 (Gi)o) 3
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Since meas (| J 0€) = 0 we have
k=1

1wt =10y, S oo, =l 11,
k=1 k=1

(Gi)s)
Consequently, there exists s € N such that

Hf||Wéo(8 > 1 fllwe ) — 5-

(Gr)vis)
1

Thus, Ve > 0, there exist s € N and dx5 € (0, Ul(f)) such that
1B5,f — fllwiziy <€

and

I fllwe ) — € < |Bs, fllwe ) <&+ A +e)|fllwe @
and the statement of Theorem 1 in the case p = oo follows. O

Corollary 1 Let Q@ C R" be an open set, | € Nyg. Then C*(Q2) is dense in
(W))e(Q) where 1 < p < 0o and in C*(£2).

Idea of the proof. Apply Theorem 2 to Z'¢(Q) = (W})*°(Q) and Z(Q) =
I

(C)(Q) =C'(Q). D
Remark 11 If p = oo, then C°°(Q) N W (Q) is not dense in W! (Q) (see
Remark 2).

Remark 12 The crucial condition in Theorem 2 is condition 4). It can be
proved that under some additional unrestrictive assumptions on Z(£2) the den-
sity of C*°(Q) in Z¢(Q) (or the density of C*°(Q)NZ(2) in Z(£2)) is equivalent
to condition 4).

Remark 13 Theorem 2 is applicable to a very wide class of spaces Z(f2),
which are studied in the theory of function spaces. We give only one example.
Consider positive functions ag, a, € C(Q) (o € Nj, |a| =) and the weighted
Sobolev space W;} (0o} (§2) characterized by the finiteness of the norm

laof |z, + D NaaDaf @)

laf=l

By Theorem 2 it follows that C°°(Q) N W} {aoy(§2) 1s dense in this space for
1 < p < oo without any additional assumptions on weights ay and a,. Such
generality is possible due to the fact that the continuity with respect to trans-
lation needs to be proved only for functions in this weighted Sobolev space,

which are compactly supported in 2.
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Now we give one more example of an application of Theorem 2, in which
the spaces Z!°°(Q) (and not only Z()) are used.

Example 1 Let Q C R™ be an open set, then Yy € C(2) and Ve > 0 there
exist e € C*°(R) such that Vo € Q we have p(z) < pe(z) < p(z) + ¢.

To prove this it is enough to set p. = By(p + £) with § = §(5,u+ £) in
the proof of Theorem 2 for Z(Q2) = C(Q) (hence, Z'¢(Q) = C(£2)) and apply
inequality (2.34).

2.4 Approximation with preservation of
boundary values

In Theorem 1 it is proved that for each open set © C R™ and Vf € W}()
(1 < p < o0) functions p, € C*(Q) NWL(Q), s e N, exist such that (2.27)
holds. In this section we show that it is possible to choose the approximating
functions ¢, in such a way that, in addition, they and their derivatives of order
a € Ny satisfying |« < [ have in some sense the same “boundary values” as the
approximated function f and its corresponding weak derivatives. The problem
of existence and description of boundary values will be discussed in Chapter
5. Here we note only that for a general open set {2 C R" it may happen that
the boundary values do not exist and even for “good” {2 boundary values of
weak derivatives of order « satisfying |a| = [, in general, do not exist. For this
reason in this section we speak about coincidence of boundary values without
studying the problem of their existence — we treat the coincidence as the same
behaviour, in some sense, of the functions f and ¢, (and their derivatives)
when approaching the boundary of €.

Theorem 3 Let 2 C R"™ be an open set, | € N, 1 <p < oo. ThenVu € C(Q)
and ¥V f € WL(Q) functions o, € C*(QNWLQ), s € N, exist such that, besides
(2.27), Yo € Ny satisfying |a] <1

(D f — D)l L,) — 0 (2.35)

as s — 00. For p = oo this assertion is valid Vf € al(Q)

Corollary 2 Let Q C R™ be an open set, Q #R"™ andl € N. ThenVf € GI(Q)
functions ps € C(Q) ﬂ@l(Q),s € N, exist, which depend linearly on f and
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are such that, besides (2.27) where p = 0o, 5
D%psloa = D floa, o] < 1. (2.36)

Idea of the proof. Choose any positive p € C'(2) such that lim pu(y) = oo

y—x,yeN)
for all z € 09. O

Proof. One may set, for example, u(r) = dist (z,0Q)~'. For a continuous
function || - |lc) = || - [z (@), therefore, from (2.35) it follows that for some
M >0VseNandVy €2

|Dps(y) — D f(y)| < M(u(y)) "

Passing to the limit as y — x € 09, y € Q we arrive at (2.36). O

Corollary 3 Let Q C R" be an open set, | € N, 9Q € C' and 1 < p < oo.
Then Vf € WL(Q) functions @5 € C(Q) N WLSQ), s € N, exist such that,
besides (2.27),°

DQQOS|3Q = Dgf|ag, |a| S [—1. (237)

Idea of the proof. Take again p(z) = dist (x, Q). By Chapter 5 it is enough
to consider the case, in which Q@ = R} = {z € R" : x,, > 0} and p(z) = 2,
In this case the statement follows by Lemma 13 of Chapter 5. O

Remark 14 The function g in Theorem 3 can have arbitrarily fast growth
when approaching 0. Let, for instance, pu(z) = g(o(x)), where o(z) =
dist (z,09) and g € C((0,00)) is any positive, nonincreasing function. Then
for1 <p<oo

1Dg f — D¢l 05 < (9(6)) " I(Dg f — D¥@s)g(0)|| ) < M(g(6))~"

with some M > 0, which does not depend on s and 4. It implies that for a
fixed f € Wlﬂ(Q) where 1 < p < oo one can find a sequence of approximating

®We recall that Vf € 61(9), Ve € 00 and Va € N} satisfying |a] < [ there

exists lim o D% f(y) and, thus, the functions D*f, which are defined on Q can be ex-
y—x,y<

tended to Q as continuous functions. It is assumed that D% f|sq are just restrictions to 9Q
of these extensions. The same refers to the functions ¢, € C*°(Q), because by (2.27) where

p = oo we have ¢4 € él(Q). From Theorem 8 below it follows, in particular, that ¢4 can be
chosen in such a way that they depend linearly on f.

6 Here by D2 flaq and D%p,|aq the traces of the functions D2 f and D%ps on 92 are
denoted (in the sense of Chapter 5, they exist if || <1 —1). See also Theorem 9 below.
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functions g, which is such that, besides (2.27), Vo € Ny satisfying |a| < [ the
norm || Dy f — D%pql|,\05) tends to 0 arbitrarily fast as § — 4-0.

Thus, condition (2.35) with arbitrary choice of 1 means not only coincidence
of boundary values, but, moreover, arbitrarily close prescribed behaviour of
the functions f and s and their derivatives of order « satisfying |a| < when
approaching the boundary 0f2.

For unbounded €2 we have the same situation with the behaviour at infinity:.
Choosing positive p € C(2) growing fast enough at infinity, we can construct
the functions p, € C*(2) N Wzﬁ(Q) such that || Dg f — D\, @\B(0,r) Where
la| < [ tends to 0 arbitrarily fast as r — +o0, ie., DSf and D%pg have
arbitrarily close prescribed behaviour at infinity.

As in Section 2.4 we derive Theorem 3 from a similar result, which holds
for general function spaces Z(£2).

Theorem 4 In addition to the assumptions of Theorem 3, let the following

condition be satisfied:
5) Vf € C°(Q) there exists ¢, > 0 such that Vf € Zy(Q)

lefllzey < coll fllze

Then Vu € C®(Q) and Vf € Z"¢(Q) functions p, € C®(2) N Z1°¢(Q), s € N,
exist such that

05— f in Z(Q) (2.38)

and
1(f = ws)ullz) — 0 (2.39)

as s — Q.

Idea of the proof. Starting with the equality that differs from (2.30) by the
factor p show, applying 5), that

1(Bs.f = Pl ze <chw Ok fr)z (2.40)

where the ¢, > 0 are independent of d,. O
Proof. In addition to the proof of Theorem 2, we must estimate the expression

(Bsf — f)u Zqu
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Recall that F), € Zy(2) and supp Fy C @vk = Gr_1 UG UG- Let us denote
by mi, € C5°(Q2) a function of “cap-shaped” type, which is equal to 1 on G (see
Section 1.1), then pFy = pniFy. By condition 5) where ¢ = un; there exists
¢x > 0 depending only on un; (and, thus, independent of dy,), such that

[1Ekl z0) < axllFrllz@) < aws, (fr)z@

and (2.40) follows (without loss of generality we can assume that ¢, > 1).
Choosing Ve > 0 positive numbers J, in such a way that in this case
ws, (fr)z@y < €27Fc;' (instead of (2.33)), we establish, besides (2.34), the
inequality [|(Bsf — f)ullz@) <e. O

Remark 15 From the above proof it follows that Yy, ..., p,, € C*(2) (m €
N) and Vf € Z"¢(Q) functions ¢, € C®(Q) N Z¢(Q), s € N, exist such that

1(f = @s)uill z@) — 0, i=1,..,m,
as § — 00. (Theorem 4 corresponds to m =2, u; = 1, ps = p.)

Idea of the proof of Theorem 3. Apply Theorem 4 and Remark 15 to the
space Z(Q2) = W(Q) and to a set of the weight functions (D7fu1)y|<;, where
1 € C*(Q) and |p] < pqon Q. O

Proof of the Theorem 3. The existence of the function y; follows by Example
1. By Remark 15 Vf € (W})"¢(Q) 7 functions ¢, € C*(Q), s € N, exist such

that o, — f in W}i(Q) and Vv € NJ satisfying || < [.
I(f = @5) D" pia[| gy gy — O
as s — 00. Hence, Va € Ny satisfying |a| <

1D ((f = s) D’ 1) |, ) — O. (2.41)

Applying “inverted” Leibnitz’ formula 8, we have

(D8f — Do = 3 (~1)¥ (O‘) DE((f — o)D" )

0<B<a b

7We recall that this space was also considered in the proof of Theorem 1.
8 For n = 1 and ordinary derivatives it has the form

k m
fRg=3" (l)m(k>(fg(’“m))(m)

m=0

and is easily proved by induction or by Leibnitz’ formula.
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and from (2.34) it follows that Vf € (W})'*(Q) and Vo € Ny satisfying |a| <

[(Dyf — D%0s)ll L, < (D f — D%0s) L, @) — 0

as s — oo. Finally, as in the proof of Theorem 1, it is enough to note that

wWlQ) c (W)l(©). O

2.5 Linear mollifiers with variable step

We start by studying the mollifiers As; having kernels with some vanishing
moments. The main property of the mollifier A is that Vf € L,(Q2) where
1<p<oo

|Asf — fllz, = o(1) (2.42)
as 0 — 0+4. As for the rate of convergence of Asf to f, in general, it can be
arbitrarily slow. However, under additional assumptions on f one can have
more rapid convergence.

Lemma 8 Let Q C R™ be an open set, 1 < p<oo, d >0 and G CQ bea
measurable set such that G° C Q. Then Vf € w)(9Q)

[Asf = flly) < crdllflluyee) (2.43)

where
1 = max ||z (2)] L, en). (2.44)

-----

Idea of the proof. For f € C*(Q) apply Taylor’s formula and Minkowski’s
inequality. For f € wé(Q) approximate f by A,f and pass to the limit as
v — 0+. O

Proof. For f € C*(Q)

45f = Floer = || [ (Fo =89 = @) (e s

B(0,1)

/ /1< axzx‘wz)(—&i)w(z)) dt | dz
/ j( LP(G)lziw(Z)!> dt | dz

B(0,1)

Lyp(@)

Ly(G)

’— (x —tdz)
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of

= 10[[flluy (c9)-

B(0,1) =1 Ly(6)

Now let f € wll,(Q) and first suppose that o = dist (G‘S, 89) > (0. Then for
0 <7 < o we have that A, f € C>(2) on G5 C (2, and A, (A4sf) = As(A, f)
on G (see Section 1.1). Consequently,

A, (Asf — f)||Lp o) = [|As(A,f) — Avf||Lp a)

OA f
(axj > w

Oz,
by Lemma 4. Passing to the limit as v — 0+ (see (1.10)) we obtain (2.43).
If dist (G°,0Q) = 0, we choose measurable sets G,k € N, such that
G_i C Q, Gy C Giy1 and |J Gy = G. Inequality (2.43) is already proved for

k=1
G, replacing GG. Passing to the limit as k — oo we obtain (2.43) in this case

also. O

< 10| Ay fllwy

6

Lp(G%)

Estimate (2.43) is sharp as the following examples show.
Example 2 Let for some j € {1,..,n} fz] 2)dz # 0 and 0 < meas ) < oo.
Then

|Asz; — 25| 0,) = 26, 2= ‘ /zjw(z) dz ‘(meas G)% > 0.

Remark 16 This example shows also that for some kernels of mollification ¢;
is the best possible constant in inequality (2.43). Let us choose j = 1,...,n,
such that ||z;w(2)| L, @) = = max. |ziw(2) || L, (r)- Moreover, let G' be a bounded

.....

measurable set such that 0 < meas G = meas G < co. Then

sup 61 sup ||A<sf—f||Lp(G)||f||;11(Ga)
6>0:G5CQ |1l () 20 P

> lim 0| Asz; — l’jHLp(G)ijH;ug(G‘;)

6~>0
) meas G
lim — = 2w z)dz |.
6—0+ \ meas (&

- | / sol) d

Thus, if, in addition to (1.1), w(z) < 0if z; <0 and w(z) > 0if z; > 0, then
¢1 is the best possible constant in inequality (2.43).
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Example 3 Let n =1, G = Q =R, p =2 and f € W3(R). Then by the
properties of the Fourier transform
145 = Flliage) = (2)35 |5 (Fu)(56) — (Fo)(O) (FNE)| 0, -
We have
0 (Fw)(9€) — (Fw)(0)) — (Fw)'(0)¢
as 6 — 0+ and

sup 6™ (Fw)(6€) — (Fw)(0)] < max |(Fw)'(2)] €]

6>0

Therefore, by the dominated convergence theorem

167 (Fw)(6€) = (F)ONENE 1, e

£/l o)

~ (P O 6P sy = | [ ()2

Hence, if [zw(z)dz # 0 and f € W3 (R) is not equivalent to zero, then for
R
some cg > 0 (independent of §) and || A5 f — f||Lor) > c30 for sufficiently small 6.

Let us make now a stronger assumption: f € Wé(ﬂ) where [ > 1. In this
case, however, in general we cannot get an estimate better than

[Asf = fllL,c) = O(9)
(which is the same as for [ = 1), if for some j € {1,...,n} [zw(z)dz # 0,
R

as Examples 2 — 3 show. Thus, in order to obtain improvement of the rate
of convergence of Asf to f for the functions f &€ Wé(Q) where [ > 1, some
moments of the kernel of mollification need to be equal to zero.

Lemma 9 Let 2 C R™ be an open set, 1 <p<oo,l €N, d >0 and G C
be a measurable set such that G C Q. Moreover, assume that the kernel of the
mollifier As satisfies, besides (1.1), the following condition:

/ 2w(2)dz=0, aeNy, 0<]|al<Il-1, (2.45)

B(0,1)

where 2% = 2" --- 24" Then Vf € wh(€)

145 f = Fllzy@) < ead' 1 fllut (o), (2.46)
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z
C4 = max
la|=l

—w(z)

where

Condition (2.45) is necessary in order that inequality (2.46) be valid for all
[ € WNG) with some ¢y > 0 independent of f and 9.

Idea of the proof. By condition (2.45) Vf € C*(Q)

(Asf) (@) — f(z) = / (f(x— 62) — f(a))w(z) dz

B(0,1)

= / flx) — Z m(—éz)o‘ w(z) dz.

al

Now multidimensional Taylor’s formula (see section 3.3), Minkowski’s inequal-
ity and direct estimates (close to those which were applied in the proof of
Lemma 8) imply (2.46). If f € w)(Q), then pass to the limit in the same
manner as in the proof of Lemma 8.

As for necessity of condition (2.45) for bounded G it is enough to take
in (2.46) successively f(z) = z;,7 = 1,...,n, f(x) = g, 5,k = 1,..,n, ..,
f(x) = xj,..xj,_, 1y s Jim1 = 1,...,n. If G is unbounded, then one needs to
multiply the above functions by a “cap-shaped” function n € C§°(R™), which

is equal to 1 on a ball B such that meas BN G > 0. O

In the sequel we shall apply the following generalization of inequality (2.46).

Lemma 10 Let €2 C R™ be an open set, 1 < p<oo,l €N, d >0 and G C )
be a measurable set such that G C Q. Assume that the kernel of the mollifier
As satisfies, besides (1.1), condition (2.45). Then Vf € wl(Q) and Yo € Nj

ID*(Asf) = Dy fllzyie) < €0 flugasy, ol <1, (2.48)

and
ID*(As NLpy < 0™ Fllut oy, ol =1, (2.49)

where cs,c6 > 0 do not depend on f, §, G and p. (For instance, one can set

¢ = Wil and ¢ = max [ D%w]lL, @)
nax
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Idea of the proof. Inequality (2.48) follows by Lemma 4 of Chapter 1 and

inequality (2.46) applied to D2f € wh |a‘(Q). Estimate (2.49) does not use
condition (2.45). It is enough to apply Young’s inequality to the equality (see
(1.21))

D*(Asf) = 01°"P (D w)s + DY f
where v € Njj is such that 0 <y <« and |y|=1. O
Let €2 be an open set and let the “strips” Gy be defined as in Lemma 5 if

2 # R"™ and as in Lemma 6 if Q = R™. Moreover, let {¢} }xcz be partitions of
unity constructed in those lemmas.

Definition 2 Let 0 <6 < &, l € N and f € LY*(Q) . Then Va € Q

(Esf)(r) = (Esuf)(w Z V() (Asp-1n ) ()

= Z () / floz— 6272y w(z)dz, (2.50)

where w is a kernel satisfying, besides (1.1), condition (2.45) °

Remark 17 For bounded €2 the operator Ej is a particular case of the operator
C5 by Remark 7. As in Section 2.2 in (2.50) in the last term we write f and
not fo, assuming that ¢y (z)g(x) = 0 if ¢p(x) = 0 even if g(z) is not defined.
(This can happen if dist (z, 0€) < §27*). Since 0 < 6 < & we have

supp Y Asy-in1 f C (Gr1 U G U Gigr)sp-1n (2.51)
and
YrAso-iw [ € C(Q). (2.52)

(If © is bounded, then ¥, Ag -k f € C3°(€2).) As in the case of the operators
By and Cj the sum in (2.50) is finite. If Vo € Q the number s(x) is chosen in
such a way that x € G, then

sx)—i—l
(Ef)e) = 3 il ) [ fa-sr e @
s(x

B(0,1)

91f | = 1, then there is no additional condition on the kernel w.
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Moreover, Vm € Z

m+1

Esf= > tiAsemf on G (2.54)

k=m—1

We call the Ejs a linear mollifier with variable step. The quantity Es(z) is an
average of ordinary mollifications with the steps 62~ 1¥@)I=1 §2-ls@) §o-ls(@)l+1
which (in the case €2 # R") tend to 0 as x approaches the boundary 02. Again
we can say that the Ej is a mollifier with a piecewise constant step since the
steps of mollification, which are used for the “strip” G,,, namely 62711
§2-Iml §2-Im+1 " do not depend on z € G,y,.

Moreover, by Remark 5 for any fixed v > 0 we can choose a partition of
unity {¢x }rez in such a way that, in addition to (2.54), Vm € Z

Esf = Asg-imi f on (Gp)yam.

Remark 18 Changing in (2.50) the variables z — 627 1¥l2 = y we find

(Bsf)(x /K 2,9,0)f(y) dy.

where

k r—y
K(z,y,0 Z V() (627 1%~ (52_|k|) .

k=—o00

Comparing these formulae with formula (1.2) we see that, similarly to the
mollifiers As, the mollifiers Fs are linear integral operators, however, with a
more sophisticated kernel K(x,y,d) replacing §"w (27 5”)

The mollifier Es inherits the main properties of the mollifier As, but there
are some distinctions.

Lemma 11 Let Q C R™ be an open set and f € L°(Q). Then V6§ € (0, 1]
Esf € C*(Q) and Vo € Nj

(Eysf) = Z D*(WrAso-in f)  on Q. (2.55)

k=—00

Remark 19 In contrast to the mollifier E5 we could state existence and infinite
differentiability of A;f for f € Li**(2), in general, only on 5.
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Idea of the proof. The same as for Lemma 7. O

Lemma 12 Let Q C R™ be an open set and f € L*°(Q). Then
Esf — f ae.on Q (2.56)
as 6 — O+.

Idea of the proof. Apply (2.54) and the corresponding property of the mollifier
As. O

Lemma 13 Let Q0 C R™ be an open set and 1 < p < oo. Then V6 € (0, %] and
f € Ly(Q)
1Es fllz,@) < 2¢r | fllz, @) (2.57)

where ¢; = ||wl| L, @)

In order to prove this lemma we need the following two properties of L,-
spaces where 1 < p < oc.

1) If Q C R™ is a measurable set and Va € Q a finite or a denumerable sum
> ar(x) of functions aj measurable on ) contains no more than s nonzero
k

summands, in other words, if the multiplicity of the covering {supp a} does
not exceed sz, then

P

_1
1D aklln,@ < ' (ZH%HQP(Q)) : (2.58)
k k

(This is a corollary of Holder’s inequality.)
2) If Q = |J Q) is either a finite or a denumerable union of measurable sets
k

2 and the multiplicity of the covering {{2;} does not exceed s, then for each
function f measurable on €2

P

(Z Hf”i,)(nk)) < %%HfHLp(Q)- (2.59)
%

In particular, if p =1 and f = 1, then we have

Z meas ) < » meas (. (2.60)
k
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For p = oo these inequalities take the following form

1 arllie@ < #SUp a2 ), sup [l @) = 1l 2ec(-
k

Idea of the proof of Lemma 13. Apply (2.58), (1.7) and (2.59). O
Proof of Lemma 13. By (2.7) and (2.15) V6 € (0, §]

[e.9]

| supp v = |J (supp v) " =@

k=—00 k=—o00

)62*\’“\

and the multiplicities of the coverings {supp 1y }rez and {(supp ¢y brez

are equal to 2 (see Remark 6). Therefore, by (2.58) and (2.59)

1B f iy = 1 D rAso-inr fll Ly

k=—o0

1
<2'7% ( > Hka&’ﬂinp(Q))

k=—00

1
- P
1—1
<273 ( Z ||A52—|k\f||ip(supp m))

k=—o00

oo P
1—1
=2 e ( > Hf“ip((supp wmazk)) < 2¢7|| fllLye)- O
k=—oc0

Now for an open set Q@ C R” and Vo € Q we set o(x) = dist (z,09) if
Q#R"and ' o= (1 + |z])" '} if Q =R™

Lemma 14 Let Q0 C R™ be an open set and 0 < § < %. Then
1) for 1 <p < oo and Vf € L,(Q)

Esf— f in L,(Q) (2.61)

as 6 — 0+, N
2) for p = oo relation (2.61) holds Vf € C(Q),

10Tt is also possible to consider p(z) = min{dist (x, %), (1 + |z|)~'}. However, in that
case one must use a partition of unity constructed on the base of altered o and verify that
estimate (2.12) still holds.
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3) for1<p<oo,leN andeEwé(Q)
15 = Fllzy0) < 8[| fllug s (2.62)
4) for1<p<oo,l €N andeGwé(Q)

I(Esf = Flo I, < cod' | fllug o) » (2.63)
where cg and cg do not depend on f, d, 2 and p.

Idea of the proof. To prove the statements 1) and 2) establish, by applying the
proof of Lemma 13, that the series (2.50) converges in L,(§2) uniformly with
respect to § € (0, %] and use the corresponding properties of the mollifiers As.
To prove (2.62) and (2.63) follow the proof of Lemma 13, applying inequality
(2.48) with a = 0 instead of (1.7). In the case of inequality (2.62) apply, in
addition, the fact that there exist By, By > 0 such that

B127F < o(x) < By27*  on supp 1y (2.64)
VEeZit Q#R"and VE < 0if Q=R". O

Proof. We start with the proof of inequality (2.62). If f € w}(€2), then using,
in addition, Minkowski’s inequality for sums we find

IEsf = Fllzye =1 Y Ye(Asg-wif — FllLy)

k=—o00

3=

% ( Z ||A52 \klf f”Lp supp ¥r,) >

k=—o00

S =

l k|l
Sy (Z - .k)>

k=—o00

B =

p
e}

< 2! pc55l Z Z ||DngLp((suppwk)fST‘k')

k=—o00 \ |a|=l

1-1 l - e
<2 PCs(S Z ( Z ||D pr ((supp ¥g)%2~ k))

lal=l \k=—oc0

Sl
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< 2058" Y 105 fllye) = cs0' |1 fllut ),

=l

)52—"“

because the multiplicity of the covering {(supp ¥ ez is equal to 2 (see

Remark 6).
In the case of inequality (2.63) we find with the help of (2.64) that

I(Esf = £ ey =1 Y o WelAs-mi f = Pllzy)

k=—o00

. P
1
< 21 PBll ( Z 2|k|lp||A52—|k\f - f”ip(suppiﬁk))

k=—o00

1
oo P

-1 h0
<27 B (Z “foumsuppwm’“')) '

k=—o00

The rest is the same as above (cy = 2B '¢c5). O

Lemma 15 Let Q C R™ be an open set, | € N and 0 < § <
polynomial p;_1 of degree less than or equal to | — 1

(Espi-1)(z) = pi—a(x), z € Q.

1
5- Then for each

Idea of the proof. Apply multidimensional Taylor’s formula (see Section 3.3) to
pi—1(z — 627 %2) in (2.50) and use (2.45), (1.1) and (2.11) or (2.14). O

Remark 20 In Lemmas 13 — 14 the property (2.45) of the kernel of mollifica-
tion was not applied. It was applied in Lemma 15, but this lemma will not be
used in the sequel. The main and the only reason for introducing this property
is connected with the estimates of norms of commutators [Dg, Es] f, which will
be given in Lemma 20 below. In its turn these estimates are based on Lemmas
9-10, in which the mollifiers As with kernels satisfying the property (2.45)
were studied.

Let us denote the commutator of the weak differentiation of first order and
the mollifier Fs in the following way:

(), B = (), Bs| = (), B~ B (),

This operator is defined on (W})°¢(Q).
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Furthermore, for [ € N, [ > 2, we define the operators ﬁg(E(;), where
a € NI and |a| = [, with the domain (W])¢(Q):

Bt = () ()7) @

Lemma 16 Let Q C R" be an open set, | € N, 0 <6 < ¢ and [ € (W])"*°(Q).
Then Yo € N§ satisfying |of <1

o0

(IN);‘;(E(;)) f= Z (D) Asg-i f-

k=—00

Idea of the proof. Induction. For |a| = 1 by (2.55)

(). E0) 1= 30 (8 as +0n )

k=—o00

— ) YA (%)w = > FEApwf
k=—o00

k=—o0

on 2, because by (2.7) and (1.19) gbk%(A(;Qf\k\f) = YpAsoiki <§Tfj> on . O

Remark 21 For the mollifiers A; we have (53(A5))f = 0 but, only on Qs (see
Section 1.5), while for the mollifiers Es in general (Dg(E5))f # 0 even on {2,

but on the whole of Q the quantity (D%(Ejs))f is in some sense small (because

Y>> D% = 0 on ) and, as we shall see below, it tends to 0 in L,(12) fast

k=—00
enough under appropriate assumptions on f.

Remark 22 On the base of Lemma 16 we define for Vo € N satisfying o # 0
the operator E§“’ with the domain L!°¢(Q2) directly by the equality

o)

B = 30 (D) Ay, (2.65)

k=—o00

Lemma 17 Let Q C R™ be an open set and 0 < § < ¢. Then Yo € Nj
satisfying o # 0 and Vf € LY(Q)

E(ga)f —0 ae on . (2.66)
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m+1
Idea of the proof. Since Vm € Z we have E(ga)f = > DAz f and
k=m—1
m—+1
> D%y =0 on G, the relation (2.66) follows from (1.5). O

k=m—1

Lemma 18 Let 2 C R"™ be an open set, 1 <p < oo and 0 < < %. Then
1) Vf € wh(Q) and Yo € N§ satisfying 0 < |a| <1
1ES fllLy0) < 100" Fllugce (2.67)
2) Vf € wh(Q) and Va € Ni satisfying |o| > 0
1S 1) N0 < end' | fllugen (2.68)
where c19,c11 > 0 do not depend on f, 6, 2 and p.
Idea of the proof. Starting for o # 0 from the equality
EXf= 3" DA f — f) (2.69)

k=—o00

follow the proof of Lemma 13, apply estimate (2.12) of Lemmas 5 and 6 and
inequality (2.48), in which o = 0, G = supp ¢ and 0 is replaced by 62~/ In
the case of inequality (2.68) apply, in addition, (2.63). O

Proof. For |a| < from (2.69) it follows that

B =

’ti

HE(ga)fHLp(Q) <27w ( Z | D%y (Agg—in f — f)HLp(Q)>

k=—o00

hSA

< 21_7 ( Z 2k|a\p||A52 w f — f”LP (supp ¥,) )

k=—o00

A

1 S e
< 27w ch050! ( Z Il szpr | ((supp )2 |k)>

k=—o00

1
P
<275 0551< > 1% (oo 2 kl)>

k=—00
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< 20650 | fllup ) = 100" fllut -

We have taken into account that the multiplicity of the covering
{(supp ¥)®2 "}z is equal to 2 (see Remark 6).
In the case of inequality (2.68)

3 =

« ol — -1 - al— «
1B £) 0|, < 277 (Z l¢*"'D wkwasz—f)i!ip@)

k=—00

hSAl

<23 (max {B;", B,}) " e, ( 2 2 At~ 1 “i”(“"p”))

k=—o00

The rest is the same as above (cn = 2¢q05 (max { By ', BQ})HQ‘_”) .0

Lemma 19 Let 2 C R" be an open set, | € N and f € (I/Vll)loC (Q). Then
Va € Ny satisfying 0 < |of <1

D)= Y (g)Eéam(sz) (2.70)
0<p<La
and
DB f= Y (Z)Eéam(l?ﬁf)- (2.71)
0<p<a, B#a

Idea of the proof. Apply (2.55), Leibnitz’ formula, Lemma 4 of Chapter 1 and
the definition of the operator Eéw (see Remark 22). O

In the sequel we shall estimate D*(Esf) and D*(Esf) — D2 f with the help
of (2.71) and the following obvious identities:

D(Esf) = Dy, Es| | + Es(Dy.f) (2.72)

and
D*(Esf) — Dy f = [Dy, Es| f + Es(Dy, f) — Dy f- (2.73)

Lemma 20 Let 2 C R™ be an open set, 1 < p < oo and 0 < § < %. Then
Vfew(Q):
1) Ya € Ny satisfying 0 < |a| <1

11D, Bl fllzy@) < 128 Fllut o, (2.74)
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2) Yo € Ny satisfying |a| > 0
[([Dgs E&]f)@‘aHHLp(Q) < 6135l7|a‘+1Hwa§,(Q) , (2.75)
where ¢, c13 > 0 do not depend on f, d, Q0 and p.

Idea of the proof. Starting from equality (2.71) apply inequalities (2.67), re-
spectively (2.68), with [ — | 3| replacing I, a — 3 replacing a and D? f replacing
f. Take into consideration that gl*I=t = gla=fI=(=16) and |3| < |a| — 1. O

2.6 The best possible approximation with
preservation of boundary values

We start by studying some properties of the mollifiers E5 in Sobolev spaces.

Theorem 5 Let ) C R™ be cmopenset,lEN,0<6§% and 1 < p < o0.
Then Y f € wh(Q)

1Es flluwt @) < crall fllu o) (2.76)
and ¥ f € W}(Q)

1Es fllwie) < cuall fllwee) » (2.77)

where c14 > 0 does not depend on f, §, €2 and p.

Idea of the proof. Apply (2.71) and Lemmas 13 and 20. O
Proof. By (2.72), (2.74) and (2.57)

1Es f llwi0) = Z D% Es f |0

laf=l

< DS, Eslfll @ + 1B DG fl o)

< (el flluyy + 262 D flly) = crall flluwy -

al=l

Inequality (2.77) follows from (2.57) and (2.76). O

Theorem 6 Let 2 C R"™ be an open set, | € N and 0 < § < %.
1) If1 <p<oo, thenVf € Wlﬁ(Q) and Ya € N satisfying |of <1

D*(Esf) — Do f ae. on {2 (2.78)
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as o — 0 +.
2) If 1 < p < oo, then Vf € W)(Q)

Esf — f in WI(Q), m=0,..,1, (2.79)

as d — 0+.
3) If p= oo, then Vf € WL (Q)

Esf— f in WZ(Q), m=0,..1-1, (2.80)
as & — 0+ (if f € al(Q) then (2.79) holds).

Idea of the proof. Relation (2.78) follows from equalities (2.72), (2.71) and
Lemmas 14 and 20; relations (2.79) and (2.80) follow from (2.72) and Lemmas
14 and 20. O

Proof. Let us prove (2.79). From (2.72), (2.74), (2.62) and, in the case m = I,
(2.61) it follows that

1Esf = fllwgoy = I Esf = flliy@ + Y, ID*Esf — DSl

la|=m

<NEsf = flleye + Y (D5 Eslflly@ + 1 Es(D f) = Dg fll,@) — 0
|al=m
as 0 — 0+.
The same argument works to prove (2.80). Since in this case m < [, it is
enough to apply only inequalities (2.74) and (2.62). O

Theorem 7 Let 2 C R™ be an open set, | € N, 1§p§oo,0<5§§ and
a € Nj.
1) If la| <1, then Y f € w}(Q)

I(D*(Esf) = D £)0* | ,@) < 150" | Fllut o (2.81)

where ¢15 > 0 does not depend on f,0,€2 and p.
2) If || > 1, then Vf € wl ()

I(D(Es£)) ™ 1,0 < 160" flluge (2.82)

where c¢16 > 0 does not depend on f, §, €2 and p.
3) There exists an open set Q such that for any e > 0 inequality (2.82) with
0l*1=1=¢ replacing 01~ does not hold.
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Idea of the proof. Inequality (2.81) follows from equality (2.73) and the inequal-
ities (2.74) and (2.62) with D¢ f replacing f and [ — |« replacing . Inequality
(2.82) follows from equality (2.72), inequality (2.75) and the inequality

I(Es(D5 ) Iz, < e1rd'™ ™ fllus o) (2.83)

for |o| > [, where ¢;7 > 0 does not depend on f, §, Q and p. In order to
prove (2.83) apply the proof of inequality (2.63). The third statement will be
considered in the proof of the Theorem 8 below. O

Proof. 1t is enough to prove (2.83). Applying Lemma 4 of Chapter 1 and the
inequalities (2.63), (2.58), (2.49) and (2.59) we establish that

Lp(Q)

I(ES (D) ey = || Do 0 0D Agyeia f
k=—0oc0

-1 al—1 G a|— « ’
<o pB\2| (Z glkl(lel=Dp || p Aég_kfnﬁp(supwk))

k=—o00

1
¢} P
1—-1 a1 I—|o E

k=—00

al=l —|o —|o
< 2B e8| flluger = v f -
(For details see the proof of Lemma 14.) O

Theorem 8 1. Let Q C R™ be an open set, | € N and 1 < p < oo. Then
Vi € WAQ) functions ¢, € C*(Q) NW(Q), s € N, ezist, which depend
linearly on f and satisfy the following properties:

1) for1 <p <o

D% — Dof ae.on Q, |a <l

as s — 00,
2) for1 <p< oo

s — [ in W), m=0,..1, (2.84)
as s — 00,
3) forp =00
s — f in WZ(Q), m=0,..,01-1, (2.85)
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as s — oo (if f € Ul(Q), then relation (2.84) also holds),
4) for 1 <p < o0

(D2 f — D*p3)d* |1, — 0. ol <1, (2.86)

as s — 00,
5) for 1 <p< oo

1D%0s 0 I < Casll Flway,  lal > 1, (2.87)

where ¢, s are independent of f,$2 and p.

II. There exists an open set 2 C R", for which, given € > 0 and m > [, a
Junction f € W)(Q) exists such that , whatever are the functions ¢, € C*(Q)N
Wzl)(Q), s € N, satisfying property 4), for some Va € Ny satisfying |a| = m

| D% 0™ () = o0 (2.88)

Idea of the proof. The first part of Theorem 8 is an obvious corollary of Theo-
rems 6 and 7: it is enough to take ¢s = E1 f. The second part will be proved
in Remark 14 of Chapter 5. O ’

Remark 23 The second part of Theorem 4 is about the sharpness of condition
(2.87). We note that since in (2.87) o(y)!*~* — 0 as y approaches the boundary
092, the derivatives D%p,(y) where |a| > [ can tend to infinity as y approaches
0f). By the second part of Theorem 8 for some 2 C R"” and f € W;(Q) for any
appropriate choice of ¢g some of the derivatives D®pg(y) where || = m > [ do
tend to infinity as y approaches a certain point z € 9€). Indeed, for bounded
Q from (2.88) it follows that for some Va € N satisfying |a| = m, for some
x € 0N and for some y;, € € such that yp — = as k — oo

Lim (D) (i) o(ye) ™ = oo, (2.89)

i.e., (D%0s)(yx) tends to infinity faster, than o'~1*1=5(y;). (We note that the
higher order of a derivative is the faster is its growth to infinity.)

Remark 24 This reveals validity of the following general fact: if one wants to
have “good” approximation by C°°-functions, in the sense that the boundary
values are preserved, then there must be some “penalty” for this higher quality.
This “penalty” is the growth of the derivatives of higher order of the approx-
imating functions when approaching the boundary. The “minimal penalty” is
given by inequality (2.87).
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Remark 25 By Theorems 6 and 7 the functions ¢, = E1 f satisfy the state-
ments of the first part of Theorem 8. Thus, by the statement of the second part
of this theorem the mollifier Fs is the best possible approximation operator,
preserving boundary values, in the sense that the derivatives of higher orders
of Esf have the minimal possible growth on approaching 0f2.

Now we formulate the following corollary of Theorem 8 for open sets with
sufficiently smooth boundary, in which the preservation of boundary values
takes a more explicit form.

Theorem 9 Let ] € N, 1 < p < o0 and let 2 C R™ be an open set with a
C'-boundary (see definition in Section 4.3).

I. For each f € Wli(Q) functions ps € C*(R2), s € N, ewist, which depend
linearly on f and are such that

1) o3 — fin W) as s — oo,

2) D%p;

—Daf|  lal<i-1,
o0 o0
3) HD“(pSQW_lHLp(Q) < oo, |a]>1.

IL. Givene > 0 andm > I, a function f € W}(Q) exists such that , whatever
are the functions ¢, € C>*(Q),s € N, satisfying 1) and 2), for some Vo € Ny
satisfying |a| = m

1D% @50 %[ 1, () = oo (2.90)

Idea of the proof. As in the proof of Corollary 3, by Lemma 13 of Chapter 5,
propety 2) follows from relation (2.86). O

The most direct application of Theorem 7, for the case in which p = oo, is
a construction of the so-called regularized distance. We note that for an open
set Q C R, Q # R™, the ordinary distance o(z) = dist (z,0Q), z € Q, satisfies
Lipschitz condition with constant equal to 1:

lo(z) —o(y)| < |z —yl. 2,y € (2.91)

(This is a consequence of the triangle inequality.) Hence, by Lemma 8 of
Chapter 1
o€ wt(Q), |Vol <1 ae on Q. (2.92)

The simplest examples show (for instance, o(x) = 1—|z|) for Q@ = (—1,1) C R)
that in general the function ¢ does not possess any higher degree of smoothness
than follows from (2.91) and (2.92).
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Theorem 10 Let Q C R™ be an open set, Q@ # R™. Then¥é € (0,1) a function
05 € C(9) (a regularized distance) exists, which is such that

(1=d)o(x) < 0s(x) < o(x), =€, (2.93)
|Q5(ZL‘) _95(y>| < |£L'—y|, T,y € Q, (294)
[Vos(z)| <1 on (2.95)

and Ya € N satisfying |a| > 2 and Vx € Q
(D%05)(2)] < cad™ o) 1o, (2.96)
where ¢, depends only on a.

Idea of the proof. In order to construct the regularized distance it is natural
to regularize, i.e., to mollify, the ordinary distance. Of course, one needs to
apply mollifiers with variable step. Set o5 = aFjps0 and choose appropriate
a,b > 0. Here Ejs is a mollifier defined by (2.50) where [ = 1 and the kernel of
mollification w is nonnegative. O

Proof. First let A; = Esp. Since o € wl (), from (2.81) and footnote 4 on
the page 12 it follows that

sup [As(x) — o(x)|o(x) ™" < 150
xe

or Vo €
(1 —c150)0(x) < As(z) < (1+ e150)0(x),

where c¢;5 > 0 depends only on n.
Moreover, from (2.82) it follows that Va € Nj satisfying a # 0

sug |D"‘A5($)|Q($)|a|_1 < g0t
e

or Vz € )
|D*As(x)| < 01651""4@(3:)1"0" ,

where ¢ > 0 depends only on n and «.
Furthermore, by definition of Es and by (2.11) or (2.14)

[e.e]

As(z) = Ds(y) = Y (Wn(@)(Ap-m10) (%) = ¥i(y) (Asp-10) (1))

k=—o0
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= Z () ((Asa-m0) () — (Aso-1x10)(y))

+ Z (6e() — ) (Ass 10)(y) — 0(y).

Hence,

|As() y)| < Z Ur ()| (Asz-ir10) () — (Asp-1m10) (y)]

k=—o00

3 ) - )l / oy — 527 12) — o(y)| w(z) d.

keS(xz,y) B(0,1)
Here by (2.53) S(z,y) = {s(x) —1,s(x),s(z)+1,s(y) — 1, s(y), s(y) +1}. From
(2.12) it follows that

n

on(e) = o)l = | S5 = ) | g—g@w—x»dt < ew?Mr —yl.

j:l 0
where ¢15 = ( Y. ¢2)'/? with ¢, from (2.12) depends only on n. Now, applying

|laf=1

(1.13), (2.11) or (2.14), and (2.91) we have

[As(@) = Ms(y)] < v =yl [ L+ es Y 25(027H) / 2| w(z) dz

keS(z,y) B(0,1)

< (1 + 66185)’1’ — y’
-1
) and

N[,

Finally, it is enough to set o5 = aFEjs0, where, for instance, a = (1 +
b= 1min{cy, (6c15)7'}. O

Remark 26 The regularized distance can be applied to the construction of
linear mollifiers with variable step. It is quite natural to replace the constant
step d in the definition of the mollifiers As by the variable step do(z), i.e., to
consider the mollifiers

(Hf)(o) = s @) = [ flo = Sota))lz) dz

B(0,1)
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for 0 < § < 1. (In this case B(x,dpo(x)) C 2 for each x € Q and, therefore, the
function f is defined at the point x — dpo(x).) If o € C*°(), it can be proved
that Hsf € C=(Q) for f € L!*¢(Q) and that Hsf — f a.e. on Q. This is so, for
instance, for @ = R"\R™, 1 < m < n, in which case o(z) = (22, +...+22)'/%
However, as it was pointed out above “usually” o€C>(Q2). This drawback can
be removed by replacing the ordinary distance o by the regularized distance
0 = 05, with some fixed 0 < dy < 1 (say, 6 = 3). We set

(Hsf)(x) = (Asga) ) (2) = / fla—00(x)2) w(z) dz.

B(0,1)

Then Vf € Ll°(Q) we have Hsf € C®(Q) and Hsf — f ae. on Q. As
for results related to the properties of the derivatives DH; f, in this case
estimate (2.96) is essential. Some statements of Theorems 8 -9 can be proved
for the operator f‘j(; as well. The main difficulty, which arises on this way is
the necessity to work with the superposition f(z — dgs,(z)z). For this reason
the mollifiers F5 with piecewise constant step are more convenient, because in
their construction superpositions are replaced by locally finite sums of products.
Another advantage of the mollifiers with piecewise constant step is that it is
possible to choose steps depending on f. This is sometimes is convenient inspite

of the fact that the mollifiers become nonlinear. (See the proofs of Theorems
1—4 of this chapter and Theorems 5—7 of Chapter 5.)

Example 4 For each open set 2 C R" a function f € C*°(R") exists such that
it is positive on €2 and equal to 0 on R™\ Q. The function f can be constructed
in the following way: f(z) = exp(—gé;(x)) with some fixed 6 € (0,1). The
property (Df)(x) = yjir?EQ(D“f)(y) = 0 for z € 09 follows from (2.96).
This function f possesses, in addition, the following property, which sometimes
is of importance: Vy > 1 and Va € NJ there exists c19 = ¢19(y, ) > 0 such
that Vo € R"

(D f)(@)]” < crof (),
This also follows from (2.96).

Another application of a regularized distance for extensions will be given in
Remark 17 of Chapter 6.



Chapter 3

Sobolev’s integral representation

3.1 The one-dimensional case

Let —oco < a < b < o0,

b
w € Lyi(a,b), /wdac =1 (3.1)

a

and suppose that the function f is absolutely continuous on [a,b]. Then the
derivative f’ exits almost everywhere on [a, ], f' € Ly(a,b) and Vz,y € [a, b] we

have f(z) = f(y)+ [ f'(u)du. Multiplying this equality by w(y) and integrating
y

with respect to y from a to b we get

fx) = /bf(y)w(y) dy+/b</xf’(U) dU)w(y) dy.
Interchanging the order of integration we obtain
/b ( / £'(w) du)w(y) dy = / ( / f'(w) du)wly) dy - / ( / f'(w) du)w(y) dy
- / ( / w(y) dy) f'(u) du - / ( / wly) dy) ' (u) du = / A, y) () dy.
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where

Hence Vz € (a,b)

b

b
f(z) = / F(y) w(y) dy + / Az, 9) () dy. (3.3)

a

This formula may be regarded as the simplest case of Sobolev’s integral repre-
sentation.
We note that A is bounded:

Vo, y € [a, 0] [A(2,y)] < [|wllzy @) (3-4)
and if, in addition to (3.1) w > 0, then !
Va,y € la,b] |Alz,y)] < A(b,b) = 1. (3.5)
Let us consider two limiting cases of (3.3). The first one corresponds to
w = const, hence, Vz € (a,b) we have w(z) = (b —a)~'. Then Vz € [a, ]

T b

f@) =5 [t [Tt rway- [(Zlrwa. o)

a x

To obtain another limiting case we take w = ﬁ(x(mﬁ%) + X(b—1 1)), where
X(a,8) denotes the characteristic function of an interval (a,3), m € N and
m > 2(b — a)~!. Letting m — oo we find: Vz € [a, ]

b

flay = L IO 2 [t — ) ay 37)

a

Of course both of formulas (3.6) and (3.7) can be deduced directly by integra-
tion by parts or the Newton-Leibnitz formula.

LIf w is symmetric with respect to the point %*b, then Vy € [a, b] we have |A(%+b, y)| < %
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Obviously, from (3.6) it follows that

b b
f@I < [1flay+ [ 171y 38)
for all z € [a,b]. 2

If f e (WhH(a,b), then f is equivalent to a function, which is locally
absolutely continuous on (a,b) (its ordinary derivative, which exists almost
everywhere on (a,b), is a weak derivative f, of f — see Section 1.2). Conse-
quently, (3.3), (3.6) and (3.8) hold for almost every = € (a,b) if f’ is replaced
by fo-

Let now —o00 < a < b < o0, xy9 € (a,b), | € N and suppose that the
derivative f(~1) exists and is locally absolutely continuous on (a,b). Then
the derivative f() exists almost everywhere on (a,b), f© € L'(a,b) and by
Taylor’s formula with the remainder written in an integral form Vz, xy € (a,b)

-1 (k) z
1) = X I e -+ g [l =0 0w
2R
-1 f(k)(l'()> l’ . xO l ; l L
_ =)+ S /1_25 FO (20 + Hx — o)) dt. (3.10)
k=0 ’ 0

Theorem 1 Letl €N, —co<a<a<f<b< o and
w € L1(R), suppw C [, 3], /wd:c =1. (3.11)
R

Moreover, suppose that the derivative fU=V exists and is locally absolutely con-
tinuous on (a,b).

2 By the limiting procedure inequality (3.8) can be extended to functions f, which are of
bounded variation on [a, b]: Vz € [a, b]

Fa)l < / 1y +Var . (3.9)

One can easily prove it directly: it is enough to integrate the inequality |f(x)| < |f(y)| +
If(z) = fy)l <|f(y)|+ [Vabl]rf with respect to y from a to b.
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Then Vx € (a,b)

) ' ’ (3.12)

-1 ba

-> 5 / FOW = y)fwly)dy + 7 - i / (=)' A, ) [0 (y) dy,
k=0 "7 'aw

(3.13)
where a, = x,b, = 3 for x € (a,a]; a, = a,b, =0 forx € (o, 5); a, = «,
b, =x forx € [3,b).

Idea of the proof. Multiply (3.10) with 2o = y by w(y), integrate with respect
to y from a to b and interchange the order of integration (as above). O

Proof. The integrated remainder in (3.10) takes the form in (3.12) after inter-
changing the order of integration:

b T T T

[([e-w=r0waewas = o) [ w 0w a)

a Y a Y

b T T u

- [t ( [ O @) dy= [ -0 ( [ o) 0w i

T Y a a

b b b

= [ [ow ) O du= [ @5 M) ) dy

Finally, since suppw C [a, f], it follows that A(z,y) = 0ify € (a, a,)U(b,, b)
and, hence, (3.13) holds. O

Remark 1 Ifin Theorem 1 a > —oco and (V) exists on [a, b) and is absolutely
continuous on [a, by) for each by € (a,b), then equality (3.12)—(3.13) holds for
x = a and a = a as well. To verify this one needs to pass to the limit as x — a+
and a — a-+, noticing that in this case f") € L;(a, b;) for each b; € (a,b). The
analogous statement holds for the right endpoint of the interval (a,b).

If, in particular, —oo < a < b < oo, fU~1) exists and is absolutely continu-
ous on [a, b], then equality (3.12)—(3.13) holds Yz € [a, b] and for any interval

(o, B) C (a,b).
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Remark 2 Suppose that —oo < a < b < oo, fU~1 exists on [a,b] and is
absolutely continuous on [a,b]. Then the right-hand side of (3.12) is actually
defined for any = € R, if to assume that A(z,y) is defined by (3.2) for any
z € R and for any y € [a,?]. Since in this case for any x < a and for any

y € [a,b] we have A(z,y) = —f u) du, the right-hand side of (3.12) for
r < a is the polynomial p, of order less than or equal to [ — 1 such that
pgk)(a) = f®(a),k =0,1,...,1 — 1. Respectively, for # > b the right-hand side

is the polynomial p, of order less than or equal to [ — 1, which is such that
p(()k)(b) = f®(b),k=0,1,...,1 — 1. Thus the function

- b

= ki/f o Fw(y) dy + ﬁ/(x—y)"”\(w,y)f@(y) dy

0

,_n

i

a

is an extension of the function f with preservation of differential properties,
since FU~Y is locally absolutely continuous on R. See also Section 6.1, where
the one-dimensional extensions are studied in more detail.

Corollary 1 Suppose that 1 > 1, condition (3.11) is replaced by
we CA(R), suppw C [a, F], /wdx =1 (3.14)
R

and the derivative w'=?) is absolutely continuous on |a,b].
Then for the same [ as in Theorem 1 Yz € (a,b)

b

+ﬁ /(fv — ) A2, y) fO(y) dy. (3.15)

Qg

Idea of the proof. Integrate by parts. O
From (3.14) it follows, in particular, that

wa)=...=w" (o) =w@) =... =2 (B) =0. (3.16)
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Corollary 2 Suppose that I,m € N, m < [. Then for the same f and w as in
Corollary 1 Vx € (a,b)

B
£ = [
bs

+ﬁ /(f” —y)' " A y) [V () dy. (3.17)

[—

> VT o= ) ) dy

k=0

Qg

Idea of the proof. Apply (3.15), with [ — m replacing I, to f™ and integrate
by parts in the first summand taking into account (3.16). O

Remark 3 The first summand in (3.15) may be written in the following form:

2 ¢ l—s—1
[(Zre-waom)sma o=CES () e

It is enough to apply Leibnitz’ formula and change the order of summation in
order to see this.

By the similar argument the first summand of (3.17) may be written in the
following form:

B
OO oaml@ =) "W () f(y) dy, (3.19)
where ’
(_1 s l=s—1 S—l-k’
Osm = (3——731)' k: ( L ) (320)

From (3.18) and (3.19) it is clearly seen that the first summand in (3.17) is
a derivative of order m of the first summand of (3.15) and thus (3.17) can be
directly obtained from (3.15) by differentiation. (In order to differentiate the
second summand one needs to split the integral into two parts — see the proof
of Theorem 1.)

Corollary 3 Let —oo < a <b < o0o,l € Nym € No,m < [. Moreover, suppose
that the derivative fU=V is absolutely continuous on |a,b]. Then Vz € [a,b]

s b
@) < (-0 @0 [Ifdys [le =l 0 W) dy)

a
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B8 b
<a-a (G- [ifla+ [1r00) G2

and, consequently,

@) < e ‘m1/|f|dy+/|x—yllm1|f ()] dy)

b

b
<af-a " [id+o-a o [1700)  @22)

a

and 3

B b
@) <ol [ 11y [l =yl 100 dy)

B b
<ai [1ntdy+ [110]ay), (3.23)

where ¢y > 0 depends only on [, while cy,c3 > 0 depend on | and, in addition,
depend on 3 — « and b — a.

Idea of the proof. In (3.17) take w(x) = Lp(*=2), where zp = 6 7= B—Ta
and u € C3°(R) is a fixed nonnegative function, for which supp u C [ 1,1] and

[ udx = 1. In order to estimate the first summand in (3.17) apply (3.19) and

R
the estimate |w®) (2)| < M r=*~! for m < s <1 — 1, where M depends only on
l. To estimate the second summand in (3.17) apply (3.5). O

3 From (3.23) it follows, by Holder’s inequality, that for 1 < p < oo

£ N L@ty < My (1 zpiay + 1P PN L0

where M7 = c3(b — a), and, after additional integration, that
L,AQ))’

|5 < (||f|L o+ | o

where Q C R” is any cube, whose faces are parallel to the coordinate planes, f € C I(Q) and
Ms > 0 is independent of f. These inequalities were used in the proof of Lemmas 5—6 of
Chapter 1.
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Remark 4 We note a simple particular case of the integral representation
b
(3.17): if w is absolutely continuous on [a,b], w(a) = w(b) = 0 and [wdz =1,

then for each f such that f’ is absolutely continuous on [a, b, for all x € [a, b]

fl(x) = —/w’(y)f(y) dy+//\(x,y)f”(y) dy. (3.24)

It follows that
b b
@) < 1o oy / Fldy + 1A oo / ] dy.

Choosing w in such a way that |||z (ap) is minimal we find

w(z) =

4 (b—a

(b—a)?\ 2 a+b‘>

_‘x_
2

and, hence,

@< o [y (1= 2(BE22 =) [ 29

In particular

b b
4
PO < G [ 11dn+ [ 1771y

and

b b
P < g [ 1du+ g [ 1710

From (3.25) it follows that Va € [a, D]

@1 <4(G=as [ v+ [ 171a) (3.26)
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This is a particular case of (3.22) with the minimal possible constant ¢; =
4. The latter follows from setting f(y) = y — “T“’ The same test-function

shows that the constant multiplying fab |f]dy in (3.25), (3.26) also cannot be
diminished even if the constant multiplying fab | "] dy is enlarged.

We note that the constant muliplying fab || dy in (3.25) also cannot be
diminished. * This can be proved in the following way. For a < x < b and
6 > 0 consider the function ° gs.(y) = (z —y +0)+, y € [a,b], if a <z < 42
and gs.(y) = (y—x+06)1, y € [a,b], if 222 <2 <b. In (3.24) take f = As s,
where Aj is a mollifier, and pass to the limit as 6 — 0 + .

Finally, as in the case of the integral representation (3.3), we consider a
limiting case of (3.24). We write w,, for w, where m € N, m > =, w,,(v) =
m(z —a)(b—a—L)tfora<z<a+t, we(e) =0—a—L)" for
a+L<z<b-—Landwy(z)=mb-2z)(b—a—=)forb—L <z <b
Taking limits we get the equality

b

ra) = L0 [0y [T pgyay )

Here x € [a,b] and f is such that f” exists and is absolutely continuous on [a, b].

Again, as in the case of representations (3.6) and (3.7), (3.27) can be deduced
directly.

Corollary 4 Letl e NNm € No,l > 2 and m <[ — 1.
1. If =00 < a < b < oo and the derivative f¢=Y is absolutely continuous
on [a,b], then Vz € [a,b] and Ve € (0,¢,(b — a)™™1],

b b
@] <k [I7ldy+e [ 1791y (3.29

where ¢y > 0 depends only on | and
K(g) = e mm, (3.29)

b
4In contrast to the constant multiplying [ |f]dy it can be diminished if to enlarge appro-
a

b
priately the constant multiplying [ |f|dy — see Corollary 4.
a

®Here and in the sequel a; = a for a > 0 and a; = 0 for a < 0.
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2. If I = [a,00) where —o0 <a< oo, I = (—00,b] where —oo < b < oo or

I = (—00,00) and the derivative fU~ z's absolutely continuous on each closed
interval in I, then Yx € I and Ve € (0, 00)
@) < e K / Fldy+ e / 70 dy, (3.30)

where c5 > 0 depends on [ only.

Idea of the proof. In the first case for x € [a,b] apply (3.22) replacing |a, b]
by any closed interval [ay, b;] C [a, b] containing x, whose length is equal to d,
where 0 < § < b — a, and set ¢;6 "™~ ! = ¢. The second case follows from the
first one.

There is an alternative way of proving (3.28). Given a function f, it is
enough to apply (3.22) to the functions fs,, where 0 < 0 < b—a and z € [a, b],
which are defined for y € [a,b] by fs5.(y) = f(z + (3= )), change the variables
putting = + 6(4=%) = z and set ¢, =¢. O

Corollary 5 If —0o < a < b < 00,1 € N and fU is absolutely continuous on
[a,b], then there exists a polynomial p;—1(x, f) of degree less than or equal to
[ — 1 such that for each m € No,m <1 and Vz € [a, ]

b
_ 4)l—m—1
1)~ oo ) < e [0 e

Idea of the proof. It is enough to take Taylor’s polynomial T, i(x, f) as
pi-1(, f):

f(k
pl—l(il?,f) T4 37 f Z o)k

with an arbitrary xq € [a, b], apply to f(™ Taylor’s formula with [ —m replacing
[ (with the same xy) and take into account that

T (2, f) = T (a, f). (3.32)
It is also possible to take

-

|_|

b
/ FO W)@ — v)wly) dy,

pi—1(z, f) = Si-a(z, %

e
I

0
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where w satisfies (3.11) and is nonnegative. (Notice that this is the first
summand in (3.12).) One must take into account that in this case also
Siem(z, M) = Sl(ﬁ) (x, f). Both of the choices lead to (3.31) (in the sec-
ond case according to (3.5)). O

Theorem 2 Letl e N,—oco <a<a< (<b< oo, w satisfy condition (3.11)
and f € (WhH¢(a,b). Then for almost every x € (a,b)

ba

%/f’“) Do) dy+ =g [ =) A ) ) do

Qg

-

,_n

i

0

(3.33)
where a, and b, are defined in Theorem 1.

b(6) = min{b—d, 3 } for sufficiently

Idea of the proof. Set a(d) = max{a+7d, —%}, (6
a(9),b(0)), where 0 < v < 4, and pass

small 6 > 0, write (3.13) for A, f € C>(
to the limit as v — 04. O

Proof. Since for sufficiently small § > 0 [a, 8] C (a(0),b(d)) and (a(d)), =
az, (b(0)), = b, for each x € (a(9),b(d)), we have Vz € (a(d), b(J))

By Lemma 5 of Chapter 1 fl(uk) exists on (a,b) where k = 1,...,1 — 1, and by
Lemma 4 of Chapter 1 (A, f)® = A, () on (a(8),b(s)) where k = 1,...,1.
Consequently, Vz € (a(d),b(9))

B

B
| [n® e - ytewds - [ 1906 - @) d

«

B

B8
/ 1A, (FI () = fP W) (2 — ) fw(y)| dy < M,y / A (f) — £ dy — 0

o

IN

as v — 04, where k =1,...,] — 1 and M, is independent of v and z.
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Analogously, in view of (3.4), Vx € (a(d),b(d))

[ =0 24N ) dy ~ [ o= 9 M) D) dy

ag ag

b(5)
sm/mmmawwﬁo
a(d)

as v — 04, where Ms is independent of v and =z.
Finally, by (1.5) A,f — f almost everywhere on (a(d),b(d)). Thus
(3.33) is valid almost everywhere on (a(d),b(d)) and, hence, on (a,b) since

U (a(9),b(9)) = (a,0). D

6>0

Remark 5 By Theorem 2 it follows that if in Corollaries 1-2 f € (W})¢(a, b)
and in Corollaries 3—5 f € Wl(a,b), then equalities (3.15), (3.17) and inequal-
ities (3.21)—(3.23), (3.28), (3.30) and (3.31) hold almost everywhere on (a, b),
if to r(ep)lace the ordinary derivatives f® and (™ by the weak derivatives qujl)
and fu .

3.2 Star-shaped sets and sets satisfying the
cone condition

A domain 2 C R" is called star-shaped with respect to the point y € Q if
Vo € Q the closed interval [x,y] C Q. A domain Q C R" is called star-shaped
with respect to a point if for some y € € it is star-shaped with respect to the
point y. A domain Q C R" is called star-shaped with respect to the ball °©
B C Qif Vy € B and Vz € Q we have [z,y] C Q. A domain ©Q C R" is called
star-shaped with respect to a ball if for some ball B C 2 it is star-shaped with
respect to the ball B. If 0 < d < diam B < diam ) < D, we say that € is
star-shaped with respect to a ball with the parameters d, D.
We call the set
Vi=Vep = U(w,y)

yeB

6 Recall that by “ball” we always mean “open ball”.
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a conic body with the vertex z constructed on the ball B (if z € B, then
V, = B). A domain (2 star-shaped with respect to a ball B can be equivalently
defined in the following way: Vx € ) the conic body V, C (2.

Let us consider now the cone

n—1 1
2 rx

KEKr,h:{xER”:0<< x?)2<—”<r}. 3.34

(r.h > ) <5 331)

We say also that an open set ) C R™ satisfies the cone condition with the
parameters v > 0 and h > 0 if Yo € § there exists 7 a cone K, C € with the
point z as vertex congruent to the cone K. Moreover, an open set 2 C R"
satisfies the cone condition if for some r > 0 and h > 0 it satisfies the cone

condition with the parameters r and h.

Example 1 The one-dimensional case is trivial. Each domain Q = (a,b) C R

is star-shaped with respect to a ball (= interval). An open set Q = J (ax, bg),
k=1

where s € N or s = 0o and (ag, bx) N (am, by) = @ for k # m, satisfies the cone
condition if, and only if, i%f (by — ag) > 0.

Example 2 A star (with arbitrary number of end-points) in R? is star-shaped
with respect to its center and with respect to sufficiently small balls (= circles)
centered at its center. It also satisfies the cone condition.

Example 3 A convex domain 2 C R" is star-shaped with respect to each
point y € Q and each ball B C ). A domain {2 is convex if, and only if, it is
star-shaped with respect to each point y € €.

Example 4 The domain Q C R? inside the curve described by the equation
|z1|7 + |x2|” = 1 where 0 < v < 1 (the astroid for v = 2/3) is star-shaped with
respect to the origin, but it is not star-shaped with respect to any ball B C €.
It does not also satisfy the cone condition.

Example 5 The union of domains, which are star-shaped with respect to a
given ball, is star-shaped with respect to that ball. The union (even of a finite
number) of domains star-shaped with respect to different balls in general is
not star-shaped with respect to a ball. In contrast to it the union of a finite
number of open sets satisfying the cone condition satisfies the cone condition.
Moreover, the union of an arbitrary number of open sets satisfying the cone
condition with the same parameters r and h satisfies the cone condition.

T“Yx € Q7 can be replaced by “Va € Q” or by “Va € 907 and this does not affect the
definition.
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Example 6 The domain Q@ = {z € R" : |Z]" < z,, < 1, |Z| < 1}, where
T = (x1,...,xn_1), for v > 1 is star-shaped with respect to a ball and satisfies
the cone condition. For 0 < + < 1 it is not star-shaped with respect to a
ball. Furthermore, it cannot be represented as a union of a finite number of
domains, which are star-shaped with respect to a ball, and does not satisfy the
cone condition.

Example 7 The domain Q@ = {z € R" : —1 < z,, < [7|", [T|] < 1} satisfies
the cone condition for each v > 0. It is not star-shaped with respect to a ball,
but can be represented as a union of a finite number of domains, which are
star-shaped with respect to a ball.

Example 8 The domain Q= {(x1,29) € R?: either —2 < x; <1 and
—2<x9<2, orl <z <2and —2 < mxy < 1} is star-shaped with respect
to the ball B(0,1). For 0 < § < /2 — 1 the domain 5 D B(0, 1), but it is not
star-shaped with respect to the ball B(0,1). (It is star-shaped with respect to
some smaller ball.)

Lemma 1 An open set Q C R™ satisfies the cone condition if, and only if,
there exist s € N, cones Ky, k = 1,..., s, with the origin as vertex, which are
mutually congruent and open sets Q. k =1, ..., s, such that

1) Q= U U,
k=1
2) Vx € Q, the cone ® z + K, C Q.

Idea of the proof. Sufficiency is clear. To prove necessity choose a finite number
of congruent cones K,k = 1,...,s, with the origin as a vertex, whose open-
ings are sufficiently small and which cover a neighbourhood of the origin, and
consider the sets of all x € ) for which z + K;,, C Q. O

Proof. Necessity. Let € satisfy the cone condition with the parameters r, h > 0.
We consider the cone K (ry, hy) defined by (3.34), where hy < h and r; < r is
such that the opening of the cone K (ry, hy) is half that of the cone K(r,h).
Furthermore, we choose the cones K,k =1, ..., s, with the origin as a vertex,

which are congruent to K (rq, h;) and are such that B(0,h;) C |J K. Hence,
k=1

Vx € () the cone K, of the cone condition contains x + K}, for some k. Denote
by Gy the set of all z € €, for which K, contains x + K. Finally, there exists
d; > 0 such that Vy € B(x,d,) we have y + K; C Q. Consequently, the open

8 Here the sign + denotes a vector sum. The cone = + K}, is a translation of the cone K},
and its vertex is x.
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sets Oy = |J Bl(x,d,), k=1, ..., s, satisfy conditions 1) and 2). O
z€Gy
Let a domain 2 C R™ be star-shaped with respect to the point xy. For £ €
S™=1 where S™! is the unit sphere in R”, set () = sup{o > 0: zo+0& € Q}.
Then

Q={r €R": 2 =125+ 06 where £€ 5" 0<p<p())}.

Moreover, set Ry = . iélf 0(€), Ry = sup (&) and for £,n € S™! denote
esgn—1 SESn—l

by d(&,n) the distance between & and 7 along the sphere S"~1, which is equal
to the angle v between the vectors O? and m;, where O is the origin.

Lemma 2 Let a bounded domain 2 C R™ be star-shaped with respect to the
point xg € ). Then it is star-shaped with respect to a ball centered at xg if, and
only if, the function ¢ satisfies the Lipschitz condition on S"!, i.e., for some
M >0 and® V& n € S™1

(&) —(n)| < Md(&,n).

Idea of the proof. Sufficiency. Consider the conic surface C(§) with the point
f = x4+ (&) as vertex, which is tangent to the ball B(xq,r). Suppose that
0<y<p= arcsinJ@. Then the ray R(n) = {xr e R" : . = 9+ o1, 0 <
0 < oo} intersects C'(§) at two points a and e. Denote d = xo + ¢(n)n. Since
f,d € 09 it follows that f & V; and d ¢ V. Therefore, d € [a, €].

Necessity. For fixed £ € S"~! consider two closed rotational surfaces L, and
L_ defined by the equations o = Fi.(n), where FL.(n) = ¢(§) £ M d(&,n). Then
the boundary 0f lies between L, and L_. Let the (n — 2)-dimensional sphere
E be an intersection of L_ and the surface of the ball B(xg, R;). Consider
two conic surfaces, which both pass through E and whose verticies are xq, f
respectively. Let 0 denote the angle at the vertex of the conic surface D,,,
then 6 = %. (We assume that M > 0 and ¢(§) > Ry, since the cases, in

which M =0 or p(§) = Ry, are trivial.) If § > §, = arccos %, set (&) = Ry.

9 Since
€ —n] <d(&n) =

Y m
— < — —

this condition is equivalent to: for some M; > 0 and V&, € 7!

lp(€) — ()| < My |§—n].
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Otherwise, let 7(§) be such that the ball B(zg,r(§)) is tangent to Dy. Then
the conic body with the point f as vertex constucted on the ball B(xg,r(£))
lies in §2. O

Proof. Sufficiency. Denote ¢ = xo+ £ 5)77 Since d € [a,c] or d € [c, e] we have

|£(&) = ¢(n)] < max{[a?], |z2[}.

Since |a¢| < |@¢| ' we establish that

9(€) — p(n)] < |ee] = 2988 _ c)

_ 2¢(&)sin % cos (B—%) () y cos(B—3F) cos (B—7)
i S ey = P8 Sy A& ).

Consequently, V&, 7 € S*! such that v < 3

(&) — p(n)| = Ry 282 a(e, ).

Hence, given € > 0, there exists d(¢) > 0 such that V&, n € S"1: v < §(g) we

have
0(€) — p(n)| < (R cot g+ )d(e,m) = (22 \/Rg — 2 1<) (e, m).

Now let £ and 7 be arbitrary points in S*~1, € # 1. We choose on the circle,
centered at xy and passing through ¢ and 7, the points &y = ﬂl =< X
Em—1 < &n = n such that all the angles between the vectors O¢;_; and O&,
i = 1,m, are less than §(g). Then

63 Z (&i-1) — @(&)]

10 One can see that |a¢| = |W|(cot (B + ) +tan 3) while |c¢| = lﬁ| cot (3 —~) —tan 3),
where lﬁ L @é. The inequality |a¢| < |c¢| follows from the inequality

cot(ﬂ—i—y)—l—tan% <cot(ﬁ—'y)—tan%7

which is valid for all 3 and v satisfying 0 <y < 3 < . This inequality is equvalent to

9tan ol < sin 2y _ 2sin 2y
2 " sin(f—7)sin(B+7) cos2y—cos23’

to cos2y — cos28 < 4cos2% cosvy and to —cos283 < 2cos~y + 1, which is obvious since
0<y< 3.
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< (%,/Rg —12+¢) id(fil,@) - (%,/Rg —12 4 £)d(€,m).
i=1

Passing to the limit as ¢ — 0+ we find that the Lipshitz condition is satisfied
with

M=t [ (3.35)
Necessity. 1f 0 < § < g, then
(€)= ¢(§) Ry sind _ _ ¢(§) Ry sind
V(@€ = Brcosd? + (Risind)® [((6) — R)2 + dip(€) Ry sin® 3
_ (&) Ry sin 0 L2 R 2 M
VM2 +ap©Risin? s T VM HQ(OR T T /M 4 R

One can verify that for any point g € L_ \ B(xo, R1), g # f, the interval (g, f)
lies ™ in Q. Therefore, the conic body V; with the point f as vertex constructed
on the ball B(zg, ) lies in Q. Hence,  is star-shaped with respect to the ball
B(Z‘(), 7’0) . g

Remark 6 The constant M given by (3.35) is the minimal possible, because,
for example, for any conic body V, defined by (3.34) we have

sup [p(§) — o) _ Re R

vemesn-Lesy  A(&,M) r

If a domain 2 C R", which is star-shaped with respect to the ball B(zg,r),
is unbounded, then set S" = {£ € S"7!: p(£) < o0}.

11 Consider the curve [_ obtained by intersecting L_ \ B(xq, R1) by the two-dimensional
plane passing through g and the ray going from xzy through f. Let this ray be the axis Oz
of a Cartesian system of coordinates in this plane. Suppose that y = ¢(x) is a Cartesian
equation of the curve [_. We recall that its polar equation is ¢ = ¢(§) — M|y| and note that
|v] < 6. The part of the curve I_, for which 0 < v < §, is convex and the part of [_, for
which —§ <~ <0, is concave since, for example, for 0 < v < §

2M? + (p(§) — M~)?

((6) = M) sing + Mcosp)? 0

"
wmx ==

Hence, for any g € [_, g # f, the interval (g, f) lies in Q.
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Corollary 6 Let an unbounded domain €2 C R"™ be star-shaped with respect to
the ball B(xo,r). Then S’ is an open set (in S™~') and the function ¢ satisfies
the Lipschitz condition locally 2 on S'.

Idea of the proof. Note that if p(£) = oo for £ € S™1, then the whole semi-
infinite cylinder, whose axis is the ray R(£) and whose bottom is the hyperball
{x € B(xg,r) : To2 L O—é}, is contained in €. Deduce from this that S’ is
open and apply Lemma 1. O

Example 9 For the domain ©Q C R2?, that is obtained from the unit circle
B(0,1) by throwing out the segment {1 =0, 3 < x5 < 1} and which is star-
shaped with respect to origin, but is not star-shaped with respect to a ball, the
function ¢ is not even continuous.

Example 10 For the domain Q = {xy,25) € R? : |z125| < 1}, which is star-
shaped with respect to the origin, but is not star-shaped with respect to a ball,
the function ¢ is locally Lipschitz on the set S’ = S\ {(0,+1), (£1,0)}.

Lemma 3 If a bounded domain 2 C R™ is star-shaped with respect to a ball,
then it satisfies the cone condition.

Idea of the proof. Let € be star-shaped with respect to the ball B(xg,r).
Then (2 satisfies the cone condition with the parameters ;—22 and 7. (It follows
because the cone K, with the point x as vertex and with axis that of the conic

body V.., which is congruent to the cone K <;—22, r), is contained in Q). O

Now we give characterization of the open sets, which satisfy the cone
condition with the help of bounded domains star-shaped with respect to a ball.

Lemma 4 1. A bounded open set 2 C R™ satisfies the cone condition if, and
only if, there exist s € N and bounded domains 2, which are star-shaped with
respect to the balls By C By, C Qi k =1,...,5, such that Q = |J Q.

k=1
2. An unbounded open set 2 C R™ satisfies the cone condition if, and only

if, there exist bounded domains Q. k € N, which are star-shaped with respect
to the balls By, C B, C ., k € N, and are such that
1) Q= N,

k=1

121.e., V€ € S’ there exist M (€) > 0 and v(£) > 0 such that ¥ € S, for which |€—n| < v(€)
we have |p(£) — ()| < M(£) d(&,n).



3.2. STAR-SHAPED SETS AND THE CONE CONDITION 99

2) 0 < inf diam By < supdiam 2 < 0o
keN keN
and

3) the multiplicity of the covering s ({2 }72,) is finite.

Idea of the proof. Sufficiency. By Lemma 3 €2 satisfies the cone condition with

the parameters c2c;! and cg, where '3

c¢ = inf diam By, c¢; = sup diam (),
k=1,s k=1,5

s € N for bounded 2 and s = oo for unbounded (2.

Necessity.  Consider for x € (), in addition to the cone K, the conic
body K, with the point x as a vertex, which is constructed on the ball
B(y(z),r1) inscribed into the cone K, (here r; = rh/(r + vr?+ h?)) and
the conic body K with the point z(x) = x + ¢, ;:Zg‘
£, = £ min{ry, dist (z, )}, which is constructed on the same ball B(y(z),1).

Then Q = |J K. Choose x;, € R, k € N, such that R" = |J B(xy, %) and
z€QN keN
the multiplicity of the covering "* s({ B(zx, %) }ren) < 2". Set

wk:QﬂB<xk,%>, G = U K.

z€Q: y(z)Ewy

as a vertex, where

Then Q = |J Gi. Renumber those of G which are nonempty and denote
k=1

them by Ql,QQ,.... ]

Proof. Necessity. Suppose that G} # @ and € Gy, then there exists z € Q

such that y(z) € wy and £ € K. Let us consider the conic body K, with
the point ¢ as a vertex, which is constructed on the ball B (:pk, %1) Since

y(z) € B (zx, %) we have B(y(z),r1) D B (zy, %) and IA(; C K} C Q. Hence,
the set Gy, is star-shaped with respect to the ball B (mk, %) Furthermore,

(€ —zx| < [2(2) — @] = |2(2) =2+ |z —y(@)[ + |y(2) — @] <R

because |z — y(z)| = h — ry, therefore Gy, C B(xy, h) and diam Gy < 2h.

13 Here and in the sequel k = 1, s where s € N means k € {1,...,s} and k = 1,00 means
keN.

14 This is possible because the minimal multiplicity of the covering of R™ by balls of the
same radius does not exceed 2".
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Let us consider those of the sets G5, which are nonempty. If €2 is bounded,
then there is a finite number of these sets — denote this number by s. If
Q2 is unbounded, then there is a countable number of these sets (s = o).
Renumbering them and denoting by Q1,Qs, ..., we have Q = |J G, = U Q.

k=1 k=1
Thus, for Q, k = 1, s, the properties 1) and 2) are satisfied. Finally,

%({Qk}izl) < %({B(mk, h)};;) < 2”(1 + %)" 0

r1

diam @,
o » diam B, —
4(1+1%) k=15 It is also not difficult to verify that s ({Q};_;) < cs
o (142"

Remark 7 In the above proof ¢g = r1 and ¢; < 2h. Furthermore

3.3 Multidimensional Taylor’s formula

Theorem 3 Let Q0 C R" be a domain star-shaped with respect to the point
0 €Q,1 €N and f € CY(Q). Then Vx € Q

fay = S 2D () e

al

Y (3“"_04—,‘””@& / (1= )1(D* ) (wo + t(x — x0)) dt (3.36)

lar[=l 0

(here in addition to multi-notation used earlier we mean that xo + t(x — xo) =
(1‘01 -+ t(l’l — $01), veey Lo -+ t(l‘n — $On)))

15 We use the inequality
(B e2dicr) < (14 2) e (1Br a1z )

where 0 < g1 < g2 < oo. Since for € R™ the number »(x) of the balls B(zg,02) 3 x is
equal to the number of the points z; € B(x, 02), by inequality (2.60) we have

»(x) meas B(0, g)) = Z meas B(zy, 01)
k: B(zk,02)3x

< %({B(zk, 91)}221) meas | ) Bla.e) < %({B(zk, 91}221) meas B(z, 01 + 02),
k:B(zk,gg)ax

and the desired inequality follows.
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Idea of the proof. Consider for fixed x and xq the function ¢ of one variable
defined for 0 < ¢t < 1 by p(t) = f(xo+t(x—x)) and apply the one-dimensional
Taylor’s formula (3.10) with the remainder in integral form:

=1 ) 1
o)=Y S oy [0 o

k=0 0

If [ = 1, then (3.36) takes the form: Vf € C'(Q) and Vz € Q

f(z) = f(xo +Z — 20) /1(%)(%+t(m—xo))dt.

The analogue of this formula for the functions f, which have all the weak
derivatives ( 88 f] ),, of the first order on € cannot have the same form, even for
almost every = €  because it contains the value f(z¢) at a fixed point .
(For, suppose that this formula is valid for some such function f. Then it will
not be valid for any function g, which coincides with f on 2 excluding the
point xg.)

For this reason we write the above formula in a different way. Suppose, that
Q) C R" is an arbitrary open set and h € R", then it follows that Vf € C*(Q)
and Vz € Q| h|

flz+h) = +Zh/(ax) +th) dt.

Lemma 5 Let Q C R" be an open set and h € R™. If f € LY(Q) and for
each 7 = 1,...,n the weak derivative (%)w exists on €2, then for almost every

T e Q|h|

flz+h) = +Zh /( ) (x + th) dt

IR 1
— o)+ il [ (55) e+ enr = s+ [ ((Tufdo i) )

where £ = % and (%) and V., f are the weak derivative in the direction of

&, the weak gradient resgectively.
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Idea of the proof. Apply mollification and pass to the limit. O
Proof. Since Asf € C*°(€2,) for each 0 < 0 <, by Lemma 4 of Section 1.2 we
have: V& € Q44 o

(Asf)(z +h) = (Asf)(x +Zh /( (g;;) )(I-I—th)dt.

We claim that

/1<A5(§;({> )<x+th)dt_>/ol<%>w(x+th)dt

in L°(Q,) as § — 0+ . Indeed, for each compact K C €2, by Minkowski’s
inequality o

H / ax] o+ th) dt - /Ol(g_i)w@

g/o ( (ggi) )(x+th)—(g—:g;>w(x+th)‘

<)~ @),

J
by (1.9) as 6 — 0+ .
Consequently, there exists a sequence d; > 0 such that J, — 0+ as k — oo

and
/1(A5k((9a§> )<x+th)dt*/l<%)w<x+th)dt

almost everywhere on €2,. Moreover, by (1.5) (A, f)(x + h) — f(z + h) and
(A5 f)(z) — f(x) almost everywhere on €. Thus, passing to the limit as
k — oo, we obtain the desired equality for almost every x € ., and, since
~ > 0 was arbitrary, for almost every z € ) . O o

dt
L1 (K)

— 0
Ly(KIM)

We note that one can prove similarly that if f € L¢(Q) and Va € Ng
satisfying |« = [ there exist weak derivatives D2 f on 2, then for almost every
T € Q\ h|

f(x—l—h)zz( af ho‘—l—lza'/ YD) (z + th) dt.

|| <l || =l
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Corollary 7 Let 2 C R™ be an open set, 1 <p < oo, h € R" and f € wfg(Q).
Then

1 (2 +h) = F@)Lp@n) < HVwlTz,@lhl < 1wy @ bl

Idea of the proof. Apply Lemma 5 and Minkowsli’s inequality. O
Proof. By Lemma 5

G+ 1) = F@lieny = | [(Tuhla+ th) - B dtlsa

1

1
< / 1V f) (& + th) - Bll g,y i < [B] / |1V + th) oy dt
0

0

~ |1 / 19 ey e < 11 00 1< 1l 1

since Q) +th C Q and |V, f| < Z ‘(8001) ) =

Next consider for [ € N and h € R" the difference of order [ of the function

f with step h:
l
(AL (@)= (-1 ( ) z + kh).

k=0
Corollary 8 Let Q0 C R™ be an open set, | € N, 1 < p < oo, h € R"” and
[ e Wi(Q). Then

”A fHLp (Qun) < QIHfHLp (@) HA f”Lp (Qunp) < n' 1|h’ Hf”wl

Idea of the proof. The first inequality follows by Minkowski’s mequahty. To
prove the second one apply Corollary 7 and take into account that (i—', < nl=tif
a € Np satisfies |o| = 1. O

Proof. By induction we get

ALy = IARAL Ol Lot 1ymnn
= |h|ﬁz_ H( S f ) Lo(Q0—1) 1)) < |h|f Z ;H(@ggﬁ (9x]l>

noo .
= |n Z a”DwaLp(Q) <n'~!nf [ ot o) O

laf=l

Lp()
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3.4 Sobolev’s integral representation

Theorem 4 Let 2 C R" be a domain star-shaped with respect to the ball B =
B(xg, ) such that B C Q,

w € Li(R"), suppw CB, /wdx =1, (3.37)
Rn

l €N and f € CYQ). Then for every x € £

Z /Daf (x—y dy+2/|x_ |nl we(z,y) dy,

|a|<l o=l
(3.38)
where for x,y € R", x # v,
wala,y) = AEZD ) (3.39)
al |z — yllel
and .
w(x,y) = / w (:L‘ +o0 i ) 0" tdo (3.40)
2 ly — ]
-y

(for x =y € Q we define wy(x,x) = w(x,z) = 0).

Remark 8 The first summand in right-hand side of (3.38) is a polynomial of
degree less than or equal to [ — 1 while the second one (the remainder) has the
form of an integral of potential type.

Both summands in right-hand side of (3.38) consist of integrals containing
the function f and its derivatives and does not involve the values of the function
f and its derivative at particular points — thus, in contrast to Taylor’s formula,
this is an integral representation of the function f via the function f and its
derivatives up to the order [.

Let £ = ﬁ and k € N. Consider the derivative of the function f in the
direction of £ of order k: (g%,’:)(y) = > (f;)(DO‘f)(y)go‘. Then one may write

|lal=k

(3.38) in the following way

/(i !y|k(§;k)(y>) w(y) dy
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v | (G ok

Ve

In particular,

f(x) = / F(y) ) dy + / (VA - (@ - y) 288

|z —y|"
B Va

Remark 9 Let us denote for  # y by M,, the ray, which goes from the
point z through the point y, and by L, , the “subray” of M, ,, which goes from
the point y. As the variable g in (3.40) changes from |x — y| to infinity, the
argument z = x + o é:i' of the function w runs along the ray L,,. We note
that o = |z — x| and that (3.40) may be written with the help of a line integral:

w(z,y) = /w(z)|z—x|"1dL.

La;,y

The ray L, , intersects the ball B if, and only if, y € K,. For this reason
Vr € R”

supp,, wa (7, y) = supp, w(z,y) C K, (3.41)

(if w is positive on B, then there is equality in (3.41)). Furthermore, Vo € R™
and Vy € K,

supruJ(:v + gﬁ) C BN Ly, =[d,dy].
Here dy = dy(,y) is the length of the segment of the ray M, , contained in K,
while d; = d (z,y) = max{|z — y|, d,}, where d; = d,(, ) is the length of the
segment of the same ray contained in K, \ B. 1°
Therefore, actually, the integral in (3.40) is equal to 0 if y ¢ K, and is an
integral over the finite segment [d;, dy] if y € K,. We note that

dy< D, dy—d < d, (3.42)

where D = diam 2 and d = diam B.

16 If |2 — 29| = h and ¢ is the angle between the vectors Tz and 9, then 0 < tanp < =

and 671 and ds are the minimal root, the maximal respectively, of the quadratic equation
d?* — 2dh cos p + h? —r? = 0.
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Remark 10 If ) is bounded, then

dr — dn -
lw(z, )o@ < wlliw@n=—— < [@llc@ D""d

Moreover, Va € Ny satisfying |a| = {
(e, e iy < 1]y D", (3.43)

We have taken into account that
’(af—y) _ <|x1—yll> 1'__<|wn—yn|) "o
lz —y [z —y

|z —ylf
and that a! > L for |a| = 1.

Hence, if w is bounded, then for bounded €2 the functions w and w, are
bounded on R™ x R™. If €2 is unbounded, then these functions are bounded on
K x R" for each compact K.

If w e C®(R"), then the functions w(z,y) and w,(x,y) have continuous

derivatives of all orders Vx,y € R” such that = # y. 17

Remark 11 In the one-dimensional case for Q = (a,b) and B = (xg—1,z9+7)
= (a, ), where —c0 < a < a < f < b < o0, we have V, = (a,,b,), where
a, and b, are defined in Theorem 1. Moreover, L,, = (—o0,y) if z < y and
L,, = (y,00) if > y. Furthermore,

way) = [ wl)dL=1"
Luy Jwu)du, x=<y<b,
v

17 At the points (z,x), where ¢ B they are discontinuous. For n > 1 it follows from
the fact that for each y € K, \ B lying in some ray going from the point x (for all these

y the vectors é:i‘ have the same value, say, v = (v1,...,v,)) the function w(x,y) has

oo

the same value y(z,v) = [w(z + ov)o" ' do. Hence, the limit of w(z,y) as y tends to x

0
along this ray is also equal to vy(z,v). Respectively for the function w,(z,y) this limit is

equal to %(—Vl)al <o (=vp)*y(x,v). The discontinuity follows from the fact that these
limits depend on v. For, if the ray defined by the vector v does not intersect the ball
B, then y(z,v) = 0. On the other hand, there exists v such that vy(z,v) = 0, otherwise

Jw(z)dz = f(f w(x + o)™t dg) dS = 0, where S is the unit sphere in R™, which
R™ 5 \o

contradicts (3.37). For n = 1 the discontinuity follows from the formulas for w and w, given
in Remark 11.
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and

1 (z—y) (sgn (z —y))"™

Thus, (3.38) takes the form (3.13).

Idea of the proof of Theorem 4. Multiply Taylor’s formula (3.36) with 2o = y
and y € B, by w(y) and integrate with respect to y over R". (We assume that
for y #B w(y)g(y) = 0 even if g(y) is not defined at the point y.) The left-
hand side of (3.36) does not change and the first summand in the right-hand
side coincides with the first summand in the right-hand side of (3.38). As for
the second summand it takes the form of the second summand in (3.38) after
appropriate changes of variables. O

Proof. After multiplying (3.36) with g = y by w(y) and integrating with
respect to y over R” the second summand of the right-hand side of (3.36) takes
the form

1

13" ([0 0+ e - v)at)dy

o=t gn 0

_ z§|;$ (1= [0+ tlo =)oty dy) dt =1 |Z e

o

Changing Variables y + t(z —y) = z and taking into account that (z — y)* =

%:Ztgtl)’ dy = = t)"’ we establish that
/ d
) z—tw 14
Ja:/(Df (z=2) /w(l—t) 1—t)”“)dz‘
R» 0
Replacing 5 =l z‘ by o, we have
@m0 ] T e
Jo= [ (D f)(z>—l< w<m+g )Q dQ) dz,
|z — z| |z —
Rn |z—z|

which by (3.41) gives (3.38). O
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Remark 12 One can replace the ball B in the assumptions of Theorem 4 by
some other open set G, depending in general on z € €2 such '® that G, C Q
and replace the function w by some function w, such that

wy € L1(R™),  suppw, C G, /wm(y) dy = 1.

Rn

In this case the same argument as above leads to the integral representation
(3.38) in which B,w and the conic body V, are replaced by G,,w,, the conic

body Ve, = U (,y) respectively. We shall use this fact in Corollaries 10— 12
yEGy
below.

Remark 13 Set w(,) = r"w(xe — rz). Then w(r) is a kernel of mollification in
the sense of Section 1.1 (in general, a non-smooth one since we have only that
wiy € L1(R™)). The polynomial S;_i(z, o), the first summand in Sobolev’s
integral representation (3.38), is Taylor’s polynomial averaged over the ball
B = B(zg,r) in the following sense:

St (2, 20) = (A Tia (7, -)) (o).

Here T;_1(z,y) is Taylor’s polynomial of the function f with respect to the
point y, As is the mollifier with the kernel w(,y and the mollification is carried
out with respect to the variable y. For,

APia(e e = [ Palom = r2)uin () dz

B(0,1)

1
- / (D f)(wog —r2)(x — m0 + 172)*r"W(T0 — 12) d2
O[

a <

1 [0

Z I “N) (@ —y)*wly) dy = (Si-1f)(x, 70).
|o <t B(zo,r)

This allows us to characterize Sobolev’s integral representation as a “molli-

fied (averaged) Taylor’s formula with the remainder written in the form of an
integral of potential type” of briefly “averaged Taylor’s formula”.

181t is also possible to suppose only that G, C  replacing the assumption f € C'(Q) by

fe ¢’ () in the case in which G, NI # @. See a detailed Remark 1 for the one-dimensional
case.
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Theorem 5 Let Q_C R™ be a domain star-shaped with respect to the ball B =
B(zg,7) such that B C €,

w € Lyo(R™), suppw C B, /wdm =1, (3.44)

R"

I €N and f € (W})°(Q). Then for almost every x €

Z /DO‘ dy+2/’$ ’nl x,y) dy.

Ia\<l |al=l

(3.45)

Idea of the proof. For 0 < ¢ < dist (B, 0f2), which is such that —% < |mo| —7r <
zo| +7 < 58t P Q={z€Q: V, CQnNB(0,3)} C Q, write (3.38) for
A, f € C®(Qy5) where 0 < v < 0 and pass to the limit as y — 0+. O

Proof. For each ¢ and « such that 0 <y < J and Vz € Q5 we have

(A f)(z)
= Z i/ (D* (A ))( y) dy + Z (D I_%fn —wa(z,y) dy
|a\<la lal=t {7 yl
= of y)d dy.

We have apphed Lemma 4 of Chapter 1 and the fact that the weak derivatives
D2 f where || < [ exist (Lemma 6 of Chapter 1).
By (1.5)
A f — f ae on Qp (3.46)

as v — 0+4. We shall prove that

= [DED0)e - dy = Rale) o0 2 (347

19 The necessity of introducing of these more complicated sets than )5 arises in connection
with Example 8.
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and

Suste) = [ DOy

B |z —y|"!

T

- / —fféj;/ )|Ely_)lwa(x,y) dy = Sa(x) in Ly (Qp). (3.48)

x

The relation (3.47) follows from the estimate

| Ry () = Ra(2)] < M1/|(A7(D$f))(y) — (D))l dy,

where M; = [|(z — y)*|lc@yxp) | W(Y)[|Lo®n) < o0 and the property (1.9).
Set My = ||wa(2,y)|Lo(oyy xrm)- Then by Remark 10 M, < co. Applying
the inclusions V, C Q5 = Qs N B (0, %) for x € Q5) and Q5 C QF we obtain

1n @) = Su@ls < 11 / ]

:MQ/lA’Y(D?U Da.ﬂ /l |n l
5

A Dy f) = Dy fllzi

L1(82)

< Mo || |2 7" || £ g—az)

and % (1.9) implies (3.48).
From (3.48) it follows that, for some v, > 0,k € N, such that 7, — 0 as
k — oo, we have

Same () — Sax) a.e. on Q. (3.49)

Now passing to the limit as k& — oo in equality for A, f with v, replacing ~,
by (3.46), (3.47) and (3.49) we obtain that (3.45) holds almost everywhere on
Q). Since | Q5 = Q we establish that (3.45) is valid almost everywhere on

6>0
Q.0

201n the last inequality in the expression Q5 — QF the sign — denotes vector subtraction
of sets in R, i.e., A—B={2€R":z=12—y where x € A,y € B}. Clearly,

QO —QF c B(0,67Y) — B(0,67%) = B(0,2671).
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3.5 Corollaries
Corollary 9 In Theorems 4,5 let conditions (3.37), (3.44) respectively, be re-
placed by
w € CP(Q), suppw CB, /wdac =1 (3.50)
Rn

Then Vf € CY(Q) for every x € Q and Vf € (W])¢(Q) for almost every x €

s = [(3 E0 bl — i) s ay

+Z /wwa(x,y) dy (3.51)

x — y[!
with D f replacing D®f in the case in which f € (W}le(Q).

Idea of the proof. For f € C'(Q) — integration by parts in the first summand of
the right-hand side of (3.38). For f € (W))"¢(Q) — the same limiting procedure
as in the proof of Theorem 5, starting from (3.51) with A, f replacing f. O

Corollary 10 In addition to the assumptions of Corollary 9 let 5 € N and
0<|8| <. ThenVf e CYQ) for every x € Q and Vf € (W})!¢(Q) for almost
every x € €}

—1)lel+18l
D = (X E ol — et s dy
B lel<i=|B| ’
+| |_ZZ>5 /%waﬂ(%y) dy (3.52)

with D2 f replacing DP f and D2 f replacing D*f if f € (WH)e(Q).

Idea of the proof. For f € CY(Q) write equality (3.38) with D?f € C'=1Al(Q)

replacing f and with [ — || replacing [, integrate additionally by parts in the

first summand of the right-hand side, change the multi-index of summation «

toy—p@ (then > = Y ) and write a instead of 7. For f € (W})le(Q)
lal=t—[8]  |n|=l7>8

apply the limiting procedure from the proof of Theorem 4. O



112 CHAPTER 3. SOBOLEV’S INTEGRAL REPRESENTATION

Remark 14 For n = 1 equality (3.52) takes the form (3.17). As in the one-
dimesional case the first summand in (3.51) and (3.52) can be rewritten in the
form

/ Z Tap(e —y)* P (Dw(y ))f(y)dy, (3.53)

where 0, 5 depends only on o and f3.

Corollary 11 Letl € N and €2 C R™ be a bounded domain star-shaped with
respect to the ball B with the parameters d, D, i.e., d < diam B < diam <
D < oo. Then there exists cg > 0, depending only on n,l,d and D, such that
Vf e CY Q) for every x € Q and Vf € (W])°¢(Q) for almost every x €

(D*f)(y
(D7 f) ()] < g /!f!derZ/‘ — z+|m y) (3.54)

o=l v

where 8 € NP and 0 < |B| < I, with D f replacing DPf and D2 f replacing
D*f in the case in which f € (W})¢(Q). Moreover,

O @) <o () D [1s1ay

Z /I:c Da{n 3] y) (3.55)

where c1g > 0 depends only on n and .

Idea of the proof. Let p be a fixed kernel of the mollifier defined by (1.1). In
equality (3.52) take w(x) = (%)"u(@) and apply (3.53) and (3.43) (see also
Corollary 3). O

Proof. First of all Vo € (2 and Vy € B

n+ao

=y 0w < (2)"le - o0 (22,

D\ led Dh -1
SMlHDaM“C(Rn)(E) D"ﬁ‘d’”SMQ(E) DI8lg™

where M; and My depend only on n and [ (since p is fixed). Hence

> casle—p 0w < (D) D (356)

la|<l, >
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where M3 depends only on n and [.
Secondly from (3.43) it follows that Vz € Q and y € V,

[ wa—p(z, y)| < M4(%)nl, (3.57)

where M, depends only on n and .
So (3.53), (3.56) and (3.57) imply (3.55) and hence (3.54). O

Remark 15 For n = 1 inequalities (3.54), (3.55) take the form of the first
inequality (3.23), the form of (3.21) respectively.
Moreover, if Q = B and diam B = d, then (3.55) implies that

(D)) < My (a1 / sy S [ AL ), s

lal=lB

where My depends only on n and [, which is a multidimensional analogue of
the first inequality (3.22). If, in addition, { — || —n > 0, then

(D)) < My (a7 / fldy+ a0 S [ D) dy),

|| =1 B
which is a multidimensional analogue of the second inequality (3.22).
Remark 16 If [ — |5| —n > 0 (in the one-dimensional case this condition is

always satisfied), then there is no singularity in the integrals of the second sum-
mand in the righ-hand side of (3.54). In this case (3.54) implies the inequality

(D°f)(a !<c:n/\f\dy+2/\Daf ) dy)

laf=t v

<en /|f|dy+2/|D“ ) dy). (359)

lafl=l ¢
where c;; > 0 depends only onn,l,d and D.
Applying the same procedure as in the second proof of Corollary 4 one can
obtain the related inequality with a small parameter: if [ — |3| —n > 0, then

(D f)(@)] < 2K (e) | |fldy +e [(D*f) ()] dy, (3.60)
oz

where now 0 < ¢ < M;d-— Pl

K(e) = e o (3.61)

and c1o > 0 depends only on n and [.
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Corollary 12 Let | € N and 2 C R"™ be a bounded domain star-shaped with
respect to a ball with the parameters d, D. Suppose that f € CY(Q) (or f €
(W]He(Q) ). Then there exists a polynomial p;_i(x, f) of degree less than or
equal to I — 1 such that V3 € Ny satisfying |5] <l and Vz € Q

(D))~ (Do p)a Pl < e (2) 3 / ’K?Tﬁ(y)im dy, (3.62)

where ¢13 > 0 depends only on n and l. (If f € (W})¢(Q), then (3.62) with
DB f and D2 f replacing DPf and D®f holds for almost every x € ).

Idea of the proof. Set

—1)lel
poaten§) = St ) = [ (X S0l ) w)l) £ dy

B lali

(this is the first summand in (3.51)), where B C 2 is such that €2 is star-shaped
with respect to B and w is the same as in the proof of Corollary 11. Note that

Si-jpi-1(x, D7 f) = (DSp1)(x, f) (3.63)
and apply (3.51), (3.52) and (3.56). O

Corollary 13 Let Q be a bounded convexr domain. For xz,y € Q (x # y)
denote by d(x,y) the length of the segment of the ray, which goes from the

point © through the point y, contained in Q . Then Vf € GZ(Q) and for all
r€Q and Vf € (WHe(Q) for almost all z € Q

f@) = oo {3 [0 = ay
Q

la| <l

3 [N gy - e -y (360

|z —y|

and hence

o2 (D))l dy. (3.65)
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In particular,

Dlel
O E—— / (D £) () dy (3.66)

laj<n

where D = diam Q. (If f € (W})!¢(Q), then D®f must be replaced by D2 f.)

Idea of the proof. Suppose that in Theorems 4-5 suppw C €2 instead of
suppw C B. Then in (3.38) we have Vo = Q instead of V, = V, p — see
Remark 12. Take w(z) = (measQ)~! for z € , then (3.64) follows from (3.38)
— (3.40). O

Corollary 14 Let Q C R™ be an open set, | € N. Then Vf € CL(Q) for every
z €Q and Vf € (W), () for almost every x €

gn Z al / |z — y|” “fy) dy (3.67)

la|=t

and hence

Z = /| DDty o ) (3.68)

" Jal=t

with D f replacing D*f for f € (W{),(Q), where v, is the n-dimensional
measure of the unit ball in R™ and o, is the surface area of the unit sphere in
R" (0, = nv,). 2

Idea of the proof. Since supp f is compact in €2 one can assume, without
loss of generality, that the function f is defined on R™ and f = 0 outside
Q. Replace in Theorems 4 — 5, keeping in mind Remark 12, B by G, =
B(z,r9) \ B(z,r1), where r; < ry are such that supp f C B(z,7) and w by
wz(y) = (measG,) ™', y € G,. Then V, ¢, = B(x,12).

Moreover, from (3.40) it follows that Vy € supp f

T2

1 B 1
T/Qn tdo=—.
U (rY — 77 o

T1

w(z,y) =

Since f =0 on G, equality (3.67) follows from (3.28). Furthermore, inequality
(3.68) follows from (3.67) because a! > 7 for |af = 1. O

21 We recall that v, = where I'(u) = [ 2“"te™® dz, u > 0, is the gamma-function.
0

n
T2
T(g+1)
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Remark 17 For n = 1, 1 = 1 and Q = (a,b) equality (3.65) reduces to the
obvious equality: Vf € Cj(a,b) and Vz € (a,b)
b

1
fla) =5 [ sen(o =) ) dy (3.69)
(see (3.7)). Starting from this equality it is possible to give another proof of
equality (3.67).

Remark 18 Consider the following particular case of (3.67)

f(x):ain/wf)(y)'(x_y) dy:%Z%*Vf. (3.70)

|z —y|"

We note that

x; 0 X 1 0 2-n

of = oD =2 n—za@“ﬂ b=
and for ¢ € (W})"(R"), ¢ € Cj(R") we have 3> (gp x1p) = 22 xyp = px 2L
Consequently, Vf € C2(R")

1 1
=—In—xA =2 3.71
fa) = getnrw Af, 0= (3.71)
(logarithmic potential) and

1 2
=——F|2z|" "% A >3 3.72
f@) = g I 2 A > (372
(the Newton potential).
Corollary 15 Let 0 C R™ be an open set satisfying the cone condition with

the parameters r > 0 and h > 0 and K, be the cone of that condition. Suppose
that Vx € )

wy € C3°(R™),  suppw, c K,, /wx(y) dy =1, (3.73)
Rn

l €N, g€ Nsand |a] < 1. Then Vf € CHQ) for every x € Q and Vf €
(Whlee(Q) for almost every x €

1)led+al
e = [( X EL ol — i) Fo) dy

i lal<i-la)
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+ D / %wa—g,x(m,y)d,@ (3.74)

(with D f and D2 f replacing DPf and D*f for f € (W})'¢(Q)), where

N
Woq(2,y) = |O"M / Wy <x+g yor )Q"_ldg. (3.75)
al |z —y|* o |y — |
T—y

Remark 19 In contrast to other integral representations the first summand
in (3.74) is no more a polynomial.

Idea of the proof. Apply Remark 12 with G, = K, and w, replacing w. Note
that V, x, = K, and dy < vV h? + 12 (dy is defined in Remark 8). O

Corollary 16 Let 2 C R™ be an open set satisfying the cone condition with
the parameters r > 0 and h > 0, l € N, € N} and |3| <. Then there ezists
c1a > 0, depending only on n,l,r and h, such that Vf € CY(Q) for every x € Q
and Vf € (WHe(Q) for almost every x € Q

(D)) < e / e S [0 G) e

la[=l ¢
(with D2 f and D f replacing DPf, D®f respectively, for f € (W})¢(Q)).

Moreover,

(D% ) ()| < exs / iy (2)7 5 [ A G),

lof=l g,
(3.77)
where r; = min{r, h} and ¢;5 > 0 depends only on n and [.

Remark 20 Compared with (3.54) inequality (3.76) is valid for a wider class of
open sets satisfying the cone condition. On the other hand, (3.54) is a sharper
version of (3.76) (for in the right-hand side of (3.54) [ |f|dx replaces [ |f|dx)

B Q
for a narrower class of domains star-shaped with respect to the ball B.

Idea of the proof. Let K = K(r,h) if h > r and K = K(h,h) if h < r, and let
B(xg,72) be the ball inscribed into the cone K. Here 1y = rh(v/r? + h2+r)~! >
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r(14+v/2)7Vif b > r and ry = h(14+v/2)"1if h < r. Hence B(zo, 71 (1+v2)7") C
K. Moreover, let w be a fixed function defined by (3.50). Suppose that in (3.74)
5 ofined by: wi(y) = (2) "w((5255) (3~ &), where & = Aq(ry) and
A, is a linear transformation such that K, = A,(K). Following the proof of
estimates (3.56) and (3.57), establish that Vx € Q and Vy € K,

—1)lelal N AN e
Y E T e - el < o (B) e (37s)
jol<t-18] ' '
and —_—
< — .
wampale.) < M) (3.79)

where M; and M, depend only on n and [. Estimates (3.77) and hence (3.76)
follow from (3.74), (3.78) and (3.79). O

Remark 21 From (3.77) it also follows that in (3.76) [ |f|dx can be replaced
Q

by || fllL, @) for any p € [1,00].



Chapter 4

Embedding theorems

The main aim of this chapter is to prove various inequalities related to those
of the form

1Dl < allfllwi@),

where o € NI, |a| <1 (DY f = f) and ¢; > 0 does not depend on f.
These inequalities may be also presented in an equivalent form as the so-
called embedding theorems.

4.1 Embeddings and inequalities

We start with the consideration of the notion of a continuous embedding as it
relates to the general theory of function spaces, which are, in the framework of
this book, normed or semi-normed vector spaces.
First let Z; and Z5 be normed vector spaces. We say that Z; is embedded
in Zg if
Zy C Zs. (4.1)

The identity operator I, considered as an operator acting from Z; in Zs:
Vf € Zl If == f, I: Zl — ZQ, (42)

which is possible because of (4.1), will be called the embedding operator corre-
sponding to the embedding (4.1).

Definition 1 Let Z; and Zy be normed vector spaces. We say that Zy is con-
tinuously embedded in Zy and write

71 S Zy (4.3)
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if, in addition to (4.1), the corresponding embedding operator is continuous,
i.e., there exists co > 0 such that Vf € Z;

1fllz < el fll - (4.4)

In the cases we are interested in relations (4.1) and (4.3) are equivalent,
which follows from the next statement.

Lemma 1 Let Z; and Zy be Banach spaces such that Zy C Zy. Suppose that
the corresponding embedding operator is closed, i.e., for any fi. € Z, where
keN, gy € Z) and g5 € Zy

im fy=g1 in Zy, lm fr=go in Zy = ¢1=g (4.5)
Then (4.4) is satisfied and, hence, Z1 CS Zs.

Idea of the proof. Since the embedding operator I : Z; — Z; is defined on the
whole Z; and is closed, by the Banach closed graph theorem the operator I is
bounded. O

Remark 1 Let us introduce for Banach spaces Z; and Z; such that Z; C Zs
one more norm on Z, namely, Vf € Z;

||f||Z12 = ||f||Z1 + ||f||Z2

It is a norm on Z; considered as the intersection of Z; and Z; . Condition (4.5)

is equivalent to the following: Z; is complete with respect to the norm || - || z,,.
Indeed, if { fi}ren is a Cauchy sequence with respect to || - || z,,, then
k lim ka — fullzy = Lm || fix — fm||Z2 = 0.
,M—00 k,m—o00

Consequently, by the completeness of Z; and Z, elements g; € Z; and gy € Z,
exist such that limy .o fr = ¢1 in Z; and limy .o fr = ¢2 in Zy. By (4.5)
g1 = g2 and, hence, klim || /e — g1]| z,, = 0. Conversely, let the above relations be

satisfied. Then { fx}ren is a Cauchy sequence with respect to the norm | - || z,,-
By the completeness of Z15 an element g € Z; exists such that

T (1fi = gllz, + 15 = gllz2) = 0.

From the uniqueness of limits in Z; and Zs it follows that ¢g; = g2(= ¢).

We note also that the closedness of the embedding operator [ is a necessary
and sufficient condition for the equivalence of (4.1) and (4.3). The sufficiency
is proved in Lemma 1, while the necessity is obvious, since the boundness of
implies its closedness.
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Now let Z; and Z, be semi-normed vector spaces and
O ={f€Zk: |fllz, =0}, k=12

Definition 2 Let Z; and Z5 be semi-normed vector spaces, which are subsets
of a linear space Z. We say that Z; is continuously embedded in Zs and write

2 Zs (4.6)

if 1
Z, C ZQ+91,

and the corresponding embedding operator I : Zy — Zy, defined by [f = g, is
bounded. ?

Remark 2 This means that Vf € Z; there exists g € Z, such that g is equiv-
alent to f in 77, i.e., g — f € 01, and there exists c3 > 0 such that Vf € Z;

gllz. < el fll - (4.7)

Remark 3 If ; C 6, (in particular, if Z; and Z, are normed vector spaces),
then Zy + 01 = Zs, ||g9llz, = ||fllz, and Definition 2 has the same form as
Definition 1.

Remark 4 Assume that the semi-normed vector spaces Z; and Zy possess the
following property:

the semi-norm || f|lz, makes sense for each f € Zy with || f|lz, < oo or
|fllz, = 00 and Vf € Z; there exists g € Zy such that

inf 11 = hllz, = lgllz (48)

In this case Definition 2 is equivalent to:
there exists c3 > 0 such thatVf € Z;

ok [If = hllz, < es[[ fllz.- (4.9)

I The sign + denotes the vector sum of sets.

2In this case, in general, the embedding operator is not unique. However, one may easily
verify that for different embedding operators, say I1 and I, Vf € Z; we have |1 f||z, =
112.f || z-
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Lemma 2 Let Z; and Zy be semi-Banach spaces such that Zy C Zy. Suppose
that for any fr € Z1,k € N, gy € Z1 and g, € Z

klim fx = g1 In Zy, klim fe=921In Zy = g1 — g2 € 0. (4.10)
Then (4.9) is satisfied.

INdea of the proof. Apply the Banach closed graph theorem to the factor spaces
= 7,/6, and Zy = Zg/é’l and 3 the embedding operator I:72, — Z,.0
Pmof We recall that Z; is a Banach space and Vf e Z

1Fllg, = £z (4.11)
where f is an arbitrary element in f. (If fi, f, € f, then | fi]| = || f2]|.) As for
Zs it is, in general, a semi-Banach space and

1Fllg, = Jof [1f = hllz, (4.12)

where f € f. (The right-hand side does not depend on the choice of f € f. )
From Z, C Z, it follows that Z, C Z, and by (4.10) the corresponding
embedding operator I is closed. For, let fk € Zl, keN g € Zl,gz € Z2 and

lim fo=aq in 7, Lim If = lim fo=0o in Zs.
Suppose that fi € fi, g1 € g1 and go € Go. Then fr — g1 € fi — G1, fr— g2 €
Jr — g2 and

Jim [ = gillzy =0, lim (inf [ fi — g2 = hflz,) =0
Therefore, Vk € N there exists h;, € 6, such that klim Il fe — 92— hkl| z, = 0. Thus

fx — hx — g2 in Zy as k — oo. Moreover, since || fr — hy — g1llz, = |.fx — 91| 2,5
we also have that f, — hy — ¢1 in Z; as k — oo. By (4.10) g1 — g2 € 0; and,
hence, ¢1 = go.

Now by the Banach closed graph theorem the operator I is bounded: for
some ¢4 > 0 we have ‘v’f €7,

1Fllg, = 11fllg, < cullfllg,
Consequently, by (4.10) and (4.12) the desired inequality (4.9) follows. O

3 The spaces ZL and 22 consist of nonintersecting classes f C Zy, f C Zs respectively,
such that fi1, fo € f <= f1 — fo € 61, f1 — fo € 05 respectively.
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Corollary 1 If, in addition to the assumptions of Lemma 2, (4.8) is satisfied,
then Z1 C Zy is equivalent to Z1 & Zs.

Idea of the proof. Apply Remark 4. O

Corollary 2 In addition to the assumptions of Lemma 2, let
01 - 92. (413)
Then there exists cs > 0 such that Vf € Z,

1fllz < s 11z (4.14)

Idea of the proof. Since 6, C 605, we have ||h||z, = 0 for each h € 6. Furthermore,
Vf € Z; we also have ||f — h||z, = || ||z, and (4.9) coincides with (4.14). O

Corollary 3 Let Z be a semi-normed vector space, equipped with two semi-
norms || - |1 and || - |2 and complete with respect to both of them. Moreover,
suppose that for any fr, € Z, k € N, g1,90 € Z

Jim | fy —gilh =0, lm [[fy =golla =0 = g1 —g2€bNb.  (4.15)
Then the semi-norms || - |1 and || - ||2 are equivalent * if, and only if,

Suppose, in particular, that Z is a normed vector space, equipped with two
norms || - |1 and || - ||2 and complete with respect to both of them. If for any
kaZ, kGN, 9179262

Jm [|fe =iy =0, lm [[fy = gofl =0 = g1 =g, (4.18)
then the norms || - ||1 and || - |2 are equivalent.

41.e., there exist cg,c; > 0 such that Vf € Z

¢ [[fllz < [ fll < ezl fll2- (4.16)
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Idea of the proof. Necessity of (4.17) follows directly from (4.16). To prove
sufficiency apply Corollary 1 to the semi-Banach spaces Z; and Z5, which are
the same set Z, equipped with the semi-norms || - ||; and || - || . O

Now we pass to the case of function spaces. Let €2 C R™ be an open set.
Moreover, suppose that Z(€2) is a semi-normed vector space of functions defined
on (2. Denote

Oz0) ={f € Z(Q): ||fllz) = 0}
and
0(Q2) ={f: f(z) =0 for almost every = € Q}.

All function spaces Z(€2), which are considered in this book, possess the
following property:

Z(2) S LY(Q), (4.19)
i.e., Z(Q) C LP(Q2) and for each compact K C ) there exists cg(K) > 0 such
that Vf € Z(2)

, nt 1f = Pl < es(K) || £l z@)- (4.20)
€z

For many of the function spaces considered

0z(0) = 0(4). (4.21)
If this property is satisfied, then (4.20) takes the form
£ 11z 0y < es(K) L fll - (4.22)

Remark 5 If two semi-normed vector spaces Z;(§2) and Z(2) satisfy (4.19)
and 07, (), 0z, C 0(Q2), then for any fi, € Z:(Q) N Z5(Q), k €N, g1 € Z1(9)
and go € Z5(2)

klim fr =91 in Zl(Q),klim fe=goin Z5() = g1 ~ g on Q)
e, g1 — g2 € 0(2).

Lemma 3 Let Q2 C R" be an open set and let Z1(Q2) and Z5(2) be semi-Banach
function spaces satisfying (4.19) and (4.21). If

Z1(2) C Zy(Q) (4.23)
then there exists co > 0 such that Vf € Z1(§2)
11l zo@) < o llfllz @) (4.24)

and, hence, (4.23) is equivalent to

71(Q) S Zo(9). (4.25)
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Idea of the proof. Apply Corollary 2. O
Proof. If fr € Z1(Q), k € N, g1 € Z1(Q), g2 € Z5(R2), and

khm fr =1 in Z1(Q), khm fr = g2 in Z5(Q), (4.26)
then by (4.22)
klim fr = g1 in L'%(Q), klim fr = g2 in LY%(Q) (4.27)

and g — g2 € 0(2) = 07,(q). Hence, (4.24) follows from (4.13)

From (4.21) it follows that Z(2) + 0z, = Z2(2). Moreover, for each
g € Z(2), for which g— f € 07, () we have ||g]|z,@) = || f|| z.(2). Consequently,
(4.23) coincides with (4.6), (4.24) coincides with (4.7) and, hence, (4.23) is
equivalent to (4.25). O

Corollary 4 Let Q@ C R" be an open set and Z(2) a semi-normed vector
space equipped with two semi-norms and complete with respect to both of them.
Moreover, suppose that conditions (4.19) and (4.21) are satisfied. Then these
semi-norms are equivalent.

Idea of the proof. Apply Lemma 3 to the semi-normed vector spaces Z1(£2) and
Z5(2), which are the same set Z(£2), equipped with the given semi-norms. O

Finally, we collect together all the statements about equivalence of inequal-
ities, embeddings and continuous embeddings in the case of Sobolev spaces.

Theorem 1 Letl € NNm € Noym < [,1 < p,q < 00 and let 2 C R™ be an
open set.
1. The continuous embedding

WLHQ) S W(Q), (4.28)

i.e., the inequality
[ fllwy ) < a0l fllwee (4.29)

where c19 > 0 does not depend on f, is equivalent to the embedding
WLQ) Cc W(Q). (4.30)
2. The continuous embedding

WiQ) S G Q), (4.31)
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i.e., the statement: ¥V f € W)(Q) there exists a function g € Cy"(Q) such that
g~ f on € and

lgllem@) < en I flwie (4.32)

where ¢11 > 0 does not depend on f, is equivalent to inequality (4.29) and
embedding (4.30), where ¢ = oo, and in (4.29) cio|,_,, = c11-

3. If inequality (4.29) holds for all f € WL(Q) N C=(Q), then it holds for
all f € Wzﬁ(Q)

Idea of the proof. Apply Definition 2 and Lemmas 2 and 3. To prove the
equivalence of (4.32) and (4.29) when ¢ = oo apply Theorem 1 of Chapter 2
and the completeness of the spaces under consideration. If m > 0 apply also
the closedness of the differentiation operator D* where |a| = m in Cy(2). To
prove the third statement of the theorem again apply Theorem 1 of Chapter
2, the completeness of W;”(Q) and, for m > 0, the closedness of the weak
differentiation operator D where || =m in L,(Q2). O

Proof. 1. Clearly, (4.30) follows from (4.28). As for the converse, it is a direct
corollary of Lemma 3, because Oy1(q) = Owym (o) = 0(92).

2. Furthermore, (4.31) implies (4.29) with ¢ = oo, which, by the first
statement of the theorem, is equivalent to (4.30) with ¢ = co.

Let us prove that (4.29) with ¢ = oo implies (4.32) where c11 = cig|,_ -
First suppose that m = 0 and 1 < p < oo. Then Vf € W/(Q) there exist
fr € C=(Q)NW(Q), k € N, such that fr — f in W/(Q) — see Theorem 1 in
Chapter 2. By (4.29) with ¢ = oo, fr € Cp(2),k € N, and Vk,s € N

1fx = Fsllew) = 1fi = fsllw) < cnllfi = fllwio

(see footnote 4 on page 12). Hence, {fi}ren is a Cauchy sequence in Cy(£2).
Since Cp(2) is complete, there exists g € Cp(Q2) such that fr — ¢ in Cp(2) as
k — oco. Since both W}(Q) and C(Q) are continuosly embedded into Li*(€),
it follows that g ~ f on €2 — see Remark 5.

If m = 0 and p = oo, then Vf € WL (Q) there exist fr € C®(Q) N
WL (Q),k € N, such that f — f in W.(Q) for r = 1,...,1 — 1 and
I fellwe @ — Ifllwe as & — oo (see Theorem 1 in Chapter 2). Since
| fr = fsllewy = [1fe = fsll i)y {fr}ren is again a Cauchy sequence in Cy(2).
The rest is the same as for the case in which 1 < p < oo.

If m >0 and 1 < p < oo, then the same argument as above shows that
there exist h € Cp(2) and h, € Cy(Q2) where |a| = m such that f — hin Cy(2)
and D®fy — h, in Cyp(R2). Since the differentiation operator D* is closed in
Cp(Q), it follows that h, = D*h. Hence h € CJ*(Q2) and fr, — ¢ in CJ*(Q).
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Finally, for all m > 0 and 1 < p < oo, we take f = f; in (4.29) where
g = oo and passing to the limit as k — oo we get (4.32) since

lgllem@ = lim [l fellom@ = lm {| fellwz )

< ¢ klljf)lo ||fk||W;,(Q) = 010||f||W,£(Q)'

3. The proof of the third statement of the theorem is analogous. O

4.2 The one-dimensional case
We start with inequalities for intermediate derivatives.

Theorem 2 Let —co<a<b<oo,l€ N and 1 <p<oo.
1. For each function f € W(a,b) andm =1,...,1—1

1S @) < crn | fllwicas - (4.33)

where cio > 0 depends only on | and b — a.
2. If —o<a<a<pf<b<oo, then form=1,...01—1

1S N 2,0y < e1s (1 Ea@s) + 1FP 2, 0m)s (4.34)

where ci13 > 0 depends only on I,b—a, 3 — « and f is such that the right-hand
side 1s finite.

Remark 6 If b—a = oo and f — «a < oo, then inequality (4.34) does not hold.
This follows by setting f(z) = 2% where m < k < L.

Idea of the proof. Apply inequality (3.21) and Remark 5 of Chapter 3. O
Proof. Let —0o < a < b < oo. From (3.21), by Holder’s inequality and Remark
5 of Chapter 3, it follows that
15 ptan < M1 (5= ) (8 = @) Fllistay + 0 = ) 1 zyi0m)-
(4.35)

where M; depends only on n. This inequality implies (4.34).

Now let b — a = oo. Say, for example, —oco < a < oo and b = oo. If
1 < p < oo, then by (4.33)

=

m m p
£ 2, ar00) =<Z I1£S )||]2p(a+k—1,a+k)>
k=1
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S =

l
<M (YU icranny + N i)

00
k=1

1
= M1 ey + 1D wo)PS Mo (1 o) + 10

Here M, is the constant ¢i5 in (4.33) for the case in which b —a = 1.
If p = o0, then

||f1(um) ||Loo(a,oo) = sup Hfl(vm) HLoo(GH-k—l,a-l—k)
keN

< M, iug(HfHLoo(aJrk—l,aJrk) + ||f15;l)||Loo(a+k—1,a+k))
€

< M, (HfHLoo(a,OO) + ||fl(Ul)||Loo(a7oo))’ U

Corollary 5 Let 1 < p < oo. The norm

!
Z Hfl(um)HLp(a,b) (4.36)
m=0
is equivalent to || f|lwiapy for any interval (a,b) C R. The norm
£z + 18N 2o (4.37)
is equivalent to || fllwiap if —00 <a<a<f<b<oo.
Idea of the proof. Apply inequality (4.33) and inequality (4.34) with m = 0. O
Corollary 6 Let —co <a<b<oo, leNand1<p<oo. Then
wh(a,b) = W(a,b). (4.38)

(Ifb—a= o0, then 1 € wé(a,b) \ Wlﬁ(a, b). Thus, the embedding W]ﬁ(a, b) C
wh(a,b) is strict.)

Idea of the proof. If f € wé(a,b), then f € L'*(a,b) , and Corollary 5 implies
(4.38). O

Remark 7 Equality (4.38) is an equality of sets of functions. Since 0y (a5 7#
Owi(ap), the semi-norms || - [lut@s) and [ - |lwiap are not equivalent. (See
Corollary 3 of Section 4.1.)
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Corollary 7 Letl,m e N, m <l and 1 < p < 0.
1. If —oo < a < b < oo, then the validity of inequality (4.33) with some
c12 > 0 independent of f is equivalent to the validity of

1 eaa < s (0= @) W lzptam + 0= ) 1Ol ryam ), (4:39)

1S oty < 1€ = (| Flleotas) + € 1F P L, ) (4.40)
for® 0 <e<cpulb—a)l™™ and
m 1_m m
£S5 Lptay < 6 1 F1l, Ly WA (4.41)

with some cy4,c15 > 0 independent of f,a and b and some c16 > 0 independent

of f.
2. If b—a = oo, then inequality (4.33) is equivalent to

l

1S e < iz €7 | fllnpan + € 1FP Lo (4.42)
for 0 < e < o0,

1—m

m m -1 m
1 o < 2 [ () | 1A E MO e (443)

b
m
T

; Tq1-p
Jisrar<a[(F) (=) ) (s 1op) s @ay

a

if 1 <p<ooand

b m
fisepae i ()" 0-m)")

for0<e<ooifl <p<oo.

(1

—p)l b b
l—m m
6‘l—m/|f|”d:v+6/|fff)|pdﬂf
(

4.45)

m
1

5 One may consider 0 < ¢ < &g, where ¢ is an arbitrary positive number. In this case
c15 > 0 depends on g as well. It also follows that Ve > 0 there exists C(e) such that

||f751m)||Lp(a,b) <CE)fllz,ap +€ ||f75)l)||L,,(a7b)-

Note that one cannot replace here C(e) by € and ¢ by C(e). (If it were so, then taking
f(z) = 2™ and passing to the limit as ¢ — 0+ would give a contradiction.)
From (4.40) it also follows that

£ N 2y @y < MG = @)™ + 1) [ fllwans

where M > 0 is independent of f,a and b.
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Idea of the proof. 1. Changing variables reduce the case of an arbitrary interval
(a,b) to the case of the interval (0,1) and deduce (4.39) from (4.33). For
O<d<b—aset N=[=+16 =" aqy=a+d(k—1),k=1,...,N+1
Apply the equality ©

1

11yt (Z 12 oonsn ) (4.46)

and the inequality 2 < & < § to deduce (4.40) from (4.39). Minimize the
right-hand side of (4.40) with respect to ¢ in order to prove (4.41). Finally,
note that inequality (4.39) follows from (4.41) and the inequality

oyl < a®(1l — a)' "z +y), (4.47)

where x,y >0, 0 < a < 1.

2. Apply (4.33) to f(a+d(x —a)) if b=o00,to f(b—3(b—1x)) ifa=—oc0
or to f(dx) if a = —00,b = 0o where § > 0, and deduce (4.42). Minimize the
right-hand side of (4.42) to get (4.43). Note that (4.33) follows from (4.43)
and (4.47). Raise (4.43) to the power p and apply (4.47) to establish (4.44).
Deduce, by applying dilations once more, (4.45) from (4.44). Minimizing the
right-hand side of (4.45), verify that (4.45) implies (4.43). O
Proof. 1. Setting y = 7= we get

£ amy = (0= @)7 ™ |(f(a + (b — @)™ |1, 0

< Mi(b—a)» (| f(a+y(b = )|z, + 1(F(a+ 5 = )Y l1,01)

= My((b = a) " flLyapy + (0= @) " £ Ly 0),

where M is the constant cj5 in (4.33) for the case in which (a,b) = (0, 1).
Moreover, for 0 < § < b—a and 1 < p < oo from (4.46), (4.39) and
Minkowski’s inequality it follows that

N

1 eyta < 1 (306 W ratmany + 051D Do)

k=1

B =

<cu (51_m (i ||f||ip(ak,ak+1)> 5l m(Z 1 l)HLp(ak ak+1)) >
k=1

6 If p = oo this means that Il ap) = rrllax 1flLo (ansanit):

.....
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<2 (| fllnpas + 0 N FD N L))

Setting € = ¢140'™™ we establish (4.40). The minimum of the right-hand side
of (4.40) is equal to

1-= m 1-=

m 1-m\—1 T
as (P TA=T7)"1) ||f||Lp(é,b) ||fz(ul)||Llp(a,b)

and is achieved for ¢ = ¢, where

1_m

1= (7% s |l epamy 1L )"

If e, < (b— a)™™, then, setting ¢ = &, in (4.40) we get (4.41). Now let
g1 > (b—a)=™. This is equivalent to

18N Lpaty < 72 15 (b= a) 7| f ]| Ly(as)-
Since
1-m m 1-m m
HfHLp(a,b) < Hf”Lp((ll,b) Hf”vlvzl)(a,b)v ||f15;l)||Lp(a,b) < qugjl)HLp((ll,b) Hf”v%/[,(a,b)’

inequality (4.39) with € = ¢14(b — a)'™™ implies that

m -m —a )
1787 oy < Ma((® = @)™ + D)l ey 16 Dy

where M, depends only on [, and (4.41) follows. In its turn (4.41) and (4.47)
imply (4.33).

2. Let b —a = o0, say a = —00,b = co. Given a function f € Wé(—oo,oo)
and 6 > 0, by (4.33) we have

1

A om0y = 6N CFE)E e
< e 67 (1708) 1000 + 1 GD)Y 1000

= etz (71l o) + 87 1Dy e

Setting c120'™™ = ¢, we get (4.42).
The rest of the proof is as in step 1. O

Corollary 8 Letl,m € Nym < [. Then

m 1_m m
( ) ( )

and the constant 1 in this inequality is sharp.
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Idea of the proof. Prove (4.44) when p = 2, a = —00, b = oo by using Fourier
transforms and Parseval’s inequality, and apply Corollary 7. O
Proof. By Parseval’s equality and inequality (4.47)

£ —oo00) = IF (LI (—o000) = / EM(FF)EI dg

o0}

< (m) u—%f‘/u+f%u ) de

—0o0

= (=3 (1P o + TP o)

m

= ()T =T (o) + D o )

m

Since €2 = ()T (1 — ™)1 (1+£%) if, and only if, || = ()7 = & we set

f = fsa where fs(l‘) - (Fﬁl(X(éo—E,éo-i-a)))(x) - \/%% e iot, Passmg to the
limit as ¢ — 0+ we obtain that (2)7 (1 — 2)!~7 is a sharp constant. O

Remark 8 Let [,m € N, m <[ and 1 < p < oco. The value of the sharp
constant ¢, ;, in the inequality

1N 2y oe0e) < Cmtn Lol coey PP ooy (4.49)
is also known in the cases p = oo and p = 1:
o Ky
m,l,1 = Cm,l,co = W7

where for j € N

o0

4 1 4 (1)
Ky 1 =— D m———— Ky =— —_—
25—-1 7'[‘; (2i—|—1)23 3 27 77‘; (2l'_|_1)2j+1

The following inequality holds
7
1= Cm,1,2 < Cm,lp < Cml1 = Cm,l,c0 < 5

Thus, Vf € Wé(—oo, o0) for each 1 < p < o0

m m
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Remark 9 We note a simple particular case of (4.49):

1 1
1ol o0y < V2IFIZ L oo oey £l (—oo00) (4.51)

where v/2 is a sharp constant. One can easily prove this inequality by applying
the integral representation (3.27) with a = x +¢,b = x — ¢,¢ > 0. It follows
that for each function f whose derivative f’ is locally absolutely continuous

(@) < 2 1 lzee(-c000) + 5 17 | Loc(—00,00)-

We get the desired inequality by minimizing with respect to € > 0 and applying
Definition 4 of Chapter 1.
In the sequel we shall need a more general inequality: for 1 < p < oo

(1- 1) (1+1 -)
1 fo | £ (—00,00) <2Hf||Lp —0,00) ||f”||Lp )" (4.52)

To prove it we apply Holder’s inequality to the integral representation (3.24)
and get

@) < 'l @o) | fll @y + 1A @ L, @)l foll 2

almost everywhere on (a,b). Choosing w in such a way that [|w'||z () is min-
imal, we establish that ”

(b—a)? — |2z — (a+b)P

wlx)=(1+1 1+1
@) = 0+ h e < by
and )
W' llz,, @y =2 (p+1)7.
Moreover,
’ 1 +b
0t Jw(u)du < ( (1+2)4=g, fora<y< e,
‘A< 2 y)‘ =30
fu) ) du < ( —i—)b—y for‘%bgygb,
y
b
"Euler’s equation for the extremal problem [ |w’( 2)|P dz — min, f x)dr = 1 where

1 < p < 0o has the form (|’ (z)[”'sgne’(z))’ = X. So, w'(z) = [A1z + /\2|p_1sgn()\1x + A2).
Here A\, A1, A2 are some constants.
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and

1 1
o Y

A2, o < B0+ DD T 0=,

Taking a =z +¢,b=x — ¢, we get

/()] < (B2 75| ]y —oo0)

_1 141
+2 p(l + %)(p, + 1) plgl P ||qu||Lp(foo,oo)

almost everywhere on (—oo,00). By minimizing with respect to e > 0 and
applying Definition 4 of Chapter 1 we have

La-b) L+l
1ol zeet=oo00) < Ap IFNIZ, (e o0y 1l 2, (.00

where 8

49 1\p\3y7
Ap:( ,p (p+ >P>2p <V2e: < 2.
p+1\p+1

Remark 10 By (4.52) and (4.50) it follows that VI € N,[ > 2,
1)

1
- - > {1s
<2(+umpwwnfn% m@) W”MAwm
(- 1+
< VIS IO (4.53)

Remark 11 Let im e N,m <l and 1 <p <oo. Then Vf € Wé(O, 00)

1-m=

£ | z000) < —8’ 11 oo I 00 (4.54)

This can be proved with the help of the extension operator 15, constructed in
Section 6.1 of Chapter 6 (see Remark 1):

1-m

175" Nz 0.000 < NT)S” [np(-0000) < 5 ||T2f||L Loy (T2 || (—00,00)

2
8 This inequality is equivalent to g T < ( yitt )p(l — %)p, where v = V/2et, which is
clear since for p > 1

_lp
2p12

IN
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T 1-m m
< 28U ey IONT ey
It can be proved that, in contrast to the case of the whole line, the best constant
in the case of the half-line for fixed m tends to oo as | — oo. To verify this one
may consider the function f defined by f(z) = (V1! — z)! for 0 < 2 < /1!, and
f(x) =0 for 2 > VII.

Corollary 9 Let —coc <a<b<oo, ImeN m<landl <p<oo. Ifa
sequence { fi}ren is bounded in W'(a,b) and converges in L,(a,b) to a function
[, then it converges to f in W)"(a,b).

Idea of the proof. Apply inequalities with a parameter (4.40) and (4.42) or

multiplicative inequalities (4.41) and (4.43). O

Proof. Let ||fk’||WIl,(a,b) < K for each k € N and f;, — fin L,(a,b) as k — oo.
1. By footnote 5 it follows that Ve > 0 there exists C'(¢) such that

1EE™ N oy < CE) N Fllzpapy + € IFP L, (ap)-

for each f € Wé(a, b). Consequently, Vk,s € N

1CF)e™ = (£S5 Ny < CE) I fx = fill yan) + 22K

Given 6 > 0 we choose € in such a way that 2¢ K < §. Since f; is a Cauchy

sequence in Ly(a,b), there exists N € N such that C(e) || fx — fsllz,ap < &

if k,s > N. Hence, Yk, s > N we have ||(f,)%" — (fs)gum)HLp(mw < 0, ie., the
sequence ( fk)ﬁv’”) is Cauchy in L,(a,b). Because of the completeness of L,(a,b)
there exists g € L,(a,b) such that (fk)&,m’ — gas k — oo in L,(a,b). Since the
weak differentiation operator is closed (see Section 1.2), g is a weak derivative

of order m of f on (a,b). Consequently, fi — f in W)*(a,b) as k — oo.
2. By (4.41) and (4.43) it follows that Vk,s € N

m m 1- T
IR = (Fa g an < M fu = Fill, by 1= Fillinan

m -7
< MQE)T | fr = fsllz, o) -

where M depends only on [. Consequently, we can again state that ( fk)q(um) is

a Cauchy sequence in L,(a,b). The rest is the same as in step 1. O

Theorem 3 Let —0 < a <b<oo,l e NmeNyym<land1l <p < oo.
Then the embedding
l m
W(a,b) & W' (a,b)
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is compact, i.e., the embedding operator I : Wé(a, b) — W;"(a,b) is compact. 9

Idea of the proof. Let S be an arbitrary bounded set in W[i(a, b). In the case
m = 0 consider any bounded extension operator T' : Wl(a,b) — W}(—00, c0).
(See Section 6.1.) For 6 > 0 set fs = As(Tf), where Ay is a mollifier with
a nonnegative kernel. Prove that there exists M; > 0 such that Vf € S and
Vo >0

1f = fsllz,(ap) < Myo. (4.55)
Moreover, prove that there exists M(d) > 0 such that Vf € S and Vz,y € [a, b]

[fs(@)] < Ma(6), [fs(x) = fs(y)|l < Ma(0) & —yl. (4.56)

Finally, apply the criterion of compactness in terms of e-nets and Arzela’s
theorem. ! In the case m > 0 apply Corollary 9. O
Proof. By (1.8) we have

1f = fosll Loy < [[As(Tf) = TfllL,(—o00,00)

< sup I(TF) (@ + h) = (TF)(@)]] Ly (~o0.00)-

By Corollary 7 of Chapter 3 and inequality (4.33)
(TF) @+ h) = (TH) @)Ly (-c000) < I )]l y(0.00)

< M |h[|Tflwi(—coc0) < Ma Bl [ fllwiap)

where M3 and M, are independent of f.
Since S is bounded in Wjﬁ(a, b), say HfHsz)(a,b) < K for each f € S, inequal-
ity (4.55) follows. Furthermore, by Hélder’s inequality Va € [a, b]

@l <5 [o(S5EIENwId < 2207 1T e

< Ms(9) || fllwiapy < K Ms(6)

9 This means that each set bounded in Wé(a, b) is compact in W)"(a,b) (= precompact),
i.e., each of its infinite subsets contains a sequence convergent in W;"(a, b).

0 Tet QO C R be a compact. A set S C C(Q) is compact in C(§) (= precompact) if, and
only if, S is bounded and equicontinuous , i.e., Ve > 0 39 > 0 such that Vf € S and Vx,y € Q
satisfying |z — y| < § the inequality |f(x) — f(y)| < € holds.
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and the first inequality (4.56) follows. Here M5 = r\n@c\u(z)\ and Mg() is
z|<1

independent of f.
Moreover, Vz,y € [a, D]

|fs5(x) = fs(y)| =

[ () e

1 T —U y—u
< S J——
<3 () ()|l d
(z—0,2+0)U(y—0,y+9)
M|z — 1
< 7 |52 vl (407 T fllL,@ < Ms(8) [z =yl I fllwiap < K Ms(d) |z —y|

and the second inequality (4.56) follows. Here M7, = Tnlax |w'(2)] and Mg(d) is
z|<1

independent of f.

Given € > 0 by (4.55) there exists 6 > 0 such that ||f — fs||z,@p < 5 for
each f € S. Then an S-net for the set S5 = {fs : f € S} will be an e-net for S.
If we now establish the compactness of S5 in L,(a,b) it will imply the existence
of a finite $-net for Ss. This means that we may construct finite e-nets for S
for an arbitrary € > 0, which implies that S is compact in L,(a,b).

Finally, it is enough to note that from (4.56) it follows that the set Ss
is bounded and equicontinuous in Cla,b]. Hence, by Arzela’s theorem S; is
compact in C[a,b] and consequently in L,[a,b] since convergence in C|a,b]
implies convergence in Ly[a, b].

2. Let m > 0. By step 1 each infinite subset of S contains a sequence
{fr}wen convergent to a function f in L,(a,b). By Corollary 9 f € W;"(a,b)
and fy — f as k — oo in W)*(a,b). O

Example 1 If b — a = oo, then Theorem 3 does not hold. Let, for example,
(a,b) = (0,00). Suppose, that ¢ € C§°(—o0,00) is such that suppy C [0,1]
and ¢ # 0. Then the set S = {p(z — k)},y is bounded in W}(0,c0) since
lo(z — k)llwio.00) = ll#llwiec)- However, it is not compact in W;"(0,00)
because for each k,m € N,k #m

1
lo(z — k) —o(z —m)llwpo.) = oz = k) = o(z —m)|L,0.0) = 27

(Consequently, any sequence in S, i.e., {o(x —ks)} is not convergent in

w0, 00).)

seN?
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Next we pass to the embedding theorems in the simplest case of Sobolev
spaces Wpl(a, b). In this case it is possible to evaluate sharp constants in many
of the relevant inequalities.

Theorem 4 Let —o00 < a < b < oo and 1_§ p < o0o. Then each function
fe Wpl(a, b) is equivalent to a function h € C(a,b). Moreover,
1) if —oo < a < b < oo, then

=

_1 — L
1 lLactary < (0= a) P fllLp@ey + (@' + 1) 7 (0= @) | fulliy@py  (4:57)

and, consequently,
[ ety < crr llfllwpap) s (4.58)

where

‘ =

1
ol

(b—a)7};

ey = max{(b—a) 7, (¢ +1)77
2) if —oo < a<b< oo, then

L

b
@ - = [, < @407 0= 0¥ Il @59

3) if —oo < a <b=o0, then lim h(z)=0 and

r—+00
_1
HfHLoo(a,OO) < ()" Hf”W;(a,OO); (4.60)
4) if (a,b) = (—00,00), then lim h(z) = hrf h(z) =0 and
1, o
HfHLoo(—OO,OO) <277 (p)7 ||fHW§(700,00)' (4.61)

All the constants in the inequalities (4.57), (4.59)—(4.61) are sharp. The
constant cy7 in inequality (4.58) is sharp if b—a < (p'+1)7.

Remark 12 For p = 1 inequality (4.57) takes the form

1 mtary < (0= @) M I llzs @ty + IF0llzswi)- (4.62)
We also note that for p = 1 inequalities (4.60) and (4.61) are equivalent to
“fHLoo(a,OO) < ||f1/u||L1(a,<>0) (4-63)
and
||f||Loo(7OO»OO) < % ||f1lu||L1(*OO,OO) (4-64)

respectively.
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Idea of the proof. Apply Definition 4 and Remark 6 of Chapter 1. In order to
prove inequality (4.59) apply the integral representation (3.6). Deduce (4.57)
and (4.58) from (4.59). Inequality (4.63) follows from (4.62) and implies in-
equality (4.64). Apply (4.63) and (4.64) to |f|P and deduce (4.60) and, respec-
tively, (4.61). Set f = 1 to prove sharpness of ¢i7 in (4.58) and of the constant
multiplying || f| 2, in (4.57). Set f(z) = (z — a)” to prove sharpness of the
constant in (4.59). Set f(x) = f.(z) =1+ e(x — a)? and pass to the limit as
¢ — 04 to prove sharpness of the constant multiplying || f,, ||z, in (4.57).
Set f(z) = e == in (4.60), f(x) = e **l in (4.61) respectively, and choose
an appropriate p to prove sharpness of the constants in those inequalities. O

Proof. 1. Let f € W} (a,b). By Definition 4 of Chapter 1 there is a function
h equivalent to f on (a,b), which is locally absolutely continuous on (a,b).
Moreover, if a > —oo or b < oo, then the limits lim h(z) and lim h(x) exist.

r—a+ z—b
If a = —oo0 or b = oo, then as will be proved in steps 3—4 lim h(x) = 0,

lim h(z) = 0 respectively. Hence h is bounded and uniformly continuous on

(a,b), ie., h € C(a,b) for all —o0o < a < b < oo.
2. By applying Hoélder’s inequality to (3.6) we obtain that for almost every
z € (a,b)

1@ =5 [

1
7

<(b—a)? </j(y —a) dy + /:(b —y)” dy) TNl @)

_1 / / L
=@ +1) 7 (0—a)@—a) "+ 0 -2 L@ (4.65)
Since rilaicb[(z —a)" 4 (b— x)p'“]i = (b— a)Hi we have established (4.59).

Inequality (4.57) and, hence, (4.58) follow since

1@ <] [ W]+ 5@ - = [ rw)ay

_1 1
< 6= @) o + | F0) = 5= [ F)ao)
3. By letting b — +oo in (4.62) we obtain (4.63). Moreover, Yz € (a, c0)

(@) < lletse = 1F oy < / ()] dy

x
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and it follows that lim h(x) = 0.

T——+00

4. If f € W} (—o0, +00), then
|h<x>|s/|f;|dy

and lim A(z) = 0 as well. Adding the last inequality and the previous one,

T——00

we get
h(@)] < 3 I1follzi(-co00)

and (4.64) follows since || f]| 1. (—s0,00) = ||Pllc(=00,00)-
5. If p > 1, then by (4.63) and Hélder’s inequality

1 1 1 B 1
1 taoe = NFPIE ooy < NOFPYIE, ey = 7 I AP AL

1 %4 1
S pr ||f||zp(a,oo)||f7fu||zp(a,oo)' (466)

We establish (4.60) by applying inequality (4.47). Inequality (4.61) is proved
in a similar way.

6. Setting f = 1 we obtain that the constant (b—a)fi multiplying || f||z,(a.)
in (4.57) and the constant ¢;7 in (4.58), if b —a < (p' + 1)5, cannot be dimin-
ished. If f(z) = (x — a)?, then one can easily verify that there is equality in
(4.59).

Now let us consider the inequality

_1
[l 2octap) < (0= a) 7| fllL,ap) + Al follL,@b)-

We prove that A > (p' + 1)_% (b— a)ﬁ, which means that the constant multiply-
ing || f,|| 2, (ap) in (4.57) is sharp. Indeed, set f(z) = f.(z) = 1+e(x—a)?”, where

/ _1 /L1
e >0, then || fellLo@py = L+e(b—a)", [|(f) L@ty = P’ (0" + 1) (b—a)" 7

1

and || f-||z,@p) = (b—a)? (1+e(p'+1)~(b—a)?’ +o(c)) as e — 0+. Consequently,

=

1
7

(b—a)v.

~l

1
a - b - o a —
A Z hm ”fEHLOO( 7b) ( , a) prEHLP( 7b) — (p/+ 1) P
=0+ 1(f2) |20y
Finally, for f(x) = e #==% inequality (4.60) with 1 < p < oo is equivalent to
1 1 1
the inequality 1 < (p’)fﬁpﬁ(;f% + p?"). For p = ]ﬁ the quantity ;f% + p’

is minimal and this inequality becomes an equality. Hence, for f(x) = e p i
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||

there is equality in (4.60). Analogously for f(z) = e #=T there is equality in
(4.61).

If p =1, then equality in (4.60) and (4.61) holds if, and only if, f is equiv-
alent to 0. This follows from inequalities (4.63), (4.64) respectively. However,
the constants 1 in (4.60) and % in (4.61) are sharp, which easily follows by
setting f(z) = e7#*=9) | f(z) = e #¥l respectively, and passing to the limit as
p— +oo. U

Remark 13 We note that for a function h, which is equivalent to f on (a,b)
and which is absolutely continuous on [a, b], inequality (4.63) may be rewritten
as

max |h(z)| < Var h.

a<z<oo [a,00)
The maximum exists since h(z) — 0 as * — +00. The inequality is clear since
for each function h of bounded variation Vz € [a, 00) we have

|h(z)| = lim |h(x) — h(y)| < Var h.
y—+oo [a,00)

It is also clear that for f € W (a,00) equality is achieved in (4.63) if,
and only if, f is equivalent to a nonnegative and nonincreasing function or a
nonpositive and nondecreasing one on [a,00). Similarly for f € W (—o0,00)
equality is achieved in (4.64) if, and only if, f is equivalent to a function,
which is nonnegative, nondecreasing on (—o0, x| and nonincreasing on [xq, 00)
for some zy or nonpositive, nonincreasing on (—oo,zo| and nondecreasing on
[z, 00).

Remark 14 Analysis of the cases, in which there is equality in Holder’s in-
equality, ' suggests the choice of test-functions, which allows one to state the
sharpness of the constants. In the case of inequality (4.59) we take z = b in
(4.65). If (f')? = My(z — a)” on (a,b) for some M; > 0, and, in particular,
f(z) = (x — a)”, then there is equality in inequality (4.65) and, consequently,
in (4.59). Let f > 0 and f' < 0 on (a,0) in the case of inequality (4.60). Then
by Remark 13 there is equality in the first inequality (4.66). Furthermore, if
(—f)P = My(f>~")" on (a,00), My > 0, then there is equality in the second

" Let f and g be measurable on (a,b) and 1 < p < co. The equality
1£9llzy a0y = 1 f 2,0ty 191 2,0 (a,0)

holds if, and only if, A|f|? = B|g|"" almost everywhere on (a, b) for some nonnegative A and
B.
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inequality (4.66). All solutions f € L,(a,00) of this equation have the form
f(z) = e~ =9 for some u > 0.

A more sophisticated argument of similar type explains the choice of test-
functions f(z) = 1+ &(y — a)” in the case of inequality (4.57).

Corollary 10 (inequalities with a small parameter multiplying the norm of a
derivative) Let —oo < a <b < 00,1 <p < 0.
1) If —0o < a < b < oo, then Ve € (0,e0], where g = ((p +1)71(b — a))

=

1|y < 0"+ 1) 77 7T 1 fllL @) + ElLfullLy - (4.67)

2) If —oo < a < b= 00, then Ve € (0,00)

1

£ty < ()€ 2T [ f lLptaco) + €l fullLytan- (4.68)

3) If (a,b) = (—o00,00), then Ve € (0, 00)

_ 1
HfHLoc(—O0,00) < (p/) 1(25) Pt ”f“Lp(—O0,00) +e€ HleuHLp(—O0,00)' (4-69)
The constants in inequalities (4.68) and (4.69) are sharp.

Idea of the proof. Apply the proofs of inequalities (4.40) and (4.42). Verify
that there is equality in (4.68) for f(x) = exp(—%) and in (4.69) for

1 —p
flz) = exp(—% |:E]> See also Remarks 1516 and 18 below. O

Corollary 11 (multiplicative inequalities) Let —oo < a < b < 00,1 < p < 0.
1) If —oo < a < b < oo, then

S 1
1| zoctary < s 1AL, @y 111 oy (4.70)

where cys = (b—a) 5 +ps ()7 (o + 1) < (b—a) 7 +2.
2) If =00 < a < b= o0, then

1 = 1

3) If (a,b) = (—00,00), then

1 %4 1
1 i mcee) < (BVF I ey IFRIIE oy (4.72)

The constants in inequalities (4.71) and (4.72) are sharp.
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Idea of the proof. Inequalities (4.71) and (4.72) have already been established
in the proof of Theorem 4. If f(x) = exp (—(x — a)) or f(z) = exp (—|z|), then
inequalities (4.71) and (4.72) become equalities. Apply the proof of inequality
(4.41) to prove (4.70). See also Remarks 15—-16 and 18 below. O

Remark 15 We note that for 1 < p < oo the additive inequality (4.60), the
inequality with a parameter (4.61) and the multiplicative inequality (4.71) are
equivalent. Indeed, (4.68) was derived from (4.60) with the help of dilations
and (4.60) was derived from (4.71) with the help of inequality (4.47). Finally
(4.68) implies (4.71) by minimizing the right-hand side of (4.68) with respect
to a parameter.

These inequalities are also equivalent to the following ones:

1l ey < (= 1) ( / (7P + |7, 7) da)t (4.73)

and, Ve > 0,

1 o aney < ((p— 1)pe / fPde+e / FPdo)r. (474)

For, (4.73) follows from inequality (4.71) raised to the power p and (4.47),
(4.74) follows from (4.73) with the help of dilations and (4.71) follows from
(4.74) by minimizing its right-hand side.

For the same reasons inequalities (4.61), (4.69), (4.72) and the inequalities

o0

_1 1 1
Il <200 =03 ([ (FPde s IR, (4T)
and .
i < (0037142 [1npas)” @70)

with an arbitrary € > 0, are equivalent as well. Equalities in (4.73)—(4.74),
(4.75) — (4.76) respectively, hold for f(z) = exp (—u(z—a)), f(x) = exp (—p|z|)
respectively, with appropriate choice of ;1. For example, in the case of inequality
(4.75) = (p— 1) 7.

Moreover, the listed inequalities for the halfline and for the whole line are
also equivalent. This follows from the equivalence of (4.73) and (4.75). For, if
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(4.73) holds, then, replacing = by 2a — =, we have also that

a

s < = DF [ (7P + 17 o)’

— o0

’BD—'

Consequently,
[ee]
1
—1)p’
WFIE oy = SR o+ IR o)) = 2 / (£ + £, )7) de

and (4.75) follows. Conversely, if (4.75) holds and f € W (a,00) we apply
(4.75) to the even extension F of f: F(z) = f(z), if x > a, and F(z) =
f(2a —x), if z < a. Then

o0 1
_1 1 3
1 tae) = Pl < 2750 = 15 ([ (FP 417,z

00
1

= - ([ + £yl

a

Remark 16 For p = 2 all the inequalities discussed in Remark 15 may be
deduced by taking Fourier transforms since by Parseval’s equality

. oo '
—00,00) — F_lF = — H / ewjg F d H
HfHLoo( ,00) H fHLOO(*OQOO) /o ( f) (£> 5 Loo(—00,00)

]. 1 1
< = I = 7= 0+ €50+ EPHENO) homo

(e 9] [e.9]

< ([avera) ([urnerernera)’
- %(Z (FSR+ 1P ) = %(Z (FF+ 17 )

Thus we obtain (4.75) for p = 2.
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There is an alternative way of using Fourier transforms, which leads to two
other inequalities 2

oo

oo < ([ 175 2P a)

—0o0

which hold for each ' f € W) (—00,00). The constant \/Li is sharp. Indeed,
by the properties of Fourier transforms and by the Cauchy-Schwartz inequality
we have

oo = [P (PO )|,
:LHF_1<1ig> (f+ f)‘ o (—00,00)

V2T

_\/LQ_W H/(F_1<1ilz'§)>(x_ v (F) + fuly dyH

(—00,00)

<——|r(=%) 1 % Fil oo

Ly (—00,00)

1f & full 2a(-o0.00)

Lo (—o00,00

o e

and the desired inequality follows. If f(x) = e~ 1#l, then all three inequalities
under consideration become equalities.
The second approach is applicable to the case 1 < p < 0o as well and leads

to the inequalities
/ P’

for each f € W, (o0, 00) since, for example,
VAR B )
|7 V(i) oy = VR 000 = V2R

If1<p<oo, f(z) = e for & > 0and f(x) = ert for z < 0, then these
inequalities become equalities.

=

HfHLoo( 00,00) < / -

Y e

OOOO

121f we square and add them, we obtain the previous inequality.
13 We note that this inequality does not hold for each function f, which is such that the
right-hand side is finite. (It does not hold, say, for f(x) = e¥®.)
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Remark 17 We note two corollaries of (4.65) under the supposition that f is
absolutely continuous on [a, b]:

@] < 0—=a) | fllny@p + @ + 1770 =7 || L@ (4.77)

(for p =1 (4.77) coincides with (3.8)) and

CL+b 1 1 1 1
1(557)] £ 0= 1 len + 5 0+ DO = )7 | e (479

Both constants in (4.77) are the same as in (4.57) and are sharp. This is proved
by using the same test-functions as in the case of inequality (4.57).

In inequality (4.78) both constants are also sharp. The test-function f =1
shows that the constant multiplying || ||z, is sharp. Moreover, the test-
functions f = f., where ¢ > 0 and f. is defined by f.(z) = 1 +¢(z — a)?, if
a<zx< aTH’, and f.(x) =1+¢e(b— a)p', if “T“’ < x < b, show by passing to the
limit as ¢ — 0+ that the constant multiplying || f||L, () is sharp.

Corollary 12 Letl € N;1 < p < o0 and —o0 < a < b < oo. Then each
function f € Wl(a,b) is equivalent to a function h € Ulil(a, b) and

9" Nletwn < el lwpap, m =001, (4.79)

where c19 > 0 is independent of f, i.e., Wé(a, b) S C"(a,b).
If a = —o0, then lim h(™(x) =0, if b = oo, then lim (™ (x) =0, where

m=0,...1—1. )
Idea of the proof. Apply Remark 6 of Section 1.3 and Theorems 4 and 2. O

Theorem 5 Letl €« Nm e Nogym < [,1 <p,g< o0 and —o0o < a <b< oo.
Then the embedding
l m
W(a,b) &S W (a,b) (4.80)

holds if, and only if, b —a < oo, or b —a = oo and p < q. Moreover,
this embedding is compact if, and only if, b — a < oo and the equalities m =
[ —1,p=1 and q = oo are not satisfied simultaneously.

Remark 18 Asin the simplest case discussed in Corollary 7, from the inequal-
ity, accompanying embedding (4.80),

£S5 Lgtasy < M fllwi ), (4.81)
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where M > 0 is independent of f, it follows that, for b — a < oo,

1

1S Nty < a0 (b= @) (6= &) " [ fllyam + 0= @IS lltaian).
(4.82)
where c9g > 0 is independent of f,a and b.
If ¢ > p, then, excluding the case in which m =1 —1,p =1 and ¢ = o0, it
also follows that

m+%—%
m N —m—141
1S N Loty < c2ne 70 || fllzyar) + LN Lot » (4.83)
where 0 < & < coo(b — a)lfmﬁﬁ and co1, ¢o9 > 0 are independent of f,a and
b, and
m m+ 1+1)
1A Ly < 23 ||f||Lp ||f||Wzab , (4.84)
where 93 > 0 is independent of f. Moreover, inequalities (4.81)—(4.84) are
equivalent.

The proof is similar to the proof of Corollary 7. One should notice, in
addition, that since ¢ > p, by Jensen’s inequality

(Z 1912 )" < (Z 190, o) = st

If b —a = oo, then inequality (4.83) holds Ve > 0 and in inequality (4.84)
| £llwya) can be replaced by || £i |z, (-

Idea of the proof. To prove (4.81) apply Corollary 12 and Hélder’s inequality if
b —a < oo and the inequality

1-2
q

||f||Lq a,b) < ”fHLp a,b) Hf” Loo(ayb) ?

where if b—a =00 and p < q. If b —a = 0o and g < p, set f(:z:):(l—l—xQ)fg,

)= > |kl Tre(z k), (4.85)

keZ: (k,k+1)C(a,b)

where ¢ € Ci°(R), ¢ # 0 and suppp C [0, 1], to verify that (4.81) does not
hold.

To prove the compactness apply Theorem 3 and inequality (4.83) or (4.84).
Ifb—a<oo,m=1[0—1,p=1and g = oo, consider the sequence

fr(z) = kllT](aTM + k(x _ ; b)), (4.86)
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where k € N,n € C§°(—00,00), suppn C (a,b) and n"Y(%2) = 1. Finally, if
b — a = oo, apply Example 1. O
Proof. The proof of the statements concerning embedding (4.80) being clear,
we pass to the proof of the statements concerning the compactness.

1. Let b —a < oo and f;, k € N, be a sequence bounded in W]ﬁ(a, b). Then
by Theorem 3 there exists a subsequence f,, s € N, and a function f € L,(a,b)
such that fy, — fin L,(a,b). If | —m — é + é > 0, then from (4.83) or (4.84)
it follows that fi, — f in W;(a,b).

2. Ifb—a<ooandl—m—%+%1:O,i.e.,m:l—l,pzlandq:oo,
then for the functions f; defined by (4.86) we have

kaHWf(a,b) =k 171 L @) + ”UU)HLl(a,b) < ”UHW{(a,b)

and klim f,ilil)(:c) = h(z), where h(0) = 1 and h(z) = 0 for z # 0. Con-

sequently, the sequence fy, k € N, is bounded in W¥(a,b), but none of its
subsequences f,, s € N, converges in Ly (a,b). Otherwise, for some subse-

quence fks7 llm kas - fko' Hc[a,b] = llm ”fks - fk'o' ”Loo(a,b) = O Hence? fks
S$,0—00 $,0—00

convergers uniformly on [a, b] to h, which contradicts the discontinuity of the
function h.

3. If b —a = oo, then Example 1 shows that embedding (4.80) is not
compact for any admissible values of the parameters. O

4.3 Open sets with quasi-resolvable, quasi-
continuous, smooth and Lipschitz bound-
aries

We say that a domain 2 C R" is a bounded elementary domain with a resolved
boundary with the parameters d, D, satisfying 0 < d < D < oo, if

Q={zeR":a, <z, <), TEW}, (4.87)

where!* diamQ < D,z = (2, ..,2, 1), W ={Z e R : g, <a; < by, i =
1,.n—1}, —oo<a; <b <oo,and

an+d < p(z), TEW. (4.88)

14 Since Q is a domain, hence measurable, by Fubini’s theorem the function ¢ is measurable
on W and meas Q = [ (¢(Z) — a,) dz.
4%
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If, in addition, ¢ € C(W) or ¢ € CY(W) for some | € N and D0l o) <
M if 1 < |a| <1 where 0 < M < oo or ¢ satisfies the Lipschitz conditon

(@) =@ < M|z —gl, z,5€W, (4.89)

then we say that €2 is a bounded elementary domain with a continuous boundary
with the parameters d, D, with a C'-boundary with the parameters d, D, M,
or with a Lipschitz boundary with the parameters d, D, M respectively.

Moreover, we say that an open set {2 C R™ has a resolved boundary with
the parameters d, 0 < d < oo, D,0 < D < oo and » € N if there exist
open parallelepipeds V;, j = 1, s, where s € N for bounded Q and s = oo for
unbounded 2 such that

1) (V;)anNQ # @ and diamV; < D,

2) @< U(V))a,
j=1

)
3) the multiplicity of the covering {V;};_; does not exceed s,
4) there exist maps \;, j = 1, s, which are compositions of rotations, reflec-
tions and translations and are such that

)‘j(v}) = {x e R": Qi < T; < bz‘j7 1 =1, ,n}

and
NNV ={x eR": a,; <z, < ;(T), T W,}, (4.90)

where T = (1, ..., 2p-1), W; = {Z € R" ' : a; <z < by, i =1,..,n—1},
and
Apj +d S QOJ(.f) S bnj — d, T € Wj, (491)

if V;NoQ # @. If V; C Q, then ¢;(Z) = by;. (The left inequality (4.91) is
satisfied autimatically since by 1) b,; — a,; > 2d.) B

We note that A\;(Q2NV;) and, if V;NOQ # @, also A; ((°62)NVj) are bounded
elementary domains with a resolved boundary with the parameters d, D, where
>‘g_ ({E) - O‘J}l(x)v ) )\j,n—l(l"), _/\j,n(x))'

Since by 1) b;j—a; ; > 2d,i =1, ...,n—1, by 4) it follows that meas (2NV;) >
d",j = 1,s. So by 3), for unbounded 2, meas 2 = oo, because by (2.60)
> meas (2N V;) < 3 meas (.
j=1

If an open set £ C R" has a resolved boundary with the parameters d, D, s
and, in addition, for some [ € N all functions ¢; € C*(WW;) and 1D%pillcr,) <

M if 1 <|a| <1 where 0 < M < oo and is independent of j or all functions ;
satisfy the Lipschitz condition

;i (Z) — ;)| < M|z —gl|, &, 5 €W, (4.92)
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where M is independent of Z,7 and j, then we say that Q has a C'-boundary
(briefly Q) € C!) with the parameters d, D, s, M, or a Lipschitz boundary
(briefly 02 € Lipl) with the parameters d, D, s, M respectively.

If all functions ¢; are continuous on W we say that Q has a continuous
boundary with the parameters d, D, .

Furthermore, an open set 0 C R™ has a quasi-resolved (quasi-continuous)
boundary with the parameters d, D, » if Q = [J Q, where s € N or s = o0,

k=1
and €, k = 1, s, are open sets, which have a resolved (continuous) boundary
with the parameters d, D, s, and the multiplicity of the covering {2 };_; does
not exceed s. (We note that if Q is bounded, then s € N.)

Finally, we say that an open set {2 C R™ has a resolved (quasi-resolved, con-
tinuous, quasi-continuous) boundary if for some d, D, s, satisfying 0 < d <
D < oo and » € N, it has a resolved (quasi-resolved, continuous, quasi-
continuous) boundary with the parameters d, D, »). Respectively an open
set 0 C R"™ has a C!- (Lipschitz) boundary if for some d, D, s, M, satisfy-
ing0<d<D < oo, Nand 0 < M < oo, it has a C'- (Lipschitz) boundary
with the parameters d, D, »¢, M.

Example 2 Suppose that Q = {(z1,22) € R* : -1 <z < 1if -1 <27 <
0,—1 < 29 < 2] if 0 < 21 < 1} where 0 < v < 1. Then Q is a bounded
elementary domain with a resolved boundary, which is not a quasi-continuous
boundary.

Example 3 Let Q = {(z1,22) € R* : 0 < @ < 1, 2] < 23 < 2]} where
0 < v < oo,7 # 1. Then 02 is not a quasi-resolved boundary while 2
satisfies the cone condition.

Example 4 For the elementary domain 2 defined by (4.87) the Lipschitz con-
dition (4.89) means geometrically that Vo € 9 the cones

Kf={yeR":y, <@ —-Mz—y|}, K; ={y e R": o(@)+M|z—y| < y,}
are such that . -
KinwcQ, K, nWc " Q, (4.93)

where W = {z €R": 2 € W, a, < 2, < 00}.

For, if (4.89) is satisfied and y € K" NW, then y, < o(Z)—M|z—7| < p(y)
and y € Q. Similarly, K N W c Q. Suppose that (4.93) is satisfied. Since
(7, ¢(y)) ¢ Q the inclusion K N W C Q implies that o(y) > p(z) — M|z —1g|.
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(For, if o(7) < ¢(z) — M|z — g, then (7, ¢(g)) € Q.) Similarly, K, nNwc'Q
implies that ¢(y) < ¢(z) + M|z — y| and (4.89) follows.

We note also that the tangent of the angle at the common vertex of both
cones K and K is equal to ﬁ

Example 5 Let Q = {(z1,22) € R? : 2o < ¢(x1)}, where ¢(z;) = —|z1|7
if 1 <0, p(x1) = 2] if 1 > 0 and v > 0. Then the function ¢ satisfies a
Lipschitz condition on R if, and only if, v < 1, while €2 has a Lipschitz boundary
in the sense of the above definition for each ~ > 0.

Example 6 Let v > 0. Both the domain Q; ={z e R": |7|" <z, < 1, |7| <
1} and the domain 2y = {z € R": -1 < x,, < |Z|7, |Z| < 1} have a Lipschitz
boundary if, and only if, v > 1. ( Compare with Examples 6 and 7 of Chapter
3.)

Lemma 4 If an open set Q C R™ has a Lipschitz boundary with the parame-
ters d, D, s and M, then both Q0 and “Q satisfy the cone condition with the
parameters r, h depending only on d, M and n.

Idea of the proof. Let z € V; NOQ and « = \;(z). Consider the cones K and
K defined in Example 4, where ¢ is replaced by ¢;. O
Proof. By Example 4 we have

K nX(Vy) c\(VnQ), Ko nx(V;) (VN Q).

By 1) bij —a;; > 2d and (4.90) implies that there exist r, A > 0 depending only
on d, M and n such that \;(V; N Q) and \;(V; N° Q) satisfy the cone condition
with the parameters 7 and h. (The cone condition is satisfied for the largest
cone with vertex the origin, which is contained in the intersection of the cone
K(d, &) defined by (3.34) and the infinite rectangular block zy, ..., z,—1 > 0).
Since \; is a composition of rotations, reflections and translations, the sets
V; N Q, V;N°Q and, hence, the sets  and “Q also satisfy the cone condition
with the parameters r and h. O

Example 7 Let Q = Q1 |J @2, where ()1 and Q)2 are open cubes such that the
intersection @, N @, consists of just one point. Then both  and “Q satisfy
the cone condition, but the boundary of €2 is not Lipschitz. (It is not even
resolvable.)

Lemma 5 A bounded domain @ C R"™ star-shaped with respect to the ball

B C Q has a Lipschitz boundary with the parameters depending only on
diam B, diam ) and n.
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Idea of the proof. Apply the proof of Lemma 2 of Chapter 3 and Example 1. O
Proof. Let € be star-shaped with respect to the ball B(xg,r) and z € 92. We

consider the conic body V, = |J (v, 2z) and the supplementary infinite cone
y€B(xo,r)
V.= U (y,2)], where (y,2)"={z+ 0(z —y) : 0 < p < oo} is an open ray
y€B(xo,r)

that goes from the point z in the direction of the vector yz. Then V, C Q and
by the proof of Lemma 2 of Chapter 3 V. c* Q.

Without loss of generality we assume that the vector ZpZ is parallel to the
axis Ox,,, hence, z = (Zo, z,), where Ty = (21, ..., Ton—1) and 2, > xg,, and
consider the parallelepiped U, = {y € R" : zo, < yn < 22, — ZTon, ¥ € U},
where U = {g € R" ' : |y; — x| < %, i=1,...,n— 1}. Then Vy € U} the ray
that goes from the point (¥, x¢,) in the direction of the vector T2 intersects
the boundary 99 at a single!’® point, which we denote by y = (7, »()). In
particular, p(z) = z,.

Since the tangent of the angle at the common vertex of V, and IA/Z is greater
than or equal to Z-, where Ry = max |z — yl, it follows (see Example 1) that

lo(2) —(7)] < % |Z—y|, y € U;. We note that if y € U}, then the conic body
V, contains the cone K, with the point y as a vertex, whose axis is parallel to
Oz, and which is congruent to the cone defined by (3.34) with the parameters
%, ©(¥) — 2o Moreover, XZ, contains the supplementary infinite cone IA(y. The
tangent of the angle at the common vertex of these cones is equal to

r r > T
2((@)—z0,n) = 2(p(2)—wo,nt+ 22 |z—g) — 4R2’

Consequently (see Example 1),
lo(z) — ()| < L2 |z —g|, z,5€U;.

Moreover, since V, C  and 172 C” Q, we have x,, + 5 < o(T) <22, — Top —

5, T € U;. We note also that

[NIES

B(z,%) CU. C B(z, (R + (n — 1)*(%)?)2). (4.94)

Finally, we consider a minimal covering of R™ by open balls of radius . (Its
multiplicity is less than or equal to 2".) Denote by B, ..., Bs a collection of
those of them, which covers the g-neigbourhood of the boundary 9€2. Each of

15 Suppose that n € 9Q,n # y and 7 = §. If 5, > y,, then y € V;; C Q. If ,, < y,,, then
y € V. c” Q. In both cases we arrive at a contadiction since y € 9.
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these balls is contained in a ball of the radius 7 centered at a point of 9€2. Since
Vz € 092 we have U, D B(z,5), we can choose U, ...,U,,, where z, € 02 in
such a way that U,, D Bj. Consequently, the parallelepipeds U,,, ..., U,, cover
the g-neighourhoods of 9Q2. From (4.94) it follows that the multiplicity of this

2 n
covering does not exceed » = 2" (1 + %(R% +(n—1)* (g) ) 2) . (See footnote
15 of Chapter 3.)
Thus, € has a Lipschitz boundary with the parameters d = ¢, D =
diam 2, M = @ < % and .
Lemma 6 1. A bounded open set 2 C R"™ satisfies the cone condition if, and
only if, there exist s € N and elementary bounded domains ., k =1, ..., s, with

Lipschitz boundaries with the same parameters such that Q = |J Q.

=1
2. An unbounded open set Q) C R" satisfies the cone condition if, and only if,
there exist elementary bounded domains ., k € N, with Lipschitz boundaries
with the same parameters such that
1) Q= U Q,
k=1
and

2) the multiplicity of the covering %<{Qk}z°:1> is finite.

Idea of the proof. To prove the necessity combine Lemma 4 of Chapter 3 and

Lemma 5. Note that if the boundaries of the elementary domains Q, k = 1,5

are Lipschitz with the parameters dy, Dy and M, then they are Lipschitz with

the parameters d = inf dy, D = sup Dy, M = sup My aswellifd > 0, D < oo
k=1,s k=T, k=1,s

and M < oo. To prove the sufficiency apply Lemma 4 and Example 5 of Chapter

3.0

Remark 19 If in Lemma 6 €2 are elementary bounded domains with Lip-
schitz boundaries with the same parameters d, D, M, then () satisfies the cone
condition with the parameters r, h depending only on d and M.

Remark 20 If we introduce the notion of an open set with a quasi-Lipschitz
boundary in the same manner as in the case of a quasi-continuous boundary,
then by Lemma 6 this notion coincides with the notion of an open set satisfying
the cone condition. If we define an open set satisfying the quasi-cone condition,
then this notion again coincides with the notion of an open set satisfying the
cone condition.
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Lemma 4 of Chapter 3 and Lemma 6 allow us to reduce the proofs of
embedding theorems for open sets satisfying the cone condition to the case of
bounded domains star-shaped with respect to a ball or to the case of elementary
bounded domains having Lipschitz boundaries. To do this we need the following
lemmas about addition of inequalities for the norms of functions.

Lemma 7 Let mg € N, 1 < py,..pm,q < 00 and let Q = |J Q, where Qi C

R™ are measurable sets, s € N for q < max pr, and s € N or s = 00
m=1,...,mg

otherwise. Moreover, if s = oo and q < 0o, suppose that the multiplicity of the
covering » = »x({Qx};_,) is finite. Furthermore, let fo,,m = 1,...,mg, and g
be functions measurable on ).

Suppose that for some o, > 0,m =1, ..., myq, for each k

mo
19l 2y < D omll Fonll Ly - (4.95)
m=1
Then
mo
1
9] L,0) < Al Z Ol fnll Ly () (4.96)
m=1

where A = s if ¢ < max p,, and A = 3 otherwise.
m=1,...,mo

Idea of the proof. 1f p1 = ... = p,, = ¢ = 1 add inequalities (4.95) and apply
inequality (2.59). In the general case apply Minkowski’s or Holder’s inequalities

for sums (for ¢ > pp,, for ¢ < p,, respectively) and inequality (2.59). O
Proof. Let q < co. 1% By (4.95) and Minkowski’s inequality it follows, that

1

s (annLqm) < (Y (S anlliulipion)’)’
k=1 m=1

1

<3 (S onlfullnn)?)’ =

m=1 k=1

Zam(ananpm )’

16 The case ¢ = oo is trivial and the statement holds for Q = |J €;, where I is an arbitrary
i€l

set of indices:
mo

9l = SUP||9||L ) < Z omlfmllL,,, @

m=1
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If ¢ > ppm, denote by yy the characteristic function of Q. Since Y xx(z) < s,

by Minkowski’s inequality we have

(Z 1l )" = (S Uhsll, )
k=1

< ([(Zmtoltn) * )"
= ([t (S ste)) © )™ <l

If ¢ < pp < 00, then by Holder’s inequality with the exponent % > 1 and

(2.59)
s 1
(3o Wl )" < 5F (Z Il 00) ™
k=1
1

L. 1
< st w560 ||y, 0) < 591 Flly,00)

and inequality (4.96) follows.
The case in which some p,, = oo is treated in a similar way with suprema
replacing sums. O

Corollary 13 Letl € N, 3 € Ny satisfy || < 1,1 < pg,p,q < 00,2 = |J Q,
k=1
where Q0 C R™ are open sets, s € N if g <pg or g <p and s € N or s = oo if

q > po,p- Moreover, if s = oo and q < oo, suppose that the multiplicity of the
covering » = » {Qk}zﬂ) is finite.

Suppose that f € Ly, () Nwh (), a5, c26 > 0 and

1D Iy < eosll 00 + asll fllugeny, b =Ts. (4.97)

Then )
1D zyte) < A7 (casl | anin + a6l fluger)- (4.98)

Idea of the proof. Direct application of Lemma 7. O
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Lemma 8 Letl € Nym € No,m < 1,1 < p,qg <00,Q = J Q, where s € N

k=1
and . C R™ are open sets such that
Wh) & W), k=1,..,s. (4.99)
Then
l m
W, (Q) & WH(Q). (4.100)

Moreover, if embeddings (4.99) are compact, then embedding (4.100) is also
compact.

Idea of the proof. Apply Theorem 1 and Lemma 7 to prove embedding (4.100).
To prove its compactness consider a sequence of functions bounded in WZ{(Q)
and, applying successively the compactness of embeddings (4.99), get a subse-
quence convergent in W (€2).

Proof. 1. By Theorem 1 (4.99) is equivalent to the inequality

I lwyr ) < M L f llwian)

where k =1, ..., s and M}, are independent of f. By Lemma 7 it follows that

.....

where Mj depends only on n,m,p,q, and (4.100) follows.

2. Let M > 0 and || fillwyq) < M for each i € N. Then , in particular,
[ fillwi@,) < M. Consequently, there exist a function g € W;"(€%1) and a
subsequence fa) — g1 in W;"(€) as j — co. Furthermore, ||fz.(_1)||sz7(92) <M

J J
and, hence, there exist g» € W/"(€)2) and a subsequence Jy@ of fi such
J J
that fi2 — go in W;"(Q2). Moreover, fi — g1 in W7 (). Repeating
J J

this procedure s — 2 times, we get functions g € W, (%), k = 1,...,;s and a
subsequence f;; such that f;, — g in W"(€};) as j — co. We note that gy, is
equivalent to g, on € N €2,. Hence, there exists a function g, defined on (2,

such that g ~ gx on Q, k =1, ..., s. By the properties of weak derivatives (see
Section 1.2) g € W/*(2) and

15, = gllwpy <D IF = gellwyron — 0
k=1

as j — oo. O
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Lemma 9 Let |l € N,m € Noym < [ and 1 < p,g < oo. Suppose that
for each bounded elementary domain G C R™ with a resolved (continuous)
boundary there exists cag > 0 such that for each € Ny satisfying |5] = m and
!
Ve W,(G) ,
1Dy < cas [ fllwiie)- (4.101)

Then for each bounded open set £ C R"™ having a quasi-resolved
(respectively, quasi-continuous) boundary there exists co7 > 0 such that

1D fll gy < o [ fllweo (4.102)

for each B € Ny satisfying || = m and Vf € Wzﬁ(Q)

If p < q and ceg depends only on n, I, m, p, q and the parameters d and D
of a bounded elementary domain with a resolved (continuous) boundary, then
for each unbounded open set Q@ C R™ having a quasi-resolved ( quasi-continuous)
boundary there exists coy > 0 such that inequality (4.102) holds.

Idea of the proof. Apply (4.101), where G, f are replaced by \;(QNVj), f; =
f(X;) respectively, and the parallelepipeds V; and the maps \; are as in the
definition of a resolved (continuous) boundary. Change the variables, setting
y = )\5-71)(:1:), and obtain (4.101) where G = QN V;. Apply Corollary 13 twice
to prove (4.102) succesively for open sets 2 with a resolved (continuous) and
quasi-resolved (quasi-continuous) boundary. O

Proof. First suppose that €2 has a resolved boundary. We notice that \;(z) =

Ajx +bj, A(_l)(x) = Aflx — A-’lb-, where b; € R", A; = (a(j))nk , A-’1 =

<b§j)>l |alk l, |b | < land |det Aj| = [det A} !'| = 1. Consequently, we have
(02N = [P0 @)| = | (5), - (5, (@)

[ e W (o), ) 5 (W)

ki, km=1
5 (000 @) [ <0 3 (2280 )]
[y|=m ly|=m

Setting y = )\g_l)(a:) we establish that

IN

D5 fll Lyonvy) < 0™ Z D3 fill L, xs @nvy))

[v[=m
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Similarly, for a € Ny satisfying |a| =,

1D fill s nvyy < 18> DY fill vy
|y|=l

Hence, inequality (4.101) implies that

1D Fllzaonvyy < 0™ eas M\ (Q N V) [ fllwenvy)-

If © is bounded, then the number of parallelepipeds V; is finite, say, s.
Hence, by Corollary 13,
1D flly@) < 0™+ sa Jmax co(A; (N V) [ fllwye-
Let © be unbounded, then the set of parallelepipeds V; is denumerable.
Suppose that n, 1, m,p,q are fixed (p < ¢). Then in (4.101) cy6(G) = cb4(d, D).
Hence Vj € N

1D flly(vyy < 0™ ese(d, D) | fllwieny)-

By Corollary 13 it follows that

1. sk
1D fll gty < 0™ sea é(d, D) || fllway = ¢6(d, D, )| fllw -

Thus, (4.102) is proved for an Q with a resolved boundary. If Q has a quasi-
resolved boundary one needs to apply Corollary 13 once more, in a similar way.
The case of 2 having a quasi-continuous boundary is similar. O

Lemma 10 Letl € N, m € Ny, m <l and1 < p,q < co. Suppose that for each
bounded domain 2 C R"star-shaped with respect to a ball there exists cog > 0
such that Vf € W)(G) inequality (4.101) holds.

Then for each open set 2 C R™ satisfying the cone condition there exists
cyr > 0 such that Vf € W(Q) inequality (4.102) holds.

If p < q and cog depends only on n, I, m, p, q and the parameters d and D
of a domain star-shaped with respect to a ball, then for each unbounded open set

Q C R” satisfying the cone condition there exists coy > 0 such that inequality
(4.102) holds.

Idea of the proof. Apply Lemma 4 and, if € is unbounded, Remark 7 of Chapter
3 and Corollary 13. O
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Proof. Let €) satisfy the cone condition with the parameters r, h. By Lemma 4
S

and Remark 7 of Chapter 3, Q = [J Q, where s € N for bounded Q, s = 0o
k=1
for unbounded €2, and €2, are bounded domains star-shaped with respect to the
balls By, C By C . Moreover, 0 < M; < diam B, < diam 2, < M < oo and
x({Q}i_;) < Mj < oo, where My, My and Mj; depend only on n, r and h.
If € is bounded, then

1D fll Ly < c26(%) | fllwieny, k=1,....s. (4.103)

Hence, by Corollary 13,

1
102 fllzy@ < st max_ex(€) | fllwyca (4.104)
Suppose that € is unbounded. Denote by A(d, D) the set of all domains,
whose diameters do not exceed D and which are star-shaped with respect

to balls whose diameters are greater than or equal to d and set ci4(d, D) =

sup c96(G). Clearly A(d, D) C A(dy, D) if 0 < dy <d< D < D; < 0.
GeA(d,D)
Then Vk € N

1D f o) < €6(dis D) [ fllwpony < (M, Ma) [ fllwscay)

and, by Corollary 13,

1
IDZfllzy0) < Mg c36(Mi, Mo) || fllwye)- O

Lemma 11 Let |l € NNm € No,m < [ and 1 < p,q < oco. Suppose that
for each bounded elementary domain G C R™ with a Lipschitz boundary there
exists cog > 0 such that for each € Ni satisfying |6] = m and Vf € W)(G)
inequality (4.101) holds.

Then for each bounded open set 2 C R™ satisfying the cone condition there
exists car > 0 such that for each B € Ny satisfying |B| = m and Vf € Wli(Q)
inequality (4.102) holds.

If p < q and cog depends only on n, I, m, p, q and the parameters d, D and
M of a bounded elementary domain with a Lipschitz boundary, then for each
unbounded open set 0 C R™ satisfying the cone condition there exists cor > 0
such that inequality (4.102) holds.

Idea of the proof. Apply Lemma 6, Remark 19 and the proof of Lemma 9. O
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Proof. Let () satisfy the cone condition with the parameters r, h. By Lemma
6 and Remark 19, Q = |J €y, where s € N for bounded Q and s = oo

k=1
for unbounded 2. Here ;. are bounded elementary domains with Lipschitz

boundaries with the same parameters d, D, M depending only on n, r» and h.
Moreover, »({Q},_,) < Mz, where M3 also depends only on n, r and h. If Q
is bounded , then as in the proof of Lemma 10 we have inequalities (4.103) and
(4.104). Let Q be unbounded. Suppose that n, [, m, p, q are fixed (p < q).
Then in (4.101) ¢26(G) = cb¢(d, D, M). Hence, Vk € N

ID5 N2y < €a6(ds D, M) || f lwgen

and, by Corollary 13,

1
15 Fllzy@0 < Mg cso(d, D, M) || fllwsey = csa(ry ) [ f Iy O

4.4 Estimates for intermediate derivatives

Theorem 6 Let |l € N, § € N§ satisfy |3| <1 and let 1 <p < 0.
1. If Q C R™ is an open set having a quasi-resolved boundary, then Vf €
W;()
1 D2 £l L, @) < cos [ fllwe ) (4.105)

where cog > 0 is independent of f.
2. If Q C R™ is a bounded domain having a quasi-resolved boundary and the
ball B C 2, then Vf € wll)(Q)

105 flly) < cao (1Nl zas) + 1wt (), (4.106)

where cag > 0 is independent of f.
3. If QO C R™ is a bounded open set having a quasi-continuous boundary,
then Ve > 0 there exists cso(e) > 0 such that Vf € W()

IDZfllzp@) < eso(e) | fllzy@) + & 1l - (4.107)

Idea of the proof. Apply successively the one-dimensional Theorem 2 to prove
(4.105) and (4.106) for an elementary bounded domain € with a resolved
boundary. In the general case apply Lemma 9 and the proof of Lemma 7.
Deduce inequality (4.107) from Theorem 8 and Lemma 13 below. O
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Proof. 1. Suppose that €2 is a bounded elementary domain (4.87) with the
parameters d, D. By inequality (4.35) it follows that V3 € Ny satisfying |3] <
and Vz € W

D@ sstanson = | () (D) .0

w

Lp(an,¢(Z))

]

w

<M (IDZNE Mo g-sonrgen + | (o), (PEF) (0]

where 3 = (81, ..., Bn_1), 0 < 0 < %l and M; depends only on [, p,d and D. (We
recall that ¢(z) —a, < D.)

By the theorem on the measurability of integrals depending on a
parameter!” both sides of this inequality are functions measurable on W.
Therefore, taking L,-norms with respect to  over W and applying Minkowski’s
inequality for sums and integrals, we have

Lp(an,«p(x») ’

12 fllzaien < My (DN @ )l o 4= 25 st

[

8xn w

< My (HDEAE 20 s st s 2 + 1 )

Let ¢ = (7,0,), where o, = a, + %l, G € Ws, and B = (B,8u-1), B =
(B1, .y Bn—2). We consider the cube Q(0,0) = {z € R" : |z; —0j| < d,j =
1,..,n}and set U = {Z = (21, ..., xp2) ER"2: q; <z; <b;,j=1,....,n—2}.
Applying the same procedure as above, we have

LP(Q)>

H ||(Dgf)(f> 'In)”Lp,a’c(W)||L1(an+gf&an+%+5)
S Ml (H || ||(D’Lﬂl)f)(§7 xn_17 xn)||Lp7;:z(U)HL1,1n71(Un—l_570'n—1+6)||L1,zn(0'n_6yo'n+§)

1t o9 1t s))-

Substituting from this inequalty into the previous one and applying Holder’s
inequality, we get
1D f Nz,

"We mean the following statement. Let £ C R™ and F C R"™ be measurable sets.
Suppose that the function f is measurable on E x F' and for almost all y € F the function
f(-,y) is integrable on E. Then the function [ f(z,-)dz is measurable on F.

E
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< M2<|| TP )E, znet @)L, s L1, (onr—80m 158 |1y (0n—b0u)

g0 )

where Ms depends only on [, p,é and D.
Repeating the procedure n — 2 times, we establish that

192 fllzyie) < Ms (I aeioan + 1 hugeon) (4.108)

where M3 depends only on n, [, p,d and D.

2. Taking 6 = g and applying Holder’s inequality, we establish that inequal-
ity (4.105) holds for all 5 € N satisfying || < [ for each bounded elementary
domain with a resolved boundary and cog depends only on n,l,p,d and D.
Hence, by Lemma 9, the first statement of Theorem 6 follows.

3. Suppose that B = B(xg,r) C €2, where € is an elementary domain
considered in step 1. Without loss of generality we assume that x, > 0, and
set 0 = (To1y s on—1,0n), 0 = min{\/Lﬁ, 4}. Then Q(zo,8) C B(wo,r) and the
parallelepiped G = {z € R" : |z; — xo,] < 0, 0, — 0 < x, < Top + 0} C
Applying inequality (4.108) in the case, in which § = 0,p = 1 and Q, Q(0,J)
are replaced by G, Q(zo,d) respectively, we get

1flzs@@en < 1z < Ma(llfllz@os) + 1 fllwie)

< Ms ([ fllziemy + [ Fllug )

where M, and M; are independent of f. Hence, from (4.108) it follows that
(4.105) holds for each § € Nj satisfying |5] < [.

4. From step 3 and the proofs of Lemmas 7 and 9 it follows that for each
bounded domain €2 having a resolved boundary

1D ey < M (D1 zaimy + 1 o). (4.109)
j=1

where s € N and B; are arbitary balls in QN V,. (V; and s are as in the
definition of 2 having a resolved bondary.)

Let the ball B C 2. We choose m € N and the ball By in such a way that
By Cc BNQNV,. By step 3 and Holder’s inequality it follows that

1 lacr < Me (1 lzaceo + 1 huf ey ) < Ms (I1F 20 + 11 lugeen )
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Let 5 # m. We choose a chain of parallelepipeds Uy, ..., U, of the covering
{Vi}i=1, which are such that Uy = Vj, Uy N Upy1 # 9, k = 1,..,0 — 1, and
Us = V. Next we consider balls ék CU.NUgy1, k=1,...,0 — 1, and set
By := Bj, B, := B,,. Then by step 3

128 < Mo (1180 + 1 gy ) = 0,0 = 1.

Consequently, for each j =1,...;s

1oy < Mio (I zam) + 1 fllugeen ).

and inequality (4.106) for bounded domains having a resolved boundary follows
from (4.109). (We note that Mg, ..., My are independent of f.)

The argument for a bounded domain €2 having a quasi-resolved boundary
is similar.

5. By Theorem 8 embedding (4.118) is compact. hence, by Lemma 13
inequality (4.121) holds where ¢ = p and inequality (4.117) follows. O

Next we give some examples showing that assumptions on €2 in Theorem 6
are essential. The first two examples show that for open sets €2, which do not
have a resolved boundary inequality (4.105) does not always hold.

Example 8 Let [ e N, 5 e Nj, 0 < || <, 1 <p<ooand Q= |J B(xg, k),
k=1
where rp > 0 and B(zy,ry) are disjoint balls. Suppose that r, — 0 as k — o0

) _n_1

and r,i'ﬁl_%)p <ooif p<oo. Weset f(z):=r," *(x—xt)° on Qi k € N.
k=1

Then f € WL(Q) but DPf ¢ L,(Q2).

Example 9 Let [ € N, (81,3) € N2, 31 #0, 81+ B2 <, 1 < p < 0o and let
Q be the domain considered in Example 3. We set f(z1,x3) := 25" 5?2 where

ay ¢ Ny. Then, for 1 < p < oo,

1

1
< M2</xflp+v((a2—l)p+1) dml)p

Lp(Q)

o f

<M H—
||f||W,§(Q)_ 1 oa
0

and
1 1

||DBf||Lp(Q) > M3 (/1"{((@2_52)17-‘1-1) dJ/’l);,
0
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where My, My, M3 > 0 are constants. Suppose that 0 <y < 1, [ < % + 35 and
[—2(1+3) =2 <ay < — 2(1+12). Then f € W)(Q) but D°f ¢ L,(9).
(The case p = oo is similar: if [ — % < ay < [, then f € WL (Q) but
DPf ¢ Loo(Q).) If v > 1 an analogous counter-example may be constructed by
setting f(z1,z2) == 2% 5> where oy ¢ Ny.

Example 10 For any open set 2 C R", which has infinite measure or is dis-
connected, inequality (4.106) does not hold. In the first case we arrive at a
contradiction by setting f(z) = 2°. In the second case let G be any con-
nected component of  containing the ball B. Inequality (4.106) does not hold
if f(r) = 0 on G and f(z) = 2” on Q\ G. We note that if Q has a re-
solved boundary and is unbounded, then meas 2 = oo because in this case

s =o00,meas (2NV;)>d" jeNand ) meas(Q2NV;) < s meas (.
j=1

The last example shows that for bounded open sets having a quasi-resolved
boundary inequality (4.107) does not necessarily hold.
Example 11 Let 1 < p < oo, w= [J (27D 272%) and Q = {(z1,22) € R?:

s=0
r1 €Ewif0 <z <land 0 <z <1if —1< 29 < 0}. Suppose that Ve > 0
there exists M () such that Vf € W>()

af
|Gz
Let f(x1,x2) = g(x1)h(xs), where g, ¢, ¢" € L,(w) and h(zz) = 23if 0 < 25 <
1, h(z2) =0 if =1 < 29 < 0. Then

by S MO @ + el llugia)-

19| o) 1l zpc0.0) < Mi(e) 19l L, ) 1]l L, 0.0

2 (9" laaer 1ls0) + 119 a0 1 Doy + Ngllzaer 12 2p0)-

Choosing sufficiently small €, we establish that there exists My > 0 such that
19/l < Mo (g0 + 9" N,
for all the functions ¢g. In fact, we have arrived at a contradiction. To verify

this we set gi(w1) = 2, — 271 if 2, € (27k+1) 272k and g (x) = 0 for all
other ;1 € w and pass to the limit as k — oo.
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Corollary 14 Letl € N and 1 < p < oo.

1. If Q@ € R is an open set having a quasi-resolved boundary, then the
norm

||f||tﬁzl)(9) = Z | Do [z, (4.110)

leo| <l
is equivalent to || f|lwi(q)-

2. If Q@ C R" is a bounded domain having a quasi-resolved boundary and
the ball B C 2, then the norm

ANy + D 105 fllLy@ (4.111)
la|=l
is equivalent to || f|lw1q)-

Idea of the proof. Apply inequality (4.105) and inequality (4.106). O

Corollary 15 Letl € N;1 < p < o0 and let 2 C R™ be an open set having
a quasi-resolved boundary. If Q is bounded, then wi(Q) = WLQ). If Q is
unbounded, then the inclusion W(€2) C wh(Q) is strict.

Idea of the proof. If € is bounded, apply inequality (4.106) to each connected
component of 2. If € is unbounded, apply Example 10. O

Remark 21 Since 0, (o) #+ w1 (), the semi-norms Il - ||wZzD(Q) and || - ||W,£(Q)’ are
not equivalent. (See Corollary 3 and Remark 9.)

Generalizations of the one-dimensional inequalities (4.39), (4.40) and (4.41)
hold under stronger assumptions on {2 than in Theorem 6.

Theorem 7 Letl € N, § € Ny satisfy 0 < |B| <l and let 1 < p,q < o0.
1. If Q C R"™ is a domain star-shaped with respect to the ball B, then
Vf e W;(Q)

Dﬂ -1 n— w
105l chl((g) prin Ml (Q) g M oy Wy y
(meas Q)» d (meas B)4 d (meas Q)

(4.112)
where d = diam B, D = diam () and c3; > 0 depends only on n and .
2. If Q C R™ is an open set satisfying the cone condition and g > 0, then
Ve WhQ) and Ve € (0, ]

1D flzy@) < e ™ | fllzye +e [ 1wt e (4.113)
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where c3o > 0 is independent of f and €.
Moreover, V.f € W)(Q)

13 £z, 0 <033||fHL,, HfHWz (4.114)

where c33 > 0 is independent of f.

Idea of the proof. Starting with inequality (3.57) apply Young’s inequality for
convolutions '® to prove (4.112). If Q satisfies the cone condition with the
parameters r, h > 0 apply, in addition, Lemma 3 and Remark 7 of Chapter
3 and Corollary 13. Replacing » and h by ré and hd, where 0 < § < 1,
deduce (4.113). Verify that (4.113) implies (4.114) as in the one-dimensional
case considered in Section 4.2. O

Proof. 1. Let €2 be a domain star-shaped with respect to the ball B C €. By
Corollary 10 of Chapter 3 and inequality (3.57), in particular by (4.115), we
have

L /DN
D20 < M ((meass () D [171dy
B

(@) 2 el

< M2<(meas Q)% (%)l_l D718 (meas B) ™ / |f|dy

D

n—1
() I @ [l )

18 We mean its following variant: if 1 < p < oo, G, C R" are measurable sets, g €
L,(G), f € L1(Q — G), where Q — G is the vector difference of 2 and G, then

H /f(w —y)g(y) dy
G

In the sequel we shall also need the general case:

H [ 1= gt ay
G

where 1 <p,r<g<oo, 1=1-

<N fllze-allgllz, @)
Ly()

< fllz,.co-allgllz, () (4.115)
Lq(2)

+

S =
Q=
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where M; and M, depend only on n and /. Since 1 Q — Q C B(0,2D),

2d

H |Z’7n+li|mHL1(Q—Q) <o /Qlﬁll dQ < QZ On Dli‘m
0

and, by Holder’s inequality, (4.112) follows.
2. Next let €2 be an open set satisfying the cone condition with the para-
meters 7, h > 0. By Lemma 3 and Remark 7 of Chapter 3 Q = [J 4, where

k
each €2 is a domain star-shaped with respect to a ball of radius r; whose diam-
eter does not exceed 2h, and the multiplicity of the covering does not exceed
6"(1+ ). By (4.112) and Hélder’s inequality it follows that for all k

8 A NP hN" s
103 e <M ()7 U ey + () B 1 ).

where M; depends only on n and [. By Corollary 13

PNE (BN
102 llen < (14 7)7 () 17 1 o

hN" i
() R ),
™

where M, depends only on n and [. We note that €2 satisfies the cone condition
also with the parameters 7 and hd where 0 < 6 < 1 and replace r and h by rd

n

and hd in this inequality. Setting & = My(1 + 2)» (2)»=1h!=IP15171F1 we obtain
inequality (4.113) for 0 < e < ¢} = My(1 + ) (i)” Lpl=1al,

T1

Suppose that ¢ > € and ¢ < € < &. Let cly = c32(£*). Then

bS]

Bl
ey + <o 1 fluy@

IDE N < ¢ (€5) 7
* Bl

« (E0\ T8 ___18l
< (2) T e 2 [ oy

and (4.113) again follows.
Finally, inequality (4.114) follows from (4.113) in the same way as inequality
(4.41) follows from (4.40).

19 We apply the formula

T

/ o(lz]) dz = o, / g(0)e" " do, (4.116)

B(0,r) 0

where o, is the surface area of the unit sphere in R”.
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Corollary 16 Letl € N, g € N§ satisfy 0 < || <l and let 1 < p < oco. Then
Vr >0 and Vf € W)(B,)

105 fllzys,y < est(r f il + 77 Fllurcs,) (4.117)

where c3; > 0 is independent of f and r.
Idea of the proof. Apply (4.112) where B = = B,. O

Remark 22 The statement about equivalence of this inequality, the relevant
inequality with a parameter and the multiplicative inequality, analogous to the
one-dimensional Corollary 7, also holds.

Remark 23 Let [ € N, m € Ny, m < [. By Section 4.1 inequality (4.105) for
all # € Ny satisfying |3| = m is equivalent to the embedding

W) S W) . (4.118)

Next we pass to the problem of compactness of this embedding and start
by recalling the well-known criterion of the precompactness of a set in L,(2),
where 2 C R” is a measurable set and 1 < p < co. We shall write fy for the
extension by 0 of the function f to R™: fo(z) = f(x) if x € Q and fy(z) = 0 if
x ¢ Q. The set S is precompact if, and only if,

i) S is bounded in L,(2),

ii) S is equicontinuous with respect to translation in L,(€2), i.e.,

lim sup || fo(z + h) — f(2)||,@) =0
h—0 fes

and
iii) in the case of unbounded €2, in addition,

lim sup || f]|z,@\5,) = 0
T—00 fcg

Lemma 12 Letl € Ny, 1 < p < co. Moreover, let Q2 C R™ be an open set and
S C WLS). Suppose that
1) S is bounded in W}(2),
2) lim sup 1 lwi@vas) =0,
3) limsup [| f(z + h) — f(2)llwye,) =0
— fES
and

4) in the case of unbounded 2, in addition, lim sup ||f||sz7(Q\Br) =0.
T—00 feg

Then the set S is precompact in W}(€2).
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Idea of the proof. Apply the inequality

[fo(x +h) = F(@)llL,@ < 20 fllL,@@uu) + 1 (@ +h) = F@)llL, @,y (4.119)

and the closedness of weak differentiation. O
Proof. Inequality (4.119) clearly follows from the inequality

[fola +h) = f(@)llL,@ < [l folz + W)L,

+||f(x)||Lp(Q\Q\h|) + ||f(ZE + h) - f(‘r)HLp(Qm)'

If [ = 0 then condition ii) follows from (4.119) and conditions 2), 3). Hence
S is precompact in L, (£2).

Next let | > 1. From 1)-4) it follows that the set S and the sets
Sa = {Dsf, f € S} where @ € Nj and |o| = [ are precompact in L,(£2).
Consequently, each infinite subset of S contains a sequence fi, k € N, such
that fr — f and DS f — g, in L,(€2). Since the weak differentiation operator
D3 is closed in Ly () (see Section 1.2), go = Do f on Q, f € W)(Q) and f, — f
in W)(Q). O

Theorem 8 Let Il € Nym € Noym < [,1 < p < oo and let Q@ C R" be a
bounded open set having a quasi-continuous boundary. Then embedding (4.118)
18 compact.

Idea of the proof. If Q is a bounded elementary domain with a continuous
boundary, given a set S bounded in W}(€2), apply Corollary 12 of the one-
dimensional embedding Theorem 4 and Theorem 6 to prove property 2). Fur-
thermore, apply Corollary 7 of Chapter 3 and Theorem 6 to prove property 3)
with m replacing [. In the general case apply Lemma 8. O

Proof. By Lemma 8 it is enough to consider the case of a bounded elementary
domain with a continuous boundary 2 defined by (4.87). Let M; > 0 and
S={feWiQ): [ fllwe@) < Mi}. By inequality (4.79) for almost all z € W
and 0 < v <d

_ 1 _
£ (%, ) Ly o@ —vie@) < V7N (@5 )| Lo (o(@)—dip@))

< M7 (1502 M otr-aon + | (5, @)

)

Lp(p(2)—dyp(T)) )

where Ms is independent of f and ~.
By the theorem on the measurability of integrals depending on a parameter
(see footnote 17) both sides of this inequality are functions measurable on W.
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Therefore, taking L,-norms with respect to z over W and applying Minkowski’s
inequality, we have Vf € S

1 1
IflLo@v@ren) < May? ||f||w;(ﬂ) < Mzrye,

where M3 = MM, and e, = (0,...,0,1).
If f is replaced by D2 f, where 3 € N satisfies | 3| = m, then by Theorem
6 we get

N 0 l—m
HDngLp(Q\(Q_»yen)) < Myryr (“DﬁfHLp(Q) + H <6’x >w D,f

Lp(Q))

< M; W [ fllwe o) < MGW’

where My, My and Mg are independent of f € S and 7.

2. Since ¢ is continuous on W, the sets I' = {(z, (7)), Z € W} and T — e,
are compact and disjoint. Consequently, o(v) := dist ([, — ~ve,) > 0 and
r’vnQ c Q\(Q—ve,) . Hence, given ¢ > 0, there exists gy such that
vieS |fllwpn < 27", where Gy =T NQ.

Next let Ty = {x € R" : x; = a5 a5 < a2 < b,k = 1,...,n— 1,k #
iy an <z < (7)) — 2}, i =1,...,n — 1, and let I';; be defined similarly with
x; = b; replacing z; = a;. Moreover, let T'yg = {z € R" : z, = ap;ap <
xp < bg,k=1,...,n — 1}. Since these sets are compact and do not intersect I',

n 1
for sufficiently small ¢ € (0, go] we have G;; C Q and Q\ Q, C ( U Gij>.
=1\ j=0

Here, for i = 1,..n— 1, Gyo = {x € R" : a; < x; < a; + 0; ar < x <
b, k=1,...n =1,k #1; a, <z, < @(T) — 3}, Gz is defined similarly with
b; — 0 < x; < b; replacing a; < x; < a; + ¢. Finally, G0 = {z € R" : qa, <
Ty < ap+0;a <zp <bp, k=1,...,n—1}.

The same argument as above shows that for sufficiently small o

||f||W;n(Gij) <e2™ i=1,..,n,j=01.
Hence

n 1
[ £ llwy @\2,) ZZ 1 fllwgniciy) < e,
=1 7=0

and property 2) follows with m replacing [.
3. By Corollary 7 of Chapter 3 and Theorem 6

[ f(x+h) - f(x)HWﬁ(Qw) =|[[f(z+h) - f<x>HLp(Q\h\)
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+ > DL+ k) = (D) (@)@
1Bl=m

< Mz B (I ueon + D 1D lupion ) < Ms 1] fllwyeay < Mo [B
|Bl=m
where My, Mg and My are independent of f € S and h, and the property 3)
follows.
By Lemma 12 the set S is precompact in W*(€2) and, hence, embedding
(4.118) is compact. O

If m = 0, then embedding (4.118) always holds, but it can be non-compact
as the following simple examples show.

Example 12 If the unbounded set {2 contains a denumerable set of disjoint
balls B(zy,r) of the same radius, then embedding (4.118) for each m =
0,1,...,0—1is not compact. To verify this it is enough to set fi(z) = p(z—zx),
where p € C°(B(0,7)), ¢ # 0, k € N. In that case ka||Wé(Q) = H<P||W},(B(o,r))
and || fx — fsllwp@ = 2% lellwm B, k # s. Hence, any subsequence of
{fr}ren is divergent in W (Q2).

Example 13 If ) is a bounded or unbounded open set, which is such that
Q = {J Q, where Q are disjoint domains, then embedding (4.118) for each

k=1
m = 0,1...,1—1 is not compact. To verify this it is enough to consider functions
fx, which are such that f; =0 on Q\ Q, || fi|lz,@, = 1 and ||fk||Wé(Qk) <M,

where M is independent of k& € N. The sequence { fi }ren is bounded in W)(Q),

but || fr — fsllwp@) = [1fx = fsll,0) = 9. Hence, again every subsequence of
{fi}ren is divergent. If meas); < oo, one may just set f, = (meas(;)~! on
Q.. If measQy, = oo, let fy(z) = n(;) on Q, where n € Cg°(R"), n(z) =1 if
|z| <1, and 7, > 1 are chosen in such a way that meas (2 N B(0,7)) > 1.

A more sophisticated example shows that embedding (4.118) for bounded do-

mains having a guasi-resolved boundary can also be non-compact.

Example 14 Let 1 < p < 0o and €2 be the domain in Example 11. Then the
embedding W} (Q) & L,(Q) is not compact. For, let fi(zy,x2) = 2" 1y if
27+ < 2 < 27% and fi(zy,22) = 0 for all other (z1,22) € Q. Then the
sequence { fi}ren is bounded in W (Q): || fillwi) =1+ (p+ 1)7%. However,
it does not contain a subsequence convergent in L, () since || fx — fm||z,) =

25 (p+1)77 if k # m.
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Lemma 13 Letl e NNm € Ng,m <[, 1 < p,qg < oo and let Q@ C R"™ be an

open set.
1. If the embedding

WiQ) S W) (4.120)
is compact , then Ve > 0 there exists c3i() > 0 such that Vf € W(Q)
[ fllwzmie) < caae) (| Fllz,@) + el llus @) - (4.121)

2. If e > 0 (4.121) holds and the embedding W(Q) & L,(Q2) is compact,
then embedding (4.120) is also compact.

Idea of the proof. 1. Suppose that inequality (4.121) does not hold for all
e > 0, ie., there exist ¢ > 0 and functions f, € WX(Q), k € N, such that

[ fellwi@) =1 and
1 fellwgm@) > k| fellL,@) + o | fillwio) - (4.122)

Obtain a contradiction by proving that ljl_)r{)lo | fellz,@) = 0 and, consequently,
liminf {| fillwy (@) 2 <o

2. Given a bounded set in Wé(Q), it follows that it contains a sequence
{fk}ren convergent in L,(€2). Applying inequality (4.121) to fi — fs , prove
that k:lslgloo ||fk — szqu(Q) = O O
Proof. 1. Since || fu[lwi(o) = 1, by (4.120) it follows that || fi|lwym @) < Mi, where

M; is independent of k. Consequently, by (4.122) we have || fi||r, @) < My k7"
Thus, klim | fellz, @) = 0 and klim [ fellwt ) =1 . Hence by (4.122)

lim inf [} fillwyr @) = €0 liminf [} fillug @) = co-

Since embedding (4.120) is compact, there exists a subsequence fj, converging
to a function f in Wi*(Q2). The function f is equivalent to 0 since f, — 0 in
L,(€2). 2 This contradicts the inequality

1wy = T ([ fillwgn o) = €0

2. Let My > 0 and S = {f € W/(Q) : [ fllwe@) < Ma}. Since the embedding
W]ﬁ(Q) S L,y(Q) is compact, there exists a sequence fi, € S, k € N, which is
Cauchy in L,(€?). Furthermore, by (4.121)

1k = fsllwmo) < esale) 1 fi = Fillop@) + € 1 e = follwt @

20Tf pg — 1py in Ly(RQ) as s — oo, then there exists a subsequence ,  converging to
almost everywhere on Q. Hence, if also ¢s — 12 in L,(£2), then )y is equivalent to 1 on €.
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< esa(€) 1 fx = fsllL, ) + 28 Ma.

Given 0 > 0, take ¢ = ﬁ.

-1
that Wk, s > N we have | fi — fullL,@ < g<034(ﬁ)) . Thus, Vk,s > N
| fx — f5||Wgn(Q) <9, i.e., the sequence fj, is Cauchy in W;*(Q).

By the completeness of W (€2) there exists a function f € W;(Q) such
that fr — f in W(Q) as k — oc. O

Since fi is Cauchy there exists N € N such

Corollary 17 Letl e Nym e Nog,m <1, 1 <p,q < o0 and let @ C R™ be a
bounded open set having a quasi-continuous boundary. Then the compactness
of embedding (4.120) is equivalent to the validity of inequality (4.121) for all
e > 0.

Idea of the proof. Apply Lemma 13 and Theorem 8. O

Lemma 14 Let 1 < ¢ < p < oo and let Q@ C R™ be an open set such that
meas () < co. Then the embedding

W, () & Ly() (4.123)
18 compact.

Idea of the proof. Given a bounded set S C W;(Q) apply Holder’s inequality
and Corollary 7 of Chapter 3 to prove that conditions 1)—4) of Lemma 12 are
satisfied with Ly () replacing W}(€2). O

Proof. Let M > 0 and S = {f € W}(Q) : [fllwi@ < M}. By Holder’s
inequality Vf € S

1_1 1_1
I fllz ) < (meas Q)77 || f]|z, @) < M (meas )7
and

[ fllz 05 < (meas (2N Qs))a 7 || fl|z,@\05 < M(meas (2\ Q)7 >.

—0+

Since meas ) < 0o, we have lim meas (2\€s5) = 0 and lim sup || f||z,\05) =
J 0—0+ recg

0. Thus, properties 1) and 2) are satisfied. Moreover, by Corollary 7 of Chapter
3 it follows that Vf € S

1F G +h) = f(@) |y < IR Iwge

< [h| (meas Q)7 || fllwi) < M (meas 2)a» [h].
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Hence, property 3) is satisfied (with Ly(Q) replacing W}(Q)). If Q is un-
bounded, then again by Holder’s inequality

11
| fllz,\B,) < M meas (Q\ B,)a »
and property 4) follows. O

We conclude this section with several statements, which are based essen-
tially on the estimates for intermediate derivatives given in Theorems 6—7.

Lemma 15 Letl € N and let 1 < p,py1,p2 < 00 satisfy % = p% + piz. Suppose
that 0 C R™ is an open set having a quasi-resolved boundary. Then Vf; €
W/ (Q) and ¥ f, € W, ()

1f1 Fellwi) < ess Hfl”WIl,l(Q) Hf2HWI§2(Q)a (4.124)

where c35 > 0 depends only on n and .

Idea of the proof. Apply the Leibnitz formula, Holder’s inequality and Theorem
6. O
Proof. It f, € C>*(02) N Wlﬁk(Q), k = 1,2, then starting from

D*(fi fo) = Z (Q)Dﬁfl DY fy,

0<B<a g

we have

£ follwiy < LA Flliey 0t Y > IDP D o, [l

|a|=1 0<B<La

< fillzgy@ 12l + 18>0 D 1D Al @ 1D fallLy, @

|a|=l 0<BL
<M (1D Al @) (X 1D° Fallio0)
1B1<l 1811
< Mo [ fillwe, @) I f2llwe ),

where M; and M; depend only on n and /.
If f, € Wzl)k(Q), k = 1,2, then (4.124) follows by applying, in addition,
Theorem 1 of Chapter 2. O
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Corollary 18 Letl € N, 1 < p < oo and let 2 C R™ be an open set having a
quasi-resolved boundary. Suppose that ¢ € Cy(2). Then Y f € W)(Q)

Hf SOHWIQ(Q) < €36 Hf”WIl,(supp eNQ) > (4125)

where c3g > 0 is independent of f.
Idea of the proof. Direct application of the proof of Lemma 15. O

Lemma 16 Letl € N, 1 <p < oo and let Q C R™ be an open set with a quasi-
resolved boundary. Moreover, let g = (g1,...,gn) : Q — R, g € CY(Q), k =
1, ...,n. Suppose that Voo € Ny satisfying 1 < |a| < I the derivatives D*gy are

bounded on 0 and the Jacobian B2 is such that in(f2 |22 (z)| > 0. Furthermore,
TE

let g(2) be also an open set with a quasi-resolved boundary.
Then Y f € W)(Q)

cs7 || fllwioe) < 1F (@) lwi) < ess | fllwigey, (4.126)

where c37,c38 > 0 are independent of f and p.

Remark 24 By the assumptions of the lemma on g it follows that there exists
the unique inverse transform ¢ = (gi_l), ...,g,(l_l)) : g(2) — Q such that
g,i_l) € C'(g(Q)), k = 1,...,n. Moreover, Yo € NI satisfying 1 < |a| < [ the

derivatives Dag,ffl) are bounded on ¢(2) and in(I;) ’Dg]:;;) (y)‘ > 0.
yeg

Idea of the proof. Apply the formula for derivatives of f(g), keeping in mind
that for weak derivatives, under the assumptions of Lemma 16 on g, it has the
same form as for ordinary derivatives, i.e.,

Do(f@) =" >, DiN9 D e DTg- Do, (4.127)

B<a, |B]>1 oG e e Ee

where 7, € Ny and ¢g4, .., are some nonnegative integers. Apply also The-
orem 6 of Chapter 4.

Proof. Let a € Ny and |a| = [. By (4.127), Minkowski’s inequality and Theorem
6 it follows that

DSy <My DY 1PNy = (v =g(z))

p<a, 8121
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Dg _%
ot
D DR (5[0 > = O ) I N
B<a,|B]>1
<My Y IDSfnpe@) < Msllfllwigg)
<o ]Bl21

where My, My, M3 > 0 are independent of f and p. Hence, the second inequality
(4.126) is proved in a similar way. O

Remark 25 From the above proof it follows that

RS

Dg -
< ] — « .
o S (|5, @) T e 10lew, w29)

where c39 depends only on n and [.

Theorem 9 Let | € N, [ > 1,1 < p < oo and let Q C R™ be an open set
satisfying the cone condition. Suppose that f € L,(S2), the weak derivatives

(alf> ,J=1,..,n, exist on Q and are in L,(Q). Then V3 € N} satisfying

3.l
dacj

|3 = [ the weak derivatives D f also exist on Q and

D2 <. ( N H(_) ‘ ) 4.129
1Dz, < cao (Ifllzp@ ; Ozt ) wllLy(@) e

where cy9 > 0 is independent of f.

tions f € L,(€2) whose weak derivatives <ﬂ> exist on ) and
w

I
8:1:j

< Q.

Idea of the proof. By Lemma 11 it is enough to consider the case of open
sets 2 with a Lipschitz boundary. Applying the extension theorem for the

(4.129) for Q@ = R™ and f € C§°(R™). For p = 2 (4.129) easily follows by
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taking Fourier transforms. If 1 < p < oo one may apply the Marcinkiewicz
multiplicator theorem: 2

15"l = || 30 F e oseme (et (5F))

k=1

Lp(R™)

< 3|5

7 LP(RH)
where M; depends only on n,[ and p. O

Example 15 Let p =00, 1 € N, § € Ny, |3| = l and let f be a function defined
by f(z) = 2%In|z|n(x) if z # 0(f(0) = 0), where n € C(R") and n =1 in a
neighbourhood of the origin. Then f € Wh~{(R"™), but DP f ¢ L (R™).

Thus Theorem 9 does not hold for p = co. One can also prove that it does

not hold for p = 1.

4.5 Hardy-Littlewood-Sobolev inequality for
integral of potential type

Let f € L'(R"). The convolution

lz|™ % f = / |xf—(ygj|/\ dy, \<n, (4.131)
R

is called an integral of potential type.

Remark 27 One may verify that

1) if A > n, f is measurable on R™ and f is not equivalent to 0, then |z~ f
does not exist on a set of positive measure,

2) if A < n, f is measurable on R™ and f ¢ L{¢(R"), then the convolution
|z|=* * f does not exist for almost all x € R™.

3)if A < n, f € L(R") and |z|~ * f exists for almost all z € R”, then the
function |x|=* % f is measurable on R".

2ILet 1 < p < oo. Suppose that, for Va € Nj satisfying 0 < a < 1 (i.e,, aj = 0 or
1,7 = 1,...,n), the function u € L has the derivatives D%y on the set R} = {z € R" :
Xy Ty # 0} If [2*(Du) ()| < K, z € RY, then

IF= (uF ), @) < M2 K [|fllz, @y, f € CR™), (4.130)

where M, depends only on n and p.
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Integrals of potential type are contained in the inequalities deduced from
the integral representations of Chapter 3, namely (3.54), (3.58), (3.65), (3.66),
(3.69) and (3.76). For this reason we are interested in conditions on f implying
that |z|™ % f € L,(R").

Theorem 10 (the Hardy-Littlewood-Sobolev inequality). Let n € N,
l<p<g<o (4.132)

and
A=n(L +12). (4.133)

p q

Then Vf € L,(R"™) the convolution |z|™  f exists for almost all v € R"
and

)™ % f |g@ey < carllfllL,@n, (4.134)

where cq1 > 0 depends only on n,p and q.

Remark 28 By applying inequality (4.134) to f(ex), where f € L,(R"), f ~
0, is fixed and 0 < € < 00, one may verify that if A # n( z% + é), then inequality
(4.134) does not hold for any choice of c¢y;.

We give a sketch of the proof of Theorem 10 based on the properties of
maximal functions. 22

Lemma 17 Let n € N, u < n. Then for all functions f measurable on R"
Ve € R" and Vr > 0

[ =l 1wl dy < e 01 )(a), (4.136)
B(x,r)

where cy3 > 0 depends only on n and p.

2 For f € L°¢(R™) the mazimal function M f is defined by

1
M = _ R™.
M) =sup ey [ Wl e

For almost all z € R™ |f(x)| < (M f)(z) < co. Moreover, M f is measurable on R™ and for
1 < p < oo there exists cs2 > 0 such that Vf € L,(R™)

1M fllz, @) < cazllfllz,@mn)- (4.135)

(If p = 1, this inequality does not hold.)
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Idea of the proof. Split the ball B(x,r) into a union of spherical layers

S(z,r27%) = B(z,r27%) \ B(z,r27*7!), k € Ny, and estimate [ |f|dy
S(z,r2—k)

via the maximal function M f. O

Lemma 18 Letn € N, 1 <p < oo, - <pu<n. ThenVf € L,(R")

_ 2 (n—p) n(i=37)
ol 5 f] < ear 1 Gy (A1) @)™ (4.137)
where cyy > 0 depends only on n, p and p.

Idea of the proof. Split the integrals defining |z|™* % f into an integral over
B(x,r) and an integral over “B(xz,r). Applying inequality (4.136) to the first
integral and using Holder’s inequality to estimate the second one via || f||, ®n).
establish that

[ o7 £ < My (MF) @) + M7 fl] g o,

where My, My depend only on n,p and p. Finally, minimize with respect to
r. O

Idea of the proof of Theorem 10. Apply inequalities (4.137) and (4.135). O
Proof. Since (M f)(z) < oo for almost all x € R™, the convolution |x|™ * f
exists, by (4.137), almost everywhere on R" and, by Remark 27, is measurable
on R". Since M f is also measurable on R", taking L,norms in inequality
(4.137) and taking into account (4.135), we get

1

B 1—2 1 1
™ % fllzg@n) < caall Fllp, @y IMFNE @y < cascall fllz,@ny. B

Remark 29 One may verify that from the above proof it follows that

1
e = (14 0(1)) (%) " as g — . (4.138)
Remark 30 Let (Pf)(z) = |z|~ % f. Theorem 10 states that for 1 < p <
q < oo the operator P is a bounded operator mapping the space L,(R") into
the space L,(R"). There is one more, trivial, case in which the operator P
is bounded: p = 1 and ¢ = oo. In all other admissible cases the operator
P is unbounded, thus, inequality (4.134) does not hold for any ¢4y > 0. If
p =1 or g = 00, it follows from the explicit formulae for the norms of integral
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operators, 2 by which || ||z, &) —r,@n) = || [2] 7% || ,@n) = 0o for 1 < g < oo
and ||P||z, @) —ro@®y = |[|2] # |z, @) = oo for 1 < p < oo. If, finally,
1 < p=¢q< o0, it follows by Remark 27.

Next we discuss the case ¢ = oo in Theorem 10, i.e., behaviour of the
convolution |z| ¥  f for f € L,(R™). The cases p =1 and p = oo are trivial.
(If p = 1, then this convolution is just a constant; if p = oo, see Remark 27.)
If 1 < p < oo, then in general ]m|7ﬁ x f does not exist on a set of positive
measure.

Example 16 Let 1 < p < oo, f(z) = 0 if || < e and f(z) = |z|"» (In |z])~* if
|z| > e. Then f € L,(R™), but |z| # * f = oo for each z € R™.

For this reason we consider the case in which 1 < p < oo for functions in
L,(R™) with compact supports.

Theorem 11 Let 1 < p < oo, f € L,(R"), f =~ 0. If B < i, then for each
compact 2 C R"

/exp@ x| 7"+ f

J P e

Idea of the proof (in the case 3 < i) Suppose that || f]|z,@® = 1, the case in
which || f||z,®») # 1 being similar. Following the proof of Lemma 18, establish
the inequality

p/
) dz < oo (4.141)

1
o

[ 77 f| < Myrs (M[)() + (0 | Inr|)7 + M,

1

where 0 < r < 1 and M;, M, depend only onn, p. Taker = (1+((M f)(z))?) =
and apply inequality (4.47). O

B Let E,F C R™ be measurable sets, k be a function measurable on E x F and (K f)(y) =
[ k(z,y)f(y)dy. Then for 1 < ¢ < oo
E

IK |z, (ry—r ) = HIE@,9) 1L, . 2) | Lo, (F) (4.139)

and for 1 <p < o0

1K, r) =) = k@ WL, ,5) 1.7 (4.140)
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Corollary 19 If0 < pu < p/, then V3 >0

/exp (6’ 2|77 % f‘u> dr < 0.

Q

Idea of the proof. Apply the elementary inequality a* < §Tv da”’, where
a > 0,6 > 0, which follows from (4.47). O

Remark 31 If g < i, there is a simpler and more straightforward way of
proving inequality (4.141), based on expanding the exponent and application
of Young’s inequality for convolutions (4.116).

Example 17 Let 1 < p < 00, 0 < v < z% and f(z) = |z| 77 |In|z|P~t if

0 <|z| <2 and f(z) =0if [z > 5. Then f € L,(R") and
Myl ]| < [ 77 % f < My|In |, 0 < o] <3,

where My, My > 0 are independent of x.

Idea of the proof. To obtain the lower estimate it is convenient to estimate
|z| 77 % f from below via the integral over B(0, )\ B(0, %) To get the upper
estimate one needs to split the integral defining ]:c|_§ x f into integrals over
B(0,3)\ B(0,2[z]), B0,2]z|) \ B(z, ) and B(z,'Z) and to estimate them
separately. O

Remark 32 This example shows that the exponent p’ in inequality (4.141)
is sharp. Indeed, if 4 > p/, then for ;% <7< z% we have f € L,(R™) but
[ exp (ﬁ\ |:c|_5 * f|“) dr = oo for each # > 0 and for each compact Q C R™.
Q

A more sophisticated example can be constructed showing that for 7 > UL

Theorem 11 does not hold.

4.6 Embeddings into the space of continuous
functions

Theorem 12 Letl € N, 1 < p < co and let 2 CR™ be an open set satisfying
the cone condition. If

[>2 for 1<p<oo, [l=n for p=1, (4.142)
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then each function f € Wé(Q) is equivalent to a function g € Cy(Q2) and
l9llew) < cas | fllwi, (4.143)

where c45 > 0 is independent of f, i.e., WH(Q) & Cy(Q).
If Q is unbounded, then

lim g¢(z) =0. (4.144)

r—00, TES)
Idea of the proof. By Theorem 1 (4.143) is equivalent to the inequality
[l Loty = lgllew < cas [ fllwie

for all f € WL(Q) N C>(Q). Since || fllc@) = sup || fllex,), where K, are the
z€eQ

cones of the cone contition, which are congruent to the cone K defined by
(3.34), it is enough to prove that

Ifllogy < cas || fllwg (4.145)

To prove (4.145) apply inequality (3.76). In the case of unbounded open sets
2 apply inequality (3.77) to prove (4.144). O
Proof. By (3.76) where 3 = 0 for Vf € W}(Q) N C=(Q) and Vz € K

D*f)(y
K o=l 3¢ Yy
where M is independent of f and x. Hence, by Holder’s inequality,

@) < My ((meas K)™ [ fllz,0 + - e =y e, 00 1D Flli,o )-

|af=l

Let D be the diameter of K (D = vh?+7r?). If 1 <p < oo and | > 2, then
applying (4.116), we have Vx € K

Iz =y, o0 < 2", 0.0y

D 1
= <0n/g(l_”)p/+n_l dg)F = (—, In — )p D%,
pP(l=3)
0
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If p=1and [ > n, then

Hee =y 2y ) < D'

Consequently,
|f(@)] < Ma || fllwyx),
where M, is independent of f and z, hence, (4.145) and (4.143) follow.

If Q is unbounded and f € W;(Q), then, applying inequality (3.77) where
B = 0 to the function g in (4.143), we get that Va € Q

o) <t [1s1an+ 3 17200 a)

|04:le

< Ms || fllwecre,y < Ms [ fllwi@\B0,21- D))
if |z| > D, where M, Mj are independent of f and = . Therefore, lim g(x) =
0. O

Corollary 20 If( satisfies a Lipschitz condition, then the function g € C(£2).

Idea of the proof. For Q = R™ apply (4.143) to f — fr, where the functions
fr € Cg°(R™) converge to the function f in W/(R™). If Q satisfies a Lipschitz
condition, apply the extension Theorem 3 of Chapter 6. O

Proof. If @ = R", then from (4.143) it follows that || f —g||c@n) — 0 as k — oo.
Hence, g € C(R"). Let  satisfy a Lipschitz condition and T be an extension
operator in Theorem 3 of Chapter 6. For f & Wé(Q) consider a sequence of
functions hy € C§°(R™) converging to T'f € W/(R™). Then hy — f in W/(Q)
and by (4.143) |lg — hxllc@) — 0 as k — oo. Hence, again g € C(Q2). O

Corollary 21 Let Iim € N, 1 < p < oo and let 0 € R™ be an open set
satisfying the cone condition. If

I>m+2 for 1<p<oo, I=2m+n for p=1, (4.146)

then each function f € W}(Q) is equivalent to a function g € C;*(2) and for
B € Ny satisfying |5 < m

ID%gllc@) < eas 1wy (4.147)

where c4g > 0 is independent of f, i.e., W]ﬁ(Q) < O ().
If Q is unbounded, then

lim_ (D°g)(x) =0, BeN;, |6]<m.

r—00, TES
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Idea of the proof. It is enough to apply Theorem 12 to D? f, where || < m,
since by Theorem 6 DS f € Wil |(Q) and inequality (4.105) holds.

We note that conditions (4.142) and (4.146) are also necessary for the va-
lidity of (4.143) , (4.147) respectively. (See the proof of Theorem 14 below.)
Corollary 22 Let 1 < p < oo and let Q C R™ be an arbitrary open set. If
fe N(WHee(Q), then f is equivalent to a function g € C™(€2).

=1

Idea of the proof. Apply Corollary 20. O

Remark 33 There exists dy > 0 depending only on n, [ and p such that for
convex domains € satisfying D = diam €2 < d

1
lgllot) < (meas Q)75 [| fl gy )

where [| f[|g g is the norm defined by (4.110), equivalent to || f[lwyq) (coin-
P

ciding if [ = 1). The constant (meas Q)_% is sharp since for f = 1 equality
holds.

This inequality follows from the proof of Theorem 12 if to start from the
integral representation (3.65). Let, for o € S"~! where S"! is the unit sphere
in R™, r(x,o0) be the length of the segment of the ray {z € R" : z = 2+ 90, 0 <
0 < oo} contained in Q. Then, for d(z,y) defined in Corollary 13 of Chapter
3, we have d(x,z + po) = r(x,0). Hence

r(z,0)

= (O] () o an)

— =27 ([ ) de)” < 0/~ )P D meast)?

1
7/

H d"(z,y)
|

z —yln!

since

Thus, by (3.65) and Holder’s inequality,

_1 Dlel
lglle) < (meas )75 (D =

la| <l

| D% f Iz,
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_ 1
7

=) 2D le),

and the desired statement follows. In the simplest case p = 1,1 = n this
inequality takes the form (3.66) and, hence, one can take dy = 1.

Remark 34 There is one more case, in which the sharp constant in the in-
equality of the type (4.143) can be computed explicitly, namely Q = R", p =
2, 1 > 5. In this case

™ 1
—n o1 2 2
Igllog < ((20) " g2 ) NI

(See Remark 8 of Chapter 1.) Equality holds if, and only if, for some A € C
fla) = A(F~H A+ [E*) 7))
(ifl = n =1, then f(z) = Bexp (—|z|)) for almost all z € R™. If | = n = 1, this
inequality coincides with (4.75) where p = 2. This follows since Vf € WL(R")
ey = IF ey = 2m) 3| [ e=<Pr € e

R"

(1+ 1P @+ PR
La(R") H(l T |5|2l)%(Ff)(§)‘

=t (fasiyag) ([ (s 9e)ar)’

Rn Rn

Loo (R™)

_n

< (2m) E(|1F fllzy @y = (27) 2

L1 (R")

< (2m)7F |1+ |g]*) 7z

Lo (R")

The desired inequality follows since by (4.116)

o0

/ (141 de = o, / (14 ) o do

R™ 0
1

g n n g n n
e [ :—”B(l———)
o | Tt = o 20’ 21

(I+e?) 1=t

0

=i "(5) P01 - 5) =y (s3m )

In the second inequality equality holds, if, and only if, for some A € C we
have (Ff)(€) = A(1 + |£[*)! for almost all £ € R™. (See footnote 11.) Since
| [(Ff)()dE| = ||F fllL, @), equality holds also in the first inequality.

R
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4.7 Embeddings into the space L,

Theorem 13 Letl € N1 < p < o0, < % and let 2 C R™ be an open set
satisfying the cone condition. Moreover, ** let q, be defined by

(11
Then for each function f € W}(Q)
1|20 @) < car 1 fllwico) (4.149)
where cy7 > 0 is independent of f, i.e, Wé(Q) & L, (9).

Idea of the proof. By Lemma 10 it is enough to prove (4.149) for bounded
domains €2 with star-shaped with respect to a ball. Apply inequality (3.54)
and Theorem 10 to prove (4.149) for such Q. O

First proof (p > 1). Let Q be a bounded domain star-shaped with respect to
the ball B = B(zo, ¢) and let diam Q = D. By (3.54) where 3 =0

z)| < M, /Ifld +Z/|Da ) (4.150)

lal=ly;

for almost all x € €2, where Ml depends only on n, [, d and D. By Holder’s
inequality f |f|dy < (meas B)p |f1|z,(0)- Hence

7l < 31+ 32 | [ ) sy

lal=l gn G

Y

where @,(y) = [(DLf)(y)] if y € Q and @,(y) = 0 if y ¢ Q and M, depends
only on n, [, p, d and D. By Theorem 10

H/ v
|z — y\ ZAKE

where Mj depends only on n, [ and p. Thus (4.149) follows, where c¢47 depends
only on n, [, p, d and D. Hence, by Lemma 10, the statement of Theorem 13
follows. O

< Mz || ®o ]|, @ny = Ms|| Dy fll L,

LQ* (Rn)

24 Often ¢, is called “the limiting exponent.”
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Remark 35 It is also possible to start, without using Lemma 10, from in-
equality (3.76) and argue in a similar way. (If Q is unbounded, one should
take into account that, by Remark 21 of Chapter 3, in (3.76) || f| 1, ®~) can be

replaced by [ f]|z,)-)

Remark 36 By Holder’s inequality and by the interpolation inequality

1llzo@ < 12, @l F I 0y (4.151)

where p < ¢ < ¢, and 1 = —|— q— it follows that inequality (4.149) holds for
open sets €2 satisfying the cone condition if ¢, is replaced by ¢, where 1 < ¢ < ¢,
for bounded sets 2, p < ¢ < ¢, for unbounded sets (2 respectively.

This statement may be proved, including the case p = 1, by simpler means —
just by applying Young’s inequality. By Lemma 10 it is enough to consider the
case of bounded domains star-shaped with respect to a ball. Starting starting
from (4.150) and (4.155), it is sufficient to note that

el -
<" e—a) | Dy fll 0
|/ SO gy, <1t o 1950

and by (4.116)

"z @) < 1217

2D L
L,(B(O,QD)) = (O‘n/g(l—n)T+TL—1 dg)'r‘
0

1-141
_ <_1_1_on ) P 2D) G < o

(=)

Remark 37 For p = 1 inequality (4.149) cannot be proved by applying Theo-
rem 12, which does not hold for p = 1. Moreover, in this case inequality (4.149)
does not follow from (4.150). More than that, inequality (4.149) can not be
proved by estimating separately the L, -norms of each summand in the remain-
der of Sobolev’s integral representation (3.51) and not taking into account that
D¢ f are not arbitrary functions in L,(€2) , but are the weak derivatives of a
function f € L,(£2). For, let

(Kap)(y) = %‘Z’?’Mw dy.
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Then by (4.141)

_ H Hwa(af,y)xvz (y)’
|z —y

| Kol @)L, @

ax

Lgs,2(€) HLoo,y(Q)

and one can prove that || K, ||, @)L, @) = 00

Idea of the second proof of Theorem 13. 1. Verify that by Lemma 11 and
Theorem 3 of Chapter 6, it is enough to prove inequality (4.149) for 2 = R".

2. Let @ =R", n > 1. First suppose that [ =1 and p =1. Then ¢, = 5.
Starting from the inequality
_n_ i _1 u
=TT 1 < I] | |f||Lm . (4.152)
m=1 m=1

which holds almost everywhere on R™, apply the one-dimensional embedding
inequality (4.64) and the following variant of Hélder’s inequality for the product
of functions g, = g(x1, ..., Tm—_1, Tm+1, ---, Tn), Which are independent of m-th
variable:

m < m n—1y . 4.153
Hmr_[lg - TT ol oz (4.153)

Here R is a space of (21, ..., Zm—1, Tmi1, ..., Tn) Where x; € R. Obtain for
f € W (R") the inequality

11 e <5 TT (D).

m=1

(4.154)

Ll(R")

25 This inequality can be easily proved by induction. On the other hand, it is a particular
case of Holder’s inequality for mixed Lz-norms, where p = (p1, ...,p,) and

I lep@ey =1 M2y ey @) Ml e )

which has the form

k
| H . ey = T Wl

m=1

n
where P, = (Pim, ..s Pnm) are such that 1 < p;p, < co and ) p# =1m=1,..k Itis
j=1 jm
proved by successive application of the one-dimensional Hélder’s inequality. If pjn,, =n —1
for j # m and pp.m = 00, we obtain (4.153).
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3. Ifl =1 and p > 1, apply (4.154) to |f|¢ with appropriate £ > 0 and
prove that for f € C{°(R")

(W PSS (4.155)

Lp(R")

4. If [ > 1, apply induction and, ﬁnally, Lemma 2 of Chapter 2. O
Second proof (p > 1). 1. First let 2 be an open elementary domain with a
Lipschitz boundary with the parameters d, D and M. (See Section 4.3.) More-
over, let T' be an extension operator constructed in the proof in Theorem 3 of
Chapter 6. By inequality (4.149) where 2 = R™ we get

HfHLq*(Q) < HTf“Lq*(R") < M, HTf”W},(R") <M, HTH ”fHW,l,(Q) < M, HfHWZQ(Q)

Here M, depends only on n, [, p and Ms depends only on n, [, p, d, D and
M. Since ¢, > p, by Lemma 11 inequality (4.149) holds for each open set (2
satisfying the cone condition.

2. Now let Q = R". First suppose that [ =1, p =1 and let f € W} (R").
By (4.152), (4.64) and (4.153) we have

n—1

n

11 = NIy < H T2,

1I H(axm)
<t IIIGD.

m=1

L1(]Rn)

n—1

n

<1 ‘
-2 Li(R")

Ll yTm (R)

L1 R%l a H H(@xm>

3. Let l=1and 1 <p <mn, then ¢, = n— Suppose that f € C3°(R™) and

. € .
f # 0. Since for £ > 0 |(% WIL) | = €1fIE 2L applying (4.154) to [f[¢,
where £ = =L ¢, we have

Ll,zm(R) L1 ]R")

1 1
HfHLq*(R") = || ’f|£HJ£;L*(Rn) = || ‘f’g Hf; n_(R")
3 n—1
IO 1 :

< () TIN50, = () TL 52

- (2 Tl_:[l 0T, Li(R") H £ (%cm Li(Rn)
By Holder’s inequality
a af
|17 < |11
axm Ly (R") 0T 1Ly ()
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<117 g

‘&Um‘ Lp(R")

Hence

e < (8) 1A1F HHaxm

Since 0 < [|f||1,. ) < oo and 1 — L= = 5, we obtain (4.155).
4. Next suppose that p > 1,1 <[ < m and f € CP(R"). We define the

exponents qp,...,q;—1 by 1 = n(i — q—*) 1 = n(l — L)1 =nl - 1.

Ly (R”

Applying (4.155) successively, we get

111z ny < My Z |2

0Ty, Ly, R —

1 NLp(R™)

n n !
SMZZ...EII‘W‘

< M Y IID* fllzy@eny = Mgt [t ooy

|laf=l

where My, ..., M1 depend only on n, [ and p. Finally, taking into consideration
Lemma 2 of Chapter 2 and passing to the limit, it follows that this inequality
holds Vf € W/(R"). O

Remark 38 Inequality (4.149) for Q =R", n > 1,1 =1,1 < p < n (steps 2
and 3 in the second proof of Theorem 13) can also be proved with the help of the
spherically symmetric rearrangements f* of functions |f| defined by f*(z) =
sup{t : u(t) > v, |z}, where u(t) = meas{x € R : |f(x)| > t}. Clearly
f*(z) = g(|x|). The following properties of f* are essential:

1fz,@ny = [ fllz,@ny, 1<p <00 (4.156)

and
IV /@y < | Vufllo,my, 1<p<o0. (4.157)

Another tool is Hardy’s inequality of the form

127277 F (@) |1, 000) < Cas |2 (2)]] 1y (0,00) » (4.158)
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where 1 < p < ¢ < 00, a > z%’ f is locally absolutely continuous on (0, 00)
and lim f(z) = 0. We note that for ¢ = ¢. = - 1<p<nanda——1

Ir—00

inequality (4.158) takes the form

( 7 fa

Applying (4.156), (4.116) and (4.159), we have

Y|4 2™t dm) - < cy9 ( 7 |f/(x)|P 2" dm) " (4.159)

7 1
£y = 1 ey = (o [ lo()" & )"
0

<o, i 049 /|9 )P o™ 1d9> = On ”049||wa Iz, @)

Hence by (4.157)
£l 2. ) < 50 |V fllL,@ny 5 (4.160)

_1
where c50 = on ™ ¢49 and (4.149) follows.

Moreover, it is also possible to prove that the minimal value of ¢z in (4.160)
is equal to

1 _,(p — 1)1{ I'(2+1)(n) }i
n—p) \TETATE))
(If p = 1, one must pass to the limit as p — 1+.) In the case p > 1 equality in

(4.160) holds if, and only if, for some a, b > 0 |f(z)| = (a+blz|7"1)' "% almost
everywhere on R".

Remark 39 As in Remark 33 it can be proved that there exists dy depending
only on n, [, p and ¢ satisfying 1 < ¢ < ¢, such that for convex domains 2
satisfying D = diam 2 < dj

1_1
£l zg@) < (meas Q)77 ||l

where the constant (meas Q)é_% is sharp.
To obtain this inequality one should apply the inequality

(/‘/k(x,y)f(y) dy‘quf < Al fllL,@
eI
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where 1 r
A =sup [k(z, )|, o sup k¢ 9L
zeG yeG

Q C R" and G C R™ are measurable sets, k is a measurable function on G x €2,
1<p<qg<ooand % = % + %. (The proof is similar to the standard proof of
Young’s inequality (4.115).)

As in Remark 33 one can prove that for convex domains 2 and k(z,y) =

d(z,y)"
|lz—y|""

Q|

A< (r(l = n(t — 1)))7" D' (meas Q)7 5.
Hence by (3.65)

11 Dl
1l < (meas )i (Y- =D f 1,0

lal<l

l
_1 D~
LU= =207 Y =D @)
laj=t

and the desired statement follows.

Corollary 23 Letl € Nym € Ng, 1 < p,g < oo,m <[ < m+% and let
Q C R™ be an open set satisfying the cone condition. Moreover, let q, be
defined by
— 1_ 1
l=m+n(; ), (4.161)

e
1 <q<q. if Qs bounded and p < q < q, if 2 is unbounded.
Then Vf € Wé(ﬂ) for B € Ny satisfying |B| = m

105 fll oty < st fllwie » (4.162)
where c51 > 0 is independent of f, i.e., Wé(Q) < Wr(Q).

Idea of the proof. Apply Theorem 6 and 13 to D? f, Holder’s inequality if € is
bounded, and the interpolation inequality (4.151) if Q is unbounded. O

Corollary 24 LetlEN,l§p§q§oo,l>m+n<%—%>,eo>0andlet

Q C R™ be an open set satisfying the cone condition. Then Vf € W;(Q) for
B € Ny satisfying |B] = m

1
7)
_1
q

IDGfllrae < esee T (| fll, + € [ fllutgeo - (4.163)

m+n(%

Sl
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where 0 < & < gg and cs3 > 0 is independent of f and €. Furthermore,

(m4n(L-1))

o Hf||Wz : (4.164)

(lmn

105 Fllzg@) < ess 1111, )

where c53 > 0 is independent of f.
If Q =R"™ or, more generally, € is an arbitrary infinite cone defined by

Q:{xER”:x:QU,O<Q<oo,JES}, (4.165)

where S is an arbitrary open (with respect to S"') subset of S"!, then in-
equality (4.163) holds for an arbitrary € > 0 and in inequality (4.164) HfHWé(Q)
can be replaced by || fluw )

Idea of the proof. If € has the the form (4.165), then inequality (4.163) may be
obtained by applying (4.162) to f(ex), € > 0, since eQ2 = Q. Inequality (4.164)
follows from (4.163) by minimization with respect to €. To obtain (4.163) for
an €2 having a Lipschitz boundary, apply the extension theorem of Chapter 6
(Theorem 3 and Remark 16) and (4.163) for Q@ = R™. If 2 satisfies the cone
condition, apply, in addition, Lemma 6 and Corollary 13. Inequality (4.164) is
derived from (4.163) as in the proof of the one-dimensional inequality (4.43). O
Proof. If ) has a Lipschitz boundary, then by Theorem 3 and Remark 16 of
Chapter 6, for all v > 0,

ID5 fllzy@) S IDET fllgemy < Miy ™ 1T fl ey + 7 TSl ey
< Moy (1To 1 fllzpe) + Y IT Tl fllwg e

= (M 1Tl + 7170 ) 1Ay + 7 1T Sl

Here § = (m + n(; - —))(l —m — n(% — %))*1, T is the extension operator
constructed in Theorem 3 of Chapter 6, ||T']|o — its norm as an operator acting
from L,(€2) in L,(R") and ||T||; - its norm as an operator acting from W(Q) to
W)(R™). Both ||T|o and ||T'||; depend only on n, I, p and the parameters of the
Lipschitz boundary. Setting v||T||; = € and noticing that My~ ||T||o+7|| T <

Moc™® if 0 < e < gy, we get

”DngLq(Q) < M, 5_6||f||Lp(Q) +e ||f||wg,(Q) ;

where M, depends only on n, [, p, q, €9 and the parameters of the Lipschitz
boundary.
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Next suppose that () satisfies the cone condition. By Lemma 6 there exist
elementary domains Q, k = 1, s, such that Q = [JQy,, where s € N for bounded

k
) and s = oo for unbounded (2. They have Lipschitz boundaries with the same

S
parameters, and the multiplicity of the covering » = %({Qk} ) is finite if

- k=1
Q) is unbounded. Consequently for each k£ =1, s

12 f ey < Mae™ ||l + 11 lupony
and, by Corollary 13,
12 ey < 23 (Mo 2™ | fllyi@) + € I llugeon ) -

hence, (4.163) follows.
To prove (4.164) we set e, = (||f||z, |]f\|;ll(m)§, where £ = l(l —m —

n(llJ - 5)) If e, < g, then (4.164) follows from (4.163) directly. If e, > &y,

then [ f/[us ) < € o I fllz, and by (4.163)

D5 Ny < Mallfllz,@ < MallIIE o) 1 i) -
where M, is independent of f. Hence (4.164) follows. O

Corollary 25 Letl e N;1 < p < oo, l < m +% and let Q) be defined by
(4.165). Then Vf € Wl(Q) for 3 € Ny satisfying |5] =

1D5 f Iz, @) < estllfllug
Idea of the proof. Applying (4.162) to f(ex) where € > 0 work out that
105 a0 < 51 (=™ 1 e + 1 hugon

and pass to the limit as ¢ — oco. O

Theorem 14 Let | € N;m € Ny, 1 < p,q < oo and let  be an open set
satisfying the cone condition. Then the embedding

W) S W) (4.166)
in the case of bounded ) holds if, and only if,

[>m+2 for g=o00,1<p<oo , (4.167)
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or

lzm—i—n(%—%) for g=o00,p=1 or g<oo,1<p< 0. (4.168)
In the case of unbounded ) if, and only if, in addition, ¢ > p.

Moreover, embedding (4.166) is compact if, and only if, Q is bounded and
11
5 E)‘ (4.169)
Idea of the proof. Apply Corollaries 20 and 21, Example 8 of Chapter 1 and, for
q < p, modify the function defined by (4.85). As for compactness, apply Corol-
laries 17 and 24 and modify the sequences defined by (4.86) and in Example
1.0
Proof. 1. If conditions (4.167) or (4.168) are satisfied, then embedding (4.166)
follows from Corollaries 20 and 21.

Let us assume without loss of generality that 0 € €. Suppose that | <

[ >m+n(

n

m + n(% - %), then 26 there exists u satisfying | — % < p < n—% which
is not a nonnegative integer. By Example 8 of Chapter 1 [z[* € W}(Q) but
lz[* ¢ W(Q), and it follows that embedding (4.166) does not hold. Next
supposethatl:m—i-%,q:ooandl <p<oo Let 0 <v< 1—%. By
Example 8 of Chapter 1 27"(|In|z[])” € W(Q) but clearly this function does
not belong to W2(€2). Hence again embedding (4.166) does not hold.

Let ¢ < p and let 2 be unbounded. Since €2 satisfies the cone condition,
there exists ¢ > 0 and disjoint balls B(xy,0) C 2, k € N. We set f(z) =

3 l(%n(x*‘”’“), where n € C§°(R"), suppn C B(0,1) and 1 # 0. Then, as in
k=1

0
the proof of Theorem 5, f € Wlﬂ(Q) but f & W(§2), hence embedding (4.166)
does not hold.

2. If condition (4.169) is satisfied, then the compactness of embedding
(4.166) follows from Corollaries 17 and 24.

If © is bounded and | < m + n(% — %), consider the sequence fy(x) =

kv 'n(kz) where k € N. Then [ fellwi) < [Inllwegn). Suppose that, for
some g € W(Q) and some subsequence fi, , fr, — ¢ in W (). Since
fr.(x) — 0 as s — oo for all © # 0, it follows that g ~ 0. On the other hand,

ooy = K760 22| Hence fi, 0 in Wy(9).

m
0z

Lq(R™)

26 We note that the necessity of the inequality [ > m + n(% — %) also follows for 1 <
p,q < oo and 2 = R™ by comparison of the differential dimensions of spaces Wé(R") and
Wt (R™). See footnote 14 of Chapter 1. With slight modifications a similar argument works
for open sets Q # R™.
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If € is unbounded, consider, as in step 1, the disjoint balls B(zy, 0) and
set fr(x) = n(%). As in Example 1, f, does not contain a subsequence
convergent in W(§2). O

Next let us consider in more detail the case [ = %. By Theorem 14, for an

open set ) satisfying the cone condition, it follows that Wp%(Q) C L,(Q) for

each p < ¢ < co. However, W)/ (Q) ¢ Lo.. This statement may be improved
in the following way.

Theorem 15 Let 1 < p < o0, % € N and let Q2 be a bounded open set satis-
fying the cone condition. Then there exists cs4 > 0 depending on n, p and the

parameters v, h > 0 of the cone condition such that Vf € W (Q), f ~ 0,

/ exXp <C54
Q

Idea of the proof. Apply inequality (3.76), Remark 21 of Chapter 3 and Theorem
11. O
Proof. By (3.76) and Remark 21 of Chapter 3 for almost every z € )

p/
) dx < 0. (4.170)

_
17105

@) < My (1l + 2l ).

where p(z) = > [(D2f)(z)| for x € Q and ¢p(x) = 0 for z ¢ Q. Since

_n
jof=1

ny < n
||<P||LP(R ) S ||f||pr @’ we have

[f@)] [ % ¥
Qm!g> SMO+QM@£))'

Here M, My > 0 depend only on n, p and the parameters r, h of the cone
condition. Hence inequality (4.170) where c54 = My v,,* follows from (4.141). O

Remark 40 The cone condition in Theorems 1215 is not necessary but is
sufficiently sharp, because for the domain considered in Example 6 of Chapter
3 these theorems do not hold for any v € (0,1). See Remark 19 and Example
1 of Chapter 6.



Chapter 5

Trace theorems

5.1 Notion of the trace of a function

Let f € Li(R") where n > 1. We would like to define the trace tr f = tr,,, f =
f’ of the function f on R™ where 1 < m < n.
Rm

We shall represent each point z € R™ as a pair z = (u,v) where u =
(1, .0y Tim), ¥ = (Typs1, ..., T,) and suppose that R™(v) is the m-dimensional
subspace of points (u, v), where v is fixed and u runs through all possible values.
We shall also write R™ for R™(0) if this will not cause ambiguity.

If f is continuous, it is natural to define the trace tr f as a restriction of
the function f: (tr f)(u) = f(u,0),u € R™. However, this way of defining the
trace does not make sense for an arbitrary function f € Li°¢(R"), since actually
it is defined only up to a set of n-dimensional measure zero. In fact, one can
easily construct two functions f, h € LP¢(R"), which are equivalent on R"™, but
f(u,0) # h(u,0) for all w € R™. Finally, it is natural to define the traces
themselves up to a set of m-dimensional measure zero.

The above is a motivation for the following requirements for the notion of
the trace on R™ of a function f € Li°(R"™):

1) a trace g € L¢(R"),

2) if g € L'¢(R™) is a trace of f, then ¢ € LY(R™) is also a trace of f, if
and only if, ¥ is equivalent to g on R™,

3) if g is a trace of f and h is equivalent to f on R™, then g is also a trace
of h,

4) if f is continious , then f(u,0) is a trace of f.

Definition 1 Let f € L(R") and g € L¥*(R™). The function g is said to
be a trace of the function f if there exists a function h equivalent to f on R,

197
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which is such that !
h(-,v) — g(-) in LY(R™) as v — 0. (5.1)

Clearly the requirements 1) —4) are satisfied. In fact, if g is a trace of f and
1 is equivalent to g, then (5.1) implies h(-,v) — (+) in Li°¢(R™) and 4 is also
a trace of f. Next suppose that both g and v are traces of f, then we have
(5.1) and also H(-,v) — 9(+) in LP*(R™) as v — 0 for some H ~ f on R". We
note that for each compact K C R™

llg — Yl ey < A v) = gl

H[[ACsv) = HC o) [ + I 0) = Pl

Since h ~ H on R”, h(-,v) ~ H(-,v) on R™ for almost all v € R*™"™. Hence,
there exists a sequence {vs}sen, vs € R"™™, such that vy, — 0 as s — oo and

g = Vlleiry < (5 vs) = gllouy + H (5 vs) = 9| Ly x)-

On letting s — 0o, we establish that g ~ ¢ on R™.
Finally, if f is continuous, then

[1f(u ) = f, O]z, ) < meas K max | f(u, v) — f(u, 0)].

Hence, || f(-,v) = f(-,0)||L,(x) — 0 as v — 0 because f is uniformly continuous
on K x By, where By is the unit ball in R"~™. Thus, f(-,0) is a trace of f.

Theorem 1 Let Z(R") be a semi-normed space of functions defined on R"
such that

1) Z(R™) & Liee(R™)
and

2) C*(R")N Z(R") is dense in Z(R™).
Suppose that 1 < m < n and for each compact K C R™ there exists c¢;(K) > 0
such that Vf € C*(R") N Z(R™) and Yv € R"™™ satisfying |v] < 1

FC o) < ea(B) [l 2. (5.2)

Then ¥V f € Z(R™) there exists a trace of f on R™.

1 One may include the case m = 0, considering a number g satisfying h(v) — g as v — 0.
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Idea of the proof. Consider a function f € Z(R") and a sequence of functions
fr € C*(R™")NZ(R"),k € N such that f, — fin Z(R") as k — oco. Applying
(5.2) to fr — fs, prove that Yo € R*™™ : |u| < 1 there exists a function
gy defined on R™ such that fi(-,v) — ¢, in LP(R™) as k — oo. Define
h(u,v) = g,(u), (u,v) € R" and prove that the functions h and g = gy satisfy
Definition 1. O _

Proof. Let B,, B, be open balls in R™ R"™™ respectively, of radius r centered
at the origin. By (5.2) with fy — f; replacing f and By, N € N, replacing K,
it follows that fi(-,v) — fs(-,v) — 0 in L1(By) as k,s — oo for all v € B; and
all N € N. By completeness of L;(By) there exists a function g, v € L1(By)
such that fy(-,v) — gun(-) in Ly1(By). Consider any function g, ~ g,y on
By for all N € N. Such a function exists because g, v ~ gy n4+1 on By. This
follows by passing to the limit in the inequality

Hgv,N - gv,N+1HL1(BN) < HgU,N - fk(a U)HLl(BN) + ||fk(7 U) - gv,N+1HL1(BN+1)'

Clearly, fx(-,v) — g, in LY(R") as k — oo and, hence, for the function h,
defined by h(u,v) = g,(u), (u,v) € R", we have fi(-,v) — h(-,v) in LP(R™)
for all v € él. B

On the other hand, fx(-,v) — f(-,v) for almost all v € By. This follows
since by the Fatou and Fubini theorems and condition 1)

/ hlgnlnf/]fk u,v) — f(u v)|du> dv
<l1m1nf/ /]fk u,v) — f(u v)|du> dv

B By

= lim | fr(u,v) — f(u,v)| dudv = 0.

k—o0
By x By
Thus f(-,v) is equivalent to A(-,v) on R™ for almost all v € By. Conse-
quently, by Fubuni’s theorem, ? f is equivalent to h on R™ x El.
Furthermore, by the continuity of a semi-norm, on letting s — oo in (5.2),
where f is replaced by fr — fs, we get

175 (s 0) = A0y < (B = fllzeen).

2 For, let e, = {(u,v) € R™ x By : f(u,v) # h(u,v)} and e (v) = {u € R™ : f(u,v) #
h(u,v)}. Then meas, e, = [ (meas,, e, (v))dv = 0.
B
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Therefore

1A (5 0) = gl = [[AC5 0) = BE 0) [ Lyey < NI 0) = frls 0)lLaco)

i 0) = Fels Ollaae) + 1 0) = A, 0) Ly
< 261(K)|Lfi = fllgen) + meas K ma | fy(u,0) = fi(w,0)].

Given ¢ > 0, we choose k. € N such that for k¥ = k. the first summand
is less than 5. Since fi. is uniformly continuous on K x Bj, there exists
v = 7(e) > 0 such that for |v| < 7 the second summand is also less than § and
lg(-,v) = gL, (k) < €. Hence ||A(-,v) — g|lz, (k) — 0 as v — 0 and h(-,v) — g
in Ll¢(R").

Thus, by Definition 1, g is a trace on R" of the function f. O

Remark 1 On replacing f by fx in (5.2) and letting k — oo, we establish that
Vfe Z(R")
ltr fllzay < ca(B) [l zzn)-

Moreover, it follows that Vf, € C*(R™) (N Z(R"), k € N, satisfying fy — f in
Z(R") as k — oo we have fi(+,0) — tr f in Li¢(R™).

Corollary 1 In addition to the assumptions of Theorem 1, let the following
condition be satisfied
3) if f € Z(R™), then Vv € R*™™™ f(-,-+v) € Z(R") and

1F G+ 0)llz@n = [ fll2@n).

Suppose that for each compact K C R"™™ there exists co(K) > 0 such that
VfeC®R")NZ(R)

17 G5 Oz ey < eo(B) [ f ]l 2y (5.3)

Then Vf € Z(R") there exists a trace on R™.

Idea of the proof. Given f € Z(R™), apply (5.3) to the function f,, defined
by fu(,-) = f(-,- + v), which by condition 3) lies in Z(R"), and verify that
inequality (5.2) is satisfied for all v € R*™™. O
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5.2 Existence of the traces on subspaces

Theorem 2 Letl,m,n € NNm <n and 1 < p < oco. Then traces on R™ exist
for all f € Wzﬂ(R”) if, and only if,

l>%for l<p<oo, [>n—m for p=1, (5.4)

i.e., if, and only if,
WIER'™) S CR™). (5:5)

Idea of the proof. If (5.4) is satisfied, write the inequality corresponding to
embedding (5.5) for functions f(u,-) with fixed u, and take L,-norms with
respect to u. Next use Theorem 1. If (5.4) is not satisfied, starting from
Example 8 of Chapter 1, construct counter-examples, considering the functions
fa(u,v) = [Py (u)ne(v) if I < = and gy (u,v) = [In oY g (u) na(v) if

I =%, 1 <p<oo Heren € CP(R™),my € CP(R™™) are “cap-shaped”

functions such that 7, =1 on By, 7 = 1 on El, where B, El are the unit balls
in R™ R"™™ respectively. O

Proof. Sufficiency. Let (5.4) be satisfied. First suppose that 1 < p < co. Then
Vf e C*(R") N W}(R"), by Theorem 12, we have that for almost all u € R™

1,0 < My (11 () L2y + D DO )0t 0) gy ) ).

Iv|=t

where v = (Y11, -, Tn) € N§~™ and M; depends only on n — m,p and [. By
Fubuni’s theorem both the left-hand and the right-hand sides are measurable
with respect to u on R™. By Minkowski’s inequality and Fubuni’s theorem we
get on taking L,-norms

1f (u,0)]|,.@&m) < M1<|| f (u, )l 2, @) | L (B

+> |l H(D‘O’”)f)(u,n)\!Lp,,,mn—m)I\mem)) < My fllwy e

lv|=t

Consequently, by Corollary 1, it follows that each function f € Wé(R") has a
trace on R™.
Necessity. Let [ < % and [ — % < B < 0. Then, by Example 8 of

Chapter 1, f3 € WL(R"). On the other hand for each g € L**(R™) and v € B,
by the triangle inequality,

||f5('7v) - 9||L1(Bl) > |U|ﬁ ||771||L1(Bl) - ||9||L1(Bl) — X
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as v — 0. Hence the trace of fg does not exist. If | = ”;m, 1 < p < oo and

0<y<l1-— %, then, by Example 8 of Chapter 1, g, € W;(R”), but a similar
argument shows that the trace of g, on R™ does not exist. O

Remark 2 Assume that (5.4) is satisfied. By Remark 1 it follows that for
each f € WL(R") the trace tr f € L,(R™) and

[t fllz,@my < csll fllwyn (5.6)

where c3 > 0 depends only on m, n, p and I. Moreover, if f € C(R") ) W;(R”)
are such that fi — f in W}(R"), then f(-,0) — tr f in L,(R™).
Thus, if we consider the trace space

tr, Wh(R™) = {tr f, f € W(R")}

={g e LY*(R"): 3f e W)(R") : tr f = g},
then
tr,. Wi(R") C L,(R"). (5.7)

The problem is to describe the trace space. In order to do this we need to
introduce appropriate spaces with, in general, noninteger orders of smoothness.

5.3 Nikol’skii-Besov spaces

It can be proved that for [ € N, 1 < p < oo the definition of Sobolev spaces
W)(R™) is equivalent to the following one: f € WJ(R") if, and only if, f is
measurable on R” and 3

Al n
1]l @n +  sup m
heR™ h£0 |h|

This definition can easily be extended to the case of an arbitrary positive [: one
may define the space of functions f, measurable on R"™, which are such that

Ao‘f L Rn

||f||Lp(]Rn) + sup H h || lp( ) ’
RER™  h£0 |h|

where c € Nand 0 <[ <.

This idea will be used in the forthcoming definition. However, for reasons,
which will be clear later, in the case of integer [ it will be supposed that [ < o

3 One of the implications has been established in Corollary 8 of Chapter 3.
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(as in the case of noninteger ). * Moreover, an additional parameter will be
introduced, providing more delicate classification of the spaces with order of
smoothness equal to [.

Definition 2 Letl > 0,0 e N,o > [,1 < p,0 < co. The function f belongs to
the Nikol’skii-Besov space BY o(R") if f is measurable on R™ and

103 ey = Dl + 1l qay < o,

B |AY fllL, @ \¢ dh \ o
”be;ﬁ(Rn) = (/( o ) Wn) (5.8)

RTL

where

if 1 <0< oo and

AR SNl @y
I _(Rny = SUp . >
£l ey =, sU0 TG o

This definition is independent of o > [ as the following lemma shows.

Lemma 1 Letl > 0,1 <p,0 < co. Then the norms® ||-|| g ,(&n) corresponding
D,
to different o € N satisfying o > | are equivalent.

Idea of the proof. Denote temporarily semi-norms (5.9) and (5.10) correspond-
ing to o by ||-]|°). It is enough to prove that ||-||”) and || - |+ are equivalent
on L,(R") where o > . Since A7 f|l1,@n) < 2[|A7 f]|1,®n), it follows that
| - |@tD < 2] - ||”). To prove the inverse inequality start with the case
0 <l < 1,0 =1 and apply the following identity for differences

Anf =300 f — 3 AL, (5.10)

which is equivalent to the obvious identity © 2 — 1 = $(2? — 1) — 3(z — 1)?

for polynomials. To complete the proof deduce a similar identity involving
A7 f A, f and ATTf O
Proof. 1. Suppose that 0 <1 < 1 and | f||® < co. By (5.11) we have

1AL L) < 3 1A f Il L@e) + 5 1AL f |2, @&y (5.11)

4 The main reason for this is Theorem 3 below, which otherwise would not be valid.
® See footnote 1 on page 12.
6 Here x replaces the translation operator Ej, where h € R™ ((Eyf)(y) = f(y+h),y € R™).
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First let 0 = oo. Denote ¢(h) = ||| Anf]|L,®n). (Clearly, p(h) < oo for all
h € R" h # 0. Then it follows that

p(h) <27 p(2h) + 27| £,
Consequently, Vk € N
p(h) < 2712 p(dh) + 27| £ + 27| £ < -

S 2([—1)k(p(2kh) + 2—1||f||(2)(1 + 2l—1 I 2([—1)k)
< 207k (2h) + (2 — 2) 7| £

Let k be such that 2¥|h| > 1, then ¢(2Fh) < ||Agerf |, @) < 2| f]L, @
Hence,
p(h) < 20| £l ny + (2 = 20) THIFII).

On letting k — oo, we get || f||™ < (2 =297 f||®. Thus,
2 =21 < A1 < 20171, (5.12)
If1 <6< o0, weset Ve >0

Apfllz, @y \? 7
‘”(5):</ (H hyf|l|yl( ') yiﬁ) '

|h|=e

Since || Ap fl|L, @) < 2||f]lL, @, ¥(€) < oo forall e > 0. From (5.12) it follows,
after substituting 2h = 7, that

Y(e) < 271 (2e) + 271 FI1?),

and a similar argument leads to the same inequality (5.13).
2. If 0 > 2, then

(-1 =2"92*-1)7+ (z —1)° —=277(2* — 1)°
=27(2? — 1) + P,y (z)(x — 1)°,
where

P,y(z)=-2"%(x—-1)"(z+1)7—-27) = -27° <Z) (x— 1)1

s=

Hence,

AL =205, + Pooa(En) AT f
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and, since || Ep ||, & —1,® = 1,
A7 fllL, @y < 27NIAG, fllL,@n + 2777137 — DIAT fllL,@n

The rest is similar to step 1. O

We shall prove next that the norm || - [z ) is equivalent to a similar
p,
norm containing the modulus of continuity

wo (0, f)p = sup | A7 flL, @)
bl <8

To do this we need several auxilary statements.

Lemma 2 (Hardy’s inequality) Let 1 < p < o0 and o < 1%. Then for each
function f measurable on (0, c0)

t
1
t“¥/|f\daz‘
0

Idea of the proof. Substitute x = yt, apply Minkowski’s inequality for integrals
and substitute ¢ = g O

Proof. We have *

_ S =) 2 f @), 00- (5.13)

LP(07 )

t

e [ 1)

0

L,(0,00)

1
= | [erwniay
om=| / (0t)| dy

—a+1 «
/Hta ()|, 2 (0.00) :/ Trdy || f () 2, 0,00

= (7 — )7 2" (@)l L0000 D

Remark 3 The constant (i —a) " in (5.14) is sharp. One may verify this
considering the family of functions fs where 0 < ¢ < p(I% — «), defined by

fs(x) =0for 0 <z <1 and f(;:x_o‘_l%é for z > 1.

"Since f is measurable on (0, 00), the function F(y,t) := | f(yt)| is measurable on (0, 00) X
(0,00) and we can apply Minkowski’s inequality for integrals.
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Corollary 2 Let 1 < p < oo and a <n — %. Then for each function f mea-

surable on R™
1
d
= [ Wl

|lz|<t

a_n=1
¢ < |[ 2] f (@)L, (5.14)

LP (0700)

where ¢y > 0 is independent of f.

Idea of the proof. If n = 1, apply inequality (5.13) and its variant for the case,
in which in the left-hand side the integral over (0, t) is replaced by the integral
over (—t,0) and in the right-hand side the norm || - |[z,(0,) is replaced by
|-l 2,(=00,0)- If n > 1, take spherical coordinates, apply Minkowski’s inequality,
inequality (5.13) and Hoélder’s inequality. O

Proof. Let n > 1. Then by (5.13)

1
te d
— / £l de

|| <t

L,(0,00)

t

e [ (feriseoras) s

Sn—1 0
1 L[
< [ e [ e e

Sn—1 0

< (=2 =a) [ 16 (@, 0 45"
Sn—l

LP’t(Ovoo)

dsn—l
Ly, (0,00)
- p

o0

< (= § - o)tk / </ AP as)’

Sn—l 0

_n=1
=cy |||z f(@)||2,@n). O

Next we generalize the trivial identity

(A7) (@) = (Bnf) (@) + (B f)(z + 1),

where z, h,n € R" to the case of differences of order ¢ > 1.
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Lemma 3 Let 0 € N, h,n € R" and f € L'(R™). Then for almost all x € R"

o

@A) = Y07+ (7) (AL, + o - )

k=1

(=) AT, )@+ ). (5.15)

o

Idea of the proof. Replacing the translation operators Ej and Ex» by y and z
respectively, it is enough to prove the following identity for polynomials

. — o o, 0— . o o
Y e (4 [CE Ve S (4 [EEERCA
k=1 k=1
Proof. Identity (5.16) is equivalent to the identity
_1o'fk a k_laafk: _10‘7’{ o k__ ,\o
St (F) - = e () et -
which is clear since both its sides are equal to

S (ke (D)(2)mr 0

k,m=0

Corollary 3 Letoc € NJh,n e R", 1 <p <oo and f € L,(R™). Then
g ¢ o g g
187 sy < 3 (7) (1% e + 187 ). G0
k=1

Idea of the proof. Apply (5.16), Minkowski’s inequality for sums and the invari-
ance of the norm || - ||, ®~) with respect to translations. O

Lemma 4 Let 0 € N, 1 < p < oo. Then for all functions measurable on R"
and Yh € R"

C
187 Niiery < o [ 18T iiae (5.18)

In|<[h|

where c5 > 0 is independent of f.
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Idea of the proof. Integrate inequality (5.17) with respect to n € B(%, %) O

Proof. 1t p € B(&, 21y then 2 h — %2 ¢ B(0,|h|),k = 1,...,0. Hence, by

substituting ]2—’7 =& h— % = £ respectively, we have

(55 18 e <QZ< )( )" [ 188 ey e

l€I<[hl

Thus
2(20)"(27 — 1)

Un [

17 il @y < / JA? fl1 gy . ©

In|<|h|
Corollary 4 Let 0 € N;1 <p < oo and f € L,(R"). Then
C5 - d
(t f HA fHLp(R | |n (5'19)
|77|<t

Idea of the proof. Direct application of inequality (5.18). O

We note also two simple inequalities for modulae of continuity, which follow
by Corollary 8 of Chapter 3:

w0'<57 f)p < 2J||f”Lp(R") (520)

and

wa(57 f)p < C45l||f||w§,(R")7

where [,0 € N, < 0,1 <p < oo and ¢4 = 27 !n!~1,
We shall also apply the following property:

w0(857 f)p S (8 + 1)00‘)0(57 f)P? (521)
where s > 0. If s € N, it follows, with s replacing (s + 1)?, from the identity ®

(A%, f) Z ZA;f )(x + sth+ -+ + s,h)

S1= =0 SO-—O

and Minkowski’s inequality. If s > 0, then
Wo (80, f)p < wol([s] +1)8, f)p < ([s] + 1)7we (9, f)p < (5 + 1) wo (0, f)p-

81t follows, by induction, from the case s = 1, in which it is obvious.
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Lemma 5 Letl > 0,0 e Nyo > 1,1 <p,0 < oo. The norm

wg 5 f 9dt>é (5.22)

1) ey = e + ([ ( t
0

is an equivalent norm on the space B 4(R™).

Idea of the proof Since clearly, [|A7fllz,®») < wos(|h|, f)p, the estimate
1l @y < Millf || Ry where M is independent of f, follows directly

by taking spherical coordmates. To obtain an inverse estimate apply inequali-
ties (5.19) and (5.14). O
Proof. In fact, by (5.19)

o0

waéf edt% e n|| AC
(L) ) < aflemmv a1l e

0 \7]|<t

Lo(R™)

where M, is independent of f.
Since | > 0, the assumptions of Corollary 2 are satisfied and by (5.14)

1 2 o
HfH() S W llzp@ey + Msll 0™ AT Fll @ lzo0.00) < Mallfllgy gy
where M3, M, are independent of f. O

Since the modulus of continuity is a nondecreasing function, it is possible
to define equivalent norms on the space B;l;,e(Rn) in terms of series.

Lemma 6 Letl > 0,0 e Nyo > 1,1 <p,0 < oo. The the norms

12 oy = Wl + (S (R (1) ) DY )
k

and
o0 B 0 %
I£15) ey = Wy + (32 (200 (271) )') (5.24)
’ k=1

are equivalent norms on the space Bl 4(R™).
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Idea of the proof. Apply (5.21) and the following inequalities for nondecreasing
nonnegative functions ¢ and a € R:

and

where cs, ..., cg > 0 are independent of ¢. O

Remark 4 The norm || - || (gny is the “weakest” of the considered equivalent
D,

norms on the space B! ;(R") and the norm || -

1@ 13
1)y 00 105 )

) - -
or any of its variants
HBZP,Q(Rn) ( Y v

is the “strongest” one, since the estimate ||-[|p | @ny <
Db,

M][- ng’e(w) is trivial, while the inverse estimate || - ||591£9(R") < My||- ||B;,9(Rn) is

nontrivial. For this reason, estimating ||| 5 »(R7) from above, it is convenient to
p,

use this norm itself, while estimating some quantities from above via ||+ || g @),
P,

it is convenient to use the norm || - This observation will be applied

||(1)
Bl ,(R")
in the proof of Theorem 3 below.

Lemma 7 Let[>0,1<p,0 <oo. Then B} ,(R") is a Banach space.

Idea of the proof. Obviously Bll)ﬂ(]R") is a normed vector space. To prove the
completeness, starting from the Cauchy sequence { fx }ren in Béﬁ(]R”), deduce,
using the completeness of L,(R™) and ' L,,(R?"), that there exist functions
f € L,(R") and g € L,4(R?") such that f, — f in L,(R™) and k|~ fy(z) —
g(z,h) in L, »(R**). Choosing an appropriate subsequence { f, }sen, prove that
g(x,h) = |h|79 f(z) for almost all ,h € R" and thus f; — f in Bl ,(R"). O

9 See footnote 1 on page 12.
0L, o(R?™) is the space of all functions g measurable on R?", which are such that

lgllz, @2y = [ lg(z, W)L, @)Ly, @r) < 0.
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Lemma 8 Let [ > 0. The norm
4 1
UG gy = L 1EPD 2 (F ) gy (5.25)
is an equivalent norm on the space B 5(R™).

Idea of the proof. Apply Parseval’s equality (1.26) and the equality

(FOENE) = (1) (F e = (20eF) (sn ) wpce)

for f € LQ(Rn) O
Proof. Since va? + 0% < /a + Vb < 2v/a? +12,a,b > 0, the norm £l 51, @y

is equivalent to

2 h72l AO’ 2 ﬂ %
IR o A T i FAVAY [ nR
]Rn

= ([as2on@niEner )’

Rn
where
An(§) = / || 72" sin® %dh.
R
If n = 1, then after substituting h = |E—|, we have
A (&) = Mi|¢)*, My, = / |t| =2~ sin?? é dt < oo,

since [ > 0 and ¢ > [. If n > 1, we first substitute h = A, where A is a
rotation in R™ such that h - & = |€|n;, and afterwards n = \SLI Hence

—2l—n ;.20 577 —ol—m - Ut
An(f)Z/\n! A sin® HTldnzMn\ﬂ”, My = [ [t sin® 2 dt.
R

Rn

n
If ty = |ti|m.k = 2,..,n, then [t| = |t1|\/1+ |72, where |7| = (3 72)2.
k
Hence, applying (4.116), we have

oo
—2l—-n —20-2
M, = M; / V14 |’7'|2 dr = Mio,_1 / V14 Q2 dQ < Q.
Rn—1 0
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To complete the proof it is enough to note that Kj(1+ [£]?) < 1+227A,(¢) <
Ko(1 + [€]?), where K1, Ky > 0 are independent of ¢. O

Corollary 5 Ifl € N, then
By 5(R") = Wy(R™).

The corresponding norms are equivalent. Moreover, ||fH (&) Hf”wl R™)

Idea of the proof. Apply Lemmas 8 of this chapter and of Chapter 1. O

Next we state, without proofs, several properties of the spaces B;B(R"),
which will not be directly used in the sequel, but provide better understanding
of the trace theorems.

Remark 5 If [ >0, 1 <p<oo, 1 <6 <6y <oo,then
Béﬁl (Rn) C Bé,eg (Rn)
Moreover, if | >0, 0 <e <[, 1 <p,0,01,05 < oo, then
B;fei (R") C Bé’(,(R”) Bfg o, (R™).

Hence the parameter #, which is also a parameter describing smoothness, is a
weaker parameter compared with the main smoothness parameter [.

Remark 6 If [ e N, 1 < p < oo and p # 2, then for each 0,1 < 0 < oo,
BLy(R") # WI(R").
Moreover, if l € N, 1 < p < 0o, then

Bl

p,01

(R") € WAR™) C B4, (R™),

where ¢, = min {p, 2}, 0y = max {p,2}. If §; > min {p, 2}, 0 < max{p,2}, the
corresponding embeddings do not hold.

Remark 7 The following norms are equivalent to || f|[  @n):
D,

Hﬂ\ R") Hﬂ@mw+WH Jmey K=56T8,
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where

6) IATDS fll, @ \? dh \@
1= 32 (f (510 )

lol=m |nj<H
[ 1o, D2yl e 0 dt
6 Wo b Doy J )pll Ly (R7) ?
171 oy = Z(/( o) 1)
lal=m 7§

0'

H || :

teJ Ly(R™)\O dt\ o

“f”bl Rn) 1 tl m ) t ) )
0

Jj=

n m.(t,(%) o
1 = 3o [ (T
b;,g(]R") A H-m t :

j=1 0

Here m € No,m <l <o+m,0 < H < oo, ¢; is the unit vector in the direction
of the axis Ox; and w, (-, ¢) is the modulus of continuity of the function ¢ of
order ¢ in the direction of the axis Ox;. If § = oo, then, as in Definition 2, the
integrals must be replaced by the appropriate suprema.

There also exist other eqivalent ways of defining the space Bgl;,e(Rn)3 with
the help of Fourier transforms (not only for p = § = 2 as in Lemma 8), with
the help of the best approximations by entire functions of exponential type, by
means of the theory of interpolation, etc.

Remark 8 It can be proved that
W(R") G Baop(R"), 1>, 1<p< oo,
and
l-n(:-1
WiRY) S By (R, n(l-1)<l< 1<p<g<oo

These embeddings are sharp in terms of the considered spaces: the second lower
index p can not be replaced by 6 < p.

Remark 9 In the sequel we shall use only the spaces BL(R") = B! (R"). One
can easily verify by changing variables that in this case || f|| Bi(Rn) IS equivalent

to ’ .
118y = Wy + ([ [ E |:,;_y|n+pl “izay)’,

where (A7 f)(z,y) = (A?%yf)(y)
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5.4 Description of the traces on subspaces
We recall that by Corollary 8 of Chapter 3

1ALl zp@n) < €9 [ ILf [l emy (5.26)
or

H (ALS) (@)
|f!

Lp,z(R™) < € |/ lhug ),

where [ €N, 1 <p < oo and cg = n'"L.

Lemma 9 Letl e N1 <p<ooand f € wé(R”). Then Yh € R™ for almost
all r € R"
I|h| l
0
@5 = | Kluhy,ﬂ(a—g)wmm o (5.27)
0

where £ = ﬁ and (%) 1s the weak derivative of f in the direction of &,

Ki(0,7) = (Xo* - *Xo)(7), 0<p<o00, —o00<T<O00,
———

l

and x, 1s the characteristic function of the interval (0, o).

Idea of the proof. Starting from Lemma 5 of Chapter 1, prove, by induction,
that for almost all z € R”

Al \ .
@ihe) = [ [(5F) o+ et npyanan

and apply the following formula

[e.9]

/ /wﬁ v(n)e(n +--+m)dr---dn = /Kz o(T) dT,

where K;(7) = (¢ * -+ % ) (1), ,¢ € LP(R) and ¢ has a compact support. O
I
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Corollary 6 Under the assumptions of Lemma 4 Yh € R™ and for almost all
reR”
1|h|
1
l —
(a4)@)] < = /T

0

! (%)w(er&T)‘ dr. (5.28)

Idea of the proof. It is enough to notice that K;(o,7) =0 for 7 < 0or 7 > lp
and to prove, by induction, that K;(o,7) < & for 0 < 71 <lop.

Lemma 10 Letl € N1 < p < oo andl > 2. Then Vf € wh(R") for almost

all x € R™
H (AL f)(x) H
At L, @)

where ' ¢19 > 0 is independent of f.

S C10 “waé,(R”)a (529)

Idea of the proof. Take spherical coordinates and apply Corollary 6 and Lemma
2.0

Proof. After setting h = o, where o = |h| and £ = % € S" ! substituting
o = 7 and applying (5.28) and (5.14) we get

=1 AN @i = [l @en@),
-2l [ 1| (O'f d
< / P (Ga) e,
0
=5 0 enantl [ /0
P == d
(l— 1)! H H r/T (6§l)w($+§7—>‘ g L, (0,00) 1 L, ¢ (=D
0
I~ o f
< — —_— .
(l -2 —1)! <3£’>w($+57) Lp,+(0,00) 11 Ly ¢ (S71)

Since £ < n'~! where a € Nj and |a| = [, we have, for almost all z € R",

G011 Lol ) )

UTfn=10=1,p>1, then cig = p’ and (5.29) is equivalent to (5.13), where o = 0 and f
is replaced by f,.
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0] < 77 S [0t}

laf=l laf=l

I< || o
(l— -)(l—l )! Z ! Daule +¢7) Ly, (0,00) 1L, ¢ (571)

l 1ll—* nl—lll—%
= > (D" flu(®+y)lL,, @ 0 f Nt (mmy- O
(=) - '|;z G =) =1t b

Then
tr,, WAR™ = B, 7 (R™). (5.30)

Remark 10 Assertion (5.30) consists of two parts: the direct trace theorem,
stating that Vf € W/ (R") there exists a trace g € B (R™), and the ex-

n—m

1—
tension theorem, or the inverse trace theorem, stating that Vg € B, * (R™)
there exists a function f € Wé(R”) such that f ‘ =g Actually stronger

assertions hold. In the first case it will be proved that the trace operator

r: WHR™) — B o (R™) (clearly linear) is bounded. In the second case
it will be proved that there exists a bounded linear extension 2 operator

|—n—m

T:B, " (R™) — WZ(R")

Idea of the proof of the direct trace theorem. Start with the case m = 1,n = 2.
If | =1, apply for f € C*(R?) (W, (R?) the identity

fu+h,0)— f(u,0) = f(u+h,0) — f(u+h,h)

+f(u+h,h)— f(u,h)+ f(u,h) — f(u,0) (5.31)

and inequality (5.29) with [ = 1. If [ > 1, deduce a similar identity for differ-
ences of order [. In general case take, in addition, spherical coordinates in R™
and R*™™. O
Proof of the direct trace theorem. 1. Let Vf € C*(R") (\WL(R™). It is enough
to prove that

1O mnmm < My fllwy @y, (5.32)
B, 7 (Rm)

P

|_n=—m
?Le.,Vge B, 7 (R™),gis a trace of Tg € W)(R") on R™.
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where M is independent of f. In fact, if f € W/(R"), then we consider any
functions f, € C*(R™)(W}(R"), such that fy — f in WL(R") as k — oo.
By a standard limiting procedure (see, for example, the proof of Theorem 1

j_n=m
of Chapter 4), it follows, since the space B, * (R™) is complete, that there

n—m

- 1—
exists a function g € B, * (R™) such that fi(-,0) - ¢gin B, * (R™). By
Remark 2 the function g is a trace of the function f on R™. Moreover,

[tr fll vonom < My ([ fllwg ) (5.33)
By, * (R™)

Since inequality (5.6) is already proved, it is enough to show that the inequality

[FC O imnom < Mo || fllwny
by P (R™)

holds Vf € C*°(R™) W/} (R™), where M is independent of f .
2. Let I =1,m=1n=21<p<ooand f e C°R*)NW)(R?). By
(5.31) and (5.26) we get
H(Au,hf) <u7 O)HLP,u(R) S ”(Av,hf)(u + h? O)”Lp,u(R)
H(Aun ) s )|z, ) + [[(Aonf) (0, )1, )

0
< 200V ey )+ 18] | 2 ()

Lyp,u(R)

Hence, applying Fubuni’s theorem and inequality (5.29), we get

O | (N STCAO) P P

<2 A1 B ) 00) iy i + | | 22 )
|5 5

900 Lpu(R) + H ou
3. Let next [ > 1,m = 1,n = 2. The following identity

Lp,u (R) Lp,h (R)

< 2p/

< 29" [ f o 2y -

ov Lp.»(R) Lp(R2)

l
(@000 = S0P} ) Ao+ A0
A—

0

’ l
=02 ()) Al (5:34

1
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is an appropriate generalization of (5.31) for differences of order [ > 1. 1 By
(5.26), as in step 2,

1A F) (@, 0) ) < M3(||(Ai,hf)(u, )|z, (R)

L ZH( ) w, \h)

where M; = 2. Hence, by inequality (5.29)
||f('70)|’bz—%(R) = [T (AL L) (w,0) 2y @yl 2y ()

P

I

LP,M(R)>

< M4(H I (AL )@ Ol oy

>[50
L, r2) /\Z H <8ul>

where My, M5 and Mg are independent of f.
4. In the general case, in which 1 <m < n, [

Ly o (R) Lp,h(]R))

§M5(

< M,
] ) <

l

(AL, ) (u,0) = Z () L inn ) (w4 AR, 0)

=0

=0 ()) Bl vl (5.36)

where € S"™~1 which also follows from (5.35) if we replace = by F,,; and
y by E, np- Taking spherical coordinates in R™ and using equality (4.116), we
get

',O _n—m
9GO o

< M7< AL % (A g ) (s )Ly e [ 2 )

13 This follows from the obvious identity for polynomials

(@-1'=D'@-D'y-D'+@-)'1-(-1)(y-1))

- é(—l)* () 0= = ()t (5.5

if x is replaced by E, ; and y by E, p.
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l
+ D e 7(D(%0)f)(u7Wlln)||Lp,h<Rm)||Lp,u<Rm>>

=1 A=1

% it
— UmM7 (H ||Q (Ai) an)<u7 0) HLP7Q(O=OO) ||Lp,u(Rm)

n—m—1
-3 S 1™ (D0 1) Al o i)

|v|=l A=1

Here M is independent of f. Taking L,-norms with respect to n € S"~™!
and applying inequality (5.29), we get
1 1

GO o < o2t (A4 08 0) v i
D

l
+ 37 ST IO )t M)y ) )

=1 A=1

< M (IS DO 1) (0, 0)llgy )l 2
1B1=l

£Y Y Il ) < My [/ hug ey

[v|=l A=1
where Mg and My are independent of f. O

In the proof of the second part of Theorem 3 we shall need the following
statement.

Lemma 11 Let [ € N,I > 1. Suppose that the functions \,v € Lo (R™), have
compact supports and satisfy the equality

_ zl:(_nl—k (11) %1/(%) ZER". (5.37)

k=1

Then Y f € L'°(R™) for almost all x € R"

J@n@rmdn = [@n@pn dn (5.38)

Rn R

14 We note that from (5.37) it follows that [ z°A(z)dz =0, s =1,...,1 — 1.
Rﬂ,
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Idea of the proof. Notice that from (5.38) it follows that
/)\(h) dh = (—1)l+1/y(h) dh, (5.39)
R Rn”

expand the difference Al f in a sum and use appropriate change of variables
for each term of that sum. O
Proof. By (5.37) and (5.38)

=zl:(—1)l—k<li) /f(:erkh)y(h) dh+<—1)lf(x)/y(h) dh

_y (—1)lk<li)k—1n/f(x+z)u<%) dz—f(:c)/)\(z) dz

= [+ 2~ f@NE dz = [(Qane)Am)dh. o

R™ R™

Let w € C5°(R™) and let ws where § > 0 be defined by ws(z) = srw(%). We
denote by Ajs,, the operator defined by As,f = ws * f for f € Li¢(R"). (If,

in addition, suppw C B(0,1) and [ wdz = 1, then As;, = A; is a standard
R
mollifier, considered in Chapters 1 and 2).

Lemma 12 Letl € N,1 < p < o0, v € C®(R"), [ vdz = (=1)"" and let A
be defined by (5.37). Then > Vf € L,(R") -

[Asaf = Fll @ < cwi(d. (5.40)
where c11 > 0 is independent of f and 9.
Idea of the proof. Notice that

(Usaf)()=f(a) = [(Fa=20)=Fa)A:) dz = [(AL s (awz)dz (.41

R" R"

151f 1 = 1, then A = v and (5.40) coincides with (1.8).



5.4. DESCRIPTION OF THE TRACES ON SUBSPACES 221

since by (5.39) [ Adz = 1, and apply Minkowski’s inequality for integrals and

Rn
(5.21). O

Proof. Since the functions A\(—%) and v(—%) also satisfy (5.37), equality (5.38)
still holds if we replace p(h) and v(h) by M(—%) and v(—2%). After substituting
h = —z§ we obtain (5.41). Let r > 0 be such that suppr C B(0,r). By
Minkowski’s inequality for integrals and (5.21)

[Asaf = fllL, @ < / 1AL fll, e v (2)] d2 < sup. 1AL F Iz ey 9] 2. Ry
Rn ="

= wi(rd, lpllvllz@n < (r+ Dvln @ wi(d, £, O

Corollary 7 In addition to the assumptions of Lemma 12, let € C§°(R™).
If [ pdz =1, thenVf € L,(R")
Rn

| Aspinf = fllz,@ry < crawi(9, f)p, (5.42)
and if [ pdx =0, thenVf € L,(R™)
Rn
[ As s f | 2 m) < crzwi(6, f)p, (5.43)

where ¢, c13 > 0 are independent of f and §.

Idea of the proof. Inequality (5.42) is a direct corollary of (5.40) because in

this case [(A*p)dr = [ Ndx- [ pde =1.If [ pde =0, starting from the
Rn Rn Rn Rn
equality

Asnon)@) = [ ([ (50— 26— €0) = NG de)ute) de

argue as in the proof of Lemma 12. O
Idea of the proof of the inverse trace theorem. Define the “strips” Gy by

Gr={veR"™: 27" < | <27"} keZ

Consider an appropriate partition of unity (see Lemma 5 of Chapter 2), i.e.,
functions i, € C§°(R"), k € Z, satisfying the following conditions: 0 < 1), <1,

Z @Dk(v) = 17/U 7é 07

k=—o00

G, C supp ¥y C {v eR™:I27F 1 <yl < %2”“}



222 CHAPTER 5. TRACE THEOREMS

C G UGLU Gk+1 (544)

and
(DY) (v)] < a2 k€ Z,v €eRV™ v € Ni°™, (5.45)

where ¢4 > 0 is independent of v and k.

_n—m

Keeping in mind Definition 2 of Chapter 2, for g € B P (R™) set

(Tg)(u,v) Zwk (Ag-r ,g)(u), (5.46)

where

w= A%\ (5.47)

and the function A is defined by equality (5.37), in which n is replaced by m
and v € C§°(R™) is a fixed function satisfying ¢ [ vdu = (—1)".
RrRm
Prove that g is a trace of T'g on R™ by applying Definition 1 and property
(1.8). To estimate ||T'g||z, &) apply inequality (1.7). Estimate || D*Tg||z,®n),
where a = (,7), 8 € Nj',v € N;7™ and |a| = [, via Hg||(33_u . To do this
B, * (Rm)
differentiate (5.46) term by term, apply inequalities (2.58), (5.42) and (5.43)
and the estimate

1D k| nmy < 15 2815, (5.48)

where ¢;5 > 0 is independent of k, which follows directly from (5.45). O
Proof. 1. By the properties of the functions 1) it follows that the sum in (5.42)
is in fact finite. Moreover,

s+1

(Tg)(u,v) Z Vrp(v)(Ag-r ,9)(u) on R™ x G (5.49)

k=s—1

and (Tg)(u,v) = 0 if [v| > &

5. Hence T'g € C*°(R" \ R™) and Va = (3,7)
where § € Ni*, v € Nf7™

(D*(Tg))(u,v) = Y (DY) (0) DP((Ag-k g) (1))

k=1

6By (5.39) and the properties of convolutions it follows that [ wdu = 1.If [ =1, then
Rm,
A = v. In this case one may consider an arbitrary w € C§°(R™) satisfying f wdu = 1.
R7n
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= (D) (0)2" Ay pupirg) (u) (5.50)

k=1

since, by the properties of mollifiers and convolutions,

DB(AW,A*AQ) = ka'ATk,Dﬁ()\*)\)g = leﬁ‘AQ*k,)\*D/@)\g-

2. Let |v| < 15. By (5.44) ¢ (v) = 0 if kK < 0. Hence

id)k(v) ~1. (5.51)

Let s = s(v) be such that 27*7 < |u| < 27, Then by (5.51), (5.44), (5.42) and
Minkowski’s inequality

s+1
I(T9) ) = g0l = | 3o @) Arsang =9l
k=s—1
s+1 s+1
Z Ui (0)[[ Ao+ xerg — 9llz,®m) < My Z w’(Zik’g)p
k=s—1 k=s—1
s+1
3 0 ),
k=s—1
s+1
< Mylo 5" 30 My 27F ),
k=s—1

where My, My, M3 are 1ndependent of g and v.

Since the function g € B S (R™), by Lemma 6 it follows that the quantity
ok==5% )wl(2 g)p —0ask — o0 if 1 <p < oo and is bounded if p = oo
Hence

1(Tg)(-,v) = 9|, @my = 0<!v|”%), 1<p<oo (5.52)

and

1(T)(0) = g nemy = O(Jol') (5.53)

as v — 0 (hence s — 00). In particular, by Definition 1, if follows that g is a
trace of T'g on R™.
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3. By (1.7)
(Tg) ()l nymy <D ()| Az wgll @y < Mallglz,@m),
k=1
where My = ||w| 1, @m). Since (Tg)(u,v) = 0if [v| > &, we have
1Tl < Ms |lgllz, @m), (5.54)

1

where M5 = Myv)_,,.

4. Let a = (8,7), where § € Ni',v € N7 and |a| = |§] + || = [. First
suppose that 1 < p < oo and § # 0. Since the multiplicity of the covering
{¥k }rez is equal to 2, by (2.58) we have

P v
Lp(]Rm)> '

1-1
1D Tg||1, @) < 2 ’“(ZHDwkllp ) 2817

Aok AxDBNG

Since [ DPXdu =0, by (5.43) and (5.48) we have

RTYL

||DaTg||Lp(]R”) S M@(Z 2 m pwl<2_k,g)§> L M6 ||g||(3l)_u :
k=1 B, 7 (R™)
(5.55)

where Mjg is independent of g.

If 5 =0, then v # 0 and by (5.51) > (D")(v) = 0 for v satisfying
k=1
0 < [v| < 1. Hence

(D(UW) Tg Z DW}k AQ*k,A*Ag)(u) - g(u))a 0< |U| S %
k=1

Furthermore, ¢4 (v) = 0 if |v] > & and k > 2. Therefore

(DOD(Tg))(u,v) = (DY) (v)(Ag-1 aing) (u), || > £

Consequently, by (2.58), (5.42), (5.48)

hSA

1
1DV TP, genne ) <2 (U0l o A020 = )
k=1
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< Mz |lg|) ... (5.56)
BP

PR
and by (1.7)
HD(O"Y)<T9)HLP(R7”><CBL)
16

= [[D"1 ||, mn—m) || Az x|z, @my < Ms|lgllz, @m), (5.57)

where M7 and Mg are independent of g.
If p = 0o, then the argument is similar. For example, if § # 0, then

DT g|| Loy < 2?{“5 1D g || 1o =y 29PN | Agre rupr | £ ey
S

< My sup 2"wi (27, )00 = My ||9||gl) (Rm)"
keN =

where My is independent of g.
From (5.54) — (5.57) it follows that

3
ITgllwizny < Mo gl oo (5.58)
B, P (R™)

where Mg is independent of g. O

Corollary 8 Letl,m,ne N, m<n,1 <p<oo, > % and let the operator
T be defined by (5.46). Then

Tgl =g, D¥Tyg) I 0, 0<]o| <l—"5" (5.59)

Rm

Idea of the proof. Establish, as in step 2 of the proof of the second part of
Theorem 3, that, in addition to (5.52) and (5.53),

I(D*(T9)) (-, 0) 2, mm) = o[o] T*757), 1< p < oo, (5.60)

and
ID*(Tg)(-, 0) || Loy = O(Jv| 1) (5.61)
asv— 0.0

Proof. Let a = (8,7), where 8 € Ny, v € NJ7™, and 27°7! < |v] < 275 If
B # 0, then by (5.49) and (5.43)

s+1
(DT 0)ymmy < D [(D70k)(0) 257 [| Ay auporgll i, omy

k=s—1
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s+1
<M ) 2wk g),

k=s—1

s+1
< My o 75N T 2R w27k g),, (5.62)
k=s—1

where M7, M, are independent of g and v.
If g =0, then by (5.49) and (5.51)

s+1
DO (Ta))(- H - H DY Ayt yrg —
|oeraa, 32 00 (eeang =9,
s+1
< Ms; Z Al | Ag—k xirg — 9l ®m)
k=s—1

and by (5.42) we again obtain (5.62).
Relations (5.60) and (5.61) follow from (5.62) as in step 2 of the proof of
the second part of Theorem 3. O

The following stronger statement follows from the proof of the second part
of Theorem 3.

Theorem 4 Letlm,ne N m<n, 1 <p<oo, > ";m. Then there exists

a bounded linear extension operator

]—n=m

T:B, * (R")—W,R")()C®R"\R™) (5.63)

satisfying the inequalities

o[ D*(Tg) ||, @) < c1 lgll i my o] >0, (5.64)

P(R

and

-l
v|"(T'g — ny < c n—m , 5.65
el (T = ey < el o (5.69
where ¢y, c17 > 0 are independent of g.
In (5.64) the exponent |a| —1 can not be replaced by |o| —1—€ for anye >0
and for any extension operator (5.63).
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Idea of the proof. Consider the extension operator (5.44) used in Theorem 3.
To prove (5.64) apply, in addition, the inequality 27%=2 < |v| < 27%*! for
v € supp ¥,. To prove the second statement apply Remark 11. O

Proof of the first statement of Theorem 4. 1. Let a = (3,7), where § € Ny,

vy eNy ™ Ja| >0and s = |a| = = |B| + |y] — [. Then as for (5.55) we obtain

ol (D*(Tg))| )

1
P

_1
<2 p(ZH [0 DI oy [ A a0, )

< M, (;2

i (X (T e 0),) ) = el

k=1 B, P (Rm)

1

R (27, gy (5.66)

p

where M is independent of g. The proof of the appropriate analogues of (5.56)
and (5.57) is similar and we arrive at (5.64). O
2. Furthermore, as for (5.56) and (5.57)

(Tg)(u,v) = g(v Zwk ((Ag-r parg) () — g(u)), 0< |v| <,

and
(Tg)(u,v) — g(v) = 1(v)(Az-129) (w) — g(u), |v] > .
Hence by (5.42)

(@00 =g, ()

3=

_1
<2 (3 el 18 ey e 4 r — 91

k=1
< M,

B (R™)
and

I =g, ()

<R, (o, (1424 puaglly ey + gl ey ) < M lgllz, e,
P

7

16

where M, and M3 are independent of g, and (5.65) follows. O
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Remark 11 Let m,n € N, m <n, R% = {z = (u,v) € R* : v > 0}'",l € N,
1 < p<oo,s > 0. We shall say that the function f belongs to the weighted
Sobolev space W o (RL) if f € Ly(RY), if it has weak derivatives D f on R}
for all « € Ny Satlsfymg |a| =1 and

1Al oeny = 1A o) + D ol D flln, @y < oo (5.67)

|af=l

We note that the set C*°(R") W |v‘s(]R") is dense in W
proved as in Lemma 25 of Chapter 6.

Suppose that [ — s — % > (0. Then

.(R™). This is

ol

l—s—1=m
oW s R =B, 7 (R™). (5.68)
The idea of the proof is essentially the same as in Theorem 3.
The proof of the extension theorem is like that of Theorem 4. If in (5.65)

la| = [, then the same argument shows that

Y

(Rm )

ol DT ||, @) < M HQH St

etc.
To prove the direct trace theorem one needs to follow, step by step, the
proof of the first part of Theorem 3 and apply the inequality

H e (Br(O)

Rl HLp’h(Rn_m) < M, ||f”w;,|v|s(R"—m),

where 1 < p < o0, — s — % > 0 and M, is independent of f, instead of
(5.29) (with n — m replacing n and x = 0). The last inequality, as (5.29), is
also proved by applying inequality (5.15).

Proof of the second statement of Theorem 4. Suppose that (5.64) holds with

|a| — 1 — ¢ replacing |a| — I, where € > 0. Let g € B P (]R’”)\Bl+€ S (R™).

Then Tg € W;}IWI,Z,E(R”) where [; € N, [; > [+ ¢. Since g is a trace of Ty,

by (5.67) g € B,lja_T(Rm) and we have arrived at a contradiction. O

We note that from (5.65) it follows, in particular, that T'g = ¢. This
Rm

may be deduced as a corollary of the following more general statement.

1"We recall that v = (Zyy1, ..., Tn) > 0 means that z,,41 > 0,...,2, > 0.
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Lemma 13 Let [, m,n € NNm < n,1 < p < o0, > % if p > 1 and
Il >n—mifp = 1. Suppose that X\ is a nonnegative function measurable
on R"™"™ which is such that ||A||, g, = oo for each & > 0. Moreover, let

f € Ll¢(R™), for v € NJ~™ satisfying |y| = | the weak derivatives Dg)’“’)f exist
on R™ and
Mz, + D DD fllz, @y < o0.

Iv|=l

Then f|gm = 0.

Idea of the proof. Using the embedding Theorem 12 and the proof of Corollary
20 of Chapter 4, establish that there exists a function G, which is equivalent to
f on R™ and is such that the function ||G(-,v)]|r,®m) is uniformly continuous
on R*™™. 0O

Proof. Let us consider the case p < oo, the case p = oo being similar. By
Theorem 6 of Chapter 4 f € L,(R"™), hence, f € W;(R”) and for almost all
u € R™ we have f(u,-) € W)(R"™™). By Theorem 12 of Chapter 4 there exists
a function g,(-) € C(R"™) such that Yo € R*™™

19 (0)] < M1 (£, zynmy + D2 DL )y m))
lvI=t
where M, is independent of f and u. Let G(u,v) = ¢,(v), v € R™, v € R"™™.
Then G ~ f on R™ and

cutwrmy < M (1 ey + D2 1D fllzy ) )-

1=t

G (w, )], )]

As in the proof of Corollary 20 of Chapter 4, let f;, € C5°(Q) and '8
1f = fellz, @) + Z IDE? f — DOV filL, @) — 0
1=l
as k — oo . Then, by the triangle inequality,
G w, 0)lz, w@my = L6 (u, 0) |z, @y lc@nm)

S H HG(U’7 U) - fk(uaU)|’Lp7“(Rm)HCU(Rn—m) — 0

as k — oo. Since the functions ||fi(u,-)|s,.@®n) are uniformly contin-
uous on R"™™  the function H(-) = |G(u,-)|r,.® is also uniformly

18 The existence of such fy is establised as in Lemma 2 of Chapter2.
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continuous on R"™™. So there exists lir%H(v) = A If A > 0, then
v—

éH)‘HLp(BE) < | AH|| L, @n—my = ||Af]lz, @) for sufficiently small € > 0. This is

impossible because [[Al[; g, = oo and [[Af]|L,@») < co. Hence A =0, ie.,

lir% |G (-, v)||z,@®m) = 0 and by Definition 1 f|gm = 0. O

The next theorem deals with the case p = 1, [ = n — m, which was not
considered in Theorem 3.

Theorem 5 Let m,n € N, m <n. Then
tr,,, Wi ™(R™) = L (R™). (5.69)

Idea of the proof. The direct trace trace theorem follows from Theorem 2 and, in
particular, from inequality (5.6). To prove the inverse trace (= extension) the-
orem it is enough to construct an extension operator T : Li(R™) — W} (R™*1)
and iterate it to obtain an extension operator 7' : Li(R™) — W™ (R"). How-
ever, it is more advantageous to give a direct construction for arbitrary n > m.
Start from an arbitrary sequence {dx}rez of posivite numbers ¢, satisfying

Oppr < % Z 0 < 1 and consider the sets G, = {v € R : pyp1 < |v| < g},

where pu;, = Z ds. (Note that < 20y.) Verify that from the proof of Lemma
s=k

4 of Chapter 2 it follows that there exist functions ¢, € C5°(R"™) satisfying

the following conditions: 0 < v <1,

Z ¢k(v> =10 7£ 0,

k=—o00

G Csuppthy C {v € R: gy = % < ol < g+ 5}

C Gk—l U Gk U Gk—H (570)

and
| DYy 1y nmy < My 8"y @ NgT™ 5| < m—m, (5.71)

where M, is independent of k.
For g € Li(R™) set

(Tg)(u,v) Z@Z)k )(As,.w9) (1), (5.72)
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where w is the same as in (5.46). Prove as in the second part of the proof of
Theorem 3 that

ITg gy < Mo (llgllaam) + 3 (0, 9)1 ), (5.73)
k=1

where My is independent of g and 0y, . Since w;(dg, g)1 — 0 as kK — oo, choose
d), depending on ¢ in such a way that, in addition, w;(dx, 9)1 < 275 |g||,&m).-
Hence

1T gllyyp—m@ny < Ms gl Ly@m), (5.74)

where Ms; = 2M,. O
Proof. 1. Since 205 < pyj, — %’“ < up + %‘“ < 26, and |y| < n — m, inequality
(5.71) follows from (2.10):

1Dl gy = 107 Ay X

5 5
Ly <Mk+1— ML <Jo|<pr g1+ kjl)

DY Ay x| 5 s
1L (Mk*fﬁ|v|§uk+7’“>

< M, (5,;|r71|measn_m§(0, 30k11) + 5;|7|measn_m§(0, 35k))

— M <5ZJF*IV\ +(5Z*m*h\> < 205 5Z*mflv\’

where M, and M5 depend only on n — m.
2. Let |v] < py — 2. By (5.70) ¢ (v) = 0 if k < 0 and hence

> di(v) = 1. (5.75)

Let s = s(v) be such that v € G,. Then by (5.75) and (1.9)

1(Tg)(,v) = vC)llzaem = | Z ROICwEY) Hmm)
k=s—1
s+1
< Z HAQ_kng — gHLI(Rm) — 0 (5.76)

k=s—1

as v — 0 (hence s — o0). Thus by Definition 1 g is a trace of T'g on R™.



232 CHAPTER 5. TRACE THEOREMS

3. Since (Tg)(u,v) = 0 if |[v] > py + 2 and g + & < o, we have

IT gy = || 3 el Ao oglzsiem |
k=1

Ll(Rnfm)

< Mo| Yo, o ol < Mool < M lgllaeny, (5:77)
k=1

where Mg and M are independent of g and d.
4. Let o = (B,7), where § € Ni*,v € Ny7™" and |o = |f]| + |y| =1 If
B # 0, as for (5.55) we obtain

ID°T gy < NP Wil A, |, ol
k=1

< Mg > o My (0, 901 = M > w6k, )1, (5.78)
k=1 k=1
where Mg is independent of g and 9.
If 3 = 0, then starting from (5.56), where now 0 < |v| < py+ 2%, and (5.57),
where |v] > pq + &, we have as for (5.58) and (5.59)

w1+ Tl

HD(O”Y) (Tg)“Ll(RmxB 5 Z 1Dk Ly n=my ([ Asixexg = gl )
k=1

< My Y wi(d, 9 (5.79)
k=1

and

HD(O’”)(TQ)HLl(RmXcB ) = 1D [y @n-m) [ Asp xerg | 2oy

)
p1tg

< M ||gllz,®m, (5.80)
where My and M, are independent of g and 0. So we have established (5.73). O

Remark 12 If m =n — 1, then in fact

||¢k||L1(R) = 25k7 ||¢;€||L1(R) = 47 ||¢;‘3||L1(\U|Zuk—%) = 2. (581)

Given € > 0, this allows one to construct, choosing appropriate d; = dx(g) , an
extension operator T : Li(R"™') — W(R") satisfying ||T]| < 2 +e.
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Remark 13 The extension operator 7' : Li(R™) — W[ ™(R") defined by
(5.65) is a bounded nonlinear operator since 0, depend on g. It can be
proved that a bounded linear extension operator T : L;(R™) — W ™(R")
does not exist. However, there exists a bounded linear extension operator
T : Li(R™) — By5™(R") acting from L;(R™) into slightly larger space
By5™(R™) than Wi'™™(R") (see Remark 6).

Theorem 6 Let m,n € N, m < n. Then there exists a bounded nonlinear
extenston operator

T : Ly(R™) — Wi (R") () C=(R" \ R™) (5.82)
satisfying the inequalities
ol == DT )|y < s llgllza@my, Tl >0, (5.83)

and **
Hol="=™(Tg = 91, @mxpyy < €9 l9llzim), (5.84)
where cig, c19 > 0 are independent of g.
In (5.83) the exponent |a| — (n—m) can not be replaced by |a| — (n—m)—e
for any € > 0 and for any extension operator (5.82).

Idea of the proof. As in Theorem 5 consider the extension operator (5.72) . To
prove (5.83) and (5.84) note, in addition, that [v| < 28, on supp ¢ and

o]~ (DY) ()] 1y oy < My, v € Ng~™, (5.85)

where M; is independent of k. The second statement of the theorem is proved
as the second statement of Theorem 4. O
Proof. 1. Since 36, < i — %’“ < g — %’“ < 26y, and |D7(A%Xk)(v)\ < M, 5,€_M,

where My is independent of v and k, by (2.10) we have

sup [o|" [(D74y) (v)] = max sup IUI'V'!(D”(A%%IM)(U)I,

vERn—™ 3 S 1 <|v|<S Sk

sup — [oll|(D7 (A xe)(0)| | < Mo,

3 9
1 5k§|”|§z Ok

19 By Lemma 13 from (5.84) it follows directly that Tg’Rm =g.
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where M3 is independent of k. Hence

o[P=0= (D) )]y ey < M | ol

3 Sp1<|v|<? 5k)

%
30
=Mson_pm / Q_l dQ = M30,_,In 6_k
k+1
36541

and (5.85) is established with M; = M30,_,, In6.
2. If = (B,7), where 8 € NJ', v € N;™™ and 3 # 0, then as in step 4 of
the proof of Theorem 5

o[ == DT g]| 1, eny

< M; Z 1 ‘U‘wﬂwi(nim)wkHLl(R"*m) 5]:|g| | As, 2epergl Lo )
k=1

< M Z I ol P10 | 1 ey wi (G, 9)1
k=1

< Mg My Y wi(Bk, 9h < Mg My | g]|, omy
k=1

The case a = (0,7) where ~ # 0 is similar.
3. As in the second step of the proof of Theorem 4

(Tg)(w,v) = g(w) = > (0) (Agperg)(w) = g(w)), 0< Jo] < puy = 2,
and
(Tg)(u,0) = g(u) = 1(0) (A5 2ex ) (w) — g(w), =% < [o] <1
Hence by (5.42)

ol =™ (T g) (u, v) = g1, @mxp)

L1 (R")

< H i ]v|_("_m)¢k(v) ((Azsk,,\*,\g)(u) - 9(“))‘

o]~ (0) (A xerg) (W) | Ly my + 0]~ ™ g ()| e 361 <por<1y)
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Z [Fv]~ (n=m wk )HLI(Rm) wi(dk, gh + || |U‘7(nim)wl(v)HL1(Rm) HgHLl(Rm)
k=1
-+l |U’7(nim)"Ll(%51§|v|§1)HgHLl(Rm)

< M7<||g||L1(Rm) + Zwl(5k,g)1> <2 Mq|g||L, ®m),
=1

where My is independent of g. O

Remark 14 Here we give the proof of the second part of Theorem 8 of Chapter
2. Let Q =R} = {1: € R*: z, > 0}. First suppose that [ > ]lj and g €

B (]R" 1)\BZJr€ ”(R™'). By Theorem 3 there exists a function f € W}(R")
such that f
R

= g. Suppose that there exist functions ¢, € C*(R%}) N

WL(R?), which satisfy property 4) and are such that || D%, z!*/=~= L, @n) < o0

for all a € N satisfying || = m > [ +¢. By Lemma 13 from (2.86) it follows

that o = f’ = ¢. Since p, € W;” moi—-(R%}), where m € N, m > [ +¢,
R"- o

Ie—1
by the trace theorem (5.68) g € Bp+ ?(R™ ') and we arrive at a contradiction.
If | = p = 1, the argument is similar: one should consider g € L;(R™1)\
B$(R™!) and apply Theorem 5 instead of Theorem 3.

Let I,m,n € N, a € Nj. Suppose that |a| < — #om for 1 < p < oo and
la] <1 —(n—m) for p = 1. By Theorem 6 of Chapter 4 and Theorem 2 it
follows that Vf € WJ)(R") there exist traces tr,, Dgf. We note that these
traces are not independent. In fact, let o = (3,v), where § € Nj*,v € Ny~™.
Then® tr,,, DYV f = D3(tr,,, D\ f). For this reason we consider only weak
derivatives D) f and introduce the total trace of a function f € W;(R”) by
setting

Tr,,. f = (trRm ngomf) | . 1<p< oo, (5.86)
¥ <l—%
and
Try f = (b1 DY) Cp=1. (5.87)
Iy|<i—(n—m)

207f f € W;,(]R”) N C>®(R™), then this formula is clear. If f € WZQ(R”)7 it can be ob-
tained by choosing a sequence of functions fj € W}ﬂ(R”) () C>°(R™), which converges to f in
(Whtee(R™), and passing to the limit in the definition of the weak derivative.
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In particular,

-1
T f = (f‘Rm’ (%)w‘Rm, o (gwln{)w‘ﬂw)’ lspsoo

We also define the total trace space by setting

Tr,,, W (R") = {TrRm f fe W;(R”)}.

Theorem 7 Letl,m,ne N, m<n,1<p<oo. Then

n—m

T WERY = [[ B 7 R, 1<p<o, (5.88)
l<i—n=m
and
Tr, WiR" = [ B""M@m < [ LR (5.89)
<t~ (n—m) | =t—(n—m)

Idea of the proof. The direct trace theorem follows from the first part of Theo-
rem 3. To prove the extension theorem (i.e., the inverse trace theorem), given
the functions g,, where |y| <1 — "% for 1 <p < oo and |y| <1 — (n—m) for
p =1, lying in the appropriate spaces, set

oY
Moy = 3 S (Tig)wo), 1<p<oo,  (5.90)

yl<i—nm
where v = )" xir Al = 4,040 ,! and the operator T is defined by

(5.46) and

Tl hwr) = Y Smg)wo+ Y L)), (591)

ly|<l—(n—-m) " ly|=l—(n—m) "

where T} is defined by (5.46) while T is defined by (5.72). Apply (5.59), (5.64)
and (5.83). O

Proof. 1. Suppose that 1 < p < oo and let 7, u € Ng™" and |7, [p] < {—=2".1If
v <, ie, v <pj,j=m+1,...,n, then by Leibnitz’ formula Dg]’“)(v“*Tlgv)
is equal to ~! D) (Thg) plus a sum of the terms containing the factor v”

where 0 # 0. Otherwise DY )(UVTl g) is a sum, each term of which contains
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the factor v” where o # 0. Hence tr D\ (1T g,) is equal to 4! tr DI~ (T, g)
if v < p and is equal to 0 otherwise. So by (5.59)

tr DP(T{g,}) = Y tr DY (Tig,) = g
0<~y<u

2. Since (Thg,)(u,v) = 0 if [v| > 1, by (5.54) we have

IT{g e < D Tyl < Mo D gl

—_n—m _n—m
[vl<i—=5 IyI<i—=5

where M, is independent of f.
3. Finally, let o = (8, 1), where € NJ*, p € N{7™ and || = 8] + |u] = L.
By Leibnitz’” formula

D*(v*Tvg,) = Z CBy.m UV?WWD(BW)(TIQW)
0<v<p,vzpu—y
for certain cg,, € Ny. Hence by (5.64)
1D (v Tygy) ||, emy < My Z IIUW‘H”'_(“'”DD(@”)(T1gy)||L,,(Rn)

0<v<p,v>p—y

<M n—m
> 3‘|97||B;77M7 5 )

and, consequently,

1T D lwgan < Mi 3 Nl e
P

n—m
l<t-2=m

where My, Ms, My are independent of g,.
4. If p =1, then

||T{97}||W{(Rn)

<Ms( N lgllgneemgn > g lnem),  (5.93)

[y|<l=(n—m) [y|=l=(n—m)

where Ms is independent of g,. O

Remark 15 Asin Theorems 4 and 6, in addition to (5.92) and (5.93), we have
the following estimates

ol DT {g, Dllzyem e D ol i ngm

@)
i<tz

: (5.94)
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where 1 < p < o0, \a|zl—%,and

I |,U‘|u|fl(D(0,u)(T{9'y}) — gL,y < en Z ”ngBFM*% , (5.95)

Rm
ly|<i—n=m )

n—m

where 1 < p < oo, [u| <1 —*"2".In (5.94) the exponent |a| — [ can not be
replaced by |a| — 1 — ¢ for any € > 0 and for any extension operator T. We also
note that by Lemma 13 from (5.95) it follows directly that D**)(T{g,})

g, Similar statements hold for p = 1.

]Rm_

Remark 16 From the concluding statements of Theorems 4, 6 and Remark
15 it follows that the extension operators defined by (5.44), (5.72), (5.90) and
(5.91) are in a certain sense the best possible extension operators, namely, in
the sense that the derivatives of higher orders of T'g, T{g,} respectively, have
the minimal possible growth on approaching R™.

5.5 Traces on smooth surfaces

Let Q C R"™ be an open set with a C'-boundary. We should like to extend

Definition 1 to the case, in which R™ R™ are replaced by 2, 9€) respectively.
We start with the case of a bounded elementary domain 2 C R"™ with a

C'-boundary with the parameters d, D, M. Thus ) has the form

Q={reR":a, <z, <), €W}

where Z = (21, ... Zn 1), W ={Z e R" 1 :q; <2; < b;,i=1,...,n—1},—0c0 <
a; <b; <oo,i=1,...n—1, —o0 < a, < b, < 0o, and satisfies the definition
of Section 4.3.

Suppose that f € L;(Q2). In the spirit of Definition 1 we say that the
function g € Ly(T"), where I' = {x € R" : x,, = ¢(Z),z € W}, is a trace of the
function f on I' if there exists a function h equivalent to f on 2 such that

h(-+te,) — g(-) in Ly(T') as ¢t — 0—, (5.96)

where e, = (0,...,0,1). Since ‘(gf)(:i)) <M,zeW,i=1,..n—1, we have

_1 _ _
L+ (n = 1) M) 2| F(Z, (@) 2wy < I1F ]2,y

= [ e@i(1+ Y (22)@)) @z < 17z o@Dl

w
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Consequently (5.96) is equivalent to

/ lf(@,p(z)+1t)—g(Z,0(T))]|dE — 0 as t —0—. (5.97)

Let the transformation y = ®(z) be defined by
J=7% yo=wn—py), v€Q (5.98)

then
D) ={yeR" a4, —p(7) <yn <0, € W}

and
dT)={yeR":y, =0,y € W} =W~

Relation (5.97) means that g(®(~")) is a trace of f(®1) on &(I).

Next suppose that an open set 2 C R™ is such that for a certain map
A, which is a composition of rotations, reflections and translations, the set
A(Q) is a bounded elementary domain with a C*-boundary and T is such that
AT) ={z €eR": 2, = p(z),z € W}. Then we say that g is a trace of f on I'
if g(ACY) is a trace of f(A("V) on A(T') in the above sense.

Finally, suppose that 0 C R" is an arbitrary open set with a C*-boundary
with the parameters d, D, >z and M, and let V; be open parallelepipeds satisfy-
ing conditions 1) —4) in the definition of Section 4.3. From the proof of Lemma
3 of Chapter 2 it follows that there exists an appropriate partition of unity, i.e.,
there exist functions ¢; € C°°(R") such that 0 < ¢; < 1,supp); C (‘/j)g,j =

1,5 > ¢j(z) =1 on Q and
i=1

(D) (@) < end ™, 2eR acNy j=T35 (599
where cy9 > 0 is independent of x, 7 and d.

Definition 3 Let Q@ C R" be an open set with a C-boundary and f €

Li(QX\B) for each ball B C R". Suppose that f = > f;, where supp f; C V;
j=1
and f; € Li(QNV;). If the functions g; are traces of the functions f; on

s

ViR, j = 1,s, then the function Y g; is said to be a trace of the function
j=1
f on 08.
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Remark 17 One can show that Definition 3 does not depend on the covering

S
{V;} and on the representation f = »_ f; and satisfy the requirements to the
j=1
notion of the trace analogous to the requirements 1)—4) at the beginning of
Section 5.1.

Next we need to define the spaces BIl)((?Q) where [ > 0,1 < p < co. We
follow the same scheme as in defining the notion of the trace. If €2 is a bounded
elementary domain with a C'-boundary and the function f is defined on I, we

say that f € BL(T) if f(z,¢(z)) € BL(W) and set
111zt ey = 1F(@ )l stary = 1F (@D sy = 1@, (@)1 w)

Here the norm || - ||pi () is defined as in Definition 2, where n is replaced by
n—1,R" by W and, in (5.8), (59), |17 ls,ce by 187,00,

If © is such that for a certain map A, which is a composition of rotations,
reflections and translations, the set )\(Q) is a bounded elementary domain with
a C'-boundary, then f € Bl( ) if fF(ACY) € BL(A(D)) and

1f By = Hf@\(_l))”B,l,(A(r)) = Hf(A(_l))”B;(A(F)),
where A = &(N).
Definition 4 Let | > 0,1 < p < oo and let Q be an open set with a C*-
boundary. We say that f € BL(OQ) if fi; € BL(V;(N09Q), j=1,s, and

1 llmsgom = (Z 19650 o)

|=

(Zn P ATy )

= (Z ||(f¢j)(/\§-_l)(5f,goj(i")))H%é(Wj))P < . (5.100)

|—=

Here Aj = @;()\;) and ®; is defined by (5.98), where ¢ ,W are replaced by ¢;,
W, respectively.

Remark 18 In the case | = k — ]lo, where £k € N and 1 < p < oo, which will
be of interest for us, from Theorem 8 below it will follow that, for open sets €2
having a C*-boundary, this definition is independent of {V;} and {«;}. As for
the general case, see Remark 19.
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For the function f defined on an open set Q C R"™ we write fy for its
extension by 0 to R™. If f € W(Q) and supp f C €, then, by the additivity
of the Lebesgue integral and the properties of weak derivatives, fo € W(R")
and || follw@n)y = [[fllwi@)- We shall need an analogue of this statement for

the spaces B}(€2), which has the following form.

Lemma 14 Let [ > 0,1 <p < oo and 0 > 0. Then for each open set 2 C R"
and ¥ f € BL(Q) satisfying supp f C Qs

1 foll By ny < c23 || fll By (5.101)
where co3 > 0 is independent of f and ).
Idea of the proof. Note that for [h| < &
1AL follp@ny < WA fl Loy + I1AT foll L0, = ARl p@upn)- ©
Proof. From the definition of the spaces B (€2) we have

e v dh N
il < ([ (W18 o) 7)

Rn

+< / <|h|_lHAZfOHLP<Cﬂghn)pﬁ%)é

5
|h|> 55

. dh \»
< Wy + 2 ol ([ ) S Mg,

5
|h|> 55

where M; depends only on n,[,o,p and 4, and (5.101) follows. O

Theorem 8 Letl € N, 1 < p < oo and let Q C R™ be an open set with a
C'-boundary. Then

Wy(Q) = B, "(09), 1> 1, (5.102)

and
tr,, W, () = L,(09). (5.103)
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Idea of the proof. 1. To prove the direct trace theorem estabhsh by Theorems

3 and 5, that the trace g; of f1); exists on V; () 012, and g; € B P (V; N 09) if
l>5andg]€L (V;noQ)ifl=p=1.
2. To prove the inverse trace (= extension) theorem, given a function

-1 -
g € By "(09), consider the functions (gwj)(Ag» 1)) on W}, extend them by zero
to R"~! preserving the same notation, and set

Tg =3 (Tol(ge) (A7) (), (5.104)

j=1
where T} is a modification of the extension operator (5.46) for [ > %’ respec-

tively (5.72) for | = p = 1. Namely, the sum > in (5.46), (5.72) must be
k=1

[e.9]

replaced by > | where kg is such that
k=ko

supp Toh C (supp h)? x B(0,d). O (5.105)
Proof. 1. By Corollary 18 of Chapter 4 fi; € Wé(‘/} N Q) and by Lemma
16 of Chapter 4 (fwj)(Ag.fl)) e WLA;(V; NQ)). Since supp (fwj)(Ag-fl)) C
A;(V; N Q), the extension *' by 0 to R™ of the function (f%-)(A;_l)) is such

that (f1;)(A; Ay e W/(R™). Hence by Theorem 2 there exists a trace h; of
this functlon on R*! and therefore on W) = A;(V; N 9Q). This means that

g; = h;(A;) is a trace of fib; on V; N O So by Definition 3 g = ) g; is a
j=1
trace of f on 0€2. Moreover, if [ > ;%, then by Theorem 3

— h 1 < h _1 < M y ny.
HgJHBl ’1’(\/ o0) = |l JHB;_;(W;) < JHB; 117(Rn71) = 1waj||Wé(R)

Finally, since g; = g¢%;, by Definition 4, Corollary 18 of Chapter 4, (5.99),
Minkowski’s inequality for sums and (2.59), we have

1
P P
ol -3 0y = (anjn o)

P

< M (anwj”wl Rn) < M, (ZHf”Wl VﬂQ)

21'We preserve the same notation for the extended function.
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< M, ((Z 1 s0)” + 30 (SO UDSIE y000) ) < Mo 81 g

lal=t  j=1

where M, and M, are independent of f.

1

If | = p =1, then, by Theorem 5, in the above argument Bll;; should be
replaced by L.

2. If T, is defined by (5.72), then by (1.4) supp Toh C (supp h)2" x
B(0,27%+1) Hence (5.105) follows if 2750+ < d. If T} is defined by (5.72), then
supp Toh C (supp h)**o and (5.105) follows if, say, 46, < d.

Let g; = (gi/Jj)(A§~71)). Since by Lemma (5.105) supp(Zog;)(A;) € V; N Q
and supp Tog; C Aj(V; NQ), by Lemma 16 of Chapter 4 we have

1(Tog;) (A Iwiny = [1(Togi) (A)llwiv;ne)

< Ms [[Togjllwia; vine)) = Ms [[Togjllwien) »
where M3 is independent of g and j.

By the proofs of the Theorems 3 and 5 g; is a trace of Tyg; on R™ ™!, hence
(gwj)(/\;_l)) is a trace of To((gqu)(Ag-_l))) on W7 = A;(V;n0Q). Consequently,
gv; is a trace of TO((g¢j)(A§_1)))(Aj) on V; N 0N and, by Definition 3, g =
> gy; is a trace of T'g on 05
j=1

Suppose that [ > ﬁ, the case [ = p = 1 being similar. By Theorem 3 and
Lemma 14 we get

1Tog;llw@ny < My HQJHB;—%(RW”

< M. DA 1 =My lgwy]l s !
< M [ (g1;)(A; )HB; P Sng]HB; P (v;n00)

where M, and Mj5 are independent of g and j. So

1T gllwi@n) = | Z(Togj)(Aj)||W,g(Rn) < M3Z 1 Tog5llw )

Jj=1 J=1

< Ms3 M, = M3 M, a
< MM DUl g,y = Mo Mol

Remark 19 We note that in Theorem 8 the coverings {V;} and the partitions
of unity {v;} could be different in the first and the second parts of the proof.
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1
From this fact it follows that Definition 4 of the spaces Bfg P(0Q),l € NJl >
%, does not depend on {V;} and {t,} for the open sets with a C'-boundary.
Consider two coverings {V;;} and partitions of unity {¢;x}, k¥ = 1,2, and
let || - H(kl),; be the norms defined with the help of {V} .}, {%;r}. Then by
By 7 (09)
(5.102) Vf € Wi()

A0y o < M Tef gy < DENAICL, (5.106)

By 7 (90)
where T is defined by (5.104) for {V} .} and {¢;2} and M;, M, are independent
H(2l),; via || - H(ll),; . Hence the norms
B, P (69) B, 7 (69)
|| - ||(ll)_l and || - ||(21)_; are equivalent.

B, 7 (09) B, 7 (09)

By this scheme it is also possible to prove, applying the trace theorem (5.68),
the independence of Definition 4 of {V;} and {¢;} for the spaces B} (9Q) with
an arbitrary [ > 0. In this case one should verify that an analogue of (5.68)
and Theorem 8 holds for the spaces W) ,.(2), where o(z) = dist (2, 0€2), and

replace (5.106) by

of f. Similarly we estimate || -

1 2
1£15 00y < MilITof lwy @ < Mz lIF15) 0y
WherereN,rzl—l-%,s:r—l—éandaQEC’".

For an open set Q C R" with a C'-boundary let v(x) be the unit vector
of the outer normal at the point x € 092. Hence v(z) = (cos,...,Cco8V,),
where ; are the angles between v(x) and the unit coordinate vectors e;. For
[ € Wl(Q) the traces of the weak derivatives D% f exist on 9 if [a] <1 — 1.
We define the weak normal derivatives by

(gZJ:)w_j i 1cosvj1-~-cosvjs<ﬁ>w: s=1,..1—1.

The total trace and the total trace space are defined by

Trpe f = ((gii)w)s:O -1’

.....

respectively
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Theorem 9 Let | € N, 1 < p < oo and let @ C R™ be an open set with a
C'-boundary. Then

Tr,, WHQ) =[] By " 7(09), 1<p< oo, (5.107)
s=0
and s
Tr,, WH(Q) = [[ B (09) x L (09). (5.108)
s=0

Idea of the proof. Combine the proofs of Theorems 7 and 8. O

Remark 20 If p > 1, then as in Remark 15 one may state that there exists a
bounded linear extension operator

-1 1
T:[[B " *(09) — WiQ) nC=(Q),

s=0
satisfying the inequalities

k lak(T{gs})

-1

B < S —s5—= 9 k Z l7 5109
HQ ovk HLP(Q) = G 52; lg HB; ’1’(69) ( )
and
"(T{ys}) i
e < s 0<k<l (5110
| (F 8 — ), o < e Do gy O H <L (5110)

where o(z) = dist (x,09) and ca4, 25 > 0 are independent of gs.
In (5.109) the exponent k — [ cannot be replaced by k —1 — ¢ for any ¢ > 0.
If p = 1, then a similar statement holds. (We recall that in this case the
extension operator 7' is nonlinear.)

Remark 21 The problem of the traces on smooth m-dimensional manifolds
where m < n — 1 may be treated similarly, though technically this is more

n—1
complicated. Suppose that @ C R™ is an open set such that Q = |J T,
m=0

where T, are m-dimensional manifolds in the class C* and T, N I, =oif
m # p. (Some of I';, may be absent.) Let, for example, 1 < p < oco. If
m < n —pl, then, by Theorem 2, the traces on I';,, of functions f € W;(Q) may
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not exist. If m > n — pl, then for each f € W}(Q) the trace of f on I'y, exists.
Moreover, the traces of the weak derivatives D2 f also exist if |o < | — 2=2
For this reason the total trace and the total trace space are defined by

Tr,, f= <<ch/v7w

) a|§l"pm> nfpl<m§n71’

T, Wp(Q) = {Tryp, | € W, ()}

8a1+‘“+o‘nfmf

aq An—m
Ovy te-0v,

respectively. Here Dy f = ( ) are weak derivatives with respect
w

to an orthonormal set of the normals vq,...,v,_,, to I',,. The appropriate
generalization of (5.107) has the form

Similarly one may generalize (5.108).

This statement plays an important role in the theory of boundary-value
problems for elliptic partial differential equations, because it explains what
boundary values must be given and to which spaces they can belong.



Chapter 6

Extension theorems

The main aim of this chapter is to prove that under sertain assumptions on an
open set 2 C R” there exists an extension ' operator

. l L (TN
T WQ) — WI(RY),

which is linear and bounded. The existence of such an operator ensures that
a number of properties of the space W/(R") are inherited by the space W}(Q).
Examples have been given in Section 4.2 (Remark 11 and the proof of Theorem
3) and Section 4.7 (Corollaries 20, 24 and the second proof of Theorem 13).

6.1 The one-dimensional case

We start with the simplest case of Sobolev spaces W}ﬂ(a, b), in which it is possible
to give sharp two-sided estimates of the minimal norm of an extension operator

T : Wi(a,b) — W}(—00,00).

Lemma 1 Let —oo < a < b < oo. If f is defined on [a,c] and is absolutely
continuous on [a,b] and [b,c|, then f is absolutely continuous on [a,c]. O

Idea of the proof. Derive the statement directly from the definition of absolute
continuity on [a, b] and |c, b].

Proof. Given € > 0, there exists § > 0 such that for any finite system of disjoint
intervals (agl),ﬁfl)) C [a,b] and (o%@),ﬁf)) C [b, ] satisfying the inequalities

(B —al) <6, j =1,2, the inequalities Y | f(oi’) — F(37)| < 5, j = 1,2,

7

! This means that (T'f)(z) = f(z), if z € Q.

247
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hold. Now let («y, ;) C [a,b] be a finite system of disjoint intervals satisfying
> (Bi — a;) < 4. If one of them contains b, denote it by (o, 5*) . Then

i

§jvaz FBIN< D0 fe) = F(B)] +f(e) = f(b)]

i:(ai,0:)Cla,b

HO) = FBN+ D |fl) = f(B)] <e
i:(0y,B;) Clbyc]
(If there is no such interval (a*, 3*), then the summands |f(a*) — f(8*)| and
|f(b) — f(B*)] must be omitted.) O

Lemma 2 Let | € N1 < p < oo,—o0 <a < b< oo, f € W]ﬂ(a,b) and
g € Wk(b,¢). Then the pasted function

_Jf on (a),
h_{g on (b, c). (6.1)

belongs to Wé(a, c) if, and only if,

fOb—) =g (b+), s=0,1,...,0— 1, (6.2)

where fl(f)(b—) and gz(,f)(qu) are boundary values of quf) and gf[f) (see Remark 6

of Chapter 1).
If (6.2) is satisfied, then

HhHW,l,(a,c) < HfHW,g(a,b) + HgHW},(b,c)' (6.3)

Idea of the proof. Starting from Definition 4 and Remark 6 of Chapter 1, apply

Lemma 1. O

Proo { Let f1 and g; be the functions, equivalent to f and g, whose derivatives
(l 2 1 ) exist and are absolutely contlnuous on [a,b], [b,c| respectively.

Then O = f20-) and ¢ () = ¢ (b+),s = 0,1,....1 — 1. If (6.2) is

satisfied, then the function

b fi on [a,b,
"1 g on [bd

is such that h(ll_l) exists and is absolutely continuous on [a, b]. Consequently,
the weak derivative h{ exists on (a,b) and
I
B0 _ {fﬁ,) on (a,b),

¢V on (b, c).
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Hence, inequality (6.3) follows.

If (6.2) is not satisfied, then for any function hy defined on [a, b], coinciding
with f1 on [a,b) and with g; on (b, ¢], the ordinary derivative hg_l)(b) does not
exist. Hence, the weak derivative h™ does not exist on (a,c) and h is not in

ngl)(a, c). O

Lemma 3 Letl € N, 1 < p < oco. Then there exists a linear extension operator
T : W(00,0) — W)(—00,00), such that

||T||W,f(—oo,0)—>WIl,(—oo,oo) < 81' (64)

Idea of the proof. If | = 1, it is enough to consider the reflection operator, i.e.,
to set

(f)(x) = f(=z), =>0. (6.5)

If | > 2, define (73)(z) for x > 0 as a linear combination of reflection and

dilations:
!

(Taof)(x) = > a(Tof)(Brr) = Zakf — ), (6.6)

k=1

where 3, > 0 and «y are chosen in such a way that

(Tof)O(0+) = f9(0-), s=0,1,....,1—1. (6.7)
Verify that HT2||Wé(oo,0)—>WIl)(foo,oo) < oo and choose (3, = %, k=1,..1 in

order to prove (6.4). O
Proof. Equalities (6.7) are equivalent to

!
d (=) =1, s=0,1,.,1—1 (6.8)
k=1

Consequently, by Cramer’s rule and the formula for Van-der-Monde’s determi-

nant,

H (@ - @) ‘ﬂszl
oy = 1<i<j<i
[T B—-5)
1<i<j<l
Bi+1 —1—p;
1<lek( )kgq( ) )

- _H (Bi — B;) 1:[ (Bx — 5) 1<J1<_l[#,cﬁ e k=1,..,1. (6.9)

1<i<k k<5<l
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If g = %,/{; =1,...,1, then
(=1)*1k 20\ (1
ap = ————
[+F ) \k
and L/
<4'=( ).
()
Therefore, setting y = —fx, we have

1T fllwio.00) = 1T2f y000 + HT2F) 2,000

! 1 ! 1
_1 -1
< (D lawlBe ) lzaoom) + (D lowlBe " ) ISP leu e
k=1 k=1

< (i a1, "Y1l —oei < 4l(i (91; (zi)>”f||w;<—oo,o>
k=1 k=1

< (8" = DI fllwi(-o00)-
Hence, inequality (6.4) follows if we take into account Lemma 2 and, in partic-
ular, inequality (6.3). O

Remark 1 It follows from the above proof that the inequalities
||T2||wgl(—00,0)—>w;"(—oo,oo) < 817 m € Ny, m< l,
also hold.

Corollary 1 Letl € N1 < p < o00,—00 < a < oo. Then there exists a linear
extension operator T : W}(a,b) — W}(2a — b,2b — a), such that

1T lw (a,b)—wi2a—b2b—a) < 2 8. (6.10)

Idea of the proof. Define

éakf(a—kﬁk(a—x)) for x € (2a — b, a),
(T3f)(z) = fl(x) for = € (a,b), (6.11)
l;akf(b+/6’k(b—a:)) for z € (b,2b — a),

where oy and [ are the same as in (6.6), observe that T3f is defined on
(2a — b,2b — a) since 0 < f; < 1, and apply the proof of Lemma 3. O
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Corollary 2 Letl € N1 < p < o00,—00 < a < b < 0. Then there exists a

p
linear extension operator T : Wl(a,b) — Wl(a —1,b+ 1) such that

ITEE
1T w30ty wit(a—161) < 28 (14 (b—a)""7). (6.12)
Idea of the proof. Let § = min{1,b — a} and define
!
Y agsfla+Bk(a—x)) forxe (a—1,a),

(Tuf)(z) = 7(}) for z € (a,b), (6.13)
Z apsf(b+00k(b—x)) forz e (bb+1),

o

!
where () are the same as in (6.11) and ay s are such that > ags(—00k)° = 1,
k=1
s = 0,...,1 — 1. Observe that by (6.9) |axs| < (b — a)™""|ax| and apply the
proof of Lemma 3. O
Proof. As in the proof of Lemma 3

l

ITsf lwsoprny < D lawsl - 1F 0+ 68k(b — )|z, s1)
k=1

l
+ > laws (08 1Lf5 (0 + 666 — ) L, b4

k=1

l
< (22 lansl(98) 7 ) 1 lwgo-sa0
k=1

e 4
<5 V(8- DI fllwiay < (80 Y- DI fllwe(ap)

and
I Tufllwia-1611) < I Taf lwia-r.a) + 1 Tafllwiaw) + 1 Tefllwiwssn

<2867 || flwigap)- O

In order to estimate the norm of an extension operator 7' : Wzl,(—oo, 0) —
Wé(—oo, o0) from below we prove the following statement, which reduces this
problem to a certain type of extremal boundary-value problems.
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For given ag,...,a;1 € R let

G i(ag, ...,ai1) = inf 1 1wt 0.00) - (6.14)
fEWp(O,oc):
fz(uk>(0+):ak,k:0,...,l—1

G, (ag, ...;a—1) is defined in a similar way with (—o0,0) replacing (0, o). Let

G+l(&0, A1y .nny Cllfl)

Qp1 = sup
jaol++ar_1[>0 Gpy(@o, a1, oy a—1)

G+l<a07 A1y eens al*l)
= sup - . (6.15)
lag|+--+la;—1[>0 Gpl<a07 —ary, ..., (_1>l 1al71>

The latter equality follows if the argument z is replaced by —x in the definition
of G;l. Moreover, it follows from (6.15) that for 1 < p < oo

Qpiz1, 1N, @y =1 (6.16)

Lemma 4 Letl € N;1 < p <oo. Then

1

(1 + Qg,l) ’ S H%f ||T||Wzl,(—oo,0)—>WZl,(—oo7oo) S 1+ Qp,l' (617)

(If p = o0, then (1+ QZJ)% must be replaced by Qoo.)

Idea of the proof. Apply the inequality

1
(LWt ooy 1T S Wy 0y) ™ < ITFllg—ooer < 1 liwg-sey + 1T w000
(6.18)
In order to prove the first inequality (6.17) apply also the inequality

IT fllwio,00) = Gyi(a0, s ai-1), (6.19)

which, by the definition of G;l, holds for all aq, ...,a;_1 and for each extension
operator T'. In order to prove the second inequality (6.17) define, Ve > 0, the
extension operator 7. setting 7. f = g. for x € (0 00), where g. € W}(0,00) is

any function, which is such that gsw(O—l—) F0 (0-),k=0,...,l — 1, and

19z w3 0.00) < Ga(F(0=), e FS2(0=)) + € 1 Fllwi(—oe0)- O (6.20)
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Proof. 1. The second inequality (6.18) is trivial since

1P 2y (~0000) < 1P| Ly (—00.0) F 1P L, (0,00)-

The first inequality (6.18) follows from Minkowski’s inequality for finite sums,
because

|—=

P

1l seioer = (NAIE, o0y + NAIE, 5.0

1

> p
> L (12,00 + 15D 1y
1

Py = 1
(Il zao00) + 1B N, 000 )} = (1l oy + 1Bl 00

2. It follows from (6.18) and (6.19) that for each ay,...,a;—1 € R such that
lao| + -+ + |ag—1| > 0

(1A y + IADIE 0y ) "

||Tf||WZl)(—oo,oo)

fEWIl,(O,oo),fWO ||f||WZl,(—oo,0)

T W (—o0.0)—Wh(—00,00) =

T P+
. <1+ s <|| f”WZl,(O,oo)) )p
FEW}(—00,0): ||fHWIQ(—oo,0)
) 0y=ay, k=o0,...1-1

sup

vV
—/~
—_
_|_
VRS
Q
s+
-
)
e
£
|
_
~—
~——
bS]
—
~——
ST

FeEW}(—0,0): ||f||€vz(_
QYN P
f (0=)=ay,k=0,...,1—1
_ (1 4 (G;l(ao,...,all))p>;
G,lag, ... a-y ’

and we arrive at the first inequality (6.17).
3. Given € > 0 by (6.18) and (6.20) we have

Je [lwi(0,00
<t wp flvon

fEW}(—00,0),f~0 ||f||W;(—oo,0)

G (a a;_1)
J\G0y -y (-1
<l4+e+ sup sup P =14+Qp +¢
ag;---,ap_1 €R: FEW}(—00,0): ”f”W,f(—qu)
0l Flag—11>0 (k>(0 )=a},,k=0,...,1—1

and the second inequality of (6.17) follows. O
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Corollary 3 Let 1 < p < oc. Then

. 1
lrr}f HTHWPI(_OQO)—»W}}(—OO,OO) =27,

Idea of the proof. By (6.15) and (6.16) [|T'[|wt(—co.0)~wi(—co00) = 25 for each

extension operator 7. On the other hand it is clear that for the extension
1

operator T1 defined by (6.5) [[T1([wi(—o0,0)~Wi(~00,00) = 27. O

Remark 2 Note also that if the norm in the space W)(a,b) is defined by

b

1150 = ([ US@P 4170 @) do)”

a

(see Remark 8 of Section 1.3), then

T =

ll%f ||T||Wzl,(—oo,0)—>Wzl7(—oo,oo) (1 + (Q( )) ) )

where le) is defined by (6.14) — (6.15) with || - ||¥) replacing || - ||. This follows
from the proof of Lemma 4 and the equality

|=

IT A1y oy = (AT AU o) + Iy )

Lemma 5 Let e N1 <p< oo and f € W;(O,oo). Then

0
> . 6.21
1 w0 = | Z ot (6.21)

Idea of the proof. Apply Taylor’s formula and Holder’s inequality. O
Proof. Let f € W}(0,00). Then for almost every x € (0, c0)

T

S0 1

R /<95 —u)™ 9 (u) du,

k=0 0

where the ffuk)(0+),k =0,1,...,1 — 1, are the boundary values of the weak

derivatives fi. (See formula (3.10) and comments on it in Section 3.1). Hence,
by the triangle inequality for each a > 0

-1 (k

|y oo

k=0

< B l 1 d
L e K / p—)! L0 w) du

Ly(0,a) '
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By Holder’s inequality

H/ ) 0 ) |

1
Y

(I-1)p'+1

xr

< )

Ly(0,a) H((l— / ) Hf ||Lpox)

p +1 Ly(0,a)
T
< (=P + 177 27 |00 1 £ 1 Ly 0.0
! -1 / —L e a! (1)
=a(lp) (=1 +1) 7o’ lp00 < T I 00
Consequently,
=1 p(k) k !
fu' (0+)x @ e
JW AT < hall )
H > o Lo S £l L, 0.0) + T 1 fu’ 2, (0,a)
k=0
Setting a = V1!, we get (6.21). O
Corollary 4 For alll e N;1 <p < o0,ag,...,a,-1 € R
+ Uk K
G (ao, ... ar ) > H Z HL ot (6.22)

Idea of the proof. Apply (6.14) and (6.21). O

Lemma 6 Let | € N1 < p < oo. Then for every extension operator T :
W)(—00,0) — W}(—00,00)
_1
T [t (—00.0) Wi (—00,00) = 27270, (6.23)

Idea of the proof. For | = 1,2 inequality (6.23) is trivial since ||T'|| > 1 for each
extension operator T. Assume that [ > 3 and set

fi(z) = 0 for —oo < & < —a,
)= (r+a) for —a <2 <0,

where a = V1. O
Proof. By (6.14), (6.15), (6.22) and the triangle inequality we have

l—zl fl(k) (0)z*

Goalfi(0), - KO P

L,(0,a)

Qp,l 2

[ fillwi(—o0.0) | fillwit (—o0.0)
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_ e+ a) = 200 _ @+ a)l,e0 = [12']L,04
Iz + a)llwi—ao) 12 w3 0,0
Ip+l _ 1\% _ 1 _ 1
_ @ Dr-ly, 221 2l g
L+ (p+ 1)y U+ (+p)r) 3

Hence by (6.17) inequality (6.23) follows. O

Remark 3 Note also that there exists a constant ¢; > 1 such that 2

1T |t (—o00)=Wi(—so00) = €1 122, 1< p< oo, (6.24)
for every extension operator T. For ¢; = \% this follows from the inequality
21— 1)p — 1 — (2)(1+ (Ip+1)») > 0for I >2, 1 <p< 0.
( \/g p ) p

Lemma 7 Let ]l € N,—oc0o < a < b < o0,e > 0 Then there exists a “cap-
shaped” function n € C§°(R) such that 0 < n < 1,n =1 on (a,b),suppn C
(a—¢e,b+¢) and

n® (@) < (a)re* zeR, k=0,...,L (6.25)
Idea of the proof. Set

e kW__ e ¥ ..o XkW_¢e
4(l+7) 2(147) 2(147)

/

n=w

*X (a—,b+5) (6.26)

[ times

where X(a—z p+2) is the characteristic function of the interval (a — 5,0 + 5),
w(z) =1—|z| if |[z] <1, w(x) =0if |z| > 1, @ is any nonnegative infinitely
differentiable kernel of mollification (see Section 1.1) and + is a sufficiently
small positive number. Apply Young’s inequality (4.138) and the equality

/!
|y #xmse0) ||, = Mo lie- 0 (627

Lo (R)

Proof. Let 0 = §(I +2)(1+~)~'. By Section 1.1 n € C°(R),0<n < 1,np=1
on (a—5+0,b+5—0) D (a,b) and suppn C [a—5—0,b+5+0] C (a—5,b+5).
Moreover,

k
H’f](k)HLoo(R) < H(wm Ko kW ek X(a—g,b+g))£v)||Lm(R)

2 Inequailty (6.24) does not hold VI € N because of Corollary 4 for p = co.
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= || (ML), X o.o.L% (WL),*WL oo ok W_ e *(u)L * X(a—£b 5))/”
20+7) 3+ 3 30+7), pT(E= 3:073)) Lo (R)

J/

k — lvtimes [ — k‘vtimes

2(1 4 )\ _ _ _ -
<(F2) 1y Nolly e ol < 2457 1 9) 7

Choose v > 0 satisfying ¢’ < 2, then (I + )k < eF(1 + %)l < 2-1* and so
obtain (6.25).
Finally we note that (6.27) follows from

b+5
/
/
(Warty * Xa-5045) () = (/ W (2= y)dy )

1>
a=3

_p—=
:Eb2

! € €
:< / wﬁ(z)dz> :wm(x—b—§>—Wﬁ<m—a+§>

—a—E&
CCa2

since the terms of the right-hand side have disjoint supports. O

Corollary 5 In the one-dimensional case ¥l € N there exists a nonnegative
infinitely differentiable kernel of mollification p satisfying (1.1) such that

()| < @k, zeR, k=0,...,1 (6.28)
Idea of the proof. Define n by (6.26), where a = b = 0 and ¢ = 1, and apply
the equality || f * gl/z,) = | fllz:®) - |9]|z,(®) for non-negative f,g € L1(R). O

Lemma 8 There exists co > 0 such that for all ,m € Nym < [,1 < p,q <
00, —00 < a < b < oo and Vf € Wi(a,b)

m 11 [ m b—a\l-m
15 o < b= a)i 5 (=) Wy + (F7) I Nyiom):

(6.29)

Idea of the proof. Apply the integral representation (3.17) with («, 8) = (a, b)
z—atb . . . .

and w(z) = ;2 u<2( 2 )>, where the function p is a function constructed in

Corollary 5. O

Proof. The numbers oy, defined by (3.20) satisfy the following inequality

ool € o 2 () =
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Consequently, taking into account (3.5) and Remark 5 in Chapter 3, we have
that for almost all = € [a, b]

boq

@) < (X g 0= @ (G2) " @)y

s=
a

(b—a)—m! / ! 144l - /
+m/|f&)\dy§(b—a)‘m‘ 165m2m/|f!dy

l 1 -1 llml
T (e /|f dy

l
—a

_1 m b—a\l-m
<(160) 0 —a) 7 ((7—=) Ifllyam + ( =) 1) (6:30)
and inequality (6.29) follows with co = 16e. O
Remark 4 Inequality (6.29) is an improved version of inequality (4.55). O
Corollary 6 If, in addition to the assumptions of Lemma 8, b —a < I, then
15 N oy < @™ (0= @)™ 7 | Fllwsan. (6.31)
If, in addition to the assuptions of Lemma 8, b —a > 1 and q > p, then
1 m
1S Loy < 27 ' 1™ || Flwiany- (6.32)

Idea of the proof. Inequality (6.31) is a direct corollary of (6.29). In order to
prove (6.32) apply (6.29) and Lemma 7 of Chapter 4. O

Proof. Let b—a > 1 and g > p. Choose intervals (ax, bx), k=1,...,s, insuch

a way that by —ar = 1, (a,b) = |J (ag, bx) and the multiplicity of the covering
k=1
{(ax,bx)};_; is equal to 2. By (6.29)
£S5 N ) < 0" U™ 1yt + " I Lptarie)-
Hence, by Lemma 7 of Chapter 4
1 m m—
£S5 Lgay < 29 ' (T N fllpapy + T 1FD N Lpcany)

and (6.32) follows. O
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Lemma 9 Letle N, 1<p<oo, —co<a<b<oo, b—a < 1. There exists
a linear operator T : W}(a,b) — W](—o00,00), such that

st
||T||Wzl,(a,b)—>WFl,(—oo7oo) < m, (6.33)
where c3 is a constant greater than 1.
Idea of the proof. Consider the operator
(T5/)(x) = (Tuf)(z)n(x), = €R, (6.34)

where 7 is the function constructed in Lemma 7 for ¢ =1 and T} is defined
by (6.13), assuming that (75f)(x) =0 for = ¢ (a — 1,b+ 1) and apply
Corollary 6. O

Proof. It follows from the Leibnitz formula, (6.25), (6.32) and (6.12) that

||T5f||W;,(—oooo ||77T4fHLp(a 1,b+1) + ‘|(77T4f) ||L (a—1,b+1)

l
l —m
< HT4fHLp(a71,b+1) + E (m) H77(l )HLoo(foo,oo) "(T‘lf)g)"l/p(a*l:b‘i’l)
m=0

l

<N Tuflliyta-1b41) + (Z( ) (41)™(2¢,) zm) 1T f lws a4

m=0

< (1+(16c21)) 1T fllwia—1601) < 4(1+ (16¢o 08 (b—a) "t 1 Wi ap)

< i b —a) " || flwia

where ¢z = 32 (1 + 16 ¢3). Hence we obtain (6.33). O

Lemma 10 Letl e NJ1 <p<oo,—oc0o<a<b<oo,b—a>1. There exists
a linear extension operator T : Wi(a,b) — W}(—o0,00) such that

ll
1T gty ooy < h(1 + T )l_ll), (6.35)
—Qa P

where ¢4 18 a constant greater than 1.
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Idea of the proof. Consider the operator

(T f)(x) = (T5f)(2) n(x), (6.36)

where 7 is the function constructed in Lemma 7 for ¢ = b — a and T3 is defined
by (6.11), and apply Lemma 8. O
Proof. 1t follows from the Leibnitz formula, (6.25), (6.29) and (6.10) that

”TGfHWzl)(foo,oo) = |‘77T3f||Lp(2a7b,2b7a) + ”(nTBf)z(;l;)||Lp(2afb,2bfa)

l
m

l
< ||T3f||Lp(2a—b,2b—a) + Z < ) ||77(l7m)HLOO(—oo,oo)||(T3f)q(um)HLp(Qa—b,Qb—a)
m=0

< |5 £l 2, (2a—b,20—a)

5> (o Ja0r= = =t ((5-2) T oo

b—a\i-m
+( ;i ) ||(T3f)q(f,)||Lp(2a—b,2b—a)>

l
<N f |2,y a—bob—ay + (41)" (Z (m) C2m> (b — a) " | T5.f| 1, (20—b.26-a)

m=0

l

l
+4' Z (m) cy' ||(T3f)1(1l))||Lp(2a7b,2b7a)

m=0

<A+l +e) Q+1Hb- a)il)HT?)fHW},(Zafb,Qbfa)
<2(1+ 41+ ) 8 1+ 10— a) ™) flwiap

<d (141 b —a)! < A1+ — -+
< (I+I0—a) Iflwi@y < ca(1+E0—=a) 7 )| fllwiap

where ¢4 = 16 (1 + 4 (1 + ¢3)). Hence we obtain (6.35). O

Remark 5 It follows from the proofs of Lemmas 9 and 10 that for all
—00 < a < b < oo there exists an extension operator T such that
! m™
”THWI;”(a,b)HWg"(foo,oo) < ¢y (1 + ﬁ) m € No, m<1, (6.37)
(b—a)™ ¥

where ¢ is a constant greater than 1.
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Now we consider estimates from below for the minimal norm of an extension
operator.

Lemma 11 Letl e NJ1 <p < oo,00 < a < b<oo. Then for every extension
operator T : W}(a,b) — W}(—o0,00)

1 /4\! Y
||T||Wzl,(a,b)—>WZl,(—oo,oo) > 8_\/Z<g> I'(b—a) s (6.38)
Remark 6 We shall give two proofs of Lemma 11. The first of them is a
direct one: as in the proof of Lemma 6 it is based on the choice of a function
f e Wé(a, b), which is the “worst” for extension. The second one is based on
Lemma 12 below, in which a lower bound for the norm of an arbitrary extension
operator via the best constants in the inequalities for the norms of intermediate
derivatives is given. In both proofs the polynomials ¢);_1,, of degree [ —1 closest
to zero in L,(0,1) are involved, i.e., Q;_1, = 2'™' + a;_92'"2 + ... + ag and

”Qlfl;pHLp(O,l) = inf R Hl’lfl + blflef2 + ...+ boHLp(o,l)-

bo,...,bi—2€

We recall that Q;_1.00(z) = 27 R;_(22 — 1), where R, is the Chebyshev
polynomial of the 1-st type: R,,(z) = 27! cos(m arccosz). Moreover,

Q=101 2, 0,1) £ 1 Qi=1500] 1001 < [1Qu=1300 | Loc(0,1) = 8- 475 (6.39)

Idea of the first proof of Lemma 11. In the inequality

||Tf||Wp(_OO7OO)
1T = 1Tl W ap)—wi(—o000) = 71 (6.40)
Wi(a,b)
set 0 )l .
—a)~ T —a

@) = =y e (=) (641

apply inequality (4.50) and the relation
inf ||h||W1(—oo a) Z 1.0 (642)

hEW&(foc,a): p ’
h(a—)=1

First proof. 1t follows from (6.40), (6.41) and (6.39) that

(1 —DIb—a) 7
“g“Wf,(—oo,oo)

|7 >
1Qi-1pllL,0,1)
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1 3 -1 L/
> AT =D = a) " gl oo

where g = T f. By inequality (4.50)

1_,
9l

_ T
Consequently
_ _ 7r
198l ooo0) = 194z, -sei00) + 1902y 00 < (5 +1) 9wy -co00)
and g :
47— 1)! _
17| = 12 195w (—so,00)
Since fﬂ‘l) =land g€ Wlﬁ(— o0), by Lemma 2, g(l 1)(a—) = 1. Hence by
(6.42)
198 s (—oo00) > ot bl e > 1
1(—co,a):
h(a—)=1

Thus by Stirling’s formula

1T >

41— 1) (b—a) 7 o V2—T) <4 .

-1
- l—]_l_lb— flJr?
2 e () U7

= s (0 D) ()t
V2r : —l+ —i+%
> frai(s) - = SEC) o-a

and we obtain (6.38) with 0.12 replacing %.
Finally we note that (6.42), by Holder’s inequality, follows from (3.8):

a+1 a+1

ws/mm+/wwmqumwﬂ

Now for [,n € N and 1 < p < oo we shall denote by M, , the set of
q, 8 satisfying 1 < g < oo, € Nfj, which are such that for some A > 0 and
l(Ton
Vf e W, (R")
IDS fllz,rny < A 1l gy (6.43)
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It follows from Chapter 4 that p < ¢ < oo and |f]| < l—n(% - é) or
g = oo and || < I for p = oo, |ﬁ|<l—%for1<p<oo,\ﬁ\§l—nfor

p = 1. Furthermore, for an open set 2 C R" and (q, ) € M, , we denote by
C*(2, p,q,1, 3) the best (minimal possible) value of C, for which V[ € W;,(Q)

ID5 Ny < C llfllwyo)- (6.44)

Lemma 12 Let ln € N, 1 <p < o0, (¢,8) € M, and let Q@ C R" be an
open set. Then for every extension operator T : W}(Q) — WL(R™)

C*(,p,q,1,0)
Tllwiy—wi@mn) = Sup '
H HWP(Q) WP(R ) (‘LB)EMl,n,p O* (Rn7p’ q’ l7 ﬁ)

(6.45)

Idea of the proof. Prove (6.44) by applying an arbitrary extension operator T
and inequality (6.43) where A = C*(R",p,q,l,3). O
Proof. For all (¢, ) € M,

1D Fllzg@) < ID(TH)llz,@my < C*(R™, p, g, 1 B) 1T lw ey

< C'(R™,p, ¢, 1, B) 1T lwe () —wi@ny [ fllwi o
Hence,
C*(Qap7 q, la /6) S C*(anpa q, l7 5) ||THWIZ,(Q)—>W})(R")

and (6.45) follows. O

Idea of the second proof of Lemma 11. Apply Lemma 12 with 6 =1—1,¢ = o0
and inequality (4.53). Use the function f, defined by (6.41) to obtain a lower
bound for C*((a,b),p, 00,1 —1,1). O

Second proof. By (6.45) for every extension operator T : W/(a,b) —
Wl (=00, 00)

C*((a,b),p,00,l,1 — 1)
C*((—00,00),p,00,1,1 — 1)

1T = 1T o)W (—oc,00) 2

It follows from (6.44), with f defined by (6.41), and (6.39) that

]2 0t

C*((a;b),p,00, 1,1 = 1) > ——
(b(l Il | Qup (322 )||Lpab)

[—1)(b—a) v _ 1 e,
U0 T Ly - ot
1Qu-1:pll2,0,1) 8
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From (4.53) C*((—o0,00),p,00,l,1 — 1) < +/2m. Hence, applying Stirling’s
formula as in the first proof of Lemma 12 , we get

411 — 1))

T L 74\! TS
(b-a) "> — (D)l p-a) 7. O
2V 27

[ =

Finally, we give a formulation of the main result of Section 6.1.

Theorem 1 There exist constants cg, c; > 0 such that for alll € N;1 < p < 00
and —oo <a<b< oo

! ) !
) < T ga-wi o) < (1 ———). (6.46)
l_i T p( ) p( ) (b - a)l_ 1

cé<1+( )
b—a) ¥ o

Idea of the proof. Apply Lemmas 3, 6, 9, 10 and 11. O

Proof. If b — a = oo, then (6.47) follows from (6.4) and (6.24). If b — a < o0,
then (6.47) follows from (6.33), (6.35) and (6.38). O

Remark 7 If p = oo, then the statement of the Theorem is also valid for the
spaces Ul(a, b), i.e., there exist cg, cg > 0 such that

l

[
)

l

! < i — < ¢ —_—
c8<1+ < inf [T, < c9<1+ (b—a)H)' (6.47)

,b)aél(—oo,oo)

The estimate from below is proved in the same manner as for the space
W! (a,b). When proving estimates from above, the operator T, defined by
(6.6) must be replaced by Ty defined by (T2f)(0) = f(0—) and (Tof)(x) =
I+1 +1

> ag f(=Brx), x > 0, where B, > 0 and > ap(—0F)® = 1,s =0,1,...,L
k=1 k=1

In that case (T5f)®)(0+) = f)(0-), s =0,1,...,l, which ensures that T f €
61(—00,00) for each f € 6’(—00,0). Moreover, \|T2H51(_OO 0) T (—o000) 16",
The rest of the proof is the same as for the space W' _(a,b).

6.2 Pasting local extensions

We pass to the multidimensional case and start by reducing the problem of
extensions to the problem of local extensions.
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Lemma 13 Let I € N, 1 < p < oo and let Q C R™ be an open set with a
quasi-resolved boundary. Moreover, let U; C R™, j = 1,s, where s € N or
s =00 , be open sets such that

S

Qc [ Jw)s

for some 6 > 0. If s = oo, suppose, in addition, that the multiplicity of the
covering » = »({U;}3_,) is finite.
Suppose that for all j = 1,s there exist bounded extension operators

T, Wy QN Uy) — Wy(Uy), (6.48)

where Wé(Q NU;) ={f e W (QNUj): supp f C QNU;}. If s = oo, suppose
also that sup ||T}|| < co. Then there exists a bounded extension operator

jEN
T : WiQ) — WHR™). (6.49)
Moreover,
1T < 10 sup [|T5], (6.50)
7j=1,s

where c19 > 0 depends only on n,l,d and ».
If all the T} are linear, then T' is also linear.

Idea of the proof. Assuming, without loss of generality, that (U;)s N Q2 # o
construct functions 1; € C°(R™),j = 1,s such that the collection {1/)]2};9: L s

a partition of unity corresponding to the covering {U;};_,, i.e., the following
properties hold: 0 < v; < 1, suppvy; C Uj, ijz = 1on 2 and Yo € Nj
j=1

satisfying |a| <1, |[[D*Yj|r.@n) < M;, where M; depends only on n,l and 0.
For f € WL(Q) set

Tf=> ¢Ti(fi;) on R™ (6.51)
=1
(Assume that ¢;T;(fv;) =0 on ¢(U;)). O

Proof. 1. Let n; € C*(R"™) be “cap-shaped” functions satisfying 0 < n; <
1,n, =1on (Uj)%, n; = 0 on C((Uj)g) and |D%;(z)] < Mydé~lel o € N2,

where M, depends only on n and a. (See Section 1.1.) Then 1 < 77 < x
j=1
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on U(U)g Further, let n € Cy°(R™), n =1 0on £, n =0 on (

Jj=1 J

Cm

(U)g) One

1

—.

can construct functions v; by setting ¢; =n;n (Z n2)~z on | (U;) 5 assuming

i=1

that @Z)j =0 on C(U (UZ)%)
i=1
2. The operator T defined by (6.51) is an extension operator. For, let x € €.

If 2 € supp v; for some j, then ;(x)(T;(f1;))(x) = ¢F(x) f(z). If 2 ¢ supp )y,
then ¢ ()(T5(f ¢))(x) = 0 = ¥j(z) f(z). So (T'f)(z) = ;W(@f(x) =
f ().

3. Let @ € Nj and |a| = 1. If s € N, then

DY(Tf) = ZDO‘ Y; T;(f1;)) on R™ (6.52)

If s = oo, then (6.52) still holds, because on (U( )%) both sides of (6.52)

are equal to 0 and Vz € U( )% the number of sets (U;)
7=1

ball B(z,2) is finite. Otherwise there exists a countable set of Uj,,s € N,

satisfying (U's)g N B(z,$) # @. Hence z € Uj,, and we arrive to a contra-

s intersecting the

diction since »({U;}32;) < oo. Consequently, there exists s, € N such that
supp (;T5(f;)) N B(x, §) # @ for j > s5. So

Tf= ZQ/}J (f¢;) on B(z,?2).
Hence,
Dy(Tf) = ZD“ T f ;) ZD“ Ui Ti(fy)) on Bz, 3).

Therefore by the appropriate properties of weak derivatives (see Section 1.2)
(6.52) with s = oo follows.

4. Let « € N and @ =0 or |a| = 1. In (6.51) , for all x € R™, and in (6.52),
for almost all x € R"™, the number of nonzero summands does not exceed s.
Hence, by Holder’s inequality for finite sums,

DUTHP < 57 S IDW, T (F,)IF

J=1
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almost everywhere on R™ and
[izappar< oS [ g )
R ] 1 R”

Therefore, taking into account Remark 8 of Chapter 1, we have
I gy < My (Z 5 T3 F65) gy )

where M3 depends only on n,l and ». Since suppy; C Uj;, applying Corollary
18 of Chapter 4, we have

145 T5(f i) ey < Mall T (i) llwpwyy < MallT5 1T Fs lwicene;)

< Ms | T3 f llwnw;)
where M, and My depend only on n,l and 6. Now it follows, by (2.59), that

1
I gy < M sp |17 (3 1 y0r0)’

7=1

< My sup || (> JRCEED LA i)’

7=t anu; o=t

< Ms sup || T3] | fllwe e
J
where Mg, M7 and Mg depend only on n,l,d and .

Remark 8 Suppose that in Lemma 13 the operators Tj satisfy the additional
condition

feWiQnU,) = suppT;f C Uj. (6.53)
In this case the operator T" may be constructed in a simpler way with the help

of a standard partition of unity {1;}_,, i.e., 3°¢; =1 on Q. We assume that
j=1
T;(f;)(z) =0if x € U; and set

TF =3 Ty(fy) on R (6.54)
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The operator T is an extension operator. For, let x € Q. If z € Uj, then

(T;(f)) (@) = ¢;(x) f(2), and if @ ¢ Uj, then (T3(f¢7))(x) = 0 = ¢;(x) f(x).

S

Thus (Tf)(x) = 3 ¢;(z) f(x) = f(x). Note also that for f € W(Q), because
=1

of (6.53), we have T;(fv);) € Wy(R") and || T;(f1;) lwyeny = 1 T3 (f5) lwpwy-

Further we consider a bounded elementary domain H C R™ with a C!- or
Lipschitz boundary with the parameters 0 < d < D < oo, 0 < M < oo, which
by Section 4.3 means that

H={zeR":a, <z, <), z€W}, (6.55)

where T = (z1,...,2,1), W ={Z e R" 1 a; <y < b, 1 =1,....,n— 1},
—o0 < a; < b; < oo, diam H < D,

an+d < o(Z), TEW, (6.56)
and
D* < M )
max [|D%¢lleqr) < (6.57)
or
respectively. Moreover, let V ={z e R": a; < z; < b, i=1,...,n—1,a, <
Ty < 00}

Lemma 14 Letl € N, 1 < p < oo. Suppose that for each bounded elementary
domain H C R™ with a C'- or Lipschitz boundary with the parameters d, D and
M there exists a bounded linear extension operator

T: WiH) — WYV), (6.59)

where /V[?Ii(H) ={feW/iQ): supp f C HNV} and ||T|| < c11, where ¢11 > 0
depends only on n,l,p,d, D and M.

Then for each open set Q C R™ with a C'-, Lipschitz respectively, boundary
there exists a bounded linear extension operator (6.49).

Idea of the proof. Apply Lemma 13 with U; =V}, where V}, j = 1, s are open
parallelepipeds as in the definition of an open set with a C'- or a Lipschitz
boundary.
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Proof. By the assumptions of the lemma for all j = 1, s there exist bounded
extension operators

Ty - WA (QN V7)) = Wy (V3):
Let (A;f)(z) = f(Aj(x)) and define
T = A71T; A,

It follows from the proof of Lemma 16 of Chapter 4 that A; : W;(Q nv;) —
WUAQAV)), A7 W (V3)) — WAV, and || A, |, [ Ay " do not exceed
some quantity depending only on n and [. Hence,

TV W V) — WV;)

and T
71 T
| j()H<— HAlHH il IAG [ < My [ T3,

where M; depends only on n and [.

If © is bounded, then s € N and by Lemma 13 there exists a bounded
extension operator (6.49). If Q is unbounded, then s = co and by the definition
of an open set with a C’- or Lipschitz boundary each bounded elementary
domain A;(2NV;) has the same parameters d, D, M. Hence, by the assumptions
of the lemma ||Tj]| < ¢13. Moreover, in this case the multiplicity of the covering
{V;}32, is finite. Thus Lemma 13 is applicable, which ensures the existence of
a bounded linear operator (6.49). O

6.3 Extensions for sufficiently smooth bound-
aries

Lemma 15 Let e N1 < p < oo and Q ={r € R": a; < x; < b, i =
L,...,n}, where —oo < a; < b; < oo. Then there exists a bounded linear
extension operator (6.49).

Idea of the proof. Apply Lemmas 9—10 n times. O

Lemma 16 Letl € N, 1 < p < oco. Then for each bounded elementary domain
H C R™ with a C'-boundary with the parameters d, D and M there exists a
bounded linear extension operator (6.59), which is such that ||T|| < ci9, where
c12 > 0 depends only on n,l and M.
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Idea of the proof. Let H- ={zx € R™ —oco < z, < ¢(Z),z€ W}, (Tof)(x) =
f(z) forx € H, (Tof)(x) = 0 for x € H~\ H. Moreover, let (Af)(z) = f(a(x)),
where (a(x))r = 25,k =1,...,n —1,(a(z)), = z, + ©(z) and (Tof)(z) =
i ap f(Z, —Prry) for T € W, z, > 0, where §;, > 0 and oy are defined by
?618) Set

T=A"T,AT, (6.60)

and apply Lemma 16 and Remark 25 of Chapter 4. O

Proof. If f € W;,(H), then Tyf € Wé(H‘) and ||To fllw,m-) = HfHWl
Hence, HTO”WIQ(H)HW},(H—) = 1. Since A(H") =Q ={x € ]R” czeW x, <
0} and B%(z) = 1, by (4.126) and (4.148) we have

[Allwi -y —wi@-) < My max [|[D%l|¢qp) < My M,

1<|a|<I -
where M; depends only on n and .
Since (a" V(@) =ap, k=1,...,n—1, (a""V(2)), = 2, — p(Z) , the same
estimate holds for ||A*1||Wl((9 _wi) Where @ =W x R. Finally by Lemma 3,
Tellwyig iy < - Ths,

1T gy < AT 1Tl - AL IToll < cre
where c¢15 depends only on n,l and M. O

Remark 9 Note that
(T2Af)(x Zakf 20 — (14 Bi) (@0 — 0(2))) (6.61)

on HF ={zx € R": z € W, z,, > ¢()}, where 3, > 0 and «y, satisfy (6.8).

Theorem 2 Let | € N,1 < p < oo and let @ C R™ be an open set with a
C'-boundary. Then there exists a bounded linear extension operator (6.49).

Idea of the proof. Apply Lemmas 14 and 17. O

Remark 10 If p = oo then Lemmas 13—16 and Theorem 2 are also valid for
the space 61(9). Thus, for each open set with a C'-boundary there exists a
bounded linear extension operator 7" : 61(9) — 61(]1%"). (See also Remark 7.)
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6.4 Extensions for Lipschitz boundaries

Let
Q={reR": 2, < p(z),r € R" '} (6.62)

where ¢ satisfies a Lipschitz condition on R"~:
o(Z) — (@) < M|z —gl, 7,5€R" (6.63)

Lemma 17 Letl € N, 1 < p < co. Suppose that for each domain 2 defined by
(6.62) —(6.63) there exists a bounded linear extension operator

T:WHQ) — WLRY), (6.64)

where /V[Zl)(Q) = {f e WLQ) : supp f is compact in R"} and ||T|| < c13, where
c13 > 0 depends only on n,p,l and M.

Then for each open set ) with a Lipshitz boundary there exists a bounded
linear extension operator (6.49).

Idea of the proof. Prove that for each bounded elementary domain H C R"
with a Lipschitz boundary there exists a bounded linear extension operator
(6.59) such that ||T'|| < ¢13 and apply Lemma 14. O

Proof. 1. Let H be defined by (6.55), (6.56) and (6.58). Denote by v the
following extension of the function ¢ in (6.55):

olay, gy ..., xy_q) for xy < ay,
W(x1, Ty ey Tpo1) = R @(x1, @0, ;1) for ap < xy < by, (6.65)
o(by, oy ..y xpyq)  for by < 1.

Then 1 satisfies a Lipschitz condition on W7 = {x € R 1!: 0o <2y < 00,
a; < x; < b;,i=2,...,n— 1} with the same constant M as the function ¢. For,
if, say x € W,y € Wy and y; > by, we have

W(l’l, T2y -.ny xnfl) —¢(y1> Y2, -y ynfl)‘ = ’90(1'1, T2y -eny I’n,1) _§0<b17 Y2, -, yn71)|
S ’(,0(.1’1, T2, ..., l’n,1>—g0(bl, T2y .un, LL’n,I)H—’()O(bl, T2, ..., xn71>_90<b17 Y, .-y yn71)|

1
< M(yy — 1) + M((i@ —y2)’ + A (T — yn71)2> < M|z —y|.

Repeating this procedure with respect to the variables xs, ..., x,, we obtain a
function, which coincides with ¢ on W and satisfies a Lipschitz condition on
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R,,_1 with the same constant M as the function . We denote it also by ¢ and
consider the domain  defined by (6.62) and the operatorT satisfying (6.64).

2. For f € W}ﬁ(H) let Ty f be the extension of f by zero to 2. Since
supp f \ HNV, we have Tyf € W) and | Tollwiy = Il fllwscr). Hence
1 Toll gt (zr) iy = 1 Next we observe that T'T : Wi(H) — W)(R") and

HTTOHWIQ(H)HWIII(V) < HTHWTI,(Q)HWIg(Rn) < 13

Thus Lemma 14 is applicable and the statement of Lemma 17 follows. O

Our next aim is to construct a bounded linear extension operator (6.64) for
Q defined by (6.62), (6.63).
Let G =R"\Q={zx €R, : 2, > p(x)}. We set

Gr={rcG:27" ' <p,(x) <27%}, kez,

where
Qn(m) = Tp — (p(:i‘)

is the distance from z € G to 0G = 9} in the direction of the axis Ox,,.
First we need an appropriate partition of unity. 3

Lemma 18 There exists a sequence of nonnegative functions 1y satisfying the
following conditions:

= 1 for z € G,
1) k_z Y = {0 for 1 ¢ C. (6.66)
2) G= | suppux (6.67)
k=—0o0

and the multiplicity of the covering {supp ¥ trez s equal to 2,
3) Gy C supp 'I/Jk C Gr1UGLU Gk-i—l; ke Z, (668)

4) | DYi(z)| < cra(@)2fel 2 € R" k € Z,a € N7, (6.69)

where c14(a) > 0 depends only on .

3In Lemmas 18 25 below () is always a domain defined by (6.62) —(6.63) and G’ = R™\ Q.
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Idea of the proof. Apply the proof of Lemma 5 of Chapter 2. O

With the help of the partition of unity constructed in Lemma 18 we define
an extension operator in the following way:

f(x) for x € Q,
(Tf)(z) = i () fi(z) forz € G, (6.70)
where
fle) = [ @ =25~ A2 ) () dz
= A‘12k”/W(2’“(ﬂf — ), AT 2% (2 — ya)) f(y) dy. (6.71)
Here 4
A=16(M+1) (6.72)

and w € C§°(R™) is a kernel of mollification satisfying

suppw C {z € B(0,1) : z,, > 5} (6.73)

N | =

and
/ w(z)dz = 1; / w(2)z%dz=0, a € N[, 0 < |o| <. (6.74)
B(0,1) B(0,1)

Now let us show that the operator T' is well defined. First, we assume
that ¢x(z) fr(x) = 0 for © ¢ supp ey even if fi(z) is not defined. On the
other hand, if x € suppy, fr(x) is defined. This is a consequence of the
following inequality, which holds for x € supp; and z € suppw since by
(6.68) on(2) <27 and by (6.73) |2| < 1,2, > 5 :

T, — A27%2, — (T — 27%2) = 1, — (T) + (T — 27%2) — A27F2,
<27 L M27R|Z| - A27R 27 L MR | - A2, < 27F <2+M— g) < 0.

(This means that the point (z — 2772, z, — A27%2,) € Q.)

4 One can choose any larger fixed quantity depending only on M.
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Furthermore, by Lemma 18, Vz € G the sum in (6.70) is in fact finite: for
each x € (G it contains at most two nonzero terms. Moreover,

m+1

> WS on G (6.75)

k=m—1

Thus T is a linear extension operator defined for functions f € LY¢(9Q).

If z € 082 the values (T'f)(x) are not defined by (6.70). When consider-
ing the spaces W;(R”) this is of no importance, because meas, 02 = 0. In
those cases, in which the functions f are defined and continuous in , we shall
naturally assume that (Tf)(z) = f(x) for x € Q.

Remark 11 Because of the factor A in (6.71), fi is an inhomogeneous mol-
lification of f with the steps 27%,...,27% A2~ with respect to the variables
X1y ey Tn1,Ty. For x € R™ r > 0,h > 0 consider an open cylinder centered at
the point x of radius r and height A

Clz,r,h) ={y €R": § € B(Z,7), |0 — ya| < 5}.

Because of (6.73) the value fi(x) is determined by the values f(y) for y be-
longing to the cylinder

Cop = C’((:E,a:n — 3 A97Ry ok, }lAQ”“),
which is centered at the point (z, z,, — %AQ"“) translated with respect to x in the
direction of the set Q. This follows since in (6.71) w(2(z —4), A722%(z, — y,))
can be nonzero only if 2¥|z — y| < 1 and § < A™*2¥(z, — y,) < 1. For this
reason (Tf)(z),z € G, can be looked at as an inhomogeneous mollification of
the function f, for which both the step and the translation are variable. Thus
the extension operator T is closely related to the mollifiers with variable steps
considered in Chapter 2.
Note also that on G the operator T is an integral operator:

/Kacy y)dy, z € G,

with kernel

= A" Z V()25 w(28(z — §), A712% (2 — yn)). (6.76)

k=—o00
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Lemma 19 Let f € L'*(Q),z € G and 2* = (Z,z, — JAon(2)). Then the
value (T'f)(z) is determined by the values f(y) for y belonging to the cylinder

C, = O(a*,40,(x),4A0,(2))) C C, C Q. (6.77)

Idea of the proof. Apply (6.76) and Remark 11. O

Proof. Let € G. Choose the unique m € N such that x € G,,. Then ¢y (z) =0
if & ¢ {m —1,m,m+ 1} and the value (T'f)(x) is determined by the values
fr(z) where k = m — 1,m,m + 1. By Remark 11 those values are determined

m+1
by the values f(y) fory € | C.y. Hence |z — | <27+ < 4p,(z), and
k=m—1
iAQn(x) < A2 < gy, —yp < A27T < 4Ap,(2).
Consequently |z, — 20,(x) — yn| < 2A0,(2) and y € C,. Moreover, Vy € C,

(7)) = yn = (7)) — (&) + @(Z) — T + Tn — FA0N(T) = Yn + FA0n(2)

> (—4M =1+ §)on(2) > 3ou(x) (6.78)
because of (6.72). Therefore C, C €. Note also that similarly
o(y) — yn < 1040, (x). O (6.79)

Lemma 20 Let f € LY(Q). Then Tf € C*(G) and Vo € N§

= a7 Z D" Py) (@) (D fi) (). (6.80)

0<p<a k=—o00

Idea of the proof. Apply Remark 11 and Lemma 18. O

Proof. By Remark 11 Vk € Z and Vz € suppiy we have C,; C . Con-
sequently, by the properties of mollifiers (see Section 1.1) f € C*(H). By
Lemma 18 Vz € G there exists a ball, centered at x, which is contained in no
more than 3 sets supp ¢x. Hence the series (6.70) can be differentiated term
by term any number of times, and by the Leibnitz formula equality (6.80)
follows. O

Lemma 21 Letl € N;1 <p < oo and for k € Z
G =Gr1 UG, UG ={z € G: 2772 < g, (x) <271}

and B
Qe ={xecQ:2772 < |p,(2)] < b27F 1)
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where b = 10A.
Then Yo € N satisfying |af <1

1D fill 1, @) < c1s DL Sl e, (6.81)

where c15 > 0 depends only on n,l and M.
Moreover, Vo € N there exists a function ® g, independent of k, such that

1D fi = gally, &) < 1621V fll1 @) (6.82)
where c1g > 0 depend only on n,l, M and o.

Remark 12 It is important for the sequel that g, should be independent of
k and the multiplicities s and g of both coverings {Gk}keZ and {Qk}kel
be finite and bounded from above by quantities, which depend only on M.
This follows since these mulitlicities coincide with the multiplicities of the one-
dimensional coverings {(27%72 27%*1)}, ez, {(27%72 627 F+1)}, s respectively,
and because the multiplicity of the covering {(u27"72, 27 %)}, 7. where 0 <
p < v, does not exceed log, ©. For, the inclusion = € (u27F2 p27k+1) g
equivalent to — log, v — log, 1t < k < —log, x — log, v. Hence the length log, ﬁ
of this interval is greater than or equal to the number of those k, for which
x € (p27%2, 0271, Thus s < 3 and sq < log,(8b).

Idea of the proof. Observe that Va € ék
Cox C Cy C . (6.83)

To prove (6.81) for o = 0 apply Minkowski’s inequality, the substitution & —
27%7 = §,x, — Az, = y, and (6.83). To prove (6.82), in addition, expand the
function f(z—27%2,x, — A27%z,) under the integral sign, applying the integral
representation (3.38). Taking into account Remark 12 of Section 3.4, replace
in (3.38) the ball B by the ball B, = B(z*,40,(x)) C C, and w by

wa(y) = (4oa(2)) " u((4den(2)) " (2 = y)), (6.84)

where p is any fixed kernel of mollification satisfying (1.1). Apply also an
analogue of inequality (3.56). O

Proof. 1.The first inclusion (6.83) follows since for y € C, we have |2 — 7| <
27% < 49,(z) and

YApn(z) A2 < ay —y, < A27F < 4 A g, ().

°If |a| > 1, (6.82) holds for g, = 0.
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Consequently, as in the proof of Lemma 20, |z, — %A 0n() — yn| < 2A0,(2).
The second inclusion (6.83) follows since inequalities (6.78) and (6.79) hold
Yy € C,.

2. First let a = 0. By Minkowski’s inequality

1fell @) < / If(z =27z, x, — A2_kZﬂ)HLP71(@k) w(2)| dz

B(0,1)

< [ I, ol

supp w

since by Remark 11 (z —27%z, z,, — A27%2,) € C, for 2z € suppw. Hence, by
(6.83)

1l e < a5l flL e,

where ¢15 = ||w||,(&n) and we have established (6.81) for o = 0.
3. Let £ € R™ and let us consider the polynomial in &1, ..., &, of order less
than or equal to [ — 1

—1)h!
P& = [ (X S0l - v ww)) 1) dy

B, Ivl<t

which is closely related to the first summand in the integral representation
(3.51), where B,w are replaced by B,, w, respectively. Writing u(z) for (z —
27%z 1, — A27%2,), by (3.51) we have

f(z—27%z 2, — A27%2,)) = f(u(2)) = P(u(z), 2)

Mw ulz = P(u(z),z ry(u(z),x
+;V/ )yl s A= PO )+ 30t

u(z)

Note that by (6.83) u(z) € C, and hence V) C C,. Furthermore,

= Rox(x) + Y Ryil). (6.85)
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4. The function P(u(z),z) is a polynomial in the variables zy,...,z, of
degree less than or equal to [ — 1:

P(u(z),z) = P(z,z) + Y ca(x)2”,
0<|B|<!
set

where cg(x) are independent of z. Note that by (6.74) Ry k() = ro(z,z) and

go(2) = P(z, ). (6.56)
5. Since w, is defined by (6.84), from inequality (3.57) we get that Vy € V)

D n—1

e (u(@)y) < My (Z) o kI =t
where M; depends only on n and [, d = diam B, = 89,(x) and by (6.77)
D < diam C, < 10 A g,,(x). Hence, Vy € V)

[y (u(2),y)| < Ma,
where Ms depends only on n,l and M. Consequently,

ry(u(z),2) | < M / (D)) |- Julz) — " dy.
Cq

Let xg, be the characteristic function of Qy, and P, (y) = (DL )W)l xe, (v), y €
R"™. (We assume that ®,(y) = 0 for y ¢ Q.) Then

R <0 [ ([0 1)~ o dy) ) d=

B(0,1) Cx
= u(z) —y. Since both u(z),y € C, we have |n| < diamC, <
10 A g,(z) < 20 A27%. Hence,
| Ry ()]

< M, / ( / ¢, (z — 2%z —q, xy — A27F2, — M) |77\l’”d7)> lw(z)] dz.

B(0,1) B(0,20 A2~k)

(6.87)
Since,

195 =Pl < N2 = W)@y = [P llL,@m) = D5 S L0,
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applying Minkowski’s inequality, we get

1Roillsye < M IDL ey [l dn < M2 DL 0,
B(0,20 A2-F)
(6.88)
where M3 = M, ||w||z,®») and M, > 0 depends only on n, [ and M.
Inequality (6.82) with a = 0 follows from (6.85), (6.86) and (6.88).
6. Now let |a| > 0. Taking into account Lemma 3 of Chapter 1, we
differentiate (6.71) and get

(D fi)(x) = / (D2 )z — 272, x, — A27%2,) w(2) dz

B(0,1)

— Aanghlal / f(@ =27z, 2, — A27%2,)(Dw)(2) d=.
B(0,1)

Inequality (6.81) with |a| > 0 follows from the first equality and inequality
(6.81) with a = 0.
Next let

(_1)\a|+lwl N
Pieo = [ (3 Sl - vy nw]) £ dy
B, NI<i=lo] .

By (3.52), as in steps 3—4, it follows from the second equality for D® f;, that

(D fi) (@) = gala) + Y A 2R (a),

Iv=l—l|al

where

Go(x) = A7 QM / P,(u(z),z)(D)(2) dz

B(0,1)

and Rga,z(a:) is obtained from R, j(z) by replacing D} f, | by D™ f, 1 — |af
respectively. By (6.74) [ 2P(D°w)(z)dz=0if |a| >, or |a| <l and 8 # .

B(0,1)
If [a| <land 8= a, then [ 2z%(D%)(z)dz = (—1)llal. Hence g, = 0 for
B(0,1)
|a] > 1 and
Galx) = A7 2R DY P (u(2), x)) = P,(x,x) (6.89)

for |a] < I. With this choice of g, inequality (6.82) with |a| > 0 follows as in
step 5. O
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Remark 13 In the above proof the functions g, defined for a = 0 by (6.86)
and for 0 < || <1 —1 by (6.89) are the first summands in the integral repre-
sentations (3.51), (3.52) respectively, where B, w are replaced by B,,w, respec-
tively. Since Vo € G, we have B(z*(k), Mi27%) C B, = B(z*(k), 4 0,(z)) C
B(z*(k), My27%), where z*(k) = (z,z, — 2 A27%) and M;, M, > 0 depend
only on n. These inclusions explain why one may expect estimate (6.82) to
hold with appropriate g,x. The choice of the ball B(x*,4¢,(z)), independent
of k and “compatible” with B(x*(k), M, 27%), allows us to construct a function
g, for which inequality (6.82) holds and which is independent of k.

Remark 14 In the proof of Lemma 22 (Section 4) we have applied property
(6.73) for |a| < I—1. The fact that it holds also for [af = [ allows us to

prove the following local variant of (6.82) for p = oo : Yz € Gy and Va € Ny
satisfying |a| <

(D*fi)(2) = Fal2) | < crr 27"V fl i@, np(razsy: (6.90)

where ¢17 > 0 and a > 0 depend only on n,l and M. Here g, is independent
of k and is defined by (6.89) with [ + 1 replacing [.

Estimate (6.90) follows from (6.87), where [ is replaced by [ 4+ 1 and |y| =
[+ 1, if to observe that Vz € suppw and Vn € @ the point (z —27%z -7, x, —
A27%z, —m,) € B(z,a27%) where a =22 A .

Lemma 22 Letl € N;a € N, |a| < L and® f € C(Q). Then the derivatives
D*(Tf) exist and are continuous on R".

Idea of the proof. By Lemma 7 T'f € C*(R"\ 09). Let x € 09Q. First show,
by applying (6.90), that

lim DT f)(y) = (Dfi)(@), |of <L (6.91)
y—z,yeG
Applying (6.91) and the definition of a derivative prove that (D*(T'f))(x) =
(D f1)(x) first for || = 1 and then, by induction, for all & € Nf satisfying
la| <leN.O

Proof. 1. Let I, 3= . D* Py, DPf,. Then by (6.80)

k=—00

«!
D (Tf)(y) = 0<;a mfaﬁ(y), y €G, (6.92)

6T.e., there exists a domain €; D Q and a function f; € C°°(Q;) such that f; = f on €.
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where I,5 = 5. D PypDPfi. Let x € 09, ie., x = (Z,0(z)). First we

k=—o00

study the difference
loa(y) — D fi(2)
m+1
= 3w [ (025 g A7) - (0@ @)l dz
f=m—1 B(0,1)
where m is such that y € G,,, (m is defined uniquely). Let u = (5 — 27%2,y,, —
A27%z,), then Ju —z] < |z —y[ + 27F + A27F <o —y[ + (A+ 127" <

|z =yl + 4(A+1)en(y). Since 0n(y) = yn — ¢(T) = Yo — 20 + $(T) — (y) <
(M + 1) |z — y| we have |u — z| < M |y — x|, where M; depends only on M.
Consequently,

Haaly) = (D fi)(z)| < My sup  [(D*fi)(u) = (D*fi)(z)| =0

[u—z|< My [z—y|

asy — x,y € G. (Here M, depends only on n and M.)
Furthermore, when 8 # a we have Y. (D Fiy)(y) = 0 and
k_

Lp(y) = > (D" ) () (D’ fi)(y) — 95(y))
= (D) () ((D” fi) (y) — 95(y)), (6.93)

where gg is the function constructed in Lemma 21 (see (6.89)). Applying (6.90)
we get

[Lap(y)| < Mz 27D fll i@ az-mi)

< Mylz =y Fll o on e amsie)

where M3, My, My depend only on n,l and M.

Therefore I,5(y) — 0 as y — z,y € G, and this proves (6.91).

2. It follows from what has been proved in step 1 that the function T'f
is continuous in R™ and (7'f)(z) = fi(z),z € 0Q. Now we shall prove that

aéi_f) (z) = g—ﬁ(x) for z € 9N.

Consider the one-dimensional set e, = 2N lg(cl), where IV is a straight line
passing through the point x and parallel to the axis Ox;. Let zo, ..., x, be fixed
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and Y(x1) = (Tf)(z1,...,2,), 11 € R, ¥1(z1) = fi(xr,20,...,2,), 21 € €.
Consider

o(Tf) () = lim V) = dle) _ L v) — )
85171 Y1—T1 Yy — 1 Yy1—x1 Y1 — I1
Note that
lim 7¢(y1) — Yi(z1) _ lim i(yr) — dilzy) _ Ofy (2).
y1—T1,y1€85 Y — T Y171 Y1 — T1 0y

Let y; ¢ €. Denote by yi the point in €, lying between z; and y;, which is
closest to ;. We obtain ”

() —vi(z) 9 V() — vyi) + ¥ilyr) — @)  Ofy

x) = x
h— T 3x1( ) hh — T 3$1( )
— Y5 ) — iz - 0
()Y +w1(y12 hi(r) yi—x Oh ()
Yy — 1 Y1 — 1 1 —a1 On
_o(Tf) dfr Y1 —Yi
- ( 8:61 (6175527"-73771) axl(xlax%"'?wn))yl_xl
* _ 8 *
+<¢1(y12 Y1 (1) _Oh (x)) h—-—n
i~ Oy Y1 — 21
If yy — x; the first summand tends to zero because of (6.91) since
(&1,29,...,2,) € G and & lies between x; and y;, and the second summand
tends to zero because (y}, 3, ...,z,) € Q. This proves that é)é%{)(x) = g—ﬁ(x).

The continuity of %me) follows again from (6.91).

Similarly one can prove the existence and continuity of the derivatives
%, i = 2,...,n(when i = n, the situation is simpler since QN I is a half-

line), and, by induction, of the derivatives of higher orders. O

Lemma 23 Let € N, 1< p< oo, f € C®(Q). Then

HTfHLp(R") < cs HfHLp(Q), (6.94)
1T fllwt gy < €19 [l ) (6.95)

where c1g,c19 > 0 depend only on n,l and M, and
(0 = @) DT ) e < oo [ lwys ol > 1 (6.96)

where cop > 0 depend only on n,l, M and o.

"If any neighbourhood of x contains infinitely many interval components of e, then
yi # x. Otherwise, for a point y;, which is sufficiently close to x; we have yj = x;, and the
argument becomes much simpler.
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Idea of the proof. 1. To prove (6.94) first observe that, as in the proof of Lemma
13 of Chapter 2,

I e < 2( Z 1A &) (6.97)

then apply inequality (6.81) and the fact that the multiplicity of the covering
{ﬁk}kEZ is finite.

2. To prove (6.95) apply (6.92) and (6.93). Estimate I,, as in step 1. To
estimate I,3 where 3 # a apply inequalities (6.69) and (6.82). In the case of
inequality (6.96) use also the inequality x, — (%) < M;27% on G}, where M,
is independent of k. O
Proof. 1. Since the sum (6.70) for each # € G contains at most two nonzero
terms by Holder’s inequality

oo

1775 ) < 27 / (S Wahib) da.
G k=—00
Furthermore,
m+1 o0 m+1 0 k+1
/3 - z/z SPIYEPIPIYE z/
k=—00 k——oo k=m—1 m=—o00 k=m— 1 k=—0co m=k— l k——oo

and inequality (6.97) follows since 0 < 1, < 1. Consequently, by (6.81)
00 1 1
1T e < 2e5( D2 1A )" < 2€1554 I llaion
k=—o00

where »q is the multiplicity of the covering {ﬁk}ke% which, by Remark 12,
does not exceed log,(8b).

2. Suppose that a € N satisfies || = [. Then we consider equality (6.92).
As in step 1

[ Haallz, @) < call Dy fll,@)-

To estimate |[/45]|1,(@) Where 3 # a we can apply (6.93). First of all

el < 2( 32 1072 6D~ gl )"

k=—00
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Furthermore, it follows, by (6.69), (6.82) and Remark 13, that

00 1
||[aﬁ||Lp(G) < Mg( Z (Qk\a—m 2_k(l—\5|) ||f||wé(9k))p>:0
k=—o0
00 1
— P P
_ (kz 1718 )
e’} 1 1
<My DO (X IDaSI o))" S Masdy D U0l € Ms [ Flluyco):
la|=l k=—o0 |ar|=l

where Ms, ..., M5 > 0 depend only on n,l and M, and inequality (6.95) follows.
The proof of inequality (6.96) is similar. Let |a| > [. Since g, = 0, for all g
satisfying 0 < 8 < a we have

(20 — (@) Lapl L)

3=

< 2( > @ = p(@) Dy (D fi - 95)”1(@;@))

k=—oc0
0 1
—r(|la)— a— —k(l— P
< Mﬁ( Z (2~ Fllal=D gkla=p] 9=k(I=|5]) Hwa;(Qk))p) < Mo || fllusco).
k=—o0

where Mg, M7 depend only on n,l, M and «. O
Lemma 24 For each polynomial p; of degree less than or equal to I, Tp; = p;.

Idea of the proof. Expand the polynomial p;(Z — 27z, x, — A27%2,) in (6.71)
and apply ® (6.74) and (6.66). O

Lemma 25 Letl e N1 <p < oo, f € W;,(Q) Then there exists a sequence

of functions fi, € C*(§2) such that
fo— [ in W)(Q), 1<p<oo (6.98)

and
fo—= f in W), W fllwe@ — [1fllwe @ (6.99)

as k — oo.

81f in (6.74) || < m, then Lemma 25 is valid for polynomials of degree less than or equal
to m. This lemma is similar to Lemma 15 of Chapter 2.
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Idea of the proof. By Lemma 2 and Remark 2 of Chapter 2 it is enough to
assume that supp f is compact in R". Set

fro=As,(f(- + fen)),

where e, = (0, ...,0,1) and A;, is a mollifier with a non-negative kernel defined
in Section 1.1 with step &, which is such that 0, < dist (supp f, 9 + %en),
and apply the properties of mollifiers (see Sections 1.1 and 1.2). O

Theorem 3 Let | € N,1 < p < oo and let @ C R™ be an open set with a
Lipschitz boundary. Then there exists a bounded linear extension operator

T: WH(Q) — WHRM [ C™(Q) (6.100)

such that
| DT )| ey < can 1flwiys ol >, (6.101)

where o(x) = dist (x,00Q) and coy > 0 is independent of f.

There exists an open set £ having a Lipschitz boundary such that in (6.101)
the exponent |a| — I cannot be replaced by |a| — 1 — & for any € > 0 and for any
extension operator (6.100).

Idea of the proof. Apply Lemmas 17, 23, 25 and note that for a domain 2
defined by (6.62), (6.63) °

Ln — gO(:f)
1+M
To prove the last statement consider @ = R” = {x € R" : x,, < 0} and argue
as in Remark 12 of Chapter 5. O
Proof. First let Q be a domain defined by (6.62), (6.63) and f € W}(Q2). By

< o(z) < 20 — 0(3). (6.102)

Lemma 25 there exists a sequence of fuctions f, € C°(Q) satisfying (6.97),
(6.98). Consequently, by Lemma 23

||Tfk||Wll,(Rn) < M, ||kaWzl,(Q)>

where M, depends only on n,l and M. Passing to the limit as £ — oo we es-
tablish this inequality with f replacing fr. Applying Lemma 17 we get (6.100).

9 The second inequality is obvious. To prove the first one we note that o(x) > ox (), where
ok = dist (z,0K) and K C G is the infinite cone defined by vy, > ¢(Z) + M|z — 7|, y € R™.
The desired inequality follows since B(x, (14 M)~ (z, —¢(Z))) C K, which is clear because
Vy € B(z, (1+M)~ (2, —¢(Z))) we have y, —p(7) =M |Z—g| = yn—wn+z,—p(T)—M|Z—7| >
—(L+ M)z —y| + (zn — (7)) > 0.
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In the case of inequality (6.101) the argument is similar. One should
only take into consideration (6.102) and (6.96) and note that the appropri-
ate weighted analogue of Lemma 17 is also valid.

Finally, let €2 = R™ and suppose that for some £ > 0 and for some extension
operator (6.100) we have Hx‘,?'*l*eDa(Tf)HLp(Ri) < oo for all f € WI(R") and
for all & € Ny satisfying |a] = m > [ + ¢. First suppose that [ > }l). Let

-1 I+e—1
g € By "(R*1)\ B,,Jr ?(R™1). By Theorem 3 of Chapter 5 there exists a

function f € W/(R™ ) such that f‘ = ¢g. By Lemma 2 T'f =f =g.
Rn—1 Rn—1 Rn—1
e 1
Since T'f € W ,._._.(R?}), by the trace theorem (5.68), g € B;Jr 7(R™!) and
we have arrived at a contradiction. If [ = p = 1, the argument is similar: one
should consider g € L;(R" 1)\ B{(R"!) and apply Theorem 5 of Chapter 5

instead of Theorem 3 of that chapter. O

Remark 15 The extension operator constructed in the proof of Theorem 3
satisfies (6.100) and (6.101). So, by the last statement of that theorem, it is
the best possible extension operator in the sense that the derivatives of higher
orders of T'f on “Q have the minimal possible growth on approaching 952.

Remark 16 The extension operator constructed in the proof of Theorem 3 is
such that for all m € Nj satisfying m <[ we have T': W*(Q2) — W (R").

Remark 17 Now we describe an alternative way of proving of the first state-
ment of Theorem 3. Let € be defined by (6.62) and (6.63). It is possible to get
an extension operator (6.100) by “improving” the extension operator (6.61) .
To do this we replace x,, — ¢(z), which in general is only a Lipschitz function,
by the infinitely differentiable function A(x) = 2(1+ M)es(x), where o1 is the
regularized distance constructed in Theorem 10 of Section 2.6. By (6.102) we
have

e — (7)< M) < 2(1+ M)(an — p(2) (6.103)
and

|IDYA(x)| < co (2, — 0(2))71) 0 € N2 (6.104)
So we set

I+1
(TH)(@) =D anf(@ . — (1+ B)A@)), (6.105)
I+1 - I+1

where G > 0 and > ax(—f)® = 1,5 = 0,...,0. (Hence Y ax(l + Gk)® =

k=1 k=1
0,s = 1,...,l.) By using formula (4.127), expanding for f € C*°(Q) the deriv-
ative DA f(z, 2, — (1 + Bx)A(x)) by Taylor’s formula with respect to the point
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(Z,¢(x)) € 092 and applying (6.103), one can prove that Lemmas 22 and in-
equalities (6.94) and (6.95) are valid for this extension operator as well. The
rest is the same as in the proof of Theorem 3.

The extension operator (6.105) cannot be “the best possible” because, in
general, Tf ¢ C>=(“Q). On the other hand in (6.105) it is possible to replace

I+1
the sum Y by the sum Z and '° choose 3, > 0 and a4, in such a way that
k=1 k=1

Z || |Bk]® < oo and Z ag(—pF)® =1 for all s € Ny. This gives an operator
(mdependent of 1) such that (6.100) is satisfied for all [ € N.

Remark 18 The extension operator (6.29)—(6.30) in contrast to the extension

defined in Remark 26 of Chapter 4, i.e., for [ € N, 1 < p < 0o and an open set
) C R™ with a Lipschitz boundary

T: Wo Q) — Wt (R™), (6.106)

To prove this for Q defined by (6.62) — (6. 63) following the same scheme, one
needs to prove an analogue of (6.95) for wh+'(Q). This can be established with
the help of an integral representation, Wthh involve only unmixed derivatives

! .
(ﬁ)w,] =1,..,n

Remark 19 The supposition “§2 has a Lipschitz boundary” in Theorem 3 is
sharp in the following sense: for each 0 < v < 1 there exists an open set (2
with a boundary of the class ' Lip~y, which is such that the extension operator
(6.100) does not exist, as the following example shows.

Example 1 Let n > 1, le N, 1<p<ooand Q, ={z eR": |z] <1, |z|7 <
x, < 1} where 0 < v < 1. Then 092 € Lip~, but 02 ¢ Lipl. Suppose that
there exists an extension operator (6.100), even nonlinear or unbounded. Then
Vf e Wi(Q,) we have Tf € W/(R"). It follows, by the embedding theorems
for W/(R"), that Tf € Ly(R"), hence f € Ly(€2,), where ¢ = il <

00Or by an appropriate integral. In that case (T'f)(z @,z — AA(2)Y(N) dA,

)—'%8

where ¢ € C*([1,00)) satisfies [ [p(A)[A*dX < oo for all s € Ng, [¢(A)d\ = 1 and
1 1

J (M)A dX =0 for all s € N.
1

"' To obtain the definition of such sets one should replace in (4.89) |z — g| by |z — g|7.
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q € [1,00) is arbitrary if | = 2,p>landg=ocif{> % p>lorl>np=1
Consider the function fs(x) = 2% where § € R\ No. Then f5 € W(€,) if, and
only if, 6 > 1 — % + "le(l — %) because

1

1
§—lp+n=t
fsllwioy < 0o <= 20-0P 4z ) dx, = v, xi P dx,, < 00.
p( ’Y) n
0

&<, 0

(This is also true for [ = 0, i.e., for Ly (£,).) Let | < %, the cases | = J and I > 2

n_ n=l Iy _—j_ngnzlq__ 1 _nygnzl(q_1
being similar. If =4+ %=(1—-2) =1-24+%=(1-2) <0 < =2+ (1 7),

then f5 € W)(Q,) but f5 ¢ Ly(€,), and we have arrived at a contradiction.

Remark 20 If 2 has a boundary of the class Lip 7, where 0 < v < 1, then it
is possible to construct an extension operator

T: WhQ) — WHR™M, (6.107)

where for noninteger v W'(R") = B'(R"). The exponent 7/ is sharp. So
the extension (6.107) is an extension with the minimal possible deterioration of
smoothness. Moreover, if a bounded open set 2 C R™ has a continuous bound-
ary, then there exists an extension operator, which preserve some smoothness,
i.e., for some A(-)

T:WhQ) — By (R™). (6.108)

Here Bﬁgg(R”) is the space with the generalized smoothness, defined with the
help of a function A(-), which is positive, continuous, nondecreasing on (0, c0)
and can tend to 0 arbitrarily slowly. To obtain the definition of the spaces
B,/,\,(o'c))(R”) one should replace |h|' by A(|A]) in (5.8)—(5.9) with § = oo and
suppose that tlir(gr At)t7 = oc.



Chapter 7

Comments

The first exposition of the theory of Sobolev spaces was given by S.L. Sobolev
himself in his book [134] and later in his other book [135].

There are several books dedicated directly to different aspects of the the-
ory of Sobolev spaces: R.A. Adams [2], V.G. Maz'ya [97], A. Kufner [85],
S.V. Uspenskii, G.V. Demidenko & V.G. Perepelkin [150]. V.G. Maz'ya &
S.V. Poborchii [100]. In some other books the theory of Sobolev spaces is in-
cluded into a more general framework of the theory of function spaces: S.M.
Nikol’'skii [114], O.V. Besov, V.P. II'in & S.M. Nikol’skii [16], A. Kufner, O.
John & S. Fucik [86], E.M. Stein [138], H. Trielel [144], [145]. Moreover, in
many other books, especially on the theory of partial differential equations,
there are chapters containing exposition of different topics of the theory of
Sobolev spaces, adjusted to the aims of those books. We name some of them:
L.V. Kantorovich & G.P. Akilov [76], V.I. Smirnov [128], M. Nagumo [107],
O.A. Ladyzhenskaya & N.N. Ural’tseva [88], C.B. Morrey [105], J. Necas [108],
J.-L. Lions & E. Magenes [92], V.M. Goldshtein & Yu.G. Reshetnyak [64], D.E.
Edmunds & W.D. Evans [56], V.N. Maslennikova [96], E.H. Lieb & M. Loss [91].
Throughout the years several survey papers were published, containing expo-
sition of the results on the theory of Sobolev spaces: S.L. Sobolev & S.M.
Nikol’skii [136], S.M. Nikol’skii [113], V.I. Burenkov [20], O.V. Besov, V.P. Il'in,
L.D. Kudryavtsev, P.I. Lizorkin & S.M. Nikol’skii [15], S.K. Vodop’yanov, V.M.
Gol’dshtein & Yu.G. Reshetnyak [152], L.D. Kudryavtsev & S.M. Nikol’skif [84],
V.G. Maz’ya [98]. We especially recommend the last two surveys containing
updated information on Sobolev spaces.

We do not aim here to give a detailed survey of results on the theory of
Sobolev spaces and their numerous generalizations, and we shall give only brief
comments tightly connected with the material of Chapters 1-6.

289
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Chapter 1

Section 1.1 The proofs of the properties of mollifiers As can be found in
the books S.L. Sobolev [134], S.M. Nikol’skii [112] and E.M. Stein [138].

Section 1.2 The notion of the weak derivative plays a very important role in
analysis. It ensures that function spaces of Sobolev type constructed on its base
are complete. Many mathematicians arrived at this concept, friequently inde-
pendently from their predessors. One can find it in investigations of B. Levi [89]
at the beginning of the century. See also L. Tonelli [142], G.C. Evans [55], O.M.
Nikodym [109].

S.L. Sobolev [131], [132] came to the definition of the weak derivative from
the point of view of the concept of generalised function (distribution) intro-
duced by him in [129], [130] and of the generalized solution of a differential
equation. An approach to this notion, based on absolute continuity, was devel-
oped by J.W. Calkin [52], C.B. Morrey [104] and S.M. Nikol’skii [112]. See the
book S.M. Nikol’skii [114] (Section 4.1) for details.

Lemma 3 is taken from [24]. Lemma 4 is due to S.L. Sobolev [134].

Section 1.3 S.L. Sobolev has introduced the spaces W}(€2) in [131], [132]
and studied their different properties in those and later papers. (Some facts
concerning these spaces, for particular values of parameters, were known ear-
lier. See, for example, the papers B.Levi [89] and O.M. Nikodym [109].) In
his book [134] S.L. Sobolev has pointed out that these spaces are essentially
important for applications to various problems in mathematical physics. This
book has given start to an intensive study of these and similar spaces, and to
a wide usage of them in the theory of partial differential equations. Nowadays
Sobolev spaces have become a standard tool in many topics of partial differen-
tial equations and analysis. S.L. Sobolev himself worked out deep applications
of the spaces Wzﬁ(Q) and their discrete analogues to numerical analysis. (See
his book [135] on the theory of cubatures.)

Chapter 2

Section 2.2 Nonlinear mollifiers with variable step were first considered
by H. Whitney [153] (their form is different from the mollifiers considered in
Chapter 2), and later by J. Deny & J.-P. L. Lions [53] (the mollifiers Bs) and
N. Meyers & J. Serrin [102] (the mollifiers Cj).

For a general lemma on partitions of unity, including Lemmas 35 see V.I.
Burenkov [28]. That lemma is proved in the way which differs from the proofs
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of Lemmas 3—5 in Chapter 2. The idea of constructing the functions ¢ by
equality (2.10) has its own advantages: it is essentially used in the construction
of the partition of unity in the proof of Theorem 5 of Chapter 5 satisfying
inequality (5.71).

Section 2.3 For the spaces 6Z(Q) Theorem 1 was proved by H. Whit-
ney [153], for the spaces Wlﬁ(Q) where 1 < p < oo — by J. Deny & J.-P. L.
Lions [53] and N. Meyers & J. Serrin [102]. The case of the spaces W' () is
new. Theorem 2 was proved by the author [24]. The statement mentioned in
Remark 12 is proved in the same paper.

Section 2.4 For the spaces 6’(9) Theorem 3 was proved in [153]. Theorem
3 (for 1 < p < 00) and Theorem 4 were proved by the author [24], [30].

Section 2.5 The linear mollifiers Es were introduced by the author [22]. In
the case 2 = R"\R™ the linear mollifiers H; with variable step (see Remark 26)
for some special kernels w were considered and applied to the problem of exten-
sion of functions from R™ by A.A. Dezin [54] and L.D. Kudryavtsev [82], [83].
V.V. Shan’kov [126], [127] considered the linear mollifiers Hy with variable step
and applied them to investigation of the trace theorems for weighted Sobolev
spaces.

Theorems 5—9 are proved by the author [22], [30].

E.M. Popova [118] has proved that inequality (2.87) in Theorem 8 is sharp
in a stronger sense, namely, the factor ¢/®/=! cannot be replaced by ol*~'v(p),
where v is an arbitrary positive continuous nonincreasing function, satisfying

some regularity conditions, such that li%l v(u) = 0.
u—0+

Theorem 8 was generalized in different directions by the author [24], [30],
V.V. Shan’kov [126], [127], E.M. Popova [118]. See survey [35] for details.

For a fixed ¢ Theorem 10 was proved by A.P. Calderén & A. Zygmund [51]
(see detailed exposition in the book E.M. Stein [138]). For an arbitrary
e € (0,1) a direct proof of Theorem 10, without application of Theorem 9,
was given by the author [21]. Later L.E. Fraenkel [59] gave another proof
and considered the question of the sharpness of inequality (2.96). For the
domain 2 defined by (6.62) and (6.63) Yu.V. Kuznetsov [87] (see also O.V.
Besov [11]) constructed a reagularized distance gs, satisfying (2.93), (2.96) and,

Q

in addition, the inequality (52)(z) < —b, x € €, where b is a positive constant.

Chapter 3

Section 3.1 The idea of choosing the function w in the integral represen-
tation (3.17) in an optimal way, which has been discussed in the simplest case
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in Remark 4, was used by the author in [29], [33], [34]. It gave possibility
to establish a number of inequalities with sharp constants: for the norms of
intermediate derivatives on a finite interval in [29], [33] and for the norms of
polynomials in [34].

Section 3.2 In the case of bounded 2 Lemma 4 was proved by V.P.
Glushko [63].

Section 3.4 Theorem 4 is due to S.L. Sobolev [131]-[133]. However, in
those papers the first summand in (3.38) has the form of some polynomial in
X1, ..., Ty of order less than or equal to [—1. The explicit form of that polynomial
was found, and the tight connection of Sobolev’s intergal representation to the
multidimensional Taylor’s formula was pointed out in O.V. Besov [9], [10],
Yu.G. Reshetnyak [121] and V.I. Burenkov [23]. The proof in the text follows
that of [23].

With the help of the integral representation (3.38) where [ = 1 M.E. Bogov-
skii [17], [18] constructed an explicit formula for the solution v € W, (Q2),1 <
p < oo, of the Cauchy problem: dive = f, where f € L,(Q), [ fdz = 0, for

Q

bounded domains star-shaped with respect to a ball.

The proof of the integral representation (3.67) on the base of (3.69) is given,
for example, in the books M. Nagumo [107] and E.M. Stein [138].

For an arbitrary open set 2 an integral representation for functions f &€
wl () NWH(Q), where 2k > [ has been established by V.G. Maz'ya [98].

Finally, we note that in many cases it is important to have an integral repre-
sentation, which involve only unmixed derivatives (see, for example Remark 17
of Chapter 6). A representation of such type was first obtained by V.P. II'in [73].
In other cases it is desirable to get an integral representation via differences.

Integral representations of both types may be deduced, in the simplest case,
5

starting from the elementary identity (A.f)(z) = (4sf)(z) — [(Z(Af)(2)) dt,

where As is a mollifier considered in Section 1.1. Detailed eexposition of this
topic can be found in the book O.V. Besov, V.P. II'in & S.M. Nikol’skii [16]
(Sections 7-8).

Chapter 4

Section 4.1 Lemma 1 is a variant of Theorem 2 of Section 7.6 in the book
S.M. Nikol’skii [114]. We discuss in more detail the case of semi-Banach spaces
(see Lemmas 2-3).

Section 4.2 Inequality (4.49) for p = oo is due to A.N. Kolmogorov [77].
E.M. Stein [138] proved that ¢, 1 = Cim,co a0d Cimp < Cmoo fOr p € (1, 00).
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Theorem 4 and Corollaries 10, 11 contain all the cases, known to the author,

in which the constants are sharp. If (b —a) > (p/ + l)i7 in (4.57) the sharp
value of the constant multiplying || f},[/z, (. is not known.

Section 4.4 For open sets with quasi-continuous boundaries inequalities
(4.105) and (4.107) in Theorem 6 are proved in the book J. Necas [108]. The
first proof and application of a theorem similar to Theorem 8 was given by R.
Rellich [120].

In V.I. Burenkov & A.L. Gorbunov [43] it is proved that in inequality (4.112)
cq1 < MUP! where M depends only on n.

Formula (4.127) for weak derivatives is proved, for example, in the book
S.M. Nikol’skif [114] (Section 4.4.9).

One can find the detailed proof of the Marcinkiewicz multiplicator theorem,
formulated in footnote 21, in [114] (Sections 1.5.3—-1.5.5).

Section 4.5 Theorem 10 was proved by G.H. Hardy & J.E. Littlewood [66]
for n = 1 and S.L. Sobolev [131], [132] for n > 1. The proof discussed in Section
4.5 is taken from L.I. Hedberg [68]. One can find proofs of the properties of the
maximal functions, formulated in footnote 22, in the books E.M. Stein [138]
and E.M. Stein & G. Weiss [140]. The proof of the Theorem 11 in the case
B < L is a modification of the proof given by L.I. Hedberg [68]. In the case

Un

6= l Theorem 11 was proved by D.R. Adams [1]. Counter-example in the

case 6 > — was constructed in J.A. Hempel, G.I. Morris & N.S. Trudinger [69].

Section 4.6 Theorem 12 is due to S.L. Sobolev [131], [132], [133]. The
statement of Remark 33 was established by V.I. Burenkov & V.A. Gusakov [44].

Section 4.7 Theorem 13 for p > 1 was proved by S.L. Sobolev [131], [132],
for p =1 — by E. Gagliardo [61]. The case in which p = 1 and in (4.149) g, is
replaced by ¢ < ¢. was also considered in [131], [132], [133] (see Remark 36).
The second proof of Theorem 13 is a modification of the proof given in [61].
For further modifications of this proof see V.I. Burenkov & N.B. Victorova [49].

The statement of Remark 38 was proved by V.G. Maz’ya [97] and H. Federer
& W.H. Fleming [58] for p = 1, and by E. Rodemich [123], T. Aubin [4] and
G. Talenti [141] for p > 1. (For detailed exposition see [141].) The statement
of Remark 39 was proved by V.I. Burenkov & V.A. Gusakov [45], [46].

The compactness of embedding (4.16), under assumptions (4.169), was
proved by V.I. Kondrashov [78].

Theorem 15 was independently proved by V.I. Yudovic [154], S.L
Pokhozhaev [117] and N.S. Trudinger [146]. The sharp value of ¢54 in (4.170)
for the case of the space W(€), was computed by J. Moser [106].

In Theorems 1213 sufficient conditions on {2 weaker that the cone condi-
tion, and in some cases necessary and sufficient conditions on 2, in terms of
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capacity were obtained by V.G. Maz’ya [97], [98], [99]. The case of degener-
ated open sets (2 is investigated in detail in V.G. Maz’ya & S.V. Poborchii [100].

Chapter 5

Section 5.1 Definition 1 is close to the definition of a trace given in the book
S.M. Nikol’skii [114]. Theorem 1 is similar to Lemma 6.10.1 of that book and
to Theorem 10.10 of the book O.V. Besov, V.P. II'in and S.M. Nikol’skii [16].

Section 5.2 Theorem 2 is an updated version of the theorem proved by
S.L. Sobolev [133], [134].

Section 5.3 The spaces B, (R") = H}(R") were introduced and studied
by S.M. Nikol’skii [110], the spaces Béﬂ(R"), where 1 < 0 < oo, — by O.V.
Besov [7], [8]. Of possible equivalent norms we have chosen, as the main norm,
the norm (5.8), which contains only differences. This definition appeared to be
convenient in the approach which is used in the proofs of the direct and inverse
trace theorems in this book. In this section we prove only those properties of
the spaces BZZ)’Q(R”), which are necessary in order to prove the trace theorems
for Sobolev spaces. Detailed exposition of the theory of the spaces BL’H(R”)
can be found in the books S.M. Nikol’skii [114] (including the case | < 0),
O.V. Besov, V.P. II'in & S.M. Nikol’skii [16] and H. Triebel [143], [144] (for
—00 < 1 < 00,0 <p,0 < o0).

The usefulness of the simple identity (5.12) was pointed out by A. Mar-
choud [95]. The proof of Lemmal is a modification of known proofs. We note
that it works for all 1 < p,# < oo and does not use the density of C{°(R") in
Bl 4(R") for 1 < p,0 < oco.

In the one-dimensional case the proof of the inequality (5.19), based on
an integral representation via differences, is given in [16] (Section 16.1). The
identity (5.16) and the proof of (5.19) are taken from [36].

One can find the proofs of the facts stated in Remarks 5—-8 in [114] and
[16].

Section 5.4 Lemma 10 may be considered as one of possible generalizations
of Hardy’s inequalities (5.13), (5.14). The proof of the direct trace theorem
for Sobolev spaces (the first part of Theorem 3) is based on the identities for
differences (5.31), (5.43) and (5.36) and Lemma 10. In the casel =1, m =n—1
it is due to E. Gagliardo [60]. In the rest of the cases it seems to be new.

Theorem 3 was proved by the efforts of many mathematicians: N. Aron-
szajn [3], V.M. Babi¢ & L.N. Slobodetskii [6], E. Gagliardo [60], O.V.Besov
[7], [8], P.I. Lizorkin [93], S.V. Uspenskii [147], [148], V.A. Solonnikov [137].
The final step was done by O.V. Besov [7], [8]. Theorem 3 was preceeded by a
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similar theorem for the spaces B} (R") established by S.M. Nikol’skif [110].

The trace theorem (5.68) was proved by S.V. Uspenskii [149].

Theorem 5 is due to E. Gagliardo [60]. Nonexistence of a bounded linear
extension operator was proved by J. Peétre [116]. Existence of a bounded linear
extension operator 1" : Li(R™) — By';™(R"), where 6 > 1, was established in
V.I. Burenkov & M.L. Gol’dman [41].

The extension operators constructed in the proofs of Theorems 4, 6 and Re-
mark 15 in the case of Sobolev spaces WZI, (R™) are the best possible (see Remark
16). In the case of Nikol’skil Besov spaces B, (R") the best possible extension
operators were constructed by L.D. Kudryavtsev [83], Ya.S. Bugrov [19] and
S.V. Uspenskii [149].

Section 5.5 Detailed exposition of the trace theorem in the case of smooth
m-dimentional manifolds, where m < n — 1, is given in the book O.V. Besov,
V.P. II'in & S.M. Nikol’skii [16] (Chapter 5). The trace theorem in the case of
Lipschitz (n—1)-dimentional manifolds was proved by O.V. Besov [11], [12] (see
also [16], Section 20). In more general case of the so-called d-sets, 0 < d < n
the trace is studied in the book A. Jonsson & H. Wallin [75].

Chapter 6

Section 6.1 The idea of defining an extension operator by (6.6) is due to
M.P. Hestenes [70]. Estimate (6.4) can be found in V.I. Burenkov & A.L. Gor-
bunov [43]. Lemmas 5—6 are proved by V.I. Burenkov & G.A. Kalyabin [47].
Inequality (6.25) is taken from V.I. Burenkov A.L. Gorbunov [42], [43]. For
b—a =1 Theorem 1 is formulated in V.I. Burenkov [31], in the general case it
is proved in V.I. Burenkov & A.L. Gorbunov [43].

Section 6.3 Theorem 2 is proved independently by V.M. Babic¢ [5] and
S.M. Nikol’skii [111].

Section 6.4 If 1 < p < oo, then the existence of an extension operator
(6.100) for Lipschitz boundaries was proved by A.P. Calderén [52]. His ex-
tension operator makes use of an integral representation of functions. (In the
simplest case this possibility was discussed in Remark 2 of Chapter 3.) To
prove (6.100) L,-estimates of singular integrals are used, which is possible only
if 1 <p<oo.

For 1 < p < oo the existence of an extension operator (6.100) is proved
by E.M. Stein [138]. The idea of his method is discussed in Remark 17. The
construction used in [138], which is independent of the soomthness exponent [,
is given in footnote 10. Another construction of an extension operator of such
type is given by V.S. Rychkov [124]. In the case of the halfspace the existence
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of an extension operator 7', independent of | and satisfying (4.100) for every
[ € Ny, follows from earlier papers by B.S. Mityagin [103] and R.T. Seeley [125].

The best possible extension operator, satisfying inequality (6.101), is con-
structed by the author [25], [26]. It satisfies also (6.106). Further generaliza-
tions of the methods and results of Section 6.4 for anisotropic Sobolev spaces
are given in V.I. Burenkov & B.L. Fain [39], [40].

There is an alternative way of constructing the best possible extension op-
erator. One may start from an arbitrary extension operator 7' (6.100) and
improve it by applying the linear mollifier Es with variable step of Chapter 2,
constructed for “Q, i.e., by considering the extension operator defined by EsT
on ‘Q. See V.I. Burenkov & E.M. Popova [48] and E.M. Popova [119].

For open sets €2 with a Lipschitz boundary the multidimensional analogue
of Theorem 1 is proved in V.I. Burenkov & A.L. Gorbunov [42], [43].

The problem of extension with preservation of Sobolev semi-norm || - [, (@)
is considered in [27], [28].

The condition 0€2 € Lip1 in Theorem 3 is essential, as Example 1 shows,
but it is not necessary. For a wider class of open sets satisfying the so-called
e — ¢ condition the existence of an extension operator (6.100) was proved for
[ =1,n = 2by V.M. Gol’dshtein [65] and in the general case by P.W. Jones [74].

We emphasize that the important problem of finding necessary and sufficient
conditions on {2 for the existence of an extension operator (6.100) is still open.
Answers are known only in some particular cases. If ) is a siply connected
domain, then for [ = 1,n =2,p = 2 in S.K. Vodop’yanov, V.M. Gol’dshtein &
T.G. Latfullin [151] and V.M. Gol’dshtein & S.K. Vodop’yanov [65] it is proved
that the ¢ — § condition is necessary and sufficient. In the case [ € N,n = 2
and p = oo necessary and sufficient conditions for simply connected domains
are found by V.N. Konovalov [80], [81].

The existence of an extension operator (6.107) is proved by the au-
thor [25], [26]. The fact that for bounded open sets € with continuous bound-
aries the extension by zero from € to R" satisfies (6.108) for some A(+) is proved
in V.I. Burenkov [32].

Another types of extensions with deterioration of the class in the case 0f2 €
Lip~y into W/(R") where ¢ < p and into a weighted space W ,(R")) were
obtained by B.L. Fain [57], V.G. Maz'ya & S.V. Poborchii [100].

Finally, we note that the idea of constructing extension operators with the
help of appropriate partitions of unity, which is used in [25], [26], [39], [40], [74]
and in Section 6.4, goes back to H. Whitney [153].
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