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PREFACE
In	 the	current	era	of	evidence-based	medicine,	with	an	abundance	of	published
information	 and	 a	 clear	 need	 for	 relevant	 applied	 clinical	 research,	 clinical
epidemiology	is	increasingly	being	recognized	as	an	important	tool	in	the	critical
appraisal	of	available	evidence	and	the	design	of	new	studies.
This	 text	 is	 intended	 for	 those	 who	 are	 currently	 practicing	 medicine	 and

related	 disciplines	 (such	 as	 pharmacy,	 health	 sciences,	 nursing	 sciences,
veterinary	medicine,	and	dentistry)	as	well	as	 those	 involved	 in	 the	design	and
conduct	 of	 applied	 clinical	 research.	 Apart	 from	 these	 “users,”	 “doers”	 of
applied	 clinical	 research,	 notably	 undergraduate	 students	 and	 PhD	 fellows	 in
medicine	and	related	disciplines,	will	also	benefit	from	the	information	provided.
Clinical	epidemiology	instructors	will	find	the	text	to	be	a	valuable	resource	for
their	classes.
The	purpose	of	the	text	is	to	teach	both	the	“users”	and	“doers”	of	quantitative

clinical	 research.	 Principles	 and	methods	 of	 clinical	 epidemiology	 are	 used	 to
obtain	quantitative	evidence	on	diagnosis,	etiology,	and	prognosis	of	disease	and
on	 the	 effects	 of	 interventions.	 The	 content	 of	 this	 text	 reflects	 our	 teaching
experience	 on	 the	 methodology	 of	 applied	 clinical	 research	 over	 the	 last	 25
years.	 It	 was	 the	 ever-advancing	 development	 of	 clinical	 epidemiologic
methodology,	 the	 increasing	 discrepancies	 between	 our	 teaching	 material	 and
existing	 textbooks	 of	 epidemiology,	 and	 the	many	 requests	 from	 students	 and
practicing	 physicians	 for	 a	 concise	 text	 reflecting	 our	 courses	 that	 fueled	 our
decision	to	prepare	this	novel	text.
We	hope	that	our	text	will	contribute	to	a	better	understanding	of	the	strengths

of	 clinical	 epidemiology	 as	 well	 as	 help	 both	 researchers	 and	 users	 of
quantitative	clinical	research	in	their	endeavors	to	further	improve	patient	care	in
daily	clinical	practice.
This	 edition	 has	 been	 revised	 and	 updated	 extensively.	 In	 doing	 so	 we

benefited	 enormously	 from	 the	 comments	 given	 to	 us	 by	 many	 readers,
specifically	 the	PhD	fellows	and	staff	members	at	 the	Julius	Center	 for	Health
Sciences	 and	 Primary	 Care,	 University	 Medical	 Center	 Utrecht,	 and	 in	 the
Department	of	Epidemiology,	Radboud	University	Medical	Center	Nijmegen.



As	more	than	three	thousand	copies	of	the	first	edition	and	reprints	have	found
their	 way	 to	 readers	 across	 the	 globe,	 we	 are	 confident	 that	 this	 text	 is	 well
appreciated	by	all	those	engaged	in	clinical	epidemiologic	research	or	using	the
results	 of	 such	 studies	 in	 clinical	 practice.	We	 hope	 this	 new	 edition	 will	 be
similarly	 appreciated	 and	 welcome	 any	 comments	 or	 suggestions	 for	 further
improvement.

Diederick	E.	Grobbee	and	Arno	W.	Hoes



FOREWORD
Clinicians	 often	 think	 of	 epidemiology	 as	 distinct	 from	 clinical	 research.	As	 a
consequence,	 epidemiologic	 methods,	 disease	 causation,	 and	 preventive
medicine,	 as	well	 as	 strategic	public	health	 issues,	have	been	 taught	 chiefly	 in
epidemiology	 departments	 and	 at	 schools	 of	 public	 health.	 Many	 of	 these
institutions,	 however,	 have	 become	 too	 isolated	 from	 the	 practice	 of	medicine
and	 the	conduct	of	clinical	 research.	And	both	camps—epidemiologic	 research
and	 clinical	 research—have	 suffered	 from	 this	mutual	 isolation.	 Epidemiology
would	be	fertilized	by	close	interaction	with	clinical	medicine,	while	offering	a
powerful	toolbox	derived	from	advanced	methodologic	developments	to	clinical
researchers.	 Epidemiologic	 principles	 and	 methods	 are	 not	 only	 integral	 to
public	 health,	 but	 also	 highly	 relevant	 to	 clinical	 research.	 However,	 this
fundamental	 fact	 is	 still	 not	 adequately	 appreciated	 by	 many	 clinical
investigators.
Could	epidemiologic	methods	and	clinical	epidemiology	indeed	revolutionize

clinical	research?	Would	methodologic	rigor,	adequate	sample	size,	and	skilled
statistical	 analyses	 allow	 more	 rapid	 progress	 and	 quicker	 implementation	 of
important	discoveries?	This	bold	and	perhaps	naïve	idea	came	to	my	mind	some
30	 years	 ago	 and	my	 initial	 hunch	 that	 it	 is	 true	 has	 grown	 ever	 since.	 Still	 a
practicing	 surgeon	 at	 the	 time,	my	 own	 research	 forced	 and	 encouraged	 some
familiarity	with	the	fundamental	principles	of	epidemiology.	And	this	familiarity
truly	changed	my	perspective	on	my	professional	performance	 in	 the	operating
room,	 clinical	 ward,	 outpatient	 departments,	 emergency	 units,	 and	 in	 the
classroom	where	I	lectured	to	medical	students.
Foremost,	 my	 slowly	 growing	 familiarity	 with	 epidemiologic	 methodology

helped	me	understand	the	fundamental	prerequisites	for	causal	inference—after
all,	 a	 successful	 treatment	 is	 little	more	 than	 a	 cause	of	 a	 good	outcome.	This
insight	made	me	increasingly	uncertain	about	the	real	benefit	of	our	therapeutic,
chiefly	 surgical,	 interventions	 and	 the	 performance	 of	 our	 diagnostic
technologies.	This	was	a	 time	when	hip	 replacement,	coronary	bypass	surgery,
breast-conserving	 surgery,	 laparoscopic	 cholecystectomy,	 kidney
transplantation,	 vascular	 reconstruction,	 and	 radical	 prostatectomy	 (just	 to



mention	 a	 few	 examples)	 transformed	 our	work	 in	 the	 operating	 room—often
without	 the	 support	 of	 benefit	 of	 new	 technologies	 from	 randomized	 trials.	At
the	 same	 time,	 computerized	 tomography,	 ultrasound,	 PET	 scans,	 and,
subsequently,	magnetic	resonance	revolutionized	our	ability	to	visualize	organs
and	assess	bodily	functions.	Today,	the	flow	of	novel	therapeutic	and	diagnostic
techniques	is	even	more	intense.
As	 a	 practitioner,	 I	 navigated	 through	 these	 years	 with	 two	 competing

feelings.	One	was	a	growing	frustration	with	how	haphazardly	clinical	methods
were	 used	 and	 combined;	 that	 novel	 surgical	 procedures—unlike	 the	 strictly
regulated	approval	of	new	drugs—could	be	introduced	overnight,	often	with	no
strategy	 to	quantify	 risks	versus	benefits.	As	a	 corollary,	decisions	 influencing
the	 life	 and	health	of	our	patients	were	based	on	 little	 scientific	 evidence.	But
another	 feeling	 grew	 too—a	 fascination	 with	 epidemiologic	 theory	 and
methodology	 as	 directly	 relevant	 to	 advancing	 the	 evidence	 base	 for	 clinical
practice.	After	17	years,	I	 left	 the	operating	room	peacefully,	permanently,	and
with	no	subsequent	regret	to	become	a	full-time	epidemiologist.
Persuading	 clinicians	 that	 methods	 of	 extraordinary	 relevance	 for	 their

research	are	 readily	available	 in	 the	epidemiologic	 toolbox	can	be	challenging.
But	 it	 is	 trickier	still	 to	provide	an	accessible	 text	 that	helps	 them	see	 the	 light
and	the	opportunities.	It	is	in	this	context	that	Clinical	Epidemiology:	Principles,
Methods,	and	Applications	for	Clinical	Research,	Second	Edition	becomes	such
a	tremendously	useful	addition	to	the	existing	literature.	I	wish	that	this	text	had
been	available	 to	me	30	years	ago.	 I	 congratulate	all	 those	younger	colleagues
who	now	receive	a	firm	and	stable	helping	hand	in	their	necessary	endeavor	to
study	a	wide	variety	of	 clinical	phenomena	 in	human	populations.	And	 I	hope
that	the	text	will	also	be	read	by	the	growing	number	of	practitioners	who	need
to	understand	the	sophisticated	methods	used	in	cutting-edge	clinical	research.

Hans-Olov	Adami

Hans-Olov	Adami,	MD,	PhD,	is	Adjunct	Professor	of	Epidemiology	and	former
Chairman	of	 the	Department	of	Epidemiology	at	 the	Harvard	School	of	Public
Health,	Associate	Director	of	Populations	Sciences	at	the	Dana	Farber/Harvard
Cancer	 Center,	 and	 Professor	 Emeritus	 of	 Cancer	 Epidemiology	 at	 the
Karolinska	Institute,	Stockholm,	Sweden.



THE	JULIUS	CENTER
The	 Julius	 Center	 for	 Health	 Sciences	 and	 Primary	 Care
(http://www.juliuscenter.nl)	 was	 established	 at	 the	 University	 Medical	 Center
Utrecht	in	December	1996.	The	Julius	Center	was	built	upon	previously	existing
small	 departments	 of	 epidemiology,	 public	 health,	 and	 clinical	 epidemiology,
and	 was	 subsequently	 expanded	 to	 include	 primary	 care,	 biostatistics,	 and
medical	humanities.
The	 name	 was	 chosen	 to	 serve	 as	 a	 symbol	 for	 innovative	 health	 sciences

rather	 than	 to	 specify	 the	 disciplines	 assembled	 in	 the	 center.	Hendrik	Willem
Julius	 (1901–1971)	was	 a	 professor	 of	 health	 sciences	 and	 hygiene	 at	Utrecht
University	during	the	first	half	of	the	20th	century	and	an	early	advocate	of	the
clinical	trial.	Julius	was	not	affiliated	with	the	center,	but	we	are	honored	to	use
his	name	with	the	consent	of	his	children	and	grandchildren.
Since	its	start,	 the	Julius	Center	has	continuously	grown	in	its	main	domains

of	 research,	 education,	 and	 patient	 care.	 A	 few	 principles	 have	 guided	 the
decisions	 that	 shaped	 the	 center.	 One	 is	 that	 epidemiology	 is	 a	 basic	medical
discipline.	 This	 is	 reflected	 in	 the	 research	 agenda	 of	 the	 center	 and	 the
background	of	 its	 staff,	who	 comprise	 a	 fair	 number	 of	 physicians	working	 in
productive	 harmony	 with	 epidemiologists	 from	 many	 other	 biomedical
backgrounds.	 A	 second	 principle	 is	 the	 view	 that	 clinical	 epidemiology
flourishes	 best	 in	 close	 approximation	 and	 interaction	 with	 clinical	 medicine.
Consequently,	 the	 center	 is	 located	 in	 a	 hospital	 environment	 and	 provides
clinical	care	in	primary	healthcare	centers	within	a	large,	newly	built	area	of	the
city	of	Utrecht,	while	joint	appointments	of	staff	further	support	the	continuous
interaction	with	other	clinical	departments.	Finally,	a	leading	principle	is	that	the
quality	 of	 research	 by	 junior	 fellows	 as	 well	 as	 by	 experienced	 staff	 is
determined	 by	 the	 level	 of	 understanding	 of	 the	 principles	 and	 methods	 of
epidemiology.	To	achieve	this	goal,	good	education	is	essential.
When	the	center	had	just	opened	and	was	still	small	in	size,	we	began	with	the

development	 of	 a	 common	 theoretical	 basis	 through	 teaching	 each	 other,
harmonizing,	and	updating	our	views	along	the	way.	This	has	formed	the	basis
for	the	current	epidemiologic	curriculum	in	Utrecht,	including	the	content	of	the

http://www.juliuscenter.nl


international	 Master	 of	 Science	 in	 Epidemiology	 program	 offered	 at	 Utrecht
University	 (http://www.mscepidemiology.eu)	 and	 of	 our	 teaching	 of	 clinical
epidemiology	 to	medical	 students,	 clinicians,	 and	 other	 health	 professionals	 in
the	Netherlands	and	abroad.
We	believe	 that	 a	 common	and	consistent	 set	of	principles	 and	methods	are

the	strongest	assets	of	epidemiology	and	the	true	value	clinical	epidemiology	has
to	offer	to	today’s	applied	clinical	research.
Much	of	 the	 content	 of	 this	 text	 reflects	 our	 teaching	 to	numerous	 students.

We	 and	 our	 staff	 continue	 to	 provide	 courses	 on	 a	 wide	 range	 of	 topics	 in
epidemiology	 and	 health	 sciences.	 Online	 versions	 of	 these	 courses	 may	 be
found	 at	 Elevate	 (www.elevatehealth.eu),	 an	 academic	 educational	 e-learning
platform.

http://www.mscepidemiology.eu
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QUICK	START
Throughout	this	text,	we	explore	the	challenges	clinicians	face	in	daily	practice
and	 the	 quantitative	 knowledge	 required	 to	 practice	 medicine.	 To	 serve	 both
readers	who	mainly	use	 clinical	 research	 findings	 as	well	 as	 (inexperienced	or
more	advanced)	clinical	researchers,	the	text	is	divided	into	three	parts.
Part	One	(Overview)	provides	an	introduction	to	the	principles	and	theoretical

background	 of	 clinical	 epidemiologic	 research	 and	 its	 interplay	 with	 clinical
practice.	In	Part	Two	(Principles	of	Clinical	Research),	 the	four	major	 types	of
clinical	 research	 (diagnostic	 research,	 etiologic	 research,	 prognostic	 research,
and	 intervention	 research)	 are	 discussed	 in	 much	 more	 detail.	 In	 Part	 Three
(Tools	for	Clinical	Research),	several	methods	that	are	often	applied	in	clinical
research	 are	 presented	 to	 assist	 the	 reader	 in	 the	 design,	 conduct,	 and
understanding	of	specific	studies.
The	text	starts	with	a	theoretical	and	philosophical	overview	of	the	origins	and

nature	of	clinical	epidemiology	(Chapter	1).	You	may	wish	to	read	that	at	a	later
stage	if	your	immediate	interest	is	a	specific	type	of	research	question	or	study.
The	 second	part	 of	 the	 text	 emphasizes	 the	design	of	 clinical	 research,	with

major	emphasis	on	the	type	of	research	question	and	theoretical	design.	In	each
of	 the	chapters	we	gave	ample	attention	 to	phrasing	 the	research	question.	The
question	 should	 be	 clear,	 unequivocal,	 and	 relevant	 in	 view	 of	 the	 clinical
problem.	Clinically	 relevant	 research	 questions	 are	 categorized	with	 a	 view	 to
the	four	types	of	challenges	clinicians	are	faced	with	in	daily	practice	and	in	the
hierarchical	 order	 in	 which	 they	 occur	 naturally:	 (1)	 diagnostic	 questions,
dealing	 with	 the	 challenge	 of	 efficiently	 setting	 the	 diagnosis	 underlying	 the
patient’s	signs	and	symptoms	(Chapter	2);	(2)	etiologic	questions,	dealing	with
the	challenge	of	determining	the	cause(s)	of	disease	(Chapter	3);	(3)	prognostic
questions,	dealing	with	the	challenge	of	efficiently	predicting	the	natural	history
of	disease	in	a	patient,	answering	the	question:	“What	would	happen	if	I	do	not
intervene?”	(Chapter	4);	and	(4)	questions	about	the	beneficial	(“intended”)	and
adverse	 (“unintended”)	 effects	 of	 interventions	 on	 the	 course	 of	 a	 disease,
dealing	with	the	challenge	of	determining	the	effects	of	a	particular	therapy	on	a
patient’s	prognosis	(Chapters	5	and	6).	We	find	this	distinction	between	the	four



clinical	 domains	 very	 useful,	 both	 in	 our	 teaching	of	 evidence-based	medicine
and	clinical	epidemiology	and	 in	our	clinical	 research	activities.	This	approach
can	be	summarized	as	 the	DEPTh	model,	where	D	 stands	 for	Diagnosis,	E	 for
Etiology,	P	for	Prognosis,	and	Th	for	Therapy	(or	intervention).
A	clinically	relevant	research	question,	stemming	from	a	problem	encountered

in	 clinical	 practice	 in	 one	 of	 the	 4	 DEPTh	 areas,	 is	 leading	 in	 the	 research
design.	The	design	of	a	study	should	always	start	with	the	theoretical	design.	By
theoretical	 design	 we	 mean	 the	 formulation	 of	 the	 occurrence	 relation	 as	 it
follows	from	the	research	question	and	 the	subsequent	conceptual	definition	of
outcome,	determinants,	and	possible	extraneous	determinants	 (confounders).	 In
the	 theoretical	 design,	 a	 distinction	 is	 made	 between	 research	 that	 addresses
causality	 (etiologic	 research),	 and	 descriptive	 research	 that	 does	 not	 address
causality	(diagnostic	and	prognostic	research).	Research	on	the	benefits	and	risks
of	 interventions	 is	discussed	as	 a	 separate	 case	because	 it	 primarily	deals	with
causality	but	also	has	noncausal	aspects.
We	 find	 the	 distinction	 between	 causal	 and	 descriptive	 research	 extremely

useful	 to	arrive	at	 the	best	 results	of	a	 study.	We	 realize	 that	 these	 terms	have
also	been	used	with	different	meanings.	In	our	use	of	the	terms,	causal	research
is	 research	 in	 which	 a	 causal	 question	 is	 addressed.	 Descriptive	 research	 is
research	where	causality	is	not	important,	such	as	in	diagnostic	studies	where	the
value	 of	 laboratory	 measurements	 to	 set	 a	 diagnosis	 is	 studied.	 While,	 for
example,	high	blood	glucose	identifies	a	patient	with	diabetes,	elevated	glucose
is	 a	 consequence	and	not	 a	 cause	of	 the	disease.	Consequently,	 the	 research	 is
descriptive	and	not	causal.	We	do	not	claim	that	our	use	of	terminology	is	right.
We	do	believe,	however,	that	our	use	of	terminology	provides	a	model	that	will
help	 readers	 better	 understand	 the	 principles	 of	 research.	 Our	 terminology
provides	the	reader	with	a	consistent	and	robust	framework	to	design,	interpret,
and	apply	clinical	research.
The	third	part	of	the	text	is	really	about	the	practicalities	of	empirical	clinical

research.	 Data	 can	 be	 collected	 (Chapter	 7)	 and	 analyzed	 (Chapter	 12)	 in	 a
number	 of	 ways.	 Chapters	 on	 cohort	 studies	 (Chapter	 8),	 case-control	 studies
(Chapter	9),	clinical	trials	(Chapter	10),	and	meta-analyses	(Chapter	11)	should
prepare	the	reader	to	be	involved	in	setting	up	and	carrying	out	applied	clinical
research	 with	 confidence	 and	 will	 help	 the	 reader	 in	 critically	 appraising	 the
work	 of	 other	 researchers.	 In	 each	 chapter,	 the	 principles	 of	 the	 design	 are
discussed	as	well	as	operational	aspects.	Worked-out	examples	should	help	 the
reader	 to	 understand	 how	 the	 research	 is	 actually	 conducted,	 analyzed,	 and



interpreted.
In	the	text	we	have	tried	to	be	as	consistent	as	possible	in	using	epidemiologic

terminology.	 There	 are	 different	 schools	 of	 thought	 and	 views	 on	 common
epidemiologic	 terms.	 Some	will	 call	 case-control	 studies	 retrospective	 studies,
but	we	argue	that	in	both	cohort	and	case-control	studies	the	outlook	is	typically
longitudinal	and	in	both	types	of	studies	data	can	be	collected	retrospectively.	In
general,	we	explain	why	we	prefer	certain	terms.	For	example,	we	use	the	term
extraneous	 determinant	 when	 speaking	 about	 a	 confounder	 because	 it
immediately	 tells	 us	 that	 the	 determinant	 is	 extraneous	 to	 the	 occurrence
relationship	 of	 interest.	 The	 text	 is	 essentially	 self-contained.	 Extensive
knowledge	 on	 epidemiology	 or	 statistics	 is	 not	 needed	 to	 benefit	 from	 its
contents.	References	are	given	to	more	detailed	and	advanced	texts.
This	can	be	viewed	as	a	comprehensive	text	covering	everything	you	always

wanted	to	know	about	clinical	epidemiologic	research.	Alternatively,	the	reader
can	 immediately	 zoom	 in	 on	 a	 topic	 that	 has	 acute	 relevance	 in	 view	 of	 the
research	he	or	she	is	engaged	in.	The	chapter	titles	clearly	indicate	the	content	of
the	chapters	and	the	extensive	index	at	the	end	of	the	text	should	enable	a	reader
to	quickly	find	a	topic	or	method	of	interest.	We	had	several	types	of	readers	in
mind	when	writing	 the	 text:	 students	working	on	 their	master’s	or	PhD	degree
should	learn	 the	background	methodology	for	 the	studies	 they	conduct,	 readers
of	research	papers	should	be	able	to	distinguish	between	studies	that	are	relevant
and	 valid	 and	 those	 that	 are	 flawed,	 and	 clinicians	 will	 find	 tools	 to	 assess
whether	 certain	 findings	 from	clinical	 research	 are	 applicable	 to	 their	 patients.
Seasoned	 investigators	 should	 find	 food	 for	 thought	 and	 feel	 challenged	 to
further	 refine	 their	 research	 approach.	We	 are	 always	 eager	 to	 receive	 critical
comments	and	suggestions	for	improvement	that	will	help	to	further	sharpen	our
thinking	about	clinical	research.
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Overview



Chapter	1



Introduction	to	Clinical	Epidemiology

INTRODUCTION
Epidemiology	is	essentially	occurrence	research	[Miettinen,	1985].	The	object	of
epidemiologic	research	is	 to	study	the	occurrence	of	 illness	and	its	relationship
to	determinants.	Epidemiologic	 research	deals	with	a	wide	variety	of	 topics.	A
few	 examples	 include	 the	 causal	 role	 of	 measles	 virus	 infection	 in	 the
development	 of	 inflammatory	 bowel	 disease	 in	 children,	 the	 added	 value	 of	 a
novel	B-type	 natriuretic	 peptide	 serum	bedside	 test	 in	 patients	 presenting	with
symptoms	suggestive	of	heart	failure,	the	prognostic	implications	of	the	severity
of	bacterial	meningitis	on	future	school	performance,	and	the	effect	of	antibiotics
in	children	with	acute	otitis	media	on	the	duration	of	complaints.	What	binds	all
of	 these	 examples	 is	 the	 study	 and,	 more	 precisely,	 the	 quantification	 of	 the
relationship	 of	 the	 determinants	 (in	 these	 cases,	 measles	 infection,	 the	 novel
bedside	test,	the	severity	of	bacterial	meningitis,	and	antibiotic	therapy)	with	the
occurrence	 of	 an	 illness	 or	 other	 clinically	 relevant	 outcome	 (that	 is,
inflammatory	bowel	disease,	heart	 failure,	school	performance,	and	duration	of
otitis	media	complaints).	Central	to	epidemiologic	studies	in	such	diverse	fields
is	the	emphasis	on	occurrence	relations	as	objects	of	research.
The	origins	of	epidemiology	lie	in	unraveling	the	causes	of	infectious	disease

epidemics	and	the	emergence	of	public	health	as	an	empirical	discipline.	Every
student	of	epidemiology	will	enjoy	reading	the	pioneer	works	of	John	Snow	on
the	mode	of	 the	 transmission	of	cholera	 in	19th	century	London,	 including	 the
famous	 words:	 “In	 consequence	 of	 what	 I	 said,	 the	 handle	 of	 the	 pump	 was
removed	 on	 the	 following	 day”	 [Snow,	 1855].	 Subsequently,	 the	 methods	 of



epidemiology	 were	 successfully	 applied	 to	 identifying	 causes	 of	 chronic
diseases,	 such	 as	 cardiovascular	 disease	 and	 cancer,	 and	 now	 encompass
virtually	all	fields	of	medicine.
In	 recent	 decades,	 it	 has	 increasingly	been	 acknowledged	 that	 the	principles

and	 methods	 of	 epidemiology	 may	 be	 fruitfully	 employed	 in	 applied	 clinical
research.	In	parallel	with	a	growing	emphasis	in	medicine	on	using	quantitative
evidence	 to	guide	patient	 care	 and	 to	 judge	 its	performance,	 epidemiology	has
become	 one	 of	 the	 fundamental	 disciplines	 for	 patient-oriented	 research	 and	 a
cornerstone	 for	 evidence-based	 medicine.	 Clinical	 epidemiology	 deals	 with
questions	 relevant	 to	 clinical	 practice:	 questions	 about	 diagnosis,	 causes,
prognosis,	 and	 treatment	 of	 disease.	 To	 serve	 clinical	 practice	 best,	 research
should	 be	 relevant	 (i.e.,	 deal	 with	 problems	 encountered	 in	 clinical	 practice),
valid	(i.e.,	the	results	are	true	and,	thus,	not	biased),	and	precise	(i.e.,	the	results
lie	within	a	limited	range	of	uncertainty).	(See	Box	1–1.)	These	prerequisites	are
crucial	 for	 research	 results	 eventually	 to	 be	 applied	 with	 confidence	 in	 daily
practice.

CLINICAL	EPIDEMIOLOGY
Clinical	 epidemiology	 is	 epidemiology	 [Grobbee	 &	 Miettinen,	 1995].	 It	 is	 a
descriptive	 label	 that	 denotes	 the	 application	 of	 epidemiologic	 methods	 to
questions	 relevant	 to	 patient	 care.	 Then	 why	 use	 a	 different	 term?	 Clinical
epidemiology	does	not	indicate	a	different	discipline	or	refer	to	specific	aspects
of	epidemiologic	research,	such	as	research	on	iatrogenic	disease.	Traditionally,
practitioners	of	epidemiology	predominantly	have	been	found	in	public	health	or
community	medicine,	which	can	be	well	understood	from	the	perspective	of	its
history.	Epidemiologic	research	results	have	unique	value	in	shaping	preventive
medicine	as	well	as	in	the	search	for	causes	of	infectious	and	chronic	disease	that
affect	 large	 numbers	 of	 people	 in	 our	 societies.	 Yet,	 with	 the	 growing
recognition	of	 the	 importance	of	probabilistic	 inference	 in	matters	of	diagnosis
and	 treatment	 of	 individual	 patients,	 an	 obvious	 interest	 has	 grown	 in	 the
approaches	epidemiologic	research	has	to	offer	in	clinical	medicine.	Use	of	the
term	clinical	epidemiology	 therefore	refers	to	its	relevance	in	“applied”	clinical
science;	conversely	it	helps	to	remind	us	that	the	priority	in	the	clinical	research
agenda	must	be	set	with	a	keen	appreciation	of	what	is	relevant	for	patient	care.
Clinical	epidemiology	provides	a	highly	useful	set	of	principles	and	methods	for



the	design	and	conduct	of	quantitative	clinical	research.
Traditionally,	 epidemiologic	 research	 has	 largely	 been	 devoted	 to	 etiologic

research.	 Investigators	 have	 built	 careers	 and	 departments’	 reputations	 on
epidemiologic	 research	 into	 the	 causes	of	 infectious	or	 chronic	diseases,	while
for	patient	care	the	ability	to	establish	an	individual’s	diagnosis	and	prognosis	is
commonly	held	to	be	of	greater	importance.	Still,	the	work	of	most	master’s	and
doctoral	 fellows	 in	 epidemiology,	 in	 particular	 those	 working	 outside	 of	 a
medical	 environment,	 is	 concentrated	 on	 etiology.	 Perhaps	 they	 do	 not	 realize
that	this	focus	actually	restricts	the	value	of	epidemiologic	research	for	medical
care.

BOX	1–1	Valid	and	Precise

valid
Main	Entry:	val	·	id
Pronunciation:	'va-l d
Function:	adjective
Etymology:	Middle	French	or	Medieval	Latin;	Middle	French	valide,	from
Medieval	Latin	validus,	from	Latin,	strong,	potent,	from	ValEre
1	:	having	legal	efficacy	or	force;	especially	:	executed	with	the	proper	legal	authority	and	formalities
<a	valid	contract>
2a	:	well-grounded	or	justifiable	:	being	at	once	relevant	and	meaningful	<a	valid	theory>	b	:	logically
correct	<a	valid	argument>	<valid	inference>
3	:	appropriate	to	the	end	in	view	:	effective	<every	craft	has	its	own	valid	methods>
4	of	a	taxon	:	conforming	to	accepted	principles	of	sound	biological	classification

precise
Main	Entry:	pre-cise
Pronunciation:	pri-'sīs
Function:	adjective
Etymology:	Middle	English,	from	Middle	French	precis,	from	Latin	praecisus,	past	participate	of
praecidere	to	cut	off,	from	prae-	+	caedere	to	cut
1	:	exactly	or	sharply	defined	or	stated
2	:	minutely	exact
3	:	strictly	conforming	to	a	pattern,	standard,	or	convention
4	:	distinguished	from	every	other	<at	just	that	precise	moment>

Adapted	from	the	Merriam-Webster	online	dictionary,	©	2013	by	Merriam-Webster,	Incorporated
(http://www.merriam-webster.com/dictionary/valid	and	http://www.merriam-
webster.com/dictionary/precise.	Accessed	July	2,	2013.)

Clearly,	causal	knowledge	is	relevant,	because	it	may	help	to	prevent	disease

http://www.merriam-webster.com/dictionary/valid
http://www.merriam-webster.com/dictionary/precise


and	 find	 new	 treatments.	 In	 clinical	 practice,	 however,	 an	 adequate	 diagnosis,
prediction	 of	 the	 natural	 course	 of	 an	 illness,	 and	 the	 setting	 of	 appropriate
indications	and	contraindications	for	action	are	major	concerns.	These	are	often
established	without	knowledge	of	the	causes	of	the	illness.	If	there	is	a	message
in	clinical	epidemiology	today	that	needs	reinforcement,	it	is	that	more	work	is
needed	in	diagnostic	and	prognostic	research	that,	as	will	be	explained	later,	 is
descriptive	rather	than	causal.

RESEARCH	RELEVANT	TO	PATIENT	CARE
The	motive	in	applied	clinical	research	should	be	to	obtain	knowledge	relevant
to	 clinical	 practice.	 Consequently,	 understanding	 the	 challenges	 in	 clinical
practice	 is	 essential	 for	 understanding	 the	 objectives	 of	 clinical	 research.
Consider	a	patient	consulting	a	physician.	Most	often	the	reason	for	consultation
is	a	complaint	or	symptom	suggestive	of	some	illness.	For	example,	a	60-year-
old	 male	 patient	 with	 problems	 with	 micturition	 is	 referred	 by	 his	 general
practitioner	to	a	urologist.	For	all	subsequent	action,	the	point	of	departure	is	the
patient	profile.	This	patient	profile	has	 two	components:	(1)	 the	clinical	profile
comprising	 (among	 other	 things)	 the	 patient’s	 symptoms,	 signs,	 and	 results	 of
diagnostic	tests;	and	(2)	the	nonclinical	profile	that	includes	characteristics	such
as	age,	gender,	and	socioeconomic	status.	Of	these	two	sets	of	facts,	the	clinical
profile	is	temporary	and	relates	to	the	illness,	whereas	the	nonclinical	profile	is
present	 in	 the	 absence	 of	 illness	 and	 thus	 relates	 directly	 to	 the	 bearer	 of	 the
illness,	 the	 patient.	 The	 two	 sets	 are	 complementary.	 Starting	 from	 the	 patient
profile,	the	physician	faces	a	number	of	challenges.	In	temporal	order	these	are:
(1)	 interpretation	 of	 the	 clinical	 profile,	 (2)	 explanation	 of	 the	 illness,	 (3)
prediction	 of	 the	 course,	 (4)	 decision	 about	 treatment,	 and	 (5)	 execution	 of
treatment.
The	first,	diagnostic,	challenge	is	to	interpret	the	patient	profile	and	establish	a

diagnosis.	The	question	to	be	answered	is:	“What	is	the	most	likely	illness,	given
this	 patient’s	 profile?”	 In	 this	 process,	 the	 doctor	 identifies	 the	 presence	 of	 a
particular	 illness	 in	 the	 patient.	 Commonly,	 at	 some	 point	 following	 the
diagnosis,	an	explanation	for	the	illness	may	be	requested	(the	second,	etiologic,
challenge).	However,	while	 it	 seems	 obvious	 to	 pose	 the	 etiologic	 question	 of
why	 this	 illness	 has	 occurred	 in	 this	 patient	 at	 this	 time,	 an	 answer	 may	 be
impossible	to	give	and	quite	often	is	not	even	necessary	for	the	patient	to	receive



adequate	care.	For	example,	appendicitis	may	be	effectively	 treated	by	surgery
without	any	understanding	of	the	reasons	for	its	occurrence.	Consequently,	this
step	 is	 often	 skipped	 in	daily	practice.	Prediction	of	 the	 course	of	disease	 (the
third,	 prognostic,	 challenge)	 is	 usually	 a	 much	 more	 important	 task	 for	 the
physician	 than	 a	 full	 understanding	 of	 its	 etiology.	 Certainly,	 the	 predicted
course	is	of	greatest	importance	to	the	patient.	The	question	to	be	answered	here
is	 this:	 “Given	 the	 patient’s	 illness,	 its	 possible	 etiology,	 and	 the	 clinical	 and
nonclinical	profiles	of	the	patient,	what	will	be	the	future	course	of	the	illness	in
this	 patient?”	 The	 prognosis	 comprises	 both	 the	 prediction	 of	 the	 illness’s
course,	 given	 the	diagnosis	 and	other	 patient	 characteristics	 (i.e.,	 the	 predicted
course	 assuming	 no	 intervention	 takes	 place,	 which	 can	 be	 considered	 the
prognostic,	 or	 third,	 challenge),	 as	well	 as	 the	 presumed	 beneficial	 or	 adverse
effects	on	that	course	by	appropriate	 interventions	(which	also	incorporates	 the
fourth,	 therapeutic,	 challenge).	Note	 that	 this	 ideally	 includes	a	comprehensive
prediction,	given	all	 legitimate	clinical	actions	as	well	as	 interventions	 induced
by	 the	 patient	 himself	 [Hilden	 &	 Habbema,	 1987].	 Clearly,	 in	 contemporary
medicine	 the	 expected	 course	 of	 disease	 is	 likely	 to	 depend	 heavily	 on	 the
availability	and	choice	of	treatment.	Once	this	choice	has	been	made	(the	fourth
challenge),	 execution	 of	 treatment	 naturally	 follows	 (the	 fifth	 challenge).	 The
first	four	consecutive	challenges	in	clinical	practice	can	be	summarized	with	the
acronym	DEPTh	(Diagnosis,	Etiology,	Prognosis	and	Therapy/intervention).	The
DEPTh	 model	 is	 not	 only	 useful	 in	 designing	 and	 understanding	 clinical
research,	 but	 also	 in	 recognizing	 clinical	 problems	 in	 daily	 practice	 and
searching	for	the	evidence	to	deal	with	these	(see	Figure	1–1).



FIGURE	1–1	Prognosis.

A	modern	 physician	 is	 a	 scientific	 physician.	 In	 the	 era	 of	 evidence-based
medicine,	a	physician	is	taught	to	base	his	or	her	actions	on	scientific	evidence
and	 to	develop	a	 scientific	 attitude	even	 in	 those	 (alas)	 frequent	 circumstances
where	 data	 are	 lacking,	 incomplete,	 or	 may	 never	 become	 available	 with
sufficient	 precision	 to	 guide	 individual	 patient	 care.	 The	 mission	 for	 clinical
epidemiologic	research	is	to	add	to	the	knowledge	base	from	which	practitioners
of	 medicine	 may	 draw.	 This	 mission	 inherently	 calls	 for	 a	 multidisciplinary
approach	with	epidemiology	providing	a	well-established	complementary	set	of
principles	 and	methods	 to	 the	 general	 knowledge	 base	 and	 practical	 expertise.
For	a	physician	to	meet	the	challenges	of	everyday	patient	care	(see	Table	1–1),
knowledge	 is	 essential:	 diagnostic	 knowledge	 for	 the	 first	 challenge,	 etiologic
knowledge	 for	 the	 second,	 and	 prognostic	 knowledge	 (including	 knowledge
about	the	effects	of	interventions)	for	the	third	and	fourth.	As	in	applied	clinical
research	 in	 general,	 the	 role	 of	 clinical	 epidemiology	 is	 to	 assist	 in	 providing
scientifically	valid	quantitative	knowledge	on	diagnosis,	etiology,	and	prognosis
of	 illnesses,	 including	 the	 effects	 of	 interventions	 on	 their	 course.	 This



inferential,	probabilistic	knowledge	offers	a	rational	basis	for	decision	making	in
patient	 care.	 To	 make	 treatment	 decisions,	 providers	 require	 quantitative
knowledge	about	the	prognosis,	considering	various	treatment	options	combined
with	an	evaluation	of	the	benefits	and	risks	of	these	options	for	a	particular	type
of	patient.	The	practicing	physician	will	 need	 to	 combine	 this	knowledge	with
his	or	her	experience	and	skills,	as	well	as	the	patient’s	point	of	view,	to	arrive	at
a	balanced	decision	on	the	best	treatment	strategy.	These	decisions	also	may	be
formally	 addressed	 in	 algorithms	 that	 are	 the	 domain	 of	 clinical	 decision
analysis.	 In	clinical	decision	analyses,	 results	 from	quantitative	applied	clinical
research	 serve	 as	 the	 input,	 with	 estimates	 of	 patient	 outcomes	 (utilities)	 and
costs	 of	 various	 possible	management	 alternatives	 as	 the	 output.	 Execution	 of
treatments	 (challenge	 5)	 requires	 skill	 and	 falls	 beyond	 the	 scope	 of
epidemiologic	research.

TABLE	1–1	Challenges	of	Daily	Patient	Care

Challenge Question Needs

Interpret	the	clinical	profile:	predict
the	presence	of	the	illness

What	illness	best	explains	the	symptoms	and
signs	of	the	patient?

Diagnostic	knowledge

Explanation	of	the	illness Why	did	this	illness	occur	in	this	patient? Etiologic	knowledge

Predict	the	course	of	disease 1.		What	will	the	future	bring	for	this	patient,
assuming	no	intervention	takes	place?

2.		To	what	extent	may	the	course	of	disease	be
affected	by	treatment?

Prognostic	knowledge	(including
therapeutic	knowledge)

Decision	about	medical	action Which	treatment,	if	any,	should	be	chosen	for
this	particular	patient?

Balancing	benefits	and	risks	of
available	options

Execution	of	medical	action Initiation	of	treatment Skills

	

When	designing	applied	clinical	research,	the	principal	objective	should	be	to
provide	knowledge	that	is	applicable	in	the	practice	of	medicine.	To	achieve	this,
the	 research	 question	 should	 be	 clearly	 formulated	 and	 an	 answer	 should	 be
given	in	a	way	that	it	is	both	valid	and	sufficiently	precise.	First	comes	validity,
the	extent	 to	which	a	 research	 result	 is	 true	and	 free	 from	bias.	Valid	 research
results	must	be	sufficiently	precise	to	allow	adequate	predictions	for	 individual
patients	or	groups	of	 subjects.	For	 example,	 knowing	 that	 the	5-year	mortality
rate	after	a	diagnosis	of	cancer	is	validly	estimated	at	50%	is	one	thing,	but	when
the	 precision	 of	 the	 estimate	 ranges	 between	 5%	 and	 80%,	 the	 utility	 of	 this
knowledge	 is	 limited	 for	 patient	 care.	 The	 design	 of	 studies	 focused	 on
diagnosis,	etiology,	prognosis,	and	treatment	needs	to	meet	these	goals.	General



and	 specific	 design	 characteristics	 of	 clinical	 epidemiologic	 research	 will	 be
discussed	in	some	detail	in	the	next	section.

EPIDEMIOLOGIC	STUDY	DESIGN
Study	design	in	clinical	epidemiology	has	three	components:	(1)	the	theoretical
design,	(2)	the	design	of	data	collection,	and	(3)	the	design	of	data	analysis	(see
Box	 1–2).	 For	 some	 reason,	 many	 discussions	 about	 study	 designs	 seem	 to
concentrate	 largely	on	 issues	of	 data	 collection:	 “Are	we	going	 to	do	 a	 cohort
study	or	a	case-control	study?”	Also,	the	way	the	data	will	be	analyzed	is	often
more	 heavily	 emphasized	 than	 the	 theoretical	 design,	 despite	 the	 latter’s
overriding	importance.

Theoretical	Design
The	theoretical	design	of	a	study	starts	from	a	research	question.	Formulating	the
research	question	is	of	critical	importance	as	it	guides	the	theoretical	design	and
ensures	that,	eventually,	the	study	produces	an	answer	that	fits	the	needs	of	the
investigator.	 Therefore,	 a	 research	 question	 should	 be	 expressed	 as	 a	 question
and	not	as	a	vague	ambition.	All	too	often,	investigators	set	out	to	“examine	the
association	between	X	and	Y.”	This	is	far	from	a	research	question	and	will	not
lead	to	a	clinically	useful	answer.

BOX	1–2	Epidemiologic	Study	Design

	Theoretical	design
Design	of	the	occurrence	relation

	Design	of	data	collection
Design	of	the	conceptual	and	operational	collection	of	data	to	document	the	empirical	occurrence
relationship	in	a	study	population

	Design	of	data	analysis
This	includes	a	description	of	the	data	and	quantitative	estimates	of	associations

	

For	starters,	a	research	question	should	end	with	a	question	mark.	An	example
of	 a	 useful	 research	 question	 is:	 “Does	 5-day	 treatment	 with	 penicillin	 in



children	 with	 acute	 otitis	 media	 reduce	 the	 duration	 of	 complaints?”	 This
research	question	combines	three	crucial	elements:	(1)	one	or	more	determinants
(in	this	case	5-day	treatment	with	penicillin),	(2)	an	outcome	(the	duration	of	the
complaints),	and	(3)	the	domain.	The	domain	refers	to	the	population	(or	set	of
patients)	 to	whom	 the	 results	 can	be	 applied.	The	definition	of	 the	domain	 (in
this	 case,	 children	with	 acute	 otitis	media)	 is	 typically	much	 broader	 than	 the
selection	criteria	 for	 the	patient	population	 included	 in	 the	study	(e.g.,	children
enlisted	 in	 25	 primary	 care	 practices	 located	 in	 the	 central	 region	 of	 the
Netherlands	during	the	year	2000	who	were	diagnosed	with	acute	otitis	media).
Similarly,	 the	 domain	 of	 the	 famous	British	 study	 in	 the	 1940s	 addressing	 the
causal	 role	 of	 cigarette	 smoking	 in	 lung	 cancer	was	man	 and	 not	 restricted	 in
place	or	time.	The	domain	for	a	study	is	like	a	pharmaceutical	package	insert.	It
specifies	the	type	of	patients	to	whom	the	results	can	be	applied.	It	guides	patient
selection	 for	 the	 research,	 but	 this	 selection	 is	 usually	 further	 restricted	 for
practical	or	other	reasons.	When	an	appropriate	research	question	is	formulated,
the	design	of	the	occurrence	relation	is	relatively	easy.
The	 occurrence	 relation	 is	 central	 to	 the	 theoretical	 design	 of	 a	 clinical

epidemiologic	 study.	 The	 occurrence	 relation	 is	 the	 object	 of	 research	 and
relates	one	or	multiple	determinants	to	an	outcome.	In	subsequent	phases	of	the
study,	 the	 “true”	 nature	 and	 strength	 of	 the	 occurrence	 relation	 is	 documented
and	 quantitatively	 estimated	 using	 empirical	 data.	 Occurrence	 relations	 in
diagnostic,	etiologic,	prognostic,	and	 intervention	research	each	have	particular
characteristics,	 but	 all	 have	 a	 major	 impact	 on	 the	 other	 two	 components	 of
epidemiologic	 study	 design:	 design	 of	 data	 collection	 and	 design	 of	 data
analysis.	 To	 facilitate	 the	 theoretical	 design	 of	 a	 study	 and	 determine	 the
(elements	 of	 the)	 occurrence	 relation,	 a	 distinction	 should	 be	 made	 between
descriptive	and	causal	research.

Causal	Versus	Descriptive	Research
By	definition,	causal	research	aims	to	explain	a	relationship	in	etiologic	terms.
This	 is	 the	 case	 in	 typical	 etiologic	 research	 (such	 as	 studies	 on	 the	 causal
association	between	cigarette	smoking	and	lung	cancer	risk)	and	also	in	studies
that	 address	 questions	 of	 treatment	 efficacy	 and	 safety	 (i.e.,	 the	 beneficial	 and
adverse	 effects	 caused	 by	 the	 intervention).	 The	 essence	 of	 causal	 research	 is
that	it	aims	to	explain	the	occurrence	of	an	illness	or	other	outcome.	It	asks	the
question,	“Does	this	factor	actually	cause	this	outcome?”	One	could	imagine	the



researcher	acting	as	a	judge	in	the	courtroom	deciding	whether	the	determinants
(factors	in	the	case)	are	guilty	of	the	crime	(outcome).	If	the	verdict	is	“guilty,”
this	implies	that	the	occurrence	of	the	outcome	could	not	be	explained	by	some
other,	extraneous,	reason.
Extraneous	determinants	are	factors	that	are	not	part	of	the	object	of	research;

they	are	outside	of	the	occurrence	relation,	but	they	may	have	to	be	considered
in	 view	 of	 validity.	 A	 more	 common	 term	 for	 an	 extraneous	 determinant	 is
confounder.	 When	 extraneous	 determinants	 are	 not	 taken	 into	 account,	 the
observed	relationship	between	determinant	and	outcome	may	not	reflect	the	true
relationship.	 The	 observed	 relationship	 can	 be	 said	 to	 be	 confounded	 and	 the
results	of	 the	study	will	be	biased	(i.e.,	 invalid).	Consequently,	 the	relationship
between	 determinant	 and	 outcome	 need	 to	 be	 quantified	 conditional	 on	 the
confounding	factors—the	extraneous	determinants—in	order	for	the	results	to	be
true.	 Confounding	 must	 be	 excluded	 to	 obtain	 a	 valid	 estimate	 of	 the	 causal
relationship	 between	 the	 determinant	 of	 interest	 and	 the	 outcome.	 When,	 for
example,	the	aim	is	to	assess	the	causal	relationship	between	alcohol	intake	and
the	risk	of	lung	cancer,	it	is	evident	that	an	observed	positive	association	may	be
confounded	by	smoking.	Smoking	is	an	extraneous	determinant,	because	alcohol
drinkers	 smoke	 more	 often,	 smoking	 is	 causally	 related	 to	 lung	 cancer,	 and
smoking	is	not	part	of	the	causal	pathway	relating	alcohol	to	lung	cancer	(i.e.,	it
is	extraneous).	A	more	elaborate	discussion	on	confounding	and	ways	to	exclude
it	is	provided	in	Chapters	3	and	6.
In	descriptive	research,	the	aim	is	to	predict	rather	than	explain;	this	includes

diagnostic	 and	 prognostic	 research.	 In	 diagnostic	 research,	 the	 determinants
typically	include	elements	of	the	clinical	profile,	which	are	signs,	symptoms,	and
test	 results,	 with	 the	 outcome	 being	 the	 diagnosis	 of	 the	 disease	 that	 fits	 the
profile.	 In	 prognostic	 research,	 determinants	 similarly	 comprise	 the	 clinical
profile,	 including	 any	 relevant	 diagnostic	 information,	with	 the	 outcome	being
the	prognosis,	for	example,	expressed	by	survival,	cure,	or	recurrence	of	disease.
An	 essential	 difference	 between	 causal	 and	 descriptive	 research	 is	 that	 in

descriptive	research	no	causal	relationship	between	determinant	and	outcome	is
assumed.	 In	 diagnostic	 research,	 determinants	 that	 result	 from	 the	 disease	 are
often	 used	 to	 predict	 its	 presence.	 For	 example,	 to	 establish	 a	 diagnosis	 of
rheumatoid	 arthritis,	 the	 sedimentation	 rate	 may	 be	 useful,	 but	 its	 elevation
clearly	 results	 from	 the	 disease.	 Because	 causal	 explanation	 is	 not	 necessary,
confounding	plays	no	 role	 in	descriptive	 research.	 It	 is	 the	 rule	 rather	 than	 the
exception	 that	 multiple	 determinants	 are	 considered	 at	 the	 same	 time	 in



descriptive	 research.	 Yet,	 none	 of	 these	 determinants	 is	 extraneous	 to	 the
occurrence	 relation.	 All	 determinant	 information	 is	 used	 to	 lead	 to	 the	 best
prediction	of	diagnosis	or	prognosis.

Elements	of	the	Occurrence	Relation
The	 occurrence	 relation	 has	 a	 standard	 set	 of	 elements:	 the	 outcome,	 one	 or
multiple	 determinants	 (D),	 and,	 when	 causality	 is	 studied,	 one	 or	 multiple
extraneous	determinants	(ED)	or	confounders.	The	number	of	determinants	and
the	 need	 to	 include	 extraneous	 factors	 depends	 on	 the	 research	 question	 and
whether	 the	 research	 is	 descriptive	 or	 causal.	 In	 descriptive	 research,	 typically
multiple	 determinants	 are	 studied.	 If	 causal,	 the	 relationship	 between	 a
determinant	 and	 an	 outcome	 must	 be	 quantified	 conditional	 on	 extraneous
determinants.	 That	 is,	 for	 the	 relationship	 to	 be	 truly	 causal,	 it	 needs	 to	 be
present	irrespective	of	the	presence	or	absence	of	confounding	variables.
The	 relationship	 between	 outcome	 and	 determinants	 is	 quantified	 by	 some
mathematical	 function	 (f).	 Mathematically,	 the	 occurrence	 relation	 can	 be
summarized	as	follows:

Outcome	=	f	(D	|	ED)	for	causal	occurrence	relations	and
Outcome	=	f	(D1,D2,Dn)	for	descriptive	occurrence	relations.

In	 the	 theoretical	 design,	 outcome	 and	 (extraneous)	 determinants	 are	 first
defined	conceptually.	For	example,	to	answer	the	question	of	whether	depression
is	causally	related	 to	 the	occurrence	of	heart	disease,	 the	occurrence	relation	 is
defined	as,

Heart	disease	=	f	(depression	|	ED)

where	ED	could	 include	 lifestyle	 factors	such	as	smoking	and	alcohol	but	also
treatments	 for	 depression	 that	 might	 lead	 to	 heart	 disease,	 such	 as	 tricyclic
antidepressants.
To	 allow	 the	 collection	 of	 empirical	 data	 for	 the	 study,	 typically	 the

conceptual	definitions	of	outcome	and	determinants	need	 to	be	operationalized
to	measurable	 variables.	 In	 this	 example,	 depression	 could	 be	measured	 using
the	Zung	depression	scale	and	heart	disease	could	be	operationalized	by	a	record
of	admission	 to	a	hospital	with	an	acute	myocardial	 infarction.	Often,	 this	step



leads	 to	 simplification	 or	 to	measures	 that	 do	 not	 fully	 capture	 the	 conceptual
definitions.	For	example,	we	may	wish	to	measure	quality	of	life	but	may	need
to	 settle	 for	 a	 crude	 approximation	 using	 a	 simple	 36-item	 questionnaire.	 To
appreciate	the	results	of	a	study,	it	is	important	to	realize	that	such	compromises
may	have	been	made.

DESIGN	OF	DATA	COLLECTION
Now	that	the	overall	structure	of	the	research	is	in	place,	it	is	time	to	design	how
the	data	will	be	collected.	Clinical	epidemiologic	research	is	empirical	research,
which	 means	 that	 the	 theoretical	 occurrence	 relations	 are	 observed	 after
analyzing	empirical	data	collected	from	individuals.	The	true	(scientific)	nature
of	the	occurrence	relation	is	estimated	from	the	observations.	Consequently,	an
important	aspect	of	the	conduct	of	research	is	the	collection	of	data	that	capture
the	occurrence	relation.
There	are	several	ways	in	which	data	for	a	particular	study	can	be	collected.

The	choice	will	be	determined	both	by	the	need	to	obtain	a	valid	estimate	of	the
nature	of	the	occurrence	relation	and	by	practical	considerations.	The	former,	for
example,	 includes	 the	 need	 to	 collect	 full	 confounder	 data	 in	 causal	 research.
The	 latter	may	 include	 restrictions	 in	 time	or	 funding	 that	 limit	 the	number	of
options	for	collecting	data.	The	need	to	find	the	truth,	and	thus	the	need	to	never
compromise	 validity,	 is	 an	 essential	 starting	 point.	 Yet,	 for	 a	 given	 level	 of
validity	there	may	still	be	several	options	for	the	collection	of	data.
An	 inventory	 of	ways	 to	 collect	 data	 in	 clinical	 epidemiologic	 research	 and

their	similarities	and	distinctions	can	be	found	in	Chapter	7.	In	brief,	the	choices
to	be	made	for	data	collection	include	the	time	scale	(i.e.,	follow-up	time	is	zero
or	 larger	 than	 zero),	 the	 nature	 of	 the	 study	 population	 (i.e.,	 everyone,	 the
census,	 is	 studied	 or	 only	 a	 sample	 from	 the	 study	 base),	 and	 the	 option	 of
conducting	 a	 study	 experimentally	 or	 nonexperimentally.	 In	 a	 cross-sectional
study,	 the	 follow-up	 time	 for	a	population	 is	 zero.	But	 in	a	 longitudinal	 study,
the	 follow-up	 time	 is	 greater	 than	 zero.	 In	 a	 cohort	 study,	 a	 full	 population
sample	 is	 studied	 (census),	 while	 in	 a	 case-control	 study,	 only	 cases	 and	 a
sample	of	controls	are	studied.	In	a	randomized	trial,	subjects	are	experimentally
exposed	 to	 a	 particular	 determinant,	 for	 example	 a	 drug.	 In	 an	 observational
cohort	study,	determinants	are	studied	that	are	present	without	any	experimental
manipulation	by	the	investigator.	Aspects	of	the	design	of	data	collection	will	be



discussed	 in	 the	 various	 chapters	 on	 diagnostic,	 etiologic,	 prognostic,	 and
intervention	research	and	are	presented	in	more	detail	in	the	chapters	on	cohorts,
case-control	studies,	and	randomized	trials.

DESIGN	OF	DATA	ANALYSIS
The	 most	 difficult	 parts	 of	 designing	 clinical	 epidemiologic	 research	 are
completed	 when	 the	 occurrence	 relation	 and	 the	 data	 collection	 have	 been
designed.	 In	 the	 data	 analysis,	 the	 data	 of	 the	 study	 are	 summarized	 and	 the
relationships	between	determinants	and	outcome	are	quantified	using	statistical
methods.	 Design	 of	 data	 analysis	 is	 important	 because	 it	 will	 determine	 the
utility	of	the	result,	so	it	should	maintain	the	relevance	and	validity	achieved	so
far.	However,	 in	general	 there	are	only	a	 few	appropriate	and	 feasible	ways	 to
analyze	 data	 of	 a	 given	 study.	 Ideally,	 the	 design	 of	 data	 analysis	 follows
naturally	from	the	research	question,	the	form	of	the	occurrence	relation,	and	the
type	 of	 data	 collected.	 Some	 details	 of	 the	 approaches	 to	 the	 design	 of	 data
analysis	 can	 be	 found	 in	 the	 various	 chapters	 on	 diagnostic,	 prognostic,	 and
etiologic	research,	and	a	summary	is	presented	in	Chapter	12.

DIAGNOSTIC,	ETIOLOGIC,	PROGNOSTIC,	AND
INTERVENTION	RESEARCH
The	major	types	of	clinical	epidemiologic	research	are	introduced	in	Table	1–2
and	their	distinctions	and	shared	aspects	will	be	emphasized	in	the	sections	that
follow.

TABLE	1–2	Major	Types	of	Clinical	Epidemiologic	Research



Diagnostic	Research
Each	 day,	 physicians	 are	 faced	 with	 multiple	 diagnostic	 challenges.	 For	 any
patient	presenting	with	complaints,	 the	aim	is	 to	 interpret	 the	signs,	symptoms,
and	results	of	(other)	diagnostic	tests	so	that	a	diagnosis	can	be	established.	This
diagnostic	 process	 is	 complicated	 and	 involves	 multiple	 determinants
incorporating	the	clinical	profile	as	well	as	the	nonclinical	profile	(e.g.,	age,	sex,
socioeconomic	 status).	 Although	 the	 physician	 often	 considers	 more	 than	 one
diagnosis,	 the	 typical	question	 to	be	 answered	 in	 clinical	practice	 is	whether	 a
certain	 patient	 profile	 is	 indicative	 of	 a	 particular	 illness	 (the	 outcome).
Empirical	 evidence	 that	 can	 guide	 the	 clinician	 in	 choosing	 the	most	 efficient
diagnostic	 strategy	 in	 relevant	 patient	 domains	 is	 relatively	 rare,	 and	 clearly
more	 diagnostic	 research	 is	 needed.	 Diagnostic	 research	 typically	 aims	 to
quantify	 the	 value	 of	 combinations	 of	 determinants	 in	 diagnosing	 a	 particular
illness	 and	 includes	 studies	 assessing	 the	 value	 of	 novel	 diagnostic	 tests	 in
addition	to	readily	available	tests	(such	as	signs	and	symptoms).
Consider	 a	 75-year-old	 man	 visiting	 his	 primary	 care	 physician	 because	 of

increased	dyspnea.	The	patient	had	a	myocardial	infarction	7	years	ago,	and	his



frequent	 efforts	 to	 quit	 smoking	 have	 been	 unsuccessful.	 In	 view	 of	 the
significant	 smoking	 history,	 his	 physician	 considers	 the	 possibility	 of	 chronic
obstructive	pulmonary	disease;	however,	the	most	likely	diagnosis	appears	to	be
heart	 failure.	 Recently,	 a	 rapid	 bedside	 test	 to	 determine	 the	 level	 of	 B-type
natriuretic	peptide	(BNP),	a	marker	known	to	be	increased	in	most	heart	failure
patients,	has	become	available	and	the	primary	care	physician	wonders	whether
such	a	rapid	BNP	test	has	diagnostic	value	in	this	patient’s	domain.
The	research	question	addressing	this	issue	can	be	phrased	as	follows:

What	 is	 the	value	of	 the	novel	rapid	BNP	test	 in	addition	 to	signs	and	symptoms	when	diagnosing
heart	failure	in	patients	presenting	with	dyspnea	in	primary	care?

The	 multiple	 determinants	 include	 the	 novel	 BNP	 test,	 the	 findings	 from
history	taking	(including	known	comorbidity),	and	physical	examination,	which
are	 available	 in	 daily	 practice	 anyway;	 the	 outcome	 is	 a	 diagnosis	 of	 heart
failure.	The	domain	should	not	be	 too	narrow	and	could	be	defined	as	patients
presenting	to	primary	care	with	dyspnea	or,	alternatively,	all	patients	presenting
to	 primary	 care	 with	 symptoms	 suggestive	 of	 heart	 failure	 in	 the	 view	 of	 the
physician.	 The	 corresponding	 occurrence	 relation	 can	 be	 summarized	 as	 the
presence	 of	 heart	 failure	 as	 a	 function	 of	multiple	 determinants,	 including	 the
novel	BNP	test:

Heart	failure	=	f	(BNP,	age,	sex,	prior	MI,	symptoms,	signs	…)

Chapter	2	examines	the	specifics	of	diagnostic	research.

Etiologic	Research
Clinicians	 and	 epidemiologists	 alike	 tend	 to	 be	 most	 familiar	 with	 etiologic
research,	despite	its	limited	direct	relevance	to	patient	care	and	its	methodologic
complexities.	 As	 in	 all	 epidemiologic	 studies,	 and	 starting	 from	 the	 research
question,	 the	 first	 step	 is	 the	 design	 of	 the	 occurrence	 relation.	 For	 etiologic
research,	this	includes	consideration	of	a	determinant	as	well	as	one	or	multiple
extraneous	determinants.
Consider,	 for	 example,	 the	 causes	 of	 childhood	 inflammatory	 bowel	 disease

(IBD),	particularly	to	what	extent	a	certain	factor	(e.g.,	a	measles	virus	infection)
may	 be	 responsible	 for	 its	 occurrence.	 The	 research	 question	 could	 be
formulated	as	follows:



Does	measles	virus	infection	cause	IBD	in	children?

Measles	 infection	 and	 IBD	 represent	 the	 determinant	 and	 outcome,
respectively,	 and	 children	 are	 the	 domain.	Suppose	 that	 a	 study	 is	 designed	 to
answer	 this	 research	 question.	 The	 object	 of	 such	 a	 study	 would	 be	 an
occurrence	relation	 in	which	 the	 incidence	of	 IBD	is	 related	 to	 the	presence	or
absence	of	a	preceding	measles	viral	infection.
However,	 the	description	of	 the	occurrence	relation	is	not	complete	unless	 it

includes	one	or	multiple	extraneous	determinants	of	the	occurrence	of	childhood
IBD.	 In	 this	 example,	 these	 could	 include	 nutritional	 status,	 socioeconomic
factors,	and	so	forth.	The	reason	to	consider	these	as	extraneous	determinants	is
because	they	may	be	related	to	the	disease	as	well	as	to	the	likelihood	of	measles
infection	 and	 therefore	 could	 suggest	 a	 relationship	 between	 infection	 and
disease	that	in	reality	does	not	exist.
The	occurrence	relation	can	be	depicted	as:

IBD	=	f	(measles	infection	|	ED)

A	more	detailed	discussion	about	etiologic	research	can	be	found	in	Chapter
3.

Prognostic	Research
To	be	able	to	set	a	prognosis	is	an	essential	feature	of	daily	clinical	practice.	The
process	 of	 estimating	 an	 individual	 patient’s	 prognosis	 is	 illustrated	 by	 the
following	question	often	asked	by	practicing	physicians:	“What	will	happen	 to
this	patient	with	 this	 illness	 if	 I	do	not	 intervene?”	 In	essence,	prognostication
implies	predicting	the	future,	a	difficult	task	at	best.	As	in	the	diagnostic	process,
estimating	 a	 patient’s	 prognosis	 means	 taking	 into	 account	 multiple	 potential
determinants,	some	of	which	pertain	to	the	clinical	profile	(e.g.,	markers	of	the
severity	of	 the	 illness)	and	some	of	which	refer	 to	 the	nonclinical	profile	 (e.g.,
age	and	sex).	Ideally,	prognostic	evidence	should	help	the	clinician	to	adequately
and	efficiently	predict	a	clinically	relevant	prognostic	outcome	in	an	individual
patient.	More	general	prognostic	information,	such	as	5-year	survival	of	types	of
cancer	and	1-year	recurrence	rates	in	stroke	patients	is	typically	not	sufficiently
informative	to	guide	patient	management.	Moreover,	several	prognostic	outcome
parameters	 can	 be	 of	 interest.	 Apart	 from	 survival	 or	 specific	 complications,
quality	of	life	indices	can	also	be	extremely	relevant.



Imagine	 a	 10-year-old	 child	 who	 experienced	 a	 recent	 episode	 of	 bacterial
meningitis.	The	parents	ask	the	clinical	psychologists	about	the	possible	longer-
term	 sequelae	 of	 their	 son’s	 illness.	 They	 are	 particularly	 worried	 about	 their
child’s	future	school	performance.	To	predict	the	child’s	school	performance,	in
this	 example,	 in	 5	 years’	 time,	 the	 psychologist	will	 consider	 both	 nonclinical
(such	as	age	and	previous	school	performance)	and	clinical	parameters,	notably
indices	of	 the	 severity	of	 the	meningitis.	The	clinical	psychologist	 is	uncertain
which	 combination	 of	 these	 latter	 parameters	 best	 predicts	 future	 school
performance.
An	example	of	a	research	question	of	prognostic	research	addressing	this	topic

is:

Which	combination	of	measures	of	disease	severity	 (e.g.,	duration	of	 symptoms	prior	 to	admission
because	 of	 meningitis,	 leukocyte	 count	 in	 cerebral	 spinal	 fluid,	 dexamethasone	 use	 during
admission)	 best	 predicts	 future	 school	 performance	 in	 children	 with	 a	 recent	 history	 of	 bacterial
meningitis?

The	determinants	include	parameters	measured	during	the	meningitis	episode,
the	outcome	is	school	performance	measured	after	a	certain	period	(e.g.,	5	years)
after	 the	 illness,	 and	 children	 with	 recent	 bacterial	 meningitis	 represent	 the
domain.
The	occurrence	relation	is:

School	 performance	 =	 f	 (duration	 of	 symptoms,	 leukocyte	 count,	 pathogen
involved,	etc.)

Possibly,	other	nonclinical	potential	determinants	should	be	considered	in	the
occurrence	 relation	 as	 well,	 such	 as	 the	 child’s	 age,	 previous	 school
performance,	 and	 parents’	 education.	 Thus,	 the	 research	 question	 could	 be
rephrased	 as:	 “Which	 combination	 of	 parameters	 best	 predicts	 future	 school
performance	in	children	with	recent	bacterial	meningitis?”
Chapter	4	includes	a	thorough	presentation	of	prognostic	research.

Intervention	Research
An	 intervention	 is	 any	action	 taken	 in	medicine	 to	 improve	 the	prognosis	of	 a
patient.	This	can	include	treatment	or	advice	as	well	as	preventive	actions.	The
most	 common	 form	 of	 intervention	 research	 in	 medicine	 is	 research	 on	 the
effects	 of	 drug	 treatment.	Research	 into	 the	 benefits	 and	 risks	 of	 interventions



merits	particular	attention.	The	design	of	intervention	research	generally	requires
the	 design	 of	 an	 occurrence	 relation	 that	 serves	 both	 the	 estimation	 of	 the
prognosis	 of	 a	 particular	 patient	when	 the	 intervention	 is	 initiated	 and	 a	 valid
estimation	of	the	causal	role	of	the	intervention	in	that	prognosis.	In	other	words,
intervention	 research	aims	 to	both	predict	prognosis	 following	 the	 intervention
and	understand	the	effect	caused	by	the	intervention.
From	the	perspective	of	the	patient,	the	change	in	prognosis	brought	about	by

treatment	 is	 of	 the	 greatest	 interest.	 However,	 from	 the	 perspective	 of,	 for
example,	 the	 drug	manufacturer	 or	 regulator,	 the	 question	 is	 whether	 it	 is	 the
pharmacologic	action	of	the	drug	and	nothing	else	that	improved	the	prognosis.
The	 question	 is	 about	 the	 causality	 of	 the	 treatment	 effect.	 Consequently,	 the
object,	 data	 collection,	 and	 analysis	 should	 comply	 with	 the	 specific
requirements	of	both	causal	and	descriptive	research.	Typically	the	requirements
of	 being	 able	 to	 draw	 causal	 conclusions	 and	 the	 exclusion	 of	 confounding
factors	drive	the	design.	Importantly,	intervention	research,	particularly	its	most
appreciated	 form,	 the	 randomized	 trial,	 can	 serve	 as	 a	 role	 model	 for	 causal
research	 at	 large	 because	 trials	 are	 designed	 to	 remove	 major	 sources	 of
confounding	[see	Chapter	10	and	Miettinen,	1989].
One	 may	 question	 whether	 causal	 research	 that	 does	 not	 take	 prognostic

implications	into	account	has	value	for	clinical	medicine.	In	intervention	studies,
principles	 of	 both	 causal	 and	 descriptive	 or,	 according	 to	 Miettinen,
“intervention-prognostic”	 research	apply	 [Miettinen,	2004].	Because	 the	design
of	data	collection	and	data	analysis	of	causal	research	calls	for	a	strict	control	of
confounding	 factors,	 the	 causal	 outlook	 of	 intervention	 research	 commonly
dominates	in	intervention	studies.	However,	the	challenge	for	the	investigator	is
not	 only	 to	 provide	 an	 answer	 on	 causality	 but	 also	 to	 produce	 a	 meaningful
estimate	 of	 the	 effect	 on	 the	 prognosis	 of	 individual	 patients.	Consider	 an	 18-
month-old	 toddler	 visiting	 a	 primary	 care	 physician	 because	 of	 acute	 otitis
media.	 According	 to	 her	mother,	 this	 is	 the	 second	 episode	 of	 otitis;	 the	 first
episode	occurred	some	9	months	ago	and	lasted	10	days.	The	mother	is	afraid	of
continued	 prolonged	 periods	 of	 complaints	 and	 asks	 for	 an	 antibiotic
prescription.	First,	 the	clinician	will	estimate	 the	prognosis	of	 the	child,	 taking
into	 account	 the	 child’s	 prior	 medical	 history,	 current	 clinical	 features	 (e.g.,
fever,	 uni/bilateral	 ear	 infection),	 and	 other	 prognostic	 markers	 such	 as	 age.
Then	the	effects	of	antibiotic	therapy	on	the	prognosis	will	be	estimated.	To	this
end,	the	causal	(i.e.,	true)	effects	of	antibiotic	therapy	in	young	children	should
be	 known.	 The	 research	 question	 of	 an	 intervention	 study	 providing	 this



evidence	is:	“Does	antibiotic	therapy	reduce	the	duration	of	complaints	in	young
children	with	acute	otitis	media?”	Here,	antibiotic	therapy	is	the	determinant	and
the	number	of	days	until	resolution	of	symptoms	is	the	outcome.	The	domain	is
young	 children	 (younger	 than	 2	 years)	 with	 acute	 otitis	 media.	 Although	 one
could	 argue	 that	 the	 domain	 may	 be	 as	 large	 as	 all	 children	 with	 otitis,	 the
prognosis	in	young	children	is	considered	to	be	relatively	poor	and	the	effects	of
antibiotics	 could	 be	 different	 in	 this	 subgroup	 of	 children.	 The	 occurrence
relation	can	be	summarized	as:

Duration	of	complaints	=	f	(antibiotic	therapy	|	ED)

In	a	typical	intervention	study,	randomization	and	blinding	will	minimize	any
influence	of	extraneous	determinants.	This	will	be	explained	in	detail	in	Chapter
5.

Comparison	of	Diagnostic	and	Prognostic	Research
Diagnostic	 and	 prognostic	 research	 share	 several	 characteristics.	 First	 and
foremost,	 they	 are	 both	 descriptive	 research	 [Moons	&	Grobbee,	 2002a].	 This
has	important	implications	for	theoretical	design,	design	of	data	collection,	and
design	 of	 analysis.	 As	 a	 prelude	 to	 a	 more	 comprehensive	 discussion	 of	 this
research,	which	will	be	done	 in	 subsequent	chapters,	 a	 few	distinctive	 features
should	 be	 mentioned.	 The	 occurrence	 relation	 in	 diagnostic	 and	 prognostic
research	 is	 given	 by	 the	 presence	 or	 future	 presence	 (i.e.,	 incidence)	 of	 the
outcome	 in	 relation	 to	 and	 as	 a	 function	of	 one	or	multiple	 determinants.	 It	 is
exceedingly	 rare	 for	 both	 diagnostic	 and	 prognostic	 research	 questions	 to	 be
restricted	to	single	determinants.	In	medical	practice,	a	diagnosis	or	prognosis	is
hardly	ever	based	on	a	single	indicator.	Arguably,	certain	instances	of	screening
may	be	exceptions,	but	more	commonly	multiple	nonclinical	and	clinical	patient
characteristics,	including	results	from	diagnostic	testing,	are	used	to	decide	upon
the	presence	of	the	disease	and	its	prognostic	consequences.	Unfortunately,	one
often	finds	studies	addressing	the	diagnostic	capacities	of	a	single	test	[Moons	et
al.,	1999].	The	relevance	of	research	on	tests	in	isolation	is	markedly	limited	by
the	notion	that,	in	the	clinical	application,	it	is	the	added	or	alternative	value	of	a
test	 that	 matters	 rather	 than	 its	 individual	 merit.	 For	 diagnostic	 or	 prognostic
research	 to	 be	 relevant,	 all	 of	 the	 putative	 predictors	 that	 are	 available	 and
considered	 in	 a	 clinical	 setting	 need	 to	 be	 included	 as	 determinants	 in	 the



occurrence	 relation.	 It	 is	 important	 to	 realize	 that	 theoretically	 all	 these
determinants	 have	 a	 similar	 importance.	 If	 they	 predict	 the	 outcome	 in	 the
presence	 of	 the	 other	 factors	 they	 are	 useful,	 but	 if	 they	 do	 not,	 they	 are	 not
useful.	 Consequently,	 there	 are	 no	 extraneous	 determinants	 (confounders);
confounding	 is	not	an	 issue	 in	descriptive	 research.	Still,	 it	may	be	 relevant	 to
address	the	value	of	a	test	that	is	conditional	on	other	determinants.	For	example,
the	 aim	 of	 the	 investigator	 may	 be	 to	 determine	 whether	 a	 specific	 new
diagnostic	 tool	 has	 added	 value	 or	 if	 a	 less	 invasive	 procedure	may	 replace	 a
more	invasive	one	and	still	maintain	the	same	diagnostic	capacity.
Diagnostic	 and	 prognostic	 research	 both	 aim	 for	 an	 optimal	 prediction.	 In

many	ways,	a	prognosis	can	be	viewed	as	a	diagnosis	“yet	to	be	made.”	Where
in	diagnostic	research	we	attempt	to	predict	the	presence	of	a	particular	disease,
in	 prognostic	 research,	 we	 attempt	 to	 predict	 the	 occurrence	 of	 a	 particular
disease	outcome	in	the	future.	The	focus	of	descriptive	research	could	be	single
or	multiple	determinants,	with	the	latter	being	more	common.	When	a	prognostic
or	 diagnostic	 study	 addresses	 multiple	 determinants,	 there	 is	 no	 inherent
determinant	hierarchy.	Often,	however,	determinants	that	are	readily	available	in
daily	practice	(e.g.,	signs	and	symptoms)	will	be	studied	first,	before	additional
value	 is	 sought	 from	 more	 expensive,	 invasive,	 and	 patient-burdening
determinants.	The	aim	usually	is	to	reduce	a	range	of	available	determinants	to	a
subset	with	the	same	prognostic	or	diagnostic	value	as	the	full	set,	or	to	compare
the	 predictive	 capacity	 of	 a	 set	 of	 determinants	 inclusive	 and	 exclusive	 of	 a
determinant	 of	 particular	 interest.	 Inclusion	 of	 a	 larger	 or	 smaller	 number	 of
determinants	has	no	implications	for	validity	as	long	as	the	study	is	large	enough
to	 obtain	 results	 with	 sufficient	 precision.	 Selection	 of	 determinants	 for
inclusion,	 however,	 may	 affect	 the	 study’s	 generalizability	 and	 thus	 the
relevance	 of	 the	 research.	 Consider	 a	 hospital	 where	 magnetic	 resonance
imaging	 (MRI)	 scanning	 is	 not	 routinely	 available	 in	 patients	 admitted	 to	 the
intensive	 care	 unit	 with	 head	 trauma.	 A	 study	 designed	 to	 determine	 which
clinical	 and	 nonclinical	 factors	 may	 be	 useful	 in	 the	 diagnostic	 workup	 or
prognostication	 of	 head	 trauma	 patients,	which	 does	 not	 include	 the	 results	 of
MRI	scanning,	will	provide	results	 that	are	relevant	to	similar	hospitals	despite
the	potential	importance	of	MRI	findings	when	available.
In	 addition	 to	 shared	 aspects	 of	 the	 theoretical	 design	 of	 diagnostic	 and

prognostic	 studies,	 they	 have	 similarities	 in	 the	 design	 of	 data	 collection.
Collection	of	determinant	information	has	a	particular	feature	that	differentiates
diagnostic	 and	 prognostic	 research	 from	 etiologic	 and	 intervention	 research.



Etiologic	research	data	on	the	determinant	and	confounders	must	be	collected	in
a	strict	protocol	with	high	precision	to	maximize	the	opportunity	to	obtain	valid
and	 precise	 estimates	 of	 the	 true	 quantitative	 association	 with	 the	 outcome.
Descriptive	 research	data	 should	be	 collected	 in	 agreement	with	 the	 quality	 of
data	collection	in	practice.	Suppose,	for	example,	that	particular	diagnostic	data
in	 a	 given	 study	 are	 obtained	 by	 the	most	 specialized	 and	 experienced	 senior
physician	available	to	the	researchers;	the	importance	of	the	diagnostic	indicator
is	 likely	 to	 be	 overestimated	 relative	 to	 the	 eventual	 application	 where,	 in	 a
routine	 care	 setting,	 average	 doctors	 with	 average	 capabilities	 will	 establish	 a
diagnosis.	Note	that	 this	makes	the	use	of	data	collected	as	part	of	randomized
trials	 of	 questionable	 value	 in	 the	 valid	 estimation	 of	 prognostic	 factors;	 data
collected	 in	 routine	 care	 are	 generally	 highly	 suitable	 for	 use	 in	 descriptive
research.
The	general	approach	in	prognostic	and	diagnostic	research	 is	 to	first	design

the	 occurrence	 relation	 in	 theoretical	 and	 operational	 terms.	 Then	 the	 data
collection	 is	 designed,	 including	 a	 choice	 from	 different	 options	 according	 to
which	a	 study	population	can	be	chosen	and	data	collected.	The	prevalence	of
the	 outcome	 (in	 diagnostic	 research)	 or	 the	 incidence	 of	 the	 outcome	 (in
prognostic	 research)	 is	 recorded	 in	 a	 group	 of	 patients	 reflecting	 the	 type	 of
patients	for	which	the	results	of	the	research	are	intended	to	be	used.	Finally,	in
the	 data	 analysis,	 the	 nature	 and	 strength	 of	 the	 occurrence	 relation	 are
calculated	 by	 estimating	 the	 (regression)	 coefficients	 and	 narrowing	 the	 set	 of
determinants	to	the	most	informative	subset	of	minimal	size.
There	 are	 also	 differences	 between	 diagnostic	 and	 prognostic	 research.

Diagnostic	research	is	cross-sectional	and	prognostic	research	longitudinal.	In	a
diagnostic	study,	the	outcome	is	the	frequency	of	the	presence	of	the	diagnosis
of	 interest.	 Prognostic	 research	 has	 no	 simple	 single	 outcome.	 Rather,	 the
outcome	of	relevance	to	the	patient	is	the	expected	future	course	of	the	disease
expressed	by	the	expected	utility	or	nonutility.	The	full	prognosis	is	determined
by	 the	 utilities	 of	 the	 various	 possible	 outcomes	 together	with	 their	 respective
probabilities.	 These	 possible	 outcomes	 also	 include	 all	 those	 resulting	 from
treatment	options.	Consequently,	a	prognosis	is	generally	not	the	probability	of	a
single	outcome.	However,	if	only	for	reasons	of	feasibility,	prognostic	research
is	commonly	restricted	to	a	particular	outcome.

Comparison	of	Etiologic	and	Prognostic	Research



In	etiologic	and	prognostic	 research,	 the	 temporal	dimension	of	 the	occurrence
relation	is	longitudinal.	Prognostic	and	etiologic	occurrence	relation	address	the
future	 occurrence	 of	 an	 outcome	 in	 relation	 to	 either	 prognostic	 or	 etiologic
factors.	However,	when	the	incidence	of	a	state	or	event	is	studied	as	a	function
of	 an	 etiologic	 factor,	 the	 assumed	 relationship	 of	 this	 determinant	 to	 the
outcome	is	causative	by	definition,	while	in	the	case	of	prognosis,	the	prognostic
determinants	may	or	may	not	be	causally	related	 to	 the	outcome.	For	example,
Oostenbrink	 and	 coworkers	 [2002]	 determined	 predictors	 of	 the	 occurrence	 of
permanent	neurologic	sequelae	after	childhood	bacterial	meningitis.	Among	the
predictors	 was	 low	 body	 temperature	 at	 admission	 to	 the	 hospital.	 The	 low
temperature	is	likely	to	be	a	marker	of	severity	of	the	disease	rather	than	causally
related	to	the	outcome.	Research	into	the	effects	of	interventions	is	both	causal
research	and	descriptive	(here	 it	 is	prognostic)	research.	In	randomized	clinical
trials—the	 gold	 standard	 for	 assessment	 of	 treatment	 effects—a	 prognostic
factor	 (the	 intervention)	 is	manipulated	with	 the	 aim	of	 quantifying	 the	 causal
impact	of	this	factor	and	estimating	its	contribution	to	a	change	in	prognosis.
Because	 causal	 explanation	 has	 a	 distinctly	 different	 role	 in	 etiologic	 and

prognostic	 research	 (being	 absent	 in	 the	 latter),	 confounding	 is	 a	 critically
important	concept	in	etiologic	studies	and	a	non-issue	in	prognostic	research,	as
long	 as	 obtaining	 a	 causal	 explanation	 of	 the	 effects	 of	 the	 intervention	 is	 not
part	of	 the	objective.	Etiologic	 studies	 typically	 focus	on	a	 single	determinant.
While	 in	 a	 single	 study	more	 than	 one	 possible	 causal	 determinant	may	 be	 of
interest,	 for	 each	 causal	 determinant	 there	 is	 in	 principle	 a	 unique	 occurrence
relation	with	a	tailored	set	of	confounders	to	be	considered.	In	the	simplest	data
analytic	 approach,	 the	 disease	 outcome	 is	 assessed	 in	 groups	 of	 subjects
classified	in	an	index	category	where	the	determinant	is	present	and	a	reference
category	 where	 the	 determinant	 is	 absent.	 Then	 the	 interest	 is	 in	 comparative
rates	of	occurrence	of	disease	across	the	determinant	categories.	To	infer	the	true
causal	difference	in	the	rate	of	occurrence	of	a	disease,	this	should	be	estimated
while	 making	 distributions	 of	 extraneous	 determinants	 the	 same	 across	 the
determinant	categories,	that	is,	estimating	the	parameters	that	are	conditional	on
confounders.
In	 contrast	 to	 etiologic	 studies,	 where	 a	 single	 determinant	 is	 of	 interest,

prognostic	studies	usually	emphasize	multiple	determinants.	This	does	not	imply
that	the	investigator	may	not	have	a	specific	interest	in	a	particular	determinant.
Yet	 “science”	 demands	 arriving	 at	 the	 best	 prediction	 possible	 and	 if	 the
investigator’s	favorite	prognostic	indicator	drops	out	along	the	way,	so	be	it.	In



case	 the	 focus	 is	 more	 on	 a	 specific	 new	 or	 otherwise	 interesting	 putative
prognostic	 determinant,	 given	 a	 set	 of	 a	 priori	 defined	 codeterminants,	 the
question	 will	 be	 what	 the	 predictive	 capacity	 is	 of	 the	 selected	 prognostic
indicator	 beyond	 these	 codeterminants,	 for	 example,	 the	 added	 predictive
information.	A	prognostic	study	by	Ingenito	et	al.	[1998]	prespecified	an	added
value	 of	 measuring	 preoperative	 inspiratory	 lung	 resistance	 in	 predicting	 the
outcome	 of	 lung-volume	 reduction	 surgery.	 Here,	 the	 occurrence	 relation	was
the	incidence	of	increase	in	forced	expiratory	volume	in	one	second	(FEV1)	after
surgery	as	a	function	of	preoperative	inspiratory	resistance,	conditional	on	other
clinical	and	nonclinical	patient	characteristics.	Note	 that	“conditionality”	 refers
to	the	added	value	here	and	not	to	conditionality	on	confounding.	The	range	of
clinical	and	nonclinical	characteristics	included	in	the	study	was	determined	by
what	 was	 commonly	 available	 in	 that	 particular	 clinical	 setting	 and	 therefore
relevant	 in	 prediction.	None	 of	 these	 determinants	was	 extraneous;	 potentially
they	 all	 could	 contribute	 and	 no	 extraneous	 determinant	 could	 be	 “forgotten”
without	 incurring	 the	 risk	 of	 producing	 an	 invalid	 result,	 as	 could	 happen	 in
causal	research.
In	case	of	the	absence	of	preference	for	a	particular	prognostic	indicator,	the

task	 entailed	 in	 the	 analysis	 of	 prognostic	 studies	 is	 to	 obtain	 the	 maximal
predictive	 capacity	 of	 a	 minimal	 number	 of	 predictors	 without	 any	 inherent
hierarchy.	For	example,	to	assess	the	risk	of	death	in	patients	with	burn	injuries,
a	group	of	U.S.	investigators	had	a	simple	qualitative	concern:	to	reduce	a	set	of
potential	prognostic	codeterminants	to	a	subset	with	information	about	prognosis
similar	 to	 the	 initial	 full	 set.	 The	 occurrence	 relation	 of	 this	 study	 was	 the
incidence	 of	mortality	 as	 a	 function	 of	 clinical	 and	 nonclinical	 characteristics.
Again,	there	were	no	extraneous	determinants	[Ryan	et	al.,	1998].

MOVING	FROM	RESEARCH	TO	PRACTICE:
VALIDITY,	RELEVANCE,	AND
GENERALIZABILITY
Similar	to	other	research,	the	motive	for	applied	clinical	studies	is	to	learn	about
an	 object.	 Eventually,	 knowledge	 produced	 by	 the	 research	 needs	 to	 be
incorporated	into	a	knowledge	base	that	guides	daily	medical	care.	Whether	the
results	from	clinical	research	are	eventually	applied	in	daily	practice	depends	on



many	circumstances,	some	of	which	can	be	rather	subjective,	such	as	 the	prior
beliefs	 of	 the	 clinician.	 No	 doubt,	 however,	 both	 the	 validity	 and	 the
generalizability	of	the	study	findings	play	a	crucial	role	in	the	their	potential	for
implementation.
Validity	refers	to	the	lack	of	bias	(i.e.,	lack	of	systematic	error)	in	the	results.

Study	findings	are	valid	when	the	quantification	of	the	determinant(s)–	outcome
relationship	 is	 true.	 In	other	words,	 the	measure	of	 association	 (e.g.,	 a	 relative
risk	 of	 2.0	 in	 a	 study	 on	 the	 causal	 relationship	 between	 the	 use	 of	 oral
contraceptives	and	the	risk	of	breast	cancer	or	an	increase	in	diagnostic	accuracy
from	 a	 ROC	 area	 of	 0.70	 to	 0.90	 when	 a	 C-reactive	 protein	 test	 is	 added	 to
findings	from	history	taking	and	physical	examination	in	suspected	pneumonia)
that	 is	observed	 is	correct.	For	 the	causal	 study,	 this	obviously	means	 that	 this
relative	 risk	 of	 2.0	 is	 not	 biased	 by	 extraneous	 determinants	 (confounding)	 or
other	 flaws	 in	 the	 design	 of	 data	 collection	 or	 data	 analysis,	 and	 for	 the
diagnostic	 study	 (where	confounding	 is	not	 an	 issue)	 this	means	 that	 the	ROC
area	represents	the	unbiased	truth	for	the	study	population	included	in	the	study.
The	 epidemiology	 literature	 is	 “blessed”	 with	 a	 plethora	 of	 different	 types	 of
biases	 that	 may	 endanger	 the	 validity	 of	 studies.	 The	 distinction	 of	 so	 many
types	of	bias	and	the	inconsistent	use	of	the	related	terms	only	distracts	from	the
real	 question	 that	 needs	 to	 be	 answered	when	 judging	 the	 validity	 of	 a	 study,
namely,	 “Is	 there	 bias—yes	 or	 no?”	 To	 simplify	 things,	 we	 only	 distinguish
between	two	“types”	of	bias	in	our	text:	(1)	confounding	(because	of	its	central
role	 in	 causal	 studies)	 and	 (2)	 other	 bias.	When	 study	 findings	 are	 valid,	 the
generalizability	of	the	results	(i.e.,	their	applicability	to	another,	larger	group	of
patients)	 is	 a	major	driver	 for	 the	 implementation	of	 the	 results	 (and	when	 the
results	 are	 biased,	 generalizability	 is	 zero).	 Unfortunately,	 generalizability	 is
sometimes	named	“external	validity,”	although	it	has	no	bearing	on	the	validity
of	 the	 findings	 and	 contrasts	 with	 “internal	 validity”;	 the	 latter	 is	 what	 we
designate	as	validity.
During	the	design	and	conduct	of	research,	it	is	important	to	be	aware	of	the

effects	that	choices	in	the	design	of	the	study	may	have	on	the	applicability	and
implementation	 of	 the	 results.	 In	 the	 critical	 theoretical,	 initial	 phase	 of	 study
design,	the	occurrence	relation	is	laid	out	with	all	of	its	elements.	Following	the
theoretical	design,	a	plan	is	made	for	how	to	obtain	and	summarize	knowledge
on	the	nature	and	strength	of	 the	occurrence	relation	from	available	or	 induced
experience,	 such	 as	 from	 empirical	 data	 collected	 in	 groups	 of	 subjects.	Here,
many	decisions	need	to	be	made	that	are	separate	from	the	actual	way	the	data



are	collected.	To	be	able	to	move	from	theoretical	design	to	data	collection,	the
occurrence	 relation	 needs	 to	 be	 rephrased	 in	 both	 theoretical	 and	 operational
terms.	 This	 will	 not	 only	 point	 the	 way	 to	 measurement	 techniques	 in	 data
collection	but	also	indicate	compromises	that	need	to	be	made	to	match	the	ideal
format	of	 information	on	outcome	and	determinants	 to	what	can	practically	be
achieved.	For	 example,	 suppose	we	wish	 to	precisely	quantify	 the	 relationship
between	 the	presence	of	heart	 failure	and	 subsequent	 loss	of	patient	 autonomy
and	quality	of	life.	In	the	data	collection,	we	may	then	have	to	choose	dyspnea	to
classify	 heart	 failure	 and	 the	 Euroqol	 questionnaire	 to	 assess	 quality	 of	 life
[Rasanen	et	al.,	2006].	This	need	not	be	a	problem,	but	it	is	important	that	these
choices	 are	made	 explicit	 and	 recognized	 in	 the	 interpretation	 of	 the	 research.
Both	the	measure	of	the	outcome	and	the	determinant	are	mere	proxies	for	what
we	 really	 aim	 to	 evaluate.	 In	 applied	 clinical	 research,	 it	 is	 important	 to	 stay
close	 to	 what	 matters	 to	 patients	 when	 deciding	 on	 measures	 of	 disease
outcomes.	This	is	not	necessarily	intuitive	to	all	clinical	investigators.
Investigators	frequently	rely	most	on	what	can	be	quantified	in	solid	measures

rather	than	on	what	has	the	biggest	impact	for	patients.	We	reviewed	studies	on
new	 positive	 inotropic	 drugs	 in	 heart	 failure	 [Feenstra	 et	 al.,	 1999].	 The
profound	impacts	that	congestive	heart	failure	has	on	life	expectancy	and	quality
of	life	have	been	a	continuous	stimulus	for	the	development	of	new	drugs	to	treat
this	condition.	Despite	favorable	effects	on	(aspects	of)	quality	of	 life	 in	short-
term	 studies,	 several	 new	 agents	 have	 been	 shown	 to	 reduce	 survival	 rates	 in
mortality	 trials.	 However,	 patients	 with	 severe	 congestive	 heart	 failure	 may
experience	 such	 incapacitating	 symptoms	 that	 the	 question	 should	 be	 raised
about	 whether	 an	 improvement	 in	 quality	 of	 life	 makes	 the	 increased	 risk	 of
mortality	 associated	 with	 these	 new	 agents	 acceptable.	 Drugs	 that	 improve
quality	of	life	at	the	expense	of	an	increased	risk	of	mortality	may	be	valuable	in
the	 treatment	of	patients	with	 severe	 congestive	heart	 failure.	However,	 this	 is
only	 the	 case	 if	 the	 probability	 of	 improvement	 in	 quality	 of	 life	 and
prolongation	of	life	expectancy	for	those	using	the	drug	exceeds	the	probability
of	 improvement	 in	quality	of	 life	and	prolongation	of	 life	expectancy	for	 those
not	 using	 the	 drug.	Unfortunately,	most	 clinical	 trials	 in	which	 both	mortality
and	 quality	 of	 life	 are	 evaluated	 fail	 to	 provide	 information	 on	 this	 composite
probability.	 In	 clinical	 research,	 there	 is	 a	 justified	 growing	 emphasis	 on
measures	 of	 disease	 that	 matter	 to	 patients,	 the	 importance	 of	 which	 was
underlined	by	 the	outcomes	movement	 and	 summarized	 in	a	 seminal	 article	 in
The	New	England	Journal	of	Medicine	[Elwood,	1988].



Questions	that	trigger	applied	clinical	research	result	from	problems	and	lack
of	 perceived	 knowledge	 in	 patient	 care.	 Certain	 questions	 are	 relevant	 for
particular	groups	of	patients	and	not	 to	others.	Consequently,	 research	findings
may	be	relevant	to	smaller	or	larger	groups	of	patients.	The	essence	of	scientific
research,	 in	 contrast	 to	 other	 forms	 of	 systematic	 gathering	 of	 data,	 is	 that	 its
results	 can	 be	 generalized.	 The	 type	 of	 knowledge	 provided	 by	 clinical
epidemiologic	 research	 is	 inferential,	 probabilistic	 knowledge.	 Scientific
knowledge	 contrasts	 with	 factual	 knowledge	 because	 it	 is	 not	 time	 and	 place
specific.	It	is	true	for	any	patient	or	group	of	patients	as	long	as	the	findings	on
which	the	knowledge	is	based	permit	scientific	generalization	to	those	patients.
The	patient	 is	 a	 special	 case	of	a	category	of	patients	 to	whom	 the	occurrence
relation	 applies.	 In	 the	 initial	 theoretical	 phase	 of	 study	 design,	 a	 careful
appreciation	of	the	type	of	patients	for	which	the	research	needs	to	be	relevant	is
important.	As	outlined	earlier,	 the	 (theoretical)	population	of	patients	 to	which
the	findings	apply	is	called	the	domain	of	the	study.	When	choosing	a	population
for	 empirical	 data	 collection	 (i.e.,	 the	 study	population),	 the	domain	 should	be
kept	in	mind.
Members	of	the	study	population	should	represent	the	(virtual)	population	of

the	domain.	Apart	from	criteria	for	selecting	a	study	population	that	follow	from
the	 chosen	 domain,	 such	 as	 the	 severity	 of	 disease	 or	 a	 certain	 indication	 for
diagnostic	 work-up,	 other	 restrictions	 may	 be	 necessary	 for	 recruiting
participants	in	a	study	that	result	from	logistic	or	other	circumstances.	Many	of
these	additional	restrictions,	such	as	the	need	to	live	near	the	research	institution,
to	master	 the	 local	 language,	 and	 availability	 of	 time	 for	 additional	 diagnostic
assessments,	will	not	have	an	impact	on	the	eventual	applicability	of	the	results
and	 therefore	 will	 not	 limit	 the	 domain.	 It	 is	 important	 to	 appreciate	 which
characteristics	 of	 a	 study	 population	 are	 determined	 because	 of	 the	 intended
domain	 and	 as	 such	 form	 part	 of	 the	 design,	 and	 which	 characteristics	 result
from	 factors	 beyond	 the	 theoretical	 design.	With	 a	 view	 to	 the	 study	 domain,
those	characteristics	of	the	study	population	require	particular	consideration	that
bears	 on	 the	 generalizability	 of	 the	 empirical	 relation	 (see	 Box	 1–3).	 The
generalizability	of	research	results	is	the	extent	to	which	knowledge	obtained	in
a	particular	type	of	patient	may	be	applied	to	another	larger,	theoretical,	abstract
group	of	patients.	Suppose	that	a	study	is	conducted	to	determine	the	value	of	a
certain	novel	type	of	surgery	in	patients	with	a	particular	gastrointestinal	disease.
The	results	of	the	study	could	be	that	recovery	in	operated	patients	of	type	T	is
more	 common	 than	 in	 patients	 who	 were	 not	 operated	 on,	 conditional	 on	 all



extraneous	 determinants	 (confounders)	 of	 recovery.	 The	 conclusion	 is	 that
operating	enhances	recovery	in	patients	of	 type	T,	without	reference	to	 time	or
place.	 The	 results	 are	 generalized	 from	 the	 group	 of	 patients	 on	 which	 the
empirical	 data	 were	 collected	 to	 a	 larger	 group	 of	 theoretical	 patients
representing	the	domain	of	the	research.
Generalizability	 is	 not	 an	 objective	 process	 that	 can	 be	 framed	 in	 simple

statistical	 terms.	 Moving	 from	 time-	 and	 place-specific	 findings	 to	 scientific
knowledge	requires	judgment	about	the	potential	of	other	characteristics	inherent
to	the	research	setting	and	study	population	to	modify	the	nature	and	strength	of
the	relationship	between	determinant(s)	and	outcomes	as	estimated	in	the	study.
A	discussion	of	the	concept	of	modification	is	included	in	Chapter	3.

BOX	1–3	Quotation	About	Generalization

The	essence	of	knowledge	is	generalization.	That	fire	can	be	produced	by	rubbing	wood	a	certain	way
is	a	knowledge	derived	from	individual	experiences;	the	statement	means	that	rubbing	wood	in	this
way	will	always	produce	fire.	The	art	of	discovery	is	therefore	the	art	of	generalization.	What	is
irrelevant,	such	as	the	particular	shape	or	size	of	the	piece	of	wood	used	is	to	be	excluded	from	the
generalization:	what	is	relevant,	for	example,	the	dryness	of	the	wood,	is	to	be	included	in	it.	The
meaning	of	the	term	relevant	can	thus	be	defined:	that	is	relevant	which	must	be	mentioned	for	the
generalization	to	be	valid.	The	separation	of	relevant	from	irrelevant	factors	is	the	beginning	of
knowledge.

Reproduced	from	Reichenbach	H	in:	The	rise	of	scientific	philosophy.	New	York:	Harper	and	Row.	1965.

Appreciation	of	generalizability	 is	essential	 for	scientific	 inference.	Defining
the	domain	of	a	study	as	part	of	the	occurrence	relation	is	important	because	the
domain	 of	 a	 relationship	 provides	 the	 basis	 for	 generalization.	 As	 a	 rule,	 the
utility	of	research	is	greater	 if	 the	domain	of	 the	research	findings,	 to	which	to
generalize	 the	 estimated	 relationships	 between	 outcome	 and	 determinants,	 is
broader.	Consequently,	while	 the	design	of	 the	occurrence	 relation	needs	 to	be
precise	and	comprehensive,	the	domain	is	generally	implicitly	or	explicitly	kept
broad.	 In	 diagnostic	 research,	 the	 domain	 is	 defined	 by	 the	 patient	 profile,
representing	those	subjects	for	whom	a	particular	diagnostic	question	is	relevant.
In	 etiologic	 research,	 the	 domain	 is	 formed	by	people	 at	 risk	 for	 the	 illness	 at
issue	and	with	variability	of	the	causal	factor	at	issue.	For	example,	the	domain
for	research	on	the	etiologic	role	of	smoking	in	lung	cancer	is	all	human	beings
with	lungs	who	could	possibly	smoke.	In	prognostic	research,	again,	the	domain
is	defined	by	the	patient	profile	of	 those	whom	prognostic	statements	based	on
the	 determinants	 included	 in	 the	 research	 are	 considered.	 For	 research	 into



treatment	effects,	the	domain	is	those	who	may	need	the	treatment.	Where	most
elements	 of	 scientific	 research	 require	 maximal	 specificity,	 the	 domain,	 in
general,	 is	 loosely	 defined.	 Apart	 from	 smaller	 or	 larger	 restrictions	 in	 the
empirical	data	of	a	study,	either	by	design	or	by	circumstances,	differences	will
persist	among	those	using	the	results	of	research	with	respect	to	their	willingness
to	 generalize	 to	 larger	 groups.	 For	 example,	 in	 the	 absence	 of	 results	 from
randomized	trials	specifically	demonstrating	the	clinical	benefits	of	use	of	statins
in	 women	 with	 elevated	 cholesterol	 levels,	 some	 people	 did	 not	 accept	 an
indication	for	use	of	these	drugs	in	women	despite	ample	evidence	of	reductions
of	risk	in	men	with	similar	risk	profiles.
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Diagnostic	Research

INTRODUCTION
A	55-year-old	man	visits	his	general	practitioner	(GP)	complaining	of	dyspepsia.
He	has	 had	 these	 complaints	 for	more	 than	 3	months,	 but	 their	 frequency	 and
severity	have	increased	over	the	last	4	weeks.	The	patient	has	a	history	of	angina
but	has	not	required	sublingual	nitroglycerin	for	more	than	2	years.	He	is	known
to	 the	 GP	 as	 having	 been	 unsuccessful	 in	 quiting	 smoking	 despite	 frequent
attempts	to	do	so.	The	GP	asks	several	additional	questions	related	to	the	nature
and	severity	of	the	dyspepsia	to	estimate	the	chance	that	the	patient	suffers	from
a	 peptic	 ulcer.	 The	 GP	 also	 asks	 about	 possible	 anginal	 complaints.	 A	 short
physical	examination	reveals	nothing	except	some	epigastric	discomfort	during
palpation	 of	 the	 abdomen.	 The	 GP	 considers	 a	 peptic	 ulcer	 the	 most	 likely
diagnosis.	The	probability	of	a	coronary	origin	of	the	complaints	is	deemed	very
low.	The	GP	decides	to	test	for	Helicobacter	pylori	serology,	to	further	increase
(rule	in)	or	decrease	(rule	out)	the	probability	of	(H.	pylori-related)	peptic	ulcer.
The	H.	pylori	test	is	negative.	The	GP	prescribes	an	acid-suppressing	agent	and
asks	the	patient	to	visit	again	in	a	week.	When	the	man	visits	the	GP	again,	his
complaints	have	virtually	disappeared.

DIAGNOSIS	IN	CLINICAL	PRACTICE
Doctors	devote	much	of	their	time	to	diagnosing	diseases	in	patients	presenting
with	 particular	 symptoms	 or	 signs.	 Determining	 a	 diagnosis	 for	 a	 patient	 is



important	because	it	provides	insight	into	the	prognosis	of	the	patient	and	directs
the	physician	in	making	decisions	for	appropriate	patient	management	(see	Box
2–1).
The	 diagnostic	 process	 in	 daily	 practice	 typically	 starts	 with	 a	 patient

presenting	 a	 certain	 complaint—symptom	or	 sign—that	makes	 the	 practitioner
suspicious	 of	 him	 or	 her	 having	 a	 particular	 disorder	 (target	 disease)	 out	 of	 a
series	 of	 possible	 disorders	 (differential	 diagnosis)	 [Sackett	 et	 al.,	 1985].	 The
target	disease	can	best	be	viewed	as	the	disorder	at	which	the	diagnostic	process
is	initially	targeted,	either	because	it	is	the	most	serious	of	the	possible	diagnoses
(“the	one	not	to	miss”)	or,	a	priori,	the	most	probable	one.	During	the	diagnostic
process,	 the	 physician	 first	 estimates	 the	 probability,	 or	 likelihood,	 of	 the
presence	of	the	target	disease	in	view	of	the	alternative	diagnoses	(including	the
absence	of	 any	disease)	 based	on	 information	obtained	 through	history	 taking,
including	 knowledge	 about	 a	 patient’s	 individual	 and	 family	 medical	 history,
and	physical	examination.	This	diagnostic	probability	estimation	is	typically	an
implicit	and	subjective	process	(see	Box	2–2).

BOX	2–1	Quotation	About	Clinical	Judgment

Knowing	how	to	live	with	uncertainty	is	a	central	feature	of	clinical	judgment:	the	skilled	physician
has	learned	when	to	take	risks	to	increase	certainty	and	when	to	simply	tolerate	uncertainty.

—Riegelman,	1990

Reproduced	from:	Riegelman,	R.	Studying	a	study	and	testing	a	test.	Boston:	Little,	Brown,	1990.

In	 addition	 to	 clinical	 data	 about	 the	 patient,	 nonclinical	 data	 such	 as	 age,
gender,	 and	 working	 conditions	 also	 may	 be	 considered.	 The	 estimated
probability	 of	 the	 target	 disease	 will	 guide	 the	 doctor	 in	 choosing	 the	 most
appropriate	 action.	 The	 physician	 may	 perform	 additional	 diagnostic	 tests,
initiate	 therapeutic	 interventions,	 or,	 perhaps	most	 importantly,	may	 decide	 to
refrain	from	further	diagnostic	or	therapeutic	actions	for	that	disease	(e.g.,	when
the	probability	of	that	disease	is	considered	low	enough)	and	possibly	search	for
other	 underlying	 diseases	 [Ferrante	 di	 Ruffano	 et	 al.,	 2012].	 The	 diagnostic
workup	is	a	continuing	process	of	updating	the	probability	of	the	target	disease
presence	given	all	available	documented	information	on	the	patient.	The	goal	of
this	workup	 is	 to	 achieve	 a	 relatively	 high	 or	 a	 relatively	 low	probability	 of	 a
certain	 diagnosis,	 that	 is,	 the	 threshold	 probability	 beyond	 or	 below	 which	 a



doctor	is	confident	enough	about	the	presence	or	absence	of	a	certain	diagnosis
to	 guide	 clinical	 decisions.	 Threshold	 probabilities	 are	 determined	 by	 the
consequences	 of	 a	 false-positive	 or	 false-negative	 diagnosis.	 These	 critically
depend	on	 the	 anticipated	 course	or	prognosis	of	 the	diagnosis	 considered	 and
the	 potential	 beneficial	 and	 adverse	 effects	 of	 possible	 additional	 diagnostic
procedures	 or	 treatments.	 Importantly,	 these	 two	 thresholds,	 A	 and	 B,	 are
commonly	 implicitly	 defined	 in	 daily	 practice	 and	 will	 often	 vary	 between
doctors.	 Often,	 history	 taking	 and	 physical	 examination	 already	 provide
important	 and	 sufficient	 diagnostic	 information	 to	 rule	 in	or	 rule	out	 a	 disease
with	 enough	 confidence	 so	 that	 the	 estimated	 probability	 of	 presence	 of	 the
disease	is	below	A	or	above	B	(see	Figure	2–1).

BOX	2–2	Diagnosis

διáγνωσις

The	term	diagnosis	is	a	compound	of	the	Greek	words	διá	(dia),	which	means	apart	or	distinction	and
γνωσις	(gnosis),	which	means	knowledge.	Diagnosis	in	medicine	can	be	defined	as	“the	art	of
distinguishing	one	disease	from	the	other.”	(Dorland	WAN.	The	American	Illustrated	Medical
Dictionary,	20th	ed.	Philadelphia,	London:	WB	Saunders	Company;	1944).	In	clinical	practice	a
diagnosis	does	not	necessarily	imply	a	well-defined,	pathophysiologically	distinct,	disease	entity,	such
as	acute	myelocyte	leukemia;	many	diagnoses	are	set	on	a	much	more	aggregate	level,	notably	in	the
beginning	of	the	diagnostic	process.	For	example,	a	physician	on	weekend	call	who	speaks	to	a	patient
with	dyspnea	or	their	family	member	will	first	try	to	set	or	rule	out	the	diagnosis,	“a	condition
requiring	immediate	action,”	before	a	more	precise	diagnosis	can	be	made,	usually	at	a	later	stage.	The
precision	of	the	diagnosis	also	depends	on	the	clinical	setting.	In	primary	care	there	often	is	no	need
for	a	very	specific	diagnosis	to	decide	on	the	next	step	(for	example,	an	antibiotic	prescription	for	a
patient	with	the	diagnosis	of	“probable	pneumonia”	based	on	signs	and	symptoms	only),	whereas	in	an
intensive	care	setting	in	a	tertiary	care	hospital,	with	more	virulent	bacteria,	more	antibiotic	resistance,
and	more	immunocompromised	and	seriously	ill	patients,	a	more	specific	diagnosis	may	be	required
(“vancomycin-resistant	pneumococcal	ventilator-associated	pneumonia”)	involving	imaging
techniques,	serology,	cultures,	and	resistance	patterns.

	

But	when	the	probability	of	the	disease	is	estimated	to	lie	in	the	grey	middle
area	 (between	A	 and	 B),	 additional	 diagnostic	 tests	 are	 commonly	 ordered	 to
decrease	the	remaining	uncertainty	about	the	presence	or	absence	of	the	disease.
Typically,	this	additional	testing	first	includes	simple,	easily	available	tests	such
as	 blood	 and	 urine	 markers	 or	 simple	 imaging	 techniques	 like	 chest	 x-ray.	 If
after	 these	 tests	 are	 conducted	 doubt	 remains	 (i.e.,	 the	 probability	 of	 disease
presence	has	not	yet	 crossed	 the	 thresholds	A	or	B),	more	 invasive	 and	 costly
diagnostic	 procedures	 are	 applied	 such	 as	magnetic	 resonance	 imaging	 (MRI),



computed	 tomography	(CT),	or	positron	emission	 tomography	(PET)	scanning,
arthroscopy,	 and/or	 biopsy.	 This	 process	 of	 diagnostic	 testing	 ends	 when	 the
estimated	probability	of	the	target	disease	becomes	sufficiently	higher	or	lower
than	the	A	or	B	threshold	to	guide	medical	action.

FIGURE	2–1	Diagnostic	Testing.

In	the	example	of	our	patient	with	complaints	of	dyspepsia,	history	taking	and
physical	 examination	 apparently	 did	 not	 provide	 the	 doctor	 with	 enough
information	 to	 decide	 about	 the	 initiation	 of	 therapeutic	 interventions,	 for
example,	 symptomatic	 treatment	with	acid-suppressing	agents	or,	 alternatively,
triple	 therapy	 to	 treat	 an	underlying	H.	pylori	 infection.	 In	view	of	 the	patient
burden	 of	 invasive	 H.	 pylori	 testing	 (i.e.,	 gastroscopy	 with	 biopsy)	 in
combination	 with	 the	 relatively	 mild	 complaints	 and	 potential	 benefits	 of	H.
pylori–targeted	therapy,	the	physician	decided	to	perform	a	noninvasive	serology
test,	 although	 this	 test	 is	 considered	 less	 accurate	 than	 the	 gastroscopy.
Apparently,	 the	 negative	 test	 results	 indeed	 convinced	 the	 physician	 that	 the
probability	 of	 H.	 pylori	 ulcer	 disease	 was	 lower	 than	 the	 clinically	 relevant
threshold	(e.g.,	10	or	20%)	because	triple	therapy	targeted	at	H.	pylori	was	not
initiated.	 Instead,	 symptomatic	 treatment,	 an	 acid-suppressing	 drug,	 was



prescribed.	 The	 probability	 of	 coronary	 heart	 disease—one	 of	 the	 differential
diagnoses	 of	 a	 patient	 with	 these	 complaints—as	 the	 underlying	 cause	 of	 the
complaints	 also	 was	 considered	 to	 be	 very	 low	 from	 the	 start	 (far	 below
threshold	A	for	this	disease),	such	that	no	additional	tests	for	that	diagnosis	were
ordered.
This	example	may	seem	subjective,	not	quantitative	and	not	evidence	based,

but	the	diagnostic	process	in	clinical	practice	is	often	just	like	that.	In	contrast	to
many	therapeutic	interventions,	quantitative	evidence	of	the	value	of	diagnostic
tests	and	certainly	of	the	added	value	of	a	test	beyond	previous,	more	simple	test
results,	 is	 often	 lacking	 [Linnet	 et	 al.,	 2012;	Moons	 et	 al.,	 2012c].	 Given	 the
importance	 of	 diagnosis	 in	 everyday	 practice,	 there	 is	 an	 urgent	 need	 for
research	 providing	 such	 quantitative	 knowledge	 [Grobbee,	 2004;	 Knottnerus,
2002b].
The	 diagnostic	 process	 thus	 is	 a	multivariable	 concern.	 It	 typically	 involves

the	 documentation	 and	 interpretation	 of	 multiple	 test	 results	 (or	 diagnostic
determinants),	including	nonclinical	patient	information	[Moons	et	al.,	1999].	In
practice,	hardly	any	diagnoses	are	based	on	a	single	diagnostic	test.	The	number
of	 diagnostic	 tests	 applied	 in	 everyday	 practice	 may	 differ	 considerably	 and
depends,	 for	 example,	 on	 the	 targeted	 disease,	 patient	 characteristics,	 and	 the
diagnostic	 certainty	 required	 to	 decide	 on	 patient	management	 (see	Box	 2–3).
Importantly,	a	natural	hierarchy	of	testing	exists.	Almost	without	exception,	any
diagnostic	 workup	 starts	 with	 nonintrusive	 tests	 such	 as	 history	 taking	 and
physical	examination.	Although	one	could	argue	about	whether	these	should	be
considered	“tests,”	we	will	treat	them	as	such	here,	as	each	consecutive	finding
will	 influence	 the	 probability	 of	 disease,	 just	 as	 a	 blood	 test	 would.	 This	 is
followed	 by	 simple	 laboratory	 or	 imaging	 tests,	 and	 eventually	 more
burdensome	and	expensive	 tests,	such	as	 imaging	techniques	requiring	contrast
fluids	or	biopsies.	Subsequent	test	results	are	always	interpreted	in	the	context	of
previous	diagnostic	information	[Moons	et	al.,	1999;	Moons	&	Grobbee,	2002a].
For	 example,	 the	 test	 result	 “presence	 of	 chest	 pain”	 is	 obviously	 interpreted
differently	in	a	healthy	5-year-old	girl	than	in	a	60-year-old	man	with	a	history
of	myocardial	 infarction.	 The	 challenge	 to	 the	 physician	 lies	 in	 predicting	 the
probability	 of	 the	 absence	 or	 presence	 of	 a	 certain	 target	 disease	 based	 on	 all
documented	test	results.	This	requires	knowledge	about	the	contribution	of	each
test	result	to	the	probability	estimation.	The	diagnostic	value	of	the	H.	pylori	test
in	the	earlier	example	is	negligible	if	 it	adds	nothing	to	the	findings	offered	by
the	few	minutes	of	history	taking	and	physical	examination,	information	that	is



always	 acquired	 by	 physicians	 anyway.	More	 technically,	 the	H.	 pylori	 test	 is
worthless	if	the	test	result	does	not	change	(increase	or	decrease)	the	probability
of	presence	of	 peptic	 ulcer	 disease	 as	based	on	 the	 results	 from	history	 taking
and	 physical	 examination.	 Importantly,	 in	 case	 the	 next	 step	 in	 clinical
management	is	already	decided	upon	(when	the	disease	probability	is	below	A	or
above	B	 in	Figure	2–1),	 one	may,	 and	perhaps	 should,	 refrain	 from	additional
testing.

BOX	2–3	Primum	Non	Nocere

Primum	non	nocere	(first	do	no	harm)	refers	to	the	principle	that	doctors	should	always	take	into
account	the	possible	harm	of	their	actions	to	patients,	and	that	an	intervention	with	an	obvious
potential	for	harm	should	not	be	initiated,	notably	when	the	benefits	of	the	intervention	are	small	or
uncertain.

Although	this	Hippocratic	principle	is	most	often	applied	to	discussions	on	the	effects	of
therapeutic	interventions,	it	is	equally	applicable	to	diagnostic	tests,	especially	for	the	more	invasive
and	burdensome	ones.	When	the	course	of	management	for	a	patient	has	been	determined,	additional
diagnostic	tests	obviously	have	no	benefit	and	can	therefore	only	be	harmful,	albeit	sometimes	to	the
healthcare	budget	only.	In	daily	practice	many	diagnostic	tests	are	being	performed	that	have	no
potential	helpful	consequences	for	patient	management.	Especially	when	additional	test	ordering	is
relatively	easy,	for	example,	serum	parameters	and	imaging	such	as	x-rays,	the	potential	consequences
for	patient	management,	as	well	as	possible	harm,	are	not	always	taken	into	account.	In	a	patient	with
a	rib	contusion	as	a	result	of	a	fall,	an	x-ray	to	rule	out	a	rib	fracture	is	useless,	because	the	test	result
will	not	influence	treatment	(i.e.,	rest	and	painkillers).	The	challenge	to	the	physician	in	any	diagnostic
process	thus	not	only	lies	in	choosing	the	optimal	diagnostic	tests	and	in	what	order,	but	also	in
knowing	when	to	stop	testing.

	

The	 works	 of	 the	 18th	 century	 Scottish	 pastor	 and	 mathematician,	 Thomas
Bayes,	have	been	instrumental	in	the	development	of	a	more	scientific	approach
toward	the	diagnostic	process	in	clinical	practice.	He	established	a	mathematical
basis	for	diagnostic	inference.	Bayes	recognized	the	sequential	and	probabilistic
nature	 of	 the	 diagnostic	 process.	 He	 emphasized	 the	 importance	 of	 prior
probabilities,	that	is,	the	probability	of	the	presence	of	a	target	diagnosis	before
any	 tests	 are	 performed.	 He	 also	 recognized	 that,	 based	 on	 subsequent	 test
results,	doctors	will	update	this	prior	probability	to	a	posterior	probability.	The
well-known	Bayes’	rule	formally	quantifies	this	posterior	probability	of	disease
presence	given	the	test	result,	based	on	the	prior	probability	of	that	disease	and
the	so-called	diagnostic	accuracy	estimates	(such	as	sensitivity	and	specificity	or
likelihood	 ratio)	 of	 that	 test	 (see	 Box	 2–4).	 Although	 it	 has	 repeatedly	 been
shown	that	this	mathematical	rule	often	does	not	hold—because	the	underlying



assumption	 of	 constant	 sensitivity	 and	 specificity	 or	 likelihood	 ratio	 across
patient	 subgroups	 is	 not	 realistic	 in	 most	 situations	 [Detrano	 et	 al.,	 1988;
Diamond,	 1992;	 Hlatky	 et	 al.,	 1984;	 Moons	 et	 al.,	 1997]—the	 rule	 has	 been
crucial	 in	 understanding	 the	 probabilistic	 and	 stepwise	 nature	 of	 diagnostic
reasoning	in	clinical	practice.
We	 should	 emphasize	 that	 setting	 a	 diagnosis	 is	 not	 itself	 a	 therapeutic

intervention.	 It	 is	 a	 vehicle	 to	 inform	 patients	 and	 guide	 patient	 management
[Biesheuvel	et	al.,	2006;	Bossuyt	et	al.,	2012].	An	established	diagnosis	is	a	label
that,	 despite	 being	 highly	 valued	 by	 medical	 professionals,	 is	 of	 no	 direct
consequence	 to	 a	 patient	 other	 than	 to	 obtain	 a	 first	 estimate	 of	 the	 expected
course	 of	 the	 complaints	 and	 to	 set	 the	 optimal	 management	 strategy.
Accordingly,	 a	 diagnostic	 test	 commonly	 has	 no	 direct	 therapeutic	 effects	 and
therefore	does	not	directly	influence	a	patient’s	prognosis.	Once	a	diagnosis,	or
rather	 the	 probability	 of	 the	 most	 likely	 diagnosis,	 is	 established	 and	 an
assessment	of	 the	probable	course	of	disease	 in	 the	 light	of	different	 treatment
alternatives	 (including	 no	 treatment)	 has	 been	 made,	 the	 optimal	 treatment
strategy	will	be	chosen	to	eventually	improve	the	patient’s	prognosis.	There	are
also	other	pathways	through	which	a	diagnostic	test	may	affect	a	patient’s	health
[Ferrante	di	Ruffano	et	al.,	2012].	Knowledge	of	specific	test	results	or	disease
presence	 may	 change	 the	 patient’s	 (and	 the	 physician’s)	 expectations	 and
perceptions,	and	 test	 results	may	shorten	 the	 time	between	symptom	onset	and
treatment	 initiation,	 as	 well	 as	 improve	 treatment	 adherence.	 Finally,	 a
diagnostic	 test	 may	 have	 direct	 therapeutic	 properties	 and	 change	 patient
outcomes.	Such	procedures	are	rare,	but	salpingography	to	determine	patency	of
the	uteral	tubes	is	an	example.
Finally,	the	difference	between	diagnosing	and	screening	for	a	disease	should

be	 recognized.	 The	 former	 starts	 with	 a	 patient	 presenting	 with	 a	 particular
symptom	 and	 sign	 suspected	 of	 a	 particular	 disease	 and	 is	 inherently
multivariable.	 Screening	 for	 a	 disease	 typically	 starts	 with	 asymptomatic
individuals	 and	 is	 commonly	 univariable.	 Examples	 include	 phenylketonuria
screening	 in	 newborns	 and	 breast	 cancer	 screening	 in	 middle-aged	 women,
where	 a	 single	 diagnostic	 test	 is	 performed	 in	 all	 subjects	 irrespective	 of
symptoms	or	signs.	In	this	chapter,	we	will	deal	with	diagnosing	exclusively.

FROM	DIAGNOSIS	IN	CLINICAL	PRACTICE	TO



DIAGNOSTIC	RESEARCH
Diagnostic	 research	 should	 be	 aimed	 at	 improving	 the	 diagnostic	 process	 in
clinical	practice.	Typically	it	focuses	on	identifying	combination(s)	of	tests	that
have	the	largest	diagnostic	yield.	In	clinical	epidemiologic	terms,	the	occurrence
relation	 of	 diagnostic	 research	 predicts	 the	 probability	 of	 the	 presence	 of	 the
disease	 of	 interest	 as	 a	 function	 of	 multiple	 diagnostic	 determinants	 in	 the
relevant	 domain.	 The	 domain	 is	 defined	 by	 patients	 suspected	 of	 having	 that
particular	disease.	Diagnostic	determinants	are	 the	diagnostic	 tests	under	 study
(so-called	 index	 tests)	 and	 typically	 include	 findings	 from	 history	 taking
(including	 age,	 gender,	 symptoms,	 and	 known	 comorbidity)	 and	 physical
examination	 (signs),	 and	 if	 applicable	 and	 necessary,	 the	 findings	 from	 more
advanced	diagnostic	testing.

BOX	2–4	Example	of	a	Two-by-Two	Table	with	Test	Results	and	Bayes’	Rule

Test	characteristics	of	test	(T)	N-terminal	pro	B-type	natriuretic	peptide	(NT-proBNP;	cut-off	36
pmol/L)	in	the	detection	of	heart	failure	in	primary	care	patients	with	conditions	known	to	be
associated	with	a	high	prevalence	of	heart	failure.
	

	 NT-proBNP	positive	(T+) NT-proBNP	negative	(T−) Total

Heart	failure	present	(D+) 		9 		0 			9
Heart	failure	absent	(D–) 69 55 124

	 78 55 133

where	positive	predictive	value	=	P(D+|	T+)	=	9/78	=	12%;	negative	predictive	value	=	P(D−|	T−)	=
55/55	=	100%;	sensitivity	=	P(T+|	D+)	=	9/9	=	100%;	specificity	=	P(T−|	D−)	=	55/124	=	44%;
likelihood	ratio	positive	test	(LR+)	=	P(T+|	D+)/[1	−	P(T−|	D−)]	=	(9/9)/(69/124)	=	1.8;	likelihood
ratio	negative	test	(LR−)	=	[(1	−	P(T+|	D+)]/[P(T−|	D−)]	=	(0/9)/(55/124)	=	0.

Bayes’	rule:

and



Alternative	(so-called	odds)	notation	of	Bayes’	rule	→	(1)	divided	by	(2):

Posterior	odds	(D+|	T+)	=	prior	odds	(D+)*	LR+

Note:	Odds(D+)	=	P(D+)/[1	−	P(D+)]

For	sequential	diagnostic	tests,	Bayes’	rule	theoretically	can	be	simply	extended:

Note	that	this	form	of	Bayes’	rule	assumes	that	the	results	of	test	1	to	test	3	are	independent	of	each
other.	However,	it	has	been	shown	that	this	assumption	in	practice	typically	does	not	hold,	as	test
results	are	often	mutually	related	simply	because	they	are	reflections	of	the	same	underlying	disease
(see	text).

The	 diagnostic	 process	 and	 thus	 diagnostic	 research	 is	 predictive	 or
descriptive	 by	 nature,	 as	 its	 object	 is	 prediction	 of	 the	 presence	 of	 the	 yet
unknown	underlying	disease.	The	goal	is	not	to	explain	the	cause	of	the	disease
under	study.	Consequently,	confounding	variables	(i.e.,	factors	that	may	distort	a
causal	relationship	between	a	particular	causal	determinant	and	an	outcome)	do
not	play	a	role	in	diagnostic	research	and	are	not	part	of	the	occurrence	relation.
This	 is	 in	 sharp	 contrast	 to	 causal	 research,	 where	 confounders	 are	 of	 critical
importance.	 In	 diagnostic	 research,	 all	 other	 determinants	 merely	 serve	 as
additional	 diagnostic	 test	 results	 that	 may	 be	 helpful	 in	 further	 distinguishing
between	 those	 with	 and	 without	 the	 disease.	 Importantly,	 diagnostic	 research
should	be	performed	 in	close	adherence	 to	daily	clinical	practice	 to	ensure	 the
applicability	of	the	findings.	Thus,	the	typical	features	of	the	diagnostic	process
outlined	previously	should	be	taken	into	account	in	the	design	of	the	study.	This
has	important	consequences	for	the	choice	of,	for	example,	the	study	population,
the	 diagnostic	 determinants	 to	 be	 evaluated,	 their	 hierarchy	 and	 temporal
sequence	of	measurement,	and	the	data	analysis.

DIAGNOSTIC	RESEARCH	VERSUS	TEST
RESEARCH
Alas,	many	published	diagnostic	studies	are	better	characterized	as	test	research



than	as	diagnostic	research.	The	objective	of	test	research	is	to	assess	whether	a
single	diagnostic	 test	 (index	test)	adequately	can	show	the	presence	or	absence
of	a	particular	disease	[Linnet	et	al.,	2012].	Often	these	studies	include	a	group
of	patients	with	the	target	disease	and	a	group	of	patients	without	this	disease	in
whom	the	results	of	the	index	test	are	also	measured.	Typically,	the	results	of	the
index	 test	 are	 categorized	 as	 positive	 or	 negative	 and	 the	 study	 results	 are
summarized	 in	 a	 2	 ×	 2	 contingency	 table	 (Box	 2–4).	 The	 table	 allows	 for
calculation	of	 the	 four	 classic	measures	 to	 estimate	diagnostic	 accuracy	 in	 test
research.	These	are:

	 	1.	Positive	predictive	value	 [P(D+	 |T+)];	probability	 (P)	of	 the	presence	of
disease	in	those	with	a	positive	test	result

		2.	Negative	predictive	value	[P(D–	|T–)];	probability	of	absence	of	disease	in
those	with	a	negative	test	result.

		3.	Sensitivity	[P(T+	|D+)];	probability	of	a	positive	test	given	presence	of	the
disease	(the	true	positive	rate)

	 	 4.	 Specificity	 [P(T–	 |D–)];	 probability	 of	 a	 negative	 test	 in	 those	 without
disease	(the	true	negative	rate)

Other—though	less	often	applied—parameters	include	the	likelihood	ratio	of
a	positive	 test	 (i.e.,	 the	probability	of	a	positive	 test	 in	 the	diseased	divided	by
the	 probability	 of	 a	 positive	 test	 in	 the	 nondiseased),	 the	 likelihood	 ratio	 of	 a
negative	test	(i.e.,	the	probability	of	a	negative	test	in	the	diseased	divided	by	the
probability	of	a	negative	test	in	the	nondiseased),	or	the	odds	ratio	(which	can	be
calculated	as	the	ratio	of	the	former	two).	The	latter	is	seldom	applied,	but	it	is
occasionally	used	in	diagnostic	meta-analyses	[Reitsma	et	al.,	2012].	If	the	index
test	 results	 are	 not	 dichotomous	 but	measured	 on	 a	 continuous	 scale,	 receiver
operating	characteristic	(ROC)	curves	can	be	produced,	based	on	sensitivity	and
specificity	of	 the	different	 cut-off	 values	of	 the	diagnostic	 test	 to	be	 evaluated
[Hanley	and	McNeil,	1982;	Harrell	et	al.,	1982].
Test	 research	 as	 described	 here	 often	 deviates	 from	 the	 main	 principle	 of

clinically	 relevant	 diagnostic	 research	 in	 that	 clinical	 practice	 is	 not	 followed,
first	and	foremost	because	the	diagnostic	process	by	definition	involves	multiple
tests	 and	 a	 natural	 hierarchy	 of	 diagnostic	 testing.	 Second,	 test	 research	 often
does	not	include	representatives	of	the	relevant	patient	domain,	that	is,	patients
presenting	with	symptoms	and	signs	suggestive	of	 the	 target	disease.	Rather,	a
group	 of	 patients	with	 evident	 disease	 is	 selected	 and	 compared	 to	 a	 group	 of



nondiseased	patients,	sometimes	even	healthy	individuals	who	are	obviously	not
suspected	of	the	disease	under	study.	Such	selection	of	study	subjects,	however,
will	lead	to	biased	estimates	of	the	test’s	performance.
There	is	a	clear	difference	in	the	occurrence	relation	between	test	research	and

diagnostic	research.	The	occurrence	relation	of	test	research	can	be	described	as:

P(T)	=	f(D)

where	P(T),	that	is,	the	probability	(0–100%)	of	the	test	result	of	the	single	index
test	T,	is	studied	as	a	function	of	the	presence	or	absence	of	the	target	disease	D.
In	the	case	of	a	dichotomous	test,	this	occurrence	relation	can	be	rewritten	for

the	estimation	of	sensitivity	as:

P(T+)	=	f(D+),

and	for	estimation	of	the	specificity	as:

P(T–)	=	f(D–),

where	T+	and	T–	indicate	a	positive	and	negative	index	test	result,	respectively,
and	D+	and	D–	the	presence	or	absence	of	the	target	disease.
The	occurrence	relation	of	test	research	that	focuses	on	predictive	values	of	a

single	test	can	be	summarized	as:

P(D)	=	f(T)

where	 the	 probability	 of	 the	 presence	 of	 disease	 (P[D]);	 range	 (0–100%)	 is
studied	as	a	function	of	the	test	result.
In	case	of	a	dichotomous	test,	this	occurrence	relation	can	be	rewritten	for	the

estimation	of	the	positive	predictive	value	as:

P(D+)	=	f(T+),

and	for	estimation	of	the	negative	predictive	value	as:

P(D–)	=	f(T–).

The	 occurrence	 relation	 of	 diagnostic	 research	 (i.e.,	 clinically	 relevant
diagnostic	studies	including	multiple	diagnostic	tests)	can	be	summarized	as:



P(D)	=	f(T1,	T2,	T3,	…	Tn)

where	 T1	 to	 Tn	 are	 the	 consecutive	 multiple	 diagnostic	 index	 tests	 (or
determinants)	being	studied.
A	 study	 to	 determine	 the	 value	 of	 plasma	N-terminal	 pro	B-type	 natriuretic

peptide	(NT-proBNP)	levels	in	diagnosing	heart	failure	serves	as	an	example	of
a	 diagnostic	 study	 primarily	 presented	 as	 test	 research.	 NT-proBNP,	 a
neuropeptide	produced	 in	 the	human	cardiac	ventricle	 as	 a	 result	of	 increasing
pressure,	was	assessed	 in	 a	 sample	of	133	primary	care	patients	 [Hobbs	et	 al.,
2002].	 Selection	 of	 these	 patients	 was	 based	 on	 the	 presence	 of	 a	 condition
known	to	be	associated	with	a	higher	prevalence	of	heart	failure	(i.e.,	a	history	of
myocardial	infarction,	angina,	hypertension,	or	diabetes),	and	the	study	was	not
restricted	 to	 the	 clinically	 more	 relevant	 group	 of	 patients	 presenting	 with
complaints	(e.g.,	fatigue	or	dyspnea)	suggestive	of	heart	failure.
Box	2–4	summarizes	the	main	results.	In	addition,	Bayes’	rule,	calculating	the

post-test	probability	(or	odds)	of	disease	as	the	product	of	the	pretest	probability
(or	odds)	of	 the	disease,	and	 the	 test’s	 likelihood	 ratio	are	 illustrated	using	 the
data	derived	from	this	study.
It	was	concluded	from	the	study	that	NT-proBNP	has	value	in	the	diagnosis	of

heart	 failure.	 Its	 main	 use	 would	 be	 to	 rule	 out	 heart	 failure	 in	 patients	 with
suspected	 heart	 failure	 in	 whom	 normal	 concentrations	 of	 NT-proBNP	 are
found.	 Several	 critical	 remarks	 can	 be	 made	 about	 this	 study,	 most	 of	 which
were	recognized	by	the	authors.	First,	the	focus	of	this	study	on	the	NT-proBNP
test	 as	 a	 single	 test	 to	 diagnose	 or	 rule	 out	 heart	 failure	 does	 not	 reflect	 the
diagnostic	approach	in	clinical	practice.	NT-proBNP	will	never	be	applied	as	the
sole	 diagnostic	 test	 in	 diagnosing	 heart	 failure.	 Simpler	 diagnostic	 tools
inevitably	 are	 used	 first,	 notably	 information	 on	 age,	 sex,	 comorbidity,	 and
symptoms	 and	 signs,	 before	 additional	 tests,	 such	 as	NT-proBNP	 and	 perhaps
electrocardiography,	 or	 even	 echocardiography,	 are	 applied	 [Rutten	 et	 al.,
2005b].	 The	 clinically	 more	 relevant	 research	 aim	 would	 thus	 be	 to	 assess
whether	 NT-proBNP	 appreciably	 adds	 to	 the	 diagnostic	 information	 (such	 as
signs	and	symptoms)	that	is	readily	available	in	clinical	care.
This	 can	only	be	 achieved	by	 comparing	 the	diagnostic	performance	of	 two

diagnostic	 strategies:	 one	 including	 all	 diagnostic	 information	 available	 to	 the
physician	 before	NT-proBNP	measurement	 is	 executed,	 and	 one	 including	 the
same	 information	 plus	 the	 NT-proBNP	 levels.	 In	 doing	 so,	 the	 multivariable
nature	of	the	diagnostic	process	in	clinical	practice	is	taken	into	account	as	well



as	 the	 inherent	hierarchy	of	diagnostic	 testing.	The	authors	 indeed	performed	a
multivariable	 logistic	 regression	 analysis	 to	 determine	 whether	 a	 model
including	sex,	history	of	myocardial	 infarction	or	diabetes,	Q	waves,	or	bundle
branch	 block	 pattern	 on	 the	 electrocardiogram,	 and	 NT-proBNP	 performed
better	 in	 diagnosing	 heart	 failure	 than	 a	 similar	model	 excluding	NT-proBNP.
Nonetheless,	 the	added	diagnostic	value	of	NT-proBNP	was	not	emphasized	in
the	presentation	of	the	results	or	in	the	conclusion,	nor	were	symptoms	and	signs
included	 as	 possible	 diagnostic	 tests	 in	 the	multivariable	 analysis.	 In	 addition,
the	 study	 population	 can	 be	 criticized.	 The	 ability	 of	 a	 diagnostic	 test	 or
combination	of	tests	to	distinguish	between	diseased	and	nondiseased	should	be
studied	 in	 those	patients	 in	whom	 the	diagnostic	problem	 truly	exists.	 In	other
words,	the	patients	should	be	representatives	of	the	domain	of	patients	suspected
of	 having	 that	 disease	 and	 in	 whom	 the	 physician	 will	 consider	 diagnostic
testing.	This	is	crucial	because	the	value	of	diagnostic	tests	critically	depends	on
the	 patient	mix	 (see	Box	 2–5)	 [Lijmer	 et	 al.,	 1999;	Rutjes	 et	 al.,	 2006].	Most
patients	included	in	the	NT-proBNP	study	(i.e.,	mainly	patients	with	conditions
known	 to	 be	 associated	 with	 a	 high	 prevalence	 of	 heart	 failure)	 were	 not
representative	of	the	clinically	relevant	domain	of	patients	visiting	their	primary
care	 physician	with	 symptoms	 and	 signs	 suggestive	 of	 heart	 failure.	 Thus,	 the
applicability	of	the	findings	to	patients	encountered	in	daily	practice	is	limited.

BOX	2–5	Sensitivity	and	Specificity	Are	Not	Constant

Are	sensitivity	and	specificity	given	properties	of	a	diagnostic	test,	and	do	predictive	values	critically
depend	on	the	prevalence	of	the	disease?

The	common	emphasis	on	sensitivity	and	specificity	in	the	presentation	of	diagnostic	studies	is	at	least
partly	attributable	to	the	notion	that	predictive	values	critically	depend	on	the	population	studied,
whereas	sensitivity	and	specificity	are	considered	by	many	to	be	constant	[Moons	&	Harrell,	2003].
There	is	no	doubt	that	predictive	values	of	diagnostic	tests	are	influenced	by	the	patient	domain.	This
may	be	best	illustrated	by	comparing	the	performance	of	a	test	in	primary	and	secondary	care.	Because
of	the	inherent	higher	prevalence	of	the	relevant	disease	in	suspected	patients	in	secondary	care
compared	to	primary	care	(because	of	the	selection	of	patients	with	a	higher	probability	of	disease	for
referral),	positive	predictive	values	are	commonly	higher	in	secondary	care	(i.e.,	fewer	false-positives)
than	in	primary	care	(more	false-positives),	while	negative	predictive	values	are	usually	higher	in
primary	care	(fewer	false-negatives).	Sensitivity,	specificity,	and	likelihood	ratios	indeed	are	not
directly	influenced	by	the	prevalence	of	the	disease	because	these	parameters	are	conditional	upon	the
presence	or	absence	of	disease.	It	has	been	shown	extensively,	however,	that	they	do	vary	according	to
differences	in	the	severity	of	disease	[Hlatky	et	al.,	1984;	Detrano	et	al.,	1988;	Diamond,	1992].	In
secondary	care,	for	example,	where	more	severely	ill	patients	will	be	presented	than	in	primary	care,
higher	levels	of	diagnostic	markers	of	a	particular	disease	(and	thus	more	test	positives)	can	be
expected	among	those	with	the	disease	than	in	primary	care.	This	will	result	in	a	higher	sensitivity	in
secondary	care	than	in	primary	care	and	a	higher	specificity	in	primary	care	[Knottnerus,	2002a].	That



sensitivity	and	specificity	are	not	constant	is	illustrated	in	two	studies	by	the	same	researchers	on	the
value	of	near	patient	testing	for	Helicobacter	Pylori	infection	in	dyspepsia	patients.	The	sensitivity	and
specificity	in	the	primary	care	setting	were	67%	and	98%,	respectively,	while	these	values	were	92%
and	90%	in	secondary	care	[Duggan	et	al.,	1999;	Duggan	et	al.,	1996].

	

The	focus	on	the	quantification	of	the	value	of	a	single	test	to	diagnose	or	rule
out	 a	 disease	 and	 the	 common	 preoccupation	 of	 such	 research	 with	 a	 test’s
sensitivity	and	specificity	are	typical	of	prevailing	diagnostic	research	[Moons	et
al.,	 2004a;	 Moons	 et	 al.,	 2012c].	 This	 is	 also	 illustrated	 by	 the	 following
statements	found	in	classic	textbooks	in	clinical	epidemiology	or	biostatistics:

Identify	the	sensitivity	and	specificity	of	the	sign,	symptom,	or	diagnostic	test	you	plan	to	use.	Many
are	already	published	and	sub	specialists	worth	their	salt	ought	either	to	know	them	from	their	field
or	be	able	to	track	them	down	[Sackett	et	al.,	1985].

and

For	every	laboratory	test	or	diagnostic	procedure	there	is	a	set	of	fundamental	questions	that	should
be	asked.	Firstly,	if	the	disease	is	present,	what	is	the	probability	that	the	test	result	will	be	positive?
This	 leads	 to	 the	notion	of	 the	sensitivity	of	 the	 test.	Secondly,	 if	 the	disease	 is	absent,	what	 is	 the
probability	 that	 the	 test	 result	 will	 be	 negative?	 This	 question	 refers	 to	 the	 specificity	 of	 the	 test
[Campbell	&	Machin,	1990].

As	 the	 goal	 of	 determining	 a	 diagnosis	 for	 patients	 is	 to	 estimate	 the
probability	of	disease	given	the	diagnostic	test	results,	the	parameters	of	interest
undoubtedly	 are	 the	 posterior	 probabilities	 or	 predictive	 values,	which	directly
reflect	 the	 diagnostic	 probabilities	 needed	 for	 decision	 making	 in	 clinical
practice.	Indeed,	patients	do	not	enter	a	physician’s	office	saying,	“I	have	been
diagnosed	with	 this	 particular	 disease	 and	would	 like	 to	 know	 the	 probability
that	 the	 available	 tests	 are	 positive.”	 For	 the	 doctor,	 this	 probability	 (i.e.,
sensitivity)	 is	 similarly	 uninformative.	 A	 focus	 on	 probabilities	 of	 test	 results
given	 the	 presence	 or	 absence	 of	 disease—sensitivity	 and	 specificity—is
unjustified	from	a	clinical	point	of	view.	It	should	be	emphasized	that	in	the	NT-
proBNP	study	example,	the	authors	stated	that	their	main	conclusion	(that	heart
failure	 can	 be	 excluded	 in	 those	with	 normal	NT-proBNP	 values)	was	 indeed
based	on	the	excellent	negative	predictive	value.	In	our	experience,	researchers
as	well	as	journal	editors	are	reluctant	to	dismiss	the	sensitivity	and	specificity	as
the	 most	 important	 parameters	 in	 diagnostic	 research,	 as	 is	 also	 reflected	 in
guidelines	on	the	reporting	[Bossuyt	et	al.,	2003a,	2003b]	and	critical	appraisal
of	 diagnostic	 studies	 [Whiting	 et	 al.,	 2011],	 although	 more	 recently	 methods



focusing	 on	 predictive	 values	 have	 been	 advocated	 [Leeflang	 et	 al.,	 2012;
Reitsma	et	al.,	2012].
A	 first	 step	 to	 de-emphasize	 these	 measures	 when	 judging	 the	 value	 of

diagnostic	 tests	 is	 to	 change	 the	 order	 in	which	 the	 traditional	 parameters	 are
presented	and	to	present	predictive	values	first	[Moons	&	Harrell,	2003;	Rutten
et	al.,	2006].	Diagnostic	knowledge	is	not	provided	by	answering	the	question,
“How	 good	 is	 this	 test?”	 Diagnostic	 knowledge	 is	 the	 information	 needed	 to
answer	 the	 question,	 “What	 is	 the	 probability	 of	 the	 presence	 or	 absence	 of	 a
specific	disease	given	these	test	results?”
Notwithstanding	 its	 limitations,	 test	 research—focusing	 on	 estimating	 the

accuracy	 of	 a	 single	 test—may	 offer	 relevant	 information.	Most	 notably,	 it	 is
helpful	in	the	developmental	phase	of	a	new	diagnostic	test,	when	the	accuracy
of	the	test	is	yet	unknown.	One	will	often	first	assess	whether	the	test	provides
different	results	in	those	with	overt	disease	and	those	without	disease,	sometimes
even	using	healthy	control	subjects	[Fryback	&	Thornbury,	1991;	Linnet	et	al.,
2012].	Furthermore,	test	research	can	be	valuable	in	the	realm	of	screening	for	a
particular	 disorder	 in	 asymptomatic	 individuals.	 In	 this	 context,	 no	 test	 results
other	 than	 the	 single	 screening	 test	 are	 considered.	 Depending	 on	 the	 type	 of
screening	not	even	age	and	gender	may	need	to	be	accounted	for	[Moons	et	al.,
2004a].

DIAGNOSTIC	RESEARCH
Because	 the	 object	 of	 diagnosis	 in	 practice	 is	 to	 predict	 the	 probability	 of	 the
presence	of	disease	from	multiple	diagnostic	test	results,	the	design	of	diagnostic
research	 is	 very	much	 determined	 by	 the	 understanding,	 if	 not	 mimicking,	 of
everyday	practice	[Moons	&	Grobbee,	2005].	In	the	following	sections,	the	three
components	of	clinical	epidemiologic	diagnostic	study	design	will	be	discussed:
theoretical	design,	design	of	data	collection,	and	design	of	data	analysis.

Theoretical	Design
As	mentioned	earlier,	the	occurrence	relation	of	diagnostic	research	is:

P(D)	=	f(T1,	T2,	T3,	…	Tn)



The	domain	of	 the	occurrence	relation	in	diagnostic	research	typically	 includes
patients	 suspected	 of	 a	 particular	 disease,	 usually	 defined	 by	 the	 presence	 (or
combination)	 of	 particular	 symptom(s)	 and/or	 sign(s)	 that	 have	 led	 to
consultation	 of	 a	 physician.	 In	 this	 context,	 the	 research	 objective	 can	 be	 to
assess	the	optimal	diagnostic	strategy;	that	is,	to	determine	which	combination	of
diagnostic	determinants	 in	what	order	most	adequately	estimate	 the	probability
of	 disease	 presence.	 The	 goal	 can	 also	 be	 to	 assess	 whether	 a	 certain,	 often
newly	developed,	diagnostic	test	provides	additional	diagnostic	value	in	clinical
practice.	 Added	 value	 means	 in	 addition	 to	 currently	 available	 or	 previously
applied	diagnostic	tests.	This	implies	a	comparison	of	two	occurrence	relations:
one	excluding	and	one	including	the	new	test	in	the	list	of	determinants	studied.
Furthermore,	 one	 could	 aim	 to	 compare	 two	 tests	 or	 different	 combinations	of
tests,	for	example,	when	a	new	less	burdensome	or	more	inexpensive	test	serves
as	 an	 alternative	 to	 another	 established	 diagnostic	 test.	 This	 implies	 a
comparison	 of	 an	 occurrence	 relation	 with	 the	 routinely	 available	 test(s)
(including	 this	 established	 test)	 and	a	 second	occurrence	 relation	 including	 the
same	 tests,	 except	 that	 this	 established	 test	 is	 substituted	 by	 the	 alternative	 or
new	test.
For	 most	 diagnostic	 studies,	 showing	 that	 a	 particular	 diagnostic	 test,

combination	 of	 tests,	 or	 test	 strategy	 improves	 estimation	 (prediction)	 of	 the
presence	 of	 a	 disease	 is	 enough	 from	 a	 clinical	 point	 of	 view,	 because	 the
clinical	consequences	(i.e.,	targeted	therapy)	and	the	effects	of	such	therapy	are
well	 established	 [Bossuyt	 et	 al.,	 2012].	 Showing	 that	 NT-proBNP	 clearly
improves	 the	 ability	 to	 diagnose	 or	 exclude	 heart	 failure	 in	 suspected	 patients
may	suffice	to	apply	such	a	test	in	daily	practice	as	there	is	an	impressive	body
of	 evidence	 showing	 that	 targeted	 treatment	 in	 heart	 failure	 improves	 survival
and	 quality	 of	 life	 [Kelder	 et	 al.,	 2011].	 Sometimes,	 however,	 the	 therapeutic
consequences	of	a	diagnosis	may	not	be	clear,	such	as	when	a	new	test	provides
truly	novel	disease	information	that	potentially	calls	for	other	treatment	choices
compared	to	the	currently	available	test.	An	example	is	functional	imaging	with
PET	 in	 diagnosing	 pancreatic	 cancer,	 for	 which	 CT	 is	 the	 widely	 accepted
reference	standard.	Compared	to	CT,	PET	may	be	especially	helpful	in	detecting
smaller	 lesions	 and	 distant	 metastases.	 Application	 of	 PET	may	 lead	 to	 other
diagnostic	 classifications	 that	 would	 require	 initiating	 other	 treatment	 options
that	potentially	have	different	patient	outcomes	than	the	use	of	CT	[Lord	et	al.,
2006;	Moons,	2010].	 In	such	a	situation,	studies	may	be	conducted	 to	estimate
the	 additional	 benefit	 of	 a	 new	 diagnostic	 test	 or	 strategy	 on	 the	 patient’s



prognosis	 (e.g.,	 in	 terms	of	morbidity,	mortality,	or	quality	of	 life),	 rather	 than
doing	 a	 study	 comparing	 the	 diagnostic	 accuracy	 of	 PET	 with	 CT	 as	 the
reference	standard.	Although	inspired	by	a	diagnostic	question,	such	studies	are
not	simply	predictive.	They	become	analogous	to	studies	assessing	the	effects	of
therapeutic	 interventions	 on	 patient	 outcome	 and,	 consequently,	 carry	 the
characteristics	 of	 intervention	 research.	 In	 intervention	 research	 the	 aim	 is	 to
explain	 (“Does	 addition	 of	 this	 test	 cause	 an	 improvement	 in	 patients’
prognoses?”)	rather	than	to	predict	(“Does	this	test	improve	the	estimation	of	the
probability	of	 the	presence	of	a	certain	disease?”).	Thus,	confounding	becomes
an	 issue,	 because	 one	 wishes	 to	 ensure	 that	 the	 observed	 effects	 are	 indeed
attributable	 to	 the	 diagnostic	 test	 or	 strategy.	 All	 of	 this	 has	 important
consequences	for	the	theoretical	design	(notably	for	the	outcome	definition),	the
design	of	data	collection	(where	randomized	trials	with	a	relevant	time	horizon
may	 be	 an	 attractive	 option),	 and	 the	 data	 analysis	 (see	 Box	 2–6).	 For	 the
purpose	of	understanding	the	principles	of	clinical	epidemiologic	study	design	in
typical	 diagnostic	 research	 (where	 index	 tests	 are	 compared	 to	 a	 reference
standard	in	the	relevant	patient	domain)	this	category	of	diagnostic	intervention
studies	 is	 not	 addressed	 in	 detail	 in	 this	 chapter;	 some	 other	 texts	 discuss	 the
principles	of	diagnostic	intervention	studies	[Biesheuvel	et	al.,	2006;	Bossuyt	et
al.,	2000;	Bossuyt	et	al.,	2012;	Lijmer	&	Bossuyt,	2009].

BOX	2–6	Diagnostic	Research	Versus	Diagnostic	Intervention	Research

Illustration	of	the	difference	between	(typical)	diagnostic	research,	assessing	the	contribution	of
multiple	diagnostic	determinants	to	the	estimation	(prediction)	of	the	presence	of	a	certain	disease	and
diagnostic	intervention	research	aimed	at	estimating	(in	this	case	explaining)	the	effect	of	diagnostic
tests	(plus	subsequent	interventions)	on	the	patient’s	prognosis.	The	latter	type	of	research	becomes
intervention	research,	and	requires	taking	extraneous	determinants	(i.e.,	confounders)	into	account.

Diagnostic	Research

P(Diagnosis)	=	f	(T1,	T2,	T3,	…	T	n)

Where	P(D)	is	the	probability	of	the	presence	(i.e.,	prevalence)	of	the	disease	of	interest	and	T1	…
Tn	represent	the	diagnostic	determinants	to	be	assessed

The	occurrence	relation	of	diagnostic	research	covers	the	bold	part	of	this	scheme:

Diagnostic	problem	→	diagnostic	strategy	→	diagnosis	→	intervention	→	outcome

Diagnostic	Intervention	Study



Prognostic	outcome	=	f	[(T1,	T2,	T3,	…	T	n)	+	(I	|	ED)]

Where	the	prognostic	outcome	could	be	any	clinically	relevant	patient	outcome,	such	as	survival,
incidence	of	a	specific	outcome,	duration	of	the	complaints	or	quality	of	life;	T1…Tn	represent	the
diagnostic	determinants	to	be	assessed;	I	is	intervention	following	diagnosis	and	ED	are
extraneous	determinants	(or	confounders)	that	should	be	taken	into	account	in	this	causal	study.

The	occurrence	relation	of	a	diagnostic	intervention	study	covers	this	entire	scheme:

Diagnostic	problem	→	diagnostic	strategy	→	diagnosis	→	intervention	→	outcome

	

Design	of	Data	Collection

Time
The	 object	 of	 the	 diagnostic	 process	 is	 cross-sectional	 by	 definition.	 In
diagnostic	 research	 the	probability	of	 the	presence	of	 a	disease	 (prevalence)	 is
estimated,	not	its	future	occurrence.	Accordingly,	the	data	for	diagnostic	studies
are	 collected	 cross-sectionally.	 The	 determinant(s)	 (the	 diagnostic	 test	 results)
and	the	outcome	(the	presence	or	absence	of	the	target	disease	as	determined	by
the	so-called	reference	standard)	are	 theoretically	determined	at	 the	same	 time.
This	 is	 the	 moment	 that	 the	 patient	 presents	 with	 the	 symptoms	 or	 signs
suggestive	 of	 the	 disease	 (t	 =	 0).	 Even	when	 the	 assessment	 of	 all	 diagnostic
determinants	 to	 be	 studied	 takes	 some	 time	 and	when	 it	 takes	 several	 days	 or
weeks	before	the	definitive	diagnosis	becomes	known,	this	time	period	is	used	to
determine	whether	at	t	=	0	the	disease	was	present.	Also,	when	a	“wait	and	see”
period	 of	 several	 months	 (e.g.,	 to	 see	 whether	 an	 underlying	 disease,	 such	 as
cancer,	becomes	manifest	or	whether	targeted	therapy	has	a	beneficial	effect)	is
used	to	set	the	final	diagnosis,	these	additional	findings	are	used	to	establish	the
diagnosis	present	at	 the	 time	the	patient	presented	 the	symptoms	(i.e.,	at	 t	=	0)
[Reitsma	et	al.,	2009],	Thus,	 in	our	view,	diagnostic	research	is	cross-sectional
research	(time	is	zero).	It	should	be	noted,	however,	that	others	consider	time	to
be	larger	 than	zero	when	it	 takes	some	time	to	set	 the	final	diagnosis	and,	as	a
consequence,	 they	 characterize	 the	 design	 of	 data	 collection	 as	 a	 follow-up	 or
cohort	study.



Census	or	Sampling
Generally,	 diagnostic	 research	 takes	 a	 census	 approach	 in	 which	 consecutive
patients	 suspected	of	 a	 certain	disease	and	who	 fulfill	 the	predefined	 inclusion
criteria	are	included.	The	potentially	relevant	diagnostic	determinants	as	well	as
the	“true”	presence	or	absence	of	the	target	disease	are	measured	in	all	patients.
Sometimes,	however,	a	sampling	approach	(i.e.,	a	case-control	study;	see	the

later	chapter	on	case-control	studies)	can	offer	a	valid	and	efficient	alternative.
In	a	diagnostic	case-control	study	(which	is	a	cross-sectional	case-control	study),
all	patients	suspected	of	the	target	disease	who	are	eventually	diagnosed	with	the
disease	(“cases”)	are	studied	in	detail,	together	with	a	sample	of	those	suspected
of	the	disease	who	turn	out	to	be	free	from	the	target	disease	(“controls”).	This
implies	 that	 the	outcome	 (reference	standard)	has	 to	be	assessed	 in	all	patients
suspected	of	the	target	disease	(otherwise	the	cases	cannot	be	identified	and	the
controls	cannot	be	sampled),	but	that	the	diagnostic	determinants	only	have	to	be
measured	 in	 cases	 and	 controls.	 As	 in	 diagnostic	 research	 using	 a	 census
approach,	 the	goal	 is	 to	obtain	absolute	probabilities	of	disease	presence	given
the	determinants.	Consequently,	in	the	data	analysis	of	a	diagnostic	case-control
study,	 the	sampling	fraction	of	 the	controls	should	always	be	accounted	 for.	A
diagnostic	 case-control	 study	 offers	 a	 particularly	 attractive	 option	 when	 the
measurement	 or	 documentation	 of	 one	 or	 more	 of	 the	 diagnostic	 tests	 under
study	 are	 time	 consuming,	 burdensome	 to	 the	 patient,	 or	 expensive,	 such	 as
certain	 imaging	 tests	 [Rutjes	 et	 al.,	 2005].	 Diagnostic	 case-control	 studies	 are
still	 relatively	 rare,	 despite	 their	 efficiency	 [Biesheuvel	 et	 al.,	 2008a].	 In	 the
example	 in	Box	 2–7,	 a	 case-control	 approach	was	 chosen	 to	 assess	 the	 added
value	of	cardiac	magnetic	resonance	(CMR)	imaging	in	diagnosing	heart	failure
in	patients	known	to	have	chronic	obstructive	pulmonary	disease.	Because	of	the
costs,	time,	and	patient	burden	involved,	CMR	measurements	were	performed	in
all	patients	with	heart	failure	(cases)	but	in	only	a	sample	of	the	remainder	of	the
participants	(controls)	[Rutten	et	al.,	2008].
Confusingly,	diagnostic	 studies	 comparing	 test	 results	 in	 a	group	of	patients

with	the	disease	under	study—often	those	in	an	advanced	stage	of	disease—with
test	results	 in	a	group	of	patients	without	 this	disease,	often	a	group	of	healthy
individuals	from	the	population	at	large,	tend	to	be	referred	to	as	diagnostic	case-
control	studies	[Rutjes	et	al.,	2005].	Many	of	 these	studies	are	not	case-control
studies,	 however,	 as	 there	 is	 no	 sampling	 of	 controls	 from	 the	 study	 base
[Biesheuvel	et	al.,	2008a].	In	addition,	as	discussed	earlier,	such	studies	will	bias



the	estimates	of	diagnostic	accuracy	of	 the	tests	being	studied	and	compromise
the	generalizability	of	 the	study	results.	This	 is	because	the	cases	and	certainly
the	healthy	controls	do	not	reflect	the	relevant	patient	domain,	which	is	all	those
suspected	of	having	the	disease	for	whom	the	tests	are	intended.

Experimental	or	Observational
Diagnostic	research	is	typically	observational	research.	In	patients	suspected	of
the	 disease	 in	 daily	 practice,	 the	 diagnostic	 determinants	 of	 interest	 (most	 of
which	 will	 be	 measured	 in	 clinical	 practice	 anyway),	 including	 possible	 new
tests,	will	be	measured	and	the	presence	of	disease	will	be	determined	using	the
reference	 standard.	 Such	 a	 cross-sectional	 study	 will	 be	 able	 to	 show	 which
combination	of	tests	best	predicts	the	presence	of	disease	or	whether	a	new	test
improves	diagnostic	accuracy.

BOX	2–7	Example	of	a	Diagnostic	Case-Control	Study

BACKGROUND:	Although	cardiovascular	magnetic	resonance	(CMR)	imaging	is	well	established,
its	diagnostic	accuracy	in	identifying	chronic	heart	failure	(CHF)	in	patients	with	chronic	obstructive
pulmonary	disease	(COPD)	has	not	yet	been	quantified.

METHODS:	Participants	were	recruited	from	a	cohort	of	405	patients	aged	65	years	or	older	with
mild	to	moderate	and	stable	COPD.	In	this	population,	83	(20.5%)	patients	had	a	new	diagnosis	of
CHF,	all	left-sided,	established	by	an	expert	panel	using	all	available	diagnostic	information,	including
echocardiography.	In	a	nested	case-control	study	design,	37	consecutive	COPD	patients	with	newly
detected	CHF	(cases)	and	a	random	sample	of	41	of	the	remaining	COPD	patients	(controls)	received
additional	CMR	measurements.	The	value	of	CMR	in	diagnosing	heart	failure	was	quantified	using
univariable	and	multivariable	logistic	modeling	in	combination	with	area	under	the	receiver	operating
characteristic	curves	(ROC	area).

RESULTS:	The	combination	of	CMR	measurements	of	left-ventricular	ejection	fraction,	indexed	left-
and	right-atrial	volume,	and	left-ventricular	end-systolic	dimensions	provided	high	added	diagnostic
value	beyond	clinical	items	(ROC	area	=	0.91)	for	identifying	CHF.	Left-sided	measurements	of	CMR
and	echocardiography	correlated	well,	including	ejection	fraction.	Right-ventricular	mass	divided	by
right-ventricular	end-diastolic	volume	was	higher	in	COPD	patients	with	CHF	than	in	those	without
concomitant	CHF.

CONCLUSIONS:	Easily	assessable	morphologic	and	volume-based	CMR	measurements	have
excellent	capacities	to	identify	previously	unknown	left-sided	chronic	heart	failure	in	mild	to	moderate
COPD	patients.	There	seems	to	be	an	adaptive	tendency	to	concentric	right-ventricular	hypertrophy	in
COPD	patients	with	left-sided	CHF.

Reproduced	with	permission	of	MOSBY,	INC,	from:	Rutten	FH,	Vonken	EJ,	Cramer	MJ,	Moons	KG,
Velthuis	BB,	Prakken	NH,	Lammers	JW,	Grobbee	DE,	Mali	WP,	Hoes	AW.	Cardiovascular	magnetic
resonance	imaging	to	identify	left-sided	chronic	heart	failure	in	stable	patients	with	chronic	obstructive



pulmonary	disease.	Am	Heart	J.	2008;156:506–512.

	
As	discussed,	setting	a	diagnosis	is	not	an	aim	in	itself,	but	rather	a	vehicle	to

guide	 patient	 management	 and	 treatment	 in	 particular.	 The	 ultimate	 goal	 of
diagnostic	 testing	 is	 to	 improve	 patient	 outcomes.	 Hence,	 it	 has	 widely	 been
advocated	that	when	establishing	the	accuracy	of	a	diagnostic	test	or	strategy,	its
impact	on	patient	outcomes	also	must	be	quantified.	Consequently,	 it	has	been
proposed	 that	 experimental	 studies	 (diagnostic	 intervention	 studies	 comparing
two	 diagnostic	 strategies)	 be	 used	 to	 answer	 diagnostic	 research	 questions
[Bossuyt	et	al.,	2012;	Lord	et	al.,	2006].
If	 a	 cross-sectional	 diagnostic	 study	has	 indicated	 that	 the	 diagnostic	 test	 or

strategy	improves	estimation	of	the	presence	of	the	disease,	the	effect	on	patient
outcome	 can	 usually	 be	 validly	 established	 without	 the	 need	 for	 a	 diagnostic
intervention	 study	 [Koffijberg	 et	 al.,	 2013].	 After	 all,	 earlier	 studies	 often
adequately	quantified	the	effects	on	patient	outcome	of	the	available	treatment(s)
for	 that	 disease.	Using	 simple	 statistical	 or	 decision	modeling	 techniques,	 one
can	 combine	 the	 results	 of	 the	 cross-sectional	 diagnostic	 accuracy	 study	 and
those	of	randomized	therapeutic	intervention	studies.	Hence,	the	effect	on	patient
outcome	 can	 be	 quantified	 if	 (1)	 diagnostic	 research	 has	 shown	 that	 the
diagnostic	 test	 or	 strategy	 improves	 diagnostic	 accuracy	 and	 (2)	 the	 effects	 of
available	therapeutic	interventions	in	that	disease	on	patient	outcome	are	known,
preferably	from	randomized	trials.	An	example	in	which	a	randomized	study	was
not	necessary	to	quantify	the	effect	of	the	new	test	on	patient	outcome	is	a	study
assessing	whether	an	 immunoassay	 test	 for	 the	detection	of	H.	pylori	 infection
can	 replace	 the	 established	 but	 more	 costly	 and	 invasive	 reference	 test	 (a
combination	of	rapid	urease	test,	urea	breath	test,	and	histology)	[Weijnen	et	al.,
2001].	The	new	test	indeed	provided	similar	diagnostic	accuracy.	As	consensus
exists	 about	 the	 therapeutic	 management	 of	 patients	 infected	 with	 H.	 pylori
(based	 on	 randomized	 controlled	 trials	 establishing	 the	 efficacy	 of	 treatment
[McColl,	 2002]),	 a	 subsequent	 diagnostic	 intervention	 study	 to	 quantify	 the
effects	of	using	the	new	immunoassay	test	on	patient	outcome	was	not	needed.
There	 are	 situations,	 however,	 in	 which	 diagnostic	 intervention	 studies	 are

needed	 to	 properly	 quantify	 the	 consequences	 of	 a	 novel	 diagnostic	 test	 or
strategy	on	patient	outcome	[Biesheuvel	et	al.,	2006;	Bossuyt	et	al.,	2000;	Lord
et	al.,	2006].	Notably,	when	a	new	diagnostic	technology	under	study	might	be
“better,”	 to	 the	 extent	 that	 it	 provides	 new	 information	 potentially	 leading	 to



other	 treatment	 choices,	 than	 the	 existing	 tests	 or	 strategy,	 a	 randomized	 trial
may	 be	 useful.	 As	 described	 previously,	 functional	 imaging	 with	 PET	 in
diagnosing	 pancreatic	 cancer,	 for	 which	 CT	 is	 the	 current	 reference,	 is	 an
example.	 Also,	 when	 there	 is	 no	 direct	 link	 between	 the	 result	 of	 the	 new
diagnostic	 test	under	study	and	an	established	 treatment	 indication,	such	as	 the
finding	of	uncalcified	small	nodules	(less	than	5.0	mm)	when	screening	for	lung
cancer	with	low-dose	spiral	CT	scanning,	an	experimental	approach	quantifying
the	 effect	 on	 patient	 outcome	may	 be	 required.	When	 an	 acceptable	 reference
standard	for	a	disease	is	lacking,	for	instance,	in	a	diagnostic	study	in	suspected
migraine	or	benign	prostatic	hyperplasia,	a	diagnostic	 intervention	may	also	be
the	 best	 option.	 Finally,	 as	 mentioned	 earlier,	 the	 index	 test	 itself	 (e.g.,
salpingography	in	suspected	tubal	blockage)	may	have	direct	therapeutic	effects.
When	performing	a	diagnostic	intervention	study	to	determine	the	impact	of	a

diagnostic	 test	 or	 strategy	 on	 patient	 outcome,	 an	 initial	 diagnostic	 research
question	 is	 transformed	 into	 a	 therapeutic	 research	 question	 (with	 the	 goal	 of
establishing	 causality)	 with	 corresponding	 consequences	 for	 the	 design	 of	 the
study.	 A	 disadvantage	 of	 a	 randomized	 approach	 to	 directly	 quantifying	 the
contribution	of	a	diagnostic	test	and	treatment	to	the	patient’s	outcome	is	that	it
often	 addresses	 diagnosis	 and	 treatment	 as	 a	 single	 combined	 strategy,	 a
“package	 deal.”	 This	 makes	 it	 impossible	 to	 determine	 afterward	 whether	 a
positive	 effect	 on	 patient	 outcome	 can	 be	 attributed	 solely	 to	 the	 improved
diagnostic	accuracy	or	to	the	new	subsequent	treatment	strategies.

Study	Population
A	diagnostic	test	or	strategy	should	be	able	to	distinguish	between	those	with	the
target	 disease	 and	 those	 without,	 among	 subjects	 representing	 the	 relevant
clinical	domain.	The	domain	 is	 thus	defined	by	patients	 suspected	of	having	a
particular	disease.	Consequently,	patients	 in	whom	 the	presence	of	disease	has
already	been	established	or	in	whom	the	probability	of	the	disease	is	considered
high	 enough	 to	 initiate	 adequate	 therapeutic	 actions	 fall	 outside	 the	 domain,
similar	to	when	the	probability	of	disease	is	deemed	sufficiently	low	to	exclude
the	 diagnosis	 (see	 also	 Figure	 2–1).	 Furthermore,	 we	 recommend	 that
investigators	 restrict	 domain	 definitions,	 and	 thus	 the	 study	 population,	 to	 the
setting	 or	 level	 of	 care	 (e.g.,	 primary	 or	 secondary	 care),	 as	 the	 diagnostic
accuracy	 and	 combinations	 of	 these	 tests	 usually	 vary	 across	 care	 settings
[Knottnerus,	2002a;	Oudega	et	al.,	2005a].	This	is	a	consequence	of	differences



in	the	distribution	of	severity	of	the	disease	across	the	different	settings.
The	 population	 of	 a	 study	 could	 be	 defined	 as	 all	 consecutive	 patients

suspected	 of	 the	 disease	 of	 interest	 that	 present	 themselves	 to	 one	 of	 the
participating	 centers	 during	 a	 defined	 period	 and	 in	 whom	 the	 additional
diagnostic	tests	under	investigation	are	considered.	Exclusion	criteria	should	be
few	 to	 ensure	wide	 applicability	of	 the	 findings.	They	would	 typically	 include
alarm	 symptoms	 requiring	 immediate	 action	 or	 referral	 (e.g.,	 melena	 in	 the
dyspepsia	 example	 in	 the	 beginning	 of	 this	 chapter)	 and	 contraindications	 for
one	 of	 the	major	 diagnostic	 determinants	 (tests)	 involved	 (e.g.,	 claustrophobia
when	MRI	assessments	are	involved).	One	could	argue	that	“patients	suspected
of	 the	 disease”	 as	 an	 inclusion	 criterion	 is	 too	 subjective.	 In	many	 studies	 the
definition,	 therefore,	 includes	 symptoms	 and	 signs	 often	 accompanying	 the
disease.	 For	 example,	 a	 study	 to	 address	 the	 added	 value	 of	 a	 novel	 test	 to
diagnose	 or	 exclude	 myocardial	 infarction	 in	 the	 primary	 care	 setting	 could
include	“patients	with	symptoms	suggestive	of	myocardial	infarction	in	primary
care.”	Alternatively,	the	study	population	can	be	defined	as	“patients	with	chest
pain	or	discomfort	in	primary	care”	or	a	combination	of	the	two:	“patients	with
chest	 pain	 of	 discomfort	 or	 other	 symptoms	 and	 signs	 compatible	 with	 a
myocardial	infarction	in	primary	care”	[Bruins	Slot	et	al.,	2013].

Diagnostic	Determinants
As	the	diagnosis	in	practice	is	typically	made	on	the	basis	of	multiple	diagnostic
determinants,	 all	 test	 results	 that	 are	 (potentially)	 used	 in	 practice	 should	 be
considered	and	measured.	In	the	earlier	example	of	the	H.	pylori	test	to	diagnose
peptic	ulcer,	the	main	signs	and	symptoms	as	well	as	the	H.	pylori	test	have	to	be
included	as	potential	determinants.	There	 is,	however,	a	 limit	 to	 the	number	of
tests	that	can	be	included	in	a	study,	because	of	logistics	and	the	larger	sample
size	 required	 with	 each	 additional	 test	 that	 is	 considered	 (see	 the	 following
discussion).	 Hence,	 the	 choice	 of	 the	 determinants	 to	 be	 included	 should	 be
based	on	both	 the	 available	 literature	 and	a	 thorough	understanding	of	 clinical
practice.
To	 optimize	 the	 applicability	 of	 the	 findings	 of	 diagnostic	 research,	 the

assessment	 of	 the	 diagnostic	 determinants	 should	 resemble	 the	 quality	 of	 this
information	 in	 daily	 clinical	 practice.	 Consequently,	 one	 could	 argue	 that	 all
determinant	 information	 should	 be	 collected	 according	 to	 usual	 care,	 without
efforts	to	standardize	or	improve	the	diagnostic	assessment.	In	a	study	involving



multiple	 sites	 and	 physicians,	 this	 may	 significantly	 increase	 inter-observer
variability	 in	 diagnostic	 testing,	which	means	 the	 potential	 diagnostic	 value	 of
test	 results	 could	 be	 underestimated,	 although	 the	 study	 would	 indicate	 the
current	 average	 diagnostic	 value	 of	 the	 tests	 in	 clinical	 practice.	This	 effect	 is
likely	to	be	larger	for	more	subjective	tests,	such	as	auscultation	of	the	lungs.	An
alternative	would	 be	 to	 train	 the	 physicians	 to	 apply	 a	 standardized	 diagnostic
assessment.	One	may	also	ask	experts	in	the	field	to	do	the	diagnostic	tests	under
study.	 This,	 however,	 has	 the	 disadvantage	 that	 it	 will	 likely	 overestimate	 the
diagnostic	accuracy	of	the	tests	in	daily	practice	and	reduce	the	applicability	of
the	 study	 results.	 For	 a	 multicenter,	 multi-doctor	 study,	 we	 recommend	 a
pragmatic	approach	where	all	diagnostic	determinants	are	assessed	as	much	as
possible	 according	 to	daily	practice	 and	by	 the	practicing	physicians	 involved,
with	some	efforts	to	standardize	measurements.

Outcome
The	 outcome	 in	 diagnostic	 research	 is	 typically	 dichotomous:	 the	 presence	 or
absence	of	the	disease	of	interest	(e.g.,	myocardial	infarction	or	pneumonia).	As
discussed,	in	clinical	practice	commonly	more	than	one	disease	is	considered	in
a	 patient	 presenting	with	 particular	 symptoms	 and	 signs,	 that	 is,	 the	 so-called
differential	 diagnosis	 [Sackett	 et	 al.,	 1985].	 Thus,	 the	 outcome	 should	 be
polytomous	 rather	 than	 dichotomous,	 although	 in	 daily	 practice	 sequential
dichotomous	steps	are	often	taken;	the	most	likely	(or	most	severe)	disease	in	the
differential	 diagnosis	 is	 diagnosed	 or	 excluded	 before	 the	 next	 diagnosis	 is
considered.	 Diagnostic	 research	 with	 polytomous	 or	 even	 ordinal	 outcomes	 is
relatively	rare	and	the	data	analysis	is	more	complicated	[Harrell,	2001].	Current
methodologic	 developments	 in	 this	 field	 no	 doubt	 will	 increase	 the	 use	 of
polytomous	outcomes	in	diagnostic	research	[Biesheuvel	et	al.,	2008b;	Roukema
et	al.,	2008;	Van	Calster	et	al.,	2012].
In	diagnostic	research,	as	in	each	epidemiologic	study,	adequate	assessment	of

the	 outcome	 is	 crucial.	 The	 outcome	 should	 be	 measured	 as	 accurately	 as
possible	 and	with	 the	 best	 available	methods.	 The	 term	most	 often	 applied	 to
indicate	the	ideal	diagnostic	outcome	is	gold	standard,	referring	to	the	virtually
nonexistent	 situation	where	measuring	 the	 disease	 is	 devoid	 of	 false-negatives
and	 false-positives	 [Reitsma	et	 al.,	 2009].	More	 recently,	 the	more	 appropriate
term	reference	standard	was	introduced	to	indicate	the	“non-golden”	properties
of	almost	all	diagnostic	procedures	in	today’s	practice,	including	procedures	like



biopsy	 combined	with	 histologic	 confirmation	 for	 cancer	 diagnoses.	Very	 few
diagnostic	 procedures	 do	 not	 require	 human	 interpretation.	 Deciding	 on	 the
reference	 standard	 is	 a	 crucial	 but	 difficult	 task	 in	 diagnostic	 research.	 The
reference	 standard	 is	 the	 best	 procedure(s)	 that	 exists	 at	 the	 time	 of	 study
initiation	 to	determine	 the	presence	or	absence	of	 the	 target	disease.	The	word
best	 in	 this	 context	 means	 the	 measurement	 of	 disease	 that	 best	 guides
subsequent	 medical	 action.	 Hence,	 the	 reference	 method	 to	 be	 used	 in	 a
diagnostic	study	may	very	well	 include	one	or	a	combination	of	expensive	and
complicated	tests	that	are	not	routinely	available	or	applied	in	everyday	clinical
practice.	 Note	 that	 this	 contrasts	 with	 the	 assessment	 of	 the	 diagnostic
determinants	 of	 interest,	 which	 should	 more	 or	 less	 mimic	 daily	 practice	 to
enhance	generalizability	of	study	results	to	daily	practice.
Preferably,	the	final	diagnosis	should	be	established	independent	of	the	results

of	 the	 diagnostic	 tests	 under	 study.	Commonly,	 the	 observer	who	 assesses	 the
final	 diagnosis	 using	 the	 reference	method	 is	 blinded	 for	 all	 of	 the	 test	 results
under	study.	If	 this	blinding	is	not	guaranteed,	 the	information	provided	by	the
preceding	tests	may	implicitly	or	explicitly	be	used	in	the	assessment	of	the	final
diagnosis.	 Consequently,	 the	 two	 information	 sources	 cannot	 be	 distinguished
and	the	estimates	of	accuracy	of	the	tests	being	studied	may	be	biased.	Although
theoretically	 this	 bias	 can	 lead	 to	 both	 an	 under-	 and	 overestimation	 of	 the
accuracy	 of	 the	 evaluated	 tests,	 it	 commonly	 results	 in	 an	 overestimation;	 the
final	 diagnosis	may	 be	 guided	 to	 some	 extent	 by	 the	 results	 of	 the	 test	 under
evaluation,	artificially	decreasing	the	number	of	false-positive	and	false-negative
results.	 This	 kind	 of	 bias	 is	 often	 referred	 to	 as	 diagnostic	 review	 or
incorporation	bias	 [Begg	&	Metz,	1990;	Ransohoff	&	Feinstein,	1978;	Sackett
et	al.,	1985;	Swets,	1988].
The	possibility	of	 blinding	 the	outcome	assessors	 for	 the	 results	 of	 the	 tests

under	 study	 depends	 on	 the	 type	 of	 reference	 standard	 applied.	 It	 is	 surely
feasible	 if	 the	 reference	 standard	 consists	 of	 a	 completely	 separate	 test,	 for
example,	imaging	techniques	or	serum	levels	of	a	marker.	Because	this	kind	of
reference	test	is	not	available	for	many	diseases	(e.g.,	psychiatric	disorders),	or	is
infeasible	 or	 even	 unethical	 to	 apply	 in	 all	 cases	 (notably	 when	 the	 test	 is
invasive	 and	 patient	 burdening),	 next	 best	 solutions	 are	 often	 sought.	 In
particular,	an	approach	involving	a	so-called	consensus	diagnosis	determined	by
an	outcome	panel	often	is	applied;	this	often	is	combined	with	a	clinical	follow-
up	 period	 to	 further	 promote	 an	 adequate	 assessment	 of	 the	 presence	 of	 the
disease	[Begg,	1990;	Reitsma	et	al.,	2009;	Swets,	1988].	Outcome	panels	consist



of	 a	 usually	 unequal	 number	 of	 experts	 on	 the	 clinical	 problem.	 During
consensus	 meetings,	 the	 panel	 establishes	 the	 final	 diagnosis	 in	 each	 study
patient	 based	 on	 as	 much	 patient	 information	 as	 possible.	 This	 includes
information	from	patient	history,	physical	examination,	and	all	additional	 tests.
Often,	 any	 clinically	 relevant	 information	 (e.g.,	 future	 diagnoses,	 response	 to
treatment	 targeted	 at	 the	 outcome	 disease)	 from	 each	 patient	 during	 a
prespecified	follow-up	period	is	also	forwarded	to	the	outcome	panel	in	order	to
allow	for	a	better	judgment	on	whether	the	target	disease	was	present	at	the	time
of	 (initial)	 presentation	 [Moons	&	Grobbee,	 2002b].	When	 using	 a	 consensus
diagnosis	 based	on	 all	 available	 information	 as	 the	 reference	 standard,	 the	 test
results	 studied	 as	 potential	 diagnostic	 determinants	 are	 usually	 also	 included
(“incorporated”)	 in	 the	outcome	assessment,	 leading	 to	 a	 risk	of	 incorporation
bias.	To	fully	prevent	incorporation	bias,	the	outcome	panel	should	decide	on	the
final	 diagnosis	without	 knowledge	 of	 the	 results	 of	 the	 particular	 test(s)	 under
study.	 This	 may	 seem	 an	 attractive	 solution,	 but	 limiting	 the	 information
forwarded	 to	 the	 panel	 may	 increase	 misclassification	 in	 the	 outcome
assessment.	There	are	no	set	solutions	to	this	dilemma	that	is	inherent	to	using	a
consensus	diagnosis	as	the	reference	standard.	The	pros	and	cons	of	excluding	or
including	the	results	from	all	or	some	of	the	tests	under	study	in	the	assessment
of	the	final	diagnosis	by	the	outcome	panel	should	be	weighed	in	each	particular
study.	Consider	a	study	that	aims	to	assess	the	diagnostic	value	of	NT-proBNP
serum	levels	or	echocardiography	in	addition	to	signs	and	symptoms	in	patients
suspected	of	heart	failure.	As	in	several	earlier	studies	on	suspected	heart	failure,
an	outcome	panel	can	determine	the	“true”	presence	or	absence	of	heart	failure
[Moons	&	Grobbee,	2002b;	Rutten	et	al.,	2005b].	When	studying	the	accuracy	of
a	test	known	to	receive	much	weight	in	the	consensus	judgment	(in	this	example
echocardiography	and	to	a	lesser	extent	NT-proBNP	levels),	it	is	preferable	not
to	use	these	tests	in	the	assessment	of	the	final	diagnosis.	Doing	so	requires	that
the	 remaining	diagnostic	 information,	 including	clinical	 follow-up	data,	 enable
the	panel	to	accurately	diagnose	patients.	Lack	of	availability	of	the	NT-proBNP
levels	 will	 probably	 not	 pose	 a	 major	 problem,	 but	 withholding	 the
echocardiographic	findings,	a	key	element	in	the	diagnosis	of	heart	failure,	from
the	 outcome	 panel	 may	 seriously	 endanger	 the	 validity	 of	 the	 outcome
assessment.	Consequently,	we	may	be	able	 to	quantify	 the	added	value	of	NT-
proBNP	 levels	 but	 not	 the	 added	 value	 of	 the	 echocardiogram	 [Kelder	 et	 al.,
2011].	Alternatively,	the	outcome	panel	could	judge	the	presence	or	absence	of
heart	 failure	 first	without	 considering	 the	 echocardiographic	 findings	 and	 then



subsequently	 with	 the	 echocardiography	 results.	 Comparing	 the	 outcome
classification	 according	 to	 both	 approaches	may	 provide	 some	 insight	 into	 the
effect	of	incorporation	bias	on	the	(boundaries	of	the)	accuracy	of	the	test	under
study,	in	this	case	echocardiography.
As	mentioned	earlier,	 in	certain	situations	it	 is	not	feasible	and	may	even	be

unethical	to	apply	the	best	available	reference	method	in	all	study	patients	at	the
time	of	 presentation,	 in	 particular	when	 the	 reference	 test	 is	 invasive	 and	may
lead	 to	complications	(such	as	pulmonary	angiography	 in	suspected	pulmonary
embolism).	 Also	 in	 studies	 in	 suspected	 malignancies,	 it	 is	 often	 difficult	 to
establish	or	rule	out	a	malignancy	at	 t	=	0,	even	when	multiple	tests,	 including
sophisticated	 imaging	 techniques,	 are	 performed.	Under	 such	 circumstances,	 a
clinical	follow-up	period	may	offer	useful	information.	It	should	be	emphasized
here	that	a	clinical	follow-up	period	is	applied	to	assess	whether	the	disease	of
interest	was	indeed	present	at	the	time	of	presentation	of	the	complaints	(t	=	0).
It	 is	 then	 assumed	 that	 the	 natural	 history	 of	 the	 (untreated)	 target	 disease
implies	that	the	target	disease	was	present	but	unrecognized	at	t	=	0.	A	clinical
follow-up	period	to	establish	a	diagnosis	has	been	successfully	applied	in	studies
on	the	accuracy	of	diagnostic	tests	for	a	variety	of	diseases,	including	pulmonary
embolism,	bacterial	meningitis,	and	certain	types	of	cancer.	For	example,	Fijten
et	 al.	 [1995]	 studied	 which	 signs	 and	 symptoms	 were	 helpful	 in	 ruling	 out
colorectal	cancer	in	patients	presenting	with	fecal	blood	loss	in	primary	care.	It
was	 impossible	 to	perform	colonoscopies	and	additional	 imaging	or	 surgery	 in
all	 participants	 to	 rule	 in	 or	 out	 a	malignancy	 at	 t	 =	 0.	 Therefore,	 all	 patients
were	followed	for	an	additional	period	of	at	least	12	months	after	inclusion	in	the
study,	 assuming	 that	 colorectal	 cancer	 detected	 during	 the	 follow-up	 period
would	 indicate	 presence	 of	 the	 cancer	 at	 baseline.	 Obviously,	 the	 follow-up
period	should	be	 limited	 in	 length,	especially	 in	diseases	with	a	relatively	high
incidence,	 to	 prevent	 new	 cases	 from	 being	 counted	 as	 prevalent	 ones.	 The
acceptable	 clinical	 follow-up	 period	 varies	 and	 depends	 on	 the	 natural	 history
and	 incidence	 of	 the	 disease	 studied.	 A	 6-	 to	 12-month	 period	 is	 often
encountered	 in	 the	 literature	 for	 cancer	 studies.	 For	 venous	 thromboembolism
this	is	usually	3	months,	and	in	a	study	of	bacterial	meningitis	it	was	1	week.
Besides	 documenting	 the	 natural	 history	 of	 a	 disease	 during	 such	 a	 clinical

follow-up	period,	one	may	also	document	 the	response	 to	 treatment	 targeted	at
the	outcome	diagnosis	and	use	this	information	to	determine	whether	the	target
disease	was	present	at	t	=	0.	Response	to	therapy	may	be	helpful	in	excluding	(in
the	 case	 of	 no	 response)	 or	 confirming	 (in	 the	 case	 of	 a	 beneficial	 effect	 on



symptoms)	 the	 target	 disease.	 In	 these	 situations,	 one	 should	 be	 aware	 that
response	following	therapy	provides	no	definite	proof	of	the	disease,	because	the
response	 could	 result	 from	 other	 factors.	 Similarly,	 lack	 of	 response	 does	 not
preclude	the	presence	of	the	disease	at	t	=	0.	Examples	of	using	the	response	to
empirical	treatment	to	confirm	a	diagnosis	are	studies	in	suspected	heart	failure
[Kelder	et	al.,	2011].

Partial	 and	 differential	 outcome	 verification.	 Ideally,	 the	 index	 tests	 and
reference	standard	are	determined	in	all	study	participants	and	in	a	standardized
manner.	For	various	reasons,	however,	the	reference	standard	may	not	have	been
performed	in	all	patients.	Such	partial	outcome	verification	might	be	attributable
to	ethical	concerns	or	patient	or	physician	preferences	(e.g.,	when	the	reference
test	 is	 considered	 unnecessary	 or	 too	 burdening,	 or	 because	 it	 is	 simply
impossible	 to	perform	 in	all	patients;	 for	example,	biopsy	and	histology	as	 the
reference	standard	in	diagnosing	cancer	can	only	be	performed	in	subjects	with
detected	nodes	or	hot	 spots	based	on	previous	 testing	 [de	Groot	et	al.,	2011a	 ;
Reitsma	 et	 al.,	 2009]).	 Partial	 outcome	 verification	 (i.e.,	 partially	 missing
outcome	data)	often	occurs	not	completely	at	random	but	selectively.	The	reason
for	 performing	 the	 reference	 standard	 is	 typically	 related	 to	 the	 test	 results	 of
preceding	 index	 tests.	Such	partial	verification	may	 lead	 to	biased	estimates	of
the	 accuracy	 of	 the	 index	 tests	 if	 only	 the	 selective	 subsample	 of	 patients	 in
whom	the	reference	test	was	executed	are	included	in	the	analysis.	This	is	known
as	partial	verification	bias,	work-up	bias,	or	referral	bias	 [Rutjes	et	al.,	2007].
Often	researchers	use	a	different,	second	best,	reference	test	to	verify	the	target
disease	 presence	 in	 those	 subjects	 for	 whom	 the	 first,	 preferred	 reference	 test
cannot	be	used	[de	Groot	et	al.,	2011b].	Such	differential	verification	will	lead	to
bias	 when	 the	 results	 of	 the	 two	 reference	 tests	 are	 treated	 in	 the	 analysis	 as
interchangeable,	 while	 both	 are	 of	 different	 quality	 in	 classifying	 the	 target
disease	 or	 may	 even	 define	 the	 target	 disease	 differently.	 Hence,	 simply
combining	all	disease	outcome	data	in	a	single	analysis	as	if	both	reference	tests
yield	 the	 same	 disease	 status	 does	 not	 reflect	 the	 “true”	 pattern	 of	 disease
presence.	Such	an	estimation	of	disease	prevalence	 thus	differs	 from	what	one
would	 have	 obtained	 if	 all	 subjects	 had	 undergone	 the	 preferred	 reference
standard.	Consequently,	all	estimated	measures	of	the	accuracy	of	the	diagnostic
index	tests	will	be	biased;	this	is	called	differential	verification	bias	[de	Groot	et
al.,	 2011b;	 Reitsma	 et	 al.,	 2009].	 Several	 solutions	 to	 deal	 with	 partial	 and
differential	outcome	verification	and	its	consequential	bias	have	been	proposed



[de	Groot	et	al.,	2011b,	2001c].	One	solution	is	multiple	imputation	of	missing
outcomes.

Design	of	Data	Analysis

Objective	of	the	Analysis
Analysis	of	data	from	multivariable	diagnostic	accuracy	research	(as	opposed	to
test	 research)	 may	 serve	 a	 number	 of	 purposes:	 (1)	 to	 show	 which	 potential
diagnostic	 determinants	 independently	 contribute	 to	 the	 estimation	 of	 the
probability	of	disease	presence	(i.e.,	which	determinants	change	the	probability
of	 disease	 presence);	 (2)	 to	 quantify	 to	 what	 extent	 these	 contributing
determinants	 change	 the	 probability	 of	 disease	 presence	 (i.e.,	 to	 estimate	 the
relative	 accuracy	 or	 weights	 of	 these	 determinants);	 (3)	 to	 develop	 and/or
validate	a	diagnostic	model	or	rule	to	facilitate	the	estimation	of	the	probability
of	disease	given	the	combination	of	test	results	in	individual	patients	in	clinical
practice	[Moons	et	al.,	2004a;	Moons	et	al.,	2012a].
Whether	all	three	goals	can	or	should	be	pursued	depends	on	the	motive	of	the

study.	If	the	aim	is	only	to	determine	whether	a	particular	test	has	added	value	or
may	 replace	 another	 existing	 test,	 then	 the	 third	 goal	 may	 not	 be	 relevant.
Furthermore,	prior	knowledge	and	the	amount	and	type	of	study	data	determine
whether	the	second	and	third	goals	should	be	addressed,	as	we	will	discuss	next.
We	do	not	intend	to	provide	full	details	on	the	statistical	analysis	of	diagnostic
data.	For	this	we	refer	to	the	statistical	literature.

Required	Number	of	Subjects
The	 multivariable	 character	 of	 diagnostic	 research	 creates	 problems	 for	 the
estimation	of	the	required	number	of	study	subjects.	Power	calculations	do	exist
for	 test	 research,	 that	 is,	 studies	 aiming	 to	 estimate	 the	 diagnostic	 value	 (e.g.,
sensitivity,	 specificity,	 predictive	 values,	 likelihood	 ratios,	 or	 ROC	 area)	 of	 a
single	 test	or	 to	compare	 the	properties	of	 two	single	 tests	 [Hanley	&	McNeil,
1983;	 Simel	 et	 al.,	 1991].	 For	 multivariable	 studies	 that	 aim	 to	 quantify	 the
independent	 contribution	 of	 each	 test	 with	 sufficient	 precision,	 no
straightforward	methods	 to	 estimate	 the	 required	 patient	 number	 are	 available.
Several	 authors	 have	 stipulated,	 however,	 that	 in	 multivariable	 prediction



research,	 including	diagnostic	 studies,	 for	each	determinant	 (or	diagnostic	 test)
studied	at	 least	10	subjects	are	needed	 in	 the	smallest	category	of	 the	outcome
variable	to	allow	proper	statistical	modeling.	In	case	of	the	typical	dichotomous
outcome,	 that	 is,	 those	 with	 or	 without	 the	 disease,	 this	 usually	 implies	 10
individuals	with	 the	 disease	 [Harrell	 et	 al.,	 1996;	 Peduzzi	 et	 al.,	 1996].	 If	 the
number	 of	 potential	 determinants	 is	 much	 larger	 than	 10%	 of	 the	 number	 of
diseased,	 the	 analysis	 tends	 to	 overestimate	 the	 accuracy	 of	 the	 diagnostic
strategy	or	model.	The	expected	number	of	patients	with	the	target	disease	thus
limits	 the	 number	 of	 determinants	 to	 be	 analyzed	 and	what	might	 be	 inferred
from	a	study.

Univariable	Analysis
Before	proceeding	 to	multivariable	analyses,	we	recommend	first	performing	a
univariable	analysis	in	which	each	individual	potential	determinant	is	related	to
the	 outcome.	Biostatisticians	 often	 refer	 to	 this	 type	 of	 analysis	 as	 a	bivariate
analysis	 because	 the	 association	 between	 two	 variables	 (determinant	 and
outcome)	is	studied.	In	diagnostic	research,	categorical	determinants	with	more
than	 two	 categories	 and	 continuous	 determinants	 are	 often	 dichotomized	 by
introducing	a	threshold.	This	commonly	leads	to	loss	of	information	[Royston	et
al.,	2006].	For	example,	dichotomizing	the	body	temperature	>	37.5°	Celsius	(C)
as	 test-positive	and	≤	37.5°	Celsius	as	 test-negative	 implies	 that	 the	diagnostic
implications	 for	 a	 person	with	 a	 temperature	 of	 38.0°C	 are	 the	 same	 as	 for	 a
person	 with	 a	 temperature	 of	 41°C.	 Second,	 the	 resulting	 association	 heavily
depends	on	the	threshold	applied.	This	may	explain	why	different	studies	of	the
same	diagnostic	test	yield	different	associations.	The	aim	of	univariable	analysis
is	 to	 obtain	 insight	 into	 the	 association	 of	 each	 potential	 determinant	 and	 the
presence	or	absence	of	the	disease.	Although	it	is	common	to	only	include	in	the
multivariable	 analysis	 the	 determinants	 that	 show	 statistical	 significance	 (P-
value	<	0.05),	in	univariable	analysis	this	may	lead	to	optimistic	estimates	of	the
accuracy	of	a	diagnostic	model	[Harrell,	2001;	Steyerberg	et	al.,	2000;	Sun	et	al.,
1996].	 This	 chance	 of	 “optimism”	 increases	 when	 the	 number	 of	 potential
determinants	clearly	exceeds	the	“1	to	10	rule”	described	earlier.	It	 is	therefore
recommended	 to	 use	 a	more	 liberal	 selection	 criterion,	 for	 example,	 P	<	 0.20,
0.25,	or	an	even	higher	threshold	[Steyerberg,	2009].	The	downside	to	this	is	that
more	determinants	will	qualify	for	multivariable	analysis,	requiring	the	need	for
so-called	internal	validation	and	penalization	or	shrinkage	methods	that	we	will



discuss	 later	 in	 this	 chapter.	 Alternatively,	 univariable	 analyses	 may	 guide
combination	 and	 clustering	 of	 determinants,	 ideally	 influenced	 by	 prior
knowledge	of	the	most	important	determinants.	Methods	have	been	developed	to
incorporate	 prior	 knowledge	 into	 the	 selection	 of	 predictors	 [Harrell,	 2001;
Steyerberg	et	al.,	2004].	Finally,	univariable	analysis	 is	useful	 to	determine	the
number	 of	 missing	 values	 for	 each	 determinant	 and	 for	 the	 outcome,	 and
whether	 these	 missing	 values	 are	 missing	 completely	 at	 random	 (MCAR),
missing	at	random	(MAR),	or	missing	not	at	random	(MNAR).

Multivariable	Analysis
Diagnostic	practice	is	probabilistic,	multivariable,	and	sequential.	Consequently,
a	 multivariable	 approach	 is	 the	 main	 component	 of	 the	 data	 analysis	 in
diagnostic	 research.	 In	 the	multivariable	 analysis,	 the	 probability	 of	 disease	 is
related	 to	 combinations	 of	multiple	 diagnostic	 determinants,	 in	 various	 orders.
Multivariable	 analysis	 can	 accommodate	 the	 order	 in	 which	 tests	 are	 used	 in
practice	 and	 will	 show	 which	 combination	 of	 tests	 truly	 contributes	 to	 the
diagnostic	 probability	 estimation.	 To	 address	 the	 chronology	 and	 sequence	 of
testing	 in	 clinical	 practice,	 the	 accuracy	 of	 combinations	 of	 easily	 obtainable
determinants	should	be	estimated	first	and	subsequently	 the	added	value	of	 the
more	burdensome	and	costly	tests	[Moons	et	al.,	1999].
Logistic	 regression	modeling	 is	 the	generally	 accepted	 statistical	method	 for

multivariable	 diagnostic	 studies	 with	 a	 dichotomous	 outcome	 [Harrell,	 2001;
Hosmer	&	Lemeshow,	1989].	Other	statistical	methods,	such	as	neural	networks
and	classification	and	regression	trees	(CART),	have	been	advocated,	but	these
received	much	criticism	as	both	often	result	in	overly	optimistic	results	[Harrell,
2001;	 Tu,	 1996].	 Therefore,	 we	 will	 focus	 on	 the	 use	 of	 logistic	 regression
models	for	multivariable	diagnostic	research.
The	determinants	included	in	the	first	multivariable	logistic	regression	model

are	 usually	 selected	 on	 the	 basis	 of	 both	 prior	 knowledge	 and	 the	 results	 of
univariable	analysis.	Also,	 the	first	model	 tends	to	concentrate	on	determinants
that	 are	 easy	 to	 obtain	 in	 practice.	 Hence,	 this	 model	 typically	 includes	 test
results	 from	 history	 taking	 and	 physical	 examination	 [Moons	 et	 al.,	 2004a;
Moons	et	al.,	1999].	A	logistic	regression	model	estimates	the	log	odds	(logit)	of
the	disease	probability	as	a	function	of	one	or	more	predictors:



in	which	β0	is	the	intercept	and	β1	to	βn	are	regression	coefficients	of	T1	to	Tn.	T1

to	Tn	are	the	results	of	the	diagnostic	determinants	(tests)	obtained	from	patient
history	 and	 physical	 examination.	The	 sum	of	 the	 intercept	 and	 the	 regression
coefficients	multiplied	by	the	measured	values	of	the	determinants	is	called	the
linear	 predictor	 (lp)	 [Harrell	 et	 al.,	 1996].	 A	 regression	 coefficient	 can	 be
interpreted	as	the	log	odds	of	the	outcome	event	relative	to	a	nonevent	per	unit
increase	in	a	specific	test,	or	 in	the	case	of	a	dichotomous	test,	 the	log	odds	of
the	outcome	event	for	a	positive	relative	to	a	negative	test.	The	odds	ratio	can	be
computed	as	the	antilog	of	the	regression	coefficient	[exp(β)].	Equation	1	can	be
rewritten	 to	 estimate	 the	 probability	 of	 the	 outcome	 event	 for	 an	 individual
patient:

The	probability	of	absence	of	disease	can	be	estimated	as:

Probability	(disease	absence)	=	1	–	probability	(disease	presence)	(Eq.	3)

The	 next	 step	 is	 to	 remove	 the	 noncontributing	 determinants	 to	 obtain	 a
reduced	model	with	 a	 similar	 diagnostic	 performance	 as	 the	 full	multivariable
model.	Noncontributing	tests	are	manually	(one	by	one)	excluded	using	the	log
likelihood	ratio	test,	again	at	a	liberal	level;	for	example,	diagnostic	tests	could
be	 excluded	 if	 the	 significance	 level	 (P-value)	 exceeds,	 say	0.10	or	 0.15.	This
leads	to	a	so-called	reduced	model	that	includes	only	those	history	and	physical
determinants	 that	 independently	 contribute	 to	 the	 probability	 estimation.	 The
regression	 coefficient	 of	 each	determinant	 reflects	 its	 independent	 contribution
(weight)	to	the	outcome	probability	(see	Equation	1).
The	 next	 step	 is	 to	 estimate	 the	 diagnostic	 accuracy	 of	 this	 reduced

multivariable	model.	 The	 accuracy	 of	 a	model	 is	 commonly	 estimated	 by	 two
parameters:	the	calibration	(reliability	or	goodness	of	fit)	and	the	discrimination
[Harrell,	 2001;	Hosmer	&	 Lemeshow,	 1989;	 Steyerberg,	 2009].	 Calibration	 is
measured	by	 the	 level	of	 agreement	between	 the	disease	probabilities	 (ranging
from	0–100%)	estimated	by	the	model	versus	the	observed	disease	frequencies.
This	 is	 usually	quantified	by	 constructing	 equally	 large	patient	 subgroups	 (say
20)	 after	 ordering	 of	 the	 estimated	 disease	 probabilities	 of	 all	 individual
participants	 (from	0–100%)	 and	 by	 comparing	 the	 calculated	 frequency	 of	 the



disease	 in	 each	 subgroup	 (in	 this	 case	 from	 those	 at	 the	 lowest	 to	 those	 at	 the
highest	5%	end	of	the	distribution)	to	the	number	of	diseased	observed	in	each
category.	 Good	 calibration	 means	 that	 the	 estimated	 probability	 of	 disease
presence	in	the	subgroups	is	similar	to	the	observed	disease	frequency.	The	best
way	 to	 examine	 this	 is	 by	 a	 graphical	 comparison.	 Figure	 2–2	 shows	 a
calibration	 plot	 of	 a	 “reduced	 diagnostic	 history	 and	 physical	 model”	 for	 the
diagnosis	 of	 deep	 vein	 thrombosis	 (DVT)	 estimated	 from	 400	 primary	 care
patients	suspected	of	DVT.	Ideally,	the	slope	of	the	calibration	plot	is	1	and	the
intercept	 0.	 The	 presented	 model	 includes	 six	 patient	 history	 and	 physical
examination	determinants,	taking	the	form	of	Equation	1.	The	calibration	of	this
model	 was	 very	 good,	 as	 the	 predicted	 probabilities	 are	 very	 similar	 to	 the
observed	disease	 prevalence	 across	 the	 entire	 distribution.	Figure	 2–2	 shows	 a
slight	 overestimation	 by	 the	 model	 in	 those	 patients	 in	 the	 lower	 estimated
disease	probability	range.

FIGURE	2–2	Calibration	plot	of	a	reduced	multivariable	logistic	regression	model,	including	six
determinants	from	patient	history	and	physical	examination	to	estimate	the	probability	of	the	presence	of
DVT	in	400	patients	suspected	of	DVT.	The	dotted	line	represents	the	line	of	identity,	that	is,	perfect	model
calibration.	All	triangles	represent	10%	of	the	patients.	The	triangle	on	the	left	end	represents	the	10%	with
the	lowest	predicted	probability	of	disease,	with	the	mean	predicted	probability	(32%)	on	the	x-axis	and	a
somewhat	lower	observed	prevalence	of	DVT	(28%)	in	the	same	patients	on	the	y-axis.

A	common	statistic	used	to	assess	whether	a	multivariable	model	shows	good



calibration	 is	 the	goodness-of-fit	 test.	A	 statistically	 significant	 (P	 <	 0.05)	 test
indicates	marked	differences	between	predicted	 and	observed	probabilities	 and
thus	 poor	 calibration	 [Hosmer	&	 Lemeshow,	 1989].	 This	 test,	 however,	 often
lacks	statistical	power	 to	determine	 important	deviations	 from	good	calibration
because	 the	 P-value	 is	 seldom	 less	 than	 0.05	 [Harrell,	 2001;	 Hosmer	 &
Lemeshow,	 1989].	 We	 therefore	 recommend	 that	 the	 investigator	 closely
examines	the	calibration	plot	to	determine	a	model’s	calibration.
The	 discrimination	 of	 a	multivariable	model	 refers	 to	 the	model’s	 ability	 to

discriminate	 between	 subjects	 with	 and	without	 the	 disease.	 This	 is	 estimated
with	the	area	under	the	ROC	curve	or	the	c-index	(index	of	concordance)	of	the
model	 [Hanley	&	McNeil,	 1982;	 Harrell	 et	 al.,	 1982].	Figure	 2–3	 shows	 the
ROC	 curve	 of	 the	 “reduced	 multivariable	 history	 and	 physical	 examination
model.”	A	multivariable	model	in	fact	can	be	considered	a	“single”	test,	existing
of	 several	 component	 tests,	 with	 the	 model’s	 estimated	 probability	 of	 disease
presence	(using	Equation	2)	as	the	“single”	test	result.	The	ROC	curve	exhibits
the	sensitivity	(“true-positive	rate”)	and	1	–	specificity	(“false-positive	rate”)	of
the	model	for	each	possible	 threshold	in	 the	range	of	“estimated	probabilities.”
The	 area	 under	 the	ROC	 curve	 reflects	 the	 overall	 discriminative	 value	 of	 the
model,	 irrespective	of	 the	 chosen	 threshold.	 It	 exhibits	 the	 extent	 to	which	 the
model	 can	 discriminate	 between	 subjects	 with	 and	 without	 the	 target	 disease.
The	diagonal	line	reflects	the	worst	model	or	test;	for	each	threshold,	the	number
of	correctly	diagnosed	patients	equals	the	number	of	false	diagnoses,	that	is,	no
discriminating	 value	 and	 an	 ROC	 area	 of	 0.5	 (“half	 of	 the	 square”).	 In	 other
words,	the	probability	of	a	false	and	true	diagnosis	is	both	50%	and	such	a	model
is	no	better	than	flipping	a	coin.	The	best	model	is	reflected	by	the	“curve”	that
runs	 from	 the	 lower	 left	 to	 the	 upper	 left	 and	 upper	 right	 corners,	 yielding	 an
ROC	area	of	1.0	(“the	entire	square”).	Hence,	the	more	the	ROC	curve	is	in	the
left	 upper	 corner—the	higher	 the	 area	under	 the	 curve	 (the	 closer	 to	1.0)—the
higher	 the	 discriminative	 value	 of	 the	model.	More	 exactly	 defined,	 the	 ROC
area	is	the	probability	that	for	each	(randomly)	chosen	pair	of	one	diseased	and
one	 nondiseased	 subject,	 the	 model	 estimates	 a	 higher	 probability	 for	 the
diseased	than	for	the	nondiseased	individual	[Hanley	&	McNeil,	1982;	Harrell	et
al.,	 1982].	 In	 our	 example,	 the	 ROC	 area	 of	 the	 “reduced	 history	 +	 physical
model”	was	0.70.



FIGURE	2–3	Example	of	an	ROC	curve	of	the	reduced	multivariable	logistic	regression	model,	including
the	same	six	determinants	as	in	Figure	2.2.	The	ROC	area	of	the	“reduced	history	+	physical	model”	was
0.70	(95%	confidence	interval	[CI],	0.66–0.74)	and	of	the	same	model	added	with	the	D-dimer	assay	0.84
(95%	CI,	0.80–0.88).

The	next	step	is	to	extend	this	model	by	the	subsequent	test	from	the	workup
in	 our	 example	 study	 on	 DVT;	 this	 was	 the	 D-dimer	 assay.	 This	 allows
estimation	of	 the	assay’s	diagnostic	value	 in	addition	 to	 the	 items	from	history
taking	and	physical	examination.	In	this	analysis,	the	same	statistical	procedures
as	 just	 described	 are	 used.	 Whether	 the	 D-dimer	 test	 is	 a	 truly	 independent
predictor	 is	 estimated	 again	 by	 the	 log	 likelihood	 ratio	 test	 [Harrell,	 2001;
Hosmer	 &	 Lemeshow,	 1989].	 Next,	 the	 calibration	 and	 discrimination	 of	 the
extended	model	(including	the	“reduced	history	+	physical	model”	items	plus	the
D-dimer	assay)	are	examined.	The	calibration	of	this	extended	model	was	good
(data	 not	 shown),	 and	 the	 discriminatory	 value	 was	 high	 (ROC	 area	 =	 0.84;
Figure	2–3).	Methods	have	been	proposed	to	formally	estimate	the	precision	of
differences	between	ROC	areas,	in	this	case	0.84–0.70	=	0.14,	by	calculating	the
95%	confidence	 interval	 (CI)	 or	 P-value	 of	 this	 difference.	 In	 this	 calculation,
one	needs	 to	account	 for	 the	correlation	between	both	models	 (“tests”)	as	 they
are	based	on	the	same	subjects	[Hanley	&	McNeil,	1983].	In	our	example	study,
the	CIs	did	not	overlap,	indicating	a	significant	added	value	of	the	D-dimer	assay
at	the	0.05	level.



This	 process	 of	 model	 extension	 can	 be	 repeated	 for	 each	 subsequent	 test.
Moreover,	all	of	these	analytic	techniques	can	be	used	to	compare	the	difference
in	the	added	diagnostic	value	of	two	tests	separately	when	the	aim	is	to	choose
between	 the	 two	 or	 to	 compare	 the	 diagnostic	 accuracy	 of	 various	 test	 orders.
We	should	emphasize	that	the	ROC	area	of	a	multivariable	diagnostic	model	or
even	a	single	diagnostic	test	has	no	direct	clinical	meaning.	It	estimates	and	can
compare	the	overall	discriminative	value	of	diagnostic	models	or	strategies.
The	DVT	example	exemplifies	the	need	for	multivariable	diagnostic	research.

A	 comparison	 between	models	 including	 fewer	 or	 additional	 tests	 enables	 the
investigator	 to	 learn	not	only	about	 the	added	value	of	 tests	but	also	about	 the
relevance	of	moving	from	simple	to	more	advanced	testing	in	practice.	It	should
be	noted	that	the	data	analysis	as	outlined	here	only	quantifies	which	subsequent
tests	 have	 independent	 or	 incremental	 value	 in	 the	 diagnostic	 probability
estimation	 and	 thus	 should	 be	 included	 in	 the	 final	 diagnostic	model	 from	 an
accuracy	point	of	view.	It	might	still	be	relevant	to	judge	whether	the	increase	in
accuracy	of	the	test	outweighs	its	costs	and	patient	burden.	This	weighing	can	be
done	formally,	 including	a	full	cost-effectiveness	or	cost-minimization	analysis
accounting	for	the	consequences	and	utilities	of	false-positive	and	false-negative
diagnoses	[Moons	et	al.,	2012b;	Vickers	&	Elkin,	2006].	This	enters	the	realm	of
medical	decision	making	and	medical	technology	assessment	and	is	not	covered
here.
The	multivariable	analysis	can	be	used	to	create	a	clinical	prediction	rule	that

can	 be	 used	 in	 clinical	 practice	 to	 estimate	 the	 probability	 that	 an	 individual
patient	has	the	target	disease	given	his	or	her	documented	test	results.	There	are
various	 examples	 of	 such	multivariable	 diagnostic	 rules:	 a	 rule	 for	 diagnosing
the	 presence	 or	 absence	 of	 DVT	 [Oudega	 et	 al.,	 2005b;	 Wells	 et	 al.,	 1997],
pulmonary	embolism	[Wells	et	al.,	1997],	conjunctivitis	[Rietveld	et	al.,	2004],
and	bacterial	meningitis	 [Oostenbrink	et	al.,	2001].	How	to	derive	a	diagnostic
rule,	the	ways	to	present	it	in	a	publication	and	how	to	enhance	its	use	in	clinical
practice	will	be	described	next.

Internal	Validation	and	Shrinkage	of	the	Diagnostic	Model
An	 initial	 prediction	 model	 commonly	 shows	 a	 too	 optimistic	 discrimination
(ROC	area	relatively	high,	closer	to	1.0)	and	calibration	(slope	close	to	1.0	and
intercept	close	to	0)	when	it	is	applied	to	the	data	from	which	it	is	derived	(i.e.,
the	 derivation	 or	 development	 data	 set).	 The	 model	 is	 so-called	 overfitted



[Harrel,	2001;	van	Houwelingen,	2001].	This	means	 that	 the	model’s	predicted
probabilities	will	be	too	extreme	(too	high	for	the	diseased	and	too	low	for	the
nondiseased)	 when	 the	 model	 is	 applied	 to	 new	 patients;	 calibration	 will	 be
poorer	and	discrimination	lower	in	daily	practice	[Altman	et	al.,	2009;	Moons	et
al.,	 2012b].	 The	 amount	 of	 optimism	 (overfitting)	 in	 both	 calibration	 and
discrimination	 can	 be	 estimated	 using	 so-called	 internal	 validation	 methods.
Here	internal	means	that	no	new	data	are	used,	just	data	from	the	derivation	set.
The	most	widely	used	internal	validation	methods	are	the	split-sample,	cross-

validation,	and	bootstrapping	methods	[Harrell,	2001;	Steyerberg,	2009].	In	the
first	 two,	 part	 of	 the	 derivation	 data	 set	 (e.g.,	 a	 random	 sample	 of	 75%	 or	 a
sample	 based	 on	 the	 time	 of	 inclusion	 in	 the	 study)	 is	 used	 for	 model
development.	 The	 remainder	 (25%)	 is	 applied	 for	 estimating	 the	 model’s
accuracy.	 With	 bootstrapping,	 first	 a	 model	 is	 developed	 (fitted)	 on	 the	 full
sample	 as	 described	 earlier.	 Then,	 multiple	 random	 samples	 (e.g.,	 100)	 are
drawn	 from	 the	 full	 sample.	 On	 each	 bootstrap	 sample,	 the	 model	 is
redeveloped.	 The	 calibration	 (slope	 and	 intercept	 of	 the	 calibration	 plot)	 and
discrimination	 (ROC	 area)	 of	 each	 bootstrap	model	 are	 then	 compared	 to	 the
corresponding	 estimates	 of	 the	 bootstrap	 models	 when	 applied	 (tested)	 in	 the
original	 full	 sample.	 These	 differences	 can	 be	 averaged,	 and	 they	 provide	 an
indication	 of	 the	 average	 optimism	 of	 the	 bootstrap	 models.	 This	 average
optimism	 in	 discrimination	 and	 calibration	 can	 be	 used	 to	 adjust	 the	 original
model	estimated	in	the	full	sample,	that	is,	adjusting	or	shrinking	the	regression
coefficients	 and	 ROC	 area.	 Application	 of	 the	 shrunken	 model	 (regression
coefficients)	 in	 new	 patients	 will	 generally	 yield	 better	 (less	 optimistic)
calibration,	and	the	adjusted	discrimination	(ROC	area)	better	approximates	the
discrimination	 that	 can	 be	 expected	 in	 clinical	 practice	 [Harrell,	 2001;
Steyerberg	 et	 al.,	 2001].	Bootstrapping	 is	 preferred	over	 split-sample	 or	 cross-
validation	as	an	internal	validation	tool	as	it	is	more	efficient;	bootstrapping	uses
all	 patient	 data	 for	 model	 development	 and	 for	 the	 model	 validation.
Importantly,	 all	 steps	 in	 the	 model’s	 development,	 including	 decisions	 on	 the
transformation,	clustering,	and	re-coding	of	variables	as	well	as	on	the	selection
of	variables	(both	in	the	univariable	and	multivariable	analysis)	can	and	should
be	 redone	 in	 every	 bootstrap	 sample	 [Harrell,	 2001;	 Steyerberg	 et	 al.,	 2003].
Bootstrapping	 techniques	 have	 become	widely	 available	 in	 standard	 statistical
software	packages,	 such	as	STATA,	SAS,	and	S-plus.	Alternative	methods	 for
shrinkage	or	penalizing	a	model	for	potential	overfitting	are	the	use	of	a	heuristic
shrinkage	factor	[Copas,	1983;	van	Houwelingen	&	LeCessie,	1990]	and	the	use



of	penalized	estimation	methods	[Harrell,	2001;	van	Houwelingen,	2001;	Moons
et	al.,	2004b].

Inferences	from	Multivariable	Analysis
The	lower	the	number	of	study	patients	and	the	higher	the	number	of	candidate
determinants,	 the	 larger	 the	 chance	 of	 optimism	 of	 the	 final	 diagnostic	model
and	 the	 need	 for	 bootstrapping	 and	 shrinkage.	 Under	 certain	 extreme
circumstances,	even	bootstrapping	and	shrinkage	techniques	cannot	account	for
all	 optimism	 [Bleeker	 et	 al.,	 2003;	 Steyerberg	 et	 al.,	 2003].	 The	 analysis	 and
inferences	 then	should	be	more	cautious.	Preferably	one	should	 then	not	 try	 to
achieve	 the	 third	 goal	 described	 previously,	 but	 rather	 restrict	 the	 analysis	 to
identifying	independent	predictors	of	the	presence	or	absence	of	the	disease	(first
goal)	 and	 estimate	 their	 shrunken	 relative	 weights	 (second	 goal).	 If	 after
bootstrapping	and	shrinkage	a	full	model	is	still	reported,	we	advise	investigators
to	 stress	 the	 need	 for	 future	 studies	 focused	 on	 confirming	 the	 observed
predictor–outcome	 associations,	 and	 to	 estimate	 the	 calibration	 and
discrimination	of	these	predictors	in	new	patient	samples.

Prediction	Rules	and	Scores
A	 diagnostic	 model	 developed	 to	 assist	 in	 setting	 a	 diagnosis	 in	 individual
patients	can	be	presented	(or	reported)	in	three	ways.	The	most	precise	method	is
to	 report	 the	 original	 (untransformed)	 logistic	 model	 with	 the	 shrunken
regression	 coefficients	 and	 corresponding	discrimination	 and	 calibration	of	 the
model.	This	model	presentation	has	the	form	of	Equation	1.	Readers	may	apply
this	model	directly	to	estimate	an	individual	patient’s	probability	of	the	disease
by	 multiplying	 the	 patient’s	 test	 results	 by	 the	 corresponding	 coefficients,
summing	 these	 up,	 and	 taking	 the	 antilog	 of	 the	 sum	 using	 Equation	 2.	 This,
however,	 requires	 a	 calculator	 or	 computerized	 patient	 record,	 which	 are	 not
always	 available	 in	 clinical	 practice.	 To	 improve	 the	 applicability	 of	 a
multivariable	 model	 in	 practice,	 one	 can	 use	 the	 (shrunken)	 regression
coefficients	to	create	a	nomogram,	as	shown	in	Figure	2–4.	This	is	rarely	done,
although	 the	 creation	 of	 a	 nomogram	 has	 become	 easy	 with	 the	 statistical
package	S-plus.
A	 final	 method	 to	 present	 a	 prediction	 model	 and	 to	 facilitate	 its

implementation	is	a	so-called	simplified	risk	score	or	scoring	rule.	The	original
(shrunken)	 regression	 coefficients	 (first	 method,	 Equation	 1)	 are	 then



transformed	 to	 rounded	 numbers	 that	 are	 easily	 added	 together.	 This	 is
commonly	 done	 by	 dividing	 each	 regression	 coefficient	 by	 the	 smallest
regression	 coefficient,	 multiplying	 it	 by	 10,	 and	 rounding	 this	 to	 the	 nearest
integer.	The	reporting	of	a	simplified	rule	must	be	accompanied	by	the	observed
disease	frequencies	across	score	categories,	as	we	will	show	in	the	example	that
follows.	This	simplification	of	a	risk	score	will	lead	to	some	loss	of	information
and	 thus	 some	 loss	 in	 diagnostic	 accuracy,	 because	 the	 original	 regression
coefficients	are	simplified	and	rounded.	However,	 this	loss	in	precision	usually
does	 not	 affect	 clinical	 relevance.	 Ideally,	 the	 loss	 in	 precision	 should	 be
minimal,	 with	 the	 simplified	 risk	 score	 as	 accurate	 as	 the	 original	 model	 but
more	 easy	 to	 use.	 To	 allow	 readers	 to	 choose,	 we	 recommend	 that	 the	 report
includes	 both	 the	 original	 untransformed	 model	 and	 the	 simplified	 risk	 score
with	the	ROC	areas.

FIGURE	2–4	Nomogram	of	a	diagnostic	model	used	to	estimate	the	probability	of	DVT	in	suspected
patients.	To	use	this	nomogram,	a	man	(corresponding	with	7	points	from	the	“Points”	scale	at	the	top	of	the
figure),	who	(obviously)	does	not	use	oral	contraception	(0	points),	has	no	leg	trauma	(6	points),	and	no
recent	malignancy	(0	points),	underwent	surgery	in	the	past	3	months	(4	points),	has	a	difference	in	calf
circumference	more	than	3	cm	(11	points),	no	vein	distention	(0	points),	and	a	D-dimer	concentration	of	≥
500	μg/L	(20	points),	receives	a	“Total	Points”	score	of	48.	The	lower	two	scales	of	the	graphic	show	that
this	score	corresponds	to	a	probability	of	DVT	of	about	0.55	(or	55%).

The	multivariable	analysis	presented	earlier	shows	which	combination	of	tests



best	 predicts	 the	 presence	 of	 disease	 (or	 whether	 a	 new	 or	 alternative	 test
improves	 prediction)	 and	 provides	 a	 tool	 to	 estimate	 an	 individual	 patient’s
probability	of	having	a	specific	disease.	It	does	not	quantify	in	what	proportion
of	suspected	patients	 the	use	of	a	diagnostic	model	or	 the	addition	of	a	new	or
alternative	 test	 will	 change	 patient	 management.	 Such	 a	 change	 in	 patient
management	can	best	be	illustrated	in	Figure	2–1.	Patients	suspected	of	having	a
disease	can	be	categorized	as	those	with	a	probability	of	the	disease	low	enough
to	exclude	the	diagnosis	(i.e.,	below	threshold	A),	those	with	a	probability	high
enough	to	consider	the	disease	to	be	present	(i.e.,	beyond	threshold	B),	and	those
in	 the	grey	area	 in	between,	where	additional	 testing	may	be	considered.	For	a
new	 or	 alternative	 diagnostic	 strategy	 or	 test	 to	 have	 an	 impact	 on	 patient
management,	 the	 proportion	 of	 patients	 that	 is	 correctly	 reclassified	 from	 one
category	 to	another	(thus	 those	with	 the	disease	 to	a	higher	category	and	 those
without	 to	 a	 lower	 category)	 should	 be	 high	 enough.	When,	 for	 example,	 the
addition	 of	 a	 new	 test	 increases	 the	 estimated	 probability	 of	 disease	 in	 some
patients	 with	 the	 target	 disease	 from,	 for	 example,	 80–90%,	 while	 both
proportions	 lie	 above	 the	B	 threshold	 for	 this	 particular	 disease,	 the	 impact	 in
daily	 practice	will	 be	 limited.	When,	 however	 a	 new	 test	 correctly	 reclassifies
many	patients	from	the	gray	area	to	either	the	area	below	the	A	or	above	the	B
threshold,	 its	 impact	 will	 be	 much	 higher.	 Such	 a	 quantification	 of	 the
reclassification	 of	 patients	 (through,	 for	 example,	 the	 net	 reclassification
improvement)	is	increasingly	being	applied	in	prediction	research	[Pencina	et	al.,
2008;	 Steyerberg	 et	 al.,	 2012].	 This	 requires,	 however,	 definition	 of	 the
thresholds	 A	 and	 B.	 This	 may	 be	 quite	 a	 challenge,	 as	 it	 typically	 requires
reaching	 consensus	 about	 something	 rather	 subjective.	 Methods	 to	 formally
quantify	the	optimal	probability	thresholds	are	available,	but	they	fall	beyond	the
scope	of	this	text.

External	Validation
As	 explained	 earlier,	 the	 possible	 optimism	 of	 a	 diagnostic	 model	 may	 be
addressed	by	 internal	validation.	However,	external	validation,	using	new	data,
is	 generally	necessary	before	 a	model	 can	be	used	 in	practice	with	 confidence
[Altman	&	Royston,	2000a;	Justice	et	al.,	1999;	Reilly	&	Evans,	2006].	External
validation	is	the	application	and	testing	of	the	model	in	new	patients.	The	term
external	 refers	 to	 the	 use	 of	 data	 from	 subjects	who	were	 not	 included	 in	 the
study	 in	 which	 the	 prediction	 model	 was	 developed.	 So	 defined,	 external



validation	can	be	performed,	for	example,	in	patients	from	the	same	centers	but
from	a	later	period	than	that	during	which	the	derivation	study	was	conducted,	or
in	patients	from	other	centers	or	even	another	country	[Justice	et	al.,	1999;	Reilly
&	Evans,	2006].	External	validation	studies	are	clearly	warranted	when	one	aims
to	apply	a	model	in	another	setting	(e.g.,	transporting	a	model	from	secondary	to
primary	care)	or	in	patient	subgroups	that	were	not	included	in	the	development
study	 (e.g.,	 transporting	 a	model	 from	 adults	 to	 children)	 [Knottnerus,	 2002a;
Oudega	et	al.,	2005a].
Too	 often,	 researchers	 use	 their	 data	 only	 to	 develop	 their	 own	 diagnostic

model,	without	even	mentioning—let	alone	validating—previous	models.	This	is
unfortunate	as	prior	knowledge	is	not	optimally	used.	Moreover,	recent	insights
show	 that	 in	 the	 case	 where	 a	 prediction	 (diagnostic	 or	 prognostic)	 model
performs	 less	 accurately	 in	 a	 validation	 population,	 the	 model	 can	 easily	 be
adjusted	 based	 on	 the	 new	 data	 to	 improve	 its	 accuracy	 in	 that	 population
[Moons	 et	 al.,	 2012b;	 Steyerberg	 et	 al.,	 2004].	 For	 example,	 the	 original
Framingham	 coronary	 risk	 prediction	model	 and	 the	Gail	 breast	 cancer	model
were	 adjusted	based	on	 later	 findings	 and	validation	 studies	 [Costantino	 et	 al.,
1999;	Grundy	et	 al.,	 1998].	An	adjusted	model	will	 then	be	based	on	both	 the
development	and	the	validation	data	set,	which	will	further	improve	its	stability
and	 applicability	 to	 other	 populations.	 The	 adjustments	 may	 vary	 from
parsimonious	 techniques	 such	 as	 updating	 the	 intercept	 of	 the	 model	 for
differences	 in	 outcome	 frequency,	 via	 adjusting	 the	 originally	 estimated
regression	 coefficients	 of	 the	 determinants	 in	 the	 model,	 to	 even	 adding	 new
determinants	 to	 the	model.	 It	 has	 been	 shown,	 however,	 that	 simple	 updating
methods	 are	 often	 sufficient	 and	 thus	 preferable	 to	 the	more	 extensive	model
adjustments	[Janssen	et	al.,	2008	&	2009;	Steyerberg	et	al.,	2004].
With	 these	 advances,	 the	 future	 may	 be	 one	 in	 which	 prediction	 models—

provided	 that	 they	 are	 correctly	 developed—are	 continuously	 validated	 and
updated	 if	 needed.	 This	 resembles	 cumulative	 meta-analyses	 in	 therapeutic
research.	Obviously,	the	more	diverse	the	settings	in	which	a	model	is	validated
and	 updated,	 the	 more	 likely	 it	 will	 generalize	 to	 new	 settings.	 The	 question
arises	 about	 how	 many	 validations	 and	 adjustments	 are	 needed	 before	 it	 is
justifiable	 to	 implement	a	prediction	model	 in	daily	practice.	Currently	 there	 is
no	 simple	 answer.	 “Stopping	 rules”	 for	 validating	 and	 updating	 prediction
models	should	be	developed	for	this	purpose.



APPLICATION	OF	STUDY	RESULTS	IN
PRACTICE
Why	are	prediction	models	constantly	used	in,	for	example,	weather	forecasting
and	 economics	 (albeit	 with	 varying	 success),	 while	 they	 still	 have	 limited
application	 in	 medicine?	 There	 are	 several	 potential	 explanations.	 First,
prediction	models	are	often	too	complex	for	daily	use	in	clinical	settings	that	are
not	supported	by	computer	technology.	This	may	improve	with	the	introduction
of	 computerized	 patient	 records	 but	 also	 may	 require	 a	 change	 in	 attitude	 by
practicing	physicians.	Second,	because	diagnostic	(and	prognostic)	models	often
are	not	routinely	validated	in	other	populations,	clinicians	may	not—and	perhaps
should	not—trust	the	probabilities	provided	by	these	models.	External	validation
studies	 as	described	 earlier	 in	 the	 chapter	 are	 still	 scarce.	Even	 less	 frequently
are	models	 validated	 or	 tested	 for	 their	 ability	 to	 change	 clinicians’	 decisions,
not	 to	mention	 their	 ability	 to	 improve	 a	 patient’s	 prognosis	 [Reilly	&	Evans,
2006;	 Stiell	 et	 al.,	 1995].	 There	 are	 no	 formal	 criteria	 to	 judge	 the
generalizability	 of	 diagnostic	 study	 results,	 but	 a	 few	 rules	 of	 thumb	 can	 be
given.	Generalizability	of	a	diagnostic	model	is	first	and	foremost	determined	by
its	 use	 in	 the	 appropriate	 domain	 of	 patients	 suspected	 of	 having	 the	 target
disease.	Second,	it	is	commonly	determined	by	the	setting	(primary,	secondary,
tertiary	 care)	 in	 which	 the	 model	 was	 developed	 and	 perhaps	 validated.	 For
example,	 particular	 symptoms	 or	 signs	 presented	 by	 patients	 in	 an	 academic
hospital	may	be	 less	 relevant	 in	patient	 populations	 from	a	general	 hospital	 or
from	primary	care	and	vice	versa	[Knottnerus,	2002a].	This	has	been	shown,	for
example,	for	extrapolation	of	a	diagnostic	rule	for	DVT	developed	in	secondary
care	 patients	 to	 primary	 care	 patients	 [Oudega	 et	 al.,	 2005a].	 Third,
generalizability	 is	 determined	 by	 the	 tests	 included	 in	 the	 final	 model.	 For
example,	the	inclusion	of	particular	advanced	tests,	such	as	spiral	CT	scanning,
may	lead	to	a	 limited	applicability	of	 the	model	 to	other	patient	populations	or
settings.
A	final	reason	why	diagnostic	models	are	often	not	applied	in	daily	practice	is

that	clinicians	may	find	 it	difficult	 to	 include	explicit	predicted	probabilities	 in
their	 decision	 making;	 many	 doctors	 are	 reluctant	 to	 accept	 that	 a	 simplified
mathematical	 formula	 replace	 their	 clinical	 experience,	 skills,	 and	 complicated
diagnostic	 reasoning	 in	 everyday	 patient	 care.	 The	 latter	 opinion	 clearly	 is	 a
misunderstanding.	 Diagnostic	 rules	 are	 tools	 that	 should	 be	 used	 to	 aid
physicians	in	their	daily	tasks,	indeed,	to	help	them	cope	with	their	complicated



diagnostic	 challenges.	 Such	 tools	 are	 not	meant	 to	 be	 a	 substitute	 for	 clinical
experience	and	skills,	but	to	strengthen	them.

WORKED-OUT	EXAMPLE
Recognition	 and	 ruling	 out	 of	 DVT	 is	 difficult	 based	 on	 history	 taking	 and
physical	 examination	 alone.	An	 adequate	 diagnosis	 in	 patients	 presenting	with
symptoms	suggestive	of	DVT	(usually	a	painful,	swollen	leg)	is	crucial	because
of	the	risk	of	potentially	fatal	pulmonary	embolism	when	DVT	is	not	adequately
treated	 with	 anticoagulants.	 False-positive	 diagnoses	 also	 should	 be	 avoided
because	of	the	bleeding	risk	associated	with	anticoagulant	therapy.	The	serum	D-
dimer	 test	 clearly	 improves	 the	 accuracy	of	diagnosing	and	 ruling	out	DVT	 in
suspected	 patients.	 Algorithms,	 including	 clinical	 assessment	 (i.e.,	 signs	 and
symptoms)	and	D-dimer	testing	are	available	that	are	widely	applied	in	clinical
practice	and	recommended	in	current	guidelines.	The	most	famous	of	these,	the
Wells	rule,	was	developed	and	validated	in	secondary	care	settings	[Wells	et	al.,
1997].	 Research	 demonstrated	 that	 the	 Wells	 rule	 cannot	 adequately	 rule	 out
DVT	in	patients	suspected	of	DVT	in	primary	care	as	too	many	(16%)	patients
in	 the	 low-risk	 category	 (Wells	 score	 below	 1)	 still	 had	DVT	 [Oudega	 et	 al.,
2005a].	The	goal	of	the	study	presented	here	(see	Box	2–8),	was	to	develop	the
optimal	diagnostic	strategy,	preferably	by	way	of	a	diagnostic	rule,	to	be	applied
in	the	primary	care	setting	[Oudega	et	al.,	2005b].

BOX	2–8	Ruling	Out	Deep	Venous	Thrombosis	in	Primary	Care:	A	Simple	Diagnostic	Algorithm
Including	D-dimer	Testing

In	primary	care,	the	physician	has	to	decide	which	patients	have	to	be	referred	for	further	diagnostic
work-up.	At	present,	only	in	20%	to	30%	of	the	referred	patients	the	diagnosis	DVT	is	confirmed.	This
puts	a	burden	on	both	patients	and	health	care	budgets.	The	question	arises	whether	the	diagnostic
work-up	and	referral	of	patients	suspected	of	DVT	in	primary	care	could	be	more	efficient.	A	simple
diagnostic	decision	rule	developed	in	primary	care	is	required	to	safely	exclude	the	presence	of	DVT
in	patients	suspected	of	DVT,	without	the	need	for	referral.	In	a	cross-sectional	study,	we	investigated
the	data	of	1295	consecutive	patients	consulting	their	primary	care	physician	with	symptoms
suggestive	of	DVT,	to	develop	and	validate	a	simple	diagnostic	decision	rule	to	safely	exclude	the
presence	of	DVT.	Independent	diagnostic	indicators	of	the	presence	of	DVT	were	male	gender,	oral
contraceptive	use,	presence	of	malignancy,	recent	surgery,	absence	of	leg	trauma,	vein	distension,	calf
difference	and	D-dimer	test	result.	Application	of	this	rule	could	reduce	the	number	of	referrals	by	at
least	23%	while	only	0.7%	of	the	patients	with	a	DVT	would	not	be	referred.	We	conclude	that	by
using	eight	simple	diagnostic	indicators	from	patient	history,	physical	examination	and	the	result	of	D-
dimer	testing,	it	is	possible	to	safely	rule	out	DVT	in	a	large	number	of	patients	in	primary	care,
reducing	unnecessary	patient	burden	and	health	care	costs.



reducing	unnecessary	patient	burden	and	health	care	costs.

Reproduced	from:	Oudega	R,	Moons	KGM,	Hoes	AW.	Ruling	out	deep	venous	thrombosis	in	primary	care:
A	simple	diagnostic	algorithm	including	D-dimer	testing.	Thromb	Haemost	2005b;94:200–5.

Theoretical	Design
The	research	question	was:	“Which	combination	of	diagnostic	determinants	best
estimates	 the	 probability	 of	 DVT	 in	 patients	 suspected	 of	 having	 DVT	 in
primary	care?”
Determinants	 considered	 included	 findings	 from	history	 taking	 and	 physical

examination	as	well	 as	 the	D-dimer	 test	 result.	The	occurrence	 relation	can	be
summarized	as:

P	(DVT)	=	f	(T1,	T2,	T3,	…	Tn)

where	T1	…	Tn	refer	to	all	potential	diagnostic	determinants	studied	(in	total	17).
The	domain	of	the	study	consisted	of	patients	presenting	to	primary	care	with

symptoms	suggestive	of	DVT.

Design	of	Data	Collection
Data	were	collected	cross-sectionally.	Participating	primary	care	physicians	were
asked	to	include	all	patients	in	whom	the	presence	of	DVT	was	suspected	during
an	 inclusion	 period	 of	 17	 months.	 All	 17	 diagnostic	 determinants	 and	 the
reference	 standard	 were	 assessed	 in	 all	 included	 patients.	 Thus,	 the	 time
dimension	of	data	collection	was	zero,	a	census	(and	no	sampling)	approach	was
taken,	and	the	study	was	observational	(and	not	experimental).
The	inclusion	criterion	was	phrased	as	“all	patients	aged	18	years	or	older	in

whom	the	primary	care	physician	suspected	deep	vein	thrombosis,”	while	in	the
information	 forwarded	 to	 the	 primary	 care	 physician,	 suspicion	 of	 DVT	 was
explicitly	defined	as	at	least	one	of	the	following	symptoms	or	signs	of	the	lower
extremities:	swelling,	redness,	and/or	pain.	Exclusion	criteria	included	a	duration
of	 the	 symptoms	exceeding	30	days	and	 suspicion	of	pulmonary	embolism.	 In
total,	 110	 primary	 care	 physicians	 in	 three	 regions	 in	 the	 central	 part	 of	 the



Netherlands,	each	served	by	one	hospital,	were	involved.
All	 items	 from	 history	 and	 physical	 examination	were	 recorded	 in	 the	 case

record	 form	by	 the	patient’s	primary	 care	physician.	The	D-dimer	 test	 and	 the
reference	 standard	 (real	 time	 B-mode	 compression	 ultrasonography)	 were
performed	 in	 the	 adherent	 hospital.	 In	 patients	 with	 a	 normal	 compression
ultrasonography,	 the	procedure	was	 repeated	after	7	days	 to	definitely	 rule	out
DVT.	The	diagnostic	determinants	under	study	and	the	result	from	the	reference
standard	were	recorded	in	all	1,295	included	patients.

Design	of	Data	Analysis
After	univariable	analysis,	a	multivariable	logistic	regression	analysis	was	done
including	 all	 16	 findings	 from	 history	 taking	 and	 physical	 examination	 in	 the
model	to	determine	which	of	these	independently	contributed	to	the	presence	or
absence	of	DVT.	Model	 reduction	was	performed	by	excluding	variables	 from
the	 model	 with	 a	 P-value	 >	 0.10	 based	 on	 the	 log	 likelihood	 ratio	 test.
Subsequently,	 the	D-dimer	 test	was	 added	 to	 the	 reduced	 “history	+	 physical”
model	 to	quantify	its	 incremental	value,	which	resulted	in	the	final	model.	The
calibration	 and	 ROC	 area	 of	 both	 models	 (with	 and	 without	 D-dimer)	 were
estimated.	Bootstrapping	techniques,	repeating	the	entire	modeling	process,	were
used	 to	 internally	 validate	 the	 final	 model	 and	 to	 adjust	 the	 estimated
performance	of	the	model	for	optimism.	The	model’s	performance	obtained	after
bootstrapping	 was	 considered	 to	 approximate	 the	 expected	 performance	 in
similar	 future	 patients.	 To	 construct	 an	 easily	 applicable	 diagnostic	 rule,	 the
regression	 coefficients	 of	 the	 variables	 in	 the	 final	model	were	 transformed	 to
integers	 according	 to	 their	 relative	 contributions	 (quantified	 through	 the
regression	coefficients)	to	the	probability	estimation.	Finally,	after	estimating	the
score	 for	each	patient,	 the	absolute	percentages	of	correctly	diagnosed	patients
across	score	categories	were	estimated.	One	hundred	and	twenty-seven	subjects
had	missing	values	for	one	or	more	tests	under	study.	Per	predictor,	on	average,
2–3%	of	 the	 values	were	missing.	As	 data	were	 not	MCAR,	 deleting	 subjects
with	a	missing	value	would	lead	not	only	to	a	loss	of	statistical	power	but	also	to
biased	 results.	 To	 decrease	 bias	 and	 increase	 statistical	 efficiency,	 the	missing
values	were	imputed.



Results	and	Implications
Of	the	1,295	patients	included,	289	had	DVT	(prevalence	22%).	An	abnormal	D-
dimer	 level	 was	 by	 far	 the	 strongest	 determinant	 of	 the	 presence	 of	 DVT
(univariable	odds	ratio	of	35.7;	95%	CI,	13.3–100.0).	In	multivariable	analysis,	7
of	 the	 history	 and	 physical	 examination	 items	 were	 independent	 predictors	 of
DVT:	male	 gender,	 use	 of	 oral	 contraceptives,	 presence	 of	malignancy,	 recent
surgery,	 absence	 of	 leg	 trauma,	 vein	 distension,	 and	 a	 difference	 in	 calf
circumference	between	 the	 two	 legs	of	3	cm	or	more.	The	ROC	of	 this	model
was	 0.68	 (95%	 CI,	 0.65–0.71).	 The	 multivariable	 model	 including	 these	 7
determinants	 plus	 the	D-dimer	 test	 had	 an	 ROC	 area	 of	 0.80	 before	 and	 0.78
(95%	 CI,	 0.75–0.81)	 after	 bootstrapping	 and	 shrinkage.	 This	 indicates	 a
substantial	 added	value.	The	odds	 ratio	 of	 the	D-dimer	 assay	 (after	 shrinkage)
was	 20.3	 (8.3–49.9).	 The	 calibration	 plot—after	 bootstrapping—of	 the	 final
model	showed	good	calibration;	the	P-value	of	the	goodness	of	fit	test	was	0.56.
The	final,	untransformed	model	after	shrinkage	was:

Probability	of	DVT	=	1/[1	+	exp–	(–5.47	+	0·59*male	gender	+	0·75*OC
use	+	0·42*presence	of	malignancy	+	0·38*recent	surgery	+	0·60*absence
of	leg	trauma	+	0.48*vein	distension	+	1·13*calf	difference	≥	3cm	+
3·01*abnormal	D-dimer)]

TABLE	2–1	Probability	of	Deep	Vein	Thrombosis	(DVT)	by	Risk	Score

To	 facilitate	 application	 of	 this	 model	 in	 daily	 practice,	 the	 following
simplified	scoring	rule	was	derived:

Score	=	1*male	gender	+	1*oral	contraceptive	use	+	1*presence	of
malignancy	+	1*recent	surgery	+	1*absence	of	leg	trauma	+	1*vein
distension	+	2*difference	in	calf	circumference	≥	3	cm	+	6*abnormal	D-
dimer	test



The	score	ranged	from	0–13	points,	and	the	ROC	area	of	 the	simplified	rule
was	 also	0.78.	Table	2–1	 shows	 the	number	of	participants	 and	probability	of
DVT	in	different	categories	of	the	risk	score.
As	 an	 example,	 a	 woman	 using	 oral	 contraceptives	 who	was	 without	 a	 leg

trauma	 but	 had	 vein	 distension	 and	 a	 negative	 D-dimer	 test	 would	 receive	 a
score	 of	 3	 (0	 +	 1	 +	 0	 +	 0	 +	 1	 +	 1	 +	 0	 +	 0),	 corresponding	with	 a	 very	 low
estimated	probability	of	DVT	of	0.7%.
It	was	concluded	from	the	study	that	a	simple	diagnostic	algorithm	based	on

history	 taking,	 physical	 examination,	 and	 D-dimer	 testing	 can	 be	 helpful	 in
safely	 ruling	 out	 DVT	 in	 primary	 care	 and	 thus	 would	 reduce	 the	 number	 of
unnecessary	referrals	for	suspected	DVT.
Later,	 the	 accuracy	 of	 this	 simplified	 rule	 was	 externally	 validated	 in	 three

regions	 in	 the	Netherlands	[Büller	et	al.,	2009].	This	study	showed	that	among
DVT-suspected	 patients	 not	 referred	 for	 ultrasonography	 in	 daily	 practice
because	 of	 a	 risk	 score	 of	 ≤	 3,	 the	 proportion	 with	 a	 diagnosis	 of	 DVT	 or
pulmonary	embolism	within	3	months	was	indeed	low	(1.4%).	The	rule	has	been
included	in	the	current	primary	care	clinical	guideline	on	suspected	DVT	in	the
Netherlands.



Chapter	3



Etiologic	Research

INTRODUCTION
A	57-year-old	female	had	a	heart	attack.	She	had	no	prior	symptoms	of	vascular
disease,	 is	 not	 obese,	 is	 a	 nonsmoker	 and	has	normal	blood	pressure	 and	 lipid
levels.	However,	she	has	several	family	members	who	experienced	a	myocardial
infarction	 at	 a	 relatively	young	 age.	At	 the	 time	of	 her	 cardiac	 event,	 she	was
quickly	transported	to	the	hospital	and	had	immediate	coronary	angioplasty	with
placement	 of	 a	 drug-eluting	 stent.	 The	 attending	 cardiologist	 subsequently	 put
her	 on	 a	 regimen	 of	 aspirin,	 beta-blockers,	 and	 an	 angiotensin-converting
enzyme	(ACE)	inhibitor.
She	 visits	 you	 to	 ask	what	 she	 can	 do	 to	 prevent	 a	 future	 cardiac	 event.	 Is

there	 an	 explanation	 for	 her	 disease?	 Might	 it	 be	 genetic?	 Is	 it	 because	 of
reaching	menopause?	Is	there	anything	she	should	change	in	her	lifestyle?	You
promise	 her	 that	 you	will	 look	 at	 the	 literature,	 and	 soon	 you	 come	 across	 an
intriguing	 report	 by	Sullivan	 [1981]	 suggesting	 that	 one	 protective	mechanism
for	 heart	 disease	 in	 women	 before	menopause	 is	 actually	monthly	 periods.	 In
some	 women,	 the	 loss	 of	 blood	 compensates	 for	 excessive	 iron	 storage.
Excessive	 iron	 storage	 can	 make	 the	 heart	 more	 vulnerable	 to	 ischemia	 or
promote	 atherosclerosis.	 Another	 paper	 by	 Roest	 et	 al.	 [1999]	 shows	 that	 a
relatively	 common	 heterozygous	 form	 of	 the	 gene	 that	 also	 codes	 for
hemochromatosis	may	 lead	 to	 subclinical	 cardiac	 tissue	 iron	 accumulation	 and
thereby	 increase	 the	 risk	 of	 cardiac	 events.	 Apart	 from	 a	 genetic	 tendency	 to
accumulate	 iron,	 it	also	has	been	suggested	 that	excess	 iron	storage	may	result
from	 an	 inappropriately	 high	 intake	 of	 iron	 through	 the	 diet.	 This	 raises	 the



question	of	whether	a	high	dietary	iron	intake	may	be	involved	in	cardiac	risk	in
otherwise	low-risk	individuals.

ETIOLOGIC	RESEARCH	IN	EPIDEMIOLOGY
The	origins	of	 today’s	clinical	epidemiology	can	be	found	 in	early	research	on
the	 causes	 of	 common	 diseases	 in	 the	 population.	 Initially,	 the	 focus	 was	 on
communicable	diseases	with	classic	discoveries	like	the	one	by	John	Snow,	who
unmasked	 the	Broad	Street	pump	as	a	source	of	a	cholera	epidemic	 in	London
even	before	the	notion	of	germs	as	a	cause	of	infectious	diseases	became	firmly
established	(see	Figure	3–1).	Gradually	the	scope	has	broadened,	with	virtually
all	chronic	and	acute	diseases	now	being	addressed	by	epidemiologic	 research.
Although	 there	 seems	 to	 be	 a	 common	belief	 that	 epidemiologic	 studies	 alone
cannot	clarify	causal	associations,	 the	generally	accepted	relationships	between
smoking	 and	 lung	 cancer,	 cholesterol	 and	 cardiovascular	 disease,	 and	 the
occurrence	 of	 vaginal	 cancer	 in	 daughters	 of	 diethylstilbestrol	 (DES)	 users
provide	compelling	examples	to	the	contrary.

FIGURE	3–1	Cover	of	John	Snow’s	report,	On	the	Mode	of	Communication	of	Cholera,	published	in	1855



by	John	Churchill,	London.	Snow’s	observations	on	the	method	of	transfer	of	this	disease	virtually	ended	a
London	cholera	epidemic	and	laid	the	foundation	for	the	new	science	of	clinical	epidemiology.
Reproduced	from	Snow	(1855).	On	the	Mode	of	Communication	of	Cholera.	London:	John	Churchill,	New
Burlington	Street,	England.

This	chapter	discusses	the	principles	and	methods	of	etiologic	epidemiologic
research	in	a	clinical	setting	and	is	exemplified	by	a	clinical	epidemiologic	study
on	 the	causal	effect	of	excessive	 iron	storage	on	coronary	heart	disease	 risk	 in
women	(see	Box	3–1).	This	cohort	study	examined	a	large	group	of	women	for
baseline	 iron	 metabolism	 values	 and	 other	 relevant	 factors	 who	 subsequently
were	followed	over	time,	with	the	occurrence	of	myocardial	infarction	and	other
manifestations	 of	 cardiovascular	 disease	 being	 recorded.	 As	 the	 baseline
assessments	 included	 measurements	 of	 dietary	 intake,	 the	 data	 allowed	 the
relationship	between	varying	levels	of	dietary	iron	intake	with	the	probability	of
future	cardiovascular	events	to	be	established.

BOX	3–1	Dietary	Haem	Iron	and	Coronary	Heart	Disease	in	Women

DAPHNE	L.	VAN	DER	A
PETRA	H.M.	PEETERS
DIEDERICK	E.	GROBBEE
JOANNES	J.M.	MARX
YVONNE	T.	VAN	DER	SCHOUW

AIMS:	A	role	for	iron	in	the	risk	of	ischaemic	heart	disease	has	been	supported	by	in	vitro	and	in	vivo
studies.	We	investigated	whether	dietary	haem	iron	intake	is	associated	with	coronary	heart	disease
(CHD)	risk	in	a	large	population-based	cohort	of	middle-aged	women.

METHODS	AND	RESULTS:	We	used	data	of	16,136	women	aged	49–70	years	at	recruitment
between	1993	and	1997.	Follow-up	was	complete	until	1	January	2000	and	252	newly	diagnosed	CHD
cases	were	documented.	Cox	proportional	hazards	analysis	was	used	to	estimate	hazard	ratios	of	CHD
for	quartiles	of	haem	iron	intake,	adjusted	for	cardiovascular	and	nutritional	risk	factors.	We	stratified
by	the	presence	of	additional	cardiovascular	risk	factors,	menstrual	periods,	and	antioxidant	intake	to
investigate	the	possibility	of	effect	modification.	High	dietary	haem	iron	intake	was	associated	with	a
65%	increase	in	CHD	risk	[hazard	ratio	(HR)	=	1.65;	95%	confidence	interval	(CI):	1.07–2.53],	after
adjustment	for	cardiovascular	and	nutritional	risk	factors.	This	risk	was	not	modified	by	additional	risk
factors,	menstruation,	or	antioxidant	intake.

CONCLUSION:	The	results	indicate	that	middle-aged	women	with	a	relatively	high	haem	iron	intake
have	an	increased	risk	of	CHD.

Reproduced	from	Van	der	A	DL,	Peeters	PHM,	Grobbee	DE,	Marx	JJM,	Van	der	Schouw	Y.	Dietary	haem
iron	and	coronary	heart	disease	in	women.	European	Heart	Journal	2005;26:257–262.



THEORETICAL	DESIGN
Etiologic	 epidemiologic	 research	 explores	 the	 causes	 of	 a	 health	 outcome.	 Its
aim	is	to	demonstrate	or	exclude	the	relationship	between	a	potential	cause	and
the	 occurrence	 of	 a	 disease	 or	 other	 health	 outcome.	 To	 achieve	 this	 goal,
alternative	explanations	for	an	apparent	 link	between	determinant	and	outcome
need	 to	be	excluded	 in	 the	 research.	These	alternative	explanations	are	offered
by	relationships	due	to	extraneous	determinants	(confounders).	The	form	of	the
etiologic	 occurrence	 relation,	 the	 object	 of	 research,	 is	 therefore	 outcome	 as	 a
function	of	a	determinant,	conditional	on	confounders.	The	domain,	the	type	of
subjects	 for	 whom	 the	 relation	 is	 relevant,	 is	 defined	 by	 all	 those	 capable	 of
having	 the	 outcome	 and	who	 are	 at	 risk	 of	 being	 exposed	 to	 the	 determinant.
Thus	the	domain	for	a	study	on	the	role	of	boxing	in	causing	memory	deficits	is
all	 human	 beings	 who	 could	 possibly	 engage	 in	 boxing,	 which	 is	 essentially
everyone.	The	domain	for	the	study	in	Box	3–1	on	risks	of	coronary	disease	due
to	excessive	iron	intake	is	all	women,	and	possibly	all	men	too.	The	perspective
on	whether	men	should	be	a	subset	 in	the	domain	rests	on	the	degree	to	which
the	 investigator	 believes	 that	 a	 risk	 associated	 with	 high	 iron	 exposure	 is
something	particular	to	women	or	is	a	general	feature	of	Homo	sapiens.
Typically,	etiologic	research	focuses	on	a	single	determinant	at	a	time.	In	the

example	in	Box	3–1,	the	emphasis	was	on	haem	iron	intake	operationalized	by
estimating	intake	from	a	food	frequency	questionnaire.	All	variables	potentially
related	 to	 both	 the	 risk	 of	 coronary	 disease	 and	 the	 levels	 of	 iron	 intake	were
treated	 as	 possible	 confounders;	 an	 elaborate	 discussion	 of	 the	 definition	 of
confounders	is	given	later	in	this	chapter.	In	this	study	on	iron	intake	and	heart
disease	 risk,	 the	 confounders	 were	 age,	 total	 energy	 intake,	 body	 mass	 index
(BMI),	smoking,	physical	activity,	hypertension,	diabetes,	hypercholesterolemia,
energy-adjusted	 intakes	of	saturated	fat	and	carbohydrates,	 fiber,	alcohol,	beta-
carotene,	 vitamin	 E,	 and	 vitamin	 C	 intake.	 All	 were	 measured	 at	 the	 time	 of
inclusion	 in	 the	 cohort.	 When	 each	 was	 taken	 into	 account,	 however,	 none
changed	 the	 risk	estimate	of	 iron	 intake	materially,	 suggesting	 that	none	had	a
major	impact	in	the	association.
In	 another	 study	 addressing	 the	 importance	 of	 lifestyle	 in	 the	 occurrence	 of

breast	cancer,	a	particular	 research	question	might	 focus	on	 the	putative	causal
role	of	a	high	alcohol	intake	in	the	occurrence	of	breast	cancer.	The	occurrence
relation	would	then	be	breast	cancer	as	a	function	of	alcohol	use,	conditional	on
confounders.	 The	 domain	 would	 be	 all	 women.	 Among	 the	 confounders,



smoking	would	most	likely	be	important.	In	a	second	analysis	of	the	same	study,
the	 question	 could	 be	 about	 the	 causal	 role	 of	 smoking	 in	 breast	 cancer.	Now
smoking	 would	 be	 the	 single	 causal	 determinant	 of	 interest	 and	 alcohol
presumably	 among	 the	 confounders.	 (The	 importance	 of	 making	 clear
distinctions	 between	 determinants	 and	 confounders	 in	 a	 given	 analysis	 for	 a
given	 research	 question	 is	 outlined	 next.)	Disregarding	 confounders	 or	 having
incomplete	 or	 suboptimal	 confounder	 information	may	 lead	 to	 results	 that	 are
not	 true	 and	 thus	 invalid.	 The	 overriding	 importance	 of	 the	 need	 to	 exclude
confounding	makes	etiologic	epidemiologic	research	particularly	difficult.

Courtroom	Perspective
If	you	are	doing	etiologic	research,	pretend	that	you	are	in	a	courtroom.	You	are
the	 prosecutor	 and	 your	 task	 is	 to	 show	 beyond	 reasonable	 doubt	 that	 the
defendant,	 and	 not	 someone	 else,	 is	 to	 blame	 for	 the	 criminal	 act.	 Etiologic
research	is	about	accusation.	As	an	investigator	(author	of	the	study),	you	must
convince	 the	 jury	 (your	 peers	 and	 readers)	 that	 the	 determinant	 is	 causally
involved	in	the	occurrence	of	the	disease.	It	is	common	for	an	initial	report	on	a
causal	 factor	 in	 disease	 to	 be	 superseded	 by	 newer	 research	 contradicting	 the
initial	 finding	 because	 of	 evidence	 on	 confounders.	 One	 report	 in	 1981
[MacMahon	 et	 al.]	 suggested	 a	 strong	 relationship	 between	 coffee	 use	 and
pancreatic	 cancer.	 Since	 then,	 however,	 most	 studies	 could	 not	 confirm	 a
substantial	association	when	more	confounding	factors	were	considered,	and	the
overall	 evidence	 suggests	 that	 coffee	 consumption	 is	 not	 related	 to	 pancreatic
cancer	risk.

CONFOUNDING
Assessment	 of	 confounding	 by	 detecting	 the	 presence	 of	 possible	 extraneous
determinants	is	critical	to	obtaining	valid	results	in	etiologic	studies.	A	first	step
is	 to	clearly	decide	which	determinant	 is	 the	assumed	causal	 factor	of	 interest.
Commonly,	diseases	are	caused	by	multiple	factors,	which	can	act	in	concert	or
separately.	 In	 subsequent	 studies,	 multiple	 possible	 causative	 agents	 may	 be
addressed	 consecutively.	 At	 each	 instant,	 however,	 there	 is	 typically	 one
determinant	 of	 primary	 etiologic	 interest,	 while	 other	 determinants	 of	 the



outcome	are	extraneous	 to	 that	particular	occurrence	relation.	Confounders	can
be	 very	 specific	 to	 a	 particular	 determinant–outcome	 relationship.	 Potential
confounders	may	or	may	not	distort	the	relationship	between	the	determinant	of
interest	 and	 the	outcome	 in	 the	data,	 depending	on	 the	presence	or	 absence	of
associations	between	these	variables.
Frequently,	assessment	of	confounding	is	proposed	by	simply	determining	the

links	 of	 possible	 extraneous	 determinants	 between	 both	 the	 outcome	 and	 the
causal	determinant	of	interest.	The	prevailing	view	is	that	if	a	factor	X	is	known
to	be	related	to	both	the	determinant	and	outcome	in	an	occurrence	relation,	then
X	 is	 a	confounder.	Clearly,	 if	 a	 confounder	 is	not	 related	 to	both	outcome	and
determinant,	 confounding	 will	 never	 result.	 However,	 even	 when	 a	 perceived
extraneous	 determinant	 is	 simultaneously	 associated	 with	 the	 outcome	 and
determinant,	 this	 does	 not	 invariably	 imply	 confounding.	An	 example	 is	when
the	variable	is	somewhere	in	the	causal	pathway	and	thus	not	extraneous.
For	a	 third	variable	to	act	as	a	confounder	 in	etiologic	research,	 it	should	be

(1)	 related	 to	 the	 occurrence	 of	 the	 outcome	 and	 thus	 be	 a	 determinant	 of	 the
outcome	by	itself,	(2)	associated	with	the	exposure	determinant	of	interest,	and
(3)	 extraneous	 to	 the	 occurrence	 relation.	 By	 extraneous,	 we	 mean	 that	 this
variable	 is	 not	 an	 inevitable	 part	 of	 the	 causal	 relationship	 or	 causal	 chain
between	the	determinant	of	interest	and	the	outcome	variable	(e.g.,	because	it	is
part	 of	 the	 causal	 pathway;	 see	 the	 discussion	 that	 follows).	 The	 terms
confounder	 and	extraneous	determinant	 can	be	used	 interchangeably;	 although
less	commonly	used,	the	use	of	the	term	extraneous	determinant	indicates	more
clearly	the	type	of	determinant.
Assume	that	you	are	interested	in	the	causal	relationship	between	body	weight

and	the	occurrence	of	diabetes	mellitus	(see	Figure	3–2).	In	a	study	designed	to
shed	 light	 on	 the	 causal	 role	 of	 obesity	 in	 diabetes,	 age	 is	 extraneous	 to	 the
occurrence	relation.	Because	age	is	known	to	be	related	to	both	body	weight	and
the	occurrence	of	diabetes	(note	the	two	arrows	in	the	figure),	any	estimate	of	a
causal	effect	of	excessive	body	weight	in	the	occurrence	of	diabetes	is	likely	to
be	distorted	by	 the	effect	of	age.	To	validly	estimate	 the	 true	effect	of	obesity,
differences	in	distributions	of	age	across	groups	of	patients	with	different	body
weights	should	be	taken	into	account,	either	in	the	design	of	the	data	collection
or	in	the	design	of	data	analysis.	To	return	to	the	courtroom	analogy,	you	should
not	 blame	 body	 weight	 for	 the	 occurrence	 of	 diabetes	 when	 in	 fact	 age	 is
“guilty.”	Extraneous	to	the	occurrence	relation	also	means	that	the	third	variable
should	 not	 be	 part	 of	 the	 causal	 chain.	 If	 it	 is	 part	 of	 the	 causal	 chain,	 the



variable	 is	 an	 intermediate	 factor	 rather	 than	 an	 extraneous	 variable.	 Such	 an
intermediate	 factor	 may	 induce	 changes	 in	 other	 factors,	 which	 then	 serve	 to
change	the	outcome.

FIGURE	3–2	A	simple	causal	pathway	showing	the	influence	of	an	extraneous	determinant	on	the
determinant	and	outcome.

An	 example	 of	 the	 intermediate	 factor	 situation	 is	 the	 role	 of	 high-density
lipoprotein	(HDL)	cholesterol	levels	in	the	presumed	cardio-protective	effects	of
moderate	alcohol	use.	Alcohol	use	may	increase	serum	HDL	cholesterol,	which
has	 anti-atherogenic	 and	 cardio-protective	 properties.	 In	 a	 study	 of	 the	 link
between	alcohol	and	heart	disease,	when	adjustments	are	made	for	differences	in
serum	HDL	cholesterol	 levels	between	 those	who	do	or	do	not	drink	alcoholic
beverages,	an	underestimation	of	the	true	cardio-protective	effect	of	alcohol	will
result.	 Adjustments	 for	 intermediate	 factors	 are	 inappropriate,	 because	 the
variable	 is	 in	 the	 causal	 chain	 between	 the	 determinant	 and	 the	 outcome	 and
over-adjustment	will	 result.	 “In	 the	 causal	 chain”	 often	 implies	 that	 the	 causal
determinant	influences	a	certain	variable	that	follows	the	determinant	and	forms
a	true	intermediate	between	determinant	and	outcome.

Alcohol	consumption	↑	→	HDL	cholesterol	↑	→	heart	disease	↓

Alternatively,	 a	 variable	 could	 be	 a	 precursor	 to	 the	 causal	 determinant	 of
interest	and,	thus,	also	part	of	the	causal	chain	(although	not	an	intermediate	in
the	 strict	 sense)	 and	 not	 extraneous	 to	 the	 occurrence	 relation.	 For	 example,
when	studying	the	occurrence	of	heart	disease	as	a	function	of	HDL	cholesterol
levels	 conditional	 on	 confounders,	 alcohol	 intake	 should	 not	 be	 treated	 as	 an
extraneous	 determinant	 in	 view	 of	 the	 causal	 pathway	 depicted	 in	 the	 given
equation.	Increases	 in	alcohol	 intake	may	induce	(“precuse”)	 increases	 in	HDL
cholesterol.	 The	 investigator	 may,	 however,	 make	 use	 of	 the	 change	 in	 risk
estimate	 when	 alcohol	 is	 included	 in	 the	 model	 to	 address	 another	 research
question:	 “To	 what	 extent	 is	 the	 protective	 effect	 of	 increased	 HDL	 levels



explained	 by	 alcohol	 use?”	 In	 this	 way	 a	 “static”	 data	 set	 becomes	 almost	 a
living	 laboratory	where	 the	 investigator	can	 insert	or	 remove	certain	exposures
to	learn	more	about	possible	pathways	and	mechanisms.
Note	that	the	relationships	between	the	intermediate	factor,	the	determinant	of

interest,	and	the	outcome	need	not	necessarily	be	directly	causal.	For	example,	in
many	 circumstances	 social	 and	 economic	 factors	 are	 considered	 possible
confounders	 of	 associations	 between	 putative	 causes	 of	 disease	 and	 disease
outcome.	However,	 social	 and	 economic	 status	 commonly	 act	 as	 indicators	 of
one,	multiple,	or	even	unknown	causal	factors,	such	as	diet	or	healthcare	access,
rather	than	being	directly	causally	implicated.
A	 classic	 example	 of	 a	 variable	 that	 is	 not	 a	 confounder	 although	 it	 is

noncausally	 associated	 with	 both	 the	 causal	 determinant	 under	 study	 and	 the
outcome	is	possession	of	a	lighter	or	matches	in	the	study	of	smoking	as	a	cause
of	lung	cancer.	Clearly,	possession	of	a	lighter	is	related	to	both	the	determinant
(cigarette	 smoking)	 and	 the	 outcome	 (i.e.,	 those	 carrying	 a	 lighter	 are	 more
likely	to	develop	lung	cancer,	although,	obviously,	a	lighter	or	matches	will	not
cause	 the	 cancer).	 The	 two	 arrows	 from	 Figure	 3–2	 exist,	 but	 the	 third
prerequisite	 to	 be	 a	 confounder	 is	 not	 met	 because	 carrying	 a	 lighter	 is	 not
extraneous	 to	 the	 occurrence	 relation.	 Possession	 of	 the	 lighter	 is	 a	 noncausal
intermediate	factor	in	the	causal	relationship	between	cigarette	smoking	and	lung
cancer,	but	it	is	not	a	confounder	(see	the	equation	that	follows).	Consequently,
adjustment	for	carrying	a	lighter	is	inappropriate	and	would	artificially	dilute	the
existing	association	between	smoking	cigarettes	and	lung	cancer.

Cigarette	smoking	→	carrying	a	lighter	→	lung	cancer

A	study	on	 the	 risk	of	congenital	malformations	as	a	causal	 consequence	of
using	 certain	 anti-epileptic	 drugs	 serves	 as	 another	 example	 of	 the	 role	 of
confounding.	Specific	anti-epileptic	drugs	are	not	selected	by	chance	by	treating
physicians.	Rather	they	tend	to	be	given	for	certain	indications	that	are	related	to
the	 type	 of	 epilepsy	 of	 the	 mother	 and	 her	 age	 of	 onset.	 These	 maternal
characteristics	 may	 themselves	 constitute	 risk	 factors	 for	 congenital
malformations	 irrespective	 of	 drug	 use	 and	 therefore	 act	 as	 confounders.
Consequently,	 these	 characteristics	 are	 related	 to	 both	 the	 potentially	 causal
determinant	 (a	specific	anti-epileptic	drug,	 for	example,	phenobarbital)	and	 the
outcome	(see	Figure	3–3),	 and	are	possible	confounders	because	 they	are	also
extraneous	 to	 the	 occurrence	 relation	 under	 study	 (and	 not	 an	 intermediate



factor).

FIGURE	3–3	A	specific	example	of	a	causal	pathway	showing	several	extraneous	determinants.

In	 this	 example,	 the	 simple	 (“crude”)	 increased	 risk	 for	 nonspinal
malformations	in	offspring	of	women	using	phenobarbital	(relative	risk	2.0;	95%
confidence	 interval	 [CI]	1.7–7.1)	disappears	once	maternal	characteristics	were
adjusted	 for	 in	 the	 analyses	 (adjusted	 relative	 risk	 1.2;	 95%	 CI	 0.5–2.1),
indicating	that	these	extraneous	determinants	indeed	confounded	the	relationship
between	phenobarbital	and	nonspinal	malformations	in	offspring.
A	major	problem	in	the	assessment	and	handling	of	confounding	in	etiologic

research	 is	 the	 need	 for	 knowledge,	 or	 lack	 thereof,	 about	 extraneous
determinants	either	conceptually	or	with	regard	to	 their	availability	 in	 the	data.
When	it	 is	known	from	the	 literature	 that	certain	extraneous	determinants	exist
for	a	specific	outcome	and	information	on	these	putative	confounding	factors	is
available	 in	 the	 data,	 it	 is	 generally	 recommended	 to	 remove	 the	 influence	 of
these	confounders	 in	 the	design	of	data	collection	or	data	analysis,	 irrespective
of	 whether	 the	 data	 obtained	 in	 the	 study	 actually	 show	 that	 these	 possible
confounders	are	indeed	correlated	with	both	the	determinant	and	the	outcome.	It
should	 be	 emphasized	 that	 when	 a	 correlation	 analysis	 shows	 that	 there	 is	 no
correlation	 between	 the	 causal	 determinant	 and	 a	 potential	 extraneous
determinant,	this	variable	may	in	certain	circumstances	still	act	as	a	confounder
[Groenwold	 et	 al.,	 2011].	 Also,	 when	 no	 correlation	 between	 the	 extraneous
determinant	 and	 the	 outcome	 is	 revealed	 in	 the	 data,	 confounding	 by	 these
determinants	 can	 sometimes	 not	 be	 excluded.	Nevertheless,	 such	 a	 correlation
analysis	 can	 be	 useful	 to	 illustrate	 the	 potential	 for	 confounding	 and	 other
associations	relevant	to	the	occurrence	relation.	Table	3–1	shows	the	results	of	a
correlation	 analysis	 of	 several	 variables	 from	 a	 cohort	 study	 to	 determine	 the
causal	impact	of	BMI	on	blood	pressure	level.	As	age	is	known	to	be	associated
with	these	two	variables	and	this	association	is	confirmed	in	the	table,	it	may	act
as	 a	 confounder.	Heart	 rate	 is	 also	 known	 to	 be	 related	 to	 blood	 pressure	 and



BMI	 (as	 also	 shown	 in	 the	 table)	 but	 is	 judged	 to	 be	 an	 intermediate	 factor.
Number	of	cigarettes	per	day	is	not	related	to	blood	pressure	or	BMI	(neither	in
the	literature	nor	in	the	table)	and	is	not	considered	a	confounder.
In	 this	 example,	 systolic	blood	pressure	 increased	2	mm	Hg	per	one	unit	of

BMI	without	an	adjustment	for	age	(P	<	0.001),	and	1.2	mm	Hg	per	unit	after
adjustment	 for	 age	 (P	<	0.001;	 results	 are	 from	 linear	 regression	 analysis).	As
expected,	 the	 magnitude	 of	 the	 relationship	 between	 blood	 pressure	 and	 BMI
became	smaller	when	age	was	taken	into	account.
More	 difficult	 than	 assessing	 correlations	 in	 the	 data	 is	 achieving	 the

necessary	 comprehensive	 inventory	 of	 possible	 extraneous	 determinants	 in	 the
design	phase	of	a	study.	This	requires	a	good	understanding	of	the	nature	of	the
clinical	 problem	 and	 the	 likely	 operational	mechanisms.	 Potential	 confounders
need	to	be	identified	up	front,	because	when	neglected	and	otherwise	missing	in
the	 total	 data	 collected,	 they	may	 be	 impossible	 to	 resolve	 when	 the	 data	 are
analyzed.	 Eventually,	 it	 is	 the	 investigator’s	 task	 to	 completely	 remove
confounding	 before	 arriving	 at	 any	 conclusions	 regarding	 causality.	 As	 an
investigator,	you	can	be	assured	that	following	the	publication	in	which	you,	for
example,	 blame	 sodium	 intake	 for	 causing	 cardiovascular	 events,	 other
researchers	(“lawyers	in	the	same	court	room”)	will	challenge	such	a	supposition
because	of	the	potential	for	confounding.

TABLE	3–1	Correlation	of	Variables	from	a	Cohort	Study

Data	are	from	1,265	individuals.	Pairwise	correlations	are	between	blood	pressure,	heart	rate,	cigarette
smoking,	age,	and	body	mass	index.
*	P	<	0.05.

The	ongoing	debate	about	the	possible	increased	risk	of	myocardial	infarction
in	 subjects	with	 a	 high	 coffee	 intake	 serves	 as	 an	 example.	 In	 the	mid-1970s,
reports	were	published	suggesting	that	coffee	users	were	at	a	twofold	increased
risk	of	myocardial	infarction	compared	to	nonusers.	The	increased	risk	remained



after	 adjustment	 for	 possible	 confounding	 factors.	 Hennekens	 and	 coworkers
[1976]	 published	 a	 case-control	 study	 in	 which	 they	 compared	 the	 effects	 of
adjustment	for	a	limited	set	of	extraneous	determinants;	these	included	restricted
adjustment	as	 in	other	published	reports	at	 the	 time	and	adjustment	 for	a	more
extensive	 set	 of	 possible	 confounders	 that	 included	 several	 dietary	 variables.
Cases	 were	male	 patients	 who	 had	 a	 fatal	myocardial	 infarction,	 and	 controls
were	 sampled	 from	 neighbors	who	 remained	 free	 from	 coronary	 heart	 disease
during	 the	 same	 time	 period.	 Information	 on	 coffee	 use	 and	 a	 range	 of
confounders	was	obtained	by	interviewing	the	wives	of	the	myocardial	infarction
victims	 and	 their	 neighbors	 (controls).	 First,	 an	 analysis	 was	 performed	 that
replicated	previous	reports	with	adjustment	for	a	limited	set	of	10	confounders.
In	 this	 analysis,	 the	 relative	 risk	 of	 myocardial	 infarction	 for	 coffee	 users
compared	to	those	who	did	not	drink	coffee	was	1.8	(95%	CI	1.2–2.5).	However,
when	nine	additional	 confounders	were	 taken	 into	 account	 in	 the	 analyses,	 the
relative	risk	was	reduced	to	1.1	(95%	CI	0.8–1.6),	which	showed	an	insignificant
10%	risk,	 rather	 than	an	80%	 increased	 risk.	Apparently,	 in	previous	work	 the
“adjusted”	 association	 was	 still	 suffering	 from	 “residual”	 confounding.
Subsequent	 studies	 with	 larger	 numbers	 of	 patients	 and	 even	 more	 extensive
adjustment	 for	 potential	 confounders	 have	 further	 reduced	 the	 likelihood	 of	 a
clinically	 meaningful	 increased	 risk	 of	 heart	 disease	 due	 to	 drinking	 coffee
[Grobbee	 et	 al.,	 1990].	 A	 possible	 exception	 is	 the	 use	 of	 so-called	 “boiled”
coffee,	 in	 the	past	quite	normal	 in	Scandinavia,	which	has	been	shown	to	raise
cholesterol	 and	 thus	 increase	 the	 risk	 of	 atherosclerosis	 and	 cardiovascular
events	[Bak	&	Grobbee,	1989].	In	the	latter	example,	cholesterol	elevation	is	an
intermediate	variable.
One	 way	 to	 invalidate	 findings	 in	 etiologic	 research	 is	 to	 fail	 to	 consider

relevant	extraneous	factors,	and	an	alternative	way	to	produce	invalid	results	is
to	 measure	 such	 confounding	 factors	 poorly.	 Adjustment	 is	 incomplete	 when
confounders	are	not	taken	into	account	in	the	data	analyses,	but	the	adjustment
for	confounders	in	the	analysis	may	be	similarly	inadequate	if	the	measurement
of	confounders	is	not	sufficiently	comprehensive	and	precise.

Example:	Estrogen	and	Bone	Density
Let	 us	 consider	 a	 study	 that	 assessed	 whether	 postmenopausal	 circulating
estrogen	 levels	determine	actual	bone	density	 [Van	Berkum	et	al.,	unpublished
data].	 To	 this	 end,	 subjects	 were	 recruited	 from	 a	 large	 population	 study	 in



which	 plasma	 estrogen	 levels	were	 known	 for	 all	 participants.	 Two	 groups	 of
participants	 were	 selected,	 one	 group	 of	 women	 with	 low	 circulating	 estrone
levels	 and	 one	 group	 with	 high	 circulating	 estrone	 (one	 of	 the	 three	 estrogen
hormones)	 levels.	These	 two	groups	were	matched	 for	 age,	 age	at	menopause,
and	body	height.	This	means	 that	 for	 each	woman	 in	 the	 low-estrone	group,	 a
women	in	the	high-estrone	group	was	selected	who	had	a	comparable	age,	age	at
menopause,	 and	 height.	 When	 baseline	 characteristics	 were	 compared,	 the
matching	variables	were	expectedly	similarly	distributed	within	the	two	groups.
However,	body	weight	and	BMI	appeared	significantly	lower	in	the	low-estrone
group.	Consequently,	in	a	simple	correlation	matrix,	obesity	would	be	disclosed
as	determinant	of	bone	mass	as	well	as	being	related	to	estrogen	level.	Does	this
make	obesity	a	confounder?	The	answer	has	a	major	 impact	on	 the	results	and
inferences	from	the	study.

FIGURE	3–4	Do	postmenopausal	circulating	estrogen	levels	affect	bone	density?	Differences	in	bone
density	between	high-	and	low-estone	groups,	with	and	without	adjustment	for	differences	in	BMI	are
shown	above.	Measurements	were	made	using	dual-photon	absorptiometry	of	the	spine	(DPAspine)	and
single-photon	absorptiometry	of	the	distal	and	proximal	forearm	(SPAdist	and	SPAprox,	repectively).	Light
gray	bars	=	crude	distances	between	groups;	dark	gray	bars	(“NS”)	=	differences	after	adjustment.

When	 adjustments	 are	made	 in	 the	 analyses	 of	 differences	 between	 the	 two
estrone	groups	in	the	BMI,	the	results	look	materially	different	compared	to	the
crude	unadjusted	analysis	(see	Figure	3–4).
After	 an	adjustment	 for	BMI,	none	of	 the	 initial	differences	 in	bone	density

between	 low-	 and	 high-estrone	 women	 remains.	 However,	 the	 question	 arises
about	 whether	 this	 adjustment	 is	 appropriate.	 Rather,	 you	 could	 argue	 that



differences	 in	 circulating	 estrone	 levels	 between	 women	 largely	 reflect
differences	in	body	fat,	which	is	the	prime	site	for	estrogen	production	through
conversion	of	androgens	in	postmenopausal	women.	While	BMI	is	correlated	to
both	 the	 determinant	 and	 the	 outcome,	 it	 does	 not	 qualify	 as	 an	 extraneous
determinant	because	it	is	not	extraneous	to	the	occurrence	relation	of	interest.	In
contrast,	the	likely	mechanism	for	increased	bone	density	in	post-menopause	is:

Obesity	→	higher	estrogen	production	→	higher	bone	density

Obesity	 precedes	 higher	 estrogen	 production	 and	 thus	 is	 in	 the	 causal	 chain
relating	 estrogen	 to	 bone	 density.	 The	 example	 illustrates	 the	 notion	 that
classification	 of	 a	 factor	 related	 to	 both	 outcome	 and	 determinant	 as	 a
confounder	assumes	this	factor	to	be	extraneous.	Rather	than	being	extraneous,	a
certain	 factor	 may	 lead	 to	 a	 changed	 physiology	 that	 in	 turn	 affects	 the
determinant	under	study	and	subsequently	the	outcome	(see	Figure	3–5).
An	important	message	from	this	and	the	alcohol	→	HDL	cholesterol	→	heart

disease	 example	 is	 that	 judgment	 of	 the	 potential	 for	 confounding	 requires
knowledge	of	 possible	 etiologic	mechanisms	 involved.	This	may	well	 create	 a
“catch	22”	situation	in	which	an	absence	of	etiologic	insight	creates	confounding
that	 in	 turn	 invalidates	 subsequent	 observations.	 Frequently	 in	 etiologic
epidemiologic	 research,	 initial	 observations	 subsequently	 must	 be	 corrected
because	 of	 expanding	 knowledge	 and	 adjustment	 for	 newly	 recognized
confounders	 [Taubes,	1995].	While	 assessment	of	 correlations	 in	 the	data	may
be	 useful	 to	 detect	 possibilities	 for	 confounding,	 statistical	 software	 is	 not
sufficiently	 sophisticated	 to	 determine	 the	 actual	 confounder.	 It	 remains	 the
responsibility	 of	 the	 investigator	 to	 exclude	 confounding	 in	 the	 design	 of	 data
collection	 and	 the	 design	 of	 data	 analysis	 of	 a	 study.	 To	 decide	 upon	 the
presence	of	 confounding	with	 confidence,	 insight	 into	mechanisms	 involved	 is
required.	 If	 a	 particular	 determinant	 is	 not	 the	 putative	 causal	 determinant	 of
interest	 but	 is	 a	 precursor	 or	 intermediary	 in	 a	 causal	 chain,	 there	 is	 no
confounding	 and	 making	 an	 adjustment	 in	 the	 analysis	 will	 lead	 to	 over-
adjustment.	This	generally	 results	 in	an	underestimation	of	 the	 true	association
between	the	determinant	and	the	outcome.



FIGURE	3–5	Determining	confounders.	Suppose	that	the	objective	of	your	study	is	to	determine	the	causal
role	of	variation	in	circulating	estrogen	levels	in	the	occurrence	of	bone	fractures.	You	gather	a	cohort	of
women	and	establish	a	baseline	BMI,	estrogen	levels,	and	bone	density	for	each.	They	are	followed	up	for
10	years,	as	you	record	the	occurence	of	fractures	(outcome)	as	a	function	of	circulating	estrogen	levels
(determinant),	conditional	on	confounders.	Because	of	the	etiologic	nature	of	your	research,	confounding
factors	need	to	be	excluded.	Age	is	related	with	risk	of	fractures	as	well	as	with	estrogen	levels	(and	is	not
in	the	causal	chain)	and	thus	is	a	confounder.	While	BMI	and	bone	density	both	are	related	to	the	outcome,
they	are	in	the	causal	chain	(fat	tissue	is	a	source	of	estrogen	production	and	bone	density	is	increased	by
higher	circulating	estrogen	levels).	BMI	is	a	precursor	and	bone	density	is	an	intermediate	of	the
association.	Consequently,	they	are	not	confounding	the	relationship	and	their	effects	should	not	be
removed	from	the	association	by	adjustments.

Handling	of	Confounding
Once	confounding	is	suspected,	there	are	several	approaches	to	removing	it	from
the	observed	association.	As	previously	indicated,	confounding	may	occur	when
a	 variable	 is	 associated	with	 both	 the	 determinant	 of	 interest	 and	 the	 outcome
and	 it	 is	 not	 part	 of	 the	 causal	 chain.	 Being	 associated	 with	 implies	 that	 the
confounder	is	related	to	the	outcome	and	that	the	distribution	of	the	confounder
varies	across	levels	of	the	determinant.	To	remove	confounding	requires	that	the
distribution	of	the	confounder	is	made	the	same	across	levels	of	the	determinant.
When	 distributions	 of	 the	 confounder	 are	made	 the	 same	 across	 levels	 of	 the
determinant,	 and	 the	 determinant–outcome	 relationship	 persists,	 we	 conclude
that	 the	relationship	is	conditional	on	the	confounder.	Removal	of	confounding
may	be	achieved	in	the	design	of	data	collection,	in	the	design	of	data	analysis,



or	the	combination	of	both.	For	example,	suppose	that	in	a	particular	study	age	is
thought	 to	 be	 a	 confounder	 of	 the	 relationship	 between	 sex	 and	 stroke	 risk,
implying	 that	 age	 distributions	 for	 men	 and	 women	 are	 different	 (and	 age	 is
associated	with	 stroke	 risk).	 In	order	 to	 remove	 the	confounding	effect	of	 age,
age	distributions	need	to	be	made	similar	for	men	and	women.	This	can	be	done
in	a	number	of	ways.	First,	confounding	may	be	removed	in	the	design	of	data
collection	by	means	of	restriction.	 If	only	men	and	women	within	a	 small	age
range	are	included	in	the	study,	the	distribution	of	age	across	gender	is	the	same
and	age	will	not	be	a	confounder.	Similarly,	men	and	women	may	be	matched
for	 age.	 Matching	 can	 be	 done	 on	 an	 individual	 basis	 (individual	 matching),
where	 each	 individual	 with	 the	 determinant	 (male	 in	 this	 example)	 is	 closely
matched	 with	 someone	 without	 the	 determinant	 (female	 in	 this	 example)
according	 to	 the	 confounder	 (age	 in	 this	 example).	 Alternatively,	 the	 age
distributions	 among	 those	 with	 and	 without	 the	 determinant	 are	 made	 using
approximately	 the	 same	 methods,	 such	 as	 stratified	 sampling;	 this	 is	 called
frequency	 matching.	 In	 this	 example,	 matching	 ensures	 that,	 although	 the
distributions	 of	 age	may	 be	wide,	 they	 are	 the	 same	 (mean,	median,	 standard
deviation)	for	men	and	women.	One	can	also	remove	confounding	in	the	design
of	data	analysis.	One	approach	is	to	perform	a	stratified	analysis.	The	association
between	gender	and	stroke	 risk	 is	 then	analyzed	 in	separate	age	strata,	each	of
which	cover	a	small	age	range.	Within	age	strata,	males	and	females	are	similar
regarding	 age,	 and	 age	 will	 not	 be	 a	 confounder.	 Next,	 the	 estimates	 for	 the
strata	are	pooled	using	some	statistical	method	that	weights	 the	 information	by
stratum,	 such	 as	 the	Mantel-Haenszel	 procedure.	 Essentially	 the	 same	 can	 be
achieved	 in	 a	 multivariable	 regression	 analysis	 where	 age	 is	 added	 to	 the
multivariable	 model	 next	 to	 the	 determinant	 (male/female)	 and	 possibly	 other
confounders.
More	 recently,	 certain	 new	 approaches	 such	 as	 the	 use	 of	 propensity	 scores

and	instrumental	variables	(both	can	be	applied	in	the	design	of	data	analysis	and
in	the	design	of	data	collection)	have	been	introduced	into	clinical	epidemiology
to	 remove	 confounding.	These	methods	 have	 primarily	 been	 used	 in	 assessing
causal	treatment	effects	in	observational	studies	(for	a	review	of	classic	and	new
methods	 to	 remove	 confounding	 see	 Klungel,	 2004).	 In	 the	 assessment	 of
treatment	effects	without	the	use	of	randomization,	confounding	by	indication	is
a	 major	 problem,	 but	 the	 principles	 of	 adjustment	 apply	 similarly	 to	 causal
research	where	 the	 determinant	 (exposure)	 is	 not	 a	 drug	 given	 for	 a	 particular
indication,	but,	for	example,	is	related	to	lifestyle	characteristics	such	as	level	of



physical	activity.
As	 a	 summary	 variable	 for	 several	 confounders,	 propensity	 scores	 may	 be

used	 for	 statistical	 adjustment	 (in	 the	 design	 of	 data	 analysis),	 matching,	 or
restriction	 (in	 the	 design	 of	 data	 collection).	 Propensity	may	 be	 defined	 as	 an
individual’s	 probability	 of	 being	 exposed	 to	 the	 determinant	 of	 interest,	 for
example,	receiving	a	specific	treatment,	given	the	complete	set	of	all	information
about	 that	 individual.	 The	 propensity	 score	 provides	 a	 single	 variable	 that
summarizes	 all	 the	 information	 from	 potential	 confounding	 variables	 such	 as
disease	severity	and	comorbidity;	it	estimates	the	probability	of	a	subject	being
exposed	 to	 the	 intervention	of	 interest	given	his	or	her	clinical	and	nonclinical
status.	In	case	of	a	binary	treatment,	the	propensity	score	may	be	estimated	for
each	subject	from	a	logistic	regression	model	 in	which	treatment	assignment	 is
the	dependent	variable.	The	prognosis	in	the	absence	of	treatment	is	assumed	to
be	the	same	(balanced)	across	groups	of	subjects	with	the	same	propensity	score.
When	 treated	 and	untreated	 subjects	 are	 then	matched	 according	 to	 propensity
score	or	the	analysis	is	restricted	to	those	within	a	limited	range	of	the	propensity
score,	treated	and	untreated	subjects	will	have	on	average	the	same	prognosis	in
the	absence	of	treatment.	Alternatively,	the	propensity	score	can	be	included	as	a
covariate	 in	 a	 multivariable	 regression	 model	 relating	 the	 treatment	 to	 the
outcome.	An	example	is	a	study	showing	that	treatment	with	beta-blockers	may
reduce	 the	 risk	 of	 exacerbations	 and	 improve	 survival	 in	 patients	with	 chronic
obstructive	pulmonary	disease	 [Rutten	 et	 al.,	 2010].	Physicians	 typically	 avoid
using	beta-blockers	 in	patients	with	chronic	obstructive	pulmonary	disease	and
concurrent	cardiovascular	disease	because	of	concerns	about	adverse	pulmonary
effects.	 Therefore,	 in	 this	 observational	 study,	 those	 with	 chronic	 obstructive
pulmonary	 disease	 treated	 with	 beta-blockers	 very	 likely	 have	 a	 different
cardiovascular	 prognosis	 then	 those	 not	 treated	 with	 them.	 Adjustments	 for
confounding	were	made	 using	 conventional	 logistic	 regression	 and	 propensity
score	analyses.	Both	methods	showed	a	reduced	mortality	risk	for	beta-blocker
use,	 with	 the	 propensity	 score	 analyses	 showing	 larger	 reductions,	 suggesting
that	 propensity	 score	 analysis	more	 thoroughly	 deals	with	 confounding	 in	 this
example.	 Note,	 however,	 that	 confounding	 may	 remain	 even	 after	 propensity
score	adjustment,	 if	 relevant	 subject	characteristics	were	not	measured	or	were
only	measured	imprecisely	[Nicholas,	2008].
The	 use	 of	 instrumental	 variables,	 originating	 from	 econometrics	 where

randomized	 comparisons	 are	 largely	 impossible,	 has	been	 suggested	 for	use	 in
epidemiologic	analyses	with	the	same	objective	as	propensity	scores	but	with	the



potential	to	also	adjust	for	unmeasured	confounders	[Martens	et	al.,	2006].	The
key	assumptions	for	an	instrumental	variable	(IV)	are	that	(1)	the	IV	is	strongly
associated	 with	 the	 exposure	 (often	 treatment	 assignment),	 (2)	 the	 IV	 is
unrelated	 to	 confounders	 of	 the	 occurrence	 relation,	 and	 (3)	 the	 IV	 is
independent	of	the	outcome	through	factors	other	than	the	exposure.	These	three
assumptions	are	shown	in	Figure	3–6.

FIGURE	3–6	Assumptions	of	an	instrumental	variable	applied	to	remove	confounding	in	a	study	assessing
the	causal	relationship	between	an	exposure	and	an	outcome.	The	numbers	1–3	refer	to	the	three
assumptions	that	are	explained	in	the	text.

Thus,	 instrumental	 variables	 have	 no	 effect	 on	 the	 outcome,	 other	 than
through	 their	 relationship	 with	 the	 exposure.	 In	 the	 setting	 of	 drug	 treatment,
instrumental	variables	may,	 for	example,	be	 regional	differences	 in	prescribing
patterns,	physician	preference,	patient	 financial	 situation,	distance	 to	a	hospital
or	 facility,	 or	 calendar	 time.	Whether	 all	 three	 assumptions	 hold,	 however,	 is
difficult	 to	 prove	 and	 finding	 an	 instrumental	 variable	 can	 therefore	 be	 a	 true
challenge,	 if	 not	 often	 impossible	 [Groenwold	 et	 al.,	 2010].	 There	 are	 several
methods	 to	 estimate	 the	 strength	 of	 the	 causal	 association	 once	 an	 IV	 is	 used
[Martens	et	al.,	2006].	IV	estimation	is	typically	done	in	two	regression	steps.	In
a	first	analysis,	exposure	status	is	estimated	from	the	instrumental	variable	with
or	 without	 the	 inclusion	 of	 other	 variables	 related	 to	 prognosis	 (i.e.,	 potential
confounders).	Next,	the	predicted	exposure	states	replace	the	actual	treatment	in
a	 regression	 of	 the	 outcome	 on	 treatment,	 usually	 with	 confounders	 as
covariates.
While	 most	 commonly	 used	 in	 observational	 research	 on	 drug	 side	 effects,

propensity	 scores	 and	 instrumental	 variables	 can	 also	 effectively	 be	 applied	 in
etiologic	 research	 with	 nondrug	 exposures.	 In	 a	 particular	 format	 of	 an
instrumental	variable	is	a	gene	determining	the	level	of	a	putative	causal	factor,
such	 as	 the	 elevation	 of	 a	 circulating	 risk	 factor.	 As	 genes	 are	 randomly
distributed	in	large	populations,	the	gene	can	be	used	as	an	instrumental	variable,
because	 it	 is	 related	 to	 the	 exposure	 of	 interest	 (the	 risk	 factor	 level),
independent	of	other	risk	factors	for	the	outcome	(because	the	gene	is	randomly



distributed),	and	related	to	the	outcome	only	through	the	risk	factor.	Because	this
approach	mimics	 randomized	allocation	 in	an	observational	 setting,	 it	 is	 called
Mendelian	 randomization	 [Smith	 et	 al.,	 2008].	 An	 example	 is	 a	 case-control
study	on	the	role	of	 low-density	 lipoprotein	(LDL)	and	HDL	cholesterol	 levels
on	 myocardial	 infarction	 involving	 a	 large	 pooled	 dataset	 comprising	 12,482
cases	 of	 myocardial	 infarction	 and	 41,331	 controls	 [Voight	 et	 al.,	 2012].	 As
instrumental	 variable	 with	 a	 genetic	 score	 consisting	 of	 14	 common	 single
nucleotide	 polymorphisms	 (SNPs)	 could	 be	 used,	 because	 this	 genetic	 score
exclusively	associates	with	HDL	cholesterol,	is	unrelated	to	confounders	of	the
occurrence	 relation,	 and	 is	 not	 associated	 with	 cardiovascular	 disease	 through
any	 other	 mechanism.	 The	 same	 was	 done	 for	 a	 genetic	 score	 exclusively
predicting	 LDL	 cholesterol	 levels.	 Previous	 research	 in	 long-term	 follow-up
studies	has	shown	that	an	increase	of	one	standard	deviation	in	HDL	cholesterol
is	associated	with	an	approximately	40%	reduced	risk	of	myocardial	infarction.
However,	 a	 one	 standard	 deviation	 increase	 in	 HDL	 cholesterol	 due	 to	 the
genetic	score	was	not	associated	with	the	risk	of	myocardial	infarction	(OR	0.93,
95%	CI	0.68–1.26).	For	LDL	cholesterol,	the	estimate	from	previous	research	(a
one	 standard	 deviation	 increase	 in	 LDL	 cholesterol	 is	 associated	 with	 an
approximately	 50–60%	 increased	 risk)	 was	 concordant	 with	 that	 from	 the
genetic	score	(OR	2.13,	95%	CI	1.69–2.69).	Consequently,	genetic	mechanisms
that	 raise	 plasma	HDL	 cholesterol	 do	 not	 lower	 risk	 of	myocardial	 infarction,
further	fueling	the	doubts	about	the	causal	role	of	HDL	levels	in	determining	the
risk	 of	 cardiac	 events.	 These	 data	 seriously	 challenge	 the	 concept	 that	 raising
plasma	 HDL	 cholesterol	 will	 uniformly	 translate	 into	 reductions	 in	 risk	 of
myocardial	infarction.

CAUSALITY
Etiologic	research	aims	to	find	causal	associations.	A	determinant	is	believed	to
be	causally	related	to	an	outcome	if	the	association	remains	when	confounding	is
excluded.	Other	requirements	are	necessary,	however,	in	order	to	conclude	that
the	 association	 is	 indeed	 causal	 and	 to	 exclude	 both	 residual	 confounding	 by
some	unidentified	factors	and	the	mere	play	of	chance.
Many	criteria	have	been	proposed	to	make	a	causal	association	more	probable.

These	 include	 a	 large	number	of	 independent	 studies	with	 consistent	 results,	 a
temporal	 relationship	 where	 the	 cause	 precedes	 the	 outcome,	 a	 strong



association,	 a	 dose–response	 relationship,	 and	 biologic	 plausibility.	 These
criteria	stem	from	the	work	of	Hill	[1965]	and	others,	but	each	of	the	criteria	has
been	 challenged	 and	 none	 provides	 definitive	 proof.	 Even	 a	 temporal
relationship	in	which	the	determinant	follows	the	outcome	does	not	rule	out	the
possibility	that	in	other	circumstances	the	determinant	could	lead	to	the	outcome.
Probably	 the	 most	 limiting	 factor	 in	 disclosing	 causal	 relationships	 in

epidemiologic	 studies	 is	 the	 general	 focus	 on	 single	 determinant	 outcome
relationships.	 Very	 few	 diseases	 are	 caused	 by	 a	 single	 factor.	 For	 example,
many	people	are	exposed	 to	methicillin-resistant	Staphylococcus	aureus.	Some
bacteria	 will	 be	 colonized	 and	 still	 fewer	 people	 will	 suffer	 from	 serious
infection.	 It	 is	 likely	 that	 the	 genotype	modifies	 the	 risk	 of	 colonization	 after
exposure.	 The	 interplay	 between	 different	 factors,	 possibly	 through	 different
mechanisms,	is	the	rule	rather	than	the	exception	in	the	etiology	of	the	disease.
Yet	other	 factors,	 such	as	 the	quality	of	 the	 immune	 response,	will	modify	 the
risk	 of	 serious	 infection.	 The	 genetic	 disorder	 phenylketonuria	 (PKU)
convincingly	 shows	 that	 the	 interaction	 of	 genes	 and	 environment	 cause	 a
disease	commonly	thought	to	be	purely	genetic.	Dietary	exposure	to	a	particular
amino	 acid	 gives	 rise	 to	 mental	 retardation	 in	 children	 with	 mutations	 in	 the
phenylalanine	 hydroxylase	 gene	 on	 chromosome	 12q23.2	 encoding	 the	 L-
phenylalanine	hydroxylase	enzyme,	resulting	in	PKU.	Because	exposure	to	both
factors	is	necessary	for	PKU	to	occur,	infants	with	the	genetic	defect	are	put	on	a
lifelong	restricted	diet	 to	prevent	the	development	of	the	disease.	Rothman	and
Greenland	 [2005]	 have	 made	 important	 contributions	 to	 our	 understanding	 of
multicausality	 in	 epidemiologic	 research.	 (A	 full	 discussion	 goes	 beyond	 the
scope	of	this	text,	however.)	The	central	principle	is	that	a	disease	can	be	caused
by	more	than	one	causal	mechanism,	and	every	causal	mechanism	involves	the
joint	 action	 of	 a	 multitude	 of	 component	 causes	 (see	 Figure	 3–7).	 As	 a
consequence,	particular	causal	determinants	of	disease	may	be	neither	necessary
nor	sufficient	to	produce	disease.	Nevertheless,	a	cause	need	not	be	necessary	or
sufficient	 for	 its	 removal	 to	 be	 useful	 in	 prevention.	 For	 example,	 alcohol	 use
when	 driving	 is	 neither	 necessary	 nor	 sufficient	 to	 lead	 to	 car	 accidents,	 yet
prevention	of	drunk	driving	will	decrease	a	 fair	number	of	casualties.	That	 the
cause	is	not	necessary	implies	that	some	disease	may	still	occur	after	the	cause	is
blocked,	but	a	component	cause	will	nevertheless	be	a	necessary	cause	for	some
of	 the	 cases	 that	 occur.	 When	 the	 strength	 of	 a	 causal	 effect	 of	 a	 certain
determinant	 depends	 on	 or	 is	modified	 by	 the	 presence	 or	 absence	 of	 another
factor,	 there	 is	 causal,	 or	 biologic,	 interaction	 or	 modification.	 Although



modification	of	a	causal	association	may	be	very	relevant,	it	may	best	be	viewed
as	secondary	to	the	main	determinant–outcome	relationship.	It	adds	detail	 to	it,
albeit	sometimes	extremely	important	detail.

FIGURE	3–7	Three	sufficient	causes	of	disease.
Reproduced	from	Rothman	KJ,	Greenland	S.	Causation	and	causal	inference	in	epidemiolgy.	Am	J	Public
Health	2005;95	Suppl	1:S144–150.

MODIFICATION	AND	INTERACTION
There	 is	 a	 fair	 degree	 of	 confusion	 about	 the	 terms	 modification,	 effect
modification,	 and	 interaction;	 their	 roles	 in	 epidemiologic	 research;	 and	 the
importance	 of	 interaction	 between	 two	 or	 more	 determinants	 in	 research	 of
disease	mechanisms.
We	 consider	 modification	 to	 be	 present	 when	 the	 measure	 of	 association

between	 a	 given	 determinant	 and	 outcome	 is	 not	 constant	 across	 categories	 of
another	 characteristic	 [Miettinen,	 1985].	This	modifier	 changes	 the	 strength	 of
the	determinant–outcome	relationship.	In	the	literature,	such	a	modifier	is	often
referred	to	as	an	effect	modifier	because	it	changes	the	effect	a	determinant	has
on	a	certain	outcome.	We	prefer	 the	 term	modifier,	because	 it	 implies	a	causal
mechanism	 underlying	 the	modification.	 In	 fact,	 modification	 is	 often	 studied
without	 the	aim	of	explaining	 the	mechanism	underlying	 the	modification.	We
propose	the	term	descriptive	modification	in	those	instances	and	the	term	causal
modification	when	the	objective	is	 indeed	to	explain	the	observed	modification
of	the	determinant–outcome	association	(see	discussion	that	follows).



In	statistics,	the	term	interaction	is	merely	used	to	indicate	departure	from	the
form	 of	 the	 chosen	 statistical	 model.	 For	 example,	 if	 a	 multiplicative	 model
explains	the	data	better	than	a	linear	model,	this	is	interpreted	as	the	presence	of
interaction	 without	 further	 causal	 or	 other	 explanation	 or	 inference.	 In
epidemiology,	the	terms	interaction	and	modification	are	used	rather	loosely	and
interchangeably.

Descriptive	Modification
We	propose	 restricting	 the	 term	descriptive	modification	 to	 the	 analysis	 of	 the
extent	 to	 which	 the	 strength	 of	 a	 causal	 or	 noncausal	 determinant–outcome
association	varies	across	another	factor	without	the	need	to	explain	the	nature	of
that	 modification.	 The	 extent	 to	 which	 the	 effectiveness	 of	 vaccination	 varies
across	 age	groups	 serves	 as	 an	 example	 [Hak	et	 al.,	 2005].	The	only	 intention
here	is	to	determine	whether	it	should	be	recommended	to	target	the	intervention
at	particular	age	groups	 from	the	perspective	of	cost-effectiveness.	There	 is	no
need	 to	 understand	 the	 modification	 in	 causal	 terms.	 The	 causal	 association
addressed	 here	 concentrates	 on	 the	 effect	 of	 the	 intervention	 (i.e.,	 influenza
vaccination)	 on	 the	outcome	 (e.g.,	 survival)	 only.	Modification	 is	 examined	 to
learn	 about	 differential	 effects	 of	 vaccination	 across	 relevant	 population
subgroups	such	as	those	defined	by	age.	The	assessment	of	modification	by	age
adds	detail	to	the	research	on	the	causal	association	between	vaccination	and	the
outcome	parameter	with	a	view	toward	practical	application	of	the	result.
Descriptive	modification	may	easily	occur	due	to	differences	in	the	prevalence

of	 the	 disease	 across	 populations	 or	 population	 subgroups.	 For	 example,	 the
effectiveness	of	screening	for	HIV	will	be	modified	by	the	proportions	of	hetero-
and	homosexual	individuals	in	the	populations	because	this	will	reflect	different
prevalence	 rates	 of	 the	 disease.	 In	 other	 words,	 while	 the	 fraction	 of	 cases
detected	will	be	the	same	(90%),	the	absolute	number	of	HIV-infected	subjects
detected	 will	 be	 modified	 by	 the	 prevalence	 of	 homosexual	 subjects	 in	 the
population	 studies.	 The	 latter	 example	 illustrates	 that	 modification	 may	 occur
both	 on	 a	 relative	 scale	 (as	 in	 modification	 by	 age	 of	 the	 effect	 of	 influenza
vaccination	on	survival)	and	on	an	absolute	scale	(the	absolute	number	of	newly
detected	HIV-infected	individuals),	further	adding	to	the	complexity	of	the	issue.
Descriptive	modification	 can	 be	 equally	 addressed	 in	 causal	 and	 descriptive

studies.	An	example	 in	descriptive	 studies	 is	when	 the	question	 is	asked	about
whether	signs	and	symptoms	of	heart	failure	have	a	different	diagnostic	value	in



patients	 who	 suffer	 from	 chronic	 lung	 disease	 than	 in	 patients	 without	 this
concomitant	disease	[Rutten	et	al.,	2005a;	Rutten	&	Hoes,	2012].

Causal	Modification
The	interest	in	causal	modification	of	a	determinant–disease	association	is	of	an
entirely	different	nature.	Garcia-Closas	and	colleagues’	2005	study	on	the	extent
to	 which	 the	 presence	 of	 a	 particular	 genotype	 increases	 the	 risk	 of	 bladder
cancer	 resulting	 from	 cigarette	 smoking	 is	 an	 example.	 Here,	 two	 causal
questions	 were	 addressed.	 Primarily,	 the	 causal	 association	 between	 cigarette
smoking	 and	 bladder	 cancer	 occurrence	 was	 assessed,	 but	 the	 authors	 also
examined	the	possible	increased	sensitivity	to	cigarette	smoke	in	the	presence	of
the	genotype.	Garcia-Closas	and	coworkers	[2005]	found	that	persons	who	were
current	 smokers	 or	 had	 smoked	 cigarettes	 in	 the	 past	 had	 a	 higher	 risk	 of
developing	 bladder	 cancer.	 However,	 the	 relative	 risk	 related	 to	 smoking	was
2.9-fold	increased	in	those	who	had	the	NAT2	slow	acetylator	genotype	and	5.1-
fold	 increased	among	 those	with	 the	 intermediate	or	 rapid	acetylator	genotype.
In	 researching	 the	benefits	and	risks	of	 treatment,	causal	as	well	as	descriptive
modifications	are	often,	albeit	sometimes	implicitly,	addressed	when	subgroups
show	a	higher	or	lower	response	to	the	intervention.

When	to	Address	Modification
Whether	modification	 is	examined	 for	a	particular	occurrence	 relation	depends
on	 the	 interest	 and	 objectives	 of	 the	 investigator.	 When	 the	 appropriate
determinant,	outcome,	and	all	confounders	are	considered,	the	result	is	valid	plus
and	 minus	 a	 chance	 variation,	 whether	 or	 not	 modifiers	 are	 studied.	 As
mentioned,	modifiers	add	detail	that	can	be	either	causal	or	descriptive.	For	any
given	determinant–outcome	relationship,	there	is	an	infinite	number	of	potential
modifiers.	 If	 modification	 is	 to	 be	 studied,	 modifiers	 need	 to	 be	 selected,
preferably	 a	 priori,	 based	 on	 clinical	 relevance	 and,	 in	 the	 case	 of	 causal
modification,	 plausibility.	 If	 many	 potential	 modifiers	 are	 examined	 without
clear	 a	 priori	 views	 on	 their	 relevance	 or	 plausibility,	 there	 are	 likely	 to	 be
several	 false-positive	 instances	 of	 modification.	 Frequently,	 investigators	 are
disappointed	 in	 their	 initial	 negative	 (overall)	 findings	 and	 start	 looking	 for
modifiers.	 Effectively,	 they	 are	 looking	 for	 subgroups	 of	 the	 population
characterized	by	 the	presence	of	a	modifier	 in	which	 the	determinant–outcome



association	 may	 still	 be	 found.	 This	 typically	 means	 a	 search	 for	 descriptive
modification	in	the	absence	of	a	real	view	on	causal	modification.	In	such	cases,
any	interpretation	is	risky,	but	a	causal	interpretation	is	particularly	elusive.	For
example,	surprisingly,	an	association	is	present	in	women	but	not	in	men.	What
does	that	mean?	If	no	clear	explanation	can	be	given	and	no	previous	data	have
suggested	 similar	 gender-specific	 effects,	 the	 result	 should	 be	 considered	with
great	caution,	especially	when	explained	in	causal	terms.	Even	when	the	aim	is
to	 search	 for	 clinically	 relevant	 subgroups	 where	 the	 association	 between	 the
determinant	and	outcome	may	be	stronger	without	any	causal	inference	of	such
modification	 (refer	 to	 the	 influenza	 example	 introduced	 earlier),	 a	 priori
determination	of	 a	 limited	number	of	 clinically	 relevant	modifiers	 is	 crucial	 to
preclude	false-positive	identification	of	modifiers.
A	bizarre	example	of	modification	detected	by	unplanned	extensive	analyses

of	 the	 data	 has	 been	 reported	 for	 the	 second	 International	 Study	 of	 Infarct
Survival	 (ISIS)	 trial	 (see	Box	 3–2).	 The	 ISIS	 trial	 examined	 the	 benefits	 and
risks	 of	 intravenous	 streptokinase,	 oral	 aspirin,	 both,	 or	 neither	 among	 17,187
cases	of	suspected	acute	myocardial	infarction	[ISIS-2,	1988].	All	ISIS	patients
had	 their	 date	 of	 birth	 entered	 as	 an	 important	 “identifier.”	While	 the	 overall
benefit	 for	 aspirin	 was	 highly	 convincing,	 the	 subgroup	 of	 patients	 with	 the
astrological	 star	 signs	Gemini	and	Libra	 showed	a	9%	 increased	mortality	 risk
for	 aspirin.	 Astrological	 sign	 actually	 seemed	 to	modify	 the	 effect	 of	 aspirin!
Confounding	was	unlikely	to	produce	this	result	because	the	trial	was	large	and
patients	were	randomly	allocated	to	the	treatment	groups.	Given	the	number	of
subgroup	 analyses	 in	 this	 trial,	 the	 finding	 is	most	 likely	 the	 result	 of	 chance.
Perhaps	even	more	important,	the	finding	is	theoretically	highly	implausible.

BOX	3–2	Astrological	Daily	Prediction	Taking	the	ISIS	Trial	Findings	on	Aspirin	into	Account

A	loan	will	be	easy	to	obtain	tomorrow,	but	you	must	have	a	list	of	items	you	own	so	that	you	will
have	something	to	show	as	collateral.	This	loan	could	be	to	improve	the	home	or	to	purchase	a	car.
Things	are	happening,	and	your	career	or	path	depends	on	your	own	ambition	and	drive,	as	well	as
your	ability	to	be	patient	and	bide	your	time.	You	are	able	to	use	good	common	sense	to	guide	you,
and	you	can	feel	the	trends	and	make	the	right	moves.	The	time	is	coming	soon	to	take	action	and	get
ahead.	You	may	contemplate	a	career	move	and	next	week	is	a	most	positive	one	as	you	make	yourself
known.	You	are	advised	to	use	no	aspirin.

	

The	 presence	 or	 absence	 of	 modification—descriptive	 or	 causal—has	 a



bearing	 on	 the	 generalizability	 of	 research	 findings.	 Modifiers	 point	 to
subdomains,	 which	 implies	 that	 generalizations	 of	 study	 results	 should	 be
different	 for	 populations	 with	 or	 without	 the	 particular	 level	 of	 the	 modifier.
Conversely,	 when	 the	 domain	 is	 chosen	 for	 a	 certain	 occurrence	 relation	 and
results	from	a	study	performed	in	a	subset	of	that	domain	are	generalized	to	the
full	domain,	the	assumption	is	that	the	study	population	does	not	differ	from	the
domain	 with	 regard	 to	 determinant–outcome	 association.	 Frequently,	 this	 is
assumed	rather	than	studied	and	therefore	views	between	investigators	may	vary.
For	example,	in	the	early	days	of	statin	trials	for	the	treatment	of	elevated	serum
cholesterol	to	reduce	the	risk	of	cardiovascular	disease,	the	results	were	largely
obtained	for	men	only.	As	cholesterol	is	a	risk	factor	for	heart	disease	in	men	as
well	 as	 in	 women,	 does	 it	 follow	 that	 women	will	 benefit	 from	 statins	 to	 the
same	extent	as	men?	Some	investigators	argued	that	there	is	no	reason	to	suspect
that	statins	do	not	work	in	women.	They	implicitly	assumed	that	gender	is	not	a
causal	 modifier	 of	 the	 relationship	 between	 statins,	 cholesterol	 reduction,	 and
reduction	of	heart	disease	risk.	Others	were	hesitant	because	they	did	not	believe
that	 the	 effects	 are	 similar;	 they	 demanded	 the	 formal	 assessment	 of	 the
modification	 by	 conducting	 separate	 trials	 in	 women.	 Currently,	 it	 is	 well
established	that	statins	reduce	the	risk	of	heart	disease	in	men	as	well	as	women
with	elevated	cholesterol	 levels.	Similarly,	 it	has	been	well	established	that	 the
benefits	 of	 blood	 pressure	 reduction	 are	 not	 causally	 modified	 by	 age.	 This
means	 that	 across	 a	 wide	 range	 of	 ages,	 the	 rate	 of	 cardiovascular	 disease	 is
reduced	 by	 20–25%	 if	 hypertensive	 patients	 are	 treated	 with	 antihypertensive
agents.	However,	there	is	a	descriptive	modification,	in	this	case	on	an	absolute
scale.	 Because	 background	 rates	 of	 cardiovascular	 disease	 increase	 markedly
with	age,	the	rate	difference	(i.e.,	the	reduction	in	the	absolute	risk,	for	example,
a	5-year	 incidence	of	 cardiovascular	disease)	 resulting	 from	 treatment	 is	much
higher	in	older	(above	60	years)	compared	to	younger	(below	60	years)	patients
(see	Table	3–2).

TABLE	3–2	A	Meta-Analysis	of	24	Blood	Pressure	Trials	Involving	68,099	Randomized	Patients1

“Rate”	means	rate	of	cardiovascular	disease.
1Unpublished	results.



Measurement	of	Modification
Measurement	of	modification	is	conceptually	straightforward.	Suppose	we	study
the	 risk	 of	 gastric	 bleeding	 for	 those	 using	 aspirin	 therapy	 by	 comparing
bleeding	 rates	 across	 users	 and	 nonusers	 of	 aspirin,	 with	 adjustments	 for
extraneous	determinants	related	to	both	aspirin	use	and	the	baseline	(before	use)
risk	 of	 bleeding	 (such	 as	 age,	 comorbidity,	 and	 the	 severity	 of	 the	 disease	 for
which	the	aspirin	was	prescribed).	If	an	overall	increased	risk	of	bleeding	caused
by	aspirin	use	is	established,	a	next	concern	may	be	to	determine	which	patients
treated	with	high-dose	aspirin	are	at	a	particularly	high	risk.	Certain	patients	on
the	same	dose	of	aspirin	may	be	more	likely	to	experience	gastric	bleeding	than
others.	 For	 example,	 concurrent	 use	 of	 corticosteroids	 might	 enhance	 the
bleeding	risk.	In	other	words,	steroid	use	modifies	the	risk	of	high-dose	aspirin
as	it	makes	the	risk	even	higher.	In	this	occurrence	relation,	corticosteroids	are
causal	modifiers	 of	 the	 risk	 of	 bleeding	 associated	with	 high-dose	 aspirin	 use.
The	modifier	changes	the	magnitude	of	the	association	between	determinant	and
outcome;	 the	 effect	 estimate	 depends	 on	 the	 value	 of	 the	 modifier.	 In	 this
example,	suppose	that	the	overall	relative	risk	of	bleeding	for	those	taking	high-
dose	 aspirin	 compared	 to	 low-dose	 aspirin	 was	 2;	 for	 those	 taking	 a
corticosteroid	 that	 relative	 risk	 became	 4.	 The	 modification	 becomes	 visible
when	the	association	of	interest	is	compared	across	strata	of	the	modifier.
In	 etiologic	 research,	 analysis	 of	 modifiers	 may	 help	 the	 investigator	 to

understand	 the	 complexity	 of	 multicausality	 and	 causally	 explain	 why	 a
particular	 disease	 may	 be	 more	 common	 in	 certain	 individuals	 despite	 an
apparent	 similar	 exposure	 to	 a	 determinant.	 After	 the	 unconfounded
measurement	of	an	overall	association	between	a	determinant	and	an	outcome,
putative	 modification	 may	 be	 estimated	 by	 comparing	 the	 strength	 of	 the
exposure–outcome	 association	 across	 categories	 of	 the	 modifier.	 Causal
modification	also	can	be	studied	experimentally.	Activated	factor	VII	(FVIIa)	is
a	 very	 potent	 coagulant	 and	 may	 be	 a	 key	 determinant	 in	 the	 outcome	 of	 a
cardiovascular	event.	FVIIa	increases	in	response	to	dietary	fat	 intake.	Mennen
and	 coworkers	 [1999]	 studied	 whether	 the	 response	 of	 FVIIa	 to	 fat	 intake	 is
modified	(in	this	case	reduced)	by	the	genetic	R353Q	polymorphism.	A	fat-rich
test	breakfast	and	a	control	meal	were	given	to	35	women	carrying	the	Q	allele
and	56	women	without	the	Q	allele	genotype.	At	8	AM	(after	an	overnight	fast),
the	 first	 blood	 sample	was	 taken,	 and	within	 30	minutes	 the	 subjects	 ate	 their
breakfasts.	Additional	blood	samples	were	taken	at	1	PM	and	3	PM.	The	mean



absolute	response	of	FVIIa	was	37.0	U/L	in	the	group	with	the	RR	genotype	and
16.1	U/L	(P	<	0.001)	in	those	carrying	the	Q	allele	(see	Figure	3–8).

FIGURE	3–8	Comparison	of	activated	factor	VII	(FVIIa)	in	women	carrying	the	Q	allele	and	those
carrying	the	RR	genotype	before	and	after	a	meal.
Reproduced	from	Mennen	LI,	de	Maat	MP,	Zock	P,	Grobbee	DE,	Kok	FJ,	Kluft	C,	Schouten	EG.
Postprandial	response	of	activated	factor	VII	in	elderly	women	depends	on	the	R353Q	polymorphism.	Am	J
Clin	Nutr	1999;70:435–8.

Good	examples	of	causal	modification	can	be	found	in	genetic	epidemiology.
Arguably,	 pharmacogenetics	 is	 all	 about	 causal	 modification.	 The	 typical
research	 question	 in	 pharmacogenetics	 is	whether	 a	 certain	 genotype	modifies
the	 response	 of	 individuals	 to	 a	 particular	 drug.	 A	 classic	 example	 of
pharmacogenetic	 modification	 is	 the	 observation	 that	 certain	 patients	 show	 a
prolonged	 respiratory	 muscular	 paralysis	 after	 receiving	 succinylcholine	 (a
muscle	 relaxant)	 during	 surgery	 [Kalow	 &	 Staron,	 1957].	 Subsequently,	 the
genetic	 basis	 of	 the	 effect	 was	 discovered	 to	 be	 a	 mutation	 that	 resulted	 in
impaired	metabolism	 by	 serum	 cholinesterase	 in	 some	 individuals.	 In	 another
example,	2,735	individuals	on	statin	therapy—half	on	atorvastatin	and	the	other
half	 divided	 among	 fluvastatin,	 lovastatin,	 pravastatin,	 and	 simvastatin—were
genotyped	for	43	SNPs	in	16	genes	that	were	previously	reported	to	modify	the
lipid	response	to	statin	treatment.	Statistically	significant	associations	with	LDL



cholesterol	 (LDL-C)	 lowering	 were	 found	 for	 apolipoprotein	 E2	 (apoE2),	 in
which	carriers	of	 the	rare	allele	who	took	atorvastatin	 lowered	their	LDL-C	by
3.5%	more	 than	 those	 homozygous	 for	 the	 common	 allele,	 and	 for	 rs2032582
(S893A	in	ABCB1)	in	which	the	two	groups	of	homozygotes	differed	by	3%	in
LDL-C	lowering	[Thompson	et	al.,	2005].	Now	that	increasingly	large	numbers
of	mutations	can	be	measured	relatively	easily,	with	often	little	a	priori	biologic
basis	 for	plausibility,	pharmacogenetics	also	offers	ample	demonstration	of	 the
problem	 of	 false-positives	 [Marsh	 et	 al.,	 2002].	 The	 approach	 to	 detect
modification	 is	 to	 take	 the	 modifier	 into	 account	 in	 the	 analyses.	 Typically,
modification	is	addressed	by	separate	analyses	among	those	with	and	without	the
modifier.	Alternative,	so-called	interaction	terms	may	be	included	in	regression
models	in	the	analyses.
Modification	 may	 act	 differently	 depending	 on	 the	 measure	 of	 risk,	 for

example,	whether	relative	or	absolute	measures	of	the	risk	association	are	used.
Consider	the	following	example:	A	disease	risk	per	100,000	is	1	for	those	who
are	unexposed	to	two	risk	factors	A	and	B	(RA−B−);;	 it	 is	2	for	those	exposed	to
risk	factor	A	but	not	to	B	(RA+B−),	and	it	is	5	per	100,000	for	those	unexposed	to
A	but	who	 are	 exposed	 to	B	 (RA−B+).	You	now	may	 ask	what	 the	 disease	 risk
would	be	for	those	who	are	exposed	to	both	risk	factors	(RA+B+)	and	whether	the
risk	 factors	 do	 not	 interact	 and,	 thus,	 are	 independent.	 Because	 an	 absence	 of
interaction	 (or	 independence)	 implies	 that	 the	 disease	 risks	 are	 additive,	 the
absolute	risk	for	the	jointly	exposed	(RA+B+)	would,	in	the	case	of	independence,
be:	 (2	–	1)	+	 (5	–	1)	+	1	=	6	per	100,000	 (RA+B	−	RA−B−)	+	 (RA−B+	−	RA−B−)	+
(RA−B−)	 =	RA+B−	 +	RA−B+	 −	RA−B−.	 Therefore,	 if	 the	 absolute	 risk	 for	 the	 jointly
exposed	was,	for	example,	10,	you	would	conclude	that	the	two	risk	factors	are
not	 independent,	 or	 in	 other	 words,	 that	 modification	 is	 present.	 The
modification,	or	interaction,	is	visible	on	an	additive	scale	because:	(2	–	1)	+	(5	–
1)	 +	 1	 =	 6	 ≠	 10.	 However,	 there	 is	 no	 interaction	 on	 a	 multiplicative	 scale
because:	 2/1	 ×	 5/1	 =	 10	 per	 100,000	 (RA+B−/	 RA−B−)	 ×	 (RA−B+/	 RA−B−)	 =	 (RA+B+

−RA−B−);	thus,	it	is	the	same	as	the	product	of	the	two	absolute	risks	of	disease	of
the	individual	risk	factors	[Ahlbom	&	Alfredsson,	2005].
In	etiologic	research,	investigators	often	explore	effect	modification	studies	on

more	than	one	statistical	scale,	an	approach	that	is	likely	to	increase	the	rate	of
false-positive	 findings.	 For	 example,	 effect	modification	 is	 examined	 by	 using
both	 a	 multiplicative	 interaction	 term	 in	 a	 logistic	 regression	 model	 and	 a
measure	 of	 interaction	 on	 the	 additive	 scale	 such	 as	 the	 interaction	 coefficient
from	 an	 additive	 relative	 risk	 regression	 model.	 Starr	 and	 McKnight	 [2004]



performed	computer	 simulations	 to	 investigate	 the	 risk	of	 false-positives	when
statistical	 interactions	 are	 evaluated	by	using	both	 type	of	models.	The	overall
false-positive	 rate	was	 often	 greater	 than	 5%	when	 both	 tests	were	 performed
simultaneously.	These	results	provide	empiric	evidence	of	the	limited	validity	of
a	common	approach	to	assess	modification.
When	the	modifiers	to	be	examined	as	well	as	the	scale	on	which	modification

is	to	be	explored	have	not	been	specified	before	the	data	analysis,	the	presence
of	effect	modification	should	be	 interpreted	particularly	cautiously.	The	choice
of	 the	 scale	 depends	 on	 the	 aim	 at	 which	 modification	 is	 addressed	 and
preferably	 an	 a	 priori	 view	 of	 the	 nature	 of	 the	 modification,	 additive	 or
multiplicative,	 and	 causal	 or	 descriptive.	 In	 view	 of	 the	 popularity	 of	 logistic
regression	modeling	 in	 etiologic	 epidemiologic	 research	 it	 is	 quite	 common	 to
see	modification	addressed	 in	a	multiplicative	manner.	For	example,	Hung	and
coworkers	[2006]	studied	whether	polymorphisms	in	cell	cycle	control	genes	are
associated	with	the	risk	of	lung	cancer	and	if	they	can	alter	the	effect	of	ionizing
radiation	(through	x-ray)	on	lung	cancer	risk.	Cell	cycle	control	is	important	in
the	 repair	of	DNA	damage.	 It	 can	 trigger	 cell	 arrest	 to	 allow	 for	DNA	 lesions
(e.g.,	 caused	 by	 ionizing	 radiation)	 to	 be	 repaired	 before	 the	 cell	 continues	 its
normal	processes.	TP53	plays	a	key	role	in	cell	cycle	control.	The	effect	of	this
polymorphism	on	 lung	cancer	 risk	was	 examined	 in	 a	multicenter	 case-control
study	 including	 2,238	 incident	 lung	 cancer	 cases	 and	 2,289	 controls.	The	 data
were	 analyzed	 using	 logistic	 regression	 models	 that	 included	 a	 multiplicative
interaction	 term.	 Persons	 with	 the	 TP53	 intron	 3	 A2A2	 genotype	 (and	 a	 low
number	 of	 x-ray	 exposures)	 had	 a	 slightly	 increased	 risk	 of	 lung	 cancer
compared	to	those	with	one	or	two	copies	of	the	A1	genotype	(OR	=	1.28;	95%
CI,	0.67–2.45).	Those	with	a	high	number	of	x-ray	examinations	(>	20,	and	one
or	two	copies	of	the	A1	genotype)	had	a	1.3	times	higher	risk	than	those	with	a
lower	 number	 of	 x-ray	 examinations	 (OR	 =	 1.29;	 95%	 CI,	 1.07–1.56).	 The
A2A2	genotype	in	combination	with	a	high	number	of	x-ray	examinations	raised
lung	cancer	risk	significantly	(OR	=	9.47;	95%	CI,	2.59–34.6).	This	odds	ratio	is
significantly	higher	than	the	product	of	the	two	risk	factors	of	the	individual	risk
factors.	The	OR	for	interaction	was	9.47	÷	(1.28	×	1.29)	=	5.67	(95%	CI,	1.33–
24.3).	The	results	of	this	study	suggest	that	sequence	variants	in	TP53	increase
the	 risk	 of	 lung	 cancer	 and	 modify	 the	 risk	 conferred	 by	 multiple	 x-ray
exposures.
Rothman	[2002]	has	argued	 that	causal	modification	should	be	 linked	 to	 the

original	 scale	 on	 which	 risks	 are	 measured.	 Multiplicative	 models	 typically



involve	logarithmic	transformations.	Therefore,	in	his	view,	causal	modification
should	be	examined	by	studying	 the	presence	or	absence	of	additivity	of	 risks.
This	approach	was	followed	by	Patino	and	coworkers	[2005],	who	examined	the
extent	to	which	the	presence	of	family	dysfunction	modifies	the	risk	of	psychosis
associated	with	migration	(see	Table	3–3).	To	quantify	the	interaction	between
family	dysfunction	and	migration,	relative	risks	were	calculated	for	exposure	to
both	migration	history	and	family	dysfunction,	 to	family	dysfunction	only,	and
to	migration	only,	with	exposure	to	neither	migration	nor	family	dysfunction	as
the	reference	category.	The	effect	when	both	variables	were	present	was	 larger
than	 the	 sum	 of	 their	 independent	 effects,	 indicating,	 in	 this	 case,	 causal
interaction.

TABLE	3–3	Migration,	Familiar	Dysfunction,	and	Risk	of	Psychosis

	
Odds	Ratio	for	Psychotic	Symptoms

	 Crude	(95%	CI) Adjusted1	(95%	CI)

Migration	history2 1.8	(1.1–3.2) 2.4	(1.3–4.3)

Migration	history	and	no	family	Dysfunction3 1.2	(0.5–3.2) 1.5	(0.6–3.9)

Family	dysfunction	and	no	migration	history3 1.5	(0.9–2.5) 1.3	(0.7–2.1)

Migration	history	and	family	dysfunction3 4.0	(2.0–8.2) 4.1	(1.9–8.5)
AP	interaction4 0.59	(0.02–0.93) 0.58	(0.05–0.91)

CI,	confidence	interval.
1Adjusted	for	age,	gender,	psychiatric	illness	of	a	parent,	and	education	level	of	breadwinner.
2Reference	category	is	no	migration	history.
3Reference	category	is	no	migration	history	and	no	family	dysfunction.
4Attributable	proportion	(AP)	of	cases	owing	to	the	interaction	of	migration	history	and	family	dysfunction.
Reproduced	from	Patino	LR,	Selten	JP,	Van	Engeland	H,	Duyx	JH,	Kahn	RS,	Burger	H.	Migration,	family
dysfunction	and	psychotic	symptoms	in	children	and	adolescents.	Br	J	Psychiatry	2005;186:442–3.

As	 long	 as	 it	 is	 well	 understood	 that	 the	 choice	 of	 the	 scale	 on	 which
modification	 is	 measured	 and	 the	 selection	 of	 the	 statistical	 model	 have	 an
impact	on	the	detection	and	magnitude	of	modification,	and	as	long	as	it	is	clear
why	 the	 modification	 is	 addressed,	 there	 is	 room	 for	 additive	 as	 well	 as
multiplicative	models.



MODIFIERS	AND	CONFOUNDERS
Modification	 is	 an	 altogether	 different	 issue	 than	 confounding	 in	 etiologic
research.	 Confounders	 are	 inherently	 and	 exclusively	 linked	 to
determinant–outcome	 relationships	 and	 need	 to	 be	 adequately	 and	 completely
removed	during	the	design	and	analysis	of	an	etiologic	study	to	ensure	validity
of	 the	 findings.	 In	 the	 same	 study,	 however,	 for	 a	 given	 occurrence	 relation,
confounders	 may	 also	 be	 modifiers.	 This	 holds	 true	 for	 both	 causal	 and
descriptive	modifiers.	 For	 example,	 in	 a	 nonexperimental	 study	 on	 the	 risk	 of
hemorrhagic	 stroke	 in	 patients	 receiving	warfarin	 [Fang	 et	 al.,	 2006],	 age	 is	 a
confounder	 when	 patients	 using	 warfarin	 are	 generally	 older	 and	 therefore
already	at	a	higher	risk	of	stroke	(the	outcome).	At	the	same	time,	however,	 in
older	 patients,	 the	 risk	 of	 hemorrhagic	 stroke	 associated	 with	 warfarin	 (the
relative	 risk,	 the	 risk	 difference,	 or	 both)	 is	 higher	 than	 in	 younger	 patients.
Thus,	 age	 in	 this	 study	 is	 both	 a	 confounder	 and	 a	modifier.	 To	 fully	 address
confounding	and	modification	of	a	third	variable,	the	analysis	should	assess	the
effect	of	the	determinant	both	with	adjustment	for	the	third	variable	and	across
the	strata	of	that	variable.
An	example	of	a	variable	 that	 is	a	modifier	but	not	a	confounder	 is	given	in

Box	3–3.	This	study	addressed	the	causal	role	of	diet	in	the	occurrence	of	colon
cancer	 and	 the	 modifying	 potential	 of	 lifestyle	 (in	 this	 example	 physical
activity).	 The	 association	 between	 diet	 and	 colon	 cancer	 appeared	 not	 to	 be
confounded	 by	 physical	 activity.	 The	 causal	 impact	 of	 a	 so-called	 “high-risk
dietary	 pattern,”	 however,	 was	 dependent	 on	 the	 level	 of	 physical	 activity.
Physical	 activity	 level,	 therefore,	 acted	 as	 a	 causal	 modifier	 established	 on	 a
multiplicative	scale.
When	 causal	modification	 is	 studied,	 it	 should	 be	 appreciated	 that	 the	 same

principles	 of	 etiologic	 research	 apply	 as	 in	 typical	 etiologic	 studies	 where	 a
determinant	 is	 causally	 related	 to	 an	 outcome.	 In	 other	 words,	 alternative
explanations	 that	 could	 confound	 the	 apparent	 modification	 by	 a	 particular
characteristic	should	be	considered.

BOX	3–3	Physical	Activity	and	Colon	Cancer:	Confounding	or	Interaction?

SLATTERY	ML,	POTTER	JD

PURPOSE:	Although	physical	activity	has	been	consistently	inversely	associated	with	colon	cancer
incidence,	the	association	of	physical	activity	with	other	diet	and	lifestyle	factors	that	may	influence
this	association	is	less	well	understood.	Confounding	and	effect	modification	are	examined	to	better



understand	the	physical	activity	and	colon	cancer	association.

METHODS:	Based	on	hypothesized	biological	mechanisms	whereby	physical	activity	may	alter	risk
of	colon	cancer,	we	evaluated	confounding	and	effect	modification	using	data	collected	as	part	of	a
case-control	study	of	colon	cancer	(N	=	1993	cases	and	2410	controls).	We	examined	associations
between	total	energy	intake,	fiber,	calcium,	fruit	and	vegetables,	red	meat,	whole	grains	as	well	as
dietary	patterns	along	with	cigarette	smoking,	alcohol	consumption,	BMI,	and	use	of	aspirin	and/or
NSAIDs	and	physical	activity.

RESULTS:	No	confounding	was	observed	for	the	physical	activity	and	colon	cancer	association.
However,	differences	in	effects	of	diet	and	lifestyle	factors	were	identified	depending	on	level	of
physical	activity.	Most	striking	were	statistically	significant	interactions	between	physical	activity	and
high-risk	dietary	pattern	and	vegetable	intake,	in	that	the	relative	importance	of	diet	was	dependent	on
level	of	physical	activity.	The	predictive	model	of	colon	cancer	risk	was	improved	by	using	an
interaction	term	for	physical	activity	and	other	variables,	including	BMI,	cigarette	smoking,	energy
intake,	dietary	fiber,	dietary	calcium,	glycemic	index,	lutein,	folate,	vegetable	intake,	and	high-risk
diet	rather	than	using	models	that	included	these	variables	as	independent	predictors	with	physical
activity.	In	populations	where	activity	levels	are	high,	the	estimate	of	risk	associated	with	high
vegetable	intake	was	0.9	(95%	CI	0.6–1.3),	whereas	in	more	sedentary	populations	the	estimate	of	risk
associated	with	high	vegetable	intake	was	0.6	(95%	CI	0.5–0.9).

CONCLUSIONS:	Physical	activity	plays	an	important	role	in	the	etiology	of	colon	cancer.	Its
significance	is	seen	by	its	consistent	association	as	an	independent	predictor	of	colon	cancer	as	well	as
by	its	impact	on	the	odds	ratios	associated	with	other	factors.	Given	these	observations,	it	is	most
probable	that	physical	activity	operates	through	multiple	biological	mechanisms	that	influence	the
carcinogenic	process.

Reproduced	from	Slattery	ML,	Potter	JD.	Physical	activity	and	colon	cancer:	Confounding	or	interaction?
Med	Sci	Sports	Exerc.	2002	Jun;34(6):913–9.

DESIGN	OF	DATA	COLLECTION

Time
Typically,	 etiologic	 studies	 are	 longitudinal	 because	 the	 goal	 is	 to	 relate	 a
potentially	 causal	 determinant	 to	 the	 future	 occurrence,	 for	 example,	 the
incidence	of	a	disease.	This	temporal	relationship	should	be	incorporated	in	the
design	 of	 data	 collection	 to	 ensure	 that	 the	 determinant	 indeed	 precedes	 the
development	of	disease,	for	example,	by	means	of	a	cohort	study.	Consequently,
a	 cross-sectional	 design,	 where	 determinant	 and	 outcome	 are	 measured	 at	 the
same	point	in	time,	is	generally	not	the	preferred	approach	in	etiologic	research.
Several	examples	 illustrate	 this	point.	 In	studies	on	dietary	habits	as	a	possible
cause	for	cancer,	a	cross-sectional	study	design	may	reveal	a	positive	association



between	low	fat	intake	and	cancer,	while	in	fact	the	preclinical	cancer	itself	may
have	caused	a	change	in	dietary	habits.	Such	a	“which	comes	first,	the	chicken	or
the	 egg”	 phenomenon	 constitutes	 less	 of	 a	 problem	when	 the	 etiologic	 factor
cannot	change	over	time	(e.g.,	gender	or	a	genetic	trait).

Census	or	Sampling
The	classic	approach	to	collecting	data	 in	etiologic	epidemiologic	research	 is	a
cohort	study,	where	a	group	of	subjects	exposed	to	the	causal	factor	under	study
and	 a	 group	 of	 unexposed	 subjects	 are	 followed	 over	 time	 to	 compare	 the
incidence	 of	 the	 outcome	of	 interest.	 Such	 a	 study	 takes	 a	 census	 approach	 in
that	in	all	study	participants	the	determinant,	outcome,	and	potential	confounders
(and,	if	the	aim	is	to	study	modification,	modifiers)	are	measured.	Alternatively,
and	often	more	efficiently,	information	on	the	determinant	and	confounders	(and
possibly	modifiers)	can	be	collected	in	patients	with	the	outcome	of	interest	(the
cases)	 and	 a	 sample	 (controls)	 from	 the	population	 in	which	 these	 cases	 arise.
The	latter	approach	is	called	a	case-control	study.

Experimental	or	Observationally
Etiologic	 research	 can	 be	 conducted	 experimentally	 or	 observationally	 (i.e.
nonexperimentally).	 Experimental	 means	 that	 an	 investigator	 manipulates	 the
determinant	 with	 the	 goal	 of	 learning	 about	 its	 causal	 effects.	 Case-control
studies	 are	 nonexperimental	 by	 definition,	 but	 cohort	 studies	 can	 either	 be
experimental	or	nonexperimental.	The	best	known	 type	of	experimental	 cohort
study	 is	 a	 randomized	 trial.	 Randomized	 trials	 are	 particularly	 suited	 to	 study
effects	of	interventions.
The	 study	 in	 Box	 3–1,	 which	 addressed	 the	 cardiac	 risks	 associated	with	 a

high	haem	iron	 intake,	was	a	cohort	study	where	determinant,	confounder,	and
outcome	data	were	collected	on	all	members	of	the	cohort.	From	our	discussion,
it	 is	 obvious	 that	 in	 an	 etiologic	 study	 data	 need	 not	 only	 be	 collected	 for	 the
determinant	and	outcome	under	study,	but	also	for	potential	confounders	and,	in
case	modification	is	of	interest,	the	effect	modifiers.
There	 are	 several	 ways	 of	 collecting	 this	 information.	 Participants	 can	 be

interviewed,	 face	 to	 face	 or	 by	 telephone;	 they	 can	 answer	 questionnaires	 at
home	 or	 under	 supervision;	 they	 can	 keep	 diaries;	 and	 physical	measurements
can	 take	 place.	 The	 chosen	method	 depends	 on	 the	 reliability	 of	 the	 different



ways	 of	 collecting	 the	 data,	 the	 feasibility,	 and	 affordability.	 Determinant,
confounder,	and	modifier	data	are	usually	collected	at	the	start	of	the	study,	that
is,	at	baseline.	It	also	is	possible	for	information	to	be	collected	from	the	past.	In
the	cohort	study	in	Box	3–1,	dietary	information	was	collected	for	the	year	prior
to	 enrollment.	 Another	 example	 is	 when	 information	 about	 reproductive
characteristics	of	women	is	needed	from	postmenopausal	women.	Milestones	in
their	 reproductive	 history	 such	 as	 menarche,	 menstrual	 cycles,	 childbirth,	 and
lactation	all	happened	in	the	past.
Measurement	 error	 is	 one	 of	 the	 most	 important	 problems	 in	 the	 data

collection	 of	 epidemiologic	 studies	 and	 can	 lead	 to	 considerable	 bias.
Measurement	 error	 occurs	 when	 the	 measurement	 is	 not	 valid	 or	 when	 the
measurement	 is	 not	 sufficiently	 precise.	 Invalid	measurements	 occur	when	 the
method	 used	 does	 not	 measure	 what	 the	 investigator	 intends	 to	 measure.	 An
example	 is	 an	 uncalibrated	 blood	pressure	 device	 that	 systematically	measures
the	blood	pressures	10	mm	Hg	too	high.	Such	an	error	will	impair	inference	for
absolute	 blood	 pressure	 levels.	 If	 the	measurement	 is	 sufficiently	 precise	 (i.e.,
there	is	little	random	variation),	however,	there	is	no	problem	with	ranking	each
study	participant	correctly	in	the	population	distribution.	In	the	example	in	Box
3–1,	when	 the	haem	iron	content	 is	unknown	for	many	foods,	 this	will	 lead	 to
underestimation	of	the	haem	iron	intake	of	essentially	all	individuals	and	hence
to	misclassification	of	persons	with	a	 truly	higher	intake	in	categories	of	 lower
intake.	When	 this	occurs	 to	 the	same	extent	 for	persons	who	develop	coronary
heart	 disease	 as	 for	 persons	 who	 do	 not	 (this	 is	 called	 nondifferential
misclassification),	it	will	lead	to	an	underestimation	of	the	association.	Suppose
that	 particular	 foods	 are	 missed	 exclusively	 for	 those	 who	 subsequently
experience	heart	disease.	In	this	situation	the	underestimation	of	intake	becomes
related	to	the	outcome	of	interest	(this	is	called	differential	misclassification)	and
the	observed	association	will	become	severely	biased.
Measurement	 is	 as	 important	 for	 the	 determinant	 as	 for	 the	 confounders.

When	 there	 is	 measurement	 error	 for	 the	 confounders,	 the	 effect	 of	 the
extraneous	 determinant	 cannot	 be	 fully	 adjusted	 for	 and	 this	 leads	 to	 what	 is
called	residual	confounding.	Residual	confounding	leads	to	biased	estimation	of
the	determinant–outcome	relationship.

Design	of	Data	Analysis:	Measures	of	Association
In	cohort	studies,	participants	are	followed	over	time.	In	the	example	in	Box	3–



1,	we	collected	 information	on	haem	 iron	 intake	at	baseline	and	 then	 followed
our	 participants	 for	 a	 mean	 of	 4.2	 years.	 During	 that	 time,	 we	 collected
information	on	the	occurrence	of	coronary	heart	disease.	In	 the	analysis	of	 this
type	 of	 data,	 typically	 the	 incidence	 of	 the	 outcome	 is	 compared	 between
participants	 with	 and	 without	 the	 determinant,	 and	 usually	 a	 relative	 risk	 (or
incidence	 rate	 ratio)	 is	 given	 as	 the	 measure	 of	 effect.	 In	 our	 example,	 we
defined	four	categories	of	haem	iron	intake,	based	on	the	quartiles	of	the	haem
iron	distribution	in	the	entire	population.	Women	with	a	daily	haem	iron	intake
of	 less	 than	 1.28	 mg	 were	 categorized	 in	 the	 lowest	 quartile,	 while	 women
whose	daily	intake	was	greater	than	2.27	mg	were	placed	in	the	highest	quartile
(see	Table	 3–4).	Next,	we	 calculated	 incidences	 of	 coronary	 heart	 disease	 for
each	 quartile.	 When	 follow-up	 of	 the	 cohort	 is	 100%	 complete,	 cumulative
incidences	can	be	calculated.	Often	this	is	not	the	case,	so	incidence	densities	are
calculated,	where	all	 individuals	contribute	observation	 time	 (person-years)	 for
as	long	as	they	participated	in	the	study.	People	withdraw	from	a	study	for	many
reasons,	 and	 investigators	 generally	do	not	wait	 until	 all	 participants	 reach	 the
prespecified	 endpoint.	 Under	 these	 circumstances,	 it	 is	 more	 meaningful	 to
calculate	 incidence	 densities	 and	 conduct	 a	 time-to-event	 analysis.	 The	 Cox
proportional	 hazards	 analysis	 is	 the	 most	 widely	 used	 technique	 for	 time-to-
event	data.	This	method	allows	for	censoring	of	survival	time	for	those	persons
who	do	not	reach	the	endpoint	during	the	study,	for	example,	because	they	are
lost	to	follow-up	after	they	move	to	another	area	or	because	they	do	not	develop
the	outcome	before	the	study	ends.	The	uncensored	“survival”	times	are	usually
referred	 to	 as	 event	 times;	 these	 result	 from	 persons	 who	 experience	 the
prespecified	 endpoint.	 The	 Cox	 proportional	 hazards	 analysis	 estimates	 the
effect	of	a	determinant	on	 the	baseline	hazard	distribution,	 that	 is,	 the	 survival
distribution	of	completely	average	persons	for	whom	each	variable	(determinant
and	confounders)	is	equal	to	the	average	value	of	that	variable	for	the	entire	set
of	 subjects	 in	 the	 study.	This	 baseline	 survival	 curve	 does	 not	 need	 to	 have	 a
particular	form.	It	can	have	any	shape	as	long	as	it	starts	at	1.0	(or	100%)	at	time
0	and	descends	steadily	with	time.	The	model	estimates	hazard	ratios,	which	can
be	interpreted	as	risk	ratios.

TABLE	3–4	Incidence	Densities	of	Coronary	Heart	Disease	for	Haem	Iron	Intake	Quartiles
	 Range	(mg/day) Cases/Person-Years

Haem	iron	intakec 	 	

Quartile	1 <	1.28 54/17,413
Quartile	2 1.28–1.76 53/17,384
Quartile	3 1.76–2.27 57/17,334



Quartile	3 1.76–2.27 57/17,334
Quartile	4 >	2.27 88/17,469

To	summarize	the	risk	involved	with	increasing	amounts	of	haem	iron	intake,
we	calculated	the	hazard	ratios,	which	is	the	risk	of	higher	intakes	compared	to	a
reference	level	of	intake	(see	Table	3–5).	Usually	persons	with	no	exposure,	or
with	 the	 lowest	 or	 highest	 category	 of	 exposure,	 are	 considered	 to	 be	 the
reference	 group.	 The	 choice	 of	 the	 reference	 group	 depends	 on	 the	 study
question.	 In	our	 example,	we	considered	 those	with	 the	 lowest	 intake	of	haem
iron	 to	be	hypothetically	 the	best,	 and	 therefore	we	 took	 the	 lowest	quartile	as
the	reference	category.	Sometimes,	when,	for	example,	numbers	in	the	extreme
category	are	very	low,	other	strata	are	taken	as	a	reference	category.	This	does
not	change	the	inference,	but	it	does	affect	the	relative	risk	estimates	across	the
strata	and	should	 therefore	clearly	be	 indicated.	Table	3–5	shows	 the	estimates
of	relative	risk,	displayed	with	various	degrees	of	confounder	adjustment.

TABLE	3–5	Hazard	Ratios	of	Coronary	Heart	Disease	for	Increasing	Haem	Iron	Intake

aAdjusted	for	age	at	intake	(continuous),	BMI	(continuous),	smoking	(current/past/never),	physical	activity
(continuous),	hypertension	(yes/no),	diabetes	(yes/no),	hypercholesterolemia	(yes/no).
bAdjusted	for	age	at	intake	(continuous),	total	energy	intake	(continuous),	BMI	(continuous),	smoking
(current/past/never),	physical	activity	(continuous),	hypertension	(yes/no),	diabetes	(yes/no),
hypercholesterolemia	(yes/no),	energy-adjusted	saturated	fat	intake	(continuous),	energy-adjusted
carbohydrate	intake	(continuous),	energy-adjusted	fiber	intake	(continuous),	energy-adjusted	alcohol	intake
(quintiles),	energy-adjusted	β-carotene	intake	(continuous),	energy-adjusted	vitamin	E	intake	(continuous),
energy-adjusted	vitamin	C	intake	(continuous).

Our	study	showed	 that	women	with	 the	highest	haem	iron	 intake	had	a	1.65
times	higher	risk	of	coronary	heart	disease	than	women	with	the	lowest	intake.
This	 effect	 is	 statistically	 significant,	 as	 the	 95%	 confidence	 interval	 for	 the
hazard	ratio	(1.07–2.53)	does	not	include	1.	While	the	hazard	ratio	or	the	relative
risk	 represents	 the	 likelihood	 of	 disease	 in	 individuals	 with	 the	 determinant
relative	 to	 those	without,	 there	 is	 also	 a	measure	providing	 information	on	 the
absolute	 effect	 of	 the	 determinant,	 or	 the	 excess	 risk	 of	 disease	 in	 those
compared	 to	 those	without	 the	 determinant.	 This	 is	 the	 risk	 difference	 (or	 the



attributable	risk)	and	is	calculated	as	the	difference	of	cumulative	incidences	or
incidence	densities.	 In	our	 example,	we	 could	 calculate	 the	 attributable	 risk	 as
[(88/17,469)	 –	 (54/17,413)]	 =	 1.9	 per	 thousand	 women.	 From	 a	 practical	 or
preventive	 perspective,	 it	 may	 be	 useful	 to	 estimate	 the	 proportion	 of	 the
incidence	of	the	outcome	that	is	attributable	to	the	determinant	(in	this	case	the
highest	 quartile	 of	 intake):	 the	 attributable	 risk	 proportion.	 It	 is	 calculated	 as
[(1.9/1,000)/(88/17,469)]	×	100	=	37.7%.	 It	 also	 can	be	 interesting	 to	 estimate
the	 excess	 rate	 of	 the	 outcome	 in	 the	 total	 study	 population	 that	 might	 be
attributed	to	the	determinant.	This	measure	is	called	the	population	attributable
risk	 (PAR),	 and	 it	 illustrates	 the	 importance	 of	 a	 specific	 determinant	 in	 the
causation	of	a	disease	or	outcome.	The	PAR	is	calculated	as	the	rate	of	disease	in
the	 population	 minus	 the	 rate	 of	 disease	 in	 the	 subpopulation	 without	 the
determinant,	or	alternatively,	as	the	attributable	risk	multiplied	by	the	proportion
of	individuals	with	the	determinant	in	the	population.	In	our	example,	the	PAR	is
0.0019	×	0.25	=	4.8	per	10,000	women.

COMMON	ETIOLOGIC	QUESTIONS	IN
CLINICAL	EPIDEMIOLOGY
Despite	 the	 overwhelming	 number	 of	 etiologic	 epidemiologic	 studies	 in	 the
literature,	 the	 immediate	 relevance	 of	 etiologic	 information	 in	 patient	 care	 is
often	limited.	From	the	perspective	of	 the	patient	as	well	as	 the	physician,	 two
questions	 are	most	 important:	 “Given	 the	 patient	 profile,	what	 is	 the	 patient’s
illness?”	 and	 “Given	 the	 patient’s	 illness,	 its	 etiology,	 the	 clinical	 and
nonclinical	profile,	and	other	factors,	what	will	be	the	future	course	of	the	illness
or	 its	manifestations	 in	 the	 presence	 or	 absence	 of	 treatment?”	Often	 it	 is	 not
necessary	to	know	the	cause	of	the	disease	to	establish	its	diagnosis	or	determine
its	prognosis.	In	the	case	of	appendicitis,	for	example,	the	cause	is	not	of	interest
in	 determining	 the	 clinical	 management.	 Etiologic	 knowledge,	 however,	 can
sometimes	be	of	help	in	determining	subsequent	medical	actions.	For	example,
in	a	patient	with	abdominal	complaints,	it	is	important	to	know	that	the	diagnosis
is	 early	 colon	 cancer	 and	 subsequently	 act	 to	 improve	 prognosis	 by	 adequate
treatment.	 Yet,	 etiologic	 information	 could	 help	 to	 prevent	 future	 occurrences
and,	 in	 the	 case	 of	 colon	 cancer,	 may	warrant	 screening	 for	 polyps	 in	 family
members.	 Similarly,	 establishing	 the	 cause	 of	 allergic	 rhinitis	 can	 be	 useful	 to



take	 preventive	 measures.	 Still,	 many	 of	 the	 most	 urgent	 questions	 that	 need
answering	 in	 clinical	 care	 are	 those	 about	 optimal	 diagnostic	 strategies,	 better
prediction	of	prognosis,	and	means	to	improve	the	course	of	the	disease.	There
is,	however,	a	slight	subtlety	in	the	nature	of	questions	about	means	to	improve
prognoses.	While	the	extent	to	which	a	certain	intervention	improves	prognosis
and	 is	 safe	 is	 essentially	 a	 prognostic	 question	 from	 the	 viewpoint	 of	 patient
care,	 in	 research	on	 the	benefits	and	 risks	of	 treatment	 it	 is	often	also	a	causal
question,	 and	 research	 assessing	 causal	 association	 of	 an	 intervention	with	 an
outcome	 shares	 many	 features	 with	 etiologic	 research.	 For	 example,	 when	 a
pharmaceutical	 company	 launches	 a	 research	 program	 for	 a	 new	 drug	 used	 to
treat	chronic	headache,	 two	questions	must	be	answered.	First,	 “Does	 the	drug
help	to	relieve	headache?”	and,	second,	“Is	it	the	drug	that	causes	the	benefit	or
are	 there	 alternative	 explanations?”	 Thus,	 in	 designing	 an	 intervention	 study
many	principles	of	etiologic	research	apply,	including	the	need	to	fully	exclude
confounding.	Because	confounding,	and	in	particular	confounding	by	indication,
is	 a	 serious	 problem	 in	 intervention	 research	 when	 using	 data	 collected	 from
routine	 care	or	 in	nonexperimental	 cohort	 studies,	 definitive	 conclusions	 about
the	benefits	of	drug	treatment	and	other	interventions	can	often	only	be	obtained
by	 studying	 these	 effects	 in	 randomized	 trials.	 For	 unintended	 effects	 of
interventions,	 similar	 types	 of	 study	 designs	 are	 often	 applied	 as	 in	 etiologic
research	(e.g.,	cohort	and	case-control	studies).

WORKED-OUT	EXAMPLE
The	beneficial	effects	of	moderate	alcohol	intake	on	coronary	heart	disease	risk
have	been	clearly	established.	Whether	there	is	a	similar	effect	of	alcohol	intake
on	 risk	 of	 type	 2	 diabetes	 is	 not	 yet	 clear.	 For	 the	 study	 in	Box	 3–4,	 data	 on
alcohol	intake	as	well	as	information	on	the	occurrence	of	type	2	diabetes	were
collected	as	part	of	a	large	cohort	study	initially	designed	to	study	the	role	of	diet
in	cancer	occurrence.

BOX	3–4	Alcohol	Consumption	and	Risk	of	Type	2	Diabetes	Among	Older	Women

JOLINE	W.J.	BEULENS,	MSC
RONALD	P.	STOLK,	MD
YVONNE	T.	VAN	DER	SCHOUW,	PHD
DIEDERICK	E.	GROBBEE,	MD
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OBJECTIVE:	This	study	aimed	to	investigate	the	relation	between	alcohol	consumption	and	type	2
diabetes	among	older	women.

RESEARCH	DESIGN	AND	METHODS:	Between	1993	and	1997,	16,330	women	aged	49–70
years	and	free	from	diabetes	were	enrolled	in	one	of	the	Dutch	Prospect-EPIC	(European	Prospective
Study	Into	Cancer	and	Nutrition)	cohorts	and	followed	for	6.2	years	(range	0.1–10.1).	At	enrollment,
women	filled	in	questionnaires	and	blood	samples	were	collected.

RESULTS:	During	follow-up,	760	cases	of	type	2	diabetes	were	documented.	A	linear	inverse
association	(P	=	0.007)	between	alcohol	consumption	and	type	2	diabetes	risk	was	observed,	adjusting
for	potential	confounders.	Compared	with	abstainers,	the	hazard	ratio	for	type	2	diabetes	was	0.86
(95%	CI	0.66–1.12)	for	women	consuming	5–30	g	alcohol	per	week,	0.66	(0.48–0.91)	for	30–70	g	per
week,	0.91	(0.67–1.24)	for	70–140	g	per	week,	0.64	(0.44–0.93)	for	140–210	g	per	week,	and	0.69
(0.47–1.02)	for	>	210	g	alcohol	per	week.	Beverage	type	did	not	influence	this	association.	Lifetime
alcohol	consumption	was	associated	with	type	2	diabetes	in	a	U-shaped	fashion.

CONCLUSIONS:	Our	findings	support	the	evidence	of	a	decreased	risk	of	type	2	diabetes	with
moderate	alcohol	consumption	and	expand	this	to	a	population	of	older	women.

©	2003	American	Diabetes	Association.	Alcohol	Consumption	and	Risk	of	Type	2	Diabetes	Among	Older
Women.	“Diabetes	Care,”	Vol	28,	2005;	2933–2938.	Reprinted	with	permission	from	The	American
Diabetes	Association.

Theoretical	Design
The	research	question	was,	“Does	moderate	alcohol	consumption	protect	against
the	 development	 of	 type	 2	 diabetes?”	 This	 translates	 into	 the	 following
occurrence	relation:

Incidence	of	type	2	diabetes	=	f	(alcohol	intake	|	extraneous	determinants)

Consideration	 of	 confounding	 is	 necessary	 because	 an	 etiologic	 occurrence
relation	 is	 addressed.	 The	 operational	 definition	 of	 the	 outcome	 was	 a	 first
clinical	 diagnosis	 of	 type	 2	 diabetes	 as	 determined	 using	 various	 information
sources	during	follow-up.	The	measurement	of	determinant	and	confounders	was
operationalized	by	recording	all	relevant	information	on	past	and	current	alcohol
intake,	other	 lifestyle	 factors,	medication	use	 in	a	questionnaire,	 and	by	 taking
anthropometric	 measures	 of	 the	 participant	 during	 regular	 visits	 to	 the	 study
center.



Design	of	Data	Collection
Data	were	 collected	 on	 a	 cohort	 of	middle-aged	 and	 elderly	women.	Between
1993	and	1997,	a	total	of	50,313	women	aged	49	to	70	years	who	were	living	in
and	 around	 Utrecht,	 the	 Netherlands,	 were	 invited	 to	 participate	 in	 the	 study
during	 their	 routine	 visit	 for	 a	 screening	 program	 for	 breast	 cancer.	 In	 total,
17,357	women	were	enrolled	in	the	cohort.	At	baseline,	a	general	questionnaire
containing	 questions	 about	 smoking	 behavior,	 physical	 activity,	 reproductive
history,	medical	 history,	 family	 history,	medication	 use,	 and	 a	 food	 frequency
questionnaire	about	their	normal	intake	during	the	year	prior	to	enrollment,	were
administered	(see	Table	3–6).	Height,	weight,	waist,	and	hip	circumference,	and
systolic	and	diastolic	blood	pressure	were	measured.	For	the	present	analysis,	the
follow-up	period	ended	on	 January	1,	2002,	 after	 a	mean	of	6.2	years.	During
follow-up,	questionnaires	were	sent	out	at	5-year	 intervals	 to	 inquire	about	 the
occurrence	 of	 disease,	 and	 these	 contained	 seven	 questions	 about	 diabetes.	 A
new	event	 of	 type	 2	 diabetes	 during	 follow-up	was	 defined	 as	 a	 report	 of	 this
disease	in	one	of	two	follow-up	questionnaires,	or	a	positive	urine	dipstick	sent
out	with	the	first	follow-up	questionnaire,	or	a	diagnosis	of	type	2	diabetes	in	the
national	hospital	discharge	diagnosis	database	with	which	the	cohort	is	linked	on
an	annual	basis.

TABLE	3–6	Baseline	Characteristics*	by	Alcohol	Consumption	Categories	in	16,330	Dutch	Women

Data	are	means	±	SD.
*All	characteristics	are	age-adjusted	except	age.
†P	value	≤	0.001	between	alcohol	intake	categories.

Design	of	Data	Analysis
The	principal	analysis	was	performed	on	 the	cohort	excluding	 the	women	who
reported	 diabetes	 at	 baseline.	Although	 the	 follow-up	was	 almost	 complete,	 it
was	 not	 possible	 to	 keep	 track	 of	 all	 enrolled	 women	 until	 January	 1,	 2002,



because	 some	 of	 them	moved	 outside	 of	 the	 Netherlands,	 and	 a	 few	 of	 them
died.	 Therefore,	 the	 follow-up	 time	 was	 calculated	 individually	 for	 every
woman.	Because	 the	main	 interest	was	 the	 causal	 association	 between	 alcohol
intake	 and	 type	 2	 diabetes	 risk,	 baseline	 alcohol	 intake	 and	 lifetime	 alcohol
intake	were	 considered	 to	 be	 potential	 determinants	 of	 the	 outcome.	 First,	 the
crude	incidence	density	of	type	2	diabetes	was	calculated	for	four	categories	of
alcohol	intake:	teetotalers,	and	those	drinking	0	to	4.9	g/day,	5	to	29.9	g/day,	and
30	 to	 69.9	 g/day.	 Univariate	 risk	 ratios	 with	 95%	 confidence	 intervals	 were
calculated	 with	 Cox	 proportional	 hazard	 analysis,	 with	 teetotalers	 as	 the
reference	group.	Next,	lifestyle	factors	and	medical	information	were	considered
as	 potential	 confounders	 of	 the	 observed	 crude	 association,	 because	 they	 are
known	to	be	other	determinants	of	type	2	diabetes	risk	and	often	are	associated
with	alcohol	intake.	Table	3–6	presents	the	baseline	characteristics	of	the	study
population,	showing	that	two	important	determinants	of	type	2	diabetes,	age	and
BMI,	 are	 also	 related	 to	 baseline	 alcohol	 intake.	 A	 section	 of	 these	 data	 are
presented	in	Table	3–7.	The	younger	and	leaner	the	participants,	the	more	they
drink.	 Although	 these	 associations	 were	 tested	 formally,	 the	 presence	 of
confounding	 is	best	 judged	by	 the	changes	 in	 the	 risk	estimates	 rather	 than	by
statistical	 significance.	 To	 examine	 the	 level	 of	 confounding,	 potential
confounders	 were	 included	 in	 the	 Cox	 proportional	 hazards	 model,	 and	 the
extent	 to	 which	 adding	 these	 variables	 to	 the	 model	 materially	 changed	 the
estimates	 of	 the	 risk	 ratios	 was	 judged.	 There	 is	 no	 universal	 definition	 for	 a
material	 change	 in	 risk	 ratio,	 leaving	 this	 an	 arbitrary	 decision	 of	 the
investigator.	However,	 commonly	5–10%	changes	 in	 risk	 ratios	are	considered
large	enough	to	justify	adjustment.
Although	 not	 displayed	 in	 the	 published	 article,	 from	 Table	 3–7	 the	 crude

incidence	rates	and	risk	ratios	for	the	three	categories	of	alcohol	intake	compared
to	teetotalers	can	easily	be	calculated	to	be	1.00	for	women	drinking	0	to	4.9	g
alcohol/day,	 0.68	 for	women	 drinking	 5.0	 to	 29.9	 g	 alcohol/day,	 and	 0.51	 for
women	 drinking	 30.0	 to	 69.9	 g	 alcohol/day.	 Table	 3–7	 further	 shows	 that
adjusting	 for	 age	 and	 BMI	 does	 change	 the	 risk	 estimates	 quite	 dramatically,
whereas	 adding	 additional	 potential	 confounders	 does	 not	 result	 in	 important
changes	anymore.

TABLE	3–7	Baseline	Alcohol	Consumption	and	Risk	of	Type	2	Diabetes	Among	16,330	Dutch	Women



Data	are	means	±	SD.
*All	characteristics	are	age-adjusted	except	age.
†P	value	≤	0.001	between	alcohol	intake	categories.

Implications	and	Relevance
The	 results	 of	 this	 study	 show	 that	 moderate	 alcohol	 intake	 protects	 against
development	 of	 type	 2	 diabetes,	which	was	 true	 for	 baseline	 alcohol	 intake	 as
well	as	 lifetime	alcohol	 intake.	The	 type	of	alcoholic	beverage	did	not	make	a
difference,	which	strongly	suggests	a	protective	effect	of	alcohol	itself.
A	 protective	 effect	 of	 moderate	 alcohol	 consumption	 for	 cardiovascular

disease	 risk	 is	 already	well	 established,	 just	 as	 the	 close	 relationship	 between
cardiovascular	disease	and	diabetes	and	other	morbidity	is	well	established.	You
could	 argue	 that	 residual	 confounding	 from	 other	 comorbidities,	 notably
cardiovascular	 disease,	 may	 be	 present.	 However,	 when	 excluding	 cases	 with
cardiovascular	disease	from	the	analysis,	similar	results	were	obtained.
This	study	did	not	specifically	address	the	pathophysiologic	mechanism.	In	a

random	 sample	 of	 the	 population,	 the	 relationship	 between	 alcohol	 intake	 and
HDL-C	levels	was	determined,	and	the	expected	increasing	effect	of	alcohol	was
found.	Therefore,	 beneficial	 effects	 of	 alcohol	 on	HDL-C	could	be	 part	 of	 the
mechanism	 for	 the	 protection	 against	 type	 2	 diabetes.	 However,	 increases	 in
insulin	sensitivity	and	anti-inflammatory	effects	also	have	been	associated	with
moderate	 alcohol	 intake,	 and	 this	 might	 explain	 the	 risk	 reduction	 of	 type	 2
diabetes	[Sierksma	et	al.,	2002].



Chapter	4



Prognostic	Research

INTRODUCTION
A	 40-year-old	 woman	 diagnosed	 with	 rheumatoid	 arthritis	 contacts	 her
rheumatologist	for	a	routine	follow-up	visit.	This	woman	is	well	informed	about
her	 disorder,	 and	 she	 has	 recently	 learned	 that	 patients	 suffering	 from
rheumatoid	 arthritis	 may	 be	 at	 an	 elevated	 risk	 for	 infections	 [Doran	 et	 al.,
2002].	 She	 asks	 her	 rheumatologist	 if	 there	 is	 any	 reason	 to	 worry	 about
infection	currently.	Her	doctor	responds	by	stating	that	this	is	indeed	a	relevant
issue,	 because	 the	 patient	 has	 been	 using	 corticosteroids	 since	 her	 last	 visit	 a
couple	of	months	ago	and	these	medications	may	well	increase	infection	risk.
To	become	better	informed	about	her	patient’s	risk	of	contracting	an	infection,

the	 rheumatologist	 searches	 for	 extra-articular	 manifestations	 of	 rheumatoid
arthritis,	 such	 as	 skin	 abnormalities	 (cutaneous	 vasculitis),	 which	 are	 also
associated	 with	 a	 higher	 infection	 risk.	 She	 observes	 none.	 Still,	 the
rheumatologist	 feels	 uncertain	 about	 the	 probability	 that	 future	 infections	 will
occur	 in	 her	 patient.	 She	 decides	 to	 draw	 blood	 and	 send	 it	 to	 the	 lab	 for	 a
leukocyte	 count.	 No	 leukopenia	 is	 found.	 Now	 the	 rheumatologist	 feels
confident	 enough	 to	 reassure	 her	 patient	 and	 does	 not	 schedule	more	 frequent
follow-up	visits	than	those	initially	planned.

PROGNOSIS	IN	CLINICAL	PRACTICE
In	clinical	epidemiology,	research	questions	arise	from	clinical	practice	and	the



answers	must	serve	that	practice.	Therefore,	a	discussion	of	the	motive,	aim,	and
process	 of	 setting	 a	 prognosis	 in	 practice	 is	 essential	 before	 discussing	 the
particulars	of	prognostic	research.

The	Motive	and	Aim	of	Prognosis
Prognoses	 are	 made	 to	 inform	 patients	 and	 physicians	 [Asch,	 1990].	 Like	 all
humans,	 patients	 have	 a	 natural	 interest	 in	 their	 future	 health.	 This	 not	 only
reflects	 a	 basic	 need	 for	 certainty,	 but	 it	 also	 enables	 people	 to	 anticipate	 the
future	 and	 thus	 make	 informed	 plans.	 Consequently,	 many	 patients	 expect	 a
statement	 from	 their	 doctor	 about	 their	 prognosis.	 In	 the	 context	 of	 medical
practice,	a	prognosis	may	refer	to	all	elements	of	future	health	These	include	not
only	 direct	 manifestations	 of	 disease	 such	 as	 mortality,	 pain,	 or	 other	 direct
physical	 or	 psychological	 sequelae,	 but	 also	 adverse	 effects	 of	 treatment,
treatment	response,	or	failure;	limitations	in	psychosocial	or	societal	functioning;
disease	 recurrence;	 future	 need	 for	 invasive	 diagnostic	 procedures;	 and	 other
concerns.	 For	 physicians,	 a	 patient’s	 prognosis	 is	 of	 key	 clinical	 importance;
prognostication	is	a	core	activity	[Moons	&	Grobbee,	2005].	The	prognosis	of	a
patient	with	 a	 given	 diagnosis	 forms	 the	 point	 of	 departure	 for	 all	 subsequent
aspects	 of	 patient	 management.	 Prognosis	 guides	 subsequent	 medical	 actions
such	 as	monitoring	 the	 course	 of	 disease	 and	 planning	 future	 interventions	 or
making	the	decision	to	refrain	from	interventions	(see	Box	4–1).
One	of	the	motives	for	a	physician	to	be	interested	in	a	patient’s	prognosis	is

that	 many	 treatments	 tend	 to	 become	 more	 cost-effective	 as	 the	 prognosis
worsens,	which	means	that	patients	with	a	poor	prognosis	have	more	to	gain.	For
instance,	 in	 patients	 diagnosed	 with	 myocardial	 infarction	 that	 have	 a	 low
mortality	 risk	 (defined	 as	 a	1-year	 risk	below	10%),	 the	benefit	 of	 reperfusion
therapy	 expressed	 as	 the	 reduction	 in	 the	 absolute	 risk	 of	 mortality	 has	 been
shown	 to	 be	 less	 than	 3%.	 For	 those	with	 a	 poorer	 prognosis,	 for	 example,	 a
mortality	 risk	 of	 25%,	 the	mortality	 risk	 reduction	 is	much	higher,	 about	 15%
(ranging	 from	10–25%)	 [Boersma	&	Simons,	1997].	 In	other	 instances,	a	poor
prognosis	 may	 call	 for	 withholding	 a	 certain	 treatment,	 a	 relatively	 common
situation	 in	 surgery	 and	 intensive	 care	 medicine.	 Also,	 the	 acceptability	 of	 a
therapy	with	 serious	adverse	effects	often	depends	on	a	patient’s	prognosis.	 In
women	diagnosed	with	breast	cancer,	the	risk	of	recurrence	of	a	cancerous	tumor
determines	whether	or	not	systemic	adjuvant	therapy	is	initiated	[Joensuu	et	al.,
2004].	If	the	prognosis	is	favorable,	where	the	recurrence	risk	is	low,	the	burden



of	systemic	therapy	may	not	outweigh	its	benefits.

BOX	4–1	Definition

Prognosis	in	clinical	practice	can	be	defined	as	a	prediction	of	the	course	or	outcome	of	a	certain
illness,	in	a	certain	patient.	It	combines	the	ancient	Greek	word	πρo,	meaning	beforehand,	and	γνωσις,
meaning	knowledge.	Although	prognoses	are	all	around	us,	such	as	weather	forecasts	and	corporate
finance	projections,	the	word	has	a	medical	connotation.	After	setting	a	diagnosis,	and	perhaps	making
a	statement	on	the	surmised	etiology	of	the	patient’s	illness,	making	a	prognosis	(“prognostication”)	is
the	next	challenge	a	physician	faces.	Accurate	prognostic	knowledge	is	of	critical	importance	to	both
patients	and	physicians.	Although	perhaps	obvious,	it	must	be	stressed	that	a	person	does	not	require
an	established	illness	or	disease	to	have	a	prognosis.	For	instance,	life	expectancy	typically	is	a
prognosis	relevant	to	all	human	beings,	diseased	and	nondiseased.	Preventive	medicine	is	concerned
with	intervening	on	those	who	are	still	free	of	disease	yet	have	a	higher	risk	of	developing	a	particular
disease,	that	is,	those	with	a	poor	prognosis.	In	the	medical	context	and	context	of	clinical
epidemiology,	however,	prognosis	is	commonly	defined	as	the	course	and	outcome	of	a	given	illness
in	an	individual	patient.

Thus,	 prognostication	 often	 implies	 answering	 the	 question,	 “What	 is	 the
predicted	course	of	the	disease	in	this	patient	if	I	do	not	intervene?”	[Moons	&
Grobbee,	2005].	The	answer	is	crucial	in	the	decision	to	initiate	or	refrain	from
therapeutic	interventions.	Predicting	an	individual	patient’s	response	to	a	certain
therapy	also	involves	prognostication,	because	the	typical	aim	of	the	intervention
is	to	improve	prognosis	[Dorresteijn	et	al.,	2011].	Denys	et	al.	[2003]	developed
a	risk	score	to	estimate	the	response	to	pharmacotherapy	in	patients	being	treated
for	 obsessive-compulsive	 disorders.	 A	 combination	 of	 patient	 characteristics
available	at	 treatment	 initiation	adequately	predicted	a	patient’s	drug	 response.
This	type	of	score	enables	the	physician	to	selectively	treat	those	most	likely	to
benefit	 from	 treatment,	 which	 yields	 increased	 treatment	 efficiency	 and	 limits
unnecessary	drug	use.
In	 practice,	 patient	 management	 is	 hardly	 ever	 based	 on	 the	 expected

probability	 that	 a	 patient	 will	 develop	 a	 single	 prognostic	 outcome.	 Instead,
physicians	commonly	base	 their	decision	 to	start	a	certain	 treatment	 in	a	given
patient	on	several	prognostic	outcomes.	In	fact,	for	adequate	actions,	a	physician
is	 faced	 with	 the	 considerable	 challenge	 of	 making	 reliable	 predictions	 for
virtually	all	relevant	patient	outcomes,	 to	assess	 their	utilities	(i.e.,	hazards	and
benefits),	 and	 to	 weigh	 and	 combine	 these	 outcomes	 in	 discussions	 with	 the
patient	[Braitman	&	Davidoff,	1996;	Dorresteijn	et	al.,	2011].	For	instance,	in	a
patient	suffering	from	multiple	sclerosis,	adequate	medical	action	will	be	based
not	 only	 on	 the	 predicted	mortality	 risk,	 but	 also	 on	 the	 risk	 of	 future	 urinary



incontinence,	dysarthria,	visual	acuity,	and	impairments	in	activities	of	daily	life,
among	other	contraindications.	It	also	should	be	emphasized	that	prognostication
is	not	a	“once	in	the	course	of	illness	activity.”	It	is	commonly	repeated	in	order
to	 monitor	 a	 patient’s	 condition	 in	 consideration	 of	 eventual	 treatment
alterations,	 and,	 of	 course,	 to	 regularly	 inform	 the	 patient.	After	 all,	 the	word
doctor	stems	from	the	Latin	word	doctrina,	meaning	teacher.
Comprehensive,	 precise,	 and	 repeated	 evidence-based	 prognostication	 is	 the

ultimate	 aim.	 However,	 this	 often	 may	 be	 unattainable	 in	 daily	 practice,
primarily	due	to	a	lack	of	adequate	evidence	from	scientific	prognostic	research.
In	addition,	there	are	practical	obstacles;	multiple	or	complex	risk	calculations	at
the	bedside	are	often	incompatible	with	time	constraints	in	medical	practice.

The	Format	of	Prognoses
As	the	future	cannot	be	predicted	with	100%	certainty,	a	prognosis	is	inherently
probabilistic.	 Therefore,	 prognoses	 are	 formulated	 in	 terms	 reflecting
uncertainty,	that	is,	risks	or	probabilities.	For	example,	short-term	mortality	in	a
patient	with	a	recent	diagnosis	of	severe	heart	failure	may	be	expressed	as	likely,
uncertain,	or	unlikely.	Preferably,	a	prognosis	is	expressed	in	exact	quantitative
terms,	such	as	a	period-specific	absolute	risk.	For	instance,	the	10-year	survival
rate	 for	 a	 woman	 between	 50	 and	 70	 years	 of	 age	 with	 node-negative	 breast
cancer	with	 a	 tumor	 diameter	 less	 than	 10	millimeters	 is	 93%	 [Joensuu	 et	 al.,
2004].
Clinically	relevant	prognoses	are	to	be	expressed	as	absolute	risks,	or	absolute

risk	categories.	Relative	risks	have	no	relevance	to	patients	or	physicians	without
reference	 to	 absolute	 probabilities.	 For	 instance,	 the	 knowledge	 that	 a	 certain
patient	characteristic	is	associated	with	a	twofold	risk	(i.e.,	relative	risk	of	two)
of	a	certain	outcome	has	no	meaning,	unless	 the	probability	of	 the	outcome	 in
patients	without	the	characteristic	is	known.	Clearly,	doubling	of	this	probability
will	 have	 a	 different	 impact	 on	 patient	 management	 when	 it	 is	 very	 low,	 for
example	 0.1%,	 than	when	 it	 is	much	 higher,	 for	 example	 10%.	Therefore,	 the
preferred	 format	 of	 a	 prognosis	 is	 an	 absolute	 risk.	 Sometimes	 it	 is	 not	 the
probability	of	the	occurrence	of	a	certain	event	that	is	to	be	predicted	but	rather
the	absolute	level	of	a	future	continuous	outcome,	for	instance,	pain	or	quality	of
life.



APPROACHES	TO	PROGNOSTICATION
There	are	at	least	three	different	approaches	to	making	a	prognosis.	The	first	is
to	base	prognosis	on	mechanistic	and	pathophysiologic	insight,	an	approach	that
fits	 the	 educational	 experience	 of	 most	 doctors.	 Although	 mechanistic	 and
pathophysiologic	knowledge	may	be	useful	in	prognostication,	it	rarely	enables	a
doctor	to	effectively	differentiate	patients	who	have	a	high	risk	from	those	with	a
low	risk	of	developing	a	certain	outcome.	This	is	because	disease	outcomes	are
generally	 determined	 by	multiple,	 interrelated,	 complex,	 and	 largely	 unknown
biologic	 factors	 and	 processes	 with	 high	 variability	 between	 subjects.	 In
addition,	knowledge	about	underlying	mechanisms	is	not	always	available	and	if
available	 is	 often	 difficult	 to	 measure.	 In	 many	 instances	 accurate	 prognostic
predictions	 may,	 however,	 be	 obtained	 by	 combining	 several	 easy	 to	 assess
clinical	and	nonclinical	characteristics	of	the	patient,	characteristics	that	are	not
necessarily	 causally	 linked	 to	 the	 course	 of	 disease.	 For	 example,	 hip	 fracture
can	 be	 accurately	 predicted	 from	 age,	 gender,	 height,	 use	 of	 a	 walking	 aid,
cigarette	smoking,	and	body	weight	[Burger	et	al.,	1999].	It	 is	 likely	 that	 these
predictors	 correlate	 with	 parameters	 involved	 in	 the	 causal	 mechanism
underlying	fracture	risk,	that	is,	low	bone	density,	impaired	bone	quality,	impact
on	the	hip	bone	from	a	fall,	and	postural	instability.
Second,	 clinical	 experience	 is	 a	 frequently	 used	 source	 of	 prognostic

knowledge	 [Feinstein,	1994].	Suppose	 that	 a	 cardiologist	observes	 that	women
diagnosed	 with	 heart	 failure	 return	 to	 the	 hospital	 less	 frequently	 than	 men.
Obviously,	this	observation	may	result	from	a	truly	worse	prognosis	in	men	than
in	 women.	 Several	 other	 phenomena,	 however,	 may	 have	 led	 to	 a	 similar
observation.	Alternative	explanations	are	(1)	 that	survival	 in	women	with	heart
failure	 actually	may	be	worse	 than	 in	men,	 leading	 to	 fewer	 readmissions;	 (2)
women	with	 similar	 symptoms	of	worsening	 heart	 failure	 are	 less	 likely	 to	 be
referred	 to	 a	 hospital;	 or	 (3)	 the	 observation	may	 be	wrong.	Although	 clinical
experience	 is	 of	 paramount	 importance	 in	 prognostication	 in	 daily	 practice,
prognostic	research	may	be	useful	to	confirm	or	refute	and,	preferably,	quantify
prognostic	associations.
The	 third	 approach	 is	 an	 example	 of	 prognostication	 based	 on	 empirical

prognostic	research:	the	use	of	an	explicit	risk	score	or	prediction	model	or	rule
containing	 multiple	 prognostic	 determinants,	 representing	 the	 values	 of	 the
predictors	and	their	quantitative	relationship	to	a	certain	prognostically	relevant
outcome.	A	good	example	of	an	explicit	prognostic	model	is	the	Apgar	score	for



estimating	 the	 probability	 of	 neonatal	 mortality	 [Apgar,	 1953;	 Casey	 et	 al.,
2001].	It	formally	describes	how	several	characteristics	of	the	newborn	relate	to
the	probability	of	dying	during	the	first	28	days	after	birth.	Each	characteristic	is
assigned	a	score	of	0	for	absent,	a	score	of	1	for	doubtful,	and	a	score	of	2	for
definitely	present.	As	there	are	five	characteristics,	the	total	score	ranges	from	0
to	 10.	 Interestingly,	 the	 Apgar	 score	 (see	 Table	 4–1)	 was	 already	 used
worldwide	decades	before	 its	high	predictive	power	 for	neonatal	mortality	was
confirmed	in	a	formal	prognostic	study.

TABLE	4–1	Apgar	Score	Signs	0	1

Reproduced	from:	Finster,	Mieczyslaw	M.D.	and	Wood,	Margaret	M.D.;	The	Apgar	Source	Has	Survived
the	Test	of	Time.	Anesthesiology.	April	2005.	Volume	102.	Issue	4.	pp	855–857.	©	2005	American	Society
of	Anesthesiologists,	Inc.	Reprinted	with	permission	from	Wolters	Kluwer	Health.

In	 practice,	 the	 three	 approaches	 discussed	 in	 this	 section	 are	 often	 used
implicitly	 and	 even	 simultaneously.	 It	 is	 unlikely	 that	 a	 physician	 estimates	 a
prognosis	based	on	a	prediction	model	only.	The	aim	of	a	prediction	model	 in
any	medical	field	is	not	to	take	over	the	job	of	the	physician.	The	intention	rather
is	 to	 guide	 physicians	 in	 their	 decision	 making	 based	 on	 more	 objectively
estimated	 probabilities	 as	 a	 supplement	 to	 any	 other	 relevant	 information,
including	 clinical	 experience	 and	 pathophysiologic	 knowledge	 [Christensen,
2004;	Concato	et	al.,	1993;	Feinstein,	1994;	Moons	et	al.,	2009a;	Moons	et	al.,
2012a].

PROGNOSTICATION	IS	A	MULTIVARIABLE
PROCESS



It	is	common	practice	in	the	medical	literature	as	well	as	during	clinical	rounds
to	 refer	 to	 the	prognosis	 of	 a	disease	 rather	 than	 to	 the	prognosis	 of	 a	patient:
“The	prognosis	of	pancreatic	cancer	is	poor”;	“Concussion	most	often	leaves	no
lasting	 neurologic	 problems”;	 or,	 more	 quantitatively,	 “Five-year	 survival	 in
osteosarcoma	 approximates	 40%.”	These	 so-called	 textbook	 prognoses	 are	 not
individualized	prognoses	but	merely	average	ones.	They	are	 imprecise	because
many	patients	will	deviate	substantially	from	the	average,	and	they	are	clinically
of	 limited	value	because	 the	aim	of	prognostication—individual	 risk	prediction
—cannot	 be	 attained.	 Typically,	 the	 prognosis	 of	 an	 individual	 patient,	 for
example,	for	5-year	survival	is	determined	by	a	variety	of	patient	characteristics,
not	just	by	a	single	element	such	as	a	diagnosis	of	osteosarcoma.	A	combination
of	 prognostic	 determinants	 is	 often	 referred	 to	 as	 a	 risk	 profile.	 This	 profile
usually	 comprises	both	nonclinical	 characteristics	 such	 as	 age	 and	gender,	 and
clinical	characteristics	such	as	the	diagnosis,	symptoms,	signs,	possible	etiology,
blood	 or	 urine	 tests,	 and	 other	 tests	 such	 as	 imaging	 or	 pathology.	 Thus,
prognosis	 is	 rarely	 adequately	 estimated	 by	 a	 single	 prognostic	 predictor.
Physicians—implicitly	 or	 explicitly—use	 multiple	 predictors	 to	 estimate	 a
patient’s	prognosis	 [Braitman	&	Davidoff,	1996;	Concato,	2001;	Moons	et	 al.,
2009a;	Moons	et	al.,	2012a].	Adequate	prognostication	thus	requires	knowledge
about	 the	 occurrence	 of	 future	 outcomes	 given	 combinations	 of	 prognostic
predictors.	 This	 knowledge	 in	 turn	 requires	 prognostic	 studies	 that	 follow	 a
multivariable	approach	in	design	and	analysis	to	determine	which	predictors	are
associated,	and	to	what	extent,	with	clinically	meaningful	outcomes.	The	results
provide	 outcome	 probabilities	 for	 different	 predictor	 combinations	 and	 allow
development	 of	 tools	 to	 estimate	 these	 outcome	probabilities	 in	 daily	 practice.
These	 tools,	 often	 referred	 to	 as	 clinical	 prediction	 models,	 predictions	 rules,
prognostic	 indices,	 or	 risk	 scores	 enable	 physicians	 to	 explicitly	 transform
combinations	of	values	of	prognostic	determinants	documented	in	an	individual
patient	 to	an	absolute	probability	of	developing	the	disease-related	event	 in	the
future.	 [Laupacis	 et	 al.,	 1997;	 Moons	 et	 al.,	 2009a;	 Randolph	 et	 al.,	 1998;
Royston	 et	 al.,	 2009;	 Steyerberg,	 2009].	 Similar	 tools	 based	 on	 multiple
determinants	are	also	applied	in	diagnosis.

ADDED	PROGNOSTIC	VALUE
As	 in	 diagnosis,	 a	 logical	 hierarchy	 in	 all	 available	 prognostic	 determinants



exists	based	on	everyday	practice.	Preferably,	a	doctor	will	first	try	to	estimate	a
patient’s	prognosis	based	on	a	combination	of	a	 limited	number	of	nonpatient-
burdening,	 easily	 measurable	 variables,	 typically	 obtained	 by	 history	 taking
(including	 known	 comorbidity)	 and	 physical	 examination.	 Before	 using	 more
cumbersome	 or	 costly	 prognostic	 markers	 (e.g.,	 blood	 tests	 and	 imaging),	 a
doctor	should	be	convinced	that	 the	additional	 test	 indeed	has	added	predictive
value	beyond	the	more	easily	obtained	prognostic	predictors	[Hlatky	et	al.,	2009;
Moons	 et	 al.,	 2010].	Unfortunately,	 recent	overviews	have	 shown	 that	 in	most
prognostic	 studies,	 single	 rather	 than	 multiple	 predictors	 are	 investigated
[Altman	et	al.,	2012;	Burton	&	Altman,	2004;	Kyzas	et	al.,	2007;	Riley	et	al.,
2003]	 and	 that	 the	 added	 value	 of	 a	 novel,	 potentially	 valuable	 prognostic
marker	is	not	quantified	[Peters	et	al.,	2012;	Tzoulaki	et	al.,	2009].	Yet,	medical
practice	 slowly	 shifts	 from	 implicit	 to	 explicit	 prognostication,	 including
appreciation	of	multivariable	prediction	models,	and	allowing	for	quantification
of	an	 individual	patient’s	probability	of	developing	a	certain	outcome	within	a
defined	time	period.	A	recent	example	is	the	indication	for	cholesterol-lowering
drug	 therapy	 in	men	or	women	without	prior	 cardiovascular	disease.	Formerly
based	 on	 cholesterol	 level	 only,	 recent	 international	 guidelines	 include	 a
cardiovascular	 risk	 score	 (e.g.,	 those	 based	 on	 the	 Framingham	 Heart	 study
[Wilson	et	 al.,	 1998]	or	 the	European	variant	SCORE	[Conroy	et	 al.,	 2003]	 to
predict	a	person’s	probability	to	develop	cardiovascular	disease	during	the	next
10	 years,	 based	 on	 parameters	 such	 as	 age,	 gender,	 blood	 pressure	 level,
smoking	habits,	glucose	 tolerance,	and,	as	only	one	of	 the	prognostic	markers,
cholesterol	 level.	 Other	 examples	 of	 prognostic	 models	 in	 medicine	 are	 the
previously	mentioned	 breast	 cancer	model	 [Galea	 et	 al.,	 1992]	 and	 the	Apgar
score,	 the	Acute	 Physiology	 and	Chronic	Health	 Evaluation	 (APACHE)	 score
[Knaus	et	al.,	1991],	the	Simplified	Acute	Physiology	Score	(SAPS)	[Le	Gall	et
al.,	 1993],	 and	 rules	 for	 predicting	 the	occurrence	of	 postoperative	nausea	 and
vomiting	[Van	den	Bosch	et	al.,	2005].
Kalkman	and	colleagues	developed	an	algorithm	for	predicting	the	probability

of	 severe	 early	 postoperative	 pain	 [Kalkman	 et	 al.,	 2003].	 Predictors	 included
age,	preoperative	pain,	anxiety	level,	and	the	type	of	surgery.	As	shown	in	Table
4–2,	 the	 lowest	 total	 score	 (0)	 yields	 an	 estimated	probability	 of	 postoperative
pain	 of	 3%,	 while	 a	 high	 score	 of	 73	 corresponds	 to	 an	 80%	 probability	 of
postoperative	pain.



FROM	PROGNOSIS	IN	CLINICAL	PRACTICE	TO
PROGNOSTIC	RESEARCH
In	 setting	 a	 prognosis,	 the	 estimation	 of	 the	 likelihood	 of	 a	 certain	 medical
condition	 does	 not	 address	 the	 present,	 but	 rather	 the	 future.	 A	 prognosis
therefore	may	be	viewed	as	a	future	diagnosis.	Consequently,	it	is	not	surprising
that	 prognostic	 research	 shares	 many	 characteristics	 with	 diagnostic	 research.
However,	 prognostic	 research	 is	 inherently	 longitudinal	 and	 more	 often	 deals
with	 continuous	 outcomes,	 such	 as	 measures	 of	 pain	 or	 quality	 of	 life,	 and
multiple	outcomes,	for	example,	survival	and	quality	of	life.	Also,	as	prognostic
outcomes	 inherently	 involve	 time,	 prognostic	 predictions	 are	 generally	 less
accurate	 than	 diagnostic	 predictions,	 particularly	 if	 they	 predict	 outcomes
occurring	a	few	years	later	(See	Box	4–2).

TABLE	4–2	Prognostic	Score	for	Preoperatively	Predicting	the	Probability	of	Severe	Early	Postoperative
Pain

Reproduced	from:	Pain,	105,	Kalkman	CJ,	Visser	K,	Moen	J,	Bonsel	GJ,	Grobbee	DE,	Moons	KG.
Preoperative	prediction	of	severe	postoperative	pain.	pp.	415–23.	Copyright	Elsevier	2003.	Reprinted	with
permission	of	the	International	Association	for	the	Study	of	Pain®	(IASP).	The	fi	gures	may	NOT	be
reproduced	for	any	other	purpose	without	permission.

BOX	4–2	Application	of	Prognostic	Scores:	Hospital	Audits

Prognostic	information	is	not	only	used	to	guide	individual	decisions	but	also	to	make	proper



Prognostic	information	is	not	only	used	to	guide	individual	decisions	but	also	to	make	proper
adjustments	for	“case	mix”	when	comparing	the	performances	of	different	hospitals.	The	aim	of	these
comparisons	is	to	make	causal	inferences	about	the	care	given,	that	is,	to	assess	whether	differences	in
performance	are	due	to	differences	in	quality	of	care.	This	can	only	be	accomplished	if	the	analyses
are	adequately	adjusted	for	the	confounding	effect	of	initial	prognosis.	Prognostic	models	that	are
themselves	the	results	of	descriptive	research	can	be	helpful	in	achieving	this.

A	good	example	comes	from	a	study	by	the	International	Neonatal	Network.	In	this	study,	a	scoring
system	to	predict	mortality	in	preterm	neonates	with	low	birth	weight	admitted	to	neonatal	intensive
care	units	was	developed	[International	Neonatal	Network,	1993].	The	scoring	system,	denoted	as	the
CRIB	score,	included	birth	weight,	duration	of	gestation,	congenital	malformations,	and	several
physiologic	parameters	measured	during	the	first	12	hours	of	life.	It	showed	excellent	predictive
accuracy	with	an	area	under	the	receiver	operating	characteristic	(ROC)	curve	of	0.9.	Apart	from
developing	this	score	for	the	purpose	of	helping	doctors	to	make	mortality	predictions	in	individual
neonates,	the	authors	aimed	to	compare	the	performance	of	the	intensive	care	units	of	tertiary	hospitals
with	those	of	nontertiary	hospitals,	as	reflected	by	their	relative	neonatal	mortality	rates.

Because	the	initial	prognosis	of	neonates	admitted	to	tertiary	hospitals	may	be	different	from	that	of
neonates	referred	to	nontertiary	hospitals,	these	causal	analyses	were	performed	adjusting	for	the
confounding	effect	of	initial	mortality	risk	as	indicated	by	the	CRIB	score.	It	appeared	that	only	after
adjustment	for	CRIB	score	did	tertiary	hospitals	showed	convincingly	less	mortality	than	the
nontertiary	hospitals.	This	example	illustrates	that	adjustment	for	initial	prognosis	or	“case	mix”	is
essential	when	performance	audits	are	carried	out.	Yet	the	validity	of	this	approach	is	highly
dependent	on	the	degree	to	which	the	prognostic	scores	used	to	adjust	for	confounding	adequately
capture	prognosis.

THE	PREDICTIVE	NATURE	OF	PROGNOSTIC
RESEARCH
The	purpose	of	prognostic	research	is	to	assist	the	physician	in	the	prediction	of
the	 future	 occurrence	 of	 a	 certain	 health	 outcome,	 thereby	 guiding	 patient
management.	This	research	goal	is	predictive	or	descriptive	(i.e.,	noncausal),	and
fundamentally	 distinguishing	 prognostic	 research	 from	 causal	 research,	 that	 is,
etiologic	and	 intervention	 research	 [Grobbee,	2004;	Moons	&	Grobbee,	2005].
The	 purely	 predictive	 aim	 of	 prognostic	 research	 is	 shared	 with	 diagnostic
research	 and	 has	major	 implications	 for	 the	 design,	 conduct,	 and	 reporting	 of
research.
In	 etiologic	 research,	 we	 assess	 whether	 an	 outcome	 occurrence	 can	 be

causally	attributed	to	a	particular	risk	factor,	which	typically	requires	adjustment
for	 confounders.	 The	 physician	 aims	 to	 explain	 the	 occurrence	 of	 a	 certain
outcome.	 For	 instance,	 in	 a	 study	 assessing	 whether	 unfavorable	 coping	 style



and	 low	social	 support	 in	patients	with	HIV-1	 infection	are	 causally	 related	 to
progression	to	AIDS,	adjustments	were	made	for	race	and	antiviral	medications
because	 they	 were	 considered	 potential	 confounders	 [Leserman	 et	 al.,	 2000].
Adjustment	 for	 confounders	 is	 essential	 to	 prove	 causality.	 Often,	 etiologic
research	 is	 motivated	 by	 the	 prospect	 of	 new	 (preventive)	 interventions.	 This
was	 explicitly	 expressed	 in	 the	 conclusion	 section	 of	 Leserman	 et	 al.’s	 study:
“Further	 research	 is	 needed	 to	 determine	 if	 treatments	 based	on	 these	 findings
might	alter	the	clinical	course	of	HIV-1	infection.”	Prognostic	research	aims	to
predict	as	accurately	as	possible	the	probability	or	risk	of	future	occurrence	of	a
certain	outcome	as	a	 function	of	multiple	predictors.	The	aim	 is	not	 to	explain
the	outcome.
In	prognostic	research	there	is	no	central	factor	or	determinant	whose	causal

effect	 must	 be	 isolated	 from	 the	 effects	 of	 other	 variables.	 In	 addition	 to	 the
predictive	 aim,	 the	 requirement	 of	 practical	 applicability	 of	 prognostic	 study
results	 is	 shared	 with	 diagnostic	 research.	 To	 this	 end,	 the	 domain	 is	 usually
comprised	 of	 patients	 presenting	 with	 a	 certain	 disorder	 in	 a	 certain	 setting.
Prognostic	 determinants	 are	 characteristics	 typically	 assessed	 during	 history
taking,	 physical	 examination,	 blood	 tests,	 imaging,	 and	 other	 test	 results.	 But
they	 also	 may	 include	 treatments	 currently	 used	 (or	 used	 in	 the	 past)	 by	 the
patient.	Furthermore,	to	increase	the	likelihood	that	prognostic	study	results	can
be	translated	to	everyday	practice,	the	study	should	be	performed	in	and	mimic
routine	 clinical	 practice,	 a	 feature	 shared	 with	 diagnostic	 research.	 Finally,
results	 should	 be	 expressed	 as	 absolute	 risks	 in	 order	 to	 be	 informative	 for
patients	and	doctors	in	deciding	about	patient	management.	In	the	HIV	example,
instead	 of	 an	 etiologic	 research	 question,	 one	 could	 also	 imagine	 a	 prognostic
research	 question.	 For	 example,	 “Does	 coping	 style	 in	 addition	 to	 other
prognostic	 items,	 such	 as	 age,	 gender,	 and	 leukocyte	 counts,	 predict	 the
development	 of	 AIDS?”	 In	 this	 example,	 all	 variables	 would	 be	 considered
prognostic	determinants.

APPRAISAL	OF	PREVAILING	PROGNOSTIC
RESEARCH
Many	studies	labeled	as	prognostic	studies	are	not	actually	prognostic	as	defined
earlier	in	the	chapter,	but	rather	are	truly	etiologic.	The	researcher	is	interested	in



the	 causal	 association	 between	 a	 particular	 determinant	 and	 an	 outcome	 in
patients	with	a	certain	disease,	rather	 than	in	 the	combined	predictive	accuracy
of	multiple	 determinants	 in	 predicting	 the	 future	 development	 of	 that	 disease.
This	is	also	reflected	in	a	recent	appraisal	of	the	quality	of	individual	studies	in
systematic	 reviews	 of	 prognostic	 studies	 in	 which	 “adequate	 adjustment	 for
confounders”	was	considered	an	important	item	[Hayden	et	al.,	2006].	However,
as	mentioned	earlier,	confounding—defined	as	the	undesired	influence	of	other
risk	factors	on	the	causal	association	between	the	determinant	and	outcome—is	a
hallmark	of	causal	research,	but	it	is	not	relevant	in	prognostic	research.	Thus,	in
appraising	a	study	designated	as	a	prognostic	study,	it	is	essential	that	the	aim	of
the	study	is	completely	clear:	to	predict	or	to	explain	(i.e.,	address	the	causality
of)	an	outcome.	In	the	following	sections,	the	term	prognostic	study	is	reserved
for	a	study	with	a	purely	predictive	aim.
Commonly,	 studies	 on	 prognosis,	 although	 valuable	 in	 themselves,	 do	 not

produce	results	that	directly	establish	accurate	individualized	prognoses	in	future
patients	 in	 daily	 practice.	 This	 relates	 to	 several	 issues	 [Moons	 et	 al.,	 2009a;
Moons	et	al.,	2012a].	First,	it	is	not	always	recognized	that	for	the	results	to	be
relevant	 to	 individual	patient	management,	period-specific	absolute	 risks	based
on	a	combination	of	prognostic	markers	should	be	obtainable	from	the	published
report	 of	 the	 prognostic	 study.	 As	 an	 example,	 El-Metwally	 and	 colleagues
[2005]	 studied	 the	 short-	 and	 long-term	prognosis	of	preadolescent	 lower	 limb
pain	 and	 assessed	 factors	 that	 contributed	 to	 pain	 persistence.	While	 they	 did
report	period-specific	absolute	 risks	 (“of	 the	baseline	 students	with	 lower	 limb
pain,	32%	reported	pain	persistence	at	one	year	follow-up	and	31%	reported	pain
recurrence	 at	 four	 year	 follow-up”),	 these	 risks	 are	 average	 risks	 that	 do	 not
allow	 for	 individual	 prognosis.	 They	 did	 study	 the	 association	 of	 specific
prognostic	factors	with	pain	recurrence	during	the	4-year	follow-up	period,	but
only	relative	risks	were	reported	(e.g.,	a	twofold	risk	in	the	presence	compared	to
the	absence	of	the	factor);	absolute	risks	are	clearly	more	relevant.
Another	 study	 concluded	 that	 symptomatic	 deep	 vein	 thrombosis	 carries	 a

high	risk	of	recurrent	thromboembolism,	especially	for	patients	without	transient
risk	factors,	and	that	this	observation	challenges	the	widely	adopted	short	course
of	anticoagulant	 therapy.	This	 typically	suggests	a	prognostic	 (thus,	predictive)
aim	[Prandoni	et	al.,	1997].	Yet,	similar	to	the	study	on	limb	pain,	only	average
absolute	 risks	 and	 adjusted	 relative	 risks	 were	 presented,	 rather	 than	 absolute
outcome	 probabilities	 within	 a	 defined	 time	 period	 for	 different	 predictor
combinations.	A	somewhat	adapted	data	analysis	strategy	(see	the	later	section,



Design	of	Data	Analysis)	would	have	provided	absolute	 risks	more	 relevant	 to
both	patient	and	doctor.
In	Box	 4–3,	 the	 abstract	 of	 a	 paper	 presenting	 a	 “prognostic	 study”	 on	 the

value	of	gene-expression	profiles	in	predicting	distant	metastasis	in	patients	with
lymph-node-negative	primary	breast	cancer	is	shown	[Whang	et	al.,	2005].	The
study	was,	however,	primarily	designed	and	analyzed	as	an	etiologic	study.	For
example,	 the	 authors	 adjusted	 for	 potential	 confounders,	 and	 hazard	 ratios
(instead	 of	 absolute	 risks)	 were	 presented	 as	 the	 main	 finding.	 In	 a	 true
prognostic	study,	the	added	value	of	these	gene-expression	profiles	in	estimating
the	 absolute	 probability	 of	 developing	 distant	metastasis	 should	 be	 determined
without	 considering	 confounding.	 Instead	 of	 treating,	 for	 example,	 age	 as	 a
potential	 confounder,	 this	 characteristic	 should	 be	 considered	 as	 one	 of	 the
potentially	 useful	 prognostic	 determinants.	Whether	 the	 76-gene	 signature	 has
any	prognostic	value	 in	addition	 to	age	and	other	easily	measurable	prognostic
factors	is	of	primary	interest,	but	such	an	analysis	was	not	presented.

BOX	4–3	Study	on	the	Prognostic	Value	of	Gene-Expression	Profiles	in	Predicting	Distant	Metastasis	in
Patients	with	Lymph-Node-Negative	Primary	Breast	Cancer

Summary

Background:	Genome-wide	measures	of	gene	expression	can	identify	patterns	of	gene	activity	that
subclassify	tumors	and	might	provide	a	better	means	than	is	currently	available	for	individual	risk
assessment	in	patients	with	lymph-node-negative	breast	cancer.

Methods:	We	analyzed,	with	Affymetrix	Human	Ul33a	GeneChips,	the	expression	of	22,000
transcripts	from	total	RNA	of	frozen	tumor	samples	from	286	lymph-node-negative	patients	who	had
not	received	adjuvant	systemic	treatments.

Findings:	In	a	training	set	of	115	tumors,	we	identified	a	76-gene	signature	consisting	of	60	genes	for
patients	positive	for	estrogen	receptors	(ER)	and	16	genes	for	ER-negative	patients.	This	signature
showed	93%	sensitivity	and	48%	specificity	in	a	subsequent	independent	testing	set	of	171	lymph-
node-negative	patients.	The	gene	profile	was	highly	informative	in	identifying	patients	who	developed
distant	metastases	within	5	years	(hazard	ratio	5.67	[95%	CI	2.46–12.4]),	even	when	corrected	for
traditional	prognostic	factors	in	multivariate	analysis	(5.55	[2.46–12.15]).	The	76-gene	profile	also
represented	a	strong	prognostic	factor	for	the	development	of	metastasis	in	the	subgroups	of	84
premenopausal	patients	(9.60	[2.28–40.5]),	87	postmenopausal	patients	(4.04	[1.57–10.4]),	and	79
patients	with	tumors	of	10–12	mm	(14.1	[3.34–59.2]),	a	group	of	patients	for	whom	prediction	of
prognosis	is	especially	difficult.

Interpretation:	The	identified	signature	provides	a	power	tool	for	identification	of	patients	at	high
risk	of	distant	recurrence.	The	ability	to	identify	patients	who	have	a	favorable	prognosis	could,	after
independent	confirmation,	allow	clinicians	to	avoid	adjuvant	systemic	therapy	or	to	choose	less
aggressive	therapeutic	options.



Reproduced	from	The	Lancet,	Vol.	365,	Whang	Y,	Klein	JG,	Zhang	Y,	Sieuwerts	AM,	Look	MP,	Yang	F,
Talantov	D,	Timmermans	M,	Meijer-van	Gelder	ME,	Yu	J,	Jatokoe	T,	Berns	EM,	Atkins	D,	Foekens	JA.
Gene-expression	profiles	to	predict	distant	metastasis	of	lymph-node-negative	primary	breast	cancer.	671-9;
©	2005,	reprinted	with	permission	from	Elsevier.

A	second	problem	of	many	prognostic	studies	is	that	prognostic	variables	are
often	included	based	on	measurements	that	are	not	feasible	in	everyday	practice.
As	 a	 consequence,	 the	 practical	 application	 of	 the	 resulting	 prognostic	 model
may	be	hampered.	An	example	is	the	use	of	an	extensive	questionnaire	to	assess
personality	 trait	 neuroticism	 in	 the	 prognostication	 of	 depression	 [O’Leary	 &
Costello,	2001].
Third,	in	cases	where	the	interest	of	prognostic	research	lies	in	the	prognostic

value	 of	 a	 particular	 new	marker,	 researchers	 often	 fail	 to	 assess	 the	marker’s
added	predictive	value	 [Hlatky	et	 al.,	2009;	Moons	et	 al.,	2010].	For	example,
Leslie	and	colleagues	[2007]	aimed	to	predict	future	osteoporotic	fractures	with
dual-energy	 x-ray	 absorptiometry	 (DXA)	 in	 a	 large	 clinical	 cohort.	 While	 a
valuable	study,	unfortunately	it	did	not	address	the	key	clinical	question	in	this
context:	whether	DXA	measurement	 has	 prognostic	 value	 in	 addition	 to	more
conventional	and	easy	to	assess	predictors	such	as	age,	gender,	smoking	habits,
and	 body	 weight.	 Furthermore,	 this	 study	 also	 only	 presented	 age-adjusted
hazard	ratios	(relative	risks)	for	fracture	rather	than	absolute	risks.
Finally,	prognostic	studies	that	do	develop	a	multivariable	prediction	model	or

rule	 seldom	 validate	 the	 model	 internally	 (that	 is,	 within	 their	 own	 data)	 or
externally	by	testing	the	accuracy	of	the	model	in	another	population	reflecting
the	same	domain	[Altman	et	al.,	2009;	Bouwmeester	et	al.,	2012;	Dieren	et	al.,
2011;	Moons	et	al.,	2012b].
Fortunately,	 an	 increasing	 number	 of	well-designed	 and	 reported	 prognostic

studies	 is	 being	 published	 that	 do	 enable	 physicians	 to	 reliably	 estimate	 an
individual	 patient’s	 absolute	 risk	 of	 developing	 a	 particular	 outcome	 within	 a
defined	 time	period	 in	a	practical	manner	 [Steyerberg,	2009].	An	example	 is	a
study	by	Steyerberg	et	al.	 [2006].	The	rationale	for	 this	study	was	the	fact	 that
surgery	 for	 esophageal	 cancer	 has	 curative	 potential,	 but	 that	 the	 procedure	 is
also	 associated	 with	 considerable	 perioperative	 risks.	 Patients	 with	 very	 high
perioperative	mortality	 risks	 as	 estimated	 before	 surgery	 therefore	may	 not	 be
eligible	 for	 this	 operation.	 Analyses	 in	 this	 study	 focused	 on	 optimizing
predictive	 accuracy	 and	 the	 presentation	 of	 the	 results	 were	 in	 line	 with	 the
objective	of	determining	 individual	absolute	 risk	predictions	facilitating	patient
selection	 and	 thus	 more	 targeted	 management.	 In	 this	 study,	 a	 chart	 with	 the



estimated	 risks	 according	 to	 the	 presence	 of	 several	 prognostic	 predictors	was
combined	 into	 a	 single	 score.	 Another	 study	 from	 Hong	 Kong,	 in	 which	 a
prognostic	model	 for	 patients	with	 severe	 acute	 respiratory	 syndrome	 (SARS)
was	developed	and	validated,	also	yielded	results	that	can	be	directly	applied	in
medical	practice	[Cowling	et	al.,	2006].

PROGNOSTIC	RESEARCH
Once	 it	 is	 recognized	 that	 the	 aim	 of	 prognostication	 is	 to	 stratify	 patients
according	to	their	absolute	risk	of	a	certain	future	relevant	health	event,	based	on
their	 clinical	 and	 nonclinical	 profile,	 the	 three	 components	 of	 epidemiologic
study	 design	 (theoretical	 design,	 design	 of	 data	 collection,	 and	 design	 of	 data
analysis)	follow	logically.

Theoretical	Design
The	 object	 of	medical	 prognostication	 is	 to	 predict	 the	 future	 occurrence	 of	 a
health-related	 outcome	 based	 on	 the	 patient’s	 clinical	 and	 nonclinical	 profile.
Outcomes	may	 include	 a	particular	 event	 such	 as	death,	 disease	 recurrence,	 or
complication,	 and	 also	 continuous	 or	 quantitative	 outcomes	 such	 as	 pain	 or
quality	of	life.	As	noted	already,	the	architecture	of	prognostic	research	strongly
resembles	 that	 of	 diagnostic	 research.	 The	 major	 difference	 is	 that	 time	 or
follow-up	 is	 elementary	 to	 prognostic	 research,	whereas	 diagnostic	 research	 is
inherently	 cross-sectional.	 The	 occurrence	 relation	 of	 prognostic	 research	 is
given	by:

Incidence	O	=	f	(d1,	d2,	d3,	…	dn)

where	 O	 signifies	 the	 outcome	 (occurrence	 of	 an	 event	 or	 realization	 of	 a
quantitative	disease	parameter)	at	a	 future	 time	point	 t,	and	d1	…	dn	represent
the	 potential	 prognostic	 determinants	 measured	 at	 one	 or	 more	 time	 point(s)
before	t.	Note	that	no	extraneous	determinants	(confounders)	are	included	in	the
occurrence	relation,	as	causality	is	not	at	stake.
The	domain	of	a	prognostic	occurrence	relation	includes	individuals	who	are

at	 risk	 of	 developing	 the	 outcome	 of	 interest	 and	 is	 usually	 defined	 by	 the
presence	 of	 a	 particular	 condition.	 This	 “condition”	 could	 be	 an	 illness,	 but	 it



could	 also	 be	 a	 need	 for	 surgery,	 those	who	 are	 pregnant,	 or	 even	 newborns.
Consequently,	 patients	 with	 a	 zero	 or	 100%	 probability	 of	 developing	 the
outcome	are	not	 part	 of	 the	domain.	An	example	of	 individuals	 that	were	 at	 a
100%	 risk	 of	 developing	 the	 outcome	 and	 thus	 did	 not	 belong	 to	 the	 study
domain	 is	 the	 group	 newborns	 with	 inevitably	 lethal	 conditions	 in	 a	 study
evaluating	a	risk	score	for	the	prediction	of	“in-hospital	mortality”	in	newborns
[International	Neonatal	Network,	1993].	Generalization	of	the	risk	score	to	these
children	is	invalid	and	clearly	irrelevant,	because	application	of	the	risk	score	in
these	newborns	will	not	have	any	bearing	on	patient	management.
The	 typical	 research	 objective	 of	 prognostic	 research	 is	 to	 assess	 which

combination	 of	 potential	 prognostic	 determinants	 under	 study	 indeed	 best
predicts	 the	future	outcome.	As	described	earlier,	 the	aim	also	can	be	to	assess
whether	 a	 new	 prognostic	marker	 provides	 additional	 predictive	 value	 beyond
other	 available	 predictors.	 Furthermore,	 it	 may	 include	 comparison	 of	 the
predictive	 accuracy	 of	 two	 (new)	 markers.	 Both	 require	 a	 comparison	 of	 the
predictive	accuracy	of	two	occurrence	relations:	one	with	the	new	predictor	and
one	without,	 and	 one	with	marker	 one	 and	 one	with	marker	 two,	 respectively
[Moons	et	al.,	2012a].

Design	of	Data	Collection
The	main	objective	of	 a	prognostic	 study	 is	 to	provide	quantitative	knowledge
about	 the	 occurrence	 of	 a	 health	 outcome	 in	 a	 predefined	 time	 period	 as	 a
function	 of	 multiple	 predictors.	 The	 following	 sections	 discuss	 the	 most
important	aspects	of	designing	the	data	collection.

Time
The	 object	 of	 the	 prognostic	 process	 is	 inherently	 longitudinal	 (t	 >	 0).
Accordingly,	 prognostic	 research	 follows	 a	 longitudinal	 design	 in	 which	 the
determinants	 or	 prognostic	 predictors	 are	 measured	 before	 the	 outcome	 is
observed.	 The	 time	 period	 needed	 to	 observe	 the	 outcome	 occurrence	 or
outcome	development	may	vary	from	as	short	as	several	hours	(e.g.,	in	the	case
of	 early	 postoperative	 complications)	 to	 as	 long	 as	 days,	 weeks,	 months,	 or
years.

Census	or	Sampling



As	the	outcomes	of	prognostic	studies	are	generally	expressed	in	absolute	terms,
the	 design	 most	 suitable	 to	 address	 prognostic	 questions	 is	 a	 cohort	 study	 in
which	all	patients	with	a	certain	condition	are	followed	for	some	time	to	monitor
the	 development	 of	 the	 outcome;	 this	 uses	 a	 census	 approach.	 Preferably,	 the
data	 are	 collected	 prospectively	 rather	 than	 retrospectively	 because	 this	 allows
for	 optimal	 measurement	 of	 predictors	 and	 outcome,	 as	 well	 as	 adequate
(complete)	 follow-up.	 Typically,	 all	 consecutive	 patients	 with	 a	 particular
condition	who	are	 at	 risk	 for	developing	 the	outcome	of	 interest	 (i.e.,	who	are
part	of	the	domain)	are	included.	The	potential	prognostic	determinants	and	the
outcome	are	measured	in	all	patients.
As	 in	 diagnostic	 research,	 sometimes	 a	 case-control	 design	 (and	 thus	 a

sampling	rather	than	a	census	approach)	is	used	in	prognostic	research	[Ganna	et
al.,	2012;	 Iglesias	de	Sol	et	al.,	2001;].	This	 is	done	for	efficiency	reasons,	 for
example,	when	measurement	 of	 one	or	more	of	 the	prognostic	 determinants	 is
burdensome	to	patients	or	is	expensive,	or	when	the	prognostic	outcome	is	rare.
This	 design	 does	 not	 allow	 for	 an	 estimation	 of	 absolute	 risks	 of	 an	 outcome
when	cases	and	controls	are	obtained	from	a	source	population	of	unknown	size.
When,	however,	the	sampling	fraction	of	the	controls	(i.e.,	the	proportion	of	the
population	 experience	 of	 the	 entire	 cohort	 that	 is	 sampled	 in	 the	 controls)	 is
known,	 the	 true	 denominators,	 and	 thus	 absolute	 risks,	 can	 be	 estimated	 by
reconstructing	 the	 2	 ×	 2	 table	 [Biesheuvel	 et	 al.,	 2008;	 Moons	 et	 al.,	 2009a;
Moons	 et	 al.,	 2012a].	 The	 case-cohort	 design,	 a	 specific	 type	 of	 case-control
study	performed	within	a	cohort	study,	is	increasingly	being	used	in	prognostic
research	 because	 of	 its	 efficiency	 and	 because	 it	 yields	 absolute	 probabilities
[Ganna	et	al.,	2012].

Experimental	or	Observational
Almost	 all	 prognostic	 studies	 outside	 the	 realm	 of	 intervention	 research	 are
observational,	where	 a	well-defined	 group	 of	 patients	with	 a	 certain	 condition
are	followed	for	a	period	of	time	to	monitor	the	occurrence	of	the	outcome.	The
researcher	 observes	 and	 measures	 the	 nonclinical	 and	 clinical	 parameters
anticipated	 to	 be	 of	 prognostic	 significance.	 These	 potential	 prognostic
determinants	are	not	influenced	(let	alone	randomly	allocated)	by	the	researcher.
However,	 as	 in	 diagnostic	 research,	 one	 could	 imagine	 that	 prognostic	 studies
involve	experimentation,	for	example,	when	comparing	the	impact	on	a	certain
outcome	(e.g.,	mortality)	of	 the	use	of	 two	prognostic	 risk	scores	by	 randomly



allocating	the	two	rules	to	individual	physicians	or	patients	[Moons	et	al.,	2012b;
Reilly	&	Evans,	2006].
Alternatively,	however,	randomized	trials	can	serve	as	a	vehicle	for	prognostic

research.	Then	the	study	population	of	the	trial	is	taken	as	a	plain	cohort	where
the	prognostic	determinants	of	 interest	are	 just	observed	and	not	 influenced	by
the	 researcher.	 Consequently,	 a	 prognostic	 study	within	 a	 trial	 bears	 a	 greater
resemblance	to	an	observational	study	than	to	a	typical	experimental	study.	The
issue	up	for	debate	is	whether	one	should	limit	the	prognostic	analysis	to	the	trial
participants	 in	 the	 reference	 (or	 control)	 group,	 that	 is,	 to	 those	 who	 did	 not
undergo	 the	 randomly	 allocated	 prognosis-modifying	 intervention	 and	 perhaps
were	 given	 a	 placebo	 [Moons	 et	 al.,	 2012a].	 In	 the	 case	 of	 an	 ineffective
intervention,	most	 researchers	will	 include	 both	 the	 intervention	 and	 reference
cohort	 in	 the	 prognostic	 study,	whereas	when	 the	 intervention	 is	 beneficial	 or
harmful,	 only	 the	 reference	 group	 is	 included.	 Is	 should	 be	 emphasized,
however,	 that	 even	 in	 cases	 of	 no	 observed	 overall	 difference	 in	 effect	 of	 the
randomly	allocated	 intervention,	 the	 intervention	can	modify	 the	association	of
the	 prognostic	 determinants	 with	 the	 outcome.	 To	 study	 such	 effect
modification,	 one	 could	 perform	 separate	 prognostic	 analyses	 in	 the	 two
comparison	 groups	 of	 the	 trial,	 guided	 by	 tests	 for	 interaction	 between	 the
intervention	 and	 the	 other	 prognostic	 predictors.	 Certainly,	 both	 analyses	may
provide	 clinically	 useful	 information:	The	 prognostic	 study	within	 the	 placebo
group	 of	 a	 trial	 will	 help	 physicians	 to	 accurately	 estimate	 the	 prognosis	 in	 a
patient	 with	 a	 certain	 condition	 if	 no	 intervention	 is	 initiated	 (i.e.,	 the	 natural
history	 of	 a	 disease	 or	 condition)	 and	 can	 be	 instrumental	 in	 deciding	 about
treatment	 initiation	 [Dorresteijn	 et	 al.,	 2011].	A	 prognostic	 analysis	within	 the
treated	 patient	 group	 will	 facilitate	 quantification	 of	 the	 expected	 course	 (in
terms	of	absolute	risks)	in	an	individual	patient	following	treatment.	An	example
of	 a	 prognostic	 study	 performed	 within	 a	 trial	 is	 shown	 in	 Box	 4–4,	 which
attempted	 to	 help	 physicians	 to	 identify	 those	 children	with	 acute	 otitis	media
prone	 to	 experience	 prolonged	 complaints	 (and	 thus	 possibly	 requiring	 closer
monitoring	or	antibiotic	treatment).	Rovers	et	al.	[2007]	performed	a	prognostic
analysis	 in	a	data	 set	 including	 the	placebo	groups	of	all	 available	 randomized
trials	 assessing	 the	 effect	 of	 antibiotic	 treatment	 in	 children	 with	 acute	 otitis
media.	An	obvious	advantage	of	such	an	analysis	of	a	trial	is	the	availability	of
high-quality	data.	On	the	other	hand,	however,	the	findings	may	have	restricted
generalizability	 due	 to	 the	 strict	 inclusion	 and	 exclusion	 criteria	 applied	 in	 the
trials	[Kiemeney	et	al.,	1994;	Marsoni	&	Valsecchi,	1991;	Moons	et	al.,	2012a].



Moreover,	the	high-quality	data	on	prognostic	determinants	may	be	a	blessing	in
disguise,	 because	 in	 the	 real-life	 application	 the	 available	 clinical	 information
may	be	 of	 lower	 quality	 and	 the	 predictors	 thus	will	 show	 reduced	 prognostic
performance.

Study	Population
The	 study	 population	 in	 prognostic	 research	 should	 be	 representative	 of	 the
domain.	 Prognostic	 predictors,	 models,	 or	 strategies	 are	 investigated	 for	 their
ability	to	predict	a	future	health	outcome	as	accurately	as	possible.	Accordingly,
and	 as	 noted	 before,	 the	 domain	 of	 a	 prognostic	 study	 is	 comprised	 of
individuals	 who	 are	 at	 risk	 for	 developing	 that	 outcome.	 Patients	 who	 have
already	developed	the	outcome	or	in	whom	the	probability	is	considered	so	low
(“zero”)	that	the	physician	does	not	even	consider	estimating	this	probability	fall
outside	the	domain,	because	subsequent	patient	management	(e.g.,	to	initiate	or
refrain	 from	 therapeutic	 actions)	 is	 evident.	 Furthermore,	 as	 in	 diagnostic
research,	 we	 recommend	 restricting	 domain	 definitions	 and	 thus	 study
populations	 in	 prognostic	 research	 to	 the	 setting	 of	 care	 (notably	 primary	 or
secondary	care)	of	 interest,	due	 to	known	differences	 in	predictive	accuracy	of
determinants	 across	 care	 settings	 [Knottnerus,	 2002a;	 Oudega	 et	 al.,	 2005a;
Moons	et	al.,	2009b;	Toll	 et	 al.,	2008].	Finally,	 the	 selection	or	 recruitment	of
any	study	population	is	often	further	restricted	by	logistical	circumstances,	such
as	the	necessity	for	patients	to	live	near	the	research	center	or	the	availability	of
their	 time	to	participate	in	the	study.	These	characteristics	are	often	unlikely	to
influence	 the	 applicability	 and	 generalization	 of	 study	 findings.	 It	 may	 be
challenging	to	appreciate	which	characteristics	truly	affect	the	generalizability	of
results	 obtained	 from	 a	 particular	 study	 population.	 This	 appreciation	 usually
requires	knowledge	of	 those	 characteristics	 (effect	modifiers)	 that	may	modify
the	 nature	 and	 strength	 of	 the	 estimated	 associations	 between	 the	 prognostic
determinants	and	outcome.	Therefore,	generalizability	from	study	population	to
the	relevant	domain	is	not	an	objective	process	that	can	be	framed	in	statistical
terms.	 Generalizability	 is	 a	matter	 of	 reasoning,	 requiring	 external	 knowledge
and	subjective	judgment.	The	question	to	be	answered	is	whether	in	other	types
of	 subjects	 from	 the	domain	who	were	not	 represented	 in	 the	study	population
the	same	prognostic	predictors	would	be	found	with	the	same	predictive	values
[Moons	&	Grobbee,	2005].



BOX	4–4	Predictors	of	a	Prolonged	Course	in	Children	with	Acute	Otitis	Media:	An	Individual	Patient
Meta-Analysis

Background:	Currently	there	are	no	tools	to	discriminate	between	children	with	mild,	self-limiting
episodes	of	acute	otitis	media	(AOM)	and	those	at	risk	of	a	prolonged	course.

Methods:	In	an	individual	patient	data	meta-analysis	with	the	control	groups	of	6	randomised
controlled	trials	(n	=	824	children	with	acute	otitis	media,	aged	6	months	to	12	years),	we	determined
the	predictors	of	poor	short	term	outcome	in	children	with	AOM.	The	primary	outcome	was	a
prolonged	course	of	AOM,	which	was	defined	as	fever	and/or	pain	at	3–7	days.

Main	findings:	Of	the	824	included	children,	303	(37%)	had	pain	and/or	fever	at	3–7	days.
Independent	predictors	for	a	prolonged	course	were	age	<	2	years	and	bilateral	AOM.	The	absolute
risks	of	pain	and/or	fever	at	3–7	days	in	children	aged	less	than	2	years	with	bilateral	AOM	(20%	of
all	children)	was	55%,	and	in	children	aged	2	years	or	older	with	unilateral	AOM	25%	(47%	of	all
children).

Interpretation:	The	risk	of	a	prolonged	course	was	two	times	higher	in	children	aged	less	than	2	years
with	bilateral	AOM	than	in	children	aged	2	years	or	older	with	unilateral	AOM.	Clinicians	can	use
these	features	to	advise	parents	and	to	follow	these	children	more	actively.

Reproduced	with	permission	from	Pediatrics,	Vol.	119,	579–85,	Copyright	©	2007	by	the	AAP.	Rovers
MM,	Glasziou	P,	Appelman	CL,	Burke	P,	McCormick	DP,	Damoiseaux	RA,	Little	P,	Le	Saux	N,	Hoes
AW.

Prognostic	Determinants	(Predictors)
As	in	diagnostic	studies,	prognostic	studies	should	mirror	real-life	situations	and
consider	multiple	predictors.	Predictors	under	study	can	be	obtained	from	patient
history	(each	question	is	a	potential	predictor),	physical	examination,	additional
testing	 such	 as	 imaging	 results	 and	 biologic	 markers,	 characteristics	 of	 the
severity	 of	 the	 disease,	 and	 potentially	 any	 interventions	 that	 the	 patient	 has
received	[Brotman	et	al.,	2005;	Moons	et	al.,	2012a].	Determinants	included	in	a
prognostic	 study	 should	 be	 clearly	 defined,	 and	 their	 measurement	 should	 be
sufficiently	reproducible	to	enhance	application	of	study	results	to	daily	practice.
This	notably	applies	to	treatments	that	are	studied	as	potential	predictors	[Simon
&	Altman,	 1994],	 but	 also	 to	 predictors	 that	 require	 subjective	 interpretation,
such	 as	 imaging	 test	 results,	 to	 avoid	 studying	 the	 predictive	 ability	 of	 the
observer	rather	than	of	the	predictors.	Predictors	should	preferably	be	measured
using	methods	applicable—or	potentially	applicable—to	daily	practice,	again	to
enhance	 generalizability	 and	 to	 prevent	 too	 optimistic	 predictive	 accuracy	 of
predictors	 than	 can	 be	 expected	 in	 real-life	 situations.	 In	 itself,	 specialized
measurement	of	predictors	is	not	necessarily	a	limitation	of	prediction	research.



This	argument	may	even	be	turned	around:	If	substantially	better	predictions	are
obtained	 with	 specialized	 or	 more	 elaborate	 measurements,	 this	 may	 call	 for
such	measurements,	if	feasible,	in	everyday	clinical	practice.	Feasibility	plays	an
important	 role	 in	 choosing	determinants	 to	 be	 included	 in	 prognostic	 research.
One	 could	 decide	 to	 study	 proxy	 or	 surrogate	 predictors	 if	 the	 underlying
predictor	is	too	cumbersome	to	measure;	for	example,	the	color	of	the	newborn
rather	than	oxygen	saturation	is	included	in	the	Apgar	score.
All	potential	predictors	are	usually	measured	and	analyzed	in	each	subject	of

the	study	population.	This	can	be	done	with	a	view	to	chronological	hierarchy	in
clinical	 practice,	 starting	 with	 history	 and	 physical	 examination	 tests.
Subsequent	predictors	will	be	measured	in	each	subject	if	the	aim	is	to	determine
the	added	predictive	value.	However,	we	do	warn	against	the	inclusion	of	large
numbers	 of	 determinants	 in	 prognostic	 research.	 Hence,	 the	 choice	 of	 the
predictors	 under	 study	 should	 be	 based	 on	 both	 available	 literature	 and	 a
thorough	understanding	of	clinical	practice	 [Harrell	et	al.,	1996;	Harrell,	2001;
Steyerberg	et	al.,	2000;	Steyerberg,	2009].

Outcome
The	outcome	in	prognostic	research	is	typically	dichotomous:	the	occurrence,	in
this	 case	 the	 incidence	 (yes/no)	 of	 the	 event	 or	 disease	 course	 of	 interest.	 In
addition,	prognostic	outcomes	may	comprise	continuous	variables	such	as	tumor
growth,	 pain,	 or	 quality	 of	 life,	 rather	 than	 incidence	 or	 nonoccurrence	 of	 a
particular	 event.	 In	 both	 instances,	 we	 recommend	 that	 the	 researcher	 studies
outcomes	 that	 really	matter	 to	 patients,	 such	 as	 remission	 of	 disease,	 survival,
complications,	pain,	or	quality	of	life.	One	preferably	should	not	study	so-called
proxy	or	intermediate	outcomes	such	as	joint	space	in	patients	with	osteoarthritis
of	the	knee	(instead	of	pain,	the	ability	to	walk,	or	quality	of	life),	unless	a	clear
relationship	between	such	an	intermediate	outcome	and	outcomes	more	relevant
for	patients	has	been	established.	The	latter	may	apply	for	the	use	of	CD4	count
as	a	prognostic	outcome	(rather	than	the	occurrence	of	AIDS	or	even	death)	 in
HIV	studies.
As	in	all	research,	criteria	defining	the	absence	or	presence	of	the	outcome	as

well	as	 the	measurement	 tools	used	should	be	described	 in	detail.	 Importantly,
the	 outcome	 occurrence	 is	 assessed	 as	 accurately	 as	 possible,	 with	 the	 best
available	 methods	 to	 prevent	 misclassification,	 even	 if	 this	 requires	 measures
that	are	never	taken	in	clinical	practice.



The	 time	period	 during	which	 the	 outcome	occurrence	 is	measured	 requires
special	 attention.	 Predicting	 an	 outcome	 occurrence	 over	 a	 3-month	 period
typically	yields	different	predictors	or	different	predictor–outcome	associations
than	prediction	of	 the	 same	outcome	 after	 5	 years.	As	with	weather	 and	 stock
value	forecasting,	prediction	over	a	shorter	period	is	commonly	less	problematic
than	prediction	over	a	longer	time	period.
Finally,	 as	 in	 most	 research,	 outcomes	 should	 ideally	 be	 measured	 without

knowledge	 of	 the	 value	 of	 the	 predictors	 under	 study	 to	 prevent	 self-fulfilling
prophecies,	 particularly	 if	 the	 outcome	 measurement	 requires	 observer
interpretation.	 For	 example,	 the	 presence	 of	 those	 determinants	 believed	 to	 be
associated	with	 the	prognostic	outcome	may	 influence	 the	decision	 to	consider
the	outcome	 to	have	occurred.	This	bias	can	cause	under-	or	overestimation	of
the	accuracy	of	predictors,	but	it	more	commonly	leads	to	overestimation;	it	can
be	 prevented	 by	 blinding	 the	 assessors	 of	 the	 outcome	 to	 the	 values	 of	 the
prognostic	determinants	[Loy	&	Irwig,	2004;	Moons	et	al.,	2002c;	Moons	et	al.,
2009a].	 Blinding	 is	 not	 necessary	 for	mortality	 or	 other	 outcomes	 that	 can	 be
measured	without	misclassification.

BIAS	IN	PROGNOSTIC	RESEARCH

Confounding	Bias
In	prognostic	research,	the	interest	is	in	the	joint	predictive	accuracy	of	multiple
predictors.	 As	 stated	 earlier,	 there	 is	 no	 central	 determinant	 for	 which	 the
relationship	 to	 the	 outcome	 should	 be	 causally	 isolated	 from	 other	 outcome
predictors,	as	in	causal	research.	Confounding	thus	is	not	an	issue	in	prognostic
research,	as	in	all	types	of	prediction	research.

Other	Biases
While	 confounding	 does	 not	 play	 a	 role	 in	 prediction	 research,	 other	 biases
certainly	 do.	 Bias	 that	may	 occur	 when	 the	 outcome	 assessor	 is	 aware	 of	 the
determinants	was	discussed	in	the	last	paragraph.	In	addition,	loss	to	follow-up,
and	 thus	nonassessment	 and	missing	of	 the	outcomes	 that	 is	not	 completely	 at
random	(MCAR)	but	rather	selectively	missing	 likely	 leads	 to	biased	estimates



of	the	prognostic	or	predictive	value	of	the	predictors	under	study,	if	the	analysis
is	 reserved	 to	 only	 those	 individuals	 in	 whom	 the	 outcome	 was	 assessed.
Selectively	 missing	 outcomes	 means	 that	 the	 subsample	 of	 the	 original	 study
population	with	 the	 observed	 outcomes	 are	 different	 from	 the	 subsample	with
the	missing	 outcomes	 [de	Groot	 et	 al.,	 2011a].	 This	 bias	 can	 be	 addressed	 or
minimized	using	several	methods	[de	Groot	et	al.,	2008;	de	Groot	et	al.,	2011b,
de	 Groot	 et	 al.,	 2011c],	 including	 the	 use	 of	 multiple	 imputation	 techniques
[Groenwold	et	al.,	2012].	Bias	due	to	selective	loss	to	follow-up	may	also	occur
[Groenwold	et	al.,	2012;	Little	et	al.,	2012].

DESIGN	OF	DATA	ANALYSIS

Analysis	Objective
The	aims	of	the	data	analysis	in	multivariable	prognostic	research	are	similar	to
multivariable	diagnostic	 research,	except	 for	 the	dimension	of	 time:	 to	provide
knowledge	 about	 which	 potential	 predictors	 independently	 contribute	 to	 the
outcome	 prediction,	 and	 to	 what	 extent.	 Also,	 one	 may	 aim	 to	 develop	 and
validate	 a	multivariable	 prediction	model	 or	 rule	 to	 predict	 the	 outcome	given
the	values	of	a	combination	of	predictors.	The	methods	to	determine	the	required
number	of	subjects	and	the	data	analysis	steps	of	prognostic	studies	are	similar
to	 diagnostic	 studies.	 For	 example,	 to	 guide	 decision	 making	 in	 individual
patients,	 the	 analysis	 and	 reporting	 of	 prognostic	 studies	 concentrates	 on
absolute	 risk	 estimates	 (in	 prognostic	 studies	 on	 incidence	 and	 in	 diagnostic
studies	on	prevalence)	of	an	outcome	given	combinations	of	predictors	and	their
values.	 In	view	of	 the	 large	similarities	between	 the	analysis	of	prognostic	and
diagnostic	studies,	we	will	concentrate	on	the	differences	that	exist	between	the
two	types	of	studies.

Different	Outcomes
In	 contrast	 to	 diagnostic	 research	 where	 the	 outcome	 is	 largely	 dichotomous,
prognostic	research	can	distinguish	between	various	types	of	outcomes.	The	first
and	most	frequently	encountered	type	of	outcome	is	 the	occurrence	(yes/no)	of
an	event	within	a	specific,	preferably	short,	period	of	time	[Moons	et	al.,	2012a;



Steyerberg,	 2009].	 For	 example,	 one	 might	 study	 the	 occurrence	 of	 a	 certain
complication	 within	 3	 months,	 where	 ideally	 each	 included	 patient	 has	 been
followed	 for	 at	 least	 this	 period.	 The	 cumulative	 incidence,	 expressed	 as	 a
probability	between	0%	and	100%,	of	the	dichotomous	outcome	at	a	certain	time
point	 (t)	 is	 to	 be	 predicted	 using	 predictors	 measured	 before	 t.	 For	 these
outcomes,	 the	 analysis	 is	 identical	 to	 the	 analysis	 in	 diagnostic	 research.	 The
second	 most	 common	 outcome	 in	 prognostic	 research	 is	 the	 occurrence	 of	 a
particular	 outcome	 event	 over	 a	 (usually)	 longer	 period	 of	 time,	 where	 the
follow-up	 time	 may	 differ	 substantially	 between	 study	 participants.	 Here,	 the
time	to	occurrence	of	the	event	can	be	predicted	using	the	Kaplan-Meier	method
or	Cox	proportional	hazard	modeling.	It	 is	also	possible	 to	predict	 the	absolute
risk	of	a	certain	outcome	within	multiple	time	frames	(e.g.,	3	months,	6	months,
1	 year,	 and	3	 years),	 although	 the	maximum	 time	period	 is	 determined	by	 the
maximum	 follow-up	 period	 of	 the	 included	 patients	 (see	 also	 the	Worked-Out
Example	at	 the	end	of	 this	chapter).	Other,	 less	regular	outcomes	in	prognostic
prediction	studies	are	continuous	variables	[Harrell,	2001],	such	as	 the	 level	of
pain	or	 tumor	 size	at	 t,	 and—as	 in	diagnostic	 research—polytomous	 (nominal)
outcomes	[Biesheuvel	et	al.,	2008]	or	ordinal	outcomes	[Harrell	et	al.,	1998].	An
example	of	the	latter	is	the	Glascow	Outcome	Scale	collapsed	into	three	ordinal
levels:	death,	survival	with	major	disability,	and	functional	recovery	[Cremer	et
al.,	2006].

Required	Number	of	Subjects
As	 for	 diagnostic	 research,	 the	 multivariable	 character	 of	 prognostic	 research
creates	problems	for	estimating	the	required	number	of	study	subjects;	there	are
no	 straightforward	 commonly	 accepted	 methods.	 Ideally,	 prognostic	 studies
include	 several	 hundreds	 of	 patients	 that	 develop	 the	 outcome	 event	 [Harrell,
2001;	Moons	 et	 al.,	 2009a;	Simon	&	Altman,	 1994].	As	with	 all	 dichotomous
outcomes	 analyzed	 with	 multivariable	 logistic	 regression	 analysis,	 experience
has	shown	that	for	the	analysis	of	time	to	event	outcomes	using	Cox	proportional
hazard	modeling,	at	 least	10	subjects	 in	 the	smallest	of	 the	outcome	categories
(i.e.,	 either	 with	 or	 without	 the	 event	 during	 the	 study	 period)	 are	 needed	 for
proper	 statistical	 modeling	 [Concato	 et	 al.,	 1995;	 Peduzzi	 et	 al.,	 1995].	 Such
rules	are	largely	lacking	for	ordinal	and	polytomous	outcomes	[Harrell,	2001].
For	continuous	outcomes,	 the	required	number	of	subjects	may	be	estimated

crudely	by	performing	a	sample	size	calculation	for	the	t-test	situation	where	the



two	 groups	 are	 characterized	 by	 the	 most	 important	 dichotomous	 predictor.
Another	 approach,	 more	 directed	 at	 the	 use	 of	 multiple	 linear	 regression
modeling,	is	to	define	the	allowable	limit	in	the	number	of	covariates	(or	rather,
degrees	of	freedom)	for	the	model	by	dividing	the	total	number	of	study	subjects
by	15	[Harrell,	2001].	For	more	sophisticated	approaches,	we	refer	readers	to	an
article	by	Dupont	and	Plummer	[1998].

Statistical	Analysis
Modeling	of	 the	 cumulative	 incidence	of	 a	 dichotomous	outcome	 at	 a	 specific
time	 t	 using	 logistic	 regression	 is	 discussed	 elsewhere	 in	 the	 text.	 For	 time	 to
event	outcomes,	also	denoted	as	survival-type	outcomes,	the	univariable	analysis
can	 be	 performed	 using	 the	 Kaplan-Meier	 method.	 Similar	 to	 the	 analysis	 of
dichotomous	 outcomes,	 the	 observed	 probabilities	 depend	 on	 the	 threshold
values	of	 the	predictor.	Unfortunately,	 the	 construction	of	 a	 receiver	 operating
characteristic	 (ROC)	 curve	 is	 not	 straightforward	 because	 the	 outcomes	 of	 the
censored	patients	are	unknown.	The	so-called	concordance-statistic	(c-statistic	or
c-index),	 however,	 can	 be	 easily	 calculated	 and	 its	 value	 has	 the	 same
interpretation	 as	 the	 area	 under	 the	 ROC	 curve	 [Harrell,	 2001].	 For	 the
multivariable	 analysis	 of	 time	 to	 event	 data	 using	 Cox	 proportional	 hazard
modeling,	we	refer	to	the	Worked-Out	Example	at	the	end	of	the	chapter.
When	 the	 outcome	 is	 continuous	 (for	 example,	 tumor	 size),	 univariable	 and

multivariable	analyses	are	usually	carried	out	using	linear	regression	modeling.
The	discriminatory	power	of	a	linear	regression	model	can	be	assessed	from	the
squared	 multiple	 correlation	 coefficient	 (R2),	 also	 known	 as	 the	 explained
variance	[Harrell	et	al.,	1996;	Harrell,	2001].	This	measure	unfortunately	is	not
intuitively	 understood.	 Detailed	 information	 on	 the	 analysis	 of	 continuous	 as
well	 as	 ordinal	 and	 polytomous	 outcomes	 is	 available	 in	 the	 literature
[Biesheuvel	et	al.,	2008;	Harrell,	2001;	Roukema	et	al.,	2008].

Internal	Validation	and	Shrinkage	of	the	Developed
Prognostic	Model
If	 the	 number	 of	 potential	 predictors	 in	 multivariable	 logistic	 regression
modeling	 is	 much	 larger	 than	 the	 number	 of	 outcomes	 or	 subjects,	 any	 fitted
model	 will	 result	 in	 overly	 optimistic	 predictive	 accuracy.	 The	 internal



validation	 and	 shrinkage	 of	 a	 multivariable	 logistic,	 Cox	 proportional	 hazard,
and	linear,	ordinal,	and	polytomous	models	are	similar	[Harrell,	2001;	Moons	et
al.,	2012a;	Royston	et	al.,	2009;	Steyerberg,	2009].

Estimating	Added	Value
Prognostic	 factors,	 tests,	 and	 biomarkers	 differ	 in	 predictive	 accuracy,
invasiveness,	 and	 cost.	 Accordingly,	 tests	 or	 markers,	 especially	 those	 whose
collection	 requires	 more	 burdensome	 and	 costly	 measurement,	 should	 not	 be
evaluated	 on	 their	 individual	 predictive	 abilities	 but	 rather	 on	 the	 incremental
predictive	value	beyond	established,	and	easier	 to	obtain,	predictors	 [Moons	et
al.,	 2012a].	 Measures	 of	 discrimination	 such	 as	 the	 c-statistic	 are	 not	 able	 to
detect	small	 improvements	 in	model	performance	when	a	new	marker	 is	added
to	a	model	that	already	includes	important	predictors.	Recently,	new	metrics	that
estimate	 the	added	value	of	predictors	have	been	proposed.	These	quantify	 the
extent	 to	which	an	extended	model	 (with	addition	of	a	subsequent	predictor	or
marker)	improves	the	classification	of	participants	with	and	without	the	outcome
compared	 with	 the	 basic	 model	 without	 that	 predictor.	 For	 example,	 the	 net
reclassification	 improvement	 (NRI)	 does	 this	 by	 quantifying	 the	 number	 of
individuals	 that	 are	 correctly	 reclassified	 into	 clinically	 meaningful	 higher	 or
lower	 risk	 categories	with	 the	 addition	 of	 a	 new	predictor,	 using	 pre-specified
risk	groups	[Pencina	et	al.,	2008].	Correct	reclassifications	are	shifts	to	a	higher
risk	category	in	those	who	develop	the	prognostic	outcome	and	shifts	to	a	lower
risk	category	 in	 those	who	do	not.	Definition	of	 these	 risk	groups,	however,	 is
often	arbitrary	and	differs	across	 studies,	which	may	compromise	comparisons
of	NRIs	from	different	studies.	To	circumvent	this	problem,	a	version	of	the	NRI
that	does	not	require	stratification	of	the	population	into	risk	groups	may	be	used
[Pencina	et	al.,	2011].	Alternatively,	the	integrated	discrimination	improvement
(IDI)	may	be	useful.	In	contrast	to	the	NRI,	the	IDI	does	not	require	subjectively
predefined	risk	thresholds.	The	IDI	is	the	estimated	improvement	in	the	average
sensitivity	 of	 the	 basic	 model	 with	 addition	 of	 the	 new	 predictor	 minus	 the
estimated	 decrease	 in	 the	 mean	 specificity,	 summarized	 over	 all	 possible	 risk
thresholds.	Table	4–3	and	Table	4–4	give	examples	from	the	USE-IMT	pooled
analysis	 of	 data	 on	 the	 added	 value	 of	 carotid	 artery	 intima-media	 thickness
measurements	 for	 cardiovascular	 risk	 prediction	 based	 on	 14	 population-based
cohorts	contributing	data	for	45,828	individuals	[den	Ruijter	et	al.,	2012].



TABLE	4–3	Reclassification	of	Cardiovascular	Risk	with	Carotid	Artery	Intima-Media	Thickness	Added
to	Framingham	Risk	Score:	Findings	from	the	USE-IMT	Consortium

A	Distribution	of	45,828	individuals	without	and	with	events	in	USE-IMT	across	risk	categories

A,	Individuals	without	and	with	events	classified	according	to	their	10-year	absolute	risk	to	develop	a
myocardial	infarction	or	stroke	predicted	with	the	Framingham	Risk	Score	variables	or	classified	according
to	their	10-year	absolute	risk	to	develop	a	first-time	myocardial	infarction	or	stroke	predicted	with	the
Framingham	Risk	Score	and	a	common	carotid	intima-media	thickness	(CIMT)	measurement.	B,	Observed
Kaplan-Meier	absolute	risk	estimates	for	all	individuals	(with	and	without	events).	The	observed	risk	in
reclassified	individuals	is	significantly	different	from	the	observed	risk	of	the	individuals	in	the	gray	cells.
Reproduced	from	den	Ruijter	H	et	al.	Common	carotid	intima-media	thickness	measurements	in
cardiovascular	risk	prediction.	A	meta-analysis.	JAMA.	2012;308(8):796–803.

TABLE	4–4	Summary	of	the	Indices	of	Added	Value	in	the	Total	USE-IMT	Cohort	and	in	the	Intermediate
Risk	Categories,	by	Sex:	Findings	from	the	USE-IMT	Consortium



CI,	confidence	interval;	IDI,	integrated	discrimination	improvement;	NRI,	net	reclassification	improvement;
USE-IMT,	USE	Intima-Media	Thickness	collaboration.
Reproduced	from	den	Ruijter	H	et	al.	Common	carotid	intima-media	thickness	measurements	in
cardiovascular	risk	prediction.	A	meta-analysis.	JAMA.	2012;308(8):796-803.

Other	Relevant	Data	Analysis	Issues
A	summary	of	issues	in	the	analysis	of	prognostic	data	is	given	in	Box	4–5.	Note
that	 the	 relevant	 issues	 pertaining	 to	 reporting	 of	 study	 results,	 external
validation	of	 the	developed	model,	 and	application	of	 a	 final	model	 in	 clinical
practice	are	similar	for	prognostic	and	diagnostic	research	[Altman	et	al.,	2009;
Moons	et	al.,	2009b;	Moons	et	al.,	2012b;	Reilly	&	Evans	2006].

WORKED-OUT	EXAMPLE
This	example	is	based	on	a	study	conducted	by	Spijker	and	colleagues	[2006].	It
illustrates	 the	 design	 of	 data	 analysis	 in	 the	 case	 of	 time	 to	 event	 data,	which
includes	 how	 to	 obtain	 absolute	 risks	 from	 a	 Cox	 proportional	 hazard	model,
how	 to	 shrink	 coefficients,	 how	 to	 assess	 discriminatory	 power,	 and	 how	 to
calculate	 theoretical	 sensitivity	 and	 specificity	 using	 the	 predictive	 values.
Useful	methodologic	considerations	underlying	this	example	can	be	found	in	the
literature	 [Altman	 &	 Andersen,	 1989;	 Harrell,	 2001;	 Moons	 et	 al.,	 2012b;
Steyerberg,	 2009;	 Steyerberg	 et	 al.,	 2000;	 Steyerberg	 et	 al.,	 2001;	 Van
Houwelingen	&	Le	Cessie,	1990;	Vergouwe	et	al.,	2002].

BOX	4–5	Guide	to	the	Main	Design	and	Analysis	Issues	for	Prognostic	Studies

Design



•	Objective:	To	develop	a	model/tool	to	enable	objective	estimation	of
outcome	probabilities	(risks)	according	to	different	combinations	of
predictor	values.

•	Study	participants:	Individuals	with	the	same	characteristic,	for	example,
individuals	with	a	particular	symptom	or	sign	suspected	of	a	particular
disease	or	with	a	particular	diagnosis,	at	risk	of	having	(diagnostic
prediction	model)	or	developing	(prognostic	prediction	model)	a	specific
health	outcome.

•	Sampling	design:	Cohort,	preferably	prospective	to	allow	for	optimal
documentation	of	predictors	or	outcomes,	including	a	cohort	of	individuals
that	participate	in	a	randomized	therapeutic	trial.	Case-control	studies	are
not	suitable,	except	nested	case-control	or	case-cohort	studies.

•	Outcomes:	Relevant	to	individuals	and	preferably	measured	without
knowledge	of	the	measured	predictor	values.	Methods	for	outcome
ascertainment,	blinding	for	the	studied	predictors,	and	duration	of	follow-
up	(if	applicable)	should	be	clearly	defined.

•	Candidate	predictors:	Theoretically,	all	potential	and	not	necessarily
causal	correlates	of	the	outcome	of	interest.	Commonly,	however,
preselection	based	on	subject	matter	knowledge	is	recommended.	Similar
to	the	outcomes,	candidate	predictors	are	clearly	defined	and	measured	in	a
standard	and	reproducible	way.

Analysis
•	Missing	values:	Analysis	of	individuals	with	only	completely	observed
data	may	lead	to	biased	results.	Imputation,	preferably	multiple	imputation,
of	missing	values	often	yields	less	biased	results.

•	Continuous	predictors:	Should	not	be	turned	into	dichotomies	and	linearity
should	not	be	assumed.	Simple	predictor	transformation	can	be
implemented	to	detect	and	model	nonlinearity,	increasing	the	predictive
accuracy	of	the	prediction	model.

•	Predictor	selection	in	the	multivariable	modeling:	Selection	based	on
univariable	analysis	(single	predictor–outcome	associations)	is
discouraged.	Preferably,	if	needed,	backward	selection	or	a	full	model
approach	should	be	used,	depending	on	a	priori	knowledge.

•	Model	performance	measures:	Discrimination	(e.g.,	c-index),	calibration
(plots),	and	(re)classification	measures.

•	Internal	validation:	Bootstrapping	techniques	can	quantify	the	model’s



potential	for	overfitting,	its	optimism	in	estimated	model	performance
measures,	and	a	shrinkage	factor	to	adjust	for	this	optimism.

•	Added	value	of	predictor/test/marker:	Should	be	pursued	for	subsequent
(or	new)	predictors,	certainly	if	their	measurement	is	burdensome	and
costly.	Because	overall	performance	measures	(e.g.,	c-index)	are	often
insensitive	to	small	improvements,	reclassification	measures	may	be	used
for	this	purpose.

Reproduced	from	Moons	KGM,	et	al.	Risk	prediction	models:	I.	Development,	internal	validation,	and
assessing	the	incremental	value	of	a	new	(bio)marker.	Heart.	BMJ	(2012),	with	permission	from	BMJ
Publishing	Group	Ltd.

Rationale	for	the	Study
Persistence	 of	 a	 major	 depressive	 episode	 (MDE)	 is	 a	 common	 and	 serious
problem.	 If	 the	 persistence	 risk	 can	be	 estimated	 accurately,	 treatment	may	be
tailored	 to	 an	 individual	 patient’s	 needs.	 If	 the	 risk	 of	 persistence	 is	 small,	 a
policy	 of	watchful	waiting	might	 be	 adopted,	while	 a	 high	 risk	 of	 persistence
may	 call	 for	 immediate	 and	 possibly	 more	 aggressive	 treatment	 (e.g.,
antidepressant	 drug	 therapy	 in	 combination	 with	 psychotherapy).	 Setting	 a
prognosis	 in	 individual	 cases	with	MDE,	 however,	 is	 notoriously	 difficult	 and
lacks	 a	 sound	 empirical	 basis.	 Although	 many	 studies	 of	 depressed	 patients
identified	predictors	of	depression	persistence,	 the	analyses	and	presentation	of
the	results	do	not	allow	prediction	of	 the	absolute	risk	 in	 individual	patients	 in
daily	practice	[Sargeant	et	al.,	1990].

Theoretical	Design
The	 study	 objective	 was	 to	 construct	 a	 score	 that	 allows	 prediction	 of	 MDE
persistence	 over	 12	 months	 in	 individuals	 with	 MDE,	 using	 potential
determinants	 of	 persistence	 identified	 in	 previous	 research.	 The	 prognostic
determinants	 considered	 were	 measures	 of	 social	 support,	 somatic	 disorders,
depression	severity	and	recurrence,	and	duration	of	previous	episodes.
The	occurrence	relation	can	be	represented	as	follows:

Persistence	after	12	months	=	f	(d1–6)



The	domain	in	this	study	was	confined	to	those	individuals	from	the	general
population	with	MDE.

Design	of	Data	Collection
A	cohort	study	was	performed	using	data	collected	between	1996	and	1999	in	a
general	population	survey,	the	Netherlands	Mental	Health	Survey	and	Incidence
Study	 (NEMESIS)]	 [Ten	 Have	 et	 al.,	 2005].	 Two	 hundred	 and	 fifty	 patients
diagnosed	 with	 MDE	 according	 to	 the	 Diagnostic	 and	 Statistical	 Manual	 of
Mental	Disorders,	Third	Edition	revised	(DSM-III-R)	criteria,	as	assessed	with
the	 Composite	 International	 Diagnostic	 Interview,	 were	 identified.	 For	 these
patients,	 all	 information	on	 the	 six	 predictors	 under	 study	was	 recorded.	 In	 an
interview	 conducted	 2	weeks	 to	 24	months	 after	 the	 diagnosis	 (this	 variability
was	due	 to	 logistic	 reasons),	 the	duration	of	depression	was	assessed	using	 the
Life	Chart	Interview.

Design	of	Data	Analysis
First,	a	univariable	analysis	for	each	predictor	was	carried	out	to	“keep	in	touch
with	the	data.”	Then	a	multivariable	Cox	proportional	hazards	regression	model
with	time	to	recovery	(i.e.,	no	more	persistence)	as	the	outcome	variable	and	the
six	predefined	predictors	as	the	independent	variables	was	run.	The	Cox	model,
instead	 of	 the	 usual	 logistic	 regression	model,	 was	 applied	 to	 account	 for	 the
varying	follow-up	times	across	patients.
The	 aim	 of	 the	 analysis	was	 to	 calculate	 the	 absolute	 12-month	 risk	 of	 not

having	 recovered,	 that	 is,	 the	 probability	 of	 depression	 persistence	 12	months
after	the	diagnosis	for	individual	patients.	This	appears	to	be	not	straightforward,
as	 the	 Cox	 regression	 procedure	 yields	 actual	 survival	 estimates	 [S(t)]	 only.
These	estimates	represent	the	predicted	risks	of	depression	persistence	for	each
patient	 given	 the	 patient’s	 follow-up	 time	 and	 values	 of	 the	 prognostic
determinants.
Actual	survival	estimates	are	defined	as:

S(t)	=	S0(t)exp(LP)

where	the	linear	predictor	(LP)	is	b1	×	X1	+	b2	×	X2	+	.…	bn	×	Xn,	with	the	Xs
denoting	 the	 predictor	 values	 of	 a	 specific	 patient	 and	 the	 b’s	 denoting	 the



regression	coefficients.
The	baseline	survival	function	S0(t)	 is	 the	 time-dependent	cumulative	risk	of

persistence	of	depression	for	a	person	with	none	of	the	predictors	present,	that	is,
the	LP	being	zero	and	thus	S0(t)	=	S(t).
The	 baseline	 survival	 function	 [S0(t)]	 can	 be	 calculated	 by	 remolding	 the

given	 formula	 as	 follows:	 S0(t)	 =	 S(t)1/exp(LP).	 This	 calculation	 allowed	 us	 to
calculate	 the	 cumulative	 12-month	 baseline	 risk	 from	 the	 database	 for	 those
patients	who	actually	had	12	months	of	follow-up	(S0[12	months]).	In	our	study,
this	value	appeared	to	be	0.2029	(20.3%).	The	final	step	is	 to	calculate	 the	12-
month	risk	for	all	patients	using	this	S0(12	months)	and	an	individual’s	LP,	the
latter	thus	representing	the	individual	patient’s	part	of	the	risk.
In	the	formula,	S(12	months)	=	S0(12	months)exp(LP)	=	0.2029exp(LP).
The	 12-month	 time	 span	was	 primarily	 chosen	 on	 clinical	 grounds	 but	 also

because	at	that	follow-up	time,	the	number	of	patients	at	risk	of	relapse	was	still
sufficiently	large.	To	evaluate	the	calibration	of	the	model,	that	is,	to	assess	the
extent	 to	 which	 the	 model	 predictions	 are	 in	 agreement	 with	 the	 observed
probabilities,	we	calculated	 the	Kaplan-Meier	estimate	of	 the	12-month	 risk	of
depression	 persistence	 for	 each	 decile	 of	 predicted	 risk	 and	 compared	 these
using	a	scatter	diagram.
As	a	next	step,	the	discriminatory	power	of	the	model	was	quantified.	Because

the	outcomes	of	the	censored	patients	are	unknown,	the	construction	of	a	ROC
curve	 for	 the	 evaluation	 of	 discriminatory	 power,	 such	 as	 those	 calculated	 for
logistic	 regression	 models,	 is	 impossible.	 However,	 the	 c-statistic	 can	 be
calculated.	 It	 is	 numerical	 and,	with	 regard	 to	 interpretation,	 equal	 to	 the	 area
under	 the	 ROC	 curve;	 it	 reflects	 the	 probability	 that	 for	 a	 random	 pair	 of
patients,	 the	 one	 who	 has	 the	 outcome	 event	 first	 has	 the	 highest	 predicted
probability.	The	 concordance	 statistic	 (as	 the	 area	under	 the	ROC	curve)	 is	 an
overall	 measure	 of	 discriminatory	 power.	 A	 value	 of	 0.5	 indicates	 no
discrimination	and	a	value	of	1.0	indicates	perfect	discrimination	between	those
developing	 and	 not	 developing	 the	 study	 outcome,	 in	 this	 case	 depression
persistence	during	the	defined	time	period	[Altman	&	Royston,	2000a].	Both	the
regression	 coefficients	 and	 therefore	 also	 the	 hazard	 ratios	 (the	 regression
coefficient,	 which	 is	 interpreted	 as	 a	 relative	 risk)	 with	 their	 95%	 confidence
intervals,	 as	 well	 as	 the	 c-statistic,	 were	 adjusted	 for	 overfitting	 or	 over-
optimism	 using	 bootstrapping	 techniques	 [Efron	 &	 Tibshirani,	 1993].	 To	 this
end,	100	random	bootstrap	samples	with	replacement	were	drawn	from	the	data
set	 with	 complete	 data	 on	 all	 predictors	 (N	 =	 250).	 The	 model’s	 predictive



performance	after	bootstrapping	 is	 the	performance	 that	 can	be	expected	when
the	model	is	applied	to	future	similar	populations.
To	 construct	 an	 easily	 applicable	 “persistence	 of	 depression	 score,”	 each

coefficient	 from	 the	 model	 was	 transformed	 to	 a	 rounded	 number.	 As	 the
coefficients	 reflect	 the	 relative	weight	 of	 each	 variable	 in	 the	 prediction,	 they
were	 transformed	 to	 a	 number	 of	 points	 in	 a	 uniform	 way;	 that	 is,	 each
coefficient	was	divided	by	the	coefficient	closest	to	zero,	in	this	case	–.107.	The
number	 of	 points	 was	 subsequently	 rounded	 to	 the	 nearest	 integer.	 The	 total
score	for	each	individual	patient	was	determined	by	assigning	the	points	for	each
variable	present	and	adding	them	up.
The	predicted	probability	of	persistence	of	depression	at	12	months	follow-up

was	presented	according	to	four	broad	categories	of	the	risk	score	for	reasons	of
statistical	 stability	 and	 practical	 applicability.	 The	 categories	 were	 arbitrarily
chosen	 with	 a	 view	 to	 reasonable	 size	 of	 each	 category	 as	 well	 as	 clinical
sensibility.	Next,	the	score	was	transformed	to	a	dichotomous	“prognostic	test,”
allowing	 each	 patient	 to	 be	 classified	 as	 at	 high	 or	 low	 risk	 of	 depression
persistence.	 Sensitivity,	 specificity,	 and	 the	 positive	 and	 negative	 predictive
value	of	categorized	values	of	the	score	were	calculated	for	the	same	cut-offs	of
the	score	as	 those	used	 to	delineate	 the	scoring	categories.	Data	were	analyzed
using	SPSS	12.0	and	S-plus	2000	software	programs.

Results
Follow-up	time	ranged	from	2	weeks	to	24	months	and	187	subjects	out	of	the
total	population	(N	=	250)	recovered.	The	final	proportional	hazards	regression
model	 appeared	 to	 be	 reasonably	 calibrated	 as	 the	 predicted	 and	 observed
probabilities	were	similar	over	the	entire	range	(see	Figure	4–1).



FIGURE	4–1	Calibration	plot	of	the	Cox	proportional	hazards	model	for	the	prediction	of	depression
persistence	at	12	months	of	follow-up.	The	dotted	line	represents	the	line	of	identity,	that	is,	perfect
calibration	model.

Repoduced	with	permission	from	Spijker	J,	de	Graaf	R,	Ormel	J,	Nolen	WA,	Grobbee	DE,	Burger	H.	The
persistence	of	depression	score.	Acta	Psychiatr	Scand	2006;114:411–6.

The	shrinkage	factor	for	the	coefficients	that	was	obtained	from	the	bootstrap
process	 was	 0.91.	 The	 results	 presented	 are	 based	 on	 the	 findings	 after
shrinkage.	Coefficients	from	the	model	as	well	as	the	hazard	ratios	as	measures
of	 relative	 risk	 are	 displayed	 in	Table	 4–5,	 together	 with	 the	 risk	 points	 per
predictor.
Table	 4–6	 shows	 the	 relationship	 between	 categories	 of	 the	 score,	 the

observed	risk,	and	the	predicted	risk	of	MDE	persistence	after	1	year.	The	mean
risk	 was	 23%	 and	 the	 predicted	 risks	 increased	 from	 7–40%	 with	 increasing
score	categories	and	were	generally	 in	agreement	with	 the	observed	risk.	From
Table	4–4,	it	can	also	be	seen	that	the	patient	introduced	earlier	has	a	29%	risk
of	persistence	of	depression.	The	overall	discriminatory	power	of	the	score	was
fair,	with	 a	 c-statistic	 of	 0.68.	For	 specific	 cut-offs,	 the	 sensitivity,	 specificity,
and	predictive	values	are	also	shown.
If,	 for	 instance,	 a	 cut-off	 ≥	 5	 is	 chosen	 as	 the	 threshold	 for	 a	 high	 risk	 of

persistence	and	thus	requires	more	intense	treatment,	69%	(sensitivity)	of	those
who	would	still	suffer	depression	after	1	year	will	have	received	this	treatment,
however,	12%	(1-NPV)	of	those	who	did	not	undergo	the	more	intense	treatment
because	their	test	was	negative	will	have	persisting	MDE.

TABLE	4–5	Multivariable	Predictors	of	Recovery	from	Depression	at	12	Months



Total	risk	score	=	physical	illness*3	+	medium	social	support	+	low	social	support*4	+	severe	depression*3
–	recurrent	depression*4	+	long	duration	previous	episodes*4.
The	total	risk	score	was	calculated	using	the	formula	at	the	bottom	of	the	table.	For	instance,	a	subject	with
a	severe	and	recurrent	MDE,	with	a	comorbid	somatic	disorder	and	low	social	support,	has	a	score	of	+	3	–
4	+	3	+	4	=	6	points.
Reproduced	from	Spijker	J,	de	Graaf	R,	Ormel	J,	Nolan	WA,	Grobbee	DE,	Burger	H.	The	persistence	of
depression	score.	Acta	Psychiatr	Scand.	2006;114:411-16.

TABLE	4–6	Prognostic	Test	Characteristics	for	12-month	Depression	Persistence

Reproduced	from	Spijker	J,	de	Graaf	R,	Ormel	J,	Nolan	WA,	Grobbee	DE,	Burger	H.	The	persistence	of
depression	score.	Acta	Psychiatr	Scand.	2006;114:411–16.

It	 should	 be	 noted	 that	 the	 discriminatory	 power	 of	 the	 resulting	 score	 is
modest	with	a	 c-statistic	of	0.68,	 in	particular	when	compared	with	c-statistics
or,	 equivalently,	 areas	 under	 the	 curve	 of	 the	 ROC	 curve	 obtained	 in	 many
diagnostic	studies.	However,	it	must	be	kept	in	mind	that	by	nature	of	the	close
temporal	 relationship	 between	 predictors	 and	 outcome,	 measures	 of
discrimination	generally	achieve	higher	values	 in	diagnostic	 than	 in	prognostic
settings.
It	 was	 concluded	 that	 the	 study	 yielded	 a	 risk	 score	 for	 the	 prediction	 of

persistence	of	MDE	 in	 the	general	population	with	depression	with	 reasonable
performance.	 The	 score	 may	 be	 of	 value	 to	 clinical	 practice	 in	 providing	 a
rational	 basis	 for	 treatment	 decisions,	 but	 external	 validation	 in	 that	 setting	 is
required	before	the	score	is	applied	in	daily	practice.

CONCLUSION



Prognostic	 research	 shows	 great	 similarity	 to	 diagnostic	 research;	 in	 fact,
prognoses	 can	 be	 seen	 as	 diagnoses	 in	 the	 future.	Most	 importantly,	 they	 are
both	variants	of	prediction	 research.	To	ensure	applicability	of	prognostic	 (and
diagnostic)	research	in	clinical	practice,	several	prerequisites	should	be	met:

		1.	Assemble	a	patient	population	that	reflects	a	carefully	determined	domain
in	clinical	practice.

	 	 2.	 Measure	 all	 potential	 predictors	 using	 similar	 methods	 as	 in	 clinical
practice.

		3.	Measure	a	clinically	relevant	outcome	as	accurately	as	possible,	and	in	all
study	subjects.

		4.	In	the	analysis,	use	absolute	rather	than	relative	risk	estimates.
	 	 5.	 Do	 not	 worry	 about	 confounding,	 as	 it	 is	 a	 non-issue	 in	 prediction

research.
	 	6.	Do	not	start	with	too	many	predictors	relative	to	the	number	of	outcome

events	or	subjects.
	 	 7.	 Include	 predictors	 in	 the	model	 that	 add	 to	 the	 predictive	 power	 of	 the

model,	 but	 beware	 of	 data-driven	 selection	 of	 predictors.	 This	 is	 an
argument	against	stepwise	regression	models.

		8.	Take	care	that	in	the	presentation	the	absolute	risks	can	be	calculated	for
(all)	 predictor	 combinations	 in	 a	 practical	way,	 for	 instance,	 using	 a	 risk
score	or	nomogram.

	 	 9.	 Assess	 the	 discriminatory	 power	 and	 the	 calibration	 of	 the	 prediction
model.

10.	Take	care	that	the	model	is	internally	validated	and	corrected	(shrunk)	for
over-optimism,	 for	 example,	 by	 bootstrapping,	 heuristic	 shrinkage
methods,	or	penalized	regression	modeling.

11.	Apply	 the	model	 to	a	different	population	 representing	 the	 same	domain
for	external	validation	before	applying	the	score	in	daily	practice.

Implementation	of	well-conducted	prognostic	research	may	greatly	contribute
to	 the	 efficiency	 of	 medical	 practice	 and	 reduce	 the	 suffering	 from	 disease.
Undoubtedly,	 the	 introduction	 of	 computerized	 patient	 records	 will	 further
increase	 the	 interest	 in	 multivariable	 prediction	 models	 as	 described	 here,
because	 their	 development,	 validation,	 and	 application	 in	 research	 settings	 as
well	as	in	routine	care	becomes	much	more	feasible.



Chapter	5



Intervention	Research:	Intended	Effects

INTRODUCTION
Effective	treatment	is	the	stronghold	of	modern	medicine.	Despite	all	other	types
of	care	clinical	medicine	has	 to	offer,	patients	and	physicians	alike	expect	 first
and	foremost	 that	diseases	can	be	cured	and	symptoms	relieved	by	appropriate
interventions.	 Evidence-based	 treatment—or	 prevention	 for	 that	 matter—
demands	 the	 unequivocal	 demonstration	 by	 empirical	 research	 of	 the	 efficacy
and	safety	of	 the	intervention.	In	general,	all	 interventions	are	characterized	by
intended	 and	 unintended	 effects,	where	 the	 intended	 effects	 (main	 effects)	 are
those	 for	 which	 the	 treatments	 are	 given.	 However,	 interventions	 also	 have
unintended	 effects.	 These	may	 range	 from	 relatively	 trivial	 discipline	 required
by	the	patient	to	adhere	to	the	intervention	to	potentially	life-threatening	adverse
effects.	 Ideally,	 intended	 effects	 should	 be	 highly	 common,	 predictable,	 and
large,	and	unintended	effects	rare	and	mild.	Drugs	and	other	interventions	vary
markedly	 with	 regard	 to	 the	 relative	 frequency	 and	 severity	 of	 unintended
effects,	 just	 as	 they	vary	 in	 effectiveness	with	 regard	 to	 their	 intended	 effects.
Intervention	 research	 aims	 to	 quantify	 the	 full	 spectrum	 of	 relevant	 effects	 of
intervention.	However,	 the	 approaches	 used	 for	 demonstrating	 the	 intended	 or
primary	 effects	 generally	 differ	 from	 those	 for	 demonstrating	 safety.	 This
chapter	concentrates	on	intended	effects.
Research	on	the	benefits	and	risks	of	interventions	is	central	to	current	clinical

epidemiologic	research.	For	centuries,	the	field	of	medicine	was	very	limited	in
terms	 of	 what	 it	 had	 to	 offer	 for	 adequate	 treatment.	 This	 has	 dramatically
changed	 in	 recent	decades.	Rapidly	 expanding	pharmacopeias	 and	advances	 in



surgical	 techniques	 are	 both	 progressing,	 with	 an	 increasing	 emphasis	 on	 less
invasive	techniques.	In	medicine,	intervention	 is	a	general	term	for	a	deliberate
action	intended	to	change	the	prognosis	in	a	patient	and	includes	drug	treatment,
surgery,	 physiotherapy,	 lifestyle	 interventions	 such	 as	 physical	 exercise,	 and
preventive	 actions	 such	 as	 vaccination.	To	 treat	 a	 patient	with	 confidence,	 the
physician	 needs	 to	 know	 about	 the	 potential	 benefit	 of	 the	 treatment	 (i.e.,	 the
intended	 or	main	 effects	 of	 the	 intervention),	 which	must	 be	 weighed	 against
possible	 risks	 (i.e.,	 the	 unintended	 or	 side	 effects	 of	 the	 intervention).	 The
deliberate	 decision	 not	 to	 treat	 or	 to	 postpone	 treatment	 can	 be	 viewed	 as	 an
intervention	 itself.	 Increasingly,	 cost	 considerations	 also	 play	 a	 role	 when
choices	 are	 made	 between	 different	 treatment	 options.	 Money	 is	 not	 only	 an
issue	from	the	perspective	of	the	fair	and	efficient	use	of	available	resources;	it	is
also	 an	 important	 driving	 force	 for	 the	 development	 and	 marketing	 of	 new
treatments.	 Pharmaceutical	 companies	 and	 manufacturers	 producing	 medical
devices	 increasingly	 emphasize	 their	 compassion	 for	 patients	 as	 a	 motive	 for
their	 search	 for	 new	 compounds,	 but	 they	 typically—and	 understandably—are
primarily	 focused	 on	 their	 shareholders	 and	 profits.	 This	 elevates	 research	 on
treatment	 effects	 to	 an	 arena	 in	 which	 huge	 interests	 play	 a	 role.	 As	 a
consequence,	much	more	than	in	any	other	area	of	medical	research,	the	quality
and	reliability	of	 intervention	research	has	been	 the	 topic	of	major	 interest	and
development.	The	result	 is	a	highly	sophisticated	set	of	principles	and	methods
that	guides	intervention	research.
In	 intervention	 research,	 the	 principles	 of	 causal	 and	 descriptive	 research

combine.	 Intervention	 research	 is	 commonly	 causal	 research,	 because	 it	 is	 the
true	effect	of	the	intervention	(i.e.,	caused	by	the	intervention)	that	needs	to	be
estimated	 free	 from	 confounding	 variables.	 Intervention	 research	 commonly	 is
also	 prognostic;	 in	 order	 to	 use	 an	 intervention	 in	 medical	 practice,	 it	 is
important	 to	 know	 as	 precisely	 as	 possible	 both	 the	 beneficial	 and	 untoward
impact	 the	 intervention	 may	 have	 on	 an	 individual	 patient’s	 prognosis.	 For
example,	 for	 a	given	drug,	1-year	mortality	may	be	expected	 to	decrease	 from
30%	to	10%	(intended	or	main	effect),	while	 the	risk	of	developing	orthostatic
hypotension	(unintended	or	side	effect)	is	10%.
To	serve	clinical	decisions	of	treatment	best,	intervention	research	in	general

and	 clinical	 trials	 in	 particular	 should	 be	 viewed	 as	 the	means	 to	measure	 the
effects	 of	 interventions	 on	 prognosis.	 It	 is	 generally	 not	 sufficient	 to	 know
whether	a	treatment	works.	What	is	needed	is	a	valid	estimate	of	the	size	of	the
effects.	 In	 clinical	 epidemiologic	 intervention	 research,	 randomized	 controlled



trials	(RCTs)	play	an	essential	role,	not	only	because	they	are	often	considered
the	 only	 approach	 to	 definitively	 demonstrate	 the	 magnitude	 of	 benefits	 of
treatment,	 but	 also	 because	 RCTs	 offer	 a	 role	model	 for	 causal	 research.	 The
principles	 of	 the	 design	 of	 randomized	 trials	 are	 quite	 straightforward.	When
appropriately	understood,	they	also	will	greatly	help	to	improve	causal	research
under	 those	 circumstances	 where	 a	 randomized	 trial	 cannot	 be	 conducted.	 To
understand	 the	 nature	 of	 randomized	 trials	 is	 to	 understand	 unconfounded
observation.

INTERVENTION	EFFECTS
The	challenges	of	measuring	the	effects	of	an	intervention	can	be	illustrated	by	a
simple	 example	 in	which	 a	 physician	 is	 considering	 using	 a	 new	drug	 to	 treat
high	blood	pressure	in	a	group	of	his	patients.	The	drug	has	been	handed	to	him
by	 a	 sales	 representative,	 who	 promised	 a	 rapid	 decline	 in	 blood	 pressure	 for
most	 patients,	 with	 excellent	 tolerability.	 Let	 us	 assume	 that	 the	 physician
decides	to	try	out	the	drug	on	the	next	20	or	so	patients	who	visit	his	office	with
a	 first	 diagnosis	 of	 hypertension.	 He	 carefully	 records	 each	 patient’s	 baseline
blood	 pressure	 level	 and	 asks	 them	 to	 return	 a	 number	 of	 times	 for	 re-
measurement	 in	 the	 next	 weeks.	 His	 experience	 with	 these	 patients	 is
summarized	in	Figure	5–1.
The	 physician	 is	 satisfied.	 A	 gradual	 decline	 in	 systolic	 blood	 pressure	 is

shown	in	his	patients.	Moreover,	most	were	very	pleased	with	the	drug	because
the	 treatment	 had	 few	 side	 effects;	 one	 patient	mentioned	 the	 development	 of
mild	sleeping	disturbances.	Would	it	be	wise	to	conclude	that	the	drug	works,	is
well	 tolerated,	and	can	now	become	part	of	routine	 treatment	with	confidence?
Clearly	not.	There	are	a	number	of	reasons	why	the	observed	response	may	not
adequately	 reflect	 the	 effect	 caused	 by	 the	 drug.	 In	 order	 to	 use	 the	 drug	 in
similar	future	patients,	it	is	necessary	to	ensure	that	the	response	in	fact	resulted
from	the	pharmacologic	agent	and	does	not	reflect	other	mechanisms.	Although
a	patient	may	not	care	why	 the	 reduction	occurred	as	 long	as	 the	hypertension
was	treated,	from	a	sensible	medical	viewpoint	it	is	necessary	to	know	whether
the	 effect	 can	 be	 attributed	 to	 the	 drug.	 If	 it	 is	 not,	 then	 additional	 costs	 are
generated,	the	patients	is	medicalized,	and	side	effects	may	be	induced	without	a
sound	 scientific	 justification.	 Let	 us	 examine	 alternative	 explanations	 for	 the
observation	made	by	the	physician.



FIGURE	5–1	Hypothetical	patient	blood	pressure	data.

Natural	History	and	Regression	Toward	the	Mean
The	first	question	 to	be	answered	 is	whether	 the	same	blood	pressure	response
would	 have	 been	 observed	 if	 no	 treatment	 was	 given.	 In	 other	 words,	 is	 it
possible	 that	 the	 natural	 history	 of	 the	 disease	would	 explain	 the	 change	 over
time?	Natural	history	 is	 the	variability	 in	symptoms	and	signs	of	a	disease	not
explained	by	treatment,	which	is	 the	prognosis	of	 the	disease	in	 the	absence	of
treatment.	Many	factors	can	cause	changes	in	the	presence	or	manifestations	of
disease,	and	many	mechanisms	that	lead	to	changes	in	an	individual’s	course	of
disease	 are	 not	 understood.	 Still,	 the	 force	 of	 natural	 history	 can	 be	 very
powerful.	 In	 a	 study	 of	 over	 a	 1,000	 women	 in	 Sweden	 with	 symptoms
suggestive	 of	 urinary	 tract	 infection,	 confirmed	 with	 urine	 cultures,	 the
spontaneous	cure	rate	of	symptoms	was	28%	after	the	first	week,	and	37%	had
neither	symptoms	nor	bacteria	after	5–7	weeks	[Ferry	et	al.,	2004].	Spontaneous
remission	 or	 cure	 of	 symptoms	 or	 conditions	may	 occur	 in	many	 diseases.	 In
research	aimed	at	quantifying	treatment	effects,	there	is	no	exception	to	the	rule
that	the	effect	of	treatment	needs	to	be	separated	from	the	natural	course	of	the
disease.
An	 important	 component	 of	 natural	 history	 is	 created	 by	 regression	 toward

the	 mean.	 Regression	 toward	 the	 mean	 occurs	 for	 any	 measure	 of	 disease
(severity)	 or	 other	 patient	 variable	 and	 can	 be	 explained	 by	 a	 combination	 of
intra-individual	 variability	 and	 selection.	The	way	 regression	 toward	 the	mean
works	is	simple.	If	patients	are	selected	according	to	their	relatively	high	or	low
values	of	a	characteristic	that	shows	intra-individual	variability,	the	value	of	that



variable	on	re-measurement	will	be	lower	or	higher,	respectively.	The	cause	of
the	intra-individual	variability	is	irrelevant.	It	can	be	a	reflection	of	variation	in
the	 measurement,	 circadian	 patterns,	 or	 some	 other	 unknown,	 biologic
mechanism.	The	magnitude	of	the	effect	depends	on	the	magnitude	of	variability
and	the	level	of	selection.
This	can	be	illustrated	by	the	classification	of	individuals	as	hypertensive	and

the	 subsequent	 re-measurement	 of	 blood	 pressure	 in	 the	 selected	 group	 (see
Figure	 5–2).	 Suppose	 that	 all	 individuals	 are	 selected	 with	 an	 initial	 systolic
blood	pressure	at	or	above	140	mm	Hg.	Because	blood	pressure	shows	a	certain
degree	of	 variability	 in	 all	 subjects,	 some	of	 these	 individuals	will	 have	blood
pressure	levels	above	their	average	level	at	the	time	of	the	measurement.	These
individuals	are	more	likely	to	have	lower	than	higher	blood	pressure	levels	at	a
subsequent	 measurement.	 Individuals	 who	 had	 a	 blood	 pressure	 below	 their
usual	 average	 level	 and	 below	 the	 cut-off	 point	 at	 the	 time	 of	 the	 first
measurement	were	classified	 too	 low	relative	 to	 their	usual	blood	pressure	and
they	 will	 not	 be	 re-measured,	 while	 those	 individuals	 in	 whom	 the	 observed
value	 was	 too	 high	 relative	 to	 their	 usual	 blood	 pressure	 level	 will	 be	 re-
measured	 along	with	 all	 those	whose	measured	blood	pressure	 above	140	mm
Hg	 adequately	 reflected	 their	 usual	 pressure.	 Because	 the	 selected	 population
subgroup	 includes	 more	 subjects	 whose	 blood	 pressure	 will	 be	 lower	 on	 re-
measurement	than	subjects	whose	blood	pressure	will	be	higher	at	the	time	of	re-
measurement,	 the	 average	 blood	 pressure	 of	 the	 selected	 population	 will	 fall.
Regression	toward	the	mean	is	the	inevitable	consequence	of	selection	based	on
a	 variable	 that	 shows	 variation.	 Virtually	 all	 variables	 that	 are	 measured	 in
clinical	 research	 show	 some	 degree	 of	 intra-individual	 variability.	 Also,
variables	 that	 appear	 stone	 solid,	 such	 as	 height	 or	 bone	 density,	 show	 some
variability	when	measured	 in	 groups,	 if	 only	 because	measurement	 errors	 can
never	be	completely	excluded	and	these	will	lead	to	some	degree	of	variability.
Clearly,	 the	 issue	 is	more	 prominent	 for	measures	 that	 are	 inherently	 variable
such	 as	 blood	 pressure,	 temperature,	 or	 measures	 of	 pain.	 The	 first	 report	 of
regression	 toward	 the	mean	 dates	 back	 to	 the	work	 of	 Francis	Galton	 [1886],
who	authored	the	paper	entitled,	“Regression	Towards	Mediocrity	in	Hereditary
Stature.”	 Galton	 related	 the	 heights	 of	 children	 to	 the	 average	 height	 of	 their
parents,	which	he	called	the	mid-parent	height	(see	Figure	5–3).



FIGURE	5–2	Mechanism	of	regression	to	the	mean.

Children	 and	 parents	 had	 the	 same	mean	 height	 of	 68.2	 inches.	 The	 ranges
differed,	 however,	 because	 the	 mid-parent	 height	 was	 an	 average	 of	 two
observations	and	 thus	had	a	smaller	 range.	Now,	consider	 those	parents	with	a
relatively	high	mid-height	between	70	and	71	inches.	The	mean	height	of	 their
children	was	 69.5	 inches,	which	was	 closer	 to	 the	mean	 height	 of	 all	 children
than	 the	 mean	 height	 of	 their	 parents	 was	 to	 the	 mean	 height	 of	 all	 parents.
Galton	 called	 this	 phenomenon	 regression	 toward	 mediocrity.	 The	 term	 was
coined	with	 this	 report,	 but	 the	 observation	 is	 different	 from	what	 is	 currently
considered	 regression	 toward	 the	 mean	 because	 this	 concerned	 the	 full
population	without	selection.	The	principle,	however,	is	the	same.
Regression	toward	the	mean	is	not	an	exclusive	phenomenon	in	epidemiologic

research.	 Consider,	 for	 example,	 students	 who	 take	 a	 clinical	 epidemiology
exam.	Students	who	 receive	an	unexpected,	extremely	 low	score	will	probably
get	 a	 better	 score	 when	 they	 repeat	 the	 exam,	 even	when	 they	 put	 no	 further
effort	into	understanding	the	topic.	It	is	likely	that	some	bad	luck	was	involved
in	 getting	 the	 exceptional	 score,	 and	 this	 bad	 luck	 is	 unlikely	 to	 occur	 for	 a
second	time	in	a	row,	given	the	usual	higher	score	in	this	student.	It	is	a	common
mistake	in	everyday	life	to	assign	a	causal	role	to	something	apparently	related
to	the	observed	effect	that	in	reality	is	likely	due	to	regression	toward	the	mean.
Take,	 for	 example,	 the	 case	 of	 the	 poor	 badminton	 champion	 from	 Kuala
Lumpur	 (see	 Box	 5–1).	 Some	 of	 this	 champion’s	 predecessors	 very	 likely



achieved	greater	than	their	usual	level	of	performances	because	of	a	lucky	play
of	chance,	and	their	subsequent	downfall	was	attributed	to	the	“spoiling”	by	gifts
of	appreciation.

FIGURE	5–3	Comparison	of	the	heights	of	children	to	their	parents	made	by	Francis	Galton	(1822–1911).
Diagonal	line	shows	the	average	height.
Reproduced	from	Bland	JM,	Altman	DG.	Statistic	notes:	regression	towards	the	mean.	BMJ	1994:308:1499
with	permission	from	BMJ	Publishing	Group	Ltd.

In	 medicine,	 regression	 toward	 the	 mean	 is	 also	 known	 as	 “the	 doctors’
friend.”	 General	 practitioners	 (GPs)	 use	 time	 as	 one	 of	 their	 main	 tools	 in
differentiating	between	serious	and	less	serious	problems.	Worried	mothers	call
their	GP	when	 they	measure	 a	 high	 temperature	 in	 their	 sick	 child.	When	 the
doctor	 arrives	 or	 the	 parents	 and	 child	 arrive	 at	 the	 emergency	 room,	 the
temperature	often	has	fallen.	People	tend	to	self-select	themselves	at	peak	levels
of	symptoms,	such	as	temperature,	cough,	depressive	symptoms,	and	pain.	Many
will	 show	 “spontaneous”	 decline	 because	 of	 regression	 toward	 the	 mean	 and
natural	history.	The	solution	in	practice	is	to	wait	and	re-measure.	Similarly,	in
research	the	approach	to	removing	regression	toward	the	mean	is	to	re-measure
and	 select	 only	 those	who	 show	 stable	 levels	 of,	 for	 example,	 elevated	 blood
pressure	before	entering	into	a	study.

BOX	5–1	Depression	Toward	the	Mean	in	Badminton

KUALA	LUMPUR:	Prime	Minister	Datuk	Seri	Dr.	Mahathir	Mohamad	congratulated	Malaysian
shuttler	Mohd	Hafiz	Hashim	for	his	achievement	but	warned	that	he	should	not	be	“spoilt”	with	gifts



shuttler	Mohd	Hafiz	Hashim	for	his	achievement	but	warned	that	he	should	not	be	“spoilt”	with	gifts
like	previous	champions.

Dr.	Mahathir	said	people	should	remember	what	had	happened	to	previous	champions	when	they	were
spoilt	with	gifts	of	land,	money	and	other	items.

“I	hope	the	states	will	not	start	giving	acres	of	land	and	money	in	the	millions,	because	they	all	seem
not	to	be	able	to	play	badminton	after	that,”	he	said	after	taking	part	in	the	last	dry	run	and	dress
rehearsal	for	the	13th	NAM	Summit	at	the	PWTC	yesterday.

Modified	from	“Mahathir	asks	states	not	to	‘spoil’	Hafiz,”	The	Star	Online,	2/18/2003.

Regression	toward	the	mean	is	but	one	component	of	natural	history	and	it	is
an	 entirely	 statistical	 phenomenon.	 There	 are	 many	 other	 factors	 that	 may
influence	 natural	 history	 that	 are	 linked	 to	 the	 outcome	 by	 some
pathophysiologic	 mechanism.	When	 this	 is	 known,	 we	 may	 try	 to	 adjust	 our
observation	 based	 on	 this	 knowledge.	 Typically,	 however,	 determinants	 of
natural	history	are	unknown	and	cannot	simply	be	subtracted	from	the	observed
effect.

Extraneous	Effects
A	 second	 reason	 why	 the	 physician	 observed	 a	 response	 following	 drug
treatment	 (but	 one	 that	 is	 not	 a	 result	 of	 drug	 treatment)	 may	 be	 that	 other
determinants	 of	 blood	 pressure	 changed	 concomitantly.	The	 patients	were	 told
that	 they	 had	 high	 blood	 pressure	 and	 that	 this	 is	 a	 risk	 factor	 for	 stroke	 and
myocardial	 infarction	 that	 should	 be	 treated.	 This	 information	 could	 motivate
patients	to	try	to	adjust	their	lifestyle.	They	may	have	improved	their	diet,	started
exercising,	or	reduced	alcohol	intake.	All	of	these	actions	also	may	have	reduced
the	blood	pressure.	These	effects	are	called	extraneous	because	they	are	outside
of	 the	effect	of	 interest,	namely	 the	drug	effect.	 In	a	study,	we	may	attempt	 to
measure	 extraneous	 effects	 and	 take	 these	 into	 account	 in	 the	 observation,	 but
this	requires	that	the	effects	be	known	and	measurable.
There	 is	 one	 particularly	 well-known	 extraneous	 effect	 that	 is	 so	 closely

linked	 to	 the	 intervention	 that	 it	 generally	 cannot	 be	 directly	 measured	 or
separated	 from	 the	 drug	 effect:	 the	 placebo	 effect.	 Placebo	 effects	 can	 result
simply	from	contact	with	physicians	when	a	diagnosis	or	simple	attention	from	a
respected	 professional	 alleviates	 anxiety.	 As	Hróbjartsson	 [1996]	 put	 it,	 “Any
therapeutic	meeting	between	a	conscious	patient	and	a	doctor	has	the	potential	of
initiating	 a	 placebo	 effect.”	 In	 research,	 obtaining	 informed	 consent	 has	 been



shown	 to	 induce	 a	 placebo	 effect.	 There	 is	 a	 wealth	 of	 literature	 on	 placebo
effects	 and	 considerable	 dispute	 on	 the	 mechanism	 of	 action.	 Clearly,
psychological	 mechanisms	 are	 likely	 to	 play	 a	 role,	 and	 certain	 personality
characteristics	 have	 been	 particularly	 related	 to	 strong	 placebo	 responses
[Swartzman	 &	 Burkell,	 1998].	 In	 addition,	 other,	 seemingly	 pharmacologic
phenomena	are	related	to	placebo	responses.	For	example,	the	placebo	response
to	placebo-induced	analgesia	can	be	reversed	by	naloxone,	an	opioid	antagonist
[Fields	&	Price,	1997].	Obviously,	 the	 type	of	outcome	that	 is	being	studied	 is
related	to	the	presence	and	magnitude	of	a	placebo	response.	Outcomes	that	are
more	subjective,	such	as	anxiety	or	mood,	will	be	more	prone	to	placebo	effects.
Expectation	also	powerfully	influences	how	subjects	respond	to	either	an	inert	or
active	substance.	In	a	study	where	subjects	were	given	sugar	water	but	were	told
that	it	was	an	emetic,	80%	of	patients	responded	by	vomiting	[Hahn,	1997].
Placebo	 effects	 are,	 to	 a	 greater	 or	 lesser	 extent,	 an	 inherent	 component	 of

interventions	and	they	will	obscure	the	measurement	of	the	intervention	effect	of
interest,	such	as	the	pharmacologic	action	of	a	drug.	This	may	or	may	not	be	a
problem	 in	 intervention	 research.	Again,	 from	 the	perspective	of	 the	patient,	 it
does	not	really	matter	whether	the	relief	results	in	part	from	a	placebo	effect	of
the	 drug.	 Cure	 is	 cure.	 Similarly,	 from	 the	 viewpoint	 of	 the	 physician,	 the
placebo	effect	may	be	a	welcome	additional	benefit	of	an	intervention.	Even	for
an	 investigator	 studying	 the	 benefits	 of	 treatment,	 the	 placebo	 effect	 can	 be
accepted	 as	 something	 that	 is	 inseparable	 from	 the	 drug	 effect	 and	 therefore
should	 be	 included	 in	 the	 overall	 estimate	 of	 the	 benefit	 of	 one	 treatment
compared	to	another	(e.g.,	nondrug)	treatment	strategy.	Different	treatments	may
have	different	placebo	effects	 and	 this	will	 also	explain	differences	 in	benefits
when	employed	in	real	life.	In	other	words,	the	need	to	exclude	placebo	effects
in	research	on	benefits	and	risks	of	interventions	is	not	a	given	and	depends	on
the	objectives	of	the	investigator.	Although	many	believe	that	the	best	evidence
for	treatment	effects	comes	from	trials	in	which	a	placebo	effect	has	been	ruled
out	 by	 comparing	 treatment	 to	 placebo	 treatment,	 there	 are	 good	 examples	 of
research	 where	 potential	 placebo	 effects	 were	 included	 in	 the	 measured
treatment	effect	that	provide	a	more	meaningful	result	than	when	placebo	effects
were	removed.	The	motives	and	consequences	of	research	that	does	or	does	not
separate	 the	 pharmacologic	 from	 the	 placebo	 effects	 were	 well	 outlined	 in	 a
classic	 paper	 by	 Schwarz	 and	 Lellouch	 [1967]	 on	 pragmatic	 and	 explanatory
trials.	Their	article	gives	an	example	from	a	real	case	in	which	a	decision	needed
to	be	made	between	different	options	to	determine	the	benefits	of	a	drug	aimed



at	sensitizing	cancer	patients	for	required	radiotherapy.	The	assumption	was	that
when	patients	were	pretreated	with	the	drug,	 the	effect	of	the	radiotherapy	was
enhanced.	 The	 investigators	 decided	 to	 do	 a	 randomized	 comparison	 between
usual	 therapy	and	 the	new	 treatment	 scheme.	For	 the	usual	 therapy	arm	of	 the
study,	there	were	two	options	(see	Figure	5–4,	taken	from	the	original	report	by
Schwarz	and	Lellouch).	One	option	was	to	just	treat	the	patients	as	usual,	which
implied	 the	 immediate	 treatment	with	 radiotherapy.	The	alternative	option	was
to	 first	 give	 a	 placebo	 drug	 and	 then	 start	 radiotherapy.	 In	 the	 second	 option,
placebo	effects	from	the	drug	would	be	removed	from	the	comparison.	However,
radiotherapy	would	be	put	at	a	disadvantage	because	compared	to	the	approach
in	daily	practice	the	installment	of	radiotherapy	would	be	delayed.	In	contrast,	in
the	 first	 option	 the	 new	 approach	 would	 be	 compared	 to	 the	 optimal	 way	 of
delivering	 radiotherapy	without	 the	 sensitizing	 drug,	 but	 placebo	 effects	 could
not	 be	 ruled	 out.	 Given	 that	 the	 new	 drug	 was	 not	 without	 side	 effects,	 a
distinction	between	 the	pharmacologic	 and	placebo	benefits	 seemed	 important.
There	is	no	single	best	solution	to	this	problem.	Probably,	when	little	is	known
about	a	drug,	first	a	comparison	with	placebo	is	necessary	to	determine	the	true
pharmacologic	 action	 devoid	 from	 placebo	 effects.	 Next,	 the	 researcher	 can
establish	 its	value	 in	 real	 life	as	compared	with	 the	best	 standard	 treatment,	 in
this	 case	 immediate	 radiotherapy.	 The	 result	 of	 either	 comparison	 also
determines	the	relevance	of	the	answer.

FIGURE	5–4	Trial	arms	where	placebo	effects	are	removed	(explanatory)	and	where	the	placebo	effect
was	considered	to	be	part	of	the	overall	treatment	(pragmatic).
Reproduced	from	Schwartz	D,	Lellouch	J.	Explanatory	and	pragmatic	attitudes	in	therapeutic	trials.	J	Chron
Dis	1967:20:637–4,	with	permission	from	Elsevier.

Suppose	 that	 in	 the	blinded	comparison	radiotherapy	(without	 the	new	drug)
still	is	shown	to	be	superior.	Now,	a	comparison	with	immediate	radiotherapy	is
not	needed	because,	 if	anything,	 the	effect	would	be	even	more	beneficial	 than



when	combined	with	 the	new	strategy.	 In	 their	 article,	 the	authors	propose	 the
term	explanatory	 for	a	 trial	 in	which	placebo	effects	are	removed	and	the	 term
pragmatic	for	a	study	in	which	placebo	and	other	extraneous	effects	are	taken	as
part	of	the	overall	treatment	response	of	interest.	There	are	many	circumstances
in	which	the	true	effects,	without	placebo	effects,	of	a	drug	are	well	established
and	where	a	pragmatic	trial	will	deliver	a	result	that	better	reflects	the	anticipated
effect	 in	 real	 life	 than	an	explanatory	 trial.	 In	some	cases,	 the	apparent	“main”
intervention	is	not	even	the	most	important	part	of	the	strategy.	For	example,	in	a
pragmatic	randomized	trial	comparing	the	effect	of	minimally	invasive	coronary
bypass	surgery	to	conventional	bypass	grafting	on	postsurgery	cognitive	decline,
the	 assumption	was	 that	 the	 necessary	 use	 of	 a	 cardiopulmonary	 pump	 during
conventional	surgery	was	the	most	important	component	of	the	intervention	with
regard	to	adverse	effects	on	cognitive	function	[Van	Dijk	et	al.,	2002].
Unfortunately,	 the	 term	 pragmatic	 sounds	 somewhat	 less	 scientific	 and

rigorous,	 and	 some	 investigators	 are	 hesitant	 to	 refrain	 from	 rigorous	 placebo
control	in	their	research.	In	doing	so,	they	may	eventually	produce	results	that	do
not	 adequately	 address	 the	 question	 that	 medical	 practitioners	 need	 to	 have
answered.	 It	 is	 important	 to	 understand	 that	 removal	 of	 placebo	 and	 other
extraneous	effects	is	a	deliberate	decision	that	an	investigator	needs	to	make	in
the	 design	 of	 a	 study;	 in	 some	 cases	 pragmatic	 studies	 may	 be	 the	 preferred
option.	 There	 is	 ample	 confusion	 about	 the	 nature	 of	 pragmatic	 intervention
research.	For	example,	some	authors	propose	that	explanatory	studies	“recruit	as
homogeneous	 a	 population	 as	 possible	 and	 aim	 primarily	 to	 further	 scientific
knowledge”	 or	 that	 “in	 a	 pragmatic	 trial	 it	 is	 neither	 necessary	 nor	 always
desirable	 for	all	 subjects	 to	complete	 the	 trial	 in	 the	group	 to	which	 they	were
allocated”	 [Roland	 &	 Torgerson,	 1998].	 These	 views	 are	 erroneous.	 The
homogeneity	of	the	study	population	may	affect	the	generalizability	and	relates
to	 the	 domain	 of	 a	 study	 irrespective	 of	 whether	 a	 trial	 is	 pragmatic	 or
explanatory.	 In	 both	 explanatory	 and	 pragmatic	 trials,	 patients	 sometimes
complete	 the	 study	 in	 the	 group	 to	 which	 they	 were	 not	 randomized;	 for
example,	they	may	need	the	treatment	originally	allocated	to	the	other	group	and
thus	“cross-over”	from	one	treatment	arm	to	the	other.	This	is	common	and	not	a
problem	 as	 long	 as	 the	 patients	 are	 analyzed	 according	 to	 allocated	 treatment,
that	 is,	by	 intention	to	 treat.	“Pragmatic”	and	“explanatory”	do	not	refer	 to	 the
methodologic	 rigor	 or	 the	 scientific	 value	 of	 the	 knowledge	 that	 is	 generated.
The	distinction	between	pragmatic	 and	 explanatory	 trials	 reflects	 the	nature	of
the	comparison	that	is	being	made.	In	pragmatic	studies,	the	treatment	response



is	 the	 total	 difference	 between	 two	 treatments	 (i.e.,	 treatment	 strategies),
including	treatment	and	associated	placebo	or	other	extraneous	effects,	and	this
will	often	better	reflect	the	likely	response	in	practice.

Observation	Effects
The	 third,	 and	 last,	 reason	 for	 an	 observed	 response	 to	 treatment	 that	 is	 not
attributable	to	the	treatment	lies	in	the	influence	of	the	observer/researcher	or	the
observed	(participant)	on	the	measurement	of	the	outcome	(see	Figure	5–5).
Without	deliberate	 intention,	 the	observer	may	 favorably	 interpret	 the	 report

of	a	patient	or	adjust	(round	up	or	down)	measurement	results	 to	better	values.
The	observation	effect	is	that	which	an	observer	or	the	observed	participant	has
on	 the	 particular	 observations	made.	Observer	 bias	 is	 a	 systematic	 effect	 that
moves	 the	 observed	 effect	 from	 the	 true	 effect.	 Observation	 effects	 may	well
reflect	an	interaction	between	observer	and	patient.	For	example,	a	physician	has
just	received	a	sample	of	a	new	drug	that	is	reputed	to	work	exceptionally	well
in	cases	of	chronic	sleeping	problems.	When	Mrs.	Jones	visits	his	surgery	again
with	 a	 long-lasting	 complaint	 of	 sleeping	 problems	 so	 far	 resistant	 to	 any
medication,	 the	doctor	proposes	 this	new	miracle	drug,	which	may	offer	a	 last
resort.	At	the	next	visit,	Mrs.	Jones	may	be	inclined	not	to	disappoint	her	doctor
again	and	gives	a	somewhat	positively	colored	account	of	her	sleeping	history	in
the	last	couple	of	weeks.	At	 the	same	time,	 the	physician	is	reluctant	 to	accept
yet	 another	 failure	 of	 treatment	 in	 this	 patient.	 Together	 they	 create	 a	 biased
observation	of	an	otherwise	unchanged	problem.	Just	as	with	placebo	effects,	the
magnitude	 of	 the	 potential	 for	 observation	 effects	 will	 depend	 on	 the	 type	 of
observation	 that	 is	 being	made.	 The	 “softer”	 the	 outcome,	 the	more	 room	 for
observation	effects.	In	a	study	on	the	benefits	of	a	drug	in	patients	with	ischemic
cardiac	disease,	measures	of	quality	of	life	and	angina	will	be	more	susceptible
to	observer	bias	than	vital	status	or	myocardial	infarction,	although	the	latter	is
also	 sufficiently	 subjective	 to	 be	 affected.	 For	 example,	 disagreement	 in	 the
determination	 of	 electrocardiographic	 ST-segment	 elevation	 by	 emergency
physicians	 occurs	 frequently	 and	 is	 related	 to	 the	 amount	 of	 ST-segment
elevation	present	on	the	electrocardiogram.



FIGURE	5–5	Observer-observee	difference	in	perceived	response	to	treatment.

TREATMENT	EFFECT
Despite	 all	 of	 the	 reasons	 why	 an	 observed	 treatment	 response	 need	 not
necessarily	 show	 the	 benefit	 of	 the	 treatment	 per	 se,	 obviously	 there	 is	 the
possibility	 that	 the	effect	being	observed	 is	 entirely	or	 in	part	 the	 result	of	 the
treatment.	In	intervention	research,	the	mission	is	to	extract	from	the	observation
the	 component	 in	 which	 we	 are	 interested.	 This	 can	 only	 be	 achieved	 by
comparing	a	group	of	patients	who	are	being	treated	to	a	group	of	patients	who
are	not	treated	or	who	are	treated	differently.	There	is	no	way	in	which	a	valid
estimate	 of	 the	 effect	 of	 a	 drug	 or	 other	 treatment	 can	 be	 obtained	 from
observing	 treated	patients	only.	Consequently,	 in	 the	 example	of	 the	physician
trying	out	a	new	antihypertensive	drug,	there	is	no	way	that	the	true	effect	of	the
new	drug	can	be	determined	from	the	overall	observation.	A	comparative	study
is	 needed.	 The	 treatment	 effect	 and	 the	 three	 alternative	 explanations	 for	 the
observed	treatment	response	(natural	history,	extraneous	effects,	and	observation
effects),	as	well	as	the	handling	of	the	latter	three	in	research,	can	be	illustrated



by	a	simple	equation.	In	a	comparative	study	where	a	treatment,	for	example	a
drug	named	“Rx,”	is	compared	to	no	treatment	at	all,	the	responses	in	the	index
(i.e.,	treated)	group	can	be	summarized	as	follows	[Lubsen	&	de	Lang,	1987]:

OEi	=	Rx	+	NHi	+	EFi	+	OBi

where	OEi	 is	 the	observed	effect	 in	 the	 index	group,	Rx	 is	 the	 treatment	effect,
NHi	 is	 the	 effect	 of	 natural	 history,	 EFi	 is	 the	 effect	 of	 extraneous	 factors
including	placebo	effects,	and	OBi	is	the	observation	effect	in	the	index	group.
The	 corresponding	 equation	 in	 the	 reference	 (r)	 group	 not	 receiving	 the

intervention	is:

OEr	=	NHr	+	EFr	+	OBr

The	difference	between	the	effects	observed	in	the	two	comparison	groups	can
be	written	as:

OEi	–	OEr	=	Rx	+	(NHi	–	NHr)	+	(EFi	–	EFr)	+	(OBi	–	OBr)

If	 the	 interest	 is	 in	 the	 treatment	 effect	 per	 se,	 in	 this	 example	 the	 single
pharmacologic	effect	of	 the	drug,	Rx,	OEi	–	OEr	needs	 to	equal	Rx.	To	achieve
this,	the	other	terms	need	to	cancel	out.	Consequently,	NHi	needs	to	equal	NHr,
EFi	 needs	 to	 equal	 EFr,	 and	 OBi	 needs	 to	 equal	 OBr.	 The	 equation	 for	 a
comparison	 between	 two	 treatments	 (an	 index	 treatment	 Rxi	 and	 reference
treatment	Rxr)	is	the	same	except	that	after	cancelling	out	the	other	terms,	OEi	–
OEr	now	equals	Rxi	–	Rxr,	that	is,	the	net	benefit	of	the	index	treatment	over	the
other.
The	principles	of	 intervention	 research	can	be	 summarized	as	ways	 to	make

all	 terms	 in	 the	 equation	 in	 the	 two	groups	 the	 same,	 except	 for	 the	 treatment
term.	This	means	that	natural	history,	extraneous	effects,	and	observation	effects
are	made	the	same	in	the	groups	that	are	compared.	Note	that	an	alternative	way
to	achieve	comparability	of	natural	history,	extraneous	effects,	and	observation
effects	 is	 by	 removing	 them	 completely	 from	 the	 study.	 However,	 this	 is
generally	impossible	to	achieve.	Rather,	by	accepting	these	effects	and	ensuring
that	 they	are	cancelled	out	 in	 the	observation,	a	valid	estimate	of	 the	 treatment
effect	is	obtained.



COMPARABILITY	OF	NATURAL	HISTORY
Comparability	 of	 natural	 history	 is	 a	 conditio	 sine	 qua	 non	 (Latin	 legal	 term
meaning	 “without	 which	 it	 could	 not	 be”)	 in	 intervention	 research.	 Because
natural	 history	 may	 be	 highly	 variable	 between	 individuals,	 an	 intervention
effect	estimated	from	research	 that	 includes	effects	 from	natural	history	cannot
be	generalized	to	what	can	be	expected	in	practice.	Consequently,	it	is	of	critical
importance	 that	 in	 a	 comparison	 between	 two	 or	more	 groups	 to	 estimate	 the
effect	of	an	intervention,	the	effects	of	natural	history	are	the	same	in	all	groups.
There	 are	 several	 ways	 in	 which	 this	 can	 be	 achieved.	 First,	 a	 quasi-

experimental	 study	 can	 be	 conducted	where	 the	 participants	 in	 the	 groups	 are
carefully	selected	in	such	a	way	that	each	group	represents	the	same	distribution
of	 natural	 histories.	 For	 example,	 in	 a	 comparison	of	 two	 anticancer	 drugs	 for
treatment	of	leukemia,	patients	in	the	two	groups	can	be	deliberately	selected	so
that	they	have	a	similar	age,	proportion	of	males,	severity	of	the	disease,	and	so
on.	One	could	 even	go	as	 far	 as	 to	 closely	match	each	 individual	 in	 the	 index
group	 to	 an	 individual	 from	 the	 reference	 group	 according	 to	 characteristics
expected	to	be	related	to	prognostic	characteristics	expected	to	determine	natural
history.	This	would	improve	the	probability	that,	in	the	absence	of	treatment,	the
two	 groups	 would	 show	 the	 same	 natural	 history	 and,	 therefore,	 an	 observed
difference	in	response	would	not	reflect	a	difference	in	natural	history.	A	related
approach	 would	 be	 to	 restrict	 the	 entire	 study	 population	 to	 a	 highly
homogeneous	group	of	patients	who,	because	of	their	similarity,	are	expected	to
all	have	a	highly	similar	prognosis	(natural	history).	Alternatively,	there	could	be
no	 preselection	 made	 and	 patients	 could	 receive	 treatment	 as	 deemed	 by	 the
physician,	 but	 prognostic	 indicators	 would	 be	 recorded	 in	 detail.	 Clearly,
initiation	 of	 a	 specific	 intervention	 in	 daily	 practice	 is	 everything	 but	 random
because	physicians	 tend	 to	 treat	 those	patients	with	a	 relatively	poor	prognosis
more	 often.	 Therefore,	 in	 the	 statistical	 analysis	 of	 the	 data	 from	 the	 study,
multivariate	adjustments	should	be	made	to	remove	the	effect	of	differences	 in
natural	history	from	the	comparison.
A	 necessary	 requirement	 for	 either	 of	 these	 approaches	 to	 ensure

comparability	of	natural	history	is	that	all	relevant	prognostic	factors	that	could
be	 different	 between	 the	 groups	 are	 known	 and	 can	 be	 measured	 validly.	 In
addition,	 the	 source	 population	 of	 patients	 should	 be	 large	 enough	 to	 make
preselection	and	matching	possible.	Similarly,	for	multivariate	analysis,	the	size
of	 the	 study	 population	 should	 be	 large	 enough	 to	 allow	 for	 statistical



adjustments.	 The	 overriding	 problem,	 however,	 is	 that	 comprehensive
knowledge	of	all	relevant	prognostic	factors	is	typically	lacking.	A	variable	that
is	 not	 known	 or	measured	 cannot	 be	 taken	 into	 account	 in	 preselecting	 study
groups,	nor	can	it	be	controlled	for	in	the	analysis.	This	holds	true	for	any	causal
research	where	the	effect	of	an	exposure	needs	to	be	separated	from	other	related
but	 confounding	 determinants	 of	 the	 outcome.	 However,	 the	 problem	 in
intervention	research	is	accentuated	because	of	the	complexity	of	the	decision	to
treat	 patients.	 In	 setting	 an	 indication	 for	 prescribing	 a	 drug	 to	 a	 patient,	 the
treating	physician	will	take	many	factors	into	consideration	such	as	the	severity
of	the	disease,	the	likelihood	of	good	tolerance	and	compliance,	the	experience
in	 this	 patient	with	 previous	 treatments,	 the	 patient’s	 preference,	 and	 so	 forth.
When	 groups	 of	 patients	 with	 the	 same	 disease	 but	 with	 and	 without	 a
prescription	 for	 treatment	 by	 a	 physician	 are	 compared,	 they	 are	 probably
different	 in	many	ways,	some	of	which	can	be	measured	while	others	are	very
implicit	 and	 neither	 reflected	 in	 the	 patient	 file	 nor	 measurable	 through
additional	efforts.	The	indication	for	treatment	(i.e.,	the	composite	of	all	reasons
to	initiate	it)	is	a	very	strong	prognostic	indicator.	If	a	patient	is	judged	to	have
an	 indication	 to	 use	 a	 drug,	 this	 patient	 probably	 has	 a	more	 severe	 untreated
prognosis	than	a	patient	with	the	same	diagnosis	in	which	the	physician	decides
to	wait	before	deciding	on	drug	 treatment.	The	effect	on	natural	history	of	 the
presence	or	absence	of	a	pertinent	 indication	 in	patients	with	 the	 same	disease
who	 are	 or	 are	 not	 treated	 is	 termed	 confounding	 by	 indication	 [Grobbee	 &
Hoes,	1997].

FIGURE	5–6	Reasons	underlying	the	decision	to	intitiate	treatment	are	important	potential	confounders.

Figure	 5–6	 shows	 that	 the	 reasons	 underlying	 the	 decision	 to	 initiate
treatment	 are	 important	 potential	 confounders.	 These	 reasons,	 often	 related	 to
patient	 characteristics	 such	 as	 severity	 of	 disease,	 by	 definition	 are	 associated
with	the	probability	of	receiving	the	intervention	(illustrated	by	the	exclamation
mark).	 If	 these	 reasons	 are	 also	 related	 to	 the	 probability	 of	 developing	 the
outcome,	which	 is	 the	 case	where	 patients	with	more	 severe	 disease	 are	more
prone	 (or	 less	 prone	 for	 that	matter)	 to	 receive	 the	 intervention,	 then	 the	 right



arrow	also	exists.	Consequently,	confounding	will	occur.
Although	 many	 drugs	 can	 affect	 the	 course	 of	 a	 disease	 positively,	 the

outcome	 in	 people	with	 that	 disease	 compared	 to	 those	who	 do	 not	 have	 it	 or
who	have	a	less	severe	form	may	be	worse	or,	at	best,	similar.	Confounding	by
indication	 can	 completely	 obscure	 an	 intervention	 effect	 when	 treated	 and
untreated	 patients	 are	 compared	 who	 do	 or	 do	 not	 receive	 the	 intervention	 in
routine	 care.	 To	 illustrate	 this	 effect,	 Table	 5–1	 shows	 the	 risks	 for
cardiovascular	 mortality	 in	 women	 with	 hypertension	 who	 participated	 in	 a
population-based	 cohort	 study	 and	 were	 either	 treated	 or	 not	 treated	 by	 their
physicians.
The	crude	rate	ratio	for	mortality	was	1,	suggesting	that	the	treatment	had	no

effect	 because	 the	 treated	 and	 untreated	 hypertensive	 groups	 had	 the	 same
cardiovascular	 mortality	 risk.	 However,	 when	 adjustments	 were	 made	 for	 a
number	 of	 factors	 that	 were	 expected	 to	 be	 related	 to	 both	 the	 indication	 for
treatment	and	cardiovascular	mortality,	and	thus	possibly	were	confounding	the
comparison,	the	rate	ratio	dropped	in	a	way	that	was	compatible	with	the	rate	for
a	benefit	of	treatment.
Whether	 the	 adjusted	 rate	 ratio	 reflects	 the	 true	 treatment	 effect	 depends	on

whether	 an	 adjustment	 was	 made	 for	 all	 of	 the	 differences	 in	 confounding
variables	 between	 the	 treated	 and	 untreated	 groups.	 This	 conclusion	 is	 very
difficult	 to	draw.	Confounding	by	indication	commonly	creates	insurmountable
problems	 for	 nonrandomized	 research	 on	 intended	 effects	 of	 treatment.	 Valid
inferences	 can	 much	more	 likely	 be	 drawn	 under	 those	 rare	 circumstances	 in
which	 (1)	groups	of	patients	with	 the	same	 indications	but	different	 treatments
can	 be	 compared	 and	 (2)	 residual	 dissimilarities	 in	 characteristics	 in	 patients
receiving	 different	 treatments	 for	 the	 same	 indications	 are	 known,	 adequately
measured,	 and	can	be	adjusted	 for.	For	 example,	Psaty	et	 al.	 [1995]	 compared
the	 effects	 of	 several	 antihypertensive	 drugs	 on	 the	 risk	 of	 angina	 and
myocardial	 infarction.	 In	 a	 case-control	 study,	 they	 selected	 patients	 who	 all
shared	 the	 indication	 for	 drug	 treatment	 for	 hypertension.	 Consequently,	 both
cases	and	controls	had	this	indication.	In	addition,	they	took	ample	measures	to
exclude	 residual	 confounding	 by	 indication,	 notably	 in	 the	 design	 of	 data
analysis.

TABLE	5–1	Crude	and	Adjusted	Rate	Ratios	for	Death	from	Cardiovascular	Causes	in	Untreated	and	Drug
Treated	Women	that	Were	All	Hypertensive	According	to	Common	Criteria

	 Rate	Ratio	(95%	Confi	dence	Interval)

Crude	value 1.0	(0.6	to	1.5)



Crude	value 1.0	(0.6	to	1.5)

Adjusted	for: 	

Age 0.7	(0.4	to	1.1)

+	Body	mass	index,	pulse	rate 0.6	(0.4	to	1.0)

+	Smoking,	lipid	concentrations 0.6	(0.4	to	0.9)

+	Diabetes 0.5	(0.3	to	0.9)

Apart	from	the	reasons	to	start	an	intervention	(i.e.,	the	indication),	reasons	to
refrain	from	initiating	the	intervention	may	act	as	confounding	variables.	This	is
sometimes	 referred	 to	 as	 confounding	 by	 contraindication.	 Just	 as	 with
confounding	 by	 indication	 (see	 Figure	 5–6),	 these	 reasons	 (e.g.,	 patient
characteristics	 known	 to	 increase	 the	 risk	 of	 developing	 unintended	 or	 side
effects	of	 the	 intervention)	will	 be	 associated	with	 the	probability	of	 receiving
the	intervention,	albeit	here	the	association	represented	by	the	left	arrow	will	be
inverse.	If	these	reasons	not	to	start	the	intervention	are	also	associated	with	the
probability	of	developing	 the	outcome	of	 interest,	 (i.e.,	 the	 right	 arrow	exists),
then	confounding	is	very	likely	to	occur.	Such	confounding	by	contraindication
is	 illustrated	in	a	study	on	the	putative	association	between	the	use	of	 the	drug
ibopamine	 and	 mortality,	 after	 its	 use	 was	 restricted	 in	 1995	 [Feenstra	 et	 al.,
2001].	 In	 a	 comparison	 between	 patients	 using	 the	 drug	 before	 and	 after
September	 8,	 1995,	 the	 relative	 risk	 for	 death	 associated	 with	 the	 use	 of
ibopamine	 was	 3.02	 (95%	 confidence	 interval	 [CI],	 2.12–4.30)	 for	 the	 period
before	 and	 0.71	 (CI,	 0.53–0.96)	 for	 the	 period	 after	 September	 2008.	 The
marked	 inversion	 of	 the	 relative	 risk	 estimate	 is	 very	 likely	 the	 result	 of	 a
changed	 practice	 in	 the	 use	 of	 (relative)	 contraindications	 in	 these	 patients.
Apparently,	 ibopamide	 was	 preferentially	 prescribed	 to	 patients	 with	 a	 much
lower	mortality	risk	after	1995	than	 in	 the	preceding	period.	Consequently,	 the
observed	mortality	risk	in	users	of	ibopamide	was	reduced.	We	will	only	use	the
term	confounding	by	 indication	(where	 indication	 is	 then	defined	as	 reasons	 to
initiate	or	refrain	from	a	certain	intervention)	to	indicate	circumstances	when	the
reasons	to	start	or	not	to	initiate	the	intervention	are	also	related	to	the	beneficial
or	unfavorable	outcome	of	interest,	and,	thus,	confounding	may	occur.

RANDOMIZATION
The	most	effective	way	to	resolve	the	problem	of	confounding	by	indication	and



other	confounding	effects	of	differences	in	natural	history	in	a	comparative	study
is	 by	 randomization	 (Figure	 5–7).	Randomization	 means	 that	 the	 treatment	 is
allocated	at	random	to	individual	participants	in	a	study.	Indication	for	drug	use
is	 thus	 set	 randomly.	 Any	 resulting	 difference	 in	 prognosis	 in	 the	 absence	 of
treatment	between	 randomized	groups	 is	 the	 sole	 result	of	 random	 imbalances.
The	risk	of	remaining	prognostic	differences	is	thus	inversely	related	to	the	size
of	the	population	that	is	randomized.
Figure	 5–7	 shows	 the	major	 strength	 of	 random	 allocation	 of	 patients	 to	 an

intervention.	 Because	 of	 randomization,	 the	 distribution	 of	 all	 known	 and
unknown	reasons	to	start	or	not	to	start	an	intervention	that	would	apply	in	daily
practice	 (and	 that	may	 be	 related	 to	 the	 occurrence	 of	 the	 outcome)	 are	made
similar	in	the	two	comparison	groups.	Consequently,	there	will	be	no	association
between	 (contra)indications	 and	 the	 probability	 of	 receiving	 the	 intervention:
The	 left	 arrow	 does	 not	 exist	 and	 there	 will	 be	 no	 confounding.	 Obviously,
patients	 with	 an	 unequivocal	 indication	 or	 clear	 contraindication	 cannot	 be
randomized	 and	 would	 in	 any	 event	 not	 reflect	 the	 domain	 of	 a	 study	 to
determine	the	effects	of	an	intervention.

FIGURE	5–7	Major	strength	of	a	random	allocation	of	patients	to	an	intervention.

Typically,	randomizing	groups	of	50	or	more	subjects	to	two	treatment	arms
effectively	 makes	 the	 groups	 comparable	 in	 prognosis.	 The	 most	 attractive
feature	of	randomization	is	that	it	makes	groups	comparable	for	known	as	well
as	 unknown	 variables	 affecting	 natural	 history.	 The	 first	 account	 on
randomization	 as	 a	 preferred	 allocation	 scheme	 in	 the	 design	 of	 experiments
came	from	Sir	Ronald	A.	Fisher	[1935].	One	of	his	books	describes	how	to	test
the	claim,	using	the	example	of	a	woman	who	said	that	she	could	distinguish	by
the	flavor	of	her	tea	alone	whether	the	milk	or	the	tea	was	placed	in	the	cup	first.
By	randomizing	the	order	in	which	the	tea	was	made,	Fisher	was	able	to	test	if
she	could	actually	distinguish	between	the	teas.	To	test	the	woman,	eight	cups	of
different	teas	were	prepared,	four	with	the	tea	poured	into	the	cup	first,	and	four
with	milk	 added	 first,	 and	 they	were	presented	 in	 random	order.	She	 correctly



identified	the	full	order,	which	led	to	a	P	value	of	0.01	(had	she	made	one	error,
the	P	 value	would	 have	been	0.24).	Note	 that	 this	 example	 also	 illustrates	 the
first	 use	 of	 the	 so-called	 n	 =	 1	 trial,	 which	 is	 a	 randomized	 trial	 in	 a	 single
subject.
The	 problems	 of	 confounding	 by	 natural	 history	 in	 treated	 and	 untreated

patients	 and	 the	 prospects	 of	 randomization	 led	Hill	 and	 co-workers	 [Medical
Research	Council,	1948]	 to	be	among	 the	 first	 to	use	 randomized	allocation	 to
treatment	in	medical	research	in	the	Medical	Research	Council	investigation	into
streptomycin	 treatment	 of	 pulmonary	 tuberculosis	 published	 in	 the	 British
Medical	Journal.	Randomization	 rapidly	became	popular	and	soon	became	 the
standard	 for	 treatment	 allocation	 in	 experimental	 comparisons	 of	 treatment
effects.	A	randomized	study,	better	known	as	a	randomized	trial,	is	a	prospective
and	experimental	study	by	definition.	Allocation	to	 treatment	 is	not	based	on	a
clinical	 indication	 motivated	 by	 care	 for	 the	 patient,	 but	 rather	 on	 a	 random
process	 in	 patients	 that	 all	 share	 the	 indication	 and	 are	 free	 from
contraindications,	with	the	aim	to	learn	about	the	effects	of	the	intervention.
There	are	added	benefits	from	randomization	in	a	comparative	study.	One	is

that	 it	 provides	 the	 basis	 for	 statistical	 testing	 [Fisher,	 1925].	 A	 second
consequence	 of	 randomization	 is	 that	 it	 enables	 blinding	 of	 participants	 and
investigators	 for	 treatment	 status	 because	 the	 result	 from	 the	 allocation	 is
unpredictable.	 But	 by	 far	 the	 most	 important	 reason	 to	 randomize	 is	 that	 it
ensures	comparability	of	natural	history.	 It	 should	be	noted	 that	 randomization
provides	no	guarantee	 that	 important	differences	 in	prognostic	 factors	between
randomized	groups	cannot	occur.	You	may	just	have	bad	luck	as	randomization
is	by	nature	a	random	process.	Or	groups	may	just	be	too	small.	The	likelihood
of	randomly	creating	groups	with	the	same	distribution	of	men	and	women	when
only	 two	 males	 and	 six	 females	 are	 randomized	 is	 clearly	 small.	 Several
techniques	(apart	from	including	more	subjects)	can	prevent	randomly	occurring
differences	 in	 important	 prognostic	 factors	 across	 randomized	 groups.	 For
example,	 first	 separate	 the	 study	 population	 into	 subgroups	 that	 share	 similar
characteristics,	such	as	a	group	of	male	and	female	participants;	next	randomize
within	each	of	the	groups,	and	then	combine	the	individual	patients	again	in	the
eventual	 treatment	 arms.	 Using	 this	 so-called	 stratified	 randomization	 scheme
reduces	 the	 chance	 that	marked	 differences	 in,	 for	 example,	 the	 proportion	 of
males	and	females	occurs	by	chance	during	randomization.
A	consequence	of	 randomization	 is	 that	 statistical	 tests	 can	 theoretically	not

be	used	to	judge	eventual	imbalances	between	groups	after	randomization	[Knol



et	al.,	2012].	In	a	baseline	table	of	a	trial,	when	summarizing	the	relevant	patient
characteristics	 at	 the	 start	 of	 the	 study	 (t	 =	 0),	 judgment	 is	 needed	 to	 decide
whether	differences	between	groups	are	large	enough	to	create	problems	in	the
comparison.	 There,	 P	 values	 to	 “test”	 whether	 observed	 differences	 are
attributable	to	chance	(given	the	“null	hypothesis”	of	no	difference	between	the
groups)	 have	 no	 meaning	 and	 should	 not	 be	 reported.	 This	 is	 because	 any
difference	 by	 definition	 results	 from	 chance,	 as	 long	 as	 the	 randomization	 has
been	 carried	 out	 without	 manipulation.	 If	 major	 differences	 in	 prognostically
relevant	baseline	characteristics	are	present	despite	adequate	randomization,	the
potential	impact	on	the	results	is	often	estimated	by	comparing	the	results	with
and	without	adjustment	for	these	baseline	differences.	The	choice	of	whether	to
adjust	for	baseline	differences	at	t	=	0	is	difficult.	Adjustments	only	can	be	made
for	 observed	 differences	 in	 measured	 baseline	 variables,	 while	 no	 differences
may	 exist	 in	 relevant	 variables	 that	 were	 not	 measured	 at	 baseline.	 Then,	 an
adjustment	could	even	induce	dissimilarities	in	some	prognostic	variables.	Any
adjustment	 for	 baseline	 differences	 has	 an	 arbitrary	 component	 and	 may	 thus
reduce	the	credibility	of	the	results.

COMPARABILITY	OF	EXTRANEOUS	EFFECTS
While	comparability	of	natural	history	 is	mandatory	 in	a	comparative	study	on
treatment	effect,	the	extent	to	which	extraneous	effects	should	be	the	same	in	the
comparison	groups	 is	a	matter	of	choice.	As	discussed,	 in	an	explanatory	 trial,
every	 effort	 should	 be	 made	 to	 exclude	 extraneous	 effects,	 including	 placebo
effects.	 In	 a	nonexperimental	 study,	 this	 is	 difficult	 to	 achieve.	There,	 placebo
effects	only	can	be	conquered	when	 two	or	more	 treatments	are	compared	 that
have	 similar	 placebo	 effects.	 In	 a	 randomized	 trial,	 placebo	 treatment	 and
blinding	 are	 the	 two	 tools	 that	 ensure	 comparability	 of	 extraneous	 effects.
Treatment	 can	 be	 compared	 with	 placebo	 treatment	 without	 disclosure	 of	 the
allocation	 to	 the	patient	on	 the	one	hand	and/or	 the	 investigator	and	healthcare
professionals	involved	on	the	other.	This	makes	the	study	blinded,	either	single-
(patient)	 or	 double-	 (patient	 and	 observer/healthcare	 professional)	 blinded,
depending	 on	 how	 many	 parties	 remain	 ignorant	 about	 the	 allocation.	 In	 an
explanatory	 trial	 blinding	 is	 crucial	 to	 yield	 explanatory	 results,	 while	 in
pragmatic	studies	extraneous	effects	are	accepted	as	being	inherently	part	of	the
intervention	 strategy	 and	 the	 use	 of	 placebo	 and	 blinding	 is	 not	 indicated	 (see



Figure	5–8).

FIGURE	5–8	Tim	O’Dogerty,	M.D.,	supervises	a	placebo	transplantation.

Sometimes	a	choice	can	be	made	between	an	explanatory	and	a	pragmatic	trial
for	the	same	intervention.	This	choice	will	depend	on	the	research	question	and
the	relevance	for	either	type	of	answer	in	view	of	the	aim	of	the	investigator.	For
certain	types	of	interventions,	however,	the	obvious	choice	is	a	pragmatic	study.
This	applies,	for	example,	for	research	in	which	very	different	interventions	are
compared.	When	 the	 question	 is	 addressed	 of	 whether	 the	 preferred	 mode	 of
treatment	 for	patients	with	 coronary	 artery	disease	 is	 by	drugs	or	 surgery,	 two
different	 strategies	 are	 compared.	 The	 investigator	 will	 accept	 that	 surgery
comes	along	with	anesthesia	and	hospitalization	while	drug	treatment	does	not.
Although	it	cannot	be	excluded	that	aspects	of	the	surgical	procedure	beyond	the
mere	 creation	 of	 an	 arterial	 bypass	 may	 have	 an	 effect	 on	 prognosis,	 this	 is
accepted	 as	 an	 inseparable	 component	 of	 the	 strategy.	 Although	 perhaps
conceptually	extraneous,	these	components	should	not	be	considered	as	such	in



the	comparison	of	 the	 two	strategies.	This	 is	very	common	 in	clinical	 research
where	different	strategies	are	compared,	such	as	physiotherapy	versus	watchful
waiting	in	low	back	pain,	psychotherapy	or	drug	treatment	in	anxiety	disorders,
surgery	or	bed	rest	in	hernia,	or	lifestyle	intervention	in	diabetes.

COMPARABILITY	OF	OBSERVATIONS
There	are	a	number	of	ways	 to	prevent	or	 limit	observation	effects.	First,	hard
outcomes	may	be	studied.	When	hard	outcomes	are	used	 that	can	be	measured
objectively,	 such	 as	mortality,	 incomparability	 of	 observations	will	 be	 limited.
Often,	however,	softer	and	more	subjective	outcomes	may	be	more	relevant	for
the	 research.	 Alternatively,	 the	 measurement	 can	 be	 highly	 standardized	 with
strict	protocols,	which	will	limit	the	room	for	subjective	interpretation.	This	will
help	but	is	not	foolproof.
A	 more	 rigorous	 way	 to	 prevent	 observation	 effects	 is	 to	 separate	 the

observation	from	knowledge	of	the	intervention.	By	blinding	the	observer	for	the
assigned	treatment,	the	observation	will	not	be	systematically	different	according
to	 treatment	 status	 even	 if	 the	 measurement	 is	 sensitive	 to	 subjective
interpretation.	To	further	reduce	the	impact	of	the	observer,	the	patient	also	can
be	 blinded	 for	 the	 intervention.	 Another	 way	 to	 separate	 observation	 from
intervention	 knowledge	 is	 to	 have	 an	 observer	 who	 plays	 no	 role	 in	 the
treatment.	For	example,	 in	a	 study	on	 the	effects	of	different	drugs	on	glucose
control	 in	 diabetic	 patients,	 the	 laboratory	 technician	 measuring	 HbA1C	 need
not	 be	 informed	 about	 which	 intervention	 the	 patients	 receive.	 Similarly,	 a
radiologist	can	judge	the	presence	of	vertebral	fractures	in	osteoporotic	women
participating	 in	 a	 trial	 on	 a	 new	 anti-osteoporotic	 treatment	 without	 being
informed	about	 the	mode	of	 treatment	 the	women	 receive.	Note	 that	 even	 in	a
trial	 that	 should	 preferably	 be	 pragmatic,	 one	 may	 still	 decide	 to	 conduct	 a
blinded	 trial	because	of	 the	 type	of	outcome	 involved,	with	 the	aim	 to	achieve
comparability	of	observations.

TRIAL	LIMITATIONS
The	 principles	 of	 RCTs	 can	 be	 fully	 understood	 by	 appreciation	 of	 the



comparability	 requirements.	 Randomization	 ensures	 comparability	 of	 natural
history	 (NHi	 =	 NHr).	 Blinding	 and	 use	 of	 placebo	 ensure	 comparability	 for
extraneous	 effects	 (EFi	 =	 EFr).	 Blinding	 also	 prevents	 observer	 bias	 due	 to
differential	 observations	 or	measurements	 in	 either	 group	 (OBi	 =	OBr).	While
comparability	for	natural	history	 is	always	needed	for	a	valid	estimation	of	 the
treatment	 effect,	 the	 need	 for	 blinding	 varies	 according	 to	 the	 objective	 of	 the
trial	and	the	nature	of	the	outcome	that	is	measured.	In	the	case	of	a	pragmatic
study,	extraneous	effects	are	 included	in	 the	 treatment	comparison	and	placebo
treatment	 is	 not	 needed.	 Still,	 blinding	 may	 be	 desirable	 to	 ensure	 unbiased
outcome	 assessment.	 With	 very	 solid	 outcome	 measures,	 observation	 effects
may	be	negligible,	making	blinding	unnecessary.
For	a	trial	 that	needs	to	be	blinded	because	of	the	outcome	measure,	but	has

the	goal	of	providing	pragmatic	knowledge	(which	calls	for	an	unblinded	study),
one	option	 is	 to	make	 the	 trial	only	partially	blinded.	For	example,	 it	could	be
open	 for	 the	 patients	 but	 blind	 for	 the	 observers.	 Because	 confounding	 by
differences	in	natural	history,	in	particular	confounding	by	indication,	is	a	major
problem	in	nonrandomized	comparisons	 (where	allocation	of	 treatment	 is	done
by	the	doctor	in	daily	practice),	the	use	of	nonexperimental	studies	to	assess	the
benefits	 of	 treatment	 has	 major	 disadvantages.	 The	 RCT	 is	 generally	 the
preferred	option	to	quantify	intended	treatment	effects.
However,	 there	are	many	reasons	why	randomized	trials,	although	preferred,

cannot	always	be	conducted	and	an	alternative	nonexperimental	approach	needs
to	be	sought.	First,	 the	necessary	number	of	participants	needed	 in	a	particular
trial	may	be	too	large	to	be	feasible.	This	applies	to	studies	where	the	outcome,
although	 important,	 occurs	 at	 a	 low	 rate;	 an	 example	 is	 when	 preventive
treatments	 are	 studied	 in	 low-risk	 populations.	 Low	 outcome	 rates	 are	 a
particular	problem	in	research	on	side	effects	of	treatments.	Take,	for	example,
the	relationship	between	the	drug	diethylstilbestrol	(DES)	and	vaginal	cancer	in
daughters	of	users.	Vaginal	cancer,	even	in	the	exposed	group,	is	extremely	rare.
Alternatively,	 the	 expected	 difference	 in	 the	 rate	 of	 events	 between	 two
interventions	that	are	being	compared	may	be	very	small,	for	example,	when	two
active	treatments	are	compared	but	one	is	only	slightly	better	than	the	other.	The
latter	 situation	 is	 increasingly	 common	 for	 research	 on	 new	 treatments	 for	 an
indication	where	an	effective	intervention	already	exists.	For	example,	when	two
effective	 antihypertensive	 drugs	 are	 compared	 in	 a	 hypertensive	 population,	 it
may	take	a	very	big	study	to	demonstrate	a	small,	albeit	meaningful,	difference
in	efficacy.	Apart	from	practical	restrictions,	a	randomized	trial	simply	might	be



too	expensive	or	time	consuming.	Randomized	trials	need	considerable	budgets,
particularly	when	they	are	large	and	of	long	duration,	which	is	quite	common	for
so-called	 Phase	 3	 drug	 research	 required	 as	 part	 of	 the	 Food	 and	 Drug
Administration	(FDA)	or	European	Medicines	Agency	(EMA)	approval	process
before	marketing.	Time	may	be	a	problem	in	itself,	for	example,	when	an	answer
to	 a	 question	 about	 the	 effect	 of	 a	 treatment	 needs	 to	 be	obtained	quickly	 and
there	is	not	enough	time	for	a	long-term	trial	to	be	completed.	This	is	more	often
the	case	in	research	on	side	effects	than	on	main	effects.	If,	for	example,	a	life-
threatening	 side	 effect	 is	 suspected,	 adequate	 and	 timely	 action	 may	 be
warranted	and	nonexperimental	studies	may	be	necessary	to	provide	the	relevant
scientific	evidence.	Another	problem	with	 the	duration	of	 trials	 is	 that	 they	are
less	 suited	 for	 outcomes	 that	 take	 many	 years	 or	 even	 generations	 to	 occur.
Randomized	 trials	 usually	 run	 a	 couple	 of	 years	 at	 maximum.	 Longer	 trials
become	too	expensive,	and	also	with	time	the	number	of	people	who	drop	out	of
the	 study	 (attrition	 rate)	 may	 become	 unacceptably	 high.	 Recall	 the	 DES
example;	 even	 if	 vaginal	 cancer	 in	 the	 daughters	 of	 users	 of	 this	 drug	 is	 a
common	outcome,	it	would	be	difficult	to	perform	a	trial	because	the	follow-up
period	spans	an	entire	generation.
In	circumstances	where	the	sample	size,	money,	or	the	duration	of	follow-up

poses	 no	 insurmountable	 problems,	 random	 allocation	 of	 patients	 may	 be
problematic.	For	example,	random	allocation	of	a	lifestyle	intervention,	such	as
heavy	 alcohol	 use	 or	 smoking,	 is	 generally	 impossible.	 Moreover,	 “true”
blinding	in	a	trial	may	be	difficult	to	achieve.	A	trial	can	be	nicely	blinded	on	the
surface,	but	in	reality	participants	or	investigators	may	well	be	able	to	recognize
the	 allocated	 treatment.	 In	 the	 large,	 three-armed	 Women’s	 Health	 Initiative
(WHI)	trial,	examining	the	effect	of	long-term	postmenopausal	hormone	therapy
on	 cardiovascular	 and	 other	 outcomes,	 over	 40%	 of	 participants	 correctly
identified	 the	 allocated	 treatment.	 Knowledge	 of	 randomized	 treatment	 may
affect	 the	 likelihood	of	noticing	or	diagnosing	an	outcome	event	and	may	 thus
severely	invalidate	the	comparison	(see	Table	5–2),	as	has	been	worked	out	by
Garbe	and	Suissa	[2004].	Despite	randomization,	the	reported	small	increase	in
risk	 in	 the	WHI	 study	 could	 be	 spurious	 because	 of	 differential	 unblinding	 of
hormone	 replacement	 therapy	 users,	 which	 could	 have	 resulted	 in	 higher
detection	rates	of	otherwise	clinically	unrecognized	acute	myocardial	infarction
in	these	women.	Altering	diagnostic	patterns	because	of	unblinding	could	lower
the	crude	rate	ratio	of	1.28	to	1.02.



TABLE	5–2	Illustration	of	Detection	Bias	for	the	Ratio	of	AMI	Stratifi	ed	by	Blinding	Status	of	Exposure,
Assuming	the	Unblinded	Subjects	were	1.2,	1.5,	and	1.8	Times	More	Likely	to	be	Diagnosed	than	the
Blinded	Study	Subjects

aRate	as	cumulative	incidence	of	acute	MI	per	1,000.
bThe	detection	rates	of	22–44%	relate	to	the	proportion	of	incident	MIs	that	remain	clinically	unrecognized
at	the	time	they	occur	but	can	be	detected	by	ECG	(Sheifer	et	al.,	2001).
Reproduced	from	Garbe	E,	Suissa	S.	Issues	to	debate	on	the	Women’s	Health	Initiative	(*WHI)	study:
Hormone	replacement	therapy	and	acute	coronary	outcomes:	methodological	issues	between	randomized
and	observational	studies.	Hum	Reprod	2004;19:8–13.

Another	possible	limitation	of	trials	is	that	they	tend	to	include	highly	selected
patients	and	not	those	patients	who	are	most	likely	to	receive	the	intervention	in
daily	 practice.	 Typically,	 randomized	 trials	 include	 younger,	 healthier	 patients
who	 have	 less	 comorbidity	 and	 take	 fewer	 medications,	 and	 who	 are	 more
compliant	than	real-life	patients.	Evidently,	this	has	no	bearing	on	the	validity	of
the	results	of	the	study	itself	(it	can	actually	be	helpful	to	include	a	homogeneous
population)	 but	 may	 limit	 the	 generalizability	 of	 the	 findings	 to	 the	 relevant
clinical	 domain.	 This	 only	 occurs,	 however,	 when	 the	 differences	 in
characteristics	of	trial	populations	and	patients	in	daily	practice	modify	the	effect
of	the	intervention.	For	example,	the	earlier	trials	on	drug	therapy	in	heart	failure
included	mostly	 relatively	 young	 patients	 with	 little	 comorbidity,	 whereas	 the
typical	 heart	 failure	 patients	 are	 older	 and	 have	 multiple	 comorbidities.
Generalizability	of	the	findings	of	the	earlier	studies	to	the	elderly	has	long	been
debated.	 Currently,	 trials	 are	 being	 conducted	 among	 the	 very	 old	 to	 provide
evidence	of	the	efficacy	of	heart	failure	therapy	in	this	large	group	of	patients.
Finally,	a	trial	involving	randomized	allocation	and	possibly	blinding	may	be

deemed	to	be	unethical.	An	example	is	when	there	are	highly	suggestive	data	to



support	 the	 marked	 superiority	 of	 a	 new	 treatment,	 particularly	 in	 a	 situation
where	 no	 alternative	 treatments	 are	 available	 for	 a	 very	 serious	 disease.
Unfortunately,	 the	 presence	 of	 weak	 data	 from	 flawed	 research	 sometimes
prohibits	a	decent	 trial,	 leaving	medical	practitioners	without	a	sound	basis	 for
treatment	decisions.	Sir	Austin	Bradford-Hill	[1951]	succinctly	summarized	the
problem	of	publication	of	questionable	but	suggestive	data	on	treatment	benefits:

If	a	treatment	cannot	ethically	be	withheld	then	clearly	no	controlled	trial	can	be	instituted.	All	the
more	important	is	it,	therefore,	that	a	trial	should	be	begun	at	the	earliest	opportunity,	before	there
is	 inconclusive	 though	 suggestive	 evidence	 of	 the	 value	 of	 treatment.	 Not	 infrequently,	 however,
clinical	 workers	 publish	 favorable	 results	 on	 three	 or	 four	 cases	 and	 conclude	 their	 article	 by
suggesting	 that	 this	 is	 the	mode	of	 choice,	or	 that	what	now	 is	 required	 is	a	 trial	on	an	adequate
scale.	 They	 do	 not	 seem	 to	 realize	 that	 by	 their	 very	 publication	 they	 have	 vastly	 increased
difficulties	of	the	trial	or,	indeed,	made	it	impossible.

Random	 allocation	 can	 only	 be	 justified	 if	 there	 is	 a	 sufficient	 uncertainty
about	 the	 superiority	 and	 safety	 of	 one	 treatment	 over	 another,	 the	 so-called
principle	 of	 equipoise.	 For	 a	 discussion	 of	 current	 controversies	 around	 the
principles	of	equipoise,	see	van	der	Graaf	and	van	Delden	[2011].
When	 no	 randomized	 trial	 can	 be	 conducted,	 the	 effects	 of	 an	 intervention

need	to	be	studied	using	nonexperimental	studies,	usually	cohort	or	case-control
studies.	 The	 results	 of	 nonexperimental	 intervention	 studies	 are	 not	 inherently
less	valid	than	the	results	of	RCTs.	However,	it	is	much	more	difficult	to	adhere
to	the	comparability	requirements	in	nonexperimental	research.	This	already	has
been	discussed	 for	 the	problem	of	confounding	by	 indication	 that	will	prohibit
nonexperimental	 studies	 for	many	 interventions.	However,	 the	 impossibility	of
using	a	placebo	and	blind	participants	in	a	nonexperimental	study	may	make	the
outcome	assessment	problematic	and	leave	room	for	observer	bias.	Absence	of
blinding	also	 leads	 to	research	in	which	it	 is	 impossible	 to	distinguish	between
the	 “true”	 effect	 of	 an	 intervention	 (e.g.,	 the	 pharmacologic	 effect)	 and
extraneous	effects.	This	may	not	pose	a	problem	when	a	pragmatic	approach	is
taken	in	the	study.
To	 overcome	 the	 problem	 of	 incomparability	 of	 natural	 history	 for	 a

concurrent	comparison	of	treated	and	untreated	subjects,	sometimes	the	use	of	a
historic	 control	 group	 may	 offer	 a	 solution.	 This	 is	 acceptable	 if	 there	 is
assurance	that	the	historic	group	of	patients	who	were	all	untreated	(e.g.,	because
the	treatment	has	only	recently	become	available)	is	comparable	with	regard	to
all	characteristics	that	determine	the	severity	and	thus	the	natural	history	of	the
disease.	 In	 other	 words,	 the	 historic	 cohort	 and	 the	 current	 cohort	 of	 patients
would	have	shown	the	same	prognosis	if	treatment	were	not	given.



Jones	 and	 coworkers	 [1982]	 decided	 to	 study	 the	 benefits	 of	 isoprinosine
therapy	in	patients	with	subacute	sclerosing	panencephalitis	(SSPE),	a	very	rare
dementing	 and	 fatal	 illness	 possibly	 related	 to	 a	 slow	 viral	 infection.	 Power
calculations	suggested	that	close	to	100	patients	would	be	needed	in	each	arm	of
a	 randomized	 trial,	 a	 number	 that	was	unlikely	 to	 be	 recruited	 in	 a	 reasonable
time	 period.	Consequently,	 a	multicenter	 nonrandomized	 study	was	 conducted
that	included	all	98	patients	admitted	to	28	medical	centers	in	the	United	States
and	Canada	between	1971	and	1980.	As	a	 reference,	 three	groups	of	historical
untreated	control	patients	were	selected	who	were	drawn	from	medical	registries
in	the	preceding	time	period	during	which	no	effective	treatment	was	available.
The	 results	 were	 highly	 suggestive	 of	 a	 marked	 effect	 of	 the	 treatment	 (see
Figure	 5–9).	 To	 judge	 the	 validity	 of	 the	 conclusion,	 however,	 assurance	 is
needed	 that	 the	 groups	 were	 comparable	 with	 regard	 to	 natural	 history,
extraneous	 effects,	 and	 observation	 effects.	The	 natural	 history	may	well	 have
changed	over	several	decades.	Also,	extraneous	factors	may	be	different	for	the
historic	and	current	cohorts.	The	quality	of	care	and	supporting	treatments	may
have	changed	survival	patterns	over	the	years	even	when	the	true	natural	history
remained	unchanged.	Even	observation	effects	cannot	be	ruled	out.	It	is	possible
that	 in	 the	 registries	 only	 patients	 with	 a	 severe	 prognosis	 were	 listed	 while
milder	cases	remained	undetected.	In	the	current	cohort,	every	effort	was	made
to	include	all	patients	with	a	diagnosis.	Selective	mortality	follow-up	could	well
explain	a	marked	difference	in	survival	rates.	For	a	more	detailed	discussion	of
the	limitations	and	implications	of	this	study,	see	Hoehler	et	al.	[1984].

FIGURE	5–9	Life	table	profiles	for	98	inosiplex-treated	SSPE	patients	and	for	333	composite	SSPE



controls	(Israeli,	Lebanese,	and	U.S.	registry	patients).

Reproduced	from	The	Lancet,	Vol.	319,	Jones	CE,	Dyken	PR,	Hutten	Locher	PR,	Jabour	JT,	Maxwell	KW.
Inosiplex	therapy	in	subacute	sclerosing	panencephalitis.	1035;	©	1982,	reprinted	with	permission	from
Elsevier.

When	the	prognosis	of	patients	is	very	stable	or	highly	predictable,	a	before–
after	 study	 can	 be	 conducted	 as	 an	 alternative	 to	 randomized	 parallel
comparisons.	This	 is	a	cohort	 study	where	 the	patients	 form	 their	own	historic
comparison	 group.	 For	 example,	 to	 determine	 the	 effect	 of	 hip	 replacement
surgery	in	patients	with	a	highly	compromised	functional	status	due	to	severe	hip
arthritis,	 it	 is	 reasonable	 to	 assume	 that,	 in	 the	 absence	 of	 treatment,	 the
functional	 status	 would	 not	 improve.	 If	 a	 clear	 improvement	 after	 surgery	 is
observed,	this	may	safely	be	attributed	to	the	intervention.	Similarly,	antagonism
of	 opioid	 intoxication	 in	 a	 comatose	 patient	with	 naloxone	 does	 not	 require	 a
concurrent	 randomized	 comparison	 to	 allow	 estimation	 of	 the	 effect	 of	 the
treatment.	When	something	is	obvious,	this	needs	no	randomized	demonstration;
this	 is	 clearly	 underlined	 by	 the	 failed	 attempt	 to	 summarize	 randomized	 trial
data	on	the	benefits	of	parachute	use	to	prevent	death	and	major	trauma	related
to	gravitational	challenge	[Smith	&	Pell,	2003].

THE	RANDOMIZED	TRIAL	AS	A	PARADIGM
FOR	ETIOLOGIC	RESEARCH
The	principles	of	 randomized	 trials	 are	governed	by	 the	need	 to	determine	 the
causal	 role	 of	 the	 intervention	 in	 changing	 the	 prognosis	 of	 patients.	 Causal
explanation	requires	the	exclusion	of	confounding	and	other	types	of	bias.	Bias
in	comparing	treatment	effects	across	treated	and	untreated	or	differently	treated
patients	may	arise	from	different	distributions	of	prognostic	factors,	differences
in	 extraneous	 effects,	 and	 differences	 in	 observations	 of	 outcomes	 across	 the
comparative	 groups.	 In	 an	 RCT,	 problems	 of	 confounding	 are	 effectively
handled	 by	 randomization	 and	 blinding.	 The	 same	 confounders	 obviously	 are
relevant	 in	 any	 etiologic	 study.	 It	 may	 help	 the	 investigator,	 as	 a	 mental
experiment,	to	imagine	the	way	a	trial	would	be	conducted	even	in	cases	where	a
randomized	 trial	 is	 infeasible.	 Using	 the	 randomized	 trial	 as	 a	 paradigm	 for
nonexperimental	causal	research	may	be	particularly	helpful	to	detect	problems
of	confounding	and	to	indicate	ways	for	their	control	[Miettinen,	1989].



There	 is	 more	 that	 can	 be	 learned	 from	 randomized	 trials	 when	 designing
nonexperimental	 studies.	 There	 is	 a	 common	 lack	 of	 appreciation	 of	 the
relationship	 between	 the	way	 a	 study	 population	 is	 selected	 and	 the	 extent	 to
which	findings	in	the	research	can	be	generalized	to	other	populations.	In	theory,
findings	 in	 one	 population	 can	 be	 generalized	 to	 other	 populations	 as	 long	 as
differences	 between	 populations	 do	 not	modify	 the	 nature	 of	 the	 determinant–
outcome	 relationship.	 The	 finding	 of	 the	 causal	 relationship	 between	 certain
genetic	sequences	and	retina	pigmentation	observed	in	a	population	of	children
can	be	generalized	to	elderly	subjects	without	problems	because	despite	the	vast
difference	 in	 characteristics	 of	 the	 two	 populations,	 these	 are	 judged	 not	 to
modify	the	relationship	between	genes	and	eye	color	[Rudakis	et	al.,	2003].
The	 randomized	 trial	 typically	 uses	 a	 highly	 selective	 population	 that	 is

eventually	 randomized.	 The	Multiple	 Risk	 Factor	 Intervention	 Trial	 (MRFIT)
was	 a	 randomized	 primary	 prevention	 trial	 designed	 to	 test	 the	 effect	 of
multifactor	intervention	on	mortality	from	coronary	heart	disease	[Neaton	et	al.,
1987].	Before	randomization,	men	were	seen	at	three	screening	visits	to	establish
eligibility.	 A	 total	 of	 361,662	 men	 were	 screened	 and	 12,866	 men	 were
randomized.	While	less	than	10%	of	all	those	screened	were	included,	the	results
were	 judged	 to	 be	 relevant	 for	 all	 men	 (and	 even	 for	 women)	 who	 need	 risk
factor	 intervention.	 Indeed,	 selection	 may	 or	 may	 not	 affect	 generalizability,
depending	on	the	effect	of	the	selection	on	the	distribution	of	variables	that	have
an	 impact	 on	 the	 relationship	 between	 intervention	 and	 outcome,	 and	 thus	 are
modifiers	 of	 the	 intervention–outcome	 relationship.	 In	 other	words,	 whether	 a
highly	 selected	 trial	 population	 limits	 the	 applicability	 of	 the	 findings	 is
determined	 by	 the	 extent	 to	 which	 the	 trial	 population	 and	 the	 population	 to
whom	the	findings	are	generalized	differ	in	modifiers	of	the	intervention	effect.
In	 a	 nonexperimental	 causal	 study,	 just	 like	 in	 a	 trial,	 the	 study	 population
should	be	expressly	defined	and	selected	to	enable	generalization	to	the	domain.
Study	 populations	 in	 causal	 research	 can	 be	 highly	 selective.	 Moreover,

selectivity	can	make	causal	research	much	more	effective.	There	is	a	persistent
view	that	the	ideal	study	population	is	a	random	sample	from	a	population.	This
view	 is	 deeply	 rooted	 in	 statistics,	 where	 estimates	 of	 the	 mean	 value	 of	 a
population,	such	as	height	 in	Japanese	males,	are	best	obtained	from	a	random
sample	 of	 that	 population.	 The	 objective	 of	 such	 estimation,	 however,	 is
altogether	 different	 from	 an	 epidemiologic	 study	 that	 aims	 to	 find	 the	 genetic
basis	for	differences	in	height	among	Japanese	males.	Here,	rather	than	a	random
sample,	 it	 would	 probably	 be	 much	 more	 effective	 to	 select	 males	 at	 the



extremes	of	 the	height	distribution	for	genetic	analyses.	Again,	 the	randomized
trial	serves	as	a	role	model.	In	a	trial,	the	determinant	distribution	is	deliberately
chosen	by	random	allocation.	There	is	clearly	no	complete	representation	of	the
source	 population	 in	 the	 determinant	 distribution.	 Similarly,	 in	 a	 trial	 the
determinant	 contrast	 is	 created	 by	 design	 and	 does	 not	 depend	 upon	 a	 given
distribution	 in	 a	 sample.	 In	 a	 trial	 on	 the	 benefits	 of	 cholesterol	 reduction,
cholesterol	is	reduced	in	one	arm	of	the	trial	by	allocation	to,	for	example,	statins
while	 in	 the	other	arm	 the	natural	history	of	 the	cholesterol	 levels	 is	 followed.
Then	 why	 study	 a	 random	 population	 sample,	 with	 the	 full	 cholesterol
distribution,	 in	 a	 cohort	 study	 to	 determine	 the	 relationship	 between	 elevated
cholesterol	and	heart	disease	risk?	The	middle	part	of	the	distribution	adds	little
information	to	the	research.	In	a	trial,	the	reference	category	is	explicitly	defined
and	 large	 contrasts	 are	generally	 created	 to	make	 the	 study	efficient.	The	only
requirement	 is	 that	 exposure	 is	 contrasted	 to	 nonexposure,	 while	 taking	 into
account	 the	 potential	 for	 bias,	 notably	 confounding.	 There	 is	 no	 reason	 not	 to
apply	the	same	principles	in	nonexperimental	research.



Chapter	6



Intervention	Research:	Unintended	Effects

INTRODUCTION
A	75-year-old	woman	who	has	had	rheumatoid	arthritis	for	more	than	25	years
visits	 her	 doctor	 because	 of	 increasing	 joint	 pain.	 She	 has	 been	 taking
nonsteroidal	anti-inflammatory	drugs	(NSAIDs)	for	many	years.	In	the	past,	she
stopped	 several	 NSAIDs	 and	 replaced	 them	 with	 others	 because	 she	 suffered
from	dyspepsia	attributed	to	 the	drugs.	Three	years	ago	she	developed	a	peptic
ulcer.	 Currently,	 she	 takes	 ibuprofen	 on	 a	 daily	 basis	 in	 conjunction	 with	 a
proton-pump	 inhibitor	 to	 prevent	 NSAID-induced	 gastrointestinal	 side	 effects.
Because	of	 the	current	 severity	of	 the	complaints,	 the	doctor	decides	 to	switch
her	 to	Metoo-coxib,	 a	novel	 cyclooxygenase	 (COX)-2	 inhibitor,	with	powerful
analgesic	 properties	 that	 is	 believed	 to	 cause	 less	 gastrointestinal	 side	 effects
than	 classic	 NSAIDs.	 COX-2	 selective	 inhibitors	 were	 developed	 as	 an
alternative	 to	classic	 (nonselective)	NSAIDs	because	COX-1	 inhibition	exerted
by	the	latter	drugs	decreases	the	natural	protective	mucus	lining	of	the	stomach.
Indeed,	 within	 a	 month	 the	 patient’s	 pain	 decreases	 considerably	 and	 no
gastrointestinal	 side	 effects	 are	 encountered.	 Consequently,	 the	 proton-pump
inhibitor	 is	 withdrawn.	 After	 3	 months,	 however,	 the	 woman	 suffers	 from	 a
myocardial	 infarction.	 This	 certainly	 comes	 as	 a	 surprise,	 because	 apart	 from
advanced	 age,	 no	 cardiovascular	 risk	 factors	were	 present.	 Doctor	 and	 patient
wonder	whether	the	myocardial	infarction	was	caused	by	Metoo-coxib.
Interventions	(treatments)	in	clinical	practice	are	meant	to	improve	a	patient’s

prognosis.	 After	 careful	 consideration	 of	 the	 expected	 natural	 course	 of	 a
patient’s	 complaint	 or	 disease	 (prognostication),	 a	 physician	 has	 to	 decide



whether,	 and	 to	what	 extent,	 a	 particular	 intervention	 is	 likely	 to	 improve	 this
prognosis.	To	make	this	decision,	it	is	essential	to	know	the	anticipated	intended
(main)	effects	of	the	intervention.
In	 the	 rheumatoid	arthritis	 example,	 the	doctor	presumably	believed	 that	 the

joint	 pain	 of	 the	 patient	would	 increase	 or	 last	 an	 unacceptably	 long	 time	 and
thus	 warranted	 prescription	 of	 a	 different,	 novel,	 and	 apparently	 stronger
painkiller.	The	alleged	stronger	analgesic	properties	of	the	novel	drug	should	be
based	 on	 evidence	 from	 valid	 research	 on	 the	 intended	 effect.	Apart	 from	 the
primary	(intended)	effect	of	an	intervention,	however,	unintended	(side)	effects
could,	and	in	fact	should,	factor	into	the	decision	to	initiate	or	refrain	from	this
or	any	other	intervention	(see	Box	6–1).

BOX	6–1	Side	Effects	of	Interventions:	Terminology

Multiple	terms	for	side	effects	of	interventions	are	used	in	the	literature.	A	short	list	is	provided	here.
These	include:

•	Unintended	effects
•	Side	effects
•	Harm
•	Adverse	effects
•	Risks
•	Adverse	drug	reactions	(ADRs)	or	adverse	drug	events	(in	the	case	of
pharmaceutical	interventions)

In	our	view,	the	term	unintended	effects	(as	opposed	to	intended	effects),	best	reflects	the	essence	of
these	intervention	effects	[Miettinen,	1983].	Pharmacovigilance	is	the	term	increasingly	being	applied
to	indicate	the	methodology	or	discipline	or,	if	one	wishes,	art,	of	assessing	side	effects	of
pharmacologic	interventions.	Alternatively,	drug	risk	assessment,	post	marketing	surveillance,	and
pharmacoepidemiology	are	terms	often	applied,	although	the	latter	often	also	encompasses
nonexperimental	research	on	the	use	of	drugs	in	daily	practice	(drug	utilization)	and	on	intended
effects	[Strom,	2005].

	

Only	 when	 the	 expected	 benefits	 are	 likely	 to	 outweigh	 the	 anticipated
harmful	 effects	 is	 initiation	 of	 an	 intervention	 justifiable.	 In	 the	 case	 of	 the
elderly	 woman	with	 arthritis,	 the	 impressive	 history	 of	 gastrointestinal	 effects
that	occurred	during	the	use	of	previous	NSAIDs	presumably	also	contributed	to
the	 initiation	 of	Metoo-coxib	 as	 an	 intervention,	 as	 it	 was	 believed	 to	 confer



fewer	gastrointestinal	side	effects.	This	decision	should	have	been	based	on	solid
evidence	 that	 the	 incidence	 of	 these	 unintended	 effects	 is	 lower	 with	Metoo-
coxib	than	with	classic	NSAIDs.

RESEARCH	ON	UNINTENDED	EFFECTS	OF
INTERVENTIONS
With	 the	 emergence	of	multiple	 interventions	 in	 clinical	medicine,	 particularly
pharmaceutical	 interventions,	 the	 need	 to	 prove	 their	 effects	 greatly	 increased.
Simultaneously,	 federal	 regulation	passed	 in	 the	19th	and	 first	half	of	 the	20th
century	 to	ensure	 the	health	 interests	of	 the	consumers	of	drugs	and	 foods	has
facilitated	 quality	 assurance	 for	 pharmaceuticals	 and,	 at	 a	 later	 stage,	 the
methodologic	 development	 of	 studies	 assessing	 the	 intended	 and	 unintended
effects	of	interventions	(see	Box	6–2).	It	took	several	disasters	before	drug	risk
assessment	 became	 a	 mandatory	 step	 to	 obtain	 marketing	 authorization	 for	 a
drug.	 Research	 became	 an	 important	 tool	 to	 determine	 the	 safety	 of	 drug
interventions,	both	before	and	after	market	authorization.

BOX	6–2	Side	Effect	of	Cannabis

Napoleon	Bonaparte	presumably	was	among	the	first	to	ban	a	drug	(in	this	case,	herbal)	because	of
serious	side	effects.	While	in	Egypt	around	1800	the	French	occupying	forces	indulged	in	the	use	of
cannabis,	either	through	smoking	or	consumption	of	hashish-containing	beverages.

He	prohibited	the	use	of	cannabis	in	1800:	“It	is	forbidden	in	all	of	Egypt	to	use	certain	Moslem
beverages	made	with	hashish	or	likewise	to	inhale	the	smoke	from	seeds	of	hashish.	Habitual	drinkers
and	smokers	of	this	plant	lose	their	reason	and	are	victims	of	violent	delirium	which	is	the	lot	of	those
who	give	themselves	full	to	excesses	of	all	sorts”	[Allain,	1973].

Although	Napoleon	undoubtedly	interpreted	the	observed	effects	of	cannabis	as	side	effects,	the
question	remains	whether	the	effects	were	indeed	considered	“unintended”	by	the	consumers.	The	fact
that	consumption	of	hashish	was	reported	by	some	to	increase	after	the	official	prohibition	illustrates
that	the	effects	may,	to	some	extent	at	least,	have	been	“intended.”

	

The	thalidomide	tragedy	dramatically	changed	the	way	a	drug’s	primary	and
side	 effects	 are	 assessed.	 In	 1954,	 the	 small	German	 firm	Chemie	Grünenthal
patented	 the	 sedative	 thalidomide.	The	alleged	absence	of	 side	effects,	 even	at



very	high	dosages,	fueled	the	impression	that	the	drug	was	harmless	[Silverman,
2002].	The	potential	hypnotic	effect	of	the	drug	was	revealed	after	free	samples
of	 the,	at	 the	 time	unlicensed,	drug	were	distributed.	The	drug	was	 licensed	 in
Germany	 in	 1957	 and	 sold	 as	 a	 nonprescription	 drug	 because	 of	 its	 presumed
safety.	Within	 a	 few	 years,	 the	 drug	was	 by	 far	 the	most	 often	 used	 sedative.
Sold	 in	more	 than	40	countries	around	 the	world,	 thalidomide	was	quick	 to	be
marketed	 as	 the	 anti-emetic	 drug	 of	 choice	 for	 pregnant	women	with	morning
sickness.	About	a	year	after	its	release,	however,	a	neurologist	noticed	peripheral
neuritis	 in	 patients	 who	 received	 the	 drug.	 Even	 as	 reports	 of	 this	 side	 effect
were	 accumulating	 rapidly,	 the	 company	 denied	 any	 association	 between
thalidomide	 and	 this	 possible	 unintended	 effect.	 In	 1960,	 marketing
authorization	 was	 sought	 in	 the	 United	 States.	 Interestingly,	 at	 that	 time	 only
proof	of	safety	(rather	than	clinical	trials	to	demonstrate	efficacy)	of	a	drug	was
required	for	approval	by	the	Federal	Drug	Administration	(FDA).	By	the	end	of
1961,	the	first	reports	of	increasing	numbers	of	children	with	birth	defects	were
published.	 These	 defects	 included	 phocomelia,	 a	 very	 rare	 malformation
characterized	 by	 severe	 stunting	 of	 the	 limbs;	 children	 had	 flippers	 instead	 of
limbs.	 In	 that	 same	 year,	 the	 pediatrician	 Lenz	 presented	 a	 series	 of	 161
phocomelia	 cases	 linked	with	 thalidomide,	 and	 the	 firm	withdrew	 thalidomide
from	 the	German	market.	 In	Box	 6–3	 an	 extract	 of	 a	 lecture	 delivered	 by	Dr.
Lenz	 in	1992	 is	 presented,	 illustrating	 the	way	 this	 dramatic	 unintended	 effect
was	discovered.	Exact	statistics	are	unknown,	but	it	has	been	estimated	that	more
than	 10,000	 infants	 developed	 phocomelia	 because	 of	 their	 mother’s	 use	 of
thalidomide	during	pregnancy.
Despite	its	dramatic	past,	thalidomide	received	marketing	authorization	in	the

late	1990s,	with	 the	caveat	 that	 it	only	could	be	applied	under	strict	conditions
and	 its	 use	 in	 pregnant	 women	 was	 absolutely	 contraindicated.	 The	 drug	 is
currently	used	for	several	disorders,	 including	multiple	myeloma	and	erythema
nodosum	 leprosum,	a	 severe	complication	of	 leprosy.	The	beneficial	 effects	of
thalidomide	 have	 been	 attributed	 to	 its	 tumor	 necrosis	 factor-alpha	 (TNF-a)
lowering	properties.

BOX	6–3	Extract	from	a	Lecture	Given	by	Dr.	Widukind	Lenz	at	the	1992	UNITH	Congress

Though	the	first	child	afflicted	by	thalidomide	damage	to	the	ears	was	born	on	December	25,	1956,	it
took	about	four	and	a	half	years	before	an	Australian	gynaecologist,	Dr.	McBride	of	Sydney,
suspected	that	thalidomide	was	the	cause	of	limb	and	bowel	malformations	in	three	children	he	had
seen	at	Crown	Street	Women’s	Hospital.	There	are	only	conflicting	reports	unsubstantiated	by
documents	on	the	reaction	of	his	colleagues	and	the	Australian	representatives	of	Distillers	Company,



producers	of	the	British	product	Distaval	between	June	and	December	16,	1961,	when	a	short	letter	of
McBride	was	published	in	The	Lancet.	Distillers	Company	in	Liverpool	had	received	the	news	from
Australia	on	November	21,	1961,	almost	exactly	at	the	same	time	as	similar	news	from	Germany.

I	had	suspected	thalidomide	to	be	the	cause	of	an	outbreak	of	limb	and	ear	malformation	in
Western	Germany	for	the	first	time	on	November	11,	1961,	and	by	November	16,	I	felt	sufficiently
certain	from	continuing	investigations	to	warn	Chemie	Gruenenthal	by	a	phone	call.	It	took	ten	more
days	of	intensive	discussions	with	representatives	of	the	producer	firm,	of	health	authorities,	and	of
experts	before	the	drug	was	withdrawn,	largely	due	to	reports	in	the	press.

Reproduced	from	the	lecture	“The	History	of	Thalidomide,”	delivered	at	the	1992	United	International
Thalidomide	Society	Congress.	Available	at:	www.thalidomidesociety.co.uk/publications.htm.	Accessed
May	9,	2013.

The	thalidomide	tragedy	and	other	tragedies	from	pharmaceutical	use	clearly
show	the	 importance	of	weighing	the	risks	and	benefits	of	 interventions	before
bringing	drugs	to	marketing	(i.e.,	widespread	use)	as	well	as	 in	 the	physician’s
decision,	after	licensing,	to	initiate	the	intervention	in	individual	patients	in	daily
practice.	 This	 requires	 empirical	 evidence	 of	 the	 expected	 intended	 and
unintended	 effects	 of	 the	 intervention	 and,	 thus,	 valid	 studies.	 Naturally,
researchers	 and	 those	 employed	 by	 the	manufacturers	 of	 the	 interventions	 are
more	likely	to	direct	their	research	efforts	at	the	intended	effects	of	interventions
than	at	possible	unintended	effects.	In	addition,	quantifying	unintended	effects	of
interventions	 is	often	more	 complicated	 than	estimating	 their	 benefits,	 because
the	research	paradigm	to	determine	effects	of	intervention—the	randomized	trial
—is	 less	 suited	 to	 evaluate	 unintended	 effects.	 In	 this	 chapter,	 the	 methods
available	 to	 assess	 unintended	 effects	 of	 interventions	 are	 presented.	 Most
examples	 in	 this	 chapter	 are	 drawn	 from	 studies	 on	 the	 unintended	 effects	 of
drug	 interventions,	but	 the	same	principles	also	hold	for	surgical,	 lifestyle,	and
other	healthcare	interventions.

STUDIES	ON	UNINTENDED	EFFECTS	OF
INTERVENTIONS:	CAUSAL	RESEARCH
When	the	goal	 is	 to	quantify	 the	association	of	a	specific	 intervention	with	 the
occurrence	of	an	unintended	outcome,	the	main	challenge	for	the	researcher	lies
in	establishing	causality.	As	in	research	on	intended	effects	of	interventions,	the
causal	 influence	 of	 the	 intervention	 on	 a	 patient’s	 prognosis	 is	 the	 object	 of
study.	Although	such	studies	also	bear	characteristics	of	prediction	(in	this	case
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prognostic)	 research,	because	 the	 intervention	 is	one	of	 the	potential	predictors
of	 the	 probability	 (ranging	 from	 0–100%)	 of	 developing	 a	 specific	 (here,
untoward)	 event,	 their	 primary	 aim	 is	 to	 prove	 or	 repudiate	 causality.	 In
designing	 studies	 to	 quantify	 the	 causal	 association	 of	 an	 intervention	with	 an
unintended	effect,	the	analogy	of	a	court	room	is	even	more	appropriate	than	in
the	 study	 of	 intended	 effects.	 Here	 the	 researcher,	 who	 is	 analogous	 to	 the
prosecutor,	has	to	prove	beyond	a	reasonable	doubt	that	the	intervention	caused
the	 side	 effect	 and	 that	 the	 observed	 “crime”	 (unintended	 effect)	 was	 not
committed	by	other	factors.	Be	assured	that,	 in	the	case	of	a	major	blockbuster
drug	from	a	large	pharmaceutical	company,	there	will	be	a	well-selected	group
of	 real-life	 lawyers	 carefully	 scrutinizing	 your	 study.	 Consequently,	 achieving
comparability	of	natural	history,	extraneous	factors,	and	observation	is	essential.
In	 particular,	 the	 influence	 of	 potential	 confounders	 should	 be	 prevented	 or
accounted	 for	 in	 the	 investigation.	 In	 this	 process,	 consideration	 of	 the
confounding	triangle	may	be	helpful	(see	Figure	6–1).

FIGURE	6–1	The	“confounding	triangle”	in	research	on	unintended	effects.	The	reasons	to	initiate	or
refrain	from	a	specific	intervention	are	important	potential	confounders.

Critical	evaluation	of	the	two	arrows	in	Figure	6–1,	that	is,	the	association	of
potential	 confounders	 with	 both	 the	 exposure	 to	 the	 intervention	 and	 the
unintended	 effect,	 is	 essential.	 In	 daily	 practice,	 as	 in	 the	 study	 of	 intended
effects	 of	 interventions,	 the	 reasons	 an	 intervention	 is	 initiated	 in	 or	 withheld
from	patients	 (i.e.,	 relative	 or	 absolute	 indications	 or	 contraindications)	 are	 by
definition	associated	with	exposure	to	the	intervention	[Grobbee	&	Hoes,	1997].
Consequently,	 the	 left	 arrow	 in	 Figure	 6–1	 exists	 unless	 allocation	 of	 the
intervention	is	a	random	process.	This	typically	only	occurs	when	the	researcher
ensures	comparability	of	natural	history	 in	 those	who	do	or	do	not	 receive	 the
intervention	 through	 randomization,	 that	 is,	 by	 performing	 a	 randomized
controlled	trial.	The	presence	or	absence	of	a	relationship	between	the	reasons	to
initiate	the	intervention	(the	indication)	and	the	unintended	effect	(the	arrow	on
the	right)	determines	the	potential	for	confounding.	Because	the	indication	then
acts	as	a	confounder,	this	is	sometimes	termed	confounding	by	indication.	When



drugs	are	particularly	used	by	(“indicated	for”)	patients	at	a	higher	or	lower	risk
of	 developing	 the	 unintended	 effect	 of	 interest	 than	 patients	 not	 receiving	 the
intervention,	 failure	 to	 take	 this	 confounding	 into	 account	 will	 bias	 the	 study
findings.	 When,	 for	 example,	 COX-2	 inhibitors	 are	 for	 some	 reason
preferentially	 prescribed	 to	 patients	 with	 an	 unfavorable	 cardiovascular	 risk
profile,	 comparison	 of	 the	 incidence	 of	 myocardial	 infarction	 of	 patients
receiving	the	drug	(such	as	the	75-year-old	woman	in	the	earlier	example)	with
those	 not	 using	 the	 drug	 in	 daily	 practice	may	 reveal	 an	 increased	 risk	 of	 this
side	effect.	At	least	part	of	this	increased	risk	will	be	attributable	to	confounding
by	indication.

BOX	6–4	Merck	Found	Liable	in	Vioxx	Case

Texas	Jury	Awards	Widow	$253	Million

by	Mark	Kaufman
Washington	Post	Staff	Writer
Saturday,	August	20,	2005;	Page	A01

After	less	than	11	hours	of	deliberation,	a	Texas	jury	yesterday	found	Merck	&	Co.	responsible	for	the
death	of	a	59-year-old	triathlete	who	was	taking	the	company’s	once-popular	painkiller,	Vioxx.

The	jury	hearing	the	first	Vioxx	case	to	go	to	trial	awarded	the	man’s	widow	$253.4	million	in
punitive	and	compensatory	damages—a	sharp	rebuke	to	an	industry	leader	that	enjoyed	an	unusually
favorable	public	image	before	the	Vioxx	debacle	began	to	unfold	one	year	ago.

Reproduced	from	Kaufman,	M.	The	Washington	Post,	Aug	20,	2005,	p.	A01.	©	2005	Washington	Post
Company.	All	rights	reserved.	Used	by	permission	and	protected	by	the	Copyright	Laws	of	the	United
States.	The	printing,	copying,	redistribution,	or	retransmission	of	this	Content	without	express	written
permission	is	prohibited.

Box	6–4	 is	 an	excerpt	 from	a	Washington	Post	 article	published	August	20,
2005.	Apparently,	 the	judge	considered	the	causal	relationship	between	the	use
of	 rofecoxib	 (Vioxx),	a	COX-2	 inhibitor,	and	 the	untimely	death	of	 the	athlete
proven.	 Rofecoxib	 was	 withdrawn	 from	 the	 market	 by	 the	 manufacturer	 in
September	 2004,	 after	 a	 randomized	 trial	 showed	 an	 increased	 risk	 of
cardiovascular	disease	among	rofecoxib	users	[Bresalier	et	al.,	2005].
The	importance	of	taking	confounding	into	account	in	research	on	unintended

effects	 of	 interventions	 and	 possible	 bias	 attributable	 to	 initiation	 of	 drug
interventions	in	high-risk	patients	is	clearly	exemplified	by	the	following	quote
from	 John	 Urquhart,	 emeritus	 professor	 of	 pharmacoepidemiology:	 “Did	 the
drug	bring	the	problem	to	the	patient	or	did	the	patient	bring	the	problem	to	the



drug?”	(Urquhart,	2001).
As	 in	 all	 types	 of	 research	 aimed	 at	 quantifying	 causal	 associations,

confounding	 in	 the	 assessment	 of	 unintended	 effects	 of	 interventions	 can	 be
accounted	 for	 either	 in	 the	 design	 of	 data	 collection	 or	 in	 the	 design	 of	 data
analysis.	The	potential	for	confounding,	however,	critically	depends	on	the	type
of	unintended	effect	involved:	type	A	or	type	B	[Rawlins	&	Thompson,	1977].

TYPE	A	AND	TYPE	B	UNINTENDED	EFFECTS

Type	A	Unintended	Effects
Type	A	unintended	effects	result	from	the	primary	action	of	the	intervention	and
can	be	considered	an	exaggerated	intended	effect.	Type	A	unintended	effects	are
usually	common,	dose	dependent,	occur	gradually	 (from	a	very	mild	 to—often
with	 increasing	 dosages—more	 serious	 presentation),	 and	 are	 in	 principle
predictable.	 Lowering	 of	 the	 intervention’s	 dosage	 will	 usually	 take	 the	 side
effect	away.	Type	A	unintended	effects	also	may	occur	at	recommended	dosages
of	the	intervention,	for	example,	when	the	drug	metabolizes	at	a	lower	rate.
A	 classic	 example	 of	 a	 type	A	 unintended	 effect	 is	 bleeding	 resulting	 from

anticoagulant	therapy.	The	unintended	effect	results	from	the	intended	effect	of
the	drug	(i.e.,	 its	anticoagulant	property),	 is	fairly	common,	usually	occurs	in	a
mild	form	such	as	bruises	(but	sometimes	fatal	hemorrhage	may	develop),	and	is
to	 a	 certain	 extent	 predictable	 because	 many	 factors	 related	 to	 bleeding	 risk
during	 anticoagulant	 use	 are	 known.	 These	 include	 age,	 dosage,	 alcohol	 use,
tendency	 to	 fall,	 and	 relevant	 comorbidity.	 Whether	 the	 unintended	 effect	 is
predictable	 or	 not	 is	 important,	 because	 knowledge	 about	 the	 predictors	 will
cause	 physicians	 to	 refrain	 from	 prescribing	 the	 intervention	 in	 high-risk
patients.	 This	 “good	 clinical	 practice”	 will,	 on	 the	 one	 hand,	 prevent	 the
unintended	effect	from	occurring	in	some	patients.	However,	on	the	other	hand,
such	preferential	nonprescribing	 should	be	 taken	 into	account	when	estimating
the	 association	 between	 the	 intervention	 and	 such	 an	 unintended	 effect.
Uncritical	 comparison	 of	 the	 incidence	 of	 the	 unintended	 effect	 among	 those
receiving	the	drug	and	a	group	of	patients	not	receiving	the	drug	will	then	dilute
the	 association.	Obviously	 such	 confounding	 (often	 referred	 to	 as	confounding
by	contraindication)	should	be	accounted	for	in	the	design	of	the	study.
Because	type	A	unintended	effects	are	closely	related	to	the	intended	effects



of	 an	 intervention,	 patient	 characteristics	 associated	 with	 the	 initiation	 of	 an
intervention	may	 be	 predictive	 of	 the	 probability	 of	 developing	 both	 intended
and	 unintended	 effects.	Consequently,	 confounding	 by	 indication	 threatens	 the
validity	of	any	study	assessing	 type	A	unintended	effects.	This	 is	 illustrated	 in
Figure	6–2.
Because	 in	 Figure	 6–2	 the	 left	 arrow	 exists	 by	 definition	 (see	 exclamation

mark),	 any	 association	 between	 one	 of	 the	 determinants	 of	 prescribing
anticoagulants	with	 the	 unintended	 effect	 of	 interest	may	 induce	 confounding.
Multiple	patient	characteristics	will	influence	the	decision	to	start	an	intervention
in	clinical	practice	(e.g.,	elderly,	men,	those	at	increased	cardiovascular	risk,	and
those	with	clear	 indications	such	as	atrial	fibrillation	are	more	likely	to	receive
anticoagulants),	so	it	seems	justified	to	consider	confounding	by	indication	as	a
given.	At	 least	 one	of	 these	 determinants	 (here,	 for	 example,	 age)	 is	 apt	 to	 be
associated	with	 the	 probability	 of	 developing	 the	 unintended	 effect	 [Roldán	 et
al.,	 2013].	 Thus,	 one	 should	 always	 take	 measures	 to	 prevent	 or	 adjust	 for
confounding	in	the	assessment	of	type	A	unintended	effects.

FIGURE	6–2	Potential	confounding	in	the	study	of	type	A	unintended	effects	of	an	intervention	with	the
example	of	anticoagulants	and	bleeding.

Type	B	Unintended	Effects
In	contrast	to	type	A	unintended	effects,	type	B	unintended	effects	do	not	result
from	 the	 primary	 action	 of	 an	 intervention.	 In	 fact,	 often	 the	 mechanism
underlying	 a	 type	 B	 unintended	 effect	 remains	 unknown.	 Type	 B	 unintended
effects	 typically	 are	 rare,	 not	 dose	 dependent,	 are	 an	 “all	 or	 nothing”
phenomenon,	 and	 cannot	 be	predicted.	Classic	 examples	of	 type	B	unintended
effects	are	anaphylactic	shock,	aplasia,	or	other	idiosyncratic	reactions	following
the	administration	of	certain	drugs.	The	“all	or	nothing”	phenomenon	 refers	 to
the	fact	that	type	B	unintended	effects	either	do	not	occur	or	present	themselves



as	 a	 full-blown	 event,	 irrespective	 of	 the	 dosage.	 The	 unpredictability	 of	 such
unintended	effects	is	crucial	in	the	understanding	of	the	potential	of	confounding
in	research	directed	at	these	effects.	Consider	a	study	quantifying	the	association
between	 the	 use	 of	 an	 antihypertensive	 drug	 enalapril	 (one	 of	 the	 first
angiotensin-converting-enzyme	 [ACE]	 inhibitors)	 and	 the	 occurrence	 of
angioedema	(see	Figure	6–3).

FIGURE	6–3	Potential	confounding	in	the	study	of	type	B	unintended	effects	of	an	intervention	with	the
example	of	enalapril	and	angioedema.

This	is	a	rare	event	characterized	by	swelling	around	the	eyes	and	lips,	which
in	severe	cases	also	may	involve	the	throat,	a	side	effect	that	is	potentially	fatal.
Again,	determinants	of	enalapril	prescription	 (blood	pressure	 level,	 levels	of

other	cardiovascular	risk	factors,	and	relevant	comorbidity	such	as	heart	failure
or	diabetes)	will	 influence	the	use	of	the	drug	in	clinical	practice	(left	arrow	in
Figure	 6–3).	 In	 contrast	 to	 type	 A	 unintended	 effects,	 these	 patient
characteristics	are	very	unlikely	to	be	associated	with	the	outcome.	For	example,
blood	 pressure,	 cholesterol	 levels,	 and	 diabetes	 are	 not	 related	 to	 the	 risk	 of
developing	angioedema.	Consequently,	 the	arrow	on	 the	 right	 in	Figure	6–3	 is
nonexistent	and	confounding	is	not	a	problem	in	such	type	B	unintended	effects
[Miettinen,	1982;	Vandenbroucke,	2006].
Measures	to	prevent	confounding	are	therefore	generally	not	necessary	in	type

B	unintended	effects,	although	one	has	to	be	absolutely	sure	that	characteristics
of	 recipients	of	 the	 intervention	are	 indeed	not	 related	 to	 the	unintended	event
under	study.

OTHER	UNINTENDED	EFFECTS



Unfortunately,	many	 unintended	 effects	 are	 neither	 typical	 type	A	 nor	 typical
type	B.	For	example,	for	gynacomastia	as	a	side	effect	of	the	use	of	cimetidine,
an	 anti-ulcer	 drug,	 a	 type	 A	 mechanism	 related	 to	 the	 action	 of	 the	 drug
(although	not	to	the	primary	action	of	the	drug)	has	been	identified	and	the	effect
seems	 to	 be	 dose	 related	 [Garcia	 Rodriguez	 &	 Jick,	 1994].	 The	 dose-related
effect,	 typically	 a	 type	 A	 phenomenon,	 is	 counterbalanced	 by	 the
unpredictability	 of	 the	 side	 effect,	 a	 type	 B	 characteristic.	 In	 addition,	 some
unintended	effects	that	were	first	considered	clear	type	B	may	develop	into	type
A	 unintended	 effects	 at	 a	 later	 stage,	 for	 example,	 when	 the	 underlying
mechanism	and	predictors	of	the	effect	become	known.

BOX	6–5	Example	of	a	Type	A	Unintended	Effect	of	a	Drug	Intervention	that	was	First	Considered	a	Type
B	Effect

Transmural	Myocardial	Infarction	with	Sumatriptan

For	sumatriptan,	tightness	in	the	chest	caused	by	an	unknown	mechanism	has	been	reported	in	3%–5%
of	users.	We	describe	a	47-year-old	woman	with	an	acute	myocardial	infarction	after	administration	of
sumatriptan	6	mg	subcutaneously	for	cluster	headache.	The	patient	had	no	history	of	underlying
ischaemic	heart	disease	or	Prinzmetal’s	angina.	She	recovered	without	complications.

Reproduced	from	The	Lancet,	Vol.	341;	Ottervanger	JP,	Paalman	HJA,	Boxma	GL,	Stricker	BHCh.
Transmural	myocardial	infarction	with	sumatriptan.	861–2.	©	1993,	reprinted	with	permission	from
Elsevier.

An	 example	 is	 the	 abstract	 in	 Box	 6–5.	 With	 the	 first	 reports	 of	 angina
pectoris	 or	 myocardial	 infarction	 in	 recipients	 of	 sumatriptan,	 a	 then	 novel
antimigraine	 drug,	 these	 rare	 events	 were	 primarily	 considered	 type	 B
unintended	 effects	 (see	 also	 the	 wording	 “unknown”	 in	 the	 abstract)
[Ottervanger	et	al.,	1993].	With	accumulating	evidence,	however,	the	effect	was
shown	to	be	related	to	the	primary	action	of	the	drug,	that	is,	its	vasoconstrictive
properties,	 and	 also	 the	 predictability	 of	 the	 effect	 increased.	 Currently	 this
adverse	 drug	 reaction	 is	 primarily	 considered	 a	 type	 A	 effect,	 although	 it
remains,	fortunately,	rare.
Myocardial	infarction	is	also	a	possible	consequence	of	Metoo-coxib,	the	drug

introduced	in	the	beginning	of	this	chapter;	this	is	more	characteristics	of	a	type
A	 than	 a	 type	 B	 unintended	 effect.	 COX-2	 inhibition	 promotes	 platelet
aggregation	 because	 of	 inhibition	 of	 endothelial	 prostacyclin,	 while	 COX-1
inhibition	 inhibits	 aggregation	 because	 of	 inhibition	 of	 platelet	 thromboxane
synthesis.	 Thus,	 selective	 COX-2	 inhibition	 was	 expected	 to	 increase	 platelet



aggregation,	 which	 may	 indeed	 promote	 thrombus	 formation	 and	 eventually
cause	 myocardial	 infarction.	 The	 observed	 dose–response	 relationship	 further
illustrates	 that	myocardial	 infarction	may	be	a	 type	A	effect	 [Andersohn	et	al.,
2006].	Consequently,	confounding	by	indication	may	pose	an	important	threat	to
the	 validity	 of	 research	 on	 this	 potential	 side	 effect	 of	 Metoo-coxib	 or	 other
COX-2	inhibitors.

THEORETICAL	DESIGN
The	occurrence	relation	of	research	on	the	unintended	effects	of	an	intervention
closely	resembles	that	of	research	on	the	intended	effects	of	interventions:

Unintended	effect	=	f	(intervention	|	EF)

Because	the	primary	goal	is	to	assess	causality,	the	occurrence	relation	should
be	estimated	conditional	on	confounders	(external	factors,	or	EF).
The	domain	usually	 includes	patients	with	 an	 indication	 for	 the	 intervention

(e.g.,	a	specific	disease),	or	defined	more	broadly,	patients	in	whom	a	physician
considers	initiating	the	intervention.
In	the	Metoo-coxib	example,	the	occurrence	relation	would	be,

Myocardial	infarction	=	f	(Metoo-coxib	|	EF)

and	 the	 domain	 is	 defined	 as	 a	 patient	 with	 osteoarthritis	 (or	 perhaps	 other
diseases)	requiring	analgesics.

DESIGN	OF	DATA	COLLECTION

Time
As	for	studies	assessing	intended	effects	of	interventions,	the	time	dimension	for
research	 on	 unintended	 effects	 is	 larger	 than	 zero.	 The	 aim	 is	 to	 establish
whether	 a	 specific	 intervention	 is	 related	 to	 the	 future	 occurrence	 of	 a	 certain
effect.	In	principle,	therefore,	research	on	unintended	effects	is	longitudinal.



Census	or	Sampling
In	 contrast	 to	 diagnostic	 studies	 and	 research	 on	 the	 intended	 effects	 of
interventions,	 studies	 addressing	 unintended	 effects	 of	 interventions	 relatively
often	 take	 a	 sampling	 instead	 of	 a	 census	 approach.	There	 are	 several	 reasons
why	sampling	(and,	thus,	a	case-control	study)	is	attractive	here.	First,	sampling
is	efficient	when	the	unintended	effect	is	rare,	as	is	typically	the	case	in	type	B
unintended	effects.	A	census	approach	would	imply	following	in	time	very	large
numbers	of	patients	receiving	or	not	receiving	the	treatment.	For	the	example	at
the	beginning	of	the	chapter,	this	would	entail	following	a	large	group	of	patients
with	rheumatoid	arthritis	receiving	Metoo-coxib	and	a	large	group	receiving	no
or	 other	 analgesics.	Alternatively,	 one	may	 hypothetically	 define	 and	 follow	 a
study	base,	consisting	in	this	example	of	patients	with	rheumatoid	arthritis,	and
only	 study	 in	 detail	 those	 developing	 the	 unintended	 effect	 (i.e.,	 cases)	 during
the	 study	period	and	a	 sample	 representative	of	 that	 study	base	 (i.e.,	 controls).
Obviously,	 the	definition	of	 the	study	base	critically	depends	on	the	domain	of
the	 study.	Case-control	 studies	 are	 efficient	 also	when	 the	measurement	of	 the
determinant	and	other	relevant	characteristics,	such	as	potential	confounders	and
effect	 modifiers,	 is	 expensive,	 time	 consuming,	 or	 burdensome	 to	 the	 patient.
For	 example,	 when	 detailed	 information,	 including	 dosage,	 duration	 of	 use,
compliance	to	medications	(including	Metoo-coxib),	and	relevant	comorbidity	is
difficult	to	obtain,	a	case-control	study	should	be	considered.	In	addition,	when
unintended	effects	take	a	long	time	to	develop	or	when	the	time	from	exposure
to	the	intervention	until	the	occurrence	of	the	effect	are	unknown,	a	case-control
approach	is	attractive.
The	classic	example	of	a	case-control	study	establishing	the	causal	association

between	 the	 use	 of	 the	 estrogen	 diethylstilboestrol	 (DES)	 in	 mothers	 and	 the
occurrence	 of	 clear-cell	 adenocarcinoma	 of	 the	 vagina	 in	 their	 daughters
illustrates	the	strengths	of	case-control	studies;	a	census	approach	would	require
an	unrealistic	follow-up	time	lasting	one	generation	and	a	huge	study	population
because	 vaginal	 carcinoma	 is	 extremely	 rare.	 The	 results	 of	 the	 original	 case-
control	 study	 from	 1971	 on	 this	 topic	 are	 shown	 in	Table	 6–1	 [Herbst	 et	 al.,
1971].
In	 that	 study,	 eight	 cases	 were	 compared	 with	 32	 matched	 controls.	 The

mothers	 of	 seven	 of	 the	 eight	 daughters	 with	 vaginal	 carcinoma	 had	 received
DES	(a	drug	primarily	prescribed	 for	women	with	habitual	abortion	 to	prevent
future	 fetal	 loss)	 during	 pregnancy,	 whereas	 none	 of	 the	 mothers	 of	 the	 32



control	 daughters	 had	 used	 DES.	 Although	 no	 quantitative	 measure	 of
association	was	reported	(in	fact	the	odds	ratio	cannot	be	calculated	because	its
numerator	includes	0	and	the	odds	ratio	reaches	infinity),	it	was	not	difficult	to
conclude	 that	DES	 increases	 the	 risk	of	vaginal	carcinoma	 in	daughters.	When
assuming	 that	 the	mother	 of	 one	 control	 received	 DES	 during	 pregnancy,	 the
odds	ratio	would	be	(7	×	31)/(1	×	1)	=	217,	still	indicating	a	more	than	200-fold
risk.

Experimental	or	Observational
The	main	 challenge	 of	 research	 on	 unintended	 effects	 of	 interventions	 lies	 in
proving	beyond	a	reasonable	doubt	that	the	intervention	is	causally	involved	in
the	 occurrence	 of	 the	 outcome.	 An	 experimental	 approach	 (i.e.,	 a	 randomized
controlled	 trial)	 best	 ensures	 that	 the	 outcome	 is	 indeed	 attributable	 to	 the
intervention,	 mainly	 because	 randomization	 will	 achieve	 comparability	 of
natural	 history	 of	 those	who	 do	 and	 do	 not	 receive	 the	 intervention	 and,	 thus,
prevent	 confounding.	 Moreover,	 randomized	 controlled	 trials,	 when	 properly
conducted,	 will	 also	 achieve	 the	 other	 two	 “comparabilities,”	 that	 is,
comparability	of	extraneous	effects	and	comparability	of	observations,	which	are
necessary	 to	 prove	 that	 the	 intervention	 is	 “guilty,”	 to	 return	 to	 the	 courtroom
analogy.	 However,	 there	 are	 several	 reasons	 why	 this	 paradigm	 for	 assessing
causality	 in	 intervention	 research	 is	 less	 suitable	 when	 the	 aim	 is	 to	 establish
unintended	intervention	effects.

TABLE	6–1	Results	of	the	Original	Case-Control	Study	(with	8	Cases	and	32	Controls)	on	the	Association
between	DES	use	in	Mothers	and	Vaginal	Carcinoma	in	their	Daughters



aMatched	control	chi-square	test	used	is	described	by	Pike	&	Morrow.
†Standard	error	of	difference	1.7	yr	(paired	t-test);	N.S.	=	not	statistically	signficant.
Reproduced	from:	Herbst	AL,	Ulfelder	H,	Poskanzer	DC.	Adenocarcinoma	of	the	vagina.	Association	of
maternal	stilbestrol	therapy	with	tumor	appearance	in	young	women.	N	Engl	J	Med	1971;284:878–81.
Copyright	©	1971.	Massachusetts	Medical	Society.	All	rights	reserved.

Typical	 circumstances	 under	 which	 randomized	 trials	 are	 not	 suited	 for	 the
study	 of	 unintended	 effects	 are	 situations	 where	 case-control	 studies	 are
particularly	 efficient—when	 the	 outcome	 is	 rare	 and	 when	 the	 time	 between
exposure	 to	 the	 intervention	and	 the	development	of	 the	outcome	 is	very	 long.
There	 is	 no	 doubt	 that	 a	 randomized	 trial	 to	 estimate	 the	 risk	 of	 vaginal
carcinoma	 in	 daughters	 of	 mothers	 exposed	 to	 DES	 during	 pregnancy	 is	 not
feasible	because	 it	would	be	an	unrealistically	 large	 trial	with	an	unachievably
long	follow-up	period.	Also,	when	 the	 time	from	exposure	 to	 the	side	effect	 is
unknown,	 randomized	 trials	 are	 of	 limited	 value.	 In	 fact,	 one	 of	 the	 major
strengths	 of	 observational	 studies	 on	 unintended	 effects	 is	 that	 they	 can
determine	the	influence	of	the	duration	of	the	exposure	on	the	occurrence	of	the
effect	[Miettinen,	1989].
Table	6–2	shows	that	the	number	of	patients	required	in	each	of	the	two	arms

of	a	randomized	 trial	 to	detect	a	 relative	risk	of	2	(with	a	 type	1	error	of	0.05,
and	 type	 2	 error	 of	 0.20)	 increases	 dramatically	 when	 the	 incidence	 of	 the
outcome	effect	becomes	rare.
Type	B	unintended	 effects	 are	 especially	 difficult	 to	 detect	 in	 a	 randomized

trial	because	the	frequency	of	the	outcome,	such	as	anaphylactic	shock	in	those
not	receiving	the	drug	under	study	or	an	alternative	intervention,	is	usually	lower



than	0.1%	or	even	0.01%.

TABLE	6–2	Risk	of	the	Outcome	in	the	Control	Group	and	the	Number	of	Participants	Required	in	Each
Group	of	a	Randomized	Trial

Risk	of	Outcome	in	Control	Group Number	Required	in	Each	Group

50% 						8
25% 					55
10% 				198
		5% 				435
		1.0% 		2,331
		0.1% 	23,661
		0.01% 236,961

	

There	are	also	ethical	constraints	in	conducting	randomized	trials	to	quantify
the	occurrence	of	unintended	effects,	most	notably	when	the	assessment	of	side
effects	 that	 are	 burdensome	 to	 patients	 is	 the	 primary	 aim	 of	 the	 trial	 and
suspicion	 has	 been	 raised.	 For	 some	 interventions,	 random	 allocation	 is
downright	 impossible.	One	cannot	envision	a	 trial	 involving	 random	allocation
of	 patients	 smoking	 40	 cigarettes	 a	 day	 for	 40	 years	 to	 quantify	 the	 increased
lung	cancer	risk	or	a	trial	randomly	allocating	participants	to	a	sedentary	life	to
estimate	 its	deleterious	 effects	on	cardiovascular	health.	Moreover,	 imagine	an
investigator	 asking	 potential	 participants	 whether	 they	 would	 be	 willing	 to
participate	in	a	study	designed	to	determine	if	Metoo-coxib	increases	the	risk	of
myocardial	 infarction	 and	 relaying	 that	 their	 probability	 of	 being	 randomly
allocated	 to	receive	 the	drug	for	a	couple	of	years	 is	50%.	Few	patients	would
sign	 an	 informed	 consent	 for	 that	 study.	Whether	 an	 ethics	 committee	 would
permit	 such	 a	 trial	 to	 be	 launched	 clearly	 depends	 on	 the	 magnitude	 of	 the
beneficial	effects	of	Metoo-coxib	relative	to	its	comparator	substance	(a	placebo,
or	 another	 analgesic).	 When	 an	 intervention	 has	 proven	 efficacy,	 placebo-
controlled	 trials	will	often	be	considered	unethical	and	active	comparators	will
have	 to	 be	 included	 [Wangge	 et	 al.,	 2013a].	Obviously,	 side	 effects	 should	be
recorded	 in	 all	 randomized	 trials	 primarily	 aimed	 at	 assessing	 the	 beneficial
effects	of	interventions,	notably	in	the	case	of	drug	trials	performed	to	apply	for
marketing	authorization.	Certainly	premarketing	(Phase	2	and	3)	trials,	however,
will	often	lack	statistical	power	to	detect	less	common	side	effects	[Duijnhoven
et	 al.,	 2013].	A	postmarketing	 (Phase	4)	 trial	 is	 an	 important	 tool	 in	 drug	 risk
assessment	 because	 these	 trials	 are	 larger	 than	 premarketing	 trials.	 With	 the



combination	of	multiple	similar	trials	in	meta-analyses,	the	power	can	be	further
increased,	 sometimes	 even	 allowing	 the	 detection	 of	 rare	 type	 B	 side	 effects
[Makani	et	al.,	2012].
An	 example	 of	 a	 randomized	 trial	 that	 was	 designed	 to	 also	 quantify	 the

occurrence	 of	 side	 effects	 of	 an	 intervention	 is	 shown	 in	Table	 6–3.	 A	 large
placebo-controlled	 randomized	 trial	was	performed	 to	 assess	both	 the	 intended
and	unintended	effects	of	influenza	vaccination	in	the	elderly.	The	rationale	for
the	 study	 was	 provided	 by	 the	 alleged	 low	 efficacy	 and	 the	 existing	 fear	 of
systemic	adverse	effects	that	were	believed	to	underlie	the	low	vaccination	rate
in	older	adults	at	that	time.	A	separate	article	[Govaert	et	al.,	1993]	was	devoted
to	 the	 unintended	 effects	 of	 influenza	 vaccination;	 its	 main	 results	 are
summarized	in	Table	6–3.
Although	 local	 side	 effects,	 such	 as	 swelling	 and	 itching,	 were	much	more

common	 in	 the	 influenza	 group	 than	 in	 the	 placebo	 group,	 the	 frequencies	 of
systemic	 reactions	 did	 not	 differ	 appreciably,	 in	 particular	 among	 those	 older
adults	at	potential	risk.	The	power	in	this	latter	group	was	too	low,	however,	to
detect	 small	 differences	 between	 the	 groups.	 The	 comforting	 results	 of	 this
Dutch	 study	 have	 probably	 significantly	 contributed	 to	 the	 currently	 high	 (>
80%)	vaccination	coverage	rate	among	the	elderly	in	the	Netherlands.

TABLE	6–3	Numbers	(Percentages)	of	All	Patients	and	of	Patients	at	Potential	Risk*	in	the	Infl	uenza
Vaccine	and	in	the	Placebo	Group	who	Reported	Local	or	Systemic	Adverse	Reactions

*	Patients	at	potential	risk	were	patients	with	heart	disease,	pulmonary	disease,	or	metabolic	disease.
Thirty-two	subjects	were	excluded	because	of	incomplete	data,	10	of	whom	were	at	potential	risk.
Reproduced	from:	Govaert	TM,	Dinant	GJ,	Aretz	K,	Masurel	N,	Sprenger	MJ,	Knottnerus	JA.	Adverse
reactions	to	infl	uenza	vaccine	in	elderly	people:	Randomised	double	blind	placebo	controlled	trial.	BMJ
1993;307:988–90	with	permission	from	BMJ	Publishing	Group	Ltd.



A	final	disadvantage	of	randomized	trials	 is	 their	 tendency	to	 include	highly
selected	 patient	 populations.	Although	 this	 bears	 on	 the	 generalizability	 of	 the
findings	 and	 not	 on	 the	 validity	 of	 the	 study,	 it	 may	 seriously	 hamper	 the
applicability	 of	 the	 findings,	 in	 particular	 with	 regard	 to	 side	 effects	 of
interventions.	 Restriction	 of	 study	 populations	 (e.g.,	 men	within	 a	 certain	 age
range)	may	 increase	 the	 feasibility	 and	 validity	 of	 a	 study	 and,	 as	 long	 as	 the
research	findings	can	be	expected	to	be	similar	in	groups	of	patients	not	included
(e.g.,	men	of	other	ages	and	women),	this	will	not	restrict	the	applicability	of	the
findings.	 There	 is	 ample	 evidence	 that	 for	 many	 interventions,	 the	 intended
effects	are	not	modified	by	age	and	gender,	particularly	when	 these	effects	are
measured	as	a	 relative	 risk	 reduction.	For	example,	 treatment	with	cholesterol-
lowering	 statins	 reduces	 the	 incidence	 of	 cardiovascular	 disease	 by
approximately	30%	across	 a	wide	age	 range	of	persons,	 irrespective	of	gender
and	prior	cardiovascular	disease	[LaRosa	&	Vupputuri,	1999].
Unintended	 effects,	 however,	 tend	 to	 occur	 more	 often	 in	 certain	 patient

categories,	 typically	 older	 patients	with	 comorbidities	who	 are	 taking	multiple
drugs.	Pregnant	women	also	are	a	particularly	vulnerable	group.	Thus,	excluding
these	“real-life”	patients	from	the	study	population	will	produce	unbiased	results
for	the	patient	population	included	in	the	study,	but	these	unbiased	findings	may
underestimate	the	association	between	the	intervention	and	the	unintended	effect
in	daily	practice	and	will	limit	the	generalizability	and	clinical	relevance	of	the
findings.	 To	 learn	 whether	 and	 to	 what	 extent	 an	 intervention	 causes	 an
unintended	effect	in	clinical	practice	requires	the	inclusion	of	patients	using	the
drug	 in	 daily	 practice.	 Consequently,	 randomized	 trials	 including	 highly
restricted	patient	populations	often	are	of	limited	value	in	addressing	the	risk	of
unintended	 effects.	 Trials	 on	 the	 effect	 of	 anticoagulant	 treatments	 in	 patients
with	 atrial	 fibrillation	 are	 an	 example.	 Most	 of	 these	 trials	 were	 primarily
conducted	to	assess	the	beneficial	(e.g.,	cerebrovascular	event-reducing)	effects
of	these	drugs,	and	patients	were	selected	such	that	their	risk	of	bleeding	(a	type
A	 unintended	 effect)	 was	 minimized	 [Koefoed	 et	 al.,	 1995].	 For	 example,
patients	with	conditions	requiring	permanent	NSAID	therapy	and	regular	alcohol
users	were	excluded.	Consequently,	the	observed	(and	unbiased)	risk	in	many	of
those	trials	was	lower	than	the	risk	observed	in	daily	practice.	Box	6–6	describes
an	example	of	 the	exclusion	criteria	from	one	of	 these	studies,	 the	AFASAK-2
study.

BOX	6–6	Exclusion	Criteria	for	the	AFASAK-2	Study



Systolic	blood	pressure	>	180	mm	Hg
Diastolic	blood	pressure	>	100	mm	Hg
Mitral	stenosis
Alcoholism
Dementia
Psychiatric	disease
Lone	atrial	fibrillation	in	patients	<	60	years	of	age
Contraindications	for	warfarin	therapy
Contraindications	for	aspirin	therapy
Warfarin	therapy	based	on	other	medical	conditions
Thromboembolic	event	in	the	preceding	6	months
Foreign	language
Pregnancy	and	breastfeeding
Chronic	nonsteroidal	anti-inflammatory	drug	therapy

	

Although	multiple	exclusion	criteria	can	be	very	helpful	and	may	be	justified
to	optimize	 the	safety	of	participants	 in	an	efficacy	trial,	 they	also	may	lead	 to
inadequate	estimates	of	the	unintended	effects	occurring	in	daily	practice	where
patients	will	be	treated	outside	the	domain	of	the	study.
In	a	 randomized	study	specifically	designed	 to	compare	gastrointestinal	 side

effects	 in	 those	receiving	rofecoxib	and	the	NSAID	naproxen,	recipients	of	 the
COX-2	 inhibitor	 experienced	 a	 50%	 lower	 risk	 of	 gastrointestinal	 side	 effects
(see	Table	6–4)	[Bombardier	et	al.,	2000].
This	 trial	 among	 patients	 with	 rheumatoid	 arthritis	 shows	 the	 strength	 of

randomized	trials	in	estimating	the	risk	of	relatively	frequent	unintended	effects
(e.g.,	 four	 upper	 gastrointestinal	 events	 per	 100	 patient	 years	 in	 the	 naproxen
group).	 It	 also	 exemplifies	 that	 when	 trials	 are	 large	 enough,	 they	 may	 be
instrumental	 in	 detecting	 even	 relatively	 rare	 effects.	 In	 this	 study	 including
8,076	 randomized	 patients,	 the	 risk	 of	myocardial	 infarction	was	 lower	 in	 the
naproxen	group	(0.1%)	than	in	the	rofecoxib	group	(0.4%;	relative	risk	0.2;	95%
confidence	 interval	 [CI],	 0.1–0.7).	 It	 took	 several	more	years,	 however,	 before
another	 trial,	 this	 one	 in	 patients	 with	 colorectal	 adenoma,	 confirmed	 the
increased	risk	of	cardiovascular	events	among	rofecoxib	users,	urging	the	firm	to
withdraw	the	drug	from	the	market	[Bresalier	et	al.,	2005].

TABLE	6–4	Incidence	of	Gastrointestinal	Events	in	Patients	Using	Different	Types	of	COX-2	Inhibitors	or
NSAIDs



*CI	denotes	confidence	interval.
†The	analysis	includes	13	events	that	were	reported	by	investigators	but	were	considered	to	be	unconfi
rmed	by	the	end-point	committee.
‡The	analysis	includes	six	events	that	were	reported	by	investigators	but	were	considered	to	be	unconfi
rmed	by	the	end-point	committee.
Reproduced	from	Bombardier	C,	and	VIGOR	Study	Group	et	al.	Comparison	of	upper	gastrointestinal
toxicity	of	rofecoxib	and	naproxen	in	patients	with	rheumatoid	arthritis.	VIGOR	Study	Group,	N	Engl	J
Med	2000;343:1520–8.
	
Given	 the	 limitations	 of	 randomized	 trials	 to	 detect	 unintended	 effects	 of

interventions,	notably	when	these	are	rare,	observational	(i.e.,	nonexperimental)
studies	 provide	 an	 important	 alternative.	 An	 advantage	 of	 performing
observational	 studies	 to	 assess	 unintended	 effects	 is	 that	 by	 definition	 “real”
patients	receiving	the	intervention	in	everyday	clinical	practice	will	be	included.
To	 allow	 for	 valid	 conclusions	 regarding	 the	 causal	 relationship	 between	 the
intervention	 and	 the	 unintended	 effect,	 however,	 these	 observational	 studies
should	be	designed	such	that	comparability	of	natural	history,	observations,	and
extraneous	 factors	 is	 ensured.	 Notably,	 achieving	 comparability	 of	 natural
history,	that	is,	preventing	confounding,	is	often	very	difficult.	In	this	process	a
thought	experiment,	taking	the	randomized	trial	as	a	paradigm	for	observational
research,	can	be	very	useful	[Miettinen,	1989].	In	the	following	section,	different
approaches	 to	 prevent	 or	 limit	 incomparability	 of	 observations,	 extraneous
effects,	and	natural	history	will	be	discussed	in	some	detail.

COMPARABILITY	IN	OBSERVATIONAL
RESEARCH	ON	UNINTENDED	EFFECTS

Comparability	of	Observations



Blinding	 is	 the	 generally	 accepted	 method	 for	 achieving	 comparability	 of
observations	between	those	receiving	the	intervention	and	the	comparison	group.
In	a	randomized	trial,	tools	are	available	to	keep	all	those	involved	in	measuring
the	 outcome	 (the	 observer,	 but	 possibly	 also	 the	 patients	 and	 doctors	 or	 other
healthcare	 workers	 when	 they	 can	 influence	 the	 measurements)	 blinded	 to
treatment	allocation,	notably	by	the	use	of	a	placebo.	In	observational	research,
usually	only	part	of	the	observations	can	be	blinded.	In	a	cohort	study	examining
the	effect	of	Metoo-coxib	on	the	risk	of	myocardial	infarction,	for	example,	one
could	blind	the	researchers	involved	in	adjudication	of	the	outcome	by	deleting
all	 information	pertaining	 to	 the	medication	used	by	 the	patients	 from	 the	data
forwarded	 to	 them.	 If,	 however,	 the	 use	 of	COX-2	 inhibitors	 urges	 healthcare
workers	 and	 patients	 to	 be	 more	 perceptive	 of	 signs	 of	 possible	 myocardial
infarction,	 leading	 more	 often	 to	 ordering	 tests	 to	 establish	 or	 rule	 out	 the
disease,	 incomparability	of	observations	may	artificially	 inflate	 the	drug’s	 risk.
Alternatively,	 one	 could	 choose	 the	 technique	 of	measuring	 the	 outcome	 such
that	 observer	 bias	 is	 minimized.	 For	 example,	 automated	 biochemical
measurements	 do	 not	 require	 blinding,	 although	 in	 daily	 practice	 routine
ordering	of	such	tests	may	very	well	be	influenced	by	the	intervention	the	patient
receives.	Finally,	a	hard	outcome,	such	as	death,	will	 increase	comparability	of
observations.

Comparability	of	Extraneous	Effects
As	 in	 research	 on	 intended	 effects	 of	 interventions,	 one	 should	 first	 establish
which	part	of	the	intervention	is	considered	extraneous	to	the	occurrence	relation
before	the	design	of	data	collection	is	determined.	When	the	goal	is	to	quantify
the	 causal	 relationship	 between	 the	 pharmacologic	 substrate	 of	 a	 drug	 and	 an
unintended	outcome,	as	will	often	be	the	case	in	drug	risk	assessment,	all	other
effects	 of	 receiving	 a	 drug	 (such	 as	 the	 extra	 time	 spent	 by	 the	 prescribing
physician	 and	 accompanying	 lifestyle	 changes)	 are	 extraneous	 and	 should	 be
accounted	 for	 in	 the	 design	 of	 the	 study,	 typically	 in	 the	 design	 of	 data
collection.	As	discussed	earlier,	 the	main	tool	used	to	achieve	comparability	of
extraneous	 effects	 in	 randomized	 trials—a	 placebo	 or	 “sham”	 intervention—is
unattainable	in	observational	research.	The	observational	counterpart	of	placebo
treatment	is	selectivity	in	the	choice	of	the	intervention	and	reference	categories
of	 the	 determinant	 to	 be	 studied.	 Ideally,	 the	 extraneous	 effects	 of	 these	 two
categories	should	be	comparable	(or	absent).	This	is	more	likely	to	be	achieved



by	 comparing	 two	 drug	 interventions	 (one	 is	 the	 intervention	 and	 one	 is	 the
reference	category	of	the	determinant)	with	similar	indications,	for	example,	two
individual	COX-2	inhibitors,	then	by	contrasting	the	use	of	Metoo-coxib	to	non-
use	of	a	COX-2	inhibitor.	Comparison	of	those	receiving	the	intervention	under
study	 with	 those	 not	 receiving	 this	 or	 an	 alternative	 intervention	may	 lead	 to
considerable	 incomparability.	 Obviously,	 comparison	 of	Metoo-coxib–	 treated
patients	 to	patients	not	 receiving	any	analgesics	may	affect	validity	because	of
incomparability	 of	 extraneous	 effects,	 when	 those	 receiving	 Metoo-coxib	 are
more	 likely	 to	 comply	 with	 healthy	 lifestyle	 habits	 influencing	 the	 risk	 of
myocardial	 infarction	 or	 are	 more	 likely	 to	 visit	 their	 treating	 physician
regularly.	The	choice	of	an	appropriate	reference	category	for	the	determinant	is
also	 important	 to	 deal	 with	 the	 major	 threat	 to	 the	 validity	 of	 observational
studies	on	the	effects	of	interventions:	incomparability	of	natural	history.	How	to
prevent	such	confounding	in	research	on	unintended	effects	will	be	discussed	in
the	next	section.

Comparability	of	Natural	History
Incomparability	of	natural	history	(i.e.,	confounding)	is	the	most	critical	threat	to
the	 validity	 of	 most	 observational	 studies	 on	 the	 effects	 of	 interventions.
Fortunately,	several	methods,	both	in	the	design	of	data	collection	and	the	design
of	data	 analysis,	 are	 available	 to	 limit	 or	 even	prevent	 confounding.	However,
before	 embarking	 on	 a	 crusade	 of	 measures	 to	 reduce	 confounding	 in	 an
observational	 study,	 one	 should	 first	 decide	 whether	 confounding	 is	 indeed
likely.	 As	 explained	 earlier,	 the	 probability	 of	 confounding	 depends	 on	 the
association	 between	 the	 reasons	 (including	 patient	 characteristics)	 to	 prescribe
(or	 refrain	 from	prescribing)	 a	 certain	 intervention	with	 the	outcome	 involved,
that	 is,	 on	 the	 existence	 of	 the	 right	 arrow	 in	 the	 “confounder	 triangle”	 (see
Figure	 6–1).	When	 such	 an	 association	 is	 nonexistent,	 as	 will	 be	 the	 case	 in
typical	 type	 B	 unintended	 effects	 such	 as	 anaphylactic	 shock	 or	 angioedema,
confounding	is	a	non-issue.
Consider	 once	 again	 the	 example	 of	 the	 use	 of	 DES	 in	 mothers	 and	 the

occurrence	of	vaginal	carcinoma	in	their	daughters.	The	“confounder	triangle”	of
the	occurrence	relation	is	shown	in	Figure	6–4.
The	patient	characteristics	influencing	the	physician	to	initiate	or	refrain	from

prescribing	the	drug,	including	habitual	abortion	(the	indication	for	the	drug)	or
age,	by	definition,	will	be	related	to	the	probability	of	receiving	the	intervention



(i.e.,	 the	 left	 arrow	exists).	These	 or	 other	 patient	 characteristics	 related	 to	 the
initiation	 of	 the	 drug	 are	 very	 unlikely	 to	 also	 determine	 the	 occurrence	 of
vaginal	 carcinoma	 in	 their	 daughters	 (i.e.,	 the	 right	 arrow	 is	 absent).
Consequently,	 there	 is	 no	 confounding.	 In	 type	 A	 unintended	 effects	 and
intended	effects	of	an	intervention,	the	right	arrow	is	much	more	likely	to	exist,
so	 confounding	 should	 be	 dealt	 with	 appropriately.	 Also	 then,	 however,	 a
detailed	discussion	of	the	probability	of	confounding	can	be	very	helpful.
Deep	vein	thrombosis	(DVT)	as	an	unintended	effect	of	second-	versus	third-

generation	oral	contraceptives	serves	as	an	example.	DVT	could	be	considered	a
type	 A	 unintended	 effect	 because	 the	 underlying	 mechanism	 is	 understood
[Kemmeren	et	al.,	2004]	and	the	unintended	effect	may	be	predicted	to	a	certain
extent.	 As	 third-generation	 oral	 contraceptives	 were	 initially	 expected	 to	 be
safer,	 they	 could	 preferentially	 have	 been	 prescribed	 to	 women	 who	 had	 an
increased	risk	for	vascular	effects	of	oral	contraceptives,	for	example,	those	with
a	history	of	thrombosis.	Nevertheless,	confounding	need	not	be	an	issue	as	long
as	 the	 reasons	 to	prescribe	a	 second-	or	 third-generation	oral	 contraceptive	are
not	related	to	the	risk	for	venous	thrombosis	(i.e.,	the	right	arrow	does	not	exist).
To	 confidently	 exclude	 such	 a	 relationship	 is	 a	 difficult	 task,	 however,	 and
requires	detailed	knowledge	about	the	determinants	of	DVT	and	the	distribution
of	these	characteristics	among	women	receiving	second-	or	third-generation	oral
contraceptives	 in	 daily	 practice.	 Often,	 showing	 that	 measures	 to	 limit
confounding	 do	 not	 materially	 influence	 the	 observed	 risk	 of	 the	 unintended
effect	is	the	only	way	to	convince	the	readership	that	confounding	indeed	did	not
occur	[Lidegaard	et	al.,	2002].

FIGURE	6–4	Potential	confounding	in	a	study	on	the	causal	role	of	DES	prescription	in	the	occurrence	of
vaginal	carcinoma	in	daughters.

METHODS	USED	TO	LIMIT	CONFOUNDING



Observational	Studies	on	Unintended	Effects	of
Interventions
When	confounding	cannot	be	excluded	beforehand,	for	example,	by	means	of	a
random	 allocation	 of	 the	 intervention,	 multiple	 methods	 can	 be	 applied	 to
establish	 or	 approach	 comparability	 of	 natural	 history.	 Most	 observational
studies	 assessing	 unintended	 effects	 of	 interventions	 apply	 multiple	 methods
simultaneously	 to	 achieve	 comparability	 of	 natural	 history.	 Some	 of	 these
methods	 are	 summarized	 in	Box	 6–7.	 The	 same	methods	 also	 can	 be	 used	 to
limit	confounding	 in	observational	 studies	on	 intended	effects	of	 interventions,
although	major	 confounding	may	 remain	 present	 there	 because	 the	 reasons	 to
initiate	an	intervention	are,	by	definition,	almost	always	related	to	the	outcome
(i.e.,	 its	 intended	effect)	and	many	may	be	 implicit	or	unmeasured	 [Hak	et	al.,
2002].	Such	massive	confounding	often	poses	insurmountable	validity	problems
[Vandenbroucke,	2004].

Limiting	Confounding	in	the	Design	of	Data
Collection

Restriction	of	the	Study	Population
An	important	tool	to	prevent	confounding	is	to	choose	the	study	population	such
that	 the	 baseline	 risk	 of	 the	 outcome	 (here,	 unintended	 effect)	 is	more	 or	 less
similar	in	all	participants.	This	could	be	achieved,	at	least	in	part,	by	restricting
the	 study	 population	 to	 those	 patients	 with	 a	 similar	 indication	 but	 without
contraindications	 for	 the	 intervention	 under	 study.	 The	 former	 restriction	 is
obvious;	 it	 primarily	 reflects	 the	 typical	 domain	 of	 a	 study	 on	 the	 effects	 of
interventions.	It	will	be	difficult	to	get	around	the	fact	that	some	of	the	reasons	to
start	an	intervention,	for	example,	 the	severity	of	 the	disease,	are	related	to	 the
risk	 of	 experiencing	 the	 unintended	 effect.	 Restriction	 to	 those	 without
contraindications	(specifically,	those	contraindications	related	to	the	unintended
effect	under	study)	seems	straightforward,	but	the	operationalization	of	this	may
be	rather	difficult.	The	essence	of	the	latter	restriction	is	that	in	the	remainder	of
the	study	population,	the	reasons	to	refrain	from	prescribing	the	intervention	will
not	 be	 based	 on	 the	 risk	 for	 the	 unintended	 effect	 [Jick	 &	 Vessey,	 1978].	 It



should	 be	 emphasized	 that	 not	 all	 reasons	 to	 initiate	 or	 refrain	 from	 an
intervention	 in	 daily	 practice	 are	 known	 and	 measurable,	 let	 alone	 that	 their
possible	 association	 with	 the	 occurrence	 of	 the	 unintended	 effect	 has	 been
established.	Consequently,	 residual	 confounding	 can	never	 be	 excluded.	Those
receiving	or	not	receiving	the	intervention	in	the	restricted	study	population	may
still	 differ	 in	 characteristics	 that	may	be	 related	 to	both	 the	prescription	of	 the
intervention	and	the	outcome,	and	thus	act	as	confounders.	In	addition,	too	much
restriction	may	limit	the	generalizability	of	the	findings	of	the	study.

BOX	6–7	Means	to	Limit	Confounding	by	Indication	in	Observational	Studies	on	Side	Effects	of
Interventions

In	the	design	of	data	collection:

1.	Restriction	of	the	study	population
2.	Selectivity	in	reference	categories	of	determinant
3.	Matching	of	those	with	and	without	the	determinants
4.	Instrumental	variables*

In	the	design	of	data	analysis:

1.	Multivariable	analyses
2.	Propensity	scores*

*Instrumental	variables	and	propensity	scores	can	be	applied	both	in	the	design	of	data	collection	and
in	the	design	of	data	analysis.

In	 a	 nested	 case-control	 study	 with	 the	 objective	 of	 quantifying	 the	 risk	 of
myocardial	 infarction	 or	 sudden	 cardiac	 death	 of	 COX-2	 inhibitors,	 the	 study
population	 was	 a	 cohort	 comprised	 of	 patients	 who	 filled	 at	 least	 one
prescription	 of	 a	 COX-2	 inhibitor	 or	NSAID	 [Graham	 et	 al.,	 2005].	 Thus,	 all
participants	 had	 (or	 had	 in	 the	 past)	 an	 indication	 for	 a	 painkiller	 and	 did	 not
have	a	clear	contraindication	for	NSAIDs.	Nevertheless,	there	may	be	reasons	to
choose	a	 specific	NSAID	within	 the	 indicated	population,	 and	 if	 these	 reasons
are	 related	 to	 the	 risk	 of	 myocardial	 infarction	 or	 sudden	 cardiac	 death,
confounding	will	 result.	Although	 restriction	can	be	a	powerful	means	 to	 limit
confounding,	 additional	 methods	 are	 usually	 required	 to	 preclude	 residual
confounding.

Selectivity	in	the	Reference	Categories	of	the	Determinant
The	 determinant	 of	 the	 occurrence	 relation	 for	 the	 example	 introduced	 in	 the



beginning	of	this	chapter	is	the	use	of	Metoo-coxib.	In	other	words,	exposure	is
defined	as	 the	use	of	 this	drug.	The	definition	of	 the	 reference	category	 is	 less
straightforward,	 however.	 Simply	 including	 patients	 not	 receiving	 the
intervention	 (non-use	 of	 Metoo-coxib)	 carries	 the	 danger	 of	 including	 many
patients	 outside	 the	 relevant	 domain,	 that	 is,	 those	 who	 do	 not	 even	 have	 an
indication	for	analgesics	(see	the	previous	section	on	restriction).	Even	when	the
indications	 are	 not	 related	 to	 the	 unintended	 effect	 (and	 therefore	 are	 not
confounders),	the	generalizability	of	the	findings	to	the	relevant	patient	domain
may	become	problematic.	When	designing	 the	data	 collection,	 this	 domain	 (in
this	 case	 patients	 with	 rheumatoid	 arthritis	 with	 an	 indication	 for	 analgesics)
should	 be	 carefully	 considered.	 Although	 theoretically,	 non-use	 of	 analgesics
within	this	domain	could	be	taken	as	the	reference	category	when	calculating	the
risk	 of	 myocardial	 infarction	 with	 Metoo-coxib	 use,	 non-users	 of	 analgesics
remain	 an	 atypical,	 small	 subgroup	 among	 the	 domain	 of	 those	 indicated	 for
these	 drugs.	 When	 the	 reasons	 to	 refrain	 from	 prescribing	 analgesics	 in	 this
group	 (i.e.,	 a	 history	 of	 peptic	 ulcer)	 are	 associated	 with	 the	 risk	 of	 the
unintended	effect,	 confounding	will	occur.	Choosing	another	drug	with	 similar
indications	 and	 contraindications	 (and	 preferably	 even	 within	 the	 same	 drug
class)	as	the	reference	category	of	the	determinants	is	an	attractive	approach	to
prevent	 confounding;	 patients	 receiving	 Metoo-coxib	 are	 likely	 to	 be	 quite
comparable	 to	 patients	 receiving	 an	 alternative	COX-2	 inhibitor,	 and	 one	may
even	assume	that	the	decision	to	prescribe	one	of	the	two	will	not	be	related	to
patient	characteristics	but	rather	is	influenced	by	other	factors	(e.g.,	a	visit	by	the
company	 representative	 or	 pricing	 of	 the	 drug)	 unrelated	 to	 the	 risk	 of	 the
unintended	 effect.	 Even	 when	 comparing	 individual	 drugs	 with	 similar
indications	and	contraindications,	however,	some	confounding	could	occur	and
residual	confounding	should	be	considered.
In	 the	 earlier	 nested	 case-control	 study,	 the	 risk	 of	myocardial	 infarction	 or

sudden	cardiac	death	in	recipients	of	rofecoxib	was	compared	to	those	receiving
celecoxib,	 another	 COX-2	 inhibitor.	 Patient	 characteristics	 of	 rofecoxib	 and
celecoxib	 users	 were	 expected	 to	 be	 similar,	 and	 a	 relationship	 between
preferential	prescription	of	one	of	 these	drugs	and	cardiovascular	 risk	 (i.e.,	 the
unintended	 effect)	 was	 considered	 unlikely.	 Close	 comparison	 of	 the	 control
patients	 within	 this	 case-control	 study,	 however,	 revealed	 that	 celecoxib	 was
prescribed	 more	 often	 to	 patients	 with	 relatively	 high	 cardiovascular	 risks,
indicating	 that	 confounding	 exists	 and	 should	 be	 accounted	 for	 applying
additional	methodology	(see	Table	6–5).



Interestingly,	 tables	 comparing	 characteristics	 among	 determinant	 categories
are	not	often	presented	in	case-control	studies,	despite	the	fact	that	these	data	can
be	very	helpful	 in	 identifying	potential	confounding.	Table	6–5	shows	that,	 for
unknown	 reasons,	 celecoxib	 was	 prescribed	 to	 older	 patients	 and	 those	 with
more	unfavorable	cardiovascular	risk	profiles.	The	unadjusted	analysis	therefore
yielded	 a	 lower	 odds	 ratio	 (OR;	 as	 an	 approximation	 of	 the	 relative	 risk)	 of
myocardial	 infarction	 or	 sudden	 cardiac	 death	 in	 rofecoxib	 versus	 celecoxib
users	(OR	=	1.32)	than	after	adjustment	for	confounders	applying	multivariable
analyses	(OR	=	1.59).
In	many	studies	on	unintended	effects,	ex-users	of	the	intervention	are	taken

as	 the	 reference	 exposure	 category.	 The	 rationale	 behind	 this	 approach	 is	 the
ease	with	which	a	cohort	of	patients	receiving	the	intervention	(often	a	drug)	in
the	past	can	be	 identified	(e.g.,	by	using	routinely	available	clinical,	 insurance,
or	 pharmacy	 data)	 and	 the	 notion	 that	 these	 patients	 have	 (or	 have	 had)	 an
indication	 (and	 not	 an	 important	 contraindication)	 for	 the	 intervention	 under
study.	 It	 should	 be	 emphasized,	 however,	 that	 ex-users	 of	 an	 intervention
represent	 a	 rather	 specific	 group	 of	 patients.	 For	 example,	 cessation	 of	 an
intervention	could	have	been	related	 to	 the	occurrence	of	 the	unintended	effect
or	ineffectiveness	of	the	therapy.	In	addition,	the	severity	of	the	disease	is	likely
to	be	less	in	ex-recipients	of	the	intervention.	Therefore,	we	do	not	recommend
including	 ex-users	 as	 the	 reference	 category	 in	 research	 on	 unintended	 effects
because	of	the	potential	for	confounding.
In	the	nested	case-control	study,	ex-users	were	treated	as	a	separate	reference

group.	 Table	 6–5	 clearly	 shows,	 however,	 that	 these	 ex-users	 (“remote	 use”)
differ	considerably	from	the	current	users	of	analgesics.	Cardiovascular	risk	and
the	prevalence	of	comorbidity	were	lowest	among	ex-users,	indicating	the	larger
potential	for	confounding	in	the	comparison	with	this	reference	group.

Matching	Those	With	and	Without	the	Determinants
Matching	patients	receiving	the	intervention	with	those	in	the	reference	group	of
the	 determinant/exposure	 is	 another	 option	 to	 limit	 confounding.	 Usually,	 for
each	 patient	 exposed	 to	 the	 determinant,	 a	 patient	 in	 the	 reference	 category	 is
sought	 who	 has	 similar	 values	 for	 one	 or	 more	 characteristics	 (i.e.,	 matching
factors)	 considered	 to	 act	 as	 important	 confounders.	 This	 will	 result	 in	 equal
distribution	of	these	confounders	among	the	two	comparison	groups.	Intuitively,
this	 is	 an	 attractive	 approach	 because	 it	 seems	 to	 mimic	 the	 randomization



procedure	 in	 a	 trial.	 The	 matching	 procedure,	 however,	 will	 only	 be	 able	 to
achieve	comparability	for	known	and	adequately	measurable	confounders,	while
randomization	 will	 prevent	 any	 known	 and	 unknown	 confounding.	Moreover,
matching	 may	 pose	 logistic	 problems,	 particularly	 when	 multiple	 matching
factors	 are	 involved.	 Matching	 on	 more	 than	 two	 patient	 characteristics	 is
therefore	generally	not	feasible.	Alternatively,	one	could	match	those	receiving
the	 intervention	 and	 those	 in	 the	 reference	 category	 according	 to	 a	 composite
score	(i.e.,	 the	propensity	score),	encompassing	multiple	potential	confounders.
It	 should	 be	 emphasized	 that	matching	 of	 patients	 exposed	 to	 the	 intervention
with	patients	in	the	reference	category	of	the	determinant	(which	is	usually	done
in	a	cohort	study)	is	completely	different	from	matching	of	cases	and	controls	in
a	case-control	study.	Matching	of	cases	and	controls	is	counterintuitive	because
those	developing	the	outcome	(i.e.,	the	cases)	should	naturally	differ	from	those
not	experiencing	the	outcome	(controls)	in	all	risk	factors	for	the	outcome.

TABLE	6–5	Selected	Characteristics	of	Controls	from	the	Case-Control	Study	Receiving	Different	COX-2
Inhibitors	or	NSAIDs	and	Ex-users	(“Remote	Use”)	of	These	Drugs

Reproduced	from	The	Lancet,	Vol.	365;	Graham	DJ	et	al.	Risk	of	acute	myocardial	infarction	and	sudden
cardiac	death	in	patients	treated	with	cyclo-oxygenase	2	selective	and	non-selective	non-steroidal	anti-
inflammatory	drugs:	Nested-case-control	study.	475–81.	©	2005,	reprinted	with	permission	from	Elsevier.

Instrumental	Variables
Another	method	is	believed	to	not	only	limit	(or	even	prevent)	known,	but	also
unknown	confounding	 in	observational	causal	 research:	 the	use	of	 instrumental
variables.	An	 instrumental	 variable	 (IV)	 is	 strongly	 related	 to	 exposure	 (here,
the	 intervention),	 is	 not	 related	 to	 the	 confounders,	 and	 is	 not	 related	 to	 the
outcome	 (except	 through	 its	 relation	 to	 the	 intervention).	 Categorizing	 study
participants	 according	 to	 an	 instrumental	 variable	 implies	 that,	 if	 indeed	 the
instrumental	 variable	 is	 not	 associated	 with	 the	 probability	 of	 developing	 the
outcome	 (other	 than	 through	 its	 strong	 association	 with	 the	 intervention),	 all



potential	 confounders	 are	 equally	 distributed	 among	 the	 categories	 of	 the
instrumental	 variable	 [Martens	 et	 al.,	 2006].	 Instrumental	 variables	 that	 have
been	 applied	 include	 regional	 preferences	 for	 the	 intervention	 (e.g.,	 drug
therapy)	 or	 the	 distance	 to	 a	 clinic.	A	 study	on	 the	 effects	 of	more	 intensified
treatment	 (including	 cardiac	 catheterization)	 on	 mortality	 in	 patients	 with
myocardial	 infarction	 was	 one	 of	 the	 first	 to	 apply	 this	 method	 [McClellan,
McNeill,	 &	 Newhouse,	 1994].	 Distance	 to	 the	 hospital	 was	 used	 as	 an
instrumental	variable	as	it	was	considered	to	be	closely	related	to	the	chance	of
the	intervention	(i.e.,	intensified	treatment	is	more	likely	to	be	initiated	when	the
distance	to	 the	hospital	 is	shorter),	while	 the	IV	(distance	to	 the	hospital)	 itself
was	 judged	not	 to	be	 related	 to	 the	confounders	or	 to	 the	outcome	 (mortality).
Theoretically,	comparison	of	patients	living	close	to	a	hospital	with	those	living
farther	away	would	provide	for	an	unconfounded	estimate	of	the	effect	of	more
intensified	treatment	of	myocardial	infarction	on	mortality.
The	 IV	method	 is	 increasingly	 being	 applied	 in	 research	 on	 side	 effects	 of

interventions	 [Huybrechts	 et	 al.,	 2011].	 Brookhart	 et	 al.	 [2006]	 used	 the
physician’s	 preference	 of	 COX-2	 inhibitors	 or	 other	 NSAIDs	 as	 an	 IV	 to
compare	 the	 risk	of	gastrointestinal	 side	effects	of	 these	drugs.	The	abstract	of
this	study	 is	presented	 in	Box	6–8;	 it	 illustrates	both	 the	potential	strength	and
the	uncertainties	of	the	method.

BOX	6–8	The	Instrumental	Variable	Method

Background:	Postmarketing	observational	studies	of	the	safety	and	effectiveness	of	prescription
medications	are	critically	important	but	fraught	with	methodological	problems.	The	data	sources
available	for	such	research	often	lack	information	on	indications	and	other	important	confounders	for
the	drug	exposure	under	study.	Instrumental	variable	methods	have	been	proposed	as	a	potential
approach	to	control	confounding	by	indication	in	nonexperimental	studies	of	treatment	effects;
however,	good	instruments	are	hard	to	find.

Methods:	We	propose	an	instrument	for	use	in	pharmacoepidemiology	that	is	based	on	a	time-varying
estimate	of	the	prescribing	physician’s	preference	for	one	drug	relative	to	a	competing	therapy.	The
use	of	this	instrument	is	illustrated	in	a	study	comparing	the	effect	of	exposure	to	COX-2	inhibitors
with	nonselective,	nonsteroidal	anti-inflammatory	medications	on	gastrointestinal	complications.

Results:	Using	conventional	multivariable	regression	adjusting	for	17	potential	confounders,	we	found
no	protective	effect	due	to	COX-2	use	within	120	days	from	the	initial	exposure	(risk	difference	=
−0.06	per	100	patients;	95%	confidence	interval	=−0.26	to	0.14).	However,	the	proposed	instrumental
variable	method	attributed	a	protective	effect	to	COX-2	exposure	(−1.31	per	100	patients;	−2.42	to
−0.20)	compatible	with	randomized	trial	results	(−0.65	per	100	patients;	−1.08	to	−0.22).

Conclusions:	The	instrumental	variable	method	that	we	have	proposed	appears	to	have	substantially
reduced	the	bias	due	to	unobserved	confounding.	However,	more	work	needs	to	be	done	to	understand



the	sensitivity	of	this	approach	to	possible	violations	of	the	instrumental	variable	assumptions.

Reproduced	from:	Brookhart	MA,	Wang	PS,	Solomon	DH,	Schneeweiss	S.	Evaluating	short-term	drug
effects	using	a	physician-specific	prescribing	preference	as	an	instrumental	variable.	Epidemiology	2006,
17;268–75,	with	permission	from	Wolters	Kluwer	Health.

Although	 IVs	appear	 to	offer	a	 rather	 ideal	 solution	 to	 the	danger	of	known
and	 even	unknown	confounding	 in	 observational	 causal	 research,	 they	may	be
hard	 to	 find	 in	a	particular	 study.	Most	notably,	 it	 is	difficult	 to	prove	 that	 the
main	assumptions	underlying	this	method	hold	[Groenwold	et	al.,	2010].

Limiting	Confounding	in	the	Design	of	Data	Analyses

Multivariable	Analyses
The	essence	of	adjusting	for	confounders	is	that	potential	confounders	should	be
identified	 in	advance	and	measured	appropriately,	and	 then	 the	observed	crude
association	 of	 the	 intervention	 and	 the	 outcome	 (here,	 unintended	 effect)	 is
adjusted	using	available	 statistical	 techniques.	There	 is	no	consensus	about	 the
way	to	select	confounders	and	how	to	build	a	multivariable	model.	The	decision
to	adjust	 for	a	potential	confounder	can	be	based	on	a	close	examination	of	 its
relationship	with	 both	 the	 determinant	 and	 the	 outcome	 in	 the	 database	 of	 the
study.	To	measure	and	 include	 those	potential	 confounders	 in	 the	analysis	 that
are,	based	on	the	available	literature,	known	to	confound	the	association	between
the	intervention	and	the	unintended	effect	is	a	more	pragmatic	and	safe	approach
to	 limit	 confounding	 [Groenwold	 et	 al.,	 2011].	 Often,	 all	 confounders	 are
included	 in	 a	 multiple	 regression	 model	 all	 at	 once	 or	 researchers	 develop
computer	 models	 to	 build	 the	 multivariable	 model	 using	 statistical	 reasons	 to
include	 or	 exclude	 a	 potential	 confounder.	 However,	 we	 recommend	 that
confounders	 be	 included	 one	 at	 a	 time,	 starting	with	 the	 strongest	 confounder
based	 on	 clinical	 expertise,	 earlier	 studies,	 and	 the	 univariable	 analysis	 of	 the
confounder	 with	 the	 outcome.	 Then	 the	 effect	 of	 each	 included	 potential
confounder	 on	 the	 risk	 estimate	 can	 be	 evaluated.	 When	 this	 effect	 is	 large
enough,	 arbitrarily	 a	 change	 of	 5%	 or	 10%	 in	 the	measure	 of	 association,	 for
example	the	odds	ratio,	between	the	intervention	and	the	outcome	is	sometimes
chosen,	 confounding	 by	 this	 included	 variable	 is	 considered	 present.	 The
methodical	 single	 inclusion	 of	 potential	 confounders	 may	 also	 indicate	 the



potential	 for	 residual	 confounding.	 If,	 for	 example,	 the	 risk	 estimate	 remains
stable	after	 inclusion	of	 the	first	major	confounders	and	even	after	 inclusion	of
additional	 potential	 confounders,	 one	 may	 argue	 that	 any	 unmeasured	 or
unknown	confounder	is	unlikely	to	result	in	a	major	change	in	the	risk	estimate.
The	advantage	of	 subsequent	 inclusion	of	 individual	confounders	 in	a	multiple
regression	model	 is	 illustrated	 in	 our	 case-control	 study	 on	 the	 risk	 of	 sudden
death	 in	 hypertensive	patients	 using	non-potassium-sparing	diuretics	 compared
to	other	antihypertensives	(see	Table	6–6).

TABLE	6–6	Risk	of	Sudden	Cardiac	Death	Among	Patients	with	Hypertension	Receiving	Non-Potassium-
Sparing	Diuretics	(NPSD)	Compared	to	Other	Antihypertensive	Drugs.

Results	of	multivariable	logistic	regression	analysis.	Subsequent	inclusion	of	the	first	(strongest)
confounders	yielded	the	expected	changes	in	the	risk	estimate.	Inclusion	of	additional	confounders	hardly
changed	the	odds	ratio,	indicating	that	residual	confounding	may	be	limited.

Potential	Confounders	Included	in	the	Model Odds	Ratio	(95%)	of	Sudden	Cardiac	Death	for	NPSD
Versus	Other	Antihypertensives

Crude 1.7	(0.9–3.1)
+	Prior	myocardial	infarction 2.0	(1.1–3.8)
+	Heart	failure 2.0	(1.0–3.9)

+	Angina 2.1	(1.1–4.1)
+	Stroke 2.1	(1.0–4.1)
+	Arrhythmias 2.1	(1.1–4.1)

+	Claudication 2.1	(1.1–4.2)
+	Diabetes 2.1	(1.0–4.1)
+	Obstructive	pulmonary	disease 2.2	(1.1–4.6)

+	Cigarette	smoking 2.2	(1.1–4.4)
+	Hypercholesterolemia 2.2	(1.1–4.5)
+	Mean	blood	pressure	prior	5	years 2.2	(1.1–4.6)

Data	from	Hoes	AW,	Grobbee	DE,	Lubsen	J,	Man	in	‘t	Veld	AJ,	van	der	Does	E,	Hofman	A.	Diuretics,
beta-blockers,	and	the	risk	for	sudden	cardiac	death	in	hypertensive	patients.	Ann	Intern	Med
1995a;123:481–7.

It	 should	 be	 noted	 that	 when	 adjustment	 for	many	 potential	 confounders	 is
anticipated,	both	matching	and	multivariable	regression	techniques	may	become
problematic,	the	latter	because	the	assumptions	underlying	the	regression	model
often	 become	 untenable.	 Use	 of	 a	 single	 score	 summarizing	 patient
characteristics	 that	 may	 act	 as	 confounders	 has	 been	 advocated	 as	 a	 better
alternative	[Jick	et	al.,	1973;	Miettinen,	1976a].	In	particular,	the	use	of	so-called
propensity	scores	has	increased	in	recent	years.



Propensity	Scores
The	propensity	score	represents	 the	probability	of	 receiving	 the	 intervention.	 It
often	 (for	 example	 in	 the	 case	 of	 a	 dichotomous	 intervention	 variable)	 results
from	 a	 multiple	 logistic	 regression	 analysis	 including	 patient	 and	 other
characteristics	 believed	 to	 be	 related	 to	 initiation	 of	 the	 intervention	 as
independent	 variables	 and	 exposure	 to	 the	 intervention	 as	 the	 dependent
variable.	Thus,	the	propensity	score	focuses	on	the	left	arrow	of	the	confounding
triangle	and	summarizes	information	from	all	potential	confounders.	In	patients
with	 a	 similar	 propensity	 score	 the	 prognosis	 will	 then	 be	 the	 same	 in	 the
absence	 of	 the	 intervention.	 Rosenbaum	 and	 Rubin	 [1984]	 were	 the	 first	 to
summarize	 all	 characteristics	 related	 to	 the	 initiation	 or	 non-initiation	 of	 the
intervention	 in	 a	 propensity	 score.	 In	 the	 Metoo-coxib	 example,	 this	 would
imply	 that	 a	 score	 predicting	 the	 use	 of	Metoo-coxib	 instead	 of	 the	 reference
exposure	(e.g.,	other	NSAIDS)	would	first	be	derived.	After	a	propensity	score	is
calculated	for	each	participant,	one	can	match	 those	who	are	receiving	and	not
receiving	 the	 intervention	 according	 to	 their	 propensity	 score	 or	 include	 the
score	in	a	multivariable	regression	analysis	[Rubin,	1997].	The	popularity	of	the
propensity	score	in	observational	studies	on	intended	and	unintended	effects	of
drugs	has	increased	rapidly	in	recent	years	[Rutten	et	al.,	2010;	Yasunaga	et	al.,
2013].	 The	 method,	 however,	 has	 its	 inherent	 limitations.	 These	 include	 the
complexity	 of	 developing	 appropriate	 propensity	 scores	 (in	 fact,	many	 studies
fail	to	report	in	detail	how	the	score	was	derived)	and	the	fact	that	only	known
and	measurable	patient	characteristics	can	be	accounted	for	[Belitser	et	al.,	2011;
Heinze	&	Jüni,	2011].
Table	 6–7	 compares	 several	 available	 methods	 to	 limit	 confounding	 in

observational	studies	assessing	the	effects	of	interventions.	The	example	is	taken
from	a	study	on	the	intended	effect	of	influenza	vaccination	on	influenza-related
complications,	 including	 death	 [Hak	 et	 al.,	 2002].	 The	 methods	 compared
include	restriction	(separate	analyses	 in	 the	elderly	and	 in	younger	subjects	are
presented),	 individual	 matching	 (“quasi-experiment,”	 which	 requires	 a
conditional	 analysis	 to	 account	 for	 the	 matching),	 one-by-one	 inclusion	 of
individual	confounders	in	a	multivariable	regression	analysis,	and	the	propensity
score	 method.	 Because	 influenza	 vaccination	 is	 expected	 to	 reduce
complications,	the	crude	odds	ratio	of	1.14	indicates	confounding	by	indication.
Restriction	of	the	study	population	to	certain	age	categories	and	inclusion	of	a

few	 confounders	 in	 a	 multiple	 regression	 model	 reduced	 confounding



dramatically	 (OR	 <	 1.0).	 Also,	 individual	 matching	 according	 to	 different
confounders	 (quasi-experiment)	 or	 on	 the	 propensity	 score	 clearly	 reduced
confounding,	while	subsequent	inclusion	of	additional	potential	confounders	did
not	change	the	effect	estimate.

TABLE	6–7	Methods	to	Limit	Confounding	in	an	Observational	Study	on	the	Effect	of	Influenza
Vaccination

Study	Population	and	Analysis Adjusted	For Odds	Ratio	(95%	CI)

Adult	patients 	 	
		(18–102	y,	n	5	1,696) Crude	value 1.14	(0.84	to	1.55)

Conventional	control:	MLR* 	 	
	 +	Age	(in	years) 0.87	(0.64	to	1.20)
	 +	Disease	(asthma/COPD) 0.82	(0.59	to	1.13)

	 +	GP	visits	(in	number) 0.76	(0.54	to	1.05)
	 +	Remaining	factors 0.76	(0.54	to	1.06)
Elderly	patients 	 	

		(65–102	y,	n	5	630) Crude	value 0.57	(0.35	to	0.93)

Conventional	control:	MLR* 	 	

	 +	Age	(in	years) 0.56	(0.35	to	0.92)

	 +	Disease	(asthma/COPD) 0.53	(0.32	to	0.87)
	 +	GP	visits	(in	number) 0.50	(0.30	to	0.83)
	 +	Remaining	factors 0.50	(0.29	to	0.83)

Younger	patients 	 	
		(18–64	y,	n	5	1,066) Crude	value 1.27	(0.84	to	1.94)

Conventional	control:	MLR* 	 	

	 +	Age	(in	years) 1.11	(0.73	to	1.70)
	 +	Disease	(asthma/COPD) 1.08	(0.70	to	1.66)
	 +	GP	visits	(in	number) 0.94	(0.61	to	1.47)

	 +	Remaining	factors 0.94	(0.60	to	1.45)
Quasi-experiment 	 	
		(18–64	y,	n	5	676) Matched	crude	value 0.90	(0.63	to	1.52)

Conventional	control:	MCLR† 	 	
	 +	Age/disease/GP	visits 0.89	(0.52	to	1.54)
Younger	patients 	 	

		(18–64	y,	n	5	1,066) Matched	crude	value 0.87	(0.56	to	1.35)
Propensity	score:	MCLR† 	 	
	 +	Age/disease/GP	visits 0.86	(0.55	to	1.35)

*MLR,	multivariable	logistic	regression	analysis;	†MCLR,	multivariable	conditional	logistic	regression
analysis.
Reproduced	from	Hak	E,	Verheij	TJ,	Grobbee	DE,	Nichol	KL,	Hoes	AW.	Confounding	by	indication	in
non-experiemental	evaluation	of	vaccine	effectiveness:	the	example	of	prevention	of	influenza
complications.	J	Epidemiol	Community	Health	2002;56:951–5,	with	permission	from	BMJ	Publishing
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HEALTHCARE	DATABASES	AS	A	FRAMEWORK
FOR	RESEARCH	ON	UNINTENDED	EFFECTS	OF
INTERVENTIONS
As	discussed	in	this	chapter,	most	studies	on	unintended	effects	of	interventions
are	 observational,	 require	 very	 large	 sample	 sizes	 and	 long	 follow-up	 periods,
and	include	identification	and	valid	measurements	of	confounders	to	ensure	their
validity.	 The	 fact	 that	 the	 availability	 of	 many	 large-scale,	 longitudinal,
computerized	 healthcare	 databases	 (including	 routinely	 collected	 data	 on
interventions	received,	patient	characteristics,	and	patient	outcomes)	has	greatly
facilitated	 the	 conduct	 of	 research	 on	 unintended	 effects	 of	 interventions	 is,
therefore,	 hardly	 surprising.	 Several	 healthcare	 databases	 have	 proven	 to	 be
invaluable	 in	 quantifying	 risks	 of	 interventions,	 particularly	 of	 drugs.	 These
include	 (1)	 health	 maintenance	 organizations	 (HMOs),	 such	 as	 the	 Kaiser
Permanente	 Medical	 Care	 Program	 and	 Group	 Health	 Cooperative	 (GHC)	 of
Puget	 Sound,	 Seattle,	 in	 the	 United	 States;	 (2)	 general	 practice	 research
databases,	 for	 example	 in	 the	 United	 Kingdom	 (CPRD)	 and	 the	 Netherlands
(IPCI);	and	(3)	pharmacy	databases	combined	with	hospital	discharge	diagnoses,
such	as	the	Institute	for	Drug	Outcome	Research	(PHARMO),	also	located	in	the
Netherlands.	Linkage	of	such	databases	can	further	increase	the	applicability	of
these	data	 to	quantify	unintended	effects	of	 interventions	[Smeets	et	al.,	2011].
Examples	 from	 these	 databases	 include	 studies	 on	 the	 unintended	 effects	 of
COX-2	inhibitors	[Graham	et	al.,	2005],	estrogen	replacement	therapy	[Heckbert
et	al.,	1997],	statins	[van	de	Garde	et	al.,	2006],	biphosphonates	[Vinogradova	et
al.,	2013],	and	quinolones	[Erkens	et	al.,	2002].
In	 Box	 6–9,	 some	 characteristics	 of	 the	 Kaiser	 Permanente	 Medical	 Care

Program,	which	started	in	1961,	are	shown	[Selby	et	al.,	2005].
Obviously,	the	suitability	of	these	databases	critically	depends	on	the	quality

of	 the	 (usually	 routinely	 collected)	 relevant	 data.	 In	 particular,	 the	 use	 of	 the
intervention	(including,	in	the	case	of	drug	interventions,	dosage,	and	duration),
the	 outcome,	 and	 potential	 confounders,	 including	 comedication,	 comorbidity,
and	 other	 relevant	 patient	 characteristics,	 should	 be	 assessed	 validly.	 The
availability	 of	 prescription-filling	 data	 from	 pharmacies	 is	 crucial	 as	 are	 high-



quality	 coding	 systems	 for	 relevant	 diagnoses.	 The	 latter	 is	 much	 more
problematic;	one	simply	cannot	expect	that	all	diagnoses	are	coded	correctly	by
treating	 physicians	 in	 daily	 practice	 and	 selectivity	 in	 the	 diagnoses	 used	 (i.e.,
restriction	 to	 those	 requiring	 additional	 diagnostic	 testing	 or	 the	 more	 severe
outcomes)	 is	 important.	 The	 main	 advantages	 of	 HMO	 databases	 are	 that
enrollees	 will	 typically	 visit	 those	 physicians,	 hospitals,	 and	 pharmacists
affiliated	with	the	organization	and	that	complete	coverage	of	all	available	health
care	information	of	its	members	can	be	ensured.	The	healthcare	system	in	some
European	countries,	such	as	Great	Britain	and	the	Netherlands,	greatly	increases
the	 value	 of	 general	 practice	 databases.	 In	 these	 countries,	 all	 inhabitants	 are
enlisted	with	 one	 computerized	 general	 practice,	 fill	 their	 prescriptions	 at	 one
computerized	pharmacy,	and	the	general	practitioner	has	a	gate-keeping	function
where	 referral	 to	hospital	 specialists	 is	 initiated	by	 the	general	practitioner	and
all	relevant	information	(including	hospital	discharge	letters)	are	available	in	the
general	practice	database	 [van	der	Lei	 et	 al.,	1993].	Despite	 the	value	of	 these
databases,	some	information,	such	as	more	subjective	diagnoses	(e.g.,	dyspepsia,
depression),	 lifestyle	 parameters	 (e.g.,	 smoking,	 alcohol	 use),	 ethnicity,	 and
socioeconomic	status	is	notoriously	difficult	to	obtain	validly,	if	available	at	all.
If	such	information	is	required	to	limit	confounding,	the	validity	of	the	study	is
at	 stake.	Consequently,	 these	databases	are	particularly	 suited	 to	assess	 type	B
unintended	effects,	where	confounding	generally	does	not	play	a	role.

BOX	6–9	Kaiser	Permanente	Medical	Care	Program

Total	number	of	enrollees 8.2	million
Enrollees	in	Northern	California 3.2	million
Initiation	of	the	program 1961

Selected	databases	available: Information	includes:

Membership	database Enrollment	status,	source	of	insurance
Demographic	database Name,	birthdate,	sex,	address,	physical	disabilities

Hospitalizations ICD-coded	hospital	discharge	diagnoses
Outpatient	visits Date,	ICD-coded	diagnoses,	provider
Laboratory	results Chemistry,	hematology,	microbiology,	pathology,	etc.

Prescriptions Name,	drug	code,	dosage,	dispensing,	costs
Disease	registries Cancer,	diabetes,	AIDS,	ICD	cause	of	death	registries

ICD	=	International	Classification	of	Diseases
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Chapter	7



Design	of	Data	Collection

INTRODUCTION
The	 design	 of	 data	 collection	 is	 an	 element	 of	 critical	 importance	 in	 the
successful	design	of	clinical	epidemiologic	studies.	The	prime	consideration	 in
choosing	 from	 different	 options	 to	 collect	 data	 is	 the	 expected	 quality	 of	 the
results	 of	 the	 data	 analyses	 in	 terms	 of	 relevance,	 validity,	 and	 precision.	 The
relevance	 is	 first	 and	 foremost	 determined	 by	 the	 research	 question,	 with	 the
type	of	subjects	from	whom	data	are	collected	adequately	reflecting	the	domain.
A	number	of	other	issues	are	important	as	well.	Time	constraints	and	budgetary
aspects	of	a	study	may	 impact	 the	choice	of	study	population	and	 type	of	data
collection.	 For	 example,	 when	 a	 widely	 used	 drug	 is	 suspected	 of	 causing	 a
serious	 side	effect,	 it	 is	usually	 impossible	 to	postpone	action	 for	 a	number	of
years	until	a	study	yields	results.	Also,	lack	of	money	may	force	an	investigator
to	limit	the	number	of	measurements	or	the	size	of	the	group	of	patients	studied.
Sometimes	ethical	limitations	apply,	for	example	when	an	investigator	wants	to
examine	 whether	 particularly	 high	 doses	 of	 radiotherapy	 induce	 secondary
tumors	 in	 patients	 treated	 for	 a	 primary	 cancer.	 The	 investigator	 should
preferably	use	the	data	at	hand	rather	than	wait	until	another	group	of	patients	is
exposed.
There	 is	 no	 unique	 optimal	 way	 to	 collect	 data	 for	 any	 research	 question.

Despite	 the	 sometimes	 fiercely	 voiced	 belief	 that	 the	most	 reliable	 results	 are
obtained	in	a	randomized	trial,	there	are	many	examples	of	bad	trials	and	many
of	much	better	“non-trials,”	and	there	are	obvious	instances	where	a	trial	is	not
feasible	or	otherwise	not	 justified.	This	chapter	discusses	some	general	aspects



of	 the	 design	 of	 data	 collection,	 with	 the	 goal	 of	 offering	 a	 consistent	 and
comprehensive	taxonomy	without	confusing	terminology.
In	 clinical	 epidemiology,	 all	 studies	 can	 be	 classified	 according	 to	 three

characteristics:	time,	census	or	sampling,	and	experimental	or	observational.

TIME
Time	 is	 an	 essential	 aspect	 of	 data	 collection.	 The	 time	 between	 collection	 of
determinant	and	outcome	information	can	be	zero	or	larger	than	zero.	When	data
on	determinant	and	outcome	are	measured	simultaneously,	 the	 time	axis	of	 the
study	is	zero	and	the	study	is	called	cross-sectional.	In	all	other	study	types	the
time	axis	 is	 larger	 than	 zero.	Furthermore,	 both	determinant	 and	outcome	data
already	may	or	may	not	be	 available	 at	 the	 start	of	 the	 study.	 If	 the	data	have
been	recorded	in	the	past	(i.e.,	have	been	collected	retrospectively),	the	study	is
termed	retrospective.	When	the	data	are	yet	to	be	collected	and	recorded	for	both
outcome	 and	 determinants	 when	 the	 study	 is	 started,	 the	 data	 are	 collected
prospectively	and	the	study	is	termed	prospective.	Combinations	of	retrospective
and	prospective	data	collection	can	occur.
There	are	no	inherent	implications	for	the	validity	of	a	study	when	data	are	not

prospectively	 collected.	 Still,	 frequently	 authors	 as	 well	 as	 readers	 use	 and
interpret	 the	 term	 retrospective	 as	 a	 negative	 qualification.	 Retrospective	 data
should	 only	 be	 viewed	with	 caution	 if	 a	 similar	 study	with	 a	 prospective	 data
collection	would	 provide	 results	 that	 are	more	 valid,	 precise,	 and/or	 clinically
relevant.	For	example,	in	an	etiologic	study,	the	available	retrospective	data	may
lack	information	on	certain	confounders	or	have	confounder	information	that	is
less	precise	than	necessary	for	full	adjustment.	Results	from	such	a	study	may	be
biased	 or	 contain	 residual	 confounding	 that	 would	 not	 apply	 if	 data	 had	 been
collected	prospectively.
Alternatively,	 data	 on	 certain	 outcomes	 may	 be	 lacking.	 The	 results	 would

then	necessarily	be	restricted	 to	 inferences	made	from	the	outcomes	that	are	 in
the	 data.	 While	 restricted,	 the	 research	 may	 still	 be	 valid	 and	 relevant.	 In
descriptive	research,	the	lack	of	particular	data	may	create	even	fewer	problems
because	 there	 is	 not	 a	 need	 for	 full	 confounder	 information.	 Consider,	 for
example,	 a	 study	 on	 the	 value	 of	 exercise	 testing	 in	 the	 diagnostic	workup	 of
patients	suspected	of	ischemic	coronary	disease.	An	available	database	may	not
include	results	from	troponin	measurements,	which	are	being	used	to	assist	 the



diagnosis	in	these	patients.	Consequently,	the	added	value	of	exercise	testing	in
the	presence	of	troponin	measurements	cannot	be	studied.	Still,	the	results	may
be	 useful	 to	 position	 exercise	 testing	 for	 those	 settings	 in	 which	 there	 is	 no
access	to	troponin	measurements	in	these	patients.
Retrospective	 data	 collection	may	 suffer	 more	 from	missing	 data	 than	 data

that	 are	 purposely	 collected	 prospectively.	 Missing	 data,	 for	 example,	 are	 a
typical	problem	for	routine	clinical	data	that	were	stored	before	they	were	used
for	 research.	 Here,	 the	 size	 of	 the	 problem	 depends	 on	 the	 importance	 of	 the
variables	 that	 are	 missing	 and	 the	 proportion	 of	 subjects	 with	 missing	 data.
Depending	on	the	size	of	 the	overall	study	and	the	completeness	of	other	data,
the	 problem	 of	 missing	 data	 may	 be	 reduced	 or	 overcome	 by	 estimating	 the
value	 of	 the	missing	 data	 points	 using,	 for	 example,	multiple	 imputation.	 The
principle	of	 imputation	 is	based	on	 the	view	 that	 if	 sufficient	 information	on	a
certain	 subject,	 or	 comparable	 subjects,	 is	 available	 the	 value	 of	 unobserved
variables	may	 be	 estimated	with	 confidence.	 For	 example,	 suppose	 that	 in	 an
existing	database	the	data	on	body	weight	is	missing	for	some	individuals.	With
the	use	of	available	data	on	height,	age,	gender,	and	ethnicity,	a	reliable	estimate
of	 an	 individual’s	 body	weight	may	 be	 obtained	 through	 regression	modeling.
Provided	that	the	number	of	missing	data	is	not	too	high,	say	less	than	10%	for	a
few	variables,	valid	analyses	may	be	done	on	all	subjects.
It	is	important	to	realize	that	the	time	dimension	of	a	study	is	not	necessarily

the	same	as	the	time	dimension	of	the	object	of	research.	With	the	exception	of
diagnostic	research,	where	diagnostic	determinants	and	the	outcome	occur	at	the
same	 time,	 all	 determinant	 outcome	 relationships	 are	 longitudinal	 by	 nature.
Take,	for	example,	a	study	on	the	relationship	between	the	BCR-ABL	gene	and
leukemia	 that	 is	 conducted	 with	 a	 time	 axis	 of	 zero	 (i.e.,	 cross-sectionally).
Genes	are	measured	in	all	patients.	While	in	this	study	determinant	and	outcome
information	were	collected	at	the	same	point	in	time	(and	thus	time	is	zero),	the
inference	 of	 an	 increased	 risk	 of	 leukemia	 in	 those	 with	 the	 p210	 BCR-ABL
gene	points	at	a	longitudinal	relationship:	Those	with	the	gene	have	an	increased
risk	of	acquiring	the	disease	in	the	future.
The	 terms	 retrospective	 and	 prospective	 thus	 refer	 to	 the	 timing	 of	 data

collection,	 that	 is,	before	or	after	 the	 study	 is	 initiated.	Historical	cohort	 study
would	be	a	better	name	than	retrospective	cohort	study	because	it	more	directly
speaks	to	the	operational	aspects	of	the	study.	However,	the	term	retrospective	is
much	more	commonly	used.



CENSUS	OR	SAMPLING
When	 the	 determinant(s)	 and	 outcome	 (and,	 when	 relevant,	 confounders	 or
effect	modifiers)	 are	measured	 in	 all	 members	 of	 a	 population	 that	 is	 studied
(such	as	in	a	cohort	study)	a	“census”	approach	is	taken.	The	cohort	study	is	the
paradigm	of	epidemiologic	research.	A	cohort	is	a	group	of	subjects	from	whom
data	are	collected	over	a	certain	 time	period.	The	word	cohort	 is	derived	 from
Roman	antiquity,	where	a	cohort	was	a	body	of	about	300	 to	600	soldiers,	 the
tenth	part	of	a	legion.	Once	part	of	the	cohort,	there	was	no	escape;	you	always
remained	 a	 member.	 Now	 that	 you	 are	 reading	 this	 text,	 you	 are	 part	 of	 the
cohort	 of	 readers	who	 read	 the	 text.	You	will	 never	 get	 rid	 of	 that	 qualifying
event.
In	 epidemiologic	 research,	 the	 qualifying	 event	 for	 becoming	member	 of	 a

cohort	 is	 typically	 that	 a	 subject	 is	 selected	 together	 with	 a	 smaller	 or	 larger
group	 of	 other	 individuals	 to	 become	 part	 of	 a	 study	 population	 that	 is	 then
followed	over	time.	Sometimes,	subjects	can	enter	and	leave	a	study	population,
as	 for	 example	 the	 population	 of	 a	 town	 that	 is	 followed	 over	 time.	 As	 the
months	and	years	go	by,	people	will	move	into	the	town	and	become	part	of	the
study	population	while	others	will	leave.	Such	a	study	population	is	best	called	a
dynamic	 population.	 The	membership	 of	 a	 cohort	 is	 fixed	 (in	 essence,	 once	 a
member,	 always	 a	 member	 until	 you	 die)	 while	 dynamic	 populations	 change
over	 time.	The	term	dynamic	cohort	 is	an	oxymoron.	For	reasons	of	simplicity
we	will	use	the	term	cohort	studies	for	all	studies	taking	a	census	approach	and
with	time	between	the	measurement	of	the	determinant	and	outcome	being	larger
than	 zero.	 Thus,	 both	 conventional	 cohort	 studies	 and	 dynamic	 population
studies	will	be	referred	to	as	cohort	studies.
In	 studies	 of	 cohorts	 and	 dynamic	 populations,	 epidemiologic	 analyses	will

compare	 the	 development	 of	 disease	 outcomes	 across	 categories	 of	 a
determinant.	 For	 example,	 if	 the	 risk	 of	 heart	 disease	 is	 elevated	 among	 those
with	high	blood	homocysteine	levels,	the	rates	of	disease	will	be	higher	in	those
with	a	high	baseline	homocysteine	level	compared	to	those	with	a	low	baseline
homocysteine	 level.	 This	 is	 epidemiologic	 research	 in	 its	 most	 basic	 form.
Clearly,	when	 the	 causal	 role	 of	 high	homocysteine	 in	 the	occurrence	of	 heart
disease	 needs	 to	 be	 clarified,	 a	 number	 of	 confounders	 must	 be	 taken	 into
account	simultaneously.
Sometimes	investigators	may	face	the	need	to	follow	a	large	population	to	be

able	to	address	particular	rare	outcomes,	for	example,	in	the	study	of	the	gene–



environment	 interaction	 and	 the	 occurrence	 of	 Hodgkin’s	 lymphoma.	 To
determine	 genetic	 abnormalities	 in	 the	 whole	 population	 would	 create
insurmountable	 expenses.	 An	 alternative	 is	 to	 wait	 until	 cases	 of	 lymphoma
occur	(“cases”)	and	perform	genetic	analyses	only	in	those	with	the	disease	and
in	a	random	sample	of	the	remainder	of	the	population	(“controls”).	The	purpose
of	such	a	sampling	approach	is	straightforward.	If	a	valid	sample	is	taken	and	the
sample	 is	 sufficiently	 large,	 the	 distribution	 of	 determinants	 (and,	 in	 causal
studies,	 confounders)	 in	 the	 sample	will	 reliably	 reflect	 the	distributions	 in	 the
population	 experience	 from	whom	 the	 sample	was	 drawn.	 In	 other	words,	 the
sample	provides	the	same	information	as	the	much	larger	full	population	would.
Across	 categories	 of	 the	 determinant	 in	 the	 combined	 samples	 of	 diseased
subjects	 and	 controls,	 relative	 rates	 and	 risks	 can	 now	 be	 calculated	 with
adjustments	 for	 confounders	 where	 appropriate.	 In	 this	 approach,	 rather	 than
examining	the	entire	population	(census),	an	equally	informative	subgroup	of	the
population	is	studied	(sampling).	Such	a	study	is	called	a	case-control	study.
There	 is	 no	 innate	 reason	why	 the	 results	 of	 a	 case-control	 study	 should	 be

different	than	when	the	whole	population	is	analyzed,	as	long	as	the	researcher
adheres	to	some	fundamental	principles.	The	main	principle	in	sampling	is	that
determinants	 are	 sampled	 without	 any	 relationship	 to	 outcomes,	 and	 that
outcomes	 are	 sampled	without	 relationship	 to	 the	 determinant.	 If	 not,	 then	 the
relationships	may	be	biased.	Suppose,	for	example,	that	only	cases	of	Hodgkin’s
disease	are	sampled	that	are	known	to	have	the	oncogene	BCL11A.	It	will	come
as	no	surprise	that	this	gene	will	show	an	increased	risk	even	though	it	may	not
play	a	role	in	reality.	In	a	case-control	study,	biased	inclusion	of	cases	or	biased
sampling	of	controls	should	be	prevented.	For	example,	in	some	situations,	cases
may	 only	 become	 known	 to	 the	 investigator	 when	 they	 have	 certain
determinants;	 a	 physician	 may	 be	 less	 suspicious	 of	 gastrointestinal	 bleeding
problems	in	patients	using	a	new	nonsteroidal	anti-inflammatory	drug	(NSAID)
that	 is	 marketed	 as	 much	 safer	 than	 another,	 older	 brand.	 In	 contrast,	 when
examining	 patients	 using	 the	 older	 drugs	 the	 same	 physician	 may	 be	 more
suspicious	 and	 thus	 discover	 more	 cases	 of	 minor	 bleeding.	 If	 a	 case-control
study	were	 to	 be	 conducted	 using	 the	 cases	 noted	 in	 this	 physician’s	 practice
over	a	period	of	time,	it	would	show	that	a	relationship	had	been	introduced	in
favor	of	the	newer	drug,	although	this	is	not	necessarily	an	accurate	reflection.
Another	issue	in	case-control	studies	compared	to	full	cohort	analyses	is	that

the	number	of	controls	sampled	needs	to	be	sufficiently	large	to	obtain	adequate
precision.	There	is	no	general	rule	about	how	large	a	control	sample	needs	to	be.



Given	 that	all	cases	 that	arise	 in	a	population	are	 included	 in	 the	research,	 this
will	depend	on	the	strength	of	 the	relationship	being	studied	and	the	frequency
with	which	particular	determinants	of	interest	occur	in	the	population.	Generally,
one	to	four	times	the	size	of	the	case	series	is	drawn.
Frequently,	 in	 a	 case-control	 study	 the	 actual	 size	 of	 the	 population	 from

which	 cases	 and	 controls	 are	 drawn	 is	 not	 exactly	 known.	 For	 example,	 in	 a
well-known	case-control	study	on	the	risk	of	vaginal	cancer	in	female	daughters
of	mothers	exposed	to	diethylstilboestrol	(DES),	a	case	series	was	collected	and
a	number	 of	 controls	without	 any	 reference	 to	 the	 size	 of	 the	 population	 from
which	the	cases	and	controls	originated	(see	Figure	7–1).	If	the	population	size
is	not	known,	a	limitation	of	the	study	is	that	no	estimates	of	absolute	risk	can	be
obtained,	such	as	for	example,	rate	differences.	Then,	only	relative	measures	of
risk,	 notably	odds	 ratios,	may	be	obtained.	However,	 in	 those	 instances	where
cases	 and	 controls	 are	 sampled	 from	 a	 population	 of	 known	 size,	 the	 same
absolute	and	relative	measures	of	disease	risk	can	be	calculated	as	 in	a	 regular
full	cohort	analysis	(i.e.,	using	the	census	approach).

FIGURE	7–1	Advertisement	for	the	drug	diethylstilbestrol	(DES).

Case-control	 studies	 are	 best	 known	 for	 their	 role	 in	 etiologic	 research	 on



relationships	 between	 determinants	 and	 rare	 outcomes.	 However,	 case-control
studies	 also	 may	 be	 fruitfully	 employed	 in	 descriptive	 research,	 such	 as	 in
diagnostic	and	prognostic	studies.

EXPERIMENTAL	OR	OBSERVATIONAL
STUDIES
The	world	is	full	of	data,	most	of	which	are	waiting	to	be	studied.	Indeed,	most
published	clinical	epidemiologic	research	is	based	on	data	that	were	previously
collected	from	available	sources,	such	as	data	in	patient	records	of	clinical	files,
or	on	data	that	were	collected	in	groups	of	subjects	for	the	purpose	of	research.
To	take	the	paradigmatic	cohort	study	again,	investigators	typically	start	with	a
goal	of	relating	a	particular	determinant	to	an	outcome,	as	for	example	in	a	study
on	 breast	 cancer	 risk	 among	 women	 using	 long-term	 estrogen-progestin
treatment.	 Researchers	 would	 start	 by	 collecting	 data	 on	 hormone	 use	 plus
relevant	confounders	and	then	follow	the	population	over	time	to	relate	baseline
drug	information	to	future	occurrences	of	breast	cancer.
Sometimes	a	cohort	study	 is	started	from	a	particular	 research	aim,	but	with

time	the	data	may	offer	many	other	opportunities	to	address	questions	that	were
not	on	the	mind	of	the	investigator	when	the	research	was	initiated.	This	makes
cohorts	 highly	valuable	 assets	 to	 investigators.	The	 limitations	only	 rest	 in	 the
type	 of	 population	 studied	 and	 the	 extent	 of	 determinant	 and	outcome	 (and,	 if
applicable,	confounder	or	modifier)	information	collected.
Sometimes	the	investigator	will	not	rely	on	the	mere	recording	of	determinant

data	 that	 occur	 “naturally,”	 but	 rather	 may	 wish	 to	 manipulate	 exposure	 to
certain	determinants	or	allocate	patients	purposely	to	a	particular	exposure,	such
as	a	drug,	with	the	principal	goal	of	learning	about	the	effects	of	this	exposure.
The	 investigator	 thus	 conducts	 an	 experiment	 and	 such	 studies	 are	 called
experimental	 studies,	 in	 contrast	 to	 nonexperimental	 studies,	 where	 the
determinant	is	studied	as	it	occurs	naturally.	The	difference	between	a	physician
treating	patients	with	a	particular	drug	and	an	investigator	allocating	a	patient	to
a	particular	drug	is	 in	 the	intention.	The	intention	of	 the	physician	is	simply	to
improve	the	condition	of	the	patient,	while	the	investigator	wants	to	learn	about
the	 effect	 of	 the	 drug,	 quantify	 the	 extent	 of	 improvement,	 and	 document	 any
safety	risks.	Experiments	in	clinical	epidemiology	are	called	trials.



The	 best-known	 and	most	widely	 used	 type	 of	 trial	 is	 the	 randomized	 trial,
where	 patients	 are	 allocated	 to	 different	 treatment	 modalities	 by	 a	 random
process.	A	randomized	trial	obviously	differs	from	the	deliberate	prescription	of
drugs	to	patients	in	clinical	care.	However,	when	an	investigator	decides	to	study
a	new	series	of	arthritis	patients,	to	specifically	determine	the	functional	benefit
of	 knee	 replacement	 surgery	 where	 he	 measures	 functional	 status	 before	 and
after	the	operation,	he	is	also	engaged	in	a	trial.	Studies	are	either	experimental
or	nonexperimental.	The	term	nonexperimental,	while	logical,	is	not	commonly
used.	Rather,	nonexperimental	studies	in	epidemiology	are	called	observational.
The	 contrast	 between	 experimental	 and	 observational	 is	 somewhat	 peculiar
because	it	seems	to	imply	that	in	experiments	no	observations	are	made.

TAXONOMY	OF	EPIDEMIOLOGIC	DATA
COLLECTION
Like	 many	 young	 scientific	 disciplines,	 epidemiology	 suffers	 from	 the	 use	 of
confusing	 and	 inconsistent	 terminology.	 Many	 epidemiologists	 use	 the	 same
wording	to	describe	different	studies	or	use	different	words	for	the	same	research
approach.	Particularly	problematic	is	the	naming	of	studies	by	words	that	seem
to	have	a	qualitative	implication.	As	indicated	in	this	chapter,	by	itself	the	word
observational	is	a	clean	term	that	applies	to	any	form	of	empirical	research.	Too
often	it	is	used	to	suggest	a	limitation	of	the	research.
The	word	descriptive	has	a	similar	history	of	misuse.	In	several	 textbooks,	a

distinction	between	analytic	and	descriptive	research	is	made,	where	descriptive
studies	 supposedly	 do	 not	 provide	 definitive	 answers.	 We	 use	 the	 term
descriptive	 as	 contrasted	 with	 causal	 to	 indicate	 whether	 the	 determinant–
outcome	relationship	under	study	is	meant	to	explain	causality	or	is	only	meant
to	describe	the	strength	of	the	association.
All	 research	 is	analytic	by	nature.	 In	our	view,	epidemiologic	studies	should

be	classified	according	to	three	dimensions:	(1)	time,	referring	to	the	time	(zero
or	>	0)	between	measurement	of	the	determinant	and	the	outcome	as	well	as	to
the	 prospective	 or	 retrospective	 nature	 of	 the	 data	 collection;	 (2)	 census	 or
sampling;	 and	 (3)	 experimental	 or	 nonexperimental.	We	 recommend	 that	 you
use	all	three	elements	in	the	nomenclature	in	texts	describing	the	nature	of	data
collection.	 This	 removes	 the	 need	 to	 rely	 on	 vague,	 suggestive,	 and



noninformative	 jargon	 such	 as	 retrospective	 study,	 prospective	 study,	 survey,
follow-up	study,	and	the	like.	Note	that	a	prospective	study	is	a	study	in	which
the	data	are	collected	after	the	researchers	decided	to	address	a	specific	research
question	and	the	term	can	thus	refer	to	many	types	of	data	collection,	including	a
cohort	study,	case-control	study,	cross-sectional	study,	or	randomized	trial.	Also,
the	 meaning	 of	 the	 term	 longitudinal	 study	 is	 unclear.	 All	 studies,	 except
diagnostic	studies,	address	longitudinal	associations.
Thus,	the	characteristics	of	the	main	approaches	to	data	collection	in	clinical

epidemiology	can	be	summarized	as	follows	(see	Table	7–1):

•	A	cohort	study	has	a	time	dimension	greater	than	zero;	analyses	are	based
on	a	census	of	all	subjects	 in	 the	study	population,	and	the	data	collection
can	 be	 conducted	 prospectively	 or	 retrospectively.	 The	 study	 can	 be
observational	or	experimental,	but	 if	 it	 is	experimental	 it	usually	 takes	 the
form	of	a	randomized	trial.

•	 A	 dynamic	 population	 study	 has	 a	 time	 dimension	 greater	 than	 zero;
analyses	are	based	on	a	census	of	all	subjects	in	the	study	population	for	the
time	 they	 are	 members	 of	 the	 population,	 and	 the	 data	 collection	 can	 be
conducted	 prospectively	 or	 retrospectively.	 Such	 studies	 are	 typically
nonexperimental	(i.e.,	observational).	Because	the	term	dynamic	population
study	is	hardly	ever	applied	in	the	literature,	we	use	the	term	cohort	study	to
indicate	both	studies	involving	dynamic	populations	and	cohorts.

TABLE	7–1	Taxonomy	of	Epidemiologic	Data	Collection

*If	a	cohort	study	is	experimental,	it	is	called	a	trial.
**Because	the	term	dynamic	population	study	is	hardly	ever	applied	in	the	literature,	we	use	the	term
cohort	study	to	indicate	both	studies	involving	dynamic	populations	and	cohorts.

•	 A	 case-control	 study	 typically	 has	 a	 time	 dimension	 greater	 than	 zero



(although	cross-sectional	case-control	studies,	for	example,	diagnostic	case-
control	studies,	are	sometimes	performed);	analyses	are	based	on	sampling
of	 subjects	 from	 the	 study	 population	 and	 the	 data	 collection	 can	 be
conducted	 prospectively	 or	 retrospectively.	 Case-control	 studies	 are
observational	 (although	 theoretically	 they	 could	 be	 experimental	 if
performed	within	a	randomized	trial).

•	A	cross-sectional	study	has	a	time	dimension	of	zero.	Analyses	are	usually
based	 on	 the	 census	 but	 could	 also	 be	 based	 on	 sampling	 of	 the	 study
population	 (cross-sectional	 case-control	 study).	The	data	 collection	can	be
conducted	 prospectively	 or	 retrospectively.	 In	 principle,	 cross-sectional
studies	are	observational.

•	 A	 randomized	 trial	 is	 a	 cohort	 study,	 is	 an	 experiment,	 and	 has	 a	 time
dimension	 greater	 than	 zero;	 the	 analyses	 are	 based	 on	 a	 census	 of	 all
subjects	 from	 the	 study	 population	 and	 the	 data	 collection	 can	 only	 be
conducted	prospectively.



Chapter	8



Cohort	and	Cross-Sectional	Studies

INTRODUCTION
The	classic	epidemiologic	approach	is	to	collect	data	on	a	defined	population	(a
cohort)	 and	 relate	 determinant	 distributions	 at	 baseline	 to	 the	 occurrence	 of
disease	during	 follow-up.	This	 research	 approach	has	 led	 to	our	understanding
such	diverse	cause	and	disease	relationships	as	the	one	between	the	lifetime	risk
of	 coronary	 heart	 disease	 by	 cholesterol	 levels	 and	 selected	 ages	 in	 the
Framingham	Heart	 Study	 [Lloyd-Jones	 et	 al.,	 2003],	 the	 relationship	 between
physical	 activity	 and	 the	 risk	 of	 prostate	 cancer	 in	 the	 Health	 Professionals
Follow-up	Study	 [Giovannucci	 et	 al.,	 2005],	 the	 relationship	between	 smoking
and	 lung	 cancer	 during	 50	 years	 of	 observation	 in	 the	 British	Doctor’s	 Study
[Doll	et	al.,	2004],	the	relationship	between	caloric	restriction	during	the	Dutch
famine	 of	 1944–1955	 and	 future	 breast	 cancer	 in	 the	DOM	 (which	 stands	 for
“Diagnostisch	 Onderzoek	 Mammacarcinoom”	 or	 “Diagnostic	 Study	 on	 breast
cancer”)	 cohort	 [Elias	 et	 al.,	 2004],	 the	 relationship	 between	 apolipoprotein	 E
(Apo-E)	and	Alzheimer’s	disease	in	the	Rotterdam	Study	[Hofman	et	al.,	1997],
and	the	relationship	between	radiation	and	leukemia	in	atomic	bomb	survivors	in
Hiroshima	[Pierce	et	al.,	1996].
The	essential	characteristic	of	a	cohort	study	is	that	data	are	collected	from	a

defined	group	of	people,	which	forms	the	cohort.	Cohort	membership	is	defined
by	being	selected	for	inclusion	according	to	certain	characteristics.	For	example,
in	 the	 Rotterdam	 Study,	 7,983	 subjects	 age	 55	 years	 and	 over	 who	 agreed	 to
participate	 after	 invitation	 of	 all	 inhabitants	 in	 a	 particular	 neighborhood	 of
Rotterdam	formed	the	Rotterdam	Study	cohort	[Hofman	et	al.,	1991].



The	typical	design	of	data	collection	in	a	cohort	study	is	to	start	to	collect	data
at	the	time	of	the	inception	of	the	cohort.	The	starting	point	of	a	cohort,	t	=	zero,
is	called	the	baseline.	Sometimes,	as	in	the	Framingham	Study,	data	collection	is
subsequently	 repeated	 at	 certain	 time	 intervals,	 but	 for	 other	 cohorts	 only	 a
single	set	of	baseline	data	is	collected.	After	the	baseline	collection,	a	cohort	is
generally	 followed	over	 time	 and	disease	occurrences	 among	 the	members	 are
recorded.	The	 term	 cohort	 study	was	 used	 for	 the	 first	 time	 in	 research	 in	 the
1930s.
Some	of	 the	best-known	cohort	 studies	 start	 from	a	population	of	presumed

healthy	 individuals,	 but	 cohort	 studies	 can	 equally	 well	 be	 conducted	 with
groups	 of	 patients.	 For	 example,	 one	 etiologic	 study	 followed	 a	 cohort	 of
premature	neonates	for	chronic	cerebral	damage	and	related	behavioral	problems
[Rademaker	et	al.,	2004].	This	same	cohort	was	also	used	to	study	the	prognostic
meaning	 of	 neonatal	 cerebral	 imaging	 by	 ultrasound	 compared	 to	 magnetic
resonance	imaging	(MRI)	scanning	[Rademaker	et	al.,	2005].	Prognostic	cohort
studies	are	obviously	conducted	on	cohorts	of	patients.	In	diagnostic	studies,	the
cohort	typically	consists	of	subjects	suspected	of	having	the	disease	of	interest	in
whom	the	value	of	diagnostic	testing	is	studied.

TIMING	OF	THE	ASSOCIATION	RELATIVE	TO
THE	TIMING	OF	DATA	COLLECTION
Most	cohort	studies	are	planned	in	advance	and	data	are	collected	prospectively.
However,	 this	 is	 not	 a	 necessary	 condition.	 Sometimes,	 a	 cohort	 is	 defined
retrospectively	 and	historic	data	 are	used	 that	 are	 already	available,	 such	 as	 in
the	 studies	 on	 the	 Hiroshima	 atomic	 bomb	 survivors.	 This	 study’s	 cohort
comprised	 all	 those	 who	 survived	 the	 bomb	 attack	 and	 investigators	 used	 the
limited	available	baseline	data,	notably	age,	sex,	and	degree	of	nuclear	exposure,
to	 relate	 the	 exposure	 to	 subsequent	 cancer	 occurrence.	 This	 cohort	 study	 had
both	 a	 retrospective	 and	 a	 prospective	 component	 in	 the	 data	 collection.	 In	 a
rather	unusual	approach,	Vandenbroucke	[1985]	conducted	a	fully	retrospective
cohort	study	to	investigate	survival	and	life	expectancy	at	age	25	years	and	older
in	1,282	European	noblemen	who	had	been	members	of	 the	Knighthood	Order
of	the	Golden	Fleece	between	its	founding	in	1430	and	the	early	1960s.
In	 these	examples,	data	collection	 took	place	 in	whole	or	 in	part	 in	 the	past.



Note	that	regardless	of	the	timing	of	data	collection,	 the	associations	examined
in	a	cohort	study	are	always	prospective.	Etiologic	research	aims	to	learn	about
causes	 of	 disease.	 Several	 criteria	 for	 causal	 associations	 have	 been	 proposed,
but	at	 the	very	 least	 the	cause	 is	assumed	to	precede	 the	consequence	(i.e.,	 the
disease).	 Therefore,	 the	 causal	 determinant	 always	 precedes	 the	 outcome
regardless	 of	 the	 order	 in	 which	 the	 data	 have	 been	 collected.	 All	 etiologic
research	is	inherently	prospective,	yet	the	data	may	be	collected	before,	during,
or	after	the	determinant–outcome	relationship	has	materialized.	Even	when	data
are	collected	prospectively,	 they	will	often	not	be	collected	for	all	members	of
the	cohort	at	the	same	time.	Baseline	data	collection	may	take	time,	and	during
that	time	subsequent	participants	enter	the	cohort.	This	type	of	cohort	is	built	up
obliquely.
When	 the	 time	 between	 the	 collection	 of	 determinant	 and	 outcome	 data	 is

zero,	the	cohort	study	is	referred	to	as	cross-sectional.	For	example,	in	the	study
on	 Alzheimer’s	 disease	 and	 Apo-E	 genotype,	 Apo-E	 genetic	 polymorphisms
were	determined	at	the	same	time	that	cognitive	examinations	were	performed	to
assess	 the	 presence	 of	 dementia.	 Data	 collection	 in	 this	 cohort	 was	 cross-
sectional	 for	 this	 particular	 research	 question.	 However,	 even	 though	 data
collection	was	cross-sectional,	 the	conclusion	was	 that	 the	Apo-E	ε4	genotype,
in	the	presence	of	atherosclerosis,	 increased	the	patients’	risk	of	dementia.	The
determinant–outcome	 relationship	 was	 interpreted	 prospectively.	 The	 tenable
assumption	was	 that	 the	genetic	variant	had	been	present	 long	before	dementia
developed	and	would	not	change	due	to	the	occurrence	of	the	disease.
In	the	design	of	data	collection	and	analysis	of	cohort	studies,	it	is	important

to	 be	 aware	 of	 differences	 in	 the	 timing	 of	 data	 collection	 and	 the	 true	 time
relationship	 between	 the	 determinant	 and	 outcome.	 In	 etiologic	 research,	 it	 is
necessary	to	be	confident	that,	while	data	may	be	collected	in	a	different	order,
the	resulting	association(s)	indeed	may	be	interpreted	causally.	For	example,	in	a
study	on	dietary	habits	and	the	risk	of	heart	disease,	the	collection	of	dietary	data
after	 symptomatic	 coronary	 disease	 has	 occurred	may	 be	 problematic	 because
patients	 are	 likely	 to	 change	 their	 diet	 after	 becoming	 aware	 of	 the	 disease.
Consequently,	the	observed	associations	may	be	confounded.
Another	 problem	 is	 that	 when	 outcome	 data	 on	 a	 cohort	 are	 not	 recorded

continuously	 and	 prospectively,	 but	 rather	 after	 a	 longer	 time	 interval,	 some
subjects	with	the	outcome	may	be	missed.	As	long	as	the	chance	of	being	missed
is	 random,	 this	 is	 no	 real	 threat	 to	 validity.	 However,	 the	 chance	 of	 being
detected	and	recorded	as	someone	who	developed	the	outcome	may	somehow	be



related	 to	 the	 determinant	 of	 interest.	 This	 may	 apply	 equally	 to	 causal	 and
descriptive	 studies.	 In	 a	 prognostic	 study,	 the	 prognostic	meaning	 of	 a	 patient
characteristic	 may	 be	 overestimated	 when	 patients	 with	 the	 characteristic	 are
more	 likely	 to	 be	 followed	 more	 closely.	 In	 a	 diagnostic	 study,	 only	 certain
patients	may	be	 referred	 for	diagnostic	workup,	making	 it	more	 likely	 that	 the
outcome	is	eventually	diagnosed.	For	example,	in	a	study	on	exercise	testing	in
the	diagnosis	of	coronary	disease,	only	those	with	abnormal	test	results	will	be
referred	 for	 invasive	 imaging	 using	 coronary	 angiography.	 If	 not	 all	 patients
undergo	the	same	reference	test,	some	with	disease	may	be	missed,	resulting	in
false	negatives	 and	 leading	 to	 an	overestimation	of	 the	diagnostic	value	of	 the
test.

CAUSAL	AND	DESCRIPTIVE	COHORT	STUDIES
The	origins	of	cohort	studies	 in	epidemiology	lie	 in	studies	 initiated	 to	address
causal	 associations.	Much	 of	 the	methodology	 and	 strategies	 for	 data	 analyses
for	cohort	studies	have	been	developed	with	a	view	toward	causal	explanation.
The	 cohort	 approach	 is	 also	 a	 highly	 effective	 data	 collection	 design	 for
descriptive	 research.	 Diagnostic	 or	 prognostic	 research	 questions	 can	 be
effectively	addressed	using	a	cohort	study.	Clearly,	for	a	diagnostic	study	where
the	 prevalence	 of	 the	 diagnosis	 of	 interest	 in	 relation	 to	 a	 set	 of	 diagnostic
indicators	 is	 studied,	 the	 time	 between	 the	 occurrence	 of	 the	 outcome	 and	 the
determinants	is	zero.	Typically,	therefore,	determinant	and	outcome	information
is	 collected	 simultaneously,	 thus	 making	 a	 diagnostic	 study	 a	 cross-sectional
cohort	 study	 (see	 further	 discussion	 later	 in	 the	 chapter).	However,	 frequently
the	 optimal	 approach	 to	 research	 on	 prognosis	 is	 through	 a	 cohort	 study	with
time	exceeding	zero.	One	or	multiple	prognostic	factors	are	collected	at	baseline
and	 the	 cohort	 is	 followed	 up	 on	 to	 record	 the	 occurrence	 of	 events.	 For
example,	in	one	prognostic	study,	levels	of	circulating	carcinoembryonic	antigen
(CEA)	 were	 measured	 in	 a	 cohort	 of	 patients	 with	 a	 primary	 colon	 tumor
resection	who	were	followed	for	mortality	to	determine	the	prognostic	value	of
CEA	after	treatment	for	the	malignancy	[Stelzner	et	al.,	2005]	(see	Box	8–1).
The	difference	between	data	collection	in	causal	and	descriptive	cohort	studies

is	a	result	of	the	difference	in	objectives	between	causal	and	descriptive	studies.
In	 etiologic	 research,	 determinant	 information	 and	 data	 on	 confounders	 are
collected.	By	nature	of	the	aim	to	obtain	valid	estimates	of	the	causal	association



between	the	determinant	and	the	outcome,	confounder	data	need	to	be	complete
and	of	high	quality.	If	confounders	are	measured	poorly	or	not	measured	at	all,
the	 results	 of	 the	 analyses	 may	 show	 an	 association	 that	 is	 quantitatively	 or
qualitatively	incorrect.
In	descriptive	 research	 there	 is	no	need	 to	worry	about	confounders.	Rather,

the	variables	considered	determinants	should	be	as	complete	as	is	necessary	for
the	 results	 of	 the	 research	 to	 be	 relevant	 and	 in	 agreement	 with	 the	 research
question.	 For	 example,	 in	 the	 study	 on	 the	 prognosis	 after	 primary	 tumor
resection	 in	patients	presenting	with	unresectable	synchronous	metastases	 from
colorectal	 carcinoma,	 six	 independent	 variables	with	 a	 relationship	 to	 survival
were	 found:	performance	status,	ASA-class,	CEA	level,	metastatic	 load,	extent
of	primary	 tumor,	and	chemotherapy.	Whether	 this	 includes	 information	on	all
potential	 prognostic	 indicators	 that	 a	 reader	 may	 find	 useful	 for	 his	 or	 her
patients	 depends	on	 two	 factors:	 (1)	whether	 the	 final	 six	variables	 agree	with
the	set	of	variables	available	to	a	clinician	who	wants	to	use	the	research	for	his
or	her	patients;	and	(2)	in	the	case	where	a	favorite	variable	of	the	reader	of	the
research	is	not	included	in	the	six	predictors,	whether	this	particular	variable	has
been	included	in	the	research	at	all.

BOX	8–1	Survival	in	Patients	with	Stage	IV	Colorectal	Cancer

BACKGROUND:	The	prognostic	impact	of	primary	tumor	resection	in	patients	presenting	with
unresectable	synchronous	metastases	from	colorectal	carcinoma	(CRC)	is	not	well	established.	In	the
present	study,	we	analyzed	15	factors	to	define	the	value	of	primary	tumor	resection	with	regard	to
prognosis.
PATIENTS	AND	METHODS:	We	identified	186	consecutive	patients	with	proven	stage	IV	CRC
from	the	years	1995	to	2001.	Variables	were	tested	for	their	relationship	to	survival	in	univariate
analyses	with	the	Kaplan-Meier	method	and	the	log	rank	test.	Factors	that	showed	a	significant	impact
were	included	in	a	Cox	proportional	hazards	model.	The	tests	were	repeated	for	107	patients	who	had
no	symptoms	from	their	primary	tumor.
RESULTS:	Overall	there	were	six	independent	variables	with	a	relationship	to	survival:	performance
status,	ASA-class,	CEA	level,	metastatic	load,	extent	of	primary	tumor,	and	chemotherapy.	In	the
asymptomatic	patients	we	investigated	13	factors,	3	of	which	proved	to	be	independent	predictors	of
survival:	performance	status,	CEA	level,	and	chemotherapy.	Resection	of	primary	tumor	was	only
predictive	of	survival	if	in-hospital	mortality	was	excluded.
CONCLUSION:	Resection	of	the	tumor,	if	possible,	is	doubtless	the	best	option	for	stage	IV	CRC
patients	with	severe	symptoms	caused	by	their	primary	tumor.	In	asymptomatic	patients,
chemotherapy	is	preferable	to	surgery.

Reproduced	from	Stelzner	S,	Hellmich	G,	Koch	R,	Ludwig	K.	Factors	predicting	survival	in	stage	IV
colorectal	carcinoma	patients	after	palliative	treatment:	A	multivariate	analysis.	J	Surg	Oncol	2005;



89:211–217.

Suppose,	 for	 example,	 that	 a	 particular	 clinic	 routinely	 measures	 lactate
dehydrogenase	(LDH)	in	serum	to	set	the	prognosis	in	these	patients.	This	made
it	 clinically	 relevant	 to	 include	 LDH	 in	 the	 research,	 although	 LDH	 was
eventually	shown	to	have	no	added	value	over	the	other	six	variables.
According	 to	 the	 same	 principles,	 the	 mode	 of	 data	 collection	 will	 vary	 in

cohort	studies	aiming	to	explain	causality	or	with	the	goal	of	prediction.	In	the
first	 case,	 the	 determinant	 and	 confounder	 information	 must	 be	 collected	 as
accurately	as	possible.	In	the	second	case,	the	data	on	determinants	are	collected
according	 to	 general	 clinical	 standards	 because	 that	 is	 the	way	 the	 results	will
eventually	be	applied.	For	either	 type	of	cohort	 study,	outcome	data	 should	be
collected	as	accurately	as	possible.
For	 diagnostic	 and	 prognostic	 studies,	 timing	 the	 association	 relative	 to	 the

timing	of	data	collection	has	some	specific	features.	For	prognostic	studies,	the
same	 principles	 apply	 as	 for	 etiologic	 studies.	 Whatever	 the	 timing	 of	 data
collection,	the	association	is	always	prospective.	For	a	variable	to	be	prognostic
with	 regard	 to	 a	 given	 outcome,	 the	 prognostic	 factor	 needs	 to	 be	 observed
before	 the	 outcome	 has	 occurred.	 In	 diagnostic	 studies,	 by	 definition	 the
determinant	 and	 outcome	 occur	 at	 the	 same	 time.	 In	 a	 cohort	 of	 patients
suspected	 of	 a	 certain	 diagnosis,	 data	 on	 putative	 diagnostic	 indicators	 are
collected	at	the	same	time	that	the	outcome	is	determined	by	some	reference	test.
Next,	 these	cross-sectional	determinants	and	outcome	data	are	analyzed	for	 the
strength	of	their	association.	Here,	no	prospective	association	is	assumed.
There	 is	one	subtlety	 in	data	collection	 in	some	diagnostic	studies.	Suppose,

for	 example,	 that	 the	 diagnostic	 value	 of	mammography	 for	 detection	 of	 early
breast	cancer	is	being	studied	[Moss	et	al.,	2005].	Data	from	mammography	are
collected	 and	 women	 are	 referred	 for	 further	 diagnostic	 workup.	 After
mammography,	 it	 may	 take	 some	 time	 before	 outcome	 data	 are	 available	 in
those	women	with	 abnormal	mammographic	 findings.	 Once	 the	 diagnosis	 has
been	 established	 in	 all	 those	who	 are	 referred,	 it	may	 take	 even	 longer	 before
those	breast	 cancers	 that	were	missed	by	 the	mammography	become	apparent.
Consequently,	 this	 diagnostic	 study	may	 include	 data	 collection	 on	 the	 cohort
over	a	prolonged	period	of	 time.	Still,	 the	determinant–outcome	relationship	 in
this	study—as	in	any	diagnostic	study—has	a	time	interval	of	zero.
A	classic	example	of	the	problem	of	an	inevitable	incomplete	follow-up	in	a

cohort	is	the	study	of	congenital	malformations	caused	by	medication	use	during



pregnancy.	When	 congenital	malformations	 are	 recorded	 at	 birth,	 the	 presence
(i.e.,	prevalence)	rather	than	the	incidence	is	determined.	Pregnancies	involving
congenital	malformations	 that	were	 terminated	 early	may	have	 been	 related	 to
the	 drug	 exposure	 too,	 but	 they	 are	 not	 included.	 If	 this	 is	 the	 case,	 then	 the
study’s	risk	estimates	will	be	too	low.

EXPERIMENTAL	COHORT	STUDIES
Cohort	 studies	 are	generally	based	on	 real-life	data,	 that	 is,	 circumstances	 that
occur	 without	 particular	 interference	 by	 the	 investigator.	 Therefore,	 cohort
studies	 are	 typically	 considered	 to	 be	 observational	 (i.e.,	 nonexperimental).
However,	 a	 randomized	 trial	 is	 also	 a	 cohort	 study,	 given	 that	 the	 study
population	 is	 defined	 by	 taking	 part	 in	 the	 trial	 and	 is	 subsequently	 followed
over	time.	Yet,	 trials	are	experimental	because	the	exposure,	such	as	allocation
to	the	drug,	is	not	taken	from	real-life	prescriptions	but	rather	manipulated	by	the
investigator	through	randomization	with	the	goal	of	improving	the	study’s	ability
to	show	unbiased	estimates	of	the	association	between	the	drug	and	the	outcome.
The	experimental	nature	of	 trials	 requires	prospective	collection	of	 the	data.

However,	 even	 though	 data	 are	 collected	 prospectively,	 the	 collection	 of
outcome	 data	 needs	 to	 be	 complete	 to	 prevent	 selective	 recording	 of	 outcome
events	 according	 to	 allocated	 treatment.	 In	 trials,	 this	 rule	 is	 known	 as	 the
intention	 to	 treat	 principle.	 The	 principle	 is,	 however,	 not	 different	 from	 the
need	 for	 outcome	 assessment	 independent	 from	 the	 determinant	 in	 any	 cohort
study.
There	are	good	examples	of	cohorts	 that	were	 first	 assembled	 for	a	 trial	but

were	 continued	 after	 the	 randomized	 period	 as	 a	 plain	 cohort	 study.	Here,	 the
exposure	 is	 experimental	 during	 a	 period	 of	 the	 cohort	 study	 and
nonexperimental	thereafter.	Also,	patients	considered	for	the	trial	but	eventually
not	 randomized	may	be	 followed	up	on	alongside	 the	 randomized	subgroup	of
the	 cohort.	 For	 example,	 all	 subjects	 screened	 for	 the	 Multiple	 Risk	 Factor
Intervention	Trial	(MRFIT)	were	used	to	create	one	of	the	largest	cohort	studies
on	cardiovascular	risk	factors	[Stamler	et	al.,	1986].

CROSS-SECTIONAL	STUDIES



Cross-sectional	 studies	 are	 cohort	 studies	with	 a	 time	 interval	of	 zero	between
the	collection	of	determinant	and	outcome	data.	In	other	words,	the	determinant
and	outcome	information	are	collected	simultaneously.	An	example	is	a	study	on
the	 relationship	 between	 certain	 determinants	 and	 joint	 bleeds	 in	 hemophilia
patients,	where	a	history	of	bleeding	is	obtained	at	the	same	time	as	the	possible
risk	 factors	 for	bleeding	 (e.g.,	 compliance	with	 treatment,	dosage	of	 treatment,
and	engagement	in	sports	and	other	activities	with	trauma	risk).
Another	 example	 is	 the	 analysis	 of	 risk	 of	 congenital	 malformations	 after

exposure	 to	 antidepressant	 drugs	 during	 pregnancy,	 where	 all	 the	 data	 are
collected	from	women	at	the	time	of	delivery	of	their	children,	who	may	or	not
may	have	malformations.	It	is	important	to	realize	that	while	the	data	collection
for	 determinants	 and	 outcome	 is	 organized	 at	 the	 same	 time,	 the	 association
being	studied	is	longitudinal.	The	assumption	is	that	drug	exposure	precedes	the
occurrence	of	malformations.	The	consequence	is	 that	 the	investigators	need	to
seek	assurance	that	no	bias	is	introduced	by	this	difference	between	the	timing	of
data	collection	and	the	temporal	sequence	of	the	presumed	cause	and	effect.	For
example,	 suppose	 that	 women	 with	 malformed	 children	 have	 a	 better
recollection	 of	 their	 drug	 use	 during	 pregnancy;	 this	 may	 induce	 an	 invalid,
biased	association	between	 the	drug	use	and	 the	congenital	malformation.	This
problem	is	known	as	recall	bias.
When	 a	 study	 is	 cross-sectional,	 it	 is	 not	 necessarily	 conducted	 at	 a	 single

point	 in	 time.	Even	 though	 data	 collection	 of	 determinants	 and	 outcome	 in	 an
individual	 takes	 place	 simultaneously	 at	 a	 particular	 moment,	 different
individuals	participating	in	a	study	may	be	examined	sequentially	over	a	longer
time	period.

ECOLOGIC	STUDIES
Ecologic	studies	are	cohort	studies.	The	cohort	is	assembled	from	the	aggregate
experience	 of	 several	 populations,	 for	 example,	 those	 living	 in	 different
geographic	 areas.	 In	 contrast	 to	 the	 usual	 approach	 in	 cohort	 studies,	 data	 are
collected	 from	 summary	 measures	 in	 populations	 rather	 than	 from	 individual
members	 of	 populations.	 For	 example,	 a	 study	 on	 the	 proportion	 of	 alcohol
intake	 from	 wine	 and	 the	 occurrence	 of	 coronary	 heart	 disease	 used	 the
distribution	 of	 wine	 intake	 across	 countries	 and	 the	 country-specific	 rates	 of
coronary	 heart	 disease	 to	 determine	 the	 possible	 cardioprotective	 effect	 of



different	levels	of	wine	consumption.	The	data	were	from	different	populations,
but	 the	 inference	was	made	 for	 individuals	within	populations,	 suggesting	 that
rather	 than	 alcohol	per	 se,	 it	 was	 the	 cardioprotective	 effect	 of	wine	 that	was
particularly	 clear	 (see	 Figure	 8–1)	 [Criqui	 &	 Ringel,	 1994].	 The	 study	 was
etiologic,	and	this	implies	that	the	effect	from	wine	on	heart	disease	risk	should
be	 adjusted	 for	 confounders.	 In	 particular,	 there	 seem	 to	 be	 several	 aspects	 of
lifestyle,	 including	 dietary	 habits,	 which	 could	 confound	 the	 observed	 crude
association.
A	 major	 problem	 in	 ecologic	 studies	 is	 the	 very	 limited	 extent	 to	 which

confounder	information	is	generally	available.	For	example,	data	on	differences
in	fat	intake	in	populations	of	countries	with	a	different	wine	consumption	may
not	exist,	or	when	data	are	available	at	a	population	level,	the	distribution	within
a	 country	 and	 its	 relationship	 to	 the	 distribution	 of	 wine	 intake	 within	 that
country	may	 remain	 unknown.	 Even	when	 two	 countries	 show	 similar	 overall
levels	of	intake	of	fat	and	wine,	within	the	countries	the	relationship	between	fat
intake	 and	wine	 consumption	 on	 an	 individual	 level	may	 be	 different.	 Indeed,
with	regard	to	wine	and	heart	disease	risk,	a	more	extensive	analysis	of	a	number
of	cohort	studies	with	ample	adjustment	for	confounders	showed	that	an	 initial
ecologic	observation	of	a	higher	cardiovascular	protection	from	wine	compared
to	other	alcoholic	beverages	could	not	be	confirmed	 [Rimm	et	al.,	1996].	This
implies	 that	 it	 is	 the	 alcohol,	 rather	 than	 its	 form,	 that	 conveys	 protection.	 In
clinical	 epidemiology,	 an	 example	 of	 an	 ecologic	 comparison	 is	 that	 between
different	hospital	 infection	rates	 in	relation	to	 local	policies	regarding	infection
prevention.	Even	 though	 the	 crude	 association	 suggests	 that	 infection	 rates	 are
higher	in	those	hospitals	with	a	less	extensive	prevention	program,	this	still	may
be	 confounded	 by,	 for	 example,	 differences	 in	 the	 type	 of	 surgery	 between
hospitals.	 Because	 of	 inherent	 difficulties	 with	 handling	 of	 confounding,
ecologic	studies	generally	do	not	provide	strong	evidence	in	favor	of	or	against
causal	associations.



FIGURE	8–1	Example	of	an	ecological	study	assessing	the	relationship	between	wine	consumption	and	the
coronary	heart	disease	(CHD)	mortality	rate	in	men	aged	44	to	64.

Reproduced	from	The	Lancet,	Vol.	344;	Criqui	MH,	Ringel	BL.	Does	diet	or	alcohol	explain	the	French
paradox?	1719.	©	1994,	reprinted	with	permission	fom	Elsevier.

COHORT	STUDIES	USING	ROUTINE	CARE
DATA
There	 are	 an	 endless	 number	 of	 subjects	 who	 are	 potentially	 eligible	 for
inclusion	 in	 clinical	 epidemiologic	 research	 among	 patients	 who	 are	 routinely
seen	 in	 clinical	 care.	 The	world	 is	 one	 big	 cohort.	 Routinely	 collected	 patient
data	offer	an	 immense	and	underutilized	resource	of	knowledge	for	diagnostic,
prognostic,	intervention,	and	etiologic	research.	Routine	care	data	from	patients
who	present	with	a	particular	symptom	or	sign	that	makes	the	physician	suspect
that	they	have	a	particular	disease	can	be	used	for	diagnostic	research	[Moons	et
al.,	2004a].	Routine	care	data	from	patients	diagnosed	with	a	particular	disease
who	 were	 clinically	 followed	 over	 time	 can	 be	 used	 for	 prognostic	 research
[Braitman	&	Davidoff,	1996;	Concato,	2001].	Also,	follow-up	data	from	patients
routinely	treated	for	a	particular	disease	with	a	particular	treatment	can	be	used
for	research	on	intended	and	unintended	effects	of	interventions	[Concato	et	al.,
2000;	 Ioannidis	 et	 al.,	 2001].	 Obviously,	 routinely	 collected	 data	 must	 meet
certain	criteria	to	be	used	in	clinical	epidemiologic	research	and	its	potential	and
problems	 need	 to	 be	well	 understood	 for	 the	 research	 conclusions	 to	 be	 valid.
There	 are	 various	 problems	 with	 routine	 care	 data	 drawn	 from	 patient	 files,



which	vary	based	on	the	type	of	research.
To	facilitate	research,	patients	must	be	coded	in	a	specific	and	uniform	way	in

the	hospital	or	general	practice	files.	For	example,	diagnostic	research	starts	with
a	series	(cohort)	of	patients	who	are	selected	based	on	the	presence	of	particular
symptoms	or	signs.	To	select	the	proper	patients	from	routine	care,	they	must	be
classified	uniformly	according	 to	 their	presented	symptom	or	sign.	Commonly,
however,	patients	are	only	coded	by	the	final	diagnosis	or	disease,	for	example,
using	 the	 International	 Classification	 of	 Disease	 version	 10	 (ICD-10)	 or
International	Classification	of	Primary	Care	(ICPC)	codes.
When	patients	are	selected	on	the	basis	of	their	final	diagnosis	as	determined

by	a	reference	standard	for	inclusion	in	diagnostic	research,	this	commonly	leads
to	selection	bias,	which	 is	also	known	as	verification,	workup,	or	referral	bias
[Begg,	 1987;	 Moons	 et	 al.,	 2004a;	 Ransohoff	 &	 Feinstein,	 1978].	 This	 bias
occurs	 because	 in	 routine	 care	 patients	 are	 commonly	 selectively	 referred	 for
eventual	disease	verification	based	on	previous	test	results.	For	example,	before
patients	 suspected	 of	 coronary	 heart	 disease	 are	 submitted	 to	 coronary
angiography	 on	 which	 the	 eventual	 diagnosis	 is	 based,	 they	 have	 undergone
other,	less	invasive	testing.	Thus,	the	disease	is	ruled	out	in	many	subjects	before
ever	 reaching	 angiography.	 Consequently,	 if	 patients	 are	 selected	 for	 a
diagnostic	 study	 using	 angiographically	 confirmed	 coronary	 disease	 as	 a
criterion	(and	perhaps	compared	with	healthy	subjects),	the	study	population	will
not	represent	the	full	spectrum	of	patients	suspected	of	having	coronary	disease
in	 real	 life.	 To	 achieve	 full	 representation,	 patients	 should	 be	 selected	 on	 the
criterion,	 “suspicion	 of	 coronary	 disease	 requiring	 further	 diagnostic	workup.”
Standard	 and	 uniform	 coding	 of	 patients	 according	 to	 their	main	 symptom	 or
sign	 at	 presentation	 is	 unfortunately	 not	 very	 common,	 but	 this	 is	 likely	 to
improve	with	the	increasing	use	of	electronic	patient	records	[Oostenbrink	et	al.,
2003].
In	contrast	to	diagnostic	research,	the	classification	in	routine	care	of	patients

according	 to	 their	 final	 diagnosis	 does	 facilitate	 the	 selection	 of	 cohorts	 of
patients	 with	 a	 particular	 disease	 to	 be	 included	 in	 prognostic	 research.
Moreover,	because	administered	treatments	are	commonly	documented	as	well,
routine	 care	 data	 in	 principle	 also	 provide	 for	 research	 on	 intended	 and
unintended	effects	of	treatments,	although	sometimes	this	may	be	prohibited	by
insurmountable	problems	of	confounding	by	indication.
Another	 potential	 problem	when	 using	 routine	 care	 data	 is	 the	 absence	 of	 a

blinded	outcome	assessment.	Clinical	epidemiologic	research	often	requires	that



the	 presence	 or	 absence	 of	 the	 outcome	 under	 study	 be	 documented	 in	 each
study	subject	without	knowledge	of	 (i.e.,	blinded	 for)	 the	determinant(s)	under
study.	Otherwise,	knowledge	of	the	determinant	status	may	(partly)	be	used	and
included	(or	incorporated)	in	the	assessment	of	the	outcome.	Consequently,	 the
association	 between	 the	 determinant(s)	 and	 outcome	 will	 be	 biased,	 a
phenomenon	also	known	as	information,	observer,	assessment,	or	incorporation
bias	 [Guyatt	 et	 al.,	 1993;	 Laupacis	 et	 al.,	 1997;	 Moons	 &	 Grobbee,	 2002b;
Pocock,	1984].
Of	course,	in	routine	care	the	patient	outcome	recorded	in	files	is	commonly

affected	 by	 knowledge	 of	 preceding	 patient	 information,	 including	 the
determinants(s)	of	 interest.	Hence,	 in	studies	solely	based	on	routine	care	data,
blinded	outcome	assessment	is	commonly	lacking.	While	sometimes	acceptable,
an	unblinded	outcome	assessment	in	particular	may	pose	validity	problems	when
the	 assessment	 of	 the	 presence	 or	 absence	 of	 an	 outcome	 is	 sensitive	 to
subjective	 (observer)	 interpretation,	 as	 for	 example	 in	 imaging	 tests.	 Suppose
that	 the	 goal	 of	 a	 diagnostic	 study	 is	 to	 determine	 the	 value	 of	 routine	 chest
radiographs	to	detect	small	lung	tumors.	Interpretation	of	minor	abnormalities	on
the	 radiograph	 in	 routine	 care	 may	 be	 quite	 different	 if	 the	 observer	 has
additional	information	(e.g.,	on	smoking	status)	that	would	make	the	presence	of
a	malignancy	more	or	less	likely.	Clearly,	the	unblinded	outcome	assessment	is	a
non-issue	 for	 unequivocal	 outcomes	 such	 as	 mortality	 or	 for	 measurements
providing	 objective	 results	 such	 as	 biochemical	 parameters	 (e.g.,	 cholesterol
level	or	leukocyte	count)	or	automatically	measured	blood	pressure	levels.
Finally,	the	problem	can	be	circumvented	when	investigators	use	routine	care

data	to	select	study	subjects	but	reassess	the	outcome	by	approaching	individual
patients,	disregarding	previously	recorded	patient	information.

Missing	Data
Probably	one	of	the	most	general	and	difficult	problems	with	the	use	of	routine
care	data	is	that	certain	data	are	missing	in	the	files.	Missing	data	pose	a	problem
in	all	 types	of	medical	 research,	no	matter	how	strict	 the	design	and	protocols.
But	this	problem	is	accentuated	in	research	based	on	routine	care	data,	as	there	is
commonly	 no	 strict	 case-record-form	 or	 data	 measurement	 protocol	 in	 daily
practice.
In	epidemiologic	research	we	distinguish	three	types	of	missing	data	[Rubin,

1976].	 If	subjects	whose	data	are	missing	are	a	 random	subset	of	 the	complete



sample	 of	 subjects,	 the	missing	 data	 are	 called	missing	 completely	 at	 random
(MCAR).	 Typical	 examples	 of	 MCAR	 are	 an	 accidentally	 dropped	 tube
containing	 venous	 blood	 (thus	 blood	 parameters	 cannot	 be	 measured)	 or	 a
questionnaire	 that	 is	 accidentally	 lost.	 The	 reason	 for	 the	 missing	 data	 is
completely	 random.	 In	 other	 words,	 the	 probability	 that	 an	 observation	 is
missing	is	not	related	to	any	other	patient	characteristic.
If	the	probability	that	an	observation	is	missing	depends	on	information	that	is

not	observed,	like	the	value	of	the	observation	itself,	the	missing	data	are	called
missing	not	at	random	 (MNAR).	For	example,	data	on	smoking	habits	may	be
more	likely	to	be	missing	when	subjects	do	not	smoke.
When	 missing	 data	 occur	 in	 relation	 to	 observed	 patient	 characteristics,

subjects	with	missing	data	are	a	selective	rather	than	a	random	subset	of	the	total
study	population.	This	pattern	of	missing	data	 is	 confusingly	called	missing	at
random	(MAR),	where	missing	values	are	random	conditional	on	other	available
patient	 information	 [Rubin,	 1976].	 Data	 that	 are	 missing	 at	 random	 are	 very
common	 in	 routine	 care	 databases.	 For	 example,	 in	 a	 diagnostic	 study	 among
children	 with	 neck	 stiffness,	 investigators	 quantified	 which	 combination	 of
predictors	 from	 patient	 history	 and	 physical	 examination	 could	 predict	 the
absence	 of	 bacterial	 meningitis	 (outcome),	 and	 which	 blood	 tests	 (e.g.,	 C-
reactive	 protein	 level)	 have	 added	 predictive	 value.	 Patients	 presenting	 with
severe	 signs	 such	 as	 convulsions,	 which	 commonly	 occur	 among	 those	 with
bacterial	 meningitis,	 often	 received	 additional	 blood	 testing	 before	 full
completion	 of	 patient	 history	 and	 physical	 examination,	 which	 in	 turn	 were
largely	 missing	 in	 the	 records.	 On	 the	 other	 hand,	 patients	 with	 very	 mild
symptoms,	who	frequently	had	no	bacterial	meningitis,	were	more	likely	to	have
a	 completed	 history	 and	 physical	 but	 were	 less	 likely	 to	 have	 had	 additional
tests,	because	the	physician	had	already	ruled	out	a	serious	disease.	Missing	data
on	particular	tests	was	thus	related	to	other	observed	test	results	and—although
indirectly—to	the	outcome.
This	mechanism	of	missing	data	is	even	more	likely	to	occur	in	longitudinal

studies	based	on	routine	care	data.	When	following	patients	over	time	in	routine
care	practice,	loss	to	follow-up	is	a	common	problem	and	often	is	directly	related
to	 particular	 patient	 characteristics.	 Accordingly,	 outcomes	 may	 be	 only
available	 for	 particular	 patients,	 the	 selection	 of	 whom	 is	 related	 to	 certain
determinants.	 Consider	 a	 study	 to	 compare	 the	 prognosis	 of	 patients	 with
minimally	versus	 invasive	 cancer.	Suppose	 that	patients	who	were	 treated	 in	 a
particular	hospital	during	a	certain	period	were	followed	up	on	over	time	using



data	from	patient	records.	Follow-up	information	for	subsequent	morbidity	may
be	more	complete	for	patients	with	initial	invasive	cancer,	because	these	patients
visited	 the	 clinic	 more	 regularly	 and	 during	 a	 longer	 time	 period	 as	 part	 of
routine	 procedures.	 One	 can	 easily	 check	 whether	 data	 are	 MCAR	 [Van	 der
Heijden	et	al.,	2006].	 If	 the	subset	of	patients	with	and	without	missing	values
does	not	differ	on	the	other	observed	patient	characteristics,	 the	missing	values
are	likely	MCAR	(although	theoretically	they	might	still	be	MNAR).
Typically,	 in	 epidemiologic	 research,	 missing	 data	 are	 neither	 MCAR	 nor

MNAR,	but	rather	MAR,	although	this	cannot	be	tested,	only	assumed	[Donders
et	 al.,	 2006;	Greenland	&	 Finkle,	 1995;	 Little	&	Rubin,	 1987;	 Schafer,	 1997;
Schafer	&	Graham,	2002;	Vach,	1994].
There	 are	 various	 methods	 for	 dealing	 with	 missing	 values	 in	 clinical

epidemiologic	research.	The	best	method	obviously	is	to	conduct	a	more	active
follow-up	 of	 the	 patients	 for	 whom	 crucial	 information	 is	 (partly)	 missing	 in
order	 to	 obtain	 as	 much	 as	 possible	 of	 this	 information.	 For	 example,	 in	 the
previously	mentioned	cancer	study	with	the	selective	follow-up,	the	researchers
could	conduct	a	more	active	follow-up	of	all	patients	regardless	of	the	baseline
disease	condition.	Similarly,	in	the	Utrecht	Health	Project,	routine	care	data	are
supplemented	 with	 predetermined	 additional	 data	 collection	 [Grobbee	 et	 al.,
2005].	 The	 quality	 of	 the	 routine	 care	 data	 in	 the	 Utrecht	 Health	 Project	 is
further	optimized	by	a	dedicated	training	program	for	healthcare	personnel,	with
ample	attention	given	to	ensure	complete	and	adequate	coding.
If	 a	 more	 active	 follow-up	 does	 not	 suffice	 or	 is	 not	 feasible,	 however,

researchers	 usually	 exclude	 all	 subjects	 with	 a	 missing	 value	 on	 any	 of	 the
variables	from	the	analysis.	The	so-called	complete	or	available	case	analysis	is
the	 most	 common	 method	 currently	 found	 in	 clinical	 epidemiologic	 studies,
probably	because	most	statistical	packages	implicitly	exclude	the	subjects	with	a
missing	 value	 on	 any	 of	 the	 variables	 analyzed.	 Obviously,	 simply	 excluding
subjects	 with	 missing	 values	 affects	 precision.	 But	 it	 is	 commonly	 not
appreciated	 that—more	 seriously—it	produces	 severely	biased	estimates	of	 the
associations	 investigated	when	 data	 are	 not	missing	 completely	 at	 random,	 as
shown	in	the	examples	of	the	diagnosis	of	bacterial	meningitis	and	prognosis	of
cancer	 patients	 presented	 earlier.	 It	 is	 better	 to	 use	 other	methods	 in	 the	 data
analysis	 than	 a	 complete	 case	 analysis	 [Donders	 et	 al.,	 2006;	 Little	&	 Rubin,
1987;	Schafer,	1997;	Schafer	&	Graham,	2002;	Rubin,	1987;	Vach,	1994;	Vach
&	Blettner,	1991].
There	are	a	variety	of	alternative	methods	to	cope	with	missing	values	in	the



analysis.	Some	of	these	are	briefly	discussed	next.	Illustrative	examples	can	also
be	found	in	Boxes	8–2	and	8–3.

	 	 1.	 Conditional	 imputation.	 This	 replacement	 is	 more	 technically	 called
imputation	 of	 a	 missing	 value.	 In	 this	 method,	 a	 value	 that	 is	 based	 or
conditional	on	as	many	as	possible	other	patient	characteristics	is	imputed
for	 a	 missing	 value.	 To	 do	 this,	 one	 commonly	 uses	 the	 data	 from	 all
patients	without	missing	values	on	the	variable	to	develop	a	multivariable
prediction	model	using	 regression	analysis.	 In	 such	a	model,	 the	variable
with	 missing	 values	 is	 the	 dependent	 or	 outcome	 variable	 and	 all	 other
patient	 characteristics	 are	 the	 independent	 or	 predictor	 variables.
Subsequently,	 this	 imputation	 or	 prediction	model	 is	 used	 in	 the	 patients
with	 missing	 values	 on	 that	 variable	 to	 predict	 the	 most	 likely	 value
conditional	on	his/her	observed	characteristics.	After	this,	a	complete	data
set	has	been	established	and	standard	software	can	be	applied	to	estimate
the	association	between	 the	determinant(s)	and	outcome	under	study.	We
note	 that	 in	 the	case	of	missing	determinant	values,	 the	outcome	variable
must	be	included	in	the	imputation	model.	Similarly,	when	outcome	values
are	 missing,	 all	 determinants	 under	 study	 should	 be	 included	 in	 the
imputation	model.	This	 seems	 like	a	circular	process.	 It	has	been	shown,
empirically,	 however,	 that	 imputation	 of	 outcome	 values	 that	 are	MAR,
using	 all	 observed	 information	 including	 the	 determinants	 under	 study,
causes	 less	bias	 in	 the	associations	between	 these	 same	determinants	and
the	outcome	than,	for	example,	unconditional	imputation	[Crawford	et	al.,
1995;	Rubin,	 1996;	Unnebrink	&	Windeler,	 2001].	 Similarly,	 imputation
of	missing	determinant	values	using	the	outcome	eventually	results	in	less
biased	 associations	 than	 imputations	 that	 are	 not	 conditional	 on	 the
outcome	 [Moons	 et	 al.,	 2006].	 This	 can	 simply	 be	 explained	 by
appreciating	 that	missing	data	 on	 a	 determinant	 are	 commonly	 related	 to
other	 determinants	 and	directly	 or	 indirectly	 to	 the	 outcome,	 as	was	 also
shown	in	the	earlier	examples	of	the	diagnosis	of	bacterial	meningitis	and
cancer.	Conditional	 imputation	can	be	done	once	 (i.e.,	 single	 imputation)
or	more	than	once	(multiple	imputation).

		2.	Unconditional	imputation.	In	this	method,	the	missing	value	of	a	particular
variable	is	replaced	or	“filled	in”	with	the	mean	or	median	of	that	variable
as	estimated	from	the	other	patients	 in	whom	that	variable	was	observed.
Because	here	the	missing	value	is	imputed	by	the	overall	variable	mean	or



median	 irrespective	 (unconditional)	 of	 any	other	patient	 information,	 this
method	 is	 also	 called	 the	 overall	 or	 unconditional	 (mean	 or	 median)
imputation	 [Donders	 et	 al.,	 2006;	 Greenland	 &	 Finkle,	 1995;	 Little	 &
Rubin,	1987;	Schafer,	1997;	Schafer	&	Graham,	2002;	Vach,	1994].

		3.	Maximum	likelihood	estimations.	This	method	(e.g.,	using	the	expectation-
maximation	 [EM]	 algorithm)	 is	 used	 for	 multilevel	 or	 repeated
measurement	 analysis	 in	 studies	 where	 determinants	 or	 outcomes	 are
documented	more	than	once	[Little	&	Rubin,	1987;	Schafer,	1997;	Schafer
&	Graham,	 2002;	Vach,	 1994].	 The	 use	 of	 this	method	 does	 not	 impute
any	 data	 but	 rather	 uses	 each	 all	 available	 data	 to	 compute	 maximum
likelihood	estimates.	The	maximum	 likelihood	estimate	of	a	parameter	 is
the	 value	 of	 the	 parameter	 that	 is	 most	 likely	 to	 have	 resulted	 in	 the
observed	data.	The	 likelihood	 can	 then	be	 computed	 separately	 for	 those
participants	with	complete	data	on	some	variables	and	those	with	complete
data	on	all	variables.	These	two	likelihoods	are	then	maximized	together	to
find	 the	 estimates	 [http://www.theanalysisfactor.com/missing-data-two-
recommended-solutions/,	accessed	May	2013].

		4.	Missing	indicator	method.	This	method	uses	a	dummy	(0/1)	variable	as	an
indicator	 for	missing	 data	 [Greenland	&	 Finkle,	 1995;	Miettinen,	 1985].
For	 example,	 if	 there	 are	 missing	 values	 for	 a	 particular	 variable,	 an
indicator	 is	 defined	 with	 “1”	 if	 the	 variable	 value	 is	 missing	 and	 “0”
otherwise.	In	the	case	of	categorical	variables,	this	is	equal	to	treating	the
missing	values	as	a	separate	result.	For	the	variable,	the	missing	values	are
commonly	 recoded	 as	 zero,	 although	 any	 value	 would	 suffice.	 The	 idea
behind	 this	 method	 is	 that	 the	 association	 between	 the	 original	 (though
recoded)	variable	and	the	outcome	is	always	fitted	in	combination	with	the
indicator	variable.	Accordingly,	 all	 subjects	 are	used	 in	 the	multivariable
analysis,	 the	 supposed	advantage	of	 the	missing	 indicator	method.	While
this	 is	 true,	 the	 resulting	estimates	are	biased	even	 in	 the	case	of	MCAR
[Greenland	&	Finkle,	1995].

When	missing	data	are	MNAR,	valuable	information	is	lost	from	the	data	and
there	 is	 no	 universal	 method	 of	 handling	 the	 missing	 data	 properly	 [Little	 &
Rubin,	 1987;	 Rubin,	 1987;	 Schafer,	 1997;	 Schafer	 &	 Graham,	 2002;	 Vach,
1994].	 When	 missing	 data	 are	 MCAR,	 the	 complete	 case	 analysis	 gives
unbiased,	 although	 obviously	 less	 precise,	 results	 [Greenland	&	 Finkle,	 1995;
Little	&	Rubin,	 1987;	Moons	 et	 al.,	 2006;	 Schafer,	 1997;	 Schafer	&	Graham,
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2002;	Rubin,	 1987;	Vach,	 1994].	However,	 like	 the	missing	 indicator	method,
the	unconditional	mean	imputation	method	still	leads	to	biased	results	when	data
are	MCAR	 [Donders	 et	 al.,	 2006;	 Greenland	&	 Finkle,	 1995].	 In	 the	 case	 of
MAR,	which	 is	most	commonly	encountered	 in	 research	based	on	routine	care
data	 (as	 described	 earlier),	 a	 complete	 case	 analysis	 will	 result	 in	 biased
associations	 between	 determinants	 and	 outcome	 due	 to	 selective	missing	 data.
Also,	the	indicator	method	and	the	unconditional	mean	imputation	method	then
give	 biased	 results	 [Donders	 et	 al.,	 2006;	Greenland	&	Finkle,	 1995;	 Little	&
Rubin,	1987;	Moons	et	al.,	2006;	Schafer,	1997;	Schafer	&	Graham,	2002;	Vach,
1994].	Only	more	 sophisticated	 techniques,	 like	 conditional	 single	 or	multiple
imputation	and	the	maximum	likelihood	estimation	method,	give	less	biased	or
rather	the	most	valid	estimations	of	the	study	associations.	Although	single	and
multiple	 conditional	 imputations	 both	 yield	 unbiased	 results,	 the	 latter	 is
preferred	 as	 it	 results	 in	 correctly	 estimated	 standard	 errors	 and	 confidence
intervals,	while	 single	 imputation	yields	 standard	 errors	 that	 are	 too	 small.	All
this	 is	 illustrated	 using	 simple	 simulation	 studies	 in	 Boxes	 8–2	 and	 8–3.
Empirically,	 it	 has	 been	 shown	 that	 even	 in	 the	 presence	 of	missing	 values	 in
about	half	of	the	subjects,	multiple	conditional	imputation	still	yields	less	biased
results	as	compared	to	the	commonly	used	complete	case	analysis	[Moons	et	al.,
2006].	The	question	arises	how	many	missing	values	one	may	accept	and	how
many	 subjects	 can	 be	 imputed	 before	 multiple	 imputations	 will	 not	 suffice.
There	are	yet	no	empirical	studies	showing	an	upper	limit	of	missing	values	that
can	be	imputed	validly.

BOX	8–2	Example	of	a	Simulated	Diagnostic	Study	with	Missing	Data

Consider	a	diagnostic	study	with	only	one	continuous	diagnostic	test	and	a	true	disease	status
(present/absent).

We	simulated	1,000	samples	of	500	subjects	drawn	from	a	theoretical	population	consisting	of	equal
numbers	of	diseased	and	nondiseased	subjects.	The	true	regression	coefficient	in	a	logistic	regression
model	linking	the	diagnostic	test	to	the	probability	of	disease	was	1.0	(odds	ratio	=	2.7),	with	an
intercept	of	0.	The	diagnostic	test	was	normally	distributed	with	mean	0	and	standard	deviation	2.	No
other	tests	or	subject	characteristics	were	considered.

In	each	sample,	80%	of	the	nondiseased	subjects	was	assigned	a	missing	value	on	the	test.	The
diseased	subjects	had	no	missing	data.	Accordingly,	missing	data	were	MAR	as	they	were	based	on
other	observed	variables,	here	the	true	disease	status	only.	Overall	about	40%	of	the	data	was	missing.
Using	the	procedure	mice	(for	details	about	the	software	we	refer	to	the	literature	[Van	Buuren,
1999]),	10	multiple	imputed	data	sets	were	created	for	each	sample.	Then	the	association	between	the
test	and	the	disease	status	plus	standard	error	was	estimated	in	each	data	set	using	a	logistic	regression
model.	Subsequently,	all	associations	with	standard	errors	were	analyzed	within	each	of	the	10
multiply	imputed	data	sets.	The	10	regression	coefficients	and	standard	errors	were	then	combined



multiply	imputed	data	sets.	The	10	regression	coefficients	and	standard	errors	were	then	combined
using	standard	formulas	[Rubin,	1987].	One	extra	data	set	was	imputed	and	analyzed	as	a	single
imputed	data	set.	Finally,	the	results	were	averaged	over	the	1,000	simulations.	For	both	the	single	and
multiple	imputation	procedure,	the	estimate	of	the	association	was	indeed	unbiased.	The	single
imputation	procedure	appears	more	precise	because	of	the	smaller	standard	error,	thus	leading	to
smaller	confidence	intervals,	but	the	90%	confidence	interval	does	not	contain	the	true	parameter	as
often	(only	63.6%)	as	it	should,	that	is	90%.

Multiple	imputation	leads	to	a	larger	standard	error	and	wider	confidence	intervals,	but	the	estimated
standard	errors	are	more	correct	and	the	confidence	interval	has	the	correct	coverage	(i.e.,	90.3%).
Hence,	in	contrast	to	single	imputation,	multiple	imputation	gives	sound	results	both	with	respect	to
bias	and	precision.

	

BOX	8–3	Illustration	of	the	Problems	with	the	Missing	Indicator	Method	and	the	Unconditional	Mean
Imputation,	Even	when	Values	Are	Missing	Completely	at	Random

Missing	indicator	method.	We	used	the	same	example	study	as	in	Box	8–2	but	considered	a	second
continuous	test,	which	is	a	proxy	for	the	first	test.	This	means	that	the	second	test	is	not	directly	related
to	the	disease	(OR	=	1;	regression	coefficient	=	0)	but	only	to	the	first	test.	Fitting	a	logistic	regression
model	to	predict	disease	status	using	the	first	test,	only	a	positive	regression	coefficient	was	found
(case	1).	When	only	the	second	test	was	included,	we	also	found	a	positive	association	because	of	the
indirect	relationship	between	disease	status	and	the	second	test	(case	2).	Using	both	tests,	only	a
positive	association	for	the	first	test	was	found,	comparable	to	case	1,	and	a	regression	coefficient	near
0	for	the	second	test	(case	3).	Suppose	there	were	missing	values	on	the	first	test	but	not	on	the	second
test,	and	that	these	are	MCAR,	that	is,	equal	proportion	in	diseased	and	nondiseased	subjects.	We
defined	a	missing	indicator	variable	as	1	if	the	result	of	the	first	test	was	missing	and	0	otherwise.	One
can	see	that	in	a	model	used	to	predict	the	true	disease	status	using	both	tests	plus	the	missing
indicator,	the	regression	coefficient	of	the	second	test	would	not	be	0	as	it	should	be.	For	the	subjects
with	no	missing	data,	indeed,	case	3	applied.	But	for	the	subjects	with	a	missing	value	on	the	first	test,
case	2—rather	than	case	3—suddenly	applied,	as	there	were	no	observations	for	the	first	test.	Hence
the	estimate	for	the	regression	coefficient	of	the	second	test	was	biased	and	somewhere	between	0,	the
true	estimate	(case	3),	and	the	value	of	case	2.	Moreover,	if	the	regression	coefficient	of	the	second
test	was	biased,	so	was	the	regression	coefficient	of	the	first	test	due	to	the	mutual	adjustment	in
multivariable	modeling.

To	illustrate	this,	we	performed	a	second	simulation	study	similar	to	that	of	Box	8–2.	We	again
simulated	1,000	samples	of	500	subjects	drawn	from	the	same	theoretical	population,	which	now	also
included	a	proxy	variable	for	the	first	test	with	a	correlation	of	0.75	with	the	first	diagnostic	test.	For
the	first	test,	40%	missing	values	were	assigned	completely	at	random,	that	is,	20%	for	the	diseased
and	nondiseased.	The	table	shows	that	the	regression	coefficient	of	the	diagnostic	test	was	indeed
heavily	biased	(as	the	true	value	was	1.0)	as	well	as	the	proxy	variable	(as	the	true	value	was	0).	Thus,
although	the	indicator	method	has	the	appealing	property	that	all	available	information	and	subjects



although	the	indicator	method	has	the	appealing	property	that	all	available	information	and	subjects
are	used	in	the	analyses,	the	fact	that	it	can	lead	to	biased	associations	for	the	original	variables	is
reason	enough	to	discard	this	method	even	when	missing	data	are	MCAR,	let	alone	when	data	are
MAR.

Unconditional	mean	imputation.	In	the	example	study	in	Box	8–2	it	may	be	obvious	that	the
magnitude	and	significance	of	the	association	(regression	coefficient)	of	the	continuous	test	with	the
outcome	was	completely	determined	by	the	difference	in	overlap	of	the	test	result	distributions
between	the	diseased	and	nondiseased	subjects.	The	less	overlap,	the	higher	and	more	significant	the
regression	coefficient	was.	If	the	two	distributions	completely	overlapped,	the	regression	coefficient
would	be	0.	Consider	the	same	simulation	study	as	was	used	for	the	missing	indicator	method,	with
40%	missing	values	assigned	completely	at	random	(20%	for	the	diseased	and	20%	for	the
nondiseased).

Imputing	or	replacing	these	missing	values	by	the	overall	mean	of	the	test	result	as	estimated	from	the
remaining	(observed)	subjects—that	is,	nondiseased	and	diseased	subjects	combined—would
obviously	increase	the	amount	of	overlap	in	the	two	test	result	distributions.	Hence,	the	association
between	the	test	result	and	the	outcome	would	be	diluted	and	the	regression	coefficient	would	be
biased	toward	0	and	insignificance.	This	is	illustrated	in	the	lower	part	of	this	box.	The	regression
coefficient	was	not	1,	but	rather	0.55.	Like	the	indicator	method,	the	overall	mean	imputation	of
missing	values	should	also	be	discarded,	as	it	leads	to	biased	associations,	even	when	missing	data	are
MCAR.

	 Diagnostic	Test	Regression	Coefficient	(standard
error)

Proxy	Regression	Coefficient	(standard
error)

Indicator
method*

0.55	(0.14) 0.51	(0.08)

Overall	mean 0.55	(0.14) Not	applicable

*The	logistic	model	included:	ln[P(disease)/(1	−	P(disease))]	=	intercept	+	b1	×	diagnostic	test	+	b2	×
proxy	+	b3	×	indicator,	where	the	indicator	=	1	if	the	value	for	diagnostic	test	was	missing	and	0
otherwise,	and	where	diagnostic	test	was	set	to	0	if	its	value	was	missing.

	

Apart	 from	 these	 problems,	 routine	 care	 data	 comply	 with	 two	 essential
characteristics	 of	 determinant	 data	 in	 descriptive	 (diagnostic	 and	 prognostic)
research.	First,	 routine	care	data	are	 likely	 to	match	 the	 range	of	variables	 that
are	of	interest	to	the	investigator.	For	example,	if	an	investigator	wants	to	study
the	 diagnostic	 value	 of	 symptoms,	 signs,	 and	 results	 from	 diagnostic	 tests	 in
setting	a	diagnosis	of	heart	failure	in	general	practice	and	the	need	for	referral	to
secondary	 care,	 the	 patient	 files	 from	 primary	 care	 practices	 will	 likely	 show
those	variables	 that	 lead	a	general	practitioner	 to	 suspect	 that	a	patient	has	 the
disease.	General	 practitioners	may	 use	 electrocardiography	 but	 are	 unlikely	 to
routinely	have	 results	 from	chest	x-rays.	Therefore,	 although	chest	x-rays	may
add	 diagnostic	 information,	 such	 data	 would	 not	 be	 relevant	 in	 view	 of	 the
research	 question.	Hence,	 the	 lack	 of	 this	 variable	 in	 the	 patient	 records	 is	 no



problem.	Second,	 routine	 data	 likely	 reflect	 a	 quality	 of	 data	 collection	 that	 is
typical	 of	 the	 quality	 of	 the	 data	 in	 the	 application	 of	 the	 research	 findings	 in
clinical	 practice.	As	 an	 example,	when	 the	 goal	 is	 to	 determine	 the	 diagnostic
value	 of	 abdominal	 palpation	 for	 aortic	 aneurysms	 in	 patients	 suspected	 of
having	 this	 vascular	 problem,	 routine	 records	 with	 results	 from	 palpation
performed	 by	 the	 average	 physician	 are	 likely	 to	 offer	 a	 better	 view	 of	 the
diagnostic	value	of	 this	 test	 in	 the	diagnostic	workup	of	 these	patients	 in	daily
practice	 than	 when	 all	 patients	 were	 carefully	 examined	 by	 a	 highly	 skilled
vascular	surgeon.
To	 conclude,	 the	 extent	 to	 which	 patient	 data	 from	 routine	 care	 may

effectively	and	validly	be	used	to	answer	research	questions	depends	on	the	type
of	 research	 question	 and	 the	 type	 of	 research.	 For	 causal	 research,	 the
availability	 and	 quality	 of	 confounder	 data	 need	 to	 be	 carefully	 addressed	 and
may	often	be	shown	to	be	inadequate.	In	descriptive	research,	it	is	important	that
the	 routine	 care	 data	 comprise	 all	 clinically	 relevant	 diagnostic	 or	 prognostic
determinants	 to	 yield	 a	 relevant	 research	 result.	 For	 all	 types	 of	 research	 it	 is
necessary	 that	 the	 patients	 can	 indeed	 be	 retrieved	 from	 the	 files	 based	 on
uniform	and	unselective	coding,	that	the	outcome	is	assessed	in	each	subject,	and
that	missing	data	are	properly	dealt	with.

LIMITATIONS	OF	COHORT	STUDIES
There	are	no	intrinsic	limitations	of	cohort	studies.	They	offer	a	highly	effective
approach	in	epidemiology.	However,	there	are	situations	in	which	cohort	studies
cannot	be	used,	and	some	research	questions	are	difficult	to	address	in	a	cohort
study	 when	 the	 study	 is	 not	 experimental.	 Cohort	 studies	 in	 which	 data
collection	is	prospective	are	generally	time	consuming	and	expensive.	The	time
for	 a	 cohort	 study	 to	 be	 completed	 depends	 on	 the	 duration	 of	 follow-up,	 but
research	 on	 common	 causes	 of	 chronic	 disease	may	 require	 large	 numbers	 of
subjects	 followed	 for	 considerable	 amounts	 of	 time.	When	 a	 quick	 answer	 is
desired,	a	prospective	approach	to	data	collection	is	less	attractive.
Prospectively	 conducted	 cohort	 studies	 are	 expensive.	 They	 require	 the

planned	and	systematic	collection	of	data	on	the	members	of	the	cohort,	which
calls	for	adequate	infrastructure	and	personnel.	Time	and	expenses	may	be	less
of	a	problem	when	data	can	be	used	that	have	already	been	recorded	in	the	past,
so	 data	 collection	 can	 be	 retrospective.	 However,	 rather	 than	 from	 practical



limitations,	 retrospective	 data	 collection	 may	 suffer	 from	 incomplete	 or	 low-
quality	 data	 because	 the	 data	 were	 probably	 recorded	 without	 the	 current
research	 question	 in	 mind.	 This	 may	 leave	 the	 investigator	 without	 important
confounder	 data	 in	 causal	 research	 or	 without	 a	 highly	 interesting	 prognostic
indicator	in	prognostic	research.	It	should	be	noted	that	sometimes	confounding
cannot	 be	 sufficiently	 removed	 even	 when	 extensive	 data	 on	 confounders	 is
available.	This	may	apply	when	the	determinant	of	interest	is	too	closely	linked
to	a	confounder,	as	 for	example,	 the	 indication	for	drug	use	 that	can	hardly	be
separated	 from	 the	 drug	 use	 itself,	 or	 when	 the	 full	 range	 of	 confounders	 is
unclear	or	difficult	to	measure.	An	example	of	the	latter	situation	is	given	by	the
highly	contradictory	results	of	observational	cohort	studies	and	trials	with	regard
to	 the	putative	cardioprotective	effect	of	postmenopausal	hormone	replacement
therapy.	A	range	of	welldesigned	prospective	cohort	studies	supported	the	view
that	 hormone	 replacement	 therapy	 reduced	 the	 risk	 of	 coronary	 heart	 disease.
However,	these	study	results	were	not	substantiated	when	hormone	replacement
therapy	 was	 studied	 in	 randomized	 trials.	 Unmeasured	 confounders	 could
account	 for	 this	 discrepancy,	 and	 the	 indication	 for	 treatment	 in	 observational
studies	 may	 have	 played	 a	 role.	 Also,	 differences	 in	 the	 exposure	 time	 to
hormone	replacement	 therapy	between	 the	 trials	and	observational	 studies	may
have	led	to	the	conflicting	findings.
Finally,	 it	 is	 important	 to	discuss	whether	 the	randomized	 trials	 included	 the

same	women	that	were	included	in	the	observational	research	[Van	der	Schouw
&	Grobbee,	2005].	It	is	important	to	realize	that	for	a	given	population,	the	only
difference	between	a	randomized	trial	and	an	observational	cohort	study	lies	in
the	fact	that	in	the	randomized	trial	the	determinant	(e.g.,	drug	use)	is	randomly
allocated	 to	 the	members	of	 the	cohort,	whereas	 in	 the	observational	 study	 the
participants	 are	 naturally	 exposed	 to	 the	 determinant.	 In	 the	 latter	 setting,
exposure	 to	 the	 determinant	 is	 a	 characteristic	 of	 certain	 individuals,	 the
individuals	have	chosen	 to	be	exposed,	or	 the	exposure	 is	applied	by	someone
else	(such	as	a	physician	prescribing	a	drug).	Any	reason	for	being	exposed	that
in	 itself	 is	 associated	with	 the	 outcome	 could	 act	 as	 a	 confounder	 and	 should
therefore	be	taken	into	account.	If	this	is	not	possible,	the	cohort	study	will	not
yield	valid	results.

WORKED-OUT	EXAMPLE:	THE	SMART	STUDY



As	a	result	of	both	aging	and	the	impact	of	factors	such	as	elevated	cholesterol,
diabetes,	or	high	blood	pressure,	arteries	may	stiffen.	Increased	arterial	stiffness
amplifies	the	risk	of	future	symptomatic	cardiovascular	events	that	these	factors
by	themselves	already	confer.	Whether	arterial	stiffening	also	increases	the	risk
of	 reoccurrence	 of	 events	 in	 those	 who	 have	 already	 been	 diagnosed	 with
manifest	arterial	disease	is	largely	unknown.
At	the	University	Medical	Center	Utrecht,	a	cohort	is	continuously	being	built

up	 of	 patients	 referred	 with	 symptomatic	 cardiovascular	 disease,	 named	 the
Second	 Manifestations	 of	 ARTerial	 disease	 (SMART)	 cohort.	 This	 is	 an
example	of	a	cohort	study	that	is	conducted	with	patients	who	are	referred	to	a
hospital	 as	 part	 of	 routine	 care.	 In	 the	 SMART	 cohort,	 we	 prospectively
examined	 whether	 stiffer	 arteries	 put	 patients	 with	 diagnosed	 cardiovascular
disease	 at	 increased	 risk	 of	 reoccurrence	 of	 events	 and	 of	 cardiovascular
mortality	[Dijk	et	al.,	2005]	(see	Box	8–4).

Theoretical	Design
The	 research	 question	 was,	 “Does	 arterial	 stiffness	 predict	 recurrent	 vascular
events	 in	 patients	with	manifest	 vascular	 disease?”	 This	 leads	 to	 the	 etiologic
occurrence	 relation:	 incidence	 of	 vascular	 events	 as	 a	 function	 of	 arterial
stiffness	conditional	on	confounders.	The	domain	is	patients	who	are	referred	to
the	 hospital	 and	 diagnosed	 with	 cardiovascular	 disease.	 The	 operational
definition	 of	 recurrent	 vascular	 disease	 (the	 outcome)	 was	 vascular	 death,
ischemic	stroke,	coronary	ischemic	disease,	and	the	composite	of	these	vascular
events.	Measurement	of	arterial	stiffness	was	operationalized	by	measurement	of
distension	of	the	left	and	right	common	carotid	arteries.	Measurement	of	several
possible	 confounders	 and	 effect	 modifiers	 was	 operationalized	 using
questionnaires,	blood	chemistry,	and	measurement	of	blood	pressure.

BOX	8–4	Cohort	Study	on	the	Causal	Link	Between	Carotid	Stiffness	and	New	Vascular	Events	in	Patients
with	Manifest	Cardiovascular	Disease

AIMS:	To	study	whether	arterial	stiffness	is	related	to	the	risk	of	new	vascular	events	in	patients	with
manifest	arterial	disease	and	to	examine	whether	this	relation	varies	between	patients	who	differ	with
respect	to	baseline	vascular	risk,	arterial	stiffness,	or	systolic	blood	pressure	(SPB).

METHODS	AND	RESULTS:	The	study	was	performed	in	the	first	consecutive	2183	patients	with
manifest	arterial	disease	enrolled	in	the	SMART	study	(Second	Manifestations	of	ARTerial	disease),	a
cohort	study	among	patients	with	manifest	arterial	disease	or	cardiovascular	risk	factors.	Common
carotid	distension	(i.e.,	the	change	in	carotid	diameter	in	systole	relative	to	diastole)	was	measured	at



baseline	by	ultrasonography.	With	the	distension,	several	stiffness	parameters	were	determined.	In	the
entire	cohort,	none	of	the	carotid	artery	stiffness	parameters	was	related	to	the	occurrence	of	vascular
events.	However,	decreased	stiffness	was	related	to	decreased	vascular	risk	in	subjects	with	low
baseline	SPB.	The	relation	of	carotid	stiffness	with	vascular	events	did	not	differ	between	tertiles	of
baseline	risk	and	carotid	stiffness.

CONCLUSION:	Carotid	artery	stiffness	is	no	independent	risk	factor	for	vascular	events	in	patients
with	manifest	arterial	disease.	However,	in	patients	with	low	SBP,	decreased	carotid	stiffness	may
indicate	a	decreased	risk	of	vascular	events.

Reproduced	from	Dijk	DJ,	Algra	A,	van	der	Graaf	Y,	Grobbee	DE,	Bots	ML	on	behalf	of	the	SMART
study	group.	Cartoid	stiffness	and	the	risk	of	new	vascular	events	in	patients	with	manifest	cardiovascular
disease.	The	SMART	study.	Eur	Heart	J.	2005	Jun;	26	(12):	1213–20.

Design	of	Data	Collection
Data	 were	 collected	 from	 an	 ongoing	 (since	 September	 1,	 1996)	 prospective
single-center	 cohort	 of	 patients	 age	 18–80	 years	with	manifest	 arterial	 disease
who	were	 referred	 to	 the	University	Medical	Center	Utrecht.	More	 than	6,000
patients	 were	 enrolled	 over	 10	 years.	 For	 the	 arterial	 stiffness	 substudy,	 data
from	patients	collected	from	September	1,	1996	until	March	1,	2003	were	used
because	 during	 that	 time	 period,	 the	 necessary	 vascular	 measurements	 were
obtained.	At	baseline,	a	general	questionnaire	on	cardiovascular	risk	factors	and
previously	diagnosed	diseases	was	completed	(see	Table	8–1).

TABLE	8–1	General	Characteristics	of	the	Study	Population	(n	=	2183)
Men	(%) 		75
Age	(years) 		59.7
Systolic	blood	pressure	(SBP)	(mm	Hg) 141		
Diastolic	blood	pressure	(DBP)	(mm	Hg) 		79	
Mean	arterial	pressure	(MAP)	(mm	Hg) 		99	
Triglycerides	(mmol/L) 				2.0
Total	cholesterol	(mmol/L) 				5.5

Reproduced	from	Dijk	DJ,	Algra	A,	van	der	Graaf	Y,	Grobbee	DE,	Bots	ML	on	behalf	of	the	SMART
study	group.	Cartoid	stiffness	and	the	risk	of	new	vascular	events	in	patients	with	manifest	cardiovascular
disease.	The	SMART	study.	Eur	Heart	J.	2005	Jun;	26(12):1213–20.

At	 the	 screening	 visit,	 simple	measurements	 such	 as	 blood	 pressure,	 height,
and	 weight	 were	 taken	 and	 venous	 blood	 samples	 were	 taken	 for	 analysis	 of
blood	 chemistry.	 Common	 carotid	 intima-media	 thickness	 (CIMT)	 was
measured	at	the	left	and	right	common	carotid	arteries	with	an	ATL	Ultramark	9



(Advanced	 Technology	 Laboratories,	 Bethel,	 WA,	 USA)	 equipped	 with	 a	 10
MHz	 linear	 array	 transducer.	 Duplex	 scanning	 of	 the	 carotid	 arteries	 was
performed	 for	 assessment	 of	 presence	 of	 internal	 carotid	 artery	 stenosis.
Stiffness	 was	 assessed	 by	 measurement	 of	 distension	 of	 the	 left	 and	 right
common	carotid	arteries.	The	distension	of	an	artery	is	the	change	in	diameter	in
systole	 relative	 to	 the	 diastolic	 diameter	 during	 the	 cardiac	 cycle.	 The
displacement	 of	 the	 walls	 of	 the	 left	 and	 right	 common	 carotid	 artery	 was
measured	with	a	Wall	Track	System	(Scanner	200,	Pie	Medical,	Maastricht,	The
Netherlands)	equipped	with	a	7.5	MHz	linear	transducer.	To	obtain	information
on	baseline	vascular	risk,	the	previously	developed	SMART	risk	score	was	used.
The	SMART	risk	score	is	based	on	baseline	data	of	preexisting	disease	and	risk
factors.	 Patients	 receive	 points	 for	 gender,	 age,	 body	 mass	 index,	 smoking
behavior,	hyperlipidemia,	hyperglycemia,	hypertension,	medication	use,	medical
history,	 and	 prevalent	 vascular	 disease	 at	 baseline.	 Patients	 were	 biannually
asked	to	fill	in	a	questionnaire	on	hospitalizations	and	outpatient	clinic	visits	in
the	 preceding	 6	months.	 Events	 of	 interest	 for	 this	 study	were	 vascular	 death,
ischemic	stroke,	coronary	ischemic	disease,	and	the	composite	of	these	vascular
events.	 When	 a	 possible	 event	 was	 recorded	 by	 the	 participant,	 hospital
discharge	 letters	 and	 results	 of	 relevant	 laboratory	 and	 radiology	 examinations
were	collected.	With	this	information,	all	events	were	audited	by	three	members
of	 the	 SMART	 Study	 Endpoint	 Committee,	 comprising	 physicians	 from
different	departments.

Design	of	Data	Analysis
The	 principal	 analysis	 was	 performed	 on	 the	 participants	 who	 were	 included
from	 September	 1,	 1996	 until	 March	 1,	 2003,	 excluding	 the	 193	 patients	 in
whom	 stiffness	 measurements	 were	 missing	 due	 to	 equipment	 failure	 or
logistical	 problems,	 the	 measurements	 of	 94	 participants	 in	 whom	 the	 intra-
individual	 variance	 between	 stiffness	 measurements	 was	 considered	 out	 of
range,	and	6	patients	in	whom	no	follow-up	information	was	available.	The	data
of	2,183	participants	were	used	in	 the	analysis.	 It	should	be	noted	that	missing
variables	 were	 not	 imputed	 in	 this	 study,	 even	 though	 conditional	 imputation
(see	earlier	discussion)	would	have	been	preferable.
Because	the	main	interest	was	the	causal	relationship	between	arterial	stiffness

and	 new	 cardiovascular	 events,	 age,	 mean	 arterial	 pressure,	 sex,	 pack-years
smoked,	 and	 use	 of	 antihypertensive	 medication	 were	 considered	 potential



confounders.	The	modifying	effect	of	baseline	systolic	blood	pressure	(SBP)	and
baseline	risk	was	investigated	by	calculating	separate	hazard	ratios	for	tertiles	of
SBP	 and	 baseline	 risk.	 First,	 the	 crude	 hazard	 ratio	 for	 arterial	 stiffness	 (per
standard	 deviation	 increase	 in	 stiffness)	 was	 calculated	 with	 the	 Cox
proportional	hazard	analysis	(Model	I	in	Table	8–2).	Next,	age	was	included	in
the	 model	 (Model	 II	 in	 the	 table)	 and,	 finally,	 an	 additional	 adjustment	 for
potential	 confounders	 (notably	mean	arterial	pressure,	 sex,	pack-years	 smoked,
and	use	of	antihypertensive	medication	at	baseline)	was	done	(Model	III	 in	the
table).	To	evaluate	whether	baseline	risk	(with	the	SMART	score)	and	SBP	were
effect	 modifiers,	 interaction	 terms	 were	 included	 in	 the	 model	 and	 stratified
analyses	were	performed	in	tertiles	of	baseline	risk	and	SBP.

Implications	and	Relevance
The	 results	 of	 this	 study	 show	 that	 in	 patients	 with	 manifest	 arterial	 disease,
increasing	 arterial	 stiffness,	 unadjusted,	 is	 associated	with	 an	 increased	 risk	 of
vascular	events	and	vascular	death.	The	relationship	disappears	after	adjustment
for	age	(Table	8–2).	Thus,	in	this	population	as	a	whole,	carotid	stiffness	is	not
an	 independent	 risk	 factor	 for	 the	 occurrence	 of	 vascular	 events.	 Stiffness
probably	reflects	the	long-term	exposure	to	several	of	these	risk	factors	but	does
not	 increase	 the	risk	of	 these	patients	over	and	above	 the	risk	conferred	by	 the
risk	 factors.	We	 did	 find	 that	 in	 patients	 with	 low	 SBP,	 those	 with	 less	 stiff
vessels	 had	 a	 lower	 vascular	 risk.	 Previous	 studies,	 largely	 in	 patients	without
diagnosed	vascular	disease	and	thus	at	a	lesser	developed	stage	of	cardiovascular
damage,	 mainly	 showed	 a	 direct	 relationship	 between	 arterial	 stiffness	 and
subsequent	disease,	although	 the	magnitude	varied	considerably.	 In	our	patient
group,	we	found	no	relationship	between	arterial	stiffness	and	vascular	events.

TABLE	8–2	Relationship	Between	Carotid	Stiffness	and	Vascular	Events
	 	 Hazard	Ratio	(95%	CI)
Vascular	Event	(no.	of	events) Model Distension/SDa

All	vascular	events	(192) I			 0.87	(0.75–1.01)
	 II		 0.97	(0.85–1.17)
	 III	 0.95	(0.79–1.13)
Vascular	death	(107) I			 0.74	(0.59–0.91)
	 II		 0.94	(0.75–1.18)
	 III	 0.86	(0.67–1.11)
Ischemic	stroke	(47) I			 1.14	(0.87–1.51)
	 II		 1.20	(0.89–1.61)

1.20	(0.86–1.63)



	 III	 1.20	(0.86–1.63)

Coronary	ischemic	event	(117) I			 0.86	(0.71–1.05)
	 II		 0.99	(0.81–1.23)
	 III	 0.92	(0.73–1.16)

Model	I:	unadjusted
Model	II:	Model	I	additionally	adjusted	for	age
Model	III:	Model	II	additionally	adjusted	for	mean	arterial	pressure,	sex,	age,	pack-years	smoked,	and

use	of	antihypertensive	medication	at	baseline
aIn	all	models	adjusted	for	end-diastolic	diameter	carotid	arteries	and	mean	arterial	pressure.
Reproduced	from	Dijk	DJ,	Algra	A,	van	der	Graaf	Y,	Grobbee	DE,	Bots	ML	on	behalf	of	the	SMART
study	group.	Cartoid	stiffness	and	the	risk	of	new	vascular	events	in	patients	with	manifest	cardiovascular
disease.	The	SMART	study.	Eur	Heart	J.	2005	Jun;	26(12):1213–20.

As	published	data	mainly	 reported	on	 subjects	with	 risk	 factors	 for	vascular
disease	who	generally	can	be	considered	 to	have	a	 lower	 risk	 than	 the	patients
with	 manifest	 arterial	 disease	 in	 our	 study,	 the	 different	 reported	 relationship
between	 arterial	 stiffness	 and	 vascular	 disease	 may	 be	 explained	 by	 an
association	 between	 arterial	 stiffness	 and	 vascular	 events	 in	 low-risk	 patients
only.	 However,	 the	 observation	 in	 studies	 on	 patients	 with	 end-stage	 renal
disease	 who	 are	 known	 to	 be	 at	 high	 vascular	 risk	 that	 arterial	 stiffness	 was
associated	with	 vascular	 events	 does	 not	 jive	with	 this	 explanation.	Moreover,
our	finding	that	the	association	between	arterial	stiffness	and	vascular	events	is
not	modified	by	baseline	risk	does	not	support	this	hypothesis	either.



Chapter	9



Case-Control	Studies

INTRODUCTION
There	 is	 no	 doubt	 that	 of	 all	 the	 available	 approaches	 to	 data	 collection	 in
epidemiology,	case-control	studies	continue	to	attract	the	most	controversy.	On
the	 one	 hand	 this	 is	 understandable,	 because	 many	 poorly	 conducted	 case-
control	 studies	 have	 been	 reported	 in	 the	 literature	 and	 most	 textbooks	 in
epidemiology	 present	 famous	 examples	 of	 case-control	 studies	 that	 produced
biased	 results.	 Indeed,	 the	 validity	 of	 case-control	 studies	 in	 general	 is	 often
questioned,	and	some	epidemiologists	go	so	far	as	to	place	case-control	studies
at	the	low	end	of	their	hierarchy	of	study	designs,	just	above	the	case-report	or
case-series	designs.	This	 is	 illustrated	by	the	following	statement	from	the	first
edition	of	a	textbook	by	one	of	the	founders	of	clinical	epidemiology:

If	the	best	you	can	find	is	a	case-control	study,	you	must	recognize	that	this	is	a	weak	design	that
often	has	led	to	erroneous	conclusions	[Sackett	et	al.,	1985].

On	 the	 other	 hand,	 one	 cannot	 deny	 that	 since	 their	 introduction	 to	 clinical
research	in	1920,	case-control	studies	have	proven	their	potential	value,	notably
in	 causal	 research.	 Apart	 from	 identifying	 etiologic	 factors	 for	 many	 diseases
(such	as	 smoking	as	a	causal	determinant	of	 lung	cancer	 [Doll	&	Hill,	1950]),
case-control	studies	have	been	important	in	identifying	and	quantifying	risks	of
drugs.	 Examples	 of	 the	 latter	 include	 the	 association	 between	 aspirin	 use	 and
Reye	syndrome	in	children	[Hurwitz	et	al.,	1987]	and	between	diethylstilboestrol
(DES)	 use	 by	 pregnant	 women	 and	 the	 occurrence	 of	 clear	 cell	 vaginal
carcinoma	in	their	daughters	[Herbst	et	al.,	1971].	The	potential	strength	of	case-
control	 studies	 in	medicine	 was	 emphasized	 by	Kenneth	 Rothman	 in	 the	 first



edition	of	his	textbook:

The	 sophisticated	 use	 and	 understanding	 of	 case-control	 studies	 is	 the	 most	 outstanding
methodological	development	of	modern	epidemiology	[Rothman,	1986].

Although	 these	 opposing	 views	 on	 the	 value	 of	 case-control	 studies	 were
expressed	over	20	years	ago,	discussions	 regarding	 the	validity	of	case-control
studies	continue.	The	reasons	for	the	air	of	suspicion	surrounding	the	results	of
case-control	 studies	 are	 difficult	 to	 fully	 elucidate	 but	 are	 no	 doubt	 related	 to
both	the	complexity	of	their	design	and	the	prevailing	misconception	about	their
rationale	 and	 essence	 among	 both	 the	 researchers	 performing	 them	 and	 their
readers	 and	 reviewers.	 In	 addition,	 case-control	 studies	 are	 often	 applied	 in
causal	 research,	 and	 because	 these	 case-control	 studies	 are	 nonrandomized	 by
definition,	 confounding	 may	 bias	 the	 results	 and	 must	 be	 dealt	 with
appropriately.	 Of	 course,	 appropriate	 coping	 with	 confounding	 is	 equally
important	for	other	nonexperimental	designs,	such	as	cohort	studies.
The	 main	 problem	 with	 case-control	 studies	 is	 that	 too	 often	 they	 are

presented	 as	 “quick	 and	dirty”	 epidemiologic	 studies	 involving	 some	group	of
cases	 (those	with	 the	 outcome	 or	 disease	 of	 interest)	 and	 a	 group	 (sometimes
even	 several	 groups)	 of	 readily	 available	 human	beings	without	 that	 particular
outcome	(controls),	often	matched	to	the	cases	according	to	several	(sometimes
more	 than	10!)	characteristics	 such	as	age,	gender,	 and	comorbidity.	Then,	 the
determinant	of	interest,	typically	a	risk	factor	believed	to	be	causally	implicated
in	the	disease,	as	well	as	potential	confounders,	are	measured	in	both	cases	and
controls,	 producing	 an	 adjusted	measure	 of	 association	 (usually	 an	 odds	 ratio)
between	 the	 determinant	 and	 outcome.	 Too	 often,	 studies	 are	 conducted	 and
presented	without	appreciation	of	the	principles	of	case-control	studies,	and	they
do	not	provide	the	reader	with	the	rationale	for	the	choices	that	were	made	in	the
design	of	data	collection:	Why	a	case-control	study?	Why	these	particular	cases?
Why	this	control	group?	Why	is	there	(no)	matching	of	cases	and	controls?	This
leaves	the	reader	with	the	difficult	 task	of	 judging	the	validity	of	 these	choices
and	consequently	the	results	(see	Box	9–1).
In	 this	 chapter,	 we	 present	 the	 rationale	 (Why	 a	 case-control	 study?)	 and

essence	(What	makes	a	case-control	study	a	case-control	study?)	of	case-control
studies,	 provide	 a	brief	history	of	 case-control	 studies	 in	 clinical	 research,	 and
emphasize	 the	methods	available	 to	 identify	cases	and,	 in	particular,	 to	sample
controls.	 In	 addition,	 several	 more	 recently	 developed	 types	 of	 case-control
studies,	 including	 case-cohort	 and	 case-crossover	 studies,	 are	 reviewed.	 We



argue	 that	 when	 the	 principles	 of	 case-control	 studies	 are	 appreciated,	 these
studies	can	be	of	great	value	in	both	causal	and	descriptive	clinical	research.

BOX	9–1	Warhol’s	“Campbell’s	Soup	Can”

Many	researchers	conduct	case-control	studies	where	a	group	of	patients	with	a	certain	disease	is
identified	and	compared	with	another	group	who	does	not	have	the	disease.	Selection	of	controls	is
often	done	as	if	quickly	opening	a	“can”	of	non-cases,	without	an	appreciation	of	the	primary	principle
of	case-control	studies:	Controls	should	be	representative	of	the	population	experience	from	which	the
cases	emerge.	In	addition,	there	is	a	tendency	to	match	controls	to	the	cases	according	to	a	range	of
characteristics	(notably,	potential	confounders).	This	often	results	in	very	atypical	control	subjects
(those	with	many	risk	factors	for	the	disease	but	who	manage	not	to	develop	the	disease),	who	share
more	similarities	with	“museum	exhibits”	than	with	existing	individuals.	Consequently,	and
unfortunately,	too	many	case-control	studies	could	be	summarized	by	the	famous	Andy	Warhol
canvas,	“Campbell’s	Soup	Can.”

	

THE	RATIONALE	FOR	CASE-CONTROL
STUDIES
Why	choose	to	do	a	case-control	study?	Case-control	studies	are	conducted	for
efficiency	reasons.	Under	certain	circumstances,	it	may	be	cumbersome	or	even
impossible	 to	 study	 an	 entire	 population	 in	 detail	 over	 a	 certain	 time	 period.
When	 the	 outcome	 of	 interest	 (e.g.,	 anaphylactic	 shock)	 is	 very	 rare,	 for
example,	 a	 cohort	 study	 (or	 randomized	 trial)	would	 require	 identification	 and
long-term	 follow-up	 of	many	 subjects	with	 and	without	 the	 determinant	 (e.g.,
use	of	a	specific	drug).	Case-control	studies	can	also	be	efficient	when	the	time
between	exposure	to	the	determinant	and	the	occurrence	of	the	outcome	is	very
long	 (e.g.,	 the	 use	 of	DES	 by	 pregnant	women	 and	 the	 occurrence	 of	 vaginal
carcinoma	 in	 their	 daughters)	 or	 unknown,	 or	 when	 the	 measurement	 of	 the
determinant(s)	 and	 other	 relevant	 variables	 (e.g.,	 confounders)	 is	 time
consuming,	 burdensome	 to	 patients,	 and/or	 expensive	 (e.g.,	 when	 imaging
techniques	or	genetic	analyses	are	involved).	Instead	of	studying	the	census	(that
is,	all	members	of	the	cohort	or	dynamic	population	during	the	entire	follow-up
period)	 in	 detail,	 it	 is	 more	 efficient	 to	 study	 only	 those	 who	 develop	 the
outcome	 of	 interest	 during	 the	 study	 period	 (the	 cases)	 and	 a	 sample	 of	 the
population	from	where	the	cases	emerge	(the	controls).	The	determinant(s)	and



other	 relevant	 factors	 (typically	 the	potential	 confounders	 in	 the	case	of	causal
research,	but	 also	possible	modifiers	when	one	 is	 interested	 in	assessing	effect
modification)	are	then	measured	in	cases	and	controls	only	(see	Box	9–2).

BOX	9–2	Case-Control	Studies:	Semantics

One	of	the	problems	surrounding	case-control	studies	is	the	large	number	of	terms	applied	to	indicate
the	case-control	method	or	to	describe	its	subtypes.	A	nonexhaustive	list	includes	these	terms:

Case-referent	study Case-cohort	study
TROHOC	study Nested	case-control	study
Retrospective	study Case-crossover	study
	 Case-only	study
	 Case-specular	study

The	left	row	lists	alternative	terms	for	case-control	studies	that	have	been	suggested	over	the	years.
Although	the	term	case-referent	study	seems	more	appropriate,	we	propose	using	the	term	case-
control	study	instead	to	ensure	that	both	researchers	and	readers	understand	the	underlying
methodology.	In	particular,	terms	such	as	TROHOC	(the	reverse	of	cohort	study)	and	retrospective
studies	should	be	avoided	[Schulz	&	Grimes,	2002]	because	they	imply	a	“reverse”	nature	of	the	case-
control	approach	(from	disease	to	determinant	instead	of	the	other	way	around),	while	the	direction	of
the	occurrence	relation	is	in	fact	similar	to	studies	using	a	census	approach:	outcome	as	a	function	of
the	determinant.	Moreover,	case-control	studies	can	be	both	retrospective	and	prospective.	In	the	right
row	several	types	of	case-control	studies	are	listed.	These	terms	could	be	used	because	they	do
indicate	several	methods	that	can	be	applied	in	case-control	studies,	as	long	as	one	realizes	that	these
studies	are	in	fact	case-control	studies	in	that	they	sample	controls	from	the	study	base.

	

THE	ESSENCE	OF	CASE-CONTROL	STUDIES
What	makes	a	case-control	study	a	case-control	study?	In	terms	of	the	design	of
data	collection,	 the	essence	 is	 sampling,	as	opposed	 to	census.	The	strength	of
case-control	studies	is	that	they	allow	the	researcher	to	quantify	the	occurrence
relation	of	interest	by	studying	cases	and	only	a	sample	of	the	population	where
the	 cases	 stem	 from,	 while	 still	 producing	 the	 same	 estimates	 as	 would	 have
been	obtained	 from	a	 cohort	or	dynamic	population	 study	 (i.e.,	 using	a	 census
approach).	A	valid	result,	however,	can	only	be	guaranteed	when	the	controls	are
sampled	correctly	from	the	population	from	which	the	cases	emerge.
Figure	 9–1	 illustrates	 the	 essence	 of	 a	 case-control	 study	 [Hoes,	 1995].	 A

population,	 being	 a	 cohort,	 dynamic	 population,	 or	 (less	 frequently)	 a	 cross-



section	 of	 these,	 is	 identified.	 Although	 one	 can	 also	 imagine	 cross-sectional
case-control	 studies	 (where	 the	 time	 dimension	 is	 zero),	 let	 us	 assume	 that	 a
population	is	followed	for	a	certain	time	period	and	that	the	aim	of	the	study	is	to
quantify	 the	 association	of	 a	 determinant	 (det)	with	 the	 future	 occurrence	 of	 a
particular	disease	(dis).	The	population	followed	over	time	is	often	referred	to	as
the	 study	 base.	 It	 equals	 the	 population	 experience	 available	 to	 perform	 the
study.	Members	of	the	population	do	not	yet	have	the	disease	under	study	when
the	 investigation	 starts.	 Some	 of	 the	 population	 members	 will	 have	 the
determinant	or	exposure	of	interest	(det+)	and	others	will	not	(det−).	In	addition,
other	 characteristics	 or	 covariables	 (notably	 confounders	 when	 the	 aim	 is	 to
study	causality)	of	the	participants	may	be	relevant.
In	a	census	approach,	 such	as	 in	a	cohort	 study	or	 in	a	 randomized	 trial,	 all

members	of	the	study	population	will	be	identified	when	they	enter	the	study	and
all	 relevant	 characteristics,	 including	 the	 determinants	 and	 covariables	 of
interest,	 will	 be	measured.	 Then,	 all	members	will	 be	monitored	 over	 time	 to
establish	whether	they	do	(dis+)	or	do	not	(dis−)	develop	the	disease.	At	the	end
of	 the	 study,	 the	 incidence	 of	 the	 disease	 in	 those	 with	 and	 without	 the
determinants	can	be	compared,	where	the	numerator	is	provided	by	the	number
of	cases	(cases	in	Figure	9–1)	and	the	denominator	either	by	the	total	number	of
participants	with	and	without	 the	determinant	 (when	cumulative	 incidences	are
calculated)	 or	 by	 the	 number	 of	 person-years	 contributed	 to	 the	 study	 base	 by
those	with	and	without	the	determinant	(when	incidence	rates	are	calculated).

FIGURE	9–1	Case	control	study.	Abbreviations	are	det,	determinant;	dis,	disease.



In	a	case-control,	and	thus	a	sampling	approach,	the	same	study	base	as	in	the
census	approach	is	followed	over	time	to	monitor	the	occurrence	of	the	disease
of	 interest.	 In	 contrast,	 however,	 the	determinants	 and	 relevant	 covariables	 are
not	measured	in	all	members	of	the	study	base,	but	only	in	those	developing	the
disease	(the	cases)	and	in	a	sample	of	the	study	base	(controls	or	referents).	The
term	 referents	 is	more	 appropriate	 because	 it	 clearly	 indicates	 that	 the	 sample
members	are	referents	from	the	study	base	from	which	the	cases	emerge,	but	we
use	 the	 term	 controls	 because	 of	 its	 widespread	 use	 in	 the	 literature.	 By
definition,	the	members	of	the	control	group	do	not	have	the	disease	of	interest
when	 they	are	selected	as	controls.	 It	 should	be	emphasized,	however,	 that	 the
controls	are	not	a	sample	of	the	non-cases	(shown	in	Figure	9–1),	because	these
non-cases	 only	 represent	 those	 participants	 who	 do	 not	 develop	 the	 disease
during	 the	 total	 follow-up	period.	 In	 fact,	 some	of	 the	members	of	 the	 control
group	could	subsequently	develop	the	disease.	Therefore,	 in	the	likely	event	of
changes	 in	 the	population	during	 the	study	period	(often	new	people	will	enter
and	others	leave	the	study	base	with	or	without	having	developed	the	outcome),
it	 is	 wiser	 not	 to	 sample	 controls	 at	 one	 specific	 time	 during	 the	 study,	 but
instead	at	several	time	points	throughout	the	study	experience,	to	ensure	a	proper
representation	of	the	study	base	from	which	the	cases	develop.	In	a	later	section,
the	methods	 to	validly	sample	controls	 from	 the	study	base	will	be	outlined	 in
more	 detail	 with	 the	 introduction	 of	 the	 study	 base	 (or	 “swimming-pool”)
principle.

A	BRIEF	HISTORY	OF	CASE-CONTROL
STUDIES	IN	CLINICAL	RESEARCH
The	 case-control	 method	 was	 developed	 in	 the	 field	 of	 sociology.	 To	 our
knowledge,	 the	first	case-control	study	in	medicine	was	published	in	1920	(see
Figure	9–2)	[Broders,	1920],	assessing	the	role	of	smoking	in	the	development
of	epithelioma	of	the	lip.	Smoking	habits	of	537	patients	with	epithelioma	of	the
lip	were	 compared	 to	 500	 patients	without	 epithelioma.	Although	 tobacco	 use
was	similar	in	both	groups	(79%	and	80%,	respectively),	the	proportion	of	pipe
smokers	was	much	higher	in	the	cases	(78%)	than	in	the	controls	(38%).	In	this
first	case-control	study,	neither	additional	characteristics	of	the	control	group	nor
information	 on	 the	way	 controls	were	 sampled	were	 provided.	 In	 addition,	 no



formal	 measure	 of	 association	 between	 pipe	 smoking	 and	 lip	 carcinoma	 was
calculated	 and	 no	 discussion	 of	 possible	 confounding	 was	 included,	 let	 alone
adjustment	 for	 confounding	 in	 the	 analysis.	 These	 latter	 limitations	 are
understandable,	 because	 it	 took	 an	 additional	 30	 years	 for	 the	 exposure	 odds
ratio	 (the	measure	 of	 association	 usually	 applied	 in	 case-control	 studies)	 to	 be
introduced	and	8	more	years	before	a	method	to	adjust	for	confounding	was	first
described.	 Nevertheless,	 a	 causal	 association	 between	 pipe	 smoking	 and
epithelioma	of	the	lip	was	later	confirmed	in	other	studies.

FIGURE	9–2	The	first	report	of	a	case-control	study	published	in	the	medical	literature	in	1920.

Reproduced	from	Broders	AC.	Squamous-cell	epithelioma	of	the	lip.	A	study	of	537	cases.	JAMA



1920;74:656–64.

The	 year	 1950	 heralded	 an	 important	 period	 in	 the	 acceptance	 of	 the	 case-
control	 method	 in	 clinical	 research.	 In	 that	 year,	 four	 case-control	 studies
assessing	 the	 association	 between	 tobacco	 consumption	 and	 the	 risk	 of	 lung
cancer	 were	 published.	 Despite	 methodologic	 problems	 in	 several	 aspects,
including	 the	 way	 the	 control	 group	 was	 sampled	 and	 misclassification	 of
smoking	history,	these	early	studies	clearly	illustrated	the	potential	of	this	study
design	[Doll	&	Hill,	1950].
In	1951,	Cornfield	gave	a	strong	impulse	to	the	further	application	of	the	case-

control	 method	 by	 proving	 that,	 under	 the	 assumption	 that	 the	 outcome	 of
interest	 is	 rare,	 the	 odds	 ratio	 resulting	 from	 a	 case-control	 study	 equals	 the
incidence	ratio	that	would	result	from	a	cohort	study	[Cornfield,	1951].	Another
influential	 paper	 was	 published	 in	 1959,	 in	 which	 Mantel	 and	 Haenszel
described	 a	 procedure	 to	 derive	 odds	 ratios	 from	 stratified	 data,	 thus	 enabling
adjustment	for	potential	confounding	variables.	Later,	Miettinen	[1976a,	1976b]
made	several	important	contributions	to	the	development	of	case-control	studies,
including	 landmark	publications	on	how	 to	appropriately	 sample	controls	 from
the	study	base	so	that	the	resulting	odds	ratio	always	(also	when	the	outcome	is
not	 rare)	provides	a	valid	estimate	of	 the	 incidence	density	 ratio	 that	would	be
observed	in	a	cohort	study.
Over	recent	decades,	the	case-control	method	has	been	applied	throughout	the

field	of	clinical	medicine	far	beyond	the	research	on	cancer	etiology	for	which	it
was	 first	 developed.	 The	 method	 also	 provides	 important	 applications	 for	 the
study	 of	 intended	 and	 unintended	 effects	 of	 interventions.	 Especially	 for	 the
latter,	 case-control	 studies	 have	 proven	 their	 enormous	 potential.	 Examples
include	studies	on	the	risk	of	fatal	asthma	in	recipients	of	beta-agonists,	cancer
of	 the	 vagina	 in	 daughters	 of	 mothers	 receiving	 DES	 during	 their	 pregnancy,
and,	 more	 recently,	 deep	 vein	 thrombosis	 resulting	 from	 the	 use	 of	 third-
generation	oral	 contraceptives.	Thus	 far,	 the	 case-control	method	has	not	 been
widely	 applied	 in	 descriptive	 (diagnostic	 and	 prognostic)	 research,	 but	 its
efficiency	 in	 both	 diagnostic	 and	 prognostic	 research	 is	 increasingly	 being
recognized.

THEORETICAL	DESIGN



The	 research	 question	 and	 associated	 occurrence	 relation	 may	 take	 any	 form,
depending	 on	 the	 objective	 of	 the	 case-control	 study.	 Usually,	 case-control
studies	 are	 applied	 when	 the	 goal	 is	 to	 unravel	 causality,	 and	 therefore	 the
occurrence	 relation	 should	 include	 conditionality	 on	 extraneous	 determinants
(i.e.,	confounders).	More	recently,	the	case-control	method	has	also	been	applied
in	descriptive	research	[Biesheuvel	et	al.,	2008].

DESIGN	OF	DATA	COLLECTION

Sampling	in	Nonexperimental	and	(Usually)
Longitudinal	Studies
By	definition,	case-control	studies	take	a	sampling	(not	a	census)	approach	and
are	nonexperimental.	Because	most	case-control	 studies	address	causality,	 they
are	 longitudinal,	 that	 is,	 there	 is	 conceptual	 time	 between	 the	 presence	 of	 a
determinant	and	the	occurrence	of	the	outcome	(t	>	0).	Diagnostic	case-control
studies,	however,	are	typically	cross-sectional	(i.e.,	t	=	0).
It	should	be	emphasized	that	case-control	studies	can	be	both	prospective	and

retrospective.	 If	 all	 data	 on	 determinant(s),	 outcome,	 and	 other	 factors
(confounders,	modifiers)	are	already	available	when	 the	 researcher	 initiates	 the
study,	 the	 case-control	 study	 is	 retrospective.	 Often,	 however,	 a	 case-control
study	 is	 prospective,	 so	 the	 researcher	 develops	 a	 method	 to	 identify	 cases,
starting	 “now”	 and	 ending	 when	 enough	 cases	 have	 been	 included.	 The
researcher	 samples	 a	 control	group	during	 the	 same	 time	period.	The	common
view	that	case-control	studies	are	retrospective	by	definition	(because	one	starts
by	 collecting	 cases	 and	 controls	 and	 then	 looks	 back	 in	 time	 to	 assess	 earlier
exposure	to	the	determinant)	is	wrong.

Analogy	of	a	Swimming	Pool,	Lifeguard	Chair,	and	a
Net
When	 designing	 a	 case-control	 study,	 it	may	 be	 helpful	 to	 compare	 the	 study
base	 from	 which	 both	 the	 cases	 and	 controls	 originate	 to	 a	 swimming	 pool.
Researchers	 should	 then	 envision	 themselves	 sitting	 on	 a	 lifeguard	 chair,
overlooking	the	water	surface	from	a	distance,	while	holding	a	net	with	a	 long



handle	(see	Figure	9–3).
In	 the	 swimming	 pool,	 a	 changing	 population	 is	 present	 where	 several

swimmers	 have	 the	 determinant(s)	 of	 interest	 and	 the	 remaining	 swimmers	 do
not.	 Importantly,	as	 in	an	ordinary	swimming	pool,	people	can	enter	and	 leave
the	 study,	 and	 even	 possibly	 reenter	 it.	 Such	 a	 dynamic	 population	 closely
resembles	 the	 source	 populations	 of	 many	 case-control	 studies,	 which	 may
include	inhabitants	of	a	certain	town	or	region,	those	enlisted	with	a	primary	care
practice	or	a	health	maintenance	organization,	or	the	catchment	population	of	a
certain	 hospital	 (i.e.,	 those	 living	 in	 the	 vicinity	 of	 a	 hospital	 who	 would	 be
referred	 to	 that	hospital	 if	 they	developed	 the	disease	of	 interest).	New	people
may	 enter	 these	 populations	when	 they	 are	 born,	move	 to	 that	 particular	 area,
and	 so	 on,	 and	 they	may	 also	 leave	 this	 study	 base	 for	 various	 reasons	 (e.g.,
when	they	die,	move	away	from	the	area,	or	develop	the	outcome	under	study).
The	role	of	the	researcher	closely	resembles	that	of	the	lifeguard	sitting	high	up
in	 a	 chair,	 overlooking	 the	 swimming	 pool.	 Typically,	 the	 lifeguard	 does	 not
know	exactly	how	many	individuals	are	in	the	pool	at	a	certain	point	in	time,	nor
their	 characteristics,	 let	 alone	 their	 identities.	 In	 case-control	 terminology,	 the
determinant	 and	 other	 relevant	 characteristics	 (e.g.,	 confounders	 or	 effect
modifiers)	 are	 not	 measured	 in	 all	 individuals	 in	 the	 study	 base.	 The	 net	 is
designed	 such	 that	 it	 will	 catch	 those	 fulfilling	 the	 criteria	 of	 the	 outcome	 of
interest.	Once	a	swimmer	gets	into	trouble	or	is	floating	around	in	the	pool	(i.e.,
becomes	 a	 case),	 then	 the	 lifeguard	 springs	 into	 action	 and	 uses	 the	 net	 to
capture	the	case.	This	happens	each	time	a	case	occurs.



FIGURE	9–3	A	swimming	pool,	a	lifeguard	chair,	and	a	net.

swimming	pool,	©	Carolina/ShutterStock,	Inc.;	lifeguard	chair,	©	Brett	Stoltz/ShutterStock,	Inc.;	net,	©
Eyup	Alp	Ermis/ShutterStock,	Inc.

Meanwhile,	 the	 mission	 is	 to	 select	 a	 group	 of	 control	 subjects	 who	 are
representative	of	 the	 study	base	 from	which	 the	 cases	originate.	Because	most
populations	 change	 continuously,	 it	 is	 preferable	 to	 sample	 the	 controls	 at
different	points	in	time	rather	than	at	one	specific	point	in	time.	One	possibility
is	to	sample	one	or	a	few	control(s)	from	the	pool	each	time	a	case	is	taken	out.
Then,	 the	 lifeguard	who	 is	 still	 sitting	 in	 the	 chair	 takes	 the	net	 and	 randomly
samples	other	swimmers	(controls)	 from	the	pool.	By	definition,	 these	controls
are	 representatives	 of	 the	 swimming	 pool	 from	 which	 the	 cases	 emerge.
Subsequently,	 the	 lifeguard	 (i.e.,	 researcher)	 gets	 out	 of	 the	 chair	 and	 closely
examines	 the	 cases	 and	 the	 randomly	 sampled	 controls	 (in	 case-control
terminology,	 the	 researcher	 measures	 the	 determinant	 and	 other	 relevant
characteristics).	Alternatives	for	sampling	controls	each	time	a	case	is	identified
include	 sampling	 controls	 at	 random	 points	 in	 time	 or	 sampling	 at	 regular
intervals,	for	example	every	week	or	month.
The	principles	of	identifying	cases	and	sampling	controls	also	apply	to	case-

control	 studies	 that	 are	 being	 conducted	 within	 a	 cohort,	 that	 is,	 a	 particular



swimming	 pool	 that	 is	 closed	 at	 some	 point	 in	 time	 and	 does	 not	 allow	 new
individuals	 to	enter.	 In	contrast	 to	 the	more	 typical	dynamic	source	population
outlined	 in	 the	 previous	 paragraphs,	 the	 number	 of	 swimmers	 included	 in	 the
pool	(i.e.,	the	size	of	the	initial	cohort)	is	generally	known.	Just	as	in	other	case-
control	studies,	however,	 the	researcher	obtains	information	on	the	determinant
and	other	relevant	characteristics	in	the	cases	and	the	sampled	controls	only.	The
methods	 available	 to	 validly	 sample	 controls	within	 a	 cohort	 study,	 as	well	 as
from	a	dynamic	population,	are	discussed	later	in	this	chapter.

Identification	of	Cases
As	 in	 any	 other	 type	 of	 study,	 the	 definition	 of	 the	 outcome	 is	 crucial.	 The
challenge	to	the	researcher	lies	in	designing	a	“net”	that	is	capable	of	capturing
all	members	 of	 the	 study	 base	 that	 fulfill	 the	 case	 definition	 during	 the	 study
period	while	ignoring	those	who	do	not	meet	the	case	criteria.	In	addition,	a	date
on	which	the	outcome	occurred	should	be	designated	for	each	case	to	facilitate
valid	sampling	of	the	control	subjects.
Sometimes,	 existing	 registries	 can	 be	 applied	 to	 identify	 cases.	 Examples

include	 cancer	 or	 death	 registries,	 hospital	 discharge	 diagnoses,	 or	 coded
diagnoses	 in	 primary	 care	 or	 health	 maintenance	 organization	 databases.	 It
should	 be	 emphasized	 that	 the	 number	 of	 false-positive	 and	 false-negative
diagnoses	in	existing	registries	may	be	considerable	and	they	clearly	depend	on
the	 outcome;	 for	 example,	 death	 is	 much	 easier	 to	 diagnose	 than	 depression,
benign	prostatic	hyperplasia,	or	sinusitis.
When	valid	 registries	of	 the	 case	disease	 are	not	 available,	 ad-hoc	 registries

can	 be	 developed.	 For	 example,	 in	 a	 case-control	 study	 on	 the	 risk	 of	 sudden
cardiac	 death	 associated	 with	 diuretics	 and	 other	 classes	 of	 blood	 pressure–
lowering	drugs,	we	developed	a	method	to	detect	cases	of	sudden	cardiac	death
among	 all	 treated	 hypertensive	 patients	 in	 a	 well-defined	 geographical	 area
[Hoes	at	al.,	1995a].	During	the	2.5-year	study	period,	all	doctors	signing	a	death
certificate	 received	 a	 very	 short	 questionnaire,	 including	 a	 question	 about	 the
period	 between	 the	 onset	 of	 symptoms	 and	 the	 occurrence	 of	 death	 and	 the
probability	 of	 a	 cardiac	 origin.	 Sudden	 cardiac	 death	 was	 defined	 as	 a	 death
occurring	within	1	hour	of	symptom	onset	for	which	a	cardiac	origin	could	not
be	excluded.
Although	 in	 theory	 rigorous	 criteria	 to	 define	 the	 case	 disease	 should	 be

applied,	 one	 should	 weigh	 the	 feasibility	 of	 these	 methods	 against	 the



consequences	 of	 false-positive	 diagnoses	 and	 missing	 cases	 (false-negatives).
Misclassification	 of	 the	 outcome	 will	 dilute	 the	 association	 between	 the
determinant	and	the	outcome	if	such	misclassification	occurs	independent	of	the
determinants	 studied.	Then,	 false-positive	diagnosis	 (i.e.,	 non-cases	 counted	 as
cases)	may	lead	to	a	larger	dilution	than	nonrecognition	of	cases;	most	of	these
false-negatives	 will	 not	 be	 sampled	 as	 controls	 because	 in	 many	 case-control
studies	the	outcome	is	rare.	Consequently,	incompleteness	of	a	registry	does	not
necessarily	 reduce	 the	 validity	 of	 a	 study.	 Misclassification	 can	 also	 be
differential	and,	 thus,	depend	on	the	presence	of	 the	determinant.	For	example,
in	 a	 case-control	 study	 on	 the	 risk	 for	 deep	 vein	 thrombosis	 among	 users	 of
different	 types	 of	 oral	 contraceptives,	 such	 differential	misclassification	might
occur	 when	 thrombosis	 is	 more	 often	 classified	 as	 such	 in	 women	 using
particular	 oral	 contraceptives.	 The	 bias	 resulting	 from	 such	 misclassification
may	be	considerable.

Prevalent	or	Incident	Cases
In	 the	 vast	 majority	 of	 case-control	 studies	 (the	 only	 exceptions	 are	 cross-
sectional	 case-control	 studies)	 the	 study	 base	 is	 followed	 over	 time,	 either
prospectively	 or	 retrospectively.	 The	 goal	 of	 these	 case-control	 studies	 is	 to
quantify	the	incidence	of	the	outcome	as	a	function	of	the	determinants(s),	and	it
is	logical	to	include	incident	cases.	This	is	analogous	to	a	cohort	study	in	which
the	numerator	of	the	incidence	rates	will	include	incident	disease	only.
Especially	when	the	incidence	of	the	outcome	is	very	low,	which	is	one	of	the

main	reasons	to	choose	a	case-control	design,	 inclusion	of	an	adequate	number
of	 incident	 cases	 may	 be	 extremely	 difficult.	 Under	 such	 circumstances,	 one
might	 consider	 including	 prevalent	 cases	 or	 combining	 incident	 and	 prevalent
cases.	However,	potential	major	drawbacks	exist	for	using	prevalent	cases.	First
and	foremost,	one	should	realize	that	 the	prevalence	of	disease	reflects	both	its
incidence	 and	 duration.	Assume	 that	 a	 case-control	 study	 aims	 to	 quantify	 the
relationship	between	radiation	because	of	an	earlier	cancer	and	the	development
of	 leukemia	 as	 a	 second	 malignancy.	 A	 researcher	 could	 decide	 to	 include
prevalent	 cases	 of	 leukemia	being	 treated	 at	 several	 clinics	 in	 the	 region.	This
would	lead	to	the	inclusion	of	patients	who	on	average	have	a	better	prognosis
(survivors)	 than	 if	 only	 incident	 cases	 were	 considered,	 because	 the	 former
group	 includes	 more	 patients	 with	 a	 longer	 survival	 time.	 In	 case	 radiation
causes	 types	of	 leukemia	with	a	relatively	poor	prognosis,	a	case-control	study



using	 prevalent	 cases	 may	 fail	 to	 show	 the	 increased	 risk.	 Second,	 it	 is
sometimes	difficult	to	ensure	that	the	determinant	preceded	the	outcome	and	to
exclude	the	possibility	that	the	outcome	changed	the	determinant	when	prevalent
cases	 are	 used.	 The	 resulting	 bias	 obviously	 depends	 on	 the	 determinant	 of
interest;	for	example,	food	intake	poses	many	more	potential	problems	here	than
gender	or	a	genetic	marker.	 In	a	case-control	study	on	 the	association	between
coffee	 consumption	 and	 pancreatic	 cancer	 using	 prevalent	 cases,	 it	 may	 be
difficult	 to	 rule	 out	 that	 an	 early	 phase	 of	 the	 disease	 changes	 coffee	 drinking
habits.
However,	when	 the	 determinant	 is	 unlikely	 to	 influence	 the	 duration	 of	 the

case	disease	or	survival	and	the	“chicken	or	egg”	dilemma	(reversed	causality)
plays	no	role,	the	inclusion	of	prevalent	cases	may	further	increase	the	efficiency
of	 case-control	 studies.	Moreover,	 a	 disease	 is	 often	 clinically	 diagnosed	 (i.e.,
considered	incident)	quite	some	time	after	the	first	clinical	symptoms	occur,	for
example,	 in	 diabetes	 mellitus	 or	 rheumatoid	 arthritis.	 Consequently,	 incident
cases	then	may	actually	represent	prevalent	cases.

TABLE	9–1	Oral	Contraceptive	Use	and	the	Risk	of	Developing	Rheumatoid	Arthritis

*95%	confidence	interval.
Reproduced	from	The	Lancet,	Vol.	320;	Vandenbrouke	JP,	Valkenburg	HA,	Boersma	JW,	Cats	A,	Festen
JJ,	Huber-Bruning	O,	Rasker	J.	Oral	contraceptives	and	rheumatoid	arthritis:	further	evidence	for	a
preventive	effect.	1839-42.	1982,	reprinted	with	permission	from	Elsevier.

Vandenbroucke	and	coworkers	[1982]	examined	the	alleged	protective	effect
of	oral	contraceptives	on	the	development	of	rheumatoid	arthritis.	A	case-control
design	 was	 chosen	 because	 rheumatoid	 arthritis	 is	 relatively	 rare,	 and	 they
included	prevalent	cases	because	the	incidence	of	the	disease	is	extremely	low.
The	findings	of	the	study	are	summarized	in	Table	9–1.
In	 the	 discussion	 paragraph	 of	 their	 article,	 the	 authors	 provided	 a	 further

rationale	for	including	prevalent	cases:	“We	opted	for	prevalent	cases	because	an
incident	case	of	 rheumatism	 is	hard	 to	define	when	sampling	 from	a	 specialist
outpatient	 clinic:	most	 patients	will	 already	 have	 been	 treated	 by	 their	 general
practitioner	and	by	other	specialists	before	coming	to	a	particular	clinic.”	They



further	 stated	 that,	 “In	 principle,	 prevalent	 cases	 can	 yield	 valid	 rate-ratio
estimates,	 on	 condition	 that	 the	 survival	 of	 cases	 and	 controls	 is	 not	 affected
differentially	by	the	exposure	of	interest.	It	is	unlikely	that	this	condition	would
not	be	met	 in	 this	 investigation.”	In	 their	 rebuttal	 to	criticism	that	women	with
rheumatoid	 arthritis	would	 tend	 to	 avoid	 oral	 contraceptives	 and	 that	 this	may
have	 led	 to	 a	 spurious	 protective	 effect,	 the	 researchers	 emphasized	 that
classification	of	exposure	was	based	on	oral	 contraceptive	use	before	or	at	 the
first	 visit	 to	 their	 general	 practitioner	 for	 rheumatic	 complaints.	Consequently,
the	possibility	of	reversed	causality	was	minimized.
When	 a	 case-control	 study	 is	 cross-sectional,	 such	 as	 in	 diagnostic	 case-

control	 studies,	 the	 choice	 between	 prevalent	 or	 incident	 cases	 is	 a	 non-issue:
Cases	will	be	prevalent	cases	by	definition.

Not	All	Those	Who	Develop	the	Disease	Need	to	Be	Included	as
Cases
Because	case-control	studies	are	often	done	when	the	outcome	is	rare,	it	would
be	 unwise	 not	 to	 include	 all	 members	 of	 the	 study	 base	 who	 fulfill	 all	 case
criteria	during	the	study	period.	There	are,	however,	circumstances	under	which
only	 a	 sample	 of	 those	with	 the	 case	 disease	 is	 included	 as	 a	 case.	When	 the
outcome	 is	 relatively	 common	 and	 there	 is	 enough	 statistical	 power,	 the	 cases
may	 consist	 of	 a	 random	 sample	 of	 all	 those	 developing	 the	 outcome.	 An
example	of	this	approach	is	a	study	on	the	risk	factors	for	hip	fractures	[Grisso	et
al.,	 1991].	 A	 random	 sample	 of	 174	 female	 patients	 admitted	 with	 a	 first	 hip
fracture	to	one	of	the	30	participating	hospitals	were	included	as	cases.
In	 addition,	 a	 stratified	 sample	 of	 all	 subjects	 with	 the	 case	 disease	 may

sometimes	be	obtained.	This	could	be	done,	for	example,	to	facilitate	adjustment
for	 confounding	 (or	 assessment	 of	 effect	 modification)	 in	 causal	 case-control
studies,	 when	 it	 is	 expected	 that	 one	 or	 more	 of	 the	 confounder	 or	 modifier
categories	may	be	too	small	to	allow	for	proper	assessment	in	the	data	analysis.
Consider	 a	 case-control	 study	 on	 pet	 bird	 keeping	 as	 a	 causal	 factor	 in	 lung
cancer.	It	is	suggested	that	the	pollution	of	the	domestic	interior	environment	is	a
causal	 factor.	 In	 such	 a	 study,	 cigarette	 smoking	 is	 an	 important	 confounder,
because	bird	keepers	are	known	to	smoke	more	often	and	smoking	is	 the	main
cause	of	lung	cancer	(see	Figure	9–4).



FIGURE	9–4	Confounding	in	a	study	on	the	causal	association	between	pet	bird	keeping	and	lung	cancer.
Because	pet	bird	keepers	more	often	smoke	cigarettes	than	those	who	do	not	keep	birds	(lower	arrow	to	the
left)	and	cigarette	smoking	strongly	increases	lung	cancer	risk	(lower	arrow	to	the	right),	cigarette	smoking
may	confound	the	relationship	between	pet	bird	keeping	and	lung	cancer.

Inclusion	of	all	lung	cancer	patients	diagnosed	at	several	hospitals	as	the	cases
may	 result	 in	very	 few	(or	even	zero)	cases	who	never	 smoked	because	of	 the
very	 high	 prevalence	 of	 smoking	 among	 lung	 cancer	 patients,	 while	 the
proportion	of	smokers	among	the	controls	would	be	much	lower.	Adjustment	for
confounding	 by	 smoking	 history	 would	 then	 be	 virtually	 impossible.	 One
solution	 would	 be	 to	 decide	 to	 include	 all	 lung	 cancer	 patients	 who	 never
smoked	 and	 a	 random	 sample	 (say	 30%)	 of	 the	 lung	 cancer	 patients	 with	 a
positive	 smoking	 history	 as	 cases.	 This	 stratified	 sampling	 of	 the	 cases	would
have	 important	 implications	 for	 the	 sampling	 of	 controls.	 In	 fact,	 the	 controls
would	need	to	be	sampled	analogously.	This	means	that	of	all	controls	who	were
sampled	from	the	study	base,	all	controls	with	a	negative	smoking	history,	and	a
sample	 (again	 30%)	of	 all	 smoking	 controls	would	 need	 to	 be	 included	 as	 the
control	group.
Interestingly,	one	could	also	imagine	sampling	cases	in	strata	according	to	the

determinant	 of	 interest,	 although	 this	 may	 seem	 counterintuitive.	 Stratified
sampling	should	be	considered	when	the	number	of	cases	in	a	certain	category	of
the	 determinant	 is	 expected	 to	 be	 very	 small.	 Again,	 this	 implies	 a	 similar
sampling	strategy	in	the	control	patients.
The	 strengths	of	 stratified	 sampling	of	 cases	 are	nicely	 illustrated	 in	 a	 case-

control	 study	 assessing	 the	 causal	 role	 of	 the	 sex	 of	 the	 blood	 donor	 in	 the
development	 of	 transfusion-related	 acute	 lung	 injury	 (TRALI)	 (Middelburg	 et
al.,	 2010).	Most	TRALI	 cases	 receive	 blood	 from	multiple	 donors	 from	 either
sex	and	identification	of	the	sex	of	the	donor	causing	the	TRALI	is	impossible	in
these	 cases.	 As	 a	 solution,	 the	 researchers	 restricted	 the	 analysis	 to	 “unisex”
cases,	 that	 is,	cases	 that	 received	blood	exclusively	from	either	male	or	 female



donors.	 Consequently,	 sampling	 of	 the	 controls	 followed	 the	 same	 selection
process;	 only	 “unisex”	 controls	 (patients	 without	 TRALI	 that	 received	 blood
from	 only	 male	 or	 only	 female	 donors)	 were	 included	 to	 estimate	 the	 sex
distribution	of	 the	donors	 in	 the	study	base.	Thus,	 the	 researchers	were	able	 to
show	that	plasma	from	female	donors	increased	the	risk	of	TRALI.
It	 is	beyond	the	scope	of	 this	chapter	 to	further	elaborate	on	 the	specifics	of

stratified	 sampling	 of	 cases,	 because	 this	 approach	 is	 hardly	 ever	 used	 by
researchers.	More	 information	 can	 be	 found	 elsewhere	 [Weinberg	&	 Sandley,
1991;	Weinberg	&	Wacholder,	1990].

Sampling	of	Controls:	The	Study	Base	Principle
The	 strength	 of	 case-control	 studies	 lies	 in	 their	 capability	 of	 quantifying	 the
occurrence	relation	by	studying	in	detail	only	those	developing	the	outcome	and
a	 sample	 of	 the	 study	 base	 (which,	 as	 explained	 earlier,	 can	 be	 viewed	 as	 a
swimming	 pool)	 from	 which	 the	 cases	 originate.	 This	 efficiency	 gain	 is	 only
acceptable	when	 the	 association	 between	 the	 determinant	 and	 outcome	 can	 be
estimated	 validly	 and	 is	 not	 compromised	 by	 the	 selection	 of	 controls.	 To
achieve	 this,	 adequate	 sampling	 of	 the	 controls	 is	 crucial.	 Only	 then	 will	 the
resulting	 measure	 of	 association	 (typically	 the	 odds	 ratio)	 be	 similar	 to	 the
measure	of	association	(usually	an	 incidence	rate	 ratio)	 that	would	be	obtained
from	 a	 cohort	 study	 (i.e.,	 using	 a	 census	 approach).	 Valid	 sampling	 from	 the
study	 base	 means	 taking	 into	 account	 the	 study	 base	 (or	 swimming	 pool)
principle	and	implies	 that	 the	controls	should	be	a	representative	sample	of	 the
study	base	 experience	 from	whom	 the	 cases	 are	drawn	during	 the	 entire	 study
period.	 To	 illustrate	 the	 methods	 that	 can	 be	 applied	 to	 provide	 for	 a	 valid
sample	of	 controls,	we	consider	 the	 two	 types	of	 “swimming	pools”	 that	 form
the	 study	 base	 of	 virtually	 all	 case-control	 studies:	 dynamic	 populations	 and
cohorts.

Control	Sampling	from	a	Dynamic	Population
Most	 case-control	 studies	 are	 conducted	 in	 a	 dynamic	 population.	 These	 are
characterized	by	their	dynamic	nature:	People	enter	and	leave	the	study	base	all
the	time.	As	mentioned	in	the	first	section	of	this	chapter,	examples	of	dynamic
populations	include	inhabitants	of	a	neighborhood,	town,	or	region;	those	living
in	 the	 catchment	 area	of	 a	 hospital;	 and	 those	 enlisted	with	 a	 health	 insurance



company	or	primary	care	practice.	Figure	9–5	shows	an	example	of	a	dynamic
population	(albeit	unrealistically	small).	In	this	population,	which	is	followed	for
a	1-year	period,	a	case-control	study	is	being	performed.	Assume	that	the	study
base	 represents	 the	 area	 around	 a	 hospital	 in	 which	 the	 cases	 (e.g.,	 everyone
admitted	 with	 acute	 appendicitis)	 are	 identified.	 Inhabitants	 of	 that	 catchment
area	would	 typically	be	 admitted	 to	 that	 particular	hospital	when	 they	develop
the	case	disease.
In	 total,	 15	 subjects	 are	 part	 of	 the	 study	 base	 for	 at	 least	 part	 of	 the	 study

period.	Subjects	1	and	3	are	part	of	the	study	base	when	the	study	is	initiated	and
remain	 in	 it	without	 developing	 the	outcome	of	 interest.	 In	 subject	 2,	 the	 case
disease	 is	 also	not	diagnosed	during	 the	 study	period,	 but	 she	 enters	 the	 study
base	approximately	1.5	months	after	initiation	of	the	study,	possibly	because	she
moves	into	the	catchment	area	of	the	hospital.	Subject	4	is	in	the	study	base	from
the	beginning	and	develops	the	case	disease	after	6	months.	Subject	5	enters	the
study	base	3–4	months	into	the	study	period	and	leaves	it	again	before	the	11th
month,	possibly	because	he	moves	to	another	area	and,	if	he	is	not	followed	to
measure	 the	 outcome,	 he	 is	 considered	 lost	 to	 follow-up.	He	 is	 not	 diagnosed
with	appendicitis	during	 the	7	months	of	his	membership	 in	 the	study	base.	 In
total,	four	cases	are	identified	during	the	12-month	study	period	and	one	control
subject	will	 be	 sampled	 per	 case.	 Because	 of	 the	 dynamics	 of	 the	 population,
representative	 samples	 of	 the	 study	 base	 cannot	 be	 obtained	 by	 sampling	 all
controls	 at	 one	 point	 in	 time	 during	 the	 12-month	 study	 period.	 For	 example,
sampling	at	12	months	implies	that	subjects	5	and	10	can	never	be	included	as
controls,	even	though	they	do	contribute	to	the	study	base	during	a	considerable
period	 (and	 could	 even	 have	 become	 a	 case	 during	 that	 period).	An	 attractive
method	 for	 selecting	 controls	 who	 are	 representative	 of	 the	 study	 base	 from
which	the	cases	originate	is	to	sample	a	control	each	time	a	case	is	identified.	In
this	example,	 the	 first	control	 is	 randomly	sampled	at	3	months,	at	which	 time
the	study	base	contains	10	subjects.	By	definition,	a	control	does	not	have	acute
appendicitis	when	he	is	selected	as	a	control.	The	same	approach	is	 taken	each
time	a	case	is	identified	(denoted	by	dotted	vertical	lines	in	Figure	9–5).



FIGURE	9–5	Dynamic	population	experience.

A	control	 could	develop	 the	 case	disease	 later	 in	 the	 study	period,	 although
this	is	unlikely	because	the	studied	outcome	in	most	case-control	studies	is	rare.
Importantly,	however,	 control	 subjects	who	 later	become	a	case	do	not	violate
the	 study	 base	 principle	 at	 all.	 Such	 an	 individual	 was	 at	 the	 time	 of	 being
sampled	as	a	control	representative	of	the	study	base	in	which	the	case	occurred,
only	 later	 fulfilling	 the	 case	 definition.	 Consequently,	 this	 subject	 should	 be
included	both	as	a	case	and	a	control.	Similarly,	a	control	subject	could	again	be
randomly	sampled	as	a	control	later	in	the	study,	for	example,	when	subject	4	is
diagnosed.	 Because	 both	 times	 this	 control	 is	 representative	 of	 the	 study	 base
from	which	the	cases	originate,	this	control	should	be	included	twice.	Including
an	individual	twice	during	the	same	study	period	does	not	necessarily	mean	that
all	characteristics	are	the	same;	exposure	(e.g.,	being	prescribed	a	certain	drug)
may	have	changed.
Sometimes	it	may	be	difficult	to	sample	a	control	each	time	a	case	occurs.	An

alternative	 is	 to	 assign	 each	 case	 a	 random	 date	 during	 the	 study	 period	 and
sample	controls	 from	 the	members	of	 the	 study	base	on	 that	particular	day.	 In
addition,	 one	 could	 sample	 controls	 after	 a	well-defined	 time	period,	 say	 after
each	week	or	month.
To	assess	whether	control	subjects	are	indeed	part	of	the	swimming	pool,	the

researcher	should	answer	the	following	question:	“Would	the	control	subject	be
identified	as	a	case	should	he	or	she	develop	the	outcome	under	study	during	the



study	period?”	The	answer	should	be	yes.	This	rule	of	thumb	can	be	applied	for
essentially	all	case-control	studies.
The	 study	 on	 the	 risk	 of	 sudden	 cardiac	 death	 associated	with	 diuretics	 and

other	 antihypertensive	 drug	 classes	 among	 treated	 hypertensive	 patients
introduced	earlier	may	serve	as	an	example	of	how	to	sample	controls	each	time
a	case	develops.	The	study	base	consisted	of	all	 inhabitants	of	Rotterdam	who
were	 treated	pharmacologically	 for	hypertension,	which	clearly	bears	all	of	 the
characteristics	 of	 a	 dynamic	 population.	 Each	 time	 a	 case	 of	 sudden	 cardiac
death	 was	 identified,	 a	 random	 control	 was	 selected	 as	 follows:	 A	 general
practitioner	 in	 Rotterdam	was	 randomly	 selected	 using	 a	 designated	 computer
program	and	this	general	practitioner	was	visited	at	her	or	his	surgery	by	one	of
the	researchers.	Then,	using	a	computer	file	of	all	enlisted	adult	patients	or	 the
alphabetically	ordered	paper	files,	the	first	patient	with	the	same	sex	and	within
the	same	5-year	age	category	was	chosen,	starting	from	the	first	name	following
the	 case’s	 surname.	 If,	 according	 to	 the	 doctor,	 that	 patient	 was	 using
antihypertensive	drugs	 for	hypertension	on	 the	day	 the	corresponding	case	had
died,	 that	 patient	 was	 included	 as	 a	 control.	 Age	 and	 gender	 were	 chosen	 as
matching	variables	 in	 this	 study	 for	 reasons	 that	will	be	explained	 later	 in	 this
chapter.	It	should	be	emphasized	that	the	sampling	of	controls	benefited	from	the
fact	that	in	the	Netherlands	all	inhabitants	are	enlisted	with	one	general	practice
and	 that	 virtually	 all	 relevant	 clinical	 information,	 including	 drugs	 prescribed
and	 general	 practitioner	 and	 hospital	 diagnoses,	 are	 kept	 on	 file	 there.	 This
system	greatly	facilitates	control	sampling	in	case-control	studies.

Control	Sampling	from	a	Cohort:	Case-Control	Studies	Nested
Within	a	Cohort
Figure	 9–6	 shows	 a	 very	 small	 cohort.	Although	 the	 graphic	 suggests	 that	 all
cohort	members	are	 included	on	 the	same	day	(t	=	0),	 this	 is	never	 the	case;	 it
may	take	years	to	recruit	the	anticipated	number	of	patients	for	a	cohort.	Once	a
member	is	included	in	the	cohort,	his	or	her	follow-up	time	is	set	at	t	=	0	and	the
subject	 is	 followed	 until	 a	 certain	 point	 in	 time,	 sometimes	 indefinitely.	 In
contrast	to	a	dynamic	population,	at	a	certain	point	in	time	the	cohort	is	complete
and	 no	 additional	members	 are	 allowed	 in.	Unlike	most	 dynamic	 populations,
the	members	of	a	cohort	are	known,	and	at	least	some	characteristics	have	been
assessed.	Nevertheless,	it	may	be	efficient	to	perform	a	case-control	study	within
this	 cohort	 for	 a	 number	 of	 reasons,	 particularly	 when	 the	 assessment	 of	 the



determinant	is	time	consuming	and	expensive.

FIGURE	9–6	Cohort	experience.

For	example,	if	the	aim	is	to	quantify	the	association	between	certain	genetic
polymorphisms	and	the	occurrence	of	Alzheimer’s	disease,	a	case-control	study
within	a	cohort	may	be	very	efficient.	Such	studies	are	often	termed	nested	case-
control	studies,	but	other	terms	are	applied,	sometimes	depending	on	the	method
applied	 to	 sample	 the	 controls.	 In	 this	 case-control	 study,	 three	 cases	 of
Alzheimer’s	disease	are	diagnosed	among	the	15	cohort	members	during	the	12-
month	follow-up	period.	Several	methods	to	sample	controls	can	be	applied.
Analogous	 to	 sampling	 controls	 from	 a	 dynamic	 population,	 one	 can

randomly	select	a	control	each	 time	a	case	 is	diagnosed.	At	3	months,	 the	first
control	will	be	sampled	from	the	13	remaining	in	the	cohort:	15	minus	the	first
case	and	minus	individual	number	10,	who	was	lost	to	follow-up.	Similarly,	the
other	 methods	 presented	 earlier	 for	 dynamic	 populations	 can	 be	 applied
[Vandenbroucke	&	Pierce,	 2012].	One	 can	 sample	 a	 control	 at	 a	 random	date
assigned	 each	 time	 a	 case	 is	 diagnosed	 or	 one	 may	 sample	 at	 regular	 time
intervals,	for	example	every	week	or	month.	Again,	the	control	that	is	sampled	is
representative	of	the	study	base	by	definition,	and	sampling	at	multiple	points	in
time	during	the	study	period	will	produce	a	valid	sample.	Such	an	approach	may
pose	 a	 logistical	 problem,	 however,	 because	 sampling	 frames	 including	 all
members	still	in	the	cohort	are	needed	each	time	a	control	is	sampled	randomly.



In	many	earlier	 case-control	 studies	 and	 sometimes	 even	 today,	 the	 controls
are	sampled	at	the	end	of	the	study	period	from	the	remainder	of	the	cohort.	This
method	excludes	all	cases	as	well	as	cohort	members	who	are	lost	to	follow-up.
In	our	example,	the	three	controls	would	be	sampled	from	the	eight	subjects	still
in	 the	 cohort	 after	 the	 1-year	 follow-up	 period.	 In	 contrast	 to	 the	 sampling
methods	 outlined	 in	 previous	 sections	 of	 this	 chapter,	 this	 method	 clearly
violates	 the	 study	 base	 principle	 because	 the	 controls	 are	 not	 a	 representative
sample	from	the	population	experience	during	the	entire	study	period.	Especially
when	many	 cohort	members	 are	 lost	 to	 follow-up	 and	many	 develop	 the	 case
disease	(i.e.,	the	outcome	is	not	rare),	this	method	will	lead	to	biased	estimates	of
the	determinant–	 outcome	association.	For	 that	 reason,	 sampling	of	 controls	 at
the	end	of	the	follow-up	period	from	the	remainder	of	the	cohort	is	discouraged.
A	much	better	alternative	 is	 to	sample	 the	control	group	at	 the	beginning	of

the	 follow-up	 period	 (t	 =	 0).	Although	 sampling	 at	 one	 specific	 point	 in	 time
seems	to	carry	the	danger	of	violating	the	study	base	principle,	sampling	at	t	=	0
is	 an	 important	 exception.	 A	 quick	 look	 at	 Figure	 9–6	 clearly	 shows	 that	 a
random	selection	of	the	cohort	(at	t	=	0)	provides	a	sample	that	is	representative
of	 the	 full	 cohort	 (e.g.,	 gives	 full	 information	on	 the	determinant	distribution),
from	which	all	 future	 cases	will	 develop	during	 the	 study	period.	This	 type	of
nested	case-control	study	is	usually	referred	to	as	a	case-cohort	study.	This	term
is	rather	confusing	because	it	does	not	clearly	indicate	that,	in	essence,	this	study
is	a	case-control	study	(because	sampling	from	the	study	base	is	involved),	not	a
cohort	 study.	 Because	 this	 method	 is	 increasingly	 being	 applied,	 a	 more
elaborate	discussion	of	case-cohort	studies	and	their	advantages	and	limitations
is	included	in	a	separate	paragraph	in	a	later	section.

Specific	Types	of	Control	Series
Sampling	from	the	study	base	(whether	a	dynamic	population	or	a	cohort)	is	the
optimal	 approach	 in	 case-control	 studies.	 However,	 sometimes	 this	 may	 be
difficult	 to	 achieve,	 notably	 in	 dynamic	 population	 studies	 in	 which	 less	 is
known	about	 the	members	 than	in	cohort	studies	[Grimes	&	Schulz,	2005].	To
facilitate	 sampling	 of	 controls,	 specific	 groups	 of	 controls,	 such	 as	 those	 from
the	 population	 at	 large	 (population	 controls),	 those	 in	 the	 hospital	 because	 of
another	 disease	 than	 the	 case	 disease	 (hospital	 controls),	 and	 those	 from	 the
same	neighborhood	(neighborhood	controls),	are	often	used.	Although	it	seems
attractive	 for	 logistic	 reasons	 to	 take	 neighbors,	 family	 members,	 or	 people



admitted	with	some	other	diseases	as	controls,	this	may	compromise	the	validity
of	the	sampling	of	controls	(and	thus	of	 the	study	findings)	when	these	control
group	 choices	 are	 made	 without	 appreciation	 of	 the	 study	 base	 principle.
Unfortunately,	 the	 rationale	 for	 the	 choice	 of	 a	 control	 group	 is	 often	 not
provided	by	researchers,	and	thus	the	reader	is	confronted	with	a	“can”	or—even
worse—several	“cans”	of	controls	(see	Box	9–1),	leaving	it	to	the	researcher	to
judge	 whether	 these	 controls	 are	 representative	 of	 the	 study	 base.	 The	 next
sections	discuss	several	types	of	control	series	widely	used	in	the	literature.

Population	Controls
In	theory,	population	controls	should	be	sampled	when	the	cases	included	in	the
case-control	 study	 originate	 from	 the	 same	 population.	 This	 often	 is	 the	 case,
notably	 when	 the	 domain	 of	 the	 occurrence	 relation	 is	 humanity,	 such	 as	 in
etiologic	 studies	 examining	 the	 links	 between	 smoking	 and	 lung	 cancer,	 and
physical	 exercise	 and	 cardiovascular	 disease.	 In	 case-control	 studies,	 because
case	 identification	 is	 commonly	 restricted	 in	 time	 or	 region,	 control	 sampling
from	the	population	at	large	ideally	should	be	restricted	in	a	similar	manner.	The
main	advantage	of	sampling	population	controls	in	this	manner	is	that	these	are,
by	definition,	representative	of	the	study	base.
In	 a	 case-control	 study	 addressing	 the	 putative	 causal	 relationship	 between

alcohol	 intake	 and	 acute	 appendicitis	 (the	 domain	 being	 all	 humans)	 in	which
cases	are	drawn	from	a	large	general	hospital	in	a	defined	area	during	a	1-year
study	period,	the	population	at	large	represents	the	source	of	the	cases.	However,
control	sampling,	ideally,	should	be	restricted	to	inhabitants	of	that	defined	area
(i.e.,	the	catchment	area	population	of	that	hospital)	during	that	time	period.	As
outlined	 earlier,	 this	 may	 be	 achieved	 by	 sampling	 from	 available	 population
registries	 at	multiple	points	 in	 time	during	 the	 study	period.	Again,	posing	 the
question,	 “Would	 the	 control	 subject	 be	 identified	 as	 a	 case	 should	 he	 or	 she
develop	the	outcome	under	study	during	the	study	period?”	helps	the	researcher
and	reader	to	assess	the	validity	of	control	selection.	When	sampling	population
controls	from	the	catchment	population	of	a	hospital,	one	should	realize	that	the
catchment	 population	 varies	 with	 the	 disease	 studied.	 For	 example,	 acute
appendicitis	 cases	will	 originate	 from	a	much	 smaller	 area	 around	 the	hospital
than	childhood	leukemia	cases	in	that	same	hospital.	If,	however,	the	distribution
of	 the	 relevant	 characteristics	 in	 both	 catchment	 areas	 is	 similar,	 this	 has	 little
influence	on	the	validity	of	the	study.



Several	 methods	 other	 than	 sampling	 from	 population	 registries	 have	 been
proposed	to	efficiently	draw	population	controls.	Random	digital	dialing,	where
a	 random	telephone	number	 (usually	computer	generated)	 is	dialed,	may	be	an
attractive	option.	It	also	allows	for	targeting	a	specific	region	using	the	telephone
area	 codes.	 Depending	 on	 the	 information	 required	 from	 the	 controls,
computerization	 in	 such	 an	 approach	 could	go	 as	 far	 as	 using	 the	 computer	 to
pose	 the	 necessary	 multiple-choice	 questions	 and	 to	 store	 the	 respondents’
answers.	 The	 advantages	 of	 this	 approach	 are	 self-evident.	 The	 relatively	 low
response	rate	is	a	major	disadvantage	of	this	method,	however,	especially	when	a
potential	participant	is	being	interviewed	by	a	computer.	In	addition,	not	all	men
and	women	have	a	landline	telephone,	some	only	have	a	cellular	telephone,	and
many	 calls	 will	 remain	 unanswered.	 These	 phenomena	 are	 related	 to
socioeconomic	status,	employment,	and	health	status.	If	these	factors	are	studied
as	(or	related	to)	the	determinant	(or	a	confounder),	the	resulting	nondifferential
non-response	can	lead	to	bias.	Selective	non-response	may	threaten	any	method
applied	to	sample	population	controls,	because	the	motivation	of	members	of	the
population	at	large	to	be	involved	in	clinical	research	is	usually	lower	than,	for
example,	hospital	controls.	Random	digit	dialing	as	a	means	to	select	population
controls	 has	 become	 less	 efficient	 now	 that	 many	 people	 mainly	 use	 mobile
phones,	making	it	difficult	to	cover	specific	areas.	An	example	of	a	case-control
study	using	population	controls	is	given	in	Box	9–3.	Controls	were	sampled	by
means	 of	 random	 digit	 dialing	 [Fryzek	 et	 al.,	 2005].	 Both	 cases	 and	 controls
were	interviewed	to	obtain	the	required	information.

BOX	9–3	A	Case-Control	Study	Examining	the	Association	of	Body	Mass	Index	with	Pancreatic	Cancer
Using	Population	Controls

Increased	body	mass	index	has	emerged	as	a	potential	risk	factor	for	pancreatic	cancer.	The	authors
examined	whether	the	association	between	body	mass	index	and	pancreatic	cancer	was	modified	by
gender,	smoking,	and	diabetes	in	residents	of	southeastern	Michigan,	1996–1999.	A	total	of	231
patients	with	newly	diagnosed	adenocarcinoma	of	the	exocrine	pancreas	were	compared	with	388
general	population	controls.	In-person	interviews	were	conducted	to	ascertain	information	on
demographic	and	lifestyle	factors.

Unconditional	logistic	regression	models	estimated	the	association	between	body	mass	index	and
pancreatic	cancer.	Males’	risk	for	pancreatic	cancer	significantly	increased	with	increasing	body	mass
index	(ptrend	=	0.048),	while	no	relation	was	found	for	women	(ptrend	=	0.37).	Among	nonsmokers,
those	in	the	highest	category	of	body	mass	index	were	3.3	times	(95%	confidence	interval:	1.2,	9.2)
more	likely	to	have	pancreatic	cancer	compared	with	those	with	low	body	mass	index.	In	contrast,	no
relation	was	found	for	smokers	(ptrend	=	0.94).	While	body	mass	index	was	not	associated	with
pancreatic	cancer	risk	among	insulin	users	(ptrend	=	0.11),	a	significant	increase	in	risk	was	seen	in



non-insulin	users	(ptrend	=	0.039).	This	well	designed,	population-based	study	offered	further	evidence
that	increased	body	mass	index	is	related	to	pancreatic	cancer	risk,	especially	for	men	and
nonsmokers.	In	addition,	body	mass	index	may	play	a	role	in	the	etiology	of	pancreatic	cancer	even	in
the	absence	of	diabetes.

Reproduced	from	Fryzek	JP,	Schenk	M,	Kinnaid	M,	Greenson	JK,	Garabrant	DH.	The	association	of	body
mass	index	and	pancreatic	cancer	in	residents	of	southeastern	Michigan,	1996–1999.	Am	J	Epidemiol
2005;162:222–8,	with	permission	from	Elsevier.

The	 following	 quotation	 from	 this	 study	 illustrates	 the	 selection	 process
typical	 of	 population	 controls,	 although	 it	 should	 be	 emphasized	 that	 the
response	 rate	 among	 controls	 (76%)	was	 relatively	 high.	Of	 all	 eligible	 cases,
92%	participated.	“Of	the	597	general	population	controls	eligible	for	the	study,
19	could	not	be	reached	by	phone,	one	died	before	being	contacted,	and	27	were
not	contacted	because	 there	was	an	overselection	of	controls	under	45	years	of
age	 early	 in	 the	 study	 period.	 The	 remaining	 550	 people	 were	 invited	 to
participate,	and	420	(76	percent)	agreed.”

Hospital	Controls
The	study	presented	in	 the	 last	section	also	 illustrates	one	of	 the	advantages	of
using	hospital	controls	in	case-control	studies:	their	willingness	to	participate.	In
general,	 the	 response	 rate	 in	 the	 diseased	 and	 in	 particular	 in	 those	 being
admitted	 to	 the	 hospital	 is	 higher	 than	 in	 the	 population	 at	 large.	 Moreover,
selecting	 control	 subjects	 from	 the	 same	 hospital	with	 another	 illness	 than	 the
case	disease	is	efficient	because	the	researcher	is	collecting	similar	data	from	the
cases	admitted	to	the	same	hospital	anyway.	From	the	introduction	of	the	case-
control	method,	hospital	controls	have	been	widely	applied,	and	their	popularity
continues.
Disadvantages	 of	 hospital	 controls	 are,	 however,	 considerable.	 In	 particular,

the	validity	of	the	case-control	study	is	threatened	if	the	hospital	controls	are	not
a	representative	sample	from	the	study	base	that	produces	the	cases.	One	could
think	 of	 many	 reasons	 why,	 in	 patients	 with	 an	 illness	 other	 than	 the	 case
disease,	 the	 distribution	 of	 relevant	 characteristics	 (notably	 the	 determinant	 of
interest	 and	 possible	 confounders	 or	 effect	 modifiers)	 would	 differ	 from	 the
members	of	 the	 study	base.	For	 example,	 smoking	and	other	unhealthy	habits,
overweight,	comorbidity,	and	medication	use	generally	will	be	more	common	in
those	admitted	to	a	hospital	than	in	the	“true”	study	base	(i.e.,	the	catchment	area
population	 of	 that	 hospital	 for	 the	 case	 disease).	 A	 common	 (but	 incorrect)



approach	 to	 prevent	 bias	 when	 taking	 hospital	 controls	 is	 the	 use	 of	 multiple
control	diseases.	The	rationale	for	such	a	“cocktail”	of	diseases	is	simple,	if	not
somewhat	 naïve;	 should	 one	 control	 disease	 lead	 to	 bias	 (e.g.,	 because	 the
exposure	to	the	determinant	of	interest	in	the	control	disease	is	higher	than	in	the
true	 study	 base),	 this	 bias	 could	 be	 offset	 by	 other	 control	 diseases	 (of	which
some	may	 have	 a	 lower	 exposure	 than	 the	 study	 base).	 Alternatively,	 control
diseases	 known	 to	 be	 associated	 with	 the	 determinant	 of	 interest	 are	 often
excluded	 or	 patients	 visiting	 the	 emergency	 room	 are	 taken	 as	 controls.	 The
advantage	of	 the	 latter	control	group	 is	 that	 the	prevalence	of	comorbidity	and
unhealthy	habits	may	be	lower	than	in	other	hospital	controls.
However,	 these	 methods	 all	 contribute	 to	 the	 complexity	 of	 using	 hospital

controls.	 It	 is	usually	very	difficult	 for	 the	 readers	and	 the	 researchers	alike	 to
judge	whether	 the	 essential	 prerequisite	 of	 a	 case-control	 study—namely,	 that
the	controls	are	a	valid	sample	 from	the	study	base—has	been	met.	Too	often,
the	 researchers	only	mention	 the	control	disease(s)	chosen	without	providing	a
rationale	 and	 fail	 to	 discuss	 the	 potential	 drawbacks	 of	 this	 choice.	 They	 then
leave	it	up	to	the	readers	of	their	work	to	determine	whether	indeed	the	crucial
characteristics	of	the	hospital	controls	are	similar	to	those	of	the	study	base	(i.e.,
the	 catchment	 area	 population	 for	 the	 case	 disease).	 We	 do	 not	 suggest	 a
moratorium	 on	 hospital	 controls,	 but	 there	 should	 be	 no	 doubt	 that	 the
responsibility	of	proving	 the	validity	of	hospital	 control	 sampling	 lies	with	 the
researcher	 and	no	one	 else.	 In	 their	 famous	 case-control	 study	published	more
than	 half	 a	 century	 ago,	 Doll	 and	 Hill	 [1950]	 took	 up	 this	 responsibility	 and
discussed	the	validity	of	their	choice	of	hospital	controls	(see	Box	9–4).

BOX	9–4	Example	of	a	Case-Control	Study	Using	Hospital	Controls

An	example	of	a	case-control	study	using	hospital	controls	is	the	famous	paper	on	smoking	and	lung
cancer	by	Doll	and	Hill.	The	following	excerpt	from	the	original	paper	highlights	the	way	the	control
subjects	were	sampled:

“As	well,	however,	as	interviewing	the	notified	patients	with	cancer	of	one	of	the	specified	sites,	the
almoners	were	required	to	make	similar	inquiries	of	a	group	of	“non-cancer	control”	patients.	These
patients	were	not	notified,	but	for	each	lung-carcinoma	patient	visited	at	a	hospital,	the	almoners	were
instructed	to	interview	a	patient	of	the	same	sex,	within	the	same	five-year	age	group	and	in	the	same
hospital	at	about	the	same	time.”

The	709	control	patients	had	various	medical	conditions,	including	gastrointestinal	and	cardiovascular
disease	and	respiratory	disease	other	than	cancer.

The	authors	fully	recognized	the	importance	of	ensuring	that	the	control	patients	were	not	selected
based	on	their	smoking	habits,	and	it	is	worth	studying	the	additional	data	provided	and	reading	their
arguments	to	convince	the	reader	that:



“There	is	no	evidence	of	any	special	bias	in	favour	of	light	smokers	in	the	selection	of	the	control
series	of	patients.	In	other	words,	the	group	of	patients	interviewed	forms,	we	believe,	a	satisfactory
control	series	for	the	lung-carcinoma	patients	from	the	point	of	view	of	comparison	of	smoking
habits.”

This	study,	although	performed	more	than	half	a	century	ago,	still	exemplifies	the	potential	advantage
of	hospital	controls	and	the	way	researchers	should	argue	the	validity	of	their	control	group.

Adapted	from	Doll	R,	Hill	AB.	Smoking	and	carcinoma	of	the	lung.	BMJ	1950;ii:739–48.

Neighborhood	Controls
Selecting	 controls	 from	 the	 same	 neighborhood	 as	 the	 cases	 are	 often	 drawn
from	is	an	alternative	to	population	controls.	Instead	of	taking	a	random	sample
of	the	population	at	large	(or	when	hospital	cases	are	used,	from	the	catchment
population),	 the	 researcher	 samples	 one	 or	 more	 individuals	 from	 the	 same
neighborhood	as	 the	corresponding	case.	 Inclusion	of	neighborhood	controls	 is
attractive	for	several	reasons,	but	mostly	because	they,	almost	literally,	seem	to
originate	from	the	same	study	base	as	the	case	and	often	the	researcher	is	already
in	 the	 neighborhood	 collecting	 the	 necessary	 information	 from	 the	 cases.
Another	 often	 mentioned	 advantage	 is	 the	 homogeneity	 of	 the	 neighborhood
with	 regard	 to	 certain	 characteristics,	 including	 potential	 confounders	 such	 as
socioeconomic	status.
The	latter,	however,	also	should	be	viewed	as	a	potential	disadvantage.	Cases

and	controls	will	be	matched	according	to	these	characteristics.	But	matching	in
case-control	 studies	 (as	 discussed	 in	 more	 detail	 later	 in	 this	 chapter)	 carries
important	 dangers,	 including	 the	 impossibility	 of	 studying	 these	 characteristics
as	 determinants.	 It	 would	 be	 unwise,	 for	 example,	 to	 sample	 neighborhood
controls	in	a	case-control	study	quantifying	the	causal	relationship	of	living	near
high-voltage	 power	 lines	 with	 the	 occurrence	 of	 childhood	 cancer.	 Other
disadvantages	of	neighborhood	controls	are	 the	relatively	low	response	and	the
time	 and	 costs	 involved,	 notably	 when	 the	 researcher	 needs	 to	 travel	 to	 the
neighborhood	to	select	a	neighboring	household.
BOX	 9–5	 is	 an	 excerpt	 from	 the	 methods	 section	 of	 a	 case-control	 study

performed	 to	 identify	 lifestyle	 and	 other	 risk	 factors	 for	 thyroid	 cancer.	 It
describes	the	way	neighborhood	controls	can	be	sampled	and	further	 illustrates
the	enormous	efforts	sometimes	involved	[Mack	et	al.,	2002].
One	could	argue	that	the	control	selection	in	this	study	was	independent	of	the

risk	 factors	 studied	 (such	as	dietary	habits)	and	 that	 these	controls	may	 indeed



represent	 a	 valid	 sample	 from	 the	 study	 base	 also	 producing	 the	 cases.	 It	 is
unfortunate,	 however,	 that	 the	 authors	 did	 not	 discuss	 their	 choice	 of	 control
group.

BOX	9–5	Example	of	Neighborhood	Controls

A	single	neighborhood	control	was	sought	for	each	interviewed	patient.	Using	a	procedure	defining	a
housing	sequence	on	specified	blocks	in	the	neighborhood	in	which	the	patient	lived	at	the	time	of	her
thyroid	cancer	diagnosis,	we	attempted	to	interview	the	first	female	matching	the	case	on	race	and
birth	year	(within	five	years).	For	each	case,	up	to	80	housing	units	were	visited	and	three	return	visits
made	before	failure	to	obtain	a	matched	control	was	conceded.	We	obtained	matched	controls	for	296
of	the	302	cases.	For	263	patients,	the	first	eligible	control	agreed	to	participate.	Three	controls	were
later	found	to	be	ineligible	due	to	a	prior	thyroidectomy,	and	one	control	was	younger	than	the
matched	case	was	at	diagnosis.	Questionnaires	on	292	case-control	pairs	were	available	for	analysis.
The	average	interval	between	the	case	and	matched	control	interview	was	0.3	years.

Reproduced	from	Mack	WJ,	Preston-Martin	S,	Bernstein	L,	Qian	D.	Lifestyle	and	other	risk	factors	for
thyroid	cancer	in	Los	Angeles	County	females.	Ann	Epidemiol	2002;12:395–401,	reprinted	with	permission
from	Elsevier.

Other	Types	of	Control	Series:	Family,	Spouses,	and	Others
The	attraction	of	using	family	members	or	spouses	(or	friends,	colleagues,	etc.)
as	 control	 subjects	 is	 obvious:	 Response	 rates	 will	 be	 very	 high	 and	 data
collection	 will	 be	 relatively	 easy.	 Disadvantages	 of	 these	 control	 series,
however,	are	that	this	method	implies	matching	of	cases	and	controls	according
to	several	known	or	unknown	characteristics,	such	as	socioeconomic	status,	age,
family,	 environment,	 and/or	 lifestyle	 parameters.	As	will	 be	 explained	 later	 in
the	chapter,	matching	of	cases	and	controls	can	have	significant	disadvantages.
Clearly,	 the	 use	 of	 very	 specific	 groups	 of	 control	 series	 deviates	 from	 the
principle	that	controls	should	be	representative	of	the	study	base	from	which	the
cases	 emerge	 and	 thus	 endangers	 the	 validity	 of	 control	 selection	 and
consequently	the	study	findings.	For	example,	 it	 is	not	difficult	 to	 imagine	that
asking	the	case	to	choose	a	family	member,	friend,	or	colleague	as	a	control	(a
frequent	 approach)	 can	 lead	 to	 considerable	 bias,	 because	 the	 distribution	 of
important	 characteristics	 in	 the	 controls	will	 be	 similar	 to	 the	 cases	 instead	 of
being	representative	of	the	study	base.

Multiple	Control	Series



In	 many	 case-control	 studies,	 multiple	 control	 series	 are	 included.	 Typically,
separate	 odds	 ratios	 are	 then	 calculated	 for	 each	 control	 group.	 From	 a
theoretical	 point	 of	 view,	 the	 use	 of	 multiple	 control	 groups	 is	 difficult	 to
understand.	The	control	group	serves	 to	provide	 information	on	determinant(s)
and	other	relevant	characteristics	of	the	study	base	from	which	the	cases	emerge
during	the	study	period,	and	one	such	valid	sample	is	all	that	is	required.	So	why
use	several	groups?
In	 a	 study	 on	 the	 role	 of	 aspirin	 in	 the	 occurrence	 of	 Reye	 syndrome	 in

children,	 no	 less	 than	 four	different	 control	 groups	were	 sampled:	 (1)	 children
admitted	 to	 the	 same	hospital,	 (2)	children	visiting	 the	emergency	 room	of	 the
same	hospital,	(3)	children	attending	the	same	school	as	the	corresponding	case,
and	(4)	population	controls	identified	by	means	of	random	digit	dialing	[Hurwitz
et	 al.,	 1987].	 The	main	 reason	 for	 inclusion	 of	 several	 control	 groups	was	 no
doubt	 the	 uncertainty	 of	 the	 researchers	 about	 the	 appropriateness	 of	 control
sampling.	As	such,	multiple	control	groups	can	be	considered	a	sign	of	weakness
of	the	design	of	data	collection.	Nevertheless,	under	those	circumstances	where
sampling	 from	 the	 study	 base	 is	 considered	 problematic	 and	 the	 validity	 of	 a
control	 sample	 is	not	 straightforward,	 similar	 results	obtained	 for	 two	different
control	groups	can	be	reassuring.	When,	however,	the	findings	differ	according
to	 the	 control	 group	 used	 in	 the	 analysis,	 interpretation	 of	 the	 study	 results
becomes	problematic.	The	 researcher	 retrospectively	must	decide	which	of	 the
control	groups	best	meets	the	study	base	principle.	Had	this	decision	been	made
before	the	study	was	executed,	inclusion	of	more	than	one	control	group	would
have	been	unnecessary.
In	 a	 case-control	 study	 on	 the	 risk	 factors	 for	 hip	 fractures,	 the	 findings

resulting	 from	 the	use	of	hospital	 controls	 (from	orthopedic	or	 surgical	wards)
were	 compared	with	 those	 from	 community	 controls	 [Moritz	 et	 al.,	 1997].	As
expected,	 the	 prevalence	 of	 many	 potential	 determinants	 was	 higher	 in	 the
hospital	 controls,	 while	 the	 corresponding	 odds	 ratios	 were	 lower,	 even	 after
adjustment	for	potential	confounders.	The	authors	concluded	that,	“Community
controls	 were	 quite	 similar	 to	 representative	 samples	 of	 community-dwelling
elderly	women,	whereas	hospital	controls	were	somewhat	sicker	and	more	likely
to	 be	 current	 smokers”	 and	 that	 “…	 community	 controls	 comprise	 the	 more
appropriate	control	group	in	case-control	studies	of	hip	fracture	in	the	elderly.”
We	 believe	 that	 this	 conclusion	 can	 be	 extended	 far	 beyond	 this	 particular
disease.



Matching	of	Cases	and	Controls
There	 is	 continuing	 controversy	 regarding	 the	 benefits	 and	 disadvantages	 of
matching	 cases	 and	 controls.	 Some	 epidemiologists	 strongly	 advise	 against
matching	according	 to	one	or	more	characteristics,	while	others	advocate	close
matching	 of	 cases	 and	 their	 corresponding	 control(s),	 usually	 because	 they
believe	 matching	 will	 prevent	 confounding.	 In	 our	 view,	 matching	 cases	 and
controls	 to	 prevent	 confounding	 should	 be	 avoided.	 Matching	 of	 cases	 and
controls	is	usually	not	required,	unless	for	efficiency	reasons.
In	essence,	matching	of	cases	and	controls	should	be	viewed	as	an	efficiency

issue.	Just	as	it	may	be	more	efficient	to	study	a	sample	of	controls	instead	of	the
census	(i.e.,	to	perform	a	case-control	study),	it	may	be	more	efficient	to	match
cases	and	controls	than	to	take	a	larger,	unmatched	sample	[Miettinen,	1985].
Consider	an	etiologic	study	on	the	association	between	frequent	sun	exposure

and	 the	 occurrence	 of	 melanoma	 and	 assume	 that	 gender	 is	 considered	 an
important	potential	effect	modifier	of	this	relationship.	Let	us	further	assume	that
in	 order	 to	 efficiently	 estimate	 the	 association	 between	 frequent	 sun	 exposure
and	melanoma	in	both	males	and	females,	inclusion	of	five	controls	per	case	in
each	 gender	 subdomain	 provides	 optimal	 statistical	 power.	 Power	 calculations
for	 case-control	 studies	 are	 not	 included	 in	 our	 text,	 but	 it	 is	 generally
acknowledged	that	a	case–control	ratio	exceeding	1:5	does	not	add	appreciable
statistical	 power	 and	 is	 unlikely	 to	 offset	 the	 efforts	 required	 to	 obtain	 the
necessary	information	in	additional	control	subjects	[Miettinen,	1985].	Presume
that	in	the	study	base,	a	dynamic	population	of	a	well-defined	region	where	60%
of	persons	are	female	is	followed	over	a	5-year	period.	During	this	study	period,
100	 cases	 (70	 men	 and	 30	 women)	 of	 melanoma	 are	 diagnosed.	 A	 large,
unmatched	 sample	 of	 500	 controls	 from	 the	 study	 base	 would	 include	 300
women	 (60%)	 and	 200	 men.	 In	 the	 female	 subgroup,	 the	 case–control	 ratio
would	 then	 be	 1:10	 (30	 out	 of	 the	 300),	while	 the	 corresponding	 ratio	 among
men	would	 be	 1:2.9	 (70	 out	 of	 the	 200),	 thus	 implying	 excessive	 sampling	 of
women	 from	 the	 study	 base.	 In	 contrast,	 the	 number	 of	males	 is	 too	 small	 to
provide	optimal	power.	Matching	cases	and	controls	according	to	gender	would
maximize	 efficiency:	 For	 the	 70	 male	 and	 30	 female	 cases,	 respectively,	 350
males	and	150	females	would	be	sampled	from	the	study	base.	Thus,	matching
may	be	efficient	when	a	large	unmatched	sample	would	generate	small	numbers
of	controls	per	case	in	subcategories	of	the	matching	variables	(usually	potential
effect	 modifiers	 or	 confounders).	 This	 would	 make	 the	 assessment	 of	 effect



modification	of	confounding	inefficient	or	sometimes	even	impossible.
In	 another	 study	 examining	whether	 head	 trauma	 is	 a	 cause	 of	Alzheimer’s

disease,	 an	 unmatched	 sample	 from	 the	 population	 at	 large	would	 generate	 an
inefficiently	 large	 number	 of	 controls	 in	 the	 younger	 age	 categories,	 because
most	cases	will	be	octogenarians	or	even	older.	In	this	case,	matching	according
to	 age	 could	 increase	 the	 power	 of	 the	 study	 to	 assess	 the	 role	 of	 age	 as	 a
potential	confounder	or	modifier.
Although	matching	 of	 cases	 and	 controls	 can	 be	 helpful	 in	 determining	 the

role	of	an	effect	modifier	or	confounder,	matching	is	not	the	preferred	means	to
deal	 with	 confounding	 in	 case-control	 studies.	 Unfortunately,	 however,	 this
seems	 to	 be	 the	 predominant	 rationale	 for	 matching	 according	 to	 multiple
potential	confounders	 in	many	case-control	studies.	Often,	researchers	perceive
matching	 of	 cases	 and	 controls	 as	 a	 “similar”	method	 to	 prevent	 confounding
(i.e.,	to	achieve	comparability	of	natural	history)	as	matching	in	cohort	studies	or
randomization	 in	 randomized	 trials.	 But	 there	 is	 a	 crucial	 difference	 between
these	last	two	methods	and	matching	in	case-control	studies.
Randomization	 in	 trials	 and	 matching	 of	 those	 with	 and	 without	 the

determinant	 in	 cohort	 studies	 will	 create	 subgroups	 of	 individuals	 who	 are
similar	according	to	relevant	covariates	(typically	factors	related	to	the	outcome)
except,	 of	 course,	 for	 the	 determinant	 (or	 exposure)	 of	 interest.	 Then,	 any
difference	in	the	future	occurrence	of	the	outcome	is	likely	to	be	attributable	to
the	determinant	and	not	to	confounding	caused	by	these	covariates.	Matching	in
case-control	studies,	however,	will	not	 lead	to	comparability	of	 the	distribution
of	 confounders	 between	 those	 with	 and	 without	 the	 determinant.	 In	 contrast,
matching	 will	 result	 in	 a	 similar	 distribution	 of	 potential	 confounders	 among
those	with	 (cases)	 and	without	 (controls)	 the	 disease.	 This	 is	 counterintuitive,
because	cases	and	controls	are	expected	 to	differ	considerably	according	 to	all
characteristics	 associated	 with	 the	 outcome	 (i.e.,	 risk	 factors),	 including
confounders.	Consequently,	the	often	heard	criticism	of	case-control	studies,	that
“cases	 and	 controls	 differ	 too	 much,”	 is	 unjustified;	 one	 should	 actually	 be
surprised	 and	 question	 the	 validity	 of	 the	 data	 if	 cases	 have	 similar
characteristics	as	control	subjects	(see	also	the	Worked-Out	Example	at	the	end
of	this	chapter).
Consider	a	case-control	study	assessing	the	causal	association	between	a	novel

marker	 of	 lipid	metabolism	 (e.g.,	 the	 ratio	 of	 apolipoprotein	ApoB	 to	ApoA1)
and	 myocardial	 infarction.	 Many	 potential	 confounders	 should	 be	 taken	 into
account	in	this	study,	most	notably	those	established	cardiovascular	risk	factors



known	 or	 anticipated	 to	 be	 related	 to	 the	 ApoB–ApoA1	 ratio.	 According	 to
some,	 prevention	 of	 confounding	 in	 this	 case-control	 study	 warrants	 rigorous
matching	of	a	case	with	its	corresponding	control	according	to	a	large	number	of
cardiovascular	 risk	 factors,	 including	 (apart	 from	 age	 and	 gender)	 other	 lipid
parameters,	blood	pressure,	glucose	metabolism,	smoking	habits,	family	history
of	cardiovascular	disease,	etc.	This	would	result	in	a	control	series	consisting	of
subjects	with	a	relatively	unfavorable	cardiovascular	risk	profile	(comparable	to
the	cases	in	the	same	study)	who	managed	not	to	develop	myocardial	infarction.
Such	patients	 belong	 in	 a	museum,	 rather	 than	 in	 the	 control	 group	of	 a	 case-
control	 study.	 Moreover,	 lipid	 parameters	 (including	 the	 ApoB–ApoA1	 ratio)
may	well	 have	 become	 similar	 as	 a	 result	 of	 the	matching	 procedure,	 because
cardiovascular	risk	factors	are	known	to	cluster.
Although	the	matching	of	cases	and	controls	should	be	taken	into	account	in

the	design	of	data	 analyses	 (discussed	 later	 in	 this	 chapter),	 rigorous	matching
according	to	many	potential	confounders	seriously	complicates	such	an	analytic
approach.	Other	disadvantages	of	matching	cases	and	controls	 include	the	 time
and	 costs	 involved	 in	 identifying	 matched	 controls,	 notably	 when	 several
matching	factors	are	used,	and	the	consequence	that	the	matching	factor	cannot
be	studied	as	a	determinant	of	the	outcome.	In	addition,	matching	according	to	a
factor	 that	 is	 not	 a	 confounder	 but	 is	 nevertheless	 associated	 with	 the
determinant	may	even	decrease	efficiency	[Miettinen,	1985;	Rothman,	1986].
Because	 alternative	 methods	 for	 dealing	 with	 confounding	 in	 case-control

studies	 (most	 notably,	 multivariable	 regression	 techniques	 to	 adjust	 for
confounding	in	the	data	analysis)	are	available,	matching	should	be	restricted	to
those	case-control	studies	where	it	 leads	 to	an	efficiency	gain.	As	illustrated	in
the	melanoma	example	presented	earlier	in	this	chapter,	this	is	the	case	when	a
disproportionate	 case-control	 ratio	 in	 subcategories	 of	 a	 confounder	 or	 effect
modifier	is	expected.	If	applied,	matching	preferably	should	be	restricted	to	one
or	 two	important	factors.	Typically,	 these	include	age	and	gender.	Matching	of
controls	 according	 to	 all	 potential	 confounders	 with	 the	 aim	 of	 preventing
confounding	bias	is	irrational	and	should	be	discouraged.	The	statement	included
in	the	first	book	devoted	entirely	to	case-control	studies	and	published	more	than
30	years	ago	still	holds	true	today:	“Unless	one	has	very	good	reason	to	match,
one	is	undoubtedly	better	off	avoiding	the	inclination”	[Schlesselman,	1982].



DESIGN	OF	DATA	ANALYSIS
As	 in	 any	 clinical	 epidemiologic	 study,	 the	 design	 of	 data	 analysis	 in	 case-
control	 studies	 depends	 on	 their	 theoretical	 design	 (notably,	whether	 the	 case-
control	study	 is	descriptive	or	aimed	at	unraveling	causality)	and	 the	design	of
data	 collection	 (for	 example,	whether	 the	 case-control	 study	 is	nested	within	 a
cohort	 study	or	 a	 dynamic	population).	We	 first	 explain	 the	 importance	of	 the
exposure	 odds	 ratio	 in	 case-control	 studies.	 Subsequently,	 a	 summary	 of	 the
main	methods	to	adjust	for	confounding	in	the	data	analysis	is	provided,	because
the	 vast	 majority	 of	 case-control	 studies	 are	 performed	 to	 quantify	 causal
associations.	 Finally,	 the	 data	 analysis	 consequences	 of	 matching	 cases	 and
controls	are	discussed	briefly.

The	Odds	Ratio	Equals	the	Incidence	Rate	Ratio
Table	 9–2	 summarizes	 the	 major	 results	 of	 the	 first	 case-control	 study
performed	 in	 the	 medical	 domain	 [Broders,	 1920].	 That	 study	 compared	 the
smoking	habits	of	537	cases	(with	squamous	epithelioma	of	 the	lip)	with	those
of	500	control	subjects	(without	epithelioma	of	the	lip).
When	 asked	 about	 the	 analysis	 of	 this	 2	 ×	 2	 table	 typical	 of	 case-control

studies,	 those	 who	 have	 been	 exposed	 to	 a	 course	 in	 epidemiology	 or	 an
epidemiology	 textbook	will	 immediately	 calculate	 the	odds	 ratio	 by	 taking	 the
cross-product	(ad/bc)	and	possibly	also	calculate	a	95%	confidence	interval	(CI).
In	 this	example,	 the	odds	ratio	 is	 (421	×	310)/(190	×	116)	=	5.9	(95%	CI	4.5–
7.8).	This	odds	ratio	is	then—correctly—interpreted	as	an	approximation	of	the
relative	risk:	In	this	example,	the	risk	of	squamous	epithelioma	of	the	lip	in	pipe
smokers	is	six	times	the	risk	in	those	not	smoking	a	pipe.	It	should	be	noted	that
the	odds	ratio	in	fact	is	the	exposure	odds	ratio,	that	is,	the	odds	of	exposure	in
the	cases	(a/c)	divided	by	the	odds	of	exposure	in	the	controls	(b/d).

TABLE	9–2	Case-Control	Study	Linking	Smoking	and	Epithelioma	of	the	Lip
	 Patients	with	Lip	Epithelioma Patients	Without	Lip	Epithelioma
Pipe	smoking 421	(a)				 190	(b)				
No	pipe	smoking 116	(c)				 310	(d)				
Total 537	(a+c) 500	(b+d)

Data	from:	Broders	AC.	Squamous-cell	epithelioma	of	the	lip.	A	study	of	537	cases.	JAMA	1920;74:656–
64.



The	 strength	 of	 the	 case-control	method	 is	 that	 if	 indeed	 the	 controls	 are	 a
valid	sample	of	the	study	base	from	which	the	cases	originate,	the	exposure	odds
ratio	is	by	definition	a	valid	estimate	of	the	incidence	rate	ratio	one	would	obtain
from	a	cohort	study;	that	is,	if	one	took	a	census	approach.	It	can	be	shown	this
is	 true	 irrespective	 of	 the	 frequency	 of	 the	 outcome	 of	 interest,	 and,	 thus,	 any
assumption	about	the	rarity	of	the	outcome	is	irrelevant.
Imagine	 a	dynamic	population,	 including	 in	 total	N	+	N′	 participants	during

the	entire	study	period.	Note	that	because	this	is	a	dynamic	population,	the	time
that	a	subject	is	part	of	the	study	base	theoretically	ranges	from	1	second	to	the
full	study	period.	Assuming,	for	simplicity,	that	exposure	in	a	subject	is	constant,
N	subjects	are	exposed	to	the	determinant	and	N′	are	not	(see	Table	9–3).
To	calculate	the	association	between	the	determinant	and	the	outcome	in	this

dynamic	population	 followed	over	 time,	 incidence	 rates	of	 the	disease	 in	 those
with	and	without	the	determinant	can	be	calculated.	Taking	an	average	follow-up
time	(t)	of	the	members	in	the	study	base,	the	incidence	rate,	or	incidence	density
of	 the	 outcome	 in	 those	 with	 the	 determinant,	 equals	 a/(N	 ×	 t)	 while	 the
incidence	rate	in	the	unexposed	equals	c/(N′	×	t).
The	incidence	rate	ratio	can	be	calculated	as	(a/(N	×	t))/(c/(N′	×	t))	or	(a	×	N′	×

t)/(c	×	N	×	t)	or	(a	×	N′)/(c	×	N).
The	 major	 findings	 of	 a	 case-control	 study	 conducted	 within	 this	 dynamic

population	are	summarized	in	Table	9–4.

TABLE	9–3	Dynamic	Population

TABLE	9–4	Findings	from	a	Case-Control	Study	in	a	Dynamic	Population
	 Cases Sample	from	the	Study	Base
Determinant	+ a b
Determinant	− c d

In	such	a	study,	and	in	contrast	to	the	follow-up	study	shown	in	Table	9–3,	the
exact	 number	 (N	 +	 N′)	 and	 specifics	 (notably	 exposure/nonexposure	 to	 the
determinant)	 of	 the	 members	 of	 the	 study	 base	 are	 not	 known.	 The	 relevant
characteristics	are	only	measured	in	the	cases	(a	+	c)	and	in	a	sample	from	the
study	base	(b	+	d).	The	numerator	of	the	incidence	rate	of	the	outcome	in	those
with	and	without	the	determinants	is	provided	by	a	and	c,	respectively,	and,	thus



the	case	series.	The	denominator	is	now	not	calculated	directly	as	in	the	cohort
study,	but	provided	by	the	controls.	If	indeed	a	valid	sample	from	the	study	base
is	taken,	b	will	represent	an	unknown	proportion	p	of	N	(b	=	p	×	N	and	N	=	b/p)
and	d	will	represent	an	unknown	proportion	p′	of	N′	(d	=	p′	×	N′	and	thus	N′	=
d/p′).	The	incidence	rate	ratio	(a	×	N′)/(c	×	N)	derived	from	the	cohort	study	can
then	be	rewritten	as	[a	×	(d/p′)]/[c	×	(b/p)].	If,	for	example,	10%	of	all	members
of	the	study	base	throughout	the	study	period	are	sampled,	then	one	will	sample
10%	of	all	exposed	N,	10%	of	all	unexposed	N′,	10%	of	all	left-handed	subjects,
10%	of	all	subjects	with	blue	eyes,	etc.	If	indeed	p	=	p′,	then	the	incidence	rate
ratio	 can	be	 rewritten	 as	 (a	×	d)/(b	×	 c).	This	 equals	 the	 cross-product	 from	a
case-control	 study	and	 is	 similar	 to	 the	 ratio	of	 the	exposure	odds	 in	 the	cases
(a/c)	and	the	controls	(b/d).	Consequently,	if	a	valid	sample	from	the	study	base
is	drawn,	 the	exposure	odds	ratio	obtained	from	a	case-control	study	is	exactly
the	 same	 as	 the	 incidence	 rate	 ratio	 that	 would	 be	 obtained	 from	 a	 follow-up
study	in	the	same	study	base	[Knol,	et	al.,	2008].	Note	that	 this	 is	always	true,
irrespective	of	 the	 frequency	of	 the	disease.	Thus,	 there	 is	 no	need	 for	 a	 “rare
disease”	 assumption	 [Miettinen,	 1985;	 Rothman,	 1986].	 It	 follows	 from	 these
calculations	that	a	typical	case-control	study	will	only	provide	relative	measures
of	the	association	between	the	determinant	(odds	ratios)	and	no	absolute	disease
frequencies	 (incidence	 rates)	 in	 those	with	and	without	 the	determinant,	unless
the	sampling	fraction	p	 is	known.	This	sampling	fraction	is	usually	not	known,
with	 the	 important	 exception	 of	 case-control	 studies	 that	 are	 performed	within
cohort	studies.	If	 in	the	latter	 type	of	studies	individuals	are	followed	in	detail,
the	fraction	p	will	be	known	and	incidence	rates	can	be	estimated.	Case-cohort
studies	(see	later	discussion)	are	examples	of	case-control	studies	with	a	known
sampling	fraction.

Adjustment	for	Confounding
Almost	 all	 available	 case-control	 studies	 deal	 with	 causality	 and	 because	 by
definition	 no	 randomization	 of	 the	 determinant	 takes	 place	 in	 case-control
studies,	adjustment	for	confounding	is	crucial,	just	as	for	other	nonexperimental
studies	addressing	causality.
Methods	 available	 to	 adjust	 for	 confounding	 in	 the	 data	 analysis	 are

essentially	similar	for	all	types	of	clinical	epidemiologic	studies.	As	a	first	step,
a	 stratified	analysis	 that	estimates	 the	odds	 ratio	 from	2	×	2	 tables	constructed
separately	 for	 the	 categories	 of	 the	 confounder	 is	 useful.	When,	 for	 example,



gender	 is	considered	an	important	confounder,	 the	odds	ratio	for	both	men	and
women	 will	 be	 calculated.	 Subsequently,	 a	 pooled	 estimate	 can	 be	 obtained
using	 a	 Mantel-Haenszel	 approach	 or	 maximum	 likelihood	 methods,	 for
example.	This	 gender-adjusted	 odds	 ratio	 can	 then	 be	 compared	 to	 the	 overall
crude	estimate.	If	these	two	estimates	are	the	same,	confounding	by	gender	is	a
non-issue.	When	multiple	 confounders	 should	 be	 taken	 into	 account,	 stratified
analyses	 become	 complicated	 and	 alternative	 methods	 such	 as	 multivariable
regression	 analyses	 are	 usually	 applied.	 Currently,	 multivariable	 logistic
regression	is	used	in	most	case-control	studies.	For	a	more	elaborate	discussion
on	adjustment	for	confounding,	we	refer	you	to	other	textbooks	[Rothman,	2002;
Schlesselman,	1982].

Taking	Matching	of	Cases	and	Controls	into	Account
Although	 we	 discourage	 matching	 of	 cases	 and	 controls,	 matching	 is
occasionally	 justified	 (usually	 by	 a	 gain	 in	 efficiency),	 but	 it	 should	 be
emphasized	that	matching	of	cases	and	controls	has	important	repercussions	for
the	design	of	data	analysis.	Through	the	matching	procedure	cases	and	controls
are	 made	 more	 similar	 than	 when	 unmatched	 samples	 of	 the	 study	 base	 are
taken.	 Consequently,	 this	 induced	 effect	 should	 be	 taken	 into	 account	 by
performing	 conditional	 analyses,	 that	 is,	 analyses	 conditional	 on	 the	matching
factor(s).
In	fact,	failure	to	take	this	matching	into	account	may	bias	the	odds	ratio.	This

phenomenon	has	been	used	to	illustrate	that	matching	of	cases	and	controls	can
actually	 induce	 confounding,	 rather	 than	 facilitate	 its	 adjustment.	 Importantly,
this	bias	can	be	prevented	 (unless	 too	many	matching	 factors	are	 involved)	by
means	 of	 stratified	 analyses	 according	 to	 strata	 of	 the	 matching	 factor	 and
conditional	regression	analyses.

CASE-COHORT	STUDIES
Recall	 that	 a	 case-cohort	 study	 is	 a	 case-control	 study	 nested	within	 a	 cohort,
where	the	controls	are	sampled	at	the	beginning	of	the	study	period	(t	=	0).	By
definition,	 these	 controls	 are	 free	 from	 the	 disease	 at	 t	 =	 0	 and	 are	 a
representative	 sample	 of	 all	 members	 of	 the	 cohort.	 Note	 that	 in	 contrast	 to



sampling	at	multiple	points	in	time	during	the	study	period	(typically	each	time	a
case	 develops)	 from	 either	 a	 dynamic	 population	 or	 a	 cohort,	 in	 a	 case-cohort
study	the	researcher	samples	once	from	all	members	of	the	full	cohort.	In	other
words,	a	representative	sample	of	persons,	instead	of	person-years,	is	obtained	as
if	 the	 time	 that	 each	cohort	member	 is	part	of	 the	 study	base	 is	not	 taken	 into
consideration.	As	a	consequence,	the	odds	ratio	from	a	case-cohort	study	should
be	viewed	as	a	valid	estimate	of	the	risk	(or	cumulative	incidence)	ratio	and	not
of	the	rate	(or	incidence	rate)	ratio.	Note	that	if	the	number	of	cohort	members
that	 develop	 the	 outcome	 is	 small	 (and	 this	 very	 often	 applies	 to	 case-control
studies),	the	cumulative	incidence	ratio	approximates	the	incidence	risk	ratio.	In
essence,	 therefore,	 both	 sampling	 of	 persons	 (from	 the	 members	 of	 the	 full
cohort)	 and	 of	 person-time	 (from	 the	 total	 number	 of	 person-years	 all	 cohort
members	 contribute	 to	 the	 study)	 is	 possible	 in	 a	 case-cohort	 study.	 If,	 as	 is
usually	 the	 case,	 the	 sampling	 fraction	 (i.e.,	 the	 proportion	 of	 all	 persons	 or
person-years	 that	 is	 sampled)	 is	 known,	 one	 can	 even	 calculate	 absolute
cumulative	 incidences	 or	 incidence	 rates	 for	 those	 with	 and	 without	 the
determinant.
The	 case-cohort	 study	 design	 is	 generally	 attributed	 to	 Prentice	 [1986],	 but

Miettinen	had	already	introduced	the	method	in	1982.	Until	more	recent	years,
however,	 the	 method	 often	 was	 not	 applied.	 This	 is	 partly	 attributable	 to	 the
initial	problems	pertaining	to	the	data	analysis	of	case-cohort	studies,	including
the	difficulties	in	calculating	confidence	intervals	[Schouten	et	al.,	1993].	These
problems	have	been	solved.	In	the	analyses	of	case-cohort	studies	(with	a	known
sampling	 fraction),	 the	 full	 cohort	 is	 first	 more	 or	 less	 “reconstructed”	 by
multiplying	the	sample	of	controls.	Subsequently,	absolute	risks	and	rates	can	be
estimated,	but	the	inflation	of	the	control	sample	needs	to	be	taken	into	account
when	 calculating	 the	 confidence	 intervals.	 Several	 methods	 are	 available	 to
analyze	 case-cohort	 data	 and	 adjust	 for	 confounding,	 including	 the	 Cox
proportional	hazards	model.
The	main	 advantage	 of	 the	 case-cohort	 approach	 is	 its	 efficiency,	 as	 for	 all

case-control	 studies,	 but	 the	 fact	 that	 the	 controls	 can	 be	 identified	 in	 the
beginning	 of	 the	 study	 further	 adds	 to	 its	 attractiveness.	 In	 addition,	 a	 single
control	 group	 can	 be	 applied	 for	 multiple	 outcomes.	 In	 effect,	 several	 case-
control	 studies	 can	 be	 performed	 using	 the	 same	 control	 group.	An	 advantage
compared	 to	 most	 other	 case-control	 studies	 is	 the	 possibility	 of	 calculating
absolute	risks	or	incidence	rates	(and	risk	or	rate	differences).
Case-cohort	 studies	 are	 less	 advantageous	 when	 many	 cohort	 members	 are



lost	 to	 follow-up,	when	 the	 outcome	 is	 very	 common,	 and	when	 the	 exposure
changes	 over	 time.	 Moreover,	 the	 number	 of	 controls	 to	 be	 sampled	 in	 the
beginning	is	difficult	to	predict,	because	the	number	of	cases	are	unknown	at	t	=
0,	which	may	lead	to	some	loss	in	efficiency	(i.e.,	the	case-control	ratio	may	not
be	 optimal).	 In	 addition,	 the	 data	 analysis	 is	 less	 straightforward	 than	 in	most
other	types	of	case-control	studies.	The	abstract	of	a	case-cohort	study	is	given
in	Box	9–6	[Van	der	A	et	al.,	2006].

BOX	9–6	A	Case-Cohort	Study	on	the	Causal	Link	Between	Iron	and	the	Risk	of	Coronary	Heart	Disease

Background:	Epidemiological	studies	aimed	at	correlating	coronary	heart	disease	(CHD)	with	serum
ferritin	levels	have	thus	far	yielded	inconsistent	results.	We	hypothesized	that	a	labile	iron	component
associated	with	non-transferrin-bound	iron	(NTBI)	that	appears	in	individuals	with	overt	or	cryptic
iron	overload	might	be	more	suitable	for	establishing	correlations	with	CHD.

Methods	and	Results:	We	investigated	the	relation	of	NTBI,	serum	iron,	transferrin	saturation,	and
serum	ferritin	with	risk	of	CHD	and	acute	myocardial	infarction	(AMI).	The	cohort	used	comprised	a
population-based	sample	of	11,471	postmenopausal	women	aged	49	to	70	years	at	enrollment	in	1993
to	1997.	During	a	median	follow-up	of	4.3	years	(quartile	limits	Q1	to	Q3:	3.3	to	5.4),	185	CHD
events	were	identified,	including	66	AMI	events.	We	conducted	a	case-cohort	study	using	all	CHD
cases	and	a	random	sample	from	the	baseline	cohort	(n	=	1134).	A	weighted	Cox	proportional	hazards
model	was	used	to	estimate	hazard	ratios	for	tertiles	of	iron	variables	in	relation	to	CHD	and	AMI.
Adjusted	hazard	ratios	of	women	in	the	highest	NTBI	tertile	(range	0.38	to	3.51)	compared	with	the
lowest	(range	−2.06	to	−0.32)	were	0.84	(95%	confidence	interval	0.61	to	1.16)	for	CHD	and	0.47
(95%	confidence	interval	0.31	to	0.71)	for	AMI.	The	results	were	similar	for	serum	iron,	transferrin
saturation,	and	serum	ferritin.

Conclusions:	Our	results	show	no	excess	risk	of	CHD	or	AMI	within	the	highest	NTBI	tertile
compared	with	the	lowest	but	rather	seem	to	demonstrate	a	decreased	risk.	Additional	studies	are
warranted	to	confirm	our	findings.

Reproduced	from	Van	der	A	DL,	Marx	JJ,	Grobbee	DE,	Kamphuis	MH,	Georgiou	NA,	van	Kats-Renaud
JH,	Breuer	W,	Cabantchik	ZI,	Roest	M,	Voorbij	HA,	Van	der	Schouw	YT.	Non-transferrin-bound	iron	and
the	risk	of	coronary	heart	disease	in	postmenopausal	women.	Circulation	2006;113:1942–9.

The	 following	 paragraph	 from	 the	 study	 of	 Van	 der	 A	 et	 al.	 describes	 the
rationale	and	methodology	of	this	case-cohort	study:

The	 case-cohort	 design	 consists	 of	 a	 subcohort	 randomly	 sampled	 from	 the	 full	 cohort	 at	 the
beginning	 of	 the	 study	 and	 a	 case	 sample	 that	 consists	 of	 all	 cases	 that	 are	 ascertained	 during
follow-up.	With	this	sampling	strategy,	the	subcohort	may	include	incident	cases	of	CHD	that	will
contribute	 person-time	 as	 controls	 until	 the	 moment	 they	 experience	 the	 event.	 We	 selected	 a
random	 sample	 of	 [almost	 equal	 to]	 10%	 (n	 =	 1134)	 from	 the	 baseline	 cohort	 to	 serve	 as	 the
subcohort.	 The	 advantage	 of	 this	 design	 is	 that	 it	 enables	 the	 performance	 of	 survival	 analyses
without	the	need	to	collect	expensive	laboratory	data	for	the	entire	cohort.



The	complexity	of	the	data	analysis	is	illustrated	in	the	next	few	lines	from	the
same	article:

To	assess	the	relationship	between	the	iron	variables	(i.e.,	NTBI,	serum	iron,	transferrin	saturation,
and	serum	ferritin)	and	heart	disease,	we	used	a	Cox	proportional	hazards	model	with	an	estimation
procedure	adapted	for	case-cohort	designs.	We	used	the	unweighted	method	by	Prentice,	which	is
incorporated	in	the	macro	ROBPHREG	made	by	Barlow	and	Ichikawa.	This	macro	is	available	at
http://lib.stat.cmu.edu/general/robphreg	 and	 can	 be	 implemented	 in	 the	 SAS	 statistical	 software
package	 version	 8.2.	 It	 computes	weighted	 estimates	 together	with	 a	 robust	 standard	 error,	 from
which	we	calculated	95%	confidence	intervals.

CASE-CROSSOVER	STUDIES
The	case-crossover	study	was	introduced	in	1991	by	Maclure.	A	case-crossover
study	bears	some	resemblance	to	a	crossover	randomized	trial.	In	the	latter,	each
participant	receives	all	(usually	two)	interventions	and	the	order	in	which	he	or
she	receives	them	in	this	experimental	study	is	randomly	allocated,	with	a	short
time	between	the	two	interventions,	allowing	for	the	effect	of	the	intervention	to
wear	off.	Assumptions	underlying	a	crossover	trial	include	the	transient	effect	of
each	 intervention	and	 that	 the	 first	 intervention	does	not	exert	an	effect	during
the	time	period	the	participant	receives	the	second	intervention	(i.e.,	there	is	no
carryover	effect).
In	 a	 case-crossover	 study,	 all	 participants	 experience	periods	of	 exposure	 as

well	as	periods	of	nonexposure	to	the	determinant	of	interest.	However,	a	case-
crossover	 study	 is	 nonexperimental	 and	 thus	 the	 order	 in	 which	 exposure	 or
nonexposure	 occurs	 is	 anything	 but	 random.	 In	 fact,	 exposure	 or	 nonexposure
may	change	multiple	times	in	a	participant	during	the	study	period.	Importantly,
the	previously	mentioned	prerequisites	for	cross-over	trials	also	pertain	to	case-
crossover	studies:	the	exposure	being	transient	and	the	lack	of	a	carryover	effect.
A	case-crossover	study	is	a	case-control	study	because	a	sampling	instead	of	a

census	 approach	 is	 taken.	 Instead	 of	 comparing	 cases	with	 a	 sample	 from	 the
study	base,	however,	the	exposure	is	compared	in	the	risk	period	preceding	the
outcome	and	the	“usual	exposure”	in	the	same	case.	The	latter	may	be	measured
by	 calculating	 the	 average	 exposure	 over	 a	 certain	 time	 period	 or	 measuring
exposure	 at	 a	 random	point	 in	 time	or	 specified	period,	 for	 example,	48	hours
before	the	event.	The	types	of	transient	determinants	that	have	been	evaluated	in
case-crossover	designs	include	coffee	drinking,	physical	exertion,	alcohol	intake,
sexual	activity,	and	cocaine	consumption	[Mittleman	et	al.,	1993;	Mittleman	et

http://lib.stat.cmu.edu/general/robphreg


al.,	1999].	In	addition,	a	case-crossover	design	is	an	attractive	option	to	identify
transient	 triggers	 of	 exacerbations	 in	 patients	 with	 chronic	 disease,	 such	 as
multiple	sclerosis	or	migraine	[Confavreux	et	al.,	2001;	Villeneuve	et	al.,	2006].
Let	us	consider	the	example	of	a	study	aimed	at	quantifying	the	occurrence	of

myocardial	infarction	as	a	function	of	strenuous	physical	exertion	[Willich	et	al.,
1993].	In	the	article,	both	a	typical	case-control	study	and	a	case-crossover	study
are	presented.	Both	designs	are	shown	in	Figure	9–7.

FIGURE	9–7	Comparison	of	a	case-crossover	and	a	case-control	study	examining	the	causal	link	between
physical	exertion	and	myocardial	infarction.

Reproduced	from	Willich	SN,	Lewis	M,	Lowel	H,	Arntz	HR,	Schubert	F,	Schroder	R.	Physical	exertion	as
a	trigger	of	acute	myocardial	infarction.	Triggers	and	mechanisms	of	myocardial	infarction	study	group.	N
Engl	J	Med	1993;329:1684–90.

Time	zero	indicates	the	occurrence	of	the	outcome	in	a	member	of	the	study
base.	 The	 determinant	 is	 defined	 as	 “being	 engaged	 in	 physical	 exertion	 one
hour	before	a	certain	point	in	time,”	and	for	the	cases	this	is	the	time	of	onset	of
nonfatal	 myocardial	 infarction.	 In	 their	 case-control	 analysis,	 Willich	 et	 al.
compared	 the	 prevalence	 of	 strenuous	 physical	 exertion	 of	 cases	 in	 the	 risk
period	with	the	prevalence	in	age-,	sex-,	and	neighborhood-matched	population
controls.	The	adjusted	odds	ratio	resulting	from	this	analysis	was	2.1	(95%	CI,
1.1–3.6).	 In	 their	 case-crossover	 analysis,	 the	 authors	 compared	 the	 exposure
during	 the	 risk	 period	 of	 the	 cases	 with	 their	 usual	 frequency	 of	 strenuous
exercise.	 The	 data	 were	 obtained	 by	 interviewing	 the	 participants.	 In	 the
analyses,	 the	 observed	 odds	 of	 strenuous	 exercise	 within	 the	 hour	 before	 the
onset	of	myocardial	 infarction	and	 the	expected	odds	 (x:y)	 that	 the	case	would
have	 been	 engaged	 in	 exercise,	 based	 on	 the	 usual	 exercise	 frequency,	 were
calculated.	The	 risk	 ratio	was	calculated	as	 the	 ratio	of	 the	 sums	of	y	 (i.e.,	 the
probability	 of	 usually	 not	 being	 engaged	 in	 exercise)	 in	 cases	 who	 were



exercising	within	1	hour	before	the	event	and	the	sum	of	x	(i.e.,	the	probability
of	usually	being	engaged	in	exercise)	in	cases	who	did	not	exercise	within	1	hour
of	symptom	onset.	The	risk	ratio	resulting	from	this	approach	was	similar	to	the
case-control	estimate:	2.1	(95%	CI,	1.6–3.1).
The	 major	 strength	 of	 a	 case-crossover	 design	 is	 the	 within-person

comparison,	just	as	in	crossover	trials.	The	case	and	its	matched	control	(who	in
fact	 is	 the	 same	 person)	 will	 be	 matched	 according	 to	 characteristics	 that	 are
constant	in	a	certain	(usually	short)	time	span	(e.g.,	comorbidity,	socioeconomic
status,	 gender).	 Because	 of	 this	 matching,	 these	 characteristics	 can	 never	 be
studied	 as	 a	 determinant	 of	 the	 outcome	 event,	 but	 a	 case-crossover	 study
usually	 focuses	 on	 one	 transient	 exposure	 only.	 The	 most	 important	 threat	 to
case-crossover	studies	is	the	possibility	that	the	determinant	exerts	its	effect	way
beyond	the	risk	period	defined.	This	“carryover”	effect	cannot	always	be	ruled
out.

CASE-CONTROL	STUDIES	WITHOUT
CONTROLS
The	case-crossover	study	is	an	example	of	a	case-control	study	without	control
subjects;	in	other	words,	the	cases	are	the	only	subjects	included	in	the	analysis.
Under	specific	circumstances,	several	other	designs	that	include	cases	only	are	in
use.	 Case-only	 studies	 are	 particularly	 useful	 for	 assessing	 gene–environment
interactions	 [Khoury	 &	 Flandes,	 1996;	 Piegorsch	 et	 al.,	 1994],	 while	 regular
case-control	 studies	 typically	 lack	 the	 power	 to	 detect	 such	 interactions.	 In	 a
case-only	 study,	 a	 2	 ×	 2	 table	 is	 drawn	 comparing	 the	 single	 and	 combined
exposure	of	 the	 cases	 to	 the	 environmental	 and	genetic	determinant.	Then,	 the
case-only	odds	ratio	is	calculated	as	ad/bc.	This	odds	ratio	allows	the	researcher
to	 assess	 whether	 there	 is	 multiplicative	 interaction	 between	 the	 two
determinants	or	a	departure	from	multiplicative	risk	ratios.	A	major	limitation	of
the	design	is	the	essential	assumption	of	independence	between	the	two	factors
in	 the	 population,	 because	 only	 then	 does	 the	 case-only	 odds	 ratio	 equal	 the
result	 that	 would	 be	 obtained	 in	 a	 regular	 case-control	 study	 (with	 enough
power)	[Albert	et	al.,	2001].
When	the	determinant	under	study	is	the	distance	from	a	potentially	harmful

source,	such	as	a	power	 line	or	magnetic	field,	a	case-specular	study	may	be	a



design	option.	In	such	studies,	hypothetical	controls	are	created	by	reflecting	the
residence	of	the	case	(or	reflecting	the	power	line),	for	example,	by	mirroring	the
image	 of	 the	 case	 residence,	 taking	 the	 middle	 of	 the	 street	 as	 the	 reference
[Zaffanella	et	al.,	1998].

ADVANTAGES	AND	LIMITATIONS	OF	CASE-
CONTROL	STUDIES
The	 strengths	 and	 limitations	 of	 case-control	 studies	 follow	 from	 the
particularities	 of	 the	 design.	 In	 Table	 9–5,	 the	 major	 advantages	 and
disadvantages	are	summarized.
The	main	advantage	of	a	case-control	 study	 is	 its	efficiency.	 Information	on

the	 determinant	 (and	 other	 relevant	 characteristics,	 notably	 confounders	 and
effect	modifiers)	only	needs	to	be	obtained	in	the	cases	and	a	sample	of	the	study
base	from	which	the	cases	originate.	Thus,	the	costs	of	case-control	studies	are
relatively	 low.	Especially	when	 the	outcome	 is	 rare,	when	measurement	of	 the
relevant	 (co)variates	 is	 expensive	 (e.g.,	 for	 genetic	 markers),	 or	 multiple
variables	(including	multiple	exposure	dosages)	are	involved,	a	sampling	rather
than	 a	 census	 approach	 becomes	 the	 preferred	 strategy	 in	 the	 design	 of	 data
collection.	Moreover,	case-control	studies	provide	ample	opportunity	to	address
the	 effect	 of	 determinant	 exposure	duration	on	 the	occurrence	of	 the	outcome,
for	example,	in	the	assessment	of	drug	risks.

TABLE	9–5	Case-Control	Studies:	Strengths	and	Limitations
Strengths Limitations
Efficiency	(sampling	instead	of	census),	in	particular	when:

—Outcomes	are	rare
—Multiple	determinants/dosages	are	studied
—Assessment	of	the	determinants	is	expensive
—Duration	of	exposure	is	long	or	unknown

Less	suited	when	determinant	is	rare	Usually	provides	no
absolute	rates/risks	More	prone	to	bias	than	experimental
studies	Often	performed	“quick	and	dirty”

Several	 limitations	 inherent	 to	 a	 case-control	 design	 exist,	 such	 as	 their
inefficiency	 when	 the	 determinant	 is	 rare.	 Case-control	 studies	 are	 often
considered	 to	 be	 more	 vulnerable	 to	 bias	 than	 other	 designs,	 such	 as	 cohort
studies.	When	one	realizes	that	a	case-control	study	is	just	a	more	efficient	way
to	 conduct	 a	 cohort	 study,	 the	 nonsense	 of	 this	 common	myth	 becomes	 clear.
Obviously,	 if	 sampling	 of	 controls	 depends	 on	 the	 determinant	 studied,	 if	 the



cases	and	controls	are	asked	retrospectively	about	exposure,	or	if	confounding	is
not	 adequately	 addressed,	 bias	 (also	 termed	 selection	 bias,	 recall	 bias,	 and
confounding	 bias,	 respectively)	 may	 occur	 in	 case-control	 studies.	 Bias,
however,	can	similarly	be	present	in	any	other	nonexperimental	study.	It	seems
that	the	bad	reputation	of	case-control	studies	has	resulted	from	the	“quick	and
dirty”	manner	(remember	Andy	Warhol’s	can	of	soup	introduced	in	Box	9–1)	in
which	many	of	 them	have	been	performed.	Poor	conduct	of	many	case-control
studies	clearly	contributes	to	the	air	of	suspicion	surrounding	the	results	of	case-
control	studies	in	general.
State	of	the	art	case-control	studies	offer	an	extremely	powerful	epidemiologic

tool.	Provided	that	the	underlying	principles	are	appreciated,	case-control	studies
will	continue	to	play	a	prominent	role	in	providing	evidence	for	clinical	practice
because	of	their	application	in	both	causal	and	descriptive	clinical	research.

WORKED-OUT	EXAMPLE
Anesthetic	 care	 in	 westernized	 societies	 is	 of	 high	 quality	 and	 is	 generally
considered	safe.	However,	very	rarely	accidents	still	occur	that	can	have	serious
health	 consequences.	 The	Netherlands	 Society	 for	Anaesthesiology	 decided	 to
estimate	 the	 incidence	 of	 serious	morbidity	 and	mortality	 during	 or	 following
anesthesia	 and	 study	 possible	 causal	 factors	 related	 to	 procedures	 and
organization	with	the	goal	of	reducing	risks	further.	Because	of	the	rarity	of	the
event,	large	numbers	of	anesthetic	procedures	were	needed	for	the	study.	This,	in
combination	with	 the	 necessary	 detailed	 information	 to	 be	 obtained	 led	 to	 the
decision	to	conduct	a	case-control	study	(see	Box	9–7)	[Arbous	et	al.,	2005].

BOX	9–7	Impact	of	Anesthesia	Management	Characteristics	on	Severe	Morbidity	and	Mortality

Background:	Quantitative	estimates	of	how	anesthesia	management	impacts	perioperative	morbidity
and	mortality	are	limited.	The	authors	performed	a	study	to	identify	risk	factors	related	to	anesthesia
management	for	24-h	postoperative	severe	morbidity	and	mortality.

Methods:	A	case-control	study	was	performed	of	all	patients	undergoing	anesthesia	(1995–1997).
Cases	were	patients	who	either	remained	comatose	or	died	during	or	within	24	h	of	undergoing
anesthesia.	Controls	were	patients	who	neither	remained	comatose	nor	died	during	or	within	24	hours
of	undergoing	anesthesia.	Data	were	collected	by	means	of	a	questionnaire,	the	anesthesia	and
recovery	form.	Odds	ratios	were	calculated	for	risk	factors,	adjusted	for	confounders.

Results:	The	cohort	comprised	869,483	patients;	807	cases	and	883	controls	were	analyzed.	The
incidence	of	24-h	postoperative	death	was	8.8	(95%	confidence	interval,	8.2–9.5)	per	10,000



anesthetics.	The	incidence	of	coma	was	0.5	(95%	confidence	interval,	0.3–0.6).	Anesthesia
management	factors	that	were	statistically	significantly	associated	with	a	decreased	risk	were:
equipment	check	with	protocol	and	checklist	(odds	ratio,	0.64),	documentation	of	the	equipment	check
(odds	ratio,	0.61),	a	directly	available	anesthesiologist	(odds	ratio,	0.46),	no	change	of	anesthesiologist
during	anesthesia	(odds	ratio,	0.44),	presence	of	a	full-time	working	anesthetic	nurse	(odds	ratio,
0.41),	two	persons	present	at	emergence	(odds	ratio,	0.69),	reversal	of	anesthesia	(for	muscle	relaxants
and	the	combination	of	muscle	relaxants	and	opiates;	odds	ratios,	0.10	and	0.29,	respectively),	and
postoperative	pain	medication	as	opposed	to	no	pain	medication,	particularly	if	administered
epidurally	or	intramuscularly	as	opposed	to	intravenously.

Conclusions:	Mortality	after	surgery	is	substantial	and	an	association	was	established	between
perioperative	coma	and	death	and	anesthesia	management	factors	like	intraoperative	presence	of
anesthesia	personnel,	administration	of	drugs	intraoperatively	and	postoperatively,	and	characteristics
of	delivered	intraoperative	and	postoperative	anesthetic	care.

Reproduced	from	Arbous	MS,	Meursing	AAE,	van	Kleef	JW,	de	Lange	JJ,	Spoormans	HHAJM,	Touw	P,
Werner	FM,	Grobbee	DE.	Impact	of	anesthesia	management	characteristics	on	severe	morbidity	and
mortality.	Anesthesiology	2005;102:257–68.

Theoretical	Design
The	 research	 question	 addressed	 was:	 “Which	 characteristics	 of	 anesthesia
management	are	causally	related	to	24-hour	postoperative	severe	morbidity	and
mortality?”	 This	 translates	 to	 the	 following	 occurrence	 relation:	 severe
postoperative	 morbidity	 and	 mortality	 as	 a	 function	 of	 factors	 related	 to
anesthesia	management	conditional	on	confounders.	The	domain	was	all	patients
given	 anesthesia	 for	 surgery.	 The	 operational	 definition	 of	 the	 outcome	 was
coma	 or	 death	 during	 or	 within	 24	 hours	 of	 anesthesia	 administration.	 The
determinant	 and	 confounders	 were	 operationalized	 by	 recording	 all	 relevant
characteristics	of	anesthesia,	hospital,	and	patients	by	means	of	a	questionnaire
and	by	scrutinizing	anesthesia	and	recovery	forms.

Design	of	Data	Collection
The	data	collection	was	designed	as	a	prospective	case-control	study.	Cases	were
patients	 who	 either	 remained	 comatose	 or	 died	 during	 or	 within	 24	 hours	 of
undergoing	 anesthesia	 from	 a	 cohort	 formed	 by	 all	 patients	 undergoing
anesthesia	(general,	regional,	or	a	combined	technique)	from	January	1,	1995	to
December	31,	1996,	in	three	of	the	12	provinces	in	the	Netherlands.	The	number
of	 anesthetics	 in	 the	 study	 area	 and	 study	 period	was	 869,483.	 Controls	were
obtained	 by	 taking	 a	 random	 patient	 from	 the	 remainder	 of	 the	 cohort



immediately	after	a	case	was	identified.	Note	that	cases	were	in	no	way	defined
as	 a	 priori	 related	 to	 anesthesia	 management	 (the	 determinant	 of	 interest).
Consequently,	most	of	 the	cases	were	 likely	 to	have	become	comatose	or	have
died	because	of	other	reasons,	notably	severity	of	the	health	condition	for	which
surgery	was	needed	or	because	of	the	risks	associated	with	the	surgery.

Design	of	Data	Analysis
The	principal	analysis	was	performed	on	controls	 (n	=	883)	and	all	 cases	 (n	=
807)	 jointly.	 Crude	 rate	 ratios	 and	 95%	 confidence	 intervals	 (CIs)	 of	 all
preoperative,	 intraoperative,	 and	 postoperative	 risk	 factors	 for	 perioperative
morbidity	 or	mortality,	 estimated	 as	 odds	 ratios,	were	 calculated	 by	 univariate
logistic	regression.
Because	 the	main	 interest	was	 in	 the	 causal	 relationship	 between	 anesthesia

management	and	perioperative	coma	and	death,	anesthesia	management–	related
preoperative,	intraoperative,	and	postoperative	risk	factors	were	considered	to	be
potential	 determinants	 of	 the	 outcome.	 Patient-,	 surgery-,	 and	 hospital-related
factors	 were	 treated	 as	 potential	 confounders	 of	 this	 relationship	 of	 interest.
Potential	 determinants	 were	 considered	 in	 the	 analyses	 if,	 in	 the	 univariate
analysis,	 two-sided	 P	 values	 were	 less	 than	 0.25	 or	 if	 the	 variable	 seemed
relevant	from	a	biologic	or	anesthesia	management	point	of	view.	To	adjust	risk
estimates	of	 the	determinants	 for	confounders,	multivariable	 logistic	 regression
was	 used.	 Patient-,	 surgery-,	 and	 hospital-related	 factors	 were	 considered	 as
possible	 confounders	 if	 they	 were	 statistically	 significantly	 related	 to	 the
determinant	or	were	judged	to	be	biologically	relevant.	While	for	the	study	as	a
whole,	multiple	possible	causal	determinants	were	considered,	the	causal	role	of
each	 determinant	 was	 analyzed	 separately.	 For	 each	 determinant	 that	 was
significantly	 related	 to	 the	outcome	 in	 the	univariate	analysis,	a	set	of	possible
confounders	 were	 tested	 by	 multivariable	 logistic	 regression.	 A	 unique
regression	 model	 was	 considered	 for	 each	 individual	 determinant,	 because
particular	 variables	 could	 act	 as	 a	 confounder	 for	 one	 determinant	 but	 not
necessarily	for	others.
The	 importance	 of	 each	 potential	 confounder	 included	 in	 the	 model	 was

verified	by	the	likelihood	ratio	test	and	a	comparison	of	the	estimated	odds	ratio
of	 the	 determinant	 from	 models	 containing	 and	 not	 containing	 the	 potential
confounder.	 A	 significant	 likelihood	 ratio	 test	 with	 a	 change	 of	 the	 estimated
odds	 ratio	 was	 taken	 as	 evidence	 that	 a	 biologically	 plausible	 factor	 was	 a



confounder	 and,	 therefore,	 it	 was	 included	 in	 the	 model.	 Adjusted	 risks	 for
anesthesia	 management	 factors	 were	 calculated,	 controlling	 for	 confounders.
Patients	with	more	than	10%	missing	values	were	excluded.	Missing	data	are	a
common	problem	in	research	using	data	that	as	a	whole	or	in	part	are	based	on
routine	 clinical	 records.	 If	 the	 proportion	 of	missing	 data	 is	 not	 too	 large,	 the
data	may	be	imputed	using	various	regression-based	techniques.	For	this	study,
data	were	analyzed	both	with	and	without	imputation	of	variables	showing	up	to
10%	missing	values.	Results	were	virtually	the	same.

Implications	and	Relevance
The	results	of	the	study	showed	that	in	spite	of	the	high-quality	level	of	current
anesthetic	 practice,	 several	 characteristics	 of	 anesthesia	 management	 could	 be
related	 to	 risk	 of	mortality	 (taking	 confounding	 variables	 into	 account).	 These
findings	point	to	a	causal	role	of	these	characteristics.	During	the	review	process
of	 this	 manuscript	 and	 after	 publication,	 a	 comment	 (common	 in	 response	 to
case-control	studies)	was	made	by	several	reviewers/readers	regarding	the	large
differences	 between	 cases	 and	 controls.	 Here	 is	 a	 part	 of	 one	 of	 the	 critical
responses	[Robertson,	2006]:

When	one	looks	at	baseline	characteristics	of	the	study	and	control	groups,	there	are,	as	the	authors
note,	 huge	 differences	 in	 the	 categories	 of	 urgent/	 emergent	 nature,	 time	 of	 day	 procedure
performed,	 and	 ASA	 physical	 status.	 In	 fact,	 40%	 of	 the	 study	 cases	 were	 rated	 ASA	 V—not
expected	to	survive	for	24	hours,	with	or	without	surgery	(regardless	of	anesthetic	management).	If
we	accept	that	a	very	large	proportion	of	the	study	cases	carry	greater	risk	by	virtue	of	their	physical
status	 and	 the	 emergent	 nature	 of	 the	 injury	 or	 disease	 process,	 and	 that	 urgent/emergent	 cases
generally	account	for	all	the	outside	working	hour	cases,	then	differences	in	anesthetic	management
processes	between	the	two	groups	appear	more	coincidentally	associated	than	causative.

The	 point	 made	 by	 this	 author	 is	 illustrated	 in	 the	 baseline	 table	 from	 the
original	report,	a	section	of	which	is	shown	in	Table	9–6	[Arbous	et	al.,	2005].
The	observation	of	marked	differences	 in	 risk	between	cases	and	controls	 is

correct,	but	the	inference	is	erroneous	[Arbous	et	al.,	2006].	Cases	and	controls
should	be	 inescapably	different	 if	 cases	are	 the	ones	who	experience	problems
and	 controls	 are	 randomly	 sampled	 from	 the	 remainder	 of	 the	 cohort.	 In
particular,	 they	should	be	different	 in	factors	 that	 reflect	known	mortality	 risks
such	as	age,	ASA	physical	status,	or	urgency	of	the	procedure.	The	question	is
whether	 these	prognostic	factors	are	also	related	to	characteristics	of	anesthetic
management.



TABLE	9–6	Baseline	Characteristics	of	Participants	in	the	Anesthesia	Management	Study

*95%	confidence	interval.
Reproduced	from	Arbous	MS,	Meursing	AAE,	van	Kleef	JW,	de	Lange	JJ,	Spoormans	HHAJM,	Touw	P,
Werner	FM,	Grobbee	DE.	Impact	of	anesthesia	management	characteristics	on	severe	morbidity	and
mortality.	Anesthesiology	2005;102:257–68.

To	 address	 this	 question,	 extensive	 confounder	 information	 was	 collected,
including	 those	variables	 so	dramatically	different	between	cases	 and	controls,
and	 multivariate	 adjustments	 were	 made.	 Some	 reviewers	 would	 have	 rather
seen	 controls	 that	 were	 closely	 matched	 to	 cases	 on	 as	 many	 risk	 factors	 as
possible.	However,	this	would	violate	the	study	base	principle	that	controls	in	a
case-control	 study	 should	 be	 representative	 of	 the	 population	 experience	 from
which	 the	 cases	 originate.	 While	 matching	 may	 sometimes	 be	 needed	 for
efficiency	reasons,	this	procedure	has	major	disadvantages,	as	explained	earlier.
Most	individuals	in	a	group	of	controls	resulting	from	closely	matching	controls
to	the	cases	according	to	multiple	potential	confounders	belong	in	a	museum	for
surviving	 the	 anesthesia	 and	 the	 operation	 and	 should	 not	 be	 included	 in	 the
control	group	of	a	case-control	study.



Chapter	10



Randomized	Trials

INTRODUCTION
Trials	are	cohort	studies	in	which	allocation	to	the	determinant	is	initiated	by	the
investigator.	Moreover,	in	randomized	trials	the	allocation	is	made	at	random	by
some	 algorithm.	 Because	 the	 determinant	 is	 allocated	 with	 the	 purpose	 of
learning	about	its	effect	on	the	outcome,	randomized	trials	are	experiments.	The
determinant	 that	 is	 allocated	 is	 typically	 a	 treatment	 such	as	 a	drug	or	 another
intervention,	 for	 example,	 a	 surgical	 procedure	 or	 lifestyle	 advice	 intended	 to
provide	relief,	cure,	or	prevention	of	disease.	In	this	chapter,	the	term	treatment
will	be	used	for	all	interventions	studied	in	randomized	trials.
Randomized	 trials	 have	 an	 important	 role	 in	 determining	 the	 efficacy	 and

safety	of	 treatments.	A	trial	can	be	viewed	as	a	measurement	of	 the	effect	of	a
treatment.	It	should	provide	a	quantitative	and	precise	estimate	of	the	benefits	or
risks	 that	 can	 be	 expected	 when	 a	 treatment	 is	 given	 to	 patients	 with	 an
indication	for	it.
Randomized	trials	can	be	distinguished	according	to	the	phase	of	development

of	a	treatment.	This	distinction	is	most	frequently	applied	in	drug	trials.	Phase	I
trials	 are	 usually	 carried	 out	 after	 satisfactory	 findings	 have	 been	 reported	 in
animal	 experiments.	 They	 primarily	 aim	 to	 determine	 the	 pharmacologic	 and
metabolic	 effects	 of	 the	 drug	 in	 humans,	 and	 to	 detect	 the	most	 common	 side
effects.	 Study	 subjects	 in	 phase	 I	 trials	 usually	 are	 healthy	 volunteers	 who
typically	 undergo	 dose	 escalating	 studies,	 first	 in	 single	 doses	 and	 later	 in
multiple	ones,	to	identify	the	safe	dosage	range.	Also	in	this	phase,	the	effects	of
the	 drug	 on	 physiologic	 measures	 may	 be	 determined,	 for	 example,	 on	 the



aggregation	of	platelets	 in	 studies	of	platelet	 inhibitors.	Usually	 the	number	of
participants	in	a	phase	I	trial	is	no	more	than	100.
In	phase	II	trials,	the	new	treatment	is	studied	for	the	first	time	in	the	type	of

patients	for	whom	the	treatment	is	intended.	Emphasis	is	again	on	safety	but	also
on	 intermediate	 outcomes	 (see	 later	 discussion	 of	 types	 of	 outcomes)	 that
broaden	 insight	 into	 the	 pathophysiologic	 effects	 and	 possible	 benefits	 of	 the
treatment.	Drug	studies	often	test	several	doses	in	order	to	find	the	optimal	dose
for	a	 large-scale	study.	For	example,	a	 trial	group	sought	 to	determine	whether
and	at	what	dose	recombinant	activated	factor	VII	can	reduce	hematoma	growth
after	 intracerebral	 hemorrhage	 [Mayer	 et	 al.,	 2005].	 The	 investigators
randomized	399	patients	with	intracerebral	hemorrhage	within	3	hours	of	disease
onset	 to	 either	 a	 placebo	 or	 three	 different	 doses	 of	 the	 drug.	 The	 primary
outcome	was	the	percent	change	in	volume	of	the	hemorrhage	from	admission	to
24	hours.	Clinical	status	was	determined	after	3	months	as	a	secondary	outcome.
In	phase	 III	 trials,	 the	 treatments	 are	 brought	 to	 a	 “real-life”	 situation	with

outcomes	 that	 are	 considered	 to	 be	 clinically	 relevant	 in	 patients	 who	 are
diagnosed	with	 the	indication	for	 the	 treatment.	Phase	III	 trials	are	 large	(often
1,000	 or	 more	 patients)	 and	 hence	 costly.	 Much	 of	 the	 practical	 aspects	 of
clinical	trials	discussed	in	this	chapter	pertain	specifically	to	phase	III	trials.
Phase	 IV	 trials,	 also	 termed	 postmarketing	 (surveillance)	 trials,	 may

concentrate	on	the	study	of	rare	side	effects	after	a	 treatment	has	been	allowed
access	 to	 the	market.	 Phase	 IV	 trials	 can	 also	 be	 conducted	 to	 assess	 possibly
new,	 beneficial	 effects	 of	 registered	 drugs.	 Phase	 IV	 trials	 frequently	 are	 also
used	 for	 the	 promotion	 of	 a	 newly	 registered	 treatment,	 which	 is	 an
understandable	approach	from	the	perspective	of	the	industry	but	less	attractive
from	a	scientific	point	of	view	(these	are	referred	to	as	seeding	trials).	There	is
currently	ample	discussion	on	how	to	best	monitor	the	total	(both	beneficial	and
untoward)	 effects	 of	 a	 drug	 once	 it	 has	 entered	 the	 market.	 Sometimes,
conditional	 approvals	 are	 considered,	 where	 the	 pharmaceutical	 industry	 is
required	to	provide	updated	information	on	the	effects	of	a	drug	during	the	first
period	 of	 real-life	 use.	 This	 could	 include	 the	 continuation	 of	 specifically
designed	 randomized	 comparisons	 to	 quantify	 side	 effects.	However,	 there	 are
several	 other	 research	 approaches	 to	 address	 the	 study	 of	 side	 effects	 once	 a
treatment	has	come	to	the	market.
When	 designing	 the	 data	 collection	 and	 organizational	 aspects	 of	 a	 clinical

trial,	 it	 is	 useful	 for	 the	 researcher	 to	 have	 conceptualized	 the	 structure	 of	 the
written	manuscript	about	the	study.	A	guideline	on	what	to	report	and	how	to	do



it	was	issued	in	2001.	This	document,	the	Consolidated	Standards	of	Reporting
Trials	 (CONSORT),	 has	 been	 revised	 and	 adopted	 as	 an	 obligatory	 format	 by
major	medical	 journals	 and	was	most	 recently	 updated	 in	 2010	 [Moher	 et	 al.,
2001b;	 Moher	 et	 al.,	 2010].	 The	 website	 of	 the	 CONSORT	 organization
(www.consort-statement.org)	also	provides	several	extensions	of	 the	statement,
including	information	about	non-inferiority	trials.
However,	even	before	a	report	on	the	trial	results	is	written,	or	even	before	the

study	 has	 started,	 the	 International	 Committee	 of	 Medical	 Journal	 Editors
(ICMJE)	 currently	 requires	 all	 trials	 (including	 phase	 III	 trials)	 that	 assess
efficacy	 to	 be	 registered	 [De	 Angelis	 et	 al.,	 2005].	 Registration	 must	 occur
before	 the	 first	 patient	 is	 enrolled	 and	 the	 registry	 must	 be	 electronically
searchable	 and	 accessible	 to	 the	 public	 at	 no	 charge.	 If	 no	 such	 registration	 is
created,	 the	 manuscript	 on	 the	 results	 of	 the	 trial	 will	 not	 be	 accepted	 for
publication	by	the	journals	that	adhere	to	the	ICMJE	statement,	which	include	all
major	 general	 medical	 journals.	 The	 rationale	 for	 a	 trial	 registry	 is	 the
responsibility	 of	 investigators	 to	 present	 the	 design	 of	 the	 study	 and	 give	 an
account	of	the	results	of	the	trial,	irrespective	of	the	nature	of	the	findings.	In	the
past,	too	often	the	design	features	of	a	trial	were	changed	during	the	study	or	so-
called	 negative	 trials	 were	 not	 published,	 leaving	 the	 international	 scientific
community	with	mainly	the	positive	trials,	thus	creating	publication	bias.

“REGULAR”	PARALLEL,	FACTORIAL,
CROSSOVER,	NON-INFERIORITY,	AND
CLUSTER	TRIALS
In	 a	 so-called	 regular	 randomized	 trial,	 two	 or	 sometimes	 more	 parallel
treatments	 are	 directly	 compared	 between	 the	 patients	who	 form	 the	 treatment
groups.	 In	 a	 parallel	 group	 trial,	 the	 patient	 is	 the	 unit	 of	 randomization	 and
there	is	no	intent	to	switch	the	allocated	treatment	within	a	patient.
Sometimes,	 however,	 there	 are	 several	 treatment	modalities	 to	 be	 compared

for	 the	 same	 group	 of	 patients.	 In	 a	 factorial	 design,	 two	 treatments	 may	 be
studied	 simultaneously,	 with	 the	 patients	 being	 randomized	 twice.	 A	 typical
prerequisite	 for	 such	 a	 factorial	 design	 is	 that	 there	 is	 no	 pharmacologic
interaction	between	the	 two	treatment	regimens,	unless	one	wants	 to	study	that
specifically.	For	example,	in	the	Dutch	TIA	Trial	[1991,	1993],	the	investigators

http://www.consort-statement.org


simultaneously	 studied	 the	 effects	 of	 two	 different	 aspirin	 dosages	 (30	mg	 vs.
283	mg	daily)	and	 that	of	 the	beta-blocker	atenolol	 (50	mg	daily	vs.	matching
placebo)	 on	 the	 occurrence	 of	 new	 vascular	 events	 in	 patients	who	 had	 had	 a
transient	 ischemic	 attack	 or	 minor	 ischemic	 stroke.	 Patients	 were	 randomized
twice:	 once	 to	 allocate	 the	 dosage	 of	 aspirin	 and	 again	 to	 allocate	 the	 use	 of
atenolol	 or	 the	 placebo.	 A	 factorial	 design	 has	 the	 advantage	 of	 efficiency.	 It
basically	gives	the	results	of	two	trials	for	the	price	of	one,	because	there	is	no
need	 to	 increase	 the	 number	 of	 patients	 beyond	 that	 which	 would	 have	 been
required	 for	 a	 single	 treatment	 comparison.	 A	 factorial	 design	 may	 be
particularly	favorable	when	it	is	difficult	to	recruit	a	sufficiently	large	number	of
patients	with	more	or	less	rare	diseases	or	conditions.	Sometimes,	an	interaction
between	 treatments	 is	 assumed	 to	 be	 likely	 rather	 than	 presumed	 absent.	 By
nature	 of	 its	 design,	 the	 factorial	 study	 offers	 the	 opportunity	 to	 explicitly
examine	interaction.	In	the	ADVANCE	trial,	two	treatments	of	diabetic	patients
were	compared	 to	decide	 the	optimal	 treatment	 for	preventing	vascular	events.
Patients	were	 first	 randomized	 to	 intensified	 versus	 usual	 glucose	 control,	 and
next	 to	 the	 usual	 treatment	 of	 hypertension	 versus	 blood	 pressure	 reduction
irrespective	of	blood	pressure	level,	for	example,	also	in	normotensive	diabetic
patients	 [ADVANCE	2001,	2007,	2008].	Four	groups	resulted:	 (1)	usual	blood
pressure	 treatment	 plus	 intensive	 glucose	 control,	 (2)	 usual	 blood	 pressure
treatment	with	usual	glucose	control,	(3)	blood	pressure	treatment	irrespective	of
blood	 pressure	 level	 plus	 intensive	 glucose	 control,	 and	 (4)	 blood	 pressure
treatment	 irrespective	 of	 blood	 pressure	 level	 with	 usual	 glucose	 control	 (see
Figure	 10–1).	 The	 four	 groups	 allowed	 for	 a	 comparison	 of	 the	 benefit	 of
intensive	 glucose	 control	 and	 blood	 pressure	 reduction	 irrespective	 of	 blood
pressure	 level,	 but	 also	 of	 the	 effect	 of	 the	 two	 treatments	 combined	 (versus
usual	 care),	which	may	well	 be	more	 than	 the	 sum	of	 either	 effect	 (indicating
interaction).	The	 latter,	 however,	 can	 only	 be	 done	with	 sufficient	 precision	 if
the	 numbers	 of	 participants	 in	 these	 comparison	 groups	 are	 sufficiently	 large.
Typically	this	is	not	the	case	in	a	trial	with	a	factorial	design,	where	sample	size
is	calculated	for	the	two	separate,	yet	combined,	trials	[Zoungas	et	al.,	2009].



FIGURE	10–1	Flow	chart	showing	the	design	of	the	ADVANCE	study.

With	kind	permission	from	Springer	Science+Business	Media:	Diabetologia.	Study	rationale	and	design	of
ADVANCE:	Action	in	diabetes	and	vascular	disease-preterax	and	diamicron	MR	controlled	evaluation.
Diabetologia	2001;44:1118–20.

In	a	trial	with	a	crossover	design,	the	primary	comparison	of	treatment	effects
is	within	a	single	patient.	For	this	purpose,	one-half	of	the	patients	first	receive
treatment	 A	 and	 then	 treatment	 B	 with	 the	 possibility	 of	 a	 washout	 period
between	the	two	treatment	periods.	The	other	half	of	the	patients	is	randomized
to	 receive	 treatments	 in	 the	 reverse	 order	 (first	 B,	 then	 A).	 The	 number	 of
treatment	periods	may	be	larger	than	two,	for	example,	allowing	the	comparison
of	the	schemes	ABAB	and	BABA.
A	major	advantage	of	the	crossover	design	is	that	it	removes	between-patient

variability	 and	 hence	 offers	 a	 more	 efficient	 approach	 (fewer	 patients	 are
needed)	 to	measure	 a	 treatment	 effect	 than	 a	 conventional	 parallel	 group	 trial
when	 the	 between-patient	 variability	 of	 the	 outcome	 is	 high	 relative	 to	 the
within-patient	 variability.	 However,	 not	 all	 research	 questions	 can	 be	 validly
addressed	with	a	crossover	design.	First,	the	disease	must	return	to	its	“baseline”
level	 once	 treatment	 is	 removed	 and	 last	 sufficiently	 long	 to	 have	 two	disease
episodes	with	comparable	severity.	Second,	 there	must	be	an	outcome	measure
that	can	be	obtained	after	a	 limited	period	of	observation.	Third,	 the	effects	of
the	 treatment	 given	 during	 the	 first	 period	 must	 not	 carry	 over	 to	 the	 second
period.	If	the	first	condition	is	not	met,	a	so-called	period	effect	will	be	present;
if	the	third	condition	is	not	fulfilled,	a	carry-over	effect	will	occur.	In	an	example
of	a	crossover	trial,	the	effects	of	azithromycin	on	forced	expiratory	volume	in	1
second	 (FEV1)	was	 assessed	 in	 41	 children	 diagnosed	with	 cystic	 fibrosis	 and



reduced	FEV1	[Equi	et	al.,	2002].	Half	of	the	children	first	received	azithromycin
for	6	months,	subsequently	had	a	washout	of	2	months,	and	then	continued	with
6	 months	 of	 placebo.	 The	 other	 half	 received	 placebo	 first	 and	 then	 active
treatment.	 In	both	 treatment	periods,	 there	was	a	consistent	difference	between
the	effects	of	azithromycin	and	placebo	on	FEV1;	thus	on	the	basis	of	this	small
trial,	the	investigators	concluded	that	4–6	months	of	treatment	with	azithromycin
is	 justified	 in	children	with	cystic	 fibrosis	who	do	not	 respond	 to	conventional
treatment.	Crossover	trials	are	particularly	well	suited	for	 treatment	effects	 that
occur	relatively	quickly	and	are	reversible	after	cessation	in	more	or	less	stable
chronic	 disease.	 Outcomes	 typically	 are	 intermediate	 endpoints	 such	 as
biochemical	 or	 physiologic	 measurements.	 For	 details	 on	 the	 design	 and
interpretation	 of	 crossover	 trials,	 the	 reader	 is	 referred	 to	 the	 book	 by	 Senn
[1993].
In	 a	 non-inferiority	 trial,	 the	 aim	 is	 not	 to	 determine	 whether	 a	 specific

treatment	 is	 superior	 to	 an	 alternative	 treatment,	 but	 rather	 to	 show	 that	 a
treatment	 is	 not	worse	 than	 the	 comparator.	When	 the	 aim	 is	 to	 show	 that	 the
effect	of	the	new	treatment	is	similar,	the	term	equivalence	trial	is	often	applied.
Typically,	 in	 a	 non-inferiority	 (NI)	 trial,	 a	 new	 treatment	 is	 compared	 to
currently	available	(“standard”)	treatment.	This	is	usually	done	because	the	use
of	placebo	is	considered	unethical;	that	is,	 the	currently	available	treatment	has
been	demonstrated	to	be	more	effective	than	placebo.	When	the	NI	trial	indeed
shows	that	the	new	treatment	is	not	inferior	to	this	active	control	treatment,	one
also	assumes	that	the	new	treatment	is	effective	(i.e.,	it	is	better	than	the	placebo)
[D’Agostino	et	 al.,	2003].	The	design	and	 interpretation	of	NI	 trials	 are	not	 as
straightforward	 as	 trials	 assessing	 whether	 one	 treatment	 is	 better	 than	 a
comparator	 (superiority	 trial).	 Notably,	 the	 choice	 of	 the	 NI	 margin	 is	 a
challenge.	The	NI	margin	 is	 the	 threshold	at	which	one	still	concludes	 that	 the
new	treatment	is	not	worse	than	the	active	control	treatment.	It	must	also	account
for	some	uncertainty	in	the	effect	of	the	active	control	versus	placebo.	This	is	to
ensure	 that	 the	 new	 treatment	 is	 also	more	 effective	 than	 the	 placebo	 and	 that
this	effect	size	is	clinically	relevant,	even	though	in	an	NI	trial	no	placebo	arm	is
included.	There	is	some	guidance	on	how	to	determine	the	NI	margin	[Center	for
Drug	 Evaluation	 and	 Research	 and	 Center	 for	 Biologics	 Evaluation	 and
Research,	2010],	One	could,	 for	 example,	 take	50%	of	 the	 effect	of	 the	 active
control	compared	to	the	placebo	(known	from	previous	placebo-controlled	trials
reported	 in	 the	 literature)	 to	 determine	 the	 NI	 margin,	 assuming	 that	 this
boundary	 still	 signifies	 a	 clinically	 relevant	 effect	 compared	 to	 the	 placebo



[Wangge	 et	 al.,	 2013a,	 2013b].	 There	 are	 several	 other	 typical	 features	 of	 NI
trials,	such	as	the	need	to	report	both	intention	to	treat	and	per	protocol	analyses
(see	 the	 section	 “Design	 of	 Data	 Analysis”	 later	 in	 the	 chapter),	 because,	 in
contrast	to	superiority	trials,	the	former	may	lead	to	the	spurious	conclusion	that
the	new	treatment	is	indeed	non-inferior.
In	addition,	the	interpretation	of	the	findings	of	NI	trials	can	be	complicated.

This	is	illustrated	in	Figure	10–2.	From	the	results	of	the	studies	of	type	A,	B,
and	C	 it	 can	 be	 concluded	 that	 the	 test	 drug	 is	 non-inferior	 to	 the	 comparator
because	the	lower	limit	of	the	confidence	interval	of	the	effect	estimate,	(that	is,
the	ratio	or	difference	between	the	incidence	of	the	outcome	in	the	test	drug	and
its	 active	 comparator)	 does	 not	 cross	 the	 NI	 margin.	 Findings	 from	 studies
depicted	by	D,	E,	and	F	do	not	show	that	the	test	drug	is	non-inferior,	because
the	95%	confidence	interval	of	the	effect	estimate	includes	the	NI	margin.	Some
of	the	findings	could	also	be	interpreted	differently;	for	example,	C	indicates	that
the	test	treatment	might	be	superior	to	the	active	treatment,	while	A,	and	perhaps
also	D	and	even	E,	suggest	 that	 the	 test	 treatment	might	be	worse,	because	the
95%	confidence	interval	does	not	include	the	point	of	no	difference	between	the
two	 treatments.	One	should	be	cautious	about	making	additional	claims	 in	 this
situation,	however,	because	the	aim	was	to	assess	whether	the	test	drug	was	non-
inferior,	yes	(A,	B,	C)	or	no	(D,	E,	F),	to	the	active	control	treatment.

FIGURE	10–2	Confidence	intervals	and	non-inferiority	(NI)	interpretation	of	the	treatment	difference
between	a	test	drug	and	an	active	comparator	drug.	The	dashed	vertical	line	represents	the	NI	margin,	the



solid	vertical	line	is	the	point-of-no-difference	line,	and	the	horizontal	lines	represent	the	confidence
intervals.	The	point-of-no-difference	is	the	point	at	which	the	estimated	treatment	difference	between	the
new	drug	and	comparator	is	neutral:	zero	for	a	difference	in	outcome	or	one	for	a	ratio.	Studies	A,	B,	and	C
show	that	the	new	drug	is	non-inferior	to	its	comparator.	While	non-inferiority	is	not	shown	for	studies	D,
E,	and	F.

Reproduced	from	Wangge	G,	Klungel	OH,	Roes	KC,	de	Boer	A,	Hoes	AW,	Knol	MJ.	Interpretation	and
inference	in	noninferiority	randomized	controlled	trials	in	drug	research.	Clin	Pharmacol	Ther
2010;88:420–3.

The	 complexities	 surrounding	 non-inferiority	 studies	 have	 made	 some
researchers	strongly	argue	against	their	conduct	[Garattini	&	Bertele,	2007].	For
daily	 practice,	 however,	 such	 studies	 are	 becoming	 increasingly	 important,
especially	when	a	new	active	drug	is	considered	to	be	at	least	as	effective	as	the
currently	available	 treatment	and	also	may	have	certain	advantages,	such	as	an
easier	mode	of	administration	or	fewer	side	effects	[Wangge	et	al.,	2013a].	The
development	 of	 new	 classes	 of	 oral	 anticoagulants	 serves	 as	 an	 example.	 An
advantage	 of	 these	 anticoagulants	 compared	 to	 the	 vitamin	K	 antagonists,	 the
“standard”	 treatment,	 is	 that	 no	 laboratory	 monitoring	 is	 required.	 In	 recent
years,	 many	 NI	 trials	 comparing	 these	 novel	 anticoagulants	 with	 vitamin	 K
antagonists	have	been	published	to	determine	whether	these	novel	drugs	were	at
least	as	effective	as	vitamin	K	antagonists	in	preventing	thrombotic	events,	while
the	 incidence	 of	 major	 bleedings	 was	 not	 higher	 than	 among	 those	 receiving
vitamin	K	antagonists	[Wangge	et	al.,	2013b].
Sometimes	it	is	preferable	or	only	possible	to	randomize	groups	of	patients	to

different	 interventions.	Take,	 for	 example,	 the	 study	of	 a	minimal	 intervention
strategy	 aimed	 at	 assessment	 and	 modification	 of	 psychosocial	 prognostic
factors	 in	 the	 treatment	 of	 low	 back	 pain	 in	 general	 practice	 [Jellema	 et	 al.,
2005].	It	would	be	very	difficult	to	randomize	the	patients	within	the	practice	of
a	 single	 general	 practitioner,	 because	 the	 general	 practitioner	 would	 have	 to
switch	 back	 and	 forth	 between	 two	 treatment	 strategies:	 the	 new	 minimal
intervention	strategy	and	the	usual	care	strategy.	It	also	could	create	dilemmas	in
the	randomization.	Moreover,	it	would	be	difficult	to	fully	separate	the	strategies
in	patients	who	are	 in	 frequent	 contact	with	 each	other,	 and	contamination	 (of
the	 two	 strategies	 to	 be	 compared)	 could	 occur.	 Hence,	 randomization	 at	 the
level	 of	 the	 practices	 of	 the	 general	 practitioner	 is	 the	 obvious	 solution;	 this
method	was	chosen	in	what	is	termed	a	cluster	randomized	trial,	with	30	general
practitioners	 randomized	 to	 the	minimal	 intervention	 strategy	 and	 32	 to	 usual
care.	 A	 total	 of	 314	 patients	 were	 enrolled,	 that	 is,	 about	 five	 patients	 per
practice.	 Because	 data	 in	 a	 cluster,	 here	 a	 general	 practice,	 are	 related,	 the



sample	size	calculated	on	the	basis	of	individual	patient	data	should	be	increased
by	 a	 factor	 that	 depends	 on	 the	 degree	 of	 correlation	 of	 data	within	 a	 cluster.
Design	 and	 data	 analysis	 features	 of	 cluster	 randomized	 trials	 require	 careful
consideration,	and	an	extension	of	 the	CONSORT	statement	may	be	helpful	 in
addressing	the	issues	faced	by	the	researcher	[Campbell	et	al.,	2004,	Campbell	et
al.,	 2012].	 A	 specific	 type	 of	 cluster	 randomized	 trial	 is	 the	 stepped	 wedge
design	 trial.	 In	 a	 stepped	 wedge	 cluster	 randomized	 trial,	 all	 clusters	 (e.g.,
hospitals)	 undergo	 both	 interventions	 of	 the	 trial	 (e.g.,	 a	 new	 strategy	 and	 the
usual	 care	 strategy).	 First,	 in	 all	 hospitals	 the	 same	 strategy	 will	 be	 followed
(typically	 the	usual	care	strategy)	 in	all	new	patients.	After	a	prespecified	 time
period	(e.g.,	each	month)	one	hospital	will	change	to	the	new	strategy,	and	it	will
stick	 to	 that	 strategy	 until	 the	 end	 of	 the	 trial	 for	 all	 new	 patients.	 The	 next
month,	another	hospital	will	change	to	the	new	strategy,	etcetera.	During	the	last
period,	 all	 hospitals	 will	 apply	 the	 novel	 strategy.	 Thus,	 some	 hospitals	 will
follow	 the	usual	care	strategy	while	others	will	 follow	 the	new	strategy	during
most	of	 the	 study	period,	 but	 all	 hospitals	will	 experience	both	 strategies.	The
point	at	which	a	hospital	 changes	 from	one	strategy	 to	 the	other	 is	determined
through	a	 randomization	procedure.	Thus,	a	stepped	wedge	cluster	 randomized
trial	 combines	 features	 of	 a	 crossover	 trial	 and	 a	 before–after	 study.	 Stepped
wedge	 trials	 are	 increasingly	 being	 applied	 to	 compare	 two	 treatment	 or
diagnostic	strategies.	Advantages	in	comparison	to	a	before–after	study	are	that
both	 strategies	 are	 applied	 throughout	 the	 entire	 study	 period	 (and	 thus	 the
influence	of	time	is	reduced)	and	an	advantage	compared	to	a	“classical”	cluster
randomized	trial	is	that	between-hospital	differences	are	less	likely	to	distort	the
findings	 because	 each	 hospital	 applies	 both	 strategies.	 The	 latter	 will	 also
increase	 the	participation	 rate	when	 the	new	strategy	 seems	 to	be	 an	attractive
option.	 For	 a	more	 elaborate	 discussion	 on	 stepped	wedge	 cluster	 randomized
trials,	see	Brown	and	Lilford	[2006]	and	Hussqy	and	Hughes	[2007].
In	 the	 remainder	 of	 this	 chapter,	 we	 follow	 global	 categories	 of	 items	 that

need	 to	be	addressed	 in	a	 report	of	any	clinical	 trial.	These	guide	us	along	 the
most	important	practical	items	in	the	preparation	and	conduct	of	trials	(see	Table
10–1).

TABLE	10–1	Important	Items	for	Reporting	on	Randomized	Trials
Global	Category Items	to	Be	Addressed
Patients Eligibility	criteria
	 Setting	and	location
Intervention Details	on	the	treatments

Methods	of	random	allocation



	 Methods	of	random	allocation

Outcome Well-defined	primary	and	secondary	outcome	measures
	 Outcome	assessment	blinded?
Data	analysis Sample	size:	How	calculated?
	 Interim	analyses?
	 Methods	for	comparison	of	primary	outcome	between	groups
	 Absolute	risks

Reproduced	from:	Moher	D,	Hopewell	S,	Schulz	KF,	Montori	V,	Gotzsche	PC,	Devereaux	PJ,	Elbourne	D,
Egger	M,	Altman	DG.	CONSORT	2010	explanation	and	elaboration:	updated	guidelines	for	reporting
parallel	group	randomised	trials.	BMJ.	2010;340:c869.

PARTICIPANTS
Trials	are	conducted	to	measure	the	benefits	and	risks	of	treatment	in	particular
groups	 of	 patients.	 The	 study	 population	 in	 a	 trial	 should	 reflect	 these	 future
patients	in	relevant	aspects.	The	first	step,	therefore,	is	to	define	clearly	to	which
future	 patients	 the	 findings	 of	 the	 trial	 should	 apply;	 this	 is	 referred	 to	 as	 the
domain.	 The	 domain	 determines	 the	 generalizability	 of	 the	 trial	 findings,
sometimes	also	called	 the	external	validity,	of	 the	 trial.	The	more	 immediately
the	results	of	interventions	need	to	be	implemented	in	clinical	practice,	the	more
closely	 a	 trial	 population	 needs	 to	 resemble	 the	 population	 for	 whom	 the
treatment	 is	 intended.	Consequently,	 a	 phase	 I	 trial	may	well	 be	 conducted	 in
healthy	 volunteers,	 but	 a	 phase	 III	 trial,	 just	 before	 registration,	 should	 be
performed	in	patients	who	are	very	similar	to	the	patients	to	whom	the	drug	will
be	marketed.	First	and	foremost,	the	domain	of	a	phase	III	trial	is	defined	by	the
presence	of	a	treatment	indication	and	the	absence	of	known	contraindications.
Domain	 characteristics	 are	 operationalized	 by	 specifying	 eligibility	 criteria.

Typical	selection	criteria	for	a	study	population	in	a	trial	may	relate	to	age,	sex,
clinical	diagnosis,	and	comorbid	conditions;	exclusion	criteria	are	often	used	to
ensure	 patient	 safety.	 Eligibility	 criteria	 should	 be	 explicitly	 defined.	 The
conventional	distinction	between	inclusion	and	exclusion	criteria	is	unnecessary;
the	 same	criterion	can	be	phrased	 to	 include	or	exclude	participants	 [Moher	et
al.,	2010].	There	are	many	additional	characteristics	of	the	population	eventually
included	 in	 a	 trial	 that	 may	 further	 restrict	 the	 domain	 and	 thus	 affect
generalizability.	Examples	are	the	setting	of	the	trial	(country,	healthcare	system,
primary	 vs.	 tertiary	 care),	 run-in	 periods	 of	 trial	 medication,	 and	 stage	 of	 the
disease	[Rothwell,	2005].



The	CONSORT	statement	recommends	using	a	diagram	to	delineate	the	flow
of	 patients	 through	 the	 trial	 (see	Figure	 10–3)	 [Moher	 et	 al.,	 2010].	 Its	 upper
part	 describes	 the	 enrollment	 of	 patients	 in	 the	 trial	 and	 their	 subsequent
allocation	 to	 the	 trial	 treatments.	 In	 fact,	 this	part	 still	 could	be	expanded	with
the	 stages	 that	precede	 the	actual	 randomization,	 for	 example,	 identification	of
affected	patients	in	primary	care,	referral	to	secondary	care	(typically	a	hospital
that	 participates	 in	 the	 trial),	 under	 care	 of	 a	 physician	 taking	part	 in	 the	 trial,
meeting	 the	 eligibility	 criteria,	 and	 giving	 informed	 consent	 [Rothwell,	 2005].
Figure	10–4	shows	the	patient	flow	in	the	ASPECT-2	trial	[Van	Es	et	al.,	2002].

FIGURE	10–3	CONSORT	algorithm.

Reproduced	from	The	Lancet	Vol.	357;	Moher	D,	Schulz	KF,	Altman	DG	for	the	CONSORT	Group.	The
CONSORT	statement:	revised	recommendations	for	improving	the	quality	of	reports	of	parallel-group
randomized	trials	2001.	The	Lancet	2001;357:1191–4,	reprinted	with	permission	from	Elsevier.

TREATMENT	ALLOCATION	AND



RANDOMIZATION
Three	 comparability	 issues	 govern	 the	 design	 of	 a	 clinical	 trial:	 (1)	 natural
history	 (or	 prognosis),	 (2)	 extraneous	 effects,	 and	 (3)	 observer	 effects.	 In	 the
design	 of	 data	 collection	 in	 trials,	 comparability	 of	 extraneous	 effects	 and
comparability	of	observer	effects	go	hand	in	hand.	Comparability	of	extraneous
effects	is	achieved	by	the	use	of	placebo	treatment	and	comparability	of	observer
effects	 by	 blinding.	 It	 is	 inherent	 to	 the	 nature	 of	 placebo	 treatment,	 even	 if
intended	 to	 simply	 remove	 extraneous	 effects,	 that	 the	 patient	 and	 treating
physician	 are	 not	 informed	 about	 the	 precise	 treatment	 that	 is	 being	 given;
consequently,	they	are	blinded	and	observer	effects	originating	from	the	patient
or	physician	are	removed	simultaneously.

FIGURE	10–4	Patient	algorithm	for	the	ASPECT	II	study	trial.

Reproduced	from	The	Lancet	Vol.	360;	Van	Es	RF,	Jonker	JJ,	Verheugt	FW,	Deckers	JW,	Grobbee	DE.
Antithrombotics	in	the	secondary	prevention	of	events	in	coronary	thrombosis-2	(ASPECT-2)	research
group.	Aspirin	and	coumadin	after	acute	coronary	syndromes	(the	ASPECT-2	study):	a	randomized
controlled	trial.	The	Lancet	2002;360:109–13,	reprinted	with	permission	from	Elsevier.

Randomization	 is	 used	 to	 create	 two	 or	 more	 groups	 with	 equal	 prognosis.
There	are	many	methods	to	perform	randomization,	one	of	the	simplest	being	the
toss	of	a	coin.	Although	acceptable	from	a	statistical	perspective,	this	technique
is	vulnerable	with	regard	to	its	actual	performance,	because	doctors	may	have	an



implicit	 or	 explicit	 preference	 for	 one	 of	 the	 treatments	 that	 are	 being
randomized.	Thus,	if	the	patient	has	“bad	luck”	and	does	not	draw	the	doctor’s
favorite	 treatment,	 why	 not	 flip	 the	 coin	 once	 more?	 Perhaps	 you	 may	 be
“luckier”	 next	 time.	 Such	 behavior,	 however,	 would	 completely	 distort	 the
process	of	creating	two	groups	with	equal	prognoses.	Hence,	the	randomization
process	should	be	designed	such	that	the	randomizing	doctor	has	no	influence	on
the	outcome	of	the	randomization	once	the	patient	and	doctor	agree	to	participate
in	 the	 trial.	 Opaque,	 sealed,	 numbered	 envelopes	 may	 seem	 a	 reasonable
alternative;	however,	envelopes	can	be	manipulated	as	well.	Sir	Richard	Peto,	a
well-known	trialist	from	Oxford,	warned	that	such	envelopes	may	sometimes	be
unsealed	before	the	next	patient	is	entered	[Peto,	1999].	That	information	could
influence	 the	 decision	 to	 ask	 a	 next	 potential	 candidate	 to	 participate,	 again
harming	 the	 aim	of	balanced	prognosis.	These	problems	may	be	 circumvented
by	 centralized	 randomization.	 This	 can	 be	 done	 by	means	 of	 a	 telephone	 call
with	a	central	trial	office	that	determines	the	treatment	allocation	in	exchange	for
a	 basic	 set	 of	 data	 on	 the	 patient.	 If	 randomization	 does	 not	 need	 to	 be	 done
acutely,	 faxes	 or	 emails	 may	 be	 used	 for	 communication	 as	 well.	 In	 trials
examining	acute	diseases,	24-hour	access	should	be	available,	a	possibility	that
can	be	provided	with	Internet-based	computer	programs.	When	trials	use	blinded
drug	 treatments,	 numbered	 boxes	 with	 trial	 medication	 may	 be	 shipped	 in
advance	to	the	participating	hospitals;	the	boxes	contain	the	study	treatments	in	a
random	order.	 Then,	whenever	 a	 patient	 agrees	 to	 participate,	 the	 next	 box	 of
trial	medication	can	be	used.
The	 simplest	 approach	 to	 randomization	 is	 to	 have	 one	 computer	 list

generated	with	 random	numbers	 from	which	a	 random	allocation	scheme	for	a
trial	 is	 made.	 In	 small	 trials,	 however,	 this	 still	 may	 lead	 to	 imbalance	 in
important	prognostic	 factors.	This	can	be	solved	with	stratified	randomization,
that	is,	randomization	within	groups	with	a	more	or	less	homogeneous	prognosis
(e.g.,	 separately	 for	 young	 and	old	patients).	To	make	 stratified	 randomization
practical,	 the	number	of	 stratification	 factors	 should	not	be	 too	 large,	probably
no	more	than	three	or	four.
In	multicenter	clinical	trials,	the	hospital	is	often	chosen	as	one	of	the	factors

for	 stratified	 randomization.	 This	 prevents	 small	 numbers	 of	 patients	 in	 a
particular	hospital	from	all	receiving,	by	chance,	 the	same	treatment.	For	small
trials,	 it	 may	 be	 important	 to	 have	 about	 equal	 numbers	 of	 patients	 in	 the
treatment	groups.	This	can	be	realized	by	means	of	random	permuted	blocks	in
the	strata.	For	example,	within	each	block	of	six	patients	in	a	two-treatment	trial,



both	treatments	are	allocated	three	times;	the	random	order	differs	per	block.	To
prevent	 the	next	 treatment	being	known	at	 the	end	of	a	block	 (in	 this	example
after	five	patients),	block	size	should	not	be	made	public	or,	even	better,	its	size
should	vary.
With	 the	 help	 of	 computer	 programs,	 the	 prognosis	 and	 number	 of	 patients

across	the	randomized	groups	may	be	more	thoroughly	balanced	by	a	so-called
minimization	procedure.	Basically,	with	minimization	the	probability	of	the	next
treatment	 depends	 on	 the	 number	 of	 patients	with	 a	 specific	 treatment	 already
randomized	 into	 a	 certain	 risk	 stratum.	Assume,	 for	 example,	 that	 in	 a	 certain
risk	 stratum	 10	 patients	 were	 already	 allocated	 to	 treatment	 A	 and	 eight	 to
treatment	B.	Then,	 for	 the	next	patient	 the	probability	of	 treatment	B	could	be
increased	to,	say,	60%,	rather	 than	the	standard	50%,	to	achieve	balance	in	the
number	of	patients	in	the	treatment	arms.

INFORMED	CONSENT
An	essential	part	of	the	randomization	process	is	the	step	that	precedes	the	actual
randomization:	 the	 discussion	 with	 the	 patient	 or	 his	 or	 her	 family	 about
participation	in	the	trial.	Ideally,	this	discussion	is	led	by	a	physician	who	is	not
the	 treating	 physician	 in	 order	 to	 avoid	 a	 conflict	 of	 interest.	 The	 potential
benefits	and	harms	of	 the	study	 treatments	need	 to	be	explained,	as	well	as	all
practicalities	of	 the	trial,	 including	the	fact	 that	 the	patient	will	be	randomized.
All	information	also	should	be	given	in	a	patient	information	document.	In	trials
with	 nonacute	 treatments,	 the	 patient	 should	 have	 some	 time	 to	 decide	 about
participating,	and	only	after	written	informed	consent	has	been	obtained	will	the
patient	be	randomized.

BLINDING
The	need	to	blind	patients	and	doctors	for	the	actual	treatment	given	depends	on
the	type	of	research	question	(pragmatic	or	explanatory)	and	the	trial’s	primary
type	of	outcome	event	(hard	or	soft).	If	the	trial	has	an	explanatory	nature,	there
should	 be	 full	 comparability	 of	 extraneous	 effects	 and	 preferably,	 extraneous
effects	should	be	eliminated:	A	placebo	is	required,	which	implies	that	treatment



needs	 to	 be	 given	 in	 a	 blinded	 fashion.	 If,	 however,	 a	 pragmatic	 design	 is
preferred,	the	need	for	blinding	depends	on	the	type	of	outcome	event	and,	here,
comparability	 of	 observer	 effects	 is	 considered.	 If	 an	 objective	 measure	 is
chosen,	such	as	death,	blinding	is	not	mandatory.	If	quality	of	life	is	the	primary
outcome,	blinding	 is	 definitely	needed	because	of	 the	 subjective	nature	of	 this
outcome.	In	an	open	trial,	outcome	assessment	can	still	be	blinded	by	using	an
independent	assessor	who	does	not	know	which	study	treatment	has	been	given.
For	example,	records	on	potential	outcome	events	may	be	sent	to	a	central	trial
office	 where	 all	 information	 on	 treatment	 allocation	 is	 removed.	 The	 blinded
outcome	 data	 are	 then	 classified	 by	 members	 of	 an	 adjudication	 committee
[Algra	&	van	Gijn,	1994].
Placebos	 should	 be	 made	 such	 that	 they	 cannot	 be	 distinguished	 from	 the

active	treatment.	They	should	be	similar	in	appearance	and,	in	the	event	of	oral
administration,	 taste	 the	 same.	 Even	 with	 capsules	 that	 are	 meant	 to	 be
swallowed	 at	 once,	 one	 should	 be	 careful,	 as	 “de-blinding”	 has	 been	 reported
when	patients	first	bit	the	capsule	and	then	tasted	its	content.	Even	with	the	most
careful	preparation	of	placebos,	 the	effects	or	side	effects	of	 the	treatment	may
give	the	allocation	code	away.	For	example,	the	effect	on	the	need	to	urinate	of	a
diuretic	drug	may	be	so	obvious	that	this	cannot	be	concealed	from	the	patient.
When	a	trial	aims	to	assess	patients’	perception	of	outcomes,	blinding	may	be

complicated.	To	solve	this	problem	investigators	developed	a	modified	consent
procedure	in	which	consent	was	asked	from	the	patient	to	collect	follow-up	data
and	that	states	that	information	on	the	details	of	the	study	will	be	provided	at	the
end	 of	 the	 study	 [Boter	 et	 al.,	 2003].	 In	 a	 study	 of	 an	 outreach	 nursing	 care
program	 for	 patients	 discharged	 home	 after	 stroke	 that	measured	 self-reported
quality	of	 life	and	satisfaction,	 thus	 two	problems	related	to	 incomparability	of
observations	 could	 be	 avoided.	 First,	 patients	 allocated	 to	 usual	 care	 (i.e.,	 no
outreach	program)	might	be	dissatisfied	because	they	did	not	receive	the	active
intervention.	Second,	patients	allocated	to	the	outreach	program	would	not	feel
obliged	to	answer	more	positively	than	they	really	felt	because	of	loyalty	to	the
staff	providing	the	intervention.	An	alternative	solution	might	be	to	use	so-called
prerandomization	 [Zelen,	1979].	Patients	 fulfilling	 the	eligibility	criteria	of	 the
trial	are	randomized	before	consent	is	sought.	Subsequently,	only	those	patients
allocated	to	the	intervention	group	are	asked	for	informed	consent.	This	design
also	 avoids	 incomparability	 of	 observations;	 however,	 it	 comes	 at	 the	 price	 of
the	 drop-out	 of	 the	 nonconsenters	 from	 the	 intervention	 group	 and	 hence
compromise	 in	 the	comparability	of	 the	patients	 receiving	 the	 intervention	and



those	not.	This	design	was	used	in	a	trial	on	risk	factor	reduction	in	patients	with
symptomatic	 vascular	 disease	 [Goessens,	 2006].	 Patients	were	 pre-randomized
to	 receive	 treatment	 by	 a	 nurse	 practitioner	 plus	 usual	 care	 versus	 usual	 care
alone.

ADHERENCE	TO	ALLOCATED	TREATMENT
When	the	allocation	and	blinding	of	trial	treatment	is	finally	organized,	it	is	also
important	to	monitor	to	what	extent	the	allocated	treatments	are	actually	used.	In
the	eventual	publication,	that	information	on	adherence	may	be	given	in	the	trial
flowchart,	as	discussed	earlier,	for	example,	by	the	number	of	patients	allocated
to	surgery	who	actually	had	the	operation	and	the	number	of	patients	who	were
allocated	to	receive	medical	treatment	but	still	underwent	surgery.	In	drug	trials,
adherence	 to	 study	 treatment	may	 be	monitored	 by	 pill	 counts,	 defined	 as	 the
count	 of	 tablets	 remaining	 in	 the	 blisters	 that	 were	 distributed	 during	 the
previous	contact	with	the	patient.	Of	course,	such	a	system	is	not	perfect,	but	it
may	 guide	 in	 the	 detection	 of	 overt	 nonadherence.	 Registration	 of	 adherence
may	be	viewed	as	less	important	in	pragmatic	trials	because	nonadherence	with	a
treatment	 is	 part	 of	 “real	 life.”	 If	 unequivocal	 measurement	 of	 adherence	 is
deemed	necessary,	one	may	consider	measuring	plasma	levels	of	the	study	drugs
or	levels	of	its	metabolites	in	urine,	or	even	add	a	more	easily	measured	tracer	to
the	study	medication.

OUTCOME
The	choice	of	a	particular	outcome,	its	definition,	and	measurement	completely
depend	on	the	goal	of	the	trial.	If,	for	example,	the	researcher	wants	an	answer
that	 has	 immediate	 relevance	 for	 clinical	 practice	 another	 outcome	 may	 be
chosen	 than	 if	 the	 primary	 aim	 is	 to	 show	 that	 an	 intervention	 exerts	 the
anticipated	pathophysiologic	effect.	In	phase	II	 trials,	 the	emphasis	is	on	safety
and	 pathophysiology.	 In	 the	 example	 of	 recombinant	 activated	 factor	 VII,	 the
primary	 outcome	 was	 the	 percent	 change	 in	 volume	 of	 the	 hemorrhage	 from
admission	 to	 24	 hours,	 which	 is	 important	 for	 a	 “proof	 of	 concept”	 but	 less
relevant	 from	 the	 perspective	 of	 a	 patient.	 In	 phase	 III	 clinical	 trials	 with	 a



primary	explanatory	design,	pathophysiology	driven	or	clinical	outcomes	may	be
chosen,	whereas	in	pragmatic	trials,	investigators	tend	to	concentrate	particularly
on	those	outcomes	that	are	most	relevant	for	patients.
Sometimes	investigators	disagree	on	what	they	deem	is	important	for	patients.

For	 example,	 a	 recent	 debate	 addressed	 the	 question	 of	 whether	 in	 stroke
prevention	studies	one	should	take	only	strokes	as	outcome	[Albers,	2000]	or	use
all	 vascular	 events	 because	 of	 the	 atherosclerotic	 nature	 of	 cerebrovascular
disease	 [Algra	&	van	Gijn,	2000].	The	 latter	outcome	 is	 a	 so-called	composite
outcome	 because	 it	 consists	of	 several	 contributing	outcomes	 (in	 this	 example,
death	 due	 to	 vascular	 diseases,	 nonfatal	 stroke,	 and	 nonfatal	 myocardial
infarction).	The	composite	outcome	is	reached	as	soon	as	one	of	the	contributing
outcomes	has	occurred.
Phase	 II	 and	 initial	 phase	 III	 trials	 often	 use	 intermediate	 (or	 surrogate)

outcomes;	that	is,	outcomes	that	on	the	basis	of	pathophysiologic	reasoning	will
proceed	to	the	occurrence	of	the	clinically	relevant	outcome	event.	The	validity
of	an	intermediate	outcome	as	a	proxy	for	the	real	outcome	relies	heavily	on	the
extent	to	which	the	intermediate	outcome	truly	reflects	the	risk	of	the	outcome	of
interest.	 For	 example,	 ventricular	 arrhythmias	 were	 chosen	 as	 an	 intermediate
outcome	 for	 sudden	 death	 in	 patients	 with	 cardiac	 disease.	 In	 the	 early
assessment	of	the	effects	of	anti-arrhythmic	drugs,	 the	reduction	of	the	number
of	 ventricular	 premature	 complexes	 at	 a	 24-hour	 electrocardiogram	 from
baseline	 to	 follow-up	 was	 used.	 With	 this	 outcome,	 several	 anti-arrhythmic
drugs	 appeared	 promising.	 However,	 these	 promising	 effects	 were	 completely
negated	in	a	phase	III	 trial	 that	used	the	final	outcome	of	sudden	death	[CAST
Investigators,	1989].	The	anti-arrhythmic	drugs	in	fact	proved	to	be	dangerous!
Clearly,	one	should	always	be	careful	 in	accepting	findings	from	trials	with	an
intermediate	outcome	as	proof	of	the	effect	on	the	outcome	of	interest.
Still,	a	major	advantage	of	the	use	of	an	intermediate	outcome	is	that	 it	may

produce	 results	 sooner	 because	 these	 outcomes	 occur	 more	 frequently	 or	 are
continuous	 rather	 than	 dichotomous	 variables.	 Moreover,	 an	 intermediate
outcome	 may	 effectively	 be	 used	 to	 establish	 the	 effect	 of	 a	 treatment	 by	 a
presumed	 pathophysiologic	 pathway	 and	 thus	 may	 demonstrate	 the	 primary
mode	 of	 action.	 Sometimes	 the	 consequence	 of	 the	 intermediate	 outcome	 on
disease	is	assumed	to	be	so	clear	that	the	measure	itself	suffices	as	an	indicator
of	treatment	effect,	as	for	example	with	blood	pressure–lowering	drugs;	although
the	clinically	relevant	outcome	in	trials	on	antihypertensive	drugs	would	be	the
incidence	of	cardiovascular	events,	phase	III	 trials	 typically	use	blood	pressure



level	 as	 the	 intermediate	 outcome	 and	 blood	 pressure	 level	 is	 accepted	 as	 a
surrogate	outcome	for	cardiovascular	events	by	regulatory	agencies	such	as	the
FDA.	A	well-established	example	of	a	proxy	measure	that	is	generally	accepted
as	 a	 continuous	measure	 of	 atherosclerotic	 vascular	 disease	 is	 the	 thickness	 of
the	combined	intima	and	media	of	the	carotid	arteries	(see	Figure	10–5)	[Bots	et
al.,	 1997].	When	 continuous	 outcome	measures	 are	 used,	 such	 as	 carotid	wall
thickness	 or	 blood	 pressure,	 it	 is	 possible	 to	 increase	 precision	 by	 taking	 the
mean	of	multiple	measurements,	thus	reducing	measurement	error.

FIGURE	10–5	Measurement	of	the	thickness	of	the	combined	intima	and	media	of	the	carotid	arteries.

DESIGN	OF	DATA	ANALYSIS	(INCLUDING
SAMPLE	SIZE	CALCULATION)
When	a	trial	is	still	on	the	drawing	board,	one	should	already	be	thinking	about
the	design	of	the	data	analysis.	It	is	very	helpful	to	“think	2	×	2″	and	to	envision
what	 the	main	2	×	2	 table	of	 the	 trial	would	 look	like.	But	one	can	only	do	so
after	 having	 thought	 about	 the	 precise	 treatments	 that	 are	 being	 compared	 and
the	definition	of	 the	primary	outcome.	Here	we	will	show	how	to	calculate	 the
outcome	of	a	hypothetical	trial.
Suppose	mortality	is	studied	in	1,000	patients	with	new	treatment	A	and	1,000

patients	with	standard	treatment	B.	Assume	that	from	an	observational	study	it	is



known	that	15%	of	the	patients	with	standard	treatment	die	after	a	follow-up	of	2
years,	and	also	 that	 treatment	A	 is	supposed	 to	 reduce	 that	percentage	 to	13%.
Table	10–2	summarizes	the	data.	The	absolute	risk	difference	between	the	two
groups	would	be	15	−	13	=	2%;	the	precision	of	that	estimate	is	described	by	its
95%	 confidence	 interval	 (CI)	 that	 ranges	 from	 –1%	 (the	 old	 treatment	 is	 1%
better	 than	 the	 new	one)	 to	+5%	 (the	 new	 treatment	 is	 5%	better	 than	 the	 old
one).	The	 ratio	of	 the	 two	risks,	 the	 risk	 ratio,	 is	13/15	=	0.87,	with	a	95%	CI
from	 0.70	 to	 1.08.	 Note	 that	 the	 absolute	 risk	 difference	 could	 be	 presented
differently	as	the	number	needed	to	treat	to	prevent	one	death.	The	latter	is	the
reciprocal	of	the	absolute	risk	difference:	1/0.02	=	50.

TABLE	10–2	Data	from	a	Hypothetical	Trial
	 Treatment	A Treatment	B
Death 130 150
Survivor 870 850
At	risk 1,000 1,000
Risk	(%) 13 15
Risk	difference	(%) 2.0 reference
95%	CI	RD –1.0	to	5.0 									—
Risk	ratio 0.87 reference
95%	CI	RR 0.70	to	1.08 									—

Legend:	CI	=	confidence	interval;	RD	=	risk	difference;	RR	=	risk	ratio

Because	 the	 confidence	 intervals	 are	wide,	 the	 data	 in	 this	 example	 are	 not
sufficiently	precise	to	infer	that	new	treatment	A	is	better	than	old	treatment	B;
the	 trial	 was	 too	 small.	 Thus,	 before	 one	 embarks	 on	 a	 trial,	 a	 sample	 size
calculation	needs	to	be	done.	With	a	fairly	simple	formula	one	can	calculate	the
number	of	participants	required.	Advanced	methods	for	calculating	the	power	of
a	study	and	the	required	sample	size	may	seem	attractive,	but	the	numbers	that
follow	from	any	calculation	are	highly	dependent	upon	the	assumptions	that	are
being	made.	By	definition	 the	 researcher	 is	 uncertain	 and	 subjective	 about	 the
size	of	 the	expected	 treatment	effect.	Here,	not	only	 the	plausible	size	but	also
the	clinical	relevance	of	this	estimate	matters.
A	 parameter	 that	 one	 needs	 to	 estimate	 or	 assume	 is	 the	 percentage	 of

outcome	events	 in	 the	patients	who	receive	standard	 treatment	 (denoted	as	p0),
which	is	15%	in	the	given	example.	This	is	also	called	the	background	rate.	The
expected	percentage	in	the	treated	group	(p1)	would	be	13%.	The	sample	size	per
treatment	group	needed	would	then	be:



f(α,β)	*	[p0	*	(100	−	p0)	+	p1	*	(100	−	p1)]	/	(p1	−	p0)2

where	 f(α,β)	 is	a	 statistical	constant.	 It	depends	on	 the	 type	 I	error	 (α)	and	 the
type	 II	 error	 (β)	 that	 one	 accepts.	 The	 type	 I	 error	 is	 the	 probability	 that	 one
incorrectly	 would	 infer	 that	 there	 is	 a	 difference	 between	 the	 two	 treatments
when	 there	 is	 no	 such	 difference.	The	 type	 II	 error	 is	 the	 probability	 that	 one
would	 incorrectly	 conclude	 that	 there	 is	 no	 difference	 between	 the	 two
treatments	when	in	fact	there	is	a	difference.	The	constant	f(α,β)	is	calculated	as
(Zα	+	Zβ)2.	Conventional	values	for	a	and	b	are	0.05	and	0.20,	respectively,	with
Zα	 =	 1.96	 and	 Zβ	 =	 0.84.	 With	 these	 values	 f(α,β)	 is	 equal	 to	 7.84.	 In	 our
example,	we	 now	 calculate	 that	 4,750	 patients	 are	 required	 for	 each	 treatment
group.	With	 the	 anticipated	 values	 of	 p1	 and	 p0,	 the	 95%	 CI	 of	 the	 risk	 ratio
would	then	range	from	0.78	to	0.96.	The	confidence	interval	no	longer	contains
the	 neutral	 value	 of	 1	 (no	 difference)	 for	 the	 risk	 ratio	 and	 the	 data	 now	 are
sufficiently	precise	to	conclude	that	the	new	treatment	is	better.	The	sample	size
can	be	further	refined	by	estimating	the	percentage	of	patients	that	will	drop	out
of	a	trial	and	the	percentage	of	patients	that	will	cross	over	from	one	arm	of	the
trial	to	the	other.
Before	the	analyses	of	a	trial	can	start,	several	steps	need	to	be	taken.	Again,

the	 CONSORT	 flow	 diagram	 (see	 Figure	 10–3)	 can	 be	 used	 as	 a	 guide.	 The
lower	 panels	 of	 the	 figure	 describe	 the	 numbers	 of	 patients	 who	 were	 lost	 to
follow-up,	 those	who	discontinued	 the	 intervention,	and	finally	 the	numbers	of
patients	 included	 in	 and	 excluded	 from	 the	 data	 analyses.	 Inclusion	 of	 these
numbers	allows	the	reader	to	judge	whether	the	authors	have	done	an	intention-
to-treat	 analysis.	 In	 the	 intention-to-treat	 analysis,	 all	 patients	 who	 were
randomized	 should	 be	 analyzed	 irrespective	 of	 whether	 they	 received	 the
complete	 treatment,	 only	 part	 of	 it,	 or	 none	 at	 all.	 Thus,	 the	 intention	 of	 a
treatment	strategy	in	a	realistic	clinical	situation	is	evaluated.
Take,	for	example,	a	 trial	comparing	 the	effects	of	coronary	angioplasty	and

coronary	 artery	 bypass	 surgery	 in	 patients	 with	 angina	 pectoris	 and	 narrowed
coronaries	[RITA	Trial	Participants,	1993].	After	randomization,	the	procedures
could	 not	 be	 performed	 instantaneously	 and	 some	 primary	 outcome	 events
(death	 or	 myocardial	 infarction)	 occurred	 before	 revascularization	 was	 done.
Still,	 in	 an	 intention-to-treat	 analysis	 these	 events	 should	 be	 counted	 in	 the
treatment	 arm	 the	 patient	 was	 allocated	 to,	 an	 approach	 that	matches	 real-life
clinical	 practice.	 The	 alternative	 of	 an	 intention-to-treat	 analysis	 is	 the	 on-
treatment	 or	 per-protocol	 analysis.	 This	 is	 typically	 done	 in	 the	 setting	 of	 an



explanatory	 trial	 where	 only	 those	 patients	 who,	 in	 retrospect,	 fulfilled	 all
eligibility	criteria	and	also	received	the	allocated	trial	 treatment	are	included	in
the	analysis.	The	resulting	effect	size	is	likely	to	be	higher	than	in	real	life.
Another	 problem	 in	 per-protocol	 analyses	 is	 that	 noncompliance	 with	 the

allocated	 treatment	 is	 generally	 not	 random,	 and	 the	 resulting	 selection	 may
induce	 prognostic	 imbalances	 between	 groups.	 In	 other	 words,	 the	 beneficial
effect	of	the	randomization	process	(achievement	of	comparability	of	prognosis)
is,	 at	 least	 partly,	 counteracted.	 As	 a	 rule,	 one	 should	 always	 perform	 an
intention-to-treat	 analysis.	 An	 on-treatment	 analysis	 cannot	 be	 interpreted
without	 knowledge	 of	 the	 intention-to-treat	 results.	 Often	 it	 is	 possible	 to
perform	both	types	of	analyses.	For	example,	in	the	Dutch	TIA	Trial	[1991],	the
primary	 analysis	 was	 on	 an	 intention-to-treat	 basis:	 All	 3,131	 patients
randomized	 to	 either	 low-	 or	 medium-dose	 aspirin	 were	 analyzed,	 and	 the
resulting	 hazard	 ratio	 for	 the	 primary	 outcome	 of	 vascular	 death,	 myocardial
infarction,	or	stroke	was	0.95.	In	the	on-treatment	analysis,	the	23	patients	who
in	 retrospect	 appeared	 to	 have	 been	 enrolled	 inappropriately	 (14	 had	 a	 brain
tumor,	4	an	intracerebral	hemorrhage,	and	5	other	diseases)	were	excluded	from
the	analysis	[Dutch	TIA	Trial	Study	Group,	1991].	Moreover,	patients	were	only
counted	 in	 the	 intervention	 arm	 for	 the	 time	 that	 they	 were	 on	 the	 trial
medication	and	the	28	days	after	discontinuation	of	such	medication	to	allow	for
a	 washout	 effect.	 That	 analysis	 resulted	 in	 a	 hazard	 ratio	 of	 0.92.	 The	 larger
effect	 in	 the	 on-treatment	 analysis	 supports	 the	 view	 that	 the	 treatment	 in	 the
indicated	 patients	 is	 indeed	 effective,	 because	 one	 would	 assume	 that	 with	 a
better	indication	and	higher	compliance,	a	greater	benefit	results.
To	 be	 able	 to	 conduct	 an	 intention-to-treat	 analysis,	 it	 is	 of	 paramount

importance	 to	 obtain	 a	 follow-up	 that	 is	 as	 complete	 as	 possible.	 Without
complete	follow-up,	the	comparability	between	the	randomized	treatment	groups
may	be	 compromised.	Therefore,	 the	 extent	 to	which	 follow-up	 is	 complete	 is
often	viewed	as	a	quality	marker	of	a	trial.	To	minimize	loss	to	follow-up,	it	is
very	helpful	to	ask	the	trial	patient	to	provide	the	address	and	telephone	number
of	a	contact	person,	for	example,	a	brother,	sister,	or	a	neighbor	who	lives	at	a
different	address	than	the	patient.	This	will	help	to	trace	the	patient	if	contact	is
lost.
Another	important	step	that	needs	to	be	taken	before	a	reliable	analysis	can	be

done	 is	 quality	 control	 of	 the	 data.	 If	 done	 properly,	 this	 will	 have	 been	 an
ongoing	process	since	 the	start	of	 the	 trial,	conducted	on	 the	basis	of	 feedback
provided	 by	 the	 central	 trial	 office.	 For	 all	 forms	 that	 are	 sent	 to	 the	 office,	 a



check	needs	 to	be	done	on	 the	completeness	and	actual	values	of	 the	data.	For
example,	 a	 value	 of	 510	 mm	 Hg	 for	 systolic	 blood	 pressure	 should	 not	 be
accepted	automatically,	because	it	most	likely	was	a	reporting	error	for	a	value
of	 150	mm	Hg.	Missing	 and	 potentially	 erroneous	 values	may	 be	 resolved	 by
sending	queries	from	the	central	trial	office	to	the	local	investigators.	This	entire
process	can	be	sped	up	considerably	when	electronic	data	forms	are	being	used
with	built-in	error	checks	and	checks	for	consistency.
By	means	of	interim	analyses,	an	external	data	monitoring	committee	(DMC)

may	 evaluate	 whether	 such	 large	 benefits	 or	 harms	 already	 are	 present	 in	 an
early	phase	of	the	trial,	where	it	is	no	longer	ethically	justifiable	to	continue	with
the	 study.	 For	 this	 purpose,	 so-called	 stopping	 rules	 have	 been	 developed	 that
assist	 the	DMC	in	deciding	whether	 to	recommend	early	 termination	of	a	 trial.
Interim	analyses	force	the	investigators	to	periodically	generate	a	report	on	their
data,	and	this	stimulates	the	collection	of	good	quality	data	early	on.	There	are
also	downsides	to	interim	analyses.	Especially	when	done	frequently,	they	carry
the	 risk	 of	 stopping	 trials	 when	 the	 benefit	 (or	 harm)	 of	 the	 intervention	 first
becomes	 apparent.	 A	 randomized	 controlled	 trial	 that	 is	 stopped	 prematurely
because	 of	 a	 striking	 benefit	 or	 a	 strong	 untoward	 effect	 is	 most	 probably
suffering	from	a	“random	high.”	With	premature	stopping,	the	conclusions	often
will	 be	 either	 too	 optimistic	 or	 too	 pessimistic.	 In	 the	 early	 phases	 of	 an
investigation,	 the	 intermediate	 results	 show	 wider	 fluctuations	 around	 the
hypothetical	“truth”	than	in	the	later	phases	because	of	small	numbers	and	thus
lack	 of	 precision.	 For	 these	 reasons,	 the	 timing	 of	 interim	 analyses	 and
conservative	stopping	rules	should	be	prespecified	in	the	study	protocol.
The	next	 step	 in	 the	data	analysis	 is	 to	generate	 the	baseline	 table,	which	 in

most	 published	 papers	will	 be	 the	well-known	 “Table	 1.”	This	 table	 describes
the	baseline	characteristics	of	 the	patients	according	 to	 the	allocated	 treatment.
Use	of	 the	 table	for	 its	 readers	 is	 twofold:	 (1)	 to	assess	whether	 randomization
achieved	 comparability	 of	 prognosis	 between	 the	 treatment	 groups	 and	 (2)	 to
describe	 the	 patients	 who	 were	 enrolled	 in	 the	 trial	 to	 the	 reader.	 The	 latter
allows	the	readers	to	decide	on	the	domain	of	the	trial	results,	which	is	typically
defined	by	 the	presence	of	 an	 indication	 and	 absence	of	 a	 contraindication	 for
the	treatment,	but	other	restrictions	may	apply.	The	description	of	the	patients	by
means	of	the	baseline	table	will	give	a	good	notion	of	the	domain	and	thereby	of
the	 generalizability	 of	 the	 trial	 findings.	 However,	 for	 this	 purpose,	 one	 also
should	keep	 in	mind	 the	process	by	which	 the	patients	were	 actually	 recruited
into	the	trial	and	which	selections	were	made	along	the	way	[Rothwell,	2005].



In	 large	 trials,	 there	 hardly	 ever	 is	 important	 prognostic	 incomparability
between	the	treatment	groups,	because	of	the	large	numbers.	However,	in	small
trials	 and/or	 inadequate	 randomization	 procedures	 (described	 earlier	 in	 the
chapter)	 imbalance	may	occur.	 It	may	be	 repaired	 in	 the	analyses	by	means	of
the	calculation	of	adjusted	effect	estimates	using	regression	analysis.	Sometimes,
investigators	provide	P	values	to	judge	the	difference	in	baseline	characteristics
of	 a	 randomized	 trial.	 This	 makes	 no	 sense,	 because	 in	 the	 case	 of	 adequate
randomization,	any	difference	is	 the	result	of	 the	play	of	chance,	by	definition,
and	P	 values	have	no	meaning	 [Knol	 et	 al.,	 2012].	Rather,	 qualified	 judgment
about	 the	 size	 of	 the	 differences,	 the	 extent	 to	 which	 they	 may	 have	 created
differences	in	prognosis,	and	the	size	of	the	treatment	effect	are	needed	to	decide
whether	the	crude	results	can	be	interpreted	validly.
A	second	major	 table	describes	the	occurrence	of	outcome	events	 in	relation

to	allocated	 treatment	with	measures	of	 the	size	and	precision	of	 the	 treatment
effects.	Often	the	table	contains	both	data	on	the	primary	outcome	event	as	well
as	 on	 the	 secondary	 outcome	 event.	 It	 is	 important	 to	 realize	 that	 a	 hierarchy
among	the	outcome	events	may	need	to	be	taken	into	account.	For	example,	in	a
cardiovascular	 outcome	 trial,	 it	 may	 be	 quite	 misleading	 to	 only	 analyze	 the
occurrence	of	nonfatal	myocardial	infarction,	because	a	favorable	trend	for	this
outcome	may	be	offset	by	an	increase	in	fatal	events.	Hence,	nonfatal	outcomes
should	never	be	analyzed	in	isolation.
Often,	 a	 trial	 protocol	 specifies	 that	 the	 treatment	 effects	 will	 also	 be

determined	in	specific	subgroups	of	patients,	for	example,	in	men	and	women.	It
is	very	important	to	keep	in	mind	that	such	subgroups	are	likely	to	be	too	small
to	estimate	the	treatment	effect	with	sufficient	precision.	After	all,	the	size	of	the
trial	was	 determined	 for	 the	main	 outcome	 in	 the	 entire	 study	 and	 not	 for	 the
subgroups.	This	being	said,	it	may	nevertheless	be	worthwhile	to	study	treatment
effects	in	a	limited	number	of	subgroups.
Note	 that	 studying	 the	 effects	 of	 treatment	 according	 to	 subgroups	 with	 a

certain	 characteristic,	 such	 as	 age	 or	 gender,	 implies	 an	 analysis	 of	 the
modification	of	treatment	effects	by	these	characteristics.	Be	aware	of	the	risks
of	 so-called	 “fishing	 expeditions”	 when	 analyses	 are	 pursued	 on	 the	 basis	 of
curiosity.	One	 certainly	might	 “catch	 a	 fish,”	 but	 such	 a	 fish	 is	 not	 suited	 for
consumption.	Take,	 for	 example,	 the	Dutch	TIA	Trial	 discussed	 earlier	 in	 this
chapter.	In	an	analysis	by	month	according	to	the	start	of	their	trial	medication,	it
appeared	that	the	207	August	starters	experienced	a	tremendous	benefit	with	the
30	mg	dose	of	aspirin	in	comparison	to	those	on	the	dose	of	283	mg;	the	hazard



ratio	was	0.38	(95%	CI	0.16–0.89),	whereas	when	all	participants	were	included
in	the	analysis,	 there	was	no	difference.	This	finding	clearly	is	implausible	and
the	“fish”	should	be	thrown	back	immediately	(and	not	have	been	caught	in	the
first	 place).	Note	 that	 this	 example	 is	 a	 variant	 on	 the	 famous	 example	 on	 the
effects	 of	 aspirin	 according	 to	 birth	 sign	 in	 the	 ISIS-2	 [ISIS-2,	 1988].	 Again,
sensible	 judgment,	 biologic	 plausibility,	 or	 definition	 of	 subgroups	 in	 advance
(thus	 in	 the	 study	 protocol,	 before	 data	 are	 available)	 may	 help	 to	 prevent
spurious	results.



Chapter	11



Meta-Analyses

INTRODUCTION
The	decision	to	apply	findings	from	research	to	clinical	practice	is	rarely	based
on	a	single	study.	Trust	in	the	validity	of	research	findings	grows	after	results	are
replicated	 by	 similar	 studies	 in	 different	 settings.	 Moreover,	 the	 results	 of	 a
single	 study	 are	 often	 not	 sufficiently	 precise	 and	 thus	 leave	 room	 for	 doubt
about	 the	 exact	 magnitude	 of	 the	 association	 between	 the	 determinant(s)	 and
outcome(s)	of	 interest,	 such	as,	 for	 example,	 the	effects	of	 a	certain	 treatment.
This	is	particularly	important	when	the	magnitude	of	the	expected	benefits	of	an
intervention	must	 be	 balanced	 against	 the	 possible	 risks.	 For	 this	 purpose,	 the
evidence	that	a	treatment	works	may	be	valid	but	too	imprecise	or	too	general.
What	works	in	a	high-risk	patient	may	be	counterproductive	in	a	low-risk	patient
because	 the	 balance	 between	 benefits	 and	 risks	 differs.	 The	 contribution	 that
meta-analysis	 can	 make	 is	 to	 summarize	 the	 findings	 from	 several	 relevant
studies	and	improve	the	precision	of	the	estimate	of	the	treatment	effect,	thereby
increasing	confidence	in	the	true	effect	of	a	treatment.
Meta-analysis	 is	 a	method	 of	 locating,	 appraising,	 and	 summarizing	 similar

studies;	 assessing	 similar	 determinants	 and	 comparable	 outcomes	 in	 similar
populations;	and	synthesizing	their	results	 into	a	single	quantitative	estimate	of
associations	or	effect.	The	magnitude	of	 the	“average”	association	between	 the
determinant	 and	 outcome	 can	 be	 used	 in	 decisions	 in	 clinical	 practice	 or	 in
making	healthcare	policy.	Meta-analysis	may	reduce	or	resolve	uncertainty	when
individual	studies	provide	conflicting	results,	which	often	leads	to	disagreement
in	traditional	(narrative)	reviews.



Traditional	reviews	 typically	only	offer	a	qualitative	assessment	of	 the	kind,
“This	treatment	seems	to	work	and	appears	to	be	safe.”	In	addition	to	providing
a	 quantitative	 effect	 estimate	 across	 studies,	 meta-analysis	 uses	 a	 transparent
approach	to	the	retrieval	of	evidence	from	all	relevant	studies,	employs	explicit
methods	 aimed	 at	 reducing	 bias,	 and	 uses	 formal	 statistical	 methods	 to
synthesize	evidence.	Unless	individual	patient	data	from	the	studies	included	are
available,	 a	 meta-analysis	 treats	 the	 summary	 result	 of	 each	 study	 (e.g.,	 the
number	of	events	and	the	number	of	patients	randomized	by	treatment	group)	as
a	unit	of	information.
Meta-analysis	 originated	 in	 psychological	 research	 and	 was	 introduced	 in

medicine	around	1980.	With	the	rapid	adoption	of	evidence-based	medicine	and
the	increasing	emphasis	on	the	use	of	quantitative	evidence	as	a	basis	for	patient
management,	 meta-analysis	 has	 become	 popular.	 Today,	 meta-analysis	 has	 an
indispensable	role	in	medicine,	in	general,	and	in	clinical	epidemiologic	research
in	particular.
This	 chapter	 introduces	 the	 design	 and	 methods	 of	 meta-analysis	 aimed	 at

summarizing	 the	 results	 from	randomized	 trials	comparing	an	 intervention	arm
to	a	control	arm.	Meta-analysis	of	etiologic,	diagnostic,	and	prognostic	studies	is
increasingly	common,	but	it	is	beyond	the	scope	of	this	chapter.

RATIONALE
Meta-analysis	 helps	 to	 answer	 questions	 such	 as	 these:	 “What	 is	 the	 best
treatment	 for	 this	patient?”	“How	large	 is	 the	expected	effect?”	“How	sure	are
we	about	the	magnitude	of	this	effect?”	Definite	answers	are	rarely	provided	by
the	results	of	a	single	study	and	are	difficult	 to	give	when	several	studies	have
produced	 results	 that	 seem	 conflicting.	 Traditionally,	 decisions	 about	 the
preferred	treatment	for	a	disease	or	health	condition	have	largely	relied	on	expert
opinion	 and	narrative	 reviews	 in	medical	 textbooks.	These	may	be	based	on	 a
biased	selection	of	only	part	of	the	evidence,	frequently	only	the	largest	studies,
studies	with	“positive”	results	(i.e.,	those	reporting	P	values	less	than	0.05),	or—
even	worse—only	studies	with	results	that	support	the	expert’s	personal	opinion.
Clearly,	 such	 studies	 are	 not	 necessarily	 the	most	 valid.	Moreover,	 due	 to	 the
rapid	 accumulation	 of	 evidence	 from	 clinical	 research,	 expert	 opinion	 and
medical	textbooks	can	quickly	become	outdated.
Access	 to	 up-to-date	 evidence	 on	 treatment	 effects	 is	 needed	 to	 make



informed	 decisions	 about	 patient	management	 and	 health	 policy.	 For	 instance,
several	 authors	 have	 shown	 convincingly	 that	 medical	 textbooks	 lag	 behind
medical	 journals	 in	 presenting	 the	 evidence	 for	 important	 treatments	 in
cardiology	[Antman	et	al.,	1992;	Lau	et	al.,	1992].	Often,	investigators	perform	a
meta-analysis	 before	 starting	 a	 new	 study.	 From	 studying	 previous	 trials,	 they
learn	which	questions	remain	unanswered,	what	pitfalls	exist	 in	 the	design	and
conduct	of	the	anticipated	research,	and	which	common	errors	must	be	avoided.
Meta-analyses	may	provide	valuable	assistance	in	deciding	on	the	best	and	most
relevant	research	questions	and	in	improving	the	design	of	new	clinical	studies.
In	addition,	the	results	of	meta-analyses	are	increasingly	being	incorporated	into
clinical	guidelines.
An	 example	 of	 the	 value	 of	 meta-analysis	 is	 the	 research	 on	 the	 putative

benefits	 of	 minimally	 invasive	 coronary	 artery	 bypass	 surgery.	 Minimally
invasive	coronary	bypass	surgery	 is	a	 type	of	surgery	on	 the	beating	heart	 that
uses	a	number	of	technologies	and	procedures	without	the	need	for	a	heart–lung
machine.	 After	 the	 introduction	 of	 this	 procedure,	 the	 results	 of	 the	 first
randomized	trial	were	published	in	1995	[Vural	et	al.,	1995];	four	years	later	the
initial	 results	 of	 a	 second	 randomized	 trial	 were	 published	 [Angelini	 et	 al.,
2002].	Subsequently,	12	trials	were	published	up	to	January	2003,	12	more	trials
were	published	between	January	1	and	December	31,	2003,	and	another	10	were
published	 in	 the	 first	 4	months	 of	 2004	 [Van	 der	Heijden	 et	 al.,	 2004].	Meta-
analysis	 is	 extremely	helpful	 in	 summarizing	 the	 evidence	provided	by	 studies
conducted	 in	 this	 field.	 In	particular,	 it	may	support	 timely	decisions	about	 the
need	for	more	evidence	and	prevent	the	conduct	of	additional	trials	when	precise
effect	estimates	are	available.

PRINCIPLES
The	direction	and	size	of	 the	estimate	of	a	 treatment	effect	observed	 in	a	 trial,
commonly	 expressed	 as	 a	 ratio	 of,	 or	 a	 difference	 between,	 two	measures	 of
occurrence,	indicates	the	strength	of	the	effect	of	an	index	treatment	relative	to
that	of	a	reference	treatment.	The	validity	of	the	estimate	of	the	treatment	effect
depends	 on	 the	 quality	 of	 the	 study.	 In	 research	 on	 treatment	 effects,	 validity
depends	in	particular	on	the	use	of	randomization	to	achieve	comparability	with
regard	 to	 the	 initial	 prognostic	 status,	 and	 potentially	 the	 use	 of	 blinding	 and
placebo	 to	 achieve	 comparability	 of	 extraneous	 effects	 and	 observations.	 In



addition,	 the	 validity	 of	 the	 observed	 treatment	 effect	 depends	 on	 the
completeness	of	follow-up	data	and	whether	the	data	were	analyzed	correctly.
The	precision	of	an	estimate	of	a	treatment	effect	from	a	study	is	reflected	in

the	confidence	interval	(CI)	of	the	effect	estimate.	This	denotes	the	probabilistic
boundaries	 for	 the	 true	 effect	 of	 a	 treatment.	 That	 is,	 if	 a	 study	was	 repeated
again	 and	 again,	 the	 95%	 CI	 would	 contain	 the	 true	 effect	 in	 95%	 of	 the
repetitions.	The	width	of	the	confidence	interval	is	determined	by	the	number	of
the	outcome	events	of	interest	during	the	period	of	follow-up	observation,	which
in	turn	depends	on	the	sample	size,	the	risk	or	rate	of	the	outcome	of	interest	in
the	trial	population,	and	the	duration	of	follow-up.	In	general,	a	large	study	with
many	 events	 yields	 a	 result	 with	 a	 narrow	 confidence	 interval.	 Inconsistent
results	of	multiple	randomized	trials	lead	to	uncertainty	regarding	the	effect	of	a
treatment.	 Contradictory	 results,	 such	 as	 a	 different	 magnitude	 or	 even	 a
different	direction	of	the	effect,	may	be	reported	by	different	trials.	In	addition,
some	trials	may	be	inconclusive,	for	example,	when	the	point	estimate	of	effect
clearly	 deviates	 from	 “no	 effect”	 even	 though	 its	 confidence	 interval	 includes
“no	 effect.”	 Uncertainty	 about	 the	 true	 treatment	 effect	 can	 be	 overcome	 by
combining	the	results	of	trials	through	meta-analysis.
It	should	be	emphasized,	however,	that	differences	in	findings	between	studies

may	be	the	result	of	factors	other	than	a	lack	of	precision.	Diversity	in	the	way
trials	 are	conducted	and	 in	 the	 type	of	 study	populations	may	 lead	 to	different
trial	results.	To	maintain	validity	when	different	studies	are	combined	in	a	meta-
analysis,	aggregation	of	data	is	usually	restricted	to	trials	considered	combinable
with	respect	to	patients,	treatments,	endpoints,	and	measures	of	effect.	To	ensure
adequate	selection	of	trials,	their	designs	need	to	be	systematically	reviewed	and
they	must	 be	 grouped	 according	 to	 their	 similarity.	 Contradictory	 results	may
also	reflect	problems	in	 the	study	design	or	data	analysis	 that	may	have	biased
the	 findings	 of	 some	 trials.	 Because	 the	 results	 of	 meta-analyses	 cannot	 be
trusted	when	flawed	trials	are	included,	it	is	important	to	make	an	explicit	effort
to	limit	such	bias.	Hence,	the	study	design	needs	to	be	critically	appraised	with
regard	to	the	randomization	procedure	and	concealment	of	treatment	allocation,
blinding	 of	 outcome	 assessments,	 deviation	 from	 the	 allocation	 scheme,
contamination	 of	 the	 treatment	 contrast	 (e.g.,	 unequal	 provision	 of	 care	 apart
from	 the	 allocated	 treatment),	 and	 completeness	 of	 follow-up,	 as	 well	 as	 the
statistical	analysis.
Small	trials	often	lack	statistical	power.	In	a	meta-analysis,	statistical	power	is

enhanced	by	pooling	data	abstracted	from	original	trial	publications	to	determine



a	single	combined	effect	estimate,	using	statistical	methods	that	have	specifically
been	 developed	 for	 this	 purpose.	 Many	 such	 methods	 exist,	 and	 their
appropriateness	depends	on	underlying	assumptions	and	practical	considerations.
Unfortunately,	quite	often	the	possibilities	for	pooling	are	restricted	by	poor	data
reporting	of	individual	studies.
Adherence	 to	 fundamental	 design	 principles	 of	 meta-analyses	 can	 prevent

misleading	results	and	conclusions.	These	should	be	articulated	in	a	protocol	to
be	used	as	a	reference	in	conducting	the	meta-analysis	and	writing	the	methods
section	 of	 the	 report.	Guidelines	 and	manuals	 for	writing	 a	 protocol	 for	meta-
analyses	are	available	[Higgins,	2006;	Khan	et	al.,	2003]	(see	Box	11–1).	As	for
clinical	epidemiologic	studies	in	general,	the	design	of	a	meta-analysis	involves:

BOX	11–1	Internet	Resources	for	Writing	a	Protocol	for	Meta-Analysis	(accessed	May	7,	2013)

The	Cochrane	Handbook	for	Systematic	Review	of	Interventions,	from	the	Cochrane	Collaboration:
http://www.cochrane.org/training/cochrane-handbook

Systematic	Reviews:	CRD’s	guidance	for	undertaking	systematic	reviews	in	health	care,	from	the
Centre	for	Reviews	and	Dissemination,	University	of	York,	UK:
http://www.york.ac.uk/inst/crd/report4.htm

	

		1.	The	theoretical	design	of	the	research	question,	including	the	specification
of	the	determinant–outcome	relation	of	interest

		2.	The	design	of	data	collection,	comprising	the	retrieval	of	publications,	the
selection	and	critical	appraisal	of	trials,	and	the	data	extraction

		3.	The	design	of	data	analysis	and	the	reporting	of	the	results

THEORETICAL	DESIGN
As	 in	 any	 research,	 a	 meta-analysis	 should	 start	 with	 a	 clear,	 relevant,	 and
unambiguous	research	question.	The	design	of	 the	occurrence	relation	 includes
three	 components:	 (1)	 the	 determinant	 contrast	 (typically,	 the	 treatments	 or
exposures	compared),	(2)	the	outcome	of	interest,	and	(3)	the	domain.	All	need
to	 be	 explicitly	 defined	 to	 frame	 the	 search	 and	 selection	 strategy	 for	 eligible
trial	 publications.	 By	 using	 unambiguous	 definitions	 of	 these	 components,	 the
scope	and	objective	of	the	meta-analysis	are	narrowed.	This	directly	impacts	the

http://www.cochrane.org/training/cochrane-handbook
http://www.york.ac.uk/inst/crd/report4.htm


applicability	of	the	results.
To	illustrate,	there	are	similarities	between	the	following	questions:	“What	is

the	effect	of	intermittent	lumbar	traction	on	the	severity	of	pain	in	patients	with
low	back	 pain	 and	 sciatica?”	 and	 “What	 is	 the	 effect	 of	 spinal	 traction	 on	 the
recovery	 of	 patients	 with	 back	 pain?”	 [Clarke	 et	 al.,	 2006].	 Despite	 the
similarities,	these	questions	have	a	completely	different	scope	that	would	result
in	different	criteria	for	selection	of	trials	and	subsequently	different	estimates	of
treatment	effect	and	applicability	of	findings.	Due	to	its	more	detailed	wording,
the	first	question	may	provide	a	more	informative	summary	of	the	evidence	for	a
particular	 type	 of	 patient	management,	while	 the	more	 general	wording	 of	 the
domain,	 determinant,	 and	 outcome	 in	 the	 second	 question	 may	 serve	 public
health	policy	more	generally.	Although	it	is	not	the	primary	objective	of	a	meta-
analysis	 to	 formulate	 recommendations	 for	 patient	 management,	 but	 rather	 to
quantitatively	summarize	the	evidence	on	a	particular	mode	of	treatment,	meta-
analyses	are	often	used	in	the	development	of	clinical	guidelines.
Just	as	 in	 the	design	of	any	epidemiologic	 study,	 it	 is	necessary	 to	carefully

decide	on	the	domain,	that	is,	the	type	of	patients	or	subjects	to	whom	the	results
of	 the	meta-analysis	will	 apply.	 Definition	 of	 the	 domain	 determines	 how	 the
study	populations	to	be	considered	will	be	collected	and	thus	assists	in	obtaining
relevant	summaries	of	evidence	from	published	trials.

DESIGN	OF	DATA	COLLECTION
The	 challenge	 in	 the	 retrieval	 and	 selection	 of	 publications	 is	 to	 identify	 all
relevant	 and	 valid	 evidence	 from	 previous	 research.	 The	 rapid	 growth	 of
electronic	 publications,	 as	 well	 as	 the	 improved	 accessibility	 of	 electronic
bibliographic	 databases	 and	 complete	 journal	 content	 on	 the	 Internet,	 has
facilitated	 the	 retrieval	 and	 filtering	 of	 pertinent	 evidence,	 in	 particular	 from
reports	on	 the	 results	of	clinical	 trials.	To	comprehensively	 locate	all	available
evidence	requires	skills	in	the	design	of	search	strategies,	however.	With	proper
library	 and	 information	 technology	 skills,	 information	 retrieval	 becomes	 less
time	consuming	and	searches	become	more	comprehensive.

Bibliographic	Databases



For	a	comprehensive	search,	several	medically	oriented	electronic	bibliographic
databases	are	available.	These	include:

	PubMed	(National	Library	of	Medicine	and	National	Institutes	of	Health)	[Dickersin	et	al.,	1985;
Gallagher	et	al.,	1990]
	EMBASE	(Elsevier,	Inc.)	[Haynes	et	al.,	2005;	Wong	et	al.,	2006a],	Web	of	Science	(Thompson
Scientific),	PsycINFO	(American	Psychological	Association)	[Watson	&	Richardson,	1999a;	Watson
&	Richardson,	1999b]
	CINAHL	(Cumulative	Index	to	Nursing	and	Allied	Health	Literature,	EBSCO	Industries)	[Wong	et
al.,	2006b];	LILACS	(Literatura	Americana	e	do	Caribe	em	Ciências	da	Saúde)	[Clark,	2002]
	Cochrane	Database	of	Randomized	Trials	(Wiley	Interscience)

A	 listing	 of	 bibliographic	 databases	 is	 available	 from	 the	 University	 of	 York
Centre	 for	 Reviews	 and	 Dissemination
(http://www.york.ac.uk/inst/crd/finding_studies_systematic_reviews.htm).
The	coverage	of	 subject	matter	and	 the	 list	of	 scientific	 journals	 included	 in

these	 databases	 are	 different,	 and	 the	 highest	 yield	 is	 likely	 to	 depend	 on	 the
topic	 that	 is	 studied	 [McDonald	 et	 al.,	 1999;	 Minozzi	 et	 al.,	 2000;	 Suarez-
Almazor	et	al.,	2000;	Watson	&	Richardson,	1999a].

Search	Filters
Search	filters	are	command	syntax	strings	in	the	database	language	for	retrieving
relevant	 records.	 Most	 electronic	 bibliographic	 databases	 provide	 indexing
services	and	search	facilities,	which	make	it	easy	to	create	and	use	search	filters.
For	every	research	question,	a	reproducible	subject-specific	search	filter	must	be
defined.	 There	 is	 no	 standard	 for	 building	 a	 subject-specific	 search	 filter,	 and
they	 need	 to	 be	 customized	 for	 each	 database.	 The	 art	 of	 building	 a	 subject-
specific	search	 filter	comes	down	 to	 reducing	 the	“numbers-needed-to-read”	 to
find	a	single	pertinent	record	for	an	original	 trial	publication	[Bachmann	et	al.,
2002].

Building	a	Search	Filter
Building	 a	 subject-specific	 search	 filter	 starts	with	 breaking	 down	 the	 defined
research	question	into	parts:	the	subjects	or	patients	(the	domain),	the	treatments
(the	 determinant	 contrast),	 and	 the	 outcomes	 of	 interest.	 Candidate	 terms	 and
relevant	synonyms	should	be	listed	for	each	part	of	the	question.	To	accomplish
this,	 medical	 dictionaries,	 medical	 textbooks,	 and	 the	 thesaurus	 and	 index	 of

http://www.york.ac.uk/inst/crd/finding_studies_systematic_reviews.htm


bibliographic	 databases	 can	 be	 used.	 After	 selecting	 the	 search	 terms	 for	 the
domain,	these	terms	are	usually	combined	with	the	Boolean	operator	“OR.”	The
same	is	done	with	the	selected	search	terms	for	the	determinant	contrast	and	the
outcome.	These	three	separate	search	queries	are	then	combined	by	the	Boolean
operator	“AND.”	Depending	on	the	focus	of	the	research	question,	limits	such	as
age	 categories	 and	 publication	 date	 can	 be	 used	 to	 restrict	 the	 number	 of
retrieved	records	to	more	manageable	proportions.	This	is	not	recommended	in
the	 context	 of	 meta-analysis,	 however,	 because	 it	 can	 easily	 result	 in	 the
exclusion	 of	 relevant	 records	 of	 publications.	 Moreover,	 language	 restrictions
should	 be	 avoided,	 as	 the	 aim	 is	 to	 retrieve	 all	 relevant	 evidence,	 including
evidence	from	publications	in	languages	other	than	English.

Thesaurus	and	Index
The	 thesaurus	 and	 index	 of	 bibliographic	 databases	 may	 assist	 with	 the
identification	 and	 selection	 of	 candidate	 search	 terms	 for	 the	 domain,
determinant	contrast,	and	outcome.	A	thesaurus	is	a	systematic	list,	or	database,
of	 hierarchically	 arranged	 related	 standardized	 subject	 headings,	 referred	 to	 as
the	 controlled	 vocabulary.	 The	 hierarchy	 of	 a	 thesaurus	 (that	 is,	 the	 more
specific	narrower	 terms	 that	 are	arranged	beneath	more	general	broader	 terms)
provides	 a	 context	 for	 topical	 search	 keywords.	 Standardized	 subject	 headings
are	 available	 and	 may	 be	 helpful	 when	 exploring	 and	 identifying	 relevant
candidate	 retrieval	 terms	 for	 well-defined	 and	 generally	 accepted	 medical
concepts.	In	general,	about	10	standardized	subject	headings	are	assigned	to	each
record	contained	in	electronic	bibliographic	databases	(this	is	called	the	tagging
of	articles).
One	should	be	aware	of	the	drawbacks	to	using	the	thesaurus	database	in	the

exploration	and	 identification	of	 relevant	candidate	 retrieval	 terms.	First,	while
searching	 with	 subject	 terms	 in	 the	 thesaurus	 database,	 for	 example,	 in	 the
PubMed	 MeSH	 (Medical	 Subject	 Headings;	 NIH	 and	 NLM)	 database,	 the
explosion	 function	 (which	 occurs	 when	 a	 default	 automatically	 includes	 all
hierarchical	lower	subject	heading	terms	in	the	search)	dramatically	increases	the
number	 of	 retrieved	 records.	 This	 increase	 in	 number	 of	 retrieved	 records
invariably	includes	many	irrelevant	records,	which	always	reduces	the	retrieval
efficiency	by	an	increase	in	the	“number-needed-to-read.”	Second,	it	takes	time
before	 a	 term	 is	 included	 in	 the	 thesaurus	 as	 a	 standardized	 subject	 heading.
Research	that	was	published	before	its	appropriate	medical	subject	heading	was



added	to	the	thesaurus	will	be	indexed	under	different	headings.	The	first	studies
that	 defined	 a	 new	 research	 field	may	 not	 be	 found	 under	 the	 subject	 heading
concerned	when	the	heading	was	added	to	the	thesaurus	at	a	later	stage.	This	is
because	indexing	of	records	is	static;	subject	terms	attached	to	older	records	are
not	updated	when	the	thesaurus	is	changed.	Hence,	records	indexed	according	to
the	 previous	 version	 of	 the	 thesaurus	 may	 not	 be	 retrieved	 when	 newer
standardized	 subject	 headings	 are	 used	 in	 a	 search	 filter.	Third,	 one	 should	 be
aware	 of	 the	 time	 lag	 between	publication	 dates	 and	 tagging.	The	most	 recent
pertinent	records	will	always	be	missed	in	a	search	that	uses	only	standardized
subject	 headings.	 Finally,	 a	 thesaurus	 grows	 over	 time,	 and	 so	 it	 is	 subject	 to
change.	This	means	that	the	context	of	and	relationship	between	subject	heading
terms	 is	 subject	 to	 change,	 which	 may	 result	 in	 misspecification	 of	 retrieval
terms	and,	consequently,	omission	of	pertinent	records.
An	 index	 is	 a	 detailed	 list,	 or	 database,	 of	 alphabetically	 arranged	 search

keywords,	which,	 for	 example,	 is	 found	under	 the	PubMed	Preview/Index	 tab.
The	 index	of	a	bibliographic	database	contains	search	keywords	 from	different
indexed	record	fields,	such	as	author,	title,	abstract,	keywords,	publication	type
and	date,	and	author	affiliation.	An	index	is	not	subject	to	the	obvious	drawbacks
of	 a	 thesaurus,	which	 as	mentioned	 include	 time	 lags	 in	 standardized	 tagging,
term	 misspecification,	 and	 explosion	 of	 attached	 lower	 terms.	 Using	 index
databases	facilitates	exploration	and	identification	of	relevant	candidate	retrieval
terms	because	 the	 frequency	of	occurrence	of	words	per	 field	 is	usually	 listed.
Authors	 of	 original	 publications	 will	 use	 terms	 and	 synonyms	 relating	 to	 the
domain,	treatment	contrast,	and	outcomes	in	both	the	title	and	the	abstract.	One
should	 make	 use	 of	 this	 and	 explore	 relevant	 candidate	 search	 terms	 and
synonyms,	 in	 particular	 in	 the	 title	 and	 abstract	 fields,	 to	 retrieve	 pertinent
records.
A	drawback	to	this	approach	is	that	one	must	always	include	several	different

synonyms	for	 the	same	concepts	and	take	 into	account	differences	 in	U.K.	and
U.S.	 spellings.	 A	 well-designed	 search	 string	 increases	 the	 efficiency	 of	 the
search	 and	 notably	 decreases	 the	 total	 number	 of	 records	 retrieved	 while
increasing	 the	 number	 of	 pertinent	 records.	Using	 the	 thesaurus	 database	may
help	to	identify	candidate	search	terms	that	can	be	explored	for	their	relevance	in
the	title	and	abstract	fields.
In	building	a	search	filter,	one	should	always	avoid	 the	pitfalls	of	automatic

term	mapping,	where	search	terms	without	a	field	specification	are	automatically
translated	to,	for	example,	MeSH	terms.	To	see	if	this	has	happened	in	PubMed,



check	the	Details	tab.	For	example,	when	in	PubMed,	the	term	“blind”	without
field	specification	is	used	to	identify	trials	with	blind	outcome	assessment;	 this
word	 is	 translated	 to	 the	 MeSH	 term	 “visually	 impaired.”	 This	 leads	 to
misspecification	of	the	context	and	the	records	to	be	retrieved,	and	thus	a	large
number	of	irrelevant	records	and	a	dramatic	increase	in	the	numbers	of	records
that	must	 be	 read.	 Therefore,	 we	 advise	 always	 using	 a	 field	 specification,	 in
particular	 the	 title	 and	 abstract	 field	 (“tab”	 in	 PubMed	 syntax).	 Under	 the
PubMed	 Index/Preview	 tab,	 the	 frequency	 of	 tagged	 search	 terms	 can	 be
explored	for	each	field,	and	this	will	automatically	provide	the	adequate	syntax
for	the	fields	of	the	search	terms.

Clinical	Queries
PubMed	includes	clinical	queries;	these	can	be	found	in	the	blue	sidebar	on	the
PubMed	home	page.	The	therapy	query,	using	the	Boolean	operator	“AND,”	can
be	combined	with	the	constructed	subject-specific	search	filter	in	order	to	retain
records	about	treatment	effects	and	type	of	study	while	reducing	the	search	yield
to	a	more	manageable	number	of	records.
Several	 other	 methods	 filters	 that	 allow	 searching	 for	 a	 type	 of	 study	 are

available	 for	 different	 bibliographic	 databases	 [Watson	 et	 al.,	 1999b;	Wong	 et
al.,	 2006a;	Wong	 et	 al.,	 2006b;	Zhang	 et	 al.,	 2006].	 Some	 of	 these	 have	 been
tested	 intensively	 [Jadad	&	McQuay,	 1993;	Montori	 et	 al.,	 2005;	 Shojania	 &
Bero,	2001;	Wilczynski	et	al.,	1994;	Wilczynski	&	Haynes,	2002;	Wilczynski	et
al.,	2005],	but	none	are	perfect,	and	often	certain	relevant	articles	will	be	missed.
The	 added	 value	 of	 methods	 filters,	 in	 terms	 of	 accuracy	 of	 their	 yield,	 may
depend	 on	 the	 medical	 field	 or	 research	 question	 of	 interest	 [Sampson	 et	 al.,
2006a].	 For	PubMed	 clinical	 queries,	 a	 broad	 (i.e.,	 sensitive	 or	 inclusive)	 or	 a
narrow	 (i.e.,	 specific	 or	 restrictive)	 prespecified	 search	 methodology	 filter	 is
available.	 While	 a	 broad	 methods	 search	 filter	 is	 more	 comprehensive,	 the
number-needed-to-read	will	always	be	higher.	With	a	narrow	methods	filter,	the
number	 of	 records	 retrieved	 will	 be	 smaller,	 but	 the	 likelihood	 of	 excluding
pertinent	 records	 is	 higher.	 Therefore,	 using	 narrow	 methods	 filters	 in	 the
context	of	meta-analyses	is	not	advised.

Complementary	Searches
Publications	 are	 not	 always	 properly	 included	 or	 indexed	 in	 electronic



bibliographic	databases.	Sometimes,	 relevant	 studies	 identified	by	other	means
turn	 out	 to	 be	 included	 in	 electronic	 bibliographic	 databases	 but	 are
inappropriately	 indexed	 because	 of	 changes	 in	 the	 thesaurus,	 for	 example.
Therefore,	 searching	 for	 lateral	 references	 is	 always	 necessary	 to	 supplement
initial	retrieval	of	relevant	publications	and	to	optimize	a	search	filter.
Additional	relevant	publications	can	be	found	by	screening	the	reference	lists

of	available	systematic	reviews,	meta-analyses,	expert	reviews,	and	editorials	on
your	topic,	for	publications	not	retrieved	by	your	search	filter.	Web	of	Science,
the	 bibliographic	 database	 of	 the	 Institute	 of	 Scientific	 Information,	 facilitates
such	 cross-reference	 searching	 by	 providing	 links	 to	 publications	 cited	 in	 the
identified	 paper	 and	 links	 to	 publications	 citing	 the	 identified	 paper.	 PubMed
facilitates	such	cross-reference	searching	by	providing	a	link	to	related	articles.
It	is	advisable	to	use	cross-reference	searching	for	all	pertinent	records	selected
by	the	initial	search	and	to	use	the	Boolean	operator	“OR”	to	combine	them	all.
To	avoid	duplication	of	work,	records	already	retrieved	by	the	initial	search	filter
can	be	 excluded	by	 combining	 an	 additional	 filter	 for	 the	 collection	of	 related
articles	and	the	initial	search	filter	using	the	Boolean	operator	“NOT.”	Then,	the
remainder	of	the	related	articles	is	screened	for	relevant	additional	records.
When	cross-reference	searching	yields	additional	relevant	publications,	 these

should	 be	 scrutinized	 for	 new	 relevant	 search	 terms	 related	 to	 the	 domain,
determinants,	 and	 outcomes	 in	 the	 title	 and	 abstract.	 These	 should	 always	 be
added	 to	 update	 the	 initial	 subject-specific	 search	 filter.	 Again,	 the	 Boolean
operator	“NOT”	should	be	used	to	exclude	the	records	already	retrieved	by	the
initial	 search	 filter	 (plus	 the	 combined	 related	 articles).	 Then	 the	 remaining
records	are	screened	for	other	additional	relevant	records	and	new	search	terms.
Thus,	 building	 a	 subject-specific	 search	 filter	 becomes	 a	 systematic	 iterative
process.	 Still,	 the	 total	 number	 of	 original	 studies	 published	 on	 a	 topic	 of	 a
particular	meta-analysis	always	remains	unknown.	Therefore,	it	may	be	useful	to
write	 to	 experts,	 researchers,	 and	 authors,	 including	 a	 list	 of	 the	 retrieved	 trial
publications,	and	ask	them	to	add	studies	not	yet	on	the	list.
Most	 electronic	 bibliographic	 databases	 only	 include	 citations	 for	 studies

published	 as	 full-text	 articles.	 To	 retrieve	 studies	without	 full	 publication	 it	 is
useful	 to	write	 to	 researchers,	authors,	and	experts	 for	preliminary	 reports,	and
search	 in	Web	of	Science	or	on	 the	 Internet	 (e.g.,	websites	of	conferences	and
professional	societies)	for	abstracts	of	meetings	and	conference	proceedings.	The
recently	initiated	registries	for	clinical	trials	[Couser	et	al.,	2005;	De	Angelis	et
al.,	2004]	promise	a	better	view	on	all	studies	started,	some	of	which	may	never



be	published	 in	 full	 (see	Box	11–2).	Some	authors	have	suggested	 that	 journal
hand	 searching,	 which	 is	 a	 manual	 page	 by	 page	 examination	 of	 contents	 of
relevant	 journals,	may	 reveal	 additional	 relevant	 publications	 [Hopewell	 et	 al.,
2002;	 Jefferson	 &	 Jefferson,	 1996;	 McDonald	 et	 al.,	 2002;	 Sampson	 et	 al.,
2006b].	 In	 addition,	 Internet	 search	 engines,	 in	 particular,	 Google	 Scholar
(http://scholar.google.com),	 may	 prove	 useful	 in	 the	 retrieval	 of	 citations
[Eysenbach	et	al.,	2001]	and,	in	particular,	full-text	articles	that	somehow	have
not	made	it	to	other	databases.

BOX	11–2	Internet	Resources	for	Trial	Registries	(accessed	May	17,	2013)

The	U.S.	National	Library	of	Medicine:	http://www.clinicaltrials.gov

The	International	Standard	Randomized	Controlled	Trial	Number	Registry,	Bio	Med	Central:
http://www.controlled-trials.com

The	National	(UK)	Health	Service:	http://www.nhs.uk/Conditions/Clinicaltrials/Pages/clinical-
trial.aspx	and	http://www.nihr.ac.uk/Pages/NRRArchive.aspx

The	European	Clinical	Trials	Database:	https://www.clinicaltrialsregister.eu

	

Screening	and	Selection
Aggregation	 of	 data	 in	 a	 meta-analysis	 is	 restricted	 to	 studies	 judged	 to	 be
combinable	with	respect	to	subjects,	determinants,	methodology,	and	outcomes.
For	studies	that	differ	considerably	in	these	aspects,	it	may	not	be	appropriate	to
combine	the	results.
Titles	and	abstracts	of	all	 records	for	clinical	 trials	should	be	screened	using

prespecified	 and	 explicit	 selection	 criteria	 that	 relate	 to	 the	 combinability	 of
studies.	These	include:

	Domain:	Types	of	patients,	disease	or	health	problem,	specific	subgroups,	and	setting	(e.g.,	primary	or
secondary	care)
	Treatments:	Characteristics	of	treatment,	type	of	comparator	(placebo,	active,	add-on)
	Outcomes:	Types	of	endpoints,	scales,	dimensions,	and	follow-up	time
	Design	of	data	collection	and	analysis,	and	reporting	of	data:	Randomization,	double	blinding,
concealment	of	treatment	allocation,	blinded	endpoint	assessment,	reporting	of	absolute	risks

Based	 on	 the	 results	 of	 the	 selection	 process,	 combinable	 studies	 can	 be

http://scholar.google.com
http://www.clinicaltrials.gov
http://www.controlled-trials.com
http://www.nhs.uk/Conditions/Clinicaltrials/Pages/clinical-trial.aspx
http://www.nihr.ac.uk/Pages/NRRArchive.aspx
http://https://www.clinicaltrialsregister.eu


identified	or	grouped	 for	 separate	or	 stratified	 analysis.	 In	our	 experience,	 any
physician	 familiar	 with	 the	 subject	 but	 untrained	 in	 library	 information	 can
handle	 the	 scanning	 of	 titles	 at	 a	 pace	 of	 about	 250	 per	 hour,	 provided	 that
abstracts	 are	 read	 only	 when	 the	 title	 does	 not	 provide	 sufficient	 information
(e.g.	when	 the	 term	 “randomized”	 is	 not	mentioned	 in	 the	 title).	 For	 this,	 it	 is
convenient	and	advisable	 to	 store	 titles	and	abstracts	of	all	 retrieved	electronic
records	in	a	citation	management	program	(see	Box	11–3).	When	doubts	remain
about	the	appropriateness	of	the	selection	of	a	particular	study	after	reading	the
abstract,	the	full	publication	must	be	scrutinized.

BOX	11–3	Internet	Resources	for	Bibliographic	and	Citation	Management	Software	Programs

Endnote	(Thomson	ResearchSoft,	Thomson	Scientific):	http://www.endnote.com

Reference	manager	(Thomson	ResearchSoft,	Thomson	Scientific):	http://www.refman.com

Refworks	(Bethesda,	MD,	USA):	http://www.refworks.com

	

Avoiding	Bias
Retrieval	and	selection	of	original	studies	should	be	based	on	a	comprehensive
search	and	explicit	selection	criteria.	Relevant	publications	can	be	easily	missed
by	a	not	 fully	comprehensive	or	even	flawed	retrieval	and	selection	procedure.
Selection	of	studies	must	be	based	on	criteria	related	to	study	design,	rather	than
on	 results	 or	 a	 study’s	 purported	 appropriateness	 and	 relevance.	 Holes	 in	 a
methodology	 filter	 as	 well	 as	 searching	 in	 a	 limited	 number	 of	 bibliographic
databases	may	lead	to	serious	omissions.	When	a	search	is	not	comprehensive	or
selection	is	flawed,	 the	results	of	 the	meta-analysis	may	be	biased;	 this	 type	of
bias	is	known	as	retrieval	and	reviewer	bias.
To	prevent	reviewer	bias,	the	selection	of	material	should	preferably	be	based

on	the	consensus	of	at	least	two	independent	researchers	[Edwards	et	al.,	2002;
Jadad	et	al.	1996;	Moher	et	al.,	1999a].	Still,	any	comprehensive	strategy	for	the
retrieval	and	selection	of	relevant	original	studies	can	be	frustrated	by	flaws	in
the	reporting	of	individual	trials	[Sutton	et	al.,	2002].
Trials	with	positive	and	significant	results	are	more	likely	to	be	reported	and

are	 published	 faster,	 particularly	 when	 they	 are	 published	 in	 English	 (i.e.,
publication	 bias)	 [Jüni	 et	 al.,	 2002;	 Sterne	 et	 al.,	 2002].	 Furthermore,	 such

http://www.endnote.com
http://www.refman.com
http://www.refworks.com


positive	trials	are	cited	more	often	(i.e.,	citation	bias),	which	makes	them	easier
to	 locate,	 so	 only	 a	 comprehensive	 search	 can	 prevent	 such	 retrieval	 bias
[Ravnskov,	 1992].	 Multiple	 reporting	 of	 a	 single	 trial	 (for	 example,	 separate
reporting	 of	 initial	 and	 final	 results,	 different	 follow-up	 times	 or	 endpoints	 in
subsequent	 publications)	 and	 preferential	 reporting	 of	 positive	 results	 cause
dissemination	bias	that	may	be	difficult	to	detect.	There	is	no	complete	remedy
against	these	types	of	bias	in	the	reporting	and	dissemination	of	trial	results.
Omission	 of	 pertinent	 studies	 and	 inclusion	 of	 multiple	 publications	 may

change	the	results	of	a	meta-analysis	dramatically	[Simes,	1987;	Stern	&	Simes,
1997].	 For	 example,	 from	 around	 2,000	 eligible	 titles	 that	were	 retrieved	 in	 a
meta-analysis	 assessing	 the	 effect	 of	 off-pump	 coronary	 surgery,	 only	 66
publications	 remained	 after	 exclusion	 of	 publications	 of	 nonrandomized	 trials
and	 randomized	 trials	 with	 another	 treatment	 comparison	 or	 endpoint.	 After
assessing	the	66	reports,	seven	conference	abstracts	of	trials	not	fully	published
were	 further	 excluded.	 There	 were	 17	 duplicate	 publications	 relating	 to	 three
trials,	leaving	only	42	full	trial	publications	for	further	analysis	[Van	der	Heijden
et	al.,	2004].
Before	critically	appraising	the	studies	selected	for	inclusion,	it	is	important	to

ensure	 that	 errata	 that	 were	 published	 later	 have	 been	 traced,	 as	 these	 may
contain	errors	in	the	data	initially	reported.	It	is	also	recommended	to	ensure	that
design	papers	(available	for	many	large	multicenter	trials)	have	been	traced	and
are	 available	 for	 critical	 appraisal	 together	with	 the	 results	 report(s).	One	may
encounter	 a	 report	 that	 is	 based	 on	 a	 smaller	 number	 of	 subjects	 than	 was
planned	according	to	the	design	paper.	This	may	suggest	publication	bias,	unless
the	reasons	for	this	are	explained	in	the	results	report.

CRITICAL	APPRAISAL
Randomized	 trials	 are	 the	 cornerstone	of	 evaluation	 of	 treatment	 effects.	They
frequently	offer	the	best	possibility	for	valid	and	precise	effect	estimations,	but
many	 aspects	 of	 their	 design	 and	 conduct	 require	 careful	 handling	 for	 their
results	to	be	valid.	Hence,	critical	appraisal	of	all	elements	of	a	study	design	is
an	important	part	of	meta-analysis.	Critical	appraisal	concentrates	on	aspects	of
a	 study	 design	 that	 impact	 the	 validity	 of	 the	 study,	 notably	 randomization
techniques	 and	 concealment	 of	 treatment	 allocation,	 blinded	 endpoint
assessment,	 adherence	 to	 the	 allocation	 scheme,	 contamination	 of	 treatment



contrast,	 postrandomization	 attrition,	 and	 statistical	 techniques	 applied.	 This
requires	 information	 regarding	 inclusion	 and	 exclusion	 criteria,	 treatment
regimens,	 and	mode	 of	 administration,	 as	 well	 as	 the	 type	 of	 endpoints,	 their
measurement	scale,	and	the	duration	of	follow-up	and	the	time	points	of	follow-
up	assessments.	Each	aspect	of	 the	 study	design	needs	 to	be	documented	on	a
predesigned	 critical	 appraisal	 checklist	 to	 decide	 whether	 the	 publication
provides	 sufficient	 information	 and,	 if	 so,	 whether	 the	 applied	 methods	 were
adequate	 and	 bias	 is	 considered	 likely	 or	 not.	 Based	 on	 this	 critical	 appraisal,
studies	can	be	grouped	by	the	type	and	number	of	design	flaws,	as	well	as	by	the
level	 of	 omitted	 information.	 Accordingly,	 decisions	 about	 which	 studies	 are
combinable	in	a	pooled	or	a	stratified	analysis	can	be	made.
Although	the	requirements	for	reporting	the	methods	of	clinical	trials	are	well

defined	 and	have	been	generally	 accepted	 [CONSORT,	 2010;	Chalmers	 et	 al.,
1987a,	1987b;	Moher	et	al.,	2005;	Plint	et	al.,	2006],	 information	on	important
design	 features	 cannot	 be	 found	 in	 the	 published	 report	 of	 many	 studies.	 For
example,	only	11	of	42	trials	comparing	coronary	bypass	surgery	with	or	without
a	 cardiopulmonary	 bypass	 pump	 that	 are	 reported	 as	 a	 “randomized	 trial”
provided	 information	 on	 the	 methods	 of	 randomization	 and	 concealment	 of
treatment	allocation,	while	only	14	reported	on	blinding	of	outcome	assessment
or	 standardized	postsurgical	 care,	 and	only	30	gave	details	 on	deviations	 from
the	protocol	 that	occurred	[Van	der	Heijden	et	al.,	2004].	The	unavailability	of
this	 information	hampers	 a	 complete	 and	 critical	 appraisal	 of	 such	 studies	 and
raises	questions	about	the	validity	of	their	results.
Blinding	 for	 the	 journal	 source,	 the	 authors,	 their	 affiliation,	 and	 the	 study

results	during	critical	appraisal	by	editing	copies	of	 the	articles	 requires	ample
time	 and	 resources.	 Therefore,	 this	 should	 only	 be	 considered	 when	 reviewer
bias	 as	 an	 important	 threat	 to	 the	 validity	 of	 the	 meta-analysis	 needs	 to	 be
excluded	 [Jadad	 et	 al.,	 1996;	 Verhagen	 et	 al.,	 1998].	 To	 avoid	 errors	 in	 the
assessment	 of	 trials,	 critical	 appraisal	 should	be	 standardized	using	 a	 checklist
that	 is	 preferably	 completed	 independently	 by	 two	 reviewers	 as	 they	 read	 the
selected	publications.	In	the	event	of	disagreement	between	these	two	reviewers,
the	 eventual	 data	 analyzed	 can	 be	 based	 on	 a	 consensus	 meeting	 or	 a	 third
reviewer	may	provide	a	decisive	assessment.
Studies	 that	are	 the	same	with	 respect	 to	 the	outcome,	 including	scales	used

and	 follow-up	 times,	 can	 be	 pooled	 by	 conventional	 statistical	 procedures.
Similarity	 can	 be	 judged	 by	 the	 information	 that	 is	 derived	 during	 data
extraction.	Data	extraction	entails	documentation	of	relevant	data	for	each	study



on	a	standardized	data	registry	form	and	should	include	the	number	of	patients
randomized	 per	 group	 and	 their	 baseline	 characteristics,	 notably	 relevant
prognostic	 markers	 (i.e.,	 potential	 confounders).	 The	 follow-up	 data	 to	 be
recorded	for	each	treatment	group	should,	for	each	outcome	and	follow-up	time,
include	the	point	effect	estimates	and	their	variance,	and	the	number	of	patients
analyzed,	 with	 accrued	 person-time	 “at	 risk.”	 Using	 these	 data,	 trials	 can	 be
grouped	 by	 outcome,	 follow-up	 time,	 or	 even	 risk	 status	 at	 baseline.
Accordingly,	 this	 gives	 a	 further	 quantitative	 basis	 for	 decisions	 about	 which
studies	are	combinable	in	the	pooled	or	stratified	analysis.	Unfortunately,	details
about	 follow-up	 are	 frequently	 omitted.	 Inadequate	 or	 incomplete	 reporting	 of
outcome	 parameters	 precludes	 statistical	 pooling	 in	 a	 meta-analysis.	 For
example,	only	4	of	42	trials	comparing	coronary	bypass	surgery	with	or	without
a	 cardiopulmonary	 bypass	 pump	 reported	 data	 that	 allowed	 calculating	 a
composite	 endpoint	 for	 death,	 stroke,	 and	 myocardial	 infarction	 [Van	 der
Heijden	et	al.,	2004].

DESIGN	OF	DATA	ANALYSIS
The	ultimate	goal	of	a	meta-analysis,	while	maintaining	validity,	 is	 to	obtain	a
more	 precise	 estimate	 of	 a	 treatment	 effect.	 The	 confidence	 interval	 of	 the
combined	 estimate	 of	 the	 effect	 should	 be	 narrow	 relative	 to	 the	 confidence
interval	 of	 the	 individual	 studies	 included.	 Thus,	 a	 meta-analysis	 increases
statistical	power.	But	sophisticated	statistical	procedures	cannot	compensate	for
inclusion	 of	 flawed	 data.	 There	 is	 an	 analogy	 between	 individual	 studies
included	 in	 a	 meta-analysis	 and	 the	 analysis	 of	 subgroups	 in	 a	 single	 trial.
Subgroup	 analyses	 are	 suspected	 of	 producing	 spurious	 results	 due	 to	 their
limited	statistical	power	and	repeated	testing	of	statistical	significance.	The	best
estimate	of	effect	 for	a	particular	subgroup	may	be	 the	overall	estimate	for	 the
total	 population.	 The	 principle	 behind	 this	 so-called	 Stein’s	 paradox	 is	 the
“shrinkage”	of	 individual	subgroup	results	 toward	the	grand	mean	(also	known
as	 regression	 toward	 the	 mean).	 The	 extent	 of	 the	 potential	 shrinkage	 of	 an
observed	 value	 depends	 on	 the	 precision	 of	 the	 observed	 value.	 Based	 on	 the
principle	of	shrinkage,	combined	analysis	of	studies	included	in	a	meta-analysis
will	 improve	 statistical	 power	 of	 the	 estimate	 of	 effect	 and	 reduce	 chance
findings.	The	principle	of	shrinkage	is	also	used	in	a	cumulative	meta-analysis,
where	in	a	Bayesian	approach	information	from	a	new	trial	is	incorporated	in	the



complete	 evidence	 provided	 by	 earlier	 trials.	 For	 example,	 thrombolytic
treatment	 (streptokinase)	 was	 shown	 by	 clinical	 trials	 to	 provide	 a	 clinically
important	and	statistically	significant	survival	benefit	in	patients	with	suspected
acute	myocardial	 infarction	 long	 before	 this	 treatment	was	widely	 accepted	 as
being	 effective.	 Similarly,	 corticosteroids	 were	 shown	 to	 accelerate	 fetal	 lung
maturity	 long	before	 they	were	widely	 accepted	 as	being	 effective	 [Antman	et
al.,	 1992;	 Berkey	 et	 al.,	 1996;	 Lau	 et	 al.,	 1992;	 Lau	 &	 Chalmers,	 1995;
Whitehead,	1997].

Measures	of	Occurrence	and	Effect
The	most	common	meta-analyses	found	in	the	medical	literature	concern	clinical
trials.	 Trials	 compare	 the	 occurrence	 of	 the	 outcome(s)	 of	 interest	 between
randomly	allocated	treatment	groups.	Effects	of	treatment	are	usually	expressed
as	a	ratio,	such	as	a	risk	ratio,	an	odds	ratio,	or	a	rate	(hazard)	ratio,	calculated
from	 an	 appropriate	 measure	 of	 occurrence	 for	 treated	 subjects	 and	 controls
respectively.	 Alternatively,	 “difference”	 measures	 of	 effect	 may	 be	 used,	 or
measures	 that	 are	 based	 on	 the	 latter,	 such	 as	 “number-needed-to-treat.”
Calculated	as	1/risk	difference,	this	is	a	popular	way	to	express	the	results	of	a
trial	and	is	often	interpreted	as	the	number	of	patients	that	have	to	be	treated	to
prevent	one	outcome	from	occurring.
A	measure	of	effect	can	only	be	understood	if	the	definition	of	the	occurrence

measure	on	which	the	effect	measure	concerned	is	based	is	properly	appreciated.
Occurrence	measures	 have	 a	 numerator	 and	 a	 denominator.	 The	 numerator	 is
usually	 the	number	of	subjects	with	a	certain	event	(e.g.,	 the	number	of	deaths
due	to	any	cause,	the	number	of	subjects	sustaining	a	first	myocardial	infarction,
etc.),	 or	 a	 certain	 combined	 event,	 such	 as	 the	 combination	 of	 cardiovascular
death	due	to	any	cause	(e.g.,	myocardial	infarction	and	stroke)	“taken	together.”
Note	 that	 such	 a	 combined	 event	 also	 either	 occurs,	 or	 does	 not	 occur,	 in	 any
trial	subject,	and	 that	 the	combined	event	 is	considered	 to	have	occurred	when
the	first	component	event	occurs.	Exceptionally,	the	total	number	of	events,	such
as	 the	 total	 number	 of	 myocardial	 infarctions	 that	 occurred	 during	 follow-up,
may	be	used	as	the	numerator	[Poole-Wilson	et	al.,	2007].	We	stress	that	the	use
of	the	total	number	of	events	as	the	numerator	requires	the	use	of	a	person-time
denominator	(see	later	discussion)	and	special	statistical	methods	that	are	beyond
the	scope	of	this	chapter.
Whether	an	occurrence	measure	with	the	number	of	subjects	with	the	event	in



the	numerator	is	a	risk,	an	odds,	or	a	rate	(hazard)	depends	on	the	choice	of	the
denominator.	 When	 the	 denominator	 is	 taken	 as	 the	 number	 of	 subjects	 for
whom	 follow-up	was	 started	 (and	who	were	 all	 “at	 risk”	 at	 that	moment),	 the
occurrence	measure	 is	called	a	risk	 in	 this	chapter,	and	 is	denoted	by	R.	When
the	 denominator	 is	 taken	 as	 the	 number	 of	 subjects	who	 completed	 follow-up
without	 the	 occurrence	 of	 the	 event	 concerned,	 the	 occurrence	 measure	 is
commonly	 called	 a	 risk	odds,	 or	odds,	 denoted	here	by	O.	On	 the	other	 hand,
when	 the	 denominator	 is	 taken	 as	 the	 total	 person-time	 “at	 risk”	 for	 the	 event
concerned,	 the	occurrence	measure	is	called	a	rate	 in	 this	chapter,	and	denoted
by	the	letter	h	(from	hazard).
A	 risk	 or	 odds	 on	 the	 one	 hand,	 and	 a	 rate	 (hazard)	 on	 the	 other,	 differ

importantly	 in	 the	way	 time	 is	 accounted	 for.	A	 risk	 and	 the	 derived	measure
odds	 (which	 is	equal	 to	 the	corresponding	 risk	divided	by	one	minus	 this	 risk)
are	dimensionless	quantities	that	at	first	sight	do	not	involve	time.	Nonetheless,	a
risk	or	odds	can	only	be	interpreted	when	the	duration	of	the	time	interval	over
which	 the	 risk	 or	 odds	was	 taken	 is	 specified.	 It	 is	meaningless	 to	 say	 that	 a
certain	 subject	 has	 a	 risk	 of	 10%	 of	 death	 unless	 one	 also	 specifies	 the	 time
interval	(1	year,	2	years,	5	years,	etc.)	to	which	the	10%	risk	applies.	It	follows
that	a	 risk	can	only	be	determined	when	all	subjects	have	been	followed	for	at
least	 the	 time	 interval	 chosen.	 Risks	 are	 therefore	 a	 first-choice	 measure	 of
occurrence	only	when	all	subjects	in	a	study	have	been	followed	without	loss	to
follow-up	 for	 at	 least	 the	 same	 fixed	 time	 interval.	 This	 is	 generally	 possible
only	for	acute	conditions,	such	as	suspected	acute	myocardial	 infarction,	as	for
such	conditions	the	outcome	of	interest	can	be	captured	during	a	relatively	short
follow-up	period	that	is	the	same	for	all	subjects.
A	 rate,	on	 the	other	hand,	has	 the	dimension	1/(time)	due	 to	 its	person-time

denominator.	 A	 rate	 of,	 say,	 10	 deaths	 per	 100	 person-years	 of	 follow-up	 “at
risk”	for	death	does	not	imply	a	particular	duration	of	follow-up.	As	long	as	the
rate	 is	constant	over	 time,	 it	does	not	matter	whether	a	 large	group	of	subjects
was	followed	for	a	short	 time,	or	a	smaller	group	for	a	 long	 time.	Because	 the
contribution	 of	 each	 subject	 to	 the	 total	 person-time	 “at	 risk”	 in	 a	 rate’s
denominator	 is	determined	separately	for	each	subject,	 rates	can	also	deal	with
within-study	variability	in	the	duration	of	follow-up.	As	we	shall	see	in	further
discussion,	rates	are	therefore	the	occurrence	measure	of	choice	for	studies	with
a	 variable	 duration	 of	 follow-up,	 as	 is	 commonly	 the	 case	 for	 stable	 (chronic)
conditions.	This	is	particularly	so	when	the	rate	can	be	assumed	to	be	essentially
constant	over	the	time	span	of	the	trial	(taken	as	the	time	interval	between	start



of	enrollment	and	the	end	of	follow-up	for	all	subjects	enrolled).
As	will	be	 illustrated	 in	 the	 following	discussion,	 there	 is	a	well-known	and

simple	 exponential	 relationship	 between	 a	 risk	 and	 a	 rate	 when	 the	 latter	 is
constant	 over	 time,	 a	 relationship	 that	 can	 help	 us	 in	 understanding	 which
measure	of	effect	to	use	in	a	meta-analysis.
Unfortunately,	risk	ratios	(denoted	by	RR),	odds	ratios	(OR)	and	rate	(hazard)

ratios	 (HR)	 are	 often	 considered	 somehow	 equivalent	 and	 therefore
interchangeable	 concepts.	 Nonetheless,	 the	 choice	 is	 not	 trivial	 [Deeks	 &
Altman,	2001].	Furthermore,	despite	attempts	 to	standardize	 the	 format	of	 trial
reports	 in	 major	 medical	 journals,	 consistency	 in	 terminology	 is	 still	 lacking.
Thus,	a	risk	as	defined	earlier	may	also	be	called	an	incidence,	incidence	rate,	or
rate.	Conversely,	 a	 rate	 as	 defined	 here	may	 in	 a	 report	 be	 called	 a	 risk	 (how
confusing!).	What	is	meant	exactly	by	“risk	reduction”	in	a	report	can	often	only
be	 inferred	 from	 the	 statistical	methods	 that	were	 used.	The	 terms	hazard	 and
cumulative	 hazard	 (as	 defined	 later)	 are	 rarely	 used	 in	 reports	 in	 medical
journals	and	have	an	unequivocal	meaning	only	in	the	statistical	literature.
Before	 considering	 the	 relative	merits	 of	 using	RRs,	ORs,	 or	HRs	 in	meta-

analysis,	we	will	first	define	these	concepts	based	on	an	example	taken	from	the
literature.	 One	 purpose	 of	 this	 is	 to	 show	 the	 relevance	 of	 treatment-specific
person-time	denominators	and	 to	explain	how	 these	can	be	obtained	 from	data
that	 could	be	abstracted	 from	a	 report	 that	did	not	 state	 absolute	 rates,	or	give
data	on	treatment-specific	durations	of	follow-up	“at	risk.”

Occurrence	and	Effect	Measures	in	Study	Reports:	A	Detailed
Example
The	SOLVD	 treatment	 trial	 [SOLVD	Investigators,	 1991]	 compared	 the	ACE-
inhibitor	enalapril	(n	=	1,285)	to	a	placebo	(n	=	1,284)	in	patients	with	chronic
heart	failure.
SOLVD	is	an	example	of	a	common	 type	of	 trial	 in	 subjects	with	a	chronic

condition	 and	 a	 follow-up	 duration	 that	 differs	 by	 design	 between	 subjects.
Patients	 were	 enrolled	 during	 a	 34-month	 period.	 Scheduled	 follow-up	 was
terminated	for	all	patients	on	a	so-called	common	stopping	date.	This	resulted	in
a	follow-up	duration	that	ranged,	as	stated	in	the	report,	from	22	to	55	months.
There	were	 452	 deaths	 in	 patients	 assigned	 to	 enalapril,	 as	 opposed	 to	 510

deaths	 in	 those	 assigned	 to	 the	 placebo.	 According	 to	 the	 abstract,	 this
corresponded	to	a	“reduction	in	risk”	of	16%	(95%	CI	5–26%,	P	=	0.0036).



Although	the	SOLVD	report	was	published	more	than	20	years	ago,	its	format
is	fairly	typical	for	how	this	type	of	trial	is	reported	today.
The	authors	state	 that	“the	percentage	reduction	in	mortality	was	reported	as

(1	 –	 RR)	 ×	 100,	 where	 RR	 is	 the	 estimated	 relative	 risk	 of	 an	 event	 in	 the
enalapril	group	as	compared	with	the	placebo	group	estimated	from	life	tables.”
That	the	RR	mentioned	in	the	SOLVD	report	was	neither	taken	as	the	risk	ratio
nor	as	the	odds	ratio	based	on	the	corresponding	definitions	given	earlier	can	be
verified	readily	from	the	SOLVD	data	already	given.	When	the	risks	of	death	are
taken	as	452/1,285	for	enalapril	and	510/1,284	for	the	placebo	(note	that,	strictly
speaking,	these	are	not	risks	as	defined	earlier	because	of	the	variable	follow-up
duration),	 it	 follows	 that	 the	 risk	 ratio	 is	 equal	 to	 (452/1,285)/(510/1,284),	 or
0.89,	which	 corresponds	 to	 a	 “reduction	 in	 risk”	of	 (1	–	 0.89)	×	100,	 or	 11%.
Similarly,	 the	 odds	 ratio	 can	 be	 taken	 as	 [452/(1,285	 –	 452)]/[(510/(1,284	 –
510)]	or	0.82,	which	corresponds	to	an	18%	reduction	(always	have	a	calculator
or	a	spreadsheet	program	on	hand	while	reading	a	report).	How	then	might	the
SOLVD	 authors	 have	 arrived	 at	 the	 stated	 16%	 reduction	 based	 on	 risks
“estimated	from	life	tables”?
The	report	states	that	groups	were	compared	by	the	log-rank	test.	This	test	(or

the	equivalent	Cox	proportional	hazards	analysis	with	treatment	allocation	as	the
only	covariate)	is	commonly	used	to	compare	treatment	groups	for	trials	with	a
variable	follow-up	duration.	This	is	not	understood	by	all	readers,	however;	it	is
obvious	only	 to	 those	who	are	aware	of	 the	 fact	 that	 the	 two	analysis	methods
mentioned	 return	 the	 rate	 (hazard)	 ratio—assumed	 constant	 over	 time—as	 a
relative	 measure	 of	 treatment	 effect,	 which	 is	 calculated	 from	 the	 rates	 for
treated	 subjects	 and	 controls	 respectively,	 each	 with	 a	 person-time	 “at	 risk”
denominator	determined	 separately	 for	 the	 treatment	concerned.	 It	 follows	 that
in	all	likelihood	the	16%	reduction	in	death	reported	by	SOLVD	corresponds	to
a	rate	ratio	of	0.84.	But	can	this	be	verified	from	the	data	given	in	the	report?
Treatment-specific	person-time	“at	risk”	data	are	rarely	given	in	trial	reports,

SOLVD	being	no	exception.	Most	 reports	give	Kaplan-Meier	 (KM)	curves	 for
the	 outcomes	 considered.	 The	 KM	 curve	 for	 total	 mortality	 shown	 in	 the
SOLVD	report	is	reproduced	here	as	Figure	11–1.



FIGURE	11–1	Mortality	curves	in	the	placebo	and	enalapril	groups.	The	numbers	of	patients	alive	in	each
group	at	the	end	of	each	period	are	shown	at	the	bottom	of	the	figure.	P	=	0.0036	for	the	comparison
between	groups	by	the	log-rank	test.
Reproduced	from	The	New	England	Journal	of	Medicine.	The	SOLVD	investigators.	Effect	of	enalapril	on
survival	in	patients	with	reduced	left	ventricular	ejection	fractions	and	congestive	heart	failure.	N	Eng	J
Med	1991;325:293–302.

When	 the	 numbers	 of	 patients	 still	 “at	 risk”	 for	 the	 outcome	 concerned	 are
given	under	a	KM	curve	(as	is	often	the	case),	the	total	person-time	“at	risk”	can
be	calculated	for	each	treatment.	This	is	not	just	true	for	death	as	outcome.	For
any	 other	 outcome	 considered	 in	 a	 KM	 curve,	 person-times	 “at	 risk”	 can	 be
calculated,	 even	 when	 the	 outcome	 concerned	 is	 subject	 to	 competition	 from
other	 outcomes.	When	 (exceptionally,	 and	 the	 reason	 for	 using	 SOLVD	 as	 an
example)	data	are	also	given	on	how	the	number	of	subjects	with	 the	outcome
concerned	(death	in	this	case)	evolves	over	time,	one	can	also	determine	how	the
corresponding	rates	evolve	over	time.
The	calculations	required	are	illustrated	in	Table	11–1	and	are	explained	here.

For	the	time	points	given	in	column	(1),	the	numbers	of	patients	still	“at	risk”	for
death	(as	shown	in	Figure	11–1)	appear	in	columns	(2)	and	(6)	for	the	enalapril
and	the	placebo	group,	respectively.	Columns	(4)	and	(8)	give	the	corresponding
number	of	deaths	by	interval	as	derived	from	Table	3	in	the	report.	For	example,
there	were	118	deaths	in	the	enalapril	arm	in	the	interval	12–24	months.

TABLE	11–1	Mortality	Data	Extracted	from	the	SOLVD	Trial	Report



*Derived	from	the	cumulative	numbers	of	deaths	in	Table	3	of	the	report.
**Inconsistent	with	Figure	11–1,	which	suggests	that	1,285−1,195,	or	90,	enalapril	subjects	and	1,284	−
1,159,	or	125,	placebo	subjects	did	not	complete	the	first	6	months	of	follow-up.	This	does	not	affect	the
calculations.

Columns	(3)	and	(7)	give	the	interval	number	of	patient-months	of	follow-up
for	 those	 “at	 risk”	 for	 death	 by	 treatment	 group	 and	 by	 interval	 as	 calculated
using	Excel	from	the	data	given	in	columns	(2)	and	(6).	For	example,	it	follows
from	 the	 data	 in	 column	 (2)	 that	 during	 the	 first	 6	 months,	 follow-up	 was
terminated	in	1,285–1,195,	or	90	enalapril	patients	either	because	of	death	or	an
early	 end	 to	 follow-up.	 Assuming	 that	 this	 occurred	 on	 average	 halfway	 the
interval	 (which	 is	 equivalent	 to	 approximating	 the	 mortality	 curve	 for	 the
interval	0–6	months	by	a	straight	line),	these	90	patients	have	contributed	90	×	3,
or	 270	 patient-months	 of	 follow-up	 to	 the	 total.	 In	 the	 same	 treatment	 group,
1,195	patients	were	still	alive	at	6	months.	These	have	contributed	at	 that	 time
point	another	1,195	×	6,	or	7,170	patients-months	of	 follow-up	 to	 the	 total	 for
enalapril.	Adding	7,170	to	270	gives	the	7,440	months	shown	in	column	(3)	for
the	interval	0–6	months.
The	 same	calculation	 can	be	 repeated	 for	 each	 subsequent	 time	 interval	 and

for	each	 treatment.	At	48	months,	333	enalapril	and	299	placebo	patients	were
still	 alive	 and	 were	 followed	 further.	 According	 to	 the	 report,	 the	 maximum
duration	of	follow-up	was	55	months,	that	is,	another	7	months	beyond	48.	The
calculations	in	columns	(3)	and	(7)	assume	an	average	of	3	months	of	follow-up
beyond	48	months.	This	explains	the	last	entries	in	columns	(3)	and	(7):	333	×	3
=	999	for	enalapril	and	299	×	3	=	897	for	placebo.	Note	that	the	total	follow-up
time	 does	 not	 critically	 depend	 on	 the	 assumption	 made	 concerning	 the
additional	 follow-up	 duration	 beyond	 48	 months	 in	 the	 333	 and	 299	 patients
concerned,	as	their	number	is	small.



One	 can	 now	 calculate	 the	 mortality	 rates	 in	 SOLVD.	 The	 numerator	 for
enalapril	is	452	deaths.	The	corresponding	denominator	is	the	sum	of	the	interval
durations	 in	 column	 (3)	of	Table	11–1,	 and	 is	 equal	 to	44,943	patient-months.
This	 is	equivalent	 to	44,943/12,	or	3,745.25	patient-years.	Hence,	 the	mortality
rate	 for	enalapril	 is	 (452/3,745.25)	×	100,	or	12.1	deaths	per	100	patient-years
“at	risk”	for	death.	Similarly,	the	mortality	rate	for	placebo	is	510/42,624,	which
corresponds	 to	 14.4	 deaths	 per	 100	 patient-years	 “at	 risk”	 after	 conversion	 of
months	to	years,	and	multiplying	by	100.
Based	 on	 these	 rates,	 one	 can	 now	 also	 calculate	 the	 rate	 (hazard)	 ratio

comparing	enalapril	to	placebo,	which	is	12.1/14.4,	or	0.84.	As	(1	–	0.84)	×	100
=	 16,	 note	 that	 this	 corresponds	 exactly	 to	 the	 “reduction	 in	 risk”	 of	 death	 of
16%	as	stated	in	the	SOLVD	report.
The	number	of	subjects	still	“at	risk”	as	shown	for	SOLVD	in	Figure	11–1	is

today	a	fairly	common	feature	of	trial	reports	in	major	journals,	but	the	number
of	 subjects	 with	 event	 by	 time	 interval,	 as	 presented	 in	 Table	 11–1,	 is	 rarely
given.	 That	 these	 numbers	 were	 reported	 for	 SOLVD	 allows	 us	 to	 determine
how	the	rates	of	death	and	the	rate	(hazard)	ratios	evolve	over	time.	In	Table	11–
1,	 interval	 rates	 were	 calculated	 as	 the	 number	 of	 deaths	 for	 the	 interval
concerned,	divided	by	the	corresponding	patient-time	of	follow-up.	For	example,
the	 rate	 of	 death	 for	 enalapril	 in	 the	 interval	 12–24	months	 in	 column	 (5)	 of
Table	11–1	is	{118/[(6588	+	6237)/12]}	×	100,	or	11.0	deaths	per	100	patient-
years.	When	follow-up	is	partitioned	by	time	intervals	in	this	manner,	one	would
expect	that	the	time	interval	rates	vary.	What	matters	here	is	whether	there	is	a
trend	 over	 time.	 Note	 that	 the	 rates	 for	 enalapril	 given	 in	 column	 (5)	 are
essentially	stable	over	time.	For	the	placebo,	the	rate	appears	high	in	the	first	6
months	 and	 is	 then	 also	 essentially	 stable.	Why	 this	 is	 so	 cannot	 be	 answered
from	the	data	given.	What	matters	 for	meta-analysis	 is	 that	 the	overall	 rates	of
12.1	per	100	patient-years	for	enalapril	and	14.4	for	the	placebo	are	convenient
and	credible	summary	occurrence	measures	for	SOLVD	that	can	often	easily	be
calculated	even	if	they	are	not	given	and	that	can	be	taken	as	essentially	constant
over	time	for	the	chronic	disease	condition	concerned.	As	we	shall	see	later,	as
long	as	 the	 rates	can	be	assumed	constant	over	 time,	 the	particular	duration	of
follow-up	 in	 each	 trial	 or	 study	 included	 in	 a	meta-analysis	no	 longer	matters.
The	 same	 cannot	 be	 said	 for	 the	 risk	 or	 the	 odds	 ratio	 and	 for	 the	 “number-
needed-to-treat”	as	commonly	calculated	[Lubsen	et	al.,	2000].
In	column	(10)	of	Table	11–1,	the	rate	(hazard)	ratios	are	also	given	by	time

interval.	As	is	true	for	the	rates,	these	vary	but	are	essentially	constant	over	time.



Both	the	log-rank	test	and	Cox	proportional	hazard	analysis	with	treatment	as	the
only	 covariate	 assume	 that	 the	 rate	 (hazard)	 ratio	 is	 constant	 over	 time.	 In	 the
case	of	SOLVD,	the	data	do	not	clearly	violate	this	assumption.	We	emphasize
that	 these	methods	of	comparing	 rates	do	not	assume	 that	 the	 rates	 themselves
are	also	constant.	Few	trial	reports	address	the	question	of	whether	the	rates	are
constant	 over	 time,	 or	 whether	 the	 data	 support	 the	 assumption	 made	 in	 the
analysis	that	the	rate	(hazard)	ratio	is	constant.
Because	the	time	“at	risk”	for	death	is	the	same	for	all	causes,	cause-specific

death	 rates	 can	 be	 calculated	when	 a	 breakdown	 by	 cause	 is	 reported	 and	 the
subject	time	of	follow-up	by	treatment	is	given	or	can	be	calculated.	As	we	shall
see	later,	this	is	essential	when	a	meta-analysis	is	performed	for	specific	causes
of	death,	or	for	nonfatal	events	that	are	subject	to	competitive	censoring.
Treatment-specific	 subject	 times	 of	 follow-up	 also	 suggest	 an	 alternative

measure	of	treatment	effect	that	may	be	easier	to	understand	for	patients	than	the
statement—based	 on	 SOLVD—	 “if	 you	 take	 enalapril	 for	 your	 heart	 failure,
your	mortality	 rate	will	 go	 down	by	 16	 percent.”	Note	 that	 in	Table	 11–1	 the
mean	follow-up	is	calculated	as	35.0	months	for	enalapril,	as	opposed	to	33.2	for
the	placebo.	Based	on	this,	a	physician	could	say	to	a	patient:	“After	you	have
taken	 enalapril	 for	 35	 months,	 you	 will	 have	 gained	 1.8	 months	 of	 life.”	 Of
course,	this	is	only	true	on	average.	Nonetheless,	it	puts	the	effect	of	treatment	in
a	different	perspective.	An	extra	1.8	months	may	be	worthwhile	if	enalapril	does
not	 cause	 any	 side	 effects	 and	 reduces	 the	 symptoms	 of	 heart	 failure.	 On	 the
other	 hand,	 if	 the	 treatment	 has	 quality	 of	 life	 decreasing	 side	 effects,	 the
perspective	may	be	different.	Few	if	any	meta-analyses	have	thus	far	considered
effects	on	duration	of	life.
When	 numbers	 “at	 risk”	 are	 not	 given	 under	 a	 KM	 curve	 one	 can	 obtain

treatment-specific	follow-up	durations	if	the	mean	follow-up	duration	until	death
or	end	of	study	for	both	treatments	combined	and	the	rate	(hazard)	ratio	for	all-
cause	 death	 are	 given	 in	 a	 report.	 This	 involves	 solving	 the	 following	 two
equations	with	two	unknowns:

(N1	+	N0)	×	MFUPC	=	N1	×	MFUP1	+	N0	×	MFUP0
HR	=	[e1/(N1	×	MFUP1)]/[e0/(N0	×	MFUP0)]

In	 these	 equations,	 N1	 and	 N0	 respectively	 denote	 the	 number	 of	 subjects
allocated	to	each	of	the	two	treatments	compared.	Similarly,	e1	and	e0	denote	the
corresponding	number	of	deaths.	HR	denotes	the	rate	(hazard)	ratio,	and	MFUPC



the	mean	duration	of	follow-up	for	both	treatments	combined.
The	 two	 unknowns	 are	MFUP1	 and	MFUP0	 respectively,	 that	 is,	 the	 two

treatment-specific	mean	follow-up	durations	 to	be	determined.	Solving	 the	 two
equations	 for	MFUP1	 and	MFUP0	 by	 algebra	 is	 tedious	 and	 is	 not	 necessary
when	the	Solver	function	of	Excel	is	used.
A	note	of	caution	is	in	order	here.	From	Table	11–1,	the	MFUPC	for	SOLVD

is	(44,943	+	42,624)/(1,285	+	1,284),	or	34.1	months.	This	is	much	less	than	the
41.4	months	stated	in	the	report.	Based	on	the	calendar	dates	given	for	inclusion
and	 the	 common	 stopping	 date,	 the	 likely	 explanation	 is	 that	 the	 average
duration	of	follow-up	stated	in	the	report	is	in	fact	the	mean	time	span	between
entry	 into	 the	 trial	 and	 the	 common	 stopping	 date.	 This	 shows	 that	 a	 uniform
definition	of	terms	used	in	study	reports	has	yet	to	be	agreed	upon	and	illustrates
that	 abstracting	 data	 from	 a	 report	 for	 inclusion	 in	 a	 meta-analysis	 can	 be
challenging	because	of	confusion	about	the	exact	meaning	of	the	terms	used.
Further	 methods	 of	 estimating	 person-time	 denominators	 based	 on	 data

abstracted	from	published	reports	may	be	found	elsewhere	[Skali	et	al.,	2006].

Risk,	Odds,	or	Rate	(Hazard)	Ratios?
The	 choice	 of	 the	 measure	 of	 effect	 to	 be	 used	 in	 a	 meta-analysis	 must	 be
carefully	considered	and	depends	both	on	the	purpose	of	 the	meta-analysis	and
the	data	that	are	available	for	each	study	considered.
Meta-analyses	 that	 rely	 on	 a	 ratio	 rather	 than	 difference	measures	 of	 effect

predominate	in	the	medical	literature.	The	odds	ratio	has	been	used	most	often,
unfortunately	 without	 much	 consideration	 for	 whether	 this	 measure	 is
appropriate	 given	 the	 purpose	 of	 the	 analysis.	 Also,	 the	 measure	 used	 in	 an
analysis	 is	 not	 necessarily	 the	 same	 as	 the	 measure	 reported	 for	 the	 studies
considered.	To	illustrate,	in	a	meta-analysis	by	Garg	and	Yusuf	[1995]	of	ACE-
inhibitor	trials	in	heart	failure,	the	SOLVD	trial	discussed	earlier	is	represented
by	 the	 odds	 ratio	 of	 0.82	 rather	 than	 the	 rate	 (hazard)	 ratio	 of	 0.84.	 More
recently,	Sattar	et	al.	[2010]	reported	a	meta-analysis	of	13	trials	with	a	total	of
91,140	participants	comparing	a	statin	to	a	placebo	that	focused	on	the	question
of	whether	statins	may	cause	diabetes	mellitus.	 In	 the	 report,	 the	authors	state:
“Because	 the	 effect	 estimates	 for	 incident	 diabetes	 were	 directly	 reported	 as
hazard	 ratios	 (HRs)	 in	 only	 three	 of	 the	 six	 published	 trials,	 we	 adopted	 a
standard	approach	across	all	trials,	in	which	we	calculated	odds	ratios	(ORs)	and
their	95%	CIs	 from	the	abstracted	data	 for	 the	number	of	patients	who	did	not



have	diabetes	at	baseline	and	those	developing	incident	diabetes.”
It	appears	 that	both	Garg	and	Yusuf	[1995]	and	Sattar	et	al.	 [2010]	consider

the	odds	ratio	an	appropriate	proxy	for	the	rate	(hazard)	ratio.	Undoubtedly,	the
reason	for	this	is	primarily	practical.	Rate	(hazard)	ratios	cannot	always	be	found
in	reports,	let	alone	absolute	rates	or	person-times	of	follow-up	by	treatment.	On
the	other	hand,	risk	or	odds	ratios	can	always	be	calculated.
For	acute	conditions	with	a	fixed	follow-up	duration,	a	meta-analysis	based	on

risks	or	odds	may	be	appropriate,	in	particular	when	the	fixed	follow-up	duration
is	the	same	for	all	studies	included	or	can	be	made	the	same	by	only	considering
events	up	to	the	same	time	point	for	all	studies.	In	such	instances,	the	risk	ratio
or	 risk	 difference	 is	 preferred,	 as	 these	 are	 more	 understandable	 measures	 of
effect	than	the	odds	ratio.
What	 is	 true	 for	 acute	 conditions	 does	 not	 apply	 to	 chronic	 conditions	 and

meta-analyses	of	 studies	with	durations	of	 follow-up	 that	vary	both	within	and
between	studies.	Here,	the	basic	measure	of	occurrence	is	the	rate,	not	the	risk.
The	reason	is	that	for	a	constant	rate,	the	risk	depends	on	the	duration	of	the	time
interval	over	which	the	risk	is	taken.	That	this	has	consequences	for	commonly
used	effect	measures	based	on	risks	can	be	shown	as	follows.
Consider,	for	example,	a	death	rate	of	14/100	for	treated	subjects	and	20/100

person-years	 for	 comparable	 controls.	 For	 a	 constant	 rate,	 the	 relationship
between	 the	 risk	of	death	and	 the	 rate	 is	given	by	 the	well-known	exponential
relationship	R(t)	 =	 1	 –	 exp(–h	 ×	 t),	where	R(t)	 stands	 for	 the	 risk	 over	 a	 time
interval	of	duration	t,	exp	for	the	base	of	the	natural	logarithm	(e)	to	the	power	to
(in	 this	 case	 to	 the	 power	 −h	 ×	 t),	 and	 h	 for	 the	 rate.	 Based	 on	 this	 formula,
Table	11–2	shows	how	the	risks	of	death	and	several	risk-based	effect	measures
evolve	 over	 time	 for	 constant	 rates	 of	 14/100	 and	 20/100	 person-years
respectively.
Note	that	the	relative	risk	reduction	derived	from	the	risk	ratio	underestimates

the	 risk	 reduction	 derived	 from	 the	 constant	 hazard	 ratio	 of	 0.7	 in	 a	 time-
dependent	manner	and	that	the	opposite	is	the	case	for	the	relative	risk	reduction
derived	from	the	odds	ratio.	 It	 follows	that	both	 the	risk	and	the	odds	ratio	are
biased	estimators	of	the	rate	(hazard)	ratio.	Note	also	that	the	risk	difference,	and
therefore	 the	 “number-needed-to-treat”	 depends	 markedly	 on	 the	 duration	 of
follow-up.	 This	 implies	 that	 a	 study	 with,	 for	 example,	 3	 years	 of	 follow-up
cannot	 be	 compared	 to	 a	 study	with	 5	 years	 of	 follow-up	 based	 on	 risk-based
effect	measures.	Duration	of	 follow-up	 is	 a	 “nuisance	 factor”	when	comparing
studies	with	different	follow-up	durations	and	increases	the	heterogeneity	when



risk-based	 rather	 than	 rate	 (hazard)-based	 effect	measures	 are	 used	 in	 a	meta-
analysis.
Ideally,	estimators	of	effects	should	be	as	unbiased	as	possible.	Nonetheless,

one	may	argue	 that	 the	 time-dependent	bias	 in	either	 the	 risk	or	 the	odds	 ratio
when	 used	 to	 estimate	 the	 hazard	 ratio	 (see	 Table	 11–2)	 is	 too	 small	 to	 be
relevant,	 in	 particular	 when	 the	 rates	 are	 low.	Whether	 this	 argument	 always
holds	is	another	matter.

TABLE	11–2	Risk	of	Death	and	Risk-Based	Treatment	Effects	by	Duration	of	Follow-up	for	Constant
Rates	of	14/100	and	20/100	Subject-Years	of	Follow-up	“At	Risk”	for	Death	for	Treated	and	Control
Subjects	Respectively	(Hazard	Ratio	=	0.7)

*NNT	=	“number-needed-to-treat,”	commonly	taken	as	1/|Risk	difference|.

Meta-analysis	may	reliably	detect	effects	of	treatment	on	outcomes	for	which
individual	studies	have	inadequate	statistical	power.	To	be	useful	in	this	regard,
the	effect	measure	chosen	must	be	such	that	 the	analysis	will	show	“no	effect”
when	 there	 is	no	difference	between	 treated	and	control	subjects.	For	all-cause
death,	 this	 requirement	 is	met	 no	matter	which	 effect	measure	 is	 chosen.	Had
Table	 11–2	 been	 made	 for	 the	 same	 rate	 for	 treated	 subjects	 and	 controls
respectively,	 all	 effect	measures	 shown	would	 indicate	 “no	effect”	 for	 all	 time
points.	However,	for	any	outcome	other	than	all-cause	death,	this	requirement	is
not	met	by	risk-based	measures	of	effect.
That	 this	 must	 be	 so	 can	 be	 clarified	 based	 on	 the	 imaginary	 trial	 data	 for

cardiovascular	(CV)	death	and	noncardiovascular	(NCV)	death,	respectively,	as
two	mutually	exclusive	outcomes	given	in	Table	11–3.
Note	that	because	the	mean	duration	of	follow-up	“at	risk”	for	death	is	given

by	treatment	(rather	than	for	both	treatments	combined,	as	is	usually	the	case	in
reports),	and	all	rates	and	measures	of	effect	shown	can	be	readily	verified.	For
example,	 the	rates	of	CVD	are	by	definition	196/(2.445	×	2,000),	or	4/100,	for
treated	subjects,	and	451/(2.256	×	2,000),	or	10/100	person-years,	 for	controls.
The	corresponding	hazard	ratio	for	CVD	is	equal	to	0.4,	etc.
There	 is	a	 lesson	 in	Table	11–3	 that	has	been	overlooked	 thus	 far	 in	several



published	meta-analyses.	 Imagine	 that	 a	meta-analysis	 is	undertaken	 to	answer
the	very	relevant	question	of	whether	a	cardiovascular	drug	(such	as	a	statin,	for
example),	has	an	effect	on	NCV	death.	Table	11–3	shows	convincingly	that	such
a	meta-analysis	must	focus	on	the	rate	(hazard)	ratio	for	NCV	death,	as	both	the
risk	 and	 the	 odds	 ratio	 suggest	 an	 untoward	 effect	 on	 this	 cause	 of	 death,
although	there	is	none	because	the	corresponding	rate	(hazard)	ratio	is	1.0.	The
reason	for	this	is	that	treated	subjects	live	longer	(mean	follow-up	=	2.445	years)
due	to	the	markedly	reduced	CV	death	rate	compared	to	controls	(mean	follow-
up	is	2.256	years;	see	Table	11–3).	In	a	closed	cohort	(i.e.,	a	population	with	a
membership	 defined	 once	 at	 the	 start	 of	 follow-up)	 of	 treated	 subjects,	 this
results	in	a	higher	number	of	NCV	deaths	(490)	because	of	the	increased	mean
duration	 of	 follow-up	 “at	 risk”	 relative	 to	 controls	 (451;	 see	 Table	 11–3)
although	 the	 rate	 (hazard)	of	NCV	death	 is	 the	 same	 for	both	 treatments.	This
phenomenon	has	been	called	cause-of-death	competition.

TABLE	11–3	Occurrence	of	Death	by	Cause	in	a	Simulated	Trial	with	2000	Treated	Subjects	and	2000
Controls

CV,	cardiovascular;	NCV,	noncardiovascular
Numbers	of	all-cause	deaths	taken	as	2000	×	R(t),	with	R(t)	=	{1	–	exp[–(hCVD	+	hNCVD)]	×	t}	for	t	=	3,	and
CV	and	NCV	death	rates	(hCVD	and	hNCVD	respectively)	for	mutually	exclusive	causes	of	death	as	shown.
Number	of	CV	deaths	taken	as	[hCVD/(hCVD	+	hNCVD)]	×	number	of	all-cause	deaths.	Mean	duration	of	follow-
up	taken	as	R(t)/(hCVD	+	hNCVD),	with	R(t)	=	risk	of	all-cause	death,	t	=	3,	and	the	rates	shown.	Hazard,	risk,
and	odds	ratios	calculated	from	the	data	given.

Obviously,	both	the	risk	and	the	odds	ratio	for	NCV	death	in	Table	11–3	do
not	take	cause-of-death	competition	into	account.	The	reason	for	this	is	not	that
the	numerators	used	 in	calculating	 the	 risks	or	 the	odds	of	NCV	death	are	any
different	 from	those	used	 in	calculating	 the	rates.	Rather,	 the	reason	 is	 that	 the
denominators	 (number	 of	 participants	 allocated	 to	 the	 treatment	 in	 the	 case	 of
risks,	number	of	participants	with	no	event	in	the	case	of	odds)	do	not	take	the
increased	 person-time	 “at	 risk”	 for	 treated	 subjects	 in	 comparison	 to	 controls
into	account.	On	the	other	hand,	rates	have	by	definition	person-time	“at	risk”	as



the	 denominator,	 and	 are	 therefore	 sensitive	 to	 effects	 of	 treatment	 on	 the
person-time	“at	risk.”
The	hazard	ratios	for	all	death,	CV	death,	and	NCV	death	shown	in	Table	11–

3	follow	directly	from	the	corresponding	rates	for	treated	and	controls	that	were
the	basis	of	the	calculations,	as	explained	in	the	table’s	legend.	The	same	hazard
ratios	can	also	be	obtained	from	the	familiar	log-rank	statistic	(O/E)	for	treated
subjects,	divided	by	(O/E)	for	controls,	with	O	denoting	the	observed	numbers	of
deaths	 for	 the	 cause	 concerned,	 and	 E	 the	 expected	 number.	 The	 expected
numbers	of	 deaths	by	 cause	must	 be	obtained	by	 first	 calculating	 the	 rates	 for
both	 groups	 combined.	 For	 example,	 the	 CV	 death	 rate	 for	 both	 groups
combined	is	(196	+	451)/(2,000	×	2.445	+	2,000	×	2.256),	or	6.9	per	100	person-
years.	By	applying	this	rate	to	the	total	person-years	of	follow-up	for	treated	and
controls	 respectively,	 the	 corresponding	 expected	 numbers	 of	 CV	 deaths	 are
336.9	and	310.1,	 respectively.	Hence,	 the	 log-rank	statistic	estimate	of	 the	 rate
(hazard)	 ratio	 for	 CV	 death	 is	 (196/336.9)/(451/310.1),	 or	 0.4,	 which
corresponds	 to	 the	value	 calculated	directly	 from	 the	data	 in	Table	11–3.	This
shows	that	 in	calculating	 the	 log-rank	statistic	for	CV	death,	 it	does	not	matter
whether	follow-up	“at	risk”	is	terminated	by	competing	NCV	death	or	by	the	end
of	follow-up.	Contrary	to	the	risk	and	the	odds	ratio,	the	rate	(hazard)	ratio	from
the	log-rank	statistic	 is	also	an	unbiased	estimator	of	 treatment	effect	when	the
event	concerned	is	subject	to	competition	from	other	event(s).
Trials	 always	 compare	 closed	 cohorts	 of	 differently	 treated	 subjects.	 Hence

competition	between	events	will	always	occur.	A	subject	who,	for	example,	dies
in	 a	 car	 accident	 is	 no	 longer	 “at	 risk”	 for	 acute	 myocardial	 infarction.	 A
comparison	 between	 treatments	 for	 the	 occurrence	 of	 myocardial	 infarction
cannot	ignore	events	that	terminated	follow-up	“at	risk”	for	infarction.
Because	 of	 this,	 the	 already	 mentioned	 odds	 ratio–based	 meta-analysis	 by

Sattar	 et	 al.	 [2010]	 of	 statins	 and	 new	 diabetes	 is	 difficult	 to	 interpret.	 In	 the
report,	the	authors	have	tabulated	for	each	included	trial	a	proxy	of	the	rates	of
new	 diabetes	 for	 statins	 and	 controls,	 respectively,	 using	 the	mean	 or	median
duration	 of	 follow-up	 until	 death	 or	 the	 end	 of	 study	 for	 statin	 and	 control
subjects	combined	 in	calculating	 the	denominators.	These	“rates”	are	useful	as
an	indicator	of	the	frequency	of	new	diabetes,	which	ranged	from	4.5	to	34.8	per
1,000	person-years.	However,	these	are	not	true	rates	according	to	its	definition
because	 the	 denominators	were	 not	 taken	 as	 the	 person-time	 “at	 risk”	 for	 new
diabetes	for	statin	and	control	subjects.	This	data	was	obviously	not	available	to
the	 authors.	 It	 would	 have	 been	 of	 interest	 to	 know	 whether	 the	 authors



attempted	 to	obtain	such	data	 from	 the	 investigators	concerned,	but	 failed	 (our
experience	in	this	regard	is	not	good).
In	the	studies	considered	by	Sattar	et	al.	[2010],	there	were	2,226	cases	of	new

diabetes	for	statin	users	as	opposed	to	2,052	for	control	subjects.	This	represents
an	increase	of	8.5%.	The	overall	odds	ratio	for	new	diabetes	comparing	statin	to
control	subjects	was	1.09	(95%	CI,	1.02–1.17).	The	authors	conclude	that	“statin
therapy	 is	associated	with	a	slightly	 increased	risk	of	development	of	diabetes,
but	the	risk	is	low	both	in	absolute	terms	and	when	compared	with	the	reduction
in	coronary	events.”	In	the	discussion,	the	authors	note	that	“improved	survival
with	statin	treatment”	may	be	“a	residual	confounding	factor,”	and	then,	quoting
a	meta-analysis	of	statins	by	 the	Cholesterol	Treatment	Trialists’	Collaborators
[2005],	 state	 that	 “overall	 survival	with	 statins	 is	 very	 similar	 to	 survival	with
control	 therapy	 (about	 1.4%	 absolute	 difference),	 suggesting	 that	 survival	 bias
does	not	explain	the	variation.”
Sattar	et	al.	[2010]	do	not	define	survival	bias	or	explain	how	this	relates	to	a

1.4%	absolute	difference.	A	definition	of	survival	bias	 that	 follows	from	Table
11–3	is	the	difference	in	mean	follow-up	“at	risk”	for	death	(which	may	also	be
called	mean	survival)	between	statin	users	and	controls.	Hence,	 the	question	 is
whether	an	estimate	of	the	difference	in	mean	survival	can	be	derived	from	the
report	of	the	Cholesterol	Treatment	Trialists’	Collaborators	[2005].
The	 Cholesterol	 Treatment	 Trialists’	 meta-analysis	 used	 a	 sophisticated

extension	 of	 the	 log-rank	 statistic	 to	 estimate	 rate	 (hazard)	 ratios	 for	 all-cause
death	and	for	major	CV	events.	The	mean	duration	of	follow-up	for	survivors	for
the	trials	included	in	this	meta-analysis	was	given	in	the	report	as	4.7	years.	This
quantity	 cannot	 be	 used	 to	 determine	 the	 mean	 survival	 for	 statin	 users	 and
controls	 by	 the	 method	 of	 solving	 two	 equations	 with	 two	 unknowns	 given
previously.	 Hence,	 another	 method	 is	 required	 to	 determine	 how	 large	 the
difference	in	mean	survival	might	be.
The	 method	 concerned	 assumes	 that	 the	 mean	 duration	 of	 follow-up	 for

survivors	is	the	same	for	treated	and	controls,	which	is	reasonable.	The	absolute
rate	 (assumed	 constant)	 of	 all-cause	 death	 h	 is	 equal	 to	 –ln[S(t)]/t,	 where	 S(t)
denotes	 the	 survival	 probability	 at	 time	 t,	 and	 ln	 the	 natural	 logarithm.	 The
Cholesterol	 Treatment	 Trialists’	 meta-analysis	 concerned	 45,054	 subjects
assigned	 statins	 and	 45,002	 assigned	 the	 control	 treatment.	 The	 corresponding
numbers	of	deaths	were	3,832	and	4,354,	respectively.	It	follows	that	there	were
(45,054	–	3,832),	or	41,222,	survivors	among	statin	users	and	(45,002	–	4,354),
or	 40,648,	 for	 controls.	 Hence,	 the	 approximate	 (approximate	 because	 a	 fixed



follow-up	of	4.7	years	is	assumed)	rates	of	death	were	–ln(41,222/45,054)/4.7,	or
1.891	 deaths	 per	 100	 person-years	 for	 the	 statin	 group,	 and
–ln(40,648/45,002)/4.7,	or	2.165	deaths	per	100	person-years	 for	 controls.	The
rate	ratio	from	this	is	1.891/2.165,	or	0.87,	which	reassuringly	is	the	same	as	the
overall	rate	ratio	for	all-cause	death	stated	in	the	Cholesterol	Treatment	Trialists’
meta-analysis.	 From	 an	 equation	 for	mean	 duration	 of	 follow-up	 “at	 risk”	 for
death	used	earlier	to	determine	the	data	given	in	Table	11–3,	it	follows	that	the
mean	survival	is	(3,832/45,054)/(1.891/100),	or	4.50	years,	for	the	statin	group,
and	(4,354/45,002)/(2.165/100),	or	4.47	years,	for	controls.	The	“survival	bias”
is	thus	0.03	years,	which	is	equivalent	to	less	than	1%	of	the	mean	survival	for
controls.	This	small	increase	in	survival	cannot	explain	the	8.5%	increase	in	new
diabetes	reported	by	Sattar	et	al.	[2010].	The	conclusion	is	that	the	bias	that	can
be	attributed	 to	 increased	survival	by	statin	 treatment	 in	 the	effect	measure	 for
new	diabetes	 reported	 by	 these	 authors	 is	 indeed	 irrelevant	 (that	 there	may	 be
other	biases	is	an	entirely	different	matter).
In	the	case	of	the	meta-analysis	by	Sattar	et	al.	[2010]	it	did	not	matter	that	a

theoretically	 biased	 estimator	 of	 treatment	 effect	was	 used.	This	 is	 not	 always
the	case.
Koller	 et	 al.	 [2008]	 performed	 a	 meta-analysis	 of	 nonarrhythmic	 death	 for

nine	 trials	 comparing	 an	 implantable	 cardiac	 defibrillator	 (ICD)	 to	 control
treatment.	Deaths	were	classified	as	either	due	to	arrhythmia	or	not.	The	overall
odds	ratio	for	nonarrhythmic	death	was	1.11	(95%	CI	0.84–1.45).	Although	not
convincingly	so	because	of	the	wide	confidence	interval,	this	suggests	that	ICD
implantation	may	have	an	untoward	effect	on	nonarrhythmic	death.	Because	of
cause-of-death	competition,	the	odds	ratio	for	nonarrhythmic	death	is	potentially
biased.	 The	 authors	 also	 calculated	 an	 overall	 rate	 (hazard)	 ratio	 for	 this
outcome,	using	person-time	denominators	calculated	from	the	data	given	in	each
report.	The	overall	rate	(hazard)	ratio	for	nonarrhythmic	death	obtained	was	1.03
(95%	CI	0.80–1.32).
The	 meta-analysis	 by	 Koller	 et	 al.	 [2008]	 shows	 that	 an	 odds	 ratio–based

analysis	can	be	seriously	biased	and	potentially	result	in	a	spurious	conclusion.
As	shown	in	Table	11–3,	the	same	applies	to	a	risk	ratio–based	analysis.	There
are	 therefore	 compelling	 reasons	 to	 use	 rate	 (hazard)	 ratios	 in	 meta-analysis
unless	 the	 studies	 included	 all	 have	 the	 same	 fixed	 duration	 of	 follow-up.	 In
practice,	 this	 can	 be	 difficult	 because	 the	 rate	 ratio	 data	 required	 for	 the
outcome(s)	of	interest	cannot	be	abstracted	in	a	consistent	manner	for	all	studies
included.



Occurrence	Measures	and	Kaplan-Meier	Curves
Competition	 between	 events	 also	 affects	 the	 interpretation	 of	 Kaplan-Meier
(KM)	 curves,	 which	 must	 be	 taken	 into	 account	 when	 estimating	 risks	 from
published	 KM	 curves.	 A	 KM	 curve	 for	 all-cause	 mortality	 shows	 the	 risk	 of
death	 and	 the	 proportion	 of	 subjects	 still	 alive	 over	 time	 irrespective	 of
censoring,	but	assuming	that	the	censoring	was	non-informative.	It	is	important
to	 understand	 what	 is	 meant	 here	 by	 non-informative.	 When	 subjects	 are
followed	 over	 time	 for	 any	 death,	 follow-up	 is	 either	 terminated	 (censored)
because	of	death,	or	because	the	subject	 is	still	alive	and	also	still	“at	risk”	for
death	when	the	study	ends.	Note	that	there	are	only	two	ways	that	follow-up	for
any	death	can	be	censored.
Now,	suppose	that	a	KM	curve	is	derived	for	CV	death.	In	that	case,	there	are

three	 different	 reasons	 for	 censoring:	 (1)	 A	 CV	 death	 has	 occurred	 and	 is
counted	as	an	event,	(2)	an	NCV	death	has	occurred	(not	counted	as	an	event!),
after	which	 the	 subject	 concerned	 is	 no	 longer	 “at	 risk”	 of	CV	 death,	 and	 (3)
follow-up	is	terminated	in	a	subject	who	is	still	alive	and	“at	risk”	for	any	death.
A	 conventional	KM	analysis	 for	CV	death	will	 treat	 censoring	 because	 of	 the
second	and	 the	 third	reason	as	equivalent,	although	 the	second	reason	 is	by	no
means	non-informative	because	a	subject	who	died	of	NCV	death	 is	no	 longer
“at	 risk”	 for	CV	death.	 It	 follows	 that	 a	KM	 curve	 for	CV	death	 can	 only	 be
interpreted	as	showing	the	risk	of	CV	death	when	there	are	no	competing	deaths
due	to	an	NCV	cause.	By	the	same	token,	a	KM	curve	for	the	combined	outcome
of	 any	 death,	 myocardial	 infarction,	 or	 stroke	 can	 be	 interpreted	 as	 showing
event-free	survival	as	there	is	no	informative	censoring	due	to	competing	events.
The	same	cannot	be	said	about	a	KM	curve	for	the	combined	outcome	CV	death,
myocardial	 infarction,	or	 stroke.	This	KM	curve	will	be	 subject	 to	 informative
censoring	 due	 to	 competing	 NCV	 death.	 Hence,	 the	 curve	 for	 this	 combined
outcome	does	not	show	event-free	survival	unless	there	are	no	NCV	deaths	that
precede	CV	death,	myocardial	infarction,	or	stroke.
The	error	of	interpretation	made	when	taking,	for	example,	a	risk	of	CV	death

from	a	KM	curve	for	CV	death	is	avoided	by	considering	the	rate	of	CV	death
rather	than	the	risk.	The	latter	can	only	be	obtained,	however,	when	person-time
“at	 risk”	 for	death	data	are	available	or	can	be	calculated.	KM	curves	 in	study
reports	are	of	 little	use,	other	 than	showing	how	the	events	considered	“spread
out”	during	follow-up.
A	KM	curve	 for	 an	event	 that	has	 a	 constant	 rate	will	have	 the	well-known



exponential	 shape.	A	more	useful	way	 to	determine	whether	 rates	are	constant
can	be	understood	based	on	the	exponential	relationship	between	the	risk	and	the
rate	of	death	R(t)	=	1	–exp(–h	×	t),	which	is	equivalent	to	S(t)	=	exp(–h	×	t).	If
one	were	to	plot	–ln[S(t)]	in	lieu	of	S(t),	the	plot	would	be	determined	by	h	×	t,
or	by	a	straight	line	when	h	 is	constant.	In	the	statistical	literature,	the	quantity
–ln[S(t)]	 is	 called	 the	 cumulative	 hazard.	 Cumulative	 hazard	 plots	 are	 much
more	 informative	 than	 conventional	 KM	 curves	 and	 less	 prone	 to
misinterpretation	 in	 the	 case	 of	 competing	 events.	 However,	 they	 are	 rarely
found	in	trial	reports.	An	example	may	be	found	in	Connolly	et	al.	[2011].

Pooling	Effects	Across	Studies
Once	 the	 studies	 to	 be	 included,	 the	 outcome(s),	 and	 the	 effect	 measure	 (or
measure	of	association)	of	 interest	have	been	chosen,	 the	next	steps	 in	a	meta-
analysis	are	to	abstract	the	data	and	determine	combined	(pooled)	estimate(s)	of
effect	or	association.
In	general,	the	data	abstracted	for	each	study	have	the	form	of	a	2	×	2	table.

Rate	 data	 require	 person-time	 denominators	 for	 each	 treatment.	 Occasionally,
only	effect	estimates	and	their	P	values	or	confidence	intervals	are	available.
Effect	estimates	from	small	studies	are	more	subject	to	the	play	of	chance	than

large	studies	and	will	 therefore	be	less	precise	with	wider	confidence	intervals.
In	a	simple	arithmetic	average	of	the	effect	estimates	for	each	study,	smaller	and
larger	 studies	 are	 considered	 equally	 important.	 This	 is	 inappropriate,	 as	 the
difference	 in	 information	 contributed	 by	 the	 various	 studies	 included	 in	 the
analysis	is	not	taken	into	account.
Adding	up	the	2	×	2	tables	for	each	study	to	derive	one	summary	2	×	2	table

of	totals	across	all	studies	gives	an	adequate	summary	of	the	result	for	all	studies
combined	 that	 does	 justice	 to	 the	 size	 of	 each	 study	 included.	 The	 combined
effect	estimates	obtained	directly	from	the	totals	are	usually	close	to	the	results
obtained	 by	 any	 of	 the	 statistical	 methods	 developed	 for	 meta-analysis.
Nonetheless,	this	method	should	not	be	used	as	a	basis	for	calculating	an	overall
estimate	 of	 effect,	 as	 the	 information	 contained	 in	 each	 study	 may	 not	 be
represented	 correctly.	 Importantly,	 the	 differences	 in	 effect	 estimates	 between
studies	(heterogeneity)	cannot	be	assessed	in	this	manner.
Representing	 each	 study	 in	 a	 combined	 effect	 estimate	 according	 to	 the

amount	of	information	contained	is	achieved	by	calculating	a	weighted	average
across	all	studies,	which	has	the	following	general	form:



EC	=	(weight1	×	E1	+	weight2	×	E2	…)/(weight1	+	weight2	…)

where	EC	denotes	the	combined	effect	estimate;	E1,	E2	…	the	effect	estimate	for
each	study	considered;	and	weight1,	weight2	…	the	corresponding	weight	given
to	each	study.	 In	other	words,	 the	weighted	average	 is	equal	 to	 the	sum	of	 the
study-specific	 weights	 multiplied	 by	 the	 corresponding	 value	 of	 the	 effect
estimate,	divided	by	the	sum	of	the	weights.	Note	that	the	arithmetic	average	is	a
special	case	of	a	weighted	average,	with	weights	all	equal	to	1.
The	various	Mantel-Haenszel–type	methods	that	use	2	×	2	table	cell	counts	to

calculate	 combined	 risk-based	 effect	measures	 can	 be	 thought	 of	 as	 using	 the
size	of	each	study	as	weights	in	calculating	weighted	combined	effect	estimates.
The	generalized	 or	 inverse	 variance	 procedure	 for	 combining	 effect	 estimates
uses	 1/(variance	 of	 effect	 estimate)	 for	 each	 study	 as	 weights.	 Weights	 that
depend	 on	 the	 variance	 of	 effect	 estimates	 in	 this	manner	 will	 be	 smaller	 for
small	 studies	 (large	 variance)	 in	 comparison	 to	 those	 for	 larger	 studies	 (small
variance).	As	for	Mantel-Haenszel–type	methods,	this	implies	that	large	studies
have	more	impact	on	the	combined	estimate	than	smaller	ones.
The	 computationally	 simple	 calculations	 required	 by	 the	 inverse	 variance

method	 for	 ratio	measures	of	 effect	 can	conveniently	be	performed	by	using	a
spreadsheet	program	(Excel	or	similar)	and	are	explained	in	detail	in	Table	11–4
using	data	on	the	occurrence	of	stroke	in	six	trials	as	an	example.
The	method	for	risk	ratios	is	illustrated	in	Table	11–4.	For	odds	ratios	and	rate

(hazard)	ratios,	 the	denominators	entered	have	 to	be	adapted	accordingly.	Note
that	 the	 calculations	 are	 performed	 for	 a	 natural	 logarithmic	 transformation	 of
the	 relative	 effect	 measure	 concerned.	 The	 formula	 for	 the	 corresponding
standard	error	 is	 slightly	different	 for	 risk	 ratios,	odds	 ratios,	and	 rate	 (hazard)
ratios	 (see	 legend	 for	 Table	 11–4)	 and	 must	 therefore	 be	 adapted	 in	 the
spreadsheet	 as	 appropriate.	 Note	 also	 that	 calculating	 the	 combined	 effect
estimate	directly	from	the	sums	gives	the	same	result,	as	(218/8,875)/(322/8,769)
=	0.67.	Starting	from	the	natural	logarithm	of	this	and	by	using	the	formula	for
its	variance	as	given	in	the	legend	of	Table	11–4,	one	can	readily	verify	that	the
95%	CI	calculated	from	the	sums	has	a	lower	limit	of	0.56	and	an	upper	limit	of
0.79,	which	corresponds	closely	 to	 the	values	obtained	by	 the	 inverse	variance
pooling	procedure.

TABLE	11–4	Example	of	Combining	Relative	Effect	Measures	by	the	Inverse-Variance	Method,	Using
Stroke	Data	from	Six	Trials



(1)	The	Heart	Outcomes	Prevention	Evaluation	Study	Investigators,	N	Engl	J	Med.	2000;342:145–153.
(2)	MacMahon	S	et	al.,	J	Am	Coll	Cardiol.	2000;36:438–343.
(3)	Pitt	B	et	al.,	Am	J	Cardiol.	2001;87:1058–1063.

ai,	ci =	Number	of	subjects	with	event	for	treated	and	controls.

bi,	di =	Denominators	of	occurrence	measures	compared.	Totals	allocated	for	risk	ratio	(as	in	this
example),	totals	of	subjects	without	event	for	odds	ratio,	person-time	“at-risk”	for	rate	(hazard)
ratio.

REi =	Relative	effect	=	(ai/bi)/(ci/di)	=	risk	ratio	in	this	example.	May	be	entered	directly	when
combining	rate	(hazard)	ratios.

ln(REi) =	Natural	logarithm	of	relative	effect	REi.

Se	of	ln(REi) =	Standard	error	of	natural	logarithm	of	REi.	For	risk	ratio	(as	in	this	example)	=	square	root	of
(1/ai	–	1/bi	+	1/ci	–	1/di).	For	odds	ratio	(with	bi	and	di	equal	to	subjects	without	event)	=	square
root	of	(1/ai	+	1/bi	+	1/ci	+	1/di).	For	rate	(hazard)	ratio	(with	bi	and	di	equal	to	person-time	“at
risk”)	=	square	root	of	(1/ai	+	1/ci).

95%	CI	of	REi =	95%	confidence	interval	of	REi	=	exponent	[ln(REi)	–	1.96	×	standard	error	of	ln(REi)]	for	lower
limit	(LLi),	exponent	[ln(REi)	+	1.96	×	standard	error	of	ln(REi)]	for	upper	limit	(ULi).

(4)	Teo	KK	et	al.,	Circulation.	2000;102:1748–1754.
(5)	Pitt	B	et	al.,	Circulation.	2000;102:1503–1510.
(6)	Staessen	JA	et	al.,	Lancet.	1997;350:757–764.

Wi =	Weight	=	inverse	of	variance	=	1/[se	of	ln(REi)]
2.	The	sum	of	the

weights	appears	below	the	bottom	study-specific	weight.
Wi	×	ln(REi) =	Weight	×	natural	logarithm	of	relative	effect.	The	sum	of	these	appears

below	the	bottom	study-specific	entry	for	this	quantity.
ln(REC) =	Natural	logarithm	of	combined	relative	effect	REC	=	(sum	of	weights	×

natural	logarithm	of	relative	effects)/(sum	of	weights)

REC =	Combined	relative	effect	=	exponent	of	ln(REC),	with	lower	and	upper
limits	of	95%	confidence	interval	given	by	exponent	[(ln(REC)	±	1.96	×
square	root	of	(1/sum	of	weights)].

Qi =	Contribution	to	Cochran’s	Q	test	for	heterogeneity,	taken	as	Wi	×

[ln(REi)	–	ln(REC)]
2.

Cochran’s	Q =	Sum	of	Qi.	Follows	chi-squared	distribution	with	k–1	degrees	of
freedom,	where	k	is	the	number	of	studies.	P	value	shown	is	the	P	value



for	Cochran’s	Q	test.

Theoretically,	 the	 inverse	 variance	 method	 requires	 only	 that	 the	 effect
estimates	for	each	study	be	included,	along	with	their	standard	errors.	When	the
latter	are	not	given,	a	standard	error	can	be	derived	from	either	the	P	value	or	the
confidence	interval.	The	cell	count	data	necessary	for	risk	ratios	and	odds	ratios
will	generally	be	available.	This	is	not	so	for	person-time	denominators	required
to	 calculate	 rate	 (hazard)	 ratios.	When	 combining	 the	 hazard	 ratios	 for	 studies
that	 have	 all	 reported	 a	 hazard	 ratio	 value	 for	 the	 outcome	 of	 interest,	 the
standard	 error	 of	 its	 natural	 logarithm	 can	 be	 obtained	 from	 the	 number	 of
subjects	with	an	event	 for	 treated	and	controls	 (see	 legend	 for	Table	11–4).	 In
that	 case,	person-time	denominator	data	are	not	 required.	The	 inverse	variance
method	can	also	be	used	to	combine	odds	ratio	data	from	one	study	and	hazard
ratio	 data	 from	 another.	 It	 follows	 from	 what	 has	 been	 said	 earlier	 about
competition	 between	 events	 that	 this	 may	 give	 results	 that	 are	 difficult	 to
interpret.	 Hence,	 whether	 it	 is	 reasonable	 to	 combine	 odds	 ratios	 and	 hazard
ratios	must	be	considered	carefully.
When	the	number	of	events	is	zero	for	any	treatment	in	a	particular	study,	the

study	concerned	cannot	be	included	as	such	in	calculating	an	overall	measure	of
effect	by	 the	 inverse	variance,	 as	 is	obvious	 from	 the	 formula	 for	 the	 standard
error	given	in	Table	11–4	(1/0	=	infinity).	In	such	cases,	a	Mantel-Haenszel–type
method	may	be	a	better	choice.	For	odds	ratios,	Sweeting	et	al.	[2004]	compared
different	 methods	 for	 sparse	 data	 and	 concluded	 that	 the	 inverse	 invariance
procedure	with	a	continuity	correction	for	zero	cell	counts	(i.e.,	replacing	a	zero
with	0.5,	for	example)	gives	biased	results.	The	same	applies	to	risk	difference
[Tang,	2000].

Heterogeneity
As	 is	 evident	 from	 Table	 11–4,	 effect	 estimates	 may	 vary	 in	 magnitude	 and
direction	across	studies.	This	poses	the	question	of	whether	this	reflects	genuine
differences	 between	 studies	 or	 chance.	 Assessment	 of	 consistency	 of	 effects
across	studies	is	an	essential	part	of	meta-analysis,	as	inconsistent	results	are	not
generalizable	[Higgins	et	al.,	2003].
A	 test	 for	heterogeneity	 examines	whether	 the	variability	 in	 effect	 estimates

between	 studies	 exceeds	 the	 variability	 that	 can	 be	 attributed	 to	 chance	 alone.
There	are	essentially	 two	underlying	assumptions	 for	 this	 test	 that	differ	 in	 the



way	variability	across	studies	is	considered.	The	fixed-effects	model	assumes	that
variability	between	studies	is	entirely	random	around	one	true	value	of	the	effect
estimate	concerned.	The	random-effects	model,	on	the	other	hand,	assumes	that
true	 effects	 differ	 randomly	 between	 trials	 [DerSimonian	&	Laird,	 1986].	 The
random-effects	model	 implies	 the	use	of	a	 larger	study-specific	variance	of	 the
effect	 estimate	 than	 the	 fixed-effects	 model.	 Hence,	 the	 confidence	 interval
obtained	 for	 the	 combined	 effect	 estimate	 will	 in	 general	 be	 wider	 for	 the
random-	than	for	the	fixed-effects	model.
Higgins	 et	 al.	 [2003]	 reviewed	 various	 approaches	 to	 the	 assessment	 of

inconsistencies	 in	 meta-analyses	 that	 have	 been	 proposed.	 The	 usual
heterogeneity	test	statistic	known	as	Cochran’s	Q	assumes	a	fixed-effects	model,
has	a	Chi-squared	distribution,	and	is	computed	as	shown	in	Table	11–4.	A	value
that	exceeds	the	number	of	degrees	of	freedom	(rather	than	the	corresponding	P
value)	is	generally	interpreted	as	evidence	of	heterogeneity.
Heterogeneity	 tests	 pose	 subtle	 problems	 of	 interpretation.	 First,	 absence	 of

“significant”	 heterogeneity	 is	 not	 proof	 of	 homogeneity.	 Cochran’s	 Q	 test	 is
known	to	be	poor	at	detecting	true	heterogeneity	among	studies	as	significant,	in
particular	 when	 the	 number	 of	 studies	 included	 is	 limited.	 An	 alternative	 test
statistic	called	I2	does	not	depend	on	the	number	of	studies	included	[Higgins	et
al.,	 2003].	 Second,	 when	 clinically	 relevant	 (which	 is	 something	 other	 than
“statistically	 significant”)	 heterogeneity	 is	 observed	 across	 studies,	 one	 may
question	whether	these	studies	can	be	combined	by	the	chosen	effect	measure	in
the	 first	 place.	 Conventionally,	 a	 random-effects	 or	 other	 model	 is	 assumed
when	one	of	 the	available	 tests	for	a	fixed-effects	model	suggests	“significant”
heterogeneity	 [Berry,	 1998].	 But	 this	 may	 mask	 the	 existence	 of	 a	 credible
explanation	for	 the	heterogeneity	 that	was	observed.	To	 illustrate,	 suppose	 that
the	studies	considered	in	Table	11–4	had	been	ranked	according	to	the	mean	age
of	the	subjects	in	each	study,	and	that	the	effect	estimates	showed	a	relationship
between	mean	 age	 and	 effect	 estimate	 across	 studies,	 indicating	 that	 age	 is	 an
effect	 modifier.	 The	 value	 of	 Cochran’s	 Q	 statistic	 is	 the	 same,	 regardless	 of
whether	 age	 is	 an	 effect	modifier.	Another	 reason	 for	 effect	modification	 that
could	 explain	 heterogeneity	 is	 difference	 in	 study	 design,	 such	 as	 choice	 of
treatment	 and	 type	 of	 treatment	 comparison	 (e.g.,	 add-on	 treatment	 or
replacement,	comparisons	between	two	active	treatments,	double-blind,	or	open
comparison,	etc.).
Taking	lack	of	significance	of	a	test	of	heterogeneity	as	proof	of	homogeneity

forces	 the	 data	 to	 fit	 a	 preconceived	 model	 that	 assumes	 that	 the	 true	 effect



estimate	of	interest	is	either	the	same	(fixed	effect),	or	varies	at	random	(random
effect)	across	studies.	This	may	result	in	conclusions	about	effects	of	treatment
that	 are	 not	 generalizable.	 Therefore,	 the	 possible	 causes	 of	 the	 heterogeneity
must	 always	 be	 explored,	 whether	 or	 not	 the	 heterogeneity	 observed	 is
statistically	significant.

L’Abbé	Plots:	Fitting	a	Model	to	the	Data
A	 particularly	 relevant	 effect	modifier	 that	may	 be	 overlooked	 by	 forcing	 the
data	into	a	preconceived	model	based	on	an	insignificant	heterogeneity	test	may
be	the	absolute	event	risk	or	rate	among	the	controls	in	the	studies	considered.	A
useful	 way	 to	 examine	 whether	 this	 is	 the	 case	 is	 to	 first	 plot	 the	 absolute
occurrence	 measures	 for	 treatment	 and	 control	 in	 a	 so-called	 L’Abbé	 plot
[L’Abbé	et	al.,	1987].	This	allows	us	to	determine	which	effect	model	seems	to
best	fit	the	data,	as	is	shown	in	Figure	11–2.

FIGURE	11–2	Three	effect	models	for	the	relationship	between	the	rate	for	treated	and	the	rate	for	controls
respectively.	The	dotted	line	is	given	by	y	=	x,	which	indicates	that	treatment	has	no	effect,	relative	to
controls,	across	the	range	of	risks	for	controls.	The	constant	rate	ratio	line	is	given	by	y	=	HR	×	x,	and	the
constant	rate	difference	line	by	y	=	y	−	RD.	The	‘mixed’	model	is	given	by	y	=	a	×	x	+	b	(with	constant	a
and	b).

Figure	11–2	 shows	 three	possible	 relationships	between	 the	 rates	 for	 treated
and	 control	 subjects.	 The	 constant	 rate	 (hazard)	 ratio	 model	 assumes	 that
treatment	reduces	the	rate	on	a	ratio	scale	to	the	same	extent	for	any	value	of	the
control	 rate.	 The	 same	 applies	 to	 the	 constant	 rate	 difference	 model	 on	 the



absolute	 difference	 scale.	 For	 low	 rates	 neither	 model	 is	 credible.	 The	 mixed
model,	 on	 the	 other	 hand,	 allows	 for	 the	 possibility	 that	 a	 treatment	 may	 be
highly	 effective	 in	 high-risk	 subjects	while	 having	no	 effect	 at	 all	 (or	 even	 an
untoward	 effect)	 in	 low-risk	 subjects,	 as	 will	 often	 be	 the	 case	 in	 clinical
practice.
Of	course	the	data	points	plotted	will	never	fall	exactly	on	any	line	shown	in

Figure	11–2	due	to	random	variability	and	other	factors.	Nonetheless,	a	L’Abbé
plot	can	be	helpful	in	determining	whether	any	effect	model	illustrated	in	Figure
11–2	seems	 to	 fit	 the	data,	and	 therefore	 in	determining	whether	heterogeneity
between	 studies	 can	 perhaps	 be	 explained	 by	 a	mixed-model	 relationship	 that
implies	 by	 definition	 that	 there	 will	 be	 heterogeneity	 both	 for	 ratio	 and	 for
difference	measures	of	effect.
An	example	given	by	Hoes	et	al.	[1995b]	is	reproduced	here	as	Figure	11–3.

Based	 on	 a	 weighted	 least-squares	 regression	 analysis	 that	 assumes	 a	 mixed
model	 as	 shown	 in	 Figure	 11–2,	 Hoes	 et	 al.	 [1995b]	 concluded	 that	 the	 rate
(hazard)	ratio	for	all-cause	death	cannot	be	assumed	constant	over	the	range	of
absolute	rates	across	the	trial	subgroups	considered	and	that	there	is	no	evidence
that	drug	 treatment	 improves	survival	when	 the	death	 rate	 for	control	 is	below
6/1,000	person-years.	The	mixed-model	result	obtained	by	Hoes	et	al.	 [1995b],
as	 shown	 in	 Figure	 11–3,	 has	 been	 criticized	 by	 Egger	&	 Smith	 [1995],	 who
contended	 that	 regression	bias	 is	a	more	 likely	explanation	 for	 the	 relationship
shown.	Arends	et	al.	[2000]	have	reanalyzed	the	data	used	by	Hoes	et	al.	[1995b]
using	 a	 Bayesian	 approach	 and	 they	 came	 to	 a	 similar	 conclusion	 about	 the
existence	of	a	cut-off	point	for	efficacy	at	a	death	rate	of	6/1,000	person-years.
Effect	models	as	shown	 in	Figure	11–2	can	also	be	explored	by	plotting	 the

effect	 measure	 concerned	 on	 the	 vertical	 axis	 and	 the	 absolute	 occurrence
measure	for	treated	and	controls	combined	in	the	horizontal	axis.	Further	details
may	be	found	in	Van	Houwelingen	et	al.	[2002].

Meta-Regression
Staessen	 et	 al.	 [2001]	 plotted	 treatment	 effects	 on	 clinical	 events	 expressed	 as
odds	ratios	on	a	vertical	axis	against	the	difference	in	mean	on	treatment	blood
pressure	levels	between	treatment	and	control	on	the	horizontal	axis	(see	Figure
11–4).	This	is	an	example	of	meta-regression.



FIGURE	11–3	All-cause	mortality	rates	(deaths/1000	patient-years	[py])	in	the	intervention	and	control
groups	of	12	sub-groups	from	7	trials	in	mild-to-moderate	hypertension.	The	dotted	‘no-effect’	line
indicates	that	the	rates	are	the	same	for	the	intervention	and	control	groups.	The	continuous	weighted	least-
squares	regression	line	is	given	by	y	=	0.53	×	x	+	0.0029	and	describes	the	estimated	intervention	death	rate
as	a	function	of	the	control	rate.	The	95%	confidence	interval	of	the	regression	coefficient	is	0.33–0.73.	The
no-effect	line	and	the	regression	line	intersect	at	a	control	rate	of	6/1000	patient-years.

Reproduced	with	permission	from	the	Journal	of	Hypertension.	Hoes	AW,	et	al.	Does	drug	treatment
improve	survival?	Reconciling	the	trials	in	mild-to-moderate	hypertension.	J	Hypertens	1995;13:805–811.

Meta-regression	 may	 help	 to	 explore	 possible	 sources	 of	 heterogeneity	 and
effect	 modification	 across	 trials.	 Meta-regression	 may	 also	 be	 performed	 to
examine	the	relevance	of	the	potential	bias	of	individual	studies,	that	is,	flaws	in
the	 study	 design	 [Bjelakovic	 et	 al.,	 2007;	Sterne	 et	 al.,	 2002],	 or	 to	 determine
whether	characteristics	of	a	study	population	such	as	mean	age	and	cholesterol
level	act	as	effect	modifiers.	The	use	of	such	mean	covariates	in	meta-regression,
however,	 may	 reduce	 power	 and	 can	 even	 lead	 to	 bias	 [Berlin	 et	 al.	 2002;
Lambert	et	al.	2002;	Thompson	&	Higgins	2002].
Meta-regression	must	be	distinguished	from	meta-analysis	for	subgroups.	The

latter	 is	 based	 on	 data	 from	 individual	 studies	 that	 have	 been	 stratified	 for
specific	 characteristics	 of	 the	 study	 populations,	 such	 as	 gender.	 As	 with	 any
subgroup	 analysis,	 meta-analysis	 to	 determine	 treatment	 effects	 by	 subgroup
should	 be	 based	 on	 sound	 reasoning	 and,	 preferably,	 a	 plausible	 biomedical
reason	 for	 the	 existence	 of	 a	 difference	 in	 effect	 between	 subgroups.	 Because
stratified	data	for	exactly	the	same	subgroups	are	rarely	reported	for	all	studies
chosen	 for	 inclusion	 in	 a	 meta-analysis,	 subgroup	 meta-analyses	 are	 rarely
feasible.	 In	 subgroup	 meta-analysis	 using	 stratified	 data,	 Berger	 et	 al.	 [2006]



showed	 that	 aspirin	 reduced	 the	 risk	of	 cardiovascular	 events	 in	both	men	and
women,	albeit	by	a	different	mechanism:	reduction	of	ischemic	stroke	in	women,
as	 opposed	 to	 reduction	 of	 myocardial	 infarction	 in	 men.	 This	 apparent
difference	 in	 cardiovascular	 protection	 between	men	 and	women	may	 also	 be
attributable	to	other	factors,	however,	such	as	gender	differences	in	absolute	risk
for	controls	in	the	studies	considered	or	differences	in	other	risk	factors.

FIGURE	11–4	Example	of	a	meta-regression	analysis	[Staessen,	2001].	On	the	horizontal	axis	the
difference	in	systolic	blood	pressure	(mm	Hg)	is	depicted.	The	vertical	axis	shows	the	odds	ratio	for
cardiovascular	mortality	(left	panel)	and	cardiovascular	events	(right	panel)	of	the	trials	considered.
Reproduced	from	The	Lancet	Vol.	358;	Staessen	JA,	Whang	J,	Thijs	L.	Cardiovascular	protection	and	blood
pressure	reduction:	a	meta-analysis.	The	Lancet	2001;358:1305–1315,	with	permission	from	Elsevier.

Individual	Patient	Data	Meta-Analysis:	Unfulfilled
Promise?
Meta-analyses	 based	 on	 pooled	 raw	 data	 for	 individual	 subjects,	 also	 called
individual	 patient	 data	 (IPD)	 meta-analyses,	 are	 considered	 a	 more	 reliable
alternative	 to	 meta-regression	 and	 meta-analysis	 for	 subgroups	 [Clarke	 &
Stewart,	2001;	Oxman	et	al.,	1995;	Stewart	&	Tierney,	2002].
Two	approaches	can	be	used.	First,	 pooled	 raw	data	 from	 individual	 studies

can	be	merged	into	one	database	and	then	analyzed	as	if	the	data	came	from	one



(multicenter)	study.	For	example,	Rovers	et	al.	[2006]	performed	an	IPD	meta-
analysis	of	 six	 randomized	 trials	on	 the	efficacy	of	antibiotics	 in	children	with
acute	otitis	media.	Discharge	from	the	ear	(otorrhea),	age	younger	than	2	years,
and	bilateral	acute	otitis	media	were	shown	 to	modify	 the	effect	of	antibiotics.
Children	 younger	 than	 2	 years	 of	 age	 with	 bilateral	 acute	 otitis	 media	 and
children	 in	 whom	 acute	 otitis	 media	 was	 accompanied	 by	 otorrhea	 benefited
most	from	antibiotics	as	judged	from	pain,	fever,	or	both	at	3–7	days	follow-up.
In	an	analysis	of	pooled	data,	dummy	variables	for	individual	studies	are	often

included	 in	 regression	models	 to	adjust	 for	possible	 residual	confounding	or	 to
determine	whether	differences	between	studies	can	explain	the	heterogeneity	of
effect	estimates.
Alternatively,	 a	 two-stage	 approach	 can	 be	 used.	 Summary	 results	 are

obtained	by	reanalyzing	the	raw	data	of	individual	studies	separately,	which	are
then	used	as	the	basis	for	a	conventional	meta-analysis.
Although	many	IPD	meta-analyses	have	been	published,	most	emphasize	the

overall	 treatment	 effect	 without	 addressing	 subgroup	 effects,	 although
examining	 treatment	 effects	 for	 subgroups	 is	 the	 main	 strength	 of	 IPD	 meta-
analysis.	 Moreover,	 the	 two-stage	 approach,	 rather	 than	 the	 statistically	 more
efficient	direct	modeling	approach	 [Koopman	et	 al.,	 2007],	 appears	 to	be	used
more	frequently.
Subgroup	analyses	often	lack	a	clear	rationale,	are	unreliable	because	of	false-

positive	statistical	 tests	of	significance,	and	are	of	 limited	value	 in	deciding	on
treatment	 in	 clinical	 practice	 because	 patients	 do	 not	 come	 in	 subgroups,	 but
rather	 as	 individuals	 characterized	 by	multiple	 unique	 attributes	 (such	 as	 age,
gender,	symptoms,	prior	history,	etc.).	As	noted	by	Pocock	and	Lubsen	[2008],
univariate	subgroup	analysis	must	be	distinguished	from	risk	stratification	based
on	 a	 multiattribute	 prognostic	 model.	 Based	 on	 the	 latter,	 subjects	 are
categorized	 into	 several	 ordered	 risk	 groups.	 Then	 the	 absolute	 risk	 or	 rate
reductions	in	each	risk	group	are	obtained.	Note	that	this	has	undeniable	a	priori
rationale,	as	zero	risk	can	only	be	increased	by	treatment,	not	reduced	further.
An	early	but	still	relevant	example	can	be	found	in	the	report	on	the	MIAMI

trial	[MIAMI	Trial	Research	Group,	1985],	which	compared	2,877	subjects	with
suspected	acute	myocardial	infarction	assigned	to	metoprolol	(a	beta-blocker)	to
2,901	subjects	assigned	 to	a	placebo.	The	15-day	risk	of	death	was	123	deaths
(4.3/100)	 for	 metoprolol,	 as	 opposed	 to	 142	 (4.9/100)	 for	 the	 placebo.	 The
difference	 was	 not	 statistically	 significant	 (P	 =	 0.3).	 Can	 one	 decide	 that
metoprolol	has	little	effect,	if	any,	on	mortality	on	this	basis?



This	 question	 could	 not	 be	 answered	 without	 risk	 stratification.	 In	 the
protocol,	 the	MIAMI	investigators	predefined	eight	simple	binary	baseline	 risk
factors	such	as	age	>	60	years	(no/yes).	Subjects	were	stratified	according	to	the
total	number	of	risk	factors	(which	is	equivalent	to	a	multiple	logistic	regression
score,	with	equal	coefficients	for	all	variables).	The	advantage	of	this	is	that	the
investigators	 could	 not	 be	 accused	 of	 data	 dredging	 in	 defining	 the	 risk
stratification	procedure	post-hoc.	The	absolute	15-day	risk	of	death	was	steeply
related	 to	 the	 number	 of	 risk	 factors	 and	 ranged	 in	 the	 placebo	 group	 from
0.0/100	for	subjects	without	risk	factors	to	11.6/100	for	those	with	five	or	more
risk	 factors.	 The	 corresponding	 risks	 for	 metoprolol	 were	 0.0	 and	 5.8/100,
respectively.	Metoprolol	had	no	apparent	effect	on	the	low-mortality	risk	group
(3,740,	 two-thirds	 of	 the	 trial	 population),	 but	 was	 associated	 with	 a	 29%
statistically	 significant	 lower	 mortality	 rate	 in	 the	 high-mortality	 risk	 group
(2,038	patients).
It	should	be	emphasized	that	statistical	analysis	of	this	type	of	data	is	slightly

more	complex	than	determining	the	statistical	significance	of	the	effect	estimate
for	each	of	two	strata	for	one	binary	characteristic	(such	as	gender,	for	example).
What	 is	 needed	 for	 data	 stratified	 as	 described	 for	 MIAMI	 is	 a	 test	 for
interaction,	with	one	P	value	for	 the	 test	of	 the	null	hypothesis	 that	 there	 is	no
interaction	 between	 the	 number	 of	 risk	 factors	 and	 the	 magnitude	 of	 effect.
Subgroup	analyses	for	three	or	more	strata	(such	as	for	three	categories	of	age)
that	 can	 be	 found	 in	 the	 literature	 are	 often	 inappropriate	 in	 this	 regard	 (any
treatment	 effect	 can	 be	 rendered	 insignificant	 by	 using	 a	 large	 number	 of	 age
categories	and	calculating	a	P	value	for	each	category	separately).
The	 MIAMI	 trial	 example	 shows	 that	 risk	 stratification	 based	 on	 a

multiattribute	 risk	 score	 is	 potentially	 much	 more	 clinically	 relevant	 than	 the
ubiquitous	univariate	subgroup	analyses	found	in	the	literature,	as	it	may	identify
those	 subjects	 in	 clinical	 practice	 who	 really	 benefit	 and	 those	 who	 do	 not
benefit	at	all.	Currently,	few	if	any	such	analyses	have	been	reported	for	single
trials,	 let	alone	for	meta-analyses.	IPD	meta-analysis	aimed	at	assessing	effects
for	 strata	 of	 multiattribute	 risk	 has	 considerable,	 but	 as	 of	 yet,	 ill	 understood
potential.	The	practical	difficulties	should	not	be	overlooked,	however,	the	most
important	being	that	raw	data	bases	from	industry-sponsored	trials	are	rarely	in
the	public	domain.



REPORTING	RESULTS	FROM	A	META-
ANALYSIS
A	 report	 on	 a	 meta-analysis	 should	 clearly	 describe	 the	 methods	 of	 retrieval,
selection,	critical	appraisal,	data	extraction,	and	data	analysis	so	that	others	can
repeat	the	analysis	if	desired.	Decisions	and	comments	on	the	completeness	and
combinability	 of	 evidence	 should	 be	 transparent	 and	 supported	 by	 clear
tabulations	and	graphic	presentation	of	data.	Evidence	from	data	analysis	should
be	 separated	 from	value	 judgments.	Guidelines	may	 be	 found	 in	 the	Preferred
Reporting	 Items	 for	 Systematic	 Reviews	 and	 Meta-Analyses	 (PRISMA)
statement	 [PRISMA,	n.d.],	which	has	 replaced	 the	earlier	Quality	of	Reporting
of	Meta-Analyses	(QUOROM)	statement	[Moher	et	al.,	1999b].

Flowchart
The	 strategy	 for	 retrieval	 and	 selection	of	 the	publications	 and	 results	must	be
stated	 clearly.	 The	 search	 filter	 syntax	 per	 bibliographic	 source	 with	 the
subsequent	 number	 of	 retrieved	 publications,	 the	 number	 and	 reasons	 for
exclusion	 of	 publications,	 the	 final	 number	 of	 publications	 included,	 and	 the
number	of	studies	concerned	should	be	reported,	preferably	as	a	 flowchart	 (see
Figure	11–5).

Funnel	Plot
A	 funnel	plot	 is	a	 scatter	plot	of	 the	 treatment	effect	estimates	 from	 individual
studies	against	a	measure	of	 its	precision,	which	can	be	 the	sample	size	or	 the
inverse	of	 its	variance.	Its	proponents	suggest	 that	a	funnel	plot	can	be	used	to
explore	 the	 presence	 of	 publication	 and	 retrieval	 bias.	 Effect	 estimates	 from
small	studies	will	scatter	more	widely	around	the	true	value	than	estimates	from
larger	 studies	 because	 the	 precision	 of	 the	 treatment	 effect	 estimate	 increases
when	the	sample	size	increases.	Conventionally,	a	skewed	(asymmetrical)	funnel
plot	is	considered	to	indicate	bias	in	publication,	retrieval,	and	selection	of	trials
[Sterne	et	al.,	2000].	If	smaller	 trials	with	a	beneficial	 treatment	effect	(see	 the
upper	left	part	of	Figure	11–6)	are	preferentially	published	and	more	likely	to	be
retrieved	and	selected	 than	smaller	 studies	with	no	or	even	a	harmful	effect	of
treatment	(see	the	lower	left	part	of	the	figure),	the	plot	will	be	asymmetric.



FIGURE	11–5	Example	of	a	flow	diagram	representing	the	search	and	selection	of	trials.
Reproduced	from	Cappuccio	FP,	Kerry	SM,	Forbes	L,	Donald	A.	Blood	pressure	control	by	home
monitoring:	meta-analysis	of	randomized	trials.	BMJ	2004;329:145.



FIGURE	11–6	Example	of	a	funnel	plot	based	on	simulated	data.	Simulated	funnel	plot,	created	by
randomly	drawing	100	samples	of	size	varying	from	50	to	2000	from	an	underlying	normal	distribution
with	a	mean	of	1	unit	and	standard	deviation	of	10	units.	The	curves	indicate	the	region	within	which	95%
of	samples	of	a	given	size	are	expected	to	fall.	Closed	circles	indicate	samples	where	the	mean	is
significantly	increased	(above	zero)	at	P	<	0.05,	open	circles	samples	where	it	is	not.	For	the	full	sample,
the	funnel	shape	is	evident,	but	this	would	not	be	so	if	the	open	circles	(or	a	proportion	of	them)	were	not
included	due	to	publication	bias.
Reproduced	from	Thornton	A,	Lee	P.	Publication	bias	in	meta-analysis:	its	causes	and	consequences.	J	Clin
Epidemiol	2000;53:207–216,	with	permission	from	Elsevier.

Many	 other	 reasons	 for	 funnel	 plot	 asymmetry	 have	 been	 suggested,	 but	 a
rigorous	 simulation	 study	 exploring	 the	 impact	 of	 several	 explanations	 on	 the
impact	of	funnel	plot	asymmetry	is	lacking.	Hence,	the	relevance	of	funnel	plots
for	evaluating	completeness	of	 the	 studies	 included	 in	a	meta-analysis	 remains
questionable.



Tables
The	 results	 of	 the	 critical	 appraisal	 and	 data	 extraction	 should	 be	 reported	 in
tables.	 These	 tables	 should	 account	 for	 the	 validity	 of	 trials	 and	 their
combinability.	 Notably,	 this	 includes	 the	 relevant	 characteristics	 of	 the
participating	 patients,	 the	 compared	 treatments,	 and	 reported	 endpoints.	 The
occurrence	 measures	 per	 treatment	 group	 should	 be	 tabulated	 with	 the	 effect
estimate	and	its	confidence	interval	for	each	trial.	Examples	are	given	in	Table
11–5	and	Table	11–6.

Forest	Plot
The	 results	 from	 the	 data	 analysis	 are	 preferably	 displayed	 as	 a	 Forest	 plot
showing	the	effect	estimates	for	each	included	study	with	its	confidence	interval
and	 the	 pooled	 effect	 estimate	with	 its	 confidence	 interval	 (see	Figure	 11–7).
The	treatment	effect	estimate	of	each	trial	is	represented	by	a	black	square	with	a
size	that	 is	proportional	 to	 the	weight	attached	to	 the	trial,	while	 the	horizontal
line	represents	the	confidence	interval.
The	 95%	 CIs	 would	 contain	 the	 true	 underlying	 effect	 in	 95%	 of	 the

repetitions	 if	 the	 study	were	 redone.	The	solid	vertical	 line	corresponds	 to	“no
effect.”	If	the	95%	CI	crosses	this	solid	line,	the	effect	measure	concerned	is	not
statistically	 significant	 at	 the	 conventional	 level	 of	 (two-sided)	P	 ≤	 0.05.	 The
diamond	represents	 the	combined	 treatment	effect.	The	horizontal	width	of	 the
diamond	represents	its	confidence	interval.
The	 dashed	 line	 is	 plotted	 vertically	 through	 the	 combined	 treatment	 effect.

When	 all	 confidence	 intervals	 cross	 this	 plotted	 line,	 the	 trials	 are	 rather
homogeneous.	Ratio	measures	(e.g.,	 risk,	odds	or	 rate	 [hazard]	ratios)	of	effect
are	 typically	 plotted	 on	 a	 logarithmic	 scale,	 the	 reason	 being	 that	 in	 that	 case
confidence	intervals	are	displayed	symmetrically	around	the	point	estimate.	An
example	is	given	in	Figure	11–8.

TABLE	11–5	Example	of	Table	for	Reporting	Results	of	Critical	Appraisal	of	the	Methodology	of
Individual	Studies	from	a	Meta-Analysis	of	Trials	Comparing	Off-Pump	and	On-Pump	Coronary	Bypass
Surgery	(ordered	by	the	number	of	items	satisfi



	Meaning	of	item	ratings: 	 	
Contamination:	•	≤	10%	crossover,	∞	>	10%	crossover All	other	items: •	=	bias	unlikely	(yes,	adequate	design	or	method)
	 	 ∞	=	bias	likely	(no,	inadequate	design	or	method)

	 	 °=	unclear	(insufficient	information	available)

Reproduced	from	Nathoe	HM,	Coronary	revascularization:	stent-implantation,	on	pump	or	off	pump	bypass
surgery?	PhD	thesis;	Utre	cht	University	(2004)	90-393-3739-X.

TABLE	11–6	Example	of	Table	for	Reporting	Results	of	Data	Extraction	from	a	Meta-Analysis	of	the
Effect	of	Lipid	Lowering	Treatment

*Percentage	of	subjects	per	trial	with	the	established	diagnosis.
†Relative	reduction	of	total	cholesterol	levels	in	the	treatment	group.
‡Includes	transient	ischemic	attacks.



Reproduced	from	Briel	M,	Studer	M,	Glass	TR,	Bucher	HC.	Effects	of	statins	on	stroke	prevention	in
patients	with	and	without	coronary	heart	disease:	a	meta-analysis	of	randomised	controlled	trials.	Am	J	Med

FIGURE	11–7	Example	of	a	Forest	plot	from	a	meta-analysis	examining	the	relationship	between	use	of
statins	and	change	in	blood	pressure	level.	Mean	differences	and	95%	CIs	in	systolic	blood	pressure	(SBP)
achieved	in	patients	who	took	statins	compared	with	those	who	took	placebo	or	other	control	treatment	are
shown.	Separate	evaluations	were	made	for	studies	in	which	the	baseline	SBP	was	>	130	or	<=	130	mm	Hg.
Symbols	are	(box)	treatment	effect	estimate	of	each	trial,	with	a	size	proportional	to	its	weight;	(—)	CI	of
the	treatment	effect	estimate	of	each	trial	(the	treatment	effect	with	95%	CI	is	also	displayed	on	the	right	of
the	plot);	(I)	no	effect	on	treatment;	(vertical	dashes)	combined	treatment	effect;	(diamond)	width	of	the
diamonds	represents	the	CI	of	the	combined	treatment	effect.

Reproduced	from	Strazzullo	P,	Kerry	SM,	Barbato	A,	Versiero	M,	D’Elia	L,	Cappuccio	FP.	Do	statins
reduce	blood	pressure?	A	meta-analysis	of	randomised,	controlled	trials.	Hypertension	2007;49:792–8.



FIGURE	11–8	Results	from	a	meta-analysis	to	investigate	the	effects	of	fi	brates	on	major	cardiovascular
outcomes	(Jun	et	al.,	2010).

Reproduced	from	The	Lancet	Vol.	375;	Jun	M,	Foote	C,	Lv	J,	Neal	B,	Patel	A,	Nicholls	SJ,	Grobbee	DE,
Cass	A,	Chalmers	J,	Perkovic	V.	Effects	of	fibrates	on	cardiovascular	outcomes:	a	systematic	review	and
meta-analysis.	The	Lancet	2010;375:1875–84,	with	permission	from	Elsevier.

BOX	11–4	Internet	Resources	for	Computer	Software	and	Programs	for	Meta-Analysis	(accessed	May	17,
2013)

Cochrane	Review	Manager	(RevMan)	Information	Management	System	(IMS):
http://ims.cochrane.org/revman

Comprehensive	Meta-Analysis,	Biostat:	http://www.meta-analysis.com

Meta-Analyst	Software	(download):	http://www.meta-analysis-made-easy.com/index.html

EasyMA,	Department	of	Clinical	Pharmacology,	Lyon,	France:	http://www.spc.univ-
lyon1.fr/easyma.dos

StatsDirect	Ltd.,	Cheshire,	England,	UK:	http://www.statsdirect.com

STATA	Data	Analysis	and	Statistical	Software,	College	Station,	Texas:	http://www.stata.com

MetaWin	software:	http://www.metawinsoft.com

	

http://ims.cochrane.org/revman
http://www.meta-analysis.com
http://www.meta-analysis-made-easy.com/index.html
http://www.spc.univ-lyon1.fr/easyma.dos
http://www.statsdirect.com
http://www.stata.com
http://www.metawinsoft.com


DATA	ANALYSIS	SOFTWARE
There	 are	 many	 computer	 programs	 and	 software	 for	 meta-analyses,	 which
usually	 include	 various	methods	 of	 data	 analysis	 and	 allow	different	 output	 in
tables	and	graphs.	A	selection	is	given	in	Box	11–4.

INFERENCE	FROM	META-ANALYSIS
The	 decision	 of	 whether	 or	 not	 to	 apply	 findings	 from	 research	 to	 clinical
practice	 is	 rarely	 based	 on	 a	 single	 study.	 Therefore,	 meta-analyses	 have	 an
increasing	influence	on	the	translation	and	implementation	of	research	findings
to	routine	clinical	care.
Conclusions	 from	 meta-analysis	 should	 not	 only	 concern	 the	 magnitude,

direction,	 and	 precision	 of	 the	 summary	 effect	 estimate.	 The	 consistency	 of
effect	across	trials	should	be	related	to	potential	sources	of	bias,	while	sources	of
heterogeneity	between	studies	should	be	described	and	possibly	explained.
Meta-analyses	 summarize	 the	 evidence	 from	 available	 original	 trials.	Meta-

analyses,	 with	 the	 exception	 of	 some	 IPD	meta-analyses,	 are	 not	 designed	 to
provide	specific	practice	guidance	for	selecting	patients	for	particular	treatments.
Their	 relevance	 for	 such	 guidance	 may	 be	 smaller	 than	 the	 relevance	 of	 the
original	 data	 [Moses	 et	 al.,	 2002].	 In	 addition,	 many	 subjective	 decisions	 are
made	 when	 performing	 a	 meta-analysis.	 It	 is	 therefore	 important	 that	 value
judgments	are	separated	from	reproducible	methods	and	transparent	decisions.
Meta-analyses	have	been	criticized	because	they	may	not	yield	clear	answers

to	 relevant	 questions.	 The	 results	 and	 conclusions	 of	 many	meta-analyses	 are
considered	 confusing,	 and	 they	 are	 unable	 to	 provide	 specific	 guidance	 for
practice	 in	 selecting	patients	 for	 certain	 interventions.	Still,	 it	 is	 important	 that
trial	 results	are	put	 in	 the	appropriate	scientific	and	clinical	context,	and	meta-
analyses	help	researchers	and	readers	do	this.	Without	incorporating	appropriate
contextual	information	and	results	from	other	sources	of	evidence,	there	may	be
problems	with	 the	 implementation	 and	 dissemination	 of	 the	 results	 of	 a	meta-
analysis.
Therefore,	based	on	a	transparent	meta-analysis,	the	following	categorization

may	be	helpful	in	arriving	at	valid	clinical	recommendations:

	Strong	evidence:	A	solid	summary	effect	of	clinically	relevant	magnitude,	without	apparent



heterogeneity	across	a	large	number	of	exclusively	high-quality	trials,	that	is,	the	direction	and	size	of
effect	is	consistent	across	trials.	Clinical	recommendation:	Treatment	should	be	considered	in	all
patients;	effects	in	subgroups	could	still	be	of	interest.
	Moderate	evidence:	A	summary	effect	of	clinically	relevant	magnitude,	without	apparent
heterogeneity	across	multiple	high-	to	moderate-quality	trials,	that	is,	the	direction	and	size	of	effect	is
consistent	across	trials.	Clinical	recommendation:	Treatment	may	be	considered	for	all	patients,	but
different	subgroups	effects	could	be	of	interest.	Clinical	consensus	may	be	helpful.
	Weak	evidence:	A	summary	effect	with	statistical	significance	of	clinically	relevant	magnitude,	that	is,
the	direction	of	effect	is	consistent	across	trials	of	moderate	to	low	quality.	Exploration	for	sources	of
heterogeneity	across	trials	at	the	patient	level	(i.e.,	subgroups)	or	study	design	level	appears	justified.
Clinical	recommendation:	Treatment	may	be	considered	for	most	patients,	and	different	subgroup
effects	may	be	of	interest.	Clinical	consensus	could	be	helpful.
	Inconsistent	evidence:	The	magnitude	and	direction	of	effect	varies	across	moderate-	to	low-quality
trials.	Exploration	for	sources	of	heterogeneity	across	trials	at	the	patient	level	(i.e.,	subgroups)	or
study	design	level	appears	justified.	Clinical	recommendation:	Treatment	may	be	considered	for
patients,	but	clinical	consensus	will	be	helpful.
	Little	or	no	evidence:	Limited	number	of	trials	of	low	quality.	Clinical	consensus	is	needed;	research	is
warranted.

Evidently,	these	categories	all	pertain	to	beneficial	effects	of	an	intervention.
If,	for	example,	a	meta-analysis	reveals	strong	evidence	that	an	intervention	has
no	effect	or	is	even	harmful,	then	the	ensuing	clinical	recommendations	will	be
equally	 strong	 but	 clearly	 opposite.	 In	 this	 case,	 treatment	 should	 not	 be
considered.
The	stainless	steel	law	of	research	on	treatment	effects	states	that	trials	with	a

more	 rigorous	 design	 show	 less	 evidence	 favoring	 the	 effect	 of	 the	 treatment
evaluated	 than	 earlier	 trials,	 if	 only	 by	 regression	 toward	 the	mean.	The	 same
may	be	true	for	meta-analysis:	The	more	fastidious	its	design,	the	less	marked	its
outcome.	Because	original	 trials	may	be	 insufficient	 in	number	or	 their	design
may	be	flawed,	clear	evidence	may	not	exist	and	uncertainty	remains.	However,
a	well-designed	and	well-executed	meta-analysis	effectively	maps	the	sources	of
uncertainty.	Although	meta-analysis	includes	an	explicit	approach	to	the	critical
appraisal	 of	 a	 study	 design,	 it	 is	 not	 a	 formal	 method	 of	 criticizing	 existing
research.	Nonetheless,	meta-analysis	can	be	extremely	helpful	when	establishing
the	research	agenda,	thereby	directing	the	design	of	new	studies.



Chapter	12



Clinical	Epidemiologic	Data	Analysis

INTRODUCTION
The	 critically	 essential	 stages	 of	 designing	 clinical	 epidemiologic	 research	 are
over	when	 the	 occurrence	 relation	 and	 the	mode	 of	 data	 collection	 have	 been
established.	Design	 of	 data	 analysis	 is	 important	 because	 it	will	 determine	 the
utility	of	 the	 result	and	should	maintain	 the	 relevance	and	validity	achieved	so
far.	Yet,	in	general,	there	are	only	a	few	appropriate	and	feasible	ways	to	analyze
the	data	of	a	given	study.	 Ideally,	 the	design	of	data	analysis	 follows	naturally
from	the	nature	of	the	occurrence	relation	and	the	type	of	data	collected.	Similar
to	 the	 design	 of	 the	 occurrence	 relation	 and	 the	 design	 of	 data	 collection,	 the
design	 of	 data	 analysis	 in	 diagnostic,	 etiologic,	 prognostic,	 and	 intervention
research	each	have	their	particular	characteristics.
This	 chapter	 deals	 with	 elementary	 techniques	 used	 in	 data	 analysis.	 Often

these	 techniques	 are	 sufficient	 to	 answer	 the	 research	 question.	 For	 more
extensive	 information	 on	 data	 analysis,	 the	 reader	must	 consult	 textbooks	 that
are	specifically	dedicated	to	data	analysis	[Altman,	1991;	Kleinbaum	&	Kupper,
1982]	 or	 the	 referred	 literature	 in	 the	 chapters	 on	 diagnostic,	 etiologic,
prognostic,	 and	 intervention	 research.	 A	 simple	 statistical	 calculator,
“WhatStat,”	can	be	found	in	Apple®	iTunes®	digital	store.
A	 typical	 data	 analysis	 begins	 with	 a	 description	 of	 the	 population;	 key

characteristics	 are	 provided	 in	 the	 first,	 so-called	 baseline	 table.	 Its	 format
depends	 on	 the	 type	 of	 research	 that	 is	 performed.	 In	 a	 randomized	 trial,	 the
baseline	 table	 summarizes	 the	 frequencies	 and	 levels	 of	 important	 prognostic
variables	 in	 the	 randomized	 groups.	 This	 table	 is	 important	 because	 the
reviewers	 and	 readers	 of	 the	 eventual	 publication	 learn	 about	 the	 study
population	and	can	judge	the	quality	of	the	randomization.	In	etiologic	research,



the	 frequencies	 and	 levels	 of	 relevant	 characteristics	 (in	 particular	 potential
confounders)	 will	 be	 summarized	 by	 categories	 of	 the	 determinant,	 while	 in
diagnostic	 and	 prognostic	 research,	 predictors	 according	 to	 the	 disease	 or
outcome	will	be	shown.	In	the	first	step	of	data	analysis,	the	data	are	reduced	by
giving	 summary	 estimates	 (e.g.,	mean,	 range,	 standard	 deviation,	 frequencies).
Next,	measures	 of	 association	 between	 the	 determinant(s)	 and	 the	 outcome	 of
interest	 are	 calculated	with	 corresponding	 95%	 confidence	 levels.	 In	 etiologic
research,	 the	 crude	 association	 measure	 will	 generally	 be	 adjusted	 by	 one	 or
more	confounding	variables.
Before	we	deal	with	the	data	analysis	steps	that	are	performed	in	nearly	every

clinical	epidemiologic	study,	we	focus	attention	on	how	to	calculate	prevalence
and	 incidence	measures.	Next,	we	 cover	 the	 concept	 of	 variability	 in	 research
and	 the	 way	 uncertainty	 is	 reflected	 in	 the	 description	 of	 the	 data.	 Finally,
adjustment	 for	 confounding	with	 several	 techniques	 such	 as	 stratified	 analysis
(Mantel-Haenszel,	1959),	linear,	logistic,	and	Cox	regression	is	explained.

MEASURES	OF	DISEASE	FREQUENCY:
INCIDENCE	AND	PREVALENCE
Measurement	 is	 a	 central	 issue	 in	 epidemiology.	The	 simplest	way	 to	measure
the	occurrence	of	disease	in	a	population	is	by	giving	the	prevalence
(P).	The	prevalence	estimates	the	presence	of	a	disease	in	a	given	population	by
means	 of	 a	 proportion.	 For	 example,	 the	 prevalence	 of	 obesity	 in	 U.S.	 adults
participating	in	a	particular	study	could	be	40%.	This	proportion	is	calculated	by
dividing	the	number	of	subjects	with	a	particular	feature	by	the	total	number	of
subjects	 in	 the	 study.	Prevalence	applies	only	 to	 a	particular	point	 in	 time	and
can	 change	 when	 time	 passes.	 To	 appreciate	 the	 estimate,	 we	 have	 to	 be
informed	about	 its	precision.	 If	we	 repeat	 the	study,	will	 the	estimate	have	 the
same	value?	The	95%	confidence	interval	(CI)	of	prevalence	is	calculated	with
the	formula,

where	CI	is	the	confidence	interval,	P	is	probability,	and	N	is	the	total	number	of
study	participants.



This	 formula	 can	be	 used	 for	 all	 estimates	 that	 have	 a	 binomial	 distribution
(yes/no)	and	that	are	based	on	large	numbers.	A	disadvantage	of	this	method	is
that	it	does	not	perform	well	when	zeros	or	small	numbers	are	involved.	In	that
case,	 other	methods	 have	 to	 be	 used	 that	 are	 less	 easy	 to	 understand	 but	 that
perform	much	better	irrespective	of	the	numbers	involved	[Altman	et	al.,	2000b].
Altman	 and	 coworkers	 recommended	 a	 method	 by	 which	 the	 first	 three
quantities	(A,	B,	and	C)	can	be	calculated	(Box	12–1):

BOX	12–1	Calculating	the	Prevalence	(and	Confidence	Interval)	of	Metabolic	Syndrome	in	1,000	Patients
with	Coronary	Ischemia

In	a	study	population	of	1,000	patients	with	coronary	ischemia	the	proportion	(prevalence)	of	patients
with	the	metabolic	syndrome	is	40%	(400	patients).

The	95%	CI	can	be	calculated	with	the	traditional	method	of	formula	(1):

In	comparable	populations,	the	prevalence	of	diabetes	will	be	found	in	the	range	between	37%	and
43%.	With	the	method	proposed	by	Altman,	the	following	calculations	need	to	be	done:	P	=	400/1000
=	0.40,	q	=	600/1000	=	0.60,	and	r	=	400	[Altman	et	al.,	2000b].

Data	from	Altman	D,	Machin	D,	Bryant	TN,	Gardner	MJ.	Statistics	with	Confidence.	2nd	edition.	BMJ
Books,	2000b.

where	r	is	the	number	of	participants	that	has	the	feature,	q	is	the	proportion	that
does	not	have	it,	n	is	the	total	number	of	participants,	and	z	(usually)	is	1.96.	The
confidence	interval	for	the	population	prevalence	P	is	now	calculated	by:

(A	−	B)/C	to	(A	+	B)/C

Software	such	as	Confidence	Interval	Analysis	 (CIA)	[Altman	et	al.,	2000b]
dedicated	to	the	estimation	of	confidence	intervals	is	available	and	easy	to	use.



To	 estimate	 the	 incidence,	 two	 measures	 are	 commonly	 used:	 cumulative
incidence	 and	 incidence	 rate.	 The	 cumulative	 incidence	 is	 the	 number	 of
subjects	 developing	 the	 disease	 during	 a	 particular	 time	 period	 divided	 by	 the
number	of	subjects	followed	for	the	time	period.	The	incidence	rate	estimates	the
occurrence	of	disease	per	unit	of	time.	The	incidence	rate	is	also	called	force	of
morbidity.	The	cumulative	incidence	is	a	proportion,	binomially	distributed,	and
the	 95%	 CI	 can	 be	 calculated	 with	 Equation	 1	 or	 the	 alternative	 method	 as
explained	 in	 the	 earlier	 calculations.	 The	 cumulative	 incidence	 is	 often
interpreted	as	the	“risk.”
The	incidence	rate	is	the	number	of	cases	occurring	per	unit	of	follow-up	time

and	can	be	expressed	as	 the	number	of	cases	 (I)	per	1,000	(or	10,000)	person-
years	 (PY).	 For	 the	 prevalence	 and	 the	 cumulative	 incidence,	 the	 number	 of
cases	 cannot	 become	 larger	 than	 the	 denominator,	 but	 in	 the	 formula	 of	 the
incidence	 rate	 (IR	=	 I/PY),	 the	denominator	has	no	 fixed	 relationship	with	 the
numerator.	Confidence	intervals	for	this	type	of	distribution	can	be	calculated	by
assuming	 that	 the	 incidence	 rate	 has	 a	 Poisson	 distribution	 (see	 Box	 12–2)
[Altman,	1991].	The	95%	CI	of	incidence	rates	can	be	easily	read	from	a	table
that	 can	 be	 found	 in	most	 statistics	 textbooks	 or	 on	 the	 Internet	 (Health	Data,
2012).

BOX	12–2	Calculation	of	the	Incidence	Rate	of	Myocardial	Infarction

In	a	population	with	a	mean	follow-up	of	2.3	years	cumulating	in	9,300	person-years	(PY)	of	follow-
up,	35	patients	experience	a	myocardial	infarction.

Incidence	rate	(IR)	=	I/PY	=	35/9,300	PY	=	37.6/10,000	PY

In	the	confidence	limits	table	for	variables	that	have	a	Poisson	distribution,	we	find	that	the	lower
border	of	the	incidence	rate	(95%	CI)	is	24.379	and	the	upper	border	is	48.677.	These	are	absolute
numbers	and	have	to	be	expressed	per	10,000	PY:

24.379/9,300	PY	to	48.677/9,300	PY	=	26.2/10,000	PY	to	52.3/10,000	PY

Data	from	Washington	State	Department	of	Health	(2012).	Guidelines	for	Using	Confidence	Intervals	for
Public	Health	Assessment.	http://www.doh.wa.gov/Portals/1/Documents/5500/ConfIntGuide.pdf.	Accessed
June	20,	2013.

DATA	ANALYSIS	STRATEGIES	IN	CLINICAL
EPIDEMIOLOGIC	RESEARCH

http://www.doh.wa.gov/Portals/1/Documents/5500/ConfIntGuide.pdf


Baseline	Table
In	 the	methods	 section	 of	 an	 article,	 the	 researchers	meticulously	 describe	 the
study	 population	 so	 the	 readers	 can	 get	 acquainted	 with	 this	 population	 and
judge	the	domain	to	which	the	results	of	the	study	pertain.	In	the	first	part	of	the
results	section,	the	authors	describe	the	key	characteristics	in	the	baseline	table.
In	 Box	 12–3,	 a	 baseline	 table	 is	 given	 from	 a	 study	 in	 which	 investigators
examined	 the	 relationship	 between	 the	 presence	 of	 the	metabolic	 syndrome	 in
patients	 with	 symptomatic	 vascular	 disease	 and	 the	 extent	 of	 atherosclerosis
[Olijhoek	et	al.,	2004].
The	baseline	table	provides	an	overview	of	the	most	important	characteristics

of	 the	 study	 population.	 In	 this	 example,	 the	 relationship	 between	 metabolic
syndrome	 and	 the	 extent	 of	 vascular	 disease	 was	 the	 subject	 of	 research.	 For
patients	with	 and	without	metabolic	 syndrome,	 the	 relevant	 characteristics	 are
summarized	in	the	first	table	of	the	report	[Olijhoek	et	al.,	2004].
For	each	characteristic,	either	the	mean	(with	standard	deviation)	or	frequency

is	given.	Variability	 is	a	key	concept	 in	clinical	 research.	People	differ	 in	 their
characteristics	 and	 their	 responses	 to	 tests	 and	 treatment,	 so	 there	 are	 many
sources	of	variability.	To	 reduce	 the	amount	of	 available	 information,	 the	data
need	 to	 be	 summarized.	 A	 continuous	 variable	 (e.g.,	 age,	 blood	 pressure)	 is
summarized	by	a	central	measure	 (the	mean)	and	a	measure	of	variability	 (the
standard	deviation),	or	a	median	with	an	interquartile	range.
The	standard	deviation	(SD)	characterizes	the	distribution	of	the	variable	and

can	be	calculated	by	 taking	 the	 square	 root	of	 the	variance.	The	mean	±	2	SD
includes	 95%	of	 the	 observation	 distributions	 that	 are	 approximately	 normally
distributed,	but	in	non-normal	and	even	skewed	distributions	at	least	75%	of	the
observations	 are	within	 this	 range.	 If	 variables	have	 a	 skewed	distribution,	 the
median	will	 likely	be	a	more	 relevant	 summary	measure	 than	 the	mean	and	 in
that	 event,	 the	 distribution	 is	 characterized	 by	 giving	 the	 interquartile	 ranges,
that	 is,	 the	 range	 from	 the	 25th	 (P25)	 to	 the	 75th	 (P75)	 percentile.	 Interquartile
values	 are	 typically	 more	 useful	 than	 the	 full	 range,	 as	 the	 extremes	 of	 a
distribution	may	comprise	erroneous	or	unlikely	data	(see	Figure	12–1).
Categorical	 variables	 are	 summarized	 by	 giving	 their	 frequencies.	 For

example,	 70%	 of	 the	 population	 is	 male.	 Data	 of	 this	 type	 with	 only	 two
possibilities	 (i.e.,	 dichotomous	 variables)	 have	 a	 binomial	 distribution	 and	 are
very	common	in	medical	research.	If	sample	sizes	are	large	enough,	the	binomial
distribution	approaches	the	normal	distribution	with	the	same	mean	and	standard



deviation.

BOX	12–3	Baseline	Characteristics	of	the	Study	Population	from	a	Study	in	which	the	Relationship
Between	Metabolic	Syndrome	and	the	Extent	of	Vascular	Disease	is	Determined

All	data	in	percentages,	or	as	indicated:	1	mean	±	standard	deviation	or	2	median	with	interquartiles
range.
HDL:	high-density	lipoprotein.
aStill	smoking,	recently	stopped	smoking,	or	previously	smoking.
bHistory	of	vascular	disease	other	than	qualifying	diagnosis.
cFasting	serum	glucose	≥	7.0mmol/l	or	self-reported	diabetes.

Reproduced	from	Olijhoek	JK,	van	der	Graaf	Y,	Banga	JD,	Algra	A,	Rabelink	TJ,	Visseren	FL.	The
SMART	study	group.	The	metabolic	syndrome	is	associated	with	advanced	vascular	damage	in	patients
with	coronary	heart	disease,	stroke,	peripheral	arterial	disease	or	abdominal	aortic	aneurysm.	Eur	Heart	J
2004;25:342–8.



FIGURE	12–1	Plot	of	weight	of	the	1045	patients	with	symptomatic	atherosclerosis:	mean	80.25	k;	SD
13.0;	SEM	(standard	error	of	the	mean)	0.40;	median	80.0	k;	interquartile	range	17;	P25	is	72	k	and	P75	is
89	k;	range	42–143	k.
Reproduced	from	Olijoek	JK,	van	der	Graaf	Y,	Banga	JD,	Algra	A,	Rabelink	TJ,	Visseren	FL;	the	SMART
study	group.	The	metabolic	syndrome	is	associated	with	advanced	vascular	damage	in	patients	with
coronary	heart	disease,	stroke,	peripheral	arterial	disease	or	abdominal	aortic	aneurysm.	Eur	Heart	J
2004;25:342–8,	by	permission	of	Oxford	University	Press.

Variability	is	not	only	present	between	subjects	but	also	between	studies.	The
variability	 of	 the	 sample	 is	 expressed	 by	 the	 standard	 error	 (SE)	 and	 can	 be
calculated	by	dividing	the	population	standard	deviation	by	the	square	root	of	the
number	of	observations.
In	research,	inferences	about	populations	are	made	from	samples.	We	cannot

include	all	patients	with	a	myocardial	infarction	in	our	study;	instead	we	want	to
generalize	 the	 findings	 from	 our	 sample	 to	 all	 patients	 with	 myocardial
infarction.	 Thus,	 we	 sample	 and	 estimate.	 The	 way	 we	 sample	 determines	 to
what	 extent	we	may	generalize.	Generally,	 the	 results	 from	a	 sample	 are	valid
for	 the	 study	 population	 from	 whom	 the	 sample	 was	 drawn	 and	 may	 be
generalized	to	other	patients	or	populations	that	are	similar	to	the	domain	that	is
represented	by	the	study	population.



Extrapolations	of	 inference	from	one	population	 to	other	populations	are	not
“hard	 science”	 but	 rather	 a	 matter	 of	 knowledge	 and	 reasoning	 and,
consequently,	 they	 are	 subjective.	Variability	 of	 the	 sample	mean	 is	 expressed
with	 the	95%	CI	of	 that	mean	 that	can	be	calculated	 from	the	SE.	 If	 the	mean
weight	 in	 the	 example	 given	 previously	 is	 80.25	 kilograms	 and	 the	 SE	 of	 the
mean	 is	 0.40,	 the	 upper	 and	 lower	 limits	 of	 the	 95%	CI	 can	 be	 calculated	 as
80.25	−	(1.96	×	0.40)	and	to	80.25	+	(1.96	×	0.40),	respectively.	This	infers	that
the	real	population	mean	will	be	somewhere	between	79.5	and	81.0	kilograms.
The	95%	CI	(or	the	precision	of	a	study	result)	indicates	the	reproducibility	of

measurements	 and	 reflects	 the	 range	 of	 values	 that	 estimates	 can	 have	 when
studies	are	repeated.	If	a	study	was	repeated	again	and	again,	the	95%	CI	would
contain	 the	 true	 effect	 in	 95%	 of	 the	 repetitions.	A	 confidence	 interval	 for	 an
estimated	mean	 extends	 either	 side	 of	 the	mean	 by	 a	multiple	 of	 the	 standard
error.	The	95%	CI	is	the	range	of	values	from	mean	−	1.96	SE	to	mean	+	1.96
SE.	 SEs	 can	 also	 be	 used	 to	 test	 the	 statistical	 significance	 of	 a	 difference
between	groups.
A	common	statistical	 test	 for	 continuous	variables	 is	 the	unpaired	 t-test,	 for

example,	 to	 estimate	 the	 significance	 of	 a	 difference	 in	 age	 between	 patients
with	 and	 without	 the	 metabolic	 syndrome.	 When	 a	 continuous	 variable	 is
compared	 before	 and	 after	 the	 intervention,	 a	 paired	 t-test	 is	 done.	 Paired	 and
unpaired	t-tests	assume	that	the	difference	(paired	or	between	groups)	represents
a	 simple	 shift	 in	mean,	with	 the	 variation	 remaining	 the	 same	 (same	 standard
deviation).	Under	these	assumptions,	the	t-tests	are	approximately	valid	as	long
as	the	sample	size	is	sufficiently	large,	even	for	a	skewed	distribution.	However,
in	 the	 case	 of	 skewed	 distributions,	 the	 difference	 between	 groups	 is	 typically
reflected	in	a	shift	in	mean	as	well	as	a	change	in	standard	deviation:	Often	the
standard	 deviation	 then	 increases	with	 increasing	mean.	 The	most	 appropriate
solution	in	most	cases	is	to	apply	a	transformation,	for	example,	to	analyze	the
data	on	 logarithmically	 transformed	values.	Then	 results	 can	be	 represented	 in
relative	instead	of	absolute	changes.	In	the	event	that	normality	is	very	unlikely,
nonparametric	variants	of	the	paired	and	unpaired	t-tests	can	be	chosen,	such	as
the	Mann-Whitney	U-test.	Note,	however,	that	for	this	test	too	the	assumption	is
that	 the	 difference	 represents	 a	 simple	 shift	 in	 mean,	 with	 the	 variation
remaining	 the	 same.	 To	 compare	 categorical	 variables,	 cross-tables	 with
corresponding	 chi-square	 analyses	 are	 chosen.	 In	 general,	 however,
epidemiologists	prefer	an	estimation	of	a	particular	parameter	and	description	of
its	precision	with	a	95%	CI	instead	of	performing	tests.	We	return	to	this	issue



later	in	this	chapter.
In	 a	 randomized	 clinical	 trial	 the	 baseline	 table	 presents	 the	most	 important

prognostic	factors	according	 to	 the	 treatment	arm.	Here,	differences	should	not
be	 tested	 for	 statistical	 significance	 and	P	 values	 should	 not	 be	 calculated,	 as
differences	 in	 distributions	 between	 treatments	 reflect	 chance	 by	 definition
[Knol	et	al.,	2012].

THE	RELATIONSHIP	BETWEEN	DETERMINANT
AND	OUTCOME

Continuous	Outcome
In	many	studies,	the	outcome	is	a	continuous	variable	such	as	blood	pressure	or
body	 weight.	 In	 the	 previously	 mentioned	 example	 in	 which	 the	 relationship
between	the	presence	of	metabolic	syndrome	and	the	extent	of	vascular	disease
in	 patients	 with	 symptomatic	 atherosclerosis	 was	 investigated,	 the	 extent	 of
vascular	 damage	 was	 measured	 by	 ultrasound	 scanning	 of	 the	 carotid	 artery
intima	media	thickness	(IMT),	the	percentage	of	patients	with	a	decreased	ankle-
brachial	blood	pressure	index,	and	the	percentage	of	patients	with	albuminuria.
As	a	first	step	in	the	comparison	of	the	IMT	of	the	patients	with	and	without	the
metabolic	syndrome,	the	mean	IMT	and	its	standard	deviation	and	standard	error
are	 calculated	 for	 both	 groups.	 The	mean	 IMT	 in	 patients	 with	 the	metabolic
syndrome	 was	 0.98	 mm	 and	 in	 patients	 without	 the	 syndrome	 0.92	 mm	 (see
Table	12–1).
The	 standard	deviation	gives	an	 impression	of	 the	underlying	distribution	 in

the	 two	 groups.	 The	 mean	 ±	 2	 SD	 covers	 95%	 of	 the	 observations	 in	 that
population.	The	mean	±	1.96	SE	reflects	the	variability	of	the	population	mean,
as	shown	in	the	SPSS®	(SPSS,	Inc.,	Chicago,	IL)	output	in	Table	12–2.

TABLE	12–1	Intima	Media	Thickness	(in	mm)	Data	for	Metabolic	Syndrome

TABLE	12–2	Independent	Samples	Test:	Intima	Media	Thickness	in	Patients	With	and	Without	Metabolic



Syndrome

The	 t-test	 for	 unpaired	 samples	 estimates	 the	 likelihood	 that	 the	means	 are
really	 different	 from	 each	 other,	 rather	 than	 the	 difference	 being	 due	 chance.
From	 the	SPSS	output	 in	Table	 12–2,	we	 can	 read	 that	 there	 are	 two	possible
answers.	The	first	line	gives	the	results	if	we	assume	the	variance	to	be	equal	and
the	second	 line	 if	variances	are	not	assumed	 to	be	equal.	Whatever	we	assume
here,	although	the	variances	are	not	equal	in	this	situation,	the	conclusion	is	that
the	IMTs	are	different	and	that	the	mean	difference	of	0.059	mm	is	statistically
significantly	 and	 different	 from	 zero.	 Whether	 this	 also	 reflects	 a	 clinically
relevant	difference	is	an	entirely	different	matter.
If	we	need	to	adjust	our	result	 for	confounding	variables	(e.g.,	age	and	sex),

there	are	several	possibilities.	We	can	adjust	 the	mean	IMT	in	both	groups	 for
age	and	sex	with	a	general	linear	model	procedure	(PlanetMath,	2012a).	It	will
provide	us	with	adjusted	mean	IMTs	in	both	groups	that	cannot	be	explained	by
differences	in	age	and	sex	between	the	patients	with	and	without	the	metabolic
syndrome	(see	Table	12–3).
If	 we	 want	 to	 quantify	 the	 differences	 between	 the	 two	 groups	 (with	 and

without	metabolic	syndrome),	we	can	also	perform	a	linear	regression	in	which
we	 define	 IMT	 as	 a	 dependent	 variable	 and	 the	 metabolic	 syndrome	 as	 a
“yes/no”	(1/0)	independent	variable	(PlanetMath,	2012b).
The	regression	coefficient	of	metabolic	syndrome	is	0.059	(see	Table	12–4),

which	 means	 that	 in	 patients	 with	 the	 metabolic	 syndrome	 the	 mean	 IMT	 is
0.059	mm	 thicker.	 Exactly	 the	 same	 number	 is	 obtained	when	 subtracting	 the
mean	IMT	in	patients	with	and	without	the	metabolic	syndrome.	Using	the	same
approach,	 we	 can	 now	 adjust	 for	 confounders	 such	 as	 gender	 and	 sex	 and
directly	obtain	an	adjusted	difference	(see	Table	12–5).
The	 regression	 coefficient	 changed	 after	 adjusting	 for	 age	 and	 gender	 from

0.059	 to	 0.061.	 This	means	 that	 in	 patients	 with	 the	metabolic	 syndrome,	 the
mean	 IMT	 is	 0.061	mm	 thicker	when	 differences	 in	 age	 and	 gender	 are	 taken



into	account.	The	section	on	 linear	 regression	 later	 in	 this	chapter	explains	 the
principles	of	this	type	of	analysis.	The	SPSS	output	presents	the	unstandardized
coefficient	 and	 the	 standardized	 coefficients.	 The	 latter	 refers	 to	 how	 many
standard	 deviations	 a	 dependent	 variable	 will	 change	 per	 standard	 deviation
increase	 in	 the	 predictor.	 Standardization	 of	 the	 coefficient	 is	 usually	 done	 to
determine	 which	 of	 the	 independent	 variables	 have	 a	 greater	 effect	 on	 the
dependent	 variable	 in	 a	 multiple	 regression	 analysis,	 when	 the	 variables	 are
measured	 in	 different	 units	 of	 measurement.	 However,	 the	 validity	 of	 this
interpretation	 is	 subject	 to	 debate,	 if	 only	 because	 the	 coefficients	 are	 unitless
[Simon,	2010].

TABLE	12–3	Intima	Media	Thickness	(in	mm)	According	to	Metabolic	Syndrome,	Taking	Gender	and
Age	into	Account	as	Possible	Confounders,	Using	a	General	Linear	Model	Procedure

aCovariates	appearing	in	the	model	are	evaluated	at	the	following	values:	gender	=	1.21,	age	=	59.66.

TABLE	12–4	Relationship	Between	Metabolic	Syndrome	and	Intima	Media	Thickness,	Using	Linear
Regression	Analysis

aDependent	variable:	mean	intima	media	thickness	(mm).

TABLE	12–5	Relationship	Between	Metabolic	Syndrome	and	Intima	Media	Thickness,	Taking
Confounding	by	Age	and	Gender	into	Account,	Using	Linear	Regression

aDependent	variable:	mean	intima	media	thickness	(mm).

Discrete	Outcome



In	 medicine,	 often	 the	 outcome	 of	 interest	 is	 a	 simple	 “yes/no”	 event	 or
continuous	data	are	categorized	in	a	structure	 that	permits	a	“yes/no”	outcome.
Instead	 of	 calculating	 the	 difference	 in	 blood	 pressure	 levels	 between	 two
groups,	we	can	compare	the	percentage	of	patients	above	or	below	a	particular
cut-off	 level.	 The	 study	 design	 dictates	 the	 data	 analysis	 “recipe.”	 In	 a
longitudinal	study,	such	as	a	cohort	study,	absolute	risks	and	relative	risks	can	be
calculated,	 while	 in	 most	 case-control	 studies	 the	 odds	 ratios	 should	 be
calculated.
Relative	 risks	 can	 be	 easily	 calculated	 with	 a	 hand-held	 calculator.	 The

simplest	layout	for	data	obtained	in	a	cohort	study	is	summarized	in	Table	12–6,
if	we	assume	there	is	no	differential	follow-up	time.
The	 absolute	 risk	 (cumulative	 incidence)	 for	 disease	 in	 the	 people	with	 the

determinant	 is	 R+	 =	 a/(a	 +	 b),	 while	 the	 absolute	 risk	 in	 people	 without	 the
determinant	is	R−	=	c/(c	+	d).
From	these	absolute	risks,	the	relative	risk	(RR)	can	be	calculated	by	dividing

both	absolute	risks:

TABLE	12–6	Data	Layout	in	a	Cohort	Study
Disease	During	Follow-Up

Determinant Yes No

Present a b

Not	present c d

The	 formula	 for	 the	 standard	 error	 is	 given	 here,	 and	 the	 95%	 CI	 of	 the
relative	risk	is	calculated	from	Equation	2:

An	 example	 of	 a	 cohort	 study	 examining	 the	 association	 between	 previous
myocardial	 infarction	 and	 future	 vascular	 events	 including	 calculation	 of	 the
relative	risk	with	confidence	interval	 is	shown	in	Box	12–4.	The	sampling	in	a
typical	case-control	 study	conducted	 in	a	dynamic	population	of	unknown	size
permits	 no	 direct	 calculation	 of	 absolute	 risks.	 Instead,	 the	 odds	 ratio	 can	 be
calculated.	The	odds	ratio	 is	 the	ratio	of	exposure	 to	nonexposure	 in	cases	and



controls	(Table	12–7).	The	odds	ratio	obtained	in	case-control	studies	is	a	valid
estimate	 of	 the	 incidence	 rate	 ratio	 one	 would	 obtain	 from	 a	 cohort	 study,
provided	that	the	controls	are	appropriately	sampled.	However,	in	cohort	studies
and	randomized	clinical	trials,	odds	ratios	are	often	also	interpreted	as	risk	ratios.
This	 is	 problematic	 because	 an	 odds	 ratio	 always	 overestimates	 the	 risk	 ratio,
and	this	overestimation	becomes	larger	with	increasing	incidence	of	the	outcome
[Knol	et	al.,	2012].

BOX	12–4	Example	of	a	Cohort	Study	on	Prior	Myocardial	Infarction	and	Future	Vascular	Events

In	a	cohort	study	(N	=	3288)	in	which	patients	with	vascular	disease	are	included	218	patients
experienced	a	vascular	event	within	3	years.	In	the	table,	the	occurrence	of	the	event	according	to	a
history	of	previous	myocardial	infarction	(MI)	is	summarized.

The	cumulative	incidence	in	3	years	in	patients	with	a	previous	MI	95/858	=	11%,	the	cumulative
incidence	in	patients	without	previous	MI	is	123/2430	is	5%.	The	relative	risk	(RR)	is	the	ratio	of	both
risks	(RpreviousMI	=	95/858	divided	by	RnopreviousMI	=	123/2430)	=	2.1874.	The	SElnRR	=	

	is	0.13	and	the	95%	CI	RR	=	eln2.2±1.96

	=	e0.78845±0.25607	=	e	1.7	−	2.8.
The	relative	risk	in	the	underlying	population	will	be	between	1.7	−	2.8.	Patients	with	symptomatic
vascular	disease	and	a	previous	MI	have	2.19	times	the	risk	compared	with	patients	with	symptomatic
disease	without	previous	MI.

	

TABLE	12–7	Data	Layout	in	a	Case-Control	Study
Determinant Cases Controls

Present a b

Not	present c d

The	odds	ratio	for	being	exposed	versus	nonexposed	is	a/c	in	the	cases	and	b/d
in	the	controls	(Box	12–4).	The	odds	ratio	(OR)	is	the	ratio	of	the	two	odds:



The	 formulas	 for	 the	 standard	 error	 of	 the	 odds	 ratio	 and	 the	 95%	 CI
(Equation	 3)	 are	 given	 here.	 Note	 that	 a	 logarithmic	 transformation	 is	 needed
just	like	when	calculating	the	SE	of	the	relative	risk.

An	example	of	a	case-control	study	assessing	the	relationship	between	the	use
of	oral	contraceptives	and	the	occurrence	of	peripheral	arterial	disease,	including
calculations	of	the	odds	ratio	with	confidence	interval,	is	shown	in	Box	12–5.

PROBABILITY	VALUES	OR	95%	CONFIDENCE
INTERVALS
Epidemiologists	generally	prefer	 to	estimate	 the	magnitude	of	a	difference	 in	a
variable	 between	 populations	 and	 obtain	 a	 measure	 of	 the	 precision	 of	 this
estimate,	 as	 opposed	 to	 merely	 conducting	 significance	 testing.	 This	 view
contrasts	with	that	of	those	who	are	in	favor	of	hypothesis	testing.	In	hypothesis
testing,	 the	 researcher	 ascertains	 whether	 the	 observed	 difference	 could	 have
occurred	purely	by	chance.	This	probability	is	given	by	the	P	value.	Hypothesis
testing	 starts	 from	 the	 assumption	 that	 the	 observed	 difference	 is	 not	 a	 real
difference,	 but	 rather	 produced	 by	 chance;	 this	 is	 called	 the	 null	 hypothesis.
Subsequently,	 one	 calculates	 the	 probability	 of	 the	 observed	 difference	 being
due	 to	 chance.	 If	 the	P	 value	 is	 lower	 than	 the	 predetermined	 value	 (typically
0.05),	the	inference	is	that	the	observed	difference	is	real	and	is	not	explained	by
chance,	and	thus	the	null	hypothesis	is	rejected.

BOX	12–5	Example	of	a	Case-Control	Study	on	Oral	Contraceptive	and	Peripheral	Arterial	Disease

The	following	data	are	taken	from	a	study	that	investigated	the	relationship	between	oral	contraceptive
use	and	the	occurrence	of	peripheral	arterial	disease	[Van	den	Bosch,	et	al.,	2003].	Of	the	women	with
peripheral	arterial	disease	(n	=	39),	18	(46%)	used	oral	contraceptives,	while	of	the	170	women
without	peripheral	arterial	disease	only	45	(26%)	used	oral	contraceptives.	The	layout	of	the	data	table
is	as	follows:



The	odds	ratio	for	having	peripheral	arterial	disease	is	(18	×	125)/(21	×	45)	=	2.4.	The	SEln2.4	=	

	95%	CIOR	=	e
ln2.4±1.96 	=	1.17	−	4.90.	The	odds

ratio	of	2.4	means	that	women	who	use	oral	contraceptives	have	2.4	times	the	risk	to	develop
peripheral	arterial	disease	compared	to	women	who	do	not	use	oral	contraceptives.	If	we	repeat	the
study	100	times,	the	odds	ratio	will	have	a	value	of	between	1.17	and	4.90	in	95	out	of	100	studies.

Adapted	from	Van	den	Bosch	MA,	Kemmeren	JM,	Tanis	BC,	Mali	WP,	Helmerhorst	FM,	Rosendaal	FR,
Algra	A,	van	der	Graaf	Y.	The	RATIO	Study:	oral	contraceptives	and	the	risk	of	peripheral	arterial	disease
in	young	women.	J	Thromb	Haemost	2003;1:	439–444.

Authors	 of	 current	 epidemiologic	 and	 statistical	 studies	 favor	 the	 use	 of
confidence	intervals	rather	than	P	values	[Gardner	&	Altman,	1987;	Goodman,
1999].	Many	 journals	 (but	 in	 our	 view	 still	 too	 few)	 discourage	 the	 use	 of	P
values	 [Lang	 et	 al.,	 1998].	 The	 P	 value	 tells	 us	 only	 whether	 there	 is	 a
statistically	significant	difference	or	not	and	provides	little	information	about	the
size	of	 the	difference.	For	 the	 same	clinically	 relevant	 difference	 and	 standard
deviation,	the	P	value	can	be	very	low	if	the	populations	are	large	or	high	if	the
populations	 are	 small.	 Similarly,	 a	 difference	 can	 be	 highly	 statistically
significant	but	clinically	irrelevant	if	the	size	of	the	study	is	large.	The	95%	CIs
present	 a	 range	 of	 values	 that	 tell	 us	 about	 the	 size	 of	 difference	 in	 outcomes
between	 two	 groups	 and	 allow	 us	 to	 draw	 our	 own	 conclusions	 about	 the
relevance	and	utility	of	the	study	result.	Most	importantly,	confidence	intervals
retain	information	on	the	scale	of	the	measurement	itself.

ADJUSTMENT	FOR	CONFOUNDING
Detecting	 the	 presence	 and	 effect	 of	 possible	 extraneous	 determinants	 (i.e.,
confounders)	 is	 critical	 to	 obtaining	 valid	 results	 in	 etiologic	 studies.	 In	 this
section,	 a	 simple	 method	 to	 deal	 with	 confounding	 in	 the	 analysis	 phase	 is
introduced.	However,	in	real	life,	the	situation	is	often	much	more	complicated
than	 in	 the	 examples	 provided	 in	 this	 chapter.	 Generally,	 several	 confounders
must	be	taken	into	account	that	can	only	be	handled	with	modeling	techniques,



so	 the	 use	 of	 statistical	 software	 is	 necessary.	The	Mantel-Haenszel	 procedure
(explained	 in	 this	 section)	 can	 be	 used	without	 a	 computer	 and	 can	 provide	 a
great	deal	of	insight	into	the	process	of	adjustment	for	confounding.

Stratified	Analysis
One	way	to	address	confounding	is	to	do	a	stratified	analysis,	where	the	data	are
analyzed	 in	 strata	 of	 the	 confounding	 variable.	Consequently,	 in	 each	 stratum,
the	 effect	 of	 the	 confounder	 is	 removed	 and	 the	 determinant–	 outcome
relationship	is	estimated	conditional	on	the	confounder.	The	effect	estimates	for
the	 relationship	 between	 determinant	 and	 outcome	 are	 calculated	 in	 each
stratum.	 Next,	 the	 investigator	 compares	 the	 magnitude	 of	 the	 strata-specific
estimates	 before	 they	 are	 pooled	 in	 one	 summary	 estimate.	 Strata-specific
estimates	can	only	be	pooled	when	they	are	more	or	 less	comparable	and	have
the	 same	 direction	 and	 magnitude.	 If	 not,	 effect	 modification	 is	 likely	 to	 be
present.	Then,	the	relationship	has	to	be	expressed	for	each	stratum	of	the	effect
modifier,	and	calculation	of	a	single	overall	summary	estimate	may	be	of	limited
use.	Note	that	in	that	situation,	confounding	may	still	need	to	be	removed	from
each	stratum.
To	estimate	the	degree	of	confounding,	the	crude	effect	estimate	is	calculated

and	 compared	with	 the	 pooled	 estimate	 adjusted	 for	 the	 confounding	 variable.
The	pooled	 estimate,	 according	 to	Mantel-Haenszel	method,	 is	 calculated	with
the	following	formula:

In	 Box	 12–6,	 the	 Mantel-Haenszel	 procedure	 is	 applied	 in	 the	 same	 case-
control	study	on	oral	contraceptives	and	peripheral	arterial	disease	risk	presented
earlier,	to	adjust	for	the	confounder	age.
Typically,	 the	 presence	 and	 extent	 of	 confounding	 is	 best	 detected	 by

comparing	crude	to	adjusted	estimates	of	the	relation	(Box	12–6).	Similarly,	the
Mantel-Haenszel	 Risk	 Ratio	 and	 the	Mantel-Haenszel	 Risk	 Difference	 can	 be
calculated	 in	 randomized	 trials	 and	 cohort	 studies.	With	 the	 spreadsheet	made
available	by	Rothman	[2012],	the	different	Mantel-Haenszel	effect	measures	can
be	 easily	 calculated.	 There	 are	 other	 ways	 to	 adjust	 for	 confounding.	 Health
statistics	make	use	of	 so-called	direct	or	 indirect	standardization	 techniques	 to
control	 for	 differences	 in,	 for	 example,	 the	 age	 distribution,	 but	 in	 clinical



epidemiology,	 direct	 and	 indirect	 standardization	 techniques	 are	 hardly	 ever
used.	A	good	description	of	the	technique	can	be	found	in	the	work	of	Hennekes
and	Buring	[1987].

BOX	12–6	Adjustment	for	the	Confounder	Age,	Using	the	Mantel-Haenszel	Approach	in	a	Case-Control
Study	on	Oral	Contraceptive	Use	and	the	Occurrence	of	Peripheral	Arterial	Disease

Mantel-Haenszel	odds	ratio	for	peripheral	arterial	disease	(PAD)	in	relation	to	oral	contraceptive	use
in	women	[Van	den	Bosch	et	al.,	2003].

The	odds	ratios	in	the	different	age	strata	for	age	are	3.0,	2.4,	and	3.9	respectively.	The	age-adjusted
odds	ratio	(3.2)	is	quite	different	from	the	crude	(2.0)	odds	ratio.	This	implies	that	age	confounds	the
relationship	between	oral	contraceptive	use	and	the	occurrence	of	peripheral	arterial	disease.

Adapted	from	Van	den	Bosch	MA,	Kemmeren	JM,	Tanis	BC,	Mali	WP,	Helmerhorst	FM,	Rosendaal	FR,
Algra	A,	van	der	Graaf	Y.	The	RATIO	Study:	oral	contraceptives	and	the	risk	of	peripheral	arterial	disease
in	young	women.	J	Thromb	Haemost	2003;1:	439–444.

Regression	Analysis
In	the	event	of	one	or	two	confounding	variables	and	sufficient	data,	the	Mantel-
Haenszel	technique	is	suitable	for	adjustment	for	confounding.	If	there	are	more
confounders	 involved,	 the	 database	 quickly	 will	 not	 be	 of	 sufficient	 size	 to
perform	a	stratified	analysis.	To	overcome	this	problem,	a	regression	technique
such	 as	 linear	 regression,	 logistic	 regression,	 and	 Cox	 regression	 can	 be	 used
(PlanetMath,	 2007).	 The	 occurrence	 relation	 and	 the	 type	 of	 the	 outcome
variable	 largely	 determine	 the	 choice	 of	 the	 technique.	 If	 the	 outcome	 is



measured	on	a	continuous	scale	(blood	pressure,	weight,	etc.),	linear	regression
analysis	will	be	the	first	choice.	If	the	outcome	is	dichotomous	(yes/no),	logistic
regression	is	usually	chosen,	while	if	 time-to-event	is	the	outcome	(survival),	a
Cox	model	will	be	used	to	estimate	the	effect	measure.	When	logistic	regression
is	chosen,	 the	effect	measure	 is	expressed	as	an	odds	 ratio.	Odds	 ratios	can	be
interpreted	 as	 risk	 ratios	 if	 the	 outcome	 occurs	 in	 less	 than	 10%	 of	 the
participants.	If	the	incidence	of	the	outcome	is	higher	than	10%,	other	methods
have	to	be	used	to	estimate	risk	ratios	such	as	log-binomial	regression	or	Poisson
regression	[Knol	et	al.,	2012].	Both	methods	are	available	in	SPSS,	SAS,	R,	and
Stata	[Lumley	et	al.,	2006,	Spiegelman	&	Hertzmark,	2005].

Linear	Regression
Techniques	for	fitting	lines	to	data	and	checking	how	well	the	line	describes	the
data	 are	 called	 linear	 regression	 methods.	 With	 linear	 regression,	 we	 can
examine	the	relationship	between	a	change	in	the	value	of	one	variable	(X)	and
the	corresponding	change	in	the	outcome	variable	(Y).
The	 simple	 linear	 regression	 model	 assumes	 that	 the	 relationship	 between

outcome	and	determinant	can	be	summarized	as	a	straight	line.	The	line	itself	is
represented	by	two	numbers,	the	intercept	(where	the	line	crosses	the	y-axis)	and
the	slope.	The	values	of	intercept	and	slope	are	estimated	from	the	data.

In	 the	 observed	 relationship	 between	 IMT	 and	 age	 (Box	 12–7)	 several
confounders	 that	 differ	 in	 subjects	 with	 different	 ages	 and	 also	 have	 a
relationship	with	IMT	can	play	a	role,	for	example,	sex.	With	regression	analysis
we	can	control	for	confounding	in	an	easy	way	by	including	the	confounder	in
the	 regression	 model.	 Assuming	 that	 we	 have	 enough	 data,	 we	 can	 extend
Equation	5	with	several	confounders.

BOX	12–7	Age	and	Intima	Media	Thickness	in	Patients	with	Symptomatic	Atherosclerosis



Intima	Media	Thickness	(mm)	=	0.26	+	0.011	×	age	(years)	R2	=	0.29

In	1000	patients	with	symptomatic	atherosclerosis	the	relationship	between	intima	media	thickness
(IMT)	of	the	carotid	artery	and	age	(in	years)	is	investigated.	The	intercept	is	0.26	and	the	coefficient
of	age	is	0.01.	The	interpretation	of	the	coefficient	is	that	with	each	year	increase	in	age	the	mean	IMT
increases	0.01	mm.	The	R2	is	a	measure	for	the	variation	in	Y	(IMT)	that	is	explained	by	X	(age).	The
precision	of	the	coefficient	is	expressed	with	the	95%	CI.	The	lower	limit	of	the	95%	CI	(0.010)
means	that	if	we	repeat	this	study	generally	the	coefficient	for	age	will	not	be	below	0.010	(in	95	out
of	100	studies).

Coefficientsa

aDependent	variable:	intima	media	thickness	(mm).

	

We	have	extended	our	analysis	by	 including	sex	 in	 the	 regression	model.	 In
this	 example,	 the	 coefficient	 of	 age	 does	 not	materially	 change,	 which	means
that	sex	is	not	a	confounder	in	the	relationship	between	IMT	and	age	(Table	12–



8).
The	first	step	in	fitting	a	regression	line	is	always	inspection	of	the	data.	Just

plot	Y	 and	X;	 the	 shape	 of	 the	 plot	may	 suggest	whether	 or	 not	 a	 straightline
equation	 is	 appropriate.	 Rather	 than	 linear,	 the	 most	 likely	 line	 may	 be	 log-
linear.	In	that	case,	log	transformation	of	the	variables	can	be	a	solution.	A	plot
also	gives	insight	in	outlying	data	points.	Generally,	it	is	not	desirable	for	one	or
two	outliers	to	determine	the	fitted	regression	line	and	after	carefully	examining
the	possible	reasons	for	the	deviant	data	points,	removal	of	the	outliers	may	be
preferred.	An	 impression	 of	 the	 variability	 of	 the	 outcome	 can	 be	 obtained	 by
looking	at	the	confidence	interval	curves	of	the	fitted	line.
When	reporting	results,	the	author	should	give	the	reader	enough	information

and	 report	 the	 regression	 equation,	 the	 variances	 of	 the	 coefficients,	 and	 the
residual	variance	of	the	regression	model	in	diagnostic	and	prognostic	studies.	In
etiologic	 studies	 the	 beta	 coefficient	 and	 the	 variance	 of	 the	 coefficient	 are
reported.
In	 the	 relationship	 between	 IMT	 and	 age,	 we	 deal	 with	 two	 continuous

variables,	and	the	coefficient	 is	 the	unit	change	of	Y	when	X	changes	with	one
unit.	 In	 the	 event	 of	 a	 dichotomous	 variable,	 the	 coefficient	 represents	 the
difference	 in	 Y	 in	 the	 two	 categories	 of	 the	 variable.	 For	 example,	 if	 we	 are
interested	 in	 the	 relationship	 between	 IMT	 and	 gender,	 we	 can	 estimate	 the
regression	 coefficient	 for	 sex	 (Table	 12–9).	 The	 coefficient	 is	 −0.096	 for	 sex,
meaning	that	the	mean	IMT	in	women	is	0.096	mm	smaller	than	the	mean	IMT
value	 in	males.	 This	 value	 is	 exactly	 the	 same	 as	when	 the	mean	 of	 the	 IMT
value	for	males	and	females	would	have	been	simply	subtracted.	The	advantage
of	 calculating	 this	 mean	 by	 regression	 modeling	 is	 that	 the	 model	 can	 be
expanded	by	adding	confounders,	 the	 result	being	an	adjusted	mean.	Note	 that
the	 value	 may	 become	 different	 from	 simple	 subtraction	 once	 other	 variables
have	been	added	to	the	regression	model	to	adjust	for	confounding.

Logistic	Regression
Linear	 regression	 is	 indicated	 when	 the	 outcome	 parameter	 of	 interest	 is
continuous.	 The	 dependent	 variable	 can	 either	 be	 continuous	 or	 dichotomous.
When	 the	 outcome	 is	 discrete	 (e.g.,	 diseased/nondiseased),	 logistic	 regression
analysis	is	suitable.	Logistic	regression	is	very	popular	because	in	medicine	the
outcome	variable	of	interest	is	often	the	presence	or	absence	of	disease	or	can	be
transformed	 into	a	“yes”	or	“no”	variable.	A	regression	model	 in	 this	 situation



does	not	predict	the	value	Y	for	a	subject	with	a	particular	set	of	characteristics
(as	 in	 linear	 regression),	but	 rather	predicts	 the	proportion	of	 subjects	with	 the
outcome	 for	 any	 combination	 of	 characteristics.	The	 difference	 between	 linear
regression	and	logistic	regression	is	that	instead	of	predicting	the	exact	value	of
the	dependent	variable,	a	transformation	of	the	dependent	variable	is	predicted.
The	transformation	used	is	the	logit	transformation.	The	formula	of	the	logistic
model	is:

TABLE	12–8	Relationship	Between	Age	and	Intima	Media	Thickness	in	Patients	with	Atherosclerosis,
Adjusting	for	Sex

aDependent	variable:	intima	media	thickness	(mm).

TABLE	12–9	Relationship	Between	Sex	and	Intima	Media	Thickness

aDependent	variable:	intima	media	thickness	(mm).

ln	[Y/(1	−	Y)]	=	b0	+	b1X1	(Eq.	7)

where	Y	is	the	proportion	of	subjects	with	the	outcome	(e.g.,	the	probability	of
disease);	(1	−	Y)	is	the	probability	that	they	do	not	have	the	disease,	ln	[Y/(1	−
Y)]	is	the	logit	or	log	(odds)	of	disease,	b0	is	the	intercept,	and	X1	is	one	of	the
independent	variables.
From	the	regression	model,	we	can	directly	obtain	the	odds	ratio	because	the

coefficient	(b1)	in	the	regression	model	is	the	natural	logarithm	of	the	odds	ratio.
This	 is	 a	 major	 reason	 for	 the	 popularity	 of	 the	 logistic	 regression	 model.
Computer	 packages	 not	 only	 give	 the	 coefficients	 but	 also	 the	 odds	 ratios	 and
corresponding	confidence	limits.	The	95%	CI	in	the	output	in	Box	12–8	shows
that	 1	 is	 not	 included	 in	 the	 interval,	 meaning	 that	 the	 relationship	 between
smoking	 and	 the	 presence	 of	 cardiovascular	 disease	 is	 significant	 at	 the	 5%
level.	Odds	 ratios	are	generally	expressed	 in	 literature	by	giving	 the	value	and
corresponding	 95%	 CIs,	 for	 example,	 OR	 is	 1.9	 (95%	 CI	 1.5–2.3).	 In	 the



example	in	Box	12–8,	the	independent	variable	is	entered	as	a	discrete	variable
(yes/no),	but	variables	with	more	categories	or	continuous	variables	can	also	be
included	in	a	logistic	regression	model.
In	 the	 example	 in	 Table	 12–10,	 smoking	 has	 three	 categories—present

smoker,	former	smoker,	never	smoker;	the	never-smoker	is	chosen	as	reference
category.	The	outcome	is	coronary	disease.
Some	computer	packages	(e.g.,	 the	SPSS	statistical	software	program)	create

so-called	dummies	when	variables	have	more	categories.	In	other	packages,	the
user	 has	 to	 define	 the	 dummies	 before	 the	 variables	 can	 be	 included	 in	 the
model.	 If	 a	 variable	 has	 three	 categories,	 two	 new	 variables	 are	 needed	 to
translate	 that	 variable	 into	 a	 “yes/no”	 variable.	 If	 categorical	 variables	 are
entered	 without	 recoding	 dummies	 in	 the	 model,	 the	 model	 will	 consider	 the
covariate	 as	 if	 it	 was	 a	 continuous	 variable.	 Now	 the	 regression	 coefficient
applies	to	a	unit	change,	for	example,	from	never	smoking	(0)	to	former	smoker
(1),	or	from	former	smoker	(1)	to	present	smoker	(2).	Such	a	single	coefficient,
however,	makes	no	sense.	Creating	dummies	is	more	useful	and	is	also	simpler.
Two	new	variables	can	be	defined	as	smoking1	and	smoking2,	where	smoking1
is	0	except	when	the	subject	is	a	former	smoker	and	smoking2	is	0	except	when
the	subject	is	a	present	smoker.	The	following	possibilities	appear:

BOX	12–8	Smoking	Link	with	Cardiac	Disease,	Logistic	Regression	Analysis

In	a	cross-sectional	study	of	3,000	subjects,	we	estimated	the	relationship	between	smoking	and	the
presence	of	coronary	disease	with	logistic	regression	analysis.

Variables	in	the	equation

Variable(s)	entered	on	step	1:	smoking.

The	regression	equation	for	the	model	with	one	variable	(smoking)	is:
Logit	(coronary	disease)	=	−1.150	+	0.641	(smoking)
With	this	equation	we	can	calculate	the	odds	of	coronary	disease	for	smokers	and	for	nonsmokers:
For	smokers:	logit	(coronary	disease)	=	−1.150	+	0.641
For	nonsmokers:	logit	(coronary	disease)	=	−1.150
Logit(smokers)	−	logit(nonsmokers)	=	0.641
Odds	ratio(smokers)	=	e

0.641	5	1.89



•	 Smoking1	 (dummy	 former	 smoker)	 =	 0	 and	 Smoking2	 (dummy	 present
smoker)	=	0:	the	subject	is	a	never	smoker

•	 Smoking1	 (dummy	 former	 smoker)	 =	 1	 and	 Smoking2	 (dummy	 present
smoker)	=	0:	the	subject	is	a	former	smoker

•	 Smoking1	 (dummy	 former	 smoker)	 =	 0	 and	 Smoking2	 (dummy	 present
smoker)	=	1:	the	subject	is	a	present	smoker

Many	dependent	variables	are	continuous	and	generally	it	is	not	preferable	to
categorize	a	variable	that	is	measured	on	a	continuous	scale	because	information
will	 be	 lost.	 For	 example,	 if	we	 determine	 the	 association	 between	weight	 (in
kilograms)	and	coronary	disease	(yes/no),	the	output	is	shown	in	Table	12–11.

TABLE	12–10	Smoking	(in	Three	Categories)	and	Coronary	Artery	Disease

aVariables	entered	on	step	1:	smoking
For	former	smokers:	logit	(coronary	disease)	=	−	1.150	+	0.332
For	present	smokers:	logit	(coronary	disease)	=	−	1.150	+	0.861
For	nonsmokers:	logit	(coronary	disease)	=	−	1.150
Logit(former	smokers)	−	logit(nonsmokers)	=	0.332 Odds	ratio(former	smokers)	=	e0.332	=	1.39

Logit(present	smokers)	−	logit(nonsmokers)	=	0.861 Odds	ratio(present	smokers)	=	e0.861	=	2.36

TABLE	12–11	Weight	and	the	Risk	of	Coronary	Disease

aVariable(s)	entered	on	step	1:	weight

The	coefficient	of	weight	 is	0.008	and	 the	odds	 ratio	 (Exp	B)	 is	1.008.	This



means	that	for	each	kilogram	increase	in	weight,	the	risk	for	coronary	ischemia
increases	 by	 0.8%.	 Often	 age	 is	 treated	 as	 a	 continuous	 variable	 as	 well.	 In
Table	12–12,	the	risk	increases	by	3.8%	each	year	of	increase	in	age.
The	 absolute	 probability	 (or	 risk)	 of	 the	 outcome	 for	 each	 subject	 can	 be

directly	calculated	from	the	logistic	model	by	substituting	the	determinants	X1,
X2,	etcetera	by	the	values	measured	in	these	patients,	according	to	the	following
formula	(see	also	Box	12–9):

Cox	Regression
In	many	studies,	not	only	the	event	but	also	the	time	to	event	is	of	interest.	This
event	may	or	may	not	have	occurred	during	the	observation	period.	If	an	event
did	occur,	it	will	have	occurred	at	different	intervals	for	each	subject.	For	these
type	of	data,	linear	and	logistic	regression	techniques	are	not	sufficient	because
it	 is	 not	 possible	 to	 include	 the	 time	 to	 event	 in	 the	 model	 [Steenland	 et	 al.,
1986].	Generally,	 these	 types	of	data	are	 referred	 to	as	survival	data,	but	apart
from	death	as	an	outcome,	all	kinds	of	“yes/no”	events	(e.g.,	disease	progression,
discharge	from	hospital,	the	occurrence	of	an	adverse	event	or	a	disease)	can	be
analyzed	 with	 survival	 techniques.	 If	 only	 one	 independent	 variable	 is
investigated,	the	Kaplan-Meier	method	of	estimating	a	survival	distribution	can
be	 used.	 If	 more	 variables	 have	 to	 be	 included	 in	 the	 analysis,	 the	 Cox
proportional	hazards	regression	model	is	needed.

TABLE	12–12	Age	and	the	Risk	of	Coronary	Disease

aVariable(s)	entered	on	step	1:	age.

BOX	12–9	Age,	Gender,	and	Cardiac	Ischemia

With	logistic	regression,	the	relationship	between	the	risk	of	cardiac	ischemia	and	age	and	gender	was
examined.	With	each	year	increase	in	age	the	risk	of	the	outcome	increases	1.036	times,	while	males
have	2.38	times	the	risk	of	women	(output	below).	For	each	patient	the	absolute	risk	in	the	observed
follow-up	time	for	the	presence	of	myocardial	infarction	can	be	calculated	with	the	following	formula:



Variables	in	the	equation

aVariable(s)	entered	on	step	1:	smoking.

The	coefficients	are	given	in	the	printed	output.	β0	is	the	intercept,	β1	is	the	age	coefficient,	and	β2	is
the	coefficient	for	gender	for	a	60-year-old	male.	The	risk	of	cardiac	ischemia	in	the	observed	follow-
up	time	is:

A	 time-to-event	 analysis	 requires	 a	 well-defined	 starting	 point.	 This	 point,
often	referred	to	as	T0,	may	be	(chronologically)	different	for	all	participants	and
is	 precisely	 defined	 by	 the	 researcher.	 Often	 it	 is	 the	 date	 of	 the	 baseline
screening	in	a	cohort	study	or	the	day	of	randomization	in	a	clinical	trial.	Some
participants	will	subsequently	experience	the	outcome	of	interest	and	others	will
not.	The	survival	function	St	describes	the	proportion	of	subjects	(S)	who	survive
beyond	 time	 (t).	 If	 death	 is	 not	 the	 outcome,	 the	 survival	 curve	 describes	 the
proportion	of	subjects	free	from	the	defined	outcome	at	t.
Censoring	is	a	typical	phenomenon	that	pertains	to	survival	analysis.	Subjects

who	do	not	experience	the	outcome	during	the	follow-up	period	are	censored	at
the	end	of	the	study	period.	Subjects	who	beyond	a	certain	point	of	time	are	lost
to	 follow-up	 (e.g.,	 because	 they	move	 to	 another	 part	 of	 the	 country)	 are	 also
censored.	Censoring	should	be	uninformative.	This	means	 that	 for	all	 subjects,
the	 risk	 of	 being	 censored	 is	 independent	 of	 the	 risk	 for	 the	 event.	 If	 subjects
who	are	going	to	die	are	more	 likely	 to	be	 lost,	censoring	is	not	uninformative
and	the	results	of	survival	analysis	will	be	biased.	In	the	example	in	Figure	12–
2,	 the	 event-free	 survival	 is	 plotted	 for	 patients	 with	 symptomatic
atherosclerosis.	 Here,	 the	 event	 is	 defined	 as	 the	 occurrence	 of	 nonfatal
myocardial	infarction,	nonfatal	stroke,	or	cardiovascular	death.	From	Figure	12–
2,	we	can	see	that,	 for	example,	after	3	years	 the	event-free	survival	S	is	95%.



The	95%	CI	of	this	proportion	can	be	calculated	from	the	output	[SE	4.6%;	95%
CI	=	S	±	(1.96	×	SE)].	If	we	want	to	investigate	whether	the	risk	of	the	outcome
in	this	example	is	determined	by	sex,	we	make	two	survival	plots.
In	males,	 the	5-year	event-free	 survival	 rate	 is	83.7%,	while	 in	 females	 it	 is

92.1%	(exact	estimates	can	be	read	from	the	output).	If	we	want	to	test	whether
event-free	survival	is	different	between	the	two	groups,	we	use	the	log-rank	test.
With	 this	 test,	we	 compare	 the	 survival	 distributions	 of	males	 and	 females.	 In
this	example,	the	P	value	of	the	log-rank	test	was	0.0001.
Often	 we	 are	 interested	 in	 the	 simultaneous	 and	 independent	 effects	 of

different	variables	on	the	survival	function,	for	example,	when	we	want	to	adjust
one	variable	for	another	(see	Table	12–13).	The	most	common	approach	for	this
type	of	analysis	is	the	Cox	proportional	hazards	analysis.	In	the	Cox	model	it	is
assumed	 that	 the	 independent	 variables	 are	 related	 to	 survival	 time	 by	 a
multiplicative	 effect	 on	 the	 hazard	 function.	 If	 we	 want	 to	 simultaneously
analyze	 the	 effect	 of	 age	 and	 sex	 on	 the	 event-free	 outcome	 in	 the	 previously
mentioned	example,	the	Cox	model	assumes	that	the	hazard	function	of	a	subject
has	the	following	expression:

TABLE	12–13	Sex,	Age,	and	the	Risk	of	Cardiovascular	Events:	Results	from	Cox	Regression

FIGURE	12–2	Survival	data	from	the	SMART	study	of	3200	patients	with	symptomatic	atherosclerosis.
There	were	223	events.



With	kind	permission	from	Springer	Science+Business	Media:	Simons	PC,	Algra	A,	van	de	Laak	MF,
Grobbee	DE,	van	der	Graaf	Y.	Second	Manifestations	of	ARTerial	disease	(SMART)	study:	rationale	and
design.	Eur	J	Epidemiol	1999;15:773–81.

where	h0	(t)	is	the	underlying	hazard;	this	is	the	proportion	of	subjects
who	fail	at	time	t	among	those	who	have	not	failed	previously;	β1	and
β2	are	the	unknown	regression	coefficients	(for	age	and	sex,
respectively)	that	can	be	estimated	from	the	data,	and	x1	and	x2	are	the
values	of	the	two	variables	age	and	sex	in	an	individual.	The	hazard
functions	for	the	different	subjects	would	have	the	following	form	if
we	assume	a	female	younger	than	age	60	as	the	reference:

Female	below	age	60 h0	(t)
Female	over	age	60 h0	(t)	×	eb2
Male	below	age	60 h0	(t)	×	eb1
Male	over	age	60 h0	(t)	×	eb1	+	b2

These	hazard	functions	are	proportional	to	each	other,	and	it	is	not	necessary
to	know	the	underlying	hazard	h0	(t)	in	order	to	compare	the	four	groups.	From
the	 Cox	 model,	 coefficients	 and	 their	 standard	 errors	 can	 be	 estimated	 and
several	computer	packages	generate	the	hazard	ratios,	a	type	of	relative	risk,	as
well.
In	 the	 computer	 output	 in	 Table	 12–13,	 the	 results	 of	 a	 Cox	 regression	 are

shown.	An	event	was	defined	as	a	combined	outcome	of	a	nonfatal	myocardial
infarction,	 a	 nonfatal	 stroke,	 or	 cardiovascular	 death.	Data	were	 collected	 in	 a
cohort	of	patients	with	elevated	risk	for	cardiovascular	disease.	In	this	analysis,
gender	 and	 age	 are	 investigated	 as	 determinants	 of	 the	 outcome.	 Females
younger	than	age	60	are	the	reference	group.	A	female	older	than	age	60	has	a
hazard	ratio	of	2.8	(b2,	coefficient	of	age).	This	hazard	ratio	can	be	interpreted	as
a	relative	risk,	meaning	that,	compared	to	women	younger	than	60	years	of	age,
women	older	than	60	years	have	2.8	times	the	risk	for	a	cardiovascular	event.	A
male	 younger	 than	 age	 60	 (b1,	 coefficient	 of	 gender)	 has	 1.7	 times	 the	 risk
compared	 to	 a	 female	younger	 than	 age	60.	A	male	older	 than	 age	60	has	 the
coefficient	of	sex	and	age	(e0.572	+	1.043)	leading	to	a	hazard	ratio	of	5.0.



FREQUENTISTS	AND	BAYESIANS
Frequentist	analysis	is	the	most	common	statistical	approach	[Bland	&	Altman,
1998]	 and	 the	 approach	 to	 data	 analysis	 in	 this	 chapter	 is	 frequentist.	 Classic
statistical	data	analysis	rests	on	P	values	and	hypothesis	testing,	which	is	rooted
in	 the	work	of	Fisher,	Neyman,	Pearson,	 and	others	 in	 the	 early	 19th	 century,
building	 upon	 randomized	 experiments	 and	 random	 sampling,	 where	 random
error	 provides	 the	 reference	 and	 hypothetical	 infinite	 replications	 of	 the
experiment	 offer	 a	 distribution	 against	 which	 the	 observed	 data	 needs	 to	 be
judged.	 The	 inference	 is	 a	 verdict	 on	 one	 assumed	 true	 parameter	 in	 real	 life,
such	as	a	difference	 in	effect	between	treatments.	Either	 the	hypothesis	(e.g.,	a
new	 drug	 is	 better	 than	 a	 placebo)	 is	 true,	 for	 example,	 sufficiently	 certain	 in
view	of	the	data,	or	it	is	not.	Likewise,	the	“verdict”	is	one	estimate	of	that	true
parameter	with	a	confidence	interval;	this	too	is	a	frequentist	approach,	and	for
most	 problems	 confidence	 intervals	 and	 hypothesis	 testing	 are	 fully	 consistent
and	lead	to	the	same	conclusions.
In	general,	we	intuitively	tend	to	think	in	the	“probability”	of	the	superiority

of	a	particular	 treatment	given	the	outcome	of	our	experiment.	Very	 likely,	we
will	build	our	research	upon	previous	findings	or	plausible	mechanisms,	and,	as
a	consequence,	 there	will	be	expectations	 (rooted	 in	data)	about	 the	 results	 the
research	 will	 yield	 even	 before	 the	 data	 are	 available.	 When	 a	 difference	 is
observed,	 it	 may	 not	 be	 statistically	 significant	 but	 yet	 very	 plausible	 and	 in
agreement	 with	 findings	 in	 other	 research	 and	 therefore	 confirms	 our
expectations.	 The	 observed	 difference	 is	 credible,	 and,	 despite	 the	 lack	 of
frequentist	 statistical	 significance	 that	 may	 reflect	 the	 small	 sample	 or	 large
variance,	 we	 “believe”	 it	 to	 be	 true	 because	 we	merge	 it	 with	 prior	 data	 and
expectation.
One	 area	 in	 which	 the	 importance	 of	 plausibility	 (or	 prior	 beliefs)	 is

particularly	 important	 in	 judging	 the	 meaning	 of	 subsequent	 findings	 is	 in
diagnosis.
Clinicians	 have	 prior	 beliefs	 about	 the	 benefits	 of	 treatment	 and	 these	 prior

beliefs	 could	 influence	 the	 posterior	 probabilities.	 This	 way	 of	 reasoning	 is
called	 Bayesian,	 named	 after	 the	 mathematician	 and	 Presbyterian	 minister,
Thomas	Bayes	 (1702–1761;	 see	Figure	12–3)	 and	predominantly	known	 from
the	 Bayes	 theorem	 published	 in	 1764	 [Bayes,	 1764].	 In	 a	 Bayesian	 statistical
approach,	 prior	 beliefs	 are	 made	 explicit	 (Box	 12–10)	 through	 a	 probability
distribution	on	unknown	parameters	(e.g.,	true	treatment	effects).



It	 is	 not	 only	 the	 results	 of	 a	 particular	 study	 but	 also	 the	 already	 available
knowledge	 (for	 example,	 summarized	 in	 meta-analyses)	 that	 determines	 the
credibility	 or	 superiority	 of	 a	 particular	 treatment	 strategy.	 Importantly,	 as
elegantly	 argued	 by	 Greenland	 [2006],	 frequentist	 as	 well	 as	 Bayesian
techniques	are	based	on	models	and	assumptions	that	are	subjective.	Without	a
model	and	assumptions,	any	set	of	data	is	meaningless.

FIGURE	12–3	British	mathematician,	Reverend	Thomas	Bayes,	whose	solution	to	“inverse	probability”
was	published	posthumously.
Courtesy	of	the	MacTutor	History	of	Mathematics	Archive,	University	of	St.	Andrews,	Scotland,	United
Kingdom.	Available	at	http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Bayes.html.	Accessed
July	11,	2007.

BOX	12–10	Probability

Statistics	as	a	discipline	remains	sharply	divided,	even	on	the	fundamental	definition	of	“probability.”

http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Bayes.html


The	frequentist’s	definition	sees	probability	as	the	long-run	expected	frequency	of	occurrence.	P(A)	=
n/N,	where	n	is	the	number	of	times	event	A	occurs	in	N	opportunities.	The	Bayesian	view	of
probability	is	related	to	degree	of	belief.	It	is	a	measure	of	the	plausibility	of	an	event	given
incomplete	knowledge.	A	frequentist	believes	that	a	population	mean	is	real,	but	unknown,	and
unknowable,	and	is	one	unique	value	that	needs	to	be	estimated	from	the	data.	Knowing	the
distribution	for	the	sample	mean,	he	constructs	a	confidence	interval,	centered	at	the	sample	mean.

Here	it	gets	tricky.	Either	the	true	mean	is	in	the	interval	or	it	is	not.	Thus,	the	frequentist	cannot	say
there	is	a	95%	probability	that	the	true	mean	is	in	this	interval,	because	it	is	either	already	in,	or	it	is
not.	And	that	is	because	to	a	frequentist	the	true	mean,	being	a	single	fixed	value,	does	not	have	a
distribution.	The	sample	mean	does.	Thus,	the	frequentist	must	use	circumlocutions	like	“95%	of
similar	intervals	would	contain	the	true	mean,	if	each	interval	were	constructed	from	a	different
random	sample	like	this	one.”	Graphically	this	is	illustrated	here:

Bayesians	have	an	altogether	different	worldview.	They	say	that	only	the	data	are	real.	The	population
mean	is	an	abstraction,	and	as	such	some	values	are	more	believable	than	others	based	on	the	data	and
their	prior	beliefs.	(Sometimes	the	prior	belief	is	very	non-informative,	however.)	The	Bayesian
constructs	a	credible	interval,	centered	near	the	sample	mean,	but	tempered	by	“prior”	beliefs
concerning	the	mean.	Now	the	Bayesian	can	say	what	the	frequentist	cannot:	“There	is	a	95%
probability	that	this	interval	contains	the	mean.”

In	summary,	probability	according	to	a	frequentist	can	be	defined	as	the	long-run	fraction	having	a
characteristic,	while	according	to	a	Bayesian	it	can	be	considered	a	degree	of	believability.

In	caricature,	a	frequentist	is	a	person	whose	long-run	ambition	is	to	be	wrong	5%	of	the	time,	while	a
Bayesian	is	one	who,	vaguely	expecting	a	horse,	and	catching	a	glimpse	of	a	donkey,	strongly	believes
he	has	seen	a	mule.

Courtesy	of	Charles	Annis,	P.E./Statistical	Engineering.	Available	at:
http://www.statisticalengineering.com/frequentists_and_bayesians.htm.

The	Bayesian	approach	makes	the	subjective	and	arbitrary	elements	shared	by
all	statistical	methods	explicit	through	a	prior	probability	distribution.	Bayesian
analysis	thus	requires	that	these	prior	beliefs	be	explicitly	specified.	This	could
be	done	using	empirical	evidence	available	before	 the	next	study	 is	conducted,
insights	into	mechanisms	that	make	the	presence	of	an	association	likely,	or	any
other	belief	or	knowledge	obtained	without	the	data	generated	by	the	new	study.
One	 clear	 consequence	 is	 that	 Bayesian	 results	 can	 only	 be	 interpreted

http://www.statisticalengineering.com/frequentists_and_bayesians.htm


conditional	on	the	prior	belief.	Hence,	if	there	is	no	universal	agreement	on	the
prior	belief,	 the	same	data	will	necessarily	 lead	 to	different	estimates,	different
credibility	intervals,	and	different	conclusions	among	groups	that	have	different
prior	 beliefs.	 To	 put	 it	 in	 another	 way,	 before	 you	 believe	 the	 results	 of	 a
Bayesian	analysis	as	presented	 in	a	paper	you	 first	have	 to	commit	yourself	 to
the	prior	belief	that	was	used	as	a	basis.	This	problem	is	often	avoided	by	using
“vague”	 or	 noninformative	 priors,	 but	 then	 in	 fact	 the	 advantage	 of	 using
directed	and	real	prior	data	or	belief	is	lost.
It	 has	been	argued	 that	Bayesian	 statistical	 techniques	 are	difficult,	 but	 they

are	 not	 necessarily	 more	 complicated	 than	 frequentist	 techniques.	 They	 do
require	more	 intensive	computation,	even	 in	cases	 that	can	be	approximated	 in
the	 frequentist	 setting.	 This	 is	 due	 to	 the	 fact	 that	 combining	 the	 prior
distribution	with	 the	data	can	only	be	done	 in	a	straightforward	analytical	way
under	 restrictive	 assumptions	 that	 do	 not	 allow	 the	 flexibility	 for	 prior	 beliefs
that	 is	 needed	 in	 practice.	 Most	 current	 statistical	 computer	 packages	 are
implicitly	based	on	the	frequentist’s	way	of	thinking	about	hypothesis	testing,	P
values,	 and	 confidence	 intervals.	 However,	 even	 with	 standard	 frequentist
software,	 it	 is	possible	 to	approximate	Bayesian	analyses	and	 incorporate	prior
distributions	of	the	data,	for	example,	by	inverse	variance	weighting	of	the	prior
information	 with	 the	 frequentist	 estimate	 [Greenland,	 2006].	 In	 the	 statistical
data	analysis	of	clinical	epidemiologic	data	there	is	room	for	both	frequentist	and
Bayesian	approaches,	with	the	Bayesian	approach	being	perhaps	more	natural	to
medical	 reasoning	 [Brophy	&	 Joseph,	 1995].	 To	 promote	 the	 use	 of	Bayesian
analyses,	 however,	 both	 the	 understanding	 of	 Bayesian	 concepts	 and	 analyses
and	 the	 accessibility	 of	 Bayesian	 statistics	 in	 data	 analysis	 software	 packages
need	to	be	improved.
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