Drugs and the kidney

Dr. Laila M Matalqah

UGS

Faculty of Medicine

Objectives

- Discuss the mechanisms by which drugs and chemicals damage the kidney
- Understand how to select and prescribe drugs for patients with renal impairment.

Drug-Induced Acute Renal Dysfunction

- Acute Renal Failure
 - Prerenal: reduction of renal perfusion NSAIDs, Cyclosporine, ACEI/ARB, Diuretics, amphotiricine B
 - Intrinsic: direct tubular toxicity –
 ATN Aminoglycosides, Amphotericin
 Radiocontrast Media
 - Allergic interstitial nephritis: Penicillins and cephalosporines
 - Obstructive: by precipitation
 Sulfonamide, Methotrexate, Acyclovir, Indinavir,

DRUG-INDUCED RENAL FAILURE

Mechanism	Drug(s)
Reduction of renal perfusion	NSAIDs, ACE-inhibitors, cyclosporine, tacrolimus, amphotericin B
Direct tubular toxicity	Aminoglycosides, radiocontrast agents, cyclosporine, tacrolimus, amphotericin B, pentamidine, cisplatin
Allergic interstitial nephritis	Penicillins, cephalosporins, sulfonamides, NSAIDs
Intratubular obstruction by precipitation	Acyclovir, sulfonamides, chemotherapeutics

Risk factors:

- Idiosyncratic
- Direct cumulative toxicity
- No generalizable risk factors are applicable to all drug classes and patient situation ,Exception: ARF due to NSAIDs & ACEIs
- The risk factors are: Preexisting renal insufficiency & decrease effective renal blood flow from volume depletion and HF, liver disease.

CLASSIFICATIONS

Anuric: < 50ml/day urine output</p>

Oliguric: 50-400ml/day urine output

Non-oliguric: >400ml/day urine output

Kidney Function Tests

<u>Urea Nitrogen blood (BUN)</u> (serum)	7 - 30 mg/dL Alternative source: 8-25 mg/dL	2.5 - 10.7 mmol urea /L Alternative source: 2.9-8.9 mmol/L
<u>Creatinine</u> (Serum)	0.7 - 1.4 mg/dl (<1.2)	= 106 μmol/L</td
Creatinine (<u>Urine</u>)	Male: 0.8 - 2.4 g/day Female: 0.6 - 1.8 g/day	Male: 7.1 - 21.2 mmol/day Female: 5.3 - 15.9 mmol/day
Creatinine Clearance (CrCL) Note: Creatinine clearance reference intervals are based on a body surface area of 1.73 square meters.	Male: <12 yr: 50-90 mL/minute, >12 yr: 97-137 mL/minute	Female: < 12 yr: 50-90 mL/minute, > 12 yr: 88-128 mL/minute

Pre Renal: ↑ BUN/ ↑ Cr >20

Post Renal: ↑ BUN/ ↑ Cr 10 – 20

Renal:
 ↑ BUN/ ↑ Cr < 10</p>

ESTIMATION OF RENAL FUNCTION

Cockcroft and Gault Equation:

$$CL_{Cr}(ml/min) = \underline{(140-Age)\times(Wt.)}$$

$$72(Scr)$$

$$= \times 0.85$$
 (female)

Serum Creatinine

Creatinine 1.0 mg/dL Normal GFR

Creatinine 2.0 mg/dL 50% reduction in GFR

Creatinine 4.0 mg/dL 70–85%

reduction in GFR

Creatinine 8.0 mg/dL 90–95%

reduction in GFR

ETIOLOGY: pre-renal

- Decreased cardiac output: CHF,MI,PE, Betablockers
- Peripheral vasodilation: bacterial sepsis, vasodilators (<u>nitrates</u>, <u>hydralazine</u>, <u>etc</u>.)
- Hypovolemia: blood loss, Severe dehydration, diarrhea, burns, third-spacing, <u>diuretics</u>
- Vascular Obstruction: NSAIDS, ACE-I,
 Vasopressors, renal artery occlusion

Pre-renal nephropathy

Causes and risk factors

- Analgesic nephropathy involves damage within the internal structures of the kidney. It is caused by long-term use of analgesics, especially over-the-counter (OTC) medications that contain phenacetin or acetaminophen and nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin or ibuprofen.
- About 6 or more pills per day for 3 years increases the risk some for this problem. This frequently occurs as a result of self-medicating, often for some type of chronic pain.
- Injuries: renal necrosis and chronic interstitial nephritis.

Afferent Arteriolar vasoconstrictors

- Vasodilatory Prostaglandin Inhibitors
 - NSAIDs
 - COX-2 Inhibitors
- Direct Afferent Arteriolar Vasoconstrictors
 - Cyclosporine
 - Amphotericin-B
 - Radiocontrast Media
 - Vasopressors

Efferent Arteriolar vasodilators

- Renin-Angiotensin-Aldosterone
 - ACEIs
 - ARBs
- Direct Efferent Arteriolar Vasodilators
 - CCBs dihydropyridine: Diltiazem, Verapamil

ACEI/ARB

- At the start of the treatment a decrease of urine volume and increase of creatinine by 30% indicates
 - Damage is reversible
 - Rehydration of patient is advisable
 - Initiate treatment with short acting (captopril) and titrate later with long acting

ACE Inhibitors & ARBs

- Uremia, hyper K+
- \blacksquare Cr > 3.5 \rightarrow consult nephrology!
- Avoid in bilateral renal artery stenosis
 - ARB causes less renal failure than ACE Inhibitor
- Strategy:
- monitor: BP, K, Cr
- "diuretic holiday" x days before start
- start captopril 1st, then long-acting
- Ramipril: CrCl < 40, give 25% of normal dose</p>
- Losartan: avoid if GFR < 30</p>

Guidelines into Practice

—ACE INHIBITORS—

ACE Inhibitors

Worsening renal function

- If K+ rises to >6.0 mmol/L, or creatinine increases to above 4 mg/dL (354 µmol/L), the dose of ACE inhibitor should be stopped and specialist advice sought
- Blood chemistry should be monitored serially until K+ and creatinine have plateaued

Direct Tubular toxicity

ATN: Aminoglycosides

- Incidence 5-20%
- Onset
 - Gradual ↑ SCr after 5-10 days
- Pathogenesis
 - Tubular epithelial cell damage leading to obstruction of tubular lumen
- Presentation
 - Non-oliguria > 500mL/day; granular casts in urine
- Risk Factors
 - Combination therapy with other nephrotoxic drugs
 - Total cumulative dose; trough levels > 2 mg/L; repeated courses of A/G therapy; prolonged therapy > 10 days
 - Dehydration
- Management Reversible if D/C drug, adequate hydration, monitor levels

Antibiotics

Aminoglycosides

- Trough >2mg/L, repeated course in months → nonoliguric ATN
- Recommendations:
 - High OD dose (5-7mg/kg/24h x 2-3wks) is less nephrotoxic and equally effective
 - CrCl > 60, 1-2.5mg/kg Q8H
 - CrCl 40-60, Q12H
 - CrCl 20-40, Q24H
 - CrCl <20, loading dose then monitor levels
- Neomycin > Gentamicin, Tobramycin > Netilmicin, Streptomycin

Risk factor for Aminoglycoside Nephrotoxicity

Related to AMG dosing

- Large total cumulative dose
- Prolong therapy
- ·High peak or trough conc.
- Recent previous AMG therapy

Related to synergistic nephrotoxicity

AMG combination with

- Cyclosporin
- Amphotericin B
- Vancomycin
- Diuretics

Related to Predisposing condition in the patient

- Preexisting renal insufficiency
- Increased age
- Poor nutrition
- Shock
- Gram-negative bactermia
- Liver disease
- Hypoalbuminemis
- Obstructive jaundice
- •K+ or Mg++ deficiency

Irreversible Damage!

Aminoglycoside Nephrotoxicity

Prevention

- Switching to alternative antibiotics
- Avoid volume depletion, concomitant therapy with other nephrotoxic drugs
- Limit total dose
- Decreasing the frequency of AMG dosing to at least daily (as direct by renal clearance)

Management

- Monitor Scr, concentration, renal function and electrolytes
- Discontinue AMG if changes are seen.

Aminoglycoside

- Drug interactions with other nephrotoxic medications:
 - Cephalothin and other Cephalosporins
 - Cyclosporin A
 - Cisplatin
 - NSAIDs
 - ACE Inhibitors
 - Loop Diuretics
 - Amino acids

ATN: Amphotericin B

- Incidence: ~80% when cumulative dose reaches 2 g
- Pathogenesis
 - Direct tubular epithelial cell damage; binds to cell wall resulting in ↑ tubular permeability and necrosis
- Presentation
 - ↑ SCr, BUN, ↓ Mg, K (urinary wasting) monitor q1-2d
 - Distal RTA, polyuria (nephrogenic DI)
- Risk Factors
 - Combination therapy with other nephrotoxic drugs
 - Total cumulative dose; daily dose > 0.5mg/kg/day
 - Dehydration
- Management Reversible if D/C drug, Hydration (1L NS daily)

Prug-induce renal structural-functional changes

Drug-Induced Crystalluria

- Drug insoluble in urine and crystallizes in distal tubule
- Risk Factors:
 - Decreased circulating volume
 - High concentration of drug in tubular fluid
 - Prolonged intratubular transit time
 - Renal dysfunction
 - Amount of drug excreted per functioning nephron
 - Acid or alkaline urine pH
- Prevention:
 - Dosage adjustment for underlying renal failure
 - Volume expansion to enhance urinary output
 - Urinary alkalinization (for weak acids)
- Full Renal Recovery expected

ARF: Drug-Induced Crystalluria

(Drug insoluble in urine and crystallizes in distal tubule)

Methotrexate

- Weak Acid precipitates in acidic urine (pH < 7)
- Precipitation of MTX and its metabolite in renal tubules
- High dose MTX (12-15g/m²)

Prevention

- Diuresis U/O 100-200mL/h x 24h post-high dose MTX
- Urinary alkalinization (sodium bicarb 25-50 mEq/L hydration fluid)

Acyclovir

- Weak acid and weak base
- Intratubular precipitation of acyclovir in dehydrated oliguric patients
- Needle-shaped crystals

Risks/Prevention

- IV too fast infusion rate
 - Infuse over 1 hour
- High dose > 500mg/m²
- Dehydration IV NS
- Pre-existing renal failure
 adjust dose
- Other nephrotoxins

ARF: Drug-Induced Crystalluria

Indinavir

- Protease inhibitor for HIV
- Weak base precipitates in alkaline urine
- Crystal nephropathy (8%) dysuria, urinary freq
- Rectangular crystals

Risk/Prevention

- Severe volume depletion
- Precipitation prevented by consumption of ~2 L fluid per day

Sulphonamides

- Weak Acid precipitates in acidic urine
- Higher doses
- More common with sulfadiazine

Risk/Prevention

- Volume depletion maintain good fluid intake
- Renal dysfunction adjust dose
- Urinary alkalinization (treatment)

Tips: Reducing Drug-Induced Toxicities

Opioids	Meperidine metabolite (normeperidine) is neurotoxic and may cause seizures – C/I GFR < 50 mL/min
	Fentanyl and Methadone preferred for chronic pain management as no active metabolites
	Hydromorphone preferred over Morphine (less 3- glucuronide metabolite - myoclonus, hallucinations)
NSAIDs	Caution if GFR < 30-60 mL/minute → ARF, ↑ K, hypertension esp if patient on ACEI or diuretics
Sulfonylureas	Chlorpropamide –↑'ed half-life, prolongs hypoglycemia
	Glyburide has active metabolite - ↑ t1/2 → hypoglycemia
	Gliclazide preferred agent – no active metabolite (needs SA) (glyburide 5mg = gliclazide 80mg = gliclazide MR 30mg)
Metformin	Do not use if GFR < 30-60 mL/min → lactic acidosis
Insulin	
Allopurinol	Dosage adjustment; 100mg/day max in Stage 5 (dialysis)