Nephrotic syndrome

Nephrotic Syndrome (NS):

- A glomerular syndrome characterized by insidious onset of:
 - Massive proteinuria (>3.5 gm / 24 hr).
 - Hypoproteinemia (plasma albumin < 3 gm / dL).
 - Generalized edema.
 - Hyperlipidemia + Lipiduria.
- Pts have ↑ risk of infection & hypercoagulation.
- Different forms of primary and secondary GN.
 - In **children** are most frequently caused by primary renal diseases (most common is MCD).
 - In adults are often caused by <u>secondary</u> renal diseases.

Causes of Nephrotic syndrome	Prevalence (%)		
Cause	Children	Adults	
Primary Glomerular Disease			
Membranous GN (MGN)	5	30	
Minimal-change disease (MCD)	65	10	
Focal segmental glomerulosclerosis (FSGS)	10	~35	
Membranoproliferative GN (MPGN)	10	10	
IgA nephropathy	10	15	
Systemic Diseases with Renal Manifestations			

Diabetes mellitus

Systemic lupus erythematosus

Malignancy (carcinoma, melanoma)

Ingestion of drugs (gold, penicillamine, heroin)

Infections (malaria, syphilis, hepatitis B, HIV)

Miscellaneous (bee-sting allergy, hereditary nephritis)

Amyloidosis

1. Minimal change disease (MCD):

(Lipoid nephrosis, nil change disease)

• The most frequent cause of the nephrotic syndrome in children (esp. 2-6 yrs).

Pathogenesis:

- Podocyte damage and effacement of foot processes.
- ? Dysfunction of T-cell function.

Morphology:

LM	IF	EM
Nil	Nil	fusion of foot processes

PCT are laden with protein & lipids (lipoid nephrosis)

EM

Clinical features:

- Insidious onset of the nephrotic syndrome:
 - Highly selective proteinuria (mainly albumin).
 - May follow URTI or immunization.
 - > 90% of respond to a short course of CS therapy.

Prognosis in children → Excellent

- Proteinuria may recur, and some patients may become steroid dependent or steroid resistant.
- < 5% develop CRF after 25 years.</p>

Prognosis in adults → Good*

- Slower response to steroids.
- More common relapses.

2. Focal segmental glomerulosclerosis (FSGS)

• The most common cause of NS in adults.

Coordow FCCC

JSES

Secondary FSGS	
-In association with other known conditions	HIV, Heroin abuse, Sickle cell dis., Morbid obesity
-A secondary event in other forms of GN	IgA nephropathy
-Adaptive response to nephron loss	Reflux nephropathy Hypertensive nephropathy Unilateral renal agenesis
-Inherited forms of NS*	Mutaions in nephrin
Primary disease	Idiopathic FSGS 10-35%

Morphology of FSGS

- LM: FOCAL* & SEGMENTAL
 - Sclerosis (with collapse of BM).
 - Increased mesangial matrix.
 - Hyalinosis.

• EM:

 Non -sclerotic segments show effacement of foot processes with focal disruption of BM**.

• IF:

Non-specific IgM & C3 in sclerotic segments.

Clinical features:

- Insidious onset of nephrotic syndrome:
 - Non-selective proteinuria
 - Higher incidence of hematuria & HT (cuz of \(\preceq \)
 GFR).
 - Poor response to steroids.

Prognosis:

50% will develop end-stage renal failure in 10 yrs.

Collapsing glomerulopathy

- A morphologic variant of FSGS
- Commonly seen in AIDS.
- It is characterized by:
 - Collapse of the entire glomerular tuft.
 - Podocytes hyperplasia.
- It carries poor prognosis.

3. Membranous GN

• Slowly progressive disease affecting adults>children (30-50 yrs).

CAUSES

Idiopathic in **85**% of cases* → Podocyte phospholipase A2 receptor auto-Ab is common

Secondary MGN:

- •Infections (**chronic hepatitis B**, hepatitis C, syphilis, schistosomiasis, malaria)
- •Malignant tumors (carcinoma of the lung and colon, melanoma and NHL
- •SLE
- •Inorganic salts (gold, mercury)
- Drugs (penicillamine, captopril, NSAIDs)

Pathogenesis of MGN

- Chronic immune complex (in situ) glomerulonephritis mainly affecting the podocytes on the epithelial aspect of the GBM.
- Followed by complement activation & formation of membrane attack complex (MAC).

Morphology of MGN

• LM:

- Normal early.
- Diffuse thickening of capillary wall, without proliferation of cells.
- "Spikes" seen on silver stain

• EM:

Diffuse subepithelial deposits + fusion of foot processes.

• IF:

Granular IgG &C3* along the GBM.

Silver stain

Clinical features:

- Insidious onset of nephrotic syndrome:
 - Non-selective proteinuria .
 - Does not respond well to corticosteroid

Prognosis:

- □ Spontaneous remission in $\sim 1/3$.
- Proteinuria persists in ~2/3:
 - 10-30% are stable.
 - 40% progress to CRF & ESRD.

4. Membranoproliferative (mesangiocapillary) GN:

- Accounts for ~ 10% of cases of idiopathic NS in children and adults (young).
- Clinically can present with:
 - Nephrotic synd. (~ 50%*), nephritic synd.,
 proteinuria <u>+</u> hematuria OR compined nephrotic/nephritic.

Classification of MPGN

- Type-I MPGN (80%):
 - Mostly present with nephrotic syndrome.
 - Idiopathic or secondary MPGN.
- Dense deposit disease DDD (Type-II MPGN):
 - Mostly nephritic syndrome.
- Both types have the *same LM morphology* **BUT** differ in their *pathogenesis*, *EM & IF findings*.

Pathogenesis of type-I MPGN

Deposition of circulating immune complexes

Causes of MPGN type I			
Autoimmune	SLE		
Infections	Chronic HBV HCV with cryoglobulinemia Infected atrioventricular shunts Infective endocarditis Chronic visceral abscesses		
Malignancy	CLL		

Deficiency of complement regulatory proteins

Idiopathic MPGN type I*

Hereditary

Pathogenesis of DDD (type II MPGN)

- ?? Patients have abnormality that lead to *activation of* alternative complement pathway \rightarrow they have persistent low C3, normal C1 & C4, low factor B & properdin.
 - >70% have C3 nephritic factor, an autoAb that stabilizes C3 convertase leading to persistence of C3 degradation & hypocomplementemia.
 - Impairment of complement regulatory protein Factor H due to mutation or autoAbs.

Morphology of MPGN by LM

Same for both types (I+II)

- Glomeruli:
 - Large, hypercellular (with accentuated lobular arrangement) due to:
 - Proliferation of endothelial cells → leading to thickening or splitting of GBM (on silver stain appears as "double contour*" or "tram-track").
 - o Proliferation of mesangial cells & ↑mesangial matrix.
 - Infiltration of leukocytes.
 - Crescents may be seen.

Silver stain

MPGN type I

- EM: Subendothelial deposits*.
- **IF:** Granular deposition of IgG, C₃, C₁ & C₄**.

DDD (MPGN type II)

- **EM:** Lamina densa transformation into an irregular, **ribbon like**, extremely electron dense structure* (Dense Deposit Disease DDD).
- IF: Granular C₃ staining is present in irregular chunky and segmental** linear foci in the BM & in the mesangium (mesangial rings). IgG, C₁q and C₄ are usually absent.

TYPE I Subendothelial deposit Interposed mesangial cell process Intramembranous deposit TYPE II

MPGN

Prognosis of MPGN

- Slowly progressive unremitting disease with poor long term prognosis:
 - 40% develop CRF within 10 years.
 - 30% had variable degrees of renal insufficiency.
 - 30% had persistent nephrotic syndrome without RF.
- Dense-deposit disease has a **worse prognosis**, and it tends to recur in renal transplant recipients*.

Disease	Pathogenesis	L/M	IF	E/M
MCD	Podocyte injury	Normal Lipid in tubules	Negative	Effacement of foot processes
MGN	In-situ immune complexes	Thick GBM Spikes	Granular IgG & C3	Subepithelial deposits
FSGS	Podocyte injury Nephrin mutation Ablation theory	Focal & segmental hyalinosis & sclerosis Foam cells	IgM & C3	Effacement of foot processes Focal disruption of BM
MPGN type I Mostly nephrotic	Immune complexes	Lobular & cellular glomerulus Thick BM Tram track	Granular IgG, C3, C1q, c4	Subendothelial deposits
MPGN type II Mostly nephritic	C3NeF Alternative complement pathway		C3 in BM & mesangial rings	Dense deposits in BM