PATHOLOGY OF RENAL SYSTEM

BVs

© Elsevier. Young et al. Wheater's Functional Histology 5e - www.studentconsult.com

Renal cortex

Tubules

Lectures Outline

- Congenital anomalies & cystic diseases
- Glomerular diseases
 - The nephrotic & nephritic syndromes
- Tubulointerstitial disease
 - Tubulointerstitial nephritis & ATN
 - Urinary outflow obstruction
- Vascular disease
- Urinary tract infections
- Neoplastic disease

Function of the kidney

- The kidney is a structurally complex organ that has evolved to carry out a number of important functions.
 - Excretion of the waste products.
 - Regulation of body water and salt.
 - Maintenance of appropriate acid balance.
 - Secretion of a variety of hormones.

Renal Diseases

- NOT a major cause of death
 - RENAL ----- 70,000 deaths / year (USA)
 - HEART ----- 700,000 = (USA)
 - $^{\circ}$ CANCER ----- 550,000 = = (USA)
 - □ STROKES -----170,000 = = (USA)
- **BUT** responsible for great deal of *morbidity*
 - UTI
 - Stones
 - Obstructive uropathy
 - Dialysis & transplant
 - Many deaths occur in the young

Classification of kidney diseases

- 1) Glomerular diseases.
- 2) Tubulointerstitial diseases.
- 3) Vascular diseases.
- **EARLY** stages in the above could be separated on clinical and morphological grounds.
- LATER all components are involved leading to End Stage Renal Disease (ESRD)
 - Small contracted kidney. Obsolete glomeruli, tubular & vascular changes.
 - Clinical --- CRF

Definitions

Azotemia

- Biochemical term linked to ↑BUN (N 7-18 mg/dL)
 & creatinine levels (No.6-1.2 mg/dL).
- Usually due to decrease in GFR.
- Azotemia may be prerenal, renal, postrenal.

Uremia

• When azotemia progresses to clinical manifestations and systemic biochemical abnormalities → due to failure of renal excretory function

Clinical syndromes (manifestations) of renal diseases

1- Nephrotic syndrome:

- Results from **glomerular** injury.
- Heavy *proteinuria* (excretion of >3.5 gm of protein/day in adults), *hypoalbuminemia*, *severe edema*, *hyperlipidemia*, *and lipiduria* (lipid in the urine).

2- Acute nephritic syndrome:

- Results from **glomerular** injury.
- Acute onset of usually grossly visible *hematuria* (red blood cells in urine), *mild to moderate proteinuria*, *azotemia*, *edema*, *and hypertension*.
 - -it is the classic presentation of acute poststreptococcal glomerulonephritis.

Oliguria

- Hematuria
- Non selective Proteinuria.
- GFR↓, Cr↑, BUN↑
- · Edema (salt and water retention)
- Hypertension
- · RBC & Protein casts.

Polyuria

urine

 Proteinuria ("nephrotic range" >3.5g/24h)

urine

- Edema (Hypoalbuminemia)
- · Hyperlipidemia
- Lipiduria
- · Protein casts.

© 2013 Jorge Muniz

3- Asymptomatic hematuria &/or non-nephrotic proteinuria:

- Results from **mild glomerular** injury.

4-Rapidly progressive GN.

- Results from **severe glomerular** injury leading to loss of renal function in a few days or weeks and is manifested by microscopic *hematuria*, *dysmorphic red blood cells and red blood cell casts* in the urine sediment, and mild-to-moderate proteinuria.

5- Acute renal failure

- Oliguria or anuria (no urine flow), with recent onset of azotemia. Has many forms:
 - ❖Pre-renal: due to ↓ renal blood flow.
 - *Renal: due to glomerular (as crescentic glomerulonephritis), tubular (ATN), interstitial or vascular injury (such as thrombotic microangiopathy).
 - ❖ Post-renal: due to obstruction.

6- Chronic renal failure:

- Results from progressive scarring in the kidney from *any cause*.
- Characterized by prolonged symptoms and signs of uremia.
- May lead to end-stage kidney disease (ESTD).

7. Urinary tract infection:

- May be symptomatic or asymptomatic.
- Ass. with bacteriuria & pyuria (bacteria and leukocytes in the urine).
- e.g. pyelonephritis, cystitis ...

8. Nephrolithiasis:

- Manifested by renal colic, hematuria (without red cell casts), and recurrent stone formation.

9. Others:

- Obstruction, tumors ...

Congenital and cystic renal diseases

Congenital anomalies of the kidney

Renal Dysgenesis:

- May be associated with other congenital anomalies.
- May lead to CRF in childhood.

1. Agenesis:

- Unilateral *OR*
- Bilateral (incompatible with life → oligohydrominos & potter's sequence).

2. Hypoplasia:

- Failure to develop the normal size.
- Reduced lobes and pyramids (< 6) with NO signs of scarring.

Manufactories mobile a lead-the non-DAR, soliding after (II), lead-and met (II), and phonemially from leaves extremited (II).

Congenital anomalies of the kidney

• Ectopic kidney:

Usually located lower than normal (often at pelvic brim or within pelvis).

Horseshoe kidney:

- Due to fusion of kidneys (90% lower poles), anterior to aorta & IVC.
- Main complications are obstructive uropathy & stones.

Congenital cystic diseases

according on one musicy

Cystic diseases of the kidney

- Heterogeneous group of hereditary, developmental & acquired disorders that include:
 - Cystic renal dysplasia
 - Simple renal cyst
 - Acquired (dialysis associated) cystic disease
 - Polycystic kidney disease (adult & childhood types)
 - Medullary cystic diseases.

Why they are important?

- Reasonably common.
- Some forms (as APCD) are major cause of **chronic renal failure.**
- Present **diagnostic problems** for clinicians, radiologists, and pathologists.
- Occasionally can be confused with malignant tumors.

1. Cystic Renal Dysplasia:

• Due to abnormal *metanephrotic* differentiation.

Gross:

□ Enlarged cystic kidney → Unilateral or bilateral (worse).

Microscopic:

 Abnormal lobar organization with the presence of large cysts surrounded by (cartilage, undifferentiated mesenchyme, and immature collecting ducts).

2. Simple renal cyst(s):

• A common *post-mortem finding*.

Gross:

- Single or multiple.
- Usually small & cortical.
- Translucent & filled with clear fluid.

• Microscopic:

Cysts lined by a single epithelial layer.

Clinical:

- NO clinical significance
- □ Rarely may bleed into it → distends & cause pain.
- Main importance is to differentiate them from renal tumors.

3. Acquired (dialysis-associated) renal cysts:

- Numerous cortical & medullary cysts in patients with CRF who have undergone long term dialysis.
- Usually *asymptomatic* but sometimes patients have hematuria.
- Main complication is development of renal cell carcinoma* in cyst walls (7% over 10 years).

4. ADULT polycystic kidney disease:

- Multiple expanding cysts in **BOTH** kidneys that eventually destroy intervening parenchyma.
- Common AD disease (1 per 500-1000).
- Responsible for about 10% of CRF.
- Presentation is delayed up to 4th decade.
- **Genetics:** Mutations in 3 separate genes may cause disease:
 - PKD1 (Chr 16) that encodes for POLYCSYTIN 1 (90%).
 - PKD2* (Chr 4) that encodes for POLYCYSTIN 2 (10%).
 - PKD3 (in few cases).

Gross & microscopic features:

- Bilateral markedly enlarged kidneys (up to 4 Kg!).
- Numerous cysts up to 4cm in diameter,
 containing clear or hemorrhagic fluid.

Associated lesions:

- Polycystic liver disease 40%.
- □ Berry aneurysms* − 10-30%.
- □ Mitral valve prolapse − ~25%.

Clinical features:

- Flank pain most common presentation.
- Abdominal mass or dragging sensation.
- Intermittent gross hematuria.

Complications:

- Hypertension (in 75%).
- □ UTI.
- Gradual onset of CRF (ESRD at 50 yrs).

5. CHILDHOOD polycystic kidney disease

- AR disease → mutations in the gene encoding FIBROCYSTIN (on chr. 6).
- Presents very early & eventually causes CRF.
- Smooth kidney surface with numerous small cysts as well as dilated channels perpendicular to surface.
- Nearly all cases have associated liver cysts.
 - Older children who have milder disease may develop congenital hepatic fibrosis.

6. Medullary cystic diseases

A. Medullary sponge kidney.

B. Nephronophthisis-medullary cystic disease complex: is

- Increasingly recognized cause CRD in children and young adults.
- AR disease → mutations in NEPHROCYSTINS (imp. in ciliary function)
- Kidneys are contracted and contain multiple small cysts → typically at the corticomedullary junction

Kidney Cysts

No cysts

Simple cysts

Recessive polycystic

Dominant polycystic

Hydronephrosis is not cysts

"Dysplasia"

Medullary sponge

Medullary uremic

Dialysis cystic