Diuretics agents I

Dr. Laila M Matalqah

UGS

Faculty of Medicine

Objectives

- 1. List major types of diuretics and relate them to their sites of action.
- 2.List the major applications, toxicities, and the efficacy of thiazides, loop diuretics and potassium-sparing diuretics.
- 3. Describe drugs that reduce potassium loss during diuresis

Introduction

- Diuretics increase urine production by acting on the kidney
- Most agents affect water balance indirectly by altering electrolyte reabsorption or secretion.
- Osmotic agents affect water balance <u>directly</u>.
- Natriuretic diuretics produce diuresis, associated with increased sodium (Na) excretion, which results in a concomitant loss of water and a reduction in extracellular volume.

Introduction

- Therapeutic uses.
- 1. used for the management of edema,
- 2. hypertension,
- congestive heart failure (CHF),
- 4. abnormalities in body fluid distribution.

Diuretics:

- Thiazides: Chlorothiazide, Hydrochlorothiazide, chlorthalidone
- 2. Loop diuretics: Furosemide, Bumetanide
- K+ sparing: Spironolactone, Triamterene And Amiloride
- Carbonic anhydrase inhibitors: Acetazolamide
- Osmotic Diuretics (mannitol)

Thiazide diuretics

- Only about 10% of the filtered NaCl is reabsorbed in the distal convoluted tubule.
- The mechanism of NaCl transport in the distal convoluted tubule is electrically neutral Na+ and Cl- cotransport
- This NaCl transporter is blocked by diuretics of the thiazide class.

Thiazide diuretics

- MOA:
- a. These agents inhibit active reabsorption of sodium chloride (NaCl) in the distal convoluted tubule by interfering with Na/Cl cotransporter (NCC), resulting in the net excretion of Na and an accompanying volume of water.
- (1) These agents increase excretion of CI, Na, potassium (K), and, at high doses HCO3
- (2) They reduce excretion of calcium (Ca+2).

MOA: Diuretics

Thiazides:Specific agents

- Prototype true thiazides
 - chlorothiazide and hydrochlorothiazide.
 methyclothiazide.
 - Chlorothiazide is the only thiazide available for parenteral USE.
- Thiazide-like drugs
 - metolazone, chlorthalidone, and indapamide
 - Unlike thiazides, these agents may be effective in the presence of some renal impairment.

Thiazides: Therapeutic uses

- 1. Thiazide diuretics are the preferred class of diuretic for the treatment of essential hypertension when renal function is normal;
 - they are often used in combination with other antihypertensive agents to enhance their blood pressure-lowering effects.
 - They reduce plasma volume and total peripheral resistance.
- 2. These agents reduce the formation of new calcium stones in idiopathic hypercalciuria.
- 3. Thiazide diuretics may be useful in patients with diabetes insipidus that is not responsive to antidiuretic hormone (ADH).
- 4. These agents are often used in combination with a potassium-sparing diuretic to manage mild cardiac edema, cirrhotic or nephrotic edema, and edema produced by hormone imbalances.
- 5. They are frequently used in the treatment of Ménière disease

Thiazides:contraindications

Thiazide diuretics should be used cautiously in the presence of: renal or hepatic diseases such as cirrhosis, and they should be used only as an ancillary treatment in nephrotic syndrome.

Thiazides: Adverse effects

- Electrolyte imbalances such as hypokalemia, hyponatremia, Hypomagnesemia and hypochloremic alkalosis.
- These imbalances are often accompanied: by central nervous system (CNS) disturbances, including dizziness, confusion, and irritability;
- Hypokalaemia muscle weakness; fatigue and cardiac arrhythmias;
 - by decreasing plasma K, increased sensitivity to digitalis.
 - Diets low in Na and high in K are recommended;
 - K supplementation may be required.

Thiazides: Adverse effects

- 4. Gout-like symptoms may appear: elevate serum urate, presumably as a result of competition for the organic anion carriers (which also eliminates uric acid)
- 5. Hyperglycemia: Inhibition of insulin release due to K+ depletion (decrease proinsulin to insulin) precipitation of diabetes (especially in patients with diabetes)
- **6. hypertriglyceridemia, hypercholesterolemia** rise in total LDL level risk of stroke
- 7. hypercalcemia
- 8. hypersensitivity reactions (sulfa groups).
 - All the above metabolic side effects higher doses (50 100 mg per day)
 - But, its observed that these adverse effects are minimal with low doses (12.5 to 25 mg)

Thiazides

Thiazide diuretics are absorbed from the gastrointestinal (GI) tract and

Drug	Chemical Class	Potency	Half-Life (h)
Chlorothiazide	Benzothiadiazide	0.1	2
Hydrochlorothiazide	Benzothiadiazide	1.0	3
Metolazone	Quinazoline	5	5
Chlorthalidone	Quinazoline	10	26
Indapamide	Indoline	20	16

- Prototype drugs include:
 - Furosemide, Bumetanide, Ethacrynic Acid and Torsemide.
- They are administered either orally or parenterally.
- Diuresis occurs within 5 minutes of intravenous (IV) administration
 and within 30 minutes of oral administration

Table 15–2. Loop Diuretics: Dosages.			
Daily Oral Dose ¹			
0.5–2 mg			
50–200 mg			
20–80 mg			
2.5–20 mg			

¹As single dose or in two divided doses.

- Mechanism.
- Loop diuretics inhibit active Na/K/Cl reabsorption in the thick ascending limb of the loop of Henle by inhibiting specific Na+/K+/2Cl- co-transporter.
- This results in back diffusion of K+ into the tubular lumen and development of a lumen-positive electrical potential
- This electrical potential provides the driving force for reabsorption of cations—including Mg2+ and Ca2+
- Because of the high capacity for Na/Cl reabsorption in this segment, agents active at this site markedly increase water and electrolyte excretion and are referred to as high-ceiling diuretics.
- The loop diuretics are the most efficacious diuretic drugs. Reduce reaborption by 25%.

- Mechanism.
- b. Loop diuretics cause increased renal prostaglandin production, which accounts for some of their activity. Nonsteroidal anti-inflammatory drugs (NSAIDs) can reduce the effectiveness of loop diuretics.
- c. Net effects: These agents reduce reabsorption of Cland Na+; they increase Ca+2 excretion and magnesium (Mg).

Loop diuretics: Therapeutic uses

- Loop diuretics are used in the treatment of CHF by reducing acute pulmonary edema
- They are synergistic with thiazide diuretics when coadministered.
- 3. These agents are used to treat **hypertension**, especially in individuals with **diminished renal function**. They reduce the plasma volume and also the total peripheral resistance.
- 4. They are also used to treat acute hypercalcemia

Loop diuretics: Therapeutic uses

- 5. Hyperkalemia: loop diuretics can significantly enhance urinary excretion of K+.
- 6. Acute Renal Failure
- Loop agents can increase the rate of urine flow and enhance K+ excretion in acute renal failure.
- 7. halide poisoning
- Loop diuretics are useful in treating toxic ingestions of bromide, fluoride, and iodide.

Loop diuretics: Adverse effects

- Hyponatremia
- Hypotension and volume depletion,
- Hypokalemia
- They may also produce alkalosis due to enhanced H+ secretion.
- Hypocalcemia
- Hypomagnesemia:

Loop diuretics: Adverse effects

- Loop diuretics can cause dose-related ototoxicity, more often in individuals with renal impairment. These effects are more pronounced with ethacrynic acid than with furosemide.
- These agents should be administered cautiously in the presence of renal disease or with the use of other ototoxic agents such as aminoglycosides.
- These agents can cause hypersensitivity reactions.
- Ethacrynic acid produces GI disturbances

- The mechanism of NaCl reabsorption in the collecting tubule is distinct from the mechanisms found in other tubule segments.
- The principal cells are the major sites of Na+, K+, and H2O transport and the intercalated cells are the primary sites of proton secretion
- Mechanism:
 - reduce Na+ reabsorption and reduce K+ secretion in the distal part of the nephron (collecting tubule).
- These are not potent diuretics when used alone; they are primarily used in combination with other diuretics

- Antagonists of the mineralocorticoid (aldosterone) receptor include
 - 1. **Eplerenone, which** is highly receptor selective,
 - Spironolactone, which binds to other nuclear receptors such as the androgen receptor
- **MOA:** These agents inhibit the action of aldosterone by competitively binding to the mineralocorticoid receptor and preventing subsequent cellular events that regulate K and H secretion and Na reabsorption.
- These agents are active only when endogenous mineralocorticoid is present; the effects are enhanced when hormone levels are elevated.
- These agents are absorbed from the GI tract and are metabolized in the liver
- therapeutic effects are achieved only after several days

- 1. Antagonists of the mineralocorticoid (aldosterone) receptor *Therapeutic uses.*
- These drugs are generally used in combination with a thiazide or loop diuretic to treat hypertension, CHF, and refractory edema.
- They are also used to induce diuresis in clinical situations associated with hyperaldosteronism, such as in adrenal hyperplasia and in the presence of aldosterone-producing adenomas when surgery is not feasible

- 1. Antagonists of the mineralocorticoid (aldosterone) receptor: Adverse effects
 - hyperkalemia, hyperchloremic metabolic acidosis, and arrhythmias.
 - Spironolactone is associated with gynecomastia and can also cause menstrual abnormalities in women.
- These drugs are contraindicated in :
 - renal insufficiency, especially in diabetic patients.
 - They must be used cautiously in the presence of liver disease
 - They are contraindicated in the presence of other potassiumsparing diuretics and should be used with extreme caution in individuals taking an ACEI (e.g., captopril)

2. Amiloride and triamterene

- Mechanism.
- Amiloride and triamterene bind to and block Na channel and thereby decrease absorption of Na and excretion of K in the cortical collecting tubule, independent of the presence of mineralocorticoids.
- These drugs produce diuretic effects 2–4 hours after oral administration
- Triamterene increases urinary excretion of Mg but amiloride does not;
- Triamterene and amiloride are metabolized in the liver.

Therapeutic uses.

- These agents are used to manage CHF, cirrhosis, and edema
- They are available in combination products containing thiazide or loop diuretics (e.g., triamterene/hydrochlorothiazide, amiloride/hydrochlorothiazide) to treat hypertension.
- Adverse effects and contraindications.
 - hyperkalemia,
 - ventricular arrhythmias.
 - Dietary potassium intake should be reduced.
 - Minor adverse effects include nausea and vomiting.
- The use of these drugs is contraindicated in the presence of diminished renal function.

