

YU - Medicine

Passion Academic Team

Sheet# 1 - Pathology

Lec. Title: Tumors of CNS(I)

Written By: Mesk N Alsouqi

PERIPHERAL
NERVOUS
SYSTEM

If you come by any mistake , please kindly report it to shaghafbatch@gmail.com

TUMORS of CNS

Primary CNS Tumours

Age: Double peak; 1st & 6th decades.

Tumors in childhood differ from those in adults both in <u>histologic subtype &</u> location.

- بيصيب الأشخاص (اقل من 10 سنين واكثر من 60 سنة).
- دائما بیکون malignant ویندرج من ۱ ل عدرجات .
- في الأطفال بكون أكثر عرضة للوفاة اذا صاب ال MIDBRAIN.

Generally:

- The annual incidence of CNS tumors ranges from 10-17 / 100,000 persons for intracranial tumors and 1 2 / 100,000 persons for intraspinal tumors
- \triangleright ½ ¾ are primary tumors, and the rest are metastatic.
 - □ In children: 20% of all pediatric tumors. 70% are infratentorial and usually primary.
 - ((usually found in the cerebellum))

□<u>In adults:</u> 70% are supratentorial (posterior fossa) & are primary OR metastasis

Characteristic features of brain tumors

NO premalignant or in situ stages.

Large area of INVASION (even low-grade tumors) leading to:

→ Serious clinical deficits*, non-resectability & poor

prognosis.

Characteristic features of brain tumors

The anatomic site of the neoplasm can influence OUTCOME regardless the tumor type, due to local effects (as benign meningioma*) OR non-resectability (as brain stem gliomas).

Rarely spread (metastasized) outside of the CNS (even highly malignant gliomas); BUT, some can spread to other sites through subarachnoid space along the neuroaxis.

Clinical presentation*

Related to:

-Localizing signs: Nerve & tract deficits, seizures, paralysis ... etc.

-± ↑ ICP: Headache (morning), vomiting, slow pulse, papilloedema ...

CNS Anatomy - Clinical presentation

CNS Tumors Clinical Features-Pathogenesis

Headaches (morning)

Papilloedema

Nausea or vomiting

Bradycardia

Seizures (convulsions).

Drowsiness, Obtundation

Personality or memory

Changes in speech

Limb weakness

Balance/Stumbling

Eye movements or vision

Increased ICP

Increased ICP

ICP - Medulla ob.

ICP - Parasymp.

Irritation.

Brain Stem compress

Frontal lobe

Temporal lobe

Motor area

Cerebellum

Optic tract, occipital.

Approach

- ! History
- Physical & neurologic Ex
- Lumber puncture (including cytology)
- MRI
- Brain angiography
- Biopsy

Stereotactic Biopsy

Primary Tumours - Aetiology

- > Environmental:
 - -Radiation: Often 5-25 years after treatment of pituitary adenoma or craniopharyngioma.
 - Cell phones* ???: Mobile phones use electromagnetic radiation → Possibly carcinogenic (IARC 2011).
 - -Immunosuppression (as lymphomas).
 - -Viral & Chemical carcinogens
- > Genetic:
 - -Sporadic (as P53, EGFR ...).
 - Familial (inherited familial tumor syndromes).

Classification of Tumors:

- > Classified according to:
 - → Cell of origin & degree of differentiation .
- However, slowly growing entities may undergo transformation into more aggressive tumors.
- >WHO grading system important for treatment and prognosis.

1. Gliomas*:

- Diffuse gliomas (common)
 - a. Astrocytoma (many variants)
 - b. Oligodendroglioma
 - c. Mixed
- ii. Solid gliomas (less common) Ependymoma

2. Neuronal Tumors:

- Central neurocytoma
- ii. Ganglioglioma
- iii. Dysembryoplastic neuroepithelial tumor

3. Embryonal (Primitive) Neoplasms: Medulloblastoma

4. Meningiomas:

5. Nerve Sheath:

- i. Schwannoma
- ii. Neurofibroma

6. Other Parenchymal Tumors:

- i. Primary CNS Lymphoma
- ii. Germ Cell Tumors

7. Metastatic Tumors.

Commonest tumors in:

Adults:

- Metastasis.
- 2. Glioblastoma
- 3. Astrocytoma
- 4. Meningioma

Children:

- 1. Astrocytoma
- 2. Medulloblastoma
- 3. Ependymoma

CNS Tumors

Gliomas

1. Astrocytoma

- Commonest glial tumor.
- > WHO Grading, depends on:
 - 1. Nuclear pleomorphism
 - 2. Mitotic activity
 - 3. NECROSIS
 - 4. Vascular proliferation
- High grade tumors (as Glioblastoma) can arise from transformation of low grade gliomas OR can occur de novo.

Gliomas

1. Astrocytoma

A. Pilocytic astrocytoma:

- Children and young adults.
- Commonly cerebellum (sometimes 3rd ventricle or optic nerve*).
- Relatively benign.

B. Diffuse (Fibrillary) astrocytoma:

- 4th to 6th decade.
- Commonly cerebral hemisphere
- Variable grades:
 - Well differentiated astrocytoma
 - Anaplstic astrocytoma
 - Glioblastoma multiforme

Pilocytic astrocytoma

(WHO grade I)

>Gross:

 Often cystic* (with mural nodule) or well circumscribed solid mass.

> Microscopic:

- -Bipolar cells with long, thin "hairlike" processes.
- -Microcysts & Rosenthal fibers & eosinophilic granular bodies are commonly seen.
- NO or rare mitosis & necrosis.

Well differentiated astrocytoma

(WHO grade II)

Static or progress slowly* (mean survival of more than 5 years).

Static low degree.

>Gross:

-Poorly defined infiltrative tumor extending beyond the grossly evident margins (no clearly defined margin).

> Microscopic:

Mild-moderate ↑ cellularity, minimal pleomorphism, & fine fibrillary background.

Glioma

Brain Normal

Anaplastic astrocytoma

(WHO grade III)

- >Microscopic:
 - -More cellularity, pleomorphic & mitosis.
 - -NO palisading <u>necrosis or microvascular</u> proliferation (4 لانه وحدة فيهم وجوده كفاية انه يطوره ليوصل للارجة 4)

Glioblastoma

(WHO grade IV)

➤ CT/MRI:

- Supratentorial enhancing tumor with surrounding edema.

>Microscopic:

- Similar to anaplastic astrocytoma with:
 - Palisading necrosis
 - <u>+</u> Microvascular (glumeruloid) proliferation

>Prognosis:

- Very poor; with treatment, the median survival is only 15 months.
 - De-novo GBM has a worse Px than secondary GBM.

Glioma:
Enhancement
with
peritumoral
edema.

GBM

Genetics mutation associated with astrocytomas

- Pilocytic astrocytoma:
 - Serine-threonine kinase BRAF
- . كتير منيح IDH1-
- Primary starts from normal.
- Secondary starts from low.

- Lower grade astrocytoma:
 - Isocitrate dehydrogenase (IDH1 and IDH2).
- > GBM:
 - Inactivation of p53 & Rb (Secondary GBM + low grade astro.)
 - Activation of PI3K.
 - Amplification of EGFR (Primary GBM).

Genetic abnormalities in Glioma:

Low grade → Anaplastic → GBM

