

of

CNS

Primary CNS Tumours

- Age: Double peak; 1st & 6th decades.
- Tumors in *childhood* differ from those in adults both in <u>histologic subtype &</u> location.

<u>Generally:</u>

The annual incidence of CNS tumors ranges from 10-17 / 100,000 persons for intracranial tumors and 1 - 2 / 100,000 persons for intraspinal tumors

- $> \frac{1}{2} \frac{3}{4}$ are primary tumors, and the rest are metastatic.
 - □*In children:* 20% of all pediatric tumors. 70% are infratentorial and usually primary.
 - □<u>In adults:</u> 70% are supratentorial (posterior fossa) & are primary OR metastasis.

Characteristic features of brain tumors

NO premalignant or in situ stages.

- Large area of INVASION (even low-grade tumors) leading to:
 - Serious clinical deficits*, non-resectability & poor prognosis.

Characteristic features of brain tumors

- The anatomic site of the neoplasm can influence OUTCOME regardless the tumor type, due to local effects (as benign meningioma*) <u>OR</u> non-resectability (as brain stem gliomas).
- Rarely spread (metastasized) outside of the CNS (even highly malignant gliomas); BUT, some can spread to other sites through subarachnoid space along the neuroaxis.

Clinical presentation*

Related to:

-Localizing signs: Nerve & tract deficits, seizures, paralysis ... etc.

-± ↑ ICP: Headache (morning), vomiting, slow pulse, papilloedema ...

CNS Anatomy – Clinical presentation

CNS Tumors Clinical Features-Pathogenesis

- Headaches (morning)
- Papilloedema
- Nausea or vomiting
- Bradycardia
- Seizures (convulsions).
- Drowsiness, Obtundation
- Personality or memory
- Changes in speech
- Limb weakness
- Balance/Stumbling
 - Eye movements or vision

- Increased ICP
- Increased ICP
- ICP Medulla ob.
- ICP Parasymp.
- Irritation.
- Brain Stem compress
- Frontal lobe
- Temporal lobe
- Motor area
- Cerebellum
- Optic tract, occipital.

Approach

- History
- Physical & neurologic Ex
- Lumber puncture (including cytology)
- CT
- MRI
- Brain angiography
- Biopsy

Stereotactic Biopsy

Primary Tumours - Aetiology

> Environmental:

- -*Radiation:* Often 5-25 years after treatment of pituitary adenoma or craniopharyngioma.
 - Cell phones* ???: Mobile phones use electromagnetic radiation → Possibly carcinogenic (IARC 2011).
- -Immunosuppression (as lymphomas).
- Viral & Chemical carcinogens
- > Genetic:
 - Sporadic (as P53, EGFR ...).
 - Familial (inherited familial tumor syndromes).

Classification of Tumors :

Classified according to: Cell of origin & degree of differentiation .

However, slowly growing entities may undergo transformation into more aggressive tumors.

WHO grading system important for treatment and prognosis.

1. Gliomas*:

i. Diffuse gliomas (common)

- a. Astrocytoma (many variants)
- b. Oligodendroglioma
- c. Mixed

ii. Solid gliomas (less common) Ependymoma

2. Neuronal Tumors:

- i. Central neurocytoma
- ii. Ganglioglioma
- iii. Dysembryoplastic neuroepithelial tumor

3. Embryonal (Primitive) Neoplasms:

Medulloblastoma

4. Meningiomas:

5. Nerve Sheath:

- i. Schwannoma
- ii. Neurofibroma

6. Other Parenchymal Tumors:

- i. Primary CNS Lymphoma
- ii. Germ Cell Tumors

7. Metastatic Tumors.

3. Ependymoma

CNS Tumors

Gliomas 1. Astrocytoma

Commonest glial tumor.

> WHO Grading, depends on:

- 1. Nuclear pleomorphism
- 2. Mitotic activity
- 3. NECROSIS
- 4. Vascular proliferation

High grade tumors (as Glioblastoma) can arise from *transformation* of low grade gliomas OR can occur *de novo.*

Gliomas 1. Astrocytoma

A. Pilocytic astrocytoma:

- Children and young adults.
- Commonly cerebellum (sometimes 3rd ventricle or optic nerve*).
- Relatively benign.

B. Diffuse (Fibrillary) astrocytoma:

- 4th to 6th decade.
- Commonly cerebral hemisphere
- Variable grades:
 - Well differentiated astrocytoma
 - Anaplstic astrocytoma
 - Glioblastoma multiforme

Pilocytic astrocytoma (WHO grade I)

≻Gross:

-Often cystic* (with mural nodule) or well circumscribed solid mass.

>Microscopic:

- -Bipolar cells with long, thin "hairlike" processes.
- -Microcysts & Rosenthal fibers & eosinophilic granular bodies are commonly seen.
- -NO or rare mitosis & necrosis.

Well differentiated astrocytoma (WHO grade II)

Static or progress slowly* (mean survival of more than 5 years).

≻Gross:

-Poorly defined infiltrative tumor extending beyond the grossly evident margins (no clearly defined margin).

>Microscopic:

Mild-moderate ↑ cellularity, minimal pleomorphism, & fine fibrillary background.

Well differentiated astrocytoma : ? Gliosis vs Glioma

Glioma

Brain Normal

Anaplastic astrocytoma (WHO grade III)

>Microscopic:

- -More cellularity, pleomorphic & mitosis.
- -NO palisading necrosis or microvascular proliferation

Glioblastoma (WHO grade IV)

> CT/MRI:

- Supratentorial enhancing tumor with surrounding edema.

>Microscopic:

Similar to anaplastic astrocytoma with:
 Palisading necrosis
 <u>+ Microvascular (glumeruloid) proliferation</u>

➢Prognosis:

- Very poor; with treatment, the median survival is only *15 months*.

De-novo GBM has a **worse** Px than secondary GBM.

Glioma: Enhancement with peritumoral edema.

GBM

Genetics mutation associated with astrocytomas

> Pilocytic astrocytoma:

- Serine-threonine kinase BRAF

> Lower grade astrocytoma:

- Isocitrate dehydrogenase (IDH1 and IDH2).

≻ GBM:

- Inactivation of p53 & Rb (*Secondary* GBM + low grade astro.)
- Activation of PI3K.
- Amplification of EGFR (*Primary* GBM).

Genetic abnormalities in Glioma:

Gliomas **2. Oligodendroglioma:**

- > More in 4th & 5th decades
- >In frontal or temporal lobes→ favors white matter.
- Deletions of chromosomes *1p and 19q* is common → indicates high response to chemo & radiotherapy.
- » Better prognosis than that for patients with astrocytomas of similar grade**.

Gliomas 2. Oligodendroglioma:

≻ Gross:

- Mass with cysts, hemorrhage & calcification
 Microscopic & WHO grades:
 - A. Typical (Grade II):
 - Small uniform cells surrounded by clear cytoplasm (FRIED EGG APPEARANCE).
 - Delicate capillaries.
 - Calcifications (90%).
 - Absent or minimal mitosis.
 - **B. Anaplastic (Grade III):**

More cellularity, pleomorphism & mitosis.

Source: Am J Clin Pathol @ 2005 American Society for Clinical Pathology

Medscape®

www.medscape.com

Gliomas **3. Ependymoma**

- >Arise from ependyma-lined ventricular system*→ Can cause hydrocephalus & metastesize by CSF:
 - -<20 yrs \rightarrow 4th ventricle
 - ->20 yrs \rightarrow Spinal cord***
- > Microscopic & WHO grading:
 - **A. Typical (Grade II)** → Regular cells forming:
 - Ependymal true rosettes
 - Perivascular pseudorosettes
 - R. Anaplastic (Grade III).

True Rosette

<u>Perivascular</u> <u>Pseudorosette</u>

Normal Ependyma

Ependymoma

Embryonal (Promitive) Neoplasms

Medulloblastoma

- WHO grade VI
 A primitive neuroectodermal tumor (PNET) composed of *undifferentiated small blue round cells*.
- > **20**% of pediatric brain tumors:
 - Children \rightarrow Midline cerebellum or roof of 4th ventricle.
 - Young adults \rightarrow Lateral cerebellum.
- Manifests with hydrocephalus & TCP early.
 Spread through CSF.

Medulloblastoma

>Microscopic:

 Cellular tumor composed of small blue round cells with numerous mitoses & *Homer -Wright Rosettes.*

>Genetics:

- MYC amplification (bad Px).
- WNT mutation (good Px).
- Sonic hedgehog (?).

Prognosis & treatment:

- Without treatment \rightarrow very poor.
- With treatment (since it is radiosensitive) → 75% 5-year survival rate (BUT!!!).

Homer Wright R. in Medulloblastoma

Neurofibrillary center

Meningioma

>Arise from arachnoid meningiothelial cell on surface of brain or spinal cord.

Sites: Parasagital (Falx), sphenoid....

>Most in adult females → Tumor cells contain PROGESTERON receptors

> 50% are associated with NF2 mutation.

> Gross:

- Well defined solid dural based mass → Compressing brain but *easily* removed.
- Can invade the skull & venous sinuses, but this does not affect prognosis
- Can invade the underlying
 brain → IMPORTANT in
 prognosis

Psammoma bodies are diagnostic of meningiomas in brain tumors

Metastatic CNS tumors

Majority are CARCINOMAS disseminate via blood → forming <u>multiple</u> sharply demarcated masses at Grey-white matter junction OR at border zone between MCA and PCA with marked surrounding edema.

>Origin of solid primary tumors:

- Lung (most common)
- Breast
- Melanoma
- Kidney
- Gastrointestinal

Less common but with special propensity for brain metastasize:

- Germ cell tumours
- Thyroid

Spinal Cord tumors :

- » Extraspinal: Metastatic, Lymphoma
- Extradural intraspinal : Metastatic, Lymphoma
- Intradural :
 - Extramedullary : Schwannoma
 - Meningioma
 - Intramedullary : Ependymoma

Astrocytoma

Tumours of Peripheral Nervous System :

- Majority are composed of cells that show evidence of Schwann cell differentiation.
- 1. Schwannoma.
- 2. Neurofibroma.
- 3. Malignant peripheral nerve sheath tumor (MPNST).
- Although majority arise along the course of a peripheral nerve, few arise close to the brain, mainly schwanoma at cerebellopontine angle.
- They are usually solitary , but may be multiple in the Familial Tumor Syndromes (NF).

Schwannoma

- Benign tumor.
- Can be sporadic (ass. with NF2 gene mutation) or familial (Neurofibromatosis-2).
- Gross:
- *Encapsulated* masses that abut the associated nerve <u>without</u> invading it.

Antoni A: "Palisaded" Antoni B: NON-Palisaded "Verocay" bodies

> Clinical features:

- Related to nerve compression.
- Acoustic neuroma:
 - Schwannomas occur at the cerebellopontine angle leading to tinnitus & hearing loss.

Neurofibroma

- Benign tumor composed of neoplastic Schwann cells admixed with perineurial – like cells, fibroblasts, mast cells ...
- Can be sporadic (ass. with NF2 gene mutation) or familial (Neurofibromatosis-1).
- 1. Superficial cutaneous neurofibromas.
- 2. Diffuse neurofibromas
- 3. Plexiform neurofibromas:
 - Has the highest risk to transformed into MPNST

> Clinical features:

- Nodulular or diffuse lesion in skin or SC. tissue.
- > Microscopic:

Inherited familial tumor syndromes

Most are **AD** disorders.

✤ Neurofibromatosis Type I & Type II –

Variety of CNS & peripheral nerve tumors ± other systemic manifestations

- Tuberous sclerosis CNS hamartomas ,astrocytoma, subependymoma (TUBERS), extracerebral lesions including benign skin lesions, renal angiomyolipoma ..etc
- ♦ Von Hippel-Lindau hemangioblastoma , renal carcinoma , renal cysts etc
 ♦ Li-Fraumeni – inherited p53 mutation →

glioma, many types of tumors.

Neurofibromatosis-1

- Neurofibromas± Sarcomatous trans -formation
- Glioma of optic nerve
- > Meningioma
- Café-au-lait spots
- Pigmented nodules of iris

Lisch Nodules

Neurofibromatosis-2

 Bilateral acoustic neuromas.
 Multiple meningiomas (more than NF1)& ependymomas.

Thank you