Functional Anatomy and General Principles of Regulation in the Gastrointestinal Tract

Functions of the Gastrointestinal System

- Secretion: Total about 7L into lumen.
- Motility
 - Mixing
 - propulsion
- Digestion: Breakdown of ingested food
 - Mechanical
 - Chemical
- Absorption: passage of nutrients into the blood

Four Processes of GI Tract

The gastrointestinal organs functions

The GI tract or alimentary canal

- Ingestion of food.
- Propulsion of food and wastes from the mouth to the anus
- Secretion of mucus, water and enzymes
- Mechanical digestion of food particles
- Chemical digestion of food particles.
- Absorption of digested food.
- Elimination of waste products by defecation.

The GI tract is a muscular tube of about <u>5</u> *m* long when one is alive

The accessory glands and organs

The Liver, gall bladder and exocrine pancreas all secrete enzymes for the digestion of chyme.

- Mechanical digestion includes chewing and swallowing
- Chemical digestion of carbohydrates
- Mechanical digestion includes peristaltic mixing and propulsion
- Chemical digestion of proteins, fats
- Absorption of lipid-soluble substances such as alcohol and aspirin
- Mechanical digestion includes mixing and propulsion, primarily by segmentation
- Chemical digestion of carbohydrates, fats, polypeptides, nucleic acids
- Absorption of peptides, amino acids, glucose, fructose, fats, water, minerals, and vitamins
- Mechanical digestion includes segmental mixing and propulsion
- No chemical digestion (except by bacteria)
- Absorption of ions, water, minerals, vitamins, and organic molecules

The gastrointestinal organs functions

Neural and Hormonal Regulators of Gastrointestinal Function

THREE MECHANISMS OF COMMUNICATION MEDIATE RESPONSES IN THE GI TRACT

Extrinsic Nervous System

Extrinsic neural innervation to the gut is via the two major subdivisions of the ANS, namely, parasympathetic and sympathetic innervation

Gut

Extrinsic Nervous System

Sympathetic

Neurons of the autonomic sympathetic division project to the gut from thoracic and first lumbar segments of the spinal cord

Intrinsic Neural Innervation

Enteric nervous system (little brain in the gut) is made up of two major plexuses:

- Submucosal plexus is located within the GI submucosa and mostly regulates <u>GI Secretion</u>.
- Myenteric plexus is located between the circular and longitudinal muscle layers of the GI muscularis propria and mostly regulates <u>GI motility</u>.

Enteric Nervous System

Endocrine regulation of GI function

- The hormone-secreting cells are called entero-endocrine cells (EECs).
 - Open
 - Closed (enterochromaffin-like (ECL))
- Based on structural and to a lesser extent functional similarity, there are two families of GI hormones:

Brain-gut
peptides

Peptide hormone Secretin family **Gastrin-CCK family** Many other peptide hormones have ○Secretin **○Gastrin** recently been identified, which are oGlucagon Ocholecystokinin (CCK) released by GI endocrine cells and **OGlucose-dependent** influence gut functions: insulinotropic peptide Ghrelin, leptin, Angll, (GIP) GLP1(incretin) OVIP

Paracrine regulation of GI function

- Specialized enteroendocrine cells, called enterochromaffinlike (ECL) cells in the stomach secrete histamine that regulates gastric acid secretion.
- Some other paracrine actors – NO, PGs, adenosine.

The Endocrine Control of the GI System

Stimuli for Secretion	Site of Secretion	Actions	
Protein Distention Nerve (Acid inhibits release)	G cells of the antrum, duodenum, and jejunum	Stimulates Gastric acid secretion Mucosal growth	
Protein Fat Acid	l cells of the duodenum, jejunum, and ileum	Stimulates Pancreatic enzyme secretion Pancreatic bicarbonate secretion Gallbladder contraction Growth of exocrine pancreas Inhibits Gastric emptying	
Acid Fat	S cells of the duodenum, jejunum, and ileum	S cells of the duodenum, jejunum, and ileum S cells of the duodenum, Jejunum, and ileum S cells of the duodenum, Pepsin secretion Pancreatic bicarbonate secretion Biliary bicarbonate secretion Growth of exocrine pancreas	Stimulates Pepsin secretion Pancreatic bicarbonate secretion Biliary bicarbonate secretion Growth of exocrine pancreas
		Inhibits Gastric acid secretion	
Protein Fat Carbohydrate	K cells of the duodenum and jejunum	Stimulates Insulin release Inhibits Gastric acid secretion	
Fat Acid Nerve	M cells of the duodenum and jejunum	Stimulates Gastric motility Intestinal motility	
	Stimuli for Secretion Protein Distention Nerve (Acid inhibits release) Protein Fat Acid Acid Fat Fat Carbohydrate Fat Acid Nerve	Stimuli for SecretionSite of SecretionProtein Distention Nerve (Acid inhibits release)G cells of the antrum, duodenum, and jejunum Nerve (Acid inhibits release)Protein Fat AcidI cells of the duodenum, jejunum, and ileumAcid FatS cells of the duodenum, jejunum, and ileumAcid FatK cells of the duodenum, and ileumFatK cells of the duodenum, jejunum, and ileumFatM cells of the duodenum and jejunumFat CarbohydrateM cells of the duodenum and jejunum	

Summary of mechanisms controlling digestive system activities

Basic mechanisms of GI motility

GI Motility

- Refers to contraction and relaxation of walls and sphincters of gastrointestinal tract
- GI Motility helps propel digested material through the alimentary tract
- GI Motility helps mix and grind digested material

GI Motility Mechanisms

- What is the physical basis of all motility within the GI tract??
 - Regulation of contraction:
 - <u>enteric nervous system</u> (myenteric plexus)
 - <u>autonomic nervous system</u>
 - Muscular Subtypes:
 - Skeletal Muscle:
 - upper third of the esophagus, pharynx, and mouth as well as the outer anus.
 - Smooth Muscle
 - Muscular Geometry of Smooth Muscle:
 - <u>circular pattern</u>
 - Iongitudinal pattern
 - Muscular Contraction:
 - Tonic Contraction
 - Phasic (Rhythmic) Contraction

Slow waves and spike

- Two types of electrical activity are found in gut smooth muscle cells; they are
 - slow waves which contribute to the basic electrical rhythm (BER)
 - spike potentials.
- Origin of slow waves
 - occur at interstitial cells of Cajal:
 - Pacemaker
 - transmit information from enteric neurons to the smooth muscle cells
- The rate of slow wave (BER):
 - Stomach 3/min
 - Duodenum ~ 12/min
 - Jejunum ~ 10/min
 - Ileum ~ 8/min

Slow waves and spike

Electrical Basis of GI Rhythmic Contractions

Types of Gut Motility

