PASSION ACADEMIC TEAM

yu - MEDICINE

Cardiovascular System

Sheet# 6 + 7 (Part 1)

Lec. Date:

Lec. Title: Blood Pressure Regulation

Written By: Abdullah A Ananzeh

If you come by any mistake, please kindly report it to shaghafbatch@gmail.com

BLOOD PRESSURE REGULATION

Determinants of Mean Arterial Pressure

REGULATION OF ARTERIAL BLOOD PRESSURE

The mechanisms involved in regulation of blood pressure can be divided broadly into two categories:

- Shortterm regulation:
 - o Regulation of blood pressure within seconds or minutes to hours.
 - o Shortterm regulation occurs mainly by the neural mechanisms, though the vascular and hormonal mechanisms also contribute to it
- 2. Longterm regulation is mainly hormonal and renal

REGULATION OF ARTERIAL BLOOD PRESSURE

Shortterm regulation of blood pressure are as follows:

Neural mechanisms

- Autonomic regulation
 - Sympathetic control
 - Parasympathetic control
- Medullary control
- Reflex regulation
 - Baroreceptor reflex
 - Chemoreceptor reflex
 - CNS-ischemic response(Cushing reflex)
 - Atrial stretch reflex
- 2. Vascular mechanisms
 - Capillary fluidshift
 - Stress relaxation
- 3. Hormonal mechanisms
 - Catecholamines
 - Reninangiotensin system
 - Antidiuretic hormone (ADH)
 - Atrial natriuretic peptide (ANP)

Longterm regulation of blood pressure occurs by:

- Renal and
- Hormonal mechanisms

Autonomic regulation

How does sympathetic NS activity increase BP

Medullary Control

Medullary Control:

- Medullary cardiovascular
 centers are mainly located
 in the medulla
- These centers primarily control the autonomic output on heart and blood vessels, which is the major cardiovascular regulatory pathway
- Medullary centers are broadly divided into two centers:
 - vasomotor center and
 - cardioinhibitory centers.

(cardioinhibitory area (CIA (Vasomotor center (VMC (Sympathetic vasoconstrictor fibers (SVF (Intermediolateral horn (ILH

AFFERENT IMPULSES TO MEDULLARY CARDIOVASCULAR CENTERS

The medulary control centres are influenced by afferent control impulses from the higher centres and a large number of other areas.

Aedullary Control

Cardioinhibitory center in the medulla is formed by:

- o nucleus tractus solitarius (NTS)
- o nucleus ambiguous and
- o dorsal motor nucleus of vagus.

Stimulation of these areas results in bradycardia and decreased cardiac output by two mechanisms.

- 1. vagus nerve originates mainly from NTS
- 2. NTS inhibits vasomotor center via local inhibitory interneurons.

Nucleus tractus solitarius (NTS)
Dorsal motor nucleus (DMN) of vagus Nucleus
ambiguous (NA).

Reflex Regulation

Reflex Regulation of Blood Pressure:

- baroreceptor reflex
- chemoreceptor reflex and
- Cushing's reflex

Baroreceptor Reflex

- The receptors for baroreceptor reflex are baroreceptors.
- Functionally, baroreceptors can be grouped as:
 - 1. High-pressure baroreceptors, are located in:
 - the ventricle and
 - arterial side of circulation, these include:

<u>Carotid</u> sinus

- Aortic arch
- 2. Low-pressure baroreceptors, are mainly present in:
 - the atria and pulmonary circulation (cardiopulmonary baroreceptors).

Baroreceptors = stretch receptors in the walls of

 Heart Atria

Volume receptors

Low pressure baroreceptors

Arteries (arterial baroreceptors)

Aortic arch
Carotid sinus

High pressure baroreceptors

Baroreceptor reflex

Afferent pathway is formed by 9th (IXa) and 10th cranial nerves (Xa) and Efferent fibers of 10th cranial nerve (Xe)

CCA: Common carotid artery

ICA: Internal carotid artery; ECA: External carotid artery; CS: Carotid sinus

+: Excitatory neurotransmitter like glutamate; -: Inhibitory neurotransmitter like GABA.

Baroreceptor reflex

Sympathetic efferent pathways and effector organs

Sympathetic efferent pathways and organs

Response of carotid and aortic baroreceptors to pressure

Pressure "Buffer" Function of the Baroreceptor Control System.

Physiological Significance of Baroreceptor Reflex

Pressure range of baroreceptor reflex

Chemoreceptor Reflex

CNS Ischemic Response (Cushing's Reflex)

Atrial Stretch Reflex

Baroreceptors = stretch receptors in the walls of Heart Volume receptors Atria Low pressure baroreceptors Arteries (arterial baroreceptors) Aortic arch High pressure barorecentors Carotid sinus T Discharge of Stimulation of Stretch afferent nerves: receptors in the wall IX (glossopharyngeal) from carotid sinus(in the neck) Stretch on the wall BP X (vagus) from heart, aortic arch (in the thorax) Wall 29 Increases Atrial Bainbridge Intravenous right atrial receptors infusion reflex stimulated pressure Heart rate Increases Increases Baroreceptor cardiac arterial reflex output pressure

Atrial Stretch Reflex

Vascular Mechanisms

- The vascular mechanisms operate within seconds to minutes of alteration in blood pressure.

 These are:
 - capillary fluid shift
 - stress relaxation.

Capillary Fluid Shift

Capillary Fluid Shift

p.s. The oncotic pressure is set at 25 mmHg in this example.

Stress Relaxation

HUMORAL CONTROL MECHANISMS

Vasoconstrictors	Vasodilators
Epinephrine (through α ₁ receptors)	Epinephrine (through β ₂ receptors)
Serotonin	Histamine
ANG II	ANP 25
AVP	Bradykinins
Endothelin	PGE ₂ , PGI ₂ NO

Long-term regulation of blood Pressure

Renal Mechanism

Long-term blood pressure control mechanisms

Renal regulation of B.P.

- Physical: by variation of Glomerular filtration pressure > variation in urine formation
- II. Hormonal: by secretion of renin
- Renin-Angiotensin (AGII)-Aldosterone system (RAAS)

120

4000

Hormonal Mechanisms

- Hormones that are involved in longterm control of blood pressure are:
 - Renin-Angiotensin-Aldosterone System
 - ADH
 - ANP
- These hormones act on kidney to regulate water and sodium excretion.

