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Motivation for utilising meat processing waste as a feedstock 

biochemicals and biofuel production
 Significant masses of  dissolved air flotation (DAF) sludge, with ~2.8×106

tonnes of  wet DAF sludge, generated annually by New Zealand  meat 
processing plants. 

 This DAF waste stream remains a significant issue  (Richard Stapel, personal 
communication, 2015).

 Limitations of  current waste management approaches such as the generation 
of  unpleasant smells from direct land disposal  and sludge composting and 
the high energy drying operations prior to waste incineration.

 Sustainable biomass supply for biochemical and biofuel production in the 
absence of  associated costs of  cultivation, harvesting or agricultural land for 
biomass production.
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Figure 1: Biorefinery design for meat processing waste conversion to biofuels and biochemicals.
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Anaerobic co-digestion of  DAF sludge in-situ hydrolysis 

residue  and stockyard waste

 Anaerobic co-digestion enables the cheap production of  biomethane.                                                  
Biomethane can serve as a cheap fuel for:

[A] Domestic heating [B] Transportation [C] Industrially for combined 

heating and power generation 

Figure 2: Applications of  bio methane.



6

Source: Okoro et al., 2017

Major stages of  the anaerobic digestion of  organics 

Figure 3: Major anaerobic digestion stages

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lipids, polysaccharides and proteins  

Fatty acids, Monosaccharides, amino acids 

Hydrolysis  

 Organic acids, some alcohols, acetate 

Acidogenesis some sample reactions: C6H12O6        2CH3CH2OH 
+2CO2, C6H12O6 +2H2      2CH3CH2OH +2CO2 and C6H12O6 
+2H2O         2CH3COOH +2CO2 +4H2 

 

Carbon dioxide and hydrogen  

Acetogenesis: Sample reaction: CH3CH2OH+2H2O          CH3COOH 

+2H2+H+ 

   Intermediates: propionate, butyrate, valerate 

Methanogenesis: Sample reactions:  CH3COOH         CH4+CO2 and CO2+4H2          CH4+H2O 

Biogas (Methane + CO2) 
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Figure 4: A simplified illustration of the

experimental set-up.
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Figure 5: Crucial experimental results from the co-digestion

system.
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It is crucial to identify the appropriate kinetic model that

describes biomethane production for future system

integration, system modelling and optimisation.

The three major kinetic models, modified gompertz model,

cone model and exponential (first order) model, were

therefore employed and tested.

Curve fitting was achieved using nonlinear least squares

regression tool in Matlab computing package.
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Figure 6: Plots showing kinetic model fits for the cumulative biomethane yield from the

AD of the different substrate mixtures.
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Coupling hydrothermal liquefaction as a Post-AcoD

resource recovery technology
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Figure 7: Proposed technological modification.
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Assessment of  the HTL of  the digestate residue
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A multiphase component model  was used to predict HTL 

product yields based on the physicochemical of  the digestate 

residue

Energy recovery (ER) of  the biocrude + biochar streams from the 

digestate was determined as follows, 

Energy consumption ratio (ECR) of  the HTL process was 

determined as follows, 
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HTL of  the digestate residue, to be or not to be? 
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Figure 8:  Predicted yields of  HTL  products and 

compared to  reported yields from HTL processing as 

obtained from literature.

 ER of  98% was determined with the extent of  energy recovery 
considered as crucial to favourable energetic performance. 

Figure 9: Condition for favourable energetic 

performance of  the HTL of  high moisture 

digestate. 
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HTL of  the digestate residue, what has been done so far?  

13Figure 10: Experimental optimisation  of  the biocrude and biochar product streams.
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Conclusions
 The anaerobic co-digestion of  defatted meat processing waste 

residue and stockyard waste enhances biomethane generation.

 The preferred C/N ratio for the mix for improved biomethane 
generation from the co-digestion substrates is 15.

 Digestate generated can serve as a sustainable feedstock for useful 
biocrude and biochar production via the hydrothermal liquefaction 
process. 

 The importance of  optimal co-generation of  the biochar and 
biocrude streams to an improved performance of  a AcoD-HTL 
integrated system was established.

 A favourable economic performance of  an integrated AcoD and 
HTL process is expected since the sale of  biocrude+ biochar could 
provide a secondary income source.
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