

Education

KwaZulu-Natal Department of Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 10

This memorandum consists of 6 pages.

Please turn over

2 GRADE 10 COMMON TEST Memorandum

1.1	AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
	$=\sqrt{\left(-1-5\right)^2+\left(5-1\right)^2}$	\checkmark^{a} correct sub into dist. formula
	$=\sqrt{80}$	\checkmark ^{ca} answer (2)
1.2	$m = \frac{y_2 - y_1}{y_2 - y_1}$	
	$x_2 - x_1$	
	$m_{AC} = \frac{5+7}{2}$	\checkmark^{a} correct sub into grad. formula
	= -3 - 9 = -1	\checkmark ca answer (2)
1.3	$y - y_1 = m(x - x_1)$	$y - y_1 = m(x - x_1) or \ y = mx + c \checkmark^a$
	y + 7 = -1(x - 9)	\checkmark ^{ca} correct sub into equation formula
	y = -x + 2	\checkmark ^{ca} answer (3)
1.4	$M(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2})$	\checkmark^{a} midpoint formula
	$M_{BD}(\frac{-3+9}{2};\frac{5-7}{2})$	\checkmark^{a} correct sub into midpoint formula
	$M_{BD}(3;-1)$	\checkmark ^{ca} answer (3)
1.5	$m = \frac{y_2 - y_1}{x_2 - x_1}$	
	$m_{AM} = \frac{1+1}{5-3}$	
	=1	✓ ca gradient
	$m_{AM} . m_{BM} = (-1)(1)$	
	= -1	$\checkmark m_{AM} \cdot m_{BM} = -1$
	$\therefore AM \perp BD$	\checkmark conclusion (3)
	$A\hat{M}B = 90^{\circ}$	
1.6	$M(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2})$	
	$M_{\rm ref}(\frac{-3-1}{5-5})$	
	$M_{BC} = 2, 2, 2$	\checkmark^{a} midpoint of BC
	$M_{BC}(-2,0)$	-
	$M(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2})$	
	$M_{AE}(\frac{x+5}{2};\frac{5-7}{2})$	
	$\frac{x+5}{2} = -2 \qquad \frac{y+1}{2} = 0$	\checkmark ca equating x-co-ordinates and y-
	2 2	co-ordinates
	x = -9 $y = -1E(-9:-1)$	\checkmark \checkmark \checkmark \checkmark \checkmark answers (4)
	L(2, 1)	[17]

2.1	$\frac{80}{100} \times 70000 = R56000$	R56000 \checkmark^a loan amount
	A = P(1+in)	
	$=56000(1+\frac{22}{100}\times5)$	
	= R117600	R117600 \checkmark^{ca} final amount
	$Monthly instalments = \frac{117600}{60} + 120$	$60\checkmark^a$ no. of payments
	=R2080,00	R2080,00 \checkmark ^{ca} answer (4)
2.2	Let $P = x$	
	$\therefore A = 3x$	
	A = P(1 + in)	• $A = 3P$
	$3x = x(1 + \frac{7.5}{100}n)$	\checkmark ^a correct sub. into simple interest formula
	$3=1+\frac{7.5}{100}n$	\checkmark ^{ca} simplification
	$2 = \frac{7.5}{100}n$	27 years \checkmark ^{ca} answer (4)
	= 26.27 years	
	= 27 years	
2.3	$A = P(1+i)^n$	
	$10,98 = 7,25(1+i)^8$	 ^a correct sub. into compound interest formula
	$i = \sqrt[8]{\frac{10,98}{7,25}} - 1$	\checkmark ^{ca} simplification
	=0,0533	
	<i>r</i> = 5,33%	$r = 5,33\% \checkmark^{\text{ca}} \text{ answer} $ (3)
2.4.1	$152 \times R9,10 = R1383,20$	$R1383,20 \checkmark^{a} \tag{1}$
2.4.2	<u>R3500</u>	
	<i>R</i> 11,25	
	= £311,11	t311,11 • answer (1)
2.4.3	$\frac{250 \times 11,25}{9,10} = R309,07$	$\frac{250 \times 11,25}{9,10} \checkmark a$
		$R309,07 \checkmark ^{ca}$ answer (2)
		[15]

QUESTION 3

3.1	In ΔABD	
	AS = DS (given)	\checkmark^{a} both statements
	AP = BP (given)	
	\therefore PS BD (midpt th)	\checkmark^{a} S & R
	In $\triangle BCD$ CR = DR (given)	\checkmark^{a} both statements
	CQ = BQ (given) $\therefore QR \parallel BD (midpt th)$	\checkmark^{a} S & R (4)
0.0.1	∴PS ∥ QR	
3.2.1	$E_1 = x$	
	$\hat{E}_2 = 180^\circ - x \ (adj.angles \ str.line)$	\checkmark^{a} S&R
	$F_2 = 180^\circ - x (alt.angles DE \parallel BF)$	\checkmark^{a} S&R
	$F_1 = x (adj.angles str.line)$	$\checkmark^{a} S \& R \tag{3}$
	$\therefore \hat{E}_1 = \hat{F}_1$	
3.2.2	In $\triangle AED$ and $\triangle CFB$	
	$\hat{A}_{i} = \hat{C}_{i} (alt angles AD \parallel BC)$	
		\checkmark^{a} S&R
	$E_1 = F_1 (proven)$	\checkmark^{a} S&R
	$AD = BC (opp.sides \ parm)$	\checkmark^{a} S & R
	$\therefore \Delta AED \equiv \Delta CFB(A, A, S)$	$\checkmark^{a} S \& R \tag{4}$
3.2.3	DE BF (given)	\checkmark^{a} statement
	$DE = BF$ (corres. sides $\equiv \Delta s$)	\checkmark^{a} S&R
	\therefore DEBF is a parm (one pair opp sides both = &)	\checkmark^{a} reason (3)
		[14]

Surface area of hemisphere = $\frac{4\pi r^2}{2}$ = $\frac{4\pi (12)^2}{2}$ = 904,78 cm	$\frac{4\pi(12)^2}{2} \checkmark^a \text{ sub. into correct formula}$ 904,78 cm \checkmark^{ca} answer
Slant height (s) of Cone $=\sqrt{(24)^2 + (12)^2}$ = 26,83 cm	24 ✓ ^a pythagorus
Surface Area of Cone = πrs = $\pi \times 12 \times 26,83$ =1011,47	$\pi \times 12 \times 26,83 \checkmark ^{ca}$ sub. into correct formula 1011,47 \checkmark ^{ca} answer
Total Surface Area = $904,78 + 1011,47$ = $1916,25$ cm	1916,25cm ✓ ^{ca} answer [6]

6 GRADE 10 COMMON TEST Memorandum

6.1	$\tan(12^\circ) = \frac{139,2}{dist}$	139.2 ✓ ^a
	$dist = \frac{139,2}{1000}$	using tan 🖌 ^a
	$\tan(12^\circ)$	$\tan(12^\circ) = \frac{139,2}{dist} \checkmark ca$ substitution
	= 654.88 m	
		654.88 m ✓ ^{ca} answer
		(4)
6.2	$\tan \theta = \frac{139,2}{1}$	679.88 🗸 ^{ca}
	679,88	
	=11,58°	using tan 🖌 ^a
		$ \tan \theta = \frac{139.2}{679.88} \checkmark^{\text{ca}} \text{substitution} $
		11,58° \checkmark ^{ca} answer
		(4)
		[8]