
AMAJUBA DISTRICT MATHS <u>REVISION MATERIAL GR. 11 MATHEMATICS 2019</u> <u>FUNCTIONS</u>

P1 2014 JUNE KZN

QUESTION 3

The graphs of $f(x) = ax^2 + bx$ and g(x) = mx + c are drawn below: f intersects g at S and T, and f passes through the origin O. T (-1; 3) is the turning point of f. P and $Q(-\frac{5}{2}; 0)$ are the *x*-intercepts of f and g respectively and R is the *y*-intercept of g.

3.1	Determine the values of m and c and hence the length of OR.	(3)
3.2	Determine the values of a and b and hence the length of OP.	(6)
3.3	Calculate the co-ordinates of S.	(3)
3.4	Write down the range of f.	(2)
3.5	Use your graphs to solve for <i>x</i> where:	
	$3.5.1$ $f(x) \le 0$ $3.5.2$ f is decreasing	(2) (1)

3.5.3 $f(x) - g(x) \ge 0$ (2)

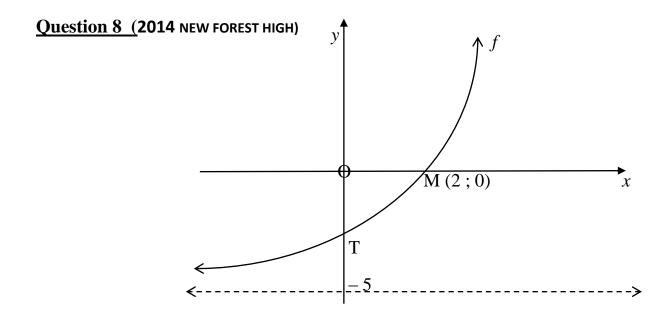
 $3.5.4 \qquad g(x) < 0. \tag{1}$

[22]

QUESTION 4 (KZN JUNE 2014 KZN)

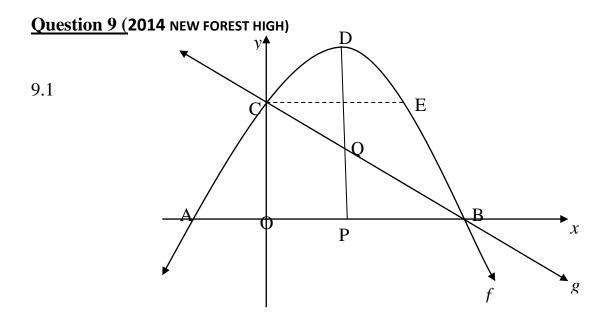
The equations of *h* and *p* are given by:

$$h(x) = \frac{-1}{x-3} + 2$$
 and $p(x) = 4^{-x} - 2$


		[16]
4.5	Sketch the graphs of h and p on the same set of axes provided. Indicate ALL intercepts with the axes and asymptotes clearly and name your graphs.	(6)
4.4	Write down the equation of the asymptote of p .	(2)
4.3	Determine the x and y intercepts of p .	(3)
4.2	Determine the x and y intercepts of h .	(3)
4.1	Write down the x and y asymptotes of h .	(2)

NOV EXAM - 2014 NEW FOREST HIGH

Question 7


 $\overline{\text{GIVEN:}} \qquad f(x) = \frac{6}{x+2} - 1$

7.1	State the equations of the asymptotes of f .	(2)
7.2	Find the co-ordinates of the x and y intercepts of f .	(4)
7.3	Sketch the graph of f on the axes provided on the diagram sheet	(3)
7.4	The equation of a line of symmetry of f is $y = -x + d$. Find the value of d .	(2) [11]

Sketched above is the graph of $f(x) = 5^{x-p} + q$. T is the *y* – intercept and the co-ordinates of M are (2; 0).

8.1	Write down the value of q .	(1)
8.2	Calculate the value of p .	(3)
8.3	Determine the co-ordinates of T.	(2)
8.4 axis.	Write down the equation of h if h is the graph of f reflected about	the x -(2)

In the above diagram, $f(x) = -x^2 + 8x + 20$ and g(x) = tx + d. The graphs of f and g intersect at C and B.

9.1.1	Find the co-ordinates of A and B, the x – intercepts of x .	(4)
9.1.2	Find the values of t and d .	(2)
9.1.3	Calculate the co-ordinates of D, the turning point of f	(3)
9.1.4	If CE is parallel to the x –axis and E lies on f , write dow co-ordinates of E.	(2)
9.1.5	Calculate the average gradient of f between the points E	and B. (2)
9.1.6	DQP is perpendicular to the x -axis with Q on g . Find the length of DQ. (2)	(2)
9.1.7	Find the co-ordinates of the turning point of <i>h</i> if $h(x) = f(x-4) - 3$	(2)

9.2 <u>GIVEN:</u> $f(x) = ax^2 + bx + c$ Draw a sketch graph of f if it is given that a < 0, c < 0 and $\Delta > 0$. (3) [20]

Grosvenor Gírls Hígh School Question 4

Given : $f(x) = \frac{8}{x-8} + 4$

4.1 Write down the domain of f. (1)

4.2 For which value of x is
$$f(x) = 0$$
? (2)

4.3 Determine the value of
$$p$$
 if A (0; p) lies on the graph of f . (2)

4.4 Write down the equations of the asymptotes of f. (2)

4.5 Draw a neat sketch graph of *f*, on the grid provided, clearly indicating asymptotes and intercepts. (4)

[11]

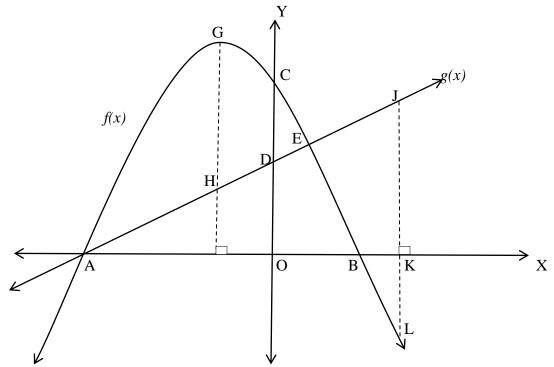
Question 6

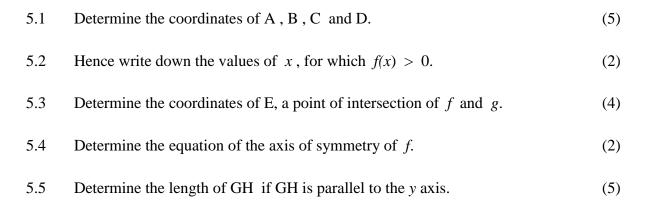
Consider $:f(x) = 2^x - 4$.

6.1 Sketch the graph of f, in your answer book, clearly showing all intercepts and asymptotes. (4)

6.2 Write down the range of f.

(2)


Grosvenor Gírls Hígh School


Question 5

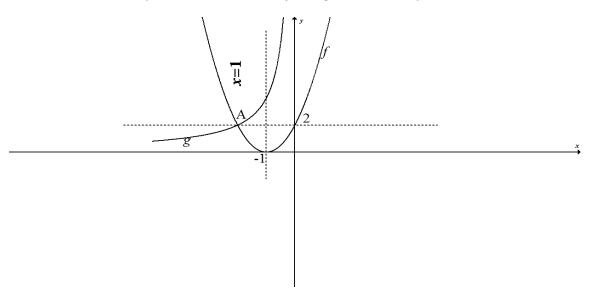
Refer to the diagram below. The graphs of $f(x) = -2x^2 - 4x + 30$ and g(x) = 2x + 10 are

drawn. A and B are the x intercepts and C is the y intercept of f. G is the turning point of

f. A is the x intercept and D is the y intercept of g.

[23]

JUNE 2015 KZN


QUESTION 4

4.1 The sketch below shows the sketch of;

 $f(x) = ax^2 + bx + c$, with the line of symmetry x = -1

$$g(x) = \frac{k}{x} ; x < 0$$

and the line y = 2. The curves of f and g and the line y = 2 intersect at A.

4.1.1	Write down the co-ordinates of A .	(1)
4.1.2	Show that $a = 2$, $b = +4$ and $c = 2$	(4)
4.1.3	Determine the equation of <i>g</i> .	(3)
4.1.4	Write down the equations of the line of symmetry of g .	(2)
4.1.5	For what values of x is f increasing?	(1)
4.1.6	Determine the average gradient on the curve of f between $x = -1$ and $x = 0$	(2)

4.1.7	If the graph of f is shifted 2 units to the right and 3 units down ,	
	write down the equation of the new graph.	(2)
		[15]

JUNE 2015 KZN

4.2 Given
$$y = -2x^2 + 8x + 10$$
 and $y = -2x - 2$
4.2.1 Determine the x and y intercepts of $y = -2x^2 + 8x + 10$ (4)
4.2.2 Sketch both graphs on the system of axes provided. (6)
4.2.3 Determine the coordinates of the points of intersection of the two graphs. (2)

[12]

QUESTION 5

Consider the following functions;

$$g(x) = \frac{3}{x-2} + 1$$

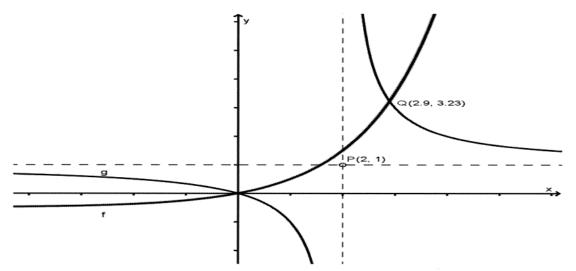
 $h(x) = 3^{x-2} - 1$

5.1 State the x and y intercepts of
$$g$$
. (2)

5.2 Write down the y asymptote of
$$h$$
. (2)

5.3 State the range for
$$g$$
 (2)

5.4 Sketch both graphs on the system of axes provided. (6)

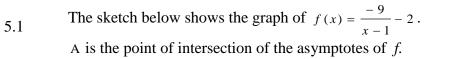

[12]

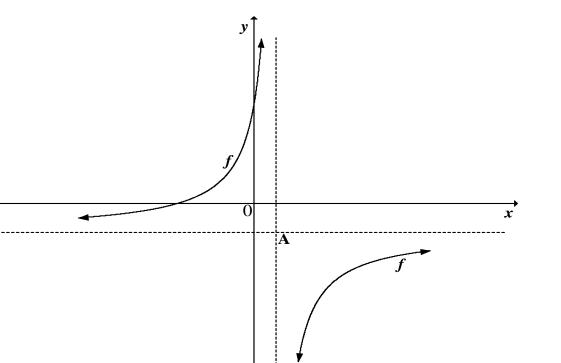
FREESTATE JUNE 2015

QUESTION 5

5.1	f(x)	$= -x^{2} + 2x + 1$ and $g: 4y - 4x = 5$	
	5.1.1	Write $f(x)$ in the form $f(x) = a(x+p)^2 + q$	(4)
	5.1.2	Determine:	
		(a) $f(x) = 0$ (b) $g(0)$ (c) Turning point of f	(3) (2) (1)
	5.1.3	Sketch graph of f and g on the same set of axes. Indicating all the intercepts as calculated in 5.1.2.	(4)
	5.1.4	Determine the intersection of f and g .	(4)
	5.1.5	What name is given to g in relation to f ?	(1)
	5.1.6	If $h(x) = f(x) - k$ determine all k values for which:	
		 (a) f(x) touches the x -axis at one point. (b) f does not touch the x-axis. 	(1) (1) [21]

The graphs of $f(x) = 2^{x-1} - \frac{1}{2}$ and g are given in the sketch. Study the diagram below and answer the questions that follow. 6.1




	6.1.1	Write down the equations of the asymptotes.	(2)
	6.1.2	Determine the equation of g .	(2)
	6.1.3	Solve $f(x) - g(x) = 0$ graphically.	(2)
6.2	Deter	mine the values of x which satisfy $\frac{1}{2} \le f(x) < 3\frac{1}{2}$.	(2)

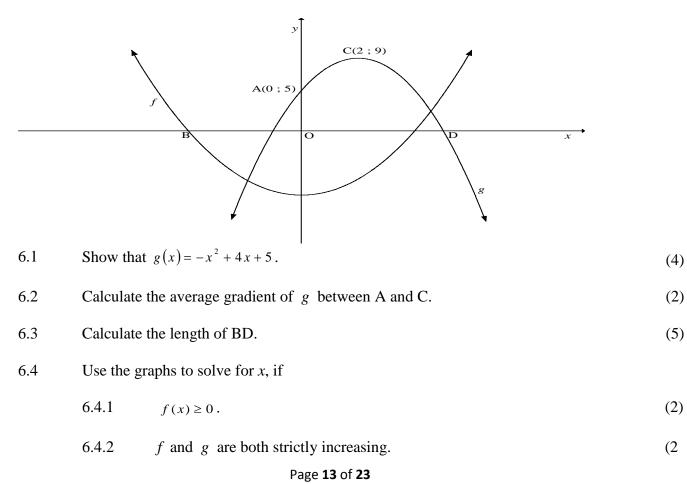
[8]

NOV 2015 DBE

QUESTION 5

5.1.1	Write down the coordinates of A.	(2)
5.1.2	Determine the coordinates of the x - and y -intercepts of f .	(5)
5.1.3	Write down an equation of the axis of symmetry of f that has a negative gradient.	(2)
5.1.4	Hence, or otherwise, determine the coordinates of a point that lies on f in the fourth quadrant which is the closest to point A.	(5)
5.1.5	The graph of f is reflected about the <i>x</i> -axis to obtain the graph of g . Write down the equation of g in the form $y =$	(2)

5.2 Given: $h(x) = 4(2^{-x}) + 1$


5.2.1	Determine the coordinates of the <i>y</i> -intercept of h .	(2)
5.2.2	Explain why h does not have an x-intercept.	(2)
5.2.3	Draw a sketch graph of h , clearly showing any asymptotes, intercepts with the axes and at least one other point on h .	(3)
5.2.4	Describe the transformation from <i>h</i> to <i>g</i> if $g(x) = 4(2^{-x} + 2)$.	(2) [25]

QUESTION 6

The sketch below represents the graphs of two parabolas: f and g.

$$f(x) = \frac{1}{2}x^2 - 8$$

The turning point of g is C(2;9) and the y-intercept of g is A(0;5). B and D are x-intercepts of f and g respectively.

JUNE 2016 KZN

QUESTION 4

- 4.1 Given $f(x) = -x^2 2x + 3$.
 - 4.1.1 Write f in the form $y = a(x + p)^2 + q$. (3)
 - 4.1.2 Draw a neat sketch graph of f.

Indicate all intercepts with the axes and the coordinates of the turning point. (5)

- 4.1.3 Write down the range of f. (2)
- 4.1.4 Describe the transformation from f to h if $h(x) = x^2 + 2x 3$ (2)
- 4.1.5 On the same set of axes as f, draw a neat sketch graph of g if g(x) = -2x + 2, showing all intercepts with the axes. (2)
- 4.1.6 Now use your graphs to answer the following questions:

For which value(s) of *x* is:

(a) f(x) - g(x) = 0? (2)

(b)
$$f(x) > 0$$
? (2)

- 4.2 Draw a sketch graph of $k(x) = ax^2 + bx + c$, if it is given that
 - *k* has no real roots;
 - b > 0 and

•
$$c > 0$$
. (3)

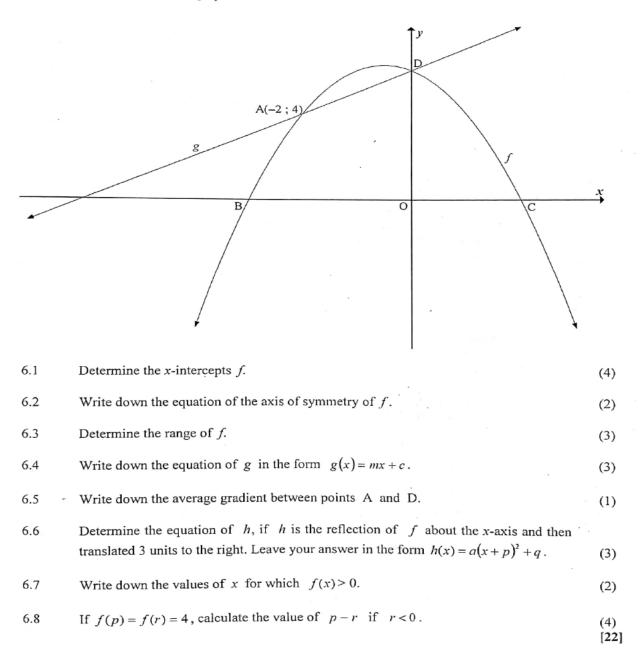

[21]

QUESTION 5 (JUNE 2016 KZN)

The diagram below represents the graphs of $f(x) = \frac{a}{x+p} + q$ and $g(x) = t^x$. f cuts the x-axis at R(-2;0) and the y-axis at D.

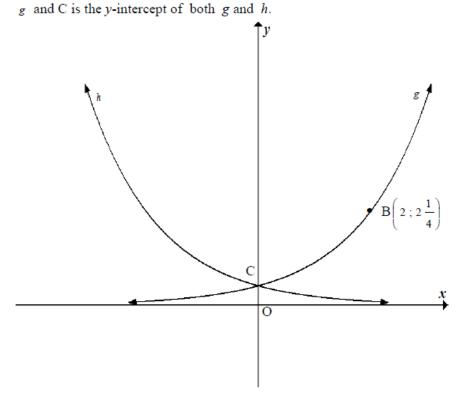
 $\left(2;\frac{1}{4}\right)$ is a point on the graph of g.

f and g intersect at point D.



<u>NOV 2017 DBE</u>

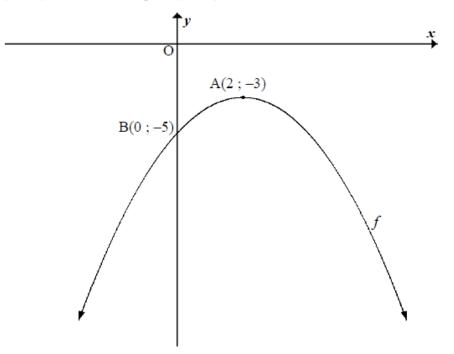
QUESTION 5


$f(x) = \frac{-3}{x+2} + 1$ and $g(x) = 2^{-x} - 4$	
Determine $f(-3)$.	(1)
Determine x if $g(x) = 4$.	(2)
Write down the asymptotes of f .	(2)
Write down the range of g .	(1)
Determine the coordinates of the x- and y- intercepts of f .	(5)
Determine the equation of the axis of symmetry of f which has a negative gradient. Leave your answer in the form $y = mx + c$.	(2)
Sketch the graphs of f and g on the same system of axes. Clearly show ALL intercepts with the axes and any asymptotes.	(6)
If it is given that $f(-1) = g(-1)$, determine the values of x for which $g(x) \ge f(x)$.	(2) [21]
	Determine $f(-3)$. Determine x if $g(x) = 4$. Write down the asymptotes of f. Write down the range of g. Determine the coordinates of the x- and y- intercepts of f. Determine the equation of the axis of symmetry of f which has a negative gradient. Leave your answer in the form $y = mx + c$. Sketch the graphs of f and g on the same system of axes. Clearly show ALL intercepts with the axes and any asymptotes.

The diagram below shows the graphs of $f(x) = -x^2 - x + 6$ and g(x) = mx + c. A(-2; 4) is the point of intersection of the graphs.

JUNE 2018 KZN

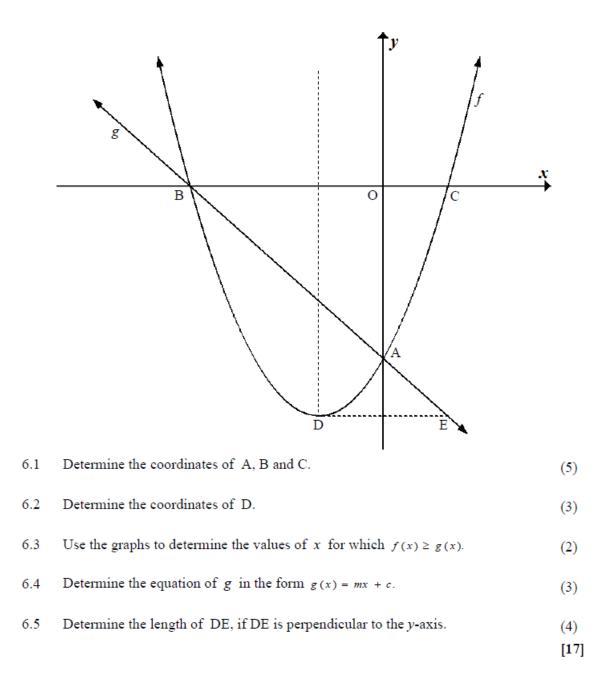
- 5.1 Given: $f(x) = \frac{-6}{x+3} + 2$.
 - 5.1.1 Draw a neat sketch graph of f, indicating the asymptote(s) and intercept(s) with the axes. Show all your calculations. (6)
 - 5.1.2 An axis of symmetry of f has the equation y = mx + 5. Write down the value of m. (1)
- 5.2 In the diagram below, g represents the function $g(x) = a^x, a > 0$. The graph h is symmetrical to g about the y axis. The point $B\left(2; 2\frac{1}{4}\right)$ lies on the curve of a and C is the wintercent of both g and h



5.2.1 Write down the range of g. (1)

- 5.2.2 Calculate the value of a. (2)
- 5.2.3 Determine the equation of h in the form $y = b^x$. (2)
- 5.2.4 B' is the reflection of B in the y-axis. Calculate the average gradient between B' and C.(4)

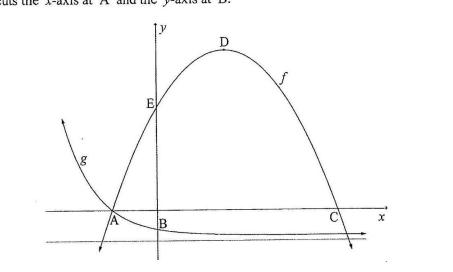
Page 19 of 23


5.3 The diagram below shows the graph of a parabola f, with turning point A(2; -3) and y - intercept B(0; -5).

- 5.3.1 Show that the equation of the parabola can be written as $y = -\frac{1}{2}x^{2} + 2x - 5.$ (5)
- 5.3.2 Use the graph to determine the value(s) of k for which the equation $-\frac{1}{2}x^{2} + 2x - 5 = k \text{ will have real and unequal roots.}$ (2)
- 5.3.3 The parabola f is shifted vertically until the new y intercept is at the origin. Determine the new turning point of the parabola. (2)
 [25]

The diagram below represents the functions: $f(x) = \frac{3}{2}x^2 + 3x - \frac{9}{2}$ and g(x) = mx + c.

- A, B and C are the points at which f intersects the axes.
- D is the turning point of f.
- g passes through A and B.
- E is a point on g.



NOV 2018 DBE

QUESTION 5

Given: $f(x) = \frac{4}{x-3} + 2$ and $g(x) = x+2$		
5.1	Write down the equations of the asymptotes of f .	(2)
5.2	Determine the x-intercept of f .	(3)
5.3	Determine the y-intercept of f .	(2)
5.4	Sketch the graphs of f and g on the same system of axes. Show clearly ALL the intercepts with the axes and any asymptotes.	(5)
5.5	Calculate the x-coordinates of the points of intersection of f and g .	(4)
5.6	If $x < 3$, determine the values of x for which $\frac{4}{x-3} + 2 < x+2$.	(2)
5.7	The line $y = x - 1$ cuts f at P(1; 0) and Q. Write down the coordinates of Q.	(3) [21]

The diagram below shows the graphs of $f(x) = -(x-3)^2 + 25$ and $g(x) = 2\left(\frac{1}{2}\right)^{x+1} - 4$. Graph f cuts the x-axis at A and C, the y-axis at E and has a turning point at D. Graph g cuts the x-axis at A and the y-axis at B.

6.1		Write down the equation of the asymptote of g .	(1)
6.2		Write down the coordinates of D.	(2)
6.3		Write down the range of f .	(1)
6.4		Calculate the length of EB.	(4)
6.5		Determine the values of x for which f is decreasing.	(2)
6.6	i	Calculate the average gradient between points A and B.	(5)
6.7		Graph t is obtained by reflecting g about the x-axis. Write down the range of t .	(2)
6.8	3	If $p(x) = f(x) + 2$, write down the coordinates of the turning point of p.	(2)
6.9)	Determine the value of k for which the straight line $y = 2x + k$ will be a tangent to f.	(4) [23]