AMAJUBA DISTRICT MATHS

REVISION MATERIAL GR. 11 MATHEMATICS 2019 NUMBER PATTERNS

2014 (PAPER)

Question 5

5.1	The terms Find the val	14; a ; b ; c ; 56 are the first 5 terms of a linear sequence. lues of a , b and c .	(3)
5.2	A quadratic The first dif	e sequence has a first term of 7. fference of this sequence has a general formula of $4n + 3$	
	5.2.1	Write down the values of the first four terms of this quadratic sequence.	(4)
	5.2.2	Find the nth term of this quadratic sequence.	(5)
5.3	Given:	- 39 ; - 36 ¹ / ₂ ; - 34 ;	
	5.3.1	Find the nth term of this sequence.	(2)
	5.3.2	Which term has the value of $-16\frac{1}{2}$?	(2)
	5.3.3	Which term is the first positive term in this sequence?	(3) [19]

MARCH 2015 (KZN)

QUESTION 3

Given the quadratic equation:

4; 7; 14; 25; m

3.1	Write down the value of m .	(2)
3.2	Determine the n^{th} term of the sequence.	(4)
3.3	If the first difference between the two consecutive terms in the quadratic sequence is 87 , determine the value of the two consecutive terms.	e (4)
3.4	Calculate n if the n th term in the sequence is 4855 .	(4)

JUNE 2015 (KZN)

3.1	Consider the sequence	
	- 3 ; 2 ; 7 ; 12 ;	
	3.1.1 Write down the next 2 terms of the sequence.	(2)
	3.1.2 Determine the formula for the n^{th} term of the sequence.	(2)
3.2	Determine the value of x if 1; 7; 19; x ; 61is a quadratic sequence.	(2)
3.3	16; 33; 56; 85 ; forms a quadratic sequence.	
	3.3.1 Write down the next term in the pattern.	(1)
	3.3.2 Determine the n^{th} term of the sequence.	(4)
	3.3.3 Which term of the sequence has a value of 2080 ?	(4)
	3.3.4 6; 23; 46; 75 continues in the same pattern as the one above.	
	Write down the formula for the n^{th} term of this sequence.	(2)
		[17]

KZN JUNE 2016

3.1	The following sequence of numbers is given:			
		2; 7; 12; 17;		
	3.1.1	Write down the values of the next two terms of the sequence.	(2)	
	3.1.2	Write down the value of the first term in the sequence that will be greater than 107.	(1)	
	3.1.3	Determine an expression for the n^{th} term of the sequence.	(2)	
	3.1.4	Which term of the sequence will be equal to 182?	(2)	
	3.1.5	The terms of this sequence are also the first differences of a certain quadra sequence. If the fourth term of this quadratic sequence is 22, write down is first, second and third terms.	atic its (3)	
3.2	Given	the following quadratic sequence:		
		51; 70; 95; 126;		
	3.2.1	Write the value of the next term of the sequence.	(2)	
	3.2.2	Determine an expression for the n^{th} term of this quadratic sequence.	(5)	
	3.2.3	Which term of the sequence will be equal to 4063?	(4) [21]	

JUNE 2016 (FREE STATE)

4.1	Write down the next TWO terms of the pattern:	
	1; 1; 2; 4; 3; 7; 4;	(2)
4.2	The following pattern is given: $-5; -3; 3; 13;$	
	4.2.1 Give a reason why this is a quadratic pattern.	(2)
	4.2.2 Determine an expression for the n^{th} term of the pattern.	(7)
	4.2.3 Determine which term of the pattern will be equal to 445.	(5)
		[16]

JUNE 2016 (GAUTENG)

4.1	$T_k = 3$	$k^2 - 4$ is the k_{th} term of a sequence.	
	4.1.1	Write down the first THREE terms of the sequence.	(3)
	4.1.2	Determine the value of k if $T_k = 71$.	(3)
4.2	Given	the number pattern below:	
		0; 5; 12; 21;	
	4.2.1	What kind of number pattern is being illustrated? Substantiate your answer.	(2)
	4.2.2	Determine the general term for this number pattern.	(4)
4.3	Study t	he pattern below:	
		Row 1: $4^2 - 3^2 + 2^2 - 1^2 = 10$	
		Row 2: $5^2 - 4^2 + 3^2 - 2^2 = 14$	
		Row 3: $6^2 - 5^2 + 4^2 - 3^2 = 18$	
		Row 4: ()	
		Row 20: ()	
		Row $n: a^2 - b^2 + c^2 - d^2 = T_n$	
	4.3.1	Complete the patterns for Row 4 and Row 20.	(2)
	4.3.2	Determine the values of a ; b ; c ; d ; and T_n (in the <i>n</i> th Row) in terms of n .	
		Simplify for T_n as far as possible.	(3) [1 7]

NOV 2016

QUESTION 3

Consider the quadratic pattern: $-9; -6; 1; 12; x; \dots$

3.1	Determine the value of x .	(1)
3.2	Determine a formula for the n^{th} term of the pattern.	(4)
3.3	A new pattern, P_n , is formed by adding 3 to each term in the given quadratic pattern. Write down the general term of P_n in the form $P_n = an^2 + bn + c$.	(1)
3.4	Which term of the sequence found in QUESTION 3.3 has a value of 400?	(4) [10]

4.1	Given the l	inear pattern: 18;14;10;	
	4.1.1	Write down the fourth term.	(1)
	4.1.2	Determine a formula for the general term of the pattern.	(2)
	4.1.3	Which term of the pattern will have a value of -70 ?	(2)
	4.1.4	If this linear pattern forms the first differences of a quadratic pattern, Q_n , determine the first difference between Q_{509} and Q_{510} .	(2)
4.2	A quadratic	e pattern has a constant second difference of 2 and $T_5 = T_{17} = 29$.	
	4.2.1	Does this pattern have a minimum or maximum value? Justify the answer.	(3)
	4.2.2	Determine an expression for the n^{th} term in the form $T_n = an^2 + bn + c.$	(5) [15]

JUNE 2017 KZN

			[19]
3.2	The first 4 Calculate	terms of a quadratic sequence are 13; x; 29; $x + 24$; the value of x.	(5)
	3.1.5	Between which two terms of the quadratic number pattern will the first difference be equal to 64?	(3)
	3.1.4	Determine an expression for the n^{th} term of the sequence of first differences of this quadratic number pattern.	(2)
	3.1.3	Calculate the value of the first term of the pattern that will be greater than 460.	(4)
	3.1.2	Determine an expression for the n^{th} term of the pattern.	(4)
	3.1.1	Write down the next term in the pattern.	(1)
3.1	4; 10; 18	; 28; is a quadratic number pattern.	

KZN MARCH 2017

QUESTION 3

3.1 Peter builds triangular patterns with blocks in his yard, as shown in the sketch.

3.2 The general term of a certain quadratic number pattern is $T_n = 2n^2 - 5$. Calculate the 50th term of the sequence of first differences of this quadratic number pattern. (4)

[16]

NOV 2017 DOE

3.1	Given the	finite linear pattern: 12; 17; 22;; 172	
	3.1.1	Determine a formula for the n^{th} term of the pattern.	(2)
	3.1.2	Calculate the value of T_{12} .	(2)
	3.1.3	Determine the number of terms in the pattern.	(2)
3.2	Given the	first four terms of a linear pattern: 3; x ; y ; 30	
	Calculate	the values of x and y .	(4) [10]
QUESTI	ON 4		
Given the	quadratic	pattern: 244 ; 193 ; 148 ; 109	
4.1	Write dow	m the next term of the pattern:	(2)
4.2	Determine	a formula for the n^{th} term of the pattern.	(4)
4.3	Which ten	m of the pattern will have a value of 508?	(4)
4.4	Between v difference	which TWO consecutive terms of the quadratic pattern will the first be 453?	(3)
4.5	Show that	all the terms of the quadratic pattern are positive.	(4) [17]

MARCH 2018 KZN

QUESTION 3

3.2	If p; Calcula	11 ; 21 ; 6 p form a quadratic number pattern. te the value of p .	(4) [16]	
	3.1.5	Between which two consecutive terms of the quadratic number pattern will the difference be equal to 174?	(2)	
	3.1.4	Determine the general term of the sequence of first differences of this number pattern.	(2)	
	3.1.3	Calculate the value of the 20 th term of this number pattern.	(2)	
	3.1.2	Determine an expression for the general term, T_n , in the form $T_n = an^2 + bn + c$.	(4)	
	3.1.1	Write down the next TWO terms of the number pattern.	(2)	
3.1	Consider the following quadratic number pattern: 64 ; 42 ; 24 ;			

JUNE 2018 KZN

4.1	Consider the quadratic number pattern: $0; -9; -16; -21; -24$		
	4.1.1	Determine the n^{th} term (T _n) of the pattern.	(4)
	4.1.2	Calculate the 30 th term of the pattern.	(2)
	4.1.3	Determine which term of the pattern will be equal to 200.	(4)

JUNE 2018 : (continued):

4.2 The first three figures in a pattern of grey and white squares are shown below.

NOV 2018

3.1	Given the linear pattern: 7; 2; -3 ;		
	3.1.1	Determine the general term, T_n , of the linear pattern.	(2)
	3.1.2	Calculate the value of T_{20} .	(2)
	3.1.3	Which term in the pattern has a value of -138?	(2)
3.2	6; $2x + 1$ and $3x - 3$ are the first three terms of a linear pattern.		
	Calculat	te the value of x .	(3) [9]
QUEST	ION 4		
The quad	lratic num	ber pattern: 4; p; 11; q; 22; has a constant second difference of 1.	
4.1	Show that $p = 7$ and $q = 16$.		
4.2	Determine the general term, T_n , of the quadratic pattern.		(4)
4.3	Determine the value of <i>n</i> if $T_n = 232$.		(4)
4.4	If the su between	m of two consecutive terms in the pattern is 1 227, calculate the difference these two terms.	(5) [16]