Gr. 11 MATHEMATICS 2016 REVISION EXERCISES EUCLIDEAN GEOMETRY 50 marks from PAPER 2

1. O is the centre of the circle. PQ and AB are both chords of the circle with OM perpendicular to PQ and OC perpendicular to AB.

OM = 5 cm, OC = 7 cm and AB = 48 cm.

Calculate the length of:

- 1.1 The radius of the circle
- 1.2 PQ
- AB is a chord of the circle with centre O. OE bisects AB.
 AD 12cm ED 2cm and OD
 - AD = 12cm, ED = 8cm and OD = x
- 2.1 Determine the radius OB in terms of *x*.
- 2.2 Hence, calculate the length of the radius OB.

3. O is the centre of the circle. Calculate the values of *x* and *y*.

4. O is the centre of the circle. Calculate the values of the unknown variables.

5. AOC is a diameter of the circle with centre O. $\hat{A}_{\perp} = x$.

Write the following angles in terms of *x*:

5.1	B ₁ ;	5.2	\hat{O}_1
5.3	$\hat{\mathrm{C}}$;	5.4	$\hat{\mathbf{D}}$

6. In the circle below O is the centre, $\hat{W} = 35^{\circ}$ and $O\hat{S}P = 55^{\circ}$. Prove that TU = PS.

7. O is the centre of the circle. AO \parallel BC. and *y*.

8. O is the centre of the circle. Calculate the values of *x* and *y*.

9. O is the centre of the circle. Calculate the values of *x*, *y* and *z*.

10. Calculate the value of *x*.

11. O is the centre of the circle. Calculate the values of *x*, *y* and *z*.

12. O is the centre of the circle. Calculate the values of *x*, *y* and *z*.

13. Calculate the values of *x* and *y*.

14. O is the centre of the circle. Calculate the values of the unknown variables. $V \hat{T} R = f$

15. O is the centre of the circle. Calculate the values of the unknown variables.

16. O is the centre of the circle and ABT a tangent. Calculate the values of the unknown variables.

17. O is the centre of the circle and AP and PT are tangents. Calculate the values of the unknown variables.

18. ABT is a tangent. Calculate the values of the unknown variables.

19. ABT is a tangent. Calculate the values of the unknown variables.

20. PQR is a tangent at Q. ST||QW. W $\hat{Q}R = 30^{\circ}$

and $T\hat{S}W = 42^{\circ}$. Calculate the sizes of the following angles:

21. QOS is a diameter of circle centre O. QR = RT and $\hat{T} = 28^{\circ}$. Calculate 21.1 \hat{R}_{2} ; 21.2 \hat{S}_{2} ;

- 22. ALB is a tangent to circle LMNP. ALB||MP. Prove that
- 22.1 LM = MP
- 22.2 LN bisects $M \hat{N} P$.
- 22.3 LM is a tangent to circle MNQ.

- 23. EC is a diameter of circle DEC. EC is produced to B. BD is a tangent at D. ED is produced to A, and AB is perpendicular to BE. Prove that
- 23.1 ABCD is a cyclic quadrilateral
- 23.2 $\hat{A}_{1} = \hat{E}$
- 23.3 \triangle BDA is isosceles
- 23.4 $\hat{C}_{2} = \hat{C}_{3}$

- 24. Questions from DBE CAPS Gr. 11 Papers:
- 24.1 Exemplar 2013 Paper 2 no. 9, 10 and 11.
- 24.2 Nov. 2014 Paper 2

no. 8, 9 and 10.

24.3 Nov. 2015 Paper 2 no. 9, 10 and 11.

Gr. 11 MATHEMATICS 2016 ANSWERS to REVISION EXERCISES EUCLIDEAN GEOMETRY 50 marks from PAPER 2

1.1	AC = $\frac{1}{2}$ AB [line from centre \perp to chord]	6.	OS = OP	[radii]
	= 24cm		$\hat{OPS} = 55^{\circ}$	$[\angle$'s opp. = sides]
	OA = OC + CA [Pytnagoras]		$\hat{\mathbf{O}}$ = 70 $^{\circ}$	[sum of \angle 's of \triangle]
	= 7 + 24		$\hat{R} = 35$ °	$[\angle \text{ at centre} = 2 \text{ x} \angle \text{ at circumf.}]$
	= 023		\therefore TU = PS	[converse: = chords; = angles]
12	OA = 25 cm OP = OA [radii]	7.	$y = 70^{\circ}$	[alt. \angle 's; AO BC]
1.2	= 25 cm		$\hat{C} = 35$ °	$[\angle \text{ at centre} = 2 \text{ x} \angle \text{ at circumf.}]$
	$PM^{2} = OP^{2} - OM^{2} $ [Pythagoras]		$x = 35^{\circ}$	[alt. \angle 's; AO BC]
	$= 25^{2} - 5^{2}$	8.	$x = 32^{\circ}$	$[\angle$'s in same segment]
	= 600		$\hat{B}_{.} = 180^{\circ}$ -	$-(32^{\circ} + 92^{\circ})$ [sum of \angle 's of \triangle]
	PM = 24,49 cm		$= 56^{\circ}$	
	$PQ = 2 PM $ [line from centre \perp to chord] = 48,99cm		$y = 56^{\circ}$	$[\angle$'s in same segment]
2.1		9.	$x = 21^{\circ}$	$[\angle$'s in same segment]
2.1 2.2	OB = 8 + x $OD \perp AB$ [line from centre to midpoint of		$y = 21^{\circ} + 1$	8° [ext. \angle of \triangle]
	chord]		= 39 °	
	$OA^{2} = AD^{2} + DO^{2}$ [Pythagoras]		z = 39°	$[\angle$'s in same segment]
	$(8+x)^2 = 12^2 + x^2$	10.	$\hat{\mathrm{C}}$ = 180 $^{\circ}$ -	84 ° [opp. \angle 's of cyclic quad.]
64	$+16 x + x^{2} = 144 + x^{2}$		= 96 °	
	$16 \ x = 80$		$x = \hat{B}_2$	$[\angle$'s opp. = sides]
	x = 5 and OA = 13cm = OB		$x = \frac{180^{\circ} - 6}{2}$	$\frac{\hat{C}}{2} [sum of \angle s of \Delta]$
3.	$x = \frac{1}{2}\hat{O}$ [\angle at centre = 2 x \angle at circumf.]	11.	$x = 130^{\circ}$	[opp. \angle 's of cyclic quad.]
	$=47,5^{\circ}$		$y = 90^{\circ}$	$[\angle$ in semicircle]
	$y = 180^{\circ} - 47,5^{\circ}$ [opp. ∠ 's of cyclic quad.] = 132,5°		$z = 180^{\circ} - (9)$	90 ° + 50 °) [sum of \angle 's of \triangle]
4.	OP = OQ [radii]	12.	$x = 125^{\circ}$	[ext. \angle of cyclic quad.]
	$O \hat{P} Q = O \hat{Q} P$ [\angle 's opp. = sides]		$v = 90^{\circ}$	$[\angle$ in semicircle]
	$x = 180^{\circ} - 2(64^{\circ}) [\text{sum of } \angle \text{ 's of } \Delta]$		$z = 125^{\circ} - 9$	0° [ext. \angle of \triangle]
	$=52^{\circ}$	13. 0	$\hat{P}S = 70^{\circ}$	[ext. \angle of cyclic quad.]
	$y = \frac{1}{2}x$ [\angle at centre = 2 x \angle at circumi.] - 26°		$x = 30^{\circ}$	
51	AO = BO [radii]	PS	$\hat{S} R = 80^{\circ}$	[ext. \angle of cyclic quad.]
0.1	$\hat{B}_{i} = x$ [\angle 's opp. = sides]	QŜ	$\hat{\mathbf{S}}\mathbf{R} = x = 30^{\circ}$	$[\angle$'s in same segment]
5.2	$\hat{O} = 2x$ [ext. $\angle Of A$]		$y = 80^{\circ} - 30$	° = 50 °
53	$\hat{O}_{1} = 180^{\circ} - 2r$ [\angle 's on a straight line]	14.	$a = 35^{\circ}$	$[\angle$ at centre = 2 x \angle at circumf.
5.5	$\hat{C}_2 = 100^\circ - 2x^\circ [2^\circ \text{ soft a straight mic}]$		<i>b</i> = 35 °	[equal chords; equal \angle 's]
5 /	$\hat{D} = 00^\circ$ x [2 a contre = 2 x 2 a concurrent]		$c = \mathbf{V} \hat{\mathbf{Q}} \mathbf{R}$	$[\angle$'s in same segment]
5.4	$D = 20$ - λ [\angle 5 in same segment]		= 70 °	
			f = 110°	[opp. \angle 's of cyclic quad.]
			$d = a = 35^{\circ}$	$[\angle$'s in same segment]

 $e = d = 35^{\circ}$ [\angle 's opp. = sides] $g = 22^{\circ}$ [\angle 's in same segment]

 $a = 27^{\circ}$ [\angle 's in same segment] 15. $M \hat{Q} P = 90^{\circ}$ [\angle in semicircle] $f = 180^{\circ} - (90^{\circ} + 27^{\circ}) \text{ [sum of } \angle \text{ 's of } \Delta \text{]}$ = 63° In $\triangle PNR$ and $\triangle PQR$: 1) NR = RQ [line from centre \perp to chord] PR = PR [common] 2) 3) $N\hat{R}P = Q\hat{R}P$ [both = 90°; given] $\therefore \Delta PNR \equiv \Delta PQR \quad [s; \angle ;s]$ $\therefore c = a = 27^{\circ} \qquad [\equiv \Delta 's]$ $d = 2 \times c = 54^{\circ} [\angle \text{ at centre}=2x \angle \text{ at circumf.}]$ $e = 180^{\circ} - (90^{\circ} + 54^{\circ})$ [sum of \angle 's of \triangle] = 36° $y = 70^{\circ}$ [\angle at centre=2x \angle at circumf.] 16. $x = 70^{\circ}$ [tan-chord-theorem] $\hat{ABO} = 90^{\circ}$ [tan \perp radius] $\hat{B}_3 = 70^{\circ}$ [alt. \angle 's; CD || AT] $\therefore z = 90^{\circ} - 70^{\circ} = 20^{\circ}$ 17. PT = PA [tangents from same point] $y = \hat{T}_3$ [\angle 's opp. = sides] $y = \frac{180^{\circ} - 50^{\circ}}{2}$ [sum of \angle 's of \triangle] = 65 ° $z = 65^{\circ}$ [tan-chord-theorem] $x = 130^{\circ}$ $[\angle$ at centre=2x \angle at circumf.] 18. $x = 30^{\circ}$ $\hat{Q} = 80^{\circ}$ [tan-chord-theorem] [opp. \angle 's of cyclic quad.] $y = 180^{\circ} - (30^{\circ} + 80^{\circ})$ [sum of \angle 's of \triangle] = 70 $^{\circ}$ (could also use fact that $x+y = 100^{\circ}$ from tan-chordtheorem to find y.) 19. $y = 26^{\circ}$ [tan-chord-theorem] $\hat{E} = \hat{D} = 26^{\circ}$ [equal chords; equal \angle 's] $x = \hat{E} = 26^{\circ}$ [tan-chord-theorem] 20.1 $\hat{V} = 138^{\circ}$ [opp. \angle 's of cyclic quad.] $\hat{\mathbf{S}}_{1} = 30^{\circ}$ [tan-chord-theorem] $\hat{Q}_{1} = T \hat{S} Q$ [alt. \angle 's; $ST \parallel PQR$] $= 30^{\circ} + 42^{\circ} = 72^{\circ}$ 20.3 $\hat{Q}_2 = 180^{\circ} - (72^{\circ} + 30^{\circ}) \ [\angle$'s on a straight line] = 78 ° $\hat{T}_1 = 102^{\circ}$ [opp. \angle 's of cyclic quad.] 20.4 $\hat{W}_2 = 180^{\circ} - (42^{\circ} + 102^{\circ})$ [sum of \angle 's of \triangle] = 36 °

- 21.1 $\hat{\mathbf{R}}_2 = \hat{\mathbf{R}}_1 = 90^\circ$ [\angle in semicircle] 21.2 $\hat{s}_{2} = 180^{\circ} - (90^{\circ} + 28^{\circ})$ [sum of \angle 's of \triangle] = 62 ° 21.3 In \triangle QRS and \triangle TRS : QR = RT [line from centre \perp to chord] 1) SR = SR2) [common] 3) $\hat{R}_{1} = \hat{R}_{2}$ [both = 90°] $\therefore \Delta QRS \equiv \Delta TRS \qquad [s; \angle ;s]$ $\therefore \hat{Q}_2 = \hat{T} = 28^{\circ} \quad [\equiv \Delta 's]$ $P\hat{Q}R = 62^{\circ}$ [ext. \angle of cyclic quad.] 21.4 $\therefore \hat{Q}_1 = 62^{\circ} - 28^{\circ} = 34^{\circ}$ OP = OQ[radii] $\hat{\mathbf{P}}_{1} = \hat{\mathbf{Q}}_{1}$ $[\angle$'s opp. = sides] = 34 ° 22.1 $\hat{L}_{a} = \hat{P}_{1}$ [tan-chord-theorem] $= \hat{L}$, [alt. \angle 's; ALB || MP] $= \hat{M}_{1}$ [tan-chord-theorem] $\therefore \hat{\mathbf{M}}_1 = \hat{\mathbf{P}}_1$ \therefore LM = LP [sides opp. = \angle 's] 22.2 $\hat{N}_{1} = \hat{P}_{1}$ [\angle 's in same segment] $\hat{N}_{2} = \hat{M}_{1}$ [\angle 's in same segment] $\hat{\mathbf{N}}_{1} = \hat{\mathbf{N}}_{2} \qquad \begin{bmatrix} \hat{\mathbf{M}}_{1} = \hat{\mathbf{P}}_{1} \end{bmatrix}$ 22.3 $\hat{M}_1 = \hat{N}_1$ [from above]
- LM is a tangent to circle MNQ [converse: tanchord-theorem] 23.1 $\hat{D}_3 = 90^{\circ}$ [\angle in semicircle] $\therefore D_3 = A\hat{B}E$ [both = 90°] \therefore ABCD is a cyclic quadrilateral [converse: ext. \angle of cyclic quad.]
- 23.2 $\hat{D}_1 = \hat{E}$ [tan-chord-theorem] $\hat{D}_1 = \hat{A}_1$ [\angle 's in same segment] $\therefore \hat{A}_1 = \hat{E}$ 23.3 Let $\hat{A}_1 = x$. \therefore also \hat{D}_1 and $\hat{E} = x$. $\hat{D}_2 = 90^\circ - x$ [\angle 's on a straight line] $\hat{C}_3 = 90^\circ - x$ [sum of \angle 's of \triangle]

$$= D \hat{A} B \qquad [ext. \ \angle \ of \ cyclic \ quad.]$$

$$\therefore D \hat{A} B = \hat{D}_2 \qquad [both = (90^{\circ} - x)]$$

$$\therefore BD = BA \qquad [sides opp. = ∠ 's]$$

23.4
$$\hat{C}_2 = 180^\circ - (90^\circ + x)$$
 [sum of \angle 's of \triangle]
= 90° - x

 $= \hat{C}_{3}$ [proved above]