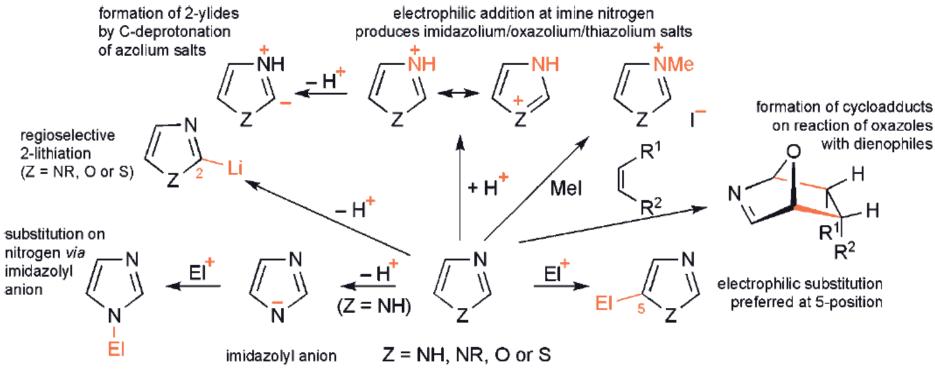

2302687 – Heterocyclic Compounds – Part I

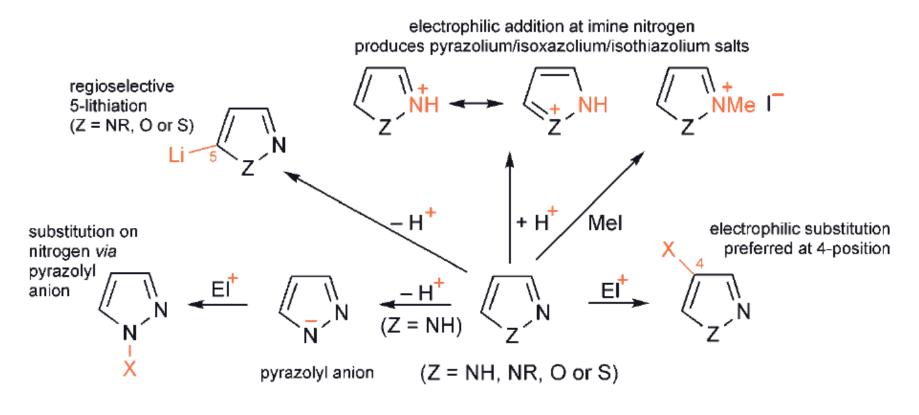
Lecture 6-5

Summary and Synthetic Examples of Azoles



Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

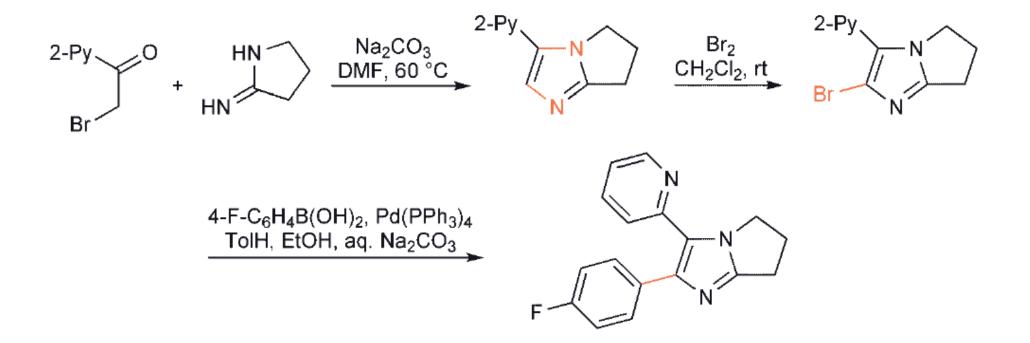
Recommended Textbook:


Heterocyclic Chemistry, 5th Edition, J. A. Joule, K. Mills, 2010, Wiley

Reactivities of 1,3-Azoles; Summary

Typical reactions of 1,3-azoles

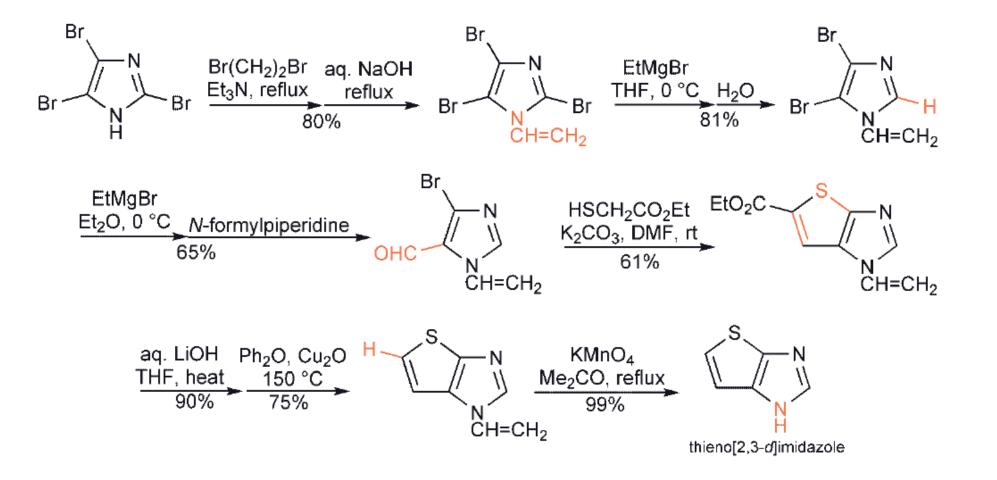
Reactivities of 1,2-Azoles; Summary



Typical reactions of 1,2-azoles

Notable Synthesis

Inhibitor of Transforming Growth Factor β1, *Type 1 Receptor*


This sequence illustrates the interaction of an amidine and a 2-bromo-ketone with subsequent ring halogenation and palladium-catalysed coupling

Notable Synthesis

Thieno[2,3-d]imidazole

The synthesis of thieno[2,3-d]imidazole illustrates again the **selectivity in halogen-metal exchange processes** in imidazoles. In this sequence a vinyl was used as *N*-protecting group, and it includes a nucleophilic displacement of bromine from the 4-position, activated by the 5-aldehyde

Homework #1

1.1) Suggest structures for the halo-compounds formed in the following ways: (i) 1-methylimidazole with excess Br_2 in AcOH $\rightarrow C_4H_3Br_3N_2$ (ii) then this with EtMgBr followed by water $\rightarrow C_4H_4Br_2N_2$ (iii) and this in turn with *n*-BuLi, then (MeO)₂CO gave $C_6H_7BrN_2O_2$

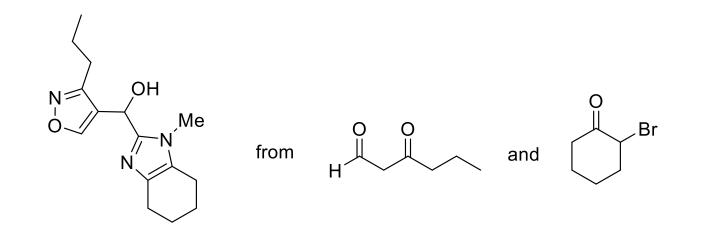
1.2) Draw structures for the intermediates and final products that are formed when: (i) 4–phenyloxazole is heated with but-1-yn-3-one $\rightarrow C_6H_6O_2$; (ii) 5-ethoxyoxazole is heated with dimethyl acetylenedicarboxylate $\rightarrow C_{10}H_{12}O_6$

1.3) Deduce structures for the 1,3-azoles that are produced from the following reactant combinations: (i) 1-chlorobutan-2-one and thiourea; (ii) thiobenzamide and chloroacetaldehyde; (iii) thioformamide and ethyl bromoacetate

1.4) What imidazoles would be formed from the following reactant combination: (i) MeN=C/*n*-BuLi and PhC=N; (ii) 2-amino-1,2-diphenylethanone and $H_2NC=N$?

Homework #2

2.1) Draw structures for the products obtained by reacting 3,5-dimethylisoxazole with NaNH₂, then: (i) *n*-PrBr; (ii) CO_2 ; or (iii) PhCO₂Me


2.2) Deduce structures for the products formed in the following sequence: pyrazole/Me₂NSO₂Cl/Et₃N \rightarrow C₅H₉N₃O₂S, then this with *n*-BuLi/ –70 °C, then TMSCl \rightarrow C₈H₁₇N₃O₂SSi, then this with PhCH=O/CsF \rightarrow C₁₂H₁₅N₃SO₃ (fluoride is a good nucleophile to attack silicon – deprotection of silyl group)

2.3) Draw the structures of the products that would be formed from the reaction of $BnNHNH_2$ with $MeCOCH_2COCO_2Me$

2.4) Draw the structures of the two products that are formed when hydroxylamine reacts with $PhCOCH_2CH=O$; suggest an unambiguous route for the preparation of 5-phenylisoxazole

Homework #3

Suggest a synthesis route for the following compound

