2302687 – Heterocyclic Compounds – Part I

Lecture 4-5

Quinoline and Isoquinoline

Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

Recommended Textbook:

Heterocyclic Chemistry, 5th Edition, J. A. Joule, K. Mills, **2010**, Wiley

Reactions of Pyridine

 Pyridines are much less susceptible to electrophilic substitution and more susceptible to nucleophilic attack than benzene due to their low electron density

Typical reactions of pyridine

Reactions of Quinoline (and Isoquinoline)

• Electrophilic substitution favours the benzenoid ring, rather than the pyridine ring

Typical reactions of quinoline (isoquinoline is very similar)

 preferred substitution at the 5- and 8-positions

Synthesis of Quinoline – Name Reactions

Skraup Reaction

Used to synthesise quinolines. It is named after the Czech chemist Zdenko Hans Skraup (1850-1910)

In this reaction, aniline is heated with H_2SO_4 , glycerol and an oxidizing agent such as $PhNO_2$ to yield quinoline

Synthesis of Quinoline – Name Reactions

Doebner-Miller Reaction

Named after the Germans Oscar Döbner and Wilhelm von Miller. The reaction of an aniline with α , β -unsaturated carbonyl compounds to form quinolines

Mechanism

Synthesis of Quinoline – Name Reactions

Combes Quinolone Synthesis

In 1888, Combes has reported the condensation of aniline with β -diketones to form disubstituted quinolones by using H₂SO₄ as a catalyst

Mechanism

Synthesis of Isoquinoline – Name Reactions

Pomeranz-Fritsch Reaction

Named after Paul Fritsch (1859-1913) and Cäsar Pomeranz (1860-1926)

In general it is a synthesis of Isoquinoline from the acid-promoted condensation and cyclisation of benzaldehyde and 2,2-dialkoxyethylamine

Notable Synthesis of Pyridine

Examples – Pyridoxine

Pyridoxine, vitamin B₆, has been synthesised by several routes, including one that utilises Guareschi ring synthesis

Notable Synthesis of Quinoline

Examples – Chloroquine

Chloroquine is a synthetic antimalarial drug

Give the mechanism and the structure of products resulting from the following reagent combinations:

Suggest the synthesis of the following compounds starting from either **A**, **B** or **C**

Suggest reagents that would achieve the following transformation

3.1) How could one convert 4-pyridone cleanly into 1-ethyl-4-pyridone?

3.2) What would be the result of treating a 1:1 mixture of 2- and 3-methylpyridines with 0.5 equivalents of LDA and then 0.5 equivalents of Mel?

3.3) Suggest a structure for the product $C_7H_8N_2O_3$ produced by treating 3-ethoxypyridine with fuming HNO₃/conc. H₂SO₄ at 100 °C

3.4) Deduce a structure for the product $C_9H_{15}N_3$ produced by reacting pyridine with the potassium salt of $Me_2N(CH_2)_2NH_2$

Provide a plausible mechanistic explanation for the chemistry of the following reaction schemes:

