2302687 – Heterocyclic Compounds – Part I

Lecture 2-4

Heteroaromatic Synthesis via Pericyclic Reactions

Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

Recommended Textbook:

Heterocyclic Chemistry, 5th Edition, J. A. Joule, K. Mills, **2010**, Wiley

Types of Organic Reactions

Pericyclic Reactions : a reaction that occurs as a result of reorganizing the electrons in the reactant(s)

Oxidation/Reduction

Types of Pericyclic Reactions

Synthesis – Pericyclic Reactions

• **1,3-Dipolar cycloadditions** produce 5-membered heterocycles

Dipolarophiles

 1,3-Dipoles always contain a heteroatom as the central atom of the trio, either sp or sp² hybridised; for examples

Synthesis – Pericyclic Reactions

• Alkene dipolarophiles, with a group that can be eliminated following cycloaddition, give the same result as equivalent alkyne dipolarophiles

Synthesis – Pericyclic Reactions

 Many mesoionic substances can act as 1,3-dipoles, and, after elimination of a small molecule – carbon dioxide in the example shown – produce aromatic heterocycles

Example:

