2302687 – Heterocyclic Compounds – Part I

Lecture 1-5

Heteroaromaticity

Instructor: Dr. Tanatorn Khotavivattana Department of Chemistry, Faculty of Science, Chulalongkorn University E-mail: tanatorn.k@chula.ac.th

Recommended Textbook:

Heterocyclic Chemistry, 5th Edition, J. A. Joule, K. Mills, **2010**, Wiley

Heteroaromaticity – Six-Membered

Pyridinium cation

Electrophilic addition to the pyridine nitrogen generates pyridinium ions, the simplest being 1*H*-pyridinium formed by addition of a proton

Pyrylium cation

the positively charged oxygen also has an unshared electron pair, in an sp² orbital in the plane of the ring, exactly as in pyridine

pyrylium cation

• A set of resonance contributors indicates that pyrylium is strongly positively charged at the 2-, 4- and 6-positions

Heteroaromaticity – Six-Membered

Pyridone

Pyridines with an oxygen at either the 2or 4- position exist predominantly as carbonyl tautomers

The **degree of aromaticity** depends on the contribution that dipolar structures, **25**, with a 'complete' pyridinium ring make to the overall structure

Pyrones

(oxygen analogue of pyridone); no alternative tautomer is possible

Pyrones are **less aromatic** than pyridones as would be expected by comparing the 'aromatic' contributors, **25** and **27**; positive charge at oxygen is less favourable than at nitrogen

As a result, pyrones are more likely to react with other reagents

Heteroaromaticity – Five-Membered

- The structure is analogous to that of cyclopentadienyl anion • н cyclopentadienyl anion
- Each carbon atom is equivalent and carry one fifth of the negative charge •

Pyrrole

- Isoelectronic with the cyclopentadienyl • anion, but is electrically neutral
- Nitrogen lone pair in pyrrole forms part of the aromatic six-electron system

н

lone pair of electrons IS part of the aromatic sextet

Heteroaromaticity – Basicity

 Protonation on N of pyrrole destroys the aromaticity, giving its conjugate acid a very low pK_a (strong acid); Pyrrole is a much weaker base than pyrrolidone

$$\int_{N}^{\oplus} H \xrightarrow{K_a} \int_{NH + H^+}^{H + H^+} pK_a = 0.4$$

Protonation on N of pyridine does not affect aromaticity; however, the sp²-hybridized N holds lone-pair electrons more tightly than the sp³; Pyridine is a stronger base than pyrrole but is a weaker base than pyrrolidone

Heteroaromaticity – Five-Membered

Thiophene and Furan

- NH in pyrrole is replaced by <u>S</u> and <u>O</u>, respectively
- Heteroatom in each has one lone pair as part of the aromatic sextet, as in pyrrole, but also has a second lone pair that is not involved

• **Degree of aromaticity** depends on the electronegativity of the heteroatom

Electronegativity	Q = 3.5	>	<u>N</u> = 3.0	>	S = 2.5
Aromaticity	\bigcirc	<		<	\sqrt{s}

Heteroaromaticity – Five-Membered

Imidazole

Heteroaromaticity – Bicyclic Compounds

- It is straightforward to extrapolate to those systems which combine two (or more) of aromatics/heteroaromatics
- Quinoline is like naphthalene, only with one of the rings a pyridine

 Contributors in which both aromatic rings are disrupted make a very much smaller contribution and are shown in parentheses

Heteroaromaticity – Mesoionic Systems

- Heterocyclic substances for which no plausible, unpolarised mesomeric structure can be written
- Despite the presence of a nominal positive and negative charge in all resonance contributors to such compounds, they are not salt-like, are of course overall neutral, and behave like 'organic' substances, dissolving in the usual solvents

Syndone

Homework # 1

Provide the Hantzsch – Widman name for each structure and state whether it is *aromatic*, *nonaromatic* or *antiaromatic*

- Take a photo / capture screen of your answer
- Upload PDF/JPEG file into the "Assignment for Week 1" in the Blackboard

Homework # 2

2 minute presentation on the applications of heterocycles

Such as:

- Natural Products
- Drugs
- Agrochemicals
- Conducting Polymer
- Metal complexes

The example must contain at least 2 heterocycles in the molecule

Focus on **Nomenclature** and its **Applications**

Upload in Youtube

Copy the URL and paste in the "Assignment for Week 1" in the Blackboard

Example

Rivaroxaban

• Anticoagulant medication (blood thinner) commonly used to prevent blood clots

