2302774 – Advance Organic Synthesis

Lecture 3

Oxidation and Reduction

Instructor: Asst. Prof. Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

Recommended Textbook:

Chapter 24, 34 and 45 in *Organic Chemistry*, 1st Edition, J. Clayden, N. Geeves, S. Warren, **2001**, Oxford University Press

Reduction of aldehydes and ketones to alcohols

Sodium hydride, NaH, is so small and has such a high charge density that it only ever reacts as a base (1s orbital is **too small** to interact with LUMO (π^*) of the C=O)

NaBH₄ has a better orbital match (B–H σ orbital as the HOMO); It will reduce only in **protic solvents** (usually ethanol, methanol, or water) or in the presence of electrophilic **metal cations** such as Li⁺ or Mg²⁺

Reduction of esters to alcohols: LiAIH₄ is often the best reagent

Reduction of amides to amines: use LiAIH₄; there is a key difference in mechanism comparing to the reduction of ester

Borane (BH₃): Borane is a gas with the structure B_2H_6 , but it can be 'tamed' as a liquid by complexing it with ether (Et₂O), THF, or dimethyl sulfide (Me₂S)

Borane's reactivity is dominated by its desire to accept an electron pair into its empty p orbital; reduces electron-rich carbonyl groups fastest

Borane is an excellent reagent for reducing carboxylic acids

Reduction of esters to aldehydes: The aldehyde is more readily reduced than the ester, so the reduction carries on to the alcohol oxidation level

Use **DIBAL** (similar to BH₃); it becomes a reducing agent only after it has formed a **Lewis acid–base complex**, so it too reduces **electron-rich carbonyl groups** most rapidly

The tetrahedral intermediate is **stable** at –70 °C. Only in the aqueous work-up does it collapse to the aldehyde, so that **no further reduction** is possible.

DIBAL

Reduction of nitriles to aldehydes: use DIBAL

Reduction of amides to aldehydes: use LiAIH₄ at low temperature; the **tetrahedral intermediates** are rather **more stable** than those from ester reduction

Reduction of iminium ions to amines: Reductive Ammination

 $NaBH_3CN$ or $NaBH(OAc)_3$ are milder reducing agents; when added to a typical imine-formation reaction

They reacts with the iminium ion but not with the starting carbonyl compound

Reduction of carbonyl groups - Chemoselectivity

Diastereoselectivity in cyclic system: 6-membered ring

Diastereoselectivity in cyclic system: 5-membered ring

Diastereoselectivity in acyclic system:

Diastereoselectivity in acyclic system: Felkin-Ahn model

Electronegative elements (N, O, S, etc) will lie **perpendicular** to the carbonyl group in the most reactive conformation

X is an electronegative group but not a leaving group (OR, NR₂, SR, etc.)

Diastereoselectivity in acyclic system: Chelation can reverse stereoselectivity

Diastereoselectivity in acyclic system: Chelation can reverse stereoselectivity

Metals not usually involved in chelation: Li⁺ (often), Na⁺, K⁺ Metals commonly involved in chelation: Li⁺ (sometimes), Mg²⁺, Zn²⁺, Cu²⁺, Ti⁴⁺, Ce³⁺

Reduction of carbonyl groups - Enantioselectivity

Rosenmund reaction: hydrogenolysis of a C–CI bond of acid chlorides (reducing compounds at the carboxylic acid oxidation level to aldehydes) the tertiary amine

The **tertiary amine** is needed both to **neutralize** the HCI produced in the reaction and to moderate the activity of the catalyst (and **prevent overreduction**)

BaSO₄ (and **CaCO**₃) are commonly used as **supports with more easily reduced substrates** because they allow the products to escape from the catalyst more rapidly and **prevent overreduction**

Catalytic hydrogenations have a totally different chemoselectivity from the reduction using nucleophilic reducing agents (hydrides); they have chemoselectivity for C=C double bonds and benzylic C–X bonds over C=O groups

The choice of catalyst depends on the compound to be reduced. **Palladium** and **platinum** are the most commonly used

Substrate benzyl amine or ether	Usual choice of metal Pd
alkene	Pd, Pt, or Ni
aromatic ring	Pt or Rh, or Ni under high pressure

Reduction of alkenes: mechanism starts with coordination of the double bond to the catalyst surface; two hydrogen atoms are transferred to the alkene, and they are often both added to the same face of the alkene (*syn*-selective)

trans-Fat

Reduction of alkynes: most palladium catalysts would reduce alkynes all the way to **alkanes**; use **Lindlar's catalyst** (Pd/CaCO₃ deliberately **poisoned with lead**). Best selectivities are obtained if **quinoline** is added to the reaction

Reduction of benzylic/allylic C–X bond (X = N, O):

benzyl amine coordinates to the metal catalyst via the electron-rich aromatic ring

Benzyl groups, and their hydrogenolysis, as a means for temporary protection of amines and alcohols

Reduction of nitro group: The reduction can be carried out by Sn/HCl but catalytic hydrogenation is much simpler

- C=O bond reduction: The way to get regioselective addition directly to the carbonyl group is to add a hard, Lewis-acidic metal salt, such as CeCl₃

Sequence of Reactivity towards Hydrogenation

Chiral environment has 4 quadrants, two "blocked" and two "open":

in that 'quadrant'

Asymmetric Hydrogenation:

OMe

Functional Groups Removal using Reduction

- 1) From Alkenes: Hydrogenation
- 2) From Alcohols: Elimination then hydrogenation
- 3) From Alcohols: Tosylation then H⁻ reagent

4) From Carbonyl: via Thioacetals (weak C-S bond) then RaNi (Raney nickel is a finely divided form of nickel which adsorbed some H₂)

5) From Carbonyl: Wolf–Kishner reduction

Functional Groups Removal using Reduction

6) From Carbonyl: Clemmensen reduction

As the **zinc** metal dissolves in **HCI**, it **gives up two electrons**; in the presence of a carbonyl compound, the electrons go to **reduce the C=O bond** (normally it will reduce the H⁺ to H₂)

Dissolving Metal Reductions

Group 1 metals, such as sodium or lithium, readily give up their single outershell electron as they dissolve in solvents such as liquid ammonia or ethanol; it will reduce any functional group with a low-energy π^* orbital

When lithium or sodium dissolve in ammonia they give an **intense blue solution** of solvated electrons

Dissolving Metal Reductions

Birch Reduction: dissolving metal reduction of aromatic rings, giving an unconjugated diene

Dissolving Metal Reductions

Birch Reduction:

- Electron-withdrawing groups promote ipso, para reduction
- Electron-donating groups promote ortho, meta reduction

Dissolving Metal Reductions

Birch Reduction: the unconjugated alkene products can be **isomerised into conjugated dienes** using an **acid** catalyst

With anilines, it is impossible to stop the isomerization, and Birch reduction always gives **conjugated enamines**

Reduction of Alkynes: giving trans alkenes

vinyl anion is basic enough to deprotonate ammonia, so no added proton source is required

Na, NH₃

OMe

NMe₂

OMe

NMe₂

80-90% yield

H⊕

Na, NH₃

EtOH, Et₂0

Chemoselective for C=C double bonds	Chemoselective for alcohols or carbonyl compounds
peracids, RCO ₃ H (Chapter 20)	Cr(VI) compounds
osmium tetroxide, OsO ₄ (Chapter 35)	Mn(VII) compounds
ozone, O ₃ (Chapter 35)	some high oxidation state Hal, N, or S compounds

^anot dealt with in this chapter.

Oxidation of secondary alcohols to ketones: (overoxidation is difficult)

Oxidation of primary alcohols to aldehydes: (overoxidation is easy via the hydrate)

The key thing is to avoid water; so use PCC, PDC or TPAP (soluble in DCM)

TPAP can be used catalytically. The stoichiometric oxidant is 'NMO'

Oxidation of primary alcohols to aldehydes:

Use **Dess–Martin periodinane** (lodine(V) reagent made from 2-iodobenzoic acid)

alcohol without isomerizing it to trans

Oxidation of primary alcohols to aldehydes:

Use **Swern oxidation** (uses a sulfoxide [S(IV)] as the oxidizing agent)

Oxidation of alkenes to epoxides: the most commonly used epoxidizing agents are peroxy-carboxylic acids such as *m*-CPBA

Oxidation of alkenes to epoxides: Epoxidation is stereospecific

More substituted alkenes epoxidize faster

relative rates of reaction of alkenes with m-CPBA

Nucleophilic epoxidation: Use H₂O₂ (good nucleophile due to alpha effect) in base

Nucleophilic epoxidation is a **two-step** reaction: there is **free rotation** about the bond marked in the anionic intermediate, and the **more stable**, *trans*-epoxide results

Diastereoselective epoxidation of alkenes:

Without the cis substituent, selectivity is much lower

Oxidation of alkenes to epoxides: stereoselectivity in a ring system

Oxidation of alkenes to epoxides: stereoselectivity in a ring system

Bromination in water: giving opposite stereoselectivity

Oxidation of alkenes to epoxides: stereoselectivity in a ring system

H eclipsing double bond

Asymmetric epoxidation of allylic alcohol

by adding a **chiral ligand** to the titanium catalyst, it might lead to asymmetric reaction. The ligand that works best is **diethyl tartrate**

Asymmetric epoxidation

Asymmetric epoxidation of allylic alcohol

Examples:

Asymmetric dihydroxylation

chiral version of the syn dihydroxylation of alkenes by osmium tetroxide

asymmetric dihydroxylation-the reaction:

Asymmetric dihydroxylation

