
2302272 – Org Chem II – Part IV

Lecture 1

Protein-1

Instructor: Asst. Prof. Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

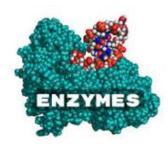
Recommended Textbook:

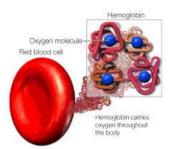
Chapter 24 in *Organic Chemistry*, 8th Edition, L. G. Wade, Jr., **2010**, Prentice Hall (Pearson Education)

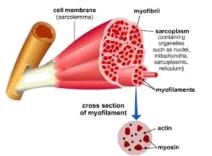
Key concepts:

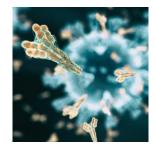
1) โปรตีนคืออะไร? เจอได้ที่ไหนบ้าง? ทำหน้าที่อะไรได้บ้าง?

ต้องมีโครงสร้างแบบไหนถึงจะเรียกว่าเป็นโปรตีน?
 กรดอะมิโนเกี่ยวข้องอย่างไรกับโปรตีน?

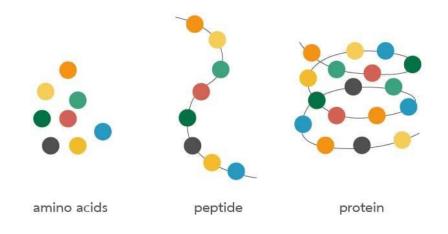

Protein


Proteins are the **most abundant** organic molecules in **animals**, playing important roles in all aspects of cell structure and function



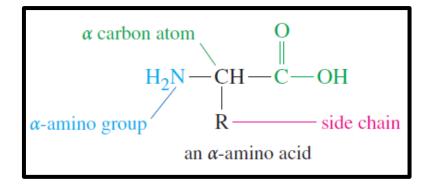


Class of Protein	Example	Function of Example
structural proteins	collagen, keratin	strengthen tendons, skin, hair, nails
enzymes	DNA polymerase	replicates and repairs DNA
transport proteins	hemoglobin	transports O_2 to the cells
contractile proteins	actin, myosin	cause contraction of muscles
protective proteins	antibodies	complex with foreign proteins
hormones	insulin	regulates glucose metabolism
toxins	snake venoms	incapacitate prey

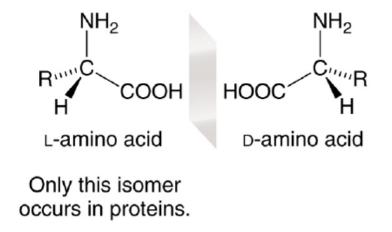


Protein – General structure

• Proteins are **biopolymers** of α -amino acids, so named because the amino group is bonded to the α carbon atom, next to the carbonyl group


• The amino acid subunits are joined by **amide linkages** called **peptide bonds**

Key concepts:


3) กรดอะมิโนแต่ละชนิดแตกต่างกันอย่างไร?

a-Amino Acids

 The simplest α-amino acid is aminoacetic acid, called glycine. Other common amino acids have side chains (symbolised by R) substituted on the α carbon; for example, alanine is the amino acid with a methyl side chain

- Except for glycine, the α-amino acids are all chiral and the chirality centre is at the asymmetric α carbon atom
- Nearly all the naturally occurring amino acids are found to have the (S) configuration

Standard *a*-Amino Acids

20 standard amino acids, grouped according to the chemical properties of side chains

Name	Symbol	Abbreviation	Structure	Functional Group in Side Chain	lsoelectric Point
side chain is n	onpolar, H	or alkyl	ноос		
glycine	G	Gly	H ₂ N ^{***} H	none	6.0
alanine	А	Ala		alkyl group	6.0
*valine	v	Val	H HOOC H ₂ N ^{VV}	alkyl group	6.0
*leucine	L	Leu	HOOC H ₂ N ^{NN} H	alkyl group	6.0
*isoleucine	I	Ile	HOOC H ₂ N ^{NN} H	alkyl group	6.0
*phenylalanine	F	Phe	HOOC H ₂ N ^{VV} H	aromatic group	5.5
proline	Р	Pro	HOOC H ₂ N ^{WY} H	rigid cyclic structure	6.3

Name	Symbol	Abbreviation	Structure	Functional Group in Side Chain	Isoelectric Point
side chain co serine	ontains an — S	-OH Ser	HOOC H ₂ N ^M H	hydroxyl group	5.7
*threonine	Т	Thr	HOOC H ₂ N ^{\\\\} H	hydroxyl group	5.6
tyrosine	Y	Tyr	HOOC H ₂ N ^{\\\\} H	phenolic—OH group	5.7
sida chain ca	side chain contains sulfur				
cysteine	C	Cys	HOOC H ₂ N ⁽¹⁾ H	thiol	5.0
*methionine	М	Met	HOOC H ₂ N ^(V) H	sulfide	5.7
side chain is a spartic acid		Asp	HOOC H ₂ N ¹¹¹ H	carboxylic acid	2.8
glutamic acid	i E	Glu	HOOC H ₂ N ^(V) H	carboxylic acid	3.2

Name	Symbol	Abbreviation	Structure	Functional Group in Side Chain	Isoelectric Point
side chain is t *lysine	basic K	Lys	ноос	amino group	9.7
,		2	H ₂ N ^{***} / H		
*arginine	R	Arg	HOOC	guanidino group	10.8
			H ₂ N ^{***} / H		
*histidine	н	His		imidazole ring	7.6
			H		
side chain co	ntains nonb	asic nitrogen	ноос		
asparagine	Ν	Asn	H ₂ N ^{***} / H	amide	5.4
			НООС		
glutamine	Q	Gln	H ₂ N ¹¹	amide	5.7
			н		
*tryptophan	w	Trp		indole	5.9
			Ĥ		

Key concepts:

4) กรดอะมิโนแต่ละชนิดมีความเป็นกรด/เบส ต่างกันอย่างไร?

5) Isoelectric point คืออะไร? เกี่ยวข้องอย่างไรกับ Electrophoresis?

 Although we commonly write amino acids with an intact carboxyl –COOH group and amino –NH₂ group, their actual structure is ionic and depends on the pH

- This structure is called a **zwitterion**, giving them some **unusual properties**
 - 1) More soluble in water than they are in common organic solvents
 - 2) High melting points, generally over 200 °C
 - 3) Much larger dipole moments than simple amines or simple acids

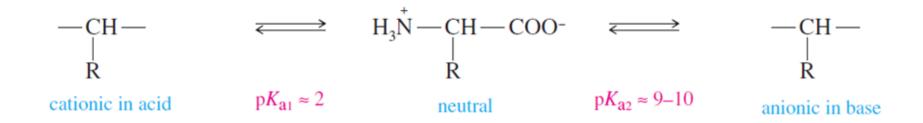
• This structure is called a **zwitterion**, giving them some **unusual properties**

4) Less acidic than most carboxylic acids and less basic than most amines

R - COOH $pK_a = 5$

$$R$$

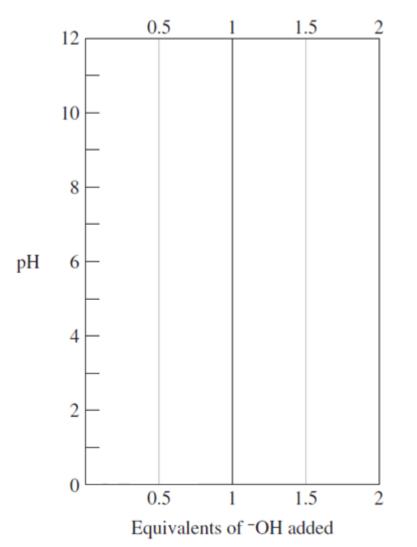
$$H_{3}N - CH - COO$$

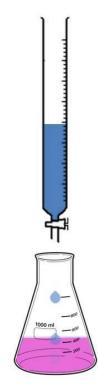

$$pK_{a} = 10$$

$$pK_{b} = 12$$

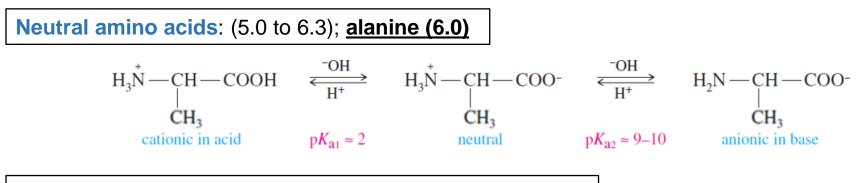
 $R - NH_2$ $pK_b = 4$

Because amino acids contain both acidic (-NH₃⁺) and basic groups (-CO₂⁻), they are *amphoteric* (having both acidic and basic properties).


• The predominant form of the amino acid depends on the **pH** of the solution



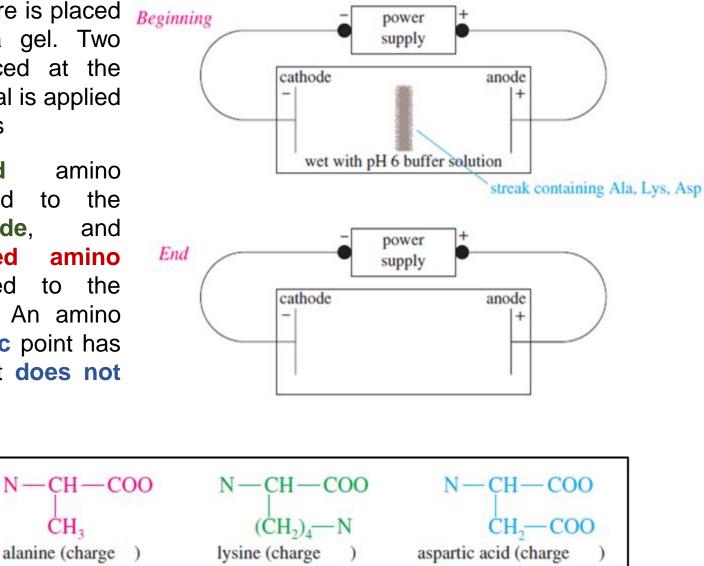
- In an acidic solution, the -COO⁻ group is protonated to a free -COOH group, and the molecule has an overall positive charge
- As the pH is raised, the –COOH loses its proton and becomes zwitterion at about pH 2. This point is called pK_{a1}, the first acid-dissociation constant
- As the pH is raised further, the -NH₃⁺ group loses its proton at about pH 9 or 10. This point is called pK_{a1}, the second acid-dissociation constant. Above this pH, the molecule has an overall negative charge


• Titration curve for glycine;

Isoelectric point (pl) is the pH where the amino acid exists in the zwitterionic form

· Isoelectric pH depends on the amino acid structure

Acidic amino acids: <u>aspartic acid (2.8)</u>, glutamic acid (3.2)

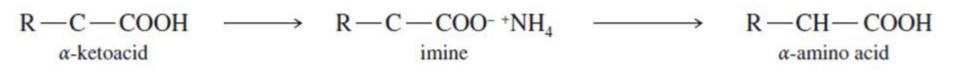

Basic amino acids: <u>lysine (9.7)</u>, arginine (10.8), histidine (7.6)

Electrophoresis

An amino acid mixture is placed *Beginning* in the centre of a gel. Two electrodes are placed at the edges, and a potential is applied across the electrodes

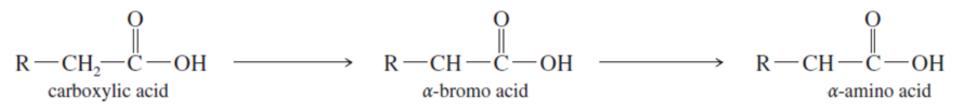
Positively charged amino acids are attracted to the negative electrode, and negatively charged amino acids are attracted to the positive electrode. An amino acid at its isoelectric point has no net charge, so it does not move

Structure at pH 6

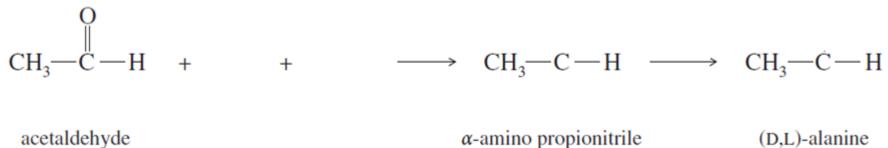


Key concepts:

6) ถ้าอยากสร้างกรดอะมิโนขึ้นมาเอง ไม่ได้สกัดหรือแยกมา จากธรรมชาติ จะทำได้อย่างไร?


α-Amino Acids – Synthesis

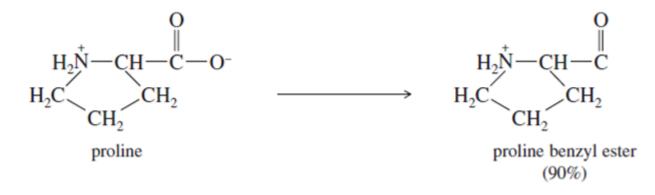
1) Reductive Amination; formation of amino acids from appropriate *a*-ketoacid


a-Amino Acids – Synthesis

2) S_N2 Amination of α-haloacid

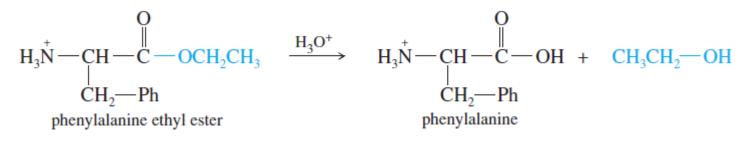
α-Amino Acids – Synthesis

3) The Strecker Synthesis; formation of amino acids from appropriate aldehydes


acetaldehyde

Key concepts:

7) เราสามารถปรับเปลี่ยนโครงสร้างของกรดอะมิโนได้อย่างไรบ้าง?

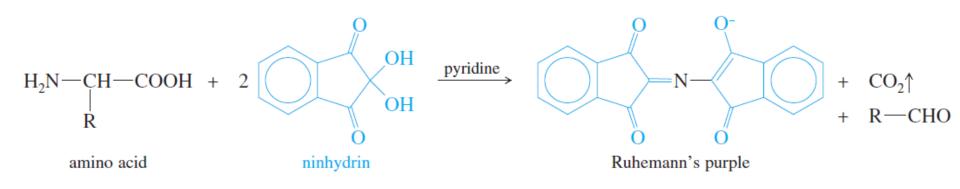

1) Esterification of the Carboxyl Group

 Like other carboxylic acids, amino acids are esterified by treatment with a large excess of an alcohol and an acidic catalyst; Under acidic conditions, the amino group is present in its protonated form, so it does not interfere with esterification

1) Esterification of the Carboxyl Group

- Esters of amino acids are often used as protected derivatives to prevent the carboxyl group from reacting in some undesired manner
- Aqueous acid hydrolyses the ester and regenerates the free amino acid

- 2) Acylation of the Amino Group Formation of Amides
- Acylating agent (acid chloride/anhydride) converts the amino group to an amide



- 2) Acylation of the Amino Group Formation of Amides
- Benzyl chloroformate acylates the amino group to give a benzyloxycarbonyl derivative, often used as a protecting group in peptide synthesis

3) Reaction with Ninhydrin

 Ninhydrin is a common reagent for visualizing spots or bands of amino acids that have been separated by chromatography or electrophoresis

Reaction of an amino acid with ninhydrin

- When ninhydrin reacts with an amino acid, one of the products is a deep violet, resonance-stabilised anion called Ruhemann's purple
- Ninhydrin produces this same purple dye regardless of the structure of the original amino acid
- The side chain of the amino acid is lost as an aldehyde

