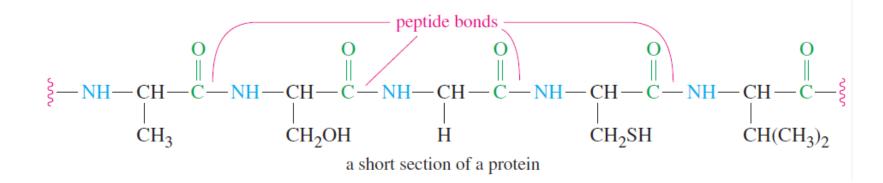

2302106 – Basic Organic Chemistry for ISE – Part II

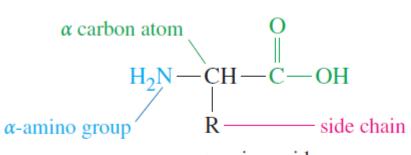
Lecture 7-2

Biomolecules - Protein

Instructor: Asst. Prof. Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

Recommended Textbook:

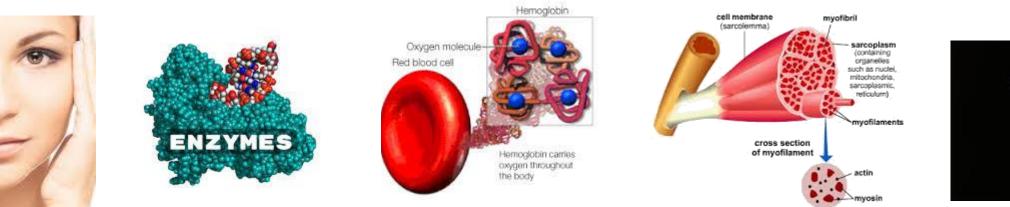

Chapter 23 and 25 in Organic Chemistry, 8th Edition, L. G. Wade, Jr., **2010**, Prentice Hall (Pearson Education)


Protein

• Proteins are the **most abundant** organic molecules in **animals**, playing important roles in all aspects of cell structure and function

 Proteins are biopolymers of α-amino acids, so named because the amino group is bonded to the α carbon atom, next to the carbonyl group

• The individual amino acid subunits are joined by amide linkages called peptide bonds



an α -amino acid

Protein – Examples

Class of Protein	Example	Function of Example
structural proteins	collagen, keratin	strengthen tendons, skin, hair, nails
enzymes	DNA polymerase	replicates and repairs DNA
transport proteins	hemoglobin	transports O2 to the cells
contractile proteins	actin, myosin	cause contraction of muscles
protective proteins	antibodies	complex with foreign proteins
hormones	insulin	regulates glucose metabolism
toxins	snake venoms	incapacitate prey

α-Amino Acids

 The term amino acid might mean any molecule containing both an amino group and any type of acid group; however, the term is almost always used to refer to an α-amino carboxylic acid

The simplest α-amino acid is aminoacetic acid, called glycine. Other common amino acids have side chains (symbolised by R) substituted on the α carbon; for example, alanine is the amino acid with a methyl side chain

Standard *α***-Amino Acids**

20 standard amino acids, grouped according to the chemical properties of side chains

Name	Symbol	Abbreviation	Structure	Functional Group in Side Chain	lsoelectric Point
side chain is n	onpolar, H	or alkyl			
glycine	G	Gly	H ₂ N—CH—COOH	none	6.0
			Ĥ		
alanine	А	Ala	H ₂ N—CH—COOH	alkyl group	6.0
			CH ₃		
*valine	V	Val	H ₂ N—CH—COOH	alkyl group	6.0
			CH ₃ CH ₂ CH ₃		
*leucine	L	Leu	H ₂ N—CH—COOH	alkyl group	6.0
			CH ₂ —CH—CH ₃		
*isoleucine	Ι	Ile	H ₂ N-CH-COOH	alkyl group	6.0
			CH ₃ —CH—CH ₂ CH ₃		
*phenylalanine	F	Phe	H ₂ N—CH—COOH	aromatic group	5.5
			CH ₂ -		
proline	Р	Pro	ни—сн—соон	rigid cyclic structure	6.3
			H ₂ C CH ₂ CH ₂		
*essential ar	nino acio	1	~	C	hapter 24

4

Name	Symbol	Abbreviation	Structure	Functional Group in Side Chain	Isoelectric Point
side chain cor	ntains an —	-OH			
serine	S	Ser	H ₂ N—CH—COOH CH ₂ —OH	hydroxyl group	5.7
*threonine	Т	Thr	H ₂ N—CH—COOH HO—CH—CH ₃	hydroxyl group	5.6
tyrosine	Y	Tyr	H ₂ N—CH—COOH CH ₂ —OH	phenolic — OH group	5.7
side chain cor	ntains sulfu	r			
cysteine	С	Cys	H ₂ N—CH—COOH CH ₂ —SH	thiol	5.0
*methionine	М	Met	H ₂ N—CH—COOH CH ₂ —CH ₂ —S—CH ₃	sulfide	5.7
side chain is a	acidic				
aspartic acid	D	Asp	H ₂ N—CH—COOH CH ₂ —COOH	carboxylic acid	2.8
glutamic acid	I E	Glu	H ₂ N—CH—COOH CH ₂ —CH ₂ —COOH	carboxylic acid	3.2

Name	Symbol	Abbreviation	Structure	Functional Group in Side Chain	Isoelectric Point
side chain is b	oasic				
*lysine	K	Lys	H ₂ N—CH—COOH CH ₂ —CH ₂ —CH ₂ —CH ₂ —NH ₂	amino group	9.7
*arginine	R	Arg	H ₂ N—CH—COOH CH ₂ —CH ₂ —CH ₂ —NH—C—NH ₂	guanidino group	10.8
*histidine	Н	His	H ₂ N—CH—COOH CH ₂ NH	imidazole ring	7.6
side chain co	ntains nonb	asic nitrogen			
asparagine	Ν	Asn	$\begin{array}{c} H_2N - CH - COOH \\ \hline CH_2 - C - NH_2 \\ \hline O \end{array}$	amide	5.4
glutamine	Q	Gln	$\begin{array}{c} H_2N - CH - COOH \\ \hline CH_2 - CH_2 - C - NH_2 \\ \hline O \end{array}$	amide	5.7
*tryptophan	W	Trp	H ₂ N—CH—COOH CH ₂ N H	indole	5.9

Chapter 24 – Wade - Prentice Hall

α-Amino Acids – Acid-Base Properties

- Although we commonly write amino acids with an intact carboxyl –COOH group and amino –NH₂ group, their actual structure is ionic and depends on the pH
- The carboxyl group loses a proton, giving a carboxylate ion, and the amino group is protonated to an ammonium ion. This structure is called a zwitterion, giving them some unusual properties

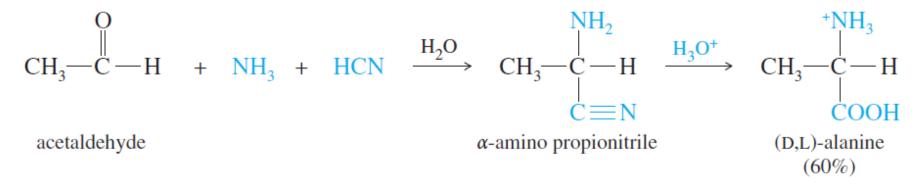
$$H_2N - CH - C - OH \qquad \Leftarrow$$

$$R$$
uncharged structure
(minor component)

dipolar ion, or zwitterion (major component)

1) More soluble in water than they are in common organic solvents 2) high melting points, generally over 200 °C 3) much larger dipole moments than simple amines or simple acids 4) Less acidic than most carboxylic acids and less basic than most amines

$$R - COOH \qquad R - NH_2 \qquad H_3 N - CH - COO$$

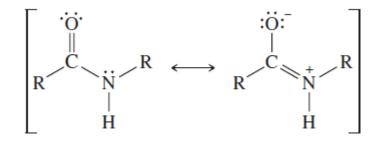

$$pK_a = 5 \qquad pK_b = 4 \qquad pK_a = 10$$

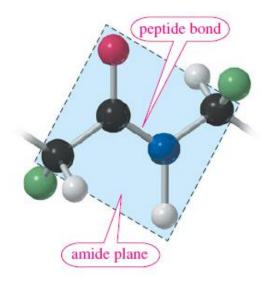
$$pK_b = 12$$

α-Amino Acids – Synthesis

The Strecker Synthesis; formation of amino acids from appropriate aldehydes

The Strecker synthesis of alanine

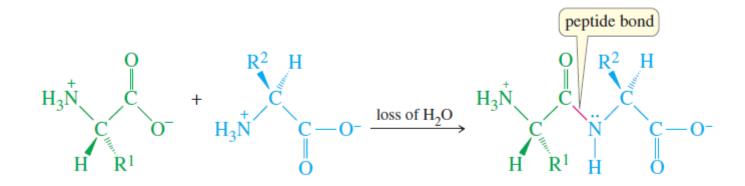

Mechanism:


Peptides

• Amines and acids can condense, with the loss of water, to form amides

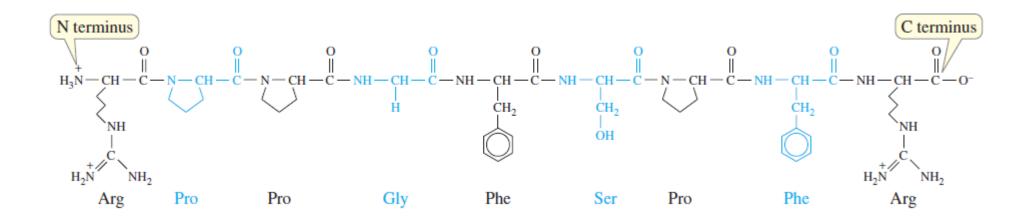
$$\begin{array}{ccccccc} O \\ R - \overset{0}{C} - OH &+ & H_2 \overset{0}{N} - R' & \longrightarrow & R - \overset{0}{C} - O^- & H_3 \overset{+}{N} - R' & \xrightarrow{heat} & R - \overset{0}{C} - \overset{0}{\overset{}{N}H} - R' &+ & H_2 O \\ acid & amine & salt & salt & amide \end{array}$$

• Amides are the **most stable** acid derivatives. This stability is partly due to the strong **resonance interaction** between the nonbonding electrons on nitrogen and the carbonyl group



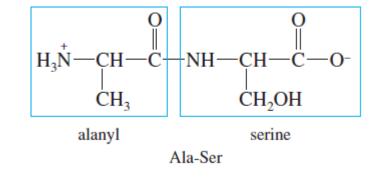
• The amide linkage between the amino acids is called a **peptide bond**

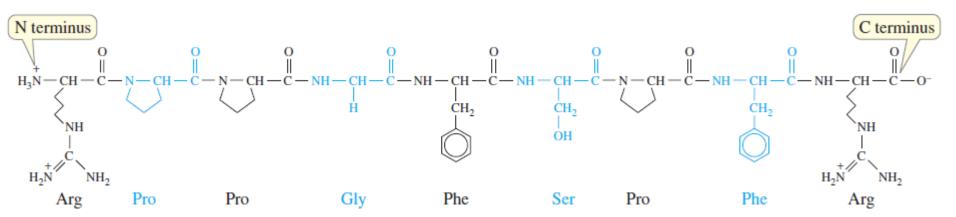
Peptides


- A **peptide** is a compound containing two or more amino acids linked by amide bonds
- Under the proper conditions, the amino group of one amino acid condenses with the carboxyl group of another
- The product is an amide called a *dipeptide* because it consists of two amino acids

- A polypeptide is a peptide containing many amino acid residues but usually having a molecular weight of less than about 5000
- Proteins contain more amino acid units, with molecular weights ranging from about 5000 to about 40,000,000

Peptides


• Nonapeptide bradykinin, a human hormone that helps to control blood pressure

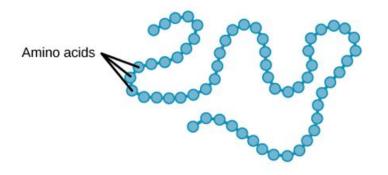

- The end of the peptide with the free amino group $(-NH_3^+)$ is called the N terminus
- The end with the free carboxyl group $(-CO_2^-)$ is called the **C terminus**
- Peptide structures are generally drawn with the N terminus at the left and the C terminus at the right

Peptides – Nomenclature

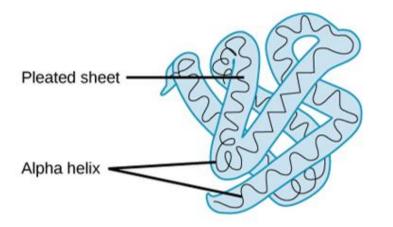
 The names of peptides reflect the names of the amino acid residues involved in the amide linkages, beginning at the N terminus; All except the last are given the -yl suffix of acyl groups

alanylserine

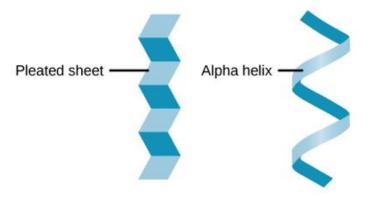
arginyl prolyl prolyl glycyl phenylalanyl seryl prolyl phenylalanyl arginine


- A shorthand system is more convenient, representing each amino acid by its three-letter abbreviation : Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg
- Single-letter symbols are becoming widely used as well : RPPGFSPFR

Proteins – Structure


Proteins contain more amino acid units, with molecular weights ranging from about **5000** to about **40,000,000**

Level of Protein Structure:


1) Primary: sequence of a chain of amino acids

3) Tertiary: three dimensional folding pattern due to side chain interaction

2) Secondary: folding of peptide into a repeating pattern due to H-bonding of peptide backbone

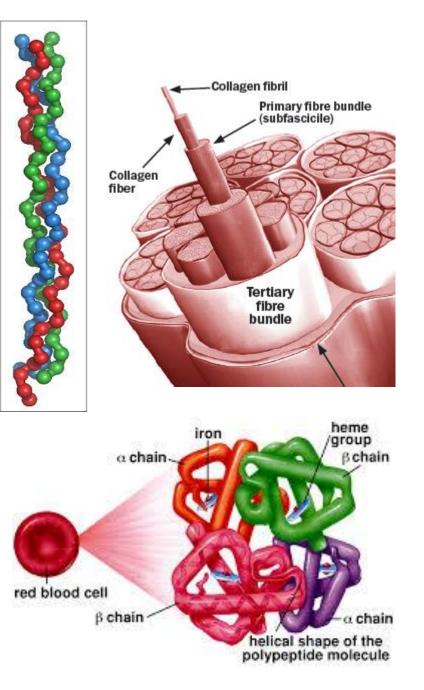
4) Quaternary: protein that consists of more than one peptide chain

Proteins – Classification

- Proteins may be classified according to their **chemical composition**, their **shape**, or their **function**
- By chemical composition : *simple* and *conjugated* proteins
 - Simple proteins: those that hydrolyse to give only amino acids
 - **Conjugated proteins**: bonded to a nonprotein **prosthetic group** such as a sugar, a nucleic acid, a lipid, or some other group

TABLE 24-3	Classes of Conjugated Proteins			
Class	Prosthetic Group	Examples		
glycoproteins	carbohydrates	γ -globulin, interferon		
nucleoproteins	nucleic acids	ribosomes, viruses		
lipoproteins	fats, cholesterol	high-density lipoprotein		
metalloproteins	a complexed metal	hemoglobin, cytochromes		

Proteins – Classification


• By shape : *fibrous* and *globular* proteins

 Fibrous proteins: stringy, tough, and usually insoluble in water. They function primarily as structural parts of the organism

Examples : α -keratin in hooves and fingernails, and collagen in tendons

 Globular proteins: are folded into roughly spherical shapes. They usually function as enzymes, hormones, or transport proteins

Transport proteins bind to specific molecules and transport them in the blood or through the cell membrane; for example, hemoglobin transports oxygen in the blood

Keywords:

α -Amino Acids

- Structure
- Side chains
- Acid-base properties
- Synthesis

Peptides and Proteins

- Peptide bond
- Nomenclature
- Level of protein structure
- Functions