2302106 – Basic Organic Chemistry for ISE – Part II

Lecture 7-1

Biomolecules - Carbohydrate

Instructor: Asst. Prof. Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

Recommended Textbook:

Chapter 23 and 25 in Organic Chemistry, 8th Edition, L. G. Wade, Jr., **2010**, Prentice Hall (Pearson Education)

Carbohydrates

 α -D-glucopyranosyl β -D-fructofuranoside Glc(α 1 \leftrightarrow 2 β)Fru

Sugar

1

Introduction

- Carbohydrates are the most abundant organic compounds in nature
- Nearly all plants and animals synthesise and metabolize carbohydrates, using them to **store energy** and deliver it to their cells
- Plants synthesise carbohydrates through photosynthesis, a reactions that use sunlight as the energy source to convert carbon dioxide and water into glucose and oxygen

Introduction

- **Carbohydrates = carbon + water** •
- Molecular formula = $C_n(H_2O)_m$ •

Our modern definition of carbohydrates includes ٠ polyhydroxyaldehydes, polyhydroxyketones, and compounds that are easily hydrolysed to them.

portion

2'-deoxyadenosine 5'-monophosphate a nucleotide component of DNA

Monosaccharides

- They have 3 to 7 carbon atoms in a chain, with a carbonyl group at either the terminal carbon (C1; aldehyde = aldose) or the adjacent carbon (C2; ketone = ketose)
- In most carbohydrates, each of the remaining carbon atoms has a hydroxy group

Aldose

Ketose

Monosaccharides – Classification

- A monosaccharide is called
 - Triose if it has 3 C's
 - Tetrose if it has 4 C's
 - Pentose if it has 5 C's
 - Hexose if it has 6 C's
 - Heptose if it has 7 C's

These terms are then combined with the words **aldose/ketose** to indicate both the number of carbon atoms in the monosaccharide, and whether it contains an aldehyde or ketone functionality

Monosaccharides – Fischer Projection

- For monosaccharides with several stereogenic centres the molecule is drawn with a vertical carbon skeleton and the stereogenic centres are stacked one above another
- Using this convention, all **horizontal bonds project forward** (on wedges)

Monosaccharides – Stereoisomers

Monosaccharides – Cyclic Structures

Cyclic Hemiacetals

- An aldehyde reacts with one molecule of an alcohol to give a hemiacetal; and with a second molecule of the alcohol to give an acetal
- If the aldehyde group and the hydroxyl group are part of the same molecule, a cyclic hemiacetal results

Step 1: Protonation of the carbonyl.

Step 3: Deprotonation gives a cyclic hemiacetal.

Step 2: The OH group adds as a nucleophile.

Monosaccharides – Cyclic Structure of Glucose

Glucose forms six-membered rings

Monosaccharides – Cyclic Structure of Fructose

Many aldopentoses and ketohexoses form five-membered rings

10

Monosaccharides – Reactions

1) Reduction

- Like other aldehydes and ketones, aldoses and ketoses can be reduced to the corresponding polyalcohols, called sugar alcohols
- The following equation shows the reduction of glucose to glucitol, sometimes called sorbitol

• Sorbitol is used as a sugar substitute

Monosaccharides – Reactions

2) Oxidation

 Benedict's test is a complex mixture of sodium carbonate, sodium citrate and copper(II) sulfate pentahydrate

 It is commonly used to detect the presence of reducing sugars

Reaction of aldehyde/ketone with aldehyde -> hemiacetal -> acetal

Compared with monosaccharide:

Contains two monosaccharides joined together by a glycosidic linkage

• In naturally occurring disaccharides, there are three common glycosidic bonding arrangements

1) 1,4' Linkage

1.1) *α*-1,4' Linkage

1.2) *β*-1,4' Linkage

 $Maltose,\ 4\text{-}O\text{-}(\alpha\text{-}D\text{-}glucopyranosyl)\text{-}D\text{-}glucopyranose$

Cellobiose, 4-O- $(\beta$ -D-glucopyranosyl)-D-glucopyranose

2) 1,6' Linkage

The anomeric carbon of one sugar is linked to the oxygen of the terminal carbon (C6) of another

 $Gentiobiose,\ 6-O-(\beta-D-glucopyranosyl)-D-glucopyranose$

3) 1,1' Linkage

Joined by a direct glycosidic linkage between two anomeric carbon atoms

Both monosaccharide units in sucrose are present as acetals; sucrose doesn't reduce Benedict reagent; (non-reducing sugar)

Sucrose, α -D-glucopyranosyl- β -D-fructofuranoside

Polysaccharides

- Contain many (usually hundreds or thousands) monosaccharide units joined by glycosidic bonds to form a polymer chain
- Smaller polysaccharides, containing about three to ten monosaccharide units, are sometimes called oligosaccharides

• Except for units at the ends of chains, all the anomeric carbon atoms of polysaccharides are involved in acetal glycosidic links. Therefore, polysaccharides give no noticeable reaction with Tollens reagent

Polysaccharides

1) Cellulose • a polymer of D-glucose, is the most abundant organic material. Cellulose is synthesised by plants as a structural material to support the weight of the plant

 Cellulose is composed of D-glucose units linked by β-1,4' glycosidic bonds. This bonding arrangement is rather rigid and very stable, giving cellulose desirable properties for a structural material

Polysaccharides

2) Starches

• About 20% of the starch is water-soluble *amylose*, and the remaining 80% is water-insoluble *amylopectin*

 Amylose is a linear polymer of glucose with α-1,4' glycosidic linkages

Another chain starts at each branch point, connected to the main chain by an α-1,6' glycosidic linkage Ĥ

Keywords:

Monosaccharide

- Aldose / Hexose
- Triose / Tetrose / Pentose / Hexose / Heptose
- Stereogenic centers
- Open chain / Ring structure (hemiacetal)
- Reduction / Oxidation

Disaccharide & Polysaccharide

- Glycosidic bond (acetal) [1,4'] / [1,6'] / [1,1']