2302106 – Basic Organic Chemistry for ISE – Part II Lecture 5-3

Carboxylic and Derivatives – Nucleophilic Substitution-1

Instructor: Asst. Prof. Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

Recommended Textbook:

Chapter 20 in Organic Chemistry, 8th Edition, L. G. Wade, Jr., 2010, Prentice Hall (Pearson Education)

Nucleophilic Addition vs. Substitution

1

Ketone

Carbox.

Nucleophilic Substitution – Reactivity towards Nucleophile

Factor #1 – Leaving group ability

Factor #2 – Resonance stabilization

Nucleophilic Substitution – Reaction with Weak Nucleophiles

1 – Reaction with water (no catalyst)

Nucleophilic Substitution – no catalyst vs. base/acid catalyzed

#1 No catalyst

O ↓↓ ★

#3 Acid catalyzed

Nu-H

1 – Reaction with water (base catalyzed)

1 – Reaction with water (acid catalyzed)

2 – Reaction with alcohol (no catalyst)

2 – Reaction with alcohol (base catalyzed)

2 – Reaction with alcohol (acid catalyzed)

3 – Reaction with amine (no catalyst)

3 – Reaction with amine (base catalyst)

3 – Reaction with amine (acid catalyst)

Favourable Interconversion of Acid Derivatives

• Acid chlorides are the **most reactive** acid derivatives

The most frequent strategy is to convert carboxylic acids into acid chlorides using **thionyl chloride** (SOCl₂); then convert the acid chlorides into other acid derivatives

13

Chapter 21 – Wade - Prentice Hall

Synthesis of Acid Chlorides

The best reagents for converting carboxylic acids to acid chlorides are **thionyl chloride** (SOCl₂) and **oxalyl chloride** [(COCl)₂] because they form **gaseous by-products** that do not contaminate the product.

Mechanism:

Chapter 21 – Wade - Prentice Hall

Nucleophilic Substitution - Example

Fill the gap in the following scheme

