
2302106 – Basic Organic Chemistry for ISE – Part II Lecture 5-2

Carboxylic and Derivatives - Acidity

Instructor: Asst. Prof. Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

Recommended Textbook:

Chapter 20 in *Organic Chemistry*, 8th Edition, L. G. Wade, Jr., **2010**, Prentice Hall (Pearson Education)

Acidities

A carboxylic acid may dissociate in water to give a proton and a carboxylate ion

$$R - C - O - H + H_2O \iff R - C - O^- + H_3O^+$$

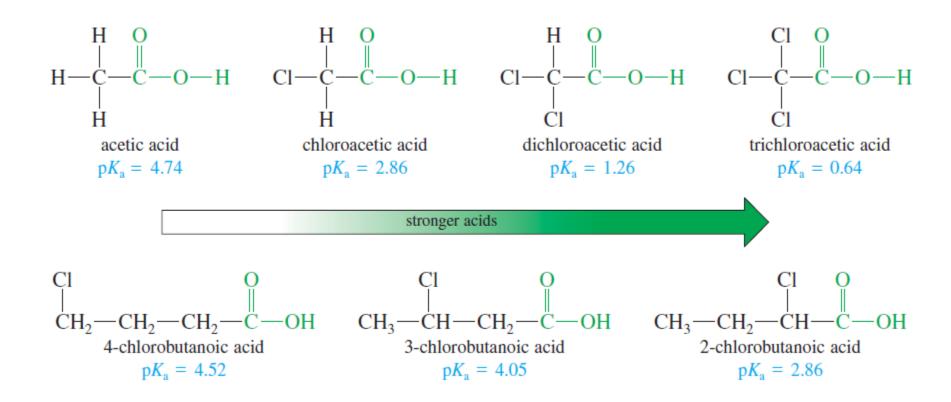
$$K_a = \frac{[R - CO_2^-][H_3O^+]}{[R - CO_2H]}$$

$$pK_a = -\log_{10} K_a$$

- The equilibrium constant K_a is called the *acid-dissociation constant*
- The pK_a of an acid is the negative logarithm of K_a and we commonly use as an indication of the relative
 acidities of different acids
- Lower pK_a value = Stronger acid

Acidities

Carboxylic acids (pK_a ~ 5) are 10¹¹ times more acidic than alcohols (pK_a ~ 16)


 Dissociation of a carboxylic acid gives a carboxylate ion with the negative charge spread out equally over two oxygen atoms, compared with just one oxygen in an alkoxide ion

Acidities

ABLE 20-3 Values of K_a and p K_a for Carboxylic Acids and Dicarboxylic Acids					
Formula		Name			
		Simple carboxylic acids			
			$K_{\rm a}$ (at 25 °C)	pK_a	
НСООН		formic acid	1.77×10^{-4}	3.75	
CH ₃ COOH		acetic acid	1.76×10^{-5}	4.74	
CH ₃ CH ₂ COOH		propionic acid	1.34×10^{-5}	4.87	
CH ₃ (CH ₂) ₂ COO	OH	butyric acid	1.54×10^{-5}	4.82	
CH ₃ (CH ₂) ₃ COO	OH	pentanoic acid	1.52×10^{-5}	4.81	
CH ₃ (CH ₂) ₄ COO	OH	hexanoic acid	1.31×10^{-5}	4.88	
$CH_3(CH_2)_6COC$	OH	octanoic acid	1.28×10^{-5}	4.89	
CH ₃ (CH ₂) ₈ COO	OH	decanoic acid	1.43×10^{-5}	4.84	
C ₆ H ₅ COOH		benzoic acid	6.46×10^{-5}	4.19	
p-CH ₃ C ₆ H ₄ CO	ОН	p-toluic acid	4.33×10^{-5}	4.36	
p-ClC ₆ H ₄ COOl	Н	p-chlorobenzoic acid	1.04×10^{-4}	3.98	
p-NO ₂ C ₆ H ₄ CO	OH	p-nitrobenzoic acid	3.93×10^{-4}	3.41	

Acidities – Substituent Effects

Any substituent that stabilises the negatively charged carboxylate ion (i.e. electron withdrawing)
promotes dissociation and results in a stronger acid

The magnitude of a substituent effect depends on its distance from the carboxyl group

Acidities – Substituent Effects

TABLE 20-4 Values of K_a and pK_a for Substituted Carboxylic Acids

Acid	K _a	р <i>К</i> _а	
F ₃ CCOOH	5.9×10^{-1}	0.23	
Cl₃CCOOH	2.3×10^{-1}	0.64 stroi	nger acids
Cl ₂ CHCOOH	5.5×10^{-2}	1.26	
O ₂ N—CH ₂ COOH	2.1×10^{-2}	1.68	
NCCH ₂ COOH	3.4×10^{-3}	2.46	
FCH ₂ COOH	2.6×10^{-3}	2.59	
ClCH ₂ COOH	1.4×10^{-3}	2.86	
CH ₃ CH ₂ CHClCOOH	1.4×10^{-3}	2.86	
BrCH ₂ COOH	1.3×10^{-3}	2.90	
ICH₂COOH	6.7×10^{-4}	3.18	
CH ₃ OCH ₂ COOH	2.9×10^{-4}	3.54	
HOCH₂COOH	1.5×10^{-4}	3.83	
CH₃CHClCH₂COOH	8.9×10^{-5}	4.05	
PhCOOH	6.46×10^{-5}	4.19	
PhCH ₂ COOH	4.9×10^{-5}	4.31	
ClCH ₂ CH ₂ CH ₂ COOH	3.0×10^{-5}	4.52	
CH₃COOH	1.8×10^{-5}	4.74	
CH ₃ CH ₂ CH ₂ COOH	1.5×10^{-5}	4.82	

Salts of Carboxylic Acids

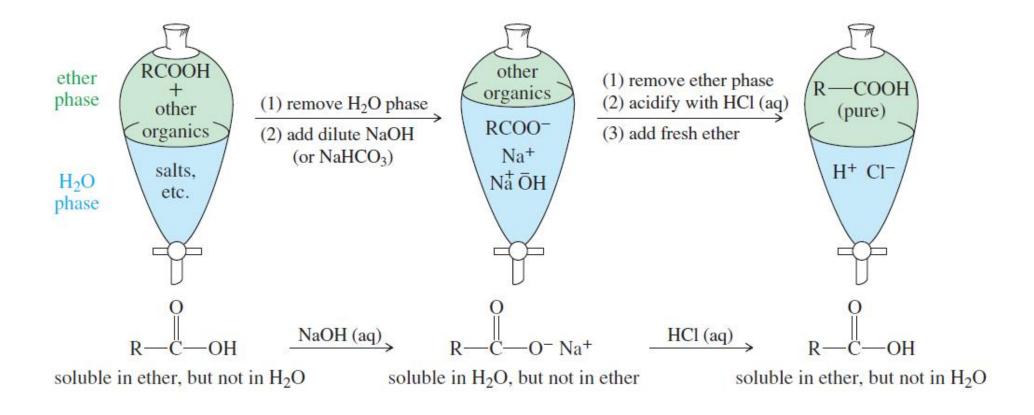
A strong base can completely deprotonate a carboxylic acid. The products are a carboxylate ion, the
cation remaining from the base, and water. The combination of a carboxylate ion and a cation is a salt
of a carboxylic acid

Liquid / Solids with pungent smell

High melting point

Relatively soluble in water

Solids with little odour;


Very high melting point

Very soluble in water

Addition of a mineral acid (more acidic) converts a carboxylic acid salt back to the original carboxylic acid

Acid-Base Extraction

Extraction is a purification method take advantage of the different solubilities of acids and their salts

Impurities can be removed from a carboxylic acid using acid—base extractions

Acid-Base Extraction - Example

How can you separate a mixture of butanoic acid, butanamine and benzene?