2302106 – Basic Organic Chemistry for ISE – Part II Lecture 5-1

Carboxylic and Derivatives - Structure and Property

Instructor: Asst. Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

Recommended Textbook:

Chapter 20 in Organic Chemistry, 8th Edition, L. G. Wade, Jr., **2010**, Prentice Hall (Pearson Education)

What is Carboxylic Acid? Carboxyl = carbonyl group + hydroxyl group

O II R-C-OH Distinctly acidic

٠

formic acid methanoic acid

1

acetic acid ethanoic acid

Carboxylic Acid Derivatives

Nomenclature - Suffix

Carboxylic acid and derivatives - Structure

• The **sp**² hybrid carbonyl carbon atom is **planar**, with nearly **trigonal** bond angles

bond lengths

Carboxylic acid and derivatives - Structure

• One of the unshared electron pairs on the hydroxyl oxygen atom is **delocalised** into the electrophilic pi system of the carbonyl group

5

Chapter 20 – Wade - Prentice Hall

Physical Properties – Boiling Point

 Carboxylic acids boil at considerably higher temperatures than do alcohols, ketones, or aldehydes of similar molecular weights

• The high boiling points of carboxylic acids result from formation of a stable, hydrogen bonded dimer; effectively doubling the molecular weight

Chapter 20 – Wade - Prentice Hall

Physical Properties – Boiling Point

Chapter 21 – Wade - Prentice Hall

Physical Properties – Boiling Point

• Amides have surprisingly high boiling points

The resonance picture shows a partial negative charge on oxygen and a partial positive charge on nitrogen

dipolar resonance in amides

Physical Properties – Water Solubilities

- Carboxylic acids form hydrogen bonds with water and alcohol
- The lower molecular-weight acids are **miscible** with water
- As the length of the hydrocarbon chain increases, water solubility decreases until acids with more than 10 carbon atoms are nearly insoluble in water

IUPAC Name	Common Name	Formula	mp (°C)	bp (°C)	Solubility (g/100 g H ₂ O)
methanoic	formic	НСООН	8	101	∞ (miscible)
ethanoic	acetic	CH3COOH	17	118	∞
propanoic	propionic	CH ₃ CH ₂ COOH	-21	141	∞
prop-2-enoic	acrylic	H ₂ C=CH-COOH	14	141	∞
butanoic	butyric	CH ₃ (CH ₂) ₂ COOH	-6	163	∞
2-methylpropanoic	isobutyric	(CH ₃) ₂ CHCOOH	-46	155	23.0
trans-but-2-enoic	crotonic	СН ₃ —СН=СН-СООН	71	185	8.6
pentanoic	valeric	CH ₃ (CH ₂) ₃ COOH	-34	186	3.7
2,2-dimethylpropanoic	pivalic	$(CH_3)_3C$ — COOH	35	164	2.5
hexanoic	caproic	CH ₃ (CH ₂) ₄ COOH	-4	206	1.0
octanoic	caprylic	CH ₃ (CH ₂) ₆ COOH	16	240	0.7
decanoic	capric	CH ₃ (CH ₂) ₈ COOH	31	269	0.2

 Most carboxylic acids are also quite soluble in relatively nonpolar solvents such as chloroform because the acid continues to exist in its dimeric form

Physical Properties – Solubilities

- Acid derivatives are soluble in common organic solvents such as alcohols, ethers, chlorinated alkanes, and aromatic hydrocarbons
- Acid chlorides cannot be used in **nucleophilic solvents** such as water and alcohols
- Many of the smaller esters, amides, and nitriles are relatively soluble in water because of their high polarity and their ability to form hydrogen bonds

Compound	Name	mp (°C)	bp (°C)	Water Solubility
CH ₃ —C—OCH ₂ CH ₃	ethyl acetate	-83	77	10%
$\mathbf{H} - \mathbf{C} - \mathbf{N}(\mathbf{CH}_3)_2$	dimethylformamide (DMF)	-61	153	miscible
$CH_3 \rightarrow C - N(CH_3)_2$	dimethylacetamide (DMA)	-20	165	miscible
$CH_3 - C \equiv N$	acetonitrile	-45	82	miscible

Chapter 21 – Wade - Prentice Hall

Physical Properties – Example

Rank the boiling point of these compounds

