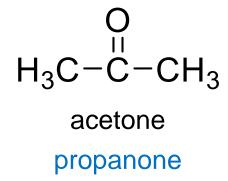

2302106 – Basic Organic Chemistry for ISE – Part II Lecture 4-1

Aldehydes & Ketones – Structure & Property

Instructor: Asst. Prof. Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

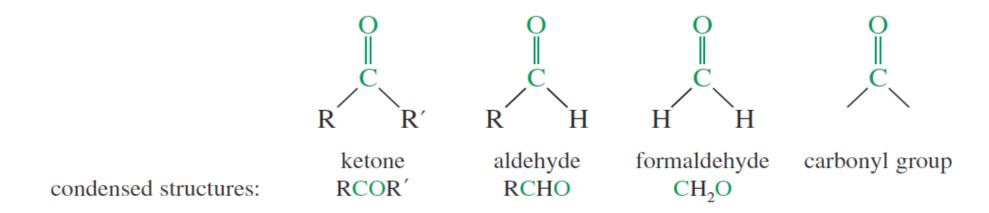
Recommended Textbook:


Chapter 18 in *Organic Chemistry*, 8th Edition, L. G. Wade, Jr., **2010**, Prentice Hall (Pearson Education)

Aldehyde = Latin "alcohol dehydrogenatus" (dehydrogenated alcohol)

Ketone = "Aketon" (an old German word for acetone)

O II H-C-H formaldehyde methanal



Compounds containing a carbonyl group

[ABLE 18-1 | Common Classes of Carbonyl Compounds

Class	General Formula	Class	General Formula
ketones	O R—C—R'	aldehydes	O ∥ R—C—H
carboxylic acids	O R—C—OH	acid chlorides	R—C—Cl
esters	O R—C—O—R'	amides	R — C — NH_2

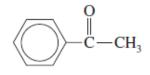
Aldehydes and Ketones

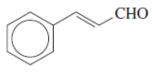
Ketone: Two alkyl groups bonded to a carbonyl group.

Aldehyde: One alkyl group and one hydrogen bonded to a carbonyl group.

- Ketones and aldehydes are similar in structure, and they have similar properties
- In most cases, aldehydes are more reactive than ketones

Industrial of Aldehydes and Ketones


Ketones and Aldehydes Used in Household Products

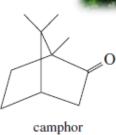

$$\begin{array}{c} & & \text{O} \\ \parallel \\ \text{CH}_3 \text{---} \text{CH}_2 \text{---} \text{C} \text{---} \text{H} \\ \text{butyraldehyde} \end{array}$$

.CHO

vanillin

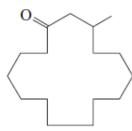
acetophenone

Odor: buttery


margarine, foods Uses:

vanilla foods, perfumes pistachio


ice cream


trans-cinnamaldehyde cinnamon candy, foods, drugs

pyrethrin

muscone

musky aroma

perfumes

Odor:

Uses:

"camphoraceous"

liniments, inhalants

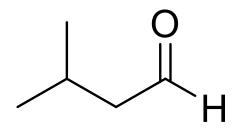
floral

plant insecticide

(-) enantiomer: spearmint (+) enantiomer: caraway seed

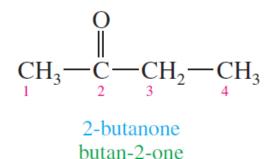
candy, toothpaste, etc.

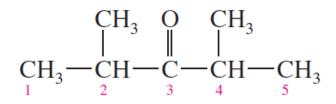
Chapter 18 – Wade - Prentice Hall


Nomenclature – IUPAC Names of Aldehydes

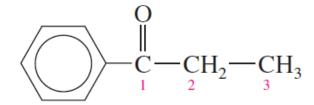
Suffix = -al

- Replace -e of alkane name with -al
- Aldehyde C is at the end of a chain: (almost) always number 1

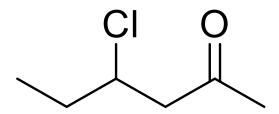

Example



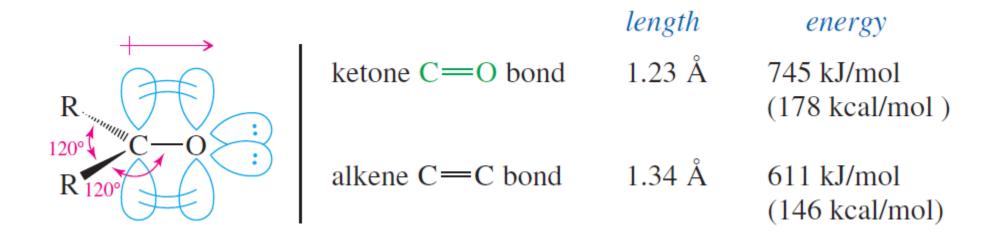
Nomenclature – IUPAC Names of Ketones


Suffix = -one

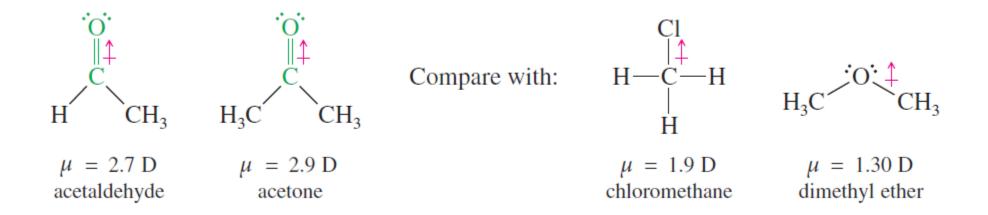
- Replace -e of alkane name with -one
- Number longest chain containing C=O from the end closest to C=O
- Indicate position of the C=O by a number



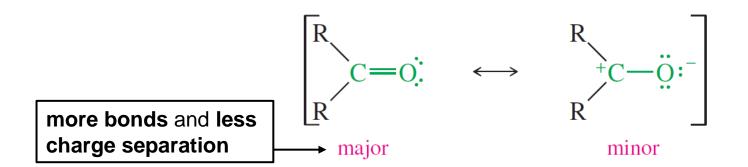
2,4-dimethyl-3-pentanone 2,4-dimethylpentan-3-one


1-phenyl-1-propanone 1-phenylpropan-1-one

Example


Structure of the Carbonyl Group

- sp² hybridised carbon
- Bonded to 3 other atoms through coplanar sigma bonds oriented about 120° apart
- Unhybridized p orbital overlaps with a p orbital of Oxygen to form a pi bond

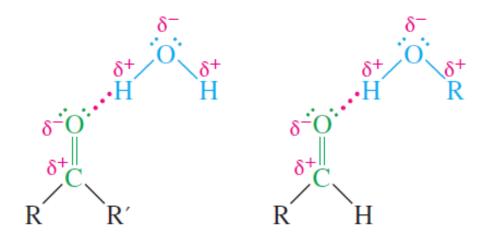


 C=O bond has similar geometry to C=C but C=O bond is shorter, stronger and more polarized than C=C bond

Structure of the Carbonyl Group

 C=O has a large dipole moment because O is more electronegative than C and the bonding electrons are not shared equally (resonance)

Physical Properties of Aldehydes and Ketones


Polarization of the carbonyl group creates dipole-dipole attractions between the molecules

Higher boiling points than for hydrocarbons and ethers of similar M.W.

Physical Properties of Aldehydes and Ketones

- Pure aldehydes or ketones cannot form H bonding with each other
- They can form H bonding with compounds having O-H or N-H bonds

Aldehydes and ketones are good solvents for polar hydroxylic compounds (eg. Alcohols)

Physical Properties of Aldehydes and Ketones

Example

a) Rank the compound from the one with lowest to highest boiling point