
2302106 – Basic Organic Chemistry for ISE – Part II Lecture 3-2

Amines – Basicity

Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

Recommended Textbook:

Chapter 19 in *Organic Chemistry*, 8th Edition, L. G. Wade, Jr., **2010**, Prentice Hall (Pearson Education)

Acidity/Basicity of Water vs Alcohols vs Amines

$$H_{O}H$$

Basicity of Amines

 An amine is a Nucleophile (a Lewis base) because its lone pair of nonbonding electrons can form a bond with an electrophile

Reaction of an amine as a nucleophile

$$R-N:$$
 CH_3-I
 $N=0$
 $R-N^+-CH_3$
 $N=0$
 $N=0$

 An amine can also act as a Brønsted-Lowry base by accepting a proton from a proton acid

Reaction of an amine as a proton base

Basicity of Amines

- An amine can abstract a proton from water, giving an ammonium ion and a hydroxide ion
- The equilibrium constant for this reaction is called the base-dissociation constant for the amine, symbolized by K_b

R—N: H + H—O—H
$$\stackrel{K_b}{\longleftarrow}$$
 R—N+ H + OH
$$K_b = \frac{[RNH_3^+][-OH]}{[RNH_2]}$$
 $pK_b = -log_{10}K_b$

Stronger bases have smaller values of p K_b .

• Values of K_b for most amines are fairly small (about 10⁻³ or smaller; $pK_b > 3$), and the equilibrium for this dissociation lies toward the left.

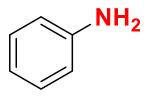
Basicity of Nitrogen-Containing Compounds

 NH_3

ammonia

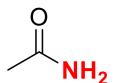
 $pK_b = 4.74$

CH₃-NH₂


methylamine

$$pK_b = 3.36$$

CH₃-NH-CH₃


methylamine

$$pK_b = 3.28$$

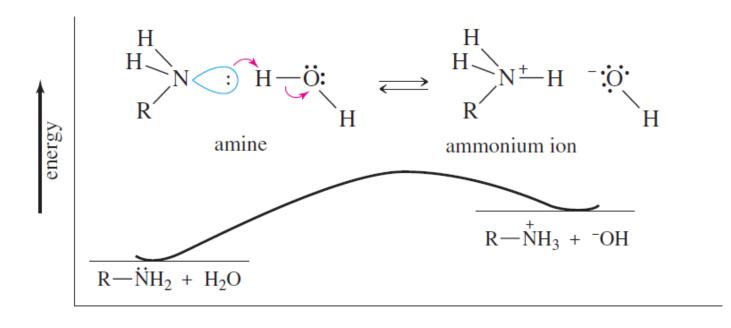
aniline

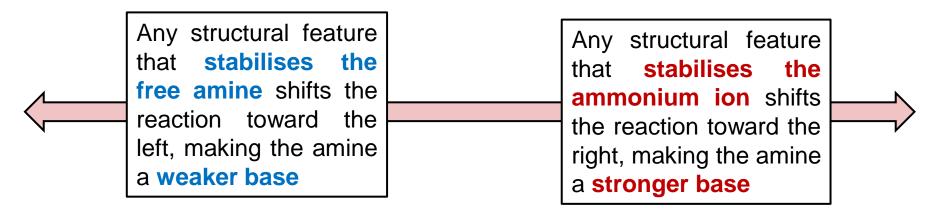
$$pK_b = 9.40$$

amide

$$pK_b = 14.5$$

pyridine

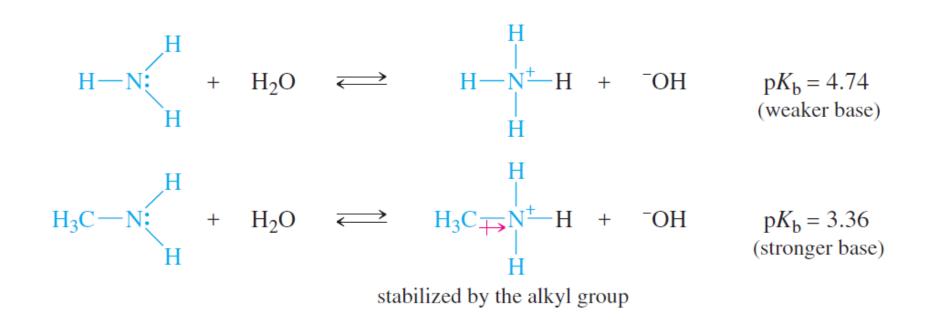

$$pK_b = 8.75$$


$$H_3C-C\equiv N$$

nitrile

$$pK_{b} = 24$$

Potential-energy diagram of the base dissociation reaction of an amine



Chapter 19 - Wade - Prentice Hall

1) Alkyl Substitution

 Alkyl groups are electron-donating toward cations; stabilise the positive charge on nitrogen

 This stabilisation lowers the potential energy of the methylammonium cation, making methylamine a stronger base than ammonia

1) Alkyl Substitution

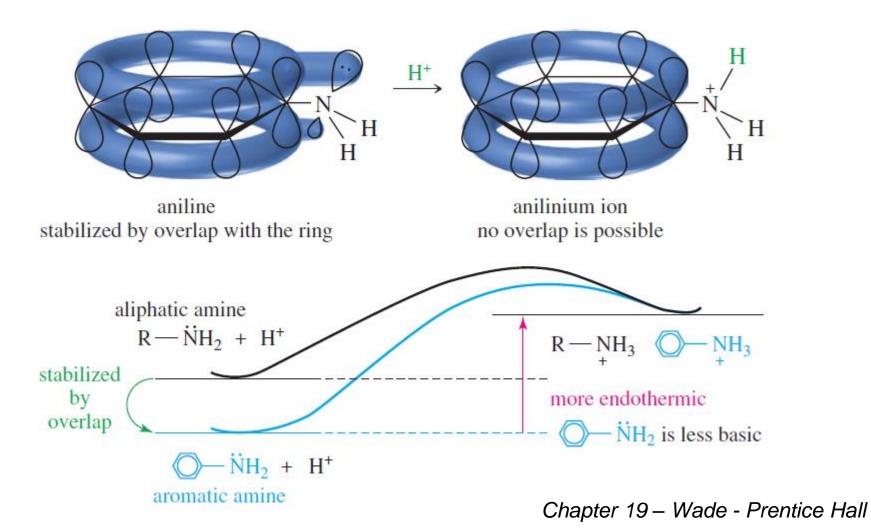
Relative basicity in gas phase:

$$(CH_3)_3N > (CH_3)_2NH > CH_3NH_2 > NH_3$$

More alkyl substitution results in more stabilization of the alkylaminium ion

Relative basicity in aqueous solution:

$$(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > NH_3$$


Less hydrogen bonding to water – less stabilization of the alkylaminium ion

$$(CH_3)_3N$$
 $(CH_3)_2NH$ CH_3NH_2 NH_3

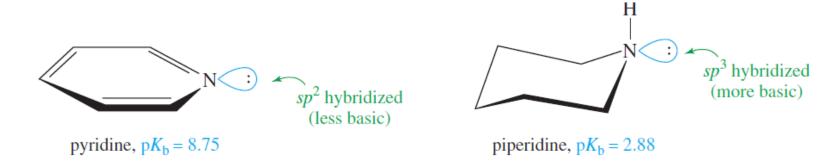
More alkyl substitution results in more stabilization of the alkylaminium ion

2) Resonance effect

• Arylamines (anilines and their derivatives) are much weaker bases than simple aliphatic amines

2) Resonance effect

- Amides are much less basic than simple amines
- Nitrogen lone pair of amide is delocalised to the carbonyl oxygen


Amide

N-Protonated Amide

Amide is greatly stabilized by resonance but the protonated amide is not

3) Hybridisation effect

Unsaturated amines tend to be weaker bases than simple aliphatic amines

- Electrons are held more tightly by orbitals with more s character
- Pyridine's nonbonding electrons are less available for bonding to a proton
- The effect of is even more pronounced in nitriles with sp hybridization

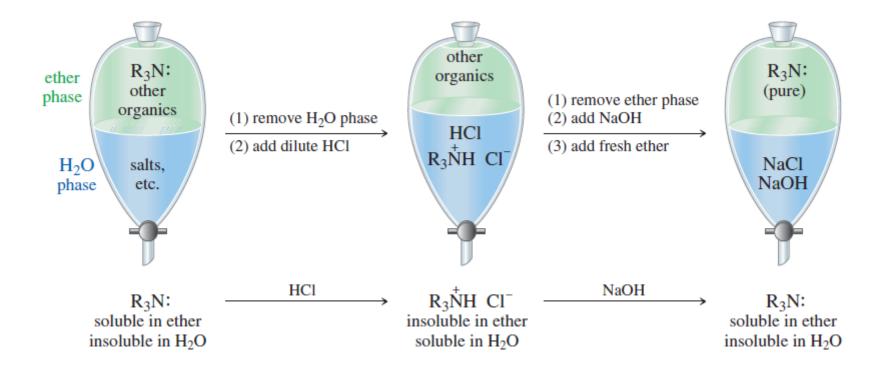
$$SP$$
 hybridized

CH₃—C \equiv N very weakly basic

 $PK_b = 24$

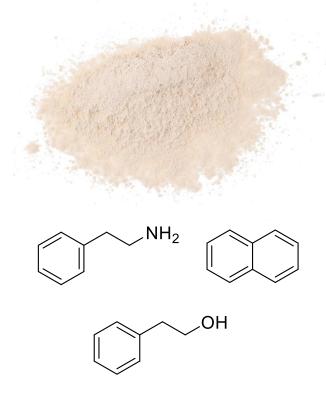
Effects on Basicity - Example

Rank the following compounds in order of increasing basicity


Effects on Basicity - Example

Rank the following compounds in order of increasing basicity

$$HO$$
 H_2N
 H_2N
 H_2N
 H_2N


Salts of Amines

- Protonation of an amine gives an amine salt
- Amine salts are ionic, high-melting, non-volatile solids. They are much more soluble in water than the parent amines, and they are only slightly soluble in nonpolar organic solvents

Use the formation of amine salts to separate amines from less basic compounds

Acid-Base Extraction Example:

Mixture!