2302106 – Basic Organic Chemistry for ISE – Part II Lecture 2-1

Alcohols - Structures and Properties

Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

Recommended Textbook:

Chapter 10 and 11 in Organic Chemistry, 8th Edition, L. G. Wade, Jr., **2010**, Prentice Hall (Pearson Education)

What is alcohol?

CH₃—OH methyl alcohol methanol

OH | CH₃--CH--CH₃ isopropyl alcohol propan-2-ol

1

IUPAC naming: suffix = **-O**

Structure of Water vs. Methanol

Classification of Alcohols

1) Primary alcohol: carbon with —OH is bonded to **one** other carbon

> H R-C-OH H

2) Secondary alcohol: carbon with —OH is bonded to **two** other carbon

> R' R-C-OH H

3) Tertiary alcohol:carbon with —OH is bondedto three other carbon

4) Phenols:—OH is bonded to a benzene ring

Classification of Alcohols – Examples

1-methylcyclopentanol

 $\begin{array}{c} CH_{3} & Primary \ alcohol \\ | \\ CH_{3}CHCH_{2}^{*} - OH \end{array}$

2-methylpropan-1-ol

Physical Properties

- Boiling Point / Melting Point
- Solubility in Water

Chemical Properties

- Acidity
- Reactivity

Intermolecular Forces !!

– London Dispersion Forces

– Dipole-Dipole Interaction

- Hydrogen bond

Physical Properties – Boiling Point

Physical Properties – Boiling Point

Example: Rank the compound from the one with lowest to highest boiling point

Physical Properties – Solubility in Water

Larger alkyl group; Lower solubility

Alcohol	Solubility in Water	
methyl	miscible	
ethyl	miscible	
<i>n</i> -propyl	miscible	1
tert-butyl	miscible	
isobutyl	10.0%	
<i>n</i> -butyl	9.1%	
<i>n</i> -pentyl	2.7%	
cyclohexyl	3.6%	
<i>n</i> -hexyl	0.6%	
phenol	9.3%	
hexane-1,6-diol	miscible	•

— two hydrogen-bonding groups

miscible = soluble in any proportions

Physical Properties – Boiling Point

Example: Rank the compound from the one with lowest to highest solubility in water

$$R-O-H \implies R-O^{\ominus} + H^{\oplus}$$

lcohol	р <i>К</i> а	$K_{-} = \frac{[RO^{\bigcirc}][H^{\oplus}]}{[H^{\oplus}]}$	
nethanol	15.5	[ROH]	
hanol	15.9	$\int pK_a = -\log K_a$ (Lower pKa = more acidic)	
loroethanol	14.3	Electron withdrawing groups; More acidic (help stabilize the alkoxide ion) Larger alkyl group; Less acidic (decreased solvation of the alkoxide ion)	
,2-trichloroethanol	12.2		
propyl alcohol	16.5		
butyl alcohol	18.0		
lohexanol	18.0		
enol	10.0	- ∠ - ← Phenol is 100 million times more	
		acidic than cyclohexanol !	
ater	15.7		
cetic acid	4.8		
nydrochloric acid	-7	Chapter 10 Made - Prov	

- The negative charge of the oxygen can be delocalized over four atoms of the phenoxide ion
- The true structure is a hybrid between the four resonance forms

Example: Rank the compound from the one with lowest to highest acidity

