2302263 – Organic Chemistry I – Part III

Lecture 2-5

Alkynes

Instructor: Asst. Prof. Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

Recommended Textbook:

Chapter 8 in Organic Chemistry, 8th Edition, L. G. Wade, Jr., **2010**, Prentice Hall (Pearson Education)

Alkynes

Alkynes are hydrocarbons that contain carbon–carbon triple bonds.

The chemistry of the carbon–carbon triple bond is similar to that of the double bond.

Alkynes are not as common in nature as alkenes

IUPAC Nomenclature

Physical Properties

The physical properties of alkynes are similar to those of alkanes and alkenes of similar molecular weights.

Name	Structure	mp (°C)	bp (°C)	Density (g/cm ³)
ethyne (acetylene)	H-C=C-H	-82	-84	0.62
propyne	$H-C=C-CH_3$	-101	-23	0.67
but-1-yne	$H-C=C-CH_2CH_3$	-126	8	0.67
but-2-yne	$CH_3 - C = C - CH_3$	-32	27	0.69
pent-1-yne	$H-C=C-CH_2CH_2CH_3$	-90	40	0.70
pent-2-yne	$CH_3 - C = C - CH_2CH_3$	-101	55	0.71
3-methylbut-1-yne	$CH_3 - CH(CH_3) - C \equiv C - H$		28	0.67
hex-1-yne	$H - C = C - (CH_2)_3 - CH_3$	-132	71	0.72
hex-2-yne	$CH_3 - C = C - CH_2CH_2CH_3$	-90	84	0.73
hex-3-yne	$CH_3CH_2 - C = C - CH_2CH_3$	-101	82	0.73
3,3-dimethylbut-1-yne	$(CH_3)_3C - C \equiv C - H$	-81	38	0.67
hept-1-yne	$H-C=C-(CH_2)_4CH_3$	-81	100	0.73
oct-1-yne	$H-C \equiv C - (CH_2)_5 CH_3$	-79	125	0.75
non-1-yne	$H - C = C - (CH_2)_6 CH_3$	-50	151	0.76
dec-1-yne	$H-C=C-(CH_2)_7CH_3$	-36	174	0.77

Nonpolar and nearly insoluble in water

Electronic structure

Hybridization of the *s* orbital with one *p* orbital gives two hybrid orbitals, directed 180° apart, for each carbon atom. Overlap of these *sp* hybrid orbitals with each other gives the sigma bond framework

Two pi bonds result from overlap of the two remaining unhybridized p orbitals on each carbon atom.

Acidity of Terminal Alkynes

Terminal alkynes are much more acidic than other hydrocarbons (although still very weak acid)

Abstraction of an acetylenic proton gives a carbanion that has the lone pair of electrons in the *sp* hybrid orbital

Very strong bases (such as sodium amide, NH_2^{-}) deprotonate terminal acetylenes to form carbanions called acetylide ions

Acidity of Terminal Alkynes

Very strong bases (such as sodium amide, NH₂⁻) deprotonate terminal acetylenes to form carbanions called acetylide ions

Acetylide ions are strong nucleophiles.

One of the best methods for synthesizing substituted alkynes is a nucleophilic attack by an acetylide ion on an unhindered alkyl halide.

Acidity of Terminal Alkynes

Preparation of Alkynes

We can generate a carbon–carbon triple bond by **eliminating two molecules of HX** from a *geminal* or *vicinal* dihalide.

Many of the reactions of alkynes are **similar to** the corresponding reactions of **alkenes** because both involve pi bonds between two carbon atoms

Bond	Total Energy	Class of Bond	Approximate Energy
c–c	347 kJ (83 kcal)	alkane sigma bond	347 kJ (83 kcal)
c=c	611 kJ (146 kcal)	alkene pi bond	264 kJ (63 kcal)
C≡C	837 kJ (200 kcal)	second alkyne pi bond	226 kJ (54 kcal)

Alkynes have two pi bonds, so up to two molecules can add across the triple bond

Sigma bonds are generally stronger than pi bonds, the reaction is usually exothermic.

Addition of Halogens

• Addition of Hydrogen Halides

• Hydration Alkynes undergo acid-catalyzed addition of water in the presence of mercuric ion as a catalyst

$$HgSO_4$$

$$H_2SO_4, H_2O$$

Catalytic Hydrogenation

In the presence of a suitable catalyst, hydrogen adds to an alkyne, reducing it to an alkane.

Catalytic Hydrogenation

Hydrogenation of an alkyne can be stopped at the **alkene** stage by using a "**poisoned**" (partially deactivated) catalyst: such as **Lindlar's catalyst** (powdered barium sulfate coated with palladium, poisoned with quinoline)

Metal–Ammonia Reduction to *trans* Alkenes

Reactions of Alkynes: Oxidation

• With KMnO₄ under mild conditions

Reactions of Alkynes: Oxidation

• With KMnO₄ under harsh conditions

If the reaction mixture becomes warm or too basic, the diketone undergoes oxidative cleavage.

Example 2 Predict the products of the following reactions

